The Institute has attempted to obtain the best original sopy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculée

Cover title missing/
Le titre de couverture manque

Coloured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. altre que bleue ou noire)Coloured plates and/or illustrations/
Pianches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion
along interior margin/
La reliure serrée peu: causer de l'ombre ou de la distorsion le long de la marge intérieure

\square
Blank leaves added during restoration may appear within the text. Wheneyer possible, these have been omitted from filming/ Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible. ces pages n'ont pas été filmėes.

\squareAduitional comments:/
Commentaires supplémentaires:

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

\square
Coloured pages/
Pages de couleurPages damayed/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discrloured, stained or foxed/
Pages décolorées, tachetées ou piquées
$\square \begin{aligned} & \text { Pages detached/ } \\ & \text { Pages détachées }\end{aligned}$
\square Showthrough/

Quality cf print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index

Title on header taken from:/
Le titre de l'en-tête provient:Title page of issue/
Page de titre de la liuraison

Caption of issue/
Titre de départ de la livraison

Masthead/
Générique (périodiques) de la livraison

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

CANADIAN NATURALIST

AND

(Guatery illatuat of sticurs.

NOTES ON A JOURNEX THROUGH THE NORTEWES' 'renritoly, From manitoba to rocky MOUNTAIN HOUSE.*

By A. R. C. Selwry, F.G.S

Director of the Geological Survey of Canada.
Having during the past summer made a rapid journey through a very considerable portion of the north-western territories of the Domiaion, I thought it woald perhaps be interesting to the Society to hear a brief account of how we travelled, and what we met with in those distant and as yet but little explored regions. If in relating my experiences I should refer to matters with which doubtless many members are already familiar, either from personal experience or from having read the narratives of previous travellers in the same region, my excuse must be that without doing so, I should probably have little if anythiug to relate which has not been dwelt upon and described, either by Palliser, Hector, Blakiston, Bourgeau, Hind, Milton and Cheadle, Butler, Ross or Grant, and is consequently more or less known to all who have read the interesting and detailed narratives which have been published by these travellers in the north-west.

The explorer of these vast western regions, so appropriately designated by Captain Butler The Great Lone Land, leaves behind him hotels, railroads and stages, as well as all other ordinary facilities for travel. He is thrown entirely on his own resources; and therefore before starting has to provide himself with everything requisite for the subsistence, transport and shelter of himself and his companions during the entire journey.

[^0]The staple articles of food in general use by voyageurs, and hunters and travellers in the North West, are pemmican, flour, tea and sugar. Persons, like ourselves, starting from civilized life, generally provide themselves in addition with a moderate supply of pork, ham, or bacon, and a few other luxuries, and for some days, especially when prairie chickens or ducks are abundant, look with disdain, not to say disgust, upon the richôt and rubeiloo. After a few weeks, however, the feeling wears off, and pemmican, richôt and rubeiboo, varied by dried buffalo meat, boiled, are eaten not only without a murmur but with keen appetite, at breakfast, dinner and supper; and I have even seen these dishes selected in preference to roast duck or prairie chicken or fried pork, ham or bacon, by persons who, on starting, declared that nothing short of absolute starvation would ever induce them to make a meal on pemmican.

Captain Butler, who was evidently not an admirer of pemmican; thus describes it: "Pemmican, the favorite food of the Indian and the half-breed voyageur, can be made from the flesh of any animal, but it is nearly altogether composed of buffalo meat: the meat is first cut into slices, then dried cither by fire or in the sum, and then pounded or beaten out into a thick flaky substance; in this state it is put into a large bag made from the hide of the animal, the dry pulp bcing soldered down into a hard, solid mass, by melted fat being poured over it-the quantity of fat is nearly half the total weight, forty pounds of fat going to fifty pounds of 'beat meat'; the best pemmican generally has added to it ten pounds of berries and sugar, the whole composition forming the most solid description of food that man can make. If any person should feel inclined to ask, 'What does pemmican taste like?' I can only reply. 'Like pemmican.' There is nothing else in the world that bears to it the slightest resemblance. Can I say anything that will give an idea of its sufficing quality? yes, I think I can. A dog that will eat from four to six pounds of raw fish a day when sleighing, will only devour two pounds of pemmican, if he be fed upon that food; yet I have seen Indians and half-breeds eat four pounds of it in a single day. Pemmican can be prepared in many ways, and it is not easy to decide which method is the least objectionable. There is rubeiboo and richôt, and pemmican plain and pemmican raw, this last method being the one most in rogue amongst voyageurs, but the richôt, to_me, seemed the best; mixed with a little flour
and fried in a pan, pemmican in this form can be eaten, provided the appetite be sharp and there is nothing else to be had; this last consideration is however of importance."

I do not allogether agree with Capt. Butler in his estimate of pemmican, and for my own part, I never disliked it and could always make a hearty meal off it, and for voyaging it certainly has very great advantages not possessed by any other description of food.

The land transport of lieary goods, throughout the country westward from Red River to the Rocky Mountains, is effected with carts drawn by single horses or oxen. They usually carry from six to eight hundred pounds, or sometimes less, according to the length of the journey and the rate at which it is intended to travel ; twenty to thirty miles is an average day's journey. These carts, known as Red River carts, are exceedingly rough and clumsy looking vehicles, with wheels $5 \frac{1}{2}$ to 6 feet in diameter. They are built entirely of wood, oak, ash and birch, and cost when new from fifteen to twenty dollars. Notwithstanding their appearance, however, they are, from the abseuce of iron in their construction, wonderfully light; this, together with the facility from the same cause with which they can be repaired, renders them very suitable for the country and for the work recquired of them. If an axle breaks or otherwise fails it can be quickly replaced: an oak or birch \log of the required size, an axe, an auger and a drawing knife being all the tools and materials required for the purpose. From the rough character of some of the tracks, this accident is of such common occurence that when travelling on the prairic where no timber can be had, it is customary to carry suitable pieces of wood for replacing them slung to the side of each cart. Another advantage which these carts possess, is that with the aid of a waterproof tarpaulin or a buffalo hide they are readily converted into serviceable rafts, and are often used in this way for floating goods and passengers in safety over any unbridged, deep or swollen streams which have to be crossed. Besides the carts described, the light express waggon is gradually coming into use in the North West, but for expedition and comfort in crossing the plains, the buck-board is decidedly to be preferred to any other vehiole, and is much less fatiguing to both man and horse than the saddle. Connected with the means of transport I must not omit to say a ferw words about Shaganappi. Shaganappi is a most valuable institution, and must on no ac-
count be overlooked in the outfit of a prairic traveller. The word is Indian, and I believe really signifies line, rope or cord of any kind; it is, however, commonly used by voyageurs to designate dressed and smoked moose-skin, which on the plains serves for almost every purpose, for which, under ordinary circumstances, either string, cord, line, rope, nails, cloth or leather would be used. Hobbles, tether-ropes, whip-thongs, boot-laces, and moccassins are made of it; harness, saddles, bridles, carts, tents andclothes are repaired with it; and it may be regarded as the sine qua non of the voyageur, and only second in importance to pemmican itself.

The general use of the Red River cart for the inland transport is, I believe, only of comparatively recent date, and even now is confined to the open country bordering the great valleys of the two Saskatchewans, the Qu'Appelle and the Assiniboine Rivers. Beyond these limits, in the mountains where there are no navigable waters, and in the thick woods where there are no cart roads, everything is transported by pack animals. Formerly, before the opening up of the Red River and the Lake Superior routes, and when the whole trade of the country was carried on by the Hudson's Bay Company, imports and exports of all kinds were transported by water in canoes or boats via Hudson's Bay; the distributing and receiving depots being York for the western district, and Albany, Moose and Fort Rupert on James' B:y for the easteru districts.

The boats in general use on all the large imland waters for voyaging and freighting purposes are known as Hudson's Bay batteaux, full and half size. The full sized batteau is a staunch and commodious, though rather clumsy looking cratit, of the fol. lowing dimensions: keel, 30 ft ; over all, 42 ft ., giving an equall shear to both ends, which are sharp as in a whale-boat; beam, 9-97 feet, with a depth amidships of about 3 fect. For river navigation they are steered by a long sweep oar passed through a ring bolted to the side of the projecting upper end of the stern post, and are usually propelled by five, six or eight heavy pine oars. When under sail a rudder is shipped, and they are rigged with a large, nearly square lug-sail: they draw about two feet when loaded with from $2 \frac{1}{2}$ to 3 tons, besides crew and equipment. Before the wind, they sail well and easily, and when properly handled, going at a speed of from eight to ten miles an hour, seldom take in water, even in very heavy seas, such as are fre-
-quently encountered on Lake Winnipeg. Such boats are, of course, not adapted for beating against a head wind, and with a side wind also they make considerable lec-way. They are, however, admirably suited for the mixed river and lake navigation for which they are designed. The vogageurs, occasionaly Indians, but mostly either French, Scotch or English half-breeds, pull a long steady stroke: averaging 19 per minute, always rising from their seats at each stroke. Every $20-25$ minutes they cease pulling, lay in their oars, and light their pipes. The smoke occupies from 8-10 minutes, and during the interval the boat cither drifts with the current, or, in still water, comes to a stand. So regular is this practice that the smolie is used as a mensure of distance, and the guide will often tell you it's so many smokes to any point, the distance to which you may have occasion to enquire about.

My expedition last summer, was performed, the outward jour--ney by land and the homeward journey by water transport. And, all things considered, I have arrived at the conclusion that for exploration purposes the latter mode of travelling is to be .preferred, as being the cheapest, the most expeditious and the most comfortable, as well as affording better opportunities for observation and for the collection and preservation of specimens.

On the afternoon of the 25 th of J uly, all our preparations being completed, we left Fort Gurry or Winnipeg, the capital of the Provivce of Manitoba, situated at the confluence of the Assiniboine and Red. Rivers,-latitude $49^{\circ} 52^{\prime}$ north, and longitude $96^{\circ} 50^{\prime}$ west-and in 49 days, or on the 12 th of September, I reached Rocky Mountain House, situated on the upper waters of the Saskatchewan-lutitude $54^{\circ} 20^{\prime}$ north and longitude $115^{\circ} 10^{\prime}$ west. According to the measurements of the route which I made by means of an odometer attached to the cart wheel, the distance travelled was 1,056 miles. Stoppages and detentions from various causes during the journey amounted to nine days in all, five days on which we did not move camp, and eight on which we travelled for only half the day. We therefore averaged $26 \frac{1}{4}$ miles per day, to do which, without fresh horses and seldom travelling at more than a walk, necessitated early starting and late camping, so that we were rarely less than ten hours on the road. My own party consisted of six persons besides myself, two of whom were thoroughly experienced half-breed voyageurs who spoke English and French as well as the Chippeway and Cree Indian languages. Travelling with us as far as Edmonton were two English gentle-
men and their servants, so that our whole party numbered eleven persons. For the trausport of this party, together with all neces-sary-and some very unnecessary-bagyage and supplies, we had: seven Red River carts, three of them belonging to our fellow travellers, one buck-board and sixteen horses, or Red River ponies. These were used either for saddle or harness, as occasion required, and four or six of them were left to run loose, as sparehorses, so that each horse, as a rule, would not be worked for more than half the day's journey, by which means, although travelling almost every day for eight, niue or ten hours, all thehorses had time enough to feed and rest, and sore backs, sore shoulders and knocked-up horses, together with the delays and. troubles so commonly resulting from these causes on a long journey, were entirely avoided.

During the whole journey we were fatourd with remarkably fine weather. On the outward trip we were detaincd only one whole day by rain, and half a day only from the same cause on the homeward trip. We had a few wet nights, and snow fell on two or three days between the 11th and the 30th of September. The first frost was experienced on the 4th of September when the thermometer at $4 \mathrm{a} . \mathrm{m}$. registered 28° Fahrenheit. On the 6th, at 6 a.m. it registered 26°. The next frost occurred on the 11 th of September, the thermometer falling during the night to 20°; and on the 23d of September the thermometer again registered 12° degrees of frost. Thence forward, fiosty nights were of pretty frequent occurrence, and on the 29 th of October the stcamboats on the Red River were all frozen in. These, as I was informed, unusually early frosts, injured many if not all of the wheat crops on the upper Saskatchewan, and also some of thepotatoes that were still in the ground.

We met with no hair-breadth escapes, no startling incidents, and no accidents or casualties of any kind worth recording, nor did we experience any trouble or annoyance from the various parties of Indians we fell in with on the road. The only real trouble which we experienced was occasioned by mosquitoes and other flies, black-flies and sand-flies. I have seen and felt the annoying attacks of these pests in various parts of the world ; the valleys of the Columbia and Fraser Rivers are noted for them, and. I used to think they could not be much worse than they are in. Australia and in various parts of Eastern Canıda, but if any one desires to know what mosquitoes and black-flies really can be, I
can only say cross the Saskatchewan plains in August. Even the sharp frosts of September, though they lessened the activity of the mosquitoes, had no apparent effect upon that of the black-flies; directly the sun rose, even though the ground was covered with snow, they were as virulent as in the hottest day in summer; and I was credibly informed that horses have frequently died from the result of their attacks; there is no doubt that they suffer frightfully from this cause, and if measures are not taken to protect them, rapidly become so poor and weak as to be unable to travel.

Not many years ago, the region we traversed was swarming with buffaloes; now their skulls whitening on the plam, and the deep worn and grass-grown tracks which traverse the prairies in all directions are the only evidence of their former existence. Not a single buffilo was seen during the journey, and very little large game of any kind,-only a few antelopes or cabri, one monse and one red deer. Foxes, wolves, badgers, skunks, minks and beavers were seen or heard occasionally. Muskrats are very: abundant and swarm in the delta of the Saskatchewan. The officer in charge at Cumberland House informed me that he had last year collected and sent away 240,000 skins of these animals. On the prairies, the little gopher or ground squirrel is almost equally abundant. It is about the same size as the Canadian chipmunk, and its habits appear to be similar to those of the prairie-dog of the southern prairies. Like them, they live in colonies underground on the open treeless prairies, and are generally seen sitting erect and motiouless on their hind quarters either perched on the hillocks or in the grass near their burrows into. which they quickly disappear at the least alarm. Their skin is of no value, and, except foxes, they have few enemies to contend with in the 'struggle for life.'. Moles, judging from the large earth-mounds thrown up by them over extensive areas, though we did not see any, must be almost as numercus as the gophers. The moles seem invariably to select the tracts of deep, rich, black soil, and the gophers and badyers the intervening dry, sandy and gravelly ridges, so that between them the greater part of the surface is more or less burrowed, ridged and furrowed; and where this is the case, the prairic, which would otherwise be as smooth and even as a lawn, becomes not only exceedingly rough and unpleasant to travel over on wheels, but also very dangerous tohorsemen, and often fatal to the wooden cart axles.

Of feat thered game we could always procure while on the plains as much as we required. From Red River to Rocky Mountain House, prairie chickens abound; ducks of rarious kinds swarm upon nearly all the lakes and pools, and geese are frequently seen, especially on the saline lakes. The geese are however not easily approached, and without a good dog to bring them out of the water, neither geese nor ducks when shot can be secured, except by wading through the broad belt of mud and high reeds by which nearly all the lakes are more or less encompassed. Cranes, bitterns, plovers, sand-pipers, snipe and other waders, as well as pigeons, black-birds, larks and a number of other small birds are plentiful on the prai: 'es or in the swamps, or along the river valleys, aud crows and several kinds of hawks are also very common. On our passage down the river in September and October, large flocks of wavy's, grey, and black and white geese, and of the large blue cranes, were frequently seen flying southward, generally at a great height; a few wild swans and pelicans were also seen passing in the salme direction. Between Fort Pitt and to near the Elbow of the North Branch, a good many magpies were seen along the river, but none were obse ved elsewhere. I am told that these birds are very common on parts of the Qu'Appelle River and of the South Saskatchewan, but I believe they are not met with eastward of Red River. West of Cumberland or Pine Island Lake, where the Saskatchewan spreads out into a vast swampy delta, numbers of large white owls were observed sitting perfectly motionless, perched sither on boulders or suags, or on some of the many small patches of bare sand just appearing above the level of the surrounding waste of water and swamp which was here seen stretching on all sides, as far as the eye ceuld reach.

There are very few fishes of any description in the Saskatchewan above its confluence with the South Branch, but from Fort a la Corne downwards to Lake Winnipeg, sturgeon, white-fish and other excellent varieties are abundant. So far as 1 could ascertain there are no fishes at all in any of the numberless lakes and pools on the prairies between Red River and Carlton. West and north-west of Carlton and Edmonton, however, and in most of the lakes, many of them of large size, along the water-shed between the MacKenzie and the Saskatchewan, white-fish are said to abound. Jack Fish Lake and Lake St. Ann are two of these lakes in which they are annually caught in large numbers.

Many of the lakes which we passed between Fort Fllice and Carlton, especially some of those in the Touchwood Hills, seem to be as well suited for fish as others do where they abound, and the cause of their partial and irregular distribution in the country is not very apparent, though perhaps a careful investigation of the character of the waters in the different lakes would afford a satisfactory explanation of the circumstance. Westward from the summit of the ascent to the second prairie steppe of Palliser, the eastern slope of which forms the long range of low hills extending from the Pembina Mountains to the Basquia Hills near Cumberland House, and including the Riding, Duck and Porcupine Mountains, the country on the route which we travelled, especially after crossing the Assiniboine River at Fort Ellice, is generally undulating or rolling, and often hilly: some of the hills rise to from $200-300$ feet, and occasionally to as much as 400 feet above the general level of the prairie, and afford from their summits extensive views of the surrounding country which everywhere presents a park-like aspect; belts, patches and clumps of woodland with intervening grassy meadows, or wide stretches of open prairie interspersed with countless lakes and pools, are seen on all sides, while the wonderful varicty and beauty of the flowering plants, roses, lillies, gentians, lark-spur, a beautiful purple, aromatic mint like plant, buffalo-root, varieties of sunflowers and a host of others, lend an additional charm to the beauties of this picturesquely lovely landscape.

The ridges, which do not appear to maintain any constant direction or parallelism, as well as the hills, are all covered with drift sand and gravel, and scattered over them, resting on their flanks and summits, or partially imbedded in the soil, are numbers of angular ice-borne boulders or rock masses of enormous dimensions, consisting of limestone, granite, gneiss, mica schist and other metamorphic rocks. Absolutely level and open plains constitute but a small proportion of the total area of the region, while by far the larger part of it may be described as a vast billowy plain without either deep valleys or prominent hills. Besides the lakes which have streams. eonstantly flowing out of them, and which all contain fresh water, there are others, far more numerous, holding water of almost every degree of saltness. Some of these saline lakes are as much as three, four or five miles in length and often from one to two miles wide. They occur either in isolated, irregular basin-
shaped hollows, or forming chains of lakes in broad, flat, valleylike depressions, ofteu extending many miles, but closed in on all sides by rounded, drift-covered hills with grassy slopes. When occurring in this manuer, the lowest lake in the valley receives. the drainage of the others, and I observed in all such cases, that while the water of the uppermost lake would be either quitefresh or only very slightly saline, that in the lowest lake of the chain would be intensely salt and bitter. This peculiarity may also often be observed as regords isolated lakes near each other situated at different altitudes, and the traveller seeking good watershould always look for it in those pools or lakes which occupy the most elevated positions, because the water in them is supplied by rain and snow alone, and not by drainage and percolation from higher levels. All the old voyageurs and traders in the country state that good water was formerly much more plentiful on theprairies than it is now, and in the course of our journey numbers of places were pointed out to me as the sites of pools or lakes, formerly holding fresh water at all seasons, which are now only irregular shaped, flat-bottomed, dry depressions, clothed with a growth of long, coarse grass, and surrounded with a fringe of low willos bushes or bauks of sand and gravel. This drying up of the country has been ascribed to various causes, but is generally supposed to be connected with the gradual destruction of the forests over large areas by fires. Whatever the effects may be of these destructive conflagrations in reference to the water supply of the region, there is no doubt that at different times almost every square mile of the country between Red River and theRocky Mountains has been subjected to them, and that hundreds of miles of forest have thus been convented into wide and almost treeless expanses of prairic. And there is little room for doubting that the tendency of this would be to gradually diminish the rain fall.

The second and third prairie steppes, from Fort Ellice to Rocky Mountain House, may be said to be absolutely denuded of good timber. Between the Assiniboine and the English River, 120 miles west of Carlton, or for a total distance of 400 miles, neither oak, ash, elm, birch, spruce or pine trees were seen, and even the poplars are of small size, and suited for little else than firewood. Around the little Touchrood Hills Fort, there is a small extent of forest, in which the largest poplar trees attain a diameter of two feet, and in the same district there are also some fair-
sized white birch trees. On the English River, and thence westward, both along the banks of the Saskatchewan and of the northern tributaries, spruce, pine and tamarack of small size aretolerably abundant. Along the river, above Edmonton, large spruce timber is plentiful and is annually cut in considerable. quantities, and floated down the river for the supply of the postsand settlements below, as far as Carlton.

The greatest extent of uniformly rich soil in all this vast region is certainly to we found on the first prairie steppe, which stretches in an almost level plain westward from Red River for about eighty miles to the base of the hills already mentioned as extending from Pembia, in a northerly direction to near Cumberland Lake on the Saskatchewan. Its lesser eleration, probably in no part exceeding 750 feet above sea-level, renders it still more favorable for the cultivation of wheat and other products liable to injury by early and late frosts. The gencral luxuriance of the vegetation, however, both on the second and third steppes, over many hundreds of miles, at heights varying from 1,500 to 2,500 fect, amply testifies to the exceeding richuess and fertility of the soil. Even on the hills and ridges where for the most part somewhat lighter and shallower soil prevails, and which might not be well suited for cultivation, there is, with few exceptions, an abundant growth of the most nutritious grasses and herbs, ou which all kinds of cattle thrive admirably; while in the low lying flats and swamp beds an abundaut supply of the finest hay can readily be secured for winter fodder in case of needAt present there are very feve cattle in the country, and it is customary to house them and feed them on hay during the winter, the prevailing belief being that they cannot otherwise survive. There is, however, every reason to believe that this is a mistake; and that if a hardy race of cattle, suitable to the climate, were introduced, they would speedily become acclimated, and not only be able to survive, but that they would thrive through the winter without the aid of artificial feeding and shelter; and if so, rast herds might soon be reared on these rich and boundless pastures, reauimating the now deserted feeding grounds of the buffalo, and not only becoming a source of large profit to the settler, but also affording a ready and cheap means of providing for the. Indians, who are now frequently reduced to the verge of starvation, owing to the annually increasing scarcity of the buffilo, upon which they are at present entirely dependent.

I took some trouble to enquire into this subject, and though I found the prevalent belief to be as I rave stated, yet I was informed of several instances of cattle having been lost in the fall, and, in every case, they had not only survived but had been recovered in excellent condition in the following spring.

Such fucts speak for themselves: but in any case the question is one of such immense importance to the country, that it seems to me to be well deserving the consideration of the Government whether it would not be advisable to devote a sum of money for the purpose of practically and thoroughly testing it. The threatened and much dreaded Indian trouble in the North-West is, in reality, simply a question of food; and if this experiment proved successful, it would certainly be the easiest possible means which could be adopted to orercome it. Intoxicated or hungry Indians are dangerous animals, and in this respect they do not differ much from their more civilized white brethern. Remove the causes which produce the intoxication and the hunger, with which they are now periodically afficted, and I venture to say that very little trouble would be experienced inidealing widh the Indians. To convert the plain Indians into tillers of the soil might never be accomplished, but to induce them to undertake pastoral pursuits, would, I conccive, not be attended with similar difficulties. At all events, the experiment is worth a trial; and may, I think, be said to offer a fair probability of success, if carried out with intelligence and energy.

With the exception of the limited extent of land which is cultivated at the Hudson's Bay posts and at the various Mission stations, no cultivation has yet been undertaken on either of the higher prairic levels. We saw abundant proof, however, at Pitt, Victoria, Edmonton and Prince Albert, of the fitness of the soil and climate for the growth of cereals and of all kinds of vegetables which can be successfully grown elsewhere under similar conditions of clevation and climate. It would be impossible in any other part of the world to find finer barley, wheat, potatoes, turnips, carrots, onions and cabbages than those we saw growing at Victoria and at the St. Albert R. C. Mission station near Edmonton. Even at Rocky Mountain House, a hundred miles nearer the mountains, and according to my observataions $3,432 \mathrm{ft}$. above the sea, barley, potatoes, turnips and onions were briug grown suceassfully, while on the farm of Mr. McKenzie, 62 miles weest of Eort Garry, the crops, which included wheat, barley,
oats, rye, peas, beans (French and broad), potatoes, onions, carrots, swedes, turnips, mangolds, cabb:ages and timothy grass, would, I believe, compare favourably with the best crops of the samedescription, 'grown on the highest cultivated farms in any part of Canada or even in Britain. The returns given me by Mr. MeKenzie of the following crops were, per acre, wheat, $30-40$ bushels, oats, 50 bushels, barley, 35.40 bushels, potatoes $300-400$ bushels, turmips, $600-700$, and peas, $20-25$. Mr. McKenzie has 40 acres under cultivation, and no better or more practical illustration could be desired than is afforded by this firm, of what the soil of these magnificent prairie lands is capable of when cultivated with intelligence and enterprise.

I now propose to make some brief remarks in connection with the incidents of our homeward journey, and upon the facts which were observed relating to the general character of the valley of the Saskatchewan and to the geological features displayed along its course. The homeward journey or voyage, which, as I have already stated, was performed entirely by water, was commenced on the 13th September from Rocky Mountain House and termimated at Fort Garry on the 2nd of October. During this interval we accomplished about eleven hundred miles of river, and three hundred miles of lake navigation; from Rocky Mountain House to Carlton in a half-sized, and from Carlton to Fort. Garry in a full-sized, Hudson Bay batteau. Between Edmonton. and Carlton, a distance by the river of about 400 miles, our partyconsisted of only five persons besides myself, and as vone of the party had ever before descended the river, we had to find ourway as best we coald through the dangers and difficultics of thenavigation, consisting of intricate channels, sand banks, shoals and rapids, none of which are, however, of a very formidable nature. Four of the pariy worked at the oars, the fifth took the helm, and I acted as bowsman, and by noting the bearing and distances of every bend, succeeded in making at tolerably accurate plan of the course of the river, sketching it in my note book to scale as we weat along. Sometimes we were tempted by the prospect of a more direct course, to leave the main channel, and in almost every instance were landed on shoals or sand-bars, obliging us to retrace our steps at the expense of much laborious pulling, and poling against the current. Notwithstanding these mishaps, however, we made a prosperous and tolerably rapid passage, reachingCarlton on the thirteenth day after our departure from Edmon-
ton, and thus averaging considerably more than thirty miles per day, the time we were actually travelling being only eleven and a half days On arriving at Carlton, we found that a full-sized batteru, well equipped and manned by five experienced half breed and Indian voyageurs, had just arrived with 'pieces', i. e. goods, from Cumberland House, and would be starting on the return voyage on the following afternoou. I at once arranged with Mr. Clarke, the Hudson's Bay officer in charge at Carlton, to allow our party to proceed down the river in the boat. The same boat, but with three different crews, subsequently carried us the whole way to Fort Garry, a distance by Lake Wimipeg and Red River of about eight hundred miles, and the termination of our journey, which by land and water had extended over about 2,400 miles, performed in eighty-two days of actual travel, or, including stoppages and detentions, in zinety-three days, without the zid of stages, steamboats or railroads.

Once during the voyage we narrowly escaped encountering an accident, which would certainly have been exceedingly unpleasant, and might even have endangered the lives of the party. This occurred during our traverse of Lake Winnipeg, on the evening of the 17 th of October, when a violent gale overtook us while we were running for a group of islands far out on the lake. We did not succeed in reaching these till loug after dark, and as they were quite unknown to any of our crew, the landing on them in safety in a dark night with a heavy gale blowiug and a corresponding sea, became a somewhat difficult and Fazardous undertaking; but it had to be attempted, so running between two of them we neared the shore of the one which looked most promising, and rounding a stony point on which the breakers were dashing with tremendous foree, we fortunately succeeded in gaining a small sheltered cove with a saudy beach of ouly a few yards in extent. Had we missed this cove and been blown off the shore, we must almost certainly have gone upon the rocks, and our boat been dashed to pieces.

Starting from Rocky Mountain House, lat. $52^{\circ} 20^{\prime}$ north, and long. $115^{\circ} 10^{\prime}$ west, the North Saskatchewan River runs in a general north-easterly direction till it reaches a point about 90 miles below Edmonton in lat. $54^{\circ} \mathrm{I}^{\prime}$ north, long. $111^{\circ} 30^{\prime}$ west; it then sweeps gradually round to the south-east, on which course it runs with many minor bends, till it reaches "The Elloov," lat. $' \tilde{2} 2^{\circ} 20^{\prime}$ north, and longitude 107° west. At this point, as the
name implies, a sharp bend occurs, again giving it a general north-easterly course, which it maintains to the vicinity of Cumberland Lake, where it a second time reaches the latitude of 54° north between the 101 st and 103 rd degrees of west longitude, thence a comparatively short south-easterly course of about one hundred miles, carries it to its mouth in Lake Winnipeg, while the three upper sections above described, have a nearly equal length of about 300 miles each. In this great distance of more than eleven hundred miles, as might be expected, the character of the country bordering the river exhibits considerable diversity. The most prominent features, however, may be summarised in the three words prairie, swamp, forest, and we may add vast, boundless, immense, illimitable, and yet scarcely convey an adecquate idea of their greatuess.

The rapidity with which we were obliged to travel through this vast region in order to escape being overtaken by winter was a matter which I regretted exceedingly, as no time was afforded for anything like minute investigation, or for the collection of specimens; and such notes as I was able to make upon the geology of the country are the result of observations of the most hurried description, and will probably add very little to the information which has already been supplied by the labours of Dr. Hector in his admirabie sketch of the geological structure of the region published in the Journal of the Geological Society (Vol. XVII-1861) and which is the result of observations extending over a period of nearly four years. I have already mentioned the prevalence of drift-covered hills and ridges, strewn with large, ice-borne boulders. From Fort Garry westward, on the route we travelled, no rock exposures were seen till within a ferw miles of Edmonton. An universal mautle of drift-sand, clay and gravel are spread over the face of the country but gradually diminishes in thickness towards the higher levels, though even where the drift is thin, the rocks are still concealed by a deep, rich, black soil. Without doubt, however, interesting exposures of the underlying strata might be found if sought for in the banks of some of the numcrous creek valleys which we crossed between Carlton and Edmonton running from the high plain towards the river, but which, on the present occasion, we could not stop to examine.

In connection with the distribution of the materials forming the drift some noterworthy facts were observed. Blocks, and often
enormous rock-masses of Silurian limestone holding characteristic fossils are widely and abundantly distributed over the first: and second prairie steppes. The ascent to the third prarie level which has an average clevation of from $1,900-2000 \mathrm{ft}$. above the sea, commences at the Thickwood Hills, 20 miles west of Cartlon: and on it the limestone boulders do not appear to have reached. further west than the longitude of Fort Pitt, and between Pitt and Edmonton not a single boulder of limestone was observed either along the Saskatchewan River or on the plains. On the Saskatchewan above the the confluence of the Brazeau-a large tributary coming in from the west about mid way between Rocky Mountain House and Edmonton-there are no boulders, and very few pebbles of either granite gneiss or mici schist. At Rocky Mountain House the pebbles and boulders in the drift which is there seen in contact with the coal-bearing rocks, as well as those seen along the river bed are nearly all of either coal. measure sandstone or conglomerate, or of varicties of hard quartzose and siliccous rocks, and though I searched carcfully, I did not succeed in finding any of a granitoid or gucisic character. Small pebbles of grey and whitey-brown limestones holdingfossils, but too fragmentary for determination, were also observed, but by far the larger proportion of the pebbles and boulders in the river at Rocky Mountain House, are composed of the hard siliceous rocks already mentioned, and many of these are traversed by cylindrical forms, having all the appearance of the Scolithas of the Potsdam sandstone formation. It may further be stated that along with the disappearauce in. ascending the river of the boulders of granitic, gneissic and micaceous rocks, the auriferous character of the drifts likewise dies out, and I was credibly informed that no gold could be found on the North Saskatchewan above Rocky Mountain House, though it had frequently been prospected for by experienced miners. The first gold washings which we saw in descending the river were rather more than forty miles below the mouth of the Brazeau, and thence to Edmonton, and for some miles further down, more or less gold has been found on the bars and inthe river banks, butalways in a very finely divided state, shewing evidence of having been transported from afar. Even as low down as Carlton: gold can, I belicve, be found, though not in quantities sufficient to pay for working. On the South Saskatchewan, at the crossing place about twenty miles S.E. of Carlton,

I washed out a few minute specks of gold from the gravel in the bed of the river, small red garnets and magnetic iron sand, constituting the bulk of the residuc in the pamuings. It would thus appear that the grold of she Saskatchewalu has not been derived from the mountains at its source, but from the drifts composed. of granitoid gneiss, or hornblendic and micaceous schist, whichare spread over the face of the country, and which must themselves have been in a great part derived from the denudation of the great belt of Laurentian and other crystalline rocks which extends from Lake Superior; north-westerly to the Aretic sea. Num rous fragments and large pieces of silicified wood are frequently met with along the shore of the river: derived from theTertiary aud Creticeous rocks. In the banks of Red Deer River, Dr. Hector observed a bed of this silicified wood in which there weresilicified roots eighteen inches in diameter. I did not see any of it in situ, but loose specimens of these fossil woods have been. collected by Mr. Bell, Mr. George Dawson and myself from: widely separated regions, amd it will be both interesting and important to know how far those from the North Saskatchewan correspond with those from the plains further to the south and with other recent and fossil woods from the western side of the Rocky Mount:ins.

Dr. Dawson has already examined and compared some of the specimens referred to, and will doubtless be able to give some interesting information about them, but larger and more perfect collections will be required. From the Rocky Mountain House to Edmonton, and thence to a short distmee below Victoria. there are numerous fair exposures of the strata at comparatively short intervals along the river; soft, firiable, green, grey and brown, concretionary sandstones, alternating with blue and grey, arenaceous and argillacrons shales, and layers and beds of lignite and bright, jet like brown-coal are the prevailing features in these exposures. In the shales, there are layers of nodules, or septaria, of clay iron ore holding numerous fragments of plants and containing an averuge of 34.98 per cent. of iron. At one place on the right bank of the river, about to miles below the confluence of the Brazeau, I foum a scam of this jet-like coal which measured from 18 to 20 feet thick, in two exposures, rather more than four miles apart. In the first exposure which extends some 50 or 60 yards in length, but which, owing to the swiftness of the current running at its base, is not easily cxamined, the seam is almost Yor. VII.
flat, and rises from the water in a nearly-vertical cliff, exposing cighteen feet of apparently excelient coal. The bottom of the seam here was beneath the water and could not be examined; above it, the cliff was not accessible and the rocks were concealed by slidu ví earth and other debris. The second exposure, which is no doubt a continuation of the same scam occurs in an arched form and shews cighteen feet of coal with one small, two to three inch parting of :hale. The specimens collected were all taken from the surfuce, and it is not unlikely that beyond the influence of atmospheric action the coal in these seams will prove of better quality than is indiened by these specimens.

At intervals, the whole distance from Roely Mountain Mouse to Edmonton. 135 miles following the course of the river, and thence to Yictoria. 76 a miles further down the river, similar rocks with coal seams and ironstom: concretions, were observed. Dr. Hector has separated the Eilimatom coal rocks from those which he saw at hocky Montin Honse bey intremenge area which he considered to be oceupied by a somewhat higher section or divixion of the ('retacerou-series. Le did not apparently see the thick seam of enal which I found, as already stated, below the Brazean Riacr, about cighty-six miles from hocky Mouttin Hotse, and numerous indications of other semms which I salw, probably atso escaped his notice, as he descended the river in the winter, when many of the oxposures along the banks must have been concealed by suow. At present I am unable to say whether the seams retain their thicknesses for long distances, or whether the numerous exposures and indications seen in the cliffs along the river, represent only more or less lenticular shaped patches repeated at different horizons and over laree areas. Dr. Flector appears to incline to the latter idea.

Below Victoria, the river valley widens considerably, and often rises by successive broad steps or terraces to the level of the prairies on cither side; sometimes these terraces are quite bare, while at others they are pretty thickly clothed with small poplar trees, a fer spruces and pines, and brushwod of willow, alder, and other shrubs. Occasionally the banks abut steeply upon the river, and afford imperfect exposures of the strata, which differ considerably from those met with at and above Vietoria. Hard flaggy sandstoues and impure limestones, associated with soft blue and gray clay, with layers of large concretions of olivebrown cement stones, or septaria, seamed by veins of jellowish
calc-spar, and holding fossil shells (Inoceromus, Sc.), wre here met with, but without associated coal or lignite beds, or, so far as I observed, any phant remains. These are, I believe, a higher series, and overlie the great brown-coal and liguite formation seen on the upper portion of the river. Similar strata are then seen wherever sections occur the whole distance to the Lilbow, about filty miles above Carlton. Here (at the Elbow) the river leaves the eastern limit of the third or uppermost prairie level, formed by the Eagle Hills on the south, and by the Thickwood Fills on the north side of the valley, and making a sharp bend to the north-east, more or less paralled with the trend of the castern slopes of the hills named, it flows across the second prairie level, making for the nearest point of its eastern limit, which it seaches about forty-five miles below Fort a la Corne. Between the Bibow and this point, and cspecially below Cantton, the immediate bomks of the river are cither low and flat, or rise in well-wonden slopes to the prairie level. In a few places, especially; at Cole's Falls and for short distances both above and bslow Fort a ha Corne, the valley closes in, and high cliff; rise steeply from the water's edge nearly to the prairie level. Whey are, however, all of drift, consisting of gravel underiad by sand and elay; in which there are oceasionally seen one or two layers of imbedded boulders of Silurim limestone, gnciss, and other rocks. The arerage level of the plains here, above the river, and at some distance back, does not probably execed 300 feet. And according to my barometric obscrvations, the river at Fort a la Corne is about 1172 feet above sea level, giving a fill between Carlion and Corse of about 172 feet in a distance by the river of 102 miles.

After leaving the castern limit of the second prairie level, the wiver banks rarely rise to an clevation of fifty feet above the water, and the adjacent country is cverywhere low and swampy and scarcely elevated at all above the flood level of the river, the marks of which were occasionally observed on the trees and bushes some eighteen inches or two feet above the surface which is formed of a deep, rich, alluvial silt. Similar low, swampy country everywhere intersected by water channels catends, with but few intervals to Cedar Lake, at the entrance to which ledges of the white, flat-lying Siluran limestones first make their appear ance. Thence, to the mouth of the river, these limestones are either at the surface, or only thinly corered by soil or drift.

They are well exposed in vertical cliffs at the Grand Rapids, and they likewise occupy the whole of the western shores of Lake Wimiprog, extending in a south-easterly direction for 350 miles to Fort Garry. Some of the beds would, I think, afford good. slabs for lithouraphic purpos:s, while from others a rich harrest. of fossils awaits the collector. Between these limestones and theeasturn slopes of the secoud prairic level, on the shores of LakeWinuipegosis and Manitoba, somewhat similar limestones have,. I believe, been observed, holding fossils of Devonian age; so that. we have in the gre:t low-lying region which constitutes the first. prairic level, a harge part of which is oceupied by the waters of ${ }^{-}$ lakes Winnipeg, Wimipegosis, and Manitoba, the eastern outcrops of a thick series of Devonim and Silurian 'strata, and it. becomes an interestiug question to determine how these eastern. Palwozoic rocks are related to thqse of more disturbed and altered: aspect which rise from bencath the coal-bearing Cretaceous forma-tions at the sources of the Saskatchewan and there form the: eastern slopes, as well as many of the higher summits of the Rocky Mountains. We know at present litile or nothing respect-ing the total thickness of the Cretaceous rocks which are spread. over a breadth of 1000 miles between Manitoba and the Rocky Mountains, neither do we at present know to what extent the upper part of the series, which is suppesed to occupy the surfice from the 100 th meridian westward to about the $11 \geqslant t h$. may or may not be underlaid by the supposed older beds. with theirassociated seams of brown-coal and iron ore. The general scarcity and the poor quality of the timber over hundreds of miles of country, renders it, however, a matter of the rery greatert importance in comection with the future settlement of a large portion of the "Fertile Belt," and with the opening it up either by land or by water steam transport, to ascertain where and at what depth beneath the surface coal could be prectred which would be available for domestic purposes as well as for the supply of railroads and s ramboats. Surface examination and survey alone, however minute, camnot be expected to lend much aid to the solution of this question, owing partly to the almost universal covering of superficial deposits, and partly also to the extreme flatness of the strata and the comparatively few points where they can be observed in natural exposures. It would, I think, not be difficult, however, to settle this point by means of a series 'of bore holes made at intervals along the valley of the Saskatche--
wan, between Carlton, Victoria, and Edmonton. The sites selected for these trials should be as near as possible to the level of the river, by which meins the penetration of a considerable thickness of gravel, boulder drift, and sand, before reaching the cretaceous strat:a, would be avoided, and the trouble and expense would be proportionately diminished.

In conclusion, I may perhaps make a few remarks respectiog -the fitness of the Suskatchewau River for steamboat navigation, - a subjest which at the present moment is attractiog considerable - attention in counection with the establishing of a Canadian transacontinental route to British Columbia.

My journey down the Saskatchewan was performed betweenthe 12 th of September and the 17 th of October, and therefore, in some respects, at a very unfarourable season to judge of the practicability of navigating it with steamboats. Throughout the -whole length of the river, the channel is more or less subdivided -by islands, and cevery sub-chamnel is further cut up and obstructed by sand-banks and shoals. Of course I saw them almost at their worst, as the water was everywhere from two to four feet lower than io would be at the opening of navigation in May or early in June. Nothing whatever can, I believe, be done that would -obviate or lessen the constant formation and shifting of the shoals -and sand-banks and the consequent annual changes in the posi--tion and depth of the main chamel ; a circumstance which mnst, . always render the navigation of the Saskatchewan above Fort a la Corne more or less subject to delays, and especially so towards the latter end of the season. For four months, however, under ordinary circumstances, no very serious obstacles would be encountered in the navigation of the river from above the Grand Rapid to Rocky Mountain House, by properly constructed steam--boats. Moderate length, powerful engines, light draft, and as much strength as possible below the water line are essential points in the construction of any steamer which may be built for the aivigation of the Saskatchewan. Last year, the Hudson's Bay Company built a steamboat intended to run from above the Grand Rapids to Edmonton, and her complete failure and loss on the - Cross Lake Rapid may be ascribed almost entirely to want of attention to these requirements. She was far too long, and also too wayk both in hull and machinery; and my impression, when I saw her lying a wreck on the bank of the river, was that the person who constructed her could never have travelled the route
for which she was designed. Jowing flat-boats or barges, as practied on lied River would, I think, be impracticable on the Saskatehewan for the reasons that in many parts the current is too strong, while in others the arailable chamel between the islands and sand-binks and shoals are too narow and tortnous. The only really insurmountable obstruction to steam navigation from Fort Garry to Rocky Mountain House is the Grand Rapid. It appears to have been carefully measured and examined by Professor Hind, who states it to be 9 miles in length with a total fall of dext feet. Whether the outlay requisite for a camal and locks to surmount this would be repaid by the result, is a matter for consideration. Between the head of the (inmod Ropid and the eonfluence of the two Saskatehewams, there are only two phaces whore, especially during the latter part of the seaton when the water is. low, steamboats might experimee sone difficulty and would pussibly require to be warped against the current, these are the Cross Lake Rapids and Tobin's or 'Thobou's Rapid, the one between Cedar Lake and Grand Rapid and the other between Cumberland or Pine Island Jake and Fort it la Corne. Tmmediately above the confluence of the North and Nouth Bramches are the Coul or Cole's Fulls. Next to the Grand Rapid thesefalls appear to me to constitute the most serious impediment to the mavigation. They extend over a length, according to my estimate, of rather more than twelve miles. I am not able tosay exactly what the total fall is, but my two harometers gave a difference of 0.44 and 0.45 respectively, between the junction and the upper end of the falls. This would indicate a fall in that distance of from $4(1)-5$ feet. The width of the river is from 150 to 170 or 200 yards, and the rapids vary in leugth from one hundred yards to about is guarter of a mile. The bed of the river is cverywhere filled with larec, rounded boulders of greiss, granite and limestone, and when we pased, many of ${ }^{-}$ these were shewing above the water, while more were covered. only a few inches deep. This was on the the ol' October, and then. no steamboat could have passed cither up or down with safety.. Our boat, an ordinary Hudson's Bay batteau, drowiog only about eighteen inches, touched the rocks several times, notwithstanding that we had a careful and experienced steersman, well. acquainted with the deepest channel. With two or three feet. more water in the river, of course the appearance of these rapids would be greatly altered, and as there is no solid rock, the
danger and difficulty of their navigation might be greatly lessened, if not altogether obviated, by the removal of some of the large boulders, a work which might probably be effected at a comparatively small cost. The current on this peice of the river would, however, always be very heavy, and proper arrangements for warping boats up these rapids in case of necessity, should be made in advance.

There is another very important matter connected with the Saskatchewan navigation which would require careful consideriation. I allude to the great scarcity and poor quality for steam purposes of the wood which could be procured on long stretches of the river above Carlton; indeed the whole distance between Canlton and Bdmonton this difficulty would arise, and I question whether it would not be more economical to establish coaling stations which could be supplied from the thick seam above Edmontori, than to use either poplar or spruce wood, neither of them of much value for steam purposes, especially where constant luil pressure would be necessary. The coal in the seams referred to is very favomably situated for working and shipment, and conid be taken down stream at a comparatively small cost. The arraugements for the return of the empty barges up stream would be the principal item of expense. My impression at present is that the coal-bearing rocks which crop in the banks of the river from near Victoria upwards pass with their associated. coal-seams and iron ores bencath the Cretaceous septaria clays. which are observed in the vicinity of Fort litt and the Elbow, and it may be that boring along the river valley would reveal workable seams of coal at such a limited depth beneath the surface as would render them available even as low down as Carlton.

TABLE OF HETGHTHS AND DISTANCES, s.c.

- Taking ! g_{i} miles the average of the three totals given.

 dreas astual measarement.

From the Reports of Jolliver; Mheliaxton and Ifind.

BOTANICAL AND GEOLCGICAL NOTES.

By A. T. Dnummond.

OWL'S MEAD, TAKE MEMPHRAMAGOG.
The floras of the Camadian mountain summits have not as yet received much attention. This is largely due to the almost inaccessibility of the mountains of the Lower St. Lawrence, especially of the north shore, where a rich harvest of semi-Aretic vegetation may be expeeted. The opening of the Intercolonial Railmay will give better access to those on the south shore, and will, it is to be hoped, lead some of our naturalists, who have the opportunities, to risit them.
'The flora of Owl's Head, one of the outliers of the Green Mountain range, I refer to here, not because it includes any characteristic plants but because it may be regarded as a type of the vegetation of the lesser peaks throughout Ontario and Quebee. The base of the mountain on the eastern side is washed by the waters of Lake Memphramagog. Here, at a height of 756 feet above the sea level-an elevation greater than that of Lake Superior-is a fair representation of the general New England flora, and it recalled to memory excursions made years ago among the Thousand Islands of the St. Lawrence. Precipitous mossgrown rocks, their moist, tree-shaded sides tenanted here and there by tufts of little spleenworts (Asplenium Trichomenes, L.), rise from the water's edge; and on the numerous ledges in often scanty soil and thence up the mountain side, more or less everywhere found, are red, mountain and sugar maples interspersed with aspens, beech trees and spruce. In the lake here are some of our more common fresh water shells as Anodontu cutaracta, Say, Mrrgreritome undulata, Lea, LThio complanatus, Sol., Sphowrium sulcutum, Inim., and Prehulinue decisu, Say. In the course of the ascent up the little valleys and gleus through which the mountain path winds there is not much change in the aspect of the flora until the summit is reached. The woods of any eastern Ontario township would present much the same appearance. Even among the Lichens there is nothing to indicate the smallsest change of eleration.

There is one peculiarity observable among these little organismes, the Lichens, worthy of a phace here, and it is a peculiarity
not confined to the mountain plants but equally conspicuous on: the trees, rocks and old palings everywhere. Lichens seem todelight in a situation having a northerly aspeet. Though no rule can be laid down, still this is so often observable that it becomes quite possible to in a general way judge of the direction of one's path. Frequently on some old palings, the more northerly side is quite cucrusted with rarious species which on the opposite side are almost wating, and here as elsewhere on the barks of trees, they will often be seen thickly grouped together on the northerly exposure and gradually becoming less prevalent on either side as the southern exposure is approached. Now, it is well known that the last forms of regetation met with on the highest peaks of the Himalayas or which greet the trateller in Arctic lands are lichens, and it would seem as if here, in a temperate climate, these little plants evince a longing for the cold and exposure which suits so well the species in the polar zones.

Another feature comected with lichens is their conomic value as sources of dyes, though this has lost much of its importance during reeent years by the discovery of aniline dyes. The old Orchella Weeds of commerce which gield beautiful purple tints have not get been found on the American const of the Atlantic nor thus far have I found more than one species in Canada -Pamelia Borrcri, Turn. which yields to :mmonia : purple dye. 'This is a very common Lichen of wide-spred mage on this continent and noticeable here on ()wl's Ifead alike on rocks and on the beech trees. But there ate other dye hichens also here. Some of those crisp. blackish species. resembliner bits of old cast away leather, attached by their centres to the sides of the rocks, yield beautiful red tints, as also dones The moschistes prerictizus, Fr.. one of those very common but pretty yellow species everywhere observable alike on rock :mad tree and paling.

At 2000 ft , ibove the sea, the beech is still sometimes seen and eren the bass-wood climbs ats high. But climbing over the large angular blocks which, chans-like. lie piled around the north-east ern side, an almost bare peak is reached. protruding as it were above the green of the foliage below. Here we are at a height of 2600 ft . above the ocean level, and, strange as it may sem. nearly one thousind feet above the level of the central parts of the continent. The botanist must be an enthusiast who is so taken up with his favourite science that he camot spare a moment for what from this summit is presented-one of the srandest panoramic views
we have in Camada. To the northward Orford, reputed to beone of our higher peaks, with its broad, irregular out line obseuring the view of the extensive country behind, looks like a gigantie boukder set up in relief against the horizon beyond. At its base as it seems, thongh some miles distant, is the lower ead of ${ }^{-}$ Iake Mhimphamang, which with its beaniful bays and indets and the hills on: cither side, sloping here abruptly and there gently to its shores, serems from this height like a large pond, though it stretehes a distance of thirty miles prat Owl's Head southward into Vormont. T'o the eastward of orford and reposing in the lap of the hills which skirt the Massiwippi Valley is Massiwippi Sake. From this puint beroud Lake Memphramasoge in the middle distance between its shores and the hori\%on, the eges wander southard over a rolling country mothed with light and sombe green. indieative of liedds and forest. past Stamsteal, with hardly a break on the hariom beyom, until they meet the (ireen Hills which group themselves around Xewport and which extemb thence southward peak heyond parak until they are lost to the eye in the haty distanee. Far away in the backeround of the view here but their outine somewhat dimmed. is the group of summits which form the White Monntains of New Hampshire..

The flom of the summit of ()wls: Head is comfined to a few common spreies and these of incompicuns size. Here where the summit is bat a narow prok, exposed on every side. the semantiness amd simall growth of the vergetation is to be attributed to the beak winds which must at this height be constantly hurric:med across it, as well as to some extent to sides which have taken place. rather than to the ahtule. There are no flowering plants here which we might not also find in almost any part of the Province of Qubbec south of the St. Sawrence. Sadousac and River du Loup at the sata level have several boreal forms in abundance: here there is almost nothine to remind one of Aretic life. The ouly unthern phants are Lichens. Encrusting the rocks is that little enemopolite of the mountains and dretic and Antarctic resious of the globe, Burlion geographicu, Schaer., the Map Lichen, its yellowish hue mate more conspicuous by the. blackish fringe surrounding it: wer at hand is another pretty yellow species Cetrarin juniperinu, Ath, var. pinustri, Fr., and growing beside both and contrasting strongly with its pitchy color is another northern Siehen, L'urmelin Niygien, Ach., theBlackalslaf of the Swedish Hills.

ADDITIONS TU THE CANADIAN LICHEN FLORA.

In the number of this jonrnal for October, 1865, there was published a provisional list of the Lichens of Ontario and Quebec. This embraced every species then known to occur within these provinces. The nomenclature of Prof. Tuckerman's Synopsis, published in 1848 , was necessarily followed as being the only accessible authority on American Lichens. The views of the author of the Synopsis are now, however, widely different-the result of long, patient investigation-and following the arrangement of his recent Genera Lichenum, the same provisional list published now would indicate many generic and specific changesThe additions now made to the list include a number which are interesting as being semi-Arctic in ramge. İn determining many of these species, I am agrain indebted to the valued assistance of Prof. Tuckerman.

I trust that those who have the opportunities will pay special attention to the Lichens of the Lower St. Lawrence coasts, Newfoundland and Nova Scotia as, particularly there, new or interesting species may be expected.
Cetreriat Frhhlunensis, Schaer. Tadousac and Owl's Head,
Lake Memphramarog.
I'urmelia stygie, Ach. Tadousac.
Umbilicariu crosa, Hofim. Tadousac.

Peltigeru mulucea, Ach. Tadousac.
Promnerien nigra. Nyl.
Collema pucnocurpum, Nyl. Durham, P.Q.
C. fluccidum. Ach. Tadousac.
C. pulpusum, Bernh.
C. furcum, Nyl.

Leptogium chloromelum, Nyl.
Lecanorre Hayeni, Ach. Ottawa. Iondon.
L. molydedinc, Schacr.-an Arctic plant hitherto only known from Greenland but now detected at Tadousac and more reeently by Prof. Tuckerman at Mt. Desert on the coast of Maine.
L. cerrine, Sommerf. vars pruinosa and simple.c.

Rinodinue ascociscom, 'luck. Bark of trees.
Pertusarien hymemin, Thock. Syn.
Biatora stnguinco-atra, Tuck. Syn.
B. mixtu, Fr.
B. Kypmophila, Turn. Ottaw:a.
13. rubella, Rabenh. vars. suffiusu and Schuremitzii. London.
B. wtro-rufu (Dicks) Fr. On earth, Tadousac.

Leciden fiuseo-atre, Ach. 'Tadonsac.
L. sumguinarier, Ach. Tadousac.

Buellia cllos-utra, Hoffm.
Calicium fuscipes, Tuck. This is a new species approaching C. subtile, Fr. but "larger and stouter and with larger spores. apothecia exactly turbinate-lentiform, the under side as well as the upper portion of the brown stipe as if thinly white-varnished." Lundon. Only other locality thus far-oak rails, Sew Jersey.
Staurothele umbrinu, Wahl. Jimestone rocks, Kingston.
I'rypetheliam virens, 'Tuck.
Ferructura muralis, Ach. Jimestone, Kingston.
V. Nylunderi. Hepp. A limestoue species from Kingston ap-proaches this in character.
V. microlola, Tuck. Limestone rock Kingston. This is a prorisionally new species, allied to F . pyremophora, Ach. but with apothecia less than half the size. "Thallus of minute, rounded, olivaccous, becoming grayish, commonly discrete gramules; spores ovoid 4-locular."
Piyremula hyrelospora, Nyl. London.

THE DRETRTBTTMON OF SOME CANADIAN PLANTS, AN ARGUMENT FOR TIIE MARINE ORIGIN OF THE ERIE CLAYS.

I have long thought that some of the striking anomalies in the distribution of our native plants throw considerable light upon the origin of the Erie cliys and their relations to the marine chays and sands of the Province of Quebec. 'These Frie clays underlic the Saugeen chays. hat contain no fossils, and we have therefore to book to extr:metas sources for information regarding their origin. On more tham one necasion I have maintained that the se: shore plants now so widely seatered around the Great Jakes and elsewhere indicate an extensive imroad of the oce:m, and that their original migration to the interior is clearly referable to post pliocene times subserfuent to the glacial drift. The clays and sands succeeding the Eric clays are lacustrine, and the underlying glacial drift, whatever its origin may be, points to a period of eld too excessive for temperate vegetation. It is difficult, then, to resist the conclusio: that the migration of
these plants took place during the deposition of the Erie clays, and then judging from the characteristic habits of the plants and their ramge, and the distribution of the clays, that these clays are of marine origin. Circumstances also seem to favom the wiew that the Leda clays and Saxicava samds of the Otcawa and .St. Lawrence valleys were deposited about the same time. Mr. C. II. Hitchenck of Hamover, N.H., thinks that 'as Lake Superior is (i3S feet abore the ocean, and the maritime plants surround Its shores, there is an argument for its submerrence at least to the deph of its surface, and probably to the height of its terraces, so that we may add 330 feet to the altitude of the lake. This would give nearly 1000 feet, which correjponds well with the known height at which marine shells' have been found in Arctic America, viz, one thousand feet on Cornwallis and Beechey Intands."

It seems mont probable that the boreal and semi-Aretic plants of the hake superior coasts, migrated thither contemporancously with or prior to the maritime plants. They are not now numerous. but are of a marked northern type. They are not distributed beyond the lake shores. It is only on the leadlands which jut far into the bake, and on the islands and the const where the blok winds which sweep across and down the lake have full phay; and where the broad deep expanse of water keeps the atmosphere cool and moist, that they are met with. A few miles inland, beyond Fort William, the regetation is in almost as great profusion and is as rank as in the central districts of Outario. Even at the heads of decp bays on the northern coast, though in a higher latitude, the plants are of a more temperate type than those of Thunder Cape and other promontories. Cpon some headlands of the sonthern shores of the lake such boreal and semi-arctic phants as Anrmome purreftora, Michn., Sitaifragu

 limu. and Croree copillaris, la., likewise occur, and though it may, perhaps, be argued with apparent reason that the presenes of some of these may be due to the play of winda and currents from the northern and western sides of the lake, yet there are others of these semi-arctic plants which have not yet been seen on the upper coasts. Now if these uorthern species here form colonics isolated from their fellows to the far north, without present means of communication, in accounting for their
occurrence we must revert to some prior age when the conditions of temperature were such as to facilitate their migration from higher latitudes. The fossil remains in the elays and sands overlying the Eric clays are of a temperate type and preclude the hypothesis that the connection took place during their deposition. The Leda clays on the Lower Ottawa, on the other hand, contain plants of a northern temperate range, leaving it strongly open to probability that in the higher latitude of the country to the immediate northward of Lake Superior there was during the early periods of the deposits of these clays a temperature congenial to the growth of boreal phants. Nor is this probability dispelled by the hypothesis that the sea shore species were driven inland relatively about the same time, as, with the exception of Cirsium horridulum, Michx., a perhaps doubtfully maritime plant, and Remex muritimus, $I_{\text {. , which also occurs in the inte- }}$ rior, all of those which are now distributed aromd the Great Sakes rage high on the North Atlantic coust, mingling with semi-Arctic species on the shores of the River and Gulf of St. Sawrence, and on the Nora Scotian coast.

If the hypothesis which I have here ventured be correct, it is interesting ilus to find that the Alpine flora of the White Hills of New England, the boreal colonies of the headlands of Lake Superior, the sea-shore plants now spread around the Great Lakes, and the fossil plauts of the leda clays, have all a contemporaneous origin; and that, considering the present normal range of these species on this continent, the wide distribution of some of them over Northern Europe, and the associations suggested by their exceptional locality and habits here, we obain a slight sclimpse at the pre-historic record of existing species.

OCCURRENCE OF GIGAN'SIC CUTTLE-FISIIES ON: THE COAST OF NEWFOUNDLAND.

Bra. E. Vemam.
Considerable popular interest has been excited by severas articles that have recently been published and extensively circulated in the newspapers of Can.da and the United States, in regard to the appearance of gigantic "squids" on the Newfoundlands. coast. Having been so fertumate as to have obtained, through the kindness of Prof. S. F. Baird, the jaws and other parts of ${ }^{-}$ two of these creatures, and through the courtesy if Dr. J. W.. Dawson, photographs of portions of two other specimens, I have thought it worth while to bring together, at this time, the main. facts respecting the several specimens that have been seen or captured recently, so far as I have been able to collate them, re-serving for a future article the full descriptious and figures of the jaws and other portions, now in my possession.

We now have reliable information concerning five different examples of these monsters that have appeared within a short. period, at Newfoundland. (1). A specimen found floating at the surface, at the Grand Banks, in October, 1871, by Captain Campbell, of the schooner B. D. Haskins, of Gloucester, Mass. It was taken on board and part of it used for bait. Dr. A. S.. Packard has given, in the American Naturalist, vol. vii, p. 91, Feb., 1873, all the facts that have been published in regard to this individual. But its jaws have since been sent to the Smithsonian Institution, and are now in my hands to be described and figured. They were thought by Professor Steenstrup, who saw a photogruph of them, to belong to his Architeuthis monachus, which inhabits the northern coasts of Europe, but is still very imperfectly known. The horny jaw or beak from this specimen is thick and strong, nearly black; it is acute at the apex, with a decided notch or angle on the inside, about 75 of an inch from the point, and beyond the notch is a large prominent angular lobe. The body of the specimen from which this jaw was taken is stated to have measured 15 feet in length and 4 feet 8 inches in circumference. The arms were mutilated, but the portions remaining were estimated to be 9 or 10 feet long, and 22 inches in circumference, two being shorter than the rest. It was estimated to weigh 2000 pounds.
(2.) A large individual attacked two men, who were in a small Boat, in Conception Bay, and two of the arms which it threw across the boat were cut off with a hatchet, and brought ashore. Full accounts of this adventure, written by Mr. M. Harvey, have been published in many of the newspapers.* One of the severed arms, or a part of it, was preserved in the museum at St. John, and a photograph of it is now before me. This fragment represents the distal half of one of the long tentacular-arms, with its - expanded terminal portion covered with suckers, 24 of which are larger, in two rows, with the border not serrate, but 1.20 inch in dimeter; the others are smaller, very numerous, with the edge supported by a serrated calcarcous ring. The part of the arm preserved measured 19 feet in length, and 35 inches in circumference, but wider, "like an oar," and 6 inches in circumferenec, nearer the end where the suckers are situated; but its length, when entire, was estimated at 42 feet. $\hat{\dagger}$ the other arm was destroyed and no description was made, but it was said to hase been 6 feet long and 10 inches in diameter ; it was evidently -oue of the cight shorter sessile arms. The estimate given for the length of the "body" of this creature (60 feet) was probably intended for the cutire length, including the arms.
(3.) A specimen was found alive in shallow water, at Coomb's Cove, and captured. Concerning this one I have seen only newspaper accounts. It is stated that its body measured ten feet in length and was."nearly as large round as a hogshead" (10 to 12 feet) ; its two long arms (of which only one remained) were forty-two feet in length, and "as large as a man's wrist;" its short arms were six feet in length, but about nine inches in diameter, "very stout and strong;" the suckers had a serrated edge. The color was reddish. The loss of one long arm and the correspondence of the other in size to the one amputated from from No. 2, justifies a suspicion that this was actually the same individual that attacked the boat. But if not, it was probably one of the same species, and of about the same size.
(4.) A pair of jaws and two of the suckers were recently forwarded to me from the Smithsonian Iustitution. These were received from Rev. A. Mum, who writes that they were taken

[^1]from a specimen that eame ashore at Bonavista Bay; that it measured thirty-two feet in length (probably the entire length, including more or less of the arms); and aboutsix feet in circumference. This jaw is large and broad, but much thinner than that of No. 1, and without the deep notch and angular lobe seen in that specimen. It probably belongs to the Arehiteuthis dux of Steenstrup, or at least to the same species as the jaw figured by Dr. Packard.
(5). A smaller specimen, captured in December, in Sogic Bay, abont three miles from St. John, in herring nets. Of this I hare a description in a letter to Dr. Dawson, from M. Harvey, Eseq., who has also published a brief account of it in the "Morning Chronicic," of St. John. The letter is acompanied by tro photographs of the specimen: one showing the entire body, somewhat mutibated anterionly; the other showing the head with the ten arms attached. The body of this specimen was over seven. feet long. and between five and six feet in circumference; the caudal fin was twenty-two inches broad, but short, thick, and emarginate posteriorly on each side, the end of the body being. acute; the two long tentacular-arms were twenty four feet in leugth, and two and a half inches in circumference, except at thebroader part near the end ; the tips slender and acute; the largest suckers 1.25 inch in diameter, with servated edges; the eight short arms were each six feet long; the two largest were ten inches. in circumference at base; the others were 9,8 and 7 inches. These short arms taper to slender acute tips, and each bears about 100 lare, bell-shaped suckers, with serrated maruins. Wach of the long ams bears, about 160 suckers on the broad terminal portion, all of which are denticulated; the largest ones, which form two regular altermating rows, of twelse each, are about an inch in diameter. There is also an unter row of mach sualler suckers, alternating with the large ones, on cach margin; the terminal part of these arms is thickly covered with small suckers: and numerous similar small suckers are crowded on that portion of the arms where the embrement begins; before the commencement of the rews of large suckers. The arrangement of the suckers is nearly the same as on the long arm of No. 2, but in the latter the terminal protion of the arm, beyoud the large suckers, as shown in the photographs, is not so long, tapering, and acute, but this may be due to the different conditions of the two specimens. It is probable that this was a young specimen of the same species as No. 2 .

From the facts known at present, it appears probable that all these specimens, and several others that have been reported at various times from the same region, are referable to two species: one (probably Architeuthis monachus) represented only by the first of those enumerated above, and having a more elongated form of body and stouter jaws; the second (probably A. dux) represented by Nos. 2 to 5 , above described, having a short, thick, massive body, and broad, but comparatively thin jaws, which are also different in form. Some of the differences in size and proportions, and in the suckers, observed among the four specimens referred to the latter species, mily be due to sex, for the sexes differ considerably in these characters in all known. cuttle-fishes.-Americom Joumal of S'cience.

THE Late Robert Medndrew, Esq., F.R.S., F.L.S., F.Z.S., dic.

In these days, when dredging operations are common, and their results carcfally tabulated and easily aceessible, it is instructive to remember that when some of us were boys even the most frequented seas had not been explored except by fishermen, and the geographical distribution of species had not been studied. Foremost in the ramks of new discoverers were the late Prof. Edward Forbes and his friend Mr. M'Audrew. The latter gentleman was of Scotch parentige, but born in England in 1802 . He spent the first 27 years of his active life in Liverpool, and the remainder at Isleworth House, Mildlesex, where he died after a brief ilhess last May. He was one of the largest wholesale fruit merchants, and it was "accident." th. ht leal him to devote his spare time to scientifie pursuits. His wife having amused herself at the seaside by picking up all the eowries (Trivite Europur c) she could lind. he surgested to her that it would be far better to see how momy different kinds she could pick up. The varicty surprised him. He began to collect shells, about the time that Deshayes wes editing Lamureks Amiman sans Vertebbes. Then he began to dredge. as the oystermen did, in an open boat. But when the resuits of his researehes began to attract the attention of scientific men, he fited ont a yacht with what were then unheard of consenienees. Fixed to the ontside were frames for the fine sieve, and the coare within. His trained sailors managed the dredge, thew the hat into the sieves, drenched
the contents, and the sieves were brought in to be examined in comfort. The soft parts of the mollusks were gobbled by the poultry, which formed an integral portion of the establishment. In those days governments paid nothing for marine scientific explurations, and even the doles of $£ 5$ or $\mathfrak{E 1 0}$ granted by the British Association had not begun. Naturalists are grenerally too poor to hire the necessary outfit; and an invitation to join a dredging party in Mr. M'Andrew's yacht was a rare treat. How seldom do wealthy commercial gentlemen confer such favors on working maturalists. All honor to the foremost in this noble aristuratey ! With the results chiefly of Mr. M'Andrew's explorations, Prof. Forbes developed his theory of geographical distribution. founded, however, on what we now know to have been but partial data. The importance of the insestigations was quickly perceived and the knowledge gained was systematized in the "Histowy of British Mollusca" by Forbes and IIanley; a work which has formed a model for all subsequent accounts of local faumas, and the value of wheh has been by no means: lessence by the recent volumes on the same subject by Mr. J. (i. Jeffreys.

Afer fully exploring the different sub)famme of the British seas, a work which the late Mr. Barlee continued for Mr. Jeffieys' benefit: Mr. II Andrew pursued his researches on the coasts of Spain and Portugal, the Levant, north cosst of Africa, and the Western Islands, especially the Madeira group. Here he dredged in deeper water than had ever been before attempted. Among the many new species which he discovered, none were more interesting than the recent Bifrontin, till then only known as a fossil. During this period, Prof. Forbes made hls researches in the Egean sea.

The temperate and subtropical portions of the Atlantic fauna haviug been thas carefully worked-out, Mr. M'Andrew directed his yacht to the Nothern Ocean, dredging among the fiords of Norway as firr as the North Cape. The shells of this region have proved very valuable to us, as illustrating those of our own Gulf. In these expeditions, the late S. l'. Woodward, Barrett, and other celebrated naturalists were invited to take their share.

For the first time then in the history of science, a merchant was found who, without training in college, and without any assistance, explored the whole fauna of the North Atlantic from the icy to the sub-tropical seas. This having been accomplished, Mr. M'Andrew sold his yacht, gave up his active share in busi
ness, and devoted himself to the arrangement and distribation of his great collections.

Having, however, taken a pleasure-tour int the Holy Land and Ergyt, he was struck by the surpassing richaess of the shores at Suez; and returned, resolved to fit out another expedition to explore that Gulf, the furthest northern and western nook of the great Indo-Pacific fannal. This, the last labour of his life, was happily accomplished, and gained for him the gold medal of the French Academy in 1870.

Throughout his life, he was romarkable for his cxtreme modesty. Ife declined to deseribe his own species; and, ats an author, contented himself with brief papers and reports in the transactions of the British Association, the Philosophical Society of Liverpool, the Ammals of Nitural History, dic. He generonsly distributed the riches he had acequired, to the British Musemm, to those of Edinburgh Eniversity, Ifarvard College, Mass., the Smithomian Institution, and to varions other public and private collictions. Only a week before his death, he made up an additisus. pareel for the British Musem, 'To this he had present. 1 the fullest possible series, including some unigue specim 'ns. on the express condition that a catalogne of them should be pmblished. This condition is still howerer unfulfilled.

To the collection now the property of McGill Colloge, he prosented not only a fine series from all of his Atlantic dredgings and those of the Red Sca, but also from his general duplicates. His last donation, received only a few weeks before his death, was a shate of type E. Indian collections of Benson, which he had lately purchased.

Mr. M'Andrew's own collection was invaluable to the stadent from the accuracy and beauty of the arrangement, and the very full suites of all ages, varieties and localties, selected from the myriads which had passed through his hands. Some time ago he made exact conditions with the University of Cambridge, (Eng.), in accordance with which it has become their property, and will be preserved intact for the use of students.

Would that some portion of his spirit might descend on this side of the Athatic ; and that some of our "merchant priuces" would adom their calling, as he did, with the gencrons prosecution of scientific research; as well as with the strict integrity; the unostentatious charity, and the carnest perseverance of the Christiau gentleman!
P. P. C.

Montreal, Nov. 2nd, 1873.

ON SOME NEW OR MITTLE KNOWN FOSSILS FROM THE SILURLAN AND DEVONLAN ROCKS OF ONTARIO. Dy D. Bhange, F. G.S.

SILURIAN.

Fig. 1.-Aulocopina Granti-A nearly perfect specimen.
" 2.-The summit of a larger specimen.
(Both figures natural size. 'The true chanaters of the surface cannot be perfectly represented by wood engraviness.)

> Geluus Aulocopina (…G.)

In a box of fossils lately sent to the Geoldrical Survey by Major Grant, of H:milton, there are sereral specimens which appear to me to belong to a new genus of sponges. The most perfect is of an elongate, ovate, or pyriform shape. The larger, or upper extremity, is more or less concave, with a small circular space in the centre, which appears to be the mouth of a tubular cavity that penetrited inwards and downwards, aing the vertical axis of the sponge. I shall call it the "osculum." From its edzes numerous small, irregular, sometimes branching ridges, radiate outwards in all directions over the surface, and descend the sides to the base. Several polished seetions, through the osculum, downwards, show that the centre, at least in the upper half, w:as occupied by a large tubular canal, with smaller ones branching from its sides, outwards and downwards. This strueture is only indicated by the dark colour of the material which fills the canals, in contrast with the light grey chert; which constitutes the mass of the fossil.

This genus somewhat resembles Aulocopium in its structure, Juat differs in having its whole surface covered with the rounded
irregular ridges above mentioned. I propose to call it Aulocopina, and shall, hereafter, with additional material, endeavour to give - a more detailed account of it.

I shall dedicate the only species known to me, to its diseoverer, Miljor Chas. Coote Grant, H. P. 1 Cth Regt. Foot.

1. A. Granti-OUe of the specimeas is 16 lines in length and 12 lines in width about the middle. The osculum is a little over two lines in width. There are in general from 5 to 9 strixe or ridges on its surface in the width of 3 lines. These radiate from the osculum and continue down to the base, so that the whole surface is covered with them. The specimen is somewhat compressed, so that a transverse section through the mid-length would be a somewhat irregular ellipse, the greater axis 12 lines, as given above, and the lower 9 lines.

The second specimen is also somewhat compressed, and is elongrate-ovate, proportionately more slender than the former. Length it lines; greater diameter at the middle S lines; lesser diameter 6 lines; diameter of the osculum 2 lines. There are 6 to S strixe in the width of 3 lines, and they cover the whole surface.

The third specinen shows only the summit of a large individual. The diameter is 14 lines; width of the osculum 2 lines; there are from 6 to S ridges in the width of 3 lines. The central portion is eoncave, the osculum being situated in the bottom .of the conc:uvity.

A fourth spocimen, a fragment, has a diameter of 2 inches at .the summit; the osculum 4 lines wide.

Occurs in the Niagara formation at H:milton.

DEVONIAN.

The Devoniau fossils, described in this paper, having been all .collected within a limited area in Ontario, I shall not give the localities after each species, but only mention here that all the Corniferous species are from the Counties of Haldimand, Welland, and Oxford. The species of the Hamilton formation are from the Towoship of Bosanquet.

The internal structure of the corals, was ascertained principally from polished sections, skillfully prepared by Mr. T. C. dWeston, the Lapidary of the Survey.

Genus Amplexde.

2. A. exilis.-Corallam more or less curved, expanding to a diameter of 14 lines at 32 inches from the base. Surface with very distinctly defined costal strix, of which there are 5 in the width of: 3 lines, where the diameter is abont one inch, and 6 or 7 in the same space at the base. There are about 64 septal where the diameter is 14 lines. The larger of these are seareely a line in depth; the smaller about half that size. The tabulae are very thin, flat or slightly undulating, distant from cach other from 1 to 6 lines.

Owing to the fragrile character of the shell, good specimens of this species are rare. The best in our collection consists of the lower 6 inches partly imbedded in the rock. By the ipplication of acid, the whole of the interior has been completely freed fromthe limestone which filled it, so thit it shows the tabu'a :ud septa perfectly. It is curved, somewh:t irrerularly, to a radius of between 4 and $\overline{5}$ inches. There are mumernss small rings of growth, in seneral not very prominent, bat with sime that are angular and strongly elevated. These are sometimes, so deep that they give to the costal striae. a mollose appearance.

The extremely rudimentary state of the sept , !istin:unishes this species from atl the described dmerican fums known to me.

Occurs in the Comiferous.
3. A. mbabure. Corallum sometimes abruply curved in different directions, expmondiue to a widh of from 1.5 to 20 lines in a lensth of 4 or $\overline{5}$ inches from the base; :bnve which it becomes more nearly gyliadrical. Surface with fine entiviling strice, in seneral f or 5 in the width of 2 hane, but in some places, the same number ocear in the width of one line. 'There are also numerous amgular rings of growth, distant from 2 to 15 lines from eash other, with sub-concare spaces ln:tween. Septol costac rounded, distinctly defined by sharp striae between them, Tor S in the width of $:$ lines near the base, and + or 5 in the same ne:ar the calice. There are abont +1 birge septa at the calice, where the diameter is about 15 lines, with the same number of small ones between them. The larger have a depth of 3 or 4 lines and the smaller 1 line. All of the septa are more or less curved, sometimes very tortuous. The tibule have not. been observed.

The above description was drawn up from a specimen, 11:
inches in length, measured along all the curves. It is 15 lines in diameter at 5 inches from the base, and about 18 lines at the cup. The septal costie are very distinctly defined at the basebut become more flattened and obsente upwards. In external characters it resembles A. exilis, but the mued greater developement of the sept: distinguishes it therefrom

To -I. mirabilis, I add, provisionally, a specimen which whene perfect, must have been 2 feet in kength. It is 17 lines in diancter at the ealice and about 11 lines at 12 inches below There are about 45 :arese septa at the base of the cup, with an. equal number of suatler ones. Depth of the larger; 3 to 5 lines, and of the smaller, 1 or 2 lines. As in the former specimen all. the septat are more or less curred.

Both ipecimens ocenr in the Comiferons.

Genus Kaphnexvis.

4. \%. wrentsta-Com:llum somewhat slender, expanding. to a diancter of 16 lines in a length of 7 inches. Surface with numeroms rommed ringe of growth, of all sizes up to 3 lines in. wish. Contal strite abont. S in the width of 3 lines, where the diameser is 10 or 12 lines. Where the diameter is 15 liues there are :bont of large and the same number of small septa. The laterer have a depth of :bout 5 lines and the smather t lines. They seem :ill to be slightly flexumas at heir imer edees. Thecup is about 1 inch in depth. the bottom :mooth. flat or slightly concave and 4 lines wite. Thure is a small septal fonsette.. Occurs in the Gornifenuts.
5. Z. Emamrat.-Corainm imbinate, slightly curred, expanding to :" widhe of 2 inches in :a lengh of abont t inches. Surfice with numerous smaill, mostly siarpereged rinus of growth. Near the base there are 7 or S costal striae in the widta of 3 . lince; near the catice there :qupar to bi 4 or $\mathbf{3}$. There are about (in) large sephet, at at dimeter of 2 inches. Mamy of these extend inwards to the centre. There are also 60 samall septit, of a depth of from 5 to 7 lines. Botion of the cup nearly flat, about 10 lines wide. The septal fossette is of an onite form, its. outer edge not reaching the margin, its inner extremity about. half way to the centre.

This species is allied to Z. imeenusta in having about the samenumbers of septa in the same widh. It differs in having a. much greater diameter, and the large septa reaching the centre. Occurs in the Corniferous.
6. Z. Hecuba.-Corallum large. expanding to a diameter of $2 \frac{1}{2}$ inches in a length of 4 inches. Surface with mumerous, slightly elevated, rings of growth. Costal stria at the margin of the calice about 1 line wide; 5 or 6 in a width of 3 lines at the base. Where the diameter is 28 lines, there are 50 large septa, many of which reach the centre. Between these there are 50 smaller septa of about 1 line in depth. The calice in a specimen $5 \frac{1}{2}$ inches in length, measured along the convex curve, is 20 lines deep. The wall is very thin, all the septa reaching the margin, on approaching which, they all become of nearly the same size, and reduced to thin elevated ridges, less tham a line in heighth, with concave grooves between them. The bottom of the cup occupies about half the whole width, nearly flat, the septa forming small eievated lines upon its surface, converging to the centre. The fossette is large and has three septa in it; one large and two small. This species resembles the last, but differs therefrom in being a larger form, with the rudimentary septa less developed. There is also a strong likeness between it and Z. Stokesi. Cormiferous.
7. Z. Eisema.-Comatlum, often strongly curred for 2 or 3 inches at the base, becoming more nearly straight above; expanding to a width of from 18 to 26 lines in a length of 4 or 5 inches. Surface with numerous rings, and a few undulations of grow.... Epithec: thin, with S or 10 costal strix in a width of 3 lines near the base; about half that number in the same space in the upper part of the coral.

In one splecimen, in a transverse polished section, 3 inches from the base; there are 64 large septa 3 or four lines in depth, and the same number of small ones between 1 and 2 lines in depth. The diameter of the coral is here 18 lines.

In another individual, there is the same number of septa as in the former, the larger $\overline{5}$ or 6 lines in depth and the smaller from 2 to 4 lines. The diameter of this section is 25 lines and was cut across the coral at $4 \pm$ inches from the base.

A silicified specimen, 6 inches in length, shows that the cup is over an inch in depth, and the tabula excessively thin and frasile.

This is a more slender species than Z. Ifecula. It differs further in having more numerous septa at the same diameter and the large ones not reaching the centre except apparently near the base. It occurs in the Corniferous.
8. \%. amprrtya.-Corallum turbinate, curved, expanding to 2 width of 21 lines in a lengrth of $4 \frac{1}{2}$ inches. Surface with a few rounded folds of growth. Septal strie 8 or 9 in the width of 3 lines at the base; in the upper part where the surface is perfect the strie are not visible (in the specimen examined), but where a little worn there are about 6 in 3 lines, indicating both the lauge and small septa; or 3 where only the large septa are represented. At a diameter of 18 linss there are 56 large septa, 6 or 7 lines in depth; some of them reach nearly to the centre. The small septa are two or three lines in depth. The bottom of the cup is smooth with a slightly elevated, low pyramidal coluanella, forming a low ridge in the direction of a line drawn through the fossette. The latter is large, ovate, the smaller extremity pointing outwards. Occurs in the Comiferous.
9. Z. subrecta. - Corallum somewhat straight, flexuous, gradually expanding to a diameter of 21 lines in a length of 6 inches. Surface with rounded folds of growth and a few broad undulations. Septal striae 9 in the width of 3 lines at the base, becoming wider and more indistinct upwards. There are 38 large septa at a diameter of 18 lines, from 3 to 5 lines in depth; small septa, in general from $\frac{1}{*}$ to 1 line in depth. Occurs in the Corniferous.

Genus Heterophrentis (N. G.)

Corallum simple, turbinate. Calice large with a well defined septal fossette, the bottom either smooth or with a pseudocolumella.* Septa below the calice sharp-edged, often with their imner edges twisted together; :above the flow of the calice they are usually rounded, especially on approaching the margin. There is apparently only a siugle transverse diaphragm, and this forms the floor of the cup.

This genus is intended to include (more especially) such :species as II. spuatiosa, II. excellens and some of those referred to II. prolifica = (Zaphrentis prolifica).
10. H. spatiosa.-This species I have heretofore called Zaph.rentis sputiose. It is a short, rapidly expanding species. Length of the typical specimen 3 inches, width at the margin $2 \frac{1}{2}$ inches,

[^2]where there are about 90 low rounded septa, somewhat unequali' in size but in general 6 or 7 in the width of $\frac{1}{z}$ an inch. As all the specimens seen, are partially filled with siliceous limestone, which cannot be remored by the application of acid, I have not, therefore, been able to ascertain the characters of the bottom of the calice. Corniferous.
11. H. excellevs.-Corallum turbinate, moderately curved, expanding to a diameter of $2 \frac{1}{2}$ inches in a length of 6 . Surface with numerous more or less angular folds of growth. Depth of calice 21 lines. Septa about 100 at the margin, rounded, slightly elevated, becoming sharp-edgel and serrated as they deseend. Bottom of the calice, striated by the edges of the large septa, a few of which reach the centre and ascend the columella. The latter 2 or 3 lines in height. A large and deep septal fossette. Corniferous.
12. H. compra.-Corallum turbinate, curved, expanding toa diameter of 18 lines, in a length of \pm inches. Surface with rounded or sub-angular folds of growth. Calice 12 lines in depth. No columella. A moderate sized, septal fossette. There areabout 100 septa at the margin of the cup. Comiferous.
13. H. prolutica.-'This species was published in Camadian Journal, March, 1859 , and was made to include a number of closely allied forms, which could not be then separated for want of sufficient material. I now propose to confine it, to the group typified by the specimen figured with the original description, and in the Geology of Canada, page 365. It may be thus de-scribed-Corallum simple, turbinate, curved, expanding to a width of from 18 to 24 lines in a length of from \geq to t inches. Surface with a few undulations of growth. Septal strixe S to 10 near the base and 6 to S in the upper part in a width of 3 lines. Septa from about 100 to 120 at the margin (where they are all rounded), most common number from 100 to 110 . In general they alternate in size at the margin; the small ones becoming obsolete on approaching the bottom of the calice; the large ones more elerated and sharp edged. The septal fossette is large and deep, of a pyriform shape, gradually cularging, from the outer wall inwards for one-third, or a little more, of the diameter of the coral, at the bottom of the calice. Its imer extremity is usually broadly rounded or, sometimes, stratish, in the middle. It cuts off the inner edges of from 8 to 12 of the principal septa
which may be seen descending into it to various depths. The surface layer of the bottom of the cup, extends the whole width, bending downwards a little near the margin, as in Zaphrentis, and uniting with the inner wall of the cup all around. It thus seems to represent one of the tabule of a Zaphrentis. The following are the principal variations observed in this part of the fossil.

1. Specimens with a perfectly smooth space in the bottom of the cup; no columellia.
2. A smooth space with a small conical tubercle near the centre.
3. Smooth with a small ridge, two lines in length and half a line in heighth and width.
4. Smooth with a compressed columella 3 lines in length, 2 lines in height, most elevated next to the fossette, gradually declining in height towards the opposite side.
5. Smooth spaces very small, columella, a low elongated ridge, with a few tubercles on its crest.
6. Columellia well developed, but with tubercles on it and around it.
7. Septal reaching the columella and more or less corrugated and either with or without a columella.

In all cases where the columella is elongated, its length extends in a direction from the fossette to the opposite side. In those which have the septal extending to the centre the columella is often represented by a low rounded elevation.

It is difficult, perhaps impossible, to decide whether or not this group of forms, is specifically distinct fram II. excellens. The greatest difference is seen in the surface characters. In Ir. excellens the folds of growth are in general numerous and angular, although some are rounded. In IV. proliflca they are in general few and nearly always rounded. In H. excellens I have only been able to make out the septal strix distinctly in one specimen. At 1 inch from the base there are 5 and at $2 \frac{1}{2}$ inches 4 in the width of 3 lines. In H. prolifica there are 8 to 10 at 1 inch, and 6 to 8 at $2 \frac{1}{2}$ inches.

To this may be added that II. excellens is extremely rare, while H. prolifica is very abundant.
II. prolifica is abundant in the Corniferous. I have seen only one specimen from the Hamilton group.

Genus Gproceras.

14. G. Numa.-The only specimen of this species in the collection is a cast of the interior, which is sufficiently perfect to give us the number of the whorls and their form, but does not show the distance of the septa from each other, nor the position of the siphuncle. Shell large, consisting of about three whorls, all in contact, execpt a small portion of the last one at the aperture, which is disengaged. The dorso-ventral diameter of thewhole coil is about 10 inches; of the two first whorls about 3 3 inches. The transrerse diancter of the third whon at its smaller extremity is 30 lines; dorso-ventral diameter of the same about, 21 lines. The dorso-ventral diameter of the last whon at about the point where it becomes separated is 4 inches, but as only a part of the transverse section of this whorl is seen, and the shell appears to have been compressed haterally, this dimension may be too great. On the ventral side of the last whorl there is a wide, slightly depressed furrow along the median line. This. also may be the result of pressure. On a part of the second whorl, six or seven shallow rounded ammatations are indicated, each of them two or three lines wide, and separated by grooves of the same width. A fracture in one place shows that the septa are deeply concare. As the aperture is broken away, it camot be determined how much of the last whorl is free in the perfect fossil, but judging from appearances I should say not much more. than two inches. Corniferous.

Gemus Onthoceras.

15. O. Anax.-Shell about 2 feet long and from 3 to $3 \frac{1}{2}$ inches in diameter at the aperture. Septa from 6 to 8 in a length of 2 inches, where the diameter is 18 lincs. Siphuncle nearly central, cylindrical or nearly so, 2 lines in thickness where the diameter of the shell is 16 lines.

The best specimens in the collection, (those from $1 \frac{1}{2}$ to 2 feet in length) show none of the septat except in the 5 or 6 inches of the smaller extremity. One oniy, shows a single septum which is $5 \frac{1}{2}$ lines deep where the diameter is $2 \frac{1}{2}$ inches. In the same locality, and in the same state of preservation, were found a number of fragments in which there are S or 9 septa in a length of 4 inches, where the diameter is between 2 and 3 inches. I think these all belong to the same species.

Genus Liciias.

16. I_{1}. superbus.-The frontal lobe of the glabella of this extraordinary trilobite has ahost exactly the form of an earg, corered with tubercles, and placed on the anterior half of the head; its greater length corresponding, in direction, with the length of ${ }^{-}$ the body. Behind this there are two much smaller, sub-conicak. elevations, separated from each other by a depressed space or chamel, the bottom of which is either flat or slightly conver.. Close behind these the occipital furrow crosses the head; and next in order, the occipital ring or neck segment. The chamel: between the cones, proceeding in a direction forwards, divides. into two branches, which diverging right and left, separate the: anterior sides of the cones from the posterior part of the large frontal lobe. The base of the frontal lobe has a concave constriction all around, so that on a side view, the lobe seems to stand upon a low pedicel, nearly as broad as itself.

Judging from the fragments I have examined, if a perfect spe-cimen were phaced flat on the ventral side, then the depressed space or chamel between the two posterior notes of the head,would be horizontal, while the louger axis of the ovate frontal lobe would slope forwards and downwards, at an angle of between 60 and $S 0$ degrees. In this position the length of the head of one of our specimens is about 3 inches, divided as follows: width. of the neek segment 4 lines; from the neck serment to the posterior part of the median lobe 12 lines; thence to the most projecting point of the frontal lobe, forwards, 17 lines, in all 33 lincs.

Placiug the base of the frontal lobe in a horizoutal position, the dimensions are as follows: greater length of the lobe (along the median line) 21 lines; greatest width about the middength 17 lines; greatest height above the constriction that surrounds the base 10 lines.

Whe frontal lobe, alhough ol lines in lengeth, owing to its sloping condition, only contributes about 17 innes to the length of the head.

The width of the epace, between the bases of the two cones is six lines; height of the cones 5 lines. These cones perhaps represent the anterior pair of the glabellar lobes of an ordinary Lichas.

We have one specimen in which the length of the frontal. lobe is 3 inches and its width about 2 inches.

The surface is covered with tubereles of various sizes up to 2 lines in width in the largest specimens. The space between the 2 cones is mearly smonth.

There are about a dozen specimens of the frontal lobe in the collection, and they vary from a length of 9 lines up to 3 inches.

Occurs in the Corniferous.

CIIANGES OF NOMENCLATURE.

In 1860-1861, I described, in the C:madian Journal, a number of species of Devonian fossils, which appeared to be new. During the thirteen years that have elapsed, many changes have taken place in paleontological nomenclature, and several of the mames then adopted must be changed.
1.-Athyris Cluret, also described by Prof. Mall under the name of Meristelle clisse. I am iuformed that this species has been long understond to be $A t$ ryppa nusuta, Conrad, although it was not recoguized as such by Prof. Hall in 1S60. If it is truly Comrad's species it should be called Athyris nusuta.
2.-Rhynchonella? Leura, published May, 1S60, is the same as Prof. ILall's Leeiorlynuchus multicosta of a later date. See Am. Jour. Sci. 2d Ser. vol. 31, p. 293. Our species may be called Leiorkynchus Laura.
3.-Strichlundinia clunguta, may be changed to Amphigenia elongata.
4.-Strophomence inurquistriuta is S. inequiradiatu, according to Prof. Hall.
4.-Fuvosites baseltica. When Goldfuss published this species he figured three specimens:
4a-From Lake Erie. 4l-from Gothland. $4 c$ s d-from Eifel.
These represent, either two, or three species. The specific name cim only be retained for one of these species. The question to be decided is "which of them"?

Lonsdale and McCoy, have expressed the opinion, that the specimen (c, d), from the Eifel, is F. Gothlandica. Prof. H. A. Nicholson, says in reference to this opinion, that "it is probable." -(Canadian Journal, 1873 ?)

Supposing these thrse authors, to be correct in this view-then (c, d) must be referred to F. Gothlandica, and the name, F. busallica, retained for either one or both of the others.

The specimen figured by me as F. basaltica, is of the same species as $4 a$.

Published March 30th, 1874.

[^0]: - Read before the Natural History Society, Jan. 26th, 1874.

[^1]: *Also in the Annals and Magazine of Natural Mistory, January; 1874, with a wood-cut of the arm.
 \dagger Doubtless these long arms are very contractile and changeable in length like those of the ordinary squids.

[^2]: - For the sake of brevity, I shall hercafter make use of the word columella.

