

IMAGE EVALUATION

TEST TARGET (MT-3)

Photographic Sciences Corporation

CIHM/ICMH Microfiche Series.

Canadian Institute for Historical Microreproductions / Institut canadien de microreproductions historiques

The Institute has attempteo to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Cover 3 damaged/
Couverture endommagée

Covers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manque
Coloured maps/
Cartes géographiques en couleurColoured ink (i.e. other chan blue or black)/
Encre de couleur (i.e. sutre que b!eue ou noire)
Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur
Bound with other material/
Relié avec d'auirres documents
Tight binding may cause shadows or distortion along interior margin/
La re liure serrée peut causer de l'ombre ou de le distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte. mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographiqus, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur
Pages damaged/
Pages endommagées
Pages restored and/or laminated/
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées
Pages detached/
Pages détachées
Showthrough/
TransparenceQuality of print varies/
Qualité inégale de l'impression
Includes supplementary material/
Comprend त̣? .. Ttériel supplémentaire
Only edition available/
Seule édition disponible
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image/ Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure. etc., unt été filmées è nouveau de fac̣on à obtenir la meilleure image possible.

The imı possibl of the filming

Origina beginni the las sion, ol other 0 first pa sion, a or illus

The las shall c TINUE whiche

Maps, differe entirel beginn right a require metho

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here has been reproduced thanks to the generosity of:

The images appearing here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

Original copies in printed paper covars are filmed beginning with the front cover and ending on the last page with a printed or illustrated impression, or the back cover when appropriate. All other original copies are filmed beginning on the first page with a printed or illustrated impression, ard ending on the last page with a printed or illustrated impression.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"), whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

National Library of Canada

L'examplaire filmé fut reproduit grâce à la générosité de:

Bibliothèque nationale du Canada

Les images suivantes ont été reproduites avec le plus grand soin, compte tenu de la condition et de la netteté de l'exemplaire filmé, et en conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papier est imprimée sont filmés en commençant par le premier plat et en terminant soit par la dernière page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la première page qui comporte une empreinte d'impression ou d'ilustration et en terminant par la dernière page qui comporte une telle empreinte.

Un des symboles suivants apparaîtra sur la dernière image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole ∇ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction différents. Lorsque le document est trop grand pour être reproduit en un seul cliché, il est filmé à partir de l'angle supérieur gauche, de gauche à droite. et de haut en bas, en prenant le nombre d'images nécessaire. Les diagrammes suivants illustrent la méthode.

1	2	3
4	5	6

MOORTES

Artizan's Guido and Rrerybody's Assistant,

The most comprehensive Collection of New and Reliable Secrets, Receipts, Tables, \&c., in existence,

 Jurt iomed, confaine directions for construction and manage mont of steam Ha (ines, Bollers, Valvea, Gaurea, \&ec, Cements for Stuam work, Scale Prevontive, Steam Packivg, Cumposition Boiler Covering, Polioh for bright work, Rules for computing Power of Engines, Sles of Cyilider, Fly-wheels, ice. On Flout Mille, Useful items for Millwrights and Millers. On Saw-milis Eningle Mruchines, Bent Saw-millo, Bnlee for Speed of Wheeia Pulleyo. Drums, Circuilar Sawt, ir: On Saw Filing, fuil directona, Fith Dlayrume, Tomend broken Eawe Cheap FiroAnnibile Cors. On Beling, Shanting, Gear-cuttlig gevol Gearr, Friction, gerow work, Planing, Bostng, Turaing, Finiobing, Ac. Making and tomparing Anvila, Locomotive Tiren, Rallway and Carriage Springe, Sawo, Azien Steel Ploughs, Tools, Axes, Files, Tape, Feamore, Cold Chisela, Matble and Stone Cuttera' Toolf, Stone Drill, Dies, Mill Picty, Edge Toole, Ecinoert, Razorr, Scythes, Dental and Barpical Inotrumenta, Cutlery, Chishlb, Gunlock Epringa, Engraved Steel Platel, Watch Bprings, Gold and Steel Ponf, Noedles, Floh Hooke or Emery Whecin, 2 kinds, WeidIng Compounde, 6 kinds, Teupering Liquids, 7 kinds, Metnilio Tempering bath. Cace hardening, 6 ways. To restore Burnt Steel, 2 wayn Aanealing Steel; \&c. To toughen poor Steel. To improve goor Iron and steel. Directions for omelting Goid, Silver, Eron, Coppor Lead, Antimony, Z1nc, \&c. To reduce Oxiden, Allogs for Gold 145 kind, Silver, 24 kind, Brase, 43 kinds, Bronze, 18 kind, Anti-fiction metala, 19 kinds, Britannia, 23 kinds, German siver, 13 kinds, Type ania Stereotype metala, 9 kinds. Cheap coldern, 47 kinds, Gold and Bilver bolders, 28 kinds, Compositions for Locomotive, Organ Pipes, Pumpt, Clocke, Toothed Wheels Telencopen, Re fector, Plated Goods, Albats, Britioh Plate, Bldery, Birmingham Piatin, Electrum, Pinchbeck, Oreide, Riveto Buitong, Pewter, Gilding metal, Muntz metal, Pot metal, Steam motal, Queen's motal, Erince' metai, Bath metal, Sheathin metal, Shot mernh, Gun metal, Gonge, Cymbale, Moulds, Silvered Glame, Mirrore, Electrical Maohlnes, \&ce., 79 kinds. For Tinning Bineing, Galvaniaing, Coppering, Brasing, Zincing, \& Enamel ling on metals, 28 methode. Bronzes, Dipping Acids, Lacquers Puinte, Japans, Inlald Mother o' Pearl, \&c., Oor metal work; 77 kinde; Bronze Powder, nine kinds. Coloring, Gilding, and Plating, Ineluding Nickel plating, 24 methods. For Watch, Chronometer, Clock, and Jewelry work, 352 very valuable recelpts. Over 600 reliable procenses for Iron, Steel. Anchor, Saw, Tube, Chain, Anvil, Beming Machine, FIre-proof Safe, Iron Ralling; Gan fixture, and Fire-arm Munufecturers, Matter Mechenice Machinleto, Engineore, Biackemiths, Hornenhoert, Carriuge, \&Wag on Makers, Iron, Malieable lron, Brase, Type, Stereotype, \& Bell Founder, Pattern Makers, Refiners, 8 weep Smelters, Gunsmitho, Lockemiths, Cutlers, Millers, Miliwrights, Copperamiths, Gas \& Steam Fittere, Plumbers, Marbleworkere, Tinmen, Opticians, Bank Note, Copper Plate and Wood Engravers, Die sinkers, Stencilcuttern, sc. Glase, 25 kinde, Colored Glass, Glass Stainlng, Etch Ing, \& Chinn Decoration, 23 recelpte. To Gild Giass bigns, methodes Stains for Wood, 48 kinds; Pollihes, 14 kinds. Wood filing, 10 kinds; Oil Finiohem, 6 kinds. For House, Sign, Ship Carriage, \& Ornamental Palnters, Grainers, Cabinet \& Musical Instrument Makers, Gilderi, Carvers, Pollshers, Picture Frame Dealers, Varnichors, Stuceo Workers, \&c., 349 very vaiuable receipts. Cemente, Glue, \&c. 37 kinde. For Tannere, Boot. Shoe, \& Harness Makere, 52 recelpts. . For Dyers, Rleachers, Ilatters, Clothlers, Sosp, \&e., 83 receipts. For Dentivts, 19 receipts; PopuIar Mediclnes, Halr Preparations. Perfumery, \&ec., 208 receipts; Horse Medicines, Food for $110 r s e s$ and Cattle, sc., 70 recelptsi Fertilizers of great power, 80 per cent cheaper than usually soid, 13 klade. Over 400 receipta for Wines, Syrupa, Bitters, Cordiais, Goda Water, Summer Drinks, Clder, Beer, Ale, P’orter, Jelliea, Honey, Candiey, Ice Creama, Saucen, Relishen, Fluvoring Ex: Gracte, Essencen, Mustardo, Boking Powder, Canned of Sealed Goode, Freeerved Meats, de, Inks, Vinegars, Blacking, Blineing, Corn Starch, Self-rnialng Flour, Preservlng Egge, Frults, Cider, zo., Printern' Ink \& Rollerr, Linieed, Cottonspel, Coal, LubricatIng \& Kerosene Olis, Northern Light, Axle Grease, Compusition Roofing, Aophalt Bidewalk: \& Roois, Matehes, Tobacco Flavors, Taxidermiats, Embalming \& Trappling Hecrets, \&c., \&c. For $1 \mathrm{n} *$ dia Ruhber work, 12 recelpto. For Bakers Cookn, \&c., 161 receipts fleady Reckoner, Intereat, Produce, Lumber, Coal, Cordwood, Bark, Moulders', Pattern \& Model Makers' Tables, Weighte of Iron, Steel, Brase, Copper, Lemd, Ruesia Iron, Lead P'pe, Strength of Cast Iron Columni, ac., at sight. Free by mail, for ©.00. Agents manted. Directill orderi toCoparlaso, Thompsos, \& Andorison, Predericton, M.B., Ganade

$$
\begin{aligned}
& T 49 \\
& M 78 \\
& 1873
\end{aligned}
$$

THE

 Artizans' GUIDE

 Artizans' GUIDE
 AIN:

EVERYBODY'S ASSISTANT:

TWO THOUSAND NEW AND VALUABLE RECEIPTS AND TABLES
 LIFI, TROX THE HOURMEOLD TO THX MANTFACTORY.

By R. MOORE:

PUBLIBHED FOR THE PROPRIETOR,

sidutrexl:

PRINTED BY JOHN LOVELL, ST, NIGLOLAS STRRET.
1873

PREFAधE

The following work will be found to embrace an immense amount of the most valuable information regarding almost every branch of useful industry. The information has been collected from many sources with much care and expense, many of the items being valuable trade secrets, consequently obtainable only at a heavy cost. On the whole, "The Artizan's Guide" will be found to embrace a vast amount of most useful knowledge in connection with business and manufacturing requirements, as well as the no less indispensable department of domestic uses, much of this information being very difficult to obtain in bork. The Appendix, embracing the subject of correspondences, \&c., is now inserted for the first time, and if favourably received will be inserted in future editions. Many persons who are in proper states for receiving these truths remain in total ignorance of their existerce, and have no means of knowing them except through some such effort as this. These explanations are now appended for the benefit of all such, certainly not for my own personal emolvment, except so far as happiness may be derived from the consciousness of having tried to benefit others, and this, beyond all doubt, is an exceeding great reward. March 1873.

[^0]For Bak For Dye Clothi For Dru Barber
For Groc Sealed Beer, For Tant and H worker \&c.
For Pain
Gilder ufactur tors, \mathbf{P} Glass M For Watc ers, Ref smiths,
For Mach
Blacksn gon ma Founder ers, Ha Iron, St File, Ch proof Sa

INDEX.

mbrace an information l industry. any sources items being inable only Artizan's amount of ith business 11 as the no c uses, much o obtain in lbject of core first time, ed in future er states for gnorance of lowing them

These exenefit of all emol:iment, red from the others, and reat reward.
r One Thousand the office of the on of Canada. 1
For Baking, Cooking, Preserves, Jellies, \&c... 3-19
For Dyers, Bleachers, Furriers, Hatters, and Clothiers 19-31
For Druggists, Dentists, Family Medicines, Barbers, Perfumers, Fancy Soaps, \&c....... 40-64For Grocers, Confectionere, Domestic Wines,Sealed Goods, Syrups, Cordials, Ice Creams,Beer, \&c.64-96For Tanners, Curriers, Furriers, Boot, Shoeand Harnessmakers, Marble and Ivoryworkers, Bookbinders, Anglers, Trappers.$\& c$.96-106

For Painters, Varnishers, Cabinet-makers, Gilders, Bronzers, Piano and Organ manufacturers, Glass Stainers, China Decorators, Potters, Polishers, Wood Stainers, Glass Makers, Architects, \&c.

106-140
For Watchmakers, Jewellers, Gilders, Colorers, Refiners, Gold Beaters, Gold and Silversmiths, Burnishers, Diamond cutters, \&c.

140-167
For Machinists, Master Mechanics,Engineers, Blacksmiths, Edge tool, Carriage and Waggon makers, Mill owners, Iron and BrassFounders and Finishers, Locomotive Builders, Hardware Dealers, Metal Smelters, Iron, Steel, Anchor, Tube, Spring, Saw, File, Chain, Anvil, Sewing Machine, Fireproof Safe, Iron Raiiing, Gas Fixture, and
Fire-Arm manufacturers, Bronzers, Lock-smiths, Cutlers, Millers, Sawyers, Copper-smiths, Gasfitters, Steamfitters, Plumbers,Tinmen, Die Sinkers, Steel, Copper-plateand Wood Engravers, Stencil cutters, Goldand Silversmiths, Sweepsmelters, Enam-ellers, Japanners, Rubber work, Gas Com-panies, Boiler Makers, Sugar Refiners,Starch Manufacturere, Petroleum and OilDealers, Navigators, Button, Needle andPen Manufacturers, Miners, \&c., \&c.........167-280
Items for Daily Remembrance. 281-284
Ready Reckoner, Interest, Produce, Lumber,Coal, Cordwood, Bark, Moulders', Patternand Model makers Tables, Weights of Iron,Steel, Brass, Copper, Lead, Russia Iron,Lead Pipe, Strength of Cast Iron Columns,\&c., at sight, embraeing 22 pages followingPage..284
On Correspondences, \&c., See Appendix.

BAKING AND COOKING DEPARTMENT.

Bazina Bread.-The quantities and best manner of mixing the different ingredients necessary to make good bread, viz., to make the fermentation, say, for 10 buckets of flour ; take 6 gals. of potatoes well bolled and mashed in a tub, with 1 bucket of water (in summer this water should be about milk-warm, in winter much warmer; in all cases this must be governed by the weather), six pounds of flour and five quarts of yeast; stir the whole up well, and cover till it rises. It is better to work the same as soon as it does rise and commences falling agair; otherwise the bread will not be so good. The time of rising, however, varies much; sometimes it will rise in eight hours, at other times it will take much longer. Again, to make the sponge; take $2 \$$ buckets of the above ferment, and 24 buckets of water, milk-warm, run the whole through a sieve intn a trough, and make it into light dough, with flour for sponge. When this sponge has risen and commenced falling, add 5 lbs. salt and 5 buckets of water; break the sponge well in the water, and stir up sufficient flour to make a stiff dough, cover it up untll it rises sufficiently; it is then fit for being weighed off and put into tho tins for baking. Let it stand in the tins until it rises, when it should be placed in the oven.
N.B.-A \ddagger oz. carbonate of magnesia added to the flour, for a 4 lb . loaf, materially improves the quality of the bread even when made from the very worst new seconds flour. It is usual with bakers to add alum to the flour, in order to make a white, light, and porous bread. Two ounces of alum per 100 lbs . flour is generally sufficient.

Hop Yeast.-Boil 5 gais. water and 10 ozs. hops together from 10 to 15 minutes; put 6 lbs . flour in a tub, to which add as muck of the boiling liquor as will be necessary to make a thick paste. When the remainder of the liquor is perfectly cool, add it, together with 1 gal. of stock yeast, to the paste, when the whole will be ready for use.

Malt Yeast.-Boil 10 ozs. hops in 5 gals. of water from 10 to 15 minutes, pour the same into a tub. When cooled to 70° Fahr. add $\frac{1}{2}$ peck of malt; stir the whole up well, and cover it till nearly cool then add 3 qts. of old yeast to make it ferment.

Another Exchllent Bread.-Knead 21 lbs. fiour with 9 lbs. of pared and mashed potatoes, from which the water has been well steamed off previous to mashing; mix together. while the potatoes are warm, adding about 3 or 4 spoonfuls of salt. Then add about 3 qts. milk-warm water, with 9 large spoonfuls of yeast, gradually to the potatoes and flour; knead and work it
well into a smooth dough, and let it stand 4 hours before putting into the oven.

Healtay Mixed Brad.-Boil 3 lbs. of rice to a soft pulp in water ; pare and cook by steam 6. 1bs. of your best potatoes, mash your potatoes, and rub them up with rice pulp; add to the whole 6 lbs. flour; make all into a dough with water, ferment with ycast, let it stand a proper length of time, and then place it in the oven to bake.
Efated Bread, without Yeast.--1. Dissolve 1 oz. of sesquicarbonate of ammonis in water, sufficient to make 7 lbs . of Hour into a dough, which must be formed into loaves, and baked immediately. 2. Divide 3 lbs. flour into two portions: mix up the first with water, holding in solution 2 oz . bicarbonate of soda; then mix the second portion of fluur with water, to which 1 oz. of muriatic acid has been added; knead each mass of the dough thoroughly. When this is done, mix both portions together as rapidly and perfectly as possible, form the mass inte loaves, and bake immediately. This breud contains no veast, and is very wholesome.

Note.-Bicarbonate of soda and muriatic acid, when chemically combined, form common salt.

Superior Bread from Becewheat Meal.-To 2 qts. of sifted buck wheat meal, add hot water enough to wet the same; when sufficiently cooled, add 1 teaspoonful or more of salt, half a pint of yeast, and half a teaspoonful of molasses; then add wheat flour enough to make it into loaves (it should be kneaded well); and When risen light, bake or steam it three or more hours. If thig should get sour while rising, add a teaspoonful of sugar and ε. little saleratus, dissolved in water. For bread from Indian meal proceed in the same way, using it instead of the buckwheat meal.

Corn-Meal Briad No. 1.-Take 2 qts. of corn meal, with about a pint of (thin) bread sponge, and water enough to wet it ; mix in about half a pint of wheat flour, and a tablespoonful of salt; let it rise, and then knead well the second time; bake $1 \frac{1}{2}$ hours.

Corn-Meal Bread No. 2.-Mix 2 qts. of new corn meal with three pints of warm water; add 1 tablespoonful of salt, 2 tablespoonfuls of sugar, and 1 large tablespoonful of hop yeast; let it stand in a warm place five hours to rise; then add $1 \frac{1}{2}$ teacupfuln of wheat flour, and half a pint of warm water. Let it rise again 1! hours, then pour it into a pan well greased with sweet lard, and let it rise a few minutes. Then bake, in a moderately hot oven, 1 hour and 30 minutes.

Corn-Meal Bread No. 3.-Take 2 qts. of white corn-meal, I tablespoonful of lard, 1 pint of hot water; mix the lard in water; stir it well that it may get heated thoroughly, and add one-halt pint of cold water. When the mixture is cool enough, add two well-beaten eggs, and two tablespoonfuls of home-made yeast. Bake 1 hour in a moderately heated oven. If for breakfast, make over night.

London Bakrrs' Briad.-To make a half-peck loaf, take $\frac{3}{4}$ lbs. of well-boiled, mealy potatoes; mash them through a fine colander or coarse sieve; add $\frac{1}{1} \mathrm{pt}$. of yeast, or $\frac{3}{4}$ oz. German dried yeast,
and 4 p to rend is to he less that sponge blood which h should t place to baked.

Freno bag, givi hours til flour ; Allow th into loa will mak

Paris the prev will mak has risen next day water is kneaded. into loav in the 0 "crusted

Brown flour, set one-half spoon, ev mixture flour bres be lukew oven or 8 if a stove hour or for baki cight or or butter water an with a kn to bake. flour ins flour will ness and over nigh

Ginger sugar ; 1 peel.

Dysper proved h 3 quarts

rs before put-

 soft pulp in best potatoes, pulp; add to ith water, ferime, and thenoz. of sesqui7 libs. of thour es, and baked tions: mix up icarbonate of ter, to which 1 mass of the portions tothe mass inte ains no veast,
hen chemically
qte. of sifted e same; when t, half a pint of id wheat flour led well) ; and hours. If this f sugar and ε. m Indian meal ckwbeat meal. al, with about wet it ; mix in ful of salt; let $1 \frac{1}{3}$ hours. rn meal with © salt, 2 tablep yeast ; let it

1) teacupfuln t it rise again th sweet lard, hoderately hot
corn-meal, 1 ard in water add one-halt pugh, add two e-made yeast. eakfast, make
take $\frac{3}{4}$ lbs. of fine colander n dried yeast,
and $\$$ pt. lukewarm water (88° Fahr.), to gether with 1 lb . of fiour, to render the mixture the consistence of thin batter; this mixture is to he set aside to ferment; if set in a warm place, it will rise in less ,han two hours, when it resembles yeast except in color. The sponge so made is then to be mixed with 1 pt . of water nearly blood warm, viz., 92° Fahr., and poured into a half peck of flour, which has previously had if oz. salt mixed into it ; the whole should then be kneaded into dough, and allowed to rise in a warm place for 2 hours, when it should be kneaded into loaves, and baked.
Frinor Bread.-Take nice rice, $\left\{\begin{array}{l}\text { lb.; tie it up in a thick linen }\end{array}\right.$ bag, giving enough room for it to swell; boil from three to four hours till it becomes a perfect paste ; mix while warm with 7 lbs . flour; adding the usual quantities of yeast, salt, and water. Allow the dough to work a proper time near the fire, then divide into loaves, dust them in, and knead vigorously. This quantity will make 13 lbs .7 oz . of very nutritious bread.
Paris Baker's White Bread.-On 80 lbs. of the dough left from the previous day's baking, as much luke-warm water is poured as will make 320 libs. flour into a rather thin dough. As soon as this has risen, 80 lbs . are taken out, and reserved in a warm place for next day's baking. One pound of dry yeast dissolved in warm water is then added to the remaining portion, and the whole lightly kneaded. As soon as it is sufficiently "risen," it is then made into loaves, and shortly afterwards baked, the loaves being placed in the oven without touching each other, so that they may be "crusted" all round.
Brown Bread.-Take equal quantities of Indian meal and rye flour, scald the meal, and when lukewarm add the flour, adding one-half pint of good yeast to four quarts of the mixture, a tablespoon, even full, of salt, and half a cup of molasses, kneading the mixture well. This kind of bread should 'be softer than wheat flour bread. All the water added after scalding the meal should be lukewarm. When it has risen well, put it to bake in a brick oven or stove, the former should be hotter than for flour bread; if a stove oven, it should be steamed two hours then baked one hour or more ; when done it is a dark brown. The best article for baking this kind of bread is brown earthenware-say pans eight or ten inches in height, and diameter about the same; grease or butter the pans ; put in the mixture; then dip your hand in cold water and smooth the loaf; after this slash the loaf both ways with a knife, quite deep. Some let it rise a little before they put it to bake. Many people prefer this bread made of one-third rye flour instead of one half. When it is difficult to get rye, wheat flour will answer as a substitute. It adds very much to the richness and flavor of this kind of bread to let it remain in the oven over night.
Gingerbriad.-Mix together 3 l lbs. of flour ; $\{\mathrm{lb}$. butter ; 1 lb . sugar ; 1 pint molasses; $\ddagger \mathrm{lb}$. ginger, and some ground orangepeel.
Dyspepsia Bread.-The following receipt for making bread has proved highly salutary to persons afflicted with dyspepsia, viz :3 quarts unbolted wheat meal ; 1 quart soft water, warm but nat
hot ; 1 gill of fresh yeast; 1 gill molasses, or not, as may suit the taste; 1 teaspoonful of saleratus.

Rules to be observed in Cakt-matidg.-1. In naking cakes, use rofined white sugar, although clean brown sugar does as well. 2. Use good sweet butter in every case. 3. Cake mixture cannot be beaten too much. 4. An earthen basin is the best for beating calie mixture, or eggs in. 5. A good regular heat must be kept up in the oven. 6. Use a broom splint to run th-ough the thickest part of the cake; if done, it will come out clean, if not done, there will be some of the dough sticking to it. This rule applies to bread also. The following cakes wiil be found to come out all right with a fair trial

Superior Indian Cake.-Take 2 cups of Indian meal 1 tablespoonful of molasses, 2 cups milk, a little salt, a handful of flour, and a little saleratus; mix thin, and pous it into a buttered bakepan, and bake balf an hour.

Nut Cakes.-Take 1 lb . flour, $\frac{1}{4} \mathrm{lb}$. butter, sume of sugar, five eggs, and spice to your taste.
Semd Cake. - 1 tea-cup butter, 2 cups sugar, rubbed inte 4 cups flour; mix with milk hard enough to roll: $\frac{1}{2}$ teaspoonful saleratus; seeds to your taste.

Buokwheat Cake.-Make a batter of buckwheat flour as you would for pan-cakes ; let it rise light. Then to each quart of tho batter add 1 cup of molasses, 2 eggs, 1 teaspoonful of saleratus, a few caraway seeds, and 1 teacupfal wheat flour; stir well together, pour into a greased breadpan, and bake in a moderate hot oven $\frac{3}{4}$ of an hour.

Aimond Cakr.-Tal:e one pound of almonds, blanched and beaten ; ten eggs, well beaten; three-quarters of a pound of sugar. and three-quarters of a pound of Hour, well mixed and baked.

Wedding Cake.-Take three lbs. flour, three lbs. butter, thre: lbs. sugar, two dozen eggs, four los, raisins, six lbs. of currants, two lbs. citron, one cunce mace, one ounce cinnamon, one ounce nutmeg, half-ounce cloves, half-pint brandy. Beat the batter with your hand to cream; then beat the sugar into the butter; add tha froth of the yolks of the eggs, after being well beaten, then this froth of the whites, mix truit, spice and fiour together, then add them in, baking five or six hours for a large loaf.

Pound Cake.-One pourd of flour, one pound of sugar, ons pound of butter, eight engs, three spoonfuls rose-water, mace, or other spice.
Buckwheat Short Cake.-Take 3 or 4 cups nice sour milk, 1 teaspoonful of soda saleratus dissolved in the milk; if the milk is rery sour, you must use saleratus in proportion with a litt] sait mix up a dough with buckwheat flour thicker than you would nix the same for griddle cakes, say quite stiff; put into a buttered tin, and put directly into the stove oven, and bake about 30 minutes, or as you would a short-cake from common flour.

Short Cake.-5 lbs. Hour, 8 oz . butter, $\frac{3}{4}$ lbs. sugar, 8 eggs, rosewater and nitmeg.

Sugar Dakm.-Take 7 eggs, and beat the whites and yolke sepa: rately: then beat well togetner; now put into them sifted whito sugar, $1 \mathrm{lb} . ;$ with melted butter, $\frac{1}{2} \mathrm{lb}$. ; add a small teaspoonful of
pulveriz flour to Gino $2 \mathrm{oz}, \mathrm{m}$ and bak

Plum
3 eggs,
RICH
$\frac{7}{4} \mathrm{lb}$ of spoonful lastly, a milk, an

Denca
1 cup of spoonful flour, a to

STRAW wuttermi of soda, quick ov fine with taking 0 thickly w then the Serve im

Sponge the juice the suga hours is 1

Loat C 3 eggs, 1 meg for Cream beaten eq milr pie as pound you like.

Corn teaspooni starch, $\frac{1}{2}$

Railro tartar, $\frac{1}{2}$ spoonful Mount cup of mi half a tes

Poor cream, 1 of salera

Fritr pint of sv brandy, more.
t, as may suit the
making cakes, use does as well. 2. nixtrire cannot be t for beating calie tbe kept up in the ickest part of the there will be some bread also. The right with a fair
an meal, 1 tablehandful of flour, a buttered bake-
me of sugar, five
ubbed intc 4 cups oonful saleratus;

1eat flour as you each quart of tho ul of saleratus, a tir well together, lerate hot oven $\frac{3}{4}$
s, blanched and pound of sugar: and baked. lbs. butter, thres lbs. of currants. amon, one ounco t the batter with butter; add tha beaten, then this gether, then adil
d of sugar, ono -water, mace, or
nice sour milk, 1 ilk; if the milk on with a littl icker thain you stiff; put into a and bake about amon flour.
ar, 8 eggs, rose-
and yolks sepa.: em sifted whito I teaspoonful of
pulverized carbonate of ammonia. Stir in just sufficient sifted flour to allow of ite being rolled out, and cnt into cakes.

Ginger Cakn.-Flour 3 lbs., sugar and butter, each 1 lb ., ginger 2 oz ., molasses 1 pint, cream ; pt. and a little nutmeg; mix warm and bake in slack oven.

Plúm Cakr. - Flour 1 lb ., butier $\ddagger \mathrm{lb}$., sugar $\ddagger \mathrm{lb}$., currants $\ddagger \mathrm{lb}$., $3 \mathrm{eggs}, \ddagger$ pint milk, carbonate of soda, a small teaspoonful.

RICH Soba CAKE.-1 pound of pulverized loaf-sugar mixed with 3 lb . of sweet butter, the beaten whites of 14 eggs , and two teaspoonfuls of cream of tartar sifted with a pound of flour, and lastly, a teaspoonful of soda dissolved in half a teacupful of sweet milk, and strained. Bake immediately.

Denicatw Tea Cake. - The whites of 3 eggs beaten to a froth, 1 cup of pulverized white sugar, $\frac{1}{\frac{1}{2}}$ cup of sweet milk, one teaspoonful of cream of tartar, $\frac{1}{2}$ teaspoonful of soda, $2 \frac{1}{2}$ cups of flour, a teaspoonful of almonds, $\frac{1}{\frac{1}{2}}$ cup of melted butter.

Strawberry Short Cakm.-One teacupful of sour milk (not iuttermilk), a piece of. butter the size of a walnut, $\frac{1}{f}$ teaspoonful of soda, + teaspoonful of salt. Mix very lightly, and bake in a quick oven. While baking, take $1 \frac{1}{2}$ pts. of strawberries; mashed fine with the hand; when the cake is cooked enough, cut in two. taking off about $\frac{1}{3}$, leaving $\frac{2}{3}$ at ihe bottom; spread each pait thickly with batter, then put on the large portion a layer of sugar, then the berries, then sugar, and lastly, turn the other part over. Serve immediately.

Sponge Cake.-Sift 1 lb . of hour and 1 lb . of loaf sugar; take the juice of 1 lemon, beat 10 eggs very light, mix them well with the sugar, then add the lemon and flour; if baked in a pan, two hours is necessary.

Loar Cake. -Take 2 lbs . of flour, $\frac{1}{2} \mathrm{lb}$. of sugar, $\frac{1}{4} \mathrm{lb}$. of butter, $3 \mathrm{sggs}, 1$ gill of milk, $\frac{1}{2}$ teacupful of sweet yeast, cloves and nutmeg for spice.

Cream Cakm.-1 teacup cream, 2 teacups sugar, three well beaten eggs, teaspoonful saleratus dissolved in a wine glass of mill piece of butter half the size of an egg, flour to make as thick as pound cake, add raisins and spice to taste; wine and brandy if you like.

Corn Starch Cake.- $\frac{1}{2} \mathrm{lb}$. of sugar, 4 oz. of butter, 5 eggs, 1 teaspoonful cream of tartar, $\frac{1}{2}$ teaspoonful soda, $\frac{1}{2}$ pound of corn starch, $\frac{1}{\frac{1}{2}}$ a gill of sweet milk.

Railroad Cake.--A pint of flout 1 teaspoonful of cream of tartar, $\frac{1}{2}$ a teaspoonful of soda, a tablespoonful of butter, a teaspoonful of sugar; bake the batter in a square pan twenty minutes.
Mountain Cake.-1 cup of sugar, 2 eggs, half cup butter, half cup of milk or water, 2 cups of flour, teaspoonful of cream of tartar, half a teaspoonful of soda, nutmeg.

Poor Man's Cake.-1 cup of sugar, $\frac{1}{2}$ cup of butter, 1 cup sour cream, 1 egg , flour enough to make a good batter, $\frac{1}{2}$ a teaspoonful of saleratus.

Froir Cake.- $1 \frac{1}{2}$ lbs. sugar, $1 \frac{1}{4}$ lbs. flour, $\frac{3}{4} \mathrm{lb}$. butter, 6 eggs, a pint of sweet milk, 2 teaspoonfuls saleratus, 1 glass of wine, 1 of brandy, and as much fruit and spice as you can afford and no more.

Scotch Shobt Bread.-Flour 2 pounds, butter 1 pound, brown sugar $\frac{1}{1}$ pound, blanched almonds, cut small, $\frac{1}{2}$ pound, candied lemon peel, t pound ; beat the butter to a cream, and add it to the flour and sugar with the other ingredients. When well kneaded and incorporated roll it out into cakes about one inch thick. Bake in a moderate oven.

Gold Care.-Yolks of 1 doz. eggs; flour, 5 cups; white sugar, and butter, of eacb, one cup; cream or sweet milk, 1 cup; cream of tartar, 1 teaspoon; soda, $\frac{1}{2}$ teaspoon. Beat the eggs with the sugar ; have the butter softened by the fire then stir it in ; put the soda and cream of tartar into the cream or milk, stirring up and mixing all together; then sift and stir in the flour.

Wondrrs.-2 pounds flour, $\frac{1}{2}$ pound butter, $\frac{1}{2}$ ounce sugar, -10 egga, cinnamon.

Cookiss.-3 pounds flour, ${ }^{3}$ pound butter, $\$$ pound ${ }^{\text {s }}$ ugar 3 eggs; or, without egge, wet up, raise with saleratus and sour milk.

Common.-12 pounds flour, 3 pounds butter, 3 pounds sugar, 2 quarts milk, yeast, spice to taste.
Loaf.- 9 quarts flour, 3 pounds butter, 4 pounds sugar, 1 gallon milk, wine 1 pint, yeast 1 pint.

Cider Cakt.-Flour, 6 cups; sugar, 3 cups; butter, 1 cup; cider, 1 cup; saleratus, 1 teaspoon ; 4 eggs ; 1 grated nutmeg. Beat the eggs, sugar, and butter together, and stir in the flour and nutmes; dissolve the saleratus in the cider, and stir into the mass, and bake immediately In a quick oven.

Molasses Cake.-Molasses, $1 \frac{1}{2}$ cups; saleratus, 1 teaspoon; sour milk, 2 cups; 2 eggs; butter, lard, or pork gravy, what you would take upon a spoon; if you use lard, add a little salt. Mix all by beating a minute or two with a spoon; dissolving the saleratus in the milk; then stir in flour to give it the consistency of soft cale and put directly into a hot oven, being careful not to dry by over baking.

Rook Cakes.-Mix together 1 lb . of flour ; $\frac{1}{2} \mathrm{lb}$. of sugar $; \frac{1}{2} \mathrm{lh}$ of butter; ${ }^{\prime} 1 \mathrm{lb}$. of currants or cherries, and 4 eggs , leaving out the whites of 2 ; a little wine and candied lemon-peel are a great improvement.

Jumbles.-Take 1 lb . of loaf-sugar, pounded fine; $1 \downarrow \mathrm{lb}$. of flour: $\frac{3}{4} \mathrm{lb}$. of butter ; 4 eggs, beaten light, and a little rose-water and spice; mix them well, and roll them in sugar.

Cop Cakes.-Mix together 5 cups of flour; 3 cups of sugar; 1 cup of butter; 1 cup of milk; 3 eggs well beaten; 1 wine-glass of wine 11 of brandy, and a little cinnamon.

Cymbals. 2 lbr. flour, 8 oz. butter, $\frac{1}{2} \mathrm{lb}$. sugar, 6 eggs , rosewater and a little spice.

Frosting, or Icing, for Cakes.-The whites of 8 eggs, beat to a perfect froth and stiff; pulverized white sugar, 2 lbs ; starch, 1 tablespoon; pulverized gum arabic, $\frac{1}{2} \mathrm{oz}$. ; juice of 1 lemon; sift the starch, sugar and gum arabic ir to the beaten egg, and stir all thoroughly, when the cake is cold lay on the frosting to suit.

Jumbles.-Butter 1 lb ., sugar 1 lb ., flour 2 lbs., 3 eggs , $\frac{1}{\frac{1}{c}}$ cup of sour milk; 1 teaspoonful of soda, roll in white coffee sugar. This will make a large batch.

Dovgnnots.-Sugar and milk, 2 cups of each; saleratus, 1 tea-
spoonflu hen's eg Cruil 6 eggs: Buns. make it Cocos white of of egg to the size

Frienor made ye through and a lit into larg Murfin flour, a lv milk-an added. I and bake

Bate 0 and a cup rises, add in, and ro

No. 1 C Rub thoro beat well, pinch off

Sugar
$\frac{1}{2} \mathrm{lb}$. ; wat
Naples
Lemon
ounce sal
them out
greased, al
of lenion.
Abernet of sweet m mix dough mould the moderate c
Savoy weight of 6 grate in th grate on so or any flav

Gingers brown sug take 1 gill dough, and them in a)
York Bis
raise with

1 pound, brown pound, candied nd add it to the n well kneaded ach thick. Bake
s; white sugar, :, 1 cup ; cream e eggs with the tir it in ; put the stirring up and
junce sugar,-10
d sugar, 3 eggs; sour milk. pounds sugar, 2

3 sugar, 1 gallon
butter, 1 cup; ed nutmeg. Beat a the flour and ir into the mass,

1 teaspoon ; sour what you would plt. Mix all by the saleratus in ecy of soft cale to dry by over
of sugar; 1 l ys, leaving ouf beel are a greak
$1 \ddagger \mathrm{lb}$. of flour rose-water and
ps of sugar; 1
1 wine-ylass of
, 6 eggs, rose-
8 eggs, beat to 2 lbs.; starch, e of 1 lemon; n egg, and stir rosting to suit. eggs $\frac{1}{\frac{1}{2}}$ cup of coftee sugar.
leratus, I tea-
spoonful; 3 eggs, and a piece of butter half as large as a small hen's egg, and flour sufficient.
Crolures.-Sugar and melted butter, 6 tablespoonfuls of oach; 6 eggs, and flour to roll.
Buss. -1 cup butter, 1 cap sugar, $\frac{1}{3}$ cup of yeast, $\frac{1}{2}$ pint of milk; make it stiff with flour; add, of you like, nutmeg.
Cocoanut Drops.-1 lb. grated cocoanut, $\frac{1}{1} \mathrm{lb}$. white sugar, the white of 6 eggs, cut to a stiff froth. You must have enough whites of egg to wet the whole mixture. Drop on buttered plates, in pieces the size of an egg.
French Rolle.- 1 ounce of butter, 1 lb . of flour, 1 gill of homemade yeast, 1 egg, milk enough to make a dougk. Rub the butter through the flour, beat the egg and stir in, then add the yeast, milk, and a little salt: Knead the dough; when it is light, mould it out into large biscuits, and bake them on tins.
Morfing.-A quart of milk, 2 eggs, 2 spoonfuls of yeast, 2 lbs. of flour, a lump of butter size of an egg-which is to be melted in the milk-and a little salt; the milk is to be warmed, and the ingredients added. Let it rise, and then turn the mixture into buttered pans, and bake to a light brown.
bath Cakes.-Mix well together, 1 lb . flour, $\frac{1}{2} \mathrm{lb}$. butter, 5 eggs, and a cupful of yeast, set the whole before the fire to rise after it rises, add $\& l \mathrm{lb}$. white sugar, and 1 ounce carraway seeds well mixed in, and roll the paste into little cakes, bake them on tins.
No. 1 Crackrrg.-Butter, 1 cup ; salt, 1 teaspoon ; flour, 2 qts. Kub thoroughly together with the hand, and wet up with water; beat well, and beat in flour to make quite brittle and hard; then pinch off pieces, and roll out each cracker by itself.
Sugar Crackrrs.-Flour, 4 lbs ; loaf sugar and butter, of each $\frac{1}{2} \mathrm{lb}$. ; water, $1 \frac{1}{2}$ pts. ; make as above.
Naples Biscuit.-White sugar, eggg, and flour, of each 4 lbs .
Lemon Biscuit.-Take $3 \frac{1}{2}$ lbs. white sugar, 4 lbs. flour, $\frac{1}{2}$ ounce saleratus, $\frac{1}{2}$ lb. suet, a little milk to wet the dough, cut them out about the size of marbles, put them on pans a little greased, and bake them in a hot oven and flavor them with essence of lesion.
Abrrnerfy Biscutr.-Take 8 lbs . of flour, 14 lb . of butter, 1 quart of sweet milk, 12 ounces of sugar, 1 ounce of carraway seed, 6 eggs; mix dough of the above, break them in pieces of about two ounces, mould them off, roll them out, prick them and bake them in a: moderate oven.
Savoy Biscoit.-Take of sugar the weight of 14 eggs , of flour the weight of 6 eggs, beat the yellows and whites of 12 eggs, separate, grate in the rind of a lemon ; after being in the oven a few minutes grate on some sugar. You may add peach-water, or lemon-juice, or any flavoring extract.
Gngern Snaps.-Take. 7 lbs . of flour, 1 quart of molasses, 1 lb . of brown sugar, 1 lb . butter, 2 ounces of ground ginger, and then take 1 gill of water, $\frac{z}{4}$ of an ounce of saleratus; mix them all into dough, and cut them out something larger than marbles, and bake them in a moderate oven.
York Biscuir.- -a lbs. flour, $\frac{1}{2} \mathrm{lb}$. butter, $\frac{3}{}$ lbs. sugar : wet up, and raise with sour milk and saleratus.

Traviller's Biscuit. -2 lbs . of flour, $\mathbf{3}^{3}$ of a pound of sugar, $\ddagger \mathrm{lb}$. butter, 1 teaspoonful of dissolved saleratus, milk sufficient to form a dough. Cut up the butter in the flour, add the sugar, and pnt it the saleratus and milk together, so as to form dough." Knead it till it becomes perfectly smooth and light. Roll it in sheets about $\frac{1}{8}$ of an inch thick, cut the cakes with a cutter or the top of a tumbler. Bake in a moderate oven.

Baking Powder for Biscutr.-Bicarbonate of soda 4 lbs., cream of tartar 8 lbs. These ingredients should be thoroughly dried and well mixed, and put up proof against dampness. Use about 3 teaspoonfuls to each quart of four, mix up with cold water or milk, and put it into the ceven at once.

Brown Bread for Biscuits.-Corn meal 4 qts., rye flour 3 qts., wheat flour 1 qt ., molasses 2 tablespoonfuls, yeast 6 tablespoonfuls, soda 2 teaspoonfuls. Mix during the evening for breakfast.

Mince Pies-Meat 1 lb ., suet $3 \frac{1}{4} \mathrm{lbs}$., currants, raisins and plums, 2 lbs., one glass brandy or wine; allspice, cinnamon and cloves to your taste, sugar sufficient to sweeten. Baked in a short crust.
. Froit Pies.-For all kinds of fruit pies have your fruit sweetened to your taste, and then put in a short crust. Bake in a hot oven.

Pumpinin Pir.-Stew the pumpkin dry, and make it like squash pie, only season rather higher. In the country, where this real Yankee pie is prepared in perfection, ginger is almost always used, with other spices. There, too, part cream, instead of milk, is mired with the pumpkin, which gives a richer flavor.
Lemon Pie.-1 lemon grated, $2 \mathrm{eggs}, \frac{1}{2}$ cup of sugar, 1 cup of molasses, 1 of water, and 3 tablespoonfuls of flour. This makes 3 pies.
Lemon Pie with threx crusts.-A layer of crust, a layer of lemon, sliced fine, a little sugar, layer of crust again, and sugar and lemon again, then the upper crust.

Another Way.- 1 cup of sugar, 1 cup of sweet milk, $1 \mathrm{egg}, 1 \frac{1}{2}$ lemon the grated peel and juice, 1 tablespoontul of flour; then after baking, the white of an egg beaten, sweetened, and pat on the top; then set in the oven and browned.

Crumb Pie.-Mince any cold meat very finely, season it to taste, and putit into a pie-dish; have some finely-grated bread crumbs, with a little salt, pepper, and nutmeg, and pour into the dish any nice gravy that may be at hand; then cover it over with a thick layer of the bread crumbs, and put small pieces of butter over the top. Place it in the oven till quite hot.

Washington Pie.- 1 cup of sugar, third of a cup of butter, half a cup of sweet milk, 1 and a third cup of flour, 1 egg , half a teaspoonful of soda, 1 of cream of tartar, lemon flavor. Grease 2 round tins, and put in the above. Bake until done. Then put it on a dinner plate, spread with nice apple-sauce, or sauce of any kind ; then another layer of cake on top. It is nice without sauce, but sauce improves it.
Fruit Pie.-1 cup of sugar, 1 of water, tablespoonful of flour, teaspoonful of lemon essence (or lemon grated), 1 teaspoonful of cream 0^{c} tartar, balf a teaspoonful of soda, half a cup of dried currants: mix and boil, stirring to prevent the flour from settling.

Chicken Pie-Take one pair of good young chickens, cutin small
pieces,
in sauc and bu with p for hal

Veal pieces, water hour h one ou it boil tire

Pluy milk e raisins molasse

Tapid and por another

Bake milk, d of the n the diss allow it en, with it $\frac{1}{2}$ an

Oran the juic with th brandy, the extr

Coco of 6 eg rose-wa Rict stirring beaten,

Hard 2 teasp make a

Bake them te done no the cru whites well to

Grod heaped, add sug

Cust spice to

Wint fill it wi
pieces, season with pepper and salt and small strips of salt pork, put in saucepan with water to cover it, boil for half an hour, add flour and butter to thicken the gravy, have ready a large dish, served with paste, put all in the dish covered with a good rich paste. Bake for half an hour.

Veal Pot Pie.-Take 2 pounds of best veal, cut in small pieces, half pound of salt pork, sliced thin, four quarts of cold water; pepper and salt all, put on the fire ; after boiling for 1 hour have 3 pounds of light bread dough, pick small pieces, say one ounce pieces, put in saucepan, with the veal and pork and let it boil for twenty minutes. Serre as soon as taken from the tíre

Plum Pudding.-Pound 6 crackers, and soak them over night in milk enough to cover them, then add 3 pints of milk, 4 or 5 eggs , raisins $\frac{1}{2} \mathrm{lb}$., spice with nutmeg and sweeten with sugar and molasses. Bake about 2 hours.

Tapioca Pudding.- Pick and mash a coffee cup full of tapioca, and pour upon it 1 pint boiling milk; after standing $\frac{1}{2}$ an hour, add another pint of cold milk, with sugar and raisins if you desire.
Baked Pudding - 5 tablespoonfuls of corn starch to 1 quart of milk, dissolve the starch in a part of the milk, heat the remainder of the milk to nearly boiling, having salted it a little, then add the dissolved starch to the milk, boil 3 minutes, stirring it briskly; allow it to cool, and then thoroughly mix with it 3 eggs, well beaten, with 3 tablespoonsfuls of sugar; flavor to'your taste and bake it $\frac{1}{2}$ an hour. This pudding ranks second to none.

Orange Pudding.-Take 1 lb . of butter, -1 lb . of sugar, 10 eggs , the juice of 2 oranges, boil the peel, then pound it fine and mix it with the juice Add the juice of 1 lemon, a wineglassful of brandy, wine and rose-water. If you do not have the fruit add the extracts.

Coconnut Puddng.-To a large grated cocoanut add the whites of $6 \mathrm{eggs}, \frac{1}{2} \mathrm{lb}$ of sugar, 6 ounces of butter, $\frac{1}{2}$ a wineglassful of rose-water, and baked in or out of paste.

Rion Pudding.-Take llb. of rice, boiled well with rich milk, stirring well until it is soft, and then add $\frac{1}{2} \mathrm{lb}$, butter, 12 eggs , well beaten, and spice to your taste, and bake it.

Hard Times Pudding. - $\frac{1}{2}$ pint of molasses or syrup, $\frac{1}{2}$ pint water, 2 teaspoonfuls of soda, 1 teaspoonful of salt, flour enough to make a batter; boil in a bag for 3 hours. Eat it with sauce.

Bared Apple Pudding.- Pare and quarter four large apples, boil them tender with the rind of a lemon in so little water that when done no water may remain, beat them quite fine in a mortar, add the crumb of a small roll, $\frac{d}{} \mathrm{lb}$. of butter melted, the yolks of 5 and whites of 3 eggs, juice of $\frac{1}{2}$ lemon, sugar to your taste, beat all well together, all in paste.

Groond Rice, or Sago Pudding.-Boil a large spoonful of it, heaped, in 1 pint milk with lemon peel and cinnamon; when cold add sugar, and nutmegs, and 4 egga, well beaten.

Costand Pudding.--Take 1 pint milk, 4 spoonfuls flour, 6 eggs spice to your taste and bake.

Winter Pudding.-Take the crust of baker's loaf of bread, and fill it with plums, boil it in milk and water.

Bakrd Potator Pudding.-Baked potatoes skimmed and mashed 12 oz ., suet 1 oz , cheese, grated fine, 1 oz , milk 1 gill. Mix the potatoes, suet milk, cheese and all together, if not of a proper consistence, add a little water. Bake in an earthen pot.
Collegr Pudings.- 1 lb of stale bread, grated; the same quantity of beef suet, chopped very fine; 1 lb . of currants, $\frac{1}{2}$ nutmeg, a few cloves, a glass of brandy, 2 or 3 eggs, 2 spoonfuls of cream or milk; mix these well together, and make into a paste in the shape of eggs. Fry them gently over a clear fire in $\frac{1}{2} 1 \mathrm{~b}$ of butter; let them be of a nice brown color all over You may add blanched almonds and sweetmeats. Serve them up with wine.
Family Pudding.- 1 quart of sweet milk, 1 pint of bread crumbs soaked in the milk, 3 eggs well beaten, 1 teacupful of sagar, little mace, 6 good tart apples, pared, cores dug out, and stand them in the pudding, and steam until the apples are well done. An hour will suffice.
Cottagm Pudding.-1 egg, 1 cup of sug.if, 1 of sweet milk, 1 teaspoonful of soda, 2 of cream of tartar, 1 pint of flour, and a little salt. To be eaten with milk and sugar
Green Gooskberries make a nice pudding by stirring a pint of them into a pint of batter, and either baking or boiling
Lemon Pudding.-Melt 6 oz. of butter, pour it over the same quantity of powdered loaf sugar, stirring it well till cold, then grate the rind of a large lemon, and add it with 8 eggs well beaten and the juice of 2 lemons: stir the whole till it is completely mixed together, and bake the pudding with a paste round the dish.
Saucrs and Creams for Puddings.-1. Take equal quantities of sugar and molasses, boil them together, and stir in a little flour $\cdot 2$ Take the juice of an orange, a cup of sugar and the same of good cream : 3 Good sour cream made very sweet with sugar; rith or without seasoning, makes a good sauce: 4. Beat 2 eggs well, then add a cup of stewed apples and a cup of sugar.
Beer Steak with Onions - Prepare a rump steak by pounding it till quite tender, season with salt, pepper and fresh butter, put in the steak and fry it, when brown on one side turn over, do not let it scorch, when nicely done, take it up, put a little flour over the steak, then add gradually a cup of hot water, seasoned with more salt and pepper, if necessary; then put the water over the fire and boil again, and pour over the steak.
Peel 2 dozen onions, put them on to boil with about 2 quarts of water an hour before the steak is put on to fry. When the steak is done, cut them up, put them in the frying pan, season well with salt, pepper, and butter, sprinkle with flour, stir all well together, place over the fire, stir often to prevent scorching: when they are a little brown and soft, turn them over the steak
Scasoning por Stupfing.-1 lb. of salt, dried and sifted; half an ounce of ground white pepper; two ounces of dried thyme; 1 oz. of dried márjoram ; and one oz of nutmeg. When this seasoning is used, parsley only is required to be chopped in sufficient quantity to make the stuffing green. The proportions are$\frac{1}{2}$ pound of bread crumbs; 3 eggs ; $\ddagger \mathrm{lb}$. of suet $; \frac{1}{2} \mathrm{oz}$. of seasoning ; and the peel of half a lemon, grated.
ed and mashed gill. Mix the ot of a proper 1 pot. the same quants, $\frac{1}{2}$ nutmeg, a uls of cream or ite in the shape of butter; let add blanched f bread crumbs of sugar, little od stand them lone. An hour f sweet milk, of flour, and a
rring a pint of iling
over the same till cold, then ggs well beaten is completely ste round the
ual quantities tir in a little rand the same et with sugar; t. Beat 2 eggs sugar.
s by pounding sh butter, put n over, do not ttle flour over easoned with ater over the
pout 2 quarts hen the steak son well with yell together, hen they are
sifted ; half iried thyme;

When this pped in suffiortions are$\frac{1}{2} \mathrm{oz}$. of sea-

Economioal Soup.-Put into a saucepan one-pound pieces of stale bread, three large onions sliced, a small cabbage cut fine 4 carrot and turnip, and a small head of celery (or the remains of any cold vegetables), a tablespoonful of salt, a tablespoonful of pepper, a bunch of parsley, a sprig of marjoram and tbyme. Put these into two quarts of any weak stock, (the liquor in which mutton has been boiled will do, and let them boil for two hours; rub through a fine hair-sieve, add a pint of new milk, boil up, and serve at once.

Vegetable Soup.-Take a shin of beef, 3 large carrots, 3 large yellow onions, 6 turnips, $\frac{1}{2}$ pound of rice or barley; parsley, leeks, summer savory; put all into a soup-kettle, and let it boil four hours; add pepper and salt to taste ; serve altogether. It makes a good family soup.

Pea Soup.-Beet 5 lbs., water 5 qts., 6 large carrots, 6 good turnips, 3 large onions, salt sufficient, put it on a good slow fire, let it boil 3 hours, then strain all the broth from meat and vegetables, and then add 3 lbs. of split peas to the broth; set it on a slow fire for 2 hours, stirring often, so that all the peas will dissolve; take 1 lb . fresh sausage meat, fried to a crisp and fried bread crumbs; put all together, add a few fine herbs, and serve hot.

Frioassee Chiokens.-Take 2 large young chickene cut in small pieces, put in cold water for 1 hour to take all the blood out, then put in saucepan to parboil for half an hour, then take from saucepan drained well, have ready 1 qt. good fresh cream, 2 oz. good butter, 1 oz . of flour, all well mixed together; put in sancepan with the chickens; put on the fire to boil tender; season with pepper and salt; served with toast bread in the bottom of the dish.

Baked Tomatoes.-Wash the tomatoes, take out the seed, make a dressing of crumbs of bread and onions chopped fine; add salt, butter and pepper. Bake and serve hot.

Stewed Tomatoes.-Scald the tomatoes with hot water, take off the skins, put them in an earthen vessel, strain off the water and add butter, salt and pepper to taste.

Mashed Turnips.-Wash turnips, boil well, take them up in the colander, press out all the water, mash very fine; season with salt, butter and sugar. Serve hot with trimmings.

Hashed Meat.-Take 2 lbs of fat corned beef, well boiled and cold; l lb. of well boiled potatoes, cold; 1 large white onion; put in chopping tray, mince it fine, put all in saucepan together, add 2 ozs. butter; pepper and salt to teste; add boiling water to make it soft; setit on a slow fire, stirring it often. When well stewed serve hot. It makes a fine relish for breakfast.

Lobster Salad.-Take inside of large lobster, mince fine, take yolk of 2 eggs boiled hard and mashed fine, with four tablespoonfuls of sweet oil; pepper, salt, vinegar, and mustard to taste; mix well ; add celery or lettuce to taste; then when serving, garnish with hard-boiled eggs.

Succotash.-Take 1 doz. ears of corn, cut the grains from the cob, add 1 qt . of Lima beans, and mix with the corn; putit on to boil in 3 qt . of water with 1 lb . of pork cut; add black pepper and
salt to taste. When the water has boiled away to $\frac{1}{1}$ the original quantity, serve in a tureen as soup.

Maccaroni Soup. - 4 lbs. of lean beef, 4 qts. of water, carrot, turnip, onions ; set it for 4 hours till all mix together ; strain it all through a sieve ; have 2 lbs . of maccaroni broken into pieces of one inch long; put all into a saucepan together, and let it boil for 10 minutes, and serve it hot.

Boilmd Custard, or Mock Cream.-Take 2 tablespoonfuls of corn starch, 11 qt . of milk, 2 or $3 \mathrm{eggs}, \frac{1}{2}$ a teaspoonful of salt and a small piece of butter; heat the milk to nearly boiling and add the starch, previously dissolved in 1 qut. of milk, then add the eggs, well beaten, with 4 tablespoonfuls of powdered sugar; let it boil up once or twice, stirring it briskly, and it is done. Flavor with lemon or vanilla, or raspberry, or to suit your taste.

Lemon Cream.-Take a pint of thick cream and put to it the yolks of two eggs, well beaten, 4 oz . of fine sugar and the thin rind of a lemon ; boil it up, then stir till almost cold; put the juice of a lemon in a dish or bowl and pour the cream upon it, stirring till quite cold.

Fruit Crmams.-Take $\frac{1}{2}$ oz. of isinglass dissolved in a little water, then put 1 pt . of good cream, sweetened to the taste; boil it When nearly cold lay some apricot or raspberry jam on the bottom of a glass dish and pour it over This is most excellent.

Raspberry Cream.-Put 6 ozs. of raspberry jam to 1 qt . of cream, pulp it through a lawn sieve, add to it the juice of a lemon and a little sugar, and whisk it till thick. Serve it in a dish or glasses.

To roast fowls the fire must be quick and clear. If smoky, it will spoil both their taste and looks. Baste frequently, and keep a white paper pinned on the breast till it is near done

Tjramy.-A good sized turkey should be roasted $2 \frac{1}{4}$ hours or 3 hours-very slowly at first, If you wish to make plain stuffing, pound a cracker or crumble some bread very ine, chop some raw salt pork very fine, sift some sage, (and summer-savory, or sweet-marjoram, if you have them in the bouse, and fancy them,) and mould them all together, seasoned with a little pepper. An egg worked in makesthe stuffing cut better.

Bolled Turkey.-Clean the turkey, fill the crop with stuffing, and sew it up. Put it over the fire in water enough to cover it, let it boil slowly-take off all the scum When this is done, it should only simmer till it is done. Put a little salt into the water, and dredge the turkey with flour before boiling.

Roast Duces and Geese.-Take sage, wash and pick it, and an onion; chop ,hem fine, with pepper and salt, and put them in the belly; let the goose be clean picked, and wiped dry with a cloth, inside and out; put it down to the fire, and roast it brown. Ducks are dressed in the same way. For wild ducks, teal, pigeons, and other wild fowl, use only pepper and salt, with gravy in the dish.

Roast Chicken.-Chickens should be managed in roasting the same as turkeys, only that they require less time. From an hour to an hour and a half is long enough.

Bolled Chicren.-A chicken should be boiled the same as a turkey, only it will take less time-about 35 minutes is suffi-
cient.
or egg-
Brol
pepper
the fire
Broil al
Borls
then bo
butter.
Fish
fish in
place t
potatoe
Stew or
Roas
Spit the with its smoke and cle ing.
Beef
meat in
slow at the scur rule for

Beef cut abo meat an 8 to 10 n

Roast skin in
pepper 8 under th into the over witl three hol $15{ }^{1}$ in the sa Roast Roast be lay it do With a li
Roast
lamb mu roasted and dred of mutto fire.

To Bos white pa their fres freshest.

Sausag
) the original water carrot, er ; strain it all to pieces of one t it boil for 10
oonfuls of corn alt and a small add the starch, gs, well beaten, oil up once or with lemon or

1 put to it the r and the thin 1; put the juice ipon it, stirring
red in a little the taste ; boil ry jam on the st excellent. m to 1 qt . of uice of a lemon it in a dish or
: If smoky, it ntly, and keep pe ed $2 \frac{1}{2}$ hours or plain stufting, e, chop some mer-savory, or se, and fancy a little pepper.
with stuffing, h to cover it, his is done, it into the water,
oick it, and an at them in the with a cloth, rown. Ducks 1, pigeons, and fy in the dish. roasting the From an hour
he same as a nutes is suffi-
cient. Use the same stuffing, if any, and serve it up with parsley, or egg-sauce.
Brolled Ohicken.-Slit them down the back and season with pepper and salt; lay them on a clear fire of coals, the inside next the fire till half done, then turn, and broil to a fine brown colos. Broil about 35 minutés.
Boiled Pigeons.- Bc: them about 15 minutes by themselves: then boil a piece of bacon; serve with slices of bacon and melted butter.
Fish Ohowler.-Fry a few slices of salt pork, dress and cut thr fish in small pieces, pare and slice the potatoes and onions, then place them in the kattle, a layer of fish, then of the fried pork. potatoes, onions, \&c., seasoning each layer with salt and pepper. Stew over a slow fire 30 minutes.
Roast Beer.-The sirloin is considered the best for roasting. Spit the meat, pepper the top, and baste it well while roasting with its own dripping, and throw on a handful of salt. When the smoke draws to the fire, it is near enough; keep the fire bright and clear. From 15 to 20 minutes to the lb., is the rule for roasting.
Beer Boiled.-The round is the best boiling piece. Put the meat in the pot, with water enough to cover it ; let it boil very slow at first-this is the great secret of making it tender-take off the scum as it rises. From 2 to 3 hours, according to size, is the rule for boiling.
Beef Steak.-The inside of the sirloin makes the best steak; cut about $\frac{3}{4}$ of an inch thick-have the gridiron hot, put on the meat and set it over a good fire of coals-turn them often. From 8 to 10 minutes is the rule for broiling.
Roast Pork.-Take a leg of pork and wash it clean-cut the skin in squares-make a stuffing of gratcd bread, sage, onion, pepper and salt, moistened with the yolk of an egg. Put this under the skin of the knuckle, and sprinkle a little powdered sage into the rind where it is cut; rub the whole surface of the skin over with a feather dipped in sweet oil. 8 lbs . will require about three hours to roast it.
ns The Shoulder, Loin, or Chine, and Spare-Rib are roasted in the same manner.
Roast Veal.--Pursue about the same course as in roasting pork. Roast before a brisk fire till it comes to a brown culor; when you lay it down baste it well with good butter, and when near done, Fith a little flour.
Zoast Mutton.-The loin, hannch, and saddle of mutton and lamb must be done the same as beef. All other parts must be roasted with a quick, clear fire ; baste it when you put it down, and dredge it with a little flour, just before you take it up. A leg of mutton of six pounds will require 1 hour to roast before a quick fire.
To Boil Egas.-In 3 minutes an egg will boil soft, in 4 the white part is completely cooked, in 10 , it is fit for a salad. Try their freshness in cold wuter, those that sink the soonest are the freshest.
Sausage Meat.-Take 2 lbs . lean meat, 1 lb . fat-pork, chop fine,
and mix with 2 teaspoonfuls of black pepper, 1 of ves, 7 o . powdered sage, and 5 of salt.

Apple Custard.-Take apples; pared, cored, and slight) tewed, sufficient to cover the dish, 8 eggs, 1 qt. of milk; spica to your taste ; bake it $\}$ of an hour.

New-England Appie-sauce or Butter.-Boil 2 brls. of new cider down to $\frac{1}{2}$ a brl. Pare, core, and slice up 3 bushels of apples (sweet apples are preferable), and put them into the cider thus reduced, and still kept boiling briskly. Stir the whole mass constantly, to prevent burning, till of the consistence of soft butter. A small quantity of pulverized allspice, added during the boiling, is an improvement. Boil in a brass kettle, and; when done, put it into a wooden firkin, or small cask, and it will keep for years.

Apple Butter (Pennsylvania Method).-Boil new cider down to $\frac{1}{3}$. Pare, cut, and core equal quantities of sweet and sour apples. Put the sweet apples in a large kettle to soften a little first, as they are the hardest. Add enough boiled cider to cook them. After boiling an hour, stirring often, put in the sour apples, and add more boiled cider, with molasses enough to sweeten moderately. Boil until tender, stirring to prevent burning. Pack in firkins or stone pots for winter use.

Irisa Stew.-Take 4 lbs. good breast of fat mutton, cut in small pieces; 2 large white onions; 10 large potatoes, well peeled and sliced; put all in saucepan together, with fine herbs, pepper and salt to suit; a little salt pork is a good addition; $\frac{1}{2}$ lb. of flour; $\$ \mathrm{lb}$. good fresh butter, well rubbed together, and let it boil for one hour, and have it well cooked.

Apple Domplings.-6 eggs, $1 \geq$ lbs. of flour, some butter to your taste, and tablespoonful of yeast, and sufficient milk to make a dough to roll-out ; when raised, cut in small pieces, put in the apples, and cook for $\frac{3}{4}$ of an hour ; serve with white sugar or wine sauce.

Boiled Poultry.-Take large chickens, well cleaned with cold water, put in saucepan with water to cover, boil 1 hour; served with sauce.

Hashed Turkey.-Take meat from boiled fowls, chop fine, put in saucepan, with seasoning to suit taste. Served on toast.

Bolled Maccaroni.--Take 2 lbs., break in small pieces, put in warm water to steep 1 hour, drain off, put in saucepan with 2 qts . fresh cream, with grated cheese; seasoned with red pepper.

Strasburg Potted Meat.-Take $1 \frac{1}{2}$ lbs. of the rump of beef, cut into dice, put it in an earthen jar, with $\frac{1 \mathrm{lb}}{} \mathrm{l}$. of butter, tie the jar close up with paper, and set over a pot to boil; when nearly done, add cloves, mace, allspice, nutmeg, salt, and cayenne pepper to taste, then boil till tender, and let it get cold, pound the meat, with 4 anchovies mashed and boned, add $\ddagger \mathrm{lb}$. of oiled hutter, work it well together with the gravy, warm a little, and add cochineal to color; then press into small pots, and pour neelted mutton suet over the top of each.

Bologna Sajesages.-Take equal quantities of bacon, fat and lein, beef, veal, pork and beef suet; chop them small, season with pepper, salt, \&c., with sweet herbs and sage rubbed fine, Have well
washed and lay

R1ch
21 oz. p passed savory How boxes du of water best tim repeat th them in or straw Chard isinglass and flou cake, and

Wine the juice then add a cotton
To mak press, me India mo as that w said to be molasses.
mis metal, an vessels sh a poison

Jkllies sugar, 1 lemons, a mix well, Hartshor boil over sugar, $\frac{1}{2}$ mix well and 2 oz . it upon 4 bottle. lbs. ; suga Sugar, 4 when cold give it a juice of re gently for will conc of tapiocs add the p add the j bottle.
of ves, 7 o.
slight!, towed, ; spice to your rls. of new cider ashels of apples the cider thus he whole mass sistence of soft dded during the ttle, and; when and it will keep
ew cider down sweet and sour to soften a little 1 cider to cook out in the sour sses enough to revent burning.
ton, cut in small well peeled and erbs pepper and ; $\frac{1}{2}$ lb. of flour ; et it boil for one
e butter to your milk to make a ieces, put in the te sugar or wine
baned with cold 1 hour; served
thop fine, put in toast.
11 pieces, put in epan with 2 qts pepper.
mp of beef, cut tter, tie the jar en nearly done, enne pepper to pund the meat, of oiled lutter, little, and add ad pour nelted
on, fat and lean ason with pepae, Have swell
washed intestines, fill, and prick them; boil gently for an hour, and lay on straw to dry.

Rici Sausages.-Take 30 lbs . of chopped meat, 8 oz . fine salt, $2 \downarrow$ oz. pepper, 2 tea cups of sage, and $1 \frac{1}{2}$ cups of sweet marjoram, passed through a fine sieve, or, if preferred, thyme and summer savory can be substituted for the latter.

How to safe your loe Bill.-Get a quantity of empty barrels or boxes during tho coldest time in the winter, and put a few inches of water in each; the evening when the cold is most intense is the best time to do this. After the water is frozen solid, fill up again, repeat the process until the barrels are full of solid ice, then roll them into your cellar, cover them up with plenty of sawdust or straw, and your ice crop is safely harvested.

Charlottre Russe.-Take 1 pt . milk, dissolve with heat, 3 oz . isinglass and 1 lb . sugar ; add, after it is cool, 1 qt . beaten cream and flour, suit your taste and line out nome mould with sponge cake, and put the cream in it and cool.

Wine Jelly.-Take 1 pt . water and 3 oz . isinglass, $1 \ddagger \mathrm{lb}$. sugar, the juice of 2 lemons, and dissolve that and let it come to a boil, then add wine, brandy and spice to your taste, and strain it through a cotton or flannel cloth and put it in moulds to cool.

To makm Apple Molasses.-Take new sweet cider just from the press, made from sweet apples, and boil it down as thick as WestIndia molasses. It should be boiled in brass, and not burned, as that would injure the flavor. It will keep in the cellar, and is said to be as good, and for many purposes better, than West-India molasses.

- ${ }^{5}$ Acid fruits should be cooked in bright tin, brass, or bell metal, and poured out as soon as they are done. Brown earthen vessels should never be used, as they are glazed with white lead, a poison which very readily unites with an acid.
Jrllifs.-Lemon Jelly.-Isinglass, 2 oz. ; water, 1 qt. ; boil ; add sugar, 1 lb ; clarify; and, when nearly cold, add the juice of 5 lemons, and the grated yellow rinds of 2 oranges and 2 lemons; mix well, strain off the peel, and put it into glasses or bottles; Hartshorn Jclly.-Hartshorn, 1 lb . ; water 1 gal.; peel of 2 lemons; boil over a gentle fire till sufficiently thick; strain and add loaf sugar, $\frac{1}{3} \mathrm{lb}$. ; whites of 10 eggs beaten to a froth ; juice of 6 lemons; mix well together, then bottle. 1 singlass Jelly.-Put 4 oz. isinglass and 2 oz . cloves into 1 gal. water; boil it down to halfa gal. ; strain it upon 4 lbs . of loaf sugar ; add, while cooling, a little wine; then bottle. Apple Jelly from Cider.-Take of apple juice, strained, 4 lbs. ; sugar, 2 lbs.; boil to a jelly, and bottle. Gooseberry Jelly.Sugar, 4 lbs. ; water, 2 lbs . ; boil together; it will be nearly solid when cold ; to this syrup, add an equal weight of gooseberry juice; give it a short boil, cool, then pot it. Currant Jelly.-Take the juice of red currants, and loaf sugar, equal quantities ; boil and stir gently for three hours; put it into glasses; and in three days it will concentrate into a firm jelly. Tapioca Jelly.-Wash 8 oz. of tapioca well ; then soak it in 1 gal. fresh water, five or six hours; add the peels of 8 lemons, and set all on to heat; simmer till clear ; add the juice of the 8 lemons with wine and sugar to taste; then bottle,

Blackberry Jelly.-This preparation of the blackberry is more agrecable than the jam, as the seeds, through very wholegome, are not'agreeable to all. It is made in the same way as currant jelly; but the fruit is so sweet that it only requires half the weight of the juice in sugar.

Prar Marmalade.-Ta 6 lbs. of small pears, take 4 lbs. of sugar; put the pears into a saucepan, with a litlle culd water ; cover it, and set it over the fire until the fruit is soft, then put them into cold water; pare, quarter, and core them; put to them three teacups of water, set them over the fire; roll the sugar fine, mash the fruit fine and smooth, put the sugar to it, stir it well together until it is thick, like jelly, then putit in tumblers, or jars, and, when cild, secure it as jelly.

Preserved Citron.-Pare and cut open the citroin ; clean all out except the rind ; boil till soft. To 1 lb . of citron add 1 lb . of sugar and a lemon to each 1 b . ; put the sugar and lemon together, and boil it till it becomes a syrup, skimming it well ; then put the syrup and citron together, and boil it an hour.

Scotoh Marmalade.-Take of the juice of Seville orangen 2 pts., yellow honey, 2 lbs. Boil to a proper consistence.

Raspberry Jay.-Allow a pound of sugar to a pound of fruit, mash the raspberries and put them, with the sugar, into your preserving kettle. Boil it slowly for an hour, skimming it well. Tie it up with brandy paper. All jams are made in the same manner.
Frenoh Honex.-White sugar, $1 \mathrm{lh} . ; 6$ eggs, leaving out the whites of 2 ; the juice of 3 or 4 lemons, and the grated rind of 2 , and $\frac{\mathrm{lb}}{\mathrm{lb}}$ of butter; stir over a slow fire until it is of the consistency of honey.

Almond Blanc Mange. - Take four ounces of almonds, six oz. sugar, boil together with a quart of water, melt in this two ounces of pure isinglass, strain in a small tin mould to stiffen it. When wanted, dip the mould in hot water and turn it out.

Lemon Blanc Mange.- Pour a pint of hot water upon half an ounce of isinglass; when it is dissolved add the juice of three lemons, the peel of two lemons grated, six yolks of eggs beaten, and about a good wine-glass of Madeira wine to it ; sweeten to your taste; let it boil; then strain it and put it in your moulds.

Molassess Preserves.-Boil 1 qt . of molasses about ten or fifteen minutes to a thickish consistency, then add 6 eggs well beaten, ani a spoonful of flour. Boil a few minutes longer, stirring constaitly, then set off the fire, and flavor with lemon or allspice as desired.

Fruit Extracts, \&c.-Good alcohol, 1 qt. oil of lemon, 2 oz . Break and bruise the peel of 4 lemons, and add to the alcohol for a few days, then filter. For currants, peaches, raspberries, pine apples, strawberries, blackberries \&c., take alcohol and water half and half, and pour over the fruit, entirely covering it, and let it stand for a few days. For essence of cinnamon, nutmeg, mace, vanilla, \&c., pulverise either article thoroughly, and put about 2 oz . of the resulting powder to each pint of reduced alcohol, agitate the mixture frequently for 2 weeks, then filter and color as desired.

Measuris for Hotbermeprra.

ckberry is more

 wholesome, are as currant jelly; he weight of the4 lbs . of sugar ; water ; cover it, n put them into them three teaar fine, mash the 11 together until and, when ccild,
in ; clean all out ld 1 lb . of sugar n together, and en put the syrup
ville oranges 2 cence.
pound of fruit, ugar, into your cimming it well. de in the same
leaving out the rated rind of 2 , is of the consis-
monds, six oz. It in this two uld to stiffen it. it out. er upon half an juice of three of eggs beaten, it; sweeten to your moulds. at ten or fifteen ss well heaten, r, stirring conor allspice as
non, 2 oz. Break cohol for a few 3, pine apples, fater balf and it, and let it putmeg, mace, ind put about luced alcohol, er and coloras

Bent brown
Wheat flour 1 lib.....ds 1 quart.
Indian meat...... $1^{\prime \prime 2} 22^{\prime \prime} 1$ quart. Butter when soof. 1".... "1" " Lonfsagar,broken 1"....."1" White sugar,powd1"1 oz." 1 " Eugar.................ilib. eggs are 11b. 2 . Ftour................. 3 qut."1 peck. Flour. 4 pki."1 bush.

Liquids.

16 large tablespoonfuls, are. . plint. 8 largo tablespoonfule are. . gill. 4 large tablespoonfuls, are. . i gili. 2 gille, are. \& pint. 2 pinth, are..................... 1 qt.

4 qta. are 1 gallon. A common sized tumbler holde \& a pint.
A common sized wine.glass " a gill.
$\mathbf{8 5}_{6}$ drops are equal to 1 teaspoonful.

FARMERS AND STOCK OWNERS' DEPART. MENT.

Sopazpiospeaty of Lime, the greatest Agrioultural Discoverx of the AGE.-Take a large puncheon, large tub, or barrel; and put into It 100 lbs. water, add, very slowly and cautiously, 50 lbs. of pure sulphuric acid : you must be very careful, while handling this article, not to let it touch vour skin or clothing, as it will instantly blacken the skin, and destroy the clothing, wherever it comes in contact; and, when mixed with water, it engenders a very intense heat. Into this mixture throw 100 lbs . weight of bones, no matter how old or useless they may be. The sulphuric acid instantly attacks and enters into combination with the bones, reducing them to a pasty consistence, and completely dissolving them. Keep under cover, and turn thera over occasionally, while the process is going on ; and, when completed, dump out the whole contents on the barn floor or on a platform of boards, and thoroughly work into the mass four times its bulk of dry bogearth or dry road-dust; mix and pulverize completely with a wooden shovel. The bog-earth acts as an absorbent or drier, retaining the fertilizing properties of the compound, and rendering it easy oi uniform distribution. If whole bones are used, it will take six or eight weeks to dissolve them; if they are broken with an axe, they will dissolve in about three weeks; if they are ground in a bone mill, four days will be sufficient. This manure is the most powerful fertilizer in existence ; and, when made by these directions, it is the cheapest, as one ton is equal to thirty-two tons of barn-yard manure. For top-dressing grass lands, use 300 lbs . per acre; for corn, potatoes, beans, turnips, \&c., apply 450 lbs . per acre in the drill, mixing with the soil: for wheat, rye, oats, or barley, 400 lbs . per acre, Lurrow in with the seed : for buckwheat, 300 lbs . per acre.
Sutirppiosphate in Twenty-fous Hours.-Any farmer who has got an apparatus for steaming food for cattle can make superphosphate in quick style by admitting steam from the boiler into
the barrel containing the water, acid, and ground bones. The heat thus generated quickens the dissolution of the bones in a wonderful manner ; and, if the process is properly conducted, it will not take over twenty-four hours in any case. It is indispenseble that the barrel be tightly covered to retain the steam.

Fiertuizer for Tobiooo.-Take and add 30 lbs . of the best Peruvian Guano to each 100 lbs. weight of the superphosphate made by the above receipt, and you will have one of the most powerful fertilizers for tobacco that can be made. If you do not have Peruvian Guano, use in lieu thereof 25 lbs. of hen manure to each 100 lbs . weight of superphosphate.

Homm-madm Poudratry.-Few fertilizers are wasted with the prodigality of extravagance which attends the use of night soil, while the exercise of a little care and attervion is all that is required to secure one of the most powerful fertilizers in existence. Night soil contains phosphate of lime, which is essential to the growth of animals' bones, and which is not supplied from the atmosphere like carbonic acid and ammonia In order to receive the droppings in a manageable ard inoffensive state, the vault should be provided with a large, tight box made of matched plank, placed to slide on scantling, so that it can be drawn out; by attaching a horse, whenever required. Provide plenty of dry, black loam from the woods or swamps: retuse charcoal, dry peat, or allurial deposits answer first-rate. Keep them dry, in barrels or boxes on the spot, under cover; spread a thick layer on the bottom of the receiving box, and at intervals of a few days throw in a liberal supply of these absorbenis on the accumulating deposit. If a few handfuls of plaster are thrown in occasionally, it will sumpess unpleasant odors, and increase the value of the manure. The emptying of slops and dish water in the box'should be strictly prohibited. When the box is filled, you can remove it, and convert it into poudrette. For this purpose it must be worked over with an additional quantity of muck, or other absorbent, in such proportions that it will form, with what has been previously added, about three-quarters of the entire compound. The working should be done ander a shed, and the whole kept perfectly dry. It should be shovelled over and mixed several times at intervals, and finally screened, and made as uniform throughout as possible : the finer it is pulverized, and the drier it is kept, the better.

Home-madi Guano of Unequalled Excrllence.- Save all your fowl manure from sun and rain. To prepare it for use, spread a layer of dry swamp-muck (the blacker it is the better) on your barn floor, and dump on it the whole of your fowl-manure; beat it into a fine powder with the back of your spade; this done, add hard wood ashes and plaster of Paris, so that the compciand shall be composed of the following proportions - dried muck, three bushels; fowl-manure, 2 bushels; ashes, 1 bushel; plaster, $1 \frac{1}{2}$ bushels. Mix thoroughly, and spare no labor; for, in this matter, the elbowgrease expendea will be well paid for. A little before planting, moisten the heap with water, or, better still with urine ; cover well over with old mats, and letit lie till wanted for use. Apply it to beans corn, or potatoes, at the rate of a bandful to a hill ; und mix with the soll before dropping the seed. This will be found the best
substit bringin

To D any old ashes; anothe with th with a on wa but do would b will he them w out of t them up neous n distribu will leax
Subst a bone-n it up int a fine im soil to e will soo time ; th and pulv heat and working fineness, is only a Gentlemi prepared phosphat

How Provide woods, one foót the loam day, but it with tl simple n also the the poor value of scarcely

Josiah stables t amount tility of orop had. well-arr morning to their
nd bones. The the bones in a dy conducted, it
It is indispenhe steam.
bs. of the best superphosphate ne of the most
If you do not of hen manure to
asted with the se of night soil, n is all that is zers in existence. essential to the pplied from the order to receive state, the rault matched plank, drawn out; by , plenty of dry, arcoal, dry peat, n dry, in barrels ick layer on the few days throw aulating deposit. asionally, it will of the manure. hould be strictly ove it, and conbe worked ovor sorbent, in such eviously added, working should dry. It should rals, and finally ible : the finer it

- Save all your r use, spread a better) on your manure ; beat it done, add hard ecund shall be , three bushels; fr, $1 \frac{1}{2}$ bushels. tter, the elbowefore planting, ine; cover well oply 1 to beans fand mix with bund the best
substitute for guano ever invented, and may bo depended on for bringing great crops of turnips, corn, potatoes, \&c.
To Dissolve Large Bones for Manure, without Expense.-Take any old flour-barrel, and put into the bottom a layer of hard-wood ashes; put a layer of bones on the top of the ashes, and add another layer of ashes, filling the space between the bones with them ; then add bones and ushes alternately, finishing off with a thick layer of ashes. When your harrel is filled, pour on water (urine is better,) just sufficient to keep them wet, but do not on any account suffer it to leach one drop; for that would be like leaching your dungheap. In the c curse of time they will heat, and eventually soften down so that you can crumble them with your finger. When sufficiently softened, dump them out of the barrel on a heap of dry loam, and pulverize and crumble them up till they are completely amalgamated into one homogeneous miss with the loam, so that it can be easily handled and distributed whenever required. You may rely on it, this manure will leave its mark, and show good results wherever it is used
SUBSTITUTE FOR SUPERPHOSPHATE. If you have inch bone ground in a bone-mill, and cannot afford to purchase sulphuric acid to work it up into superphosphate of lime, yon can reduce' your bones into a fine impalpable powder by simply using three barrels of loamy soil to every barrel of inch bones ; mix them together The bones will soon begin to heat and ferment, and continue es for some time ; they will then cool off. You will than proceed to chop down and pulverize and work the mass thoroughly; it will begin to reheat and ferment and cool down again ; and yon will continue working it over till the contents are brought to the proper state of fineness, when you will have a fertilizer of astonishing power. It is only a year or two since a statement appeared in the "Country Gentleman," of the experiments of a Mr. Haskell with a manure prepared after this method, who found it even superior to superphosphate of lime.
How to double the ugual Quintity of Manure on a Farm. Provide a good supply of black swamp mould or loam from the woods, within easy reach of your stable, and place a layer of this, one foot thick, under each horse, with litter as usual, on the top of the loam or mould. Kemove the droppings of the animals every day, but let the loam remain for two weeks; then remove it, mixing it with the other manure, and replace with fresh mould. By this simple means, any farmer can double not only the quantity but also the quality of his manure, and never feel himself one penny the poorer by the trouble or expense incurred, while the fertilizing value of the ingredients absorbed and saved by the loam can scarcely be estimated,
Josiah Quincy, jun., has been very successful in keeping cattle in stables the year through, and feeding them, by means of soiling. The amount of manure thus made had enabled him to improve the fertility of a poor farm of 100 acres, so that in twenty years the hay crop had increased from 20 to 300 tons. The cattle are kept in a well-arranged stable, and are let out into the yard an hour or two morning and afternoon ; but they generally appear glad to return to their quarters. By this process, one acre enables him to sup-
port three or four cows. They are fed on grass, green oats, corn fodder, barley, \&c., which are sown at intervals through the spring and summer months, to be cut as required ; but he remarks that his most valuable crop is his manure crop. Each cow produces $3 \frac{1}{2}$ cords of solid, and 3 cords of liquid manure, or $6 \frac{1}{2}$ cords in all. He uses twice as much muck to mix with it, making 20 cords in all. Five to eight miles from Boston, such manure is, worth five to eight dollars a cord. From this estimate, he has come to the conclusion that a cow's manure may be made as valuable as her milk.

Twenty Dollarg' Worth of Manure for almost Nothing If you have any dead animal,-say, for instance, the body of a horse,-do not suffer it to pollute the atmosphere by drawing it away to the woods or any other out of the way place, but remove it a short dictance only, from your premises, and put down four or five loads of muck or sods, place the carcass thereon, and sprinkle it over with quick-lime, and cover over immediately with sods or mould sufficient to make, with what had been provicusly added, 20 good waggon-loads; and you will have, within twelve months, a pile of manure worth $\$ 20$ for any crop you choose to putit upon. Use a proportionate quantity of mould for smaller animals, but never less than twenty good waggon-loads for a horse ; and, if any dogs manifest tao great a regard for the enclosed carcass, shoot them on the spot.

Fish Compost, Substitute yor Bone-Dust, Manure from Fish Refoss, \&c. - The fish owes its fertilizing value to the animal matter and bone-earth which it contains. The former is precisely similar to flesh or blood, consisting of 25 per cent. of fibrin, the rest being water; and their bones are similar in composition to those of terrestrial animals. As fertilizing agents, therefore, the bodies of fishes will act nearly in the same way as the bodies and blood of rnimals; 100 lbs ., in decaying, produce $2 \frac{1}{2} \mathrm{lbs}$ of ammonia Hence 470 lbs , of fish rotted in compost are enough for an acre The great effect is due to the ammoniacal portion; for it renders the herbage dark-green, and starts it very rapidly. One of the best composts is made as follows : Dried bog-earth, loam, or peat, seven barrels ; hardwood ashes, two barrels; fish, one barrel, slacked lime, one bush 1. Place a thick layer of the bog-earth on the bottom, on the top of this puta layer of the fish, then a sprinkling of lime, then a layer of ashes, on top of the ashes puta thick layer of bogcarth, loam, or peat ; then another thin layer of fish, lime, and ashes, and so on till your materials are worked in ; then top off with a thick layer of the absorbents, to retain the fertilizing gases The decomposition of the fish will proceed very rapidly, and a very rich compost will be the result. It should be shovelled over and over and thoroughly intermixed and pulverized. Put this on so as to have 400 lbs of fish to the acre. It may be applied with the greatest benefit to corn, turnips, potaloes, beans, \&c., in the drill - and broad cast on the grass.
Superphosphate can be made from pogy-chum, or the refuse of other fish, after the oil is expressed, by dissol ving in sulphuric acid, and afterwards mixing with dry loam, precisely as directed for making superphosphate with bones. Whale-oil or the oil of any fish, when made into a compost with loam, and a little lime or
wood absorbe oil, at tons of same se per acr

Asige 21 feet a layer mixing which t the heig it will better to of water plied; b may be quality vise the a great i in.

Substr water en paring t swamp-m a very go and lime complete. bushels t work ove salt wate

Sherep-I cayenne require, the comp

OAt or water to gallons empty the and let it t will be ton straw iquid fro es fat on
Death poiling w ninutes; leath.
Remedy oal oil, a ive ; or, ttle hole bet each
green oats, corn arough the spring remarks that bis cow produces $3 \frac{1}{2}$ cords in all He ; 20 cords in all. orth five to eight o the conclusion her milk.
cost Nothing e, the body of a re by drawing it lace, but remove put down four or eon, and sprinkle ely with sods or vicusly added, 20 twelve months, a se to put it upon. ller animals, but horse ; and, if any ed carcass, shoot
anurm from Fisi ae to the animal ormer is precisely of fibrin, the rest position to those refore, the bodies dies and blood of ammonia Hence n acre The great renders the herof the best comn , or peat, seven barrel, slacked h on the bottom, rinkling of lime, ick layer of bog. lime, and ashes, n top off with a ing gases The , and a very rich a over and over this on so as to ith the greatest rill - and broad
or the refuse of sulphuric acid, as directed for the oil of any a little lime or
wood ashes, yields a very powerful manure, merely mixed with absorbent earth and applied at the end of the month. Impure whaleoil, at the rate of 40 gallons per acre, has produced a crop cí 231 : tons of turnips per acre; while on the same soil, and during the same season, it took 40 bushels of bone-dust to produce only 22 tons per acre.

Ashis trom Som by Spontaneous Combustion.-Make your mound 21 feet long by $10 \frac{1}{2}$ feet wide. 'I'o fire, use 72 bushels of lime. First a layer of dry sods or parings on which a quantity of lime is spread, mixing sods with it; then a covering of eight inches of sods, on which the other half of the lime is spread, and covered a foot thick; the height of the mound being about a yard. In twenty-fou: hours it will take fire. The lime should be fresh from the kiln. It is better to suffer it to ignite itself than to effect it by the operation of water. When the fire is fairly kindled, fresh sods must be applied ; but get a good body of ashes in the first place. I think it: may be fairly supposed that the lime adds full its worth to the quality of the ashes, and, when limestone can be got, I would advise the burning a small quantity in the mounds, which would be a great improvement to the ashes, and would help to keep the fire in.
'Substitutn for Barn-mandre.-Dissolve a bushel of salt iu' water enough to slack 5 or 6 bushels of lime. The best rule for preparing the compost heap is, 1 bushel of this lime to 1 load of swamp-muck, intimately mixed; though 3 bushels to 5 loads makes a very good manure. In laying up the heap, let the layer of muck and lime be thin, so that decomposition may be more rapid and complete. When lime cannot be got use unleached ashes, -3 or 4 bushels to a cord of muck. In a month or six weeks, overhaul and work over the heap, when it will be ready for use. Sprinkie the salt water on the lime as the heap goes up.

Shenp-Dipping Composition.-Water, 1 gal. ; benzine, 8 ounces; cayenne pepper, 2 ounces. Mix make what quantity you require, using these proportions. Dip your sheep and lambs in the composition, and it will make short work of the vermin.

Oat or Wheat Straw made equal to Hay.-Bring 10 gallong water to a boiling heat ; take it off the fire, and add to it at once gallons of linseed unground ; let it remain till it gets cold ; then empty the whole into a cask, cortaining 44 gallons of cold water, and let it remain for forty-eight hours. At the end of that time, t will be reduced into a thin jeliy, like arrowroot. Spreat out $\frac{1}{2}$ ton straw, and sprinkle it over regularly with the whole of the iquid from the cask. The stock will eat it up as clean, and keep es fat on it, quantity for quantity, as they would do on hay.
Death for Vermin on Plants or Animals.-Pour a gallon of poiling water on one pound tobacco leaves, strain it in twenty ninutes; for vermin, on animals or plants, this decoction is certain leath.
Remrdy for Uurculio in Froit trees.-Sawdust saturated in oal oil, and placed at the roots of the tree, will be a sure prevenive; or, clear a circle around the tree from all rubbish; fill up all ttle holes and smooth off the ground for a distance of at least 3 et each way from the tree, then place chips or small pieces of
wood on the ground within the circle ; the curculio will take refuge in large numbers below the chips, and you can pass around in the mornings and kill them off.

Grafting Wax.-Rosin, 1 lb .; bees-wex, 1 lb .; with tallow or lard sufficient to soften until it can be readily applied with the hand; melt.

Dr. Cole's King of Oils.-1 oz. green copperas; 2 oz. white vitriol; 2 oz. common salt; 2 oz. linseed oil; 8 oz. molasses. Boil over a slow fire fifteen minutes, in a pint of urine; when almost cold, add 1 oz . of oil of vitriol and 4 oz of spirits turpentine. Apply to wounds with a feather. A very powerful liniment.

Sloan's Horse Ointmpnt.-4 oz rosin; 4 oz. bees-way ; lard, 8 oz.; honey, 2 oz., Mix slowly and gently bring to a boil; then add less than 1 pint spirits turpentine; then remove, and otir till cool. Unsurpassed for horse-flesh, cracked hoofs, human flesh, \&c.

Mexican Mustang Liniment.-Petroleum, olive oil, and carbonate of ammonia, each equal parts ; and mix. It is one of the best liniments in use.

Merchant's Gargling Oil.-Take $2 \frac{1}{2}$ gals. linseed oil ; $2 \frac{1}{2}$ gals. spirits turpentine; 1 gal. western petroleum; 8 oz . liquor potass; sap green, 1 oz . Mix all together, and it is ready for use.

Arabian Condition Powders.-Ground ginger, 1 lb .; sulphuret of antimony, 1 lb .; powdered sulphur, 1 lb ; ; saltpetre, 1 lb . Mix all together; and administer in a mash, in such quantities as may be required. The best condition powder in existence.

Blistering Liniment.-1 part Spanish flies, finely powdered; 3 of lard; and 1 of yellow rosin. Mix the lard and rosin together, and add the flies when the other ingredients begin to cool, To render it more active, add 1 pint spirits turpentine.

Medioated Food for Horses and Cattle.-Take linseed cake and pulverize or grind it up in the shape of meal, and to every 50 lbs. of this ingredient, add 10 lbs . Indian meal; 2 lbs . sulphuret of antimony; 2 lbs. ground ginger, $1 \frac{3}{4}$ lbs. of saltpetre, and 2 lbs. powdered sulphur. Mix the whole tboroughly together, put up in neat boxes or packages for sale or otherwise as desired, and you will have an article equal in value to "Thorley's Food," or almost any other preparation that can be got up for the purpose of fattening stock, or curing disease in every case when food or medicine can be of any use whatever. This article can be fed in any desired quantity, beginning with a few tablespoonfuls at a time, for a horse, mixing it with his grain, and in the same proportion to smaller animals, repeating the dose and increasing the quantity as the case may seem to require.

Lotion for Mange.-Boil 2 oz. tobacco in 1 quart water ; strain ; add sulphur and soft soap, each 2 oz .
For Strains and Swellings.-Strong vinegar saturated with common salt, used warm, is good for strains and reducing swellings. 1 oz . of white vitriol ; 1 oz . of green copperas; 2 teaspoonfuls of gunpowder, all pulverized together, and dissolved in 1 quart of soft water, and used cold, rubbing in thoroughly, is one of the best applications known for reducing swellings.
Hoof-Bownd Wash.-Spirits turpentine, 4 oz.; tar, 4 oz .; whaleoil, 8 oz . Mix, and apply to the hoofs often.

To T turn bri Scra soap-su salt, an lard.
Cova food. and mix mix it in molasse any app per day water.
Spilt each sid and clin will soon
Conio raw cott when it easy.
To COR
then adm
Found half-an-h up with ∇ the applic 1 quart li

Cure \mathbf{F} bran, 1 boiling sa from cold

Ring-Br tine, 2 oz. If the hor sufficient, wiring th ment; an in six wee

Poll E of water dissolved and bottl soap-suds mbove pas till the ca pletely de wards hea
To Tam lium and put some on the wi
o will take refuge ass around in the ; with tallow or applied with the
ras; 2 oz. white z. molasses. Boil ne; when almost pirits turpentine. I liniment.
jees-wax ; lard, 8) a boil ; then add and etir till cool. n flesh, \&c. re oil, and car. It is one of the
seed oil ; $2 \frac{1}{2}$ gals. oz. liquor potass ; for use.
, 1 lb .; sulphuret Cpetre, 1 lb . Mix quantities as may nce.
rely powdered; 3 d rosin together, gin to cool. To ake linseed cake , and to every 50 l lbs, sulphuret of etre, and 2 lbs. rether, put up in red, and you will " or almost any pose of fattening or medicine can in any desired t a time, for a he proportion to the quantity as
water ; strain ;
saturated with reducing swelas; 2 teaspoonolved in 1 quart y, is one of the

[^1]To Tovgren Hooms.- Wash them frequently in strong brine, and turn brine upon the bottoms, and soak a few minutes each time.

Scratoris.-Cut off the hair close, and wash the legs in stroag soap-suds or urine, or wash with warm vinegar saturated with salt, and afterwards dress over with a small quantity of hog's lard.

Covar.-Quit feeding musty hay, and feed roots and laxative food. Sprinkle human urine on his fodder, or cut up cedar boughs and mix with his grain; or boil a small quantity of flax-seed, and mix it in a mash of scalded bran, adding a few ounces of sugar, molasses, or honey. Administer lukewarm. If there should be any appearance of heaves, put a spoonful of ground ginger once per day in his provender, and allow him to drink freely of lime water.

Split or Broken Hoor.-Let the blacksmith bore two holes on each side of the crack or split ; pass long nails through the holes, and clinch tight. After anointing with the hoof-bound liquid, it will soon grow together.

Comic Curs.-Bleed freely at the horse's mouth; then take $\frac{1}{2} \mathrm{lb}$. raw cotton, wrap it around a coal of fire, so as to exclude the air; when it begins to smoke, hold it under his nose till he becomes easy.

To cure Drsiemper.-Take $1 \frac{1}{4}$ gals. of blood from the neck vein; then administer sassafras oil, $1 \frac{1}{2}$ oz. . Cure, speedy and certain.

Founder cured in 24 Hours.-Boil or steam stout oat-straw for half-an-hour, then wrap it around the horse's leg quite hot, cover up with wet woollen rags to keep in the steam; in 6 hours renew the application, take 1 gal. of blood from the neck vein, and give 1 quart linseed oil. He may be worked next day.

Cure for Stagaers.-Give a mess twice a week, composed of bran, 1 gal.; sulphur, 1 tablespoonful; saltpetre, 1 spoonful; boiling sassafras tea, 1 quart; assafeetida, $1 \frac{1}{8} \mathrm{oz}$. Keep the horso from cold water for half a day afterwards.

Ring-Bone and Spavin.-Take sweet gil, 4 oz. ; spirits turpentine, 2 oz .; oil of stone, 1 oz . Mix, and apply three times per day. If the horse is over four years old, or in any case when this is not sufficient, in addition to it, you will fit a bar of lead just above it, wiring the ends together, so it constantly wears upon the enlargement; and the two together will cure nine cases out of every ten, in six weeks.

Poll Evil and Fistola.-Common potash dissolved in $\frac{1}{2}$ pint of water, 1 lb . add $\frac{1}{2} \mathrm{oz}$. belladonna extract, and 1 oz gum arabic dissolved in a little water; work all into a paste with wheat flowr, and bottle up tight. Directions: wash the sores well with Castile soap-suds; then apply tallow all around them. Next, press the above paste to the bottom of all the orifices; repeat every two days till the callous fibrous base around the poll evil or fistula is completely destroyed ; put a piece of oil-cloth over the sores, and afterwards heal up with Sloan's Horse Ointment.
To Tamm Horses.-Take finely-grated horse castor, oils of rholium and cummin; keep them in separate bottles well-corked; put some of the oil cummin on your hand, and approach the horse on the windy side. He will then move toward you. Then rub
some of the cummin on his nose, give him a little of the castor on anything he likes, and get eight or ten drops oil rbodium on his tongne. You can then get him to do anything you like. Be kind and attentive to the animal, and your control is certain.
Best Remedy ror heaves.- Balsam of fir and balsam of copaiba, 4 oz each, and mix with calcined magnesia sutficiently thick to make it into balls; and give a middling-sized ball night and morning for a week or ten days.
Cure mor Bots in Horses.-Give the horse, first, 2 quarts of new milk, and 1 quart molasses; 15 minutes afterwards, give 2 guarts very strong sage tea; 30 minutes after the tea, give 3 pints (or enough to operate as physic), of curriers' oil. The molasses and milk cause the bots to let go their hold, the tea puckers them up, and the oil carries them completely away. Cure certain, in the worst cases.
Certain Ring-bone and Spatin Cure.-Venice turpentine and Spanish flies, of each 2 oz .; euphorbium and aqua-ammonia, of each $1 \mathrm{oz}$. ; red precipitate, $\frac{1}{2}$ oz.; corrosive sublimate, 1.0 oz .; lard, $1 \frac{1}{2} \mathrm{lbs}$. Pulverize all, and put into the lard; simmer slowly over coals, not scorching or burning; and pour off, free of sediment. For ring-bones, cut off the hair, and rub the ointment well into the lumps once in 48 hours. For spar ins, once in 24 hours for 3 mornings. Wash well previous to each application with suds, rubbing over the place with a smooth stick, to squeeze out a thick, yellow matter. This has removed very large ring-bones.

Bons Spavins, French Paste.- $\$ 300$ Reolpe.-Corrosive sublimate, quicksilver, and iodine, of each 1 oz . Rub the quicksilver and iodine together; then add the sublimate, and lastly the lard, rubbing them thoroughly. Shave off the hair the size of the bone enlargement; grease all around it, but not where tise hair is skaved off; this prevents the action of the medicine, except on the spavin. Then rub in as much of the paste as will lie on a 3 cent piece, each morning, for 3 or 4 mornings. In from 7 to 8 days, the whole spavin will come out; then wash the wound with suds for an hour or so, to remove the poisonous effects of the paste; afterwards heal up the sore with any good healing salve, or Sloan's Horse Ointment, as per recipe above, keeping the sore covered while it is healing up
Another very Valdable Recipi for Ring-Bone.-Pulverized cantharides, oils of spike, origanum, amber, cedar, Barbadoes tar, and British oil, of each 2 oz ; ; oil of wormwood, 1 oz ; spirits turpentine, 4 oz ; common potash, $\frac{1}{2}$ oz. ; nitric acid, 6 oz . sulphuric acid, 4 oz ; lard, 3 lbs . Melt the lard, and slowly add the acids; stir well, and add the other articles, stirring till cold; clip off the hair, and apply by rubbing and heating in. In about 3 days, or when it is done running, wash off with soap-suds, and apply again. In old cases, it may take 3 or 4 weeks; but, in recent cases, 2 or 3 applications have cured.

Another.-Pulverized cantbarides, oils of origanum and amber, and spirits turpentine, of each 1 oz ; ; olive oil, $\frac{1}{2} \mathrm{oz}$. ; sulphuric acid, 3 drams; put all, except the acid, into alcohol; stir the mixture, add the acid slowly and continue to stir till the mixture ceases to smoke ; then bottle for use. Apply to ring-bone or spavin
with i.nto t in tw plicat ring-k apart, but dd

SpL phor, by put of hot four on Lins 8 oz . 102 ; iron, a For root, p stirred pints o Scour burnt it pint ot daily. cause, is Engli monia, each $1_{2}^{\frac{1}{2}}$ COLIC laudanu ting it in obtained best por

FOR P
tea; chil
Linime pulveriz solved.

Shoen that he cause th shoe as f down to is; he t twisted 0 having,

Horse When fir then set bead dov duce a c that he this half
f the castor on hodium on his like. Be kind tain.
sam of copaiba, iently thick to jall night and

2 quarts of new rwards, give 2 ea, give 3 pints The molasses a puckers them Jure certain, in
turpentine and ua-ammonia, of blimate, $1 . \mathrm{oz}$; ; simmer slowly off, free of sedi1 A ointment well θ in 24 ihours for ation with suds, eeze out a thick, -bones.
Corrosive sublithe quicksilver 1 lastly the lard, size of the bone nere tie hair is e, except on the 1 lie on a 3 cent om 7 to 8 days, ound with suds s of the paste; aling salve, or eping the sore

NE.-Pulverized
Barbadoes tar, 1, 1 oz. ; spirits fc acid, 6 oz . and slowly add rring till cold; g in. In about soap-suds, and weeks ; but, in
um and amber, oz.; sulphuric ; stir the mixill the mixture -bone or spavin
with a sponge tied on the end of a stick, as long as it is absorbid into the parts ; twenty four hours after, grease well with lard ; and in twenty-four hours more, wash off well with soap-suds. One application is generally sufficient for spavins, but may need two; ring-kones, always two or three applications, three or four days apart, which prevents loss of hair. This will stop all lameness, but does not remove the lump.
Splint and Spavin Liniment.-Oil of origanum, 6 oz.; gum camphor, 2 oz. ; mercurial ointment, 2 oz.; iodine ointment, 1 oz.; melt by putting all into a wide-mouthed bottle, and setting it in a kettle of hot water. Apply it to bone spavins or splints, twice daily, for four or five days, and a cure is guaranteed.
Liniment for Swany.-Alcohol and spirits turpentine, of each, 8 oz . ; camphor-gum, pulverized cantharides, and capsicum, of each 1 oz . ; oil of spike, 3 oz .; mix. Bathe this liniment in with a hot iron, and a certain cure is sure to follow.

For Looseness or Soouring in Horses or Cattle.-Tormentil root, powdered. Dose for a horse or cow, 1 to $1 \frac{1}{2}$ oz. It may be stirred into 1 pint of milk, and given; or it may be steeped in $1 \frac{1}{2}$ pints of milk, then given from three to six times daily, until cured.
Scours and Pin-Worms in Horbes and Cattle. - White-ash bark burnt into ashes, and made into a rather strong lye ; then mix $\frac{1}{\frac{1}{2}}$ pint of it with 1 pint warm water, and give all two or three times daily. This will certainly carry off the worms, which are the cause, in most instances, of scours and looseness.
English Stabli Liniment, very strong.-Oil of spike, aqua-ammonia, and oil of turpentine, each 2 oz .; sweet oil, and oil of a mber, each $\frac{1}{2} \mathrm{oz}$. ; oil of origanum, 1 oz . Mix.
Colio oure for Horses and Persons.-Spirits turpentine, 3 oz.; laudanum, 1 oz.; mix; and for a horse give all for a dose, by putting it into a bottle with half a pint of warm water. If relief is not obtained in an hour, repeat the dose, adding half an ounce of the best powdered aloes, well dissolved. Cure, certain.
For Persons, a dose would be from 1 to 2 teaspoonfuls in warm tea; children or weak persons, less.
Linment for fifty cents per gallon.-Best vinegar, 2 quarts; pulverized saltpetre, $\frac{1}{2} \mathrm{lb}$. mix, and set in a cool place till dissolved. Invaluable for old swellings, sprains, bruises, \&c.
Shoeing Horses.-A smith who shod for the hunt, and who said that he wonld have to shut up shop if a shoe was lost, as it might cause the loss of a horse worth a thousand pounds, fastened the shoe as follows:-As he drove the nails, he merely bent the points down to the hoof, without twisting them off, as the usual practice is; he then drove the nails home, and clinched them. He then twisted off the nails, and fled them lightly to smooth them, thus having; as he remarked, a clinch and rivet to hold the nails.
Horse Ail.-Make a slow fire ot old shoes, rags, herbs, \&c. When fired a little, smother so as to make a great smoke and steam; then set a barrel without heads, over the fire, and hold the horse's head down in the barrel, and smoke him well. This will soon produce a copious running at the nose, and he will be so well pleased that he will voluntarily hold his head in the smoke. Continue this half an hour or more daily, meanwhile give him potatoes and
warm bran mashes, and gentle physic, if there be much costiveness which the laxative food will not remove. If he has much fever treat him for that.

Saddiy and Harness Galls, \&c.-White lead and linseed oil, mixed as for paint, is almost unrivalled for healing saddle, harness, or collar galls and bruises. Try it, applying with a brush. It soon forms an air-tight coating and soothes the pain, powerfully assisting nature.

Griase Heel.-Lye made from wood-asbes, and boii white-oak bark in it till it is quite strong, both in lye and bark-ooze; when it is cold, it is fit for use. Wash off the horse's legs with Castile soap; when dry, apply the above lye with a swab fastened on a long stick to keep out of $h_{\text {is }}$ reach, as the smart caused by the application might make him let fly without much warning; but it is a sure cure, only it brings off the hair. To restore the hair after the cure is effected, make and apply a salve by stewing elder bark in old bacon; then form the salve by adding a litile resin, according to the amount of oil when stewed, or $\frac{1}{i} \mathrm{lb}$. resin to each pound of oil.

Valuabler Remedy for Heaves.-Calcined magnesia, balsam of fir, balsam :opaiba, of each 1 oz .; spirits turpentine, 2 oz .; put them all into 1 pint best cider vinegar; give for a dose, 1 tablespoonful in his feed, once a day for a week; then every other day fur 2 or 3 months. Wet his hay with brine, and also his other feed. He will cough more at first, but looser and looser till cured.

To Distinguish and curn Distemper.-Wet up bran with rather strong lye ; if not too strong, the horse will eat it greedily. If they have the distemper, a free discharge from the nostrils, and a consequent cure, will be the result, if continued a few days; but, if only a cold, with swellings of the glands, no change will be discovered.

Remedy for Founder.-Draw about 1 gallon blood from the neck; then drench the horse with linseed oil, 1 quart; now rub the fore-legs long and well with water as hot as can be borne without scalding.

Physic-Ball For Horses.-Barbadoes aloes, from 4 to 5 or 6 drams (according to size and strength of the horse); tartrate of potassa, 1 dram; gingor and Castile soap, each, 2 drams; oil of anise, or peppormint, 20 drops; pulverize and make all into one ball, with thick gum solution. Feed by giving scalded bran instead of oats, for two days before giving the physic, and during its operation.

Physic for Cattle.-Take half only of the dose above for a horse, and add to it glauber-salts, 8 oz .; dissolve all in gruel, 1 quart, and give as a drench.

Hoof-arl in Sheep.-Muriatic acid and butter of antimony, of oach 2 oz . ; white vitriol, pulverized, $1 \mathrm{oz}$. ; mix. Lift the foot, and drop a little of it on the bottom, only once or twice a week. It kills the old hoof, and a new one soon takes its place.

To Cultivate Tobacco.-To raise tobacco, select a sheltered situation, where the young plants can receive the full force of the sun; burn over the surface of the ground early in spring (new land is best), rake it well, and sow the sceds: have a dry, mellow,
rich sd size of feet a sucker the ple -exce and be dusky cut ne should plants then b

To bin wi with 1 lime to the pot
An fully fo them in old of dressed parts p large 8 as poss dry wh

Pack size, so bottom, sheet o to the and so bran, g second bloom journey Never 1

To S or 3 se much e

To R entire 0 compos bark wi lime, al apply d limbs, bloom, and yol

To D
two wl night) and fil
rich soil, and after a shower, when the plants have got leaves the size of a quarter-dollar, transplant as you would cabbage plants, $3 \frac{1}{2}$ feet apart, and weed out carefully afterwards. Break off the suckers from the foot-stalks, as they appear; also the tops of the plants when they are well advanced,-say, about 3 feet high, -except those designed for seed, which should be the largest and best plants. The ripeness of tobacco is known by small dusky spots appearing on the leaves. The plants should then be cut near the roots, on the morning of a day of sunshine, and should lie singly to wither. When sufficiently withered, place the plants in close heaps, under cover, to sweat 48 hours or more; then hang them up under cover to dry.

To Preserve Potatoms from Rot.-Dust over the floor of the bin with lime, and put in about 6 or 7 inches of potatoes, and duat with lime as before, then more potatoes, using about l bushel of lime to 40 bushels of potatoes. The lime improves the Havor of the potatoes, and effectually kills the fungi which causes the rot.

An old veteran farmer, with 63 years' experience, has successfully fought the potatoe rot in the ground, as follows. He plants them in the latter part of April, or beginning of May, and in the old of the moon. When six inches high, they are plastered and dressed out nicely. Now for the secret. When blossoming, take 2 parts plaster, and 1 part fine salt, mix well together, and put 1 large spoonful of this compound as near the centre of each hill as possible. When ripe, take them out of the ground, have them dry when put in the cellar, and keep them in a dry, cool place.

Packing Fruits for Long Distances.-Take a box of the proper size, soft paper, and sweet bran. Place a layer of bran on the bottom, then each bunch of grapes is held by the hand over a sheet of the paper; the four corners of the paper are brought up to the stalk and nicely secured; then laid on its side in the box, and so on until the first layer is finished. Then dust on a layer of bran, giving the box a gentle shake as you proceed. Begin the second layer as the first, and so on until the whole is full. The bloom of the fruit is thus preserved as fresh at the end of a journey of 500 miles as if they were newly taken from the tree. Never fails to preserve grapes, peaches, apricots and other fruit.
To Sprout Onions.-Pour hot water on the seed, let it remain 2 or 3 seconds, and they will immediately sprout, and come up much earlier.
To Renew Old Orchards.--Early in the spring, plough the entire orchard, and enrich the whole soil with a good dressing of compost of manure, swamp-muck, and lime; scrape off the old bark with a deck-scraper, or a sharp hoe ; apply half a bushel of lime, and the same of ground charcoal round each tree. Then apply diluted soft soap, or strong soap-suds, on the trunks and limbs, as high as a man can reach. When the trees are in' full bloom, throw over them a good proportion of fine slacked lime, and you will reap abundant fruits from your labors.

To Destroy the Moti or Miller.-Dr. Waterman bayt, "I took two white dishes (because white attracts their attention in the night) or deep plates, and placed them on the top of the hives,
se) ; tartrate of drams ; oil of θ all into one scalded bran sic, and during
se above for a ll in gruel, 1
antimony, of Lift the foot, twice a week. lace.
t a sheltered ll force of the spring (new a dry, mellow,
and filled them about half-full of swectened vinegar. The next
morning I had about 50 millers caught ; the second night I caught 50 more; the third night, being cold, I did not get any ; the fourth night, being very warm, I caught about 400 ; the fifth night I got about 200."
To Krip Mix Swatr, and Sweteren Sour Mile.-Put into the milk a small quantity of carbonate of magnesia.
To make Cheap and Good Vinegar.-To eight gallons of clear rain-water, add 6 quarts of molasses; turn the mixture into a clean, tight cask, shake it well two or three times, and add 1 pt. of good yenst. Place the cask in a warm place, and in ten or tifteen days add a sheet of common wrapping-paper, smeared with molasses, and torn into narrow strips; and you will have good vinegar. The paper is uecessary to form the "mother," or life of the liquor.
Mr. Cullay's Red Salte, to cure the Rot in Sherp.-Mix 4 oz. of the best honey, 2 oz . of burnt alum reduced to powder, aud a pound of Armenian bole, with as much train or fish oil as will convert these ingredients into the consistence of a salve. The honey must first be gradually dissolved, when the Armenian bolo must be stirred in ; afterwards the alum and train-oil are to be added.
To improve the Wool of Sheer, by Smesting.-Immediately after the sheep are shorn, soak the roots of the wool that remains all over with oil, or butter, and brimstone ; and, 3 or 4 days afterward, wêsh them with salt and water. The wool of next season will not be much finer, but the quantity will be in greater abundance. It may be depended upon, that the sheep will no* be troubled with the scab or vermin that year. Salt water is a safe and effectual remedy against maggots.

To Mare Sheep without injory to the Wool.-To 30 spoonfuls of linseed oil, add 2 oz . of litbarge, and 1 oz of lampblack; boil all together, and mark the sheep therewith.

To Prevent thi Fly in Tuisisps.-From experiments lately made, it has been ascertained that lime sown by hand, or distributed by a machine, is an infallible protection to turnips against the ravages of this destructive insect. It should be applied as soon as the turnips come up, and in the same daily rotation in which they were sown. The lime should be slacked immediately before it is used, if the air be not sufficiently moist to render that operation unnecessary.
Coloring for Cheses.-The coloring for cheese is, or at least should be, Spanish annotto; but, as soon as coloring became general in this country, a color of an adulterated kind was exposed for sale in almost every shop. The weight of a guinea and a half of real Spanish annotto is sufficient for a cheese of fifty pounds' weight. If a considerable part of the cream of the night's milk be taken for butter, more coloring will be requisite. The leaner the cheese is, the more coloring it requires. The manner of using annotto is to tie up in a linen rag the quantity deemed sufficient, and put it into $\frac{1}{2}$ pt. of warm water over night. This infusion is put into the tub of milk in the morning with the rennet infusion; dipping the rag into the milk, and rubbing it against the palm of the hand as long as any color runs out. The yolk of egg will color butter.

Comp quantit ing it d will lea entranc
How which : own we spring-p ral feet after the exposur situatio

To Bo limeston the fuel, whole p covered, diffused closed.
Exa extract
To De
of quick
to part ; ral a paint
To Pb
have the means, rows, an the open next, fro
Olline should oiled wi put on, the sam leather improve

DY

Dym
for all about
In t in 809 dip th

1d night I caught any ; the fourth fifth night I got
4.-Put into the
gallons of clear mixture into a s , and add 1 pt . e, and in ten or or, smeared with will have good ther," or life of

Shetp.-Mix 4 to powder, aud fish oil as will a salve. The Armenian bolo are to be added. t- Immediately ol that remains or 4 days afternext season will ter abundance. e troubled with e and effectual

To 30 spoonfuls ampblack; boil
riments lately hand, or disturnips against be applied as ily rotation in d immediately to render that
is, or at least oring became d was exposed nea and a half f fifty pounds' night's milk -The leaner nner of using ned sufficient, ais infusion is net infusion; t the palm of of egg will

Composition yor Driving out Rats, sto.-Keep on hand a quantity of chloride of lime. The whole secret consists in scattering it dry all around their haunts and into their holes, and they will leave at once, or a liberal decoction of coal tar placed in the entrance of their holes will do as well.

How to form Sprinas. - The firest springs can be mado by boring, which is performed by forcing an iron rod into the earth by its own weight, turning it round, and forcing it up and down by a spring-pole contrivance. The water will sometimes spout up several feet above the surface. Lead pipes are put down in the hole after the water is found. Depressed situations, having a southern exposure, with rising ground towards the north, are the best situations in the United States or the Canadas to find water.

To Burn Lime without a Kiln.-Make a pyramidal pile of large limestones, with an arched furnace next the ground for putting in the fuel, leaving a narrow vent or funnel at the top; now cover the whole pile with earth or turf, in the way that charcoal heaps are covered, and-put in the fire. The heat will be more completely diffused through the pile, if the aperture in the top is partially closed. Produces a superior article of lime.
Effe Water for Horses and Cattle.-Alcohol, 1 tablespoonful; extract of lead; 1 teaspoonful ; rain water, \ddagger pint.

To Destroy Moss on Trees.-Paint them with white-wash made of quick lime and wood ashes.
to Protect Fruit-trebs frjm attack of Mice, gto.-Tar, 1 part ; tallow, 3 parts; mix. Apply hot to the bark of the tree with a paint brush.

To Privent Deday of Farm Implements.-When not in use, have them sheltered from the sun, wind, rain, and snow... By this means, sleighs, waggons, carts, ploughs, threshing-machines, harrows, and the like, would last twice as long as they would if left in the open air, swelling from moisture one week, and shrinking the next, from the influence of the sun and wind.

Oiling or Olaning old Carriagr-tops.-Enamel leather-tops should be first washed with Castile soap and warm water, then oiled with neat's foot oil; or sweet oil and a coat of enamel varnish put on, the leather will look like new. Dashes may be cleaned in the same manner, but varnish color is not very beneficial to patent leather; however, when old and cracked, it may bo colored to improve the appearance.

DYERS, BLEACHERS, AND OLOTHIERS* DEPARTMENT:

Dyensa.-It may be necessary to remark, and I do it here once for all, that every article to be dyed, as well as everything used about dyeing, should be perfectly clean.

In the next place, the article to be dyed should be well scoured in soap, and then the soap rinsed out. It is also an advantage to dip the article you wish to dye into warm water, just before put-
ting it into the alum or other preparation ; through neglect of this precantion, it is nothing uncommon to have the goods, or yarn spotted. Soft water should always be used if possible, and sufficient to cover the goods handsomely.
As soon as an article is dyed it should be aired a little, then well rinsed, and afterwards hung up to dry.
When dyeing or scouring silk or merino dresses, care should be taken not to wring them; for this has a tendency to wrinkle and break the silk.
In putting the dresses and shawls out to dry, that have been dyed, they should be hung up by the edge so as to dry evenly.
Chromi Blage.-For Woollzn Goods.-For 5 lbs. of goods, blue vitriol, 6 oz . boil it a few minutes; then dip the goods ? of an hour, airing! often; take out the goods, and make a dye with logwood, 3 lbs.; boil $\frac{1}{2}$ hour ; $\operatorname{dip} 3$ of an hour, and air the goods, and dip \ddagger of an hour more. Wash in strong suds. This will not impart any of its color in fulling, nor fade by exposure to the sun.
blace on Wool.-For Mixtures. - For 10 ibse of wool, bichromate of potash, 4 oz .; ground argal, 3 oz . ; loil together, and put. in the wool ; stir well, and let it remain in the dye 4 hours. Then: take out the wool, rinse it slightly in clear water ; then make a: new dye, into which put logwood, $3 \frac{1}{2}$ lbs. Boil 1 hour, and add chamber-lye, 1 pt., and let the wool lie in all night. Wash in clear water.
Steme mixed.-Dare.-Black wool, it may be natural or colored, 10 lbs.; white wool, $1 \frac{1}{2}$ lbs. Mix evenly together, and it will be beautiful.
Snupf Brown.-Dark, for Cloti or Wool.-For 5 lbs. goods, camwood, 1 lb . ; boil it 15 minutes, then dip the goods for ${ }^{3}$ of an hour; take out the goods, and add to the dye, fustic, $2 \frac{1}{2}$ lbs. ; boil 10 minutes, and dip the goods hour; then add blue vitriol. 1 oz.; copperas, 4 oz. ; dip again $\frac{1}{2}$ hour; if not dark enough, add more copperas. It is dark and permanent.
WINE Color.-For K lbs. goods, camwood, 2 lbs ; boil 15 minutes ; then dip the goods for $\frac{1}{2}$ hour ; boil again, and dip $\frac{1}{2}$ hour ; then darken with blue vitriol, $1 \frac{1}{2} \mathrm{oz}$. ; if not dark enough, add copperas, $\frac{1}{2}$ oz.
Maddar Red.-To each lb, of goods, alum, 5 oz.; red, or cream of tartar, 1 oz .; put in the goods, and bring your kettle to a boil for $\frac{1}{2}$ an hour ; then air them, boil $\frac{1}{2}$ hour longer ; then empty your kettle, and fill with clean water; put in bran, 1 pk. ; make it milk warm, and let it stand until the bran rises; then skim off the bran, and putin madder, $\frac{1}{2} \mathrm{lb}$.; put in your goods, and heat slowly until it boils and is done. Wash in strong suds.

Grekn.-On Wool or Sile with Oak Bark. - Make a strong yellow dye of yellow oak and hickory bark in equal quantities. Add the extract of indigo, or chemic (which see), 1 tablespoon at a time, until you get the shade of color desired.

Green.-With Fustio.-For each lb. of goods, fustic, 1 lb . : with alum, 31 $\frac{1}{2}$ oz. Steep until the strength is out, and soak the goods therein until a good yellow is obtained ; then remove the chips, and add extract of indigo or çhemic, 1 tablespoon at a time, until the color suits.
gh neglect of this be goods, or yarn ossible, and suffi-
a little, then well
es, care should be y to wrinkle and
, that have been o dry evenly.
5 lbs. of goods, lip the goods $\frac{3}{4}$ of make a dye with nd air the goods, is. This will not josure to the sun. of wool, bichro rogether, and put. e 4 hours. Then: er ; then make : 1 hour, and add t. Wash in clear
tural or colored, ar, and it will be

For 5 Jbs. goods, goods for $\frac{1}{4}$ of an tic, $2 \frac{1}{2}$ lbs. ; boil lue vitriol. 1 oz .; hough, add more
s. ; boil 15 minand dip $\frac{1}{2}$ hour ; rk enough add
; red, or cream kettle to a boil hen empty your 1 pk . make it hen skim off the and heat slowly

Make a strong |ual quantities. 1 tablespoon at
stic, 1 lb. : with soak the goods ove the chips, at a time, until

Blum.-Quiok Procnss.--For 2 lbs. of goods, aluni, 5 oz.; creamof tartar, 3 oz ; boil the goods in this for 1 hour; then throw the goods into warm water, which has more or less of the extraot of indigo in it, according to the depth of color desired, and boil again until it suits, adding more of the blue if needed. It is quick and permanent.

Stocking-parn, or Wonl to oolor. - Between a Bluz and Purple. - For 5 lbs. of wool, bichromate of potash, 1 or.; alum, 2 oz. ; dissolve them, and bring the water to a boil, putting in the wool, and boiling 1 hour; then throw away the dye, and make another dje with logwood chips, 1 lb .; or extract of logwood, 21 oz .; and boil lhour. This also works very prettily on silk.
N.B.-Whenever you make a dye with logwood chips, either boil the chips $\frac{1}{2}$ an hour and pour off the dye, or tie up the chips in a bag, and boil with the wool or other goods; or take $2 \frac{1}{\mathrm{oz}}$. of the extract in place of 1 lb . of the chips; this is less trouble, and generally the better plan. In the above recipe, the more logwood that is used the darker will be the shade.
Scarlet with Cochineal.-For Yarn on Cloth.-For 1 lb . of goods, cream of tartar, $\frac{1}{1} \mathrm{oz}$. cochineal, well pulverized, $\ddagger \mathbf{0 z}$; muriate of tin, $2 \frac{1}{2} \mathrm{oz}$. ; then boil up the dye, and enter the goods; work them briskly for 10 or 15 minutes, after which boil $1 \frac{1}{2}$ hours, stirring the goods slowly while boiling; wash in clear water and dry in the shade.
Pink.-For 3 liss. of goods, alum, 3 oz ; boil and dip the goods 1 hour; then add is the dye, cream of tartar, 4 oz ; cochineal, well pulverized, $1 \mathrm{oz} . ;$ boil well, and dip the goods while boiling, until the color suits.
Orange.-For 5 lbs. goods, muriate of tin, 6 tablespoons ; argal, 4 oz. ; boil and dip 1 hour ; then add to the dye, fustic, $2 \frac{1}{2} 1 \mathrm{lbs}$.; boil 10 minutes, and dip $\$$ hour ; and add again to the dye, madder, 1 teacup; dip again $\frac{1}{2}$ hour.
N.B. - Cochineal, in place of madder, makes a much brighter color, which should be added in small quantities until pleased. About 2 oz .
Lao Red.-For 5 lbs. goods, argal, 10 oz.; boil a few minutes ; then mix fine ground lac, 1 lb ., with muriate of tin, 14 lbs ; and let them stand 2 or 3 hours; then add half of the lac to the argal dye, and dip $\frac{1}{2}$ hour; then add the balance of the lac, and dip again i. hour, keep the dye at a boiling heat, until the last half hour, when the dye may be cooled off.
Purple.-For 5 lbs. goods, cream of tartar, 4 oz ; alum, $6 \mathrm{oz} . ;$ cochineal, well pulverized, 2 oz . ; muriate of tin, $\frac{1}{2}$ teacup. Boil the cream of tartar, alum, and tin, 15 minutes; then put in the cochineal, and boil 5 minutes; dip the goods 2 hours; then make a new dye with alum, 4 oz.; Brazil wood, 6 oz.; logwood, $14 \mathrm{oz} . j$ muriate of tin, 1 teacup, with a little chemic; work again until pleased.
Silfar Drab.-Light.-For 5 los. goods, aium, 1 small teaspoon, and logrood about the same amount ; boil well together, then dip the goods 1 hour ; if not dark enough, add in equal quantities alum and logrood, until suited.

Slate on Woollen or Cotton.-With Bugch Bart.-Boil the bark in an iron kettle, skim out the chips after it has boiled sufficiently, and then add copperas to set the dye. If you wish it very dark, add more copperas. This is excellent for stockings.

Extract of indigo or Ciemic.-To Make.-For good chemic or extract of indigo, take of vitriol, $\frac{1}{2} \mathrm{lb}$., and stir it into indigo, finely ground, 2 oz ., continuing the stirring at first for $\frac{1}{2}$ hour; now cover over, and stir 3 or 4 times daily for 2 or 3 days; then put in a crumb of saleratus, and stir it up, and, if it foams, put in more and stir, and add as long as it foams; the saleratus neutralizes any excess of acid; then put into a glass vessel, and cork up tight. It improves by standing. Druggists keep this prepared.

Wool. - To cleanse.-Make a liquid of water, 8 parts, and urine, 1 part; heat it as hot as you can bear the hand in it; then put in the wool, is little at a time, so as not to bave it crowd; let it remain in for 15 minutes; take it out over a basket to drain; then rinse in running water, and spread it out to dry; thus proceed in the same liquor; when it gets reduced, fill it up in the same proportions, keeping it at hand heat all the time, not using any soap.

Dark Colors.-To extract, and insert Light.-This recipe is calculated for carpet rags. In the first place, let the rags be cashed clean; the black or brown rags can be colored red, or jurple, at the option of the dyer; to do this, take, for every 5 iss. black or brown rags, muriate of tin, $\frac{3}{4} \mathrm{lb}$. $\mathrm{j}_{\text {and }}$ the lac, $\frac{1}{2}$ lb., mixed with the same, as for the lac red; dip the goods in this dye 2 hours, boiling $\frac{1}{2}$ of the time; if not red enough, add more tin and lac. The goods can then be made a purple by adding a little logwood; be careful, and put in but a small handful, as more can be added if not enough. White rags masis a beautiful appcarance i a carpet, by tying them in the skein, and coloring them rea, green, or purple; gray rags will take a very good green; the coloring will be in proportion to the darizness of mix.

Black.-For 5-lbs. goods, sumach, wood and bark together, 3 lbs.; boil $\frac{1}{2}$ hour, and let the goods steep 12 hours; then dip in lime water, $\frac{1}{2}$ hour; then take out the goods, and let them drip an hour; now add to the sumach liquor, copperas, 8 oz., and dip another hour; then run them through the tub of limewater tgain for 15 minutes; now make a new dye with logwood, $2 \frac{2}{2}$ lbs., by boiling 1 hour, and dip again 3 hours now add hichromate of potash, 2 oz., to the \log wood dye, and dip one hour. Wash in clear cold water, and dry in the shade. You may say this is doing too much. You cannot get a permanent black on cotton with less labor.

Sky Blue.-F'or 3 los. goods, blue vitriol, 4 oz.; boil a few minutes; then dip the goods 3 hours, after which pass them through strong lime-water. You can make this color a beautifnl brown by putting the goods through a solution of prussiate of potash.

Lime-Water and Strong Limp-Water.-For Coloring.-Limewater is made by putting stone lime 1 lb , and strong limewater, $1 \frac{1}{2}$ lbs., into a pail of water, slacking, stirring, and letting

ARK. - Boil the ias boiled sufIf you wish it - stockings.
ood chemic or indigo, finely ur; now cover then put in a ut in more and eutralizes any k up tight. It .
urts, and urine, n it; then put it crowd; let sket to drain; to dry; thus 1, fill it up in the time, not

This recipe is the rags be olored red, or e, for every 5 and the lac, $\frac{7}{2}$ the goods in enough, add a purple by but a small White rags 5 them in the ray rags will proportion to
park together, urs; then dip and let them pperas, 8 oz ., tub of limeye with \log hours - now dye, and dip a the shade. pt get a per-
; boil a few a pass them or a beantifnl prussiate of
ring.-Limestrong lime, and letting
it stand until it becomes clear, then turn into a tub of water, in which dip the goods.

Blum nn Cotton or Lingn.-With Loawood.-In all cases, if now, they should be boiled in strong soap-suds or weak lye, and rinsed clean; then for cotton, 5 lbs., or linen, 3 lbs., take bichromate of potash, $\frac{3}{4}$ lb.; put in the goods, and dip 2 hours; then take out, rinse; make a dye with logwood, 4 lbs.; dip in this 1 hour, air, and let stand in the dye 3 or 4 hours, or till the dyo is almost cold; wash out, and dry.

Blue on Cotton.-Without Logwood.-For 5 lbs. of rags, copperas, 4 oz . ; boil and dip 15 minutes; then dip in strong suds, and back to the dye 2 or 3 times; then make a dye with prussiate of potash, 1 oz .; oil of vitriol, 5 tablespoons ; boil 30 minutes, and rinse ; then dry.
Green.-If the cotton is new, boil in weak lye or strong suds; then wash, and dry; give the cotton a dip in the home-made blue dye-tub until blue enough is obtained to make the green as dark as required, take out, dry, and rinse the goods a little; then make a dye with fustic, 3 lb .; logwood, 3 oz , to each 1 lb . of goods, by boiling the dye 1 hour; when cooled so as to bear the hand, put in the cotton, move briskly a few minutes, and let lie in 1 hour ; take out, and let it thoroughly drain; dissolve, and add to the dye, for each 1 lb . of cotton, blue vitriol, $\frac{1}{2} \mathrm{oz}$., and dip another hour ; wring out, and let dry in the shade. By adding or diminishing the logwood and fustic, any shade of green may be obtained.

Yellow.-For 5 lbs. of goods, sugar of lead, $7 \mathrm{oz} . ;$ dip the goods 2 hours; make a new dye with bichromate of potash, 40 oz .; dip until the color suits, wring out, and dry ; if not yellow enough, repeat the operation.
Orangm.-For 5 lbs. of goods, sugar of lead, 4 oz .; boil a few minutes, and when a little cool put in the goods, dip 2 hours, wring out; make a new dye with bichromate of potash, 8 cz . ; madder, 2 oz. ; dip until it suits; if the color should be too red, take off a small sample, and dip it into lime water, when the choice can be taken of the sample dipped in the lime or the original color.

Red.-Take muriate of tin, $\frac{1}{\frac{1}{2}}$ of a tea-cup; add sufficient water to cover the goods well, bring it to a boiling heat, putting in the goods 1 hour, stirring often; take out the goods, and empty the kettle, and put in clean water, with nic-wood, 1 lb , steeping it for $\frac{1}{2}$ hour, at hand heat; then put in the goods, and increase the heat for 1 hour, not bringing to a boil at all, sitir the goode, and dip an hour as before; wash without soap.

Muriata of Tin.-Tin Liquor.-If druggists keep it, it is best to purchase of them already made; but if you prefer, proceed as follows: Get at a tinner's shop, block tin; put it in a shovel, and melt it. After it is melted, pour it from the height of 4 or 5 feet into a pail of clear water. The object of this is to have the tin in small particles, so that the acid can dissolve it. Take it jut of the water and dry it ; then put it into a strong glass bottle; pour over it muriatic acid, 12 cz . ; then slowly add sulphuric acid, 8 oz . The rcid should be added about a tablespoon at a time, at intervals of 5 or 8 minutes; for if you add it too rapidly you run the risk of breaking the bottle by heat. After you have all the acid
in, let the bottle stand until the ebnllition subsides; then stop it up with a bees'-wax or glass stopper, and set it away; and it will keep good for a year or more, or will be fit for use in 24 hours.
Green.-Very Handsome with Oak Bark.-For 1 lb . of silk, yellow oak bark, 8 oz . ; boil it $\frac{1}{2}$ hour ; turn off the liquor from the bark, and add alum, 6 oz ; let stand until cold; while this dye is being made, color the goods in the blue dye-tub, a light blue ; dry, and wash; then dip in the alum and bark dye; if it does not take well, warm the dye a little.
Green or Yellow-On Sili or Wool, in Five to Fiftern Minutzs.-For 5 lbs. of goods, black oak bari or peach leaves, $\frac{1}{2}$ peck; boil well; then take out the bark or leaves, and add muriate of tin, $\frac{1}{2}$ teacup, stirring well ; then put in the goods and stir them round, and it will dye a deep yellow in from 5 to 15 minutes, according to the strength of the bark; take out the goods, rinse, and dry immediately.
N.B. -For a green, add to the above dye extract of indigo, or chemic, 1 tablespoon only at a time, and work the goods 5 minutes, and air; if not sufficiently dark, use the same amount of chemic as before, and work again until' it suits.
Mulberry.-For 1 lb . of silk, alum, 4 oz ; dip 1 hour; wash out, and make a dye with Brazil wood, $1 \mathbf{~ o z}$; and logwood, $\frac{1}{}$ oz. by boiling together; dip in this $\frac{1}{2}$ hour, then add more Brazil wood and logwood, in equal proportions, until the color is dark enough.
Blacs.-Make a weak dye as you would for black on woollens, work the goods in bichromate of potash, at a little below boiling heat, then dip in the logwood in the same way; if colored in the blue vitriol dye, use about the same heat.
Spots-To Remove and Prevent when Coloring Black on Sile or Woollen.-N.B. In dyeing silk or woollen goods, if they should become rusty or spotted, all that is necessary is to make a weak lye, and have it scalding hot, and put your goods in for 15 minutes; or throw some ashes into your dye, and run your goods in it 5 minutes, and they will come out a jetblack, and an even color.
Light Chemio Blues.-For cold water, 1 gal.; dissolve alum, $\frac{1}{\text { t }}$ tablespoon, in hot water, 1 teacup, and add to it; then add chemic, 1 teaspoon at a time, to obtain the desired colvr; the more chemic that is used, the darker will be the color.
Purple.-For 1 lb . of silk: having first obtained a light blue by dipping in the home-made blue dye-tub, and dried, dip in alum, 4 oz.; to sufficient water to cover, when a little warm ; if the color is not full enough, add a little chemic.
Yellow.-For 1 lb . of sillk, alum, 3 oz. ; sugar of lead, $\frac{3}{4} \mathrm{oz}$. mmerse the goods in the solution over night; take out, drain, and make a new dye with fustic, 1 lb . : dip until the required color is obtained.
N.B.-The yellow or green, for wool, works equal.g well on silk.

Orangr.-Take annotto and soda, and add in equal quantities, accordiug to the amount of goods and darkness of the color wanted, say 1 oz . of each, to each pound of silk, and repeat as desired.
then stop it and it will b hours.
lb. of silk, liquor from ile this dye light blue ; it does not
to Fifteen ch leaves, $\frac{1}{2}$ 1 add murigoods and om 5 to 15 ike out ths
findigo, or oods 5 minamount of
hour ; wash wood, $\frac{1}{4} \mathrm{oz}$. more Brazil olor is dark

on woollens,

 elow boiling plored in theBlack on pods, if they is to make a ds in for 15 your goods, ad an even

Ive alum, $\frac{1}{2}$; then add color ; the
glat blue by in alum, 4 if the color ead, $\frac{3}{4}$ oz. drain, and ed color is rell on silk. quantities, the color repeat as

Crimson.-For 1 lb . of silk, alum, 3 oz ; dip at hand-heat, 1 hour; take out and drain, while making a new dye, by bolling, 10 minutes, cochineal, 3 oz . ; bruised nut-galls, 2 oz ; and cream of tartar, $\frac{t}{} \mathrm{oz}$., in one pail of water ; when a little cool, begin to dip, raising the heat to a boil, continuing to dip 1 hour ; wash, and dry.

Cinnamon or Brown on Cotton and Sile-By a New Procesij -Very Beautifol.-Give the goods as much color, from a solution of blue vitrol, 2 oz ., to water, one gal., as it will take up in dipping 15 minutes; then run it through lime-water; this will make a beautiful sky-blue, of much durability; it has now to be run through a solution of prussiate of potash, $1 \mathrm{oz} .$, to water, $1 \mathrm{gal} . *$

Aniline Black on Silk or Cotton.-Water, 20 to 30 perts; chlorate of potassa, 1 part ; sal ammoniac, 1 part ; chloride of copper, 1 part ; aniline, 1 part; and hydrochloric, 1 part ; previously mixed together. The fabric or yarn is dried in ageing rooms at a low temperature for 24 hours and washed afterwards.

To Color Strafy Hats or Bonnets a Beautiful Slaty.-Firsh, soak the bonnet in rather strong warm suds for 15 minutes to remove sizing or stiffening; then rinse in warm water, to get out the soap ; now scald cudbear, 1 oz ., in sufficient water to cover the hat or bonnet; work the bonnet in this dye, at 180° of heat, until you get a light purple ; now have a bucket of cold water, blued with the extract of indigo, $\frac{1}{2}$ oz., and work or stir the bonnet in this, until the tint pleases; dry, then rinse out with cold water, and dry again in the shade. If youget the purple too deep in shade the final slate will be too dark.

To Bleach Straw Bonnets.-Take a common plate, fill it with water, set a small piece of sheet iron, with the ends bent down to raise the top above the water, place in the middle of the tin plate, on which you must place a small piece of brimstone, set it on fire, and cover it over tight with a large bell r large tumbler or bow that will just shut down close within the rim of the plate ; at first raise the cover a little to admit a current of air to cause the sulphur to burn, until you fill the whole with a white vapor; then shut down tight about ten minutes, and the water will absorb the sulphurous acid gas, with which straw hats or wooden articles are washed over to bleach in the most approwed manner. It will also remove fruit and vegetable stains from dress.

Washing Fluid-Take 1 lb : sal suda, $\frac{1}{2}$ lb. good stone lime, and 5 qts. of water; boil a short time, let it settle, and pour off the clear enid into a stone jug, and cork for use; soak your white clothes over night in simple water, wring out and soap wristbands, collars, and dirty or stained places; have your boiler half filled with water just beginning to boil, then put in one common teacupful of fluid, sti: and put in your clothes, and boil for half an hour, then rub lightly through one suds only, and all is complete.

Chip or Straw Hats or Bonnets may be dyed black by boiling them three or four hours in a strong liquor of logwood, adding a little copperas occasionally. Let the bonnets reman in the liquor all night; then take out to dry in the air. If the black is not satisfactory, dye again after drying. Rub inside and out with a sponge moistened in fine oil ; then block. Red Dye.-Boil ground Brazil-
wood in a lye of potash, and boil your straw hats, \&c., in it. Blue Dye.-Take a sufficient quantity of potash lye, 1 lb . of litmus or lacmus, ground : make a decoction and then put in the straw, and boil it.
Dyes por Hats. - The ordinary bath for dyeing hats, employed by the Londen manufacturers, consists, for twelve dozen, of 144 lbs. logwood; 12 lbs. of green sulphate of iron or copperas; $7 \frac{1}{2}$ lbs. verdigris. The logwood having been introduced into the copper, and digested for some time, the copperas and verdigris are added in successive quantities, and in the above proportions, along with every successive two or three dozens of hats suspended upon the dripping machine. Each set of hats, after being exposed to the bath with occasional airings during forty minutes, is taken off the pegs, and laid out upon the ground to be more completely blackened by the peroxydizement of the iron with the atmospheric oxygen. In three or four hours, the dyeing is completed. When fully dyed, the hats are well washed in running water.
Waterproof Stifyening for $\mathrm{H} \Delta \mathrm{ts}$.- Mix 18 lbs . of shellac with $1 \frac{1}{2}$ lb_{l}. of salt of tartar (carbonate of potash), and $5 \frac{1}{2}$ gals. water. These materials are to be put in a kettle, and made to boil gradnally till the lac is dissolved, when the liquid will become as clear as water, without any scum upon the top, and if left to cool, will lave a thin crust upon the surface, of a whitish cast, mixed with the light impurities of the gum. When this skin is taken off, the hat body is to be dipped into the mixture in a cold state, so as to absorb as much as possible of it ; or it may be applied with a brush or sponge. The hat body, being thus stiffened, may stand till it becomes dry, or nearly so; and after it has been brushed, it must be immersed in very dilute sulphuric or acetic acid, in order to neutralize the potash, and cause the shellac to set. If the hats are not to be napped immediately, they may be thrown into a cistern of pure water, and taken out as wanted.
Method of Bleaching Straw.-Dip the straw in a solution of oxygenated muriatic acid, saturated with potash. (Oxygenated muriate of lime is much cheaper.) The straw is thus rendered very white, and its flexibility is increased.
Bleaching Straid Goods.-Straw is bleached by simply exposing it in a closed chember to the fumes of burning sulphur, an old flour barrel is the apparatus most used for the purpose by milliners, a flat stone being laid on the ground, the sulphur ignited thereon, and the barrel containing the goods to be bleached turned over it. The goods should be previously washed in pure water.
Varnish for faded Rubber Goods.-Black Japan varnish diluted Tith a little linseed oil.
To bleach Linen.-Mix common bleaching-powder, in the proportion of 1 lb . to a gallon of water; stir it occasionally for three days, let it settle, and pour it off clear. Then make a lye of 1 lb . of soda to 1 gallon of boiling soft water, in which soak the linen for 12 hours, and boil it half an hour; next soak it in the bleaching liquor, made as above ; and lastly, wash it in the usual manner.
Discolored linen or muslin may be restored by putting a portion of bleaching liquor into the tub wherein the articles are soaking.

Blad
pulver put ith until t in the
Eass Sprink in whi scent the air sprits
and fin bits of of the two, th should is frequ

Clot tion of when c set asid apply color, a smooth

Wat gals. we acetate dissolve lead res of the v plunge rub it

Tc R
saltpetre ther; di $1 \in$ moved

Wate
lb.; gro aiticle, well wa :ion.
To R then wi down. damp; a
DYES
receipts wocd xit the w minutes pass ore blue vil flum:
n it. Blue f litmus or straw, and , employed zen, of 144 ras; $7 \frac{1}{2}$ lbs. the copper, 3 are added along with 1 upon the osed to the ken off the tely blackpheric oxyWhen fully
llac with $1 \frac{1}{2}$ als. water. oil gradnne as ciear ग cool, witl nixed with en off, the te, so as to ith a brush tand till it ed, it must a order to he hats are a cistern
olution of xygenated rendered
ly exposur, an old milliners, 1 thereon, d over it.
sh diluted
the profor three e of 1 lb . the linen t in the the usual

a portion oaking.

Black Variibi for Chip and Straw Hats.-Beet alcohol, 4 oz.; pulverized black sealing-wax, 1 oz ; put them into a phial, and put the phial into a warm place, stirring or shaking occasionally until the wax is dissolved Apply it when warm before the fire or in the sun. This makes a beautiful gloss:
Eaby Method of preventing Mothe in Furs or Woollens.Sprinkle the furs or woollen stuffs, as well as the drawers or boxes in which they are kept, with spirits of turpentine, the unpleasant scent of which will speedily evaporate on exposure of the stuffs to the air. Some persons place sheets of paper, moistezed with spirits of turpentine, over, under, or between pieces of cloth, \&c., and find it a very effectual method. Many woollen drapers put bits of camphor, the size of a nutmeg, in papers, on different parts of the shelves in their shops, and as they brush their cloths every two, three or four months, this keeps them free from moths: and this should be done in boxes where furs, \&c., are put. A tallow candle is frequently put within each muff when laid by.
Clothing Renovator.-Soft water, 1 gal.; make a strong decoction of logwood by boiling the extract with the water Straiu, when cool, add 2 oz . gum arabic in powder; bottle, cork well; and set aside for use; clean the coat well from grease and dirt, and apply the above liquid with a sponge evenly. Dilute to suit the color, and hang in the shade to dry ; afterwards brush the nap smooih , and it will look like new
Watirprooping for Porous Cloth.-Dissolve $2 \frac{1}{2}$ lbs. alum in 4 gals. water ; dissolve also in a separate vessel the same weight of acetate of lead in the same quantity of water. When both are well dissolved, mix the solutions together; and, when the sulphate of lead resulting from this mixture has been precipitated to the bottom of the vessel in the form of a powder, pour off the solution, and plunge into it the fabric to be rendered waterproof. Wash and rub it well during a few minutes, and hang it in the air to dry.
TC Remove Grease.-Aqua ammonia, 2 oz. ; soft water, 1 quart ; saltpetre, 1 teaspoonful; shaving soap in shavinge, 1 oz.; mix altogether; dissolve the soap well, and any grease or dirt that cannot be cemoved with this preparation, nothing else need be tried for it.
Waterproofing for Cluthing.-Boiled oil, 15 lbs ; bee's-wax 1 lb .; ground litharge, 13 lbs. ; mix, and apply with a brush to the. aticicle, previously stretched against a wall or a table, previously well washing and drying each article before applying the composiion.
To Renew Old Silis.-Unravel and put them in s tub, cover then with cold water, let them remain one hour; dip them up and down. but dc not wring ; hang up to drain, and iron while very damp; and they wili look beauuful.
Dyes for Fore.-For black, use the hair dye described in these receipts. Brown, use tincture of logwood. Red, ground Brazilwocd $\lambda \mathrm{lb}$; water, $1 \frac{1}{2}$ quarts ; cochineal, $\frac{1}{2}$ oz. ; boil the Brazil-wood in the weter one hour; strain and add the cocmueàr; boil fifteen minutes. Scarlet color, boil $\frac{1}{2}$ oz. saffron in $\frac{1}{2}$ pint of water, and pass ores the work before applying the red Blue, logwood, 7 oz .; blue vilicl, 1 oz ; water, 22 oz ; boil. Purple, $\operatorname{logwood,~} 11 \mathrm{oz} . ;$ nllun oz : water, 29 oz. Green, strong vinegar, $1 \frac{1}{2}$ pints ; best
verdigris, 2 oz .; ground fine; sap green, $\frac{1}{2} \mathrm{oz}$.; mix all together and boil.

Potter's Intisible Waterproofing for Clothing.- Imbue the cloth on the wrong side with a solution of isinglass, alum, and soap dissolved in water, forming an emulsion of a milky thickness; apply with a brush, rubbing in well. When dry, it is brushed on the wrong side against the grain, and then gone over with a brush dipped in water; afterwards brushed down smooth.

To raise a Nap on Cloth.- Clean the article well; soak it in cold water for half an hour ; put it on a board, and rub the threadbare parts with a half-worn hatter's card filled with flocks, or with a teazle or a prickly thistle until a nap is raised ; then lay the nap the right way with a hatter's brush, and hang up to dry.

Black Revifer for Cloth.-Bruised galls, llb.; logwood, 2 lbs.; green vitriol, $\frac{1}{2}$ lb. ; water, 5 quarts; boil two hours; strain, and it is ready for use.

DRUGGISTS' DEPARTMENT.

Remmdy far Diphtheria.-The treatment consists in thoroughly swabbing the back of the mouth and throat with a wash made thus : Table salt, 2 drams; black pepper, golden seal, nitrats of potash, alum, 1 dram each; mix and pulverize; put into a teacup half full of water ; stir well, and then fill up with good vinegar. Use every half hour, one, two, and four hours, as recovery progresses. The patient may swallow a little each time. Apply 1 oz . each of spirits turpentine, sweet oil, and aqua-ammonia, mixed, every hour to the whole of the throat, and to the breast bone every four hours, keeping flannel to the part.

Holloway's Ointmant and Pills.-Butter, 22 oz. ; beeswax, 3 oz. ; yellow rosin, 3 oz ; melt; and vinegar of cantharides, 1 oz. evaporate; and add Canada balsam, 1 oz ; oil of mace, $\frac{1}{2}$ dram; balsam of Peru, 15 drops. Pills: Aloes, 4 parts ; myrrh, jalap, and ginger, of each 2 parts ; mucilage to mix.

Abmrnethy's Pills.-Each pill contains 2 grains of blue pill and 3 grains compound extract of colocynth.

Worm Lozenaes.-Powdered lump sugar, $10 \mathrm{oz}$. ; starch, 5 oz.; mix with mucilage; and to every ounce add 12 grains calomel; divide in 20 grain lozenges. Dose, two to six.

Soothing Syrup.-Alcohol, oil of peppermint, castor oil, of each, 1 oz. ; mix ; add oil of anise, $\frac{1}{2}$ dram; magnesia, 60 grains ; pulverized ginger, 40 grains ; water, 2 oz ; white sugar to form a syrup.

Soothing Syrup.-Take 1 lb . of honey; add 2 tablespoonfuls of paregoric, and the same of oil of anise seed; add enough water to make a thick syrup, and bottle. For children teething, dose, teaspoonful occasionally.

Infant's Syuur. -The syrup is made thus; $1 \mathbf{l b}$. best box raisins; $\frac{1}{2}$ ounce of anise seed; two sticks licorice ; split the raisins, pound the anise seed, and cut the licorice fine; add to it 3 quarts of rain water, and boil down to 2 quarts. Feed three or four times a day, as much as the child will willingly drink. The raisins are to
strene physic BRA of ext peppe pills.

Per oz.; c alcoho - FaH oz. ; o minim

SwA
root,
3 quar drops

1. table

Aype
2 fluid
monial
wild ch
Brow
of licor
4 oz . of nium.

Ross
melt sl
quantit
Dent part ; mixed 1 togethe in the powder Or, tal minera $\mathrm{Or}, \mathrm{gyl}$ filings, copal a 26 grai than a the firs equal

Gut advises introd

Ama silver, amalg: and til grains of usir objecti

Il together and

7.- Imbue the alum, and soap lky thickness; is brushed on er with a brush

ell; soak it in

 ub the threadlocks, or with en lay the nap dry.gwood, 2 Ibs.; strain, and it
in thoroughly a wash made al, nitrate of into a teacup good vinegar. recovery pro-- Apply 1 oz. 1onia, mixed, st bone uvery
; beeswax, 3 arides, 1 oz. ace, $\frac{1}{2}$ dram; ayrrh, jalap,
olue pill and
tarch, 5 oz. ; ins calomel;
oil, of each, ains ; pulverm a syrup. spoonfuls of ough water thing, dose,
box raisins; sins, pound arts of rain imes a day, sins are to
strengthen, the anise is to expel the wind, and the licorice as a physic.

Brandeth's Pills.-Take 2 lbs . of aloes; 1 lb . of gambnge, 4 oz. of extract of colocynth, $\frac{1}{2} \mathrm{lb}$. of Castile soap, 3 fluid drams of oil of peppermint, and 1 fluid dram of cinnamon. Mix, and form into pills.

Perry Davis' Pain Killer.-Myrrk, $\frac{11}{2}$ oz.; guaiacum resin, 1 oz.; camphor, $\frac{1}{2}$ oz. ; red pepper, oil anise, each, 1 draita; dilute alcohol, 2 pints; mix. Stand seven days, and filter.

- Fabnestock's Vermifcae. - Castor oil, oil of worna seed, each 1 oz. ; oil anise, $\frac{1}{2}$ oz. : tincture myrrh, $\frac{1}{2}$ dram ; oil iurpentine, 10 minims ; castor oil, 2 drops ; mix.

Swaim's Vermifuge.- Wormseed, 2 oz.; valerian, rhubarb, pinkroot, white agaric, of each $1 \frac{1}{2} \mathrm{oz}$; boil in sufficient water to yield 3 quarts of decoction; and add to it 10 drops of oil of tansy and 45 drops of oil of cloves, dissolved in a quart of rectified spirits. Dose, 1. tablespoonful at night.

Afer's Cherry Pectoral.-Take 4 grains of acetate of morphia; 2 fluid drams of tincture of bloodroot; 3 fluid drams each of antimonial wine and wine of ipecacuanha, and 3 fluid oz. of syrup of wild cherry. Mix.

Brown's Bronchial Troches.-Take 1 lb . of pulverized extract of licorice ; $1 \frac{1}{2} \mathrm{lb}$. of puiverized sugar ; 4 oz . of pulverized cubebs; 4 oz . of pulverized gum arabic, 1 oz . of pulverized extract of conium. Mix.

Russia Salve.-Take equal parts of yellow wax and sweet oil; melt slowly, carefully stirring; when cooling, stir in a small quantity of glycerine. Good for all kinds of wounds, \&c.

Dentist'sećcomposition for Filling Decayed Teeth.-Gold, 1 part; mercury, 8 parts ; incorporated by heating together; when mixed pour them into cold water. Or, tinfoil and quicksilver; melt together in a convenient vessel, take a small quantity, knead it in the palm of the hand, and apply quick. Or, mix a little finelypowdered glass with some mineral succedaneum ; apply as usual. Or, take some mineral succedaneum, and add some steel dust. Or, mineral succedancum mixed with levigated porcelain or china. Or, gypsum, 1 part; levigated porcelain, 1 part; levigated iron filings, 1 part ; make into a paste with equal parts of quick drying copal and mastic varnish. Or, quicksilver, 40 grains; steel filings, 26 grains. Or, silver, 72 parts ; tin, 20 parts ; zinc, 6 parts. Retter than any, pure gold, 1 part; silver, 3 parts; tın, 2 parts; melt. the first two, add the tin, reduce all to a fine powder, use with an equal quantity of pure mercury.
Gutta-percha, softened by heat, is recommended. Dr. Rollfs advises melting a piece of caoutchouc at the end of a wire, and introducing it while warm.

Amalgams for the teeth are made with gold or silver, and quicksilver, the excess of the latter being squeezed out, and the stiff amalgam used warm. Inferior kinds are made with quicksilver and tin, or zinc. A popular nostrum of this kind consists of 40 grains of quicksilver and 20 of fine zinc filings, mixed at the time of using. The following is said to be the most lasting and least objectionable amalgam: Melt 2 parts of tin with 1 of cadmium,
run it into an ingot, and reduce it to filings. Form these into a fluid amalgam with mercury, and squeeze out the excess of mercury through leather. Work up the solid residue in the hand, and press it into the tooth. Another cement consists of about 73 parts of silver, 21 of tin, and 6 of zinc, amalgamated with quicksilver.
Poudrm Metaluque.-The article sold under this name in Paris appears to be an amalgam of silver, mercury, and ammonium, with an excess of mercury, which is pressed out before using it.
To Expract Teety with little or no Pain.-Tincture of aconite, chloroform, and alcohol, of each 1 oz .; mix; moisten two pledgets of cotton with the liquid, end. apply to the gums on each side of the tooth to be extracted, holding them in their place with pliers or other instruments for from five to ten minutes, rubbing the gum freely inside and out.
Tootin wash.-To Remove Blaciness.-Pure muriatic acid, 1 oz .; water, 1 oz . ; honey, 2 oz .; mix. Take a tooth-brush, and wet it freely with this preparation, and briskly rub the black teeth, and in a moment's time they will be perfectly white; then immediately wash out the mouth with water, that the acid may not act upon the enamel of the teeth.
Dentist's Nerve Pabtw.-Arsenic, 1 part; rose pink, 2 parts. To destroy the nerve, apply this preparation on a pledget of cotton, previously moistened with creosote, to the cavity of the tooth, let it remain 4 hours, then wash out thoroughly with water.
Dentibr's Emery Wherls.-Emery, 4 lbs.; sheilac, $\frac{1}{2}$ lb. ; melt the shellac over a slow fire; stir.in the emery, and pour into a mould of plaster of Paris. When cold it is ready for use.
Babe foe Artificill Teeth.-Propobtions.-Inditi rubber, 1

CURE For Lock Jaw, said to be positive.-Let any one who has an attack of lock jaw take a small quantity of spirits of turpentine, warm it, and pour it on the wound - no matter where the wound is, or what its nature is, and relief will follow in less than one minute. Turpentine is also a sovereign remedy for croup. Saturate a piece of flannel with it, and place the flannel on the throat and chestand in very severe cases three to five drops on a lump of sugar may be taken internally.

Compound Extract of Bucho.-Buchu leaves, 1 lb .; boiling. distilled water, 3 gals. ; boil the leaves in 2 gals. of the water down to 6 qts. ; then boil it again in the remaining water till reduced to 2 qts. Evaporate the mixed liquors down to 6 qts ., and add 1 qt . strong sage tea, 2 drs. bicarb. potassa, 2 drs. tinct. cannabis indica, 5 oz. rectified spirit, 2 oz . batsam copaiba, and Harlem oil, 1 bottle.
New Method of Embalming.-Mix together 5 pounds dry sulphate of alumine, 1 quart of warm water, and 100 grains of arsenious acid. Inject 3 or 4 quarts of this mixture into all the vessels of the human body. This applies as well to all animals, birds, fishes, \&c. This process supersedes the old and revolting mode, and has been introduced into the great anatomical schools of Paris.
Nitrate of Silver.-Pure silver, $1 \frac{1}{2}$ oz. ; niéric acid, 1 oz. diluted with water, 2 oz. ; heat by a sand-bath until ebullition ceases, and
ihe must :cess of merhe hand, and of about 73 with quick-
ame in Paris ammonium, using it.
cture of acomoisten two ums on each ir place with ites, rubbing
uriatic acid, h-brush, and ib the black white ; then 10 acid may
ink, 2 parts. pledget of avity of the with water. ; lb. ; melt pour into a se.
ai rubber, 1
one who has turpentine, he wound is, one minute. rate a piece and chestp of sugar boiling.dister down to educed to 2 i add 1 qt. - cannabis Garlem oil,

5 dry sul-

 of arsenivessels of rds, fishes, e, and has ris. pz. diluted eases, andihe water is expelled; then pour into moulds. This substance must be kept from the light.
Harr Dye, No. 1. -Take gallic acid, $\frac{1}{2}$ oz ; alcohol, 8 oz.; soft water, 16 oz . Put the acid in the alcohol, then add tho water.
No. 2.-Orystallized nitrate of silver, 1 oz . $;$ strongest ammonia, 3 oz . ; gum arabic, $\frac{1}{2} \mathrm{oz}$.; soft water, 6 oz . Put the silver in the ammonia ; do not cork it till it is dissolved; dissolve the gum in the water, then mix, and it is ready for use.
Keep Nos. 1 and 2 in separate bottles, and apply each alternately to the bair. Be particular to cleanse the hair before applying the dye.
Another.-Nitrate of silver, 11 drams; nitric acid, 1 dram; distilled water, 1 pint; sap green, 3 drams; gum arabic, 1 dram. Mix.

Anotrer.-Nit:ic acid, 1 dram; nitrate of silver, 10 drams; sap green, 9 drams; mucilage, 5 drams; distilled water, $37 \frac{1}{2}$ fluid $\mathbf{o z}$.
Hair Invigorator.-Bay rum, 2 pints; alcohol, 1 pint; castor oil, 1 oz . carb. ammonia, $\frac{1}{}$ oz.; tincture of cantharides, 1 oz . Mix them well. This compound will promote the growth of the hair, and prevent it from falling out.
Razor-Strop Paste.-Wet the strop with a little sweet oil, and apply a little flour of emery evenly over the surface.
Oil or Rosgs.-Olive oil, 1 lb . ; otto of roses, 50 drops; oil of rosemary, 25 drops; mix. Another, roses (hardly opened) 12 oz .; olive oil, 10 oz ., beat them together in a mortar; let them remain for a few days, then express the oil.
balm of Beatty.-Pure soft water, 1 qt. ; pulverized Castile soap, 4 oz .; emulsion of bitter almonds, 6 oz .; rose and orange. flower water, of each, 8 oz ; tincture of benzoin, 2 drs . ; borax, 1 dr. ; add 5 grs. bichloride of mercury to every 8 oz . of the mixture. To use, apply on a cotton or linen cloth to the face, \&c.

Oriental Cold Cream.-Oil of almonds, 4 oz., white wax and spermaceti, of cach, 2 drs. ; melt, and add rose water, 4 oz.; orange flower water, 1 oz .; used to soften the skin, apply as the last.
Shaving Cream.-White wax, spermaceti, and almond oil, of each $\ddagger \mathrm{oz}$.: melt, and while warm, beat in 2 squares of Windsor soap previously reduced to a paste with rose water.

Crroassian Cream.--Take 2 ounces of perfectly fresh suet, either mutton or venison; 3 ounces of olive oil; 1 oz. gum benzoin in powder, and $£ \mathrm{oz}$. of alkanet root. Put the whole into a jam jar, which, if without a lid, must be tied over with bladder, and place the jarin a sancepan containing boiling water, at the side of the fire. - Digest for a whole day, then strain away all that is fluid through fine muslin, and stir till nearly cold. Add, say 1. dram of essence of almonds, roses, bergamot or any other perfume desired.
Freckle Cure.-Take two oz. lemon juice, or half a dram of powdered borax, and one dram of sugar; miz together, and let them stand in a glass bottle for a few days, then rub on the face occasionally.
Yankren Shating Soap.--Take 3 lbs . white bar soap, 1 lb . Caatile soap, 1 quart rain water. $\frac{1}{2}$ pt. beef's gall, 1 gill spirits of turpen-
thne. Cut the soap into thin slices, and boil five minutes after the soap is dissolved, stir while boiling: scent with of of rose or almonds. If wished to color it, use $\frac{1}{} \mathrm{oz}$ vermilion.

Blooy or Youth.-Boil 1 ounce of Brazil wood in 3 pints of water for 15 minutes; strain. Add $\$$ oz. isinglass, i oz, cochineal, 1 oz. alum, $\frac{1}{2}$ oz. borax. Dissolve by heat, and strain

Cologne Water.- Ohls of rosemary and lemon, of each ℓ oz.; oils of bergamot and lavender, each toz.; oil cinnamon, 8 drops; oils of cloves and rose, each 15 drops; best deodorized alcohol, 2 qts.; shake 2 or 3 times per day for a week.

We propose to give the formula for the following preparations, and shall commence with what is said to be
Bogle's Hyperion Fludid.-To 8 oz . of 90 or 95 per cent. alcohol, colored red with alkanet, add 1 oz . of castor-oil: perfume with geranium and verbena.

Lyon's Kathairon.-To 8 oz . of 80 per cent. alcohol, colored yellow by a few drops extract of annotto, add 2 oz . castor-oil, and perfume with a little bergamot.
Phalon's Hair Restorative.-To 8 oz . of 90 per cent. alcohol, colored by a few drops tincture of alkanet root, add 1 oz . of castor oil, and perfume with a compound of bergamot, neroli, verbena: and orange.

Mrs. Allen's.-To 16 oz . of rose water, diluted with an equal part of sall water, add $\frac{1}{2} \mathrm{oz}$. of sulphur and 4 oz . of sugar of lead; let the compound stand five days before using.
Batohelor's Hair-Dye.-No. 1. To 1 oz . of gallic acid, dissolved in 8 oz . alcohol, add $\frac{1}{2}$ gal. soft water. No. 2. To 1 oz . nitrate of silver, dissolved in 1 oz . of concentrated ammonia, and 3 oz . of soft water, add 1 oz . gum arabic and 4 oz . of soft water.

Ceristadoro's Hair-Dye.-No. 1. To $\ddagger \mathrm{oz}$. of gallic acid, dissolved in 8 oz . alcohol, add $\frac{1}{2}$ gal. soft water. No. 2 . To 1 oz . crystallized nitrate of silver, dissolved in 1 oz . concentrated aquaammonia and 2 oz . soft water, add 2 oz . gum arabic and 5 oz . soft water.
Phalon's Instantaneous Hair-Dye.-No. 1. To $1 \frac{1}{2}$ oz. gallic acid, and $\ddagger \mathrm{oz}$. of tannia, dissolved in 8 oz . of alcohol, add $\frac{1}{2} \mathrm{gal}$. of soft water. No. 2. To 1 oz . crystallized nitrate of silver, dissolved in 1 oz . concentrated aqua-ammonia, add $1 \frac{1}{2} \mathrm{oz}$. gum arabic, and 8 oz. soft water.

Harrison's.-No. 1. To $\frac{1}{2}$ oz. gallic acid, 1 oz. of tannia dissolved in 10 oz . alcohol, add 2 qts. soft water. No. 2. To 1 oz . crystallized nitrate of silver, dissolved in 2 oz . of concentrated aquaammonia, add 12 oz . soft water and $1 \frac{1}{2} \mathrm{oz}$. gum arabic. No. 3. 1 oz . hydro-sulphate of potassa, dissolved in $\frac{1}{2}$ gal. of soft water. This last ingredient is intended to produce a deep black color if the others should fail.
Phalon's (One Preparation.)-To 1 oz. crystallized nitrate of silver, dissolved in 2 oz . of aqua-ammonia, add 16 oz . soft water. This is not an instantaneous dye ; but, after exposure to the light and air, a dark color is produced upon the surface to which it is applied.
Professor Wood's.-To 8 oz. vinegar, diluted with an equal part of soft water; add 2 drs. sulphur, and 2 drs. sugar of lead.

To

$$
\text { If } \mathrm{d},
$$ edly Ai and

GL of an sugar nia, t for fo
Cr melt berga let it made almon Mad then t the oil red, th

Ox 6 oz .;
ByAR
Hair each, 1 are to table se oz. Tr hair, tu commo twice a hair. 1

Balm white b place ti neroli a

New $1 \frac{13}{2}$ pts.
Barb
cream
Fran
1 oz.; gal.; Jock
gal.; b of musk Mix.

Ladi essence
$\frac{1}{2} \mathrm{oz}$.;
Kiss
of orang
essence

Twigo's Hatr-Coloring.-Take 1 dr. lac sulphur, $\frac{1}{2}$ dr. sugar of If id, 4 oz. rose water; mix carefully. Apply to the hair repeatedly, till it assumes the desired shade.

Alpine Hair-Balm.-To 16 oz . of goft water add 8 oz . of alcohol and $\frac{1}{2} \mathrm{oz}$. spirits turpentine, $\ddagger \mathrm{oz}$. sulphur, and $\ddagger \mathrm{oz}$. sugar of lead.

Glyolrine Preparation.-New rum, 1 qt. ; concentrated syirits, of ammonia, 15 drops; glycerine oil, 1 oz. ; lac sulphur, $5 \frac{1}{2}$ drs.; sugar of lead, $5 \frac{1}{2}$ drs. ; put the liquor into a bottle, add the ammunia, then the other components. Shake the compound occasionally for four or five days.

Crystalline Cream.-Oil of almond, 8 oz. ; spermaceti, 1 oz . melt together. When a little cooled, add $\frac{1}{2} \mathrm{oz}$. or less of essence of bergamot or other perfume; put into wide-mouthed bottles, and let it stand tiil cold. Camphorated crystalline cream may be made by using camphorated oil (L. Champhoræ) instead of oil of almonds.

Magassar Oif.-Olive oil, 1 qt. ; alcohol, $2 \frac{1}{2}$ oz.; rose oil, $1 \frac{1}{2}$ oz.; then tie 1 oz . of chipped alkanet root in a muslin bag, and put it in the oil, let it alone for some days till it turns the color of a pretty red, then remove to other oils. Do not press it.

Ox Marrow.-Melt 4 oz. ox tallow; white wax, 1 oz. ; fresh lard, 6 oz . ; when cold add $1 \frac{1}{2} \mathrm{oz}$. oil of bergamot.

Bnak's Oil.-Use good sweet lard oil, 1 qt., oil bergamot, $1 \frac{1}{2}$ oz.
Hair Restorative.-Sugar of lead, borax and lac sulphur, of each, 1 oz ; aqua ammonia, $\frac{1}{2} \mathrm{Oz}$; alcohol 1 gill. These articles are to stand mixed for 14 hours; then add bay rum, 1 glll : fine table salt, 1 tablespoon; soft water, 3 pts.; essence of bergamot, 1 oz. This preparation gives a splendid glossy appearance to the hair, turns gray hair to a dark color, and restores the hair when common baldness sets in. When the bair is thin or bald, apply twice a day with a hard brush, working it into the roots of the hair. For gray hair once a day is sufficient.
Balm of a Thousand Flowers.-Degdorized alcohol, 1 pt. ; nice white bar soap, 4 oz ; shave the soap when put in, stand in a warm place till dissolved; then add oil of citronella, 1 dr ; and ouls of neroli and rosemary, of each $\frac{1}{2} d r$.

New York Barber's Star Hair Oil.-Castor oil $6 \frac{1}{2}$ pts. ; alcohol $1 \frac{1}{2}$ pts. ; citronella and lavender oil, each $\frac{1}{2}$ oz.

Barber's Shampco Mixture.-Soft water, 1 pt.; sal soda, $1 \mathrm{oz}$. ; cream tartar, \ddagger oz. Apply thoroughly to the hair.

Frangipanni.-Spirits, 1 gal.; oil bergamot, 1 oz.; oil of lemon, 1 oz . ; macerate for 4 days, frequently shaking; then add water, 1 gal. ; orange-flower water, 1 pint, essence of vanilla, 2 oz . Mix

Jooker Club.- Spirit of wine, 5 gal.; orange-flower water, 1 gal.; balsam of Peru, 4 oz. ; essence of bergamot, 8 oz . ; essence of musk, 8 oz. ; essence of cloves, 4 oz ; essence of nerol, 2 oz. Mix.

Ladies' Own.-Spirits of wine, 1 gal.; otto of roses, 20 drops; essence of thyme, $\frac{1}{2} \mathrm{oz}$. ; essence of neroli, $\frac{\downarrow}{} \mathrm{oz}$. ; essence of vanilla, $\frac{1}{2} \mathrm{oz}$.; essence of bergamot, $\frac{1}{4} \mathrm{oz}$; orange-flower water, 6 oz .

Kiss max Qctce.-Spirit, 1 gal.; essence of thyme, $\frac{1}{4}$ oz. ; essence of orange-flowers, 2 oz . ; essence neroli. $\frac{1}{2} \mathrm{oz}$.; otto of roses, 30 drops; essence of jasmine, 1 oz .; essence of balm mint $\frac{1}{2} \mathrm{oz}$ petals of
roses, 4 oz. ; oil lemon, 20 drops ; calorus aromaticus, $; \mathrm{oz}$. essence neroli, $\frac{\mathrm{t}}{\mathrm{oz}}$. Mix and strain.
Upper Ten.-Spirits of wine, 4 qts.; essence of cedrat, 2 drs.; essence of violets, \mathfrak{l} oz.; essence of neroli, $\frac{1}{}$ oz. ; otto of roses, 20 drops ; orange-flower essence, 1 oz.; oil of rosemary, 30 drops ; oils bergamot and neroli, each $\frac{1}{2}$ oz.
India Oholagogus.-Quinine, 20 grs ; peruvian bark, pulverized, 1 oz . j sulphuric acid, 15 drops, or 1 scruple of tartaric acid is best; brandy, 1 gill; water to make one pint; dose, 5 teaspoonfuls every 2 hours in the absence of fever, an excellent remedy.

Fribrifoas Wing.-Quinine, 25 grs.; water, 1 pint; eulphuric acid, 15 drops; epsom salts; 2 oz.; color with tincture of red sanders; dose, a wine glass 3 times per day. This is a world renowned medicine.

Barrmli's Indian-Liniment.-Alcohol, 1 qt. ; tincture of capsicum, 1 oz ; oil of origanum, sassafras, pennyroyal, and hemlock, of each $\frac{1}{2} \mathrm{oz}$. Mix.
Cod Liver Oir, as usually prepared, is nothing more or less than cod oil clarified, by which process it is in fact deprived in a great measure of its virtue. Ood oil can be purchased from any wholesale oil dealer for one thirtieth part of the price of cod liver oil as usually sold, and it is easy to clarify it. Dealers might turn this information to good account. To make it more palatable and digestible, put 1 oz . of fine table salt to each quart bottle.

Simple Remedigs for Scarlet Fever.-Open the bowels reguiarly every day, with some mild aperient medicine, such as castor oil, senna, etc., and keep the patient at rest, and comfortably warm ; sponge the surface with tepid water, two or three times a day; while it is hotter than natural, admit fresh air; live on a bland diet, such as a cupful of arrowroot, several times a day; toast-water for common drink. Gargle made of strong sage tea, honey and alum, or borax, may be used from the commencement, if the throat is affected.
Parigorio.-Best opium, $\frac{1}{2}$ dr., dissolve it in about 2 tablespoons of boiling water; then add benzoic acid, $\frac{1}{} \mathrm{dr}$; oil of anise, ia fluid dr. ; clarified boney, 1 oz. ; camphor gum, 1 scruple; alcohol, 76 per cent, 11 fluid oz. ; distilled water, 4 fluid oz. ; macerate (keep warm) for two weeks. Dosm-For children, 5 to 20 drops, adults, 1 to 2 teaspoons.

Oovar Syrup.-Put 1 qt. hoarhound tea; 1 qt. of water, and boil it down to 1 pt . a add 2 or 3 sticks licorice; 2 oz . syrup of squills, and a tablespoonful essence of lemon. Take a tablespoonful 3 times a day, or as the cough requires.

Covar Byrup.-Syrup of squills, 2 oz.; tartarized antimony $8 \mathrm{grs} . ;$ sulphate of morphine, 5 grs ; pulverized gum arabic, $\frac{1}{4} \mathrm{oz}$.; honey, 1 oz . ; water, 1 oz ., mix: dose for an adult 1 small teaspoonful, repeat in half an hour if it does not relieve: child in proportion.

Vegetably Substitutr for Calomel.-Jalap, 1 oz., senna, 2 oz. peppermint, 1 oz , (a little cinnamon if desired,) all pulverized and sifted through gauze. Dose, 1 teaspoonful put in a cup with 2 or 3 spoonfuls of hot water, and a good lump of white sugar; when cool, drink all; to be taken fasting in the morning; drink
freely, instead

Stal there i rance, aloud, each d

Cold the bea the nos

Came almond dissolv small n used fo

Imprif origanu anise, $\frac{1}{1}$ times a stant w gravell

Posit apple, $\frac{1}{1}$ best gu spoonfu

Celea phate of 20 drop require.

Fly keep the Swea of each, filter. hour un inflamm time.

Sprof without hops, 2 water 3 lbs. b cool pla at least

Сомм gals.

Pulam parts ; lactucar

Sir J of opiu drams ; in brani
freely, if it does not operate in 3 hours repeat $\frac{1}{2}$ the quantity, use instead of calomel.
Stammering.-Impediments in the speech may be cured, where there is no mal-formation of the organs of articulation, by perseverance, for three or four months, in the simple remedy of reading aloud, with the teeth closed, for at least 2 hours in the course of each day.

Cold in the Mean.-Dr. Pollion, of France, says that cold in the head can be cured by inhaling hartshorn. The inhalation by the nose should be seven or eight times in five minutes.

Camphor Ice.-Spermaceti, $1 \frac{1}{2}$ oz., gum camphor, $\frac{3}{4}$ oz., oil sweet almonds, 4 teaspoonfuls; set on the stove in an earthen dish till dissolved; heat just enough to dissolve it. While warm pour into small moulds, if desired to sell; then paper, and put into tinfoil; used for chaps on hands or lips.
Imprrial Drops for Grayel and Kidney Complaints.-Oil of origanum, 1 oz ., oil of hemlock, \ddagger oz., oil of sassafras, \ddagger oz., oil of anise, $\frac{1}{\frac{1}{2}}$ oz., alcohol, 1 pint: mix. Dose, from $\frac{1}{\frac{1}{2}}$ to 1 teaspoonful 3 times a day, in swectened water, will soon give relief when constant weakness is felt across the small of the back, as well as gravelly affections causing pain about the kidneys.

Posifive Cure for Gonorrieca.-Liquor of potass, $\frac{1}{2}$ oz., bitter apple, $\frac{1}{2} \mathrm{oz}$. spirits of sweet nitre, $\frac{1}{2}$ oz., balsam of copaiba, $\frac{1}{2}$ oz., best gum, $\frac{\mathrm{oz}}{}$. To use, mix with peppermint water; take $\frac{1}{2}$ teaspoonful 3 times per day: cure certain in 9 days.

Celebraten Pile Ointment.-Take carbonate of lead, $\frac{1}{2}$ oz., sulphate of morphia, 15 grs . ; stramonium ointment, 1 oz . ; olive oil, 20 drops. Mix, and apply 3 times per day, or as the pain may require.
Fly Paper.- Coat paper with turpentine varnish, and oil it to keep the varnish from drying.

Sweating Drops.-Ipecac., saffron, boneset, and camphor gum, of each, 3 oz .; opium, 1 oz., alcohol, 2 qts. Let stand 2 weeks and filter. A teaspoonful in a cup of hot sage or catnip tea every hour until free perspiration is induced; excellent in colds, fevers, inflammations, \&c. Bathe the feet in hot water at the same time.

Syrup for Consumptives.-Of tamarac bark, take from the tree without rossing, 1 peck ; spikenard root, $\frac{1}{2} \mathrm{lb}$; dandelion root, $\frac{1 \mathrm{lb} .}{}$; hops, 2 oz . Boil these sufficient to get the strength in 2 or 3 gals. water; strain, and boil down to 1 gal.; when blood warm, add 3 lbs. best honey, and 3 pints best brandy; bottle and keep in a cool place. Dose, drink freely of it 3 times per day before meals, at least a gill or more ; cure very certain.

Common Castor Oil.-Pale vegetable oil, 1 gal., castor oil, 3 gals. Mix.

Pulmonio Wafers.-Lump sugar, licorice, and starch, of each 2 parts; gum, 10 parts; squills and ipecacuanha, of each 5 parts; lactucarium, 2 parts. Mix, and divide into 8 -grain lozenges.

Sir James Clarke's Diarrigea and Cholera Mixture.-Tinct. of opium, tinct. of camphor, and spirits of turpentine, of each 3 drams; oil of peppermint, 30 drops; mix. Dose, 1 teaspoonful in brandy and water for diarrhoe; 1 tablespoonful for cholera.

Vegetable or Composition Powder.-Fine bayberry bark, 1 lb ., ginger 8 oz, common cayenne, 3 oz ., mix. Dose, 1 teaspoonful in a cup of boiling water, sweeten and add milk. The best powder on record.

Tinotures are made with 1 oz . of gum, root, or bark, \&c., dried, to each pint of proof spirits, and let it stand one week, and filter.

Essences are made with 1 ez . of any given oil, adjed to 1 pint alcohol. Peppermints are coloured with tisct. turneric, cinnamon with tinct. of red sanders, wintergreen with tiact. kino.

Substitute for Arbowroot.-Finest potato starch, 75 lbs. ; lump sugar, 8 lbs.; finely-ground rice, 21 lbs. Mix, and sift through. lawn ; yields 100 lbs . ezcellent arrowroot.

Certain Cure for Crodp.-Goose oil and urine equal parts. Dose, 1 teaspoonful. A certain cure if taken in time.

Corns and Warts. - Take a small quantity of the potash paste recommended for Poll Evil, and apply to the corn or wart.

Drdagist's Colors.- Yellow, take iron filings, hydrochloric acid to dissolve, dilute with cold water. Red, solution of sal ammoniac, cochineal to color. Blue, indigu 1 part, oil of vitriol, 2 parts, dissolve, then dilute with water. Green, verdigris, 1 part, acetic acid, 3 paris, dilute with water. Purple, cochineal, 25 grs ., sugar of lead ioz., dissolve.

Smeling Salts.-Sub-carbonate of ammonia, 8 parts; putitin coarse powder in a bottle, and pour on it oil of lavender, 1 part.

Tumbridge Wells Water.-Chloride of sodium, 5 grains; tinct. steel, 20 drops ; distilled water, $1 \frac{1}{2}$ pints.

Mineral Water.-Epsom salts, 1 oz. ; cream tartar, $\frac{1}{2}$ oz. ; tartíric acid, \ddagger oz.; loaf sugar, 1 lb .; oil of birch, 20 drops; put 1 qt. cold water on 2 tablespoonfuls yeast (winter green oil will do), let it work 2 hours and then bottle.

Genuine Seiditiz Powders.-Rochelle salts, 2 drs.; bicarb. soda, 2 scruples; put these into a blue paper, and put 35 grains tartaric acid into a white paper. To use, put each into different tumblers, fill $\frac{1}{2}$ with water, adding a little loaf sugar to the acid, then pour together and drink quick.

Bottled Seidlitz Watar.-Fill soda-water bottles with clear water; add to each as below; cork and wire immediately : Rochelle salts, 3 drops; bicarbonate of soda, 35 grs ; sulphuric acid, 11 drops

Excellent Tojth Powder.-Suds or Castile soap and spirits of ${ }^{-}$ camphor, of eash an equal quantity; thicken with equal quantities of pu!verized chalk and charcoal to a thick paste. Apply with the finger or brush.

Rat Exterminator.-Warm water, 1 qt.; lard, 2 lbs.; phosphorus, 1 oz . mix, and thicken with flour; to be spread on bread ord covered with sugar.

Bug Poison.-Alcohol, $\frac{7}{2}$ pint; turpentine, $\frac{1}{2}$ pint; crude sal ammoniac, 1 oz ; mix all together, and let it digest in a warm place for a few lays, and it is ready for use.

Madicated Cough Candy.-To 5 lbs. candy just ready to pour on the slab, add the following mixture, and torm it into sticks to correspond with the price asked for them : Tinct. squills, 2 oz. ; cam-
phorate ipecac. and of coughs

ATEI drs.; st laudan! way ws AGUE bonate into 20 chill sh taken.

Pills and my 100 pills

For tassa (s pills; 2 painful s.prup of and mor liquor of a day.

Stimu
-Best b of 2 cgg mix. D nakes b be used,

For female of hyose nix wel tion. D howels

ANOD s.nd sult 1 gr. ; m 40 to 5 time. F is not in

Powd 1 dr .; thoroug one eve trol the

Injec
is prese (often c large and occ of the f
y bark, 1 lb., aspoonful in best powder
r bark, \&c. le week, and
adred to 1 urrieric, cininct. kino.
75 lbs. ; lump sift through.
equal parts.
potash paste wart.
ochloric acid 1 ammoniac, 2 parts, dis; acetic acid, rs., sugar of
rts ; put it in nder, 1 part. rains ; tinct.
$\frac{1}{2} \mathrm{oz}$. ; tart c_{i} ps; put lqt. pil will do),
rs. ; bicarb. at 35 grains to different to the acid,

3 with clear diately : Rophuric acid,
nd spirits of ual quantiApply with
phosphorus, bread erd
ude sal amwarm place
ady to pour to sticks to 2 oz. ; cam-
phorated tinct. of opium and tinct. of tolu, of each $\frac{1}{2} o z$. ; wine of ipecac., $\frac{1}{2}$ oz.; oils of. gaultheria, 4 drops; sassafras, 3 drops; and of anise seed oil, 2 drops, and use this. freely in common coughs.

Atkinson's Infants' Preservative,-Carbonate of magnesia, 6 drs.; sugar, 2 oz . ; oil of anise عeed, 20 drops; sal-volatile, $2 \frac{1}{2}$ drs.; laudanum, 1 dr .; syrup of saffros: 1 oz . Make up 1 pint with carraway water.

Aaut Pill.-Quinine, 20 grs.; Dover's powders, 10 grs. ; sub-carbonate of iron, 10 grs .; mix with mucilage of gum arabic and form into 20 pills. Dose, 2 each hour, commencing 5 hours before the chill should set in. Then take l night and morning until all are taken.

Pills to fromote Menstridal Seoretion.-Take pills of aloés and myrrh, 4 drs. ; conpound iron pills, 280 grs ; mix and form into 100 pills. Dose, 2 twice a day.

For Obstructed Menstruation.-Sulphate of iron, 60 grs.; potassa (sub carb.) 60 grs.; myrrh, 2 drs. ; make them into $3 \frac{1}{2} \mathrm{gr}$. pills; 2 to be taken three times a day, in the absence of fever. For painful menstruation, take pulv. rhei., 2 drs. ; pulv. jalap, 2 dr ; s.prup of of poppies to mix. Divide into 200 pills, and take night and morning. To check immoderate low-Tinct. of ergot, 1 oz , liquor of ammunia, 3 drs.; mix. Dose, teaspoonful in water 3 times a day.

Stimolaň.-In Low Fevers, and After Uterine Hemorrhages. -Best brandy and cinnamon water, of each, 4 fluid oz.; the yolks of 2 oggs , well beaten ; loaf sugar, $\frac{1}{2} \mathrm{oz}$; oil of cinnamon, 2 drops; inix. Dose, From $\frac{1}{2}$ to 1 (fluid) oz., as often as reṇuired. This nakes both meat and drink. Of course, auy other flavoring oils can be used, if preferred, in place of the cinnamon.

For Frmale Complaints.-One of the best laxative pills for female complaints is macrotin and rhubarb, each 10 grs . ; extract of hyoscyamus 10 grs. ; Castile soap, 40 grs.; scrape the soap, and rnix well together, forming into common sized pills with gum solution. Dose, 1 pill at bed time, or sufficiently often to keep the howels in a laxative state.

Anodyna for Painful Menstruation.-Extract of stramonium s.nd sulphate of quinine, each 16 grs ; macrotin, 8 grs ; morphine, 1 gr ; make into 8 pills. Duse, 1 pill, repeating once or twice only, 40 to 50 minutes apart, if the pain does not subside before this time. Pain must subside under the use of this pill, and costiveness is not increased.

Powder for Excessive Flooding.-Gums kino and catechu, each 1 dr.; sugar of lead and alum, each $\frac{1}{2}$ dr. ; pulverize all and thoroughly mix, then divide into 7 to 10 grain powders. Dose, one every 2 or 3 hours until checked, thenless often merely to control the flow.

Injeotion for Leucorrhaia.-When the glairy múcus discharge is present, prepare a tea of bemlock inner bark and witch hazel (often called spotted alder) leaves and bark, have a female syringe large enough to fill the vagina, and inject the tea, twice daily; and occasionally in bad cases, say twice a week, inject a syringe of the following composition:

For ${ }^{\circ}$ Chronic Female Complaints.-White vitriol and sugar of lead, each, $\frac{1}{8}$ oz.; common salt, pulverized alum, and loaf sugar, each, $\frac{1}{2}$ dr. ; soft water, 1 pt . Inject as above.

For Prelapsus uteri, or Falling of the Womb.-Not only the cheapest but the best support will be found to be a piece of fine firm sponge, cut to a proper size, to admit when damp of being pressed up the vagina to hold the womb in its place. The sponge should have a stout piece of small cord sewed 2 or 3 times through its centre, up and down, and left sufficiently long to allow its being taken hold of to remove the sponge, once a day, or every other day at the farthest, for the purpose of washing, cleaning, and using the necessary injections; and this must be done while the patient is lying down, to prevent the womb from again falling or prolapsing. After having injected some of the above tea, wet the sponge in the same, and introduce it sufficiently high to hold the womb in its place. If pain is felt about the head, back, or loins for a few days before the menses appear, prepare and use the following :

Emmenagogue Tincture.-Alcohol, 1 pt ; red oxide of iron, 1 oz.; oils of juniper and savin, each $\frac{1}{4} \mathrm{oz}$.; oil of tansey, 1 dr .; tincture of ergot, 3 drs . ; tincture Spanish flies, $\frac{1}{2} \mathrm{oz} . ;$ mix all, and shake when taken. Dose, 1 teaspoon 3 times daily, to be taken in musilage of slippery elm or gum arabic, and drink freely of the muclage also through the day, or use the following:

Emmenagogue Pill.-Precipitated carbonate of iron and gum myrrh, of each 2 drs.; aloes and tincture of Spanish flies, of each 1 dr . ; and oil of savin, 1 dr ; all to be pulverized, and made into 100 pills by using thick gum solution. Dose, 1 pill, from 1 to 3 times daily, but not to move the bowels too much.

Uterine Hemorrhages.-Unfailing cure. Sugar of lead, 10 grs.; ergot, 10 grs.; opium, 3 grs.; ipecac., 1 gr.; all pulverized and well mixed. Dose, 10 to 12 grs. ; given in a little honey or syrup.

In very bud cases after childbirth, it might be repeated in 30 minutes, or the dose increased to 15 or 18 grs. ; but in cases of rather profuse wasting, repeat it once at the end of 3 hours, or as the urgency of the case may require.

In every case of female debility make a liberal use of iron, as the want of iron in the system is often the cause of the trouble. Mix fine iron filings with as much ground ginger. Dose, half of a teaspoon 3 times daily in a little honey or molasses, increasing or lessening the dose to produce .oblackness of the stools. Continue this course until well.

Nerve and Bone Liniment.-Beef's gall. 1 qt. ; alcohol, 1 pt. ; volatile liniment, $1 \mathrm{lb} . ;$ spts. of turpentine, 1 lb .; oil origanum, 4 oz .; aqua ammonia, 4 oz; tincturc of cayenne, $\frac{1}{2} \mathrm{pt}$. ; cil of amber, 3 oz. ; tincture Spanish flies, Coz ; mix well.

Cephalic- Snufy.-Take asarabacca leaves, marjoram, light Scotch snuff, equal parts; grind them and sift, use like common snuff.

Downen.' Salve.--Bceswax, 4 oz. ; opium, \ddagger oz. ; sugar of lead, i oz.; melt the beeswax, and rub the lead up in the wax, then the opium, then 1 gill of sweet oil, incorporate all thoroughly together, spread lightly on cloth; good for burns, piles; \&c.

Anc and r 1 gill,
WH_{H} honey spoun water

Lie phor, each $\frac{1}{2}$ $6 \mathrm{oz} . \mathrm{s}$

Gre
back
wax, warm,
1 oz ;
worm
pulver
in col
long,
Eng
root p1
paste larger
it a lit
narrow
keep it
burned
outside
Dress
then h
Chrt
all the
with a
$\& c$. , by 15 min period show t

Gou
opium, 15 to 3 vals of Par. laudan ln a re surfac for sev the sal sweete organ.

Cha
spoon
will,
and sugar of d loaf sugar,

Not only the piece of fine imp of being The sponge imes through to allow its lay, or every cleaning, and ne while the ain falling or tea, wet the to hold the ack, or loins 1 use the fol-
le of iron, 1 ansey, 1 dr. ; mix all, and be taken in freely of the
on and gum flies, of each d made into , from 1 to 3
lead, 10 grs.; verized and ey or syrup. eated in 30 cases of rahours, or as
iron, as the ouble. Mix alf of a teacreasing or

Continue
pl, 1 pt.; vonum, 4 oz.; of amber, 3
ram, light ke common
yar of lead, x, then the oughly toc.

Another Salve.-Burgundy pitch; beeswax, white pine pitch, and rosin, 1 oz . each, mutton tallow, 8 oz ; goose oil, 1 gill, tar, 1 gill, melt and mix thoroughly. A first-rate salve.

Whooping Cough Syrur.-Best rum, 1 pt.; anise oil, 2 ozs.; honey, 1 pt .; lemon juice, 4 oz ., mix. Dose for adults, 1 tablespoonful, 3 or 4 times per day; children 1 teaspoon, with sugar and water.

Liquid Opodeldoc.-Warm brandy, 1 qt.; add to it gum camphor, 1 oz. ; sal ammoniac, $\ddagger \mathrm{oz}$.; oils of originum and rosemary, each $\frac{1}{2}$ oz.; oil wormwood, $\frac{1}{4} \mathrm{oz}$.; when the oils are dissolved, add 6 oz . soft soap.

Green Mountain Salve.-For sheumatism, burns, pains in the back or side, \&c., take 2 lbs . rosin burgundy pitch, $\frac{1}{4}$ lb. ; beeswax, $\frac{1}{4} \mathrm{lb}$. mutton tallow, $\frac{1}{4} \mathrm{lb}$. ; melt slowly; when not too warm, add oil hemlock, 1 oz. ; balsam fir, 1 oz ; oil of origanum, 1 oz . ; oil of red cedar, 1 oz ; Venice turpentine, 1 oz ; ; oil of wormwood, 1 oz . verdigris, $\frac{1}{2} \mathrm{oz}$. The verdigris must be finely pulverized and mixed with the oils; then add as above, and work in cold water like wax till cold enough to roll ; rolls 5 inches long, linch diameter, sell for 25 cents.

English Remedy for Cancer.-Take chloride of zinc, bloodroot pulverized, and flour, equal quantities of each, worked into a paste and applied. First spread a common sticking plaster much larger than the cancer, eutting a circular piece from the centre of it a little larger than the cancer, applying it, which exposes a narrow rim of healthy skin ; then apply the cancer plaster, and keepit on 24 hours. On removing it, the cancer will be found to be burned into, and appears the color of an old shoe-sole, and the rim outside will appear white and parboiled, as if burned by steam. Dress with slippery elm poultice until suppuration takes place, then heal with any common salve.

Chronic Gout-To Cure.-Take hot vinegar, and put into it all the table salt which it will dissolve, and bathe the parts affected with a soft piece of flannel. Rub in with the hand, and dry the foot, \&c., by the fire. Repeat this operation four times in the 24 hours, 15 minutes each time, for four days ; then twice a day for the same period; then once, and follow this rule whenever the symptoms show themselves at any fature time.

Gout Tincture.-Veratrum viride (swamp hellebore), $\frac{1}{2}$ oz.; opium, $\frac{1}{4} \mathrm{oz}$. ; wine, $\frac{1}{2} \mathrm{pt}$. let them stand for several days. Dose, 15 to 30 drops, according to the robustness of the patient, at intervals of 2 to 4 hours.

Paralytic Liniment.-Sulphuric ether, 6 oz ; alcohol, 2 oz ; laudanum, 1 oz . ; oil of lavender, $1 \mathrm{oz} . ;$ mix, and cork tightly. In a recent case of paralysis let the whole extent of the numb surface be thoroughly bathed and rubbed with this preparation, for several minutes, using the hand, at least three times daily; at the same time take internally, 20 drops of the same, in a lit-le sweetened water, to prevent translation upon some internal organ.

Charcoal a Cupq for Sick Headache. - It is stated that 2 tea spoons of finely powdered charcoal, drank in $\frac{1}{2}$ a tumbler of water will, in less than fifteen miqutes, give relief to the sick headache,
when caused, as in most cases it is, by sunerabundance of acid on the stomach. We have frequently tried this remedy, and its efticacy in every instance has been signally satisfactory.
-Cathartic Syrup.-Best senna leaf, 1 oz .; butternut, the inner bark of the root, dried and bruised, 2 oz .; peppermint leaf, $\frac{1}{2} \mathrm{oz}$; feinnel seed, $\frac{1}{2}$ oz.; alcohol, $\frac{1}{2}$ pt. ; water, $1 \frac{1}{2}$ pts. ; sugar, 2 lbs .; put all into the spirit and water, except the sugar, and let it stand two weeks, then struin, pressing out from the dregs, adding the sugar and simmering a few minutes only, to form the syrup. If it should cause griping in any case, increase the fennel seed and peppermint leaf. Dose, 1 tablespoon, once a day, or less often if the bowels become too loose, up to the next period when the beadache might have been expected, and it will not be forthcoming.

Chilbialns.-To Cure.-Mutton tallow and lard, of each $\frac{1}{4} \mathrm{lb}$.; mélt in an iron vessel, and add hydrated, oxy** of iron, 2 oz .; sturring continually with an iron spoon, until $1: \frac{7}{}$ mass is of a uniform black color; then let it cool, and add Vc..ice turpentine, 2 oz .; Armenian bole, 1 oz . ; oil of bergamot, 1 dr .; rub up the bole with a little olive oil before putting it in.

Felons.-lf Recent, to Cure in Six Hours.-Venice turpentine, 1 oz ; and put into it half a teaspoon of water, and stir with a rough stick until the mass looks like candied honey; then spread a good coat on a cloth, and wrap around the finger. If the caso is only recent, it will remove the pain in six hours.

Flelon Salve.-A salve made by burning one tablespoon of copperas, then pulverizing it and mixing it with the yolk of an egg, is said to relieve the pain, and cure the felon in 24 hours; then heal with cream two parts, and soft soap one part. Apply the healing salve daiiy after soaking the part in warm water.

Felon Ointment.-Take sweet oil, $\frac{1}{2}$ pt., and stew a 3 -cent plug of tobacco in it until the tobacco is crisped; then squeeze it out, and add red lead, 1 oz . ; and boil until black; when a little cool, add pulverized camphor gim, 1 oz .

Warts and Corns.-To Cure in Ten Minutes.-Take a small piece of potash, and let it stand in the open air until it slacks, then thicken it to a paste with pulverized gum arabic, which prevents it from spreading where it is not wanted.

Griman Rheumatic Fluid.-Oils of hemlock and cedar, of each $\frac{1}{2}$ oz., oils of origanum and sassafras, each 1 oz .; aqua ammonia, $1 \mathrm{oz} . ;$ capsicum pulverized, 1 oz ; spirits of turpentine and gum. camphor, each $\frac{1}{2} \mathrm{oz}$.; put all into a quart bottle, and fill with 95 per cent alcohol.

Dose, for colic, for man, half a teaspoonful ; for Ω horse, $\frac{1}{2}$ to 1 oz ., in a little warm water, every 15 minutes, till relieved.

Liniment for Old Sores.-Alc.shol, 1 qt. ; aqua ammonia, 4 oz ; oul of orıganum, 2 oz ; camphor gum, 2 oz ; opium, 2 oz . ; gum myrrh, 2 oz. ; cummon salt, two tablespoons. Mix, and shake occasionally for a weck.

Liniment.-Good Samaritan.-Take 98 per ef it. alcohol, 2 qts.; and add to it the following articles: Oils of sassafras, hemlock, sprits of irpentine, tincture of cayenne, catechu, guaiac (gunc), and laudanum, of each, 1 oz . ; tincture of myrrh, 4 oz ; oil of origaแum, 2 cz ; il of vintergreen, $\frac{1}{2} \mathrm{oz}$.; gum camphor. 2 oz ; and
chlor
pains work

Coo
amber
beef's
occasi
a stro
LoN
nia, o
'inime
of acid on its efficacy
the inner leaf, $\frac{1}{2} \mathrm{oz}$. 2 lbs.; put stand two the sugar f it should Id pepperften if the headache
ach $\frac{1}{4} \mathrm{lb}$.; on, 2 oz ; ss is of a urpentine, ub up the
urpentine, tir with a en spread the case
spoon of of an egg, irs ; then pply the
a 3-cent queeze it a little
a small t slacks, ich pre-
of each mmonia, nd gmon with 95
to 1 oz .,
, 4 oz ; ; gum e occa-

2 qts. ; mlock, (gunc), foriga2. ; and
chloroform, $1 \frac{1}{2} \mathrm{oz}$. This is one of the best applications for internal pains known : it is superior to any other enumerated in this work,

Cook's Electro-Magnetic Liniment.-Best alcohol, 1 gal. ; oil of amber, $8 \mathrm{oz} . ;$ gum camphor, 8 oz ; Castile soap, shaved fine, 2 oz .; beef's gall, 4 oz . ; ammonia, 3 F .'s atrong, $12 \mathrm{oz} . ;$ mix, and shake occasionally for 12 hours, and it is fit for use. This will be found a strong and valuable liniment.

London Liniment.-Take chloroform, olive oil, and aqua ammonia, of each 1 oz ; acetate of morphia, 10 grs . Mix and use as other 'iniments. Very valuable.

Ointments.-For Old Sores.-Red precipitate; $\frac{1}{2}$ oz.; sugar of lead, $\frac{1}{\frac{1}{2}} \mathrm{oz}$. ; burnt alum, 1 oz .; white vitriol, 4 oz.; or a littie less; all to be very finely puirerized; have mutton tallow made warm, $\frac{1}{2} \mathrm{lb}$.; stir all in, and stir until cool.

Judinn's Ointment.-Linseed oil, 1 pt. ; sweet oil, 1 oz. ; and boil them in a kettle on coals for nearly 4 hours, as warm as you can; then have pulverized and mized borax, $\frac{1}{2}$ oz. ; res. lead, 4 oz . and sugar of lead, $1 \frac{1}{2}$ oz.; remove the kettle from the fire, and thicken in the powder; continue the stirring until cooled to blood heat, then stir in 1 oz. r spirits of turpentine ; and now take out a little, letting it get cold, and if not then sufficiently thick to spread upon thin soft linen as a salve, you will boil again until this point is reached. It is good for all kinds of wounds, bruises, sores, burns, White swellings, rheumatisms, ulcers, sore breasts; and even where there are wounds on the inside, it has been used with advantage. by applying a plaster over the part.

Green Ointment.-Honey and bees'-wax, each $\frac{1}{2}$ lb.; spirits of turpentine, 1 oz .; wintergreen oil and laudanum, each 2 oz .; verdigris, finely pulverized, $\frac{1}{4} \mathrm{oz}$. ; lard, $1 \frac{1}{2} \mathrm{lb}$. ; mix by a stove fire, in a copper kettle, heating slowly.

Mead's Salt-Rheum Ointment.-Aquafortis, 1 oz.; quicksilver, 1 oz . good hard somp, dissclved so as to mix readily, 1 oz ; prepared chalk, 1 oz . ; mixed with 1 lb . of lard ; incorporate the abovs by putting the aquafortis and quicksilver into an earthen vessel, and when done effervescing, mix with the other ingredients, putting the chalk in last ; add a little spirits of turpentine, say $\frac{1}{2}$ tablespoon.

Itch Ointment.-Unsalted butter, 1 lb ; burgundy pitch, $2 \mathrm{oz}$. ; spirits of turpentine, 2 oz. red precipitate, pulverized, 14 oz ; melt the pitch and add thoobutter, stirring well together; then remove from the fire, and when a little cool add the spirits of turpentine, and lastly the precipitate, and stir until cold.

Magnetio Ointment.-Said to bi Trask's.-Hard raisins cut in pieces, and fine-cut tobacco, equal weights; simmer well together, then strain, and press out all from the dregs.

Jajndice.-In its Worst Forms.-Red iodide of mercury, 7 grs. iodide of potassium, 9 grs ; aqua dis. (distilled water) 1 oz. ; mix. Commence by giving 6 drops 3 or 4 times a day, increasing 1 drop a day until 12 or 15 drops are given at a dose. Give in a little water, immediately after meals. If it causes a griping sensation in the bowels, and fulness in the head, when you get up to 12 or 15 drops, go back to 6 drops, and up again as before.

Inflammatory Rhedmatism.-Sulphur and saltpetre; of each 1 oz.; gum guaisc, $\frac{1}{8}$ oz. ; colchicum root, or seed, and nutmegs, of each $\frac{1}{女}$ oz. ; all to be pulverized and mixed with simple syrup, or molasses, 2 oz . Dose, one teaspoon every 2 hours until it moves the bowels rather freely; then 3 or 4 times daily until cured.

Remgiy por Rheumatism and Stiff Jonnts.-Strong camphor spirits, 1 pt. ; neat's-foot, coon, bear, or skunk's oil, i ptr ; spirits of
 daily, by pouring on a little at a time, and rubbing in all you'can for 20 os 30 minutes.

Astama Remidies.-Elecampane, angelica, comfrey, and spikenard foots with hoarhound tops, of each 1 oz . ; bruise and steep in honey, 1 pt. Dase, a tablespoon, taken hot every few minutes, until relief is obtained, then several times daily until a cure is effected.

Another.-Oil of tar, 1 dr .; tincture of veratrum viride, 2 drs ; simple syrup, 2 drs.; mix. Dose, for adults, 15 drops 3 or 4 times daily. Iqdide of potassium has cured a bad case of asthma by taking 5 gr. doses 3 times daily. Take $\frac{1}{8} \mathrm{oz}$. and put it into a phial, and add 32 teaspoons of water; then 1 teaspoon of it will contain the 5 grs., which put into $\frac{1}{2}$ gill more water, and drink before meals.
Composixion Powder-Thompson's.-Bayberry bark, 2 lbs.; hemlock bark, 1 lb. ; ginger root, 1 lb . ; cayenne pepper, 2 oz . , cloves, 2 oz.; all finely pulverized and well mixed. Dose, $\frac{1}{2}$ a teaspoon of i, and a spoon of sugar ; put them into a tea-cup, and pour it balf full of boiling water; letit stand a few minutes, and fill the cup with milk, and drink freely. If no milk is to be obtained, fill up the oup with hot water.
French Remedy for Chronio Rhedmatism.-Dr. Bonnet, of Graulbet, France, states in a letter to the "Abeille Medicale," that he has been long in the habit of prescribing " the essential oil of turpentine by friction for rheumatism; and that he has used it himseif with perfect success, having almost instantaneously got rid of rheumatic pains in both knees and in the left shoulder."

Diuretics-Pills, Drops, Decoction, \&c.--Solidified copaiba, 2 parts ; alcoholic extract of cubebs, 1 part ; formed into pills with a little oil of juniper. Dose, 1 or 2 pills 3 or 4 times daily. This pill hos been found very valuable in affections of the kidneys, bladder, and urethra, as inflammation from gravel, gonorrhœa, gleet, whites, leteorrhea, commpn inflammations, \&c." For giving them a sugar coat, see that heading, if desired.

Dioretio Drops.-Oil of cubebs, $\frac{\ddagger}{4} 0 \mathrm{oz}$. sweet spirits of nitre, $\frac{1}{2}$ oz . ; balsam of copaiba, 1 oz . ; Harlem oil, 1 bottle ; oil of lavender, 20 drops ; spirits, of turpentine, 20 drops; mix. Dose, 10 to 25 drops, as the stomach will bear, three times daily.

It may be used in any of the above diseases with great satisfaction.

Diuretio Tincture.-Green or growing spearmint mashed, put into a bottle, and covered with gin, is an excellent diuretic.

Diuretic for Chlidren.-Spirits of nitre-a few drops in a little spearmint tea-is all sufficient. For very young children, pumpkin-secd, or water-melon seed toa is perhaps the best.
dan
1 d
chld
and
C
Gov
adm
the
atta
of t
N
nitre
that
the
also
with piece brow

To
silk
and
will a rap exert prod but depre

CH
suga
the it
stick
BL
Prus:
and
RE
[digi
wate
porti
this
ing
Th
Ar
of m
wine
bark.
RA
tinct
R_{A}
and
Ay
extra
jello
potas
of each 1 autmegs, of e syrup, or il it moves ured.
g camphor ; spirits of ply 3 times all you'can
and spikead steep in N minutes, l a cure is de, 2 drs. ; or 4 times asthma by to a phial, ill contain ink before
lbs. ; hem, cloves, 2 , teaspoon nd pour it fill the cup ed, fill up
of Graulhat he has urpentine t himself ot rid of opaiba, 2 lls with a This pill bladder, t, whites, a sugar
nitre, $\frac{7}{2}$ a vender, 10 to 25
satisfac-
hed, put c.
a little hildren,

DRUGGIST'S RECEIPTS.
54a
Magnetic Pain Killer, for Tootrader and Acote Pain.-Laudanum 1 dr . gum camphor 4 drs . oil of cloves $\frac{1}{2} \mathrm{dr}$. oil of lavender 1 dr . add then to 1 oz . alcohol, 6 drs. sulphuric ether, and 5 fluid drs. chloroform. Apply with lint, or for toothache rub on the gums, and upon the face against the teeth.
Cure for Snake Bites. - The Inspector of Police in the Bengal Gorernment reports that of 939 cases in which ammonia was freely administered 702 victims have recovered, and in the cured instances the remedy was not administered till about $3 \frac{1}{2}$ hours after the attack, on the average of the fatal cases the corresponding duration of time was $4 \frac{1}{2}$ hours.

Nitrous Oxide, or Laughing Gas.-Take two or three ounces of nitrate of ammonia in crystals and put it iuto a retort, taking care that the heat does not exceed 500°; when the crystals begin to melt, the gas will be produced in considerable quantities. The gas may also be procured, though not so pure, by pouring nitric acid, diluted with five or six times its weight of water, on copper filings or small pieces of tin. The gas is given out till the acid begius to turn brown; the process must then be stopped.
To Inhale tee Laugeing Gas.-Procure an oiled or varnished silk bag, or a bladder, furnished with a stop-cock into the mouth and at the same time hold the nostrils, and the sensation produced will be of a bighly pleasing nature; a great propensity to laughter, a rapid flow of vivid ideas, and an unusual fitness for muscular exertion, are the ordinary feeling which it produces. The sensation, produced by breathing this gas, are not the same in all persons, but they are an agreeable nature, and not followed by any depression of spirits like those occasioned by fermented liquors.

Chewing Gust-Take of prepared balsam of tolu, 2 oz . White sugar 1 oz . oatmeal 3 ozs. soften the gum in a water bath and mix in the ingredients; then roll in finely-powdered sugar or flour to form sticks to suit.

Blaok Stencil Ink.-Triturate together 1 pt. pine soot and 2 pts Prussian blue with a little glycerine, then add 3 pts. gum arabic and sufficient glycerine to form a thin paste.

Remedy for Small Pox.-Sulphate of zinc 1 gr . foxglove [digitalis, 11 gr . sugar $\frac{1}{2}$ teaspoonful, mix with 2 teaspoonfuls of water, add 4 oz . of water, dose 1 spoonful every hour, child in proportion. From experience it is known that nothing will break up this frightful disease sooaer than continued and persevering bathing with the water at a comfortable temperature. See page 254.

The four following receipts are said to be genuine.
Ayer's Wild Gherry Expectorant.-Mix together 3 grs. acetate of morphia, 2 fluid drs. tinct blood-root, 3 fluid drs. each antimonial wine and ipecacuanha wine, and 3 fluid ozs. syrup of wild cherry bark. Dose 1 teaspoonful in catarrh, bronchitis, and influenza.

Radway's Ready Relief.-According to Peckolt, is an ethereal tincture of capsicum, with alcohol and camphor.
Radway's Renovating Resolfent.-A vinous tincture of ginger and cardamom, sweetened with sugar.
Ayer's Sarsaparilla.-Take 3 fluid ozs. each of alcohol, fluid extracts of sarsparilla and of stillingia; 2 fluid ozs. eash, extract of yellow-dock and of podophyllin, 1 oz. sugar, 90 grs., iodide of potassium, and 10 grs . iodide of iron.

Ingalation of Tar for Consomption.-Mix together 16 ozs. of liquid tar and 1 fluid oz. liquor of potassa, boil them for a few minutes in the open air, then let it simmer in an iron vessel orer a spirit or other lamp in the chamber of the patient. This may at first excite a disposition to cough, but in a short time it allays it, and removes any tendency to it.

Cancer Curm.-Drink a tea made from the tops of red clover; about 1 qt . per day should be taken internally, and the tea should be used as a wash twice per day; very strongly recommended.

Taylor's Remedy yor Deafness.-Digest 2 ozs. bruised garlic in 1 lb . oil of almonds for a week and strain. A drop poured into the ear is effective in temporary deafness.

Core for Earacue.-Take equal parts of chloroform and laudanum, dip a piece of cotton into the mixture and introduce into the ear, and cover up and get to sleep as soon as possible.

Ottawa Root Beer.-Take, 1 oz . each of sassafras, allspice yellow-dock and winter green; $\frac{1}{2}$ oz. each wild cherry bark and coriander; $\ddagger \mathrm{oz}$. hops and 3 qts. molasses. Pour sufficient boiling water on the ingredients and let them stand 24 hours, filter the liquor and add $\frac{1}{2}$ pt. yeast, and it is ready for use in 24 hours,

To Extract Essential Oil from Wood, Bapks, Roots Herbs, \&c. -Take balm, mint, sage, or any other herb, \&e., put it into a bottle, and pour upon it a spoonful of ether; keep in a cool place a few hours, fand then fill the bottle with cold water; the essential oil will swim upon the surface and may be easily separated.

Fumigating Paper.-Dip light paper in a solution of alum, strength of alum 1 oz . water 1 pt. Dry thoroughly and on one side spread a mixture of equal parts of gum benzoin, oilbanum, or Peruviau balsam, melt the gums in an earthenware dish and spread with a hot spatula, slips of the paper are held over a light when the odorous matter will be evaporated, the alum preventiug the paper from igniting.
Transparent Cement for Glass.-Dissolve 1 part Indian rubber in chloroform, and add 16 parts by measure of gum mastic in powder. Digest for 2 days, shaking the bottle frequently, apply with a fine camel's hair brush.
Mouth Wash.-Proof spirits 1 qt. borax and honey, of each 1 oz . gum myrrh 1 oz. red sanders wood 1 oz. Rub the honey and borax well together in a mortar, then gradually add the spirit, the myrrh and sanders wood and macerate 14 days.

Camphor Soaps.-Curd soap 28 lbs , otto of rosemary $1 \frac{1}{4} \mathrm{lbs}$. Reduce the camphor to powder, add one ounce almond vil then sift it, when the soap is melted and ready to turn out, add the camphor and rosemary

White Windsor Soap.-Curd soap 1 cwt. marine soap 21 lbs. oil soap 14 lbs , oil caraway, $1 \frac{1}{2} \mathrm{lbs}$. oil thyme and rosemary of each $\frac{1}{2} \mathrm{lb}$. oils ct cassia and cloves of each $\frac{1}{4} \mathrm{lb}$.
Brown Windsor Soap.-Curd soap $\frac{3}{4}$ cwt. marine soap $\frac{1}{4} \mathrm{cwt}$. yellow soap $\frac{1}{4} \mathrm{cwt}$ oil soap, $\frac{1}{4} \mathrm{cwt}$. Brown coloring (caramel) $\frac{1}{2} \mathrm{pt}$. oils caraway, cloves, thyme, cassia, pctit grain and French lavender of each 2 oz ,
Sand Soap.-Curd soap 7 lbs. marine soap 7 lbs. sifted silver soap 28 lbs , vils thyme, cassia caraway and French lavender of each 2 oz

Drc
elder root,
prick
root Pour 12 ho and st all the
Dro 20 grs . sorp, all fine a thic tragac days f evacus This is work.
Live grs. ea all are using anise o at bedrequire
Irrit lb. ; bu oz. Bo from th root, po Pills dry, otb it a she starch, very tin before r or box, having shakin. of powd smooth.
If you the pills moisten: soon as
Posit pulveriz with 20 9 equal one of nearly h drink it

Dropst.-Syrup and Pillg.-Queen-of-the-meadow root dwarfelder Howers, berries, or inner bark, juniper berries, horse-radish root, pod milkweed, or silkweed, often called, root of each, 4 oz .; prickly-ash bark or berries, mandrake root, bittersweet bark, of the root of eaoh, 2 oz .; white-mustard seed, $1 \mathrm{oz} . ;$ Holland gin, 1 pt . Pour boiling water upon all except the gin, and keep hot for 12 hours; then boil and pour off twice, and boil down to 3 qts., and strain, adding 3 lbs. of sugar, and lastly the gin. Dose, take all the stomach will bear, say a wine glass a day, or more.
Dropgy Pishs.-Jalap, 50 grs.; gamboge, 30 grs.; podophyllin, 20 grs . ; elatarium, 12 grs ; aloes, 30 grs ; cayenne, 35 grs ; Castile soap, shaved and pulverized, 20 grs ; croton oil, 90 drops; powder all finely, and mix thoroughly; then form into pill mass, by using a thick mucilage made of equal parts of gum arabic and gum tragacanth, and divide in three-grain pills. Dose, 1 pill every 2 days for the first week; then every 3 or 4 days, until the water is evacuated by the combined aid of the pill with the alum syrup. This is a powerful medicine, and will thoroughly accomplish its work.
Liver Pill.-Leptandrin, 40 grs ; podophyllin and cayenne, 30 grs. each; sanguinarin, iridin, and ipecac., 15 grs. each; see that all are pulverized and well-mixed; then form into pill mass by using $\frac{1}{2} \mathrm{dr}$. of the soft exfract of mandralre and a few drops of anise oll, then roll out into three-grain pills. Dose, 2 pills taken at bed-time will generally operate by morning; but some personsi require 3.

Irritating Plaster.-Extensively Used by Eclectics.-Tar, 1 lb. ; burgundy pitch, $\frac{1}{2} \mathrm{oz}$. ; white-pine turpentine, $1 \mathrm{oz}$. ; resin, 2 oz. Boil the tar, resin, and gum together a short time, remove from the fire, and stir in finely pulverized mandrake root, blood root, poke root, and Indian turnip, of each, 1 oz .
Pills.-To Sugar Coat.-Pills to be sugar coated must be very dry, otherwise they will shrink away from the coating, and leare it a shell easily crushed off. When they are dry, you will take starch, gum arabic, and white sugar, equal parts, rubbing them very tine in a marble mortar, and if damp, they must be dried before rubbing together; then put the powder into a suitable pan, or box, for shaking; now put a few pills into a small tin box having a cover, and pour on to them just a little simple syrup, shakin. well to moisten the surface only; then throw into the box of powder, and keep in motion until completely coated, dry, and smooth.
If you are not very careful, you will get too much syrup upon the pills; if you do, put in more, and be quick about it to prevent moistening the pill too much, getting them into the powder as soon as possible.
Positive Cure for Hydrophobia.-The dried root of elecampane, pulverize it, and measure out 9 heaping ftablespoonfuls, and mix it with 2 or 3 teaspoonfuls of pulverized gum arabic ; then divide into 9 equal portions. When a person is bitten by a rabid animal, take one of these portions, and steep it in 1 pt. of new mill,, until nearly half the quantity of milk is evaporated; then strain, and drink it in the morning, fasting for 4 or 5 hours after. The same.

1

dose is to be repeated 3 mornings in succession, then skip 3, and so on, until the 9 doses are taken.

The patient must avoid getting wet, or the heat of the sun, and abstain from high-seasoned diet, or hard exercise, and, if costive, take a dose of salts. The above quantity is for an adult ; children will take less according to age.

Eye Preparations.-Eye Water.-Table salt and white vitriol, of each 1 tablespon; heat them upon copper plates or in earthon; ware until dry ; the heating drives off the acrid water, called the water of crystallization, making them much milderin their action; now add to them soft water $\frac{1}{2}$ pt. ; putting in white sugar, 1 tablespoon; blue vitriol, a piece the size of a common pea. If it should prove too strong in any case, add a little more soft water to a phial of it. Apply it to the eyes 3 or 4 times daily.
India Prescription for Sore Eyps.-Sulphate of zinc, 3 grs ; tincture of opium (laudanum), 1 dr.; rose water, 2 cz. ; mix. Put a drop or two in the eye, 2 or 3 times daily.
Anotimr.-Sulphate of zinc, acetate of lead, and rock salt, of each $\frac{1}{2} \mathrm{oz} . ;$ loaf sugar, $1 \mathrm{oz} . ;$ soft water, $12 \mathrm{oz}$. ; mix without heat, and use as other eye waters.
If sore eyes shed much water, put a little of the oxide of zinc into a phial of water, and use it rather freely. This will soon effect a cure.
Copperas and water has cured sore eyes of long standing; and used quite strong, it makes an excellent application in erysipelas.

Indian Eye Water.-Soft water, 1 pt. ; gum arabic, 1 oz .; white. vitriol, 1 oz ; fine salt, $\frac{1}{2}$ teaspoon; put all into a bottle, and shake until dissolve'. Put into the eye just as yon retire to bed.
Black Oil.-Best alcohol, tincture of arnica, British oil, and oil of tar, of each 2 oz ; and slowly add sulphuric acid, $\frac{1}{2} \mathrm{oz}$.
Theso black oils are gettıng into extensive use as a liniment, and are indeed valuable, especially in cases attended with much inflam.mation.

Vermifuge Lozenaes.-Santonin, 60 grs.; pulverized sugar, 5 oz.; mucilage of gum tragacanth, sufficient to make into a thick paste, worked carefully together, that the santonin shall be evenly mixed thronghout the whole miss; then, if not in too great a hurry, cover up the mortar in which you have rubbed them, and let stand from 12 to 24 hours to temper; at which time they will roll out better than if done immediately ; divide into 120 lozenges. Dose, for a child 1 year old, 1 lozenge, night and morning; of 2 years, 2 lozenges ; of 4 years, 3 ; of 8 years, 4 ; of 10 years or more, 5 to 7 lozenges; in all cases, to be taken twice daily, and continuing until the worms start on a voyage of discovery.

Harlem Oil on Welsil Medicamentum.-Sublimed or flowers of sulphu" and oil of amber, of each 2 oz . ; linseed oil, 1 lb .; spirits of turpentine sufficient to reduce all to the consistence of thin molasses. Boil the sulphur in the linseed oil until it is dissolved, then add the oil of amber and turpentine. Dose, from 15 to 25 drops, morning and evening.

Amongst tho Welsh and Germans it is extensively used for strengthening the stomach, kidneys, liver, and lungs; for asthma, shortness of breath, cough, inward or outward sores, dropsy,

wort

 ache
canl

and
ed,

pt.,

 spoo folloIn
\ddagger oz hart
with
then
tinue
Shou
ed ;
caus clot
skip 3, and
he sun, and , if costive, t ; children hite vitriol, in earthon; , called the ceir action; ar, 1 tableIf it should water to a
$\mathrm{ac}, 3 \mathrm{grs}$; mix. Put
ck salt, of ix without
finc into on effect a
ding; and erysipelas. oz. ; white and shake ed.
il, and oil z.
iment, and ch inflam.
sugar, 5 to a thick be evenly - great a them, and they will lozenges. ing ; of 2 years or laily, and cy. flowers of , ; spirits of thin dissolved, 15 to 25
used for r asthma, dropsy,
worms, gravel, fevers, palpitation of the heart, giddiness, beadache, \&c., by taking it internally ; and for ulcers, malignant sores, cankers, \&c., anointing externally, and wetting linen with it, and applying to burns.
Eayptian Cure for Cholera.-Best Jamaica ginger root, bruised, 1 oz . cayenne, 2 teaspoons; boil all in 1 qt . of water to $\frac{1}{2}$ pt., and add loaf sugar to form a thick syrup. Dose, 1 tablespoon every 15 minutes, until vomiting and purging ceases; then follow up with a blackberry tea.
Indian Presoription for Cholera.-First dissolve gum camphor, $\ddagger \mathrm{oz}$., in $1 \frac{1}{2} \mathrm{oz}$. of alcohol ; second, give a teaspoon of spirits of hartshorn in a wine glass of water, and follow it every 5 minutes with 15 drops of the camphor in a teaspoon of water, for 3 doses; then wait 15 minutes, and commence again as before; and continue the camphor for 30 minutes, unless there is returning heat. Should this be the case, give one more dose, and the cure is effected; let them perepire freely (which the medicine is designed to cause), as upon this the life depends, but add no additional clothing.

Istimus Cholera Tinoture.-Tincture of rhubarb; cayenne, opium, and spirits of camphor, with essence of peppermint, equal parts of each, and each as strong as can be made. Dose, from 5 to 30 drops, or even to 60 , and repeat, until relief is obtained, every 5 to 30 minutes.
King of Oils, for Neuralgia and Rheumatigm.-Burning fluid, 1 pt.; oils of cedar, hemlock, sassafras, and origanum, of each 2 oz.; carbonate of ammonia, pulverized, 1 oz. ; mix. Directions.Apply freely to the nerve and gums around the tooth; and to the face, in neuralgic pains, by wetting brown paper and laying on the parts, not too long, for fear of blistering,-to the nerves of teeth by lint.
Neuralaia.-Internal Remedp.-Sal-ammoniac, $\frac{\frac{1}{2} \text { dr., dissolve }}{\text { dit }}$ in water, 1 oz. Dose, one tablespoon every 3 minutes, for 20 minutes, at the end of which time, if not before, the pain will have disappeared.
Artificial Skin.-For Burns, Bruises, Abrasions, \&c.-Proof afainst Water.-Take gun cotton and Venice turpentine, equal parts of each, and dissolve them in 20 times as much sulphuric ether, dissolving the cotton first, then adding the turpentine; keep it corked tightly. Water does not affect it, hence its value for cracked nipples, chapped hands, surface bruises, \&c., \&c.
Indian Balsam.-Clear, pale rosin, 3 lbs., and melt it, adding spirits of turpentine, $1 \mathrm{qt}$. ; balsam of tolu, 1 oz . ; balsam of fir, 4 oz.; oil of hemlock, origanum, with Venice turpentine, of each, 1 oz.; strained honey, 4 oz.; mix well, and bottle. Dose, 6 to 12 drops; for a child of six, 3 to 5 drops, on a little sugar. The dose can be varied according to the ability of the stomach to bear it, and the necessity of the case.

It is a valuable preparation for coughs, internal pains, or strains, and works benignly upon the kidneys.

Wens-To Cure.-Dissolve copperas in water to make it very strong; now take a pin, needle, or sharp knife, and prick, or cut the wen in about a dozen places, just sufficient to cause it to
bleed; then wet it thoroughly with the copperas water, once
rubb
is at rasb
patc fever thou ferer as in are over
in a
rubbed with the hand, the skin will show symptoms of rash, if it is a skin disease which has commenced, By the appearance of the rash the nature of the disease can be learned. Heasles aro in patches, dark red, and come out first about the face. If scarlet fever is impending, the akin. Will look a deep pink all over the body, though most so jout the neck and face. Chicken-pox shows fever, but not so m. ch running at the nose, and appearances of cold, as in measles, nor is there as much of a cough. Besides, the spots are smaller, and do not run much together, and are more diffused over the whole surface of the skin ; and enlarge into little blisters in a day or two.

Let the room where the child is sick be shady, quiet, and cool. Be careful not to speak so suddenly as to startle the half-sleeping patient, and handle it With the greatest tenderness when it is necessary to move it. If it is the lunga that suffer, have the little patient somewhat elevated upon the pillows for easier breathing and do everything to soothe arid make it comfortable, so as not to have it cry, and thus distress its inflamed lungs. If the child is very weak, do not move it too suddenly, as it may be startled into convulsions. In administering a bath, the greatest palns must bo taken not to frighten the child. It should be put in so gradually, and so amused by somelhing placed in the water on purpose as to forget its fear ; keop up a good supply of fresh air, at a temperature of about 60° Fah. If a hired nurse must be had, select if possible a woman of intelligence, gentle and loving disposition, kind and amiable manners, and of a most pacific, unraffled, and even temper. If a being can be got possessed of these angelic qualitios, and we believe there are many such, you will be quite safe in intrusting to her care the management of your sick child, or yourself either, in case of sickness. She shouid not be under twenty-five nor over fifty-five, as between these two ages she will, if healthy, be in her full strength and capacity.

Hooping Cough. -To empty the child's stomach by a lobelia emetic, is the first step. After this make a syrup of sugar, gingerroot, a little water, and enough lobelia tincture to produce a slight nausea. This, given two or three times a day, will loosen the cough very much. For croup remedy, see "Lock jaw cure," and."Croup cure."
Diarriga.-Nothing is better for looseness of the bowels than tea made of ground bayberry. Sweeten it well, and give a halfteacupful once in two hours, until the child is better. Bathing must not be neglected.
Couro.-This can be cured with warm injections, of simple soapsuds, or warm water with a warming tincture in it. A little warm tea may be given at the same time; and the bowels rubbed. Every family should have a small and large syringe. Nothing is oftener needed, particularly in the care of children.

Faper.- Where a child has a simple fever from teething, or any other cause not connected with acute disease, give a teaspoonful of syrup of rhubarb, a warm injection, and sponge-baths. These will generally be all that is needed.

Riokres and Scrofula.-If children have either of these, or both these diseases, a good, nutritive diet is a great essential.

Then the alkaline-bath, a little lime-watior, say \& teaspoonful three times a day, and out-door exercise, are the chief romedies.
jurs-Spasimg-When these are brought on by indigestion, placn the child in a warm bath immediately, give warm water, or a lobelia emetic, rub the skin briskly, etc., to get up an action. In brain disease the warm water is equally useful. In fact, unless the fit is constitutional, the warm bath will relieve the patient by drawing the tiood to the surface.

Enlaragment of the Bram.-This chiefly affects children, and consists in an unnatural giowth of the brain. The skull may grow with it, and there be no syluptoms of disease, though children with this la ge brain are apt to die of some brain disease. The symptoms of enlargement of the biain are, dullness of intellect, indifference to external objects, irritable temper, inordinate appetite, giddiness, and habitual headache. Sometimes there are convulsions, epileptic fits, and idiocy. There is also a peculiar projection of the parietal bones in this disease.

Treatment.-As much as possible, repress ali exercise of the mind. Do not suffer the child to go to school; but put it to the most active and muscular exercise in the open air. The moment there is any heat in the top of the head, apply cold water, ice, or cold evaporating lotions. The diet should be very simple, bread and milk orily, if, as the child grows up, the signs of disease increase.
Water in the Hiad.-Another disease of children, and especially of scrofulous children. It is inflammatory, and should be early noticed.

Symptoms.-Capricious appetite, a foul tongue, offensive breath, enlarged, and sometimes tender belly, torpid bowels, stools lightcolored from having no bile, or dark from vitiated bile, fetid, soursmelling, slimy and lumpy. The clild grows pale and thin ; and is heary, languid, dejected ; it is fretful, irritable, uneasy, and apt to be tottering in its gait.
The disease may begin, after these symptoms, by pains in the head, becoming more severe and frequent, sharp and shooting, causing the child to waken and shriek out. As the drowsy stete advances, the shrieking gives place to moaning. There is great stiffness in the back of the neck, pain in the limbs, tenderness in the scalp, vomiting, sighing, intolerance of light, knitting of the brows, and increased disturbance of the stomach and bowels. This may last from ten to fourteen days, the patient growing more weak and peevish.
A nother form of attack is marked by acute pain in the bead, high fever, convulsions, flushed face, brilliant eyes, intolerance of light and sound, pain and tenderness in the belly, stupor, great irritability of stomach, causing retching and vomiting on every attempt to sit up.

The third mode of attack is very insidious-the early symptoms being so mild as hardly to be noticed. In this case, the convulsions or palsy come suddenly, without notice, bringing swift and unexpected destruction. In the first stage of the disease there is increased sensibility; in the second, decreased sensibility; in the
third, stupor
trea

must b

 is this pulver jna. operate stage bowels alterat simm, 0 child ${ }^{\text {s }}$ digits! for ac be kep should The di after th plain c tient st rian, o hours.Momp with so ling of tinues cult to comes often h tongue, The dis

I'rea cold. 6 grs . and ob taking physic ing 10 -ase.
Scar nal an Sym after e outin overt with nause appea often cover eleva the tb the chief
tion, placn rater, or a action. In ct, unless patient by
Idren, and skull may h children ease. The intellect, inordinate there are a peculiar
se of the it to the moment er, ice, or le, bread f disease

specially

 be earlye breath, ls lightid, sourin ; and and apt
s in the hooting, sy ste.to is great rness in 5 of the s. This re weak
ad, bigh of light rritabittempt
ptoms ulsions
unex-
is in-
in the
third, palsy, conrulsions, squinting of the eyes, rolling of the head, stupor, and a rapid, thread-like pulse.

Treatment.-In the first stage, purging is very important, and must be continued for three or four days. An excellent purgative is this: pulverized scammony, six grains; croton oil, four drops; pulverized loaf sugar, sixteen teaspoonfuls. Rub well together in a mortar. Give one teaspoonful every hour or two, till it operates. Apply cold water or ice to the head. In the second stage put blisters upon the back of the neck, and one on the buwels, if very tender. In the third stage use the warm bath, also alteratives and diuretics. For an alterative, use iodide of potassium, one dram ; water, half an ounce; mix. Thirty drops to a child seven years old every hour. For a diuretic, use tincture of digitelis, one ounce ; syrup of squills, one ounce; mix. Ten drops for a child seven years old every four hours. The patient should be kept in a dark room, away from all noise and excitement, and should lie upon a hair mattress, with his head somewhat elevated. The diet in the first stage should be nothing more than gruel; after that, more nourinhing, buteasy of digestion, such as beef-tea, plain chicken-broth, animal-jellies, etc. At the same time the patient should be supported by the cautious use of wine-whey, valerian, or ten drops of aromatic spirits of ammnnio every four hours.

MUMPS.-This disease, most common among children, begins with soreness and stiffness in the side of the neck. Soon a swelling of the paratoid gland takes place, which is painful and continues to increase for four or five days, sometimes making it difficult to swallow, or open the mouth. The swelling sometimes comes on one side at a time, but commonly upon both. There is often heat and sometimes fever, with a dry skin, quick pulse, furred tongue, constip nted bowels, and scanty and high-colored urine. The disease is contagious.

Treatment.-Keep the face and neck warm, and avoid taking cold. Drink warm herb-teas, and if the symptoms are severe, 4 to 6 grs . of Dover's puwder ; or if there is costiveness, a slight physic, and observe a very simple diet. If the disease is aggravated by taking cold, and is very severe, or is translated to other glands, physic must be used freely, leeches applied to the swelling, or cooling lotions and foultices. Sweating must be resorted to in this oase.

Scarlet Fever is an acute inflammation of the skin, both external and internal, and connected with an infectious fever.

Symiptoms.-The fever shows itself between two and ten days after exposure. On the second day of the tever the eruption comes out in minute pimples, which are either clustered together, or spread over the surface in a general bright scarlet color. The disease begins with langour, pains in the head, back, and limbs, drowsiness, nausea and chills, followed by heat and thirst. When the redness appears the pulse is quick, and the patient is restless, anxious and often delirious. The eyes are red, the face swollen, and the tongue covered in the middle with white mucus, through which are seen elevated points of extreme redness. The tonsils are swollen, and the throat is rell. By the evening of the third or fourtb day the
redness has reached its height, and the skin becomes moist, when the scarf-skin begins to come off in scales.

In this fever the flesh puffs up so as to distend the fingers, and disfigure the face. As it progresses the coating suddenly comes off the tongue, leaving it and the whole mouth raw and tender. The throat is very much swollen and inflamed, and ulcers form on the tonsils. The eustachian tube which extends up to the ear, the glands under the ear and jaw, sometimes inflame and break; and the abscesses formed in the ear frequently occasion deafness more or less difficult to cure. The symptoms of this disease may be distinguished from that of measles by the absence of cough; by the finer rash; by its scarlet color; bs the rash appearing on the second instead of the fourth day; and by the ulceration of the throat.

Treatment.-In ordinary cases the treatment required is very simple. The room where the patient lies should be kept cool, and the bed-covering light. The whole body should be sponged with cool water as often as it becomes hot and dry, and cooling drinks should be administered. A few drops of belladonna, night and morning, is all that is needed.

If there is much fever and soreness of throat, give the following tincture of hellebore often enough to keep down the pulse :-

Tincture of American hellebore, 1 dr. : tincture of black cohosh, 2 oz. ; mix. Take one teaspoonful 3 to 6 times a day.

It would also be useful to commence treatment with an emetic; and to soak the feet and hands in hot water containing a little mustard or cayenne pepper ; continuing this bath 20 minutes, twice a day, for 2 or 3 days. The cold stage being passed, and the fever having set in, warm water may be used without the musturd or pepper. If the head is affected, put drafts upon the feet; and if the bowels be costive, give a mild physic. Solid food should not be allowed; but when the fever sets in, cooling drinks, such as lemonade, tamarind-water, rice-water, flarseed tea, then gruel, or cold water may be given in reasonable quantities. To stimulate the skin, muriatic acid, 45 drops in a tumbler filled with water and sweetened, and given in doses of a teaspoonful, is a good remedy.

Where the disease is very. violent, and the patient inclines to sink immediately; where typhoid symptoms appear and there is great prostration ; the eruption strikes in ; the skin changes to a mahogany color; the tongue is a deep red, or has on it a dark brown fur, and the ulatrs in the throat become putrid, the treatment must be different from the above. In this case it must be tonic. Quinia must be given freely; and wine whey, mixed with toast-water, will be useful. Quinia is made as follows:-Sulphate of quinine, 1 scruple ; alcohol, 4 ozs.; sulphuric acid, 5 drops; Madeira wine, 1 quart ; mix. Two wine-glassfuls a day. Tinctura of cayenne, in sweetened water, may be given in small doses. Gargles are also necessary. A good one is made of pulverized cayenne, 1 dram ; salt, one dram; boiling water, 1 gill. Mix, and let them stand 15 minutes. Then add 1 gill vinegar. Let it stand an hour and strain. Put a teaspoonful in the child's mouth once in an hour. A warm bath should be used daily as soon as the
skin bath by gi a gen the c
skin begins to peel off, to prevent dropsy. If dropsy sets in, the bath once in 3 days is sufficient, and sweating should be promoted by giving the tincture of Virginia snake-root and similar articles; a generous diet should be allowed at the same time, to bring up the chi'd's strength.

Measles is an acute inflammation of the skin, internal and external, combined with an infectious fever.

Symptoms. Chills succeeded'by great heat, langour, and drowsiness, pains in the head, back and limbs, quick pulse, soreness of throat, thirst, nausea and vomiting, a dry cough, and high colored urine. These symptoms increase in violence for four days. The eyes are inflamed and weak, and the nose pours fourth a watery secretion, with frequent sneezing. There is considerable inflammation in the larynx, wind-pipe and bronchial tubes, with soreness of the breast and hoarseness. About the fourth day the skin is covered with a breaking out which produces heat and itching, and is red in spots, upon the face first, gradually spreading over the whole body. It goes off in the same way, from the face first and then from the body, and the hoarseness and other symptoms declinu with it; at last the outside skin peels off in scales.

Treatment. In ‘a mild form, nothing is required but a light diet, slightly acid drinks, and flax seed or slippery elm tea. Warm herb teas, and frequent sponge baths with tepid water, serve to allay the fever; care should be taken not to let the patient take cold. If the fever is very high, and prevents the rash coming out, a slight dose of salts, or a nauseating dose of ipecac., lobelia, or hive-syrup should be given, and followed by teaspoonful doses of compound tincture of Virginia snake-root until the fever 18 allayed. If the patient from any derangement takes on a low typhoid type of fever, and the rash does not come out until the seventh day; and is then of a dark and livid color, tonics and stimulants must be given, and expectoration promoted by some suitable remedy. There is always danger of the lungs being left in an inflamed state after the measles, unless the greatest care is taken not to suffer the patient to take cold. Should there be much soreness or pain, and a severe cough, this must be treated as a separate disease, with other remedies.

Symptoms. Typhoid Faver is generally preceded by several days of languor, low spirits, and indisposition to exertion. There is also, usually, some pain in the back and head, loss of appetite, and drowsiness, though not,rest. The disease shows itself by a chill. During the first week there is increased heat of the surface, frequent pulse, furred tongue, restlessness, sleeplessness, headache and pain in the back; sometimes diarrhca and swelling of the belly, and sometimes nausea and vomiting.

The second week is often distinguished by small, rose colored spots on the belly, and a crop of littie watery pimples on the neck and chest, having the appearance of minute drops of eweat; the tongue is dry and black, or red and sore; the teeth are foul; there may be delirium, and dullness of hearing; and the symptoms every way are more serious than during the first.week. Occasionally, the bowels are at this period perforated or ate through by ulceration, and the patient suddenly sinks. If the disease pro-
ceeds unfavorably into the third week, there is low, mutteriag delicium; great exhaustion; sliding down of the patient toward the foot of the bed; twitching of the muscles; bleeding from the bowels ; and red or purple spots upon the skij.

If, on the other hand, the patient improves, the countenance brightens up, the pulse moderates, the tongue cleans, and the discharges look healthy.

Treatment. Give the patient good air, and frequent spongings with water, cold or tepid, as most agreeable. Keep the bowels in order, and be more afraid of diarrhcea than costiveness. Diarrhoea should be restrained by a little brandy, or by repeated doses of Dover's powder. For costiveness, give mild injections, made slightly loosening by castor oil, or common molasises. To keep down the fever, and produce perspiration, give tir.cture of veratrum viride, 10 drops eyery hour. If the bowels are swelled, relieve them hy hot fomentations of hops and vinegar. If the pain in the head is very severe and constant, let the hair be cut short, and the head bathed frequently with cold water. Give light nourishment, and if the debility is great, broth and wine will be needed. Cleanse the mouth with very weak tea-old hyson. If the fever runs a low cuurse, and the patient is very weak, quinine may be given from the beginning. Constant care and good nursing are very important.

Typhus feyer is distinguished from typhoid by there being no marked disease of the bowels in typhus.

GROCERS AND CONFECTIONERS' RECEIPTS.

Chiar Vinegar.-Mix 25 gals. of warm rain water with 7 gals. molasses and 5 gals. yeast, and let it ferment, you will soon have the best of vinegar, keep adding these articles in these proportions as the stock is sold.
For Grockrs' Sales.--Take three barrels; let one of them be your vinegar barrel ; fill this last upbefore it is quite empty, with molasses, 2 gals.; soft water, 11 gals. ; yeast, 1 qt. ; keeping these proportions in filling up the whole three barrels; sell the vinegar out of your old vinegar barrel as soon as it is ready, wiich will be, in a short time; when nearly cmpty, fill it up with the fluid as before, and pass on to sell out of the next barrel ; by the time it is disposed of go on to the last; then go back to the first, filling up your barrels in every case when nearly empty, and you will always keep a stock of gend vinegar on band unless your sales are very large; in which case, follow the next process. Have the bung-holes open in the larrels to admit air.

Vinegar in Thren Days.-Get a quantity of maple, beech, or basswood chips or shavings, and soak these in good vinegar for two or three days. With these chips you will fill a barrel, which has beeh pierced with a large number of inch holes all around the sides for the free admission of air amons the chips (the more holes in the barrel the better, for the alore siz the sooner the vinegar
will belo top holes vineg throu rel in and t from mola beer, being beer you tione use 2 is slig the s
water
entire
cool.
Bal
tartal
all to
to be
mix 0
Ca
then
Tr
ings
heati
then
pour
bars
will be made) ; cut another barrel in two halves, place one half below the barrel with the chips and the other half above it. The top tub must have its bottom pierced with a number of gimlet holes, in which are placed several threads of twine, to conduct the vinegar evenly over the chips. The liquid drains down slowly through the chips and out of a faucet near the bottom of the barrel into the lower tub. It should run through every four hours, and then be baled or pumped back. Directions to make vinegar from sugar: Use $1 \frac{1}{2} \mathrm{lb}$. to each gal. of water ; of the dregs of molasses barrels, use 2 lbs. to each gal. water ; small beer, lager beer, ale, \&c., which have become sour, make good vinegar by being reduced with water ; smali beer needs but little water, lager beer as much water as bear ; to 2 gals. cider add $\frac{1}{2}$ gal. of water; you can also make excellent vinegar out of the artificial cider mentioned below. Use, in every case, soft water to make vinegar, and use 2 qts. yeast to every barrel. It makes much quicker if the fluid is slightly lukewarm. Leach either of these preparations through the shavings.

This process should be attended to during warm weather, or in a room where a pretty high temperature is kept up, as it will not work otherwise.

Excellent Vinegar, Cheap.-Acetic acid, 5 lbs. ; molasses, 1 gal. ; yeast, 2 qts. ; put them into a forty-gal. cask, and fill it up with rain water; stir it up, and let it stand one to three weeks, letting it have all the air possible, and you will have good vinegar. If wanted stronger, a d more molasses. Should you at any time have weak vinegar on hand, put molasses into it to set i+ working. This will soon correct it.

White Wine Vinegar.-Mash up 20 lbs. raisins, and add 10 gals. water ; let it stand in a warm place for one month, and sou will have pure white wine vinegar. The raisins may be used a second time the sa ne way.

To Preserve Eggs.-To each patent pailful of water, add 1 nt . of fresh slacked lime, and 1 pt . of common salt ; nix well. Fill your barrel half full with this fluid, put your eggs down in it any time after June, and they will keep two years if desired.

Liquid Niucilage.-Fine clean glue, 1 lb . ; gum arabic, 10 oz .; water, 1 qt .; melt by heat in a glue kettle or water bath; when entirely melted, adá slowly 10 oz . strong nitric acid, set off to cool. Then bottle, adding a couple of cloves to each bottle.

BAEIng Powders, very healthy.-Baking soda, 6 lbs .; cream of tartar, 8 lbs. Dry each kind separately and thoroughly then mix all together and put up in damp proof packages, glass or tin is best, to be used in the proportion of 1 teaspoonful to each qt. of flour, mix up with cold water and put in the oven immediately.

Candied Lemon Peel.-Take lemon peels and boil them in syrup; then take them out, and dry.

Transparent Soap.-Slice 6 lbs. nice yellow bar-soap into shavings; put into a brass, tin or copper kettle, with alcohol, gal. heating gradually over a slow fire, stirring till all is dissolved; then add 1 oz . sassafras essence, and stir until all is mixed; now pour into pans about $1 \frac{1}{2}$ inches deep, and when cold cut into square bars the length or width of the pan, as desired.

English Bar-Soap.-Six gals. soft water; 心lbs.good stone lime: $20, \mathrm{lbs}$. sal-soda ; 4 oz . borax ; 15 lbs . fat (tallow is best); 10 lbs. pulverized resin, and 4 oz . bees'-wax; put the water in a kettle on the fire, and when nearly boiling add the lime and soda; when these'are dissolved, add the borax; boil gently, and stir until all is dissolved; then add the fat, resin, and bees-wax; boil all gently until it shows faky on the stick, then pour into moulds.

Best Sowt Soap.-Mix 10 lbs. potash in 10 gals. warm soft water over night; in the morning boil it, adding 6 lbs. grease ; then put all in a barrel, adding 15 gals . soft wator.

Soap without Lye or Grease.-In a clean pot put $\frac{1}{\frac{1}{2}} \mathrm{lb}$. homemade hard or mush soap, and $\frac{1}{2} \mathrm{lb}$. sal-soda, and 5 pts. of soft water. Boil the mixture 15 minutes, and you will have 5 lbs. good soap for $7 \frac{1}{2}$ ce ts.

Hard'Soap.-Take 5. lbs. hard soap, or 7 lbs . soft soap, and 4 lbs . sal-soda, and 2 oz . borax, and 1 oz. hartshorn; boil one quarter hour with 22 qts. water; add, to harden, $\frac{1}{2} \mathrm{lb}$. resin.
German Yellow Soap.-Tallow and sal-soda, of each 112 lbs.; resin, 56 lbs . ; stone lime, 28 lhs ; palm oil, 8 oz . ; oft water, 28 gals. Put soda, lime, and water into a kettle and boil, stirring well ; then let it settle, and pour off the lye. In another kettle, melt the tallow, resin, and palm oil ; having it hot, the lye being also boiling hot, mix all together, stirring : \because, and the work is done.

For smale Quantitirs.-Tallow and sal-soda, eacb, 1 lb . ; resin, 7 oz . ; stone lime, $4 \mathrm{oz} . ;$ palm oil, 1 oz ; soft water, 1 qt .
Hard Soap with Lard.-Sal-soda and lard, each 6 lbs.; stone lime, 3 lbs.; soft water, 4 gals.; dissolve thel lime and soda in the water by boiling, stirring, settling, and pouring off; then retarn to the kettle (brass or copper), and add the lard, and boil it till it becomes soap; then pour into a dish or moulds; and, when cold, cut into bars, and dry it.

White Hard Soap with Tallow.-Fresh slacked lime,-sal-soda, and tallow, of each, 2 lbs. ; dissolve the soda in 1 gal. boiling soft water; now mix in the lime, stirring occasionally for a few hours; after which, let it settle, pouring off the clear liquor, and boiling the tallow therein until it is all dissolved; cool it in a flat box or pan, cut into bars or cakes as desired. It may be perfumed with sassafras oil or any other perfume desired, stirring it in when cool.

One Hundrad Pounds Soap, very cheap.二Potash, 6 lbs. ; lard, 4 lbs. ; resin, \ddagger lb. Beat up the resin, mix all together, and set aside for five days; then put the whole into a 10-gal. cask of water, and stir twice a day for ten days, when it is ready for use.

Solid Candles from Lard.-Dissolve $\frac{1}{4} \mathrm{lb}$. alum and $\frac{1}{4} \mathrm{~b}$. saltpetre in $\frac{1}{2} \mathrm{pt}$. water on a slow fire ; then take 3 lbs. of lard cut into small pieces, and put into the pot with this solution, stirring it constantly over a very moderate fire until the lard is all dissolved; then let it simmer until all steam ceases to rise and remove it at once from the fire. If you leave it too long it will get discolored. These candles are harder and better than tallow.

Tallow-To Cleanse and Bleach.-Dissolve alum, 5 lbs. in water, 10 gals., by boiling ; and when it is all dissolved, add tallow,

20 lbs. skimm muslin it by fi

Imit powde a mos result. a galld the lig

ADA ton tal and du

Teas of their It is a ness a the dif season.

Blac gathere leaved grow la ing is t

Bohe of the n tion of color ar

Cong Chinese of the b

Soricl stronge It is mu

Peko being t white and is

Grex Hyson-

Youn guage, spring.

Hyso ing spr pared and nip rolled i

Gunt granula it Choo Hyso nestion
tone lime); 10 lbs . kettle on da; when until all is 11. gently
soft water then put
lb. homeoft water. ood soap
and 4 lbs . e quarter

112 lbs. water, 28 , stirring er kettle, lye being he work
b. ; resin, s.; stone da in the retarn to it till it en cold,

sal-soda,

 ling soft \checkmark hours ; boiling thox or erfumed in when; lard, 4 et aside ter, and

1b. saltcut into it consolved; ve it at colored.
lbs. in tallow,

20 lbs.; continue the boiling for an hour, constantly stirring and skimming; when sufficiently cool to allow it, , strain through thick. muslin ; then set aside to harden; when taken from the water, lay it by for a short time to drip.

Imitation Wax Canders.-Purify melted tallow by throwing in powdered quick lime; then add two parts wax to one of tallow; and a most beautiful article of candle, resembling wax, will be the result. Dip the wicks in lime water and saltpetre on making. To a gallon of water add 2 oz . saltpetre and $\frac{1}{2} \mathrm{lb}$. of lime ; it improves the light, and prevents the tallow from running.

Adamantine $\mathrm{O}_{\text {andles }}$ from Tallow.-Melt together 10 oz . mutton tallow ; camphor, $\frac{1}{4}$ oz. ; bees-wax, 4 oz . $;$ alum; 2 oz . Very hard and durable, burning with a clear, steady light.

Teas. - The names of the different kinds of tea relate to the timo of their being gathered, or to some peculiarity in their manufacture. It is a general rule, that all tea is fine in proportion to the tenderness and immaturity of the leaves. The quality and value of the different kinds diminish as they are gathered later' in the season.

Black Teas.-As soon as the leaf-bud begins to expand, it is gathered to make Pekoe. A few days' later growth produces black leaved Pekoe. The next picking is called Souchong; as the leaves grow larger and more mature, they form Cougou ; and the last picking is Bohea.

Bohea is called by the Chinese, Ta-cha (large tea), on account of the maturity and size of the leaves; it contains a larger proportion of woody fibre than other teas, and its infusion is of a darker color and coarser flavor.

Congou, the' next higher kind, is named from a corruption of the Chinese Koong-foa (great care, or assiduity). This forms the bulk of the black tea imported, and is mostly valued for its strength.

Souchong-Seaoa-choong (small scarce sort), is the finest of the strongest black tea, with a leaf that is generally entire and curly, It is much esteemed for its fragrance and fine flavor.

Pekoe is a corruption of the Canton name, Pak-ho (white down), being the first sprouts of the leaf-buds; they are covered with a white silky down. It is a delicate tea, rather deficient in strength, and is principally used for flavoring other teas.

Gregn Teas.-The following are the principal kinds Twankay, Hyson-Skin, Hyson, Gunpowder, and Young Hyson.

Young Hyson is a delicate young leaf, called in the original language, $\boldsymbol{Y} u$-tsien (before the rains), because gathered in the early spring.

Hyson, from the Chinese word He-tchune, which means, flourishing spring. This fine tea is gathered early in the season, and prepared with great care and labor. Each leaf is picked separately, and nipped off above the footstalks; and every separate leaf is rolled in the hand. It is much esteemed for its flavor.

Gunpowder Tea is only Hyson rolled and rounded to give it the granular appearance whence it derives its name. The Chinese call it Choo-cha (pearl tea).

Hyson-Slin is so named from the Chinese term, in which con-nestion-skin means the refuse, or inferior portion. In preparing

Hyson, all leaves that are of a coarse yellow, or imperfectly twisted. appearance, are separated, and sold as skin-tea, at an inferior price.

Twankay is the last picking of green tea, and the leaf is not rolled or twisted as much as the dearer descriptions. There is altogether less trouble bestowed on the preparation.

Corfees.-Java Cofyee.-Use of the imported article, $20 \mathrm{lbs} . ;$ dried dandelion root, 7 lbs.; chiccory; 13 lbs. Roast and grind well together.

For West India, use rye roasted with a little butter, and ground very fine.
For Turkey Cofyel, use rice or wheat roasted with a little butter, 7 lbs. ; chiccory, 3 lbs.; grind.

Essence of Coffee is made by boiling dojon molasses till hard; grind to a powder ; add $\frac{1}{2} \mathrm{lb}$. of F lbs. of the mixture. Put up for sale in ? $t \times$ sans or air-tight paper packages.

Coffer for Pound Packages.-Best Javichefe, lb. rye, 3 lbs. ; carefully clean the rye from all bad grains, waen to remove dust, drain off the water, and put the grain into your roaster, carefully stirring to brown it evenly. Brown the rye and coffee separately, grind, and put up in tight packages to preserve the aroma.

Manufacturing and Flavoring Tobacco.-After the tobacco is properly cured and sweated, you will, preparatory to pressing, proceed to flavor it as follows: Take 1 oz . tonqua beans; 6 oz. liquorice, 1 lb . sugar ; pulverize each completely ; add the ingredients to 1 gallon water. Macerate and rummage up for a few days till the aromatic flavor is properly imparted to the liquid. Then spread out some tobacco leaves, and slightly sprinkle them with the above fluid till enough is absorbed to render them pliable. Then roll them up in round packages of such a size that ten will make 1 lb .; then reduce them into flat plugs in a powerful press. A large number of such plugs are subsequently.pressed into blocks, when they are ready for the market at once. The strength of the above liquid may be increased or dilute as desired by the manufacturer, and extract of vanilla may be sutbothuwed for the tonqua bean.
Flafor for Cigar Marers.-Take 2 ozs. tonqua beans and 1 oz. cinnamon; bruise and pulverize them to a powder, and put them into 1 pint of Santa Cruz rum ; letit stand for a few days to macerate; stir all together, and with this liquid sprinkle yout common or inferior tobacco. Dry out of the sun, and the flavor will be unequalled.
To Cure Buttra.-Take 2 parts of fine salt; 1 part loaf sugar; 1 part saltpetre ; mix completely. Use 1 oz . of this mixture to each pound of butter; work well. Bury your butter firkins in the earth in your cellar bottom, tops nearly level with the ground, or store away in a very cool place, covering the butter with a clean cloth and a strong brine on the top, and it will keep two years if desired

Unerring Tests for Good Flour.-Good flour is white, with a yellowish or straw-colored tint. Squeeze some of the flour in your hand; if good, it will retain the shape given by pressure.

Knead is poor. fall like To C flour, 7 come m when al ARAT mon sal or less a will req earthen wooden pans, bu

Paten acid, 10 soda, 12 pass thr fectly dr the four light an

Tomaz squeezo cayenne mix toge
The N zine, 60 verized a 2 oz . oill soon be 1 volume either al away fro use a bur ated fron
Testr Fahr. T to test, p down to tiously t it you wi
Tabao jasmines, close che necessary

Macoa mirture
Spanisi adding g, water, an

Yrelow with a m spoonfuls

Knead a little between your fingers; if it works soft and sticky it is poor. Throw a little against a dry perpendicular surface ; if it fall like powder, it is bad.
To Corrbor Musty Flour.-Oarbonate of magnesia, 3 lbs.; flour, 765 lbs. ; mix. This improves bad flour, causing it to become more wholesome, producing lighter and better bread than when alum is used, and aborbs and dissipates the musty smell.
Mratid Barad.-1 ib. flour, 100 grs. carb. of soda; 60 grs. common salt; 1 teaspoon powdered sugar; 120 grs. muriatic acid, more or less according to its strength; 1 wine pt. of water, inferior flour will require less. Well mix the flour, soda, salt, and sugar in an earthen vessel, then add the acid mixed with the water, stir with a wooden spoon. Bake in one loaf about 1 hour. Bake in tin or iron pans, but a avoid the use of metallic vessels or spoons while mixing.
Patent Self-Raisina Flodr.-Kiln-dried flour, 1 ewt:; tartaric acid, $10 \frac{1}{2}$ oz. ; mix thoroughly. After 2 or 3 days add, of bicarb. soda, 12 oz .; lump sugar, $\frac{1}{2} \mathrm{lb}$. ; common salt, $1 \frac{1}{2} \mathrm{lb}$. Mix, and pass through the "dressing-machine." Have all the articles perfectly dry, and separately reduce to fine powder before adding to the flour. Mix with cold water, and bake at once. It produceslight and porous bread.
Tomato Catsup.-Boil 1 bushel of tomatoes till they are soft; squeeze then through a firc wire sieve ; add $1 \frac{1}{2}$ pts. salt, 2 oz. cayenne pepper, and 5 heads of onions, skinned and separated; mix together, and boil till reduced one half; then bottle.

The Nortigrn-Light Burning Fluid.-Get good deodorized benzine, 60 : to 65 gravity, and to each brl. of 42 gals. add 2 lbs . pulverized alum, $3 \frac{1}{2} \mathrm{oz}$. gum camphor, and $3 \frac{1}{2} \mathrm{oz}$. oil of sassafras; or 2 oz. oil bergamót ; stir up and mix thoroughl; together, and it will soon be ready for use. N.B.-As this fluid creates a much larger volume of light and flame than carbon oil, it is necessary to use either a high burner, such as the sun burner, to elevate the flame away from the lamp, in order to keep it cool, or instead thereof, to use a burner provided with a tube for the escape of the gas generated from the fluid, such, for instance, as the meridan burner.
Tast for Burning Oil.-Heat water in a pot on the fire to 120° Fahr. Take a tin and put in it a tablespoonful of the oil you wish to test; place the tin containing the oil in the hot water, let it cool down to 112 . Fahr.; when at this point, approach a light very cautiously towards the oil, and if it takes fire before the light touches it you will be safe in rejecting it:

Tabao Perfumer aux Flaurs is made by putting orange flowers, jasmines, tube roses, musl roses, or common roses, to snuff in a close chest or jar, sifting them out after 24 hours, $\cdot \cdots$. :'epeating if necessary.

MaOOABOY SNuFf is imitated by moistening th, tobacco with a mixture of treacle and water, and allowing it to fciment.
Spanish Snuff is made from unsifted Havana suuff, reduced by adding gronnd Spanish nutshells,sprinkling the mixture with treacle water, and allowing it to sweat for some days before packing.
Yellow SnuFs is prepared from ordinary pale snuff, moistened with a mixture of yellow ochre diffused in water, to which a few spoonfuls of thin mueilage has been added.

Perfumas for Snupt.-Tonqua beans, essence of ditio, ambergris, musk civet, leaves of orchis fusca and essence of orris root, essence or oils of bergamot, cedra, cloves, lavender, petit grain, neioli and roses, as well as several others, either alone or compounded.
Preserved or Solidified Mifk.- 1 . Fresh-skimmed milk, 1 gal.; sesquicarbonate of soda (in powder), $1 \frac{1}{2}$ dr. Mix; evaporate $10 \frac{1}{2}$ part by heat of a steam or water-bath, with constant agitation ; then add of powdered sugar $6 \frac{1}{2}$ lbs. and complete the evaporation at a reduced temperature. Reduce the dry mass to powder, add the cream well drained, which was taken from the milk. After thorough admixture, put the whole into well-stopped bottles or tins, and hermetically seal. 2. Carbonate of soda, $\frac{1}{2} \mathbf{d r}$; water, 1 fluid $\mathrm{Oz} . ;$ dissolve ; add of fresh milk, 1 qt . ; sugar, 1 lb . ; reduce by heat to the consistence of 2 . syrup, and finish the evaporation on plates by exposure, in an oven. Observe-About 1 oz. of the powder agitated with 1 pt. of water forms an agreeable substitute for milk.

Sealing-wax, Red.-Shellac (very pale), 4 oz. ; cautiously melt in a bright copper pan over a clear charcoal fire; wheu fused, add Venice turpentine, 14 oz . Mix, and further add vermilion, 3 oz . ; remove the pan from the fire, and pour into mould. For a black color, use ivory black, or lampblack, instead of the vermilion; for a blue color, use Prussian blue instead of the vermilion, same quantity. Each color must be well mixed with the composition; of the lampblack, use only sufficient to color.

Horticultural Ink.-Copper, 1 part; dissolve in nitric acid, 10 parts, and add water, 10 parts; used to write on zinc or tin labels.

Bottle Wax-Black.-Black resin, $6 \frac{1}{2}$ lbs.; beeswax, $\frac{7}{2} \mathrm{lb}$.; finely powdered ivory black, $1 \frac{1}{2}$ lbs. Melt together. Rmp, as the last, but substitute Venetian red, or red lead, for the ivory black.

Gold-colored Sealing-wax.-Bleached shellac, 3 lbs.; Venice turpentine, 1 lb . ; Dutch leaf ground fine, 1 lb ., or less. The leaf should be ground or powdered sufficiently fine, without being reduced to dust. Mix with a gentle heat, and pour into moulds.

Lithographic Ink.-Venice turpentine 1 part, lampblack 2 parts, hard tallow soap 6 parts, mastic in tears, 8 parts; shellac 12 parts, wax 16 parts ; melt, stir, and pour it out on a slab.

Fine Black writing Ink.-To 2 gals. of a strong decoction of logwood, well strained, add $1 \frac{1}{2}$ ios. blue galls in coarse powder 6 ozs . sulphate of iron, 1 oz . acetate of copper, 6 ozs . of well ground sugar, and 8 oz . gum arabic. Set the above on the fire until it begins to boil ; strain, and then set it away until it has acquired the desired black.

Grem Ink.-Cream of tartar 1 part, verdigris 2 parts, water 8 parts. Boil till reduced to the proper color.

Buak Ink.-Take sulphate of indigo, dilute it with water till it produces the required color.

Violet Ink is made by dissolving some violet aniline in water to which some alcohol has been added; it takes very little aniline to make a large quantity of the ink.

Gond
rubbed u
Silver sulphate the salt gum ara
Fulcas cipitate c acid. St varnish 1 lb . of E
Exomed sulphate with freq

Asiatic small cas whole to further al mix well,
Extha green cop and strain

Brown varied by mate of p

Ind LLIb add as mu the precip $1 \frac{1}{2} \mathrm{dr}$, and dered indi touched w

Indelibi water, 18 J 1 oz . trit give it a g and bottl Resists mo

Cummon wood ; bo grains bicl 10 gal. use 80 grains

Black and put in peras, $\frac{1}{4}$ lb. for ten da kettle uni action of t Red Ink. nia; gum 40 carmine

LIQUID B oil, llb.;

umbergris,

广, essence eroli and dell.lk, 1 gal.; te vol part ion: ; then ation at a \mathbf{r}, add the k. After bottles or ; water, 1 reduce by oration on the powder stitute for

ously melt

 heu fused, vermilion, ould. For ad of the ad of the nized with o color.itric acid, zinc or tin
rax, 妾 lb. Red, as the the ivory
ss.; Venice less. The e, without pour into
ck 2 parts, shellac 12 b.
coction of e powder ell ground re until it cquired the
rts, water
water till
aniline in very little

Gold Ins.-Mosaic gold, two parts, gum arabic, one part, rubbed up to a proper condition.
Silvar Ine.-Triturato th a mortar equal parts of silver foil and sulphate of potassa, until reduced to a fine powder, then wash the salt out, and mix the residue with a mucilage of equal parts of gum arabic water.
Fullay's Recipe for Indelible Stencil-Plate Ing.-1 lb. precipitate carbonate of iron; 11b. sulphate of iron; $1 \ddagger 1 \mathrm{lbs}$. acetic acid. Dtir over a fire until they combine; then add 3 lbs. printer's varnish and 2 lbs. fine book ink, and stir until well mixed. Add 1 lb . of Ethiop's mineral.
Exchequer Ink.-Bruised galls, 40 lb ; gum, 10 lb .; green. sulphate of iron, 9 lb . ; zoft water, 45 gal . Macerate for 3 weeks with frequent agitation and strain. This ink will endure for ages.
Asiatic Ink.-Bruised galls, 14 lb . $;$ gum, 5 lb . Put them in a small cask, and add of boiling soft water, 15 galy. Allow the whole to macerate, with frequent agitation, for two weeks, then further add green copperas, 5 lb., dissolved in 7 pt . water. Again mix well, and agitate the whole daily for two or three weeks.
Extha good Black Ink.-Bruised galls, 2 lb., logwood chips, green copperas and gum, of each, 11 b . $;$ water, 7 gal. Boil 2 hours aud strain. Product, 5 gal.
Brown INK.-A strong decoction of catechu. The shade may be varied by the cautious addition of a little wea ksolution of bichromate of potash.
Indelible Inc.-Nitrate of silver, $\ddagger \mathrm{oz}$. $;$ water, $\frac{3}{4} \mathrm{oz}$. Dissolve, add as much of the strongest liquor of ammonia as will dissolve the precipitate formed on its first addition ; then add of mucilage $1 \frac{1}{2} \mathrm{dr}$, and a little sap green, syrup of buckthorn, or finely powdered indigo, to color. Turns black on being held near the fire, or touched with a hot iron.
Indelible Ine for Glass or Metal.-Borax, 1 oz ; shellac, 2 oz .; water, 18 fluid oz. ; boil in a covered vessel, add of thick mucilage, 1 oz. ; triturate it with levigated indigo and lampblack q. s., to give it a good color. After 2 hours' repose, decant from the dregs and bottle for use. It may be bronzed after being applied. Resists moisture, chlorine, and acids.
Cuamon Ink - To 1 gal.'boiling soft water, add 3 oz. extract logwood; boil two minutes; remove from the fire, and stir in 48 grains bichromate of potash, and 8 grains prussiate of potash; for 10 gal . use $6 \frac{1}{\frac{1}{2}} \mathrm{oz}$. logwoode xtract; 1 oz . bichromate of potash, and 80 grains prussiate of potash ; strain.
black Copying Ine, or Writing fluid.-Take 2 gal. rain water and put into it gum arabic, $\geq \mathrm{lb}$.; brown sugar, $\& 1 \mathrm{lb}$. clean copperas, 4 lb . $;$ powdered nutgalls, $\frac{3}{4} \mathrm{lb}$. $;$ mix, and shake occasionally for ten days and strain ; if nseded sooner, let it stand in an iron kettle until the strength is obtained. This ink will stand the action of the atmosphere for centuries, if required.
RED Ins.-In an ounce phial put 1 teaspoonful of aquarammonia ; gum arabic, size of two or three peas ; and 6 grains of No. 40 carmine ; fill up with soft water, and it is soon ready for use.
Liquid Blacking.-Ivory black, 2 lbs. ; molasses, 2 lbs.; sweet oil, 1 lb . rub together till well mixed; then add oil vitrioh \& lb . ;
add coarse sugar, $\mathbf{l} \mathbf{l b}$; and dilute with beer bottoms ; this cannnt bo excelled.
Ticerting Ink for Grocrra, do.-Dissolve 1 oz . of gum arabic in 6 oz. water, and strain ; this is the mucilage ; for black color, use drop-black, powdered, and ground with the mucilage to extreme fincness; for blue, ultra-marine is used in the same manner; for green, emerald green ; for white, flake white ; for red, vermilion, lake, or carmine ; for yellow, chrome yellow. When ground too thick, they are thinned with a little water. Apply to the cards with a small brush. The cords may be sized with a thin glue, and afterwards varnished, if it is desired to preserve them.
bluina yor Clothes.-Take 1 oz. of soft Prussian blue, powder if, and put in a bottle with 1 quart of clear rain water, and add $\frac{1}{2}$ oz. of pulverized oxalio acid. A tablespoonful is sufficient for a large washing.
Prrmidu Method of erebing Hays, \&o.-To 4 gal. water, add 8 lbs. coarse salt ; \ddagger oz. potash; 2 oz. saltpetre $; 2$ lbs. brown sugar. Boil together, skim when cold, put on the above quantity to 100 lbs. meat ; hams to remain in eight weeks, beef, three weeks. Let the hams dry several days before smoking. Meat of all kinds, salmon and other fisb, lobsters, \&c., may be preserved for years by a light application of pyroligneous acid applied with a brush, sealing up in cans as usual. It imparts a splendid flavor to the meat, is very cheap, and an effectual preservative against loss.
To preserve Meats, Salmon, Lobeters, \&c. hermeticallit sealkd. - The meat to be preserved is first parboiled or somewhat more, and freed from bones. It is then put into tin cases or canisters, which are quite filled up with a rich gravy. A tin cover, with a small aperture, is then carefully fixed on by solder; and while the vessel is perfectly full, it is placed in boiling water, and undergoes the remainder of the cooking. The small hole in the cover is completely closed up by soldening while the whole is yet hot. The canister, with its ingredients, is now allowed to cool, in consequence of which these contract, and the sides of the vessel are slightly forced inward by atmospheric pressure, and become a litile concave. The vessel being thus hermetically sealed, and all access of air prevented, it may be sent in to any climate without fear of putrefaction ; and the most delicate food of one country may be used in another in all its original perfection months and years after its preparation. Lobsters should be boiled longer than meats, and the scales removed previous to putting into the canisters. Salmon put up by this process is most delicious. By the French process, the meat is boiled till it is three-quarters done, when two-thirds of it are taken out, the remaining one-third is boiled into a concentrated soup, and the meat previously taken out is put into the canisters, which are then filled up with the soup; the tin cover with aperture is soldered on, and the canister with its contents submitted to a further boiling in hot water, when the aperture is closed, as above stated, and the canisters laid away in store.
To presrrve Froits without Sugar.-Fill some stone widemouthed bottles with the fruit carefully picked, and set them in a copper or large kettle ; then fill the kettle with cold water nearly
up to the bott der be co scald
an in their wee any
kept they
As
sutfic
3 or
the s
the
heat
hot
then
end
wher
each
pick1
peel,
allspi
302.

GH
in ve
point
are d
some stron
Mis
onion
capsi
A lit
flavo
Ind
(slice
of ho
gherk whol meric sicum it up every
up to the mouths of the bottles. Corks should be prepared to fit the bottles, and a cloth should be put under the bottome of the bottles to prevent their cracking with the heat. Light the fire under the kettle, and heat the water to 160° or 170°. This heat should be continued for half an hour, when the fruit will he sufficiently scalded; after that, fill up the bottles with boiling water to within an inch of the cork, and cork them tightly. Lay the bottles on their sides ; change the position of the bottles once or twise a week during the first two months, turning them round to prevent any fermentation that might take place. Fruits could also be kept by the process mentioned above for meats, remembering that they are to be scalded only, not boiled, as is the case with meats.

Another Method.-After paring and coring, putamongst them sutficient sugar to make them palatable for present eating, about 3 or 4 lbs. only to each bushel ; let them stand awhile to dissolve the sugar, not using any water; then heat to a boil, and continue the boiling with care for 20 to 30 minutes, or sufficiently long to heat them through, which expels the air. Have ready a kettle of hot water, into which dip the can or bottle long enough to heat it ; then fill in the fruit while hot, corking it immediately, dipping the end of the cork into the bottle-wax preparation described elsewhere.

Worcestershire Sauce.-Port wine and mushroom ketchup, of each 1 qt .; old ale and strong vinegar, of each, $\frac{1}{2} \mathrm{pt}$. ; walnut pickle, 1 pt.; soy, $\frac{1}{2} \mathrm{pt}$; pounded anchovies, $\frac{1}{2} \mathrm{lb}$.; fresh lemon peel, minced shallots, and scraped horse-radist, of each, 2 oz ; allspice and black pepper (bruised), of each, 1 oz . ; curry powder, 3 oz. Digest 14 days; strain and bottle.

Gherkins.-Take small cucumbers (not young), steep for a week in very strong brine; it is then poured off, heated to the boiling point, and again poured on the fruit. The next day, the gherkins are drained on a sieve, wiped dry, put into bottles or jars, with some spice, ginger, pepper, or cayenne, and at once covered witb strong piokling vinegar.

Mixed Pickles from cauliflowers, white cabbage, French beans, onions, cucumbers, \&c., are treated as gherkins, with raw ginger, capsicum, mustard-seed, and long pepper, added to each bottle. A little coarsely-bruised turmeric improves both the color and flavor.

Indian Pickle.-Piccalilli.-Take one hard white cabbage (sliced), 2 cauliflowers, pulled to pieces, 20 French beans, 1 stick of horse-radish, sliced fine, 2 doz . small white onions, and 1 doz. gherkins. Cover these with boiling brine; next day, drain the whole on a sieve, put it into a jar, add of curry powder, or turmeric, 2 oz . ; garlic, ginger, and mustard-seed, of each 1 oz ; capsicum, $\frac{1}{2} \mathrm{oz}$. Fill up the vessel with hot pickling vinegar ; bung it up close, and let it stand for a month, with occasional agitation every week.

To Presirve Fruit Juice without Heat.-Ingredients : 10 lbs . of fresh-gathered, picked, ripe red currants, or other fruit, 2 qts. cold water, 5 oz . tartaric acid, 6 lbs . of coarse-sifted sugar. Put the fruit into a large earthen pan, pour the water with the tartaric acid dissolved in it over the fruit, cover the pan with some kind of

74 GROCERS AND CONFECTIONERS' RECEIPTS.

lid, and allow the whole to steep for 24 hours in a cold place, and it would be all the better if the pan containing the fruit could be immersed in rough ice. Next, pour the steeped fruit into a suspended stout flannel bag, and when all the juice has run through, tie up the open end of the bag, and place it on a large earthen dish, with another dish upon it ; place a half-hundred weight upon this, to press out all the remaining juice, and then mix it with the other juice. You now put the sifted sugar into the juice, and stir both logether occasionally, until the sugar is dissolved, and then bottle up the syrup, cork, and tie down the bottles with wire, and keep them in the ice well or in a cold cellar, in a reclining nositica.

To restore Injured Meat. - When the brine sours and taints the meat, pour it off; boil it, skim it well, then pour it back again on the meat boiling hot ; this will restore it, even when much injured. If tainted meat is injured, dip it in the solution of chloride of lime prescribed for rancid butter ; it, will restore it. Flyblown meat can be completely restored by immersing it for a few hours in a vessel containing a small quantity of beer; but it will taint and impart a putrid smell to the liquor. Fresh meat, hams, fish, \&c., can be preserved for an indefinite length of time without salt, by \& light application of pyroligneous acid applied with a brush; it imparts a fine smoky flavor to the meat, and is an effectual preservative. But pure acetic acid may be used instead.

Meifod of curing bad Tob Butter.-A quantity of tub-butter was brought to market in the West Indies, which, on opening, was found to be very bad, and almost stinking. A native of Pennsylvania undertook to cure it, which he did in the following manner: -

He started the tubs of butter in a large quantity of hot water, which soon melted the butter; he then skimmed it off as clean as possible, and worked it over again in a churn, and, with the addition of salt and fine sugar, the butter was sweet.

To restore Rancid Butter.- Use 1 pt . water to each lb. of butter, previously adding 20 grs . chloride of lime to each pt. of water; wash well the butter in this mixture, afterward re-wash in cold water and salt ; or melt the butter in a water bath with animal charcoal, coarsely powdered and previously well sifted to free it from dust; skim, remove, and strain through flannel; then salt.

Fresh Meat-to keep a Week or Two in Summer.-Farmers or others living at a distance from butchers can keep fresh meat very nicely for a week or two, by putting it into sour milk, or butter milk, placing it in a cool cellar. The bone or fat need not be removed. Rinse well when used.

Milkman's Process.-To give a body to diluted milk use the following nutritive and healthy compound at the rate of 8 oz . to every 5 gals., stirring it up in the milk, till all is dissolved : arrowroot, 6 oz. ; magnesia, 6 oz . ; starch, 1 lb . , flour, $\frac{1}{2} \mathrm{lb}$.; white sugar in powder, 1 lb ; mix all intimately together, and keep in a dry place for use.

Cuetard Powders.-Sago meal and flour, 1 lb . each, color with turmeric to a cream color. Flavor with essential oil of almonds, 1 dr.; ess. of lemon, 2 drs. Use with sweetened milk to form extemporaneous custards.
blac each pepy qt., the days
P1
stee
and
24 h
them
diate
mus
waln
that
soak
kept
out t
ones
in ea
put 6
vineg
ing k
the p
times
Frl
flour, mix.

Co
lbs.;
rape
fine
St
toge
amo
a pie
ing t
pour
of st
Fi
quan
2 to
mak
thicl
to p
abou
upor
mak

Curry Powner.-Turmeric and coriander seeds, of each, 4 oz .; black pepper, $2 \frac{1}{2} \mathrm{oz}$; ginger, 14 drs . ; cinnamon. mace, and cloves, each, $\frac{1}{2} \mathrm{oz}$. ; cardamom seeds, 1 oz . ; cummin seeds, 2 drs. ; cayenne pepper, 1 oz ; powder and mix.

Napolwon's Camp Sauce.-Old strong beer, 2 qts., white wine, 1 qt., anchovies 4 ounces : mix; boil for ten minutes ; remove it from the fire, and add of peeled shallots, 3 ounces; macerate for 14 days, and bottle.

Pickled Onions.-Choose small round onions, remove the skins, steep them in strong brine for a week in a stone vessel, pour it off, and heat till it bools; then pour on the onions, boiling hot; after 24 hours, drain on a sieve, then put them in bottles, fill up over them with strong spiced vinegar, boiling hot, cork down immediately, and wax over the cork. In a similar manner are pickled mushrooms, cauliflowers, samphires, peas, beans, green gooseberries, walnuts, red cabbages (without salt, with cold vinegar). Observe that the soft and more delicate articles do not require so long soaking in brine as the harder and coarser kinds, and may be often kept by simply pouring very strong pickling vinegar on tuem without the application of heat. For peaches, select ripe but not soft ones; rub with a dry cloth; put four cloves, free from their heads, in each large peach, and two in small ones; to one gallon vinegar, put 6 lb . good brown sugar ; put the peaches in a jar, and put the vinegar (diluted with water, if too strong) and sugar in a preserving kettle over the fire ; boil and skim it; pour it boiling hot over the peaches, covering them closely; repeat the operation three times; then seal them tightly in cans or bottles.
Frengh Patent Mustard.-Flour of mustard, 8 lbs.; wheaten flour, 8 lbs.; bay salt, 2 lbs ; cayenne pepper, 4 oz ; vinegar to mix.

Common Mustard.-Flour of mustard, 28 lbs.; wheat flour, 28 lbs.; cayenne pepper, 12 oz., or as required; common salt, 10 lbs . ; rape oil, 3 lbs . ; turmeric to color ; mix well, and pass through a fine sieve.
Starch Polish.-White wax, 1 oz. ; spermaceti, 2 oz.; melt them together with a gentle heat. When you have prepared a sufficient amount of starch, in the usual way, for a dozen pieces, put into it a piece of the polish the size of a large pea; more or less, according to large or small washings. Or thick gum solution (made by pouring boiling water upon gum arabic), one tablespoon to a pist of starch, gives clothes a beautiful gloss.
Fire Kindlers.-To make very nice fire kindlers, take resin, any quantity, and melt it, putting in for each pound being used, from 2 to 3 oz . of tallow, and when all is hot, stir in pine sawdust to make very thick; and, while jet hot, spread it out about 1 inch thick, upon boards which have fine sawdust sprinkled upon them, to prevent it from sticking. When cold, break up into lumps about 1 inch square. But if for sale, take a thin board and press upon it, while yet warm, to lay it off into 1 inch squares: this makes it break regularly, if you press the crease sufficiently deep, greasing the marked board to prevent it from sticking.

To keep Cider sweet, and sweeten Sour Cider.-To keep cider perfect, take a keg and bore holes in the bottom of it; spread a
piece of woollen cloth at the bottom; then fill with clean sand closely packed ; draw your cider from a barrel just as fast as it will run through the sand; after this, put it in clean barrels which have had a piece of cotton or linen cloth 2 by 7 inches dipped in melted salphur and burned inside of them, thereby absorbing the sulphur fumes (this process will also sweeten sour cider); then keep it in a cellar or room where there is no fire, and add $\frac{1}{2} \mathrm{lb}$. white mustard seed to each barrel. If cider is long made, or souring when you get it, about 1 qt . of hickory ashes (or a little more of other hard wood ashes) stirred into each barrel will sweeten and clarify it nearly equal to rectifying it as above; but if it is not rectified, it must be racked off to get clear of the pomace, as with this in it, it will sour. Oil or whisky barreis are best to put cider in, or $\frac{1}{2}$ pint sweet oil to a barrel, or a gallon of whisky to a barrel, or both, may be added, with decidedly good effects; isinglass, 4 oz . to each barrel, helps to clarify and settle cider that is not going to be rectified.

Ginair Wine.-Water, 10 gals., lump sugar, 20 lbs ., bruised ginger, 8.oz.; $\hat{2}$ or 4 eggs . Boil well and skim; then pour hot on six or sevon lemons cut in slices, macerate for 2 hours; then rack and ferment ; next add spirit, 2 qts., and afterwards finings, 1 pint; rummage $w \cdot i l l$. To make the color, boil $\frac{1}{2} \mathrm{oz}$. saleratus and $\frac{1}{2} \mathrm{oz}$. alum in 1 pint of water till you get a bright red color.

Ioe Cream.-Have rich, sweet cream, and a half-pound of loaf sugar to each quart of cream or milk. If you cannot get cream, the best imitation is to boil a soft custard, 6 eggs to each quart of milk (eggs well beat). Or another is made as follows: boil 1 quart of milk, and stir into it, while boiling, 1 tablespoonful of arrowroot wet with cold milk; when cool, stir into it the yolk of 1 egg to give it a rich color. Five minutes' boiling is enough for either plan. Put the sugar in after they cool; keep the same proportions for any amount desired. Or thus: to 6 quarts of milk add $\frac{1}{2} \mathrm{lb}$. Oswego starch, first dissolved; put the starch in 1 quart of the milk; then mix altogether, and simmer a little (not boil); sweeten and flavor to your taste; excellent. The juice of strawberries or raspberries gives a beautiful color and flavor to ice creams, or about $\frac{1}{2}$ ounce essence or extract to 1 gallon, or to suit the taste. Have your ice well broken, 1 qt. salt to a bucket of ice. About one half hour's constant stirring, with occasional scraping down and beating together, will freeze it.

Substitute for Cream.-Take 2 or 3 whole eggs, beat them well up in a basin; then pour boiling hot tea over them; pour gradually to prevent curdling. It is difficult for the taste to disting uish it from rich cream.

Chicago Ice Cream.-Irish moss soaked in werm water one hour, and rinsed well to cleasise it of sand and a certain foreign taste; then steep it in milk, keeping it just at the point of boiling or simmering for one hour, or until a rich yellow color is given to the milk; without cream or eggs, from 1 to $1 \frac{1}{2} \mathrm{oz}$. to a gal. only is necessary, and this will do to steep twice. Sweeten and flavor like other creams.
Ginarr Beer.-Take $5 \frac{1}{2}$ gals. water, $\frac{3}{4} \mathrm{lb}$. ginger root bruised, tartaric acid, $\frac{1}{2}$ oz., white sugar, $2 \frac{1}{2}$ lbs., whites of 3 eggs well beaten, 10 small teaspoonfuls of lcmon ess.; yeast, 1 gill ; boil the
roo
ess. fast as it will Is which have ped in melted g the sulphur n keep it in a rite mustard when you get er hard wood rify it nearly ed, it must be t, it will sour. pint sweet oil joth, may be o each barrel, je rectified.
lbs., bruised 1 pour hot on rs; then rack nings, 1 pint; tus and $\frac{1}{2} \mathrm{oz}$. r.
oind of loaf iot get cream, each quart of llows: boil 1 olespoonful of it the yolk of is enough for the same proharts of milk ch in 1 quart e (not boil); hice of strawflavor to ice lon, or to suit bucket of ice. onal scraping
eat them well m ; pour graaste to distin-
ater one hour, oreign taste ; of boiling or s given to the gal. only is nd flavor like
root bruised, 3 eggs well gill ; boil the

GROCERS AND CONFECTIONERS' RECEIPTS.
root for 30 minutes in 1 gal. of the water ; strain off. and put the ess. in while hot; mix, make over night; in the mc.aing, skim and boitle, keeping ont the sediments.

Philadelphia Beer.-Take 30 gals. water, brown sugar, 20 lbs. ginger root bruised, $\frac{1}{4} \mathrm{lb}$., cream of tartar $1 \frac{1}{4} \mathrm{lbs}$., carbonate of soda, $3 \mathrm{oz} .$, oil of lemou, cut in a little alcohol, 1 teaspoonful, the white of 10 eggs well beaten, hops, 2 oz ., yeast, 1 qt . The ginger root and hops should be boiled for twenty or thirty minutes in enough of t : e water to make all milk-warm; then strained into the rest and the yeast added and allowed to work itself clear ; then bottle.

Cider without Aprles.-Water, 1 gallon; common sugar, 1 lb.; tartaric acid, $\frac{1}{2}$ or. ; yeast, one tablespoontul ; shake well, make in the evening, and it will be fit to use next day,

For Bottling.-Put in a barrel, 5 gals. hot water; 30 lbs common sugar; $\frac{3}{4} \mathrm{lb}$. tartaric acid; $2 E$ gallons cold water; 3 pints of hop or brewers' yeast, worked into paste with 1 pint water and 1 lb . flour. Let it work in the barre! forty-eight hours the yeast running out of the bunghole all the time, putting in a little sweetened water occasionally to keep it full; then bottle, putting in two or three broken raisins to each bottle; and it will nearly equal champagne.

Cheap Cider.-Put in a cask 5 gals. hot water; 15 lbs. brown sugar ; l gal. molasses; gal. hop or brewers' yeast ; good vinegar, 6 qts. ; stir well, add 25 gals. cold water, fcrment as the last.

Another Cider.-Cold water, 20 gals., brown sugar, 15 lbs ., tartaric acid, $\frac{1}{2}$ lb.; rummage well together, and add, if you have them, 3 or 4 lbs. of dried sour apples, or boil them and pour in the expressed juice. This cider will keep longer than the others.
Spruce and Ginger Beer.-Cold water, 10 gals. ; woiling water, 11 gals. ; mix in a barrel ; add molasses, 30 lbs., or brown sugar, 24 lbs.; oil of spruce or any oil of which you wish the flavor, 1 oz. ; add 1 pint yeast, ferment, bottle in two or three days. If you wish white spruce beer, use lump sugar; for ginger flavor, use 17 oz. ginger root bruised, and a few hops; boil for thirly minutes in three gals. of the water, strain and mix well; let it stand two hours and bottle, using yeast, of course, as before.
Mnj; Beer, very fine.--Mix 14 lbs molasses and 11 gals. water well together, and boil them for 2 hours with 6 oz . hops. When quite cool, add a cupful of yeast, and stir it well by a gallon or two at a time. Let it ferment for 16 hours, in a tub covered with a sack, then put it into a 9 -gallon cask, and keep it filled up ; bung it down in 2 days, and in 7 days it will le fit to drink, and will be stronger than London porter.

Edinbcrgh Ale.-Employ the best pale melt-1st, mash 2 barrels pr. quarter, at 183°, mash three-quarters of an hour, letitstand 1 hour, and allow half' an hour to run off the wort; 2 d , mash 1 barrel per quarter, at 180°, mash three-fourths of an hour, let it. stand three-fourths, and tap as before; 3d, mash 1 barrel per quarter, at 170°, mash balf an hour, let at stand balf an hour, and tap as before. The first and second wort may be mixed together, boiling them about an hour or an bour and a quarter, with a quantity of hops proportioned to the time the ale is required to be kept. The

78 GROCERS ARi, CGNREOTIONERS RECEIP'SS.

first two may ive mized at the heat of 60°, in the gyletun, and the second should be fermented separately for small beer. The best hops should be ased in the proportion of about 4 lbs . fo: every quarter of malt employed.

Bottling Porter.-Brown Stout. Pale malt, 2 quarters; amber and brown malt, of each $1 \frac{1}{2}$ do.; mash at 3 times with 12, 7, and 6 barrels of water ; boil with hops, 50 lbs ., set with yeast, 29 lbs . Product, 17 barrels, or $1 \frac{1}{2}$ times the malt.

Lemon Reer.-To make 20 gals., boil 6 oz . of ginger root bruised, $\frac{1}{4} \mathrm{lb}$. crearn of tartar, for 20 or 30 minutes, in 2 or 3 gals. water ; this will be strained in 13 lbs . coffee sugar, on which you have pit $\frac{1}{\frac{1}{2}} \mathrm{oz}$. oil of ! 3mon, and six good lemons squeezed up together, having warm water enough to make the whole 20 gals. jnst so hot that you can hold your hand in it without burning, or about 70 degrees of heat ; put in $1 \frac{1}{2}$ pints of hop or brewers' yeast, worked into paste with 5 or 6 oz . flour. Let it work over night, then strain and bottle for use.

Table Begr.-Malt, 8 bushels, hops, 7 lbs., molasses; 25 lbs. ; brew for 10 barrels; smaller quantity in proportion.

Hop Bemr.-Hops, 6 ounces, molasses, 5 quarts ; boil the hops till the etrength is out, strain them into a 30 gallon barrel ; add the molasses and 1 teacupful of yeast, and fill up with water; shake it well, and leave the bung out till fermented, which will be in about 24 hours. Bung up, and it will be fit for ung in about three days.

Molasses Beqr.-Hops, 1 oz . ; water, 1 gal. ; boil for 10 minutes, strain, add molasses, 1 lb ., and when luke-warm, yeast, 1 spoonful. Ferment.

Root Beer.-For 10 gallons beer, take 3 lbs. common burdock root, or 1 oz . essence of sassafras ; $\frac{1}{2} \mathrm{lb}$. good hops; 1 pint corn, roasted brown. Boil the whole in 6 gallons pure water until the strength of the materials is obtained; strain while hot into a ke_{F}, adding enough cold water to make 10 gallons. When nearly ce. add clean molasses or syrup until palatable,-not sickishly sweet. Add also as much fresh yeast as will raise a batch of eight loa of bread. Place the keg in a cellar or other cool place, and in forty-eight hours you will have a keg of first-rate sparkling root beer.

Cheap Beer. - Water, 15 gals. ; boil half the water with $\frac{1}{4} \mathrm{lb}$. hops ; then add to the otber half in the tun, and mix well with 1 gal. molasses and a little yeast.

To restore Sour Beer.-Good hops, ${ }_{4} \mathrm{lb}$., powdered chalk, 2 lbs. Put in the hole of the cask, and bung close for a few days; for frosted beer, add some tinings, a few handfuls of tlour, and some scalled hops; for ropy beer; use a handful or two of flour, the same of hops, with a little powdered alum to each barrel. Rummage well.

To improva the I javor of Beer.-Bruised ginger, 1 oz. ; bruised cloves, $\frac{1}{2}$ oz. ; a few scaided hops and a doz. broken coarse biscuits <... avery two barrels. Rummage vell.

ETiNONADE.-White sugar, 1 lb ., tartaric acid, \ddagger ounce, essence of limon, 30 drops, water 3 qtis. Mix.

Cream Soda.-Loaf sugar, ten lbs., water, 3 gal. ; warm gradu." ally so as not to butn ; good rich cream, 2 quarts, extract vanilia, $1 \frac{1}{2}$ ounces, extrict nutmeg, $\frac{1}{\frac{1}{2}}$ ource, tartaric acid, 4 ounces. Just
bring will of thr glass, is usec
Fre :zed, 1 mons prepar vious proper vessel
ing cre
Por essenc One de ImP日 sukar, flour, then a the sed spoonf third drink

Pepp white s flour w and let permin

Silive
4 teasp
boil to
3 ounce
putin
to the quick.
Sana
-accor
meg.
STou Columb burred Bottle t
Soda gum ar gum is which a extract \&c., \& c. lbs. of s now use and f quick.
n , and the The best fo: every
rs ; amber 12, 7 , and est, 29 lbs .
ot bruised, ls. water ; you have together, ils. just so f, or about st, worked then strain
lbs. ; brew
e hops till ; add the r ; shake it be in about three days. 10 minutes, 1 spoonful.

in burdock

 pint corn, until the nto a ke nearly co? thly sweat ght loa ce, and in kling rootwith 4 lb . rell with 1
halk, 2 lbs. for frosted ne scalled me of hops, well.
z. ; bruised rse biscuits
bring to a boiling heat; for if you cook it any length of time, it will crystallize; use 4 or 5 spoonfuls of this syrup instead of three, as in other syrups; put $\frac{1}{\frac{1}{2}}$ teaspoonful of soda to a° glass, if used without a fountain. For charged fountains no acid is used.

Freezing Preparation.-Common sal-ammoniac, well pulverized, 1 part ; saltpetre, 2 parts; mix well together. Then take common soda, well pulverized. To use, take equal quantities of thess preparations (which must be kept separate and well covered previous to using) and put them in the freezing pot; add of water a proper quantity, and put in the article to be frozen in a proper vessel ; cover up, and your wants will soon be supplied. For freezing cream or wines this cannot be beat.

Portable Lemonade.-Tartaric acid, 1 ounce, white sugar, 2 lbs., essence of lemon, quarter ounce; powder and keep dry for use. One dessert spoonfu! will make a glass of lemonade.

Imperial Cream Nectar.-Part 1st, take 1 gallon water, loaf sukar, 6 lbs., tartaric acid, 6 ounces, gum arabic, 1 ounce. Part 2d, flour, 4 teaspoonfuls, the whites of 5 eggs ; beat finely together; then add 1 piat water; when the first part is blood warm, put in the second; hoil 3 minutes, and it is done. Directions : 3 tablespoonfuls $f:$ syrup to two-thirds of a glass of water ; add onethird leaspoonful of carbonate of soda, made fine; stir well, and drink as rour leisure.

Pepphemint Cordial.-Good whisky, 10 galls., water, 10 galls., white sugar, 10 lbs ., oil peppermint, 1 ounce, in 1 pint alcohol, 1 lb . flour well Worked in the fluid, $\frac{1}{2} 1 \mathrm{lb}$. burned sugar to color. Mix, and let it stand one week before using. Other oil in place of peppermint, and you have any flavor desired.

Silver-top Drink.-Water, 3 qts., white sugar, 4 lbs., ess. of lemon, 4 teaspoonfuls, white of 5 eggs, beat with 1 tablespoonful of flour; boil to form a syrup; then divide into equal parts, and to one add 3 ounces tartaric acid, to the other 4 ounces of carbonate cf soda; put in a teaspoonful of each of the syrups, more or less (according to the size of the glass), to two-thirds of a glass of water; drink quick.

Sangarem.-Wine, ale, or porter, or two-thirds water, hot or cold -according to the season of the year, loaf sugar to taste, with nutmeg.

Stoughton Bitters.-Gentian, 4 ounces, orange peel, 4 ounces, Columbo, 4 ounces, camomile flowers, 4 ouncos, quassia, 4 ounces, burned sugar, 17b., Fhisky, $2 \frac{1}{2}$ galls. Mix and let it stand 1 week. Bottle the clear liquor.

Soda Syrups.-Loaf or crushed sugar, 8 lbs., pure water, 1 gallon, gum arabic, 2 oz . ; mix in'a brass or copper kettle. Boil until the gum is dissolved, then skim and strain through white flannel, after which add tartaric acid, $5 \frac{1}{2} \mathrm{oz}$. dissolve in hot water; to flavor, use extract of lemon, orange, vanilla, rose, sarsaparilla, strawberry, $\& c ., \& c$., $\frac{3}{2}$ oz. or to your taste. If you use juice of lemon, add $2 \frac{1}{2}$ lbs. of sugar to a pint, you do not need any tartaric acid with it; now use two tablespoonfuls of syruz it of a tumbler of water, and $\&$ teaspoonful of super-carbonate of anin, made fine; drink quick. For soda fountans, 1 oz . of suner-cal onate of soda is used
to 1 gallon of water. For charged fountains no acids are needed in the syrups.

Comanon Small Beer.-A handfui of hops to a pail of water, a pint of bran and half a pint of violasses, a cup of yeast and a spoonful of ginger.

Royal Pop.-Cream tartar, 1 lb ., ginger, $1 \frac{1}{2}$ oz., white sugar, 7 lbs., essence of lemon, 1 drachm, water, 6 galls., yeast, $\frac{1}{2}$ pint. Tie the corks down.

Raspberay Syrup without Raspbeimes.-First make a syrup with 36 lbs . of white sugar, and 10 gallons of water, and put it into a clean mixing burrel. Then dissolve 4 lb . of tartaric acid in 1 qt . of cold water, and add to the syrup. Next take $\frac{1}{2}$ lb. orris root, and pour over it half a gallon of loiling water; let it infuse until cold, then filter, and put it into the mixing barrel, stirring it well.

To Color.-Boil $\frac{1}{2}$ oz. of cochineal ; $\frac{3}{4}$ oz. cream tartar; $\frac{3}{3} \mathrm{oz}$. saleratus, and $\frac{1}{2}$ oz. alum in 1 qt . of water till you get a bright red color, and add this to the syrup till the color suits. The above is a very valuable receipt, and will make 16 gals. syrupat a very low cost per gallon. If it is desirable to produce a richer syrup, add more sugar. Colors ought to be made in a brass or copper kettle.

Bottled Soda Water without a Machine.-In each gallon of water to be used, carefully dissolve $\frac{1}{2}$ lb. of crushed sugar, and one ounce of super-carbonate of soda; then fill pint bottles with.this water, have your corks ready; now drop into each bottle $\frac{1}{2}$ tram of pulverized citric acid, and immediately cork and tie dowa. Handle the lottles cảrefully, anu keep cool until needed. More sug.ar may be added if desired.

Oxster Sour. -To each dozen or dish of oysters put $\frac{1}{2}$ pint of witer ; milk 1 gill; butter $\frac{1}{2} \mathrm{oz}$. ; powdered crackers to thicken; bring the oysters and water to a boil, then add the other ingredient 4 previously mixed together, and boil from three to nive minutes onis'. Season with pepper and salt to taste.

Mock Terrapin. - A supper dish. Half a caif's liver; seasoned, fry brown. Hash it, not very fine, dust thickly with flour, a teaspoon mixed mustard, as much cayenne pepper as will lio on a half cime; 2 hard eggs, chopped fine, a lump of butter as large as an egg, a tea cup of vater. Let it boil a minute or two ; cold veal will do, if liver is not liked.

Mutton Larricot.-Take a loin of mutton, cut it into smull chops, season it with ground jeprer, allspice and sait, let it stand a night, and then fry it. Have good gray well seasoned with flour, butter, catsup and pepper, if necessary. Boil turnips and carrots, cut them small, and add to the muiton ntewed in the gravy, with the yolks of hard boiled eggs and force weat balls.

Impation Apple Butter.-Vimegar, 1 qut. ; cheap molasses, 1 qt. ; mix together, set over the fire till it commences to cook; take it off, add 10 tablespoonfuls of wheat flour, and cold water to make a batter, then add 1 qt . scalding water, stir and coola for 16 minutes.

Blackberry Wine.-Wash the berries, and pour 1 qt. of boiling water to each gal. Let the mixture stand 24 hours, stirring occawionally; then strain and measure into a keg, adding 2 ibs. sugar, and pood rye whisky 1 pint, or best alcohol, $\frac{1}{2}$ pint to each gal. Cork tight; and put \&way for use. The best wiue that can be made.
L_{E} drop let it mucl

Su
stem soft siona filter more lon. R_{A} wate lbs. 0 stalk remo rack be re fine- ${ }^{-1}$ thin, liquor in the To g a cou bottle

Por good slues, 10r wi

Ami
best),
wine, stand tion.
Bri
lbs.;
proper gals.; orris-

Brit
mash
Ferme sherry gain Cur juice 11 $\frac{1}{2} \mathrm{OZ}$. brand of the it: wh is pref
Bla abote

Lemon Siymup.-Havana sugar, 1 lb ., boilin waterdown to a quart, drop in tha white of 1 egg , and strain it. Add $\ddagger \mathrm{oz}$. tartaric acid; let it stand 2 days; shake often ; 12 drops essence of lemon will much improve it.

Superior Raisin Wine.-Take 30 lbs. of chopped raisins free from stems and dust; put them in a large keg, and add to them 10 gals. soft water; let them stand two weeks unbunged, shaking occasionally (warm place in winter), then strain through woollen, or filter; color with burnt sugar ; bottle and cork well for use. The more raisins the better the wine, not exceeding 5 lbs. to each gallon.

Raisin Wine equal to Suerry.-Boil the proper quantity of water and let it stand till cold. To each gal. of this water add 4 lbs. of chopped raisins, previously well washed, and freed from stalks; let the whole stand for l'month, stirring frequently; then remove the raisius, and bung up closely for 1 month more; then rack into another vessel, leaving all sediment behind, which must be repeated till it lecomes fine; then to every 10 gals. add 6 lbs . of fine-sthgar, and 1 doz. of good orangcs, the rinds being pared very thin, and infused in 2 qts. of brandy, which should be added to the liquor at its last racking. Let the whole stand three months in the casiz, then bottle. It should remain bottled twelve-months. To give it the flavor of Madeira, when it is in the cask, put in a couple of green citrons, and let them remain till the wine is bottled.

Port Wine.-Worked cider, 42 gals. ; good port wine, 12 gals. ; good brandy, 3 gals. ; pure spirits, 6 gals; mix. Elderberries and sloes, and the fruit of the black haws, make a fine purple color Ior wines, or use burnt sugar.

American Champagne.-Good cider (crab-apple cider is the best), 7 gals. ; best fourth-proof brandy, 1 qt. ; genuine champagne wine, 5 qts. ; milk, 1 gal. ; bitarirate of potassa, 2 oz . Mix, and let stand a short time; bottle while fermenting. An excellent imitation.

Brifish Champagne.-Loaf-sugar, 56 lbs.; brown sugar (pale), 48 lbs. ; water (warm), 45 gals.; white tartar, 4 oz . ; mix, and at a proper temperature add yeast, 1 qt.; afterwards sweet cider, 5 gals. ; bruised wild cherries, 14 or 15 oz .; pale spirits, 1 gal. ; orris-powder, $\frac{1}{2} \mathrm{oz}$. Bottle while fermenting.

Bitish Madelra.-Pale malt. 1 bushel; boiling water, 12 gals.; mash and strain; then add white sugar, 4 los.; yeast, 1 lb . Ferment, next add raisin or Cape wine, 3 qts.; brandy, 3 qts. sherry, 2 qts. ; port, 2 qts. ; buug down. The malt may be mashed again for bottle beer.

Currant and orher Fruit Wines.-To every gallon of expressed juice, add 2 gals. soft water, 6 lbs. brown sugar, cream tartar, $\frac{1}{2}$ oz. ; and qt. brandy to every 6 gals. ; some prefer it without brandy. Afiter fermentation, take 4 oz . isinglass dissolved in 1 pt . of the wine, and put to each barrel, which will fine and clear it: when it must be drawn into clean casks, or bottled, which is preferable.

Blackberby and Strawberry Wines are made by takiug the abote wine when made with port wine, and for every 10 gals.

82

from 4 to 6 qts. of the fresh fruit, bruised and strained, are added, and let atand four days till the flavor is extracted; when bottling, add 3 or four broken raisins to each buttle.

Morella Wing.--To each quart of the expressed juice of the morella, or tame cherries, add 3 qts. water, and 4 lbs. of coarse brown sugar; let them ferment, and skim till worked clear ; then draw off, avoiding the sediment at the bottom. Bung up, or bottle, which is best ior all wines, letting the bottles lie always on the side, either for wines or beers.

London Sherry.--Chopped raisins, 400 lbs .; soft water, 100 gals.; sugar, 45 lbs.; white tartar, 1 lb . $;$ cider, 6 gals. Let them stand together in a close vessel one month; stir frequently. Then add of spirits, 8 gals.; wild cherries bruised, 8 lbs. Let them stand one month longer, and fine with isinglass.

Enflisf Patent Wine from Rhubarb.-To each gal. of juice, add 1 gal. soft water, in which 7 lbs. brown sugar have been dissolved; fill a keg or barrel with this proportion, leaving the bung out, and keep it filled with sweetened water as it works off, until clear. Any other vegetable extract may be used if this is not liked: then bung down or bottle as you please. The stalks will yield $\frac{3}{4}$ their weight in juice; fine and settle with isinglasis as above. This wine vill not lead to intemperance.
$V_{\text {arious }}$ Wines.-To 28 gals. clarified cider add good brandy, 1 gal.; crude tartar (this is what is deposited by grape wines), milk to settle it, 1 pt . ; draw off 36 hours after thoroughly mixing.

Ginger Wine.-Put one oz. of good ginger-root bruised in 1 qt . 95 per. cent. alcohol; let it stand nine days, and strain ; add 4 qts. water, and 1 lb . White sugar dissolved in hot water, color with tincture of sanders to suit. For bar-purposes add 1 pt. port wine.

Another.-To 1 qt. 95 per cent. alcohol add 1 oz. best gingerroot (bruised but not ground), 5 grs. capsicum, and 1 dr . tartaric. acid. Let it stand one week and filter; now add 1 gal. Water in which 11 b . of crushed sugar has been boiled. Mix when cold. To make the color, boil $\frac{1}{\frac{1}{2}} \mathrm{oz}$. cochineal, $\frac{3}{4}$ oz. cream tartar, $\frac{1}{3}$ oz. saleratus, and $\frac{1}{2}$ oz. alum, in one pt. of water till you get a bright-red color.

To mestori Flat Wne.-Add 4 or 5 gals. of sugar, honey, or bruised raisins to every 100 gals., and bung close ; a little spirit may be added, to roughen; take bruised sloes, or powdered catechu, and add to the wine in suitable proportions, or add a small quantity of bruised berries of the mountain ash, to allay inordinate flatness. Let it stard 2 hours and bottle, using yeast, of course, as before.

White Wines are generally fined by isinglass in the proportion of $1 \frac{1}{2} \mathrm{oz}$. (dissolved in $1 \frac{1}{4}$ pts. of water, and thinned with some of the wine) to the hogshead. Red Wines are generally fined with the whites of egge, in the proportion of 12 to 18 to each pipe; theymust be well beaten to a froth with about 1 pt . of water, and afterwards mixed with a little of the wine, before adding them to the liquor. Rummage well.

Champagnh Cider.-Good pale cider, 1 hhd.; spirit, 3 gals. ; sugar, 20 lbs . ; mix, and let it stand one fortnight ; then fine with skimmed milk, t gal. ; this will be very pale, and a aimilar article, 7iken pro-
perly have Bea oil of c 8 lbs.:

Sto root, 1 corian bark, into t clear strain, in the tinctur the dr

Вок dered macer ter, an

Cor o nero hol. I then p sugar above.

Cur Ceylon minute syrup ; dark \mathbf{y}

Anis
per cen percen infusio barrel and let filtering

Rata 3 gals. steep ir oz. pea liquids,
Aria
well ; t till the add 5 g
Slmpi the whi for two nel bag

Sars
20 drop
carame

GROCERS AND CONFLCTIONERS' RECEIPTS,

ro added, bottling, the morse brown draw off, le, which the side,

100 gals. tem stand en add of stand one
juice, add dissolved; bung out, intil clear. iked : then eld $\frac{1}{4}$ their This wine
! brandy, 1 ines), milk ing. sed in 1 qt . add 4 qts. oolor with 1 pt. port
est gingerr. tartaric1. water in n cold. To \ddagger oz. sale-bright-red
, honey, or - spirit may atechu, and quantity of atness. Let fore.
proportion some of the d with the ; theymust afterwards the liquor.
als. ; sugar, th skimmed , when pro-
perly bottled and lebelled, opens so briak, that even good judges . have mistaken it for genuine ohampagne.
Bealin OAbraway Cordase.-Take 8 gals. spirit; 50 per cent. ; 1 oz. oil of carraway which you dissolve in spirit 95 per cent. ; 8 lbs. sugar ; 8 lbs . water. Dissolve your sugar in the water ; mix; stir and filter.

Stouach Bittmes Equal to Hostepters'--European gentian root, $1 \ddagger$ oz. ; orange peel, $2 \ddagger$ oz. ; cinnamon, \ddagger oz. ; anise seed, $\ddagger \mathrm{oz}$. ; coriander seed, $\frac{1}{2}$ oz.; cardamom seed, toz. ; unground Peravian bark, $\frac{1}{2}$ oz. ; gam kino, \ddagger oz.; bruise all these articles, and put them into the best alcohol, 1 pt ; let it stand a week, and pour off the clear tincture ; then boil the dregs a few minutes in 1 qt . of water, strain, and press out all the strength ; now dissolve loaf sugar, 1 lb ., in the hot liquid, adding 3 qts. cold water, and mix with the spirit tincture first poured off, or you can add these, and let it stand on the dregs if preferred.
Bokri's Bittrers.-Rasped quassia, $1 \frac{1 i}{2}$ oz. ; calamus, 11 oz. ; powdered catechu, $1 \frac{1}{2}$ oz. ; cardamom, 1 oz.; dried orange peel, 2 oz.; macerate the above ten days in $\frac{1}{2}$ gail, strong whisky, and then filter, and add 2 gals. water; color with mallow or malva flowers.

Curadoa Cordial, 40 Gals. - Essence of bitter oranges, 2 oz.; ess. o neroli, 2 oz ; ess. of cinnamon, $\downarrow \mathrm{oz}$. ; 3 drs. mace, infused in alcohol. Dissolve the above essences in 1 gal. alcohol, 95 per cent.; then put in a clean barrel 13 gals. alcohol, 85 per cent.; 26 gals. sugar syrup, 30 degrees Baumé; and add 1 gal. perfumed spirit as above. Color with saffron or turmeric.

Curaooa d'HoLlande, 20 Gals.-Curacoa orange-peel, $2 \mathrm{lbs} ; \frac{7}{2} \mathrm{lb}$. Ceylon cinnamon. Let them soak in water; boil them for five minutes with the juice of 32 oranges and 14 gals. of plain white syrup ; then add 6 gals. alcohol, 95 per cent. ; strain, filter; color dark yellow with sugar coloring.
Anisetra. Cordial, 40 Gais.-Put in a barrel 13 gals. alcohol, 75 per cent. Dissolve $3 \frac{12}{2} \mathrm{oz}$. essence of green anise-seed in 1 gal. 95 per cent. alcohol, and add $\frac{3}{2}$ gal. orange-flower water; 8 or ten drops infusion of mace, and 5 dropsessence of cinnamon. Then put in the barrel 26 gals. sugar syrup, 25 degrees Baumé ; stir fifteen minutes, and let it rest four or five days; then filter. Add 2 or 3 sheets of filtering paper.
Ratafia.-Ratafia may be made with the juice of any fruit. 'Take 3 gals. cherry. juice, and 4 lbs. sugar, which you dissolve in the juice ; steep in $2 \frac{1}{2}$ gals. brandy ten days; 2 drs. cinamon, 24 cloves; 16 oz. peach-leaves ; 8 oz. bruised cherry kernels. Filter, mix both liquids, and filter again.
Abrack Punch Syrop.-53ł lbs. sugar; $3 \frac{3}{2}$ gals. water. Boil up well; then add 19. gals. lemon-juice to the boiling sugar, and stir till the liquid is clear ; pour it in a clean tub, and when nearly cool, add 5 gals. Batavia arraek, then filter.
Simpib SyRup. \rightarrow To 8 lbs. best white sugar add 2 qts. water, and the whites of 2 eggs ; stir until all the sugar is dissolved ; simmer for two or three minutes : skim well, and strain through a fine flannel bag.
Sarsaparilla Syrup.--To simple syrup add 10 drops oil of anise, 20 drops oil of wintergreen, 20 drops oil of sassafras, and 6 oz . of caramel or coloring to the gallon. Before the oils are added to the

84 GROCERS AND CONFECTIONERS RECEIPTS.

syrup, they should be cut by grinding them in a mortar with as much sugar as they will moisten, or mix with a small quantity ot alcohol.
Vanilua Srrur.-To simple syrup, add \ddagger oz. of ext. of vanilla to the gallon.

Gingra Srrop.-Bruised Jamaica ginger, 1 oz. ; boiling water, 1 pt. ; macerate for four hours ; add fine white sugar, 2 lbs. ; and strain through a fine flannel bag. Ginger syrup may also be made by adding 2 oz . of the ext. of ginger to 1 gal . of simple syrup.
Strawberry Sybup without Strawberbies.-Add to 1 gal. elmple syrup 2 teaspoons of essence of strawberry, and $\frac{1}{}$ oz. tartaric acid; color with coloring made as follows: boil 1 oz . of cochineal with half a teaspoonful of cream tartar.

Strawberry Sybup.-lnclose fresh strawberries in a coarse bag, press out the juice, and to each gt. add 1 pt . water and 6 lbs . white sugar ; dissolve by raising it to the boiling point, and strain ; bottle and cork hot, and keep in a cool place.

Blacebrary Syrup is made as directed for strawberry, adding to each qt. 1 oz . best French brandy.

Wild Cherry Syrup.-Steep 4 oz. wild cherry bark, well bruised in 1 pt . of cold water, for thirty-six hours; press out the infusion; let it stand till clear; decant and add 11 lbs. fine white sugar ; mix and strain.

Nectar Syrup,-Add to orgeat syrup 1 pt. of best port wine, and $\frac{1}{2} \mathrm{oz}$. extract of vanilla to the gal. ; or lavor 1 gal . simple syrup with 1 teaspoonful ext. of nectar.

Orgeat Sprup.-Take 3 oz . of sweet almonds, and $\frac{1}{\mathrm{oz}}$. bitter almonds ; gum arabic,-in powder, $\frac{1}{1}$ oz.; sugar in powder, 3 oz .; rub together in a mortar, adding wo.ter from time to time until the mixture measures 1 qt. Strain through a cloth, and mix with 1 gal. of simple syrup.

Orangr Flower Syrup.-Add to 1 gal. of simple syrup, $\frac{1}{2}$ oz. ext. of orange flowers.

Orange Syrup.-Grate off the outside yellow peel of fresh and ripe oranges; cut them and express the juice: to each qt. add 1 pt . water and 6 lbs. sugar, previously well mixed with the grated peel. Dissolve by gentle heat, then strain.

Pine Apple Syrup.-Pare and mash the fruit in a marble or porcelain mortar, with a small quantity of sugar ; express the juice, and, for each qt. take $1 \frac{1}{2}$ pts. of water and 6 lbs. fine sugar; boil the sugar and water; then add the juice; remove from the fire; skim and strain. Or make it with the essence directed Sor strawberry.

Pear Syrup.-Make as directed for pime apple syrup; or use the cssence of pear, by adding to each gallon of simple syrup, 2 teaspoonfuls of essence of pear, and $\ddagger \mathrm{oz}$. tartaric acid.

Banana Sprup.-Make as directed for pine apple syrup, or with the appropriate essence and acid as above.

Apple Sxrup. - Make as directed for pine apple syrup, or with the appropriate fruit and essences as above.

Cream Syrup.-Fresh cream, 1 pt.; fresh milk, 1 pt.; fine powdered sugar, 3 lbs.; beat the sugar with the milk, and the whites of 2 eggs ; then mix with the cream. Flavor with lemon, vanilla, or strawberry. Keep in a cool place, well bottled.

Botrric Ethas is much naed to impart a pine apple favor to rum. Dissolved in 8 or 10 parts of alcohol, it forms the pine apple essence. From 20 to 25 drops of this essence, added to 1 lb . sugar, containing a little citric acid, imparts to the mixture a strong taste of pine apple.

Amylo-Adertio Etaer is a preparation of fruit-oil and other ingredients, and, when diluted with alcohol, it is sold as essence of Jargonelle pear, and is used for flavoring different liquors. Fifteen parts amylo-acetic etn r, with half a part of acetle ether, dissolved in 100 parts of alcohol, form what may be called the Bergamotpear essence, which, when employed to flavor sugar, acidulated with a little citric acid, imparts the odor of the Bengamot pear, and a fruity, refreshing taste.

Prlargonaty or Ethylio Ether (pelargonic ether) has the agreeable odor of the quince, and, when dissolved in alcohol in due proportion, forms the quince essence.

Acetate of Amylic Ether (same as amylo ether), mized with butyric ether, forms in alcoholic solution the banana essence.

Valerianatm of Amylio Ether.-An alcoholic solution of this ether in the proportion of 1 part to 6 or 8 of alcohol, forms a flavoring liquid under the name of apple essence.

Mile Punch.-One tablespoonful of fine white sugar, 2 ditto of water, I wine glass of Cognac brandy, $\frac{1}{2}$ ditto Santa Cruz rum, $\frac{1}{7}$ tumblerful of shaved ice; fill with milk. Shake the ingredients well together, and grate a little nutmeg on top. To make it hot, use hot milk and no ice.

Glasgow Punch.-Melt lump-sugar in cold water, with the juice of a couple of lemons, passed through a fine wire strainer; this is sherbet, and most be will mingled. Then add old Jamaica rum, one part of rum to five of sherbet. Cut a couple of lemons in two, and run each section rapidly around the edge of the jug or bowl, gently squeezing in some of the delicate acid, when all is ready.

Mint Julep.- One tablespoonful of white pulverized sugar, $2 \frac{1}{3}$ ditto water; mix well with a spoon. Take 3 or 4 sprigs of fresh mint, press them well in the sugar and water, add $1 \frac{1}{2}$ wine glasses of Cognac brandy, and fill the glass with shaved ice, then draw out the sprigs of mint, and insert them in the ice with the stems downwards, so that the leaves will be above in the shape of a bouquet; arrange berries and small pieces of sliced orange on top in a tasty manner, dash with Jamaica rum, and sprinkle sugar on top. Sip with a glass tube or straw.

Cider Nectar.-One qt. cider, 1 botfle soda water, 1 glass sherry, 1 small glass brandy, juice of half a lemon, peel of \ddagger of a lemon, sugar and nutmeg to taste. Flavor it with extract of pine apple, strain, and ice it all well.

Half and Half.-In London, this drink is made by mixing half porter and half ale ; in America, it is made by mixing half new and half old ale.

Apple Todny.-One tablespoonful of fine white sugar, 1 wineglass of cider brandy, $\frac{1}{2}$ of a baked apple. Fill the glass twothirds full of boiling water, and grate a little nutmeg on top.

- Apple Punch.-Lay in a china bowl slices of apples and lemons ailernately, each layer being thickly strewed with powdered sugar.

> IMAGE EVALUATION

Photographic Sciences
Corporation

Pour over the fruit, when the bowl is half filled, a bottle of claret; cover, and let it stand for 6 hours. Then pour it through a muslin bagi and it is all ready.

Old Man's Milx.- One wine-glass of port wine, 1 teaspoonful of sugar. Fill the tumbler one third full of hot milk.

Perfect Love.-One tablespoonfal sugar, 1 pieco each of orange and lemon peel. Fill the tumbler one-third full of shaved ice, and fill balance with wine; ornament in a tasty manner with berries in season; sip through a straw.

Molasses Candr.-West-Indian molasses, 1 gallon; brown sugar, 2 lbs. ; boil the molasses and sugar in a preserving kettle over a clow fire ; when done enough it will cease boiling ; stir frequently, s:ud, when nearly done, stir in the juice of four lemons, or two teaspoonfuls of essence of lemon; afterwards butter a pan, and pour out.
Donfrotionsrs' Colors.-Red, cochineal, 1 oz.; boil 5 minutes In half pint water; then add cream tartar, 1 oz .; pounded alum, $\frac{1}{2}$ oz. ; boil 10 minates longer, add sugar, 2 oz ; and bottle for use. Blue, put a little warm water on a plate, and rub in indigo till the required color is got. Ycllow, rub with some water a little yellow gamboge on a plate, or infuse the heart of a yellow-lily flower with milk-warm water. Green, boil the leaves of spinach about 1 minute in a little water, and, when strained, bottle for use.

To Cambr Sugar.-Dissolve 2 parts of double refined sugar in 1 of.water. Great care must be taken that the syrup does not boil over, and that the sugar is not burnt. The first degree is called the thread, which is subdivided into the little and great thread; if you dip your finger in the syrup, and apply it to the thumb, the tenacity of the srup will, on separating the finger and thumb, afford a threa* 'th shortly breaks, this is the little thread; if the thread admin of a greater extension of finger and thumb, it is called the great thread; by longer boiling you obtain the pearl, which admits of being drawn without breaking by the utmost extension of finger and lhumb; this makes candied sugar: by further boiling you obtain the blue, which is known by dipping a skimmer with holes in the syrup, and blowing through them; if bubbles are perceived, you have got the blow. The feather implies more numerous bubbles, and then the sugar will fly off like flakes while the skimmer is being iossed. By boiling longer, yon obtain the crack; it will crack when broken, and does not stick to the teeth; dip a teaspoon into the sugar, and let it drop to the bottom of a pan of cold water. If the sugar remains hard, it has attained the degree termed crack.

Fig Candy.-Take 1 lb . of sugar and 1 pint of water ; set over a slow fire. When done, add a few drops of vinegar and a lump of butter, and pour into pans in which split figs are laid.

Raisin Candy can be made in the same manner, sabstituting stoned raisins for the figs. Common molassee candy is very nice with all kinds of nuts added.

Scotor Butter Candy.-Take 1 lb . of sugar and 1 pint of water; dissolve, and boil. When done, add one tablespoonful of butter, and enough lemon juice and oil of lemon to flavor.

Common Limen Candy.-Take 3 lbs. of coarse brown sugar ; add to it three teacupfuls of water, and set over a slow fire for half
$2 n$
is t
Wt
the
if d
and
of claret ; ugh a musspoonful of
o each of 11 of shaved zanner with
rown sugar, :ettle over a r frequently, or two teaind pour out. il 5 minutes aded alum, ottle for use. adigo till the little yellow w-lily flower nach about 1 r use. od sugar in 1 does not boil gree is called rreat thread; ie thumb, the nd thumb, afhread; if the thumb, it is in the pearl, te utmost exr : by further ag a skimmer If bubbles 9 :e more numerkes while the in the erack; teeth ; dip a m of a pan of ed the degree
er ; set over a and a lump of a.
substituting y is very nice

pint of water;

 ful of butter,an hour ; put to it a little gum arabic dissolved in hot water; this is to clear it. Continue to take off the scum as long as any riees. When perfectly clear, try it by dipping a pipe-stem first into it and then into cold water, or by taking a spoonful of it into a sancer; if done, it will snap like glass. Flavor with essence of lemon and cut itinto sticks.

Prppirmint, Fose, or Hoariound Candy.-They may be made as lemon candy. Flavor with essence of rose or peppermint or finely powdered hoarbound. Pour it out in a buttered paper, placed in a square tin pan.

POPPED OORN, dipped in boiling molasses, and stuck together, forms an excellent candy.

Rock Candy.-To make fine rock candy, clarify double refined white sugar, filter it, and boil it till it is ready to crystallize, or boiled to a blister. The boiling sugar must measure 35° on the syrup weight, a degree more or less prevents its crystallization. Then take a brass kettle, of about 16 or 18 inches diameter and from 6 to 8 inches deep, smooth and polished on the inside. Make 8 or 10 small holes at equal distances from each other in a circle around the sides of the keitle, about 2 inches from the bottom; pass threads through these from one side to the other, and stop the holes on the cutside with paste or paper to prevent the syrup from running out. Having thus prepared the kettle, pour in the syrup, till it rises about an inch above the threads; then place it in a stove moderately heated, and leave it to crystallize, agitating it from time to time. The crystallization will take place in six or seven days. As soon as the crystals are formed, pour off the remaining syrup, and throw in a little water to wesh the crystals that are left at the bottom of the vessel. So soon as the mass is thoroughly drained set it in a very hot stove, leave it for two days, when it is fit for use. Straw-coloured rock candy is made by substituting brown for loaf sugar. The syrup must be boiled over a very hot fire in order to render the candy perfectly white. The sides of the kettle should be sponged repeatedly during the boiling process, to prevent the sugar from adhering and burning.

Orange Rock Candy is made by flavoring the syrup with a couple of teaspoonfuls of orange flower water, and coloring with saffron, just as the syrup is about to be taken from the fire. Rose Rock Candy it flavored with rose water, and colored with clarified carmine lake. Vanilla Rock Candy is perfumed with vanilla, and colored with liquid violet. The degree of coloring may be tested by dropping a little of the colored syrup on a sheet of white paper.

Ginger Candy.-Dissolve 1 lb . double-refined sugar in $\frac{1}{8}$ pint of spring water; set it over a clear fire, and let it boil to a thin syrup. Have ready a teaspoonful of powdered ginger, mix it smoothly with 2 or 3 spoonfuls of the syrup, then stir it gradually into the-whole. Boil the mixture into a flake, watching it carefully, that it may not exceed this point; then add the freshly grated rind of a large lemon, and stir the sugar constantly and rapidly until it fall in a mass from the spoon, without sinking when dropped upon a plate. If boiled for a moment beyond this point, it will fall into a powder. Should this happen by mistake, add a
little water, and boil to the proper consistency. Dip the candy from the kettle, and drop it in small cakes upon buttered pans, then set it away to cool.

Obmar Candy.-To 3 lbs. loaf sugar add $\frac{1}{7}$ pt. water, and set it over a slow fire for half an hour; then add a teaspoonful of gum arabic dissolved, and a tablespoonful of vinegar. Boil it till it is brittle, then take it off, and flavor with vanilla, rose, or orange. Rub the hands with sweet butter, and pull the candy till it is white; then twist or break it, or stretch it out into thin white strips, and cut it off.

Red Verdon Sugared Alyonds.-Dry the almonds in a stove by a slow fire. When dry enough to snap between the teeth, put them into a swinging basin and gum them by throwing over them a little gum arabic solution, cold; swing them constantly till dry; then give them another coating of gum arabic mixed with 4 oz . sugar, and swing them again till dry, using no fire. When they are thoroughly dry, set them over a moderate fire. Dissolve some sugar in orange or rose water, not too thin, set it over the fire 2 or 3 minutes, strain it throngh a sieve, and pour it over the almonds in the basin. Swing them till they are thoroughly coated and dried ; then add another coating, composed of 2 parts of carmine, one part of gum, and one part of sugar, and proceed as before. If the almonds are not perfectly covered, give them a coating in which there is considerable gum ; and when thoroughly moistened, throw on them some sifted sugar, stir till the mirture is all absorbed, then add successive coatings of sugar till they are large enough, and put them into the stove to remain till the next day, when in order to whiten them, you will procced to boil 6 or 7 lbs. of fine clarified sugar to a blister, add 1 lb . of starch after taking it from the fire, stirring it constantly till a paste is formed a little thicker than that used for pastilles; a few drops of blue lake may be added to prodnce a pearl white. Put the almonds, warm, intc the swinging basin, add enough of the prepared sugar to coat them, swing the basin till they are nearly dry, then set on the fire to finish the drying, then take the basin off the fire, heap them up in the middle, so as to allow the bottom of the vessel to cool; then add the coating of sugar, swing and dry them as before, and continue the process until 4 successive coatings of equal thickness have been given; then heat them well in the basin, put them into pans, and set them in the stove to remain over night. You will then proceed to polish them by giving them a coat of the prepared sugar and starch, and shake them violently until they are quite dry; give them another coating and proceed as before, and continue the process until they have received 4 successive coatings, when they will generally be found sufficiently polished. When the polishing is finished, put the almonds over a fire and stir gently till all are thoroughly heated, then place in a stove till the next day in a wicker basket lined with paper.

Spanise Sugared Almonds.- Make verdun sugared almonds about the size of pigeon's eggs, whiten and polish them by the previous directions, and paint different designs on them when completed.

Supbrfing Vanilla Sugared Aumonds.-Proceed in the same manner as in the manufactare of verdun sugared almonds, make.
the
the candy tered pans,
ter, an'd set spoonful of Boil it till , or orange. ly till it is thin white
a a stove by e teeth, put g over them itly till dry; d with 40 oz . When they issolve some ver the fire 2 it over the ughly coated C 2 parts of a proceed as give them a n thoroughly the mixture till they are till the next to boil 6 or 7 starch after te is formed a s of blue lake nonds, warm, sugar to coat set on the fre heap them up essel to cool ; as before, and ual thickness but them into ht. You will the prepared they are quite before, and sive coatings, ished. When fire and stir . stove till the
almonds about y the previous completed.
in the same lmonds, make.
the solution of sugar in pare water; crush the esmence of vanilla with a little sugar, and put in the solution.

Comion Sugared Almonds.-Common almonds, 20 lbs., sugar 8 Jbs., faripa, 20 lbs , starch, 2 lbs . Heat the almonds in the swinging basin, when they boil, make them into a pulp. with diluted. starch; give first a warm then a cold ccating, cover them with farina, shaking the basin violently; then, when the almonds have been coated to the requisite size, spread them out on sleves; after a fortnight put them in a stove to finish drying; whiten them, and finish by the process described for the fine sugared almonds.

Superming Chooolate Sugared Almonds,-Caraccasa cacaonuts, shelled and roasted, 20 lbs., Martinique sugar, 16 lbs., vanilla 4 drs.g starch, 10 oz . The same method is required as for the superine vanilla sugar plums, but care must be taken in adding the coatings of gum, to touch the cacao nuts lightly, as. they are very easily broken.

Superming Sugarmd Filberits.-Filberts, 50 lbs., sugar, 4 lbs., starch, 4 oz . Employ the same process as for sugared almonds and flavor to taste. Rose water is generally preferred on account of its color and fragrance.

Coriander Sugar Plums.-Coriander, 2 lbs. farina, 30 lbs. sugar, 14 lbs. The washings of the basin are added to the coriander and farina without making a paste, and the method is followed that has been prescribed for the common sugared almonds; 8 lbs. of sugar are used to whiteu them, and 6 to polish them; color after being polished with carmine, Prussian blue, and saffron.

Coriander in Bottles.-Coriander, 10 lbs., farina, 10 lbs , sugar for the whitening, 3 lbs. , starch, 1 lb . These are simply colored, and do not require brilliancy. They are made of the size of small peas, and are put into little bottles. In making these follow the receipt for common sugared almonds.

Anise-seed Sugar Plums.- Dry 2 lbs. of green anise-seed in the stove; rub it in the hands to break off the stems, winnow to rid of dust, then put it into a swingirg basin, and coat it with sugar boiled to a thread, so as to render the candies hard and brittle. When coated sufficiently, whiten and polish them, like the verdun sugared almonds. They vary in size being generally as large as a pea.
Mint Sugar Plums.-Diy some peppermint seed in a stove and coat it in the same manner as anise-seed (it must' not, however, be whiter than rape seed), whiten and finish like anise-seed. The first coating is sometimes composed of equal parts of peppermint and sugar.

Cominon Twist Candy.-Clarify 3 lbs. of common brown sugar, and boil it till it is brittle, take it from the fire, pour it in buttered pans; rub the hands with a littie butter, and as soon as it is cooled, pull it as you would molasses candy until it is perfectly white ; then twist and braid it, and cut it into stacke.

Carambl is made by boiling olarified sugar till it is very brittle, then pouring it on an oiled slab or sheet of tin, and, as soon es it is cool enough to receive an impression with the finger, stamping it in small squares, about an inch in size, with a caramel mould; then turning over the mass, wiping the bottom to remove any oil

90 GROCERS AND CONFECTIONERS' REOETPTV.

that may have whered from the slab, and putting it in a dry place to harden. If you have no caramel mould, you may score it on the slab with a common case knife, after which they are glazed with another coating of augar. Keep them tightly closed from the air after they are made.
Lexon Caramas is made by grating the yellow rind of a lemon with a lump of sugar jadd to this a few drops of lemon juice with water enough to dissolve the sugar completely, and stir the whole into the boiled syrup a few minutes before it is taken from the fire. Orange and Lime caramels are prepared in the same manner from these respective fruits. Coffee carainel, coffee, 2 oz., sugar, 1 lb . Make an infusion of the coffee, using as little water as possible ; strain it through a cloth, and stir it gradually into the boiled syrup a few minutes before taking it from the fire. Chocolate caramel, chocolate, 4 oz., sugu; 1 lb . Dissolve the chocolatein as little water as possible, and add it to the boiled sugar, as in the coffee caramels. Vanilla and Orange cream caramels are made by using the respective essences of these fruits.
Cocoa-Nut Candy.-Pare and cut cocom-nut into slips, or grate on a coarse grater the white meat of cocoa-nuts until you have $\frac{1}{1}$ a pound ; dissolve $\frac{1}{2} \mathrm{lb}$. of loaf sugar in 2 tablespoonfuls of water ; put it over the fire, and, as soon as it boils, stir in the cocoa-nat. 2 Continue to stir it until it is boiled to a Hake, then pour it on a buttered pan or marble slab, and cut it in whatever form you wish, when it is nearly cold. Lemon or other flavorg may be added.

OANDY Drops or Pastilles.-Pound and sift double-refined sugar, first through a rather coarse, then through a fine sieve. Put the sugar into an earthen vessel, and dilute it with the flavoring extract, mixed with a little water. If too liquid, the syrup will be too thin, and the drops will run together; while, if too thick, the syrup will be too compact, and cannot be poured out easily. When the sugar is mixed into a rather stiff paste, put it into a small saucepan with a spout, and set it over the fire. As soon as it begins to bubble up the sides of the saucepan, stir it once in the middle, take it from the fire, and drop it in small lumps, of the size and shape required, upon sheets of tin, to stand for 2 hours, then put them in the stove to finish drying. As snon as they are perfectly herd and brilliant, take them from the fire, otherwise they will lose their aroma. Color the syrup just before taking it from the fire.

Orange, Jasmine, and Clove Drops'are made by mixing the above paste with these respective extracts:

For Salad Drops.-Water distilled from lettuce is used.
Saffron Drops.-Make an infusion of saffron, strain it, let it cool, use it to mix the paste, and proceed as before.

Hillotropr Drops.-Proceed in the same manner, flavoring the paste with a few drops oil of neroli, or oil of orange, jasmine, and tube-rose, and color violet.

Ping Drops.-Flavor the paste with tincture of red pinks, and color with carmine lake.

Cinnamon Drops.-Mix 5 drs. powdered cinnamon and 8 oz . of sugar with mucilage enough to make it into a paste, and proceed as above.
dry place :ore it on ure glazed 1 from the f a lemon juice with the whole m the fire. nner from 1lb. Make ; strain it rrup a few nel, choco-- water as caramels. the respec-

1s, or grate 1 you have oonfuls of stir in the flake, then n whatever her flavors able-refined sieve. Put e flavoring rup will be 0 thick, the sily. When to a small soon as it once in the , of the size hours, then hey are per. (se they will om the fire. g the above

ed.

n it, let 1 t
;, flavoring e, jasmine, pinks, and and 8 oz . of nd proceed

Marebmallot and Lidobios drops are made the same way.
Ross Drops.-Mix the paste with rose water, and color with carmine lake. Proceed as above.
Vioner Drops.- Flavor the paste with tiucture of Florence iris, and color with blue and carmine lakes. A few drops of tartaric acid nay be added to sustain the blue. .
Lemon and Oranar Drops.- Rasp off the yellow rind of an orange or lemon; mix the raspings with double-refined sugar; add 5 grs. of tartaric acid to every pound of sugar, color with yellow lake or saffron, and proceed as before. If too much tartaric acid is used, the candies will adhere to the sheets of tin.

Conysi Drofs.-Substitute a strong, filtered infusion of coffee for water, in mixing the paste.
Ohocolate Drops.-For every pound of sugar, take 5 pts. good chocolate, pulverize it, and mix it into a paste, as already directed, taking care not to boil the paste too long, lest it granulate, and ioccome unfit for use.
Vanilia Drops.-Mix the paste with extract of vanilla, or innelyground vanilla bean: to which add 2 oz .3 grs . of tartaric acia, dissolved in water, to sustain the blue, without which it would disappear.
Imitation Ourrayt Drops.-Mix the paste with water, adding a little essence of raspberry and of violet, or Florence iris, with a little tartaric : acid dissolved in water; color with carmine, and proceed as above.
Peppaziant Drops.-Dissolve finely-powdered sngar with a little strong peppermint-water in a saucepan with a spout. As soon as it is thoroughly dissolved, add an equal quantity of coarse-grained sugar with a lew drops more of peppermint, stir the whole for a few moments; then drop the mixture on paper, and dry it in the open air. In the same way are made lemon, rose, vanilla, and other drops. Citric and tartaric acid may be used to increase the acidity of lemon drops.
Extimporaneove Pabthuss.-Make the paste as ugual, withont flavoring the water, drop the pastilles upon paper, leave them for two hours, then take them off and put them into the stove to dry. When wanted for use, put the quantity required into a large-mouthed jar, and flavor as desired. For instance, to make 2 lbs. of peppermint drops, take 5 pts. of sulphuric ether in which are diluted a few drops of essence of peppermint, and pour it over the candies, then cover the jar, and shake it until they are thoroughly moistened; then place them on a sieve, and set them in the stove for 5 minutes, evaporate the ether. In this manner rose, orange, lemon, jonquil, tube-rose, mignonette, clove, cinnamon, or any other drops may be made, dissolving their essential oils in sulphuric ether

Gengrr Candy Tablets:-Take 1 lb . loaf sugar, a few drops of acetic acid or the juice of half a lemon, a dessert-spoonful of essence of Jamaica ginger. Boil the sugar with just water enough to dissolve it to the ball degree, then add the acid and the essence, and rub the sugar with the back part of the bowl of a silver spoon up against the sides of the sugar-boiler to whiten or grain it sufficiently to give to the whole an opalized appearance ; then pour it into \vee rry amall-sized mouids, measuring nalf an inch or an inch
oblong square, or else into a tin pan, the bottom part of which is marked out in small tablets, so that the candy may be easily broken into squares when dry. Smear the moulds slightly with oil of almonds. When the sugar is poured into the monlde, place in the screen for half an hour or more, to dry them hard:

Orange Flower Oandy Tablefs.-Ingredients : 1 lb . loaísugar, a tablespoonful of orange-flower water, and a few drops of acetic acid. Proceed as directed in the preceding. No color.

Vanilha Candy Tablets.-Ingredients: 1 lb . of loafgugar, a few drops of essence of vanilla sugar, and a few drops of acetic acid. Proceed as for ornaments in grained sugar.

Plppeikmint Oandy Tablets. -Ingredients: 1 lb . of loaf sugar, a few drops of essence of peppermint, nad a few drops of acetio aoid. Proceed as above. No color.

Ligumur Candy T'ablets.-Ingredients: 1 lb . of loaf sugar, and a gill of any kind of liqueur. Boil the sugar to the crack; then incorporate the liqueur, and finish as in the preceding. No color.

Oinnamon Candy Tabiats.-Use 1 lb . loaf sugar, and a few drops essence of cinnamon. Proceed as in the last. This! may be colored rose pink, the color to be added while the sugar is hoiling.

Clome Candy Tablets are prepared in the same way as the foregoing essence of cloves being used instead of cinnamon. ${ }^{3}$

Rose Candy Tablets.-Use 1 lb. of loaf sugar, a few drops of essence of roses, a few drops of ácetic acid, and a tow drops of prepared cochineal. Proceed as in the preceding.

Fruit Candy Tablets.-Use 1 lb . of loaf sugar, $\&$ pint of the juice of any kind of fruit, either currants, cherries, strawberries, raspberries, \&c., extracted by pressing with a spoon through a clean hair-sieve. Boil the sugar to the crack, and then incorporate the fruit juice by rubbing it in with the sugar, as directed in the preceding, and finish the candies as therein indicated.

To frea Molasies from its Shirp Tagte, and to render it fit to be ugid insitad of Sualr. -Take 24 lbs. molasses, 24 lbs. Water, and 6 pounds of charcosl, coarsely pulverized ; mix them in a kettle, and boil the whole over a slow wood fire. When the mirture has boilcd halfian hour, pour it into a flat vessel, in order that the charcoal may subside to the bottom ; then pour off the liquid, and place it over the fire once more, that the superfinous water may evaporate, and the molasses be brought to its former consistence. 24 lbs. of molasses will produce 24 lbs of syrup.

Pepprnamint Lozmame.-Ingredients; 1 oz. oí picked gnm tragacanth soaked with 2 oz . of tepid water in a gallipot (this takes some 6 hours), and afterwards squeezed and wrung through a cloth, about $1 \frac{1}{2}$ lbs. of fine icing sugar, and a teaspoonful of essence of peppermint. . Work the prepared gum with the flattened fist on a very clean slab until it becomes perfectly white and elastic, then gradually work in the sugar, adding the peppermint when the paste has become a compact; smooth, elastic substance; a few drops of thick, wet, cobalt blue should also be added while working the paste, to give it a brilliant whiteness. The paste thus prepared is to be rolled out with fine sugar dredged over the slab to
the rolli to im You do so scree Gn spoor and a hounc of ve Proce pared this d to be wet-b
the p_{t} as per burnt oz. pr soake lozeng lb. of acid.
in 2 oz essenc Cayen soaked cayenr lozeng

Gow arabic, double in, wh and st clean reduces water, stove, levelle
Span arabic, in a 8 prepar preced pearl remove manne picked straine a few case, a Jujubes
the thickness of two penny pieces, then if you possess a ribbed rolling-pin, use it to roll the paste ayain in cross directions, so as to imprint on its whole surface a smail lozenge or diamond pattern. You now ase your tin cutter to stampout the lozenges, and as you do so place them on sugar powdered baking sheeti to dry in the screen.
Greger Lozenare.- Proceed as in the foregoing; use a tablen spoonful of essence of ginger, or 1 oz. of ground ginger to flavor, and a few drops of thick wet gamboge to color the paste. Hoarhound lozenges. Ingredients; 1 oz. of gum dragon soaked in a gill of very strong extract of hourhound, $1 \frac{1 \mathrm{lb}}{}$. of tine icing sugar. Proceed as for the peppermint lozenges. Cinnamon Lozenges are prepared in the same manner as ginger or peppermint lozenges, with this difference only ; a dessert-spoonful of essence of cinnamon is to be used in the flavoring of them, a few drops of thick, ground, wet-burnt umber should be used with a pinch of carmine to give the paste the tinge of cinnamon color. Clove Lozenges. The same as peppermint lozenges, using essence of cloves for flavoring, and burnt umber to color the pasie. Orange Lozenges. Ingredients ; 1 oz. prepared gum, 11 lb . sugar, 2 oz. of orange-sugar, the gum to be soaked in 2 oz . of orange flower water. Proceed as for peppermint lozenges. Lemon Lozenges. Ingredients; 1 oz. prepared gum, $1 \frac{1}{2}$ lb. of icing sugar, 2 cz . of lemon sugar, and a few. drops of acetic acid. Colt's foot Lozenges. Ingredients; L oz. of gam dragon soaked in 2 oz . of orange flower water, $1 \frac{1}{\mathrm{lb}}$. of fine icing sugar, and $\frac{1}{2}$ oz of essence of colt's foot. Proceed as for peppermint lozenges. Cayenne and Catechu Lozenges. Ingredients; 1 oz. of gum dragon soaked in 2 oz . of water, 2 lbs. fue icing sugar, $\ddagger \mathrm{oz}$. essence of. cayenne, and $\frac{1}{2} \mathrm{oz}$. of prepared catechu. Proceed as for peppermint lozenges.
Gou Pastilles, or Jujubes.-Ingredients; 1 lb . of picked gum arabic, 14 oz . of the finest sugar pounded and sifted, gill of double orange flower water, and 1 pt . tepid water to soak the gum in, which is afterwards to be strained off clean. Put the soaked and strained gum into a sugar boiler with the sugar, and use a clean spoon to stir it over a very moderate fire, while it boils and reduces to the small pearl degree; then add the orange flower water, stir all together on the fire, remove the preparation from the stove, skim of the froth; and use the mixture to cast the jujubes in levelled layers of starch powder contained in a flat box.
Spanise Licorice Jujubes.-Ingredients: 1 lb. picked gum arabic, 14 oz . of sugar, and 2 oz . of Spanish licorice dissolved in a gill of hot water, and afterwards strained clean. First prepare the gum and boil it with the sugar as directed in the preceding article, and when reduced by boiling to the small pearl degree, incorporate the prepared Spanish licorice with it, remove the scum from the surface, and finish the jujubes in the manner indicated above. Raspberry Jujubes. Ingredients: 1 lb . picked gum arabic. soaked in a pint of hot water and afterwards atrained, 14 oz. of sugar, 1 gill of filtered raspberry juice, and a few drops of cochineal. Proceed as directed in the foregoing case, adding the raspberry and coloring last. Black. Currant Jujubes. Proceed in all respects as indicated for raspberr

94

 GROOLRS AND CONFLOTIONERS' REOMIPTA.jujubes omitting the cochineal, black currant juice being used. Red Currant Jujubes. The same as black currant jujubes, red curtant juice being used and a few drops of cochineal. Ordinary Jujubes. Ingredionts: 1 lb. gum arabic soaked in 1 pt. of hot water ard afterwards atrained, 14 oz. sugar, $\frac{1}{}$ oz. essence, of roses, and a fev drops of prepared cochineal. Let the mixture be propared as for othar jujubea, but instead of casting them in impresoforis mide in starch-powder, Fhen the preparation is. ready, pour it into a very clean amooth tinned baking sheet to the: depth' of a quarter of an inch, and set it to dry in the sereen, or hot closet (moderate heat); when sufficiently dried, so that on, pressing the surface it proves somewhat elastic to the touch, remore it from the heat, and allow it to become cold; the shcet of jujube may then be easily detached, and is to be cut up With scissors in the shape of diamonds.

Srtar Appli Sugar.- Boil the sugar to canmel, flavor with apple juice together with tartaric or other acid, pour it on a marble slab, draw it into sticks, cut them of ecual length, then roll them on the slab till they are perfectly cold; when finished, vrap them in tissue-paper and pat them in fancr envelopen.

CURRANT AND RAspberry Pasty Drops.-Ingiedients: 1 lb . of pulp (the currants and raspberries in equal proportions boiled, and arterwards rubbed through a sieve), 1 lb . of sifted sugar. Stir both together in a copper sugar-boiler or preserving pan over a brisk fire, until the paste becomes sufficiently reduced to show the bottom of the preserving pan as jou draw the spoon across it ; then proceed to lay out the drops about the size of a florin, using a spouted sugar boiler for the purpose. The drops should then be placed in the screen to dry, at a low heat for an hour or so. When the drops are dry, use a thin knife to remove them from the sin sheet on which you laid them out, and put them away between sheets of paper in closed bozes, in a dry place. Damson Pasts Drops. Ingredients: 1 lb . of damson thick pulp, 1 lb . bruised sugar. Stir the pulp and sugar on the fire until reduced to a thick paste, then proceed to lay out the drops on square sheets of polished tin; dry ther in the screen (moderate heat), and remove them in the manier aforesaid. These drops may be prepared with all kinds of plums and also with gooseberries. Pear Paste Drops. Use 1 lb . pear pulp (made by peeling the pears, and boiling them to a pulp with $\frac{1}{2} \mathrm{pt}$. of cider or perry, and rubbing this throngh a coarse sieve), 1 lb. of bruised sugar. Proceed as for damson paste. Apple Paste Drops. Use 1 13. of apple pulp (made by peeling, slicing and boiling the apples with $\frac{1}{}$ pt. cider), 1 lb . of bruised sugar. Proceed as in the foregoing cases, adding a few drops of cochineal to half of the paste for the sake of variety.: Pine Apple Paste Drops. Use 1 lb. of pine apple pulp (made by first peeling, and then grating the pine-apple on a dish, using a clean coarse tin grater for the purpose), 1 lb. of bruised sugar. Proceed as in the former cases.

Fases, Baskets, Figuris, Animale, \&c., in Granied Sugar.The sugar being boiled to the ball degree, add a few drops of acetic acid, and work the sugar with the back part of the bowl of a silver tablespoon up against the side of the sugar boiler,
fetching up the whole in turns, so that every portion may acquire an opalized or whitish color. Ais soon as the sugar has been worked up to this state, which constituten "graining," pour it imme. diatoly into the ready propared mould; and when it has become perfeotly set firm in the centro, you may tarn the rase, basket, animial, or whatever the object may be, ont of its mould, and place it in the screen or hot closet to dry, at a very moderate heat:" Afterviards they may be painted in colors to imitite neture.

Evanton Taprin.-To make thil favorito and wholesiome candy, take 11 pounds of moist sugar, 3 ounces of butter, a teacup and a half of water, and one lemon. Boil the sugar, butter, water, and half the rind of the lemon together ; and, when done,-which will be known by dropping into cold water, when it should be quite crisp,-let it stand aside till the boiling has ceased, and then stir in the juice of the lemon. Butter a dish, and pour it in about a quarter of an inch in thicknese. The fire must be quick, and the taffee stirred all the time.

Caxpy Froit. -Take one pound of the, best lonf sugar; dip each lump iuto a bowl of water, and put the sugar into your preserving kettle. Boil it down, and skim it until perfeculy clear, and in a candying state. When sufficiently boiled, have ready the fruits you wish to preserve. Large white grapes, oranges separated into small pieces, or preserved fruits, taken out of their syrup and dried, are very nice. Dip the fruits into the prepared sugar while it is hot; put them in a cold plaoe; they will soon become hard.

Jwlilis without Frut.-To 1 pint of water put \ddagger oz. alum; boil a minnte or two ; then add 4 lbs. white sugar ; continue the boiling a little; strain wbile hot; and, when cold, put in half a twenty-five cent bottle of extract of vanilla, strawberry, lemon, or any other flavor you desire for jelly.

Privi Honiey.-Good common sugar, 5 lbs.; Water, 2 lbs. ; bring gradually to a boil, skimming when cool ;add 1 lb . bees' honey and 4 drops essence of peppermint. If you desire a better article; use white sugar, and $\frac{1}{2} \mathrm{lb}$. less. water, $\frac{1}{1} \mathrm{l} . \mathrm{more}$ honey.

Another.-Cofiee sugar, 10 lbs ; water; 3 lbs.; cream tartar, 2 oz.; strong vinegar, 2 tablespoons ; white of an egg well beaten; bees' honey, $\frac{1}{\frac{1}{2}} \mathbf{l b}$; Lubin's extract of honeysuckle, 10 drops. Put on the sugar and water in a suitable kettle on the fire; when lukewarm, stir in the cream tartar and vinegar; add the egg; when the sugar is nearly melted put in the honey, and stir till it comes to a boil ; cake it off, let it stand a few minutes; strain, then add the extract of honeysuckle last; stand over night, and it is ready for use.

Another.-Common sugar, 4 lbs.; water, 1 pt. ; let them come to a boil, and skim. Then add pulverized alum, $\&$ oz. ; remove from the fire, and stir in cream of tartar, 1 oz., and water, or extract of rose, 1 tablespoonful, and it is fit for use.

To Krep Froits Fresh.- Rosin, 2 lbs.; tallow, 2 oz.; bees'-wax, 2 oz . Melt slowly over the fire in an iron pot, but don't boil. Take the fruit separately, and rub it over with pulverized chalk or whiting (to prevent the coating from adhering to the fruit), then dip it into the solution once, and hold it ap, a moment to set the coating, then pack away carefully in barrels, bozes, or on ahelves,
in a cool place. Unequalled for preserring apples, pears, lemons, oranges, \&c.
Acid Drops. - Pound and sift into a clean pan 8 ozs, of double refined sugar, add alowly as much water as will render the sugar sufficiently moist not to stick to the stirring spoon, place the pan on a small stove or slow fire, and atir tillit nearly boils, remove from the fire and stir in $\ddagger \mathrm{oz}$. tartaric acid. Place it on the fire for half a minute, then dip out small quantities from the pan, and let it fall in small drops on a clean tin plate; remove the drops in 2 hours with a knife. Ready for sale in 24 hours.

TANNERS, CURRIERS, BOOT, SHOF AND HARNESS MAKERS, MARBLE WORKERS, \&o.

Brat Color for Boot, Shot, and Harniss Edgr-Alcohol, i: pint ; tincture of iron, litoz. ; extract logwood, 102. ; pulverized nutgalls, 1 cz. ; soft water, pint ; sweet oil, $\frac{1}{}$ oz. ; put this last into the alcohol before adding the water. Nothing can exceed the beautiful finish imparted to the leather by this preparation. The only objection is the cost.

Chap Color yor the Edge.-Soft water, 1 gallon ; extract logwood, 1 oz . ; boil till the extract is dissolved; remove from the fire, add copperas, 2 oz., bichromate of potash and gumarabic, of each \& oz. ; all to be pulverized.

Supmrior Edger Blagring.-Soft water, 5 gallons; bring to a boil, and add 8 oz. logwood extract, pulverized; boil 3 minutes,
 mate of potash, and 80 grains prussiate of potash.

For a small quantity of this, use water, 2 quarts; extract of logwood, $\frac{3}{4} \mathrm{oz} . ;$ gum arabic, 96 grains; bichromate of potash, 48 grains ; prussiate of potash, 8 grains. Boil the extract in the water 2 minutes; remove from the fire and stir in the others, and it is ready for use.

For tanners' surface blacking, which is not required to take on a high polish, the gum arabic may be omitted.

Slzing for Boots and Shoes in Trmeing Out.--Water, 1 quart ; dissolve in it, by heat, isinglass, 1 oz . adding more water to replace glass, by evaporation ; when dissol ved, add starch, 6 oz ; extract of logwood, bees'-wax, and tallow, of each, 2 oz . Rub the starch up first by pouring on sufficient boiling water for that purpose. It makes boots and shoes soft and pliable, and gives a splendid appearance to old stock on the shelves.
Blace Varnise for the Edae.-Take 98 per cent. alcohol, 1 pint; sheliac, $3 \mathrm{oz} . ;$ rosin, 2 oz . ; pine turpentine, 1 oz . ; lampblack, 4 oz. ; mix; und when the gums are all cut, it is ready for use. This preparation makes a most splendid appearance when applied to boot, shoe, or harness edge, and is equally applicable to cloth or wood, where a gloss is required after being painted.

Beat Harmeas Varmiab Extart.-Alcohol, 1 gallon; whit turpentine, $1 \frac{1}{2}$ lbs. ; gum shellac, $1 / \mathrm{lbs}$. . Venice turpentine, 1 g gill. Let them stand by the stove till the gums are dissolved, then add aweat oill, 1 gill ; and color if you wish it with lampblack, 2 oz. This will not crack like the old varnish.
Alarness oil.-Neal'g-foot oll, 1 gal., lampblack, 4 oz. Mix well.
Brilliant French Varnibe for Litather. - Spirit of wine, I pint; vinegar, 5 pints ; gum senegal in powder, 1 lb .; loaf sugar, 6 oz. powdered galls, 2 oz . ; green copperas, 4 oz. Dissolve the gum and sugar in the water; strain, and put on a slow fire, but don't boil ; now put in the galls, copperas, and the alcohol; stir well for five minutes ; set off ; and when neurly cool. strain through flannel, and bottle for use. It is applied with a pencil brush. Most superior.
Liquid Japan for Leather.-Molasses, 8 lbs. \mathfrak{j} Jampblack, 1 lb . : sweet oil, 1 lb . ; gum arabic, 1 lb .; isinglass, 1 lb . Mix well in 32 lbs. water ; apply heat; when cool, add l quart alcohol ; an ox's gall will improve it.

Waterprooy Oil-Blacking, Oamphene, 1 pint; add all the India-rubber it will dissolve; currier's oil, 1 pint ; tallow, 7 lbs.; lampblack, 2 oz. Mix thoroughly by heat.
Shozmaxmes' Herl Balls.-Bees'-way, 8 oz. ; tallow, 1 oz.; melt, and add powdervd gum arabic, 1 oz. and lampblack to color.
Cenent yór Lasther or Rubbeà Soles and Leather Beltigg.Gutta percha, 1 lb . ; India-rubber, 4 oz. ; pitch, 2 oz ; shellac, 1 oz.; oil. 2 oz . ; melt, and use hot.
Oil Paste Blacking.-Ivory black, 4 lbs.; molassez, 3 lbs.; sweet oil, 1 l lb.; oil vitriol, 3 lbs.; mix, and put in tins.

To Dye Leathia blee, Red, or Purplif.- For red, steep it in alum water, then put it in a warm decoction of Brazil wood; blue, ateep it in an indigo vat; purple, steep the skins in alum water, then put it in a warm decoction of logwood.
Gold Yarnish.-Turmeric, 1 dram; gamboge, 1 dram ; turpentine, 2 pints ; shellac, 5 oz.; sandarach, 5 oz.; dragon's blood, 8 drams ; thin mastic varnish, 8 oz.; digest with occasional agitation for fourteen days; then set aside to tine, and pourr off the clear.

Grain blace por Harnese Leather. -Fifet stain in tallow; then take spirits turpentine, 1 pint; cream of tartar, $]$ oz.; soda, 1 oz.; gum shellac, $\frac{1}{2}$ oz. ; thick paste, reduced thin, 2 quarts. Mix well. This will finish 12 sides.
Stains for Wood and Leather.-Red.-Brazil wood, 11 darts: alum, 4 parts; water; 85 parts. Boil.
Blue.-Logwood, 7 parts ; blue vitriol, 1 part ; water, 22 parts. Boil.
BLacr.-Logwood, 9 parts; sulphate of iron, 1 part; water, 25 parts. Boil.
Grazn.-Verdigris, 1 part; vinegar, 3 parts. Dissolve.
Yellow.-French berries, 7 parts ; water, 10 parts; alum; 1 part. Boil.

Puaple.-Logwood, 11 parts ; alum, 3 parts; water, 29 parts. Boil.
Deer Skins.-Tanning and Bufyng por Glovin - For each akin, take a bucket of water, and put into it one qt. of line ; let the skin or skins lie in from 3 to 4 days; then rinse in clean water, hair, and
grain; then soak them in cold Whater to get out the glue; now scour or pound in gooi soap-suds for half an bour; after which take white vitriol alum, and salt, 1 taplespoon if each to a skin; these will be dissolved in sufficient water to cover the skin, and remain in it for 24 hours; wring out as dry as convenient, and spread on with a brush $\frac{1}{1} \mathrm{pt}$. of currier's oil, and hang in the sun about 2 dajs; after which you will scour out the oil with soap-sinds, and hang outagain until perfectly dry; then pull sad work then until they are soft; and if a ressonable time does not make them soft, scour out in suds again as before, until complete. The oil may be saved by pouring or taking it from the top of the suds, if left standing a short time. The buff color is given by spreading yellow onhre even'ly over the suiface of the skin, when finished, rubbing it in well with a brush.

Tanning wita Acid.-After having removed the hair, scouring, soaking, and pounding in the suds, \&c., as in the last recipe, in place of the white vitricl, alum, and salt, as there mentioned, take oil of vitriol (sulpharic acid), and water, equal parts of each, and thoroughly wet the flesh-side cf the skin with it, Dy means of a sponge or cloth npon a stick; then folding up the skin, letting it sie for 20 minutes only, having ready a solution of sal-soda and water, say 1 lb . w \& bucket of water, and soak the skin or skins in that for two hinurs, when you will wash in clean water, and apply a little dry salt, letting lie in cie salt over night; or that length of time; then remove the flesh with a blunt knife, or, if doing business on a large scale, by means of the regular beam and flesh-knife; when dry, or nearly so, soften by pulling and rubbing with the hands, and also with a piece of pumice-stone. This of course is the quickest wiy of tanning, and by only wetting the skins with the acid, and soaking out in 20 minutes, they are not rotted.

Another Metion,-Oil of vitriol, $\frac{1}{2}$ oz. ; salt, 1 teacup; milk sufficient to handsomely cover the skin, not exreeding 3 qts. ; warm the milk, then add the salt and vitricl; stir the skin in the liquid 40 minutes, keeping it warm ; then dry. and work it as directed in the above
Liquid Red.- Ohannellers will find that no better or richer color for their purposes can be got than the red ink described under the Grocers' Department, diluted to the required shade. For color for the bottoms of shoes use tincture of red sanders.

Bridle Stain.-Sisimaved milk, 1 pt. : spirits of salts, $\frac{1}{2}$ oz.; spts. of red lavender, ${ }^{\prime} \mathrm{oz}$. ; gim arabic, $1 \mathrm{oz} \cdot ;$ and the juice of 2 lemons; mix well together, and cork for use; apply with a sponge; when dry, polish with a brush or a piece of flannel. If wished paler, put in less red lavender.

New Tanning Composition.-For harness leather, 4 lbs. catechu, 3 pts. common lye, 3 oz. of alum. For wax leather, (split leather) 3 lbs. catechu, 3 pts. common lye 3 oz . alum. For culf-skins, 2 lbs. catechu, $1 \mathrm{pt} .1 \mathrm{ye}, 2 \mathrm{oz}$. alum. for sheep-skins, 1 lb . catechu, 1 pt . $\mathrm{lye}_{1} 1 \mathrm{oz}$. alum. The catechu by itself will make the leather hard and brittle, the lye will soften it ; the alum, being only used for coloring, can be dispensed with, or other matter used inits place. The mixture is in every case boiled, and the Igather is then, immersed in it long enough to le thoroughly tanned, for which purpose the barness leather should he steeped from 18 to 20 days, wax leather
from 12 to 14 days, calf-3kin from 7 to 9 days, and sheep-skin from 2 to 4 days.

Prooess of Tanning Calf, Kip, and Harness Leather is proy 6 то 30 DAYs.-For a 12-lb. calf-skin, take 3 lbs. of terna japonica, common salt, 2 lbs . $\mathrm{j}^{\text {alum, }} 1 \mathrm{lb}$. ; put them into a coppurkettle with sufficient water to dissolve the whole by boiling. The skin will bs limed, hairtd, and treated every way as for the old process, when it will be put into a vessel with sufficient water to cover it, at which time you will put in 1 pint of the composition, stirring it well, "adding the same amount each night and morning for three days, when you will add the whole, handling 2 or 3 times daily all the time. tanning; you can continue to use the tanning liquid by adding half the quantity each time, by keeping these proportions for any amount. If you desire to give a bark color to the leather, you will put in 1 lb . of Sicily sumac; kip skins will require about 20 days, light house hides for harness 30 days, calf-skins from 6 to 10 days at most.

To Tan Raw Hide.- When taken from the animal, spread it flesh side up; then put 2 parts of salt, 2 parts of saltpetre and alum combined, make it fine, sprinkle it evenly over the surface, roll it up, let it alone a few days till dissolved; then take off what flish remains, and nail the skin to the side of a barn in the sum. stristch tight, to make it soft like harness leather, put neat'r-foot oil o. it, fasten it up in the sun again; then rub out all the oil yon can with a wedgeshaped stick, and it is tanned with the hair on.

French Finish for Leateier.-Take a common wooden pailful of scraps (the legs and pates of calf-skins are best), and put a handful each of salt and alum upon them, and let them stand three days; then boil them until they get a thick paste; in using, you will warm it, and in the first application put a little tallow with it, and for a second time a little soft soap, and use it in the regular way of finishing, and your leather will be soft and pliable, like French leather.

French Patint Leather.-Work into the skin with appropriate tools 3 or 4 successive coatings of drying varnish, made by boiling linseed oil with white lead and litharge, in the proportion of one pound of each of the latter to one gallon of the former, and adding a portion of chalk or ochre, each coating being thoroughly dried before the application of the rest. Ivory black is then substituted for the chalk or ochre, the varnish thinned with spirits of turpentine, and five additional applications made in the same manner as before, except that it is put on thin and not worked in. The leathor is rubbed down with pumice-stone, in powder, and then placed in a room at 90 degrees, out of the way of dust. The last varnish is prepared by boiling $\frac{1}{2} \mathrm{lb}$. of asphaltum with 10 lbs . of the drying oil usid in the first stage of the process, and then stirring in 5 lbs . ccpal varnish and 10 lbs. of turpentine. It must have i month's age before using it.

Cheap Tanning without Bark or Mineral Astringents.-The astringent liquor is composed of water, 17 gals. ; Aleppo galls, $\frac{1}{2}$ lb. ; Bengal catechu, $1 \frac{1}{2} \mathrm{oz}$. and 5 lbs . of tormentil, or septfoil root. Powder the ingredients, and boil in the water 1 hour; when cool, put in the skins (which must be prepared by baing
plunged into a preparation of bran and water for 2 days previously); handle them frequently during the first 3 days, let them alone the next 3 days, then handle three or four times in one day; let them lie undisturbed for 25 days more, when the process will be complete.

Canadian Process.-The Canadians make four liquorsin using the japonica.

The first liquor is made by dissolving, for 20 sides of upper, 15 lbs . of terra japonica in sufficient water to cover the upper, being tanned. The second liquor contains the same amount of japonica, and 8 lbs. of saltpetre also. The third contains 20 lbs. of japonica, and $4 \frac{1}{2}$ lbs. of alum. The fourth liquor contai:s only 15 lbs . of japonica, and $1 \frac{1}{2}$ lbs. of sulphuric acid ; and the leather remains 4 days in each liquor for upper ; and for sole the quantities and time are both doubled. They count, 50 calf-skins in place of 20 sides of upper, but let them lie in each liquor only 3 days.

Fifty Dollar Recipe for Tanning Fur and other Skins.Remove the legs and useless parts, soak the skin soft, and then remove the fleshy substances, and soak it in warm water 1 hour. Now take for each skin borax, saltpetre, and Glauber-salt, of each $\frac{1}{4}$ oz., and dissclve or wet with soft water sufficient to allow it to be spread on the flesh side of the skin. Put it on with a brush thickest in the centre or thickest part of the skin, and double the skin together, flesh side in ; keeping it in a cool place for 24 hours, not allowing it to freeze. Then wash the skin clean, and take sal-soda, 1 oz ., borax, $\frac{1}{2}$ oz. ; refined soap, 2 oz .; melt them slowly. together, being careful not to allow them to boil, and apply the mixture to the flesh side as at first. Boil up again, and keep in a warm place for 24 hours; then wash the skin clean again, as above, and have saleratus, 2 oz., dissolved in hot rain water sufficient to well saturate the skin ; take alum, 4 oz . ; salt, 8 oz ; and dissolve also in hot rain water; when sufficiently cool to allow the handling of it without scalding, put in the skin for 12 hours; then wring out the water and hang $11 p$ for 12 hours more to dry. Repeat this last soaking and drying 2 or 3 times, according to the desired softriess of the skin when finshed. Lastly finish, by pulling and working, and finally by rubbing. with a piece of pumice-stone and fine sand-paper. This works like a charm on sheep-skins, fur skins, dog, wolf, bear-skins, \&c.

French Polish or Dressing for Leather.-Mix 2 pts. best vinegar with 1 pt . soft water; stir into it \ddagger lb. glue, broken up, $\frac{1}{2} \mathrm{lb}$. \log wood-chips, $\frac{1}{4} \mathrm{oz}$. of finely powdered indigo, $\frac{1}{4} \mathrm{oz}$. of the best soft soap, $\frac{1}{4} \mathrm{oz}$. of isinglass; put the mixture over the fire, and let it' boil ten minutes or more; then stran, bottle, and cork. When cold, it is fit for use. Apply with a sponge.

Curriers' Size.-Take of sizing, 1 qt. ; soft soap, 1 gill ; stuffng, 1 gill; sweet milk, $\frac{1}{4} \mathrm{pt}$.; boil the sizing in water to a proper consistence, strain, and add the other ingredients; and when thoroughly mixed, it is ready for use.

Curriers' Paste.-First Joat.-Take of water, 2 qts. ; flour, $\frac{1}{2}$ pint; Castile soap, 1 oz. ; make into paste. Second Coat.-Take of first paste, $\frac{1}{2}$ pt.; gum tragacanth, 1 gla; ; water, 1 pt ; mix alt togethex. This will finish 18 sides of upper.
$r 2$ days predays, let them es in one day; e process will

quors in using

ides of upper, ver the upper, ne amount of intains 20 lbs. quor contai:is cid ; and the d for sole the 0 calf-skins in or only 3 days. Her Skins.soft, and then water 1 hour. r -salt, of each to allow it to with a brush nd double the for 24 hours, an, and take them slowly ind apply the and keep in a an again, as n water suffisalt, 8 oz. ; cool to allow for 12 hours ; more to dry. prding to the y finish, by a piece of a charm on

2 pts. best , broken up, oz. of the the fire, and and cork.
gill ; stuffto a proper and when
ts. ; flour, $\frac{1}{2}$ Coat. -Take t. ; mix all

Corkiers' Skirtive. This is for finishing skifting and the flesh of harness leather, in imitation of oak tanning. Take of chrome yellow, thb; yellow ochre, 11 lb ; cream of tartar, 1 oz. ; soda, $\frac{1}{2}$ oü.; paste, 5 qts. ; mix well. This will finish twelve sides.
Skiemage - For the grain to imitate oak tan. Take of chrome
 oz. paste, 2 qts. $;$ spicits of turpentine, 1 pt. $;$ mix well. This will finish twelve sides.
Nyzs foe Lisatbar. - Blue.-For each skin, take 1 az . of indigo, put it into boiling water, and let it stand one night; then warm it a little, and with a brush smear the skin twice over, and finish the same as the red. Red. After, the skin has been properly yrepared with sheep; pigs' dung, \&c., then take strong alum water, and sponge over your akin; when dry, boil a strong gall liquor (it cannot be too strong) then boll a strong Brazil wood liguior (the stronger the better) ; take a sponge, dip it into your liquor, and sponge it over your skin'; repeat this till th comes to a full red. To finish your skin, take the white of eggs, and a little gum dragon, mix the two together in half agill of water; sponge over your skin, and, when dry polish off. Yellow. -1. Infuse quercitron bark in vinegar, in which put a little alum, and brush over rour sking with the infusion; finish the same as the red. 2. Take 1 pt. of whisky ; 4 oz tarmeric; mix them well together; when settled, sponge your skins over, and finish as above. Black.- Put your skin on a clear board, sponge it over with gall and sumach liquors, strong; then take a strong logtwod liquor, sponge it over three or four times; then take a little copperas, mix it in the logwood liquor'; sponge it over your skin, and finish it same as the red: Purple - First sponge with the alum liquor strong, then with logwood liquor strong or mix them both, and boil them, and sponge with the liquor; finish the same as the red. The pleasing hues of yellow, brown; or \tan color, are readily imparted to leather by the following simple process: steep saffron in boiling water for a number of hours, wet a sponge or soft brush in ter liquor, and with it smear the leather. The quantity of saffron' as well as of water, will of course deperid on how much dye may be wanted; and their relative proportions to the depth of cotor required:
To MArbiE Books on Papgr.-Marbling of böoks or paper is performed thus: Dlissolve 4 ounces of gum arabic in 2 quarts of fair water; then provide several colors mixed with water in pots or shells, and with pencils peculiar to each color; sprinkle them by way of intermixture upon the gam water, which must be put into a trough, or some broad vessel; then, with a stick, curl them, or draw them out in streaks to as much variety as may be done: Having done this, hold your book or books close together, and only dip the edges in, on the top of the water and colors, very lightly; which done, take them off; and the plain impression of the colors in mixture will be upon the leaves; doing as well the ends as the front of the books in like manner, aind afterwards glazin'g the colors.
Bookbinders' Varnish-Shellac, 8 parts; gum benzoine, 3 parts; gum mastic, 2 parts. hr.ise, and digest in aloohol, 48 parts; oil of lavender, $\frac{1}{2}$ part. \cdots Or, digest shedac, 4 parts; gum mastic,

2 parts ; gum dammer and white turpenting, of each, 1 part ; with alcohol (95 per cent.) 28 parts.

Red Sprinkle for Bookbinders' Usm.-Brazil wood (ground); 4 parts; alum, 1 part ; vinegar, 4 parts; water, 4 parts. Boil nntil reduced to 7 parts, then add a quantity of loaf sugar and gum ; bottle for use. Blue.-Strong sulphuric acid, 8 oz.; Spanish indigo, powdered, 2 oz . ; mix in a bottle that will hold a quart, and place it in a warm-bath to promote solution. For use, dilute a little to the required color in a tea-cup. Black!-No better black can be procured than that made by the receipt for edge blacking, in this work, which see. Orange color.-Ground Brazil wood, 16 parts ; annotto, 4 parts ; alum, sugar, and gum arabic, a, ach 1 part; water, 70 parts, boil, strain, and bottle., Purple.-Logwood chips, 4 parts ; powdered alum, 1 part ; soft water, 24 parts; boil until reduced to 16 parts, and bottle for use. Green.-French berries, 1 part ; soft water, 8 parts. Boil, and add a little powdered alum; then bring it to the required shade of green, by adding liquid blue. Brown.-Logwood chips, 1 part; annotto, 1 part ; boil in water, 6 parts; if too light, add a piece of copperas the size of a pea.

Treb-Marble.-A marble in the form of trees may be done by bending the boards a little on the centre, using the same method as the common marble, having the covers previously prepared. The end of a candle may be rubbed on different parts of the board to form knots. Rice-Marble.-Color the cover with spirits of wine and turmeric, then place on rice in a regular mannes, throw on a very fine sprinkle of copperas water till the cover is nearly black, and let it remain till dry. The cover may be spotted with the red liquid or potash-water, very freely, before the rice is thrown off the boards. Spotted Marblefor Books, etc.-After the fore-edge of the book is cut, let it remain in the press, and throw on linseeds in a regular manner, sprinkle the edge with any dark color till the paper is covered, them shake off the seeds. Various colors may be used; the edge may be colored with yellow c- red before throwing on the seeds, and sprinkling with blue. The seeds will make a fine fancy edge when placed very thick on different parts, with a few slightly thrown on the spaces between. Japan Cotoring for Leather, Book-covers, etc.-After the book is covered and dry, color the coyer with potash-water mixed with a little paste : give 2 good coats of Brazil wash, and glaze it ; put the book between the hands, allowing the boards to slope a little; dash on copperas-water, then with a sponge full of red liquid press out on the back and on different parts large drops, which will run down each board and make a fine shaded red; when the cover is dry, wash it over 2 or three times with Brazil wash to give it a brighter color. (See the various dyes for leather.)

Gold Sprinkle for Books.-Put in a marble mortar $\frac{1}{2}$ oz. pure honey and one book of gold leaf, rub them well together until they are very fine, add $\frac{1}{2}$ pint clear water, and mix well together when the water clears, pour it off, and put in more till the honey is all extracted, and nothing remains but the gold; mix one grain of corrosite sublimate in a teaspoonful of spirits of wine, and when dissolved, put the same, together with a little gum water to the

1 part; with d (ground) 4 8. Boil until ar and gum ; Spanish ina quart, and use, dilute a better black edge blackBrazil wood, trabic, cach 1 e.-Logwood 3 parts; boil een.-French a little powreen, by add20tto, I part ; peras the size

y be done by

 same method repared. The the board to is of wine and ow on a very ly black, and the red liquid rown off the e-edge of the linseeds in a color till the colors may be pre throwing 1 make a fine with a few ffor Leather, y, color the give 2 good on the hands, s-water, then and on differd and make er 2 or three se the variousr $\frac{1}{2}$ oz. pure er until they gether when honey is all ne grain of e, and when water to the
gold, and bottle for use. The edges of the book may be sprinkled or colored very dark, with green, blue, or purple, and lastly with the gold liquid in small or large spots, very regular, shaking the bottle before using. Burnish the edges when dry, and cover them with paper, to prevent the dust falling thereon. This sprinkle will have a most beautiful appearance on extra work.

To Gild the Edass or Boors. - Armenian bole, 4 parts, sagar candy, 1 part, white of egg to mix. Apply this composition to the edge of the leaves, previously firmly screwed in the cutting-press ; when nearly dry, smooth the surface with the burnisher; then take a damp sponge and pass over it, and with a piece of cotton-wool, take the leaf from the cushion and apply it to the work; when quite dry, burnish, observing to place a piece of silver or Indis paper between the gold and the agate.

Chinsse Epan ron Books.-Color the edge with light liquid blue and dry; then take a sponge charged with vermilion, and dab on spots according to fancy; next throw on rice, and finish the edge with dark liquid blue.

Dyes for Feathers.-Green Dye.-Take of verdigris and verditer, of each, $1 \mathrm{oz} . ;$ gum-water, 1 pt.; mix them well, and dip the bristles, fur, or feathers, they having been first soaked in hot water, into the said mixture. Blue.-Take of Indigo and risse, each, 1 oz. ; and a piece of alum the size of a hazel nut ; put them into gum-water, and dip the materials into it hot; hang them up to dry, and clap them well that they may open; and, by changing the colors, the aforesaid materials may be in this manner dyed of any. color. For purple, use lake and indigo; for carnation, vermilion and smalt. Red.-Take an ounce of Brazil wood in powder; $\frac{1}{2}$ oz. of alum; vermilion, $\frac{1 \mathrm{oz} .}{}$; and a pint of vinegar; boil them up to a moderate thickness, and dip the fur or feathers, they having been first soaked in hot water, into the said mixture. For black, use the same as for cloth. (See "Receipts for Dyeing.") Yellow.Mordant with acetate of alumina, and dip in a bath of turmeric or weld. Crimson.-Dip in acetate of alumina mordant, then in a boiling hot decoction of Brazil wood, and, last of all, pass through a bath of cudbear.

To makm Paper into Pardmient.-To produce this transformation, take unsized paper and plunge it into a solution of two parts of concentrated sulphuric acid combined with 1 part water; withdraw it immediately, and wash it in clean water, and the change is complete. It is now fit for writing; for the acid supplies the want of size, and it becomes so strong that a strip 2 or 3 inches wide will bear from 60 to 80 lbs . Weight, while a like strip of parchment will bear only about 25 lbs.
Horn in Imitation of Tortoish-Shell., First steam and then press the horn into proper shapes, and afterwards lay the following mixture on with a small brush, in imitation of the mottle of tor-toise-shell : Take equal parts of quick lime and litharge, and mix with strong soap-lees; let this remain until it is thoroughly dry; brush off, and repeat two or three times if necessary. Such parts as are required to be of a reddinh brown should be covered with a mixture of whiting and the stain.

Dyes ifor Ivory, Horn, and Bons.-Black.-1. Lay the articles for several hours in a strong solution of nitrate of silver, and expose to the light. 2. Boil the article for some time in a strained decoction of logwood, and then'steep it in a solution of per-sulphate or-acetate of iron. 3. Immerse frequently in ink untll of sufficient depth of color. Blue.-1. Inmerse for some time in a dilute solution of sislphate of indigo, partly saturated with potash, and it will be fully stained. 2. Steep in a strong solution of sult phate of copper. Green:-1. Dip blue-stained articles for a short iime in nitro-hydrooblorate of tin, and then in a hot decoction of fustic. 2. Boil in a solution of verdigris in viregar until the desired color is obtained. Red. -1 . Dip the articles first in a tin mordant, used in dyeing, and then plunge into a hot decoction of Brazil wood $-\frac{1}{2}$ lb. to a gallon of water-or cochineal. 2. Steep in red ink till sufficieiently sitained. Scarlet.-Use lác dye instead of the preceding. Violet.-Dip in the tin mordant, and then immerse in a decoction of logwood. \boldsymbol{Y}° Llow.-Boil the articles in a solution of alum, 1 ib . to $\frac{1}{2}$ a gallon, then immerse for half an hour in the following mixture : Take $\frac{1}{2} 1 \mathrm{lb}$. of turmeric, and 4 lh . of pearlash; boil in 1 gal. water: when taken from this; the bone must be again dipped in the alum solution.

Etchiyg Fhudd yor Ifory. - Take dilate sulphuric acid, dilute muriatic acid, equal parts: minx. For etching varnish take white wax, 2 parts; tears of mastic, 2 parts : mix.
To olid Iyory.-Immanse it in : a solution of nitro-muriate of gold, and then expose it. to lydrogen gas whle damp. Wash it afterwards in clean water.
To soften IVory.-In 3 oz . spirits of nitre and 15 oz . of springwater, mixed together, put your Ivory to soak ; and in three or four days it will obey your fingers.

To whiten Ivory.-Slack some lime in water; put your ivory in the water, after being decanted from the grounds, and boil it till it looks quite white... To polish it afterwards, set it in the turner's wheel; and, after having worked, take rushes and pumice-stones, subtile powder, with water, and rubit.till it looks perfectly smooth. Next to that, heat it by turning it against a piece of. linen or sheepskin leather : and when hot, rub it over with a little dry whitening diluted in oil of olive; then with a little dry whitening alone; finally with a piece of soft white rag. When all this is performed as directed, the ivory will look very white., \&
Another way to Bleaca Ivory.-Take 2 handfuls of lime, slake it by sprinkling :it with water : then add 3 pts. of water, and stir the whole together; let it settle ten minutes, and pour the water into a pan for your purpose. Then take your ivory and steep it in the lime-water for 24 liours, after which, boil it in a strang alumwater 1 hour, and dry it in the air,
Addityonal Dyrs for Feathers,-Black: immerse for 2 or 3 days in a bath, at first hot, of \log wood, 8 parts, and copperas or acetate of iron, 1 part. Blue: with the indigo vat. Brown: by using any of the brown dyes tor silk or woollen. Crimson: a mordant of aum, followed by a hot bath of Brazil wood, afterwards by a weak dye of cudbear. . Penk or Rose: with saf-flower or lemon juice. P'lym; with the red dye, followed by ar. alla.

the articles

 Iver, and ex a a strained dof per-sulink unthl of time in a divith potash, ition of sul? ifor a short decoction of until the dein a itin morlecoction of 2. Steep in - instead of hen immerse in 9 soluan hour in lb . of pearlbone must acid, dilute 1. take white -muriate of p. Wash itz. of springin three or

our ivory in

 1 boil it till the turner's mice-stones, ctly smooth. en or sheep-: y whitening aing alone; s performedllime, slake ter, and stir or the water d steep it in trong alum-
for 2 or 3 copperas or Brown: by Crimson: a rood, afterh saf-flower y ar. alla
line bath. Red: a mordant of alum, followed by a bath of Brazil wood. Yelloro: a mordant of alum, followed by a bath of turmeric or weld.
Colors yor Abripicial Flowass. The French employ velvet; fine cambric, and kid for the petals and tafeta for the leaves. Yery recently thin plates of bleached whalebote have been used for some portions of the artifcicial flowers: Colors and Stains. Blue. -Indigo dissolved in oil of vitribl, and the acid partly neutralized with salt of tartar or whiting. Grcen.-A solution of distilled verdigris. Lilac.-Liquid archil. Red.-Carmine dissolved in a solution of salt of tartar, or 'in' spifits of hartshorn. Violet.-Liquid archil mixed with a little salt of tartar. Yellow.-Tincture of turmeric The colors are generally applied with the fingers.
To cut and polisi Marble.-The matble saw is a thin plate of soft iron, continually supplied, during its sawing motion, with water and the sharpest sand. The sawing of moderate pieces is performed by hand : that of large slabs is most economically done by a proper mitll. The first substance used in the polishing process is the sharpest sand, which \#uisist be worked with til the surface becomes perfectly flat. Then a second and even a thirdsand, of increasing fineness, is to be applied. The next substanceis emery, of progressive dégreés of flienesis; after which, tripoll is employed ; and the last polish is given with tid putity. The body with which the sand is rubbed voon the marble is usually a plate ot iron; but, for the subsequent process, a plate of lead is used, with fine sand and emery. The polishing-rubbers are coarse linen cloths, or bagging, wedged tightinto an iron planing tool. In every step of the operation, a constant trickling suipply of water is required.
Alabaster, Marble, or Stont may be stained of a yellow, red, green, blue, purple, black, or any of the compound cclors,' by the stains used for wood.
Powerfol Cement for Brokein Marble.-Take gum atabic, 1.lb.; make into a thick mucilage: add to it powdered plaster of Paris $1 \frac{1}{2} \mathrm{lb}$. ; sifted quick lime, 5 oz . \boldsymbol{i}-mir well ; heat the marble, and apply the mixture.
Saven Colors for Staining Marbla.-It is necessary to heat the marble hot, but not so hot as to injure it, the proper heat being that at which the colors nearly boil: Blue; "alkaline indigo dye, or turnsole with alkali. Red; dragon's blood in spirits of wine. Yellow; gamboge ln'spirits of wne. Gold Cotor; Bal-ammoniac, sulphate of zinc, and verdigris, equal parts. Green; sap green, in spirits of potash. Brown; tincture of logwood. Crimson; alkanet root in turpentine. Marble may be veined according to taste. To stan marble well is a diffcult operation.
Perpetual Ine for Tombstones, eto.-Pitch, 11 lbs.; lampblack, 1 lb. ; turpentine sufficient; mix with heat.
To Clean Old Marble.-Take a bullock's gall 1 gill' soap lees, half a gill of turpentine ; make into a paste with pipeclay; apply it to the marble; let it dry a day or two, then rab it off, and it will appear equal to new; if very dirty, repeat the application.
To extract Oll from Marble or Stons.- Soft soap, 1 part ; fullers earth, 2 parts ; potash, 1 part; boiling water to mix. Lay it on the spots of grease; and let it remain for a few hours.

To Olean Marbli.-Take two parts of common soda, i part pumice atone, and 1 part of finely powdered chalk ; sift $1 t$ through a fine sieve, and mix it with water; then rub it well all over the marble, and the stains will-be removed; then wash the marble over with soap snd water, and it will be as clean as it was at first.
 and put into 1 t 2 l drs. of camphor: spirits of wine, 11 drs. When the camphor is dissolved, add to it tife following mixture : water. 9 drs ; ; sultpetre, 38 grs ; ; sal-ammoniac, 38 grs . Dissolve , hese salts in the water prior to mixing with the camphorated spirit; then shake all well together, cork the bottle well, wax the top, but afterwards make a very small aperture in the cork with a red bot needle. By observing the different, appearances which the materials assume as the weather changes, it becomes an excellent prog. nosticator of a coming storm or of a sunny sky.
Phintir's Rollerrs are made of glue and molasses, with sometimes a little Spanish white. The proportions are 1 lb . glue 01 pint molasses. Break the glue to piéces, soak for 24 hours, then melt the molasses, and cast in a mould previously orled to prevent it from sticking. When it gets hard after long use, remelt it, using a little more molasses.
Savage's Printing. Ink.-Pure balsam of copaiba, 9 oz ; lampblack, 3_{h} oz. ; indigo and Prussian blue, each 5 drams; Indian red, $\frac{1}{3}$ oz. ; yellow soap, 3 oz . Mix, and grind to the utmost smoothness.
Trappar's and Angler's Syorat for Gake and Fibe.- A rew drops of oil of anise, or oil rhodium, on any trapper's bait, will entice any wild animal into the snare trap. India cockle mused with flour dough, and sprinkled on the surface of still. water, will intoxicate fish, rendering them insensible; when coming up to the surface, they can be lifted into a tub of fresh water to revive them, when they may be used without fear,

RECEIPTS FOR OABINETMAKERS, PAINTERS, GILDERS,
BRONZERS, GLASS STAINERS, \&o.
Chmap Black Walnut Stain.-Burnt umber, 2 parts, rose pink, 1 part, glue, 1 part, water sufficient; heat all together and dissolve completely, apply to the work first with a sponge, then go over it with a brush, and varnish over with shellac.

Ebony Stain.-Drop black, 2 parts, rose pink, 1 part, turpentıne, a sufficient quantity.
Briget Yellow Stain.-1. Brush over with the tincture of turmeric. 2. Warm the work, and brush it over with weak aquatortis. varnish or oil as unal. 3. A very small bit of aloes put isto the varnish will give a rich yellow color to the wood.

Extra Black Stain for Wood-Pour 2 quarts boiling water over 1 oz . of powdered extract of \log wood, and, when the solution is effected, 1 dr. of yellow chromate of potash is added, and the whole well stirred, It is then ready for use as a wood-stain, or for
, part puthrough a ill over the marble over at first:
row bottle, drs. When ure : water. solve inese ated spirit ; the top, but th a red, hot n the mateellent prog.
with someb. glue to 1 hours, then 1 to prevent elt it, using
oz $;$ tampns ; Lndian ost smoothsn. - A rew s bait, will ockle muxed .water, will eg up to the evive them,

GILDERS,
rose pink, or and dise, then go
turpentıne.
are of turaquatortis ut into the
ling water he solution i, and the tain, or for
writung ink. When rubbed on wood, it produces a pure, blaok. Repeat with 2,3 or 4 applications, till a deep black is produced, which acquires the highest beauty when polished or stained.
imitation or Marogany.-Let the first coat of painting be White lead, the second, orange, and the last, barnt umber or sienna: mitating the veins according to your taste and practice:
To Ixitate Waisscot.-Leet the frat coat be white ; the second, balf white and halt yellow ochre; and the third, yellow ochre only ; shadow with umber or sienna.
To Imitate Safin Wood.-Take white for your first coating, light blue for the second, and dark blue or dark green for the third.
Rosefood Sitin, very Briget Sbade- Mazd Cold.-Take alcohol. 1 gal, $;$ camwood, 2 oz.; set them in a warm place 24 hours ; then add extract of \log wood, 3 oz .; aquafortis, 1 oz .; and When dissolved, it is ready for use; it makes a very bright ground like the most beautiful rosewood ; 1,2 , or more coats as you desire, over the whole surface.
Varnisi for Fraxes, arc.- Lay the frames over witu tin or sulver foil by means of plaster of Paris, glue or cement of some kind, that the foil may be perfectly adherent to the wood; then apply your gold lacquer varnish; which is made as follows: Ground turmeric, 1 lb ; powdered gamboge, $1 \frac{1}{2}$ ounces; powdered sandarach, $3 \frac{1}{2}$ ibs.; powdered shellac, $\frac{3}{3}$ lbs.; spirits of wine, 2 gals. : dissolve and strain ; then add turpentine varnish, 1 pt . ; and it is ready tor use.

Cgerry Stany.-Rain water, 3 gts. ; annotto, 4 oz.; boil in a copper kettle thll the annotto is dissolved, then put in a piece of potash the size of a walnut; keep it on the fire about half an hour longer, and it is ready to bottle for use.
Rosewood Stain, Liget Shade.-Equal parts of logwood and red-wood chips, boil well in water sufficient to make a strong stain; apply it to the furniture while hot; 2 or 3 coats according to the depth of color desired.
Rose Pine Stain and Varnisb. - Put 1 oz. of potash in 1 qt. water, with red sanders, $1 \frac{1}{2} \mathrm{oz}$.; extract the color from the wood and strain ; then add gum shellac, $\frac{1}{2} \mathrm{lb}$., dissoive it by a brisk tre. Used upon logwood stain for rosewood imitation.

Blue Stan mor Wood.-1. Dissolve copper filings in aquafortis, brush the wood with it, and then go over the work with a hot solution of pearlash (2 oz . to 1 pt . of water) till i t assumes a perfectly k:lue color. 2. Boil 1 lb . of indigo, 2 lbs. wood, and 3 oz. alum, in 1 gal. water, brush weli over until thoroughly stained.

Imitation of Botany-Bay Wood.-Boil $\frac{1}{2}$ lb. French berries (the unripe berries ot the Rhamnus infectorius) in 2 qts. water till of a deep yellow, and while boiling hot, give 2 or 3 coats to the work. It a deeper color is desired, give a coat of logwood decoction over the yellon When nearly dry, form the grain with No. 8, black stacn, used bot and, when dry, rust and varnish.
Mahogany Color-Dark.-1. Bohl $\frac{1}{2} \mathrm{lb}$. of madder and 2 oz . $\log -$ wood-chrys in a gallon of water. and brush well over while hot; when dry go over the whole with pearlash solution, 2 drs. to the quart. 2 Put $2 \mathbf{o z}$. dragon's blood, bruised, into a quart of oil of

108

turpentine; let the bottie stand in a wa- viace, shake frequently, and, when dissolved, steep the work in ..
Box-Wood Biown Stain.-Hold your ixinre.
sod the fire, that it may receive a gentle warmth then take uquafortus, and, with a feather, pass it over the work till you find it elange to a fine brown (al ways keeping it near the fire); you may then varnish or polish it.
yigat Red Brown,-Boil I lb. madder and $\ddagger \mathrm{lb}$. fustic in 1 gal. water; brush over the work, when boiling bot, until properly stained. 2. The surface of the work being quite smooth, brush over with a weak solution of aquafortis, $\frac{1}{3}$ oz. to the pint; then finish with the following :- Put 4. oz. dragon's blood and 1 oz. sode, both well bruised, to 3 pts. spirits of wine, let it stand in a warm place, shake frequently, strain and lay on with a soft brush, repeating untul of a proper color: polish with linseed oil or turnish.

Purple.-Brush the work seversl times with, the logwood decocthor used for No. 6, Black; and, when dry, give a coat of pearlash solution; 1 dr: to a quart lay it on evenly.
Red.-1. Boll 1 1b, Brazil wood and 1 oz. pearlash in a gal. of water; and, while hot, brush over the work until of a proper color. Dissolve 2 oz alum in 1 gt . water, and brush the solution over the work before it dries. 2. Take a gallon of the above stain, add 2 oz. more pearlash; use hot, and brush over with the alum solution. 3. Use a cold solution of archil, and brush over with the pearlash solution for No. 1, Dark mahogany.
Mahogany Stany on Wood.-Take nitric acid, dilute with 10 parts of water, and wash the wood with it. To produce rosecoood finish, glaze the same with carmine or Munich lake. Asphaltum, thinned with turpentine, forms an excellent mahogany color on new work.

Beautifol Varnisi for Vholins, \&c.-Rectified spirits of wine, $\frac{1}{2}$ gal. ; add 6 oz. gum sandarach, 3 oz. gum mastic, and $\frac{1}{2}$ pt. turpertine vamish; put the above in a tin can by the stove, frequently shaking till well dissolved : strain and keep for use. If you fiad it harder than you wish, thin with more turpentine varnish
Anotrex.- Heat together at a low temperature 2 qts. of alcohol, $\frac{1}{2}$ pt. turpentine varnish, and 1 lb . clean gum mastic; when the Latter is thoronghly dissolved, strain through a cloth.
Crimbon Stain por Musiocl Instruments.- Ground Brazil wood, 1 lb ; ; water, 3 qts.; cochineal, $\frac{1}{2}$ ounce; boil the Brazil with the water for an hour, strain, add the cochineal: boil gently for halt an hour, when it will be fit for use. If you wish a scarlet tant, boil an ounce of saffron in a quart of water, and pass over the work before you stain it.
Purple Stain.-Chipped logwood, 1 lb.; water, 3 qts. ; pearlash, 4 ounces; powdered indigo, 2 ounces. Boil the logwood in the water half an hour, add the pearlash and indigo, and when dissolved, you will have a beautiful purple.
Gresn Stain.-Strong vinegar, 3 pts.; best verdigris, 4 ounces, gromnd tine ; sap green, $\frac{1}{2}$ ounce: mix together.
Blace Stains For Wood.-1. Drop a little sulphuric acid into a emall quantity of water; brush over the wood and hold it to the fire; it will be a fine black and receive a good polish. 2 For a beantiful black, on wood, nothing can exceed the black Japan meutioned and, with a a fine brown h or polish it. stic in 1 gal. operly stain, brush over ; then tinish z. soda, both warm place eating untul
wood decocof pearlash in a gal of proper color. ion over the in, add 2 oz . im solution. the pearlash
ute with 10 uce rosewood Asphaltum, coloron new
ts of wine, $\frac{1}{2}$ 1 pt. turper, frequently If you fiad rnish.

- of alcuhol, ; when the

Brazil wood, zil with the tly for halt let tant, boil or the work
. ; pearlash, rood in the when dis-
s, 4 ounces, acid into a to the fire; a beantiful meutioned
under Tinsmith's Department. Apply two coats ; after which, varnish and polish it. 3. To 1 gal. vinegar, add a quarter of a pound of iron rust; let it stand for a week; then add a pounu of dry lampblack, and three-quarters of a pound copperas; stir it up for a couple of days. Lay on five or six coats with a sponge, allowing it to dry between each ; polish with linseed-oil and a soft woollen rag, and it will look like ebony. Incomparable for iron work, ships' guns, shot, \&c 4. Vinegar, $\frac{1}{2}$ gal. i dry lampblack, $\frac{1}{2} \mathrm{lb}$., iron-rust sifted, 3 lbs.; mix and let stand for a week. Lay three coats of this on hot, and then rub with linseed onl, and you will have a fine deep black. 6. Add to the above stain, nut-galls, 1 oz.; $\log w o o d-c h i p s, \frac{1}{2} \mathrm{lb}$. i copperas, $\frac{1}{} \mathrm{lb}$. i lay on three coats ; oil well, and you will have a black stain that will stand any kind of weather, and is well adapted for ships' combings, \&c. 6 Logwoodchips, $\frac{1}{2}$ lh.; Brazil-wood, $\frac{1}{} \mathrm{lb}$. ; boil for $1 \frac{1}{2}$ hours in 1 gal. water Brush the wood with this decoction while hot; make a decostion of nut-galls, by simmering gently, for three or four days, a quarter of a pound of the galis in 3 qts. Water; give the wood three coats, and, while wet, lay on a solution of sulphate of $1 \mathrm{ron} / 2 \mathrm{oz}$. to a quiart), and, when dry, oil or varnish 7 Give three coats with a solution of copper filings in aquafortıs, and repeatedly brush over with the logwood decoction until the greenness of the copper is destroyed. 8. Boil $\frac{1}{2}$ lb logwood-chip in 2 quarts water; add an ounce of pearlash, and apply hot with a brush. Then take 2 qts. of the logwood decoction, and $\frac{1}{2} \mathrm{oz}$. of verdigris; and the same of copperas ; strain, and throw in $\frac{1}{2} \mathrm{lb}$ of iron rust. Brush the work well with this, and oil.

Miscellaneous Stains.- Yellow is produced by diluted nitric acid. Red is produced by a solution of dragon's blood in spirits of wine Black is produced by a strong solution of nitric acid. Green is nroduced by a solution of verdigris in nitric acid; then, dipped in a hot solution of peariash produces a Blue stann Purple is produced by a solution of sal-ammoniac in uitric acid
Finishing with Une Coat or Varnish.-Valuable Process-Give the furniture a coat of boiled linseed oll, then immediately sprinkle dry whiting upon 1t, and rub it in well with your hand or a stiff brush, all over the surface; the whiting absorbs the orl, and fills the pores of the wood completely. For black walnut, add a little burned umber to the whiting; for cherry, a little Venetian red, \&c, according to the color of the wood Turned work can have it appised while in motion in the lathe. Furniture can afterwards be tinished with only one coat of varnish.

Mahogany Stain on Maple.-Dragon's blood, $\frac{1}{2}$ oz.; alkanet, $\frac{1}{4}$ oz ; a aloes, 1 dr .; sprits of wine, 16 oz . ; apply it with a spouge or. brush.

To Polisn Wood.-Take a piece of pumice-stone and water, and pass repeatedly over the work until the rising of the grain is cut down Then take powdered tripoli and boiled linseed oil, and poish the work to a bright surface.

Cloce Case and Picture Frame Finish-Copal rarnish, 2 Ibs.; linseed oil varnish, $\frac{1}{2} \mathrm{oz} . ; \operatorname{mix}$ well, shake often, and place in a warm spot The wood to be varnished is prepared with a thin coat of glue-water, and rubbed down with fine pumice-stone or some

110 Cabinetmakers, Painters, \&C., RECEIPTS.

thing equivalent. In light-cotored wood, a light pigment, such as chalk, is added to the glue-water; in dark wood, a dark pigment is added. When ready, the artucles are varnished with the above mixture, and, after drying, rubbed with a solution of wax in ether, thereby recoiving a high polish
Favor Figuras on Wood-Slack some lime in stale urine. Dip a brush in it, and form on the wood figures to suit your fancy. When dry rub it well with a rind of pork.

Blace Walnut Polise.-Take pulverized asphaltum ; put it in a jar or bottle, pour over it about twice its bulk of turpentine or benzole, put in a warm place, and shake occasionally ; when dissolved, strann, and apply it to the wood with a cloth or stiff brush; should it prove too dark, dilute with turpentive or benzole. If desired to bring out the grain still more apply a muxture of boiled oil and turpentine ; this is better than oif alone. When the oil is dry, the wood can be polished with the following. Shellac varnish, 2 parts boiled oil, 1 part, shake it well before using. Apply with a cloth, rubbing briskly.
Polisurs.-1 Carvers Polish.-White resin, 2 oz; seed lac, 2 oz.; spirits of wine, 1 pt. Dissolve It should be laid on warm. Avoid moisture and dampiess when used. 2. French Polish.Gum shellac, 1 oz. gura arabic, $\frac{\ddagger}{\text { oz }}$. gum copal, \ddagger oz. Powder, and sift through a piece of muslin ; put them in a closely corked bottle with 1 pt . sprits of wine, in a very warm situation, shaking every day till the gums aro dissolved : then strain through mislin, and cork for use. 3. Polish for Dark-colored Woods.-Seedlac, 1 oz. ; gum guaiacum, 2 dre: ; dragon's blood, 2 drs. ; gum mastic, 2 drs.; put in a bottle with 1 pt spirits of wine, cork close, expose to a moderate heat till the gums are dıssolved; strain into a bottle for use, with 4 gill of linseed oil: shake together. 4. Waterproof Polısh.-Gum benjamin, 2 oz gum sandarach, \ddagger oz. ; gum anima, $\frac{1}{4}$ oz ; spirits of wine, 1 pt ; mix in a closely stopped bottle, and place eitber in a sand bath or in hot water till the gums are dissolved, then strain oft the mixture, shake it up with $\frac{1}{4}$ gill of the best clear poppy onl, and put it by for use. 5. Finshing Polish.-Gum shellac, 2 drs., gum benjamin, 2 drs.; put into $\frac{1}{2}$ pt. of best rectified spirts ot wine in a bottle closely corked ; keep in a warm place, shaking frequently till the gums are dissolved. When cold, shake up with it two teaspoonfuls of the best clear poppy oil.

Polisi for Removing Stans, Spots, and Mildew prom Furniture. - Take of 98 per cent. alcohol, $\frac{1}{2}$ pint.; pulverised rosin and gum shellac, of each, oz. Let these cut in the alcohol; then add linseed oll, $\frac{1}{2} \mathrm{pt}$. ; shake well, and apply with a sponge, brush, or cotton flannel, or an old newspaper, rubbing it well after the application, which gives a nice polish.

Polish for Reviving Old Furniture.-Take alcohol, $1 \frac{1}{2}$ oz.; spirits of salts (muriatic acid), $\frac{1}{2} \mathrm{oz}$.; linseed oil, 8 oz . ; best vinegar, $\frac{1}{2} \mathrm{pt}$. ; and butter of antimony, $1 \frac{1}{2} \mathrm{oz}$. ; mix, putting in the vinegar last.

Jet. or, Polish for Wood or Leather, Black, Red, or Blee.Alcohol (98 per cent.), 1 pt ., sealing wax, the color desired, 3 sticks ; dissolve by heat, and have it warm when applied. A sponge is the best to apply it with.

Poluse of wine, cient qu the form it to the linen rae Fokimy root ; me Then ado strain th
Freaci solve. 1 oz. ; co cold tilit Oll Fin rectified oz. ; melt vinegar ; into a bo Linseed powdered

Fornit seed oil, turpentin Bees'-way add 5 oz . 1 oz.; oil
Furnit gest until oz.; put wanted p wax, 1 lb . 3. Bees'-w gal., and part; alk First stee pour off t are dissol
Furnit soft wate

Furnit rectified s kanet roo seed oil, 1 Linseed them tog clear.
Wood-1 $3 \mathrm{qts} \cdot \mathrm{co}$ Mix licoro
Impioti 1 pt ; b° pz. Mix

EIPTS.

gmont, such as ark pigment is vith the above f wax in ether, alo urine. Dip it your fancy.
im ; put it in a turpentine or lly ; When disor stiff brush ; enzole. If dexture of boiled Nhen the oil is hellac varnish,

Apply with
z ; seed lac, 2 laid on warm. ench Polish. oz. Powder, y corked bottie shaking every h muslin, and Seedlac, 1 oz .; mastic, 2 drs,; e, expose to a to a bottle for 4. Waterproof ; gum anima, $\frac{1}{4}$ pttle, and place are dissolved, 11 of the best Polish.-Gum f best rectified a warm place, en cold, shake iil.
from Fernised rosin and hol ; then add pnge, brush, or well after the
cohol, $1 \frac{1}{2}$ oz. ; pz. ; best vineputting in the

D, or Blek. lor desired, 3 ied. A sponge

CABINETMAKERG, PAINTERE, \&O., REOEIPR:
 of wine, $\frac{1}{10 t} ;$ next shave bees'-wax, $10 z_{p}$; and dissolve it in acifilcient quantity of spirits of turpentine to make it into a pasto; add the former mixture by degreés to 14 , then with \& woollen cloth apply it to the work while it is in motion in the lathe, and with a solt linen rag polish it. It will sppear as if highly varnished.
Fornturi Ponime-Bees'ovat, 3 lb , and of an ox. of alkenet root; melt together in a piphin nntil the former is well colored. Then add linseed oil and apifits of 'turpentine, of each half a gill; strain throngh a piece of coarse musilin.

Fremci Pomshis.-1. Shellac; 3 lbs. ; wood naphtha, 3 pts. ; dissolve. 2. Shellac, $2 \mathrm{lbs} . ;$ powdered mastic and sandarach, of each 1 oz . copal-varnish, $\frac{1}{2}$ pint ; spirits of wine, 1 gal. Dligest in the cold till dissolved.
Oil Finise.-1 Linsoed oil, $i s$ oz.; black rosin, $40 z$. vinegar 4 oz. rectified spirits, 3 oz . ; butter of antimony, 10 oq,; spirit of salts 2 oz. melt the rogin, wda the ofl, take it ofr the fre, and stir in the vinegar ; let it boil for a few minntes, stirring it; when cool, pat it into a bottle, add the other ingredients, dkaking all together. 2. Linseed oil, 1 pt. ; oil of tatpontine; $\frac{1}{2} p$ t. ; rectified spirits 40 ozs.; powdered rosin, 11 oz. ; rose pink, $\frac{1}{2}$ oz. mix:

Furnitura Pastie.-1. Bees'-war, 'spirits of turpentine, and linseed oil equal parts; melt and cool. 2. Bees'-wat, four ounces; turpentine, 10 oz, alkahet root; to color; molt and strain. 3. Bees'-wax, 1 1b. ; linseed oil, 5 oz, jalkanet root, 1 oz, $;$ melt, and add 5 oz . of turpentine ; strain and cool .4. Bees'-wax, 4 oz. ; resin, 1 oz ; oil of turpentine, 2 oz . ; Venetian red, to color.
Furnituri Paste- - Turpentine, 1 pt, ; alkanet root, oz. ; digest until sufficiently coldred, then add beeb' wai, scraped small, 4 oz.; put the vessel into hot water, and stir till alisolved. It wanted pale, the alkanet root should be omitted. 2. (White.). White wax, 1 lb . ; liquor of potassa, \& gal.; boil to a proper consistence. 3. Bees'-wax; 1lb. soap; 11b. ; pearlash, 3 oz. (dissolved in water, gal., and strained) ; boil as last. 4. Yellow wax 18 parts ; resin, 1 part ; alkanet root, a part ; turpentine 6 parts ; linseed oil, 6 parts. First steep the alkanet in the oll with heat, and, when well colored, pour off the clear on the other ingredients; and again heat till all are dissolved.

Furniture Craim.-Bees'-wax, 1 lb. ; soap, 4 oz.;pearlash, 2 oz.; soft water; 1 gal. ; boil together until mixed.

Furniture Oils.-1. Acetic acid, 2 drs ; oil of lavender, 1 dr.; rectified spirit, 1 dr. ; linseed oil, 4 oz. 2. Linseed oil, 1 pt. ;alkanet root, 2 oz.: heat, strain, and add lac varnish, 1 oz . 3 . Linseed oil, 1 pt. ; rectified spirit, 2 oz. ; butter of antimony, 4 oz. 4. Linseed oil 1 gal.; alkanet-root, 3 oz.; rose pink, 1 oz. Boil them together ten minutes, and strain so that the oil be quite clear.

Wood-Fming Composition, -Boiled linseed oil, 1 qt.; turpentine, 3 qts . corn starch, 5 lbs. ; Japan, 1 qt. ; calcined magnésia, 2 oz. Mix tiooroughly.

IMPRoved WOOD-MILIN Oouposimion- Whitoning, 6 oz. Japan, ipt. boiled lindeed oil, pt, tarpentine, $\frac{1}{2} \mathrm{pt}$; corn starch, 1 oz. Mix woll together apd apply to the woid. On walnut wood

112

add a little burned umber, on cherry a little Venetian red, to the above mixture.

Dyes for Venaers.-A fine Black.-Put 6 lbs. of logwood chips into your copper, with as many veneers as it will hold without pressing too tight, fill it with water, let it boil slowly for about 3 hours, then add $\frac{1}{2} \mathrm{lb}$. of powdered verdigris, $\frac{1}{2} \mathrm{lb}$. copperas, bruised gall-nuts, 4 oz . fill the copper up with vinegar as the water evaporates; let it boil gently 2 hours each day till the wood is dyed through. A fine Blue.-Put oil of vitriol, 1 lb ., and 4 oz . of the best powdered indigo, in a glass bottle. Set it in a glazed earthen pan, as it will ferment. Now put your veneers unto a copper or stone trough; fill it rather more than one-third with water, and add as much of the vitriol and indigo (stirring it about) as will make fine blue, testing it with a piece of white paper or wood. Let the veneers remain till the dye has struck through. Keep the solution of indigo a few weeks before using it; this improves the color. Fine Yellow.-Reduce 4 lbs. of the root of barberry to dust by sawing, which put in a copper or brass trough; add turmeric 4 oz . ; water, 4 gals. $;$ then put in as many white holly veneers as the liquor will cover. Boil them together for 3 hours, often turning them. When cool, add aquafortis, 2 oz ., and the dye will strike through much sooner. Bright Green.-Proceed as in the previous receipt to produce a yellow ; but, instead of aquafortis, add as much of the vitriolated indigo (see above under blue dye) as will produce the desired color. Bright Red.-Brazil dust, 2 lbs.; add water, 4 gals. Put in as many veneers as the liquid will cover; boil them for 3 hours, then add alum, 2 oz , aquafortis, 2 oz ; and keepit luke-warm until it has struck through. . Purple.-To 2 lbs. of chip logwood and $\frac{1}{2}$ lb . Brazil dust, add 4 gals. of water; and after putting in your reneers, boil for 3 hours ; then add pearlash, 6 oz , and alum, 2 oz ; let them boil for 2 or 3 hours every day till the color has struck through. Orange.-Take the veneers out of the above yellow dye, and while still wet and saturated, transfer them to the bright red dye till the color penetrates throughout.

To improve the Color of Stains.-Nitric acid, 1 oz.; muriatic acid, $\frac{1}{2}$ teaspoonful; grain tin, $\ddagger \mathrm{oz}$. ; rain water, 2 oz . Mix it at least 2 days betore using, and keep your bottle well corked.

Strong Glue for Inlaying or Veneering.-Select the best light brown glue, free from clouds and streaks. Dissolve this in water, and to every pint add half a gill of the best vinegar and $\frac{1}{2} \mathrm{oz}$. of isinglass.

Inlatd Mother of Pearl Work, on sewing machines and other fancy work, is performed by selecting the thin scales of the shell and cementing them to the surface of the material ; the rest of the surface is covered with euccessive coats of Japan varnish, generally black, being subjected to a baking process after each application. When the varnish is as thick as the shell, it is polished, the gilding and painting added, and a flowing coat of varnish put over the whole.

Another Method.-Prepare the job with a heavy coat of black Japan; then before it is dry, procure some flakes of pearl and lay them on the black surface, pressing them into the Japan until they are level with the surface ; then with colors form vines and thowers,
alloring up all n
Comp with lar to obtai ochre a Prussiar quantiti ture of Brick C Wood C proporti desired yellow 0 veining for the lead. T Realgar yellow p per. Or \forall ermilio tion of w color.
Lake and a small Color ma low. Ye ochre an For diste Spanish Lead Col and black ture of y and a litt vermilion Grass Gr White, w white, wi ochre, wi Spanish b litharge a and whit Salmon C -White black, red green. -White vermilion - Lampbl black, yel Prossia iron shavi iron as ho

RECEIPTS.

netian red, to the
of logwood chips will hold without slowly for about 3 copperas, bruised 3 the water evapothe wood is dyed , and 4 oz . of the p a glazed earthen into a copper or d with water, and it about) as will aper or wood. Let . Keep the solution ves the color. Fine to dust by sawing, aeric, 4 oz. ; water, as the liquor will g them. When cool, ough much sooner. eipt to produce a of the vitriolated oduce the desired ater, 4 gals. Put 1 them for 3 hours, it luke-warm until hip logwood and $\frac{1}{2}$ er putting in your 2., and alum, 2 oz ; ., color has struck above yellow dye, to the bright red
id, 1 oz.; muriatic r, 2 oz . Mix it at well corked.
lect the best light olve this in water, negar and $\frac{1}{2} \mathrm{Oz}$. of
achines and other scales of the shell al ; the rest of the pan varnish, geneafter each applihell, it is polished, pat of varnish put
ary coat of black s of pearl and lay Japan until they vines and Howers,

CABINETMAKERN, PATNTERS, \&C., RECEIPTS. T13
allowing the pearl to form the body of the flower or leaf, and shado up all niceiy.

Componnd Colors.-Light Gray is made by mixing white lead with lamp black, using more or less of each material, as you wish to obtain a lighter or darker shade. Buff is made from yellow ochre and white lead. Silver or Pearl Gray.-Mix white lead, Prussian blue, and a very slight portion of black, regulating the quantities you wish to obtain. Flaxen Gray is obtained by a mixture of white laad and Prussian blue, with a small quantity of lake. Brick Color.- Yellow ochre and red lead, with a little white. Oak Wood Color. $\frac{3}{2}$ white lead and $\$$ part umber and yellow ochre, proportions of the last two ingredients being determined by the desired tints. Walnut-tree Color.- $\frac{2}{}$ white lead, and $\frac{1}{\frac{1}{2}}$ red ochre, yellow ochre, and umber, mixed according to the shade sought. If veining is required, use different shades of the same mixture, and for the deepest places, black. Jonquil.- Yellow, pink, and white lead. This color is only proper for distemper. Lemon Yellow.Realgar and orpiment. The same color can be obtained by mixing yellow pink with Naples yellow; but it is then only fit for distemper. Orange Color.-Red lead and yellow ochre." Violet Color.Vermilion, or red lead, mixed with black or blue, and a'small portion of white. Vermilion is prefersble to red lead in mixing this color. Purple.-Dark-red mized with violet color. Carnation.Lake and white. Gold Cocor.-Massicot, or Naples yellow, with a small quantity of realgar, and a very little Spanish white. Olive Color may be obtained by black and a little blue, mixed with yellow. Yellow-pink, with a little verdigris and lampblack; also ochre and a small quantity of white will produce an olive color. For distemper, indigo and yellow-pink, mixed with white lead or Spanish white, must be used. If veined, it must be done with umber. Lead Color.-Prussian blue and white. Chestnut Color.-Red ochre and black, for a dark chestnut. To make it lighter, employ a mixture of yellow ochre. Light Timber Color-Spruce ochre, white, and a little umber. Filesh Color.-Lake, white lead, and a little vermilion. Light Willow Green.-White, mixed with verdigris. Grass Green.-Yellow-pink, mixed with verdigris. Stone Color.White, with a little spruce ochre. Dark Lead Color-Black and white, with a little Prussian blue. Fawn Color.-White lead, stone ochre, with a little vermilion. Chocolate Color.-Lampblack and Spanish brown. On account of the fatness of lampblack, mix some litharge and red lead. Portland Stone Color.-Umber, yellow ochre, and white lead. Rose Color.-White lead and carmine or lake. Salmon Color.-White lead and blue, yellow, and red. Pearl Color. -White lead, Prussian blue, and red. Slate Color.-White lead, black, red and blue. Pea Green.-White lead and chrome, or Paris green. Uream Color.-White lead, yellow and red. Straw Color. -White lead and yellow. Yeach Blossom Color.-White lead and vermilion. Brown.-Venetian red and lampblack. Dark Green. -Lampblack and chrome green. Olive Color.- Red, green, or black, yellow and red. Snuff Color.-Yellow, sienna, and red.
Prussian Blom.-1st. Take nitric acid, any quantity, and as much iron shavings from the lathe as the acid will dissolve; heat the iron as hot as can be handled with the hand; then add it to the
acid in small quantities as long as the acid will dissolve it ; then slowly add double the quantity of soft water that there was of acid; and put in iron again as long as the acid will dissolve it. 2d, Take prussiate of potash, dissolve it in the hot water to make a atrong solution, and make sufficient of it with the first to give the depth of tint degired, and the blue is made.

Another Mmtaod.-A very passable Prussian blue is made by taking sulphate of iron (copperas) and prussiate of potash, equal parts of éach; and dissolving each separately in water; then mixing the two waters.

Chroma Yellow--1st. Take sugar of lead and Paris. white, of each 5 lbs ; diseolve them in hot water. 2d. Take bichromate of potash, $6 \frac{1}{2}$; oz . a and dissolve it in hot water also; each article to be dissolved separately; then mix all together, putting in the bichromate last. Let stand twenty-four hours.

Chrome Grawn.-Take Paris white, 61 lbs.; sugar of lead, and blue vitriol, of each $3 \frac{1}{2}$ lbs. ; alum, $10 \frac{1}{2}$ oz.; best soft Prussian blue and chrome yellow, of each $3 \frac{1}{3}$ lbs. Mix thoroughly. while. in fine powder, sind add water, 1 gal., stirring. well, and let stand three or four hours.

Grime, Durable and Cheap-Take spruce yellow, and color it with a solution of chrome yellow and Prussian blue, until you give it the shade you wish.

Another Method.-Blue vitriol, 5 lbs.; sugar of lead, $6 \frac{1}{4} \mathrm{lbs}$.; arsenic, $2,1 \mathrm{lbs}$. ; bichromate of potash, $1 \frac{1}{2} \mathrm{oz} . ;$ mix them thoroughly in fine powder, and add water 3 parts, mixing well again, and let stand three or four hours.

Pad Brown.-1st. Take culphate of copper any quantity, and dissolve it in hot water. 2d. Take prussiate of potash, dissolve it in hot water to make a strong solution; mix of the two solutions, as in the blue; and the color is made.

Rosn Pink.-Brazil wood, 1 lb ., and boil it for two hours, having 1 gal. of water at the end; then strain it, and boil alum, 1 lb. , in the same water until dissolved; when sufficiently cool to admit the hand, add muriate of tin, $\frac{3}{4}$ oz. Now have Paris white, $12 \frac{1}{2}$ lb.; moisten up to a salvy consistence, and when the first is cool, stir them thoroughly together. Let stand twenty-four hours.

Patent Yellow.-Common salt, 100 lbs ., and litharge, 400 lbs ., are ground together with water, and for some time in a gentle heat, water being added to supply the loss by evaporation; the carbonate of soda is then washed out with more water, and the white residuam heated till it acquires a fine yellow color.

Naplas Yellow.-No. 1. Metallic antimony, 12 lbs. ; red lead, 8 lbs. ; oxide of zinc, 4 lbs . Mix, calcine, triturate well together, and fuse in a crucible : the fused mass must be ground and elutriated to a fine powder.

Cheap Yellow Paint:-Whiting, 3 cwt.; ochre, 2 cwt ; ground white lead, 25 lbs. Factitious linseed oil to grind.

Stone-Calor Paint.-Road-dust, 2 cwt.; ground white lead, $\frac{1}{2}$ cwt. ; whiting, 1 cwt. ; ground umber, 14 lbs. ; lime. water, 6 gals. Factitious linseed oil to grind.

Glazicir's Potty.-Whiting, 70 lbs.; boiled oil, 30 lbs. Mix; if too thin, add more;whiting; if too thick, add more oil.
bln requ oil mili and Pru tute littl othe livis lish to g of V Vern Red. lead. men for A yello burn This used addir quali whit lead ε
Frenc vitric and ture white same. shade Anot as to and y stone lampl and t and with hands railin

Lea
in a 1
grind
A
and b
 and d spirits

OEIPTS.

lissolve it ; then 1at there was of 11 dissolve it. 2d. water to make a first to give the
blue is. made by of potash, equal water; then mix-
a Paris. white, of ke bichromate of ; each article to putting in the bi-
gar of lead, and ost soft. Prussian horoughly while ell, and let stand
llow, and color it n blue, until you
r of lead, 64 lbs ; x them thoroughly vell again, and let
ny quantity, and tash, dissolve it in he two solutions,
two hours, having boil alum, 1 lb ., in ly cool to admit Paris white, 12 $\frac{1}{2}$ n the first is cool, ty-fonr hours. litharge, 400 lbs ., ae in a gentle heat, poration; the carter, and the white or.
2 lbs. ; red lead, 8 ate well together, e ground and elu-
re, 2 cwt ; ground ad.
ound white lead, $\frac{1}{2}$ lime water, 6 gals.
oil, 30 lbs. Mix; more oil.

Compound Corors.-Bluc-Grind Prussian blue in turps, other blue, very fine in linseed oil; mix with white paint to the color required. Stravo.-A mixture of chrome yellow and white lead, oil and turps. Steel.-Mix ceruse, Prussian blue, fine lac, and vermilion, with oil and turps. Purple.-White lead, Prassian blue and vermilion, with oil and turps. French Grey.- White lead and Prussian blue, tinged with vermilion, and for the last coat substitute carmine or lake for vermilion. Drab.-White lead with a little Prussian blue and French yellow, linseed oil and turps. Another Drab. - White lead with a little Prussian blue and lampblack, lixseed oil and turps. DarkRed, for common purposes,-Mix English renetian red, in boiled oil, with a little red lead and litharge, to give a drying quality. Lighter Red.-Mix together equal parts of Venetian red and red lead, in boiled oil and turps. 1 mitation of Vermilion.-Grind together, in oil red lead and rose pink. Deep Red.-Mix, in oil, vermilion with a dust of Venetian red, or red lead. Unfading Orange.-This is a mixtare of orange lead (orpiment) and French or stone yellow, oil and turps. Bright Yellow, for floors.-White lead and linseed oil, mixed with some French yellow, and a little chrome yellow to heighten it, some red lead, burnt white vitriol and litharge, added, to give it a drying quality. This color mixed with equal parts of boiled oil and turpentine, and used very thin. Dark Yellow.-Mix French yellow in boited oil, adding to it a little red lead or litharge to give the paint a drying quality. Light Yellow.-This is a mixture of French yellow and white lead, with oil and turpontine. Another. - French yellow, white leadand red lead. Another. This is a mixture of Prussian blue, French yellow, a small portion of Turkey umber, and a little burnt vitriol. Ground the same way. Another, in oil.-Mix Prussian blue and chrome yellow. Ground the same. Another Shade.-A mixture of Prussian blue and French yellow, with a small quantity of white lead and Turkey umber; add burnt white vitriol, ground the same. Another; light.-White muxed with verdigris. A variety of shades may be obtained by using blue and yellow with white lead. Another, olive.-Blaci and blue mixed with yellow, in such quantities as to obtain the colors or shades required. For distemper, use indigo and yellow pink mixed with whiting or white lead powder. Freestone color.-A mixture of red lead, Venetian red, French yellow and lampblack, (varying the shade according to taste,) with linseed oil and turpentine. Olive Green.-Grind, separately, Prussian blue and French yellow, in boiled oil, then mix to the tints required with a little burnt white vitriol to act as a dryer. A cheap and handsome color for outside work, such as doors, carts, waggons, railings, \&c.

Lead Color for Iron.-Take litharge and place it over a fire in a ladle; sprinkle over it flour of brimstone, to turn it dark; grind it in oil. It dries quick, and stands well in any weather.

A Good Imitation of Gold.-Mix white lead, chrome yellow and burnt sienna until the proper shade is obtained.
A Beautipul Whitn Pantr.-For inside work, which ceases to smell, and dries in a few hours. Add 1 lb . of frankincense to 2 quarts of spirits of turpentine ; dissolve it over a clear fire, strain it, and
bottle it for use; then add 1 pint of this mirture to 4 pints of bleached linseed oil, shake them well together, grind white lead in spirits of turpentine, and strain it; then add sufficient of the lead to make it proper for painting; if too thick in using, thin with turpentine, it being suitable for the best internal work on account of its superiority and expense.

For a pure Whitn Paint.-Nut-oil is the best; if linseed oil is used, add one-third of turpentine.

To mix Common White Paint.-Mix or grind white lead in linseed oil to the consistency of paste; add turpentine in the proportion of one quart to the gallon of oil; but these proportions must be varied according to circumstances. Remember to strain your color for the better sorts of work. If the work is exposed to the sun, use more turpentine for the ground-color, to prevent its blistering.
invisible Green for Outside Work.-Mix lampblack and French yellow with burnt white vitriol. These colors mix in boiled oil. Burnt vitriol is the best drier for greens,as it is powerful and colorless, and, consequently, will not injure the color.

Bright Varnish Green, for Inside Blinds, Fenders, \&c.-The work must first be painted over with a light lead color, and, when dry, grind some white lead in spirits of turpentine; afterwards take about $\frac{1}{8}$ in bulk of verdigris, which has been ground stiff in linseed oil ; then mix them both together, and put into a little resin varnish, sufficient only to bind the color. When this is hard, which will be the case in 15 minutes, pour into the color some resin to give it a good gloss. Then go over the work a second time and, if required, a third time. Thus you will have a cheap and beautiful green, with a high polish. It poasesses very drying quality, as the work may be completed in a few hours. The tint may be varied according to taste, by substituting mineral green for verdigris; and if a bright grass-green is required, add a little Dutch pink to the mixture.
N.B.-This color must be used when quite warm, to give the varnish an uniform extension.

Compound Greens.-This is a mixture of whiting, indigo and Dutch pink, the intensity of which may be increased or diminished by the addition of blue or yellow. These mixtures will not admit of any fixed rules in regard to the quantities of the matters used in their composition. They must depend on the taste of the artist and the tone he is desirous of giving to the color.

Pea Green.-Take one pound of genuine mineral green, one pound of the precipitate of copper, one pound and a half of blue verditer, three pounds of white lead, three ounces of sugar of lead, and three ounces of burnt white vitriol. Mix the whole of these ingredients in linseed oil, and grind them quite fine. It will produce a bright mineral pea-green paint, preserve a blue tint and keep any length of time in any climate, without injury, by putting water over it. To use this color for house or ship painting, take one pound of the green paint with some pale boiled oil, mix them well together, and this will produce a strong pea-green paint. The tint may be altered at pleasure, by adding a proportionate quantity of white lead to the green, which may be ground in linseed oil,
and

nsed

and
to 4 pints of white lead in of the lead g, thin with son account
linseed oil is
rad in linseed proportion of ons must be in your color od to the sun, its blistering. k and French in boiled oil. ful and color-
res, \&c.-The or, and, when ; ; afterwards round stiff in into a little n this is hard, he color some ork a second have a cheap very drying rs. The tint eral green for add a little
give the var-
5 , indigo and or diminished vill not admit matters used of the artist
al green, one half of blue mugar of lead, hole of these t will produce and keep any utting water ng, take one iix them well paint. The nate quantity a linseed oil,
and thinned with spirits of turpentine for use. It may also bo nsed for painting Yenetian window blinds, by adding white lead and mixing the color with boiled oil. For.all the aforesaid preparations it will reta:n a blue tint, which is very desirable.
For Knorting.- One pint of vegetable naptha, 1 tearnoonful of red lead, \ddagger pint of japanners gold size, 7 ozs. of orange whellac, mix all together, set in a warm place to dissolve, and frequently shake.
Another.-Mix white lead, or red lead powder, in strong glue size, and apply it warm.
biadtifol Color for Oarbiages, Coaghes, so.-Mix Victoria lake with black japan.
White Leid.-The most usual method of manufacturing white lead is that known as the Dutch method. It consists in exposing lead, cast in thin gratings, to the combined action of acetic acid moist air and carbonic acid gas. The gratings are supported a little above the bottom of earthen pots, similar to flower pots, in each of which a small quantity of weak acetic acid is placed, The pots are built up in alternate layers with spent tanners' bark, until a stack is formed, each layer of pots being covered with a board. Fermentation soon takes place in the tan, and serves the double purpose of generating heat and supplying carbonic acid. After the lapse of six or eight weeks, the metallic lead is found converted into white masses of carbonate mixed with hydrated oxide. It is then levigated, washed, dried, and ground with oil.
To Cure Dame Wails.-Boil 2 ozs. of grease with 2 quarts of tar, for nearly twenty minutes, in an iron vessel, and having ready pounded glass, 1 lb . ; slacked lime, 2 lbs . ; well dried in an iron pot and sifted through a flour seive; add some of the lime to the tar and glass, to make it the thickness of thin paste, sufficient to cover a square foot at a time, as it hardens so quick. Apply it abeut an eighth of an inch thick.
To Proteot Wood and Brick work from Damp Weather.Take 3 pecks of lime, slacked in the air, 2 pecks of wood ashes, and 1 peck of white sand. Sift them fine, and add linseed oil sufficient to use with a paint brush; thin the first coat; use it as thick as it will work for the second coat, grind it fine, or beat it in a trough, and it is a good composition.

Putty for Repairing Broken Walis.-The begi putty for walls is composed of equal parts of whiting and plaster ot Paris, as it quickly hardens. The walls máy be immediately colored upon it. Some painters use whiting mixed with size ; but this is not good; as it rises above the surface of the walls, and shows in patches when the work is finished. Lime must not be used as a putty to repair walls, as it will destroy almost every color it comes in contact with.
Instruotions fór Sign Writing, with the Colors to be used for the Ground and Letrers.-On an oak ground, ornamental letters, in ultramarine blue, filled in with gold and silver leaf, blocked up and shaded with burnt sienna. Another.-Gold letters on a white marble ground, blocked up and shaded with a transparent brown or burnt sienna. On glass.-Gold letters, shaded with

114d CABINETMAKERS, RAINTERS, \&C., REOMITI'S.

burnt sienna. Another,-Gold letters, shaded with black, on a scarlét or chocolate ground. On a rich blue ground, gold letters, double shaded; black and white. White letters on a blue ground, shaded with black, look very well. On a purple ground, pink letters shaded with white. Mix ultramarine and vermilion for a ground color, white letters shaded with a light grey. Vermition ground, chrome yellow, stained with vermilion and lake, for the letters, shaded black. A substitute for the above colors: Rose pink and red lead; and for the letters; stone yellow, white lead and Venetian red. A good substitute for gold is obtained by grinding white lead chrome yellow, and a dust of vermilion together. Mix your colors for writing in boiled oil, and use for drier gold size. Other good grounds for gold letters are: blues, vermilion, lake, and Saxon. When your sign is ready for gilding follow the directions given under the head of "To Gild Letters on Wood.",

To Gife Lubtre to a Light Blue Ground.-After the letters are written and dry, paint the ground over again, between the let1ers, with the same color, and while wet take pulverized Prussian blue and sift over the surface; glass, frost or smalts may be used instead of or with the blue. When dry, brush off the loose particles.
Th Remove Old Paint.-Sal soda, 2:lbs.; lime, 1 lb.; hot water, 1 gal.; rummage all together and apply to the old paint while warm. It will soon loosen the paint so.that you can easily remove it: Anather simple method is to sponge over your old paint with benzine, set, it on fire, and you can then flake off the paint as quick as you like. Do not attempt to go over too much surface at a time, otherwise you might get more to do than you can attend to.
Refuse. Paint and Paint Skins.-Dissolve sal soda, $\frac{3}{2}$ lb., in rain water, 1 gal.; cover the refuce paint for 2 days, then heat it, adding oil to reduce it to a proper consistence for painting and straining.
Solubly Glass can be made on a small scale by fusing together in a crucible, 15 parts of sand with 8 parts carbonate of soda and 1 part charcoal, not soluble in cold water, but dissoives in boiling water, yielding a strongly alkaline liquor.

Blace Walnut Stain.-Spirits of turpentine, 1 gal. ; pulverized asphaltum, 2 lbs . dissolve in an iron kettle on a stove, stirring constantly: Oan be used over a red stain to imitate rosewood: To make a perfect black add a little lampblack. © The addition of a little varnish with the turpentine improves it.

Crystal Varnise, for Maps, \&c.-Canada balsam, 1 oz .; spirits of turpentine, 2 ozs. ; mix together. Before applying this varnish to a drawing or colored print, the paper should be placed on a stretcher, and sized with a thin solution of isinglass in water, and dried. Apply with a soft camels-hair brush.

To Ebonize Wood.-Mix up a strong stain of copperas and logwood, to which add powdered nut-gall. Stain your wood with this solution, dry, rub down well, oil, then use French polish made tolerably dark with indigo or finely powdered stone blue.
'Lo Pant in Imtation of Ground Glass.-Griud and mix. White
lead
tine, quar mus larg num dab you worl Whe by As sulp and
vesse add cold,

CABINETMAKERS, PAINTERS, *C., RECEIPTS. $114 e$

lead in three-fourths of boiled oil wad one-fourth spirits of turpontine, and to give the mixture a very drying quality, add snfficient quantities of burnt white vitriol and sugar of lead. The color must be exceedingly thin, and put on the panes of glass with a large sized paint brush in as even a manner as possible. When a number of the panes are thus painted, take a dry duster quite new, dab the ends of the bristles on the glass in quick succession, till you give it an uniform appearance. Repeat this operation till the work appears very soft, and it will then appear like ground glass. When the glass requires fresh painting, get the old coat; off first by using strong pearl-ash water.
Anotaer Method. -Spirits of salts, 2 ozs ; oil of vitriol, 2 ozs ; sulphate of copper, 1 oz . ; gum arabic, 1 oz ; mix all well together, and dab on the glass with a brush.

Another.-Dab your squares regularly over with putty $;$ when dry, go over them again ; the imitation will be complete.

Painting on Glass.-Take clear rosin, 1 oz., melt in an iron vessel. When all is melted; let it cool a little, but not harden; then add oil of turpentine sufficient to keep it in a liquid state. When cold, use it with colors ground in oil.

Hard Dring Pant.-Grind Venetian red, or any other color you wish, in boiled oil ; then thin it with blaok japan. It will dry very hard for counter tops, \&c.

Spirit Graining for Oas.-Two pounds of whiting, quarter of a pound of gold size, thinned down with spirits of turpentine; then tinge your whiting with Vandyke brown and raw sienna, ground fine. Strike out your lights with a fitch dipped in turpentine, tinged with a little color to show the lights. If your lights do not appear clear, add a little more turpentine. Turpentine varnish is a good substitute for the above mentioned. This kind of graining must be brushed over with beer; with a clean brush, before varnishing. Strong beer must be used for glazing up topgraining and shading.

Oil for Graining Oak.-Grind Vandyke brown in turpentine, add as much gold size as will set it, and as much soft soap as will make it stand the comb. Should it set too quickly, add a little boiled oil. Put a teaspoonful of gold size to half a pint of turpentine, and as much soap as will lie on a twenty-five cent piece; then take a little soda mixed with water and take out the veins.

To prepare the Ground for Oak Rollerg.-Stain your white lead with raw sienna and red lead, or with chrome yellow and Venetian red; thin it with oil and turps, and strain for use. When the ground work is dry, grind in beer Vandyke brown, whiting and a little burnt sienna, for the graining color; or you may use raw sienna with a little whiting, umbers, \&c.

To Imatate Old Oak.-To make an exceedingly rich color for the imitation of old oak, the ground is a composition of stone ochre or orange chrome and burnt sienna; the graining color is burnt umber or Vandyke brown, to darken it a little. Observe that the above colors must be used whether the imitation is in nil or distemper. When dry, varnish.

To Imitate Old Oak, in Oil,-Grind Vaudyke and whiting in

turpentine, add a bit of common soap to make it stand the comb, and thin it with boiled oil.

To Imitatm Pollard Oar.-The ground color is prepared with a mixture of chrome yellow, vermilion, and white lead, to a rich light buff. The graining colors are Vandyke brown and small portions of raw and burnt sienna and lake ground in ale or beer Fill a large tool with color, spread over the surface to be grained, and soften with the badger hair brush. Take a moistened sponge between the thumb and finger, and dapple round and round in kind of knobs, then soften very lightly then draw a softener from one set of knobs to the other while wet, to form a multiplicity of grains, and tinish the knots with a hair pencil, in some places in thicker clusters than others. When dry put the top grain on in a variety of directions, and varnish with turps and gold size; then glaze up with Vandyke and strong ale. To finish, varnish with copal.

To Imitath Mottled Mahogany.-The ground is prepared with the best English Venetian red, red lead, and a small portion of white lead. The graining colors are burnt sienna, ground in ale, with a small portion of Vandyke brown, sufficient to take away the fiery appearance of the sienna. Cover the surface to be grained, soften with the badger hair brush, and while wet take a mottling-roller and go over the lights a second time, in order to give a variety of shade, then blend the whole of the work with the badger softener. Put the top grain on with the same color. When dry, varnish.

To Imitate Rosewood.-Mix vermilion and a small quantity of white lead for the ground, Take rose pink, tinged with a little lampblack, or Vandyke brown, and grind very fine in oil, then take a flat graining brush, with the hairs cut away at unequal distances, and cut down the grain as if wending round a knot. When nearly dry, take a graining comb that is used for oak, and draw down the grain. This will give it the appearance of nature. When dry, varnish.

Another.-This ground color is prepared with vermilion and small quantities of white lead and crimson lake. When the ground is dry and made very smooth, take Vankyke brown, ground in oil, and with a small tool spread the color over the surface in different directions forming kind of knots. Before the work is dry, take a piece of leather, and with great freedom strike out the light veins; having previously preparcd the darkest tint of Vandyke brown, or gum asphaltum, immediately take the flat graining brush with few hairs in it, draw the grain over the work and soften, When varnished the imitation will be excellent.

Another Rosewood Imitation in Size.-Mix Venetian red, white lead powder, vermilion and common size, the consistency of which, when cold, must be that of a weak trembling jelly. With this composition paint the work twice over. When the ground is dry, take some lamp black, finely ground in beer, and beat the white of an egg into it, take the flat graining brush, dipped in the black, and put on the grain. When dry, stain the first coat of
prepared with 3ad, to a rich rn and small in ale or beer to be grained, stened sponge and round 14 w a softener orm a multiencil, in some y put the top ith turps and ale. To finish,
is prepared small portion na, ground in icient to take e surface to be le wet take a e, in order to he work with he same color.
all quantity of a with a little ne in oil, then ay at unequal round a knot. d for oak, and nee of nature.
vermilion and ce. When the brown, ground the surface in he work is dry, e out the light t of Vandyke graining brush ok and soften,

Venetian red, consistency of g jelly. With the ground is and beat the , dipped in the c. first coat of
varnish with rose pink, finely ground in turpentine, and finish the work by giving it a coat of clear varnish.
To lmitate Bird's eyn Maple.-The ground is a light buff, prepared with white lead, chrome yellow, and a little vermilion or English Venetian red, to take off the rawness of the yellow. The graining color is equal parts of raw umber and slenna ground in oil to the proper consistency. Spread the surface of the work with this color, and, having some of the same prepared a little thicker, imniediately take a sash tool or sponge, and put on the dark shades, and soften with the badgers hair brush; before the color is dry put on the eyes by dabbing the dotting machine on the work. When dry, put on the grain with the camels-hair pencil on the prominent parts, to imitate the small hearts of the wood. 'When dry, varnish.

To Imitate, Cerled Maple.-Prepare a light yellow for the ground, by mixing chrome yellow and white lead, tinged with Venetian red. The graining color is a mixture of equal portions of raw sienna and Vandyke, ground in ale, spread the surface to be grained in an even manner; then with a piece of cork rub across the work to and fro, to form the grains which run across tho wood; soften and, when dry, lightly top-grain with the same color. When dry, varnish.

Curled Maple in Oil for Outsme Work.-Prepare a rich ground by mixing chrome yellow, white lead and burnt sienna. For the graining color, grind equal parts of raw sienna and umber, with a little burnt copperas in turpentine, and mix with it a small quantity of grainers cream. Thin the color with boiled oil ; then fill a tool and spread the surface even, and rub out the lights with the sharp edge of a piece of buff leather, which must now and then be wiped to keep it clean; soften the edges of the work very lightly, and when dry, put on the top grain with burnt umber and raw sienna, ground in ale, with the white of an egg beat into it. When dry varnisk.
| Satinwood.-This ground is prepared with white lead, stoneochre, and small quantities of chrome yellow and burnt sienna. The graining color is one-third of raw sienna and whiting, ground in pale ale, very thin; then spread the color over the surfiace to be grained. While wet, soften, and have ready a wet roller or mottling brush, in order to take out the lights; blend the whole with the badger hair brush. When the work is dry, take the flat brush, and with the same color, put on the top grain. When dry, varnish.
; To Imitate Yew Tree.-The ground is a reddish buff. For the graining color grind in ale equal portions of vandyke brown and burnt sienna, with a small quantity of raw sienna. When the 'ground is dry, spread the surface even with the color, and soften; then with a piece of cork with a sharp edge, rub the work cross and cross in order to form the fine grain, as in curled maple, and soften the same way of the grain. When dry, dip the tip of your fingers in the graining color to form the eyes or knots, and put in the small touches, with a camels-hair pencil." When dry, put on the top "grain, and when this" is dry yarnish.

114h CABINETMAKERS, PAINTERS, \&C., RFOETPTS.

To mitapl biaok and Gold Marble.-This description of marble is now in great demand. The ground is a deep jet black, or a dead color, in gold size, drop black and turps : second coat, black japan. Commence veining; mix white and yellow ochre with a small quantity of vermilion to give a gold tinge ; dip the pencil in thls color, and dab on the ground with great treedom some large patches, from which small threads must be drawn in various directions. In the deopest parts of the black, a white vein is sometimes seen running with a great number of small veins attached to it; but care must be taken that these threads are connected with, and run in some degree in the same direction with the thicker veins. If d"-ability is not an object, and the work is required in a short time, it may be executed very quiek in distemper colors, and when varnished, it will look well.

Rid Marble.-For the ground, put on a white tingeá with lako or vermilion ; then apply deep rich reds in patches, filling up the intermediate spaces with brown and white mixed in oil ; then blend them together ; if in quick drying colors, uso about half turps and gold size. When dry, varnish; and while the varnish is Wet pat in a multitude of fine white threads, crossing the wholo work in all directions, as the wet varnish brings the pencil to a fine point.
$J_{\text {abper Marble.-Put on a white ground lightly tinged with }}$ blue; then put on patches of rich reds or rose pink, leaving spaces of the white grounds ; then partly cover those spaces with various browns to form fossils, in places running veins; then put in a few spots of white in the centre of some of the red patches, and leaving in places masses nearly all white. When dry, use the clearest varnish.

Blet and Gold Marble.-For the ground put on a light blue; then lake blue, with a small piece of white lead and some dark comman blue, and dab on the grourd on patches, leaving portions of the gronnd to shine between; then blend the edges together with a duster or softener; afterwards draw on some white veins in every direction, leaving large open spaces to be filled np with a pale yellow or gold-paint ; finish with some fine white running threads, and a coat of varnish at last.

To imitatr Granitg.-For the ground color, stain your white lead to a light lead color, with lamp black and a little rose pink. Throw on biack spots, with a graniting machine, a pale red, and fill up with white before the gronnd is dry.

Another.-A black ground, when half dry, throw in vermilion, a deep yellow and white spots.

To mitate Hair Wood.-For the ground-color, take white lead and thin it with turpentine, and slightly stain it with equal quantities of Prussian blue and lamp black. For the graining color, grind in ale a mixture of Prussian blue and raw sienna; when the ground is dry, spread a transparent coat of the graining color on the surface of the work, and soften; then with the cork, mottle by rubbing it to and fro across the work to form the fine long grain or mottle. When this is done, soften and top grain in a wavy but nerpendicular directions ; varnish when dry.

UEIPTS

lescription of eep jet black, second coat, ow ochre with dip the pencil om some large various direcis sometimes ttached to it ted with, and thicker veins. ed in a short ors, and when
geá with lako filling up tho in oil; then se about balf the varnish is ng the whole e pencil to a
tinged with eaving spaces 3 with various ${ }^{1}$ put in a few , and leaving clearest var-
a light blue ; d and some ches, leaving ad the edges n some white p be filled np e white run-
a your white tle rose pink. pale red, and
in vermilion,
e white lead equal quanining color, enna; when aining color cork, mottle the fine long grain in $\%$

CABINETMAKERS, PAINTERS, \&J, RECEETPTG. 115
Schatituty for Wentw Lead.--Salphate of baryten ground in oil and applied like paint. It can also be used to reduce white lead to any desired extent.

Paint yor Buace Boneds in Sczools.- Oommon glue, is oz. ; four of emery, 3 oz. ; and just lampbtack enough to give an inky color to the preparation. Dissolve the glue in t qt. of warm water; put in the lamplack and emery; stir till there are no lumps, then apply to the board with a' woolten rag smoothly milsd. . Three coats are amply sufficient.

Coupound Iron Pannt.-Finely pulverized iron fidings, 1 part; brick dust 1 part ; and ashes, 1 part. Pour over them gluenwator or size, set the whole near the fire, and, when warm, stir them well together. With this paint caver all the wood work whioh may bo in danger; when dry, give: a second coat, and the wood: will be rendered incombustible.

Best Wash for Barns and Houses.-Water lime, tpeck; freshly slaked lime, 1 peck; yellow ochre in powder, 4 lbsi ; jurnt umber, 4 lbs . To be dissolved in hot weier; and applied witha brush.

Durable Outsidm Pankt.-Take 2 parts (inibulk)) of water lime, ground fine; 1 part (in bulk) of white lead, in oil. Mix tham thoroughly, by adding best'boiled. linsoed oil, enough to prepare it to pass through a paint-mill; after which, temperiwith oil till: it can be applled with a common paint-brush. Make any: color to suit. It will last 3 times as long as lead paint. It as Euparior.

Farmers' Paint.-Farmers :will find the following profitable for house or fence paint : skim milk, two quarts; :fresh slacked limo 8 oz. ; linseed oil, 6 oz.; white Burgundy pitch, 2 oz. ; Spanish White, 3 lbs. The lime is to be slacked in water, expesed to the arr, and then mixed with about one-fourth of the milk; the oil in which the pitoh is dissolved to be added, a little at a time, then the rest of the mill, and afterwards the Spanish white. This is sufficient for twenty-seven yards, 2 coats. This is for. white paint. If desirable, any other color may be, produced; thas; if a cream color is desired, in place of part of the Spanieh white use tho ochre alone.

Painting in Milki-Skimmed milk, gallon, newly slacked lime, $6 \mathrm{oz} . ;$ and 4 oz . of poppy, linseed, or a ut oil ; and 3 lbs. Spanish white. Put the lime into an earthen vessel or clean bucket; and having poured on it a sufficient quantity of milk to make it abont the thickness of cream, add the oil in amall quantities, a little at.a time, stirring the mixture well. Then put in the rest of the milk, afterwards the Spanish white finely powdered, or any other desired color. For out-door work add 2 oz, each more of oll and slaeked lime, and 20z. of Burgundy pitch disselved in the oil by a gentle heat.
Premium Paint withotet Oil or Lead.-Slack stone-lime with boiling water In a tub or barrel to keep in the steam; then pass 8 quarts through a fine sieve. Now to this quantity add 1 quart of coarse salt, and 1 gailion of water; boil the mixture, and skim is clear To every 5 gallons of this skimmed mixture, add 11 lb . alum; $\frac{1}{2} \cdot 1 \mathrm{lb}$. copperas ; and by slow degrees a lb . potash, and 4 quarts sifted ashes or fine sand ; add any coloring desired. A more durap ble paint was never made.

116 OABMETMAEERS, RANNTERN, HO., RECEIPTS.

Grean Panft for Gardin Stands, Bendo, ztc. - Take mineral green, and white lead ground in turpentine; mix up the quantity you wish with a small quantity of turpentine varninh. This serves for the first coat. For the second, put as much varnish in your mixture as rill produce a good gloss. If you desire a brighter green, add a littie Prussian blue, which will much improve the color.
Mile Pannt, yor Barne, any Colob.-Mix water lime with skim milk, to a proper consistence to apply with a brush, and it is ready to use. It will adhere well to wood, whether smooth or rough, to brick, mortar, or stone, where oil has not been used (in which case it cleaves to some extent); and forms a very hard substance, as durable as the best oil paint. It is too cheap to estimate, and any one can put it on who can use a brush. Any color may be given to it, by using colors of the tinge desired. If a red is preferred, mix Venetian-red with milk, not asing any lime. It looks well for fifteen years.
Paint.-To Makt mithoot Llad or Oru.-Whiting, 5 lbs.ig skimmed milk, 2 qts. ; fresh slacked lime, 2 oz . Put the lime into a stoneware vessel, pour upon it a sufficient quantity of the milk to make a mirture reserabling cream; the balance of the milk is then to be added; and lastly, the whiting is to be crumbled upon the surface of the fluid, in which it gradually sinks. At this period it must be well stirred in or ground, as you would other paint, and it is fit for use.
Trangparint Panyting on Window Shadis.-The muslin is spread on a frame and secured tightly with tacks, then sized with a mixture of fine flour paste, white glue, and white bar soap; the soap renders the muslin pliable and soft. A thin coat is applied, which is nearly invisible when dry. A cost of pure linseed oil, diluted with spirits of turpentine, is then applied to the whole, or a part, as desired; lay it on quickly and smoothly, to ensure an even transparent surface. The colors used are, ivory black, ultramarine, Paris green, sienna, umber, verdigris, asphaltum, or other suitable colors. An outline of the design is drawn with a small pencil with black or umber, after which the colors may be applied, more or less diluted, as more or less transparency is desired. In general, the brightest colors should be applied first, and the darker shades over them. These colors must be laid evenly and smoothly with soft brushes, and should any part be made too dark, the best way is to screpe off with a stick before the color gets too dry. The best designs for shades consist of landscape views, and should always be designed to accommodate the form and position of the ground on which they are drawn. Stencils will be found useful on this, work, in making corners or stripes for borders.

To Use Smalts.-For a gold lettered sign, lay out on a lead color or white surface the line of letters, and roughly size the shape of each letter with fat oil size. This must be allowed at least 12 hours to get tacky and ready for gilding. After the gold leaf is laid and perfectly dry, mix up (for blue smalts) Prussian blue and keg lead with oil, adding a little dryer. Outline carefully around the letters, and fill up all the outside with blue paint; then with a small sieve sift on the smalts, allowing the sign to lay horizontally. Cover every part with plenty of smalts, and allow it to

rema

 of thTo used gamb colore desire pencil prope as you

SiLy of ligh of wa of boi quite pail, \mathbf{p} Now and at

MAE quicks linseed thorou rubbin more well n previo

To 1 then w in vary the su push it the pre find yo

Bant charco paintir a piece sash t letter.

Orl should allowe put in stencil

To groun smoke make by str Anoth colors and s apply

OEIPTS.

- Take mineral the quantity you This serves for h in your mixbrighter green, e the color.
lime with skim , and it is ready th or rough, to l (in which case d substance, as ate, and any one be given to it, preferred, mix looks well for
hiting, 5 lbs .9 at the lime into ity of the milk of the milk is crumbled upon At this period ther paint, and

The muslin is then sized with bar soap; the soat is applied, are linseed oil, the whole, or a ensure an even k, ultramarine, other suitable small pencil applied, more d. In general, darker shades smoothly with , the best way dry. The best hould always the ground on on this, work,
n a lead color 3 the shape of d at least 12 e. gold leaf is sian blue and efully around ; then with a play horizond Allow it to

OABINETMAKERS, PANTTERS, AC., RECEIPTS. 117
remain nnmolested until the paint is dry. Then carefully shake of the surplus smalts, and tis work is done.

To Pantr Magio Lantzrn Slides.-Transparent colo.s only are used for this work, such as lakes, sap-green, ultramarine, verdigris, gamboge, asphaltum, \&c.., mixed in oil, and tempered with light colored varnish (white Demar). Draw on the paper the design desired, and stick it to the glass with water or gnm ; then with a fine pencil put the outlines on the opposite side of the glass with the proper colors ; then shade or fill up with black or vandyke brown, as you find best.

Silver Polign Kalsomme.-Tako 7 lbs. of Paris white and $\ddagger \mathbf{l b}$. of light colored glue Set the glue in a tin vessel contairing 3 pts. of water ; let it stand overnight to soak. Then put it in a kettle of boiling water over the fire, stirring till it is well dissolved and quite thin. Then, after pntting the Paris white into a large waterpail, pour on hot water and stir it till it appears like thick milk. Now mingle the glue liquid with the whiting, stir it thoroughly and apply with a whitewash-brush, or a large paint brusu.
Marini Paint for Metals in Salt Water.-Red lead, 50 parts; quicksilver, 30 parts ; thick turpentine, 7 parts. Mix wlts boiled linseed oil to the proper consistency. The quicksilver must be thoroughly amalgamated with the thick turpentine by grinding or rubbing, and this mixtare must be ground with the cod lead and more boiled oil. As little oil as is necessary to makn the paint lay well must be nsed. To make the paint adhere more firmly, a previous coat of oxide of iron paint may be nsed.
To Imetate Tortoise Shell.-Paint a ground of salmon color; then when dry and smoothed off, coat it over with rose pink, mixed in varnish and turpentine ; then with a fiat plece of glass, press on the surface, and remove the glass quickly, being careful not to push it over the paints so as to disturb the curious figures which the pressure will form thereon. Varnish when dry, and you will find you have a beautiful imitation of tortoise shell.
Banner Painting.-Lay out the, letters very accurately with charcoal or crayon, then saturate the cloth with water to render the painting easy. On large work a stonuil will be found useful. Take a piece of tin, lay the straight edge to the mark, brush over with a sash tool, and by this means jou will make a very clean-edged letter. Use stiff bristle pencils in painting on canvas.

Oil Cloth Painting.-To paint canvas for floors, the canvas should first be saturated with glue-water or flour paste, and allowed to dry first. Then paint it with any color desired. To put in the figures, cut out designs in tin plates or stiff paper, and stencil them on in various colors.

To Imitate Marble.-For white marble, get up a pure white ground, then hold a lighted candle near the surface, and allow the smoke to form the shades and various tints desiren. This will make a very handsome imitation. Black marble imitation is made by streaking a black surface with colors, using a feather and pencil. Another plan is to get up a smooth black surface; then take the colors, green, yellow, red, white, \&c., ground thick in gold size, and streak the surface with a stick or pencil. Allow it to dry, and apply a heavy coai of lampblack and yellow ochre, mixed with

118

OABINETMAKERS, PAINTERS, \&O., REOIEPTS.
rough stuff. When all is hard rub down to a level surface with lump pumice stone, varnish, and a beautiful variegated marble will be the result.

Gilding and Ornamenting Carriages.-Englishgold size is the best for this purpose. If you cannot get it ready prepared, mikea substitute by using English varnish and japan in eguai parts. If the gilding is for striping, you should mix a little chreme yellow with it, to be able to see the lines the better, but for lettering no coloring is required. Rub your job down smoothly, take a piece of muslin and tie up in it a little whitening to form a "pounce bag;". with this dust over every part of the work where the gold leaf is to be put, to prevent the leaf sticking to the surface not covered by the size, or wash the job over with starch water, or rub it over with the raw surface of a potatoe cut inhalves; the juice of the potatoe soon dries, and leaves a thin film to which the gold will not adhere. Either of the above methods will do, and the coating will. Wash off when the gilding is dry. The surface prepared, take the size and put on the stripes, figures, or ornaments, and allow it to dry just enough to enable you to pass your finger over it without sticking, but if it is "tacky". when you place your finger upon it, it is ready for the gold leaf, which is to be applied in the way directed for gilding letters on wood. The gold letters may be shaded with ultramarine, carmine, asphaltum, lake, Paris green verdigris, \&c. to suit the taste.

Bronzing. - Gold bronze is used on carriage parts for striping and ornamenting, using the same size as that used Cor gold leaf. For taking up and applying the bronze, take a piece of plush or velvet and make a "pounce bag," by tying up a wad of cotton, rubbing the bronze gently over the size. To vary the appearance, a mizture of copper, gold, and silver bronze may be applied. For fancy work in bronze, cut out any desired pattern on thin sheet brass, pasteboard 2 or paper, and apply it to any nearly dry varnished surfs A_{i} rub the bronze on through the apertures in the pattern.

Good Colors for Business Waggons.-No. 1. Body.-Chrome green ; frame or ribs, black, striped with white or cream color. Gunning gear.-Cream color, striped with red, blue or dark green, or black, and red fine line. No. 2. Body.-Yellow ; frame black, striped with blue or white. Running gear.-Light vermilion, striped with black and white. No. 3. Body.--Carmine glaze over Indian red. Running gear.-Vermilion. No. 4. Body.-Deep vermilion. Running gear.-Light vermilion.

Mixture to remove old Paint.-Dissolve 1 lb . potash in 3 pts . water over the fire, then add!yellow ochre or some common dry paint until it is as thick as rough stuff ; spread this over your old paint, and after a little it will come off quite easily, then wash the wood with soap and water to remove all the potash, dry off and sand-paper, then give a coat of clean raw oil. Another method is io heat c heavy piece of iron and apply to the paint, which will cause it to become loose and soft, so that it may be scraped off with a knife. Still another method is to direct the flame of a spirit lamp (which may be constructed for the purpose) on the old paint, scraping it off as it softens.

To Bleach Oll.-Pour aẹ much linseed oll into a shallow earthen vessel as will stand one inch deep, then pour in 6 inches ot water, cover with a fine cloth, and let the whole stand in the sun for a few weeks until the liquid becomes thick, when it should be poured into a phial and submitted to a gentle heat ; after which the clear is to be poured off and strained through a flanuel cloth.
'Io Copy an Unmament.-Place the paper or other article containing the ornament against a pane of glass; then laying a riseet of thin paper over it, y ou can copy it exactly with a lead yucil.

Ornaments, in the shape of decalcomine or other gilded piccures, may be easily trausferred to carriages ar coaches by following the directions given in transferring pictures to glass.

Vermilion.-To prevent vermilion from fading, add to the dry color betore mixing, $\frac{1}{t}$ part of flous of sulphur. Light English vermilion is used for striping, ornamazting or lettering; the deep vermilion having less bods, will not cover good. English vermilion gives the best color on catrage work when mixed with rubbing varnish and oil: American I armilion should not be ground as the process would change it to an orange color; while green, loinan red, chrome-yellow, and all heary body colors are all the better for being ground as fine as possible. Raw oil is preferable to boiled, as it is more volatile, and penetrates and fills the pores of the wood better.
priming for Carmiage Work.-First coat of lead. Mis "ilite jead with raw oil, 2 parts, japan, 1 part, to make it propel for $九$ thick coat, adding a very little turpentine to make it work "asily, For carriage parts add a little Indian black, but not for bo'ines Second coat of lead. Mix white lead with 1 part raw oil and 2 per!s japan, and a little turpentine, as before, adding lampbiack for carriage parts, but none for the body. Third and fourth coat. Mix white lead into a thick paste with turpentine, add a little oil, japan asd rubbing varnish to bind the paint well; add, for the carringe parts. a little lampblack and a. little red lead.

Hard drying Putty.-For :arruye work.-Mix dry white lead with japan and rubbing varnish equal parts, to the proper cousistency, beating it with a small mallet to bruise the lumps. Keep, it, when not in use, in water, to prevent it drying.

Rovai Sturf.-For carriage work:-Take 3 parts of English filling (ground state), 2 parts dry white lead, 1 part white lead in oil. Mix with japan, 2 parts, rubbing varnish, 1 part. Mix and crush thoroughly by running all through the mill together.
Faging Lead for Caririage Work.-Mix dry white lead with 2 parts japan, l part rubbing varnish, and thin with spirits of turpentine, adding a little lampblack to make a clean lead color, and run ull through the mill.
Ооach Painting.- The panels of such work are generally painted in color, while the pillars, top strip, quarters, deck, \&c., are always black ; umber colors, lakes, greens, and blues are some of the bist colors used on this work. To prepare the body for any of these colors, a ground color is used in the place of lampblack on black work. The following are a few approved grounds. Lake.-Indian red and vermilion mixed to a dark brown, but some prefer a black ground for lake. ${ }^{*}$ Ultramarine.-Mix a medium blue with white lead
and Prussian blue. Vermilion.-A light pink color is generally ased as a ground for vermilion. Green.-Green and all heavy-bodied colors will cover well on the lead colors without any ground color.

Fish-Oil Paints.-Dissolve white vitriol and litharge, of each 14 lbs., in vinegar, 32 gals.; add whale, seal, or cod oil, 1 tun, and boil to dryness, continually stirring during the ebullition. The next day, decant the clear portion; add linseed oil, 12 gals. ; oil of turpentine, 3 gals., and mix well together. The sediment left is well agitated with half its quantity of lime-water, used for some inferior paints under the name of "prepared residue oil." This oil is used for various common purposes, as a substitute for linseed oil, of which the following paints are examples :-Pale Green.-Lime-water, 6 gals.; whiting and road-dust, of eacb, 1 cwt : blue-black, 30 lbs.; yellow ochre, 28 lbs.; wet blue (previously ground in prepared residue oil), 20 lbs.; grind well together. For use, thitn with equal parts of prepared residue oil and linsecd-oil. 2. Bright Green.-Yellow ochre and wet blue, of each, 1 cwit. ; road-dust, $1 \frac{1}{2}$ cwt. ; blue-black, 10 lbs. ; lime water, 6 gals. ; prepared fish-oil, 4 gals.; prepared residue and linseed oils, of each, $7 \frac{1}{2}$ gals. 3. Lead Color.-Whiting, 1 cwt ; blue black, 7 Ibs.; white lead (ground in oil), 28 lbs.; road-dust 56 lbs.; lime water, 5 gals. ; prepared residue oil, $2 \frac{1}{2}$ gals. 4. Reddish Brown.-Lime-water, 8 gals.; Spanish-brown, 1 cwt .; road-dust, 2 cwt . prepared fish, prepared residue and linseed oils, of each, 4 gals. 5. Pellow.-Substitute ochre for Spanish-brown in the last receipt. 6. Black. - Substitute lamp or blue black for Spanish-brown in No. 4. 7. Stone Color.-Lime-water, 4 gals.; whiting, 1 cwt.; white-lead (ground in oil), 28 lbs ; road-dust, 56 lbs ; prepared fish, linseed, and prepared residue oils, of each, 3 gals. 8. Choco-late.-No. 4 and 6 mixed together so as to form a chocolate-color. Remarks.-AM the above paints require a little "drier." They are well fitted, by their cheapness, hardness, and durability, for common out-door work.

Porcelain Finish, very Hard and Whitr, por Parlorg.-To prepare the wood for the finish, if it be pine, give one or two coats of the " Varnish-Transparent for Wood," which prevents the pitch from oozing out, causing the finish to turn yellow ; next, give the room at least four coats of pure zinc, which may be ground in only sufficient oil to enable it to grind properly; then mix to a proper consistence with turpentine or naphtha. Give each coat time to dry. When it is dry and hard, sand-paper it to a perfectly smooth surface, when it is ready to receive the finish, which consists of two coats of French zinc ground in, and thinned with Demar-varnish, until it works properly under the brush.

Japan Drier, Best Quality.-Take linseed oil, 1 gal. ; put into it gum shellac, $\frac{3}{4}$ lb.; litharge and burned Turkey umber, each $\frac{1}{2}$ lb. ; red lead, $\frac{1}{2} \mathrm{lb}$.; sugar of lead, 6 oz . Boil in the oil till all are dissolved, which will require about four hours; remove from the fire, and stir in spirits of turpentine, 1 gal., and it is done.

Another.-Linseed oil, 5 gals.; add red lead and litharge, each $3 \frac{1}{2} \mathrm{lbs}$; raw umber, $1 \ddagger \mathrm{lbs}$. sugar of lead and sulphate of zinc, each, $\frac{1}{2} \cdot \mathbf{l b}$. pulverize all the articles together, and boil in the oil till dissolved; when a little cool, thin with turpentine, 5 gals,

Drying Oil equal to Patent Driers at One Quarter temir Price. -Linseed oil, 2 gals.; red lead and umber, each, 4 oz . ; sulphate of zinc, 2 oz . ; sugar of lead, 2 oz . Boil until it will scorch a feather when it is ready for use.

Priparmd Oil for Carriagis, \&c.-To 1 gal. linseed oil add 2 lbs. gum shellac ; litharge, $\frac{1}{2}$ lb. ; red lead, $\frac{1}{} \mathrm{lb} . ;$ umber, 1 oz . Boil slowly as usual until the gums are dissolved; grind your paints in this (any color), and reduce with turpentine. Yellow ochre is used in floor painting.

Drying Oils.-1: Nut or linseed oil, 1 gal.; litharge, 12 oz . ; sugar of lead and white vitriol, of each 1 oz. ; simmer and skim until n pellicle forms ; cool, and, when settled, decant the clear. 2. Oil 1 gal. ; litharge, 12 to 16 oz ; as last. 3. Old nut or linseed oil, 1 pint; litharge, 3 oz . Mix ; agitate occasionally for 10 deys; then decant the clear. 4. Nut oil and water, of each 2 lbs ; white vitriol, 2 oz. ; boil to dryness. 5. Mix oil with powdered snow or ice, and keep it for 2 months without thawing.

To reduce Oif Paint with Water.-Take 8 lbs. of pure unslacked lime, add 12 qts. water, stir it and let it settle, turn it off gently and bottle it, keep it corked till used. 'This will mix with oil, and in proportion of half will render paint more durable.

Oil Paint.-To redoct wita Water.-Gum shellac, 1 lb.; sa?soda, $\frac{1}{2} \mathrm{lb}$. ; water, 3 parts; boil all together in a kettle, stirring till dissolved. If it does not all dissolve, add a little more sal-soda; when cool, bottle for use; mix up 2 quarts of oil paint as usual, any color desired, using no turpentine; put 1 pint of the gum shellac mixture with the oil paint when it becomes thick; it can then be reduced with water to a proper thickness to lay on with a brush.

Another Method.-Soft water, 1 gal. idissolve in it pearlash, 3 oz.; bring to a boil, and slowly add shellac, 1 lb. ; when cold, it is ready to be added to oil paint in equal proportions.

How to Build Gravel Housns.-This is the best building material in the world. It is four times cheaper than wood, six times cheaper than stone, and superior to either. Proportions for mixing: to eight barrows of slacked lime, well deluged with water, add 15 barrows of sand; mix these to a creamy consistency, then add 60 barrows of coarse gravel, which must be worked well and completely; you can then throw stones into this mixture, of any shape or size, up to ten inches in diameter. Form moulds for the walls of the house by fixing boards horizontaily against upright standards, which must be immovably braced so that they will not yield to the immense pressure outwards as the material settles; set the standards in pairs around the building where the walls are to stand, from six to eight feet apart, and so wide that the inner space shall form the thickness of the wall. Into the moulds thus formed throw in the concrete material as fast as you choose, and the more promiscuously the better. In a short time the gravel will get as hard as the solid rock.

Flexibla Paint 7or Canvas.- Yellow soap, $2 \frac{1}{2}$ lbs.; boiling water, $1 \frac{1}{2}$ gals. ; dissolve; grind the solution while hot with good oil paint, $1+\mathrm{cwt}$.
Paintar's Oream.-Pale nut oil, 6 oz ; mastic, 1 oz ; dissolve; add of sugar of lead $\$$ ez., previously ground in the least possible
quantity of oil ; then add of water q. s. gradually, until it acquires the consistency of cream, working it well all the time. Used to cover the unfinished work of painters. It will wash off with water.

Painte, Different Sorts.-Blev.-Blue-black, 25 lbs.; whiting, 100 lbs.; road dust, sifted, 200 lbs ; lime-water, 12 gallons. Factitious linseed oil to grind.

White Paint.- Whiting, 500 lbs.; white lead, 400 lbs. ; limewater, 20 gallons. Factitious linseed oil to grind.
Black Paint.-Ivory or lampblack, 100 lbs. ; road-dust, sifted, 200 lbs. ; lime water, 18 gallons. Oil to grind.
Brown Paint.-Venetian red, or Spanish brown, 1 cwt. ; red-dust, 3 cwt.; common soot, 28 lbs.; lime-water, 15 lbs. Factitious linseed oil to grind.

Paris Green.-Take unslacked lime of the best quality, slack it with hot water ; then take the finest part of the powder, and add alum-water as strong as it can be made, sufficient to form a thick paste; then color it with bichromate of potash and sulphate of copper until the color suits your fancy, and dry it for use. N.B. -The sulphate of copper gives a blue tinge; the bichromate of potash, a yellow. Observe this, and you will get it right.

Beautiful Green Paint for Walls.-Take 4 lbs. Roman vitriol, and pour on it a tea-kettle full of boiling water. When dissolved, add 2 lbs. pearlash, and stir the mixture well with a stick- until the effervescence ceases; then add $\frac{1}{4}$ b. pulverized yellow arsenic, and stir the whole together. Lay it on with a paint brush; and if the wall has not been painted betore, 2 or even 3 coats will be requisite. If a pea-green is required, put in less, if an apple-green, more, of the yellow arsenic. This paint does not cost the quarter of oil. paint, and looks better.

Blum Color for Oeilings, \&c.-Boil slowly for 3 hours 1 lb . blue vitriol and $\frac{1}{2} \mathrm{lb}$. of the best whiting in about 3 qts . water; stir it frequently while boiling and also on taking it off the fire. When it has stood till quits cold, pour off the blue liquid, then mix the cake of color with good size, and use it with a plasterer's brush in the same manner as whitewash, either for walls or ceilings.

To Harden Whitewash. - To $\frac{1}{2}$ pail of common whitewash add $\frac{1}{4}$ pint of flour. Pour on boiling water in a sufficient quantity to thicken it. Then add ϵ gals. of the lime and water, and stir well.

Whitewash that will not rub off.-Mix up half a pailful of lime and water, ready to put on the wall ; then take $\frac{1}{4} \mathrm{pt}$. of flour, mix it up with water; then pour on it boiling water, a sufficient quantity to thicken it ; then pour it while hot into the whitewash, stir all well together, and it is ready for use.

Whitewase. - The best method of making a whitewash for outside exposure is to slack a $\frac{1}{2}$ bushel of lime in a barrel, add 1 lb . of common salt, $\frac{1}{2} \mathrm{lb}$. of the sulphate of zinc, and a gallon of sweet milk.

Substitute for Plaster of Paris.-Best whitening, 2 lbs.; glue, 1 lb ; linseed oil, 1 lb . Heat all together, and stir thoroughly. Let the compound cool, and then lay it on a stone covered with powdered whitening, and heat it well till it becomes of a tough and firm consistence; then put it by for use, covering with wet cloths to

1 it acquires 1e. Used to with water. s. ; whiting, ons. Facti-

0 lbs. ; lime-
-dust, sifted, t. ; red-dust, ctitious lin-
lity, slack it ler, and add orm a thick sulphate of r use. N.B. chromate of zht.
man vitriol, n dissolved, ck until the arsenic, and 1 ; and if the berequisite. een, more, of arter of oil...
hours 1 lb . . water ; stir e fire. When hen mix the er's brush in ngs.
whitewash ent quantity er, and stir
a pailful of pt. of flour, icient quantewash, stir
ash for out, add 1 lb . gallon of

2 lbs.; glue, ughly. Let ith powdergh and firm t cloths to
keep it fresh. When wanted for use, itmust be cutin pieces adapted to the size of the mould, into which it is forced by a screw press. The ornament may be fixed to the wall, picture frame, \&c., with glue or whlte lead. It becomes in time as hard as stone itself.

Roman Cement.-Drift sand, 94 parte; unslacked lime, 12 lbs.; and 4 lbs. of the poorest cheese grated; mix well; add hot (not boiling) water to reduce to a proper consistence for plastering. Work well and quick with a thin smooth coat.

Smalt.-Roast cobalt ore to drive off the arsenic ; make the residuum into a paste with oil of vitriol, and heat it to redness for an hour ; powder, dissolve in water, and precipitate the oxide of iron by carbonate of potash, gradually added until a rose-colored powder begins to tall; then decant the clear, and precipitate by a solution of silicate of potash, prepared by fusing together for 5 kuurs a mixture of 10 parts of potesh, 15 parts of finely-ground flints, and 1 part charcoal. The precipitate, when dry, may be fused and powdered-very fine.

Factitious Linseed Oil.-Fish or vegetable oil, 100 gallons; acetate of lead, 7 lbs . ; litharge, 7 lbs . dissolved in vinegar, 2 gals. Well mixed with heat, then add boiled oil, i galions ; turpentine, 1 gallon. Again well mix.
Varnishes.-Common Oil Varnish.-Resin, 4 lbs. ; bees'-wax, $\frac{1}{2}$ lb. ; boiled oil, 1 gallon ; mix with heat ; then add spirits of turpentine, 2 quarts.

Chinese Varisish.-Mastic, 2 oz. ; sandarach, 2 oz . ; rectified spirit 1 pt .; close the matrass with bladder, with a pin hole for the escape of vapor ; heat to boiling in a sand or T ter bath, and when dissolved, strain through-linen.

Metalifo Varnish for Coioh Bodies.-Asphaltum, 56 lbs. ; melt, then add kitharge, 9 lbs., red lead, 7 lhs. Boil, then add boiled oil, 12 gals, yellow resin, 12 lbs. Again boil until, in cooling, the mixture may be rolled into pills ; then add spts. of turpentine, 30 gals.; lampblack, 7 lbs. . Mix well.

Mastic Varnish.-Mastic, 1 lb . ; white wax, 1 oz. ; spirits turpentine, 1 gallon ; reduce the gums small; then digest it with heat in a close vessel till dissolved

Turpentina Varnish.- Resin, 1 lb . ; boiled oil, 1 lb . ; melt; then add turpentine, 2 lbs. Mix well.
Pale Varnish.-Pale African copal, 1 part; fuse. Then add hot pale oil, 2 parts. Boil the mixture till it is stringy ; then cool a little; and add spirits of turpentine, 3 parts.
Lacquer Vahnish,-A good lacquer is made by coloring lacvarnish with turmeric and annotto. Add as much of inese two coloring substances to the varnish as well give the proper color ; then sqeeze the varnish through a cotton cloth, when it forms larquer.

Gold Varnish.-Digest shellac, sixteen parts gam sandarach, mastic, of each three parts ; crocus, one part ; gum gamboge, two parts ; all bruised, with alcohol, one hundred and forty-four parts. Or, digest seedlac, sandarach, mastic, of each eight parts; gamboge, two parts ; dragon's blood, one part; white turpentine, six parts; turmeric, four parts ; bruised with alcohol, one hundred and twenty parts.

Drep Gold-Colored Lacquer.-Seed-lac; 3 oz.; turmeric, 1 oz.; dragon's blood, one-fourth ounce ; alcohol, 1 pt ; digest for a week, frequently shaking: decant, and filter.

Lacquers are used upon polished metals and wood to impart the appearance of gold. If yellow is required, use turmeric, aloes, saffron or gamboge; for red, use annotio, or dragon's blood, to color. Turmeric, gamboge, and dragon's olood generally afford a sufficient range of colors.

Gond LaOquEr.-Put into a clean 4 gal. tim 1 lb . of ground turmeric, $1 \frac{1}{2} \mathrm{oz}$. of gamboge, $3 \frac{1}{2} \mathrm{lbs}$. powdered gum sandarach, $\frac{3}{4}$ pound of shellac, and 2 gal. of spirits of wine. When shaken, dissolved, and strained, add 1 pint of turpentine varnizh, well mixed.

Varnise for Tools.-Take tallow, 2 oz . ; resin, 1 oz. ; and melt together. Strain while hot, to get rid of specks which are in the resin ; apply. a slight coat on your tools with a brush, and it will keep off rust for any length of time.

Gold Varnish.-Turmeric, 1 dram; gamboge, 1 dram; turpen.. tine, 2 pints; shellac, 5 oz. ; sandaranh, 5 oz.; dragon's blood, 8 drams; thin mastic varnish, 8 oz . ; digest, with occasional agitation for 14 days; then set aside to fine, and pour off the clear.

Bookbinderis' ${ }^{\text {V }}$ arnish.-Shellac, eight parts; gum benzoine, 3 parts ; pum mestic, 2 parts; bruise, and digest in alcohol, 48 parts; oil of lavender, $\frac{1}{2}$ part. Or, digest shellac, 4 parts; gum mastic, 2 parts; gum dammer and white turpentine, of each i part ; with alcohol (95 per cent.), 28 parts.

Beactiful Pale Amber Varnise.-Amber, pale and transparent, 6 lbs. ; fuse ; add hot clarified linseed oil, 2 gals. ; boil till it strings strongly, cool a little, and add oil of turpentine, 4 gals. This soon becomes very hard, and is the most durable of oil-varnishes. When wanted to dry quicker, drying oil may be substituted for linseed, or "driers" may be added during the cooling.

Blade Coach-Varnish.--Amber, 1 lb.; fuse; add hot drying oil, $\frac{1}{4}$ pt. ; powdered black resin and Naples asphaltum, of each 3 oz . When properly incorporated and considerably cooled, add oil of turpentine, 1 pt.

Body Varnise.-Finest African copal, 8 lbs.; fuse carefully ; add clarified oil, 2 gals.; boil gently for $4 \frac{1}{2}$ hours, or until quite stringy; cool a little, and thin with oil of turpentine, $3 \frac{1}{2}$ gals. Dries slowly.

Carriage Varnish.-Sandarach, 19 oz . ; pale shellac, $9 \frac{1}{2}$ oz.; very pale transparent resin, 122 oz. j turpentine, 18 oz .; 85 per cent. alcohol, 5 pts. : dissolve. Used for the internal parts of carriage, \&c. Dries in ten minutes.

Cabinetmakebs' Varnish.-Very pake shellac, 5 lbs.; mastic, 7 oz. ; alcohol, 90 per cent. 5 or 6 pts. ; dissolve in the cold with frequent stirring. Used for French polishing, \&c.

Japanners' Copal Varnish.-Pale African copal, 7 lbs ; fuse; add clarified linseed oil, $\frac{1}{\frac{1}{2}}$ gal.; boil five minutes, remove it into the open air add boiling oil of turpentine, 2 gals. ; mix well, strain it into the cistern, and corer it up immediately. Used to varnish furniture, and by japanners, coach-makers, \&c.

Copal Varnish.-Pale hard copal, 8 lbs.; add hot and pale drying oil, 2 gals.; boil till it strings strongly, cool a little, and
thin diat grai saffir 90 p drag prop shad
thin with hot rectified oil of turpentine, 3 gals. ; and strain immediately into the store can. Very fine.

Gold Varnish of Watin, for Gimded Articles.-Gumlac in grains, gamboge, dragon's-blood, and annotto, of each $12 \frac{1}{2} \mathrm{oz}$.; saffron, $3 \ddagger \mathrm{oz}$. Each resin must be dissolved separately in 5 pts . of 90 per cent. alcohol, and 2 separate tinctures must be made with the dragon's blocd and annotto in a like quantity of spirit ; and a proper proportion of each mixed together to produce the required shade.

Varnish for Plaster Casts.- White soap and white waz, each $\frac{1}{1} \mathrm{oz}$. ; water, 2 pts . boil together in a clean vessel for a short time. This varnish is to be applied when cold with a soft brush.

Transparint Varnish for Plougris, \&c.-Best alcohol, 1 gal. ; gam sandarach, 2 lbs ; gum mastic, $\frac{1}{2} \mathrm{lb}$.; place all in a tin can which admits of being corked; cork tight, shake it frequently, occasionally placing the can in hot water. When dissolved, it is ready for use.

Fing Black Varnish for Coacies.-Melt in an iron pot, amber, $32 \mathrm{oz} . ;$ resin, 6 oz ; asphaltum, 6 oz. ; drying linseed oil, 1 pt ; when partly cooled, add oil of turpentine, warmed, 1 pint.
Mordant Varnish.-Dissolve 1 oz. mastic, 1 oz. sandarach, z^{2} oz. gum gamboge, and \ddagger oz. turpentine in 6 oz. spirits turpentine. One of the simplest mordants is that procured by dissol ving a little honey in thick glue. It has the effect of greatly heightening the color of the gold, and the leaf sticks extremely well.

Changing. Varnish.-To imitate Gold or Silver, \&f. Put 4 oz. best gum gamboge into 32 oz . spirits of turpentine; 4 oz . dragon's blood into 32 oz . spirits of turpentine, and 1 oz . of annotto into 8 oz . spirits of turpentine. Make the 3 mixtures in different vessels. Keep them in a warm place, exposed to tbe sun as much as possible, for about 2 weeks, when they will be fit for use. Add together such quantities of each liquor as the nature of the color you are desirous of obtaining will point out.

Varnish, Transparent, for Wood.-Best alcohol, 1 gal. ; nice gum shellac, $2 \frac{1}{2}$ lbs. Place the jug or bottle in a situation to keep it just a little warm, and it will dissolve quicker than if hot, or left cold.

Patent Varnish for Wood or Canvas.-Take spirits of turpene tine, 1 gal. ; asphaltum, $2 \downarrow$ lbs.; put them into an iron kottle which will fit upon a sitove, and dissolve the gum by heat. When dissolved and a little cool, add copal varnish, 1 pt.; and boiled linseed oil, 1 pt.; when cold, it is ready for use. Perhaps a little lampblack would make it a more perfect black.

Mosato Gold Powder for Bronzing, \&o.--Melt 1 lb . tin in a crucible, add $\frac{1}{2} \mathrm{lb}$. of purified quicksilver to it: when this is cold, it is reduced to powder, and ground, with $\frac{1}{2} \mathrm{lb}$. sal-ammoniac and 7 oz . flour of sulphur, till the whole is thoroughly mixed. They are then calcined in a matrass; and the sublimation of the other ingredients leaves the tin converted into the mosaic gold powder Which is found at the bottom of the glass. Remove any black or discolored particles. The sal-ammoniac used must be very white and clear, and the mercury of the utmost purity. When a deeper

126

CABINETMAKERS, PAINTERS, \&O., HEOSIPNS.
red is required, grind a very amall quantity of red dead with the above materials.

Trun.Gold Powdmb.-Put some gold leaf, with a little honey; or thick gum water made with gum arabic, into an earthen mortar, and pound the mixture till the gold is reduced to very small particles; then wash out the honey or gum repeatedly with warm water, and the gold in powder will be left behinid. When dry, it is fit for wes.

Diton Gold Powder is made from Dutch gold leaf, which is sold in books at a very low price. Treat in the manner described above for true gold powder. When this inferior powder is used, cover the gilding with a coat of clear varnish, otherwise it will soon lose its bright appearance.

Coppent Pownsr is prepared by dissolving filings or slips of copper with nitrous acid in a receiver. When the acid is satarated, the slips are to be removed; or, if filings be employed, the solntion is to be poured off from what remains undissolved. Small bars are then put in, which will precipitate the copper powder from the saturated acid; and, the fiquid being poured from the powder, this is to be washed clean off the crystals by repeated waters.

General Direotions for Bronzine.-The choice of the above powders is of course determined by the degree of brilliancy you wish to obtain. The powder is mixed with strong gum water or isinglass, and laid on with a brush or pencil ; and, when not so dry as to have still a certain clamminess, a piece of soft leather wapped round the finger is dipped in the powder, and rubbed over the wrark. When the work has been all covered with the bronze, it must be left to dry; and any loose powder then cleared away by a hair-pencil.

The Bronzing of Plastar Casts is effected by giving them a coat of eil or size varnish; and when this is nearly dry, applying with a dabber of cotton or a camel-hair pencil any of the metallic bronze powders; or the powder may be placed in a little bag cf muslin, and dusted over the surface, and afterwards finished with a wad of linen. The sutface must be afterwards varnished.

Bronzing Iros.-The subject should be heated to a greater degreo than the hand can bear, and German golnt mixed with a small quantity of spirit of wine varnish, spread over it with the pencil; should the iron be already polished, you must heat it well; and moisten it with a linen rag dipped in vinegar.

Frinch Burnishid Gilding.-Enoollage, or glne coat.-To a decoction of wormwood and garlic in water, strained through a cloth, a little common salt and some vinegar are added. This is mixed with as much good glue, and the mixtnre spread in a hot state with a brush of boar's hair. When plaster or marble is gilded, leave out the salt. The first glue-coating is made thinner than the second. 2. White preparation consists in covering the above surface with 8,10 or 12 coats of Spanish white, mired up with strong size ; each well worked on with the brush. 3. Stop up the pores with thick whiting and glue, and smooth the surface with dogekin. 4. Polish the surface with pumice-stone and very cold water. 5. Retouch the whole in a skilful manner. 6. Cleanse with a dump linen rag, and then a soft sponge. 7. Rub with o horee's tail

color

vious
size
with

ward

whol
whic
coate
glare
a wo dry.

Br
134 p
from
bron?
14 1

> copp
with
powd

to fa

d lead with the

 little honey; or arthen mortar, ary small partilly with warm When dry, it isff, which is sold lescribed above - is uscd, cover t will soon lose
rslips of copper 1 saturated, the the solntion is Small bars are wder from the the powder, this vaters.
e of the above brilliancy you gram water or d, When not so of soft leather und rubbed over zith the bronae, leared away by
giving them a , applying with metallic bronze cf muslin, and with a wad of
greater degreo with a small ith the pencil at it well; and
coat. - To a hed through a dded. This is pread in a hot rrble is gitded, inner than the the above surp with strong up the pores 200 with dogy cold water. with a demp万horee's tail
(shave-grass) the parte to be yellowed, to make them sorier. 2 Yellow with yellow ochre carefully ground in water and mixed with transparent colorless size. Use the thinner part of the mixture with a fine brush. 9. Next rub the work with shave-grass to remove any granular appearance. 10. Fold woter aize nonsists of Armenian bole, 1 1 lb . bloodstone (hematite) 2 oz ; and as much gaiena, each separately ground in water. Then mix all together with a spoonful of olive-oil. This is tempered with a. White sheepskin glue, clear and well strained. Heat, and apply three coats, with a fine long-haired brush. 11. Rub with a clean dry linen cloth, except the parts to be burnished, which are to receive other 2 coats of the gold size, tempered with glue. 12. The surface, damped with cold water (iced in summer), has then the godd leaf applied to it. Gild the hollow ground before the more prominent parts; water being dexterously applied by a soft brush, immediately behind the goid leaf, before laying it down; removing any excess of water with a dry brush. 13. Burnish with bloodstone. 14. Next pass a thin coat of glue, slightly warmed, over the parts that are not to be burnished. 15. Next moisten any broken points with a brush, and apply bits of gold leaf to them. 16. Apply the vermeil coat very lightly over the gold leaf with a soft brush. It gives lustre and fire to the gold, and is made as follows : annotto, $2 \mathrm{oz} . ;$ gamboge, 1 oz .; vermilion, 1 oz .; dragon's-blood, ${ }^{\prime 2} \mathrm{oz}$.; salt of tartar, 2 oz ; saffron, 18 grs ; boil in 2 English pints of water, over a slow fire, till it is reduced to a fourth; then pass the wholo through a silk or muslin sieve. 17. Next pass over the dead surfaces a second coat of deadening glue, hotter than the first. This finishes the work, and gives it strength.
Bronzine or Gildina Wood. - Pipeclay; 2 oz. ; Prussian blue, patent yellow, raw umber, lampblack, of each, 1 oz. ; grind separately with water on a stome, and as much of them as will make a good color put into a small -vessel $\frac{3}{4}$ full of size. The wood, being previously cleaned and smoothed, and coated with a mixtare of clean size and lampblack, receives a new coating twice successively with the above compound, having allowed the first to dry. Afterwards the bronze powder is to be laid on with a pencil and the whole burnished or cleared anew, observing to repair the parts which may be injured by this operation; next the work must be coated over with a thin layer of Castile soap; which will take the glare off the burnishing, and afterwards be caronilly rubbed with a woollen cloth. The superfluous powder may be rabbed off when dry.
Bronze Powder of a pale gold color is produced from an all 3 of 134 parts of copper and $2 \neq$ parts zinc, of a crimson metallic lustre; from copper, of a paler colur, copper, and a very little zinc ; green bronze with a proportion of verdigris, of a fine orange color, by 14) parts copper and 13 einc; another orange color, 133 parts copper and 24 zinc. The alloy is laminated into very fine leares. with careful annealing, and these are levigated into impalpable powders, along with a film of fine oil, to provert oxdizement, and to favor the levigation.
Reviver ros Gily Frames.-White of eggs, 2 on.; chloride of potanh or noda, $1 \mathrm{oz} . ;$ mix well ; blow off the dust from the frames;
then go over them with a soft brash dipped in the mixtare, and they will appear equal to new.

Gilding on Wood.-To gild in oil, the wood, after being properly smoothed, is covered with a coat of gold size, made of drying linseed oil mired with yellow ochre; when this has become so dry as to adhere to the fingers without soiling them; the gold leat is laid on with great care and dexterity, and pressed down with cotton wool; places that have been missed are covered with small pieces of gold leaf, and when the whole is dry, the ragged bits are rubbed off with the cotton. This is by far the easiest mode of gilding : any other metallic leaves may be applied in a similar manner. Pale leaf gold has a greenish yellow color, and is an alloy of gold with silver. Dutch gold leaf is only copper leaf colored with the fumes of zinc; being much cheaper than true gold leaf, it is very usetul when large quantities of gilding are required in places where it can be defended from the weather, as it changes color if exposed to moisture ; and it should be covered with varnish. Silver leaf is prepared every way the same as gold leaf; but when applied, should be kept well covered with varnish, otherwise it is liable to tarnish; a transparent yellow varnish will give it the appearance of gold. Whenever gold is fixed by means of linseed oil, it will bear washing off, which burnished gold will not.

To Remove Old Putty.-Apply nitric or mariatic acid.
Glass and Porcelain Gluding.-Dissolve in boiled linseed oil an equal weight either of copal or amber; add as much oil of turpentine as will enable you to apply the compound or size thus formed, as thin as possible, to the parts of the glass intended to be gilt. The glass is to be placed in a stove till it will almost bura the fingers when handled : at this temperature the size becomes adhesive, and a piece of gold-leaf, applied in the usual way, will immediately stick. Sweep off the superfluous portions of the leaf, and when quite cold it may be burnished; taking care to interpose a piece of India paper between the gold and the burnisher.

Soluble Glass.-1. Silica, 1 part; carbonate of soda, 2 parts; fuse together. 2. Carbonate of soda (dry), 54 parts ; dry carbonate of potassa, 70 parts; silica, 192 parts; soluble in boiling water, yielding a fine, transparent, semi-elastic varnish. 3. Carbonate of potassa (dry), 10 parts; powdered quartz (or sand, free from iron or alumina), 15 parts; charcoal, 1 part; all fused together. Solu. ble in 5 or 6 times its weight of boiling water. The filtered solntion, evaporated to dryness, yields a transparent glass, permanent in the air.

Etching on Glass.-Druggists' bottles, bar-tumblers, aigns, and glassware of every description, can be lettered in a beautiful style of art, by simply giving the article to be engraved, or etched, a thin coat of the engraver's varnish (see next receipt), and the application of fluoric acid. Before doing so, the glase must be thoroughly cleaned and heated, so that it can hardly be held. The varnish is then to be applied lightly over, and made mooth by dabbing it with a small ball of silk, filled with cotton. When dry and even, the lines may be traced on it by a sharp atoel, cutting clear through the varnish to the glass. The varnish mupt be jemoved

deg

me

JEIPTS.

he mirture, and
r being properly made of drying s become so dry the gold leat is ised down with , covered with dry, the ragged the easiest mode lied in a similar yolor, and is an nly copper leaf eaper than true of gilding are the weather, as ould be covered he same as gold with varnish, ow varnish will fixed by means ished gold will
ic acid.
linseed oil an puch oil of turnd or size thus ended to be gilt. lmost bura the becomes adheray, will immeof the leaf, and to interpose a isher.
la, 2 parts; ruse y carbonate of boiling water,
Carbonate of free from iron gether. Solufiltered soliss, permanent
ers, signs, and eautiful style , or etched, a and the applibe thorough-
The varnish by dabbing it iry and oven, cutting clear t be remored
clean from each letter, otherwise it will be an imperfect job. When all is ready, pour on or apply the fluoric acld with a feather, filling each letter. Let it remain until it etches to the required depth, then wash off with water, and remove the varnish.
Etching Varnish.-Take of virgin wax and aaphaltum, each 2 oz. ; of black pitch and Burgundy pitch, each i oz.; melt the wax and pitch in a new earthenware glazed pot, and add to them, by degrees, the asphaltum, finely powdered. Let the whole boil, almmering gradually, till such time as, taking a drop upon a plate, it will break when it is cold, on bending it double two or three times betwixt the fingers. The varnish, being then boiled enough, must be taken off the fire, and, after it cools a littie, must be poured into warm water that it may work the more easily with the hands, so as to be formed into balls, which must be kneaded, and put into a piece of taffety for use.
Fldorio Aoid, to Maki for Etohing Purposzs.- You can make your own fluoric (sometimes called hydro-fluoric) acid, by getting the fluor or Derbyshire spar, pulverizing it, and putting all of it into sulphuric acid which the acid will cut or dissolve. Inasmuch as fuoric acid is destructive to glass, it cannot be kept in common bottles, but must be kept in lead or gutta percha bottles.
Glass-Grinding for Signs, Shadzs, \&o. - After you have etched a name or other design upon uncolored glass, and wish to have it show off to better advantage by permitting the light to pass only through the lettern, you can do so by taking a piece of flat krass sufficiently large not to dip into the letters, but pass over them when gliding upon the surface of the glass; then, with flour of emery, and keeping it wet, you can grind tho whole surface, very quickly, to look like the ground-glass globes often seen upon lamps, exeept the letter, which is eaten below the general surface.

To Drill and Ornament Glass.-Glass can be easily drilled by a steel drill, hardened but not drawn, and driven at a high velocity. Holes of any size, from the 16 th of an inch upwards, can be drilled, by using spirits of turpentine as a drip; and, easier still, by using camphor with the turpentine. Do not press the glass very hard against the drill. If you require to ornament glass by turning in a lathe, use a good mill file and the turpentine and camphor drip, and you will find it ari easy maiter to produce any shape you choose.
Gilding Grasb Signs, \&o.-Cut a piece of thin paper to the size of your glass, draw out your design correctly in blick lead-pencil on the paper, then prick through the outline of the letters with a fine needle ; tie up a littledry white lead in a piece of rag; this is a pounce-bag. Place your design upon the glass, right side up, dust it with the pounce-bag; and, after taking the paper off, the deaign will appear in white dots upon the glass; these will guide you in laying on the gold on the opposite side, which must be well cleaned preparatory to laying on the gold. Preparing the size.Boil perfectly clean water in an enamelled saucepan, and while boiling, add 2 or 3 shreds of best selected isinglass ; after a fow minutes strain it through a clean linen rag; when cool, it is ready for use. Clean the glass perfectly.-When this is done, use a flat camel's-hair brush for laying on the gize ; and let it drain off when

130

you put the gold on. Whon the gold is laid on and perfeetly dry, take a ball of, the fiuest cotton wool and gently rub or polish the gold; you can then lay on another coat of gold if desirable; it in now ready for writing. In doing thia, mix a little of the best vegetable bleck with black japan; thin with turpentine to proper working consistency; apply, this when thoroughly dry; wash off the superfluous gold, and shade as in sign-wrlting.

Ghas Gllding, Another Marhod.-Clean and dry the glass thoroughly, then lay out the lines for the letters with a piece of hard scented soap, then paint the letters on the right side of the glass with lampblack mixed with oil, in order to form a guide for the work, then on the inside lay on a coat of the size mentioned in the preceding receipt, using a camel's-hair brush, covering the whole of the letters; next lay on the gold leaf with a tip, until every part of the letters is covered well. Let the leaf remain until the size is: dry, when you will find that the letters on the front side oan be easily: seen and traced. This is done with quick drying black, mixed with a little varnish. Paint over the whole directly on the gold ; allow it to dry; then wipe off with soap and water the lampliack letters from the front side, with pure cold water and a clean sponge; wash the superfluous gold leaf and size from the back, and you will bave a spleadid gold letter on the glass; next, shade your letters to suit the taste, always remembering to shade to the edge of the gold, for then you have only one edge to make straight. The other edge may be left rough, and when dry may be straightened by soraping with a knife.

Ormamental Degigns on.Glass.-In making scrolls, eagles, \&c. on glass, some painters put on the outlines and shades tirst, and then lay the gold leaf over all; another good way is to scratch the shades into the gold leaf after it is dry, and put the colors on the back of the gold. Silver leaf may be used in the same manner as gold, butit: will not wear as well. A very pretty letter may be mado by incorporating silver with gold; take paper and cut any fancy design to fit the parts of the letter; stick it on the size before laying the leaf, and then lay the leaf, allowing it to dry, and wash off as before; then with a penknife raise the paper figure, and the ezact shape or form of the figure will be found cut out of the gold letter; clean off nicely, apply more size, and lay silver leaf to cover the vacant spots; wash off when dry, and a very handsome letter will be the result. Colors may be used instead of silver, if desired, or a silver letter edged or "cut up" with gold, will look well.

Gilders' Gold 'sizn.-Drying or boiled linseed oil, thickened with yellow ochre, or calcined red ochre, and carefully reduced to the utmost smoothness by grinding. It is thinned with oil of turpentine.

To Gild Liextrars on Wood, \&o.- When your sign is prepared as smooth as possible, go over it with a sizing made by white of an egg dissolved in about four times its weight of cold water ; adding a small quantity of fuller's earth, this to prevent the gold sticking to any part but the letters. When dry; set out the letters and commence writing, laying on the size as thinly as possible, with a sable pencil. Let it stand until you can barely feel a slight stickiness; then go to work with your gold leaf, knife, and cushion; and
gild the letters. Take a leaf up on the point of your knive, after giving it a slight puftinto the back part of your cushion, and spread it on the front part of the cushion as straight as possible, giving it another slight puff with your month to fatten it out. Now cut it into the proper size, outting with the heel of your knife forwards. Now rub the tip lightly on your hair; take up the gold on the point, and place it neatly on the letters; when they are all covered get some very fine cotton wool, and gently rub the gold until it is smooth and bright. Then wash the sign with clean water to take off the egg size.

Subatituta yor Plastir on Paras.-Best.whitening, 2 lbs.; glue, $1 \mathrm{lb} . ;$ linseed oil, 1 lb . Heat all together, and atir thoroughly, Let the compound cool, and then lay it on astone covered with powdered whitening; and heat it well till it becomes of a tough and firm consistence; then put it by for use, covering with wet cloths to keep it fresh. When wanted for use; it must be cut 'in pieces adapted to the size of the mould, into which it is forced by a screw press. The ornament may be fixed to the wall, pictureframes \&c, with glve or white lead. It becomes in time as hard as stone itself.

Gold Lubtry for Stonmare, Chma, \&o.-Gold; 6 parts; aqua regia, 36 parts. Dissolve, then add tin, 1 part; next add balsam of sulphur, 3 parts; oil of turpentine, 1 part. Mix gradually into a mortar, and rub it until the mixture becomes hard; then add oil of turpentine, 4 parts. 1t is then to be applied to a ground prepared for the purpose.

Gilding China and Glass.-Powdered gold is mixed with borax and gum-water, and the solution applied with'a camel-hair pencil. Heat is then applied by a stove until the borax fases; when the gold is fired and afterwards burnished.

Glage Staining.-The following colors, after baving been prepared, and rubbed upon a plate of ground-glass, with the spirit of turpentine or lavender thickened in the uir, are applied with a hairpencil. Before using them, however, it is necessary to try them on gmall pieces of glass, and expose them to the fire, to ascertain if the desired tone of color is produced: The artist must be guided by these proof-pieces in using lis colors. The glass proper for receiving these pigments should be colorless; uniform, and difficult of fusion. A design must be drawn on paper, and placed beneath the plate of glass. The upper side of the glass, being aponged over with gumwater, affords, when dry, a surface proper for receiving the colors without the risk of their running irregularlv, as they would otherwise do on the slippery glass. The artist draws on the plate (usually in black), with a fine pencil; all the traces which mark the great outlines or shades of the figures. Afterwards, When it is dry, the vitrifying colors are laid on by means of larger hair-pencils; their selection being regulated by the burnt speci-men-timets above mentioned. The following are all fast colors; which do not run, except the yellow, which must therefore be laid on the opposite side of the glass. The preparations being all laid on, the glass is ready for being fired in a muffe, in order to fix and bring out the proper colors. The muffle must be made of very mofractory fire-clay, flat at its bottom, and only five or six

132

inches high, with a strong arched roof, and close on all sides, to exclude smols? and flame. On the bottom, a smooth bed of sifted lime; freed from water, about half an inch thick, must be prepared for receiving the glass: Sometimes, several plates of glass are laid over each other, with a layer of lime powder between eack. The fire is now ilghted, and very gradually raised, lest the glass should be broken; then keep it at a full beat for three or fonr hours, more or less. according to the indicetions of the trial slips; the yellow coloring being principally watehed, it furnishing the best criterion of the state of the others. When all is right, let the fire die out, so as to anneal the glass.

Stained-Glass Piginents.-No. 1. Flesh-color.-Red lead, 1 oz. $;$ red enamel (Venetian glass enamel, from alum and copperas calcined together) : grind them to a fine powder, and work this up with alcohol upen a hard stone. When slightly baked; this produces a fine flesh-color. No. 2. Blach color.- Take 142 oz. of smithy scales of iron ; mis them with 2 oz . of white glass ; antimony, 1 oz . mangenese, $\frac{1}{2}$ on.; pound and grind these ingredients together with strong vinega:. No. 3. Brown color.-White glass or enamel, 1 oz.; good manganese, $\frac{1}{2}$ oz.; grind together. No. 4. :Red, Rose, and Brown colors are made from peroxide of iron, prepared by nitric acid. The flux consists of borax, sand, and minium, in small quantities. Red color may likewise be obtained from 1 oz. of red chali, pounded, mized with 2 oz . of white, hard enamel, and a little peroxide of copper, A red may also be composed of rust of iron, glass of antimony, yellow glass of lead, such as is used by potters, or litharge, each in equal quantities, to which a little sulphuret of silver is added. This composition, well ground, produces a very fine red color on glass. No. 5. Green.-2 oz. of brass, calcined into an oxide; 2 oz . of minium, and 8 oz . of white sand; reduce them to a fine powder, which is to be enclosed in a well-luted crucible, and heated strongly in an air furnace for an hour.- When the mixture is cold, grind it in a brass mortar. Green may, however, be advantageously produced, by a yellow on one side and a blue on the other. Oxide of chrome has been also employed to stain glass green. No. 6. A fine Yellow stuin.-Trike fine silver, laminated thin, dissolve in nitric acid, dilute with abundance of water, and precipitate with solution of sea-: alt; mix this chloride of silver in a dry powder, with three times its weight of pipe clay, well burnt and pounded. The back of the glass pane is to be painted with this powder; for, when painted on the face, it is apt to run into the other colors. A pate yellow can be made by mixing sulphuret of silver with glass of antimony and yellow ochre, previously calcined to a red brown tint. Work all these powders together, and paint on the back of the glass: Or silver las \cdots, melted with sulphur and glass of antimony, thrown into cola water and afterwards ground to powder, afford a yellow. A paie yellow may be made with the powder resulting from brass, sulphur, and glass of antimony, calcined together in a crucible till they cease to smoke, and then mised with a little burnt jellow ochre. The fine yellow of M. Meraud is prepared from chloride of silver, oxide of zinc, and rust of iron. This mixture, simply ground, is applied on the glass. Orange color. -Take part of silver powder, as precipitated from the nitrate of
on all sides, to th bed of sifted ust be prepared f glass are laid een eack. The he glass should our hours, more ips; the yellow e best criterion he fire die out,

Red lead, 1 oz. d copperas cal1 work this up jaked; this pro$4 \frac{1}{2}$ oz. of smithy intimony, 1 oz .; s together with r enamel, 1 oz. Red, Rose, and pared by nitric in small quanz. of red chali, 1, and a little of rust of iron, ased by potters, little sulphuret produces a very s, calcined into i; reduce them luted crucible, When the mixy, however, be and a blue on to stain glass. ver, laminated of water, and de of silver in ay, well burnt inted with this run into the sulphuret of pusly valcined er, and paint with sulphur d afterwards be made with of antimony, pke, and then of M. Meraud rust of iron. Orange color. he nitrate of
that metal, by plates of copper, and washed; mix with 1 part of red ochre, and 1 of yellow, by careful trituration; grind into a thin pap, with oil of turpentine or lavender; apply this with a brush, and burn in.
Silybring Looking-Glassis with Pure Silver.-Prepare a mixture of 3 grs . of ammonia, 60 grs . nitrate of silver, 90 minims of spirits of wine, 90 minims of water; when the nitrate of silver is dissolved, filte: the liquid; and adia small quantity of sigar,) 15 grs.), dissolved in $1 \frac{1}{2} \mathrm{oz}$. of water and $1 \frac{1}{2}$ oz: spirits of wine. Put the glass into this mixture, having one side covered with varnish, gum, or some substance to prevent the silver being zttached to it. Let it remain for a few days, and you have so most elegant lookingglass; yet it is far more costly than the quicksilver.

Another Metiod.-A sheet of tin-foil corresponding to the size of the plate of glass is evenly spread on a perfectly smooth and solid marble table, and every wrinkle on its surface is carefully rubbed oown with a brush : a portion of mercury is then poured on; and rubbed over the foil with a clean piece of soft woollen stuff, after which, two rules are applied to the edges, and mercury poured on to the depth of a crown piece; when any oxide on the surface is carefully removed, and the sheet of glass, perfectly clean and dry, is slid along over the surface of the liquid metal, so that no air, dirt, or oxide can possibly either remain or get between them. When the glass has arrived at its proper position, gentle pressure is applied, and the table sloped a little to carry off the waste mercury; after whici it is covered with flannel, and loaded with heavy weights; in twenty-four hours it is removed to another table, and further slanted, and this position is progressively increased during a month, till it becomes perpendicular.

Poromlan Colors.-The following are some of the colors used in the celebrated porcelain manufactory of Sevres; and the proportions in which they are compounded. Though intended for porcelain painting, nearly all are applicable to painting on glass. Flux No. 1 minium or red lead, 3 parts; white sand, washed, 1 part. This mixture is melted, by. which it 18 converted into a greenishcoloured glass. Flux No. 2. Gray flux.-Of No. 1, 8 parts; fused dorax in powder, 1 part. This mixture is melted. Flux Nn. 3. For carmınes and greens.-Melt together fused borax, 5 parts; calcined flint, 3 parts ; pure minıum, 1 part. No. 1. Indıgo blue.-Oxide of cobalt, 1 part; flux No. 3, 2 parts. t Deep azure blue.-Oxide of cobalt, 1 part ; oxide of zinc, 2 parts; tlux No. 3, 5 parts. No. 2. Emerald Green.-Oxide of copper, 1 part ; antimonic acid, 10 parts; flux No. 1, 30 parts. Pulverize together, and melt. No. 3. Grass green.-Green oxide of chromium, 1 part; flux No. 3, 3 parts. Triturate and melt. No. 4, Yellow.-Antımonic acid, 1 part; subsulphate of the peroxide of rron, 8 parts; oxide of zinc, 4 parts; flux No. 1, 36 parts. Rub up together and melt. If this color is too deep. the salt of ron is diminished No. 5. Fixed yellow for touches. -No. 4; 1 part; white enamel of commerce, 2 parts. Melt and pour out; if not sufficiently fixed, a little sand may be added, No. 6 Deep Nanktr yellow.-Subsulphate of ron, 1 part ; oxide of zinc, 2 parts ; flux No. 2, 8 parts. Triturate without melting. No. 7. Deep red.-Subsulphate of iron, calcined in a muffle until it be-
comes of a beautiful capucine red, 1 part; flax No. 2, 3 parts. Mix without molting, No. 8. Liver brown.-Oxide of iron made of a red brown, and mired with three times its weight of flux No. 2. A tenth of sienna earth is added to it, if it is not deep enough. No. 9. White. -The white enamsl of commerce, in cakes. No. 10. Deep black.-Oxide of cobalt, 2 parts ; copper, 2 parts ; oxide of manganese, 1 part ; flux No, 1, 6 parts ; fused borax, $\frac{1}{2}$ part. Melt, and add oxide of manganose, 1 part; oxide of copper, 2 parts. Tritarate without melting. The Application.-Follow the general directions given in anether part of this work, in relation to staining glass.

How to Writm on Glags in the Sun.-Dissolve chalk in aquafortis to the consistency of milk, and add to that a strong dissolution of silver. Keep this in a glass decanter well stopped. Then cut out from a paper the letters you would have appear, and paste the paper on the decanter or jar, which you are to place in the sun in such a manner that its rays may pass through the spaces cut out of the paper, and fall on the surface of the liquor. The part of the glass through which the rays pass will turn black, whilst that under the paper will remain white. Do not shake the bottle during the operation. Used for lettering jars.

To Transfar Prints, mto., to Glass or Wood.-Take of gum sandarach, 4 oz . $;$ mastic, 1 oz . $;$ Venice turpentine, 1 oz. ; alcohol, 15 oz. Digest in a bottle, trequently shaking, and it is ready for use. Directions; use, if possible, good plate glass of the size of the picture to be transferred, go over it with the above varnish, beginning at one side, press down the picture firmly and evenly as you proceed, so that no air can possibly lodge between; pat aside, and let dry perfectly, then rioisten the paper cautiously with water, and remove it piecemeal by rubbing carefully with the fingers; if managed nicely, a complete transfor of the piciure to the glass will be effected.

Bottle Glass.-No. 1. Dark Green.-Fused glauber-salts, 11 lbs. ; soaper saits, 12 lbs.; waste soap-ashes, $\frac{1}{2}$ bush. ; silicious sand, $\frac{1}{2} \mathrm{cwt}$. ; glass-skimmings, 22 lbs. broken green glass, 1 cwt . to $1 \frac{1}{} \mathrm{cwt}$. ; basalt, 25 lbs. to $\ddagger \mathrm{cwt}$. No. 2. Pale Green.-Pale sand, 100 lbs ; kelp, 35 lbs . ; lixiviated wood ashes, $1 \frac{1}{2} \mathrm{cwt}$; fresh do. 40 lbs. ; pipe-clay, $\frac{3}{4} \mathrm{cw}$. . ; cullet, or broken glass, 1 cwt . No. 3. Yellow or white sand, 120 parts ; wood-ashes, 80 parts ; pearlashes, 20 parts; common salt, 15 parts; white arsenic, 1 part; very pale.

Cryeral Glass.--No. 1. Refined potashes, 60 lbs ; sand, 120 lbs. ; chalk, 24 lbs. ; nitre and white arsenic, of each 2 lbs.; oxide of manganese, 1. to 2 oz . No. 2. Puro white sand, 120 parts; refined ashes, 70 parts; saltpetre, 10 parts ; white arsenic, $\$$ part; oxide of nainganese, part: No. 3. Sand, 120 parts ; red-lead, 50 parts: purified pearlash, 40 parts; nitre 20 parts ; manganese, $\frac{1}{2}$ part.

Fuask Glass (of St: Etienne).--Pure silicious sand, 61 parts; potash, $3 \frac{1}{2}$ parts; lime, 21 parts; heavy spar, 2 parts; oxide of manganese, q. s.

Best Greman Cryspac Glass.-Take 120 lbs. of calcined fiints or white sand; best peariash, 70 lbs ; saltpetre, 10 lbs ; arsenic,

1lb.
lbs.; oz. other PL soda, 25 pa phate parts. 50 pa White soda, Oro 30 to 3 -Pure oxideo 100 lbs 17 to 2

Best
fied pes arsenic dients White salt, 10 Commo pearlas nesia, 2

Laok
pearlas
compos sometin may be White nitre, 7 the forn in a gr pearlas: aged, th
Winn salts, 10 glass-p 2. (Pale 10 lbs.; Pale.)
10 lbs. quired;

Colo
melted
per, pre
ing it t
and you
Purple
of calci

No. 2, 3 parts. of iron made of at of flux No. 2. ep enough, No. ikes. No. 10. arts; oxide of Ix, I part. Melt, sopper, 2 parts. low the general ation to stain-
chalk in aquastrong dissolustopped. Then ppear, and paste are to place in uss through the ce of the liquor. pass will turn white. Do not ettering jars.
-Take of gum (oz. ; alcohol, 15 is ready for use. osize of the picrnish, beginning only as you proat aside, and let with water, and the fingers; if re to the glass
lanber-salts, 11 bush. ; silicious en glass, 1 cwt . le Green:-Pale $1 \begin{aligned} & \mathrm{cwt} . \text {; fresh }\end{aligned}$ ass, 1 cwt . No. 30 parts ; pearlrsenic, 1 part;
lbs. ; sand, 120 ch 2 lbs. ; oxide 120 parts ; rearsenic, $\frac{1}{3}$ part; s; red-lead, 50 ; manganese, $\frac{1}{1}$
and, 61 parts ; arts; oxide of
calcined flints 1bs. ; arsenic,

1 lb ; and 5 oz . magnesia. No. 2. (Cheaper.) Sand or flint, 120 lbs. ; pearlash, 46 lbs.; nitre, 7 lbs.; arsenic, 6 lbs. ; magnesia, 5 oz. This will require a long continuance in the furnace, as do all others when much of the arsenic is used.
Platm Glass.-No. 1. Pure sand, 40 parts; dry carbonate of soda, $26 \frac{1}{2}$ parts ; lime, 4 parts; nitre, $1 \frac{1}{2}$ parts ; broken plate glass, 25 parts. No. 2. Ure's.-Quartz-sand, 100 parts; calcined sulphate of soda, 24 parts; lime, 20 parts; cullet of soda-glass, 12 parts. No. 3. Vienna.-Sand, 100 parts ; calcined sulphate of soda, 50 parts ; lime, 20 parts ; charcoal, 24 parts. No. 4. FrenchWhite quartz sand and cullet, of each 300 parts ; dry carbonate of soda, 100 parts ; slacked lime, 43 parts.
Orown Glass.-No. 1. Sand, 300 lbs. ; soda-ash, 200 lbs ; lime, 30 to 35 lbs.; 200 to 300 lbs. of. broken glass. No. 2. (Bohemian.) -Pure silicious sand, 63 parts; potash, 22 parts ; lime, 12 parts; oxide of manganese, 1 part. No. 3. (Prof. Schweigger.) Pure sand, 100 lbs. ; dry sulphate of soda, 50 parts ; dry quicklime in powder, 17 to 20 parts ; charcoal, 4 parts. Product, white and good.
Bres Window-Glass.-No. 1. Take of white sand, 60 lbs. ipurified pearlashes, $30 \mathrm{lbs} . j$ of saltpetre, 15 lbs . of borax, 1 lb .; of arsenic, $\frac{1}{2} \mathrm{lb}$. This will be very clear and colorless if the ingredients be good, and will not be very dear. No. 2. (Cheaper.) White sand, 60 lbs.; unpurified pearl-ashes, 25 lbs. ; of common salt, 10 ibs.; nitre, 5 Ibs.; arsenic, 2 lbs. ; magnesia, $1 \frac{1}{1}$ oz. No. 3 . Common green windov-alass.-White sand, 60 ibs.; unpurified pearlashes, 30 lbs ; common salt, 10 lbs ; arsenic, 2 lbs.; mag. nesia, 2 oz .
Looking-Glass Plate.-No. 1. Cleansed white sand, 60 lbs .; pearlashes, purified, 25 lbs . ; saltpetre, 15 lbs . borax, 7 lbs . This composition should be continued long in the fire, which should be sometimes strong and afterwards more moderate, that the glass may be entirely free from bubbles before it be worked. No. 2. White sand, 60 lbs ; pearlashes, $20 \mathrm{lbs} . ;$ common salt, 10 lbs ; nitre, 7 lbs.; borax, 1 lb. This glass will run with as little heat as the former; but it will be more brittle, and refract the rays of light in a greater degree. No. 3. Washed white sand, 60 lbs ; puritied pearlashes, 25 lbs . ; nitre, 15 lbs ; borax, 7 lbs . If properly managed, this glass will be colorless.
Winnow Glass.- No. 1. Dried sulphate of soda, 11 lbs ; soaper salts, 10 lbs. ; lixiviated soap waste, $\frac{1}{2}$ bush.; sand, 50 to 60 lbs. ; glass-pot skimmings, 22 lbs.; broken pale green glass, 1 cwt . No. 2. (Paler). White saud, 60 lbs. ; pearl-ushes, 30 lbs . ; common salt, 10 lbs. ; arsenic, $10 \mathrm{lbs} . ;$ oxide of manganese, 2 to 4 oz . No. 3. (Very Pale.) White sand, 60 lbs . ; good pot ashes, 25 lbs. ; common salt, 10 lbs. ; nitre, 5 lbs . ; arsenic, 2 lbs. ; magnanese, 2 to 4 oz . as required; broken pale window glass, 14 lbs.
Colored Glass.-Fine Blue. To 10 lbs. of flint glass, previously melted and cast into water, add zaffer, 6 drs ., $\frac{1}{2}$ oz. of calcined copper, prepared by putting sheet copper into a crucibl3, and exposing it to the action of a fire not strong enough to melt the copper, and you will have the copper in scales, which you pound. Bright Purple.-Use 10 lbs. fint glass as before; zaffer, 5 drs., precipitate of calcium, 1 dr. Gold Yellow. Twenty-eight pounds, flint glass,
and a quarter pound of the tartar which is found in urine; purify by putting it in a crucible in the fire till it smoke no more ; add 2 ozs . of manganese.

Paper for Phutograping.- Wash the paper with a solution of nitrate of silver, 6 grains ; distilled water, $\frac{1}{2}$ oz.; dry the paper, and wash it with iodide of potassium, 5 grains; distılled water, $\frac{1}{2} \mathrm{oz}$. dry with gentle heat; repeat the wash with the silver solution; and when dry, the paper is ready for use. The sensitive surface is an odide for silver, and is easily affected by light.

Colored Pottrrs' Glazings.- Whate: prepare an intimate mixture of 4 parts of massicot, 2 of tin ashes, 3 fragments of crystal glass, and $\frac{1}{2}$ part of sea salt. The mixture is suffered to melt in earthenware vessele when the liquid flux may be used Yellow; take equal parts of assicot, red lead and sulphuret of antimony, calcine the misture, $\because d$ reduce it again to powder, add then 2 parts of pure sand, and $1 \frac{1}{2}$ parts of salt ; melt the whole. Green; 2 parts of sand, 3 parts massicot, 1 part of salt and copper scales, accord. ing to the shade to be produced : melt and use. Violet; 1 part massicot, 3 parts sand, 1 of smalt, $\frac{1}{8}$ part of black oxide of manganese ; inclt. Blue; white sand and massicot, equal parts; blue smalt. \ddagger part: melt. Black; black oxide of manganese, 2 parts; smalt, ! part; burned quartz, 1 part; massicot, $1 \frac{1}{2}$ parts; melt. Brown; green bottle glass, 1 part ; manganese, 1 part ; lead, 2 parts; melt.

To Print a Pioture from the Print Itself.-The page or picture is soaked in a solution, first of potassa, and then of tartaric acid. This produces a perfect diffiusion of crystals of bitartarate of potassa through the texture of the unprinted part of the paper, As this salt resists oil, the nk roller may now be passed over the surface, without transferring any part of its contents except to the printed part.
To Clean Old Oil-Paintings.-Dissolve a small quantity of salt in stale urine; dip a woollen cloth in the mixture, and rub the paintings over with it till they are clean; then wash them with a sponge and clean water; dry them gradually, and rub them over with a clean cloth. Should the dirt not be easily removed by the above preparation, add a small quantity of soft soap. Be very careful not to rub the paintings too hard.

To Renew Old Oll-Paintings.-The blackened lights of old pictures may be instantly restored to their original hue by touching them with dentoxide of hydrogen diluted with six or eight times its weight ot water. The part must be afterwards washed with a clean sponge and water.

Cast Engratings.-Take the engraved plate you wish to copy: and arrange a support of suitable materials round it : then pour on it the following alloy in a state of perfect fusion; tin, 1 part; lead, 64 parts ; antimony, 12 parts. These "cast plates" may be worked off on a common nrinting press, and offer a ready mode of procurIng cheap copies of the works of our celebrated artists.

Magic Paper.-Take Lard oil, or sweet onl, mixed to the consistence of cream, with either of the following paints, the color ot which is desired: Prussian blue, lampblack, Venetian red, or chrome graen, either of which should be rubbed with a knife on a plate or stone until smooth. Use rather thin but firm paper; put
rrine; purify by lore ; add 2 ozs.
ith a solution of the paper, and ed water, $\frac{1}{2}$ oz ; er solution; and ve surface is an 0 intimate mixments of crystal fered to melt in used Yellow: ret of antimony, add then 2 parts Green; 2 parts scales, accordolet ; 1 part masle of manganese: ts ; blue smalt, $\}$ parts; smalt, melt. Brown d, 2 parts; melt. The page or picthen of tartaric als of bitartarate art of the paper. passed over the its except to the
quantity of salt re, and rub the ash them with 9 1 rub them over removed by the p. Be very care-
ghts of old picue by touching r eight times its washed with a
a wish to copy, : then pour on n, 1 part ; lead, may be worked node of procur. ists.
to the consist, the color ot petian red, or th a knife on a rm paper: put
on with a sponge, and wipe off as dry as convenient ; then lay them between uncolored paper, or between newspapers, and press by laying books or some other flat substance upon them until the surplus oll is absorbed, when it is ready for use.

To Make Grindstones from Common Sand.-River sanà, ¿: lbs. : shellac, 10 parts ; powdered glass, 2 parts; melt in an iron pot. and cast into moulds.

To Cast Figures in mitation of Ivory.-Make isinglass and brandy into a paste. with powdered egg-shells rery finely ground. You may give it what color you choose; but cast it warm into your mould which you previously oll over: leave the figure in the mould till dry, and you will find on taking it out that it bears a very strong resemblance to ivory.

To take a Plaster nf Paris Cast from a Person's Face. The person must lie on his back, and his hair be tied behind; into each nostril put a conical piece of paper, open at each end, to allow of breathing. The face is to be lightly olled over, and the plaster, being properly prepared, is to be poured over the face, taking particular c.re that the eyes are shut, till it is a quarter of an inch thick. In a few minutes the plaster may be removed. In this a mould is to be formed, from which a second castis to be taken, that will furnish casts exactly like the original.

To atrach Glass or Metal Letrers to Plate Glass.-Copalvaruish, 15 parts ; drying oll, 5 parts; turpentine, 3 parts; oil of turpentine, 2 parts; liquified glue, 5 parts. Melt in a water bath, and add 10 parts of slacked lime.

Turner's Cement.-Bees' wax. 1 oz . ; resin, $\frac{1}{2}$ oz, ; pitch; $\frac{1}{2}$ oz. ; melt, and stir in fine brick dust.

Bank Note Glue,-Dissolve 1 lb . of fine glue or gelatine in water ; evaporate it till most of the water is expelled; add $\frac{1}{2} \mathbf{l b}$. of brown sugar, and pour it into moulds.

Cement for Electrical Maceines and Galvanic Troughs.Melt together 5 lbs of resin and 1 lb . of bee's-wax, and stir in 1 lb ot red ochre (highly dried. and still warm) and 4 oz . of plaster of Paris, continuing the heat a little above $212{ }^{\circ}$, and stirring constıntly thll all trothing ceases, or (for troughs) rosin, 6 lbs . ; dried red ochre, 1 lb ., calcined plaster of Paris, $\frac{1}{2}$ lb., linseed oil, $\frac{1 \mathrm{lb}}{}$

Hydratlio Cement.-Powdered clay, 3 lbs. ; oxide of iron, $1 \mathrm{lb} . ;$ s. n : bolled oll to torm a stiff paste.

Engineers' Cement.-Equal parts of red and white lead, with drying oil, spread on tow or canvas. An admirable composition for uniting large stones in cisterns.

Stone Cemant - River sand, 20 parts ; litharge, 2 parts ; quicklıme, 1 part : mix with linseed onl.

Best Cement for Aquaria.- It is the same as that used in constructing the tanks of the Zoological Gardens, London. One part, by measure, say a gill of litharge; 1 gill of plaster of Paris; 1 gill of dry, white sand; $\frac{1}{f}$ a gill ot finely powdered resin. Sift, and keep corked tight unttl required for use, when it is to be made into a putty by mixing in boiled oil (linseed) with a little patent drier added Never use it after it has been mized (that is, with the oil) over fifteen hours. This cement can be used for marine as well as fresh water aquaria as it resists the action of salt water. The
tank can be used immediately, but it is best to give it three or four hours to dry.

Common Paste.-To a tablespoonful of flour add gradually $\frac{1}{\frac{1}{2}}$ pt. of cold water, and mix till quite smooth; add a pinch of powdered alum, some add a small pinch of powdered rosin, and boil for a few minutes, stirring constantly. The addition of a little brown sugar and a few grains of corrosive sublimate, will preserve it for years.

For LUTH, or cement for closing joints of apparatus, mix Paris plaster with water to a soft paste, and apply it immediately. It bears nearly a red heat. To render it impervious, rub it over with wax and oil.

Roman Cement.-Slacked lime, 1 bush., green copperas, $3 \frac{1}{2} \mathrm{lbs}$., fine gravel sand, $\frac{1}{2}$ bush. Dissolve the copperas in hot water, and mix all together to the proper consistency for use; use the same day it is mixed, and keep stirring it continually with a stick while in use.
Vicat's Hydraulio Cenent is prepared by stirring into water a mixture of 4 parts chalk and 1 part clay; mix with a vertical wheel in a circular trough, letting it run out in a large receiver. A deposit soon takes plans which is formed into small bricks, which, after being dried in the sun, are moderately calcined. It enlarges about $\frac{2}{3}$ when mixed with water.

Glum. - Powdered chalk added to common glue strengthens it. A glue which will resist the action of water is made by boiling 1 lb . of glue in 2 qts . of skimmed milk.

Cheap Waterproof Glue.-Melt common glue with the smallest possible quantity of water; add, by degrees, linseed oil, rendered drying by boiling it with litharge. While the oil is being added, the ingredients must be well stirred, to incorporate them thoroughly.
Fire and Waterproof Glue.- Mix a handful of quick-lime with 4 oz . of linseed oil ; thoroughly lixiviate the mixture; boil it to a good thickness, and spread it on tin plates in the shade: it will become very hard, but can be dissolved over a fire, like common glue, and is then fit for use.
Prepared Liquid Glue.-Take of best white glue, 16 oz . ; whitelead, dry, 4 oz . ; rain-water, 2 pts . ; alcohol, 4 oz . With constant stirring, dissolve the glue and lead in the water, by means of a water-bath. Add the alcohol, and continue the heat for a few minutes. Lastly, pour into bottles, while it is still hot.

Mastic Cement for Covering the Fronts of Houses.-Fifty parts, by measure, of clean dry sand, 50 of limestone (not burned) reduced to grains like sand, or marble dust, and 10 parts of red lead, mized with as much boiled linseed oil as will make it slightly moist. The bricks, to receive it, should be covered with three coats of boiled oil, laid on with a brush, and suffered to dry before the mastic is put on. It is laid on with a trowel like plaster, but it is not so moist. It becomes hard as stone in a few months. Care must be exercised not to use too much oil.

Ufment for Tile-Roofs.-Equal parts of whiting and dry sand, and 25 per cent. of litharge, made into the consistency of putty with linseed oil. It is not liable to crack when cold, nor melt, like coal-tar and asphalt, with the heat of the sun.
give it three or
idd gradually add a pinch of lered rosin, and e addition of a sublimate, will
atus, mix Paris mmediately. It rub it over with
opperas, $3 \frac{1}{2} \mathrm{ibs}$., hot water, and se ; use the same ith a stick whilo
ring into water with a vertical l large receiver. to small bricks, ely calcined. It

3 strengthens it. ade by boiling 1
vith the smallest ed oil, rendered being added, the m thoroughly. quick-lime with re; boil it to a e shade: it will e, like common
e, 16 oz.; whiteWith constant by means of a heat for a few hot.
2s.-Fifty parts, urned) reduced red lead, mixed tly moist. The coats of boiled ae mastic is put s not so moist. ist be exercisea
and dry sand, y of putty with nor melt, likp

Ciment for Outide or Brior Walls.-Coment for the outside of brick walle, to imitate stone, is made of clean sand, 90 parts; litharge, 5 parts ; plaster of Paris, 5 parts ; moistened with boiled linseed oil. The bricks should receive two or three coats of oil before the coment is applied.
Exomllent Chisap Rooping.-Seneghzs Suprrazded.-Have your roof stiff, rafters made of stuff $1 \ddagger$ by 8 inches, well supported and 6 feet apart, with ribs 1 jach by 2 inches, set edgewaye, well nailed to the rafters, about 18 inches apart. The boards may be thin, but must be well seasoned, and nailed close together ; this done, lay down and cover the roof with thin, soft, spongy straw paper used in making paper-boxes, which comes in rolls, and comes very low. Lay in courses up and down the roof, and lap over, nailing down with common No. 6 tacks, with leather under the heads like carpettacks. Then spread on several coatings of the following composition, previously boiled, stirred, and mired together: good clean tar, 8 gals. ; Roman cement, 2 gale. (or in its place very fine, clean sand may be used) ; resin, 6 lbs. ; tallow, 3 lbs. ; apply hot ; and let a hand follow, and sift on sharp grit sand, pressing it into the tar composition. If wished fire-proof, go over the above with the following preparation : slake stone lime under cover with hot water till it falls into a fine powder, sift and mix 6 qts. of this with 1 qt . salt, add 2 gals. water, boil and skim. To 5 gals. of this add 11 lb . of alum, and $1 \frac{1}{2} \mathrm{lb}$. of copperas, slowly, while boiling, 11 lbs. potash, and 4 qts. of clean, sharp sand, and any coloring desired. Apply a thick coat with a brush, and you have a roof which no fire can injure from the outside.
Watar Limat fipty Oents per Barrel.-Fine, clean sand, 100 lbs. ; quick-lime in powder, 28 lbs. ; bone ashes, 14 lbs. ; for use, beat up with water, and use as quick as possible.
Onment yor Seams in Roors.-Take equal quantities of white lead and white sand, and as much oil as will make it into the consistence of putty. It will in a few weeks become as hard as stone.
To maki Door Plates.-Cut your glass the right size, and make it perfectly clean with alcohol or soap; then cut a strip of tin-foil sufficiently long and wide for the name, and with a piece of ivory or other burnisher rub it lengthwise to make it amooth; now wet the glass with the tongue (as saliva is the best sticking substance), or if the glass is very large, use a weak solution of gum arabic, or the white of an egg in half a pint of water, and lay on the foil, rubbing it down to the glass with a bit of cloth, then also with the burnisher; the more it is burnished the better will it look; now mark the width on the foil which is to be the height of the letter, and put on a straight edge, and hold it firmly to the foil, and with a sharp knife cut the foil, and take off the superfluous edges; then either lay out the letters on the back of the foil (so they shall read correctly on the front) by your own judgment, or by means of pattern letters, which can be purchased for that purpose; cut with the knife, carefully holding down the pattern or straight edge, whichever you use ; then rub down the edge of all the letters with the back of the knife, or edge of the burnisher, ${ }^{\prime}$ which prevents the black paint or japan, which you next put over, the back of the plate, from getting under the foil ; having put a
line above and one below the name, or a border around the whole plate or not, as you bargain for the job. The japan is made by dissolving asphaltum in just enough turpentine to cut it ; apply with a brush, as.other paint, over the back of the ietters, and over the glass forming a background. This is used on the iron plate of the frame also, putting it on when the plate is a little hot, and as soon as it cools, it is dry. A little lampblack may be rubbed into it if you desire it any blacker than it is without it.

Soluble Glass.--Powdered quartz, 15 parts; potash, 10 parts; charcoal, 1 part ; these are melted together, worked in cold water, and then boiled with 5 parts water, in which they entirely dissolve. It is then applied to wood-work, or any other required substances.
To render Wood Indistructible.-Robbins's Process. This seems to be a process of inestimable value, and destined to produce very important results. The apparatus used consists of a retort or still; which can be made of any size or form, in which resin; coal tar, or other oleaginous substances, together with water, are placed in order to snbject them to the action of the heat. Fire being applied beneath the retort containing the coal tar, \&c., oleaginous vapor commences to rise, and pass out through a connecting pipe into a large iron tank or chamber (which can also be built of (any size), containing the timber, \&c., to be operated upon. The heat acts at once on the wood, causing the sap to flow from every pore, which, rising in the form of steam, condenses on the body of the chamber, and discharges through an escape pipe in the lower part. In this process a temperature of 212° to $250^{\circ} \mathrm{Fahr}$ is sufficient to remove the surface moisture from the wood; but after this tho temperature should be raised to 300° or more, in order to completely saturate and permeate the body of the wood with the antiseptic vapors and heavier products of the distillation. The hot vapor cosifalates the albumen of the wood, and opens. the pores, so that a large portion of the oily product or creosote is admitted; the contraction resulting from the cooling process hermetically seals them, and decay seems to be almost impossible. There is a man-hole in the retort, used to change or clean out the contents; and the wood chamber is furnished with doors made perfectly tight. The whole operation is completed in less tban one hour, rendering the wood proof against rot, parasites, and the attacks of the Teredo nuvilis or naval worm.

German Stone Coating for Wood.-Chalk, 40 parts; rosin, 50 parts; linseed oil, 4 parts; melt togeiner. To this add 1 part of oxide of copper, afterwards 1 part of sulphuric acid; add this last carefully; apply with a brush

WATCHMAKERS, JEWELLERS, GILDERS, \&o., RECEIPTS.

On Watch Olmaning.-It is hardly necessary to say that great caution must be observed in taking the watch down ; that is, in meparating its parts. If you are new at the business think before
you act, and then act slowly. Take of the hands carefilly so as not to bend the slender pivots apon which they work; this will be the first step. Second, loosen and lift the movement from the case. Third, remove the diel and dial wheels. Fourth, let down the mainspring by placing your bench key upon the arbor, or "winding post," and turning as though you were going to Find the watch until the click rests lightly upon the ratchet; then with your screw-driver press the point of the click away from the teeth, and ease down the springs Fifth, draw the screws (or pins) and remove the bridges of the train, or the upper plate, as the case may be. Sixth, take ont the balance. Great care must be observed in this, or you will injure the hair-spring. The stud or little square post into which the hair-spring is fastened may be removed from the bridge or plate of most modern watches, without unkeging the spring, by slipping a thin instrument as the edge of a knife blade, under the corner of it and prying upward. This will save you a considerable amount of trouble, as you will not have the hair-spring to adjust when yon reset the balance.

If the watch upon which you propose to work has an upper plate, as an American or an English lever for instance, loosen tho lever before yon have entirely separated the plates, otherwise it will hang and most likely be broken.

Having the machine now down, brush the dust away from its different parts, and subject them to a careful examination with your eye-glass. Assure yourself that the teeth of the wheels and leaves of the pinions are all perfect and smooth; that the pivots are all straight, round, and highly polished; that the holes through which they are to work are not too large, and have not become oval in shape; that every jewel is smooth and perfectly sound; and that none of them are loose in their settings. See also that the escapement is not too deep or too shallow; that the lever or cylinder is perfect; that all the wheels have sufficient play to avoid friction, but not enough to derange their coming together properly; that none of them work against the pillar-plate; that the balance turns horizontally and does not rub; that the hair spring is not bent or wrongly set so that the coils rub on each other, on the plate, or on the balance; in short, that everything about the whole movement is just as reason would teach you it'should be. If you find it otherwise, proceed to repair in accordance with a carefully weighed judgment and the processes given in this chapter, after which, clean; if not, the watch only needs to be cleaned, and, therefore, you may go ahead with your work at once.

- To Clisan. - Many watchmakers wet the pillar plates and bridges with saliva, and then, dipping the brush into pulverized chalk or Spanish whiting, rub vigorously until they appear bright. This is not a good plan, as it tends to remore the plating and roughen the parts, and the chalk gets into the holes and damages them, or sticks around the edges of the wheel-beds. The best process is to simply blow your breath upon the plate or bridge to be cleaned, and then to use your brush with a little prepared chaik. (See recipe for preparing it.) The wheels and bridges should be held between the thumb and finger in a plece of soft paper while under-

142 WATOEMAKRRS, JEWMLLERS, AO., BEOEIPTS,

going the proceno otherwiso the oil from the blin will provent thair becoming clean. The pinions may ${ }^{2}$ leaned by ininking them several times into a piece of pith, and the boles'by turning a nicely shaped pieee of pivat wood into them, frut dry, and afterwards ciled a very litile with watch oil. When the holees pass through jewdil, you munt work gently to aroid breaking them.
The olling above named is all the watch will need. A great fanlt with many watchmakera lies in their use of too much' oil.
Tris "Ogmugil Procise." -Some watchmakers employ what they call the "Ohemical Process" to clean and remove discoloration from watch mavements. It is as follows:-
Remove the screws and other ateel parts; then dampen with a solution of oxalic acid and water. Let it remain a few moments after which immerne in a solution made of one-fourth pound cyanuret potassa to one gallon zain water. Let remaln about five minute日, and then xinse well with clean water, after which you may dry in sarrdust, or with a brush and prepared chalk, as suits jour convenience. This gives the work an excellent'appearance.
To priplar Oilizi for Clianing-Pulverize your chalk thoroughly, and then'mix it with clear vain water in the proportion of two pounds to the gallon. Stir well, and then let stand about two minutes. In this time the gritty matter will have settled to the bottom. Pour the water into another vessel, slowly so an not to ptir up the settlings. Let stand until entirely settled and then pour off as before. The settlings in the second vessel will be your prepared ohalk, ready for nise as soon as dried.

Spanish whiting, treated in the samo way, maked a very good cleaning or polishing powder. Some operatives add a llitle jeweller's rouge, and we thenk it an iniprovement ; it gives the powder a nioe color at least, and therefore adda to its importance in the eyes of the nininitiated. In cases where a sharper polishing powder is required, it may be prepared in the same way from rotton atone.
PITor Wood. -Watohmakers nsually bay this article of watchmatorial dealers. A small shrub known as Indian arrow-wood, to be met with in the northern and western states, makes an excellent piryt wood. It must be cut when the saf is down, and split into quarters 80 as to throw the pith outside of tho rod.
Pipa fok Cuisinng.-The stalk of the common mullen affords the best pith for cleaning piniong. Winter, when the stalk is dry, is the time to gather it. Some use cork instead of pith, but it is inferior.
To Pivor.-When you find a pivot broken, you will hardly be at a loss to understand that the easiest mode of repairing the damage is to drill into the end of the pinion or staff, as the case may be, and having inserted a new pivot, turn it down to the proper proportions. This is by no means a difficult thing when the piece to be drilled is not too hard, or when the temper may be slightly drawn without injury to the other parts of the article.
T To thle when teen Lever is of proper Lengte.- You may readily learn whether or not a lever is of proper length, by measuring from the gaard point to the pallet staff, and then comparing Fith the roller or ruby-pin table; the diameter of the table should.
always be just hall the length measured on the lever. The sule will work both wayt, and may be useful in cases where a new rubypin table has to be supplied.
To chanam Depth or Levir Escapement.-If you are operating on a fine watch, the best plan is to put a new staff into the lever, cutting its pivots a little to one side, just as far as you desire to change the escapement. Common watches will not, of course, justify so much trouble. The usual process in their case is to knock out the staff, and with a small file cut the hole oblong in a direction opposite to that in which you desire to move your pallets; then replace the staff, wedge it to the required position, and secure by soft soldering.
In instances where the staff is put in with a ecrew, you will have to proceed differently. Take out the staff, prize the pallets from the lever, file the pin holes to slant in the direction you would move the pallets, without changing their size on the other side of the lever. Connect the pieces as they were before, and, with the lever resting on some solid substance you may strike lightly with your hammer until the bending of the pins will allow the pallets to pass into position.

To tell when the Lever Pallets arg of proper Stze. -The clear space between the pallets should correspond with the outside measure, on the points of three teeth of the scape wheel. The usual mode of measuring for new pallets is to set the wheel as close as possible to free itself when in motion. You can arrange it in your depthing tool, after which a measurement between the pivot holes of the ewo pieces, on the pillar plate, will show you exactly what is required.

To lengthen Livers of Anghor-msoapement Watches without Hammerifg or Bolidering.-Out square across with a screwhead file, a little back from the potnt above the fork, and, when you have thus cut into it to a sufficient depth, bend forward the desired distance the piece thus partially detached. In the event of the piece snapping off while bending-which, however, rarely happens-file down the point level with the fork, and insert a pin, English lever style.
To tmpper Casm and othma Springe of Watches.-Draw the temper from the spring, and fit it properly in its place in the watch; then take it out and temper it hard in rain-water (the addition of a little table-salt to the water will be an improvement); after which place it, in a small sheet-iron ladie or cup, and barely cover it with linseed.oil; then hold the ladle over a lighted lamp until the oll ignites; let it burn until the oil is nearly, not quite consumed; then re-cover with oil and burn down as before; and so a third time; at the end of which, plunge it again into water. Main and hair-springs may, in like manner, be tempered by the same process; first draw the temper, and properly coil and clamp to keep in position, and then proceed the same as with case-springs.
to make Red Watoh Hands.-1 oz. carmine, 1 oz. muriate of
 and hold over a spirit-lamp until formed into a paste. Apply this to the watch hand, and then lay it on a copper plate, face

144 WATOHMAKERS, JEWELLERS, \&O., REOEIPTS.

side up, and heat the plate sufficiently to produce the color desired.

To Drill into Hard Stere.-Maise your drill oval in form, instend of the usual pointed shape, and temper as hard as it will bear without breaking; then roughen the surface where you desire to drill with a little diluted murlatic acid, and, instead of oil, use turpentine or kerosene, in which a little gum camphor has been dissolved, with your drill. In operating, keep the pressure on your drill firm and steady; and if the bottom of the hole should chance to become burnished, so that the drill will not act, as sometimes happens, again roughen with diluted acid as before: then clean out the hole carefully, and proceed again.

To Cabl-harden Iron.- If you desire to harden to any considerable depth, put the article into a crucible with cyanide of potash, cover over and heat altogether, then plunge into water. This process will harden perfectly to the depth of one or two inches.

To Put Teete in Watch or Clock Wheels withoot Dovetailing or Soldering. - Drill a hole a mewhat wider than the tooth, square through the plate, a little below the base of the tooth; cut from the edge of the wheel square down to the hole already drilled; then flatten a piece of wiro so as to fit snugly into the cut of the saw, and with a light hammer form a head on it like the head of a pin. When thus prepared, press the wire or pin into position in the wheel, the head filling the hole drilled through the plate, and the end projecting out so as tn form the tooth; then with a sharp pointed graver cut a small groove each side of the pin from the edge of the wheel down to tho hole, and with a blow of your hammer spread the face of the pin so as to fill the grooves just cut. Repeat the same operation on the other side of the wheel, and finish off in the usual way. The tooth will be found perfectly riveted in on every side, and as strong as the original one, while in appearance it will be equal to the best dovetaling.

To tigeten a Uannon Pinion on tee Centre arbor when roo Loose.-Grasp the arbor lightly with a pair of cutting nippers, and, by a single turn of the nippers around the arbor, cut or raise a small thread thereon.

To Frost Watoh Movenents.-Sink that part of the article to be frosted for a short time in a compound of nitric acid, muriatic acid and table salt, one ounce of each. On removing from the acid, place it in a shallow vessel containing enough sour beer to merely cover it, then with a fine scratch brush scour thoroughly, letting it remain under the beer during the operation. Next wash off, first in pure water and then in alcohol. Gild or silver in accordance with any recipe in tho plating department.

Rule for determining the corregt Diambter of a Pinion by meaburing Teeth of the Wheil that matohes into it.-The term FULL, as used below, indicates full measure from outside to outside of the teeth named, and the term centre, the measure from centre of one tooth to centre of the other tooth named, inclusive.

For dianeter of a pinion of 15 leaves measure, with calipers, a shade less than 6 teeth of the wheel, full
e the color form, instend ill bear withesire to drill , use turpenen dissolved n your drill ould chance is sometimes : then clean
ny considerle of potash, water. This wo inches.
riout Doviler than the base of the 1 to the hole to fit snugly form a head d, press the ling the hole out so as to cut a small wheel down ead the face eat the same h off in the veted in on o in appear-

Arbor when cutting nipe arbor, cut
the article nitric acid, on removing hing enough ratch brush
during the a in alcohol. tho plating
A. Pinion by --The term e'to outside from centre sive.
calipers, a

- WATCHMAKERS, JEWELLERS, HC., REOEIPTS. 145

For diameter of a pinion of 14 leaves measure, with calipers, a shade less than 6 teeth of the wheel, centre.

For diameter of a pinion of 12 leaves measure, with calipers, 5 teeth of the wheel, centre.

For diameter of a pinion of 10 leaves measure, with calipers, 4 teeth of the wheel, full.

For diameter of a pinion of 9 leaves measure, with calipers, a little less than 4 teeth of the wheel, full.
fror diameter of a pinion of 8 leaves measure, with calipers, a little less than 4 teeth of the wheel, centre.

For diameter of a pinion of 7 leaves measure, with calipers, a little less than 3 teeth of the wheel, full.

For diameter of a pinion of 6 loaves measure, with calipers, 3 teeth of the wheel, centre.

For diameter of a pinion of 5 leaves measure, with callipers, 3 teeth of the wheel, centre.

For diameter of a pinion of 4 leaves measure, with calipers, one balf of one space over 2 teeth of the wheel, full.

As a general rule, pinions that jead, as in the hour wheel, should be somewhat larger than those that drive, and pinions of clocks should generally be somewhat larger proportionally than those of watches.
To Polish Wheals phrfiotly without injury.-Take a flat burnishing file, warm it over a spirit lamp, and coat it lightly with bees'-wax. When cold, wipe off as much of the wax as can be readily removed, and with your file thus prepared, polish the wheel, resting the wheel while polishing on a piece of cork." The finish produced will be quite equal to the finest buff polish, while there will be no clogging, and the edges of the arms and teeth will remain perfectly square.

Rulig for determaning the correot Lemeth of the Lbinir, sizm of Ruby-Pin Table, sizm or the Pallite, and dipth of Eboapimgnt of Laver Watomes.- A lever, from the guard point to the pallet staff, should correspond in length with twice the diameter of the ruby-pin table, and when a table is accidentally lost, the correct size thereof may be known by measuring half the length of the lever between the points above named. For correct size of pallet, the clear space between the pallets should correspond with the outside measure on the points of three teeth of the escapement wheel. The only rule that can be given, without the use of diagrams, for correct depth of the escapements, is to set it close as it will bear, and still free itself perfectly when in motion. This may be done by first placing the escapement in your depthing tool, and then setting it to the correct depth. Then by measuring the distance between the pivots of the lever staff and escapement wheel, as now set, 'and the corresponding pivot holes in the watch, you determine correctly how much the depth of the escapement requires to be altered.

To rmmove rust from Iron or Steit, \&o.-For cleaning purposes, \&c. kerosene oil or benzine are probably the best things known. When articles have become pitted by rust, however, these can of course, only be removed by mechanical means, such as scouring with fine powder, or flour of emery and oil, or with very
fine emery paper. To preventsteel from rusting, rub it with a mixture of lime and oil, or with mercurial ontment, either of which will be found valuable.

To Pot Watches in Bat.-If a cylinder escapement, or a detached lever, put the balance into a position, then turn the regulator so that it will point directly to the pivot-hole of the pallet staff, if a lever, or of the scape-wheel, if a cylinder. Then lift out the balance with its bridge or clock, turn it over and set the ruby-pin directly in line with the regulator, or the square cut of the cylincier'at right angles with it. Your watch will then be in perfect beat.
In case of an Americau or an English lever, when the rogulator is placed upon the plate, you will have to proceer difiorently. Fix the talance into its place, cut off the connection of the train, if the mainspring is not entirely down, by slipping a fine broach into one of the wheels, look between the plates and ascertain how the lever stands. If the end farthest from the balance is equidistant between the two brass pins, it is all right; if not, change the hair-spriug till it becomes so.

If dealing with a duplex watch, you must see that the roller notch, when the balance is at rest, is exactly between the locking tooth and the line of centre; that is, a line drawn from the centre of the roller to the centre of the scape-wheel. The balance must atart from its rest and move through an arc of about ten degrees before bringing the locking tooth into action.

To Pravent a Chan Running ofs the Fusme.-In the first place, you must look and ascertain the cause of the difficulty. If it results from the chain being too large, the only remedy is a new chain. If it is not too large, and yet runs off without auy apparent cause, change it end for end-that will generally make it go all right. In cases where the channel in the fusee has been damaged and is rough, you will be under the necessity of dressing it over with a file the proper size and shapo. Sometimes you find the chain naturally inclined to work away from the body of the fusee. The best way to remedy a difficulty of this kind is to file off a very little from the outer lower edge of the chain the entire length; this, as you can see, will incline it to work on instead of off. Somo workmen, when they have a bad case and a common watch, change the standing of the fusee so as to cause the winding end of its arbor to incline a little from the barrel. This, of course, cannot do otherwise than make the chain run to its place.

To Weakin tem Hair-Spring.-This is often effected by grinding the spring down. You remove the spring from the collet, and place it upon a piece of pivot wood cut to fit the centre coil A piece of soft steel wire, flattened so as to pass freely between the colls, and armed with a little pulverized oil-stone and onl, will serve as your grinder, and with it you may soon reduce the strength of the spring. Your operations will, of course, be confined to the oentre coil, for no other part of the spring will rest suffciently against the wood to enable you to grind it, but this will generally suffice. The effect will be more rapld than one would suppose, therefore it will stand you in hand to be careful, or you may get the spring too weak before you suspect it.

IPTS.

with a mixer of which
ment, or a rn the reguof tie pallet Then lift out and set the quare cut of 1l then be in
he rogulator difiorently. of the train, fine broach ad ascertain balance is ght; if not, the roller the locking n the centre alance must ten degrees

In the first ficulty. If remedy is a t any appamake it go 0 has been of dressing hes you find body of the is to file off the entire instead of a common he winding 3, of course, se.
y grinding collet, and re coil A tween the d onl, will educe the e confined rest suffithis will pne would al, or you

146a WATCHMAKERS, JEWELLERS, \&O., RECEIPTS

LIST OF TRAINS OF WATCHES.

SHOWING THE NOMBER OF TERTH IN THE WHEELS, LEAVES IN TES PINIONS. BEATS IN A MINUTE, AND TIME THE FOURTH WHKEL REVOLVES IN.

Traing, for Seven Teeth in the Escapement Wheel.

No. of Teeth in the Wheel.	Teeth in 3d Wheel.	$\begin{aligned} & \text { Leares } \\ & \text { in 3d } \\ & \text { Wheel } \\ & \text { Plniou. } \end{aligned}$	Teeth in 4th Wheel	Leares in 4 th Wheel Pinion	Teeth in the Escape- ment Wheel.	Leaves In the Escapoment Pinion.	No. of Bents in one minute.	No. of Seconde the tith Whooi revol- ves th.
			68	6			298-	
68	64	6	64	6	7	6	$292+$	31
66	64	6	63	6	7	6	$287+$	31
66	68	6	63	6	7	6	288-	81
66	63	6	62	6	7	6	$278+$	81
66	4i3	6	61	6	7	6	274-	81
66	63	6	60	6	7	6	$269+$	81

Traing, for Nine Teeth in the Escapement Wheel.

Trains, for Eleven Teeth in the Escapemenit Wheel.

60	60	6	49	6	11	6		(200)-	86
60	51	6	54	6	11	6		$29{ }^{\circ}$	40
60	56	6	62	6	11	6		240	30
61	62	6	52	6	11	6		294-	30
68	56	6	53	6	11	6		292+	40
60	54	6	58	6	11	6		$291 \cdot+$	40
62	54	6	51	6	11	6		290--	89
68	54	6	54	6	11	6		$287+$	41
58	55	6	58	6	11	6		287	41
59	54	6	53	6	11	6		288-1-	41
60	51	6	52	6	11	6		286	40
60	55	6	51	6	11	6		286--	89
61	55	6	50	6	11	6		285-	89
63	55	6	48	6	11	6		$282+$	88
59	54	6	52	6	11	6		$281+$	41
60	54	6	51	6	11	6		$281+$	40
61	51	6	50	6	11	6		280-	89
56	54	6	54	6	11	6		$277+$	43
60	60	6	48	6	11	6		$298+$	86
62	54	6	52	6	11	6		$295+$	89
68	54	6	50	6	11	6		289-	88
6.	48	6	66	6	11	6		287 +	43
70	70	7	56	7	11	7		298 -	88
70	70	7	48	7	11	6		298 +	86
70	60	7	48	6	11	6		$293+$	86.

WATCHMAKER, JEWMLLERS, \&O., BEOEIPTE. 1466

No, of Teeth in the Centre Wheel.	Teeth in 3d Wheel.	$\left\|\begin{array}{c} \text { Lesree } \\ \text { in 3d } \\ \text { Wheel } \\ \mathbf{P}^{\prime} \text { nelon. } \end{array}\right\|$	Teeth in 4th Wheel	Leares Wheel Pinion.	Teeth in the EscapeWheel.	Leaves in the Escape- ment Pinion.	No. of Beats in one Minut:-	$\begin{aligned} & \text { No. of } \\ & \text { Seconda } \\ & \text { the 4th } \\ & \text { Weoel } \\ & \text { Nool- } \\ & \text { ves in. } \end{aligned}$
60	70	6	48	7	11		293+	36
63	50	6	E6	7	11	6	287	40
63	63	6	50	7	11	6	289-	88
80	80	8	64	8	11	8	$293+$	36
80	80	8	56	8	11	7	$293+$	36
80	80	8	48	8	11	6	- 293	80
8	70	8	56	7	11	7	293	86
86	70	8	48	7	11	6	298.	38
80	60	8	48	6	11	6	293	36
70	80	7	56	8	11	7	$293-$	36
70	80	7	48	8	11	6	$293-$	86
60	80	6	48	8	11	6	$298+$	38
84	72	8	50	8	11	6	289-	38
84	68	8	50	7	11	6	289-	38
84	54	8	50	6	11	6	289-	38
63	72	6	50	8	11	6	289-	33
63	68	6	50	7	11	6	289-	38
84	64	8	56	8	11	6	287 +	40
81	56	8	56	7	11	6	$287+$	40
84	48	8	56	6	11	6	$287+$	40
63	64	6	56	8	11	6	$287+$	40
63	56	6	56	7	11	6	$287+$	40

Traing, for Thirteen Teeth in the Eiscapement Wheel.

To of sa
gent gent usefu

IIPTS. 1463

No. 01 Seconds Beate in the ith Minuts.

Wheel revol- ves in.
86
40
88
36
36
80
86
38
36
86
36
36
38
38
38
38
88
40
40
40
40
40

ent Wheel.

 146c WATOEMAKER, JEWELLERS, \&O., RECEIPTS.

Traing, for Fifteon Treoth in the Escapement wheel.

No. of Teeth In the Contre Wheel.	Treth in 3d Wheel.	$\begin{aligned} & \text { Leares } \\ & \text { in } 2 d \\ & \text { Wheol } \\ & \text { Pinion. } \end{aligned}$	Teeth in 4th Wheal	$\begin{gathered} \text { Leavers } \\ \text { in 4th } \\ \text { Wheel } \\ \text { Pinion. } \end{gathered}$	Teeth in the Bricapemheel.	Leaver In the Escopepen mpent Whoel Pinfon.	No. of Beata in one Minute.	
54	50	6	48	6	15	6	286	48
58	48	6	46	6	15	6	290	50
48	45	6	59	6	15	6	291-	60
48	45	6	58	6	15	6	800	62
48	45	6	57	6	15	6	288	62
48	45	6	56	6	15	6	288	50
56	48	6	46	6	15	6	289-	50
68	56	7	56	7	15	7	288	50
60	56	8	58	7	15	6	288	60
62	60	8	60	8	15	6	288	60
72	64	8	50	8	15	6	288	50
72	64	8	56	8	15	7	288	50
72	64	8	64	8	15	8	288	50
52	50	5	48	6	15	6	288	50
54	48	6	48	6	15	6	288	50
72	64	8	48	8	16	6	288	50
72	80	8	64	10	15	8	288	50
72	80	8	56	10	15	7	288	50
72	80	8	48	10	15	6	288	50
68	80	7	64	10	15	8	288	50
63	80	7	56	10	15	7	288	50
68	80	7	48	10	15	6	288	50

Traing, for Seventeen Teeth in the Escapement Wheel.

To Remove Soft Solder from Gold.-Place the work in spirits of salts, or remove as much as possible with the scraper, using a gentle heat to enable you to get off the solder more easily. Very useful to be known where hard soldering is required, either in bright or colored work.

WATOHMAKERS, JEWELLERS, \&O., REOEIPTH. 146d

Traing, for Third Wheol and Patont Seconde.

No. of Teeth in the Wheel	Teeth in 3d Wheel.	$\begin{aligned} & \text { Leaves } \\ & \text { in 3d } \\ & \text { Wheel } \\ & \text { Pinion. } \end{aligned}$	Teeth in 4th Wheel	Leaves in 4th Wheel Pinion.	Teeth in the RiscapeWheal.	Leaves in the Escape- ment Wheel Pinion.	No. of Bents in one Minute.	No. Ot Seconds the 4th Hheel revol- ves in.
60	72	6	60	12	-	6	800	60
60	60	6	60	10	-	6	300	60
60	48	6	60	8	.	6	3 CO	60
48	60	6	P0	8	.	6	300	60
60	72	6	54	12	.	6	270	60
60	60	6	54	10	.	6	270	60
48	60	6	54	8	\cdots	6	270	60
60	72	6	48	12	\ldots	6	240	60
60	60	6	48	10	\because	6	240	60
48	60	6	48	8	\cdots	6	. 240	60

Traine, for Fourth Wheel Seconde, with gleven Teeth In the Escapement Wheel.

48	45	6	71	6	11	6	$260+$	60
48	45	6	74	6	11	6	$271+$	60
48	45	6	76	6	11	6	279	60
48	45	6	78	6	11	6	286	60
60	49	7	74	7	11	6	$271 \pm$	60
60	49	7	76	7	11	6	279	60
60	49	7	78	7	11	6	286	60
45	56	6	74	7	11	6	$271+$	60
45	56	6	76	7	11	6	279	60
45	66	6	78	7	11	6	286	60
64	60	8	74	8	11	6	$271+$	60
64	60	8	76	8	11	6	279	60
64	60	8	78	8	11	6	286	60
60	56	8	74	7	11	6	$271+$	60
60	56	8	76	7	11	6	279	60
60	56	8	78	7	11	6	286	60
60	48	8	74	6	11	6	$271+$	60
48	48	8	78	6	11	6	286	60
48	60	6	74	8	11	6	$271+$	60
48	60	6	78	8	11	6	286	30
56	60	7	74	8	11	6	$271+$	60

Trainm, for Fourth Wheel Seconds, with Thirteen Teeth In the Escapement Wheel.

| 64 | 60 | 8 | 66 | 8 | 13 | 6 | 286 | 60 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 64 | 60 | 8 | 67 | 8 | 18 | 6 | $290+$ | 60 |
| 64 | 60 | 8 | 68 | 8 | 13 | 6 | 295 | 60 |
| 64 | 60 | 8 | 69 | 8 | 13 | 6 | 2999 | 60 |
| 60 | 49 | 7 | 77 | 7 | 13 | 7 | 286 | 60 |
| 60 | 49 | 7 | 66 | 7 | 12 | 6 | 286 | 60 |
| 60 | 49 | 7 | 67 | 7 | 13 | 6 | $290+$ | 60 |
| 48 | 45 | 6 | 66 | 6 | 13 | 6 | 286 | 60 |
| 48 | 45 | 6 | 67 | 6 | 18 | 6 | $290+$ | 60 |
| 48 | 45 | 6 | 68 | 6 | 13 | 6 | 264 | 60 |
| 48 | 45 | 6 | 69 | 6 | 13 | 6 | 299 | 60 |
| 60 | 56 | 8 | 66 | 7 | 13 | 6 | 286 | 60 |
| 80 | 60 | 10 | 66 | 8 | 13 | 6 | 286 | 60 |
| 64 | 75 | 8 | 66 | 10 | 13 | 6 | 286 | 60 |
| 48 | 60 | 6 | 66 | 8 | 13 | 6 | 286 | 60 |
| 48 | 76 | 6 | 66 | 10 | 18 | 6 | 286 | 60 |
| 45 | 56 | 6 | 66 | 7 | 13 | 6 | 286 | 60 |
| 56 | 75 | 7 | 68 | 10 | 13 | 6 | 295 | 60 |

EIPTS. $146 d$
seconds.

of Boate in - Minute.	No. of Seconde the 4th Wheel revol- ves in.
300	60
300	60
30	60
300	60
270	60
270	60
270	60
240	60
240	60
. 340	60

leven Teeth

$260 \pm$	60
$271+$	60
$279-$	60
286	60
$271+$	60
$279-$	60
286	60
$271+$	60
$279-$	60
286	60
$271+$	60
$279-$	60
286	60
$271+$	60
279	60
286	60
$271+$	60
286	60
$271+$	60
286	30
$271+$	60

rteem Teeth

86	60
$990+$	60
95	60
99	60
86	60
86	60
$90+$	90
86	60
$90+$	60
34	60
99	60
36	60
36	60
66	60
6	60
6	60
6	60
5	60

1466 WATOHMAKERS, JEWELLERS, \&C., REOEIPTS.
Traing, for Fourth Wheel Seconde, with Firteen Teeth in Escapement Wheel.

No. of Teeth in the Centre Wheel.	Teeth in 3u Wheel,	Leavea In 3d Wheel Pinion.	Teeth in 4th Wheel	Leaves in 4 th Wheel Pinion. Pinion	Teeth in the Escapoment Wheel.	Leaves in the Escapement Pinion.	No. of Bonts in ons Minute.	No. 01 Seconds Wheel revolves in.
64	60	8	70	8	15	7	300	60
64	60	8	60	8	15	6	300	60
64	45	8	60	6	15	6	300	60
60	56	8	60	7	15	6.	800	60
48	60	6	60	8	15	6	300	60
60	70	7	70	7	15	7	300	60
60	49	7 *	60	7	15	6	300	60
48	49	6	60	E	15	6	800	60
80	45	10	70	8	15	7	300	60
75	60	10	60	8	15	6	800	60
64	64	8	70	10	15	7	300	60
64	75.	8	60	10	15	6	300	60
56	75	7	70	10	15	7	300	60
56	75	7	60	10	15	6	300	60
64	75	8	54	8	15	6	270	60
60	60	8	54	7	15	6	270	60
64	56	8	54	6	15	6	270	60
48	45	6	54	8	is	6	270	60
60	60	7	68	7	15	7	270	60
60	49	7	54	7	15	6	270	60
48	49	6	54	8	15	6	270	60
64	45	8	48	8	10	6	240	60
60	60	8	48	7	15	6	240	60
48	50	6	48	8	15	6	240	60
64	60	8	48	6	15	6	240	60
60	45	7	E6	7	15	7	240	69
¢0	49	7	48	7	15	6	240	60
48	45	6	48	6	15	6	- 240	60
60	56	8	48	7	15	6	240	60

Trains, for Fourth Wheel Seconds, with Seventeen Teeth in Escapement Wheel.

| 64 | 60 | 8 | 51 | 8 | 17 | 6 | 289 | 60 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 64 | 60 | 8 | 50 | 8 | 17 | 6 | $283+$ | 50 |
| 60 | 56 | 8 | 51 | 7 | 17 | 6 | 289 | 60 |
| 80 | 60 | 10 | 50 | 8 | 17 | 6 | $283+$ | 60 |
| 75 | 64 | 10 | 50 | 8 | 17 | 6 | $283+$ | 60 |
| 75 | 56 | 10 | 68 | 7 | 17 | 8 | 289 | 60 |
| 75 | 68 | 10 | 68 | 8 | 17 | 8 | 289 | 63 |
| 80 | 75 | 10 | 68 | 10 | 17 | 8 | 289 | 6, |

Train of the American Watch Company's Watch.

64	60	8	8	64	8	15	7	7	300

Note.-By use of the foregoing set of Trains, and the rule for sizes of pinions, on page 144, all difficulty of calculating is obviated; and at one view, in oase of the accidental loss of a wheel and pinion, may be known the correct size and count of the pinion, and number of teeth in the Wheel lost,

Valuable Receipts for Goldsmiths.-Standard Gold is compounded of 440 grains of fine gold, and 40 grains (Troy weight, to the oz. allov; therefore, when you judge how much gold a piece of work will take, compound it to the standard weight by the following directions: Assay Weight. The weight of gold is a pound, which is divided into 12 ozs. each oz. into 24 carats, each carat into 4 grains, and, lastly, each grain into 4 quarters; then you see the assay quarter-grain, is in reality 14 grain Troy.

QUANTITY OB STANDARD GOLD TO OOMPOUND AN OZ. OF ANY OF THE FOLLOWING ALLOYS OALOULATED TO THE $\frac{1}{4}$ OF A GRAIN, AE FOLLOWE.

Carat.	Dwts.	Grs.	Qrs.		Dwts.	Girs.	Qrs.
1	0	21	9		19	2	2
2	1	19	7		18.	4	4
3	2	17	5		17	6	6
4	8	15	8		16	8	8
5	4	18	1		15	10	10
6	5	10	10		14	13	1
7	6	8	8	是	18	15	3
8	7	6	6	Q	12	17	5
9	8	4	4	2	11	19	7
10	9	2	2	4	10	21	9
11	10	0	0	国	10	0	0
12	10	21	9	\bigcirc	9	2	2
18	11	19	7	O	8	4	4
14	12	17	5	H	7	6	6
15	18	15	8	V	6	8	8
16	14	13	1	C	5	10	10
17	15	10	10	I	4	18	1
18	16	8	8	2	8	15	8
19	17	6	6		2	17	5
20	18	4	4		1	19	7
21	19	2	2		0	21	9
22	22	0	0				

Sterling Gold Alloy, 78s. per oz.-1. Fine gold, 18 dwt., 12 grs., fine silver, 1 dwt., fine copper, 12 grs . 2. Dry Colored Gold Alloys. 17 Carat. Fine gold, 15 dwts , fine silver, 1 dwt .10 grs ., fine copper, 4 dwts. 17 grs. 3. Another, 18 Carat. Fine gold, loz., tine silver, 4 dwts. 10 grs., fine copper, 2 dwts. 5 grs. 4. Another, 18 Carat. Fine gold, 15 dwts ., fine silver, 2 dwts. 4 grs., fine copper, 2 dwts. 19 grs. 5. Another, 18 Carat. Fine gold, 18 dwts., fine silver, 2 dwts. 18 grs., fine copper, 3 dwts. 18 grs. 6. Another . 19 Carat. Fine gold, 1 oz., fine silver, 2 dwts. 6 grs ., fine copper, 3 lwts. 12 grs. 7. Another, 20 Carat 7 ine gold, 1 oz , fine silver, 2 dwts., fine copper, 2 dwts .4 grs. 8. Another, 22 C'arat. Fine gold, 18 dwts., fine silver, 12 grs., fine copper, 1 dwt. 3 grs. 9. Gold solder for the foregoing Alloys Take of the alloyed gold you are using, 1 dwt., fine silver, 6 grs. 10. Alloy for Dry Colored Kings. Fine gold, 1 oz., fire silver, 4 dwts. 6 grs., fine copper, 4 drts. 6 grs. 11. Solder for ditto. Scrap gold, 2 ozs., fine silver, 3 dwts, fine copper, 3 dwts. 12. Dry Colored Scrap reduced to 35s. Gold. Colored scrap, loz. $9 \mathrm{dwts} .12 \mathrm{grs} .$, fine silver, 2 dwts ., fine copper, 17 dwts .12 grs ., spelter, 4 dwts .
dif Coloring for the Forigoing.-Polish your work well and for every 2 ozs. take saltpetre, 8 ozs., alum, 4 ozs., salt, 4 ozs., melt all together in a black lead pot, stirring with a thin iron bay

$146 g$ Watoumakers, JEWELLERS, \&C., RECETPTS.

when dissolving. Use the fire on a forge and urge it well with the bellows, as you can not make it too hot. Your polished work being well cleaned with soda, soap, and hot water, is dried in bóx sawd ust is afterwards covcred with a thin layer of borax; annealed and boiled out, and again dried in box sawdust, and finally hung on platinum or silver wire. Wnen the "color" in the pot assumes a brown yellow flame, the work is dipped in ior two or three seconds, and quenched with hot water diluted with muriatic acid, which removes any "color" that may adhere to the work. This ought to produce the desired color, but if it does not, repeat the process, presiously drying the work before re-immersion in the "color." Tine color-pot must be emptied immediately upon the forge, so that it may be realy for fature use.
Wet Colored alloys.-1. Fine gold, 1 oz., fine silver, 3 dwts. 12 grs., fine :opper, 9 dwts 2. Fine gold, 1 oz., fine silver, 4 dwts .12 grs., fine copper, 10 dwts . 3. Fine gold, 1 oz., fine silver, 4 dwts .12 grs., fine copper, 10 dwts .12 grs. 4. Fine Gold, 1 oz., fine siiver, 4 dwts., fine copper, 9 dwts. 12 grs. 5. Green Gold for Fancy Work. Fine gold, 1 oz., fine silver, 6 dwts. 16 grs. 6. Another Green Gold. Fine gold, 5 divts., fine silver, 1 dwt .12 grs. 7. Another Green Gold. Fine gold, 10 dwts., fine silver, 2 dwts 2 grs .8. Red ${ }^{1}$ old, far fancy work. Fine gold, 5 dwts., fine copper, 2 dwts . 12 grs .9 . Another Red Gold. Fine gold, 5 dwts ., fine copper, 1 dwt. 6 grs. 10. Gola solders for the foregoing Alloys. Take of the alloyed gold you are using 1 dwt ., fine silver, 6 grs., or, 5 grs. silver and 1 gr . copper may be used. 11. Solder for Repairing. Gold alloyed, 1 dwt., fine silver, 5 grs., pin brass, 1 gr. 12 . Wet Colored Solder. Wet colored scrap, 3 ozs., fine silver, 10 dwts , fine copper, 5 dwts. 13. Gold, 15 carat, cost 56s. or $\$ 14$ per oz. Fine gold, 1 oz. 18 dwts , fine silver, 12 dwts .12 grs ., fine copper, 10 dwts .14. Fine gold, 1 oz . fine silver, 8 dwts. fine copper, 4 dwts . 14. Fine gold, 1 oz., fine silver, 8 dwts., fine copper, $4 \mathrm{dwts} 15.$. Fine gold, 1 oz., fine silver, 6 dwts., fine copper, 8 drts. 16. Gold solder for the last. Gold scrap, 1 oz., fine silver, 5 dwts. 17. Gold, good color. Fine gold, 1 oz., fine silver, 6 dwts., fine copper, 4 dwts. 18. Gold cost 60 s. or $\$ 15$, good color. Fine gold, 1 dwt : fine silver, 6 dwts ., fine copper, 4 dwts . 19. Wet colored solder. Scrap gold, 4 ozs., fine silver, 13 dwts., fine connar 6 dwts. 16 grs. 20. To reduce 22 carat into Wet colored Gc : soins, 4 ozs, 8 dwts., fine silver, 13 dwts ., fine copper, 1 ©... : sts. 21. To reduce 22 carat to ordinary wet co'ored Gold with scrap. Coins 1 oz.: fine gold, 3 ozs., fine silver, 17 dwts. 12 grs., fine copper, 2 ozs .1 dwt. 12 grains., scrap, 3 ozs. 1 dwt. 22. Another way, with scrap. Coins, 3 ozs. 1 dwt. 6 grs., fine gold, 2 ozs., fine silver, 1 oz .1 dwt ., fine copper, 2 ozs. 11 dwts., scrap, 1 oz .6 dwts. 18 grs. 23. Another way with scrap. Coins, 2 oz 3., fine gold, 3 ozs. 3 dwts. 8 grs, fine silver, 1 oz .1 dwt 4 grs., fine copper, 2 ozs .10 dwts .12 grs. , scrap, 1 oz. 5 dwts. 24. To reduce 22 carat to ordinary wet colored Gold. without scrap. Coins, 1 oz., fine gold, 8 ozs., fine silver, 2 ozs., fine copper, 4 ozs. 14 dwts. 25. Another way, without scrap. Coins, 1 oz., fine gold, 2 ozs ., fine silver, 13 dwts , fine copper, $1 \mathrm{oz} ., 11$ dwts. 26. Another way, without scrap. Coins, 2 ozs., fine gold, 6 ozs., fine silver, 1 oz .14 dwts . fine copper, 4 ozs .2 dwts.

WATOHMAEERS, JEWRLLERS, \&O. REOEIPTS. 146 h
To Wht-Color the fobmgo..a Alloys.-For 5 ozs. of work tane saltpetre, 16 ozs., slum, 8 ozs ., salt, 8 ozs.,all pulverized and muria tic 'acid, 2 ozs., dissolve the ingredients gradually in a black lead pot. When it boils up, add the acid, and stir the whole with a wooden spoon. Having annealed your work and made it perfectly clean, tie in small parcels with platinum or fine silver wire, and when the color boils up immerse it therein for four minutes, moving it about to ensure \& perfect contact with all parts of the surface. Then take it out and rinse it well ia boiling water, then immerse in the color again for $1 \frac{1}{2}$ mirntes acd rinse well once more in fresh hot water. Now add 2 ozs mate hot water to the color in the pot, which will cause it to 0 . Wen itrises put in your work for 1 minute, rinsing in fresh L.t wate u gain, when it will begin to brighten. Now immerse your work for chalf a minute longer, and rinse for the last time in clean hot water, when it will appear of a most beautiful color.
Ordinary wet colored Gold.-Table showing the proportions of alloy with from one oz. up to tyn oz. of Fine Gold.

Fine Gold.	Fine Silver.	Fine Copper.	Total.
Oz. Dwts. Grs.	Oz. Dwts. Grs.	Oz. Dwts. Grs.	Oz. Dwts. Grs.
$1 \begin{array}{lll}1 & 0 & 0 \\ 2 & 0 & 0\end{array}$	$8 \quad 4 \begin{array}{lll}4 & 12\end{array}$	$\begin{array}{llll}0 & 10 & 12\end{array}$	$\begin{array}{lll}1 & 15 & 0\end{array}$
$\begin{array}{lll}2 & 0 & 0 \\ 8 & 0 & 0\end{array}$	$\begin{array}{llll}0 & 9 & 0 \\ 0 & 13 & 12\end{array}$	$1{ }_{1} 110$	
40	$0 \quad 18$ - 0	$2{ }^{1}$ 2 $\quad 0$	70
500	120	$2 \quad 12 \quad 12$	$8 \quad 15 \quad 0$
600	$1{ }^{1} 170$	$3 \quad 3 \quad 0$	1010
700	$1{ }^{1} 11{ }^{\text {3 }}$	$3818 \quad 12$	12 5 120
80	$\begin{array}{lll}1 & 16 & 0 \\ 2 & 0 & 12\end{array}$	$4 \quad 4 \quad 0$	14
900	$2{ }^{2} \quad 0012$	$4 \quad 14 \quad 12$	15
1100	$2 \cdots 50$	$5 \quad 5 \quad 0$	1710

Ordinaby bright gold, table bhowing the proportion of alloy, WITH FROM 1 OZ . UP TO 6 CZ , OF FINE COLD.

Fine Gold.	Fine Silver.	Composition.	Total.
Oz. Dwts. Grs.	$\begin{array}{cc}\text { Oz. Dwts. Grs. } \\ 0 & 5 \\ 0\end{array}$	Oz. Dwts. Grs.	
2000	0 O 10	2160	$\begin{array}{llll}5 & 6 & 0\end{array}$
300	$0 \quad 150$	$4 \quad 4 \quad 0$	$7 \quad 19 \quad 0$
400	100	5120	10120
500	150	700	13 5 0
600	1010	8 O 0	$\begin{array}{lll}15 & 18 & 0\end{array}$

Composition for the above.-Fine Copper 44 ozs. spelter 8 ozs. Table of alloys for dibferent qualities of gold.
 nd muriatic ck lead pot. 1 a wooden clean, tie in on the color it about to Then take in the color hot water. pot, which r 1 minute, o brighten. inse for the iost beautiPortions of Total.

Dwts.	Grs.
15	0
10	0
5	0
0	0
15	0
10	0
5	0
0	0
15	0
10	0

nof alloy,

Total.

elter 8 ozs. pld.

Total.

Dwls.	Grs.
0	0
0	0
0	0
0	0
0	0

\vdash uomposition for the above.-Fine Silver, 3 ozs. 5 dwts .14 grs . fine copper 8 oz .12 dwts .12 grs . Spelter 1 oz .18 dwts 6 grs . $n \rightarrow 1$
Alluys, oontinged. 1. Pale gold for coloring, Enamelling, or Lapping-Fine Gold 1 oz., fine silver $9 \mathrm{dwts}$. , fine copper 2 dwts ., 12 grs. 2. Another ditto-Fine gold 1 oz ., fine silver 9 dwts., fine copper 3 dwts ., $12 \mathrm{grs}$. 3. Another ditto - Fine gold 1 oz., fine gilver 10 dwts , fine copper 3 dwts . 12 grs . 4. Enamelling Gold No. $1-$ Fine gold 1 oz ., fine silver 1 dwt . 12 grs., fine copper 2 dwts ., 12 grs. 5. Enamelling Gold from Sterling-Sterling 1 oz., fine silver 88 grs., fine copper 2 dwts. 6. Enamelling Gold Solder-Gold Alloyed, 1 dwt ., fine silver 4 grs . 7. Another ditto, cost 43 s . stg. or $\$ 10.75$ per oz.-Fine gold 12 dwts , fine silver 7 dwts ., 3 grs., ine .copper 6 dwts. 8. Enamelling Gold No. 2. cost 50s. stg. per ! -Fine gold 1 oz., fine silver 9 dwts ., 12 grs., fine copper 7 dwts , 2 L grs. 9. Enamelling Gold No. 3. -Fine gold 1 oz., fine silver 14 dwts., fine copper 8 dwts. 10. Enamelling Gold No. 4.-Fine guld 2 ozs., 5 dwts .fine silver 1 oz., 6 dwts ., fine copper 1 oz ., pin brass. 5 dwts. 11. Enamelling Gold No. 5.-Fine gold 1 oz., fine silver. 12 dwts ., fine copper 6 dwts . 12 . Enamelling Cold No. 6 . for trans-: parent enamelling-Fine gold 1 oz ., fine silver 14 dwts . fine cripper 6 dwts . 13. Gold solder for enamelled work-Fine gold 10 o: fine silver 1 oz ., fine copper 10 dwts ., silver solder $8 \mathrm{dwts} .8 \mathrm{grs}$. . 14. Pale Gold alloys for polishing, fc., No. 1.-Fine gold 1 oz., fine tilver 8 dwts., fine copper 3 dwts., 12 grs. 15. Another, No. 2.Fine gold 1 oz., fino silver 1 dwt., 20 grs., fine copper 1 dwt., 4 grs.: 16. Pale 18 Carat Gold-Fine gold 1 oz., fine silver 4 dwts., "fine copper 2 dwts . 15 grs . 17. Another Pale 18 Carat Gold-Fine gold 1 oz. 12 grs. fine silver 3 dwts., 8 grs., fine copper 3 dwts., 8 grs. 18. Pale Gold Solder-Gold alloyed 1 dwt ., 6 . grs., fine silver 1 dwt . 19. Alloy for best Pens-Fine gold 1 oz., fine siiver 5 dwts ., fine copper 7 dwts., 18 grs., spelter 1 dwt., 6 grs. 20. Solder for dittoFine gold 12 dwts ., fine silver 7 dwts., 3 grs., fine copper 6 dwts. 21. Medium quality pens-Fine gold 1 oz., Composition 1 oz., 13 dwts . 22. Composition for the last-Fine silver 1 oz., 17 dwts ., fine copper 5 ozs., 15 dwts., spelter 18 dwts ., 20 grs . 23. Solder for ditto-Fine gold 1 oz., fine silver 2 ozs., pin-brass 1 oz. 24. Gold for common pens-Fine gold 1 oz. fine siliver 2 ozs., fine copper 1 oz. 25. Solder for ditto- Fine gold 1 oz ., fine silver 2 ozs ., pin brass 1 oz .26. Alloys of Gold with Brass, No. 1.-Fine gold 1 oz., fine silver 5 dwts., C grs., fine copper 3 dwts., 12 grs., pin brass 18 dwts .27. Another ditto, No. 2.-Fine gold 1 oz., fine silver 4 dwts., fine copper 4 dwts., pin brass 16 dwts. 28. Another ditto, No. 3.-Fine gold 1 oz, fine iilver 5 dwts., 12 grs., fine copper 3 dwts., 12 grs., pin brass 19 dwts., 6 grs. 29. Another alloy - Fine gold 1 oz., fine silver 3 dwts., 21 grs., fine copper 9 dwts .; 3 grs. composition 5 dwts . 6 grs. 30. Another ditto-Fine gold 15 dwts ., 9 grs., fine silver 5 dwts . 19 grs . fine copper 3 dwts .21 grs. composition 15 dwts . 31. Compostion for the last two alloys-Finest copper 1 oz., spelter 5 . dwts . 32. Solder for foregoing alloys-Gold alloyed 1 ' dwt ., fine oilver 12 grs . 33. Imitation Gold costs 87c per oz.-Fine silver 2 ozs., 5 dwts., fine copper 1 oz . composition 1 oz., keeps its color very well. 34. Composition for ditto-Fine copper 11 ozs., spelter, 2 ozs. 35. "California" Gold-Fine gold 5 ozs., 12 dwts. compo-
sition 7 ozs. 17 dwts . 36. C'omposition for "California"-Fine silver 7 ozs., 17 dwts . fine coppgr 33 ozs. 12 dwts., spelter 5 ozs., 12 dwis. 37. Medium Gold-Fine gold 1 oz., fine silver 22 dwts. fine copper 13 dwts. 38. Bright Gold-Fine gold 1 oz., fine silver 7 dwts. composition marked No. 34, 1 dwt 0 grs . 39. Common Gold, No. 1. -Fine gold 1 oz ., fine sijver 8 dwts. composition No. 34. 1 cz., 12 dwts. 41. Common Gold, No. 2.-Fine gold 5 dwts. fine silver 3 dwts. 6 grs . fine copper 6 dwts . 12 grs . 42. Gold for PinsFine gold 1 oz ., fine silver 5 dwts . fine copper 1 oz ., spelter 5 dwts . 43. Dry Colored Scrap reduced to 35s. or $\$ 8.75$ Gold-Colored scrap $102 ., 9 \mathrm{dwts} ., 12 \mathrm{grs}$., fine silver 2 dwts , fine copper $17 . \mathrm{dwts}$. 12 grs., spelter 4 dwts. 44. Alloy for Goid Chains.- Fine gold 11 dwts., 6 grs., fine silver 2 dwts., 5 grs., fine copper 6 dwts., 3 grs. 45. Another ditto-Fine gold 1 oz., fine silver 9 dwts. fine copper 8 dwts 46. Gold worth 45s. stg. or \$11.25-Fine gold 1 oz., composition (see No. 22) 1 oz. 47. Solder for ditto-Fine gold 1 oz., fine silver 15 dwts , fine copper 15 dwts . 48. 12 Carat Gold-Fine gold 1 oz . fine silver 10 dwts ., fine copper 9 dwts , 6 grs . 49. Common Gold from " California"-" California," (see No. 35.) 8 ozs. fine silver 13 ozs., 16 dwts., fine copper 6 ozs., 16 dwts. 50. 29s. or $\$ 7.25$ Gold-Fine gold 1 oz., $13 \mathrm{dwts} ., 6$ grs., fine silver $102 ., 12 \mathrm{dwts} ., 12$ grs. fine copper 1 0z., 16 dwts., 6. grs., spelter 4 dwts . Stands nitric acid very well.

ORDINART BEIGHT GOLD WIRE, TABLE BHOTING THE PROPORTIONS OF ALLOY FROM 1 OZ . UP TO 21 OZ.

Fine Gold.	Fine Silver.	Fine Copper.	Total.
Oz. Dwts. Grs.	Oz. Dwts. Grs.	Oz. Dwts) Grs,	Oz. Dwts. Grs.
0 5 21	066	0 6 21	
$\begin{array}{llll}0 & 11 & 18\end{array}$	$\begin{array}{llll}0 & 14 & 18\end{array}$	$\begin{array}{lll}0 & 18 & 18\end{array}$	200
$\begin{array}{llll}0 & 17 & 15\end{array}$	1118	1015	800
$1 \begin{array}{lll}15 & 15\end{array}$	$2 \quad 812$	2116	600
$2 \quad 12 \quad 21$	$8 \quad 56$	21121	$9 \quad 0 \quad 0$
81012	$4 \quad 70$	4.212	1200
48	$5 \quad 8 \quad 18$	588	1500
$5 \quad 418$	$6 \quad 1012$	$6 \quad 818$	1800
6,88	7126	249	210

To Recovar ten Gold lost in Coloring.-Dissolve a handful of sulphate of iron in boiling water, then add this to your "color" water, it precipitates the small particles of gold. Nuw draw off the water, being very careful not to disturb the auriferous sediment at the bottom. You will now proceed to wash the sediment from all trace of acid with plenty of boiling water ; it will require 3 or 4 separate washings, with sufficient time between each to allow the water to cool and the sediment to settle, before pouring the water off. Then dry in an iron vessel by the fire and finally fuse in a covered skittle pot with a fixx as directed on page 244. See "To Fuse Gold Dust." For Silversmiths Compositions. See page 284
than
ase le
an inc
red, p
an exd
07 tb
spring
heatin
that \mathbf{y}
piece blaze d ished p the pla cool er on the of the steel ar treated Anot first in: linseed the lad] when b The thi temper.
To T steel ar pered in ing to ε mode w To D Springal the tem,

WATCEMAKERS, JEWLLLERG, \&O., RLOEIPTS. 147

To Trartir a Rusy Pni,-Sot the ruby pin in asphaltum varnish. It will become hard in a few minuter, and bo puch firmer and better than gum shellac, as generally used.
hard trypar Brass, or to Drat its Timpur.-Brass is rendered of brass necessary to bo in temperefore, when you make a thing before shaping the article. Temper, Jou must prepare the material heating it to a cherry red, and then may be drawn from brass by the same as though you were going to timplungiag it into water,
To Twipmb Drinls.-Sele going to tempar steel pour drills. In making them, never but the finest and best steel for and always hammer till nearly cold heat higher than a cherry red, one way, for if, after you hore fiotto all your hammering in attempt to hammer it back to a squatened your piece out, you When your drill is in proper shape, hear a round, you spoil it thrust it into a piece of resin or into quictrit to a cherry red, and tion of cyanuret potassa and rain-watergilver. Some use a solubut, for my part, I have alveays found the tempering their drills, Work best.
To Temper Grapers, than drills, may be tempered ase lead instead of quicksilver. quicksilver as above; or you may an inch; then, having heated yout down into the lead, say half red, press it firmly into the cut. The instrumint to a light cherry an excellent temper will be imparted. Other Matrops wo imparted. spring into the case scording to 1 Springs.-Having fitted the heating and plunging into ing to your liking, temper it hard by that you may be able to see when. Next polish the small end so piece of copper or brass plate, and the color changes; lay it on a blaze directly under the largest part it over your lamp, with the ished part of the steel closely, and whit of the spring. Watch the pol. the plate from the lamp, letting all wen you see it turn blue, remove cool enough to handle, polish the cool gradually together. When on the plate, and hold it over the end of the spring again, place it of the polished end will leare the lamp as before. The third bluing steel article to which you desire spring in proper temper. Any treated in the same way. Another procese way. first instance ; then put be good, is to temper the spring as in the linseed oil, and hold over a into a small iron ladle, cover it with the ladle, but let the oil continup till the oil takes fire. Remove when blow out, re-cover with oil to burn until nearly all consumed, The third burning out of the oill, and hold over the lamp as before. temper.
the spring in the right steel articles requiring a similars, \&o.-Clicks, ratchets, or other pered in mercurial ointment. Tegree of hardness, should be teming to a cherry red and plungin process consists in simply heatmode will combine toughness ging into the ointment. No other To Draw tan Tampar from hardness to such an extent. Springling than.--Place the artioleligate Steel Pigoes without the temper into a common iron clock key. Fing desire to draw re a bandful of your "color" Now draw off erous sediment sediment from ill require 3 or each to allow θ pouring the nd finally fuse on page 244. oositions. See clock key. Fill around it with

148 WATOHMAKERS, JEWELLERS, \&C., RECEIPTS.

brass or Iron filings, and then plug up the open end with a steel, iron, or brass plug, made to fit closely. Take the handle of the key with your pliers and hold its pipe into the blaze of a lamp till near hot, then let it cool gradually. When sufficiently cold to handle, remove the plug, and you will find the article with its temper fully drawn, but in all other respects just as it was before.

You will understand the reason for having the article thus plugged up while passing it through the heating and cooling process, when I tell you that springing always results from the action of changeable current of atmosphere. The temper may be drawn from cylinders, staffs, pinions, or any other delicate pieces, by this mode with perfect safety.

To Temper Stafys, Oylinders, or Pinions, without Sprinaing tris.- Prepare the articles as in the preceding process, using a steel plug. Having heated the key-pipe to a cherry red, plunge it into water; then polish the end of your steel plug, place the key upon a plate of brass or copper, and hold it over your lamp with the blaze immediately under the pipe till the polished part becomes blue. Let cool gradually, then polish again. Blue and cool a second time, and the work will be done.
To Draw the Temper from part of a Suall Stell Article.Hold the part from which you wish to draw the temper with a pair of tweezers, and with your blow-pipe direct the Hame upon them-not the article-till sufficient heat is communicated to the article to produce the desired effect.
To Butu Screws Evenly.-Take an old watch barrel and drill as many holes into the head of it as you desire to blue screws at a time. Fill it about one-fourth full of brass or iron filings, put in the head, and then fit a wire, long enough to bend over for a handle, into the arbor holes-head of the barrel upwards. Brighten the heads of your screws, set them point downwards, into the holes already drilled, and expose the bottom of the barrel to your lamp till the screws assume the color you wish.

To Remove Bluing from Steel.-Immerse in a pickle composed of equal parts muriatic acid and elixir vitrol. Rinse in pure water, and dry in tissue paper.

To Mare Diamond Broacies.-Make your broaches of brass the size and shape you desire; then, having oiled them slightly, roll their points into fine diamond dust till entirely covered. Hold them then on the face of your anvil, and tap with a light hammer till the grains disappear in the brass. Great caution will be necessary in this operation. Do not tap heavy enough to flatten the broach. Very light blows are all that will be required; the grains will be driven in much sooner than one would imagine. Some roll the broach between two smooth pieces of steel to imbed the diamond dust. It is a very good way, but somewhat more wasteful of the dust. Broaches made on this plan are used for dressing out jewels.

Jewricing.-In using the broaches, press but lightly into the jewel hole, and turn the broach rapidly with the fingers. For polishing, use a bone or ivory point, lightly coated with the finest diamond dust and oil, and while using it with the one hand, accompany the motion with a slight oscillating motion of the other hand, in which
with a steel, lle of the key amp till near id to handle, h its tomper efore. thus plugged process, when de action of 1ay be drawn pieces, by this
ut Springang cess, using a red, plunge it place the key er your lamp polished part again. Blue
bl Artiole. per with a pair - Hlame upon nicated to the
arrel and drill lue screws at a on filings, put to bend over arrel upwards. it downwards, a of the barrel ish.
ckle composed Rinse in pure
es of brass the them slightly overed. Hold light hammer ation will be ugh to flatten required ; the ould imagine. s of steel to put somewhat n are used for into the jewel For polishing nest diamond ccompany the and, in which
the jewel is held. This will ensure a more even polish to the hole, with less liability to press the jewel out of its place in the plate, than if held firm and steady.
To marr Polisinga Bronohes.-These are usually made of ivory, and used with diamond dust, loose, instead of having been driven in. You oil the broach lightly, dip it into the finest diamond dust, and procced to work it into the jewel the same as you do the brass broach. Unfortunately, too many watchmakers fail to attach sufficient importance to the polishing broach. The sluggish motion of watches now-a-days is more often attributable to rough jewels than to any other cause.
To mare Dianond Fless.-Shape your file of brass, and charge with diamond dust, as in case of the mill. Grade the dust in accordance with the coarse or fine character of the file desired.
To make Pivot Files -Dress up a piece of wood file-fashion about an inch broad, and glue a piece of fine emery paper upon it. Shape your file then, as you wish it, of the best cast steel, and before tempering pass your emery paper heavily across it several times, diagonally. Temper by heating to a cherry red, and plunging into linseed oil. Old worn pivot files may be dressed over and made new by this process. At first thought one would be led to regard them too slightly cut to work well, but not so. They dress a pivot more rapidly than any other file.
to make Burnishers.- Proceed the same as in making pivot files, with the exception that you are to use fine flour of emery on a slip of oiled brass or copper, instead of the emery paper. Burnishers which have become too smooth may be improved vastly with the flour of emery as above withnut drawing the temper.
To Pripari a Burnibier for Polishing.-Melt a little bees'wax on the, face of your burnisher. Its effect then on brass or other finer metals, will be equal to the best buff. A.small burnisher prepared in this way is the very thing with which to polish up watch wheels. Rest them on a piece of pith while polishing.
To Mare a Diamond Mill.-Make a brass chuck or wheel, suitable for use on a foot-lathe, with a flat even surface or face of about $1 \frac{1}{2}$ or 2 inches in diameter; then place a number of the coarsest pieces of your diamond-dust on different parts of its face, and with a smooth-faced steel hammer drive the pieces of dust all evenly into the brass to nearly or quite level with the surface. Your mill, thus prepared, is now used for making pallet jewels or for grinding stone and glass of any kind, For polishing, use a bone or boxwood chuck or wheel, of similar form to your mill, and coat it lightly with the finest grade of your diamond-dust and oil ; with this a beautiful polish may be given to the hardest stone.
To make Diamond Dust.-Place a few small pieces of common or cheap diamond on a block of hard polished steel, in a suitable vessel, and cover it with water to prevent flying or scattering, then place a flat steel punch on each piece separately, and strike the punch with a mallet or bammer, with sufficient force to crush the diamond. When reduced sufficiently fine in this way, the dust may be collected and dried for use; after drying, it may be graduated for different purposes, by mixing it with a little watch oil; when agitated, the finest particles will float near the surface, while
the coarsest pieces will sink at once to the bottom; and thus by decanting the oll in which the dust floats, as many grades of fineness as desired may be obtained. The dust may be separated from the oil by pouring on a piece of smooth clean paper; the paper will absorb the oil, or allow it to filter through, while the dust will remain on the surface; but to prevent waste, the better way is to leave it in the oil, and use it directly tharefrom as required, or the oil may be washed out of the dust with alcohol.
To Polish Steel.-Take crocus or oxide of tin and graduate it in the same way as in preparing diamond dust, and apply it to the steel by means of a piece of soft iron or bell metal, made proper form, and prepared with flour of emery, same as for pivot burnishers; use the coarsect of the crocus first, and finish off with the finest. To iron or soft steel a better flish may be given by burnishing than can be imparted by the use of polishing powder of any kind whatever.

To Determing then Exact Focal Distance of Spectacle Glasses.-Place the end of a measure of thirty or forty inches in length against a smooth wall, or other suitable ground, in plain view of some well-defined object a few rods distant, as for instance i building or window on the opposite side of the sitreet. Then place the edge of your lens on the measure, and move it backward or forward until a spectrum is formed, or, in other words, until a clear and distinct outline of the distant object is produced on the ground against which your measure reats. This point will represent sufficiently near, for all practical purposes, the exact focal distance of the lens, and will correspond in inches with the number on all properly marked convex spectaclos. For mending fine steel spectacle frames, use the bent gold in preference to silver or brass solder.

To withdraw Magnetism from Sterl and Quicksilyer from - Metals.-A degree of heat, considerably below a red heat, will expel quicksilver from metals in the form of vapor. To withdraw magnetism from steel, \&c., cover the article with the juice of common garlic, and then warm it over a spirit lamp. Do not heat sufficiently to draw the temper or blue the steel.

To rrotect Stone or Paste Set-Rungs, \&c., from Damage by Heat while Mending.-Cover the head or set part of the ring, or other article, with a thick coating of dampened plaster of Paris, or simply imbed the same in a piece of green apple or potatoe. This will obviate all danger from heat during the process of mending. A light coat of dampened plaster of Paris will, if properly applied, also protect fine Etruscan jewellery, \&c., from change of color while mending.

To Frost Watch Plates.-Watch plates are frosted by means of fine brass wire scratch brushes fixed in a lathe, and made to revolve at great speed, the end of the wire brushes striking the plate producing a beautiful frosted appearance.

To prevent Watohes hosing Time from Aotion of Pendulum Spring.-Pin the pendulum spring into the stud, so that that part, the part of the eye immediately emerging from the collet, and the centre of the collet, are in a line; then you will have the spring pinned in, in equal terms, as it is called by those who are versed
in the higher branches of springing. Bring the watch to time by adding to or taking from the balance, and poise it ; try the watch wih the 12 up for 2 hours, then with the 6 up for 2 hours, then lying down for the same time; the trials hert described will be suff. cient if the watch has seconds; keep the cirb pins close so as to allow the spring only a little play ; the vibration of the balance should be $1 \frac{1}{2}$ turn or $1 \frac{1}{2}$ lying.

To restoria Watce Dials.-If the dial be painted, clean the figure off with spirits of wine, or anything else that will render the dial perfectly clean; then heat it to a bright red, and plunge it into a strong solution of cyanide of potassium, then wash in soap and water, and dry in box dust. Repeat if not a good color. Indian ink; ground with gum water, will do for the figures.

To make a Watch Keep good Time vegen the Cyllnder edars are worn off, by altering the Escapement withodt petting a new Cylinder in.-Look at the cylinder, and see if there is room, either above or below the old wears, to shift the action of the wheel. If the whecl holes are brass, making one a little deeper, and putting a shallower one on the other side, will perhaps be sufficient. This must be done according as you want your wheel up or down. If the holes are stone, shift your wheel on the pinion by a new collet, or turning away more of the old one, as the case may require. If you raise your wheel see that it works free of plate and top of cylinder, and that the web of wheel clears the top of passage.- This last fault may be altered by polishing passage a líttle wider, if rub be slight. It shifted downwards, see to freedom at bottom ot cylinder, \&c.

Poising Watch Balance.-This may be done with sufficient accuracy by scraping one arm of the callipers with a file when the balance is set in motion. This will cause the heaviest part to settle downwards with certamty, observing always that the pivots are nicely rounded and formed at the ends. In some cases it becomes necessary to put a balance out of poise, in order to make the watch go equally in various positions. The rule for this is: to make the watch gain, the balance should be heaviest on the lower side when hanging up; to make it lose, the reverse.

Cuckoo Olocks. -The sound is produced by a wire acting on a small bellows: which is connected with two small pipes, like organ pipes.
To preserte Pinions or Bearings from Corrosion and Rust.-In case of the lower centre bearing under the cannon pinion corroding or rusting, when you clean the watch, be particular to take the central wheel off. Clean it thoroughly : if the pivot is scratched, polish it, then make a little hollow in the top hole; put good fresh gil on 1t, and the pivot will not corrode or rust for two or three ycars. As to the other pivots in the watch they should all be thoroughly cleaned, and old oil cleaned out ; then if no dust gets in, and no accident happens the watch, it will run for years.

The German method of Polishing Steel is performed by the use of crocus on a buff wheel. Nothing can exceed tho surpassing beauty imparted to steel or even cast iron by this process.

To Clean A Clock.-Take the movement of the clock "to pieces." Brush the wheels and pinions thoroughly with a stiff
coarse brush; also the plates into which the trains work. Clean the pivots well by turning in a piece of cotton cloth held tightly between your thumb and finger. The pirot holes in the plates are generally cleansed by turning a piece of wood into them, but 1 have alwaye found a strip of cloth or a soft cord drawn tightly through them to act the best. If you use two cords, the first one slightly oiled, and the next dry, to clean the oil out, all the better. Do not use salt or acid to clean your clock-it can do no good, but may do a great deal of harm. Boiling the movement in water, as is the practice of some, is also foolishness.

To Busn.-The hole through which the great arbors, or winding axles, work, are the only ones that usually require bushing. When they bave become too much worn, the great wheel on the axle before named strikes too deeply into the pinions above it, and stops the clock. To remedy this, bushing is necessary, of course. The most common way of doing it is to drive a steel point or punch into the plate just above the axle hole, thus forcing the brass downwards until the hole is reduced to its original size. Another mode is to solder a piece of brass upon the plate in such a position as to hold the axle down to its proper place. If you simply wish your clock to run, and have no ambition to produce a bush that will look workmanlike, about as good a way as any is to fit a piece of hard wood between the post which comes through the top of the plate and the axle. Make it long enough to hold the axle to its proper place, so that the axle will run on the end of the grain. Cut notches where the pivots come through, and secure by wrapping around it and the plate a picce of small wire, or a thread. I have known clocks to run well on this kind of bushing, botchified as it may appear, for ten years.

To Remedy Worn Pinions.-Turn the leaves or rollers, so the worn places upon them will be towards the arbor or shaft, and fasten them in that position. If they are "rolling pinions," and you cannot secure them otherwise, you had better do it with a little soft solder.

To Orl Properiy.-Oil only, and very lightly, the pallets of the verge, the steel pin upon which the rerge works, and the point where the loop of the verge wire works over the pendulum wire. Use none but the best watch oil. Though you mignt be working constantly at the clock-repairing business, a bottle costing you but twenty-five cents would last you two years at least. You can buy it at any watch-furnishing establishment.

To Make the Clock Strike Correctly.-If not very cautious in putting up your clock, you will get some of the striking-train wheels in wrong, and thus produce a derangement in the striking. If this should happen, prize the plates apart on the striking side, slip the pivots of the upper wheels out, and having disconnected them from the train, turn them part around and put them back. If still not right, repeat the experiment. A few efforts at most will get them to working properly.

A Defect to loor after.-Always examine the pendulum-wire at the point where the loop of the verge wire works over it. You will generally find a small notch, or at least a rough place worn there, Dress it out perfeetly smooth, or your clock will not beg

Clean d tightly lates are m, but 1 n tightly the first it, all the :an do no rement in
: winding 1g. When 1 the axle and stops rse. The or punch ass downther mode ition as to wish your t will look ce of hard f the plate its proper cain. Cut wrapping d. I have hified as it ers, so the shaft, and ions," and ith a little
lets of the the point lum wire. o working gy you but You can
cautious king-train striking. king side, connected em back. β at most
lum-wire it. You ace worn 11 not be
likely to work well. Enall as this defect may seem, it stops a large number of clocks.

Figuris on Gold and Silver Dials.-Hold a small piece of copper over a gas flame for a few minutes till it is coated with soot; clear this off on to a piece of finely ground glass, add fat oil and a small quantity of oil of spike lavender, and grind up; paint with a small camel hair pencil.

GoLd.-To find the number of carats of gold in an object, first weigh the gold and mix with seven times its weight in silver. This alloy is beaten into thin leaves, and nitric acid is added; this dissolves the silver and copper. The remainder (gold) is then fused and weighed; by comparing the first and last weights the number of carats of pure gold is found. This operation is always repeated several times, and if any difference occurs in the result, all is done over again.

Jewrle wrs Alloys.-Eighteen-carat gold for rings.- Crold coin, $19 \frac{1}{2} \mathrm{gr}$. ; pure copper, 3 gr ; pure silver, $1 \frac{1}{2} \mathrm{gr}$. Ci,eap gold, twelve-carat.-Gold coin, 25 gr . ; pure copper, $13 \frac{1}{\mathrm{t}} \mathrm{gr}$. ; pure silver, $7 \frac{1}{2 r}$. Very cheap four-carat gold.-Copper, 18 parts; gold, 4 parts: silver, 2 parts. Imitations of gold.-1. Platina, 4 dwt. ; pure copper, $2 \frac{1}{}$ dwt. ; sheet-zinc, 1 dwt . ; block-tin, $1 \frac{3}{4}$ dwt. ; pure lead $1 \frac{1}{2} d w t$. If this should be found too hard or brittle for practical use, re-melting the composition with a little sal-ammoniac will generally render it malleable as desired. 2. Platina, 2 parts; silver, 1 part; copper, 3 parts. These compositions, whem properly prepared, so nearly resemble pure gold that it is very difficult to distinguish them therefrom. A little powdered charcoal, mired with metals while melting, will be found of service. Best' oroide of gold.-Pure copper, 4 oz, ; sheet-zinc, $1 \frac{3}{4}$ oz. ; magnesia, o oz. ; sal-ammonia, $\frac{1}{3} \frac{1}{2}$ oz.; quick-lime, $\frac{9}{3 z}$ oz. ; cream tartar, $\frac{7}{8}$ oz. First melt the copper at as low a temperaturo as it will melt; then add the zinc, and afterwards the other articles, in powder, in the order named. Use a charenal fire to melt these metals.

Bushing Alloy for Prvot-holes, \&ec.-Gold coin, 3 dwt. ; silver, 1 dwt .20 gr . ; copper, 3 dwt 20 gr . ; palladium, 1 dwt. The best composition known for the purpose named.
Gold Solder for Fourtren to Sixtfen-darat Work.-Gold coin, 1 diwt. ; pure silver, 9 gr . ; pure copper, 6 gr .; brass, 3 gr . Darker solder.-Gold coin, 1 dwt. ; pure copper, 8 gr.' ; pure silver, 5 gr . ; brass, 2 gr . ; melt fogether in charcoal fire.

Soldmas, for Gold.-Gold, 6 dwts. ;' silver, 1 dwt. copper, 2 dwts. Soft Gold Soldre.-Gold, 4 parts; silver, 1 part ; copper, 1 part.

Solders for Silver.-(For the use of jewellers.)-Fine silver, 19 dwts. ; copper, 1 dwt. ; sheet brass, 10 dwts.
Whith Solder for Silver.-Silver, 1 oz. ; tin, 1 oz.
Silver Solder, for Platisd Matal.--Fiie silver, 1 oz. ; brass, 10 dwts .

Solders.-For Steel Joints. Silver, 19 parts; copper, 1 part ; krass. 2 parts ; melt all together. Hard Solder.-Copper, 2 parts; zinc, 1 part ; melt together. For Gold.-1. Silver, 7 parts ; copper, 1 part, with boras. 2. Gold, 2 parts; silver, 1 part; copper, \ddagger part. 3. Gold, 3 parts ; silver, 3 parts ; copper, 1 part ; zinc,

101 Watchmakirs; JEWELLERS, \&C., RECEIPTS.

part. For Silver.-Silver, 2 parts; brass, 1 part, with borax; or, silver, 4 parts; brass, 3 parts ; zinc, 南 oart, with borax. For Brass.- Copyer, 3 parts ; zinc, 1 part, with horax. For Platina.Gold, with borex. For Iron.- The best solder for iron is good tough brass, with a little borax. For Copper.--Brass, 6 parts; zinc, 1 part ; tin, 1 part : melt all together, mix well, and pour out to cool.
Ootd Sotdexse-1. Copper, 24.24 parts; silver, 27.57 parts ; gold, 48.19 parts. 2. Enamel Solder.-Copper, 25 parts; silver, 7.07 parts ; gold, 67.93 parts. 3. Copper, 26.25 parts ; zinc, 6.25 patts; silver, 31.25 parts; gold, 36.25 parts. 4. Enamel Solder.Silvet, 19.57 parts ; gold, 80.43 parts.

Sot deim.-For 22 carat jold.-Gold of 22 carats, 1 dwt.; silver, 2 gr. ; coppet, 1 gr . For 13 carat gold.-Gold, of 18 carats, 1 divt ; silver, 2 gr .; copper, 1 gr .

For cheaper gotd-GGold, 1 dwt. ; silver, 10 gr .; copper, 8 gr .
Oheaper stal.:-Fine gold, 1 dwt ; silver, 1 dwt ; copper, 1 dwt .
Silver Soldozs.-1. (hard.) Copper, 30 parts; zinc, 12.85 parts; silver, 57.15 parts. 2. Copper, 23.33 parts; zinc, 10.00 parss; silver. 66.67 parts. 4. Copper, 26.66 parts; żiuc, 10.00 peits; silver, 63.34 parts. 4 (soft.) Copper, 14.75 parts; zinc, 8.20 parts; silver, 77.05 parts. ${ }^{5}$. Copper, 22.34 parts ; ziac, 10.48 parts; silver, 67.18 parts. 6. Tin, 63.00 parts; lead, 37 parts.
dolorkd Gotd.-1. Full red gold.-Gold, 5 dwt.; copper, 5 dwt. 2. Red gold. -Gold, 10 dwt ; , silver, 1 dwt.; copper 4 dwi. 3. Green Gold.-Gold, 5 dwt.; silver, 21 gr. 4. Gray gold.-fiold, 3 dwt. 15 gr ; ; silver, 1 dwt. 9 gr. 5. Blue gold.-Gold, 5 dwit.; steel filings, 5 dwt. 6. Antique gold, greenzeh-yellow color.-Gold, 18 dwt .9 gt ; ; silver, 21 gr . ; coppret 18 gr . These all require to be submitted to the process of we renloring. 7. Factitious gold very bright.-Copper, 16 parts; pistiva, 7 parts ; zinc, 1 part ; fused togethet.

Alloys for Goid.-1. Red gold-Copper, 66.67 parts; gold, 33.33 parts. 2. Yellow gold.-Copper, 12.50 parts; silver, 37.50 parts ; gold, 50 pairts. 3. Green gold.-Silver, 25 parts ; gold, 75 parts. 4. Yellow guld. - Silver, 66.67 parts ; gold, 33.33 parts. 5 . Gray gold.-Silver, 5.89 parts; go. $\mathrm{d}, 88.23$ parts ; iron, 5.83 parts. 6 . Dentists gold-Silver, 8.34 parts ; platinum, 66.67 parts ; gold, 24.29 parts. i. English gola coin.-Copper, 8.34 parts ; gold, 91.66 parts. Amercan gold coin.-Copper, 10 parts; gold, 90 parts. ${ }^{9}$ French gold coin same as Ameriein.
Alloys. for Sllver Coin and Plate.-1 English standards.Copper, 7.50 parts; silver, 92.50 parts. 2. American ditto.-Copjer, 10 parts; silver, 90 parts. French, the same.
Gliding Matal for common jewzllery is made by mixing 4 parts copper with ore of calamine brass. Sometimes 1 lb . copper, with 6 öz. 0 : brass.

Dentists' Plate.-No. 1 Gold, 20 dwts ; silver, 1 dwt ; Copper, 2 tiwts. 2: Gold, 21, silver, 2 ; copper, 1.
Ihwiemer' Soluerme Flud.-Muriatic acid, $\frac{1}{2}$ pt. ; grain zinc, $1 \frac{1}{2}$ oz. Dissolve, exte add a little common solder and sal-ammoniac.
Gond pdr Sprivep.-Gold, 18 dwts. 12 grs. ; silver, 6 dwts ; con., per, § dwts:

IPTS

th borax ; or, borax. For or Platina.iron is good ass, 6 parts ; and pour out
27.57 parts; parts ; silver,
ts; zinc, 6.25
mel Solder.-
İwt. ; silver, 2 arats, 1 dwt ;
pper, 8 gr.
copper, 1 dwt.
c, 12.85 parts; 10.00 paris; 10,00 pricts; ne, 8.20 jurts .48 parts; sil-
copper, 5 dwt. er 4 dwi. 3. gold.-riold, 3 Gold, 5 dwit.; o color.-Gold, all require to actitious gold, 1 part ; fused
parts ; gold, silver, 37.50 parts; gold, 33.33 parts. 5 . 5.89 parte. 6. parts j gold, 5 ; gold, 91.66 ild, 90 parts. ${ }^{\text {. }}$

standards.-

 ditto.-Cop-ixing 4 parts
copper, with
тt. ; Copper, 2
rrain zinc, $1 \frac{1}{2}$
il-ammoniac.
5 dwts. ; coṇ"

WATCHMAKERE, JEWELEERS, *O, RROEIPTS. 155

Jewf Linas Gold Oompositions.-Common Gold: Silver, 1 part; Spanish copper, 16 parts; gold, 2 parts; mix. Ring Gold: Spanish copper, 6 parts; cilver, 3 parta gold 5 parts; mix. Manheim Gold: copper, 3 parts; zinc, 1 part. Melt, and stir well. Mosaic Gold: copper and yinc, equal parts; melt at the lowesi temperature that will fuse the former, then mix by stirring, and add 5 per cent. more zinc. Parker's Mosaic Gold: copper, 100 parts ; zinc, 54 parts. For common Jewellery : copper, 3 parts; 1 of old brass, and 4 oz . of tin to every lb. of copper.

Factitious Gold.-Oopper, 16 parts; platinum, 7 parts; zinc, 1 part; fused together. This alloy resemblos gold of 16 carats fine, or $\frac{3}{3}$ and will resist the action of nitric acid, unless very concentrated and boiling.

Harmstadt's Trutimitatyon of Gold is stated not only to resemble gold in color, but also in specific gravity and ductility: Platinum, 16 parts ; copper, 7 parts; zinc, 1 part; put it in a crucible, cover with charcoal powder, and melt into a mass.
Do. of Silvir.-Copper, $\frac{1}{2}$ oz.; brass, 2 oz .; pure silver; 3 oz .; bismnth, 2 oz . ; saltpetre, $2 \mathrm{oz} . ;$ common salt, 1 oz .; arsenic, 1 oz.; potash, 1 oz ; melt in a crucible with powdered charcoal. This compound, was by a German chemist for unlawful purposes, was so perfect that he was never discovered.

Artificial Goln,-This is a new metallic alloy which is now very extensively used in France as a substitute for gola.. Pure copper, 100 parts ; zinc, or, preferably, tin, 17 parts ; magnesia, 6 parts; sal-ammoniac, $3-6$ parts; quick-lime, $\frac{1}{8}$ part; tartar of commerce, 9 parts ; are mixed as follows : The copper is first melted, and the magnesia, sal-ammoniac, lime and tartar are then added separately, and by degrees, in the form of powder; the whole is now briskly stirred for about $\frac{1}{2}$ an hour, so as to mix thoroughly; and then the zinc is added in small grains by throwing it on the surface, and stirring till it is entirely fused : the crucible is then covered, and the fusion maintained for about 35 minutes. The surface is then skimmed, and the alloy is ready for casting. It has a fine grain, is malleable, and takes a splendid polish: It does not corrode readily, and, for many purposes, is an excellent substitute for gold. When tarnished, its brilliancy can be restored by a little acidulated waier. If tin be employed instead of zinc, the alloy will be more brilliant. It is very much used iu. France, and must ultimately attain equal popularity here.
New Frenor Patent Alloy for Silfer.-Messieurs De Ruoliz \& Fontenay have invented the following alloy, which may be used for almost all purposes in which silver is usually applied. Silver, 20 parts; purified nickel, 28 parts; copper, 52 parts. Melt the copper and nickel in the granular state, then introduce the silver. The flux to be employed is chaircoal and borax, both in the state of powder; and the ingots obtained are to be rendered malleable by annealing for th censicierable time in jowdered charcoal.

Enghigh Standamb bor Shever.-Pure silver, 11 oz. 2 dwts ; copper, 22 dmts : inc. L .
Sluver Imitatione.... Yopper, 1 lb ; ; tin, $\frac{3}{4}$ oz. ; melt. This cont position will roll and ing very near to silver. Britannia Metal: copper, $1 \mathrm{lb} . ;$ tin, 1 lo.; regulus of antimory, $2 \mathrm{lbs} . ;$ nelt togem

156" WATCHMAKERS, JEWELLERS, \&O, REOEIPTE.

ther, with or without a little bismuth. Genuine German Silver: ircn, $2 \frac{1}{2}$ parts ; nickel, $31 \frac{1}{3}$ parts ; zinc, $25 \frac{1}{2}$ parts; copper, $40 \frac{1}{3}$ paris ; melt. Fine White German Silver: iron, 1 part ; nickel, 10 parts ; zinc, 10 parts ; copper, 20 parts; melt. Pinchbeck: copper, 5 parts; zinc, 1 part ; melt the copper, then add the zinc. Jewellers' Metal : copper, 30 parts ; tin, 7 parts ; brass, 10 parts; mix.

Frenoh Gold Plate.-1. Gold, 92 parts; copper, 8 perts. 2. Gold, 84 parts; copper, 16 parts. 3. Gold, 75 parts ; copper, 25 parts.
Bidery.-Copper, 48.48 parts; tin, 6.60 parts ; zinc, 33.80 parts; lead, 12.12 parts.
Best Brass for Clooks.-Rose copper, 85 parts; zinc, 14 parts; lead, 1 part.

Ahloy for Watol Pinion Sockets.-Gold, 31 parts ; silver, 19 parts ; copper, 39 parts ; palladium, 1 part.
Piokle, for Frosting and Whitming Silver Goods.-Sulphuric acid, $1 \mathrm{dr} . ;$ water, 4 oz . heat the pickle, and immerse the silver in it until frosted as desired ; then wash off clean, and dry with a soft linen cloth, or in fine clean sawdust. For whitening only, a smaller proportion of acid may be used.

Etrusoan Gold Coloring.-Alum, 1 oz. ; fine table-salt, 1 oz .; saltpetre (powdered), 2 oz . ; hot rain-waier, sufficient to make the solution, when dissolved, about the consistency of thick ale; then add sufficient muriatic acid to produce the color desired. The degree of success must always depend, in a greater or less degree, upon tiat skill or judgment of the operator. The article to be colored should be from fourteen to eighteen carats fine, of pure gold and copper only, and be free from coatings of tin or silver solder. The solution is best used warm, and when freshly made the principle on which 1t acts is to eat out the eopper alloy from the surface of the article, leaving thereon pure, frosted gold only. After coloring, wash off, first in rain-water, then iu alcohol, and dry without rubbing, in fine clean sawdust. Fine Etruscan jewellery, that has been'defaced or tarnished by use, may be perfectly renewed by the sar e process.

Tafijtsh on Elictro-Platia Goobs may be removed by immersing the article from one to ten or fifteen minutes, or until the tarnisin has been removed, but no longer, in the following solution: Rnis-water, a gals. ; cyanuret potassa, $\frac{1}{2} \mathrm{lb}$; dissolve, and put into a gianajg or jar and closely cork. After immersion, the articles must be taken out and thoroughly rinsed in two or three waters, then dried wito a soft linen cloth, or, if fieated or chased work, with fine clean sawdust. Tarnished jewellery may be speed. ily restored by tais process ; but make sure work of removing the alkali, otherwise it will corrode the goods.

A Bright Gold Tinge may be given to silver by steeping it for a suitable length of time in a weak solution of sulphuric acid and water strongly impregnated with iron-rust.

To Refins Gond.-If you desire to refine your gold from the baser metals, swedge or roll it out very thin, then cut into narrow strips and curl up so as to prevent its lying fatly. Drop the pieces thus prepased into a vessel containing good nitric acid, in the proportion of acid, 2 oz ., and pure rais water, $\frac{1}{2} \mathrm{oz}$. Suffer to remain

Colon terchlor added.

Color improve 3 oz ; al 1 hese in form a si they are

CEIPTS.

Jerman Silver: s ; copper, $40 \frac{1}{2}$ art ; nickel, 10 chbeck: copper, he zinc. . Jewel10 parts ; mix. er, 8 parts. 2. urts ; copper, 25
nc, 33.80 parts ;
zinc, 14 parts ; jarts ; silver, 19
ods.-Sulphuric erse the silver in dry with a soft g only, a smaller
table-salt, 1 oz .; ient to make the thick ale; then or desired. The or or less degree, article to be coint; of pure gold or silver solder. made the prinpy from the surold only. After lcohol, and dry uscan jewellery erfectly renewed
oved by immersor until the tarbwing solution : ssolve, and put immersion, the in two or three aated or chased y miay be speed. of removing the
y steeping it for phuric acid and
gold from the cut into narrow Drop the pieces cid, in the proSuffer to remain

WKTCHMAKERS, JEWELLERI, \&O, RECEIPTS. 157
until thoroughly dissolved, which will be the case in from $\frac{1}{5}$ an hour to 1 hour. Then pour off the liquid carefully, and you will find the gold, in the form of a yellow powder, lying at the bottom of the vessel. Wash this with pure water till it ceases to have an acid taste, after which you may melt and cast into any form you choose. Gold treated in this way may be relied on as perfectly pure.

In melting gold use none other than a charcoal fire, and during the process sprinkle saltpetre and potash into the crucible occasionally. Do not attempt to melt with stone coal, as it renders the metal brittle and otherwise imperfect.

To Refine Silver.-Dissolve in nitric acid as in the case of the gold. When the silver has entirely disappeared, add to the $2 \frac{1}{2} \mathrm{oz}$. of solution nearly 1 quart of pure rain-water. Sink, then, a sheet of clean copper into it ; the silver will collect rapidly upon the copper, and you can scrape it off and melt into bulk at pleasure.
In the event of your refining gold in accordance with the foregoing formula, and the impurity was silver, the only steps necessary to save the latter would be to add the above named proportion of water to the solution poured from the gold, and then to proceed with your copper plate as just directed.

To Refine Copper.-This process differs from the one employed to refine silver in no respects save the plate to be immersed; you use an iron instead of a copper plate to collect the metal.

If the impurities of gold refined were both silver and copper, you might, after saving the silver as above directed, sink your iron plate into the solution yet remaining, and take out the copper. The parts of alloyed gold may be separated by these processes, and leave each in a perfectly pure state.

Cold Silvering of Metals.-Mix 1 part of chloride of silver with 3 parts of pearlash, $1 \frac{1}{2}$ parts common salt, and 1 part whiting ; and well rub the mixture on the surface of brass or copper (previousi well cleaned), by means of a piece of soft leather, or a cork moistened with water and dipped in the powder. When properly silvered, the metal should be well washed in hot water, slightly alkalized; then wiped dry.

To Heighten the Color of Yellow Gold.-Salipetre, 6 oz .; green copperas, 2 oz .; white vitriol and alum, of each 1 oz . If wanted redder, a small quantity of blue vitriol must be added.

For Green Gold.-Saltpetre, 1 oz .10 dwts ; sal-ammoniac, 1 oz. 4 dwts. ; Roman vitriol, 1 oz. 4 dwts. ; verdigris, 18 dwts.

To Clean Gilt Jewellery.-Boiling water in a clean flask, $\frac{1}{2}$ pt.; cyanide of potassium, 1 oz . ; shake the flask to dissolve the potassium. Add, when cold, liquor ammonia, $\frac{1}{2}$ oz. ; rectified alcohol, 1 oz. Used by brushing over gilded articles.

Coloring Jewellery.-Boil the articles in a dilute solution of terchloride of gold, to which some bicarbonate of soda has been added.

Coloring or Gilping.-Defective colored gilding may also be improved by the help of the following mixture : nitrate of potash, 3 oz . ; alum, $1 \frac{1}{2} \mathrm{oz}$. ; sulphate of zinc, $1 \frac{1}{2} \mathrm{oz}$.; common salt, $1 \frac{1}{2} \mathrm{oz}$. These ingredients are to be put into a small quantity of water to form a sort of paste, which is put upon the articles to be colored; they are then placed upon an iron plate over a clisar fire, so that
they will attain nearly to a black heat, when they are suddenly plunged into cold water; this gives them a beautiful high color. bifferent hues may be had by a variation in the mixture.

For Red Gold.-To 4 oz . melted yellow wax, add, in fine powder, $1 \frac{1}{2} \mathrm{oz}$. of red ochre ; $1 \frac{1}{2} \mathrm{oz}$. verdigris, calcined till it yields no fumes; and $\frac{1}{2}$ oz. of calcined borax. Mix them well together. Dissolve either of above mixtures in water, as the color is wanted, and use as required.

Gold is taken from the surface of silver by spreading over it a paste made of powdered sal-ammoniac, with aquafortis, and heating it till the matter smokes, and it 2 s nearly dry; when the gold may be separated by rubbing it with a scratch brush.
Moulds and Dies.-Copper, zinc, and silver in equal proportions; melt together under a coat of powdered charcoal, and mould into the form you desire. Bring them to nearly a white heat, and lay on the thing you would take the impression of, press with sufficient force, and you will get a perfect and beautiful impression.
Polishing Powder for Gold and Silver.-Rock alum burnt and (finely powdered, 5 parts ; levigated chalk, 1 part. Mix; apply with a dry brush.
Silver-Plating Fluid.-Dissolve 1 ounce of nitrate of silver, in crystals, in 12 ounces of soft water; then dissolve in the water 2 oz . cyanuret of potash; shake the whole together, and let it stand till it becomes clear. Have ready some half-ounce vials, and fill half full of Paris white, or fine whiting ; and then fill up the bottles with the liquor, and it is ready for use. The whiting does not increase the coating powder; it only helps to clean the articles, and save the silver fluid. by half filling the bottles.

Jewlelera' Armenian Cement.-Isinglass soaked in water and dissolved in spirit, 2 oz . (thic'•); dissclve in this 10 grs . of very pale gum ammonia (in tears) by rubbing them together ; then add 6 large tears of gum mastic, dissolved in the least possibloquantity of rectified spirit. When carefully made, this cement resists moisture and dries colorless. Keep in a closely stopped phial.

Jewblerrs' Turkish Cement.-Put into a bottle 2 oz . of isinglass and 1 os. of the best gum arabic; cover them with proof spirits, cork loosely, and place the bottle in a vessel of water, and boil it till a thorough solution is effected; then strain for use ; best cement known.

Revere por Old Jewellert.-Dissolve sal-ammoniac in urine and put the jewellery in it for a short time; then take it out, anc rub with chamois leather, and it will appear equal to new.

To Recover Gold from Gilf Metal.-Take a solution of borax water, apply to the gilt surface, and sprinkle over it some finely powdered sulphur; make the article red bot, and quench it in water ; then scrape off the gold, and recover it by means of lead.

To Separafe Gold and Silver from Lace, \&c.-Cut in pieces the gold or silver lace, tie it tightly, and boil it in soap lye till the size appears diminıshed ; take the cloth out of the liquid, and, after repeated rinsings in cold water, beat it with a mallet to draw out all the alkali Open the linen, and the pure metal will be found in all its beauty high color. e. Id, in fine till it yıelds ell together. r is wanted,
ng over it a s , and heatjen the gold
proportions ; mould into eat, and lay ith sufficient ion.
m burnt and ; apply with
of salver, in e water 2 oz. it stand till and fill half , the bottles ng does not articles, and
n water and grs. of very er - then add ib) quantity nent resists ed phial.

- of isinglass oroof spirits, , and boil it best cement
iac in urine θ it out, anc ew
ion of borax some finely wench it in y means of
ut in pieces
lye till the liquid, and, llet to draw metal will
W.JTCHMAKERS, JEWELLERS, \&O., REOEIPTS.

To Hard Solder Gold, Silver, Coppar, Brabs, Iron, Steel on Platina.-The solders to be used for gold, silver, copper and brass are given in the preceding part. You commence operations by reducing your solder to small particles, and mixing it with powdered sal-ammoniac and powdered borax in equal parts, moistened to make it hold together. Having fitted up the joint to be soldered, you secure the article upon a piece of soft charcoal, lay your soldering mixture immediately over the joint, and then with your blow-pipe turn the flame of your lamp upon it until fusion takes place. The job is then done, and ready to be cooled and dressed up.
Iron is usually soldered with copper or brass in accordance with the above process. The best solder for steel is pure gold or pure silver, though gold or silver solders are often used successfully.

Platina can only be soldered well with gold ; and the expense of It, therefore, contributes to the hindrance of a general use of platina vessels, even for chemical parposes, where they are of so much importance.

To Soft Solder Articles.-Moisten the parts to be united with soldering fluid; then, having joined them together, lay a small piece of solder upon the joint and hold over your lamp, or direct the blaze upon it with your blow-pipe until fusion is apparent. Withdraw them from the blaze immediately, as too much heat will render the solder brittle and unsatisfactory. When the parts to be joined can be made to spring or press against each other, it is best to place a thin piece of solder between them before exposing to the lamp.

Where two smooth surfaces are to be soldered one upon the other, you may make an excellent joly by moistening them with the fluid, and then, having placed a sheet of tin foil oetween them, holding them pressed firmly together over your lamp till the foil melts. If the surfaces fit nicely, a joint be may made in this way so close as to be almost imperceptible. The brightest looking lead which comes as a lining to tea boxes works better in the same way than tin foil.
To Cleanse Gold Tarnished in Soldering.-The old English. mode was to expose all parts of the article to a niform heat, allow it to cool, and then boil until bright in urine and sal-ammoniac. It is now usualy cleansed with diluted sulphuric acid. The pickle is made in abont the proportion of one-eighth of an ounce acid to one ounce rain water.

To Cleanse Silver Tarnished in Soldering.-Some expose to a uniform heat, as in the case of gold, and then boil in strong alum water. Others immerse for a considerable length of time in a liquid made of $\frac{1}{5} \mathrm{oz}$. of cyannret potassa to 1 pint rain water, and then brush off with prepared chalk.

Beautiful Bronze for Leather.-Dissolve a little of the socalled insoluble analine violet in a little water, and brush the solution over the leather ; after it dries, repeat the process.

Nickel-Plating.-The following is the substance of the patent granted to Dr. Isaac Adams, March 22,1870. The process is highly successful. "This improvement consists in the use of 3 new solutions from whieh to deposit nickel by the electric current.

160 WATCEMAKERS, JEWELLERS, *C., RECEIPTS.

1. A solution formed of the double sulphate of nickel and alumina, or the sulphate of nickel dissolved in a solution of soda, potash, or ammonia alum, the three different varictics of commercial alum. 2. A solution formed of the double sulphate of nickel and potash. 3. A solution formed of the double sulphate of nickel and magnesia, with or without an excess of ammonia. I have found that a good coating of nickel can be deposited from the solutions before mentioned, provided they are prepared and used in such a manner as to be free from any acid or alkaline reaction. When these solutions are used, great eare most be taken, lest by the use of too high oattery power, or from the introduction of some foreign matters, the solution becomes acid or alkaline. I prefer to use these solutions at a temperature above $100^{\circ} \mathrm{Fah}$, but do not limit my invention to the use of these solutions at that temperature. I therefore claim, 1 . The electro deposition of nickel by means of a solution of the double sulphate of nickel and alumina, prepared and used in such a manner as to be free from the presence of ammonia, potash, soda, lime, or nitric acid, or from any acid or alkaline reaction. 2. The electro deposition of nickel by means of a solution of the double sulphate of nickel and potash, prepared and used in such a manner as to bn free from the presence of ammonia, soda, alumina, lime or nitric acid, or from any acid or alkaline reaction. 3. The electro deposition of nickel by means of a solution of the double sulphate of nickel and magnesia, prepared and used in such a manner as to bo free from the presence of potash, soda, alumina, lime or nitric acid, or from any acid or alkaline reaction."
To maki Silver Solution for Electro-Plating.-Put together into a glass vessel 1 oz. geod silver, made thin and cut into strips; 2 oz . best nitric acid, and $\frac{\mathrm{oz}}{\mathrm{p}}$ pure rain water. If solution does not begin at once, add a little more water-continue to add a very little at a time till it does. In the event it starts off well, but stops before the silver is fully dissolved, you may generally start it up again all right by adding a little more water.
When solution is entirely effected, add 1 quart of warm rain water and a large tablespoonful of table salt. Shake well and let settle, then proceed to pour off and wash through other waters as in the case of the gold preparation. When no longer acid to the taste p put in an ounce and an eighth cyanuret potassa and a quart $^{\text {a }}$ pure rain water ; after standing about 24 hours, it will be ready for use.
To marm Gold Solution for Electro-Plating.-Dissolve five pennyweights gold coin, 5 grains pure copper, and 4 grains pure silver in 3 oz. nitro-muriatic acid; which is simply 2 parts muriatic acid and 1 part nitric acid. The silver will not be taken into solution as are the other 2 metals, but will gather at the bottom of the vessel. Add 1 oz . pulverized sulphate of iron, $\frac{1}{\frac{1}{2}} \mathrm{oz}$. pulverized borax, 25 grains pure table salt, and 1 quart hot rain water. Upon this the gold and copper will be threwn to the bottom of the vessel with the silver. Lat stand till fully settled, then pour off the liquid carefully, and refill with boiling rain water as before. Continue to repeat this operation until the precipitate is thoroughly washed; or, in other words, fill up, let settle, and pour off so
long as the accumalation at the bottom of the vessel is acid to the taste.

You now have about an 18 carat chloride of gold. Add to itan ounce and an eighth cyanuret potassa, and 1 quart rain water-the latter heated to the boiling point. Shake up well, then let atand aboat 24 hours, and it will be ready for use.

Some use platina as an olloy instead of silver, under the impression that plating done with it is harder. I have used both, but never could see much difference.

Solution for a darker colored plate to imitate Guinea gold may be made by adding to the above 1 oz . of dragon's blood and 5 grs . iodide of iron.

If you desire an alloyed plate, proceed as first directed, without the silver or copper, and with an ounce and a half of sulphuret potassa in place of the iron, borax, and salt.

To Plate with a Battery.-If the plate is to be gold, use the gold solutionfor electro-plating; if silver, use the silver solution. Prepare the article to be plated by immersing it for several minutes in a strong lye made of potash and rain-water, polishing off thoroughly at the end of the time with a soft Drush and prepared chalk. Care should be taken not to let the fingers come in contact with the article while polishing, as that has a tendency to prevent the plate from adhering; it should be held in two or three thicknesses of tissue paper.

Attach the article, when thoroughly cleansed, to the positive pole of your battery, then affix a piece of gold or silver, as the case may be, to the negative pole, and immerse both into the solution in such a way as not to hang in contact with each other.

After the article has been exposed to the action of the battery about ten minutes, take it out and wash or polish over with a thick mixture of water and prepared chalk or jeweller's rouge. If, in the operation, you find places where the plating seems inclined to peel off, or when it has not taken well, mix a little of the plating solution with prepared chalk or rouge, and rub the defective part thoroughly with it. This will be likely to set all right.

Govern your time of exposing the article to the battery by the desired thickness of the plate. During the time, it should be taken out and polished up as just directed about every ten minutes, or as often at least as there is an indication of a growing darkness on any part of its surface. When done, finish with the burnisher on prepared chalk and chamois skin, as best suits your taste and convenience.

In case the article to be plated is iron, steel, lead, pewter, or block tin, you must, after first cleaning with the lye and chalk, prepare it by applying with a soft brush-a camel's hair pencil is best suited - a solution made of the following articles in the proportion named :-Nitric acid, $\frac{1}{2}$ oz.; muriatic acid, $\frac{1}{\frac{1}{2}} \mathbf{o z}$. ; sulphuric aoid, 1-9th oz. ; muriate of potash, 1-7th oz.; gulphate of iron, oz. ; sulphuric ether, $1-5$ th oz. ; and as much sheet zinc as it will dissolve. This prepares a foundation, without which the plats would fail to take well, if at all.
To makt Gold Amalasy. - Eight parts of gold and one of moycury are formed into an amalgam for plating, by rondoriag the

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences
Corporation

162 WATCHMAKERS, JRWELLERS, aO., RECMPTE,

gold into thin plates, making it red hot and then patting it into the mercury while the latter is also heated to ebnllition. The gold immediately disappears in combination with the mercury, after which the mixture may be turned into water to cool. It is then rendy for use.
To Plate mith Gold Analasy. - Gold amalgam is chiefly used as a plating for sllver, copper or brass. The articlo to be plated is washed over with diluted nitric acid or potash lye and prepared chalk, to remove any tarnish or rust that might prevent the amalgam from adhering. After having been polished perfectly bright, the amalgam is applied as evenly as possible, usually with a fine, soratch brush. It is then set upon a grate over a charcoal fire, or placed into an oven and heated to that degree at which mercury exhalea. The gold, when the mercury has evaporated, presents a dull yellow color. Cover it with a coasing of pulverized nitre and alum in equal parts; mixed to a paste with water, and heat again till it is thoroughly melted, then plunge into water.' Burnish up with a steel or bloodstone burnisher.
To Maxi and Apply Gold-Plating Solution.-Dissolve $\frac{1}{}$ oz. of gold amalgam in 1 oz . of nitro-muriatic acid. Add 2 oz , of alcohol, and then, having brightened the article in the usual way, apply the solution with a soft brush. Rinse and dry in sawdust, or with tissue paper, and polish up with chamois skin.
To Mark and Apply Gold-Plating Powders.-Prepare a chloride of gold the same as for plating with a battery. Add to it, when the ghly washed out, cyanuret potassa in a proportion of $2 \mathrm{oz} \cdot 4$. ${ }^{5}$ vennyweights of gold. Pour in a pint of clean rain water shake up well and then let stand till the chloride is dissolved. Add then 1 lb. of prepared Spanish whiting and let evaporate in the open air till dry, after which put away in a tight vessel for use. To apply it you prepare the article in the usual way, and having made the powder into a paste with water, rub it upon the surface with a piece of chamois akin or cotton flannel.
An old mode of making a gold-plating powder was to dip clean linen rags into solution preyared as in the second article preceding this, and having dried, to fire and burn them into ashes. The dehes formed the powerer, and were to be applied as above.
To Make and Apply Sinver-Plating Solution.-Put together in a glass vessel 1 oz . nitrate of silver, 2 oz . cyanuret potassa, 4 oz . prepared Spanish whiting, and 10 oz. pure rain water. Cleanse the article to be plated as per preceding directions, and apply with a soft brush. Finish with the chamois skin or burnisher.
To Maike and Apply Silver-Plating Powder.-Dissolve silver in nitric acid by the aid of heat; put some pieces of copper into the solution to precipitate the silver; wash the acid outin the usual way; then, with 15 grains of it mix 2 drams of tartar, 2 drams of table salt, and $\frac{1}{2}$ dram of pulverized alum. Brighten the article to be plated with lye and prepared chalk, and rub on the mixture. When it has assumed a white appearance, expuse to heat as in the case of plating with gold amalgam, then polish up with the burnisher or soft leather.
 pennyweights of copper, 3 pennyweights of lead, and 21 penny-
woights of muriate of ammonia. Melt together, and pour into a crucible with twice as much palverized salphar; the crucible is then to bs immediately covered that the sulphur may not take fire, and the mixture is to be calcined over a smelting fire until the superfluous sulphir is burned away. The compound is then to be coarsely pounded, and, with a solution of muriate of ammonia, to be formed into a paste which is to be placed upon the article it is designed to enamel. The article must then be held over a spirit lamp till the compound uponit melts and flows. After this it may be smoothed and polished up in safety. This makes the black enamel now so much used on jewellery.
To Destriox tan Ejecots of Acid on Cuotetes-Dampen ás soon as possible, after exposure to the acid, with spirits ammonia. It will destroy the effect immediately.

To Wash Silverwapa.-Néver use a particle of soap on jour silverware, as it dulls the lustre, giving the article more the appearance of pewter thain silter. When it wants cleaning, rub it with a piece of soft leather and prepared chalk, the latter mado into a kind of paste with pure water, for the reason that water not pure might contain gritty particles.
To Climanse Brushes.-The best method of cleansing watchmakers' and jewellers' brushes is to wash them out in strong soda water. When the backs are wood, you must favor that part a.j much as possible; for being glued, the water may injure them.

To Cut Glabs Round or Oval without a Diaiond.-Scratch the glass around the shape you desire with the corner of a file or graver; then, having bent a piece of wire in the same shape, heat it red hot and lay it upon the scratch, sink the glass into cold water just deep enough for the water to come almost on a level with its upper surface, It will rarely ever fail to break perfectly true.

To Re-Biaoi Cloor Hands.-Use asphaltum varnish. Une coat will make old rusty hands look as good as new, and it dries in a few minutes.

To Gild Sterl.-Pour some of the ethereal solution of gold into a wineglass, and dip into it the blade of a new penknife, razor, lancet, \&c. ; withdraw the instrument, and allow the ether to evaporate. The blade will then be found covered with a beautiful coat of gold. The blade may be moistened with a clean rag, or a small piece of very dry sponge dipped in the ether, and the same effects will be produced.

Silvering Shells.-Silver-leaf and gum water a sufficient quantity; grind to a proper thickiness, and cover the inside of the shells. For a Gold Color, grind up gold-leaf with gum water, and apply to the inside of the shells.
Liquid Foil for Sil firing Glass Globes, zo.-Lead, 1 nart; tin, 1 part ; bismuth, 1 part : melt, and, just before it sets, add mercury, io parts. Pour this into the globe, and turn it rapidly round.

Silver-Platers' Stripping Líquid.-Sulphuric acid, 8 parts ; nitre, 1 part. Used to recover silver from old plated ware.

To Silver Olook-FAois, mic.-Old silver lace, $\frac{1}{4}$ oz. ; nitric acid, 1 oz. Boil them over a gentle fire for about 5 minutes in an carthen pot. After the silver is dissolved, take the mizture off, and mix it in a pint of clean water, then pour it into another temed solve silver copper into in the usual ar, 2 drams the article he mixture. at as in the ith the bur-
-

164 WATCHMAKERS, JFWELLERS, \&O., REOEIPTS,

free from sediment; then add a tablespoonful of common salt, and the silver will be precipitated in the form of a white powder or curd ; pour off the acid, and mix the curd with 2 oz . salt of tartar, and $\frac{1}{2}$ oz. whiting, all together, and it is ready for use. To Usi.-Clean your brass or copper plate with rotten stone and a piece of old hat ; rub it with salt and water with your hand. Then take a little of the composition on your finger, and rub it over your plate, and it will firmly adhere and completely silver it. Wash it well with water. When dry, rub it with a clean rag, and varnish with this varnish for olock-Fages. Spirits of wine, 1 pt .; divide into three parts, mix one part with gum-mastic in a bottle by itself; 1 part spirits and $\frac{1}{2}$ oz. sandarach in another bottle ; and 1 part spirits and $\frac{1}{2} \mathrm{oz}$. of whitest gum benjamin, in another bottle; mix and temper to your mind. If too thin, some mastic ; if too soft, some sandarach or benjamin. When you use it, warm the silvered plate before the fire, and, with a flat camel's-hair pencil, stroke it over till no white streaks appear, and this will preserve the silvering for many years.

- Refining Gold and Silver.-The art of assaying gold and silver is founded upon the feeble affinity which these have for oxygen in comparison with copper, tin, and other cheap metals, and on the tendency which the latter metals have to oxidize rapidly in contact with lead at a high temperature, and sink witi it into any porous, earthy vessel in a thin, glassy, vitrified mass. The precious metal having previously been accurately weighed and prepared, the first process is Cupellation. The muffle, witi cupel properly arranged on the " muffle plate," is placed in the furnace, and the charcoal added, and lighted at the top by means of a few ignited pieces thrown on last. After the cupels have been exposed to a strong white heat for about half an hour, and have become white hot, the lead is put into them by means of tongs. As soon as this becomes bright red and " circulating," as it is called, the specimen for assay, wrapped in a small piece of paper or lead-foil, is added; the fire is now kept up strongly until the metal enters the lead and "circulates" well, when the heat, slightly diminished, is so regulated that the assay appears convex and more glowing than the cupel itself, whilst the "undulations" circulate in all directions, and the middle of the metal appears smooth, with a margin of litharge, which is freely absorbed by the cupel. When the metal becomes bright and shining, or, in technical longuage, begins to " lighten," and prismatic hues suddenly flash across the globules, and undulste and cross each other, followed by the metal becoming very brilliant and clear, and at length bright and solid (called the brightening), the separation is ended, and the process complete. The cupels are then drawn to the mouth of the "muffle," and allowed to cool slowly. When quite cold, the resulting "button," if of sILVER, is removed by the "pliers" or "tongs" from the cupels, and, after being flattened on a small anvil of polished steel, with a polished steel hammer, to detach adhering oxide of lead, and cleaned with a small, hard brush, is very accurately weighed.' The leight is that of pure silver, and the difference between the weight berore eapellation and that of the pure metal represents the proporfion of alloy in the sample examined. In the ease of GOLD, the metal
has next sample is "witness" less, and alloy, aft or leaf, c hour wit and the f ner, with gold is When the too stron into Hake The loss originally
For A copper, si follows: expresses riband an dissolved duun to The loss of that m of pure go same man into a sma in the mv racy. the case examined,
A ccordi lowing qua silver, :0 the perfect a quill, an acid sp. g similar to
The usu fineness is which repr sions.
Enamelt highly trar which reac oxides. Pr pounded fil crucible for tc powder serve to sh enamels are iron, to whi Yiolect enam
has next to undergo the operations of qUartation. The cupelied sample is fused with 3 times its weight of pure silver, (called- the " witness"), by which the gold is reduced to one-fourth of the mass, less, and in this state may easily be removed by parting. The alloy, after quartation, is hammered or rolled out into a thin strip or leaf, curled into a spiral form, and boiled tor a quarter of an hour with about $2 \frac{1}{3}$ to 3 oz . of nitric acid (specific gravity, 1.3); and the fluid being poured off, it is again boiled in a similar manner, with $1 \frac{1}{2}$ to 2 oz . more nitric acid (sp. gr., 1.2); after which the gold is carefully collected, washed in pure water, and dried. When the operation of parting is skilfully conducted, the acid not too strong, the metal preserves its spiral form; otherwise it falls into flakes or powder. The second boiling is termed the "reprise." The loss of weight by parting corresponds to the quantity of sLlver originally in the specrmen.
For Alzoys Contaning Platinom, which usually consist of copper, silver, platinum, and gold, the method of assaying is as follows: The alloy is cupelled in the usual way, the loss of weight expresses the amount of copper, and ihe "button," made into a riband and treated with sulpharic acid, indicates by the portion dissolved that also of the silver present. By submitting the residuun to quartation, the platinum becomes soluble in nitric acid. The loss after digestion in this menstruium expresses the weight of that metal, and the weight of the portion now remaining is that of pure gold. Gold containing palladidm may be assayed in the same manner. Annearing.-This consists in putting the pure gold into a small, porous crucible, or cupel, and heating it to redness in the muffle. Weigring must be done with the utmost accuracy. The weight in grains Troy, doubled or quadrupled, as the case may be, gives the number of carats fine of the alloy examined, without calculation.
According to the old French method of assaying gold, the following quantities were taken: For the assay pound, 12 gr ; fine silver, $\div 0 \mathrm{gr}$.; lead, 108 gr . These Laving been cupelled together, the perfect button is rolled into a leaf ($1 \frac{2}{} \times 5$ inches), twisted on a quill, and submitted to parting witi $2 \frac{1}{2} \mathrm{oz}$. and $1 \frac{1}{2} \mathrm{oz}$. of nitric acid, sp. gr., 1.16 (20° Baume.) The icmainder of the process is similar to that above described.
The usual weight of silver taken for the assay pound, when the fineness is reckoned in 1000 ths, is 20 gr ., every real grain of which represents $50-1000$ ths of fineness, and so on of smaller divisions.
Enamelling on Gold or Copprr.-The basis of all enamels is a highly transparent and fusible glass, called FRIT, FLUX, or Paste, which readify receives a color on the addition of the metallic oxides. Preparation.-Red lead, 16 parts ; calcined borax, 3 parts; pounded flint glass, 12 parts; flints, 4 parts. Fuse in a Hessian crucible for 12 hours, then pour it out into water, and reduce it tc powder in a biscuit-ware mortar. The following directions will serve to show how the coloring preparations are made: Black enamels are made with peroxyde of manganese, or protoxyde of iron, to which more depth of color is given with a little cobalt. Violet enamel of a very fine hue is made from peroxyde of manr

166 WATOHMAKERS, JEWELLERS, \&O., RECEIPTS.

ganese in mall quantity, with saline or alkaline fluzes. Red enamel is made from protozyde of copper. Boil a solution of equal parts of sugar and acetate of sopper in four parts of water. The sugar takes possession of a portion of the cupreous oxide, and reduces it to the protoxyde ; when it may be precipitated in the form of a granular powder of a brilliant red. After about two hours of moderateboiling, the liquid is set aside to settle, decanted off the precipitate, which is washed and dried. By this pure oxidn any tint may be obtained from red to orange by adding a greater or smaller quantity of perozyde of iron. The oxide and purple of Cassins are likewise eamployed to color red enamel. This compos gltion resists astrong fire very well. Green enamel can be produced by a mixture of yellow and blue, but is generally obtained direct rrom the oxide of copper, or, better atill, wilt the oxide of chrome, Which last will resist a strong heat. Yellow.-Take one part of white oxide of antimony, with from one to three parts of white lead, one of alum, and one of sal-ammoniac. Each of these subitances is to be pulverized, then all are to be exactly mized, and oxposed to a heat adequate to decompose the sal-ammoniac. This operation is judged to be finished when the yellow color is well brought out. Blue.-This color is obtained from the oxide of cobalt, or some of its combinations, and it produces it with such intensity that only a very little can be used lest the shade should pass into black. A white enamel may be prepared with a calcine formed of 2 parts of tin and 1 of lead, calcined together : of this combined oxide, 1 part is melted with 2 parts of fine crystal and a very little manganese, all previously grourd together. When the fusion is complete, the vitreous matter is to be poured into clear watex, and the frit is then dried and melted anew. Repeat the pouring into water three or four times, to insure a perfect combination. Screen the crucible from smoke and flame. The smallest portions of oxide of iron or oopper admitted into this enamel will destroy its value.

The artise prepares his enamel colors by pounding them in an agate mortar, with an agate pestle, and grinding them on an agate slab, with oil of lavender rendered viscid by exposure to the sun, in a shallow vessel, loosely covered with gauze or glass. He should have alongside of him a stove, in which a moderate fire is kept up, for drylng his work whenover the figures are finished. It is then passed through the muffie.

Silver-Platina.- File the parts which are to receive the plate very smooth; then apply orer the surface the muriate of zinc, which is made by dissolving zinc in muriatic acid ; now hold this part over a dish containing hot soft solder, and with a swab apply the solder to the part to which it will adhere, brush off all superfluous solder, so as to leave the surface smooth; you will now take No. 2 fair silvor olate, of the right size to cover the prepared surface, and lay tine plate upon it, and rub down smooth with a cloth moistened with oil; then, with a tinned soldering iron, pass slowly over all the surface of the plate ${ }_{2}$ which melts the solder underneath it, causing the plate to adhere as firmly as the solder does to the iron; then polish the suriace, and finish with buck skin,

Ellinat muriatic a the heat u the clear 1 pure bi-cad The nitro1.45) 21 oz water, 140

The arti and receiv into the li from a few strength o deposited 0 articles is to produce weakens b drawn from after which

A"dead articles of inmersion applying a then expell

Spot Gil ance, is don metal wher then be dep the oil is ea

Watchea oil in a bot the clear.

Solution Plating.- 1 nitric acid articles.- 80 32 parts; m is dipped in

Polishina cutters is sit spindle run true in a lat minute small brase up in the cla

RECEIPTS
BLACK
METAL
ON SAWM Experience h

Elimegton's Patent Gringa.-Fine gold, 5 oz. (troy); nitromuriatic acid, 52 oz . (avoirdupois) ; dissolve by heat, and continue the heat until red or yellow vapors cease to be evolved; decant the clear liquor into a suitable vessel; add dietilled water, 4 gals.; pure bi-carbonate of potassa, 20 lbs . ; and boil for 2 hours. N.B.The nitro-muriatic acid is made with pure nitric acid (sp. gr., 1.45) 21 oz . ; pure muriatic acid (ap. gr., 1.16), 17 oz .; and diatililed water, 14 oz.
The articles, after being perfectly cleaned from seale or grease and receiving a proper face, are to be suspended on wiree, aipped into the liquid boiling hot, and moved about therein, when, in from a few seconds to a minute, depending on the newness and strength of the liquid, the requisite coating of gold will be deposited on them. By a little practice the time to withdraw the articles is readily known ; the duration of the immersion required to produce any given effect gradually inereases as the liquid weakens by nse. When proporly gilded, the articles are withdrawn from the solution of gold, washed in clean water and dried; sfter which they andergo the usual operation of coloring, \&c.
4"dead gold" appearance is produced by the application to the articles of a weuk solution of nitrate of mercury previously to the inomersion in the gilding liquor, or the deadening may be given by applying a solution of the nitrate to the nevoly gilded surface, and then expelling the mercury by heat.
Spor Gilding, or gilding in spots, producing a very fine appearance, is done by putting a thin coat of oil on those parts of the metal where you do not wish the gilding to appear, the gold will then be deposited on those spots only where there is no oil, and the oil is easily removed when the job is finished.
Watchuakerg' Oil.-Insert coils of thin sheet lead into olive oil in a bottle, expose it to the sun for a few weeks, and pour oft the clear.
Solution for Dipping Steel Articlis, previpog to ElsciboPlating. - Nitrate of silver, 1 part; nitrate of mercary 1 part; nitric acid (sp. gr., 1.384); 4 parts; water, 120 parts. For copper articles.-Sulphuric acid, 64 parta; water, 64 parts ; nitrie acid, 32 parts; muriatic acid, 1 part; mix. The article, free from grease, is dipped in the pickle for a second or two.
Poushing Diamonds.-The plan in use at all the large diamond cutters is simply, a cast iron disc of good metal, with a vertical spindle run through its centre, balanced, and turned, and faced true in a lathe. The dise revolves at about 1000 revolntions per minute. . With a little diamiond dust and oil the stone is set in a small brass cup filled with common soft solder; it is then screwed up in the clamps and applied to the skive till the facet is formed.

RECEIPTS FOR MACHINISTS, ENGINEERS, MLLLOWNERS, BLACKSMITHS, LOCOMOTIVE BUILDERS, \&e., \&c., AND METAL WORKERS OF EVERY KIND.
On Sawmlis.-How to get tere most Lumber thom Santogs.Experience has abundantly proved to our satisfaction that this can
be done only by the use of the circular saw. . Human ingenuity, thanks be to the Giver of all Good, has been so prolific in the invention and construction of this kind of machinery, that the principal difficulty with the intending purchaser seems to be an inability to decide whose machine is really the best. Every builder or inventor of a rotary sawmill appears to claim for his machine such a perfect constellation of most desirable features, that a certain amount of hesitation in coming to a decision seems to be inevitable. Having tried the up and down saw and the circular saw also, we would again repeat our con riction that the last mentioned is the best for manufacturing lumber, and should any person act on this expression of opinion, let him in the first place be very careful to get if possible the best machine, bring it to the mill, and set it perfectly level and true. When you geit it in operation, see that you handle it carefully. If you have been used to running the up and down saw only, you will soon find out that your former experience avails almost nothing in the management of the rotary machine; but when you get the hang of running it, the compensation in the way of convenience, rapidity, and quantity of work, is immense. Some prefer to use the inserted tooth saws, and will use no other, They seem to possess many advantages, and are entirely safe. A late invention of spreading the upper part of the tooth towards the point during the process of manufacture, spreading it outso as to make the point of the tooth the thickest part of the circumference of the shw, enables the sawyer to dispense in a great measure with the use of the swage. Those inserted tooth gaws which do not possess this improvement must be carefully swaged and filed at Least twice per day, and sometimes as often as six or seven times per day, depending upon the kind of lumber being cut. In filing or swaging the saw, be careful to form the point of the teeth absolutely square, and even across, the slightest deviation from perfect truth in this respect being apt to cause the saw to run, as it is termed, or vary from its proper course while passing through the log. Some prefer to form the point of the tooth a little hooking, just enough so as to be barely perceptible, and in swaging to use that part of the die belonging to the swage, which gives the tooth of the sav a slightly curved or rainbow form, something in this shape $\underset{-}{ }$, or scarcely so much curved. One sawyer of 20 years' experience in running machinery, informed us tbat he nu yer did better or more rapid work with his mill than when he kept his saw exactly right on these two points just stated. If you car run a No. 7 gauge saw on your mill, the loss resulting from sawdust will be very slight, and as large saws are generally thickest at the centre, tapering off towards the circumference, this size or No. 6 will, as a general rule, be found sufficiently strong for most purposes. Make sure at all times, especially during frosty weather, that the dogs have a secure hold of the \log before the saw enters it. It is only a few days ago that a case came to my knowledge of a firm near Fredericton, N.B., having sustained a severe loss by a log (insufficiently secured, of course) canting over on the saw as it was passing through it. The effect was to break off the saw from the mandril, twist off the nut at the end near the saw, and break away the two iron pins used for securing the saw in the collar, causing a stop-
page of Plyben yo fully, an operation shut ap the atten assure yo do with t the way, this worl loving, ge vaded th expressio course wi what it is us all car sible, and unity." of saws, h in ascerta

$$
\begin{aligned}
& 36 \\
& 38 \\
& 40 \\
& 42 \\
& 44 \\
& 46 \\
& 48 \\
& 50 \\
& 52 \\
& 54 \\
& 56 \\
& 58 \\
& 60 \\
& 62 \\
& 64 \\
& 66 \\
& 68 \\
& 70 \\
& 72 \\
& 74 \\
& 76 \\
& M 4
\end{aligned}
$$

Wно Ms in this bus so numero leave off is of Brantfor circular s8 have sent gang-sàw appear to b Ont., Mr. ©

TS.
an ingenuity, cin the invenit the principal an inabilits to der or inventor ne such a percertain amount be inevitable. r saw also, we entioned is the person act on be very careful mill, and set it on, see that you, ing the up and mer experience otary machine; rensation in the rlk, is immense. Il use no other, tirely safe. A joth lowarde the fit out so as to ircumference of t measure with which do not cod and filed at or seven times cut. In filing or the teeth absoon from perfect to run, as it is ng through the little hooking, swaging to use gives the tooth ng in this shape ears' experience 1 better or more w exactly right a No. 7 gauge it will be very at the centre, No. 6 will, as a urposes. Make , that the dogs t. It is only a of a firm near a \log (insufficiit was passing m the mandril, \& away the two ausing a stop-
page of the mill, and the cousequent expense of repair and delay. When you get the mill in operation, see that you handle it carefully, and maintain unceasing watchfulness over her while in operation. Give her plenty of power ; it you don't, you may as well shut up shop at once ; good attendance, and with a good machine, the attendants will not have much time to play themselves, I can assure you. Keep all the parts well oiled-that has a great deal to do with the emooth and successful ranning of the machine ; and, by the way, I would remark that sawmills are not the only things in this world that run all the better for being oiled. If that kind, loving, gentle, and affectionate spirit of which oil is the symbol, perraded the hearts and minds of our race, and found universal expression in every thought, word, and deed during our dailyintercourse with each other, it would be a very different world from what it is-better for ourselves, and better for our neighbors. Let us all carry on this branch of the oil business as extensively as possible, and we shall soon see a brotherhood "dwelling together in unity." In order to facilitate calculations regarding the velocity of saws, herewith is appended a reliable table to sorve as a guide in ascertaining the proper speed for running :-

Table or Spaed yor Oiroular Satts.

38	"	"	950		"
40	,	,	900		
42	"	"	870	"	
44	"	"	840	"	"
46	"	"	800	"	"
48	"	"	760	"	"
50	"	"	725	"	"
52	"	"	700	"	"
54	"	"	675	"	"
56	"	"	650	"	"
58	"	"	625	"	"
60	"	"	600	"	"
62	"	"	575	"	"
64	"	"	560	"	"
66	"	"	545	"	"
68	"	"	530	1	"
70	"	"	515	"	"
72	"	"	500	"	"
74	"	"	485	"	"
	"	"			

Who Maks the Best Saw-muls and Saws.-The parties engaged in this business who may be called first class men in their line are so numerous, that it is hard to tell where to begin or where to leave off in making honorable mention. O. H. Waterous \& Co., of Brantford, Ont., have the reputation of turning out first class circular saw mills, and portable engines to drive them. They have sent many of their mills down to New Brunswick, where the gang-saw has been doing most of the businese hitherto, and they appear to be giving satisfaction. The Joseph Hall Mfg. Co., Oshawa, Ont., Mr. Clen, president, also rank very high. The same may be
said of W. P. Bartley \& Oo., of Montreal ; James Farris, of the New Brunswick Foundry, St. John, N.B. Messrs. McFarlane \& Andersop, of St. Mary's and Fredericton, N.B, with their two establishments- the one at the latter place being quite extensive, and intely rebuilt at great cost since the fire which destroyed it in the sumper of 1871-are now fully prepared to execute any orders for saw-mills, steam engines, sc. at reasonable rates. For the bonefit of those residing in the United. States, we may mention that Stearns, Clark, \& Co., of Erie, Pa., turn out the very best of work. Having made a personal examination of their facilities and appliances, we say that they rank second to none, and, in proof of this, would state that we gaw a letter in the "Scientific American" a few days ago, from a party who was running one of their mills in Wisconsin, if we mistaise not, making the statement that he had cut upwards of 60,000 feet in one day with one of their circular saw-mills, That was big business, but the work was done, and the tigures produced to prove it from a disinterested source. There are also one or two firms in Bangor, Me, who turn out good machinery for saw-mulls; but it 18 almost invidious to mention isolated firms where there is such an aggregation' of excellent houses in this business all over the United States and Canada. In the line of saw manufacturers we would enumerate Morland \& Watson, and James Rubertson, of Montreal, Alex. Richardson \& Co., ot St. John, N B., and J. F Lawton, also of St. John, as bearing the reputation of turning ont good work. In the United States we have honorable and able tirms bearing the names of Welch \& Grittiths of Boston, the Providence Saw Oo., Providence, R.I. who make inserted tooth suws only; R. Hoe \& Oo., of New York : the Amercan Saw Co, New York: Disston of Philadelphia; Porter Saw Uo., Bristol, Conn.; Hubbard of Pittsburg, Pa. ; Atkins ot Indıanapotis, Ind. ; Messrs. Siniser \& Co. of the same place; Mellus ot Detroit, Mich. ; Branch, Orookes, \& Co., of St. Louis, Mo., and one or two good firms in Uleveland, Ohio.

Shingle Machines.-There are numerous good machines of this class, very highly recommended by the different manufacturers as a matter of course, but the interested representations as to their capability of performing such incredible prodigies of work in a day, are most gencrally to be taken at a "liberal discount," as the dry goods merchant most eloquently expresseth it. Having had rather unusual opportuntties of witnessing the performiance of various kinds of shingle machines, 1 will specify a few, premising, in the first place, that 1 am neither interested in the sale of shingle or any ather machines, nor in the receipt of "a valuable consideration" from the manufacturers for recommending them. James Harris of St John, N.B., has built a large number of the Close' shingle machines (vertical saw) during the year 1871. I hear them highly spoken of, and have seen one, but not in operation. 1 should judge it was a very good machine, price $\$ 175$, with a Bangor edger or trimmer, $\$ 25$ extra. The Muzzey Iron Works Company, Bangor, Mie., build a very good shingle machine (vertical saw) ; I have seen many in operation; they will turn out a good deal of work, and do it well. Trevor and Co., of Lockport, N.X., turn out very good shingle and heading machines (vertical

(AW)

 Thom mach also build and a on 20 stance rited attend busine eveit ment. N.Y., munh. machi leaves compli gentler as 33,0 day's carries alterna any ne shower all care is $\$ 600$. with A it could made in are ma space w to eithes trated \mathbf{c} of shing the best and 50 waste ar the first last. It year ahe nothing, shingles, the opera trimming can be do use a mo the knite doing.VELOOT appliéd t another, t if one wh
sris, of the cFarlane \& b their two extensive, stroyed it in e any orders es. For the aey mention very best of facilities and one and, in " "Scientific nning one of he statement one of their rk was done, sted source. urn out good - to mention of excellent and Oanada. rate Morland Richardson \& St. John, as n the United the names of ., Providence, Co., of New Pbiladel phia ; Pa.; Atkins same place ; St. Louis, Mo.,
hines of this ufacturers as s as to their of work in a ount," as the Having had fformance of N, premising, the sale of "a valuable nding them. umber of the year 1871. I not in opeprice $\$ 175$, Muzzey Iron gle machinc ill turn out a of Lockport nes (vertical

MAOHINISTS, ENanterg, 171

saw) As a proof of their popurarty may date the Mr. T. Thompion, of Black Rock, N. Y., has four or five of there shinglo machines in operation and prefers them to al otherr. I can also bear withees that M. Badger and Oo., of Rochentet, N.Y, build excellent shingle and heading machines (horiyoptal soww), and are really deserving of approbation and patronage, not only on account of turning out, good machinery but from the circumstance that the proprietors gre two yquige radies (who haye inhorited the business of their rather, now many years deceased) who attend, pergonally to the manisgement of the , fipapcial part of the businesg, while the superintendent; Mr. Doughty, is poseessed of eveir qualification to ensure good work in the mechanical department. I would also mention James E. Austin and Co, of Oswego, N.Y., as a firm who have expended great deal of money and murh ingenuity in the intention and manufacture of shingle machines, and have brought them to o point of perfection which leares ilitle more, to be desired. Although the machine is quite complicated, it cap be speeded np, to cut yery rapidy. One gentieman in Oswego informed me that he had cut ad high as, 33,000 shingles per day. I should say, that that waas an, extra day's work but it must be borne in mind that the madine carries two blogs, at one time, cutting a shingle from each block alternately. This maghine al so requires a amart careful operator: any negligence on his part will undoubted be remarded with: shower of dangerous projectiles, fying "fait and furions", not at all careful who or where they strike The price of this machine is $\$ 600$. I have seen only one shingle machine that could compete with Austin's. This was in Chicago previous to the great fire, and it could cut about 8000 shing!es per hour. I was informed that it was made in Wisconsin, and cost $\$ 1400$. Many other good machines are made by other makers beeides those mentioned above, but space will not admit of further mention. Any enquiries addressed to either of the aforesaid manofacturés will be ans wered by illustrated circulars contaiming full information. In the manufacturs of shingles,' as well as in anything else, it is the wisest policy to as the best materials. Get good rift, free from knots, sand, barts, \&c., and you will inevitably get good merchanitable:stuff, : with less waste and more pleasure every way, both with the machineryin the first place, and the satisfactory state of your exchequer in the last. It is all the better if you can lay in a good stock one year ahead, as it cuts much easier when 'properly seasoned, to say nothing of the saving in weight during transportation. In edging. shingles, many prefer the sat to the revolving knives, as at enables the operator in many casee to get a shingle of extra quality by trimming a poor shingle down, and selecting the best part. This can be done by a smart hand with marvellous rapidity, but still, to use a modern phrase, many persons can't'see it, and so they use the knives, giving whit they conceive' to be good reasons for so doing!
Veloorty of Whatis, Pouinys, Drons, \&c, -When wheels, are applied to communicate motion from one part of a madine to another, their teeth act alternately on each other ; consequently, if one wheel contains 60 teeth, and another 20 teeth, the oin con-
taining $2 a t c o t h$ will make 3 revolutions while the other makes but 1; and of drums or pulleys are taken in place of wheels, the effect will be the zame; because their circumferences, describing equal spacen, render their revolutions unequal; from this the ruis is derived, namely :-

Multiply the veiodts a^{\prime} the driver by the number of teeth it contains, and divide by the velocity of the driven. The quotient will be the number of teeth it ought to contain; or, multiply the velocity of the driver by its diameter, and divide by the velocity of the driven.

Exampls 4. If a wheel that contains 76 teeth makes 16 revolutions per minute, required the number of teeth in another, to work into and make 24 revolutions in the same time. According to ruie, jou multiply 16 by 75, and divide the product, which is 1200, by 24, and you have the answer, 50 teeth.

Example ' 6 . Suppose a drum, 30 inches in diameter, to make 20 revolutions in a minute, required the diameter of another to make 60 revolutions per minute. According to rule, you multiply 20 by 30 , and divide the product, which is 600 , by 60 , and you have the answer, 10 inches.

Example 6. A wheel 64 inches in diameter, and making 42 revo1 lutions per minute, is to give motion to a shaft at the rate of 77 revolutions in the same time; find the diameter of a wheel suitable for that purpose. According to rule, multiply 42 by 64, and divide the product, which is 2688 , by 77 , and you will have for the answer 35 inches nearly.
77)2688(341是

231
378
30870
Exxample T. Suppose a pulley 32 inches diameter to make 26 revolutions; find the diameter of another to make 12 revolutions in the same time.

According to rule, $26 \times 32 \div 12=69 \frac{1}{3}-$
26 arid 12) 832. This will be seen to be $69 \frac{4}{3}$
32

$$
691^{4}=\frac{1}{8}
$$

832
Example 8. Find the number of rcvolutions per minute made by a wheel or pulley 20 inches in diameter, when driven by another 48 unches in diameter, and making 45 revolutions in the same time. According to rulo, $48 \times 45 \div 20=108$. That is, 48 multiplied by $45=2160$, divided by 20 , gives the answer, 108 revolutions.

A leather belt should have a velocity of about 1300 feet per minute, and not more than 1800 feet, or it will not last long. If the lightning pulley is used too strong, it increases friction in the gudgeons of the shaft, and prematurely destroys the belt.

To Inoreasm the Power and Durability of Rubber, Beling.-Apply the following composition with a painter's brush, and let it dry :-Red lead, black lead, French yellow, and litharge, equal
parts dry q the b soed
parts ; mix with boiled linseed oil and japan sufficient to make it dry quick. This will produce a highiy-pollished surface. Should the belt sllp, moisten lightly on the side next the pulley with hnseed oil, and repeat the application if necessary.

Beltina Friotion.-The friction by belting on pulleys is 47 for greased leather, when run on wood drums or pulleys ; 60 for dry leather on wood; 38 for oiled leather on cast-iron pulleys; and 28 for dry leather on cast-iron pulleys.

Belaian Weldina Powdera. - Iron filings, 1000 parts ; borax, 600 parts; balsam of copaiba, or other resinous oll, 60 parts; sal. ammoniac, 75 parts. Mix all well together, heat, and pulverze completely. The surfaces to be welded are powdered with the composition, and then brought to a cherry red heat, at, which the powder melts, when the portions to be united are taken from the fire and joined. If the pieces to be welded are too large to be both introduced into the forge, one can be first heated with the welding powder to a cherry red heat, and the other afterwards to a white heat, after which the welding may be effected.

Composition Used in Welding Cast Strel.-Borax, 10 parts; sal-ammoniac, 1 part; grind or pound them roughly together; then fuse them in a metal pot over a clear fire, taking care to continue the heat until all spume has disappeared from the surface. When the liquid appears clear, the compositiou is ready to ;be poured out to cool and concrete; afterwards being ground to a fine powder, it is ready for use. To use this composition, the steel to be welded is rassed to a heat which may be expressed by "bright yellow; it is then dipped among the wolding powder, and again placed in the tire until it attains the same degree of heat as before: it is then ready to be placed under the hammer.

Temprino Strel Springs.-Tho steel used should be that cailed "spring" tor large work; for small work, "double shear." After hardening in the usual way, in water, or, as some prefer, in oil, dry the spring over the fire to get rid of its moisture, then smear it over with tallow or oil, hold it over the flame of the smith's forge, passing it to and fro, so that the whole of it will be equally heated, bolding it there untul the onl or tallow takes fire. Take the article out of the fire and let it burn a short time, then blow jit out. This process may be repeated two or three times if the operator fancies that any portion of the spring has not been reduced to the proper temperature, or rather, raised to it.
Tempmaing Saws.-A late improvement consists in tempering and straightening the saws at one operation. This is done by heating the saws to the proper degree, and then pressing them with a sudden and powerful stroke between two surfaces of cold iron. A drop press 18 employed for the purpose. The mechanism is quite simple and inexpensive. Its use effects an important economy in the manutacture of nearly all kinds of saws, and also improves their quality

Timpering Liquid.-Water, 3 gals.; soda, 2 oz.; saltpetre, 2 oz. ; prussic acid, 1 oz ., or oil of vitriol, 2 oz .

Tmmpering Spiral Springs.-Place a piece of round iron inside the spring, large enough to fill it; then make the spring and iron red hot, and, when hot place them quickly into cold water, and
stir them about till coll; afterwirds rub them with oil or grease, and move them about in a flame thll the grease takes fire; the spring will then be reduced to lts proper temper.
To Soften Malliablid Ifon.- When your furnace is charged with fuel and metsl, get the fire to to a dull red heat, then pour fluoric acid all over the coke, use $\frac{7}{2} \mathrm{pt}$. to 1 pt. or even 1 qt., adding a handful of fluor spar; it Will make the metal much softer.

Ghillmd Iron.-At Lister's Works, Daillington, England, some atticlee required turning in the lathe, and ciest steel could not be made hard enough to cut them:. One man proposed cast metal tools: He was laughed at, of course, but his plan had to be tried. Well, cast metal tools were tried, with points chilled, and they cut when cast eteel tools were of no use. The article was turned up with metal tools.
Driling Holies in Oast Iron.-By means of tarbolic acia a hole t of an inch in diameter has been drilled throuth $\frac{1}{2}$ inch thickness of cast iron, with comutón carpenter's brece; judge, then, what can be done by asing the acid àrd pressure drill.
 sal-ammoniac, 8 oz.; prussiate of potash 3 oz:; blue clay; 2 oz ; resin, 1 llb; wat 1 gill; alcohol, 1 ghl. Put all on the fire, iand simmer till it cries to a powder. The steel is to be heated, dipped into this powder, and afterwards hatmered.

Composition to Toughen Stmal--Resin, 2 lbs.; tallow, 2 lbs . black pitch, 1 lb . melt together, and dip in the steel when hot.
Buganaran Ditci-Proor Diamond Ohil.-Take 1 gal: urine, and 'add to it $1 \mathrm{oz} /$ ' borax and 1 oz . salt.
To ri-out Old Flems.-Remove 'the grease and' dirt' from your files by washing them in warm potash' water, then wash them in warm wáter, and Jry with artificial Leat; next, plèce lipt. warm water in a wooden vessel, and put in your files, add 2 oz. of blue vitriol, fiaely pulverized; 2 oz . of boraz, well mixed, taking care to turn the files over; so that each one may come in contaet with the mixture. Now add 7 oz . sulphuric acid and $\frac{1}{2}$ og. cider vic sar to the above mixture. Reme the files after a short time, dry; sponge them with olive oil, wrap them up in porous paper, and put aside for use. Conrse files require to be immersed longer than fine.

SUberis Jte ror Borax:-Copperas, 2 oz. ; saltpetre, 10 z: ; common salt, 6 oz.; black oxide of manganese, 1 oz ; prussiate of potash, 1 oz ; all pulverized and mixed with 3 lbs of nice welding sand; and use the same as you would' sand. High-tempered steel can be welded with this at a lower beat than is required for borax.

Tempering Liqum fon Milil picks:-Rain water, 3 gals.; spirits of nitre, 3 oz ; hartshorn, 3 oz ; white vitriol; 3 oz. ; alum, 3 oz .; sal-ammoniac, 3 oz ; salt, 6 oz ; with 2 handfuls of the parings ot horse's hoofs. The steel to bo heated to a cherry red. A large jug of this preparation should be kept corked tight, to keep its strength from being losi by evaporation.

To Somten Ikow or Stael:-Either of the following methods will make iron or steel very soft:-1. Anoint it all over with tallow, tempis it in a gentle charcoal fire, and let it cool of itself. 2. Take a littie clay, cover your iron with it, temper in a charcoal fire. 3. When the iron or steel is red hot;' strew hellebore on it.

4. Quench the iron or ateel in the juice : water of common beans.

To mild a eqeant hols.-To file a hole square, it is necessary to reverse the work very often; a square file should first pe used, and the holes finished with either a didmond-shaped file, or a balf round. This leaves the corners square, as they properly should be.
Td Temprar Suall Springe. - In large quantites:-First, harden them in the usual manner of hardening steel ; then place as many as convenient in a vessel containing oil. Heat the oil containing the springs until it takes fire from the top, then set off the vessel and let it cool. The springs will then be found to possess the required temper.

Timprering.-The article, after being completed, is-hardened by being beated gradually to a bright red, and then plunged into cold water: it is then tempered by being warmed gradually and equably, either over a fire, or on a piece of heated metal, till of the color corresponding ta the purpose for which it is, required, as per table below, when it is again plunged into water.

Corresponding temperatuis.

A very pale straw...... 430
Straw........................ 450
Darker straw................ 470
Yellow 490
Brown yellow............ 600
Slightly tinged purple 520
Purple 630
Dark purple.............. 550
Blue.......................... 570
Dark blue................. 600

> Lancets.
> Razors $\}$
> Penknives all kinds of wnod tools, Scissofs $\}$ Screw taps. Hatchets, Ohipping Chisela,

Saws.
All kinds of percussive tools.
Springs.
Soft for saws.
Crodiblis.-The best crucibles are made from pure fire-clay, mired with finely.ground cement of old crucibles, and a portion of black-lead or graphite ; some pounded coke may be mixed with the plumbago. The clay sbould be prepared in a similar way as for making pottery-ware; the vessels, after being formed, must be slowly dried, and then properiy baked in the kiln.

Black-lead crucibles are made of 2 parts graphite, and ! of freclay, mixed with water into a paste, pressed in moulds, and well dried, but not baked hard in the kiln. This compound forms excellent small or portable furnaces.

Tempering Razors, Gttlmry, Saws, tg.-Razors and nenknives are too frequently hardened without the removal of the scale arising from the forging: this practice, which is nevar done woth the best warks, cannot be too much deprecated. The blades are heated in a coke or charcoal fire, and dipped in the water obliquely In tempering razors, they are laid on their backs upon a clean fire, about half-a-dozen together, and they are removed one at o time, when the edges, which are as jet thick, come down to a pale-straw color. Should the backs accidentally get heated beyond the strawcolor, the blades ara cooled in water but not otherwise. Penblades are tempered a dozen or two at a time, on a plate of iron or copper, about 12 inches long, 3 or 4 inches wide, and about \ddagger of an meh thiok. The blades are arranged close together on their bach
and lean at an angle against each other. As they come down to the temper, they are picked out with small pliers and thrown into water if necessary; other blades are then thrust forward from the cooler parts of the plate to take their place. Axes, adzes, cold chisels, and other edge tools, in which the total bulk is considerable compared with the part to be hardened, are only partially dipped: they are afterwards let down by the heat of the remainder of the tool; and, when the colorindicative of the temper is attained, they are entirely quenched. With the view of removing the loose scales, or the oxydation acquired in the fire, some workmen rub the objects hastily in dry salt before plunging them in the water, in order to give them a cleaner and brighter face,

Oil, or resinous mixtures of oil, tallow, wax, and resin, are used for many thin and elastic articles, such as needles, fish-hooks; steel pens and springs, which require a milder degree of hardness than is given by water. Gun lock-springs are sometimes fried in oil for a considerable time over a fire, in an iron tray; the thick parts are then sure to be sufficiently reduced, and the thin parts do not become the more softened from the continuance of the blazing heat.

Saws and springs are generally hardened in various compositions of oil, șuet, wax, \&c. The saws are heated in long furnaces, and then immersed horizontally and edgeways into a long trough containing the composition. Part of the composition is wiped off the saws with a piece of leather, when they are removed from the trough, and heated one by one, until the grease inflames. This is called " blazing off." The composition used by a large saw manufacturer is 2 lbs suet, and $\frac{1 \mathrm{lb}}{}$. of bees'-wax, to every gallon of whale oil ; these are boiled together, and will serve for thin works and most kinds of steel: The addition of black resin, about 1 lb . to each gallon, makes it serve for thicker pieces, and for those it refused to harden before; but resin should be added with judgment, or the works will become too hard and brittle.

To Redven Oxide of Zino.-The oxide may be put in quantities of 500 or 600 lbs . weight into a large pot over the fire ; pour a sufficient quantity of muriatic acid over the top, to act as a flux, and the action of the fire will melt the dross, when the pure metal will be found at the bottom of the pot.

To Temper. Taps or Reamers without springing, select your steel for the job, and forge the tap with a little more than the usual allowance, being careful not to heat too hot nor hammer too cold; atier the tap or reamer is forged, heat it and hold it on one end on the anvil. If a large one, hit it with the sledge; if a small one, the hammer will do. This will cause the tap to bend slightly. Do not straighten it with the hammer, but on finishing and hardening the tap, it will become straight of 'its own accord.

To Harden and Tem err Cast Steel.-For saws and springs in general the following is an excellent liquid: Spermaceti oil, 20 gals.; beef suet rendered, 20 lbs .; neat's-foot oil, 1 gal.; pitch, 1 lb. ; olack resin, 3 lbs. The last two articles must be previously melted together, and then added to the other ingredients, when tise whole must be hellted in a proper iton vessel, with a close cover fitted to it, until all moisture is faporated, and the compo.
sition will take fire on a flaming body being presented to its surface.

Voloantte Emery Wheels.-Use a oompound of India rubber, and Wellington mills emery, as little of the former as will suffice to hold the particles of emery together. The materials most be thoroughly incorporated together, then rolled into sheets, cuit into wheels of the desired size and pattern, pressed into iron moulds and vulcanized or cured by being subjected to a high degree of .steam heat for several hours, making it almost as hard as cast iron.

To Braza a Band Saw.- Whitriey's method.-The tools required are a small portable fcrge, brazing clamps, te, and a straight edge, 3 or 4 feet long, also some brass wire and powdered borax. Take the saw and cut it to the proper length, scarf the ends from one half to three-fourths of an inch, then put the saw in the clamps. I would say that I use a very small and simple clamp in the shape of a double vise. Keep the back of the saw out of the jaws of the vise, or clamps, and apply the straight edge to the back, as it is very necessary to braze it straight; make the fre in as small a compass as possible; place the clamps directly over the centre of the fire, and then put on three pieces of brass wire, bent in the form of the letter U, so that they will pinch the laps together; put on as much borax as will lie on the saw, cover the whole with a piece of charcoal ; melt the brass so that it will flow over the saw before taking it off the fire, and cool very slow so as not to make the braze brittle. File off what remains on the saw, and it is ready for use.

To remove Rust.- If you immerse the articles in kerosene oil and let them remain for some time, the rust will become so much loosoned as to come off very easy.

To solder ferruliss for tool Handles.-Take your ferrule, lap round the jointing a small piece of brass. wire, then just wet the ferrule, scatter on the joining ground borax, put it on the end of a wire, and hold it in the fire till the brass fuses. It will fill up the joining; and form a perfect solder. It may afterwards be turned in the lathe.

Hardening Wood for Pullays.-After a wooden pulley is turned and rubbed smooth, boil it for about eight minutes in olive oil ; then allow it to dry, and it will become almost as hard as copper.

To Purify Gas.-The purifier is to be filled with milk of lime, made by mixing 1 part of slaked lime with 25 parts of water. A very great improvement in the purification of gas has been effected by Mr. Statter, of England, by the employment of hydrated clay along with the lime employed for this purpose. Hydrated clay unites with the ammonia of the gas as with a base, and, at the same time, with its sulphuret of carbon as an acid, and thus removes bc th of these noxious impurities from the gas exposed to its influence. It assists also, in conjunction with the lime, in removing tarry rapor and other impurities from the gas. The illuminating power of the gas is positively increased by the clay purification from 22 to $83 f$ per cent.

To joint lead Plates.-The joints of lead plates for some parposes are made as follows: The edges are brought together, hammered down into a sort of channel cut out of wood, and secured
with fow tacks. The hollow is then scraped clean with a scraper rubbed over with candle grease, and a stream of hot lead is poured into it, the surface heing afteryards smpothed with a red hot plumbersiron
To Jonfr INo PIpar.-Widen ont the end of one pipe witha taper Wood dritt aind scrape itclean inside, scrane the end of the other pipe outside alittle tapered, and insert it in the former: : then solder it wittr coumon leád solder as before described; or, if it requires to be strong, rub a little tallow orer, and coper the joint with a ball of melted lead, holding a cloth (2 or 3 plies of greased bedtick) on the undet side ; and smopthing over with it and the plumber's iron.
Tmning Intarior offlead Pipas. This invention consists in applying a fax of grease or muriate of zinc or any other flux that will protect ith lead from oxidation, and insure a perfect coating of tin, When the tin to poured through the pipe or the pipe dipped into the Dath of tin; after, the lead pipe has been made, place the same in a tertical or pearly vertical position, and pass down through the same estrong cord, to which a, weight is attached to draw the cord through the pipe; and at or near the other end of the cord a sponge, or piece of other porous or elastic material; is attached of a siap to fit the plpe, and of any desired length, sey 6 inches more or less. The sponge or porous wad being saturated with the flax, is drapn through the pipe, and by its length ensures the covering of the entire joside surface of the inside of the pipes with the fux, so that the melted tin, subsequently applied, will adhere to all parts with uniformity and firmness.

To Sompir OAst Ypos FQr TumaNa.- Steep it in 1 part of aquefortis to 4 of water, and let it remain in 24 hours.

- To Brpar Old OP Oannon-Old canpon and massive castings may be cat in two by a continuous stream of hot molten iran; Which wears away the irpp as a atrer η of hot water wonld eat into a mad of te. Or the gun mav be rolled on a frame to the mouth of a fufnace, and the muszale end shoyed in as fat as possible ambig other fron, the opening filled up and luted around the gun, the ond of which is melted off At the next charge Gove it in binother length, and so on until the breech is disposed of.
Large masses of cast iron may be broken up by drilling a hole in the most solid part, filling it with water, fitting a steelplug fery accurately into the hole, and letting the drop of a pile driver descend on the plug.
'Eoostonio Lubrioator-India rubber, 4 lbs ., dissolved in spirits, turpentine ; common soda, 10 lbs.; glue, 11 lb ; water; 10 gal.; oil 10 gal . Dissolve the soda and glue in the water by heat, then add the oil, and lastly the dissolved rubber, mix well by stirring.

To LESgipn Friction y Machanary - -Grind togather blaok lead With 4 times its weight of lard or tallow. Oamphor is sometimes added (7 los. to the hundredweight).
"Best Steve for Turbine Whgels.--Swamp or rock maple is c better step than either lignum vite ot elm for turbine wheels.
better step than eikger lignum vite or elm for turbine wheels. fow minktes, until nearly bjack hot i then throw it into soap-suds;
steel in the ashe

TMP sublima? ready fo latter gi is a dang

Anoti 2 teaspo nor draw
Anoth salt, 3 lb
ANOTH salt $1 \frac{1}{2}$ li in, drawi
Anoтig oz. ; selhammer t previousl. out all rie
Restor steel may hot in col turning it water, an you don't done by M for the tr accidental
Parker' i.ig an $\cdot \mathrm{ad}$ metal.
Flux ${ }^{\text {fo }}$ of soda, 1 the surfac heated up diately un where it w
To IMPI copperas a and boil ti nice weldi afford to t for a time which is t good horst
Case-H heating to posed of ec petre, all every part containing each gallo
th a.scraper ad is poured ia red hot with a taper of the other then solder fit requires joint with a reased bedid the plum-

consists in

 lux that will ating of tin, dipped into ce the same wn through to draw the ff the cord a atta ched of lay 6 inches thed with the ensures the e pipes with , will adhere
art of aqua-

sive castings molten iron; r would eat rame to the ras possible around the ext charge ${ }^{2}$ is disposed
lling a hole a steelplug a pile driver
ed in spirits, ; 10 gal .; oil at, then add rring:
black lead
sometimes
maple is 2 wheels. d letit lie a, soap-suds;
steel in this way may be annealed softer than by putting it into the ashes of the forge.
Tmpipinge Liquid.-To 7 quarts soft water, put in cortosive sublimate, $1 \ddagger$ oz.; common sult, 2 handfuls; when dissolved, it is ready for use.' The first gives toughness to the steel; while the latter gives the hardness. Be careful with this preparation, as it is a dangerous poison.
Anothme.- Salt, 1 tea-cup; saltpetre, 1 oz.; alum, pulverized, 2 teaspoons; soft water, 2 gallons; never heat over a cherry red, nor draw any temper.

Anotasr.-Saltpetre; sal-ammoniac, and alum, of each $4 \mathrm{oz}$. ; salt, 3 lbs. ; water, 6 gallons ; and draw no temper.
Another.-Saltpetre and alum, each, 2 oz.; sal-ammoniac, $\frac{1}{3}$ oz.; salt $1 \ddagger$ lb. ; soft water, 2 gallons. .Heat to a cherry red, and plunge in, drawing no temper.
Anothar.-Water, 2 gal. ; saltpetre, $\frac{1}{2}$ oz. ; pulverized borax; $\frac{1}{2}$ oz.; sal-ammoniac, $\frac{1}{2}$ on.; white vitriol, 1 oz . ; salt $1 \frac{1}{2} \mathrm{pt}$. Do not hammer too cold, nor heat too high. If you follow the directions previously given for tempering mill picks, you will generally come out all right.
Restoring Burnt Stanl.-It is not generally known that burnt steel may be almost instantaneously restored by plunging it while hot in cold water, and hammering it with light strokes on the anvil, turning it so as to hammer all over it, again dipping in the cold water, and repeating the hammering piocess as before. Try it ; if you don't succeed the first time, you will soon do so. We.saw this done by Mr. T. S. Smith, while in Cincinnati, Ohio, and can vouch for the truth of this statement. Mr. Smith stated that it was an accidental discovery of his own.
Parkmr's Copper Hardening process is performed by introduci.Ig an admixture of a minute quantity of phosphorys into the metal.
Flux for Welding Copper.-Boracic acid, 2 parts; phosphate of soda, 1 part; mix. This welding powder should be strewn over the surface of copper at a red heat; the pieces should then be heated up to a full cherry red, or yellow heat, and brought immediately under the hammer. Heat the copper at a flame,-or gas jet, where it will not touch charcoal or solid carbon.
To improve Poor Iron.-Black oxide of manganese, 1 part; copperas and common salt, 4 parts each; dissolve in soft water, and boil till dry; when cool, pulverize, and mix quite freely with nice welding sand. When you have poor iron which you cannot afford to throw away, heat it, and roll it in this mixture; working for a time; reheating, oc., will soon free it from all impurities, which is the cause of its rottenness. By this process you can make good horse-nails out of common iron.
Casm-Hardining for Iron.- Cast iron may be case-hardened by heating to a red heat, and then rolling it in a composition composed of equal parts of prusiate of potash, sal-ammonia, and saltpetre, all pulverized and thoroughly mixed. This must be got to every part of the surface; then plunged, while yet hot, into a bath containing 20 oz . prussiate of potash, and 4 oz . sal-ammoniac to each gallon of cold water.

TQ Whu OAgT Iros.-The best Wef of woldinf cast iron is to take it at a very intense heat, closely approaching the peitiog point. In this state it will be found qufficiently malleable tọ stand the pperation of welding by the hammer. There afe ather methods, but most of them are attended or sipopt insurmoantable duficulties.

Hardening and Filung for Firm-prooy Safra.-Experience has shown thes the fire and hurglar-proof diamond chill for iron or steel, described in another part of this work, has no superiof as a hardening for security in the construction of safes; snd, as s nonconductor of heat we would recommend a flling of plaster of Paris or alum. It is clafmed by some that a mixture of bath of these articles' forms the best known filling for safes, as an external application of intense heat is certain to liberate a large quantity of water, which is transformedinto steam, thus ensuing entire safety to the contents of the safe. Other mapufacturers employ a concrete filling for safes, and oztol it very highly. Mr. Moffat, gas and steamfitter, Boston, has informe 1 me that he has applied ior protection in the matter of a discovery by Which he cfaims that he can fully protect a safe against a double blast furnace heat by means of an ontside lining of bricks composed of asbestos and kaolin, a very small portion orly of the latter material being used. From the well known incombustible nature of these material, there can be no reasouable donbt but that the claim in question is a just pne.

For MALLABLI Iron. - Put the articles in an iron box and stratify them among animal carbon, that is, pieces of horns, hoofs, ginge, or leather, just sufficiently burned to be reduced to powder. Lute the box with equal parts of sand ond clay then place it in the fre, and keep at a light red heat for a leng th af time proportioned to the depth of steel required, when the contents of the box are emptied into water.

AŃOTHRE YOR Wrovart Iron.-Take prussiate of potash, finely pulverized, and roll the article in it, if its shape admits of it if not, sprinkle the powder upon it freely while the iron is hot.

To Sozren OAsf Tbon rop Drquing.- Heat to a cherry red, letting it lie level in the fire ; then with a pair of cold tongs put on a piece of brimstone, \& littile less in size than the hole Fill be when driled, and it softens entirely through the piece; let itlig in the fire until a little cool, when it is ready for drilling.

Tó rapper Sprivas.-For tempering ćast-steel trap springs, all that is necessary is to heat them in the dark, just so that you can see that they are red then cool them in lukewarm Water. You can observe a much lower degree of heat in the dark than by daylight, and the low heat and warm ${ }^{\text {joter give the desired }}$ temper.

Dipping Tools wame Hardaming.-To harden a penknife blade, lancet, razor, chisel, goy co-bit, plane, spoke-shaye, iron shaving knife, three and four square files, and round pad fiat fifes dip them endwise or perpendicularly. This keeps them straight, which Would not be the case were they dipped in the Water obliquely.

Tast Ibon Ornaymys are rengured suisceptible of being finished vith a scraper, where they cannot be reachea with files, ofter having the following liquid applied to them.
cast iron is to o the melting eapto to stand other methods, ntable difiticul-

Experience has ill for iron or o. superior as a and, as s nonplaster of Paris of these articles' application of of Water, which to the contents rete filling for and steamfitter, protection in the can fully by means of an 1 Eaolin, a very red. From the ls, there can be is a just one. in box and straof horns, hoofs, tuced to powder. then place it in af time proporitents of the box
ate of potash, shape admits of e the iron is hot. o a cherry red, ld tongs put on ble will be when
let itlig in the
rap springs, all so that you can m Water. You dark than by ive the desired
penknife blade, e, ron shaving tfiles dip them straight, which er obliquely.
foling finished filee, ofter har:-

Scaning Cast Iron.-Vitriol, 1 part; water, 2 pacta; mix and lay on the dilinted vitriol with some old cloth in the form of a brush, enough to wet the surface well : after 8 or 10 hours, wash off with water, when the hard, scaly surface will be completely. removed.
Virnish for syooth moulding Pattyrni-Alcohol, 1 gel. ; shellec, 1 lb . ; lamp or ivory black, sufficient to color it.

Iron Luetre is obtained by dissolving a piece of zinc with muriatic acid, and mixing the solution with spirit of tar, and applying it to the surface of the iron.

To meit Stege as easily 4 L Lmad.-This apparent impossibility is performed by beating the bar of iron or steel red hot, and then touching it with a roll of brimstone, when the motal will drop like water. Red hot iron can be easily cut with a saw.

Patgat Lobridating Din- - Water, 1 gal.; clean tallow, 3 lbs. $;$ palm oil, 10 lbs . common soda, 1 lb . Heat the mixture to about 210° Fahr. ; stir well till it cools down to 70° Fehr., when it is fit for use.

Black having a Polise for Iron.-Pulyerized gum asphaltum, 2 lbs . ; gam benzoin, $\frac{1}{16}$. ; spirits of turpentine, 1 gal. ; to make quick, keep in a warm place, and shake often; shade to suit with finely ground ivory black. Apply with a brush. And it aught to be used on iron exposed ta the weather as well as on inside work desiring a nice appearance or pilish.

Varnish for Iron.-Asphaltum, 8 lbs ; melt in an iron kettle, slowly ádding boiled linseed oil, 5 gals.; litharge, 1 lb . ; and sulphate of zinc, $\frac{1 b}{}$.; continuing to boil for 3 hours; then add dark gum amber, $1 \frac{1}{2} \mathrm{lb}$. and continue to boil 2 hours longer. When cool, reduce to a proper consisterce to apply with a brush, with spirits of turpentine.

Trmpering Mill Picrs.-Get double refined cast steel made expressly for mill picks. In drawing out the pick, use an anvil and hammer with smootn faces, and be careful not to heat the steel higher than a dark cherry red. Do not strike the pick on the edge when finishing it, but hammer it on the flat side, striking light and often, until the steel is quite dark, letting the blows fall so as to close the pores of the steel. When a dozen picks are ready to temper, get 2 gals. of rain water from which the chill should be taken, if in winter, by dipping a hot iron into it ; add 2 lbs. salt, and it is ready for use. Heat your pick gradually from the centre; let the heat run to the point, and when it is a dark cherry red, dip the point vertically into the bath and hold it still. When the heat has left the part immersed, take it out, and cool the balance of the pick in ordinary water. Be sure to heat and hammer well.

Wriding Cast Stael.-Rock saltpetre, $\frac{1}{4} \mathrm{lb}$. dissolve in $\frac{1}{4} \mathrm{lb}$. oil vitriol; and add it to 1 gal. water. After scarfing the steel, get it hot; and'quench in the preparation. Then weld it the same as a piece of iron, hammer it very quick with light blows. It answers the purpose much better than borax; cork it in a bottle, and it will keep for years.
ANOTHER.- Borax, 15 parts; sal-ammoniac, iu parts; cyanide of potassium, 2 parts ; dissolve all in water, and evaporate the water at. at low temineratura

Cabi Hardining Coupound.-Prussiate of potash, 3 lbs. ; sal-ammoniac, 2 lbs . ; bone dust, 2 lbs .
Anorime.- Pulverized borax any quantity, and slightly color it with dragon's blood. Heat the steel red hot, shake the borax over it ; place it again in the fire till the borax smokes on the steel, which will be much below the ordinary welding heat, and then hammer it.
Cemeift to Regist Red Heat and Boiling Water.-To 4 or 5 parts of clay, thoroughly dried and pulverized, add 2 parts of fine iron filings free from oxide, 1 part of peroxyde of manganese, 1 part of common salt, and $\frac{2}{2}$ part of borax. Mingle thoroughly, render as fine as possible, then reduce to a thick paste with the necessary quantity of water, mixing well; use immediately, and apply heat, gradually increasing almost to a white heat.
Cement to Join Srctions of Oast-Iron Whbrls, do. -Make a paste of pure oxide of lead, litharge, and concentrated glycerine. Uurivalled for fastening stone to stone or iron to iron.

Soyt Cement for Stanm-boluers, Stran-piprs, \&o.-Red or white lead, in oil, 4 parts; iron borings, 2 to 3 parts.
Hard Ominst. - Iron borings and salt water, and a small quantity of sal-ammoniac, with fresh water.
Metal Pouise.- Rotten-stone, fólowed by. Paris whito and rouge.
Gasfittrrs' Ceminm.-Mix together resin, 44 parts; wax, 1 part; and Venetian red, 3 parts.
Pluibrers' Oxment.-Black resin, 1 part ; brick dust, 2 parts, well incorporated by a melting heat:
Coppersmitha' Cement.-Boiled linseed oil and reá lead mixed together into a putty, are often used by coppersmiths and engineers to secure joints; the washers of leather or cloth are smeared with this mixture in a pasty state.
Compositions to File Holes in Castings.-Mix 1 part of borax in solution with 4 parts dry clay. Another: Pulverized binoxide of manganese, mixed with a strong solution of silicate of soda (water clay) to form a thick paste.
Cast Iron Obmant.- Clean borings, or turnings of cast iron, 16 parts; sal-ammoniac, 2 parts; flour of sulphur, 1 part; mix them well together in a mortar, and keep them dry. When required for use, take of the mixture, 1 part; clean borings, 20 parts ; mix thoroughly, and add a sufficient quantity of water. A little grindstone dust added improves the cement.
Cement for Stram-pipe Joints, etc., with Faced Flanges.White lead, mixed, 2 parts; red lead, dry, 1 part; grind, or otherwise mix them to a consistence of thin putis ; apply interposed layers with 1 or 2 thicknesses of canvas, or gauze wire, as the necessity of the case may be:

Cementr for Joints of Iron Pipes or Holms in Castings.-Take of iron. borings, coarsely powdered, 5 lbs . ; of powdered salammoniac, 2 oz. $;$ of sulphur, 1 oz., and water sufficient to moisten it. This composition hardens rapidly, but if time can be allowed, it sets more firmly without the sulphur. Use as soon as mixed, and ram tightly into the joints or holes.

Buad black, asphalt with 1 in others.
Soud bles cea sam of f seed oil, kettle, to a hig when a through modifica it:
2. BL turpenti
sal-amcolor it rax over he steel, nd then

4 or 5 ts of fine nganese, roughly, with the tely, and
-Make a slycerine.
ine:
-Red or
all quanrhitc and ; wax, 1 , 2 parts, ad mixed hiths and cloth are
of borax binoxide e of soda t iron, 16 mix them uired for rts ; mix le grind-
anges.rind, or ly interwire, as
s.-Take ered salmoisten allowed, s mixed,

Black Varnish for Coal Bucients.-Asphaltum, 1 lb. ; lampblack, $\ddagger \mathrm{lb}$. ; resin, $\ddagger \mathrm{lb}$. ; spirits of turpentine, 1 qt.' Dissolve the asphaltum and resin in the turpentine, then rub up the lamp-black with linseed oil, only sufficient to form a paste, and mir with the others. Apply with a brush.

Soldermag Fluid.-Take 2 oz. muriatic acid; add zinc till bubbles cease to rise; add $\frac{1}{2}$ teasponnful of sal-ammoniac.
Japan Flow for Tin.-All Colors.-Gum sandarach, 1 lb, ; balsam of fir, balsam of tolu, and acetate of lead, of each, 2 oz .; linseed oil, $\frac{1}{2}$ pint $;$ spirits of turpentine, 2 qts. Put all into a suitable kettle, except the turpentine, over a slow fire at first; then raise to a higher heat till all are melted; now take from the fire, and, when a little cool, stir in the spirits ot curpentine, and strain through a fine cloth. This is transparent; but by the following modifications, any or all of the various colors are made from it:
2. Black-Prussian blue, 1 oz.; asphaltum, 2 oz ; spirits of turpentine, $\frac{1}{2}$ pint. Melt the asphaltum in the turpenting ; rub up the blue with a little of it; mix well, and strain ; then add the whole to 1 pint of the first, above.
3. Buue.-Indigo and Prussian blue, both finely pulverized, of each $\frac{1}{2}$ oz. ; spirits of turpentine, 1 pint. Mix well, and strain. Add of this to 1 pint of the first until the color suits.
4. Red.-Take spirits of turpentine, $\frac{1}{2}$ pt. ; add cochineal, $\frac{7}{2} \mathrm{oz} . ;$ let stand 15 hours and strain. Add of this to the first to suit the fancy. If carmine is used instead of coohineal, it will make-a fine color for watch hands.
5. Yellow.-Take 1 oz . of pulverized root of curcuma, and stir of it into 1 pt . of the first until the color pleases you; let stand a few hours, and strain.
6. Green.-Mix equal parts of the blue and yellow together, then mix with the first until it suits the fancy.
7. Orangr.-Mix a little of the red with more of the yellow, and then with the first as heretofore, until pleased.
8. Pink.-Mix a little of the blue to more in quantity of the red, and then with the first until suited. Apply with a brush.

Transparent Blum for Iron or Stmel.-Demar varnish, $\frac{1}{2}$ gal.; fine ground Prussian blue, $\frac{1}{2} \mathrm{oz}$, mix thoroughly. Makes a splendid appearance. Excellent for bluing watch-hands.

To Tin Copper Stvt Dishes, \&c--Wash the surface of the article to be tinned with sulphuric acid, and rub the surface well, so as to have it smooth and free of blackness caused by the acid; then sprinkle calcined and finely pulverized sal-ammoniac upon the surface, holding it over a fire, when it will be sufficiently hot to melt a bar of solder which is to be rubbed over the surface. Any copper dish or vessel may be tinned in this way.

To Copper the Surface of Iron, Steel, or Iron Wire.-Have the article perfectly clean, then wash with the following solution, and it presents at once a coppered surface. Rain water, 3 lbs.; sulphate of copper, 1 lb .
Blage Bronze on Iron or Steel.- The following mixtures are -nployed: liquid No. l. A mixture of bichloride of mercury and sel-ammoniac. No. 2, A mixture of perchloride of iron; sulphate
of copper, nitric gcid, alcohol and F* *. No 3. Perchloride and protochloride of mercury mized wh, itric acid, alcohol and water. Na. 4. A Freck solution of sul e of pótacium. Olean Jour metal well apd apply a slight cout je No. 1 with a sponge; when quite dry, apply another coat. Rymove the resulting crust of oxide with a wire brush, rub the matal with a clean rag, and ropeat this operation after each application of these liguids. Now apply seperal coato of No. 2, and alsg of No. 3, with a full sponge; then, after drying for ten minutes, throw the pieces of metal into water heated near the boiling point; let them remain in the whet from $\$$ to Io minutes according to their size. After being cleanel, cover again with geveral coatingi of No. 3, afterwards with a strong costing of No. 4 ; then again immerse in the bath of hot water. Remove from the bath dry and wipe the pieces with carded cotton dipped in liquid No. 3 diluted each time with an increased quantity of water ; then rub and wipe them with a little oliva oil ; again immerse in \& water bath heated to 140° Fahr., romove them, rup brifly with a woollen rag, and lastly, with oil. Unequalled for producing a beautiful slospy black on gun-barrels, steel, irón, \&c.
Tmpung Syarr Astronas-Digselve as much zinc sczaps in muxiatic acid os w will tate up, let it settle, then decant the clear, and
1 it is ready for use. Next prepare a suitable iron vessel, set it over, the fire, pat your tin therein, and melt it, and put as mach mutton or beef tallow as will cover the tin about inch thick. This prevents the oxidation of the metal; but be very careful that the tallow does not catch fire. The iron, or any other metal to be tinned, must be well cleaned, either with scraping filing, polishing with sand or immersion in dilnted vitriol. Proceed to wet the articles in the zinc solution, then carefully immerse them in the tallow and melted tin; in a very short time they will be perfectiy tinned, when they may be taken out.
 a flask, pt.; add gum shellac, 1 oz; turmeric, ${ }^{\prime}$ oz. red senders, 104. Set the fask in a yarm place shake frequenty for 12 hours or more, then stran of the ligdor, rinse the bottle, and retura it carking tighty for usé.

When this Varnish is used, it must be applied to the work freely and flowing, and the articles ghould be bot when applied. One or more coats may be laid on, os the color is required more or less light or deep. If any of it should become thick from evaporation, at any time, thin it vith alcohol. And by the following modifications all the yarious colors are ob tained:
2. Roje Couos. Proceed as above, substituting 4 oz. of finely ground best lake in place of the tnimeric.
3. Buos.-The blue is made by substituting pulverized Prussian blue, $\frac{1}{3}$ oz. in place of the turmeric.
4. PORP 4 , Ad Ad little of the blue to the first.
5. Grean - Add a litle of the rose-color to the first.

Orybratlimed Tiv-Plate.-The figares are more or less beautiful and diversified, according to the degree of heat and relative dilution of the acid. Place the tin-plate, slightly heátéd, over a tup of water, apd rub its surface with a spange dipped in a liquof
oride and ohpl and Olean sponge; ing crust rag, and ids. Now 11 apong ; petal int the want cleanel. ds with a ath of hot eces with with an intha little Fahr., re; with oil. un-barrele,
ups in muriclear, and set it over, ach mutton ick. This areful that metal to be b, polishing to wet the them in the be. perfectly

- Alcohol in ed jonders or 12 hours return it,
work freely lied. One nore or less vaporation, \mathbf{g} modifica:-
z. of finely
d Prussian
ess beautind relative tóa, over a in a liguós
composed of 4 parts of aquafortis and 2 of distilled Fater, holding 1 pate't common salt or sal-ammoniac in solution. Whenever the crystalline apangles seem to be thoroughty brought out the plate muist be immersed In water, washed either vith efeather or alittle cotton (takitic care not to rub of the fim of tin that forms the feathering), Porthwith dried with a low heath and coated with a fácquer Yaifich," otherwise it loges its lustre in tie air. If the wholo durface is not plunged at once in cold mater, but if it be partially cooqea by aprinkling water on it the cry gitallization yill ho finely variegated with lar ge and emall gigure Similar results will be'obtained by blowing cold air through pipeon the tinned aurfece, while it is just passing from the fused to the soifid state.
To Oryspalizze Tis. - Sulphuric ecid, oz it apftyator 2 to 3 oz, accordin' to atrength of the acid; ; Balt, it oz. NX. Enat the fin hot over" stove, then, with a spogge appy the mifture, then wash of directly with clean wáter. Dr the thin, and varnifh with demar variish.
 gill ; pulverized rotten stone, 1 gill; rain ¥ater, 1 pte Mir alf; and siake á ysed. Apply with a ras, and pollsh with buck pkin of old woollen.
Siivirive Powder.-Nitrate of silver and common solt of asch, 30 grs : cream of tartar, 31 drs. Pilverize finety, m tharoughly and botte for use: Unequalled for podishing copher and potad goods.
Tin Oans.-SIze of Squat ror rbon ito 190 Gallong.

This includes alr the laps, seams, \&c., Which will be found buffe cienily correct for all practical purposes:
"Tikivíg Ibor:- Cleanse" the metal to be tinned, and rub with a coarse ciloth, previonsty dipped in pydrochortc acid smaiatic acid), and then rub on rencóputity ytit the same edoth. Arench putty is made by mixing tin filings with mercury.

Tinning-1. Platés or vessés bf brass or copper boiled with a solution of stannate of potassa, mired with'turntros of tin, become, in the course d a few minutos, covered with firmly' atteched layer of pure tin. 2. A similar effect if ' produced' by boiling the articles with tincilings and caustic alkal or cream of tartar. In the above way chemical vessel mado of oppor or brabe may be eásily and pérfectly tinined.
Nit Tiinning Procisss - Articles to be tinned are first covered with dilute golphurice acid, and, when quite clean are placed in warm water, the dipped in a sol ution o puriatic acia, onpor, and zinc, and then prunged into a tin bath to which a sqail quantity of zinc häs been added. When the tipning if finishea,' the erticle are takén out, and plunged into boiling water." The operation is completed by pracing them in"a very warm sand-bath: This lait procesis soflens the iron.

Kubititien's Mital fon Tinmise. - Malleable iron, 1 lb , beat to whiteness ; add 5 oz. regulus of antimony, and Molucca tin, 24 lbs.

Galvanizing iron. - itho iron plates are firat immersed in: cleansing bath of equal parts of sulphuric or muriatio acid and water used warm ; they are then scrubbed with emery or sand to clean them thoroughly and detach all scales if any are left; aftor which they are immersed in a "preparing bath" of equal parts of saturated solutions of chloride of zinc and chloride of ammonium, from which bath they are directly transferred to the fluid " motallic bath," consisting, by weight, of 640 lbs , zinc to 106 lbs . of mercury, to which are added from 6 to 6 oz . of sodium. As soon as the iron has attained the temperature of this hot fluid bath, which is 680° Fahr., it may be removed, and will then be found thoroughly coatcd with zinc. A little tallow on the surface of the metallic bath will prevent oxidation.

Pabta for Cleaning Metals.-Take oxalic acid, 1 part; rotenstone, 6 parts ; mix, with equal parts of train oil and splrits of turpentine, to a paste.
To Privent laon or Steal proy Rubting.-Warm your ifon or steel till you cannot bear your hand on it without burning yourself, then rub it with new and clean white wax. Put it again to the fire till it has soaked in the wax. When done, rub it over with a piece of serge. This prevents the metal from rusting afterwards.

Bronzing Liquid for Tin Castings.- Wash them over, after being well cleaned and wiped, with a solution of 1 part of sulphate of iron and 1 of sulphate of copper, in 20 parts of water; afterwards, with a solution of 4 parts verdigris in 11 of distilled vinegar ; leave for an hour to dry. and then polish with a soft brush and colcothar.
Fancy Colors,on Metals.-1. Dissolve 4 oz. hypo-sulphite of soda in $1 \frac{1}{2} \mathrm{pts}$. of water, and then add a solution of 1 oz . acetate of lead in 1 oz . of water. Articles to be colored are placed in the mirture, which is then gradually heated to the boiling point. This will give iron the color of blue steel, zinc becomes bronze, and copper or brass becomes, successively, yellowish, red, scarlet, deep blue, light blue, bluish white, and finally white, with a tinge of rose. 2. By replacing the acetate of lead in the solution by sulphate of copper, brass becomes, first, of a fine rosy tint, then green, and lastly, of an irridescent brown color.

Coating Iron Oastings with Gold on Silfar.-The articles to be gilded are well cleaned and boiled in a porcelain vessel, together with 12 parts of mercury, 1 of zinc, 2 of iron vitriol, $1 \frac{1}{2}$ of murıatic acid of 1.2 specific gravity, and 12 parts of water; in a chort time a layer of mercury will deposit upon the iron, and upon this the gold amalgam may be uniformly distributed. Iron to be silvered is first provided with a coating of copper, upon which the silver is applied either by means of amalgam or silver leaf.

Bronswick Black for Gratms, \&c.-Asphaltum, 5 lbs.; melt, and add boiled oil, 2 lbs. ; spirits of turpentine, 1 gal. Mir.

Bronze Paint for Iron.-Ivory black, I oz.; chrome yellow, $1 \mathrm{oz} . \dot{j}^{-}$chrome green, 2 lbs.; mix with raw linseed oil; adding a little japan to dry it, and you have a very nice bronze green. If desired, gold bronze may be put on the prominent parts, as on the
beat to , 24 lbs. ed in cid and sand to ft ; after parts of nonium, " metal. of mercoon as , which nd thoof the rotten8 of tur-
iron or ig yourgain to ver with erwards. er, after sulphate r afterled vineoft brush

e of soda

 te of lead mirture, will give ppper or op blue, rose. 2. e of copd lastly,ticles to vessel, iol, $1 \frac{1}{2}$ of er; in a nd upon on to be hich the 8. ; melt, x.
yellow, dding a reen. If s on the
tipy or edges of an tron railing, when the paint le not quite dyy, using en piece of relret or plush to rub on the bronse.
Bloing on Revolvias and Gow Barrnls if performed by itimply heating the piece to be blued in pordered, eharcoal over a fire py til the denired color is obtained.
Bromnivg Jor Gon Barpils. - Spirits of nitre, I lb.; alcohol, 1 lb.; corrofive sublimate, I oz.; mir in a bottle, and cork for fie. Directiops: polish the barrel perfect; then rub it with quick lime with a cloth, which removes grease apd dirt; nop spply the browning fluid with a clean white cloth, appls one coat, and set it in a warm dark place for from 10 to 20 hours, until ered ruat forme on it; then card it down with a gunmakers card, and rub of with a clean cluth. Repeat the process if you wish a dark ghadp.

Browning for Twist Barrels.-Spirite of nitre; 1 oü. it tincture ot steel, 4 uz. ; or use the unmedicated tincture of fron if the tincture of steel cannot be obtained; blacis briphstoné, oz. bluo vitriol, 1 oz. corrosive subimato, A oz. nitric acid, 1 dram, copperas, $\&$ oz; mix with 11 pints rain water, and bottle for taso This is to be upplled the same as the first; it causers the twiot of the barrel to be visible after application a quality whiça the othop liquid does not possess.
Browning Compositions yor Gon Barrels.-1. Blue yitmiol, a 02 ; tincture of múriaté of iron, 2 oz. wáter I dit dissolve and add aquafortis and sweet spirits of nitré, of each, I az- 2 . Blue vitriol and sweet spirits of nitre, of each 1 oz. ${ }^{\circ}$ equafortis, 6 . ; water 1 pint. To be used in the giane manner ás previously described in this work.

Varnish and Polisf' ror Gun Stpogs.-Gum shellac, 10 oz. g gum sandarach, $1 \mathrm{oz}$. ; Venice turpentine; ${ }^{\prime} 1$ dr: ;' 98 per, cent. alchtol, 1 gal.; shake the jug occasionally for a day or two, and it is ready for use. Apply a fow coats of this to your "gan stocts, polintiby rubbing smooth and your work is complete.)

Brass for Heayy Oabtings:-Copper, 6 to 7 partp; tip, 1 pant; zinc, 1 part.
Xmlow Brass (for casting).-1. Qopper, 61.6 partg ; ginc, 36.3 parts ; lead, 2.9 parts; tin, 0.2 parts. 2. Brass of Jemappes.Copper, 64.6 parts ; zinc, 33.7 parts; lead, 1.4 parts ; tin, 0.2 parts. 3. Sheet Brass of Stolberg, near Atx la Chapelle.-Gppper, 648 parts ; zinc $32 . \varepsilon$ parts ; lead, 2.0 parts ; tin, 0.4 parti. \& D'Arcets Brass for Gilding.-Copper 63.70 partś ; zinc, 33.56 parts; lead, 0.25 parts; tin, 2.50 parts. 6. Another-Capper, 6445 papts; qinc. 32.46 parts j lead, 2.86 parts ; tin, 0.25 parts. 6. Sheet Brass of Romilly.-Copper, 70.1 parts; zinc, 29.0 parts. 7. Englioth Bracs Wire.-Copper, 70.29 parts ; sinc, 29.26 parts; lead, 0.28 parts; tin, 0.17 parts. 8. Augsburg Brass Wire.-Copper, 71.89 parts; zinc, 27.63 parts; tin 0.85 parts.
Rid Brasis, for Gilt Articles.-1. Copper, 82.0 prrte qijc, 18.0 pute; lead, 1.8 parts ; tin, 3.0 parts. 2. Another, $\mathrm{Copper}, 82$ parts; zinc, 18 parts ; lead, \approx parts ; tin, 1 part. 3. Angther. Coppor, 82.3 parts $;$ zinc, 17.5 parts; tin, 0.2 parts. 4 . Franch Tombac for Sword Aandles.-Copper, 80 parts; zinc, 17 parts; tip,乞े parts. 5. For Parisian Qrnaments-Oopper, 85 parts inipc, 15 parte; tin, a trace. 6. Used for German Ornaments.-Goppar, ${ }^{6}$.

parts ; zinc; 14.7 parts. * Chrysochalk.-Copper, 90.0 parts ; zinc,

 7.9 parts; lead, 1.6 parts. 8. Red Tombac from Paris:-Copper, 92 parte ; zinc, 8 parts.Compositions.-1. For strong pumps, \&c.-Copper, $1 \mathrm{lb} . ;$ zinc, $\frac{1}{2}$ oz.; tiul, $1 \frac{1}{2}$ oz. 2. For toothed wheels. - Copper, 1 lb ; brass, 2 oz .; tin, 2 oz. 3. Copper, 1 lb .; brass, 2 oz. ; tin, $1 \sharp$ oz. 4. For turnmng work.-Copper, 1 lb .; brass, $1 \frac{1}{2}$ oz.; tin, 2 oz. 5. For nuts of coarse threads and bearings.-Copper, $1 \mathrm{lb} . ;$ brass, $1 \frac{1}{2} \mathrm{oz}$, $;$ tin, 24 oz. 6. For bearings to sustain great weights.-Copper, 1 lb .; zinc, $\frac{1}{2}$ oz.; tin, 24 oz. 7. Pewterers temper.-Tin, 2 lbs.; copper, 1 lb. Used to add in small quantities to tin. 8. Hard bearings for machinery.-Copper, $1 \mathrm{lb} . ; \operatorname{tin}, 2 \mathrm{oz}$. 9. Very hard ditto.-Copper; 1 lb .: tin, $2 \frac{1}{2} \mathrm{oz}$.
Anti-F rictipn Metal.-1. Copper, 4 lls ; regulus of antimony, 8 lbs.; Banca tin, 96 lbs. 2. Grain zinc, $7 \frac{1}{2}$ lbs.; purified zinc, 7a lbs. ; antimony, 11b. 3. Zinc, 17 parts; copper, 1 part; antimony, $1 \downarrow$ parts. This possesses unsurpassable anti-friction quali.ties, and does not require the protection of outer casings of a harder metal. 4. Block tin, 8 lbs.; antimony, 2 lbs .; copper, 1 lb . If the metal be too hard, it may be softened by adding some lead. 5. The best alloj for journal boxes is composed of copper, 24 lbs .; tin, 24 lbs. ; and antimony, 8 lbs. Melt the copper first, then add the tin, and lastly the antimony. It should be first run into ingots, then melted, and cast in the form required for the boxes. 6. Meli in a crucible $1 \frac{1}{3}$ lbs. of copper, and, while the copper is melting melt in a ladle 25 lbs . of tin and 3 of antimony, nearly red hot, pour the two together, and stir until nearly cool. This makes the finest kind of lining metal. 7. Very cheap. Lead, 100 lbs . autimony, 15 lbs. This costs about 10 cents per 1 lb .
Yallow Brass for Turning.-(Common article.)-Copper, 20 lbs. ; zinc, 10 lbs ; lead, 4 oz.
Rad Brass, frie, for Turning.-Copper, 160 lbs.; zinc, 50 lbs.; lead, 10 lbs . antimony, 44 oz.
Anothrr brass for Turning.-Copper, 32 lbs ; zinc, 10 lbs .; lead, 1 lb .

Besí Red Brass, for Fine Castings.-Copper, 24 lbs.; zinc, 5 lbs. ; bismuth, 1 oz . Put in the bismuth last before pouring off.

Bronze Metal.-Copper, 7 lbs. ; zinc, 3 lbs.; tin, 2 lbs.
Bronze Metal.-Copper, $1 \mathrm{lb} . ;$ zinc, 12 lbs.; tin, 8 lbs.
Bell Metal, for large Bells.-Copper, 100 lbs.; tin, from 20 to 25 lbs .
Bell Metal for gyall Bells.-Copper, 3 lbs.; tin, $\mathrm{I}^{\circ} \mathrm{lb}$.
Cook Matal.-Copper, 26 lbs ; lead, 8 lbs.; litharge, 1 oz .; antimony, 308.
Hardening for. Britannia.-(To be mixed separately from the other ingredients.)-Copper, 2 lbs. ; tin, 1 lb.

Good Britannia Metal.-Tin, 150 lbs.; copper, 3 lbs ; antimony, 10 lbs.

Britanila Metal, 2d quality.-Tin, 140 lbs.; copper, 3 lbs ; antimony, 0 lbs.

Britannia Metal, for Casting.-Tia, 210 lbs.; copper, 4 lbs.; antimony, 12 lbs.

B甪TA dening, Weir copper, Brita lbs.; an Best mony, 6 Best antimon Best 1 timony, Best copper, OAstry Lining copper, tin, 72 lb Fine St copper, 4 Germa zinc, 251
Germa zinc, 2011 Germal nickel; 25
Germas
Ibs.; zinc
?late beir
imitati
Pinobis
Tombac
Red To
Hard
zinc, 1 oz.
Mital.
muth, 5 lb
Spanish
$3 \mathrm{oz} . \mathrm{Me}$
pound.
Rivet M
Rivet M
Fusible
oz.; tin, 3
Fusible
bismuth, 2
Best So
lead, 5 lbs
BRass S
(Yellow a
(White) co Spilter Solper

SIPTS.

10.0 parts ; zinc, Paris.-Copper,
r, 1 lb. ; zinc b. ; brass, 2 oz .
4. For turn5. For nuts of ss, $1 \frac{1}{2} \mathrm{oz}_{3} ; \mathrm{tin}$, -Copper, 1 lb .; 2 lbs. ; copper, ard bearings for ditto.-Copper;
us of antimony, ; purified zinc, ar, 1 part ; anti.. ti-friction quali-. er casings of a s.; copper, 1 lb . ding some lead. copper, 24 lbs. ; rst, then add the un into ingots, boxes. 6. Melt opper is melting nearly red hot, This makes the 100 lbs. ; auti-

Copper, 20 lbs ;
; zinc, 50 lbs.;

- ; zinc, 10 lbs. ;

24 lbs.; zinc, pre pouring off. a, 2 lbs. n, 8 lbs.
3.; tin, from 20
tin, $l^{\prime} l b$.
parge, 1 oz . ; anrately from the r, 3 lbs.; anticopper, 3 lbs.; copper, 4 lbs.

Batrannia Metal, for Spinnivg.-Tin, 100 lbs. ; Britannia hardening, 4 lbs. ; antimony, 4 lbs.
White Solder, for raiskd Brytainia Warm.-Tin, 100 lbs. ; copper, 3 oz., to make it free ; and lead, 3 oz .
Britannia Metal, for Registers.-Tin, 100 lbs.; hardening, 8 lbs. ; antimony, 8 lbs.
Best Brivannia for Spodts.-Tin, 140 lbs.; copper, 3 lbs. ; antimony, 6 lbs.
Best Britannia for Spoons.-Tin, 100 lbs.; hardening, 5 lbs.; antimony, 10 lbs .
Best Britannia for Handles.-Tin, 140 lbs.; copper, 2 lbs. ; antimony, 5 lbs.

Best Britannia, for Lamps, Pillare, and Spouts.-Tin, 300 Ïbs.; copper, 4 lbs.; antimony, 15 lbs.
Casting.-Tin, 100 lbs .; hardening, 5 lbs. ; antimony, 5 lbs.
Lining Metal for Boxes om Railroad Cars.-Mix tim, 24 lbs . $;$ copper, 4 lbs.; antimony, 8 lbs ; (for a hardening), then add tin, 72 lbs.
Fine Silver Colored Metal.-Tin, 100 lbs. ; antimony, 8 lbs.; copper, 4 lbs. ; bismuth, 1 lb .
German Silver, First Quality, for Casting.-Copper, 50 lbs ; zinc, 25 lbs.; nickel, 25 lbs.

Gehman Silver, Second Quatity, for Oasting.-Copper, 50 lbs ; zinc, 20 lbs.; nickel (best pulverized), 10 lbs.

German Silver, for Rolling.-Copper, 60 lbs.; zinc, 20 lbs.; nickel, 25 lbs.

Gprman Silver, for Bejls, and other Castings.-Copper, 60 $\mathrm{lbs} . ;$ zinc, 20 lbs ; nickel, 20 lbs . ; lead, 3 lbs. ; iron (that of tin "late being best), 2 lbs.
Imitation of Sllver.-Tin, 3 oz. ; copper, 4 lbs.
Pinolbeck.-Copper, 5 lbs. ; zinc, 11 b .
Tombac.- Copper, $16 \mathrm{lbs} . ;$ tin, 1 lb. ; zinc, 1 lb.
Red Tombao.- Copper, 10 lbs.; zinc, 1 lb.
Hard White Metal.-Sheel brass, 32 oz .; lead, 2 oz. ; tin, $2 \mathrm{oz} . ;$ zinc, 1 oz .
Mutal for taking Impressions.-Lead, 3 lbs.; tin, 2 lbs.; bismuth, 5 lbs.
Spanish Tutania.-Iron or steel, 8 oz ; antimony, 16 oz .; nitre, 3 oz . Melt and harden 8 oz . tin with 1 oz . of the above compound.

Rivet Metal.-Copper, 32 oz. ; tin, 2 oz. ; zinc, 1 oz.
Rivet Metal, yor Hose.-Tin, 64 lbs. ; copper, 1 lb .
Fusible Alloy.-(Which melts in boiling water.)-Bismuth, 8 oz. ; tin, 3 rà. ; lead, 5 oz.
Fusible Alcoy, for Silvering Glass.-Tin, 6 oz ; lead, 10 oz .; bismuth, 21 oz. ; me:cury, a small quantity.
Best Soft Solder, for Cast Britannia Warm.-Tị, 8 lbs.; lead, 5 lbs.
Brass Solder.-1. Copper, 61.25 parts; zinc, 38.75 parts; 2. (Yellow and easily fusible) copper, 45 parts ; zinc, 55 parts; 3. (White) copper, 57.41 parts ; tin, 14.60 parts ; zinc, 27.99 parts,
Spalter Solder. Equal parts copper and zinc.
Solper for Cupper,-Copper, 10 lbs. ; zinc, 9 lhs.
 29 lbs. ; tin, 1 lb.
-Black Sulder.-Copper, 2lbs. ; zinc, 3 lbs. ; tin, 2 oz.
Black Solder.-Sheet brass, 20 lbs.; tin, 6 lbs. ; zinc, 1 lb.
Pawitrirg'íSort Soldras.-1. Biamoth, 2 ; lead, 4 ; tin, 3 parts. 2. Bismuth, 1 ; lead, 1 ; tin, 2 parts.

Prompurs Solpmi-Lead. 3 parts ; tin, 1 part.
Solder.-For lead, the solder is one part tin, 1 i= 2 of lead; for tin, 1 to 2 parts tin to one of lead; for zinc, 1 part tin to 1 to 2 of lead; for pewter, 1 part tin to 1 of lead, and 1 to 2 parts of bismuth:
The surfaces to be joined are made perfectly clean and spoootl, and then covered with sal-ammoniac; or resin; or both; the solder is then applied, being melted in, and smoothed over by the soldering iron.
To Soldir Iron to atere, or hitese to Brass.-Tin, 3 parts; copper, $39 \frac{1}{2}$ parts ; zinc, 7t parts. Wihen applied in a molten stato it will firmly unite the metals first named to each other.
Ooppirspiras' Sowden. -Tin, 2 parts; lead, 1 pait. When the copper is thick, heat it by a naked fire; if thin, use a tinned copper tool." Use murriate or chloride of zinc, or resin, as a flux. The same solder will do for iron, cast iron, or steel; if thick, heat by a naked fire; or immerse in the solder.

OOLD Brazing, WITHOUT A Firn or JaAmp.-Fluoric acid, $\frac{1}{2}$ oz. ; oxymuriatic acid; toz. mix in a lead bottle. Put a chalk mark each side wiere you want to praze. This mixture will keep about 6 monthis in one bottle.

Plúvberis' Soldar.-Bismuth, 1 part; lead, 5 parts; tin, 3 parts is a first class composition.

Cond Solderng without fire or lamp.-Bismuth, \& oz.; quicksilver, \ddagger oz.; block tin filings, 10 oz . ; spirits salts, 1 oz., mixed together.

New and Beautivui ALLoys.- Copper, 698 parts; nickel, 19.8 parts ; zinc 5.5 parts ; cadmium, 4.7 parts ; used for spoons, forks, \&c. Another. Copper, 89.3 parts ; aluminum, 10.5 parts. Oreide resembling, Gold. Copper, 79.7 parts ; zinc, 83.05 parts ; nickel, 6.09 parts, with a trace of iron afid tín.

Ohinese White Copper.-Copper, 40.4 ; nickel, 31.6 ; zinc, 25.4; and iron, 2.6 parts.

BATH Metal.-Brass, 32 parts.; zinc, 9 parts.
Speculum Metal.-Copper, 6; tin, 2 ; and arsenic, 1 part. Or, copper, 7 ; zince, 3 ; and tin, 4 parts.

Britannia Mrtal.-Brass, 4 parts; tin, 4 parts; when fused, add bismuth; $4 ;$ and antimony, 4 parts. This composition is added at discretion to melted tin.

Suprizior Belli Mitai.-Copper, 100 lbs ; tin, 23 lbs.
Electrom.-Copper, 8 ; nickel, 4 ; zinc, $3 \frac{1}{2}$ parts. This compound is unsurpassed for ease of workmanship and beauty of appearance.

Tinmans' Sonpmr.-Lead, 1 ; tin, 1 part.
Priterars' Solder:-Tín, 2 ; lead, 1 part.
Comion Pewthr.-Tin, 4 ; lead, 1 part.
Bast Ph'Ter.-Tin, 100 ; antimony, 17 parts.
Queen's Metal.-Tin' 9 ; antimony, 1 ; bismuth, 1 ; lead, 1 part. Watce-Makrrs' Brass.-Copper, I'part; zinc, 2 paris.

PTS.

32 lbw ; ;ime,
$20 z$.
zinc, 1:lb.
4; tin, 3 parta.
$=2$ of lead ; for t tin to 1 to 2 of 2 parts of bis-
an and smoott, ooth ; the solder er by the solder-
s.-Tin, 3 parts ; n a molten state other.
pait. When the se a tinned cop1, as a flux. The thicki, heat by a
cacid, $\frac{1}{2}$ oz. ; oxychalk mark each ill keep about 6
s; tin, 3 parts is a
b, \& oz.; quick--, mixed together. arts; nickel, 19.8 spoons, forks, \&c. ts. Oreide resemnickel, 6.09 parts,
31.6 ; zinc, 25.4;
enic, 1 part. Or,
when fused, add sition is added at

3 lbs .
This compound ty of appearance.

1 ; lead, 1 part 2 paris.

MAOHINISTS, ENGINERRS, ©C., BECEIPTS.
191
A. Mepal teat expaxds in Coounge.-Lead, 9; antimony 2 ; bismuth, 1 part. This metal is very useful in filling small defects in iron eastings, \&e.
Grrician Brass.-Copper, 1 part; zine; 1 part.
albata Metal.-Niokel, 3 to 4 parts ;-copper,' 20 parts ; zine, 16 parts. Used for plated goods.
Brimise Pliatz-Nickel, 5 to 6 parts; copper, 20 parts ; zinc, 8 to 10 parts. Used for plated goods.
Chantry's Hard Allox.-Copper, 1 lb .;-zinc 2 2loz.; tin; $2!$ oz. Razors as hard as tempered steel have deen made from this alloy.
Hard 'White Metal for Buttons.-Brass, 1 lb . ; zinic, 2 oz. ; thn, 1 oz .
Bibuivgiaí Plativ.-Copper, 8 parts; zinc, 5 parts.
Gkeman Surpar.-1. Copper, 40.62 parts ; zinc, 43.76 parts; níckel, 15.62 parts. 2. Oopper, 41.47 parts; zinc; 26.08 parts; nickel; 32.45 parts. 3. Copper; 55.55 parts; ; zinc, 6.55 parts ; nickel, 38.90 parts. 4. Copper, 53:40 parts; zinc, 29.10 parts; nickel, 17.50 parts. 5. (Alfenidé contains a trace of iron) Copper, 59.60 parts ; zinc 30.30 parts ; nickel, 10.10 parts.
Brifannia Mirtal. -1 . Copper 0.30 parts; tin, $89: 70$ parts'; zinc, 0.30 parts; antimony, 9.70 parts. 2. Copper, 1.85 parts; tin; 81.64 parts ; antimony, 16.51 parts. 3. Copper, 0.91 parts ; tin, 89,97 parts; antimony, 9.12 parts. 4. Tin, 90.00 parts ; antimony, 10 parts. 5. Copper, 1.78 parts ; tin; 89.30 parts ; anitimony, 7.14 parts ; biemuth, 1.78 parts.
Gun Mreat.-Copper, 90 parts; tin; 10 parts.
Meling Point or Metals. Iron fuses at 27870 Fahr.; gold at 2016°; silver, 1873°; copper; 1996 ${ }^{\circ}$; zinc, 773°; antimoviy, B09 ${ }^{\circ}$; bismuth, 476 to $507{ }^{\circ}$; nickel, 630°; tin, 442°; lead; 334°; mercury volatilizes at 670°.
Ominget Gong Metal.-Copper, 78.00 parts ; tin; 22.00 .
Alloy for Gun Mountings.-Copper, 80 parts; tin, 3 ; zinc, 17.
Whita Metay por Table Bells.-Copper, 2.06 parts; tin; 97.31 parts; bismuth, 0.63 parts.
Cloce Bell Mbtal.-Copper; 75.19 parts, tin, 24.81 parts.
Socket Metal for Locomotive Axic-trans:-1. Oopper, 86.03; tin, 13.97; 2. (French) Copper, 82 parts; tin, 10 parts; zinc, 8 parts ; 3. (Stephenson's) Copper, 79 parts; ;itin, 8 parts; zinc, 5 parts ; lead, 8 parts; 4. (Belgian) Copper, 89.02 parts ; tin, 2.44 parts ; zinc, 7.76 parts ; iron, 0.78 parts; 5 . (English) Oopper, 73.96 parts; tin, 9.49 parts ; zinc, 9.03 parts ; lead, 7.09 parts; iron; 0.43 parts.
Brass.-1. Copper, 73 parts ; zinc, 27 parts ; 2. Copper, 65 parts; zinc, 35 parts ; 3. Copper, 70 parts ; zinc, 30 parts.
Allóy for Mechanical Instruments.-Copper, 1 lb ; tin, 1 oz.
Malleable Brass.-1. Copper, 70.10 parts; zinc; 29.90 parts; 2. (Superior) Copper, 60 parts; zinc; 40 parts.
Button Makerg' Metal.-1. Copper, 43 parts ; zinc, 67 parts; 2. Copper, 62.22 parts; tin, 2.78 parts ; zinc, 35 parts; 3. Copper; 68.94 parts; tin, 5.28 parts ${ }_{i}$ zinc, 85.78 parts.

Metai for Sliding Leivers of Locomotivise.-1. Copper, 85:28: parts; tin, 12.75 parts, zinc, 2.00 parts ; 2. (Fenton's) Copper, 5.50 parts : tin: 14.50 parts: zinc; 80 parts.

Alloy for Cylindirs of Locomótives.-Copper; 88.63 parts; tin, 2.38 parts; zinc, 6.99 parts.

Alloy for Stuffing Boxis of Locomotives.-Copper, 90.06 parts ; tin, 3.56 parts ; zinc, 6.38 parts.

Amalgam for Mirrors. -1 . Tin, 70 parts ; mercury, 30 parts; 2. (For curved mirrors) Tin, 80 parts ; mercury, 20 parts; 3. Tin, 8.33 parts ; lead, 8.34 parts ; bismuth, 8.33 parts ; mercury, 75 parts; 4. (For spherical mirrors) Bismuth, 80 parts ; mercury, 26 parts.

Reflí jtor Metal.-1. (Duppler's)Zine, 20 parts; silver, 80 parts; 2. Copper, 66.22 parts ; tin, 33.11 parts ; arsenic, 0.67 parts ; 3. (Cooper's) Copper, 57.86 parts; tin, 27.28 parts ; zinc, 3.30 parts; arsenic, 1.65 parts; platinum, 9.91 parts ; 4. Copper, 64 parts ; tin, 32.00 parts ; arsenic, 4.00 parts ; 5. Copper, 82.18 parts; lead, 9.22 parts; antimony, 8.60 parts ; 6 . (Little's) Copper, 69.01 parts; tin, 30.82 parts ; zinc, 2.44 parts; arsenic, 1.83 parts.

Metal for Gilt Wares.-1. Copper, 78.47 parts ; tin, 2.87 parts; zinc, 17.23 parts; lead, 1.43 parts; 2. Copper, 64.43 parts; tin, 0.25 parts ; zinc, 32.44 parts; lead, 2.86 parts; 3. Copper, 72.43 parts; tin, 1.87 parts; zinc, 22.75 parts ; lead; 2.96 parts; 4. Copper, 70.90 parts ; tin, 2.00 parts ; zinc, 24.05 parts ; lead, 3.05 .

Spurious Silver Leaf.-Tin, 90.09 parts; zinc, 9.91 parts.
Shot Metal.-1. Lead, 97.06 parts ; arsenic, 2.93 parts; 2. Lead, 99.60 parts ; arsenic, 0.40 parts.

Bismutr Solder.-Tin, 33.33 parts ; lead, 33.33 parts; bismuth 33.34 parts.

Glaziers' Solder.-Tin, 3 parts ; lead, 1 part.
Amalgam for Eleotrical Machines.-1. Tin, 25 parts; zinc, 25 parts; mercury, 50 parts. 2. Tin, 11.11 parts ; zinc, 22.22 parts; mercury, 66.67 parts.

Type Metal.-1. Fur smallest and most brittle types.-Lead, 3 parts ; antimony, 1 part. 2. For small, hard, brittle types.-Lead, 4 parts; antimony, 1 part. 3. For types of medium size.-Lead, 5 parts; antimonj, 1 part. 4. For large types.-Lead, 6 parts ; antimony, 1 part. 5 . For largest and softest types.-Lead, 7 parts; antimony, 1 part. In adaition to lead and antimony, type metal also contains 4 to 8 per cent. of tin, and sometimes 1 to 2 per cent. of copper. Stereotype plates are made of lead, 20 parts; antimony, 4 parts; tin, 1 part.

Brass for Wlime.-Copper, 34 parts ; calamine, 56 parts : mix.
Britannia Metal.-1. Tin, 82 parts; lead, 18 parts; brasi, 5 parts; antimony, 5 parts ; mix. 2. Brass, 1 part ; antimony, 4 parts ; tin, 20 parts : mix. 3. Plate-brass, tin, bismuth, and antimony, of each equal parts. Add tbis mixture to melted tin until it acquires the proper color and hardness.

Bronze. - 1. Copper, 83 parts; zinc, 11 parts; tin, 4 parts; lead, 2 parts; mix. 2. Copper, 14 parts; melt, and add zinc, 6 parts; tin, 4 parts; mix.

Anoirnt Bronze.-Copper, 100 parts; lead and tin, each, 7 parts : mix.

Alloy for Bronze Ornaments.-Copper, 82 parts; zinc, 18 parts ; tin, 3 parts; lead, 3 parts ; mix.

Beadtirul hed Bronze Powder.-Sulphate of copper, 100 parts; carbonate of soda, 60 parts: apply heat until they unite into a mass;
then them and d

Bro ether, of cop
er; 88.63 parts ;
-Copper, 90.06 ury, 30 parts; 2. arts ; 3. Tin, 8.33 ercury, 75 parts; cury, 26 parts. ; silver, 80 parts; c, 0.67 parts ; 3 . zinc, 3.30 parts $;$ per, 64 parts ; tin, parts; lead, 9.22 69.01 parts ; tin,
ts ; tin, 2.87 parts; 64.43 parts ; tin, 3. Copper, 72.43 96 parts ; 4. Cop; lead, 3.05.
9.91 parts.

3 parts; 2. Lead,
3 parts ; bismuth
a, 25 parts; zinc, zinc, 22.22 parts ;
le types.-Lead, 3 le types.-Lead, 4 cm size.-Liead, 5 ad, $_{2} 6$ parts; anti--Lead, 7 parts mony, type metal es 1 to 2 per cent. d, 20 parts; anti-

56 parts : mix. 8 parts; brasi, 5 art; antimony, 4 smuth, and antimelted tin until
in, 4 parts ; lead, d zinc, 6 parts;
and tin, each, 7
parts; zinc, 18
opper, 100 parts; nite into a mass;
then cool, and add copper filings, 15 parts. Well mix, and keep them at a white heat for 20 minutes; then cool, powder, wash, and dry.
Bronaing Fluid for Guns.-Nitric acid, sp. gr. 1.2 par+?; nitrio ether, alcohol, muriate of iron, each 1 part : mix, then add ulphato of copper, 2 parts, dissolved in water, 10 parts.

Cannon Metal.-Take tin, 10 parts ; copper, 90 parts : melt.
Statuary Bronze.-1. Copper, 88 parts; tin, 9 parts; zinc, 2 parts; lead, 1 part. 2. Copper, $82 \frac{1}{2}$ parts; tin, 5 parts; zinc, $10 \frac{1}{2}$ parts; lead, 2 parts. 3. Copper, 90 parts; tin, 9 parts; lead; 1 part.
Bronze, for Medals.-Copper, 89 parts; tin, 8 parts; zinc, 3 parts.
Brass, "for Heavy Work.-Copper, 100 parts; tin, 15 parts. qinc, 15 parts. Another-Copper, 112 parts ; tin, 13 ; zinc, 1.
Brass, for Tubrs.-Copper, 2 parts ; zinc, 1 part.
Alloy, for Cyibals.-Copper, 80 ; $\operatorname{tin}_{2} 20$.
Mirrors of Reflecting Telescopes.-Copper, 100 ; tin, 50.
White Argentan.-Copper, 8 parts; nickel, 3 parts; zinc, 35 parts. This beautiful composition is in imitation of silver.
Chineser Silver.-Silver, 2.5 ; copper; 65.24 ; zinc, 19.52 ; cobalt of iron, 0.12 ; nickel, 13.

Tutenag.-Copper, 8 ; nickel, 3 ; zinc, 5.
Printing Charaotmbs.-1. Lead, 4 ; antimony, 2. 2. For stereotype plates, lead, 25 parts; antimony, 4 parts; tin, 1 part.
Fine. Whire Giryan Silver.-1. For Castings. Lead, 3 parts; nickel, 20 parts ; zinc, 20 parts; copper, 60 parts: mix. 2. For Rolling. Nickel, 5 parts ; zinc, 4 parts ; copper 12 parts: mix.

Imitation Platinum.-Melt together 8 parts brass and 5 parts of zinc. This alloy very closely resembles platinum:

Imitation Gond.-Platina, 8 parts ; silver, 4 parts; copper, 12 parts : melt all together.
Imitation Silver.-Block-tin, 100 parts ; antimony, 8 parts ; bismuth, 1 part; copper, 4 parts : melt all together.

Toybio, or Rad Brass.-Melt together 8 parts of copper and 1 part of zinc.
Parisian Bexll-Metal.-Copper, 72 parts ; tin, 26年 parts; iron, $1 \frac{1}{2}$ parts. Used for the bells of small ornamental clocks.
Bell-Metal.-1. Copper, 25 parts ; tin, 5 parts: mix. 2. Copper, 79 parts ; tin, 26 parts : mix. 3. Copper, 78 parts; tin, 22 parts : mix.
Princes's Metal.-1. Copper, 3 parts; zinc, 1 part. 2. Brass, 8 parts; zinc, 1 part. 3. Zinc and copper, equal parts: mix.
Quern's Metal.-1. Lead, 1 part ; bismuth, 1 part; antimony, 1 part, ; tin, 9 parts : mix. 2. Tin, 9 parts ; bismuth, 1 part; lead, 2 parts ; antimony, 1 part: mix by melting.
Brass.-Copper, 3 parts : melt, then add zinc, 1 part.
Button-Makers Finm Brass.-Brass, 8 parts; zinc, 5 parts.
Button-Makers' Common Brass.-Button brass, 6 parts; tin, 1 part; lead, 1 part : mix.

Organ Pipes consist of lead alloyed with about half its quantity of tin to harden it. The mottled or crystalline appearance so much admired shows an abundance of tin.

194

 MACHINISTG, ENGINEERS, \&O.; REOEIPTS:Blion Whiterstydts Patest Stimathing for shipi consists of lead, with from 2 to 8 per cent of artimony; about 3 'per cent:. is the usual quantity, The alloy is rolled into sheets.
Lead Skot are cast by letting the metal run through a narrow slift into a species of colander at the top of a'lofty tower; the metal escapes in drops, which, for the most part, aissume the spherical form' before they reach the tank of water into which they fall at the foot of the tower, and this prevents their being bruised. They are afterwards riddled or sifted tot size, and afterwards charned in a barrel with black lead.
Mital for anatomioal Injegtions.-Tin, 16.41 parts ; lead; $9.2 \uparrow$ parts; biémidith; 27.81 parts'; mercury, 46.41 parts.
Yellow Dipping Metal.-Copper, $32 \mathrm{lbs} ; 6$ to 7 oz , zinc to every lb. of copper.
LaAD 'Piphn' are now manufactured by hydraulic presstre, instead of by the old ptocess of drawing out on triblets.
Mustr Matal for Saips.-Best selected copper, 60 parts; best zinc, 40 parts. Melt together in the usual manner, and roll into sheets of suitable thickness. This composition resists oxidation from exposure to sea-water, and prevents the adhesion of barnaclés.
AID Bronze.-Cobalt, 4 lbs.i pulverize; sift through a fine sieve; put in a stone pot ; add $\frac{1}{2}$ gal. nitric acid, a little at a time, stirring frequently for 24 hours; then add about 5 gals. muriatic acid, or, until the work comes out a dark brown.
ALEAI Bionzm.-Digsolve 5 lbs nitrate of copper if 3 gals. water, with 5 lbs pearlash; add 1 or 2 pints potash water then add from 2 to 3 lbs. sal-ammoniac, or, until the work comes out the required color.

Coatme Dip.-Sulphate of zinc, 8 lbs . ; oil of vitriol, 5 gals .; aqua fortis, $\frac{7}{4}$ gal. Th use, warm up scalding bot.

To Olean and Polish Brass.-Wash with alum boiled in strong lye, in the proportion of an ounce to a pint; afterwards rub with strong tripoli. Not to be used on gilt or lacquered Work.
Ormolt Colorivo.-Alum, 30 parts'; nitrate of potassa; 30 parts; red ochre, 30 parts ; sulphate of zinc, 8 parts ; common salt, 1 part; milphate of iron, l part. It is applied with a soft brush. The articles are placed over a clear charcoal fre until the salts, malted and dried, assume a brown aspect. They are then suddenly cooled in nitric acid water containing 3 per cent. of hydrochloric acid ; afterwards washed in abundance of water and dried in sawdust.

Qúior Brigit Dipping Acid, for Brass whiof has been Ormo. lund.-Sulphuric Acid 1 gal.; nitric acid, 1 gal:
Dippixa Aóid.-Súlphuric acid, 12 lbs. ; nitric acid, 1 pint; nitre, 4 lbs ; soot, 2 handfuls ; brimstone, 2 oz. Pulverize the brimstone, and soak it in water an hour. Add the nitric acid last.

Good Dipping Acid ror Cast Brass.-Sulphuric acid, 1 qt.; nitre; 1 qt. ; water, 1 qt. A little muriatic acíd may be added or omitted.

Ormolo Dipping Aoid, for Sheer Brass.-Sulphuric acid 2 gals.; nitric acid, 1 pt . muriatic acid, 1 pt . initre 12 lbs . Put in the muriatic acid last, a littie at a time, and stir the mixicre with a atick.

Dipping Aord.-Sulphuric acid, 4 gals ; nitric acid, 2 gals ; saturated solution of sulphate of iron (copperas), 1 pint; solution of sulphate of copper, 1 qt .

Ormolu dipping Acid, yor Shaet or Cast Brass.-Sulphuric acid, 1 gal. ; sal ammoniac, 1 oz ., sulphur (in flour), 1 oz.; blue vitriol, 1 oz ; saturated solution of zinc in nitric acid, mired with an equal quantity of sulphuric acid; 1 gal.

To Prmpare Brass Work for Ormolu Dipping,-If the work is oily, boil it in lye; and if it is finished work, filed or turned; dip it in old acid, and it is then ready to be ormolued; but if it is unfinished, and free from oil, pickle it in strong aulphuric acid, dip in puro nitric acid, and then in the old acid, after which it will be ready for ormoluing.

To Retair Old Nitrio Adid Ormolu Dips.-If the work after dipping appears coarse and spotted; add vitriol till itanswers the purpose. If the work after dipping appears too smooth, add muriatic acid and nitre till it gives the right appearance:
The other ormolu dips should be repaired according to the receipts, putting in the proper ingredients to strengthen them. They should not be allowed to settle, but should be stiried often while using.
Tinning Aoid, for Brass or Zino.-Muriatic acid, 1 qt. ; zinc, 6 oz. To a solution of this, add water, 1 qt. i, sal-ammoniac,' 2 oz.
Vinegar Bronza, for Brass.- Vinegar, 10 gals.; blue vitriol, 3 lbs. ; muriatic acid, 3 lbs ; corrosive sublimate, 4 grs. ; sal-ammoniac, 2 lbs. ; alum, 8 oz .
Direotions for maring Laqquer.--Mix the ingredients, and let the vessel containing them stand in the sun, or in a place slightly warmed, three or four days, shaking it frequently till the gum is dissolved, after which let it settle from twenty-four to forty-eight hours, .. When the clear liquor may be poured off for use Pulverized glass is sometimes used, in making lacquer; to carry down the impurities.
LaOqumr for Dippad Brass.-Alcohol, proof specific gravity not less than $95-100$ ths, 2 gale. ; seed lac, 1 lb. ; gum copal, 1 oz. ; English saffron, 1 oz ; annotto, 1 oz .
Lagquar for Bronzed Brass.-To one pint of the above lacquer, add gamboge, 1 oz . ; and, after mixing it, add an equal quantity of the first lacquer.
Deep Gold-colored Lageuer.-Best alcohol, 40 oz.; Spanish annotto, 8 grs. ; turmeric 2 drs. ; shellac, $\frac{1}{2}$ oz. ; red sanders, 12 grs. ; when dissolved, add spirits of turpentine, 30 drops.

Deep Gold-colored Ladeqer for Brass not Dipped.-Alcohol, 4 gals. ; turmeric, 3 lbs.; gamboge, $3 \mathrm{oz}$. ; gum sanderach, 7 lbs . $;$ shellac, $1 \frac{1}{2}$ lbs. ; turpentine varnish, 1 pint.
Gold-olorid. Liaquer, for Dipped Brass.-Alcohol, 36 oz ; seed lac, 6 oz . ; amber, 2 oz . ; gum gutta, 2 oz ; red sandal wood, 24 grs.; dragon's blood, 60 grs. ; oriental saffron, 36 grs. ; pulve= rized glass, 40 oz .

Gold Láquer, for Brass.-Seed lac, 6 oz. ; amber or copal, 2 02. ; best alcohol, 4 gals. ; pulverized glass, 4 oz ; dragon's blood, 40 grs ; extract of red sandal wood obtained by water, 30 grs.

Lacquer for Dipped Brass.-Alcohol, 12 gals. ; seed lac, 8 lis. ; turmeric, 1 lb . to a gallon of the above mixture; Spanish saffron, 4 oz: The saffron is to be added for bronze work.

Good Laqueer.-Alcohol, 8 oz. ; gamboge, 1 oz. ; shellac, 3 oz.; annotto, 1 oz . ; solution of 3 oz . of seed lac in 1 pint of alcohol; when dissolved ${ }_{2}$ add $\frac{1}{2}$ oz. Venice turpentine, $\frac{1}{}$ oz. dragon's blood, will make it dark ; keep it in a warm place four or five days.

To Bronza Iron Castings.-Cleanse thoroughly, and afterwards immerat in a solution of sulphate of copper, when the castings will acquire a coat of the latter metal. They must be then washed in water.

Antique Bronze Paint.-Sal-ammoniac, 1 oz.; cream tartar, 3 oz. ; sommon salt, 6 oz. Dissolve in 1 pint hot water, then add 2 oz . of nitrate of copper dissolved in $\frac{1}{2}$ pint water, mix well, and apply it repeatedly to the article, in a damp situation, with a brush.

Gilders Pioklm.-Alum and common salt, each, 1 oz. ; nitre, 2 oz. ; dissolved in water, $\frac{1}{2}$ pt. Used to impart a ríh yellow color to gold surfaces. It is best used largely ailuted with water.

To Silvar Ivory.-Pound a small piece of nitrate of silver in a mortar, add soft water to it, mix them well together, and keep in vial for use. When you wish to silver any article, immerse it in this solution, let it remain till it turns of a deep yellow ; then place it in clear water, and expose it to the rays of the sun. If you wish to depicture a figure, name, or cipher, on your ivory, dip a camel'shair pencil in the solution, and draw the subject on the ivory. After it has turned a deep yellow, wach it well with water, and pla, e it in the sunshine, occasionally wetting it with pure water. In a short time it will turn of a deep black_color, which, if well rubbed, will change to a brilliant silver.

Pale Llaquer for Tin Plate.-Best alcohol, 8 oz.; turmeric, 4 drs.; hay saffron, 2 scs . ; dragon blood, 4 scs ; red sanders, 1 sc . ; shellac, $1 \mathrm{oz} . ;$ gum sanderach, 2 drs.; gum mastic, 2 drs. $;$ Canada balsam, 2 drs . ; when dissolved, add spirits of turpentine, 80 drops.
Red LacQuer for Brass.-Alcohol, 8 gals. ; dragon's blood, 4 lbs. ; Spanish annotto, 12 lbs ; gum sanderach, 13 lbs ; turpentine, 1 gal.

Pala Lacquer, for Brass.-Alcohol, 2 gala. ; Cape aloes, cut small, 3 oz . pale shellac, 1 lb . ; gamboge; 1 oz.

Blue bronze on Copper.-Clean and polish well, then cover the surface with a fluid obtained by dissolving vermilipn in a warm solution of sulphide of sodium, to which some caustic potassa has been added.

Application of Bronze Powders.-The proper way is to varnish the article and then dust the bronze powder over it, after the varnish is partially dried.

Bronze Dip.-Sal-ammoniac, 1 oz. ; salt of sorrel (binoxolate of potash), \ddagger oz. dissolved in vinegar.
Parisian. Bronze Dip.-Sal-ammoniac, $\frac{1}{2}$ oz. ; common salt, oz. ; spirits of hartshorn, 1 oz . dissolved in an English quart of vinegar. A good result will be obtained by adding $\frac{1}{2}$ oz. of salammoniac, instead of the spirits of hartshorn. The piece of metal
being dried Begr amber pulver

CoLd
Gre: sul-am boil the
AQUA yt. ; sa
Olive 2 oz .; 2 gals. Brow oz. ; spi oz. ; wa vessei b the bron
Bronz moniac) osalic a a brush, gary.
Bronz black, 1 wogether,
Graen sulphite required can be o vash wit Pale I Water, 2 DARK the brass.
Dead B then wask parts chlo
Removis metal in g the zinc fil sequent w
Tinning cover or in tient quan 8، melted b
Shlverin small quan
oz. of salt them toget silvered wi it in a wea

gIPTS.

seed lac, 8 lhs. anish saffron, 4
; shellac, 3 oz . pint of alcohol; dragon's blood, five days.
and afterwards the castings will then washed in
cream tartar, 3 water, then add er, mix well, and situation, with a
b, 1 oz. ; nitre, 2 rich yellow color with water.
ate of silver in a ther, and seep in ole, immerse it in ellow ; then place sun. If you wish ory, dip a camel'sect on the ivory. with water, and with pure water. r, which, if well

3oz. ; turmeric, 4 d sanders, 1 sc.; mastic, 2 drs.; cits of turpentine,
dragon's blood, 4 lbs. ; turpentine,

Cape aloes, cut
1, then cover the iilion in a warm ustic potassa has
way is to Farnish pver it, after the
cel (binoxolate of
common salt, English quart of ding $\frac{1}{2}$ oz. of sale piece of metal

MACHINISTS, ENGINEERS, \&C., RECEIPTS.
being well cleaned is to be rubbed with one of these solutions, then dried by friction with a fresh brush.
Best Lacquer, for Brass.-Alcohol, 4 gals.; shellac, 2 lbs.; amber gum, 1 lb . ; copal, 20 oz ; seed lac, 3 lbs ; saffron, to color; pulverized glass, 8 oz .

Color for Lacquar.-Aleohol, 1 qt. ; annotto, 4 oz.
Green Bronze Dip.-Wine vinegar, 2 qts. ; verditer green, 2 oz.; sul-ammontac, 1 oz., salt, 2 oz. ; alum, $\frac{1}{2}$ oz.; French berries, $80 z$. ; boil the ingredients together.

Aqua fortis Bronze Dip.-Nitric acid, 8 oz ; muriatic acid, 1 gt. ; sal-ammoniac, 2 oz . ; alum, 1 oz ; salt, 2 oz.
Olive Bronze Dip, for Brass.-Nitric acid, 3 oz .; muriatle acid, 2 oz .; add titanium or palladium, when the metal is dissolved, add 2 gals. pure soft water to each pint of the solution.
Brown Bronze Paint, for Copprr Vessels -Tincture of steel, 4 oz. ; spirits of nitre, 4 oz ; essence of lendi, 4 oz. ; blue vitriol, 1 oz. ; water, $\frac{1}{2}$ pint. Mix in a bottle ; apply it with a fine brush, the vessei being full of boiling water; varnish after the application of the bronze.
Bronze for all kinds of Metal.-Muriate of ammonia (sal-ammoniac), 4 drs. : oxalic acid, 1 dr . ; vinegar, 1 pint: Dissolve the osalic acid first; let the work be clean ; put on the bronze with a brush, repeating the operation as many times as may be necesalary.
Bronze Paint, for Iron or Brass.-Chrome green, 2 lbs. ; ivory black, 1 oz . chrome yellow, 1 oz. ; good japan, 1 gill ; grind all together, and mix with linseed oil.
Green Bronze.-Dissolve 2 oz . nitrate of iron, and 2 oz . hypo-. sulphitel of soda, in 1 pt . water. Immerse the article until the required shade is obtained, as almost any shade from brown to red can be obtained, according to the time of immersion, then well vash with water, dry and brush.
Pale Deep Olive Green Bronze.-Perchloride of iron, 1 part; Water, 2 parts; mix, and immerse the brass.
Dark Green.-Saturate nitric acid with copper, and immerse the brass.
Dead Black on Brasswork.-Rub the surface first with tripoli; then wash it with a solution of 1 part neutral nitrate of tin, with 2 parts chloride of gold ; after 10 minutes wipe it off with a wet clotb.
Removing Zino and Iron from Plumbers' Solder.-Digest the metal in grains in diluted sulphuric acid. The acid will dissolve the zinc first, the aron next, and all traces of these metals by subsequent washing.
Tinning Cast Iron.-Pickle your castings in oil of vitriol ; thencover or immerse them in muriate of zinc (made by putting a suffi(ient quantity of zinc in some spirit of salt): after which dip it in 8. melted bath of tin or solder.

Silvering by Heat.-Dissolve 1 oz . silver in nitric acid; add a small quantity of salt; then wash it and add sal-ammoniac, or 6 oz. of salt and white vitriol; also $\ddagger \mathrm{oz}$. corrosive sublimate; rub them together till they form a paste; rub hespiece which is to be silvered with the paste; hẻat it till the silver runs, after which dip it in a weak vitriol pickle to clean it.

To Tin Coppar and Brass.-Boil 6 lbs. cream of tartar and 4 gals. of water and 8 lbs of grain tin or tin shavings. After the material has boiled a sufficient time the articles to be tinned are put therein and the boiling continued, when the tin is precipitated on the goods in metallic form.

Mixtura for Silvering.-Dissolve 2 oz . of silver with 3 grs . of corrosive sublimate ; add tartaric acid, 4 lbs. ; salt, 8 qts.

To Smparate Silver from Copper.-Mie sulphuric acid, 1 part; nitrlc acid, 1 part ; water, 1 part ; boil the metal in the mixture till it is dissolved, throw in a little salt to cause the silver to subside.

To Write in Silver.-Mix 1 oz. of the finest pewter or block tin, and 2 oz . of quicksilver together till both become fluid then grind it with gum water, and write with it. The writing will then look as if done with silver.

Best Bronze for Brass.-Take 1 lb . muriatic acid, and $\frac{1}{2} \mathrm{lb}$. white arsenic. Put them into an earthen vessel, and then proceed in the usual manner.

Another Bronze for Brass.-One ounce muriate of ammonia, oz. alum, $\& \mathrm{oz}$. arsenic, dissolved altogether in 1 pt . of strong vinegas.

Zincing.-Copper and brass vessels may be covered with a firmly adherent layer of pure zino by boiling them in contact with a solution of chloride of zinc, pure zinc turnings being at the same time present in considerable excess.

Clouding Metal Work.-Metal work may be clouded by putting a piece of fine emery paper under the thumb or finger, and working it over the surface of the metal with i spiral motion.
Ciment for Belting. Waterproof.-Dissolve gutta percha in bisulphide of carbon to the consistence of molasses, slice down and tain the ends to be united, warm the parts, and apply the coment, then hammer lightly on a smooth anvil, or submit the parts to heavy pressure.

To Prevent Incrubtation in Bollers.-1. Charcoal has a great affinity for any thing that causes scale or incrustation in boilers. That made from hard wood is the best, broken in lumps of $\frac{1}{4}$ to iuch in size, and the dust sifted out. Two bushels of this will generally protect a boiler of 30 horse power for 3 weeks, when running, after which the old coal should be removed and fresh coal used. 2. Throw into the tank or reservoir from which your boiler is fed, a quantity of rough bark, in the piece, such as tanners use, sufficient to turn the water of a brown color; if you have no tank, put into the boiler from a half to a bushel of ground bark when you blow off, repeat every month, using only half the quantity after the first time. 3. Add a very small quantity of muriate of ammonia, about 1 lb . for every 1,500 or 2,000 gals. of water evaporated. It will have the effect of softening and disintegrating the carbonate of lime and other impurities deposited by the water during evaporation. 4. Potatoes and some other vegetable substances introduced into the boiler are most effectual in preventing incrustation, and animal substances such as refuse skins, are still more so. 5. An English firm put oak sawdust into their boiler in order to stop a leak, and to their surprise it also resulted in preventing incrustation. I should say if oak sawdust could prevent scale in
with 3 grs . of 8 qts.
c acid, 1 part the mixture till ver to subside. ter or block tin, luid, then grind will then look
acid, and $\frac{1}{2 b}$. nd then proceed

e of ammonia,

 1 pt . of strongred with a firmly tact with a solu. at the same time
uded by putting inger, and workmotion.
gutta percha in lasses, slice down 3, and apply the or submit the
rcoal has a great tation in boilers. - lumps of $\frac{1}{2}$ hels of this will - 3 weeks, when ed and fresh coal Fhich your boiler h as tanners use, ou have no tank, ound bark when alf the quantity ty of muriate of . of water evapoisintegrating the y the water durtable substances eventing incrusns, are: still more ir boiler in order ed in preventing prevent scale in
bnilprs, that there is no visible season why hemlock and various 1 ech hill suf sawdist will not do the same thing. 6. Cuws feet "in th stambs minached are strougly recor mended as a prevenlan icy scule. Tw, in a large boiler is amply sufficient, and those wl.o wish .o do busiuess economically, can get their oil for lubricating purposes cheaply by boiling the feet and shanks for a few hours in., large bettle, setting it aside to cool and then skimming off the cil frum the surface of the water, using the feet for the boiler afterwards. If you wish to get rid of the hair on the sbanks, you enn get rid of that by using lime, \&c., as done by tanners.
Management of the Stbam Engine.-Steam Pacing.-To pack the cylinder or piston, plait some packing yarn sufficiently tight that it will need driving; if cotton rope is convenient, put in a coil first, driving it to fit tight ; then fill the remainder of the chamber of the piston with the plaited yarn, driving it tight and full, leaving room for the nuts to go on the bolts ; screw the nuts evenly and alike until they are fast. The packing should be well soaked in bees wax and tallow before using it. A new kind of packing has been brought out lately, consisting of a mixture of duck, paper and tallow mixed in proper proportions. Metallic vulcanized rubber packing is strongly recommended as the best packing. This is so prepared that 300° Fabrenheit will not affect it. No other substance has so much elasticity which stands so high a degree of heat, or which may be used about all parts of the machinery, as this pracking, where packing is necessary, namely : cylinder heads, inan hole plates, piston rods, steam chests, steam joints, stuffing boxes, \&c. The journals of the crank and the \mathbf{T} head require close watching; if thev are loose in the boxes, or too tight, they will run badly: thus, if tightened too much, they will heat and wear out the brass runners, if they are not sufficiently tight, there is danger of the keys flying out and breaking the engine. All the valves belonging to the eng ne shculd be ground in with emery, to keep them from losing either steam or water. Care should be taken of them as they will wear. When you find them leak, they should be ground over again. If suffesed to remain long when leaking steam, there may be new ones required.
The boilers require to be often cleaned out, and care should be taken to remove the scales and mud from adhering to the inside, otherwise, if the scales are suffered to remain, the boiler will burn and want repairing. It is necessary to try the gauge-cock often, to see if there is sufficient water in the boilers. There is great danger in running after the water is below the lowermost gaugecock, and the flues should be kept cleanly swept.
To Mend Broken Saws.-Pure silver, 19 parts; pure copper, 1 part ; pure brass, 2 parts; all to be filed into powder, and thoroughly mixed; place the saw level on the anvil, broken edges in contact, and hold them so; now put a small line of the mixture along the seam, covering it with a larger bulk of powdered charcoal; now with a spirit lamp and a jewellers' blow-pipe, hold the coal dust in place, and blow sufficient to melt the solder mixture; then with a hammer set the joint smooth, and file away any superfluous solder, and you will be surprised at its strength the heat will not injure the temper of the saw.

Writfa Inscriptione on Metals.-Take $\frac{1}{2} \mathrm{lb}$. of nitric acid and 1 oz. of muriatic acid. Mix; shake well together, and it is ready for use. Cover the place you wish to mark with melted bees-wax; when cold, write your inscription plainly in the wax clear to the metal with a sharp instrument ; then apply the mixed acids with a feather, carefully filling each letter. Let it remain from 1 to 10 minutes, according to appearance desired ; then throw on water, which stops the process, and remove the wax.

Etching Floids.-For copper. Aquafortis, 2 oz; water, 5 oz. For steel. Iodine, 1 oz. ; iron filings, $\frac{1}{d}$ dr. ; water, 4 oz . Digest till the iron is dissolved. For fine touches. Dissolve 4 parts each of verdigris, sea salt, and sal-ammoniac, in 8 parts vinegar, add 16 parts water ; boil for a minute, and let it cool.

Engravers' border Wax.-Bces wax, 1 part; pitch, 2 parts ; tallow, 1 part. Mix. Engravers' cement. Rosin, 1 part; brick dust, 1 part. Mix with heat.

Japanners' Gold Size.-Gum ammoniac, 1 lb.; boiled oil, 8 oz.; spirits turpentine, 12 oz . Melt the gum, then add the oil, and lastly spirits turpentine.

Black Varnish for Iron Work.-Asphaltum, 1 lb.; lampblack, \ddagger lb. ; resin $\ddagger \mathrm{lb}$. ; spirits turpentine, 1 quart; linseed eil, just sufficient to rub up the lampblack with before mixing it with the others. Apply with a camel's hair brush.

To Petrify Wood.-Gem salt, rock alum, white vinegar, chalk and pebbles powder, of each an equal quantity. Nix well together. If, after the ebullition is over, you throw into this liquid any wood or porous substance, it will petrify it.

The Finest Bronze.-Put in a cleau crucible 7 lbs. copper, melt, then add 3 lbs. zinc, afterward 2 lbs tin.

Gearina a Latif for Sopew Cutting.-Every screw cutting lathe contains a long screw called the lead screw, which feeds the carriage of the lathe, while cutting screws; upon the end of this screw is placed a gear, to which is transmitted motion from another gear placed on the end of the spindle, these gears each contain a different number of teeth, for the purpose of cutting different threads, and the threads are cut a certain number to the inch varying from 1 to 50. Therefore to find the proper gears to cut a certain number of threads to the inch, you will first:multiply the number of threads yon desire to cut to the inch, by any small number, four for instance, and this will give you the proper gear to put on the lead screw. Then with the same number, four, multiply the number of threads to the inch in the lead screw, and this will give you the proper gear to put on the spindle. For example, if you want to cut 12 to the inch, multiply 12 by 4, and it will give you 48. Put this gear on the lead screw, then with the same number, 4 , multiply the number of threads to the inch in the lead screw. If it is five for instance, it will give you twenty, put this on the spindle and your lathe is geared. If the lead screw is $4,5,6,7$, or 8 , the same rule holds good. Always multiply the number of threads to be cut, first. Some, indeed most small lathes, are now made with a stud geared into the spindle, which stud only runs half as fast as the spindle, and in finding the gears for these lathes, you will first multiply the number of
thread thread if you put th inch, Again comm

Cot
screw, shippe After point d sharp, howev
must to
very of
After
Cotr
screws,
tool 80
After d the thr side of and son balf the and sho
Mona
usually pitch, a depth o should 1
here by
bottom
cutting
of the
thread
face at
time, the
way alte
a gauge
scraping
these a
light chi
Planil
your pla
the roug
well, and
bolt you
off a chi
chips, th be taken, this side finish it.
itric acid and nd it is ready ed bees-wax ; x clear to the ed acids with from 1 to 10 row on water,
water, 5 oz. 2. Digest till parts each of legar, add 16

2 parts ; talbrick dust, 1
iled oil, 8 oz . oil, and lastly
lb. ; lampinseed बil, just ng it with the
vinegar, chalk well together. ais liquid any
lbs. copper,
screw cutting hich feeds the he end of this motion from se gears each se of cutting number to the roper gears to will first:0 the inch, by give you the he same numh in the lead o put on the meh, multiply e lead screw, of threads to , it will give is geared. If ood. Always , indeed most o the spindle, ad in finding c number of
threads to be cut, as before, and then multipiy the number of threads on the lead screw, as double the number it is. For instanco. If you want to cut 10 to the inch, multiply by 4, and you get 40 , put this on the lead screw, then if your lead screw is five to the inch, you call it 10 ; and multiply by 4 and it will give you 40. Again put this on your stud and your lathe is geared ready to commence cutting.

Cotting a Scret in an Engine Latre.-In cutting V threadscrew, it is only necessary for you to practice operating the shipper and slide screw handle of your lathe, before cutting. After having donss this, until you get the motions, you may set the point of the tooi as high as the centre, and if you keep the tool sharp, you will find no difficulty in cutting screws. You must however, cut very light chips, mere scrapings in finishing and must take it out of the lathe often, and look at it from both sides, very carefully, to see that the threads do not lean like fish scales. After cutting, polish with an emery stick, and some emery.

Cutting Square Thread Screws.-In cutting square threadscrews, it is always necessary to get the depth required, with a tool somewhat thinnor than one-balf the pitch of the thread. After doing this, make another tool exactly one-half the pitch of the thread, and use it to finish with, cutting a light chip on each side of the groove. After doing this, polish with a pine stick, and some emery. Square threads for strength should be cut onebalf the depth of their pitch, while square threads, for wear, may, and should be cut three-fourths the depth of their pitch.
Mongrel Thriads.-Mongrel, or half.V, half-square threads are usually made for great wear, and should be cut the depth of their pitch, and for extraordinary wear they may even be cut $1 \frac{1}{2}$ the depth of their pitch. The point and the bottom of the grooves should be in widah \& the depth of their pitch. What is meant here by the point of the thread, is the outside surface. And the bottom of the groove is the groove between the threads. In cutting these threads it is necessary to use a tool about the shape of the thread, and in thickness about one-fifth less than the thread is when finished. As it is impossible to cut the whole surface at once, you will cut it in depth about one-sixteenth at a time, then a chip off the sides of the thread and continue in this way alternately till you have arrived at the depth required. Make a gauge of the size required between the threads and finish by scraping with water. It is usually best to leave such screws as these a little large until after they are cut, and then turn off a light chip, to size them, this leaves them true and nice.

Planing Metals.-The first operation about planing, is to oil your planer and find out if the bed is smooth. If it is not, file off the rough places; then change the dogs to see if they-will work well, and find out the movements of the planer. After doing this, bolt your work on to the bed, and if it is a long, thin piece, plane off a chip, then turn it over and finish the other side, taking two chips, the last of which should be very light. Great care should be taken, in bolting it to the bed, not to spring it. After finishing this side turn it to the other side, and take off a light cut to hinish it.

Primiva Purpimidoutarisi-In planing perpendicularly, it is neeessary to switel the bottom of the small head aiound, so it will starid about three-fourths of an inch inside of square, tow urds the piece ybui are to plane. This prevents breaking the tool when the bed runs back.
Geit Outing.-In outting gears, they are reckoned a certain number of teeth to the inch, measuring acress the diameter to a certain line which is marked on the face or sides of the gear with 2 tool. This line is one-half the depth of the teeth from the outer diameter. That is, if the teeth of the gear are two-tenths of an inch deep this line would be one-tenth of an inch from the edge and is callea the pitch line.

Deprit or Twitiz.-Every gear cut with different number of teeth to the ipch, should be cut of a depth to the pitch line, to correspond with the number of teeth to the inch. This is called proportion. Therefore, if you out a gear eight to the inch, the depth to the pitch line should be one-eighth of an inch, and the whole deptit of the tooth would be two-eighths. Again; if you cut a gear twelve to the inch, the depth to pitch line should be onetwelfth of an inch; atid the whole depth of tooth two twelfths. And again, if you cut a gear twenty to the incia, the depth to pitch line should be one-twentieth of an inch, while the whole depth should be 'two-twentieths, and so on ad infinitum.

Miĺsuring to find tei Noiberi of Tenta.-To find the sive a certain gear should be, for a certain number of teeth, is an éasy matter, if you study carefully these rules. If you want a gear with thirty-two teeth and eight to the inch, it should be four inches measuritg across the diameter to the pitch line, and the twoeighths outside of the pitch line would make it four inches and ro-elghths. Again, if you wint a gear with forty teeth, and ten to the inch, it should measure across the diameter to pitch line four inches, and the two tedenths outside the pitch line would make the whole diameter four inchés and two-tenths. And again; if you mant a gear with eighty teeth, and twenty to the inch, it should measure to the pitch lifie, across the diameter, four incles, and the two-twentieths outside the pitch line would make it four inches and two-tiventieths, and these examples will form a rule for the ineasurement of all except beyel gears.

Bavil Geisris.- These are tarned a certain bevel to correspond with eagh other, according to the angle upon which the shafts driven by thein are set. For instance, if two shafts are set upon an angle of ninety degrees, the surfaces of the faces of these gears will stand at an angle of forty-five degrees. To get the surface of these gears; in'turning them, puts a straight edge across the face. Then set your level on an angle of forty-five degrees, and try the face of the teeth by placing the level on the straight edg'. Antün turning the face of the teeth, square the outer diameter by the face of the teeth; and to get the size to which you wish to cut, measure from the centre of the face of the teeth. Thus, if a bevel gear is Hix inches in diameter, and the face of the teeth is one inch, you will measiure from the centre of the face, and find it is five inches. On this line you calculate the number of teeth' to the inch, and if Wou want a gear with twenty teeth, and ton to the inch, it'should
meas
ndicularly, it is dound, so it will are, tow urds the he tool when the
ckoned a certain lé diameter to a of the gear with th from the outer two-tenths of an h from the edge
erent number of the pitch line, to h. This is called to the inch, the an inch, and the Again, if you cut 10 should be oneoth two twelfths. the depth to pitch the whole depth

Fo find the size a teeth, is an easy you want a gear uld be four inches de, and the twot four inches and ty teeth; and ten eter to pitch line line would make And again, if you ie inch, it should ir inclies, and the ke it four inches ma a rule for the
vel to correspond which the shafts afts are set upon ces of these gears get the surface of 5 across the face. rees, and try the ight edg's. Alitut meter by the face h to cut, measure if a bevel gear is is one inch, you it is five inches. o the inch, and if ne inch, it' should

MACHINISTS, ENGINEERS, dO., RECEIPTS.
measure two inches across the face to the centre of the surface of the teeth; and if the face of the teeth were one inch in length, the diameter of the gear would be three-inches, and the inside of the teeth would measure oaly one inch. Again, if you want to cut a gear with forty teeth, and ten to the inch, it would measure four inches to the centre of the teeth on the surface. And if the surface of the teeth were one inch long, the diameter of the gear would be tive inches, while it would only measure three inches inside the teeth. These examples will form a rule for all bevel gears.

Draf-Filina and Finishing-To draw-file a piece of work smoothly and quickly, it is best to first draw-file it with a medium fine file, and finish with a superfine file. After doing this, polish the work with dry emery paper and then with emery paper and oil.
Lining Boxes with Babbitt Metal.-To line boxes properly, so as to insure their filling every time, it is necessary to heat the box nearly red hot, or at least bot enough to melt the metal. Then smoke the shaft where the metal is to be poured upon it. This insures its coming out of the box easily, after it is cold. After smoking the shaft, put it into the box or boxes, and draw some putty around the ends of them, for the purpose of stopping them, taking care not to press upon it, for if you do it will go into the box and fill a place that ought to be filled with metal; ;and in the meantime your metal ought to be heated, and after you have poured it, let the box-stand till it is nearly cold; drive out your Ebaft, and it is done.

Potting Machines Together. - In putting machines together no part should be finished except where it is necessary to make a fit, as $1 t$ is sometimes the case that machinery is miscalculated, and by finishing it would be spoiled, while if it were not, it might be saved by slight alterations in design. And again, in finishing certain parts before you get a machine together, you are unknowingly finishing parts not necessary to be finished, and making them of a shape anything but desirable. This rule, however, is not intended 10 apply to machinery being made to detail drawings.

To Drill a Hola wépre you have no Rbampr.-lt is sometimes necessary to drill a hole of an exact size to fit a certain shaft, and at the same time have it smonth without reaming it. This may be done, by first drilling a hole, one-hundredth of an inch smaller than the size desired, and then making a drill the exact size and running it through to finish with. This last drill should have the corners of its lips rounded. like a reamer, and the hole should be finished without holding the drill with a rest.

Squaring, or faging up Cast Iron Surfaots.-A round-end, tool is best for this. A rough chip should first be taken off, over the entire surface to be faced. Then speed your lathe up and taking a light chip, merely enough to take out the first tool marks, run over the entire surface again. In turning up surfaces it is always best to begin at the centre and feed out, as the tool cuts freer and will wear twice as long.

Boring a hole with a Boring Tool.-In boring a hole with a boring tool, it is usually necessary to drill the hole first, and too much care cannot be taken in finishing. An iron gauge should be
made first; it is usually made of a piece of gheet iron or wire. The hole should then be dulled smaller than the size desired, and then bored to the required size, and it is impossible to bore a hole perfect without taking two or three light chips, mere scrapings with which to finish. Holes, in this way, mas be bored as nicely as they can be reamed.

Boring Holes with Boring Arbor.-A boring arbor is a shaft with a steel set in it, for the purpose of boring holes of great length, and is designed to be used in a lathe. In doing this properly, you must first see if your lathe is set straight ; if not, adyist it. Having done this, put the piece of work to be bored in the carriage of your lathe, pass your arbor through the hole to be bored, and put it on the centres of your lathe. Having done this, adjust your work true to the position desired by measuring from the point of the tool, continuelly turning round the arbor from side to side of the piece to be bored, while you are bolting it to the carmage, and measure until it is perfectly true. Haring done this, bore the hole, and take for the last chip only a hundredth of in inch. Thimmakes a true and amvoth hole. It is impossible to make a hole true with any kind of a tool when you are cuttung a large chip, for the tool springs so that no dependence can be placed upon it.

To Mafe a Bobme Abbor and Tool teat will not Cbattrr.Boring tools, when used in small arbors, are always liable to chatter and make a rough hole. To prevent this, the tool should be turned in a lathe, while in its position in the arbor, upon the circle of the size of the hole to be bored, and the bearing lengthwise of the arbor, should be only as wide as the feed of the lathe; for if the bearing of a tool is on the face, the more it will chatter.

To Reduce Mexailio Oxidas.-This may be effected by the dry and the moist processes ; but the deoxidizing agent of the greatest value to the metallurgist is coal in its several varieties, and the derivative materials yielded by its combustion. When coal is burned in a furnace, the product of combustion may be considered to be carbonic acid gas; but inasmuch as the latter is readily decomposed by permeating ignited pieces of solid carbon (coke), losing a portion ofits oxygen, and becoming carbonic acid gas, we may say that the products of the combustion of coal are, firstly, carionic acid; secondly, carbonic oxide and carbonic acid; and lastly, carbonic oxide alone. The latter, in combination with heat, is a most powerful deoxidizing agent. Were it not for the production in furnaces of carbonic oxide gas-were it necessary that the solid carbon of the coke should be alone the deoxidizing body-then it followa that every particle of the ore to be reduced must be brought into intimate contact with the reducing body: a proce ss involving mora care and trouble than are compatible with large metallurgic operations. The reducing agent being a gas, there is no longer a necessity for that intimate mixture of fuel and ore which wou.d otherwise be necessary. Provided that the gaseous results of combustion are placed under circumstances of readily permeating the ore, the necessities of practice are amply suoserved. There is great difference as to the amount of heat at which the reduction of differeat metallic oxides can be offected. The oxides of
jron or wire. ze desired, and to bore a hole nere scrapings bored as nicely
rbor is a shaft holes of great doing this prot; if not, adynst je bored in the the hole to be ving done this, neasuring from the arbor from re bolting it to Having done a hundredth ot is impossible to u are cuttung a endence can be
not Ceatrir.ra liable to chattool should be r, upon the circle g lengthwise ot the lathe; for of 11 chatter.
cted by the dry at of the greatest arieties, and the

When coal is ay be considered latter is readily carbon (coke), bonic acid gas, f coal are, firstly, bonic acid; and ation with heat, r the production ry that the solid. ing body-then educed must be oody: a proce is ible with large g a gas, there is of fuel and ore that the gaseous ances of readily mply suoserved. t at which the d. The oxides of
lead, bismuth, antimony, nickel, cobalt, copper, and iron requise a strong red heat in the furnace, whilst the oxides of manganese, chron *um, tin, and zinc, do not lose their oxygen until heated to whiteness.
On a large scale, the reduction of oxides is generally effected by mixing charcoal, together with the oxide to be reduced, in a refractory clay crucible, the charcoal furnishing the carbon necessary to the proper performance of this work. Some use a crucible thickly lined with charcoal, putting in the oxide on the top of the charcoal. It is necessary, however, when using the crucible and charcoal, to use a tlux, say a little bosax in powder, strewed on the mixture to accelerate the reduction of the oxide. The borax is generally the first to fuse, and, as the metal is eliminated, seems to purify and cleanse it, as it gathers into a button at the bottom of the crucible. It is all the better if you give the crucible a few sharp taps when you take it off the fire.
Copper Plates or Rods may be covered with a superficial coating of brass by exposing to the fumes given off by melted zinc at a light temperature. The coated plates or rods can then be rolled into thin sheets, or drawn into wire.
SOLUTION OF COPPER OR Zino.-Dissolve 8 oz . (troy) cyanide of potassium, and 3 oz . cyanide of copper or zinc, in 1 gal . of rain water. To be used at about $160^{\circ} \mathrm{F}$., with a compound batery of 3 to 12 cells.
Bhass Solution.-Dissolve 1 lb . (troy) cyanide of potassium, 2 oz . cyanide of copper, and 1 oz . cyanide of zinc, in 1 gal . of rainwater ; then add 2 oz . of muriate of ammonia. To be used at 160° F., for smooth work, with a compound battery of from 3 to 12 cells.
Brassing Iron.-Iron ornaments are covered with copper or brass, by properly preparing the surface so as to remove all organic matter which would orevent adhesion, and then plunging them into melted brass. A thin coating is thus spread over the iron, and it admits of being polished or burnished.
To Enamel Cast Iron and Hollow Ware.-1. Calcined flints, 6 parts ; Cornish stone or composition, two parts ; litharge, 9 parts; borax, 6 parts; argillaceous earth, 1 part ; nitre, 1 part; calx of tin, 6 parts ; purified potash, 1 part. 2. Calcined flints, 8 parts; red lead, 8 parts; borax, 6 parts; calx of tin, 5 parts; nitre, 1 part. 3. Potters' composition, 12 parts; borax, 8 parts; white lead, 10 parts; nitre, 2 parts; white marble, calcined, 1 part; purified potash, 2 parts; calx of tin, 5 parts. 4. Calcined flints, 4 parts; potters' composition, 1 part ; nitre, 2 parts; borax, 8 parts ; white marble, calcined, 1 part; argillaceous earth, $\frac{1}{2}$ part; calx of tin, 2 parts. Whichever of the above compositions is taken must be finely powdered. mixed, and fused. The vitreous mass is to be ground when cold, sifted, and levigated with water; it is then made into a pap with water, or gum water. The pap is smeared or brushed over the interior of the vessel, dried, and fused with a proper heat in a muffle. Clean the vessels perfectly before applying.

Enanglled Cast Iron.-Clean and brighten the iron before applying. The enamel consists of two cuits-the bocis and tios
glaze. The body is made by fusing 100 lbs . ground flints, 75 lbs . of borax, and grinding 40 lbs . of this frit with 5 lbs . of potters' clay, in water, till it is brought to the consistence of a pap. A coat of this being applied and dried, but not hard, the glaze-powder is sifted over it. This consists of 100 lbs . Cornish stone in fine powder, 117 lbs . of borax, 35 lbs . of soda ash, 35 lbs . of nitre, 35 lbs . of sifted slaked lime, 13 lbs . of white sand, and 50 pounds of pounded white glass. These are all fused together; the frit obtained is pulverized. Of this powder, 45 lbs . are mixed with 1 lb . of soda ash, in hot water, and, the mixture being dried in a stove, is the glaze powder. After sifting this over the body-coat, the cast-iron article is put into a stove, kept at a temperature of about 212°, to dry it hard, after which it is set in a muffle-kiln, to fuse it into a glaze. The inside of pipes is enamellcd (after being cleaned) by pouring the above body composition through them while the pipe is being turned around to insure an equal coating; after the body has become set, the glaze pap is poured in in like manner. The pipe is finally fired in the kiln.

To Enamel Copper and Other Vebspls.-Flint glass, 6 parts ; borax, 3 parts ; red lead, 1 part; oxide of tin, 1 part. Mix all together, frit, grind into powder, make into a thin paste with water, apply with a brush to the surface of the vessels, after scaling by heat and cleaning them, repeat with a second or even a third coat, afterwards dry, and lastly fuse on by heat of an enamelled kiln.
Emery Wheels for Polishing.-Coarse emery powder is mixed with about half its weight of pulverized Stourbridge loam, and a little water or other liquid to make a thick paste; this is pressed into a metallic mould by means of a screw-press, and, after being thoroughly dried, is baked or burned in a muffle at a temperature above a red, and below a white heat. This forms an artificial emery stone, which cuts very greedily, with very little wear to itself. Unequalled for grinding and polishing glass, metals, enamels, stones, \&c.

Holes in Millstonis are filled with melted alum,-mixing burr sand with it. If the hole is large, put some pieces of burr mill stones in it first, and pour in melted alum. These pieces of block should be cut exactly to fit. There should be small joints, and fastened with plaster of Paris. These holes should be cut at least 4 inches deep; there is then no dauger of their getting loose.

Fitiling a New Back on an Old Millstone.-Biock your stone up with a block of wood, having its face down until it lies even, solid, and perfectly level; then pick and scrape off all the old plaster down to the face blocks, so that none remains but what is in the joints of the face blocks; then wash these blocks, and keep them soaked with water. Keep a number of pieces of burr blocks, at the same time, soaked with water. Take a pail half filled with clean water, and mixed with 2 tablespoonfuls of glue water, boiled and dissolved; mix in with your hand plaster of Paris until it be thick enough that it will not run ; and, breaking all the lumps, pour this on the stone, rubbing it in with your hand; the stone being at the same time damped; and place small pieces of stone all over the joints of the face blocks; you then, with more plaster, mixed in the same way but more stiff, with this and pieces of burr

ston

lints, 75 lbs . . of potters pap. A coat e-powder is in fine powitre, 35 lbs . s of pounded obtained is 1 lb . of soda stove, is the the cast-iron about 212°, - fuse it intó cleaned) by bile the pipe fter the body lanner. The

Mix all to3 with water, ar scaling by 1 a third coat, nelled kiln. vder is mixed loam, and a his is pressed d, after being temperature an artificial ittle wear to lass, metals,
mixing burr of burr mill eces of block 11 joints, and e cut at least g loose.
your stone 1 it hes even, ff all the old but what is in ks , and keep f burr blocks, lf filled with water, boiled ris until it be il the lumps, d ; the stone eces of stone more plaster, ieces of burr
stones, build walls round the eye and verge 4 or 5 inches high leaving the surface uneven and the eye larger, as it will be brought to its proper size by the last operation. It is better to build up the wall of the running stone round the verge for 3 inches without any spalls, so that the holes may be cut in to balance it. If you wish to make your stone heavier, you will take small pieces of iron, perfectly clean and free from grease, and lay them evenly all around the stone in the hollow place between the two walls just built; and, with plaster mixed a little thicker than milk, pour in under and through all the crevices in the iron until the surfecs is nearly level with the two walls, If the stones do not require additional weight added, instead of iron, use pieces of stinne the same way, leaving the surface rough and uneven. Agaia, as before, build walls round the verge of the stone, and round the eye of the stone, until they are within 2 inches of the thickness you want your stones to be, the wall round the eye bein 2 incies higher than that round the verge, and filling the space between the walls with stones; and, pouring in plaster again, make it nearly level with the walls, but leaving the surface rough and jagged, to make the next plaster adhere well to it. Let it stand until the back is dry and perfectly set, when you raise the stone upon its edge, and, with a trowel, plaster round the edge of the stone neatly, giving it a taper of half an inch from the face to the back of the stone. When cased round in this way, lay the s one down on the cockhead; it being in the balance ryne, but the driver off, then raise the spindle, and balance the stone as already directed before putting on the remainder of the back. Then have a tin made the size of the eye, and to reach from the balance ryne to the thickness you want the stone to be at the eye. This tin should be. exactly fitted to its place, and inade fast; then fit a hoop of woöd or iron round the verge, having the upper edge of the thickness from the face you want the stone to be at the verge, and equal all round. This hoop should be greased; and, all the cracks round it, and the tin in the eye, being stopped, you pour thin plaster (with more glue water than in previous operations, to prevent it from setting so quickly, and to give time to finish off the back correctly) until it be level with the hoop round the verge, and with a straight edge, one end resting on the hoop, and the other end resting on the tin at the eye ; then, by moving it round, and working the plaster with a trowel, make the surface of the back even anu smooth between these two pciuts. The hoop is then taken off, and the back and edges planed smooth; then lower the spindle until your runner lies solid, and put yuur band or hoop on, it being first made nearly red hot, and taking care that it is of sufficient size not to require too much driving; if fitting too tightly, it may loosen the back in driving it to its proper place; it may be cooled gently by pouring water on it ; and, when cool, it should fit tight.
Balancing \triangle Milistone.-First, take off the driver, that the sione may have full play on the cock-head; then raise the spindle so that there may be room betweer: the stones to see the balance. Find the heaviest parts, and near the verge lay on sufficient weight 10 balance it. Cut a hole in the back of the stone, as deep as you can make it and as near the verge as possible that_the binding
inon hoop of the stone may keep the lead? in its place. This hole should be wider at the bottom than the top in order to retain the lead when the stone is in motion, and into this the melted lead should be poured until it brings the stone completely into balance. When the lead is cold, cover over with mired plaster, even with the back of the stone.

Composition to Keep Millgtonef Clean.-Hot-water, 1 gal.;
 nut each of sal prunel. Mix and apply it to the burrs with a serubbing brush. When grinding garlic wheat it is not necessary to take up the burrs at all. It is sufficient to drop through the eye of the burr twice per day one of the above described balls of sal prunel and that will keep the burrs sharp and clean, enabling the miller at all seasons to use the No. 13 bolt, to make finer flour and in greater quantity than usual.

To Voloanizy India Rubber.-The vulcanizing process patented by the late Charles Gcodyear consists in incorporating with the rubber from 3 to 10 per cent of sulphur, together with various metallic oxides, chiefly lead and zinc, the quantity of the latter articles being regulated by the degree of elasticity \&c., required in the desired article. The goods of one large establishment are vulcanized in cylindrical wrought iron steam heaters, over 50 feet long and from 5 to 6 feet in diameter. These heaters have doors opening on hinges at one end, and through these doors the goods to be vulcanized are introduced on a sort of railway carriage, then, after the door is shut, steam is let on, and a temperature of from $250{ }^{\circ}$ to 300° of heat is kept up for several hours, the degree of heat being ascertained by means of thermometers attached to the heaters. The value, solidity, and quality of the goods is much increased by keeping the articles under the pressure of metallic moulds or sheets while undergoing this process. The whole process requires careful manipulation and great experience to conduct it properly.

To Daodorize Rubber. - Cover the articles of rubber with charcoal dust, place then in an enclosed vessel, and raise the temperature to 94° Fahr, and let it remain thus for several hours. Remove and clean the article from the charcoal dust, and they will be found free from all odor.

Approved Friotion Matores.-About the best known preparation for friction matches consists of gum arabic, 16 parts by weight; phosphorus, 9 parts; nitre, 14 parts ; peroxyd of manganese, in powder, 16 parts. The gum is first made into a mucilage with water, then the manganese, then the phosphorus, and the whole is heated to about 130 degr . Fah. When the phosphorus is melted the nitre is added, and the whole is thoroughly stirred until the mass is a uniform paste. The wooden matches prepared first with sulphur, are then dipped in this and afterward dried in the air. Friction papers, for carrying in the pocket, may be made in the same manner, and by adding some gum benzoin to the mucilage they will have an agreeable odor when ignited.
Miml Dams.- When building a dam, you should select the most suitable place. If you can, place it across the stronm near a rocky bluff, so that the ends of the dam may run into the bluff. This will prevent the water running by at the ends of the dam. Build
ace. This to retain relted lead ob balance. even with
r, 1 gal. of a hazel rs with a t necessary rrough the ed balls of 1, enabling 'finer flour
ss patented ag with the various methe latter required in ent are vol50 feet long ors opening to be vulcan , after the om 250° to f heat being the heaters. ncreased by moulds or cess requires it properly. with charhe temperaars. Remove hey will be
on proparabby weight; nganese, in cilage with the whole is is is melted ed until the ed first with d in the air. mode in the he mucilage
bot the most hear a rocky bluff. This dam. Build
your dam very strong: it thls is not done, they arc brealaing up often, causing ruinous expense in money and loss of timc.
Rook. Dams are incomparably the best in use, if there is plenty of material at hand for building, and a rock bottom to the stream; if there is not a rock bottom, you should dig a trench in the bottom, deep enough, so that the water cannot undermine it. This should be the same as if you were building the foundation of a large building. The wall to be built should be of a small, circular form, so that the back of the circle should be next to the body of water, which may by its pressure tighten it. To secure the water from leaking through, at the ends of the dam, dig a ditch deeper than the bottom of the river; then fill this with small pieges of rock, and pour in cement. This cement is made of hydraulic cement, and is made of one part of cement to five parts of pure sand. It will effcctually stop all crevices. A rock dam, if well built, will be perfectly tight. Use as large rook as you conveniently can move; building this wall 4 to 6 feet thick, according to the length of the dam, with jam or buttresses every place whero they are needed to strengthen it. Make true joints to these rocks, ospecially on the ends so that they may join close together. Whan you have the outside walle laid in cement, for every layer fill the middle up with pieces of small rock, pouring in your grout, so that there may not be a orevice but what is filled. If there is any crevice or hole left open, the water will break through, weaxing it larger and larger. If the stream is wide and large, it is necossary to build the dam in two sections, which should be divided by a waste. way, necessery for the waste, or surplus water, to run over to keep the head in its proper place or height. Let eaoh section, noxt, to where the water is to be run over, be abutments, built to strengthen the dam. The last layer of rock, on the top where the waste water runs over, should project 5 or 6 inches over the back of the dam, so that the water may not undermine it. This last layer should be of large rocks and jointed true ; then laid in hydraulic cement, in proportion of 1 of cement to 3 of sqnd. When the dam is built, the front should be filled up with coarse gravel or clay; this is' best done with teams, as the more it is tramped the more durable it becones.

Frama-Dams.-In building a frame-dam commence with a good foundation, laying the first sills in the bottom, of sufficient depth. They should be large square timbers that will last in the water without rotting. Where there is a soft foundation the bottom should first be made level; then dig trenches for the mud silla, about 7: or 8 feet apart, lengthways of the stream, and 10 or 12 feet long. Into these first sills other sills must be framed, and pat crosswise of the stream, 6 or 8 feet apart, to reach as far across the stream as necessary. Then two outside sills should be piled down with 2 -inch plank driven down to a depth of 4 or 5 feet. If this can be done conveniently, they are to be jointed as closely as possible. It would be better to line with some stuff 1 inch thick; then with posts their proper length, about 12 or 14 inches square, which should be framed into the uppermost sills, in both sides, and all the way across the dam, from bank to bank, at a distance of 6 feet apart. Then, with braces to each posts to extend two-thirds

210

 MACHINISTS, TINGINEERS, \&O., RECEIPTS.of the length of the post, where they shonld be joined together with a lock, instead $u \hat{2}$ a mortise and tenon, with an iron bolt of 1 or $1 k$ inches in diameter, going through both, and tightened with a screw and nut. When mortises and tenons are used, they often become rotten and useless in a ferr yoars. These braces should be set at an angle of 50 or 60° with the other end mortised into the mud sill. These braces roquire to bo about 6 to 8 inches, and as long as you find necessary; being covered with dirt, it will not decay for a long time, as the air is excluded. These posts should be capped from one to the other, plate fashion. The posts should be lined with 2 or $2 \frac{1}{2}$ inch plank on the inside, pinnod to the plank, and should, in the :niddle, be filled in with dirt.

If the stream is large and wide, the dam should be built in two sections, which should be divided by a waste-way for the surplus water, which should bo in the centre of the dam, and sufficient for all the waste-water to run over. Let each section of the dam form an abutment next to the waste-way, piacing cells or sills 4 feet apart the length of the waste-way; in each of these sills, posts should be framed, with a brace for the sides. These rows of posts, standing across the dam, will form the sectional abutments; the middle one may bo constructed by being leng thways of the stream, with short braces, so that they will not be in the way of drift-wood passing down tho stream; it being necessary for strong pieces for a bridge. Then cover the sills with an apron of 2 -inch plank joined perfectly straight, to extend 30 or 40 feet below the dam, to prevent undermining of the dam. The planks which are used for the purpose of lining the posts which form the abutments of each section of the dam, and the ends of the waste-way, should be truly pointed, so as to prevent any leakage. The dam being built, the dirt should be filled in with teams, as the more it is tramped the better. Clay or coarse gravel is the best. Then place your gates on the upper side of the waste-way, the size that is necessary to a level with low-water mark ; which gates are not to oe raised, except in times of high water, as the proper height of the mill-pond should be regulated by boards placed over the gate for the desired head, as the water should be allowed to pass at all times freely over them. To strengthen the dam, if you thinis zecessary, 2 -inch plank may be used in lining the front side of the dam, long enough to reach from the bottom of the stream (on an inclined plane, and next to the body of water) to the top of the dam, and filled up nearly to the top of the dam with clay or gravel well trampled down.

Brusi or Log Dams are very often used in small, muddy streams. When the bottom of the stream is of a soft nature, take a flat boat where you want to fix your dam, and drive piles the whole length of the stream, about 3 or 4 feet apart, as deep as you can. Take young oak saplings, pointed at the end, for the purpose. If you can, construct a regular pile-driver, similar to those in use for making trestle-work on the railways. This weight may be pulled up by horses instead of an engine. When you have finished driving piles, make some boxes or troughs of 2 or 3 inch plank, about 3 feet wide and as long as the plank is. Sink these in the water, the length of the dam, close to the piles, by loading them with
rock, until they are the botton of the stream, flling in the front part of the dain will ditt and brush, nearly to the beight you want it. This kind of dam will last a long time.

Whenever there 18 a simall break in the dam or race, cut up some willows and brush, put them in the break along with some straw and dret, and ram them down wit': clay.

In regard to the flume, the greatest care must be taken to insure strength and durability; icombined with tightness. Every step taken in its construction must be of such a nature as to unite these qualities in the highest poessible degree, otherwise the whole is, in is manner, labor lost.

Cury for Drunkenntisa.-Take 5 grs sulphate of iroh, 10 grs. magresia, 11 drs. peppermint water, 1 dr. spinit of nutmeg; mix all "ogether, and take twice per day.

To makt Gen Corton.-Take dry saltpetre, ritriol, 3 O2. Mix in a tumbler, add 20 grs . of dry cotton wool, stir with a glass rod ${ }^{\circ} 5$ minutes, remove the cotton and wash from all traces of the acid in 4 or 5 waters; then carefully dry under 420° This is gun cotton.

The Drummond Light is*produced by directing a jet of mized oxygen and hydrogen upon a pencil of pure lime, the gases being conveyed in separate tubes or pipes, to within'a'very short distance from the aperture at which they are to be delivered and then flowing togethèr and mixing in very minute quantity before combustion také place This arrangement 18 adopted to ensure safety. The gases are used in the proportion of 2 of hydrogen to 1 of 0 zy gen, which form a dreadfully explosive mixture.

Nitro Giycerinia is made by snbmitting glycerine to the action of a mixture of 2 parts of sulphuric and 1 part of nitric acid. The use of the sulphuric acid being to concentrate the nitric acid, which is alone covcerned in the reaction. In the apparatus ordinarily used, the glycerine and the acids are allowed to mix in the stream, and are afterwards agitated for a short time in the receptacle into which they flow. The nitro-glycerine is then allowed to settle at the bottom; the acids are drawn off and after a single washing with water the explosive is ready for use.

The Great Seorets for Trapping Foies and othide Game,-Musk-rat musk and skunk musk mixed. Can be procured at the druggists, or from the animals themselves To be spread on the bait of any trap. This receipt has been sold ae high as \$75. Another, costing $\$ 50$, for munks, fc.-Unslaked lime, 1 lb ; ; sal-ammoniac, 3 oz ., or muriate of ammonia, 3 oz . Mix, and pulverize. Keep in a covered vesisel a few days until a thcrough admivture takes place. Sprinkle on the bait, or on the ground ari-nd the trap. Keep in a corked bottle.

Fö́d for Singinci Birds.-Blanched sweet almonds, pulverized, $\frac{1}{6}$.; pea meal, 1 lh.; siffron, 3 grs.; yolks of 2 hard boiled eggs. Reduce all to a powder by rubbing through a sieve: Place the mixture in a frying pan over a fire, and add 2 oz. butter and 2 oz , honey. Slightly cook for a few minutes, stirring well, then set off to cobl, and preserve in a closely corked bottle.

Photograph Painting in Oil Colors.-Tints mor tein Firest Panting.-Flese.-White and light Red.-White, Naples yellow,

212 MACHINISTS, ENGINEERS, \&C, RECEIPTS.

and vermilion. White, vermilion, and light red. Gray, Pearly, and Half Tints.-White, vermilion, and black. White and terre vorte. White, black, Indian red, and raw umber. Deep Shades.-Light red and raw umber. Indian red, lake and black. Carnations.White and Indian red (powerful color). White and rose madder. White and lake. Harr.-Light Hair.-White and yellow ochre. White and Roman ochre. White and Vandyke brown for the dark parts. White and raw umber for the dark parts. Dark Brown Hair.-Raw and burnt umber. White and raw umber. White and Vandyke brown. Tints for the Smoond and Third Paintina.-High Lights.- White and Naples yellow. Carnations. - Rose madder and white. [ndian red, rose madder, and white. Green Tints. - White and ultramarine, with any of the yellows. White and terre verte, with the addition of a little raw umber. The above green tints may be converted into green grays. Gray Tints.-Ultramarine, light red, and white. Indian red, lake, black and white. White, ultramarine, Indian red, and raw umber. Purple Tints.-Any of the lakes or rod madders, with ultramarine and white. Powerful Shadow Tints.-Indian red, purple lake, and black. Indian red, raw umber, and black. Strong Glazing Coloi -Light red and lake. Brown madder. Vandyke brown, Indiau red, and lake asphaltum. Draperies.-Back Ground Colors.-Pearly.-White, vermilion, and blue. White, vermilion and black. White and black. Gray.-White, Venetian red and black. Yellow. -Yellow ochre and white. Slive.-Yellow ochre, terre verte, and umber. Stone.-Raw umber and yellow. Black, white, and raw umber. Sky.-French blue ana white. French blue, vermilion, and white. Edges of Clouds. - Yellow ochre and white. Clouds.-Indiau red, lake, and white. Brown madder, French blue, and white.

Рhotograph Water Colors.-Flese Tints.-No. I. Fair Com-plexion.-Light red, a little carmine or rermilion, and Indian yellow. Be careful in using the latter, and, in the flesh tints of very fair children, allow the vermilion to predominate; carnations, rose madder, and, if the face be full of color, add a little vermilion to it. 2. Middling Complexion.-Much the same as No. 1, saving that the light red must be in excess over the other colors-carnations rose madder, and lake. 3. Dark Complexion.-Light red and Indian yellow, or light red and Roman ochre, and, if the complexion be generally ruddy, you may add a little Indian red, but it must ba sparingly used, as it is a powerful color, and likely tofimpart a purple tone to the flesh. Carnations chielly lake, but if the com plexion be warm, lake and a little yellow. The carnations for children's portraits are rose madder and vermilion, inclining more to the latter tint. Aged persons have rose madder, and a little cobalt to give a cold appearance to the color an their cheeks and lips. These tints, Nos. 1, 2, and 3, are indispensable as general washes, for the purpose of receiving the other colors, which are to be worked over them to bring up the complexion to the life. Uncolored photographic portraits vary so much in tone, that the beginner will, perhaps, find some difficulty in mixing up the tints for the washes. He must note that the warm-toned ones do not require so much Indian yellow as the cold ones do.
whe
by
by

To Isochronise a Pendulom Spring.-A pencuulum is isochronal when its vibrations are performed in equal times, whether the vibrations be large or small, but it can only possess this property by being constrained to move in a cycloidal arc. This is managed by causing the spring to wrap and unwrap itself round two equal cycloidal cheeks, the diameter of whose generating circle sa equal to half the length of the pendulum. Isochronism is closely approximated in practice by causing the pendulum to describe. very small circular are.

To Whiten Silfer Watce Dials.-Get a piece of cork, a jeweller's scrub brush, some puttice powder, a small japanned saucepan, a spirit lamp, a piece of wire bent into a bow, and a little vitriol Lay the dial on the cork, wet the end of the brush, dip it in the puttice powder, and scrub the dial very clean; then put about a cupful of water in the saucepan, and enough vitriol to make it very tart; make it hot, lay the dial on the wire face upwards, make it white hot over the spirit lamp, drop it flat into the vitriol and water, let it lay a few seconds, if it is at all stained put it in again for a short time; if that does not take it out it must be scrubbed over again: the most particular point is getting the dial to the right heat.

To Construct an Æolian Harp.-Make a box with the top, bottom, and sides of thin wood, and the ends $1 \frac{1}{2}$ inch beech, form it the same leng h as the width of the window in which it is to be placed The box should be 3 or 4 inches deep, and 6 or 7 inches w!de. In the top of the box, which acts as a sounding board, make 2 circular holes about 2 inches in diameter, and an equal distance apart Glue across the sounding board, about $2 \frac{1}{2}$ inches irom each end, 2 pieces of hard wood $\frac{1}{1}$ inch thick, and $\frac{1}{2}$ inch high, to serve as bridges. You must now procure trom any musical instrument maker twelve steel pegs similar to those of a pianoforte, and 12 small brass pins. Insert them in the following manner into the beech. first commence with a brass pin, then insert a steel peg, and so on, placing them alternately $\frac{1}{2}$ in. apart, to the number of twelve Now for the other end, which you must commence with a steel peg, exactly opposite the brass pin at the other end, then a brass pin, and so on, alternately, to the number of 12 ; by this arrangement you have a steel peg and a brass pin always opposite each other, which is done so that the pressure of the strings. on the instrument shall be unitorm. Now string the instrument with 12 first violin strings, making a loop at one end of each string, which put over the brass pins, and wind the other encis round the opposite steel pegs. Tune them in unison, but do nol draw them tight. To increase the current of air, a thin board may be placed about 2 inches above the strings, supported at each end by 2 pieces of wood. Place the instrument in a partly opened window, and, to ancrease the draft, open the opposite door.
To Forge a Twist Drill.-It is necessary to forge a flat blade similar to a flat drill, and then twist this blade into the resemblance required, then, with a light hammer and careful blows, hammer the twisted edges so that they will be thicker than the central line of the tool. This will give greater strength and a better drill, and, to cut well, the centril line or cutting point must be made

214 MAOEINISTS, ENOLNEERS; \&O, REOEIPTS.

quite thin. Be careful to ger the smme twist at the point of the drill as upon the body of the drill The itexperienced ofteu leave tha pomt straight, with no iwist, like . flat drill.

Mouldina Sand for Casting Brass or Inion.-The variois kindis of good moulding sand employed in foundries for casting iron or' brass, have been found to be of almost uniform chemical composi.. tion, varying in grain, or the aggregate form only. It contains betwoen 93 and 98 parts silex; or grains of sand, and from 36 to (i) parts clay, and a little oxide of iron, in each 100 parts. Moulding: sand; which contains lime, magnesia, and other oxides of metal, is not applicable, particularly for the casting of iron or brass. Such sand is either too close, will not stand or retain its form, or it will caure the metal to boil throngh its closeness.

Refurimg Floxes, For Metals.-Deflagrate, and afterwards pulverize, 2 parts of nitre and 1 part of tartar. The following fluxes answer very well, provided the ores be deprived of all their sulphut, or if they contain much earthy matter, because, in the latter case, they unite with them, and convert them into a thin glass, but, if any quantity of sulphur remains, their fluxes unite with it, and form n liver of sulphur, which has the power of destroying a portion of all the metals, consequently the assay must be, under such circumistances, very inaccurate. Limestone, feldspar, fluorspar, quartz, sand-slate, and slags, are all used as fluxes. Iron ores, on aceount of the argillaceous earth they contain, require calcareous additions; and the copper ores, rather slags, or nitrescent stones, than calcareous earth.

Bónnivg iron Castings together.- The usual mode is by imbed. ding the castings in the sand, having a little space left vacant round about the joint where it is to be burned. Two gates must then be provided, one lying on a level with the lower side of this space, and the other raised so that the metal, which must be very hot, is poured in at the higher one ; it passes round, fills up the space, and runs off at the lower gate. A constant supply of metal is thus kept up, till the parts of the casting are supposed to be on the eve of melting. The lower gate is then closed, and the supply stopped. When cool, and the surjerfluous metal chipped off, it forms as strong a joint as if it had been original.

Pot Metal.-Copper, 40 libs.; lead, 16 lbs.; tin, $1 \frac{1}{2}$ lbs.
To Bend Glass Tubes. - Hold the tube in the upper part of the flame of a spirit-lamp, revolving it slowly between the fingers; when red hot it may be easily bent into any desired shape. To soften large tubes a lamp with a double current of air should be used, as it gives a much stronger heat than the simple lamp.

Tc Lessen Noise in Worisgops.-Place a piece of India-rubber under the feet of the machines or benches on which the machnnes are placed.

To Solder Tortoise Saell.-Bring the edges of the pieces of shell to fit each other, observing to give the same inclination of grain to each; then secure them in a piece of paper, und place them between hot irohs or pincers ; apply pressure, and let them cool. The heat must not be so great as to burn the shell, therefore try it first on a white piese of papet. a leave tha trious kindu ling tron or cal composicuntaius beom 36 to (i

Moulding: of metal, 18 orass. Such cm, or it will
rwards pulowing fluxes ll their sulin the latter a thin glass, nite with it, destroying a ast be, under Idspar, fluorfluxes. Iron tain, require gs, or nitres-
e is by imbed. left vacant gates must c side of this must be very fills up tho pply of metal osed to be on hd the supply bipped off, it h the tingers; shape. To air should be e lamp. India-rubber the machines
the pieces of inclination of nd place them et them cool. erefore try it

Machinists, evainemas, ac., RECEIPTS.
To makr Linarmd and Copton armd oils.-In making lingeed oil quite a variety of machinery is used, more or less expensive according to the enterprize and capital of the manufapturos. The seed is first passed through iron rollern, to be oruahed or ground, one of the rollera is made to revolve more rapidly than the other, whioh subjeots eash seed to a pulling as well an to a erunhing progess. The meal ie taken from the mill to the 'chasers,' when it is subjected to another evushing process, more severe than the first. The ohasers are 2 large circular stones about five feet diameter, and 18 inches ithiok,' rolling upon a third stone in the manner of an old-fachioned bark or cider mill. These heapy stones atart the oil from the seed, and to keep it from adhering to the ohasers it is moistened with water. The meal is next put into an iron oylinder, whioh is kept revolving over a fire until the water is evraporated. Muoh of the skill of making oil depends upon this heating process. It must not be soorohed, and yet it must be brought up to a high temperature, so that it will readily give out its oil. The presses are of various atruoture, some of them are patented, and others not opon to publle inspeotion. In one, the vats or hoops holding about 2 bushels eaoh, were placed opposite each other against two immense beams or prights, made fast in the foundations of the building. The fillowers were forod down upon the meal by: 2 large levers worked hy hydraulio powers. The meal is kept under pressure about an hour, and the two presses work up about 92 bushels of seed every 34 hours, the mill being kept running night and day. The product is not far from 2 gals . of oil from a bushel of need, a little more or less, acoording to the quality of the seed and the skill in pressing. The oakes, as taken from the pross, are generally sold by the ton without grinding, and are generally exported in thie form, but whep there is a market in the vicinity of the mill, the eakes are put under the chasers, ground into meal, bagged and sent to the feed stores. Tha price of the cake is from $\$ 30$ to $\$ 40$ per ton; ground inta meal it retails at about $\$ 2$ per 100 lbs. The process of making the catton seed oil and oake is nearly the same. The seed of the upland ootton is surrounded with a husk, to whioh the cotton adheres. It is surrounded with a soft down after it leaves the gin, and in this condition it is purohased from the planter. The seed makes better ail and better meal. when it is deprived of this hull and down. The yield of oil is about 90 gallons per 100 bushels of the Ses Island, or 2 gals. to 56 lbs. of the hulled cotton seed.

Blace Dip for Brass.-Hydrochlorio aoid (commonly called smoking salts), 12 lb ., sulphate of iron $1 \mathrm{lb} .$, and pure white arsenio 1 lb . This dip is used in all the large factories in Birmingham, but the dip used in the London trade is 2 oz . of corrosive sublimate, in 1 pt . of the best vinegar, cork both air tight in a bottle, let it stand 24 hours, then it is fit for use.

To Re:-cover Hammers in Pianos.-Get felt of graduatod thioknebs, cut it in strips the exact width, touch only the two ends with glue, not the part striking the strings. Hold in place with springs of narrow hoop iron.

Artificial Pearls.-Are made from beade of opaline glass, filled

216 MACHINISTS, ENGINEERS, \&O., RECEIPTS.

with gum, the polisti of the glass being reduced by the vapor of hydrofluoric acid.

Stalba's Niceel Plating Process.-Consists in plating with nickel, by the activi of zinc upon salts of nickel, in the presence of chloride of zins and tha metal tr, be plated. By this process, Stalba states that he has gucceeded i/a piating objects of wrought and cast iron, steel, copper, brass, zinc and lead. It is only necessary that the size of the objcots should permit them to be covered entirely by the plating liquid, and that their surfaces should be free from dirt. The following is the modus operandi:-A quantity of concentrated chloride of zine solution is placod in a; cleaned metallic vessel, and to this is added :n equal volume of water. This is heated to boiling, and hydrochloric acid is added drop by drop, until the precipitate which had formed on adding the water has disappeared. A small quantity of rinc powder is now added, which produces a zino coating in the metal as far as the liquid extends. Enough of the nickel sait (the chloride or sulphate answers equally well) is now introduced to color the liquid distinctly green; the objects to be plated are pliced in it, together with some zinc clippings, and th. 9 liquid is brought to boiling. Thenickel is preeipitated in the coursel of 15 minutes, and the objects will be found to be completely coated. The coating varies in lustre with the character of the metalios surface; when this is polished, the plating is likewise lustrous and vice versa. Salt of cobalt affords a cobalt plating, which is steel gray in color, not so lustrous as the nickel, but morg liable to tarnish.

Guaging Streams.-Multiply the square root of the cube of the height in Inches of the water on the sill of the weir or guage by the constant 17.13, which will give the number of gallons per minute. If the water hasany initial velocity it must be determined by experiment, and ifir that case multiply the square of the height by the square of the velocity, and by 0.8 ; to the product add the oube of the height, extraet the square root of the sum, and multiply by 17.13 as before.

To prevent pitting with Small-pox.-As soon as the disease is distinguished, apply an ointment made of lard and charcoal to the face, neek, hends, \&e., and continue until all signs of suppurative fever have ceased.

Cornish Redooing Fidx -Tartar 10oz., nitre 3oz., and 6drs. borax, 3oz. and 1 dr . Mix together.

To Make Coal Oil-Break the Coal or shale into small pieces and put from 10 to 16 ewt . in an iron retort, heated to a dull red color. Lute the retort door and keep up the heat for 24 hours. By this process a vapor is thrown of oftich passes through ranges of oisterns until it condenses, when it is: an into cisterns. This crndo oil, when refined and purified, is sold as parrafin oil, and solid parrafin for making oandles is made from it.

Daicisous Steel.-It is said that this steel consists of a highly carburetted metal which by undergoing careful cooling and annoaling separates into two oompounds of iron end carbon, giving it tho peculiar appearance known as "Damasceening." The wonderful strength of this steel is no doubt owing to careful manipulation.

- vapor of
ating with presence of cess, Stalba ht and cast iessary that entirely by e from dirt. oncentrated vessel, and heated to , until the lisappeared. produces a Enough of lly well) is objects to be ngs, and tha n the course tely coated. the metailis lustrous anil hich is steel le to tarnish. oube of tho guage by the per minute. termined by he height by hid the cube multiply by
he disease is arcoal to the suppurative

6drs. borax,
small pieces to a dull red or 24 hours. gh ranges of This crudo d solid par8 of a highly nd annoaling fiving it the fe wonderful bulation.

Funva Saws. -The grand secret of putting any saw in the best possible order, consists in filing the teeth at a given angle to cut rapidly, and of a uniform length so that the points wiil all touch a straight edged rule without showing a variation of the hundredth part of an inch. Besides this, there should bo just set enough in the teeth to cut a kerf as narrow as it can be made, and at the same time allow the blade to work freely without pinching. Un the contrary, the kerf must not be so wide as to permit the blade to rattle when in motion. The very points of the teeth do the cutting. If one tooth is a twentieth of an inch longer than two or three on each side of it, the long tooth will be required to do so much more cutting than it should, that the sawing cannot be done well, hence the saw goes jumping along, working hard and cutting slowly; if one tooth is longer than those on either side of it, the short teeth do not cut although their points may be sharp. When putting a cross cut saw in order, it will pay well to dress the points with an old file, and afterwards sharpen them with a fine whetstone, much mechanical skill is necessary to put a saw in prime order, one careless thrust with a file will shorten the point of a tooth so much that it will be atterly useless, so far as cutting is concerned; the teeth should be set with much care, and the filing done with the greatest accuracy. If the teeth are uneven at the points, a large flat file should be secured to a block of wood in such a manner that the very points only may be jointed, so that the cutting edge of the same may be in a straight line, or circle, if it is a circular saw ; every tooth shouid cut a little as the saw is worked. The teeth of a hand saw for all kinds of work should be filed fleaming; or at an angle on the front edge, while the back edges may be filed fleaming, or square across the blade. The best way to file a circular saw for cutting wood across the grain, is to dress every fifth tooth square across, and apart one twentieth of an inch shorter than the others, which should be filed fleaming at an angle of about forty degrees.

As regards such saws as arerused for cutting up large logs into lumber it is of the utmost importance to have them filed at such an angle as will ensure the largest amount of work with the least expenditure of power. The following diagrams will heln to illustrate our meaning. Fig. 1. shows the shape of teeth which nearly all ex-

Fia. 1.
perienced mill-men consider as thatastandard form which combines the greatest amount of strength and capacity for rapid work, with the minimum of driving power while doing the work.

Figure No. 2 represents a passable form of teeth which are capable of doing a good deal of w.ork; but their great weakness lies in their slender points. "Look out for "breakers" when teeth of this. description are pasping through dny spruce or hemlock knots.

5ixG. 2.
Fig. No. 3 illustrates the appearance of one of those intolerable Wood rasps which are altogether too common in saw-mills. Only think what an appalling waste of valuable power is required to drive a "jigger" like this through a large log!

Fig. 3.
Fig. 4, at α, is intended to show the method of ascertaining thi proper angle, that of sixty degrees, at which such saws should bs filed. The dlagram being self-explanatory requires but little further elucidation here. A quarter circle with lines radiatin : from the centre towards the circumference is represented near the verge of the segment of a circular saw. The lower part corresponds with the level of the horizon, and the higher part at 90° corresponds

With the zenith or meridian, where the sun appears at noon-day. Nixactly half-way up is 45°; look up a little higher, and you will find 60° indicated by the radiating line which runs parallel with the angle of the tooth of the saw : and this is the guide you must follow in filing. The same rule is seen applied to a straight mill saw at b.

Many good authorities contend that mill saws should in on case be set with the instrument commonly used for that purpose, bui
that in lieu thereof the teeth should bo spread out at the points with the swage or up set to a suffticient oxtent to permit the body of the gaw to operate without binding. Both instruments require to be akilfully handled; and the swage; when used in this way, has proved itself equal to every emergency without the risk of breaking the teeth. It would be quite asfe to say that the saw-set should only be used on saws of this description with the zenst extreme caution and cares Every manufacturer, however, \dot{i} is his own opinion, and consequent practice on the subject, som contending that one way is right and the other directly the reverse.

To Repar Fehotured Cricular Saws.-The best way to do this is to drill a small. und hole at the termination of the crack, which effectually previv is its further extension. I havo seen some circular saws very neatly repaired by riveting thin clamps to each side of the fracture, both clamps and rivets being countersunk so they will be level with the surfaca of the saw, and placed in such a position across the crack as to impart the greatest possible strength to the weakest place. A table of the speed of circular saws can be seen at page 169, this, however, does not embrace the velocity of shingle machine saws, whioh ought to make at least 1400 revolutions per minute.

To Mind Broken Orosi out Saws.-In the first place scarf off the broken edges in such a manner that when lapped over each other they will be about the same thickness as the rest of the plate, and rivet them together loosely with iron rivets inserted through holes which must be! punched for that purpose; the ends must be united with great accuracy so that the teeth, \&rc., of the saw may range truty Now place the saw in the fire; then a flux of powdered borax and sal ammoniac is flowed all over it after having it raised to the proper heat. See page 173 for preparing and using the composition. Return the saw to t! e fire and when it is raised to the proper welding heat, place it on the anvil and unite the joint as rapidly as possible with the hammer; be careful not to heat so hot as to injure the steel. When the job is well done, and the part properly tempered it will be found as strong as the rest of the plate. I know one blacksmith in Canada who told me that this class of work. was the best paying part of his business.

Power of Engines.-Horse-power in steam engines is calculated as the power which would raise $33,000 \mathrm{lbs}$. a foot high in a minute, or 90 lbs . at the rate of 4 miles an hour. One horse-power is equal to the lifting, by a pump, of 250 hogsheads of water ten feet in an hour. Or it would drive 100 spindles of cotton yarn twist, or 500 spindles of No. 48 mule yarn, or 1000 of No. 110 , or 12 power looms. One horse-power is produced by 19 lbs. of Newcastle coals, 50 lbs. of wood, or 34 lbs . of culm. Coals 1, wood 3, and culm 2, give equal heats in the production of steam.

Sixteen lbs. of Newcastle coal converts 100 lbs . of water into steam. A bushel of coal per hour raises steam to 15 lbs . the square inch, whose velocity is 1350 feet per second, and 2 bushels raise it to 120 lbs., or velocity of 3800 feet per second. A horsepower requires from 5 to 7 gallons of water per minute for condengntion of steam. A steam engine whose cylinder is 31 inches, with
at the points it the body of ats require to this way, has risk of break-aw-set should rinst extreme ais his own au iontending rse.
th way to do of the crack, avo seen some clamps to each :ountersunk 80 placed in such eatest possible eed of circular ot embrace the make at least
place scarf off ped over each the rest of the rivets inserted rpose; the ends eth, \&c., of the ; then a fluz of rit after having aring and using then it is raised and unite the careful not to well done, and ong as the rest tho told mo that busincess.
es is calculated gh in a minute, c-power is equal er ten feet in an rn twist, or 500 12 power looms. tle coals, 50 lbs. d culm 2, give
of water into to 15 lbs . the i, and 2 bushels cond. A horsichute for conden31 inches, with

12 double strokes per minute, performs the constant work of 40 horses with 5 tons of coal per day. One of 19 miches and 25 strokes of 12 horses, with $1 \frac{1}{2}$ tons per day. They raise 20,000 cubic feet of water 24 feet for every hundred weight of coals. One bushel of good coals raises from 24 to $32,000,000$ lbs, one foot per minate: Four bushel of coals per hour, with a cylinder of $31 \frac{1}{2}$ inches and $17 \frac{1}{2}$ strokes of 7 feet per minute, is' a force equal to 40 horses constantly. A rotative double engine, with a cylinder of 23.75 inches, making 21.5 strokes of 5 feet per minute, is a 20 horse-power ; and a cylinder of 17.5 ; making 25 strokes of 4 feet is a 10 horse-power; the consumption of coals being proportional.

On Steam Bombrs- - Regarding the steam engine as under Providence, one of the most powerful civilizing agents in existence, and the procuring cause of the bread of many thousande of our fellow-beings, it seems highly proper to place on record some wellknown facts regarding boiler construction and the properties of steam, \&c., in order that such knowledge may be used to mitigate the number of those lamentable accidents which, in too many cases, owe their origin to ignorance and ineapacity. Regarding the form of boilers, it is now an ascertained fact that the maximum strength is obtained by adopting the cylindrical or circular form, the haycock, hemispherical, and waggon-shaped boilers, so general at one time, have now deservedly gone almost out of use. Good boiler plate is capable of withstanding a tensile strain of 50,000 lbs. or 60,000 lbs. on every square inch of section; but it will only bear a third of this strain without permanent derangement of structure; and 4000 lbs , or 3000 lbs . even, upon the square inch, is a preferable proportion. Ii has been found that the tenacity of boiler-plate increases with the temperature up to 570°, at which point the tenacity commences to diminish. At 32° the cohesive force of a square inch of section was $56,000 \mathrm{lbs} . ;$ at 570° it was $66,500 \mathrm{lbs}$. ; at $720^{\circ}, 55,000 \mathrm{lbs}$. at $1050^{\circ}, 32,000 \mathrm{lbs}$; at 1240°, $22,000 \mathrm{lbs}$; and at $1317^{\circ}, 9,000 \mathrm{lbs}$. Strips of iron, when cut in the direction of the fibre, were found by experiment to be 6 per cent. stronger than when cut across the grain. The strength of riveted joints has also been demonstrated by tearing them directly asunder. In two different kinds of joints, double and single riveted, the strength was found to be, in the ratio of the plate, as the numbers 100, 70, and 56.

Assuming the strength of the plate to be : 100
The strength of a double riveted joint would be, after allowing for the adhesion of the surfaces of the plate.. 70 And the strength of a single riveted joint........................ 56
These figures, representing the relative strengths of plates and joints in vessels required to be steam and water tight, may be safely relied on as perfectly correct. The accidental overheating 'of a boiler has been found to reduce the ultimate or maximum strength of the plates from 65,000 to $45,000 \mathrm{lbs}$. per square inch of section. The greatest caution should be exercised agaiust low water and incrustations in the boiler, for, in that case, the plates over the furnace are apt to get red hot, and, when in this state, they have lost five-sixths of their strength, and there is then danger of
bursting the boiler, even at the common working pressure, as a force of less than one-sixth of the usual strength of the plates will be found sufficient to do so. To let in a great body of water on the incandescent plates at such a time only increases the danger, by suddenly generating a large volume of highly elastic steam. The proper way, during such emergency, is not to draw the fires, for then there is no time for that, but to open the furnace doors and dash in a few bucketsful of water upon the fire, and blow off the steam as rapidly as possible. Every description of boiler used in manufactories or on board of steamers should be constructed to a bursting pressure of 400 to 500 lbs . on the square inch ; and locomotive engine boilers, which are subject to much harder duty, to a bursting pressure of 600 to 700 lbs. Such boilers are usually worked at 80 to 100 lbs . on the inch, but are frequently worked up to a pressure of 120 , and, when rising steep grades, sometimes even as high as 200 lbs . to the square inch. In a boiler subject to such an enormous working pressure, it requires the utmost care and attention on the part of the engineer to satisfy himself that the flat surfaces of the fire box are capable of resisting that pressure, and that every part of the boiler is so nearly balanced in its powers of resistance as that, when one part is at the point of rupture, every other part is at the point of yielding to the same uniform force; for we find that, taking a locomotive boiler of the usual size, even with a pressure of 100 lbs . on the square inch, it retains an expanding force within its interior of nearly 60,000 tons, which is rather increased than diminished at a high speed. To show the strain upon a high-pressure boiler, 30 feet long, 6 feet diameter, having 2 centre flues, each 2 feet 3 inches diameter, working at a pressure of 50 lbs. on the square inch, we have only to multiply the number of the square feet of surfsce, 1030, exposed to pressure, by 321, and we have the force of 3319 tons, which such a boiler has to sustain. To go farther, and estimate the pressure at 450 lbs. on the square inch, which a well-constructed boiler of this size will bear before it bursts, and we have the enormous force of 29,871 , or nearly 30,000 tons, bottled up within a cylinder 30 feet long and 6 feet diameter. Boilers in actual use should be tested at least once a year, by forcing water into them by the hand feed-pump, until the safety-valve is lifted, which should be loaded with at least twice the working pressure for the occasion. If a boiler will not stand this pressure it is not safe, and either its strength should be increased or the working pressure should be diminished. Internal flues, such as contain the furnace in the interior of the boiler, should be kept as near as possible to the cylindrical form; and, as wrought iron will yield to a force tending to crush it about onehalf of what would tear it asunder, the flues should in no case exceed one-half the diameter of the boiler, with the same thickness of plates they may be considered equally safe with the other parts. The force of compression being so different from that of tension, greater safety would be ensured if the diameter of the internal flues were in the ratio 1 to $2 \frac{1}{2}$ instead of 1 to 3 of the diameter of the boiler. As regards the relative size and strength of flues, it may be stated that a circular flue 18 inches in diameter will resist

To show the feet diameter, working at a ly to multiply ed to pressure, ch a boiler has at 450 lbs. on this size will e of 29,871 , or eet long and 6 d at least once ed-pump, until with at least boiler will not gth should be hed. Internal of the boiler, form ; and, as it about oneld in no case same thickness he other parts. hat of tension, f the internal he diameter of gth of flues, it ter will resist
double the pres ure of one 3 feet in diqmeter. Mill owners, with 10n y of roo i and a limit d experience with steam power, would d J will to dispense wi.h builers containing many flues, the expense is greater and the durability less than where there is two or three only. The foam caused by a large number of flues is apt to deceive an inexperienced engineer, causing him to believe that there is plenty of water in the boiler when he tries the gange cock. When there is really but very little, often causing an explosion. Some mill-owners insert a fusible plug in the crown of the farnuce to indicate danger from low water. As common lead melts al 620°, a rivet of this metal, 1 inch in diameter, inserted immediately over the fire place, will give due notice, so that relief may be obtained before the internal pressure of the steam exceeds that of the resisting power of the heated plates. In France, an extensive use is made of fusible metal plaies, generally covered by a perfurated metallic disk, which protects the alloy of which the plate is composed, and allows it to ooze through as soon as the steam has attained the temperature necessary to insure the fusion of the plate, which varies from 280° to 350°. The reader will find a number of such alloys under the tabular view of alloys and their melting heats, page 243. Another method is the bursting plate, fixed in a frame aud attached to some convenient part of the upper side of the boiler, of such thickness and ductility as to cause rupture when the pressure exceeds that on the safety valve. But, beyond all question, constant use should be made on all boilers of a good and reliable system of steam gauges, glass tubes, guage cocks, safety valves, \&c. By means of th \rightarrow glass tubes affixed to the fronts of the boilers, the height of the water within the boiler is indicated at once, for the water will stand at the same height in the tube that it stands in the boiler, cormmunication being established with the water below and the steam above, by means of stop cocks. The guage cocks are cocks pezetrating the boiler at different heights, and which, when opened, tell whether it is water or steam that exists at the level at which they are respectively inserted. The average level of the water in the boiler should be above the centre of the tube, and the lowest of the guage cocks should always run water, and the highest blow steam. The steam gauge indicates the pressure of steam by a hand on a dial. It sometimes happens that the glass tube gets choked up, and, to correct this, the cocks connecting the rube with the boiler should be so constructed that the tube may be blown through with the steam, to remove any obstacle that may interfere with its use. By blowing off the boiler frequently, a large amount of calcareous, and, on ocean vessels, saline matter, will be got rid of, which otherwise would cause trouble and perplexity by forming incrustations and deposits on the boiler, and which interferes most seriously with the transmission of the heat from the boiler plates to the water. In many cases the plates get red het, causing the scale to crumble ; the water thus suddenly admitted to the highly heated surface is at once transformed into highly rarefied steam, and the boiler is bursted. Too much caution cannot be exercised to see that the safety valve is properly loaded and that no impediment exists to impair its free action, and that all the other apertures, valves, \& c., belonging to the boiler are in good
working order, but be specially particular that the care and mano agement of the whole is entrusted to a person well recommended for caution and intelligence in his profession. No fact is better ascertained than that the great majority of boilcr explosions have resulted from the employment of ignorant and incapable practitioners, who, being utterly oblivious to all sense of danger on their own acconnt, cannot be expected to care for the safety of others.' For cements for Steam Boilers, \&c., see page 182. For preventing incrustation, see page 189, to which I will here add that Irish moss is also a good preventive of scaie. Regarding the power of boilers, it may be stated that aboiler 30 feet long and 3 feet in diameter, will aftord $30 \times 3 \times 3.14 \times 2-141.30$ square feet of surface, or steam for 14 horse-power, if 10 feet are assumed fur one horsepower. Two short boilers are preferable to one long onc, on account of having more fire surface,-it being always necessary to have as much tire surface as possible to make the best use of the fuel-as the hotter the surface is kept, the less fuel it takes to do the same amount of work. In some localities, such as the lumbering territory of New-Brunswick, it would be no economy to save fuel, many of the mills driven by water being put to a heary expense in removing and burning off the debris. When there is a large furnace it gives the fireman a better chance to keep the steam regular, for when clearing out one part of the furnace, he can keep a hot fire in the other. For each horse-power of the engine the: θ ought to be at least one aquare foot of grate, and three feet would be better. In setting a boiler, arrangement should be made to carry on combustion with the greatest possible heat. This requires good non-conductors of heat, such as brick, with which to surround the fire. If these bricks are of a white color, the combustion is more perfect than if of a da-r color. The roof, as well as the sides; of the furnace should be of white fire-brick. The bars of the furnace should be 18 or 20 inches below the boiler or criwn of the furnace. The fire should be kept open and thin, and frequently and sparingly supplied, to allow the air to enter between the bars, for the better consumption of the inflammable gases. The bars should slope downward toward the back part, about half an inch to the foot. The ashes should be often cleaned out, and not si "ered to accumulate, otherwise it will stop the draft, burn out the bars, and take more fuel. A crack in a boiler plate may be closed by boring holes in the direction of the crack and inserting rivets with large heads, so as to cover up the imperfection. If the top of the furnace be bent down, from the boiler having been accidentally allowed to get short of water, it may be set up again by a screwjack;" a fire of wood having been previously made beneath the injured plate; but it will in general be nearly as expeditious a course to remove the plate and intraduce a new one, and the result will be more satisfactory. There is one object that requires very particular attention, and which must be of a certain size to produce the best effect, and that is the flue leading from the boiler to the chimney, as well as the size and elevation of the chimney itself. Every chimney should be built several feet above the mill house, so that there is no obstruction to break the air from the top of the chimney. In England a factory chimney suitable for a 20 horse-

MACHINISTS, ENGINERRS, 600° REOMIPTG.

and mano ommended s better assions have rable pracdanger on c safety of 2. For prere add that g the power id 3 fet in tof surface, : one horseone, on aceeessary to use of the es to do the lumbering o save fuel, axy expense 3 is a large steam regucan keep a agine the: θ eet would be de to carry equires good urround the tion is more the sides, of the furnace the furnace. y and sparpars, for the bars should an inch to not sic ered ut the bars, e closed by rting rivets,
If the top on accidentby a screweath the inbus a course e result will very partiproduce the to the chimoney itself. mill house, e top of the a 20 horse-
power boiler is commonly, made about 20 inches square inside, and 80 feet high, and these dimensions are correct for consumption of 15 lbs coal per horse-power per hour, a common consumption for factory engines. In the Dominion of Canada and the United States, chimaneys of plate iron, from 30 to 50 feet high, are in quite common use by owners of saw, and other mills, and they seem to answer every reguirement.
Composition yor Covkring Bollers, \&o.-Road scrapinge, free from stones, 2 parts; cow manure, gathered from the pasturo, 1 part; mix thoroughly, and add to each barrawful of tho mixture 6 lbs of fire clay; $\frac{1}{2}$ lb. of flax shoyes or chopped hay, and 4 ozs. teased hair. It must be well mixed and chopped; it then add ao much water as will bring it to the consistency of mortar,--the more it is worked the tougher it is. It may either bepput on with tho trowel or daubed on with the hand, the first coat.about 1 inch thick. When thoroughly dry, another, the samotthickness, and so on, three inches is quite enough, but the more tho batter. Let each coat be scored like plaster, to prevent oracks, the last cont light and smooth, so as to receive paint; whitewash, sce. The boiler, or pipes, must first be brushed with a thin wash of the mixture to ensure a catch.
Rulif for Size of Cylindrr. - The requisite diameter of cylinder for a 25 , horse beam engine is 28 inches, and about 5 feet stroke. The nominal horse-power of any sized oylinder can be found by the following formulx:-For low pressure or beam engines, divide the area of cylinder by 25 , which will give the number of horee-power. For high pressure horizontal engines divide the area of cylinder's diameter by $12 \cdot 5$, which will give the number of horse-power, including all friction.
Stroke of Enainms.-The stroke of an engine varies according to circumstances, which the designer must take into consideration, but the general rule is to make the stroke about twice the diamoter of the cylindor. The diameter of the fly wheel should be about 4 times the stroko of tho engine, and the rim should weigh about 3 cwt . per horso power.
Balance Wheglic.-Every balance wheel should be speeded up so as to run twicc or three times as fast as the crank shaft it is intended to balance. When a balance wheel is applied in this way it makes the machine run a great deal more steadily; for, when the balance wheel is geared into the crank shaft, and runs two or three times faster than the crank shaft, it forms a power of sitsolf, when going over the centre, which propels the crank shaft until it reaches the quarter where it again takes its power from the machine. Although it takes an additional shaft and gears to apply © balance wheel in this way, the saving of metal in the balance Thoel fully compensates for the extra labour, for, when a balance wheel is speeded three times as fast as the crank'shaft, it needs only one third of the metal in it that is would were it not speeded up at all, and if balance wheels were applied in this way generally it would make all engines run far more steadily.
To Straighten Shafting.-This should be done by centreing, then put it into a lathe, and square the ends up with what is called ac side tool. Aftor doing this, take a piece of chalk and try it in
several places, to find out where the worst crooks are: then, if you have not a machine for springing shafting, spring it with a lever where the most crook is, and continue this operation till the shaft is straight.

Turning Shafting.-To do this properly, two chips should always be run over the shaft, for the reason that it saves filing and leaves the shaft truer and mure round, and on shafts thus turned, the time sared in filing more than compensates for the time lost in turning. Before you commence you will put your feed belts or gear on a coarse feed; turn off one a sixty-fourth of an inch larger than the size required; having turned off this chip, commence the finishing chip, and turn it small enough to have the pully wring on about an inch without filing. This will leave it jarge enough to file and finish. If there are couplings to go on a shati, with holes smaller than the holes in the pulleys, the ends of the shaft, where they fit on, should be turned down to a sixty-fourth of an inch of the size required before any part of the shaft is finished ; that is, every part of a shaft should be turned to within a sixty-fourth of an inch of the size required before any part if it has the finish-chip taken off. The reason for that is that it leaves every part of the shaft perfectly true, which would not be the case were it done otherwise. Having done this, you will file the shaft so that the pulleys will slide on, and the couplings so that they will drive on ; polish the shaft with a pair of polishingclamps and some emery and it is done.

WORING StEEL FOR Tools.-In working steel for tools, great care should be taken to hammer all sides alike, for if one side is hammered more than another it will cause it to spring in hardening. Again, steel, when being hammered, should be heated as hot as it will stand, until finishing and should then be hammered until almost black hot, for the reason that it sets the grain niner, and gives the tool a better edge. The reason for heatinc the steel no hot while hammering is simply because it makes the steel tougher when hardened, and softer when annealed; while, if it were worked at a low red heat, the continued percussive shocks of the hammer would so harden dic as to make it almost impossible to anneal it, and at the same time render it brittle when hardened.

Treperanc: Tootio-Drawing the temper of tools is usually dono in scharcoal flamo, and to draw the temper of a tool properly it should be held in the thickest part, or the part not requiring any tempor owards the fire, and in the meantime, should be often wiped with a piecs of waste or rag, dipped in oil. The oil keeps the temper even, and prevents it drawing more to onc place than another. And in drawing the temper of any tool it should be drawn very slowly; otherwise it will run too far ere you are aware of it. Lancet blades and razors should be drawn to a straw color. Knife blades and chisels should be drawn to a copper or almost red color. Plane irons, shaving knives and shoemakers knives the same temper; cold chiscls and stone drills, should be drawn to a dark bluo. Fluted reamers should only be drawn to a straw color, on ihe cnd, as they nover bleak elsewhere, and keep their size longor by leaving the lips hard. Half round or tapering reamers, also taps, dies, and drills, should be drawn to a strair
are : then, if ring it with ot ration till the
chips should aves filing and ts thus turned, he time lost in feed belts or h of an inch his chip, comh to have the s will leave it ags to go on a ys, the ends of) a sixty-fourth of the shaft is rned to within fore any part that is that it ch would not this, you will te couplings so r of polishing-
or tools, great r if one side is ring in hardene leated as hot ammered until rain n̂ner, and $\mathrm{n}-\mathrm{c}$ the steel в e steel tougher ile, if it were shocks of the impossible to n hardened.
s usually done ool properly it requiring any hould be often
The oil keeps nc place than 1 it should be you are aware in to a straw to a copper or d shoemakers ills, should be be drawn to a here, and keep ad or tapering on to a straiy
color. Jijucs and gavges, also common lathe tools, need no drawing, being tempered inough when merely hardoned.

Malleable Oast Inon.-The great secret of this sort of work is tho annealing, which'if not done properly the castingi"are 'f no use at all. The best mode is to take an iron pan, say cinc foot square; put in a layer of charcual, then some of the castings, then another fayjer. When the pan is full cover it over with some sand, to keep the charcoal írom burning away. Put on an ld piece of iron for a lid to cover sll, put it in the annealing furnace, and get the heat up cuiteslow and gradually, taking care not to get the heat up too quick. After you have got it to the proper 'xat, which is this, the castings must be red hot through; Keep it at this heat for 5 or 6 hours, then let your fire die gradually out, or, if you want to take some out and put more in, take ihem to a corner and bury them, pan aud all,-list them lie there : 12 properly cooled. Regarding the melting, procure not less than two good sorts of No. 2 pig iron, which you may mix with some good scrap if you choose ; the casting, melting, and moulding arc conducted in the semie manner as common cast-iron, only the metal being hard when casting, you have to mako properly constructed runneis and risers, or flow 'gates, if the article' is likely to'sink, for you cannot pump it well.

Japanning Castings.-Clean them well from the sand, then dip them in or paint them over with good boiled linseed oil: when moderately dry, heat them in an oven to such a temperature as will turn the oil black, without burning. The stove should not be too hot at first, and the heat should be gradually raised to croid blistering; the slower the change in the oil is effected the Netter will be the result. The castings, if smooth at first, will receito a fine black and polished surfaco by this method.

Concmrning Sawis, Railway Springs, zo.-When the saws ate wanted to be rather hard, but little of the oil tempering composition (See page 176) is burned off; when milder, a large portion ; and for a spring temper the whole is allowed to burn away. Saws as well as springs appear to lose their elasticity, after hardening and tempering, from the reduction they undergo in grinding and polishing. Towards the conclusion of the manufacture, the elasticity of the saw is restored principally by hammering, and partly over a clear coke fire to a straw color ; the tint is removed by very diluted muriatic acid, after which the sawsare well washed in plain weter and dried. Spring manufactare includes the heaviest specimens of hardened steel works uncombined with iron ; for example, bow-springs for all kinds of vehicles, some intended for railway use, measure $3 \frac{1}{2}$ feet long, and weigh 50 lbs. each piece; two of these are used in combination; othersingle springs are 6 feet long, fand weigh 70 lbs. The principle of these bow-springs will be immediately seen'by conceiving the common arckery bow fixed horizontally with its cord upwards ; the body of the carriage being attached to the cord sways both perpendicularly and sideways with perfect freedom. In hardening them they are heated by being drawn backwards and forwards through an ordinary fire built hollow, and they are immersed in a trough of plain water. In tempering them they are heated until the black red is just visible at
night ; by daylight the heat is denoted by its making a piece of wood sparkle when rubbed on the spring, which is then allowed to cool in the air. The metal is nine-sixteenths of an inch thick, and some consider five-eigths the limits to which steel will barden properly, that is sutticiently alike to serve as a spring. Their elasticity is tested far bejond their intended range.

On Rubber Goods.-As many parties require to use rubber goods who are entirely ignorant of the cheap mixtures which are vended in large quantities, at enormous profits by manufacturers, I have thought proper in this place to irradiate the subject with a little "light" for the benent of those whom "it may concern" and accordingly present the formulw for compounding the different mixtures which enter into the composition of many articles sold quite oxtensively as pure rubber goods, but which, owing to large 'adulterations, in many cases cost 75 per cent. less than the prices 'charged for them. The first I shall pre ent is for :
1 Liget Buyfer Springs.-Grind together clear Java rubber, $25 \mathrm{lbs} . ;$ Para rubber, 5 lbs. ; common magnesia, 10 lbs. ; pure sulphur 25 ozs. This is brown at first, but in a few days turns grey or white, and just sinks in water. Springs made from this compound, $4 \frac{1}{2} \times 2 \frac{1}{2}$ I 1 pressed to half an inch, showed $3 \frac{1}{2}$ tons on the dial.
Grey Pacing for Marine Enoinis \&c.-Grind together cleaned Java rubber, 5 lbs.; Para rubber, 25 lbs ; oxide of zinc, 16 lbs . carbonate of magnesia, 6 lbs . ; Porcelain or Cornwall clay, 3 lbs .; 'red lead, $2 \mathrm{lbs} . ;$ pure sulphur, 30 ozs . It may be proper to state that good purified Java rubber might be substituted by engineers with good effect for Para rubber in the above and some other compositions.

Rag Pacieing for Valvee, Bearing Springe \&o.-Thig is mado principally from the useless cuttings in the manufacture of India rubber coats, when the gum is run or spread on calico foundations. Proportions as follows : grind together useless scraps, 35 lbs ; blacklead 18 lbs. ; Java gum, 16 lbs. ; yellow sulphur, 1 lb.

Composition for Suotion Hosm for Fire Enaines, \&o.-Grind together Java rubber, 20 lbs. ; Para do, 10 lbs.; white lead, 14 lbs. ; red lead, 14 lbs. ; yellow sulphur, $1 \frac{1}{2}$ lbs. This is spread upon fiax 'cloth which weighs 10,16 , and 32 ozs. to the square yard.
Connon Blacx Packing.-Grind together, Java rubber, 15 lbs.; Para do., 15 lbs . ; oxide of zinc, 15 lbs . ; China or Cornwall clay, 15 lbs. ; yellow sulphur, 28 ozs.

Oommon white Buyter Ringe, \&o.-Grind together Java rubber, 30 lbs . ; oxide of zinc, 18 lbs .; carbonate of magnesia, 6 lbs .; clean chalk or whiting, 6 lbs. ; flour of sulphur, 2 lbs.

Voloanith, or Ebonita.-If the amount of salphur added to the prepared rubber amounts to 10 per cent. and the operation of vulcanizing is performed in close vessels, at a temperature exceeding 300 or the heat required for Vulcanizing India Rubber as described under that head, which see, an article will be produced known as vulcanite, or ebonite. It is a black, hard, elastic substance, resembling horn in its texture and appearance, and capable of taking a very high polish. It is of great use in the arts, and is largely manufactured for making combs, door handles and hundreds
g a pieco of en allowed inch thick, will harden Their elas-

ubber goods

 1 are vended irers, I have with a little ncern," and the different articles sold ving to large in the pricesibber, 25 lbs .; e sulphur 25 rey or white, ound, $4 \frac{1}{1} \times 2 \frac{1}{2}$ al. ether cleaned zinc, 16 lbs. ; 1 clay, 3 lbs. ; oper to state by engineers ne other com-

This is mado ture of India 5 foundations. aps, 35 lbs. ; f, 1 lb .
o.-Grind tolead, 14 lbs. ead upon flax yard. bber, 15 lbs. ; ornwall clay,

Java, rubber, nesia, 6 lbs.;
added to the ation of vulare exceeding fbber as desbe produced elastic sub, and capable e arts, and is and hundreds
of articles hitherto mado in ivory or bone. Its electrical properties also are very great.

Best Puri Spring, or Washers.-Grind together Para gum, 30 lbs. ; oxide of zinc, 5 lbs. ; carb. magnesia, 2 Ibs. ; common chalk, 3 lbs. ; Porcelain or Cornwall clay, 2 lbs. ; pure sulphur, 30 oz.

Companion Quality to above.- Para rubber, 30 lbs.; oxide of zinc, 5 lbs.; Porcelain or Cornwall clay, δ lbs. ; pure sulphur, 32 oz .
"Hypo" Clotil yor Waterproor Ooats.-Grind together clean Java gum, 30 lbs. ; lamp black, 5 lbs.; dry cbalk or whiting 11 lbs. ; sulphuret of lead, 5 lbs. This composition is applied to waterproof garments.

Tempering Locomotive Tires.-This is quite ponderous work, as the tires of the eight foot wheels weigh about 10 cwt . and consist of about one-third steel. The materials for the tires are firstswaged separately, and then welded together under the heavy hammer at the steel works, after which they are bent to the circle, welded, and turned to certain gauges. The tire is now heated to redness in a circular furnace; during the time it is getting hot, the iron wheel, previously turned to the right diameter, is bolted down upon a face-plate, the tire expands with the heat, and when at a cherry red, it is dropped over the wheel, for which it was previously too small, and is also hastily bolted down to the surface plate. The whole load is quickly immersed by a swing crane into a tank of water about five feet deep, and hauled up and down untll nearly cold; the steel tires are not afterwards tempered. The spokes are forged out of flat-bars with T formed heads, these are arranged radially in the founder's mould whilst the cast-iron centre is poured around them, the ends of the T heads are then welded tingether to constitute the periphery of the wheel or inner tire, and little wedge-form pieces are inserted where there is any deficiency of iron. The wheel is then chucked on a lathe, bored and turned on the edge, not cylindrically, but like the meeting of two cones, and about one quarter of an inch higher in the middle than the two edges. The compound tire is turned to the corresponding form, and consequently, larger within or under cut, so that the shrinking secures the tire without the possibility of obliquity or derangement, and no rivets are required. It sometimes happens that the tire breaks in shrinking when by mismanagement the diameter of the wheel is in excess.

Manefacturing and Repairing Anvils.-The common anvil is usually made of seven pieces: 1 , the core, or body ; $2,3,4,5$, the four corner pieces, which serve to enlarge its base; 6, the projecting end, which has a square hole for the reception of the tail or shank of a chisel on which iron bars may be cut through, and 7 , the beak, or horizontal cone, round which rods or slips of metal may be turned in a circular form, as in making rings. These six pieces are welded separately to the first or core, and then hammered into a uniform body. In manufacturing large anvils two hearths are needed, in order to bring each of the two pieces to be welded to a proper heat by itself, and several men are employed in working them together briskly in the welding state, by heary swing hammers. The steel facing is applied by welding in the
same manner, powdered borax with sal ammoniac (1 part to 10 parts of borax) being used as a flux. The anvil is ther heated to a cherry red, and planged into cold water, a running stream being better than a pool or cistern, the rapid formation ot steam'at the sides of the metal preventing the free access of the waier for tho removal of the heat with the required expedition. In some cases a stream of water is contrived to descend frem a cistern above on the part to be chilled, which is sure to render it very hard. The fscing should not be too thick a plate, for when such, it is apt to crackin the hardening. It is somewhat dangerous to stand near such works at the time, as when the anvil face is not nerfectly welded, it sometimes, in part, flies off with great viol sine and a loud report. In the case of broken anvils the repairs will have to be made in accordance with the above descript:'m. In finishing off the face, it is smoothed upon a grindstone, end, for fine work, polished with emery and crccus.

Hardening Axliftrers and Boxes.-The method now used in the manufacture of Murphy's axletrees is to use wrought iron and weld $t w o$ pieces of steel into the lower side, where they rest upon the wheels and sustain the load. The work is heated in an open forge fire in the ordinary way, and when it is removed, a mixture, principally prussiate of potash is laid upon the steel ; the axletree is then immediately immersed in water, and additional water is allowed to fall upon it from a cistern. Tha steel is considered to be very materially hardened by the treatment, and the iron arounid the same is also partially hardened. One very good way to chill axtetree boxes is to mould from wooden patterns on sand, and cast them upon an iron core which has the effect of making them very hard. To form the annular recess for oil, a ring of sand, made in an aippropriate core-box, is slipped upon the iron mandril, and is left behind when the latter is driven out of the casting.
To Purify Zino.-Pure zinc may be obtained by precipitating its sulphate by an alkali, mixing the oxide thus produced with charcoal powder, and exposing the mixture to a bright red heat in a covered cracible in which the pure metal will be found as a button at the bottom when cold.
To Galvaniza Cabt-Iron tarodai and through. - To 50 Ibs. melted iron add 1 lb . pulverized zinc, chemically pure. Directions, scatter the zinc powder well over the ladle, then catch the iron and pour at once. It is better, just before pouring, to stir the iron well, in order that a more complete union of the metals may take place.

To Chil Cast Iron viry hard.-Use a liquid made as follows : soft water, 10 gallons; salt, 1 peck; ; oil vitriol, $\frac{1}{2}$ pt ; saltpetre, $\frac{1}{2}$ lb.; prussiate of potash, $\& \mathrm{lb}$.; cyanide of potash, $\frac{1 \mathrm{lb} \text {. Heat the iron a }}{}$ cherry red and dip as usual, and if wanted harder repeat the process.
Anotame to harden Oabt Iron.-Salt, 21 lbs .; saltpetre, $\frac{1}{2} 1 \mathrm{lb}$. roche alum, , qlib, ammonia, 4 oss. salts of tartar, 4 ozs.; pulverize ail together and incorporate throughly, use by powdering all over the iron while it is hot, then plunging it in cold water.
To makn Borax.-Alum, 2 ozs. ; dilute with water; and mix with 2 ozs. potash, boil in a pot half an hour over a gentle fire, take it

1 part to 10 r heated to tream being team' at the aier for tho ome cases a n above on hard. The , it is apt to stand near t nerfectly itnie and a will have to In finishing r fine work,
now used in ght iron and ey rest upon in an open d, a mixture, the axletree nal water is considered to iron arounit way to chill and and cast ig them very and, made in andril, and is g. cipitating its ed with charred heat in a as a button
.-To 50 lbs. . Directions, the iron and he iron well, als may take
eas follows : Itpetre, $\frac{1}{2} \mathrm{lb}$.; at the iron a beat the pro-
e, $\frac{1}{2} \mathrm{lb}$; roche rize all togeover the iron
nd mix with fire, take it
out of the water, add 2 ozs. gem salt in powder, as much of alkaline salt lbs, honey, and 1 of cow's milk, mix all together, set It in the sun for 3 days and the borax is ready for use. This'will go twice as far in a bl ksmith's shop as commen borax.

Welding Cast Steic.--Silver sand 2 lbs. pláster of Paris, 1 lb.; mix thoroughly. Heat your article and dust it with the above, place it in the fire again until you get' a red heat and it will weld.

Respirator.-An excellent respirator may be made of a thlck shjet of carded cotton wool placed between two piecés of muslin. Unequalled for arresting dust, steel particles \& c.
Annealing Steel-For small pieces of steel, take a piece of gas pipe 2 or 3 inches in diameter, and put the pieces in it, first heating one end of the pipe, and drawing it together, leaving the other end open to look into. When the pieces are of a cherry red coror the fire with saw dust, use a charcoal fre, and leave the steel in over night.
To DRILL HARDENED STAEL. Cover your stel with melted bees wax: When coated andcold make a hole in the wax with a fine pointed nee dle or other article the aize of hole you regnire, puta drop ftrong nivric acid upon it, after an hour rinse off, and apply again, ft will gradually eat through.

To Prevent Iron Rustina. Give it a coat of linseed oil and whiting, mixed together in the form of paste. It is easily removed and will preserve iron from rusting for years.

To CAst Brass solm. -The metal shoulil not be run an hotter than is necessary to insure sharp castings. The most probable cause of the honey combings of castings is that the air cannot get out of the way; and there ught to be proper vents made for it from the highest parts of the mould; tho metal should be run in near or at the bottom of the mould. If about llb. of lcad bc added to eveo ry 16 lbs. of old bràss, Wh juct ous melting point, sclid good brasses will be the result. In melting old brass, the cinc, or lead, cono tained in it (H_{h} n fuid) oxidizes freely, consequently the proportions of the metal are altered, and recuir an additicn cimilar to the above. If the brass has not been re-castr, little less lead will do, but if re-cast several times it may tako the full quantity.

To Recover the Tin from Old Britasinia. - Melt the metal, and while hot sprinkle sulphur over'it ' añ'd stir it up for a short time this burns the other metals out of the tin, which may then be used for any purpose desired.

Glue tor L'abeling on Matals.-Boiling water, 1 qt. pulverized borax, 2 ozs. 5 gum shellac, 4 ozs. Boil till dissolved. Used for attaching labels to metals, or it will dó to write inscriptions with, and dust or dab on little bronze powder over it, varnishing over the bronze.

Rusia Sheet Iron.-Russia sheot iron is, in the first instance, a very pure article rendered exceedingly tough and fexible by refining and annealing. Its bright, glossy surface is partially \% silicate, and partially an oxide of iron, and is produced by passicg the hot sheet, moistened with a solution of wood-ashes, thrragh polish d teel rollers.

Compositn Iron Railinas.-The process by which this light, olegant and cheap fabric is manufactured, is as follows :-Rods
and bars of wrought-iron are cut to the lengths desired for the pattern, and subjected to a process called crimping, by which they are bent to the desired shape. These rods are then laid in the forra of the design; and cast-iron moulds are affixed at those points where a connection is desired; the moulds are then filled with melted metal, and immediately you have a complete railing of beautiful design. Oasting in iron moulds has this great advantage over the old sand moulding, it does not require any time for cooling as the metal is no sooner run than the moulds may be removed and used again immediately on another section of the work; and besides, it is so much more easily effected. By the combination of wrought and cast-iron in this process, the most curious and complex designs may be produced with great rapidity and cheapness.

Von Bibra's Alloy for Medals.-Bismuth, 27.27 parts; lead, 59.09 parts ; tin, 13.64 parts. If the cast objects be bitten with dilute nitric acid, washed with water, and rubbed with a woollen rag, the elevated spots become bright while the sunken portions are dull, and the casting acquires a dark groy appearance, with an antique lustre. Without biting, ine color is light-gray.

New Shiathing Mertal.-This alloy is made by melting $2 \frac{1}{2}$ parts of copper in one crucible, in another 9 parts of zinc, 87 of lead, 1 part of mercury, and $\frac{1}{2}$ part of bismuth, then mixing the contents of both crucibles, covering the surface with charcoal dust, and stirring well till all are incorporated. It is stated that the mercury in this alloy protects both the zinc and copper from the action of sea-water. The contents of the crucible are run into ingots, and rolled into sheets.

Iron Tubi Manufacture.-In the present method of manufacturing the pertent welded tube, the end of the skelp is bent to the circular form, its entire length is raised to the welding heat in an appropriate furnace, and, as it leaves the furnace almost at the point of the fusion, it is dragged by the chain of a draw-bench, after the manner of wire, through a pair of tongs with two bellshaped jaws; these are opened at the time of introducing the end of a skelp, which is welded without the agency of a mandril. By this ingenious arrangement wrought iron tubes may be made from the diameter of 6 inches internally and about $1-8$ to $3-8$ of an inch thick, to as small as 1-4 of an inch diameter and 1-10 bore, and so admirably is the joining effected in thoss of the best description that they will withstand the greatest pressure of water, steam or gas to which they have been subjected, and they admit of being bent both in the heated and cold state, almost with impunity. Sometimes the tubes are made on? upon the other when great thickness is required; but those stout pipes, and those larger than 3 inches, are but seldom required. The wrought iron tubes of hydrostatic presses, which measure about $\frac{1}{2}$ an inch internally, and $\frac{1}{4}$ to 3-8 of an inch thick in the metal, are frequently subjected to a pressure of four tons on each square inch.

Brass Tusers.-Brass or other tubes are formed of rolled metal which is cut to the desired width by means of revolving discs; in the large sizes of tubes, the metal is partially curved in its length by means of a pair of rolls, when in this condition it is passed
through a steel hole or a die, a plug baing held in such a position as allows the metal to pass betwoen it and the interior of the hole. Oil is used to lubricate the metal, the motion is communicated by power, the drawing epparaius being a pair of huge nippers, which holds the brass, and is attached to a chain and revolves round a windlass or cylinder. The tube in its unsoldered state is annealed, bound round at intervals of a few inches with iron wire, and solder and borax applied along the seam. The operation of soldering is completed by passing the tube through an air stove, heated with "cokes" or "breezes" which melts the solder, and unites the two ejes of the meial, and forms a perfect tube ; it is then immersed in a solution of sulphuric acid, to remove scaly deposits on its surface, the wire and extra solder having been previously removed; it is then drawn through a "finishing hole plate" when the tube is completed.

Mandril drawn tubes are drawn upon a very accurately turned steel mandril, by this means the internal diameter is rendered smooth. The tubes drawn by this process are well adapted for telescopes, syringes, small pump cylinders, \&c. The brass tubes for the boilers of locomotive engines are now made by casting and drawing without being soldered, and some of them are drawn taper in their thickness. Tubes from 1-10 inch internal diameter and 8 or ten inches long, up to those of two or three inches diameter and 4 or 5 feet long, are drawn vertically by means of a strong chain wound on a barrel by wheels and pinions, as in crane. In Donkin's tube drawing machine, which is applicable to making tubes, or rather cylinders, for paper-making and other machinery, as large as $26 \frac{1}{2}$ inches diameter, and $\frac{1}{2}$ feet long, a vertical screw is used, the nut of which is turned round by toothed wheels driven by six men at a windlass.

The fluted tubes of pencil cases are drawn through ornamental plates, with clevations and depressions corresponding to the impressions left on the tube.

Damasods Twist and Stub-Twist Gun-Barrele.-The twisted barrels are made out of long ribbands of iron, wound spirally around a mandril, and welded on their edges by jumping them on the ground, or rather on an anvil embedded thercin. The plain stub barrels are made in this manner, from iron manufactured from a bundle of stub-nails, welded together, and drawn out into ribbands, to insure the possession of a material most thoroughly and intimately worked. The Damascus barrels are made from a mixture of stub-nails and clippings of steel in given proportions, puddled together, made into a bloom, and subsequently passed through all the stages of the manufacture of iron, in order to obtain an iron that shail be of an uncqual quality and hardness, and therefore display different colors and markings when oxidized or browned. 0 ther twisted barrels are made in the like manner, except that the bars to form the ribbands aro twisted whilst red hot, like ropes, some to the right, others to the left, and which are sometimes lami, nated togener for greater divorsity. They are subsequently again drawn into the ribbands and wound upon the mandril, and frequently two or three differcntly prepared pieces are placed side by side to form the complex and ornamental figures for the barrels of
iowling-pieces, described as stub-tiwist, wire-twist, Damascus-twist, \&c. Sometimes Damascus gun-barrels are formed by arranging twenty-five thin bars of iron and mild steel in alternate layers, welding the whole together, drawing it down small, twisting it like a rope, and again welding three such ropes, for the formation of the ribband, which is then spirally twisted to form a barrel, that exhibits, when finished and acted upon by acids, a diversified, Iaminated appearance, resembling, when properly managed, an ostrich feather.

Manuraoturing Chais.- For this purpose the iron is cut off with a plain chamfer, es from the annular form of the links their extremíties cannot slifle asunder when struck. Every succeeding link is bent, introduced, and finally welded. In some of these Welded chains the links are no more than $\frac{1}{2}$ an inch long, and the iron wire $\frac{1}{8}$ inch diameter. These are made with gitat dexterity by a man and a boy, at a small fire. The curbed chains are welded in the ordinary way and twisted afterwards, a few, links being made red-hot at a time for the purpose. The massive cable chains are made much in the same manner, although partly by aid of machinery. The bar of iron, now one, one and a half, or even tivo inches in diameter, is heated, and the scarf is made as a plain chamfer, by a cutting nachine; the link is then formed by inserting the edge of the heated bar within a loop in the edge of an oval disk, which may be compared to a chuck fixed on the end of a läthe mandril. The disk is put in gear by the steam engine; it makes exactly one revolution and throws itself out of motion. This bends the heated extremity of the iron into an oral figure. After(wards it is detached from the rod with a chamfered cut by the cutting machine, which, at one stroke, makes the second scarf of tue detached link, and the first of that next to be curled up. The link is now threaded to the extremity of the chain, closed together and transferred to the fire, the loose end being carried by a traverse crane. When the link is at the proper heat, it is returned to the anvil, welded, and dressed off between top and bottom tools, aftar Which the cast iron transverse stay is inserted, and the link having been closed upon the stay, the routine is recommenced. The work commonly requires three men, and the scarf is placed at the side 'of the oval link, and flat way through the same. In similar chains made by hand it is, perhaps, more customary to weld the link at the crown, ar small end.

Button Mandfacture. - Metal buttons are formed of an inferior kind of brass, pewter, or other metallic compositions. For batton metal, see a variety of alloys on pages 191 and 193. Buttons with shanks are usually made of these compositions, which is supplied to the manufacturers in sheets of the required thickness. By means of fly presses and punches, circular disks called blanks, are cut out of these sheets. This is mostly performed by females, who can furnish about 30 blanks per minute, or 12 gross per hour. Hand punching is the general mode of cutting oat blanks, but more complicated machines, which cut out 8 or 10 blanks at a time, are in use. After being punched, the edges of the blanks are very sharp, and require to be smoothed and rounded. Their surfaces are then planished on the face by placing them separately in a die
äscus-twist, 7 arranging nate layers, twisting it eformation barrel, that diversified, lanaged, an
n is cut off elinks their succeeding me of these bh long, and tat dexterity is are welded links being cable chains ly by aid of half, or even de as a plain ed by insertge of an oval the end of a mengine; it f motion. This igure. Afterut by the cutd scarf of the up. The link together and by a traverse turned to the om tools, aftar ee link having ed. The work ed at the side similar chains ld the link at
of an inferior For button Buttons with ch is supplied ess. By means \&s, are cut out ales, who can hour. Hand ks, but more at a time, are nks are very Their surfaces cately in a die
under a smali starif, and allowing them to receive a smart blow from a polished stecl hemmer. In this state they ore ready to receive the shanks or small metal loops by r.hich they reattached to the dress. They are made by a machine in swich a coil of wire is gradually advanced towards a pair of shears which cuts off short pieces. A metal finger then presses again the middle of oach piece, first bending it and then pressing it into a vice, when it ic comprossed so as to form a loop; a hammer then strikes the twC ends, spreading them into a Iat gurface, and the shank is pushed out of the machine ready for use. The shanks are attached to the blanks by women, with iron 'vire, solder and rosin. They are thenput into an oven, and, When firmly united, foric plain buttons. If a crest or inscription is wanted, it is placed in a die and stamped. Buttons are gilded by gold amalgem, by bsing jut into an earthen pan with the proper quantity of gold to covor them, amalgamated with mercury in the follow.ng manner: the gold is put into an iron ladle in thin strips, and a cmall quantity of mercury, say 1 part of mercury to 8 of gold, added to it, the ladle is held over the fire till the gold and mercury are porfcetly united. This amalgam being put into the pan with the buttois, es much aquafortis, dilutod with water, as will wet them all ovor, is thrown in, and they are stirred up with a brush till the acid, by its afinity to the copper in the buttons, carries uie amaly am to every part of thoir surface, giving it the appearance of silver; this done, the acid is washed away with clean water. This is callëd the guicking process. In drying off, the pan of buttons is heated by a charconal fire expelling the mercury in the form of a vapor, which, under the improved system, is conducted into an oblong iroil flue or gallery, gently sloped downwards, having at its ond a small rertical tube dipped into a jvater cistern, for condensing the mercury; and a large vertical pipe for promoting the draught of the products of the combustion. The gold thus deposited in an exccedingly thin film upon the buttons, presents a dull yehow colcr, and must now be burnished; this is efrected by a piece of hematitos, or bloodetone, fixed on a handle and applied to the button, as it revolvos in the lathe.

Cetlery Manufacture.-There are three tinds of eteel employ:d in manufacture of different articles of cutlery, common steel, shear steel, and cast steel. All edge tools which require to be tenacious witbout being very hard, are made of shear steel. The hest scicsors, razozs. penknives, \&c., are made from cast steel, which is able to take a very fine polish, common steel is only used in making choap articles of cutlery. In making good table-knives, shenr, steel and casi steal are cenerally preferred. Ir the ordinary mothod oi making knives, ibe biader arc cut out of a sheet of stetl, and the backs, shou ders a.cd tangs of wrought iron, are attached to the stcel blric: by widing the forge. The trnife is then ground to the prove: ghape, and the blade polished and hardened. The fork mancfactur is a distnet branch oi industry, and the manufactirer: 01 tacic knives generally buy their forks from the tork makers reaoy to be rut into therr handios. In making table knives, tric men ais generally employed; oue is called the foromon, or makor, aide the oiker the striker. Penknives are usually forged by a single

236\% MACKINISTG, ENGINEARS, \&C., RECZIPTS.

hand, with hammer and apvil simply ; they are hardened by haating the blades red-hot, and dipping them i, to water up to the shoulder. 'Razors are also hardened in the same manner. The grinding and polishing of cutlery are generally performed by machinery, the business of the grinders is divided into grinding, glazing and polishing. "Grinding is performed upon stones of various dimensions. Those articles which require temper being ground on wet stones. Glazing is a process by which lustre is given to cutlery; it is performed with a glazier, consisting of a circular piece of wood, sometimes covered with leather, or an alloy of lead and tin; it is fixed op an axis like a grindstone. The polishing process is the last, and is performed on a similar piece of wood coverod with buff leather. Only articles of cast steel which have been hardened and tempered are subjected to this operation.

Damaskening. -This is the art, now in a great measure lost, of producing a watered or wavy appearance on steel sword-blades, armour, \& c, or of inlaying and encrustiag steel with gold and silver; originally practised at Damascus. Various methods of damaskeening were practised, but the most common seem to have been those of welding, two different kinds of steel, or steel and iron, together, or of cutting lines on the surface of the steel and filling them with gold or silver, which was either forced into the incised lines and brought to a level with the surface of the steel, or remained in relief above it. When the former method was used, a light pattern, generally in many lines, was produced on a dark ground, or vice versa, and the junction of the motals caused the pattern to run through the entire thicknesij of the hlade, so that it could not be obliterated even by grindling.

Die Sinking. When a die is required for a coin or medals, the engraver takes a piece of soft steel of suitable dimensions, generally 3 or 4 inches in length, and about an inch greater in diameter than the coin or other article required on this he hollows out the exact form of the desired impression by cutting away the steel by degrees, with small, well-tempered, case-hardened tools. As soon as this work is thoroughly accomplished the steel is hardened by being heated red-hot in a crucible with charcoal and oil or bone-dust, and then plunged into cold water. When a great number of coins of one sort are required, the original die is termed the matrix, and copies are made from it by taking impressions from it in soft steel; which is in relief, and is called the puncheon, and from which, when it has been hardened, other dies are produced by pressure exactly similar to the matrix, and iii intaglio, which are case-hardened in their turn before they are fit to transmit an impression to any metal used for money. The metal used for our coinage, whether gold, silver, copper, or bronze is stamped in a cold and solid state; but medals and casts can also be produced by a method called casting en cliche, in which the metal is used in a soft' state. For this purpose an alloy is used, consisting of $\frac{1}{}$ lead, $\frac{1}{2}$ tin, and $\frac{1}{2}$ bismuth, which fuses readily at the boiling point, 212° Fah. When the metal is soft, reseqmbling paste in consistency, the die is placed upon it, and the impression produced by a smart blow from a mallet; the surface of the metal sets instantly, from coming into contact with the cold die, and thus readily retains the form that

has

red by haatup to the anner. The med by mao grinding, tones of vaeing ground is given to of a circular alloy of lead olishing prowood coverch have been
asure lost of 3word-blades, ld and silver, f damaskeenve been those :on, together, ng them with sed lines and remained in light pattern, round, or vice pattern to run t could not be
br medals, the ons, generally in diameter fllows out the y the steel by lis. As soon as ened by being one-dust, and f coins of one ix, and copies it steel, which hich, when it essure exactly e-hardened in ession to any aige, whethcr ad solid state ; method called ft' state. For d, $\frac{1}{2}$ tin, and $\frac{1}{2}$ 2° Fah. When o die is placed blow from a n coming into the form that
has been given to it. Copies of medals may be readily made in this way, but each face will be obtained in a separate piece, and, these must be joined to give representations of the coin in a complete form.: Ongmental work is produced in thin metal for gasfitting, cornices, parts of cruet-stands, trays \&c., by meaps of a pair of dies, on one of which the pattern is formed in relief, and on the other in intaglio, the metal being:plaged between them, and brought into the desired shape by pressure, Dies are also meade in metal for forming articles in gutta-percha and leather, pad producing embossed figures on the oloth covers of boples, as well as on cardboard, paper, \&e.
Strielplati Engraying. As regards eteelplate engraving it has proved immensely superior to the old copperplate system. A soft steelplate is first engraved with the required subject in the most finiahed style of art, either by hand or mechanically, or the two combined, and the plate is thop hardened; a softened steel cylinder is then rolled over the hardened plate, with great pressure by powerful machinery, uatil the engraved impression appears in relief, the hollow lines of the original becoming ridges upon the cylinder, the roller is re-converted to the condition of ordinary steel, and hardened, after which it serves for returning the impression to any. number of decarbonized plates, every one of which, becomes absolutely a cuwiterpart of the original, and every plate, when hardened, would yield the enormous number of 150,000 impressions, without any perceptible difference between the first and the last. In one instance, from one ongraving of the Queen's head on the postago stamp, over 6000 plates were produced from the original, and plates for bank-note printing are multiplied in the same way. Great caution mustbe used in the various processes of annealing and hardening, as only slight carelessness would result in ruining the most costly plates. . The method in use in the bank of England is as follows: the work to be hardened is onolosed in a wrought-iron box with a loose cover, a false bottom, and with three eare projecting from its surface about midway; the steol is surronded on all sidus with carbon from leather, dxiven in hard, and the comer and bottom are carefully luted with moist clay, thus prepared, the caso is placed in the vertical position, in a bridge fixed across a great tub, which is then filled with wateralmost to touch the flat bottom of the casa; the latter is now heated in the furnace as quick' ${ }^{\prime}$. ' allow the uniform penetration of the heat. When sufficient , to its place in the hardening tub, the cover ol to iron oox is removed, and the neck or gudgeon of the cxlinger is grasped, beneath the surfaca of the carbon, with a long pair of tongs, upon which a couplet is dropped to seoure the grasp. It poly remains for the individual to hold the tongs with a glove whilst a smart tap of the hammer is given to their extremity; this knocks out, the false bottom of the case and the cylinder, and the tongs, prevent the cylinder from falling on its side, and thus injuring its delicato but still hot surface. For square plates, a suitable frame is attached by four slight claws, and it is the frame which is seized by the tongs. the latter are sometimes hold by a chain which removes the risk of secident to the individual. The steel comes out of tho water an
smooth to the tonch as at first, and mottled with all the beautifal tints of case-bardened gun-locks.
On Fini Manufacture.- Files are made of bars of steel, rendered doubly hard by a process called double conversion, drawn the required size at the tilt hammer, and then shaped, the square and flat ones by the hammer and common anvil only, but those of ronnd, hall-round, and three-angled forms, by means of bosses and dies made in the aboye ghapes, which fit into a groove left for them in the anvil. The sten: blanks having been thus formed, are next annealed, or revel to render them capable of being cut, by placing a numb: of a n together in a brick oven, rendered airtight by filling n_{5} ill the intarstices with saind (to prevent the oxidation of the steel, to which it is very liable, if air be admitted), and then making a fire play as equally as possible all round until they are red hot, when the heatis discontinued, and the ateel allowed to cool gradually before it is uncovered. The surface to coutain the teeth is now rendered as smooth as possible by grinding or filling; the teeth are then cut with a carefully ground chisel, each incision being made separately. The next and last process, that f hardening, is performed in various ways by different makers, the ordinary meihod, however, is to cover the files with a kind of composition or protecting varnish to prevent oxidation and scalding of the steel when heated; and, lastly, they are plunged in cold, fresh water to cool them as quickly as possible. Some file-makers coat their files, before tempering, with a composition of cow-dung or pig-fiour, which not only protects the sharp angles of the cuttings from the action of the fire, but furnish a highly azotized substance, Which conduces greatly to still further harden and steelify the finished work. I know several file manufacturers who make use of a bath of melted lead for tempering purposes. The files are first coated with a greasy composition to prevent any oxide adhering, then introduced for a short time into melted lead, or the "metallic bath" as it is callod, and then plunged into the tempering liquid. The melted lead may be kept corered with charcoal, or other suitable ingredient, to prevent oxidation. In some manufactories charcoal fire is kept burning on the surface of the melted lead.
Pen Maring. - Pens should be made of the best steel that can be got, as peculiar elasticity is required in them, which could not bo obtained if poor steel were used. The steel is cut into slips some3 feet long and 4 inches broad; these slips are then plunged into a picklo of diluted sulpharic acid so as to remove the scales from the ©urface; next it is passed between heavy rollers by which it is freduced to the thickness required, and made fit to undergo the first process in pen making. This is performed by a girl, who, seated at a stamping-press provided with a bed and corresponding punch, opeedily cuts out the blank, which is perfectly flat. The next step is to perforate the hole which terminates the slit, and to remove any superfluous steel which might interfere with the elasticity of the pen. The embryo pens are then annealed in a muffle, and the maker's name stamped upon them. The pens are next transferred to another class of workmen, who, by means of a press, either make the pens concave, if they are merely to be nibs, or, if they are to be barrel pens, they roll the barrel together. The next process is

the beantifal

eel, rondered drawn the e square and but those of of bosses and 0 left for them ned, are next jeing cut, by rendered airent the oxidadmitted), and ind until they eel allowed to to coutain the ing or filling; , each incision hat f harden3, the ordinary f composition alding of the in cold, freesh le-makers coat f cow-dung or of the cutuings ized substance, nd steelify the who make use he files are first kide adhering, the "metallic pering liquid. coal, or other manufactories melted lead. eel that can bo h could not bo to slips some 3 ed intoa pickle ales from the by which it is dergo the first fl, who, seated onding punch, The next step to remove any asticity of the putfe, and the ext transferred ss, either make they are to be ext processis
termed the hardening, and consists in placing a number of pens in an iron box which is introduced into a muffle. After they become of a deep red heat they are plunged into a tank of oil, and, when they get cool, the adhering oil is removed by agitation in circular tin barrels; tempering is the next step, by heating to the necessary elasticity in a warm bath of oil ; and, finally, the whole number of pens are placed in a revolving cylinder along with sand, ground crucible, and other cutting substances, which tends to brighten them up to the natural color of the steel; next the nibis ground down finely, with great rapidity, by a girl, who picks it up with a pair of pliers, and, with a single touch on an emery revolving wheel, perfects it at once. The shtt is now made by means of a press. A chisil, or wedge, with a flat side, is affired to the bed of the press, and the descending screw has a corresponding chisel-outter, which passing down with the greatest accuracy on the pen, which had been placed othe chisel affixed to the bed, and the slitis made and the pen complete. They are next colored brown or blue, by placing them in a revolving metal cylinder, under which is a charcoal stove, and, by watching narrowly the different gradation of color, the requisite tint is speedily attained; a brilliant polish is subsequently impartsd by immersing the pens in lac dissolved in naptha; they are 1 in dried, counted, selected and placed in boxes for sale.

Gold Pens.-Gold pens are made much in the same manner as steel, with this important difference, that, as they cannot be tempered in the same way that steel is, the necessary elasticity is imparted to them by hammering, and by rabbing them with a small hard stone and water, instead of the tempering, \&c., in oil. As gold is too soft of itself to make a durable pen, it is found necessary to attach a minute portion of an alloy of iridium and osmium, by soldering to the tips. This makes an extremely hard and durable point.
On Needli Manufaoture, Telppring, eo.-This emall but important implement has to go through the hands of about 120 workmen during the process of manufacture. The steel wire, being drawn to the proper size, is submitted to various tests to ascertain its quality, and is then cut into proper lengths by shears, which, by striking 21 blows in a minute, cut in 10 hours fully 400,000 ends of steel wire, which produce about 800,000 needles. These are passed on for further manipulation to other workmen, who straighten and point the pieces of wire. After pointing they are cut in two, so as to form two separate needles of equal length and quality. Foreach different size a small copper plate is employed. It is nearly square, and has a turned-up edge on two of its sides, the one is intended to receive all the points, while the other resists the pressure of the shears. On this plate a certain number of wire are put with their points in contact with the border, and they are cut together flush with the plate, by means of a small pair of shears moved by the knee of the workman. These even wires are now taken to the head fattener. This workman, seated over a table with a block of steel before him about 3 inches cube, takes up from 20 to 25 needles between his finger and thumb, spreading them out liike a fan, with the points under the thumb, he lays the heads on the steel block, and, with.a small flat-faced hammer strikes a few successive blows upon thera

240 MOEINISTS, TENGINEERS, *O., RECEIPTS.

so as to flation them in an initant. The heads, having become bardened by hammering, no now annealed by heating and slow cooling, and are handed to the piercerr, generally a child, who forms theieye in 'a sectond by laying the head upbn a block of steel, and by driving' a^{\prime} 'smidl p prich' thrsugh one side with a smart tap of the hammer, and 'thien exactly'cpposite on the other." The eyes ars then trindmed by driving the puitioth throirgt them again on a lump of lead and, vifter laying "Se needle with the punch sticking through it, upon the bloek of steel, hammering the head on the sides, whlelr ccauses it to take the form of the punch. The next operator'makes the groote at "the eye and rounds the head, which' he does' with a small fle. The needles, being this prepared, are thrown by the workmen pell-mell into a sort of dram or box; in which they are made to arran'ge themsel yes in parallel lines by means of A "few "dexterous shakes of the workiman's árm. They are now ready to be tempered, for which purpose they are ranged on theet-Iron plates, "about 30 ' Ibs. weight at a'time, containing from 250,000 to 500,000 néedlés, aind are placed in a proper furnaco; when they are heated to a bright redness for the larger needles; and to a less intense degtee for the smaller; they are then removed, and Inverted suddenly over a bath of cold water in such a way that all the needles niay be imineitsed at the same time, yet separate froth each other. This has the effect of making them very hard and brittle: The water being run off, the needles are removed for further operationis. Some manufacturers "heat the needles by means of immersion in melted lead, others throw them into a pan along with a quuntity of grease, whilch, being placed on the fire, the oily matter soon ignites,' and after it barns out, the needles are found to be in' the proper teringer; those whith are twisted in the tempering being afterwards straightened by the hammer on the anvil.
Polishing fo the next and most expensive and prolonged operation. Thisis effected or buhdles containing 500,000 needles intermixed with quartzose 'sand', and a little rape-seed oill Thirty of those bundles are expoided to the vibratory pressure of wooden tables, which make about zo hotizontal double moverrents per minute, causing the bundles to run over 2 feet each time, or 800 feet per hour. This agitation is kept up abont 18 or 20 hours, cansing siuch a movement and attrition as to polish the needles in the bags or bundles. They are then' rembed from the packets into wooden bowls and mixed with saiwdust to remove the grease and other impurities, placed in a cask, whioh is turned by a winch ; more sawdust is introduced as required, and the turning is continued until the needles become clean and brighit. They are then winnowed by a fan to clean them from the sawdust and refuse matter, and are subsequently airanged 'in' regular order on a small,' somewhat concave, iron tray. The operation of raaking up the rolls or bags, polishing, wintiowing and arranging thicm, have to be repeated ten times on'the best needles: It is found that cmery powder mixed with quartz and mica'or pounded granite is preferable to anything else for polishing needles by friction in tho bags at the first, emery mixed with olive oil, from the second to the seventh operation, putty, or oxide of tin for the eight and ninth, putty with very little
aving become ing and slow n child, who block of steel, b a emart tap ter." The eyes m again on a sunch sticking head on the ch. The next nds the head, ing thas presort of drum res in parallel orkman's arm. rpose they are a a time, coned in a proper for the larger ; they are then water in such same time, yet ting them very es are removed the needles by dem into a pan on the fire, the he needles are twieted in the ammer on the
iged operation. ntermixed with thosé bundles es, which make e, caiusing the er hour. This such a movegis or bundles. len bowls and ier impurities, pre sawdust is ued until the vinnowed by a atter, and are omewhat conrolls or bags, θ repeated ten powder mixed e to anything he first, emery ath operation, vith very little
oil for tho tenth, and lastly bran to give a finish. In this mode of operating, the needles are scuured in a copper cask studded in the interior with raised pointe to tricresso the friction and a quantity of hot soap suds is introduced occaslonally to keep them clear. The cask mast be slowly tumed upön its axis for fear of injuring the mass of needles it contsins. They are finally dried in the wooden cask by attritton with saw dust, then whed with a linen rag or Boft leather-the datiaged'ones beinit thrown aside. The sorring is performed in dry appartments, where alls the pobiits are first laid the samic way, and the needlesarranged in the order of their polish with great tapidity. The workman places' 2000 or 3000 needles in an Iron ring two inches in diamerer, and eets all their heads in one plane, then, on looking carefully at their points, he easily recognizes the broken ones and remores them with an instrument adapted for the purpose. These defective noedles pass into the hands of the pointer in order to be ground again, when they form articles of inferior value:' Those needtes bent in the polishing must now be straightened; and the whole are finally arranged by the tact of the finger and thumb of the sorter, and weighed out into quantities for packing into blue papers!. The bluer puts the final touch to them by taking 25 needles at a time between his foro-finger and thumb, and pressing their points against a small hone-stone of compact micaceons schst, quadraityitar in form, mounted in a small la the, tarning thembriskly routd, giving the points a bluish cast, while he polishes and improves them.
Blantce Sprixgs of Ceronowermes.- The balance aprings of marine chrondmeters, which are in the form of a screw, are wound into the square thread of a screw of the appropriate diameter and coarseness; the two endsof the spring are retained by side'screws, and the whole is carefally enveloped in platinum foil, and lightly bound with wire: The maies is next heated in a piece of gun barrel closed at one end, anta plunged into oil, which hardens the spring almost without discolouring it, owing to the exclusion of the air by the close platinum covering, which is niow femoved, and thè spring is let down to the blue before removal from the seremed block. The balance or hair spring of common watebes' are frequently' left soft, those of the best watches are hardened in the coil upon a plain cylinder and are then curled into the sipiral form between the edge of a blunt knife and the thumb, the same as in curling up a narrow ribbon or paper, or the flaments of an ostrich feather. The soft springs are worth 60 cents each, those hardened and tempered $\$ 1.26$ each. This raises the value of the steel, originally less than 4 cents, to $\$ 2000$ and $\$ 8000$ respectively: It takes 3200 balance springs to weigh' an ounce.
Wator Spring Manofacture.-Watch springs are hammered out of round steel wire, of suitable diameter until they fill the gauge, for width. Whith at tho same time insures equality of thickness. The holes are punched in their extremities,' and" they are trimmed on the edge with a smooth file. The springs are then tied up with binding wire, in a loose open coil and heated over a charcoal fire upon a.perforated revolving plate. They are hardened in oil and blazed offThe spring is now distended in a long metal frame, similar to that used for a saw blade, and ground and polished with emery and

oil between lead blocks. By this time its elauticity appears quite lost, and it may be bent in any direction; its elasticity is, however, entirely restored by a subsequent hammering on a very bright anvil which puta the "nature into the spring." The coloring is done over a flat plate of iron, or hood, under which a small spirit lamp is kept burning ; the spring is continually drawn backward and forward, about two or three inches at a time, until it assumes the orange or deep blue tint throughout, according to the taste of the purchaser. By many the coloring is considered to be a matter of ornament and not essential. The last process is to coil the spring into the apiral form, that it may enter the barrel in which it is to be contained. This is done by a tool with a small axis and winch handles, and does not require heat.

Compenbation Balance of Chronometers.-The balance is a small piece of steel covered with a hoop, of brass. The rim, consisting of the two metals, is divided at the twa extremities the one diametrical arm of the balance, so that the increase of temperature which weakens the balance springs contract, in a proportionate degree, the diameter of the balauce, leaving the spring less resistance to overcome. This occurs from the brass expanding much more by heat than steel, and it therfore curls the semicircular arcs inwards, an action that will be immediately understood, if we conceive the compound bar of steel to be straight, as the heat would render the brass side longer and convex, and in the balance it renders it more curved. In the compensatinn balance the two metals are united as follows : the disk of steal when turned and pierced with a central hole is fixed by a little screw-balt and nut at the bottom of a small crucible, with a central elevation smaller than the disk ; the brass is now melted and the whole allowed to cool. The crucible is broken, the excess of brass is turned off in the lathe, the arms are made with the file as usnal, the rim is tapped to receive the compensation screws or weights, and, lastly, the hoop is divided in two places at the opposite ends of its diametrical arm.

Tabular Vinw or fer Proomsbes of Soldering.-Hard soldering. The hard solders most commonly used are the spelter solders, and silver solders. The general flux is burax, marked A, on the table, and the modes of heating are the nalised fire, the furnace or muffe, and the blow pipe, marked a, b, g, applicable to nearly all metals less fusible than the solders; the modes of treatment are nearly similar throughout. Note.-The examples commence with the solders (the least fusible first) followed oy the netals for which they are commonly employed. Fine gold, laminated and cut into shreds, is used as the solder for joining chemical vessels made of platinum. Silver is by many considered as much the best solder for German silver, for silver solders, see pages 153 and 154. Copper cut in shreds, is sometimes similarly used for iron Gold solders laminated are used for gold alloys, see 153 and 154. Spe!ter solders, granulated whilst hot, are used for iron copper, brass, gun metals, German silver, \&c, see 189. Silver solders, laminated are employed for all silver works and for common gold work, also for German silver, gilding metal, iron, steel, brass, gun metal, \&c., when greater neatness is required than is obtained from speltor nolder.

Wh nlloys tutes Har of trea tin and more 1 the gr modes
quite lost, however, bright anag is done pirit lamp sward and ssumes the aste of the matter of the spring ich it is to and winch

lance is a

 m, consistthe one dinemperature rtionate deesistance to ch more by cs inwards, onceive the 1 render the it more curnited as folontral hole is small cruthe brass is e is broken, e arms are ve the comided in twoPard solder1 ter solders, d A, on the furnace or nearly all atment are mence with -netals for inated and ical vessels ch the best 53 and 154. ron Gold 154. Spestpper, brass, , laminated work, also metal, \&c., om apolter

White or button soldors, gionnlated, are employod for the white alloys called button metals; they were introduced as cheap substitutes for silver solder.

Hard Soldering. Applicable to nearly all thomotals; the modes of treatmont are very different. The soft solder mostly used is 2 parts tin and one of load; sometimes, from motivos of oconomy, much more lead is employed, and $1 \frac{1}{2}$ tin to 1 lead is the most fusible of the group, uniess bismuth is nsed. Tho fluxes B to G, and the modes of hoating a to i, aro all used with the soft solders.

Note.-The examples commence with the metals to be soldered. Thut in tho list zinc, $8, c, f$, implies, that zinc is soldered with No. 8 alloy, by the aid of the muriate or chloride of zinc, and the copper bit. Lead, $\&$ to 8, F, d, e, implies that lead is soldered with alloys varying from No. 4 to 8, and that it is fluxed with tallow, the heat being applied by pouring on melted solder, and the subsequent use of tho hoated iron, not tinned; but in general one only of the modes of hestiag is colontsd, according to circumstances.
1 Iron, cast-iron and steel, $8, B, D$, if thick, heated by a, b, or c, and also by g. Nec gage 190.

Tinned iron, \hat{C}, C, D, f.
Gold and silver are soldered with pure tin, or else with $8, E, a, j$, or h.

Copper and many of its alloys, namely, brass, gilding metal gun metal. \&c., $8, B, O, D$; when thick, heared by a, b, c, c, or g, when thin by f, or g.

Speculum metal, $8, B, C, D$, the heat should be cautiously applied, tho sand bath is perhaps the best mode.

Zinc 8, O.f.
Lead and lead pipes, or ordinary plumber's work 4 to $8 F_{8} d_{3}$ or 6 .

Lead and tin pipes, $8, D$, and G, mixed, g, end alsof.
Britannia metal, U, D, g. See page 189 .
Pewters, the solders must vary in fusibility according to the fusibity of the metal, generally G, and i, are used. sometimes also G, and g_{1} or f :

Lead is united without solder by pouring on red-hot lead, and employing a red-hot iron d, e.

Iron and brass are sometimes burned, or united by partial fusion, by pouring very bot metal over or around them. See page 214.
Alloys and their Melting Heats. Fluxis.
No. 11 Tin 25 Lead 558 Fahr, A. Borax.

2	1	c	10	"	541		B. Sal-am. or mur
3	1	${ }^{6}$	5	\pm	511	α	C. Muriate or chlor. of zinc.
4	1	"	3	α	482	α	D. Oommon resin.
5	1	${ }^{4}$	2	"	441	"	E. Venice turpentine.
G	1	a	1	2	370	6	F. Tallow.
${ }^{3}$	$1 \frac{1}{2}$		1	c	334	c	G. Gallipoli oil, or common
\%	2	α	1	4	340	${ }^{\text {c }}$	[sweet oil.
9	3	${ }^{\circ}$	1	"	356	"	Modis of Applying Heat.
10	4	*	1	"	365	"	a. Naked fire.
11	5	"	1	*	378	"	b. Hollow furnace or muffle.
12	6	"	1	"	381		c. Immersion in melted sold.

Alloys and teifir Melting Reats. Modes of Applying Heat. 13 Lead 4 Tin 1 Bismuth 320 Fahr d. Melted solder or metal poured on.

14	3	"	3	"	1	6	310	"	e. Heatediron, not
15	2	"	2	${ }^{6}$	1	4	292	"	f_{0} Heated copper tool, tinned.
16	1	*	1	"	1	e	254	"	g. Blow pipe flame.
17	2	μ	1	"	2	8	236	"	h. Flame alone, g rally alcohol.
18	3	"	5	U	2	c	202		. Stream of heated ai

To Refine Swempings Contaning Gold or Silver.-To 8 ozs. or the dirt, which has been washed and burnt, add salt, 4 ozs.; pearlash 4 ozs. ; red tartar 1 oz ; saltpetre $\frac{1}{2} \mathrm{oz}$., mix thoroughly in a mortar, melt in a crucible, and dissolve out the precious metals in a button.

To Fuse Gold Dust.-Use such a crucible as is generally used for melting brass; heat very hot; then add your gold dust mixed with powdered borax;-after some time a scum or slag will arise on the top, which may be thickened by the addition of a littile limo or bone ash. If the dust contains any of the more oxidizeablo metals, add a little nitre, skim off the slag or scum. very carefully; when melted grasp the crucible with strong iron tongs; and pour off immediately into cast iron moulds, slightly greased. The slag an'd crucibles may be afterwards pulverized, and the auriferous matter recovered from the mass through cupellation by means of lead.

To Recover Gold from Quartz.-Pulverize the quartz rock as usual, and fuse the mass with lime and oxide of iron. When fused, immerse thin plates of wrought iron in the mixturo. The plates soon become coated with a thin film of gold, and are then withdrawn and immersed in a bath of melted lead, which removes the adhering gold, when the plates can be at once returned to the fused quartz and the operation repeated as frequently as the casc may require. Another method, when the metal is disseminated through quartz pyrites or lead, is to pulverize the ore as usual and wash the whole with a stream of water, which carries away the lighter portions of sand, leaving the heavy metal behind. It is further freed from impurities by being amalgamated with quick-silver, which is afterwards distilled off. In this state it generally contains from 2 to 10 per cent. of silver or tellurium. It is further refined by being finely granulated and boiled with concentrated sulphuric acid until every other constituent is boiled out. Gold by being alloyed, loses mueh of its ductility and malleability, but gains in fusibility and hardness. Gold alloys are assayed in two ways, first, by rubbing the irticle on a touchstone (which is a velvety, black flinty variety of jasper) so as to make a metallic streak, which is touched with aqua regia, and tho effect is compared with that of a similar-streak made by an alloy of known composition. By this means an experienced operator can estimate the amount of alloy in any mixture correctly within one per cent. Full information regarding the second process can be seen under tho article on Refimang Gold and Silver.
applyivg Heat. solder or meoured on. liron, not tin'd. 1 copper tool, ed. ipe flame.
alone, geney alcohol. of heated air. JER.-To 8 ozs. dd salt, 4 ozs. ; mix thoroughly at the precious
s is generally your gold dust um or slag will e addition of ε ny of the more lag or scum very ong iron tongs; lightly greased. verized, and the h cupellation by
de quartz rock as on. When fused, uro. The plates are then withich removes the fned to the fused as the casc may ninated through al and wash the way the lighter d. It is further th quick-silver, nerally contains further refined trated aulphuric
Gold by being ty; but gains in a in two ways, ich is a velvety, metallic streak, compared with composition. By the amonnt of Full informaer the article on

Gold Alloys. The "New. Standard" for watch cases, \&c., is 18 carats of fine gold and 6 of alloy. No gold of inferior quality can receive the "Hall mark"; and gold of lower quality is generaliy described by its commercial value. The alloy may be entirely silver, which will give a green color, or entirely copper for a red color, but the copper and silyer are more usually mixed in one alloy according to the taste of the jeweller. It will be understood that these are all made with fine gold, fine silver, and fine copper, direct from the refiner. Gold of 22 carats fine heing so littlo used, is intentionally omitted. 1. Gold of 18 carais, of yellow tint. Gold. 15 dwt , silver, $2 \mathrm{dwt}, 18 \mathrm{grs}$, copper, $2 \mathrm{dwt} 6 \mathrm{grs}, 2$. Gold of 18 carats, red tint. Gold $15^{\circ} \mathrm{dwt}$, silver, $1 \mathrm{~d} \mathbf{~ d t} 18$ grs: copper, 3 dwt 6 grs. 3, Spring gold of 16 carats. Gold 1 oz .16 dwt , silver, d dwt. copper, 12 dwt . This when drawn or rolled very hard, makessprings little inferior to steeी; 4 Jewellers' Fine Gold, yellow tint, 16 carats nearly. Gold, 1 oz . silver, 7 dwt copper, 5 dwt , 5. Gold of red tint, 16 carats. Gold, 1 oz. silver, 2 dwt. copper, 8 dwt. Gold alloys in great variety will be found by consulting the "Jewellers' Department" pages 153, 154, 155 and 156.
Smelting of Copper.-After the ore is raised from the mine, it is freed from its matrix and sorted, the purest portions being broken into pieces the size of a nut. The first calcination is effected in a reverberatory furnace, the heat not being raised too high. At the end of 12 hours the ore is converted into a black powder, containing sulphide of copper, oxide and sulphide of tron. and earthy impurities. The roasted ore is next fused with a quantity of siliv cious slag, by which means it is converted into a fusible slag cono sisting of silicate of iron and sulphides of izon and copper, which sink through the slag, forming at the bottom a heavy mass, termed a matt. The matt thus procured is, while melted, run into water, by which it is granulated. The product obtained is called coarse metal. It is roasted once :hore for twenty-four hours, by which means the larger proportion of the sulphido of iron is converted into oxide. It is then calcined with some copper ore known to contain oxide of copper and silica. The oxido of copper transforms any remaining sulphide of iron into oxide, Thich is taken up by the silica to form a slag, through which the sulphide of coppersinks. This matt contains about 80 per cent. of copper, and is known by the name of fine metal. It is cast into pigs, tho lower portions of which contain most of the impurities; tho motal oxtracted from the upper portions being known in tho market as best selected copper. Tho fine metal has now to be freed entirely from sulphur by a final calcination, at a heat just short of that required to fuse it. During the process the motal becomes oxidized at the surface. The oxide thus formed decomposes the rest of the sulphide, sulphurous acid escaping, and metallic copper remaining behind. Tho metal obtained is run ott into moulds, forming ingots full of bubbles, from the escape of the sulphurous acid gas. These ingots, which are known as pimple, or blistered copper, from their peculiar appearance, have now to undergo the process of refining. They are placed in a reverberatory furnace, and kept in a melted state for upwards of 20 hours, to oxidize the last traces of foreign metals. Slags are formed on the surface and skimmed off, and a

246 MACHINISTS, ENGINEERS, \&C., ERCEIPTS.

great deal of oxide is produced which is absorbed by the metal. To reduce this oxide, the surface of the melted metal is covered with anthracite or charcoal, and towards the last a young tree is thrust in. This process, which is called poling, disengages the whole of the oxygen from the oxide diffused through the mass. The above is, as nearly as possible, the method of copper-smelting, as employed in England, the processes adopted in Saxony and North America being nearly identical with it, the difference merely being modifications to suit the various impurities contained in the ore. When the ore consists of oxide or carbonate of coppér only, it is reduced to the metallic state by simple fusion with charcoal and subsequent poling.
Smelting of Lead.-The ore having been "rought to the surface, is first sorted by hand, the purest portions being set aside ready for smelting. The rost is broken by hammers into lumps as large as a walnut, and again sorted. The remainder is then crushed in a mill, and sifted through coarse sioves, the coarser portions being set aside for the stampers, and the finer being subjected to the process of jigging. This consists in plunging a sieve containing the ore into water, and shaking it dexterously, so that the smallest particles pass through, leaving the larger pieces in the sieve, with the lightest and least metallic portions uppermost. If the sorted galena be tolerably free from gangue, about $1 \frac{1}{2}$ ton of the ore is mixed with 1-15th to 1-40th its weight of lime, and heated to dull redness in a reverberatory furnace, through which a current of air is passing. By this means a large portion of the sulphur is burnt off as sulphutrous acid, oxide of lead and sulphate of lead being formed, and much of the ore remaining undecomposed. When the roasting has been carried sufficiently far, the furnace doors are shut and the heat is raised. The sulphatc and oxide of lead re-act on the undecomposed suilphide, a large quantity of sulphurous acid is formed, which passes off, leaving large quantities of metallic lead behind. The hre is now damped, ond a quantity of lime thrown in, which forms a very infusible slag, allowing the metallic lead to be drawn off into moulds. The slag, which contains a large proportion of lead, is smelted with an additional portion of ore. Lead is refined by being melted in a shallow pan in a reverberatory furnace. By this operation any tin or antimony it may eoniain is oxidized and removed as skimmings. When a ladleful of the lead under this operation cools with a peculiar crystalline surface, the process is discontinued, and the metal is run off into pigs. For some purposes, such for instance as the making of red lead for the manufacture of flint glass, it is necessary that the lead should be almost chemically pure, as a proportion of copper for instance, amounting only to a few grains per ton, would color the glass and spoil the batch. Silvor may be profitably extracted from lead, even when it contains only three or four ounces to the ton, by Pattinson's process. This process depends upon the fact that, as lead solidifies, the first portions that crystallize are pure lead. The operation is, therefore, performed by melting the metal in an iron pot and allowing it to cool gradually ; as it cools, the crystals of pure lead are removed by a perforated ladle, and the process continually repeated with fresh portions of lead until the mass con-
the metal. To s covered with g tree is thrust sis whole of ss. The above aelting, as emny and North :o merely being ned in the ore. oppér only, it is h charcoal and
t to the surface, aside ready for os as large as a in crushed in a : portions being cted to the procontaining the at the smallest 1 the sieve, with

If the sorted ion of the ore is i heated to dull a current of air sulphur is burnt te of lead being psed. When the rnace doors are le of lead re-act sulphurous acid ities of metallic uancity of lime ing the metallic contains a large portion of ore. in a reverberatit may coniain leful of the lead ine surface, the into pigs. For red lead for the lead should be er for instance, or the glass and from lead, even ton, by Pattinct that, as lead ure lead. The hetal in an iron the crystals of he process conthe mass con-

MACHINISTS, ENGINEERS, \&C., REGEIPTSA
247
tains about 300 ounces to tne ton. It is then suromitted to cupeon lation. See Refining Gold and Silver, page 164.

Manufacture of Iron.-The preparation of the ore is effected in a vary simple manner, either by pounding or levigating, to separate the clay and silica, or other impurities, or by roasting, to draw off sulphur and carbonic acin, and to render the ore more easily crushed. The extraction of the metal from the ore was formerly effected by means of charcoal, in what was termed a Catalan forge, but it is only used now in a few instances. On account of the loss of metal during the process, it will be better to describe the usual method of smelting ores in England by the blast-furnace. A blast-furnace consists of a loug cone inverted upon a shorter cone, at the bottom of which is a vertical passage called the crucible, into which are inserted three pipes called tuyères, through which the blast is conveyed ; also a larger opening, through which the slag may be withdrawn, at intervals. At the bottom is a hole called the tap-hole, usually closed with clay for drawing off the reduced metal when a sufficient quantity is collected. The furnace is fed with coal, limestone and ore from a hole near the top, the charge being renewed from time to time as the materials burn down. The action by which the ore is reduced to the metallic state may be traced as follows. The oxygen of the air of the blast combines with the carbon of the coal to form carbonic acid during the process of combustion. The carbonic acid during its passage through the rest of the heated fuel, is decomposed, being converted into carbonic oxide. The carbonic oxide, still ascendins, meets with the hydrogen and coalgas, together with which it forms a reducing mixture, abstracuing the oxygen of the ore pnd setting free the iron in a metallic state, which sinks down to the bettom of the furnace, where it comes in contact with the carbon of the coal. With this carbide of iron is formed, increasing the fusibility of the reduced iron to such an extent that the lime, clay, and silica present, which have been converted into a fusible slag, float on the top as an imperfect glass. The slag runs over through the side apertures provided for the pur. pose, and the metal is withdrawn every 12 or 24 hours through the tap-hole. It is run into moulds consisting of a long channel, irom each side of which run shorter ones. The central channel is known as the sow, the side ones as the pigs, hence the term pig iron, as applied to rough cast-iron. Great improvements have lately becn made in the process of smelting iron, by the introduction of 8 , heated blast for urging the combustion, and by using the combustible gases issuing from the top of the furnace for heating the blast, or the boilers of the steam-engines used for the blowing machnes. These improvements are now in use at most of the principal iron works throughout the kingdom, aid an idea of their importance may be gainered from the fact that 15 years ago a yield of 200 tons per furnace was thought to be a large quantity, wherns ncw, at the Ulverstone and other works, 600 and 650 tons per week is thought an ordinary yield; not only this, but the amount of fuel used has been reduced to one-quarter by the same means. The iron that comes from the furnace is gencrally much too impure to be used for any but the very ronghest castings,
it therefore has to be remelted, to ? rive off, as much as possible, the uncombined carbon, or graphite, silicon, phosphorus, sulphur, and other impurities. A single refusion converts it into what is termed "No. 2 pig," or a grey iron, a fusible and liquid metal ; a second and third still further purifying it from carbon, until it is converted into refined or whitg iron, in which the whole of the carivis is combined with the metal. This description of cast-iron is only used for conversion into malleable iron, for although it melts easily, it iorms a much more pasty mass than some of the intermediate qualities of grey iron, which melt into a more liquid metal, fitting them for casting purposes. Refined iron made from the German spathose ores contains a large quantity of combined carbon and mangauese, and crystalizes in large plates. It is termed spiegel-cisen, or mirror iron, iron the brilliancy of its crystalline structure, and is much valued for making steel. Founders are accustomed to divide cast-iron into three or four qualities. No. 1, pig or black cast-iron, which contains a large proportion of uncombined carbon ; No. 2, or grey cast-iron, which contains more combined carbon; No. 3, or mottled, which contains only a few grains of uncombined carbon, here and there, giving it a mottled appeaiance; No. 4 , or refined iron, in which the whole of the carbun is combined. No. 4, is very hard and brittle, and is fit for puddling or conversion into aralleable or wrought-iron. This is effected by bringing an ingot of refined iron to a state of fusion in a reverberatory furnace, taking care to avoid the contact of fuel. The heit is continued until the ingot parts with its carbon, which is assisted by throwing on it scales of oxide, if produced in the forge. As the carbon burus off, the ingot becomes more and more pasty, until at length it is converted into a g-unular sandy mass. The heat is now raised until it becomes very intense, and the air is excluded by closing the damper and cowis. The metal begins to agglomerate into round masses, or biomn:, whioh the puddler collects on the end of an iron rod, and subjects, while still hot; either to the action of a hammer or to a powerful press, called a sloughing press, which squeezes out the slag and other impurities, and forces, the particles of iron closer together. The iron is then rolled into bars, and forms what is called homogeneous iron, a quality of metal much used when great hardness is required. It is distinguished by its granular texture when notched and broken. It is much used for the tops of railway bars, and for the wearing surfaces of railway wheels. Where the fibrous quality of iron is required, it is cut into lengths, after the first process of rolling, then piled longitudinally, heated in a reverberatory furnace, and hammered out. This process is repeated several times. Fibrous iron has a fracture like a piece of cane, and is used where resistance to a pulling strain is required, such as anchors, chains, \&c. Railway bars cire mostly made with the interior of the rail of fibrous iron, to bear the weight of passing trains, while the exteriors are made of granular iron to tear the wearing action of the wheels. The malleable iron of commerce is nearly pure, and may be taken as a type of iron for metallurgical purposes. Wrought-iron is of bluish white color; it is hard and lustrous when polished, and, when rubbed forcibly, it emits a peculiar odour. Its specific gravity is 7.7 tg

Prs.
as possible, the s , sulphor, and what is termed etal ; a second it is converted the carivui is st-iron is only ough it melts e of the interre liquid metal, nade from the mbined carbon
It is termed its crystalline Founders are alities. No. 1, tion of uncomins more comly a few grains aottled appearof the carbon is it for puddling s is effected ' Jy in a reverberfuel. The heai hich is assisted t in the forge. nd more pasty, dy mass. The and the air is retal begins to he puddler colstill hot; either ed a sloughing ties, and forces en rolled into a quality of
It is distinbroken. It is ρ wearing surty of iron is ss of rolling furnace, and mes. Fibrous rere resistance' ns, \&c. Railail of fibrous exteriors are e wheels. The be taken as a n is of bluish ,when rubbed avity is 7.7 tg
machinists, magineers, ed., Receipts. 249
7.9, and it requires the mostintense heat of a wind furnace to melt it.
Smbitinc of Antimons.-The reduction of antimony to the regulins state consists of two operations. The crude ore is first melted in an inclined plane, in a reverbatory furnace. The melted sulphide fuses and flows away from the slag,or gangue as itis called. The sulphide is again roasted, and mixed with carbonate of soda and charcoal. On heating this mixture in a crucible, a quantity of the metal is formed at the bottom. The unreduced oxysulphide which remains on the top is afterwards used for preparing Kerme's mineral. It is never used alone in the arts, but always in cons junction with other metals, to which it imparts a hardening quality and likewise the valuable property of expanding when they cool, Common type metal is composed of 4 parts lead and 1 of antimony. Music type contains in addition a small portion of tin.
Smeliting or Tin.-To extract the metal, the ore is first stamped or washed, to get rid of the lighter particles of sand or earth adhering to it. It is then roasted to free it from arreenic and sulphur, and again washed to carry off the sulphate of copper and oxide of iron. The washed ore is mixed with from one-fifth to one-eighth its weight of powdered anthracite, or charcoal, and a small portion of lima to form a fusible slag with any of the remaining ganguc. The charge is placed in the hearth of a low crowned reverberatory furnace, and the doors are closed up. Heat is applied very gradually for five or six hours, care being taken to raise the temperature high enough to cause the carbon to reduce the tin without molting the silicious gangue, which would form with the binoxide an enamel too troublesome to remove. When nearly all the tin is reduced, the heat is raised considerably, the slags being thus rendered fluid and capable of floating on the surface of the melted metal. The tin is then run off into cast-iron pans from which it is ladled off into moulds to form ingots. The tin thus procured is far from being pure, it is therefore submitted to the process of lignation, which consists in heating the ingots to incipient fusion. By this means the purcr tin, which fuses at a comparatively low heat, separates, running down and leaving the impure portions behind: The less fusiblo portion, when re-melted, forms block tin, and the part which has run out is again melted and run out with wet stakes. The steam thus formed bubbles up to the surface, carrying with it all the mechanical impurities contained in the tin. The mass is then skimmed and allowed to cool. When just about to set, the upper half ic ladled cat, the other metcls and impurities having sunk in to the boto tom hall, from the tendency that this metal has to separate from its alloys. The finest quality of tin is frequently heated to a tempero ature just short of its melting point. At this heat, it becomes brittle and is broken up unto masses, showin ${ }_{C}^{\prime}$ the crystals of tho metal, and forming what is known as grain tin. The formation of crystals is.to some extent a guarantee of its purity, since impure tin does not become fut itio in this way. English tir generally containo smell quantitiass of er senic, copper, 1ron and lead. Tin fuses at 442° Fabr, but it is mo, sensibly volatilized at that or any bigher temperature. For utio inannfacture of tin plato the hest soft charcoal iron is obligud to be used. After it has been rolled aud cut to
the requisite size, its surface is made chemically clean by immersion for a few minutes in dilute sulphuric acid. The sheets are then heated to a red heat in a roverberatory furnace, withdrawn, allowed to cool, hammercd flat, passed betweon polished rollors, and are now woshed in dilute acid. This proparation is needed to free the surface of the iron from the slightest portion of oxide, to which the tin would not adhere. In order to tin them they are plunged one by one into a vessel of tallow, from which they are transferred to a bath of tin. From this they aro taken, after a certain time, allowed to drain, and dipped again. The superfluous tin at the edge of the plate is removed by dipping it in the melted tin once more, and detaching it by giving tho plate a sharp blo.7.

Zino.-In the extraction of zinc from its ores, "he blende or calamine is first crushed between rollers and roasted. In the case of tho blonde this is a tedious process and requires great care. The result in either case is oxido of zinc which is mixed with half its weight of powdered coke or anthracite and introduced into crucibles of peculiar construction. A circular furnaco is employed, within which the crucibles are ranged. In the bottom of each crucible is an opening to which a short iron pipe is attached, passing through the oottom of the furnace. To the cnd or this is affixed 2 remove able tube communicating with a sheet iron-vessel. The holc in the bottom of the crucible having been partially plugged with coke, a charge of ore and coal is introduced, and the top of tho crucible luted down. The tube connected with the iron vessel is lowered so as to leave the cruciblo tube open, and the heat is raised. As soon as the flame at the mouth of the :hirt iron tube begins to turn from white to blue, conncction is made with tho tube leading to the iron pan, and the ginc gradually listils downwards, partly in powder, cad partly in stalactitic masses Thz crude metal is remelted, skimmed and cast into ingots.

Hard Tinning Ooitpound.-An alloy of nickel, iron and tiic hai: been introduced as an improvement in tinning metils, by the firm of Blaise \& Co., Paris. In an experiment to show the tenacity of the nickel, a piece of cast-iron cinned with the compound was subjected for a few minutes to a white heat undcr the 'blast, and, although the tin was consumed, the nickel remained as a permanent coating upon the iron. The proportions of niczel and iron mixed with the tiv, in order to produce tho best tinning, are 10 ozs . of the best nickeil gno 7 ozs . of sheet iron, $t_{1} 10 \mathrm{lbs}$. of tin. Theso metals are mixed in a crucible to prevent the oxidation of the tin by the higin temperature necessary for the fusion of the nickel ; tho metals are covered with 1 oz . of borax and 3 ozs. pounded glass. The fusion is complete in half an hour, when tho composition is run off through a hole made in the flux. In tinning metals with this composition the workman proceeds in the ordinary manner.

Steel Manufacture.-Steel is manufactured from puremalieable aron by the process called cementation. The Swedısh iron from the Damemora Mines, marked with tne letier Lin the centre of a circle, and called "Hoop I" is generally preferred Irons of a few other marks are also used for second-rate kinds of steet. She bars are arranged in a furnace that consists of two taughss about fourteen feetlong and two feet square. A layer of charcoal-powder
by immersion eets are then ithdrawn, ald rollors, and aeeded to free xide, to which are plunged re transferred certain time, in at the edge in once more,
lende or calan the case of sat care. The with half its into crucibleo ployed, within ch crucible is issing through fixed 2 romove The hole in pluggod with the top of tho iron vessel is ad the heat is $\mathrm{h} \sim \mathrm{rt}$ iron tube made with tho distils down masses Th ts. n and tic hai ls, by the firm he tenacity of pund was suble blast, and, - ins a permac'sel and iron g, are 10 ozs . f tin. Theso ion of the tin no nickel tho bunded glass. omposition is metals with ry manner. ure ma Пeable sh iron from e centre of a rons fi a few e1. The bars ughs \cdot about coal-powder:
is spread over the bottom, then a layer of bars, and so on, alter-nately,-the full charge is about ten tons; the top is covered over first with charcoal, then sand, and lastly with the slush or waste from the grindstone trough, applied wet, so as to cement the whole closely down for the entire exclusion of the air. A coal fire is now lighted below and between the troughs ; and at the end of about seven days, the bars are found to have increased in weight, the one hundred and fiftieth part, by an absorption of carbon, and to present, when broken, a fracture more crystalline, although less shining, than before. The bars, when thus converted, are also covered with blisters, apparently from the expansion of the minute bubbles of air jetween them, this gives rise to the name, blistered stcel. The continuation of the process of cementation introduces more and more carbon, and renders the bars more fusible, and would ultimately cause them to rum into a mass if the heat were not checked. To avoid this mischief a bar is occasionally withdrawn and broken to watch the progress, and the work is complete when the cementation has extended to the centre of the bars. The conversion occupies, with the time for charging and emptying the furnace, about fourteen days. A very small quantity of steel is employed in the blistered state, for welding to iron for certain parts of mechanism, but not for edge-tools. The bulk of the blistered steel is passed through one of the two following processes, by which it is made either into shear-steel or cast-steel. Shear-steel is produced by piling together six or eight pieces of blistered-steel, about 30 inches long, and securing the ends within an iron ring, terminating in a bar about 5 feet long by way of a handle. They are then brought to a welding heat in a furnace and submitted to the helve or tilt hammer, which unites and extends them into a bar called Shear-steel from its having been used in the manufacture of shears for cloth mills, and also German steel, from having been in former years procured from that country. Sometimes the bars are again cut and welded and called double-shear steel from the repetition. This process of working, as in the manufacture of iron, restores the tibrous character, and relains the property of welding : the shear-steel is close, hard, and elastic ; it is much used for tools, composed jointly of steel and iron, its superior elasticity also adapts it to the formation of springs, and some kinds are prepared expressly for the same, under the name of spring-steel. In making cast-steel, about 26 or 28 lbs . of fragments of blistered steel, selected from different varieties, are placed in a crucible made of clay, shaped like a luarrel, and fitted with a cover, which is cemented down with a fusible lute that melts after a time, the better to secure the joining. Either one or two pots are exposed to a vivid heat, in a furnace like the brass-founder's air furnace in which the blistered-steel is thoroughly melted in the course of 3 or 4 hours; it is then removed by the workman in a glowing state, and poured into a mould of iron, either 2 inches square for bars, or about $6 \times$ 18 inches, for rolling into sheet-steel. For large ingots the contents of two or more pots are run iogciber in the same mould, but it requires extremely great care in managing the very intense temperature that it shall be alike in both or all the pots. The ingots are re-beated in an onen fire much like that of the common torge,

252

 MACHINISTS, ENGINEERS, \&O., RECEIPTS.and are passed under a heary hammer weighing several tons, such as those of iron-works, the blows arc given gently at first, owing to the crystalline nature of the mass, but, as the fibre ls eleminated, the strength of the blows is increased, till is reduced under the heavy hammer to sizes as small as $\frac{3}{4}$ of an inch square Smaller bars are finished under tilt hammers, which are much lighter than the preceding, move considerably quicker, and are actuated by springs instead of gravity alone; these condense the steel to the utmost. Rollers are also used, especially for steel of round, half-round, and triangular sections, but the tilt bammor is greatly preferred.
Steel, by tre Bessemer Processs.-Mr. Goransson, a Swedish iron master, having fully examined the Bessemer procoss of making steel, and erected the necessary apparatus at his works at Edsken, after considerable delay in experimenting, has, within a recent period, succeeded in establishing the manufacture of good steel, on a practical scale, and in short devotes his whole establishment to this one process. This steel has been made into engincers' tools, boiler plates, and cutlery ; and the improvement must now be regarded as an accomplished commercial fact. Mr. Goransson states, that he has carried out Bessemer's invention to tho fullest cistent, without ever having had recourse to any of the numerous plans which have been patented by others, under the idea of improving the original simple process. Tho converting vessel is erected, near the tap hole of the blast-furnace, so that about one ton of fiuid pigiron can be run into the apparatus at a time. The pressure of the blast is from 7 to 8 lbs . to the square inch; and, when continued for 6 or 7 minutes, the whole charge is convorted into steel. The fluid steel is discharged into a loam-lined ladle, when it is well stirred, and considerable carbonic oxide disengaged and inflamed. After a short interval of repose, w'ich is probably necessary for the steel to condense from the aërated condition in which it leaves the converting vessel, it is run off from the bottom of the ladle, in a vertical stream from the ingot moulds. The whole timo occupied, from the moment the pig-iron leaves the furnace until it is cast in the mould, does not exceed 12 minutes. The loss in weight, including the impurities thrown off, does not exceed 15 per cent., which is only about one-half of the waste incurred in the manufacture of bar-iron by the old system in Sweden. By this improvement, Mr. Goransson states, in a letter to the London Engineer, that more than 1000 tons annually of cast-stecl can be mado with the same quantity of fuel as is now required for making 500 tons of bar-iron. He says: "So completely have we accomplished the object that we now make several tons of large ingots of cast-stecl in succession, without a single mishap or failure of any kind. The steel can be made either hard, medium, or soft at pleasure. It draws under the hammer perfectly sound and free from cracks or faults of any kind, and has the property of welding in a most remarkable degree."

Phillip's Fire Annifllator.-Consists of a case containing water, within which is a smaller case containing chlorate of potash and sugar. Dipped in the latter is a small tube containing sulphuric acid; when this tabe is broken the chlorate of potash

MAOHINISTS, ENGINEERS, *O, REOEIPTS. 253

everal tons, tily at first, the fibro is 11 is reduced inch square h are much ker, and are :ondense the for steel of .t hammor is

Swedish iron s of making s at Edsken, hin a recent cood steel, on iblishment to incers' tools, st now be roinsson states, ullest cstent, merous plans of improving erected, near n of fiuid pigressure of the ken continued o steel. The hen it is well and inflamed. necessary for hich it leaves f the ladle, in le time occuace until it is pss in weight, 15 per cent., manufacture mprovement, ngineer, that ado with the 500 tons of ished the ob-cast-stecl in kind. The oleasure. It pm cracks or g in a most containing prate of potcontaining te of potash
and sugar become ignited, throwing off large quantities of mixed gases which are non-supporters of combustion; the action is maintained bp the water in the outer case becoming heated. The gases are conveyed to the fire by means of a flexible tube fitted with a proper nozzle and stop-cock. I have seen still another kind constructed of copper in quite an elegant style, fitted with shoulder straps, \&c., for easy transportation, in which the gases were gencrated by means of chemicals on the principle of what may be seen every day in the effervescence of carbonic acid gas from the intermixture of seidletz powders in water. The chemicals being introduced from white and bluo paper packages into the water contained in the copper case.
To Remedy Slip of Driving Belts.-Dab on a little of the sticky oil which oozes away from the bearings of machinery.

To Bund Copper and Brass Pipes.-Run melted lzad into your pipe till full, and you may then bend it gradually int; any shape you choose, the pipe may then be heated and the lead melted and run out again.

Boring Gun Barrels.-Take a piece of rod, cast steel, $\frac{1}{\frac{1}{2}}$ inch smaller than the interior of the barrel, and a few inches longer, beat one end up something larger than the size of bore, then turn or file it in the shape of an egg, leaving the swell, or centreing part 1-20th of an inch larger than the bore. With a saw file, cut longitudinal cuts, $\frac{1}{8}$ th inch apart, laying them the same angle as a rose bit countersink, taking care not to injure the periphery of the tool ; harden and temper to straw color.

Driling China, Glass, \&o.-To drill china use a copper drill and emery, moistened with spirits turpentine. To drill glass, use a steel drill tempered as hard as possible and camphor and water as a lubricant.

Mallet's Brass.-Copper 25.4 ; zinc, $74 \cdot 6$, Used to preserve iron from oxidizing.

To Prevent Corrosion in Lead Pipes.-Pass a strong solution of sulphide of petassium and sodium through the inside of the pipe at a temperature of 212, and allow it to remain abont ten or fifteen minutes. It converts the inside of the pipe into an insoluble sulphide of lead and prevents corrosion,

To Enamel Copper Vessels.-Pulverise finely 12 parts of fluor spar, 12 parts of unground gypsum, and 1 part borax, and fuse together in a crucible; when cold, mix with water to a paste, and apply to the interio: of the vessel with a paint brush; when dry the vessel should be thoroughly baked in a muffle or furnace.

Shoeing of Horses.-As many parts of the horse's hoof are more tender then others, in the case of such animals as have very tender feet, it is the province of the shoeing smith to give ease to such parts and to throw the weight more upon those parts which are better calculated to support it, thus assisting nature in all her operations, in the animal economy. The horse in raising the fore foot for extension, the stress is put upon the flexor muscles,-in particular, the Flexor pedis perforans, the tendon of which is inserted into posterior pari of the os pedis, or bone at the foot. The longer the toe of the shoe, and straight, the greater leverage is required against the unyılding edge of the toe. By keeping the
toe a moderate length, and turning up the toe of the shoe a little, it allows the foot to be casily rotated, consequently less stress is thrown upon the flexor muscles and tendons, and more particularly upon the tendon at that part when it passes over the navicular bone; it thus lessens the tendency to navicular disease, and, if so affected, this mode of shoeing will give great relief.

Poutable Tunkisi Bath.-Make a small circular boiler of copper or tin, and fit the sume into an upright tin stand, in which, directly under'the boilor you must leave an aperture to contain a small spirit lamp. The boiler lid must fit tightly and be provided with three small tubes pointing upwards. The boiler being filled with water and the lamp lighted, as soon as the steam gets up, it rushes through these tubes,and the patient, scated on a cane chair, with his or her feet in a pan of warm water, with a suitable cloak tightly fastanerl around the neck, is speedily enveloped in a cloud of steam. 'Tenginutes is the time recommended for the duration of the first fic baths. It may be afterwards increased, but not beyond half in hour. On getting out of the cloak, plunge into a cold bath for a few minutes, then rub the skin till it is quite dry and glowing with a coarse towel and a pair of good hair-gloves. Pdrsons in health or disease will experience a wocderful recuperative power in the frequent use of this bath, and all will find it incomparably superior to the use of drugs in any form whatever. In this connection a new and very ingenious invention called Srongio Pluise, is deserving of favourable mention. It consists of wool and small particles of sponge felted together, and attached to a skin of India-rubber, the whole about half an inch in thickness, and of inestimable value as a means of applying cold or tepid water \&c., to such exterior parts of the human frame as may be nearest to the seat of pain or disease. The water is sponged over the felted surface, the surplus, if any, wiped off; it is then placed on the skin, and covered over with several folds of bandages, which assist in retaining the heat and moisture, thus attracting healthy blood to the part, from which nature selects such food as is most conducive to expel disease and build up healthy tissue. Nothing is so conducive to health of body, and the eradication of disease therefrom, as pure water when properly applied; and in most beautiful correspondence with natural water we have in the Water or Life, or Truths from the Divine Word, that sovereign antidote which alone when applied to the life, can cure the malignant diseases of our spiritual nature, and purify our affections and thoughts with those hallowed influences which come from above.

Black Lead Pencils.-The best pencils are made by grinding the black lead into a fine impalpable powder, then forming it into blocks by compression without any cementing substance, and finally sawing it up into the square prisms, which, when placed in grooves in wood form the black lead pencils of commerce. The color can be graduated to any desired tinge by the intermixture of very finely ground clay. By the process of Prof. Brodie, the most untractable graphite may be reduced to the finest powder with great case. The mineral is coarsely powdered and mixed with 1-15th of chlorate of potash, to which mixture is added twice its weight of sulphuric acid, Chloric acid is disengaged, and after

100 a little, :8s stress is re particur the naviar disease, elief.
boiler of d, in which, 0 contain a be provided being filled n gets up , it cane chair, itable cloak in a cloud of the duration jed, but not lunge into a is quite dry hair-gloves. cul recupera11 find it invhatever. In lled Sponalo of wool and 1 to a skin of ness, and of water \&c., earest to the e felted suron the skin, assist in reblood to the conducive to so conducive rom, as pure respondence Truths from alone when our spiritual se hallowed

by grinding ming it into

 stance, and en placed in aerce. The ntermixture Brodie, the hest powder and mixed added twice 1, and afterthe mass has cooled, it is well washed, dried, and heated to redness. During the latter operation, the black lead swells and becomes reduced to so fine a powder that it will swim upon water, a little fluoride of sodium is used to dissolve the silicious impurities. The finest quality is found near Burrowdale in Cumberland, England. It is nearly pure carbon, and perfectly free from grit. It is used principally in the manufacture of lead pencils, the coarser quality being used, when ground, for polisfing iron work, glazing gunpowder, as a lubricator for machinery, compounded with four times its weight of lard or tallow, and in tho manufacture of crucibles for melting metals, as it is very iatractable in an intense heat.
To Polisi Plaster of Paris work.-The addition of 1 or 2 per cent. of muny salts, such as alum, sulphate of potash, or borax, confers upon gypsum the property of setting slowly in a mass capable of receiving a very high polish.

To make Plaster of Pams as hard as Marbex.-The plaster is put in a drum, turning horizontally on its axis, and steam admitted from a steam boiler; by this means the plaster is made to absorb in a short space of time the desired quantity of moisture, which can be regulated with great precision. The plaster thus prepared is filled into suitable moulds ; and the whole submitted to the action of an hydraulic press; when taken out of the moulds, the articles are rcady for use, and will be found as hard as marble, and will take a polish like it.

Moire Metallique.-Is a beautiful crystalline appearance given to tin plate by brushing over the heated metal a mixture of two parts of nitric acid, 2 of hydrochloric acid, and 4 of water; as soon as the crystals appear, the plate is quickly washed, dried and varnished.

Mother of Pearl work.-This delicate substance requires great care in its workmanship, but it may be cut with the aid of saws, files and drills, with the aid of muriatic or sulphuric acid, and it is polished by colcothar, or the brown red oxide of iron, left after the distillation of the acid from sulphate of iron. In all ornas mental work, where pearl is said to be used, for flat surfaces, such as inlaying, mosaic work, \&c., it is not real pearl, but mother of pearl that is used.

To Polish Pearl.-Take finely pulverized rotte: stone and make into a thick paste by adding olive oil ; then add sulphuric acid, a sufficient quantity to make into a thin paste, apply on a velvot cork; rubquickly and, as soon as the pearl takes the polish, wash it.

To Polish Ivory:-Remove any scratches or file marks that may be present with finely pulverized pumice stone, moistened with water. Then wasn the ivors and polish with prepared chalk, applied morst upos a piece of chamois leather, rubbing quickly.

Kerosener or Oambon Oil Manufacture.-Potroloum, or rock oil, is a liquid substance, of a dark color, exuding from the earth and contanning certain fiquid and solid hydrocarbons such as benzole, or benzine, kerosene, paraffine, asphaltum, \&c., in a state of solution, in different proportions. It differs greatly in composition, some samples contaiming solid paraffine and benzole in large quantities, while others do not. Petroleum is separated from its dif-

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences Corporation

256

 MAOBINESTS, HNGINETAS, *O., RTORIPTE,forent products by chacful distiliation at diffiosont, tomperatures: The crude material is first hented in a retort to a temporature of about 100° Fah. This causes alight oil of a strong: odour to pass over into the condenser.: The residue is then distillod at about 120° to 160°, the result being burning oil. When this is distilled off, ateam is forced into the rotort and a heavy oll, fit for lubricating purposes comes over, a black, tarry mass being left behind. The light oil as now used as mineral turpentine, and as a greaso solvent. It is often of a darit colot, which is easily removed by agitation, first with sulphuric scid and afterwards with soda-lyo and vater. In many instances this light oil (benvine) is sold for illuminating purposes under the name of Sunlight Oil, Combination Burning FInid, Lightning Oil, bc. I knew one gentleman in Philadelphia who paid one man over $\$ 3000$ for the receipt for making, together with the solc right to manufacture, vend and sell; a compound of this kind in that city. The curions, or those interested Will find the receipt ander the name of the "Northern Light" under the Grocer's Departimenit in this work. Truth requires me to state that this article requires to be handled with great caution twhen used forlighting purposes-many lamentable ascidents having resulted from a careless use of it. The heavy lubricating oil, when cooled duwn to 30° Fah., often yields paraffine in ${ }^{\prime}$ large quantities; which: is separated by straining and pressure. The asphaltum may be tued for pavements, or mixed with grease as a lr,.i ant for heary machinery. The most important product is, a. .aver, the burning oil, which is now used as a cheap and efficient illuminating agent in nearly every housohold in this country. An average sample of petroloum contains, according to W. B. Tegetmeier, 20 per cent. of benzine or mineral turps, 55 per cent. of burning oil, 22 per cent. of lubricating oil, and 8 per cent. of carbonaceous and tarry mattor:
Mackintosi Chota-The material is merely two luyers of cotton cemented with liquid India rubber; bat the junotion is so well effected that the three becomes to all intents and purposes, one. The stout and well-woven cloth is coiled upona horizontal beam like the yard beam of a loom; and from this it is stretched out in a tight state and a nearly horizontial direction; a layer of liquid or rather paste-like solution is applied with a spatula, to a considerable thickness, and the cloth is drawn under a knife edge which scrapes the solution and diffuses it equally aver overy part of the cloth, which may be 30 or 40 yards long. The cloth is then extended out on a horizontal framework to dry; and when dried a second coating is applied in the same way, and a-third or fourth coat if necessary. Two piecos, thas coated, are next placed face to face with groat care, to prevent creasing or distortion ; and, being placed between two wooden rollers, they are so thoroughly pressed as to unite durably and permanently. Oloth, thus;cemented and doubled and dried, may be cut and made into garments which will bear many a rough trial, and many a deluging, before rain or water can penetrate.

Manovacturi or Oom Sranor-Wates Patent. The corn is steeped in water, ranging in ttomperatare: from 70°, to 140° Fah., for about a week, changing the water at least once in 24 hours: A
peratares. srature of ar to pass at about s distilled lubrioaift behind. greaso noved by 3 soda-lyo is sold for Oombinaitleman in receipt for vend and s or those "Northern th requires great caua scidents lubricating ae in' large sure. The grease as a product is, cheap and old in this cording to rps, 55 per 8 per cent.
of cotton is so well poses, one. ntal beam ched out in of lignid or consider dge which part of the s then exhen dried a 1 or fourth ced face to and, being hily pressed nented and ents which fore rain or
the corn is 140° Fah., 4 hoars: A
certain amopint of acid formentation in that, producod, canosing the atarch and refuse of the corn to be oakily separnted afterwards. The surollen corn is gropnd in a current, of clear soft witer, and tho pulp passed through cieves, with the water, into vate. In theze the gtarch gradually iettles to the bottom the clenr water is then run of by a tap, and the atgreb gathered and dried in a.propar apariment for the purpose.
Revinuso on Sudaz - Both cane and beet-root anger are refinod on the, anye principle by mixture with limewater, boiling rrith Tanimal charcoal, and filtration through twilled cotton. In pome establishments bullock's blood is used to aid in the clarifying. The albumen of the serum becomes coagulated on the application of heat, forming a network, which rises to the the top of the liguoc carrying with it a great part of the impurition. The reddish eyrup oblained by the frat filtration is next passed through filters into large vats, twelve or fourteen feet deep, upon which are laid coarge ticking, coarsely ground animal charcoal, and a socond layer of ticking. The syrup is gliowed to flow over the surface of the filter, and runs slowly through the charcoal, coming out perfectly colourless. The conoentrated syrup is then boiled in vacuo, by meand of which two importent results are arrived at. The visuid liquid Would boil in air at 230° Fah., at which temperature a quantity of funcrystallizable sugar would be formed. By performing the opeo ratiou in a vacupm-pan the boiling point is brought down to 150° or 1600 , no formation of uncrystalizable sugar takes place, and a great saving in fuel is effected. When the concentration reaches a certain point, the ayrup is transferred to a veassel heated by steam to 170 , and forcibly agitated with wooden beaters, until it forms ithick and granular. From the heating-vats it is tranoferred into inverted conical moulds of the well-known shape at the bottom of each of which is a movable plug. The syrup is well stirred to prevent the formation of air-bubbleg, and then, left at reat for so,veral hours, at the end of which time the plug is removed, and the uncrystallized syrup rups put. Tho loaves are further freed from all colored matter by a portion of perfectly colorlegs syrup being run through them. They are then dried in a stove and finished for market by being turned ina lathe. Crushed or granulated sugar is made by causing the granular ayrup to revolve in a parforated drum, by which means, the uncrystallizable portion is weparatod from the crystals by centrifugal force.

Tue Marmize's Oonpass. - The needle or magnet is said to point olways to the north, and as a matter of gourse the vthor points, an east, west, \&c, arc easily found by the Goedle pointing north anc: south. In certain parts of the world, howerer, the needle does not point to the north, but is drawn conididerably , the right ci loft of truenorth. This is called the variation of thc compass, and must be known accurately by the navigator in order to correct: :nd stoes the right course. For instance in crossing the 1 tlantic Ocean, the variation of the compass amounts in sailing veasele te $2 \frac{1}{2}$ or 2 t points westerly, and the course steered must be orrected accordingly. Say that you wish to make a due east course, you must steer $2 \frac{1}{2}$ or 24 points south of tbat or to the right hand in order to rake of direct course.

Off the Cape of Good Hope in the South Atlantic Ocean, strange enough, the variation of the compass in ships bound to India or Australia is 23 points easterly, and in order to make a due east course it is necessary to steer 23 to the north or left of her course, while again towards the equator or centre of the globe there is hardly any perceptible variation of the compass at all. The way of finding out how much the compass varies in difforen. parts of the world, is by observations of the sun taken with the jompass, and the difference between the true and magnetic or compass bearing is the variation, which must be applied as a correction to the course steered. We have, however, in iron ships or steamers what is called the deviation of the compass to attend to besides the variation. This is the local attraction caused by the iron, and must be carefully understood before steamers or iron ships attempt to go to sea. As in steamers of the Allan or Ounard line, each vessel before proceeding on her first voyuge must be carefully swung, and magnets fixed to the djck; besides small chains placed on each side of the compasses in bores, in order to counteract the attraction of the iron. Thus the compasses ure so nicely bilanced with the magnets and iron, that it is rare indeed at this day that they get out of order on a trans-Atlantic passage. The consequences to either steamer or sailing shlp whose compasses are astray would be terrible to contemplate, even if it wer but one half point, on dark winter nights approaching the and These difficulties are now happily obviated by the discoveries of modern science, and their application in correcting the compass at sea.

There are, however, other disturbing agencies constantly at work. Heat diminishes the magnetism of the needle ; for this reason the best magnetic observatories are kepr under ground, and at a low and uniform temperature the year round. Earthquakes and the aurora berealis are fruitful causes of irregularity. Thunder-storms do no injury except when a vessel is struck and its iron acquires, so much magnetism as to affect the correct indications of the compass on woard. When the sun shows a great number of spots, or even one very large spot, the variations of the needle are greatest. This is accounted for by two theories ; first, the revolving east and west electric current of the earth's crust, which are the causes of the earth's magnetism, are caused by the solar radiation of heat, before which the earth revolves east and west, and this must be affected by any change in the solar surface by which this radiation of heat is modified. The second theory contends, that inasmuch as we know from discoveries mado by the spectroscope, that the sun contains enormous masses of iron, which must from the intense heat, be in a state of incandescence resembling a molten ocean, and as such is inaccessible to magnetic influences; nevertheless, the solar spots being most likely solid islands (composed largely of iren which in this state is suceptible of magnetic influences), Hoating on the sea of fire, and being in many cases several hundred times larger than our planet, how is it possible for any other than disturbing influences in the needle to proceed from such tremendous agencies? Such influences are instantaneous, and do not require time, as light and sound for instance, for their transmission.

Maring Anchorn.-The anchor smith's forge consists of a hearth of brickwork, raised about 9 inches above the ground, and generally about 7 feet'square. In the centre of this is a cavity containing the fire. A vertical brick wall is built on one side of the hearth, which supports the dome, and a low chimney to carry off the smoke. Behind this wall are placed the bellows, with which the fire is urged; the bellows being so placed that they blow to the centre of the fire. The anvil and the crane by which the heavy masses of metal are moved from and to the fire are adjusted near the hearth. The Hercules, a kind of stamping machine, or the steam hammer, need not be described in this place. To make the anchor, bars of good rron are brought together to bo fagoted; the number varying with the size of the anchor. The fagot is kept together by hoops of iron, and the whole is placed upon the properly arranged hearth, and covered np by small coals, which are thrown upon a kind of oven made of cinders. Great care and good management are required to keep this temporary oven sound during the combustion; a smith strictly attends to this. When all is arranged, the bellows are set to work, and a blast urged on the fire ; this is continued for about an hour, when a good welding heat is obtained. The mass is now brought from the fire to the anvil, and the iron welded by the hammers. One portion having been welded, the uron is returned to the fire, and the operation is repeated until the whole is welded in one mass. The different parts of the anchor being made, the arms are united to the end of the shank. This must be done with great care, as the goodness of the anchor depends entirely upon this process being effectively performed. The arms being welded on, the ring has to be formed and welded. The ring consists of several bars welded together, drawn out into a round rod, passed through a hole in the shank, went into a circle, and the ends welded together. When all the parts are adjusted, the whole anchor is brought to a red heat, and hammerec. with lighter hammers than those used for welding, the object being to give a finish and ovenness to the surface. The toughest irou thai can be procured should be used in anchors. Good "Welsh mine iron" is suitable; also "scrap iron."

An anchor of the ordinary or Admiralty pattern, the Trotman, or Porter's improved (pivot fluke), the Honiball, Porter's, Aylin's, Rodger's, Mitcheson's and Lennox's, each weighing, inclusive of stock, 27000 lbs ., withstood without injury a proof strain of 45000 lbs . In dry ground, Rodger's dragged the Admiralty anchor at both long and short stay ; at short stay, Rodger's and Aylir's gave
 short stay ; and Aylin's dragged the Admirality at short ste j, they giving equal resistance at long stay. In ground under water, Trotman's dragged A ylin's, Honiball's, Mitcheson's, and Lennox's: Aylin's dragged Rodger's; Mitchison's dragged Rogers, and Lennex's dragged the Admiralty's. The breaking weights between a Porter and Admiralty ancnor, as tested at the Woolwich Dockyard, were as 43 to 15.
Pbintlig on Ghass.-A F'renchman, named Wilbaux, has take:
out a patent to use an elastic type for printing on glass, with fluorspar rendered adhesive by some such material as mucilage or printere ink; sulphuric acid of suitable temperature is then allowed to act on that portion of the glass. The hydrofluoric acid generated in this way would etch the glass on the places printed on. When completed, the whole is washed off with warm water and lye.

Eingraving on Wood. - In order to make this subject rightly understood we will state that the log of box is cut into transverse slices, 1 inch in depth, in order that the face of the cut may be on a level with the surface of the printers' type, and receive the same amount of pressure; the block is then allowed to dry, the longer the better, as it prevents accidents by warping and splitting, which sometimes happens after the cut is executed, if too green. The slice is ultimately trimmed into a square block, and if the cut is large, it is made in various pieces and strongly clamped and secured together. The upper surface of the wood is carefully prepared, so that no inequalities nay appear upon it, and it is then consigned to the draightsman to receive the drawing. He covers the surface with a light coat of flake white mixed with weak gum water, and the thinper the coat the better for the engraver. The French draughtsmen use an abundance of flake white, but this is liable to make the drawing rub out under the engraver's hands, or deceive him as to the depth of line he is cutting in the wood: The old drawings of the era of Durer seem to have been carefully drawn with pen and ink on the wood; but the modern drawing being very finely drawn with the pencil or silver point is obliterated easily, and there is no mode of "setting" or securing it. To obviate this danger the wood engraver covers the block with paper, and tears out a small piece to work through, occasionally removing the paper to study the general effect. It is now his business to produce in relief the whule of the drawing; with a great variety of tools he cuts away the spaces, however minute, between each of the pencil lines, and should there be tints washed on the drawing to represent sky and water, he cuts such parts of the block into a series of close lines, which will, as near as he can judge, print the same gradation of tint; should he find he has not done so completely; he can reenter each line with a broader tool, cutting away a small shaving, thus educing their width and consequently their color. Should he moke some fatal error shat cannot otherwise be rectified, he can cut out the part in the wood, and wedge a plug of fresh wood in the place, when that part. of the block can be re-engraved. An error of this kind in a wood-cut is a very troublesome thing; in copper engraving is scarcely any trouble, a blow with a hammer on the back will obliterate the error on the face, and produce a new surface, but in wood the surface is cut entirely away except where the lines occur, and it is necessary to cut it dosp enough not to touch the paper, as it is squeezed through the press upon the lines in printing. To aid the general effect of a cut, it is sometimes usual to lower the surface of the block before the engraving is executed, in such parts as should appear light and delicate; they thus receive of mere touch of the paper in the press, the darker parts receiving
the whole pressure and coming out with double brilliancy: When careful printing is bestowed on cuts it is sometimes usual to insure this good effect by laying thin pieces of card or paper on the tympan, of the shape needed; to secure pressure on dark parts only.
Paper yor Dhaugetsman, \&c.-Powdered tragacanth 1 part, water 10 parts; dissolve and strain through clean gauze; then lay it smeothly upon the paper previously stretched upon a board. This paper will take either oil or water colors.

To Pulp Strat for Paper Mikive.-The straw is placed in a boiler, with a large quantity of strong alkali, and with a pressure of steam equal to from: 120 to 150 pounds per square inch, the extreme heat being attained in superheating the steam afterit leaves the boiler, by passiag it through a coiled pipe over a fire, and thus the silica is destroyed, and the straw softened te pulp, which, after being freed from the alkali by working it in cold water, is subsequently bleached and beaten in the ordinary rag. machine.

Neat's Fuot Uil. - After the hair and hoofs have been removed from the feet of oxen, they yield, when boiled with water, a peculiar fatly matter, which is known as Neat's Fnot Uii ; after standing, it deposits some solid fat, which is separated by filtration; the oil thendues not congeal at $32 \circ$, and is not liable to beoome rancid. It is often mixed uith other oils: , This oil is used for various purposes; such as haruess dressing, oiling tower clocks, \&c.

Tallow Oil.-Tre oil is obtained from tallow by pressure. The tallow is melted, and when separatpd from the ordinary impurities by subsidence, is poured into vessels and allowed to cool slowly to about 80°, when the stearine separates in granules, which may be separated from the liquid part by straining through danuel, and is then pressed, when it yields a fresh portion of liquid oil. It is used in soap manufacture; \&c.

Lard Oll is obtained from hog's lard by prossure, when the liquid part separates, while the lard itself becomes much harder. According to Braconnet, lard yields 0.62 of its weight of this oil, which is nearly colorless. It is employed for greasing wool, and other purposes.

Value of Fcil.- With equal weights, that which contains most hydrogen ought, in its combustion, to produce the greatest volume of flame when each kind is exposed under like advantageous circumstances. Thus, pine is preferable to hardwood, and bituminous: to anthracite coal. To produce the greatest quantity of heat, wood should in every case, be as dry as possible; as usually employed it has about 25 per cent of water mechanically combined with it, causng an entire loss of the heat required for its evaporation. The different volumes of oxygen required for different kinds of coal varies from 1.87 to 3 lbs. for each lb. of coai. 60 cubic feet of air is necessary to furnish 1 lb . of oxygen. Making a due allowance for loss, hearly 90 cubic feet of air are:required in the furnace of a boiler for each lb. of oxygen applied to the combustion. Anthracite coal. Experiments prove the evaporative power of this coal in the furnace of a steam boiler to be from $7 \frac{1}{2}$ to $9 \frac{1}{2} \mathrm{lbs}$. of fresh water per lb. of coal; with Cannel or P'arrot coal the result was 6 to 10 lbs. of fresh. water under a pressure of 30 lbs . per squaro inch, for $1 . \mathrm{lb}$. of coal. Bitu-
minous coal burns readily, and generates steam rapidly, leaving a white ash; Caking coal is unsuited when great heat is required, at the dranght of a furnace is impeded by its caking, but it is applicable for the production of gas and coke ; Splint or Hard coal kindles less readily than caking coal, but when ignited produces a clear and hot tire; Cherry or Soft coal does not fuse when heated, is very brittle, ignites readily, and produces a bright fire with a clear yellow flame, but consumes rapidly. The limit of craporation, from 212° for 1 lb . of the best coal, assuming all of the heat evolved frol: it to be absorbed, would be 14.9 l.bs. The evaporative power of Coke in the furnace of a steam boiler, and under pressure, is from $7 \frac{1}{2}$ to $8 \frac{1}{2} \mathrm{lbs}$. of fresh water, per lb of coke; that of charcoal $5 \frac{1}{2}$ lbs. of fresh water perlb. Wood will furnish, when properlycharred, 23 per cent of charcoal. The slower the charring process goes on, the greater the production. The evaporative power of 1 cubic foot of pine wood is equal to that of 1 cubic foot of fresh water; or, in the furnace of a steam boiler, and under pressure, it is $4 \frac{3}{4}$ lbs. fresh water for 1 lb . of wood. Une cord of hardwood and 1 cord of soff wood, such as the general average in Oanada, is equal in evaporative effects to 2000 lbs . of anthracite coal. One cord of the kind of wood used by American river steamers in the West, is equal to 12 bushels, (960 lbs.) of Pittsburg coal ; 9 cords cotton, ash and cypress rood are equal to 7 cords yellow pine. The densest woods give the greatest heat, as charcoal generates more heat than flame. Tho ovaporative power of veat in the furnace df a steam boiler, and undor pressure, is 34 to 5 lbs . of fresh water for every lb . of fuel. Bituminous coal is 13 per cent more effective than coke for equal. weights, and in England the effects are alike for equal costs. In an experiment under a pressure of 30 lbs .1 lb . pine wood evaporated 3.5 to 4.75 lbs . water, 1 lb . Lehigh coal, $7 \cdot 25$ to $8 \cdot 75 \mathrm{lbs}$. The least consumption of coal yet attained is $1 \frac{1}{2}$ lbs. per indicated horspower. It usualiy varies in different engines from 2 to 8 lbs. Railway experiments demonstrate 1 ton of Cumberland coal, (2240 lbs) to be equal in evaporating effect to 1.25 tons of anthracite coul, and 1 ton of anthracite to be equal to 1.75 cords pine wood; also that 2000 lbs Lackawanna coal are equal to 4500 lbs, best pine woods.

Blowing Engines for Sirliting. -The volume of oxygen in air is different, at different temperatures. Thus dry air at 85° contains 10 per cent less oxygen than when it is at the tempe ature of 32° and when it is saturated with vapor it contains 12 per cent less. If an average supply of 1500 cubic feet per minute is required in winter, 1650 feet will be required in summer. In the manufacture of $P \mathrm{ig}$ Iron, with Coke or Anthracite" coal, 18 to 20 tons of air are required for each ton ; with Charcoal, 17 to 18 tons are required for each ton, (1 ton of air ait $340^{\circ}=29751$, and at $60^{\circ}=31366 \mathrm{cubic}$ feet.) The Pressure ordinarily required for smelting purposes is equal to a column of mercury from 3 to 7 inches. The capacity of the Reservoir if dry, should be 15 times that of the cylinder, if single acting, and 10 times if double acting. The area of the Prpes leading to the reservoir should be 2 that of the blast cylinder, and the velocity of the air should not exceed 35 feet'per second. A ton of pig iron requires for its reduction from the ore 310,000 cubic feet of air, or
8.3 cubic feet of air for each pound of carbon consumed. Pressure; 7 lbs . per square inch. An ordinary Eccentric Fan, 4 faet in diametel $\quad 5$ blade 0 inches wide, and 4 inches in length, set 1-9-16 inches ecrey in ith an inlet opening of 17.5 inches in diameter, and an outlet $\mathrm{o}_{2} 12$ inches square, making 870 revolutions pes minute, will supply air to 40 tuyeres, each of $1 \frac{1}{\text { b }}$ inches in diamter, and at a pressure per square inch ot "s inch of mercary. An ordinary eccentric fan blower, 00 inches in diameter, running at 1000 revolutions per minute, will give a pressure of 15 inches of water, and require fur its operation a power of 12 horses. Area of tuyere discharge 500 square inches. A non-condensing engine, diameter of cylind. 88 inches, stroke of piston 1 foot, pressure of steam $18 \mathrm{lbs}_{\text {d }}$ (mercurial gauge), und making 100 revolutions per minute, will drive a fan, 4 feet by 2 , opening 2 foet by 2,600 revolutions per minute. The width and length of the blades should be at least equal to $\frac{1}{2}$ or $\frac{1}{8}$ the radius of the fan. The inlet should be equal to the radius of the fan; and the outlet, or discharge, should be iu depth not less than $\frac{1}{5}$ the diameter, its width being equal to the width of the fan. When the pressure of a blast exceeds .7 inch of mercury per square inch, 2 will be a better proportion for the width and length of the fan than that above given. The pressure or density of a blast is usually measured in inches of mercury, a preasure of 1 lb . per square inch at $60^{\circ}=2.0376$ inches. When water is used as the element of measure, a pressure of 1 lb. 27.671 inches. The eccentricity of a fan should be 1. of its diameter. A Smith's forge requires 150 cubic feet of air per minute. Pressure of blast $\frac{1}{4}$ to 2 lbs . per square inch, 1 ton of iron melted per hour in a cupola, requires 3500 cubic feet of air per minute. A finery forge requires 100,000 cubic feet of air for each ton of iron refined. A blast furnace requires 20 cubic feet per minute; for each cubic yard, capacity of furnace.
Gold Mining in Colorado.--From the veins of Gilpin Oomnty alone nearly 600 tons of ore are raised daily, or 180,000 tons anuually. Nearly 500 lodes have been assayed or mapped in a circle of three miles in diameter; fully a thousand lodes have been recorded; and more or less work performed on each. From fifteen to twenty miles of repatable lodes are known to exist, upon which there is not less than eight miles of shafting, the deepest being 800 feet. There is not less than 20 miles of drifting on these veins, following the ore deposit in the crevices, and the official assays show the ore to be worth from $\$ 40$ to $\$ 130$ per ton. The tailings, or refuse of ore put through the stamps, are found to be worth $\$ 20$ per ton, notwithstanding from 10 to 20 per cent of the precions metal passes down the stream. The average shipments of hullion from this one county verges on $\$ 2,600,000$ annually. The machinery required for this immense production consist of 83 stamp mills, 185 engines in place, 4,367 horse power, and 1,597 stamps, of which there are over 800 in use, requiring 1,703 horse power. There are 39 engines used at the shafts of mines for raising ore from the veins and keeping them free from water. These mills contain from 5 to 50 stamps mostly driven by steam. The ore, broken into fragments, is fed into a battery in which the stamps

204 MACEINLSTS, ENGIMELRS, AC., REOMTPTS.

are raised and allowed to fall, crushing the ore fine enough to flow through a sereen placed in front. Mercury is fed in this bat tery, and the puiverized ore mired with sufficient water is then made to flow over wide plates of copper amal gamated with quickeilver. The gold; or part of it, adheres, forming an amalgam with the mercury, which is aftorwards suraped off, squeezed hard, and the lump retorted in c close retort of iron for the purpose of vaporizing the mercury and gotting the gold almost pure; the retorte being subsequently shipped to the East for minting.. Each stamp is calculated to do frum $\frac{1}{3}$ to of a ton in 24 hours, requiring about one hurse power to each stamp head. Most of the ore is reduced in leased mille abandoned by companies. These mill men gharge their customers between $\$ 3$ and $\$ 4$ per ton for doing thls work and returning. the retort of gold. The tailings are partially caught in tho best mills on blankets, and reworked at a profit; the bulk, however, passes outside, a portion stopping to be shovelled into a pile, tho balatice going on to the s tream. The waste is nearly or quite equal to the gross. yield in bullion. The most profitable branch of vein mining and reduction by the smelting process was undertaken by Prof. Hill in 1867, in connection with some Boston and Providence capitalists, and is managed with much ability, energy and skill, compensated by enormous profits, of which the outside public know little or nothing, from the vigilance with which all such information is supressed. From the road side you see from 20 to 30 piles of ore sending forth sulphurous emanations into the air. These piles are first started on a layer of wood, and are run up in a pyramid form some 5 to 6 feet, with a diameter at base of from 16 to 20 feet, and then fired, the sulphur affording the only fuel, after the exhaustion of the wood, to keep the fire going from four to six weeks. This ore has been passed throngh the sampling works and been paid for, the amount lying thus in piles ar one time amcunting to, perhaps, $\$ 80,000$. After roasting safficiently to drive off the sulphur, and oxidize a portion of the iron, these piles are cooled and the ore carried to the smelting furnaces, where, under a heavy heat, more sulphur is driven off, and the silica or gangue matter is made to unite with the oxide of iron to form a slag. At the end of the smelting some 8 or 10 tons are thus reduced to one called "matte," containing from $\$ 1,500$ to $\$ 2,000$ in the precious metals, and from 40 to 60 per cent of cnpper. This product is then shipped in bags to Swansea, England, for separation into the several metals contained. The establishment contains three smelting furnaces and tincee calcining furnacee, capable of reducing from 20 to 25 tons of ore per day. The tailings which are concentrated along the streams, and are also sold to this establishment, average from $\$ 35$ to $\$ 40$ i per ton. These works are doubtless the most profitable of the kind known in. the world. In working tolerably high grade sulphuretted ores, if the facilities do not admit of seading them to England, thc best way is to orect a common furnace, having the fire surfaces o good soapistone ; then, to every 150 lbs. of ore, put in one bushel of charcoal and 10 per cent of salt. The ore wifl readily melt to p elag, and will be pretty well desulphurized. The slag can bp
drawn off, and whon cold can be broken up and worked like free gold ore.
To Bxtract Bufver prox Wabte Prodvotu.- - Mix your refuse with an equal quantity of wood charcoal, place in a crucible and submit to a bright red heat, and in as short time a silver batton will be found at the boitom.
 known by this name is nometimes conducted on an immense scale. In one instance at the hacienda of Regla near, Real de Monte, there is an eatablishment the floor of which is $1 \frac{1}{2}$ acres in oxtent, built in tho most substantial manner, slightly sloped to facilitate the flow of water. The flooring consiats of well matched pine boards, and this vast receptacle sometimes contains as mueh as 1000 tons of argentiferous slime, 30 tons of salt, 3 tons súlphate of copper, and 18.000 lbs. of mercury in various atages of the amalgamating process. Tho reason why this takes place in the well known manner is becaucio there is a correspondence botween the different ingredients employed in the operation.

On Corrispondmoms.- The correspondence referred to abovie consists of a nature inseminated or implanted in each substance by tho Almarty Arohiteor of the Creation, by virtue of which such o mutual affinity or sympathy exists between them that whenever an intermixture takes place, they as it were attract each other, and rush together in a mutual embrace. The science of correspondences is a most wonderful and instructivo study, entering, in its varies? ramifcations, so de:eply into the inherent nature of every created thing, that thoro is nothing, and can be nothing in the universo but what comec within its consideration. The transcendant importance of the subject is ouch that it is deserving of vastly more elaborato consideration than the transient notice of a singlc paragraph, but $a=$ it would be \approx violation of order to enter into an extended explanation in this place, the reader is referred to tho appendix for further illuctration.

Mardury oe Quicksilvar.-The oro iu cinnabar of a bright vermilion color. Its specific gravity is 8098. It is produced in immense quantities at the New Almaden mine in Santa Clara County, 12 miles from tho town of San José, which is 54 miles from San Francisco, Oall. The procosi by which the fluid metal is e.siracted is one of great simplicity. Thero are 6 furnaces, near which the ore is deposited from tho mine, and soparated according to its quality; the larger masses are first broken up and then all is piled up under sheds near the furnace doors. The ore is next heaped on the furnaces, and costeady though not a strong fire is applied; as the ore becomer heated the quicksilvor is sublimed; and being condensed it falls by its own weights and is conducted by pipes, which lead along the bottom of the furnace to small pots or reservoirs imbudded in the earth, each containing from 1 to 2 gallons of the metal. The furnaces are kept going night and day; while large drops of minute streame of the pure metal are constantly trickling down into the receivers; from there it is carried to the store house and deposited in large cast-iron tánks or Fats,- the largest of which is capable of containing 20 tons of
quicktilver. Soven or eight days are required to fill the furnaces, extract the quickoilver and remove the residuum. The minere add those who merely hande the quicksilver are not injured theresty, but those who, work about ths furnaces and inhale the fumes of tho metal are seriously affected. Salivation is common, and the attendants on the furnaces aro cempelled to cuesiet from their labour every three or four weeke, when a fresh set of hands is put on. The hortes and mules aro also salivated, and from 20 to 30 of them die every yenr from the effects. of the mercury.

Ozocos Powdiar ros Polibeme.--Ohlorido of sodium and cialphate of iron are well mixed in a mortar. The mixture is then put into a shallow crucible and exposed to a red heat ; vapor escapos and the mass fuses. When no more vapor oscapes, removo tho cruciblo and let it cool. The color of the oxide of iron produced, If the fire has been properly regulated, is a fine violet; if the heat has beeu too high it becomes black. The mass when cold is to bo powdered and washed, to separate the sulphate of soda. The powder of crocus is then to be submitted to a process of carefal olutristion, and the finer particles reserved for tho more delicate work. An excellent powder for applying to razor strops is made by igniting together in a crucible, equal parts of well dricd green vitrol and common salt. The hoat must be slowly raised and well regulated, otherwise the materials will boil over in a pasty state, and be lost. When well made, out of contact with air, it has the brilliant aapect of black lead. It requires to be ground and elutriated, after which it affords, on drying, an impalpable powder, that may be either applied on a strop of amooth buff leather, or mized up with hogh's lard or tallow into a stiff cerate.

Onienting Emar to Wood.-Melt together equal parts of shellac, white resin and carbolic acid in crystals; add the last after the others are melted.

To Coat Iron with Emery.-Give the Iron a good coat of oil and white lead, then when this gets hard and dry, apply a mixture of glue and emery.

To Olean Cotton Fastm.-Pack the waste in a tin cylinder Fith a perforated false bottom and tube withstop-cock at bottom. Pour on the waste bisulphide of carbon sufficient to cover, and allow to soak a few minutes, then add more bisulphide, and 80 on for a time or two, and thon squeeze out. by simple distillation, the wholo of the bisulphide, or nearly all, can easily be recovered and so be used over again This will free t'se cotton completely from greasa

Blowing out Staja Boilers.-This should nevor be done under stoam prossuro. The safety valve should first be raised until the pressuro is all removed by letting the steam escape as rapidly as possible, thenthe hand hole plate or other device should be opened, and the dirt and sodiment will run out with the water. But if the boiler is allowed to cool off, the dirt will settle to the bottom and be fastened on with the heat. The dirt is always on the top of the water when thero is any pressure of steam on it.

Bowna Soals.-Sal soda, 40 lbs ., gum catecha, 5 lbs., sal ammoniac, 5 lbs ., is strongly recommended by an experienced person
for r each soda long boile
Min
parts
milde
aqueo
lime 2
water
treme the bi
urine,
part of applier
Fand
umber

- After
are ado
perman
Plat plated, boiling and gra nickel
manner.
Fing 1
it eat in
thin film
appeara
nitric a
copper.
surface;
Liquid pentine,
Coppa
copper a,
To HA
composit
may also
Copper on
The spec
copper, th
mora than
Good B
3 oz .

3. Wheels
tenacious.
Lathe Bus
Copper, 88
for removing boiler scale, one pound of the mirture being added to each barrel of water in the tank; after scale is removed use sal soda alone. By the use of 10 lbs soda per week a boiler 26 feet long and 40 inches diameter was cleaned from scalo equal to a new boiler.

Mindew ox Sails can be prevented by coaping the mildewed parts and then rubbing in powdered chalk. The growth of the mildew fungus can be provented by steeping the canvas in an aqueous solution of corronive mublimate. Another way. Slacked lime 2 bushels, draw off the lime water, and mix it with 120 gals, water, and with blue vitriol $\$ \mathrm{lb}$.

To Mend Uraciemd Oast-Iron Vmane.-Drill a hole at each ox. treme end of the crack, to prevent its further extension; plug rivet the holes with copper, and, with fine fron filinge saturated with urine, caulk the crack. Four parts of pulverized clay and one part of iron filings made into a paste with boiling linseed oil and applied hot is a good cement for the same purpose.

Fasmor Potry.-Seven pounds linseed oil and 4 lbs. brown umber are boiled for two hours, and 62 grammes wax stirred in. After removal from the fire $5 \frac{1}{2}$ lbs. fine chalk and $11 \mathrm{lb3}$. White lead are added and thoroughly incorporated; said to be very hard and permanient.

Platisc wite Nioxil may be effected by placing the object to be plated, either of iron, steel, copper, bronze, zinc or lead, in a boiling neutral solution of zinc chloride containing a salt of nickel and granulated zinc. If the zinc solution is acid, the coating of nickel is dull. A plating of cobalt may be made in the same manner.

Fing Blue Finish for Gú Barrzls.-Apply nitric acid and let it eat into the iron a little; then the latter will be covered with a thin film of oxide. Clean the barrel, oil and burnish. A very fine appearance is given to gun barrels by treating them with dilute nitric acid and vinegar, to which has been added sulphate of copper. The metallic copper is deposited irregularly over the iron surface ; wash, oll and rub with a hard brush.

Liquid Blacr Lfad Poisise--Black lead pulverized 1 lb ., inupentine, 1 gill, water, 1 gill, sugar 1 oz .

Copparas Dip yor CAst Iron.-Dissolve "Ibs. of sulphato ot copper and add 2 fluid ozs. sulphuric acid.

To Harden Metale. - Iron, 60 parts, chrome, 40 parts, form 0 composition as hard as the diamond. A high degree of hardness may also be imparted to iron or steel by adding \ddagger part of silver, Copper may be externally hardened by the fumes of zinc and tin. The specula of Lord Ross's. telescope is 1 part tin and 1 part copper, this is as hard as steel, and takes a very high polish; if morn than this be added it will scarcely cohere.

Good Brass for Maominery.-1. Copper, 2 lbs, tin, $2 \frac{1}{2}$ ozs., zinc, 1) oz. 2. Tough Brass. Oopper; 10 ozs., tin, $1 \frac{1}{2}$ ozs., zinc, $1 \frac{1}{2}$ ozs. 3. Wheels and Valves. Copper, 90 lbs ., tin, 10 lbs. 4. Brass, very tenacious. Copper, 88.9 parte, tin, 8.3 parts, zine, 2.8 parts. 5. Lathe Bushes. Copper; 80 parts, tin, 20 parts. Machinery Bearings. Copper, 88 parts, tin, 12 parts.
 boiled linsend cill gallon; add red lead sufficient to bring to the connistency of common palit. A.pply with a brush. Applicable to any kind of iron work exposed to the weather.

Blioz Ooior on Erass Work.-Mrakea strong solution of nitrate of silver in one dibh ac tinitrate of cupper in another. Mix the two forether, and plunge. In the brass. "Now heat the brass evenly till the:nequired degree of dead blackness is acquired. Unrivalled as a beantiful color on optical instruments.

Metalico Bate mor Thypirira.-Use a black lead or cast iron crucible, (of the requisite depih) and place the same, filled with lead, on a fire thade of coal or charcoal, and aurrounded on allsides by a metallic or brick wall, level, or nearly so, with the top of the crucible $;$ but at aisuffient distance (say 5 or 6 inches) from it to receite the foel nevessary to maintain the fire, in order to notop the lead in'a melted state.. Let the crrcible rest on iron pars, and loave apertures to admit air to the fire. The articler, slightly greased to prevent the adherence of oxide, art immersed in the miltid lead (which is kept at a red heat) by means of tongs, tiwo ox three pairs being generally uped, in order that one or two pieces may be beat 1 . While the other is undergoing manipulation py the hardening procegs. Kcep the lead covered with charcoal fust or cinders. This plan is used by many cutlern and file mannfacturers for giving the proper degree of heat in the tempering of their wares. The process is highly valued by those who use it See filu manufacture, page 258.

Ine Gold melta.............. 2690° silver "	Eeat, oheny red $\ldots \ldots \ldots \ldots \ldots .11800$
Copper nelta.	" 1 ved visible by daj...... 1077
Wrought Inn melts. 3980	
	ercury boils,................ 688
Bright red " in the dark...... 752	Y volatilizen............... 680
Red hot " in twilight....... 884	Platinum melts.............. 3080
Glass melta................. . . 2877	Zino meltg.................... 740
(Lommox fre................. 790	Highest natural tomperature
Prase metty 1800	(egypt
Air furnace.. 88800.	Greatent natural cold (below
Antimong malts. 961	
Bismuth " 476	artifoial ". 16.
Cadmíam.................... 000	Heat of humax blood........ 98
Steel 22500	Snow arid Salt, equal parts
l,end.......................... 504	Ice melts 33
(1in.. 421	Waterin vacuo boils.......... 98
	Furnace ur der steam boilem.. 1500

Sherníage of oabtinas.

Tron, gmall oylind's $=1-16$ th in. perft 1." Pipen. $=1$

- 0 GIrders, beame,
ect............. $=1$ in. in 16 ins.
" Large oylind-
ers, the con. traotion of iiameter atton. $=1$ 1-16th per foot. Ditto at bottoni. $\therefore=1-12$ th per foet.

Ditto, in length...t
Brace, thin 16 ins.
in
Brass, thick......... $=$ in 10
Zinc. $=5$-16thajina foot
Copper............. $=8$.16thi! "
Bismuth $=5-82$ nds " $"$

4 \& gallon, oring to the Applicable
on of nitrato Mix the two is evenly till rivalled as a
or cast iron e, fillod with inded on all with the top or 6 inchee) fire, in order rest on iron The articles, aie immorsed eans of tonge; at one or two manipulation with chareoal and file manntempering of se who use it

Green sand iron castings are 6 per cent. strong of than dry, and 30 per cent. stronger than cliilied, but when the castings are cailled und annealed, again of 115 per cent. is athained over those mado ir green sande Ohilling the uindor nide of oust Iron very materinuly increnes ite strengh.
Inos XIMOPAOTURa. Oharcpal zas buahela, limeatone 432 libe., and ore 2612 lbs , will produce i toi of pig irem In Kngland, temperinture of hot blast is 600°, density of blast and of refining furnace 2 4 to 3 lbes: per aquare inch. Revolations of pudiling rolle 60 per minute; rail rolfe, 100 ; rail gatr, 800.

One pound of Anthracito coal in a cupola fornace vili molt from 6 to 10 lbs of cust iron; 8 bushels of Ditaminsas cos: Whil meit 1 ton of cast iron. Small conl produces about it of the effect of large coal of the same kind
Varoortine of Wood Woriciva Maominity. -Circular Saros at periphery, 6000 to 7000 ft . per mingte ; Band Saws, 2500 feet; Gaing Saws, 20 inch stroke, 120 strokes per minute; Scroll Sans, 300 strokes par minute; Alaning Machino Cutters at periphery, 4000 to 6000 feet. Work under planing machine sh th of an inch for each cut. Moulding Machine Cutters, 8500 to 4000 feet; Squaring-up Machine Custers; 7000 to 8000 feet; ; Wood Carving Drills, 6000 rerolutions ; Machine Augers, 14 in diam.، 800 setolutions, ditto, 3 in, diam., 1200 revolutions; Gang Saws require for 45 superficial feet of pine per hour, 1 horse power. Circular Saws wequire 75° superficial feet per hour, 1 horse potwer "in odk or hard wood t ths ot the above quantity require 1 horse power; Sharpening Angles of Machine Cutters. Adzing soft wood aeross the grain, 300 ; Planing Machines, ordinary soft wood 35°; Gauges and Ploughing Machines, 40°; Hardwood Tool Cutters, 50° to 55°.
Floum, Mili, M $厶$ ohinery. - For each pair of 4 feet stones, with all the necessary dressing machinery, ete., there is required 15 hiories power. Stones, 4 ft . diam, 120 to 140 revolutions per minute. Dressing Machines, 21 in. ditm., 450 to 500 revolutions' per minute. Elevator, 18 ins. diam., 40 revolutions per minute. Crespers, 31 ins. pitoh, 75 revolutions per minute. Screen, 16 ins. diam., 300 to 380 revolutions per minute. $\mathbf{7 8 8}$ cubic feet of water, discharged at a velocity of 1 foot per second, are necessary to griad and dress 1 bushel of wheat per hour $=1.49$ horses' power per bushel. 2000 feet per minute for the velocity of n stone 4 feet in diam. may bo considered a maximum speed.
Watre.-Fresh Water. The component parts by weight and measure is, Oxygen, 88.9 by weight, and 1 by measure, Hydrogen 11.1 by weight, and 2 by measure. One cubic inch of distilled water at its maximum density of 39°. 83, the barometer at 30 inches, weighs 252.6937 grs., and it is 828.5 times heavier than at-
mospheric air. A cubic foot weighs 998.068 ounces, or 62.37925 1bs. avoirdupois, but for facility of compatation the weight is usually taken at 1000 onnces and 62.6 lbs. By the British Imperial' Standard, the weight of a cublc foot of water at 62^{2}, the barometer at 30 ins. $=998.224$ ounces. At a temperatare of 212° its weight is 59.625 lbus. Beloiv $399^{\circ} .83$ its density decreases at first very slow, but progressing rapidly to the point of congelation, the weight of a cnbic foot of ice being bat 57.25 .35 . 84 cubic feet of water weigh a tcn. 3913 cnbic feet of ice weigh a ton. River or canal water containg th of its volume of gaseous matter; apring or well water ith. Sea Water-A cubic foot of it weighs 64.3125 lbs., 34.83 cubic feet treigh 1 ton. Sea water contains from 4 to 51 ozs. of salt in a gallon of water, varying according to Iocality, and 62 volumes of carbonic acid in 1000 of water. Dr. Arnott estimated the extreme, height of the waves of an ocean; out on the open sea and free from any influence of land, to be 20 feet. The French exploring expedition computed waves of the Pacific to be 22 foet. The average force of the waves of the Atlantic Ocean during the summer months, as determined by Thomas Stevenson, was 611 lbs . per squaie foot; for the winter misnths, 2086 lbs. During a heavy gale a force of 6383 lbs. Tras obeerred. Destructive sffoct of Sea water uponcMetals and Lilloy's per square foot. Steel 40 grs. ; iron 38 ; copper 9 ; tinc 8 ;"galvenized iron 1.5; tin 2.
V armang Bomdings on Apartments-By low prcseure steam (1y to 2 lbs.) or hot vater.-One square foot of plate or pipe surface will heat from 49 to 100 cubic feet of inclosed space to 75° in a latitude where the temperature ranges from- 10° or 10° below zero. The range from 40 to 100 is to meet the conditions of exposed or corner buihaings, of buildings lass exposed; as the intermediate ones of a block, and of rooms intermediate between the front and rear. As a general; rule, 1 square foot will heaf 75 cubic feet of air in outer or front rooms, and 100 in inner rooms. By High Pressure Steam -When steam at a pressure exceeding 2 lbs. per square inch is used, the space heated by it will bein proportion to its increase of temperature above that pressure less the increased radiation of heat in its course to the place of application. One cubic foot of water evajorated is required for every 2000 cubic feet of inclosed space.

Aspealitio Mastio.-Is composed of nearly pure carbonate of linie and about 0 or 10 per cent. of bitumen. When in a state of powder it is mired with about 7 per cent. of bitumeu or mineral. pitch. The powdered asphalt is mixed with the bitumen in' a melted state along with clean gravel, and consistency is given to pour it into moulds. The asphalt is ductile, and has elasticity to enable it, with the small stones sifted upon it, to resist ordinary wear. Sun and rain do not affect it, wear and tear do not seém to injure it: The pedestrian in many cities in the United States and Canada, can readily detect its presence on the sidewalk by its peculiar yielding to the foot as he steps over It. It is also a most excellent roofing material when rightly applied, it being on record in France that a stout roof of this material withstood the acciden-
62.37925 veight is Imperial baromets weight irst very tion, the 84 cubic e weigh 'volume Water-A igh 1 ton. of water, iic acid in sht of the influence computed the waves letermined the winter 83 lbs. Was md Alloy's 8 ; "galva-
ream (1) to urface will a a latitude. zero. The d or cornior 0 ones of a i rear. As air in outer sature steam are inch is to increase radiation of ubic foot of of inclosed
arbonate of n a state of or mineral. tumen in a is given to lasticity to ist ordinary not seém to States and walk by its also a most gon record the acciden-

- tal fall of a stack of chimneys, with the only offect of bruising the mastic, readily repaired.

Thunas Worth Knowiva.-1. Ruat Joint, quick setting: Salammontac, pulverized, 1 lb . ; flour of sulphur, 2 lbs; iron borings 80 lbs; mix tō a paste with water in quantitios as required for immediate use.-2. Quick setteng ioint better than the last, but requires more tume to eet. Sal ammoniac; 2. lbs. ; sulphur, 1 lb . ; iron flings, 206 tbs. 3 Air and water-tight cement for consks and sisterns: Melted grue, 8 parta; unseed oil, 4 parts ; boiled into a varnish with litharge hardens in forty-enght hours. 4. Marine Elue: Indas rubber part coal tar, 12 parts; heat gently, mix, and add 20 parts of powdered shellac, pour out to conl, when used, heat to about 250°. 5. Another ditvo : Glue, 12 parw; water sufficient to dissolve: ada yellow resin, 3 parts; melt, then add turpentine, 4 parts; mix thoroughly together. 6. Water-proof varnish for harness. India rubber, $\frac{1}{2} \mathrm{lb}$. ; spirits of turpentine 1 gal . ; dissolvo to a jelly, then take hot inseed onl, equal parts with the mass, and incorporeto them well over a s.ow fire 7. Blacking for harness: Beeswaxi, $\frac{1}{} \mathrm{lb}$; ivory black, 8 oz . pirits of iturpentine, 1 oz ; Prussian blue, ground in oi, 1 oz . \mathfrak{j} copel varnish, $\frac{1}{2}$ oz.; melt tho wax and stir it into the otneringreds is before the mixture is quite cold; make it into balls rub a little upon a brush, apply it upon the harness and polish lightiy with silk 8. 1nti-friction grease: Tallow, 100 lbs . palm oil, 70 los boil togetner when cooled to 60°, strain through a ieve, and mi" with'28 Ibs. sods and is ga's. water. For winter take 26 lbs. more oil in place of the callow. 9. Anozner Pulverized blacs lead, 1 part; lard, 4 parts. mix. 10. Booth'o s'aitway Axle etrease: Water, 1 gal. : clean tallow, 3 'bs., palm oil; 6 lbs. common soda, $\frac{1}{2}$ lb. or tallow lbs. palm oit, 10 lbs. Heat to about 212°, and stir well until it cools to 70°. 11. To remove ld Iron moulds: hoisten the part stained with inc, remove this by the use of muriatic acid diluted by five or six times its weight of water, when the ola and new stains will be removed. 12. Whitewashfor outside wiork lack lime, $\frac{1}{2}$ bnshel, in a barrel; add common salt, 1 lb . sulphate of zinc, $\frac{1}{\frac{1}{2}}$. bring to a proper consistence with water, and apply with' a whitewash brush. Asphalt compodition: Mineral pitch, 1 part; b1tumen 11 parte; powdered stone or wood eshes, 7 party. 14. Composition for streets and roads Bitumen, 16.875 parts asphaltum, 225 parts oil of resin,6.2 partr and sand $1 \cdot 35$. Thickness from $1 \nmid$ to $1 \frac{1}{8}$ inches. Asphaltum, 65 lbs ., and gravel, 98.7 lbs. will cover an area of 10.75 square feet. 15. Cement for external use: Ashies, 2 parts: clay, 3 parte; sand, 1 part mix with n little oil, very d irable. 16. Cement for Shoomakers and Channelers. India rubber dissolved to a proper consistency in sulphuric other. 17. Mortar. Lime, 1 past clean sharp sand, $2 \frac{1}{2}$ parts. An excess of water in slaking the lime swells the mortar, which remsins light and poraus, or shrinks in drying: an excess of sand destroys the cohesive properties of the mass 18. Stone mortar Cement, 8 parts; lime; 3 parts, an 31 parts of sand. 19. Brown mortar Lime, 1 'part; sand, 2 parts, and a small quantity of hair. 20. Brick mortar: Oement, 3 parts; lime, 3 parts, sand, 27 parts. Lime ond sand,
and cemont and rand, lesmen about 1 in volume when mised together. 21. Turkish mortar: Powdered brick and tiles, 1 part; fine sifted lime, 2 parts ; mix to a proper consistency with water, and lay on layers of five or six inches thick between the courses of brick or stone, being useful on masuive or very eolid buildings. 22. Interior plastering-Coarse atuff: Oommon lirne mortar; es mado for brick masonry, with a small quantity of hair ; or by volumes, lime paste (30 lbs. lime) 1 part; cand, 2 to 24 parts; hair 1-6 part. When full time for hardening cannot be allowed, substitute from 15 to 20 per cent. of the lime by an equal portion of hydraulic cement. For tie second or brewn cuat the proportion of hair may be slighitly diminished. Fine atuff (lime putty): Lump lime slaked to a paste :with a moderate volume of water, and afterwards diluted to the consistency of cream, and then to barden by evaporation to the required consistency for working. In this atato it is used for a alipped coat, and when mixed with sand or plaster of Paris it is used for tbe finishing coat. Gauge stuff or Mard-litinish is componed of 3 to 4 volumes of fine stuff and 1 volume of plaster of Paria, in proportions regulated by the degree of rapidity required in hardening for cornices, \&c., the proportions areequal volumes of each, fine stuff and plaster. Ntucco is composed of from 3 to 4 volumes of white sand to 1 volume of fine stuff, or lime putty. Scratch coat : The first of 3 coats when laid npon laths, und in from to $\frac{8}{6}$ of an inchuin thickness. One coar work: Plastering in one coat without finish, either on masonry or lathy; that is, rendered or laid. Two catat work: Plastering in two coats is dome either in a laying coat and set or in secreed cood or set. This Sereed Coat it also termed a Floated Coat. Laging the first coat in two coat work is resorted to in common work instead of srceding when the finished surface is not required to be oxact to a straight edge. It is laid in a coat of about $\frac{1}{2}$ inch in thicknest: The layiog coat, except for very common o ric, should be hasdfoated, as the tonacity and firmness of tha work is much increased thereby. Secreeds are strips of mortar, 26 to 28 inches in width, and of the required thickness of the first coat, applied to the angles of a room, or edge of a wall and parallelly, at intervals of 3 to 5 feet orer the surface to be covered. When these have become sufficiently hard to withstand the pressure of a atraight edge, the interspaces between the screeds should be filled out flush with them, sa as to produce a continuous and straight, even surface. Slipped Coat is the smoothing off of a brown coat with amall quantity of lime putty, mixed with three per cent of white sandso as to make a comparatively even surface. This finish answers when the suriaco is to be finished in distemper or paper. Rard Finsh: Fine stuff applied with a trowel to the depth of about $\frac{1}{8}$ of an inch.

Ehath Digasc. - Number of cubic feet of earth in a ton. Loose earth 24 ; coarse sand 18.6. Clay 18.6. Warth with gravel 17:8. Cley with graval, 14.4, Common soil 15.6. The volume of earth end sand in bank exceeds that in embankuent in the following proportions; sand t, clay $\frac{1}{2}$ gravel $I^{\prime} r$, and the volume of rock in ombankments quarried in large fragments exceeds that in bank

CGTLMATE OF MATHBIALSAXP EABOR YOR 100, GQUARI TARPG OF LATE A2P PLAERIT

Tmpa Cotta Manopaotien,-In the terre cotta manufacture of the north of England and Scotland, the purest lumph of fire clay are selected by their color and texture, and uapd atone without any other clay, while the firms near London prepare more carefully a mixture of clays, which produce a body of better texture. One of the chief diffculties met in manufacturing terra cotta figures end ornamental works is the contraction the elay suffers after it has left the mould; first, in drying; afterwards in firing. By mixing the clays, a further advantage is gained in the diminished shrinkage, as fire clay terra cotta (that is, unmised) shrinks in lineal dimensions about 12 per cent from the time it leaves the mould unti'it leaves the kiln; the mixed clay terra cotta shrinks 6 per cent or legs, and red clays shrink 3 per cent. To onhance the durability of the body of terra cotte, a partial vitrification of s.as masi is aimed at hy adding clays and substances which oontain a emall amount of alkalies which act as a flux to fase the body harder; also vitrifying ingredients; pure white river sand, old fire briok ground fine, previously ground olay called "grog.", are added in various proportions, amounting even to 25 per cent. Thes counteract excessive shrinkage, act as vitrifying elemonts. and keep the color lighter. In the manufacture the mixture of clays is ground ander an edge runner to the consistency of flour. The, mills have eitffer revolving or atationary pans ; the former do the most work. In opder to mix and incorporate the different clays, a subsequent careful pugging is required, for which bot watior is sometimes used. The mixture, when brought to the proper homogeneous consistency, is placed in a plaster mould, dried near the kilns or otherwise, and baked in a kiln for five or seven days, during which time it is elowly brought to a white hear, and as gradually cooled down again. In order, to avoid twisting and warping during the firing, it is necessary, besides complete mixing of clays, that the mould be shaped so as to give a uniform thickness of material throughout, aud if the temperature of the kiln be well graded, the homogeneous body will not warp. To obeapen terra cotta building blooks, they are made hollow, and filled, during the construction, with concrete or cament. Although in the kilns the productions are separated from the wares, it is found that the use of sulphurous fuel darkens ani tarnishes the surface, and it is to be avoided. This material admits of being used with the greatest facility in the formation of the most elaborate architec-

274 MÄCHINISTS, ENGINEERS, \&O., REOEIPTS.

toral ornaments and ōther beautiful designs, which can be multiplied to any required extent at a very cheap rate. A piece of four inch column tested at the 1851 Exhibition required a presure of 400 tons per square foot to crush it, or as much as good granite and two to three times as much as most building stone.

Blastine Rocise, \&o.-In small blasts 1 lb . of powder will loosen about 41 tons. In large blasts 1 lb . of powder will loosen about $2 \frac{1}{2}$ tons ; 50 or 60 lbs . of powder, inclosed in a resisting bag hung or propped up against a gate or barrier, will demolish any ordinary construction. One man can bore, with bit 1 inch in diameter, from 80 to 60 inches per day of 10 hours in granite or 300 to 400 ins. per day in limestone. Two strikers and a holder can bore with a bit 2 ins. in diameter 10 feet per day in rock of medium hardness.
Labour on Embankmente. Single horse and cart. A birse with a loaded dirt cart employen in excavation and embankuent, will make 100 lineal feet, or 200 feet in distance per minute, while moving. The time lost in loading, dumping, awaiting, etc, $=4$ minutes per load. A medium laborer will load with a cart in 10 hours, of the following earths, measured in the bank : Gravclly earth 10, Loam 12, and Sandy earth 14 cubic yards ; carts are loaded as follows: Descending hauling, $\frac{1}{\square}$ of a cubic yard in bank, Leveb hauling 早 of a cubic yard in bank; Ascending hauling, A of a cubic yard in bank. Loosening $\$ \mathrm{c}$. In loam, s three-horse plow will loosen from 250 to 800 cubic yards per day of 10 hours. The cost of loosening earth to be loaded will be from 1 to 8 cents per cubic Jard, when wages are 105 cents per day. The cost of trimming and bossing is about 2 cents per cubic yard. Scooping, A seoop load will measure $\frac{1}{0}$ of a cubic yard, measured in excevation. The time lost in loading, unloading and trimming, per load, is $1 \frac{1}{8}$ minutes. The time lost for every 70 feet of distance, from excavation to bank, and returning is 1 minute. In Double Scooping, the time lost in loading, turning, \&c., will be 1 minute; and in Sungle Scooping, it will be-13 minutes. (Ellwood Marris.)
Hadling Stone-A cart drawn by horses over an ordinary road? will travel 1.1 miles per hour of trip. A 4 horse team will haul from 25 to 36 cubic feet of lime stone at each load. The time expended in loading, unloading, \&c. including delays, averages 35 minutes per trip. The cost of loading and unloading a cart, using a horse cram at the quarry, and unloading by hand, when labour is $\$ 1.25$ per day, and a horse 75 cents, is 25 cents per perch $=24.75$ cubic feet. The work done by an animal is greatest When the velocity with which he moves is $\frac{1}{8}$ of the greatest with Which he can move when not : -npeded, and the force then exerted ; 45 of the utmost force the animal can exert at a dcad pull.
Hay. - 270 cubic feet of new meadow hay, and 216 and 243 from large or old stacks, will weigh a ton, 297 to 324 cubic feet of dry clover weigh a ton.
Wharl Graring.-The Pitch Line of a wheel, is the circle upon Which the pitch is measured, and it is the circumference by which the diameter, or the velocity of the wheel is measured. The Pitch, is the arc of the circle of the pitch line, and is determined by the
nul
wh
is,
up
cen
run
dial
dis!
the
for
circ
rece
upo
2 W
from
for
sock
with
is \dot{c}
\triangle
A B
axis.
with
angle
teeth
Wh
Whe
Whee
of a
is ten
is tern
opur,
lower.
a trai
the wi
lower
solid.
staves
of teet
the st
dimini
tity of
the nu
and ex
ber of 1
the ne
to prov
wheel s
When
pinion
pinion,
ten: T
number of teeth in the wheel. The True Pitch, (chordial), or tbat by which the dimensions of the tooth of a wheel are alone determined, is a straight line drawn from the centres of two contiguous teeth upon the pitch line. The Line of Centres, is the line between the centres of two wheels. The Radius of a wheel is the semi-diameter running to the periphery of a tooth. The Pitch Radius, is the semidiameter running to the pitch line. The Length of a tooth, is the distance from its base to its extremity. The Breadth of a tooth, is the length of the face of whecl. A Cog Wheel, is the general name for a wheel having a number of cogs set upon or radiating from its circumference. A Mortice Wheel, is a wheel constructed for the reception of teeth or cogs, which are fitted into recesses or sockets upon the face of the wheel. A Cog. Wheel is the general term for a wheel having a number of cogs or teeth set upon or radiating from its circumference. A.Mortice Wheel, is a wheel constructed for the reception of tooth or cogs, which are fitted into recesses or sockets upon the taco of the wheel. Plate Wheels, are wheels without arms. A Rack is a series of teeth set in a plane. A Sector is $\dot{\delta}$ wheel rhish reciprocates without forming a full revolution. A Spur. Wheel, is a wheel having its teeth perpendicular to its axis. A Bevei Wheel, is a wheel having its toeth at an angie with its axis. A Crown Wheel, is a wheel having its teeth at a right angle with its axic. A Mitre Wheei is a wheel having its teeth at an angle of $45^{\prime \prime}$ with its axis. A Face Wheel, is a wheel having its teeth sct upon one of its sides. An Annular or Internal Wheel, is is wheel having its teeth convergent to its, centre. Spur Geary Wheels which act on each othir in the same plane. pcucl Gear, Wheels which act upon each other at an anglè.' Waen the tooth of a wheel is made of a different material from that of the wheel, it is termed a cog: in a pinion it is termed a leaf, and in a trundle it is termed a stave. A wheel which impels another is termeci the spur; driver, or leader: the one impelled is the pinion, driver, or fole lower. A series of wheels in connection with each other is termed a train. When two wheels act on each other, the greater is termed the wheel and the lesser the pinion, A.Trundle, Lantern; or Wallower is when the teeth of a pinion are constructed of round brass solid cylinders set in two discs.- A Trundle with less than vight staves cannot be operated uniformly by a wheel with any number of teeth. The material of which cogs are made is about one fourth the strength of cast irgn. Buchanan rules that to increase or diminish the velocity in a given proportion and with the least zuentity of wheel-work, the number of teeth in each pinion should be t_{i} the number of teeth in its wheel as 1, 3, 59 . Even to savu space and expense, the number should never exceed $1 ; 6$. The least number of teeth that it is practicable to give, to a wheel is regulated by the necessity of having at least one pair always in action, in order to provide for the contingency of a tooth breaking. The teeth of a wheel should be as small and numerous as is consistent with strength When a pinion is driven by a wheel, the number of teeth in tho pinion should not be less than eight. When a wheel is driven by a pinion, the number of teeth in the pinion should not be less than ten: The number of teeth in a wheel should always be prime to
the number of the pinion, that is, the number of toetrin the wheel should not'be divilible 'by the number of teeth in'the pimion without remidinder ithil is in ortier to prevent the sithe tsoth coming together so ofton as to cause an irreguiat wear of their heene An odd tooth introduced into a trieel is termed a hurting tooth or cog.
 To propto x urven vecorrt. Ruie:-Mfutiply the number of teeth it the driver by its number of revolutions, and alpide the prodact by the number of sevolution's of each pinion, for eved dyiter and pinion.

Example.-If a driver in a train of three wheels has 80 toethjand maltes 2 revolutions, and the telocities required are 2,10, ynd 18 , what are the aumber of teeth in each of the other two.
$10: 90:: 2 \cdot 18=$ teeth in $2 n{ }^{2}$ wheel.
$18: 90:: 2: 10=$ teeth in 3rd wheel.
 ber of toeth by the pitch, and difille the produet by 3,1416 .

Dexample. - The number of teeth in the wheel is T6, wnd the pitch 1,675 fins: What in the diameter' of it ?
75×1.6765
3.1416
 the number of tet th, ascertain the sine of the quotient, and muttply it by the diaineter of the wheel.

Dxample.-The nurnber of teeth' is 75 , and the dianeter 40 inches; what is the true pitch'

180
2024 and sin. of $2024 \div 04188$, which $\times 40=1,6752 \mathrm{~mm}$ 75
Holiondmoaition ror Punters Roxitrs.-This tónsistí of glue and molaisets, the proportions varying from 8 lbs. of glue in summer, to 4 lbs. in whter for each getilon of nolasses. The glue should be placed th an hour in a bucket, coreved with watter, then pout the water off, and allow the slue to roften. Put it irito a fettle ayd heatit until thordughily melted; if too thick a little water may be adad. Lastly, the molasses is added and well stirred in with the glue. When properly prepared an hour's boiling will be-sufficient, as too much botiling is apt' to cands the molaises. A qate improvement consists in the adilition of gly cerine to the usual mixture. Swab the mould with bil before pouring.
 part of caustic soda and 5 of water. The composition is then mized with half its treight of plaster of Paris, and sets firmly in $\frac{1}{2}$ to f of an hour. It is of great adhesive power, not permeable to petrolenm, b conductor of heat, and but superficially attacked of hát water.

To Daporit Benenv.-Shake repeatedly with plumbate of soda (oztide of letd alssolved in caustic soda), and rectify. The following plan is said to be better. Shake repeatedy with fresh portions of metallic quick silver; let it stand for 2 days, and rectify.

Spisinic Graviry.-Is the denisity of the matter of which any body is composed, compared with the density of another body

MAOHNISTG, ENOLNERBS, *O., BEOEIPTG. 277

10. Wheel without coming cetr An thior cog. - whull umber of ivide the chatider 418. d the pitch

100180 ky and multi-

The glue water, then ut it into a aick a little is and well hour's boilndy the moof gly cerine pouring.
foin with 1 fion fa then Tirmly in $\frac{1}{2}$ ermeable to 11y attacked
bate of soda
The followessh portions ctify.
which any other body

Wramed ue toe wtandard, of 1000. This wandard is paro digtilled Weter for liquid and wollds, and atmoepheric air os ganeone badicis and viport Thus wis gold is 19 and silver, 10 times hearier than water, thoto numbers' 19 and 10 , are said to represent the speoifio gravity of gold andi silver. The hea vieat kiown substanco if iridi$u m$ used for pointing gold pene; its spocific gravity is 23. The lightest of all liquias nas a specific grevily of 0.6, it is called chimogene, and is maile from petroleum, it is exceediagly volatile and combustible, being in fact a liquefied gas. Oarbonio acid gas or choke darip is 500 vimes lighter than Titen, common air, 800 , treet 'gas about 2000, and pure hydrogen ine Lightent of all substoncee, $12,000^{\circ}$ 'tinites. The heatiest substance han thume 23×12009, or more that a quatter of a million times more weight than, on equal bulk of the lightest; and the substance of which comet consist, bas by astronomets been proved to be even several thoutand times liglter than hydrogen gas.

To Galtanize Gruy Iron Castires.-Cleanso the artieles in an ordinkry chaffing mill, which consists of a barrel revolving on its sxis, containing sand; when the sand is all removed, take them out and heat one by one, plunging, while hot, in a liguid componed wa follows 10 lbs. hydrochoricacia and sufficient sheetzino to make a taturated solution. In making this iolution, when the evolution of gas has ceased, add muriate, or protorably sulphate of ammonis, 1.16., and let it stand till dissolved. The castinge should beso hot that when dipped in this solution, and instantly remored, they Will itmenediatoly dry, teaving the surface crystallized like frost work on a window pane. Next plunge them while hot, but porfectly dry, in \& bath of melted zinc, proviously skimming the oxido on the striface away, and throwing thereon a small amount of powderod sal manioniac. If the articles are very simall, inclope them in a
 When this is done, shake ori the superfluous metal, and cant them Into a vessel of water to prevent them adhering when the cinc olidifies.
To Purity Petrolijel or Kircsing Onf. The distillate or -orude butning oil is converted into ordinary butning oil by being placed in a tank when it is, violently a aitated by forcingrair through If, aide while thus ayitated, 1 t to 2 per cent., sulphuric acd is aded, after which the agitation is continued 15 to 30 minuton: The oil is then allowed to settle, when the acid and impurities /are remored, an'd any a cid remaintng in the oil is noutralized. It is then taken to shallow bleaching tanks, where it is exposed to light and dir, and allowed to settle. It is next heated by means of a eoil of steam pipe running through it, to expel all gaseous vapours which will ignite at a temperature below $110^{\circ} \mathrm{Fahr}$ The oil is now called a firftest oil, and is ready to be barreled and sent to market. Kerosene oil is decolorzed by stirring it up peith 1 or 2 per. cont. of oil of vitriol, which will carbonize the coloring matter, them with some milk of lime or some other caustic alliali, eettling, and te- " stilling.

To Frost Poitsimd Snvir.-Oyanide of potassium 1 oz., diemive in $\frac{1}{2}$ pt. of water. Do not hold the silver in your handa, buit use pliers made of lance wood or box wood, and apply the mixture with a brush to the polished surface.

1278 / MAOHINISTS, ENGINEERS, *O., REOEIPTS.

To Restoan Bdant Oabr Steil. - Bora lba, sal ammoniac If lb, prussiate of potash $1: 1 \mathrm{~b}$, rosin, 1 oz, Pound thc above, tine, add 4 gill each of water and alcohol, and boil all to a atía, pabte in an iron kette: Do not boll too long or it will becomo hard when cool. The burnit ateel is dipped while quite hot in the composition and alightiy hammered.

- Ymllow Dippive Mral.-Melt together 2 parts of brass, 1 part copper, with a littlo old brass, and 1 oz, tin to every lb, of copper. This alloy is almost of the color of gold coin.

Sllvering Hooks and Eyzs, do. The small iron articles are suspended in dilute sulpharic acid until the iron shows a bright clean surface, After rinsing in pure water they are placed in a bath of a mired solution of sulphate of zinc, sulphate of copper and cyanide of potassium and there remain until thoy receive a bright coating of brass. Lastly, they aro traniferred to a bath of nitrate of "silver, cyanide of potassium and sulphate of soda, in which they quickly receive a coatlng of silr rer.
ric To Appry Dechloomane Piotiores. - Varnish the pictures carefully with tho prepared varnish, (which can be obtained with the pictures), with an ornamenting pencil, being careful not to get the varnish on the white paper. In a few minutes the picture will be ready to lay on the panel, and the paper can be removed by wetting it, and when thioroughly dry, it should be varnished like an oll painting. Be particular to purchase only those tranger pletures which are covered with a gold leaf on the back, for they will show plainly on any colored surface, while the plain pictures are used only on white or light ground
Compobition Ornaxents por Piotura Frames, do.- Mix as much whiting as you think will be required for present use, with thinish glue, to the consistence of putty; and having a moald ready, rub it well all over with sweet oil, and press your composition in it; take it out and you have a good impression, which you may set by to dry; or, if wanted, you may, before it gets hard, apply it to your work with thick glue, and bend t into the form required.

Druly Lubricator. - For wrought iron use 1 lb ; soft soap mixed with 1 gal. boiling water. It insuree good work and cleat cutting.

Omyent por Embry on Wood.-Melt together equal parts of shellac, white rosin, and carbolic acid in crystals ; add the, last after the others are melted. An unrivalled cement.
Weiget or Earth, Rociss, do.--A cubic yard of sand or ground weighs about 30 cwt . mud, 25 cwt .; marl, 26 cwt ; clay, 31 cwt. chalk, 36 cwt . ; sandstone, 39 cwt . ; shale, 40 cwts ; quartz, 41 cwt. ; granite 42 cwt ; ' trap, $42 \mathrm{cwt}$. ; slate, 43 cwt .
To Dermemine Weight or Live Catrle.- Measure in inches the girth round the beast, just behind the shoulder blede, and the length of the back from the tail to the fore part of the shoulderblade. Multiply the girth by the length, and divide by 144. If the girth is less than 3 feet, multiply the quotient by 1i., If between 3 and 5 feet, multiply by 16 . If between 5 and 7 feet multiply by 23 . If between 7 and 9 feet multiply by 31. If the animal is lean, deduct d, from the result, or take the girth and length in feet, multiply the equare of the girth by the length, and multiply the product by
snmonino bove, the, itifl, pabte omo hard the comof copper.
ticles are 8 a bright laced in a of copper y receive a a bath of of sode, in
tures careed with the to get the ure will be ed by wetred like an ansfer pictor they will pictures are
.-Mix as at use, with a a mould ar composiwhich you hard, apply m required. soap mixed 1 clear cut-
al parts of dd the last
d or ground ay, 31 cwt . quartz, 41
In inches the de, and the he shoulder144. If the etween 3 and bly by 23 . If lean, deduct multiply the product by
3.36. The result will be the answer in pounds. The live weight, multiplied by 6.05 , gives a near approximation to the net weight.
 tin toil 3 drs. of quicksilver to the square foot of foll. Rub smartly with a piece of buckskin until the foll becomes brilliant. "Lay the glass upon a flat table, face downwards, place the foil upon the damaged portion of the glass, lay a sheet of paper over the foil, and place upon it a block of wood or a piece of miarble with a perfectly flat surface; put upon it sufficient woight to press it down tight; let it remain in this position a few houtrs. The foll will adhere to the glass.
Penoin yon Whiting on Glass.-Stearic acid 4 pts., Muttonsuet, 3 pts., wax 2 pts; meit together and add 6 parts of red lead, and I pt. purified carbonate of potassa, prevlously triturated together ; set aside for an hour in a warm situation, stirring frequently; then pour into glass tubes or hollow. reeds.
Modelling Otiay.-Knead dry clay with glycerine instead of water, and a mass is obtalned which remains moist'and plastic for a considerable length of time; being a great convenience for the modeller.
Abpialt for Walks,-Take' 2 pts., very' dry lime rubbish, and 1 pt. coal ashes, also very dry; all sited fine. In a dry place, on a dry day, mix them, and leave a hole in the middle of the heap as bricklayers do when making mortar. Into this pour boiling hot coal tar ; mix, and when as stiff as mortar, put it three inches thick whure the walk is to be; the ground should be' dry and beaten mooth ; sprinkle over it coarse sarid. When cold, pass a light roller over it; in a few days the walk will be solid and waterproof.
Pousina Powner rok Sprctia. - Precipitate a dilute solution of sulphate of iron by ammonia' in excess; wash the precipitate; press it in a screw press till nearly dry; then expose it to heat until it appears of a dull red color in the dark.
Fiots por Gas Companies and Gis Consumgrs.-Purifiers-Dry purifiers require 1 bushel of lime to 10,000 cubic feet of gas, and 1 superficlal' foot' for' every 400 cubic feet of gas. Wet purificers require 1 bushel of lime mixed with 48 bushels of water for every 10,000 cubic feet of gas. Retorts-A retort phoduces about 600 cubic feet of gas in 5 hours with a charge of about $1 \frac{1}{2} \mathrm{cwt}$. of coal, or 2800 feet in 24 hours ; 1 ton of Wigan Gaincl has produced coke, 1326 lbs. ; tar, 250 lbs.; gas, 338 lbs.; loss,' 326 lbs. Pictou and Sidney coal has produced 8000 cubic feet per ton; 1 lb. peat will supply gas for 1 hour's light. Exposed lights require about 5 cubic feet; internal lights require 4 cuble ft. per hour. Large burners require from 6 to 10 cubic feet per hour. A cubic foot of gas, from a jet ${ }_{3}{ }^{3}$ rd of an inch in diameter and height of flame 4 inches, will burn for 65 minutes.' Rosin Gas-Jet s, Hame 5 inches, it cubic feet per hour. In winter the average daration of internal lights per day is 5.08 hours; in summer it is 2.83 , in spring it is 3.41; and in the fall 4.16. Street lamps in New York city consume 3 cubic feet of gas per hour. In some cities 4 and 5 cubic feet are consumed. Fish-tail burners for ordinary coal gas consume 4 to 5 cubic feet of nas per hour. The standard of gas burn-

Ing if a 16 hoto A fynd tamp, intormal diamotor 44 ingh, chimner 2 Incion in haighs consumptron o cubic feet per hour diving Ifcht from ordinart, coal ges orfrom 10 to 12 candles, with Usinal coal 5 rom 20 to 5 candion, had with the coals of Penpativanit and Virginic or from 14 to 16 candlè. Loes of Light by Glase Globs- Olear slace 12 por cont, harr ground 86 , per cent, full ground 40 per, cont. The pregure fith which gas is forced thinugh plpen whould coldom oxceod 21 inghen at the Worku, or the leakaco Wll oxcoed the adrantagea to bo obtained from incroased preanure. When pipen are lad at an inclination oither above or below the horizon, a correation will have to be made in entimating the aup ply, by adding or aoducting ifo of an inch trom the initial presBure for every cast of rise or all in the longth of the pipe. By ex periment, 30000 cubio foot of grap. fr. \% were discharged in an hour through \& main 6 inche in dinmetar and 22:5 feet in length, and 852 eubic feot, apecifio gravity. 398 Were diacharged undet - head of 3 ini, of whtor, thrumh main 4 ins. In diam. and 6 milem in length Hom or rolunce, If dicharged by friction, in a pipe 6 in. diam. and I mile in length is oitimatod at 95 per cent. Indistilling 58 lbe of paal the ralume of gas produced in cubic feot when thio distuistion, was oquoted in 8 houri was 41.3, in 7 houts 37.5, in 20 hours 38.5, and in 25 hour 31.7. The time of explonion is about the 27th part of eecond, and the reańtant temporature 244°. Gie:Arimes-th the Lenor engines, the best proportions of cap and air are, for common ca, 8 , ollames of air to 1 of gas, and zor canmel gas 11 of air to 1 of gac. 1 h engino having a cylinder of 4 inched diamator, and 8 inch atroke of piston, making 180 revolutions per minnte, dévelopa a jower of half á horbe.

To Remove Depogry or OArbon mpom Chaz Riforta - Lionto the retort uncharged for 48 houre, or as long as can be ppared. Put the lid on the manth-pieco so as to be closed at top and open 2 of three inch's at the bottom. Tatre out the otopper from otand pipe so as to allow a ourrent of air to pass through tho retort ana oxydive the carboin, use no bar. Put in charge of coal after the retort has Iain lale the number of hours teguired, and when ft 3s vithdrawn the carbon comes with it.

To Mand Irow Riromes. Fire clay is Ibs, galeratu, 1 lb. Whith water sufficient to make a thick peate. Apply to the broken part of the retort while at a good, working heat, then cover it with a fine coal dust, and charge the retort for working.
 Five parts fire clay, 2 parts white sand, 1 part of borax pressed and ground. Wix the whole together with as much water as may be necesbary to bring it to the consistence of putty. Roll it in the hands to a proper length and apply it over the crack, pressing it with a long spatula into the crack.
 glycerine is saia to prevent the treezing of 1 gal. Water, though at least double theproportion is preferable in the country, whatory the tempertiture in the winter may happen to be.
 or brace belance and new pendulua apoing: Tho modt intemse beat will not estalicate the wrouble.

Ominet sor Lbapmem.-Bisulphide of carbota, bion; tick gatta percha, 1 0s." The lattes is lite thin carity conotingsiof leacher and munt be added a litite at a time.'Oark up tighti, ind it it at for asing in 10 or 12 hours.
To Rmar Lacaama me.Fiw Ewame Honm-Pass a round bar of iron intc the hose under the leuk, thes riret on a patch of leather, previounly coated, Fith marine glue.

Agoaria demmar. - Mix equal quantities of dry white lead and red lead to a pasto with mastic varnish and use as poon as mired.

Nuw Srai Paoxno. - Take long colls or continnoun ptrands of flax or hemp loosely twisted, or better stil!, with scarcely any twist, eaturate these coils in molted groase or tallow, and gre thom a good thorongh coating with at much black lead or plumbago (inely pulverized), as the material will aboorb. It is a most superior article.

- Papar Friotion Polarys.-These superior mechamical contrirances are made by cutting piecas of pastoboand into a airpular form, and of the deaired diamoter of the pulley, and placing them in layers one on the top of another, cementung property with a good coat of glue between oach layer, poundine pr preining them together as clome as ponsible, and leaving a perforation in the centre of each, for the shaft. When jou have cot enough of themelayers togetber to give Jou the proper breadith of palley, allow the glue to harden, then turn it off to a emooth finigh in a lathe. Seourb each side of the pulley with a good stout inan flappo lajga empy to cover the entire diameter, or marly oo, and with proper ungeo it Will last a long time.
 Onaws wh man Woods.-The following ficuren have beon zindly furnished for this work by the obliging managar of Meagers. Gilcour's mill un the Gatineau, near Ottaws Oanads, and are most valuable as affording a basio for calculating the quantity and quality of tho supplies reguired for men and horses ongeged in this branch of indnstry. Whese calculations are the result of long experience in the buaners, and are baced on icctan consnupption.

Quantity of Oats for each gpan of hories, $61,1 \mathrm{be}$ per das.

Quantity of Tea nsed " 13 lbs, per month.
The daily allowance of oats for each apin of horses miay appear large, but.it must bo remembered that the ilabout ic extromely
severe, and more hay will be required if any part of the oats is witheld. On making enquiry with reference to the item of molasses, so largely used by our lumbering triends in New Brünswick and Maine, the answer returned was that owing to the heavy cost of the commodity, it was entirely omitted from the list of supplies. The following exhibits the comparative value of Mess and Prime Mess Pork, calculated from actual consumption:-

$$
\begin{aligned}
& \text { Mess Pork. - Prime' Ness. Mess Pork. . } \quad \text { Prime Mess. } \\
& \text { \$26...............................\$1880 \$17.................................. \$12' } 24 \\
& \text { 25............................... } 1808 \text { 16...........o...................... } 1151 \\
& \text { 24................................. } 1735 \\
& \text { 15................................. } 1078 \\
& \text { 23................................. } 1662 \\
& \text { 14.................................. } 1005 \\
& \text { 22................................. } 15 \text {-89 } \\
& \text { 21................................ } 1516 \\
& \text { 20... } 1443 \\
& \text { 19............................... } 1370 . \\
& \text { 13................................ } 932 \\
& \text { 12.................................. } 859 \\
& 713
\end{aligned}
$$

1 Barrel Mess averages 37 lbs. grease, 6 lbs bones, when cooked
1 " Prime Mess 22 " $\because 13$ "
Tough Typa Matal.-Lead 100 parts, antimony 32 parts, tin 8.
To Repair Crackn Beldg. The discordant tones of a cracked bell being due to the jarring of the rugged uneven edges of the crack against each other, the best remedy that can be applied is to cut a thin slit with a toothlese saw driven at a very high velocity, say 3 or 4,000 revolutions por minute, in such a manner as to cut away tho opposing edges of the fracture wherever they come in contact. This will-restore the original tone of the bell.

To Separata Tin from Lead.-If the lead and tin are in solution precipitate the former by sulphuri acid and the latter with sulphuretted hydrogen gas. In an alloy the lead will dissolve in nitric acid, leaving the tin as an oxide.

Ornamental Designs on Silver.-Select a smooth part of the silver, and sketch on it a monogram or any other design you choose, with a harp lead pencil, then place the article in a gold solution wilt the battery in good working order, and in a short time all the parts not sketched with the lead pencil will be covered with a coat of gold. Aftet cleansing the article, the black lead is easily removed by the fingers, and the silver ornament disclosed. A gold ornament may be produced by reversing the process.

F'usible Metal for Casts.-Bismuth, 8 parts, lead, 5 parts, tin 3 parts. It will melt at 200°, or under boiling water. For male casts use tin only.

Printer's Ink.-Linseed oil boiled to a thick varnish, and a sufficient quantity of vermillion or Prussian blue ground with it to give the required depth of color.

To Repar Leaks in Lead Pipes.-Place the point of a dull nail over the leak, give it a gentle tap with a bammer and the flow of water will cease.

To Improve Printer's Rollers.-The French composition prevents damp rollers and otherwise improves them. It is made as follows: for a 24 inch roller take Russian isinglass 4 oz.; gelatine \ddagger oz.; when the usual compositiciu, (see page 106,) is ready for pouring, add the above to it, let all boil \ddagger hour longer, and cast in the usual way.
f the oats is the item of New Brùnsto the heavy n the list of alue of Mess ption :-
Prime Mess. \$12 24
1151
1078
1005
${ }^{12} 32$
859
786
713
640 when cooked
parts, tin 8. of a cracked edges of the e applied is to high velocity, iner as to cut they come in ,ell.
are in solution tter with sulill dissolve in
h. part of the r design you icle in a gold nd in a short vill be covered black lead is tdisclosed. A ocess.
d, 5 parts, tin r. For male
rnish, and a und with it to
of a dull nail ad the flow of aposition preIt is made as oz. ; gelatine
) is ready for r, and cast in

USEFUL IXEMS FOR DAILY REMEMBRANCE.
281
On Melinga and Refinivg.-In melting Brass Gold, urge the fire to a geat heat, and stir the metal with the long stem of a tobacco pipe to prevent honey combing. If steel or Iron filingget into gold while melting, throw in a piece of sandiver the size of a common nut; it will attract the iron or steel from the gold into the flux, or; sublimate of mercury will destroy the iron or steel. To canse Gold to roll well, melt with a good heat, add a teaspoonful of sal ammoniac and charcoal, equal quantities, both pulverised, stir up well, put on tho cover for 2 minutes, and pour.

For Silvirsmiths, Strilivg Silver.-1. Fine Silver 11 oz, 2 dwts., fine copper 18 dwts. 2. Equal to Sterling-Fine silver 1 oz., fine copper $1 \mathrm{dwt}, 12 \mathrm{grs}$. 3. Another ditto-Fine silver 1 oz ., fine copper 5 dwts . 4. Common Silver for Chains-Fine silver 6 dwts., fine copper 4 dwts . 5. Solder for ditto-Fine silver 16 dwts ., fine copper 12 grs ., pin brass $3 \mathrm{dwts}, 12 \mathrm{grs}$. 6. Alloy for Plating -Fine silver 1 oz., fine copper 10 dwts . 7. Silver Solder-Fine silver 1 oz ., pin brass 10 dwts., pure spelter 2 dwts. 8. Copper Solder for Plating-Fine silver 10 cwts., 'fine copper 10 dwts . 9. Common Silver Solder-Fine silver 10 ozs., pin brass 60 ozs. 12 dwts, spelter 12 dwts. 10. Silver Solder for Enamelling, $\$ 1$ per oz. -Fine silver 14 dwts , fine copper 8 dwts . 11. Ditto, for filling signet Rings-Fine silver 10 ozs., fine copper 1 oz: 16 dwts., fine pin brass 6 ozs 12 dwts ., spelter 12 dwts . 12. Silver Solder for Gold Plating-Fine silver 1 oz., fine copper 5 dwts., pin brass 5 dwts. 13. Quick Silver Solder-Fine Biver 1 oz ., pin brass 10 dwts., bar tin 2 dwts. 14. Imitation Silver-Fine silver $1 \mathrm{oz} .$, nickel 1-0z. 11 grs., fiue copper 2 ozs. 9 grs. 15. Another dittoFine silver 3 ozs., nickel 1 oz . 11 dwts., fine copper 2 ozs. 9 grs., spelter 10 dwts . 16. Fine Silver Nolder for Filigree Work. -Fine silver 4 dwts. 6 grs.. pin bress 1 dwt. 17. Bismuth Solder-Bismuth 3 ozs. lead 3 ozs. 18 dwts., tin 5 ozs. 6 dwts.

USEFUL ITEMS FOR DAILY REMEMBRANCE.

Legal Brevitigs.-A note dated on Sunday is void. A note obtained by fraud, or from one intoxicated, is void. If a note be lost or stolen, it does not release the maker, he must pay it. An endorser of a note is exempt from liability, if not served with notice of its dishonor within 24 hours of its non payment. A note by a minor is void. Notes bear interest only when so stat. d. Prin cipals are responsible for their agents. Each individual :a partnership is respensible for the whole amount of the debts of the firm. Ignorance of the law excuses no one. It is a fraud to conceal a fraud. It is illegal to compound a felony. The law compels na one to do impossibilities. An agreement without a consideration is void. Signatures in lead pencil are good in law. A receipt for money is not legally conclusive. The acts of one partner bind all the others. Contracts made on Sunday cannot be enforced. A contract with a minor is void. A contract made with a lunatic is Foid. Written contracts çoncerning land must be under seal.

A TABLE OF DAILY. GAVINGS AT OOHPODND INTEREST.

By the above table it appears that if a meohanic, or clerk saves 23 per day from the time he is 21 till he is, 70 , the total with interest will amount to $\$ 2,900$, and a daily saving of $27 \frac{1}{2}$ cents reaches the important sum of $\$ 29,000$. Save all you can in a prudent manner for a time of possible want, but act jnstly by paying your debts, and liberally by assisting those in need, and helping in a good cause.
On Profant Swharive - Let every man do his best to discountenance this abominable habit, and shun it as an accursed sin in every possible: way: No respectable person will allow himself to be guilty of it. Business men who make a praotice of it will find themsel ves avoided by the best class of customers, for I know that some persons can suffer no mental panishment equal to that inflicted by being compelled to listen to profane language. Besides, every man known as a profane swearer, will not be credited by those whose good opinion is wcrth having, even When he may be speaking the truth.

Act Well Your Part, Don't ba Selfish.-Remember that it is by imparting happiness to others, and making ourselves useful, that we receive happiness. Stand by this truth, live it out, and always keep doing something aseful for the common good, doing it well, and acting sincerely. Endeavour to keep your heart in the attitude of cherishing good will to all, thinking and speaking evil of no one, and always with a kind word for everybody. Selfishness is its own curse ; it is-a starving vice. The man who does no good gets none. He is like the heath in the desert, neither yielding fruit nor seeing when good cometh, a stunted dwarfish, miserable shrab. Let all your influence be exerted for the purpose of doing all you can for the common good, and individual welfare of every one.

Marriage Maximb.-A good wife is the greatest earthly blessing. A wife never makes a greater mistake than when she endeavours to coerce her husband with other weapons than those of love and affection. Those weapons are a sure pull if he has any thing human left in him. Forbear mutnal upbraidings. In writing letters, during temporary separation, let nothing contrary to love and sincere affection be expressed, such letters from' a wife have a most powerful emotional effect, sometimes little understood by those who write them. It is the mother who moulds the character and destiny of the child as to the exteriors, therefore let calmness, peace, affection, and firmness rule her conduct towards her children. Children are great imitators, whether they have scolding or peacefni mothers, they are generally sure to learn from the examples set before them, and thus the consequent joy or sorrow is trans-
ferre cond mucl tions that thorc ligio Bend ange any with spirit betw each, scold the' husb drunb hnsba hearte to par eren. kiss s such ${ }^{\circ}$ love r CHi aily fo parent they h vantag the pri Let the kind t questio true m. Ном that : s hearts,
merry
comfor
tant 10 of life.
Think
fathers comper
own fir
"I expe be any let me
'USEFUL ITRMG FOR DAILY, REMEMBRANCE:- 283
ferred to other familieg, therefore let mothers take heed to their conduct. It is not ponsible to exercise judgment and prudence too much before entering on the married life. Be sure that the affections on both sides are so perfectly intertwined around each other, that the two as it were, form one mind, this requires time; and a thoroughmutual knowledge, on both sides. Marry in your own religion, and into a different blood and temperament from your own. Bend your whole powers to avoid depreciatory remarks, jibing and anger in every form, and specially avoid everlastingly dishing up any unsuccessful past action that was done from a good motive and with the best intentions at the time. Let nothing foreign to the spirit of love and mutial affection intervene to cause distance between husband and wife; to this end let self-denial rule oves each, and reciprocal unselfishness. Avoid habitual fault-finding, scolding, \&c., as you would perdition itself; many men tremble as they cross their threshold into the presence of scolding wives. Let husband and wife oultivate habits of sobriety, and specially avoid drunkenness in every form. What a dreadfil spectacle it is to see a husband transformed into a demon, tottering homeward to a brokenhearted wife, whose noblo self-sactificing devotion to him seems to partake moro of the nature of heaven than of earth. Never part even or, co journey, without kind and endearing words, and as a kiss symbolizes unign from interior affection, da not spare it on such occasions, repeating it when you return. In one word, let love rule supreme.

Children and Home Conversation. - Children hunger perpetuaily for new ideas. They will learn with pleasure from the lips of parents what they deem drudgery to learn from books, and even if they have the misfortune to be deprived of many educational advantages they, will grow up intelligent if they enjoy in childhood the privilege of listening to the conversation of intelligent people. Let them have many opportunities of learning in this way. Be kind to them, and don't think it beneath you to answer their little questions, for they proceed from an implanted faculty which every true man and woman should take a great delight in gratifying.

Homp after Business Hours.-Happy is the man who can find that solace and that poetry at home. Warm greetings from loving hearts, fond glances from bright eyes, and welcome shouts of merry hearted children, the many thousand little arrangements for comfort and enjoyment, that silently tell of thoughtful and expectant love, these are the ministrations that reconcile us to the prose of life. Think of this ye wives and daughters of business men! Think of the toils, the anxieties, the mortification and wear that fathers undergo to secure for you comfortable homes, and compensate them for their toils by making them happy by their own fire side.

Well Worthy of Imitation.-A worthy Quaker thus wrote :"I expect to pass through this world but once. If therefore, there be any kindness I can do to any fellow being, let me do it now, let me not defer nor neglect it, for I will not pass this way again." Were all to act thus how many would be made happy!

Anotagr Sensible Ljokmr.-A Quaker lately propounded the momentous question to a fair Quakeress, as follows; "Huml jeá
and verily; Penelope, ne sp...u urgetn ana movern me wonaerfully to beseech thee to cleave unto me, flesh of my flesh, and bone of my bone." "Hum I truly, Obadiah, thou hast wisely said. Inasmuch as it is not good for man to be alone, 10 , I will sojourn with thee."
Table Convzrsation.-Instead of swallowing your food in sallen silence, or brooding over your business, or severely talking about others, let the onversation at the table be genial, kind, social and cheering. Don't bring any disagreeable subjects to the table in your conversation, any more than you would in your dishes. A void scandalizing people, and never cherish a jubilant feeling over the infirmities or misfortunes of others. The more good company you heve at your table the better. Hence the intelligence, refinement and appropriate behaviour of a family given to hospitality. Never feel that intelligent visitors can be anything but a blessing to you and yours.

Kerp thi Houbs Clean and whll Ventilated.-A neat, clean, fresh'aired, sweet, cheerful, well arianged honse, exerts a moral influence over its inmates, and makes the mombers of a family peaceable and considerate of tach other's feelings ; on the contrary, a filthy, squalid, noxious dwelling, contributes to make its inbabitants selfish, sensual, and regardless of the feelinge of others. Never sleep in a small close bedroom, either during summer or winter without free ventilation from door or windows, unless otherwise eupplied with abundance of fresh air. It will be seen that a pers on's house usually corresponds to his character.
Safy Business Ruliss.-Business mesw, in business hours, attend only to business matters. Social calles are best adapted to the social orrcle. Make your business known in vew words, without loss of time. Let your dealings with a stranger be yost carifully considered, and tried merendship duly appreciated: A mian aOT will soon recoil, and a man of honour will be retebmed. Leave "Tricis or Tradn" to those whose education was never completed. Treat all with respect, conpide in mew, wrong no man. Be never afraid to say No, and ALWAYS PRompt to acknowledge and rectify a wrong. Leave nothing for to-morrow that should be done to-day. Because a friend is polite, do not think his tma is valuelins. Have a placy for every thing, and sivizy thing in its place. To preserve lona friendship, keep a short oredit, the way to Ger oremir is to be punctual; the way to prusirve it is not to use it much. Settle oftan ; have short accounts. Trust no man's appzarancers, they are often deceptive, and assumed for the purpose of obtaining credit. Rogues generally dress well. The rich are generally plais uin. Be will satisyind before you give a credit, that those to whom you aive ir are bayn mes to be trusted.

NOE

me wonaermy flesh, and st wisely said. will sojourn
food in sullen talking about ind, social and to the table in dishes. Avoid eling over the company you ce , refinement itality. Never lessing to you

A neat, clean, xerts a moral zs of a family a the contrary, rake its inhabnge of others. ag sammer or , unless otkerI be seen thet or.
hours, attend adapted to the NORDs, without cost carifully 1: A mean \triangle ot cemind. Leave ver completed. an. Be never ge and rectify a be done to-day. luelzä. Have e. To preserve ET CREDIT is to much. Setrue sarancres, they obtaining creenerally plan that those 50

APPENDIX TO "THE ARTIZAN'S GU'DE."

ON OORRESPONDENOESS

By reference to page 205 it will be ceen that something wasutated regarding correapondencen, together with an allution to the appendix for farther information. The amplitude of the aubject beily very great, no more can be promised here than a very abridged atatement by way of illustration. Not being aware that the subject has ever been alluded to in connection with © work of this kind, perhaps some will be imclined to utiach a cortain amount of blame on account of introducing it here, as there is apparently but very alight relntionship between the subjects treated of trroughout this work and the toplo under oonalderation. But inasmuch as it is believed that its consideration will fuffil a muck needed use and command the approbation of all good men, the consuro of others is but little regarded in comparison Furthermore, tho discrepancy is only Apparent, ?or many thinge merrioned in thin book, together with thousands of other things, will be comprehended just in proportion as correspondences are understood; consequently any efiort that tends to disolpate the obscurity, and enlighteri the darkness, with which, as regards thls subject, many minds are beclouded, must be produotive of β jood, while the knowledge in gnestion will enable us to acoount for many of the phenomena of the viseble creation, such ss ohemioal amnities, the constitution and qualities of dirferent linds of metal, and their action cn each. other, besides suggesting innumerable instructive thoughts on other interesting questionsof a purely natural kind: nevertheiese the writar desires to state that his modive for considering the subject in this risoo, is a desire to cive a few examples of the working of the prinoiplone an unerring rule in unfolding the true meaning of tho Sacred writings for, itrange as the assertion may appear to many, tho meaning of the Divine Word as to its $\begin{aligned} \text { rrue or internal senise, can be evolved }\end{aligned}$ in no other way. It ahould be known that tho Word being Divine, is composed ir a manner difforent from all other writing whatsoeyer, being written by juire correspondences, for which reafon, through the use of emblems, aymbols, types, and representatives, it contain' and embraces within ito bosom things which regard ihe Lord, his heeven, tho Church, man, and the thing of love andfaith, even when suoh subjects do not in the least appear in the letter while it is being read, for itis a Divino truth, that there are indefnite chinge in cach n xpression of the Word, which appears to man oo simple cnc rude; yea, there is contained therein more than man can ever oomprehend, because it is tho cmbodiment of Infinite Wisdom, and is as to its inmosts, the Lord Himself. John i-1., Rev. Xix, 18 Treat with the utcosis reverence Cherefore, I pray you, whatever heis relation to the Word of CUOD, for by so doing you do honour to that SAORED NAME which shoulci nover co^{\prime} faken in vain. Of all the abounding iniquities of society, none are izore ciestruotive of the germs of goodness implanted by our Heavenly Father 3 man's heart, and none ministers less gratification to the depraved crivinge of fallen man, than the protanation of the NAuE and Woan of two verblessed GOD. Let every one discountenance this appalin:- enormity, and is ware of it is as he would shan eternal ruin, not only on acoount of its infamouic charaoter as a sin against GoD, but also out of common regard for the feelings of our neighbours.
The science of correspondences unfolds those spiritual laws in accordance with which tho word of God is written. The word correspondence is derived from the Latin torms con and respondee, and means, radically, to answer with or to agree. It will serve our purpose here to define it as the appearance of the internalin thooxternal, and its representation there; in other worde, internal and spiritual things are mirrored forth and represented in extornal ind natural forms. The Worp throughout, is writiten with a constant reference to an exact and immutable reiation between spiritugh and natural things. Farious descriptions are there given of the
mun, moon, and stars ; of the earth with her mountaing, valleys and rivers of men, animals and plants, gold and silver, brass and iron, and a thousand ather thipge which appear in the natural world. In all these descriptions
 these things exist, and to which they correspond. The Word, in its literil sense, is thus wrought together with infinite still, constituting a permanent receptacle of divine andepiritwathings. Withit ate the living principlen, the spirit and life of the W ord, of which it is said, "The words ispeak unto Jou, they are spirit and they are life" John vi. 63. The sclence of correspondencen is to the Word of GOD What the mathematicat dctence if to the phenomeris of the material universe. It reveals order, hymony, beaty and Divina perfection in the midet of what seemed to be aisonder, uncer* tainty, inextricable comfision and even contradiotion, It is moot melancholy spectacle at this'day to see profesed expounders of the Word toll their hearers that tho Btble is full of errors, that euch and evich paseages contradict each other; and then proceed forth with to communicate a vant amount of eruditeselfderjTed intelligence fa the shape of gloses, comments and explanations, with the orily eftect of ounstig real confusion where there tover was any, whilst a knowledge of this hearenly soience,for such indeed it is, woula have enabled them to harmonize all apparent disorepancies at once.
fiot 80 Were the mon of the most Arolent Churoh leszribed in thone Divinoly composed allegories in the beginning of Geneofs, previous to that awfil apesticy and deciension from goodnesi deacribed under the represensation of a flood whilin swept over the whole earth. is hey. Were gifted with suca an infuitve knowledge trom above, that they could, as it were, read God's wordin His Worizs, and learn and think of heavenly things through and by means of the contemplation of curreiponding earthly things. For example, when with the natural eye they belfeld mountain, instantly the emotions of their minds would assumea correiponding elevation toway is the LORD, for by mountain in the most Ancient Chnroh was signifled ine LORD, and sil that is celestial from Ifm, as the good of love and oharity: the most a joient jeople, and all tre aticlents, even the Gentiles; porshipped on monntains from this origin. Hence it is written, "I will hif up mine eyes to the mountains (or hills), from whence cometh my help; my help cometh from the Lord, whioh made heaven and earth;" Ps.cxxi. We may see from this the true reason why the bleased RHDREME taught the people from mountains, ascended up into high mountains, and abode in mountains to such an extent as is recorded of Him in the goepels. For tho sake of farther illustration it may bo proper In this place to adduce a harmosy of pastages whero mountains aro mentioned, fogether with the Internal sense signified by them. All the high mountains oovorod with the waters of the flood (Gen. Vil. 19.) denotes that all the goods of oharity were extinguished by falses and persuasions of the false; or what is the same, Jveriowing wickedress. The ark of Noah resting upon the monntains of Ararat, [Gen, viii, 4, 5], denotes the:first light after temptation, whioh is from charity. The children of Shem dwelling from Mesha; as thon goest into Sephar, \& mount of the east; (Gen. K. 80.); denotes worehip from the truths of faith extending to the good of charity as ito end. Abraham's removal unto a mountain on the east of Bethel (Gen, xii: 8), denotes the progression of celestial love with which the LORD was imbued in infancy, for by Abraham in the word is represented the LORD ac te the divine celestial principle, pr divine good. They that remained fiying to the mountains after Abraham's victory in Siddim (Gen. xip. 10), denotes the love of self and the world against which the Lord fought from his love for the whole buman race...Lot aaid to ascend from Zoar and dwelling in a oave in the mountain (Gen, xix, 30] denotes the obscure good of those who are without the truths of faith. Jacobsacrificing a sacrifice in the mowntain if Gen. xxxt. 54), donotes worship from the good bflove. The angel of the Lord eppearing to Moses in the mount of GOD (Ex. III. 2-), cienotes the divine human manifested in the good of love; Je shall serve God upon this mountain, said to Moses (Ex, ili. 12), denotes the perception and acnowledgement of the Divine from love. Moses to stand on the top of the mount with the rod of God in his hand, during tha battie with Amajek, denotes the egonunction of truth divine with the goed of charity, and truth in power
from
prev
thom
the 1
and
in th
tion,
enoa
of tri
reger
(Leau
Dirit
about
Lord
(Ps: 1
in the
high
love
of wa
Migh
love a
thy y
Lord
and sh
dom
$\tan \mathrm{e}$
the L
12), de
called
love ix
congr
state
is ters
brass
love to
mount
Israel
the sp
down
the on inounto
ing wi
in char
of the
whall b
many
the Lo
ways,
of the
LORD,
stood' 2
ford
is the p
rtreft
above t
ncknow
lowing
good, w
spiritua
of the s
of love
that das
(Zec. x
charity
the nati

eya and rivera

 and a thousand 3 desoriptions iteed from which RD，in its iliteral ng a permanent smg principles， rds 1 apeak unto dence of corres－ delence is to the amony，beauty disorder，ancerr－ it is 2 most ers of the Word id өueh pasaagee munticate a vart ostes，comments slon where there ，for ouch indeed discrepanolee atantod in those previous to that phder the repre－ hey were gifted d．ad it were，read thinge through is things．For in，instanty the evation toway is was signified the dre and otharty； Hes；worahipped vill＇liit ap mine whelp；my help Pe，oxxi．We wenmez taught tanine，and abode ho goepels．For tace to adduce a gether with the ovorod with the of oharity were bat is the same， he monntains of ptation，which is a；as thou goest orship from the nd．Abraham＇s ： 81 ，denotes the bued in infancy， the divine celes－ o the mountains the love of self ve for the whole in a o oave in the θ who are with－ mountain ！Gen． gel of the itord notes the dirine upon this moun－ ad noknowledge－ f the mount with lek；denotes the truth in power
from good；Israel prevalling when Moses raised his hand and Amalek prevailing when he let down hie hand，denotes that the viotory is with those who are in the truth and good of＇talth whem they loak ap wards to the Lozd ；but that the false overcomes them when they look down to self and the world，for Amalek repreepto in intarior evili，1trael to be planted in the mountain of the Lond＇ G inheritance，（Kx． $\mathrm{xv}, 17$ ，d denotee regenora－ tion，and heaven，from the life of trath and goodnoes．The Israelites encenmped at the mount of God（Ex．x xill．6］．denotest the new arrengement of truths when abont to be conjoined wilh，good in the second stige of regeneration．The Lozd came from sinali，He shone from mount Pirin （Deut：XXXili．2），denotes the proceedure of Divino truth or the law，from Divine good．The mountains illed with horees and ohariots of fire round about Eitisha（ 2 Kings VI ．17），denotes doctrinale good ．nd trae from the Lord．The mountaine shall bring peace and the litile hille by righteousness （Pi．ixxii．8），denotes love to the Lord and the nelghbour，suoh an it was in the mont aneient church．Upon every lofty mountain，and upon every high hill，rivere and streams of water，（18s．Exx，25），denotes the goode of love and eharity，and the truths of faith from them，for，rivers and atreems of water signify truths ；lite one go＇ng to the mountain of the LoRd，to the Mighty One of Ierael（leai xxx．29），denote日 the Lord as to the good of love and the good of charity．Get thee up into the high mountain，ilft up thy volce with atrength（IBa．xl． $9 ;$ ．xili．11），denotes the worship of the Lord from love．He that puiteth his trast in me shall possess the land， and shall inherit my holy mountain，（Isa．1vii．13），deuotes the Lord＇s King－ dom where all is lave and charity．The glory of the Lord upon the moun－ tain east of the ciry（Ezak．xi：23），denotes the ephereof colestial love from the LORD．The house and the top of the mountain made holy（Ezelk．zliii． 12），denotee the Lord＇s oelestral kingdom from the good of love．Judah calied a mountain inia fleld，（Jer．xvil．8），denotes the principle of colestial love in the Lord＇s Kingdom represented by them．The mowntain of thie congregation in the sidee of the north（1ssa：xiv．18），denotes the obsoure state where the infux of good，whioh fluws in with light from the Lomd， is terminated．Four chariots going ont from between two mounitoins of brase（Zec．．．i．1－8），denotes the precedure of doetrinale from the good of love to the Lord and love to the neighbor in the natural degree．The mountains shall distl sweet wine and the hills shall melt，when captive Ierael is restored（Amos ix．18），denotes the good of love and charit．＇When ithe spiritual church te deilivered from falses．Tne LOED of hostis came down to Hight for mount／Lion and for the hill thereof（Las．xxxi．4）．denotes the omninotence of divine good and diving trath．Contend with the mountains and let the hills hear thy volee（Mio vi．1），denotes truth speak ing with tuose who are elate of heart in selfllove，and with those who arc． in charity．And it shall come to pass．In the last days that the moumtain of the Lord＇s house shail be estabished in the top of the mountains and whall be exalted atove the hills and all the nations shall flow unto it，and many pesple shall go and say，Come ye，and let us go up to the roountains of the Lord and to the house of the God of Jacob，and He．will teach us His ways，and we will walk in His paths，（Isa．ii．2－8）．These words are spoken of the New Church to be established by the Lord；by the mountain of the Lord，which shall then be establiehed in the top of the mountains，is under－ stood Zion；and by Zion，is atgnified the celestial church，and love to the LORD which is communicated fo those who belong to that church，that this is the primary principle of the church，and that it shall lncreaso and gain r trength，is eigniffed by its being in the top of the mountains，and exaited above the hills；that they who are principled in the good of love shall acknowledge the Lord，and accede to the church，is signified by all nations fowing to that mountain，nations signifying those who are in oelestial good，whish is the good of love to the Lord，and peopie，those who are in spiritual good，which is the good of oharity towards the nelghbor．They of the south shall posseess the mount of Esau，（Obad．19），denotes the good of love with those who are in the light of truth．His feet shall stand in that day apon the momnt of Ollives；and the mountain shall divide，eto． （Zec．xiv．4），denotes the advent of the Lord in the good of love and charity，and the ohurch formed by such goods receding from the Jews to the nations．The Lord set upon a high mountain and upon a pinnacle of
the temple, by the devil, denotes the extreme temptation combats that he austained against the loves of self and the world, thus againat hell. Let them whioh be in Juden flee into the mountains (Matt. xxiv. 16), denotes aalvation in love to the LORD and charity to the neighbor, They shall say to tho momitaine, Fall on us, and to the hills, cover us (Rev, vi. 16), denotos the state of the evil unable to bear the LozD's presence. A great mountain burning with fire cast into the midet of the sen (Rev. vili. 8), denotes the love of eelf in the solentifios of the natural man. From the examples it may be seen that there is an opposite side from love and goodness, when evil is treated of, for who doen not know that there are mountains of pride and eolflove of a very difierent Idnd from the love of the LORD and the nelghbor O Other instances conld be noted, but enough has been brought for ward catisty the present purpose.
Mention has been made of thone ancestors of the human race who existed in the times of primitive integrity, happiness, purity and goodnete. Not without the besto of reasons did the ancients speat of that period as the GOLDEN 25e. In modern times, for a similar reason, we speak of the golden rule, a heart of gold, golden fruit, golden opinions, golden opportunity, ets., and no one is ever at a lose to perceive the correspondencoerdisting between the symbol and the preciousness of the thing or quality repreconted by it. The nature and qualities of gold are well known. Its red, bright color, correaponding to that of burning ire 18 symbolic of love or goonness, $2 s$ is also the inherent warmth of the metal. No uncombined mein can corrode or diseoive it, acids corresponds to truth fulsified, which in other words is evil or Fickedness, so "charity suivers long and is kind." The most intense heat has no further effeot on gold than to atill further purify it, While its intrinule value renders it a most proper amblem of that desirable quality which it is used to represent or symbolize in the WORD of GOD, viz. that of the good of love from the Lord. Silver in the internal senge of the word signifies truth, and in an opposite sense, the false. From this onrrespondence we can understand how the solntion of siliver used in photography is 80 sensitive to the rays of light, fur natural light corresponds to spiritual light, which is the veriest divine truth, or that True Light which IIghteth every man that cometh into the world. The color of allver is also in correspondence with the resplendency of light. Regarding gold and eilver it may be well to state that in the Word they stand in a sort of mutual relation to each other, representing respectively love and wisdom, oharity and falth, goodness and trath, will and underatanding: the affections, or the feminine principle, and the intellectual, or the masculine principle. From this correspondence arises the mutaal affinity these metals have for each other in the numerous intermixtures and appliances in the various arts and manufactures of the world. Inferior metals, such as brass, iron, etc., are used in the Word to denote a lower degree of goodness and truth. We will now approach the sacred writings to see to what extent these remarks will be confirmed. The river of Eden encompassing the whole land of Havilah, where there is gold and precious stones (Gen. Ii, 11, 12) denotes the state of the celestial man as to love and faith. Abram's being very rich in silver and gold (Gen. xini. 2) denotes the state of the LORD in youth as to celestial good and truth. The Israelites borrowing jewels of silver and jewels of gold and raiment of the Efyptians (Exodus xII. 35) denotes scientific truths and goods taken away from the evil, and acquired by those who are of the spiritual church. The people offering gold and silver, and brass, and blue and purple, etc., for the works of the tabernacle, denotes interior things collated and dispesed in externals, where they are represented. The gold of the ark, and the border of gold round about it, denotes good in the inmost, and the common sphere of good which proceede frem the Lord, and contains all. The mercy seat and the cherubim of gold denotes the hearing and reception of worshlp, and approach to the Lord from the good of love. The table of shew bread covered with gold, and the border of gold round about it, denotes the reception of all that conduces to the spiritual life in good, and the sphere of good affording protection from evil. The candlestick, its branches, etc., all of gold denotes all mental illumination, and intelligence, or the truth of faith proseeding from good. The coupling for the curtains of gold, denotes the Whole connection and conjunction of truthe, thus the whole order and
harmony of heaven, preserved by the good of love. The boards of cedar covered with gold deniotes the whole merit and good of works, thus all the good that sustains heaven, from the good of love, thus from the Lord. The blue, the purple, and scarlet and fine lizen of the ephod, embroidered all over with golden thread, denotes the universal prevalence of love, and every manifestation of oharity and filth imbued therewith. The sookets of the onyz stonem made of gold, and the chains of gold, denotes the subsistence and coherence of all things in the memory grounded in good. All the stones of the breastplate set in qold, its rings and chalis of gold, denote all the goods and truths of the Internal man proceeding from tho divine good, surrounded by the ephere of good, and their Indissoluble conjunction thereby. The bells of gold upon the border of the robe of Aaron denote all that is heard and peroeived of the church, thus all dootrine and worship to be from good. The plate of gold engraved with "Holiness to the Lord" upon Aaron's forehead, denotes illustration and wisdom proceeding from the divine good of the Lord. The altar of incense covered with gold denotes the elevation or hearing and reception, of all workhip rising from love and oharity. Bexaleel, of the tribe of Judah, called and inspired to do these works for the tabernacle, to work in gold eitc., denotes those who are in the good of love receiving the divine infliz, and their exceeding wisdom. In the opposite sense, the ear-ringe of gold given to Aaron to make the golden caif, denote the dellght of external lovee, which are the loves of solf and the world, rendering worship idolatrous, thus the good of the external man instead of the good of love, or divine good, is represented. Gold signifies spiritual good, muoh fine gold celestial good. (Psa. xix. 10.) 1 counsel thee to buy of me gold tried in the fire, that thiou mayest be rich; (Rev. III. 18), denotes the good of celestial love derived from the Lord. Gold and precious stones (Rev. Xvir. 4), denotes divine spiritual good, and divine spiritual truth, both derived from the Word. How ls the gold become dim, how ts the most fine gold changed. (Lam. Iv. 1), denotes the spiritual and celestial goods of the church Ughtly esteemed through declension into evil. The Mrecions Sons of Zion comparabie to fine gold, (Lam. IV. 2), denoted those who are in wisdom from divine truthi. Gold, brasg, and wood, (IEA. 1x. 17.), represent the three. celestial principles, the inmost prindiple is represented by goid, the inferior by brass, and the lower by wood. The use of the gold and silver vessels belonging to the temple of Jerusalem at Belshazzar's feast, while they praised the gods of gold, and of silver, of brase, of iron, of wood, and of stone, (Dan. Y. 2,3,4), denotes the profanation of the knowledges of good and truth by those who are in falses, his kingdom being divided, signifles the dissipation of goods and truths, and he himself being siain that night, signify the privation of the life of good and truth, consequently, damnation. And the street of the city way pure gold, as it were transparent glass. (Rov. XxI. 21.) By the city, or New Jerusalem, is meant the Lord's New Church as to every thing pertaining to it interiorly considered, or within the wall; by goid is signffled the good of love from the Lord, and uke unto pure glase, signifies pellucid or transparent from divine wisdom, and since the latter appears in heaven as light, and flows from the Lord as a sun, just as natural light flows from the natural sun; by like unto pure glass is signilfied fiowing in together with light from heaven from the Lord: Regarding the Lord's coming it is written, But who may abide the day of His coming? and who shall stand whien he appeareth ? for He is like a reflnar's fre; and he shall sit as a refiner and purffier of silver, and he shall purifiy the sons of Levi, and purge them as gold and silver, that they may offer unto the Lord an offering in righteousness. Then shall the offering of Judah and Jerusalem be pleasant unto the Lord, as in the days of old, and as in former years (Mal. III. 3, 4). By Levi in a supreme sense is signifled love and mercy, in a spiritual sense, charity in act; consequently the sons of Levi signify those who are in the affection of truth and live in the good of iffe. The name denotes to adhere, by whioh in the Word, is signified conjunction through love, by the refiner's fire is denoted temptation, whereby is effected purification, which is here meant by purfying and purging them as gold and silver. By Judah is signifled the Lord's celestial church, or those who love the Lord above all things, and by Jerusalem those who are in nelgh-

6 APPENDIX TO THE ARTIZANS' GUIDL.

bourly love, the offering they will bring unto the Lord is fnith and charity, by the days of old and former years are meant the ancient churcines, and the states of the worship of the Lord at that time. It is obvious that the nons of levi mentioned in this passage cannot mean those who were olliciating as priests during tho time of our redecmer's incarnation, for they were of that outrageously wioked orew who wilfully orucitled the Loris of Glory. In the internal sense of tho W ord the twelve tribes of the childron of firael signify the ohurch as to all its goods and truths; the samo is signified by the twelve disciples of tho Lord, and by the twelve gates and twelve foundations of the New Jernsalem, as it is stated regarding these last, t- in names were written thereon, which were respectively, the names of the twelve tribes of Israel and those of tho twelve apostles of the Lamb. Jerusalem adorned with gold and silver, (Ezek. xVI. 18), the temple with its gold and silver claimed as the Lord'g, (Hag. II. 8) denotes the ohuroh gifted with wisdom and intelligence, or celestial and spiritual knowledge. Gold and silver madointo images of men, and whoredom committed with them, (Ezek. xvi. 17), denotes profanation predicated of celestial and spiritual knowledges. The ships of Tarshish to bring silver and gold, (Lsa. Lx. 9), denotes knowledges when the Lord's kingdom is established, by which truths and goods are aoquired. He who is without silver in itited to buy and eat, denotes such as are in ignorance of truth, but in the good of charity, Silver and gold gotten by Tyre (Ezek. Xxviil. 4, Joel III. 5) denote intelligence, or what is the same, truths and wisdom. Silver purified seven tintes (Ps. xII. 6), denotes divine truth. It is hoped that these examples will sumfice to elucidate the statements made regarding the symbolic or representative sense of gold, silver, etc., in the Word.

As regards the correspondence of the sun, moon, and stars, it will be seen from what follows that theop natural luminaries are also used by the Divine Autior of the Word to represent spiritual and heavenly things, and in an opposite sense, things that are evil.' The SUN, in the Word when the Lord is spoken of, slgnifies his divino love, and at the same time His divine wisdom. Forasmuch as the Lord witti respect to His divine wisdom, is meant by the sun, therefore the ancients in their holy worship tirned their fanes to the rising sun, and also their ternples, which practice is still continucid. The MOON, in the W ord signifies the LoRd in reference to faith, and thence faith in the Lord. Stars, in a supreme sense, signifies knowledge concerning the LORD, hence stars signily intelligence of a gpiritual kind, or the knowledge of good and truth. Which is true wisdom. These statements will now be confrmed from the Word. " And He shall be as the light of the morning when the sun risoth, even a morning without clouds, as the tender grass springling out of the earth by clear shining after rain" (iI. Sam. xxxili, 4,). Thelight of the morning when the sun riseth, signifies the divine truth proceeding from the Lond as a suN, a morning without clouds denotes the purity of that truth, rain signitiss its influx, and the tender grass springing out of the earth signifios intelligence, and reformation thence originating, for these are signitied by grass, because grass springg out of the earth by virtue of the sun of the world after rain, and intelligence is from the LORD as a sun by the influx of divine truth. MI uning is used in the Word to denote every partacular coming of the Lord, or when there is faith and love in the church, the evening or night denotes a time or state in which these are wanting. "Blessed of the Lord tir his land, for the precious things of heaven, for the dew, and for the deep that coucheth bsneath, and for the precious fruits brought forth by by the sun, and for the precious things put forth by the moon"' (Deut. xxxiii. 13, 14.]. This partioular bleasing was pronounced on Joseph, for the reason that by Joseph are understood the spiritual celestial, who are the highest or supreme in the spiritual kingdom. By his land is signified that Kingdom, likewise the church thence derived. By the precious things of heaven, the dew, and the deep that coucheth beneath; are signified things that arespiritual celestial in the internal and external man. By the precions things brought forth by the sun and the precious thinga put forth by the moon, are signifled all things which proceed from the Lord's celestial kingdom, and all which proceed from His spiritual kingdom, consequently all the goods and truths which are thence derived. "Praise ye the Lord, praise ye Him all His hosts. Praise ye him sun and
$m o$ pra tho ang com trut trut whi are 1 ther whic shou to th thing greai mad
the
the
Wor
this d
decel
to the
into b
or the
the su
have 1
of the
aggrie
earnes
reveal
facult
contra
celesti
truth
wards
that it
Ancier
heaven
From 1
degree
idea.
heart, b
life wh
LORD a
themsel
it does
to repre
the follo
or " the
version.
the sun
shall fa
and the
shall all
coming
send his
together
(Matt. x
lating to spiritual LORD; Him, by of goodn more pos would be

Appendix to the artizans' guide.

d charity. roues, and us that the were oflictn, for they (tho Lors) f the ohildthe same is gates and ding these the names the Lamb. emple with the church knowledge. mitted with lestlal and and gold, established, lver invited in the good , Joel III. 5) Silver purid that these ing the sym-
s, it will be used by the enly things, n the Word at the same to His divine oly worship ich practice in reference nse, signifies ligence of a rue wisdom. dHe shall be ling without slitining after e sun riseth, , a morning es ite influx, ligence, and ass, because d after rain, livine truth. ming of the ing or night of the Lond and for the ght forth by jeut. xxxili. eph, for the who are the ignified that bus things of ulfied things the precious forth by the b's celestial dom, consed. " Praise m sun and
mson, pralse Him, all yo stars of light" [Pba, oxivili. 2, 8]. Here by praising the Lord is aignifled to worship Him. By the angels are signified those who are indivine truths from the good of love, for all such are angels. By all His hosts are sigulfed goods and truthe in their whole compass. By the sun and moon are signilled the good of lova, and the truthfrom that good. By the stars of light are signilied the knowledge of truth from good. Inasmuch as man worships the Lord from thosethings which he reoelves from the LORD, thus from the goods and trithe that are in him, and as it is also by virtue of such things that man is man, it is therefore said to such things namely, to the sun, moon, and star3, by which are signifled goods, truths, and knowledges of truths, that they should worship the Lond. It is clear that the command is not addressed to those luminartes which enlighten the natural world, for how can such things offer praise and worship ? And God made two great lighte, the greater light to rule the day, and the lesser light to rule the night, He miade the stars also [Gen. 1. 16]. The subject treated of in this chapter is the new oreation or regeneration of man, that is of those who constituted the Most Anoient ohurch which is here described in the literal sense of the Word by the creation of the heavens and the earth, those who imagine that this description applies to the creation of the natural universe are much decelved, for how could day and night, or light have an existence previous to the ereation of the sun, whieh accordiug to this account did not come into being until the fourth day? Or how oould the earth bring forth grass or the herb yield seed, or the fruit tree yield fruit after his kind, beforo the sun of nature came into being? These and many other objections have been brought forward by infldels and scoffers, against the authentiolty" of the Word, and by many others who would consider themselves surely aggrieved by having these terms applied to them, many who are indeed earnest seekers after truth. Let ull sueh know that the Word of God as revealed to us, and the works of God as made known to us through those faculties with which He has endowed us, ale never in confliot and never contradiot eaoh other, but are always in heavenly correspondence and celestial harmony one with the other. GoD's love in the will, and His truth in the understanding, are here called two great lights, and afterwards love is called a greater light, and falth a less, and it is said of love that it shall rule by day, and of falth that it shall rule by night. The Most Ancient ohuroh acknowledged no faith but love itself; and the universal heaven is of love, no other life being existent in heaven but the life of love. From love is derived all heavenly happinpss, which is so great that no degree of it admits of description, or can ever be coneeived by any human idea. Those who are under the influence of love, love the LORD from the heart, but yet know, declare, and perceive, that all love, and consequently ali life which is of love alone, and thereby all happiness, come only from the Lors and that they have not the least of love, of life, or of happiness, from themselves. The protundity of the Word is such that as to its in most sense it does not treat in the least of natural things, but only makes use of them to represent and symbolize things that are spiritual, as may be seen from the following in reference to a consummated church, as the end of the age, or "the end of the world" as it ls erroneously translated in the authorized vorsion. It is written, "1 mmediately after the tribulation of those days shall the sun be darkened, and the moon shall not give her light, and the stars shall fall from heaven, and the powers of the heavens suall be shaken; and there shall appear the sign of the Son of Man in heaven; and then shall all the tribes of the earth mourn, and they shall see the Son of Man coming in the clouds of heaven with power and great glory. And he shall send his angels with a great sound of a trumpet, and they shall gather together his elect from the four winds, from one end of heaven to the other". (Matt. xxiv. 29-31). By all these expressions are meant spiritual things relating to the Church, of whose final stateor period they are spoken, for in the spiritual sense, by the sun which shall be darkeued, is meant love to the Lord; by the moon which shall not give her light, is meant faith towards Him, by the stars which shall fall from the heavens is meant the knowledge of goodness and truth. Every intelligent person will know that it is no more possible for the stars in the firmament to fall to the earth, than it would be for a million of worlds to fall ou a pebble by the sea shore. By

APPRNDIK TO THE ARTIZANS GUTD关.

the slgn of the 8on of Man in heaven, ls meant the appearance of Divine truth in the Word from Him; by the tribes or the earth which shall mourn, is meant the fallure of all truth which is of faith, and of all good which is of lovel by the coming of the son of Man in the cloude of heaven with power and great glory, is meant the presence of the LORD in the Word, and revelation ; by the clouds of heaven la aignifed the literal sense of the Word, by power and great glory is meant its internal sense, which has reference solely to the LOAD and His kingdom, in each and every pansage, and from this, that aense derives its power and glory; by the angelis with a great sound of a trumpet is meant heaven, whence divine truth comes, by gathering together the eleot from the four winds, from one end of heaven to theother, la meanta new heaven and a new Church, to bo formed of those who have falth in the Lord and live according to His precepts. "Behold the day of the LORD cometh, for the stars of heaven and the constellations thereof ohall not give their light; the sun shall be darkened in his going forth, and the moon shall not cause her light to shine, (Isa. xiil, $9-10$). I will oover the heaven and make the stars thereof dart, I will cover tne sun with a oloud, and the moon shall not give her light, (bzek, xxxil. 7-8.) 'ithe day of the Lord 18 year, the sun and moon ghall be darkened, and tho stars shall withdraw their thining, JJoel, iil, 14-15.) The same idea is vlsiblo in all these passages. By the day of the lord, is meant his advent, which was at a time when there was no longer any good of love or truth of faith remaining in the Church or any knowledgeof the LORD, therefore it is called C day of darkness and thick darkness. From want of knowledge respecting the spiritual sense of the Word, as unfolded by the soience of correspondences, many Chriatians at the present day suppore that the LORD will appear in the clouds of the atmosphere, and, acorimpanied by the whole of the heavenly host, will be viaible to the natural eye, when the dead bodies and mouldering dust df all who have ever lived on the: earth will be raised (at the sound of the archangel'e trumpet), out of their graves, and wherever clee their dust may be scatfered, no matter what form they may have assumed. It is thought this inconoeivable mass of corruption will be raised up, and the soul of each be re-jmplanted, the judgment set, and the books opened, each one being judged out of what is written in those books, just as if the Omniscient Osse could possibly require a set of booksi that then the earth and ail that is therein will be burnt up, the stars fall from heaven and the sun and moon be blotted out from the oreation. Many good people entertain these thoughts because things are thas described fo the letter of the Word, but the oase is far otherwise, for it is most true the thy clouds in the Soripture is meant theW ord in the letter, for it is written that "His strength is in the clouds," that "His truth reacheth unto the clouds," that "He maketh the clouds His chariot," that "His faithfulness reacheth unto the cloude, " that the "clouds are the dust of His feet; that thick clouds are a covering to Him. In his unclouded purity, He is described as a " morning without clouds.; These and many other similar expressions can never be predicated of the clouds of nature, but that they are true of the Word is most olearly manifest ; hence, when the Lord is spoken of as coming in the clouds of heaven, a literal or personal coming is not to be understood or expected, buit instead thereof, on unfolding or opening of that spiritual or internal sense of the. Word which has hitherto lain so deeply concealed within the clouds of the letter, and which as to its inmost is the LORD Himself, and though the anno ncement may eeem premature, this coming has actually taken place during these latter days by and through the disclosure of that sense to mankind. But more regarding tinls in what follows. When rightly understood, the Word teaches that the only resurrection that will gever beaccorded to man's body consists in the raising up of the soul or spiritual body, which takes place immediately after natural death, and after death, the judgment. This does not take piace in this world, but in the spiritual world into which every one enters after the death of the body, the books which will then be opened, and from which he will be judged, signify the interiors of the mind of man, because in them are written all things appertainig to his life.
Another resurrection is indeed spoken of in John v.25., as follows; - The hour is coming, and now is, when the dead shall hear the volce of

APPENDIX TO THE ARTIZANS' GUIDE.

the 8 on of fod, and they that hear shall live ; plainly Indionting a resarrection from the graves of carnallty and the love of solf and the world, which is apiritual death, to the life of apiritual mindadnesa, and the love of the Lond and the neighbor, which alone ly true life. This resurreotion must take place during man'hlife in the body, it cannot take place after death for suoh an the ruiling love is in this life it will irrevocably remain to all eternity. It is also a great fallacy to infer from any description in the Word, that this earth will ever bed destroyed, no such doctrine belng ever taught or iuculcated therein. In the modern discoveries of qeology, the teetimony of GoD through His works, points unerringly to the sublime trath that Indnife puwer has been comstantly ongaged during countiees milliony of ages : n preparing the earth for the abode of man. It has been created that the human raee might exist, and thence heaven, for the human rave is the seminary of heaven, and when infinite love is satishod to its fullest oapacity with intelligent and rational beinga on whom it may shower its blessings and celestial beatitudes, for it orentes them for no other end, then, Just so soon, bui no soouer, will the procreations of the human race cease, and the world become a blank in the oreation. The most ample testimony is not wanting to prove that it wan He who laid the founditions of the varti, that fit should not be removed for EVER," Pa. civ., $\mathrm{G}^{\text {" He built his sanctuary like high palaces, like the Eartiu }}$ which he hath establiehed yor EVEr," Ps. Lxiviir 69." The world also is eatablished that it oAnNOT Be moved." Ps. xomi. 1. "Say among the heathen that the Lord reigneth ; the worid also shall be established that It beall not be moved, Ps. xovi. 10. "One generation paoseth away, and another geueration cometh, but the earth ABIDETH FOR EVER. Eccles 1, 4. Of the sun. moon, and stars, we read :-"They shall fear thee as long as the BUN AND MOON ENDURE, throughout ALL, GMNERATMONB." Ps. Lxxir., b. "His name ghall endure For yiter his name ghall be continued as long as the sun,"-ver. 17. "Praise ye him, sun and moon : praise ye him all ye stars of light. Let them praise tho name of the lord; for he commanded, and they were oreated. He hath established them YOR EVER AND EVER : he hath made a decree which BEALL NOT PA8B. "Pa. oxivili., 8, 6, 6. These enuciations are certainiy all that will be required to manifest the divine intention that the universe shall not oease to exist. A perishing earth is used in the language of correppondences to describe a perishing ohurch in the following and many other passages "The earth is utteriy, broken down, the earth is clean dissolved, the earth is mover exceedingly." Isa. xxiv, 19, "The ourse devoured the earth and they that dwell therein are desolate ; therpfore the inhabitants of the earth are burned, and few men left," Isa. xxiv 6, "For my people Is foolish and they have not known me; they are sottigh children, and they have no understanding ; they are wiso to doevil, but to do good they have no knowledge, I beheld the earth, and, 10, it was without form and void, and the heavens, and they had no light." Jer. 1v. 22. 23. Here wo have the pioture of an apostate church in a state of declension from goodness, desoribed by the earth being clean disfolved, as moved exceedingly, as being without form and void, and the inhabitante thereof as being burnt up. It is most evldent that neither of these statements oan be literally true of the natural earth. It is written in Joel "In those days will I pour out my spirit and I will show wonders in the heavens and in the carth, blood, and fre, and pillars of smoke. The sun shall be turned into darkness, and the moon into blood, before the great and terrible day of the Lord come," II. 30., 81. The apostle Peter on the day of Pentecost, Aots xI, 16, 21, cites the entire passage from Joel, and refers to it as being fulfilled on that day, but we know as well as we can know any thing, that these great commotions did not actually take place in the kingdom of nature, at that time. Our ever blessed Lord and glorified REDERMER was seen by the beloved disciple in Apocalyptic vision, as ". One like unto the Son of Man, ciothed with a garment down to the foot and girt about the paps with a golatin girdle. His head and his hairs were white like wool, as white as snow, and his eyps were as a flame of fire, and his feet were IIke unto fine brass as if they burned in a furnace, and his voice as tho sound ofmany waters. And he had in his right hand seven stars, and out of his mouth went a sharp twoedged sword, and his countenance was
as the sun shining in his strength." Rev. 1,'13, 16. One like unto the Son of Man, signifieg the Lord as to the Word, ciothed with a garment down to the fool signifies the proceeding divine, which is divine truth, fior garments in the Word denote truths, and girt about the paps with a golden girdie signifles the proceeding and at the same time the conjoining divine which is divine good; by the paps or breast, divine love is signitied, as is evident from those passages in the Word where they are mentioned. as also from their correspondence with love; and his eyes were as a flame of fire, signifies the divine wisdom of the divino love, and his feet like unto fine brass as if they burned in a furnace, siguifies divine good natural; fire, or what burns, significs good; and fine bravs signifies the good of truth natural, therefore by the feet of the Son of the Man like unto fine brass, as if they burned in a furnace, is signifled divine good nstural, aud His voice as the sound of many waters, signify divine truth natural; for waters in the Word denoie truth: and in his right hand seven stars, signifies all knowledges of good and truth in the chureh from Him, which are thence with the angels of heaven and men of the church; and out of his mouth went a sharp twoedged sword, signifies the dispersion of faises by the Word and by doctrine thence from the LORD ; and his countenance was as the sun shining in his strength, signifies His divine love from which are all things of heaven, for this is the signification of faces when predicated of the Lord. as denoting Hle divine love, from which is all good, thus also all things of lieaven. Regarding the blessings promised to him that overcometh, it is written, "And 1 will give him the morning star," Ruv. 11.28. eignifying that inteligence and wiscom from the divine human principle rif the LORD will be imparted to all those who love and obey Him. Literally understood such a gift would be inoomprehensible, for how could the morning star of nature be given to any one? "And there appeared a great wonder in heaven; a woman clothed with the sun, and the moon under her feet, and upon her head a erown of twelve stars; and she, being with child, cried, travailing in birth, and pained to be delivered. And there appeared another wonder in heaven ; and behold a great red dragon, having seven heads and ten horns, aud seven crowns upon his heads, and his tail drew the third part of the stars of heaven and did cast them to the earth; and the dragon stood before the woman which was ready to be delivered, for to devour bre child as soon as it was born." Kev. XII, 1. 4. And there appeared \& reat wonder in heaven, signifies revelation from the LoRD concerning the New Church in the heavens and on earth, and concerning tho difficult reception and resistance which its doctrines will meet with. A woman clothed with the sun, and the moon under her feet, signifles the Lord's New Church in the heavens, which is the new heaven, and the Lord's New Church about to be upon earth, which is the New Jerusalem, for it has pieased the Lord in His Word to cause His Church to be repiesented under tho similitude of a woman, as weil as by the symbol of a oity, as witness "Come hither, and I will shew thee the bride, the Lamb's wife.!' Rev. xxi. 9. Where by the LAMB is signified tiel Lord as to the essential innocence of His Divine Human nature, and by the bride is signified His chureh, represented by the New Jerusalem about to be conjoined to Him. The reason why she appeared clothed with the sun is, because this church is principied in love to the Lord, for it acknowledges Him, and does His commandments, and this is to love Him. By the mion is signified intelligence in the natural man, and faith, and the reason why the moon was seen under her feet ig, because the church on earth is understood, which is not yet conjoined with the ohurch in heaven; by appearing nnder her feet is further signilfed that it is about to be upon earth, and will as to doctrine be grounded on the divine truth of the Word; and, upon her head n crown of twelve stars, signifies the wisdom :ad intelligenee of this church from knowledges of divine good and iivine truth derived from the Word; by the crown on her head is signitied wisclom and intelligence, and by stars are signifled the knowledges of divine gooi and truth. And she being with ohlld, oried, travailing in birth, and paiued to be delivered, signifies the doctrine of the New Church about to come forth, and its difficult reception in consequence of the resistance it mepte with from those who are understood by the dragon. To be with child signil:es tho birth of doctrine, because by the child which was in the
o the Son of nt down to th, for garith a golden ining divine nitied, as is oned. as also flame of fire, re unto fine urai ; fire, or uth natural, .8B, as if they voice as the in the Word owledges of the angels a sharp twoand by docsun shining all things of the Lord all things of cometh, it is 8. signifying fit the Load rally underthe morning reat wonder ler her feet, with child, ere appeared having seven iis tall drew earth ; and elivered, for And there m the Lord i concerning neet with. A signiffes the en, and the - Jerusalem, to be repiobol of a city, the Lamb's RD as to the the bride is t to be conthe sun is, knowledges By the mion reason why on earth is aven ; by apto be upon uths of the the wisdom e good and is signitted ges of divine 0 birth, and ch about to e resistance Ta be with 4 was in tha
womb, whose birth is treated of in ver. 5 . is signified the doctrine of the New Church, for nothing else is signified by being with child or in travail and bringing, forth, in the spiritual sense of the Word, but toconceive and bring forth those things which relate to spiritual life.
And there appeared another wonder in heaven; signifies revelation from the Lord concerning those who are against the New Church and its doctriue. And behold a great red dragon, signifies those in the Reformed Church who make God three, and the Lord two, and separate Charity from Faith, and insist on the latter being competent to salvation without the former. Such are here meant and in what follows, by the dragon : for they are against the two essentials of the New Church, which are, that GOD is one in essence and in person, in whom there is a Trinity, and that the Lord is that God; also that charity and faith are a one as an essence and its form; and that none have charity and faith but those who live according to the commandments, which say that avils are not to be done, and in proportion as any one does not commit evils, by shunning them as sins against GoD, in the same proportion he does the goods which relate to charity, and believes the truths which relate to faith; having seven heads, denotes insanity from the profanation and falsification of the truths of the Word; and ten horns, which denotes much power, and seven crowns upon his heads, signifies all the truths of the Word falsified and profaned; and his tail drew the third part of the stars of heaven, and did cast them to the earth, signifies that, by falsifications of the truths of the Word they have allenated all spiritual knowledges of good and truth from the church, and by application to false doctrines have entirely destroyed them : and the dragon stood before the woman who was ready to be delivered, to devour he: child as soon as it was born, signifies that they who are meant by the dragon will endeavour to extinguish the doctrine of the New Church at its birth. In the narrative continued in verze 5 , by "she brought forth a male child," is denoted the doctrine of the New Church; "who was to rule all nations with a rod of iron, signifies which, by truths from the literal gense of the W ord, and at the same time, by rational argnments drawn from the light of nature, will convince ali who are in dead worship through being princlpled in faith separated from charity that are willing to be convinced. "And her ehild was caughtup to God and to his throne," signifled the protection of the doctrine by the Lord because it is for the use of the new church, and its being guarded by the angels of heaven. "And the woman fled into the wildernees." signifies the new chureh which is the new Jerusalem, at first conined to a few; where there are no longer any truths, for by a wilderness in the Word, is signifled. 1. The church devastated, or in which all the truths of the Word are falsifled, such as it was among the Jews at the time of the Lorn's advent. II. The church in which there were no truths, from not possessing the Word, such as it was among the well-disposed Gentiles in the Lord's time. III. A state of temptation, in which man is, as it were, without truths, because surrounded eve evil spirits who induce temptations, and and then. as it were, deprive him of truths. It will be seen from this that a spiritual wilderness is in exact correspondence with a natural wilderness, which sigulifes a place where there is little or no water, for water denotes truth. Passages 1 rom the W ord in eorroboration of these statements are too numerous to be cited here, but will oceur to every attentive reader of its contents. And the city hac no ueed of the SUx, neither of the Moon, to shine in it, for the glory of God did lighten it, and the Lamp is the light thereof, Rov. xxl., 23 . By the sun is here signified natural love separate from spiritual love, which is self love; and by the moon is signified intelligence and also faith natural, separated from intelligence and falth spiritual. which is self-derived intelligence und faith from self; this love, and this intelligence and fatth, are here signified by the sun and moon, which will not be required to shine upon those who Whil be In the I ond's New Church; by the glory of God which lightens it, is signified the divine truth of the Word, and because that light is from the Lord, it is said that the light thereof is the Lamb. "That ye may be the ehildren of your Father who is in heaven; for he maketh his SJN to rise on the evil and the good, and sendeth rain on the just and on the unjust," Matt, $\nabla ., 45$, signifies in the spiritual sense that from the Lord, as a sun,
proceeds light and heat; the light which proceeds, inasmuch as it is apiritual light, is the divine truth, and the heat inasmuch as it is spiritual heat, is the divine love; these flow from the Lord continually into every man, but.are variously received according to the state of the recipient: by the evil they are turned into evil and what is false, by, the good they are received as good and truth, and are thus comforted and built up by them. The correspondence is closely seen in the case of the sun or nature, which although it emits nothing but light and heat into external objects, still the effects are very different on a putrid carcass, and the growing fruits of the earth, or a beautiful fower garden. Again, in David, "His seed shall endure for ever, and his throne as the Sun before me. It shall be established for ever as the Moon,"' Ps. Lxxxix., 86, 37. By David, who is here treated of in the literal sense, is understood the Lomd... By his seed whioh shall endure for ever, is signifled the divine truth, and all those who shall receive it. By His throne which shall endure as the aun, is signitiad heaven and His church, which are principled in celestial good, whioh is the good of love. By His throne which shall be established as the moon for ever, is signified heaven and the ohurch which are principled in spiritual good, which is the divine truth. Concerning those who love the Lard it is written, "Let them who love Him be as the Sus when he goeth forth in his might," by which is signifed the operation of the Lord's divine love in them. Again, in Is. Lx., 20, "Thy SUN shall no more go down ; neither shall thy Moon withdraw itself; for the Loed shall be thine everlasting light." These words treat of the LORD, and of the new heaven and new earth, that is concerning the church to be established by Him. That the good of love to the Lord should not perish, nor the good of charity towards their neighbour in those who belong to that church, is understood by, "Thy sun shall no more go down, neither shall thy moon withdraw itself;' That they shall continue to eternity in truths from the good of love, ts understood by, "The Lord shall be thine everlasting light, and the days of thy mourning shall be ended," everlasting light being predicated of those who are in the good of love to the Lord, and ending of the days of mourning, of those who are in the good of oharity towards their neighbour. In an opposite sense, we have, "The SUN shall not smite thee by day nor the Moon by night, The Lord shall preserve thee from all evil; he shall preserve thy soul," Ps. cxxi, 6, 7. By the sun is here understood the love of self, and by the moon the false principle thence derived; inasmuch as all evil is from that love, and from evil what is false, therefore it is said, "The LoRD shall preserve thee from all evil; he shall preserve thy soul," the soul here siguifying the life of truth. This is the sun meant by our blessed Lord in the parable when he says, "But When the Son was up it was scorched, and because it had no root it withered away," Mark IV., 6. This is the sun that has ripened and brought forth more direful fruits of evil than all other causes combined, having in short, populated hell with inhabitants, and filled the earth with every phase of woe gnd misery which it contains; it is the very opposite of that SON of which it is written; "But unto you that fear my name shail the SUN of Righteousness arise with healing in his wings," Mal. iv., 2. The sun of righteousness here denotes the divine celestial principle, ir the Lord as to the good of love; and the wings of the Lord in which there is healing signifies truth from that good, which is the divine spiritual principle; healing denotes reformation thereby From this uncreated and infinitely giorious Sun, as from a boundless ocean, is derived all the blessings of love, wisdom mercy and happiness enjoyed by all in heaven or on earth; through and by the reception of its influent life every thing exists, without it nothing can exist, either in the visibie or the invisible creation, and just so far as our wills and understandings are expanded to receive and appropriate the ineffable delights which it communicates, just so pure ungulited and seraphic will bo our joya and beatltudes both in this worid and that which is to come, for in that Sacred presence there is fulness of joy, and pleasures for evermore.

Note the correspondence of oil and wine in the parable, where our Lord said of the Samaritan; that coming to the man who was wounded by thieves, he bound uphis wounds, and poured in oil and vine, Luke x. ©f Where by oil and wine is not meant these things, but the good of love and
as it is spiripiritual heat, every man, ient: by the od they are built up by sun of nature, ernal objeots, dd the growin, in David, iofore me. It 37. By David, IO LORD. By truth, and all re as the sum, elestial nood, ogtablished as are principled cose who love Sus when he of the Lord's 11 no more go ORD shall be nd of the new established by nor the good that church, is hall thy moon ruths from the ine everlasting erlasting light the Lord, and ood of charity 'The SUN shali shall preserve 7. By the sun faise principle from.evil what - from all evil; life of truth. when he says, it had no root as ripened and isea combined, the earth with very opposite fear my name ngs," Lial. iv., 1 principle, 0 Lord in which divine spiritual uncreated and ed all the blessa heaven or on y thing exists, isible creation, ded to receive 98, just so pure, in this worid here is fulness
e, where our was wounded ine, Luke X. Ef od of love and
charity, by ofi the good of love and by wine the good of charity, and of faith, for the subject treated of is concerning the neighbour, thus charity towards him, "Thou preparest a table before me in the presence of mine enemiles: Thou anointest my head with oil, my cup runneth over," Ps, xxiII. 5. To prepare a table and anoint the head with oll denotes to be gifted with the good of charity and love; my cup runnetli over, denotes that the natural principle will be thence filled with good and truth. Again, "I have found David my servent, with my holy oll haves I anointed him "Ps. cxxxix. 20 where by David is meant the Lord, the oil of holiness with which he was anointed, signifles the Divine good of the Divine love. By the oil or ointment on the head and beard of Aaron, Ps. cxxxiri. is denoted celestial and spiritual good or the good of love to the LORD and the gead of charity to the neighbour, for it is comyared to the dew of Hermon that descended upon the mountains of Zion; for there the Lord commanded the blessing, even life for evermore. By the dew of Hermon that descended upon the mountains of Zion is gignified that holy principle of divine truth proceeding from celestial good which causes unutterable felicity in the mind of the man in whom it reigns, and which is described as that "peace which passeth all understanding." From oil denoting celestial good and spiritual good we may see the reason why it was used in the anointing of the Kings of Israel, also the significance of the anointing oil for the priests, and its use on the vessels and lamps of the tabernacle, as well as in the flour aid cakes for the offerings \&o. From this also may be understand the meaning of oil in the parable of the ten virgins, Matt. XXV. 1. and the command not to hurt the wine and the bil, Rev. VI. 6, and a hundred other places when it is mentioned in the Word. To descend to lower things, see with what quietness and beauty a line of shafting will run at a high velocity on brass bearings when well lubricated with oil; brass corresponds to natural good and oil to celestial good; try the same experiment on iron bearings, without oll, iron corresponds to natural or sensual truth, which is hard and grating, and witness the consequences! Let us ascend a step higher and witness the delight we experience in holding intercourse with a person of a sincere, kind, considerate and obliging dispostion, for in his every word and look we can behold in his countenance traces of that "oll which maketh the face to shine."
We will find the correspondence of bread and water, and flesh and blood equaliy instructive. Bread and water are spoken of, when all the goods of love and truths of faitu are meant. Truth, in regard to good, is as water in regard to bread, or as drink in regard to meat, in nourishment. Bread signifies the primary principle which nourishes the soul, as it denotes the flesh of the Lord, by which is signifled the divine gqod or love, hence He says "The bread of GoD is he that cometh down from heaven, and giveth life unto the world" John VI. 33, and again," I am that bread. of life" vers. 48, and from this it comes that the bread in the holy supper denotes the Lord, and all the celostial principles of love as proceeding froia Him, which is meant when He says, "Whoso eateth my flesh, and drinketh my blood, hath eternal life ; and 1 will raise him up at the last day," (ver. 64) and again," He that eateth my, flesh, and drinketh my blood, dwelleth in me and I in him, verse 56. To eat the Lord's flesh and drink His blood is to receive His divine love in the heart or will, and His divine truth in the understanding, and to live a life according to them, for by this, conjunction is effected, and this is the reason why bread and wine were appointed to be used in the Holy Supper, for by bread is signifled the Lord's divine love, and by wine is denoted His divine truth, eating signifying appropriation and conjunction, hence the Lord's supper is in very deed the hollest act of worship. The bread of the sacrifices represented the good of love to the Lord, hence it is written "Thou desirest not sacrifice, thou delightest not in burnt offering; the sacrifices of GoD are a broken spirit," Ps. LI. 16, 17, by which is signified an humble heart, which confesses that man's own intelligence is nothing, and that from the Lord alone proced every thing of goodness and truth that man can receive. By bread in this Lord's prayer as well as in the holy supper, is signified in the suprems sense, the Lord and the things of celestial love. In an opposite sense, to eat bread in the sweat of the face, Gen. III, 19, represents colestial truthos

14

 APPENDIX TO THE ARTYZANS' GUIDE.received in a state of aversion. The Children of Israel lusting for fesh and the flesh pots of Egypt represents the desire of the natural man to live in a corporeal manner, that is, in the loves of self and the world, The flesh of the foreskin to be circumoised denotes the removal of the defiled loves of the natural man. The way of ali flesh corrupted, signifies tine understanding of truth totally destroyed in the corporeal state of man.
By the call addressed to every feathered fowl and every beast of tho earth to eat of the flesh of the mighty and drink the blood of the princes of the earth, of rams, of lambs, of goats, of bullocks, eto., on the mountains of Israel, and to be filled with horses and oliariots, mighty men, and all men of war, Ezek. xxxix, 16, 17, the Holy supper is signified, for in Rev. xix, 17 . it is called the supper of the Great GoD, by every feathered fowl, und by every beast of the feeld, is signified man as to his thoughts and affections, or understanding and will; the mountains of Israel denotes the good of love and charity; these thinge which form the feast denote all spiritual and celestial things proceeding from the Lord Himself, as to the good of His divine love, and the divine truth of His wisdom. This is the spiritual sense of the passage, for it is clearly impossible that such things could be literally eaten. The feast of unleavened bread, or Paschal, was to signify the subjugation of hell, and the glorification of the Lord's humanity, for it denotes His presence with deliverance, hence it was forbidden to eat of any thing leavened, because a fermenting agent denotes the false from evii. Spiritual good is signiffed by those words in Ezekiel: "A new heart also will I give you, and a new spirit will I put within you ; and I will tako away the stony heart out of your flesh, and I will give you a heart of flesh, XXXVI- 26. In the Word, heart siguifies love; hence the love of good is signified by a heart of flesh. Water, in the Word denotes truth, and for this reason waters and rivers are described, where gardens and rivers are mentioned, as significatives of the man of the Church. To draw water denotes to be instructed in the truths of faith and to be illustrated. Drawers of water, such as the Gibeonites were, denote those who desire to know traths tor no other end than to know them, A flood of water denotes temptation and desolation, because wicked persuasions and thoughts actually fow in fromevilspirits. Wells of unclean water denote what is not true, Broken cisterns denote doctrines in which are no truths. In beautiful correspondence with this d'vine symbol of truth we will find thatin physios, or the science of natural things, that man applies the same standard to asoertain the weight of solids and liquids, each being said to be heavy or lieght specifically as they relate to water; thns the exact weight of a cubic inch of gold, compared with that of a cubio inch of water, is called its specific gravity. Weight, spiritually considered, is nothing else than real worth, hence we have the expressions, solid men, or men of worth or truth, aud weighty words, or words of wisdom. Furthermore, as Omnipotent power is continually predicated of the LORD as having relation to the principle of His divine truth, and this truth being symbolized by water, so nono in civiizzed life can possibly be ignorant of the corresponding prodigious power derived from water in the varions uses it performs in the world, and the cleansing properties of divine truth on the heart, when it is applied to the life, and water, when it is appilied to th; body, should be equally well known. Some may be solicitous to know the reason why so much is said regarding love and wisdom, or good and truth in the above passages, and the enquiry is reasonable and just. In answer to this 1 would state that all the attributes and perfections of the ever blessed GoD resoive themselves as in a focus into these two, viz: Love and Wisdom, or what is the same, Good and Truth, corresponding to heat and light, or what is the same, warmth and illumination, as proceeding from the sun of nature, and these in the Creator form a one, constituting what has been called a marriage of good and truth. Man, being created in the image of God, ought to present a finite transcript of those attributes which exist to an infinite extent in his Maker, and on examination this will be found to be the case, for thero is no quality inherent in man but what belongs either to his will or understanding. What does not belong to one of these, forms no part of thy man, and these together form one mind, and the mind is what constitutes the man himself, the body being merely a clothing oliminated from the ultimate
sting for flesh natural man ind the world, emoval of the ipted, signifies state of man. ry beast of the the princes of the mountains ty men, and all hed, for in Rev. feathered fowl, ights and affecenotes the guod ote all spiritual 3 to the good of is the spiritual things could be 1, was to signify s humanity, for bidden to eat of e faleg from evil. new heart also and. I will take you a heart of the love of good es truth, and for as and rivers ars To draw water be illustrated. ose who desire to of water denotes id thoughts actuwhat is not true, p beautiful correshat in physios, or tandard to asoerpe heavy or light of a cubioineh of called its specific than real worth, th or truth, and hipotent power is the principle of water, so none ading prodigious performs in tho a on the heart, is appilied to th, be solicitous to e and wisdom, iry is reasonable i1 the attributes ves as in a focus same, Good and me, warmth and and these in the dd a marriage of od, ought to prean infinite extent the case, for thero his will or underpart of tho man, t constitutes tha from the ultimate
things of nature, such as carbon, phosphorus, ailicon chlorine, phosphate of lime, sulphur, iron, magnesium, water. potasgium, \&c. \&c., of all of which man is divested by natural death, never more to resume them, but nevertheless he tinds himself in the other life, possessed of the human form, and every member, faculty and sense which he enjoyed in this life, but much more keen, delicate and refined, by purification from the things of nature. Those things just mentioned are what constitute flesh and blood, of which it is written, that they shall not inherit the Kingdom of GoD, and one has well observed that you may as well attempt to raise a ship from the bottom of the ocean and leave down there all the wood and iron, as to raise a natural body without flesh and blood. We are metil at 2 loss to conceive what possible improvement could be effected by the union of natural bodies to the spiritual bodies of those couritless myriads whioh formed the mighty population beheld in heaven by the beloved disciple in theisie of Patmos. Let as go a step further and investigate the works of GcD as seen in the visible creation, and here everything will be seen to reflect the attributes of the Almighty; but always in correspondence with His love and wisdom, or goodness and truth. From this correspondence every thing seems to go in pairs, for here wo ind male and femaie, body and soul, sun and moon, heat and light, land and water, flesh and blood, heart and lungs, gold and silver, trass and iron, and so on throughout all the ramifications of nature even down to the ultimates. What is true of GoD's works must in a still more exalted sense be true of that Word which is the transcript of His own perfections, and the embodiment of His divine love and wisdom; hence it comes that in the Word there is nothing but what has constant reference to either one or theother of these attributes, or of something in connection witl them, or in opposition to them, such as evil and the false, and from this rises further, an apparent repetition of the sameidea, sentiment or thought, very often in the crurse of a single verse, but it ought to be known that one of these expressions has relation to the divine Love, and the ether to the divine Wiadom, or scmething in conneotion with them, or in opposition to them, as no vain reiteration can ever be predicated of the dirlne W ord. In order to analyze tho subject still further, take for instance that inimitable blessing wherewith Aaron and his sons were commanded to bless the children of Israel: "The Lord bless thee and keep thee, the Lord make His face to shine upon thee, and be graciousinto thee: the LORD lift up his countenance upon thee, and give thee peace." Numb. VI, 24,26. In the internal sense these words signify, that the Lord from divine love flows in with divine truth and with divine good into all those who receive Him. The divine love from which the IDRD flows in is understood by the face of the LORD, and the divine trath with whici he flows in, is understood by the Lord making His face to shine upon them ; and the divine good with which He flows in, is understood by the Lord lifting up His countenance upon them; defence from ovils and falsities, which otherwise would take away the influx is understood by "the Lord keep thee and be gracious unto thee," hearen and eternal felicity, which are the gift of the Lord by His divine goodness and divinetrith, are undortitend by " and give thee peace," for when evils are removed from man, the interior of his mind is flled with celestial beatitudes and joy unspeakable. In their inmost sense these divine expresgions contain such a deep meaning, and embracesuch transcendent bieseings that even a very faint idea of them is in a manner incommunicable to man in his present state of existence. Again in David, "Thy mercy, 0 Lord is in the heavens; and thy faithfulness reacheth unto the clouds. Thy righteousness is lise the great mountains, thy judgments are a great deep," Ps. XXxyI. 6 7. Where mercy and righteousness have relation to the love of God, and faithfulness and judgment have relation to His truth. Again in Isaiah, "And on this mountain shall the IORD of hosts make unto all peopie a feast of fat thing:, a feast of wines on the lees, of fat things full of marrow, of wines on the lees well refined," Xxv. 6. Tho subject treated of is concerning the advent of the Lord, and by a feast of fat things is denoted the communication of goods, and by a feast of lees or of the best wine, the appropriation of truths. Again in Generis, "Juda" is a lion's whelp; from the prey, my son, thou art gone ap; he stooped down, he couched as a lion and as an old lion; who shall rouse him up?"
xLix. 9. By Judah is here signified the Lord's'celestial kinfdom, where all are in Dower from the Lerd by divine truth; this power is understood Dy a lon s whelp, and by an old inon; by the prey from which he went up, is signified the dissipation of falsities and evils; by stooping down is signified to put himseif into power; by couching is signified to be in security from every faisity and evil, wherefore, it is said, "who shall rouse him up." Again, 0 Lord my GOD thou art very great, thou art clothed with honour and majesty," Ps. civ. 1. There' by being clothed with honour and majesty, when predicated of the Lord, is signified his girdiug Himseli with divine truth and divine good, for they proceed from Him, and thence gird Him, and thus constitute heaven. Again in John, "In the beginning was the WORD and the WORD was with God and the Wond was GrD. The same was in the beginning with God. All things were made by him, and without him was not any thing made that was made. In him was lite: and the life was the light of men," John I. 1. 4. From these passages it is evident that the Lord is God from eternity, and that this God is Himself the Lord who was born into the world, for it is said that the WORD was with God und Gov was the WORD; as, also, that without Him was not anything made that was made, Why the Lord is called the Word, is but litile understood $1:$ the Church; He is however called the WOrd because the WORD signifies Divine Truth, or Divine W'sdom; and the Lord is Divine Trutis itself, or Divine Wisdom Iteelf, for which reason He is likewise called the LiaHT which lighteth every man that comoth into the World. From the Life and Light which pervades the Word comes the vivification of the affections of that man's will who reads it devoutly; and the illumination of the thoughts of his understanding, there being something intimately affecting the heart and spirit which flows with light into the mind, and bears witness. Divine Love and Divine Wisdom constitute a one, and werg fr m eternity a one in the Lord, wherefore it is said, "In bim was life and the life was the light of men." 'Shis oneness is meant by these words, "In the begtnning was the WORD and the Woud was God." By the Futher is denoted the Divine Love, or the Lord as to Divine Good. By the WORD made flesh is signified the Lord as to the Divine Human princip!e which He assumed by being born into the world, from whence He is called "the Only Begotten of the Father" the "sent of God" the "Arm of the Lord," for the Divine Good, or the Father, filled this Human principle as the soul fills the body, not indeed, in perfect fuluess at first, but beginning as it werefrom a germ, the Divine principle gradually expanded during His life on the earth, sustaining Him, and enabling Him to overcome, in the conflicts, combats and temptations admitted into His humanity from the powers of darkness, which were of such a dircful nature that they are utterly inconcelvable by the mind of man. The Divine principle within denotod by the Father, was that Omnipotent power which enabled him to work miracles, so that He could say, "The Father who dwelleth in me, he doeth the works," and from this also emanated those gracious words which proceeded out of his mouth, of which it is said, "I have given them the words which thou gavest me." Before his Incarnation the LORD existed in first principles only, by assuming the Humanity He as it were desceuded to the ultimate, or, lowest pinciples, and from this He calls Himselt "the First and the Last," Rev. 1, 17. The merely human qu :ities derived from the mother were gradually eliminated from the assumed nature by temptations, sufferings, combats, confticts and continual viotories over the powers of darkness, who at this time held almost entire possession of the human race; by these victories He removed hell from man, and restored "that which He took not away," even man's liberty to choose life or death for himself, and furthermore glorified His Humanity, and made it Divine, or One with that Divine Good in which he existed from creinity, so that He could say before His ascension: "all power is given unto me in heaven and in esrth," Matt. Xxvin. 18, and after full and com. plete glorification, He could say to the beioved disciple in Patmos, "I am Alpha and Omega, the beginning and the ending, saith the Lord, which is, and which was, and which is to come, the Almigity," Rev. 1, 8. The Lord in the Word, is called Lorv, ior Jehovah, in Hebrew, when the word Lord is priated in capitals), from the good ot His divine Love, and

God, 1
the A
tion, in when life the W regene tations immer Gospel as to
David
to the
union
eternit
time.
xxi. 2 ?

God 1 eternits
Human
which
it may
Him is
Fulne
ing infll
man, 0
ship, in
In ord
Divinity
vailing
in subst
Athana:
Lord'" respect whateve about th followin Divine Lokd." 29. "I am He, GoD but the king is in He this our lowing from Hi is given, shall be ing Fat Father " Surely thou art xiv. 14. with the Savioui is no Go me, look and ther Jehova Israel; t There 0 "Thus of Hosts GOD,"
n , where dderstood went up, down 18 e in secuouso him hed with h honour 3 Himself ad thence peginniug was GrD. fiby him, him was om these and that or!d, for e Word: as made, stood ${ }^{1.1}$ 1e Word ine Truth called the From the. lon of the umination intimately mind, ani , and wers n was life ese words, "By tho d. By the a principle nce He is the "Arm man print first, but expanded m to overHis humaature that - principle oh enabled. mellith is - gracious 1, II have nation the nity He as pm this He man qu $:-$ e assumed al victories ire possesa man, and to choose anity, and isted from er is given 1 and comhos, "I am RD, whioh 1, 8. The when the Love, and

God, from the divine truth of His divine Wisdom; He is calied Christ, the Anointed, in relation to His kingly office, and JESUS, signifying salvation, in relation to His office as Saviour. He calls Himself the Son of God, when His divinity, His unty with the Father, His divine power, and the life that is from Mim, are treated of, and the Son of Man, when He as the Word, suffers, Judges, comes into the worid, redeems, saves, and regenerates. Jehovah, who was in Him, appeared to be absent in teraptations, and this appearance was proportionable to the degree of His immersion in the humanity. Hence His prayers to the Father, in the Gospels and elsewhere; many of them can be seen in the Psalms, which as to their internal eense treat of the Lurd alone, under the figure of David as a king. The Lord coming forth from the Father, and returning to tine Father, means the humanity proceeding from the Divinity, and the union and giorification of the humanity. By the Lord's birth from eternity. is meant His birih foreseen from eternity, and provided for in time. By Loid God Alamghty and the Lamb, mentioned Rev. xxi. 22, and eisewhere, is not meant two divine persons, but by Lord God Almighty or Lord God Omnipotent, is signified the LORD from eternity, who is Jehovah Himself; and the Lamb signifies the divine Humanity which Jehovar assumed by birth into the worid, by virtue oz which He became Emmanuel, or God with us. From these observations it may be seen that the Lord is the God of heaven and earth; that in Him is the Divine Trinity of Father, Son and Holy Spirit, or the Wroles F'ulaness of the Godhead, corresponding to the heat, light, and omanating influence of the Sun, or of the soul, body, and proceeding operation in man, consequentiy that He alone is the only true Object of love and worship, in whom is the Father, for "whoso seeth Him seeth the Father.
In order to still further confirm the heaveniy doctrine of the Supreme Divinity of our blessed Lord, and to show the faisity of the present prevailing doctrine which divides the Godhead into three persons, "the same in substance, equal in power and glory," or, as it is expressed by the Athanasian Creed, three persons, "each of whom by himeelf is God and Lord" (a doctrine which, and the assertion is made with all charity and respeot for the numerous class who think otherwise, has no existence whatever in the Word, and was entirely unknown in the Churoh until about the time of the Nicene Council), it is thought proper to adduce the following passages from the Word. First of all, to prove the Uniry of the Divine Being, see (Deut. vi. 4.) "Hear O Israel, the Lord our God is Onze LohD." This divine truth is repeated by the biessed Jmsus in Mark xii. 29. "I am Jehovar and there is none eise." Isa. xiv. 18, xiv. 5. "I, even I, am He,and there is No GoD with Me." Deut. xxxii, 39. There is none other God but One" 1 Cor. viii. 4.: "Thou art the God, even thou Alone, of all the kingdoms of the earth," 2 Kings xix. 15. "ONe is your Father which is in Heaven" Matt. xxiii.'9. Lot us learn, with grateful reverence, who this our Heaven y Father, Lord, and God is. Every passage of the following evidence is refulgent with the light of divine truth, for they proceed from Him who is the Truth itself, "Unto us a Ceild is born; unto us a Son is given, and the government shall be upon His shouiders, and His name shall beoalled, Wonderiul, Counsellor, the Mighty God, the Everiasting Father, the Prince of Peaoe," Isa. ix. 6. "Thou OJehovah art our Father, our Ret ekmer, thy Name is from everiasting," Isa. Ixiii. 16. "Surely God is in Thee, and there is None else, there is no god, verily thou art a God that hidest thyself, O GoD of Israel, the SAVIOUR" Isa. xiv. 14. 15. This is said in reference to His veiling over His divine glory with the Human nature. "Thou shalt know that I, Jehovan am thy Saviour and Redeemer, the Mighty One of Jacob" Isa. ix, I6. "There is no God else beside me, a just God and a Saviour, there is none beside me, look unto me; and be ye scued, all the ends of the earth, for I am GoD and there is none mlek". Isa. xlv. 21. 22. "Thy Makme is thy Husband; Jehovah of hosts, is His name, and thy Redeeirer the Holy One of Isran; the God of the whole earth shall Ho be called," Isa. liv. 5 . There can be no uncertainty as to who is meant by these announcements. "Thus saith Jehovah the King of Israei and His Redeemer, Jrhovair of Hosts; I am the First, and I am the Last, and beside me there is ${ }^{\prime \prime}$ God," Isa, xliv. 6, " 1 am Jeirovah thy God, the Holy Uie of Israel, th.".

18

 APPENDIX TO_THE_ARTIZAN'S GUIDE.Saviour" Ifa xliii. 8, "Thou hast redeemed me, O Jehovar God of tmath." Ps. xxxd. 5 , "I wili help thee, saith Jehovar and thy kedeemer, the Holy One of Israel," Isa. xii. 14, "As for our Rederm hr, Jehovait of Hosts is His Name, the Holy One of Israel," Isa. xlvil. 4., "Thus saith Jehovai thy Rediemer, and He that formed thee from the womb; I am Jenovair that maketh all things, that stretcheth forth the heavens "zlone, that sprcadeth abroad the earth by myself," Isa. xilv. 24, "I, even I, am Jhiovah and besides Me there is no Saviour," Iba., xliii. 11. \because Thus saith Jfinuar, your Redeemer, the Holy One of Israel," ver. 14, "With everlasting kindness will I have meroy on thee, caith Jebovay thy remeemer," Isa. liv. 8, "Thus saith Jehovai thy Redeemer, the Holy Une of Israel; I am Jrhovar thy God which teacheth thee to profit, which leadeth thee by the way thou shouldst go," Isa. xivili. 17 "With everlasting kindness will I have merey on thee, saith Jehovar thy Redeemen, Isa. iv. 8, "'Tbeir Redeampr is strong, Jehovah of Hosts is His Name," Jer. 1. 84. "I am thy God from the land of Egypt, and thou shalt know no God but Me, for there is No Saviour Beside Me" Hos. xiii. 4, "Thus saith Jerovar, that formed thee 0 Israel, fear not, for I have redeymed thee," Isa. xilii. 1, "Be strong, fear not; behold your God will oome with vengeance, even God with a recompense, he will come and save you." Isa. xxxv, 4, "The Lord Jefovar is my strength and my song, he also is become my salvation," Isa. xii. 2, "Behold Jerovar God shall come with strong hand, and His arm shall rule for Him, Heshail feed his tiock like a shepherd," Isa. xl. 10.-11. The Savlour lays claim to this title, John'x. 11. " Let the words of my mouth, and the meditation of my heart, be receptable in thy sight O Jehovah, my strength, and my Redeemer," Ps. xix. 14, "But God shall Redrem my soul from the power of the ;rave, he will receive mo," Ps. xlix. 15, "I will also praise thee with the pesaltery, even thy truth, O my GoD; unto thee will I sing with the harp, 0 theu Holy One of Israel. Ity lips shall greatly rejoice when I sing unto thee; and my soul, which thou hast redermed," Psa. ixxi22-23, "For Godis my King, of old, working salvation in the midst of the earth," Psa. Ixxiv. 12. " They remembered that GoD was their rook, and the high GoD their Redeemer," Psa. Ixxvili. 35 . "I will praise thee 0 Jehovah my God, thouhast delivered my soul from the lowest hell," Pse. 1xxxvi. 12-18, "Bloss Jehovai, 0 my soul, and forget not ali his benefits, who redeemeth thy life from destruction; who crowneth thee with loving kindnesr and tender mercles," Psa. olii. 2-4, "Let Israel hope in Jehovah, for with JE. HOVAB there is mercy, and with him is plenteons redemption, and he shall redeem Israel from all his iniquities". Psa. cxxx, T-8, " 0 GOD JEHOVAB, the strength of my salvation, thou hast covered my head in the day of baitte," Pan. cxl. 7. By which !s signified, humble acknowledgement that redemption, protection, and consequently deliverance from hell, are from the Lord alone, "O give thanks unto Jehovah, for he is good, for his mercy endureth forever, Let the redeemed of Jenovan say so, whom he hath redeemed from the hand of the enemy." Ps, evii. 1-2, "JEhovar liveth; and blessed bo my rook; and let the GoD of my salvation be exalted," Ps, xvili. 46, "And they remembered that God was their Rock, and the high God their Redeemer," Ps, Ixxviii. 85, "They forgot GOD their Sayiour, whioh had done great things in Egypt," Ps. ovi, 21, "The salvation of the righteous is of Jriovar ; heis their strengith in the time of tronble," "Truly in Jehovan our God is the salvation of Israel, Jer. iii. 23. In the New Testament, James calls our Blessed Redeemer, the "LORD of glory." The Lord of glory oan be none other than the King of yiory. "Who is this Kivg of glory? 3EHOVAR of Hosts, he is the King of glory," Ps, xxiv, 10. In Rev. xix, 16. the Lord as to the Word, is described as having on his vestare and on his thigh, a name written, King op Kings, and Lord of Lords. This sacred truth is reechoed by Pani when he declares Christ to be "The blessed and only Potentate, the King of Kings, and Lord of Lords, who only hath immortality," I. Tim. vi. 15. Elsewhere he says, "For of him, and by him, and through him are all things; to whom beglory for ever. Amen, "Jehovar thy God in the midst of thee is mighty, he wILL save, he will rejoice over thee with joy," Zeph. ili. 17, "I will rejoice in Jyhovar, I will joy in tho God of my salvation," Hab, iii, 18, "I will look unto JEHOVAB, I will

JAB GOD of iy hedemikr, :ER, JEHOVAH Hi. 4." "Thus om the womb; h the heavens v. 24, "I, even Isa. xilii. 11. srael," ver. 14, Jebotar thy mer, the Holy thee to profit, fili. 17 "With ovis thy Reof Hosts is His and thou shalt $\mathbf{w}^{\prime \prime}$ Hos. Xiil. 4, tot, for I have nold your Gov will come and h and my song, rehovah God m , He shall feed ys^{3} claim to this editation of my Id my REDEEMde power of the e thee with the with the harp, hen I sing unto -23, "ForGodis "Psa. 1xxiv. 12. tigh God their $\forall A$ my $^{\text {GOD }}$ vi. 12-18, 'Bloss deemeth thy life and tender merfor with JEedemption, and

Psa. cxxx, alvation, thou By whioh ! s ection, and con"O give thanks prever, Let the the hand of the y rock; and let ley remembered *R," Ps. $1 \times x$ viiii. great things in fmeovar; heis gour GoD is the James calls our ory can be none ? deHovar of 16. the Lord as is thigh, a name cred truth is reessed and only hath immortal. nd by him, and en, "JEhovar will rejolce over I wll joy in the [EHOVAB, I will
wait for the God of my salvation; my God shall hear me'" Micah. vil. 7, "The voice of'him that crieth in the wildernees, Prepare ye the way of the Jemojah, makestraight in the desert a highway for our God. Every valley shall be exalted, and every mountain and hill shall be made low," Isa. xI. 8-4. Yy which is signified, the mission ci'John the Baptist preparing the way for Christ's Advent by the preaching of repentance, baptism, and the remistion of sins, at a time when there were no truths left in the Church, but what were falsified and made of none effect. By "every ralley shall be exalted, and every mountain snd hill shall be laid low," is not meant these natural objects but the exaltation into heaven of those who are meek and lowiy in heart, or poor in spirit, and the removal and remission to their final abode of the wicked who have lived in the pride of self-love and the love of the world, for all such avert from themselves the divine protection, and are in conjunotion with hell The influx of divine truth flowing into their teriors, when the Lori comes to judgment, causes such exceeding pain and torment to the wicked, that they ootually oast themselves head. 1 ng into hell That the Lord exeouted such a judgment when on earth, is mostevident both irom the literal and spiritual sense of many passages In the Word; reference will b made to some of them in what follows, and that the last judgment roretold in the Eevelation, and many other places, has also taken place, may be seen proved in the writings to be mentioned presently. It to be noted, however, that these general judgments do not take place in the natural world, but in the spiritual world, Into which all enter after death, "after death the judgment." To continue, in the sublime vision described by Isaiah, chap. vI., the prophet relates that tho seraphim cried, "Holy, holy, holy is JyHovaH or Hosis; the whole earth is full or his glory." 'Ihe message given to Isaiah at that tine is quoted in John xill. 88, wh, where it is written, "Theso things spako Esalas, when he aaw His glory, and spake of Him"" and the apostle applies the whole as having reference to the Incarnate God in the person of the Blessed Saviour then on earth. The Hebrev term, Jimovar, retained in the above passages, is always expressive of self existence, underived Being, and the Divine principle as to Love, while the term, GoD, is predicated of, and corresponds to, the Divine prinoiple. as to Wisdom; or, whist is the same, Truth, whioh always emanates or proceeds from the former, 88 light proceeds from fire or heat. It was as the Divino Truth, or the WOrd, that the Lord was made flesh and dwelt among ns, but still he did not separate from Himself the Divine Good or Love, denoted by the Father As previously stated, this existed in Him in but a comparatively small degree at the first, and piorification was a gradual work, extending over the whole of His earthly life, progressing only as What was merely human was cast out, or made "perifuct through sufierings," antil at last He comprehended in His glorious Peraon "all the fulness of thr Godhead bodily," and became GoD even as to His Humanity having all power in heaven and in earth." To have all power is to possess nothing less than exclusive and supreme Divinity, and notwithstanding the deplorable fact that this heavenly doctinge is not recognized in the prevalling Church, stin it is the veriest truth in the universe, that He was the great Jehovah, or "God manifest in the flesh," [1TM. iin. 16], and also "Over all, God blessed for ever," Rom. iz. 5, for "by Him were all things created that are in heaven and that are in earth, sible and invisible, whether they be thrones, or dominions, or principalitios or powers; all things were created by Him and for Him, and He is before all things, and by Him ali things consist." Col. 1. 16, 17. With all this evidence before us we may well unite with Jude in saying, "To the only wise God our Saviorr, be glory and majesty, dominion and power, both now and ever. Amen."

We may see from ihe above passages as in the very light of heaven, the great and glorions truth that the Blessed Jisus is Jwiovai, The God ob Heavin and Earth, tere Lord of Glory, the mirst and the last, the Migety God, the Everlagting Father, the Creator of ali things, whe Rzdiemer of the World, God manifegt in the Flesh, THE KING OF Kings and Lord of Lords, ovir all, God blesged for GVRR, A JUGT GOD AND A SAVIOUR, BESIDES WHOM THEREIS TSONE ELSE, AND AS GUCH IS ENTLTLED TU OUR EXOLUSIVE LOVR AND ADORATION,-'

And here we cannot omit noticing the ominous silence which pervades not only the above pasagges of Scripture, but also the entire Word, respecting the doctrine which we hear thundered forth from so ma.y pulpits, regarding a Son of God born from eternity, cailed the Second Person of the Trinity, who came into the world in order to satisfy what is called the vindictive justice of the first Person, and appoase his wrath and vengeance against the human race on account of the violation of hls law of which they were guilty, by taling on himself that punishment, whish wouid orherwise have descended on the sinner, the implication being, that the attributes and perfections of God the Father, rendored it ímpossible for him to forgive the sinner until the majesty of his outraged law was vindicated and satlisfled to the uttermost, by the infliotion of adequate punishment either cn the innocent, or on the guilty The groat majority of professing Cbristians retain this bellef, tog ther with the dootrine of three distinct Persons inf the Godhead, most of us having been eduoated in it from our infanoy, and $s 0$ are not to blame in consequence, more especially as these doctrines are usually held up as an inexplicabie mystery which it is almost a profana. tion efther to investigate or dispute. A man under suoh circumstances is not to blame for hoiding this belief in ignoranoe, simplicity and innooence, even although it is unscriptural, for he will be instructed in the real truth in the next world, if not in this, and if his heart is good he will receive it most gratefuily, for goodness always desires truth and union with it. But, if, on the other hand, a man shonld say that since Christ obeyed the law fur h!m and suffered in his room and stead, therefore he is at liberty to do as he pleases, iand forthwith carries that thought into action by plunging into a career of known evil and wiokedness, under the belief that everything will be get right at last by a simple cry for mercy, and a "Lord save me, ${ }^{\prime \prime}$. uttered on his death bed, such a line of thought and consequent action would be perfectly infamous, and after death the ruling love of such a man will fufallibly entail a rightenus retribution by carrying him to his like in hell, and what is wonderful, he goes thero of his own accord. The power and love of evil draws him there. This is what we are fore. warned to fear, Luke xir. 5 , It is not GoD who sends him there, for it is impossible for Him who is Mercy itself, to damn any one. The "LORD is good to all, and his tender mercies are over all His works," thus even to the lowest hell. The true reason is "Ye will not come unto me that ye may have life." "Your iniquities have separated between you and your GoD, and your sins have hid his face from you." To return to the question of the Trinity, as commonly received, it is impossible to suppress the enquiry, why is it that the second and third Persons of the Trinity, as described by this scheme (the attributes and perfections of each person being essentially the same), have not, or do not, put forth an equal olaim with the first person. to full, perfect, and complete satisfaction on account of thelr violated law? Yet here we have them described as not only putting torth no such claims, but the second person 18 represented as coming forward and drinking the very dregs of the bitter oup of His Father's wrath, even to suffering the accursed death of the cross, and by this means satisfying or appeasing the so called Divine displeasure of the first person.

One Doctrine of that new Dispensation which cometh down from God out of heaven, drawn from the Word, is, that God is Mercy Itself and Love Itself, and that wrath, fury, anger and vengeance are as far removed from the Divine nature as heaven is from hell, yea, and infinitely farther. These are qualities which could not oonsistentiy be ascribed to a.good man, because he would not be good if he possessed them, wherefore it is blasphemy to ascribe them to GoD. 0 when wili mankind learn that it was love, love, unutterabie, Infinite Love, that brought our Heaveuly Father into the world to save and redeem Hild erring children at the very period when they were about to be engulfed in eterual ruln through the undue preponderance of the powers of hell over mankind. Most true it is that "GoD so loved the world that he gave his only begotten Son that "vhosoever believeth in him should not perish, but have everiasting life,", John iil. 16, most true that "In His love and in His pity he redoemed us," Isa. xili. 9, tor "God was in Christ reconciled and reconciling guilty sinners to Himself," being moved to that infinite condescension by a "love which paeseth knowledge," Eph. iii. 19. Zacharias spoko
the
hath wher accon ii., 2 virgh virgin Isa. Us, 8 we w were solely the dedire comm it has that w so, bu
we he
WE wh
$\operatorname{man} w$ needed ment nor sle deoline career, her ow last lin more e Savioun execute were in the Hu temptat of man garden Interna cannot
 Xiii. i. Luke temptat manner meanin! of God God an kindnes God in of the p sate ha exist in for Chri mind of three G_{1} name's expressi none ot out thy name, I
The it come God in ances of same, be
pervaden Word, reswy puipits, Person of called the ! vengeance whioh they 1 ocherwise e attributes a to forgive d and satist elther cn Cbristians Persons inf fancy, and ootrines are : a profana. motances is innocence, er real truth ill receive it vithit. But, yed the law liberty to do plungling that every"Lord save consequent ling love of arrying him own accord. we are fore. here, for it is $1{ }^{1}$ "LoRD is thas even to pme that ye ou and your turn to the to suppress - Trinity, as each prorson equal claim on account ot only putd as coming His Father's y this means first person. n from God Itself and far removed tely farther. a to a good erefore it is learn that it ir Heavenly at the very through the Most true it on Son that asting life,", deemed us," iling guilty nsion by a rias spoko
the truth when he and, "Blemed be the Liond God of Iaraol, for Ee hath visited and redeemed His people" Luke 1, 68 ; aleo ased Simeon, When he said, "Lomd, now letreat thou thy marrant depart in peace, according to thy word, for mine eyes have seen thy salvation," Luke 11. $29-80$. This was zald of the only Begotten Son of God (bora of the virgin) in whom was : de Father, of whom it was written, "Behold. virgin shall conceivo and iear a son, and shall call his name Immanuel," Isa. vil. 14. Tes, Joyful thought, He was indeed and now is, GOD wixi UB, so that all can say, "Lo, this is our God, we have welted for Hima, we wull be glad and rejoice in His aalyation." The eaferinge of Christ were great, beyond all human comprehenaion, and they were endured solely on our mocount and for our alivation, but not to satlafy or appease the wrath of any one, but to satiafy His DWn Divine Love, for that desires nothing in comparison with man's aslvation, and that it may communionte all its fulness of joy, and unspeakable delight to every eonl it has created. It is thus that "God sommendeth His Love toward ue, in that while we were yet ainners Chrlat diled for ns," Rom. .7.8. And not only s0, but "we also Joy in God through our Lomd Jzsids Chriex, by whom Wa have now recelved the atonement ver. 11. It io thus eeen that it is We who received the atonement, not God, esiscommonly supposed. It is man who went astray, became wioked, and thus became an onemy and needed reconciliation, at-one-ment, or belng broaght at-one or in agreement with his Maker. And this that Infinite Love that never slambers nor sleeps has been incessantly endeavouring to do ever aince man declined from goodness, for it followed him step, by step in his downward career, untll at the very moment when hell was about to olaim him for her own, the great Jpiovar assumed the Humanity, thus supplying the last link of the golden ohain which was thenceforward to noite God more olosely to fis erring children, and anable Him to become their Saviour. In this Humanity He encountered the powerm of hell, and executed a judgment in the apiritual world, on thove infornal hoati who were infesting and obsessing mankind, theindwelling Divinity sustaining the Humanity, and enabling it to overcome in the midst of combats. temptations and sufferings so dreadful that it is impossible for tne mind of man to conceive of them, among the last being the temptations in the garden, and on the cross. Many of these combats are desoribed in the Internal sense of the word in the lollowing, and many other places which cannot be mentioned here by reason of their abundance: Ps. xvili. xxii., xxxv., xl. 1.2, y. 1, 6 , lxix., cil. 11, 1., oxixx., 1, 2., 18а. Hii., 1ix, 16. 19,
 Lute xxii., 42, 44, John xiv. 30, xyl. 38. In these passages the temptations, combats, and victorios refarred to are described in a Divine manner by mere correspondences, eaoh possessing an internal or spiritual meaning. These are some of the ways in which the "kindness and love of God our Siviour toward man appeared," Titus ill. 4, "This is the true God and eternal life," 1 John F .20 , and the Benefioen Being whose kindness we are exhorted to imitate, "by forgiving one azother even as God in Christ hath forgiven us." Ephes. Iv. 82 , This is the right translation of the passage. In the English Bible it reads, "even as God for Christ's sate hath forgiven you," but this sense is anseriptural, and does not exist in the original. The prevalent onstom of asking meroies from God for Christ's sake is the result of ignorance regarding the true God in the mind of the worshipper, who in such a case if actually thinking of two or three Gods, although he does not say so with his lips. "Seve us for Thy name's sake," nd "' Redeem us for Thy mercies sake,' are common expressions in the Word. The great Jxiovah, whom we have seen to be none other than Crrier Hiniself, says "I, even I, am He that blotteth out thy transgressions for mine own sake," "Whatsoever ye ask in $m y$ name, I will do it,", and thus it always is.

The question will now be asked, if these statements are true, how does it come thet wrath, anger, and vengeance are so frequently asoribed to God in the Word ? The answer is that these expressions contain appearances of truth, but not the real truth. Many thinga are thus expreseed in the Word. It speaks of the rising of the sun and the going down of the rame, because it appears to do so. It telles us to pluck out our right eya
and out off our right hand, if they offend us. It tells us to take no thought for our life, what we shall eat, or what we shall drink, or for our body, what we shall put on. Does any man in his senses act thus? It tells us that it is almost impossible for a rich man to enter heaven. It tellis us that Christ came not into the world to promote peace on the earth, but rather division, when novertheless $H 0$ is the Prince of Peace. It tells us that unless a man hates bis father, and mother, and wife and children, and brothers, and sisters, yea and bis own lifo also, he canuot be Christ's disciple. Every one knows that these expressions are not to be understood literally, and so it is in the case of anger, wrath, and vengeance when such qualities are ascribed to God, but it is most true that to the wicked he appears to be invested with such attributes. The children of lsrael are described as an evil and perverse generation who did aiwayserr in their heart, and knew not the ways of Jehovah, Ps. xcy. 10. Their vine is described as the "vine of Sodom and of the filids of Gomorrah; their grapes aro grapes of gall and their clustors aro bitter; their wino is the poison of dragons, and the oruel venom of asps," Dout. xxxii. 3233. By these correspondences is described a most intense degree of wickedness, as pertaining to the interiors of that people. We find in conseyuence of this, that at the giving of the Law on Mount Sinal, that "the glory of Jehovar was like devouring fro in the eyes of the children of lsrael," Ex. xxiv. 17. On the other hand, when Moses and Aaron, Nadab and Abihu and seventy of the elders of lisael (seventy, as well, as seven, in tho Word, ane numbers which are expressive of hollness, or what is good or sacred), ascended into the mountain, "they saw the God of Israel; and there was under his feet, as it were, a paved work of a sapphire stone, and aa it were the body of heaven in olearness," ver. 10 . Now mark the contrast, the great Jritovar was seen under these various aspects altogether according to the state of the different spectators. It was only the "wicked and slothful servant," who possessed the "evil eye" by which he perceived his Lord to be " a hard man, reaping where he had not sown, and gathering where he had not strewed," Matt. xxy. 24. From this cause proceeds the cry of the wicked to the mountains and rocks, 'Fall on us, and hide us from the face of Him that sitteth on tho throne, and from the wrath of the Lamb," Rev. vi. 16. The sole cause of his dreadful appearance to them, lay in themselves, not in God, thus confirming the Dlvine words, "With the merciful thou wilt shew thyself merciful; with an upright man thou wilt shew thyself upright; with the pure thou wilt shew thyself pure; and with the froward thon wilt shew thyself froward," Ps. xvili. $2 E 25$. Thus, when the Word declares that the Lord is gracious, and full of compassion, slow to anger and of great mercy, and says further, "Fury is not in me," it expresses a real truth, but when in the letter of the Word, wrath and anger are ascribed to GOD,
only involves an apparent truth, for the internal sense of the Word teaohes, and the regenerated heart of every ohlld of God will tell him, that the " Lord is good, that His mercy is everlasting, and that his truth endureth ts all generations," It is most true in every casc thnt it is "evii which slays the wicked," 'or the Diving Love most intensely desires to elevate all to heaven, anc would do so in evory case, if man would on'y make use of that free wil. with which it has endowed him, to choose life and gooiness, (for man's willing co-operation in this case is indispensable), and thus suffer himseif to be lec by the Lord into heaven. The powers of evil are continually pressing for admission into man, desiring nothing more than to destroy him soul and body and arc continualls restrained from aocomplishing their infernal work by nothing less ihan infinite power, but when infinite wisdom, or the D vare prowidence, perceives that the remozal of the wicked is necessary for tlie preservation of tile good, the law of permission can no !onger be writhhela, ard evi! agents pertorm the evil wort, and this actunliy appears to be as if dcrie by the Loro, and is so expressed in the Word. "Ho slew famurs kings, for His mercy endureth for over," "He sent evil aagers among them," and so on. Many other things are dese:ibed in he Word according to appearances, such for instance as the Lond zepenting, being grieved at the heart, \&c., the internal sense of these expressions being very differcut from what appears in the letter,

We will
Blesesmd J ought to doling this wheu wo 8 Apostles on Redeemer h theright he Humanity given unto of the Godi After the worshipped further that thou art Go that in them saying, Lori
Concernin
[by whom ar that rat on t1 and cast theil recelvo glory for thy pleas ver. 10 recor ing the hoste gave utterand they sung a n open the seals by Thy blood and hast mad the earth." and glorificati Suvlour, thus in the song wl fied: as an acl art worthy to the Redoemer by Thy blood,' our GoD kings signilied, that in love from dis will be in His GoD of heaven that liveth for the Lord alon His Humanity and Saviour, w this it is recor of thousands, Lamb that was strength, and 1 glorification fro to the Lord' diviue good, di in hearen, aud o and all that a glory, and pow the LAMB for e and glorificatio from eternity a and the church from Him in t beheld, and 10 nations, and tri LaMB, clothed
eno thought or our body, It tells us It telle un ie earth, but

It telis us nd children, th be Christ's to be underd vengeance e that to the children of id always err v. 10. Their f Gomorrah : their wine is xxxil. 8233. of wickedicousequence "the glory of" on of israel," 1, Nadab aund iseven, in tho lat is good or f Israel; and ire stone, and ow mark the rious aspects It was only evil eye"by where he had latt. xxv. 24. zountains and sitteth on the e sole cause of iod, thus conshew thyself ght; with the on wilt shew declares that - and of great a real truth, ribed to GOD, of the Word will tell him, that his truth hat it is " cevil sel, desires to n would on'y to choose life ndispensable), rue powers of iring nothing Us restruined Ihan intinite ce, perceives vation of the o evi! agents f dorie by the sings, for His bem,' and so ng to appearrieved at the very different

We will now procoed to oonclude the graterfl task of shewmg that rne Blyssed Juses is the only OnL Trus Object of worship, and as such, ought to be recognized in the Church, and by every hnman being. In doligg this we do not anticipate any oblections from professed Chriatians, when wo say that it would bo quite safo to emulate the example of the Apostles oun earth and that of the angels in heaven. After our Blessed Redeomer had ascended up on high, it is written, that he eat down "on the right hand of God." By thfs is signifled, that Ho even as to His Humanity took possession of Divine Ómnipotenoe, having "all power given unto Him in heaven and in earth," for in Him dwelt all the fuiness of the Godhead bodlly, Col. 11. 9. .
After the ascension, it is written concerning the disciples, "And they worshipped him, and returned to Jerusalem with great Joy." We read further that "they lifted up their voice with one accord and said, LORD thou art GoD, which hast made heaven and earth, and the sea, and all that in them is," Acts iv. 24. And Stephen died, "calling upon GoD, and saying, Lond J zesus receive my spirit,' Acts vil. 59.
Concerning worship in heaven, we read that "the four and twenty elders (by whom are signitled the superior angelic powera), fell down before Him that sat on the throne and worshipped Hin: that liveth for ever and ever, and cast their crowns before the throne saying, Thou art worthy O Lord to receive glory and honour and power; for thoa hast created all things and for thy pleasure they are and were oreated," Rov. iv. 10, 11. Chapter v. ver. 10 records that "the four beasts and four and twenty elders, [signifying the hosts in the nuperior heavens], fell down before the Lamb, and gave utterance to the sublime glorification recorded in ver. 9. 10. "1 And they sung a new song, saying, Thou art worthy to take the Book and to open the seals thereof; for Thou wast slain; and hast redeemed us to GoD by Thy blood out of every kindred, and tongue, and poople, and nation; and hast made us unto our GoD kings and priests, and we shall reign on the earth." "And they sung a new song," gignifies an acknowledgment and glorification of the Lord, that He alone is the Judge, Redeemer and Suviour, thus the GOD of heaven and earth. These things are contained in the song which they sung, and the things they contain are also signifled : as an acknowledgment that the Lord is the Judge in this: "Thou art worthy to take the Book and to open the seals thereof." That He is the Redoemer in this, "For Thou wast slain, and hast redeemed us to GoD by Thy blood," that He is the Saviour in this, "Thon hast made us unto our GoD kings and priests, and we shall reign on the earth," by which is signified, that from the Lord they are in wisdom from divine truths, and in love from divine good, for all such are spiritual kings and priests, and will be in His kingdom, He in them, and they in Him: that He is the God of heaven and earth, in this: "They fell down and worshipped Him that liveth for ever and ever,'" see ver. 14. Since the acknowledgement of the LORD alone as the GOD of heaven and earth, and of the Divinity of His Humanity, and that in no other way could He be called a Redeemer and Saviour, was not before in the Church, it is called a new song. After this it is recorded that ten thousand times ten thousand and thousauds of thousands, were heard saying, with a loud voice, "Worthy is the Lamb that was slain, to receive power; and riches, and wisdom, and strength, and honour and glory, and blessing," denoting confession and glorification from the heart, by the angels of the inferior heavens, that to the Lord's Divine Humanity belong Omnipotence, Omniscience, divine good, divine truth, and ail felicity, "And every oreature whieh is in heaven, aud on the earth, and under the earth, and such as are in the sea, and all that are in them heard I saying, Blessing, and honour, and glory, and power, be unto Him who sitteth upon the throne, and unto the Lamb for ever and ever," ver. 18. By which is signiffed, confession and glorification by the angels of the lowest heavens, that in the Lord from eternity and thence in His Divine Humanity, is the all of heaven and the church, divine good, and divine trath, and divine power, and from Him in those who are in heaven and the church, "After this I beheld, and lo a great multitude which no man could number, of all nations, and tribes, and tongues, stood before the throne and before the Lamb, clothed with white robes and palms in their hands; and cried

24

 APPRNDIX TKO THE ABTIZANS'_QULDE throme, and to the Thue." chisp. V1. 9, 10. To ory with a loud roioe Eig. nIfen an acknowled gment from the heart that the LORD is their Savlour. "Solyadgn to air Lis fhat atteth pyon the throme, and to the Iuxs;"
 from Him, thys that He is thei" P 3deemer apd Saviour. By Bim that ditteth upon the throze, and tue LAYB is mont the LoRD alone; by Him that eltteth ripon the thrgne Ele Divinity from whoh He came forth; and by the finus," Hits DiFire Humanity. That one Being is meant, may bo seen confirmed by vor. 17, where the Lixus is deecribod as boling in the midet of the shrope. "And, all the angels atood ropnd about the arone, and abont tho elders and the four beasti, and foll down berore Gop op thet face and worihlpped CoD, eying, Amen, blewing end glory and widam, and thanlagiving, ind honour, and power, and might, 69 phtp our Gar for ever ond ever, Amen," ver. 11, 13. B7 this ereat company is signized, all in the unitrersal heaven; "And toll hefore the throne on, thetr Aces and warkhipped GOD," Bymihes, the humiliation of their hamet, ond from hnmiliation, edortion of the Load. "Blessing. and slors, ati 2 widom, apd thanisgiving," signifies the divine pirituai things of the Lopp; "i and honour and power and m/ght," signines the divine pelatitiotithes or to 工omp; "Be unto our GoD for ever and ever,' 'ignifiee these fhing ingthe Lopi, and from the Lond to eternity
 Worth are become the zingdome of our Lomp and of his Chriat, and Hie shat reign for ever and ever "Rev. \mathbf{x}. 15 , signifies, celebration by the angele, heoause haviven and the Cburch are become the Lord's as they wrore irgm tho beginning and becarie they are now in subjection also to Him Divino qumanity, coneguently that now, both as to His Humanity and Divinity, the Jond will reign over hearen and tho church to eternity. "And the cpur and twenty uldera, that sat before God on their thronep, Goll on their face, and worshipped God," ver. 16, sighifes an aoknowledsyent by ali the angels of herven, that the yorp listhe GoD of hearion and, earth, and qupreme adoration saying "We give theo thanks, 0 LOsp Gop ALMIGEXY, who art, who wast, and who ert to pome", ver. 17. aignifes a confeciog and gorification by the angels of heaven, that it is the LORD who is, who has life and power from Himself, and who rules all things, hecause He alone is eternal and Infinite; "beopuse thou hast takoi" thy great power and hast reigned," ver. 17, sifnites the new heaven aud the new Church where they acknowledge Him to be the only GoD. "And theysing the song of Mowes, theservant of God, and the song of the Lsmb," Rev. XF. 8, 4, signifies, a confestion groundedin charity, and in a life qucordig to the commandment of the Caw, which is, the degalogue, ardin a, belief in the Divinity of the LokD's Homanity ; saring, "Groat and marrellous Rre Thy works, Lozd GoD ALueryx," aigniacs that all things in the worid, in heaven, and in the Charch were created and made by the Loxp, from divine love by Divine Wisdom. "Just and true are Thy ways, Thou King of saints," signifes, Chat all things which proceed from Him are just and true because He is divine good and divine trath in heaven and in the Churoh; "Who shall aot fear thee, 0 Lond and glority thy name," signifies, thit He alone is o be loved and worghipped; "For Thop only art holy" signifies that Ge is the Word, the truth and the illu reion. "For all nations shall come and worship before thes," algnilfes, wat all who are in the good of Inve and charity, will acknowledge the Lozd to be the only God. "For Thy judgments are made manifert," aligniffes, that the truthe of the Word plainly teatity it. "And a voice came out of the throne, eaying, Praise our God, all ye His servants, and ye that fear Him," Rev. xix. D., signifien, infux from the Lomp into heaven and consequent unanimity If tine angels, that all who are in the traths of falth and goods of love ihonld worehty the LORD as the only GoD of heaven. "Both smalt and great," signiffes, those who in a greater or lesser degree worship the LomD from the truths of faith and goods of love. "And I heard as it were the rolee of a great multitude, and as the rolce of many waters, and the the voice of many thunders, saying. Allela isi for the Lorep GoD OMMIPOTENT reigueth," ver. 6, slgnfiea, the joy of the angela of the

atiow

at iftreth apon the ith a loud votco sig. RD is their Sarloar. and to the Layci; to selvation of all is our. By Bim that the Lorn aloze; by om which He came
That one Being is yys is deforibed as ls stood romía about ind fell down beiore Amen, blesing end d power, and might, 12. By this great - And fell before the s, the hatmiliation of Losp. "Blensing. - the divine piritual mi/ght," signilies the Ir Gop for ever and ho Lors to eternity Che tingdoms of the (His Christ, and Hio s, celegration by the a the Lord's is they in subjection also to as to his Humarity if the charch to eterbefore God on their ver. 16, bighifies an the Jord lithe God ing "We give thee wast, and who art to ton by the angels of power trom Himself, bternal and infinite; Lst reigned," ver. 17, re they acknowledge of Yones, the servant ignifies, a confeasion ommandments of the ivinity of the Lors's y works, LOED GOD In heaven, and in the divine love by Divine I of saints," Algnifles, I true, because He is thuroh; "Who shall iffes, that He alone is tholy." signifies that For all nations shall ho are in the good of the only God. "For the truths of the f the throne, saring, r Him," Rev. xix. S. onsequent ananimity th and goods of lore - Both smali and degree worship the "And 1 heard as it ice of many waters, bif for the Lored GOD of the angels of the

 the highest hearen; beanue the Loxn alone roisn in the Chureh which is now about to come, dirnifed by the Bulde ane Iray? wion, or the newr Jeraialam mentloned in ver. 8 , 8, and ohap. zad, 2.4.
In order to banieh all doubt es to: who is mont by the tormichodis

 Divine truth. "I am Alpha mid Omen, the Hegloning end the tad," signffee, that the Loni if the Gop or henven and earth, mal that. of thinge In the heaven and earth kere made hy Eum, and areforemad byt His Divine Providetce and doive cocording to it. "If will. dive unto him that is athirat of the fountalin of the trator or ifo frealy,? aigamem, that tothose who dealre truthe from any spirtual wes the: Cond will give from Himself through the Word, "He thatovercomethrehelijnherit all thinges: and I. WILL BIEIS GOD, and he shall be my sonj" digeifen, that they, who overcome evil in themselven, that fo, the devi, or the love of cell and theworld and do not yield or sink in temptations, will go to heaven, and. there live in the Lomp and the Lomp in thom, Thit ? the temimony of Jrasis. Let it be suppleinented by: the tecthmons of the mpel: "Frear not; for behold I bringi yoin good tidinge of greal. joge whioh ohiall be to all people. For unto youtio born this daj in the olts oin David, msarrouth
 received divipe honours and yorehip when on enth masi heseon, Matt, ix;
 16.
it is known from the acionce of correspondenger thet such meantinge. are actually involyedin the abope mentionad pacesee of Soripture, yea, and mach more, for each expresiton being from enivine origin embodien within itself infinitely more than man or angel oum ever comprehendy But we have seen enough to convince nis that, the Lomp is in remy deed. the anpreme GoD of heaven and garthit in whon fathe. Divine Trinite of Father, 8 on and Holy Spirit. ifl Now the LORD is thet Epirit, sma where the Spirit of the Lopd in, there is liberts," 2: Coni II. IV. Gothon, mel friend, to this Saviout Gop, who once for your cake" beopapel" al Mon of sorrows and acquainted with grief" "parve time by obtivg Lis oomponed:mente, dray near to Him at all times with hamilly, levej nad hith: unfelgned; for He wil have meros, ahd you will theer awond behind yon, saying, Thie is the wes, walk ye in itio Imijxxz. 21, Conide in: Him during every trial and under every dificulty, and you willindoed find that the eternal GoD is thy pefugeg and thet underncath thee if the everlasting arms. In every wenk and doubtrul state ile will impert strength by laying "Hio right hand upon yovi seying, Fear not; I amptho First and the Last," Revi. 17. Iet all aot thne and the time will be present concerning whioh it is written :" And the Lozs bhell be Fing over sll the earth; in that day there shalf he_one. Lomp and His pame ONE," Zec. xiv. 9.
Such is the Dootrine of the LORD as tanght in the Word; and puch was the doetrine held by the apostlen ahd the primitive Caristian Chanch (es may. be ween by consulting the writinga of the early Fathera), until the time of the council, convened at Nice, in Bithynia, by command of the Emperor Constantine, A:D. 325. This was called for the purpose of repressing the Arian heresy, and a creed, the first that ever reoognizedthe existence of three dielinct Persons In the Trinity, wes drewn up, by Hosins of Corduba; at the instance of this counoil, and henee was called the Nicene Creed. What is called the Athanestan Greed came out about a centiry later, but it is now known that Athanaeing neves composed it. The asoertions and olaims of this last mentioned document are really asiourding, and none can beignorant of the powerful efforte put forth in. England by all olxsses of the people, amony them the very higheat dignitaries of the Knglish Churoh; to exolude it from the Iiturg:
from the doetrine of Three Persons in the Godhemdise tanght bs theme creeds, flow many other doctrinen equally inimical to trith, as for instance, that God the Father imputes the merit and riginteormenes of Hifs Son to those who believe that he died for them, and that Chriet having obeyed the law in our room and stead, we are thereby ezemptod from all
obligation to obey it except as an nutward rale of life, thas nullifying and making of none effeot the spirituallty of those commaudments of which it is gald, that "if a man do, he ehall ive in them," Levit. xviii. 5 .
It is certainly true that man has, and can have, no goodness or righteousness but what emanates from the Lout alone, from whioh ground $\mathrm{I}_{4} e$ is called "Juhovah our Righteougnese;" Jér: xixiii. 16. It is also true that the Lord's method of imparting this Highteousness involves continual warfare against evils as sins, on the part of man, for goodness can ouly enter as evils are expelled, but this is a very different thing from the impatation of the Lord's merit and righteousness, whioh is divine, infinite, and eternal, for it is no more possible to ascribe, impute, or adjoin, what is divine, infinite and eternal to any human beling, than itis to clothe him with the attributes of Omnipotence, and empower him to create a aniverse. It would be liko plunging him Into a furnace heated sevenfold. which would consume him in a moment. The righteous Lord can never recognize any righteousness in a man which has not been implanted in his lffe. Christ says, that He "shall reward every man acoording to his works." Matt. xvi. 27, Rev. 1i. 23, xx. 12, 13, xxii. 12. 1t is never said according to his belief, but according to his works. "And it shall be our righteousness if we observe to do all these commandments before Jinovar our God, as He hath commanded us," Deut. vi. 25.' "I command theo this day to love Jeriovar thy God, and to keep His commandments aud His statutes and His judgments, that thon mayest live," Deut. xxx. 16. "Ye ahall command your children to observe to do ail the words of this law. For it is not a vain thing for you, because it is your life," chap. xxxi1. 46, 47. Concerning the violation of His law it is vritten, "O that they were wise, that they understood this, that they would consider their latter end," ver. 29. And in Isaiah: "O that thou hadst hearkened to my commandmente, then had thy peace been as a river, and thy righteousness as the waves of the sea," chap. xivili. 18, "I will recompense them according to their deede, and acoording to the works of their own hand," Jer. xx7. 14. "Thine eyes are opon upon all the ways of the children of men, to give to every one according to his ways, and according to the fruit of his doings," xxxii. 19, "He hath ahewed thee. O man, what is good; and what doth Jehovar require of thee but to do justiy, to love meroy, and to walk hambly with thy GoD," Micah vi. 8, "According to our ways and according to our doings, so hath he dealt with us," Zech. I. 6, "Every one who heareth these sayings of mine and doeth them, I will liken him unto a wise man who built his house upon a rock-and every one who heareth these sayings of mine and doeth them not; shall be likened unto a foolish man who built his house upon the sand,"' Matt. vil. 24, 28, "And why call ye me Lord, Lord, and do not the things which 1 say," Lake vi. 46, "They that have done good shall come forth to the resarrection of life," John v; 29 , "1f ye know these things, happy are ye if ye do them," John xili. 17 , "Herein is my Father glorified, that ye bear much fruit," John xv. 8 , "If ye keep my commandments ye shali ablde in my love," $v .10$, "Ye are my friends if $y \theta$ do whatsoever I command you," v, 14. "He thai hath my commanáments, and keepeth them, he it is that loveth me," xiv. 21, "Circumcision is nothing and uncircumsion is nothing, but the keeping of the commandments of God," 1 Cor. vil. 19, "For this is the love of God that, we keep His commandments, and His commandments are not grievous," 1 Jolin v. ., "Ye see then how by works a man is justified and not by falth only,"' James ii. 24. When it is said "that a man is justifled by faith, without the deeds of the law," Rom. iii. 28, we are to understand this pessage as having solo reference to the law of outward circumcision and external washings and purifyings, which being merely representative rites, were abolished by the coming of Christ, see v. 3n, Acts xvi. 1-24. In what way written to the seven ohurches in Asia (by whom is represented the Churoh of Christ as to every possible state), the Searcher of hearts states in erch and every case, "I know thy works," and rewards are proraised to those who overcome eviis in themselves, or, what is the same, obey the commardments. These rewards are described in a figurative manner by corterpondouzes, whioh in the internal sense are significative of every varuty o.' howvenly joy, and supreme felicity.

Ever inclina inciln inher? them. nal age desires begins. self(an and $a b$ acourse the con not rest that evi the ext fear, or doing it say that confess evils, to gulity, t GoD, it to desist heart to a new 1
As to the nat able Red away th mouth." at the ver ties, incli from a 10 Saviour 1 hath bor strioken, transgress our peac Lord hat ditary evi through thousand these evil vanquishe Divinity. this woric overcome "To him as I also
In no Humanity tual enem ing fire, ul By tempta principalit His Hume Saviour to every child follow his
It may coutaius a union of g is the case be necessa what man
as nullifying and dments of which t. xvili. 5.
nees or righteons. ch ground the is 6. It is also true avolves continual odness can ouly thing from the which is 'divine, impute, or adjoin', ban itis to olotho him to oreate a heated sevenfold, Lord can never epn inplanted in according to his It is never said nd it shall be our sbefore J кinovar I command thee nmandments and " Deut. xxx. 16. the words of this your life," "bap. vritten, " 0 that uld consider their dst hearkened to and thy righteoutrucompense them their own hand," of the children of according to the O, O man, what is do justly, to love 3, "Aceording to with us," Zech. 1, loeth them, I will rock-and every em not, shall he sand,', Matt. vii. 1e things which 1 ome forth to the pgs, happy are ye Gorifled, that ye ndments ye shall do whatsoever I nts, and keepeth nothing and uniments of GOD," p Hiscommandin Y. 3, "Ye see only," James ii. hout the deeds of o as having solo al washings and abolished by the is written to the roh of Christ as eich and every those who overcommardments. orieapo. deazes, ety oz hequenly

Every man is born into the world with evil propensities and depraved Inolinations, derived from a long line of ancestors. These propensities and inclinations, are not imputer to man as sins, beeause they have been inherited through heredit ary transmission, and thus he cannot prevent them. But these deprived affections are the avenues through which infernal agencies flow in as a flood and tompt man by the inseminaticn of evil desires and wioked thoughts, and it isjust here where man's responeibility begins. If he, by virtue of the free will given him by God, compels himself [and in this compulsion there exists the highest freedom], to resist and abhor these evil desires and thoughts, and turns from them as aconrsed and abomiuable, and does that which is just and right, he obeys the commandments, and saves his soul. If, on the other hand, he does not restrain himself, but yieids to temptation, if in his heart he thinks that evil is permissible, even though he does not actually carry it out to the extreme of actual perpetration, for want of opportunity, or through fear, or other causes, in this case he makes it his own by loving it, and doing it whenever he can; and thus disobeys the commandments which say that evils are not to be done. "He who is willing to be saved, must confess his sins and do the work of repentance. To confess sins is to know evils, to see them in himself, to acknowledge them, to make himseif guilty, to condemn himseli on account of them; when this is done before God, it oonstitutes the confession of sins. To do the work of repent ance is to desist from sins, when he has chus confessed them, and from an humble heart to make supplication concerning remission, and it is further to lead a new llfe according to the precepts of faith."
As to what has been alieged in the above statements concerning the nature of every man born into the world, even our adorable Redeemer was no exception. He, "the Lamb of God which taketh away the sin of the world," did no sin, neither was guile found in His mouth." But for the sake of man's salvation, he assumed the Hu manity, at the very lowest and darkest hour of its existence, with all its infirmities, inclinations to evil, and liability to temptation and suffering, derived from a long line of ancestry, through Mary. In no other way could the Savionr be said to bear the sins of mankind, as it is written, "Surely He hath borne our griefs, and carried our sorrows; yet we did esteem him stricken, smitten of GoD, and afflicted. But he was wounded for our transgressions, he was bruised for our iniquities; the chustisement of our peace was upon him; and with his stripes we are healed,-and the Lord hath laid on him the iniquity of us all," Isa. liii. 5, 7. These hereditary evils in the corm of the love of self and the world, were the channeis through which the powers of darkness assaulted Him in temptations a thousand times more grievous than any man could possibly sustain, and these evils, together with the whole infernal crew, He overcame and vanquished by means of His own proper power; through the indwelling Divinity. From this ground He said to His disciples: "The prince of this world oometh, and hath nothing in me," Be of good oheer, I have overcome the world," "I beheld Satan, as lightning, fall from heaven," "To him that overcometh will I grant to sit with me on my throne, even as I also overcame," Rev. ili. 21.
In no other way could he becorae a Saviour than by assuming the Humanity, and thus coming nearer the eame plane as that of the spiritual enemies of mankind, for in His ebsolute Divinity, God is a consum. ing fire, unapproachable by any angel, much less by an infernal spirit. By temptatious, sufferings and continual victories over evil, He uvercame principalities and powers, triumphing over them on His cross, glorified His Humaulty and made it Divine, and is now exalted a Prince and a Saviour to give repentance and remission of sins. In His Divine example, every child of God may see that his duty is plain to take uphis cross and follow his Blossod Lord in the regeneration.
It may now be visible to all who are willing to see, that the scripture coutaius a spirituai as weli as a natural sense, and that it is pervaded by a union of good and truth, or love and wisdom, the instances in which this is the case boing so numerous that in order to adduce them all, it wouid be neeessary to transcribe the entire Word. It may be further seen in what manner the science of correspondences serves to unfold the spiritual
sense of the. Word, bat great diffloulty has been felt from wrint of apace to illustrate each topic by parallel pastages from the Sacred writinge, and I am most reluctantly compelled to omit the notice of thousands of nther matters whioh would be most highly instruotive, for there is noth ig mentioned in the Soriptures, not even the malleat jot or tit ${ }^{+19}$, bet w at is pregnant with divine wiedom; and this by reason of the $\mathrm{s} ;$. ymiuih, that in the inmost of the WORD; the LORD ALONE IE. Eveni, the historicale of the Word, such as the journeys of the Israelites, we have a parfect counterpart of the journey of every Christiai from the Egypt of a natural state; to his triumphant entry into the heavenly Canaan, together with the while arcank of his re veration, all written by the Inger of God, and desoribed by mere corresi in lences. The first chapters of Geneeis, apparently descriptive of the of : $10 n$ of the natural universe, Adam and Eve, the garden of Bden, the tree of life; and of the knowledge of good and evil, the serpent; Caln and Abel, the food, Noah, and the other patriarchs, the ark, the tower of Babcl, etc., down to the end of the eleventh chapter of Genesis, will be found, when interpreted by the science in question, to contain the most wionderful embodiment of divine trath ever unfolded to the worid. This solence will enable us to hirmonize every apparent diserpepainey in the letter of the Word, and understand all passages which are otherwise inexplicable, and is not such sistndy deserving of the attention of every ope, since in these latter days, the LORD GOD the Bavlour has been most graciously pleased to disciose the knowledge of it, so that what hat hitherto lain most deeply concealed is now made manifeet in the olearest light, and the transcendant importance of the disclosure is such that this is in very truth what' is denoted by "the Son of Man corning in the clouds of heaven," which was to take place at the consummntion of the agg, or ohuroh, erroneouily transiated, "end of the world." These revelations and disclosures have been made through a man whom the Lord raised up, prepared, instructed, and filled with Bis spirit; so that he might reduce them to writing, and that thue they might be printed and preserved for the use of His ohurch through sucoeeding generations. That man whis Emanuel Swedenborg, and these nufolding of the epintunl sense of the Word are to be found in his theo!ogical writings, to which I would refer all who take delight in the study of cife scripturee, for no lover of truth can fidl to be both delighted and astonished, at the profundity and variety of the iminense mass of knowledge presented in' relation to the spiritual sense of the Word, heaven and hell, and the life of man after death. The subjectes so imperfectly treated in this brief sketch; anid many thousands besides, will be found in those writings to be treated with the full measure of that elaborate justice which they deserve. Every entence seems to oonfirm and' verify their author's olaim that he 'was'oalied and prepared for this holy office by the Lord Himself, for most assuredily nothing: short of supernatural Illumination could enable any one to make suoh statements; and impart such knowledges as are contalned in these books. The exalted pleasurd derived from the stady of these writings is the sole reason for recommending them to the conisideration of others; and 1 take much pleasure in appending the namee of the different books, with a few collateral works, together with the addresses of responsible partios from whon they may be procured. see list on last page. The theological writings would fll about thirty octavo volumes of 500 pages each, snd his philosophtcal works, written anterior to his 11 umination, would fill as much more, making abont sincy volumes in all. It is deemed proper to state that the writer has no pecuniary interest in the sale of these books, the partics whose addresses are given on the last page haring at this time, March 1878, no intimation whatever, that any auch notioe as this is intended; farthermore, what has been adduced in this appendix hac been done from a love of the truth, and from no desire for emolument of any kind.
The lllustrious Swedenborg, who died March, 29, 1772, was a Swedish nobleman, held in high reapect by the royal family of Sweden, and was certainly one of the most extraordinary and learned men who ever lived. The celebrated' ehemist Bereilius; says of Swedenborg's "Animal kingdom:" " 1 have been surprised to find how the mind of swedenborg has preceded the present state of knowledge, writing his work at the time he did." The Rev. John Clowes of Manchester, Englard, writes as follows,
"The author of this memoir cannot conclude his narrative without offer. ing up to the Father of morcies his most devont and grateful acknowiedge. ments, for the extraordinary priflege and inestimable blesising ruuchsafed him in having been admitted to the knowledge and acknowledgement of the truth and importance of the doctrinee unioided by Swedenborg from the Word of GoD as the genuine doctrines of christianity.". This gentleman translated Swedenborg's largest work, the "A-cain Coelesta,", In ten octaro volumes, from the Latin into English. Professor Gorres of Germany, writes as follows, "Throughout the entire career of his learned researches and activity, we every where discover the pious and, religious man, who in all his sayings and doings, was intent upon good, Dr. Gabrlel A: Beyer, professor of Greek literature in Gottenburg; in a long declaration respecting the doctrines taught by Swedenborg, aelivered iñ obadience to the royal comise nd, Jan 2nd., 1772, conoludes thus, "I have fouvid in them nothing but what closely coincides with the words of the Lord Himself, and that they shine with a light truly divine." Gen. Christian Taxen, a personal acquaintance of Swedenborg's, and Coramisisianer of War under the King of Denmark, states in a letter, "For my part I thank our L; RD the GOD of heaven, that I have been acquainted with this great man and his writings; I esteem thls as the greatest blessing I ever experienced in this life:" The Rey. Dr. Hartley, late Rector of Winwiok, Northamptonshire, England, the translator of Swedenborg's "Heaven and Hell," writes thus, "I have found him to be the good divine, the good man; the deep philosopher, the universal scholar, the polite gentleman ; and I further believe that he had a high degree of the Spirit of GoD, and was commissioned by Him as an extraordinary messenger to the world." Let the enquirer after further evidence prooure the " Docnments concerning Swedenborg," compiled by Dr. Tafel and Professor Bush, and he will find a volume filled with evidence similar to this. The "Statement of Reasons for embracing the Doctrines and Disclosures of Emanuel Swedenborg," by Prof. Bush, will also prove of great interest. The "True Christian Religion" is a good work for beginners, being the last writton by Swedeniorg. In it he says, "The particulars of faith on man's part are, 1. Tnat GOD is one, in whom there is a Divine Trinity, and that He is tho Lord God and Saviour Jegids Christ. 2. That saving faith is to believe on Him. 3. That evil actions onght not to be done because they are of the devil, and from the devil. 4. That good actions ought to be done, because they are of God, and from Gov. 5. And that a man shall do them as of Himself, nevertheless undor this belief, that they are from the LORD, operating with him and by him. The first two papticulars have relation to fa'th; the next two to Charity ; and the last respects the conjunction of cuarity and faith, and thereby of the LORD and man. In his."Doctrino of Life"' he states, "All religion has relation to life, aind the life of religion is to do good." Eisewhere he states, "There are five classes of those who read my writings. The frst reject them entirely, because they are in another persuasion, or becanse they are in no fatth. The second receive them as scientifics, or as objects of mere cuiriosity. The third recelve them inteliectually, and are in some measure pleased with them, but whenever they require an application to regulate their lives, they remain where they were before. The fourth receive them in a persuasive, manner, and are thereby led, in a certain degree to amend their lives and perform uses. The ffth rective them with delight, and confirm them in their lives." Dear reader, to which class will you belong? The following "Rules of Life," were found among the writings of this great and good man. 1: Often to read and meditate on the WORD of GoD. 2. To submiteverything to the will of the Divine Providence. 3. To observe in everythinc a propriety of behaviour, and to keep the consclence clear, 4. To obey that which is ordained, to be falthful in the disoharge of the duties of our employment, and to do everything in our power to render oursel ves as universally useful as possible. His motto, "The Lord will Provide."
Regarding the happiness of heaven, we quote the following from the writings of this illumined author.
"It Is said in heaven, that innocence dwells in wisdom, and that the angels have wisdom in proportion as they have innocence. That this is the case they confirm from those considerations : That they who are in a

30

 APPENDIX TO THE ARTIZANS GUIDE. -ntate of innocence attribute nothing of good to themselves, butconsider themselves only as receivers and ascribe all to the Lord; that they are desirous to be led by him, and not by themselves; that they love every thing which is good, and are delighted with every thing which is true, because they know and perceive that tolove what is goor, thus to will and do it is to love the LorD, and to love what is true is to love their neighbor ; that they live contented with what they have, whether it be little or much, because they know that they receive as much as is profitable for them, little iflittle be proftable, and much if much, and that they themselves do not know. What is proftable for them, because this is known only to the Lorid, who hath a view to what is eternal in all the operations of His providence." "All who are in the good of innocence are affected by innocenco, and so far as any one is in that good, so far he is affected. The inmost principles of heaven are two, viz., innocence and peace. They are termed inmost principles, because they proceed immediately from the Iord. Innocence is that principle from which is derived every good of heaven, and peave is that principle from which is derived all the delight of heaven. Every good is attended with delight ; and both good and delight have relation to love ; for whatever is loved is called good, and is perceived as delightful ; hence it follows, that those two inmost principles, innocence and peace, proceed from the divine love of the LORD, and affect the angels from an fnmost ground." "The divine sphere of peace in heaven flows from the Lord, and exists in consequence of His conjunction with the angels of heaven, and in particular in consequence of the conjunction of good and truth in every angel. These are the origins of pesce, whence it may be evident that peace in heaven is the Divine sphere inmostly affecting with blessedness every principle of good there, thus acting as the source of of all the joy of heaven; and that in its essence it is the joy of the Lord's divine love, resulting from His conjunction with heaven and with every one there. This joy perceived by the Lord in the angels, and by the angels from the Lozipis peace. ; Hence, by derivation, tbe angels hare every, blessedness, delight and happiness, or that which is termed beavenly joy." "Every one may know, that when man leaves the external or nataral man he comes into the internal or spiritual ; whence it nay be known that heavenly delight is internal or spiritual, but not ezternal or natural ; and since it is internal and spiritual, that it is purer and more exquisite, and that it affects the interiors of man, which are the foc-ilties of his soul or spirit," "The delights of heaven are ineffable, and lizewise innumerable. But of those innumerable delights not one of them ean he known or credited by him who is in the mere delight of the body or of the flesh ; since his interiors look away from heaven and towards the world, that is, backwards. Wherefore a person of this description would Tonder greatly, if he were only told that there are delights existing when the delights of honor and gain are removed; and ctill more if he were told, that the delights of heaven succeeding in their place are innumerable, and are such that the delights of the body and the flesh, which are 1:hiefly the desires of honor and gain, cannot be compared with them. Hence, the reason is evident, why it is not known what heaveniy joy is." TThe angelic life consists in use, and in doing good works from oharity. Yor nothing is more delightful to the angels tinan to instruct and teach Noirits roming from the worid, to serve mankind by inspiring them with That: is 3ood, and by restraining the evil spirits attendaut on them from jassing their proper bounds, to raise up the dead to eternal 1 fe . and afterjards, it their souis be of such a quality as to render it possible, to introduco them into heayen. In the performance of these offices they perceive in injeacribable dogree of delight. Thus they become images of the Lord ; for they love their neighbour more than themselves, and where this feel'ng exists, there is heaven. Angelic happiness, then, is in use, from use, and according to nse, or, in other words, it is, perceived during the pertormance of the good offces of love and charity." "Heavenly joy Itself, such as it is in its essence, cannot be described, because it has its seat in the inmost grounds of the life of the angels, and thence in every particular of their thoughts and affections, and from these again in every particular of their speech and actions. It is as if the interiors were fully expanded to the reception of delight and blessedness, which is diffused

Into: tion meno propa Goud np int sphere aswoc what me by expert be saic delight nevs th flbre is percep Tho Joy pung on that wh interior this wa
Regar
" Reave
"Evi ishment from th but fron they can more th they like tected b heart, sil spirita rv is-whic hell, hat have th not bein have nnc conscien press th is the he is meant meant b meant•b hells, th of fiery from bu is not ser smoke. . immerse to fire a ing to a evil flow place in ing othe and whe by no ex tation, o own evi and red exercise socleties another "As reb desires t

fAPPIPNDIX TO TEA ARTIZANS' GUIDE.

but'consider that they are ey love every rhich is true, us to will and e their ngigh: it be little or profitable for at they themis known only rations of Hls θ affected by affected. The ce. They are ely from the svery good of the delight of d and delight d, and is perost principles, nD, and affect e of peace in ©His conjuncaquence of the the origins of Divine ephere dd there, thus ts essence it is junction with Lord in the by derivation,' that which is man leaves the tuai ; whence itual, but not hat it is purer which are the ineffable, and t one of them of the body or d towards the ription would xisting when ore if he were e innumerah , which are with them, veniy joy is." rom charity. ot and teach ig them with n them from fe, and afterble, to introhey perceive mages of the , and where n, is in use, gived during Teavenly joy lse it has its nce in every ain in every 8 were fully is diffused

Into all the fibres, and thos throngi the whole angel ; whence its perception and sensation are such as to admit of no description ; for what commences from the inmost parts, flows into all derived from them, and propagates itself with continued augmentation towards the exteriors. Goud apirits who are not as yet in that delight, because not as yet raised np into heaven, when they perceive it emanating from an angel by the sphere of his love, are filled with such delight that they fall as it were into a swoon, through the sweetness of the sensation." "That I might know what is the nature of the delights of heavenly joys, it hath been granted me by the Lord to perceive them; wherefore, gince I have had living experience, I can know, but not at all describe them ; yet something shall be baid to give some idea of them. It was perceived that the joy and delight came as from the heart, diffusing themselves with the utmost softnevg through all the inmost fibres with such a sense of enjoyment, that the fibre is as it were nothing but joy and delight ; and in ilke manner every perception and sensation thence derived, receiving its life from happiness. Tho joy of bodily pleasures, compared with these joys, is as a gross and pungont clot compared with a pure and most gentie aura. It was observed that whon I wrs desirous to transfer all my delight to another, a more interior and fuller delight flowed in its place, and it was perceived that this was from tho LORD."

$$
=-1-\ln -\ln
$$

Regarding the punishments of the wicked we extract the following from "Heaven and Hell."
"Evil spirits are severely punished In the world of spirits, that by punishments they may be deterred from doing evil. This appears as if it were from the Lord, when yet nothing of punishment comes from the Lord but from ovil itself. For evil is so conjoined voith its ovon punishment that they cannot be separated. The infernal crew desire and love nothing more than to do evil, especially to inflict punishment and terment; and they likewise do evil, and infliot punishment on every one who is not protected by the LORD; wherefore, when evil is done by any from an evil heart, since thls rejects from itself all protection from the Lord, infernal spirits rush in upon him who does it and punish him"-What internal fire is-which is mentioned in the Word as the portion of those who are in heil, hath as yet been nown scarcely to any one, by reason that mankind have thought materially respecting the things mentioned in the W ord, not being acquainted with its spiritual sense, wherefore by this fire some have nnderatood material fire, some torment in general, some the pangs of oonscience, and some have supposed that it is mentioned merely to impress the wicked with terror." "The spiritual heat appertaining to man is the heat of hig life, because in its essence it is love.. This heat is what is meant in the Word by fire, love to the Lord and neighbourly love being meant by heavenly fire, and self love and the love of the world being meant by infernal fire; and since such lust possesses all who are in the heils, therefore, likewise when the hells are opened, there is seen a sort of fiery appearance, with smoke issuing from it, such as is usually seen from buildings on fire. A But when these are closed, this fiery appearance is not seen, but in ite place an appearance like a dark mass of condensed smoke. It is however to be noted, that they who are in the heils are not immersed in fire, but that the fire is an appearance, for love corresponds to fire and all things whloh appear in the spiritual world appear according to correspondences." "As by infernal fire is meant every lust to do evii fowing from the love of self, by it is also meant torment such as has piace in the hells. $\begin{gathered}\text { For the lust derived from that love is the lust of hurt- }\end{gathered}$ ing others who do not honor, venerate and pay court to the subject of it; and when such lust prevails in every one, in a society which is restrained by no external bonds such as the fear of the law, and of the loss of reputation, of honor, of gain, or of lifo, every one under the impulse of his own evil, rushes upon another, and so far as he prevails, enslaves the rest and reduces them under his dominion, and from a principle of delight exercises crueity to wards those vho do noi submit. All the hells are such societies; wherefore every one there bears hatred in his heart against, another, and from hatred bursts forth into cruelty, so far as he prevails." "As rebellious disturbances constantly exist there, since every one there desires to be greatest, and burns with hatred against others hence come.
new outrages. Thns one scene is changed for another; wherefore they Who had been made slaves are taken out to help some new devil to subjugate others: when thoy who dc not submit, and yield implicit obedience, are again tormented by various methods, and 80 they go or continualiy, Suoh torments are the torments of hell, which are called infernal fire." Besides these general misaries, in the first volume of the Arcana Calestia are described a number of specific infliotions which follow the perpetrators of various orimes.

Concerning thy melinm of salvation, we quote from the Apocalypse Expolained, No. 808, "It is"known that faith grounded in love is the easential medium of salvation, and that hence it is the ohief thing of the doctrine of the Church, but inasmuch as it is of importance to know how man may be in illustration, so as to learn thetruths which must oonstitute his faith, and in affection 80 as to do the goods which must constitute his love, and this may know whether his faith be thie faith of truth, und his love the love of good, this will be shewn in its order; which is this, 1. Let a man read the Word every day, one or two chapters, and learn from a competent teacher and from preachings, the doctrines of his religion ; and eapecially, let him learn that GOD is ono, that the LORD is the GOD of heaven and earth (John, iil; 85; Chap. xvil. 2; Matt, xi, 27 ; Chap. xxviii. 18 ;) that the Word is holy, thet there is a hoaven and a hell, and that therc is a 4 fe after death. 2. Let him leam from the Word, from a competent teacher and from preachings, what works aro sins, and that they are cspecially adulteries, thofts; murders, false testimonies, and several otherg mentioned in the decalogue; likewise that lascivious and obscene thoughtsalso are adultery ; that frauds and illicit gains also are thefts ; that hatreds and revenges also aro murders ; and that lies and blaaphemies also are false testimonies; and 80 on. Let him learn all these thiugs as he advances from infancy to adoloscence. 8. When man beging to think from himself, whioh takes place after the age of adolescence; it must then be the first and primary thing with him, to desist from doing evils, because they are sins against the Word; thus against God; and that if he does them, he cannot havc etnomil life, but hell; and atterwards as be advances in years, to shun them as accursed, and turn away from them even in thought and intention. But in order to desist from t'iem; and sbun and become averse to them ho must supplicate the Lord for aid. The sins from which he must desist and which he must shun and become averse to are principally 3dulteries, frauds, illicit gains, hatreds; revenges, lies, blasphemies, and pride, and soif-oonceit. 4. In proportion as man detests those things by reason of their being against the W ord, and thence against God, in the same proportion communtcation is given him with the $\mathrm{I}^{\wedge} \mathbf{R D}_{\mathbf{d}}$ and conjunction is effected for him with heaven; for the Lord enters, and with the LORD heaven, as sins are removed; for these and their falses are the sole hindrances. The reason is, hecause man is get in the midst between heaven and hell, wherefore hell sicta from the one part, and heaven from the other in proportion therefore as evils are removed which are from hell, in the same proportion goods from heaven enter, for the LORD says, 'Behold I stand at the door and knock ; if an" man shall hear my voice, and open the door, I will come in to him." Rev. iii. 20. But if man desists from doing these evils from any other cause than because they are gins, and against the Word, and thence against GOD, conjunction with heaven is not effected for him, because he desists from himself, and not from the Lord. The Lord is in the Word, insomuch that He is called the Word, John i., 1, 2, 3, 4. because the Word is from Him ; that hence there is conjunction of heaven with the man of the Church by the Word, may be aeen in the work concerning Heaven and Hell, No. 808 to 310 . So far then as man detests those sins, 80 far good affections enter; as, for example, 80 fan as he detests adulteries, so far cliastity enters; 80 far as he detests frauds and unlawful gains, so far sincerity and justice enter, so far as he detests hatred and revenges, so far charity enters; 80 far as he de ests lies and blasphemies, so far truth enters, and so far as he detests pride and self-cont ceit, so far enterg humility before GOD, and the love of his neighbor as him. self, and so on ; from hence it follows that to shan eviis, is to do goods 6. So far as man is in these good affections, so far he is led of the LORD and not of himself, and so far as he acts from them, so far he does good
wherofore they ${ }^{W}$ devil to subjuplloit obedience, or continnally, d infernal Alre,; Arcana Caleatia the perpetrators
the Apocalypre 1 in love is the hief thing of the ce to know how 1 must constitute must constitute th of truth, and which is this, 1 . ,, and learn from ,of his reiligion; RD is the God or 7 Chap. xxviii. a hell, and that rd, trom a comis, and that they oies, and several ous and obscene oare the ths ; that blasphemies alao rese thlugg as ha ns to think from it must then be ig evile, because id that if he does Is as he advances m them even in i; and sbrn and r aid. The ains become averse to $;$ revenges, lies, n as man detests ld thence against with the \rightarrow RD Cord enters, and d their falses are n the midst bepart, and heaven toved which are er, for the Lord ${ }^{n}$ shall hear my 20. But if man because they are nction with heaff, and not from called the Word, nce there is conrd, may be seen

So far then as example, go fan o detests frauds far as he detests de ests lies and ide and self.con, neighbor as him. is to do gods (d of the lord ar he does good

Works ; beoause ho does them from the LORD and not from himself; he then aots from charity, from sincerity and justice, from charity, from truth, in humillty before Giod, and from these yo one can act of himseif. 7. Th's spiritual affections whioh aro bestowed by the Lord on tho man who is in those principles, and acte from them, are the affection of knowing and understanding the truths, and goods of heaven and the churoh, together with the affection of willing and doing them ; likewise the affeo. fion attended with zeal of fighting against falses and evils, and disilpating them with himsel/ and with cthero ; henco man has faith and ove, and hence he has intelligenco and wisdom. 8. Thus, and not otherwise, is man reformod; and so far as he knows truths, and wills and does them, so far he 4 : regenerated, and from natural becomes spiritual, in like manner his falth and his lovc.
If 1 vilo are not romovel iecouse they are sins, all things which man thinks, speaks, willc and does, aro not good nor true before God, however they appear as good and true befuro the world ; the reason is, because they are not from the LORD, but from man, for it is the love of man and of the world, from which they are and which is in then. Most people of this da? believe, that they clo ali comeinto heaven if they have faith, live piously; and do good works; and yet they do not hold evils in aversion because they are sing, whence they either commit them or bellieve them to bealiowabie, and they that believe them to be allowable, committ them when opportunity ts given ; but let them know that their falth is not falth, that their piety is not piety, and that their good works are not good, for they flow from the Impurities whioh ile inwardly concealed in man, the exterhale deriving all their quality from the internals ; tor the Lord says, "Thou blind Pharisee, cleanse frst the Inside of the cup and platter, that the outside may be clean aiso, Matt. xxili. 26 . from these considerations it may now be evident, that if man should fulif all things of the law, if he shoulc give much to the poor, if he bhould do good to the fatherless and the widow, nay. if he should also give bread to the hungry and drink to the thirsty, gather the objourners, olothe the naked, visit the eiclek, go to the bound in prison ; if he should preach the gospel strenuously; convert the Gentiles, frequent temples, hear preachings with devotion, attend the sacrament of the supper frequently. devote time to prayer, with more such thinge, and his internal is not purified from hatred and revenge, from craftiness and malice, from insincerrity and injustice, from the fllthy delight of adultery, from the love of eelf and the love of ruling thence aerived, and the prite of seifrintellifgence, from contempt of others in comparison with himself, and from allother evils and the falses thence derived ; still all these works are hypocritical, and are from the man himself and not from the LoRD. But on the other hand, those same worke, when the iaternal ts purified, are ali good, because they are from the Lord with man; who cannut otherwise than do them, because h e is in the faith and love of doing them." -"These are the works, which are understood in the Word by works, Which can by no means be separated from falth, for falth separated from them 1s dead, and dead faith is a faith of what is false from an ovil love, or is the thought that a thing is 8 , o, whilst the life is still cull." " "That to abstain from evils from any other cause whatever, than from the Word, does not purify the internal man, is evident from the origin of ovil works and from the origin of good works ; as he who abstalng from adulteries from fear of the civillaw and its punishments, from fear of the loss of fame and thence of honor, from fear of hurt arising from poverty, covetousness or avarice ; from fear of eickness from them, and consequent intranquility of life, from infirmity arising from abuse, or from age, or even from natural good and the morai principle thence derived, ao not being becoming and proper, \&c., and from these causes alone lives chastely, still he is interiorfy unchaste and an aduiterer, if he does not abstain from them ont of spirItual faith, which faith is, that adulteries are infernal, because chey are contrary to the Divine Law, and thence contrary to the fear of God, and the love of the neighbour. And so in all other cases."
As many may desire further information respecting doctrines which are silently but surely Inding their way with transforming power among all classes of Christians, 1 will now insert in their order, 1 . Who are these new Church people? by Rev, Dr. Bayley of Loıdon. 2. The. Ribband of

Blue, from "The Divine Word Opened," by the same anthor, intended to iliusirate the correapondence of garments, ooliors, \&o., in the Word. 8. The substance of an Interview held at No. 20 , Cooper Union, New York, by a Sun Reporter. 4. List of Swedeuborg's theologioal writingi. together with the names of a few valuable collateral works which will be found well worthy of perusal.

WHO ARE THESE NEW CHURCH PEOPLE ?

The frequenoy with which the sentiments unfolded in the writing of Swedenborg, and others in illustration of them, are met with from time to time, impels many inquiring minds to ask the question above recorded, and has induced the information to be given whioh is afforded in the following dialogue :-
Q. Who are these Nerr Church people ?
A. They are Christians who believe that the higher culture and greater progress of the world towards light, charity, and peace, depend upon a oloser communion with the Lord Jesus Christ, as the all in all to His Churoh, God over all, in Whom dweils all the fulness of the Godhead bodily.
Q. But why they do they call themselves Swedenborgians ?
A. They do not call themselves Swedenborgians; but NEw CevrorMEN, or Christians of the New Jerusalem Church. They esteem very lighly the writings of swedenborg, who was an illustrious servant of the Lord Jesus. By the truths in his writings they have been greatly profited; they find themselves assisted to draw nearer to the Saviour, to undorftand the Soriptures more thoroughiy, aild perceive their wondrous Divinity. These writings also contain muca concerning the laws and circumstances of the eternal world.
Q. But what is this about the New Jerusalem : Do they think a great golden city is to oome down to the earth through the clouds ?
A. Not in the least. These outward wonders and spectacles in the skies they leave to others. They understand that sentiments golden and clear are to enter men's minds. They only expect the world to become nearer ilke heaven, as new principles of light, love, and justice, become more fully received, and extensively spread among men. They belleve thoroughly the words of the Lord Jesus, "The kingdom of God cometh not by outWard observation; neither shall men say, lo here ! nor, lo there. But the kingaom of God is within you" (Luke xvii. 21). We can make our little world happier to-day if we will. And the whole world must learn to become wiser, and will and strive to become better, and so the Lord will become king over all the earth (Zech. xiv. 9.)
Q. But why do they talk of anything new on nuch subjects ? How can there be anything new in religion? Christianity is old enough, and if they are Christians how can thoy be new, New Church, or anything of that kind ?
A. Religion, though always pure at first, when revealed from the Lord, has a great tendency to become corrupt, in time, by the self-seeking dispositions of worldly Christians, who hope to acquire pelf and power by making religion popular, and debasing it by popular errors and human traditions, rather than by elevating the people to justice, judgment, and the love of God. So the Jews made the commandments of God of none effeot by their traditions. So Christianity, by oorruptions commencing in the time of Constantine, became a mass of mysteries and superstitions. The frat great orror was a God said to be of three separate Divine pernons, and then the worship of Mary as a semi-divine person. Next came praying to a host of dead men. and caring more for their bones and relics than for keeping the commandments of God. The scriptures were shut up away from the people until the time of the Reformation, and though in this country and Amerioa we have the Scriptures fully now, many of the leading corruptions of dark times remain. These perversions and evils which united with, and others which arise out of them, make religion old and bring it to an end ; then the Lord Jesus reveals eternal truths afresh and calla them new ; they are new to us. It is written in relation to
or, Intended to the Word. 8. New York, by inge, together will be found
he writing of with from time bove recorded, florded in the
ure and greater lepend upon a in all to His : the Godhead

18?
New Ceurgery esteem very servant of the eatiy profited ; our, to underteir wondrous the lawa and
think a great s ?
les in the skies Iden and clear become nearer me more fully ve thoroughly Ih not by outhere , But the nake our little arn to become a will become
ts ? How can nough, and if r anything of
om the Lord, o self-seeking and power by 3 and human udgment, and God of none commencing superstitions. ivine persons, ct came prayse and relics res were shut nd though in many of the pns and evils θ religion old truths afresh a relation to
these times, He who set upon the throne soid, Behold, I maki $4 l$ l Thinge new (Rev, xix. 6).
Q. Whatare thece new principles you speak of ? Tell mo the firt.
A. It is new ; yet it is truly old. It is that Jehovah, the eternal God, our Creator, is absolutely one, and He became our Sarlour Jesus Christ. So that in Jesus Christ is the first and the last, the haman and the Divine, the Father, the Son, and the Holy Spirt, the eternal Trinity. He is all in all to us, the Father In Him as the soul fis in the body.
Q. Yet Carist prayed to th Father?
X. That was while He wa. in the world in times of temptation, while He had our nature, with its infirmities and imperfections, and He had to teach us how to sumpr and to pray. The human prayed to the Divine, as our lower nature appeals for succour to our better nature in times of distress $1 t$ seems to us, in deep trials, as if there were two persons in us; but they are not two persons, and when the trial is over and perfection attained, then there is entire unity, So when Christ's trials wereover and His humanity was glorified, there was no praying to the Father, but He was manifestly the Father in the Son (John xiv, 13). He who sees Him sees the Father (John xiv. 7,8,8). He is the everlasting Father and the Prince of Peace (Isa. ix. 6) He is the|root and the oifspring of David, the bright and the morning Star (Kev. xxdi, 16). He is the Sun of righteousness (Mal. iv. 2). The Bread of Life (John vi. 48). The Light of the world (Johnix. 5), The King of kings and Lord of lords (Rev. xix. I6). Come to Him, pray to Him, follow Him, serve Him.
Q. But how about the Atonement ?
A. Chrlstians of the Now Jerusalom belleve in the Atonement as the Apostle Paul expresses it, God was in Christ reconciling the world unto Himself (2 Cor. \mathbf{v}. 1). He reconciled it to Himself first in His Own Humanity (John xvii, 13 ; Eph. 11. 15). He has been reoonciling it ever since by His Gospel, and He will reconcile it to Himself in us if we will repent, turn to Him, and become new men.
Q. Is there not something peouliar about the way of viewing the Bible ?
A. We have precisely the same Bible that you have, but the New Church declares the Bible to have a spiritual meanling, over and above the literal meaning ; not denying the literal meaning. but using it for history, for doctrine, and for edification, as other Chri tians do. The spiritual meaning constitutes a Bible within the Bible, aiways treating of the Church the regeneration of the soul, of the battles we wage against our sins, and of the things of heaven. But this is only what the Saviour said, My words, they are spirit and they are life (John VI. 63) ; the apostles deolares the sume thing. The letter killeth, but the spirit giveth life (2 Cor. ili. 6).
Q. But how about the early chapters of Genesis?
A. Up to the history of Abraham, they are Divine allogories, full of apiritual wisdom, clothed in the language of parable, in the manner of that most ancient literature that was the oripin of the Egyptian Hieroglyphics, and the beautiful fables oi the Greeks. Hence there is no contradiction between this part of the Bible and geology. Natural creation is the emblematical account of moral and spiritual creation.
Q, Is a man, according to these views, aaved by PACTH ALONI in the merits of his Saviour?
A. He must have fiath in the merits of his Saviour, and he has no merits of his own. But homust also believe, Love, and do his Saviour'a will, or he cannot be prepared for heaven. In reltgion, love is the great prinoiple, the root of all the rest (Rom. xiii. 810 , Matt. xxii. 87 40). The Apostle Paul said, Now abideth these three, faith, hope, and charity !or love), and the greatest of these is charity (or love). (Cor xiil. 13).

He who loves the Lord Jesus, will believe His words, and Do His commandments. Faith alone is dead, the apostle said (James ii. 26); whether it is in the merits of our Saviour, which are truly infinite, or anything olse. Whe Fatri which loves and works is the only faith which saves.
Q. How is a heavenly character formed ?
A. First, by a oonviction of our sinfuliness; then by repentance and prayer. Next, by perseverance in well-doing, by conflemet frith in the Hord Jesus, faithfulness in the times of trial and temptation ; by daily
reading of the Word of Grd; and prayer, and by the diligent use of the meani of grace. Thus the tastes and aims of ilfe beoome entirely altered, and the soul delights in tiearenly tbings as its chlef joy.
Q. What then is the New Churohman'e molic or Life ?

1. Precisely that tanght in the OId and in the Now Testameat by the Lord Jesur and 1 is apostles ! namely. In havility, talth, and love to keep the Ten Commandments. What doth the Lord thy God require of thee, but to do-justly; love meroy; and walk humbly with thy God ? (Mieah vi. 8. Jesua sald, If ye love me, keep my commandments (John xiv. 15). The Apostle Paul wrote, Clrcumcision is nothing, and unciroumoision is nothing, but Kerping THe OOMMANDEENTE or GoD 1 Cor. vii. 19) ; and Jolin deolured, This is the love of God, that wo keep His commandments : and His commandments are not grievous (1 John v. 3).
We must keep the Divine precepts in all the employments, engagements, hablto, and aots, of DAtLY LIFE ; without that, our belief ts valn, and our religion belrdoception.
Q. Can this be done by a man's own stren th and merit ?
2. No man has any strength or any merit, but what comes from God, every moment of his lifo. But God our Savlour does give strongth to every one who truly seeks Him. He also gives His angols charge to aid us from our birth to cur grave. And they lovingly receive us and welcome us when we die.
Q. Are' all bhildren who die taken to heaven ?
A. Oh, artainly "Angels of love, who have been their guardian zagela take them into their bleged oare in hetaven, traln them in love and wiso dom, and thus lead them to enjuy the full blise of their heavenly home.
Q. Do people know each other after death, who have known each other. in the world?
A. Certainly, and they will continue together, if thelr states agree and wil permit.
Q. Is there any other especial feature of the principles of this New Church ?
A. Yes it the very high and sacred character it attributes to marriage. This holy institution is regarded as one for which the Creator has formed the sexes in wind and body, and should be entered upon onity with those tho are constanity striving to overoomé self, to llve for heaven as well as for earth, and who shun sins against purity; as tho deadilest of sins.
Q. How does this Church regard the Resurrection ?
A. EVery person has a spiritual body as well as a natural body 1 Cor. xャ. 44). This spiritual body becomes more beautiful by regeveration, or more ugly by blu. Flesh and blood, as the Apostle says, cannot inherit the kingdom of God (1. Cor. XY. 50). The body thou sowest is not the body that shall be (v ; 87). But the angelic Christian mind has a heavenly body, for God giveth it a body as it hath pleased fim, and to every seed his owi body (r. 38), Absent from the earthly body, he is present with the Lord (2 Cor. $\nabla .8$). Evil persons have a spiritual body as ugly as they are vicious." Both are fitted at death for the worlds to which they go: and the dust returns to the dust whence it was. All the parts of the Gospel which treat of the resurrection of man, mean the resurreotion of the soul from the death of sin, and the grave of corruption, to the life of righteousness ano spiritual health (John v. 24,25 ; Eph. v. 2, 5). IE not this scriptaral view lar more sensible than to imagine that all who have died are without bodies, until the scattered dust of bodies which had every hour bien changing during life, and had been taking now forms in the vegiptable world, been eaten by animals, and then become parts of other human bodies, for no one knows how many thousauds of years, is brought together again ?
Q. But cannot God's omnipotence do this ?
A. God never uses His omnipotence to do what is foolish and wrong. We have ro warrant to call in God's power to justify our blunders. Whatever God does is the begt thing, done in the wibest way.
Q. When and where does judgment take place?
A. The true Christian judges himself from day to day. But, after death, he appears before thie judgment seat of Christ in the spirit world, which is an intermediato state between heaven and hell, After death the judg. ment (Heb. ix. 27,
nt use of the tirely altered,
tament by the liovo to keep quire of thee, d ? (Mieah vi. John kiv. 15). Ireumeision is - vil. 19) ; and imandments :
engagements, valn, and our
nes from God, - strongth to charge to aid re uo and wel-
tardian angela love and wisenly home. wn each other.

ates agree and

of this New

 es to marriage. tor has formed nly with those vien as well as t of sing.1 body (1 Cor. geveration, or cannot inherit est is not the has a heavenly 1 to every seed - present with is ugly as they blch they go: parts of the esurrection of to the life of 2, 5).. Ic not all who have s which had now forms in ome parts of is of years, is
h and wrong. bur blunders. PAY.
, after death, prid, which is th tho judge
Q. Is there much sald in Seripture about this intermediate state, or world of judgment and instruction ?
A. Very much. It is the world the prophets saw in vision, or when their spiritual eyes were npened (Numb. xxiv. 10; 2 Kinge vi. 17). John in the Revelations describes what he saw in that world through all its chapters ; hraven was above him-the bottomless pit below him.
Q. But what, then, is meant by the Judgment at the eud of ti:e world ?
A. The end of the world, in the original Groek of the Soriptures, is tho end of the AOK or dispangatiox; and when a Churoh has been for ages corrupt, the bulk of the peopie have been cherishing mistaken principles, and lu many things doing wrong the greater part of their lives, as in disliklog and haling others that were not of their own Church, and supposlug that it was right all the whille. These caunot be so soon Introduced as in purer times, either to heaven or to hell, and great numbers gather and remain in the spirit world, the world of Judgment. But, at the end of the age, all are fudgod, and a new age or new dispensation is begon in the world. The end of the world means the end of a dispensation, not the end of the universe (Ps. Ixxy. 8 : Isa. xxiv. 10,19).
Q. Then is not the natural world to come to an ond at all ?
A. Certainly not. According to Scripture, the world and the universe will endure for ever (See Eccles. 1. 4 ; Ps. Ixxil. 5,17 ; lxxvili. 69 ; olv. δ; oxlvili. 6; xcili. 1.; xovi. 10).

Q, What, then, do you understand by the second coming of our Lord in the olouds of heaven?
A. He has been banished from His Church .by grievous errors and evil practices. He comes noarer when men receive Hils truth in love and obey Him. He comes nearer in the fuller opening of His Word. He comes in truer principles into the hearta and minde of men; He comes by the extonsion of ilis truth into all the ways and works of men. Light is like the inward glory of the bible ; the clouds mean the outward language of the Bible, through which an inner glory shines. He comes in. clouds when He makes Himself known to men in the language of His Word, which is plainly there revealing the true charactor of Himsolf,' His will, and His kingdom, though they had forgotten or ignored it. All the writers of the Bible are called a cloud of witnesses (Heb. xil. 1). Those who take the letter without the spirit are sald to be clouds without water (Jude 12), The Lord comes in the clouds of heaven when He applies His Word to the hearts and minds of men ;-in power and great giory, when He reveals the power of His Word nd the great glory of His kingdom. Behold, I stand at the door and knock; if uny man will open the door, I will eome in to him, and sup with him, and he with Me, The king. doms of this world shall beome the kingdoms of our Lord and of His Christ, and He, as One Divine l'erson, shall reign for ever and ever. (Rev. xi, 15.)
Q. What is taught as to heaven and hell ?
A. Very much, so that the laws of both may now be fully understood. Heaven is formed of the heavenly-minded, who have been made such by regeneration, more or less perfectly done on earth. The heavenly ones are arranged in most perfect order, by the laws of divine love and wisdom; Jor in our Father's house there are many mansions (John xiv. 2.) Hell is composed of those who have made hell upon earth; they take themselves, their passions, and their lusts with them into pain aud sorrow. Tho rage, the hate, the tormont, the misery they excite and inflict upon ono another is the hell-fire in which they live. The never-dying worm is the symbol of their low, grovelling selfishness : it fs their worm (Mark ix. 14), not God's. The wicked create their fire, they keep it alive themselves 1sa., ix. $18 ; 1.11$); the false and insane thoughts of every kind which they conceive, and in which they live, make the utter darkness of their abode, of which the Saviour speaks. (Matt. xxii. 13.)
Q. Do you use the two sacraments instituted by our Lord, of Baptism and the Holy Supper?
A. Oh certainly, and we see a sacred and most edifying meaning in each of them. Baptism we administer in the name of the Father, Son, and Holy Spirit, as a dedication of the person baptized to the service of the Lord Jesus, and the water is a symbol of that living truse which is the

Water of Life, and by which the soul is to be purified. The Bread and the Wine in the Holy Supper, are the symbole of the goodness which our Lord calls the Bread of Life, and the Wisdom which He calls the "NEW Wine of Tar Kingdon." When we sincerely receive these, we receive Him. We eat His rlesh and drink His BLOOD, and have zTERNAL LIFR.
Q. But do you think that other Christians have not truth as weil as you; and that no one can be saved but those who join your communion ?
A. Certainly not. There is much truth in cjery denomination of Christiaus, especially among those who possess and read the Word of Gind with diligence and prayer. We believe, moreover, that every one, will Le saved who loves God, and strives to do His will in shunning evil and doing good according to what in his hpart he believes to be true, whethe. he be of the Church of England, whose pious and learnedi clergynotwithstanding many exceptions, we revere and admire, whosg i'rayere Bo ' k, with serious doctrinal defects, has many excellencies, ani whose reverence for the Word of God is her chief glory ; or worthy zeslous Protestant Dissenters, or good Rcman Catholics, good Jews, or Gentlles Those who love God and work righteousness according to the best of their knowledge, will be relieved of their errors after death, and form part of the sublime fold in heaven, of which our Savionr sppaks. "Other sheep have I that are not of this fold, them also must I bring, that there may be ONE FOLD and ONE SHEPRERD" (John iv. 14). The Apostle Peter spoke very clearly on the same point when he said, "Of a truin I perceive that God is no respecter of persons; but in every nation he that feareth God, and worketh righteousness, is accepted of Him." (Acts x. 34, 35).
Q. Is it, then, of no importance whether we belong to a true religion or a false one; whether we believe truth or error?
A. It is only truth, in any system, that does a person good, but there is much truth attached to every religion. Error is always a hindrance and a detriment. Truth is clear and tull of comfort. Error is obscure, perplexing, and leads to distress. Truth is daylight. Error is a fog. It is because we believe the Lord has given at this time abundance of truths which are far from being generally acknowledged, which are edifying, delightful, and strengthening to us, that we wish all around us, both men and Churches, to accept them, and be strenginened and blessid also, so that the will of God may more perfectly bo done upon earth, as it is done in heaven.

Dear reader, would you possess a scriptural, spiritual, rational, saving religion to aid you in your walk towards heaven, come and hear theso Christians of the New Jerusalem, let them be called Swedenborgians, or what you like. Do you wish to see mankind issuing out of superstition, sectarianism, rationalism, narrowness, and darkness, into the glorious liberty of the children of light, then come and hear. Do you wish to see goodnese and truth extending their sacred influence, and sin and folly ghown to be the disorderly, brutal, coarse, and worthless things they are, then come and hear,

We address you in the language of Moses to Jethro,' We are journeying unto the place of which the Lord said, I will give it you: come with us, and we will do you good; for the Lord hath spoken good concerning Israel. And it shall be, if you go with us, yea, it shall be, that what goodnees the Lord shall do untous, the same will we do unto thee. (Numb. x, 29, 82).

THE RIBBAND OF BLUF.

"Speak unto the children of Israel, and bid them that they make them fringes in the borders of their garments throughoui their generations, and that they put upon the fringe of the borders a ribband of blue: And it shall be unto you for a fringe, that ye may look upon it, and remember all the commandments of the Lord, and do them."-NUMB. xv. 38, 39 .

It is extremely to be regretted that so many who bear the name of Christian, have the most inadequate view of relligion. To many it is but a name. They call themseives by the name of thls or that great body, but ask them what they think of the principles which the name Implies, and
you
relig will medi hand stone in w
relig
virtu
there
are C
Par
than
soul's
cloth
writte
naked
Tha
of tho
whiok
tual
Lofty
kind ment
a gar
in ple
fringe
blue.
of trin
thereo
The
Revels
how ts
angels
[Ps. oi
mayes
the sha
The
the we
for dis
We
ing to
has its
There
elastic
oontin
Joy" w of deer former of patn uess, a
Thls
fulness

And

Bread and which our e calls the re these, we have ETER-
weil as you; nion? mination of he Word of every one, unning evil to be true, mé clergy10ヶ9 iprayero aili whose thy zealous or Gentiles best of their orm part of Other sheep there may be Peter spoke erceive that feareth God, 35). ereligion or
but there is ndrance and ibscure, pera fog. It is ce of truthe are edifying, as, both men si•d also, so as it is done
onal, saving d hear theso borgians, or superstition, the glorious pu wish to see in and folly ngs they are,
e journeying me with us, concerning it what good(Numb. x,
y make them generations, f blue: and id remember xv. 38, 39. the name of pany it is but. eat body, but implies, and
you find the name, and little besides. Others, again, seem to think that religion is an excellent debating-ground, a favorite battle-field. They will incessantly wrangle and dispute about its everlasting principles, but meditate little apon them, and practise them less. These are like the lefthanded men of Benjamin among the Israelites of old, who "could sling stones at an hairbreadth and not miss." They are not of much use except in war. Far more eloquently and convincingly does he speak for his religion, whose life pleads for it; who shows that he derives from it virtue and defence, consolation and strength, light and blessing; and therefore recommending it in deed, can also recommend it in word." "Ye are our epistles," said the apostle, " known and read of all men."
Perhaps we cannot give a more comprehensive defnition of religion, than to say it is the supply to the soul of all its spiritual wants. It is the soul's home, its food and its clothing; and to this latter festure, its, being clothing for the soul, we now entreat your attention. "Blessed," it is written, "is he that watcheth and keepeth his garments, lest he walk naked, and they see his shame."-Rev. xvi. 15.
That garments, even in the Jewish law, are the corresponding symbols of those principles which clothe the soul, may be inferred from the laws which we frequently find in relation to them. Unless there was a spiritual sense in them, surely it world not have been worthy of the High and Lofty One who inhabiteth eternity to give directions in relation to what kind of clothes men should wear. There is the direction not to wear a garment of woollen and linen together ; again, for a woman not to wear a garment of a man : again, for a man's garment not to be kept in pledge after the sun has gone down : and now the law before us, that a fringe should be made to the garment, and on the fringe a ribband of blue. Surely it cannot ooncern the Infinite Ruler of all worlds what kind of trimming His people have to their dress, or color of ribband they have thereon.
The soul and its concernsare surely the only appropriate objects of a Revelation from the Eternal Father of immortal beings. To teach us how to give the spirit a dress, so that it may be beautiful in the sight of angels, is worthy of him who clothes Himself with light as with a garment [Ps, civ. 2]. "I counsel thee to buy of me gold tried in the fire, that thou mayest be rich ; and white raiment, that thou mayest be clothed, and that theshame of thy nakedness may not appear."-Kev. iii. 18.
The chief use of clothing is defence against the chills and variations of the weather; two subordinate uses are for the promotion of beauty, and for distinction of office.

We can be at no loss to perceive that there are mental uses corresponding to the above which require for the soul spiritual clothing. The soul has its summer and its winter, and all the varieties of a mental year. There are seasons of hopefulness and brilliancy, in which we have all the elastioity and promise of spring ; there are states of peaceful warmth, of continued serene happiness; "the soul's calm sunshine and the heartfelt joy" which bespeak the spirit's summer ; but there are likewise periods of decreasing warmth, of fncipient depressions, and coolness to what has formerly yielded the lighest pleasure; untli at length we arrive at states of pain ful chill, and even of intensest cold, the joylessness, the hopelessuess, and the sadness, which are the attendants of the winter of the soul.
This depressed condition of the spinits is portrayed with graphic truthfulness by one who said-
"My years are in the yeflow leaf, And all the life of life is gone ; The worm, the canker, and the grief, Are mine alone."
Andin a sweeter spirit of piety, by another poet-
" O for a closer walk with God. A sweet and heavenly frame; A light to shine upon the road, hich leads me to the Lamb.

Where is the blessedness I knev When first I saw the Lord ?
 Where is the soul-refreshing view Of Jesus, and his Word?
 "What peaceful hours I once enjoyed How sweet their memory still; But they have left an aching void The world can never fill."

In this wintry state, storms of distressing fears and darkening doubts will rush upon the soul. Strong delusions, that we may believe alie, will like fierce tempests, howl about us. Cold, harassing, cheerless frames of mind, dispiriting anxieties, filling us with discomfort and dread ; bitter seif-accusations urged upon us, perhaps by "; spiritual wickedness \ln high places," like pitiless hail-storms which come upon us again and again, all teach us how real it is that the soul has its winter as well as its summer. In relation to these spiritual seasons it is written, "And it shall be in that day, that living waters shall go out from Jerusaiom: half of them toward the former sea, and half of them to ward tho linder sea; in summer'and in winter shall 'it be."-Zech. xiv. 8.
Thrice happy are they who remember, the living waters of the Divine Word will be a comfort and a blessing in joy and in sorrow, in sickness and in, heulth, in summer and in wintor; but they should also bear in mind, that, to be a protection in all seasons, the Divine Mercy has provided us with spiritual clothing.
The dooturincs of religion, when intelligently adopted and adapted to our particular states, serve this important purpose. And when those doctrines are as they ought to be, full, comprehensive, arid complete, apply: ing themselves to all the departments of human affection, thought, and life, they make a complete dress. Hence it is said in Isaiah, "I will greatly rejoice in the Lord, my soul shall be joyful in my God; for he hath clothed me with the garments of saivation, he hath covered me with the. rube of righteousness, as a bridegroom decketh himgeif with ornaments, and as a bride adorneth herself with her jewels."-1xi; 10.
The doctrines which teach the true character of the Lord, His infinite and unchanging Love, His unerring and all-comprehensive Wisdom, His omnipotent and ever-urderly Power, these form the clothing for the head. The doctrines which teach and impel us to our duty to our neighbor, form the clothing to the breast : while those which teach that our religion should be operative, and lescend to inspire and sanctify every word and every deed of life: these are the remainder of the spirit's dress, even to the "shoes upon.the feet."
With this view of the spiritual dress of the Christian, we shall see the fullest significance in many interesting portions of the sacred Soriptures. When the prodigal son returned, we aro informed; "The father said unto lis servants, Bring forth the best robe, and put it on him; and puta ring on his hand, and shoes on his foot,"-Luke xk 22, where it is manifest that the clothing of a newly-penitent spirit with those sacred truths which will form its best robo, that assurance of everlasting love which conjoins it to its Lord as a golden marriage-ring, and those true principles of virtuous practice which aro the only bases of real religion, are the shoes upon the feet.
A mostimportant cesson s afturded to us by the Divine Word in Matthew. It is said of those who came in to partake of the weddiug feast of the King of hoaven, "And when the king came in to see the guests, he saw there a man which had not on a wedding garment; and he said unto him, Friend, how camest thou in hither, not hiving a wedding garment? And he was speechless. Then said the king to the servants, Bind him hand and foot, and take himaway, and cast him into. outer darkness; there shall be weeping and gnashing of teeth"-xxii. 11-18. No one can imagine that there was any sin in a particular earthly dress not belng had by those who enter the Lord's kingdom. But in a spiritual point of view, nothing can exceed the value of the intimation it contains. The kingdom of heaven, in faot everything heavenly, is the result oi a mar-
rage. nota know what to its comp
ken;
be ca!
thee,
Not unfold It is to parad which nothin believe ing of these 13. beitef, checke and th will iss paraly
the spi
Witb at once quentls prophe to man shreds Zion;
hencef
unclear
"The
to prea
broken
Jehova give un of prais righteo Ixi. 3.
nifestly powerf that ou who in extrem assumin came \mathbf{F} succour
When which white, f ed in wl have no of life ; views w trines may be
The N introdu bride ad no doub the Divi but that
rage. Wisdom sweetly blends with love to form the ígaveniy state. It is not a kingdom of falth alone, but of faith united to charity. No cold knowledge is tolerated there, but must be conjoined with affection for what is known; All is union in an angelio mind. All/ heaven is united to its Divine Head, the Lord Jesus Carist. The marriage order reigns complste, and joy is the result. "Thou shalt no more be termed Forsaken ; neither shall thy land any more betermed Desolate ; bui thou shalt be called Hephzibah, and thy land Beulah ; for the Lord delighteth in. thee, and thy land shall be married."-Isa. lxil 4.
Not to have on a wedding garment, then, is not to have a doctrine which unfolds thls glorious union of truth and love in religion, and in heaven. It is to be practically among those who say, and do not.' It is to make a parade of our piety and profession; it may be, but to neglect that, without which plety is nothing, faith is nothing, doctrine ls nothing, name is nothlug ; that pure and holy love, which worketh, which hopeth, which believeth all things; which, in sight of all the Christian virtues, is deserv-: ing of the apostolic declaration. "And now abideth falth, hope, charity, these three, but the greatest of these is charity." 1 Corinthiaus, xiil, 13. When we have taken for our religlon only that which relates to beltef, and not that whioh concerns love and conduct, the heart uncheoked and unchanged will be the home of selfishness and impurity ; and the time will come, elther in this world or in the next, when there will issue from the unregenerate heart those virulent evils, which will paralyse every power of good, will bind the hand and foot, and plunge the spirit into the darkest abysses of folly.
${ }^{2}$ With these views of doctrines forming the clothing of the soul, we see at once the importance of those allusions to garments which are so frequently met with in the old as well as the New Testamentr When the prophet prediets the advent of the Lord into the world, and thus opening to mankind the glorious doctrines of Christianity, Instead of the miserable shreds of Jewish tradition, he says; "Awake; a wake; put on thy strength 0 Zion ; put ou thy beautiful garments, 0 Jerusalem, the holy elty ; fur henceforth thereshall no more come into thee the uncircumcised and the unclean."-Is, lii 1. Again, in that well-known propheey which begins, "The Spirit of the Lord is upon me; because the Lord hath anointed me to preach good tidings unto the meek; he hath sent me to bind up the brokenhearted ;" the prophet continues to unfold the gracious purpose of Jehovah in the flesh ; "To appoint anto them that mourn in Zion, to give unto them beauty for ashes, the oil of joy for mourning, the parment of praise for the spirit of heaviness; that they might be called trees of righteousness, the planting of the Lord, that He might beglorified.' Is. 1xi. 3. Here the doctrine of the love of God manifest in the flesh, is manifestiy and righteously called "a garment of praise." What could more powerfully induce the soul to clothe itself with praise than the perception that our Saviour is our Heavenly Father, that the High and Lofty One who inhabitoth eternity had for our sakes condescended to appear in the extreme of His vast domains, the skin of the universe as it were, and by assuming and maistaining a connection with the outer universe, he became First and Last in Himself, and from Himself flls, sustains, and succours all.

When the Lord Jesus said, "Thou hast a few names even in Sardis, which have notdeflied their garments : and they shall walk with me in white, for they are worthy ; He thet overcometh the same shall be elothed in white raiment," he is evidently deseribing the condition of those who have not stained their profession of the Christian doctrine with impurity of life ; they have not defled their garments nov, and in eternity their views would be still purer, they should walk with Him in white. Dootrines in harmony with purest truth, are white raiment wherewith we may be clothed.

The New Dispensation of religion which in the fulness of time would be introducod from heaven among men, is represented as coming down " as a bride adorned for her husband.' And, by this language, we are assured, no doubt, not only that this church would regard the Lord Jesus Christ, the Divine Lamb, as the only objeot of her supreme love, her husband, but that her doctrines would be beyond all precedent, beautiful. She
would be adorned for her husband. Such a glorions system would she have of celestial truth,--such disclosures of heavenly order,-such discoveries of the divine laws as existent in the soul; in the regencrate life; in the heavenly wirld; in the spiritual sense of the Holy Word; in faot, on ali subjects of Divine Wisdom, that to the truly devout and thoughtfui spirit, she would truly be "adorned as a bride for her husband."
There is un interesting intimation of the charaoter of true heavenly clothing in Psalm xiv. "Theking's daughter is all giorious within : her olothing is of wrought gold. She shali be brought unto the king in raiment of needlework [verses 13, 14] .where the character of true celestial doctrine is deolared to be the gold of love, wrought into system,-love wrought out. The king's daurhter, all such as, animated by pure affectious for truth derlyed from the King of kings, are desirous of graces of the heart and mind, which are worth more than the wealth of kingdoms. They become giorlous within, and all their views ofdoctrine are love as it were speaking, and docla:ing its true nature. With them, God is love, heaven is love, love is che fulfilling of the law, love keeps the nommandments, the Word truly understoud, is tho revelation of love. Their whole doctrine, like the street of the holy city, is of pure goid, fumed by the spiritual embroidery of an intellect which spiritually discerns the harmonious relations of everiasting things. The Word supplies the raw materiai, llne upon line, and precept upon precept. The rational powers weave them into a beautiful system, and prepare them to be worn. And When the judgment, under the impulse of a humble determination to live for heaven, adapts these doctrines to its own especial states and requirements, the Christian is equipped in the garments of salvation. "He is glorious within, and his olothing is of wrought gold."

And here, we would strongly guard against one of the most dangerous delusions which has crept into nominal Christianity; the idea that we are saved by the infinite purity of Christ's righteonsness being imparted to us, and not by actual, practical righteousness. It is true, our righteousness is derived from the Lord, "Their righteousness is of me, saith the Lord."-Isa. liv. 17. But no righteousne日s vill be Imputed to us, which has not been imparted to us. His spirit will be imputed to us, so far as we receive it, but no farther. God is a God of truth, and never imputes to any one what he does not possess. "He that doeth righteousness, is righteous." -1 John iii. 7. The merit of divinerighteoneness in salration, is as incommunicabie as the merit of creation. The robe of the Saviour's perfections, has a name on it, whioh no man knows but He Himself. (Rev. xix. 161. And, yet, numbers negiect to aoquire the white robe, or the wrought gold, of imparted truth and love, under the vain idea that the persoual perfections of our Lord will bo imputed to them. Our food is from Him, but if ins' 3ad of eating that which Ho now provides, we were to attempt to live by imputing that which he ate in the days of His flesh, wo should die of starvation. 80, if instead of receiving, and applying to ourselves the living streams of His righteousncss by earnest prayer and oarnest practice, we expect His merits to be imputed to us, as righteousness, so that although wo cre realiy wicked, we chall be accounted good! although really poilluted, we shail be aocounted clean; we shall be naked and helpless, in tho day Thon he maikes up his jewels. No doubt, tho Lord lived on earth for our sakee, suffered for our sakes, died for our sakes, -ose again for oursakce, maci: His Humanity righteousness cmbodied, tor our sakes. "For their sakes, I sanctify myself," he saic., "that they may be sanotilied by the truth."-John xvii. 19. All was done for us to enable us to bo sanotificd, but not to be pitt down to our account When our account ls madeup we shail find the rule to be, "They that have done good shail come forth to the resurrection of lite, and they that have done evil to the resurrection ofoondemnation." John v. 29. He comes quickly to give to every man as his work shall be (Rev. xxil. 12). Blessed shalt we be, if we watch and keep our garments, made white by His truth, and thus are ready to follow our Divine Leader in the realms of peace, adoring, iu humble love, those Infinite perfections which make his face to shine like the sun, and His raiment white as the light [Matt. xvii. 2]. We are, then, to speak to the Israelites, who are typified by those oi our text the spiritual Israelites, who are as our Lord said, Israelites indeed, and
say truth them upon mind is to b who br:t do our ge of a gmall forms must occasi
Lord
ful in
the lea
This
the mo
on gra 8hew, gion re our da followe the wh journes little, prinoip By this the wh to do it to wait
Many in the 0 But the
"Our ${ }^{\text {f }}$ is partí momen atrengt alip not my feet 2. Yet ful Fath against occasior voice 0 aufforet first, he ooncern better is hast no "Lord. xiii. 9.

This \mathbf{r}
that, zu pray, th tice. devotio orly the to give frlige f
It is f are ofte only ex virtues
would she uch disco5:ate life ; ; In fact, i thoughtnd."
heavenly ithin : her ing in raito celestial tem,-love pure affecgraces of kingdoms. re love as n , God is the nomve. Their firmed by ns the harraw mate1al powers orn. And tion to live ad require-
"He is
t dangerous that we are imparted to righteous. e, salth the ons, which 80 far as we imputes to bousness, is n salvation, e Saviour's nself. (Rev. obe, or the ga that the Our food is es, we were f His fiesh, pplying to prayer and 3 righteous: inted good! II be naked doubt, tho r our sakes, cmbodied, " that they e for us to ht When have done ; have done nes quickly lessed shall truth, and eace, adorhis face to 11. 2]. We of our text odeed, and
say first that they clothe themselves with genuine doctrines of divine truth, with the garments of salvation, and that they especially make them fringes in the borders of their garments. After we have meditated upon the doctrines of religion, and seen their fitness to our own states of mind and heart, thus olothed ourselves in them; thenext part of our duty is to bring them into life. This is a most important point. Many there are, who put on religion as a dress for the head, and even also for the breast, brit do not bring it down to the feet. But we are to make a border for our garmente, and the border must be a fringe. The distinctive feature of a fringe is, that the material of which it is composed is divided into small portions, firmly united at the upper part, but hanging with separate forms of beaury at the lower. The idea suggested by this is, that religion must be employed in all the small affairs of daily life, as well as on great occasions, the lowest part of our epiritual dress must be a finge. Our Lord declared the same important truth when he said, "He that is faithful in that which is least, is faithful also in much: and he that is unjust in the least, is unjust also in much."
This practical admonition is of the very highest consequeace. One of the most serious errors of life is that our resligion is only to be brought out on grand ocoations, as some think, or on Sundays, as othere practically shew, they suppose. The only way in which we make the truths of rellgion really ours, is to infuse their spirit and tone into all our little aots in our daily conduct. Life is made up of little things. One circumstance follows another, one act comes after another, each one amell of itself, but the whole forming the tissue of our cntire outward existeuce. Our whole journey is made step by step. There areno great swoops made. By little and little, we drive out our evils. and by little and little, we introduce the principles of. wisdom and goodness into the whole texture of our conduct. By this, we must not be misunderstoc 'I to mear., that weare not to subject the whole man to the government of ceavenly caws, but only that we are to do it in each circumstance as it comes to hand, and to do it now, not to wait fur great occasions. Let the border oin your garment be a fringe.
Many, very many, have no objection to the head or the breast being in the ohurch, but the feet finey imagine may be quite otherwlse engaged. But the true disciple of our Saviour adopts the language of the Psalmist, "Our feet shall ctand within thy gatee, 0 Jerusalem."-Ps. oxxii. 2. He is particularly watchful over hic feet, or his daily practice. If in his moments of weaknegr: he wavers, hc looks up to the Saviour, the Source of atrength, and praya, "Hold uf ny goings in thy paths, that my tootsteps slip not."-Ps. xvil.6. Often will he have to confess, "But as for me, my feet were almost gone; my steps had well nigh slipped."-Ps. 1xxiii. 2. Yet will he find invisible hands have borne him up, for his ever-watchful Father has given his angels oharge concerning him, Jest he dash his feet against a stone.-Ps. xoi. 11, 12. And again, and again will he find ocoasion gratefully to exclaim, "O bless our God, ye people, ard make the voice of nis praisis to be heard: who holdeth our soul in life, and sufforett: not jur feet to be moved."-Ps. Ixvi. 8, 9. If, like Yeter, at first, he 'ainke it quite beneath his Master's dignity to purify the lower ooncerns of life, and deolares, Thou shalt never wash my feet, when he is better informed, and hears the Saviour's words, "If 1 wash thee not, thou hast no pert in me," he, with an entire spirit of self-devotion, exclaims, "Lord., not my feet only, but also my hands and my head."-John xiil. 9 .

This religion of daily life is the grand necossity of the woild. Without that, zur sabbath worship is but an organized hypocrisy. We should pray, that we may be ablo to practise. not to substitute prayer for practice. Beautiful as is the devout worship of the sanctuary, sweet as is the devotional plety, and soul-exalting as aro hymns of gratitude; they are orly the unsubstantlal beauty of a drcat, unless they are brought down to give direction, purity, and strongth to flaily life. Let there then be a frilige for the borders of your garmentc, throughout all your generatiuns.
It is for want of this deseent of religion into daily life, that its blessings are often very faintly felt. The sweetnese of the knowledge of the Lord is only experienced when religion has beoome a living hourly series of virtues with us, It is said of the disciples who were going to Gmmaus
though the Lord walked with them, and they felt the holy glow of his presence when he talked with them on the way, ho only became known to themin" the breaking of the bread." It is so with H: disciples in allages. Aslong as the "bread of life" is received in a mass, and remains thus, the blessing of oonjunction with the Divine Being is unknown. He is with them, but as a stranger. But let them preak the bread; let them at home and abroad, in the counting-house aad on change, in the workshop and at market, in their pleasures and in all their family duties; break the bread of heaven, and apply it to every work and word, and they will then know the Lord. "Then shall we know, if we follow on to know the Lord: His going forth is prepared as the morning, and He shall come unto us as the rain; as the latter and former rain upon the earth."
0 , then let our religion not be like a Sunday dress, pat on only for parade on state occasions, and put off when the occasion has passed by, but like a simple daily robe, whose usefulness is seen of all, and whose fringe goes all around the hem of our garment, so that'it extends over the whole circle of our outward life.

We are, however, not only commanded to have a fringe to our garments, but to have upon the fringe a ribband of blue. And this leads us to consider the correspondence of colors. Natural colors we know originate in natural light. They are the separation of the beauties which are bound up In the sunbeam, and their reflection to the human eye. There is a trinity of fundamental colors, red, blue, and yellow. From the blending of these in varied proportions all others are made. Blue and yellow form green.
Bearing in mind that the Lord is the Sun of the eternal world, and that essential truth shines as a spiritual light from Him, the three' essential colors into which light divides itself, will represent the three essential features of divine truth, in its application to man. There are truths of lope, which apply to our affections, trutbs of faith which apply to theights, and truths of lite. Red, the colour of fire, is the symbol of the truths of love, the fire of the soul. Blue, the colour of the azure depths of the sky, is symbolic of the deep things of the spirit of God, on which faith delights to gaze. Yellow, is the hue of truth which applies to outward life, and in combination with blua it makes green, which corresponds to truth in the letter of the Word, made simple to the common eye of mankind.
Blue gives a sense of clearness and depth, in which it surpasses ali uther hues. When we gaze into the blue depths of the sky, far above the changes of the clouds, their tranquil grandeur, arching in peaceful majesty far over the turmoils of the world, strikingly images those depths of heavenly wisdom from which the good man draws strength and peace.
"Though round his breast the rolling clouds are spread,
Blue, then, is the colour which represents the spirit of the Holy Word, the depths of heavenly wisdom.
There is, however, cold blue, as it has more of white in it, and warm blue, as it derives a certain hue from red. There has also been some diffculty in determining the exact shade meant by Techeleth, the Hebrew name for this colour. But from a full consideration of the subject we are satisfled it was the name for blues tinged with red, from violet to purple. And this very strikingly brings out the divine lesson by correspondence. While the blue indicates that in our demeanour or in life we should De correct, in harmony with the spirit of truth, the red hue indicates that all our truth ought to be softened, and warmed by love. "Speak the truth In love," said the apostle, and to remind them of this duty, God commanded the ribband of warm blue to be worn upon the finge of their garments, by the sons of Israel:

Truth without love is cold, hard, and unpitying, and therefore repulsive. Truth with anger is scalding hot, and like medicine, impossible to be taken, useless or injurious; but truth coming from a loving lieart, firm, but gentle, and sweet like the warm sunbeam, is welcome to all.
The loving bluc of the eye, which reveals the sweet impulses of a soft
and ger the pur all you Seen in prac of it is than an stern h are righ instead pervers upon ou

Nothti vindietif ourselve in his oc to be ex But we see the ribband
With t frequent to others will be br ribband one objec be to con elevating nothing brothers the spirit with each fringe let love. Y were plac hand wh weary, to the strug animate tion the t and heav brethren, words, le blue.
We con blest if th
In that highest it demeanor less tend of truth congenial lovers, th and agree no imperf by possess. succession fection fa drawn.

APPMNDIE TO THD ABTMANG' GUIDN.

low of his known to in aili ages. 8 thus, the He is with m at home kshop and break the y will then the Lord: unto us as
n' only for passed by, and whose ctends over
rgarments, us to eonsioriginate in re bound up is a trinity blending ot yellow form
ld, and that ree essential ee essential ure truthe of th apply to mbol of the azure depths d, on which pies to outcorrosponds mon eye of
urpasses all ur above the eful majesty depthis of d peace.
d,
Holy Word,
t, and warm n some diff. the Hebrew joct we are et to purple. pspondence. ρ should ios ates that all ak the truth , God comnge of their
re repulsive. ssible to be rt, firm, but es of a soft
and gentle heart, is like the color of the Hibbend, before ans; it ppeaks of the purity and the warmth of the spirit withitn. Let thefe; then, be upon all your demeanour thls color ot hearenly love.
Seen in this view we have now arrived at, thila commandment increasea in practical importanoe the more we contemplate it. Perhips the neglect of f is the cause of more failures in the delivery of well-meant advice, than any other circumstance. We proceed to correct with the rough, stern hand of truth alone, and we encoutiter resistance. We are sure we are right, and we proced to reprisich and invective. Quarrels ensue, instead of amendment. We brood over our fallure, sind wonder at the perversity of mankind; not reflecting that we have not put on the fringe upon our garment, the ribband of heavenly blue.

> "O be kind to each other, The night's coming on, When trienid and whien brother, Perhance may be gone."

Nothing can be farther from the splrit of heaven, than a stern, harsh, vindictive utterance of truth. We should ever remember that we can ourselves only be assisted by one who manifests to us \& apirit of kindiess in his counsel. To an assailant we close up. We cannot bear our faults to be exposed by one who does it in a spirit of exultation and insolence. But we love the friendly hand which has a brother's touch. We delight to see the dress not starched with prudery, but having upon all lits fringe the ribband of heaven's own blue.
With this blegsed tone, how often would homes be happy which are frequently torn with dissension. A brother will be gentle from courtesy to others, but is sulky or sharp to his own. A sister, from politeness, will be brilliant and fascinating to visitors, but often falls to wear the blue ribband to those of her own fireside. Oh, if the Christian ministry has one object whioh more than another should be its constant aim, it. should be to contribute to the happiness of home, that sacred centre of all that is elevating, strengthening, purifying, and ennobling aroong men. And nothing will be a truer source of all these blessings than to speak to brothers and sisters; and say; in all your intercourse with each other, let the spirit of religion be visibie. In eaoh small act of daily intercourse with each other, lot there be a fringe from your religion within, and on the fringe let the truth of inteligence be blended with the kindness of real love. You were created to learn to be fellow angels in the house. You were placed to walk together on your path to heaven, to give an assisting hand whon a weak one stumbles, to exhort the slothful, to cheer the weary, to warn against danger's path and dangerous foes, to encourage the struggling, to rejoice together when you gain a glorious prospect, to animate each other to your daily progress, and often to taste by anticipation the triumph you will have when all the dangers of life are gone by, and heaven is forever your home. Remember the char" " ${ }^{\prime \prime}$ " to his brethren, "See that ye fali not out by the way." Ir words, let there be seen npon all your fringe, the rijuc : in hea; dnly blue.
We come; now, to a still dearer connection, which would often be more blest if the spirit of this divine command were more faithfully carried out.

In that most saored of all human ties, the marriage union, it is of the highest importance that the blue ribband should appear in all the demeanor of hasband and wife. Yet, sometimes the domestic hearth is less tender and happy than it might be, for want of the gentle amonities of truth spoken in lore. When that mysterious sympathy which attracts oongenial souls to each other, first induces ardent thought in the young lovers, the earnestness of affection presents to both only what is amiable and agreeable, Each finds a magnifer of the excellences of the other, and no imperfectlon can be soen. And, when the hopes of both are orowned by possession; a lotig vista of happiniess is beheld; throngad with an endless succession of joys and blessings. Yet both parties have fallings. The perlection fancy has painted, will, in many respects, be found to be overdrawn. The bloom of outward beauty will wear off. Possession will
deprive many attractions of the exaggerated value for which they were chieify indebted to passion. Both are probably young, both imperfeet, both are human. Hence, there come discoveries of fauits and shortcomings which belong to us all, but whieh have been before unseen. And now is the opportunity for the manifestation of real love, in having patience with the loved one. If they have loved wisely, the virtues of each other, and that mntual adaptation of feeling, taste, and character which has drawn their souls to desire a union impossible with any one else, have been the chief attractions; and for their sakes, they can well afford to bear with some Cuhets. Instead of being astonished to find that the mere mortals wa have xarried have some of the failings of our falien race, we should thes doply the opportunities of showing, that ours has not been the selthis insl: which desires oniy its own gratification, but rather the holy after in tis a forgetful of self, seeks chielly the happiness of those we love. Tc itsist, n Td be assisted, to form angelio characters in eash other, these are the olic objects for which marriage has been instituted. And to accomplish these ends, we must have a faithful, but a friendily eye tor the imperfections of each other. We should scarcely notice the unpleasunt effect of faults in relation to our personal gratiflcation, but be quicksighted to perceive the injury they inflict upon the doer. "Who is so blind as he that is perfect," says the prophet, in reference to that Divine Mercy which sees not our sins so far as they are direeted against Him, and condemns them, only as they are fountains of misery to ourselves.
Our Lord washec His disciples' feet, and said, "As I have washed your feet, so must ye wash one another's feet." And if to assist each other, to remove imperfections from our conduet, which is spiritually. washing one another's feet, is a duty we owe to our ordinary Christian friends, how much more is it a duty to assist in removing the spots which soil the characters of those we have undertaken to love and to cherish. Yet what tender care this duty needs. The true wife, or husband, cannot bear to think that the deeply-prized love of the other is being lost. Noticing a fault rudely, betrays the appearance of dislike, and wounds deeply. Somptimes, self-love will creep in between married partners, and the strugele for power will take the appearance of opposition to faults. Then lacerated feelings are poured forth in bitter expressions. Then, quarrels arise, long animosities are inaugurated, which take trom home its sweetness, banish all those tender endearments, those happy confldences, those heart-felt rellances on each other, those Areside pleasures which constitute earth's nearest likeness to heaven. Then oppositions are engendered, recricninations are heard, hateful every where, but in:olerable from those we love. Distrusts, fears, and anxietles intrude, where only confldence should reign, and home becomes the saddest abode of misery. All this has happened, will happen, it we are not careful, in our mariled life espeelaily, to speak the truth in love. There, above all, the blue ribband should be seen upon our garments. Sweetness in our goodness and tenderness in our truth, should be the incessant law of married partners to each other. A fearfulness of injuring the feelings of the other: A friendly, kindly touch, when any mental sore requires attention : A determination to do nothing, which does not manifest a constant affection : A deference to each other's wishes: A manifest aetive effort to promote the other's happiness ; Thesse are the dispositions which can alone preserve and complete that choicest of all Divine Blessings-genuine conjugal love.

When misunderstanding has been sustained, and bruised affections manifest how deeply they are hurt,their pain should not be treated lightly. He would be thought cruel who trampled on the inflamed foot of another, yet the anguished heart is sometimes tortured with stinging words of bitterest taunt and reproach, under the deiusion that it is necessary to blame where fault has been committed. The first necessity is to bring ourselves into a state of real klndness and affection; then ascertain if the supposed fault be as real as it appeared. If so, to ask for Him who views us all from kindness, for wlsdom, frrat pure, then peaceable, to speak the truth in love. While our ribband is blue, to take care that it is soft and warm. How desirable this is in our intercourse with others! In our intercourse with those who are to form with us the happiness of heart and home, it is indispensable.

And negleo reserve The hu be rese be to h attenti retain depend beneati by gen by gro falutest away.
0 ma to each your sp on all fringed rememt your hu provino a meek chief c passed shines h
0 hus no harse ness kee morn tc greeting you, if y be the tr the wort and forb sweetnes upon the celestial
It is ec with the course w is painfu ence as r hankerin which at ful, or th serss of comes fri children will be is and whes its recoll dearest a of life, an them on 1
This at blessing healed ot our princ upon hel herself: and as so
In the 1 literal sel meek and ho out,
h they were th imperfect, nd shortcominseen. And re, in having he virtues of nd oharacter dith any one they can well d to find that of our falien that ours has tiffcation, but the happiness characters in ge has been - faithful, but ould scarcely onal gratifcesapon the doer. , in reference y are direoted as of misery to
washed your each other, to y. washing one n friends, how which soil the lsh. Yet what cannot bear to st. Noticing a ounds deeply. ners, and the 0 faults. Then Then, quarrels pome its sweetfidences, those which constire engendered, ble from those nly confldence sery. All this ir married life e blue ribband goodness and led partners to her : A friendA determinat affection : A to promote the lone preserve conjugal love. ised affections reated lightly. pot of another. ging words of is necessary to ity is to bring scertain if the IIm who views 3, to speak the it is soft and thers ! In our is of heart and

And yet it is not at all uncommon for anwise married partners so far to neglect this divine commandment as to be all smiles to others, and to reserve their coldness for those whom they should most fondly cherish. The husband open, smilling, and sedulously polite to any other lady, will be reserved, negligent, uncourteous, and unkind to the heart which should be to him above ail price. The wife, all-radiant with smiles to others, attentive to their minutest wishes or comforts, will not trouble herself to retain or regain the affections of that one, on whom all her real happiness depends. The gentle, concillating word, for which her husband's heart, beneath a firm exterior, is longing, sho will not speak. The one she won by gentleness, and grace, and all the feminine virtues, she will not preserve by growing in those virtues, but rudely repels. And the heart whose falutest throb she once valued beyond all earthly riches, she rudely throws away.

0 married partners, tenants of the same home, who should be all in all to each other, for time and for eternity, never neglect in your sentiments, your spirit, your acts, and your words to each other, to let there be visible on all the manifestations of character with whioh your life's dress is fringed, the trutu and the love of celestial blue. O wife, matron, mother, remember your strength is in teinderness. Never shock the feellngs of your husband by harsh, bitter, unwomanly exasperations. Your peculiar province is at home; let it be ever preserved sacred to domestic peace, by a meek and quiet spirit. So you will be your husband's dearest trust, and. chief consoler ; your children's constant refuge ; and when you have passed beyond the shades of time, the star of fond remembrance the ${ }^{*}$ shines high above the cares of earth, and lures them still to heaven.
O husband, O father, on whom the wife's fond heart desires to lean, let no harsh espression drive her thence. A yearning of unspeakable tenderness keeps you within her presence, mentally, wheruver you may be from morn to dewy eve. And, when you return, she expecte the friendly greeting ; let her not bedisappointed. Be assured her love would enoircle you, if you were driven from the common ranks of men ; her heart would be the truest pillow for your aching head. Her grace, her happiness, is the worthiest ornament for you now. Your strength is cold, repulsive, and forbidding, until it is combined and chastened by the gentleness and sweetness of your faithful, loving wife. Let her be cheered, then, to see upon the fringe of your garments, the clearness and the warmth of true ceiestial blue.
It is equally tmportant that the firmness and clearness of trath, blended with the warmth and gentleness of love, should be visible in all our intercourse with our children. Firmness, without gentleness and cheerfulness is painful and repulsive to children, and they shun the circle of its infuence as murh as possible. Softness, without firmness, strengthens their hankerings orselfish indulgences, and increases those disorderly demands which at length must be restralned with rigor, a hundred-foid more painful, or they must sink in ruin. Children ook for just directlon, and their ser 3 of justice leads them readily to acquiesce in what is right when it comes from iips they love. Only int the true blue ribband be seen by your children always, and they will follow where you lead, and your counsel will be laws they will revere in your absence as well as in your presence ; and when the music of your loved voice will be heard by them no more, its recollections within will be prized as the tones and the wisdom of those dearest and best-beloved ones who piloted them safely in the early walks of life, and still have only gone before thom, and are waiting to welcome them on the purer plains of hcaven.
This attention to the very externals of the Christian life is fraught with blessing every way. I: is only thus, in fact, we can obtain strength to be healed of our spiritual diseases, and only thus we can exhibit the worth of our principles to others. When the poor woman who had spent her all upon heipless physicians for twelve years came to Jesus, she said within herself: If I touch but the hem of his garment, I shall be made whole, and as soon as shu did so, virtue went out, and shé was healed.
In the hem of the vesture of Divine Trath, or in other words, in the literal sense of the Word of God, the divine virtue is ever present for the meek and lowly, and when it is touched by trusting love, that virtue wif oo out,

The 1 rophet Zechariah, speaking of the plorious ohurch of the lattar days, lhi church which is now unfoiding laself amongot us, the New Jerusalem, deciares, "Thus salth the cord of hosta : In these days it shall come t_{1} pass, that ten men shall take huld out of all languages of all nations. even shall take holid oi the sicirt of him that is a Jew, saying "We will go with you ; for we have heard that God is with you." -vill. 25. It is religion In life that is observed by, and is attraotive to good men. When it not only enilghtens the heari and rules the heart, but comes down to the skirts of the garment, infiniing justioe, kinduess, and courtesy into every act and every word, then it has an eloquence which will inspire many a well-disposed heart to say: "We will go with you, for we have heard that God fs with you. Let your good works, and your good words so shine before men, that they may glorify your Father which is in heaven."
While yon pay due and supreme attention to the interior principles of love and falth, never forget the fringe. Let your religion come out. Be loving and truthful in little thinga. Let your dally duties, and daily expressions unbosom in them the spirit of heaven in their eutire round, and thas upon the fringe let there boseen the ribsand of blus.

EXPERIENCE OF A SUN REPORTER IN NEW YORK.

Sulghtly altered from N, \mathbf{Y}. Sun.

A Sun reporter being desirous of finding out something deinite regarding the New Churoh dootrines, proceeded to No. 20; Cooper Institute, New York, and inquiring who was the head man of the denomination, a gentloman [Mr . Thomas Hitchcock] answered:-
There is no head man in our denomination; that is to say, there is no one whose lead we follow without question. We all think for ourselves, although, of course tome are more flamillar with the writings of Swedenborg than others.
Reporter. Do you understand the doctrines ?
Mr. H, I do, I have studiled them about twenty-one years.
Reporter. Well; what are you Swedenborgians driving at
Mr. H. We think we have got the true ecience of religious truth, and want to teach it to the world.
Reporter. Science of religious truth! Do you mean to bay there is any solence in religious trath?
Mr. H. We mean to eay, and we do say, that religious truth is as capable of scientific arrangement and explanation as any other truth, and that we are able to give this seientlic explanation. The New Cburca theology bears thesame reiation to all other theologies that the Copernican system of astronomy bears to the Ptolemaio, the Arable, the Hindoo, and the Chinese systems of astronomy. Those systems of astronomy were based on the mistaken appearanoe of things, whereas Copernicus and bis followers got at the realities. Just so other systems of theology are based on appearances, while the Nzw Ceurois system is based on the real truth.
'Reporter. What do you mean by "appearances"?
Mr. H. I mean the way that things appear to the senses. For example, the sun appears to rise and set, and to go daily round the earth. The sky appears to come down to the earth alfaround, forming what we cail the horizon. The earth appears to be stationary in the centre of our universe. The sun appears to be a small orb, not a millionth part as large as the earth; the planets seem no bigger than marbles, and the fixed stars appear to be mere twinkling polnts. All these appearances are controverted by sclence, and the senses have to yield to reason. It is the same in spiritual'and religious matters, which abonnd with fallacionsand mislead ing appearances, and these appearances have to be corrected, and in the Nzw Churox eystem of theology are corrected by spiritual science.
Reporter. That all sounds very well, in a general way; but let us get at something speeifie. What do you say for example to the doctrine of total depravity? I used to know a pious old lady, when I was a boy, who was strong on that doctrine, and who always closed every argument on the
subjec
take a Mr. with a nut cor ain unt Repo age of toathe Mr. otherw Repor
dootrin
Mr. B
infants,
Repnr
have we
Mr. ${ }^{\text {E }}$
commit
Repor
Mr. \boldsymbol{Z}
explain
intimate
ing both
Report
Mr. \boldsymbol{H}
unknow world, ant and good evil life, Report an evil 81 Mr. \boldsymbol{H}. world, bu being wh angelhoo wioked h become a into the gone to h Revorte a place to cent to he Mr. \boldsymbol{H}, and hell. arranged back to th and on w which the angels, t evil spi ably wioh special ef advent, t posseesion we readi was not 81 to the pla tence agal destruetic
Reporte
Mr. \boldsymbol{H}. given to is the hol Report
the Iattar the New ayb it ahall agee of all lew, sayink you: "-vill. good men. but comes nd oourtesy will inspire or we have good words phich is in rinciples of ne out. Be , and daily utire round, cus.

ORK.
nite regardistitute, New ton, a gentiler, there is no or ourselyen, 8 of Sweden-
us truth, and
there is any
is as capable and that we ech theology can system of oo, and the nomy were ernicus and theology are d on the roal
or example, th. The sky t we call the pur universe. large as the stars appear controverted the same in and mislead l, and in the lience. let us get at rine of total py, who was ment on the
subject by saying; "Well; when you take amern my total depravity, you take a way all my religion," What do you aay to that?
Mr. H. Our doctrine as to that matter is, that all human belnga are born with sifutul inolinations, (and of themeolves are nothing but evil), but need not commit sin uniess they choose to do so, and are not acoounted guilly of ain uuleas thev actually commitit.
Reporter. Then you hold that all children that die before they reaoh the age of moral accountablity go to heaven, no matter how wieked or topathenish thelr parents may be.
Mr. H. We do peost pmphatically; it in a monstrous estor to suppose otherwise:
Reporter: But if no infants whatever go to hell, what becomes of the doctrine of intant damnation?
Mr. H. I'm sure I can't say, unless it goes where it would send the infants, as it certainiy should.
Reporter. But if the doctrine of total depravity is not trae, what need have we ot a Saviour?
Mr. H: To save us from our sinful inclinations, and from notual sin committed by every one personalir.
Reporter. How did He , or how does He do that?
Mr. H. It is not easy' to tell off-hand how. He does it. In order to explain it, it is necessary in the first instance to explain our views of the intimate connection between this world and the spiritual world, including both Heaven and Hell.
Reporter. That is just what Iwant to get at, please go on ?
Mr. H. The apiritual world is not remote from this world, on some unknown planet, as is commonly supposed. It is right here, close to this worid, and within it. When a good man lives a good life, he draws angels and good spirite, who inhabit the spiritual world, near him; if he livesan evil life, he draws evil spirits and devils around him.
Reporter. What is the difference between a good spirit and an angel and an evil spirit and a devil?
Mr.H. A good apirit is a good human being who has passed from this world, but who has not yet become an angel: An angel ls a good human being who has been perfected in the spiritusl world up to the status of augelhood, and been thereby elevated into heaven. An. ovil spirit is a wicked human being who has passed from this world, but has not yet become a devil. A devll is a wicked human being, who having passed into the world of spirits, has blossomed into full blown devilhood, and gone to his home in hell.
Revorter. You taik about the WOrld of Spirits, as though it were a a place to which good and bad spirits goin common, previous to tneir being sent to heaven or hell.
Mr. H, Yes, the worid of spirits is an intermediate atate between heaven and hell. It is where all go immediately after death, before we are finally arranged and disposed of according to our real oharacters. Now to come back to the spirits which a man draws about him in this world by his. life, and on which I must predicate my explanation of the work of salration which the Saviour did for us; By the instrumentality of good spiritis and angels, the Lord is always trying to save us from the machinations of evil spirits and devils. But when the human race is unspeakably wicked, as it was at the time of the Lord's appearance on earth, speolal efforts to this end are necessary. At the time of our Saviour's advent, the evil spirits and devils had got such a hold upon men as to take possession not only ot their minds and hearts, but of their bodles also, as we read in the Gospeis, and the instrumentailty of angels and good spirits was not sufficient to resist them. The Lord, therefore came Hinself down to the plane of human life, and on that plane fought with his own Omnipotence against hell, and its allies, drove them back, and thus saved man from destruction.

Reporter. Do you mean that it was GoD Himself wha did this?
Mr. H. Yes, I do. There is but one God. The Son of God is the name giveu to His manifestation of Himself here on earth, and the Holy Spirit is the holy influence that proceeds from Him. : Reporter. What beoomes of the vicarious atonement then?

60

 APPENDIX TO THE ARTIZANG' GUIDE.Mr. A. The vioariotugsiotitment, as expounded by old fhahloned theologians, is a misoonoeption of the truth, fust as the l'tolemaic systom of astronomy was a misconception of astronomioal faots. It rests upon the assumption that GOD wae angry with His oreatures and needed to be paodfed, and would iot be recouciled to the offienders nutil eome une had been adequately junished for their offienoes. GoD's alieged anger is only an appearance induced by our guilty consolence. The truth is that God loves the sinner juat as much as He loves the saint, and always speks the sinner's good, for "His tender mercies are over all His works," extending even to the lowest hell. The infnite love of our Heavenly Father is such that He "makes His snn to rise on the ovil and on the good, and sondeth rain on the jast and on the unjust" and "ils kind to the unthankful aud te the evil." To remove the appearance of anger, it is only necessary for us to repent of our sins and turn to the Lord; just as, to come from night to day, it is necessary for the earth to turn, and not for the sun to ohenge its position. The sun shines on just the same all the time, whether it bo hidden by oloude or shut out from us by the earth's turning away from it; and so, too, does the Lord's love shine on just the same all the time, no matter how it may be obscured by the clouas of evil, or shut out from our hearts by our turning away from the Lord. So you see that redemption Was a deliveranoc from the powers of hell, to enable us to turn again to GoD, and was not a deliverance from the wrath of GoD, as the phrase is usually understood. The work which the LORD did in redemption was indeed vichrious. He did in our place what we could not do for ourselves, Atonement again, means reconciliation-or, as it is sometimes speiled at-one-ment, and it is we who are reconclied to God, and not GoD to us. He does not need any reconciling, but we do, because it is we who have gone astray. It is we who must be brought back. To repeat our astronomioal illustration, there is no change in God any more than there is in the sun; it is the earth that must turn in order to receive the sun's heat and light. 8 in is the great cloud that intercepts the heat and light, or the divine love and wisdom, proceeding from the Sun of Righteousness, "Your iniquities have separated between you and your God, and your sins have hid His face from you."

Reporter. All the preachers say the same thing, that we must turn to the lond and seek salvation. Is your way of doing that different from theirs?

Mr. \boldsymbol{H}. I will not attempt to state their method, but will only tell you what ours is. Our way of turning to the Lord is to repent of one's sins, pray to the Lord for help, and above all to keep the commandments.
Reporter. That seems to be orthodox. I was brought up a Methodist, and that is just what they preached. There does not seem to be much practical difference, after all, between you and the rest of the religious world.
Mr. H. I shonld be very glad to belleve that that was so. The use of all religion is to make good men and women on earth, and angels in heaven; so far as the Methodist, Catholic, or Mahometan religion can do that, it has my hearty sympathy. Indeed Swedenborg teaches that in the providence of the Lord, believers of all forms of religlon are saved if they only lead good Hives, according to their religious precepts.

Reporter. What is the advantage of your form of religion then over others?
$\boldsymbol{M r} \boldsymbol{H}$. The advantage consists in being free from the errors and misconceptions which embarrass and mislead believers in other gystems.
Reporter. What errors and misconceptions do you refer to?
Mr. H. That of God's being augry with us and demanding a victim to appease his wrath, for example, and the consequent misconception of the real natare of the atonement, the trinity of three distinct persons, the doctrine that henven and hell are arbitrarily given by the LorD, and are not the result of eternal laws, these and kindred errors. following from them, puzzle and confuse people's minds and prevent them from doing as well as they would if they knew the truth.
Reporter If the Lord does not send a man to hell, who sends him there?
Mr. H. He goes there of his own accord, and because he likes it better than he likea any other place. eded to be ne one had ger is only that God if seeks the extending her is such nd eendeth kful and te ssary for us m night to 1 to ohange tether it be pay from it; he time, no utfrom our redemption rrn again to he phrase is mption was or ourselves, mes spelled : Giod to us. e who have our astronoere is in the 's heat and Ight, or the ness, " Y our ur sins have
hust turn to ferent from
nly tell you fone's sins, dments.
Methodist, to be much he religlous

The use of gels in beaion can do hes that in a are saved pts.
a then over
rs and misystems.
a. victim to ption of the ersons, the RD, and are owing from bm doing as sends him es it better

Reporter. If you will enable me to comprehend that, and nee that it to true, you will contribute much to my peace of mind.
Mr. H. How so? would it contribute to your peace of mind to see that if you should ever become an inmate of one of those loathsome hells of the fourth or alxth ward of New York, - any a nogro dance-house,-lt would be because you had become so degradod that you would go there, and live there, and make your living by living there, from pure love for suoh: Hfe?
Reporter. The very Idea makes my soul turn aick.
Mr. H. Very well, then how can it contribute to your peace of mind to see and believe that if you go to hell from the world of sprits it will be beeause you will have become so vile and luathsome in all the attributes of your apiritual nature that you will prefer the society of devils to that of angels, and the wickedness and oorruption of hell to the purity and hollness of heaven?
Reporter. On refection I do not think my peace of mind would be much re-enforced by suoh a belief. But I want you to explain how people go from the spiritual world to heaven or to hell.
Mr. \boldsymbol{H}. Before I do that, tell me what your idea of heaven is.
Reporter. Heaven is the etornal home of the redeemed, it is the home of never ending rest, it it a place of eternal happiness.

Mr. H. What makes heaven a place of happiness?
Reporter. Why, God makes it so, of course.
Mr. H. Buthow does he make it so? In what does the happiness of heaven consist?
Reporter. Why, in being happy, I suppose. And the redeemed are made happy by contemplating the glories of their Redoemer; by singing endless. praises to Him, by wearing goiden crowns and robes of spotless white, and roaming those sweet fields which as the old hymn says, beyond the swelling flood stand dressed in living green.
Mr. H. That is to say, the happiness of heaven, according to your views, consists in what might be termed a nover ending religlous hollday with nothing to do excopt to sing praises to God, and feast on what you oall heavenis dellghts?
Reporter. Yes, that is about it.
Mr. H. How would you like that here on earth? How would you like to stand in a temple or a garden for years, wearing a white robe, and with a gold crown on your head, and a gold harp in your hand, and with nothing to do but to sing palms? Or to put it brielly, how would you dike to live in everlasting idieness here if you could.
Reporter. It would be intolerable, of course. It would kill me or drive me crazy.
Mr. H. Exactly, just as it has killed or driven mad many a man who, having amassed wealth, and foolishly lmagined that it would be heaven on earth to live in splendor and idleness, has supplied himself with a luxurious home, and quit business to enjoy it. Does not every such man find out his mistake?
Reporter. Yes, I went up to Connecticut last year and interviewed one of these very men. He had un earthly paradise, but the devil was in it In the shape of idleness, and the poor rich old man told me he was going to start an orphan asylum, and run it himself, just to have enough to do to keep him from going crazy or committing suicide.
Mr. H. You havo hit it exactly. Activity isa law of life. Idleness leads to stagnation, and stagnation is death. Every man must be activo. A good man wants to be ali the time duing something useful, an evil man wants to be all the time dolng somethiug harmful. The old gentleman that you interviewed in Connecticut, being a good-hearted man, his irrenressible craving for activity burst out in a charitable direction and he founded anorphan asylum. If he had been a bad hearted man his activity would have taken an evil direction. In the spiritual world every one has the same passions and desires as here. The good spirits seek to be useful auu the bad spirits seek to gratify their evil dispositions. The same laws govern the coalescence of the inhabltants of the world of spirits into societies or communities which govern the same thing here. In this world the victons seek out and consort with the vicious and the good consort with
the good. Take the people who arrivein this city, for example, on tiny given Saturday night and Sabbath morning from all parts of the country. They are here relieved from the conventiunal restraint which keeps them in order at home, and every one is free to gratify his appetites at his will. You understand such things, and very well know that many of those persons who, if at home on that Sabbath would go to church, and exhibit a deal of hypocritical piety, wili go to the haunts of vice in this city, and scoff at all religion, and wallow in wickedness. Every one of them who loves the company of the vicious, will seek out violous companions, and go where he will enjoy himself most. On tho other hand, thase who really love the Lord, and in their very hearts want to do the right thing wherever they are, will seek out some church n that Sabbath, or will in some way show out and act out the love for the Lord and his people which domlnates their lives. So, when peoplu arrivs in the spiritual world where all conventional restraints ars removed, every one acts out his real nature. The wicked gradually sort themselves out from the good, and gravitate: by choice to the hells. A hell is simply a society in which wickedness holds entire sway, and the worse the wickedness the worse the hell.
Reporter. But how about the punishment for sin ?. Is not hell a place of torment ? and if it is, why do even the wicked like to go there?
Mr. H. Why do the wicked go from choice into the hells of this world, and voluntarily accept the loss, diagrace, ruin, disease, suffering, and death, which come of going there? Yeople are the same in the world of spirits that they are here ; that is to say, they are human beings. Suppose you and I were to be struck dead this moment, and pass into the spiritual world. You would be you, wouldn't you, and I would be I? We should have the same spiritual natures which we have now, you would like there what you like here ; and it would be the same with me. If we really love God and our neighbour here and now, we should love GOD and our neighbuur there and then. If' we love what is pure and, holy here we should love what is pure and holy there. But if we really in our hearts love self, and the world, and evil and wickedness here, we should love the same there, no matter what we may pretend to love here. And loving wickedness we should go among the wicked, because we should prefer to do so. And being among the wicked, we should, of course, havo a wicked and unhappy time of it, and grow worsé and worse, and become very devils, and be tormented by our own burning passions and by our fellow devils, and suffer unspeakable anguish ; and yet we would prefer that devilish state to heaven, just as the human devils in this world prefer their horrible life surroundings to the society of good christians.
Reporter. I understand how it must naturally be as you say ; but still I do not see where the punishment which God inflicts on sinners for the sins they committed in thls world comes in.
Mr. II. The Lord does not punish people hereafter for deeds done in the body. "Sufficient unto the day is the evil thereof." In the Lord's dealings with His creatures there is no such thing as punishment, in the sense in which that word is generally used, but only philosophical consequences. If you take hold of hot iron, it burns you. The burning is not a punishment, arbitrarily inflicted, but only a natural consequence. If a man eats or drinks any thing poisonous or hurtful, the inevitable consequences follows, and his body is injurcd, or perbaps his life sacrificed. So, too, if a man commits sin, his soul is injured, as a spiritual consequencc; and by continuing in sin, he comes to love it, and his soul gets such an appetite for it that ho continues sinning in the world of spirits, and grows in wickedness, and finally goes to hell, as a spiritual consequence of his sins, just as a drunkard finally goes to a drunkard's grave not as a punishment arbitrarily imposed upon him for his offence. but as a physiological consequence of his excessive indulgence in strong drink.
Reporter. Do men go to heave, on the same priicipies?
Mr. H. Precisely. By cultivating during this life love to the Lond and to the neighbour, a good man, with the LorD'g help, acquifes the habit oi enjoying the exercise of his good affectlons and in the other life seeks the soctety of companions of a like character. It is easily seen that a community of people all loving and obeying the Lord, and all loving one another and trying to do the greatest possible good to one auother, must make? heaven whercver they may be.
heav

DE.

ple, on any giver oountry. They 1 keeps them in tites at his will. any of those pera and exhibit a in this city, and ,ne of them who panions, and go those who really it thing wherever vill in some way pple which dom. Forld where all this real nature. and gravitate by wickedness holds hell. tot hell a place of there? ells of this world, θ, suffering, and e in the world of beings. Suppose into the spiritual I I We shotild would like there If we really love jve GoD and our nd, holy here we lly in our hearts ve should love the hero. And loving e should prefer to se, havo a wicked and becomo very and by our fellow vould prefer that world prefer their ns. ou say ; but still I inners for the sins
or deeds done in In the Lord's unishment, in the Iosopiical consehe burning is not onsequence. If a inevitable consefe sacrificed. So, ual consequencc; oul gets such an pirits, and grows insequence of his e not as a punish. as a physiological

es?

to the Lord and uifes the habit oi ther lifie seeks the en that a commur. ving one another her, must mako

APPENDİ TO THE ARTIZANs' quide.
Reporter. What chance is there for doing good to your neighbours in heaven? Doesn't the Lord give your neighbours all thoy want there without your help?

Mr. H. He does not do it there any more than he does it here, you must remember that our happiness comes through' the right use of the faculties which the Lord has bestowed on us. The Lord works by instrumentalities in heaven the same as he does here. For example, be gives us the relation between husband and wife, of parent and child, on" teacher and scholar, to bring into activity and to gratify our deepest and tenderest affinctlons, and it is only in this way-that is, by the exercise of onr affection-that we can get any development.

Reporter. Do you mean to say that thers are the relations of husbands and wives, parents and children, and teachers and scholars in heaven?

Mr. H. I do. Natural death has no power to effect a permanent separation between a husband and wife who have tenderly loved eash other in the world and at the same time were grounded in sincere love in Gon. There are husbands and wives in heaven as there are on this earth; and though 110 children are born there yet the children who aie in this world. and who all go to heaven have to be brought up and educated to adult age; so, too the ignorant good people among Christians and the good among the heathen, who all go to heaven, have to be instiucted there. And in fact what do the wisest of us know in comparison with the angels who have been in heaven for thousands of years? As arrivals there are incessant, there is never any cessation of the work of instruction.
ence there is the exercise of the parental office, and the relation of teacher and scholar. Did it ever occur to you to imagine what has become of the myriads of infants that have died and gone into the world of spirits. Do you suppose that infants that died five thousand years ago are kept bottled up somewhere as infants still? Are all the infants that have died, and that are dying, and that will hereafter die, to be kept for ages upon ages in an infantine state, and then be finally judged as infants, and sent to their doom as infints, and kept as infants,-myriads of them not one hour oid-throughout eternity? Do you suppose there is to be any such waste of immortal material as that? Is it not more reasonable to suppose that the Lord in the exercise of His infinite love and wisdom, has made provision for their care, and comfort, and instruction?. It would be justly considered an act of atrocious cruelty to send countless infants off t, some distant land, without making any provision for their welfare when they should arrive at their destination. And is there any reasonable rcligious being on earth who would dare to imagine that the Lori has not made ample provision for the welfare of all His little ones that go in their Lelplessuess to the unseen land?
Reporter. All the mothers will be apt to accept your doctrine as to the fate of infants in the other life. It looks reasonable. But if Swedenborg's virws are correct, it strikes me that a great many good Christians are foredoomed to disappointment, and will not find the heaven they longed tor.
Mr. M. There you are mistaken." Swedenborg expressly says, that every good person, on his first arrival in the world of spirits, finds exactiy the heaven hebelieves in.
Reporter. Why is thati?
Mr.H. To take the nonsense ont of him. When people imagine that heavenly happiness consists in endless worship, or einging, or sitting on beds of flowers, or roaming in paradisaical gardens, or feasting with the patriarchs, or merely getting into a place called heaven, they are allowed to try the experiment, till they become so disgusted that they wish to break away from such enjoyments, and escape to some place where they can find something useful to do. They are then instructed that heaven consista in performing uses-doing useful things-in the name of the Lond, and rigit glad are they to learn that lesson. The essence of heaveniy deli. ht is the doing of good to others, and not the selfish gratification of one's own desires. Swedenborg says that the angels mot only love the neighbour as themselves, but better than themselves, ard find ineffable delight in ministering to their neighbours. That is in accordance with the teaching of the Lord whilg on earth: "But he that is greatest emong you shall be your servant." (Matt, xxiii. 11.

54.

Keporter. But what do angels find to do in heaven :

Mr. H. Every thing that good men and women do in a perfect state of society on earth, with of course such exceptions as grow out of the difference between the materiai and the spiritual worlds. Some are teachers ot religious truth to new comers from this world. Some particularly women, take care of infants and ohildren. Immense numbers are engaged in watching over us who still live here in this world. "Are they not all ministering spirits sent forth to minister for them who shall be heirs of ssivation," (Heb. i. 14), and as many, if not more, in ameliorating the miseries of the inmates of hell. It is there as it would be here in a oummunity of good and benevolent people, each one does what he is best qualitied for to promote the general welfare and happiness.
Reporter. Will people know each other there?
Mr H. Yes, but if that knowledge is only of the outward seeming, as it often is in this world, and not of reai interior character, it will soon pass sway, becruse there everybody at length has to show his real oharacter, no hypocrisy is possible there. Hence, uniess people have an interior affinity for one another, they do not remain together in the spiritual world.
Reporter. Do you administer the usual ordinances?
$M \boldsymbol{M} . \boldsymbol{H}$. We administer the rite of Baptism, and the sacrament of the Hoiy Supper, and carry on our worship very much like other Christians. We are liberal in our notions as to other sects, and wish them all God speed. $\{$ The fact is the New Jerusalem is coming down out of heaven in all parts of the world and in ail denominations. It has transformed the theology and the preaching of Christendom within a century. Henry Ward Beecher preaches more of the essence of the new church doctrines than some of our own ministers. Bishop Ciark of Rhode Island does the same. By the essence of our doctrines, I mean love to GoD and the neighbour oarried out in actual life by keeping the commandments, both in their letter and their spirit.
To the foregoing, we add the following extracts from Swedenborg. The Criterion for Charactrk. - "Man may know which he is amongat, whether amongst the infernal spirits or the angelio. If he intends evil to pis neighbor, thinking nothing but evil ooncerning him, and actually doing evil when in his power, and finding delight in it, he is amongst the infernals, and becomes himself also an infernal in the other life; but if he intends good to his neighbor, and thinks nothing but good concerning him, and actually does good when in his power, he is amougst the angelic, and becomes himself an angel in the other life." "Let a man seareh out the end which he regards in preference to all the rest, and in respect to which subordinate ends are as nothing; and if he regards self and the w. rld as ends, be it known to him that his life is an infernal one; hut if he regards as ends the good of his neighbor, the general good, the LorD's Kingdom, and especially the Lord Himself, be it known to him that his life is a heavenly one." "A man serious in his duty towards God and his neighbor, may always know whether he is on the right road to salvation or not, by examining himseif and his own thoughts by the Ten Comniandments; as, for instance, whether he loves and fears God; whether he is nappy in seeing the welfare of others, and does not envy them; whether on having received a great injury from others, which may have excited him to anger and to meditate revenge, he afterwards changes his sentiments, because God has said that vengence belongs to him, and so on; then he may rest assured, that he is on the way to heaven, but when he discovers himself to be actuated by contrary sentiments, on the road to hell."
Conoerning Agr in Heaven.-Those who are in heaven are continually advancing to the spring of life, and the more thousands of years they live to a spring so much the more delightful and happy, and this to etcruity, with increments according to the progresses and degroes of love, charity, and of faith. Of the female sex, those who have died old and worn out with age, and have lived in charity towards their neighbor, and in happy conjugal love with a husband, after a succession of years come more and more into the fower of youth and adolescence, and into a beauty which exceeds every idea of beauty ever perceivable by the sight. Good-
ness ay oauses minute They b of char what angel, appear beauty grow 0 LoRD beautie

Stat OF, THE similar effected world a treaties men, in isted in wars, 8 kingdon divers 1 exist in exist in of the k wars, or things are, is ex ChJROH deed in t ance divi as hereto But hen thinking to heav For all order, an from the things, a not obses upon it, neverthe dies. Si of the W means of and he w " Hence made for by the la to under: stood, an removed earth pas then, the prepared the throl
The ab last jud xvi. 18, (as descr the nne above state of cal taots

- perfect state of out of the differ. le are teachers ot ticularly women, are engaged in they not all mia: be heirs of seira. ting the miseries a oummunity of st qualified for to
rd seeming, as it it will soon pass is real character, have an interior in the spiritual
sacrament of the other Christians. sh them all God it of heaven in all transformed the century. Henry church doctrines Island does the to GoD and the nandments, both
wedenborg.
ch he is amongst, he intends evil to and actually do. amongst the inIf life; but if he good concerning ngst the angelic, man search out nd in respect to rds self and the rnal one; hut if ood, the Lord's to him that his rds God and his pad to salvation Ten Comniand; whether he is them; whether ay have excited anges his sent:im, and so on; n, but when he on the road to
en are continuis of years they ind this to eterlegrees of love died old and r neighbor, and 4 of years come d into a beauty o sight. Good.
ness and charity is what forms and makes a resemblance of itself, and causes the delightful and keautiful of charity to shine forth from the minutest parts of the face, so that they thamselves are forms of charity. They have been geen by some, and have excited astonishment. The form of charity, which is seen to the life in heaven, is such that charity itself is what effigies and is effigied, and this in such a manner, that the whole angel, especially the face, is as it were charitv, which manifestly both appears, and is perceived, which form, when it is beheld, is ineffable beauty, affecting with charity the very inmost of the mind. In a word, to grow old in heaven is to grow young; those who have lived in love to the LoRD and in charity towards their neighbor, become such forms, or such beauties, in the other life. Heaven and Hell. 414.
State of the World and Church, abter, and in Congequench of, the liat Judamint.- "The state of the world hereafter will bs quite similar to what it has been heretofore, for the great change, which has been effected in the sinititual world, does $n=t$ induce any change in the natural world as regards the outward form; so that the affairs of states, peace, treaties and wars, with ail other things which belong to the societies of men, in general an i in particular, will exist in the future, just as they existed in the past. The Lord's saying that in the last times there will be wars, and that nation will rise up against nation, and kingdom arainst kingdom, and that there will be famines, pestilences and earthquakes in divers places," Matt. xxiv. 6, 7, does not signify that such things will exist in the natural world, bnt that things correspondent with them will exist in the spiritual world, for the Word in its prophecies does not treat of the kingdoms, or of the nations upon earth, or consequently of their wars, or of famines, pestilences, and earthquakes in nature, but of such things as correspond to them in the splritual world, what these things arc, is explained in the Aroana Coulistia. But as for the atate of the ChJRon, this it is which will be dissimilar hereafter; it will be similar indeed in theoutward form, but dissimilar in the inward. To outward appear. ance divided churches will exist as heretofore, their doctrines will be taught as heretofore; and the same religions as now will exist among the Gentijes. But henceforward the man of the church will be in a more free state of thinking on matters of faith, that is, on spiritual things which relate to heaven, because spiritual liberty has been restored to ${ }_{1}$ im. For all things in the fizavens and in the hells are now reduced into order, and all things which entertains or opposes diviue things infows from thence-, from the heavens, all which is in harmony with divine things, and from the hells, all which is opposed to them. But man does not observe this change of state in himself, because he does not reflect upon it, and because he knows nothing of spiritual liberty, or of influx; nevertheless it is perceived in heaven, and also by man himelf when lie dies. Since spiritual liberty has been restored to man, the spirituel sense of the Word ls now unveiled, and interior Divine Truths are revealed by means of it; for man in his former state would not have received them, and be who would have understood them would have profaned them.' "Hence it is that after tho last judgment, and not sooner. revelations were made for the New Church. For since communication has been restored by the last Judgment, man is able to be enlightened and reformed, that is, to understand the Divine Truth of the WORD, to receive it when understood, and to retain it when received, for the interposing obstacles are removed; and therefore John, after the former heaven and the former earth passed awey, said that he saw a new heaven and a new earth, and then, the holy city new Jerusalem coming down from GoD out of heaven prepared as a bride adorned for her husband; and hèard On zitting upon the throne say, Behold I make all things new." Lev. XxI. 1, 2, 5 .
The above was written by Swedenborg in 1758, or 115 jeirs ago. The last judgment foret Id in Matt. xxiv, Luke xxi. 9, 27, Rev. vi. 12, 17. xvi. 18, and ciher places, was fully accomplished in the spiritual world, (as described by him), by the end of the year 1757, or the year prevjpus to the nne eirst mentioned, and I appeal to every enlightened mind if the above statements regarding the condition of the world, and the state of the man of church havo not been verificd by actual historical facts, which even at this day, 1873, have assumed an amplitude which

cent was executed ol worid from the 10 lived previous, uth, the first was 1, and is described he Lo.ad Himself e judgment or this a xis. 81 . It is of of a church, wben meeqıe t dreadiul sake of the good, ibetare us, we can spirit which held e in question, and zenting millions ef this period may le ret, when he saye, 'knes the people," kness with a most but slowly, emorg. ast bimself of error erience shows that as the understamd e convinced frop,

It can riever fo
oming down from eed in the anternal 1,$12 ; 1 \times 7,17,222$, desoribed as buing ags, or enbant you og a citr coula not 4 city: in the Word, y for the peape of m , and not the city IIts desoription by to understan' any ensation of Divine ded to the world lar of this descripro from entoring od the twelve gates 1," V 21, by which acknowledgment nowledges of truth the very gate by hes when He says, e saved, "John x. ne, gates, that the n," Isa. xxvi., 2. eunto a merchant a One pratrl of bt it," Matt. xiii., edge and acknowf, signifles for man eaictruth. A rosk, ias corresponding His Divine Truth, any other places, atone, a precious kiug of Tyre in ledgos, hence it is Hor Gob ; every the diamond, the ruld, and the car-
buncle, and gold" xxvili., 12. It is plain that these expressions are not 10 be litera' 'y uncierst ood, but are thus expressed for the sale of the apiritual sense, in which precious stones signify truths. The like is meant by "Eden, the garden of Grid" in which the king of Iyre is sata to have been, which is used in the Word to denote inteligence, and wisdom thence derived. The garden of Eden was as much unknown in the time of the king of Tyre as it is at this day, such a locality as that described in Gen. 11., 8, 14, having no geographical existence on the globe ; hence the vain researches, travels, expeditions, writings, \& c., of the curious and the learned, during the past and present ages, regardlng this subject, they being ignorant that the whole account is to be understood as a pare allegory, descriptive of the state of the men of the Most Ancient Church. This was the universal style of writing among these people, it wws derived from a heavenly origin, and they delighted in framing descriptions of this kind, expressing spiritual truths by means of allegories or correspondences, making use of natural objerts to symbolize spiritual truths. If must be visible to every one, that when the tries of the garden are described natural trees are not to be understood, for life, and the knowledge of good and evil, do not grow on such trees, and so on with other things. This style of writing is continued to about the end of the eleventh chapter of Genesis, where literal or trce history begins, but still or' such a nature that it involves a apiritual sense throughout. As mankind receded from a heaveniy state, and became corporeal and sensual, believing in nothing which they could not investigate with their bodily senses, the kniowledge of correspondences became gradually lost, and remained so, until under the Divine Providence of the Lozd it has been again restored to the Charch, and made available to unfold the true mesning of the Word. so now those who bave hitherto "walked in darkness"' may "' see a great light," and the Church may be addressed in the sublime language of tee prophet, "Ariss, GEINE; FOR THY LIGHT is COME, AND THE GLORY OF THE LORD is bisen Upon thier."

SUMMARY STATEMENT OF THE DOCTRINES OF THE NEW CHURCH.

I. God is Ono in Essence and in Person, in whom there is a distinct and essential Trinity, called in the Word the Father, Son, and Holy Spirit, and the Lord Jesus Christ is this God, and the only true object of worship.
II. - In order to be sared, man must believe on the Lord, and strive to obey his commandments, looking to Him alone for streng. 1 and assistance, and acknowledging that oill life and salvation are from Him.
III.- The Sacred Scriptures, or the Divine Word, is not only the Revelation of the Lord's will and the history of his dealings with men, but also contains the infinite treasures of his wisdom expressed in symbolical or correspondential lenguage, and therefore in addition tu the sense of the letter, there is in the Word an inner or spiritual sense, which can be interpreted only by the law of correspondence between things natural and things spiritual.

1V:- Now is the time of the Sacond Coming of the Lord, foretold in Matt. Xxiv., and the establishment of the New Church signified by the New Jerusalem in Revelation xxi., and this Second Coming is not a visible appearance on earth, but a new disclosure of Divine Truth and the promulgation of true Christian Doctrino, effected by means of the Lord's servant, Emanuel Swedenborg, who was specially instructed in this Doctrine, and commissioned to publish it to the world.
V. -Man's life in tho material body is but the proparation for eternal life, and when the body dies mian immediately rises into the spiritual world, and, after manaration in an intermediate state, dwells for ever in Heaven or Hell, antard tg to the character aicquired during his earthly life.
V1. -The Spiftual wirld, the eternal home of men after death, ts not remote trom this worl, but is in direct conjunotion with it, and we are, though unconsciously, Nfway in immodiate communjon with angels and ppirits,

NEW CHURCH BOOKS AND PAMPRLETS FOR SALE

by James Spiers, 86 Bloomsbury St. London W. C. England. E. H. Swinney, 20 Cooper Union, New York City, U. S. A.; Carter \& Pettee, 3Beacon St. Boston, Mass. U. S. A. In the following list the postagis is included, unless otherwise spee fied. The prices in England vary from the followinl;, which have reference to American money only.

Price. Post. Clowes, Parables 1.50
\$ c. c. Clowes, Delights................. 1.25

Arcana Ccelestia, 10 vols., each....................' 1.5) 44
Apoc. Revealed, 2 vols., each 1.5036
True Christian Religion 2.5060
Conjugal Love............... 1.2536
Miseellaneous Theological Works.................... 1.5040
Heaven and Hell............. 1.2582
Divine Providence........... 1.2524
Four Leading Doctrines 1.0024
Divine Love and Wisdom... 1.0000
Athanasian Creed.............. $\$ 1.25$
Last Judgment, mu:ilin.......... . 75
I, ast Judgment, paper.
Heaven and Hell, paper. 50
Earthe in the Universe, IImp.. 60
Earths in the Universe, paper.. 20
Doctrine of the Lord, paper.... 20
Doct. of the Sacred Scripture 15
Dectrine of Faith, paper 10
Doctrine of Life, paper 10
Heavenly doctrines, paper 12
Decalogue Explained, cloth. 50
Exp. of the Terl Commandments 10
Summary Exponition. 20
Apocalypse Explained, English Edition, 6 vols. 10.00
Collatereal Wores.
Arbnuln's Regenerate Life..... 75
Barrett's Lectures 1.50
Barrett, New View of Eeil...... 1.25
Barrett, prelate and Pastor 80
Bayley, Eaypt to Canaan. 3.00
2.50
Dirine Wisdom of the Word.. Bayley, Divine Word Opened. 3.50
Bayley, Essays anc Reviews... 1.50
Bayley, Scripinza Paradoxes 1.25
Bayley, Brighton Lectures... 30
Browniog, Words in Season... 1.00
thew. 8.50
Bruce's Commentary bil John.. 8.00
Bruce's Sermons. 1.75
Bruce's Strictures, dto. 50
Rruce's Marriage 75
Clowes, Cospel of Matthew 3.00 3.00
Clowes, Gospel of Mark 3.00
Clowes, Gospel of Juke 3.00 3.00
Clowes Gospel of John. 3.00
Clowes, Memoirs 2.75 2.75
Clowea. Mediums. 2.50
1,25
Clowes, Marriage of the King'Cluwes, Opposites.......... 1.25Clowes, Miscellancous Sermons 2.5Deliverance of the Israelites 2.25Deliverance of the Israelites 2.25
Clowes, Ten Virgins
2.......... 2.25Clowes, Ten Vlrgins.
Dootrine of the Lord in Primi-tive Christian Church.75
Field, Cosmos and Logos 2.00
Giles, Nature of Spirit, clo. gilt 1.25
Giles, Nature of Spirit, clo 75
Giles, Nature of S, irit, paper.. 50
Giles on the Atonement. clo.... 50
Giles on the Atonement, paper
25
25
Gould, Biblical Criticism. 1.00
Hayden, Daugers of Modern spiritualism 75
Hayden, Dangers of Modern Spriritualism, paper 20
Hayden, Leclures on the Apo- lypse.. 1.00
Hayden, Light on the Last 1.25Things.riage
1.00Sermons on the Lord's Prayer.
Hiller, Sermons on Ten Com'dts 1.00
Hiller, Practical Sermons 1.75
Hiller, Religion and Philo. sophy 50
Hiller, Who was Swedenborg ? 50
Hiller, Doctrinal Sermons.... 1.75
Hiller, God Manifest 1.50
Hiller, Notes on the Psalims... 8.00
Holcombe, Our Children in 1.75Heavan.........................
Hereafter
Holcombe 1.50
Howard, Journey of the Israelites1.00
Noble's 4 ppeal 1.75
Noble on the Commandments. 2.00
Noble's I.ectures.
2.50
2.50
Noble, Fienary Inspiration..... 1.25
Humanity 1.75Noble; Eight Parables E....
plained. 2.25
2.00
Sun. 1.88A much more extensive list saay be seen in the "Now Jerasalem Mcs-senger," a New Church weekly of 16 quarto pagar, published at No. 20Cooper Union, New Yors; Terms, $\$ 3$ pur annㄱim, It is really a mostexellent paper for the family,
Reed, S., Growth of the Mind. 1.00
an and Woman... 75
Rendell, Antediluvian History. 1.75 75
Ren tell, Postdiluvian History. 1.75
Silver, Holy Word in its ownDefence1.28A

SALE

land. E. H. er \& Pettee, the postag d vary from
 i $\mathbf{1}$ rimi-
…..... . 75
38. 2.00 clo. gilt 1.25 clo.... . 75 paper.. . 50 .clo.... 50 , paper .25
Modern
$\because{ }^{75}$
Modern
.20
Apo-
e Last
....... 1.25
n 1.00
Prayer. 1.00 om'dts 1.00 18...... 1.75 Philo
aborg \& .50
ns.... 50
…... 1.50
Ims... 8.00
ren in
0 and
…... 1.50
fe... ... 1.50
Iarae-
...... 1.00
menta. 1.75
...... 2.50
pn. ... 1.25
Divine
1.75

Ex
….. 2.25
Mind. 1.00
an.... . 75
ife.... . 75
istory. 1.75
story. 1.75
s own
…… 1.28
.... 1.38
salem Mesat No. 20 ly a most

INTEREST TABLE,
AT MIE PER OENT., ITN DOLLARS ATD CENTS, FEOK ONF DOLLAR TO TEST MEOOSAND.

AT BEVEN PHR CRNT, IT DOLLAKS AND CENTA, BROM OKE DOLLAR TO TEN THOUSAND.

READY REOKONER, 2,000 LBS. TO THE TON.
 CHEMEE, LAED "AND OTEER PRODUOD.

If the

TON. AY, BUTTER;

cts| cts

 0.0011 .0012 .00| | | |
| :---: | :---: | :---: |
| 15 | | |
| 25 | | |
| . 85 | | |
| . 40 | | |
| | | |
| | | |
| 1.00 | 1. | |
| 1.69 | 1.6 | |
| 2.00 | 2.20 | 2.4 |
| 2.50 | 2.75 | |
| 8.00 | 8.60 | 8. |
| 8.60 | 8.85 | |
| 4.00 | 4.40 | 48 |
| 4.50 | 4.95 | 5,40 |
| S | 5.5 | , 0 |
| 5,50 | 6.0 | 6,60 |
| 6.90 | 6.6 | . |
| 6.50 | 7.15 | 7. |
| 00 | 7.70 | 8. |
| 7.50 | 8.25 | |
| O | 8.80 | |
| 8. | 9.85 | 10. |
| 9,00 | 9.9 | 10 |

8
10
4
9
8
8

00	50.00
6	
. 20	. 18
40	. 50
. 60	.75
1.00	1.25
1.40	1.75
1.60	2.00
1.80	2.25
2.00	. 50
4.00	5.00
6.00	7.50
8.00	10.00
10.00	12.50
12.00	15.00
14.00	17.50
16.00	20.00
18.00	22.50
20.00	25.00
22.00	27.50
24.00	80.00
26.00	82.50
28.00	85.00
30.00	87:50
32.00	40.00
34.00	42.50
86.00	45.0
88.00	

READY REOKONEE, 2,240 LBS. TO THE TON. If the No. roguired 1 not in the Iadies, add the amounts of ino namber together.

READY RESKONER, 2,240 LBE. TO THE TON.
If the article ooat $\$ 12.60$ per ton, add the amounte under $\$ 12.00$ and 60 oty.
together.

	$\text { Lbs }{ }_{25}^{8} \quad 00$	2600	2700	2900	8000	3100	8300	3400	$\left\|\begin{array}{c} \$ \text { cts } \\ 35 \end{array}\right\|$	$\begin{aligned} & 8 \mathrm{cts} \\ & 8800 \end{aligned}$
	. 2	. 23	. 28	. 26	27	. 28	29	80	31	2
	28	. 29	. 80	. 32	. 83	. 36	87	38	. 39	40
	43	. 85	. 86	. 89	. 40	. 41	44	. 46	. 47	8
	. 56	88	. 60	. 65	. 67	. 69	. 84	. 76	. 78	0
			. 84	. 91	. 84	. 97	1.03	108	1.09	12
			. 88	1.04	1.07	1.11	1.18	1.21	1.25	29
	1.00	1.04	1.08	1.16	1.21	1.25	1.83	1.87	1.41	. 45
	1001.12	1.16	1.21	1.29	1.84	1.38	1.47	1.62	156	161
	2002.28	282	2.41	2.59	2.68	2.77	2.94	8.04	812	321
	800835	848	8.62	3.88	4.02	4.15	4.41	455	4.69	492
	$400 \quad 4.46$	484	4.82	6.18	5.38	5.64	5.89	6.07.	625	6.43
	500	6.80	6.03	6.47	6.70	3.92	7.87	7.69	781	04
	6006.70	6.98	7.23	7.77	8.04	8.30	8.84	9.11	9.38	24
	7.81	8.12	8.44	9.08	9.87	0.69	10.81	10.62	10.94	11.25
	8.98	929	9.64	10.38	10.71	11.07	11.79	12.14	12.60	12.86
	10.04	10.45	10.85	11.65	12.05	12.46	13.26	18.66	14.06	14.48
	100011.16	11.61	12.05	12.95	18.89	18.84	14.78	1518	15	16.07
	110012.28	1277	18.26	14.24	14.78	15.22	16.21	16.70	17.18	17.68
	120018.89	1898	14.46	15.54	16.07	16.61	17.68	1821	18.75	19.29
	130014.51	16.09	15.67	16.88	17.41	17.89	19.15	1973	20.31	20.39
	11.0015 .62	16.25	16.87	18.12	18.75	19.37	20.62	21.25	21.88	22.60
	150016.74	17.41	18.08	19.42	20.09	20.76	22.10	23.77	2344	24.11
	$1600-17.86$	18.57	19.28	20.71	21.48	22.14	23.57	24.28	25.00	2571
	170018.97	19.78	20.49	22.00	22.77	23.58	25.04	25.80	26.68	. 82
	180020.09	20.88	21.70	28.80	24.11	24.91	28.62	27.32	28.18	8.93
	19002120	22.05	22.90	24.60	25.44	26.29	27.99	28.84	29.69	30.58
	200022.82	23.21	24.10	25.89	26.78	27.67	29.46	30.38	8125	82.14
	$2100) 23.44$	24.37	25.81	27.19	28.12	29.08	30.98	31.87	381	
		${ }_{89}$	$\left\|\begin{array}{ll} \$ 8 t 8 \\ 40 & 00 \end{array}\right\|$	\% 41 41 18	48	4400	4500	6000	650	$\begin{aligned} & \$ 18 \\ & 60 \end{aligned}$
			36		. 38	. 89	0		9	
	25 . . 41	. 4	. 45	. 46	. 48	. 49	50	66	61	
	60	. 52	54	55	67	. 59	60	6		0
	88	. 87	. 89	. 92	. 96	. 98	100	12		1.34
	16	1.21	125	1.28	1.34	137	1.41	1.66		187
	1.82	1.39	1.43	1.46	1.54	1.57	161	179	196	2.14
	1.49	1.57	1.61	. 65	1.73	1.77	1.81	201	221	2.41
	100165	174	1.79	1.83	1.92	1.96	2.01	2.23	246	268
	200830	348	8.57	866	3.84	893	402	4.46	4.91 .	5.38
	$30 \sim 4.96$. 5.22	5.88	5.49	5.76	6.89	603	6.70	7.87	804
	400661	696	714	7.82	7.68	7.86	8.04	8.93	982	10.71
	500	8.71	8.93	9.15	9.60	9.82	10.04	11.16	1228	13.39
	600981	10.45	10.71	10.98	11.52	11.78	12.05	13.39	14.73	16.07
	70011.56	12.19	12.50	12.81	13.44	13.75	14.06	1562	17.19	1875
	80013.21	18.93	14.29	121.64	15.86	16.71	16.07	17.86	19.64	21.43
	90014.87	15.67	16.07	1647	1728	17.68	1808	2009	2210	24.11
	100016.52	17.41	1786	18.30	19.20	1964	20.09	22.32	2455	26.79
	110018.17	1915	19.64	20.13	21.12	2161	22.10	24.55	2701	2946
	120019.82	20.89	21.43	21.96	2804	23.57	2411	26.78	29.46	8214
	130021.47	2263	23.21	2379	24.95	2558	2812	2902	8192	3482
	140023.12	24.37	25.00	2562	26.87	2750	2812	3125	3437	37.50
	15002478	2612	26.79	27.45	28.79	29.46	3013	3348	3688	40.18
	16002343	27.86	28.57	29.28	30.71	31.43	3214	35.71	3929	42.56
	170028.08	29.60	30.36	31.12	82.63	33.39	3415	8795	41.74	45.53
	1800	81.34	82.14	32.95	34.55	35.36	36.16	4018	44.20	4821
	$1900 \mid 31.38$	33.08	33.93	34.78	86.47	87.32	38.17	42.41	46.65	50.89
	200033.03	34.82	35.71	36.61	38.39	39.28	40.18	44.64	49.11	5357
	2100] 34.68	35	37:50	88.44	4031	41.25	42.19	46.8	51.56	6625

TON.
1.00 and 50 ctv.

$\begin{aligned} & 8 c t s \\ & 3500 \end{aligned}$	$\begin{array}{l\|l} 8,6 t s \\ 0 & 8600 \end{array}$
81	1.88
. 39	. 40
. 47	. 48
. 78	80
1.09	1.12
1.25	129
1.41	1.45
156	161
812	321
4.69	482
$62{ }^{\circ}$	6.43
781	8.04
0.38	964
10.94	11.25
12.60	12.86
14.06	14.46
15.63	16.07
17.19	1768
18.75	19.29
20.31	20.39
21.88	22.60
2844	24.11
25.00	2571
26.56	27.32
28.13	28.93
29.69	80.58
8125	82.14
32.81	83.75
Sts	\$cts
6500	6000
49	54
. 61	67
. 74	. 80
1.23	1.34
1.72	187
196	2.14
221	2.41
246	268
4.91.	5.38
7.37	804
982	10.71
1228	18.39
14.73	16.07
7.19	1875
9.64	21.43
210	24.11
455	26.79
701	2946
9.46	8214
192	3482
437	37.50
683	40.18
929	42.38
174	45.63
4.20	4821
3.65	50.89
9. 115	5357
. 56	6626

READE RECKONRR

FEADI RECKONER, to Ind the Price of'any Number of Pounde, Yarda, Pleces, or Bushels, from 2 cents to 88.00.
The firt column contains the NUMBER, the top columns the PRICEB.

No	2 ct.	8 ct.	4 ct .	5 Ot.	6 ct.	61, ot.	$7 \mathrm{ct}$.	8 ct.	9 ct.	$10 \mathrm{ct}$.	11 ot .	
2	4	6	8	. 10	.12	. 12	.14	. 16	. 18	0	22	
8	6	-9	.12	.15	.18	. 18	.21	. 24	. 27	. 80	. 88	
4	. 8	. 12	. 16	.20	. 24	. 25	. 28	. 82	.88	.40	. 44	
6	. 10	. 15	. 20	. 25	. 80	. 81	. 86	.40	.45	.60	. 65	
6	. 12	. 18	. 24	. 80	. 88	. 87	.42	. 48	. 64	. 60	. 68	
7	. 14	. 21	. 28	. 85	. 48	. 48	. 49	. 66	. 68	. 70	. 77	
4	. 16	. 24	. 88	. 40	. 48	. 50	. 56	. 64	. 72	. 80	. 88	
9	. 18	. 27	. 86	. 45	. 64	. 684	. 68	. 72	. 81	.90	. 99	
10	. 20	. 80	. 40	. 50	. 60	. 62	. 70	. 80	. 90	1.00	1.10	
11	. 22	. 83	. 44	. 65	. 68	. 68	. 77	. 88	. 99	1.10	121	
12	. 24	. 86	. 48	. 60	. 72	. 76	. 84	. 96	1.08	1.20	1.82	
18	. 26	. 89	. 62	. 65	. 78	. 81	. 91	104	1.17	1.80	1.48	
14	. 28	. 42	. 66	. 70	. 84	. 87	. 98	1.12	1.26	1.40	1.64	
15	. 80	. 45	. 60	. 75	.90	. 98	1.06	1.20	1.25	1.60	1.65	
16	. 82	. 48	. 64	. 80	. 98	1.00	112	1.28	1.44	1.60	1.76	
17	. 84	- 51	. 68	. 85	1.02	1.06	1.19	1.86	1.68	1.70	1.87	
18	. 36	. 64	. 72	. 90	1.08	1.12	1.26	144	1.68	1.80	1.08	
19	. 88	. 67	. 76	. 95	1.14	1.18:	1.33	1.62	1.71	1.90	2.09	
20	. 40	. 60	. 80	1.00	1.20	1.25	1.40	1.60	1.80	200	2.20	
25	. 50	. 75	1.00	1.25	1.50	1.06	1.76	2.00	2.25	2.50	2.75	
80	. 00	. 80	1.20	160	1.80	1.878	2.10	2.40	2.70	8.00	3.80	
40	. 80	1.20	1.60	2.60	2.40	2.60	2.80	820	8.60	4.00	4.40	
60	1.00	1.50	2.00	250	8.00	$8.12{ }^{1}$	8.60	400	450	5.00	5.50	
60	1.20	180	2.40	8.00	8.60	8.75	4.20	4.80	5.40	6.00	6.60	
70	1.40	2.10	2.80	8.50	4.20	4.871	4.90	5.60	6.80	7.00	7.70	
80	1.60	2.40	8.20	4.00	4.80	600	5.60	6.40	7.20	8.00	8.80	
90	1.80	2.70	8.60	4.50	5.40	$5.62 \frac{1}{2}$	630	7.20	8.10	9.00	9.90	
100	2.00	8.00	4.00	6.00	6.00	6.25	7.00	8.00	9.00	10.00	11.00	
dros	12 ct .	$12, \mathrm{ct}$.	180 t .	12 ct .	6 ct .	$60 \mathrm{ct}$.	$18 \mathrm{ct}$.	18.0	$19 \mathrm{ct}$.	00.	ct.	
2	24	. 25	. 28	. 28	. 80	. 82	. 88	. 87	. 88	3	. 42	
8	. 86	. $87 \frac{1}{2}$. 89	. 42	. 45	. 48	. 54	. 56	. 57	. 80	. 68	
4	. 48	. 60	. 62	. 56	. 60	. 64	. 72	. 75	. 76	. 80	. 84	
0	. 60	. 62.2	. 60	. 70	. 75	. 80	. 90	988	. 96	1.00	1.05	
6	. 72	. 75	. 78	. 84	. 90	. 96	1.08	1.12	1.14	1.20	1.26	
1	. 84	. 87	. 91	. 88	1.05	1.12	1.26	1.81	1.88	1.40	1.47	
8	. 88	1.00	1.04	1.12	1.20	1.28	1.44	1.60	1.58	1.60	1.68	
8	1.08	1.122	1.17	1.26	1.85	1.44	1.68	1.68	1.71	1.80	1.89	
10°	1.20	1.25	1.30	1.40	1.60	1.60	1.80	1.87	1.90	2.00	2.10	
11	1.88	1.371	1.48	1.54	1.95	1.76	1.98	2.06	2.09	2.20	2.81	
12	1.44	1.60	1.66	1.68	1.80	1.82	2.16	2.25	2.28	2.40	2.52	
13	1.56	1.621	1.69	1.82	1.95	2.08	2.34	त. 48	2.47	2.60	2.78	
14	1.68	1.75	1.82	1.96	2.10	2.24	8.52	$\therefore 62$	2.68	2.80	2.94	
16	1.80	1.878	1.95	2.10	2.25	2.40	2.70	$\therefore .314$	2.85	8.00	8.15	
16	1.92	2.00	2.08	2.24	2.40	2.56	2.88	3.00	8.04	8.20	8.88	
17	2.04	$2.12{ }^{2}$	2.21	2.88	2.55	2.72 2.88	8.06	8.18	8.28	8.40	8.67	
18	2.16 2.28	2.25 2.87 8.8	2.34 2.47	2.52 8.68	2.70 2.85	2.88 8.04	8.24 8.42	8.87 8.50	8.48 8.61	8.60 8.80	3.78 8.90	
20	2.28 2.40	2.818 2.50	2.47 2.60	2.68 2.80	2.85 8.00	8.04 8.20	8.42 8.60	8.0 3.76	8.61 8.60	8.80 4.00	8.90 4.20	
25	8.00	$8.12 \frac{1}{2}$	8.25	8.50	3.75	4.00	$\therefore .60$	4.68	4.75	5.00	6.25	
80	8.60	8.75	8.90	4.20	- ${ }^{1} .5 \mathrm{C}$	4.80	5.40	5.62 \}	b. 70	6.00	6.80	
40	4.80	6.00	5.20	5.60	6.00	6.40	7.20	8.50	7.00	8.0	8.40	
50	6.00	6.25	6.50	7.00	7.50	8.00	9.00	$9.87 \frac{1}{2}$	9.60	X. 00	10.50	
60	7.20	7.50	7.80	8.40	9.00	9.60	- 2.80	11.25	11.40	18.00	12.60	
70	8.40	8.75	8.10	9.80	10.50	11.20	12.60	13.12t	18.30	14.00	14.70	
80	9.60	10.00	10.40	11.20	12.00	12.80	14.40	15.00	15.30	16.00	16.80	
90	10.80	11.25	11.70	12.60	18.50	14.40	18.20	$16.87 \frac{1}{}$	17.10	18.00	18.90	
100	12.00	12.50	\|18.00		14,00	15,00	16.00	18.00	18.75	19.00	30.00	20.00

BPADY BECKONPR

The frit colunpen on the left containg the NUSYBPR of the Artiole, and the column on the tops of the Tablow, the PRICE.

The firot

BT:DE RHOKON药

 column on the tope of the Tablew the PRICD.

3	920t. 23 ot	440	45 ct.	460 ta	47 ct .	$48 \mathrm{ct}$.	$49 \mathrm{ct}$.	60 ot.	61 ct:
		8	90	g\%	. 91	96	. 98	1.00	1.02
31.2	1.261 .28	1.82	1.85	1.88	1,41		117	1.40	1.68
41.	1.681 .72	1.76	1.80	1,84	1,88	95	1.8	100	4
52.05	$2.10 \quad 2.15$	2.20	2:25	280	285	1	8.	18	3.55
62.16	2.50 .68	8.64	2.70	2.76	$2 ; 80$	88	2.		8.06
- 27	2.948 .01	8.08	8.15	8.22	8,29	3.86	8.8		8.57
	8.808 .4	8.59	8.6	8.68	8.76	3.84	8.9		4.08
	8.78 8.87	8.88	405	414	4.28	1.88	4.11		4.89
10.10	$4.20 \quad 40$	4.40	50	4.60	\$70	4.80	4.	00	6.10
	4.62	84	0.0	5.06	8, 17	5.28	E.	6.50	5.61
4.82	5.045 .16	5.28	5.40	5.52	5.64	6.76	5.88	6.00	6.18
6.83	5.465 .69	5.72	6.85	5.88	6.11	8.2	6.87	680	6.68
14 B. 4	6.88 6.08	6.15	\%	6.44	6.58	8.72	6.8\%	1.00	7.14
	6.80 6.40		6.76	690	7.06	76	7.85	1.50	7.65
-	6.72 6.86	701			2	78	7.81	8.00	8.16
6.97	7.177 .81	7.48		7.8)		8.16	8.83	8.60	8.81
	7.56	7.82		8.28			8.88	0.00	0.18
19.7.79	7.88	8.30	8.55	87		0.10	0.81	850	9.6
	8.40	8.80	900				9.80	10.00	10.20
	10.50	11.00	11.26	11.00		12.0	12.5	12.50	18.75
18	12.60	1320	18.50	1880	15	14.40	14.70	15.00	15.80
16.40	16,80 1	1760	18.00	18.40	18.80		19.6	20.00	20.40
50	21.00	2\%00	27.50	\% 800	2860	$0 \% 0$	38	25.00	2500
	55.00	28.40	2700	27.30	28.30	280	29.30	80.00	80.60
2	29.4080	8480	81,50	\%20	830	\% ${ }^{\circ}$	-20	0500	85.70
	83.008 .40	820	ge0	8880	37.80	3.0	890	40.00	0.80
	1	896	40.50	41.40	48.30		10	15.00	45.88
12	17							5089	100
5\%ct.	$1580 \mathrm{ct} .6^{\circ}$	3t.	6 btt.	ot.	68 Ot.	69 日t.	0 C	1 CL	ct.
	1.061 .08	1,10	1.12	1114	116	1.18	2		1.24
156	1.59 1.62		1.88	3.71	1.75	177	1.89	1.88	1.86
10	2.12 .16	220	2.24	2.28	2.37	286	8.40	2.4	2.48
1.	2.65	875	280	\% 88	590	496	8.00	8.0\%	830
812	3.18 3 3.24	\% 80	\%86	\% 6	\% 48		3.0	8.68	3.12
	8,74 3.78	8.85	3,98	8.89	606	.		4.8	4.81
	427×2		6.48	¢		L. 72			486
	4.5				25				5ib8
P. 2	58			70	80			610	6.8
1.5	[5.88 [5.94	-	\$.16	8.27			6.6	6.7	6.88
2 6y	4 6.89 6.48	6.60	6.78			7.08	7.0	76.9	
18.6 .76	6 6.90 7.02	2.15	728		2.5	8.6	3.80	7.08.	8.06
7.88	37.48 .76	7,70	784		8.18	8.23	8.40	8.64	8.78
15.70	7.95	825	840	8.35	8.70	$8: 80$	8.00	9.15	9,id
16 80	8.88 .8	8.80	d	8.18	8.28	9,4	18.80	8.76	9.98
17. 8.54	9.9118	9.85	950	9.69	9,88	10.08	10.0	10.87	10.6.
18.90	$y^{4} 5^{3}$	90	10.08	10.26	10.48	10.6	19.80	1088	11:16
9.8	10.0	10.45	10,69	10.88	11.00	1121	11.40	11.69	11.78
10,40	0 10.60 10.80	11.00	11.20	11.40	11.60	11.80	18.60	12.00	12.40
18.00	0 18.25 18.60	18.75	14.00	14.25	14.60	1475	18.00	16.25	76.60
15.00	0 15.0 16.20	16.50	16,80	17.10	17,40	17.70	18.00	18.0	18,60
20,0	0 \%1.0 21.00	2800	20.40	22.80	28.2	28.60	5.00	9.49	4.00
30.98 .00	026.5027 .00	2760	28,00	$28: 50$	29.00	29.60	80.00	80.50	81.00
00.81 .0	0 11.80 80, 40	8, 80	89,60	3420	81.80	35,40	88.00	88.60	77.20
70 36, 0	0780	88.50	8920	39.90	4060	$1{ }^{1} 20$	1000	29.70	8.40
$80,41.60$	$0{ }^{2} 808.20$	44.00	4680	45.60	46.40	47,20	18.00	28.80	19.60
90 -6, 0	0 \% $7.708^{8.60}$	- 49.50	60,40	51,70	6. ${ }^{5}$	88, 10	81.00	B4.80	\% 6,80
100 E20'0	189.00153 .00	165.00	66.00	57,00	U0.10	50,00	000	61.00	02.00

BMADE BFOKONEW:

If the Number requtred is not found in ths Tablen, add two Numbers together; for initance if 80 bushels are required, add the prices oppoaite 80 and 5 together; and 80 for 805 bubhef-treble the value of 100 , and and 60 and 6 together.

					1.82		1.84	1.86	1.88	1.40	8
	1.87	1	1.9		1.88	2.00	2.01	2.04	2.07	10	18
	2.60	2.52	2.66	860	2.64	2.68	2.88	2.72	2.76	2.80	3.84
	8.12	8.15	8.20	8.25	8.80	8.88	8.85	8.40	8.45	8.50	3.65
	8.75	878	8.84	8.90	8.98	4.00	4.02	4.08	4.12	4.20	4.28
		4.41	4.48	4.65	1.62	4.66	4.69	8.76	4.88	4.90	. 97
		5.04	512	20	5.28	5.88	8.86	5,44	5.82	6.60	. 68
		6.67	5.76	. 85	5.94	. 00	6.08	6.12	6.21	680	89
10		6.80	6.40	50	6.60	6	6.70	6.80	6.90	7.00	. 10
11		8	7.0	15	. 28		7.87	7.48	7.59	7.70	. 81
12		7.56	68		7.92		8.04	16	8.28	0	32
18	8.121	8.18	8.82					4	3.97	9.10	38
14		8							8.68		34
10					8.90	10.		1020	10.85	10.50	5
16		10.08	10.2	10.40	10.6	10	10	10.	11.04		
10		10.7		110	11.			11.	11.78		18.07
18			11.6	11.70	11.	12	12.0	12.	12.48		12.78
19		11	12.16	12	18.	12	12.78	12.	18.11		19
20		12.00	12.8	18.	18.		18.40	18.	18.80	14	20
25		15.75	16.00	16.2	16.50	16	16.76	17.00	17.25	17.50	17.76
80	18	18.90	19.20	19.50	18.80		20.10	20.40	20.70	21.00	21.80
40	25.	25.20	25.60	28.00	26.40	26	28.00	27.20	27.60	28.00	28.40
50	81.25	81.50	88.00	82.50	88.00		88.60	84.00	84.50	85.00	85.50
60	87.50		38.40	89.00	89.60	40.	40.20	40.80	41.40	88.00	
70	43.76	44.10	44.80	45.50	48.20	46.6	46.90	47.60	48.20	49.00	70
80	50.00	50.40	51.20	52.00	68.80	68.88	68.00	64.40	55.20	56.00	
0	51.25	56.70	87.00	58.50	59.40	00.00	60.80	61.20	68.10	68.00	
100	62.50	63.00				66.60	67.00	68.00	69.00	70.00	. 00
Nos							78 ct.		ct.	81 ct	t.
3	2.16	2.10	2.2	2:25	28	2 S	. 84	2.87	2.40	2.48	. 46
	2.88	8.9	2.88	8.00	0	8.0	8.12	8.16	8.20	8.24	8.28
	8.	8.65	8.70	8.	8.80	8.8	8.9	8	4.00	4.0	4.10
			4.4	8.6	4.56	4	4.6	$\underline{1}$	4.80	4.80	4.98
		6.1	5.18	5.25	58	5.8	8.4	5.63	6.60	6.6	5.74
		6.84	6. 0	0.00	0.	6.16	6.24	6.88	6.40		6.66
	6.4	6.57	-.		.	6.88					. 83
10		180			7.60	7.70			8.00	8.10	8.20
11	7.82	3.08	8.14	8.25	8.80	8.	8.58	8.69	8.80	8.91	8.02
12	8.6	3.76	8.88	9.00	9.12	9.24	9.8	9.48	9.60	9.72	8.81
18	\%	9.49	8.42	8.7	9.88	10.01	10.14	10.27	10.40		10.66
14	10.0	10.20	10.88	10.50	10.64	10.78	10.82	11.06	11.20	11.84	11.48
15	10.8	10.95	11.10	11.25	11.40	11.65	11.70	11.85	12.00	12.15	12.80
16	11.58	1168	11.84	12.00	12.16	12.88	12.48	12.64	12.80	12.88	18.12
17.	12.24	12.41	12.68	12.75	12.82	13.09	13.28	18.48	18.60	13.77	18.94
18	12.86	18.14	$18.8{ }^{\circ}$	18.50	13.68	13.86	18.04	14.28	14.40	14.58	14.76
19	18.68	18.87	14.06	14.25	14.44	14.68	14.82	15.01	16.20	15.89	15.58
		14.60	14.80	18.00	15.20	15.40	16.60	16.80	16.00	16.20	16.40
	18	18.2	18	18.75	19.00	19.26	19.50	19.75	20.00	20.25	2050
80	21	2190	22.2	$2{ }^{23.50}$	28.8	28.10	28.40	28.70	24.00	24.20	24.60
	28	2920	29.00	80.00	80.	80.	81	81.60	88.00	8.	88.80
	83.	36.50	87.00	87.50	38.	88.50	39.00	88.60	40.00	40.50	41.00
60	4820	48.80	44.40	45.01	45.60	46.20	4880	47.40	48.00	48.60	49.20
70	50.40	61.10	61.80	62.50	58	58.90	64.60	85.80	66.00	56.70	67.40 65.60
	57.00	58.40	5920	60.00	80.80	61.60	68.40	68.20	64.00	64.80	65.00 78.80
00	64.80	65.70	66.60	87.60		69.80	78.20	71.10	77.00	72.90	73.80
00				75.00		7	78.			81	88.00

BEADY RHOKONFR.

If the Number required is not found in the Tables, add two Numbers together; for instance, if 85 bushels are reguired, add the prices opposite 20 and 5 together $;$ and 80 for 885 bushero-treble the value of 100 , and add 00 and 5 together.

		840 t. 88	35 ct. 88	$36 \mathrm{ct}$.		87		89 ot.	20 ct .	910 ct.	92
2	1.68	1.68	1.70	1.72	1	1.75	1.76	1.78	1.80	1.88	
	2.49	2.59	3.56	2.28	2.61	2.621	2.64	2.67	2.70	2.78	2.76
	8.82	8.88	8.40	8.44	8.48	8.50	8.58	8.68	8.60	8.64	8.68
	4.15	4.20	4.25	4.80	4.86	4.871	4.40	4.45	4.50	4.65	
	4.98	5.04	6.10	5.16	5.20	6.25	5.28	5.84	5.40	5.46	5.62
	6.8	5.88	. 8.95	6.02	6.09	${ }^{6.121}$	6.16	6.28	6.80		
		8.72	8.80	${ }^{6} 8.88$	8.80		7.04	712	7.20		
10		8.40	7.65 8.50	7.74 8.60	8.88			8.01	8.10 8.00	8.19 9	
11	9.18	9.2	9.80	9.46		9.62	${ }_{9.6}$	9.79	9.90	10.01	
	9.96	10.08	.	10.82		10.5	10.56	10.68	10.80	10.92	11.04
18	10.7	10.92	11.051	11:18	11.8	11.87	11.44	11.57	11.70	11.88	1196
		11.78	0	12.04		12.2	12.82	12.46	12.00	12.74	12.88
15	12.45	12.60	12.75	12.90	18.0	18.12	18.20	18.85	13.60	18.66	18.80
	18.28	18.4	18.60	18.76	18.8	14.00	14.08	1. 24	14.40	14.66	14.72
17	14.11	14.28	14.45	14.02	14.7	14.8	14.98	15.18	15.80	15.47	
18	14.9	15.12	15.80	15.48	15.	15.75	15.84	16.02	18.20	16.88	
19.	15.77	15.98	16.15	16.84	18.6	18.6	18.72	10.91	17.10	17.29	17.48
20.	18.60	18.80	17.001	17.20	17.4	17.60	17.00	17.80	18.00	18.20	
25.	20.75	21.00	21.25	21.50	21.7	21.87	22.00	22.25	28.50	22.75	28.00
10	24.80	25.20	25.50	25.80	28.1	26.25	26.40	28.70	27.00	27.80	27.00
40	83.20	88.60	34.008	8440		88.00	85.20	85.60	86.00	88.40	38.80
d	41.50	42.00	42.50	48.00	48.	48.76	4.00	4.50	45.00	46.60	46.00
60	49.	50.40	51.00	51.60	62.2	62.50	62.80	68.40	54.00	54.00	5.20
70	68.10	58.80	69.50 6	60.20	69.9	61.25	61.00	68.80	68.00	68.70	40
80	68.40	67.20	68.00	68.80		70.00	70.40	74.20	72.00	72.80	78.60
90	74.70	200	78.50	77, 0		${ }^{78.75}$	${ }^{79.20}$	80.10	81.00	81.80	
100	88.00	84.00	5			87.60	38.00	89.00	000		0
	98\%E.	94 ct .					ct				
	1.86		0		2	1.94	8	1.98			
8	2.79	2.82	2.85		. 88	2.91	2.94	2.87	8.		
	8.72	8.78	8.80		3.84	8.88	3.82	8.68		8.	2.
	4.65	4.70	4.75		. 80	4.85	4.80	4.95	5.	10.	5.
	5.58	${ }^{6.64}$	5.70		. 76	6.82	5.88	5.94		12.	
	${ }^{6} .61$	${ }^{6} .88$	6.65		3.72	6.79	6.86	6.98	7.	14.	
		7.52	7.60		. 68	7.78	7.84	7.92	8.	18.	
		8.46	8. 8.50			8.78				18.	
	10.28	10.31	10.45		. 58	$\begin{array}{r}8.70 \\ 10.67 \\ \hline\end{array}$	10.78	9.83 10.89	1.	,	
1	11.16	11.28	11.40		1.52	11.61	11.76	11.88	12.	24.	
18	12.09	12.22	12.85		. 48	12.61	12.74	12.87	18.	26.	
14	18,02	18.16	18.80		3.44	18.58	18.72	18.86	14.	28.	
	18.95	14.10	14.25		. 40	14.65	14.70	14.85	15.	31.	
16	14.88	15.04	15.20		. 86	15.52	15.68	16.84	16.	2.	
17	15.81	15.98	16.15		8.88	16.49	18.60	16.88	17.	84.	
18	16.74	16.92	217.10		. 28	17.48	17.6	17.82	18.	36.	
19	17.67	17.88	8 18.05		3.24	18.48	18.62	18.81	19.	38.	
	18.80	18.80	-19.00		.20	19.40	19.00	19.80	20.	40.	60.
	23.25	23.50	- 28.75		. 00	24.25	24.50	24.75	25.	50.	75.
	27.90	29.20	O 28.50		3.80	29.10	29.40	29.70	80.	60.	
	87.2	87.60	- 88.00		3.40	88.80	89.20	89.00	0.	80.	120.
	48.5	47.00	- 47.50		. 00	48.50	49.00	49.50	50.	100.	150.
	${ }^{\circ}$	56.40	57.00		. 00	68.20	68.80	69.40	80	120.	180.
	65.1	65.80	066		. 20	67.80	68.60	69.80	70.	142.	210.
	-	75.20	O 78.00		3.80	77.60	78.40	79.20		160.	10.
	88.	B0	85.50			87.80	88.20	89.10		10.	0.
100	08.0				3,00	97.00	18.00	80.00		800.	O

SOANTLING REDOOXB TO ON TVCG BOARD MEABURE.

EXPLANATION. -To moertain the number of Feet of Sanatime orTh. ber, en 18 Tcot, 103 and 8 by 8 Inchen, Ind 2 by 8 in the tho colamna, had 18 In the loft hind column, and noder 2 by 8 and agatnot 18 is 9 reet.
If the Scintling is longer than contained In the Table, add two let the together. If shorter, fake pirt of some length.

BOARD AND PLANK MEASURDMENT-AT BIGET
This Table sives the Bq, Fth and In. In Board from 6 to 28 in , Fid, and from t to 88 ft. lone If a boand be loneer than 80 fthe nifto two numberi. Thus, if a Board is 40 ft lons anc.

${ }_{4}^{8}{ }_{4}^{4}{ }^{5}$	$\frac{6 \ln W}{\mathrm{f} . \operatorname{in}}$	$\frac{7 \mathrm{in} \mathrm{W}}{\text { ft. } \mathrm{ln}}$	$\frac{81 \mathrm{n} \text { W }}{\text { ft. tn. }}$		$\frac{101 \mathrm{nW}}{\mathrm{ft} . \mathrm{In}}$	$\frac{11 \ln W}{\text { fl }}$ in.	$\frac{2 \mathrm{inW}}{\mathrm{f} \text { in. }}$	$\frac{18 \text { in } \mathrm{W}}{\text { it. in. }}$	f. In.	ft. in.
	40		64	60			80			
9	46	5	60	69	76			98	106	118
10	50	610	68	76	8.4		100	1010	11.8	126
11	5		$7 \frac{1}{2}$	83	${ }^{2}$	101	110	1111	1210	128
12			80	80	100	11	120	180	140	150
18	70								152	168
14	70		${ }^{9} \stackrel{4}{4}$	106	${ }^{11} 8$	1210	140	15	16	176
15	76		100	113		189	150			18
18		9	108	120	18	14	178	17	18.8	20
18	0	106	120	186	15	16	180		210	21
19	.	11	128	148	15.10	17	190	20	222	23
20	100		18 ¢	159	16	18	200			25
21	106	12	140	159	17	19	210			268
22	110	1210	148	186	18	20	220	2810	258	27
23	116	13.6	15	178	19	21.	230	2411	2610	28
2	12.0		160	180	20	28	240	28	28:0	80
	12		16.8	189	2010	2211	250			81
28	180	15.	17.	19.6		2810	280	28	30.4	
			18:	20.8	28		27.0			
28	14	18	188	210	28		280			
29	$14{ }^{6}$	18. 11	194	219	24	28	290			
$\begin{aligned} & 80 \\ & 81 \end{aligned}$	150		200	288	25 25		830	${ }_{88}^{28}$	85 86 86	88
82	160	188	214.	240		29	320	84	374	40
	166	19.	220	249	276	80	830			41
84	17.0	1910	22.8	256	28	81	340	8610	898	428
35	17.6	20.	284	268	29	82	850	8711	4010	${ }^{5}$
36	180	21	240	27.0	180	83	880	890	42.0	45

BOARD TABLE MEASUREMENT-CONTIRUXD.

17 in
ft.
11
12
14
15
17
18
19
21
22
24
25
26
28
29
31
82
84
85
86
38
29
41
42

 \begin{tabular}{l}
22 in

\hline ft.

\hline 14

16

18

20

22

28

25

27

29

81

83

34

86

38

40

42

44

45

47

49

51

63

35

in \& in.

\hline 14 \& 8

16 \& 6

18 \& 4

20 \& 2

22 \& 0

23 \& 10

25 \& 8

27 \& 6

29 \& 4

81 \& 2

83 \& 0

34 \& 10

86 \& 8

38 \& 6

40 \& 4

42 \& 2

44 \& 0

45 \& 10

47 \& 8

49 \& 6

51 \& 4

63 \& 2

55 \& 0

23 in

\hline ft.

\hline 15

17

19

21

28

24

26

28

30

88

34

86

38

40

49

44

46

47

49

51

68

65

57
\end{tabular}

LOAS REDUOED TO RUNAIN BOARD MEASURE.

LOGS REDUCED TO ONE INCE BOARD MEASURE.

If the log is longer than is contained in the table, take any two lengths. The firat column on the left gives the length of the Log in feet. The surve under D denote the diamoters of the Loge in inches. Iractional Warte of inches are not given.

The diameter of timber is usually taken 20 feet from the butt. 'All loge Thort of 20 feet, take the diameter at the top, or amall end:

To find the number of foet of boards which a log will produce whon Fwed, take the length of feet in the frat column on the left hand, and the liametar at the top of the page in inches.
Suppose $\log 12$ feet long and 24 inches in diameter. In the left hand column is the length, and opposite 12 under 24 is 800 , the number of feet of hoards in a log of that length and diameter.

品海	12	$\begin{aligned} & \hline \mathrm{D} . \\ & 13 \end{aligned}$	$\begin{aligned} & \bar{D} . \\ & 14 \end{aligned}$	$\begin{aligned} & \hline \mathrm{D} . \\ & 15 \end{aligned}$		$\begin{aligned} & \hline \mathrm{D}_{1} \\ & 17 \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{D} . \\ 18 \end{array}$						D.
10	64	66	76	98	104	170	187		178		210		
	59	72	88	102	114	181	151	69					
	6	78	90	111	124	148	161	84	21		262		
	69	84	97	120	184	154	177	199	23	251	278		
	74	0	104	129	144	186	191	14	219	270			
	79		111	138	154	177	204	29	28		81	483	876
	84	102	118	148	164	189	217	4				37	1
	89	108	126	155	178	200	281	59	80		85	6 40	
	94	114	183	164	188	218	24	74	81		877	72	451
		121	140	178	198	2288	257		836	86	498	849	47
	104	127	147	182	208	238	271	04	2		418	9	501
	109		154	191	218	27	284	19	87	408	40	$0 \cdot 49$	597
	11.	139	161	-200	228	259	297	884		420	461	1520	668
	119	145	168	209	238	270	811	49	407	441	881	1548	568
	12	151	176	218	248	282	824	364	42	460	502	268	18
	120	15	188	227	258	293	887	79	442	479	528	89	-
	13	188	190	238	288	805	850	392	459	498	64	461	353
	180	16	197	245	278	816	868	09	47	61	56		88
	14	175	204	254	288	828	876	24					08
	14	181	211	268	293	839	889	89	61		60		28
	154	187	218	272	308	351	402	54	52	57		71	758
1	159	193	225	281	318	362	415	69	34	698	349	9	778
	$\begin{aligned} & 15 \\ & 25 \end{aligned}$	${ }_{20}$	27	D.	$\begin{aligned} & \mathrm{D} . \\ & 29 \end{aligned}$	80	31		82	83	D.	D.	$\mathbf{D} .$
10	288	809	889	359	87	407	440		45	486	496		
11	81	840	874	20	415	447	48		602	635	546		
12	840	871	408	432	458	489	528		548	684	696	658	688
18	979	404	442	469	491	530	572		694	638	640	708	46
14	897	485	476	505	529	571	618		640	882	696	762	803
	42	46	511	54	567	612	680		68	781	740	817	81
1	${ }^{456}$	496	545	578	605	cas	706		782	780	796	872	919
17	483	527	679	615	643	694	751		778	828	810	927	978
	512	658	618	650	681	785	796		82	878	896	981	1034
19	541	691	647	68	719	77	839		870	927	940	1036	1148
20		621	681	724	757	817	88		916	976	996	1091	1148
	598	${ }_{6}^{652}$	710	760	796	859	928		962	1025	1046	1146	1208
22	82	${ }_{7}^{684}$	750	796	834	900	972		1008	1074	1096	1200	1264
	655	715	784	83	872	941	1017		1054	1123	1148	1255	1318
	68	746	818	869	910	20	1081		1100	1172	1196	1810	1376
25	71	777	885	90	948	1023	1105		1148	1221	1246	1365	1434
26	742	808	887	942	88	1064	1148		1192	1270	1296	1420	1492
27	771	889	92	979	1024	1105	1193		1238	1819	1346	1475	${ }^{1650}$
		870	955	1015	1062	1246	1231		1294	1368	1396	158)	1608
		932	1028	1058	1188	1828	1325		${ }_{1376} 183$	1468	1496	1640	1688 1724
	887	903	1057	1125	1176	1289	1369		1422				
						To							

If the Lo le liborter thin if cont almed in the Tablo, talie hall of quartor of nome longth, If langer donble ome length. The lepgth of tho Log is given on the top of the columnis, the diameter In the lef hand colump. To
 one-Sourth from the condente.

CAST IRON.

Whath of	Thutak	R Thlok, ith	Thictet.	-6the Inah,	2-Thusitich	7. Thasicifich.	Thick
Inotien	P'unita	Poutiats:	Pounde:	Poinde	Poutida.	Pounde:	Fopata
2	1.58,	284	87	8.90	4.68	5.10.	62
9	1.76	8.68	, 8.61	4.89	6.27	6.10	706
5	1.96	2.62	8.90	3.88	685	688	7.81
2	2.18	8.2	$4.2{ }^{\prime}$	6.87	6.44	7.61	868
8	28	8.61	468	6.85	708	8.40	8.87
	2.68	8.80	507.	6.81	7.61	8	1015
8	2.78	410	5. 6	688	$8: 20$. 57	119.8
	2.88	c 8	5. 5^{5}	788	8.78	10.20	11.71
	812	468	6.95	781	9.87	19.8	12.60
	882	4.97	661	880	998	11.63	18.28
	861	E. 27	70	8.78	10.54	12.80	14.06
	8.71	$5{ }^{\text {b }}$	78	9.27	11.18	1298	14.84
	8.90	6.8\%	7.81	9.76	11.71	18.67	1562
5	110	6.16	8.20	10.25	12.80	14.85	1640
5	429	6.4	8.69	10.74	12.89	1508	17.18
B.	4.19	6.7	8.88	11.28	18.48	16.78	1796
6	4.68	108	9.87	11.71	14.06	18.40	1876

ifn the we the we
Oppof

W

WEIGET OR OAR EOOO QFIFAT BAR IRON.

If n Bry of Iron be thioker than contained in the Table, add together etit weight of two Numbern, or treble the welght of one Xumber. W.anted the weif ht of 1 poot of Bar iron, ilvahes brond and 214 Inohes thiok.
 of 1-4th (8-811), equal 80000 lbu.

	1	if		${ }^{2}$					1 In.
1		10	1.258	1.461	1.870	20	2.80\%	2.028	
		1174		1.64	1.78		8.818	8.277	$8.76{ }^{\text {8 }}$
		1,805	1.566	1.80	2.088	2.809	8.187	8.658	76
			1.728:	2.009			8.768	4.018.	0
	$\underline{12.858}$	$\therefore 1,6$	8.085	2.814	2.16	8.8007	8.070	4.749	
	1.402	1189	8.182	2.65	: 23	8868,	4.89	\%.114	
	1.666	1,987	8.848	2.740	8.180	8.914	4.696	E. 49	${ }^{6.264}$
	1.07	98.0	\$. 605	8.8		L4.1	8.010	${ }^{6.845}$	
	1.880	2.			8.00				
	1.89	2.419	2.975	8.470		[4.07)	8.8501	69	7.98
	2.0	2.809	$818{ }^{\circ}$	8.858	4.176	5.218	6.202	7.8	.
			8.2			6, $5^{18} 9$		7.651	8.772
		8.8	84	4	\% 690				
	2.506	${ }_{8}^{8.181}$	88.06	488	6			88.768	10.024
	2.7	8.892	${ }_{6} 071$	4.749	5480	6.784	8.148	9.408	
	2.9	8688	4854	6114	8.816	7.808	8788	102	11.6
		8914	4697	h^{4}	0	1	9.4		12.
		4176	6.010	8.8	7	8.880	10.020	11.600	18.884
		- 607		${ }^{6} 56$		0.809	111	18.151	15.08
	8006	4958	- \because	${ }^{4} 91$	7.868	9916	11.898	18.881	15.864
	1175	b. 219	6.263	7806	8.850	10.4	12808	14.612	16700
							18.162	16888	17.588
		${ }^{6} 7$		8.08.	0	11.4	18.778,	16.078	18.874
6	4.801	6001	7.20	6.428	9602	12002	14.404	18.804	19.204
6	6.010	0.268	7.618	187.	10.02	1262	150	87685	20.09

WEIGET OF OND 3ROABE YOOT OF SREET RRON, \&O.

Whatit of bar lron and ongur mivata．

RUSSIA BHEET TRON

Measures 68 by 28 Inches，and is rated by thu welaht per sheot．The nume bers run irom 8 to 18 Ruasian lbe，per sheet． 8 Rumaian pounds equal 7.2
 100 Ruearan lbo．equal 90 lbs ．Raglioh．

WEIGET OF ONE SQUARE TOOT OF PLATE IRON，\＆O．

	E.	$\begin{aligned} & \text { 晨 } \end{aligned}$	$\underset{\sim}{Z}$	¢		$\underset{\sim}{4}$	$\begin{aligned} & \dot{8}{ }_{\mathrm{O}}^{\mathrm{B}} \end{aligned}$	安	䍖
${ }^{6}$	2.6	2.9	2.7	8.7	16	17.6	20.8	19.0	25.9
	6.0	6.8	6.5	7.4		20.0	28.2	21.8	29.8
${ }^{2} 8$	7.5	8.7	8.2	11.1	\％	25.0	28.9	27.1	87.0
	10.0	11.6	10.9	14.8		80.0	84.7	82.6	24.4
16	18.5	14.5	18.6	18.6		85.0	40.4	87.9	57.8
	16.0	17.4	16.8	22.2	1.	40.0	－ 40.2	48.8	69.2

WEIGHT ONE FOOT IN LENGTH OF SQUARE AND ROUND BAR IRON．

	． 209	． 164	11	8.820	0.928	81	46.969	88.895
	． 828	． 256	18	10.229	8.048	85	60.168	89.890
	． 470	． 869	11	11.744	9.224	4	8.440	41.934
1	． 640	． 508		18.880	10.486	4	66.888	44．687
t	． 885	． 658	24	15.088	11.846	4	60.829	47.885
	1.057	． 881	24	18.809	18288	4t	68.980	50.211
8	1.806	1.025	21	18.840	14.797	4	67.687	58.182
t	1.579	1.241	24	20.875	16.88	41	71.445	66.118
3	1.879	－ 1.476	21	23.115	18.146	44	76.859	59.187
18	2.205	1.788	2at	25.259	19.842	45	79.878	62.844
7	2.568	2.011	21	27.608	21.684	5	88.510	65.585
18	2.936	2.808	8	30.070	23.658	54	82.459	72.618
1	8.840	2.624	81	82.618	25.620	51	101.036	79.870
14	4.228	8.821	84	35.279	27.709	5，	110.429	88.731
14	5.219	4.099	88	38.045	29.881	6	120.248	94.610
12	6.815	4.961	$4 \frac{1}{2}$	40.916	82.170	The	${ }_{\text {of }}{ }_{\text {Bar }}$	being 19 $=98$
11	7.516	5.918	51	43.890	84.472			80

Weight of round and square cast irond.

CAST IBOAT, Tright of a Foot in Length of Bquare and Round.

The num. equal 7.2 3., dc. -
\&

Whiart of metals.

PATEMT IMPROVED LEAD PIPIK-Sizes and Fcioht per, Foot.

Callbes.	$\begin{array}{\|l\|l\|} \text { per chat } \\ \text { poot } \end{array}$	Callbre.	Weight per foot.	Oallbre.	Welght per foot.	Callibre.	$\left\lvert\, \begin{aligned} & \text { Weight } \\ & \text { por foot. } \end{aligned}\right.$	Caubre:	Weight per fook
Inchen	Ibu. 0 ma,	Inchem.	Iban 0ca.	Inches.	Ibe, ose.	Inchem	Iba. ${ }^{\text {omem }}$	Inchem	Ibs. 020
!	6	b	14		$1^{\prime}{ }^{\prime}$	1	40	11	50
,	8	8	188	.	20	1	60	1	40
4	10	4	20	16	-24	14	8-8	2	50
"	12	11	30	18	28	d	80	"	80
18	10		. 18	\%	\% 0	6	8-8		70
${ }^{\prime \prime}$	1.8	8	10	1	40	1	40		110
1	8	1	18	1	18	${ }^{1}$	50	3 -	180
0	10	11	20	\because	1.12	11	80	81 ${ }^{\text {a }}$, $=$	150
4	12	18	212	18	20	*	88	4 g	180
4		\%	12	10	28	6	40	4t ${ }^{2}$ -	200
18	10	8	14	18	80	4.	- 4.8		220

 10 lbs., and upwaxds:

BRASS, COPPER, STEEL, AND LEAD. - Weight of a Foot.

Dhimoter sta Side of Square.	Brass.		OOPRER.		speri.		LPAD.	
	Wroight Round.	$\begin{aligned} & \text { Wolght } \\ & \text { of or } \\ & \text { Square. } \end{aligned}$	$\begin{aligned} & \text { Wcipht } \\ & \text { Iropna. } \end{aligned}$	Wetght equare.	Weight Round:	Weight Square.	Welght Round.	
Trehe	Lba!	Luba,	Libs.	Lbri.	Lbin	Lba.	Lpa.	Lbe.
11	? 17	. 28	. 19	. 24	. 17	. 21		
1	: . 89	. 50	\% 19	. 54	. 88	.48		
	. 70	. 90	- 75	. 98	. 67	. 85		
	$\therefore 1.10$	1.40	1.17	1.60	1.04	1.38		
	-1.69	2.08	1.69	2.16	1.60	1.91		
	0.16	2.75	2.81	2.94	2.05	2.61		
	2.88	88.00	8.02	8.94	267	8.40	8,87	4.93
	8.68	4.68	8.82	4.86	8.38	≤ 84	4,90	6.25
	4.49	5.68	4.71	6.	4.18	6.32	6,06	7.71
	5.85	6.81	5.71	7.97	5.06	6.44	7.08	9.33
	6.86	8.10	6.79	8.65	6.02	7.67	8:72	11.11
	7.47	9.61	7.94	10.15	7.07	9	-10.24	18.04
	-8.66	11:08	9.91	11.77	8.20	10.14	, 11.87	15.12
	- 0.95	12.66	10.61	18.59	9.41	11.98	18,68	17.86
2	11.82	14.41	12.08	15.88	10.71	18.63	15.51	19.75
8	12.78	-16.27	18.64	17.86	12.05	15.80	17,51	22,29
	14.82	18.24	15.29	19.47	18.51	17.20	19.63	25.
	15.96	-20.88	17.03	21,69	15.05	19.17	21.80	27.80
2	17.88	22.53	18.87	24.08	16.68	21.21	24.24	80.86
2	19.50	24.88	29.81	28.60	18.89	28.41	-26.72	34.02
2	21.40	27.25	20.84	29.08	20.18	25.70	-29.38	37.84
28	28.89	29.78	24.92	81.79	22,06	28.10	32.05	40.81
8	25.47	88.43	27.18	84.61	24.23	80.60	84.90	44.44

CAST IRON. - Weight of a Superficial Foot from it to 2 inches thick.

Sise.	Welght	Size.	Welght	Sime.	Weight	Sise.	Welght	Siso.	Welght
Ins.	Pounds.	Ins.	Pound.	İa.	Pounds.	Ins.	Pounds.'	Ins.	Pounda.
1	9.87		28.43	1	37.50	1 18	51.56	$1{ }^{1}$	65.62
\%	14.06		28.12	11	42.18	1.	56.25	18	70.81
,	18.75		82.81	1.	18.87	1	60.98	2	75.

Note, 18 feet in what wei without

Bar 1
Cast Iron
Steel
Copper Brass Lead

1. Supp lbs., but its weigh
2. A m construct cipate its

It frequ quality ol cases, it
izon to ea

OAST IRON OOLDUNG. MOLDER'S TÁBLE.

DIMENSIONS OF CYLINDRICAL COLUMESS OF CAST IRON TO SUSTAIN A PRESSUKE WITH SAFETY.

Practical utility of the Table.

Note. - Wanting to support the front of a building with cast iron columns 18 feet in length, 8 inches in diameter, and the metal 1 inch in thickneas; what weight may I confidently expect each columic capable of supporting without tendency to defieotion?

Opposite 8 inches diameter and under 18 feet $=1097$

- Also opposite 6 in . diam, and under 18 feet $=440$
$=657 \mathrm{ewt}$.
* This deduction is on account of the core.

MOLDER'S TABLE.

1. Suppose I have an article of plate iron, the weight-of which Is 728 lbs., but want the same of copper, and of similar dimensions, what will be its weight?
728×1.16 三844.48 lbs.
2. A model of Dry Pine weighing 3 lbs ., and in which the iron for lto construction forms no material portion of the weight, what may I unticlpate its welght to be in cast iron.

$$
8 \times 12=36 \text { pounds. }
$$

It frequently occurs, in the construction of models, that neither the quality or condition of the wood can be properly estimnied; and in such cases, it may be a near enough approximation to rection 13 lbe of cast iron to each pound of model.

WOOD AND BALX MRASUREMENT

WOOD AND BARK MEASUREMENT-AT SIGHT. This table is caiculated for Wood 4 feet in length. If the wood be 8 feet long doaple the products; if 12 treble, and so on. If Fractions of a solid foot less than The Rule for Measuring Wood is, if in feet only, to multiply the length by the width, and that product by the height, and the whole to inches anil multiply as above, then divic 3 the product by 1728 in order to obtain cubic feet, and then divide the quotient by 128 to obtain cords.

	हू\% जr స్రీ
	K్mino \#
	W6\%
	0
岛 ¢ \%	
\%	\%ink incm
	Einconco
	\%
$\begin{aligned} & \text { Es } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	
	$\stackrel{\phi}{\mathbf{E}}$
	$\begin{aligned} & \text { En } \\ & \text { 20 } \end{aligned}$

Frample.-How many corrs of wood in a pile 60 feet long, 6 fept high and 4 feet wlde?

VALUE OF WOOD AND BARK.

OISYHRNE-MOEDWG-OUBIC OR BOLID MEACURE.

OUPACNY OP CHGHTMS AND Mmgenoizs IN GALLONS.

NUTBER OF TERTWDS IX V-THRTAD SCBEWS.

The depth of the threads chonld be half thel pitch. The ditimoter of a acrev, to Frort in the teeth of s Mhoel, should be auch, that the angle of the threndy does not erceed 10°

CUBIC, ORISOIID MEHASURA.

To find the Cubloal Content in a Stiok of Timber, Block of Stoke, Box, Bin, Ee: If all the Dimention the in Feet, multiply the Iengtic br the Bfetrith, and thit prodect by the Depth to obtain the number of Cubic roet.

If the Lencth is in Peot and the withionc dopth in incheof minitiply the leng th by the Flath and this Product by the depth in inches, thendivide thatant Pradmot by 144 70r the Cubio Feet. - If all the Dimonsion are in Hepe sud Inches reduce the whole to Inches then multiply the Length, Breadeh and Depth together;ind ? vide the froduct by 1228 to optain the Cuble Freet.
Beguired tho number of enblo feet in a box, stone, do., st fuat long, $2 t$ oft wlat andi-2 toot deop?

$$
45 \times 2.6 \times 2=22 \text { cubic foet. }
$$

To find the capacity of a bin, ciothen, fanner's vat, bo., find its (intorior) cubie contents fr inchied, by the prooeding rulop, then if the capacity be roquired in gallows, divide the whole number of Ino es by 231 ; - If In besheloy by $2150.48,-0 \mathrm{or}$, if in heaped bushels, by $2747 \% 0$.
Or if the interlor of a coal thi be 4 feet in lentch, 41 inchee in breadth, and 88 inche in depth; then,
$4 \times 41 \times 82 \times 00094=38 f$ cubic seet. -2000 lbs., or 1 ton of Beaver Meadow or Eehigh Coal.
1 Cubid Foot of Pemoh Mountain-Coal, broken or sereened for Stoves, weighs 34 poinds, and requires 87 ouble feet of sipiee to stow one ton of 2000 pounds.
Coal is bought at wholeagle at the rate of 2210 pounds to the ton, and sold st retail at the rite of 2000 pounds to the ton, daredned.

Or, if the interior of a oris be 6 f feot in length; $8 \frac{1}{2}$ teet in breadth, and 81 Root in depth; then.
$6.5 \times 876 \times 8.25 \times 90853=68.0522$ (or 68 z bushels and ty peck,
The Solld Contents of all bölies, whioh are of unifortn bighen throughout, whatever tany be the form of the ende is found ly mintipling the tarem of one end into its helght or length.

144 inohes equal (m) 1 square foot. (or, areg.)
1728 inchive equal ($=$) 1 cubio foot, (or, soldd coniteite.)
$1 \cdot 17 \%$ incino qqual (4) 1 cub

[^0]: [Entered according to Act of Yarliament, in the year One Thousand Eight Hundred and Seventy-two, by R. Moore, in the office of the Minister of Agriculture and Statiaties of the Dominion of Canada. 1

[^1]: , 4 oz . ; whale-

