The institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.Coloured covers/
Couyerture de coilleurCovers damaged/
Couverture endommageeCoyers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manque

Coloured maps/
Cartes géographiques en couleur

Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blanix leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte. mais, lorsque cela était possible, ces pages n'ont pas èté filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.Coloured pages/
Pages de couleurPages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquéesPages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index

Title on header taken from:/
Le titre de l'en-téte provient:Title page of issue/
Page de titre se la livraison

Caption of issue/
Titre de départ de la lizraison

Masthead/
Gènérique (périodiques) de la livraison

Additional comments:/
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

Vol. 1.-No. 8.
NOVEMBER, 1873 .
Price in Canadr $\$ 180$ per An United States - \$.OO "

SIR G. AIREX: A GTONATON TRANSIT UF VENUS (See next page.)

SIR G. AIRY'S AU'TOMATON TRA.'GIT OF VENUS.

The Astronomer Royal has recently designedand construct. eda workiug model to show the phenom na frthe transit of Venus, of a peculiarly complete and simplo character, which we show on page 227. A few words only are necessary to enable any of our readers to appreciate its object and scope. A tmansit of Venus occurs only twice in about 120 years; the importance of observing this phenomenon we propose to discuss in a futare article. In the meantime wn would merely point out that the feature to note is tho exnct instant at which the edges or limbs of Venus and the sun are in contact during the pasenge of the former acrocs the disc of the latter.

Vory great dificulties have been found on the occasion of previous transits iu obtaining reliable observations, owing to the peculiar optical effects accompanying the phenomenon and the consequent difficulties in ensuring the olegervation of the eame particular phase in the trangit by all sbservers, as well as the doubt arising from the exact effect of the peculiaritics of each telescope and each observer. So greai indeed have been these difficulties, that the obserpations of the transits that have hitherto taken place-observations made oft great trouble and expense-have been found of very doubtifl value. It is, therefore, most import int that uni ormity in haiit of olservation should be acquired by all the officers aid others leaving England to observe the transit of Veuus in 1874 To this end systematic practice of some kind is clearly desiable. How is this t, be obtained with a phenomenon occurring only twice in 120 years? Careful observations of the transits of Jupiter's satellites have been recommende i, but Sir 4 . Airy has met the difteulty by a device which appears to give a singularly close copy of the trausit of Venup, and on which observers may try their powers to their heart's content. Before giving a descripttion however, it is well to understand the difficulty to be dealt with in the observation of a transit of Veuns. Fir. 1 represents the suu with Vonus coming on to it about the moment of minternal contact. Thers is a ligament conuectiny the black dusc of Venus with the eky at the point of contact. This ligment is the main cause of the trouble. It is nearly, if not always seen, and is explained in the following way :-

Auy brilliant object dazzles the oye, and by irradiaion appears to be large r than it really is; thus, in Figs 1 and 2, we suppose the real size of the sun to be indicated by the w. ted hine, whil: the apparent dise is the size of the larger circle. S) agam Venus should be seen the size of the smalldotted circle, but the sue so far encroaches on her that she only appears to be the size of the black dise whenever ber edge is been against the sun. But up to the moment that the entire edge of Venus enter, whin that of the sun the light cannot encroach at the pach that as yet is not projected ag inst the sun but only against the shy. Consequently, the limb of Venus that last enters on the sun's dise is for a time seen its full sizo, and the light, as the limb of the sun concealed by it, can neither oncroach on the sky or on Venus. In short, at this point the edges of Venus and the sun are those shown by the dotted circles, and thus th - black sky and black dise of Venus meet where the circles ss and $v v$ meet, and thus the ligament is formed. It has been suppoied that directly Venus enters within the sun's disc, as shown in Fig. 2, the light rushes in and encroachment takes place. Supposing this to occur immediately after internal contact, it is clear that when understood the peculiarity of the phenomenon woutd greatly fachltate its being accurately observed and recorded It is clearly necessary, however, to ascertain the truth of this sup. rostion.
Fig. 3 shows the apparatus designed by Sir G. Airy to represcnt the transit of Venus, at which the officers and other obserrers now practise. A glass slide a A, with a black diec (to represeat Venue) fixed on it, is drawn by clock work across the opening S1, S2, cut in a screen. The curves S1, and S', correspond to the timbs of the sun at the me ments of ingress and egress. By means of the looking-glass D, the reflected beams of the sun are thrown through the opening S1, S2, and the re ult is that the phenomena of encroachment of light and the ligament, or "black drop," is seen as in an actual transit. 'I he rate of motion and size of Venu, are calculated so as to give the same apparent dimensions and movement when seen on the main buildng by observers on the tup of the magnetic bundangs in the Royal Observatory, Greenwich, as those of Venus at the expected trinsit. The limbs of the sun are brought together and make an arch, in onder to give ing ess
and egress without unnecessary loss of time. We have said Fhat our-observers are practising daily at this model, and it nfine oxpected that their per-onal equations and the effects of peculiaritics In telescopes will be clearly estabhathed We may add that somo rather unexpected facts have cowe out, which seem to indicate that a modification of the generally received explanation of the behaviour of the black drop, whic we have given ab,jve, may be n cessarm For example, it is found that with a smaller telescope $V e$, ss is seen to leave the limo and enter within the sun's di-c later, and come in contact ag in at agress carlier, than with a larger glass. Then, again, it is found that with a brilliant blaze of sualight a higanent is seen in a position when w th a faint light it would lave disappeared This is rather contrary to the generally itceived ideas. It is premature, however, to say much nots. A fow weeks work may establish very valuab' sesults.The Engineer.

LAEE SUPERIOR IRON MINES.

An occasional correspondent of the New York Tribune says that the iron interest controlsall the capital, thought, and energy of Marquette, Michigan, and is the great industry of the din. trict. Fifteen years apo the fir t ton of ore was taken out of the Marquette hills and ent to Detroit to be made into pigiron; the report was that it was too soft, and therefore untit for use. Now the mines of Marquette produc nearly oncquarter of all the iron ore mined in the United States, or $1,201,000$ tons per year. It is expected that the productiou this year will equal $1,500,000$ tons. The ores in this section are classed in order and quality as the magnetic, the specular, and the homatite. Nue two former varictics are found in imm, $\cdot n=$ quantities, will yield from 67 to 70 per cent. of pure iron, ath can be hammered into shape almost without being reducel by heat to pig-iton, these ores are now found to be indi-per sable for mixing with the "cold short" ores of Pennsylvania, Ohno and oher points in the West. For this reasnon they will ahway be in demand. In quality, the iron ore of Missouri, particulally that of the Iron Mountain nearSt Luuis, resembles the specular ores of Dlarquette, but they yield only some 60 to 63 yer cent pure iron, and are accordingly of less value. The iron ores of Tennessee, to which the attention of the iron manufacturers of the West was recently turned, have been found to be if the "cold short " variety, and although found in immease deposits, cannot be successfully used for pig-irin without mixing with the ores of Lake Superior, whic 1 are all "red short" ores, aud do not become brittle when cold. Immense q rantities of the Marquette ore are shipped regularly to Pittsburgh, Cleveland, Chicago, Detroit, and elsewhere in the West. The Pittsbury furnaces are universally using these ores, and cannol compet iu quality with imported iron without them. Pittsburg mann. facturers are also largely interested in the minesin this section, and their capital is always ready for the development of any now enterprise in miniag here which poseesses proper qualitcations for success

Marquette enfoys a remarkably favourable situation, for it can ship its ores by water at small cost to nearly all the gr'at iron manufacturing centres of the West; for this reason it must for ever enjoy a position in iron mining scarcely rivalled by that of any locality in the West. The attention of Englandi's manufacturers is also turned in this direction, and a rerent shipment of 3,000 tons of pig-iron to Montreal, destited finally for England, [?] will show to what extent the exportation of these ores may be carried on. Although Marquette has confined its efforts almost entirely to the mining of ore, a blast furnace and a rolling mill are now in successful operatiou lor the manufacture of pig-iron it enjoye some advantages, fur coal can be laid down here mnch cheaper than at Detroit Tue ressels employed in taking the iron ore down the lakes are satisfied to take a return cargo of conl even as ballast, or for the nominal charge of 75 cents. per ton. There are immense fields or bogs of peat in this district, and much attention has been given towards its fit preparation as as substitute for coal in the manufacture of pig-iron aud for charcoal steel. Some samples of steel mag by the uje of prat were recently submitted to the inspection of steel manufacturers in Pittsburg, who reported that in quil ty and text tre they wery fully equal to any strel mado with chare: 11 'This fact is of great importance, and may tend to a revolution 2. the present process of manufacture. For making Bessemer st. I no ores have
yet been found in, this country that posses: the superior qualities of the specular ores of Lake Superior, and for this purpose these ores must always be held in high esteem. Much thought has been given recently by the iron and ateel manufacturers to a new stoel made by a manufacturing company of Chicago; several cold chisels for use in the mines, after trial, have been found to give better satisfaction than the tools cosio by the celebrated manufacturers in Pittsburg. The new steol is harder and finer in texture, and will wear better than any previously in use. It is of great value in cutting up the hard jasper-quartz and flint rocks that are met with in working the veius of ore in the mines.

We expected to see openings and galleries at the mines at Marquetto similar to those in Pennsylvania, and were mucis surprised to find that the ore lay in such huge veins and outcroppings that it could be taken out as querifmen take out sandstone or slate from the quarries in the East. The mines preaent the appearance of a large pit of 100 to 200 feet in depth, and of a circumference nearly equal to that of half an acre. At different points the veins are worked at an angle of 45 degrees from the bottom level, and the vein thoroughly explored from the surface of the pit to the buttom. The veins vary in size from three feet in width to 100 feet or more. At the Republic Mine we baw the miners workiug at the side of a hill that seemed to contain nothing but solid, pure ore, and the ore was taken out as fast as the pirks could biling it to tha ground. Three men's work at this mine represented for one day 20 tons of ore, dug, broken, and carted away to the stockpiles near the rallroad track. The Republic Mine was opened last October, and has alreally produced 90,000 toas of ore. The unmined ore is believed to amount to millions of tons. The owners were offered for the property, before a pick was used in exploring it, $2,000,000$ dols. by some iron manuf teturers of Cleveland and Pitstbur,h. In the richness of the veins, their extent, and the case with which the ore is taken from the hills, the Republic Mine is a sight worth seeing. John Stewart, sloses Taylor, and other New York capitalists are largely interested in the iron property of this district.

The mines are surface mines generally, and are worked from the su a; hut one or two nines are underground mines, of which tho Champion is the best example. Hero they take out the ore in drifts and breasts on cifferent levels, leaving from 30 to 30 feet of substance between the levels. The ore is raiced in shipe thrcugh the shafte, the hoisting-cab'e for all of which is driven by the same engine. This mine is worked upon the same principle as that commonly followed in the coal mines of Penncylvania.

The veins of ore run usually from east to west, and the mines are situated from five miles to sixty miles back from the town. The ore is brought to the decks on the railroad track in cars especially adapted for the purpose, that run out on a wooden tramway 50 feet ahove water-mark, when the ore is dumped into wroden pockets made expressly for loading the vessels and for storiog in readiness for ships' delivery. One wooden pocket holds about 60 tons of ore; the Cleveland Iron Company's docks, this year, with ther improvements, will boid full $s, 000$ tons of ore in pocket at once, and will allow six vessels to load at the eame time. The railroad company also owno docks of a!most equal capacity, the cost of which was some 400,000 dols. The railroad is making large returns of earnings from tariff on trinsportation of the ores, and from time to tine it builds, at its own expence, side-tracks ten miles in length to the new manes, for farther development and speedy delivery.
The iron ore of Lake Soperior costs about six dols a ton to mino and deliver at the lake ports; it is sold at 12 dols. to 124 dols. per ton delivered at the ports; the profit is, theref re, equal to six dols. per ton net. This business pays better than gold or silver mining, and is adding millions to the already great wealth of some of the residents of Marquetto.

It is impossible, of course, to predict the prosperity of Marquette ten years hence, or of the magnitude of this iron mining that is even n,w in its infancy. One ruitway now serves for communication between Chicago a d this place. Still two additional roads are in process of construction frem Detroit to Mackinaw, and hence to Marquete; the State has appropriated lands, and the telegraph poles are already in position fo. the distance of 50 miles. Marquette seems to bave a great fature near at hand. The following shows the prodaction of ore of some of the largest mines during the 5: Br 1372 :-Lake Superior, 185,070 tons; Cleveland, 152,607 tons; Jackson,

118,842 tons; New York, 68,950 tons Champion 68,405 tons, Washington, 38,841 tons; Barnum, 38,381 tons; Cascnde, 35,069 tons; Lako Angelide, 35,221 tons.

AMERICAN LIGHTHOUSES.

A short time since (vide page 203 of our last number), we illustrated two types of recent American lighthouses, and we now give on pages 230 and 231 views of two others, both ccnnected with the lighting of the great lakes. The first of these, namely, that erected on the shores of Lake Erie at (leveland, Ohio, requires no special description; but we illustrate it merely on account of its architectural features. The other lighthouse, namely, that at Spectacle Reef, Lake Huron, is of special interest on account of the mode adopted in establishing the foundations. We are indebted to the last rectived report of the Lighthouse Board of the United States for the following interesting account of the operations:
At the date of the lest annual report (July 1, 1871), the crib 92 ft . square, with a central opening of 48 ft . square to rective the cofferdam which was to form the pier of protection, as well as a landing place for materisls during the buildiny of the lighthouse, was in courso of construction at Scammon's Harbour. The original intention was to put the crib in po-ition in four sections, but upon further consideration it was decided to attempt placing it as a whole upon the reef, which was successfully accomplished, as is detailed hereafter.
In order to get accurate soundiugs to guidr in shaping the bottom of the crib, and to fix with a degreo of certanty the position of these soundings and that to be occupied by the crib, the following method was pursued: Four temporary cribs, each 15 ft . by 25 ft , of round timber, were placed in from 8 ft . to 10 ft of water, in a line corresponding with the proposed eastern face of the pier of protection, and filled to the level of the water with ballast stone. These four cribs were then decked over and connerted together. Upon the pier thus formed about seventy cords of ballast stone were placed ready at the proper time to be thrown into the crib forming the pier of protection. The lower two complete courses of the pier of protection, having been fastened togeth r by screw bolts, forming a raft, constituting a ground plan of the pier of pritection, were then towed from the harbour where they were framed to the reef, and moored directly over the po tioun to be occupied by the finished pier. Its position was marked upon the temporary pier referred to above, and soundings taken at intervels of 2 ft . along each timber in the raft, thus obtaining arcurate contours of the surtace of the red within the limits of these timbers. The raft was then towed back to the harbour, hauled out upon ways, and by means of wedges of timber the bottom was made to conform to the surface of the reef. The raft, now become the bottom of the pier of protection, was then launched, and additional courses of timber built upun it, until its draught of water was just sufficient to permit its being Goated into position on the retf, at which time it was estrmated that the top of the pier would be 1 ft . out of water.
The depth of water on the reef at the points to be occupied by the four corners of the pier of protection was found to be as follows: At north-east corner, 10 ft .6 in .; at north-west corner, 13 ft .; at south-west corner, $14 \mathrm{ft}$.6 in .; and at southeast corner, 9 ft .6 in ; the position to be occupied by the pler of protection haviag been so chosen that the sides would correspond :o the carcinal points of the compass. Mcan white five barges at the harbour had becn loaded with ballast stone, making togeiher with those on the temporary pier at the beef, 290 cords (abr ut 1800 tons) at command, with which to load the pier of pretection and secure it to the reef as soon as at should be placea in position.
On the evening of the 18 th of July, 1 ' 1 , everything being in readiness, and the wind, which hi jeen blowing freshly from the north west for three days previously, having sumawhat moderated, at $8 \mathrm{p} . \mathrm{m}$. the tags Champion (sercw prope iller) and Magnet (side wheel) took hold of the mameuse ciib and started to tow it to the reef 15 miles distant, fulluwed by the Warrington (ecres propeller), baving in tow the schouner Belle (the two having on board a working force of $140 \mathrm{~m} / \mathrm{n}$), the tug Stranger (scres propeller) with barges Ritchio and Emerald, and tho tug Hand with two scows of the Lighthuuse Establishment. The barge Table Rock, with fifty cords of stone on board, was left in reserve at the harbour. The con.

LIGमTHOUSE AT SPECTACLE REEF, LAK: HURON.
was in place, when sho was ditcharged, and started for Detrolt with the barges Ritchie and Emorald in tow. The Trablo Rock was cetained in service until the 30th July, when she was dispensed with After the pior was in position the achooner Belle was moored on the reef to sorve as quarters for the working force, which proceeded to build up the pier to the required height above water (12 ft .). The Wartington having gone to Detroit to receive a new boiler, the tug Hand was retained to tow tho scown carrying the ballast stone used in completing the filling of the com. partmente, until the roturn of the Warrington on the 12th of Sop tember, when she, too, was dis. charged. By this time the pler had been built up to its full height, and by the 20th of Sepiember quarters for the workmen had been completed upon it, which were at once occopied, and the Belle roturned to the harbour. By meaus of a submarine diver the bed rock within the opening of the pier was then cleared off, and the work of constructing the cofferdam was taken in hand. The cofferdam itself consisted of a hollow cylinder, 41 ft . in diameter. composed of wooden staves, each 4 in. by 6 in. and 15 ft . long. The cylinder was braced and trussed internally, and hooped with iron oxternally, so as to give it the requisite strength. It was put together at the surface of the water, and when complete was lowered into position on the bed rock by means of iron screws. As soon as it rested on the rock (which was quite irregular in coutour), each stave was driven down so as to fit as closely as it would admit, and a diver filled all openings between its lower ond and tho rock with Portland cement. A loosely twisted rope of oakum was then pressed close down into the exterior angle between the cofferdam and rock, and outside of th18 a larger rope mado of hay. The pumping machinery having meanwhile been placed in readiness, the cofferdam was pumped dry, and on the same day (14th October) a force of stone-cutters descended to the bottem and commenced tho work of levelling off the bed rock, and proparing it to receive the linst cotarse of masonry. struction scow, with tools, sc., on board, was towed with the phe bed rock was found to consist of dolomitic limecrib. At 2 a.m. next morning, six hours after starting, the stone (confirming the previous examinations), highest fleet hove to of the reef awaiting day ight and the abatement of the wind, which had again freshened up. At $6 \frac{1}{2}$ a.m., it having moderated, the pier, with considerable difficulty, was placed in position, aud after being secured to the temporary pier and the moorings previously set for the purpose, all hands went to work throwing the ballatl stone into the compartments, and by 4 p.m. succeeded in getting into it about 200 cords (1200 tons). By this time the winds was blowing freshly and the sea running so high as to make it necessary to stop worh for the time, but early nust morning all the reserve stone was put into the compartonentis.

The tugs Magaet aud Stranger were discharged as soon as the pier was in position, Lu.t fur fear of audidnt the Champion (a $6^{\text {temaner }}$ of great power) was retained until all the stone
on the western side toward the deepest water), and sloping gradually toward the castern. In order to make a level bed for the first colase of masonry, it was necessary to cut down about 2 ft . on the highest side, involving a large amount of hard labour, rendered more difficult by the water forcing its way up through seams in the rock. But the work was finally accomplished, the bed being as carefully cut and levelled as any of the courses of masonry. The first course of masoury was then set, completing it on the 27th of Outober. While setting this course much trouble was caused by the water, already referred to as forcing its way up through seams in the rock, which attanked the murtar bed. For this reason water was let into the dam every evening (and pumped out next moraing) tn give the murtar time to bardea during the
nfght. This mortar was composed of equel parts of Portiand cemont and ecrooned siliceous sand. Bpectmens of it obtained the following spring, after being in place under water for seven montbe, were quite as hard or harder than either the bed rock or the stone used in buildlog the tower.

The weather having now become vers boisterous, with frequent snow squalls, often interrupting the work, and the acting of any additional stone requiring the removal of a portion of the most important of the interior braces of the cofferdam, it whe deemed prudent to close the work for the scason. This, 100_{1} would give ample time for the hardening of the mortar used in bedding the stone, and in the concrete used for filling cavities in the bed rock, as well as the space between the outside of the first oourso and the cofferdam (Fhich was solidly filled with concrete to the top of the first coarse). Thereforo the cofferdam was allowed to fill with water, the process being hastened by boring holes through it to admit the water, and it was secured to prevent its being lifted by the ice during the winter. The machinery was laid up, and on the last of Uctober all the working force, except two men, were removed. These two men were left to attend to the fourth order light, which had been established on top of the men's quarters, and the fog sigual, consisting of a whistle attached to one of the steam bollers. At the close of navigation they Fare taken of the pier by the lighthouse tonder Haze.

The degree of success of this novel cofferdam may be inferred from the fact that although pre pared with pumps of an aggregate capacity of 5000 gallons per minnte. nut more than a capacity of 700 gallisus was used, except when emptying the cofferdam, and then ouly to expedite the work. Unee empti, d, a small proportina of thas caparity w s auple to keep the coffrdam treo trom water, end thes at a deyth wi 12 ft. of water, on rock, at a distance of nearly il miles frum the nearent labd. Every person conaected what the work may well feel a just pride in its suceess. All the stone which had been delivered at the harbour, cussisting of the first five courses (each course 2 ft . thick), having been cut by this time, the: work there was also closed.

The searon opened a moath later in 1872 than in 1871, consequently work was not resumed at the harbour until the 3rd of has, and uyun the rece on the 28th of the same month. On the 13 th of Bi ty the ice in the cofferdam was still a compact mase, of bome feet in thickners. Masses of ice still lay on top of the pier itself. As boon as anything cotild be done, the ice still remaining. was cteared out of the cotherdam, the machinery put in order, the braces removed from the intepior of the cofferdam, und the work of eetting additional courses begun. This has conting ed without intermption to the present time, when the masonry is well above the water, and going on at such a rate that one entire course is set, drilled, and bolted complete every three days. If this contiuues, the twor fill
have reached a beight of at lesst 40 ft . above the late tevel befure the clore of the se8son.

It is greatly to le reeretted that in a work of such difle uits and importance it was not foum practicable to use framate' The first coutractor to firmish stone agreed to suphis qribs io from a quarry at luluth, Minurents. After a trifing alite w, quarry the atone, be utterly fanled, and he abanduned the. ontract. It was then so late in the season that the engneer was compelled either to stop operations or to go into the open market and purchase snch stonn as be could get. Lie best available was the Marbrofenul limestone from the ricimity of Sandusky, Obio, and this way used. In Februaty, Isia, froposals for the remaining stone were received, and of there the
granite offered was at such a price as to exclude it, and no other suitable stone $\cdot x$ eept the Marblehead limestone being offered, he whe again driven to use it.

Wu may add that it was cxpected that the ontire work would bo completed last season; but wo have not yet heard whether this was successfully accomplished.-Engineering.

BOILFR BURSTING EXPERIMENTG.

In owr last we sigted that the American Government had undertakon a series of experiments on steam boilers and we promised to give the results of these experiments to our readurs. The fullowing succinct account is from the Nautical

Ilagazine:-

Mr. Francis B. Stevens, of Hoboken, New Jeriey, before Suptember, 1871, had made several evperimenta on the strength and proper management of boilers be'onging te the United Railroad Companies of New Jersey. So valuable did the results appear, that the exccutive committee of the Inited Companies, on the 11th September, 1871, voted $\$ 10,000$ for the continuation of the experiments.

On the 22nd of November, the bursting experiments commenced; Mr. Stevers invited the principal sterm engineers of tho United States to attend. The Daited States Government sent three of their navy engineers to report, and the inspectorgeneral of boilers and other boiler inspectors, professors of enginecring, mechanical engineers, \&c., were also among the skilled observers.

The first experiment was on a boiler that had been in use for thirteen years, and been removed as worn out. The shell was 28 ft . lone; the body 6 ft .6 in . in diameter, and the front portion, containing the furnace: wam rectangular below, and semi circular above, and this was 7 ft . 8 in. in length; 80 that the length of the cylindrical part was 20 ft . 4 in . The steam chest was 4 ft . in diameter, and 10 ft .5 in high. The shell wus of No. 3 gauge-that is, 26 in. tbick, and single rivetted. At 112 lb . per square inch hydradic pres. sure, some of the stays in the flat part gare way; but the circular part of the shell and the semi-circular top of the front stood that pressure. When subjected to steam pressuice it was found that at 98 lb . pressure, the steam escaped from the seam joining the stoam chest to the rhell, as fust as it was made, and a bursting pressure could not be obtained.

The leak produced, pointed to the weak place in the boiter - the opening in the shell at the steam drum ; and boller insp ctors should be careful to attend to that in fixing pressures.

Tbe failure of some of the stayg, in this and in all similar experiments, indicates the danger produced by constructing a boilerso that the failuri of any one stay would be fatal to the whole structure. Stays are seldom fixed to take the strain equally. We have found in boilers in use stays so badly fitted, that some of them would have $\frac{8}{8}$ in. end play when the adjacent staps were taking the strain. It is to this unequal tension of adjacent stays that we must attribute the failure of stays at a pressure much below that due to their united section, if the strain had been equally divided over all the stays. It is also on this account that the Board of Tmule surveyors allow a higher strain per square inch of metal in the section of a boiler shell than per 8 fuare inch of stay section.

By the hydraulic test, the shell was subjected to a strain of $16,600 \mathrm{lb}$ per square inch gross section of shell. Taking the effective section of the shell at 67 per cent. of the solid plate, according to Fairbairn, for single rivetted crossed seams, the strain per square inch of the iron was then $25,000 \mathrm{lb}$. We have here an illustration of the effect of high hydraulic testing; a boiler, afto being thirteen years in use, is subjected to a strain of $25,000 \mathrm{lb}$. per square inch of iron in the shell, apparent! without inuring it.

That boilur, if in a passenger steamer in this country, would, When new, be allowed a pressure not exceeding 30 lb . per square inch. After thirteen years' service, it stands nearly foar times that pressure, hydraulic, and they fail to burst it at over three times the pressure by steam The public ought, thercfore, to have perfect confidence in our Board of Trade boiler supervision.

The next experiment was upon a box, representing a flat water space, or leg of a boiler that had recently expluded in the steamer "Westficld, 'at New York. The box was 6 ft .4 in. long by 4 ft . wide over all. Tho plates wore $\mathrm{T}^{5} \mathrm{f}$ in. thick, and they were staged together by screwed stays, $1 \frac{1}{8}$ in. in diameter, and the cads of the stays were very slightly rivetted over, only to make them tight, not to act as heads. The stays were apart $8 \frac{3}{3}$ in. by $9 \frac{1}{5}$ in. This box was burst by steam pressure at 165 lb . por squaro inch. Not a stay was broken and the threads werc not stripped on eilher the plates or the stays. The slight rivetting was broken off every stay, and the stays were drawn through the holes, the plate, by stretching, having enlarged the holes. Had the tays been provided with nuts, the box Fo:ld have borne a much greatur pressure. C mparing this result with Fairbairn'a experiments on to similar box, we find that the bursting pressures are equal to a little more than eight times the following :

Working prws8ure per square inch:
$40,000 \times$ diam. of stay \times thickness of plate.
$=\frac{\text { Cube of distancu between stays. }}{\text { Con }}$
These dimensions are to be taken in inches; the diameter of stay is taken over the threads.

There is considerable doubt as to the proper form of the rule in this case, and the above is given subject to correction by further experiments. It is neant for flat surfaces, and for screwed stays without rivetted heads. This is the resistance to drawing throngh the screwed hole; and, quite irreapective of this rulc, the strain upon ang stay should never be more than that due to it least section.

On the 23rd of November, the day following that on which tho abive experiments were made, a boiler, that had been twenty-five years in use in the steamer "Bordentown," was subjucted to bursting pressure. The boiler wav tectangular, 15 ft .6 in. length, 12 ft .2 in . width, 8 ft .6 in . height, exclusivo of sterm ${ }^{-}$dome The stays were unequally distributed; the section c. each stay was 1 square inch, and the space to be supported by each stay was in some places 228 square inches, and in other 336 squire inches. Just before the boiler had been removed from the steamer, the inspector's certificate sllowed a pressure of 30 lb . per-quare inch, or equal to 10,000 If per fquare inch upon some of the stays. That is just double the strain that is allowed by our Board of Trade surveyors. The boiler burst at $63 \frac{\mathrm{l}}{\mathrm{lb}}$. pressure per square inch. From the pressure of 30 lb ., at which in had been in use, the steam pressure increased in 11 minutes to 50 lb . at which pressure a loud report was heard, attributed to the breaking of some of the stays. Two minutes afterwards the boiler explodiad with tersific violence. The stcam drum, vith a portion of the shell attaching to it, forming a mass of about 3 tons in weight, were huried to a great height in the air, and fell at about 450 ft . from the original position of the boiler. Almost the whole boielr was literally torn into shreds, which were scattered far and wide. The report of the experiments, from which we have gathered theso particu'ars, describes minutely the great destruction produced. The stays in the upper part of the boiler had broken in the wolds; those screwed into the water space plates had drawn through the holes in the plates, as in the preceding "xperiment. There was no flashing of the water into steam, for for ground and grass end shrubs ali round were found drenched with the water. The water gauge was examined only seven minutes before the explosion, and showed 15 in. of water above to top of the tubec.

We have said our surveyors would have given just half the pressure that was allowed, and some of our readers may consider that to be an unnecessary strictness. But the resu!t justifies their practice; 15 lb . is more than one-fourth of the pressure at which the boilers exploded. Only thirteen minutes between practice and explosion is far too narrow a margin, where boilers have only one safety valve, and that may not have been opened for weeks in succession, and may be struck in its seat. The age of the shell of the boiler did not affect the result; the explosion was due to the failure of the stays, and these had been put in order just before the experimenis.

The importance of these proceedings wis 80 impressed upen the minds of those who Fere present, that they brought the subject before Congress, and there has been voted the sum of $\$ 100,000$ to carry out similar experiments on a larger scalo. The Commissico appointed to conduct tho experi nents bas just madea beginning. It is not unfairly to anticipate the report
of the Commtssioners, but to stir up tho ongineers in this country to similar activity, and to make hnown the character of theso experiments, an'l create nn interest in them that wo gire the following outline of what has been nccomplished, durrog the last month.

A small vertical boiler, tested by hydraulic pressure to 182 lb ., wns fitted with a safety valve, londed at 50 lb . prissure. It was intended to destros this boiler if po sible, by allowing the water to become so low as to permit the crown shert to be overheated, nod wise the tomperiture of the steam had increased to 1000 deg to inject water lonfortunately, the fire was urged too much, and one of the vertical tubes collapsed beforo the water was injucted, and when the pyrometer showed only 750 deg. The pressure at the moment of rupturo was 54 lb . The contents of the boiler were discharged without disturbing the position of the boiter.

The next experiment was made upon a large marime boiler, the sinell about 8 ft . in diam ter, the plates- 26 in thick This b iler had bee n ma years in use, and was tested to 44 lb hydraulic the day before the experiment. There was a safety valve on the b iler, set to blow at 5.5 lb. , but it did not open until the pressure wa, about 72 lb .; it had struck in ity ceat. A litile before the g.lfety valve opened, the pressure being then 70 li, two of the longitudinal seams opened. There had been a crack there in some places one-thirl of the thickness of the plate, and a soft patch had been put on the inside, a plate about 6 in wide, held by thirteen bolts on each side of the seam Ihe rupture followed the ouge of the lap until it came to the cross ceams. The plates were 32 in . wide, and the edges opened 13 in. at the midile, and yet the boiler did not burst There wa only the wialth of one plate between these two ruptures, so that over 10 ft . of the longth of the boiler there was only 32 in of plate and the soft patches remnining. The patches could not count for much after the plates had parted $1 \ddagger$ in. at the middle.
'The-o ruptured plates will be removed and the boiler repaired, and it will then be submitted to a bursting pressure. 'Thefe experiments were conducted at Sandyhook; the westher Lad become so cold that the pipns were freezing; the Commiesioners, therf fore, remove to Pittsburg. 'Tbroe boilers, the ordinary two-flue boilers of the Western steamboats, were there in plas e fur experiments.

These boilers wece all 25 ft long, 50 in . diameter, with two flues 14 in diameter. One of these boilers, registered as No. 3 , had its ehell 36 in.. and the fiue 3 in. thick; it wes single. rivetted Four attempts were made to burst it, but when the pressure reached about 225 lb . persquare inch, the seams leak. ed sunl ient steam to prevent the pressure increasing. The itrength of the boiler was its circular shell, and in no trial have they yet succeeded in bursting a circu'ar shell by a gradually increasing pressure of steam. This isan important fact, for the circular boiler is being everywhere adopted in our steamers The working pressure allowed on such a boiler in our passage fteamers would be about 25 lb . per square inch; but, it must be remembered, that the American iron is generally better than ours.

No. 1 boiler was of the same dimensiuns as the last, but the shell and the flues were the same thickness, 26 in. The shell was double-rivetted, the rivets zig-zag. At the firot experiment with this hoiler the pressure reached 360 lb . on the s fuare inch, but with no other effect than simply to cause the seams to leak. On tise 12 nd ult., the flues were collapsed by sheer pressure, cne of them vertically, the other horizontilly, showing that it was not from being sbort of water. The flues tore from both the ends be boilere, discharging the cont-nts from both ands, not asturbing the boiler shell in the alightest drgree. The effect 1 -described as terrifying; repurt not $1 \times \cdots, b$ the whole atmosphere darkened by the cloud of ateam; the water driven to a distance of over 350 ft ., and the gre atest width of its path, or " 8 watch," over 150 ft ., the chmmey, flue ends, timber, \&c., sent to various distroces from 80 to 200 ft . and what beight is not know. The condensed steam fell in the faces of the spectators at p distance of from 60 to 110 yards at right angles to the line of discharge. The report was not loud or sharp; the appearance of the expulsion of water and steam vas very much like that of a piece of ordnance when fired. The concussion of the atmosphere was felt 200 yards away, and before the report was beard. Fortunately no one was seriously iojured, but one man was scalded, and his and another's narrow escape is a

The boiler was situated in a sort of ravine, between two banks about 180 ft . in hoight. There was a bombeproof erection three fuet from the back end of the boller The steam gauged were placed in the bomb-proof. The spectators rero down in the ravine, scattered about, at from 80 to 110 yards from the boiler, at right angles to the boiler, tho boiler lying ucross the raving. They had a longitudinal vinw of the boiler, with its chimney and firing spaco to the right, and tho bomb-proof to the loft ; the door of the loonb-proof was at thi" right-hand corner, towards them, but hidden by a projerting bonk of earth, th . bank of carth being continued all soumd the base of the bomb-proof. These two mun had been it the back of this bank waiting for the explosion ; they had writud so long that they thought it was another miss, and so lift that position and coolly walked rount to the boiler and examined it, and then they tried the watergauge valves. They lound the pressure was so great that they conla not open them They then hurricd into the boub-proof nad remd three gauges there-one at 400 lb ., one at 460 lb ., and one at 500 lb . Secing a number of the npectators following their example, one of the men stoot in the door of the bomb-proof, and made gestures to them not to approach. All the spuectators were drawing nearer, believing the experiment had failed While ho was in this position, he haviag just turned to shut the door, the collapse took place. He was driven back by the concussion of the atmosphert to the wall of the bombproo; and, by the recoil, was thrown out of it enturely. He was scalded about the face, arms, and legs, but not severely. The other man, who was within the bomb-proof, was not injured.

It is a fair conclusion, fiom the expe:imente, that no circular boller was over burst, or can ever be burst, by a fradually increasing prossure without "complaining," or giving potice of over-p:asisire to the engineer or those in attendance. It is not the circular shells that aro dangerous, but the stived fit surfaces, and the high-pressure rircular boilers, now conning into general use, aro much safer than the low-preseure boilers which preceded them.

According to Fair'lairn's rule, the flues of these boilers, if perfectly circular and without ringe, should have colla; $\mathrm{B} \cdot \mathrm{d}$ at 241 lb . pressure. An average of the recording gaages, read after the experiment, showed only 350 lb , but, according to statement of the two men who ware within the bomb-proof, it must have been much higher. The report of the commixsione's will no doubt explain this

This is the first exposion of a boiler at such a high pressure that has been witnessed by spectators watching the experiment. The explosion described in the first part of this article was at only 53 1b. pre: sure.

The boiler experiments have been stopped until the npring of next year. During the winter the Commission will conduct experiments on safety valves. These are of the same character as tho; now being carried out by the editor of this magaziae. In a special circular, sent out by the President of the Commission, D.D Smith, Esq., the object of the safety valve experiments is thus set furth: "To determine the best form, construction, and dimensions of afety valves, so that they may be what their name denot s, and oper tu antomatically, so to relieve the boiler that it will be impossibl.', so long as the valve remains unobstructed, to explode or burst a boiler by gradual accumulation of steam when in ordinary u8e."

Birds Ne?t in a Railroad Car.-A German paper gives the following :-Even the little members of the feathered crea. tion, generally so shy, are becoming famuliar with our noisy industries. Indeed, they begin to take rides upon the railroads. A pair of red-breasts recently made their home, built their nest, brooded and fed their young, under a aravel-car, constantly plying betwoen Duren and Capallen Gilverath Th little creatur"s wore regularly taken back and forth, and by this their rango for food was considerably enlarged. Notwithstanding all the busy noise over and around them, they were much safur than in the most peaceful inclosure within the reach of wicked boys. A nest of young wagtails have recently left their nest, where they had been raised, under the plate of a switch bere. Twenty five regular trains, besides extra trains, went daily back and forth over them, yet the shy littio fawily did not seem to be in the least disturbed.
 heavy foundations. The machine consists of
two pairs of standards, placed far enough apart to admit of the saf blades being carried between them. Near the bottom of these standards a shaft runs in suitable bearings, carrying a fast and loose pulley, from which motion is transferred to the pairs of cranbs at the ead of the shaft, from which convecting rods ascend, and take hold of the cross head to which the upper cads of the blades are fastened. This, as well as the corresponding lower cross head, slide in snitable guides formed in the vertical standards, as shown in the section on the present page.
The same view also shows the position of the four serrated Fllerr, tetwen ribich the timber is fed into the esars, and
all of which are driven, a epeolality in these Continental log frames. It will be seen that the lower pair of rollers ran in fixed bearings, and the shafts on which they are mounted carry at one end spur wheels gearing into \& common pinion fast on the silent feed wheel shaft. Motion to this is given in the n_{1} de shown in the side elevation of the machive, from a par of levors connected with the top cross head of one of the side connecting rods. A means of adjusting the rate of feed is provided in the screw and regulating hand wheel. The opposite end of each of the lower feed rollers carries a bevel wheel that gears into a corresponding pinion mountedon a vertical shaft, the upper part of which is pro-
vided with a koyway, in which alidoos a block carrying a similar pinion gouring into a berol wheol on the sud of tho shaft of tho uppor foed coller. It will thus bo ovidont that in whatover position thip lattor may bo, it will be always driven from the lower roller. As will bo seen from the aido olevatiou and section, these upper rollers havo bearlings that slide in suitable oponings in the frame, and they are also attached to brackets carrying small toothod wheels, engaging in vertical racks boited to the frames. By means of suitable gearing on one side of the machino, the upper rollers may be ralsed or lower ed to any desired position, and dotents are provided to hold them al any point.

Witr reference to tho tensils steength of Lako Superios iron, tho Detroit Frree Press makes a record of the following experiments with iron mado from Lake Superior ores, by tho Wyandotte Company. A bar of rall road tron was put under the hammer, and bent, twisted, and tortured until no resemblauce of the original bar remained. An effort was then mado to hammer the head of the rail from tho flango, bat it proved unsuccessiul. It must be understood the experiments wero mado when the iron was cold. The experiments with the chains were equally satisfactory and showed a great porer of resistance. A bessemer steel chain, if in. in thickness, withstood a test of 121,850 ponads to the square inch. The following comparisons will show the relative tenaility of Lake Saperior aud English izon, the trials having been mado by the use of the testing machine made by Riehle Brothers, of Philadelphis, which is that used for all tests in which the American Government is concerned. A one-fourth inch chain of American (Lalso Superior) Iron withstood a strain of 101,750 ponnds, while a chain of English iron of the same aize broke at a test of 76,500 pounds. A five-eighth inch chain, American, 24,875 poands; English, 16,000 pounds. A three-fourth inch chain, American, 38,000 pounds; English, 26,000. A one-half inch chain, American, 15,825 ponnds; English, 8,500, and a seven-sizteenth inch chain, American, 10,280 pounds ; English, 5,750.

Velooity of time Wind.-Light air, 1 mile; light breeme, 3 miles; gentle breeze, 10 miles ; moderate breeze, 15 miles; fresh breeze, 20 miles; atrong breeze, 35 miles; muderate gale, 30 miles; fresh gale, 45 miles, strong gale, 00 miles; heavy gale, 70 miles ; storm, 80 miles ; hurricane, 100 miles and upwards perhour

Is Germany alone the mannfacture of beet root sugar from 1400 tons in 1837, Lad expanded to 263,000 tons in 1871. There was also en increase of 150 per cent. in tho amount of sugar consumed per head between these dates.

VERTLCAL LOG FRAME.

THE EARLY HISTORY OF THE SEWING MACHINE.

Tho sewing-machine is now so common an appendage to most houses that it scems almest difficult to beliove that practically its employment only dates back rome twenty years. In the 1851 Exhibition there was not a single machine of the sort now use 1 . Yet, recent as the invention is, there in a great deal of uncertainty as to the person to whom the credit for it is due. Naturally enough, in such a matter, the possessors of rival systems are anxious to claim priority each for hisown method; and the question, "Who invented sewing-machines?" has been argued with considerable bitterness both here and in America. Quite recently the matter has-for the present, at least-been decided, 80 far as relates to the first maker of a sewin; machine. A member of a firm of Americar sewing machine manufac turers li hted on an Euglish patent, granted to one I'homas Saint, in 1730 , in the specification of which a sewing-machine was described. The patent was granted for a method of making boots and shoes, and the machine was intended for use in that manufac. ture. So far far as can be judge I froma rather meagre description and drawing, the machine worked the chain-stiteh with a single thread. An awl and e needle were mounted parallel to one another in a position similar to that now occupied by the scedle in molern $6 e w i n g$ machines, and the needle was apparently notehed at the end, to receive the thread and push it through a hole formed by the awl at tho stitch preceding. There was e catch under the fabric, which held the loop of the thread when driven down by the needle, until the needle made a second stitch through the loop. There was also a feed. motion for carrying the articles to be sewn through the machine on a slide to which it was attached; and it may be remarked that such a derice would be better suited for stitching small articles, like boots and shoes, than for producing a seam of any length. It was worked by a winch-handle on a spindie on whil b were tappets that angaged with pieces on the slidin.rarm carrying the needle Such appears to have been the machine, which there is every reason to suppose may have worked prictically enough. That its existenco should never have been discovered before is ciecidedly Fers strange, considering the numerous and extensive searches that havo been made through the records of the Patent Office in connection with this subject. Had the index referring to the "old lass" specification (beforo the Patent Law Amendment Act, 1852) been prepared on the system now applied to the current inderes, of courso such an invention could not remain hid len; and the incident offers another argument in favor of the speedy preparation of a new indox. Such a work has, it is believed, been long under consideration, and the sooner it is actively taken up the better.

To say that such an invention as this could invalidat any of the patents for the sewing mas nines now in use is certainly prepo- was ; but it is very curions that this Chomas Saint shothld have gone so near the mark, and that his invention should have fallen still-born at the time, to be revived, in many of its principal features, nearly a century later.

Hut Saint's is not the only old sewing machine that has escaped the notice of most writers on the subject. There י- isis an carly French patent, taken out apparently by two English-men-for the names Stone and Henderson are certainly not Fronch. In the "Description des Machines et proc des spécifice dans les Brevets d'Invention," is given a speification bearing date February 14th, 1804, and headed by the above uames. Tho patent was "For a new mechanical priaciple, intended to replace hand-work in joiuing the edges of pieces of all descriptions of flexible matters, and especially applicablo to the making of wearing ap; arel." This machine was intende I to imitata hand-sewing, and in it an ordinary needle with an eye at the end was used, and this mas worked by two pair of jaws, one at each side of the fabric, which p sstd the needle from one to the other, turning it over cvery tame to bring the point aganst the fabric. Only a needleful of thread at a lime was employed, and the needle mas drawn to a constantly diminishing distance overy stitch, to allow for the decreased length of the thread. When the thread was used up the machiue had to be stopped and a freshly filled needle introduced. If required, more than one needle could be employed at the same time. It seems as if the fabric was to be autoruatically fed through the machine, but whether this is eo or not docs nut rery clearly appear. In fart, spite of the fulness of the description, it is not very casy to understand the exact con-
struction of the apparatus, though the above may serve as a brief skotch of it. The specification concludes with a desisrip. tion oi a circular building in which a number of these machnes c ild bo arranged 80 as to be worked from a central vertical shaft.

Next to there, in chronological order, comes an American invention, by Adams and Dodge, of Moucton, Vermont. wh, prodaced a sewing michine of some sort in 1818, but littl: 1 kenerally known of it. In the same country it appears that Walter Hunt, in 1834, made a trae sewing machine, but as the history of his invention is mixed up with that of Howe's machine, it may be left for the present, after the lact is mentione-1 that such a machine was really made, for of this there beems wo doubt. In England wo do not find that any true sewing machines were made in the early part of thu century. 'lhere are, indeed, several patents for embroidering machines, which with a Inttle alteration, might certainly have been made to se w However, such an der dues not seem to have occurred to any of the inventors, and none of the machines were developed in this direction. Of them Duncau's machine (1804) is the oidest It worked the chain-stitch on the surface of the fabric, and might, of course, casily have been adapted to sew together two pieces of stuff, in the same way preciseiy as the single thread machines now work. 'I'here were also a good many inventions. both in this country and America, in which a " basting stiteh for running fabrics tugether was made. Some of these were largely used for manufacturing purpusef, untal the introduction of the prasent sowi:g machine. But we may leave these sbortive attempts-few of which as far as it is known, ever got begond the patent-ofife of the varisus countries-and turn to the originals of the machines now in daily use.

It appears certain that the first man to construct and bing into actual use the machine was Barthelemy Chimunomer, a foor French tailor. Of this man not very much is knowa for certain. He was born in 1793, at Abreste, and was the con of a journcy nan tailor of Lyous. In his trade he probably found hard-work expensive and sluw, and was thereby anduced to try and contrive mechanical means for replacing it I_{1} the end he certainly produced a wooden machine which sewed the crutchet or chain-stitch, ind worked freely 'I his was in 1839, st St. Etienne, wher. 'Thimmonier was then living. Uf has previous life next to nothing is known, but from that time has history is pretty clear. At St. Etaenne the machine was seen by an entineer named Beaunier, avd he persuaded 'Fhmanomer to bring his machine to Paris. Spite of his mechanical in. genuity, the tailor seems to have been but a feeble-minded individual, and B aunier apparently took up the matter, and did for Thimmonier aud his machine far mor: than the latter could ever have done for himself. A firm was soun estabinhed, under the title of "Ferraud, Thim nonier, Germein, I'etit, et Cic.," sud a factory set up in the Rue de Sobres, and here, in 1841, eighty wooden machines were at work on a contract fur army clothing. At last the sewing machine was completed and at work. But in the amme year the machines were attacked and destroged br a mob of workpeople, and the inventor himself was obliged to leave the capital. For some years Thimmon:er does not aesm to have had much success whth has machine, but in 1847 ur 1848 be got M. Magnin, of Villelras.che, to tako it up. An Enghish patent was taken ont in Magons name in 1848 , and this was eventually sold to a dianchester company. Strangely enough, this machine attracted but little notice in this conntry. It was exhibited at the Loyal Instutu. tion, where it formed the subject of a lectiare, but very little practical good seems to have resulted. In the ame yar (iSi8) anothcr workshop was set up in Paris, but the same fate tref. II this attempt as the former. In the troubles of thit year the machines were again destroyed. In 1851 a machine was sent to the Great Exhibition, but it arrived toolate to be catalosued, and so almost entircly escaped notice. After his we do not hear of any further attempt to bring lorward the machne, and the unfortunate inventor died a pauper in 1857, at amplepus.*

His machine worked the chain-stitch with a houked needle the thread was below the fabrir, and the needle above it. The ncedle passed through the fabice, and drew a second loop through the faoric and the first loop, thus making a crotchet stitch on the top of the seam. The fibric had to bu moved by

- A yory full description of Thimmontor's aschino will be found in Nowton's London Journal for 185\%, vol. 39, p. 317, whero na antercsues s:ccount of the "Inbor saving" innchines in tho is 51 Exhbuthon is g1FOn.
hand. The machine is said to have attained a speed of 260 otitches a minu'e. It is noticeable that this principle has never been further improved on for sewing machines. All existing chain-stitch machines revemble mather the old one of Saint, in having a thread carried by a needle above, and a catch below for holding the loop until the needie descends again to pass a second loop through the first, and so secure it. The ingenious rotating hook of the Wilcox and Gibbs' machine is the latest and by far the most benutiful development of this idca. This, it may be mentioned in passing, was the invention of a Virginian farm•r, named Gibbs, who was led by curiosity to speculate on the subject, and hit upon the device.-
But we have not yet got to the real sewing machine of our own days. Thimmonier had practically brought out a machine, but his invention had not taken real hold upon the public, and had his efforts not been supplemented by those of a superior mechanical genius the sewing machine might yet be unknown.
It was in America, aiter all, that the machine, as we now know it, was first made. Elias How. is the man with whose name the origin of the sewinx machine must ever be connceted. The exact amount of credit due to him it is now impossible to decide, nor, indeed, can it ever be precisely known. There are two stories about his invention, one upheld by the present possessors of the Howe machine, and the wher by the rival owners of the "Singer." Naturally enough each side is prejudiced in favor of its own version, and we may safely conclude that the truth lies somewhere betre en tho two. Ali that the historian can do is to try and collect the facts $s o$ far as they are not disputed. The case for each side his been stated in two able and well-written articles-one in the Allantic Monthly for Yay 1867, and the other in the New York Gulaxy for August, in the same year. The furmer gave the Howe version, and the latter that maintained by their rivals.
Elias Howa, was a uative of Spencer, in Massachusetts, and was born in 1819. It is stated that the idea of a sewith machine was first suggested to him in 1839 by a conversation in a Boston instrument maker's slop. For five years he worked at his inveation, till at last, aftur trying and rejecting many plans, be hit on the donble thread, one above the fabric and the other below it, c.ue lower one to be carried through the one to be carried through the loop of the upper tbread by a vibrating shuttle. In 1845 a working model of the machine was fuished. In the following year an improved machine was tnished and patented. Still Howe was very poor, and it was only by the help of a friend, George Fisher, who joined in partnership with him, that eren this step was gained. Ho had no means of bringing his invention forward, and nobody seemed unclined to take it up. This induced him to bring his inven. tion over to England, where he sold it to Mr. Thomas, a staynaker in Cheapside. An English patent was taken out in Thomas' name, in 1846, but it was found that considerablo alterations were required before the machine coald be considered a practical success. One of the principal of these was the feed motion, invented by Johnstone.
Snch is a brief outling of the history of Howe's invention. Now comes the great question as to the originality of that inrention. It seems proved beyond any reasonable doubt that, in 1834, an inventor named Walter Hunt had constructed a machne oa precisely the same principles as Howe's There was a curved needle with an cyein the point and a shuttle; in frct. the machines, were in their main points identical, but whether Hunt's was a practical working machine cannot now be said. Hunt sold his machine, and with it his patent-rights, to one Gorge Arrowsmilh, who. howeser, neglected to patent it, end so nolhing came of it - nor did Hunt himself attempt to derelope his invention He was one of those eccentric geniuses who are alwass strikiug on new idcas and never following them up. His sewing machine was only one of a host of ingenious $b t$ uadeve'oped inventions, so that there is nolhing stranse in the fact that be should thus have forgotion what might have heen a source of wealth and credit. When Howe was first bringiog forward his invention, an account of this shandoned machine came into the hands of Isaac M. Siuger. He looked sto the matter, got hold of one of the original machines possessed by Arrowsmith, and caused Hunt to recon-
- Full descrintinn of this and otber machines will bo found in a papor
resd beforo the Sociots of Arts, in 18א3. by Mr. E. M. Alexandor, - Jouraal." vol. xi.. D. 345
struct one on the same model. The natural issue of there being thus two rivals in the theld was that there was considerable litigation, into the detnils of which there is no need to enter bere. The end of it was that Singer agreed to pay a royalty to Howe, and thus the dispute ended.

That llowe had ever hand of liant's man hine there is no evidenco whatever to show, and it may be considered certain that the similarity of th. two machines was purely accidental indeed, the original Hunt machine is said to be in some respects superior to Howe's first apparatus, and this alone dis. proves any allcgation of plagiaimin. Looking at the matter with the fairest impartiality, it may be and that Howe was not the first man to conceiv. of a lockstich machine, but lie certainly wan tise first to bring it realy before the yublic After all, it i, not the man who first developes an idea, but he who first turns an idea into practical use and benefit that is the real benefactor of his race. This Howe dod, and in that sense he must be held the real father of the sensing machuse.
Une other curious fart remains, which it may be worth while to mention, and that is, that in 1844 a machine which was really a sewing machine, was made and patentud in lingland.

In December, 1844, Mea ham (of whom the former

- Fisher and Ribuons, of Nuttingss the inventor), took out a patent esigns on lace or net rud other for ". working ornamental esigas on
fabries by machinery, in such manner that two thrends are caused to loop together, one thread passing throbgh the fabric a id the other looping therewith on the surface, without passung through the fabric."

It is not necessary to describe the machinery by which th a was done. Suthee it to say there were two needle, one on each side of the fabric, one curfed and the otherstraight. After gav ing a descriptio. of this machinery, the specification of the patent goes on to describe other machinery for "sewiug thread, yarn, gimp, cord, or fabrics in pattern on the surface of fab ics " This machinery is "similar to the priceding, except that the upper needleand loop guide are removed, and instead thereof a shuttle is used, c rrying a thread, gimp or cord A recipuocsting motion is imparte. to tiee shuttl", so that at ear h ascent of the needle it will pass between the thread and the bent part of the needle, leaving its own thread, which s sewid or fastened down by the thread of the needle, on the later deser nding. When the needle rgain riscs, the shuttle will pa-s between the thread and necdle in the oppo ite direction, lemving its own thread as before, and so on until the pattern i completed. If desired, a second fabric may be placed on the fabric tole ormamented, and when sewed together, the former may be cut away between the figures or patteras."

If this was not a true sewing machine, what is? After Howe's invention became known in England, Fisher altered his machine, and made a sewing macbine of it, while cven as it was, it was sufficient to invalidate Howe's (or 'Thomas's) patent, parts of which were accordingly disclaimed.

We hare now reachel the time when the attenti n of mechanicians begen to be turned to sewing machanes, and numerous inventions were in consequence brought forward. One of these is noticed in the fllowing, which rppeared in the "Jourasol" of July lst, 1852:-"Sewing liy machinery.-A machine of American invention, has bern introduced into thas country by Mr Darlin ; of Glasgow (at whose manufactory numerous example: of it are now in operation), wha,h cars: 8 the mechanical principal into a fresh department of human labor, namely, that of common hand-seving. The machine is extremely simple in ronstruction. Its framework is of castmetal, and it ocrupies litile more space than two cabic feet. The right hand of the worker turas a smal) whel, which puts in operation tho needles-ono an u_{i} right needle, the other a sort of ermis ircular one-and a strong tabular surface, at the left hand extremity of which tbese tro needles work-the upright above aod the circular under-the cloth is Jasd wath the left hand, and propelled between the peedles as the machino proceeds with its stitching It is said that the machinery is not liable to become deranged, and that any breakage of the thread can be rectified with very little loss of time. The macbine can be driven by foot, after the manner of a turning lathe, and in this way the ate of work by hand, whach 18 s00 stitches per minute, would be doubled." Many sut happeared about the same time, but as the object of this artich. is warely to sketch the early history of this remarkable mvebtion, a period bas been reached at which it may fairly concludeSociety of Arts Journal.

CUPOLA FURNACEK.

For some time Krigars cupols furnoce, with a scparate receiver for the molten metal, has been attracting much attention on the Continent, and the results obtained from it aro stated to be exceedingly favourable. This being so, many of cur resders will regard with some interest the suljomed ullustration showing a cupola farnace on a sumilar principle, Fhich was orected as long ago as 1858-59, at the Broadway Foundry, 8t. Louis, U.S. This furnace was constructed ander tho directions of Mr. W. B. Cogevell - now of the Franklio Ironworks, Oneide Co., U.S, - and it was provided with 8 largo mind-box built inside the casing, as shomn, this armngemont being adopted for the purpose of forming a bosh, and reducing tho bed. Tho toydies were 6 in. square, and rere

Inserted tangentially. The separate reservoir for the iron and slag was an attachment patented in the United States, by a Mr. McFarland. As shown in our sketch, for which we are indebted to Engizcering, tho reservoir was made tapering.

When melting was finished the hottom of the cupola was dropped; bat the top only of the reservoir was taken off, this top being held by sultable clamps. The bottem of the reserroir was not dropped until the noxt morning, when the cinder would break off with a slight touch. One great advantage of the resorvoir was that it formed a place where iron could bo kept hot much longer than in a ladle, while in case of any uccident to a mould, or other source of delay, the furnuce could be kept melting. The iron also was found to be cleaner than when tapped from the furnace direct. We are informed that the oupola, of which we have been speaking, worked admirably, and with great economy, the fuel used belng gas coke.

A DEVICE FOR DEMONBTRATING THE LAWS OF THE CENTRAL FORCES.

(From the Joumal of Franklin Institute.)

by Prof. E. A. Dolbsar.

The want of definiteness in the conditions under which experiments are usually made wich the common turning-tab!e, especially when applied to the demonstration of the lawe of the central : iv. ese, has led me to devise the following modif. cation of the apparatus for this work. The performance is good, and I therefora submit a description of it, for the benefit of those who tesch mechanics, and especially for those who may study it in any of the various physical laboratories.

The usual form of apparatus for this work, as it is constructed by instrument makers, is too well known to be de. scribed here. The abbjoined fignre will sumifiently well indicato the modification, so that eny one possessing the common arrangement for raising a weight by the centrifugal force of a ball running upon a wire, can sdapt his instrument to it. The framework a, which is screwed to the shaft, has the upright posts δ, δ, and the frame c, having a wire stretcied upon it for the hill e, to move upon. Instead of the usual weights to be raised I substitute a common spiral spring balance d, which hangs from the top bar and is connected to the ball by a stout string tied to its hook, passing round the small pulley at the bottom and thence to the hook upon the ball.

It is evident that when the ball e, moves towards the eod of the wire the index of the scale will indicate the number of pounds pall. When the machine revolves the ball ir druea outward, and of course palls opon the ecale, which in tura directly points with its index the number of poundr, or, in other words, the centrifugel force. It may be thought tat when the scale itsclf is turning fast the index could wit bo seen; but, if one stands in such a position that the light from a window or a lamp will be reflected from its face to him, the index and figures can be plainls seen, no matt, r bow fast it gocs. The radius of the circled scribed by the halle, can bo found by adding to its diftance from tne cemte of revolotion, when at rest, tho messured distanc, from ziro on the scale to the number of pounds indicated. Then, if the weight of the ball itself is known, all the data for the demon. strstion are had at once. This form will easily permit of graphical construction for the results, which is quite ace edvantage for s learner.

THE FIRE-LESS LOCOMOTIVE.

The dally press has already givon our readers some idea of the fre-less locomotives which aro rapidly cuming into use on the tramways in the Dnited Statcs. The following descrip tion of an experiment with this systom is from the columis of the American Artisan, to which journal we are also indevted for the illustration below.

Lamm's system, it is well-known, consists in chargiug a receptacle of sufficient strength with water at a high tempersture and pressure, her.ted at stationary boilers at the necessary intervals along the route, the heat stored up in water thus obtained sufficing for power to the next station. The stationary boiler in this case is situated at the junction of the Canarsie Railromd and Atlantic Avenue, Fant New Yok. It is a Earrison boiler, and was fired up to a pressure of 175 lbs. The receptacle of the machine was connected at the botwon with the boiler by a two-inch pipe, and the gauge on the receptacle marked about the same pressure as that on the boiler. The recopt tele was already charged when those invited to witness the experiment arrived, so that the charging process was not exhibited. It was stated, however, that the receptacle could be connected with the boiler, and, starting at forty-ive pounds pressure, be beated up to 150 pounds in tite minutes.

The receptacie is a cylinder ton feet long by forty-six inches in diameter, and should, consequently, contain about 115 cubic fect of water, weighing about 7,200 pounds. It was, homever, filled only to the uppergauge, and the water actually caried may be fairly estimated at 6,000 puunds. Stanting with 170 pounds of steam the distance to Canarsie, thrce and a half miles, was made in thirteen minutes, most of the way a down grade, somo portions 80 much or as to require no work from the engine. At the end of the trip the gauge marked 108, showing that sixty-two pounds had been consumed. The engine drew one of the Canarsie Mailroad open cars containing, Fe should judge, eighty jersons. The return trip, up grade, was made in serenteen minutes, and the pressure remaining in the regervoir was forty-five pounds. The amount of beat consumed, therefore, in the -ourd trip of seven mileo was 170 $-45-6,000=750,000$ heat units, which is equiralent (966 hest units evaporate one pound watur, from boiling point) - to the cvaporation 159000 , or about 775 gounds of water,
or 12.4 cuhic: feet. The evaporation of a cubic foct of water per hour is the usual estimate per horse-power, and it is a very liberal one, whence it will be seen that the machine at starting had available heat for 124 horse-power for at least one hour, or about twenty-five H. P. for the time run.

Taking the welght of the machine at 6,000 pounde, the water at 6,000 puiands, the car at 6,000 pounds, and the loads at 10,000 pounds, twenty-one horse-power should, if properly applied, ba more than sufticient to take the whole up a grate of sixty foet to the mile ai the rate of fifteen miles per hour. The road over which the trial was had buing, as has been stated, a down grade one way, it is easy to ve that the power was largely thrown away. Witha machine properly desised and constructed the power in the reservorr at the beginning of the trial should take the machine and load at leart eight miles at the rate of fifteen miles per hour up a prade of sixty feet to the mile, or should take it on a level twenty-five miles at the same rate. In the above computation no allowance has been made for rudiatiom, for the reason that if the reservoir, pipe, and cylinders are propenly protected the radiation should be a very small it m for the time of the experiment. The reservoir in this machine is coated first with asbestor, and over thia with hair, the whole incased in sheet-iron. It was stated that the tadiation had buen tested by charging the reservoir ap to eighty pounds pressure, and allowing it to stand for sixtcen hours, when the pressure was found to have fallen to forty pounds, or tro and a half pounds per hour, at which rate the radiationduring the oxperiment whould have been about one per cent.

It is unneressary to call the attention of any practical mechanical engineer to the difference between the conditions under which a machine works in the lamm system und the conditions if an ordinary locomotive. The latter makes its own power as it goes along, works under an approximately cqual pressure, and must exhaust its steam at a sufficiently high pressure to make the necesrary draft. The former has its power for the trip stored up in the reservoir to start with, is required to work at very unequal pressures, and nodraft is needed. For economy, no less than to prevent the pufting eo abjectinnable in public strecta, the steam should be expanded clear down to atmospheric pressure, which carnot be done where a draft is needed.

Mechanics Magazine.

MOXTREAL, NOVFMBFR, 1873.

Im,dystitarions :

Sir li. Alroy's antomatou transit uf Venus.. 227 Lifhthouse at sipectacle Reef Ifghthousoat Clevelamd Uht! 281
Vertical Ion frame 234
Cupola furmace............. 2ss
Device for demonstrat-
inghavo of the central
furces......................
Fire less locomotive...... 239
"Untvenal" elevator 242
Tuols of accumey......... © 3 :3
New improvament in gas mannfacture 246
In-trument making.. .. 247
Machines for pattern
making 250
Machines for pattern
making 252
propured Centennal
Tower at Phliadelphia 255
Proposed Centonidal
Tower at Philidelghia 2.0
Contrents:
Sir G. Arrey's automaton transt of Venus. 228
rake supertor iron mines 2
American lighthmmes. 220
baller bursther exper.
iments.... 2
Vertical log frame 231
Lake Supertor ore...... 23.5
Farly husory of the
sewing machine 230
('ujola furmaces
238
Device for demonstratlug the laws of the central foress
The tirelens locomotive.... 239 Fl'tiation of the water supply, f preventive of waste
Rallroad: In tho Pro-
vince of Quebec............
Colonial atds to Mritish
prospertty
Thesnowdon Ironmine..
A " untremal" elovitor.... 242
Tools of :ucursey.............. 243
Connections between steam nhes 24!
Now Improvement in gas manufacture.........
On invtrument making..... 247
Glas spinning
Whitby jet and its ma-
mafncture.................... 249
Mabhines for pattern making 250
The Ifoosac tunnel..........
Dom it conews... \qquad 251
252
25
Sclentifc news................
On the application of solar heat as a motor force 254 Proposed' Tower at Phladelphia
He;iochromic Pictures... 25.5
An ephode in the carly Enginh glass trade The million dollat telescope.
Hallway matten
How to make cheap frames......... 25 Experiments with mosquitoes.....................
quiloes.

The filitration of the water scpply, a pre. VENTIVE OF WASTE.

Dr. Baker Edwards has reported to the Cbairman of the Water Committee of this city, that, in his opinion, the amount of water wasted in consequence of imperfect fittinge, due to their abrasion by sandy and fintp particles, and vegetable spongy spicules, is so great, that the filtration of the water, through beds of gravel and sand, would prove a large saving of water to the city, and have all the practical benefit of an increased water supply; at the same time effecting a much required sanitary improvement. This might bo effected, be states, at a very moderate outlay as compared with an enlargement of the water works and an additional supply. In Great Britain it has been found that water may be saved, by checking waste, to the extent of more than one-balf the col.sumption per head of the population, and at a cost of one farthing per 1000 gallons saved, whilst the cost of an additional supply is estimated at not less than $5 d$ to 6 d per 1000 gallons.
s most valuable series of tests for leakage have been applied recently in Liverpool, England, which prove that an extraordinary waste of water has taken place there doring the night or early morning when housoliolds are supposed to be aslecp. The waste between the hours of 1 am. to 4 am ., equalled in some districts 30 gallons per hrad per day and the total consumption in these districto amounted to 58 gallons per day. The consumption for the total ropulation amounted to 30 gallons per day, which was reduced by a system of con-
stant supply and district meters, after the repair of aefective fittings, to an average of 12 gallons per tead per day! which proves to be an abundant supply.

In view of the steadily increasing population of large cities, and tho decreasing supply of water, observable all over Great Britain, the economy and proper distibution of the water supply is a matter of paramount and urgent importance in every city, and as "necessity is the mother invention," we are glad to find in Mr. Deacon's Wasto Water Meter, a complete solution of the mechanical difficulties. In our next issue ye shall give illustrations on this invention and an abstract of a valuable paper on this important subject by Mr. Deacon, C.E , Borough Eigineer of Liverpool, England, and we commend a scheme which has been so eminently suc. cessful in Liverpool to the consideration of our municipal authorities, and to the Board of Health.

RAILROADS IN, THE PROVINCE OF QUEBEC.

Perhaps the most generally satisfactory part of the recent budget at Quebec was that part relating to the granting of aid to railroads. There is no more certain sign of the civilized condition of a country than its roads. A high state of civilization is always accompanied by the best roads which the mechanical genius of the people can construct. This Province has generally been regarded as somewhat behind the sister province of Ontario, but leading journals there are now remarking with pleasure the rapid strides now being made in this direction in Quebec. The efforts of the peoplo aided to a certain extent by Government grants have already achieved certain results, but the progress of these undertakings is being outstripped by the increasing desire for greater facilities of intercommunication. That this is the case is proved by the number of projects at present sanctioned by the Legislature, and by the fact that the provisional boands consist almost entirely of leading men in the localities through which the lines are to run, these localities having for the most part pledged themselves to contribute very largely towards the construction of the works. These railroads have hitherto been sided by grants of land, but during the last session the Government introduced a series of resolutions, and subsequently a Bill founded apon them, changing the nature of the aid to begiven to railways, which, instead of receiving large land grants, will be aided with a subsidy of $\$ 2,500$ per mile of continuous road completed. The following lines are named in the resolutions :-Quebee and Lake St. John ; Levis and Kennebec ; South Eastern ; Philipsburg, Farnham and Yamaska; Missisquol and Black River Valley; Quebec Erontier; Quebec and New Brunswick; St. Francis and Megantic; Bay of Chaleurs; Sherbrooke ; Eastern Townships and Kennebec ; Waterloo and Magog ; and Montreal Northern Colonization Railway. Under the Act, the last named Com. pany, for building a railway from Montreal to Aylmer, will be uided with a sum of $\$ 751,360$, and t^{2} e North Shore Company, similarly, to the extent of $\$ 1,248,634$.

At a meeting held recently in London, England, under the auspices of the Royal Colonial Institnto, Mr. Peter Lund simmonds read a paper on "Colonial Aids to British Prosperity." Mr. Simmonds, is an suthority on colonial matters and has written a great deal on the subject. Wo have space only for part of his lecture for which we are indebted to an able report in the Toronto Qlobe. The extract will be ound below.

EXTRACT FROM MR. SIMMONDS' I,ECTURE ON "COLONIAL AIDS TU BRITISH PRCSPERITY."

The Canadian Dominion has coal fields of immense extent in the Provinces on both its coasts, and it is believed that the largest conl deposit of the world lies under the surface of its rich and immense tracts of prairie lands east of the looky Mountains. The sales of coal in British Columbia from the local mines have been upwards of 330,000 tens in the 10 years en ing with 1870. The Governor of Newforadland, in his last report, statces that coal exists over a large area ou the Western side of the Island. And this must be reckoned as an exceedingly valunble discovery. In 1868, Profussor Bell, of Canada, visited the neighbourhood of sit. George's Bay, and found a tive workable seam of coal. Mr. Nurray, the island geologist, calculates that the area of this solitary seam, even supposin ! there were no others to be found, is 38 square miles, and allowing a thickness of three fect, there would be nearly 55 millions of chaldrons of coal. It is not to be supposed that the whole of this is accessible, but there can be no doubt that most of it is within working depth. The proximity of this splendid coal-field to Canada, and the facilities it presents for cualing passing stcamers, need not be hinted at. Governor Hill adds that during the past few years, proofs as to the exsstence of valuable mineral deposits have multiplicd so rapidIf, that there are not unreasonable grounds upon which to base an affirmation that the Island is destinated to become one of the world's great mining regions. We should not, therefore, depreciate or slight any one of our possessions. In the revolutious of commerce, of settlement or exploration, we bnow not of what future importance they may become. An article of necessity for which we are largely dependent on our colonies is timber. Although iron has come so extensively into use as a building material, it has not yet superseded wood; indeed, the demand for timber is more extensive than ever, arising from the enormons building operations carried on throughout the country. In Canada, according to a report of the Hon. James Skead, the average quantity of timber got out gearly is nearly 87 millions of cubic feet. The timber trade employe in the forest above 15,000 men, and in the partial manufacture of timber over 2,000 miles and at least 10,000 men. It further employs at Quebec about 1,200 vessels of an aggregate freight capacity of 700,000 tons, besides 500,000 of lake and canal tonnage. 17,000 seamen are engaged in carrying its products from Quebec to Surope, and 8,000 usen in their transportation on inland waters. In British Columbia and Vancouver Island, the Douglas pine, with its straight, uniform trunk, often 200 feat high, and exceedingly tough and pliable, furnishes the finest masts and spars for the laryest class of vessels. Of animal food products our supplies from the Colonies are increasing gear by gear. From British America we receive cured pork valued at $£ 155,000,30,367 \mathrm{cwt}$. of bacon and $4,559 \mathrm{cwt}$. of hams from Canada, $5,200 \mathrm{cwt}$. of salted beef from Canada, and $55,500 \mathrm{cwt}$. of buiter; of cheese 111,420 cot. The Canadian Dominion has fislucries of enormous exteut, the richest in the continent, both on ite Atlantic and Pacific coasts-the produce of the River and Gulf of St Lavrence fishery, valued officially at $£ 250,000$, that of Nova Scotia at $£^{-150,900}$, New Brunswick at $£ 150,000$, and Newfoundland at $£ 1,5 \cdot 00,000$. The river and lake fisherses which supply local demands ouly are not adverted to, but preserved salmon, lobsters, turtles, a large quantity of isinglass, and the produce of the whale fisheries (still carried on to a small extent on the cossts of some of our Colonien) should not be ove. looked. The languid state of some of the Colonies would be invigorated by a fresh infusion of the pareat blood, and strengthened by her wealth, railroads, canals, telegraphs, and other evidences of prosperity would be even more extended, and the people of Great Britain learn what a precious inheritance they have slighted and almost thrown nwny. The apparent apathy of the Mother rountry to her ('olonies has arisen in great measure from he' it of knowledge of their value. The generous impulses of the British people are at variance with such indifference. And let it once bu known how sadly they have been mistaken, what a noble estate theg hase yet in possession, what strengtb, if properly managed, it would add to the parent arm, and what vitality to the whole systim; let these things be made known, and the national heart will throb with affectoon and ycarn for its distant children. Nearly all our Coionies and possessions are contributing largely to the wealth and comfort of the dother Country, as well as their own advance-
meft. All appear to be fourishing, all highly prosperous and progressing, all prosecutiog with untiring ecal their endeavour to draw forth the latent energies of the soll. The Chardian Dominion, with its wheat, its wool, and its timber; the Lower Provinces, with their ship-building, tisherles, and ulnerals were never so prusporous as now. Let us not fold our hands under the idle persuasion that wo have Colonies enough, that it is mere labour in vain to scatter the reod of futare nations over tho earth; that it ia but trouble and exponse to govern them. If there is any ono thinc on which tho maintenanco of that perilous greatness to which we have attained depends mare than all the rest it is colonization, the opening of new markets, the creation of now customers.

TIE SNOWDON IRON MINE.

We understand that the propriutors of the Snowdon Iron Mine, enconraged by the very favourables reports of the scientific men who have investigated the prospects of the mine and analysed tho ore, have decided to push the eriterprize vigorously, and that arrangements are now being made to form a Joint Stock Company with a liow to raising sufficient capital to fully develop the property. It is proposed, in the first instance, to build a cold blast furnace of sufficient capacity to smelt ten tons of iron \mid er day, and to erect all the aeces sary works for carrying on a smelting operation to that extent. These workn, and tho furnace, would cont about thirty thousand dollars. It is, of course, intended to use charcoal for fuel, and this can, no doubt, be obtained in the required quantities from the settlers in the vicinity. The total production of the furaace may be estimated at between 3,000 and 4,000 tons of pig iron per annum, and it is calculated that it could be delivered on a lake port on Ontario for $\$ 20$ per ton, the market value at present prices being about \$35. The transport of irom is one of the difficulties, but it is not as wo understand the matter, proposed to take any action in this direction at present. The Port Perry Railway Company, wo are informed, have undertaken to carry either iron or ore from Bobcaygeon to Whitby for \$l per won, and tho Nipis6ing IRailway Company have intimated that they could carry it from tho mine to 'Coronto for $\$ 2$ per ton upon their line being extended from Coboconk to Snowdon. Until other means of transport are availablo the produce of the furance will be conveyed by teams either to Coboconk or Bobcaygeon, but it is obvious that immediately the fact is established that the furnace can be worked at a remuuerative profit, a railway to the mine will soon be constructed.

A comparison of the ore with that from other places is exceedingly gratifying, showing that the ore is probably the richest and the most free from deleterious substances of any yet discovered in Canada. The advantages of the locality are also great, the situation of the mine being such that the ore can be ran on trucks to the mouth of the furnace without any elevating power being required.

It is noticeable that the ores of Marquette, on Lake Superior though not so good as that from the Campbell mine, resemble it in some particulars, and those ores are conveyed in large quantities to the smelting establishments on Lako Ontario and Erie, a distance of 1,500 miles, and even then give a fair profit. Considerable quantities of iron ore are smelted at Marquette by charcoal, and wond in tho locality is compar. atively scarce, one acre in Snowdon yiolding as much as six acres at Marquette.

It is probsble that there will be a large export of ore to the States from the Snowdon mine, quite iudependent of what may be smelted on the spot, the ore being valuable to mix with the poorer American ores, and improving the quality of the iron produced.

The Joint Stock Company that it is proposed to form will probally be brought ont with a capital of $\$ 200,900$, of which $\$ 110,000$ rill be put on the market in shares. Calls will bo made to a sumicient extent to build the necessary furnaces and works, and to give the capital required to carry on the business. On the operations proving successful, their extent will be increased to such a point as may bedecmed desirable. We hear that a directory is now being formed, and we hope and belicve that the shares will be taken up, in a liberal spirit by all those who are really anxious to see the mineral wealth of Canada doveloped and the country itself prozress in its prosperity.-Bobcaygeen Independent.

A "UNIVEHBAZ" ELEVATOR.

One of the machines which attracted considerablo attontion at the shuw of the Smithfield Club, was the "Universal" adjustable grain clevator cxbibited by Messrs. J. N. Sears and Co. The elovator itsulf is of the common form ; the pecallar advantages of Mesbrs. Sears arrangement are in tho fittings, Fhich enable the clevator to be adjusted to the varying positions of the substance to be raisod. The principle of this contrivance will bo easily understood from our illustrations. Fig. I ahows the elevator alfired to the wall of a waterside warehouse, as it would bt employed in raising gran frum the hold of a ressel. D is the "Jacoi's ladder," shown partly in section, G being a telescopic tube, forming the shoot through which the grain 16 emptied into the warehouse. The remainder of the figure gives the mechanical appliances for raising and lowering the elevator, and moving it from side to side, 50 an to reach vaious parts of the hold. The central coiumn, $A_{\text {, }}$ is the main support of the apparatus, being itself held in position by tivo strong cast-irua brackets. It is turned jerfectly cylindrical, so that the carriage, B, may slide anu revolve accurately upou it. An enlarged view of this carringe, with ite immediaio appendages, is given in fig. 2. The carriage Dears the driving wheels of the clevator, and is furnished with two gudgeons, which support the jib, C, at the end of which the truntr, D , is aftixed. This jib, C, can be varied in length or form, +0 as to suit the premises to which it may be fitted, and the colmmn, A, and lift, D, may be similarly modified. The shaft, E, working parallel to the central columa, A, communicates the driving power. In our illugtration bevel wheels, at its lower ead, supply means of motion, but manifestly these wheels can bs fitted on the upper end or in any other position that may be advisable. The train of wheels shown in fig. 2 is, as will be seen, sufficiant to cummanicate auy required motion to the elevator. The carriage is raised and lowered upon the central shaft by means of chains and pulleys, and the balance-weight, F . A sumilar chain and balance-weight is attached to the end of the jib, C. Each chain has a safety linli as a rrotection against sudden strains.

The machine can thine reach to any part of a vessol's bold, and is capable of adaptation to any motion of the vessel from which grain or other material is being discharged, without, as is claimed, damnging either the elevator or the craft, interruption to the work, or any necessity for shifting the vessel or trimoning the grain in the hold.

It is also claimed on hehalf of this machino that it is ensily applicable to pumping and dredging. It may be worked in rarions wass by steam, water, ol compressed air; and, as necessity may dir tate, in engitue may be fixed upon the jibs, on the elevatur, or elsewhere Its use seepos well ealculated to promote economy and prevent loss of time in unlading vessels or lighters, by reducing the expense involved in manual labour. hire, wear and tear of sacks and demurtage. Though tho elevator is, in the form illuntrated, rpecially adapted for waternide use, it is equalls capable of employment elsowhere. -Iron.

TOOLS OF ACCURACY.

By Prof. J. E. Swber, Master Mechanic, Sibley College of Mechanic Arts, Cornell University.

(From the dmerican Artisan.)

It is a matter of no small surprise to one willing to look xupa both sides of a fuestion, to note the many conveniont tools in common use in this country, yet unused and mostly unknown in Englam; white at the sume time there are quite as many English productions-nouc the Jess masitoriouswhich we, cute as we thmk ourselver, are prone to ridicule rather than adopt, or investicated their merits even.

Nearly thirty years ago, Whitworth, the lingish engineer, devised the method of making, made, and introduced, absolutels true plane surfaces-to-day we are making, trying to introduce, and wow the use of the same thing, and yet so little is known of what the word "flat" means, and its value in the construction of tools and machinery, that it is quite safo to assume there is not a ne in nfly of even the good mechanics of tho country, that has even seen a llist surface plate, or haro any conceptiot of the freclom with which one can bo mado to glide upon another.

I'herou Skeel, in his first artjele on "The proportions of crank-pins" -as published in the Antisan of Oct. 11, 1873makes the statement that "the force required to move ono mass of metal upon another, varies from ono-twentieth, whero the surfaces are polisined and oiled, to one-third, where they sre also polished but only wet with water, of the force with which they are pressed together." This statement I do not question, but would add that I find by experiment, a perfectly

flat plate when well oiled will move upon another flat plate by one-fortioth of its own weight, when the weight is not greater than a few ounces to the square inch of bearing surface, and will continue to move if set in motion with as littlo as one-fifty-fourth of its own weight, when loaded to a few pounds to the square inch. With water as a lubricator on two new plates which had never been viled, the light load did not reqnire one-half the power to move it as when oil is used, but with the heavy weight the resistance was about equal ; t.asse to be sure, were very light loads for the surfaces in contact, but it is only by exaggerated examples that we can make apparentsuch facts as this-truth in a wearing atfface is of far more consequence than polish-or to apply the fact to practice. If the guides of an engino are to be finished, if a lathe or planer ways are to be worked up, or, in fact, if any machive slides are to be fitted, it is better for the workman to spend his timelet it be much or little-in " making the crooked straight," rather than in any amount of draw filing or polish. Better, not only because of the infinitely better work the machine, if it be a machine, will itself turn out, but because the machine will ran with less friction (which means a saving of power and repairs); as a pretty rough slide, if it coly bo straight, runs easier than a draw filled one, which is alwrys crooked, will, if ever so highly polished.
'Srae ways and slide's can only be made by working them ng to the standards or by machines which were themselves made by standards; aud cyen in the latter case the sources of error, that is, the strain in the castings, the spriag cither on or efter it has loft the machine, the wear in the machines tiucmselves, etc., are so numerous, that it is not safo to assume any machine work to be true, till tonted by that which can itself bo proven.

The form of Surface Plate we are making, shown in Fig. 1, though somowhat different in design, is the samo in proportion aud pinciple as th. Whitworth plates. A description of the wholu process of working them up on frst principles, Is rather too long to iasert here, but some points which are applicable to work of other kinds may be valuable.

First, it will be seen that the plate is so formed as to rest on thres points when placed on the bench. Without that precaution, perfect ones cannot well be made, because the weight of the plate itself is enough to spring it ; and with four points of support, it might reat on alternate corners, and stand winding in opposite directions at different times; with tho three points, that difficulty is overcome. The back is ribbed, 80 as to best resist springing; and the castings are goud only when free from strain, and this is best secured by that mixture of iron which shrinks the least, or not at all, in cwoling. 'To thoroughly well scale and clean the castings, is not all that is necessary, but they must be painted then, or at least before commencing the finishing process, as and is to good thing to have scattering on a scraped suiface; and so far as that goes, all machinery castinga should be painted before they aro worked, as they are by some firms, for the same reason. In securing the plates to the planer-bed, what seems to ane to be the true way to secure all work lisble to be sprung, is adopted. Holes are drilled in the ribs, exactly over the centue of each foot, and the plate held by the reduced ends of the binding straps entering these holes. After the three feet are planed off, the plate is reversed, and with pieces of paper under the fect, the plate is secured by the three straps only. However firm the straps may be tightened down, no strain is put upon the castiog, and ifit has a tendency to spring, by the removal of the scale from the face, it is free to do so without loosening the bolts. In finishing up we ase the scraper wholly, for that which would be removed by using a file is readily removed with a broad ended scraper, with less dauger of scratches than from a file, in the hands of workmen of limited experience. The plates are made in triplets, of course, or at least, in the first instance-the guide being to make the plate A fit B and C in all positions-which might be done and yet A be concavo or convex, but then B aud (' would both be either convex or concave, and the two would not coincide; wheu either two of the three fit throughout their entire surfaces, in all positions, then all must be perfect plancs.

While 1 believe the English workmen use a hook scraper, sharpened quite rounding on its cutting edge-and cutting by the push of the shoke-we use the square ended scraper, very neally straight on the cut While there is no question, that werk done by the rounded tool has the finest appearance, I question if the same amount of work done with the flat scraper will not produce a more nearly flat surface, than if done by the rounded tool ; or, in other words, if two otherwise equal plates were worn together, whether the one made with the flat tool would not come to a dead surface or the scraper marks be obliterated, the sooner of the two. Whatever. Id of scraper be $\mu s e d$ it may be as acute, or even more acute, than a right augle at the -dumencement of the work, but must be considerably more oltuse than a right angle, to finish with. We find a black diamond scraper to a certain degree serviceable, but not smooth tnough for finishing. While we have the tools on our benches, as tools, rather than put away like toys, a certain degree of care is necessary; for a piece of iron bends as easy as a piece of wood, only that it does not go quite so far. Tapping the holes for the handles is liable to bend the plates, and even screwing the handies in when a tight fit, will do the same; so we find it necessary, as they are removable, to make them a loose fit.

Fig 2 shows the style of straight edge we have adopted; varying in size from one foot six inches for "Jones kit boxes," to four os five feet in length. They are not only straight and out of cross wind, but parallel also; besides the smaller sizes have their edges at right angles to the flat side, so that when placed upon the surface plate the edges are vertical. This makes them, for practical use, infinitely better than the ordinary steel ones, for besides greater perfection in straightness and parallelism, they will stand on the wide face, and red paint can be used to indicate the imperfections in a piece of work whether straight or square.
Fig 3 shows different lengths of angle plates, perfectly square at angle and ends, so that when placed on a surface - plate, external angles of work may be tested.

Fig. 4 shows a new tool specially designed for a machine.
shop square, made of cast-iron with wide faces, thoroughly square. While, as a rule, I should not choose a compound tool for any ordinary purposi, unless, perhaps, we except a claw hammar, in extraordinary tools, or those only used octa. sionally, it will do to make a tool answera secondary purpise, When its construction or use does not involve complication. Belicving tbis to be an admissible case, two of the braces are put in the squarc, at the convenient angles of sixty degrees and forty-five degre"s, and the thread brace at such an nugle, that while the short side of the triangle represents the diameter of a circle, the long arm representsits circumference, with which the citcumference of circles may be determind very readily.

The stops, A A, which are narrower and longer than the width of the face, can be set on either augle, so as to serve the same purpose as the projecting stock of a try square, or they may be turned out of the way, leaving the sille of the square fat. The heads of the bolt enter recesses in the casting, so they may be changed by simply slacking the screw nuts.

With the tools I have been describing at hand, which embrace three out of five of the hardest words to be found in the machinist's dictionary-flat, straight, and square, the oth r two being round and size-a workman will find it as easv to du good straight work as poor, or at least to know whether that which pretends to be straight, is really so, and to app.y what time he bestows on a piece of work, to reducing the projections.

A NEW IMPROVEMENT IN GAS MANUFACTURE

The recent increase in the price of fuel and varions other causes seem to have turned the attention of inventors to the subject of reducing the expense of making gas. In Englaud Wright's Air Gas and other inventions are attrecting much attention and our American cousins are also working in the same direction. We illustrate from the Sceentefic American herewith apparatus which the Citi\%ens' Gas Light Company, of Brooklyn, N. Y., have recently introduced, in their work4, for the manufacture of hydrogen, by tho decompontion of steam under the Gwynne-Harris or American hydrocarbon process, and also for the preparation of naphtha gas, both of which products are mingled with that obtaned in the ordinary way from coal. As a result, we are told that as against 28 benches or 140 retorts in $u 88$ in October, 1872, at present but 14 benches are employed, two of which generate hydrogen, two naphtha gas, and the restcoal gas, supplying the full amount required, and get working only from it to 15 hours per day. 'The pro ess, briefly stated, is three-fold first, coal which produces the ordinary quantity of gas, but of inferior quality, is carbonized in separate retorts; second, hydrogen, generated in the manner about to described, is mingled with the coal gas, giving 1 ' high incondescent porer, and, nydrocarbon vapours which otherwise would be lost third rad last, naphtha gas, or any of the petroleum products, which may be made of almest any richuess that it is possible to burn, is led into this mixture, in sufficient proportion to produce the requisite degree of illumineting power. In other words, coal gives coke for fuel to run the works, and com. mon gas; hydrogen takes up the carbon vapours, and adds heat to the flame, thus creating moro perfect combustion and naphtha increases the lighting power to any desired standard.

Using coal alone, we are told that 9,026 feet of gas per ton was about the gield with the full complement of benches Now, 13,000 feet of coal gas and hydrogen mixed is produced, or an average of about 6 feet per pound of coal, which may be increased by increasing the hydrogen.

As the hydrogen and naphtha processes are quite distinct, we shall refer to each in detail, separately. In our large engraving (Fig. 4) the artist bas shown the caterior of the hydrogen bench, and in the smaller engraving (Fig. 2) is reprisented one of the retorts here used The latter, though of the general shape and of the same material as the ordinary gas clay retort, differs from it in that it has a diaphragm extending horizontally across the centre, forming a double retort, and is, besides, covered at the bottom with tiles, one of which is represented separately. The diaphragm is perforated with medium sized openings. The tiles have smailer hol s in ther upper surfaces, communicating with other apertures which, when several tiles are laid side by side, form two longitudinal passager through them. Thus arrauged, these retorts are
placed in each bench, in the usual manner, and when in use,
are flled with anthracite coal. Once in a day, the coal is raked, and about a bushel of anthracito is thrown in, and once in each week the retorts are refilled.

From an ordinary cylindrical boller, steam is led to a superbeater, and thence to the vertical pipe marked A, in our large engraving (Fig. 4). Following its course for the retort on the right the steam escapos from tube A, into two pipes which lead to the dryers, the ends of which are represented at B. Near the junction of the pipes with tube A, are placed suitable valves to regulate the supply. The dryers $B_{\text {, are }}$ made double; that is, the fteam enters an inside metal tube by which it is casried back five feet into the bench, and then passes to and through an enclosing metal tube back to its starting point. This is intended to prevent ans wet steam from reaching the clay superheaters or retorts in tho beach; and, finally, the stasu passes out by two upwardly leading pipes, which terninate each just anove a retort, at C. At the latte: point, each pipe connects with a short tube which jnins it with clay su, erheaters piaced just above tho retorts, so that the ream, enteriug at C, travels to the rear of the superheater, which is five feet in length, and then returns, highly heated, in an 's aing parallel to the front, making its exit by the tubes D. 15. the latter it is conducted down under the lower portion of the retort into the longitudinal passage, formed through the tiles Hence, it escapes up through the perturations and through the incandeacent coal, and is decomposed, forming bydrogen and carbonic oxide gas.
The gas thus generated by this American process passes into the hydraulic main, and thence is conducted to mingle with the gas generated by the bituminous coal retorts. The product of the two hydrogen benches is in the neighbuurhood of 100,000 feet per day, and its estimated cont is, at outoide figures, 30 cents per 1,000 feet.
The naphtha employed is deposited in a suitable reservoir at somodistance from the rorke, whence it is pumped as desired into a tank, marked A, in Fig. 1 This receptacle receive, its supply in order to deliver it by the pipes B, into the two huge cylindrical stills. Within the latter is a worm pipe which is filled with steam from the boiler by the pipes C. By means of a fan blower in the engine room, a current of air is driven tato the stills by the pipes D, which mingles with the vapour of the naphtha given off through its heating by the interior steam conl. The gas then passes from the stills by tubes E, into the porks, where it enters peculiarly arranged retorts, one of which is showa in Fig. 3. It will be noticed that the vapour is conducted to the back of the receptacle by a pipe, whence it cscspes.
After heating, the gas is conductel to a condenser, where it passes through a series of pipes surrounded by cold water and from which it is drawn by an exhauster and carried to the station meter, whence it goes to the main to mix with the coal and hydrogen gases. About 300 feet of gas per minute are thus made, a gallon of naphtha giving some 135 fett. This is of a uniform quality of 22 candle power.
The mixture of the three gase, as supplicd to consumers, averages ut 18 candles; and by carefully observiug pruper proportions in combining them, we leam that a very fine silver mbite light is obtained.
The process is unyuestionably one of considerable eco omy to the gas company, us is evident from the large saving in the number of hands employed, due to the decreased number of benches used. Moreover, the raw material for the hydrugen, or antbracite gas, costs almost nothing. And a portion of the anthracite coal used is ariilable for re-employment as fuel under the steam boiler. Naphtha is not costly; no canael coal is requ red, and the gas cual, as we have already observed, is of the type only serviceable in its production of the usual quantity of inferior gas. The main object of the bituminous cual benches, where bydrogen and naphtha are used. is to make coke for fuel to run the works.

Tre rush for the Stickeen minos continues. A numerously signed petition to the Governor in Council, has been sent down from Cowichan and Nanaimo, praying for an appropriation of money for the purpose of opening the Cowichan and Sansimo road.

Oxs fifteenth of the length of the st. Godard tunnel has atready been excavated.

EOMINION.

Leverfool is to bave a storm drum.

Malifax, N. S., is making artangementa for holding a Provincial Exhibition on an extensive scale

The Vancouver Coal Company sent tway last sear 45,728 tons of coal, sbowing a decrcase of 420 tons. The fooding of Douglas pit at the beginning of 1873 very much interrupted the Company's miniug operations.

A rew days ago a schooner 1 t 't Georgetown, P. E. Island, for St. Sohn'r, N F., with 1,130 carcas es mutton, 50 do beef, 25 do pork, 30 bble. tallow, sad 2,000 geene and turkeys. This is the largest cargo of fresh meat over shipped at one time from the Island

Aracent geological surveg reveals the important fact that on the line of the Notthern Pacific Railroad, in the Rocky Mountain district, there exists a coal-bearing region of 250,000 square miles in extent, the strata of available fuel buried there varying in thickness from 5 ft . to 35 ft .

Tur Cobourg Sentinet is pleased to learn that Mr. Burnet commenced operations at the Beet Root Sugar Manuactory on 'Tuesday last. It bas been supplied with a new retort and the best machinery procurable, and no douot is entertained that sugar of the best description can be manufactured at the Factory.

Iron Ore in Phihce E. Island -Mr. John Young, Mininy Engineer, aud some assistants, have bren mining for iron ore for some days past, on the farm of Mr. John 'lweedy, Gallas Point Mir. Young purposes briuging a ton of the ore to thiscity and getting it smelted at Morriasey's foundry. The indications are tbat a large quantity of the best quality of irou ore exists in the vicinity at which Mr. Young and his men are mining.-Charlottetown Examiner.

Sir Alexander Murray has made the important discovery of an extensive coal-field at St . George's Bay, Newfoundland. He has ascertained, beyond all question, the existence of several workable seams of coal of a superior debcription, the extant of which can ouly be determined by boring. Much of it appears to be cannel coal, so valuable for the manufacture of gas. One seam is 3 ft . in thickness, and only a few miles from the coast.

Tha Culbots Canal.-Mr. Johnston, of fhe Enginerring Department of Ottawa, accompadied by a ataff of five, started lately by instruction of the Dominion Qovernment to examine and take soundings of the channel on the south side of the Allumette, and test the feasibility of the route: for the construction of a canal in liev of the one now being built on the northern shore of the Ottaws. The company started for the scene of their operations on Tue-day last. We believe it is the intention of Mr. Jolanston to biginat the bottom of Pacquetts Rapidsand move upward. The task to be accomplished is at the present time both a difficul; and dangerous. on:, owing to the insecurity of the ice in the neigbbourhood of the many rapids that occur in the line of their explorations.

Ter St. John Neos rays :- "The Municipal Council of Potton have under consideration a proposition to grant aid to the extent of $\$ 10,000$ to the Missisy woi and Black Rivir R ilway. The proposed railway is 55 miles in length. If built, it will open up a country of great wealth add vast resources Starting at Rickmond, an important junctiou on the Grana Trunk, it will run through Melbourne, Bromptoa Gore, Esy, Stukely, Bolton, and Potton, and intersect with the South Eastern near Mansonville. It will pass by inexhaustible slate quarries in Melbourne; the valuable copper, soap stoue, and chrome mines in Bolton; and will shirt the ibanks of a stream with immenso water-power at present not utilized. It would also penetrate dense forests of valuable wood, which would open new sources of industry and bring fresh capital intothe country. In the moro settled portions of the routo there are many finc farms; and the lands yet to bu cleared would prove unexceptionable for grazing and dairy purposes. Among other grants to the road, Bolton has subscribed $\$ 20,000$ North Stukely and Ely each a like sam, and South Stukely $\$ 10,000$.

Fin 4.

ON INSTRUMENT MAKING.

By "Expartos."

Albeit much has been written upon the various branches of mecuanical manipulation, the subject of Instrument Making bes hitherto been left comparatively unhandied. It is in the bope of supplying this defictency that the following sories of articles is put forwand. The prevalent mpposition, that a knowledge of natu al philosophy and the use of tools is sufficlent, Fith experience, to perfict one in this intricate study, will bear no test; nad so bndly, it will bo found, fo theory and practice go band in hand, that the practical man will execute his turk white the theoretical on" is making his calculations. Considering that there is so much literature extant deecriptivo of toal-construction, and that most of the instraments used nay be geen in almost any tool-denler's shop-window or catalogue, it would be an unnecesenry and tedious division of this subjuct to detail therr forms, other thinn those peculiarly sdapted to this pursuit alone. Refurtant to bore my readers witb any uninteresting enumerntion of these accessories, I hare chosen to treat upon each as its description becomes im. perative, and to clagsify the various departments under this head bs they aro successively employel in the manufacture of an instrument.

As the branch called Turning anpli,s chiefly to the yroduction of telescopes and vaijous other optical contrivatices, I shall confine myself for the first to the framing or fitting together of instrmments, mentionmer only such uses of the lathe as berome expedient in that pirt.

Haviug celected casting: of as sound a nature as can be procared, it is, firstly, requisite to remove all superfluous prominences, called "burr," with an oid file, and to harden them thoroughly and evenly with repeated blows from a light hammer, observing at the termination of this process that they are left as vearly as possible to the desired shape; for this purpose, a square and straight-edge must he used, and very often a true surface-plate, or a sheet of the patent plate-glass, which 10 ts manufacture, is rembered surprisingly flat. Should the hammer show upon its face any indentations from its improper use upon hardened steel chischs or drafts, they must be ground away upon the stone, especially for the treatment of sheet metal-the most difticult of ill. Kemembering that compresiou of soft metal causes a distension, it must be geen that equality over the whole surface is an important desideratam, and that a sheet, if stretched by this means ton much m the centre, will bucklo up like the buttom of an oil-can. 'l'be eame rule applies to the setting of long strips of metal, in which case the piece will curve over it the operation towards that side which has not received a -ufticient number of blows. Carefully avoid contact from the hammer edge for obvious reasons * and never stride a part which has not been previous y cleaned slightly, as any prominent placed which are thus fored in will fall out in tiakes when the piece comes to be turned or filed. It frequently becomes requisite, in the first place, to tum perfectly fiat, by means of the slide-rest, those surfaces which necessitato or admit of that process. T'aking as a well-known specimen the uprights of a microscope or theodolite, render one side irue carefully with the tile, usiug a surface-plate upon which has been smeared a little dirty oil or pasty accumulation from the bore. When laid tirinly upon this and gently rubbed backwards and forwards, the surfuce in process will show on removal its highest punts, which may then be filed qway, and this process repeated will eventually eable the manipulator to gan a tolerable plaue. But if timo sdmits, the work may with advantage bo "slide-rested" upon beth ite sides. In this case set one nide in such a manner as to prevent its rocking upon the surface-plate; upon the mandilluese of lathe, screw a chuck of as freat a diameter as poriside, havm: for its surface a circular dise of wood (beot h_{1} prifmble), which has been fixed with bolts to the face-chuck or has had a mandril-screw eut in ite rear. Now turn the entre surfare perfectly tlat with slide-rent, and accertain its scaracy by means of a straight-edge. The prepared side of the work is now to be heated and then covered with cement. Thr parpose of this is to fix the piece or pieces of metal to be optrated upon firmig to the chuck, so as to resist the concus-

[^0]
sions consequent upon contact with the cutting enge of tho tool. Now let the lathe rivolve, and take off the wh tat in light atcaly cuts, until goun castings are liroug'at di, wa to the thickness desired, leaving them a little thit er if te bure versed upon the chuck and surfaced upon the e ther side. ' 1 ". 3 motion shonld be about 1 in revolutions to the monute, and sometimes even less, or the cutting point w. I materially buffer. The best tools for the purpose may be made from woruout square files, aud the unst effective shape for surfacing is an acute-angled V The hist period for commen int, 1. when the pieces of inctal are nearly cold; but the requisith motion of slide-sest handles experionce alone wall teach should the wooden surface chuck prov, upon examination with the straight-edige, to be imprrfint, the elide-rest can only be adjusted by the insert on of small erraps of metal or card between one sade of the ${ }^{\text {" }}$ soove unarneath the slide-rest and the cor: sspooding V upon the latho-bed. Haviug once turned the wouden chuck, do not alter the position of slide-rest preparatory to curning the casting, or the work may not be paralled. There are many awkward shaped pieces which necensitate portions of the chuck being chiselled out to receive their prominences, and atfers which riquite extra blocks of wood to bo
chued upon the original chuck. It is also advisable sometimes to run 1 quantity of the hot cement all round the sides of the pirce or pieres as the consequences of a dislodgement are serious, often resulting in a deep score from the tool or an incumblo bending up of an important part.

We now come to the more difficult portion of what may be called the fitters province in turting-that which necessitates the employment of box-wood and clamp.chucks, \&c., but it is expedient, prior to entering this department, to briefly describe the tools which will be called for.

Right-side, left-side, round-nosed, roughing, parting, and planishing tools may all be forged from cast steel, 3.8 the by 3-16ths of an inch, or from worn-out files of the right size, These are fo generally known that it would ba superfluous to desciibe them at any length, but the resder should bo cautioued against any obtuse-angled side-tools, and assured that the semi-clliptical form of round-nosed tool is incorrect, the proper shapu being a curved extremity, of radius equal to that of thr hollow to be produced. Hansshing tools are best made long and sufficiently thin to exhibit somo slight amount of esagticity; the cuttingedgo should be a right-angle, 80 that eithיr side may be used ; each surface should be rendered fint ufon an oilstone, aud tise cutting-end not more than 1-32nd of an inch in thickn'ss. These and the parting-tool alone require menion, a very acute angled extremity is preferred by some for these, but this is objectionable on account of the wide breach which it makes, and by the far the best shape is that similar to one of the non-cutting edges of a planishrr, thinned gradunlly from the point to prevent wedging (Fig. 1) This is a dangerous tool in the hands of an anateur, and requires firm handling. No reference is needed to the remaining ones on cut. For economical motives, triangular files are often employed, but are extremely clumsy and difficult to use. Mil-ling-tools fhould be mounted so as to work freely upon their uxis, und should be firmly fixed into a large handle. T'hey may also be used in the slide-rest in some cases.

But more generally useful, perhaps, than any of these, is the common graver, as answering most of the requirements of a right-side, left-side, and roughing-toul in one (Fig. 2, A, graver in use as a roughing-tool, B, graver in use as a right-side tool). It is maintained by some-principally engineers-that this should never be used save on iron and steel; but this dictum is ignored ly the class who use the toul to its greatest advantage. A few pence will purchase nue of as good a quality as can br produced, but they are ofien found to be improperly t mpered, and require some little treatment tefore being used In sharpening this, do not be tempted to grind its sides: for it is detrilielital to its performance, and time thus saved in pre. paration is doubly lost in the sequel.

For makiog chucks, select straight, new, and sound boughs, atd the larger number, in reason, the workman possesses, the swaller wll be the necessary consumption. For making :Pl ce upon the mandril-nose of lathe a peg-chuck (Fig. 3, a) i e, one which has upon its vurface a conical peg of steel cut with a coarse pitched surew tcol, and having sawed up the buswood into pieces of the desired length, and drilled their centres upon one side to the smallest diameter of scres mentioned, select the first one to be prepared and insert the leg into the hole, then twist it up $t_{i l l}$ the bozwood face and shoulder of chuck are in close contact to prevent further tightening through the resistance of screw-tool frig. 3, internal screw-tool cutting boxwood chuck).

Now ascertain the diameter of mandril-nose and drill up the boxwood chuck, leaving sufficient stuff for cutting the thread, for which rirections will be given at the end of this chapter. It is now in a position to be "screwed" and carefully fitted. Some gasfitters and otners, prefer to fix their boxisood into rup-chucks to prevent their splitting (a common occurrence), but the same en may be attained by tightly inclosing the circumference with a ring of metal tube.

Theso chucks are utilized by turning holes in their faces for the reception of the various shaped castings which are to bo worked, or by decreasing their external diameter, so as to fit into pieces of shape more suitable to that method. They should always be left slightly tapering in their fittings, so as to wedge firmly in on the application of a hammer, but not sufficiently so as to ran the risk of dislodgenent through vibration. A iittle space must always remain in case the casting should requiro knocking
more firmly noon its chuck prior to finishing, as pieces frequently become slightly loosened in the roughing pir cers, but a pieco can never bo "rechucked" when once comm need tupor without being thrown out of truth from ita original nxis, oving sometimes to the inequalities unon the costing, and often to tho variable density and consequent hardnest of boxwood; indecel, it is only practicable when the part which fits into the chuck has already been turned, and evea then a nick should be made at the edge of casting to cortes. pond with a similar nick in the eige of chuck, that it may be placed the second time in the same relation, and even then it is troublesome to restore truth.

Thereare certain parts of instruments which require not ooly to be well fixed upon their chucks but to bo also cemented. and sometimes even packed up and supported by small blocks. lut this is raruy necussary.

American scroll and iron surface chucks are scarcely eper used by professiunal instrument mokers, their drille, counter. sinks, \&c., being generally fixed in a simple chuck with a small rlamping screw, which may be tightened by means of a hand-vice or key made for the purpos'; many also use the common die-chuck.

It is not within our range to include such turning as is ef. fected between the centres of the lathe, but it may not be ont of place to caution readers againet depen jence upon centre. punch marks which have not been drilled, and against using arbors which nave not beca turned true to their ends.

But ere the learner will be able to accomplish the most simplo coristructive task successfully, he must make bimselt master of t? 10 screw tool; and, though in this he may be assist. ed by a few directions, one hour's practice will be of more effect than a year's reading. The standard gaug. in use is that of Whitworth, and its difierent varieties are c. ...aguished ty size; thus $8 \frac{1}{2} \mathrm{in}$. tool is one which hes been cutupon a "h: b," and so on. This system, though, is little known to 1 . strument makers, who, often finding it requisite to cut a fios thread upon a large diameter, ignore for the most partany stindard, and kecp each firm its own particuliz nitches It is commonly asserted that a thread should not bo cut upona diametor which is not equal to that of the hob upon which the screw tool s.as made. The observance of this rule might poc. sibly possess some advantage, but as an appalling number of tools would be required, the manipulator who courts such an insignificant modicum of assistance would do better to sywnd his money in the puichase of a travelling mandril, \dagger or b itter still, in receiving lessons.

A hob for our purpose may be of any reasonable diametr, the thicker the better, and the tools in use may be classed according to their number of threads to the insh They shoold be made at a tolerably acute-angled cutting edge. Stpadion, I think, first in importance for success, is that th " wurk should be rue and smooth; external pieces should be n o'y rounded off, with a tool upon the corner, where the thread is to be conmonced, and internal ones-more difticult-should be similarly treated. Considering the external inrst, it must be rememberel that the motion required for striking the first thread is a clr. cular one (see Fig. 4), where the dotted lines represent the motion of tool, an 1 the biack spot the centrai azis A screx tool, in this instance, is nothing more nor less than a lever, of which the operator's thumb forms a fulcrum; and theres snould be seen the absurdity of resorting to the angulat plate contrivances, which place one's work entirely at the mercy of a, p.rhar', much indented hand-rest, and give no room for cutting \& screv upon a very small space.

For the purpose of cutting a thread upon an interual part, many prefer to bring the T rest at right angles to the lathe bed, with its edge a little below the centre; this may be dose with advantage where the work is of any size requinng ade p and coarse screw, especially if the work be of ron or steel, but in the lighter branches most commonly required in optua instruments, it is far more workmanlile, expeditious, and salc, to use an arm rest (Fig 5). In using this ton the bandis must be tucked well up under the left armpit, the left had

- Holtzapfol "On Turning and Mechanical Manipulation," "Tt: Latho and its Uses," "Tho Amateur Mechanic's Workshop," \&e A: excellent contrivanco is also published by a contributor to the Evabs Mrchanic, No. 316, Vol. XIII.

It frequently requ:rcs as long a time to learn properly the manat of using hand.
grasping the stem of the T rest with its forennger, and the arm-rest with its thumb. When usid for screw-cuiting in this case, the axis of motion is upon the T rest, underneath the "anipulator's thumb, and the motion of cutting edge is renderel straight by allowing the rcrew tool to twist alightly in the arm-re-t hook-see Fig. 3 showing the correct method of using This observation applies to the other applications of this accessery in aldition to the one mentioned; thus for smonthing the ingide of a piece of tube, a reciprucating motion mav ly that mean, be given, tu.
The non-acquirement of this much-written-upon and littletanglt serew-cuting art is the I'ons Asmorum of mechaniral study, and the bungling tyro commonly expends his very hmited amount of patience by trying aiternatelv one contrivance after another, giving none a fair trial, nad thus apending coasidernbly more time in the attempt to save trouble than a resoluse apprenatice or amateur would dream of. I have also to guve another hint in concludin! this chapter. Do not be in too great a hurry to reduce the size of your cating or work of any hind iv the lathe uatil fecling certain that it is firmly fired: for cemented pieces will frequently shift when slightly warmed ly the friction of cutting tools, and those ged in box. whol chucks will alter their position by expanoion from that rause ; so casy is it to make a thing too small, and so difficult and "ften impossibl- to repair the mischief done. It may be (insudered filivolous nud out of place to indite these cautions, but I can ass, re my readers that the non-observance of such seemugh unimi ortant points, disdained oy writers in general, often proves a stumbling block to success, and so imperceptible are the conditions upon which safety depends, that we are affected most by hidden difficulties, gazing only at the port, reg, rdless of the shoals that interrene.-English Mechanic.

GLASS SPINNING.

T.. 'atest improvenents in spinning glass are due to the Vienna manufacturer Brunfant, who exhibited his talent in this speciality in 1850 at Pesth. After manitold trials, 110 diecovered a composition which may be made at any time int curled or frizzled yarn. The frizzled threads surpass in fireness not only the finest cotton, but even a singlo cccoon thread, and they appear at the same time almost as soft and elastic as silk lint. The woven glass flock wool bas quite recently been used as a substitute for ordmary wool wrappings for patients suffering from gout, and its use for this purpose bas been, it is stated, successful. Chemists and apothecarics have found it useful fr - filtering. 'Tbe smooth threadsare now woven into textile fabrics, which are made into cushions, carpete, tublecloths, shawls, neckties, cuffs, collars, and other yarments, se. They may be used for weaving the figures in brocaded silk or velvet. As a material for fancy dresses, tapestry, for covering furniture, for laces, embroidery, hosiery, dc., the glass tissue will probably at some future time occupy a prominent place Owing to its brilliancy and the srlendour of its colvers, it is the most beautiful material for dressing the harr, neck, and head. In softness, the glass yarn almost ap proaches silk; and to the touch, it is like the finest wool or cotton. It possesses remarknble strength, and it remains unchanged in light and warmth, and it is not altered by moisture ol acids. Spots may readily be removed by washing. Being non-inflammable and incombustible, it is especially valuable for making dress materials for ladies. Clrths of glass fabrics are much warmer than those of cotion or wool ; at the same tume they are of low specific gravity. They are alao adapted for vells, as they repel the dust remarkably well. The composition of the materials is still a secret, and the spinning requires extraordinary dixterity and constant attention. This part of the business is said to be vory trying to the sighi. It 18 stated that, with a wheel of a diameter of 5 Austrian yards, - ne operative is able to spin 3,000 yards per minute. The cloth (which is equal to about 11 dr . avoirdupois) is sold for 2 forias- 93 cents gold. Some manufactures of glass yarn aro sild at the following prices: Bedouin tassels from 28. to 38 .; cagle feathers from $18.6 d$ to $38.6 d$; ostrich feathers from 2 s to 8 s ; bouquets, 3 s .; cufs, 5s. 6d.; ladies' neckties, 28. to 18s ; gentlemen's neckties from 28 . to 88.9 d .; watch chains from is to $4 s$, cbignons from 28 . to 18 s .; trimmings, 1 s . 6 d . and upwards per yard; ladies' clothe from 6d. to 9d. per yard, ladies' hats from 18 s .6 d . to $£ 3$.

WHITBY JET AND IT8 MANUFACTURE.

From a papor by Mr. Joun A. Bower, read at the last mecting of the Society of Δ rts.

What is jet? This is a yuestion often put, hut nevor artisfactorily answered. Nearly all the jet workers have an opinion on its origin, and most of thom, in common with the greater part of the inhabitants of Whitiy nad its neighbourhood, believe it to be of ligneons origin. Some, however, belleve it to bo of mineral origin, and others think it cumbines tho two. Taking tho opluion of Mr Martin Simpsun, the curator of the Whitby Buscum, who has studied the geology of this district exceedinaly well, and with whom I have talked on this subject, he put his theory na follows "Jet is generally considured to bavo been wood, an" in many cases it has undoubtedly been so; for the woody strmiture often rema'ns, and it is not unlikely that comminutrd vegrtable matter may have been changed iato jet. But it is evident that vegetablo matter is not an exvential part of jet, for we frequently find that boae and the scales of fishers have also been changed into jut. In the Whitby Nuseum there in a large mass of bone, which bas the exterior converted inta jet for about $\{$ in, in thickness. The jetty mather appears to have entered first into the pores of the bone, and then to have hardened, and duriog the mineralisiog noccess, the whole bong mat or has been gradually displaced and its place occupied by st so as to preserve its original form."

To cuw-rter opinion I am inclined to agree, for it has the appearance of a substance that has distilled from the rock, ani' in some cases has impregnated vegutable, and in somo other cases animal, substances, while in others it ben simply filled ur a fissure in the rock, and solidified. In some specimens I have seen the grain, aprarently of wood, distinctly; in others, ocales and bones of fishes; and in one of the best specimens that havo been found here, the rass in form an 1 structure was that of a tree, with bark, knots, and roots, nal in the curled portions of the roots, stones and soil conglomerated were imbedded.

Waterer may be the actual formation of jet, that known ay the hard jet is most worked, it not being thought wo th while working the soft species, since the importation of the Spanish article. The hard jet has a specific gravity of about 1.238 , has a conchoidal fracture, a resinous lustre, it gives of a bituminous odour when burnt, is an electric, and a iad conductor of heat. It was formerly obtained in tho lary ust quantity by working in the cliffs, by a process called "dressing " (very dangerous work), -that is, by clearing away and hewing down the cliff-sides till jet ends protruded; the seams were then followed till exhausted. Some seams have realised as much as $£ 1000$, and have been discovered in ashort time. At other times, however, ren have been employed for wecks, occasionally monthe, nd have found nothing in fact, bave been on the puint of giving up, when they have unexpectedly come upou a seam that has fully repaid all their labour.

There are somewhat more than twenty mines at work at present ; abour 200 miners, whose weekly wages vary if un $21 s$. to 268 . Owing to these low wages, many men, who might otherwise be at jet-mining, go to the iron-wrks in the di trict where they get paid much better. A siort time since there were more than 400 miners, but they have gradually lessened to the number before mentioned. Again, jet-mining seems to be a sort of hazardous undertaking, as far as profits are concerned, for often large areas ' we been tunnolled, and nothing found; and others have somenmes taken up mines that former workera have gicen up in disguet, and reaped a fine harvest. Both the jet cliffs and mines are rented by the workers. By far the largest jet-miners are W. Thompsor and J Turner, both of Whitby. The former has carried his t, siness on most successfully siace the year 1860. Rough .rd jet varres in value from 43. to 215. per pound, accoriv, to its clobeness of texture, direction of grain, freedom from flaws, and breadth for working. Thy gott jet varies from $586 d$ to 30 s . per stone, the price of the Spanish is about the same as that of the English soft jet. The Whitby hard jet is the best in the world not only for working, but it will take a fine polish, which it retains for years, and it can be worked up into finer designs on account of a greater tenacity and elasticity that it has over other qualities.
The skin has first to be removed, which is done by the workmen chipping the surface with a large iron chisel ; the

Btripped portions are then take) 'o the sawing bench, whero the jet is sawn up, with the ketrest eyo to economy, into the vailous shapes and thicknesses, according to the articles for which they are required. The pieces are then given out to the carvers or turncrs, as the case may be. In the case of the former, if he requires to make it into a brooch, locket, or chain-link, he takes it to a grindstone, which he works by a treadle, and brings the edse, which he keeps turning round, on to the face of the stone; it soon then becomes oval, round, fquare, or any geometrical shapo required. The surfaces are next both gromad smooth; it is then fit for carving. Very often-I might say rarely is it otherwise-the art'st in jet who undertakes this is no draughtsman whatever, yet he can cut the most beantiful and truthful faces in high reliet, the most delightfol thorai designs, -the latter often without any pattern at all; the most tasteful monograws, and other designs equally good, without being able to skete h the simplest object on paper, and often not being able to write his own name. It was only iast week a striking instance of this kind came under my own notice I saw a workman, one of tde best hands in a large shop in Whitby, able to cut the most elaborate monograms, the most accurate pertraits, the most elaborate foliage, but quite unable to sign his name. Is it not impontant, thea, when we have ranay such in-tances, that we in Whitby should have not only elementary classes, but also a sicbool of Art? I remarked on the economy with which the jet was cat up. I am informed that some masters, by care, get one-fifth more work out of the same amount of material by strictly oheerving this.
'The most complete workshops we have in the town are those of Mr. Bryan, who has lately gone to considerable expense in rearing not only a large structure, but has added every possible convenicnce conducive to the health and comfort of the men.
I have heard Mr. 1. Bryan, whom I named just now, say that he was willing to take tifty London street Arabs as apprentices, and able, too, to guasantee that more than balf should turn out first-rate jet workers; and from frequently visiting these worksiops i have every reason to believe this is no exagercration.

According to the classes of work so do the wages of the worknen vary ; some idle and careless hands getting from 16s. to flls. per week; others earning from 30s. to 50 s . weekly; and the average wages for boys, from twelve to fourteen years, being 8s. to 105 .
In conversations with the masters on an improvement in the patterns, or the introduction of something new, Iam told that if customers improved in taste, and there were any demand for articles of a better design, they would be ready to dy them; bat when they made a fresh effort by bringing out a geod and new desigu, it frequently was on their hands for a long time, or, to use their own expression, "it would not scll"; so that much improvement in this class of goods depends on the public taste.

machines for pattern making.

Granting the dificullies that stand in the way of employing machinery in pattern making, it must, notwithstanding, be conceded thatamong the various branches of woodwork, none has received so little attention in machine adaptation; and that in proportion to the work that may be perfurmed ou machines in our pattern shops, they have, as a rule, less labour-saving expedients than the crader branches of wood manufacture.

We mert therefore lend our hersty endorsement to the attempt to introduce a set of special machines for pattern making, such as we publish above, and hope that the future may bring a continued effort at special adaptation io machines to cheapen the burden of patterns as an element of machine cost.

It is especially hoped that an efficient co e box machine, one that will make cylindrical boxes, chambered, tapered, or parallel, may be devied. Such core boxes present the nearest approach to uniformity and ragularity of shape that can be found in pattern making, if we except the preparation of lumber, by such processes as sawing, planing, ind so on. The engravings published are drawn to ecale, a ad show very cleariy, on this page and the nort, tho arrangement and objects of the soveral machines.

The traverse planing machine Fig. 1, with a hand feed, strikes us as a machine that will answer for a variety of purposes, where larger machines are too inconvenient to be usod, cspecially in planing up small pieces, which is now almost esclusively done by band.

Fig 1. Traverse planing machine:

Fig 2. RGLLER-FEFDMNG PANING MACHINE
The glue beater, Fig. 6, if it avoids the objections that have bitherto eristed in such devices, will find favour The heating surface is small, aud the steam chambor arranged with double walls to prevent the possibility of leaks. The glue pots are heavy, zinc-lined, and havo turned fita whero they rest on the steam chamber to prevent the cscape of heat.
Aside from a want of machiners, the construction of petteros is one of the most thoroughly developed among the departments of our engincering estaiblisiments, Either because of the superior skill of Eaglish moulders, the ingenuity of oc: pattern makers, or from both combined, the cost of mood patterns is at this time very much less in England than io America. Taking the engincering establishments of Philadel. phiannd Manchester as examples, the cost of machine patteres will show a difference of 50 per cent. or more in favour of Manchester, while the quality of tbe castings are at leass as good, if not better, in Manchester, than in PhiladelphiaEnginecring.

THE HOOGAO TONNEL．

An opening has boen effected between the opposite workings of the Hoosac Tunuel，nu engincering work which is exceeded in magni－ tude，in its clase，only by the Mont Cenis Tumel．

The mountain to be pierced has two summits，with n wide valley between．The exact distance be－ tween tho two portals is $25,03 \mathrm{Lt}$ ． The castern summit is 6.300 ft ．from the eastern portal，and $1,415 \mathrm{ft}$ ． above the grade＂f the railway．The western summit is $6,200 \mathrm{ft}$ ．from the western portal，and is $1.70 . \mathrm{fs}$ ． above grade．The two summits are somewhat more than two miles and one－third apart．＇The lowert point of the intervening valley is 801 ft ． above grade．A geological esamina－ tion of the mountain by Irofessor Hitchcock，then one of the best American anthorities，seeraced to cstablish it asa fact that the forma－ tion was mica slate，throughmut， ＂mised up however，with a littlo quartz of an imperfect kind，which docs not differ materially from the mica slate in hardness．＂This did

Ftg 3 L．dide fice lathe
not prove to be true，as a vein，

「IG．4．SMALI FACE LATHE．
sevoral thoussand feet thick，of very hard rock was strack some gears ago，and caused a material delay in the completion of the work．
All sorts of inventions have been tested in the Hoosac Tunnel．There was onc brimg－machine that was to cut its way into the rock at the rate of 2 ft ．an hour．It failed utterly． A great dam was constructed across the Deerficld liver，which fors by the castern portal，to furaish power for compressing air．The dam cost nearly 300,000 dollars，and yet it was necersary to supplement it with steam－cogines Thousends of dollars were wasted on experiments with power drills，and there is perliaps no known explosive which＇has not been tested in the Tunnel．Since the Messrs．Shanly took the con－ trati，all the drilling，cxecpt on the central shaft，has been done by means of compressed air－driving power drille，which ato an American improvement on thone that were used at Hoat Cedis．At all the points of working except one the usual explosire has been nitro－glycerine．As a total result of theten jears＇driultory working，up to the making of the con－ tract，only $9,338 \mathrm{ft}$ ，or somewhat less than tro－bfthe of the

F！G．STEAM GI．UE HEATER
entire distance, had been pierced. The progress in 1869 was $1,688 \mathrm{ft}$. ; in 1870 it was $2,864 \mathrm{ft}$. ; in 1871 it was $3,553 \mathrm{ft}$. ; in 1872. it was $4,456 \mathrm{ft}$. ; in 1873 it has been $3,132 \mathrm{ft}$., completing the entire distance of $25,031 \mathrm{ft}$. The tunnel is completed from the east end to a point 750 ft . west of the shaft; that is, about 12600 ft ., and from the west end nbout $9,600 \mathrm{ft}$., leaving between abjut $1,850 \mathrm{ft}$., where the opening is of full width, but only 8 ft . high The dimensions of the full-ized tunnel are 24 ft . in width, and 20 ft . in height, and its shape is nearly semi-circular, the variation being such as to give nearly the full height of each of the two tracks which will be laid through it.

The advantages of the tungel are not so much a shortening of distance as a diminution of geadients If Albany were the objective point of a railway, the "tunnel route" would te six miles the shorter. But on the lBoston and Albany road there is an ascent of 85 ft . to the mile, as against 60 ft . on the tunnel line. Uf course, as the tunuel is twenty miles to the north of the wearest point on the Albany road the distance also would be shortened if the idea be to seek a lake port where the produce of the West may be traushipped This is, in fact, a part of the plan.
The tunnel will be completed in July. Infortunately, the railway east of the Hoosac is in a bad condition. It has but one track, its location is as bad as it cauld well be, and the road-bed is viterly unfit for the transaction of a large amount of business Tho same remarks apply, modified slightly, to the middlesection, about fifty miles in length The Fitchburgroa.1, the Boston end, has a double track, but it is unprovided with freight-room*, wharfs, docks, and clevators, such as a great through line should possess. The strange circumstance, therefore, of a great work that has cost $10,000,000$ dolls. or $12,000,000$ dolls., being, nevertheless, pructically useles, seems likely to be presented.

The object of the central shaft, which was begun under the State Commissioners about ten yeers ago, was to supply four faces to work upon. When it had been sunk to grade in 1870, operations were beguts in both directions; but large "pockets" of water were struck going westward, and only three faces could be worked. Water made sa fast that immense pumps were put down the shaft, which rais d it in three lifts $1,030 \mathrm{ft}$. at the rate of more than 200 gallons a minure. In 1872 the hendings eastimard from the shaft and westward from the east end, met in D. cember. Soon afterwards the reinoval of the "bench" between the two points of working gave the water an opportunity of running harmlessly out at the east end, and westward work from the shaft was resumed.

Mor. than three months ago Mr Shanly estimated that the two headuggs would meet on the lst of December. As a matter of fact he gained three days on his estimate. There are many circumstances of interest in connexion with the opening. The headingeg at with wodderful rccuracy The measurements have not been made ; but the two lines cannot possibly vary more than an inch or two, and probably the crror is less still. For a great part of this work the State is indebted to Mr. Wederkinch, a young Danish eaginecr, who has not only rua all the lines in the central shaft section, but has invented and made with hi- own hands the necessary instruments. Tuc amount of nitro-glycerine used at each blast was something enormons. The last quantity used wav more than 150 lb ., being nearig twice 38 much as was ever before put into one charge. The effect was in proportion. One great piece of rock, weighing upwards of a ton, was thrown directly outwards with such force that, at 100 yards distance, it demolished the kreat wooden barrier which had been put up to protect those beyond. Another singular fact is, that thu current of air sets steadily outwards. Heretofore the curcent between the cast end and the shaft has depeuded on atmospheric conditions; now it would seem to becstablished that there will be a steady current through the entire tunnel from cast to west when it shall be opened.

Tas Central Pacific Company are fitting up a trafelling machine shop in their Sacramentoshops. The shop is a large car, formerly used as 8 boarding car, and contains a Intha, small plancr, drill press, vice-bench and a small engino which furnishes power. There is also a stcam pump. The travelling shop is to be used in repairing breakdowns on the Mountain Division.

SCIEN'IIEIC NEWS.

Tise Hoosac tunnel alignment proves to have been veiy accurately made. The error in vertical alignment was only nine-sixteenths of an inch, and that in the level was one inch and a half. 'lhis result is very creditable to the engineors.

Detection of Seffar in Water - A simple meang for thib Is given in the Journal of the Franklin Institute. A half-pint of the water should be placed in a perfectly clean colourleas glass bottle; a few grains of the best white sugar should be added to it, and freely exposed to cayli, ht in the window of a warm room. If the water becomes turbid, euwage contamination may be suspected.

A natuital method of deepening the bed of rivers is suggested by Prof Sbaler, who proposes, to improve the uavigation of the Ohio, that willows shoula be plauted on the banks. He fiuds, he says, that wherever such a plantation bas been made the roots not only hold the soil of the banks together but accumalate that brought dowa by the raver. It wall be obvious that if the banks are augmented the water will move at a gieater pace, and after a time the result will be a decpening of the channel.

Tas number of stars visible to the naked eye in the entire circuit of the heavens has been usually estimated at about 6,000. An ordinsry opers glass will exhibit something like tea times that number. A comparatively small telescope easily shows 200,000 , while there are telescopes in cxistence with which, thereis reason to believe, nut less than $25,000,000$ stars are visible. And yet when all of these are seen and numbered, the uye will have visited but a mere spect in the illimitable bounds of space.

A "nsw or infproved musical instrument" bas been recently patented. It consists of a number of diapasons or vibrating forks, somewhat similar in shape to tuning-forks. The treble ones are strung on a spindle by which they are suspended, but the tenor and bass diapasons are suspended by their shanks upon rods of metal and wood, terminating in soundboxes provided with shutters actuated by pedals so as to intensify or moderate the sound. The diapasons are struck by hammers, and dampers at.est their vibrations.

Plastic Carbon for Filters -In a paper on the bo-called plastic carbon for filters, in the Polntachmasches Votizilatl, Prof. V. Kletzinsky recommends two mixtures, the one composed of 60 part, coke, 20 partsanimal charcoal, 10 parts wood charcoal, and 10 parts pipeclay ; the other is composed of 10 parts coke, 30 parts auimal charcoal. 20 parts weod charcoal, and 10 parts short asbestos. The ingredients, except the last, are pulverised, sufted, and mixed dry in proper proportions, then kneaded with an equal weight of molasses to a plastic mass, baked in a muffe, soaked in dilute muriatic acid, washed, died, and baked again.

A conpany has been formed in France to attempt the utilisation of the power if the tides. The first experiment will be made in the nuighbourhood of St. Mnso, where there is a rise of acarly 80 ft ., the water overflowing many miles of fats. The idea has often been mentioned, and has now resuited in the fiux-motor of M. Commasi, which is the form the proposed attempt to utilise the rise and fall of the sers will take Wu shali look for the result of the experiment with some anxicty. In the rise and fall of rivers, as well as of the sea, there is undoubtedly a vast power at present unutilisud; but as far as we know the means of successfully utilising it have not yct been invented.

A novel project has been submitted to the United States Trunsportation Committee by a Mr. Checsebrough, of Ner York, who proposes to kecp the Erie Canal open during the winter by meanis of artificial heat. He would run pipes down each side, and also flost them in the centre a littlo below tiae surface; these pipes mould be supplied with steam from boilers placed at intervals of half a mile. Mre. Checschrough says that one ton of coal will prevent acanal 70 ft wide, and half a mile long, from being frozen over for twe nty-four hours; but what data he has to support the assction we koow not. It is considered, bowever, in America, that if the coal consumed should amount to cight tous per mile per day, the cost would be as nothing to the bcuefit obtnined.

How to Maks Cheap Frames.-Cut strips of stiff paste-boasu' about an iuch wide the desir cd length, clip the ents to a point, and cover with any nice black cloth, like broad-clote or fine casimere; lap the ends at the corners of the frames and fasten with a white or gilt button. Bind your picture and glass together with strips of gummed paper and glue, on to the frame. Hang against a white wall Bronzed paper, whech can be bought for eight cents a steet, may bu usel instead of cloth, in which case a short strip across the corners of the frame is a greatadelition to its comeliness.

The French Academy of Sciences has received an intercsting communication from Mr. Gimbert, who has been long engaged in collecting evidenco concerning the Australian tree, Eucalyptus globulus, the growth of which 18 surprisingly rapid, attaining besides gigantic dimensions. This tree, it now appears, possesses an extraordinary power of destroying miasmatic influence in fever-stricken districts. It has the singular property of absorbing ten times its weight of water from the soil, and of en stilg camphorous efluvia. When sown in marshy ground, it will dry it un in a very short time. The English were the first to try it at the Cape, and within two or three years they completely changed the climatic condition of the unhealthy parts of the colony. A few years later its phantation was undertaken on a large scale in various parts of Algeria, and complete immunity from local fever has been maintained by it. In the island of cuba, paludean diseases are fast disapp aring from all the unhealthy districts where this tree has been introduced.
A simple lavention for the preservation of cards, phutographs, and, in fact, of anything likely to be injured by mois. ture or dirt, has just been announced. It consists of a preparation of gutta-perchain solution This liquid is thrown in a very fine spray over the article to be protected by an atomizer. By this process a thin film is produced, and when the liquid part has evaporated, as is very speedily done, the object is coated with a translucent substance, impervicus to water. Gutta-percha in its pure state is of a semi-transparent grayish colour. But its transparency as a covering for pictures depends on the thinness of the film. The gum first needs to be purifird, and then, if it has not been treated with alcohol, it is soluble in chloroform or ether. The process of dissolving it is in itself a purifying one. The ether, being highly volatile, very soon disappears when the spray is deposited on any object. A drawing or photograph thus protected can be washed, the gum not being permeable by water, and resisting any amount of heat so long as it is wet. It begins to soften, hovever, at a temperature of 150 deg. Fabrenheit. But this is a temperature to which our climate naturally subjects nothing. This simple invention might come into very practical and general use, and if it did no more than to give additional security to the work of the camara, $i t$ would be a highly valuable invention.

Tempenisa Sterl, \&c-M Caron made a communication to the Paris Academy of Sciences, on the 20th ult, respecting the method of tempering stecl and treating burnt iron. "A piece of stecl," he says, "is generally hardened and then tempered down to the requisite condition." He objects to this as an unnecessary trial of the metal, and, moreover, the plunging of red-hot steel into cold water causes cracks, or "shakes, to occur" - to appear would perhaps be the better word, as they probably already existed, but were not apparent; aud he declares that after many experiments he found that if the hot steel be plunged into boiling instead of cold water an excellent temper is obtained by a single operation. M. Caron informed the Academy alse that the eame treatment was applicable to " burnt," that is to sas to crystalline and brittle iron, resulting from imperfect f rging. It is only necessary to heat the burnt bar to bright rednesb, plunge it into a boiling solution of sea-salt, and leave it there till the iron and solution are of about the same temperature. A curious phenomenon takes place during this operation : the iron, When planged into the salt solution, is impeediately covered with a coating of white salt, which isolates it from the liquid and greatly relards its cooling. He particularly recomanends this treatment for finished forgings. If they have been thoroughly wrought the tempering can do thom no barm, while if, on the contrary, they bave been submitted to doo much or too prolonged beat, the process, as already stated,

on tee application of solar heat as a MOTOR FORCE.

(G. A. Bergu in Pogyendorfis Annalen.)

That the heat of tha sun maybe trausfurmed into mechanical force no one can doubt; fur we se daily what masses of water solar hent raises into the air, to bo again precipitated to the earth; and we know what an enormous mechanical furce is here repesented. Further, wo know that sola: heat is the cause of motions of the atmosphere, that plants under ats influence form out of the cerbonic acid f the air, an organe substance richer in carbon; that plants which grew in earlier times, under the infuence of bun-heat, werc tran-fomed into coal and prat, whose combustion now yields heat to drive our engines, which is simply the solar heat returned.
But while solar heat is the cause of uearly all mechanical force developed on the earth, we have yct hitherto known of no muans whereby it may be dir etly utalised for mechanical work It has been proposed, indeed, to employ solar heat, concentrated by lenses or mirrors, for driving a steam or caloric machine. These machines, how ver, are not suited for this, as they involve too great a saste of heat. Moreover, in concentration a large quantity of heat must be luat. These circumstances, as also the fact that the concentrating :ppparatus must always be moved according to the motion of the sha, have renderedsuch machi esimpriaticable. Sun mwhanes must b. so arranged, that the solar heat absorbed by a given surface may, without too great waste of heat, be directly transformed into mechanical work. We propuse to inquire ow such a machine may be had.

It is known that the arrangement of machines, which serve for the transformation of heat into mechanical work, rests on the principle that a liquid or gaseous substance, acted on by the heat, undergoes a mulecular change, through which a certain mechanical force is diveloped The changes of solid bodies, under influence of heat, are too small fur trambformation of the heat into mechanical work, or to render the n means of movement, although through such molecular change, a certain mechanical force is developed. Gaseous bodes have been applied as means of movement in the caloric and gas machives; but witb the small difforences of temperature which ocrur in some machines, they cannot be employed as such, with advantage. Thus nothing remains but to employ a liquid; and it must be one whose boilng-point is very low. We know that the great expenditure of heat in steam-engines is duc, in great part, to the high bolling-point of water The higher steam-pressure we have in the boiler, the greater is the quantity of heat transfurmed into mechancal work. Hence, if we had a iiquid which, at ordinary temperature, behaved like water at a high temperature, this liquid would be a suitable means of motion for a sun machine. There are severat such liquids, e.g., sulphuryus acid, methylic chloride, metbylic ether, ke. Of all these, sulphurous acid lest denerves attention, ra it has several useful properties for the end in veer. It is not too difficult to condense, and it can be got at a moderate price. The keeping of it presents no difficulties, and it may quite well be put in ordinay steam-boilers. Now we have got the principle on which we must construct our sun-machine. Conceive a vessel, filled with sulpharous acid, exposed to the sun's mys; the tension o: the sulphurous acid vapour, if the temperature of this vessel exceeds that of the surroundiag air by at least 10° to 20°, must be from 1 to 3 atmosphereshigher than that of the sulphurous acid vapour in another vessel B, simulaty filled with sulphurous acid, but which has only the temperature of the surrounding air. We can thus arrange an engine which agrecs in principle with the stewn-engine with meicly this difference, that the water is replaced by sllphurous acid, and the fuel by the solar heat; while the vessel exposed to the sun's rays represents the steam-boiler, the vessel kept at ordinary temperature maj represert the condenser. The sulphurous acid condensed, after doing work in vessel B, could casily be driven back by a force-pump into the bonter repreeenting vessel A. The capability of work of such a machiac must uaturally increase with the amount of heat commanicated to vessel A, or be proportional to the surface exposed to the solar tays.

If now, we conccive a factory or shop, the roof of which is covered with resecls coutaning sulphuric acid, and which is turnished with a sun machine, made on the above principle, such e machine might indecd work while there was sun sbine;
but in dofault of this, the establishment woald be brought to a standstill. True, the solar heat might bu replaced by tho heat of tho air, if the temperature of the air were pretty high, and one had at hand a cooling substance like ice. Bat as this is not always the case, the establishment should have, besides the sun-machine, an apparatus which might "store up," some of the work done by this. As such, Natterer's apharatus for condeaning carbonic acid might with great alvantage be used. If a silpply of carbonic ach were kept in a large ghsometer, like those in ordinary gisworks, the Natterer apparstus might be fed from this. In a wrought-iron vesisel thus filled with liquid carbonic acid, we should thas have an eoormous store of in chanical force, which might be made to replace the artion of solar hest un the sum-machine, partially or wholly. After work don's the carboni acid, become gaseous agran, might be collected in the gasometer. Or, sgain, the sum-machine, whate in action, might drive an icemachine, and moght, in defanlt of sumshine, protit by the ice it had produccd, for maintenance of its worhing.

We thus sece that from the fresent stamppoint of sejence, it is possible to constricit a constantly working suu-machine.

THE CENTENNIAL TOWER, ONE THOUSAND FEET

 IIGM.Near the modern village of Halleb, in Asiatic Turkey, and on the river Luphrates, at about 300 miles above the juuction of that famons stream with the 'ligris, etands a huge irregular mond, rising abruptly from the desert plain. Masses of vitrified brick are heaped about its base, and its interior, so far as excavations have pragressed, proves the whole vast pilo to be of similar material. Cuneiform eharacters, imprinted upon the sun-dried clay, havo told to the archreolugist the long forgotten history of this ancient ruin, carrying the mind back to the glories of Babsion the Great, bacis to the reign of Nebuchadnezzar, and, yet still further into the mists of antiquity, to the days when "the whole earth was of one language and of one speech." Equalled in age only by tradition itself, the first monument erected by human hands yet remains, and though its lofty pinnaclo is overthrown and prostrate, it fulsis the purpose of its builders: "To make us a name."
It is but natural for the mind to wander back to this carliest attempt of our race to make for itself a written history, and to commemorate a gueat event by the erection of a celossal structure, in connect on with the sulject of the present lines. Asdid the descendants of Noah, so propose we to do. The oldest of ancient aaticns formed brick and made mortar, and built for themselves a tower to record their existence; wo youngest gimodern peoples, build us a fower to celebrate the close of the first century of our mational life. And to its prototype, Babel, a pile of sun-dried clay whicb authorities assert, at the hour of confusion of tongues, had not attained an altitude of over one bundred and fifty-six feet, the graceful shafl of metal, rearing its summit a thonsnnd feet above the ground, forms a fitting contrast, typical of the knowledge aud skill which intervening ages havo taught mankiud.
"Rat how high, comparatively speaking, will this thousand foot structure appear?" dondiless is a question alrcady in the mind of the curious reader. Beside the mighty works of Nature, He answer, infinitely small ; beside the works of man colossal. Compared with the vast peaks of the Himalasas, twenty-five thousand feet above the sea, ten hundred feet is but a pigmy elevation; beside the loftiest bpires which exist upon the earth, it is as are the giant trecs of California to the tallest manles and clins, which join their leafy arches over our strectsand cioorways.
The reader can dran the contrast for himself, by a glance at the admirable effort of both artist and engraver, to which our final page is devoted. Here are grouped the highest structures in the world: and in the centre and springimy far above them all, is the siry network of the great tower. Many, of the ediaces depicted will be recosnized at a glance. First in point of altitude is the graceful spire of Cologne's far famed cathedral, rising to a height of gol foet abor the marble pavement of tho annctuary below. Next is the Great Pymmid of Cheops, beneath the crest of which lio 480 feet of stone before the vast foundation is rasched. And then
anothor fane, spared by tho fate of war, though not nn. 6cathed, Strashourg's ininster, towers 468 feet from earth to pinnaclo. Michatl Angelo's grandest work, the dome of St. Ecter's, tho galdod cross surmounting which, from its

PKOPOSED (ENTENNIAL TOWER AT' PMILADELPMTA
height of 457 feet, seems to watch over the Boman campagns, is closely followed by another pyramid, that of Cophren, brotiner and successor to Oheops, the summit of which is 454 feet from tho desert sands which coitinaally dris about its foot.

Revaling the glorious vault of the Italian arohitect, Sir Ohristopher Wren's masterpiece, St. Paul's, rears ita symbol, 365 fuet above the crowded streets of the great city at its base, ovortoppang, by comparison, the dome of our own Capitol at Washiugton, to which our artist invites the contrast, by fully 78 foct. Representative structures from three of our principal cities complete the picture. Trinity Church stoupte, in Nrw York city, 286 feet from the foundation to apex, then Bunker Hill Monument, its granite column towering 221 feet, above the scene of the conflict which it commemorates, nud, lastly, St. Mark's church in pliladelphia, an edifice of no amall architectural beauty, the spire of which syrings to an alditude of 150 feet above the curb.

So much for relative height. And now a word as to whe is to build the great fabric, and how they propose to carry ont their task. The designers aro Messra. Clarko, Reeves is ('i), civil engineers and proprietors of the Phanixpille Bridge Works, of Phouix ville, P^{a}., a tirm represented by its proinctions throughout the whole country, and regarang whose ability to carry through an enterprise of this kiad no corroborative absertions on our part are at all hecesary. The material is American wrought iron, made in the form of Phouix colnmas, shown in section in Figs. 5 and 6 , united by diagonal tie bara and horizontal struts. The section is cincular, and is 150 feet in diameter at the base, dimitishing to 30 feer at the top. A central tribe 30 feet in diameter, shown in sectinn in Fig. 2, extends through the entire length, and carres the four elevators, shown in plan and section in ligs. 3 and a The latter are to ascend in three and descend in five minuter, ro as to be capable of traneporting about 500 persons per hour. There are also spiral staircases winding around the central tube.

The bracing above noted, as will be observed from our large engraving, runs in every direction, so that the tower will be as rigid as if mado of stone, and yet will exposo very little surface to the wind. The proportioning is such that the maximum pressure resulting from the weight of the structure, with persons upon it, and a side wind force of 50 lbs . pes myure foot, will not strain the lowest row of colnmus over $5,000 \mathrm{lbs}$. per square inch. The four galleries are rooted over and protected with wire nettiag, in order to prevent accidents. The estimated cost of the fabric is one million dollars, and the necessary time for construction, the designers tell us, need not exceed one year. The site has not been as get defnitely located, but it will probably bu in Fairmomt Park, Philadelphia, in proximity to the buildings of the Centennial Exposition. By calcinmand electric lights from the tower, it is suggested that the lattel, with theiradjoining eround-, might be brilliantly illuminated at night. The summit of the spire would also form a magniticent observatory, while the view of the surrounding country would be unpiralleied.

It is hardly necessary for us to point ont the vers appropriate character of the design in connection with the obiect ot the erection. That the hundredth anniversary of onr mational existence should not pass without sime more permatant memorial than that of an exposition, which, within a few months from its close, will have dicappeared, seems to us emiaently proper. It is clear that, within the comiar two years, no mobument of so imposing a nature, or of so unighe and original conception, can be constructed of any other material than iton, nor, indeed, can we hope to erect a fabric noore completely nutional in every feature. Not only then shall we commemorate our birthoay by the loitiest structure ever built by rama, but by an edifice designed by american engincers, reated liy American mechanics, and constructed of matcrial puncly the product of Americau eoll.-Sczentyic Amertcan.

HELIOCHROMIC PICTURES.

The foilowing is a translation of a paper $\mathrm{b}_{\mathrm{j}} \mathrm{M}$. de S fiorent, in the "Bulletin of the French Photographic Society"

After many unsuccessful attempts, I have at last vern fortnnate enough to discover a method of producing, with great ease and certainty, heliochromic prints whose colours are clos ely allied with those of nature. I have obtained by my method reproductions of coloured glay; and stamps. I can also obtain landscapes in the camera, but with colours rather weak in nature, the result, no doubt, being capable of improvement iy having recourse to a better adapted apparatus. My
method of opeming, at which 1 have arrived after num rons trials and experimente, I will now descritu -A shin of paper, whth as fune a krain as posible, is pluged intur antrer bath made up as follows: Nitrate of silver and distillid water, 20 parts of each: sa soon as a solution has heen mahle, there is added, alcohol, 100 garts; nitrie neid, 10 pats. When tho shor hat then thas trated and dried arain, it is furthor planged into a solution of

$$
\begin{aligned}
& \text { If ydrochloric:act } \\
& 50 \text { parta } \\
& \text { itcohal } \\
& \text { 1.. }
\end{aligned}
$$

1 liftle gine white in dissolved into the hydtochenic acid betorchand

Niter this donble tratment, the sheet of proper is exposed to annizint for a short time, until tha suriace has assumed a volet blor tint. It in then immersed again, after dericcation, in the silver, as also in the hydhochoric bath. 'These ops:ationsare repeated until a most intense blue has beeta obtaned, this being the only way to secure very vigomenos lenages.

Before the papir is altogether dry, it is put into another bath. made up by addum a few drope of a solution ot mercury, discolved in nitric acid, to some distilled water. The nhee: is allowed to remain from five to ton minutes in this hast named bath, aded as thon dricd by contact with blothag yaper.

The sheet thus sensitised is then cxposed to light under colonred glass-a coloured magic latern shde, for unstanco ; andafter a period of twenty to thirty becondo in the sunlight, an impression on a white ground is obtained, with all the colinits of the model. The colours are more vivad, and the rapidity quite as great, if there is added to the buth just mentioned. -

Saturated solution of bichromate of potash or ammonia. \qquad	2 parta.
Sulphuric acid	2 "
Chlorate of pota	1 "

To fix the prints in some degree, they are washed in pleaty of water, and then immersed in

$$
\text { Armonia. } 100^{5} \text { puts }
$$

Afteragain washing, the impression is pat in a bath saturated with an alkaher chloride. Then, after a linal washing, the image will be found to resist for a consideable time the action of dithused light.

action of colodred glasa.

1. Such greater rapidity is obtained if the chlonde of silver paper is darkened under violet, or blue glass.
2. If, on its exit from the nitrate of mereury bath, the sheet is exposed under a coloured glass, and there are interspersed, be"ween the sunlightand the glas'. screens or glasses of differen colon,rs, it will le observed that the coloura appear more rapidly under the yellow, green, and red screens, than under the blue and indige ones.

cobillementart coloma.

The whenomenon of complemontary colours, obsorved by A becquerel when phanging the impressions in ammonia, is exceedugly easy to produco with paper To effect this, it ia only necessary to put the print, after it comes out of the frame, into a solution of carbonate of soda, and then plange it, after washing, in a solution of nitrate of lead, aud expose it to sunlight in a bath of an alkaline chloride. Tho phenomenon may also be produced in several other ways.
To reproduce landscapes in the camera, it is necessary to prevent, as much as possible, the action of diffused light, nod to do this a cone of cardboard of suthicinnt length is tixed in front of the lens. The tume of expusure with a Darlot lena* of about cight mobes tocal length is from fifteen minutea to an hour, operating with au open stop anil in full sunlight.

It is said that 400 mon were killed in the Btate of New York in beven montiss while coupling cars.

AN EPISODE IN THE EARLY ENGLISM GLASS TRADE.

By J. A. Langrord, LL.D.

The reign of Elizabeth was one of intense activity in all departments of public lifo. The mind of England, liberated from the bondage of centurieg, dioplayed the utmost onorgy, and sought for employment for its newly-awakened powers in all the fields of human enterprise. It was an age of unparalleled grentmess, in which men " went about their noblest tasks like children at their play." In poetry; in philosophy, in government, in war, and in alventure, were found fitting and appropriate openings for the excrcise of the bighest genius and the use of the ablest talents. It is the age of Shakespeare, of Spenser, of Bacon, of Raleigh, of (ecil, and inrumerable other mighty souls who have left their impress on all succeeding ages, and whose "memory the world will not willingly let die." And over all these ;reat ones was placed a ruler who knew how to avail herself of their varied powers, who won for her glory, their deepest devotion and self-sacrificing pervict, and, working togethe: for the common good of their country, they made her reign one to which all Englishmen look back with pride, and still regard as one of the grandest and brightest epochs in the listory of this greatly-favoured land.

As was only natural under such circumstances muchattention was paid to the industries of the country, and trade and commerce partook of the new energy and new lifo which had been so widely aroused and developed. In the correspondence of the time which has been preserved, we fand many curioua and interesting evidences of the great activity displayed in all matters connected with trade, and that the spirit of enterprise and adventure which animated the nobles and the upper classes, was equally active among the middle classes, the great trading companies, and the people. The heart of the whole mation had been etirred to its depths, and the effects of this marvellous awakening were as visible in the enterprise of the people as in the daring deeds of the commanders, the unconquerable bravery of the adv uturers, the matchless wisdem of the statesmen, and the unrivalled straias of the poet: whose works have immortalised the reign of Elizabeth.

In the Lansdowne I 以S. is preserved a very curious letter from George Longe to Lurd luughley desiriug a Patent for glass-making, in which he describen how the trade came first to England. This remarkable lotter is published in the second series of "Original Letters Illustrative of English History," by lillis, and is forthy of being reproduced in Iron. It is as follows :-
To the right honourable the Lord Burgleighe, Lord Treasurer of England.
Att what tyme Lat truables begun in France and the Lowe Couvtryes, so that glass could not conveniently be brought from Loraine into Fingland, certaine glassmakers did covenafite with Anthony Dullyne \& John Carye, merchants, of the said Low Countryes, to come and make glass in England. Wheruppon Dollyne \& Carye obtaiued the Patent for making glass in England in September, the ixth yeare [1566] of we Queene's Majesties raigne for xxj years ensueinge under these conditions, to teache Englishmen \& to pay custome, which Patent was fully expired a yeare ago

Carye \& Dollyne, having themselves no knowledge, were driven to lease out the benefitt of their Patent to the Frenchmen, who by no means would teach Englishmen, nor at any tyme paide one peny custome. Carye being dead, Dollyne tooke vjd. upon a case of glass.

For not performance of covenants, ths ir Patent being then voide, about vj. yeares after their grant, other men erected and set on worke divers glasshouses in sundry parts of the realme, and having spent the woods in one place, doe duyly so contynue erecting new workes in another place without check or contronle.

About vij. Feares past, your honour called them that kept the glasshouses before yon, to knore who should paye the Queene's custome, whose answere generally was, that there was no custome duc, but by condicions of a speciall piveleder which no one of thein did cnjoye, and they not to pay custome for comodity's made within the realme Thus hath Her Majestie beene diceived and still wilbe without reformation.

I most humbly desire your honour to graunt me the like Patent, considering my pretence is not to contynue the making of glass still in England, but that therebye I maye effectually
repress them. And wheras ther are now fifteen glashouses in England. Yfit so like gour honour (graunting me the like l'atent to enjoyne me at no tyme to keep above ij glashouses in England, but to erect the rest in Ireland, whereof will ensue divers commodityes to the commune wealth, according to the effect of my former petition.

The woods in England witbe preserved.
The superfinous woods in Ireland wasted, then which in tyme of rebellion Her Majnstio hath no greatar enomy theare.

The country wilbe much strengthened, for every glashouse wilbe so good as twenty men in garison.

The country wilbe sooner brought to civilitye, for many pere fol .t shalbe gett in worke.

And wheras Her Majestic hath now no peny proffitt, a double custom, must of necessity be paide. Glass be transported from Ireland to England.

May it please your honour to be gracious unto me and, God willing, I will putin sufficient securitye not only to performo all things concerning the Patent, but also (thankfully acknowledgeing the good I sball receive by your lordsiipp) to repaire your honor's buildings from tyme to tyme with the best glasse, duringe the leave of said Patent; $\&$ allso bestowe one hundred Angels at yovr honor's appointment.

I have spoken to Dollyne as your honor willed me, \& may it please your honor to appoint some tyme that we may both attend your honor.

Your honour's poore orstor,

Groroe Longe.

We do not know whether George Longe's petition was granted or not. The pretty little bribe offered to keen Icrd Burhigh's buildings in repair "with the best glasse," aud to give him, in addition, "one hundred Angells," was likely to prove effective, and is in sirict accordance with the habits of the time Such bribes or "fees" were the recognised payment for such services, and were looked upon as part of the recognised revenue of all persons holding public offices. George Longe was too shrewd a man of business not to include such offer in his petition. We lo not know the petitioner's success, but we do know that he was not ablo to divert the trade from Eugland, and transplant it into Ireland, notwith. standing the many public advantages which he delares would result from such a transference. Lookiug at the magnitude of the glass trade in England at the present time, it is curious to note that three hundred years ago there were only fifteen glass-houses in the kingdom, and that George Longe proposed to reduce them to two. It is also illustrative of the time to find the petitioner placing as one of his principal reasons for urging his suit for the granting of the patent, that the trade would destroy the superfuous woods in Ireland, "then which in tyme of rebellion Her Majestic hath no greater enemy there." Such a reason would not fail to bave its weight with the astute statesman to whom it was addressed.

A Sinple Ornament.-A pretty mantelpiece ornament may be obtaned by suspendingan acorn, by a piece of thrend tied around it, within half an inch of the surfaco of some water contained in a vase, tumbler, os saucer, and allowing it to remain undisturbed for several weeks. It will soon burst open, and small root; will seek the water; a straight and tapering stem, with beauriful glossy green leaves will shoot upward, and present a very pleasing appearance. Chestnut trees may be grown in the same manner, but their leaves are not so beautitul as those of the oak. The water should be changed once a month, taking care to supply water of the same warmth; bits of charcoal added to it will prevent the water trom souring. If the little leaves turn yellow, add one drop of ammonia into the utensil which holds the water, and they will renew theit lusuriance.

The Telegraph says. St. John now is the great lumber exporting city of the world. We sent 2,000 tons more of lumberladen vessels to Liverpool than Quebec, nearly 40,000 tons more than all the other Colonial ports put together. About T0,000 tuns more than the pitch pine ports, and over 15,000 tons mor. than all the Baltic ports. Such an exhibit should bo most gratifying to us, as it unmistakably shows how thoronghly we have eclipsed all competitors in the lumber trade. This year, there is little doubt will be even more favorable to St. John than last was, as there is a prospect of a large rise in Baltic wood.

Rall.WAY MATTEBS.

New Locomotive Balz-rinorr.-'There ia now in use on tho of the locumotives on the Northern Railway an excellent npparatusfor ringing the bell by ateam. It was obtained from the United Stateg Dy one of the Northern engincere, Mr. Bobert l'earson, who first saw it when attending the ''onvention of the Brotherhond of Locomotive Engineers, which met last summer in Philadelphis. It is a great improvemunt on the arrangement by which the bell is rung on the Great Western loconotives. By the later the bell is rung faster or slower, according to the speed at which the engiue is going. By this apparatus the bell 18 rung with a certain measured stroke, whatever be the rate of travel. The new Uell-ringer consists of a miniature steam cylinder, with the piston of which the bell-cord is connected. The bell may be kept ringing' continually or not, at the pleasure of the engine-driver.

A Novri, Raliroad.-There has just been completed at the machine shop of I aferty and Brothers, (Xloucester City, N.J., a fourton locomotive, designed to run on one rail. It is built for a street railroad company in Georgia. This engine can with propricty be called a steam velocipede, as it rests upon two wheels, one following the other. The rail or track upon which it is to run, a sample of which is laid in the yard of the builders, is styled a "Prjsmoid, or one track railway," and is composed of several thicknesses of plank, built up in the style of an inverted keel of a vessel, with a flat rail on the apex. Upon a trial a speed of about twelve miles an bour was attaind and the inventor and patentee claims that the specd can be almost donbled on a lengthened track. Mr Crow, uf Opeliks, Ga, is the inventor and patentee of both tracksand engines, and he claims that his inventions demonstrate a tractive power superior to anything ia the locomotive line of equal weight. The capacity for ruaning curves is very much greater than the two sail system The track upon which the trial was made contanned 36 fet of lumber and 18 pounds of iron to the lineal foot, proving itself equal to aspan of 20 feet, remaining firm and unyielding under the pressure of the engineas it traversed the road. The revolving fangesattached tuthe engine, and which run on the outside's of each wheet, Mr Crow claims, absolutely lock the rolling stock to the prism, and obviate the necessity of so much heavy rolling stock in light trafic at a high rate of speed. It is also claimed that prismoidal railway built with a base of fourteen inches, angles forty-five degrees, can be built at a cost of $\$ 3,000$ per mile. The inventor is of opinion that bis eagine aud track is particularly adapted to the propelling of canal-boats, and will compete successfully with horse-power on canals without necessarily interfering with the use of the latter, but he does not state in what way. The engine will shortly be shippell to its destination (Atlante, Ga.), where it goes into operation on a strect railrond built at an elevation of twelve feet above the sidewalk.—1'hiladelphia Ledger.

Soys interesting experiments with mosquitoes have lately been made by Professor Mayer in the United States, who. at the session of the Academy of Suiences at the Steven's Institute, Ioboken, the other day, gave an account of his discoveries with regard to thege insects. According to the Pall Hall Gazetle, he said that by placing a male mosquito under the microscope, and sounding various notes of tuning forks in the range of a sound given by the female mosquito, the varions fibres of the antenna of the male mosquito vibrated sfmpathetically to these various sounds. The longest fibres ribrated sympathetically to the grave notes, and the short fabres vibrated sympathetically to the higher notes; the fact that the nocturnal insects have highly organised antenne, while the diurnal ones have not, and aiso the fact that the anatomy of these parts of insects shows a highly developed nervous organisation, leads to the inference that these facts form the first sure basis of reasoning in reference to the naturo of the auditory apparatus of insects. The experiments were also extended in a dicection which added new facts to the physiology of the senses If a sonorous impulse strike a fibre so that the direction of the impulse is in the dircetion of the fibre, then the fibre remains etationary. But if the direction of the sonnd is at right angles to the fibre, the fibre vibrates 下ith its
maximum intensity. Thus when a sound strikes the fibrils of an insect, thobe oa one antenna are vibrated more powerfully than the ibrils on the of her, and the insect naturally turns in the direction of that antenua which is most strongly shaken. The fibrils on the other antenan are now staken with more and more intensity, until the insect, having turned his bods so that both antenner vilirate with equal inteasity, has placed his body in the direction of the sound. Experiments under the microscope show that the mosquito can thus detect to withia five degrees the position of the sonorous centre.

Wobrine tas Cabls.-But few persons in perusing a cable despatch understand the process whereby it reaches its destination. It may be thus deferibed: An operator bite at a table in a room darkened by a curtain; ou his left hand atands a little instrument ammed the "reflecting galvanometer," the invention of Sir William Thompson, without which Atlantic telegraphy would be a slow process, not exceeding two or tinee words per minute, instoad of eighteen or twenty, the present rate. This delicate instrument consists of a tiny magnet and a small mirror swinging on a silk thread, the two together weighing but a few grains. The clectric e irrent, passing ulong the wire frum Valencia, deflects the magnet to and fro. The mirror reflects a spot of light on to a scale, in a box placed at the operator's right hand, where, by ite oscillation, the spot of light indicates the slight movements of the magnet, which are too slight to be directly seen. This little sminging maznet follows every change in the received curreat; a ad every change, great or small, produces a correspondinguscillation of the spot of light on the scale. A codo of signals is so arranged by which the movement of the spot of light is made to indicate the letters of the alphabet. When receiving a message from Valencia, the operator watches the movement of the light speck, which keeps dancing about over the scale on his right. To his practisen eye, each movement of the spot of light repregents a letter of the alpha eet, and its seemingly fantastic motions are spelling out th - intelligence which the pulsings of the electric corrent are :ransmitting betwoen the two hemisph res.

As india-rubber plates and rings, says the Tournal of the Franklin Inztreute, are now used almost exclusively for makiog connections between steam and other pipes and apparatus, much annoyance is often experienced by the impossibility of effecting an air-tight connection. This is obviated entirely by employing a cement, which holds equally well to rubber and the metal or wood. Such cement is prepared by a solution of shellac in ammonis. This is best made by soaking pulverised gum shellac in ten times its weight of strong ammonis, when R shining mass is obtained, which, in three or four weeks, will become liquid, without the use of hot water. This softens the rubber, and becbmes, after volatisation of tho ammonia, hard and imperviable to gases and fluids.

We note, says the Scientific American, with no small degrue of gratification that the project of a colossal telescope, wbich is to be the largentand most complete instrument that modera scientific knowledge can suggest, ingenuity devise, is actually in progress of claboration. The scheme of a " million dollar telescope," to which we have so frequently referred, and which has encountered such an earnest support smong large numbers of our readers, is in fact to be carried out; though whether it will be found necessary to expend the whole of this large sum of money is not determined. It is known that the cost of the great Washington instrument, which was to be $\$ 50,000$, has not amounted to a sum greater than $\$ 30,000$; and hence there is a possibility that that of the mammoth telescope now contemplated may fall below the large aggregate first proposed.

PROPOQ:

[^0]: 'ioppersm:ths and Planishers aro vory skilfu! in fattiog. They mas also be advantageousty ongayod for difficult osses of braing and a
 roldeng.

