Ine Inssitute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

\square
Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagée

Covers restored and/or laminated/
Couverture restaurée et/ou pelliculée

\square
Cover title missing/
Le titre de couverture manque

Coloured maps/
Cartes géographiques en couleur

Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations/
Planches et/ou illustrations en couleu:

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves addad during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajourées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meillear exemplaire qu'il lui a èté possible de se procurer. Les détails de ret exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification darıs la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculées

\checkmark
Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées

Pages datached/
Pages détachées

Showthrough/
Transparence

Quality of prini varies/
Qualité inégale de l'impression
Continuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index

Title on header taken from:/
Le titre de l'en-tete provient:

Title page of issue/
Page de titre de la liuraison

Caption of issue/
Titre de départ de la livraisonRasthead/
Générique (périodiques) de la livraison

Additional comments:/
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

THE
 NEW-BRUNSWICK AGRICULTURIST. 5 줄

Minted at the Brunswick Press, Prince William Strect, by W. L. Avery.

THE NEW-BRUNSWIGK AGRICULTURIST'.

Vol. I.
 SAINT JOIN, SEPTEMBER, 1841.
 No. V.

AGRICUTTURAL READING AND THE MFFUSION OF AGRICULTURAL INFORMATION.

Trie disinclination which is so generally manifested byour Farmers to avail themselves of the means of information within their reach, is one of the greatest impediments to the progress of agriculture in the Provinces. Improvements must be based upon science, and amelioration cannot take place advantageously, unless Farmers understand the principiss of agriculture as well as the practices in it. This knowledge can only be acquired "iby reading, or hearing the researches and experiments of philowophical agriculturists and practical husbandmen. Other countrics have reaped a rich harvest from the scientific labous of eminent men, and the names of Davy. Leibig, and a host of ohers, will descend through successive gencrations, and will be held in grateful remembrance by every intelligent agricultiral enquirer. 'The generality of our Farmers have yet to learn that agriculture is a science, that the process of vegetation is regulated by laws and promoted by agents, which when known by husbandmen to the extent of the present discoveries in them, would give not only an increased interest in cultivating the soil, but an increased return for the labour upon it. Agricultural chemists have made most important discoveries in this science; and although it carnot be presumed that every farmer can comprehend the technical language in which those discoveries are described, nevertheless all can be benefitted by the results of them-as for example : the practical farmer finds by experience that some soils cannot be rendered productive even by the most
copious supplics of manure; he spreads it bountifully over his landtills the soil-sows his seed, waits the appointed time, and reaps disappointment ; he is imnorant of the cause of it. The philosophica! agriculturist can explain the difficulty-he has asccrtained that the fertility of soils is dependent upon the presence of certain salts in them, and that when these have been exhansted by continued croppings, or when they were not originally present in them, manures, alihough they may have been abundantly employed, yet if they did not restore, or give these salts to the soil, would fail to render it productive. A farmer, speaking of manures, recently observed that his crop of wheat was a fiture, although from the rank luxuriance of the blade in the early part of the scason he anticipated a great return-he was unable to account for its failure: A gricultural chemistry has detected the cause : the soil contained silicate of potash, and the other principles requisite for the growth of the striaw, but it was deficeent in the phosphate of lime, the principle requisite for the production of the grain. Fxperience after many failures and trials may ultimately discover that some manures are superior to others on such soils, but science can direet the practical farmer to an immediate corrective, namely, to those manures which contain the phosphate of lime, and bone dust is one of the most powcrful of the:n. Not long since a very respectable farmer observed that he had experienced most decided benefit fiom the use of fish as a manure, and that he had reaped a very abundant crop of wheat from the soil over which it had been spread-the old gentle.
man was satisfied with the fact, altho' he was not aware of the cause of it; and when he was informed that one of the principal agents was the phosphate of lime, he acknowledged the advantages of science, and the assistance that it would afford to the practical farmer; but still it must be confessed that too many prefer the darkvess of their own conceits to the light of knowledge. In England and throughout the United States Agricultural Works and Periodicals meet with extensive eacouragement and support. In Nova Scotia and New Branswick the limited circulation of European, American, or Domestic Agricultural Works and Papers, is a sad evidence against our intollcctual improvement, without which the cultivation of the soil will be correspondingly deficient. We do not claim originality in the various articles recommended to consideration in this Periodical, but we , do say that the valuable extracis from Leibig on the philosophy of Agriculture, as well as the practical observations taken from the British Husbandry, from which Jackson has copied most copiously, are sufficient to entitle it to the attention of our Farmers. Societics may form and re-form-resolve and re-resolve-elect officers, and publish their elections and nomimations; but they will be vain shows, and evanescent efforts, without the necessary aid of agricultural reading. The cultivation of a soil destitute of fertilizing salts is unprofitable labour, unless it is supplied with them, and the formation of Socictics, the announcement of office bearers and the scale of premiums for the best cattle, will be equally unavailing if the mind is not cariched with the fertilizing salts of science; and we are inclined to venture the opinion that Societies would advance the object of Agriculture, if, while they were appropriating funds in the shape of premiums for the best breeds of Catlle, they would at the same time offer some premium upon the best essay upon Manuyes, or the soils of particular districts, or upon
any interesting subject of Provincial busbandry, which would act as a stimulus to, or imply the necessity of, reading agricultural works. It is entirely erroneous to assert that as agriculture is altogether a matter of labour and practice, that practice of itself will make the farmer perfect. Chemical analysis has detected the different constituents of yarious plants, and in this manner science has contributed greatly to the improvement of practical agriculture. Our farmers have adopted a very wasteful practice with their manures. Science has discovered that the gases or vapours which escape during the procoss of putrefaction are powerful agents in the cconomy of vegetation, and experience aided by this knowledge has ascertained the importance of retaining those gases, which is effected by the absorbent power of the carth when employed as a covering over a fer-fy menting compost. It would be superfluous to enlarge on the bencfits which science has conferred upon agriculture, and it is sufficiently conclusive of the importance of this science to refer to the splendid talents which have been devoted to the researches of it. The difficultics which have embarrassed the mercantile interests of the Provinces, and the wishful look whichat many now turn to the comfortable houses and competences in the country, which they exchanged for the hopes and fears of commerce will have a tendency to elevate the character of agricultural pursuits; and as it is universally acknowledged that agriculture is the basis of national prosperity, it thus follows that it is worthy of every public exertion, which is calculated to ensure and advance the success of it. The diffusion of knowledge, or in other words, useful education in all its varied departments, has a legitimatc claim upon Legislative protection, which has been libcrally extended over collegiate establishments for the resurrection and perpetuity of Dead Languages. We are not opposed to such establishments, although in our

Provinces there may be a vast dis. proportion betwcen the sums expended upon, and the bencfits conferred by them. The principle is good, altho' he system adopted to carry the principle into operation may be defective in some of its bearings. We confess our admiration of the aristocracy of learning, and we venerate the Alma Mater, which is venerable not only for anticquity in our mother country, but for the numerous examples of cultivate! minds, which colleges have produced, and which have enlightened and adorned successive ages since the cstablishment of such institutions in Great Britain; nor are our Provinces, comparing small things with great, without some evidence of their usefulness. The acquirement of knowledge is not confined to chartered edifices; these may be favoured paths to the temple of science, but there are other roads which lead to it; and we should not consider a proposition in favour of the diffiusion of knowledge wandering and visionary, merely because it is characterised by novelty. The time was, when the project to propel a ship against adverse winds and tides by the power of steam, was considered as the waking dream of a fanciful enthusiast I. -the time is, when distances are reduced, and land and water traversed with increased comfort and almost incredible celeriti by steam. And the time will be, when the present greatness of this mighty agent will acquire still greater perfection. But to return from this digression. We have already observed that there is a prevailing apathy among our farmers respecting book-knowledge. We speak generally, for ther are a few worthy exceptions ; visit the country and ask for an agricultural book, or magazine, or paper; and you will meet with them "Few and far between." The trouble of obtaining them, and the greater trouble of reading them afier the toils of the day, with the prejudices of the farmer in favour of his own experience, all conspire to impede the progress of agriculture, and the intro-
duction of those improvements, which science and experience unitedly have effected in other countries. But many who are indifferentabout reading: are very willing to hear, and we verily believe that the great object of all agricultural associations would be secured, and this best interest of the Province advanced, by the appointment of some competent individual as an Agri cultural Lecturer, under the direction of the Legislature. It should be the duty of such a person to visit in succession every county throughoyt. the Province, and to give a familiar and popular course of agricultural lectures in each. Such a course should comprehend the most important and useful discoveries of agricultural chemistry, and the most approved practices of husbandry applicable to our climate and circumstances. It would have a decided advantage over printed information, in as much as instruction would be accompanied with explanations, not only during the lecture, but subsequently and conversationally in reply to questions respecting it. Many men would travel a few miles to hear a lecture, who would scarcely cross a room to read an agricultural paper. Curiosity, and gossip, and the love of congregating, which are universally demonstrated throughout both Provinces, would ext ercise in this instance a beneficial influence in bringing men together.Such lectures, given always before the agricultural societies throughout the Province, would have a tendency to increase the numbers, strength and usefulness of such associations, and bring before the agricultural public in regularly printed records much useful information, which under the present state of such matters, is either lost or very limited in its influence. It should be the duty of such a lecturer to submit an annual report, to the Legislature, of the places he had visited; the number of lectures he had given, and the number of persons who attended them, with all other information upon the subject and within his observation.

The same lectures should be repeated in different parts of the same county, when a county was extensive and populous. It would be the interest of the lecturer to excite a general fceling in his favour, and therefore it would be his interest that as many as could conveniently, should hear him. We do not speak unadvisedly when we say, that we are convinced that such an undertaking would be followed with success. We have conversed with many farmers upon the subject, and there is a general opinion in favour of it. A person thus appointed would be enabled to publish a correct statement of rural matters and agricultural improvenents. And such a statement, comprehending localitics, would act as a general stimulus to agriculural ambition. There are twelve counties in the Province, a vast amount of useful information might be embodied in eight lectures, and supposing that these lectures were repeated twice in each county, for the greater convenience of hearers, it would make an aggregate of 192 lectures delivered annually throughout the Province. The winter would be the best season for giving such lectures, as the farmers have more leisure at that time, and travelling generally speaking is more casily accomplished. Admitting that the proposition is feasible, the accomplishment of it desirable, and that a suitable person could be obtained, who would assume the arduous responsibilities, another important question: arises; how should the lecturer be paid? We answer! By a legislative appropriation; for we think, if this important subject was presented fairly and fully to legislative consideration, that the members of both houses would be convinced of its utility ; liberal sums have been bestowed upon colleges, schools and Institutes, and we ask is there any instiution that would yield its return more immediately than the instruction of our agriculturists in that science, which is the basis of national wealth and trappincss,
and cannot be studied without improving the moral as well as the intellectual powers of the hearers. The lectures should not consist of desultory communications upon agricultuial matters, but they should comprehend a systematic course of instruction; continued from year to year. The introductory lecture each succossive season should recapitulate the substance of the preceding lectures, so as to prescrve connexion. Such a procecding would not only diffuse information at the time, but it would create a spirit of enquiry, and desire for reading and experiment, which would soon give an improved character to the agricultural concerns of the Provinces. The dissemination of useful knowledge is not the only advantage that would result from the proposed appointment, for the person thus employed might at the same time be collecting correct materials for an interesting report of rural statistics, as he would receive information from numerous authentic sources, and he could report in many instances from actual observation.

We submit our remarks to the deliberate consideration of our agriculzural friends, and particularly to those members of assembly who are more immediately interested in agricultural pursuits. The suggestion is worth the trial. It proposes the diffusion of agricultural science and practical husbandry, which would be diffused by the adoption of it. If knowledge is power, and if agricultural strengh implies Provincial prosperity, then are wo called upon to contribute our efforts to confirm that strength, which in return extends its influences from the highest to the most humble individual in society.

agricultural chemstry. (Coutinuul from page 87.

The Art of Culture.-Experience has shown that a wheat crop should not follow a wheat crop in immediate succession upon the soil, because wheat is an cxhauster of it, nor:
will it thrive in a soil abounding in humus butdestitute of some other constituents requisite for carrying the plant to maturity. This has been exemplified in the rich soil of many parts of Brasil, and in Germany. In such lands the stalk attains no strength, and droops prematurely. The cause is the following. The stalk requires the silicate of 'potash, and the grain requires the phosphate of magnesia, to strengthen them; and humus does not contain, and consequently cannot supply either of these salts to the growing plant. The plant may become a shrub, but it cannot bear fruit. "Again," says Leibig, "How does it happen that wheat does not flourish on a sandy soil, and that a calcareous soil is also unsuitable for its growth, unless it be mixed with a considerable quantity of clay? It is because these soils do not contain alkalies in sufficient quantity; the growth of wheat being arrested by this circumstance, even should all other substances be presented in abundance."

Trees, which renew !heir leaves annually ${ }_{2}$, require for those laves from six to ten times more alkalics than the fir tree or pine, hence pines and firs attain a comparatively large size in soils, upon which hard wood trees acquire a stunted growth. This observation of Leibig is familiariy exemplified upon the plains of Wilmot and Aylesford, in Nova Scotia. De Suassure ascertained that 1000 parts of dried leaves of oak yielded 55 parts of ashes, of which 24 parts cousisted of alkalies soluble in water ; the same quantity of pine leaves gave only 29. parts of ashes, which contained 4 and some fractionals soluble salts. Whena forest of pines or firs have been burnt, they restore alkalies to the soil, sufficient for the growth of beeches, wild cher ry, \&c., which spring up after them.

Wheat will not thriye on a soil, which has produced wormwood, nor will wormwood thrive where wheat has grown, because they each exhaust the alkalies of the soil.

100 parts of the stalks of wheat
yield 15 parts and some fractionals of ashes. The same quantity of the dry stalks of barley yields 8 parts and some fractionals of ashes, and 100 parts of the stalks of oats yielded only 4 parts and some fractionals of ashes. The ashes of all these three kinds of straw are the same composition : hence we see what p'ants require for their growth, and that the fieid which can only yield one crop of wheat can raise two crops of barley, or three crops of oats.

All the different kinds of grasses require the silicate of potash, which is conveyed to the soil, or rendered suluble in it by the irrigation (overflowing) of meadows. Reeds and such plants containing large quantities of siliceous earths, or silicate of potash, thrive luxuriantly in marshes, agillaceous soils, ditches, streamlets, and other places where the change of water furnishes a constant supply of dissolved silica. The quantity of silicate of potash removed from a meadow in hay is very great. This was manifested wear Heidelberg ia Germany: a stack of hay was struck with lighting, the ashes contained a quantity of fused vitreous matter, which was found to be the silicate of potash.

Potash is not the only substance requisite for the existence of most plants: It may be replaced in mavy cases by soda, magnesia and lime : but other substances besides alkalies are necessary to support the life of plants.Phosphoric acid has been found in the ashes of all piants, and always in combination with alkalies or alkaline earths. Many seeds contain phosphates, and phosphate, of magnesia abounds in the different kinds of grain. Plants obtain their phosphoric acid from the soil, and it is a constituent of all land capable of cultiva: tion. Phosphoric acid is detccted in many mineral waters, and also in combination with, lead, clay, slate and lime. The soil furnishes phosphoric acid to plants, and plants give it out to animals for the formation of bone, and of those constituents of the brain, which contain phosphorts.

Flesh, bread, fruit and the husks of grain furnish the body, with more phosphorus than it requires; and accordingly the superabundant quantity is thrown out in the urine and excrements. Large quantities of concretions formed of phosphate of magnesia and ammonia have been taken from the intestincs of a horse. It must have been obtained from the hay and oats.

The phosphate of magnesia is an invariable constituent in the sced of corn (grain), and is requisite for its maturity.

We may here observe that we have a familiar illustration of the presence of phosphorus in vegctable matter in the luminous appearance frequently met with in some decayed woods, and visible at night.

Other substances are occasionally detected in plants, which may be regarded as necessary constituents in some of them. These substances are common salt, sulphate of potash, nitre, and chloride of potassium ; clay and states contain generally small quantities of the oxids of conper, and these are sometimes found in plants, although it is doubtful whether they are necessary for their growth and perfection.

A combination of calcium which is the base of lime, with the fluoric acid, forming fluoride of calcium, may take place of the phosphate of lime in the bones and teeth: the carthy parts of bones are composed principally of the phosphates and carbonates of lime in various proportions, mixed with small and variable proportions of the phosphates of magnesia and fluates of lime. The bones of a man contain three times as much carbonate of lime as those of an ox, which in return contain a larger proportion of the phosphate of lime and magnesia.
Speaking of the fluoride of calcium taking the place of the phosphate of lime in the bones and teeth, Leibig observes "at least, it is impossible otherwise to explain its constant prescace in the boncs of antediluvian ani-
mals, by which they are distinguished from those of a later period. The bones of human skulls found at Pompsii contain as much fluoric acid, as those of animals of a former world, whilst the bones and teeth of animals of the present day contain only traces of it."
De Suassure has rema:ked "that plants require unequal quantities of the component parts of soil in different stages of their developement; an observation of much importance in consilering the growth of plants;" thus wheat yielded 79-1000 of ashes a month before blossoming, 54-1000 while in blossom, and $33-1000$ after the ripening of the seeds. It is therefore evident, that wheat from the time of its flowering restores a part of its organic constituems to the soil, although the phosphate of magnesia remains in the secds.
Fallow time is that period of culture during which land is exposed to a progressive disintegration of its particles by the influence of atmosphere, which renders a certain quantity of alkalies capable of being received into the system of plants, and appropriated by them. Careful tilling of the land therefore must increase and hasten this disintegration or separation of particles. For the purpose of agriculture, it matters not whether the land is covered with weeds, or wilh a piant that does not extract the potash in it. Many plants are remarkaable for the small quantity of alkalies or salts which they contain. Such plants therefore are favourable for fallow, as they do not exhaust the soil. The vicia faba, or Windsor bean, contains no free allalies, and not one per cent. of the phosphates of lime and magnesia. The phaseolus vulgaris, or kidney bean, contains only traces of salts. The lucerne and lentil contain only fractionals of a part of the phosphate of lime with albumen. Buckwheat dried in the sun yields only the smallest recognizable quanity of soluble salts. These plants accordingly are termed fallow crops,
becanse they do not exercise any injurious :anfuence on corn, which is cultivated immediately after them; they do not extract the alkalies of the soil, and only a very small quantity of plosphates. Leibig supposes that the small value of beans and peas as articles of nourishment is owing to the small quantity of phosphates which they contain, gnd "as the component parts of bones, viz, phosphate of lime and magnesia, are absent, they satisfy the appetite without increasing the strength." It is evident from what has been shewn, that two plants, growing beside each other and requiring the same food from the soil, must naturally injure one another. This is exemplified in the growth of certain weeds with wheat, as the wild chammomile and flea-banc, and in proportion as these weeds flourish, the grain is impoverished. Planis on the contrary, requiring different constituents, may flourish on the same soil at the same time, or in succession; thus on a soil containing potash, wheat and tobacco may be reared in succession, because the tobacco docs not require phosphates, salts which are invariably present in wheat, but requires only alkelies, and food containing nitrogen.

We insert with much pleasure the following communication, respecting "Banking accommodation for . Furmers," confessing at the same time our incompetency to venture at present any decided opinion upon the subject. We are willing however to encourage temperate discussions upon all subjects, intended and calculated to promote the agricultural interests of the country, and we thercfore invite further information upon this important question. The communication contains many excellent observations, and as we know the writer of it to be an experignced, intelligent and respectable farmer, we recommend his sug. gestions to the delibcrate consideration of agriculturists. We may here observe that a very imperfect experi-
ment was tried in Nova Scotia in the slape of a Provincial loan for the relief of farmers. But as the anount appropriated for this purpose was very inadequate, the means proved insufficient, and I ke all half-way measures, they were found to do harm; and :n the following rfanner : a farmer owed several persons to the amount of fifty pounds, but he could obtain at the loan office only a proportional part of the general amount in it, say $\dot{\mathscr{L}} \mathbf{1 0}$ or £15. His creditors knew that moncy was within his reach by giving security on lis farm, they fell upon him, and he was compelied to give it.The sum thus obtained would not satisfy all the demands upon him, some were liquidated, and those persons who reccived nothing, in the plenitude of their disappointment, poured out their wrath from tue phials of the law, and increased the unfortunate man's perplexities and debts with costs of court. The consequence was that farms were imenediately sold, to satisfy the small securities that were upon them. We do not however consider that the foregoing can be adduced as a fair argument against Banking accommodation upor proper principles, and the judicions employment of it. The utility of banks has affurded matter for a contrariety of opinions. We can readily believe that the assistance, which they could afford to the enterprising and industrious farmer, would contribute to his own gain and the improvement of the country, and that aithough some individuals might make an injudicious use of the facility, still that the general benefits would more than counterbalance the particular objections. We are unwilling to express any decided sentiment, as we have not given the subject full consideration, nor viewed it in all its bearings.

We thank the writer of the article for the flattering expression of hissentiments in favour of the "New-Bruus.wick, Agriculturist,", and as the introduptory paragraph referred exclusively to the editor of it_{s}, we have taken
the liberty of omiting it, offering at the same time our grateful acknowledgments to our correspondent.
[For the New Branswack Agriculturist.]
UPON BANKING ACCOMMODATION FOR FARMERS.

Sir-Will you permit a plain man who has given some attention to the subject, to point out what 1 conceive to be absolutely necessary to ensure any decided progress in Agriculture in this Province, and to solicit your and your correspondents attention to the point as you proceed. This is a well matuted system of banking, to enable furmers on proper security to get Ioans of noney. Without this all powerful stimulant, I fear that even your valuable and well-intentioned liabours will be in vain. It is well to collect information, without which, even capital might be expended in vain, but also without capital, I fear that knowledge itself will be all but useless. It imports little to the man who can spare no time from the labours necessary to the support of his family, that he knows modes of improvements which in a very short time would double or treble the produce or his farm. If he must labour on, and can spare no time for such improvement withom risking the comfort or esen existence of his family, his lnowledge can be of little value. He will intprove, but it will be with the pace of a smail. The country, as a whole, must thus improve almost necessarily, it is true, but our population, aided by emigration, will increase in a still greater ratio, than this slow improvement, and we will thus continue for an indefinite period to depend on other countries for our bread. The improvement of the country in production, without some extraordinary stimulus, will not go on in proportion to its population, even with increased knowledge, much-quicker than it has hitherto done. :" The best land near to market is already occupied, andः rièw settlers must go futtioi and further back into the forest. Most of the in-
tervals, and, I must say, all the sea marshes are already tuken up. Set. thers will therefore have to contend with the difficult of rearing or keeping stock on new farms by forming upland meadows, and pastures, a process requiring time and labour. Grass is the basis of husbandry; our cattle must be in proportion to it ; our mamure in proportion to our cattle, and nur culture in proportion to our manure. If therefore no exertion be made to make and collect artificial and mineral manures, it appears to me very evident that we can make but little progress upwards in agriculture. Without capital, in a majority of cases, no time or labour can be spared for this purpose. In prirate society I have met with the argument, that some farmers have capital and yet improve but little. I know from considerable experience that very litie available means are possessed by the farmers of New Branswick ; but supposing it truc to some extent, my argument remains notwithstanding in all its strength. It is not, as all conversant with mankind know, the person who has inherited property who generally succeeds in his profession, or who pushes into activity the elements of prosperity around him, but the man who is first forced into activity by the necessity of his situation, and who when he amasses some capital keeps it, with all his acquired habits of industry and cconomy, in full and conistant operation. His circumstances have at first forced him into exertion and economy, and these habits are engrained as it were in his character, and they carry him in most cases into a much higher degree of prosperity than the man who inheriting some wealth is at his ease, and inclined to enjoy life, as it is called, and to cxert himself just a little, as he sees others do. This fact is as equally observable in Farming as in other Professions, with this difference, that in farming on a small scale, and with limited means, capital is seldom or never acccundulated, while it is not so in other
pursuits. Its first efforts should therefore be fostered by artificial means, if it be desired or intended that it should be secured; and the manner of doing this prudently has occupied the minds of the wisest and best in our Father-land. The furmers on this side the Atlantic generally own their farms, and in most cases have laid out all their available means in purchasing them. 'This, which leaves them bare of eapital for improvement, gives them an advantage in being sale to eredit. Could not therefore some mode of lending them on personal or landed security be derised which woteld cnable them to go on with such evident improvemenis as increased knowledge of their profession woult! sargest, to the manifest and decided advanage of society at large. That it is practicable, first Scuitand, and lately Ireland, prove. The cash credits of Scolland are too well known for me to say any thing of here, but the effect on Ircland of judicious loaning to the agriculturist is not so well known. I myself well remember when the north of Ircland inported largely bread stuffs from the soath and from other countries; now within the space of thinty or forty years it exports largely to England and Sco'land; and these exports are increasing in a ratio which is astonishing. Belfast and Londonderry, which used to be in the wiater full of shipping discharging corn and meal for the spring and summer supply of the cominty, are now much more fall of shipping all the year through loading the same kind of com and meal for the use of the manfacturing proportion of (ireat Britain. All this was effecter througin the instrumentality of the landionder: exerting tionnelves to p:at caphat into the hands of their tenauts accompanied, as it over should be, with sound manins of hasbiandry universally distributed. The south of Ireland has advanced by the same means, but its prugress, thoughequally real is not so striking, as it has long been an exporting section of the
empire. What can be done in one country can be donc in anolher pro. vided the same or equal means be talien for the parpose. But the institution of agricultural socicties "per se" will not du this great work of regeneration. I will in a future mumber. throw out a few ideas on this subject if you give me room.

1 ani, Sir, your's, most truly, TyRo.
1)ISEASES OF THE HORSE.
 (Continuc:! from pulse te.)
Tratmen.-This must be decided, as a few hours may determine the fate of the horse. The sooner the horse is biled after the commencement of the discase the better. Blood should be drawnquickly and copiously from a large oprening, which should be made wih a broad shouldered fleam. Blood should be drawn not only until the pulse begins to rise, but un il it begins afierwards to flutter, and until the animal shows faintness. We most segulate the bleeding by t:e efice: produced, and not by the quantity of blood drawn. If in sis hou:s afeer the first bleeding the horse comimues to stand stifi, and to breathe quickly and laboriously, and if his legs are cold and the inaer membranc: of the nostril is very red, the bleeding must be repeated until the pulse and faimness indicate reduction of inflammation, which will generally be reffecied by two copious blcedings. A third beeding may sometimes be requisite, but not so copious as the former: two or hree quaris may now be taken, if the breathins is quick, the legs cold, the nostril red, and the: horse cotitinues to stand up. A large openiner, and a eopious sircan of hood ate of the uhrost consequence: in this discase. The blood, when cooled, in this discase, generally s!ows a buffy coat, which is the yellowish, fat-like suriaos on the blood, varying from a slight thin covering to one or two inclies in thickbess.

When this buffy coat is very thick and tough, it indicates violent inflammation. After the bleeding, a blister should be apphied over the brisket and on the sides, as high up as the clbows. Blisters are preferable to rowels. The hair must be shaved off for the application of the blister, which may be made of one part of powdered Spanish flies, one of rosin, and four parts of lard, well rubbed in. The lard and rosin should be melted torether, and the flies added afterwards, after the lard has cooled a little. Previously to applying the blister, the lerisket and sides should be fomented with cloths of hot water. Sometimes the blister will not rise, owing to the violence of the inward disease: this is unfavourable-the blister should be applied after the vir'nnce of the inflammation is relieved by bleeding. It will be of service t let the horse stand with fhis feet in a large tub of warm water; the temperature of which may be kept up and increased by the subsequent addition of hot water. After the violence of the disease is subdued, a rowel may be put cither on the chest in front, or betiveen the legs-this is done by raising the skin, cutting a hole an inch in length, forcibly separating the skin from the muscle bencath in a circular direction for two or three inches, and then inserting some tow smeared with blistering ointment, allowing a liule of it to hang out of the wound to conduct the discharge. The tow should be changed daily-the ointment may, or may not be repeated, as the symptoms indicate. The piece of circular leather, so frequently used for rowelling, is objectionable as it sometimes leaves a blemish in the skin. Purging in inflammation of the !ungs in a horse is injurious, owing to sympathy between the bowels and the lungs. In such instance a violent purge has brought on, or transferred the disease to inflammation of the bowels. A large clyster of warm water, back-raking, or eight ounces of Epsom salis in some warm gruel may
be used. No castor oil must be given. "It is a very dangerous medicine for the horse." Cordials, which are often given by farmers to prevent rottenes.; " atld fuel to the fire ;" nitre, digitalis, and tartar emetic should be given until they produce intermission of the pulse. The nitre, which is the nitrate of potash, is a valuable cooling medicine and occasions a mild flow of urine, and therefore it is called a Diuretic. The dose is from 2 to 4 drachms, or from 2 to 4 small tea-spoonfuls. It may be given in some gruel. The digitalis or foxglove, acts as a sedative, and diuretic, and is given with the tartar emetic and nitre in the following manner:

> Powdered leaves of Digitalis, 1 drachm.
> Tarlur Emetic, - - $3 \frac{1}{2}$ drachme.
> Nitre 3 drachms.

This may be repeated twice, or thice in the day ; digitalis acts directly on the heart, causing an intermission , in the pulse. "When at every sixth or seventh beat, the pulsations are suspended while two or threc could be counted slowly, this is precisely tie effect, which is intended to be produced: and however ill the horse may appear to be, or howerer alarming this interrupted pulsc may seem to the standers-by, from that moment, the animal will begin to amend." "The dose must then be diminished one half, and in a few days it may be omitted altogether." The tartar emetic and the nitre may be continued, until all the inflammatory symptoms have s ibsided. The effects of the digitalis should be watched, as an over-dose, or too long continuance of it would reduce the strength very much, and make the recovery from weakness tedious. The Helcbore has been given with advantage in doses of 30 or 40 grains every six or eight hours, and continued untilit causes a fiow of saliva, or spittle, from the mouth, and the horse becomes half stupid, and half delirious. These symptoms pass away in a few hours, after which the horse seems better. But the tartar emetic, digitalis and nitre are the
softest and most effectual. When the digitalis cannot be obtained, the tartar emetic and the nitre may be given; and we are inclined to attribute the principal power to the tartar emetic, which is one of the best remedies for inflammation of the lungs in the human body. 'I'he horse should be warmly clothed to keep up a free circulation in the vessels af the skin; but he should not be kept in a hot or warm stable, as the heated and vitiated air is found particularly injurious to the inflamed langs of a horse. The stable should be cool and well ventilated, without allowing him to be exposed to a current or draft of cold air. The legs should be well hand-rubbed to restore circulation in them, and afterwards warmly bandaged with flannel rollers. The dict should be sparing": a little hay-a cold mash, a little green meat, but not a particle of oats." Forty eight hours generally decide the case. If in this time there is no remission of symptoms; congestion in the lungs, suffiocation or gangrene (morlification) will follow.With such threatenings, we must repeat the medicine, blisters, and bleeding if the strength of the animal will admit of the last remedy. The legs should be rubhed more freely, and it is advised even "to scald them." We have seen the best effects produced by allowing the horse, as before advised, to stand in tubs of warm or hot water, as high as the knees; the animal scems relieved by it, and stands quietly after the legs are placed in it. If the strength declines, the horse must be drenched with gruel ; and some gentle tonic may be given, as chammomile tea, and if there is no fever urgent, and the strength seems to decline rapidly, we may give a little ginger inan infusion of gentian root. After the inflammatory symptoms have subsided in ordinary cases, the horse must not be put too soon- on his full feed-the cold mashes; green mert, if it can be obtained, a little hay, or sruel may be eontinued some days. But if the de-
bility is urgent; then the tonics, as above directed may be given, but the effect should be watched, as the liberal use might incline a return of the inflammation. When recovering; tho horse should return very gradually to his former habits. Inflammation of the lungs can be easily distinguished from intlammation of the bowels, in this latter discase the pulse is small and wiry, the membrane within the nose is not so $1 e^{1,}$, the belly is painful when pressed, the horse kicks at lis belly, stamps, paws and scrapes his litter, and wants to roll, and the skin especially over the belly is hot.

Plcurisy.-The lungs are covered, and the inside of the ribs is lined with a membrane called the pleura; when this is inflamed, tie disease is called plcurisy. It may be brought on by the same causes which induce infiamsation of the lungs, and it requires a s:milar treatment. The pulse is hard and full, differeni rather from that of inflamed lungs, the legs are cold, but less so than in the preceding disease, nor is the membrane of the nose as red, pressure between the ribs gives pain; and the horse stands and extends his neck, and protrudes his nostril much as he does in inflammation of the lungs.

Copious bleedings-blisterings, and sedative medicincs, as prescribed in inflammation of the lungs are requisite. Aperient or purgative medicines may be given with more safety in this than in the preceding disease. The tartar emetic and nitre will be beneficial. In violent attreis of pleurisy, and in ne lected, and protracted cases of it, a large quantity of water is frequently thrown out from the vessels on the inflamed surface, and deposited in the cavity of the chest, forming dropsy of it. It is recommended by veterinary surgeons to puncture the chest, to draw off the wa.ter. This may give temporary relief. If this is done the opening should be made with a large trochar, used for tapping the human body, and it should be passed between the 8th
and 9 th ribs, close to the cartilages, or sfristle. Duretic medicines, such as increase the discharge of urine, and tonies should be given. Thrpentine combined with linseed meal; or powdered rosin in doses of half an ounce-nitre and digitals-siveet spirits of nitre; and cream of tathar, have all been given as diuretics. The sweet spirits of nitre may be given in doses of three or four drachans or as many tea spoonfuls in gruel or water. The cream of tartar may be given in ounce doses, dissolved in water or sruel.

"We have before us some brautiful ears of wheat, which have been obtained by a new process of agriculture, i. c., without rither tillage of manure, and from land of the worst quality. The straw is of more than ordinary length, and the grain is of the besiquality. Some of our friends at Brest, who farm their own estates, being one day in conversation, oiss?: ed to cach oither that agrivulture, atthough the most important branch of indusiry, was suffering more from want of capial and centerprise than any other sort of industry, and rac of then observed that nothing could be rlonc without manure, and that was now becoming more and more cexpensive to obtain. Oa this, the conversation turned upon the relative imporrabe of capial amdecience in oltainiog agricultural results, when one of them chsersed that much might probably yet be discovered to facilitate profluction by aless expensive process than that of constantly applying artificial stimulant:, which rendered agricultare a hatarimus, unatractive. and unprofitable :ndustry. In contimuing the conversation, they referred 1o Fourier's views of general progress, and his method of investigation and discovery, in which he quotes the maxims of philosophy which lead to truth in practier when attended io in
theory. Among these maxims are the following:

1. All things are perfect in original existence.
2. The duty of man is to observe mature, and follow her indications in production and re-production.
3. Not to suppose that man's knowledge is perfect, and that nothing can be known of tature beyond the common practices of daily life.
4. To leave the beaten tracts of prejudice, and follow nature in her vatious developements.
"In accordance with these maxins our rural philosophers olserved that nature in the widd luxuriant regions of the earth is vigorous and active in the reproduction of vegetable life, while barremess scems limited to spots where man has ravaged, and exhausted her resources in his vain endeavors to assist her in her cflorts : and it then occurred to them, that protably at closer imitation of the natural method might be more productive and less matractive in the sphere of vegctable reproduction.
"In observing naturc unassisted, or unthwarted rather, by the hand of man, in vegetable reproduction, it is found that when the seed is ripe it falls upou the ground, and then the plant which hasproduced it sheds its leaves, or falls itself upon it in decay, and covers and protects it from the weather, until germination has commenced, and the young plant is able to grow up in licalth and strength, and fill developement, to recommence the same routine of seeding and reproduction.

From this it follows that-
"In mature every plant produces its own soil, or humus ; and, that-
"The carth, property spcaking, or the mineral substance of the carth, only serves to bear the plant, and not to aid or nourishit in vegetation. The nourishment of plans is thus supposed to be derived from air and water, heat. and light, or electricity in different proportions, adapted to the different varictics of general nature.
"With this general notion in their minds, and considering wheat to be in present circumstances one of the most important vegetable subst inces, our friends agreed to try experiments, and in October last they undertook the following operations :
"In a tield which had been sown for rye because the land was deemed too poor for wheat, a plot of twelve square yards, untilled and left without manure, was carefully strewed over with the grains of wheat, and wheaten straw was laid upon it closely and about one inci in thickness. In a trardenalso, which had been nerleced several years, a few square yards of carth were trodden over, and the surface being made close and hard, some yrains of wheat were scattered on this hardened surfuce, and a layer of straw one inch in depth was carefully laid over it, and left as in the former case to take its chance, without any ulterior attention; and in order to make doubt impossib'e concerning the mere secondary functions of mineral earth in vegetable reproduction, 20 grains of wheat were sawn upon the surface of a panc of glass, a ad covered with some straw alone, as in the other cases. The germination of the seed was soon apparent, and most healthy in developement. 'The winter has been rigorous,' say our correspondents, 'for this part of the country, and the earth has sometimes been frozen in one solid mass to a depth of six inches in the garden where the wheat was sown; and this has happened several times during the winter, to the great injury of many plants, and even to the entire destruction of some; while the spots protected by the straw were never thoroughly congealed, nor were the grains of wheat, though lying on the surface, under the straw, at all affected by the cold. During the spring excessive droughts, prolonged and several times repeated, have prevented vegetation on the common plan from flourishing in healthy progress, while our little spots of wheat had hardy.
felt the inconvenience of excessive diyness, for the earth protected by the straw has never been deprived entirely of the moisture; and our blades of corn were flourishing when all around was drooping and uncertain.'To conclude, then, we have thoroughly succecded in our practical experment, an l the wheat produced is of th: fincst quality. The straw was more than six feet hirh, and in the cars were 50,60 , and even 80 grans of wheat, of full developemest, the admiration of all who saw them; and particularly those, which grew upon the pane of glass, and which were quite as healthy and as large as those which grew upon the common earth. It must be observed also, that there was not the smallest particle of canh upon the glass, and that the plants were left entirely to themselves, without being watered or attended to in any way whatever from the time of sowing to the time of reaping. The result of these experiments has been admired by several influential agriculturists, who mean to make exensive application of the same principle nest season; and we hope that you will publish to the world these practical results, that others may convince themselves of their importance by similar experiments. The cause of this success, we think, may be explained in the following manner: Straw being a bad conductor of heat and a great conductor of electricity, maintains the root of the plant in a medium temperaturc, and prevents the carth from being deprived entirely of moisture. The moisture of the carth, or the substratum, being contibual, facilitates the constant and gradual absorption of carbonic acid from the surrounding atmosphere, and hydrogen and carbon, the chief elements of nourishment to vegetables, are thus economised in regular supplies, where they are constantly required, and pass in combination with oxygen from the roots up to the slems and branches of the plants, in which they are assimilated; and the oxygen thrown off in
exhalations from the leaves. The straw decays but slowly, and thus furnishes its substance by degrees to the young plant in due progression and proportion, (such as the siliquious ingredients, for instance, of the pod or capsule,) so that the decomposition of the straw corresponds to the four phases of fermentation, in progressing from the saccharine to the alkohol:c, the acid and the putrid states, analagous to those of infancy, budding youth, maturity, and seeding of the plant. We observed that our blades of wheat have but very few roots, and those are short and hard, something like a bird's claw, and this agrees with the remarks of Monsicur Raspail, who states that the most healthy plants in ordinary vegetation have the least exuberance of roots and fibres. Another important observation also is, that weeds and parasitical vegetation are prevented by this method, for the straw chokes every other plant but that of its own seed. Many other interesting observations might be made on these experiments, but we refrain at present from obtruding on your readers; and if any of them wish for further information on the subject, we shall willingly afford them every facility. The importance of the general result will easily become apparent without any further comment: and a revolution in the prosent modes of agricultural labour is the necessary consequence of this discovery. No tillage will be now required, or any artificial stimulants in manure, orother more or loss expensive combination with regard to soil and culture. In fact it would be tedious to enumerate the various advantages that may result in practice from this casual experiment, and therefore we proclaim it simp'y to the world that all may profit by it.

> "Charles Pallamd, " Bersard.
" Brat, August 1841."
The statements made in the precerling observations are certainly very intercsting, but neverheless we can-
didly confess our hesitation in yielding entire assent to them. Experimentalists are generally enthusiastic, and their zeal not unfrequently carries them into extravagant conclusions.The influence of air, water, heat, light and electricity upon vegetation is indisputable, but we cannot believo that the earth merely bears the plant, acting as a foor for it to rest on without contributing to its support. If such was the case, and germination, vegetation and reproduction were dependent exclusively upon plants themselves, that is, upon the falling and decay of the perishable parts of the previous plant without any assistance from the so:l, then all plants, thus circumstanced, should acquire a growth equally luxuriant upon poor and good lands. But we find unequal growths of similar woods and grasses in the descrt, which has not been raraged by the hand of man. The rich mountain soils and alluvials of our Provinces are remarkable for the gigantic growths of their hemlocks, pines, and hardwoods, whilst trees of the same description in forests upon sandy plains exhibil a very inferior stature. Grass upon marsh and upland meadows left entirely to the reproduction of nature, untouched by the scythe, or teeth of catte, should display equal luxuriance. But we unhesitatingly say, that this is not the case. It is true that, the decaying grass of a previous season falling upon the ground, acts as a covering for the roots from which it sprang, and in its progress of decay, favours the growth of a subsequent year; but we think this is satisfactorily explained by Leibig, who considers that fertility is dependent upon the presence of cortain salts-these salts are extracted from the earth in the process of vegetation, and are again restored to it by the decaying grass, because nothing has been removed from the surface. The soil annually becomes richer for the plant restores not only all that it received from it, but it gives to it also the nourishment, which was
absorbed by it from the atmosphere. And in this manner we can readily recognize the principle upon which straw would act, asan agent in reproduction. The experiment is a simple one, and the correctness or incorrectness of the statement can be casily ascertained. One thing we think we may venture to assert, namely, that if straw is good upon poor land, it will be still better upon good soil. If, in accordance with the conclusions of Paillard and Bernard, "thc Earth properly speakirg, or the mineral substance of the earth, only serves to bear the plant, and not to aid or nourish it in vegctation," how is it that new burnt lands, which it is evident abound with alkalies, bear such luxuriant burdens of wheat, and marsh lands whici also contain a large proportion of alkalics, yield such abundant crops, while poorer soils, deficient in such salts, although they may have been manured with stable manure and barnyard compost, which always contains a large quantity of straw, give a stunted and imperfect growth of wheat. This certainly proves that soil, and a peculiar state of it, las something to do with the process of vegetation. If we admit the entire correctness of the statement made by Paillard and Bernard, and we are not authorized in doubting it, it morcly proves that wheat in the climate of Brest may grow upon glass and poor soil, with a suitable covering of straw, but it does not prove that it wuld not have grow. more luxurianlly with a smitar covering upon a well tilled loan The influence of air, light, latat and electricity upon vegetanon is undeniable, and it behoves the husbandman to be aware of this in the disposal of his seeds and plants, avoiding the burial of them beyond that influence. Wic have seen the error of this neglect frequently in the transplanting of fruit trees. A hole for the tree was dug in the earth, and it was filled with manure, the roots of the tree were buried in it, then soil was pounded and clusely packed upon and around them, and
after they had forced their way thro' the rich mould, and had reached the cold hard soil surrounding the hole, the tree languished, became mosscaten, and withered away. We do not agree with those who think that we should implicitly follow and confine ourselves to nature in every instance ; for it is woll known that art and culture have effected their metamorphoses and improvements in agriculture, and horticulture. Had the almond been left to nature for its re. production, it would not have been converted into the delicious flesh of the peach; nor would the melon have numbered among its improved varieties, the Green Flesh, Ispahan, and Dampsha. The sour crab of the forest would not have acquired the size and flavour of the golden pippin, nor would our potatoc have attained its present perfection. Wheat itself is a factitious production, and requires artificial means for its improvement, preservation and continuance; and although nature has wonderfully and wisely provided the siliquious ingredients fur reproduction, still it does not foliow that the constituents of the pod itself are absolutely requisite for perfect growth in all instances, for in many it bursts and the seed escapes from it, recciving no further support from it, for it contains within itself the necessary principles for reproduction, which it reccived from the pod during the process of seeding and ripening. Naturs is an excellent guide, and Omniputent Wisdom has so constructed our carth that various soils are fitted for various vesctable productions, and we know that poor soils by admixture with other and richer earths may be rendered fertile, whereas, without this admixture, they would have continued barren and unproductive. It may be said, tha: the different salts which are discovered in plants are carried into them through the agency of water or moisture-true; but they are clerived originally from the soil, which whilst it bears, and gives mechanical support to the plant, contri-
butes at the same time to its growth and developement. Various soils no doubt, excrcise various influences as conductors of heat, light, air, moisture and clectricity, and thus oppose, or favour the decomposition of their s:aline constituents, which have been discovered in different vegetables.The gooduess, or badness of soils may be in the ratio of this power; and this power inay be increased or diiminished by the presence or absence of saline ingredients; but still the plant is indebted to the soil, which yields its virtues to the agents which act uponit, and as tilling has hitherto been found to improve the powers of extraction, we; are inclined to suspect that those sowers and reapers will have lazy times and a sorry harvest, who commit their seed to an untilled soil, and convert their ploughshares into sickles.

ETORTMCTLTYIRE.

To the Editar of the Agriculturist.
Dear Sin-lit is too much the fashion in this country, to mil at the climate, and deny its capability for bringjng to perfection the fruits of the carth. Because our winters are long and severe, agriculturists assume that the summers are insufficient for producing the regetable necessaries of life, in equal quality and quantity with the old country and the neighbouring States. lam convinced that this opinion, or prejudice, is groundless; and that nothing but duc care, attention and skill are requisite, to render many of the nutritive products of the soil, in New Brunswick, fully equal to those of Old England, although the latter bas so much the advantage in latitude over the former. As a single instance, in particular, I would mention, that last year, considering that the climate of this country might as well afford two crops of Cclery in the season, as that of England, I allowed a few young plants, of late growth, to remain in the ground, in the open air, (covered only with straw) throughout the winter ; I
transplanted and trenched them in the middle of May, this year, and the result was, that by the latter part of July Ihad Celery planis three feet long, and (in the cdible part,) ten inches in circumference; with the largest quantity of solid stalk that I ever saw. The experiment thus having proved so entirely successful, and it being evident that there is nothing to prevent out raising both an carly and a late crop of cclery in a season, I intend (D. V.) to try it again on a larger scale ; both by leating a considerable quantity of young plants, (without transplanting,) where they uecre raised from sced; and by trenching out another lot of late: plants, and letting hoth remain through out the winter; and I hope by this means, and by carcful attention to them in the spring, to have fresh celery next scason ready to use immediately after having consumed the winter stock, and sufficient to last from ${ }_{5}^{5}$ that time till the regular summer crop is fit for digging ; thus obtaining a supply the whole year through! If the above hasty remarks should suceced in stimulating others to make similar esperiments, and thus to improve the practice of either Horticulture or Agriculture in this Province, (which I am convinced is susceptible of much more improvement, and is liable to much less disadvantage from: climate, than is gencrally imagined, my object in troubling you with this communication will be fully answered, and I shall rejoice that it will not have proved enticely uscless. I am, my dear Sir, yours, verv truly, G. B.

Saint John, October 6, 1e41.

COMMUNICATION

Upon the gencral detrrioration of Sherep, apparcut from the Carcases in inarlict.
Sir-I have been much pleased in observe that you have, in your valuable publication, called the attention of our farmers to the various improved breeds of of stock so celcbrated in the Mother Country, and I am convinced that a judicious selection of both cattle and shecp, suitable to the nature of
the farm on which they are intended to be placed, followed up by a.careful attention in always selecting the best of either kind from which to increase the breed, would in a few years satisfy the most obstinate adrocate for the old ways that he might gain much by following this (in this Province at least,) new pt'h of husbandry. But few years have elapsed since the attention of the people of this Province was called to the improvement of the different breeds of animals, particularly sheep, and a great alteration in their appeartnce was early manifested in the appearance of those brought to market; but for the last year or two there seems to be a gradual falling away; for if any person will enter our market, instead of the fire formed, fat-disposed animal one would expect from the Dishley or South Down, he ${ }^{2}$ wilisee a long-legged,scraggy-looking carcass. True it is, that here and there a fine form is observable, but it only makes the others more unsightly. To what then is it owing, that in so short a time, the fine breeds which were exhibited at the old Aigricultural Cattle Shows, and which were so highly praised by every farmer who saw them, are in a measure extinct? Are they found to be unsuited to the climate, or is the quality of the wool disapprcved of? Or is it, as 1 much fear, the fault of our farmers, in not selecting the best of their flocks from which to breed? Perhaps, Sir, you can explain this matter, and lead our agriculturists to apply the right remedy for this murrain in our flocks. G.

We believe a ready answer may be given to the question respecting the deterioration in our sheep. We know that many of our Farmers very injudiciously allow the Butchers to pick the best lambs and slicep from their flocks-consequently the worstin size, shape, and constitution, are kept for breediag, and deterieration must follow. Others again, anxious for an early market, take the fimest of their la:nbs for the shambles. In England
the case is different : the Farmer in the first place selects his breeders, and gives the butcher the second pick. If all our Farmers in these Provinces would adopta similar precaution, they would soon find that the profits of an improving flock of sheep would amply compensate them for the trouble of attending to their own interest in this particular.

We are indebted to a correspondent for the following communication upon "Furrow Draining;" and in compliance with his suggestion, we have reprinted two letters on the same subject, which be published last Fall in tho Courier, under the signature of "Colonus Northumbriensis."
hints upan fuklow dratning.
This plaz of draining consists simply in opening drains parallel to each other, down the declivity of the land, at distances of from 10 to 40 feet or more apart, according to the nature of the ground.

These drains are made very narrow, being about 15 inches wide at the surface, from 3 to 5 inches wide at the bottom, and from 21 to 3 feet deep. The bottom of the drain being well cleaned out, and as even as possible, it is filled half its depth with broken stones, simiker to those used in repairing macadumized roads; or if they can be obtained, small stones gathered off the surface of the land; but in no case larger than wiil pass in all directions through a riag $2 \frac{1}{2}$ inches in diameter-it being found that stones of a larger dinneter do not afford regular support to the sides of the drain; and indeed most farmers are aware that the old rumbling drain is apt to become choked.

These drains, which, from being gencrally made in the furrows of well managed fields, the ridges of which are in general at least 15 feet apart, are called furrow drains-empty themselves into main drains formed in the lower part of the field; or if the field consists of a serics of hollows, main
yrains are formed in each, and the water which is collected in them is let of by a larger main. The main drains are generally piped, and vary in dimensions according to the extent of the field, or the quantity of water expected to flow through them. This stones after being levelled on the surface, are covered with a thin sod, and to the proper width, and neally fitted and tramped down, so as effectually to prevent any earth getting into the drain; and the stufftaken out of the drain is then returned. The expense attending this radical improvement is stated by Mr. Smith, of Deanston, on whose farm not less than one hundred miles of such drains have been made, as foliows:-Cutting ls. 6 d .102 s .6 d. per rood, of 36 yards; the stones, if collected on the adjoin. ing fields, from Is. to ls. 6 d. per rood: breaking them, from 9d. to 1 s . per rood, ($1 \frac{1}{2}$ cubic yards of stone being sufficient for a rood of drain); filling in the stones 3 d . per rood; sodding 1d. per rood. Thus the whole expense of completing 36 yards of drain will be 4s. 8d., or taking in a portion of the main drain, 5 s . per rood; and this at 10 feet apart, drain from drain, is per statute acre, $£ 910 \mathrm{~s}$; 15 feet part, $£ 66 \mathrm{~s} .7 \mathrm{~d}$. ; 18 feet apart, $£ 5$ $6 \mathrm{~d} . ; 21$ feet apart, $\mathfrak{E} 410 \mathrm{~s}$. ; 24 feet apart, $£ 4 ; 32$ feet apart, $£ 3$.

Mr. Kennaird says, "In some experiments which I made, in all of which the substratum was a hard tile, 1 find that on an average the drains can be cut 16 inches wide at the surface, 3 feet deep, and from 4 to 5 inches wide at botion, for 2d. per lineal perch of $16 \frac{1}{2}$ feet, which is fifty per cent. under the lowest price mentioned by Mr. Smith.-Thus the expensc of furrow draining a statute acre, the drains being 10 feet apart will be 26 13s.; 15 ditto, $£ 48 \mathrm{Es} .6 \mathrm{~d}$. ; 18 ditto, $£ 3$ 15s. 4 d ; 21 ditto, $\mathfrak{x} 3 \mathrm{ss}$; 24 ditto, $£ 2$ 16s. ; 32 ditto, $£ 2$ 2s. 2d. When the substratum abounds in large stones, and also when the materials for filling the drains are difficult to be obtained, the expense will be somewhat
more; but, on an averago 1 am of opinion that the work can be effectually performed, even taking in a portion of main drain, the furrow drains being 21 feet apart, at $£ 4$ per statute acre.

AGRICLLTURE.

Ir is well snown that evaporation produces cold, and that the sceds atd roots of all vegetables, except those of the aquatic kind, perish if long exposed to excessive moisture. Considerations arising from these simple truths have lecen the origin of the greatest improvements introduced into the practice of agriculture within the last century-viz., the substitution of a regularand uniform system of under-draining for the old custom of laying out arable land in ridges and furrows. It was found that thes old practice was not effective in rid?' ding the land of superflucus moisture, evea in soils possessing very absorbent qualities, and that water produced by the dew and the rain was retained so long as on those of an aluminous description; that the surrounding temperature was too much lowered by its evaporation under the influence of the wind and sun. In ${ }^{*}$ consequence of this, a degree of cold and moisture detrimental to vegetable life was produced, and in seasons when much rain fell, the clayey districts of Great Britain exhibited all the maris of sterility, though capabfe of yielding abundantly, if subjected to a rational mode of cultivation. Wherever the old practice prevailed, it was observed also that on the highest part of the ridge an exuberant vegetation was produced, but that, on its sides or declivities the plants gradually decreased in number and vigour, till in the furrow itself the earth became completely barren.

These phenomena were aecounted for on the supposition that the soil, hesides absorption, possessed powers of freeing itself of water varying direcly with the position orthe ridge;
that the furrow received and retained too much moisture, bat that the other parts, of the ridge retained less and less, according to their elevation, till on the summit itself, every particle of humidity, except what was necessary to perfect the different processes of vegetation, was discharged, absorbed, or exhaled.

Mr. Smith of Deanston, an ingenious philosophic farmer, in the Carse of Gowrie, was the first to devise a remedy for the evil sncidental to this mode of cultivation : he placed underdrains at distances varying from 18 to 24 feet, throughout all his fields, at the same tume making communications between them and the natural springs and well heads existing near the surface, which he happened to discover. These operations were greatly facilitated by the invention of 3^{3} instrument called by him the sub-soil-plongh (a plate would be necessary to render any description of this iagenious and efticent machine intelligible; we forbear, therefore, to say anything more about it, but we earnestly exhort the admirers of simple and clever mechanical inventions, or persons interested in agricultural pursuits, to procure a model of it, as without it the operations so successfully practised by Mr. Smith cannot be conducted with a sufficient regard to economy.)

After the complete success of the new practice was established, the resalt was, that the old and inefficient method of laying out land was abandoned by the intelligent and industrious agriculturist occupying the fertile and extensive valley, which once owned the feudal authority of the Ruthven, and the improvements of Mr. Smith universally adopted. In all their fields the earth was reduced to a plain and level surface, and possessing in consequence of the under-drains uniform powers of ausorption, eqacls field exhibited neasly the sigme degree of fertility throughout its wholo extept. Ip fact qxery part of the figld yiplded abun-
dantly, as the summits of its ridges had formerly done, and the crops raised by Mr. Smith's improved practice were better by 50 or 100 per. cent. than those produced upon the same lands had been previous to its introduction.

By the use of ground or crushed bones :s a manure, by subjecting the soils of the Carse to chemical analysis, and skilfully varying the manure applied to them, so as to naturalizs or supply defects in their composition and to stimulate their non luctive properties, combined with the improved practice of Mr. Suith, the occupiers of the farms constituting the Carse of Gowrie, the Goshen of Scotland, and I suspect a pleasanter place and a richer district by far than its Egyptian prototype, have doubled the value of the rlinds within a comparatively short period. Many of the farms adjoining the Tay are let for $£ 6$ an acre, and the unjustly confiscated inheritance of the Ruthven yields, it is said, at this moment a rental of $£ 1,000,000$ sterling. Many other instances might be given of the immense increase of wealth, which accrues from the application of ingenuity and science to agriculture; out of several which present themselves to my recollection, I will give two. About the year 1770, Dr. Richard Watson, Bishop of Llandafi, the author of many theological works of the highest merit, and of some chemical essays, expended $£ 20,000$ in the purchase of lands in the English county of Westmorland. His philosophic acquirements naturally suggested to his high and reasoning faculties, many methods by which the value of his purchase might be enhanced, and those were immediately put into practice, with characteristic energy and prudence.

Plantations of trees were formed upon a most extensive scale, rocks were blasted and removed, boos. marshes, and moors were drained. and the scientific knowledge of the philosophic Bighop yge nppged ja
devising and perfecting new modes of cultivation. At his death, about the year 1812, his property which had cos: $£ 20,006$ was vallued at玉500,000, and was even then in a state of proyressive improvement.

Mr. Smithson Tenamt, the saccessor of Dr. Watson in the chemieal chair of Cambridye, and himself one of the individuals to whom one of the three prizes of $£ 20,000$ each, offered by Bonaparte for competition amoug sciemific men of all natione, was avarded by the Freuch Institute, inherited an estate of considerable extent, but of no great value, among the Mendip hills, in Somersetshire. When he succeeded to this property, Mr. Temmant was one of the most eminert chemists in Europe, and had already distinguished himself very greatly, by diseoveries relative to the properties of lime as a manure, he being the first who ascertained that the magnesian kind was inimical to vegetation. Ilis scientific knowledge was skilfully and sedulouslyemployed in the improvement of his property: his operations have been published, but it is sufficient for our purpose to mention, that his property at the time of his death (which was oceasioned by the overturaing of a drawbridge in France, after the peace, was at least ten times more valuable than it had been when it came iuto his possession, about thirty years before.

These are wonderful results, but they have all procected from adequate causes, and like every thing valuable in this life, were obtained in consequence of much composed exertion, and of the best faculties of man being exercised to procure them. Temant and Watson received an education at Cambridge, which admirably fitted them for "seeking science in her coy abode," and their knowledge and its sucesesful applicazion need notexcite our astonishment, but let us enquire how it happened that Mr. Smith, of Deanston, and the farmers of the Carse of Gowrie bars
been enabled to avail themselves of the discoveries effected ing the two talented professors, and even to excel them in the carece of agricultural improvement.
Fity years ago, a Profussorship of agriculture was establehed in Cambridge, by Sir James Pelney; and Ir. Coventry, the first Professor, both by pablications from the press and by oral instructions, endeavoured to excite the attention of manhind to his favourite pursuit, and to make them scientifically acquainted with its principles. The professor laboured successfully in his vocation, and at his deccase, the important offico was conferred on Mr. Low. This gentleman's opening lecture I had the pleasure of hearing in company wi h the most eminent of our men of science, and with some of the moro noble and far descended of the Bri-7 ${ }_{y}$; tish nobility.

The learued and ingenious Professor, stimulated by the high patron. age he had received, delivered a discourse never exceeded in beauty of langnage, cogency of reasoning and felicity of illustration; all who heard him Jeft the hall suitably impressed with the transcendent importance of the subject to which the Professor meant to devote his time and lahour, and fully convinced that the agricultural chair of Edinhurgh had been bestowed upon a gentleman whose talents and enthusiasm would leave nothing to be desiderated in the performance of its duties. The delight. ed audence were not deceived: if Dr. Coventry did much, Professor Low did ten times more to difluse agricultural knowledge throughout Great Britain.

Mr. Smith of Deanston, and the persons in Scotland best acquainterl with the science of agriculture, were indebted to these two Professors for that information, which when combined with industry and practical intelligence, has been followed with results so stupendous.

Having occupiod a sufficient space
in your columns for this week, I shatl conclude with an intimation that a series of letters, of which this is the first, will be published in the Courier, and that the design is to promote the views of the agricultural society recently forned in the county of Sam Johai.

Colones Nonthembriensis.

EDTEANY.

The Collular Integument lies immediately under the Cutiele, and is generally of a green colour, especially in the leaves and branches. It is in most instances the seat of colour -and resembles what is termed the Rete Mucosum, beneath the Caticle in human beings, which is pale in Europeans and black in the Negro, the analogy holds no fariher. Mirbel remarlis that leaves consist almost entirely of this substance, covered on each side by the Cuticle. The stems and branches of annual and perennial plants are invested with it, but in woody parts it is dried up and reproduced continually, such partsonly having that reproductive power.The old layers remaining are pushed onwards by the new ones, and form at length the ragged dry dead covering of the old trunks of trees. The cellular integument is of the utmost importance in the function of leaves, which will be hereafter shown. In it the principle changes operated upon the juices of plants by light and air, and consequent elaboration of all other peculiar secretions take place.

The Bark.-Lies under the Cellular integument. In plants, on branches only one year old, the bark consists of one layer, and is often not distinguishable from the wood. In the older branches and trunks of trees it consists of as many layers as they are years old; and the inner is called the Liber, in which orly the essential vital functions are carried on for the time being, after which it is pushed outwards with the Cellular
integument, and like it, becomes a lifeless crust. These older layers are for some time reservoirs of the peculiar excreted juices of the plants.

In some roots, although only of nnmual duration, the bark is thick, as in the carrot, the red part of which is ail iark. in the rurnip it is thinner, though equally distinct from the body of the root. The bark contains a number of longitudinal fibres gising it tenacity, which when separated by maccration gencrally exhibit a beautiful net-work structurewhich is one of the family of the Mezeron in Jamaica-may be separated into an elegant kind of lace, and is then called lace-bark. This peculiar structure is not discernible in the Fir tribe. The bark of the eluser Pine some inches in thickness is separable into thin porous layers, each the production of one season. The bari: of oak trees, 20 or 30 years old, if cut and long exposed to the weather, separates into many fine thin layers, of a similar though less delicate texture than the lace-bark of Jamaica; all these layers in a living state are closely connected with each other by the cellular texture, as well as by transverse vessels necessary for the performance of several functions. The peculiar virtues of plants reside chiefly in the bark, and most powerfully in the layers nearest the wood. In this case appropriate vessels are found the rosin of the fir and Juniper-the astringent princuple of the nak and willow, on which their tanning property depends-the hitter of the Peruvian bark, and the aromatic oil of the Cinnamon. The same sccretions pervade the other parts of the plant but in a less concentrated form; when a portion of bark is removed, the remainder has a power of extending itself laterally but slowly unili the wound is closed. This is accomplished by each new layer added to the bark internally, spreading a little beyond the edgs of the preceding layer. The operation of closing the wound goes on the
more slowly, as the wound underneath, from exposure to the air, has become dead, and frequenly rotten, proving an iucumbrance, which, though the living principle cannot in this ir stance free itself, it has no power of .urning to any good accoerit. If, lowever, this dead wood, be caretully removed, and the wound protected from the injuries of the atmosphere, the new batk is found to spread much more rapidly; and as every new layer of bark forms a new layer of woud, the whole ciavity, whacever it may be, is in process of tine filled up.

This operation of nature was turned to great adrantage by the late Mr. Forsyth of Keasiagto: Gardens; under his management, many timber trees, became entirely hohow, were filled up with new wood, and made to produce f. sh and vigorous branclies; and Rear-trees, plamted in the tims of King Willian, became so decayed and knoty as to baar 130 fruit worth gathering, were, by gradual paring away of the ofll wood and bark, and the application of :a composition judiciously contrved to stick close and keep out air and wet, restored to such healh and strengrth as to cover the garden walls with new branches bearing a profusion of fruit.

The Wood.-When the bark is removed, we come to the wood, which makes the principal bulk of the trank or branch of a tree or shrub. When cut across we observe a number of concentric layers distinct in the fir and many other trees, each of these layers externally is hard and solid; they differ however among themselves in hardness :md breadh; it often happens that all the layers are broadest towards one side of the tree, so that the centre of the layers is not in the actual centre of the trank; the wood owes its strength and tenecity to immomerable woody fibres, and consists of warious vossels sunning for the mast paft longiturdisflly yome hawing espesialceat and
others not; some of these vessels when young convey the sap from the root to the branches and leaves: obiers contain the various peculiar or secreted juices; others perhaps common air; and the whole are joined together by the cellular substance already deseribed. Limnens and other botanists believe that one of the circular layers 'is formed annually, and that the harduess of the external part of it is caused by the coldness of wiater, and therefore that we may tell the are of a sound tree, when cut down, by the number of layers, and some are of opinion that the dutes of very severe winters may be ascertaned by the increased hardness of the rings formed during such seasons, and moreover that the north side of a tree may be known by the narrowness and density of the rings. Hirbel and Da Hamel contrudict this theory, but their objections are not satisfactory. There may be occasional interruptions in the formation of the wood from cold or fickle seasois, and in some trees the thin intermediate layers, bardly disceraible in general, that unite to form the principal or annual ones, may from such fluctuation of seasons become more distinct than is natural to them. Such intermediate layers are even fond more numerous in some trees of the same species and age than in others. Bat suilh is of opinion that those trees which show the annual rings, will aluays show the peculiar influence of summer and winter in then. Trees in hot countries, as the Mahogany and Evergreen, have then but inilistinctly marked, yet in these they are visible. With segard to the greater compactness on the north side of the tree, Smith agrees ${ }^{\text {Pith }}$ Du Harmel in his objection to it.The trath is, most wood is formed in that part most favourable to vegetation, where there is consequently most branches and leaves. This, in a solitary tree is generally towards the seuth ; hut the orcasional warip: tiong, depende日t
son, molyture, and other causes, are obvious. In some trees mary of the outermost rings differ in colour from those beneath them, and are called by workmen, the Sap. In the liburnum the sap-rings are yellow, and the internal rings are brown. In the Oak and several other trees a similar difference is observable, although not so obviously, and in most trees the external layers are much less firm, compact and durable than the inner rings, retaining more of the vital principle and more of the peculiar juices of the plant: They are termed by Du Hamel " aubicr" -alburnum; and he observes that this diffierence extends more on the one side of a tree, than on anoher, and that the more vigroro the tree, or a side of it is, the alburnum is converted into perfect wood. The alburnum however in its proper sense, signifies only the layer of new wood of the present year, which is not hardened.

In this seuse we shall apply it.Physiologists have long differed about the origin of wood, and the question is still unsetted. Ma/pighi and Gren thought that it was formed by the bark, and observation is in fa-
vour of their opinion. Hales thought that wood added a new layer to itself externally every year. Linnæus thought that tire pith secreted a new layer annunlly and added it, internally, to the other enveloping layers, but there is neither proof nor probability of this hypothesis. The experiments of Du Hamel prove that the wood is secreted from the imermost part of the hark, which is called tiber. He introduced plates of tin-foil under the bark of growing trees, he then carefully bound up the wounds, and in after years when he cut them across, he found the new layers of wood on the outside of the tin. Dr. Fope, the Botanical Professor in Bdinburgh, cut the bark of a Willow, three or four yedrs ofd, eatefully through longitudinally on one side for several inches so that it mightibe
slipt aside from the wood in the form of a hollow cylinder, the tro ends being undisturbed; the edges of the bark were then united as carefully as possible, the wood covered from the air, and the whole bound up to secure it from internal injury. After a few years the branch was cut through transversely. The cylinder of hark was found lined with hayers of new wood, whose number, added to those in the wood from which it had been stript, made up tire number of rings in the branch above and below the experiment. Da Hamel engrafted a portion of the bark of a Peach tree upon a Plum-after some time he found the layer of new wood under the engratted bark, white; like the Peach, and different from the dark wond of the Flum.

In all these experiments the layers of wood were connected with the bark and not with the old wood.Du Hanel fooud that the thickuess of the layer was influenced by the season, and that it was always thinner in proportion to the lateness of the season in which the operation was peiformed. It seems certain therefore that the bark produces the wood, bat Du Mamel was inchned to believe that in certain cirormstances the wood could regenerate the bark. This never happened in any case, but when the whole trunk of a tree was stript of its bark. A Cherry tree thris stript threw out in litife points from the whole surface of its wood a gelatinous matter, which gradually extended over the whole, and became a new bark, under which a layer of new wood was speedily found, hence Mirbel concludes that the alburnum and the wood are really the origin of the new layers of wood, by producing first the gelatenous substance which he and Du Hamel call cambizan, and which Mirbel supposes to produce the liber or young bark, andat the same: time wy ia peculiar artangement. sf the тазeniar parts, thecalturnumer:new wrocid. •Thfs opinisiontissefpertedity

The Palms and Grasses, which have no real bark, and in which the woody fibres do actually produce the cambium. Dr. Mone's experiment will scarcely invalidate this opinion, because it may be said, that the cambium had already in that case formed the liber.

The Medulla or Pith.-The medulla or pith is situated in the centre or heart of vegetable bodies; $i t$ is a tolerable firm and juicy substance, in parts most endued with life, as roots and young growing stems and branches; it is of a uniform texture, and commonly of a pale green or yellowish colour. Such is its appearance in the young shoots of chder in the spring, but in the same branches fully grown the pith becomes dry, snow-white, highly cellular, extremely light, and capable of being greatly compressed. In many annual stems the pith, which is abundant and very juicy while they are growing, becomes little more than a weblining the hollow of the complete stem, as in some thistles. Nilany grasses and ambelli ferous plants have always hollow stems, lined only with a thin, smooth coatmer of pith, exquisitely delicate and brilliant in its appeara:ace. There have been various opinions concarning the nature and functions of the pith Du Hamel did not think that it performed any remarkable ofice in the veretable economy, Linneus on the contrary thought it was the seat of life and source of vegetation, giving growth to the branches and formation to the seed, an opinion whicli does not appear to be well-founded; for the piti is soon obliterated in the trunks of many trees, which continue to increase for a number of years, by layars of wood, added annually from the bark, even after the heart of the tree has become hollow from decay.

NEW MANURE CALEED GUANO.

'Inis substance is obtained from islands in the South Seas, where it forms a stratum mang fect thick, it
being the accumulation for ages of the exerement of innumerable seafowl. It is used as manure with great advantage oa the coast of Peru, where the soil is otherwise extremely sterile. Its composition is said to be
Earthy insoluble salts, principally phusphate of lime,
Suluble saths, fixed altaline sul-
phate, and chloride, 25
Organic mater, 633
100
The organic matier consisists of
Lithic acid,
161
Ammonia, 87
Other organic matter, 435
653
We extract the fellowing account from the New Farmer's Journal:"Ihe Guano is of a brown chocolate colour, and forms a fine powder resembling suaft. Its extraordinary effects in fertilising the soil for ex- 0,3 ceeds all manures hitherto known, and though used in comparatively small quantities, was most satisfactorily shown. Equal patches of perennial grass, and of Italian rye grass, also of Swedish turnips, all sown at the time, some without munure, some with farm yard manure at the rate of 20 tons to the acre, some with Guano at the rate of 3 cwt. per acre, afforded andeuiable proof of the great superiority of the latter as a manare, in the superabundance of the crop produced, amounting to probably a per-centage of 25 in its favor. In point of economy this new manure also promises to become invaluable, as it can be imported at 20 s to 25 s. a cwi. A similar differcuce is also obvious from the same manure used in a grass field belonging to the same gentleman, on tho west side of Halton-road. Many of the members of the Agriculural Association who have seen its effects, have expressed an opinion that it is the finest thing they have ever sean, and that the smport of the Guano will become of the utmost value to the agriculture of the country genesally."

