IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences
Corporation

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

Canadian Institute for Historical Microreproductions / Institut canadien de microreproductions historiques

The Institute has attempted to obtain the best original copy avallable for fllming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/

Couverture de couleur
Covers damaged/
Colsverture endommagée
Covers restored and/or laminated/
Couverture restaurée et/ou pelliculée
Cover title missing/
Le titre de couverture manque
Coloured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. outre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleurBound with other material/
Relié avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
La re liure serrée peut causer de l'ombre ou de la distortion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these heve been omitted from filming/
Il se peut que certaines pages blanches ajoutes lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lul a été possible de se procurer. Les détails des cet exemplaire qui sont peut-être uniques du pcint de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagées
Pages restored and/or laminated/
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées
Pages detached/
Pages détachées

Showthrough/
Transparence
Quality of print varies/
Qualité inégale de l'impression
Includes supplementary material/
Comprend du matériel supplémentaire
Only edition available/
Seule édition disponible

Pages wholly or partially obscured by errate slips, tissues, etc., have been refilmed to ensure the best possible image/
Les pages totalament ou partiellement obscurcies par un feuiliet d'errata, une pelure, etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

The ir possit of the filmin

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here has been reproduced thanks to the generosity of:

National Library of Canada

The images appearing here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impression, or the back cover when appropriate. All other original copies are filmed beginning on the first page with a printed or illustrated impression, and ending on the last page with a printed or illustrated impression.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ ($\mathrm{r}:$:eaning "END"), whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'exemplaire filmé fut reproduit grâce à la générosité de:

Bibliothéque nationale du Canada

Les images suivantes ont été reproduites avec le plus grand soin, compte tanu de la condition et de la netteté de l'exemplaire filmé, et en conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papier est imprimée sont filmés en commençant par le premier plat et en terminant soit par la dernière page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la première page qui comporte une empreinte d'impression ou d'illustration et en terminant par la dernière page qui comporte une telle empreinte.

Un des symboles suivants apparaitre sur la derniàre image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole ∇ signifie "FIN".

Lens cartes, planches, tableaux, etc., peuvent âtre filmés à des taux de réduction différents. Lorsque le document est trop grand pour être reproduit on un seul cliché, il est filmé à partir de l'angle supérieur gauche, de gauche à droite. et de haut en bas, en prenant le nombre d'images nécessaire. Les diagremmes suivants illustrent la méthode.

Rxamination Ppimer in Oanadian Hintory.

(Historg Taug't by Topical Method.)
By James L. Hughes, Inspector of Public Schools, Toronto. A Primer for Schools, and Students preparing for Examinations. Price 25 c .

New and Special Features.

1, The History is divided into periods in accordance with the great national changes that have taken place.
2. The history of each period is given topically instead of in chronological order.
3. Examination Questions are given at the end of each chapter.
4. Examination Papers, selected from the official examinations of the different provinces, are given in the Appendix.
5. Student's Review Outlines, to enable a Student to thoroughly test his own progress, are inserted at the end of each chapter.
6. Special attention is paid to the Educational, Social, and Commercial progress of the country.
7. Constitutional Growth is treated in a brief but comprehensive exercise.
By the aid of ikis torikwsterpits aymepare and review for 2xo finimations in Ganadian Aitstory more quickly that by the thas br any othet hrk.

Gage's Practical spoller. A Manual of Spelling and Dictation. Prife 30c.

Prominent Features,
The book is diviped inte five parts as follows:
Part I. Contains the woord's in common use in daily liffe, 100 gether with Abbreviations, Forms, etc. - If a boy has to leave school early, he should at least know how to spell the words of common occurrence in connection, with his business.

Part II. Gives words liable to be. spelled incorractly because the same sounds are spelled in various ways in them.

Part III. Contains words pronounced alike but spelled diferently with different meanings.

Part IV. Contains a large collection of the most difficilt words in common use, and is intendell to supply matorial for a general review, and for spelling matches and tests.

Pirt V. Contains Liticury Sele-fions which are to be memorized and recited as well as used for Dictation Leasons, and lessons in Morals.
Dictation Lessone - All the lessons are suitable for Dico. tation Lessons on the slate or in dictation book.

Reniews.-These will be found throughout the boolss

 Maxon'® Ontines of Einglish

 Maxon'® Ontines of Einglish Grexmmman?.

 Grexmmman?.}

By C. P. Incon, B. A., F. C, P., Feilow of Uaivaraty Oollege Liondon. Authorized for usis of Bohoold in' Ontario. For the use of Junior classea, Price,

Mason's Shorter Engilah Grammar.

 With copious and carefully graded oxercises, 248 pazea.Price,
60 Cents.

Manons Advanced Grammmar.

Including the principles of Grammatical Analysio. Enlarged and thoroughly revised, with Examination lapers added by W. Houtton, M.A.

27th Edition, Price,
75 Cents.
"I asked a grammar scheol inepector in the old country to send ine the bent grammar published there. He immediately sent Mason's. The cliapters on the analysis of chmicult sentences is of itself sumficient to place the work far beyoud any Euglish Grammar hitherto before tho Canadian pub-Hic."-Alez. Sims, M. A., H. M. H. S., Oakville.

Enylimh Grammax Practioe.

This work consiste of the Exercises appended to the "Shorter Englioh Grammar," published in a separate form, They aro arranged in progreucivo lessons in such a mannor as to bo available with almoot any text hook of Englifh Grammar, nul take the learner by oasy stagen from the slinpo leat finglioh work to the niont diffeult conatructione fathe language.
Price,
30 Cents.

Outlines of Enclish Grammar.

These olementary ideas arc reduced to rogular form by means of careful definitlons and plain rules, illumpated by abundant and varied oxamples for practice. The tearucr is made aeguaintel, in modern meanure, with the mose important of the older forme of Janglish, wilh thio way in which worde aro conitructci, and with the olements of which mo.lern Eualith is mado up. Aualyois is treated so far as to give thio power of doaflug with sentences of plaiu coustruction aud moderate dimecuity. In the

English Grammar,

the same sulbjecte are pretented with much greater fulness, and carried to a moro advanced anil diffenit atago. The work contailus ample materiale for tho requiremente of Complettivo Examinations reachius et least the atandard of tho Jatrienlatiou Examination of the University of 1.014don.

Tho Elfortor Suchisil Girminite:

fo litended for learsora who have but a limited amount of timo at thele diguosal for Kugtish studice ; but the experience of selionis in which it has been the only Eiuglish Urammar usud lines shown that, when well mastoro ed, thise worts also if angrimut for tho Ioudon Matriculatlou Eisumioatlon.

Elementary Algebra, -BY-

J. HAMBLIN SMITH, M.A.,

OF GONVILLH AND GAIUS COLLEGE, AND LATE LECTURER AT ST. PETER'S COLLEGE. CAMBRIDGE.

WITH APPENDIX BY

ALFRED BAKER, BAA.,

MATH. TUTOR UNIV. COL. TORONTO.

8тн CANADIAN COPYRIGHT EDITION.

NEW REVISED EDITION.

Authorised by the Education Department, Ontario. Authorized by the Council of Public Instruction, Quebec. Recommended by the Senate of the Univ. of Halifax.

PRICE, 90 CENTS.

TORONTO:
W. 00.

J

,
(eli, x^{4}
wa before x^{2} into 8 divided by $\%$ which before x^{2} which is I in ties case

$$
\begin{aligned}
& x^{2}-2 x=8 \\
& x^{4}=\frac{2 \sqrt{4+32}}{2} \\
& x=4 \frac{8}{2}=x=\frac{4}{22}
\end{aligned}
$$

Entered according to the Act of the Parliament of the Dominion of Canada, in the year one thousand eight hundred and seventy-seven, by ADAI Miller \& Co., in the Office of the Minister of Agriculture.

PREFACE

The design of this Treatiso is to explain all that is commonly included in a First Part of Algebra. In the arrangement of the Chapters I have followed the advice of experienced Teachers. I have carefully abstained from making extracts from books in common use. The only work to which I am indebted for any material assistance is the Algebra of the late Dean Peacock, which I took as the model for the commencement of my Treatise. The Examples, progressive and easy, have been selected from University and College Examination Papers and from old English, French, and German works. Much care has been taken to secure accuracy in the Answers, but in a collection of more than 2300 Examples it is to be feared that some errors have yet to be detected. I shall be groteful for having my attention called to them.

I have published a book of Miscellaneous Exercises adapted to this work and arranged in a progressive order so as to supply constant practice for the student.

I have to express my thanks for the encouragement and advice received by me from many corresnondents; and a special acknowledgment is due from me to Mr. E. J. Gross of Gonville and Caius College, to whom I am 'ndebted for assistance in many parts of this work.

The Treatiso on Algebra by Mr. E. J. Gross is a oontinuation of this work, and is in some important points supplementary to it.

J. HAMBLIN SMI'IH.

Cambridge, 1871.

CONTENTS.

CHAP. PAGE
I. ADDITION AND SUBTRAC:TION I
II. Multiplication 17
III. Involution 29
IV. Division 33
V. On the Resolution of Expressions into Facturs 43
VI. On Simple Equations 57
VII. Problems leading to Simple EQuations 61
Vili. On the Method of finding the Highest Common FACTOR 67
IX. Fractions 76
X. The Lowest Common Multiple 88
XI. On Addition and Subtraction of Fractions 94
XII. On Fractional Equations 105
XIII. Problems in Fractional Equations 114
XIV. On Miscellaneous Fractions 126
XV. Simultaneous Equations of the First Degree 142
XVI. Problems resulting in Simultaneous Equations 154
XVII. On Square Root 163
XVIII. On Cube Root 169
XIX. Quadratic Equations 174
XX. On Simultaneous Equations involving Quadratics 186
XXI. On Problems resulting in Quadratic Equations 192
XXII. Indeterminate Equations 196
XXIII. The Theory of Indices 201
XXIV. On Surds 213
XXV. Oy Equations involving Surds 229
viii CONTENTS.
снар. Page.
XXVI. On the Roots of EQUATIONS 23.1
XXVII. On Ratio. 243
XXVIII. On Proportion 248
XXIX. On Variation. 258
XXX. On Arithmetical Progression 264
XXXI. On Geometrical Progression 273
XXXII. On Harmonical Progression 282
XXXIII. Permutations 28?
XXXIV. Combinations 291
XXXV. The Binomial Theorem. Positive Integral, Index 296
XXXVI. The Binomial Theorem, Fractional and Negative Indices 307
zixXVII. Scales of Notation 316
XXXVIII. On I.ogarithms 328
Appendix 344
Answers 345
page
23.1

- 243
- 248
- 258
- 264
- 273
- 282
- 287
- 29I

RAI, 29

ND
307
316
328
344
345

ELEMENTARY ALGEBRA.

I. ADDITION AND SUBTRACTION.

1. Algebra is the science which teaches the use of symboLs to denote numbers and the operations to which numbers may be subjected.
2. The symbols employed in Algebra to denote numbers are, in addition to those of Arithmetic, the letters of some alphabet.

Thus $a, b, c \ldots \ldots x, y, z: a, \beta, \gamma \ldots \ldots: a^{\prime}, b^{\prime}, c^{\prime} \ldots \ldots$ read a dash, b dash, c dash : $a_{1}, b_{1}, c_{1} \ldots \ldots$. read a one, b one, c one are used as symbels to denote numbers.
3. The number one, or unity, is taken as the foundation of all numbers, and all other numbers are derived from it by the process of addition.

Thus two is defined to be the number that results from adding one to one;
three is defined to be the number that results from adding one to two ;
four is defined to be the number that results from adding one to three;
and so on.
4. The symbol + , read plus, is used to denote the operation of Addition.
Thus $1+1$ eymbolizes that which is denoted by 2 , $2+1$.. 3 , and $\quad a+b$ stands for the result obtained by adding b to a.
5. The symbol = stands for the words "is equal to," or "the result is."
[s.A.]

Thus the definitions given in Art. 3 may be presented in an algebraical form thus :

$$
\begin{aligned}
& 1+1=2 \\
& 2+1=3 \\
& 3+1=4
\end{aligned}
$$

6. Since
$2=1+1$, where unity is written twice,
$3=2+1=1+1+1$, where unity is written three times,

it follows that

$$
\begin{aligned}
& a=1+1+1 \ldots \ldots+1+1 \text { with unity written } a \text { times, } \\
& b=1+1+1 \ldots \ldots+1+1 \text { with unity written } b \text { times. }
\end{aligned}
$$

7. The process of addition in Arithmetic can be presented in a shorter form by the use of the sign + . Thus if we have to add 14, 17, and 23 together we can represent the process thus:

$$
14+17+23=54
$$

8. When several numbers are added together, it is indifferent in what order the numbers are taken. Thus if 14,17 , and 23 be added together, their sum will be the same in whatever order they be set down in the common arithmetical process :

14	14	17	17	23	23
17	23	14	23	14	17
23	17	23	14	17	14
-	-	-	-	-	-
54	54	54	54	54	54

So also in Algebra, when any number of symbols are added together, the result will be the same in whatever order the symbols succeed each other. Thus if we have to add together the numbers symbolized by a and b, the result is represented by $a+b$, and this result is the same number as that which is represented by $b+a$.

Similarly the result obtained by adding together a, b, c might be expressed algebraically by

$$
\begin{aligned}
& a+b+c, \text { or } a+c+b, \text { or } b+a+c, \text { or } b+c+a, \text { or } c+a+b, \\
& \text { or } c+b+a .
\end{aligned}
$$

9. When a number denoted by a is added to itself the result is represented algebraically by $a+a$. This result is for
ed in an times,
the sake of brevity represented by $2 a$, the figure prefixed to the symbol expressing the number of times the number denoted by a is repeated.

Similarly $a+a+a$ is represented by $3 a$.
Hence it follows that

$$
\begin{aligned}
& 2 a+a \text { will be represented by } 3 a, \\
& 3 a+a \ldots \ldots . ~ b y ~
\end{aligned} a .
$$

10. The symbol -, read minus, is used to denote the operation of Subtraction.

Thus the operation of subtracting 15 from 26 and its connection with the result may be briefly expressed thus;

$$
26-15=: 11 .
$$

11. The resuit of subtracting the number b from the number a is represented by

$$
a-b
$$

Again $a-b-c$ stands for the number obtained by taking c from $a-b$.

Also $a-b-c-d$ stands for the number obtained by taking d from $a-b-c$.
Since we cainot take away a greater number from a smaller, the expression $a-b$, where a and b represent numbers, can denote a possible result only when a is not less than b.
So also the expression $a-b-c$ can denote a possible result only when the number obtained by taking b from a is not less than c.
12. A combination of symbols is termed an algebraical expression.
The parts of an expression which are connected by the symbols of operation + and - are called Terms.

Compound expressions are those which have more than one term.
'Thus $a-b+c-d$ is a compound expression made up of four terms.
When a compound expression contains
two terms it is called a Binomial, three Trinomial, four or more Multinominl.

Terms which are preceded by the symbol + are called positive terms. Terms which are preceded by the symbol - are called negative terms. When no symbol precedes a term the symbol + is understood.

Thus in the expression $a-b+c-d+e-f$

$$
\begin{aligned}
& a, c, e \text { are called positive terms, } \\
& b, d, f \ldots \ldots \text { negative }
\end{aligned}
$$

I he symbols of operation + and - are usually called posi. tive and negative Signs.
13. If the number 6 be added to the number 13 , and if 6 be taken from the result, the final result will plainly be 13.

So also if a number b be added to a number a, and if b be taken from the result, the final result will be a : that is,

$$
a+b-b=a \text {. }
$$

Since the operations of addition and subtraction when performed by the same number neutralize each other, we conclude that we may obliterate the same symbol when it presents itself as a positive term and also as a negative term in the same expression.

Thus and

$$
\begin{array}{r}
a-a=0, \\
a-a+b=b .
\end{array}
$$

14. If we have to add the numbers 54,17 , and 23 , we may first add 17 and 23 , and add their sum 40 to the number 54 , thus obtaining the final result 94 . This process may be represented algebraically by enclosing 17 and 23 in a Bracket (), thus:

$$
54+(17+23)=54+40=94
$$

15. If we have to subtract from 54 the sum of 17 and 23 , the process may be represented algebraically thus:

$$
54-(17+23)=54-40=14
$$

16. If we have to add to 54 the difference between 23 and 17, the process may be represented algebraically thus:

$$
54+(23-17)=54+6=60 .
$$

17. If we have to subtract from 54 the difference between 23 and 17 , the process may be represented algebraically thus:

$$
54-(2 \delta-17)=54-6=48
$$

ed posi1 - are rm the d posi. nd if 6 e 3. if b be
18. The use of bracke's is so frequent in Algebra, that the rules for their removal and introduction must be carefully considered.
We shall first treat of the removal of brackets in cases where symbols supply the places of numbers corresponding to the arithmetical examples considered ic arts. 14, 15, $16,17$.

Case I. To add to a the sum of b and c.
$\stackrel{n}{n}$ is is expressed thus : $a+(b+c)$.
wirst add b to a, the result will be

$$
a+b
$$

This result is too small, for we have to add to a a number jreater than b, and greater by c. Hence our final resuit will be obtained by adding c to $a+b$, and it will be

$$
a+b+c .
$$

Case II. To take from a the sum of b and c.
This is expressed this : $a-(b+c)$.
First take b from a, the result will be

$$
a-b .
$$

This result is too large, for we have to take from a a number greater than b, and greater by c. Hence our final result will be obtained by taking c from $a-b$, and it will be

$$
a-b-c .
$$

Case III. To add to a the difference between b and c. This is expressed thus : $a+(b-c)$. First add b to a, the result will be

$$
a+b
$$

This result is too large, for we have to add to a a number less than b, and less by c. Hence our final result will be obtained by taking c from $a+b$, and it will be

$$
a+b-c .
$$

Case IV. To take from a the difference between b and c. This is expressed thus : $a-(b-c)$.
First take b from a, the result will be

$$
a-b .
$$

This result is too small, for we have to take from a a number less than b, and less by c. Hence our final result will be obtained by adding c to $a-b$, and it will be

$$
a-b+c .
$$

Note. We assume that a, b, c represent such numbers that in Case II. a is not less than the sum of b and c, in Case III. b is not less than c, and in Case IV. b is not less than c, and a is not less than b.
19. Collecting the results obtained in Art. 18, we have

$$
\begin{aligned}
& a+(b+c)=a+b+c, \\
& a-(b+c)=a-b-c, \\
& a+(b-c)=a+b-c, \\
& a-(b-c)=a-b+c .
\end{aligned}
$$

From which we obtain the following rules for the removal of a bracket.

Rule I. When a bracket is preceded by the sign +, remove the bracket and leave the signs of the terms in it uachanged.

Rule II. When a bracket is preceded by the sign -, remove the bracket and change the sign of each term in it.

These rules apply to cases in which any number of terms are included in the bracket.

Thus

$$
a+b+(c-d+e-f)=a+b+c-d+e-f
$$

and

$$
a+b-(c-d+e-f)=a+b-c+d-e+f .
$$

20. The rules given in the preceding Article for the removal of brackets furnish corresponding rules for the introauction of brackets.

Thus if we enclose two or more terms of an expression in a bracket,
I. The sign of each term remains the same if +pre cedes the bracket:
II. The sign of each term is changed if - precedes the bracket.
Ex.

$$
\begin{gathered}
a-b+c-d+e-f=a-b+\left(c-a^{\prime}\right)+(e-f), \\
a-b+c-d+e-f=a-(b-c)-(d \cdots e+f),
\end{gathered}
$$

bers that JaSE III. $1 c$, and a
have
moval of
$\operatorname{sign}+$,
ms in it
sign -, $i t$.
of terms
the ree introion in a

+ pre-
des the

21. We may now proceed to give rules for the Addition and Subtraction of algebraical expressions.

Suppose we have to $a d d$ to the expression $a+b-c$ the expression $d-e+f$.

$$
\begin{aligned}
\text { The Sum } & =a+b-c+(d-e+f) \\
& =a+b-c+d-e+f(\text { by Art. 19, Rule I.). }
\end{aligned}
$$

Also, if we have to subtract from the expression $a+b-c$ the expression $d-e+f$.

$$
\begin{aligned}
\text { The Difference } & =a+b-c-(d-e+f) \\
& =a+b-c-d+e-f \text { (by Art. 19, Rule II.). }
\end{aligned}
$$

We might arrange the expressions in each case under each other as in Arithmetic: thus

$$
\begin{array}{cc}
\text { To } a+b-c & \text { From } a+b-c \\
\text { Add } d-e+f & \text { Take } d-e+f \\
\text { Sum } \frac{\text { Difference } a+b-c-d+e-f}{a+b-c+d-c+f}
\end{array}
$$ and then the rules may be thus stated.

I. In Addition attach the lower line to the upper with the signs of both lines unchanged.
II. In Subtraction attach the lower line to the upper with the signs of the lower line changed, the signs of the upper line being unchanged.

The following are examples.
(1)

$$
\begin{aligned}
& \text { To } a+b+9 \\
& \text { Add } a-b-6 \\
& \text { Sum } a+b+9+a-b-6 \\
& \text { and this sum }=a+a+b-b+9-6 \\
& =2 a+3 .
\end{aligned}
$$

For it has been shown, Art. 9, that $a+a=2 \dot{\alpha}$, and, Art. 13, that $b-b=0$.

$$
\begin{equation*}
\text { From } a+b+9 \tag{2}
\end{equation*}
$$

Take $a-b-6$
Remainder $a+\overline{b+9-a}+b+\dot{6}$ and this remainder $=2 b+15$.
22. We have worked out the examples in Art. 21 at full length, hut in practice they may be abbreviated, by combining the symbols or digits by a mental process, thus

$$
\begin{array}{rrr}
\text { To } c+d+10 \\
\text { Add } c-d-7 \\
\text { Sum } 2 c+3
\end{array} \quad \begin{array}{rr}
\text { From } c+d+10 \\
\text { Take } c-d-7 \\
\hline
\end{array}
$$

23. We have said that

$$
\text { instead of } a+a \text { we write } 2 a \text {, }
$$

......... $a+a+a$ \qquad $3 a$,
and so on.
The digit thus prefixed to a symbol is called the coefficient of the term in which it appears.
24. Since

$$
\begin{aligned}
3 a & =a+a+a, \\
\text { and } 5 a & =a+a+a+a+a, \\
3 a+5 a & =a+a+a+a+a+a+a+a \\
& =8 a .
\end{aligned}
$$

Terms which have the same symbol, whatever their coefflcients may be, are called like terms: those which have different symbols are called unlike terms.

Like terms, when positive, may be combined into one by adding their coefficients together and subjoining the common symbol : thus

$$
\begin{aligned}
& 2 x+5 x=7 x \\
& 3 y+5 y+8 y=16 y .
\end{aligned}
$$

25. If a term appears without a coefficient, unity is to be taken as its coefficient.

Thus

$$
x+5 x=6 x .
$$

26. Negative terms, when like, may be combined into one term with a negative sign prefixed to it by adding the coefficients and subjoining to the result the common symbol.

Thus

$$
\begin{aligned}
2 x-3 y-5 y & =2 x-8 y \\
\text { for } 2 x-3 y-5 y & =2 x-(3 y+5 y) \\
& =2 x-8 y .
\end{aligned}
$$

So again $\quad 3 x-y-4 y-6 y=3 x-11 y$ 。

21 at full mbining
27. If an expression contain two or more like terms, some being positive and others negative, we must first collect all the positive terms into one positive term, then all the negative terms into one negative term, and finally combine the two remaining terms into one by the following process. Subtract the smaller coefficient from the greater, and set down the remainder with the sign of the greater prefixed and the common symbol attached to it.

EX. $\quad 8 x-3 x=5 x$,

$$
\begin{aligned}
& 7 x-4 x+5 x-3 x=12 x-7 x=5 x \\
& a-2 b+5 b-4 b=a+5 b-6 b=a-b .
\end{aligned}
$$

28. The rules for the combination of any number of like terms into one single term enable us to extend the application of the rules for Addition and Subtraction in Algebra, and we proceed to give some Examples.

ADDITION.

coeffie diffe-
(1)

$$
\begin{array}{r}
a-2 b+3 c \\
\frac{3 a-4 b-5 c}{4 a-6 b-2 c}
\end{array}
$$

$$
\text { (2) } \begin{aligned}
& 5 a+7 b-3 c-4 d \\
& \frac{6 a-7 b+9 c+4 d}{11 a+6 c}
\end{aligned}
$$

The terms containing b and d in Ex. (2) destroying one another.

$$
\begin{array}{rr}
7 x-5 y+4 z & \text { (4) } 6 m-13 n+5 p \\
x+2 y-11 z & 8 m+n-9 p \\
3 x-y+5 z & m-n-p \\
5 x-3 y-z & m+2 n+5 p \\
\hline 16 x-7 y-3 z &
\end{array}
$$

SUBTRACTION.

(1) $5 a-3 b+6 c$
(2) $3 a+7 b-8 c$ $\frac{3 a-7 b+4 c}{14 b-12 c}$
(3) $5 a-6 b+2 c$
$\frac{2 a-6 b+2 c}{3 a}$
(4) $x-y+z$
$\frac{x-y-z}{2 z}$
(5) $3 x+7 y+12 z$
$5 y-2 z$
$3 x+2 y+14 z$
(6) $7 x-19 y-14 z$
$\frac{6 x-24 y+9 z}{x+5 y-23 z}$
29. We have placed the expressions in the examples given in the preceding Article under each other, as in Arithmetic, for the sake of clearness, but the same operations might be exhibited by means of signs and brackets, thus Examples (2) of each rule might have been worked thus, in Addition,

$$
\begin{aligned}
& 5 a+7 b-3 c-4 d+(6 a-7 b+9 c+4 d) \\
= & 5 a+7 b-3 c-4 d+6 a-7 b+9 c+4 d \\
= & 11 a+6 c ;
\end{aligned}
$$

and, in Subtraction,

$$
\begin{aligned}
& 3 a+7 b-8 c-(3 a-7 b+4 c) \\
= & 3 a+7 b-8 c-3 a+7 b-4 c \\
= & 14 b-12 c .
\end{aligned}
$$

EXAMPLES:-i.

Simplify the following expressions, by combining like symbols in each.
I. $3 a+4 b+c c+2 a+3 b+7 c$.
2. $4 a+5 b+6 c-3 a-2 b-4 c$.
3. $6 a-3 b-4 c-4 a+5 b+6 c$.
4. $8 a-5 b+3 c-7 a-2 b+6 c-3 a+9 b-7 c+10 a$.
5. $5 x-3 a+b+7+2 b-3 x-4 a-9$.
6. $a-b-c+b+c-d+d-a$.
7. $5 a+10 b-3 c+2 b-3 a+2 c-2 a+4 c$.

EXAMPLES_-ii, ADDITION.

Add together
I. $\quad a+x$ and $a-x$.
2. $\quad a+2 x$ and $a+3 x$.
3. $a-2 x$ and $2 a-x$.
4. $3 x+7 y$ and $5 x-2 y$.
5. $a+3 b+5 c$ and $3 a-2 b-3 c$.
6. $\quad a-2 b+3 c$ and $a+2 b-3 c$.
7. $1+x-y$ and $3-x+y$.
8. $2 x-3 y+4 z, 5 x-7 y-2 z$, and $6 x+9 y-8 z$.
9. $2 a+b-3 x, 3 a-2 b+x, a+b-5 x$, and $4 a-7 b+6 x$.

EXAMPLES.-iii. SUBTRACTION.

1. From $a+b$
2. $\ldots \ldots .3 x+y$ take $a-b$.
3. $.2 a+3 c+4 d$
4. $. \ldots . . x+y+z$
...... $2 x-y$.
$\ldots . . . a-2 c+3 d$.
...... $x-y-z$.
ples given rithmetic, ght be exples (2) of
like sym-$-2 b-4 c$.
5. From $m-n+r$ take $m-n-r$.
6. $\ldots \ldots . a+b+c \quad \ldots \ldots a-b-c$.
7. $\quad \ldots . .3 a+4 b+5 c \quad \ldots \ldots .2 a+7 b+6 c$.
8. $\ldots \ldots .3 x+5 y-4 z \quad \ldots \ldots 3 x+2 y-5 z$.
9. We have given examples of the use of a bracket. The methods of denoting a bracket are various; thus, besides the marks (), the marks [], or \{ \}, are often employed. Sometimes a mark called "The Vinculum" is drawn over the symbols which are to be connected, thus $a-\overline{b+c}$ is used to represent the same expression as that repr sented by $a-(b+c)$.

Often the brackets are made to enclose one another, thus

$$
a-[b+\{c-(d-\overline{e-f})\}] .
$$

In removing the brackets from an expression of this kind it is best to commence with the innermost, and to remove the brackets one by one, the outermost last of all.

Thus

$$
\begin{aligned}
& a-[b+\{c-(d-\overline{e-f})\}] \\
= & a-[b+\{c-(d-e+f)\}] \\
= & a-[b+\{c-d+e-f\}] \\
= & a-[b+c-d+e-f] \\
= & a-b-c+d \cdot e+f .
\end{aligned}
$$

Again

$$
\begin{aligned}
& 5 x-(3 x-7)-\{4-2 x-(6 x-3)\} \\
= & 5 x-3 x+7-\{4-2 x-6 x+3\} \\
= & 5 x-3 x+7-4+2 x+6 x-3 \\
= & 10 x .
\end{aligned}
$$

EXAMPLES.-iv. BRACKETS.
Simplify the following expressions, combining all like quantities in each.
I. $a+b+(3 a-2 b)$.
2. $a+b-(a-3 b)$.
3. $3 a+5 b-6 c-(2 a+4 b-2 c)$.
4. $a+b-c-(a-b-c)$.
5. $14 x-(5 x-9)-\{4-3 x-(2 x-3)\}$.
6. $4 x-\{3 x-(2 x-\overline{x-a})\}$.
7. $15 x-\{7 x+(3 x+\overline{a-x})\}$.

$$
\begin{array}{ll}
\text { 8. } & a-[b+\{a-(b+a)\}] . \\
\text { J. } & 6 a+[4 a-\{8 b-(2 a+4 b)-22 b\}-7 b]-[7 b+\{8 a \\
\text { 1. } & b-[b-(a+b)-\{b-(b-\overline{a-b})\}] . \\
\text { II. } & 2 a-(6 a-b)-\{c-(5 a+2 b)-\quad ; b)\} . \\
\text { 12. } & 2 x-\{a-(2 a-[3 a-(4 a-[5 a-(6 a-x)])])\} . \\
\text { 13. } & 25 a-19 b-[3 b-\{4 a-(5 b-6 c)\}] .
\end{array}
$$

$$
-(3 b+4 a)+8 b\}+6 a] .
$$

31. We have hitherto supposed the symbols in every expression used for illustration to represent such numbers that t.e expressions symbolize results which would be arithmeticAlly possible.
Thus $a-b$ symbolizes a possible result, so long as a is not less than b.

If, for instance, a stands for 10 and b for 6 , $a-b$ will stand for 4.
But if a stands for 6 and b for 10 ,
$a-b$ denotes no possible result, because we cannot take the number 10 from the number 6.

But though there can be no such a thing as a negative number, we can conceive the real existence of a negative quantity.

To explain this we must consider
I. What we mean by Quantity.
II. How Quantities are measured.
32. A Quantity is anything which may be regarded as being made up of parts like the whole.
Thus a distance is a quantity, because we may regard it as made up of parts each of themselves a distance.
Again a sum of money is a quantity, because we mav regard it as made up of parts like the whole.
33. To measure any quantity we fix upon some known quantity of the same kind for our standard, or unit, and then any quantity of that kind is measured by saying how many times it contains this unit, and this number of times is called the measure of the quantity.
upo
by the
unit
cont
£5!
inco
shor
doll unit
unit
in a

For example, to measure any distarce along a road we fix upon a known distance, such as a mile, and express all distances by saying how many times they contain this unit. Thus 16 is the measure of a distance containing 16 miles.

Again, to measure a man's income we take one pound as our unit, and thus if we said (as we often do say) that a man's income is 500 a year, we should mean 500 times the unit, that is, $£ 510$. Unless we knew what the unit was, to say that a man's income was 500 would convey no definite meaning : all we should know would be that, whatever our unit was, a pound, a dollar, or a franc, the man's income would be 500 times that unit, that is, $£ 500,500$ dollars, or 500 francs.
N.B. Since the unit contains itself once, its measure is unity, and hence its name.
34. Now we can conceive a quantity to be such that when put to another quantity of the same kind it will entirely or in part neutralize its effect.

Thus, if I walk 4 miles towards a certain object and then return along the same road 2 miles, I may say that the latter distance is such a quantity that it neutralizes part of my first journey, so far as regards my position with respect to the point from which I started.

Again, if I gain $£ 500$ in trade and then lose $£ 400$, I may say that the latter sum is such a quantity that it neutralizes part of my first gain.

If I gain $£ 500$ and then lose $£ 700$, I may say that the latter sum is such a quantity that it neutralizes all my first gain, and not only that, but also a quantity of which the absolute value is $£ 200$ remains in readiness to neutralize some future gain. Regarding this $£ 200$ by itself we call it a quantity which will lave a subtractive effect on subsequent profits.

Now, since Algebra is intended to deal with such questions in a general way, and to teach us how to put quantities, alike ur opposite in their effect, together, a convention is adopted, founded on the additive or subtractive effect of the quantities in question, and stated thus:
"To the quantities to be added prefix the sign + , and to The quantities to be subtracted prefix the sign -, and then write down all the quantities involved in such a question conmected with these signs."

Thus, suppose a man io trade for 4 years, and to gain a pounds the first year, to lose b pounds the second year, to gain c pounds the third year, and to lose d pounds the fourth year.

The additive quantities are here a and c, which we are to write $+a$ and $+c$,

The subtractive quantities are here b and d, which we are to write $-b$ and $-d$,
\therefore Result of trading $=+a-b+c-d$.
35. Let us next take the case in which the gain for the first year is a pounds, and the loss for each of three subsequent years is a pounds.

Result of trading $\quad=+a-a-a-a$

$$
=-2 a
$$

Thus we arrive at an isolated quantity of a subtractive nature.

Arithmetically we interpret this result as a loss of $£ 2 a$.
Algebraically we call the result a negative quantity.
When once w have admitted the possibility of the independent existence of such quantities as this we may extend the application of the rules for Addition and Subtraction, for
I. A negative quantity may stand by itself, and we may then add it to or take it from some other quantity or expression.
II. A negative quantity may stand first in an expression which we may have to add to or subtract from any other expression.

The Rules for Addition and Subtraction given in Art. 21 will be applicable to these expressions, as in the following Examples.

ADDITION.

(1) $5 a-7 a=-2 a$.
(2) $4 a-3 b-6 a+7 b=-2 a+4 b$.

$$
\begin{array}{rrr}
\text { To } 4 a & \text { To } 5 a-3 b \tag{3}\\
\text { Add }-3 a & \text { Add }-2 a-2 b \\
\text { Sum } & \text { Sum } & 3 a-5 b
\end{array}
$$

and to gain a 1 year, to gain e fourth year. ich we are to
lich we are to
gain for the e subsequent
a subtractive of $£ 2 a$. tity.
of the indey extend the tion, for
nd we may ty or expres-
n expression a any other
n in Art. 21 ie following
(4)

$$
\begin{array}{rr}
6 a-5 b-4 c+6 & \text { (5) } \begin{array}{r}
7 x-5 y+9 z \\
-5 a+7 b-12 c-17 \\
-a-8 b+19 c+4 \\
-6 b+3 c-7
\end{array} \\
\hline-3 x-8 y+z \\
\hline-1.4 x-4 y+5 z
\end{array}
$$

SUBTRACTIJN.

(1)

From $\quad x$
Take $\frac{-y}{x+y}$
or we might represent the operation thus,

$$
x-(-y)=x+y \cdot *
$$

(2) $a+b-(-a+b)=a+b+a-b=2 a$.
(3) $-a \cdot b-(a-b)=-a-b-a+b=-2 a$.

$$
\begin{array}{r}
-3 a+4 b-7 c+10 \tag{4}\\
5 a-9 b+8 c+19 \\
\hline-8 a+13 b-15 c-9
\end{array}
$$

(5)

$$
\begin{aligned}
& x-y-[3 x-\{-5 x-(-4 y+7 x)\}] \\
= & x-y-[3 x-\{-5 x+4 y-7 x\}] \\
= & x-y-[3 x+5 x-4 y+7 x] \\
= & x-y-3 x-5 x+4 y-7 x \\
= & -14 x+3 y .
\end{aligned}
$$

(6)

$$
\begin{gathered}
7 a+5 b+9 c-12 d \\
-3 b-12 c-8 d+6 e \\
\hline 7 a+8 b+21 c-4 d-6 e
\end{gathered}
$$

In this example we have deviated from our previous practice of placing like terms under each other. This arrangement is useful to facilitate the calculation, but is not absolutely necessary ; for the terms which are alike can be combined independently of it.

[^0]
EXAMPLES:-V.

(ı.) ADDITION.

Add together

1. $6 a+7 b,-2 a \cdot 4 b$, and $3 a-5 b$.
2. $-5 a+6 b-7 c,-2 a+13 b+9 c$, and $7 a-29 b+4 c$.
3. $2 x-3 y+4 z,-5 x+4 y-7 z$, and $-8 x-9 y-3 z$.
4. $-a+b-c+d, a-2 b-3 c+d,-5 b+4 c$, and $-5 c+d$.
5. $a+b-c+7,-2 a-3 b-4 c+9$, and $3 a+2 b+5 c-18$.
6. $5 x-3 a-4 b, 6 y-2 a, 3 a-2 y$, and $5 b-7 x$.
7. $a+b-c, c-a+b, 2 b-c+3 a$, and $4 a-3 c$.
8. $7 a-33-5 c+9 d, 2 b-3 c-5 d$, and $-4 d+15 c$.
9. $-12 x-5 y+4 z, 3 x+2 y-3 z$, and $9 x-3 y+z$.

(2.) SUBTRACTION.

1. From $a+b$ take $-a-b$.
2. From $a-b$ take $-b+c$.
3. From $a-b+c$ take $-a+b-c$.
4. From $6 x-8 y+3$ take $-2 x+9 y-2$.
5. From $5 a-12 b+17 c$ take $-2 a+4 b-3 c$.
6. From $2 a+b-3 x$ take $4 b-3 a+5 x$.
7. From $a+b-c$ take $3 c-2 b+4 a$.
8. From $a+b+c-7$ take $8-c-b+a$.
9. From $12 x-3 y-z$ take $4 y-5 z+x$.
10. From $8 a-5 b+7 c$ take $2 c-4 b+2 a$.
11. From $9 p-4 q+3 r$ take $5 q-3 p+r$.

II. MULTIPLICATION.

36. The operation of finding the sum of a numbers each equal to b is called Multiplication.
The number a is called the Multiplier.
............... b Multiplicand.
This Sum is called the Product of the multiplication of b by a.
This Product is represented in Algebra by three distinct symbols :
I. By writing the symbols side by side, with no sign between them, thus, $a b$;
II. By placing a small dot between the symbols, thus, $a . b$;
III. By placing the sign \times between the symbols, thus, $a \times b$; and all these are read thus, " a into b," or " a times b."
In Arithmetic we chiefly use the third way of expressing a Product, for we cannot symbolize the product of 5 into 7 by 57 , which means the sum of fifty and seven, nor can we well represent it by 5.7 , because it might be confounded with the notation used for decimal fractions, as $5 \cdot 7$.
37. In Arithmetic

$$
\begin{aligned}
& 2 \times 7 \text { stands for the same as } 7+7 \text {. } \\
& 3 \times 4 \ldots . ~ \\
& 4+4+4 \text {. }
\end{aligned}
$$

In Algebra
$a b$ stands for the same as $b+b+b+\ldots$ with b written a times.
$(a+b) c$ stands for the same as $c+c+c \ldots$ with c written $a+b$ times.
[s.A.]
38. To shew that 3 times $4=4$ times 3 .

$$
\left.\begin{array}{rl}
3 \text { times } 4= & 4+4+4 \\
= & 1+1+1+1 \\
& +1+1+1+1 \\
& +1+1+1+1
\end{array}\right\} \ldots \ldots \mathrm{I} .
$$

Now the results obtained from I. and II. must be the same, for the horizontal columns of one are identical with the vertical columns of the other.
39. To prove that $a b=b a$.
$a b$ means that the sum of a numbers each equal to b is to be taken.

$$
\left.\begin{array}{rl}
\therefore a b= & b+b+\ldots . . . \text { with } b \text { written } a \text { times } \\
= & b \\
& +b \\
& + \\
& \ldots \ldots \ldots . . . \\
& \text { to } a \text { lines } \\
= & 1+1+1+\ldots . . . \text { to } b \text { terms } \\
& +1+1+1+\ldots \ldots \text { to } b \text { terms } \\
& +\ldots . ~
\end{array}\right\} .
$$

Again,

$$
\begin{aligned}
& b a=a+a+\ldots \ldots \text { with } a \text { written } b \text { times } \\
& =a \\
& +a \\
& + \\
& \text { to } b \text { lines } \\
& =1+1+1+\ldots . . \text { to } a \text { terms } \\
& +1+1+1+\ldots . . \text { to } a \text { terms } \\
& +\underset{\substack{\text { to } b \text { lines }}}{+\ldots . ~}
\end{aligned}
$$

The

fourth

The the sy

Now the results obtained from I. and II. must be the same, for the horizontal columns of one are clearly the same as the vertical columns of the other.
40. Since the expressions $a b$ and $b a$ are the same in meaning, we may regard either a or b as the multiplier in forming the product of a and b, and so we may read $a b$ in two ways:
(1) a into b,
(2) a multiplied by b.
41. The expressions $a b c, a c b, b a c, b c a, c a b, c b a$ are all the same in meaning, denoting that the three numbers symbolized by a, b, and c are to be multiplied together. It is, however, generally desirable that the alphabetical order of the letters representing a product should be observed.
42. Each of the numbers a, b, c is called a Factor of the product $a b c$.
43. When a number expressed in figures is one of the factors of a product it always stands first in the product.
Thus the product of the factors x, y, z and 9 is represented by $9 x y z$.
44. Any one or more of the factors that make up a product is called the Coefficient of the other factors.
Thus in the expression $2 a x, 2 a$ is called the coefficient of x.
45. When a factor a is repeated twice the product would be represented, in accordance with Art. 36, by $a a$; when three times, by $a a a$. In such cases these products are, for the sake of brevity, expressed by writing the symbol with a number placed above it on the right, expressing the number of times the symbol is repeated; thus

These expressions $a^{2}, a^{3}, a^{4} \ldots \ldots$ are called the second, third, fourth Powers of a.
The number placed over a symbol to express the power of the symbol is called the Index or Exponent.

$$
\begin{aligned}
& a^{2} \text { is generally called the square of } a \text {. } \\
& a^{3} \text {....................... the cube of } a \text {. }
\end{aligned}
$$

46. The product of a^{2} and $a^{3}=a^{2} \times a^{3}$

$$
=a a \times a a a=a \alpha a a a=a^{5} .
$$

Thus the index of the resulting power is the sum of the indices of the two factors.

Similarly

$$
\begin{aligned}
a^{4} \times a^{6} & =a a a a \times a \alpha a a \alpha a \\
& =a a a a a c a a a \alpha=a^{10}=a^{4+6} .
\end{aligned}
$$

If one of the factors be a symbol without an index, we may assume it to have an index ${ }^{1}$, that is

$$
a=a^{1} .
$$

Examples in multiplying powers of the same symbol are
(1) $a \times a^{2}=a^{1+2}=a^{3}$.
(2) $7 a^{3} \times 5 a^{7}=7 \times 5 \times a^{3} \times a^{7}=35 a^{3+7}=35 a^{10}$.
(3) $a^{3} \times a^{6} \times a^{9}=a^{3+6+9}=a^{18}$.
(4) $x^{2} y \times x y^{2}=x^{2} \cdot y \cdot x \cdot y^{2}=x^{2} \cdot x \cdot y \cdot y^{2}=x^{2+1} \cdot y^{1+2}=x^{3} y^{3}$.
(5) $a^{2} b \times a b^{3} \times a^{5} b^{7}=a^{2+1+5} . b^{1+3+7}=a^{8} . b^{11}$.

EXAMPLES.-vi.
Multiply

1. x into $3 y$. 2. $3 x$ into $4 y$. 3. $3 x y$ into $4 x y$.
2. $3 a b c$ into $a c$.
3. a^{3} into a^{4}.
4. a^{7} into a.
5. $3 a^{2} b$ into $4 a^{3} b^{2}$.
6. $7 a^{4} c$ into $5 a^{2} b c^{3}$.
7. $15 a b^{4} c^{3}$ by $12 a^{3} b c$.
8. $7 a^{5} c^{7}$ by $4 a^{2} b c^{3}$.
II. a^{8} by $3 a^{3}$.
9. $4 a^{3} b x$ by $5 a b^{2} y$.
10. $19 x^{3} y z$ by $4 x y^{3} z^{2}$. 14. $17 a b^{3} z$ by $3 b c^{2} y$. 15. $6 x^{5} y^{8} z^{3}$ by $8 x^{3} y^{2} z^{3}$.
11. $3 a b c$ by $4 a x y$. \quad 17. $a^{7} b^{2} c$ by $8 a^{7} b^{3} c$. 18. $9 m^{2} n p$ by $m^{3} n^{2} p^{2}$.
12. $a y^{2} z$ by $b x^{2} z^{3}$. 20. $11 a^{3} b x$ by $3 a^{17} b^{15} m v^{2}$.
13. The rules for the addition and subtraction of powers are similar to those laid down in Chap. I. for simple quantities.

Thus the sum of the second and third powers of x is represented by

$$
x^{2}+x^{3}
$$

and the remainder after taking the fourth power of y from the fifth power of y is represented by

$$
y^{5}-y^{4}
$$

and these expressions cannot be abridged.

But when we have to add or subtract the same powers of the same quantities the terms may be combined into one: thus

$$
\begin{aligned}
& x^{3}+x^{3}=2 x^{3}, \\
& 3 y^{3}+5 y^{3}+7 y^{3}=15 y^{3}, \\
& 8 x^{4}-5 x^{4}=3 x^{4}, \\
& 9 y^{5}-3 y^{5}-2 y^{5}=4 y^{5} .
\end{aligned}
$$

Again, whenever two or more terms are entirely the same with respect to the symbols they contain, their sum may be abridged.

Thus

$$
\begin{aligned}
& a d+a d=2 a d, \\
& 3 a^{2} b-2 a^{2} b=a^{2} b, \\
& 5 a^{3} b^{3}+6 a^{3} b^{3}-9 a^{3} b^{3}=2 a^{3} b^{3} \\
& 7 a^{2} x-10 a^{2} x-12 a^{2} x=-15 a^{2} x
\end{aligned}
$$

48. From the multiplication of simple expressions we pass on to the case in which one of the quantities whose product is to be found is a compound expression.

To shew that $(a+b) c=a c+b c$.

$$
\begin{aligned}
(a+b) c= & c+c+c+\ldots \text { with } c \text { written } a+b \text { times, } \\
= & (c+c+c+\ldots \text { with } c \text { written } a \text { times }) \\
& +(c+c+c \ldots \text { with } c \text { written } b \text { times }), \\
= & a c+b c .
\end{aligned}
$$

49. To shew that $(a-b) c=a c-b c$.

$$
\begin{aligned}
(a-b) c & =c+c+c+\ldots \text { with } c \text { written } a-b \text { times, } \\
= & (c+c+c+\ldots \text { with } c \text { written } a \text { times }) \\
& =(c+c+c \ldots \text { with } c \text { written } b \text { times }), \\
= & a c-b c .
\end{aligned}
$$

Note. We assume that a is greater than b.
50. Similarly it may be shewn that

$$
\begin{aligned}
& (a+b+c) d=a d+b d+c d, \\
& (a-b-c) d=a d-b d-c d,
\end{aligned}
$$

and hence we obtain the following general rule for finding the product of a single symbol and an expression consisting of two or more terms.
"Multiply each of the terms by the single symbol, and connect the terms of the result by the signs of the several terms of the compound expression."

EXAMPLES.-vii.

Multiply

I. $a+b-c$ by a.
7. $8 m^{2}+9 m n+10 n^{2}$ by $m n$.
2. $a+3 b-4 c$ by $2 a$.
8. $9 a^{5}+4 a^{4} b-3 a^{3} b^{2}+4 a^{2} b^{3}$ by $2 a b$.
3. $a^{3}+8 a^{2}+4 a$ by a.
9. $x^{3} y^{3}-x^{2} y^{2}+x y-7$ by $x y$.
4. $3 a^{3}$ - $5 a^{2}-6 a+7$ by $3 a^{2}$.
10. $m^{3}-3 m^{2} n+3 m n^{2}-n^{3}$ by n.
5. $a^{2}-2 a b+b^{2}$ by $a b$.
II. $12 a^{3} b-6 a^{2} b^{2}+5 a b^{3}$ by $12 a^{2} b^{3}$.
6. $a^{3}-3 a^{2} b^{2}+b^{3}$ by $3 a^{2} b$.
12. $13 x^{3}-17 x^{2} y+5 x y^{2}-y^{3}$ by $8 x y$.
51. We next proceed to the case in which both multiplier and multiplicand are compound expressions.

First to multiply $a+b$ into $c+d$.
Represent $c+d$ by x.
Then $(a+b)(c+d)=(a+b) x$

$$
\begin{aligned}
& =a x+b x, \text { by Art. } 48 \\
& =a(c+d)+b(c+d) \\
& =a c+a d+b c+b d, \text { by Art. } 48 .
\end{aligned}
$$

The same result is obtained by the following process :

$$
\begin{aligned}
& c+d \\
& \frac{a+b}{a c+a d} \\
& \frac{+b c+b d}{a c+a d+b c+b d}
\end{aligned}
$$

which may be thus described :
Write $a+b$ considered as the multiplier under $c+d$ considered as the multiplicand, as in common Arithmetic. Then multiply each term of the multiplicand by a, and set down the result. Next multiply each term of the multiplicand by b, and set down the result under the result obtained before. The sum of the two results will be the product required.

Note. The second result is shifted one place to the right. The object of this will be seen in Art. 56.
52. Next, to muluply $a+b$ into $c-d$.

Represent $c-d$ by x.
Then $(a+b)(c-d)=(a+b) x$

$$
\begin{aligned}
& =a x+b x \\
& =a(c-d)+b(c-d) \\
& =a c-a d+b c-b d, \text { by Art. } 49 .
\end{aligned}
$$

From a comparison of this result with the factors from which it is produced it appears that if we regard the terms of the multiplicand $c-d$ as independent quantities, and call them $+c$ and $-d$, the effect of multiplying the positive terms $+a$ and $+b$ into the positive term $+c$ is to produce two positive terms $+a c$ and $+b c$, whereas the effect of multiplying the positive terms $+a$ and $+b$ into the negative term $-d$ is to produce two negative terms -ad and -bd.

The same result is obtained by the following process:

$$
\begin{aligned}
& c-d \\
& \frac{a+b}{a c-a d} \\
& \frac{+b c-b d}{a c-a d+b c-b d}
\end{aligned}
$$

This process may be described in a similar manner to that in Art. 51 , it being assumed that a positive term multiplied into a negative term gives a negative result.

Similarly we may shew that $a-b$ into $c+d$ gives

$$
a c+a d-b c-b d
$$

53. Next to multiply $a-b$ into $c-d$.

Represent $c-d$ by x.
Then

$$
\begin{aligned}
(a-b)(c-d) & =(a-b) x \\
& =a x-b x \\
& =a(c-d)-b(c-d) \\
& =(a c-a d)-(b c-b d), \text { by Art. } 49 \\
& =a c-a d-b c+b d .
\end{aligned}
$$

When we compare this result with the factors from which it is produced, we see that

The product of the positive term a into the positive term c is the positive term ac.

The product of the positive term a into the negative term $-d$ is the negative term -ad.
The product of the negative term $-b$ into the positive trim c is the negative term $-b c$.
The product of the negative term - b into the negative terı. $-d$ is the positive term $b d$.
The multiplicition of $c-d$ by $a-b$ may be written thus :

$$
\begin{aligned}
& c-d \\
& \frac{a-b}{a c-a d} \\
& \frac{-b c+b d}{a c-a d-b c+b d}
\end{aligned}
$$

54. The results obtained in the preceding Article enable us to state what is called the Rule of Signs in Multiplication, which is
"The product of two positive terms or of two negative terms is positive: the product of two terms, one of which is positive and the other negative, is negative."
55. The following more concise proof may now be given of the Rule of Signs.

To shew that $(a-b)(c-d)=a c-a d-b c+b d$.
First, $(a-b) M=M+M+M+\ldots$ with M written $a-b$ times, $=(M+M+M+\ldots$ with M written a times $)$ $-(M+M+M+\ldots$ with M written b times $)$, $=a M-b M$.
Next, let $M=c-d$.
Then $a M=a(c-d)$

$$
\begin{aligned}
& =(c-d) a \\
& =c a-d a .
\end{aligned}
$$

Art. 39.
Art. 49.
Similarly, $b M=c b-d b$.

$$
\therefore(a-b)(c-d)=(c a-d a)-(c b-d b)
$$

Now to subtract $(c b-d b)$ from ($c a-d a$), if we take away $c b$ we take away $d b$ too much, and we must therefore add $d b$ to the result,
\therefore we get $c a-d a-c b+d b$,
which is the same as $a c-a d-b c+b d$.
Art. 39.

So it appears that in multiplying $(a-b)(c-d)$ we must multiply each term in one factor by each term i: the other and prefix the sign according to this law :-

When the factors multiplied have like signs prefix + , when unlike - to the product.

This is the Rule of Signs.

56. We shall now give some examples in illustration of the principles laid down in the last five Articles.

Examples in Multiplication worked out.
(1) Multiply $x+5$ by $x+7$.
(2) Multiply $x-5$ by $x+7$.

$$
\begin{aligned}
& x+5 \\
& x+7 \\
& \hline x^{2}+5 x \\
& +7 x+35 \\
& \hline x^{2}+12 x+35
\end{aligned}
$$

$$
\begin{aligned}
& x-5 \\
& x+7 \\
& \hline x^{2}-5 x \\
& +7 x-35 \\
& x^{2}+2 x-35
\end{aligned}
$$

The reason for shifting the second result one place to the right is that it enables us generally to place like terms under each other.

$$
\begin{array}{lc}
\text { (3) Multiply } x+5 \text { by } x-7 . & \text { (4) Multiply } x-5 \text { by } x-7 . \\
\begin{array}{cc}
x+5 & x-5 \\
\frac{x-7}{x^{2}+5 x} & \frac{x-7}{x^{2}-5 x} \\
\frac{-7 x-35}{x^{2}-2 x-35} & \frac{-7 x+35}{x^{2}-12 x+35}
\end{array}
\end{array}
$$

(5) Multiply $x^{2}+y^{2}$ by $x^{2}-y^{2}$. (6) Multiply $3 a x-5 b y$ by $7 a x-2 b y$.

$$
\begin{array}{ll}
\begin{array}{l}
x^{2}+y^{2} \\
x^{2}-y^{2} \\
x^{4}+x^{2} y^{2}
\end{array} & \begin{array}{c}
3 a x-5 b y \\
\frac{-x^{2} y^{2}-y^{4}}{x^{4}-y^{4}}
\end{array} \\
\frac{7 a x-2 b y}{21 a^{2} x^{2}-35 a b x y} \\
21 a^{2} x^{2}-4 a b x y+10 b^{2} y^{2} \\
\hline
\end{array}
$$

57. The process in the multiplication of factors, one or both of which contains more than two terms, is similar to the -processes which we have been describing, as may be seen from the following examples:

Multiply
(1) $x^{2}+x y+y^{2}$ by $x-y$.

$$
\begin{aligned}
& x^{2}+x y+y^{2} \\
& \frac{x-y}{x^{3}+x^{2} y+x y^{2}} \\
& \frac{-x^{2} y-x y^{2}-y^{3}}{x^{3}-y^{3}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (2) } a^{2}+6 a+9 \text { by } a^{2}-6 a+9 \text {. } \\
& a^{2}+6 a+9 \\
& \frac{a^{2}-6 a+9}{a^{4}+6 a^{3}+9 a^{2}} \\
& -6 a^{3}-36 a^{2}-54 a \\
& +9 a^{2}+54 a+81 \\
& a^{4}-18 a^{2}+81
\end{aligned}
$$

(3) Multiply $3 x^{2}+4 x y-y^{2}$ by $3 x^{2}-4 x y+y^{2}$.

$$
\begin{aligned}
& 3 x^{2}+4 x y-y^{2} \\
& 3 x^{2}-4 x y+y^{2} \\
& \begin{array}{r}
9 x^{4}+12 x^{3} y-3 x^{2} y^{2} \\
-12 x^{3} y-16 x^{2} y^{2}+4 x y^{3} \\
\\
+3 x^{2} y^{2}+4 x y^{3}-y^{4}
\end{array} \\
& \begin{array}{r}
9 x^{4}-16 x^{2} y^{2}+8 x y^{3}-y^{4}
\end{array}
\end{aligned}
$$

(4) To find the continued product of $x+3, x+4$, and $x+6$.
To effect this we must multiply $x+3$ by $x+4$, and then multiply the result by $x+6$.

$$
\begin{aligned}
& x+3 \\
& x+4 \\
& \hline x^{2}+3 x \\
& +4 x+12 \\
& \hline x^{2}+7 x+12 \\
& x+6 \\
& \hline x^{3}+7 x^{2}+12 x \\
& +6 x^{2}+42 x+72 \\
& \hline x^{3}+13 x^{2}+54 x+72
\end{aligned}
$$

Note. The numbers 13 and 54 are called the coefficients of x^{2} and x in the expression $x^{3}+13 x^{2}+54 x+72$, in accordance with Art. 44.
(5) Find the continued product of $x+a, x+b$, and $x+c$.

$$
\begin{aligned}
& x+a \\
& x+b \\
& \hline x^{2}+a x \\
& \frac{+b x+a b}{x^{2}+a x+b x+a b} \\
& \frac{x+c}{x^{3}+a x^{2}+b x^{2}+a b x} \\
& \frac{+c x^{2}+a c x+b c x+a b c}{x^{3}+(a+b+c) x^{2}+(a b+a c+b c) x+a b c}
\end{aligned}
$$

Note. The coefficients of x^{2} and x in the expression just obtained are $a+b+c$ and $a b+a c+b c$ respectively.

When a coefficient is expressed in letters, as in this example, it is called a literal coefficient.

EXAMPLES.-viii.

Multiply

1. $x+3$ by $x+9$ 2. $x+15$ by $x-7$. 3. $x-12$ by $x+10$.
2. $x-8$ by $x-7$.
3. $a-3$ by $a-5$.
4. $y-6$ by $y+13$.
5. $x^{2}-4$ by $x^{2}+5$.
6. $x^{2}-6 x+9$ by $x^{2}-6 x+5$.
7. $x^{2}+5 x-3$ by $x^{2}-5 x-3$.
8. $a^{3}-3 a+2$ by $a^{3}-3 a^{2}+2$.
II. $x^{2}-x+1$ by $x^{2}+x-1$.
9. $x^{2}+x y+y^{2}$ by $x^{2}-x y+y^{2}$.
10. $x^{2}+x y+y^{2}$ by $x-y$.
11. $a^{2}-x^{2}$ by $a^{4}+a^{2} x^{2}+x^{4}$.
12. $x^{3}-3 x^{2}+3 x-1$ by $x^{2}+3 x+1$.
13. $x^{3}+3 x^{2} y+9 x y^{2}+27 y^{3}$ by $x-3 y$.
14. $a^{3}+2 a^{2} b+4 a b^{2}+8 b^{3}$ by $a-2 b$.
15. $8 a^{3}+4 a^{2} b+2 a b^{2}+b^{3}$ by $2 a-b$.
16. $a^{3}-2 a^{2} b+3 a b^{2}+4 b^{3}$ by $a^{2}-2 a b-3 b^{2}$.
17. $a^{3}+3 a^{2} b-2 a b^{2}+3 b^{3}$ by $a^{2}+2 a b-3 b^{2}$.
18. $a^{2}-2 a x+4 x^{2}$ by $a^{2}+2 a x+4 x^{2}$.
19. $9 a^{2}+3 a x+x^{2}$ ly $9 a^{2}-3 a x+x^{2}$.
20. $x^{4}-2 a x^{2}+4 a^{2}$ by $x^{4}+2 a x^{2}+4 a^{2}$.
21. $a^{2}+b^{2}+c^{2}-a b-a c-b c$ by $a+b+c$.
22. $\quad x^{2}+4 x y+5 y^{2}$ by $x^{3}-3 x^{2} y-2 x y^{2}+3 y^{3}$.
23. $a b+c d+a c+b d$ by $a b+c d-a c-b d$.

Find the continued product of the following expression :
27. $x-a, x+a, x^{2}+a^{2}, x^{4}+a^{4}$.
28. $x-a, x+b, x-c$.
29. $1-x, 1+x, 1+x^{2}, 1+x^{4}$.
30. $x-y, x+y, x^{2}-x y+y^{2}, x^{2}+x y+y^{2}$.
31. $\quad a-x, a+x, a^{2}+x^{2}, a^{4}+x^{4}, a^{8}+x^{8}$.

Find the coefficient of x in the following expansions:
32. $(x-5)(x-6)(x+7)$ 33. $(x+8)(x+3)(x-2)$.
34. $(x-2)(x-3)(x+4)$. 35. $(x-a)(x-b)(x-c)$.
36. $\left(x^{2}+3 x-2\right)\left(x^{2}-3 x+2\right)\left(x^{4}-5\right)$.
37. $\left(x^{2}-x+1\right)\left(x^{2}+x-1\right)\left(x^{4}-x^{2}+1\right)$.
38. $\left(x^{2}-m x+1\right)\left(x^{2}-m x-1\right)\left(x^{4}-m^{2} x-1\right)$.
58. Our proof of the Rule of Signs in Art. 55 is founded on the supposition that a is greater than b and c is greater than d.

To include cases in which the multiplicr is an isolated negative quantity we must extend our definition of Multiplication. For the definition given in Art. 36 does not cover this case, since we camnot say that c shall be taken - d times.

We give then the following definition. "The operation of Multiplication is such that the product of the factors $a-b$ and $c-d$ will be equivalent to $a c-a d-b c+b d$, whatever may be the values of a, b, c, d. ."

Now since

$$
(a-b)(c-d)=a c-a d-b c+b d
$$

make $a=0$ and $d=0$.
Then $\quad(0-b)(c-0)=0 \times c-0 \times 0-c . b \times 0$. or $-b \times c=-b c$.
Similarly it may be shewn that

$$
-b \times-d=+b d
$$

EXAMPLES, -iX.

Multiply

I. a^{2} by $-b$.
2. a^{2} by $-a^{3}$.
3. $a^{2} b$ by $-a b^{2}$.
4. $-4 a^{2} b$ by $-3 a b^{2}$.
5. $5 x^{3} y$ by $-6 x y^{2}$.
6. $a^{2}-a \dot{b}+b^{2}$ by $-a$.
7. $3 a^{3}+4 a^{2}-5 a$ by $-2 a^{2}$. 8. $\quad-a^{3}-a^{2}-a$ by $-a-1$.
9. $3 x^{2} y-5 x y^{2}+4 y^{3}$ by $-2 x-3 y$.
10. $-5 m^{2}-6 m n+7 n^{2}$ by $-m+n$.
II. $13 r^{2}-17 r-45$ by $-r-3$.
12. $7 x^{3}-8 x^{2} z-9 z^{2}$ by $-x-z$.
13. $-x^{5}+x^{4} y-x^{3} y^{2}$ by $-y-x$.
14. $-y^{3}-x y^{2}-x^{2} y-x^{3}$ by $-x-y$.

III. YNVOLUTION.

59. To this part of Algebra belongs the process called
s founded is greater ted negaiplication. this case, veration of $s a-b$ and may be the

Involution. This is the operation of multiplying a quantity by itself any number of times.

The power to which the quantity is raised is expressed by the number of times the quantity has been employed ats a factor in the operation.

Thus, as has been already stated in Art. 45, a^{2} is called the second power of a, a^{3} is called the third power of a.
60. When we have to raise negative quantities to certain powers we symbolize the operation by putting the quantity in a bracket with the number denoting the index (Art. 45) placed over the bracket on the right hand.

Thus $\quad(-a)^{3}$ denotes the third power of $-a$, $(-2 x)^{4}$ denotes the fourth power of $-2 x$.
61. The signs of all even powers of a negative quantity will be positive, and the signs of the odd powers will be negative.

Thus

$$
\begin{gathered}
(-a)^{2}=(-a) \times(-a)=a^{2}, \\
(-a)^{3}=(-a) \cdot(-a)(-a)=a^{2} \cdot(-a)=-a^{3} .
\end{gathered}
$$

62. To raise a simple quantity to any power we multiply the index of the quantity by the number denoting the power to which it is to be raised, and prefix the proper sign.

Thus the square of a^{3} is a^{6}, the cube of a^{3} is a^{9}, the cube of $-x^{2} y z^{3}$ is $-x^{6} y^{3} z^{0}$.
63. We form the second, third and fourth powers of $a+b$ in the following manner:

$$
\begin{aligned}
& a+b \\
& \frac{a+b}{a^{2}+a b} \\
& +a b+b^{2} \\
& (a+b)^{2}=\overline{a^{2}+2 a b+b^{2}} \\
& a+b \\
& \overline{a^{3}+2 a^{2} b+a b^{2}} \\
& +a^{2} b+2 a b^{2}+b^{3} \\
& (a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3} \\
& a+b \\
& a^{4}+3 a^{3} b+3 a^{2} b^{2}+a b^{3} \\
& +a^{3} b+3 a^{2} b^{2}+3 a b^{3}+b^{4} \\
& (a+b)^{4}=\overline{a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}} .
\end{aligned}
$$

Here observe the following laws:
I. The indices of a decrease by unity in each term.
II. The indices of b increase by unity in each term.
III. The numerical coefficient of the seconel term is always the same as the index of the power to which the binomial is raised.
64. We form the second, third and fourth powers of $a-b$ in the following manner:

$$
\begin{gathered}
a-b \\
a-b \\
a^{2}-a b \\
-a b+b^{2} \\
(a-b)^{2}=\frac{a^{2}-2 a b+b^{2}}{a-1} \\
\hdashline a^{3}-2 a^{2} b+a b^{2} \\
-a^{2} b+2 a b^{2}-b^{3} \\
(a-b)^{3}= \\
\frac{a^{3}-3 a^{2} b+3 a b^{2}-b^{3}}{a-b} \\
\frac{a^{4}-3 a^{3} b+3 a^{2} b^{2}-a b^{3}}{} \\
\left(a-b ; a^{3} b+3 a^{2} b^{2}-3 a b^{3}+b^{4}\right. \\
\left(c^{4}-4 a^{3} b+6 a^{2} b^{2}-4 a b^{3}+b^{4} .\right.
\end{gathered}
$$

ers of $a+b$
erm.
erm.
m is always which the

Now observe that the powers of $a-b$ do not differ from the powers of $a+b$ except that the terms, in which the odd powers of b, as b^{1}, b^{3}, occur have the sign - prefixed.

Hence if any power of $a+b$ be given we can write the corresponding power of $a-b$: thus
since $\quad(a+b)^{5}=a^{5}+5 a^{4} b+10 a^{3} b^{2}+10 a^{2} b^{3}+5 a b^{4}+b^{5}$,
$(a-b)^{5}=a^{5}-5 a^{4} b+10 a^{3} b^{2}-10 a^{2} b^{3}+5 a b^{4}-b^{5}$.
65. Since $(a+b)^{2}=a^{2}+b^{2}+2 a b$ and $(a-b)^{2}=a^{2}+b^{2}-2 a b$, it appears that the square of a linomial is formed by the following process :
"To the sum of the squares of each term add twice the product of the terms."
Thus

$$
\begin{aligned}
& (x+y)^{2}=x^{2}+y^{2}+2 x y \\
& (x+3)^{2}=x^{2}+9+6 x \\
& (x-5)^{2}=x^{2}+25-10 x, \\
& (2 x-7 y)^{2}=4 x^{2}+49 y^{2}-28 x y .
\end{aligned}
$$

66. To form the square of a trinomial :

$$
\begin{aligned}
& a+b+c \\
& \frac{a+b+c}{a^{2}+a b+a c} \\
& \quad+a b+b^{2}+b c \\
& \quad+a c+b c+c^{2}
\end{aligned} \frac{a^{2}+2 a b+b^{2}+2 a c+2 b c+c^{2} .}{}
$$

Arranging this result thus $a^{2}+b^{2}+c^{2}+2 a b+2 a c+2 b c$, we see that it is composed of two sets of quantities :
I. The squares of the quantities a, b, c.
II. The double products of a, b, c taken two and two.

Now, if we form the square of $a-b-c$, we get

$$
\begin{aligned}
& \begin{array}{l}
a-b-c \\
\frac{a-b-c}{a^{2}-a b-a c} \\
-a b+b^{2}+b c \\
\\
-a c+b c+c^{2} \\
a^{2}-2 a b+b^{2}-2 a c+2 b c+c^{2} .
\end{array}
\end{aligned}
$$

The law of formation is the same as before, for we have
I. The squares of the quantities.
II. The double products of $a,-b,-c$ taken two by two : the sign of each result being + or - , according as the signs of the algebraical quantities composing it are like or unlike.
67. The same law holds good for expressions containing more than three terms, thus

$$
\begin{aligned}
\begin{aligned}
(a+b+c+d)^{2}=a^{2}+b^{2}+c^{2} & +d^{2} \\
& \quad+2 a b+2 a c+2 a d+2 b c+2 b d+2 c d \\
(a-b+c-d)^{2}=a^{2}+b^{2}+c^{2} & +d^{2} \\
& \quad-2 a b+2 a c-2 a d-2 b c+2 b d-2 c d .
\end{aligned}
\end{aligned}
$$

And generally, the square of an expression containing 2, 3, 4 or more terms will be formed by the following process :
"To the sum of the squares of each term add twice the product of each term into eaci of the terms that follow it."

EXAMPLES.-X.
Form the square of each of the following expressions:

1. $x+a$.
2. $x-a$.
3. $x+2$.
4. $x-3$.
5. $x^{2}+y^{2}$.
6. $x^{2}-y^{2}$.
7. $a^{3}+b^{3}$.
8. $a^{3}-b^{3}$.
9. $x+y+z$.
10. $x-y+z$.
11. $n+n-p-r$.
12. $x^{2}+2 x-3$.
13. $x^{2}-6 x+7$.
14. $2 x^{2}-7 x+9$.
15. $x^{2}+y^{2}-z^{2}$.
16. $x^{4}-4 x^{2} y^{2}+y^{4}$.
17. $a^{3}+b^{3}+c^{3}$.
18. $x^{3}-y^{3}-z^{3}$.
19. $x+2 y-3 z$.

$$
\text { 20. } x^{2}-2 y^{2}+5 z^{2}
$$

Expand the following expressions:
2I. $(x+a)^{3}$.
22. $(x-a)^{3}$.
23. $(x+1)^{3}$.
24. $(x-1)^{3}$.
25. $(x+2)^{3}$.
26. $\left(a^{2}-b^{2}\right)^{3}$.
27. $(a+b+c)^{3}$. 28. $(a-b-c)^{3}$.
29. $(m+n)^{2} \cdot(m-n)^{2}$.
30. $(m+n)^{2} \cdot\left(m^{2}-n^{2}\right)$.
68. An algebraical product is said to be of $2,3 \ldots .$. dimensions, when the sum of the indices of the quantities composing the product is $2,3 . \ldots \ldots . .$.

Thus $\quad a b$ is an expression of 2 dimensions, $a^{2} b^{2} c$ is an expression of 5 dimensions.
69.
each o
Thu sions.

Also dimen sions o
70.
powers the ord

Thut to dese
71. anothe tingtis

Thus $a^{2}+a x$
'72.
given a mined.

The
])IVide
The
The
73.

Thus
The
over il
In t divider
69. An algebraical expression is called homogeneous when cach of its terms is of the same dimensions.

Thus $x^{2}+x y+y^{2}$ is homogeneous, for each term is of 2 dimensions.

Also $3 x^{3}+4 x^{2} y+5 y^{3}$ is homogeneons, for each term is of 3 dimensions, the numerical coefficients not affecting the dimensions of each term.
70. An expression is said to be arranged according to powers of some letter, when the indices of that letter occur in the order of their magnitudes, either increasing or decreasing.

Thus the expression $a^{3}+a^{2} x+a x^{2}+x^{3}$ is arranged according to descending powers of a, and ascending powers of x.
71. One expression is said to be of a higher order than another when the former contains a higher power of some distinguishing letter than the other.

Thus $a^{3}+a^{2} x+a x^{2}+x^{3}$ is said to be of a higher order than $a^{2}+a x+x^{2}$, with reference to the index of a.

IV. DIVISION.

72. Division is the process by which, when a product is given and we know one of the factors, the other factor is determined.

The product is, with reference to this process, called the 1)miderd.

The given factor is called the Divisor.
The factor which has to be found is called the Quotient.
73. The operation of Division is denoted by the sign \div.

Thus $a b \div a$ signifies that $a b$ is to be divided by a.
The same operation is denoted by writing the dividend over the divisor with a line drawn between them, thus $\frac{a b}{a}$.

In this chapter we shall treat only of cases in which the divilend contains the divisor an exact number of times.
[s.A.]

Case I.

74. When the dividend and divisor are each included in a single term, we can usually tell by inspection the factors of which each is composed. The quotient will in this case be represented by the factors which remain in the dividend, when those factors which are common to the dividend and the divisor have been removed from the dividend.

Thus

$$
\begin{aligned}
& \frac{a b}{b}=a, \\
& \frac{3 a^{2}}{a}=\frac{3 a a}{a}=3 a, \\
& \frac{a^{5}}{a^{3}}=\frac{a a c a c t}{a(t u}=a a=a^{2} .
\end{aligned}
$$

Thus, when one power of a number is divided by a smaller power of the same number, the quotient is that power of the number whose index is the difference between the indices of the dividend and the divisor.

Thus

$$
\begin{aligned}
\frac{a^{12}}{a^{5}} & =a^{12-5}=a^{7}, \\
\frac{15 a^{3} b^{2}}{3 a b} & =5 a^{2} b .
\end{aligned}
$$

75. The quotient is unity when the dividend and the divisor are equal.

Thus

$$
\frac{a}{a}=1 ; \quad \frac{x^{2} y^{2}}{x^{2} y^{2}}=1 ;
$$

and this will hold true wnen the dividend and the divisor are compound quantities.

Thus

$$
\frac{a+b}{a+b}=1 ; \quad \frac{x^{2}-y^{2}}{x^{2}-y^{2}}=1 .
$$

EXAMPLES.-xi.
Divide
I. x^{0} by x^{3}.
2. x^{10} by x^{2}.
3. $x^{4} y^{2}$ by $x y$.
4. $x^{5} y^{3} z^{6}$ by $x y^{2} \approx$.
5. $24 a b^{2} c$ by $4 a b$.
6. $72 a^{2} b^{2} c^{3}$ by $9 a^{2} b^{2} c$.
7. $256 a^{3} b^{7} c^{9}$ by $16 a b c^{3}$.
8. $1331 m^{10} n^{11} p^{12}$ by $11 m^{2} n^{3} p^{4}$.
9. $60 a^{3} x^{2} y^{5}$ by $5 x y$.
10. $96 a^{-1} b^{2} c^{3}$ by $12 b c$,

Case II.

76. If the divisor be a single term, while the dividend contains two or more terms, the quotient will be foum by dividing each term of the dividend separately by the divisor and connecting the results with their proper sigus.

Thus

$$
\begin{aligned}
& \frac{a x+b x}{x}=a+b, \\
& a^{3} x^{3}+a^{2} x^{2}+a x \\
& a x=a^{2} x^{2}+a x+1, \\
& \frac{12 x^{3} y^{4}+16 x^{2} y^{3}-8 x y^{2}}{4 x y^{2}}=3 x^{2} y^{2}+4 x y-2 .
\end{aligned}
$$

EXAMPLES.-xii.

Divide

1. $x^{3}+2 x^{2}+x$ by x 4. $m p x^{4}+m^{2} p^{2} x^{2}+m^{3} p^{3}$ by $m p$.
2. $y^{5}-y^{4}+y^{3}-y^{2}$ by y^{2}. 5. $16 a^{3} x y-28 a^{2} x^{2}+4 a^{2} x^{3}$ by $4 a^{2} x$. 3. $8 a^{3}+16 a^{2} b+24 a b^{2}$ by $8 a$. 6. $72 x^{5} y^{6}-36 x^{4} y^{3}-18 x^{2} y^{2}$ by $9 x^{2} y$.
3. $81 m^{8} n^{7}-54 m^{5} n^{6}+27 m^{3} n^{2} p$ by $3 m^{2} n^{2}$.
4. $12 x^{5} y^{2}-8 x^{4} y^{3}-4 x^{3} y^{4}$ by $4 x^{3}$.
5. $169 a^{4} b-117 a^{3} b^{2}+91 a^{2} b$ by $13 a^{2}$.

1о. $361 b^{5} c^{3}+228 b^{4} c^{4}-133 b^{3} c^{5}$ by $19 b^{2} c$.
77. Admitting the possibility of the independent existence of a term affected with the sign - , we can extend the Examples in Arts. 74-76, by taking the first term of the dividend or the divisor, or both, negative. In such cases we apply the Rule of Signs in Multiplication to form a Rule of Signs in Division.

$$
\begin{aligned}
& \text { Thus since }-a \times b=-a b \text {, we conclude that } \frac{-a b}{b}=-a, \\
& \ldots \ldots . \quad a \times-b=-a b, \ldots \ldots \ldots \ldots \ldots . \frac{-a b}{-b}=a, \\
& \ldots \ldots-a \times-b=a b, \quad \ldots \ldots \ldots \ldots \ldots . . \frac{a b}{-b}=-a ;
\end{aligned}
$$

and hence the rules
I. When the dividend and the divisor have the same sign the quotient is positive.
II. When the dividend and the divisor have different signs the quotient is negative.
78. The following Examples illustrate the conclusions just obtained :
(1) $\frac{a b x^{2}}{-x}=-a b x$.
(3) $\frac{-23 x^{3} y^{3}}{-3 x^{2} y}=9 x y^{2}$.
(2) $\frac{-12 a^{2} b^{3} x^{4}}{4 a b x^{2}}=-3 a b^{2} x^{2}$.
(4) $\frac{a x-b x}{-x}=-a+b$.
(5) $\frac{a b^{4}-a^{2} b^{3}+a^{3} b^{2}-a^{4} b}{-a b}=-b^{3}+a b^{2}-a^{2} b+a^{3}$.
(6) $\begin{aligned} \quad-12 x^{3} y^{4}+16 x^{2} y^{3}-8 x y^{2} \\ -4 x y^{2}\end{aligned}=3 x^{2} y^{2}-4 x y+2$.

EXAMPLES.-Xiii.

Divide

1. $72 a b$ by $-9 a b$.
2. $-60 a^{8}$ by $-4 a^{3}$.
3. $-84 x^{8} y^{9}$ by $4 x^{5} y^{3}$.
4. $-18 m^{3} n^{2}$ by $3 m n$.
5. $-128 a^{3} b^{2} c$ by $-8 b c$.
6. $-a^{3} x^{3}-a^{2} x^{2}-a x$ by $-a x$.
7. $-34 a^{3}+51 a^{2}-17 a x^{2}$ by $17 a$.
8. $-8 a^{3} b^{2}-24 a^{5} b^{3}+32 a^{7} b^{8} \mathrm{by}-4 a^{3} b^{2}$.
9. $-144 x^{3}+10 \varepsilon x^{2} y-96 x y^{2}$ by $12 x$.
10. $b^{2} x^{3} z^{2}-b^{5} x^{7} z^{4}-b^{3} y^{4} z^{2}$ by $-b^{2} z^{2}$.

Case III.

79. The third case of the operation of Division is that in which the divisor and the dividend contain more terms than one. The operation is conducted in the following way:

Arrange the divisor and dividend according to the powers of some one symbol, and place them in the same line as in the process of Long Division in Arithmetic.
Divide the first term of the dividend by the first term of the divisor.
Set down the result as the first term of the quotient.
Multiply all the terms of the divisor by the first term of the quotient.
Subtract the resulting product from the dividend. If there be a remainder, considu: it as a new dividend, and-proceed as before.
chusions just
$=9 x y^{2}$.
$-a+b$.
$\imath^{2} b+a^{3}$.
$y+2$.

$-a x$.

oy $17 a$.
$b^{8} b y-4 a^{3} b^{2}$ y^{2} by $12 x$.
r $-b^{2} z^{2}$.
n is that in terms than way :
ing to the hem in the Division in
first term
uotient.
first term
idend. If w dividend,

The process will best be understood by a careful study of the following Examples:

$$
\begin{array}{cc}
\text { (1) Divide } a^{2}+2 a b+b^{2} \text { by } a+b . & \text { (2) Divide } a^{2}-2 a b+b^{2} \text { by } a-b \text {. } \\
a+b) a^{2}+2 a b+b^{2}(a+b & a-b) a^{2}-2 a b+b^{2}(a-b \\
\frac{a^{2}+a b}{a b+b^{2}} & \frac{a^{2}-a b}{-a b}+b^{2} \\
a b+b^{2} & -a b+b^{2}
\end{array}
$$

(3) Divide $x^{6}-y^{6}$ by $x^{2}-y^{2}$.

$$
\begin{gathered}
\left.x^{2}-y^{2}\right) x^{6}-y^{6}\left(x^{4}+x^{2} y^{2}+y^{4}\right. \\
\frac{x^{6}-x^{4} y^{2}}{x^{4} y^{2}-y^{6}} \\
\frac{x^{4} y^{2}-x^{2} y^{4}}{x^{2} y^{4}-y^{6}} \\
x^{2} y^{4}-y^{6}
\end{gathered}
$$

(4) Divide $x^{6}-4 a^{2} x^{4}+4 a^{4} x^{2}-a^{6}$ by $x^{2}-a^{2}$.

$$
\begin{gathered}
\left.x^{2}-a^{2}\right) x^{6}-4 a^{2} x^{4}+4 a^{4} x^{2}-a^{6}\left(x^{4}-3 a^{2} x^{2}+a^{4}\right. \\
\frac{x^{6}-a^{2} x^{4}}{-3 a^{2} x^{4}+4 a^{4} x^{2}-a^{6}} \\
\frac{-3 a^{2} x^{4}+3 a^{4} x^{2}}{a^{4} x^{2}-a^{6}} \\
a^{4} x^{2}-a^{6}
\end{gathered}
$$

(5) Divide $3 x y+x^{3}+y^{3}-1$ by $y+x-1$.

Arranging the divisor and dividend by descending powers of x,

$$
x+y-1) x^{3}+3 x y+y^{3}-1\left(x^{2}-x y+x+y^{2}+y+1\right.
$$

$$
\frac{x^{3}+x^{2} y-x^{2}}{-x^{2} y}-x^{2}+3 x y+y^{3}-1
$$

$$
-x^{2} y-x y^{2}+x y
$$

$$
x^{2}+x y^{2}+2 x y+y^{3}-1
$$

$$
\frac{x^{2}+x y-x}{x y^{2}+x y+x+y^{3}-1}
$$

$$
x y^{2}+y^{3}-y^{2}
$$

$$
x y+x+y^{2}-1
$$

$$
x y+y^{2}-y
$$

$$
x+y-1
$$

$$
x+y-1
$$

80. We must now direct the attention of the student to two points of great importance in Division.
I. The dividend and divisor must be arranged according to the order of the powers of one of the symbols involved in them. This order may be ascending or descending. In the Examples given above we have taken the descending order, and in the Examples worked out in the next Article we shall take an ascending order of arrangement.
II. In each remainder the terms must be arranged in the same order, ascending or descending, as that in which the dividend is arranged at first.
81. To divide (1) $1-x^{4}$ by $x^{3}+x^{2}+x+1$, arrange the dividend and divisor by ascending powers of x, thus:

$$
\begin{aligned}
& \left.1+x+x^{2}+x^{3}\right) \frac{1-x^{4}(1-x}{1+x+x^{2}+x^{3}} \\
& \frac{1+x-x^{2}-x^{3}-x^{4}}{} \\
& -x-x^{2}-x^{3}-x^{4}
\end{aligned}
$$

(2) $48 x^{2}+6-35 x^{5}+58 x^{4}-70 x^{3}-23 x$ by $6 x^{2}-5 x+2-7 x^{3}$, arrange the dividend and divisor by ascending powers ol x, thus:

$$
\begin{gathered}
\left.2-5 x+6 x^{2}-7 x^{3}\right) 6-23 x+48 x^{2}-70 x^{3}+58 x^{4}-35 x^{5}\left(3-4 x+5 x^{2}\right. \\
\frac{6-15 x+18 x^{2}-21 x^{3}}{-8 x+30 x^{2}-49 x^{3}+58 x^{4}} \\
\frac{-8 x+20 x^{2}-24 x^{3}+28 x^{4}}{10 x^{2}-25 x^{3}+30 x^{4}-35 x^{5}} \\
10 x^{2}-25 x^{3}+30 x^{4}-35 x^{5}
\end{gathered}
$$

Divide
I. $x^{2}+15 x+50$ by $x+10 . \quad$ 5. $x^{3}+13 x^{2}+54 x+72$ by $x+6$.
2. $x^{2}-17 x+70$ by $x-7$.
6. $x^{3}+x^{2}-x-1$ by $x+1$.
3. $x^{2}+x-12$ by $x-3$.
7. $x^{3}+2 x^{2}+2 x+1$ by $x+1$.
4. $x^{2}+13 x+12$ by $x+1$. 8. $x^{5}-5 x^{3}+7 x^{2}+6 x+1$ by $x^{2}+3 x+1$.
9. $x^{4}-4 x^{3}+2 x^{2}+4 x+1$ by $x^{2}-2 x-1$.
10. $x^{4}-4 x^{3}+6 x^{2}-4 x+1$ by $x^{2}-2 x+1$.
tudent to
l accord. symbols ending or we have Examples take an anged in s that in
ers of x,
$-7 x^{3}$,
ars ol x, $4 x+5 x^{2}$

I 1. $x^{4}-x^{2}+2 x-1$ by $x^{2}+x-1$. 12. $x^{4}-4 x^{2}+8 x+16$ by $x+2$.

- 13. $x^{3}+4 x^{2} y+3 x y^{2}+12 y^{3}$ by $x+4 y$.

14. $a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}$ by $a+b$.
15. $a^{5}-5 a^{4} b+10 a^{3} b^{2}-10 a^{2} b^{3}+5 a b^{4}-b^{5}$ by $a-b$.
16. $x^{4}-12 x^{5}+50 x^{2}-84 x+45$ by $x^{2}-6 x+9$.
17. $a^{5}-4 a^{4} b+4 a^{3} b^{2}+4 a^{2} b^{3}-17 a b^{4}-12 b^{5}$ by $a^{2}-2 a b-3 b^{2}$.
18. $4 a^{2} x^{4}-12 a^{3} x^{3}+13 a^{4} x^{2}-6 a^{5} x+a^{6}$ by $2 a x^{9}-3 a^{2} x+a^{3}$.
19. $x^{4}-x^{2}+2 x-1$ by $x^{2}+x-1$.
20. $x^{4}+a^{2} x^{2}-2 a^{4}$ by $x^{2}+2 a^{2}$. 23. $x^{6}-y^{6}$ by $x-y$.
21. $x^{2}-13 x y-30 y^{2}$ by $x-15 y$. 24. $a^{2}-b^{2}+2 b c-c^{2}$ by $a-b+c$.
22. $x^{5}+y^{5}$ by $x+y$. 25. $b-3 b^{2}+3 b^{3}-b^{4}$ by $b-1$.
23. $a^{2}-b^{2}-c^{2}+d^{2}-2(a d-b c)$ by $a+b-c-d$.
24. $x^{3}+y^{3}+z^{3}-3 x y z$ by $x+y+z$. 28. $x^{15}+y^{10}$ by $x^{3}+y^{2}$.
25. $p^{2}+p q+2 p r-2 q^{2}+7 q r-3 r^{2}$ by $p-q+3 r$.
26. $a^{8}+a^{6} b^{2}+a^{4} b^{4}+a^{2} b^{6}+b^{8}$ by $a^{4}+a^{3} b+a^{2} b^{2}+a b^{5}+b^{4}$.

3I. $x^{8}+x^{6} y^{2}+x^{4} y^{4}+x^{2} y^{6}+y^{8}$ by $x^{4}-x^{3} y+x^{2} y^{2}-x y^{3}+y^{4}$.
32. $4 x^{5}-x^{3}+4 x$ by $2 x^{2}+3 x+2$. 33. $a^{5}-243$ by $a-3$.
34. $k^{10}-k$ by $k^{3}-1$.
35. $x^{3}-5 x^{2}-46 x-40$ by $x+4$.
36. $48 x^{3}-76 a x^{2}-64 a^{2} x+105 a^{3}$ by $2 x-3 a$.
37. $18 x^{4}-45 x^{3}+82 x^{2}-67 x+40$ by $3 x^{2}-4 x+5$.
38. $16 x^{4}-72 a^{2} x^{2}+81 a^{4}$ by $2 x-3 a$.
39. $81 x^{4}-256 a^{4}$ by $3 x+4 a$. 41. $x^{3}+2 a x^{2}-a^{2} x-2{ }^{3}$ by $x^{2}-a^{2}$.
40. $2 a^{3}+3 a^{2} b-2 a b^{2}-3 b^{3}$ by $a^{2}-b^{2}$. $42 . a^{4}-a^{2} b^{2}-12 b^{4}$ by $a^{2}+3 b^{2}$.
43. $x^{4}-9 x^{2}-6 x y-y^{2}$ by $x^{2}+3 x+y$.
44. $x^{4}-6 x^{3} y+9 x^{2} y^{2}-4 y^{4}$ by $x^{2}-3 x y+2 y^{2}$.
45. $x^{4}-81 y^{4}$ by $x-3 y$.
47. $81 a^{4}-16 b^{4}$ by $3 a+2 b$.
46. $a^{4}-16 b^{4}$ by $a-2 b$.
48. $16 x^{4}-81 y^{4}$ by $2 x+3 y$.
49. $3 a^{2}+8 a b+4 b^{2}+10 a c+8 b c+3 c^{2}$ by $a+2 b+3 c$.
50. $a^{4}+4 a^{2} x^{2}+16 x^{4}$ by $a^{2}+2 a x+4 x^{2}$.
51. $x^{4}+x^{2} y^{2}+y^{4}$ by $x^{2}-x y+y^{2}$.
52. $256 x^{4}+16 x^{2} y^{2}+y^{4}$ by $16 x^{2}+4 x y+y^{2}$.
53. $x^{5}+x^{4} y-x^{3} y^{2}+x^{3}-2 x y^{2}+y^{3}$ by $x^{3}+x-y$.
54. $a x^{3}+3 a^{2} x^{2}-2 a^{3} x-2 a^{4}$ by $x-a$. 55. $a^{2}-x^{2}$ by $x+a$.
56. $2 x^{2}+x y-3 y y^{2}-4 y z-x z-z^{2}$ by $2 x+3 y+i$.
57. $9 x+3 x^{4}+14 x^{3}+2$ by $1+5 x+x^{2}$.
58. $12-38 x+82 x^{2}-112 x^{3}+106 x^{4}-70 x^{5}$ by $7 x^{2}-5 x+3$.
59. $x^{5}+y^{5}$ by $x^{4}-x^{3} y+x^{2} y^{2}-x y^{3}+y^{4}$.
60. $\left(a^{2} x^{2}+b^{2} y^{2}\right)-\left(a^{2} b^{2}+x^{2} y^{2}\right)$ by $a x+b y+a b+x y$.
61. $a b\left(x^{2}+y^{2}\right)+x y\left(a^{2}+b^{2}\right)$ by $a x+b y$.
62. $x^{4}+\left(2 b^{2}-a^{2}\right) x^{2}+b^{4}$ by $x^{2}+a x+b^{2}$.
82. The process may in some cases be shortened by the use of brackets, as in the following Example.

$$
\begin{aligned}
& x+b) x^{3}+(a+b+c) x^{2}+(a b+a c+b c) x+a b c\left(x^{2}+(a+c) x+a c\right. \\
& x^{3}+b x^{2} \\
& (a+c) x^{2}+(a b+a c+b c) x \\
& (a+c) x^{2}+(a b+b c) x \\
& a c x+a b c \\
& a c x+a b c \\
& x-1) x^{5}-m x^{4}+n x^{3}-n x^{2}+m x-1\left(x^{4}-(m-1) x^{3}\right. \\
& \begin{array}{l}
\frac{x^{5}-x^{4}}{-(m-1) x^{4}+n x^{3}} \\
\frac{-(m-1) x^{4}+(m-1) x^{3}}{-(m-n-1)} x^{3}-n x^{2}
\end{array} \\
& -(m-n-1) x^{3}+(m-n-1) x^{2} \\
& -(m-1) x^{2}+m x \\
& \frac{-(m-1) x^{2}+(m-1) x}{x-1} \\
& x-1
\end{aligned}
$$

EXAMPLES.-XV.

Divide
I. $x^{4}-\left(a^{2}-b-c\right) x^{2}-(b-c) a x+b c$ by $x^{2}-a x+c$.
2. $y^{3}-(l+m+n) y^{2}+(l m+l n+m n) y-l m n$ by $y-n$.
3. $x^{5}-(m-c) x^{4}+(n-c m+d) x^{3}+$
$(r+c n-d m) x^{2}+(c r+d n) x+d r$ by $x^{3}-m x^{2}+n x+r$.
4. $x^{4}+(5+a) x^{3}-(4-5 a+b) x^{2}-(4 a+5 b) x+4 b$ by $x^{2}+5 x-4$.
5. $x^{4}-(a+b+c+d) x^{3}+(a b+a c+a d+b c+b d+c c d) x^{2}$
$-(a b c+a b d+a c d+b c d) x+a b c d$ by $x^{2}-(a+c) x+a c$.
by $x+a$.

Divisor.

$x+y$
$x-y$
$x+y$
$x-y$

Dividend.

$$
\begin{aligned}
& x^{2}-y^{2} \\
& x^{2}-y^{2} \\
& x^{3}+y^{3} \\
& x^{3}-y^{3}
\end{aligned}
$$

Quotient.

$$
\begin{aligned}
& x-y \\
& x+y \\
& x^{2}-x y+y^{2} \\
& x^{2}+x y+y^{2}
\end{aligned}
$$

84. Again, if we arrange two series of binomials consisting respectively of the sum and the diflerence of ascending powers of x and y, thus

$$
\begin{aligned}
& x+y, x^{2}+y^{2}, x^{3}+y^{3}, x^{4}+y^{4}, x^{5}+y^{5}, x^{6}+y^{6}, \text { and so on, } \\
& x-y, x^{2}-y^{2}, x^{3}-y^{3}, x^{4}-y^{4}, x^{5}-y^{5}, x^{6}-y^{3}, \text { and so on, } \\
& x+y \text { will divide the odd tems in the upper line, } \\
& \text { and the even in the lower }
\end{aligned}
$$

$x-y$ will divide all the terms in the lower, but none in the upper.

Or we may put it thus:
If n stand for any whole number,

$$
\begin{gathered}
x^{n}+y^{n} \text { is divisible by } x+y \text { when } n \text { is odd, } \\
\text { by } x-y \text { never ; }
\end{gathered}
$$

$x^{n}-y^{n}$ is divisible by $x+y$ when n is even, by $x-y$ always.

Also, it is to be observed that when the divisor is $x-y$ all the terms of the quotient are p sitive, and when the divisor is $x+y$, the terms of the quotient are alternately positive and negative.

$$
\begin{aligned}
\text { Thus } \begin{aligned}
\frac{x^{4}-y^{4}}{x-y} & =x^{3}+x^{2} y+x y^{2}+y^{3} \\
\frac{x^{7}+y^{7}}{x+y} & =x^{6}-x^{5} y+x^{4} y^{2}-x^{3} y^{3}+x^{2} y^{4}-x y^{5}+y^{6} \\
\frac{x^{6}-y^{6}}{x+y} & =x^{5}-x^{4} y+x^{3} y^{2}-x^{2} y^{3}+x y^{4}-y^{5}
\end{aligned}
\end{aligned}
$$

85. These properties may be easily remembered by taking the four simplest cases, thus, $x+y, x-y, x^{2}+y^{2}, x^{2}-y^{2}$, of which

$$
\begin{aligned}
& \text { the first is divisible by } x+y \text {, } \\
& \text { second } x-y \text {, } \\
& \text { thirdeither, } \\
& \text { fourth both. }
\end{aligned}
$$

Again, since these properties are true for all values of x and y, suppose $y=1$, then we shall have

$$
\begin{array}{ll}
\frac{x^{2}-1}{x+1}=x-1, & \frac{x^{2}-1}{x-1}=x+1 \\
\frac{x^{3}+1}{x+1}=x^{2}-x+1, & \frac{x^{3}-1}{x-1}=x^{2}+x+1
\end{array}
$$

Also

$$
\begin{aligned}
& \frac{x^{5}+1}{x+1}=x^{4}-x^{3}+x^{2}-x+1, \\
& \frac{x^{6}-1}{x-1}=x^{5}+x^{4}+x^{3}+x^{2}+x+1 .
\end{aligned}
$$

EXAMPLES.-Xvi.

Without going through the process of Division write down the quotients in the following cases :
whic
This fore
I. When the divisor is $m+n$, and the dividends are respectively

$$
m^{2}-n^{2}, m^{3}+n^{3}, m^{5}+n^{5}, m^{6}-n^{6}, m^{9}+n^{9} .
$$

2. When the divisor is $m-n$, and the dividends are respectively

$$
m^{2}-n^{2}, m^{3}-n^{3}, m^{4}-n^{4}, m^{6}-n^{6}, m^{7}-n^{7} .
$$

3. When the divisor is $a+1$, and the dividends are respectively

$$
a^{2}-1, a^{3}+1, a^{5}+1, a^{7}+1, a^{8}-1 .
$$

4. When the divisor is $y-1$, and the dividends are respectively

$$
y^{2}-1, y^{3}-1, y^{5}-1, y^{7}-1, y^{9}-1 .
$$

V. ON THE RESOLUTION OF EXPRESSIONS INTO FACTORS.

Thus

$$
\begin{gathered}
a^{2}+a b=a(a+b), \\
2 a^{3}+4 a^{2}+8 a=2 a\left(a^{2}+2 a+4\right), \\
9 x^{3} y-18 x^{2} y^{2}+54 x y=9 x y\left(x^{2}-2 x y+6\right) .
\end{gathered}
$$

EXAMPLES.-xvii.

Resolve into factors:
I. $5 x^{2}-15 x$.
2. $3 x^{3}+18 x^{2}-6 x$.
3. $49 y^{2}-14 y+7$.
4. $4 x^{3} y-12 x^{2} y^{2}+8 x y^{3}$.
5. $x^{4}-a x^{3}+b x^{2}+c x$.
6. $3 x^{5} y^{3}-21 x^{4} y^{2}+27 x^{3} y^{4}$.
7. $54 a^{3} b^{6}+108 a^{66} b^{3}-243 a^{8} b^{7}$.
8. $45 x^{7} y^{10}-90 x^{5} y^{7}-360 x^{4} y^{8}$.
89. Case I I. The next case in point of simplicity is that in which four terms can be so arranged, that the first two have a common factor and the last two have a common factor.

Thus

Again

$$
\begin{aligned}
x^{2}+a x+b x+a b & =\left(x^{2}+a x\right)+(b x+a b) \\
& =x(x+a)+b(x+a) \\
& =(x+b)(x+a) .
\end{aligned}
$$

$$
\begin{aligned}
a c-a l-b c+b d & =(a c-a d)-(b c-b d) \\
& =a(c-d)-b(c-d) \\
& =(a-b)(c-d) .
\end{aligned}
$$

EXAMPLES:-XViii.

Resolve into factors:
I. $x^{2}-a x-b x+a b$.
2. $a b+a x-b x-x^{2}$.
3. $b c+b y-c y-y^{2}$.
4. $b m+m n+a b+a n$.
5. $a b x^{2}-a x y+b x y-y^{2}$.
6. $a b x-a b y+c d x-c d y$.
7. $\quad c d x^{2}+d m x y-c n x y-m n y^{2}$.
8. $a b c x-b^{2} d x-a c d y+b d^{2} y$.
90. Before reading the Articles that follow the student is advised to turn back to Art. 56, and to observe the manner in which the operation of multiplying a binomial by a binomial produces a trinomial in the Examples there given. He will then be prepared to expect that in certain cases a trinomial cun be resolved into two binomial factors, examples of which we shall now give.
91. Case III. To find the factors of

$$
x^{2}+7 x+12
$$

Our object is to find two numbers whose product is 12, and whose sum is 7 .
These will evidently be 4 and 3 ,

$$
\therefore x^{2}+7 x+12=(x+4)(x+3) .
$$

Again, to find the factors of

$$
x^{2}+5 b x+6 b^{2}
$$

Our object is to find two numbers whose product is $6 b^{2}$, and whose sum is $5 b$.
These will cleariy be $3 b$ and $2 b$,

$$
\therefore x^{2}+5 b x+6 b^{2}=(x+3 b)(x+2 b) .
$$

ity is that two have tor.
$1-y^{2}$.
$-c d y$. $n x y-m n y^{2}$ $c d y+b d^{2} y$.
e student is e manner in y a binomial
n. He will a trinomial of which we
et is 12 , n is 7.
ct is $6 b^{2}$, m is $5 b$.

EXAMPLES.-Xix.

Resolve into factors:
I. $x^{2}+11 x+30$.
9. $y^{2}+19 n y+48 n^{2}$.
2. $x^{2}+17 x+60$.
10. $z^{2}+29 p z+100 p$.
3. $y^{2}+13 y+12$.
II. $x^{4}+5 x^{2}+6$.
4. $y^{2}+21 y+110$.
12. $x^{6}+4 x^{3}+3$.
5. $m^{2}+35 m+300$.
13. $\quad x^{2} y^{2}+18 x y+32$.
6. $m^{2}+23 m+102$.
14. $x^{8} y^{4}+7 x^{4} y^{2}+12$.
7. $a^{2}+9 a b+8 b^{2}$.
15. $\quad m^{10}+10 m^{5}+16$.
8. $x^{2}+13 m x+36 m^{2}$.
16. $i^{2}+27 n q+140 q^{2}$.
93. Case IV. To find the factors of

$$
x^{2}-9 x+20
$$

Our object is to find two nogative terms whose product is 20 , and whose sum is $\mathbf{- 9}$. These will clearly be -5 and -4 ,

$$
\therefore x^{2}-9 x+20=(x-5)(x-4)
$$

EXAMPLES.-XX.

Resolve into factors:
I. $x^{2}-7 x+10$.
2. $x^{2}-29 x+190$.
3. $y^{2}-23 y+132$.
4. $y^{2}-30 y+200$.
5. $n^{2}-43 n+460$.
6. $n^{2}-57 n+56$.
7. $x^{6}-7 x^{3}+12$.
8. $a^{2} b^{2}-27 a b+26$.
9. $\quad b^{4} c^{6}-11 b^{2} c^{3}+30$.
10. $x^{2} y^{2} z^{2}-13 x y z+22$.
92. Case V. To find the factors of

$$
x^{2}+5 x-84
$$

Our object is to find two terms, one positive and one negative, whose product is -84 , and whose sum is 5 .

These are clearly 12 and -7 ,

$$
\therefore x^{2}+5 x-84=(x+12)(x-7)
$$

EXAMPLES.-XXi.

Resolve into factors:
I. $x^{2}+7 x-60$.
2. $x^{2}+12 x-45$.
3. $a^{2}+11 a-12$.
4. $a^{2}+13 a-140$.
5. $b^{2}+13 b-300$.
6. $b^{2}+25 b-150$.
7. $x^{8}+3 x^{4}-4$.
8. $x^{2} y^{2}+3 x y-154$.
9. $m^{10}+15 m^{5}-100$.
I. $n^{2}+17 n-390$.
94. Case VI. To find the factors of

$$
x^{2}-3 x-28
$$

Our object is to find two terms, one positive and one negative, whose product is -28 , and whose sum is -3 .

These will clearly be 4 and -7 ,

$$
\therefore x^{2}-3 x-28=(x+4)(x-7) \text {. }
$$

EXAMPLES.—XXii.

Resolve into factors:
I. $x^{2}-5 x-66$.
2. $x^{2}-7 x-18$.
3. $m^{2}-9 m-36$.
4. $n^{2}-11 n-60$.
5. $y^{2}-13 y-14$.
6. $z^{2}-15 z-100$.
7. $x^{10}-9 x^{5}-10$.
8. $c^{2} d^{2}-24 c d-180$.
9. $m^{6} n^{2}-m^{3} n-2$.
10. $p^{8} q^{4}-5 p^{4} q^{2}-84$.
95. The results of the four preceding articles may be thus stated in general terms : a trincmial of one of the forms

$$
x^{2}+a x+b, x^{2}-a x+b, x^{2}+a x-b, x^{2}-a x-b,
$$

may be resolved into two simple factors, when b can be resolved into two factors, such that their sum, in the first two forms, or their difference, in the last two forms, is equal to a.
96. We shall now give a set of Miscellaneous Examples on the resolution into factors of expressions which come under one or other of the cabes already explained.

ExAMPLES.-XXiii.

Resolve into factors:
I. $x^{2} \cdot 15 x+36$.
8. $x^{2}+m x+n x+m n$.
2. $x^{2}+4 x-45$.
9. $y^{6}-4 y^{3}+3$.
3. $a^{2} b^{2}-16 a b-36$.
10. $x^{2} y-a b x-c c^{2} y+a b c$.
4. $x^{8}-3 m x^{4}-10 m t^{2}$.
II. $x^{2}+(a-b) x-c i b$.
5. $y^{6}+y^{3}-90$.
12. $x^{2}-(c-d) x-c d$.
6. $x^{4}-x^{2}-110$.
13. $a b^{2}-b d+c d-a b c$.
7. $x^{3}+3 a x^{2}+4 a^{2} x$.
14. $4 x^{2}-28 x y+48 y^{3}$.
97. We have said, Art. 45, that when a number is minltiplied by itself the result is called the Square of the number, and that the figure 2 placed over a number on the right hand indicates that the number is multiplied by itself.

Thus $\quad a^{2}$ is called the square of a, $(x-y)^{2}$ is called the square of $x-y$.

The Square Root of a given number is that number whose square is equal to the given number.

Thus the square root of 49 is 7 , because the square of 7 is 49 .

So also the square root of a^{2} is a, because the square of a is a^{2} : and the square root of $(x-y)^{2}$ is $x-y$, becanse the square of $x-y$ is $(x-y)^{2}$.

The symbol $\sqrt{ }$ placed before a number denotes that the
square root of that number is to be taker : thus $\sqrt{25}$ is read " the square root of 25 ."

Note. The square root of a positive quantit=- may be either positive or negative. For
since a multiplied by a gives as a result a^{2}, and $-a$ multiplied by $-a$ gives as a result a^{2}, it follows, from our definition of a Square Root, that either a or - a may be regarded as the square root of a^{2}.

But throughout this chapter we shall take only the positive value of the square root.
98. We may now take the case of Trinomials which are perfect squares, which are really included in the cases discussed in Arts. 91, 92, but which, from the importance they assume in a later part of our subject, demand a separate consideraíion.
99. Case VII. To find the factors of

$$
x^{2}+12 x+36
$$

Seeking for the factors according to the hints given in Art. 91 , we find them to be $x+6$ and $x+6$.

That is $x^{2}+12 x+36=(x+6)^{2}$.

EXAMPLES:-XXIV.

Resolve into factors:
I. $x^{2}+18 x+81$.
2. $x^{2}+26 x+169$.
3. $x^{2}+34 x+289$.
4. $y^{2}+2 y+1$.
5. $z^{2}+200 z+10000$.
6. $x^{4}+14 x^{2}+49$.
7. $x^{2}+10 x y+25 y^{2}$.
8. $m^{4}+16 m^{2} n^{2}+64 n^{4}$.
9. $x^{6}+24 x^{3}+144$.
10. $x^{2} y^{2}+162 x y+6561$.
100. Case VIII. To find the factors of $x^{2}-12 x+36$.

Seeking for the factors according to the hints given in Art. 92 , we find them to be $x-6$ and $x-6$.

That is, $x^{2}-12 x+36=(x-6)^{2}$.

EXAMPLES.-XXV.

Resolve into factors :
I. $x^{2}-8 x+16$.
2. $x^{2}-28 x+196$.
3. $x^{2}-36 x+324$.
4. $y^{2}-40 y+400$.
5. $z^{2}-100 z+2500$.
6. $x^{4}-22 x^{2}+121$.
7. $x^{2}-30 x y+225 y^{2}$.
8. $m^{4}-32 m^{2} n^{2}+256 n^{4}$.
9. $x^{0}-38 x^{3}+361$.
101. Case IX. We now proceed to the most important case of Resolution into Factors, namely, that in which the expression to be resolved can be put in the form of two squares with a negative sign between them.

Since

$$
m^{2}-n^{2}=(m+n)(m-n)
$$

we can express the difference between the squares of two quantities by the product of two factors, determined by the following method:

Take the square root of the first quantity, and the square root of the second quantity.
The sum of the results will form the first factor.
The difference of the results will form the second factor.
For example, let $a^{2}-b^{2}$ be the given expression.
The square root of a^{2} is a.
The square root of b^{2} is b.
The sum of the results is $a+b$.
The difference of the results is $a-b$.
The factors will therefore be $a+b$ and $a-b$, that is,

$$
a^{2}-b^{2}=(a+b)(a-b)
$$

102. The same method holds good with respect to compound quantities.

Thus, let $a^{2}-(b-c)^{2}$ be the given expression.
The square root of the first term is a.
The square root of the second term is $b-c$.
The sum of the results is $a+b-c$.
The difference of the results is $a-b+c$.

$$
\therefore a^{2}-(b-c)^{2}=(a+b-c)(a-b+c)
$$

Again, let $(a-b)^{2}-(c-d)^{2}$ be the given expression.
The square root of the first term is $a-b$.
The square root of the second term is $c-d$.
The sum of the results is $a--b+c-d$.
The difference of the results is $a-b-c+d$.
$\therefore(a-b)^{2}-(c-d)^{2}=(a-b+c-d)(a-b-c+d)$.
[s.A.]
103. The terms of an expression may often be arranged so as to form two squares with the negative sign between them, and thex ilue aver essiun can be resolved into factors.

$$
\text { Thus } \quad \begin{aligned}
a^{2}+b^{2}- & c^{2}-d^{2}+2 a b+2 c d \\
& =u^{2}+2 c b+b^{2}-c^{2}+2 c d-d^{2} \\
& =\left(a^{2}+2 a b+b^{2}\right)-\left(c^{2}-2 c d+d^{2}\right) \\
& =(a+b)^{2}-(c-d)^{2} \\
& =(a+b+c-d)(a+b-c+d) .
\end{aligned}
$$

EXAMPLES.-XXVi.

Resolve into two or more factors :
I. $x^{2}-y^{2}$.
2. $x^{2}-9$.
3. $4 x^{2}-25$.
4. $a^{4}-x^{4}$.
5. $x^{2}-1$.
6. $x^{6}-1$.
7. $x^{8}-1$.
8. $m^{4}-16 .^{x}$
9. $3\left(9 y^{2}-49 z^{2}\right.$.
10. $81 x^{2} y^{2}-121 a^{2} b^{2} \cdot X_{I}$
II. $(c t-b)^{2}-c^{2}$.
12. $x^{2}-(m-n)^{2}$.
13. $(a+b)^{2}-(c+d)^{2}$.
24. $2 x y-x^{2}--y^{2}+1$.
14. $(x+y)^{2}-(x-y)^{2}$.
15. $x^{2}-2 x y+y^{2}-z^{2}$.
16. $(a-l)^{2}-(m+n)^{2}$.
17. $a^{2}-2 a c+c^{2}-b^{2}-2 b d-d^{2}$.
18. $2 b c-b^{2}-c^{2}+a^{2}$.
19. $2 x y+x^{2}+y^{2}-z^{2}$.
20. $2 m n-m^{2}-n^{2}+a^{2}+b^{2}-2 a b$.
31. $3 a^{3} x^{3}-27 a x$.

2I. $(a x+b y)^{2}-1$.
32. $a^{4} b^{6}-c^{8}$.
22. $(a x+b y)^{2}-(a x-b y)^{2}$.
23. $1-a^{2}-b^{2}+2 a b$.
33. $(5 x-2)^{2}-(x-4)^{2}$.
34. $(7 x+4 y)^{2}-(2 x+3 y)^{2}$.
35. $(753)^{2}-(247)^{2}$.
104. Case X. Since

$$
\frac{x^{3}+a^{3}}{x+a}=x^{2}-a x+a^{2}, \quad \text { and } \frac{x^{3}-a^{3}}{x-a}=x^{2}+a x+a^{2} \quad \text { (Art. 83) }
$$

we know the following important facts:
anged tween
(1) The sum of the cubes of two numbers is divisible by the sum of the numbers:
(2) The difference between the cubes of two numbers is divisible by the difference between the numbers.

Hence we may resolve into factors expressions in the form of the sum or difference of the cubes of two numbers.
Thus

$$
\begin{aligned}
& x^{3}+27=x^{3}+3^{3}=(x+3)\left(x^{2}-3 x+9\right) \\
& y^{3}-64=y^{3}-4^{3}=(y-4)\left(y^{2}+4 y+16\right)
\end{aligned}
$$

EXAMPLES.-xXvii.

Express in factors the following expressions:
I. $a^{3}+b^{3}$.
2. $a^{3}-l^{3}$.
3. $a^{3}-8$.
4. $x^{3}+343$.
5. $b^{3}-125$.
6. $x^{3}+64 y{ }^{3}$.
7. $a^{3}-216$.
8. $8 x^{3}+27 y^{3}$.
9. $64 \iota^{3}-1000 b^{3}$.
1о. $729 x^{3}+512 y^{3}$.

Express in four factors each of the following expressions :
I I. $x^{6}-y^{6}$.
12. $x^{6}-1$.
13. $a^{6}-64$.
14. $729-y^{6}$.
105. Before we proceed to describe other processes in Algebra, we shall give a series of examples in illustration of the principles already laid down.

The student will find it of advantage to work every example in the following series, and to accustom himself to read and to explain with facility those examples, in which illustrations are given of what may be called the short-hand method of expressing Arithmetical calculations by the symbols of Algebra.

EXAMPLES.-XXViii.

I. Express the sum of a and b.
2. Interpret the expression $a-b+c$.
3. How do you express the double of x ?
4. By how much is a greater than 5 ?
5. If x he a whole number, what is the number next aloove it ?
6. Write five aumbers in order of magnitude, so that x thall be the third of the five.
7. If a be multiplied into zero, what is the result ?
8. If zero be divided by x, what is the result?
9. What is the sum of $a+a+a \ldots$ written d times ?
10. If the product be ac and the multiplier a, what is the multiplicand?
II. What number taken from x gives y as a remainder?
12. A is x years old, and B is y years old ; how old was A when B was born?
13. A man works every day on week-days for x weeks in the year, and during the remaining weeks in the year he does not work at all. During how many days does he rest ?
14. There are x boats in a race. Five are bumped. How many row over the course?
15. A merchant begins trading with a capital of x pounds. He gains a pounds each year. How much capital has he at the end of 5 years?
16. A and B sit down to play at cards. A has x shillings and $B y$ shillings at first. A wins 5 shillings. How much has each when they cease to play?
17. There are 5 brothers in a family. The age of the eldest is x years. Each brother is 2 years younger than the one next above him in age. How old is the youngest?
18. I travel x hours at the rate of y miles an hour. How many miles do I travel?
19. From a rod 12 inches long I cut off x inches, and then I cut off y inches of the remainder. How many inches are left?
20. If n men can dig a piece of ground in q hours, how many hours will one man take to dig it?
21. By how much does 25 exceed x ?
22. By how much does y exceed 25 ?
23. If a product las $2 m$ repeated 8 times as a factor, how do you express the product?
24. By how much does $a+2 b$ exceed $a-2 b$?
25. A girl is x years of age, how old was she 5 years since?
is the ler? was A
ecks in he cloes

How ounds. he at
26. A boy is y years of age, how old will he be 7 years hence?
27. Express the difference between the squares of two numbers.
28. Express the product arising from the multiplication of the sum of two numbers into the difference between the same numbers.
39. What value of x will make $8 x$ equai to 16 ?
30. What value of x will make $28 x$ equal to 56 ?

3I. What value of x will make $\frac{x}{7}$ equal to 4 ?
32. What value of x will make $x+2$ equal to 9 ?
33. What value of x will make $x-7$ equal to 16 ?
34. What value of x will make $x^{2}+9$ equal to 34 ?
35. What value of x will make $x^{2}-8$ equal to 92 ?

EXAMPLES. - XXIX.

Explain the operations symbolized in the following expressions :

1. $a+b$.
2. $a^{2}-b^{2}$.
3. $4 a^{2}+b^{3}$.
4. $4\left(a^{2}+b^{2}\right)$.
5. $a^{2}-2 b+3 c$.
6. $a+m \times b-c$.
?. $(a+m)(b-c)$.
7. $\sqrt{x^{3}}$.
8. $\sqrt{x^{2}+y^{2}}$.
9. $a+2(3-c)$.
II. $(a+2)(3-c)$.
10. $\frac{a^{2}+b^{2}}{4 a b}$.
11. $\frac{\sqrt{x^{2}-y^{2}}}{x-y}$.
12. $\frac{\sqrt{x^{2}+y^{2}}}{\sqrt{x+y}}$.

EXAMPLES.-XXX.

If a stands for $6, b$ for $5, x$ for 4 , and y for 3 , find the value

1. $a \cdot r x-b-y$.
2. $a+y-b-x$.
3. $3 a+4 y-b-2 x$.
4. $3(a+l)-2(x-y)$.
5. $(a+x)(b-y)$.
6. $2 a+3(a+y)$.
7. $(2 a+3)(x+y)$.
8. $2 u+3 x+y$.
9. $\frac{b^{2}+y}{a-x}$.
10. $a b x$.
I. $a b(x+y)$.
11. $a y(b+x)^{2}$.
12. $a b(x-y)^{2}$.
13. $\sqrt{5 b}$.
14. $\sqrt{y^{2}}$.
15. $(\sqrt{x})^{2}$.
16. $(\sqrt{x+})^{2}$.
17. $\sqrt{51} \bar{x}$.
18. $\sqrt{2 a x y}$.
19. $\frac{a^{2}+b^{2}+y}{x+y^{2}+3}$.
20. $3 a+(2 x-y)^{2}$.
21. $\{a-(b-y)\}\{a-(x-y)\}$. 24. $3(a+b-y)^{3}+4(a+x)^{4}$.
22. $(a-b-y)^{2}+(a-x+y)^{2}$. 25. $3(a-b)^{2}+\left(4 x-y^{2}\right)^{2}$.

EXAMPLES.-XXXi.

1. Find the value of

$$
3 a b c-a^{3}+b^{3}+c^{3}, \text { when } a=3, b=2, c=1
$$

2. Find the value of

$$
x^{3}+y^{3}-z^{3}+3 x y z, \text { when } x=3, y=2, z=5
$$

3. Subtract $a^{2}+c^{2}$ from $(a+c)^{2}$.
4. Subtract $(x-y)^{2}$ from $x^{2}+y^{2}$.
5. Find the coefficient of x in the expression

$$
(a+b)^{2} x-(a+b x)^{2}
$$

6. Find the continued product of

$$
2 x-m, 2 x+n ; x+2 m, x-2 n .
$$

7. Divide

$$
a c r^{3}+(b c+a d) r^{2}+(b d+a e) r+b e \text { by } a r+b
$$

and test your result by putting

$$
a=b=c=d=e=1, \text { and } r=10 .
$$

8. Obtain the product of the four faciors

$$
(a+b+c),(b+c-a),(c+a-b),(a+b-c)
$$

What does this become when c is zero; when $b+c=a$; when $a=b=c$?
9. Find the value of

$$
(a+b)(b+c)-(c+d)(d+a)-(a+c)(b-d)
$$

where b is equal to d.
10. Find the value of

$$
3 a+\left(2 b-c^{2}\right)+\left\{c^{2}-(2 \imath+3 b)\right\}+\{3 c-(2 a+3 b)\} \ddot{3},
$$

when $a=0, b=2, c=4$.
II. If $a=1, b=2, c=3, d=4$, shew that the numerical values are equal of
and of

$$
\{d-(c-b+a)\}\{(d+c)-(b+a)\}
$$

12. Bracket together the different powers of x in the following expressions:
(a) $a x^{2}+b x^{2}+c x+d x$.
(β) $a x^{3}-b x^{3}-c x^{2}-d x^{2}+2 x^{2}$.
(γ) $4 x^{3}-a x^{3}-3 x^{2}-b x^{2}-5 c-c x$.
($\delta)(a+x)^{2}-(b-x)^{2}$.
(є) $\left(m x^{2}+q x+1\right)^{2}-\left(n x^{2}+q x+1\right)^{2}$.
13. Multiply the three factors $x-a, x-b, x-c$ together, and arrange the product according to descending powers of x.
14. Find the continued product of $(x+a)(x+b)(x+c)$.
15. Find the cube of $a+b+c$; thence without further multiplication the cubes of $a+b-c ; b+c-a ; c+a-b$; and subtract the sum of these three cubes from the first.
16. Find the product of $(3 a+2 b)(3 a+2 c-3 b)$. and test the result by making $a=1, b:=c=3$.
17. Find the continued product of

$$
a-x, a+x, a^{2}+x^{2}, a^{4}+x^{4}, a^{8}+x^{8}
$$

18. Subtract $(b-a)(c-d)$ from $(a-b)(c-d)$.

What is the value of the result when $a=2 b$ and $d=2 c$?
19. Add together $(b+y)(a+x), x-y, a x-b y$, and $a(x+y)$.
20. What value of x will make the difference between $(x+1)(x+2)$ and $(x-1)(x-2)$ equal to 54 ?

2 1. Add together $a x-b y, x-y, x(x-y)$, and $(a-x)(b-y)$.
22. What value of x will make the difference between $(2 x+4)(3 x+4)$ and $(3 x-2)(2 x-8)$ equal to $96 ?$
23. Add together

$$
2 m x-3 n y, x+y, 4(m+n)(x-y), \text { and } m x+n y
$$

24. Prove that

$$
(x+y+z)^{2}+x^{2}+y^{2}+z^{2}=(x+y)^{2}+(y+z)^{2}+(x+z)^{2} .
$$

25. Find the product of $(2 a+3 b)(2 a+3 c-2 b)$, and test the result by making $a=1, b=4, c=2$.
26. If $a, b, c, d, c \ldots$ denote $9,7,5,3,1$, find the values of $\frac{a b-c l}{c d+e} ;(b c-a d)(b d-c e) ; \frac{b^{2}-c^{2}}{c+d} ;$ and $d^{c}-c^{d}$.
27. Find the value of

$$
3 a b c-a^{3}+b^{3}+c^{3} \text { when } a=0, b=2, c=1
$$

28. Find the value of

$$
3 a^{2}+\frac{2 a b^{2}}{c}-\frac{c^{3}}{b^{2}} \text { when } a=4, b=1, c=2
$$

29. Find the value of
$(a-b-c)^{2}+(b-a-c)^{2}+(c-a-b)^{2}$ when $a=1, b=2, c=3$.
30. Find the value of

$$
(a+b-c)^{2}+(a-b+c)^{2}+(b+c-a)^{2} \text { when } a=1, b=2, c=4
$$

31. Find the value of

$$
(a+b)^{2}+(b+c)^{2}+(c+a)^{2} \text { when } a=-1, b=2, c=-3 .
$$

32. Shew that if the sum of any two numbers divide the difference of their squares, the quotient is equal to the difference of the two numbers.
33. Shew that the product of the sum and difference of any two numbers is equal to the difference of their squares.
34. Shew that the square of the sum of any two consecutive integers is always greater by one than four times their product.
35. Shew that the square of the sum of any two consecutive even whole numbers is four times the square of the odd number between them.
36. If the number 2 be divided into any two parts, the difference of their squares will always be equal to twice the difference of the parts.
37. If the number 50 be divided into any two parts, the difference of their squares will always be equal to 50 times the difference of the parts.
38. If a number n be divided into any two parts, the difference of their squares will always be equal to n times the difference of the parts.
39. If two numbers differ by a unit, their product, together with the sum of their squares, is equal to the difference of the cubes of the numbers.
40. Shew that the sum of the cubes of any three consecutive whole numbers is divisible by three times the middle number.

VI. ON SIMPLE EQUATIONS.

106. An Equation is a statement that two expressions are equal.
107. An Identical Equation is a statement that two expressions are equal for all numerical values that can be given to the letters involved in them, provided that the same value be given to the same letter in every part of the equation.

Thus, $\quad(x+a)^{2}=x^{2}+2 a x+a^{2}$ is an Identical Equation.
108. An Equation of Condition is a statement that two expressions are equal for some particular numerical value or values that can be given to the letters involved.

Thus,

$$
x+1=6
$$

is an Equation of Condition, the only number which x can represent consistently with this equation being 5 .

It is of such equations that we have to treat.
109. The Root of an Equation is that number which, when put in the place of the unknown quantity, makes both sides of the equation identical.
110. The Solution of an Equation is the process of finding what number an unknown letter must stand for that the equation may be true : in other words, it is the method of funding the Root.

The letters that stand for unkrown numbers are usually x, y, z, but the student must observe that any letter may stand for an unknown number.
111. A Simple Equation is one which contains the first power only of an unknown quantity. This is also called in Equation of the First Degree.
112. The following Axioms form the giountwork of the
solution of all equations.

Ax. I. If equal quantities be added to equal quantities, the sums will be equal.

Thus, if

$$
\begin{gathered}
a=b, \\
a+c=b+c .
\end{gathered}
$$

Ax. II. If equal quantities be taken from equal quantities, the remainders will be equal.

Thus, if

$$
\begin{gathered}
x=y, \\
x-z=y-z .
\end{gathered}
$$

Ax. III. If equal quantities be multiplied bj equal quantities, the products will lee equal.

> Thus, if

$$
\begin{aligned}
a & =\bar{b}, \\
m a & =m b .
\end{aligned}
$$

Ax. IV. If equal quantities be divided iny equal quantities, the quotients will be equal.

Thus, if

$$
\begin{gathered}
x y=x z, \\
y=z .
\end{gathered}
$$

113. On Axioms I. and II. is founded a process of great utility in the solution of equations, called The Transposition of Terms from one side of the equation to the other, which may be thus stated:
"Any term of an equation may be transferred from one side of the equation to the other if its sign be clunged."

For let

$$
x-a=b .
$$

Then, by Ax. I., if we add a to both cides, the sides remain equal:
therefore
that is,

Again, let

$$
\begin{aligned}
x-a+c & =b+a, \\
x & =b+a . \\
x+c & =d .
\end{aligned}
$$

Then, by Ax. II., if we sultract ofroni surh side, the sides remain equal:

Divi
therefore
that is,

$$
\begin{aligned}
x+c-c & =d-c, \\
x & =d-l
\end{aligned}
$$

vork of the quantities, 1 quantities, equal quanl quantities,
114. We may change all the signs of each side of an equation without altering the equality.

Thus, if

$$
\begin{aligned}
& a-x=b-c, \\
& x-a=c-b .
\end{aligned}
$$

115. We may change the position of the two sides of the equation, leaving the signs unchanged.

Thus the equation $a-b=x-c$, may be written thus,

$$
x-c=a-b
$$

116. We may now proceed to our first rule for the solution of a Simple Eyitation.

Rule I. Transpose the known terms to the right hand side of the equation and the unknown terms to the other, and comhine all the terms on each side as far as possible.

Then divide both sides of the equation by the coefficient of the unknown quantity.

This rule we shall now illustrate by examples, in which x stands for the unknown quantity.

Ex. 1. To solve the equation,

$$
5 x-6=3 x+2
$$

Transposing the terms, we get

$$
5 x-3 x=2+6
$$

Combining like terms, we get

$$
2 x=8
$$

Dividing both sides of this equation by 2 , we get

$$
x=4
$$

and the value of x is determined.
Ex. 2. To solve the equation,

$$
7 x+4=25 x-32
$$

'Transposing the terms, we get

$$
7 x-25 x=-32-4
$$

Combining like terms, we get

$$
-18 x=-36
$$

Changing the signs on each side, we get

$$
18 x=36
$$

Dividing both sides by 18 , we got

$$
x=2,
$$

and the value of x is determined.

Ex. 3. To solve the equation,

$$
\begin{gathered}
2 x-3 x+120=4 x-6 x+132 . \\
2 x-3 x-4 x+6 x=132-12 v, \\
8 x-7 x=12, \\
x=12 .
\end{gathered}
$$

Ex, 4. To solve the equation,

$$
\begin{gathered}
3 x+5-8(13-x)=0, \\
3 x+5-104+8 x=0 \\
3 x+8 x=104-5, \\
11 x=99 \\
x=9 .
\end{gathered}
$$

Ex. 5. To solve the equation,

$$
\begin{gathered}
6 x-2(4-3 x)=7-3(17 \cdots x, \\
6 x-8+6 x=7-51+3 x, \\
6 x+6 x-3 x=7-51+8, \\
12 x-3 x=15-51, \\
9 x=-36, \\
x=-4 .
\end{gathered}
$$

that is,

EXAMPLES_XXXii.

I. $7 x+5=5 x+11$.
9. $26-8 x=80-14 x$.
2. $12 x+7=8 x+15$.
10. $133-3 x=x-83$.
3. $236 x+425=97 x+564$.
II. $13-3 x=5 x-3$.
4. $5 x-7=3 x+7$.
5. $12 x-9=8 x-1$.
12. $127+9 x=12 x+100$.
6. $124 x+19=112 x+43$.
13. $15-5 x=6-4 x$.
7. $18-2 x=27-5 x$.
14. $3 x-22=7 x+6$.
15. $8+4 x=12 x-16$.
8. $125-7 x=145-12 x$.
16. $5 x-(3 x-7)=4 x-(6 x-35)$.
17. $6 x-2(9-4 x)+3(5 x-7)=10 x-(4+16 x)+35$.
18. $9 x-3(5 x-6)+30=0$.
19. $12 x-5(9 x+3)+6(7-8 x)+783=0$.
20. $x-7(4 x-11)=14(x-5)-19(8-x)-6 ;$

2I. $(x+7)(x-3)=(x-5)(x-15)$.

```
22. (x-8)(x+12)=(x+1)(x-6).
23. }(x-2)(7-x)+(x-5)(x+3)-2(x-1)+12=0
24. }(2x-7)(x+5)=(9-2x)(4-x)+229
25. }(7-6x)(3-2x)=(4x-3)(3x-2)
26. 14-x-5 (i-3)(x+2)+(5-x)(4-5x)=45x-76.
27. }(x+5\mp@subsup{)}{}{2}-(4-x\mp@subsup{)}{}{2}=21x
28. }5(x-2\mp@subsup{)}{}{2}+7(x-3\mp@subsup{)}{}{2}=(3x-7)(4x-19)+42
29. }(3x-17\mp@subsup{)}{}{2}+(4x-25\mp@subsup{)}{}{2}-(5x-29\mp@subsup{)}{}{2}=1
30. }(x+5)(x-9)+(x+10)(x-8)=(2x+3)(x-7)-113
```


VII. PROBLEMS LEADING TO SIMPLE EQUATIONS.

117. When we have a question to resolve by means of Algebra, we represent the number sought by an unknown symbol, and then consider in what manner the conditions of the question enable us to assert that two expressions are equal. Thus we obtain an equation, and by resolving it we determine the value of the number sought.

The whole difficulty connected with the solution of Algebraical Problems lies in the determination from the conditions of the question of two different expressions having the same numerical value.

To explain this let us take the following Problem:
Find a number such that if 15 be added to it, twice the sum will be equal to 44 .

Let x represent the number.
Then $x+15$ will represent the number increased by 15 , anl $2(x+15)$ will represent twice the sum.

But 44 will represent twice the sum,
therefore

$$
2(x+15)=44
$$

Hence
that is,
or,

$$
\begin{gathered}
2 x+30=44, \\
2 x=14, \\
x=7,
\end{gathered}
$$

118. We shall now give a series of Easy Problems, in which the conditions by which an equality between two expressions can be asserted may be readily seen. The student should be thoroughly familiar with the Examples in set xxviii, the use of which he will now find.

We shall insert some notes to explain the method of representing quantities by algebraic symbols in cases where some difficulty may arise.

EXAMPLES.-XXXiii.

1. To the double of a certain number I add 14 and obtain as a result 154 . What is the number?
2. To four times a certain number I add 16 and obtain as a result 188. What is the number?
3. By adding 46 to a certain number I obtain as a result a number three times as large as the original number. Find the original number.
4. One number is three times as large as another. If I take the smaller from 16 and the greater from 30, the remainders are equal. What are the numbers?
5. Divide the number 92 into four parts, such that the first is greater than the second by 10 , greater than the third by 18 , and greater than the fourth by 24.
6. The sum of two numbers is 20 , and if three times the smaller number be added to five times the greater, the sum is 84. What are the numbers?
7. The joint ages of a father and his son are 80 years. If the age of the son were doubled he would be 10 years older than his father. What is the age of each?
8. A man has six sons, each 4 years older than the one next to him. The eldest is three times as old as the youngest. What is the age of each?
9. Add $£ 24$ to a certain sum, and the amount will be as much above $£ 80$ as the sum is below $£ 80$. What is the sum?
10. Thirty yards of cloth and forty yards of silk together cost $£ 66$, and the silk is twice as valuable as the cloth. Find the cost of a yard of each.
roblemı, in two expresdent should viii, the use
od of reprewhere some

4 and obtain
nd obtain as
as a result a r. Find the

10ther. If I , the remain-
that the first third by 18 ,
ee times the r, the sum is

80 years. If 0 years older
han the one he youngest.
at will be as is the sum?
silk together cloth. Find
II. Find the number, the double of which being added to 24 the result is as much above 80 as the number itself is below 100.
12. The sum of $£ 500$ is divided between A, B, C and D. A and B have together $£ 280, A$ and $C £ 260, A$ and $D £ 220$. How much does each receive?
13. In a company of 266 persons, composed of men, women, and children, there are twice as many men as there are women, and twice as many women as there are children. How many are there of each?
14. Divide $£ 1520$ between A, B and C, so that A has $£ 100$ less than B, and $B £ 270$ less than C.

I5. Find two numbers, differing by 8 , such that four times the less may exceed twice the greater by 10.
16. A and B began to play with equal sums. A won $£ 5$, and then three times A 's money was equal to eleven times B 's money. What had each at first?
17. A is 58 years older than B, and A 's age is as much above 60 as B 's age is below 50 . Find the age of each.
18. A is 34 years older than B, and A is as much above 50 as B is below 40. Find the age of each.
19. A man leaves his property, amounting to.$£ 7500$, to be divided between his wife, his two sons and his three daughters, as follows : a son is to have twice as much as a daughter, and the wife $£ 500$ more than all the five children together. How much did each get?
20. A vessel containing some water was filled up by pouring in 42 gallons, and there was then in the vessel 7 times as much as at first. How many gallons did the vessel hold?
21. Three persons, A, B, C, nave $£ 76 . B$ has $£ 10$ more than A, and C has as much as A and B together. How much has each?
22. What two numbers are those whose difference is 14 , and their sum 48 ?
23. A and B play at cards. A has $£ 72$ and B has $£ 52$ when they begin. When they cease playing, A has three times as much as B. How much did A win?

Note I. If we have to express algebraically two parts into which a given nuraber, suppose 50 , is divided, and we represent one of the parts by x, the other will be represented by $50-x$.

Ex. Divide 50 into two such parts that the double of one part may be three times as great as the other part.

Let x represent one of the parts.
Then $50-x$ will represent the other part.
Now the double of the first part will be represented by $2 x$, and three times the second part will be represented by $3(50-x)$.

Hence
or,
or,

$$
\begin{aligned}
2 x & =3(50-x), \\
2 x & =150-3 x, \\
5 x & =150 ; \\
\therefore x & =30 .
\end{aligned}
$$

Hence the parts are 30 and 20.
24. Divide 84 into two such parts that three times one part may be equal to four times the other.
25. Divide 90 into two such parts that four times one part may be equal to five times the other.
26. Divide 60 into two such parts that one pari is greater than the other by 24 .
27. Divide 84 into two such parts that one part is less than the other by 36 .
28. Divide 20 into two such parts that if three times one part be added to five times the other part the sum may be 84 .

Note II. When we have to compare the ages of two persons at one time and also some years after or before, we must be careful to remember that both will be so many years older or younger.
Thus if x be the age of A at the present time, and $2 x$ be the age of B at the present time,

The age of $A 5$ years hence will be $x+5$, and the age of $B 5$ years hence will be $2 x+5$.

Ex.
only be t
B at the
Let $x \mathbf{r}$
Then 5
Now x and 5

Hence

Hence
29. A times as o
30. A years will

3I. A times as ol
32. A
be only tw
33. A joint ages the joint a uncle?

Note II after assun quantities, in the same the sums in

Ex. A pences, and is 78 . Hol [s.A.]
parts into d we repreesented by
uble of one
resented by resented by
imes one part
mes one part
ri is greater
t is less than
ree times one 1 may be 84 .
s of two perore, we must years older

Ex. A is 5 times as old as B, and 5 years hence A will only be three times as old as B. What are the ages of A and B at the present time?

Let x represent the age of B.
Then $5 x$ will represent the age of A.
Now $x+5$ will represent B 's age 5 years hence, and $\quad 5 x+5$ will represent A 's age 5 years hence.

Hence

$$
\begin{aligned}
5 x+5 & =3(x+5), \\
5 x+5 & =3 x+15, \\
2 x & =10 ; \\
\therefore x & =5 .
\end{aligned}
$$

Hence A is 25 and B is 5 years old.
29. A is twice as old as B, and 22 years ago he was three times as old as B. What is A 's age ?
30. A father is 30 ; his son is 6 years old. In how many years will the age of the father be just twice that of the son?

3I. A is twice as old as B, and 20 years since he was three times as old. What is B 's age ?
32. A is three times as old as B, and 19 years hence he will be only twice as old as B. What is the age of each?
33. A man has three nephews. His age is 50 , and the joint ages of the nephews are 42 . How long will it be before the joint ages of the nephews will be equal to the age of the uncle?

Note III. In problems involving weights and measures, after assuming a symbol to represent one of the unknown quantities, we must be careful to express the other quantities in the same terms. Thus, if x represent a number of pence, all the sums involved in the problem must be reducei to pence.

Ex. A sum of money consists of fourpenny pieces and sixpences, and it amounts to $£ 1.16 s .8 d$. The number of coins is 78. How many are there of each sort?
[s.A.]
E

Let x be the number of fourpenny pieces.
Then $4 x$ is their value in pence.
Also $78-x$ is the number of sixpences.
And $6(78-x)$ is their value in pence.
Also $£ 1$. 16s. 8d. is equivalent to 440 pencf.
Hence

$$
\begin{aligned}
& 4 x+6(78-x)=440, \\
& r 4 \\
& r
\end{aligned}+468-6 x=440, ~ \$
$$

from which x a \quad : $x=14$.
Hence there is fourpenny pieces, and 64 ences.
34. A bill of $£ 100$ was paid with guineas and half-crowns, and 48 more half-crowns than guineas were used. How many of each were paid?
35. A person paid a bill of $£ 3$. 148 . with shillings and half-crowns, and gave 41 pieces of money altogether. How many of each were paid?
36. A man has a sum of money amounting to $£ 11.13 s .4 d$. , consisting only of shillings and fourpenny pieces. He has in all 300 pieces of money. How many has he of each sort?
37. A bill of $£ 50$ is paid with sovereigns and moidores of 27 shillings each, and 3 more sovereigns than moidores are given. How many of each are used?
38. A sum of money amounting to $£ 42$. 8s. is made up of shillings and half-crowns, and there are six times as many half-crowns as there are shillings. How many are there of each sort?
39. I have $£ 5.11 \mathrm{~s}$. 3 d. in sovereigns, shillings and pence. I have twice as many shillings and three times as many pence as I have sovereigns. How many have I of each sort?

Note. named b Common be given
122. thus, н.c.
123.
readily
divide 12
Now,

VIII. ON THE METHOD OF FINDING THE HIGHEST COMMON FACTOR.

119. An expression is said to be a Factor of another expression when the latter is divisible by the former.

Thus $3 a$ is a factor of $12 a$, $5 x y$ of $15 x^{2} y^{2}$.
120. An expression is said to be a Common Factor of two or more other expressions, when each of the latter is divisir le by the former.

Thus $3 a$ is a common factor of $12 a$ and $15 a$, $3 x y \ldots \ldots \ldots \ldots \ldots \ldots$ of $15 x^{2} y^{2}$ and $21 x^{3} y^{3}$,
$4 z \ldots \ldots \ldots \ldots \ldots \ldots$ of $8 z, 12 z^{2}$ and $16 z^{3}$.
121. The Highest Common Factor of two or more expressions is the expression of highest dimensions by which each of the former is divisible.

Thus $6 a^{2}$ is the Highest Common Factor of $12 a^{2}$ and $18 a^{3}$,
$5 x^{2} y$ \qquad of $10 x^{3} y, 15 x^{2} y^{2}$ and $25 x^{4} y^{3}$.
Note. That which we call the Highest Common Factor is named by others the Greatest Common Measure or the Highest Common Divisor. Our reasons for rejecting these names will be given at the end of the chapter.
122. The words Highest Common Factor are abbreviated thus, H.C.F.
123. To take a simple example in Arithmetic, it will readily be admitted that the highest number which will divide 12,18 , and 30 is 6 .

Now,

$$
\begin{aligned}
& 12=2 \times 3 \times 2 \\
& 18=2 \times 3 \times 3 \\
& 30=2 \times 3 \times 5
\end{aligned}
$$

Having thus reduced the numbers to their simplest factors, it appears that we may determine the Highest Common Factor in the following way.

Set down the factors of one of the numbers in any order.
Place beneath them the factors of the second number, in such order that factors like any of those of the first number shall stand under those factors.

Do the same for the third number.
Then the number of vertical columns in which the numbers are alike will be the number of factors in the H.c.F., and if we multiply the figures at the head of those columns together the result will be the H.c.F. required.

Thus in the example given above two vertical columns are alike, and therefore there are two factors in the H.c.F.

And the numbers 2 and 3 which stand at the heads of those columns being multiplied together will give the H.c.f. of 12,18 , and 30 .
124. EX. 1. To find the H.C.F. of $a^{3} b^{2} x$ and $a^{2} b^{3} x^{2}$.

$$
\begin{aligned}
a^{3} b^{2} x & =a a a \cdot b b \cdot x \\
a^{2} b^{3} x^{2} & =a a^{2} \cdot b b b \cdot x x ; \\
\therefore \text { H.C.F. } & =a a b b x \\
& =a^{2} b^{2} x .
\end{aligned}
$$

Ex. 2. To find the H.c.F. of $34 a^{2} b^{6} c^{4}$ and $51 a^{3} b^{4} c^{2}$. $34 a^{2} b^{6} c^{4}=2 \times 17 \times a a \quad . b b b b b b . c c c c$, $51 a^{3} b^{4} c^{2}=3 \times 17 \times a a a . b b b b \quad . c c$; \therefore H.C.F. $=17 a a b b b b c c$ $=17 a^{2} b^{4} c^{2}$.
EXAMPLES،-XXXiv.

Find the Highest Common Factor of

1. $a^{4} b$ and $a^{2} b^{3}$.
2. $x^{3} y^{2} z$ and $x^{2} y^{2} z^{2}$.
3. $14 x^{2} y^{2}$ and $24 x^{3} y$.
4. $45 m^{2} n^{2} p$ and $60 m^{3} n p^{2}$.
uplest factors, mmon Factor any order. number, in number shall
the numbers н.c.F., and if mns together
columns are t.C.F.
the heads of ve the h.c.f.
$a^{2} b^{3} x^{2}$.
$3^{3} b^{4} c^{2}$.
5. $18 a b^{2} c^{2} d$ and $36 a^{2} b c d^{2}$.
6. $a^{3} b^{2}, a^{2} b^{3}$ and $a^{4} b^{4}$.
7. $4 a b, 10 a c$ and $30 b c$.
8. $\left(17 p q^{2}, 34 p^{2} q\right.$ and $51 p^{3} q^{3}$.
9. $8 x^{2} y^{3} z^{4}, 12 x^{3} y^{2} z^{3}$ and $20 x^{4} y^{3} z^{2}$.
10. $30 x^{4} y^{5}, 90 x^{2} y^{3}$ and $120 x^{3} y^{4}$.
11. The student musi be urged to commit to memory the following Table of forms, which can or cannot be resolved into factors. Where a blaniz occurs after the sign $=$ it signifies that the form on the left hand cannot be resolved into simpler factors.

$$
\begin{array}{ll}
x^{2}-y^{2}=(x+y)(x-y) & x^{2}-1=(x+1)(x-1) \\
x^{2}+y^{2}= & x^{2}+1= \\
x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right) & x^{3}-1=(x-1)\left(x^{2}+x+1\right) \\
x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right) & x^{3}+1==(x+1)\left(x^{2}-x+1\right) \\
x^{4}-y^{4}=\left(x^{2}+y^{2}\right)\left(x^{2}-y^{2}\right) & x^{4}-1=\left(x^{2}+1\right)\left(x^{2}-1\right) \\
x^{4}+y^{4}= & x^{4}+1= \\
x^{2}+2 x y+y^{2}=(x+y)^{2} & x^{2}+2 x+1=(x+1)^{2} \\
x^{2}-2 x y+y^{2}=(x-y)^{2} & x^{2}-2 x+1=(x-1)^{2} \\
x^{3}+3 x^{2} y+3 x y^{2}+y^{3}=(x+y)^{3} & x^{3}+3 x^{2}+3 x+1=(x+1)^{3} \\
x^{3}-3 x^{2} y+3 x y^{2}-y^{3}=(x-y)^{3} & x^{3}-3 x^{2}+3 x-1=(x-1)^{3}
\end{array}
$$

The left-hand side of the table gives the general forms, the right-hand side the particular cases in which $y=1$.
126. Ex. To find the H.c.F. of $x^{2}-1, x^{2}-2 x+1$, and $x^{2}+2 x-3$.

$$
\begin{aligned}
x^{2}-1 & =(x-1)(x+1), \\
x^{2}-2 x+1 & =(x-1)(x-1), \\
x^{2}+2 x-3 & =(x-1)(x+3), \\
\therefore \text { H.C.F. } & =x-1
\end{aligned}
$$

EXAMPLES.-XXXV.

1. $a^{2}-b^{2}$ and $a^{3}-b^{3}$. 4. $a^{3}+x^{3}$ and $(a+x)^{3}$.
2. $a^{2}-b^{2}$ and $a^{4}-b^{4}$.
3. $9 x^{2}-1$ and $(3 x+1)^{2}$.
4. $a^{2}-x^{2}$ and $(a-x)^{2}$.
5. $1-25 a^{2}$ and $(1-5 a)^{2}$.
6. $x^{2}-y^{2},(x+y)^{2}$ and $x^{2}+3 x y+2 y^{2}$.
7. $x^{2}-y^{2}, x^{3}-y^{3}$ and $x^{2}-7 x y+6 y^{2}$.
8. $x^{2}-1, x^{3}-1$ and $x^{2}+x-2$.
9. $1-a^{2}, 1+a^{3}$ and $a^{2}+5 a+4$.
10. In large numbers the factors cannot often be determined by inspection, and if we have to find the h.c.f. of two such numbers we have recourse to the following Arithmetical Rule :
"Divide the greater of the two numbers by the less, and the divisor by the remainder, repeating the process until no remainder is left : the last divisor is the h.C.F. required."

Thus, to find the h.c.f. of 689 and 1573.

$$
\text { 689) } 1573(2
$$

1378
195) $689(3$

$$
\frac{585}{104)} 195(1
$$

104
91) $104(1$

91
13) 91 (7 91
$\therefore 13$ is the $\mathrm{H} . \mathrm{C} . \mathrm{F}$. of 689 and 1573.

EXAMPLES.-XXXVi.

Find the н.C.F. of
I. 6906 and 10359.
2. $\quad 1908$ and 2736.
3. 49608 and 169416.
4. 126025 and 40115 .
5. 1581227 and 16758766.
6. 35175 and 236845 .
128. The Arithmetical Rule is founded on the following operation in Algebra, which is called the Proof of the Rule for finding the Highest Common Factor of two expressions.

Let a and b be two expressions, arranged according to descending powers of some common letter, of which a is not of lower dimensions than b.

Let b divide a with p as quotient and remainder c,
c b...... q................................. d,
d......... c r with no remainder.
be deterF. of two thmetical s, and the til no re-
and

$$
\begin{aligned}
a & =p b+c \\
& =p(q c+d)+c \\
& =p q c+p d+c \\
& =p q r d+p d+r d \\
& =(p q r+p+r) d, \text { and } \therefore d \text { is a factor of } a_{0}
\end{aligned}
$$

And (II.) to shew that any common factor of a and b is Ω factor of d.

Let δ be any common factor of a and b, such that

$$
a=m \delta \text { and } b=n \delta
$$

Then we can shew that δ is a factor of d.
For

$$
\begin{aligned}
d & =b-q c \\
& =b-q(a-p b) \\
& =b-q a+p q b \\
& =n \delta-q m \delta+p q n \delta \\
& =(n-q m+p q n) \delta, \text { and } \therefore \delta \text { is a factor of } d .
\end{aligned}
$$

Now no expression higher than d can be a factor of d;
$\therefore d$ is the Highest Common Factor of a and b,
129. Ex. To find the म.c.F. of $x^{2}+2 x+1$ and

$$
x^{3}+2 x^{2}+2 x+1 .
$$

$$
\begin{aligned}
& \left.x^{2}+2 x+1\right) x^{3}+2 x^{2}+2 x+1(x \\
& \begin{array}{c}
\left.\frac{x^{3}+2 x^{2}+x}{x+1}\right) \\
x^{2}+2 x+1(x+1 \\
\frac{x^{2}+x}{x+1} \\
x+1
\end{array}
\end{aligned}
$$

Hence $i+1$ being the last divisor is the H.C.F. required.
130. In the algebraical process four devices are frequently useful. These we shall now state, and exemplify each in the next Article.
I. If the sign of the first term of a remainder be negative, we may change the signs of all the terms.
II. If a remicinder contain a factor which is clearly not a common facto of the given expressions it may be removed.
III. We may multiply or divide either of the given expressions by any number which does not introduce or remove a common factor.
IV. If the given expressions have a common factor which can be seen by inspection, we may remove it from both, and find the Highest Common Factor of the parts which remain. If we multiply this result by the ejected factor, we shall obtain the Highest Common Factor of the given expressions.
131. EX. I. To find the H.c.F. of $2 x^{2}-x-1$ and

$$
6 x^{2}-4 x-2
$$

$$
\begin{gathered}
\left.2 x^{2}-x-1\right) 6 x^{2}-4 x-2(3 \\
6 x^{2}-3 x-3 \\
-x+1
\end{gathered}
$$

$2 x^{2}+2 x+1$.
$1(x+1$
quired.
frequently each in the
be negative,
learly not a it may be
ven expresatroduce or
ctor which ve it from ctor of the s result by hest Com-

Change the signs of the remainder, and it becomes $x-1$.

$$
\begin{gathered}
x-1) \frac{2 x^{2}-x-1(2 x+1}{\frac{2 x^{2}-2 x}{x-1}} \begin{array}{c}
x-1
\end{array}
\end{gathered}
$$

The H.c.f. required is $x-1$.
EX. II. To finc. the H.c.F. of $x^{2}+3 x+2$ and $x^{2}+5 x+6$.

$$
\begin{aligned}
\left.x^{2}+3 x+2\right) & x^{2}+5 x+6(1 \\
& \frac{x^{2}+3 x+2}{2 x+4}
\end{aligned}
$$

Divide the remainder by 2 , and it becomes $x+2$.

$$
\begin{gathered}
x+2) \begin{array}{c}
x^{2}+3 x+2(x+1 \\
\frac{x^{2}+2 x}{x+2} \\
x+2
\end{array}
\end{gathered}
$$

The H.c.f. required is $x+2$.
Ex. III. To find the H.c.f. of $12 x^{2}+x-1$ and $15 x^{2}+8 x+1$.
Multiply

$$
\begin{aligned}
& 15 x^{2}+8 x+1 \\
& 4
\end{aligned}
$$

$$
\begin{array}{r}
\left.12 x^{2}+x-1\right) \begin{array}{c}
60 x^{2}+32 x+4(5 \\
\frac{60 x^{2}+5 x-5}{27 x+9}
\end{array}
\end{array}
$$

by

Divide the remainder by 9 , and the result is $3 x+1$.

$$
\begin{gathered}
3 x+1) \frac{12 x^{2}+x-1(4 x-1}{\frac{12 x^{2}+4 x}{-3 x-1}} \begin{array}{c}
-3 x-1
\end{array}
\end{gathered}
$$

I'he H.O.f. is therelore $3 x+1$.
EX. IV. To find the H.C.F. of $x^{3}-5 x^{2}+6 x$ and

$$
x^{3}-10 x^{2}+21 x
$$

Remove and reserve the factor x, which is common to both expressions.

Then we have remaining $x^{2}-5 x+6$ and $x^{2}-10 x+21$. The H.C.f. of thase expressions is $x-3$.
The H.C.F. of the original expressions is therefore $x^{2}-3 x$.

EXAMPLES.-XXXVii.

Find the H.C.F. of the following expressions:
I. $x^{2}+7 x+12$ and $x^{2}+9 x+20$.
2. $x^{2}+12 x+20$ and $x^{2}+14 x+40$.
3. $x^{2}-17 x+70$ and $x^{2}-13 x+42$.
4. $\quad x^{2}+5 x-84$ and $x^{2}+21 x+108$.
5. $x^{2}+x-12$ and $x^{2}-2 x-3$.
6. $x^{2}+5 x y+6 y^{2}$ and $x^{2}+6 x y+9 y^{2}$.
7. $x^{2}-6 x y+8 y^{2}$ and $x^{2}-8 x y+16 y^{2}$.
8. $x^{2}-13 x y-30 y^{2}$ and $x^{2}-18 x y+45 y^{2}$.
9. $x^{3}-y^{3}$ and $x^{2}-2 x y+y^{2}$.
10. $x^{3}+y^{3}$ and $x^{3}+3 x^{2} y+3 x y^{2}+y^{3}$.
11. $x^{4}-y^{4}$ and $x^{2}-2 x y+y^{2}$.
12. $x^{5}+y^{5}$ and $x^{3}+y^{3}$.
13. $x^{4}-y^{4}$ and $x^{2}+2 x y+y^{2}$.
14. $a^{2}-b^{2}+2 b c-c^{2}$ and $a^{2}+2 a b+b^{2}-2 a c-2 b c+c^{2}$.
15. $\quad 12 x^{2}+7 x y+y^{2}$ and $28 x^{2}+3 x y-y^{2}$.
16. $\quad 6 x^{2}+x y-y^{2}$ and $39 x^{2}-22 x y+3 y^{2}$.
17. $15 x^{2}-8 x y+y^{2}$ and $40 x^{2}-3 x y-y^{2}$.
18. $x^{5}-5 x^{3}+5 x^{2}-1$ and $x^{4}+x^{3}-4 x^{2}+x+1$.
19. $x^{4}+4 x^{2}+16$ and $x^{5}+x^{4}-2 x^{3}+17 x^{2}-10 x+20$.
20. $x^{4}+x^{2} y^{3}+y^{4}$ and $x^{4}+2 x^{3} y+3 x^{2} y^{2}+2 x y^{3}+y^{4}$.
21. $x^{6}-6 x^{4}+9 x^{2}-4$ and $x^{6}+x^{6}-2 x^{4}+3 x^{2}-x-2$.
22. $15 a^{4}+10 a^{3} b+4 a^{2} b^{2}+6 a b^{3}-3 b^{4}$ and $6 a^{3}+19 a^{2} b+8 a b^{2}-5 b^{3}$.
23. $15 x^{3}-14 x^{2} y+24 x y^{2}-7 y^{3}$ and $27 x^{3}+33 x^{2} y-20 x y^{2}+2 y^{3}$.
24. $21 x^{2}-83 x y-27 x+22 y^{2}+99 y$ and $12 x^{2}-35 x y-6 x$

$$
-33 y^{2}+22 y
$$

25. $3 a^{3}-12 a^{2}-a^{2} b+10 a b-2 b^{2}$ and $6 a^{3}-17 a^{2} b+8 a b^{2}-b^{3}$.
26. $18 a^{3}-18 a^{2} x+6 a x^{2}-6 x^{3}$ and $60 a^{2}-75 a x+15 x^{2}$.
27. $21 x^{3}-26 x^{2}+8 x$ and $6 x^{2}-x-2$.
28. $\quad 6 x^{4}+29 a^{2} x^{2}+9 a^{4}$ and $3 x^{3}-15 a x^{2}+a^{2} x-5 a^{3}$.
29. $x^{8}+x^{6} y^{2}+x^{2} y+y^{3}$ and $x^{4}-y^{4}$.
30. $2 x^{3}+10 x^{2}+14 x+6$ and $x^{3}+x^{2}+7 x+39$.

3I. $45 a^{3} x+3 a^{2} x^{2}-9 a x^{3}+6 x^{4}$ and $18 a^{2} x-8 x^{3}$.
132. It is sometimes easier to find the h.C.F. by reversing the order in which the expressions are given.

Thus to find the H.C.F. of $21 x^{2}+38 x+5$ and $129 x^{2}+221 x+10$ the easier course is to reverse the expressions, so that they stand thus, $5+38 x+21 x^{2}$ and $10+221 x+129 x^{2}$, and then to proceed by the ordinary process. The H.C.F. is $3 x+5$. Other examples are
(1) $187 x^{3}-84 x^{2}+31 x-6$ and $253 x^{3}-14 x^{2}+29 x-12$,
(2) $371 y^{3}+26 y^{2}-50 y+3$ and $469 y^{3}+75 y^{2}-103 y-21$, of which the н.с.ғ. are respectively $11 x-3$ and $7 y+3$.
133. If the Highest Common Factor of three expressions a, b, c be required, find first the H.c.F. of a and b. If d be the H.C.F. of a and b, then the E.C.F. of d and c will be the H.C.F. of a, b, c.
134. Ex. To find the H.C.F. of

$$
x^{3}+7 x^{2}-x-7, x^{3}+5 x^{2}-x-i, \text { and } x^{2}-2 x+1
$$

The H.C.F. of $x^{3}+7 x^{2}-x-7$ and $x^{3}+5 x^{2}-x-5$ will be found to be $x^{2}-1$.

The II.C.F. of $x^{2}-1$ and $x^{2}-2 x+1$ will be found to be $x-1$.

Hence $x-1$ is the H.c.F. of the the expressions.

EXAMPLES.-XXXViii.

Find the Highest Common Factor of
I. $x^{2}+5 x+6, x^{2}+7 x+10$, and $x^{2}+12 x+20$.
2. $x^{3}+4 x^{2}-5, x^{3}-3 x+2$, and $x^{3}+4 x^{2}-8 x+3$.
3. $2 x^{2}+x-1, x^{2}+5 x+4$, and $x^{3}+1$.
4. $y^{3}-y^{2}-y+1,3 y^{2}-2 y-1$, and $y^{3}-y^{2}+y-1$.
5. $x^{3}-4 x^{2}+9 x-10, x^{3}+2 x^{2}-3 x+20$, and

$$
x^{3}+5 x^{2}-9 x+35 .
$$

6. $x^{3}-7 x^{2}+16 x-12,3 x^{3}-14 x^{2}+16 x$, and

$$
5 x^{3}-10 x^{2}+7 x-14
$$

7. $y^{3}-5 y^{2}+11 y-15, y^{3}-y^{2}+3 y+5$, and

$$
2 y^{3}-7 y^{2}+16 y-15
$$

Note. We use the name Highest Com non Factor instead of Greatest Common Measure or Highest Common Divisor for the following reasons :
(1) We have used the word "Measure" in Art. 33 in it different sense, that is, to denote the number of times any quantity contains the r mit of measuremont.
(2) Divisor does not necessarily invly a quantity which is contained in another an exact number of times. Thus in performing the operation of dividing 333 by 13 , we call 13 divisor, but we do not mean that 333 contains 13 an exact number of times.

IX. FRACTIONS.

135. A quantity a is alled an Exact Divisor of a quantity :, nater. b contains a an exact number of times.

A quantito a is called a Multipie of a quantiy b, when a contains ? an exact number of tinies.
136. Hitherto we have treated of quantiiies which contain the unit of measurement in each case an exact number of times.

We have now to treat of quantities which contain some exact divisor of a primary unit an exact number of times.
137. We must first explain what we mean by a primary unit.

We said in Art. 33 that to measure any quantiiy we take a known standard or unit of the same kind. Our choice as to the quantity to be taken as the unit is at first unrestricted, but when once made we must adhere to 1 , or at least we must give distinct notice of any change which we make with respect to it. To such a unit we give the name of Primary Unit.
138. Next, to explain what we mean by an exact divisor of a primary unit.

Keeping our Primary Unit as our main standard of measurement, we may concsive it to be divided into a number of parts of equal magnitude, any one of which we may take as a Subordinate Unit.

Thus we may take a pound as the unit by which we measure sums of money, and retaining this steadily as the primary unit, we may still conceive it to be subdivided into 20 equal parts. We call each of the subordinate units in this case a shilling, and we say that one of these equal subordinate units is one-twentieth part of the primary mit, that is, of a pound.

These subordinate units, then, are exact divisors of the primary unit.
139. Keeping the primary unit still cleariy in view, we represent one of the subordinate units by the following notation.

We agree to represent the words one-third, one-fifth, and one-twentieth by the symbols $\frac{1}{3}, \frac{1}{5}, \frac{1}{2}$, and we say that if the Primary Unit be divided into three equal parte, $\frac{1}{3}$ will represent one of these parts.

If we have to represent two of these subordinate units, we do so by the symbol $\frac{2}{3}$; if three, by the symbol $\frac{3}{3}$; if four, by the symbol $\frac{4}{3}$, and so on. And, generally, if the Primary Unit be divided into b equal parts, we represent a of those parts by the symbol $\frac{a}{6}$.
140. The symbol $\frac{a}{b}$ we call the Fraction Symbol, or, more briefly, a Fraction. The number below the line is called the Denominator, because it denominates the number of equal parts into which the Primary Unit is divided. The number above the line is called the Numerator, because it enumerates how many of these equal parts, or Subordinate Units, are taken.
141. The term number may be correctly applied to Fractions, since they are measured by units, but we must be careful to observe the following distinction :

An Integer or Whole Number is a multiple of the Primary Unit.
A Fractional Number is a multiple of the Subordinate Unit.
142. The Denominator of a Fraction shews what multiple the Primary Unit is of the Subordinate Unit.

The Numerator of a Fraction shews what multiple the Fraction is of the Subordinate Unit.
143. The Namerato ard Denominator of a fraction are called the Terms of the frestion.
144. Having thus explained the nature of Fractions, we next procecd to treat of the operations to which they are subjected in Algebra.
145. Def. If the quantity x be divided into b equal parts, and a of those parts be taken, the result is said to be the fraction $\frac{a}{b}$ of x.

If z be the unit, this is called the fraction $\frac{a}{b}$.
146. If the unit be divided into b equal parts,
$\frac{1}{b}$ will represent one of the parts.
\qquad two \qquad
$\frac{3}{b}$
three \qquad
And generally,
$\frac{a}{b}$ will represent a of the parts.
147. Next let us suppose that each of the b parts is subdivided into c equal parts: then the unit has been divided into bc equal parts, and
$\frac{1}{b c}$ will represent one of the suldivisions.
$\frac{2}{b c}$ two

And generally,

$$
\frac{a}{b c} \ldots \ldots \ldots \ldots \ldots \ldots \quad a
$$

\qquad

Let the unit be divided into b equal parts.
Then $\frac{a}{b}$ will represent a of these parts.
Next let each of the b parts be subdivided into c equal parts.

Then the primary unit has been divided into bc equal parts, and $\frac{a c}{b c}$ will represent ac of these subdivisions.

Now one of the parts in (1) is equal to c of the subdivisions in (2),
$\therefore a$ parts are equal to ac subdivisions ;

$$
\therefore \frac{a}{b}=\frac{a c}{b c}
$$

Con. We draw from this proof two inferences:
I. If the numerator and denominator of a fraction be multiplied by the same number, the valne of the fraction is not altered.
II. If the numerator and denominator of a fraction be divided by the same number, the value of the fraction is not altered.
149. To make the important Theorem established in the preceding Article more clear, we slall give the following proof that $\frac{4}{5}=\frac{16}{20}$, by taking a straight line as the unit of length.

Let the line $A C$ be divided into 5 equal parts.
Then, if B be the point of division nearest to C,

$$
\begin{equation*}
A B \text { is } \frac{4}{5} \text { of } A C \tag{1}
\end{equation*}
$$

Next, let each of the parts be subdivided into 4 equal parts.
Then $A C$ coutains 20 of these subdivisions, and $A B \ldots \ldots . .16 \ldots \ldots$.

$$
\begin{equation*}
\therefore A B \text { is } \frac{16}{20} \text { of } A O \tag{2}
\end{equation*}
$$

Comparing (1) and (2), we conclude that

$$
\frac{4}{5}=\frac{16}{20}
$$

150. From the Theorem established in Art. 148 we derive the following rule for reducing a fraction to its lowest terms:

Find the Highest Common Factor of the numerator and denominator and divide both by it. The resulting fraction will be one equivalent to the original fraction expressed in the simplest terms.
151. When the numerator and denominator each consist of a single term the H.c.F. may be determined by inspection, or we may proceed as in the following Example:

To reduce the fraction $\frac{10 a^{3} b^{2} c^{4}}{12 a^{2} b^{3} c^{2}}$ to its lowest terms,

$$
\frac{10 a^{3} b^{2} c^{4}}{12 a^{2} b^{3} c^{2}}=\frac{2 \times 5 \times a a a b b c c c c}{2 \times 6 \times a a b b b c c}
$$

We may then remove factors common to the numerator and denominator, and we shall have remaining $\frac{5 \times a c c}{6 \times b}$; \therefore the required result will be $\frac{5 a c^{2}}{6 b}$.
152. Two cases are especially to be noticed.
(1) If every one of the factors of the numerator be removed, the number 1 (being always a factor of every algebraical expression) will still remain to form a numerator.

Thus

$$
\frac{3 a^{2} c}{12 a^{3} c^{2}}=\frac{3 a u c}{3 \times 4 \times a t a c c}=\frac{1}{4 a c}
$$

(2) If every one of the factors of the denominator be removed, the result will be a whole number.

Thus $\quad \frac{12 a^{3} c^{2}}{3 a^{2} c}=\frac{3 \times 4 \times a c a c c}{3 \times a a c}=4 a c$.
This is, in fact, a case of exact division, such as we have explained in Art. 74.

EXAMPLES:-XXXIX.
Reduce to equivalent fractions in their simplest terms the following fractions:

1. $\frac{4 a^{2}}{12 a^{3}}$
2. $\frac{8 x^{3}}{36 x^{2}}$.
3. $\frac{10 a^{2} b^{3}}{24 a^{3} b^{2}}$.
4. $\frac{18 x^{5} y^{2} z^{3}}{45 x^{3} y^{2} z^{4}}$.
5. $\frac{7 a^{5} b^{5} c^{8}}{21 a^{3} b^{2} c^{5}}$
6. $\frac{4 a x y}{3 a b c}$.
7. $34 a^{2} y z^{2}$
8. $\frac{15 a b^{4} c^{3}}{12 a^{3} b^{2} c^{2}}$
9. $\frac{8 x^{3} y^{2} z^{3}}{6 x^{5} y^{8} z^{3}}$
10. $\frac{210 m^{3} n^{2} p}{42 m^{2} n^{2} p^{2}}$.
11. $\frac{a^{2}}{a^{2}+a b}$.
12. $\frac{14 m^{2} x}{21 m^{3} p-7 m x}$.
13. $\frac{x y}{3 x y^{2}-5 x^{2} y z}$.
14. $\frac{4 a x+2 x^{2}}{8 a x^{3}-2 x^{2}}$.
15. $\frac{a y+y^{2}}{a b c+b c y}$.
16. $\frac{4 a^{2} x+6 a^{2} y}{8 x^{2}-18 y^{2}}$.
17. $\frac{12 a b^{2}-6 a b}{8 b^{2} c-2 c}$.
18. $\frac{c^{2}-4 a^{2}}{c^{2}+4 a c+4 a^{2}}$
19. $\frac{3 x^{4}+3 x^{2} y^{2}}{5 x^{4}+5 x^{2} y^{2}}$.
20. $\frac{10 x-10 y}{4 x^{2}-8 x y+4 y^{2}}$,
21. $\frac{a x+b y}{7 a^{2} x^{2}-7 b^{2} y^{2}}$.
22. $\frac{6 a b+8 c d}{27 a^{2} b^{2} x-48 c^{2} d^{2} \dot{x}}$.
23. $\frac{x y-x y z}{2 a z-2 a z^{2}}$.
24. $\frac{7 a b^{3} x^{8}-7 a b^{3} y^{2}}{14 a^{3} b c x^{8}-14 a^{3} b c y^{2}}$.
25. $\frac{5 x^{9}+45 d x^{2}}{10 c x^{9}+90 c d x^{2}}$.
26. $\frac{10 a^{2}+20 a b+10 b^{2}}{5 a^{3}+5 a^{2} b}$
27. $\frac{4 x^{2}-8 x y+4 y^{2}}{48(x-y)^{2}}$.
28. $\frac{3 m x+5 n x^{2}}{3 m y+5 n x y}$.
29. We shall now give a set of Examples, some of which may be worked by Resolution into Factors. In others the H.C.F. of the numerator and denominator must be found by the usual process. As an example of the latter sort let us take the following :

To reduce the fraction $\frac{x^{3}-4 x^{2}-19 x-14}{2 x^{3}-9 x^{2}-38 x+21}$ to its lowest terms.
Proceeding by the usual rule for finding the H.C.F. of the numerator and denominator we find it to be $x-7$.

Now if we divide $x^{3}-4 x^{2}-19 x-14$ by $x-7$, the result is $x^{2}+3 x+2$, and if we divide $2 x^{3}-9 x^{2}-38 x+21$ by $x-7$, the result is $2 x^{2}+5 x-3$.

Hence the fraction $\frac{x^{2}+3 x+2}{2 x^{2}+5 x-3}$ is equivalent to the proposed fraction and is in its lowest terms.

EXAMPLES. - - Xl.

1. $\frac{a^{2}+7 a+10}{a^{2}+5 a+6}$.
2. $\frac{x^{2}-9 x+20}{x^{2}-7 x+12}$.
3. $\frac{x^{2}-2 x-3}{x^{2}-10 x+21}$.
4. $\frac{x^{2}-18 x y+45 y^{2}}{x^{2}-8 x y-105 y^{2}}$.
5. $\frac{x^{4}+x^{2}+1}{x^{2}+x+1}$.
6. $\frac{x^{6}+2 x^{3} y^{3}+y^{6}}{x^{6}-y^{6}}$.
7. $\frac{m^{3}+3 m^{2}-4 m}{m^{3}-7 m+6}$.
8. $\frac{a^{3}+1}{a^{3}+2 a^{2}+2 a+1}$.
9. $\frac{x^{3}-8 x^{2}+21 x-18}{3 x^{3}-16 x^{2}+21 x}$.
10. $\frac{3 a x^{2}-13 a x+14 a}{7 x^{3}-17 x^{2}+6 x}$.
11. $\frac{x^{3}-7 x^{2}+16 x-12}{3 x^{3}-14 x^{2}+16 x}$.
I I. $\frac{x^{4}+x^{3} y+x y^{3}-y^{4}}{x^{4}-x^{3} y-x y^{3}-y^{4}}$.
12. $\frac{a^{3}+4 a^{2}-5}{a^{3}-3 a+2}$.
$b^{3}+4 b^{2}-5 b$
13. $\frac{14 x^{2}-34 x+12}{9 a x^{2}-39 a x+42 a}$
14. $\frac{10 a-24 a^{2}+14 a^{3}}{15-24 a+3 a^{2}+6 a^{3}}$.
15. $\frac{2 a b^{3}+a b^{2}-8 a b+5 a}{7 b^{3}-12 b^{2}+5 b}$.
16. $-\overline{b^{3}-6 b+5}$.
17. $\frac{a^{3}-3 a^{2}+3 a-2}{a^{3}-4 a^{2}+6 a-4}$.
18. $\quad \frac{3 x^{2}+2 x-1}{x^{3}+x^{2}-x-1}$.
19. $\frac{a^{2}-a-20}{a^{2}+a-12}$ 23. $\frac{x^{3}-3 x^{2}+4 x-2}{x^{3}-x^{2}-2 x+2}$.
20. $\frac{(x+y+z)^{2}+(z-y)^{2}+(x-z)^{2}+(y-x)^{2}}{x^{2}+y^{2}+z^{2}}$.
21. $\frac{2 x^{4}-x^{3}-9 x^{2}+13 x-5}{7 x^{3}-19 x^{2}+17 x-5}$.
22. $\frac{15 a^{2}+a b-2 b^{2}}{9 a^{2}+3 a b-2 b^{2}}$.
$\frac{16 x^{4}-53 x^{2}+45 x+6}{8 x^{4}-30 x^{3}+31 x^{2}-12}$.
23. $\frac{x^{2}-7 x+10}{2 x^{2}-x-6}$.
24. $\frac{4 x^{2}-12 a x+9 a^{2}}{8 x^{3}-27 a^{3}}$.
25. $\frac{x^{3}+3 x^{2}+4 x+12}{x^{3}+4 x^{2}+4 x+3}$.
26. $\frac{6 x^{3}-23 x^{2}+16 x-3}{6 x^{3}-17 x^{2}+11 x-2}$.
27. $\frac{x^{3}-6 x^{2}+11 x-6}{x^{3}-2 x^{2}-x+2}$.
28. $\frac{m^{3}+m^{2}+m-3}{m^{3}+3 m^{2}+5 m+3}$.
29. $\frac{x^{5}+5 x^{4}-x^{2}-5 x}{x^{4}+3 x^{3}-x-3}$.
30. $\frac{a^{2}-b^{2}-2 b c-c^{2}}{a^{2}+2 a b+b^{2}-c^{2}}$.
31. $\frac{x^{4}-x^{2}-2 x+2}{2 x^{3}-x-1}$.
32. $\frac{x^{3}-2 x^{2}-15 x+36}{3 x^{2}-4 x-15}$.
33. $\frac{.3 x^{3}+x^{2}-5 x+21}{6 x^{3}+29 x^{2}+26 x-21}$.
34. $\frac{x^{4}-x^{3}-4 x^{2}-x+1}{4 x^{3}-3 x^{2}-8 x-1}$.
35. $\frac{a^{3}-7 a^{2}+16 a-12}{3 a^{3}-14 a^{2}+16 a}$.

$$
\rightarrow
$$

IMAGE EVALUATION

TEST TARGET (MT-3)

Photographic Sciences

154. The fraction $\frac{a}{b}$ is said to be a proper fraction, when a is less than b.

The fraction $\frac{a}{b}$ is said to be an improper fraction, when a is greater than b.
155. A whole number x may be written as a fractional number by writing 1 beneath it as a denominator, thus $\frac{x}{1}$.
156. To prove that $\frac{a}{b}$ of $\frac{c}{d}=\frac{a c}{b d}$.

Divide the unit into $b d$ parts.
Then $\frac{a}{b}$ of $\frac{c}{d}=\frac{a}{b}$ of $\frac{b c}{b d}$ (Art. 148)

$$
\begin{align*}
& =\frac{a}{b} \text { of } b c \text { of these parts } \tag{Art.147}\\
& =\frac{a c}{b c} \text { of } b c \text { of these parts } \tag{Art.148}\\
& =a c \text { of these parts }
\end{align*}
$$

But

$$
\frac{a c}{b d}=a c \text { of these parts; }
$$

$$
\therefore \frac{a}{j} \text { of } \frac{c}{d}=\frac{a c}{b d} .
$$

This is an important Theorem, for from it is derived the Rule for what is called Mudiplication of Fractions. We extend the meaning of the sign \times and define $\frac{a}{b} \times \frac{c}{d}$ (which according to our definition in Art. 36 has no meaning) to mean $\frac{a}{b}$ of $\frac{c}{d}$, and we conclude that $\frac{a}{b} \times \frac{c}{d}=\frac{a c}{b d}$, which in words gives us this rule-" Take the product of the numerators to form the numerator of the resulting fraction, and the product of the denominators to form the denominator. ψ

The same rule holds good for the multiplication of three or more fractions.
157. To shew that $\frac{a}{b} \div \frac{c}{d}=\frac{a d}{b c}$.

The quotient, x, of $\frac{a}{b}$ divided by $\frac{c}{d}$ is such a number that x multiplied by the divisor $\frac{c}{d}$ will give as a result the dividend $\frac{a}{b}$.

$$
\begin{aligned}
\therefore \frac{x c}{d} & =\frac{a}{b} \\
\therefore \frac{d}{c} \text { of } \frac{x c}{d} & =\frac{d}{c} \text { of } \frac{a}{b} ; \\
\therefore \frac{x c l}{c d} & =\frac{a d}{b c} \\
\therefore x & =\frac{a d}{b c}
\end{aligned}
$$

Hence we obtain a rule for what is called Division or Fractions.

Since $\frac{a}{b} \div \frac{c}{d}=\frac{a d}{b c}$,

$$
\frac{a}{b} \div \frac{c}{d}=\frac{a}{b} \times \frac{d}{c}
$$

Hence we reduce the process of division to that of multiplication by inverting the divisor.
158. The following are examples of the Multiplication and Division of Fractions.

1. $\quad \frac{2 x}{3 a^{2}} \times 3 a=\frac{2 x}{3 a^{2}} \times \frac{3 a}{1}=\frac{6 a x}{3 a^{2}}=\frac{2 x}{a}$.
2. $\frac{3 x}{2 b} \div 3 a=\frac{3 x}{2 b} \div \frac{3 a}{1}=\frac{3 x}{2 b} \times \frac{1}{3 a}=\frac{3 x}{6 a b}=\frac{x}{2 a b}$.
3. $\frac{4 a^{2}}{9 c^{2}} \times \frac{3 c}{2 a}=\frac{3 \times 4 \times a^{2} c}{2 \times 9 \times a c^{2}}=\frac{2 a}{3 c}$.
4. $\frac{14 x^{2}}{27 y^{2}} \div \frac{7 x}{9 y}=\frac{14 x^{2}}{27 y^{2}} \times \frac{9 y}{7 x}=\frac{9 \times 14 \times x^{2} y}{7 \times 27 \times x y^{2}}=\frac{2 x}{3 y}$.
5. $\frac{2 a}{3 b} \times \frac{9 b}{10 c} \times \frac{5 c}{4 a}=\frac{2 a \times 9 b \times 5 c}{3 b \times 10 c \times 4 a}=\frac{3}{4}$.

$$
\begin{aligned}
& \text { 6. } \frac{x^{2}-4 x}{x^{3}+7 x^{2}} \times \frac{x^{2}+7 x}{x-4}=\frac{x(x-4)}{x^{2}(x+7)} \times \frac{x(x+7)}{x-4} \\
& =\frac{x(x-4) x(x+7)}{x^{2}(x+7)(x-4)}=1 \text {. } \\
& \text { 7. } \frac{a^{2}-b^{2}}{a^{2}+2 a b+b^{2}} \div \frac{4\left(a^{2}-a b\right)}{a^{2}+a b}=\frac{a^{2}-b^{2}}{a^{2}+2 a b+b^{2}} \times \frac{a^{2}+a b}{4\left(a^{2}-a b\right)} \\
& =\frac{(a+b)(a-b)}{(a+b)(a+b)} \times \frac{a(a+b)}{4 a(a-b)} \\
& =\frac{(a+b)(a-b) a(a+b)}{(a+b)(a+b) 4 a(a-b)}=\frac{1}{4} .
\end{aligned}
$$

EXAMPLES, -XXli.

Simplify the following expressions :

I. $\frac{3 x}{4 y} \times \frac{7 x}{9 y}$.
2. $\frac{3 a}{4 b} \times \frac{2 b}{3 a}$.
3. $\frac{4 x^{2}}{9 y^{2}} \times \frac{3 x}{2 y}$.
4. $\frac{8 a^{2} b^{3}}{45 x^{2} y} \times \frac{15 x y^{2}}{24 a^{3} b^{2}}$.
5. $\frac{9 x^{2} y^{2} z}{10 a^{2} b^{2} c} \times \frac{20 a^{3} b^{2} c}{18 x y^{2} z}$,
6. $\frac{2 a}{5 b} \times \frac{4 b}{3 c} \times \frac{5 c}{6 a}$.
7. $\frac{3 x^{2} y}{4 x z^{2}} \times \frac{5 y^{2} z}{6 x y} \times \frac{12 x z}{20 x y^{2}}$.
8. $\frac{7 a^{5} b^{4}}{5 c^{2} d^{3}} \times \frac{20 c^{3} d^{2}}{42 a^{4} b^{3}} \times \frac{4 a c}{3 b d^{4}}$.
9. $\frac{9 n^{2} n^{2}}{8 p^{3} q^{3}} \times \frac{5 p^{2} q}{2 x y} \times \frac{24 x^{2} y^{2}}{90 m n}$.
10. $\frac{25 k^{3} m^{2}}{14 n^{2} q^{2}} \times \frac{70 n^{3} q}{75 p^{2} m} \times \frac{3 p m}{4 k^{2} n}$.

EXAMPLES.-Xlii.

Reduce to simple fractions in their lowest terms:

1. $\frac{a-b}{a^{2}+a b} \times \frac{a^{2}-b^{2}}{a^{2}-a b}$.
2. $\frac{x^{2}+x-2}{x^{2}-7 x} \times \frac{x^{2}-12 x+42}{x^{2}+2 x}$.
3. $\frac{x^{2}+4 x}{x^{2}-3 x} \times \frac{4 x^{2}-12 x}{3 x^{2}+12 x}$.
4. $\frac{x^{2}-11 x+30}{x^{2}-6 x+9} \times \frac{x^{2}-3 x}{x^{2}-5 x}$.
5. $\frac{x^{2}+3 x+2}{x^{2}-5 x+6} \times \frac{x^{2}-7 x+12}{x^{2}+x}$.
6. $\frac{x^{2}-4}{x^{2}+5 x} \times \frac{x^{2}-25}{x^{2}+2 x}$.
7. $\frac{a^{2}-4 a+3}{a^{2}-5 a+4} \times \frac{a^{2}-9 a+20}{a^{2}-10 a+21} \times \frac{a^{2}-7 a}{a^{2}-5 a}$
8. $\frac{b^{2}-7 b+6}{b^{2}+3 b-4} \times \frac{b^{2}+10 b+24}{b^{2}-14 b+48} \times \frac{b^{3}-8 b^{2}}{b^{2}+6 b}$.
9. $\frac{x^{2}-y^{2}}{x^{2}-3 x y+2 y^{2}} \times \frac{x y-2 y^{2}}{x^{2}+x y} \times \frac{x^{2}-x y}{(x-y)^{2}}$
10. $\frac{(a+b)^{2}-c^{2}}{a^{2}-(b-c)^{2}} \times \frac{c^{2}-(a-b)^{2}}{c^{2}-(a+b)^{2}}$.
11. $\frac{(x-m)^{2}-n^{2}}{(x-n)^{2}-m^{2}} \times \frac{x^{2}-(n-m)^{2}}{x^{2}-(m-n)^{2}}$.
12. $\frac{(a+b)^{2}-(c+d)^{2}}{(a+c)^{2}-(b+d)^{2}} \times \frac{(a-b)^{2}-(d-c)^{3}}{(a-c)^{2}-(d-b)^{2}}$.
13. $\frac{x^{2}-2 x y+y^{2}-z^{2}}{x^{2}+2 x y+y^{2}-z^{2}} \times \frac{x+y-z}{x-y+z}$.

EXAMPLES.-xliii.

Simplify the following expressions :

1. $\frac{2 a}{x} \div \frac{3 b}{5 c}$.
2. $\frac{15 y}{14 z} \div \frac{5 y^{2}}{7 z}$.
3. $\frac{8 x^{4} y}{15 a b^{3}} \div \frac{2 x^{3}}{30 a b^{2}}$.
4. $\frac{4 a}{n x} \div 3 a b$.
5. $\frac{3 p}{2 p-2} \div \frac{2 p}{p-1}$.
6. $1 \div \frac{4 a}{5 x}$.
7. $\frac{5 x}{7} \div 2$.
8. $\frac{1}{3^{2}-3 x+2} \div \frac{1}{x-1}$.
9. $\frac{1}{x^{2}-17 x+30} \div \frac{1}{x-15}$.
10. We are now able to justify the use of the Fraction Symbol as one of the Division Symbols in Art. 73, that is, we can shew that $\frac{a}{b}$ is a proper representation of the quotient resulting from the division of a by b.

For let x be this quotient.
Then, by the definition of a quotient, Art. 72,

$$
b \times x=a .
$$

But, from the nature of fractions,

$$
\begin{gathered}
b \times \frac{a}{b}=a ; \\
\therefore \frac{a}{b}=x
\end{gathered}
$$

159. Here we may state an important Theorem, which we shall require in the next nhapter.

If $a d=b c$, to shew that $\frac{a}{b}=\frac{c}{d}$.
Since $a d=b c$,

$$
\begin{aligned}
& \frac{a d}{b d}=\frac{b c}{b d} ; \\
& \therefore \frac{a}{b}=\frac{c}{d} .
\end{aligned}
$$

X. THE LOWEST COMMON MULTIPLE.

160. An expression is a Common Multiple of two or more other expressions when the former is exactly divisible by each of the latter.

Thus $24 x^{3}$ is a common multiple of $6,8 x^{2}$ and $12 x^{3}$.
161. The Lowest Common Multiple of two or more expressions is the expression of lowest dimensions which is exactly divisible by eachi of them.
Thus $18 x^{4}$ is the Lowest Common Multiple of $6 x^{4}, 9 x^{2}$, and $3 x$.

The words Lowest Common Multiple are abbreviated into L.c.m.
162. Two numbers are said to be prime to each other. which have no common factor but unity.
Thus 2 and 3 are prime to each other.
163. If a and b be prime to each other the fraction $\frac{a}{b}$ is in its lowest terms.

Hence if a and b be prime to each other, and $\frac{a}{b}=\frac{c}{d}$, and if m be the H.c.F. of c and d,

$$
a=\frac{c}{m} \text { and } b=\frac{d}{m} .
$$

164. In finding the Lowest Common Multiple of two or more expressions, each consisting of a single term, we may proceed as in Arithmetic, thus:
(1) To find the L.c.s. of $4 a^{3} x$ and $18 a x^{3}$,

2	$\frac{4 a^{3} x, 18 a x^{3}}{a}$$2 a^{3} x, 9 a x^{3}$ x
	$\frac{2 a^{2} x, 9 x^{3}}{2 a^{2}, 9 x^{2}}$

L.C.M. $=2 \times a \times x \times 2 a^{2} \times 9 x^{2}=36 a^{3} x^{3}$.
(2) To find the L.c.m. of $a b, a c, b c$,

a	$a b, a c, b c$	
b	$\frac{b,}{}, c, b c$	
c	1,	c, c
	1,	1,
	1	

L.C.M. $=a \times b \times c=a b c$.
(3) To find the L.c.M. of $12 a^{2} c, 14 b c^{2}$ and $36 a b^{2}$,

2	$12 a^{2} c$,	$14 b c^{2}$,	$36 a b^{2}$
6	$6 a^{2} c$,	$7 b c^{2}$,	$18 a b^{2}$
	$a^{2} c$,	$7 b c^{2}$,	$3 a b^{2}$
	$a c$,	$7 b c^{2}$,	$3 b^{2}$
c	$a c$,	$7 c^{2}$,	$3 b$
	a,	$7 c$,	$3 b$

L.C.M. $=2 \times 6 \times a \times b \times c \times a \times 7 c \times 3 b=252 a^{2} b^{2} c^{2}$.

EXAMPLES.-xliv.

Find the L.C.M. of
I. $\quad 4 a^{3} x$ and $6 a^{2} x^{2}$.
6. $a b, a^{2} c$ and $b^{2} c^{3}$.
2. $3 x^{2} y$ and $12 x y^{2}$.
7. $\quad a^{2} x, a^{3} y$ and $x^{2} y^{2}$.
3. $4 a^{3} b$ and $8 a^{2} b^{2}$.
8. 5la $a^{2} x^{2}, 34 a x^{3}$ and $a x^{4}$.
4. $\quad a x, a^{2} x$ and $a^{2} x^{2}$.
9. $5 p^{2} q, 10 q^{2} r$ and $20 p q r$.
5. $2 a x, 4 a x^{2}$ and x^{3}.
10. 18ax ${ }^{2}, 72 a y^{2}$ and $12 x y$.
165. The method of finding the L.c.m., given in the preceling article, may be extended to the case of compound expressions, when one or more of their factors can be readily determined. Thus we may take the following Examples :
(1) To find the L.C.M. of $a-x, a^{2}-x^{2}$, and $a^{2}+a x$,

$$
\begin{aligned}
& \begin{array}{c|ccc}
a-x & a-x, & a^{2}-x^{2}, & a^{2}+a x \\
a+x & \frac{1,}{} & a+x, & a^{2}+a x \\
\hline 1, & 1, & a
\end{array} \\
& \text { L.C.M. }=(a-x)(a+x) a=\left(a^{2}-x^{2}\right) a=a^{3}-a x^{2} .
\end{aligned}
$$

(2) To find the L.c.m. of $x^{2}-1, x^{4}-1$, and $4 x^{6}-4 x^{4}$,

$$
\begin{array}{c|c}
x^{2}-1 & \frac{x^{2}-1, x^{4}-1,4 x^{6}-4 x^{4}}{1, \quad x^{2}+1, \quad 4 x^{4}}
\end{array}
$$

L.C.M. $=\left(x^{2}-1\right)\left(x^{2}+1\right) 4 x^{4}=\left(x^{4}-1\right) 4 x^{4}=4 x^{8}-4 x^{4}$.
166. The student who is familiar with the methods of resolving simple expressions into factors, especially those given in Art. 125, may obtain the L.C.M. of such expressions by a process which may be best explained by the following Examples:

Ex. 1. To find the I.c.м. of $a^{2}-x^{2}$ and $a^{3}-x^{3}$.

$$
\begin{aligned}
& a^{2}-x^{2}=(a-x)(a+x), \\
& a^{3}-x^{3}=(a-x)\left(a^{2}+a x+x^{2}\right)
\end{aligned}
$$

Now the L.c.m. must contain in itself each of the factors in each of these products, and no others.
\therefore L.C.M. is $(a-x)(a+x)\left(a^{2}+a x+x^{2}\right)$,
the factor $a-x$ occurring once in each product, and therefore once only in the L.c.m.
the occ of t
the factor $a-b$ occurring twice in one of the products, and $a+b$ occurring twice in another of the products, and therefore each of these factors must occur twice in the L.c.M.

EXAMPLES.-XIV.

Find the L.C.M. of the following expressions:

1. x^{2} and $a x+x^{2}$.

1o. $x^{2}-1, x^{2}+1$ and $x^{4}-1$.
2. $x^{2}-1$ and $x^{2}-x$.
3. $a^{2}-b^{2}$ and $a^{2}+a b$.
4. $2 x-1$ and $4 x^{2}-1$.
5. $a+b$ and $a^{3}+b^{3}$.
6. $x+1, x-1$ and $x^{2}-1$. 15. $(a+b)^{2}$ and $a^{2}-b^{2}$.
7. $x+1, x^{3}-1$ and $x^{2}+x+1$. 16. $a+b, a-b$ and $a^{2}-b^{2}$.
8. $x+1, x^{2}+1$ and $x^{3}+$ i. 17. $4(1+x), 4(1-x)$ and $2\left(1-x^{2}\right)$.
9. $x-1, x^{2}-1$ and $x^{3}-1$.
18. $x-1, x^{2}+x+1$ and $x^{3}-1$.
19. $(a-b)(a-c)$ and $(a-c)(b-c)$.
20. $(x+1)(x+2),(x+2)(x+3)$ and $(x+1)(x+3)$.
21. $x^{2}-y^{2},(x+y)^{2}$ and $(x-y)^{2}$.
22. $(a+3)(a+1),(a+3)(a-1)$ and $a^{2}-1$.
23. $x^{2}(x-y), x\left(x^{2}-y^{2}\right)$ and $x+y$.
24. $(x+1)(x+3),(x+2)(x+3)(x+4)$ and $(x+1)(x+2)$.
25. $x^{2}-y^{2}, 3(x-y)^{2}$ and $12\left(x^{3}+y^{3}\right)$.
26. $6\left(x^{2}+x y\right), 8\left(x y-y^{2}\right)$ and $10\left(x^{2}-y^{2}\right)$.
167. The chief use of the rule for finding the l.C.m. is for the reduction of fractions to common denominators, and in the simple examples, which we shall have to put before the student in a subsequent chapter, the rules which we have already given will be found generally sufficient. But as we may have to find the L.c.m. of two or more expressions in which the elementary factors cannot be determined by inspection, we must now proceed to discuss a Rule for finding the l.c.m. of two expressions which is applicable to every case.
168. The rule for finding the L.c.m. of two expressions a and b is this.

Find d the highest common factor of a and b.
Then the L.C.3. of a and $b=\frac{a}{a} \times b$,

$$
\text { or, }=\frac{b}{d} \times a
$$

In words, the L.c.M. of two expressions is found by the following process :

Divide one of the expressions by the h.C.F. and multiply the quotient by the other expression. I'he result is the L.c.s.

The proof of this rule we shall now give.
169. To find the L.c.m. of two algebraical expressions.

Let a and b be the two algebraical expressions.
Let d be their h.c.f.,
x the required L.c.m.
Now since x is a multiple of a and b, we may say that

$$
\begin{aligned}
& x=m a, \quad x=n b ; \\
& \therefore m a=n b ; \\
& \therefore \frac{m}{n}=\frac{b}{a} \quad \text { (Art. 159). }
\end{aligned}
$$

Now since x is the Lowest Common Multiple of a and b, m and n can have no common factor ;
\therefore the fraction $\frac{m L}{n}$ must be in its lowest terms;

$$
\therefore m=\frac{b}{d} \quad \text { and } \quad n=\frac{a}{d} \quad \text { (Art. 16 } 6 \text {). }
$$

Hence, since

$$
\begin{aligned}
& x=m a, \\
& x=\frac{b}{d} \times a .
\end{aligned}
$$

Also, since

$$
x=n b
$$

$$
x=\frac{a}{d} \times b
$$

170. Ex. Find the L.c.m. of $x^{2}-13 x+42$ and $x^{2}-19 x+84$.

- First we find the h.c.f. of the two expressions to be $x-7$.

Then

$$
\mathrm{L} . \mathrm{C} . \mathrm{M} .=\frac{\left(x^{2}-13 x+42\right) \times\left(x^{2}-19 x+84\right)}{x-7}
$$

Now each of the factors composing the numerator is divisible by $x-7$.

Divide $x^{2}-13 x+42$ by $x-7$, and the quotient is $x-6$.
Hence L.с.м. $=(x-6)\left(x^{2}-19 x+84\right)=x^{3}-25 x^{2}+198 x-504$.

ExAMPLES.-xlvi.

Find the L.C.m. of the following expressions:

1. $x^{2}+5 x+6$ and $x^{2}+6 x+8$.
2. $a^{2}-a-20$ and $a^{2}+a-12$.
3. $x^{2}+3 x+2$ and $x^{2}+4 x+3$.
4. $x^{2}+11 x+30$ and $x^{2}+12 x+35$.
5. $x^{2}-9 x-22$ and $x^{2}-13 x+22$.
6. $2 x^{2}+3 x+1$ and $x^{2}-x-2$.
7. $x^{3}+x^{2} y+x y+y^{2}$ and $x^{4}-y^{4}$.
8. $x^{2}-8 x+15$ and $x^{2}+2 x-15$.
9. $21 x^{2}-26 x+8$ and $7 x^{3}-4 x^{2}-21 x+12$.
10. $x^{3}+x^{2} y+x y^{2}+y^{3}$ and $x^{3}-x^{2} y+x y^{2}-y^{3}$.

1 1. $a^{3}+2 a^{2} b-a b^{2}-2 b^{3}$ and $a^{3}-2 a^{2} b-a b^{2}+2 b^{3}$.
171. To find the L.c.m. of three expressions, denoted by a, b, c, we find m the L.c.m. of a and b, and then find M the L.C.M. of m and c. $\quad M$ is the L.c.m. of a, b and c.

The proof of this rule may be thus stated:
Every common multiple of a and b is a multiple of m, and every multiple of m is a multiple of a and b, therefore every common multiple of m and c is a common multiple of a, b and c,
and every common multiple of a, b and c is a common multiple of m and c,
and therefore the L.c.m. of m and c is the L.c.m. of a, b and c.

EXAMPLES.-xlvii.

Find the L.c.m. of the following expressions:
I. $x^{2}-3 x+2, x^{2}-4 x+3$ and $x^{2}-5 x+4$.
2. $x^{2}+5 x+4, x^{2}+4 x+3$ and $x^{2}+7 x+12$.
3. $x^{2}-9 x+20, x^{2}-12 x+35$ and $x^{2}-11 x+28$.
4. $6 x^{2}-x-2,21 x^{2}-17 x+2$ and $14 x^{2}+5 x-1$.
5. $x^{2}-1, x^{2}+2 x-3$ and $6 x^{2}-x-2$.
6. $x^{3}-27, x^{2}-15 x+36$ and $x^{3}-3 x^{2}-2 x+6$.

XI. ON ADDITION AND SUBTRACTION OF FRACTIONS.

172. Having established the Rules for finding the Lowest Common Multiple of given expressions, we may now proceed to treat of the method by which Fractions are combined by the processes of Addition and Subtraction.
173. Two Fractions may be replaced by two equivalent fractions with a Common Denominator by the following rule :

Find the l.c.m. of the denominators of the given fractions.
Divide the L.C.m. by the Denominator of each fraction.
Multiply the first Numerator by the first Quotient.
Multiply the second Numerator by the second Quotient.
The two Products will be the Numerators of the equivalent fractions whose common denominator is the L.C.M. of the original denominators.

The same rule holds for three, four, or more fractions.
174. Ex. 1. Reduce to equivalent fractioius with the lowest common denominator,

$$
\frac{2 x+5}{3} \text { and } \frac{4 x-7}{4}
$$

Denominators 3, 4.
Lowest Common Multiple 12.
Quotients 4, 3.
New Numerators $8 x+20,12 x-21$.
Equivalent Fractions $\frac{8 x+20}{12}, \frac{12 x-21}{12}$.
Ex. 2. Reduce to equivalent fractions with the lowest common denominator,

$$
\frac{5 b+4 c}{a b}, \frac{6 a-2 c}{a c}, \frac{3 a-5 b}{b c}
$$

Denominators $a b, a c, b c$.
Lowest Common Multiple $a b c$.
Quotients c, b, a.
New Numerators $5 b c+4 c^{2}, 6 a b-2 b c, 3 a^{2}-5 a b$.
Equivalent Fractions $\frac{5 b c+4 c^{2}}{a b c}, \frac{6 a b-2 b c}{a b c}, \frac{3 a^{2}-5 a b}{a b c}$.

EXAMPLES.-Xlviii.

Reduce to equivalent fractions with the lowest common denominator:
I. $\frac{3 x}{4}$ and $\frac{4 x}{5}$.
2. $\frac{3 x-7}{6}$ and $\frac{4 x-9}{18}$.
3. $\frac{2 x-4 y}{5 x^{2}}$ and $\frac{3 x-8 y}{10 x}$.
4. $\frac{4 a+5 b}{2 a^{2}}$ and $\frac{3 a-4 b}{5 a}$.
5. $\frac{4 a-5 c}{5 a c}$ and $\frac{3 a-2 c}{12 a^{2} c}$.
6. $\frac{a-b}{a^{3} b}$ and $\frac{a^{2}-a b}{a b^{2}}$.
7. $\frac{3}{1+x}$ and $\frac{3}{1-x}$.
S. $\frac{2}{1-y^{2}}$ and $\frac{2}{1+y^{2}}$.
9. $\frac{5}{1-x}$ and $\frac{6}{1-x^{2}}$.
10. $\frac{a}{c}$ and $\frac{b}{c(b+x)}$.

1 I. $\frac{1}{(a-b)(b-c)}$ and $\frac{1}{(a-b)(a-c)}$.
12. $\frac{1}{a b(a-b)(a-c)}$ and $\frac{1}{a c(a-c)(b-c)}$.
175. To shew that $\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d}$.

Suppose the unit to be divided into $b d$ equal parts.
Then $\frac{a d}{b} \bar{d}$ will represent $a d$ of these parts, and $\frac{b c}{b d}$ will represent $b c$ of these parts.
Now $\frac{a}{b}=\frac{a d}{b d}$, by Art. 148, and $\frac{c}{d}=\frac{b c}{b d}$.
Hence $\frac{a}{b}+\frac{c}{d}$ will represent $a d+b c$ of the parts.
Bui $\frac{a d+b c}{b d}$ will represent $a a+b c$ of the parcs.
Therefore $\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d}$.
By a similar process it may be shewn that

$$
\frac{a}{b}-\frac{c}{d}=\frac{a d-b c}{b d}
$$

176. Since $\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d}$,
our Rule for Addition of Fractions will run thus:
"Reduce the fractions to equivalent fractions having the Lowest Common Denominator. Then add the Numerators of the equivalent fractions and place the result as the Numerator of a fraction, whose Denominator is the Common Denominator of the equivalent fractions.

The fraction will be equal to the sum of the original fractions."

The beginner should, however, generally take two fractions at a time, and then combine a third with the resulting fraction, as will be shewn in subsequent Examples.

$$
\text { Also, since } \frac{a}{b}-\frac{c}{d}=\frac{a d-b c}{b d}
$$

the Kule for Subtracting one fraction from another will be,
"Reduce the fractions to equivalent fractions having the Lowest Common Denominator. Then subtract the Numerator of the second of the equivalent fractions from the Numerator of the first of the equivalent fractions, and place the result as the Numerator of a fraction, whose Denominator is the Common Denominator of the equivalent fractions. This fraction will be equal to the difference of the original fractions."
These rules we shall illustrate by examples of various degrees of difficulty.
Note. When a negative sign precedes a fraction, it is best to place the mumerator of that fraction in a bracket, before combining it with the numerators of other fractions.
177. Ex. l. To simplify

$$
\frac{4 x-3 y}{7}+\frac{3 x+7 y}{14}-\frac{5 x-2 y}{21}+\frac{9 x+2 y}{42} .
$$

Lowest Common Multiple of denominators is 42 .
Multiplying the numerators by $6,3,2,1$ respectively,

$$
\begin{aligned}
& \frac{24 x-18 y}{42}+\frac{9 x+21 y}{42}-\frac{10 x-4 y}{42}+\frac{9 x+2 y}{42} \\
= & \frac{24 x-18 y+9 x+21 y-(10 x-4 y)+9 x+2 y}{42} \\
= & \frac{24 x-18 y+9 x+21 y-10 x+4 y+9 x+2 y}{42} \\
= & \frac{32 x+9 y}{42} .
\end{aligned}
$$

Ex. 2. To simplify $\frac{2 x+1}{3 x}-\frac{4 x+2}{5 x}+\frac{1}{7}$.
Lowest Common Multiple of denominators is 105x.
Multiplying the numerators by 35, 21, $15 x$, respectively.

$$
\begin{array}{r}
\frac{70 x+35}{105 x}-\frac{84 x+42}{105 x}+\frac{15 x}{105 x} \\
=\frac{7(0 x+35-(84 x+42)+15 x}{105 x} \\
=\frac{7(x+35-84 x-42+15 x}{105 x}=\frac{x-7}{105 x} .
\end{array}
$$

[s....]

EXAMPLES.-xlix.
เ. $\frac{4 x+7}{5}+\frac{3 x-4}{15}$.
2. $\frac{3 a-4 b}{7}-\frac{2 a-b+c}{3}+\frac{13 a-4 c}{12}$.
3. $\frac{4 x-3 y}{1}+\frac{3 x+7 y}{14}-\frac{5 x-2 y}{21}+\frac{9 x+2 y}{42}$.
4. $\frac{3 x-2 y}{5 x}+\frac{5 x-7 y}{10 x}+\frac{8 x+2 y}{25}$.
5. $\frac{4 x^{2}-7 y^{2}}{3 x^{2}}+\frac{3 x-8 y}{6 x}+\frac{5-2 y}{12}$.
6. $\frac{4 a^{2}+5 b^{2}}{2 b^{2}}+\frac{3 a+2 b}{5 b}+\frac{7-2 a}{9}$.
7. $\frac{4 x+5}{3}-\frac{3 x-7}{5 x}+\frac{9}{12 x^{2}}$.
8. $\frac{5 a+2 b}{3 c}-\frac{4 c-3 b}{2 a}+\frac{6 a b-7 b c}{14 a c}$.
9. $\frac{2 a+5 c}{a^{2} c}+\frac{4 a c-3 c^{2}}{a c^{2}}-\frac{5 a c-2 c^{2}}{a^{2} c^{2}}$.
10. $\frac{3 x y-4}{x^{2} y^{2}}-\frac{5 y^{2}+7}{x y^{3}}-\frac{6 x^{2}-11}{x^{3} y}$.
11. $\frac{a-b}{a^{3} b}+\frac{4 a-5 b}{a^{2} b c}+\frac{3 a-7 b}{b^{2} c^{2}}$.
178. Ex. To simplify

$$
\frac{a-b}{a+b}+\frac{a+b}{a-b}
$$

L.C.M. of denominators is $a^{2}-b^{2}$.

Multiplying the numerators by $a-b$ and $a+b$ respectively, we get

$$
\begin{aligned}
& \begin{aligned}
& a^{2}-2 a b+b^{2} \\
& a^{2}-b^{2} a^{2}+2 a b+b^{2} \\
& a^{2}-b^{2}
\end{aligned} \\
= & \frac{a^{2}-2 a b+b^{2}+a^{2}+2 a b+b^{2}}{a^{2}-b^{2}} \\
= & \frac{2 a^{2}+2 b^{2}}{a^{2}-b^{2}} .
\end{aligned}
$$

EXAMPLES.-l.

1. $\frac{1}{x-6}+\frac{1}{x+5}$.
2. $\frac{1}{x-7}-\frac{1}{x-3}$.
3. $\frac{1}{1+x}+\frac{1}{1-x}$.
4. $\frac{x+y}{x-y}-\frac{x-y}{x+y}$.
5. $\frac{1}{1-x}-\frac{2}{1-x^{2}}$.
6. $\frac{a}{c}-\frac{(a d-b c) x}{c(c+d x)}$.
7. $\frac{x}{x+y}+\frac{x}{x-y}$.
8. $\frac{1}{x-y}+\frac{x}{(x-y)^{2}}$.
9. $\frac{2}{x+a}+\frac{3 a}{(x+a)^{2}}$.
10. $\frac{1}{2 a(a+x)}+\frac{1}{2 a(a-x)}$.
11. Ex. 1. To simplify

$$
\frac{3}{1+y}+\frac{5}{1-y}-\frac{6}{1+y^{2}}
$$

Taking the first two fractions

$$
\begin{aligned}
& \frac{3}{1+y}+\frac{5}{1-y} \\
= & \frac{3-3 y}{1-y^{2}}+\frac{5+5 y}{1-y^{2}} \\
= & \frac{8+2 y}{1-y^{2}} ;
\end{aligned}
$$

we can now combine with this result the third of the original fractions, and we have

$$
\begin{aligned}
& \frac{3}{1+y^{\prime}}+\frac{5}{1-y}-\frac{6}{1+y^{2}} \\
= & \frac{8+2 y}{1-y^{2}}-\frac{6}{1+y^{2}} \\
= & \frac{8+2 y+8 y^{2}+2 y^{3}}{1-y^{4}}-\frac{6-6 y^{2}}{1-y^{4}} \\
= & \frac{8+2 y+8 y^{2}+2 y^{3}-6+6 y^{2}}{1-y^{4}} \\
= & \frac{2 y^{3}+14 y^{2}+2 y+2}{1-y^{4}} .
\end{aligned}
$$

Ex. 2. To simplify

$$
\frac{2}{(a-b)(b-c)}+\frac{2}{(a-b)(c-a)}+\frac{2}{(b-c)(c-a)},
$$

L.C.M. of first two denominators being $(a-b)(b-c)(a-a)$

$$
\begin{aligned}
& =\frac{2 c-2 a}{(a-b)(b-c)(c-a)}+\frac{2 b-2 c}{(a-b)(b-c)(c-a)}+\frac{2}{(b-c)(c-a)} \\
& =\frac{2 b-2 a}{(a-b)(b-c)(c-a)}+\frac{2}{(b-c)(c-a)^{\circ}}
\end{aligned}
$$

L.C.M. of the two denominators being $(a-b)(b-c)(c-a)$

$$
=\frac{2 b-2 a+2 a-2 b^{-}}{(a-b)(b-c)(c-a)}=\frac{0}{(a-b)(b-c)(c-a)}=0 .
$$

EXAMPLES.-li.

1. $\frac{1}{1+a}+\frac{1}{1-a}+\frac{2 a}{1-a^{2}} . \quad$ 4. $\frac{1}{a-b}-\frac{1}{a+b}-\frac{2 b}{a^{2}+b^{2}}-\frac{4 b^{3}}{a^{4}+b^{4}}$.
2. $\frac{1}{1-x}-\frac{1}{1+x}+\frac{2 x}{1+x^{2}}$. 5. $\frac{x}{y}+\frac{y}{x+y}+\frac{x^{2}}{x^{2}+x y}$.
3. $\frac{x}{1-x}-\frac{x^{2}}{1-x^{2}}+\frac{x}{1+x^{2}}$.
4. $\frac{x+3}{x+4}+\frac{x-4}{x-3}+\frac{x+5}{x+7}$.
5. $\frac{x-1}{x-2}+\frac{x-2}{x-3}+\frac{x-3}{x-4}$.
6. $\frac{3}{x-a}+\frac{4 a}{(x-a)^{2}}-\frac{5 a^{2}}{(x-a)^{3}}$
7. $\frac{1}{x-1}-\frac{1}{x+2}-\frac{3}{(x+1)(x+2)}$.
8. $\frac{1}{(x+1)(x+2)}-\frac{3}{(x+1)(x+2)(x+3)}$.
II. $\frac{x^{2}}{x-1}+\frac{x}{x-1}+\frac{x}{x+1}$.
9. $\frac{1}{(a+c)(a+d)}-\frac{1}{(a+c)(a+e)^{\circ}}$.
10. $\frac{a-b}{(b+c)(c+a)}+\frac{b-c}{(c+a)(a+b)}+\frac{c-a}{(a+b)(b+c)}$.
11. $\frac{x-a}{x-b}+\frac{x-b}{x-a}-\frac{(a-b)^{2}}{(x-a)(x-b)}$.
12. $\frac{x+y}{y}-\frac{2 x}{x+y}+\frac{x^{2} y-x^{3}}{y\left(x^{2}-y^{2}\right)}$.
13. $\frac{a+b}{(b-c)(c-a)}+\frac{b+c}{(c-a)(a-b)}+\frac{c+a}{(a-b)(b-c)}$.
14. $\frac{x}{x^{2}+x y+y^{2}}+\frac{2 x y}{x^{3}-y^{3}}$.
15. $\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}+\frac{(a-b)^{2}+(b-c)^{2}+(c-a)^{2}}{(a-b)(b-c)(c-a)}$.
16. $\frac{a+b}{b}-\frac{2 a}{a+b}+\frac{a^{2} b-a^{3}}{a^{2} b-b^{3}}$.
17. $\frac{1}{(n+1)(n+2)}-\frac{1}{(n+1)(n+2)(n+3)}-\frac{1}{(n+1)(n+3)}$.
18. $\frac{a^{2}-b c}{(a+b)(a+c)}+\frac{b^{2}-a c}{(b+a)(b+c)}+\frac{c^{2}-a b}{(c+b)(c+a)}$.
19. Since $\frac{a b}{b}=a$, and $\frac{-a b}{-b}=a$, Art. 77,

$$
\frac{a b}{b}=\frac{-a b}{-b}
$$

From this we learn that we may change the sign of the dengminator of a fraction if we also change the sign of the nuinerator.

Hence if the numerator or denominator, or both, be expressions with more than one term, we may change the sign of every term in the denominator if we also change the sign of every term in the numerator

For

$$
\begin{aligned}
\frac{a-b}{c-d} & =\frac{-(a-b)}{-(c-d)} \\
& =\frac{-a+b}{-c+d} ;
\end{aligned}
$$

or, writing the terms of the new fraction so that the positive terms may stand first,

$$
=\frac{b-a}{d-c}
$$

181. Ex: To simplify $\frac{a(a+x)}{a-x}-\frac{5 a x-x^{2}}{x-a}$.

Changing the signs of the numerator and denominator of the second fraction,

$$
\begin{gathered}
\frac{x(a+x)}{a-x}-\frac{-5 a x+x^{2}}{a-x} \\
=\frac{a x+x^{2}-\left(-5 a x+x^{2}\right)}{a-x}=\frac{a x+x^{2}+5 a x-x^{2}}{a-x}=\frac{6 a x}{a-x} .
\end{gathered}
$$

182. Again, since $-a b=$ the product of $-a$ and b, and $\quad a b=$ the product of $+a$ and b,
the sign of a product will be changed by changing the signs of one of the factors composing the product.

Hence $(a-b)(b-c)$ will give a set of terms, and $(b-a)(b-c)$ will give the same set of terms with different signs

This may be seen by actual multiplication :

$$
\begin{aligned}
& (a-b)(b-c)=a b-a c-b^{2}+b c \\
& (b-a)(b-c)=-a b+a c+b^{2}-b c
\end{aligned}
$$

Consequently if we have a fraction

$$
\frac{1}{(a-b)(b-c)},
$$

and we change the factor $a-b$ into $b-a$, we shall in effect change the sign of every term of the expression which would result from the multiplication of $(a-b)$ into $(b-c)$.

Now we may change the signs of the denominator if we also change the signs of the numerator (Art. 180);

$$
\therefore \frac{1}{(a-b)(b-c)}=\frac{-1}{(b-a)(b-c)} .
$$

If we change the signs of two factors in a denominator, the sign of the numerator will remain unaltered, thus

$$
\frac{1}{(a-b)(b-c)}=\frac{1}{(b-a)(c-b)^{\circ}}
$$

183. EX. Simplify

$$
\frac{1}{(a-b)(b-c)}+\frac{1}{(b-a)(x-c)}-\frac{1}{(c-a)(c-b)} .
$$

First change the signs of the factor. $(b-a)$ in the second fraction, changing also the sign of the numerator ; and change the signs of the factor $(c-a)$ in the third fraction, changing also the sign of the numerator,
the result is $\frac{1}{(a-b)(b-c)}+\frac{-1}{(a-b)(a-c)}-\frac{-1}{(a-c)(c-b)}$.
Next, change the signs of the factor $(c-b)$ in the third, changing also the sign of the numerator, the result is $\frac{1}{(a-b)(b-c)}+\frac{-1}{(a-b)(a-c)}-\frac{1}{(a-c)(b-c)}$.
L.C.M. of the three denominators is $(a-b)(b-c)(a-c)$,

$$
\begin{aligned}
& =\frac{a-c}{(a-b)(b-c)(a-c)}+\frac{-b+c}{(a-b)(a-c)(b-c)}-\frac{a-b}{(a-b)(a-c)(b-c)} \\
& =\frac{a-c-b+c-(a-b)}{(a-b)(b-c)(a-c)}=\frac{0}{(a-b)(b-c)(a-c)}=0 .
\end{aligned}
$$

EXAMPLES.-lii.

1. $\frac{x}{x-y}+\frac{x-y}{y-x}$.
2. $\frac{3+2 x}{2-x}-\frac{2-3 x}{2+x}+\frac{16 x-x^{2}}{x^{2}-4}$.
3. $\frac{x}{x+1}-\frac{x}{1-x}+\frac{x^{2}}{x^{2}-1}$.
4. $\frac{1}{6 y+6}-\frac{1}{2 y-2}+\frac{4}{3-3 y^{2}}$.
5. $\frac{1}{(m-2)(m-3)}+\frac{2}{(m-1)(3-m)}+\frac{1}{(m-1)(m-2)}$.
6. $\frac{1}{(a-b)(x+b)}+\frac{1}{(b-a)(x+a)} \quad$ 7. $\quad \frac{a^{2}+b^{2}}{a^{2}-b^{2}}-\frac{2 a b^{2}}{a^{3}-b^{3}}+\frac{2 a^{2} b}{a^{3}+b^{3}}$.
7. $\frac{1}{4(1+x)}-\frac{1}{4(x-1)}+\frac{1}{2\left(1+x^{2}\right)}$.
8. $\frac{1}{(x-y)(y-z)}+\frac{1}{(y-x)(x-z)}+\frac{1}{(z-x)(z-y)}$.
9. $\frac{1}{a(a-b)(a-c)}+\frac{1}{b(b-a)(b-c)}+\frac{1}{c(c-a)(c-b)^{\circ}}$

104 ADDITION AND SUBTRACTION OF FRACTIONS.
184. EX. To simplify

$$
\frac{1}{x^{2}-11 x+30}+\frac{1}{x^{2}-12 x+35}
$$

Here the clenominators may be expressed in factors, and we have

$$
\frac{1}{(x-5)(x-6)}+\frac{1}{(x-5)(x-7)}
$$

The L.C.M. of the denominators is $(x-5)(x-6)(x-7)$, and we have

$$
\begin{gathered}
\frac{x-7}{(x-5)(x-6)(x-7)}+\frac{x-6}{(x-5)(x-6)(x-7)} \\
=\frac{2 x-13}{(x-5)(x-6)(x-7)}
\end{gathered}
$$

EXAMPLES.-liii.

1. $\frac{1}{x^{2}+9 x+20}+\frac{1}{x^{2}+12 x+35}$.
2. $\frac{1}{x^{2}-13 x+42}+\frac{1}{x^{2}-15 x+54}$.
3. $\frac{1}{x^{2}+7 x-44}+\frac{1}{x^{2}-2 x-143}$.
4. $\frac{1}{x^{2}+3 x+2}+\frac{2 x}{x^{2}+4 x+3}+\frac{1}{x^{2}+5 x+6}$.
5. $\frac{m}{n}+\frac{2 m}{m+n}-\frac{2 m n}{(m+n)^{2}}$.
6. $\frac{1+x}{1+x+x^{2}}+\frac{1-x}{1-x+x^{2}}-\frac{2}{1+x^{2}+x^{4}}$.
7. $\frac{5}{3(1-x)}-\frac{2}{1+x}+\frac{7 x}{3 x^{2}+5}-\frac{7 x}{3 x^{2}-3}$.
8. $\frac{1}{8(x-1)}+\frac{1}{4(3-x)}+\frac{1}{8(x-5)}+\frac{1}{(1-x)(x-3)(x-5)}$.
9. $1-x+x^{2}-x^{3}+\frac{x^{4}}{1+x}$.

XII. ON FRACTIONAL EQUATIONS.

185. We shall explain in this Chapter the method of solving, first, Equations in which fractional terms occur, and secondly, Problems leading to such Equations.
186. An Equation involving fractional terms may be reduced to an equivalent Equation without fractions by multiplying every term of the equation by thc Lowest Common Multiple of the denominators of the fractional terms.

This process is in accordance with the principle laid down in Ax. IIr. page 58 ; for if both sides of an equation be multiplied by the same expression, the resulting products will, by that Axiom, be equal to each other.
187. The following examples will illustrate the process of clearing an Equation of Fractions.

Ex. 1. $\frac{x}{2}+\frac{x}{6}=8$.
The L.c.m. of the denominators is 6.
Multiplying both sides by 6 , we get

$$
\begin{aligned}
\frac{6 x}{2}+\frac{6 x}{6} & =48, \\
3 x+x & =48, \\
4 x & =48 ; \\
\therefore x & =12 .
\end{aligned}
$$

or,
or, $\quad 4 x=48$;

Ex. 2. $\frac{x}{2}+\frac{x+1}{7}=x-2$.
The L.c.m. of the dencminators is 14 .
Multiplying both sides by 14 , we get

$$
\frac{14 x}{2}+\frac{14 x+14}{7}=14 x-28
$$

or,
or, $\quad 7 x+2 x-14 x=-28-2$,
or,

$$
-5 x=-30
$$

Changing the signs of both sides, we get

$$
\begin{aligned}
5 x & =30 ; \\
\therefore x & =6 .
\end{aligned}
$$

188. The process may be shortened from the following considerations. If we have to multiply a fraction by a multiple of its denominator, we may first divide the multiplier by the denominator, and then multiply the numerator by the quotient. The result will be a whole number.

Thus,

$$
\begin{gathered}
\frac{x}{3} \times 12=x \times 4=4 x, \\
\frac{x-1}{7} \times 56=(x-1) \times 8=8 x-8 .
\end{gathered}
$$

Ex. 1. $\frac{x}{2}+\frac{x}{3}+\frac{x}{4}=39$.
The t.c.m. of the denominators being 12, if we multiply the numerators of the fractions by 6,4 , and 3 respectively, and the other side of therequation by 12 , we get

$$
\begin{aligned}
6 x+4 x+3 x & =468, \\
13 x & =468 ; \\
\therefore x & =36 .
\end{aligned}
$$

Ex. 2. $\frac{8}{x}-\frac{15}{2 x}+\frac{7}{3 x}=\frac{17}{12}$.
The l.c.m. of the denominators is $12 x$. Hence, if we multiply the numerators by $12,6,4$, and x respectively, we get

$$
\begin{aligned}
& 96-90+28 & =17 x, \\
\text { or, } & 34 & =17 x, \\
\text { or, } & 17 x & =34 ; \\
& \therefore x & =2 .
\end{aligned}
$$

EXAMPLES.—liv.

1. $\frac{x}{2}=8$.
2. $\frac{3 x}{4}=9$.
3. $\frac{x}{3}+\frac{x}{5}=8$.
4. $\frac{x}{4}-\frac{x}{7}=3$.
5. $36-\frac{4 x}{9}=8$.
6. $\frac{2 x}{3}=\frac{176-4 x}{5}$.
7. $\frac{2 x}{2}+4=\frac{7 x}{12}+9$.
8. $\frac{2 x}{3}+12=\frac{4 x}{5}+6$.
9. $\frac{3 x}{4}+5=\frac{5 x}{6}+2$.
10. $\frac{x+2}{5}+\frac{x-1}{7}=\frac{x-2}{2}$.
11. $\frac{x}{2}+\frac{x}{3}=9 \frac{3}{4}-\frac{x}{4}$.
12. $\frac{x+9}{4}+\frac{2 x}{7}=\frac{3 x-6}{5}+3$.
13. $\frac{7 x}{8}-5=\frac{9 x}{10}-8$.
14. $\frac{17-3 x}{5}=\frac{29-11 x}{3}+\frac{28 x+14}{21}$.

I I. $\frac{5 x}{9}-8=74-\frac{7 x}{12}$.
21. $\frac{2 x-10}{7}=0$.
12. $\frac{x}{6}-4=24-\frac{x}{8}$.
22. $\frac{3 x+4}{7}+\frac{4 x-51}{47}=0$.
13. $56-\frac{3 x}{4}=48-\frac{5 x}{8}$.
23. $\frac{3}{x}-3=\frac{1}{x}-1$.
14. $\frac{3 x}{4}+\frac{180-5 x}{6}=29$.
24. $\frac{12+x}{x}-5=\frac{6}{x}$.
15. $\frac{3 x}{4}-11=\frac{x-8}{2}$.
25. $\frac{1}{4} x+\frac{1}{10} x+\frac{1}{20} x=40$.
16. $\frac{x}{2}+\frac{x}{3}+\frac{x}{4}=\frac{13}{12}$.
26. $2 \frac{1}{4} x+\frac{3-x}{2}=3 \frac{5}{8} x-43 \frac{1}{2}$.
27. $2 \frac{3}{4}-\frac{3}{x}=\frac{1}{x}-\frac{325}{100}$.
28. $2 \frac{1}{2}+\frac{18-x}{3}=1 \frac{1}{9} x+\frac{1}{3}+\frac{3-2 x}{10}+\frac{2}{5}$.
29. $\frac{x}{3}+\frac{x}{4}-\frac{5 x}{6}-12=1 \frac{2}{3} x-58$.
30. $\frac{7 x+2}{10}-12-\frac{3 x}{4}=\frac{3 x+13}{5}-\frac{17 x}{4}$.
189. It must next be observed that in clearing an equation of fractions, whenever a fraction is prectded by a negative sign, we must place the result obtained by multiplying that numerator in a bracket, after the removal of the denominator.

For example, we ought to proceed thus:-
Ex. 1. $\frac{x+2}{5}=\frac{x-2}{2}-\frac{x-1}{7}$.
Multiply by 70 , the I.C.m. of the denominators, and we get

$$
\begin{aligned}
& 14 x+28 \\
& \text { or } \quad 35 x-70-(10 x-10), \\
& 14 x+28=35 x-70-10 x+10,
\end{aligned}
$$

from which we shall find $x=8$.
Ex. 2. $\frac{17-2 x}{5 x}-\frac{4 x+2}{3 x}=1$.
Multiplying by $15 x$, the L.c.m. of the denominators, we get

$$
51-6 x-(20 x+10)=15 x,
$$

or $\quad 51-6 x-20 x-10=15 x$,
from which we shall find $x=1$.
Note. It is from want of attention to this way of treating fractions preceded by a negative sign that beginners make so many mistakes in the solution of equations.

EXAMPLES.-lv.
I. $5 x-\frac{x+2}{2}=71$.
2. $x-\frac{3-x}{3}=5 \frac{2}{3}$.
3. $\frac{5-2 x}{4}+2=x-\frac{6 x-8}{2}$.
4. $\frac{5 x}{2}-\frac{5 x}{4}=\frac{9}{4}-\frac{3-x}{2}$.
5. $2 x-\frac{5 x-4}{6}=7-\frac{1-2 x}{5}$.
6. $\frac{x+2}{2}=\frac{14}{9}-\frac{3+5 x}{4}$.
7. $\frac{5 x+3}{8}-\frac{3-4 x}{3}+\frac{x}{2}=\frac{31}{2}-\frac{9-5 x}{6}$.
8. $\frac{x+5}{7}-\frac{x-2}{5}=\frac{x+9}{11}$.
10. $x-3-\frac{x+2}{8}=\frac{x}{3}$
9. $\frac{x+1}{3}-\frac{x-4}{7}=\frac{x+4}{5}$.
II. $\frac{x+5}{7}=\frac{x+2}{4}-\frac{x-2}{3}$.
that is
or,
therefo
Ex.
that is, or,
therefo
I. $a x$
2. $2 a$
3. $b c$
12. $\frac{x}{3}-\frac{x-1}{11}=x-9$.
15. $\frac{x+1}{2}-\frac{x-3}{3}=\frac{x+30}{13}$.
13. $\frac{x+2}{5}=\frac{x-2}{2}-\frac{x-1}{7}$.
16. $\frac{2 x}{7}-\frac{x+3}{5}=3 x-21$.
14. $\frac{x+9}{4}-\frac{3 x-6}{5}=3-\frac{2 x}{7}$.
17. $\frac{2 x+7}{7}-\frac{9 x-8}{11}=\frac{x-11}{2}$.
18. $\frac{7 x-31}{4}-\frac{8+15 x}{26}=\frac{7 x-8}{22}$.
19. $\frac{8 x-15}{3}-\frac{11 x-1}{7}=\frac{7 x+2}{13}$.
20. $\frac{7 x+9}{8}-\frac{3 x+1}{7}=\frac{9 x-13}{4}-\frac{249-9 x}{14}$.
21. $\frac{x}{10}+10 x=\frac{x}{2}+\frac{x}{5}+\frac{x}{40}-\frac{10-x}{7}+93 \frac{3}{4}$.
190. Literal equations are those in which known quantities are represented by letters, usually the first in the alphabet. The following are examples :-

Ex. 1. To solve the equation
that is,

$$
\begin{aligned}
a x+b c & =b x+a c, \\
a x-b x & =a c-b c, \\
(a-b) x & =(a-b) c, \\
x & =c .
\end{aligned}
$$

Ex. 2. To solve the equation
that is,

$$
\begin{aligned}
& a^{2} x+b x-c=b^{2} x+c x-d, \\
& a^{2} x+b x-b^{2} x-c x=c-d, \\
& \left(a^{2}+b-b^{2}-c\right) x=c-d,
\end{aligned}
$$

or,
therefore,

$$
x=\frac{c-d}{a^{2}+b-b^{2}-c} .
$$

EXAMPLES:-lvi.
I. $a x+b x=c$.
2. $2 a-c x=3 c-5 b x$.
3. $b c+a x-d=a^{2} b-f x$,
4. $d m-5 x=b c-a x$.
5. $a b c-a^{2} x=a x-a^{2} b$.
6. $3 a c x-6 b c d=12 c d x+a b c$.
7. $k^{2}+3 a c k x+3 k=k x+3 a b k-k^{2}-a c k x$.
8. $-a c^{2}+b^{2} c+a b c x=a b c+c m x-a c^{2} x+b^{2} c-m c$.
9. $(a+x+b)(a+b-x)=(a+x)(b-x)-a b$.
10. $(a-x)(a+x)=2 a^{2}+2 a x-x^{2}$.

I I. $\left(a^{2}+x\right)^{2}=x^{2}+4 a^{2}+a^{4}$.
12. $\left(a^{2}-x\right)\left(a^{2}+x\right)=a^{4}+2 a x-x^{2}$.
13. $\frac{a x-b}{c}+a=\frac{x+a c}{c}$.
17. $\frac{m\left(p^{2} x+x^{3}\right)}{p x}=m q x+\frac{m x^{2}}{p}$.
14. $a x-\frac{3 a-b x}{2}=\frac{1}{2}$.
18. $\frac{x}{a}-b=\frac{c}{d}-x$.
15. $6 a-\frac{4 a x-2 b}{3}=x$.
19. $\frac{x^{2}-a}{b x}-\frac{a-x}{b}=\frac{2 x}{b}-\frac{a}{x}$.
16. $a x-\frac{b x+1}{x}=\frac{a\left(x^{2}-1\right)}{x}$.
20. $\frac{3}{c}-\frac{a b-x^{2}}{b x}-\frac{4 x-a c}{c x}$.
21. $\frac{a b+x}{b^{2}}-\frac{b^{2}-x}{a^{2} b}=\frac{x-b}{a^{2}}-\frac{a b-x}{b^{2}}$.
22. $\frac{3 a x-2 b}{3 b}-\frac{a x-a}{2 b}=\frac{a x}{b}-\frac{2}{3}$.
23. $a m-b-\frac{a x}{b}+\frac{x}{m}=0$.
24. $\frac{2 a^{2} b^{3}}{(a+b)}-\frac{b^{2} x}{a(a+b)}+\frac{3 a^{2} c}{a+b}=\frac{3 a c x}{b}-\frac{b^{3}-2 a b^{2} x}{(a+b)}$.
25. $\frac{a x^{2}}{b-c x}+a+\frac{a x}{c}=0$.
27. $\frac{a b}{x}=b c+d+\frac{1}{x}$.
26. $\frac{a\left(d^{2}+x^{2}\right)}{d x}=a c+\frac{a x}{d}$.
28. $c=a+\frac{m(a-x)}{3 a+x}$.
29. $(a+x)(b+x)-a(b+c)=\frac{a^{2} c}{b}+x^{2}$.
30. $\frac{a c e}{d}-\frac{(a+b)^{2} \cdot x}{a}-b x=a e-3 b x$.
191. In the examples already given the L.C.M. of the denominators can generally be determined by inspection. When compound expressions appear in the denominators, it is sometimes desirable to collect the fractions into two, one
on each side of the equation. When this has been done, we can clear the equation of fractions by multiplying the numerator on the left by the denominator on the right, and the numerator on the right by the denominator on the left, and making the produ ts equal.

For, if $\frac{a}{b}=\frac{c}{d}$, it is evident that $a d=b c$.
Ex.

$$
\begin{gathered}
\quad \frac{4 x+5}{10}-\frac{13 x-6}{7 x+4}=\frac{2 x-3}{5} ; \\
\therefore \frac{4 x+5}{10}-\frac{2 x-3}{5}=\frac{13 x-6}{7 x+4} ; \\
\therefore \frac{4 x+5-(4 x-6)}{10}=\frac{13 x-6}{7 x+4} ; \\
\quad \therefore \frac{11}{10}=\frac{13 x-6}{7 x+4} ;
\end{gathered}
$$

$\therefore 11(7 x+4)=10(13 x-6):$
whence we find

$$
x=\frac{104}{53} .
$$

EXAMPLES.-lvii.

6. $\frac{2}{1-5 x}-\frac{5}{1-2 x}=0$.
I. $\frac{3 x+7}{4 x+5}=\frac{3 x+5}{4 x+3}$.
7. $\frac{1}{x-1}+\frac{1}{x+1}=\frac{3}{x^{2}-1}$.
8. $\frac{x+6}{2 x+5}=\frac{x}{2 x-5}$.
9. $\frac{4 x+3}{9}=\frac{8 x+19}{18}-\frac{7 x-29}{5 x-12}$.
10. $\frac{5 x-1}{2 x+3}=\frac{5 x-3}{2 x-3}$.
11. $\frac{x}{3}-\frac{x^{2}-5 x}{3 x-7}=\frac{2}{3}$.
12. $\frac{1}{3 x-2}+\frac{2}{4 x-3}=0$.
13. $\frac{3 x+2}{x-1}+\frac{2 x-4}{x+2}=5$.
14. $\frac{1}{6}(x+3)-\frac{1}{7}(11-x)=\frac{2}{5}(x-4)-\frac{1}{21}(x-3)$.
15. $\frac{(x+1)(2 x+2)}{(x-3)(x+6)}-2=0$.
16. $\frac{3}{x+1}-\frac{x+1}{x-1}=\frac{x^{2}}{1-x^{2}}$.
17. $\frac{(2 x+3) x}{2 x+1}+\frac{1}{3 x}=x+1$.
18. $\frac{2}{1-x}+\frac{8}{1+x}=\frac{45}{1-x x^{2}}$.
19. $\frac{4}{x-8}+\frac{3}{2 x-16}-1 \frac{5}{24}=\frac{2}{3 x-24}$.
20. $\frac{x^{4}-\left(4 x^{2}-20 x+24\right)}{x^{2}-2 x+4}=x^{2}+2 x-4$.
21. $\frac{2 x^{4}+2 x^{3}-23 x^{2}+31 x}{x^{2}+3 x-4}=2 x^{2}-4 x-3$.
22. $\frac{1}{4} x-1=\frac{1}{16 x}\left(4 x^{2}-3 x-1 \frac{5}{8}\right)$.
23. $5-x\left(3 \frac{1}{2}-\frac{2}{x}\right)=\frac{1}{2} x-\frac{3 x-(4-5 x)}{4}$.
24. Equations into which Decimal Fractions enter do not present any serious difficulty, as may be seen from the following Examples:-

Ex. 1. To solve the equation

$$
\cdot 5 x=\cdot 03 x+1 \cdot 41
$$

Turning the decimals into the form of Vulgar Fractions, we get

$$
\frac{5 x}{10}=\frac{3 x}{100}+\frac{141}{100}
$$

Then multiplying both sides by 100 , we get

$$
50 x=3 x+141 ;
$$

therefore

$$
47 x=141 ;
$$

therefore

$$
x=3 .
$$

EX. 2. $1 \cdot 2 x-\frac{\cdot 18 x-05}{5}=\cdot 4 x+8 \cdot 9$.
First clear the fraction of decimals by multipiying its numerator and denominator by 100 , and we get

		$1 \cdot 2 x-\frac{18 x-5}{50}$	$=4 x+8 \cdot 9 ;$
therefore	$\frac{12 x}{10}-\frac{18 x-5}{50}$	$=\frac{4 x}{10}+\frac{89}{10} ;$	
	therefore	$60 x-18 x+5$	$=20 x+445 ;$
	therefore	$22 x$	$=440 ;$
	therefore	x	$=20$,

the fir

No Then,
and theref in oth Is

ExAMPLES.-lviii.

1. $\cdot \bar{j} x-2=\cdot 25 x+\cdot 2, x-1$.
2. $3 \cdot 25 x-5 \cdot 1+x-75 x=3 \cdot 9+\cdot 5 x$.
3. $\cdot 125 x+\cdot 01 x=13-\cdot 2 x+4$.
4. $\cdot 3 x+1 \cdot 305 x+\cdot 5 x=22 \cdot 95-\cdot 195 x$.
5. $\cdot 2 x-\cdot 01 x+\cdot 005 x=11 \cdot 7$.
6. $2 \cdot 4 x-\frac{\cdot 36 x-05}{5}=8 x+8 \cdot 9$.
7. $2 \cdot 4 x-10 \cdot 75=\cdot 25 \cdot x$.
8. $\cdot 5 x+2-75 x=\cdot 4 x-11$.
9. $\frac{4.05}{9 x}+3.875=4.025$.
10. $2 \cdot 5 x-\frac{2+x}{7}\left(\frac{1}{4}-2\right)=5-\frac{5 x+3}{8}$.
11. $\frac{8 \cdot 5}{2}-\frac{\cdot 2}{x}=4 \frac{1}{4}-\frac{1-\cdot 1 x}{x} . \quad$ I 2. $\frac{\cdot 48 x}{6}-\frac{3-4 x}{\cdot 2}=1993$.
12. $\frac{2-3 x}{1 \cdot 5}+\frac{5 x}{1 \cdot 25}-\frac{2 x-3}{9}=\frac{x-2}{1.8}+2 \frac{7}{9}$.
13. $\frac{24 \cdot 08}{x}+\frac{1}{x} \cdot \cdot 04(x+9)=241 \cdot 2$.
14. $\cdot 5 x+\frac{.45 x-75}{6}=\frac{1 \cdot 2}{\cdot 2}-\frac{\cdot 3 x-6}{9}$.
15. $5-\frac{3 \cdot 5 \cdot x}{x-2}-\frac{24-3 x}{8}=375 x$.
16. $\cdot 15 x+\frac{\cdot 135 x-\cdot 225}{6}=\frac{\cdot 36}{\cdot 2}-\frac{.09 x-\cdot 18}{9}$.
17. To shew that a simple equation can only have one root.

Let $x=a$ be the equation, a form to which all equations of the first degree may be reduced.

Now suppose α and β to be two roots of the equation. Then, by Art. 109,
and

$$
\begin{aligned}
& a=a, \\
& \beta=a, \\
& a=\beta ;
\end{aligned}
$$

therefore
in other words, the two supposed roots are identical.
[s.a.]

\rightarrow

XIII. PROBLEMS IN FRACTIONAL EQUATIONS.

194. We shall now give a series of Easy Problems resulting for the most part in Fractional Equations.

Take the following as an example of the form in which such Problems should be set out ' y a beginner.
"Find a number such that the sum of its third and fourth parts shall be equal to 7."

Suppose x to represent the number.
Then $\frac{x}{3}$ will represent the third part of the number,
and $\frac{x}{4}$ will represent the fourth part of the number.
Hence $\frac{x}{3}+\frac{x}{4}$ will represent the sum of the two parts.
But 7 will represent the sum of the two parts.
Therefore

$$
\frac{x}{3}+\frac{x}{4}=7 .
$$

Hence

$$
\begin{aligned}
4 x+3 x & =84, \\
7 x & =84, \\
x & =12,
\end{aligned}
$$

that is,
and therefore the number sought is 12 .
EXAMPLES.-lix.
I. What is the number of which the half, the fourth, and the fifth parts added together give as a result 95 ?
2. What is the number of which the twelfth, twentieth, and fortieth parts added together give as a result 38 ?
3. What is the number of which the fourth part exceeds the fifth part by 4 ?
quot
is 1
4. What is the number of which the twenty-fifth part exceeds the thirty-fifth part by 8 ?
5. Divide 60 into two such parts that a seventh part of one may be equal to an eighth part of the oiher.
6. Divide 50 into two such parts that one-fourth of one part being added to five-sixths of the other part the sum may be 40 .
7. Divide 100 into two such parts that if a third part of the one be subtracted from a fourth part of the other the remainder may be 11 .
8. What is the number which is greater than the sum of its third, tenth, and twelfth parts by 58 ?
9. When I have taken away from 33 the fourth, fifth, and tenth parts of a certain number, the remainder is zero. What is the number?
10. What is the number of which the fourth, fifth, and sixth parts added together exceed the half of the number by 112 ?
II. If to the sum of the half, the third, the fourth, and the twelfth parts of a certain number I add 30 , the sum is twice as large as the original number. Find the number.
12. The difference between two numbers is 8 , and the quotient resulting from the division of the greater by the less is 3 . What are the numbers?
13. The seventh part of a man's property is equal to his whole property diminished by $£ 1626$. What is his property?
14. The difference between two numbers is 504 , and the quotient resulting from the division of the greater by the less is 15 . What are the numbers?
15. The sum of two numbers is 5760, and their difference is equal to one-third of the greater. What are the numbers?
16. To a certain number I add its half, and the result is as much above 60 as the number itself is below 65. Find the number.

```
116 PROBLEMS IN FRACTIONAL EQUATIONS.
```

17. The difference between two numbers is 20 , and oneseventh of the one is equal to one-third of the other. What are the numbers?
18. The sum of two numbers is 31207 . On dividing one by the other the quotient is found to be 15 and the remainder 1335. What are the numbers?
19. The ages of two brothers amoment to 27 years. On dividing the age of the elder by that of the younger the yuotient is $3 \frac{1}{2}$. What is the age of each?
20. Divide 237 into two such parts that one is four-fifths of the other.
21. Divide $£ 1800$ between A and B, so that B 's share may betwo-sevenths of A's share.
22. Divide 46 into two such parts that the sum of the quotients obtained by dividing one part by 7 and the other by 3 may be equal to 10 .
23. Divide the number a into two such parts that the sum of the quotients obtained by dividing one part by m and the other by n may be equal to b.
24. The sum of two numbers is a, and their difference is b. Find the numbers.
25. On multiplying a certain number by 4 and dividing the product by 3 , I oltain 24 . What is the number?
26. Divide $£ 864$ between A, B, and C, so that A gets $\frac{5}{11}$ of what B gets, and C 's share is equal to the sum of the shares of A and B.
27. A man leaves the half of his property to his wife, a sixth part to each of his two children, a twelfth part to his brother, and the rest, amounting to $£ 600$, to charitable uses. What was the amount of his property?
28. Find two numbers, of which the sum is 70 , such that the first divided by the second gives 2 as a quotient and 1 as a remainder.
29. Find two numbers of which the difference is 25 , such that the second divided by the first gives 4 as a quotient and 4 as a remainder.
30. Divide the number 208 into two parts such that the sum of the fourth of the greater and the third of the less is less by 4 than four times the difference between the two partc.

3I. There are thirteen days between division of term and the end of the first two-thirds of the term. How many days are there in the term?
32. Out of a cask of wine of which a fifth part had leaked away 10 gallons were drawn, and then the cask was two-thirds full. How much did it hold?
33. The sum of the ages of a father and son is half what it will be in 25 years: the difference is one-third what the sum will be in 20 years. Find the respective ages.
34. A mother is 70 years oll, her daughter is exactly half that age. How many years have passed since the mother was $3 \frac{1}{3}$ times the age of the danghter?
35. A is 72, and B is two-thirds of that age. How long is it since A was 5 times as old as B ?

Note I. If a man can do a piece of work in x hours, the part of the work which he can do in one hour will be represented by $\frac{1}{x}$.

Thus if A can reap a field in 12 hours, be will reap in one hour $\frac{1}{12}$ of the field.

Ex. A can do a piece of work in 5 days, and B can do it in 12 days. How long will A and B working together take to do the work?

Let x represent the number of days A and B will take.
Then $\frac{1}{x}$ will represent the part of the work they do daily.
Now $\frac{1}{5}$ represents the part A does daily,
and $\frac{1}{12}$ represents the part B does daily.

118 PROBLEMS IN FRACTIONAL EQUATIONS.

Hence $\frac{1}{5}+\frac{1}{12}$ will represent the part A and B do daily.
Consequently $\frac{1}{5}+\frac{1}{12}=\frac{1}{x}$.
Hence
or

$$
\begin{aligned}
12 x+5 x & =60, \\
17 x & =60 ; \\
\therefore x & =\frac{60}{17} .
\end{aligned}
$$

That is, they will do the work in $3 \frac{9}{17}$ days.
36. A can do a piece of work in 2 days. B can do it in 3 days. In what time will they do it if they work together?
37. A can do a piece of work in 50 days, B in 60 days, and C in 75 days. In what time will they do it all working together?
38. A and B together finish a work in 12 days; A and C
H_{H}
that in 15 days; B and C in 20 days. In what time will they finish it all working together?
39. A and B can do a piece of work in 4 hours ; A and C in $3 \frac{3}{5}$ hours ; B and C in $5 \frac{1}{7}$ hours. In what time can A do it alone?
40. A can do a piece of work in $2 \frac{1}{2}$ days, B in $3 \frac{1}{3}$ days, and C in $3 \frac{3}{4}$ days. In what time will they do it all working together?
41. A does $\frac{3}{5}$ of a piece of work in 10 days. He then calls in B, and they finish the work in 3 days. How long would B take to do one-third of the work by himself?

Note II. If a tap can fill a vessel in x hours, the part of the vessel filled by it in one hour will be represented by $\frac{1}{x}$.

Ex. Three taps running separately will fill a vessel in 20, 30, and 40 minutes respectively. In what time will they fill it when they all run at the same time?
42.
in 31
filled
43.
first
in 5
three
44.
by a v full if
45. separa are op

Let x represent the number of minutes they will take.
Then $\frac{1}{x}$ will represent the part of the vessel filled in 1 minute.

Now $\frac{1}{20}$ represents the part filled by the first tap in 1 minute,

$$
\begin{aligned}
& \frac{1}{40} \ldots . . \ldots \text { third . . . }
\end{aligned}
$$

Hence

$$
\frac{1}{20}+\frac{1}{30}+\frac{1}{40}=\frac{1}{x}
$$

or, multiplying both sides by $120 x$,
that is,

$$
\begin{aligned}
6 x+4 x+3 x & =120 \\
13 x & =120 ; \\
\therefore x & =\frac{120}{13}
\end{aligned}
$$

Hence they will take $9 \frac{\mathbf{3}}{13}$ minutes to fill the vessel.
42. A vessel can be filled by two pipes, running separately, in 3 hours and 4 hours respectively. In what time will it be filled when both run at the same time?
43. A vessel may be filled by three different pipes: by the first in $1 \frac{1}{3}$ hours, by the second in $3 \frac{1}{3}$ hours, and by the third in 5 hours. In what time will the vessel be filled when all three pipes are opened at once?
44. A bath is filled by a pipe jin 40 minutes. It is emptied by a waste-pipe in an hour. In what time will the bath be full if both pipes are opened at once?
45. If three pipes fill a vessel in a, b, c minutes running separately, in what time will the vessel be filled when all three are opened at once?
46. A vessel containing $755 \frac{1}{4}$ gallons can be filled by three pipes. The first lets in 12 gallons in $3 \frac{1}{4}$ minutes, the second $15 \frac{1}{3}$ gallons in $2 \frac{1}{2}$ minutes, the third 17 gallons in 3 minutes : in what time will the vessel be filled by the three pipes all running together?
47. A vessel can be filled in 15 minutes by three pipes, one of which lets in 10 gallons more and the other 4 gallons less than the third each minute. The cistern holds 2400 gallons. How much comes through each pipe in a minute?

Note III. In questions involving distance travelled over in a certain time at a certain rate, it is to be observed that

$$
\frac{\text { Distance }}{\text { Rate }}=\text { Time. }
$$

That is, if I travel 20 miles at the rate of 5 miles an hour.

$$
\text { number of hours I take }=\frac{20}{5} .
$$

Ex. A and b set out, one from Newmarket and the other from C'ambridge, at the same time. The distance between the towns is 13 miles. A walks 4 miles an hour, and $B 3$ miles an hour. Where will they meet?

Let x represent their distance from Cambridge when they meet.

Then $13-x$ will represent their distance from Newmarket.
Then $\frac{x}{3}=$ time in hours that B has been walking,

$$
\frac{13-x}{4}=\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots A .
$$

And since both have been walking the same time,

$$
\begin{aligned}
\frac{x}{3} & =\frac{13-x}{4}, \\
\text { or } \quad 4 x & =39-3 x, \\
\text { or } \quad 7 x & =39 ; \\
\therefore x & =\frac{39}{7} .
\end{aligned}
$$

Th bridg 48. is dis same Walkin meet ?
49. of $2 \frac{1}{3}$ $3 \frac{1}{2} \mathrm{mil}$ altoget
50.
51. lowed first go how m
52.
after 8
will th
53. London 60 mile at the 1 bridge

54.

 Eight 1 travels After wThat is, they meet at a distance of $5 \frac{4}{7}$ miles from Cambridge.
48. A person starts from Ely to walk to Cambridge (which is distant 16 miles) at the rate of $4 \frac{4}{9}$ miles an hour, at the same time that amother person leaves Cambridge for Ely walking at the rate of a mile in 18 minutes. Where will they meet?
49. A person walked to the top of a momntain at the rate of $2 \frac{1}{3}$ miles an hour, and down the same way at the rate of $3 \frac{1}{2}$ miles an hour, and was out 5 hours. How far did he walk altogether?
50. A man walks a miles in b hours. Write down
(1) The number of miles he will walk in c hours.
(2) The number of hours he will be walking d miles.
51. A steamer which started from a certain place is followed after 2 days by another steamer on the same line. The first goes 244 miles a day, and the second 286 miles a day. In how many days will the second overtake the first?
52. A messenger who goes $31 \frac{1}{2}$ miles in 5 hours is followed after 8 hour's by another who goes $22 \frac{1}{2}$ miles in 3 hours. When will the second overtake the first?
53. Two men set out to walk, one from Cambridge to London, the other from London to Cambridge, a distance of 60 miles. The former walks at the rate of 4 miles, the latter at the rate of $3 \frac{3}{4}$ miles an hour. At what distance from Cambridge will they meet?
54. A sets out and travels at the rate of 7 miles in 5 hours. Eight hours afterwards B sets out from the same place, and travels along the same road at the rate of 5 miles in 3 hours. After what time will B overtake A ?

Note IV. In problems relating to clocks the chief point to be noticed is that the minute-hand moves 12 times as fast as the hour-hand.

The following examples should be carefully studied.
Find the time between 3 and 4 o'clock when the hands of a clock are
(1) Opposite to each other.
(2) At right angles to each other.
(3) Coincident.

(1) Let $O N$ represent the position of the minute-hand in Fig. I.
$O D$ represents the position of the hour-hand in Fig. I.
M marks the 12 o'clock point.
T 3 o'clock
The lines $O M, O T$ represent the position of the hands at 3 o'clock.

Now suppose the time to be x minutes past 3.
Then the minute-hand has since 3 o'clock moved over the arc MDN.

And the hour-hand has since 3 o'clock moved over the arc T'D.

Hence arc $M D N=$ twelve times arc TIJ.
If then we represent $M D N$ by x,
we shall represent $T D$ by $\frac{x}{12}$.
Also w ϵ shall represent $M T$ by 15 , and $D N$ by 30 .

int to

 fast ass of a
and in
I.

Now $\quad M D N=M ' I^{\prime}+I^{\prime} D+D N$,
that is,

$$
x=15+\frac{x}{12}+30
$$

$$
\text { or } \quad 12 x=180+x+360
$$

$$
\text { or } \quad 11 x=540 ;
$$

$$
\therefore x=\frac{540}{11}
$$

Hence the time is $49 \frac{1}{11}$ minntes past 3.
(2) In Fig. II. the description given of the state of the clock in Fig. I. applies, except that $D N$ will be represented by 15 instead of 30.

Now suppose the time to be x minutes past 3.
Then since

$$
\begin{aligned}
M D N & =M I+T D+D N, \\
x & =15+\frac{x}{12}+15 .
\end{aligned}
$$

from which we get

$$
x=\frac{360}{11}
$$

that is, the time is $32 \frac{8}{11}$ minutes past 3.
(3) In Fig. III, the hands are both in the position $O N$.

Now suppose the time to be x minutes past 3 .
Then since

$$
\begin{aligned}
M N & =M T+T N, \\
x & =15+\frac{x}{12}, \\
\text { or } \quad 12 x & =180+x, \\
\text { or } \quad x & =\frac{180}{11},
\end{aligned}
$$

that is, the time is $16 \frac{4}{11}$ minutes past 3.
55. At what time are the hands of a watch opposite to each other,
(1) Between 1 and 2,
(2) Between 4 and 5,
(3) Between 8 and 9 ?
56. At what time are the hands of a watch at right angles to each other,
(1) Between 2 and 3.
(2) Between 4 and 5,
(3) Between 7 and 8 ?
57. At what time are the hands of a watch together,
(1) Between 3 and 4,
(2) Between 5 and 7,
(3) Between 9 and 10?
58. A person buys a certain number of apples at the rate of five for twopence. He sells half of them at two a penny, and the remaining half at three a penny, and clears a penny by the transaction. How many does he buy?
59. A man gives away half a sovereign more than half as many sovereigns as he has: and again half a sovereign more than half the sovereigns then remaining to him, and now has nothing left. How much had he at first?
60. What must be the value of n in order that $\frac{2 a+n}{3 n+69 a}$ may be equal to $\frac{1}{33}$ when a is $\frac{1}{3}$?
61. A body of troops retreating before the enemy, from which it is at a certain time 25 miles distant, marches 18 miles a day. The enemy pursues it at the rate of 23 miles a day, but is first a day later in starting, then ifter 2 days is forced to halt for one day to repair a bridge, and this they have to do again after two days' more marching. After how many days from the beginnug of the retreat will the retreating force be overtaken?
62. A person, after paying an income-tax of sixpence in the pound, gave away one-thirteenth of his remaining income, and had $£ 540$ left. What was his original income?
63. From a sum of money I take away $£ 50$ more than the half, then from the remainder $£ 30$ more than the fifth, then from the eccond remainder $£ 20$ more than the fourth part: and at last only $£ 10$ remains. What was the original sum?

69.

 A gets for ric to all t for boo in ord carries.64. I bought a certain number of eggs at 2 a penuy, and the same number at 3 a penny. I sold them at 5 for twopence, and lost a penny. How many eggs did I buy?
65. A cistern, holding 1200 gallons, is filled by 3 pipes A, B, C in 24 minutes. The pipe A requires 30 minutes more than C to fill the cistern, and 10 gallons less rum through C per minute than through A and B together. What time would each pipe take to fill the cistern by itself?
66. A, B, and C drink a barrel of beer in 24 days. A and B drink $\frac{4}{3}$ rds of what C does, and B drinks twice as much as \dot{A}. In what time would each separately drink the cask ?
67. A and B shoot by turns at a target. A puts 7 bullets out of 12 into the centre; and B puts in 9 out of 12 . Between them they put in 32 bullets. How many shots did each fire?
68. A farmer sold at market 100 head of stock, horses, oxen, and sheep, selling two oxen for every horse. He obtained on the sale $£ 2,7 s$. a head. If he sold the horses, oxen, and sheep at the respective prices $£ 22, £ 12,10$ s., and $£ 1,10$ s., how many horses, oxen, and sheep respectively did he sell?
69. In a Euclid paper A gets 160 marks, and B just passes. A gets full marks for book-work, and twice as many marks for riders as B gets altogether. Also B, sending answers to all the questions, gets no marks for riders and half marks for book-work. Supposing it necessary to get $\frac{1}{5}$ of full marks in order to pass, find the number of marks which the paper carries.
70. It is between 2 and 3 o'clock, but a person looking at the clock and mistaking the hour-hand for the minute-hand, fancies that the time of day is 55 minntes carlier than the reality. What is the true time?
71. An army in a defeat loses one-sixth of its number in killed and wounded, and 4000 prisoners. It is reinforced by 3000 men, but retreats, losing a fourth of its number in doing so. There remain 18000 men. What was the original foree?
72. The national debt of a country was increased by onefourth in a time of war. Duxing twenty years of peace which
followed $£ 25,000,000$ was paid off, and at the end of that time the interest was reduced from $4 \frac{1}{2}$ to 4 per cent. It was then found that the interest was the same in amount as before the war. What was the amount of the debt before the war?
73. An artesian well supplies a brewery. The consumption of water goes on each week-day from 3 A.m. to 6 P.m. at double the rate at which the water flows into the well. If the well contained 2250 gallons when the consumption began on Monday morning, and it was just emptied when the consumption ceased in the evening of the next Thursday but one, what is the rate of the influx of water into the well in gallons per hour?
74. In this Chapter we shall treat of various matters connected with Fractions, so as to exhibit the mode of applying the elementary rules to the simplification of expressions of a more complicated kind than those which have hitherto been discussed.
75. The attention of the student must first be directed to a point in which the notation of Algebra differs from that of Arithmetic, numely when a whole number and a fraction stand side by side with no sign between them.

Thus in Arithmetic $2 \frac{3}{7}$ stands for the sum of 2 and $\frac{3}{7}$.
But in Algebra $x \frac{y}{z}$ stands for the product of x and $\frac{y}{z}$.
So in Algebra $3 \frac{a+b}{c}$ stands for the product of 3 and $\frac{a+b}{c}$; that is, $3 \frac{a+b}{c}=\frac{3 a+3 b}{c}$ e the

EXAMPLES, -lX.
Simplify the following fractions:

1. $a+x+3 \frac{a}{x}$.
2. $\frac{a^{2}+a x}{x^{2}}-2 \frac{x-a}{x}$.
3. $\frac{x-y}{x}+2 \frac{y}{x-y}$.
4. $4 \frac{a+b}{a-b}-2 \frac{a^{2}-b^{2}}{a^{2}+b^{2}}$.
5. A fraction of which the Numerator or Denominator is itself a fraction, is called a Complex Fraction.

Thus $\frac{x}{\frac{a}{b}}, \frac{y}{c}$ and $\frac{\frac{x}{y}}{\frac{m}{n}}$ are complex fractions.
A Fraction whose terms are whole numbers is called a Simple Fraction.

All Complex Fractions may be reduced to Simple Fractions by the processes already described. We may take the following Examples:
(1) $\frac{\frac{a}{b}}{\frac{m}{n}}=\frac{a}{b} \div \frac{m}{n}=\frac{a}{b} \times \frac{n}{m}=\frac{a n}{b}$.
(2) $\frac{\frac{a}{b}-\frac{c}{d}}{\frac{m}{n}-\frac{p}{q}}=\left(\frac{a}{b}-\frac{c}{d}\right) \div\left(\frac{m}{n}-\frac{p}{q}\right)=\frac{a d-b c}{b d} \div \frac{m q-n p}{n q}$

$$
=\frac{a d-b c}{b d} \times \frac{n q}{m q-n p}=\frac{n q(a d-b c)}{b d}(m q-n p) .
$$

(3) $\frac{1+x}{1+\frac{1}{x}}=(1+x) \div\left(1+\frac{1}{x}\right)=(1+x) \div \frac{x+1}{x}$

$$
=\frac{1+x}{1} \times \frac{x}{x+1}=\frac{x(1+x)}{1+x}=x
$$

(4) $\frac{\frac{1}{1-x}-\frac{1}{1+x}}{\frac{x}{1-x}+\frac{1}{1+x}}=\left(\frac{1}{1-x}-\frac{1}{1+x}\right) \div\left(\frac{x}{1-x}+\frac{1}{1+x}\right)$

$$
\begin{aligned}
& =\frac{1+x-1+x}{1-x^{2}} \div \frac{x+x^{2}+1-x}{1-x^{2}} \\
& =\frac{2 x}{1-x^{2}} \times \frac{1-x^{2}}{1+x^{2}}=\frac{2 x}{1+x^{2}} .
\end{aligned}
$$

(5)

$$
\begin{gathered}
\frac{3}{1+\frac{3}{1+\frac{3}{1-x}}}=\frac{3}{1+\frac{3}{\frac{1-x+3}{1-x}}}=\frac{3}{1+\frac{3(1-x)}{1-x+3}}=\frac{3}{1+\frac{3-3 x}{4-x}} \\
=\frac{3}{\frac{4-x+3-3 x}{4-x}}=\frac{3(4-x)}{4-x+3-3 x}=\frac{12-3 x}{7-4 x} .
\end{gathered}
$$

EXAMPLES.-ixi.

Simplify the following expressions:
198.
tions eq

Split followin
i. $a^{4}-$
2. $\frac{a^{2} b}{}$
3. $x^{3}-$
199.
fraction
Thus
200.
$\frac{a}{b}$ is a

I . $\frac{\frac{x-y}{x+y}+\frac{x+y}{x-y}}{\frac{x-y}{x+y}-\frac{x+y}{x-y}}$
3. $\frac{1-x^{2}}{1+\frac{1}{x}}$.
4. $\frac{y\left(\frac{x}{y}+1\right)}{x\left(1-\frac{y}{x}\right)}$.
5. $\frac{5+x+\frac{1}{x^{2}}}{2-x+\frac{1}{x^{2}}}$.
8. $\frac{\frac{x}{x+a}+\frac{x}{x-a}}{\frac{2 x}{x^{2}-a^{2}}}$.
9. $\frac{2 x}{x^{2}+\frac{1}{1 \div x^{2}}}$.
7. $\frac{a-\frac{1}{a^{2}}}{1-\frac{1}{a}}$.
10. $\frac{x}{1+\frac{1}{x}}+1-\frac{1}{x+1}$.
2. $\frac{\frac{x}{y}-\frac{y}{x}}{x-y}$
6. $\frac{x+\frac{1}{x^{2}}}{1+\frac{1}{x}}$.

1. $\frac{x+\frac{4}{5}}{7}-\frac{x}{3 \frac{1}{23}}$.
2. $\frac{1+x+x^{2}}{1+\frac{1}{x}+\frac{1}{x^{2}}}$.
3. $\frac{\frac{a+b}{b}+\frac{b}{a+b}}{\frac{1}{a}+\frac{1}{b}}$.
4. $\frac{2 m-3+\frac{1}{m}}{\frac{2 m-1}{m}}$
5. $\frac{\frac{1}{a b}+\frac{1}{a c}+\frac{1}{b c}}{\frac{a^{2}-(b+c)^{2}}{a b}}$.
6. Any fraction may be split up into a number of fractions equal to the number of terms in its numerator. Thus

$$
\begin{aligned}
\frac{x^{3}+x^{2}+x+1}{x^{4}} & =\frac{x^{3}}{x^{4}}+\frac{x^{2}}{x^{4}}+\frac{x}{x^{4}}+\frac{1}{x^{4}} \\
& =\frac{1}{x}+\frac{1}{x^{2}}+\frac{1}{x^{3}}+\frac{1}{x^{4}} .
\end{aligned}
$$

EXAMPLES.-lxii.

Split up into four fractions, each in its lowest terms, the following fractions:

1. $\frac{a^{4}+3 a^{3}+2 a^{2}+5 a}{2 a^{4}}$.
2. $\frac{a^{2} b c+a b^{2} d+a b c^{2}+b c d^{2}}{a b c d}$.
3. $\frac{x^{3}-3 x^{2} y+3 x y^{2}-y^{3}}{x^{2} y^{2}}$.
4. $\frac{9 a^{3}-12 a^{2}+6 a-3}{108}$.
5. $\frac{18 p^{2}+12 q^{2}-36 r^{2}+72 s^{2}}{3 p q r s}$.
6. $\frac{10 x^{3}-25 x^{2}+75 x-125}{1000}$.
7. The quotient obtaired by dividing the unit by any fraction of that unit is called The Reciprocal of that fraction.

Thus $\frac{1}{\frac{a}{b}}$, that is, $\frac{b}{a}$, is the Reciprocal of $\frac{a}{b}$.
200. We have shewn in Art. 158, that the fraction symbol $\frac{a}{b}$ is a proper representative of the Division of a by b. In [s.A.]

Chapter IV. we treated of cases of division in which the divisor is contained an exact number of times in the dividend. We now proceed to treat of cases in which the divisor is not contained exactly in the dividend, and to shew the proper method of representing the Quotient in such cases.

Suppose we have to divide 1 by $1-a$. We may at once represent the result by the fraction $\frac{1}{1-a}$. But we may actually perform the operation of division in the following way.

$$
\begin{gathered}
1-a) \begin{array}{l}
1\left(1+a+a^{2}+a^{3}+\ldots\right. \\
1-a \\
\\
\\
\\
\frac{a-a^{2}}{a^{2}} \\
\frac{a^{2}-a^{3}}{a^{3}} \\
\\
\\
\\
\\
\\
\end{array} \frac{a^{3}-a^{4}}{a^{4}}
\end{gathered}
$$

The Quotient in this case is interminable. We may carry on the operation to any extent, but an exact and terminable Quotient we shall never find. It is clear, however, that the terms of the Quotient are formed by a certain law, and such a succession of terms is called a Series. If, as in the case before us, the series may be indefinitely extended, it is called an Infinite Series.

If we wish to express in a concise furm the result of the operation, we may stop at any term of the quotient and write the result in the following way.

$$
\begin{aligned}
& \frac{1}{1-a}=1+\frac{a}{1-a}, \\
& \frac{1}{1-a}=1+a+\frac{a^{2}}{1-a}, \\
& \frac{1}{1-a}=1+a+a^{2}+\frac{a^{3}}{1-a}, \\
& \frac{1}{1-a}=1+a+a^{2}+a^{3}+\frac{a^{\Omega}}{1-a^{\prime}}
\end{aligned}
$$

alway whicl divisi diviso

Car quotic
13. remair

$$
14
$$ and t

201
we me
latter,
additi
always being careful to attach to that term of the quotient, at which we intend to stop, the remainder at that point of the division, placed as the numerator of a fraction of which the divisor is the denominator.

EXAMPLES.-lxiii.

Carry on each of the following divisions to 5 terms in the quotient.

1. 2 by $1+a$.
2. 1 by $1+2 x-2 x^{2}$.
3. m by $m+2$.
4. $1+x$ by $1-x+x^{2}$.
5. $a-b$ by $a+b$.
6. $1+b$ by $1-2 b$.
7. $a^{2}+x^{2}$ by $a^{2}-x^{2}$.
8. $x^{3}-b^{3}$ by $x+b$.
9. $a x$ by $a-x$.
II. a^{2} by $x-b$.
10. b by $a+x$.
11. a^{2} by $(a+x)^{2}$.
12. If the divisor be $x-a$, the quotient $x^{2}-2 a x$, and the remainder $4 a^{3}$, what is the dividend?
13. If the divisor be $m-5$, the quotient $m^{3}+5 m^{2}+15 m+34$, and the remainder 75, what is the dividend?
14. If we are required to multiply such an expression as

$$
\frac{x^{2}}{2}+\frac{x}{3}+\frac{1}{4} \text { by } \frac{x}{2}-\frac{1}{3}
$$

we may multiply each term of the former by each term of the latter, and combine the results by the ordinary methods of addition and subtraction of fractions, thus

$$
\begin{aligned}
& \frac{x^{2}}{2}+\frac{x}{3}+\frac{1}{4} \\
& \frac{x}{2}-\frac{1}{3} \\
& \frac{x^{3}}{4}+\frac{x^{2}}{6}+\frac{x}{8} \\
& \quad-\frac{x^{2}}{6}-\frac{x}{9}-\frac{1}{12} \\
& \frac{x^{3}}{4}+\frac{x}{72}-\frac{1}{12}
\end{aligned}
$$

Or we may first reduce the multiplicand and the multiplier to single fractions and proceed in the following way :

$$
\begin{aligned}
\left(\frac{x^{2}}{2}+\frac{x}{3}\right. & \left.+\frac{1}{4}\right) \times\left(\frac{x}{2}-\frac{1}{2}\right) \\
& =\frac{6 x^{2}+4 x+3}{12} \times \frac{3 x-2}{6}=\frac{18 x^{3}+x-6}{72} \\
& =\frac{18 x^{3}}{72}+\frac{x}{72}-\frac{6}{72}=\frac{x^{3}}{4}+\frac{x}{72}-\frac{1}{12}
\end{aligned}
$$

This latter process will be found the simpler by a beginner.

EXAMPLES:-lXiv.

Multiply

1. $\frac{x^{2}}{3}+\frac{x}{2}+\frac{1}{5}$ by $\frac{x}{3}+\frac{1}{4}$. 4. $x^{2}-1+\frac{1}{x^{2}}$ by $x^{2}+1+\frac{1}{x^{2}}$.
2. $\frac{a^{2}}{5}-\frac{a}{6}+\frac{1}{3}$ by $\frac{a}{4}-\frac{1}{5}$.
3. $\frac{1}{a^{2}}+\frac{1}{b^{2}}$ by $\frac{1}{a^{2}}-\frac{1}{b^{2}}$.
4. $x^{3}+x+\frac{1}{x}+\frac{1}{x^{3}}$ ly $x-\frac{1}{x}$.
5. $\frac{1}{a}-\frac{1}{b}+\frac{1}{c}$ by $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$.
6. $1+\frac{b}{a}+\frac{b^{2}}{a^{2}}$ by $1-\frac{b}{a}+\frac{b^{2}}{a^{2}}$.
7. $1+\frac{1}{2} x+\frac{1}{4} \dot{x}^{2}$ by $1-\frac{1}{2} x+\frac{1}{8} x^{2}-\frac{1}{16} x^{3}$.
8. $\frac{5}{2 x^{2}}+\frac{3}{x}-\frac{7}{3}$ by $\frac{2}{x^{2}}-\frac{1}{x}-\frac{1}{2}$.
9. $\frac{a^{2}}{b^{2}}+\frac{b^{2}}{a^{2}}+2$ by $\frac{a^{2}}{b^{2}}-\frac{b^{2}}{a^{2}}-2$.
10. If we have to divide such an expression as

$$
x^{3}+3 x+\frac{3}{x}+\frac{1}{x^{3}}
$$

by $x+\frac{1}{x}$, we may proceed as in the division of whole numbers, carefully observing that the order of descending powers of x is

$$
\ldots \ldots x^{3}, x^{2}, x, \frac{1}{x}, \frac{1}{x^{2}}, \frac{1}{x^{3}} \ldots \ldots
$$

Any isolated digits, an $1,2,5 \ldots$ will stand between x and $\frac{1}{x}$.

Thus the expressicii

$$
4+x^{3}+\frac{1}{x^{4}}+3 x^{2}+\frac{3}{x^{2}}+5 x+\frac{5}{x}
$$

arranged according to descending powers of x, will stand thus,

$$
x^{3}+3 x^{2}+5 x+4+\frac{5}{x}+\frac{3}{x^{2}}+\frac{1}{x^{3}} .
$$

The reason for this arrangement will be given in the Chapter on the Theory of Indices.

EX.

$$
\begin{gathered}
\left.x+\frac{1}{x}\right) x^{3}+3 x+\frac{3}{x}+\frac{1}{x^{3}}\left(x^{2}+2+\frac{1}{x^{2}}\right. \\
\frac{x^{3}+x}{2 x+\frac{3}{x}} \\
\frac{2 x+\frac{2}{x}}{\frac{1}{x}+\frac{1}{x^{3}}} \\
-\quad \frac{1}{x}+\frac{1}{x^{3}}
\end{gathered}
$$

Or we may proceed in the following way, which will be found simpler by the beginner.

$$
\begin{array}{r}
\left(x^{3}+3 x+\frac{3}{x}+\frac{1}{x^{3}}\right) \div\left(x+\frac{1}{x}\right) \\
=\frac{x^{6}+3 x^{4}+3 x^{2}+1}{x^{3}} \div \frac{x^{2}+1}{x} \\
=\frac{x^{6}+3 x^{4}+3 x^{2}+1}{x^{3}} \times \frac{x}{x^{2}+1} \\
=\frac{x^{4}+2 x^{2}+1}{x^{2}}=\frac{x^{4}}{x^{2}}+\frac{2 x^{2}}{x^{2}}+\frac{1}{x^{2}}=x^{2}+2+\frac{1}{x^{2}} .
\end{array}
$$

EXAMPLES. - lXV.

Divide :

I. $x^{2}-\frac{1}{x^{2}}$ by $x+\frac{1}{x}$.
4. $c^{5}-\frac{1}{d^{5}}$ by $c-\frac{1}{d}$.
2. $a^{2}-\frac{1}{b^{2}}$ by $a-\frac{1}{b}$.
5. $\frac{x^{2}}{y^{2}}+2+\frac{y^{2}}{x^{2}}$ by $\frac{x}{y}+\frac{y}{x}$.
3. $m^{3}+\frac{1}{n^{3}}$ by $m+\frac{1}{n}$.
6. $\frac{1}{a^{4}}+\frac{1}{a^{2} b^{2}}+\frac{1}{b^{4}}$ by $\frac{1}{a^{2}}-\frac{1}{a b}+\frac{1}{b^{2}}$.
7. $\frac{x^{3}}{y^{3}}-\frac{y^{3}}{x^{3}}-3 \frac{x}{y}+3 \frac{y}{x}$ by $\frac{x}{y}-\frac{y}{x}$.
8. $\frac{3 x^{5}}{4}-4 x^{4}+\frac{77}{8} x^{3}-\frac{43}{4} x^{2}-\frac{33}{4} x+27$ by $\frac{x^{2}}{2}-x+3$.
9. $\frac{a^{3}}{b^{3}}+\frac{b^{3}}{a^{3}}$ by $\frac{a}{b}+\frac{b}{a}$.
10. $\frac{1}{a^{3}}+\frac{1}{b^{3}}+\frac{1}{c^{3}}-\frac{3}{a b c}$ by $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$.
203. In dealing with expressions involving Decimal Fractions two methods may be adopted, as will be seen from the following example.

Multiply $\cdot 1 x-2 y$ by $\cdot 03 x+\cdot 4 y$.
We may proceed thus, applying the Rules for Multiplication, Addition, and Subtraction of Decimals.

$$
\begin{aligned}
& \cdot 1 x-\cdot 2 y \\
& \frac{03 x+\cdot 4 y}{.003 x^{2}-\cdot 006 x y} \\
& \quad+\cdot 04 x y-\cdot 08 y^{2} \\
& \frac{.003 x^{2}+\cdot 034 x y-\cdot 08 y^{2}}{}
\end{aligned}
$$

Or thus,

$$
\begin{gathered}
(\cdot 1 x-\cdot 2 y)(\cdot 03 x+\cdot 4 y)=\left(\frac{x}{10}-\frac{2 y}{10}\right)\left(\frac{3 x}{100}+\frac{4 y}{10}\right) \\
=\frac{x-2 y}{10} \times \frac{3 x+40 y}{100} \\
=\frac{3 x^{2}+34 x y-80 y^{2}}{1000} \\
=\cdot 003 x^{2}+\cdot 034 x y-\cdot 08 y^{2}
\end{gathered}
$$

The latter method will be found the simpler for a beginner.

EXAMPLES.-lXVi.

Multiply :

1. $\cdot 1 x-3$ by $\cdot 5 x+07$,
2. $\quad 05 x+7$ by $2 x-3$,
3. $\cdot 3 x-\cdot 2 y$ by $\cdot 4 x+\cdot 7 y$,
4. $4 \cdot 3 x+5 \cdot 2 y$ by $\cdot 04 x-06 y$.
5. Find the value of

$$
a^{3}-b^{3}+c^{3}+3 a b c \text { when } a=\cdot 03, b=\cdot 1, \text { and } c=\cdot 07
$$

6. Find the value of

$$
x^{3}-3 a x^{2}+3 a^{2} x-a^{3} \text { when } x=\cdot 7 \text { and } a=03
$$

204. When any expression E is put in a form of which f is a factor, then $\frac{E}{f}$ is the other factor.

Thus

$$
\begin{aligned}
a+b & =a\left(\frac{a+b}{a}\right) \\
& =a\left(1+\frac{b}{a}\right) \\
a b+a c+b c & =a b c \cdot \frac{a b+a c \div b c}{a b c} \\
& =a b c \cdot\left(\frac{1}{c}+\frac{1}{b}+\frac{1}{a}\right)
\end{aligned}
$$

So
and

$$
\begin{aligned}
x^{2}+2 x y+y^{2} & =x^{2} \cdot\left(\frac{x^{2}+2 x y+y^{2}}{x^{2}}\right) \\
& =x^{2} \cdot\left(1+\frac{2 y}{x}+\frac{y^{2}}{x^{2}}\right)
\end{aligned}
$$

EXAMPLES.-lXVii.

I. Write in factors, one of which is $a_{1} x$, the series

$$
a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+\ldots
$$

2. Write in factors, one of which is $x y z$, the expression

$$
x y-x z+y z
$$

3. Write in factors, one of which is x^{2}, the expression

$$
x^{2}+x y+y^{2} .
$$

4. Write in factors, one of which is $a+b$, the expression

$$
(a+b)^{3}-c(a+b)^{2}-d(a+b)+c .
$$

205. We shall now give two examples of a process by which, when certain fractions are known to be equal, other relations between the quantities involved in them may be determined.

This process will be found of great use in a later part of the subject, and the student is advised to pay particular attention to it.
(1) If $\frac{a}{b}=\frac{c}{d}$, shew that

$$
\frac{a+b}{a-b}=\frac{c+d}{c-d}
$$

Let

$$
\begin{aligned}
& a \\
& \frac{a}{b}=\lambda .
\end{aligned}
$$

Then

$$
\begin{aligned}
\frac{c}{d} & =\lambda ; \\
\therefore a & =\lambda b,
\end{aligned}
$$

$$
\text { and } \quad c=\lambda d
$$

Now

$$
\frac{a+b}{a-b}=\frac{\lambda b+b}{\lambda b-b}=\frac{b(\lambda+1)}{b(\lambda-1)}=\frac{\lambda+1}{\lambda-1},
$$

and

$$
\frac{c+d}{c-d}=\frac{\lambda d+d}{\lambda d-d}=\frac{d(\lambda+1)}{d(\lambda-1)}=\frac{\lambda+1}{\lambda-1} .
$$

Hence $\frac{a+b}{a-b}$ and $\frac{c+d}{c-d}$ being each equal to $\frac{\lambda+1}{\lambda-1}$ are equai to one another.
(2) If $\frac{m}{a-b}=\frac{n}{b-c}=\frac{r}{c-a}$, shew that $m+n+r=0$.

Let

$$
\begin{aligned}
\frac{m}{a-b} & =\lambda, \\
\frac{n}{b-c} & =\lambda, \\
\frac{r}{c-a} & =\lambda,
\end{aligned}
$$

then

$$
\begin{aligned}
m & =\lambda a-\lambda b \\
n & =\lambda b-\lambda c \\
r & =\lambda c-\lambda a
\end{aligned}
$$

$$
\therefore m+n+r=\lambda a-\lambda b+\lambda b-\lambda c+\lambda c-\lambda a=0 .
$$

pss by other ay be
art of icular

EXAMPLES.-lXViii.

1. If $\frac{a}{b}=\frac{c}{d}$ prove the following relations:
(1) $\frac{a-b}{b}=\frac{c-d}{d}$.
(5) $\frac{8 a+b}{4 a+7 b}=\frac{8 c+d}{4 c+7 d}$.
(2) $\frac{a}{a+b}=\frac{c}{c+\bar{d}}$.
(6) $\frac{a^{2}-b^{2}}{c^{2}-d^{2}}=\frac{a b}{c d}$.
(3) $\frac{3 a}{4 a-5 b}=\frac{3 c}{4 c-5 d}$.
(7) $\frac{11 a+b}{11 c+d}=\frac{13 a+b}{13 c+d}$.
(4) $\frac{a^{2}+b^{2}}{a^{2}-b^{2}}=\frac{c^{2}+d^{2}}{c^{2}-d^{2}}$.
(8) $\frac{a^{2}-a b+b^{2}}{a^{2}+a b+b^{2}}=\frac{c^{2}-c d+d^{2}}{c^{2}+c d+d^{2}}$.
2. If $\frac{l}{a-b}=\frac{m}{b-c}=\frac{n}{c-a}$, then $l+m+n=0$.
3. If $\frac{a}{b}=\frac{c}{d}=\frac{e}{f}$, prove that $\frac{a}{b}=\frac{l a+m c+n e}{l b+m d+n f}$.
4. If $\frac{a+b}{b}=\frac{b+c}{c}=\frac{c+a}{a}$, prove that $a=b=c$.
5. If $\frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}}=\frac{a_{3}}{b_{3}}$, shew that $\frac{a_{1}}{b_{1}}=\frac{2 a_{1}+3 a_{2}+4 a_{3}}{2 b_{1}+3 b_{2}+4 b_{3}}$.
6. If $\frac{a}{b}, \frac{c}{d}, \frac{e}{f}$ be in descending order of magnitude, shew that $\frac{a+c+e}{b+d+f}$ is less than $\frac{a}{b}$ and greater than $\frac{e}{f}$.
7. If $\frac{x_{1}}{y_{1}}=\frac{x_{2}}{y_{2}}$, shew that $\frac{4 x_{1}+5 y_{1}}{7 x_{1}+9 y_{1}}=\frac{4 x_{2}+5 y_{ \pm}}{7 x_{2}+9 y_{2}}$.
8. If $\frac{a}{b}=\frac{c}{d}$, shew that $\frac{a^{2}+a b}{c^{2}+c d}=\frac{a b-b^{2}}{c d-d^{2}}$
9. If $\frac{a}{b}=\frac{c}{d}$, shew that $\frac{7 a+b}{3 a+5 b}=\frac{7 c+d}{3 c+5 d}$.
10. If $\frac{a}{b}$ be a proper fraction, shew that $\frac{a+c}{b+c}$ is greater than $\frac{a}{b}, c$ being a positive quantity.

1I. If $\frac{a}{b}$ be an improper fraction, shew that $\frac{a+c}{b+c}$ is less than $\frac{a}{b}, c$ being a positive quantity.
206. We shall now give a series of examples in the working of which most of the processes connected with fractions will be introduced.

EXAMPLES:-lXix.

I. Find the value of $3 a^{2}+\frac{2 a b^{2}}{c}-\frac{c^{3}}{b^{2}}$ when

$$
a=4, b=\frac{1}{2}, c=1
$$

2. Simplify $\frac{2 x^{3}+x^{2}-8 x+5}{7 x^{2}-12 x+5}$ and $\frac{a^{3}-39 a+70}{a^{2}+4 a-45}$.
3. Simplify $\left(\frac{a+p}{a-p}-\frac{a-p}{a+p}\right) \div\left(\frac{a+p}{a-p}+\frac{a-p}{a+p}\right)$.
4. Add together

$$
\frac{x^{2}}{4}-\frac{y^{2}}{6}+\frac{z^{2}}{8}, \frac{y^{2}}{4}-\frac{z^{2}}{6}+\frac{x^{2}}{8} \text { and } \frac{z^{2}}{4}+\frac{x^{2}}{6}+\frac{y^{2}}{8}
$$

and subtract $z^{2}-x^{2}+\frac{y^{2}}{2}$ from the result.
5. Find the value of $\frac{a^{2}+b^{2}-c^{2}+2 a b}{a^{2}-b^{2}-c^{2}+2 b c}$ when

$$
a=4, \quad b=\frac{1}{2}, \quad c=1
$$

6. Multiply $\frac{5}{2} x^{2}+3 a x-\frac{7}{3} a^{2}$ by $2 x^{2}-a x-\frac{a^{2}}{2}$.
7. Shew that $\frac{a^{3}-b^{3}}{(a-b)^{2}}=a+2 b+\frac{3 b^{2}}{a-b}$.
8. Simplify $\frac{x-y}{x}+\frac{2 y}{x-y}+\frac{y^{3}-x y^{2}}{x^{3}-x y^{2}}$.
9. Shew that $\frac{60 x^{3}-17 x^{2}-4 x+1}{5 x^{2}+9 x-2}=12 x-25+\frac{49}{x+2}$.
10. Simplify $\begin{aligned} & x^{4}-9 x^{3}+7 x^{2}+9 x-8 \\ & x^{4}+7 x^{3}-9 x^{2}-7 x+8\end{aligned}$.

I1. Simplify $\frac{x^{3}}{x^{4}-1}+\frac{1}{1-x-\frac{1}{1+x-\frac{1}{1-x}}}$.
12. Simplify $a+a b+b^{2}\left(a+a b+b^{2} \frac{a}{1-\zeta}\right)$.
13. Multiply together $\left(l+\frac{1}{l}\right)\left(l^{2}+\frac{1}{l^{2}}\right)\left(l-\frac{1}{l}\right)$.
14. Add together $\frac{1}{a+1}, \frac{1}{b+1}, \frac{1}{c+1}$, and shew that if their sum be equal to 1 , then $a b c=a+b+c+2$.
15. Divide $\frac{x}{a}-1-\frac{b}{a}-\frac{b^{2}}{a^{2}}+\frac{b}{x}+\frac{b^{2}}{x^{2}}$ by $x-a$.
16. Simplify $\frac{\frac{a}{b} \div c+\frac{b}{c} \div a+\frac{c}{a} \div b}{\frac{b}{a} \div c+\frac{c}{b} \div a+\frac{a}{c} \div b}$, and shew that it is equal to $\frac{s(s-a)+(s-b)(s-c)}{b c}$ if $2 s=a+b+c$.
17. Shew that $\frac{1}{1+\frac{1}{a \div x}}+\frac{1}{1-\frac{1}{a \div x}}+\frac{2}{1+\frac{1}{a^{2} \div x^{2}}}=\frac{4 a^{4}}{a^{4}-x^{4}}$.
18. Simplify $\frac{a+b}{a-b}+\frac{a-b}{a+b}-2 \frac{a^{2}-b^{2}}{a^{2}+b^{2}}$.
19. Simplify $\frac{b}{a+b}-\frac{a+b}{2 a}+\frac{a^{2}+b^{2}}{2 a(a-b)}$.
20. Simplify $\frac{a^{2}-a b+b^{2}}{a^{3}-3 a b(a-b)-b^{3}} \times \frac{a^{2}-b^{2}}{a^{2}+b^{2}}$.
21. Simplify $\frac{2}{\left(x^{2}-1\right)^{2}}-\frac{1}{2 x^{2}-4 x+2}-\frac{1}{1-x^{2}}$.
22. Simplify $\frac{a^{2}+b^{2}+2 a b-c^{2}}{c^{2}-a^{2}-b^{2}+2 a b} \div \frac{a+b+c}{b+c-a}$.
23. Simplify $\left(\frac{x}{1+\frac{1}{x}}+1-\frac{1}{x+1}\right) \div\left(\frac{x}{1-\frac{1}{x}}-x-\frac{1}{x-1}\right)$.
24. Find the value of $\left(\frac{x-a}{x-b}\right)^{3}-\frac{x-2 a+b}{x+a-2 b}$, when $x=\frac{a+b}{2}$.
25. Simplify $\frac{a^{2}-(b-c)^{2}}{(a+c)^{2}-b^{2}}+\frac{b^{2}-(a-c)^{2}}{(a+b)^{2}-c^{2}}+\frac{c^{2}-(a-b)^{2}}{(b+c)^{2}-a^{8}}$
26. Simplify $\frac{\left(x^{2}-4 x\right)\left(x^{2}-4\right)^{2}}{\left(x^{2}-2 x\right)^{2}}$.
27. Simplify $\frac{\left(a^{2}-1\right)\left(a^{6}-1\right)}{(a+1)^{2}\left(a^{2}-a\right)^{2}}$.
28. Simplify $\frac{1}{x^{3}}+\frac{1}{x^{2}}-\frac{1}{x}-\frac{1}{\left(x^{2}+1\right)^{2}}+\frac{x-1}{x^{2}+1}-\frac{3}{x^{2}\left(x^{2}+1\right)^{2}}$
29. Divide $\frac{x^{3}}{a^{3}}-\frac{x}{a}+\frac{a}{x}-\frac{a^{3}}{x^{3}}$ by $\frac{x}{a}-\frac{a}{x}$.
30. Simplify $\left\{\frac{a+b}{2(a-b)}-\frac{a-b}{2(a+b)}+\frac{2 b^{2}}{a^{2}-b^{2}}\right\} \frac{a-b}{2 b}$.
31. Simplify $\frac{(a+b+c)^{2}+(b-c)^{2}+(c-a)^{2}+(a-b)^{2}}{a^{2}+b^{2}+c^{2}}$.
32. Take $\frac{1-x-3 x^{2}}{\left(3-2 x-7 x^{2}\right)^{3}}$ from $\frac{1+3 x^{2}+2 x^{3}}{\left(3-2 x-7 x^{2}\right)^{4}}$.
33. Simplify $\left(\frac{x^{2}+y^{2}}{x^{2}-y^{2}}-\frac{x^{2}-y^{2}}{x^{2}+y^{2}}\right) \div\left(\frac{x+y}{x-y}-\frac{x-y}{x+y}\right)$.
34. Simplify $\left(\frac{x^{2}}{y^{2}}-1\right)\left(\frac{x}{x-y}-1\right)+\left(\frac{x^{3}}{y^{3}}-1\right)\left(\frac{x^{2}+x y}{x^{2}+x y+y^{2}}-1\right)$
35. Simplify

$$
\frac{a^{2}-a b}{a^{3}-b^{3}} \times \frac{a^{2}+a b+b^{2}}{a+b}+\left(\frac{2 a^{3}}{a^{3}+b^{3}}-1\right)\left(1-\frac{2 a b}{a^{2}+a b+b^{2}}\right) .
$$

36. Simplify

$$
\frac{1}{2(x-1)^{2}}-\frac{1}{4(x-1)}+\frac{1}{4(x+1)}-\frac{1}{(x-1)^{2}(x+1)}
$$

37. Prove that

$$
\frac{1}{a b x}+\frac{1}{a(a-b)(x-a)}+\frac{1}{b(b-a)(x-b)}=\frac{1}{x(x-a)(x-b)} .
$$

38. If $s=a+b+c+\ldots$ to n terms, shew that

$$
\frac{s-a}{a}+\frac{s-b}{b}+\frac{s-c}{c}+\ldots=s\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\ldots\right)-n .
$$

39. Multiply $\left(\frac{x^{2}}{x^{2}-y^{2}}-\frac{y^{2}}{x^{2}+y^{2}}\right)$ by $\frac{\left(x^{2}-y^{2}\right)^{2}}{\left(x^{2}-y^{2}\right)^{2}+\left(x^{2}+y^{2}\right)^{2}}$.
40. Simplify $\frac{1+\frac{a-x}{a+x}}{1-\frac{a-x}{a+x}} \div \frac{1+\frac{a^{2}-x^{2}}{a^{2}+x}}{1-\frac{a^{2}-x^{2}}{a^{2}+x^{2}}}$
41. Divide $x^{3}+\frac{1}{x^{3}}-3\left(\frac{1}{x^{2}}-x^{2}\right)+4\left(x+\frac{1}{x}\right)$ by $x+\frac{1}{x}$.
42. If $s=a+b+c+\ldots$ to n terms, shew that

$$
\frac{s-a}{s}+\frac{s-b}{s}+\frac{s-c}{s}+\ldots=n-1 .
$$

43. Divide $\left(\frac{x}{x-y}-\frac{y}{x+y}\right)$ by $\left(\frac{x^{2}}{x^{2}+y^{2}}+\frac{y^{2}}{x^{2}-y^{2}}\right)$.
44. Simplify $\frac{1-\frac{2 x y}{(x+y)^{2}}}{1+\frac{2 x y}{(x-y)^{2}}} \div\left(\frac{1-\frac{y}{x}}{1+\frac{y}{x}}\right)^{2}$.
45. If $\frac{a+b}{1-a b}=\frac{c+d}{c d-1}$, prove that $\frac{a+b+c+c}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}}=a b c d$.
46. Simplify
$\frac{p^{4}+4 p^{3} q+6 p^{2} q^{2}+4 p q^{3}+q^{4}}{p^{4}-4 p^{3} q+6 p^{2} q^{2}-4 p q^{3}+q^{4}} \div \frac{p^{3}+3 p^{2} q+3 p q^{2}+q^{3}}{p^{3}-3 p^{2} q+3 p q^{2}-q^{3}}$.
47. Reduce $\frac{1-2 x}{3\left(x^{2}-x+1\right)}+\frac{x+1}{2\left(x^{2}+1\right)}+\frac{1}{6(x+1)}$.
48. Simplify $\frac{1}{x+\frac{1}{y+\frac{1}{z}}} \div \frac{1}{x+\frac{1}{y}}-\frac{1}{y(x y z+x+z)}$.
49. Simplify $\frac{\frac{1}{a-x}-\frac{1}{a-y}+\frac{x}{(a-a)^{2}}-\frac{y}{(a-y)^{2}}}{1}$.

$$
\overline{(a-y)(a-x)^{2}}-(a-y)^{2}(a-x)
$$

50. Simplify $\frac{\frac{3}{a b c}}{\frac{1}{b c}+\frac{1}{c a}-\frac{1}{a b}}-\frac{3-a-b-c}{a+b-c}$.
51. Simplify $\frac{a+\frac{b}{1+\frac{a}{b}}}{a-\frac{b}{1-\frac{a}{b}}}\left(a^{6}-b^{0}\right)$.

XV. SIMULTANEOUS EQUATIONS OF THE FIRST DEGREE.

207. To determine several unknown quantities we must have as many independent equations as there are unknown quantities.

Thus if we had this equation given,

$$
x+y=6
$$

we could determine no definite values of x and y, for

$$
\left.\left.\left.\begin{array}{l}
x=2 \\
y=4
\end{array}\right\}, \text { or } \begin{array}{l}
x=4 \\
y=2
\end{array}\right\}, \text { or } \begin{array}{l}
x=3 \\
y=3
\end{array}\right\},
$$

or other values might be given to x and y, consistently with the equation. In fact we can find as many pairs of values of x and y as we please, which will satisfy the equation.

We symbol

Take

Now

Hen equatio

We must have a second equation independent of the first, and then we may find a pair of values of x and y which will satisfy both equations.

Thus, if besides the equation $x+y=6$, we had another equation $x-y=2$, it is evident that the values of x and y which will satisfy both equations are
since

$$
\left.\begin{array}{l}
x=4 \\
y=2
\end{array}\right\}
$$

$$
4+2=6, \text { and } 4-2=2
$$

Also, of all the pairs of values of x and y which will satisfy one of the equations, there is but one pair which will satisfy the other equation.

We proceed to shew how this pair of values may be found. 208. Let the proposed equations be

$$
\begin{aligned}
& 2 x+7 y=34 \\
& 5 x+9 y=51 .
\end{aligned}
$$

Multiply the first equation by 5 and the second equation by 2, we then get

$$
\begin{aligned}
& 10 x+35 y=170 \\
& 10 x+18 y=102
\end{aligned}
$$

The coefficients of x are thus made alike in both equations.
If we now subtract each member of the second equation from the corresponding member of the first equation, we shall get (Ax. II. page 58)
or

$$
\begin{aligned}
35 y-18 y & =170-102 \\
17 y & =68 \\
\therefore y & =4
\end{aligned}
$$

We have thus obtained the value of one of the unknown symbols. The value of the other may be found thas:

Take one of the original equations, thus

$$
2 x+7 y=34
$$

Now, since

$$
\begin{aligned}
y=4,7 y & =28 ; \\
\therefore 2 x+28 & =34 ; \\
\therefore x & =3 .
\end{aligned}
$$

Hence the pair of values of x and y which satisfy the equations is 3 and 4.

Note. The process of thus obtalining from two or more equations an equation, from which one of the unknown quantities has disappeared, is called Elimination.
209. We worked out the steps fully in the example given in the last article. We shall now work an example in the form in which the process is usually given.

Ex. To solve the equations

$$
\begin{aligned}
& 3 x+7 y=67 \\
& 5 x+4 y=58
\end{aligned}
$$

Multiplying the first equation by 5 and the second by 3 ,

$$
\begin{aligned}
& 15 x+35 y=335 \\
& 15 x+12 y=174
\end{aligned}
$$

Subtracting, and therefore

$$
\begin{aligned}
23 y & =161 \\
y & =7
\end{aligned}
$$

Now, since

$$
\begin{aligned}
3 x+7 y & =67, \\
3 x+49 & =67, \\
\therefore 3 x & =18, \\
\therefore x & =6 .
\end{aligned}
$$

Hence $x=6$ and $y=7$ are the values required.
210. In the examples given in the two preceding articles we made the coefficients of x alike. Sometimes it is more convenient to make the coefficients of y alike. Thus if we have to solve the equations

$$
\begin{aligned}
& 29 x+2 y=64 \\
& 13 x+y=29
\end{aligned}
$$

we leave the first equation as it stands, and multiply the second equation by 2 , thus

$$
\begin{aligned}
& 29 x+2 y=64 \\
& 26 x+2 y=58
\end{aligned}
$$

Subtracting, and therefore

Now, since

$$
\begin{aligned}
13 x+y & =29, \\
26+y & =29, \\
\therefore y & =3 .
\end{aligned}
$$

Hence $x=2$ and $y=3$ are the values required.

EXAMPLES - $1 \times X$

1. $2 x+7 y=41$
2. $5 x+8 y=101$
3. $13 x+17 y=189$
$3 x+4 y=42$.
$9 x+2 y=95$.
$2 x+y=21$.
4. $14 x+9 y=156$
5. $x+15 y=49$
6. $15 x+19 y=132$
$7 x+2 y=58$.
$3 x+7 y=71$.
$35 x+17 y=226$.
7. $6 x+4 y=236$
8. $39 x+27 y=105$
9. $72 x+14 y=330$
$3 x+15 y=573$.
$52 x+29 y=133$.
$63 x+7 y=273$.
10. We shall now give some examples in which negative signs occur attached to the coefficient of y in one or both of the equat ons.

Ex. To solvc the equations:

$$
\begin{aligned}
& 6 x+35 y=177 \\
& 8 x-21 y=33
\end{aligned}
$$

Multiply the first equation by 4 and the second by 3.

EXAMPLES.-lXXi.

1. $\begin{aligned} 2 x+7 y & =52 \\ 3 x-5 y & =16 .\end{aligned}$
2. $7 x-4 y=55$
3. $x+y=96$
$15 x-13 y=109$.
$x-y=2$.
4. $\begin{aligned} 4 x+9 y & =79 \\ 7 x-17 y & =40 .\end{aligned}$
5. $\begin{aligned} x+19 y & =97 \\ 7 x-53 y & =121 .\end{aligned}$
6. $29 x-14 y=175$
7. $171 x-213 y=642$ $114 x-326 y=244$.
8. $43 x+2 y=266$
$12 x-17 y=4$.
9. $\quad 5 x+9 y=188$
$13 x-2 y=57$.

$$
\begin{aligned}
& 24 x+140 y=708 \\
& 24 x-63 y=99 .
\end{aligned}
$$

Subtracting,
and therefore

$$
\begin{aligned}
203 y & =609 \\
y & =3 .
\end{aligned}
$$

The value of x may then be found.
212. We have hitherto taken examples in which the coefficients of x are both positive. Let us now take the following equations :

$$
\begin{aligned}
& 5 x-7 y=6 \\
& 9 y-2 x=10 .
\end{aligned}
$$

Change all the signs of the secord equation, so that we get

$$
\begin{aligned}
& 5 x-7 y=6 \\
& 2 x-9 y=-10 .
\end{aligned}
$$

Multiplying by 2 and 5,

$$
\begin{aligned}
& 10 x-14 y=12 \\
& 10 x-45 y=-50
\end{aligned}
$$

Subtracting,

$$
\begin{gathered}
-14 y+45 y=12+50 \\
\text { or, } 31 y=62 \\
\text { or, } \quad y=2 .
\end{gathered}
$$

The value of x may then be fourd.

EXAMPLES:-lXXii.

I. $4 x-7 y=22$
$7 y-3 x=1$.
2. $9 x-5 y=52$
$8 y-3 x=8$.
3. $17 x+3 y=57$ $16 y-3 x=23$.
4. $7 y+3 x=78$
$19 y-7 x=136$.
5. $5 x-3 y=4$
$12 y-7 x=10$.
6. $3 x+2 y=39$
$3 y-2 x=13$.
7. $\begin{aligned} 5 y-2 x & =21 \\ 13 x-4 y & =120 .\end{aligned}$
8. $\begin{aligned} 9 y-7 x & =13 \\ 15 x-7 y & =9 .\end{aligned}$
9. $12 x+7 y=176$
213. In the preceding examples the values of x and y have been positive: We shall now give some equations in which x or y or both have negative values.

Ex. To solve the equations:

$$
\begin{aligned}
& 2 x-0 y=11 \\
& 3 x-4 y=7 .
\end{aligned}
$$

Multiplying the equations by 3 and 2 respectiveiy, we get

$$
\begin{aligned}
& 6 x-27 y=33 \\
& 6 x-8 y=14
\end{aligned}
$$

Subtracting,

$$
\begin{aligned}
-19 y & =19 \\
\text { or, } \quad 19 y & =-19 \\
\text { or, } \quad y & =-1
\end{aligned}
$$

Now since $9 y=-9$,
$2 x-9 y$ will be equivalent to $2 x-(-9)$ or, $2 x+9$.
Hence, from the first equation,

$$
\begin{aligned}
2 x+9 & =11 \\
\therefore x & =1 .
\end{aligned}
$$

EXAMPLES.-lXXiii

1. $2 x+3 y=8$
$3 x+7 y=7$.
2. $5 x-2 y=51$
3. $3 x-5 y=51$
$19 x-3 y=180$.
$2 x+7 y=3$.
4. $7 y-3 x=139$
5. $4 x+9 y=106$
6. $2 x-7 y=8$
$2 x+5 y=91$.
$8 x+17 y=198$.
$4 y-9 x=19$.
7. $17 x+12 y=59$
8. $8 x+3 y=3$
$19 x-4 y=153$.
$12 x+9 y=3$.
9. $69 y-17 x=103$
$14 x-13 y=-41$.
10. We shall now take the case of Fractional Equations involving two unknown quantities.

Ex. To solve the equations,

$$
\begin{aligned}
& 2 x-\frac{y-3}{5}=4 \\
& 3 y=9-\frac{x-2}{3}
\end{aligned}
$$

Fir.st, clearing the equations of fractions, we ge:;

$$
\begin{aligned}
& 10 x-y+3=20 \\
& 9 y=27-x+2
\end{aligned}
$$

from which we obtain,

$$
\begin{array}{r}
10 x-y=17 \\
x+9 y=29
\end{array}
$$

and hence we may find $x=2, y=3$.

EXAMPLES.-lXXIV.

1. $\frac{x}{2}+\frac{y}{3}=7$
2. $10 x+\frac{y}{3}=210$
3. $\frac{x}{7}+7 y=251$
$\frac{x}{3}+\frac{y}{2}=8$.
$10 y-\frac{x}{2}=290$.
$\frac{y}{7}+7 x=299$.
4. $\frac{x+y}{3}+5=10$
5. $7 x+\frac{5 y}{2}=413$
6. $\frac{2 x+3 y}{5}=10-\frac{y}{3}$
$\frac{x-y}{2}+7=9 \frac{1}{2}$.
$39 x=14 y-1609$

$$
\frac{4 y-3 x}{6}=\frac{3 x}{4}+1 .
$$

7. $:-\frac{y-2}{7}=5$
8. $\frac{x+2}{3}+8 y=31$
$4 y-\frac{x+10}{3}=3$.

$$
\frac{y+5}{4}+10 x=192 .
$$

8. $\frac{x}{4}+8=\frac{y}{2}-12$
$\frac{x+y}{5}+\frac{y}{3}=\frac{2 x-y}{4}+35$.
9. $\frac{2 x-y}{7}+3 x=2 y-6$

$$
\frac{y+3}{5}+\frac{y-x}{6}=2 x-8
$$

9. $\frac{3 x-5 y}{2}+3=\frac{2 x+y}{5}$
10. $\frac{x-2}{5}-\frac{10-x}{3}=\frac{y-10}{4}$
$8-\frac{x-2 y}{4}=\frac{x}{2}+\frac{y}{3}$.
$\frac{2 y+4}{3}=\frac{4 x+y+13}{8}$.
11. $\frac{5 x-6 y}{13}+3 x=4 y-2$

$$
\frac{5 x+6 y}{6}-\frac{3 x-2 y}{4}=2 y-2
$$

14. $\frac{5 x-3}{2}-\frac{3 x-19}{2}=4-\frac{3 y-x}{3}$
$\frac{2 x+y}{2}-\frac{9 x-7}{8}=\frac{3 y+9}{4}-\frac{4 x+5 y}{16}$.
15. $\frac{4 x+5 y}{40}=x-y$
$\frac{2 x-y}{3}+2 y=\frac{1}{2}$.
16. We have now to explain the method of solving Literal Equations involving two unknown quantities.

Ex. To solve the equations,

$$
\begin{aligned}
& a x+b y=c \\
& p x+q y=r .
\end{aligned}
$$

Multiplying the first equation by \dot{p} and the second by a, we get

$$
\begin{gathered}
a p x+b p y=c p \\
a p x+a q y=a r . \\
b p y-a q y=c p-a r, \\
\text { or, }(b p-a q) y=c p-a r ; \\
\therefore y=\frac{c p-a r}{b p-a q} .
\end{gathered}
$$

Subtracting,

We might then find x by substituting this value of y in one of the original equations, but usually the safest course is to begin afresh and make the coefficients of y aiike in the criginal equations, multiplying the first by q and the second by b, which gives

$$
\text { Subtracting, } \quad \begin{gathered}
a q x+b a y=c q \\
b p x+b q y=b r . \\
a q x-b p x=c q-b r, \\
\text { or, }(a q-b p) x=c q-b r ; \\
\therefore x=\frac{c q-b r}{a q-b p} .
\end{gathered}
$$

EXAMPLES.-lXXV.

1. $m x+n y=c$,
$p x+q y=f$.
2. $a x+b y=c$
$d x-e y=f$.
3. $a x-b y=m$ $c x+e y=u$.
4. $c x=d y$
5. $m x-n y=r$
$m^{\prime} x+n^{\prime} y=r$
6. $\begin{aligned} x+y & =a \\ x-y & =b\end{aligned}$
7. $a x+b y=c$
8. $a b x+c d y=2$
9. $\frac{a}{b+y}=\frac{b}{3 a+x}$
$d x+f y=c^{2}$.
$a x-c y=\frac{d-b}{b d}$.
$a x+2 b y=d$.
10. $b c x+2 b-c y=0$
11. $(b+c)(x+c-b)+a(y+a)=2 a^{2}$

$$
b^{2} y+\frac{a\left(c^{3}-b^{3}\right)}{b c}=\frac{2 b^{3}}{c}+c^{3} x
$$

$$
\frac{a y}{(b-c) x}=\frac{(b+c)^{2}}{a^{2}}
$$

12. $3 x+5 y=\frac{(8 b-2 m) b m}{b^{2}-m^{2}}$.

$$
b^{2} x-\frac{b c m^{2}}{b+m}+(b+c+m) m y=m^{2} x+(b+2 m) b m
$$

216. We now proceed to the solution of a particular class of Simultancous Equations in which the unknown symbols appear as the denominators of fractions, of which the following are examples.

Ex. 1. To solve the cquations,

$$
\begin{aligned}
& \frac{a}{x}+\frac{b}{y}=c \\
& \frac{m}{x}-\frac{n}{y}=d .
\end{aligned}
$$

Multiplying the first by m and the second by a, we get

$$
\begin{aligned}
& \frac{a m}{x}+\frac{b m}{y}=c m \\
& \frac{a m}{x}-\frac{a n}{y}=a d .
\end{aligned}
$$

Subtracting,

$$
\begin{aligned}
\frac{b m}{y}+\frac{a n}{y} & =c m-a d . \\
\text { or, } \frac{b m+a n}{y} & =c m-a d, \\
\text { or, } b m+a n & =(c m-a d) y, \\
\therefore y & =\frac{b m+a n}{c m-a d}
\end{aligned}
$$

Then the value of x may be found by substituting this value of y in one of the original equations, or by making the terms containing y alike, as in the example given in Art. 215.

Ex. 2. To solve the equations:

$$
\begin{aligned}
& \frac{2}{x}-\frac{5}{3 y}=\frac{4}{27} \\
& \frac{1}{4 c}+\frac{1}{y}=\frac{11}{72}
\end{aligned}
$$

Multiplying the second equation by 8 , we $;: *$

$$
\begin{aligned}
& \frac{2}{x}-\frac{5}{3 y}=\frac{4}{27} \\
& \frac{2}{x}+\frac{8}{y}=\frac{11}{9}
\end{aligned}
$$

Subtracting,

$$
-\frac{5}{3 y}-\frac{8}{y}=\frac{4}{27}-\frac{11}{9}
$$

Changing signs, $\frac{5}{3 y}+\frac{8}{y}=\frac{11}{9}-\frac{4}{27}$,
or,

$$
\frac{5+24}{3 y}=\frac{33-4}{27}
$$

whence we find

$$
y=9
$$

and then the value of x may be found by substituting 9 for y in one of the original equations.

EXAMPLES.-lXXVi.

I. $\frac{1}{x}+\frac{2}{y}=10$
2. $\frac{1}{x}+\frac{2}{y}=a$
3. $\frac{a}{x}+\frac{b}{y}=c$
$\frac{4}{x}+\frac{3}{y}=20$.
$\frac{3}{x}+\frac{4}{y}=b$.
$\frac{b}{x}+\frac{a}{y}=d$.
4. $\frac{a}{x}+\frac{b}{y}=m$
5. $\frac{7}{x}+\frac{5}{y}=19$
6. $\frac{5}{3 x}+\frac{2}{5 y}=7$
$\frac{a}{x}-\frac{b}{y}=n$.
$\frac{8}{x}-\frac{3}{y}=7$.
$\frac{7}{6 x}-\frac{1}{10 y}=3$.
7. $\frac{2}{a x}+\frac{3}{b y}=5$
8. $\frac{m}{n x}+\frac{n}{m y}=m+n$
$\frac{5}{a x}-\frac{2}{b y}=3$.
$\frac{n}{x}+\frac{m}{u}=m^{2}+n^{2}$.
217. There are two other methods of solving Simultaneous Equations of which we have hitherto made no mention, because they are not generally so convenient and simple as the method which we have explained. They are
I. The method of Substitution.

If we have to solve the equations

$$
\begin{array}{r}
x+3 y=7 \\
2 x+4 y=12
\end{array}
$$

we may find the value of x in terms of y from the first equation, thus

$$
x=7-3 y,
$$

and substitute this value for x in the second equation, thus

$$
2(7-3 y)+4 y=12,
$$

from which we find

$$
y=1
$$

We may then find the value of x from one of the original equations.
II. The methori of Comparison.

If we have to solve the equations

$$
\begin{aligned}
& 5 x+2 y=16 \\
& 7 x-3 y=5
\end{aligned}
$$

we may find the values of x in terms of y from each equation, thus

$$
\begin{aligned}
& x=\frac{16-2 y}{5}, \text { from the first equation. } \\
& x=\frac{5+3 y}{7}, \text { from the second equation. }
\end{aligned}
$$

Hence, equating these values of x, we get

$$
\frac{16-2 y}{5}=\frac{5+3 y}{5},
$$

an equation involving only one unknown symbol, from which we obtain

$$
y=3,
$$

and then the value of x may be found from one of the original equations. .
218. If there be three unknown symbols, their values may be found from three independent equations.

For from two of the equations a third, which involves only two of the unknown symbols, may be found.

And from^{m} the remaining equation and one of the others a fourth, containing only the same two unknown symbols, may be found.

So from these two equations, which involve only two unknown symbold, the value of these symbols may be found, and by substituting these values in one of the original equations the value of the third unknown symbol may be found.

Ex.

$$
\begin{aligned}
& 5 x-6 y+4 z=15 \\
& 7 x+4 y-3 z=19 \\
& 2 x+y+6: z=46 .
\end{aligned}
$$

Multiplying the first by 7 and the second by 5 , we get

$$
\begin{aligned}
& 35 x-42 y+28 z=105 \\
& 35 x+20 y-15 z=95 .
\end{aligned}
$$

Subtracting,

$$
-62 y+43 z=10
$$

Again, multiplying the first of the original equations by 2 and the third by 5 ; we get

$$
\begin{align*}
& 10 x-12 y+8 z=30 \\
& 10 x+5 y+30 z=230 \\
& -17 y-22 z=-200 \tag{2}
\end{align*}
$$

Subtracting,
Then, from (1) and (2) we have

$$
\begin{aligned}
& 62 y-43 z=-10 \\
& 17 y+22 z=200
\end{aligned}
$$

from which we can find $y=4$ and $z=6$.
Then substituting these values for y and z in the first equation we find the value of x to be 3 .

EXAMPLES.-IXXVii.

3. $5 x-3 y+2 z=21$
$8 x-y-3 z=3$
$2 x+3 y+2 z=39$.
4. $5 x+3 y-6 z=4$
$3 x-y+2 z=8$
$x-2 y+2 z=2$.
5. $4 x-5 y+2 z=6$
$2 x+3 y-z=20$
$7 x-4 y+3 z=35$.

5	$\begin{array}{r} x+\quad y+z=6 \\ 5 x+4 y+3 z=22 \\ 15 x+10 y+6 z=53 . \end{array}$		$\begin{array}{r} 4 x-3 y+z=9 \\ 9 x+y-5 z=16 \\ x-4 y+3 z=2 \end{array}$
6.	$\begin{array}{r} 8 x+4 y-3 z=6 \\ x+3 y-z=7 \\ 4 x-5 y+4 z=8 . \end{array}$	9.	$\begin{aligned} & 12 x+5 y-4 z=29 \\ & 13 x-2 y+5 z=58 \\ & 17 x-y-z=15 \end{aligned}$
7.	$\begin{array}{r} x+y+z=30 \\ 8 x+4 y+2 z=50 \\ 27 x+9 y+3 z=64 . \end{array}$	10.	$\begin{aligned} & y-x+z=-5 \\ & z-y-x=-25 \\ & x+y+z=35 . \end{aligned}$

XVI. PROBLEMS RESULTING IN SIMULTANEOUS EQUATIONS.

219. In the Solution of Problems in which we represent two of the numbers sought by unknown symbols, usually x and y, we must obtain two independent equations from the conditions of the question, and then we may obtain the values of the two unknown symbols by one of the processes described in Chapter XV.

Ex. If one of two numbers be multiplied by 3 and the other by 4 , the sum of the products is 43 ; and if the former be multiplied by 7 and the latter by 3 , the difference between the results is 14 . Find the numbers.

Let x and y represent the numbers.
Then

$$
3 x+4 y=43
$$

and $\quad 7 x-3 y=14$.
From these equations we have

$$
\begin{aligned}
& 21 x+28 y=301 \\
& 21 x-9 y=42
\end{aligned}
$$

Subtracting,

$$
37 y=259 .
$$

Therefore

$$
y=7,
$$

and then the value of x may be found to be 5 .
Hence the numbers are 5 and 7 .

EXAMPLES.-lXXViii.

1. The sum of two numbers is 28 , and their difference is 4 , find the numbers.
2. The sum of two numbers is 256 , and their difference is 10 , find the numbers.
3. The sum of two numbers is 13.5 , and their difference is 1 , find the numbers.
4. Find two numbers such that the sum of 7 times the greater and 5 times the less may be 332 , and the product of their difference into 51 may be 408.
5. Seven years ago the age of a father was fomr times that of his son, and seven years hence the age of the father will be double that of the son. Find their ages.
6. Find three numbers such that the sum of the first and second shall be 70 , of the first and third 80 , and of the second and third 90.
7. Three persons A, B, and C make a joint contribution which in the whole amounts to $£ 400$. Of this sum B contributes twice as much as A and $£ 20$ more; and C as much as A and B together. What sum did each contribute?
8. If A gives B ten shillings, B will have three times as much money as A. 'If B gives A ten shillings, A will have twice as much money as B. What has each?
9. The sum of $£ 660$ is divided between A, B, C. The shares of A and B together exceed the share of C by $£ 240$, and the shares of B and C together exceed the share of A by $£ 360$. What is the share of each ?
10. 'The sum of two numbers divided by 2 , gives as a quotient 24 , and the difference between them divided by 2 , gives as a quotient 17 . What are the numbers?
in. Find two numbers such that when the greater is divided by the less the quotient is 4 and the remainder 3 , and when the sum of the two numbers is increased by 38 and the result divided by the greater of the two numbers, the quotient is 2 and the remainder 2.
11. Divide the number 144 into three such parts, that when the tirst is divided by the second the quotient is 3 and the remainder 2 , and when the third is divided by the sum of the other two parts, the quotient is 2 and the remainder $\mathbf{6}_{\text {r }}$
12. A and B buy a horse for $£ 120 . A$ can pay for it if B will advance half the money he has in his pocket. In can pay for it if A will advance two-thirds of the money he has in his pocket. How much has each?
13. "How old are you?" said a son to his father. The father replied, "Twelve years hence you will be as old as I was twelve years ago, and I shall be three times as old as you were twelve years ago." Find the age of each.
14. Required two numbers such that three times the greater exceeds twice the less by 10 , and twice the greater together with three times the less is 24 .
15. The sum of the ages of a father and son is half what it will be in 25 years. The difference is one-thrird what the sum will be in 20 years. Find their ages.
16. If I divide the smaller of two numbers by the greater, the quotient is 21 and the remainder 0157 . If I divide the greater number by the smaller, the quotient is 4 and the remainder 742 . Find the numbers.
17. The cost of 6 barrels of beer and 10 of porter is $\mathfrak{£ i} l$; the cost of 3 barrels of beer and 7 of porter is $£ 32$, $2 s$. How much beer can be bought for $£ 30$?
18. The cost of 7 lbs . of tea and 5 lbs. of coffee is $£ 1,9 \mathrm{~s} .4 \mathrm{~d}$. : the cost of 4 lbs . of tea and 9 lbs . of coffee is $£ 1,7 \mathrm{~s}$. : what is the cost of 1 ll . of each?
19. The cost of 12 horses and 14 cows is $£ 380$: the cost of 5 horses and 3 cows is $£ 130$: what is the cost of a horse and a cow respectively?

2I. The cost of 8 yards of silk and 19 yards of cloth is $£ 18,4 \mathrm{~s}$. $2 d$.: the cost of 20 yards of silk and 16 yards of cloth, each of the same quality as the former, is $£ 25,16 s .8 d$. How much does a yard of each cost?
22. Ten men and six women earn $£ 18,18 s$. in 6 days, and four men and eight women earn $\mathfrak{e} 6,6$, in 3 days. What are the earnings of a man and a woman daily?
23. A farmer bought 100 acres of land for 24220 , part at $£ 37$ an acre and part at $£ 45$ an acre. How many acres had he of each kind?
it if B m pay \therefore his

The s I was u were
es the greater what it he sum ide the nd the

Note I. A number consisting of two digits may be represented algebraically by $10 x+y$, where x and y represent the significant digits.

For consider such a number as 76 . Here the significunt digits are 7 and 6 , of whieh the former has in consequence of its position a local value ten times as great as its nutural value, and the number represented by 76 is equivalent to ten times 7 , increased by 6 .

So also a number of which x and y are the significant digits will be represented by ten times x, increased by y.

If the digits composing a number $10 x+y$ be inverted, the resulting number will be $10 y+x$. Thus if we invert the digits composing the number 76, we get 67 , that is, ten times 6 , increased by 7 .

If a number be represented by $10 x+y$, the sum of the digits will be represented by $x+y$.

A number consisting of three digits may be represented algebraically by

$$
100 x+10 y+z
$$

Ex. The sum of the digits composing a certain number is 5 , and if 9 be added to the number the digits will be inverted. Find the number.

Let $10 x+y$ represent the number.
Then $x+y$ will represent the sum of the digits, and $10 y+x$ will represent the number with the digits inverted. Then our equations will be

$$
\begin{gathered}
x+y=5 \\
10 x+y+9=10 y+x
\end{gathered}
$$

from which we may find $x=2$ and $y=3$;

$$
\therefore 23 \text { is the number required. }
$$

24. The sum of two digits composing a number is 8 , and if 36 be added to the number the digits will be inverted. Find the number.
25. The sum of the two digits composing a number is 10 , and if 54 be added to the number the digits will be inverted. What is the number?
26. The sum of the digits of a number less than 100 is $\mathbf{9}$, and if 9 be added to the number the digits will be inverted. What is the number?
27. The sum of the two digits composing a number is $\mathbf{6}$, and if the number be divided by the sum of the digits the quotient is 4 . What is the number?
28. The sum of the two digits composing a number is $\mathbf{9}$, and if the number be divided by the sum of the digits the quotient is 5 . What is the number ?
29. If I divide a certain number by the sum of the two digits of which it is composed the quotient is 7 . If I invert the order of the digits and then divide the resulting number diminished by 12 by the difference of the digits of the original number the quotient is 9 . What is the number?
30. If I divide a certain number by the sum of its two digits the quotient is 6 and the remainder 3 . If I invert the digits and divide the resulting number by the sum of the digits the quotient is 4 and the remainder 9 . Find the number.

3I. If I divide a certain number by the sum of its two digits diminished by 2 the quotient is 5 and the remainder 1. If I invert the digits and divide the resulting number by the sum of the digits increased by 2 the quotient is 5 ard the remainder 8 . Find the number.
32. Two digits which form a number change places on the addition of 9 , and the sum of these two numbers is 33 . Find the numbers.
33. A number consisting of three digits, the absolute value of each digit being the same, is 37 times the square of any digit. Find the number.
34. Of the three digits composing a number the second is double of the third: the sum of the first and third is 9 : the sum of all the digits is 17 . Find the number.
35. A number is composed of three digits. The sum of the digits is 21 : the sum of the first and second is greater than the third by 3 ; and if 198 be added to the number the digits will be inverted. Find the number.
4
nun

0 is 9 , verted.
er is 6 , gits the er is 9, rits the
the two - invert number original
its two vert the ae digits ber.
its two ainder 1. by the the re-
s on the Find

Note II. A fraction of which the terms are manown may be represented by $\frac{x}{y}$.

Ex. A certain fraction becomes $\frac{1}{2}$ when 7 is added to its denominator, and 2 when 13 is added to its numerator. Find the fraction.

Let $\frac{x}{y}$ represent the fraction
Then

$$
\begin{aligned}
\frac{x}{y+7} & =\frac{1}{2} \\
\frac{x+13}{y} & =2
\end{aligned}
$$

are the equations: from which we may find $x=9$ and $y=11$.
That is, the fraction is $\frac{9}{11}$.
36. A certain fraction becomes 2 when 7 is added to its numerator, and 1 when 1 is subtracted from its denominator. What is the fraction?
37. Find such a fraction that when 1 is added to its numerator its value becomes $\frac{1}{3}$, and when 1 is added to the denominator the value is $\frac{1}{4}$.
38. What fraction is that to the numerator of which if 1 be added the value will be $\frac{1}{2}$: but if 1 be arded to the denominator, the value will be $\frac{1}{3}$?
39. The numerator of a fraction is made equal to its denominator by the addition of 1 , and is half of the denominator increased by 1. Find the fraction.
40. A certain fraction becomes $\frac{1}{4}$ when 3 is taken from the numerator and the denominator, and it becomes $\frac{1}{2}$ when 5
is added to the numerator and the denominator. What is the fraction?
41. A certain fraction becomes $\frac{7}{9}$ when the denominator is increased by 4 , and $\frac{20}{41}$ when the numerator is dimisashed by 15 : determine the fraction.
42. What fraction i.t. to the mmerator of which if 1 be added it becomes $\frac{1}{2}$, as a denominator of which if 17 be added it becomes $\frac{1}{3}$?

Note III. In questions relating to money put out at simple interest we are to observe that

$$
\text { Interest }=\frac{\text { Principal } \times \text { Rate } \times \text { Time }}{100},
$$

where Rate means the number of pounds paid for the use of $£ 100$ for one year, and Time means the number of years for which the money is lent.
43. A man puts out $£ 2000$ in two investments. For the first he gets 5 per cent., for the second 4 per cent. on the sum invested, and by the first investment he has an income of $£ 10$ more than on the second. Find how much he invests in each case.
44. A sum of money, put out at simple interest, amounted in 10 montles to $£ 5250$, and in 18 months to $£ 5450$. What was the sum and the rate of interest?
45. A sum of money, put out at simpie interest, amounted in 6 years to $£ 5200$, and in 10 years to $£ 6000$. Find the sum and the rate of interest.

Note IV. When tea, spirits, wine, beer, and such commodities are mixed, it must be observed that
quantity of ingredients = quantity of mixture, cost of ingredients $=$ cost of mixture.

Ex. 1 mix wine which cost 10 shillings a gallon with another sort which cost 6 shillings a gallon, to make 100
gallo
or lo
Le
an
Tl
and
are t
x anc
46.

36 p
he pl
may
47.
tea tl and much of eac

No in sti rate o
48. hour up a
49.

4 mile In ret a poin he pul
50.
her on
5, and
many
is the rator is hed by
gallons, which I may sell at 7 shillings a gallon without profit or loss. How much of each do I take?

Let x represent the mumber of gallons at 10 shillings a gallon, and y

6 \qquad
Then
$x+y=100$,
and
$10 x+6 y=700$,
are the two equations from which we may find the values of x and y to be 25 and 75 respectively.
46. A wine-merchant has two kinds of wine, the one costs 36 pence a quart, the other 20 pence. How much of each ast he put in a mixture of 50 quarts, so that the cost price f: may be 30 pence a quart ?
/ 47. A grocer mixes tea which cost him 1s. 2d. per 1b. vith tea that cost him 1 s .6 d . per 1 lb . He has 30 lbs . of the nixture, and by selling it at the rate of 1 s. $8 d$. per 1 lb . he g . ned as much as 10 lbs . of the cheaper tea cost him. How many llss. of each did he put in the mixture?

Note V. If a man can row at the rate of x miles an hour in still water, and if he be rowing on a stream that rums at the rate of y miles an hour, then

$$
\begin{aligned}
& x+y \text { will represent his rate down the stream, } \\
& x-y \text {............................ up }
\end{aligned}
$$

48. A crew which can pull at the rate of twelve miles an hour down the stream, finds that it takes twice as long to come up a river as to go down. At what rate does the stream flow?
49. A man sculls down a stream, which runs at the rate of 4 miles an hour, for a certain distance in 1 hour and 40 minutes. In returning it takes him 4 hours and 15 minutes to arrive at a point 3 miles short of his starting-place. Find the distance he pulled down the stream, and the rate of his pulling.
50. A dog pursues a hare. The hare gets a start of 50 of her own Jeaps. The hare makes six leaps while the dog makes 5 , and 7 of the dog's leaps are equal to 9 of the hare's. How many leaps will the hare take before she is canght?
51. A greyhound starts in pursuit of a hare, at the distance of 50 of his own leaps from her. He makes 3 leaps while the hare makes 4 , and he covers as much ground in two leaps as the hare does in three. How many leaps does each make before the hare is canght?
52. I lay out half-a-crown in apples and pears, buying the apples at 4 a penny and the pears at 5 a penny. I then sell half the apples and a third of the pears for thirteen pence, which was the price at which I bought them. ENow many of each did I buy?
53. A company at a tavern found, when they came to pay their reckoning, that if there had been 3 more persons, each would have paid a shilling less, but had there been 2 less, each would have paid a shilling more. Find the number of the company, and each man's share of the reckoning.
54. At a contested election there are two members to be returned and-three candidates, A, B, and C. A obtains 1056 votes, $B, 987, C, 933$. Now 85 voted for B and $C, 744$ for B only, 98 for C only. How many voted for A and C, for A and B, and for A only ?
55. A man walks a certain distance: had his rate been half a mile an hour faster, he would have been $1 \frac{1}{2}$ hours less on the road; and had it been half a mile an hour slower, he would have been $2 \frac{1}{2}$ hours more on the road. Find the distance and rate.
56. A certain crew pull 9 strokes to 8 of a certain other crew, but 79 of the latter are equal to 90 of the former. Which is the faster crew?

Also, if the faster erew start at a distance equivalent to four of their own strokes belind the other, how many strokes will they take before they bump them?
57. A person, sculling in a thick fog, meets one barge and overtakes another which is ooing at the same rate as the former ; shew that if a be the greatest distance to which he can see, and b, b^{\prime} the distances that he sculls between the times of his first seeing and passing the barges,

$$
\frac{2}{6}=\frac{1}{b}+\frac{1}{b^{\prime}} .
$$

58. Two trains, 92 feet long and 84 feet long respectively, are moving with miform velocities on parallel rails in opposite directions, and are observed to pass each other in one second and a half; but when dicy are moving in the same direction, their velocities being the same as before, the faster train is observed to pass the uther in six seconds; find the rate in miles per hour at which each train moves.
59. The fore-wheel of a carriage makes six revolutions more than the hind-wheel in 120 yards ; but only four revolntions more when the circumference of the fore-wheel is increased one-fourth, and that of the hind-wieel one-fifth. Find the circumference of each wheel.
60. A person rows from Cambridge to Ely (a distance of 20 miles) and back again in 10 hours, and finds he can row 2 miles against the stream in the same time that he rows 3 miles with it. Find the rate of the stream, and the time of his going and returning.

6r. A number consists of 6 digits, of which the last to the left hand is 1 . If this number is altered by removing the 1 and putting it in the unit's place, the new number is three times as great as the original one. Find the number.

XVII. ON SQUARE ROOT.

220. In Art. 97 we defined the Square Root, and explained the method of taking the square root of expressions consisting of a single term.

The square root of a positive ruantity may be, as we explained in Art. 97, either positive or negative.

Thus the square root of $4 a^{2}$ is $2 a$ or $-2 a$, and this ombiguity is expressed thus,

$$
\sqrt{4 a^{2}}= \pm 2 a
$$

In our examples in tnis chapter we shall in all eases regard the square root of a single term as a positive duantity.
221. The square root of a product may be fomd by taking the square root of each factor, and multiplying the roots, so taken, together.

Thus

$$
\begin{aligned}
\sqrt{a^{2} b^{2}} & =a b, \\
\sqrt{81 x^{4} y^{2} z^{6}} & =9 x^{2} y z^{3}
\end{aligned}
$$

222. The square root of a fraction may be found ly taking the square root of the numerator and the square root of the denominator, and making them the numerator and denominator of a new fraction, thus

$$
\begin{aligned}
& \sqrt{\frac{4 a^{2}}{81 b^{2}}}=\frac{2 a}{9 b} \\
& \sqrt{\frac{25 x^{2} y^{4}}{49 z^{6}}}=\frac{5 x y^{2}}{7 z^{3}} .
\end{aligned}
$$

EXAMPLES.-lXXIX.

Find the Square Root of each of the following expressions:
I. $4 x^{2} y^{2}$.
2. $81 a^{68} b^{8}$.
3. $121 m^{10} n^{12} r^{14}$.
4. $64 a^{4} b^{10} c^{2}$.
5. $71289 a^{4} b^{2} x^{6}$.
6. $169 a^{16} b^{8} c^{12}$.
7. $\frac{9 a^{2}}{16 b^{2}}$.
8. $\frac{1}{4 a^{2} c^{4}}$.
9. $\frac{25 a^{4} b^{6}}{121 x^{8} y^{10}}$.
10. $\frac{256 x^{12}}{289 y^{4}}$.
I I. $\frac{\mathbf{6} 25 a^{2}}{324 b^{2}}$.

1
223. We may now proceed to investigate a Rule for the extraction of the square root of a compound algebraical expression.

We know that the square of $a+b$ is $a^{2}+2 a b+b^{2}$, and therefore $a+b$ is the square root of $a^{2}+2 a b+b^{2}$.

If we can devise an operation by which we can clerive $a+b$ from $a^{2}+2 a b+b^{2}$, we shall be able to give a rule for the extraction of the square root.

Now the first term of the root is the square root of the first term of the square, i.e. a is the square root of a^{2}.

Hence our rule begins:
"Arrange the terms in the order of magnitude of the indices of one of the quantities involved, then take the square root of the
first term and set down the result as the first term of the root: subtract its square from the given expression, and bring down the remainder:" thus

$$
\begin{gathered}
a^{2}+2 a b+b^{2}(a \\
a^{2} \\
\quad 2 a b+b^{2}
\end{gathered}
$$

Now this remainder may be represented thus $h(2 a+b)$: hence if we divide $2 a b+b^{2}$ by $2 a+b$ we shall obtain $+b$, the second term of the root.

Hence our rule proceeds:
"Dorble the first term of the root and set Towe the result as the first term of a divisor:" thus our process up to this point will stand thus :

Now if we divide $2 a b$ by $2 a$ the result is b, and hence we obtain the second term of the root, and if we add this to $2 a$ we obtain the full divisor $2 a+b$.

Hence our rule proceeds thus:
"Divide the first term of the remainder by this first term of the divisor, and add the result to the first term of the root and also to the first term of the divisor:" thus our process up to this point will stand thus:

$$
\begin{gathered}
a^{2}+2 \iota \dot{b}+b^{2}(a+b \\
2 a+b \sqrt{2 a b+b^{2}}
\end{gathered}
$$

If now we multiply $2 a+b$ by b we obtain $2 a b+b^{2}$, which we subtract from the first remainder.

Hence our rule proceeds thus:
"Multiply the divisor by the second term of the root and subtract the result from the first remainder:" thus our process will stand thus :

$$
\begin{gathered}
\\
2 a + b \longdiv { a ^ { 2 } + 2 a b + b ^ { 2 } (a + b } \\
a^{2} \\
\begin{array}{l}
2 a b+b^{2} \\
2 a b+b^{2}
\end{array}
\end{gathered}
$$

If there is now no remainder, the root has been found.
If there be a remainder, consider the two terms of the root already found as one, and proceed as before.
224. The following examples worked out will make the process more clear.
(1)

$$
\begin{gathered}
\\
2 a-b \left\lvert\, \begin{array}{l}
a^{2}-2 a b+b^{2}(a-b \\
a^{2} \\
-2 a b+b^{2} \\
-2 a b+b^{2}
\end{array}\right.
\end{gathered}
$$

Here the second term of the root, and consequently the second term of the divisor, will have a negative sign prefixed, becul : $\frac{-2 a b}{2 a}=-b$.
(2)

$$
6 p+4 q \left\lvert\, \begin{aligned}
& 24 p q+16 q^{2} \\
& 24 p q+16 q^{2}
\end{aligned}\right.
$$

(3)

$$
\begin{aligned}
& 25 x^{2}-60 x+36(5 x-6 \\
& 25 x^{2}
\end{aligned}
$$

$$
\begin{array}{c|c}
1 0 x - 6 \longdiv { - 6 0 x + 3 6 } \\
-60 x+36
\end{array}
$$

Next take a case in which the root contains three terms.

When we obtained the second remainder, we took the double of $a+b$, considered as a single term, and set down the result as the first part of the second divisor. We then divided the first term of the remainder, $-2 a c$, by the first term of the new divisor, $2 a$, and set down the result, $-c$, attached to the part of the root already found and also to the new divisor, and then multiplied the completed divisor by $-c$.
Similarly we may proceed when the root contains 4 , 5 or more terms.

EXAMPLES.-1XXX.

Extract the Square Root of the following expressions:
I. $4 a^{2}+12 a b+9 b^{2}$.
6. $x^{4}-6 x^{3}+19 x^{2}-30 x+25$.
2. $16 k^{10}-24 k^{5} l^{3}+9 l^{6}$.
7. $9 x^{4}+12 x^{3}+10 x^{2}+4 x+1$.
3. $a^{2} b^{2}+162 a b+6561$.
S. $4 r^{4}-12 r^{3}+13 r^{2}-6 r+1$.
4. $y^{6}-38 y^{3}+361$.
9. $4 n^{4}+4 n^{3}-7 n^{2}-4 n+4$.
5. $9 a^{2} b^{2} c^{2}-102 a b c+289$. 1о. $1-6 x+13 x^{2}-12 x^{3}+4 x^{4}$.
II. $x^{6}-4 x^{5}+10 x^{4}-12 x^{3}+9 x^{2}$.
12. $4 y^{4}-1 \check{2} y^{3} z+25 y^{2} z^{2}-24 y z^{3}+16 z^{4}$.
13. $a^{2}+4 a b+4 b^{2}+9 c^{2}+6 a c+12 b c$.
14. $a^{6}+2 a^{5} b+3 a^{4} b^{2}+4 a^{3} b^{3}+3 a^{2} b^{4}+2 a b^{5}+b^{6}$.
15. $x^{6}-4 x^{5}+6 x^{3}+8 x^{2}+4 x+1$.
16. $4 x^{4}+8 a x^{3}+4 a^{2} x^{2}+16 b^{2} x^{2}+16 c b^{2} x+16 b^{4}$.
17. $9-24 x+58 x^{2}-116 x^{3}+129 x^{4}-140 x^{5}+100 x^{6}$.
18. $\quad 16 a^{4}-40 \epsilon^{3} b+25 a^{2} b^{2}-80 a b^{2} x+64 b^{2} x^{2}+64 a^{2} b x$.
19. $9 a^{4}-24 \epsilon^{3} p^{3}-30 a^{2} t+16 a^{2} p^{6}+40 a p^{3} t+25 t^{2}$.
20. $4 y^{4} x^{2}-12 y^{3} x^{3}+17 y^{2} x^{4}-12 y x^{5}+4 x^{6}$.
21. $25 x^{4} y^{2}-30 x^{3} y^{3}+29 x^{2} y^{4}-12 x y^{5}+4 y^{6}$.
22. $16 x^{4}-24 x^{3} y+25 x^{2} y^{2}-12 x y^{3}+4 y^{4}$.
23. $9 a^{2}-12 a b+24 u c-16 b c+4 b^{2}+16 c^{2}$.
24. $x^{4}+9 x^{2}+25-6 x^{3}+10 x^{2}-30 x$.
25. $25 x^{2}-20 x y+4 y^{2}+9 z^{2}-12 y z+30 x z$.
26. $4 x^{2}(x-y)+y^{3}(y-2)+y^{2}\left(4 x^{2}+1\right)$.
225. When any fractional terms are in the expression of which we have to find the Square Root, we may proceed as in the Exanıpies just given, taking care to treat the fractional terms in accordance with the rules relating to fractions.

Thus to find the square root of $x^{2}-\frac{8}{9} x+\frac{16}{81}$.

$$
\begin{aligned}
& x^{2}-\frac{8}{9} x+\frac{16}{81}\left(x-\frac{4}{9}\right. \\
& x^{2}
\end{aligned}
$$

$$
\begin{array}{c|r}
2 x-\frac{4}{9} & -\frac{8}{9} x+\frac{16}{81} \\
& -\frac{8}{9} x+\frac{16}{81}
\end{array}
$$

Since

$$
\frac{8}{9} \div 2=\frac{8}{9} \div \frac{2}{1}=\frac{8}{9} \times \frac{1}{2}=\frac{4}{9} .
$$

Or we might reduce $x^{2}-\frac{8}{9} x+\frac{16}{81}$ to a single fraction, which would be $\frac{81 x^{2}-72 x+16}{81}$,
and then take the square root of each of the terms of the fraction, with the followin result :

$$
\frac{9 x-4}{9}, \text { which is the same as } x-\frac{4}{9}
$$

EXAMPLES.-IXXXi.

1. $4 a^{6}+\frac{a^{2} b^{4}}{16}-a^{4} b^{2}$.
2. $\frac{9}{a^{2}}-2+\frac{a^{2}}{9}$.
3. $a^{4}-2+\frac{1}{a^{4}}$.
4. $\frac{a^{2}}{b^{2}}+2+\frac{b^{2}}{a^{2}}$.
5. $x^{4}-2 x^{3}+2 x^{2}-x+\frac{1}{4}$.
6. $x^{4}+2 x^{3}-x+\frac{1}{4}$.
7. $4 t^{2}-12 a b+a b^{2}+9 b^{2}-\frac{3 b^{3}}{2}+\frac{t^{4}}{16}$.
8. $x^{4}+8 x^{2}+24+\frac{16}{x^{4}}+\frac{32}{x^{2}}$.
9. $\frac{9}{16}+4 a^{4}+\frac{16}{9} a^{6} x^{2}-3 a^{2}-2 a^{3} x+\frac{16}{3} a a^{5} x$.
10. $\frac{1}{x^{2}}+\frac{4}{y^{2}}+\frac{9}{z^{2}}-\frac{4}{x y}+\frac{6}{x z}-\frac{12}{y ;}$.

1 I. $\quad 36 m^{2}-\frac{48 m}{n}+\frac{12 m p}{5}+\frac{16}{n^{2}}+\frac{p^{2}}{25}-\frac{8 p}{5} n$.
12. $a^{2} b^{2}-6 a b c d+\frac{2 a b e f}{7}+9 c^{2} d^{2}-\frac{e^{2} f^{2}}{49}-\frac{6 c c d e_{j}^{\prime}}{7}$.
13. $\frac{4 x^{2}}{z^{2}}+\frac{z^{2}}{x^{2}}+\frac{9 y^{2}}{z^{2}}+4-\frac{6 y}{x}-\frac{12 x y}{z^{2}}$.
14. $\frac{4 m^{2}}{n^{2}}+\frac{9 n^{2}}{m^{2}}+4-\frac{16 m}{n}+\frac{24 n}{m}$.
15. $\frac{a^{2}}{9}+\frac{b^{2}}{16}+\frac{c^{2}}{25}+\frac{d^{2}}{4}-\frac{a b}{6}+\frac{2 a c}{15}-\frac{u d}{3}-\frac{b c}{10}+\frac{b d}{4}-\frac{c d}{5}$.
16. $49 x^{4}-28 x^{3}-17 x^{2}+6 x+\frac{9}{4}$.
17. $9 x^{4}-3 a x^{3}+6 b x^{3}+\frac{a^{2} x^{2}}{4}-a b x^{2}+b^{2} x^{2}$.

I 8. $9 x^{4}-2 x^{3}-\frac{161}{9}-x^{2}+2 x+9$.

XVIII. ON CUBE ROOT.

226. The Cube Root of any expression is that expression whose cube or third power gives the proposed expression.

Thus a is the cube root of u^{3},
$3 b$ is the cube root of $27 b^{3}$.
The cube root of a negative expression will be negative, for since

$$
(-u)^{3}=-u x-u y-u=-u^{3} .
$$

the cube root of $-u^{3}$ is $-u$.

Solso
$-3 x$ is the cube root of $-27 x^{3}$,
and $\quad-4 u^{2} b$ is the cube root of $-64 a^{6} b^{3}$.
The symbol $\sqrt[3]{ }$ is used to denote the operation of extracting the cube root.

EXAMPLES.-lXXXXi.

Find the Cube Roots of the following expressions :

1. $8 a^{3}$.
2. $27 x^{6} y^{6}$.
3. $-125 m^{3} n^{3}$.
4. $-216 a^{12} b^{3}$.
5. $343 b^{15} c^{18}$.
6. $-1000 a^{3} b^{6} c^{12}$.
7. $-1728 m^{21} n^{24}$.
8. $1331 a^{0} b^{18}$.
9. We now proceed to investigate a Rule for finding the cube root of a compound algebraical expression.

We know that the culse of $a+b$ is $a^{3}+3 a^{2} b-4 a b^{2}+b^{3}$, and therefore $a+b$ is the cube root of $a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$.

We observe that the first term of the root is the cube root of the first term of the cube.

Hence our rule begins:
"Arrange the terms in the order of matn" wie of the indices of one of the quantities involved, then take tinte root of the first term and set down the result as the first term of the root: subtract its cube from the given expression, and bring down the remainder." thus

$$
\frac{a^{3}+3 a^{2} b+3 a b^{2}+b^{3}(a}{3 a^{2} b+3 a b^{2}+b^{3}}
$$

Now this remainder may be represented thus,

$$
b\left(3 a^{2}+3 a b+b^{2}\right)
$$

hence if we divile $3 a^{2} b+3 a b^{2}+b^{3}$ by $3 a^{2}+3 a b+b^{2}$, we shall ohtain $+b$, the second term if the root.

Hente cur rule proceerls:
"Mu'tip, i:" the square of the first term of the root by 3, and set down the res.l's as tiee first term of a divisor:" thus our process up to this pi ut will stome thus:

$$
\begin{array}{ll}
& a^{3}+3 u^{2} b+3 a b^{2}+b^{3}(a \\
a^{3} \\
3 a^{2} \quad & 3 a^{2} b+3 a b^{2}+b^{3}
\end{array}
$$

Now if we divide $3 a^{2} b$ by $3 a^{2}$ the result is b, and so we obtain the second term of the root, and if we add to $3 a^{2}$ the expression $3 a b+b^{2}$ we obtain the full divisor $3 a^{2}+3 a b+b^{2}$.

Hence our rule proceeds thus:
" Divide the first term of the remainder by the first term of the divisor, and add the result to the first term of the root. Then take three times the product of the first and secord terms of the root, and also the square of the second term, and add these results to the first term of the divisor." Thus our process up to this point will stand thus:

$$
3 a^{2}+3 a b+b^{2} a^{a^{3}+3 a^{2} b+3 a b^{2}+i^{3}\left(a+b+3 a b^{2}+b^{3}\right.}
$$

If we now multiply the divisor by b, w, oltain

$$
3 a^{2} b+3 a b^{2}+b^{3}
$$

which we subtract from the first remainder.
Hence our rule proceeds thus:
"Multiply the divisor by the second tern of the root, ane' subtract the result from the first remainder:" this our process will stand thus:

$$
\begin{aligned}
& a^{3}+3 a^{2} b+3 a b^{2}+b^{3}(a+b \\
& a^{3}
\end{aligned}
$$

If there is now no remainder, the root has been found.
If there be a remainder, consider the two telns of the root already found as one, and proceed as before.
228. The following Examples may render the process nore clear :

EX. 1.

$$
\begin{aligned}
& a^{3}-12 a^{2}+48 a-64(a-4 \\
& a^{3}
\end{aligned}
$$

$$
\begin{array}{c|l}
3 c^{2}-12 a+16 & -12 a^{2}+48 a-64 \\
-12 a^{2}+48 a-64
\end{array}
$$

Here observe that the second term of the divisor is formed thus:

3 times the product of a and $-4=3 \times a \times-4=-12 a$.
Ex. 2. $\quad x^{6}-6 . x^{5}+15 x^{4}-20 x^{3}+15 x^{2}-6 x+1\left(x^{2}-2 x+1\right.$
$3 x^{4}-6 x^{3}+4 x^{2}-6 x^{3}+15 x^{4}-20 x^{3}+15 x^{2}-6 x+1$
$3 x^{4}-12 x^{3}$
$+15 x^{2}-6 x+1$
$-6 x^{3}+12 x^{4}-8 x^{3}$
$3 x^{4}-12 x^{3}+15 x^{2}-6 x+1$
$3 x^{4}-12 x^{3}+15 x^{2}-6 x+1$

Here the formation of the first divisor is similar to that in the preceding Examples.

The formation of the second divisor may be explained thus:
Regarding $x^{2}-2 x$ as one term
$3\left(x^{2}-2 x\right)^{2}=3\left(x^{4}-4 x^{3}+4 x^{2}\right)=3 x^{4}-12 x^{3}+12 x^{2}$
$\begin{array}{cll}3 \times\left(x^{2}-2 x\right) \times 1 & = & 3 x^{2}-6 x \\ 1^{2} & = & \end{array}$ 1
and adding these results we obtain as the second divisor

$$
3 x^{4}-12 x^{3}+1.5 x^{2}-6 x+1
$$

EXAMPIES_-lXXXiii.

Find the Cube Rout of each of the following expressions:

1. $a^{3}-3 v^{2} b+3 a b^{2}-\cdots b^{3}$.
2. $8 a^{3}+12 a^{2}+6 a+1$.
3. $a^{3}+24 a^{2} b+192 a b^{2}+512 b^{3}$.
4. $a^{3}+3 a^{2} b+3 a b^{2}+b^{3}+3 a^{2} c+6 a b c+3 b^{2} c+3 a c^{2}+3 b c^{2}+c^{3}$.
5. $x^{3}-3 x^{2} y+3 x y^{2}-y^{3}+3 x^{2} y-6 x y z+3 y^{2} z+3 x z^{2}-3 y z^{2}+z^{3}$.
6. $27 x^{4}-54 x^{4}+63 x^{4}-44 x^{\prime \prime}+21 x^{2}-6 x+1$.
7. $1-3 a+6 a^{2}-7 a^{3}+6 a^{4}-3 a^{5}+a^{6}$.
8. $x^{3}-3 x^{2} y+3 x y^{2}-y^{3}+8 z^{3}+6 x^{2} z-12 x y ;+6 y^{2} z+12 x x^{2}-122^{2}$.
9. $a^{6}-12 a^{5}+54 a^{4}-112 a^{3}+108 a^{2}-48 a+8$.
1๐. $8 m^{6}-36 m^{5}+66 m^{4}-63 m^{3}+33 m^{2}-9 m+1$.
10. $x^{3}+6 x^{2} y+12 x y^{2}+8 y^{3}-3 x^{2} z-12 x y z-12 y y^{2} z+3 x z^{2}+6 y z^{2}-x^{3}$.
11. $8 m^{3}-36 m^{2} n+54 m n^{2}-27 n^{3}-12 m^{2} r+36 m m-27 n^{2} r$ $+6 m r^{2}-9 a r^{2}-r^{3}$.
12. $m^{3}+3 m^{2}-5+\frac{3}{m^{2}}-\frac{1}{m^{3}}$.
13. The fourth root of an expression is found by taking the square root of the square root of the expression.
that in
ed thus:

$$
\sqrt[4]{ } 16 a^{8} b^{4}=\sqrt{ } 4 a^{4} b^{2}=2 a^{2} b
$$

The sixth root of an expression is found by taking the cube root of the square root of the expression.

Thas

$$
\sqrt[8]{64} a^{12} b^{6}=\sqrt[3]{8 a^{6}} b^{3}=2 a^{2} b
$$

EXAMPLES.-lXXXIV.

Find the fourth roots of

1. $16 a^{4}-96 a^{3} x+216 a^{2} x^{2}-216 a x^{3}+81 x^{4}$.
2. $1+24 a^{2}+16 a^{4}-8 a-32 a^{3}$.
3. $625+2000 x+2400 x^{2}+1280 x^{3}+256 x^{2}$,

Find the sixth roots of
4. $a^{6}-6 a^{5} b+15 a^{4} b^{2}-20 a^{3} b^{3}+15 a^{2} b^{4}-6 a b^{5}+b^{6}$.
5. $x^{6}+6 x^{5}+15 x^{4}+20 x^{3}+15 x^{2}+6 x+1$.
6. $m^{6}-12 m^{5}+60 m^{4}-160 m^{3}+240 m^{2}-192 m+64$.

XIX. QUADRATIC EQUATIONS.

230. A Quadratic Equation, or an equation of two dimensions, is one into which the square of an unknown symbol enters, without or with the first power of the symbol.

Thus

$$
x^{2}=16
$$

and

$$
x^{2}+6 x=27
$$

ure Quadratic Equations.
231. A Pure Quadratic Equation is one into which the square of an unknown symbol enters, the first power of the symbol not appearing.

Thus, $x^{2}=16$ is a pure Quadratic Equation.
232. An Adfected Quadratic Equation is one into which the square of an unknown symbol enters, and also the first power of the symbol.

Thus, $x^{2}+6 x=27$ is an adfected Quadratic Equation.

Pure Quadratic Equations.

233. When the terms of an equation involve the square of the unknown symbol only, the value of this square is either given or can be found by the processes described in Chapter XVII. If we then extract the square root of each side of the equation, the value of the unknown symbol will be determined.
234. The following are examples of the solution of Pure Quadratic Equations.

Ex. 1. $x^{2}=16$.
Taking the square root of each side

$$
x= \pm 4 .
$$

We prefix the sign \pm to the number on the right-hand side of the equation, for the reason given in Art. 220.

Every pure quadratic equation will therefore have two roots, equal in magnitude, but with different signs

Ex. 2. $4 x^{2}+6=22$.
Here

$$
\begin{aligned}
4 x^{2} & =22-6, \\
\text { or } \quad 4 x^{2} & =16, \\
\text { or } \quad x^{2} & =4 ; \\
\therefore \quad x & = \pm 2 .
\end{aligned}
$$

That is, the values of x which satisfy the equation are 2 and -2 .
oh the of the
I. $x^{2}=64$.
2. $x^{2}=a^{2} b^{2}$.
3. $x^{2}-10000=0$.
4. $x^{2}-3=46$.
5. $5 x^{2}-9=2 x^{2}+24$.
6. $3 u x^{2}=192 a^{5} c^{6}$.

EXAMPLES.-lXXXV.
7. $\frac{x^{2}-12}{3}=\frac{x^{2}-4}{4}$.
11. $m x^{2}+n=q$.
8. $(500+x)(500-x)=233359$.
12. $x^{2}-a x+b=u x(x-2)$
9. $\frac{8112}{x}=3 x$.
13. $\frac{45}{2 x^{2}+3}=\frac{57}{4 x^{2}-5}$.
10. $5 \frac{1}{2} x^{2}-18 x+65=(3 x-3)^{2}$.
14. $\frac{42}{x^{2}-2}=\frac{35}{x^{2}-3}$.

Ex. 3. $\underset{3 x^{2}-4}{128}=\frac{216}{5 x^{2}-6}$.
Here

$$
\begin{aligned}
128\left(5 x^{2}-6\right) & =216\left(3 x^{2}-4\right), \\
\text { or } 640 x^{2}-768 & =648 x^{2}-864, \\
\text { or } x^{2} & =12 ; \\
\therefore x & = \pm \sqrt{ } 12 .
\end{aligned}
$$

Adfected Quadratic Equations.

235. Adfected Quadratic Equations are solved by adding a certain term to both sides of the equation so as to make the left-hand side a perfect square.

Having arranged the equation so that the furst term on the left-hand side is the square of the unknown symbol, and the second term the one containing the first power of the unknown quantity (the known symbols being on the right of the equation), we add to both sides of the equation the square of half the coefficient of the second term. The left-hand side of the equation then becomes a perfect square. If we then take the square root of both sides of the equation, we shall obtain two simple equations, from which the values of the unknown symbol may be determined.
236. The process in the solution of Adfected Quadratic Equations will be learnt by the examples which we shall give in this chapter, but before we proceed to them, it is desirable that the student should be satisfied as to the way in which an expression of the form

$$
x^{2}+a x
$$

is made a perfect square.
Our rule, as given in the preceding Article, is this: add the square of half the coefficient of the second term, that is, the square of $\frac{a}{2}$, that is, $\frac{a^{2}}{4}$. We have to shew then that

$$
x^{2}+a x+\frac{a^{2}}{4}
$$

is a perfect square, whatever a may be.
This we may do by actually performing the operation of extracting the square root of $x^{2}+a x+\frac{a^{2}}{4}$, and obtaining the result $x+\frac{a}{2}$ with no remainder:
237. Let us examine this process by the aid of numerical coefficients.

Take one or two examples from the perfect squares given in page 48.

We there have

$$
\begin{aligned}
& x^{2}+18 x+81 \text { which is the square of } x+9 \text {, } \\
& x^{2}+34 x+289 \ldots .
\end{aligned}
$$

$$
\begin{aligned}
& x^{2}-36 x+324 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots
\end{aligned}
$$

In all these cases the third term is the square of half the coefficient of x.

For

$$
\begin{aligned}
81 & =(9)^{2}=\binom{18}{2}^{2}, \\
289 & =(17)^{2}=\left(\frac{34}{2}\right)^{2}, \\
16 & =(4)^{2}=\left(\frac{8}{2}\right)^{2}, \\
324 & =(18)^{2}=\left(\frac{36}{2}\right)^{2} .
\end{aligned}
$$

238. Now put the question in this shape. What must we add to $x^{2}+a x$ to make it a perfect square ?

Suppose b to represent the quantity to be added.
Then $x^{2}+a x+b$ is a perfect square.
Now if we perform the operation of extracting the square root of $x^{2}+a x+b$, our process is

$$
2 x+\left.\frac{a}{2}\right|_{a x+b} ^{a x+\frac{a^{2}}{4}} \begin{gathered}
x^{2}+a x+b\left(x+\frac{a}{2}\right. \\
b-\frac{a^{2}}{4}
\end{gathered}
$$

$$
\rightarrow
$$

IMAGE EVALUATION

 TEST TARGET (MT-3)

Photographic Sciences
Corporation

Hence in order that $x^{2}+a x+b$ may be a perfect square we must have
or

$$
\begin{aligned}
& b-\frac{a^{2}}{4}=0, \\
& b=\frac{a^{2}}{4}, \\
& b=\left(\frac{a}{2}\right)^{2} .
\end{aligned}
$$

or
That is, b is equivalent to the square of half the coefficient of x.
239. Before completing the square we must be careful
(1) That the square of the unknown symbol has no coeffcient but unity,
(2) That the square of the unknown symbol has a positive sign.

These points will be more fully considered in Arts. 245 and 246.
240. We shall first take the case in which the coefficient of the second term is an even number and its sign poitive.

Ex.

$$
x^{2}+6 x=40 .
$$

Here we make the left-hand side of the equation a perfect square by the following process.

Take the coefficient of the second term, that is, 6.
Take the half of this coefficient, that is, 3.
Square the result, which gives 9.
Add 9 to both sides of the equation, and we get

$$
x^{2}+6 x+9=49 .
$$

Now taking the square root of both sides, we get

$$
x+3= \pm 7
$$

and
Hence we have two simple equations,

$$
\begin{align*}
& x+3=+7 \tag{1}\\
& x+3=-7 \tag{2}
\end{align*}
$$

From these we find the values of x, thus:

$$
\begin{aligned}
& \text { from (1) } \quad x=7-3 \text {, that is, } x=4 \text {, } \\
& \text { from (2) }
\end{aligned} \quad x=-7-3 \text {, that is, } x=-10 .
$$

Thus the roots of the equation are 4 and - 10 .

EXAMPLES.-lXXXVi.

I. $x^{2}+6 x=72$.
2. $x^{2}+12 x=64$.
3. $x^{2}+14 x=15$.
4. $x^{2}+46 x=96$.
5. $x^{2}+128 x=393$.
6. $x^{2}+8 x-65=0$
7. $x^{2}+18 x-243=0$.
8. $x^{2}+15 x-420=0$.
241. We next take the case in which the coefficient of the second term is an even number and its sign negative.

Ex.

$$
x^{2}-8 x=9
$$

The term to be added to both sides is $(8 \div 2)^{2}$, that is, $(4)^{2}$, that is, 16.

Completing the square

$$
x^{2}-8 x+16=25
$$

Taking the square root of both sides ${ }^{\circ}$

$$
x-4= \pm 5
$$

This gives two simple equations,

$$
\begin{align*}
& x-4=+5 \ldots \ldots \ldots \ldots \ldots \ldots . .(1), \\
& x-4=-5 \ldots \ldots \ldots \ldots \ldots . .(2), \tag{2}
\end{align*}
$$

From (1)

$$
x=5+4, \quad \therefore x=9 ;
$$

from (2)

$$
x=-5+4, \quad \therefore x=-1
$$

Thus the ronts of the equation are 9 and -1.

EXAMPLES.-lXXXVii.

I. $x^{2}-6 x=7$.
2. $x^{2}-4 x=5$.
3. $x^{2}-20 x=21$.
4. $x^{2}-2 x=63$.
5. $x^{2}-12 x+32=0$.
6. $x^{2}-14 x+45=0$.
7. $x^{2}-234 x+13688=0$.
8. $(x-3)(x-2)=3(5 x+14)$.

$$
\begin{array}{r}
\text { 9. } x(3 x-17)-x(2 x+5)+120=0 . \\
\text { 10. }(x-5)^{2}+(x-7)^{2}=x(x-8)+46 .
\end{array}
$$

242. We now take the case in which the coefficient of the second term is an odd number.

Ex. 1.

$$
x^{2}-7 x=8
$$

The term to be adderl to both sides is

$$
(7 \div 2)^{2}=\left(\frac{7}{2}\right)^{2}=\frac{49}{4}
$$

Completing the square

$$
\begin{aligned}
x^{2}-7 x+\frac{49}{4} & =8+\frac{49}{4} \\
\text { or, } \quad & x^{2}-7 x+\frac{49}{4}
\end{aligned}=\frac{81}{4} .
$$

Taking the square root of both sides

$$
x-\frac{7}{2}= \pm \frac{9}{2}
$$

This gives two simple equations,

$$
\begin{align*}
x-\frac{7}{2} & =+\frac{9}{2} \ldots \ldots \ldots \ldots \ldots \ldots \ldots(1), \\
x-\frac{7}{2} & =-\frac{9}{2} \ldots \ldots \ldots \ldots \ldots \ldots \ldots(2) . \tag{2}
\end{align*}
$$

From (1) $\quad x=\frac{9}{2}+\frac{7}{2}$, or, $x=\frac{16}{2}, \therefore x=8$;
from (2) $\quad x=-\frac{9}{2}+\frac{7}{2}$, or, $x=\frac{-2}{2}, \therefore x=-1$.
Thus the roots of the equation are 8 and -1 .

Ex. 2.

$$
x^{2}-x=42
$$

The coefficient of the second term is 1 .
The term to be added to both sides is

$$
\begin{aligned}
\quad(1 \div 2)^{2} & =\left(\frac{1}{2}\right)^{2}=\frac{1}{4} ; \\
\therefore x^{2}-x+\frac{1}{4} & =42+\frac{1}{4} \\
\text { or, } & x^{2}-x+\frac{1}{4}=\frac{169}{4} ; \\
\therefore x-\frac{1}{2} & = \pm \frac{13}{2} .
\end{aligned}
$$

Hence the roots of the equation are 7 and -6 .

EXAMPLES.-lXXXViii.

1. $x^{2}+7 x=30$.
2. $x^{2}-11 x=12$.
3. $x^{2}+9 x=43 \frac{3}{4}$
4. $x^{2}-13 x=140$.
5. $x^{2}+x=\frac{5}{16}$.
6. $x^{2}-x=72$.
7. $x^{2}+37 x=3690$.
8. $x^{2}=56+x$.
9. $x(5-x)+2 x(x-7)-10(x-6)=0$.
10. $(5 x-21)(7 x-33)-(17 x+15)(2 x-3)=448$.
11. Our next case is that in which the coefficient of the second term is a fraction of which the numerator is an even number.

Ex.

$$
x^{2}-\frac{4}{5} x=21
$$

The term to be added to both sides is

$$
\begin{gathered}
\left(\frac{4}{5} \div 2\right)^{2}=\left(\frac{4}{5} \times \frac{1}{2}\right)^{2}=\left(\frac{2}{5}\right)^{2}=\left(\frac{4}{25}\right): \\
\therefore x^{2}-\frac{4}{5} x+\frac{4}{25}=21+\frac{4}{25} \\
\text { or, } x^{2}-\frac{4}{5} x+\frac{4}{25}=\frac{529}{25}
\end{gathered}
$$

$\therefore x-\frac{2}{5}= \pm \frac{23}{5}$.
Hence the values of x are 5 and $-\frac{21}{5}$.

EXAMPLES.-lXXXIX.

1. $x^{2}-\frac{2}{3} x=\frac{35}{9}$.
2. $x^{2}+\frac{4}{5} x=-\frac{3}{25}$.
3. $x^{2}-\frac{28 x}{9}+\frac{1}{3}=0$.
4. $m^{2}-\frac{8}{11} x-\frac{3}{11}=0$.
5. $x^{2}+\frac{4}{35} x=\frac{3}{7}$.
6. $x^{2}-\frac{16}{5} x=\frac{16}{5}$.
7. $x^{2}-\frac{26}{2} x+\frac{16}{3}=0$.
8. $x^{2}-\frac{4}{7} x=45$.
9. We now take the case in which the coefficient of the second term is a fraction whose numerator is an odd number.

Ex.

$$
x^{2}-\frac{7}{3} x=\frac{136}{3}
$$

The term to be added to both sides is

$$
\begin{gathered}
\left(\frac{7}{3} \div 2\right)^{2}=\left(\frac{7}{3} \times \frac{1}{2}\right)^{2}=\left(\frac{7}{6}\right)^{2}=\frac{49}{36} \\
\therefore x^{2}-\frac{7}{3} x+\frac{49}{36}=\frac{136}{3}+\frac{49}{36} \\
\text { or } x^{2}-\frac{7}{3} x+\frac{49}{36}=\frac{1681}{36} ; \\
\therefore x-\frac{7}{6}= \pm \frac{41}{6}
\end{gathered}
$$

Hence the values of x are 8 and $-\frac{17}{3}$.

EXAMPLES:-XC.
I. $x^{9}-\frac{1}{3} x=8$.
2. $x^{2}-\frac{1}{5} x=98$.
3. $x^{2}+\frac{1}{2} x=35$.
4. $x^{2}+\frac{3}{2} x=76$.
5. $x^{2}-\frac{9}{5} x=16$.
6. $x^{2}-\frac{11}{2} x+6=0$.
7. $x^{2}-\frac{15}{4} x-34=0$.
8. $x^{2}-\frac{23}{7} \cdot \frac{3}{4}$.
245. The square of the unknown symbol must not be preceded by a negative sign.

Hence, if we have to solve the equation

$$
6 x-x^{2}=9
$$

we change the sign of every term, and we get

$$
x^{2}-6 x=-9
$$

Completing the square

$$
\begin{aligned}
\quad x^{2}-6 x+9 & =9-9 \\
\text { or } \quad x^{2}-6 x+9 & =0 .
\end{aligned}
$$

Hence

$$
\begin{aligned}
x-3 & =0, \\
\text { or } \quad x & =3 .
\end{aligned}
$$

Note. We are not to be surprised at finding only oue value for x. The interpretation to be placed on such a result is, that the two roots of the equation are equal in value and alike in sign.
246. The square of the unknown symbol must have no coefficient but unity.

Hence, if we have to solve the equation

$$
5 x^{2}-3 x=2
$$

we must divide all the terms by 5 , and we s :

$$
x^{2}-\frac{3 x}{5}=\frac{2}{5}
$$

From which we get $x=1$ and $x=-\frac{2}{5}$.
247. In solving Quadratic Equations involving literal coefficients of the unknown symbol, the same rules will apply as in the cases of numerical coefficients.

Thus, to solve the equation

$$
\frac{2 a}{x}-\frac{x}{a}-2=0
$$

Clearing the equation of fractions, we get

$$
\begin{aligned}
2 a^{2}-x^{2}-2 a x & =0 ; \\
-x^{2}-2 a x & =-2 a^{2} \\
\text { or } \quad x^{2}+2 a x & =2 a^{2}
\end{aligned}
$$

therefore

Completing the square
whence

$$
\begin{gathered}
x^{2}+2 a x+a^{2}=3 a^{2} \\
x+a= \pm \sqrt{ } 3 \cdot a \\
x=-a+\sqrt{ } 3 \cdot a, \text { or } x=-a-\sqrt{ } 3 \cdot a
\end{gathered}
$$

therefore
The following are Examples of Literal Quadratic Equations.

EXAMPLES.-XCi.

I. $x^{2}+2 a x=a^{2}$.
2. $x^{2}-4 a x=7 a^{2}$.
3. $x^{2}+3 m x=\frac{7 m^{2}}{4}$.
4. $x^{2}-\frac{5 n}{2} x=\frac{3 n^{2}}{2}$.
7. $\frac{a^{2}}{(x+a)^{2}}-\frac{b^{2}}{(x-a)^{2}}=0$.
5. $x^{2}+(a-1) x=a$.
8. $a d x-a c x^{2}=b c x-b d$.
6. $x^{2}+(a-b) x=a b$.
9. $c x+\frac{a c}{a+b}=(a+b) x^{2}$.
10. $\frac{a^{2} x^{2}}{b^{2}}-\frac{2 a x}{c}+\frac{b^{2}}{c^{2}}=0$.

1 I. $a b x^{2}+\frac{3 a^{2} x}{c}=\frac{6 a^{2}+a b-2 b^{2}}{c^{2}}-\frac{b^{2} x}{c}$.
12. $\left(4 a^{2}-9 c d^{2}\right) x^{2}+\left(4 a^{2} c^{2}+4 a b d^{2}\right) x+\left(a c^{2}+b d^{2}\right)^{2}=0$.
248. If both sides of an equation can be divided by the unknown symbol, divide by it, and observe that 0 is in that case one root of the equation.

Thus in solving the equation

$$
x^{3}-2 x^{2}=3 x,
$$

we may divide by x, and reduce the equation to the form

$$
x^{2}-2 x=3
$$

from which we get

$$
x=3 \quad \text { or } x=-1
$$

Then the three roots of the original equation are 0,3 and -1 .
We shall now give some Miscellaneous Examples of Quadratic Equations.

EXAMPLES.-XCii.

1. $x^{2}-7 x+2=10$.
2. $x^{2}-5 x+3=9$.
3. $x^{2}-11 x-7=5$.
4. $x^{2}-13 x-6=8$.
5. $x^{2}+7 x-18=0$.
6. $4 x-\frac{12-x}{x-3}=22$.
7. $x^{2}-9 . c+20=0$.
8. $5 x-3 \frac{x-1}{x-3}=\frac{7 x-6}{2}$.
9. $x^{2}-6 x-14=2$.
10. $\frac{4 x}{x+3}-\frac{x-3}{2 x+5}=2$.

I $\frac{4 x}{x+7}-\frac{x-7}{2 x+3}=2$.
12. $x^{2}-12=11 x$.
13. $x^{2}-14=13 x$.
14. $\frac{1}{2} x^{2}-\frac{1}{3} x+7 \frac{3}{8}=8$.
15. $3 x-\frac{169}{x}=26$.
16. $2 x^{2}=18 x-40$.
17. $\frac{4+3 x}{10}-\frac{15-x}{x-6}=\frac{7 x-14}{20}$.
18. $3 x^{2}=24 x-36$.
19. $\frac{3 x-5}{9 x}-\frac{6 x}{3 x-25}=\frac{1}{3}$.
20. $\frac{7}{4}-\frac{2 x-5}{x+5}=\frac{3 x-7}{2 x}$.
21. $\frac{4 x-10}{x+5}-\frac{7-3 x}{x}=\frac{7}{2}$.
22. $(x-3)^{2}+4 x=44$.
23. $\frac{x+11}{x}=7-\frac{9+4 x}{x^{2}}$.
24. $6 x^{2}+x=2$.
25. $x^{2}-\frac{1}{2} x=\frac{1}{9}$
26. $x^{2}-x=210$.
27. $\frac{6}{x+1}+\frac{2}{x}=3$.
28. $\frac{4 x^{2}}{3}-11=\frac{x}{3}$.
29. $\frac{x}{x-1}=\frac{3}{2}+\frac{x-1}{x}$.

3c. $15 x^{2}-7 x=46$.
31. $\frac{1}{x-2}-\frac{2}{x+2}=\frac{3}{5}$.
32. $\frac{4 x}{5-x}-\frac{20-4 x}{x}=15$.
33. $\frac{10}{x}-\frac{14-2 x}{x^{2}}=\frac{22}{9}$.
34. $\frac{x}{x+60}=\frac{7}{3 x-5}$.
35. $\frac{12}{5-x}+\frac{8}{4-x}=\frac{32}{x+2}$.
36. $\frac{x}{7-x}+\frac{7-x}{x}=2 \frac{9}{10}$.
37. $x^{2}+(a+b) x+a b=0$.
38. $x^{2}-(b-a) x-a b=0$.
39. $x^{2}-2 a x+a^{2}-l^{2}=0$.
40. $x^{2}-\left(a^{2}-a^{3}\right) x-a^{5}=0$.
41. $x^{2}+\frac{a}{b} x-\frac{2 a^{2}}{b^{2}}=0$.
12. $x^{2}-\frac{a^{2}+b^{2}}{a b} x+1=0$,

XX. ON SIMULTANEOUS EQUATIONS INVOLVING QUADRATICS.

249. For the solution of Simultaneous Equations of a degree higher than the first no fixed rules can be laid down. We shall point out the methods of solution which may be adopted with advantage in particular cases.
250. If the simple power of one of the unknown symbols can be expressed in terms of the other symbol by means of one of the given equations, the Mcthod of Substitution, explained in Art. 217, may be empioyed, thus:

Ex. To soive the equations

$$
\begin{aligned}
x+y & =50 \\
x y & =600 .
\end{aligned}
$$

From the first equation

$$
x=50-y .
$$

Substitute this value for x in the second equation, and we get

$$
(50-y) \cdot y=600
$$

This gives
$50 y-y^{2}=600$.
From which we find the values of y to be 30 and 20.
And we may then find the corresponding values of x to be 20 and 30.
251. But it is better that the student should accustom himself to work such equations symmetrically, thus:

To solve the equations

$$
\begin{align*}
x+y & =50 \ldots \tag{1}\\
x y & =600 \tag{2}
\end{align*}
$$

From (1)
From (2)

$$
x^{2}+2 x y+y^{2}=2500
$$

$$
4 x y=2400
$$

Now subtract this from (3), and we get

$$
\begin{aligned}
& \frac{1}{x^{2}}-\frac{2}{x y}+\frac{1}{y^{2}}=\frac{1}{36} ; \\
& \therefore \frac{1}{x} \frac{1}{y}=\frac{1}{6}
\end{aligned}
$$

and from this equation and (1) we find

$$
x=2 \text { or } 3 \text { and } y=3 \text { or } 2 .
$$

of a devn. We adopted symbols ns of one xplained

EXAMPLES.-XCVi.
i. $\frac{1}{x}+\frac{1}{y}=\frac{9}{20^{\circ}}$.
2. $\frac{1}{x}+\frac{1}{y}=\frac{3}{4}$.
3. $\frac{1}{6}+\frac{1}{y}=5$.
$\frac{1}{x^{2}}+\frac{1}{y^{2}}=\frac{41}{4(0)}$.
$\frac{1}{x^{3}}+\frac{1}{y^{2}}=\frac{5}{16^{\circ}}$
$\frac{1}{x^{2}}+\frac{1}{y^{2}}=13$.
4. $\frac{1}{x}-\frac{1}{y}=\frac{1}{12}$
5. $\frac{1}{4}-\frac{1}{y}=2 \frac{1}{2}$
๑. $\frac{1}{x}-\frac{1}{y}=3$.
$\frac{1}{x^{2}}-\frac{1}{y^{2}}=\frac{7}{145}$
$\frac{1}{x^{2}}-\frac{1}{y^{2}}=8 \frac{3}{4}$.
$\frac{1}{x^{2}}-\frac{1}{y^{2}}=21$.
255. To solve the equations

$$
\begin{align*}
& x^{2}+3 x y=7 \tag{1}\\
& x y+4 y^{2}=18 . \tag{2}
\end{align*}
$$

If we add the equations we get

$$
x^{2}+4 x y+4 y^{2}=25
$$

Taking the square root of each side, and taking only the positive root of the right-hand side into account,

$$
\begin{aligned}
& x+2 y=5 ; \\
\therefore & x=5-2 y .
\end{aligned}
$$

Substituting this value for x in (2) we get

$$
(5-2 y) y+4 y^{2}=18
$$

an equation by which y may be determined.
Note. In some examples we must subtract the second equation from the first in order to get a perfect syuare.
256. 'To solve the equations

$$
\begin{array}{r}
x^{2}-y^{3}=26 \\
x^{2}+x y+y^{2}=13 . \tag{2}
\end{array}
$$

Dividing (1) loy (2) we get $x-y=2$
squaring,

$$
\begin{equation*}
x^{2}-2 \cdot r y+y^{2}=4 \tag{3}
\end{equation*}
$$

Sultract this from (2, and we have

$$
\begin{aligned}
\quad 3 x y & =9 ; \\
\therefore \quad 4 x y & =12 .
\end{aligned}
$$

Adding this to (4), we get $x^{2}+2 x y+y^{2}=16$;

$$
\therefore x+y= \pm 4 .
$$

Then from this equation and (3) we lind

$$
x=3 \text { or }-1, \text { and } y=1 \text { or }-3
$$

257. . To solve the equations

$$
\begin{align*}
x^{2}+y^{2} & =65 . \tag{1}\\
x y & =28 . \tag{2}
\end{align*}
$$

Multiplying (2) by 2, we have

$$
\left.\begin{array}{rl}
x^{2}+y^{2} & =65 \\
2 x y & =56
\end{array}\right\} ;
$$

The equations A and B furnish four pairs of simple equations,

$$
\begin{array}{llll}
x+y=11, & x+y=11, & x+y=-11, & x+y=-11 \\
x-y=3, & x-y=-3, & x-y=3, & x-y=-3
\end{array}
$$

from which we find the values of x to he $7,4,-7$ and -4 , and the corresponding values of y to be $4,7,-4$ and -7 .
258. The artifice, by which the solution of the equations given in this article is effected, is applicable to cases in which the equations are homogencons and of the same order.
(4).

EXAMPLES.-XCiii.

1. $x+y=40$
$x y=300$.
2. $x+y=13$
$x y=36$.
3. $x+y=29$
$x y=100$.
4. $\begin{aligned} x-y & =19 \\ x y & =(66 .\end{aligned}$
5. $\begin{aligned} x-y & =4 \pi \\ x y & =2 \pi 0 .\end{aligned}$
6. $x-y=99$
$x y=100$.
7. To solve the equations

$$
\begin{align*}
& x-y=12 \\
& \text { (1), } \\
& x^{2}+y^{2}=74 \tag{2}
\end{align*}
$$

From (1)

$$
\begin{equation*}
x^{2}-2 x y+y^{2}=1+4 \tag{3}
\end{equation*}
$$

Subtract this from (2), then

$$
\begin{aligned}
2 x y & =-70 \\
\therefore 4 x y & =-140 .
\end{aligned}
$$

Add this to (3), then

$$
\begin{gathered}
x^{2}+2 x y+y^{2}=4, \\
\therefore x+y= \pm 2 .
\end{gathered}
$$

Then from this equation and (l) we get

$$
x=7 \text { or } 5 \text { and } y=-5 \text { or }-7
$$

EXAMPLES.-XCiV.

$$
\begin{array}{rlrl}
\text { 1. } \begin{aligned}
x-y & =4 & \text { 2. } x-y & =10 \\
x^{2}+y^{2} & =40 . & \text { 3. } x-y & =14 \\
x^{2}+y^{2} & =178 . & x^{2}+y^{2} & =436 . \\
\text { 4. } x+y & =8 & \text { 5. } x+y & =12
\end{aligned} & \text { 6. } x+y=49 \\
x^{2}+y^{2} & =32 . & x^{2}+y^{2} & =101 .
\end{array}
$$

253. To solve the equations

$$
\begin{align*}
x^{3}+y^{3} & =35 \tag{1}\\
x+y & =5 \tag{2}
\end{align*}
$$

Divide (1) by (2), then we get

From (2)

$$
\begin{equation*}
x^{2}-x y+y^{2}=7 \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
x^{2}+2 x y+y^{2}=25 \tag{4}
\end{equation*}
$$

Subtracting (3) from (4),

$$
\begin{aligned}
3 x y & =18, \\
\therefore 4 \cdot y & =24 .
\end{aligned}
$$

Then from this equation and (4) we get

$$
\begin{gathered}
x^{2}-2 x y+y^{2}=1 \\
\therefore x-y= \pm 1
\end{gathered}
$$

and from this equation and (2) we find

$$
x=3 \text { or } 2 \text { and } y=2 \text { or } 3 .
$$

EXAMPLES.-XCV

1. $x^{3}+y^{3}=91$
$x+y=7$.
2. $x^{3}+y^{3}=3+1$
$x+y=11$.
3. $x^{3}+y^{3}=1008$
$x+y=12$.
4. $x^{3}-y^{3}=56$
$x-y=2$.
5. $x^{3}-y^{3}=98$
$x-y=2$.
6. $x^{3}-y^{3}=279$
$x-y=3$.
7. To solve the equations

$$
\begin{align*}
& \frac{1}{x}+\frac{1}{y}=\frac{5}{6} \tag{1}\\
& \frac{1}{x^{2}}+\frac{1}{y^{2}}=\frac{13}{36} \tag{2}
\end{align*}
$$

From (1), by squaring it, we get

$$
\begin{equation*}
\frac{1}{x^{2}}+\frac{2}{x y}+\frac{1}{y^{2}}=\frac{25}{36} . \tag{:}
\end{equation*}
$$

From this subtact (a), and we hawe

$$
\begin{aligned}
\frac{2}{4!!} & =\frac{12}{36} ; \\
\therefore \frac{4}{x u} & =\frac{24}{36}
\end{aligned}
$$

EXAMPLES.-XCViii.

I. What number is that whose half multiplied by its third part gives 864?
2. What is the number of which the seventh and eighth parts being multiplied together and the product divided by 3) the quotient is $298 \frac{2}{3}$?
3. I take a certain number from 94. I then add the number to 94.

I multiply the iwo results together, and the result is 8512. What is the number?
4. What are the numbers whose product is 750 and the quotient of one by the other $3 \frac{1}{3}$?
5. The sum of the squares of two numbers is 13001, and the difference of the same squares is 1449 . Find the numbers.
6. The product of two numbers, one of which is as much above 21 as the other is below 21, is 377 . Find the numbers.
7. The half, the third, the fourth and the fifth parts of a certain number being multiplied together the product is 6750 . Find the number.
8. By what mumber must 11500 be divided, so that the quotient may be the same as the divisor, and the remainder 51 ?
9. Find a number to which 20 being added, and from which 10 being subtracted, the square of the first result added to twice the square of the second result gives 17475 .
10. The sum of two mumbers is 26 , and the sum of their splates is 436 . Find the numbers.
ir. The diflerence between two numbers is 17 , and the sum of their squares is 325 . What are the numbers?
12. What two numbers are they whose product is 250 and the stum of whose squares is 514?
13. Divide 16 into two parts such that their product alled to the smo of their stmares maty be 208.
[s.A.]
14. What number added to its square root gives as a result 13:32?
15. Wh:at number exceeds its kruare root by $48 \frac{3}{4}$,
16. What number exceeds its square root by 2550 ?
17. The product of two numbers is 24 , and their sum multiplied by their difference is 20 . Find the numbers.
18. What two numbers are those whose sum multiplied by the greater is 204 , and whose difference multiplied by the less is 35 ?
19. What two numbers are those whose difference is $\mathbf{5}$ and their sum multiplied by the greater 228 ?
20. Find three consecutive numbers whose product is equal to 3 times the middle number.
21. The difference between the stuares of two consecutive numbers is 15 . Find the numbers.
22. The sum of the squares of two consecutive numbers is 481. Find the numbers.
23. The sum of the squares of three consecutive numbers is 365 . Find the numbers.

Nore. If I. buy x apples for y pence,
$\frac{y}{x}$ will represent the cost of an apple in pence.
If I buy x sheep for z pounds, $\frac{z}{x}$ will represent the cost of a sheep in pounds.
Ex. A boy bought a number of oranges for 16d. Had he bought 4 more for the same money, he would have paid one-third of a penny less for each orange. How many did he buy?

Let x represent the number of ormges.
Then $\frac{\mathbf{l} 6}{x}$ will represent the cost of an orange in pence.
Hence

$$
\begin{gathered}
\frac{16}{c}=\frac{16}{x+4}+\frac{1}{3} \\
16(3 x+12)=48 x+x^{2}+4 x \\
01 \quad x^{2}+4 x=192
\end{gathered}
$$

from which we find the values of x to be 12 or -16 .
Therefore he bought 12 oranges.

To solve the equations

$$
\begin{gathered}
x^{2}+x y=15, \\
x y-y^{2}=2 . \\
y=m x .
\end{gathered}
$$

Suppose
Then $\quad x^{2}+m x^{2}=15$. from the first ealuation. and $\quad m x^{2}-m^{2} x^{2}=2$, from the second equation.
Dividing one of these equations by the other,
nultiplied ed by the ence is 5 roduct is onsecutive umbers is numbers

Mad he have paid many did
ence.

$$
\begin{gathered}
\frac{x^{2}+m x^{2}}{m x^{2}-m^{2} x^{2}}=\frac{15}{2}, \\
x^{2}(1+m) \\
x^{2}\left(m-m x^{2}\right)
\end{gathered}=\frac{15}{2}, \quad \begin{gathered}
1+m \\
\frac{m}{m}-n^{2}
\end{gathered}=\frac{15}{2},
$$

From this equation we can determine the values of n.
One of these values is $\frac{2}{3}$, and putting this for m in the equation $x^{2}+m x^{2}=15$, we get $x^{2}+\frac{2}{3} x^{2}=15$.

From which we find $\quad x= \pm 3$, and then we can find y from one of the original equations.
259. The examples which we shall now give are intended as an exercise on the methods of solution explained in the four preceding articles.

EXAMPLES.-XCVii.

i. $x^{3}-y^{3}=37$
$x^{2}+x y+y^{2}=37$.
2. $x^{2}+6 x y=144$
$6 x y+3(9 y=432$.
3. $x^{2}+x y=210$ $y^{2}+x y=231$.
4. $x^{2}+y^{2}=68$ $x y=16$.
7. $x^{2}+x y+y^{2}=39$ $3 y^{2}-5 x y=25$.

$$
\text { 5. } \begin{aligned}
& x^{3}+y^{3}=152 \\
& x^{2}-x y+y^{2}=19 .
\end{aligned}
$$

3. $x^{2}+x y=66$
$x y-y^{2}=5$.
4. $x^{2}-x y+y^{2}=7$
5. $x^{2}-x y=35$
$3 x^{2}+13 x y+8 y^{2}=163 . \quad x y+y^{2}=18$.
6. $x^{3}+y^{3}=2728$
$x^{2}-x y+y^{2}=124$.
7. $x^{2}+9 x: y=3410$
$7 x y-y^{2}=171$.
8. $4 x^{2}+9 x y=190$. $4 x-5 y=10$.
9. $3 x^{2}+4 x y=20$. $5 x y+2 y^{2}=12$.
10. $3 x^{2}+4 x y+5 y^{2}=71$. $5 x+7 y=29$.

$$
\begin{aligned}
& 15 \cdot x^{2} \cdot y^{2}=225 \\
& x y=108 .
\end{aligned}
$$

XXI. ON PROBLEMS RESULTING IN QUADRATIC EQUATIONS.

260. The method of stating prollems resulting in Quad. ratic Equations does not require any general explanation.

Some of the Examples which we shall give involve one unknown symbol, others involve tuo.

Ex. 1. What number is that whose square exceeds the number by 42 ?

Let x represent the number.

Then
or,
therefore
whence

$$
\begin{aligned}
x^{2}=x & +42, \\
x^{2}-x & =42 ; \\
x^{2}-x+\frac{1}{4} & =\frac{169}{4} ; \\
x-\frac{1}{2} & = \pm \frac{13}{2} .
\end{aligned}
$$

And we find the values of x to be 7 or -6 .
Ex. 2. The sum of two numbers is 14 and the sum of their squares is 100 . Find the numbers.

Let x and y represent the numbers.
Then

$$
\begin{gathered}
x+y=14 \\
x^{2}+y^{2}=100
\end{gathered}
$$

Proceeding as in Art. 252, we find

$$
x=8 \text { or } 6, \quad y=6 \text { or } 8 .
$$

Hence the numbers are 8 and 6 .
and or the
where negati
If if if
and so gral v
262.
both s of the

Ex
Her

Let
The

Let
The
Hen

Now
and so

G IN

in Quad ation.
avolve one

Let $\frac{1-y}{3}=m$, then $\quad 1-y=3 m$;

$$
\therefore y=1-3 m
$$

and

$$
x=3-2 y+m=3-2+6 m+m=1+7 m ;
$$

or the general solution of the equation in whole numbers is

$$
x=1+7 m \text { and } y=1-3 m
$$

where m mily be $0.1,2 \ldots .$. or any integer, positive or negative.

> If

$$
\begin{aligned}
& m=0, x=1, y=1 ; \\
& m==1, x=8, y=-2 ; \\
& m=2, x=15, y=-\overline{0} ;
\end{aligned}
$$

if
if
and so on, from which it appears that the only positive integral values of x and y which satisfy the equation are 1 and 1.
262. It is next to be observed that it is desirable to divide both sides of the equation by the smaller of the two coefficients of the unknown symbols.

Ex. To find integral solutions of the equation

$$
7 x+5 y=31
$$

Here

$$
\begin{aligned}
5 y & =31-7 x \\
\therefore y & =6-x+\frac{1-2 x}{5}
\end{aligned}
$$

Let $\frac{1-2 r}{5}=m$, an integer.
Then $1-2 x=5 m$, whence $2 x=1-5 m$;

$$
\therefore x=\frac{1-m}{2}-2 m .
$$

Let $\frac{1-m}{2}=n$, an integer.
Then $1-m=2 n$, whence $m=1-2 n$.
Hence

$$
\begin{aligned}
& x=n-2 m=n-2+4 n=5 n-2 \\
& y=6-x+m=6-5 n+2+1-2 n=9-7 n
\end{aligned}
$$

Now if
$n=0 . x=-2, y=9$;
if
$n=1, x=3, y \because 2$;
if $\quad n=2, x=8, y=\ldots 5$;
and so on.

20:3. In how many ways can a person pay a bill of $£ 13$ with crowns and guineas?

Let x and y denote the number of arowns and guineas.
Then

$$
\begin{array}{r}
5 x+21 y=260 \\
\therefore \quad 5 x=260-21 y \\
\quad x=52-4 y-\frac{y}{5}
\end{array}
$$

Let $\frac{y}{5}=m$, an integer.
Then

$$
y=5 m
$$

and
If

$$
x=52-4 y-m=52-21 m .
$$

$$
\begin{aligned}
& m=0, x=52, y=0 \\
& m=1, x=31, y=5 \\
& m=2, x=10, y=10
\end{aligned}
$$

and higher values of m will give negative values of x.
'Thus the number of ways is three.
264. To find a nimber which when divided by 7 and 5 will give remainders 2 and 3 respectively.

Let x be the number.
Then $\frac{x-2}{7}=$ an integer, suppose m;
and $\quad \frac{x-3}{5}=$ an integer, suppose n.
Then $x=7 n+2$ and $x=5 n+3$;

$$
\therefore 7 m+2=5 n+3 ;
$$

$\therefore 5 n=7 m-1$, whence $n=m+\frac{2 m-1}{5}$.
Let $\frac{2 m-1}{5}=p$, an integer.
Then $2 m=5 p+1$, whence $m=2 p+\frac{p-1}{2}$.
Let $\frac{p+1}{2}=q$, an integer.
Then

$$
\begin{aligned}
& p=2 q-1 \\
& m=2 p+q=4 q-2+q=5 q-2 \\
& x=7 m+2=35 q-12
\end{aligned}
$$

24. I huy a number of handkerchiefs for £ 3 . Had I bought 3 more for the same money, they would have cost one shilling each less. How anamy dial I buy?
25. A dealer bought a number of ealves for $£ 80$. Hat he bought 4 more for the same money, each calf would have cost £l less. How many did he buy?
26. A man bought some pieces of cloth for $£ 33.15 s$. , which he sold again for $£ 2$. 8s. the piece, and gained as much as one piece cost him. What did he give for each piece?
27. A merchant bought some pieces of silk for $£ 180$. Had he bonght 3 pieces more, he would have paid £ 3 less for each piece. How many did he buy?

2S. For a journoy of 103 miles 6 hours less would have suthiced had one gone 3 miles an hour faster. How many miles an hour did one go?
29. A grazier bought as many sheep as cost him $\mathbf{f 6 0}$. Out of these he kept $\mathbf{1 5}$, and selling the remainder for $\boldsymbol{£ 5} \mathbf{t}$, gained 2 shillings a head by them. How many sheep did he buy?
30. A cistern can be filled by two pipes running together in 2 hours, 55 minutes. The larger pipe by itself will fill it sooner than the smaller by 2 hours. What time will each pipe take separately to fill it?

3r. The length of a rectangrilar field exceeds its breadth by one yard, and the area contains ten thousamd and one hundred square yards. Find the length of the sides.
32. A cer, ain number consists of two digits. The lefthand digit is double of the right-hand digit, and if the digits be inverted the product of the number thus formed and the original number is 2268 . Find the number.
33. A ladder, whose foot rests in a given position, just reaches a window on one side of a street, and when turned about its foot, just reaches a window on the other side. If the two positions of the ladder be at right angles to each other, and the heights of the windows be 36 and 27 fect respectively, find the width of the street and the length of the ladder.
34. Cloth, being' wetted, slninks up $\frac{1}{8}$ in its length and $\frac{1}{16}$ in its width. If the surface of a piece of cloth is diminished by 5_{4}^{3} square yards, and the length of the 4 sides liy $4 \frac{1}{4}$ yards, what was the length and width of the cloth?
35. A certain number, less than 50 , consists of two digits whose difference is 4 . If the digits be inverted, the difference hetween the squares of the number thus formed and of the wiginal number is 3960 . Find the number.
36. A plantation in rows consists of 10000 trees. If there had been 20 less rows, there would have been 25 more trees in a low. How many rows are there?
37. A colonel wished to form it solid square of his men. The first time he had 39 men over: the second time he increased the side of the square by one man, and then he foomd that he wanted 50 men to complete it. How many men were there in the regiment?

XXII. INDETERMINATE EQUATIONS.

261. When the number of unknown symbols exceerls that of the independent equations, the number of simultaneous values of the symbols will be indefinite. We propose to explain in this Chapter how a certain number of these values may be formd in the case of Simultancous Equations involving two unknown quantities.

Ex. To find the integrel values of x and y which will satisfy the equation

Here

$$
\begin{gathered}
3 x+7 y=10 . \\
3 x-10-7 y ; \\
\therefore x=3-2 y+\frac{1-y}{3} .
\end{gathered}
$$

Now if x and y are integers, $\frac{1-y}{3}$ must also be an intuger.

XXIII. THE THEORY OF INDICES.

th?
o disits ifference d of the

If ther: trees in
his men. e he inhe found nen were

ONS.

eeds that lltaneous se to exse values avolving
265. The number placed over a symbol to express the power of the symbol is called the Index.

Up to this point our indices have in all cases been Positive Whole Numbers.

We have now to treat of Fractional and Negative indices; and to put this part of the sulbject in a clearer light, we shall commence from the elementary principles laid down in Arts. 45, 46 .
266. First, we must carefully observe the following results:

$$
\begin{aligned}
a^{3} \times a^{2} & =a^{5}, \\
\left(a^{3}\right)^{2} & =a^{6} .
\end{aligned}
$$

For

$$
\begin{aligned}
a^{3} \times a^{2} & =a \cdot a \cdot a \cdot a \cdot a=a^{5}, \\
\quad\left(a^{3}\right)^{2} & =a^{3} \cdot a^{3}=a \cdot a \cdot a \cdot a \cdot a \cdot a=a^{6} .
\end{aligned}
$$

and
These are examples of the Two Rules which govern all combinations of Indices, The general proof of these Rules we shall now proceed to give.
267. Def. When m is a positive integer,
a^{m} means a.a.a...... with a written m times as a factor.
268. There are two rules for the combination of indices.

Rule I. $a^{m} \times a^{n}=a^{m+n}$.
Rule II. $\left(\mu^{m}\right)^{n}=\alpha^{m n}$.
269. To prove Rule I.

$$
\begin{aligned}
a^{m} & =a \cdot a, a, \ldots . \text { to } m \text {-factors, } \\
a^{n} & =a, a, a, \ldots . . \text { to } n \text { factors }
\end{aligned}
$$

Therefore

$$
\begin{aligned}
n^{m} \times a^{n} & =(a \cdot u, u \ldots \ldots \text { to } m \text { factors }) \times(u . a . a \ldots \ldots \text { to } n \text { factors }) \\
& =a \cdot a \cdot u \ldots \ldots \operatorname{to}(m+n) \text { factors } \\
& =a^{m+n}, b y \text { the Definition. }
\end{aligned}
$$

To prove Rule if.

$$
\left(a^{m}\right)^{n}=a^{m} \cdot a^{m} \cdot a^{m} \ldots \ldots \text { tc } n \text { lactors, }
$$

$$
=(a, a, a \ldots \ldots \text { to } m \text { factors })(a . a, u \ldots \text { to } m \text { factors }) \ldots
$$

$$
\text { repeated } n \text { times, }
$$

$$
=a \cdot a \cdot a \ldots \ldots \text { to } \mathrm{mv} \text { factors, }
$$

$$
=u^{m n}, \text { by the Definition. }
$$

270. We have deduced immediately from the Definition that when m and n are positive integers $a^{m} \times a^{n}=a^{m+n}$. When m and n are not positive integers, the Definition has no meaning. We therefore extend the Definition by saying that a^{m} and a^{n}, whatever m and n may le, shall be such that $a^{\prime \prime} \times a^{n}=u^{m+n}$, and we shall now proceed to shew what meanings we assign to a^{m}, in consequence of this definition, in the following cases.
271. Case I. To find the meaning of $a^{\frac{p}{7}}, p$ and q being positive integers.

$$
\begin{gathered}
a^{\frac{p}{\eta}} \times a^{\frac{p}{\eta}}=a^{\frac{p}{q}+\frac{p}{q}}, \\
a^{\frac{p}{q}} \times{u^{q}}^{p} \times u^{\frac{p}{q}}=a^{\frac{p}{q}+\frac{p}{q}} \times a^{\frac{p}{q}}=a^{\frac{p}{\eta}+\frac{p}{q}+\frac{p}{q}} ;
\end{gathered}
$$

and by continuing this process,

$$
\begin{aligned}
a^{\frac{p}{q}} \times a^{\frac{p}{q}} \times \ldots . . \text { to } q \text { factors } & =a^{\frac{p}{q}}+\frac{p}{\varphi}+\frac{p}{q}+\cdots \text { to } q \text { torms } \\
& =a^{p} .
\end{aligned}
$$

But by the nature of the symbol $\sqrt[9]{ }$

$$
\sqrt[q]{a^{p}} \times \sqrt[q]{a^{p}} \times \ldots \ldots \text { to } q \text { factors }=a^{p}
$$

$\therefore \stackrel{p}{a^{q}} \times a^{\frac{p}{q}} \times \ldots$. to q factors $=\sqrt[q]{a^{p}} \times \sqrt[q]{a^{p}} \times \ldots$ to q factors;

$$
\therefore a^{p}=\sqrt[q]{a^{p}}
$$

Hence if

$$
i=0, x=:-\mathbf{i}: \dot{;} ;
$$

$y=1, x=23 ;$
$y=2, x=$ i $\because ;$

EXAMPLES.-XCix.

Find positive integral solutions of
I. $5 x+7 y=29$.
2. $7 x+19 y=92$.
3. $13 x+19 y=1170$.
4. $3 x+5 y=26$.
5. $14 x-5 y=7$.
6. $11 . i+15 y=10 ; 31$.
7. $11 x+7 y=308$.
8. $4 x-19 y=23$.
9. $20 . x-9 y=683$.
1c. $3 x+7 y=383$.
I1. $27 x+4 y=54$.
12. $7 x+9 y=653$.
13. Find two fractions with denominators 7 and 9 and their $\operatorname{sim} \frac{57}{63}$.
14. Find two proper fractions with denominators 11 and 13 and their difierence $\frac{82}{143}$.
15. In how many ways can a delt of $£ 1.9$. be paid in florins and half-crowns?
16. In how many ways can $£ 20$ be paid in half-guineas and half-crowns?
17. What number divided by 5 gives a remainder 2 ambl ly 9 a remainder 3 ?
18. In how many different ways may $£ 11$. 15 s. be paid ia guineas and crowns?
19. In how many different ways may £4. 11s. 6id. be paill with half-guineas and half-crowns!
20. Shew that $323 x-527 y=1000$ cannot be satisfied by integral values of x and y.
21. A farmer buys oxen, sheep, and hens. The whole number bought was 100 , and the whole price $£ 100$. If the oxen cost $£ 5$, the sheep $£ 1$, and the hens 1 s. each, how many of each had he? Of how many solutions does this Prohlem admit?
22. A owes $B 4 s .10 d$.; if A has only sixpences in his pocket and B only fourpenny pieces, how can they best settle the matter?
23. A person has $£ 12.4$ s. in half-crowns, florins, and shillings; the number of half-crowns and florins together is four times the number of shillings, and the number of coins is the greatest possible. Find the number of coins of each kind.
24. In how many ways can the sum of $£ 5$ be paid in exactly 50 coins, consisting of half-crowns, florins. and fourpenny pieces?
25. A owes B a shilling. A has only sovereigns, and B has only dollars worth $4 s$. $3 d$. each. How can A most easily pay B ?
26. Divide 25 into two parts such that one of them is divisible by 2 and the other by 3.
27. In how many ways can I pay a debt of $£ 2.9$ s. with crowns and florins?
28. Divide 100 into two parts such that one is a multiple of 7 and the other of 11 .
29. The sum of two numbers is 100 . The first divided by 5 gives 2 as a remainder, and if we divide the second by 7 the remainder is 4 . Find the numbers.
30. Find a number less thon 400 which is a multiple of 7 , and which when divided by $2,0, \pm, 5.6$, gives as a remainder in each case 1.
whole If the x many roblent
in his t settle
nd shilis four is is the nd.
paid in four-
d B has pay B ? hem is

9s. with
nultiple
ded by y 7 the
e of 7 , ainder

N тte. When Examples are given of actual numbers raised to fractional powers, they may olten be put in a form more fit for easy solution, thus:
(1) $1+4^{\frac{3}{2}}=\left(1+4^{\frac{1}{2}}\right)^{3}=(\sqrt{144})^{3}=12^{3}=1729$
(2) $125^{\frac{2}{3}}=\left(125^{\frac{1}{3}}\right)^{2}=(\sqrt[3]{125})^{2}=5^{2}=25$.
279. Since $\left(x^{m}\right)^{n}=x^{m n \prime}$,
(1) $\left\{\left(x^{m}\right)^{n}\right\}^{p}=\left(x^{m n}\right)^{p}=x^{m n p}$.
(2) $\left\{\left(a^{-m}\right)^{-n}\right\}^{p}=\left(a^{m n}\right)^{n}=a^{m n p}$.
(3) $\quad\left\{\left.\left(x^{-m}\right)^{n}\right|^{p}=\left(x^{-m n}\right)^{p}=x^{-m, n}\right.$.
280. Since $x^{-n}=\frac{1}{x^{n}}$,
we may replace an expression raised to a negative power by the reciprocal (Art. 199) of the expression raised to the same positive power: thus
(l) $a^{-1}=\frac{1}{a}$.
(2) $a^{-2}=\frac{1}{a^{2}}$.
(3) $a^{-\frac{n}{3}}=\frac{1}{a^{n}}$.

EXAMPLES.-C.

(1) Express with fractional indices:

1. $\sqrt{ } x^{5}+s^{3} x^{2}+(\sqrt{ } / x)^{5}$.
2. $\sqrt{2} y^{9}+\sqrt[i]{x^{10} y^{2}}+\sqrt[j]{x^{2} y^{2}}$.
3. $\quad \sqrt[3]{a^{4}}+(\sqrt[3]{a})^{5}+a \sqrt{a^{3}}$.
4. $i^{\sqrt{r} y^{3} z^{2}}+\sqrt[4]{a^{2} y^{3} z^{4}}+\sqrt[3]{a y y^{5},}$.
(2) Express with negative indices so as to remove all powers from the denominators:
5. $\frac{1}{x}+\frac{a}{x^{2}}+\frac{b^{2}}{x^{3}}+\frac{3}{a^{4}}$.
6. $\frac{x^{2}}{y^{2}}+\frac{3 x}{y^{3}}+\frac{4}{y^{4}}$.
7. $\frac{x^{3}}{4 y^{2} z^{2}}+\frac{5 x^{2}}{7 y z^{3}}+\frac{x}{y z}$.
8. $\frac{x y}{3 z^{2}}+\frac{1}{5 x^{2} y^{2}}+\frac{z}{x^{3} y^{4}}$.
(3) Express with negative indices so as to remove all powers from the numerators;
9. $\frac{1}{a}+\frac{x}{a^{2}}+\frac{x^{3}}{b^{2}}+\frac{x^{4}}{z}$.
10. $\frac{y^{2}}{x^{2}}+\frac{y^{3}}{3 x}+\frac{y^{3}}{5}$.
11. $\frac{4 t^{2}-l^{2}}{c^{3}}+\frac{3 t}{\sqrt{3} b}+\frac{2 / x}{y}$.
12. $\frac{\sqrt[4]{c!}}{3 i}+\frac{\sqrt[2]{u^{3}} b^{2}}{c^{2}}+\frac{\sqrt[5]{a^{10} b^{5}}}{6}$.
(4) Express with root-symbols and positive indices:
13. $2 x^{\frac{2}{3}}+3 x^{\frac{1}{3}} y^{\frac{2}{3}}+x^{-} y^{-2}$. 3. $\frac{x^{-\frac{1}{3}}}{y^{-\frac{2}{3}}}+\frac{3 x^{-2}}{y^{-\frac{3}{4}}}+\frac{x^{-\frac{2}{3}}}{3 y^{-\frac{1}{3}}}$.
14. $x^{-\frac{1}{3}}+y^{-\frac{2}{3}}+z^{-3}$.
15. $\frac{x^{-2}}{y^{\frac{1}{3}}}+\frac{x^{-\frac{1}{3}}}{y^{-1}}+\frac{x^{-\frac{9}{3}}}{-\frac{1}{3}}$.
16. Since $x^{m} \div x^{n}=\frac{x^{m}}{x^{n}}=x^{m} . x^{-n}=x^{m-n}$,
(1) $x^{8} \div x^{3}=x^{8-3}=x^{5}$.
(2) $x^{3} \div x^{8}=x^{3-8}=x^{-5}=\frac{1}{x^{5}}$.
(3) $x^{m} \div x^{m-n}=x^{m-(m-n)}=x^{m-m+n}=x^{n}$.
(4) $a^{b} \div a^{b+c}=a^{b-(b+c)}=a^{b-b-c}=a^{-c}=\frac{1}{a}$.
(5) $x^{\frac{2}{3}} \div x^{\frac{1}{3}}=x^{2-\frac{1}{3}}=x^{\frac{1}{3}}$.
(6) $x^{\frac{1}{2}} \div x^{\frac{5}{8}}=x^{\frac{1}{2}-\frac{5}{8}}=x^{\frac{3}{6}-\frac{5}{8}}=x^{-\frac{2}{6}}=x^{-\frac{1}{3}}=\frac{1}{x^{\frac{1}{3}}}$.
17. Ex. Multiply $a^{3 r}-a^{2 r}+a^{r}-1$ by $a^{r}+1$.

$$
\begin{aligned}
& a^{i r}-a^{2 r}+a^{r}-1 \\
& a^{r}+1 \\
& a^{4 r}-a^{3 r}+a^{2 r}-a^{r} \\
& \quad+a^{3 r}-a^{2 r}+a^{r}-1 \\
& a^{4 r}-1
\end{aligned}
$$

EXAMPLES.-Ci.
Multiply

1. $x^{2 p}+x^{p} y^{p}+y^{2 p} \operatorname{ly} x^{2 p}-x^{p} y^{p}+y^{2 p}$.
2. $a^{3 m}+3 u^{2 m} y^{n}+9 a^{m} y^{2 n}+27 y^{9 n}$ ly $a^{m}-3 y^{n}$.
3. $x^{4 d}-2 u x^{2 d}+4 a^{2}$ by $x^{4 t}+2 a x^{2 d}+4 a^{2}$.
4. Case II. To find the meaning of a^{-s}, s being a postfive number, whole or fractional.

We must first find the meaning of a^{0}.
We have

$$
\begin{aligned}
& \iota^{m} \times a^{n}=a^{m+0} \\
& =u^{m} \text {; } \\
& \therefore 1 \text { Mf } \\
& a^{\prime} \times a^{-1} \div a^{x-9} \\
& -q^{0} \\
& =1 \text {; } \\
& \therefore a^{-x}=\frac{1}{a^{e}} \text {. }
\end{aligned}
$$

Now
273. Thus the interpretation of a^{m} has been deduced from Rule I. It remains to be proved that this interpretation agrees with Rule II. This we shall do by shewing that Rule II. follows from Rule I., whatever m and u may be.
274. To shew that $\left(\iota^{m}\right)^{\prime \prime}=a^{m n}$ for all values of m and n.
(1) Let n be a positive integer : then, whatever m may be,

$$
\begin{aligned}
\left(a^{m}\right)^{n} & =a^{m} \cdot a^{m} \cdot a^{m} \ldots \ldots \text { to } n \text { factors } \\
& =a^{m+m+m+\cdots \text { to } n \text { terms }} \\
& =a^{m n} .
\end{aligned}
$$

(2) Let n be a positive fraction, and eriual to $\frac{p}{q}, p$ and q being positive integers ; then, whatever be the value of m,

$$
\begin{aligned}
& =\left(u^{m}\right)^{p} \\
& ==\left(l^{m p},\right. \text { by (1). }
\end{aligned}
$$

But $a^{\frac{m p}{q}} \times a^{\frac{m p}{q}} \times$
to q factors $=\iota^{m p}+{ }_{q}^{m p}+\ldots$ to q norma
$=u^{m p} ;$
$\therefore\left(1 u^{m}\right)^{\frac{p}{i}}=a^{\frac{m p}{q}}$;
that is,
$\left(a^{m}\right)^{n}=a^{m n}$.
(3) Let $n=-s, s$ being a positive number, whole or fractional: then, whatever may be,

$$
\begin{aligned}
\left(a^{m}\right)^{-s} & =\frac{1}{\left(a^{m}\right)^{2}}, \text { by Art. } 972 \\
& =\frac{1}{a^{m i}}, \text { by }(1) \text { and (2) of this Article } ; \\
\left(a^{m}\right)^{n} & =\frac{1}{a^{-m n}} \\
& =a^{m n}
\end{aligned}
$$

that is,
275. We shall now give some examples of the mode in which the Theorems established in the preceding articles are applied to particular cases. We shall commence with examples of the combination of the indices of two single terms.
276. Since $a^{m} \times x^{n}=t^{m+n}$,
(1) $x^{c} \times x^{n-c}=x^{r+i n c}=x^{2}$.
(2) $x^{c} \times x=x^{c+1}$.
(3) $x^{a+b-c} \cdot x^{a-b+c} \cdot x^{b-a+c}=x^{a+b-c+a-b+C A b \cdot n ; 2}=a^{a+o n}$.
(4) $a^{m-n} \cdot b^{n-p} \times a^{n-m} \cdot b^{p-n} \cdot c$
$=a^{m-n+n-m} \cdot b^{n-p+p-n} \cdot C$
$=a^{0} . b^{0} . c$
$=1.1 . c$
$=c$.
277. Since $\left(x^{m}\right)^{n}=x^{m n}$,
(1) $\left(x^{4}\right)^{3}=x^{6 \times 3}=x_{1}^{11}$.
(2) $\left(x^{\prime}\right)^{\frac{1}{2}}=x^{2 \times \frac{1}{2}}=x^{\prime}$.
(3) $\left(a^{6 x}\right)^{\frac{1}{3}}=a^{6 i x \times \frac{1}{3}}=a^{i x x}$.
278. Since $x^{n}=\sqrt[n]{x^{*}}$,
(1) $x^{\frac{3}{2}}=\sqrt{x^{3}}$.
(2) $x^{\frac{3}{3}}=\sqrt[8]{x^{3}}$
285. Ex. Nivide $a-b$ by $\sqrt[4]{a-\sqrt[4]{v}}$.

Putting $a^{\frac{1}{t}}$ for $\sqrt[4]{ } a$, and $b^{\frac{1}{4}}$ for $\sqrt{1 / b}^{1 / \text {, we proceed thus: }}$

$$
\begin{aligned}
& \left.a^{\frac{1}{4}}-b^{\frac{1}{4}}\right) a-b\left(a^{\frac{3}{4}}+a^{\frac{1}{2}} b^{\frac{1}{4}}+a^{\frac{1}{4}} b^{\frac{1}{2}}+b^{3}\right. \\
& \frac{a-a^{\frac{3}{4}} b^{\frac{1}{4}}}{a^{\frac{3}{4}} b^{\frac{1}{4}}-b} \\
& \frac{a^{\frac{3}{4}} b^{\frac{1}{4}}-a^{\frac{1}{2}} b^{\frac{1}{2}}}{a^{\frac{1}{2}} b^{\frac{1}{2}}-b} \\
& \frac{a^{\frac{1}{2}} b^{\frac{1}{2}}-a^{\frac{1}{4}} b^{\frac{3}{4}}}{a^{\frac{1}{4}} b^{\frac{3}{4}}-b} \\
& a^{\frac{1}{4}} b^{\frac{3}{4}}-b
\end{aligned}
$$

EXAMPLES.-civ.

Divide
I. $x-y$ by $x^{\frac{1}{2}}-y^{\frac{1}{2}}$.

2. $a-b b a^{\frac{1}{2}}+b^{\frac{1}{2}}$.
8. 81a-16 by $3 a^{\frac{1}{4}}-2 b^{\frac{1}{4}}$.
3. $x-y$ by $x^{\frac{1}{3}}-y^{\frac{1}{3}}$.
9. $u-x$ by $x^{\frac{1}{2}}+u^{\frac{1}{2}}$.
4. $a+b$ by $a^{\frac{1}{3}}+b^{\frac{1}{3}}$.
10. $m-243$ by $m^{\frac{1}{2}}-3$.
5. $x+y$ by $x^{\frac{1}{2}}+y^{\frac{2}{3}}$.
11. $x+17 x^{\frac{1}{2}}+70 b y x^{\frac{1}{2}}+7$.
6. $m-n$ by $m^{\frac{1}{6}}-n^{\frac{7}{3}}$.
12. $x^{\frac{3}{3}}+x^{\frac{1}{3}}-12$ by $x^{\frac{1}{3}}-3$.
13. $b^{\frac{1}{3}}-3 b^{\frac{9}{3}}+3 b-b^{\frac{1}{3}}$ ly $b^{\frac{1}{3}}-1$.
14. $x+y+z-3 x^{\frac{1}{3}} y^{\frac{1}{3} z^{3}}$ by $x^{3}+y^{1}+z^{1}$.
15. $x-5 x^{\frac{2}{3}}-46 x^{\frac{1}{3}}-40$ by $x^{\prime \prime}+4$.
16. $m+m^{\frac{1}{2}} u^{\frac{1}{2}}+n$ by $m^{\frac{1}{2}}-m^{\frac{1}{4}} n^{\frac{1}{4}}+u^{\frac{1}{2}}$.
17. $p^{\prime}-4 p^{3}+6 p^{\frac{1}{2}}-4 p^{\frac{1}{4}}+1 b v^{\frac{1}{2}}-2 p^{\frac{1}{1}}+1$.
18. $2 x+i^{\frac{1}{2}} y^{\frac{1}{2}}-3 y-4 y^{\frac{1}{2} z^{\frac{1}{2}}}-j^{\frac{1}{2}} z^{\frac{1}{2}}-z$ by $2 x^{\frac{1}{2}}+3 y^{\frac{1}{2}}+z^{\frac{1}{2}}$.
19. $x+y$ by $x^{\frac{4}{3}}-x^{3} y^{\frac{1}{3}}+x^{\frac{2}{5}} y^{\frac{2}{3}}-x^{\frac{1}{3}} y^{3}+y^{3}$. [s.A.]

Neyative Indices.
286. Ex. Multiply $x^{-3}+x^{-2} y^{-1}+x^{-1} y^{-2}+y^{-3}$ by $x^{-1}-y^{-1}$.

$$
\begin{aligned}
& x^{-3}+x^{-} y^{-1}+x^{-1} y^{-2}+y^{-3} \\
& x^{-1}-y^{-1} \\
& x^{-4}+x^{-3} y^{-1}+x^{-2} y^{-2}+x^{-1} y^{-3} \\
& \frac{-x^{-3} y^{-1}-x^{-2} y^{-2}-x^{-1} y^{-3}-y^{-4}}{x^{-4}-y^{-4}}
\end{aligned}
$$

EXAMPLES.-CV.

Multiply

1. $a^{-1}+b^{-1}$ lyy $a^{-1}-b^{-1}$.
2. $x^{-3}+b^{-2}$ by $x^{-3}-b^{-2}$.
3. $x^{3}+x+x^{-1}+x^{-3}$ by $x-x^{-1}$.
4. $x^{2}-1+x^{-2}$ by $x^{2}+1+x^{-2}$.
5. $a^{-2}+b^{-2}$ by $a^{-2}-b^{-2}$.
6. $a^{-1}-b^{-1}+c^{-1}$ by $a^{-1}+b^{-1}+c^{-1}$.
7. $1+a b^{-1}+a^{2} b^{-2}$ by $1-a b^{-1}+a^{2} b^{-2}$.
8. $a^{2} b^{-2}+2+a^{-2} b^{2}$ by $a^{2} b^{-2}-2-a^{-2} b^{2}$.
9. $4 x^{-3}+3 x^{-2}+2 x^{-1}+1$ ly $x^{-2}-x^{-1}+1$.
10. $\frac{5}{2} x^{-2}+3 x^{-1}-\frac{7}{3}$ by $2 x^{-2}-x^{-1}-\frac{1}{2}$.
11. EX: Divide $x^{2}+1+x^{-2}$ by $x-1+x^{-1}$.

$$
\begin{gathered}
\left.x-1+x^{-1}\right) \frac{x^{2}+1+x^{-2}\left(x+1+x^{-1}\right.}{} \begin{array}{c}
\frac{x^{2}-x+1}{x+x^{-2}} \\
\frac{x-1+x^{-1}}{1-x^{-1}+x^{-2}} \\
1-x^{-1}+x^{-2}
\end{array}
\end{gathered}
$$

Note. The order of the powers of a is

$$
\ldots \ldots t^{3}, a^{2}, a^{1}, \iota^{0}, a^{-1}, a^{-2}, a^{-3} \ldots \ldots
$$

a series which may be written thus

$$
\ldots \ldots u^{3}, u^{2}, a, 1, \frac{1}{a}, \frac{1}{a^{2}}, \frac{1}{a^{3}} \ldots \ldots
$$

4. $\quad a^{m}+b^{\prime \prime}+c^{r} b \underset{y}{ } a^{m}-b^{\prime \prime}+c^{n}$.
5. $\quad u^{\prime \prime \prime}+b^{n}-2 c^{\prime \prime} \operatorname{ly} \underline{O} u^{m}-b+c^{2}$.
6. $x^{m+n-n}-y^{m} \operatorname{ly} x^{n}+y^{m n-n}$.
7. $x^{2 n}-x^{n} y^{n}+y^{2 n}$ by $x^{2 n}+x^{n} y^{n}+y^{2 n}$.
8. $\quad a^{p^{2}+p}-b^{p^{2}}+c^{p}$ by $a^{p^{2}-p}+b^{1-p^{2}}+c^{1-p}$.
9. Form the square of $x^{2 p}+x^{p}+1$.
10. Form the square of $x^{2 p}-x^{\prime \prime}+1$.
11. EX. Divide $x^{4 p}-1$ by $x^{p}-1$.

$$
\begin{gathered}
\frac{\left.x^{p}-1\right)}{} \begin{array}{c}
x^{4}-1\left(x^{3 p}+x^{2 p}+x^{p}+1\right. \\
\frac{x^{4 p}-x^{3 p}}{x^{3 p}-1} \\
\frac{x^{3 p}-x^{2 p}}{x^{2 p}-1} \\
\frac{x^{2 p}-x^{p}}{x^{p}-1} \\
x^{p}-1
\end{array}
\end{gathered}
$$

EXAMPLES.-cii.

Divide

I. $\quad x^{4 m}-y^{4 m}$ by $x^{m}-y^{m}$.
2. $x^{5 n}+y^{5_{n}}$ by $x^{n}+y^{n}$.
5. $\quad x^{3 d}-24: 3$ by $x^{d}-3$.
6. $a^{4 m}+4 a^{2 m} x^{2 n}+16 x^{4 n}$ by $a^{2 m}+2 a^{m} \cdot x^{n}+4 x^{2 n}$
7. $\left.9 x^{p}+3 x^{4 p}+14 x^{3 p}+21\right) y 1+5 x^{p}+x^{2 p}$.
8. $14 b^{4 m} c^{m}-13 b^{3 m} c^{2 m}-5 b^{5 m}+4 b^{2 m} c^{3 m}$ by $b^{9 m}+b^{m} c^{2 m}-2 b^{2 m} c^{m}$.
9. Find the square root of

$$
a^{6 m}+6 a^{8 m}+15 a^{4 m}+20 a^{3 m}+15 a^{2 m}+6 a^{m}+1
$$

10. Find the square root of

$$
a^{2 m}+b^{9 n}+c^{2 r}+2 a^{m} b^{n}+2 a^{m} c^{r}+2 b^{n} c^{r}
$$

Fractional Indices.

284. Ex. Multiply $a^{\frac{2}{3}}-a^{\frac{1}{3}} b^{\frac{1}{3}}+b^{\frac{9}{3}}$ by $a^{\frac{1}{3}}+b^{\frac{\pi}{3}}$.

$$
\begin{aligned}
& a^{\frac{2}{3}}-a^{\frac{1}{3}} b^{\frac{1}{3}}+b^{\frac{2}{3}} \\
& a^{\frac{1}{3}}+b^{\frac{1}{3}} \\
& a-a^{\frac{2}{3}} b^{\frac{1}{3}}+a^{\frac{1}{3}} b^{\frac{2}{3}} \\
& \quad+a^{\frac{9}{3}} b^{\frac{1}{3}}-a^{\frac{1}{3}} b^{\frac{2}{3}}+b \\
& a+b
\end{aligned}
$$

EXAMPLES.-ciii.

Multiply

1. $x^{\frac{2}{3}}-2 x^{\frac{1}{3}}+1$ by $x^{\frac{1}{3}}-1$.
2. $y^{\frac{3}{4}}+y^{\frac{1}{2}}+y^{\frac{1}{4}}+1$ by $y^{\frac{1}{4}}-1$.
3. $a^{\frac{2}{3}}-x^{\frac{2}{3}}$ by $a^{\frac{4}{3}}+a^{\frac{2}{3}} x^{\frac{2}{3}}+x^{4}$.
4. $a^{\frac{2}{3}}+b^{\frac{2}{3}}+c^{\frac{2}{3}}-a^{\frac{1}{3}} b^{\frac{1}{3}}-a^{\frac{1}{3}} c^{\frac{1}{3}}-b^{\frac{1}{3}} c^{\frac{1}{3}}$ by $a^{\frac{1}{3}}+b^{\frac{1}{3}}+c^{\frac{1}{3}}$.
5. $\quad 5 x^{\frac{3}{4}}+2 x^{\frac{1}{2}} y^{\frac{1}{4}}+3 x^{\frac{1}{4}} y^{\frac{1}{2}}+7 y^{\frac{3}{4}}$ by $2 x^{\frac{1}{4}}-3 y^{\frac{1}{4}}$.
6. $m^{\frac{4}{5}}+m^{\frac{3}{2}} n^{\frac{1}{5}}+m^{\frac{9}{5}} n^{\frac{2}{5}}+m^{\frac{1}{3}} n^{\frac{3}{3}}+n^{\frac{4}{5}}$ by $m^{\frac{1}{5}}-n^{\frac{1}{5}}$.
7. $\quad m^{\frac{2}{3}}-2 d^{\frac{1}{4}} m^{\frac{1}{3}}+4 d^{\frac{1}{2}} \operatorname{lig}_{2} m^{\frac{2}{3}}+2 l^{\frac{1}{4}} m^{\frac{1}{3}}+4 d^{\frac{1}{2}}$.
8. $S a^{\frac{3}{7}}+4 a^{\frac{2}{5}} b^{\frac{1}{4}}+5 a^{\frac{3}{2}} b^{\frac{2}{7}}+9 b^{\frac{3}{4}}$ by $2 a^{\frac{4}{7}}-3 b^{\frac{4}{7}}$.

Form the square of each of the following expressions:
9. $x^{\frac{1}{3}}+c^{\frac{1}{3}}$.
10. $a^{\frac{1}{3}}-a^{\frac{1}{3}}$.
11. $x^{\frac{2}{3}}+y^{\frac{2}{3}}$.
12. $a+b^{\frac{1}{4}}$.
I 3. $x^{\frac{1}{2}}-2 x^{\frac{1}{4}}+3$.
14. $2 x^{\frac{3}{7}}+3 x^{\frac{1}{6}}+4$.
15. $x^{\frac{1}{3}}-y^{\frac{1}{3}}+x^{\frac{1}{3}}$,
16. $x^{\frac{1}{4}}+2 y^{\frac{1}{4}}-x^{\frac{1}{4}}$

XXIV. ON SURDS.

289. All numbers which we camot exactly determine, because they are not multiples of a Primary or Subordinate Unit, are called Surds.
290. We shall confine our attention to those Surds which originate in the Extraction of roots where the results camnot be exhibited as whole or fractional numbers.

For example, it we perform the operation of extracting the square root of 2 , we obtain $1 \cdot 4142 \ldots$, and though we may carry on the process to any required extent, we shall never be able to stop at any particular point and to say that we have found the exact number which is equivalent to the Square Root of 2.
291. We can approximate to the real value of a surd by finding two numbers between which it lies, differing from each other by a fraction as small as we please.

Thins, since $\sqrt{ } 2=1 \cdot 4142 \ldots \ldots$
$\sqrt{ } 2$ lies between $\frac{14}{10}$ and $\frac{15}{10}$, which differ by $\frac{1}{10}$;

> also between $\frac{141}{100}$ and $\frac{142}{100}$, which differ by $\frac{1}{100}$;
> also between $\frac{1414}{1000}$ and $\frac{1415}{1000}$, which differ lyy $\frac{1}{1000}$.

And, generally, if we find the square root of 2 to n places of decimals, we shall find two numbers between which $\sqrt{2}$ lies. differing from each other by the fraction $\frac{1}{10^{*}}$.
292. Next, we can always find a fraction differing from the real value of a surd by less than any assigned quantity.

For example, suppose it required to find a fraction differing from $\sqrt{ }$? by less than $\frac{1}{12}$.

Now 2(12)", uint is 288, lies between (16) ${ }^{2}$ and (17) ${ }^{2}$,
$\therefore 2$ iees between $\left(\frac{16}{12}\right)^{2}$ and $\left(\frac{17}{12}\right)^{2}$;
$\therefore v^{\prime 2}$ lies between $\frac{16}{12}$ and $\frac{17}{12}$;
$\therefore \sqrt{2}$ dill'ers from $\frac{16}{12}$ by less than $\frac{1}{12}$.
293. Surds, though they camot be expressed by whole or fractional numbers, are nevertheless numbers of which we may form an approximate idea, and we may make three assertions respecting them.
(1) Surds may be compared so fai as asserting that one is greater or less than another. Thus $\sqrt{ } 3$ is clearly greater than $d^{\prime 2}$, and $\sqrt[3]{9}$ is greater than $\sqrt[3]{8}$.
(2) Surds may be multiples of other surds: thus $2 \sqrt{2}$ is the double of $\sqrt{2}$.
(3) Surds, when multiplied together, may produce as a result a whole or fractional number: thus
and

$$
\begin{gathered}
\sqrt{ } 2 \times \sqrt{ } 2=2 \\
\sqrt[3]{\frac{3}{4}} \times \sqrt[3]{\frac{3}{4}} \times \sqrt[3]{\frac{3}{4}}=\frac{3}{4}
\end{gathered}
$$

204. The symbols $\sqrt{ } a, \mathbf{N}^{1 / a}, \sqrt[4]{1}, \sqrt[2]{ } / a$, in cases where the second, third, fourth, and $n^{\text {th }}$ roots respectively of a c:mmot be exhibited as whole or fractional numbers, will represent surds of the second, third, fourth, and $n^{\text {th }}$ order.

These symbol: we may, in adordance with the principles laid down in Chapter XXIII., replace by $a^{\frac{1}{2}}, a^{\frac{1}{3}}, a^{\frac{1}{4}}, a^{\frac{1}{n}}$.

EXAMPLES.-cVi.

Divide
I. $x^{2}-x^{-2}$ by ít $1, \quad \therefore \quad a^{2} \quad b^{-2}$ by $a-b^{-1}$.
3. $m^{3}+u^{-3}$ by $m+n^{-1}$.
4. $c^{5}-l^{-5}$ by $c-d^{-1}$.
5. $x^{2} y^{-2}+2+x^{-2} y^{2}$ by $x y^{-1}+x^{-1} y$.
6. $a^{-4}+a^{-2} b^{-2}+b^{-4}$ by $a^{-2}-a^{-1} b^{-1}+b^{-2}$.
7. $x^{3} y^{-3}-x^{-3} y^{3}-3 x y^{-1}+3 x^{-1} y$ by $x y^{-1}-x^{-1} y$.
8. $\frac{3 x^{-5}}{4}-4 x^{-4}+\frac{77 x^{-3}}{8}-\frac{43 x^{-2}}{4}-\frac{33 x^{-1}}{4}+27$

$$
\operatorname{ly} \frac{x^{-2}}{2}-x^{-1}+3
$$

9. $a^{3} b^{-3}+a^{-3} b^{3} b y a b^{-1}+a^{-1} b$.
10. $a^{-3}+b^{-3}+c^{-3}-3 a^{-1} b^{-1} c^{-1}$ by $a^{-1}+b^{-1}+c^{-1}$.
11. To shew that $(a b)^{n}=a^{n} . b^{n}$.

$$
\begin{aligned}
(a b)^{n} & =a b \cdot a b . a b \ldots \text { to } n \text { factors } \\
& =(a \cdot a \cdot a \ldots \text { to } u \text { factors }) \times(b . b . b \ldots \text { to } n \text { factors. } \\
& =a^{n} \cdot b^{n} .
\end{aligned}
$$

We shall now give a series of Examples to introduce the various forms of combination of indices explainer in this Chapter.

EXAMFLES.-cvii.

1. Divide $x^{4.3}-4 x y+4 x^{3} y+4 y^{2}$ by $x^{3}+2 x^{\frac{1}{2}} y^{\frac{1}{2}}+2 y$.
2. Simplify $\left\{\left(x^{3 a b}\right)^{3} \cdot\left(x^{6}\right)^{2}\right\}^{\frac{1}{2 a-2}}$. 3. Simplify $\left(x^{103} \cdot x^{18 a}\right)^{\frac{1}{5-2}-2}$.

3. Multiply $\frac{7}{3} x^{-2}+4 x^{-1}-\frac{9}{4}$ by $3 \cdot x^{-2}-2 x^{-1}-\frac{1}{2}$.
4. Simplify $\frac{x^{a+b} \cdot x^{a-b} \cdot x^{0-2 a}}{x^{c-a}}$ 7. Divide $x^{2 n}-y^{2 n}$ by $x^{n}+y^{n}$.
5. Multiply $\left(a^{\frac{1}{2}}+b^{\frac{3}{5}}\right)^{3}$ by $a^{\frac{1}{2}}-b^{\frac{3}{3}}$.
6. Divide $a-b$ by $\sqrt[3]{ } a-\sqrt[3]{ } b$. Io. Prove that $\left(a^{2}\right)^{m}=\left(a^{m}\right)^{2}$.
7. If $a^{m^{n}}=\left(a^{m}\right)^{n}$, find m in terms of u.
8. Simplify $x^{a+b+c} \cdot x^{a+b-c} \cdot x^{a-b+c} \cdot x^{b+c-a}$.
9. Simplify $\left(\frac{x^{p+q}}{x^{q}}\right)^{p} \div\left(\frac{x^{q}}{x^{q-p}}\right)^{p-q}$.
10. Divide sia^{x} by $\frac{a^{-x}}{4}$.
11. Simplify $\left[\left\{\left(0^{-m}\right)^{-n}\right\}^{p}\right] \div\left[\left\{\left(u^{m}\right)^{n}\right\}^{-p}\right]$.
12. Multiply $a^{m}+b^{p}-2 c^{n}$ by $2 a^{m}-3 b$.
13. Multiply $a^{m-n} b^{n-p}$ by $a^{n-m} b^{p-n} c$.
14. Shew that $\frac{a+\left(b^{2} a\right)^{\frac{1}{3}}-\left(a^{2} b\right)^{\frac{1}{3}}}{a+b}=\frac{a^{\frac{1}{3}}}{a^{\frac{1}{3}}+b^{\frac{1}{3}}}$.

Red numbe
1.
4.
7.
10.
12.
14.
16.
18.
20.
302.
other trimsf

Thu

Red

1.
2.
3.
4.
5.
6. Multinly $x^{3}+3 x^{\frac{1}{3}}-1$ by $x^{\frac{1}{4}}-2 x^{-\frac{1}{4}}$.

EXAMPLES:-cix.

Reduce to equivalent expressious with a whole or fractional number as one factor:
I. $\sqrt{ }(24)$.
2. $\lambda^{\prime}(50)$.
3. $\sqrt{ }\left(4 a^{3}\right)$.
4. $\sqrt{ }\left(125 a^{4} l^{3}\right)$.
5. $\sqrt{\prime}\left(32 y y^{3}\right)$.
6. $\sqrt{ }(1000 a)$.
7. $\sqrt{ }\left(720 c^{2}\right)$.
8. 7. $\sqrt{ }(396 . x)$
9. $\quad 18 \cdot \sqrt{\left.\left(\frac{5}{27^{3}}\right)^{3}\right)}$.
10. $4 . \sqrt{\frac{u^{3}}{b}}$.
12. $\sqrt{ }\left(x^{3}-2 x^{2} y+x y^{3}\right)$.
II. $\sqrt{\prime}\left(u^{3}+2 u^{2} x+u x^{2}\right)$.
14. $\sqrt{\prime}\left(63 c^{4} y-42 c^{2} y^{2}+7 y^{3}\right)$ 15. $\quad \sqrt{3}\left(54 a^{6} b^{2}\right)$.
16. $\quad \sqrt[3]{\left(160 x^{4} y^{7}\right) \text {. }}$
17. $\quad \sqrt[3]{\sqrt{2}}\left(108 m^{9} n^{10}\right)$.
18. $\sqrt[3]{3}\left(1372 a^{15} b^{16}\right)$.
19. $\sqrt{3}^{3}\left(x^{4}+3 x^{3} y+3 x^{2} y^{2}+x y^{3}\right)$.
20. $\sqrt[3]{ }\left(c^{4}-3 u^{3} b+3 u^{2} b^{2}-u b^{3}\right)$.
302. An expression containing two fictors, one a surd, the other a whole or fractional number, as $3 \sqrt{ } / 2, a \sqrt[3]{x}$, may be triansformed into a complete surd.

Thus

$$
\begin{aligned}
& 3 \sqrt{\prime 2}=\left(3^{2}\right)^{\frac{1}{2}} \cdot \sqrt{ } 2=\sqrt{\prime} 9 \cdot \sqrt{\prime}^{\prime 2}=\sqrt{\prime}^{\prime}(18), \\
& a, \mathbf{N}^{7} x=\left(a^{3}\right)^{\frac{1}{5}} \cdot \sqrt[3]{ } x=\sqrt{3}^{3 / t^{3}} \cdot 1^{7 / x}=\sqrt{3 /\left(a^{3} x\right)} \text {. }
\end{aligned}
$$

EXAMPLES.-cx.

Reluce to complete Surds:

1. $4 \sqrt{1} 3$.
2. $\quad 3 \sqrt{7}$.
3. $5 \sqrt[3]{9}$.
4. $24^{4 / 6}$.
5. $3 \sqrt[3]{3} / 3$
6. $3 \sqrt{\prime}^{\prime} 16$.
7. $4 \pi \sqrt{ }(3 x)$.
S. $2.0 \sqrt{\binom{3 \pi}{4, i} .}$
8. $\quad(m+n) \cdot \sqrt{\binom{m-n}{m+n}}$ 10. $\quad(a+b)\binom{1}{a^{2}-b^{2}}^{\frac{1}{!}}$
1 I. $\quad\binom{x-y}{x+y} \cdot\binom{x^{2}+x y}{x^{2}-2 x y+y^{2}}^{\frac{2}{2}}$.
9. Surds may be compreted by transforming them into surds of the same order. 'Thus if it be required to determine whether $\sqrt{2}$ be greater or less than $\sqrt[3]{ } 3$, we proceed thus:

$$
\begin{aligned}
& \sqrt{2}=2^{2}=2^{3}=\sqrt{3}^{2} 2^{3}=\sqrt[6]{8}, \\
& \left.\sqrt[3]{3} 3=3^{3^{3}}=3^{\ddot{B}}=1^{n} ;^{\prime}==\sqrt[n]{\sqrt{2}}\right) .
\end{aligned}
$$

And since $\sqrt[8]{9}$ is rreater than $\sqrt[6]{8}$, $\sqrt[3]{3}$ is greater than $\sqrt{2} 2$.

EXAMPLES.-cXi.

Arrange in order of magnitude the following Surds :
I. , $\sqrt{3}$ and $\sqrt[3]{4}$.
6. $-\sqrt{87}$ and $3 \sqrt{3} 3$.
2. $\sqrt{ } 10$ and $\sqrt{1} 15$.
7. $\quad-\sqrt[3]{2} 2,3 \sqrt[3]{7}$: แा $4 \sqrt{ } 2$.
3. $2 \sqrt{ } 3$ and $3 \sqrt{ } 2$.
S. : $\sqrt{ } \sqrt{19, ~} 5 \sqrt[3]{ } 18$ and $3 \sqrt[3]{ } 82$.
4. $\sqrt{3}$ and $\sqrt{5}\left(\frac{14}{15}\right)$.
9. $\quad 2 \sqrt[3]{14}, 5 \sqrt[3]{2}$ and $3 \sqrt[3]{3 / 3}$.
5. $3 \sqrt{ } 7$ and $4 \sqrt{1} 3$.
10. $\frac{1}{2} \sqrt{2}, \frac{1}{3} \sqrt{3}$ and $\frac{1}{4} \sqrt{\prime}^{\prime} 4$.
304. The following are examples in the application of the rules of Addition, Subtraction, Multiplication, and Division to Surds of the same order.

1. Find the sum of $\sqrt{ } / 18, \sqrt{ } 128$, and $\sqrt{2} 32$.

$$
\begin{aligned}
\sqrt{ }(18)+\sqrt{ }(128)+\sqrt{ }(32) & =\sqrt{\prime}^{\prime}(9 \times 2)+\sqrt{\prime}^{\prime}(6+4 \times 2)+\sqrt{ }(16 \times 2) \\
& =3 \sqrt{ }^{\prime 2}+8 \sqrt{ } 2+4 \sqrt{ } 2 \\
& =15 \sqrt{ } 2 .
\end{aligned}
$$

2. From $3 \sqrt{ }(75)$ take $4 \sqrt{ }(12)$.

$$
\begin{aligned}
3 \sqrt{ }(75)-4 \sqrt{ }(12) & =3 \sqrt{ }(25 \times 3)-4 \sqrt{ }(4 \times 3) \\
& =3.5 \cdot \sqrt{ } 3-4.9 \cdot \sqrt{ } 3 \\
& =15 \sqrt{ } 3-8 \sqrt{ } 3 \\
& =7 \sqrt{\prime 3} .
\end{aligned}
$$

295. Surds of the same order are those for which the rootsymbol or surd-index is the same.

Thus $\sqrt{ }\left(1,3 \sqrt{ }(3 b), 4 \sqrt{ }(m n), r^{\frac{1}{2}}\right.$ are surds of the same order.
Like surds are those in which the same root-symbol or surdindex appears over the same quantily.

296. A whole or fractional number may be expressel in the form of a surl, liy mising the number to the power denoted by the order of the surd, and placing the result under the symbol of evolution that corresponds to the surd-index.

Thus •

$$
\begin{aligned}
& a=\sqrt{ } a^{2} \\
& \frac{b}{c}=\sqrt[3]{b^{3}} b^{3}
\end{aligned}
$$

297. Surds of different orders may be transformed into surds of the same order by reducing the surd-indices to fractions with the same denominator.

Thus we may transform $\sqrt[3]{ } x$ and $\sqrt[4]{y}$ into surds of the same order, for
and

$$
\begin{aligned}
& \sqrt[3]{x}=x^{\frac{1}{3}}=x^{\frac{4}{12}}=\sqrt[12]{x^{4}} \\
& \sqrt[4]{y} y=y^{\frac{1}{4}}=y^{\frac{3}{2}}=\sqrt[12]{y^{3}}
\end{aligned}
$$

and thus both surids are transformed into surds of the twelfth order.

EXAMPLES.-CViii.

Transform into Surds of the same order:

1. \sqrt{x} and $\sqrt[3]{y}$.
2. $\sqrt[3]{4}$ and $\sqrt[3]{2}$.
3. $\sqrt{ }(18)$ and $\sqrt[3]{ }(50)$.
4. $\sqrt[m]{2}$ and $\sqrt[n]{2}$.
5. $\sqrt[m]{ } / a$ and $\sqrt[n]{b}$.
6. $\sqrt[3]{ }(a+b)$ and $\sqrt{ }(a-b)$.
7. If a whole or fractional number be multiplied into a surd, the product will be represented by placing the multiplier and the multiplicand side by side with no sign, or with a dot (.) between them.

Thus the product of 3 and $\sqrt{ } 2$ is represented liy $3 \sqrt{ } \cdot 2$, of 4 and $5 \sqrt{ } 2 \ldots$. by $20 \sqrt{ } 2$,

299. Like surds may be combined by the ordinary processes of addition and subtraction, that is, by adding the coefficients of the surd and placing the result as a coefficient of the surd.

Thus

$$
\begin{gathered}
\sqrt{ } a+\sqrt{ } a=2 \sqrt{ } a, \\
5 \sqrt{ } b-3 \sqrt{ } b=2 \sqrt{ } b, \\
x \sqrt{ } c-\sqrt{ } c=(x-1) \sqrt{ } c .
\end{gathered}
$$

300. We now proceed to prove a Theorem of great importance, which may be thus stated.

The root of any eapression is the same as the product of the roots of the separate factors of the expression, that is

$$
\begin{aligned}
& V^{\prime}(c h)=\sqrt{\prime}^{\prime}\left(t \cdot \lambda^{\prime h},\right. \\
& \sqrt[3]{\prime}(x y z)=\sqrt[3]{x} \cdot \sqrt[3]{3} y \cdot \sqrt[3]{2}, \\
& \sqrt[n]{ }(p q r)=n / p \cdot n^{\prime} q \cdot v^{\prime \prime} \cdot
\end{aligned}
$$

We have in fact to shew from the Theory of Indices that

$$
(a b)^{\frac{1}{n}}=a^{\frac{1}{n}} \cdot b^{\frac{1}{n}}
$$

Now

$$
\left\{(a b)^{n}\right\}^{l}=(c b)^{n}=a b
$$

and

$$
\begin{gathered}
\left\{a^{\frac{1}{n}} \cdot b^{\frac{1}{n}}\right\}^{n}=\left(a^{\frac{1}{n}}\right)^{n} \cdot\left(b^{\frac{1}{n}}\right)^{n}=a^{\frac{n}{n}} \cdot b^{n}=a \cdot b ; \\
\left.\therefore\left\{(a b)^{\frac{1}{n}}\right\}^{n}=a^{\frac{1}{n}} \cdot b^{\frac{1}{n}}\right\}^{n} ; \\
\therefore(a b)^{\frac{1}{n}}=a^{\frac{1}{n}} \cdot b^{\frac{1}{n}} .
\end{gathered}
$$

301. We can sometimes reduce an expression in the form of a surd to an equivalent expression with a whole or fractional number as one factor.

302. Multiply $\sqrt{ } 8$ by $\sqrt{\prime}(12)$.

$$
\begin{aligned}
\sqrt{ } 8 \times \sqrt{ }(12) & =\sqrt{\prime}(8 \times 12) \\
& =\sqrt{ }(96) \\
& =\sqrt{ }(16 \times 6) \\
& =4 \sqrt{ } 6 .
\end{aligned}
$$

4. Divide $\sqrt{ } / 32$ by $\sqrt{ } 18$.

$$
\frac{v^{\prime}(32)}{\sqrt{(18)}}=\frac{\sqrt{ }(16 \times 2)}{\sqrt{ }(9 \times 2)}=\frac{4 \sqrt{\prime 2}}{3 \sqrt{2}}=\frac{4}{3}
$$

EXAMPLES.-cXii.

Simplify

I. $\sqrt{ }(27)+2 \sqrt{ }(48)+3 \sqrt{ }(108)$.
II. $\sqrt{ } 6 \times \sqrt{ } 8$.
2. $3 \sqrt{ }(1000)+4 \sqrt{ }(50)+12 \sqrt{ }(288)$.
12. $\sqrt{ }(14) \times \sqrt{ }(20)$.
3. $a \sqrt{ }\left(a^{2} x\right)+b \sqrt{ }\left(b^{2} x\right)+c \sqrt{ }\left(c^{2} x\right)$.
I 3. $\sqrt{ }(50) \times \sqrt{ }(200)$.
4. $\sqrt[3]{ }(128)+\sqrt[3]{ }(686)+\sqrt[3]{ }(16)$.
14. $\quad \sqrt{3}^{3}\left(3 a^{2} b\right) \times \sqrt[3]{\left(9 a b^{2}\right)}$.
5. $7 \sqrt[3]{(54)}+3 \sqrt[3]{(16)}+\sqrt[3]{(432)}$.
15. $\quad \sqrt[3]{ }(12 a b) \times \sqrt[3]{\sqrt{2}}\left(8 a^{2} b^{3}\right)$.
6. $\sqrt{ }(96)-\sqrt{ }(54)$.
16. $\sqrt{ }(12) \div \sqrt{ } 3$.
7. $\sqrt{ }(243)-\sqrt{ }(48)$.
17. $\sqrt{ }(18) \div \sqrt{ }(50)$.
8. $12 \sqrt{ }(72)-3 \sqrt{ }(128)$.
18. $\quad \sqrt[3]{ }\left(a^{2} b\right) \div \sqrt[3]{ }\left(a b^{2}\right)$.
9. $5 \sqrt[3]{(}(16)-2 \sqrt[3]{\sqrt{2}}(54)$.
19. $\sqrt[4]{ }\left(a^{3} b\right) \div \sqrt[4]{ }\left(a b^{3}\right)$.
1о. $7 \sqrt[3]{ }(81)-3 \sqrt[3]{(1029)}$. 20. $\sqrt{ }\left(x^{2}+x^{3} y\right) \div \sqrt{ }\left(x+2 x^{2} y+x^{3} y^{2}\right)$.
305. We now proceed to treat of the Multiplication of Compound Surds, an operation which will be freguently required in a later part of the subject.

The Stment must bear in mind the two following Rules:
Rule I. $\quad \lambda^{\prime} a \times \sqrt{ } b=\sqrt{\prime}^{\prime}(a b)$,
Rule II. $\sqrt{ } a \times \sqrt{ } \downarrow=a$,
which will be true for all values of a and b.

EXAMPLES.-cxiii.

Multiply

1. \sqrt{x} by $\sqrt{ }!$.
2. $\boldsymbol{N}^{\prime} \cdot \ln -\sqrt{x}$.
3. $\sqrt{ }(x-y)$ by $\sqrt{\prime} y$.
4. $\sqrt{ }(x-1) b y-\sqrt{ }(x-1)$.
5. $\sqrt{ }(x+y)$ by $\sqrt{ }(x+y)$.
6. :3 $\sqrt{ } \cdot x$ by $-4 \sqrt{ } x$.
7. $\sqrt{ }(x-y)$ by $\sqrt{ }(x+y)$.
8. $-2 \sqrt{ }$ a by $-3 \sqrt{ } / a$.
9. $6 \sqrt{ } x$ by $3 \sqrt{ } x$.
10. $\sqrt{ }(x-7)$ by $-\sqrt{ } x$.
11. $7 \sqrt{ }(x+1)$ by $8 \sqrt{ }(x+1)$.
I4. $-2 \sqrt{ }(x+7) \ln -3 \sqrt{ } x$.
12. $10 \sqrt{ } x$ by $9 \sqrt{ }(x-1)$.
13. $-4 \sqrt{ }\left(u^{2}-1\right)$ by $-2 \sqrt{ }\left(c^{2}-1\right)$.
14. $\sqrt{ }(3 x)$ by $\sqrt{ }(4 x)$. 16. $2 \sqrt{ }\left(a^{2}-2 a+3\right)$ by $-3 \sqrt{ }\left(t^{2}-2 a+3\right)$.
15. The following Examples will illustrate the way of - proceeding in forming the products of Compound Surds.

Ex. 1. To multiply $\sqrt{ } x+3$ by $\sqrt{ } x+2$.

$$
\begin{aligned}
& \sqrt{x+3} \\
& \sqrt{x+2} \\
& x+3 \sqrt{x} \\
& +2 \sqrt{x+6} \\
& x+5 \sqrt{x+6}
\end{aligned}
$$

Ex. 2. To multiply $4 \sqrt{ } x+3 \sqrt{ } y$ by $4 \sqrt{ } x-3 \sqrt{ } y$.

$$
\begin{aligned}
& 4 \sqrt{ } x+3 \sqrt{ } y \\
& 4 \sqrt{x-3 \sqrt{ } y} \\
& \hline \begin{array}{l}
16 x+12 \sqrt{ }(x y) \\
-12 \sqrt{ }(x y)-9 y
\end{array} \\
& \hline 16 x-9 y
\end{aligned}
$$

Ex. 3. To forn the square of $\sqrt{\prime}(x-7)-\sqrt{ } x$.

$$
\begin{aligned}
& \sqrt{\prime(x-7)}-\sqrt{ } x \\
& \begin{aligned}
& \sqrt{\prime}(x-7)-\sqrt{ }(x \\
& \hline x-7-\sqrt{ }\left(x^{2}-7 x\right) \\
&-\sqrt{ }\left(x^{2}-7 x\right)+x \\
& \hline 2 x-7-2 \sqrt{ }\left(x^{2}-7 x\right)
\end{aligned}
\end{aligned}
$$

EXAMPLES.-CXiv.

Multiply

1. $\sqrt{x}+7$ by $\sqrt{ } x+2$.
2. $\sqrt{ } x-5$ by $\sqrt{ } x+3$.
3. $\sqrt{ }(a+9)+3$ by $\sqrt{ }(\iota+9)-3$.
4. $\sqrt{ }(\iota-4)-7$ by $\sqrt{ }(\imath-4)+7$.
5. 3 $\sqrt{ }(x-7$ by $\sqrt{ } x+4$.
6. $2, ~(x-5)+4$ by $3 \sqrt{ }(x-5)-6$.
7. $\sqrt{ }(\mathbf{0}+x)+\sqrt{ } \boldsymbol{x}$ by $\sqrt{ }(6+x)-\sqrt{ }(x$.
S. $\sqrt{ }(3 x+1)+\sqrt{ }(2 x-1)$ by $\sqrt{ } 3 x-\sqrt{ }(2 x-1)$.
8. $\sqrt{\prime} a+\sqrt{ }(a-x)$ by $\sqrt{ } x-\sqrt{\prime}(a-x)$.
9. $\sqrt{ }(3+x)+\sqrt{ } \sqrt{ } \ln y \sqrt{ }(3+x)$.
II. $\sqrt{ } x+\sqrt{ } y+\sqrt{2} b y \sqrt{ } x-\sqrt{ } y+\sqrt{ } \%$
10. $\sqrt{ } a+\sqrt{\prime}(a-x)+\sqrt{ } x$ by $\sqrt{ } a-\sqrt{ }(a-x)+\sqrt{ } x$.

Form the squares of the following expressions:
13. $21+\sqrt{ }\left(x^{2}-9\right)$.
14. $\sqrt{ }(x+3)+\sqrt{ }(x+8)$.
15. $\sqrt{ } x+\sqrt{ }(x-4)$.
16. $\sqrt{ }(x-6)+\sqrt{ } x$.
17. $2 \sqrt{ } / x-3$.
18. $\sqrt{ }(x+y)-\sqrt{ }(x-y)$.
19. $\sqrt{ } x \cdot \sqrt{ }(x+1)-\sqrt{ }(x-1)$.
20. $\sqrt{ }(x+1)+\sqrt{ } x \cdot \sqrt{ }(x-1)$.
307. We may now extend the Theorem explained in Art. 101. We there shewed how to resolve expressions of the form

$$
a^{2}-b^{2}
$$

into factors, restricting our observations to the case of perject squares.

The Theorem extends to the difference between any two quantities.

Thus

$$
\begin{aligned}
a-b & =(\sqrt{ }(a+\sqrt{ } b)(\sqrt{ } a-\sqrt{ } b) . \\
x^{2}-y & =(x+\sqrt{ } y)(x-\sqrt{ } y) . \\
1-x & =(1+\sqrt{ } x)(1-\sqrt{ } x) .
\end{aligned}
$$

308. Hence we can always find a multiplier which will free from surds an expression of any of the four forms

$$
\begin{array}{llll}
\text { 1. } a+\sqrt{\prime} b & \text { or } & 2 . & \sqrt{\prime} a+\sqrt{ } b, \\
\text { 3. } a-\sqrt{ } b & \text { or } & 4 . & \sqrt{\prime} a-\sqrt{ } b .
\end{array}
$$ as a product $a^{2}-b$, which is free from surds, and since the second and fourth give as a prockuct $a-b$, which is free from surds, it follows that the required multiplier may be in all cases found.

Ex. 1. To find the multiplier which will free from surds each of the following expressions:
I. $5+\sqrt{ } 3$.
2. $\sqrt{ } 6+\sqrt{ } 5$.
3. $2-\sqrt{5}$.
4. $\sqrt{ } 7-\sqrt{ } 2$.

The multipliers will be
I. $5-\sqrt{ } 3$.
2. $\sqrt{ } 6-\sqrt{ } 5$.
3. $2+\sqrt{ } 5$.
4. $\quad \sqrt{ } 7+\sqrt{ } 2$.

The products will be

1. 25-3.
2. 6-5.
3. 4-5.
4. 7-2.

That is, 22, 1, -1, and 5.
Ex. 2. To reduce the fraction $\frac{a}{b-\sqrt{ } c}$ to an equivalent fraction with a denominator free from surds.

Multiply both terms of the fraction by $b+\sqrt{ } c$, and it be.. comes

$$
\frac{a b+a \sqrt{ } c}{b^{2}-c}
$$

which is in the required form.

EXAMPLES,-CXV.

Express in factors:

1. $c-l$.
2. $c^{2}-d$.
3. $c-d^{2}$.
4. 1-y.
5. $1-3 x^{2}$.
6. $5 m^{2}-1$.
7. $4 a^{2}-3 x$.
8. $9-8 n$.
9. $11 u^{2}-16$.
10. $p^{2}-4 r$.
I. $p-3 q^{2}$.
11. $a^{2 m}-b^{n}$.

Res denon
309. tive, ar

Since would which duantit
commor

Wher
impossil
$\sqrt{ }(-1)$
311.
when m
There
$\{\sqrt{\prime}($
il
i $1 /$ พ.d so o

Reduce the following fractions to equivalent fractions with denominators free from surds.

$$
\begin{aligned}
& \text { 13. } \frac{1}{a-\sqrt{ } b} \\
& \text { 14. } \frac{\sqrt{\prime} a}{\sqrt{a-} 16} \text {. } \\
& \text { 15. } \frac{4+3 \sqrt{2}}{2}-2 \sqrt{2} \\
& \text { 16. } \frac{2}{2-\sqrt{12}} \\
& \text { 17. } \frac{\sqrt{13}}{2-\sqrt{3}} \\
& \text { 18. } \frac{2-\sqrt{ } 2}{2+\sqrt{ } 2^{2}} \\
& \text { 19. } \begin{array}{l}
\sqrt{\prime} a+\sqrt{\prime} x \\
\sqrt{ } a-\sqrt{ } \cdot
\end{array} \\
& 22 . \\
& \sqrt{ }\left(m^{2}+1\right)-\sqrt{ }\left(m^{2}-1\right) \\
& \text { 20. } \quad 1+\sqrt{10} . \\
& \text { 23. } \frac{a+\sqrt{ }\left(a^{2}-1\right)}{a-\sqrt{ }\left(a^{2}-1\right)} . \\
& \text { 21. } \frac{\sqrt{ }(a+x)+\sqrt{\prime}(a-x)}{\sqrt{ }(a+x)-\sqrt{ }(a-x)} \quad \text { 24. } \quad \frac{a+\sqrt{ }\left(a^{2}-x^{2}\right)}{a-\sqrt{ }\left(a^{2}-x^{2}\right)^{\circ}} \text {. }
\end{aligned}
$$

310. All impossible square roots may be reduced to one common form, thus

$$
\begin{aligned}
& \sqrt{\prime}^{\prime}\left(-a^{2}\right)=\sqrt{ }\left\{a^{2} \times(-1)\right\}=\sqrt{\prime}^{\prime} a^{2} \cdot \sqrt{ }(-1)=a \cdot \sqrt{ }(-1) \\
& \sqrt{ }(-x)=\sqrt{ }\{x \times(-1)\}=\sqrt{ } \cdot \sqrt{\prime}(-1)
\end{aligned}
$$

Where, since a and $\sqrt{ } x$ are possible numbers, the whole impossibility of the expressions is reduced to the appearance of ${ }^{-}$ $\sqrt{ }(-1)$ as a factor.
311. Def. By $\sqrt{ }(-1)$ we understand an expression which when multiplied by itself produces -1 .
Therefore

$$
\begin{aligned}
& \{\sqrt{ }(-1)\}^{2}=-1 \\
& \{\sqrt{ }(-1)\}^{3}=\{\sqrt{ }(-1)\}^{2} \cdot \sqrt{ }(-1)=(-1) \cdot \sqrt{\prime}^{\prime}(-1)=-\sqrt{ }(-1) \\
& \{\sqrt{ }(-1)\}^{4}=\{\sqrt{ }(-1)\}^{2} \cdot\{\sqrt{ }(-1)\}^{2}=(-1) \cdot(-1)=1
\end{aligned}
$$

v.d so on.

EXAMPLES.-CXVi.

Multiply, observing that

$$
\sqrt{ }-a \times \sqrt{ }-b=-\sqrt{\prime} a b .
$$

I. $4+\sqrt{ }(-3)$ by $4-\sqrt{ }(-3)$.
2. $\sqrt{ } 3-2 \sqrt{ }(-2) b \sqrt{ } 3+2 \sqrt{ }(-2)$.
3. $4 \sqrt{ }(-2)-2 \sqrt{ } 2 \log \frac{1}{2} \sqrt{ }(-2)-3 \sqrt{ } 2$.
4. $\sqrt{ }(-2)+\sqrt{ }(-3)+\sqrt{ }(-4) \operatorname{ly} \sqrt{ }(-2)-\sqrt{ }(-3)-\sqrt{ }(-4)$.
5. $3 \mathfrak{N}$ $(-a)+\sqrt{ }(-b)$ by $4 \sqrt{ }(-a)-2 \sqrt{ }(-b)$.
6. $a+\mathfrak{N}^{\prime}(-a)$ by $a-\sqrt{ }(-a)$.
7. $a \sqrt{ }(-a)+b \sqrt{ }(-b)$ by $a \sqrt{ }(-a)-b \sqrt{ }(-b)$.
8. $a+\beta \sqrt{ }(-i)$ by $\alpha-\beta \sqrt{ }(-1)$.
9. $1-\sqrt{ }\left(1-e^{2}\right)$ by $1+\sqrt{ }\left(1-e^{2}\right)$.
10. $e^{p V(-1)}+e^{-p V(-1)}$ by $e^{p V^{\prime}(-1)}-e^{-p V(-1)}$.
312. We shall now give a few Miscellaneous Examples to illustrate the principles explained in this Chapter.

ExAMPLES.-cXvii.

1. Simplify $\frac{\sqrt{ } x+\sqrt{ } y}{3 \sqrt{y}}-\frac{\sqrt{ } x-\sqrt{ } y}{3 \sqrt{x}}$.
2. Prove that $\{1+\sqrt{ }(-1)\}^{2}+\{1-\sqrt{ }(-1)\}^{2}=0$.
3. Simplify $\frac{\sqrt{ } x+\sqrt{ } y}{2 \sqrt{x}}+\frac{\sqrt{ } x-\sqrt{ } y}{2 \sqrt{y}}$.
4. Prove that $\{1+\sqrt{ }(-1)\}^{2}-\{1-\sqrt{ }(-1)\}^{2}=\sqrt{ }(-16)$.
5. Divide $x^{4}+a^{4}$ by $x^{2}+\sqrt{ } / 2 a x+a^{2}$.
6. Divide $m^{4}+n^{4}$ by $m^{2}-\sqrt{ } 2 m n+n^{2}$.
7. Simplify $\sqrt{ }\left(x^{3}+2 x^{2} y+6 u^{2}\right)+\sqrt{ }\left(x^{n}-2 x^{2} y+x y^{2}\right)$.
S. Simplify $\frac{a-b}{\sqrt{a-} \sqrt{b}}-\frac{a+b}{\sqrt{a+\sqrt{b}}}$, and ierify by puttin: $\lambda=9$ and $b=4$.
8. Find the square of " $\sqrt{\frac{c}{b}}-\sqrt{\prime}(c d)$.

1o. Find the square of $a \sqrt{2}^{2}-\frac{1}{a}$
11. Simplify
$\frac{\sqrt{ }\left(x^{2}+u^{2}\right)+\sqrt{\prime}\left(x^{2}-a^{2}\right)}{\sqrt{ }\left(x^{2}+u^{2}\right)-\sqrt{ }\left(x^{2}-u^{2}\right)}+\frac{\sqrt{2}\left(x^{2}+a^{2}\right)-\sqrt{\prime}\left(x^{2}-a^{2}\right)}{d^{\prime}\left(x^{2}+a^{2}\right)+\sqrt{ }\left(x^{2}-a^{2}\right)^{0}}$
12. Simplify $\frac{\sqrt{ }^{\prime}(1-x)+\frac{1}{\sqrt{\prime}(1+x)}}{1+\frac{1}{\left.\sqrt{\left(1-x^{\prime 2}\right.}\right)}}$.
13. Simplify $\frac{x-1}{x+1}\left\{\frac{x-1}{\sqrt{x-1}}+\frac{1-x}{x+\sqrt{x}}\right\}$.
14. Form the square of $\sqrt{\left.\left(\frac{x}{4}+3\right)-\sqrt{(} \frac{x}{4}-3\right) \text {. }}$
15. Form the square of $\sqrt{ }(x+u)-\sqrt{\prime}(x-u)$.

17. Raise to the $5^{\text {th }}$ power $-1-a 1^{\prime}(-1)$.
18. Simplify $\sqrt[3]{(81)}-\sqrt[3]{(-512)}+\sqrt[3]{(192)}$.
19. Simplify $\frac{\left(i c^{2}\right.}{x-1} \sqrt{\left(\frac{4 x^{3}-8 x^{2}+4 x}{3 c^{3}}\right) \text {. }}$
20. Simplify $\frac{x}{x-7}\left\{\sqrt[18]{x}\left(3 y^{2} x^{3}-(33)^{2} x^{2}+441 y^{2} x^{2}-1029 p^{2}\right)\right\}$.
21. Simplify $\left.2(n-1) \sqrt[3]{\left(-2 n^{4}-6 n^{3}+6 n^{2}-2 n\right.}\right)$.
22. Simplify $2(n-1) \sqrt{ }(63)+\frac{1}{3} \sqrt{\prime}(112)-\sqrt{\prime}\left(28 n^{4}\right)$

$$
\left.+\wedge^{\prime}\left\{175(n-1)^{2} c^{2}\right\} \times \frac{2}{3 c^{-}}-2 \sqrt{\left(\frac{7 n}{36}\right.}\right) .
$$

23. What is the difference between

$$
\sqrt{ }\{17-\sqrt{\prime}(333)\} \times \sqrt{\prime}^{\prime}\left\{17+\sqrt{ }^{\prime}(33)\right\}
$$

find $\quad 3 /\left\{65+\wedge^{\prime}(129)\right\} \times 3 /\{65-\downarrow(129)\} ?$
[s.A.]
313. We have now to treat of the method of finding the Square Root of a Binomial Surd, that is, of an expression of one of the following forms:

$$
m+\sqrt{ } n, m-\sqrt{\prime} n
$$

where m stands for a whole or fractional number, and $\sqrt{ } n$ for a surd of the second order.
314. We have first to prove two Theorems.

Theorem I. If $\sqrt{\prime}^{\prime}(\epsilon=m+\sqrt{ } n, m$ must be zero.
Squaring both sides,

$$
\begin{aligned}
a & =m^{2}+2 m \sqrt{ } n+n ; \\
\therefore 2 m \sqrt{ } n & =a-m^{2}-n ; \\
\therefore \sqrt{ } n & =\frac{a-m^{2}-n}{2 m} ;
\end{aligned}
$$

that is, $\sqrt{ } n$, a surd, is equal to a whole or fractional number, which is impossible.

Hence the assumed equaiity can never hold maless $m=0$, in which case $\sqrt{ } \quad a=\sqrt{ } n$.

Theorem II. If $b+\sqrt{ }$ $a=m+\sqrt{ } n$, then must $b=m$, and $\sqrt{ } \cdot \boldsymbol{l}=\sqrt{ } n$.
For, if not, let

$$
b=m+x .
$$

Then

$$
\begin{aligned}
m+x+\sqrt{ } a & =m+\sqrt{ } n, \\
x+\sqrt{ } a & =\sqrt{ } n ;
\end{aligned}
$$

which, by Theorem I., is impossihle unless $x=0$, in which case $b=m$ and $\sqrt{ } a=\sqrt{ } n$.
316.
seen from
Finc t
Assum
Then

Hence
also,
Hence
That is,
finding the xpression of
and $\sqrt{ } n$ for
onal numher,
less $m=0$, in
nst $b=m$, and
in which case
. (1),
(2),

Now froll (1) $\quad x^{2}+2 x y+y^{2}=a^{2}$,
and from (2)

$$
4 c y=b ;
$$

$$
\begin{aligned}
\therefore x^{2}-2 x y+y^{2} & =\iota^{2}-b ; \\
\therefore x-y & =\sqrt{ }\left(a^{2}-b\right) .
\end{aligned}
$$

Also,

$$
x+y=a
$$

From these equations we find

$$
\begin{gathered}
a=\frac{a+\sqrt{ }\left(a^{2}-b\right)}{2} \text { and } y=\frac{a-\sqrt{ }\left(a^{2}-3\right)}{2} ; \\
\therefore \sqrt{ }(a+\sqrt{ } b)=\sqrt{\left\{\frac{a+\sqrt{ }\left(a^{2}-b\right)}{2}\right\}+\sqrt{\left\{\frac{a-\sqrt{ }\left(a^{2}-b\right)}{2}\right\}}} .
\end{gathered}
$$

Similarly we may show that

$$
\sqrt{2}^{\prime}\left(u-\sqrt{ }(1)=\sqrt{ }\left\{\frac{\left(a+\sqrt{ }\left(a^{2}-b\right)\right.}{2}\right\}-\sqrt{ }\left\{\frac{\left(a-\sqrt{ }\left(u^{2}-b\right)\right.}{2}\right\} .\right.
$$

316. The practical use of this method will be more clearily seen from the following example.

Finc the Square Root of $18+2 \sqrt{ }(77)$.
Assume $\quad \sqrt{ }\{18+2 \sqrt{ }(77)\}=\sqrt{ } x+\sqrt{ } y$.
Then

$$
\left.\begin{array}{rl}
18+2 \sqrt{ }(77) & =x+2 \sqrt{ }(x y)+y ; \\
\therefore x+y & =18 \\
2 \sqrt{ }(x y) & =2 \sqrt{ }(77)
\end{array}\right\} .
$$

Hence

$$
\left.\begin{array}{rl}
x^{2}+2 x y+y^{2} & =324 \\
4 x y & =308
\end{array}\right\}
$$

$$
\therefore x^{2}-2 x y+y^{2}=16 ;
$$

$$
\therefore x-y= \pm 4
$$

also,

$$
x+y=18
$$

Hence

$$
x=11 \text { or } 7, \text { and } y=7 \text { or } 11
$$

That is, the square root required is $\sqrt{ }(11)+\sqrt{ } 7$.

EXAMPLES.-exviii.

Find the square roots of the following Binomial Surds:

1. $10+2 \sqrt{ }(21)$.
2. $16+2 \sqrt{ }(55)$.
3. $9-2 \sqrt{ } /(14)$.
4. $94-42 \sqrt{ } 5$.
5. $13-2 \wedge^{\prime}(30)$.
6. $38-12 \sqrt{ }(111)$.
7. $1 \pm-4 \sqrt{ } 6$.
8. $103-12 \sqrt{ }(11)$.
9. $75-12 \sqrt{\prime}^{\prime}(21)$.
10. $87-12 \sqrt{ }(42)$.
11. $3_{2}^{1}-\sqrt{\prime}(10)$.
12. $57-12 \mathrm{~V}^{\prime}(15)$.

XXV

318.

transp equati ing to

The
Ex.
Rais
What we want is to find two numbers whose sum is 18 and whose product is 77 : these are evidently 11 and 7.
'Fhen

$$
\begin{aligned}
18+2 \sqrt{ }(77) & =11+7+2 \sqrt{ }(11 \times 7) \\
& =\{\sqrt{ }(11)+\sqrt{ } / \sqrt{2} .
\end{aligned}
$$

That is $\sqrt{ }(11)+\sqrt{ } 7$ is the square root of $18+2 \sqrt{ }(77)$.
To effect this resolution by inspection it is necessary that the coefficient of the surd should be 2 , and this we can always ensure.

For example, if the proposed expression be $4+\sqrt{ }(15)$, we proceed thus:

$$
\begin{aligned}
4+\sqrt{ }(15) & =\frac{8+2 \sqrt{ }(15)}{2} \frac{5+3+2 \sqrt{ }(5 \times 3)}{2} \\
& =\left(\frac{\sqrt{5}+\sqrt{ } / 3}{\sqrt{ } 2}\right)^{2} ;
\end{aligned}
$$

$\therefore \frac{\sqrt{5}+\sqrt{ } 3}{\sqrt{ } 2}$ is the square root of $4+\sqrt{ }(15)$.
Again, to find the Square Root of $28-10 \sqrt{ } 3$.

$$
\begin{aligned}
28-10 \sqrt{ } 3 & =28-2 \sqrt{ }(75) \\
& =25+3-2 \sqrt{ }(25 \times 3) \\
& =\left(5-\sqrt{ }(3)^{2} ;\right.
\end{aligned}
$$

$\therefore 5-\sqrt{\prime} 3$ is the square root required.

Surds:
$-2 \sqrt{ }(14)$.
$3-12 \sqrt{ }(11)$.
; - $12 \sqrt{1}(21)$.
$i-12 V^{\prime}(15)$.
we loots of ling set of

Im is 18 and
$\sqrt{ }(77)$.
ssary that the ways ensure.
$+\sqrt{ }(15)$, we

XXV. ON EQUATIONS INVOI VING SURDS.

318. Any equation may be cleared of a single surd, by transposing all the other terms to the contrary side of the equation, and then raising each side to the power corresponding to the order of the surd.

The process will be explained by the following Examples.
Ex. 1. $\sqrt{ } x=4$.
Raising both sides to the second power,

$$
x=16
$$

Ex. 2. $\sqrt[3]{x} x=3$.
Raising both sides to the third power,

$$
x=27
$$

Ex. 3. $\sqrt{ }\left(x^{2}+7\right)-x=1$.
Transposing the second term,

$$
\sqrt{ }\left(x^{2}+7\right)=1+x .
$$

Raising both sides to the second power,

$$
\begin{aligned}
x^{2}+7 & =1+2 x+x^{2} \\
\therefore x & =3 .
\end{aligned}
$$

EXAMPLES.-CXIX.
J. $\sqrt{ } x=7$.
2. $\sqrt{ } x=9$.
3. $x^{\frac{1}{2}}=5$.
4. $\sqrt[3]{ } x=2$.
5. $x^{\frac{1}{3}}=3$.
6. $\sqrt[4]{ } x=4$.
7. $\sqrt{ }(x+9)=6$.
8. $f^{\prime}(x-7)=7$.
9. $\sqrt{ }(x-15)=8$.
10. $(x-9)^{\frac{1}{2}}=12$.
I I. $\quad 3 /(4 x-16)=2$.
12. $20-3 \sqrt{ } x=2$.

17. $\wedge^{\prime}\left(4 x^{2}+5 x-2\right)=2 x+1$.
14. $b+c \sqrt{ } x=a$.
18. $\quad{ }^{\prime}\left(9 x^{2}-12 x-51\right)+3=3 x$.
15. $\sqrt{ }\left(x^{2}-9\right)+x=9$.
19. $\sqrt{ }\left(x^{2}-a x+b\right)-a=x$.

Ј6. $\sqrt{ }\left(x^{2}-11\right)=x-1$.
20. $\quad \sqrt{\prime}\left(25 x^{2}-3 m x+n\right)-5 x=m$.
319. When two surds are involved in an equation, one at least may be made to disappear by disposing the terms in such a way, that one of the surds stands by itself on one side of the equation, and then raising each side to the power corresponding to the order of the surd. If a surd be still left, it can be made to stand by itself; and removed by raising each side to a certain power.

Ex. 1. $\sqrt{ }(x-16)+\sqrt{ } x=8$.
Transposing the second term, we get

$$
\sqrt{ }(x-16)=8-\sqrt{ } x
$$

Then, squaring both sides (Art. 306),

$$
\text { therefore } \quad \begin{aligned}
x-16 & =64-16 \sqrt{ } x+x ; \\
16 \sqrt{ } x & =64+16, \\
\text { or } \quad 16 \sqrt{ } x & =80, \\
\text { or } \quad \sqrt{\prime} x & =5 ; \\
\therefore \quad x & =25 .
\end{aligned}
$$

Ex. 2.

$$
\sqrt{ }(x-5)+\sqrt{ }(x+7)=6
$$

Transposing the second term,

$$
\sqrt{ }(x-5)=6-\sqrt{ }(x+5)
$$

Squaring both sides, $x-5=36-12 \sqrt{ }(x+7)+x+7$;
therefore

$$
12 \sqrt{ }(x+7)=36+x+7-x+5
$$

or

$$
12 \sqrt{ }(x+7)=48
$$

$$
\prime^{\prime}(x+7)=4
$$

Squaring both sides, therefore

$$
\begin{aligned}
x+7 & =16 ; \\
x & =9 .
\end{aligned}
$$

EXAMPLES.-cXX.

I. $\sqrt{ }(16+x)+\sqrt{ } x=8$.
2. $\sqrt{ }(x-16)=8-\sqrt{ } x$.
3. $\sqrt{\prime}(x+15)+\sqrt{\prime} x=15$.
4. $\sqrt{ }(x-21)=\sqrt{ } x-1$.
5. $\quad \boldsymbol{V}^{\prime}(x-1)=3-\sqrt{\prime}(x+4)$.
6. $1+\sqrt{ }(3 x+1)=\sqrt{ }(4 x+4)$.
7. $1-\sqrt{ }(1-3 x)=2 \sqrt{ }(1-x)$.
8. $\quad a-\sqrt{\prime}(x-a)=\sqrt{ } x$.
9. $\sqrt{ }\left(x+\sqrt{\prime}(., i-m)=\frac{m}{2}\right.$.
10. $\sqrt{ }(x-1)+\sqrt{ }(x-4)-3=0$.
320. When surds appear in the denominators of fractions in equations, the equations may be cleared of fractional terms by the process described in Art. 186, care being taken tu follow the Laws of Combination of Surd Factors given in Art. 305.

EXAMPLES.-CXXi.

1. $\sqrt{ }\left(x+\sqrt{ }(x-9)=\frac{36}{\sqrt{ }(x-9)}\right.$.
2. $\sqrt{ }(x+7)+\sqrt{ } x=\frac{28}{\sqrt{(x+7)}}$.
3. $\sqrt{ } x+\sqrt{ }(x-21)=\frac{35}{\sqrt{x}}$.
4. $\sqrt{ }(x-15)+\sqrt{ } x=\frac{105}{\sqrt{(x-15)}}$.
5. $\quad \sqrt{ } x+\sqrt{ }(x-4)=\frac{8}{\sqrt{ }(x-4)}$.
6. $\sqrt{ } x+\sqrt{ }(3 a+x)-\frac{9 a}{\sqrt{(3 a+x)}}=0$.
7. $\frac{\sqrt{ }(a x)+b}{x+b}=\frac{b-a}{b-\boldsymbol{d}^{\prime}(a x)}$.
8. $\frac{\sqrt{ } x+16}{\sqrt{x+4}}=\frac{\sqrt{x+32}}{\sqrt{x+12}}$.
9. $(1+\sqrt{ } x)(2-\sqrt{ } x)=\frac{4+\sqrt{ } x}{2}$.
10. $\frac{\sqrt{x}-8}{\sqrt{x-6}}=\frac{\sqrt{ } x-4}{\sqrt{x+2}}$.
11. The following are examples of Surd Equations resulting in quadratics.

Ex. 1.

$$
2 \sqrt{x} x+\frac{2}{\sqrt{x}}=5
$$

Fecaring the equation of fractions, $2 x+2=5 \wedge x$.

Squaring both sides, we get $4 x^{2}+8 x+4=25 x$;
whence we find $x=4$ or $\frac{1}{4}$.
Ex. 2.

$$
\sqrt{\prime}(\cdot x+9)=2 \sqrt{ } x-3
$$

Squaring both sides, $\quad x+9=4 x-12 \wedge^{1} x+9$;
therefore

$$
12 \sqrt{x}=3 x
$$

or

$$
4 \sqrt{x}=x
$$

Squaring both sides, $\quad 16 x=x^{2}$.
Divide by x, and we get $16=x$.
Hence the values of x which satisfy the equation are 16 and.0 (Art. 248).

Ex. 3.

$$
\sqrt{ }(2 x+1)+2 \sqrt{ } x=\frac{21}{\sqrt{ }(2 x+1)}
$$

Clearing the equation of fractions,

$$
2 x+1+2 \sqrt{ }\left(2 x^{2}+x\right)=21 ;
$$

therefore

$$
\begin{aligned}
& 2 \sqrt{ }\left(2 x^{2}+x\right)=20-2 x \\
& \boldsymbol{N}^{\prime}\left(2 x^{2}+x\right)=10-x
\end{aligned}
$$

or
Squaring both sides, $2 x^{2}+x=100-20 x+x^{2}$,
whence

$$
x=4 \text { or }-2.5
$$

322. We shall now give a set of examples of Surd Equations some of which are redacible to Simple and others to , Quadratic Equations.

EXAMPLES.-cXXii.

1. $4 x-12, ~ \sqrt{x}=16$.
2. $45-14 \sqrt{ } x=-x$.
3. $3 \sqrt{\prime}\left(7+2 x^{2}\right)=5 \dot{j}(4 x-3)$.
4. $V^{\prime}(2 x+7)+d^{\prime}(3 x-18)=ل^{\prime}(7 x+1)$.
$\left.8 . \quad \therefore \mathbf{J}^{\prime}(-4) 4-5 c\right)=20-\Delta^{\prime}(3 x-68)$.
5. $\quad \sqrt{ }(6 x-11)=\sqrt{ }\left(249-2 x^{2}\right)$.
6. $\quad \backslash^{\prime}(6-x)=2-\downarrow^{\prime}(2 x-1)$.
7. $x-2 \sqrt{\prime}^{\prime}(1-3 x)+12=0$.

$$
x^{\prime}(3 x-68) .
$$

9. $\sqrt{x-4}=\frac{33}{\sqrt{x+4}}$.
10. $\sqrt{ }(x+4)+\sqrt{ }(2 x-1)=6$.
11. $\sqrt{x+11}=\frac{608}{\sqrt{x-11}}$.
12. $\sqrt{ }(13 x-1)-\sqrt{ }(2 x-1)=5$.
13. $\sqrt{ }(x+5) \cdot \sqrt{ }(x+12)=12$.
14. $\sqrt{ }(7 x+1)-\sqrt{ }(3 x+1)=2$.
15. $\sqrt{ }(x+3)+\sqrt{ }(x+8)=5 \sqrt{ } \cdot x . \quad 17 . \quad \sqrt{ }(4+x)+\sqrt{ } \cdot x=3$.
16. $\sqrt{ }(25+x)+\sqrt{ }(25-x)=8$.
17. $\sqrt{ } x+\sqrt{ }(x+9975)=\frac{52 \%}{\sqrt{9}}$.

18. $\quad \sqrt{(}\left(x^{2}-1\right)+6=-\frac{16}{\sqrt{(20}-1)}$.
19. $\quad \lambda^{\prime}(x-a)^{2}+2 u b+k^{2}=a-a+b$.
20. $\left.\sqrt{ }\left\{(a+c)^{3}+2 a\right\}+b^{3}\right\}=b-a-x$.
21. $\quad \sqrt{ }(x+4)-\sqrt{x}=\sqrt{ }\left(x+\frac{3}{2}\right)$.
22. $\frac{x-1}{\sqrt{x}-1}=x+\frac{5}{4}$.
23. $\sqrt{ }(x+4)+\sqrt{ }(x+5)=9$.
24. $\quad \sqrt{ }(4+x)-\sqrt{ } 3=\sqrt{ } x$. 27. $\sqrt{ } x+\sqrt{ }(x-4)=\frac{8}{\sqrt{(x-4)}}$.
25. $x^{2}=21+\sqrt{\prime}\left(x^{2}-9\right)$.
26. $\sqrt{ }(50+x)-\sqrt{ }(50-x)=2$.
27. $\quad \sqrt{ }(2 x \cdot i \cdot 4)-\sqrt{(2 i}+6)=1$.

3I. $\quad \sqrt{\prime}(3+x)+\sqrt{\prime} x=\frac{6}{\sqrt{\prime}(3+x)^{\circ}}$
32. $\frac{1}{\sqrt{(x+1)}}+\frac{1}{\sqrt{(x-1)}}=\frac{1}{\left.\sqrt{\left(\cdot x^{2}\right.}-1\right)^{\circ}}$.

XXVI. ON THE ROOTS OF EQUATIONS.

323. We hare already proved that a Simple Equation can have only one root (Art. 193): we have now to prove that a Quadratic Equation can have only two roots.
324. We must first call attention to the following fact:

If $m n=0$, either $m=0$, or $n=0$.
Thus there is an ambiguity: but if we know that m camot be equal to 0 , then we know for certain that $n=0$, and if we know that n cimnot be equal to 0 , then we know for certain that $m=0$.

Further, if $l m n=0$, then either $l=0$, or $m=0$, or $n=0$, and so on for any number of factors.

Ex. 1. Solve the equation $(x-3)(x+4)=0$.
Here we must have
that is,

$$
\begin{gathered}
x-3=0, \text { or } x+4=0, \\
x=3, \text { or } x=-4 .
\end{gathered}
$$

Ex. 2. $(x-3 a)(5 x-2 b)=0$.
Here we must have

$$
a-3 u=0, \text { or } 5 x-2 b=0
$$

that is,

$$
x=3 a, \text { or } x=\frac{2 b}{5}
$$

EXAMPLES.-cxxiii.

I. $(x-2)(x-5)=0$.
2. $(x-3)(x+7)=0$. 3. $(x+9)(x+2):=0$.
4. $(x-5 a)(x-6 b)=0$.
5. $(2 x+7)(3 x-5)=0$.
6. $(19 x-227)(14 x+83)=0$.
7. $(5 x-4 m)(6 x-11 n)=0$.
8. $\left(x^{2}+5 a x+6 a^{2}\right)\left(x^{2}-7 a x+12 a^{2}\right)=0$.
9. $\left(x^{2}-4\right)\left(x^{2}-2 a x+a^{2}\right)=0$.
10. $x\left(x^{2}-5 x\right)=0$.
II. $\quad(a c x-2 a+b)(b c x+3 a-b)=0$.
12. $(c x-d)(c x-e)=0$.
325. The general form of a quadratic equation is

Hence

$$
a x^{2}+b x+c=0 .
$$

$$
a\left(x^{2}+\frac{b}{a} x+\frac{c}{a}\right)=0 .
$$

Now a cannot $=0$,

$$
\therefore x^{2}+\frac{b}{a} x+\frac{c}{a}=0 .
$$

Writing p for $\frac{b}{a}$ and q for $\frac{c}{c}$, we may take the following as the type of a quadratic equation of which the coefficient of the first term is unity,

$$
x^{2}+p x+q=0
$$

326. To shew that a quadratic equation has only two roots.

Let $x^{2}+p x+q=0$ be the equation.
Suppose it to have three different roots, c, b, c.
Then

$$
\begin{align*}
& a^{2}+a p+q=1 \ldots \ldots \ldots \ldots \ldots \ldots(1) \\
& b^{2}+b p+q=0 \ldots \ldots \ldots \ldots \ldots(2) \\
& c^{2}+c p+q=0 \ldots \ldots \ldots \ldots \ldots \ldots(3) \tag{3}
\end{align*}
$$

Subtracting (2) from (1),
or,

$$
\begin{aligned}
& a^{2}-b^{2}+(a-b) p=0 \\
& (a-b)(a+b+p)=0
\end{aligned}
$$

Now $a-b$ does not equal 0 , since a and b are not alike,

$$
\begin{equation*}
\therefore a+b+p=0 \text {. } \tag{4}
\end{equation*}
$$

Agrain, subtracting (3) from (1),

$$
\begin{aligned}
& a^{2}-c^{2}+(a-c) p=0, \\
& (a-c)(a+c+p)=0 .
\end{aligned}
$$

or,
Now $a-c$ does not equal 0 , since a and c are sat alike,

$$
\begin{equation*}
\therefore a+c+p=0 \text {. } \tag{5}
\end{equation*}
$$

Then subtracting (5) from (4), we get

$$
b-c=0 \text {, and therefore } b=c \text {. }
$$

Hence there are not more than two distinct roots.
327. We now proceel to show the relations existing between the Roots of a quadratic equation and the Coefficients of the terms of the equation.
328.

$$
x^{2}+p x+q=0
$$

is the general form of a quadratic equation, in which the coefficient of the first term is unity.

Hence

$$
\begin{gathered}
x^{2}+p x=-q \\
x^{2}+p x+\frac{p^{2}}{4}=\frac{p^{2}}{4}-q, \\
x+\frac{p}{2}= \pm \sqrt{\left(\frac{p^{2}}{-}-q\right)}, \\
x=-\frac{p}{2} \pm \sqrt{ }\left(\frac{p^{2}}{-1}-q\right) .
\end{gathered}
$$

Now if α and β be the roots of the equation,

$$
\begin{align*}
& \left.a=-\frac{p}{2}+\sqrt{\left(p_{4}^{2}-q\right.} \begin{array}{c}
4
\end{array}\right) \ldots \ldots \ldots \ldots \ldots \ldots \ldots(1), \\
& \beta=-\frac{p}{2}-\sqrt{\left(\frac{p^{2}}{4}-q\right)} \tag{2}
\end{align*}
$$

Adding (1) and (2), we get

$$
\begin{equation*}
a+\beta=-p . \tag{3}
\end{equation*}
$$

Multiplying (1) and (2), we get
329. The equation $x^{2}+p x+q=0$ has its roots real and different, real and equal, or impossible and different, according as p^{2} is $>=$ or $<4 q$.

For the roots are
and

$$
-\frac{p}{2}-\sqrt{\left(\frac{p^{2}}{4}-q\right), \text { or } \frac{-p-\sqrt{\prime}\left(p^{2}-4 q\right)}{2}}
$$

First, let p^{2} be greater than $4 q$, then $\sqrt{\prime}\left(p^{2}-4 q\right)$ is a possible quantity, and the roots are different in value and both real.

Next, let $p^{2}=4 q$, then each of the roots is equal to the real quantity $\frac{-p}{2}$.

Lastly, let p^{2} he less than $4 q$, then $f^{\prime}\left(p^{2}-4 q\right)$ is an impossible quantity and the roots are different and both impossible.

EXAMPLES.-CXXIV.

I. If the equations

$$
a x^{2}+b x+c=0, \text { and } a^{\prime} x^{2}+b^{\prime} x+c^{\prime}=0
$$

have respectively two roots, one of which is the reciprocal of the other, prove that

$$
\left(a a^{\prime}-c c^{\prime}\right)^{2}=\left(a b^{\prime}-b c^{\prime}\right)\left(a^{\prime} b-b^{\prime} c\right)
$$

2. If α, β ine tinc suuls ü: 2 the equation $a x^{2}+b x+c=0$, prove that

$$
\alpha^{2}+\beta^{2}=\frac{b^{2}-2 a c}{a^{2}}
$$

3. If α, β be the roots of the equation $a x^{2}+b x+c=0$, prove that

$$
a c x^{2}+\left(2 a c-b^{2}\right) x+a c=a c\left(x-\frac{\alpha}{\beta}\right)\left(x-\frac{\beta}{u}\right) .
$$

4. Prove that, if the roots of the equation $a x^{2}+b x+c=0$ be equal, $a x^{2}+b x+c$ is a perfect square with respect to x.
5. If α, β represent the two roots of the equation

$$
2-(1+a) x+\frac{1}{2}\left(1+a+a^{2}\right)=0
$$

show that

$$
\alpha^{2}+\beta^{2}=a
$$

330. If α and β be the roots of the equation $x^{2}+p x+q=0$, then $\quad x^{2}+p x+q=(x-\alpha)(x-\beta)$.

For since $p=-(\alpha+\beta)$ and $q=\alpha \beta$,

$$
\begin{aligned}
x^{2}+p x+q & =x^{2}-(\alpha+\beta) x+\alpha \beta \\
& =(x-\alpha)(x-\beta)
\end{aligned}
$$

Hence we may form a quadratic equation of which the roots are given.

Ex. 1. Form the equation whose roots are 4 and 5.
Here $x-\alpha=x-4$ and $x-\beta=x-5$;
\therefore the equation is $(x-4)(x-5)=0$;
or,

$$
x^{2}-9 x+20=0
$$

EX. 2. Form the equation whose roots are $\frac{1}{2}$ and -3 .
Here $x-\alpha=x--\frac{1}{2}$ and $x-\beta=x+3$;
\therefore the equation is $\left(x-\frac{1}{2}\right)(x+3)=0$;
or,

$$
\begin{aligned}
(2 x-1)(x+3) & =0 ; \\
5 x^{2}+5 x-3 & =0 .
\end{aligned}
$$

EXAMPLES.-CXXV.

Form the equations whose roots are
I. 5 and 6.
2. 4 and -5 .
3. -2 and -7 .
4. $\frac{1}{2}$ and $\frac{2}{3}$.
5. 7 and $-\frac{5}{9}$
6. $\sqrt{ } 3$ and $-\sqrt{ } 3$.
7. $m \div n$ and $m-n$.
8. $\frac{1}{a}$ and $\frac{1}{\beta}$.
9. $-\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$.
331. Any expression containing x is said to be a Function of x. An expression containing any symbol x is said to be a positive inteyral function of x when all the powers of x contained in it have positive integral indices.

For example, $5 x^{7}+2 x^{5}+\frac{3}{2} x^{4}+\frac{1}{10} x^{2}+3$ is a positive integial function of x, but $6 x^{5}+3 x^{\frac{1}{3}}+1$ and $5 x^{7}-2 x^{-2}+3 x^{2}+1$ are not, becanse the first contains $x^{\frac{1}{3}}$, of which the index is not integral, and the second contains x^{-2}, of which the index is not positive.
332. The expression $5 x^{3}+4 x^{2}+2$ is said to be the expression corresponding to the equation $5 x^{3}+4 x^{2}+2=0$, and the latter is the equation corresponding to the former.
333. If a be a root of an equation, then $x-a$ is a factor of the corresponding expression, provided the equation and expression contain only positive integral powers of x. This principle is useful in resolving such an expression into factors. We have already proved it to be true in the case of a quadratic equation. The general proof of it is not suitable for the stage at which the learner is now supposed to be arrived, but we will illustrate it by some Examples.

Ex. 1. Resolve $2 x^{2}-5 x+3$ into factors.
If we solve the equation $2 x^{2}-5 x+3=0$, we shall find that its roots are 1 and $\frac{3}{2}$.

Now divide $2 x^{2}-5 x+3$ by $x-1$; the quotient is $2 x-3$ that is $2\left(x-\frac{3}{2}\right)$;
\therefore the given w ression $=2(x-1)\left(x-\frac{3}{2}\right)$.
EX. 2. Resolve $2 x^{3}+x^{2}-11 x-10$ into factors.
By trial we find that this expression vanishes if we put $x=-1$; that is, -1 is a root of the equation

$$
2 x^{3}+x^{2}-11 x-10=0
$$

Divide the expression by $x+1$: the quotient is $2 x^{2}-x-10$;
\therefore the expression $=\left(2 x^{2}-x-10\right)(x+1)$

$$
=2\left(x^{2}-\frac{x}{2}-5\right)(x+1) .
$$

We must now resolve $x^{2}-\frac{x}{2}-5$ into factors, by solving the corresponding equation $x^{2}-\frac{x}{2}-5=0$.

The roots of this equation are -2 and $\frac{5}{2}$;

$$
\begin{aligned}
\therefore 2 x^{3}+x^{2}-11 x-10 & =2(x+2)\left(x-\frac{5}{2}\right)(x+1) \\
& =(x+2)(2 x-5)(x+1) .
\end{aligned}
$$

EXAMPLES.-CXXVi.

Resolve into simple factors the following expressions :
I. $x^{3}-11 x^{2}+36 x-36$.

1. $15 x^{3}+41 x^{2}+5 x-21$.
2. $x^{3}-7 x^{2}+14 x-8$.
3. $x^{3}-5 x^{2}-46 x-40$.
4. $4 x^{3}+6 x^{2}+x-1$.
5. $6 x^{3}+11 x^{2}-9 x-14$.
6. $x^{3}+y^{3}+z^{3}-3 x y:$.
7. $a^{3}-b^{3}-c^{3}-3 a b c$.
8. $3 x^{3}-x^{2}-23 x+21$.
9. $2 x^{3}-5 x^{2}-17 x+20$.
10. If we cin tind one root of such an equation as

$$
2 x^{3}+x^{2}-11 x-10=0,
$$

we can find all the roots.
One root of the equation is -1 ;

$$
\begin{aligned}
& \therefore(x+1)\left(2 x^{2}-x^{2}-10\right)=0 ; \\
& \therefore x+1=0, \text { or } 2 x^{2}--x-10=0 ; \\
& \quad \therefore x=-1, \text { or }-2, \text { or } \frac{5}{2} .
\end{aligned}
$$

Similarly, if we can find one root of an equation involving the $4^{\text {th }}$ power of x, we can derive from it an equation involving the $3^{\text {rd }}$ and lower powers of x, from which we may find the other roots. And if again we can find one root of this, the other two roots can be found from a quadratic equation.
335. Any equation into which an unknown symbol or expression enters in two terms only, having its index in one of ${ }^{-}$ the terms double of its index in the other, may lee solved as a quathatic equation.

EX. Solve the equation $x^{6}-6 x^{3}=7$.
Regarding x^{3} as the quantity to be obtained by the solution of the equation, we get
therefore

$$
x^{6}-6 x^{3}+9=16 ;
$$

therefore

$$
x^{3}=7, \text { or } x^{3}=-1
$$

Hence

$$
x=\sqrt[3]{7} \text { or } x=\sqrt[3]{ }-1
$$

and one valute of $\sqrt[3]{ }-1$ is -1 .
336. In some cases by adding a certain quantity to both sides of an equation we can bring it into a form capable of solation, thus, to solve the equation

$$
x^{2}+5 x+4=5 \sqrt{ }\left(x^{2}+5 x+28\right)
$$

add $2 \pm$ to each side.
Then

$$
x^{2}+5 x+28=5 \sqrt{ }\left(\left(x^{2}+5 x+28\right)+24 ;\right.
$$

or,

$$
x^{2}+5 x+28-5 \sqrt{ }\left(x^{2}+5 x+28\right)=24 .
$$

This is now in the form of a quadratic equation, the unknown quantity being $\sqrt{ }\left(x^{2}+5 x+28\right)$, and completing the square we have [s.A.]

$$
\begin{gathered}
x^{2}+5 x+28-5 \sqrt{ }\left(x^{2}+5 x+28\right)+\frac{25}{4}=\frac{121}{4} ; \\
\therefore \sqrt{ }\left(x^{2}+5 x+28\right)-\frac{5}{2}= \pm \frac{11}{2} ;
\end{gathered}
$$

whence

$$
\begin{gathered}
\wedge^{\prime\left(x^{2}+5 x+28\right)}=8 \text { or }-3 ; \\
\therefore x^{2}+5 x+28=64 \text { or } 9 ;
\end{gathered}
$$

from which we maty find four values of x, viz. $4,-9$, and $-\frac{\bar{\sigma}}{2} \pm \frac{N(-51)}{2}$.

EXAMPLES.-cXXVii.

Find roots of the following equations:

1. $x^{4}-12 x^{2}=13$.
2. $x^{6}+1 \cdot 4 x^{3}+24=0$.
3. $x^{5}+22 x^{4}+21=0$.
4. $x^{w^{m}}+3 x^{m}=4$.
5. $x^{4 n}-\frac{5}{3} x^{x_{n}}=\frac{25}{12}$.
6. $x-\frac{9}{2} x^{\frac{1}{2}}=\frac{5}{2}$.
7. $x^{-2}+3 x^{-1}=\frac{4}{9}$.
8. $x^{-2 n}-x^{-n}=20$.
9. $x^{2}-2 x+6\left(x^{2}-2 x+5\right)^{\frac{1}{2}}=11$.
10. $\quad x^{2}-x+5 \sqrt{ }\left(2 x^{2}-5 x+6\right)=\frac{3 x+33}{2}$.
11. $x^{2}-2 \sqrt{ }\left(3 x^{2}-2 a x+4\right)+4=\frac{2 a}{3}\left(x+\frac{a}{2}+1\right)$.
12. $u x+2 \sqrt{ }\left(x^{2}-u x+a^{2}\right)=x^{2}+2 u$.
13. Every equation has as many roots as it has dimensions, and no more. This we have proved in the case of simple and quadratic equations (Arts. 193, 323). The general proof is not suited to this work, but we may illustrate it by the following Examples.

Ex. 1. To solve the equation $x^{3}-1=0$.
One root is clearly 1.
Dividing by $x-1$, we obtain $x^{3}+x+1=0$, of which the roots are $\frac{-1+\sqrt{2}-3}{2}$ and $\frac{-1-\sqrt{\prime}-3}{2}$.

Hence the three roots are $1, \frac{-1+\wedge^{\prime}-3}{2}$ and $\frac{-1-\sqrt{\prime}^{\prime}-3}{2}$.
Ex. 2. To solve the equation $x^{+}-1=0$.
Two of the ronts are evidently +1 and -1 .
Hence, dividing by $(x-1)(x+1)$, that is hex $x^{2}-1$, we ohtain $x^{2}+1=0$, of which the roots are,-1 and $-v^{\prime}-1$.

Hence the four ronts are $1,-1, \sqrt{ }-1$, and $-\sqrt{ }-1$.
The equation $x^{6}-\left(6 x^{3}=7\right.$ will in like manner have sio roots, for it may be redued, as in Art. 335, to two cubie equations, $\quad x^{3}-7=0$ and $x^{3}+1=0$, each of which has three roots, which may be foum as in Ex. 1.

XXVII. ON RATIO.

338. If A and E stand for two unequal quantities of the same kind, we may consider their inequality in iwo ways. We may ask.
(1) By what quantity one is greater than the other?

The answer to this is made by stating the difference between the two quantities. Now since quantities are represented in Algebra by their measures (Art. 33), if a and b be the measures of A and B, the difference between A and B is represented algebraically by $a-b$.
(2) By how many times one is greater than the other?

The answer to this question is made ly stating the mumber of times the one contains the other.

Note. The quantities must be of the same liind. We cannot compare inches with hours, nor lines with surfaces.
339. The second methol of comparing A and B is called finding the Ravio of A to B, and we give the following lefinition.

Def. Ratio is the relation which one quantity bears to another of the same kind with respect to the number of times the one contains the other.
340. The ratio of A to B is expressel thins, $A: B$.
A and $l ;$ are called the Terms of the ratio.
A is embed the Antherbins aml B the Consmoundr.
341. Now since frantities are representerl in Algelma by their measures, we must represent the ratio between two quantities by the ratio between their measures. Our next step then must be to show how to estimate the ratio between two numbers. This ratio is determined by finding how many times one contains the other, that is, by obtaining the quotient resulting from the division of one by the other. If a ant b, then, be any two numbers, the fraction $\frac{a}{b}$ will express the ratio of a to b. (Art. 136.)
342. Thus if a and b be the measures of A and B respectively, the ratio of A to J is represented algebracally by the fraction $\frac{a}{b}$.
343. If a or b or both are surd numbers, the fraction $\frac{a}{b}$ may also be a surd, and its approximate value can be found by Art. 291. Suppose this value to be $\frac{m}{n}$, where m and n are whole numbers: then we should say that the ratio $A: D$ is approximately represented by $\frac{m}{n}$.
344. Ratios may be compared with each other, by comparing the fractions by which they are denoted.

Thus the ratios $3: 4$ and $4: 5$ may be compared by comparing the fractions $\frac{3}{4}$ and $\frac{4}{5}$.

These are equivalent to $\frac{15}{20}$ and $\frac{16}{20}$ respectively; and since $\frac{16}{20}$ is greater than $\frac{15}{20}$, the ratio $4: 5$ is greater than the ratio 3:4

EXAMPLES.-cxxviii.

1. Place in order of magnitude the ratios $2: 3,6: 7,7: 9$.
2. Compare the ratios $x+3 y: x+2 y$ and $x+2 y: x+y$.
3. Compars the ratios $x-5 y: x-5 y$ and $x-3 y: x-2 y$.
4. What number must be alded to cach of the terms of the ratio $a: b$, that it may become the ratio $c: d\}$
5. The sum of the spuares of the Antecedent and Consequent of a Ratio is 181, and the prodact of the Antecedent and Consequent is 90 . What is the ratio?
6. A ratio of greater inerimulity is one whose antecedent is greater than its consequent.

A ratio of less inequality is one whose antecedent is less than its consequent.

This is the same as saying a ratio of greater inequality is represented by an Improper Fraction, and a ratio of less inequality by a Proper Fraction.
346. A Ratio of greater inequality is diminished by alding the same number to loth its terms.

Thus if 1 be added to both terms of the ratio $5: 2$ it becomes $6: 3$, which is less than the former ratio, since $\frac{6}{3}$, that is, 2 , is less than $\frac{5}{2}$.

And, in general, if x be added to both terms of the ratio $a: b$, where a is greater than b, we may compare the two ratios thus,

$$
\text { ratio } a+x: b+x \text { is less than ratio } a: b \text {, }
$$

if

$$
\frac{a+x}{b+x} \text { be less than } \frac{a}{b}
$$

$$
\frac{a b+b x}{b^{2}+b x} \text { be less tham } \frac{a b+a x}{b^{2}+b x},
$$

$$
a b+b x \text { be less than } a b+a x,
$$ bx be less than $a x$, b be less than a.

Now b is less than a;

$$
\therefore a+x: b+x \text { is less than } a: b .
$$

347. We may olsserve that Art. 346 is merely a repetition of that which we proposed as an Example at the end of the chapter on Miscellaneous Fractions. There is not indeed any necessity for as to weary the reader with examples on Ratio: lor since we express a ratio by a fraction, nearly all that we might have had to say ahout Ratios has been anticipated in our remarks on Fanctions.
348. The student may, however, work the following Theorems as Examples.
(1) If $a: b$ be a ratio of greater inequality, and a a positive quantity, the ratio $a-\infty: b-a$ is greater than the ratio $a: b$.
(2) If $a: b$ be a ratio of less inequality, and a a positive quantity, the ratio $a+x: b+x$ is greater than the ratio $a: b$.
(3) If $a: b$ be a ratio of less inequality, and x a positive quantity, the ratio $a-x: b-x$ is less than the ratio $a: b$.
349. In some cases we may from a single equation involv.. ing two unknown symbols determine the ratio between the two symbols. In other words we may be able to determine the relatice values of the two symbols, though we cannot determine their absolute values.

Thus from the equation $4 x=3!$,
we get

$$
\frac{x}{y}=\frac{3}{4} .
$$

Again, from the equation $3 x^{2}=2 y^{2}$, we get $\frac{x^{2}}{y^{2}}=\frac{2}{3}$; and therefore $\frac{x}{y}=\frac{\sqrt{2}^{12}}{\sqrt{13}}$.

EXAMPLES.-cXXIX.

Find the ratio of x to y from the following equations:

1. $9 x=6!$
2. $10=b y$.
3. $a x-b y=c x+d y$.
4. $x^{2}+2 \cdot x y=5 y^{2}$.
5. $x^{2}-12 x y=13 y^{2}$.
6. $x^{2}+m x y=u^{2} y^{2}$.
7. Find two numbers in the ratio of $3: 4$, of which the sum is to the sum of their squares : : 7:50.
8. Two numbers are in the ratio of $6: 7$, and when 12 is added to each the resulting numbers are in the ratio of $12: 13$. Find the numbers.
tition of the 1 any Zatio: at we ed im

Theoositiv: : b. ositive : b. ositive
nvolv. en the ine the ermine
9. The sum of two mmblers is 100 , and the numbers are in the ratio of $7: 13$. Find them.
10. The difference of the squares of two numbers is 48 , and the sum of the numbers is to the difference of the numbers in the ratio $12: 1$. Find the numbers.
II. If 5 gold coins and 4 silver ones are worth as much as 3 gold coins and 12 silver ones, find the ratio of the value of a gold coin to that of a silver one.
12. If 8 gold coins and 9 silver ones are worth as much as 6 gold coins and 19 silver ones, find the ratio of the value of a silver coin to that of a gold one.
350. Ratios are compounded, ly multiplying together the fractions by which they are denoted.

Thus the ratio compounded of $a: b$ and $c: d$ is $a c: b d$.

EXAMPLES.-cXXX.

Write the ratios compounded of the ratios
I. $2: 3$ and $4: 5$.
2. $3: 7,14: 9$ and $4: 3$.
3. $x^{2}-y^{2}: x^{3}+y^{3}$ and $x^{2}-x^{2} y+y^{2}: x+y$.
4. $c^{2}-b^{2}+2 b c-c^{2}: c^{2}-b^{2}-2 b c-c^{2}$ and $a+b+c: a+b-c$.
5. $m^{3}+n^{3}: m^{3}-n^{3}$ and $n-n: m+n$.
6. $x^{2}+5 x+6: y^{2}-7 y+12$, and $y^{2}-3 y: x^{2}+3 x$.
351. The ratio $a^{2}: b^{2}$ is called the Duplicate Ratio of $a: b$. Thus $100: 64$ is the duplicate ratio of $10: 8$, and $36 x^{2}: 25 y^{2}$ is the duplicate ratio of $6 x: 5 y$.
The ratio $u^{3}: b^{3}$ is called the Thiphicata Ratio of $a: b$.
Thus $64: 27$ is the triplicate ratio of $4: 3$, and $\quad 343 x^{3}: 1331 y^{3}$ is the triplicate ratio of $7 x: 11 y$.
352. The definition of Ratio given in Euclid is the same as in Algebra, and so also is the expression for the ratio that one quantity bears to another, that is, $A: B$. But Euclid cannot employ fractions, and hence he camot represent the value of in ratio as we do in Algebra.

XXVIII ON PROPORTION.

353. Proportion consists in the equality of two ratios.

The algebraic test of Propontion is that the two fractions representing the ratios must be equul.

Thus the ratio $a: b$ will be equal to the ratio $c: d$,

$$
\text { if } \frac{a}{b}=\frac{c}{d},
$$

and the four numbers a, b, c, d are in such a case said to be in proportion.
354. If the ratios $a: b$ and $c: d$ form a proportion, we express the fact thus :

$$
a: b=c: d
$$

This is the clearest manner of expressing the equality of the ratios $a: b$ and $c: d$, but there is another way of expressing the same fact, thus

$$
a: b:: c: d
$$

which is read thus,

$$
a \text { is to } b \text { as } c \text { is to } d
$$

The two terms a and d are called the Exmmemes. b and c \qquad the Means.
355. When forr numbers are in proportion, product of extremes $=$ product of means.
Let a, b, c, d be in proportion.
Then

$$
\frac{a}{b}=\frac{c}{l}
$$

Multiplying both sides of the equation by bu, we get

$$
a d=b c
$$

Conversely, if $a d=b c$ we can show that $a: b=c: d$.
For since $\quad a d=b c$,
dividing both sides by bl, we get

$$
\frac{c d}{b d}=\frac{b c}{b d},
$$

that is,

$$
\frac{a}{b}=\frac{c}{d} \text {, i.e. } a: b=c: d \text {. }
$$

356. If $a d=b c$,

Dividing by $c d$, we get $\frac{a}{c}=\frac{b}{d}$, i.e. $a: c=b: d$;
Dividing by $a b$, we get $\frac{d}{b}=\frac{c}{a}$, i.e. $d: b=c: a$;
Dividing by $a c$, we get $\frac{d}{c}=\frac{b}{a}$, i.e. $d: c=b: a$.
357. From this it follows that if any 4 numbers be so related that the product of two is equal to the product of the other two, we can express the 4 numbers in the form of a proportion.

The factors of one of the products must form the extremes.
The factors of the other product must form the means.
358. Three quantities are said to be in Continued Proportion when the ratio of the first to the second is equal to the ratio of the second to the third.

Thus a, b, c are in continned proportion if

$$
a: b=b: c
$$

The quantity b is called a Mean Proportional between u and c.

Four quantities are said to be in Continued Proportion when the ratios of the first to the second, of the second to the third, and of the third to the fourth are ali equal.

Thus a, b, c, d are in continued proportion when

$$
a: b=b: c=c: d
$$

359. We showed in Art. 205 the process by which when lwo or more fractions are known to be aqual, other relations between the numbers involved in them may be determined. That process is of course applicable to Examples in Ratio and Proportion, as we shall now show by particular instances.

Ex. 1. If $a: b=c: d$, prove that

Since

$$
\begin{gathered}
a^{2}+b^{2}: a^{2}-b^{2}=c^{2}+d^{2}: c^{2}-d^{2} \\
a: b=c: d, \frac{a}{b}=\frac{c}{d}
\end{gathered}
$$

and

H
that
E
is eq
Let

Let $\frac{a}{b}=\lambda . \quad$ Then $\frac{c}{d}=\lambda$;

$$
\therefore a=\lambda b, \text { and } c=\lambda d .
$$

Now

$$
\frac{a^{2}+b^{2}}{a^{2}-b^{2}}=\frac{\lambda^{2} b^{2}+b^{2}}{\lambda^{2} b^{2}-b^{2}}=\frac{b^{2}\left(\lambda^{2}+1\right)}{b^{2}\left(\lambda^{2}-1\right)}=\frac{\lambda^{2}+1}{\lambda^{2}-1}
$$

and

$$
\frac{c^{2}+d^{2}}{c^{2}-d^{2}}=\frac{\lambda^{2} d^{2}+d^{2}}{\lambda^{2} d^{2}-d^{2}}=\frac{d^{2}\left(\lambda^{2}+1\right)}{d^{2}\left(\lambda^{2}-1\right)}=\frac{\lambda^{2}+1}{\lambda^{2}-1}
$$

Hence

$$
\frac{a^{2}+b^{2}}{a^{2}-b^{2}}=\frac{c^{2}+d^{2}}{c^{2}-d^{2}}
$$

that is,

$$
a^{2}+b^{2}: a^{2}-b^{2}=c^{2}+d^{2}: c^{2}-d^{2}
$$

Let $\frac{a}{b}=\lambda$. Then $\frac{c}{d}=\lambda$;

$$
\therefore a=\lambda b \text {, and } c=\lambda d \text {, }
$$

Now

$$
\frac{a}{c}=\frac{\lambda b}{\lambda d}=\frac{b}{d},
$$

and

$$
\frac{\sqrt[4]{(}\left(a^{4}+b^{4}\right)}{\sqrt[4]{ }\left(c^{4}+d^{4}\right)}=\frac{\sqrt[4]{\left(\lambda^{4} b^{4}+b^{4}\right)}}{\sqrt[4]{\left(\lambda^{4} d^{4}+d^{4}\right)}}=\frac{\left.\sqrt[4]{ } b^{4} \cdot\right)^{4}\left(\lambda^{4}+1\right)}{\sqrt[4]{ } d^{4} \cdot \sqrt[4]{\left(\lambda^{4}+1\right)}}=\frac{\sqrt[4]{b^{4}}}{\sqrt[4]{d^{4}}}=\frac{b}{d}
$$

Hence

$$
\frac{a}{c}=\frac{\sqrt[4]{\left(a^{4}+b^{4}\right)}}{\left.\sqrt[4]{\left(c^{4}+d^{4}\right)}\right)}
$$

that is,

$$
a: c:: \sqrt{4}^{\prime}\left(a^{4}+b^{4}\right): \sqrt[4]{(}\left(c^{4}+d^{4}\right) .
$$

Ex. 3. If $a: b=c: d=e: f$, prove that each of these ratios is equal to the ratio $a+c+e: b+a+f$.

Let

$$
\frac{a}{b}=\lambda, \quad \frac{c}{d}=\lambda, \quad \frac{e}{f}=\lambda .
$$

Then

$$
a=\lambda b, \quad c=\lambda l, \quad e=\lambda f .
$$

Now

$$
\frac{a+c+c}{b+d+f}=\frac{\lambda b+\lambda d+\lambda f}{b+d+f}=\frac{\lambda(b+d+f)}{b+d+f}=\lambda .
$$

Hence

$$
\frac{a+c+e}{b+d+f}=\frac{a}{b}=\frac{c}{d}=\frac{e}{f},
$$

that is,

$$
a+c+c: b+d+f=a: b=c: d=t: f
$$

Ex. 4. If a, b, c are in continued proportion, show that

$$
a^{2}+b^{2}: b^{2}+c^{2}=a: c
$$

Let $\frac{a}{b}=\lambda$. Then $\frac{b}{c}=\lambda$.
Hence $a=\lambda b$ and $b=\lambda c$.

$$
\text { Now } \frac{c^{2}+b^{2}}{b^{2}+c^{2}}=\frac{\lambda^{2} b^{2}+b^{2}}{b^{2}+c^{2}}=\frac{b^{2}\left(\lambda^{2}+1\right)}{\lambda^{2} c^{2}+c^{2}}=\frac{b^{2}\left(\lambda^{2}+1\right)}{c^{2}\left(\lambda^{2}+1\right)}=\frac{b^{2}}{c^{2}}=\frac{a c}{c^{2}}=\frac{a}{c} .
$$

EX: 5. If $15 a+b: 15 c+d=12 a+b: 12 c+d$, prove that

$$
a: b=c: d
$$

Since $\quad 15 a+b: 15 c+d=12 a+b: 12 c+d$, and since product of extremes = product of means,

$$
\begin{array}{rlrl}
& & (1 . a c+b)(12 c+d) & =(15 c+d)(12 a+l), \\
\text { or, } & 180 a c+12 b c+15 a d+b d & =180 a c+12 a d+15 b c+b d, \\
\text { or, } & 12 b c+15 a d & =12 a d+15 b c, \\
\text { or, } & 3 a d & =3 b c, \\
\text { or, } & a d & =b c .
\end{array}
$$

Whence, by Art. 355, $a: b=c: d$.
Additional Examples will be found in page 137, to which we may add the following.

EXAMPLES.-CXXXI.

I. If $a: b=c: d$, show that $a+b: a=c+d: c$.
2. If $a: b=c: d$. show that $a^{2}-b^{2}: b^{2}=c^{2}-d^{2}: d^{2}$.
3. If $a_{1}: b_{1}=a_{2}: b_{2}$, show that $\frac{m_{1} a_{1}+m_{2} f_{2}}{m_{1} b_{1}+m_{3} l_{2}}=\frac{a_{1}}{b_{1}}$.
4. If $a: b:: c: d$, show that

$$
3 a^{2}+a b+2 b^{2}: 3 a^{2}-2 b^{2}:: 3 c^{2}+c d+2 d^{2}: 3 c^{2}-2 d^{2}
$$

5. If $a: b=c: d$, show that

$$
a^{2}+3 a b+b^{2}: c^{2}+3 c d+d^{2}=2 a b+3 l^{2}: 2 c d+3 d^{2} .
$$

6. If $a: b=c: d=e: f$ then $a: b=m c-n e: m d-n f$.
7. If $\frac{m}{n} a, \frac{m}{n} b$, any parts of a, b, be taken from a and b respectively, show that a, b, and the remainders form a proportion.
8. If $u: b=c: d=c: f$, show that

$$
a c: b d=l u^{2}+m c^{2}+u e^{2}: l l^{2}+m d^{2}+n f^{2} .
$$

9. If $a_{1}: b_{1}=a_{2}: b_{2}=a_{3}: b_{3}$, show that

$$
a_{1}^{2}+a_{2}^{2}+a_{3}^{2}: b_{1}^{2}+b_{2}^{2}+b_{3}^{2}:: a_{1}^{2}: b_{1}^{2}
$$

to the se equimulti and any e
"If the the multi) or,
"If the the multi or,
10. If $a_{1}: b_{1}=a_{2}: b_{2}=a_{3}: b_{3}$, show that

$$
a_{1} a_{2}+a_{2} a_{3}+a_{3} a_{1}: b_{1} b_{2}+b_{2} b_{3}+b_{3} b_{1}=a_{1}^{2}: b_{1}^{2}
$$

1 I. If $\frac{a^{2}-a b+b^{2}}{a^{2}+a b+b^{2}}=\frac{c^{2}-c d+d^{2}}{c^{2}+c d+d^{2}}$, show that either $\frac{a}{b}=\frac{c}{d}$ or $\frac{a}{b}=\frac{d}{c}$.
12. If $a^{2}+b^{2}: a^{2}-b^{2}=c^{2}+d^{2}: c^{2}-d^{2}$, show that

$$
a: b=c: d
$$

13. If $a: b=c: d$, show that

$$
\frac{(a+c)\left(a^{2}+c^{2}\right)}{(a-c)\left(a^{2}-c^{2}\right)}=\frac{(b+l)\left(b^{2}+d^{2}\right)}{(b-d)\left(b^{2}-d^{2}\right)^{2}}
$$

14. If $a_{1}: b_{1}=c_{2}: b_{2}$, show that

$$
a_{1}: b_{1}=\sqrt{ }\left(c_{1}^{2}+a_{2}^{2}\right): \sqrt{ }\left(b_{1}^{2}+b_{2}^{2}\right) .
$$

On the Geometrical Treatment of Proportion.

360. The definition of Proportion (viz. the equality of ratios) is the same in Euclid as in Algebra. (Eucl. Book v. Def. 6 and 8.)

But the ways of testing whether two ratios are equal are quite different in Euclid and in Algebra.

The algebraic test is, as we have said, that the two fractions representing the ratios must be equal.

Euclid's test is given in Book v. Def. 5, where it stands thus :
"The tirst of four magnitudes is said to have the same ratio to the second which the third has to the fourth, when any equimultiples whatsoever of the first and third being taken and any equimultiples whatsoever of the second and fourth:
"If the multiple of the first be less than that of the second, the multiple of the third is also less than that of the fourth: or,
"If the multiple of the first be equal to that of the second, the multiple of the third is also equal to that of the fourth : or,
"If the multiple of the first be greater than that of the second, the multiple of the third is also greater than that of the fourth."

We shall now show, first, how to deduce Euclid's test of the equality of ratios from the algebraic test, and econdly, how to deduce the algebraic test from that employea by Euclid.
361. I. "nss. \% that if quantities be proportional accorling to the x^{2} mal test they will also be proportional according to H :

If a, b, c, d be proporional according to the algebraical test,

$$
\frac{\iota}{b}=\frac{c}{d},
$$

Multiply eacin side by $\frac{m}{n}$, and we get

$$
\frac{m a}{n} b=\frac{m c}{n d},
$$

Now, from the nature of fractions,
if $m a$ be less than $n b, m c$ will also be dess than $n d$, and if $m a$ be equal to $n b, m c$ will also be equal to $n d$, and if $m a$ be greater than $n b, m c$ will also be greater than $n d$.

Since then of the four quantities a, b, c, d equimultiples have been taken of the first and third, and equimuliples of the second and fourth, and it appears that when the multiple of the first is greater than, equal to, or less tham the multiple of the second, the multiple of the third is also greater than, equal to, or less than the multiple of the fourth, it follows that a, b, c, d are proportionals according to the geometrical test.
362. II. To deduce the algebraic test of proportionality from that given by Euclid.

Let a, b, c, d be prcportional according to Euclid.

Then if
$\frac{a}{b}$ is not equal to $\frac{c}{d}$,
let
$\stackrel{a}{b+x}$ be equal to $\frac{c}{d}$.

Ta

The

But
and, l,
it follo
The
Hen
Ther
We s Examp
I. If between
2. If
and
3. If
4. If b is a me
5. If greatest,

If $a+b$ b is great
of the that of t of the how to d.
accorlortional
gebraical
d, and and than $n d$. ples have es of the ultiple of ultiple of ater than, llows that al test.
rtionality

Take n and n such that

> ma is greater than $n b$,
> but less than $n(b+x)$.

Then, by Euclid's definition,
$m c$ is greater than $n d(3)$.
But since, by (1), $\frac{m u}{u(b+x)}=\frac{m c}{n d}$,
and, by (2), muc is less than $n(b+x)$, it follows that $\quad m e$ is less than $n d$. $m c$ is less than $u d$............... ... ${ }^{(4)}$).
The results (3) and (4) therefore contradict each other.
Hence (1) cannot be true.
Therefore

$$
\frac{a}{b} \text { is equal to } \frac{c}{d} \text {. }
$$

We shall conclude this chapter with a mixed collection of Examples on Ratio and Proportion.

EXAMPLES.-cxxxii.

I. If $a-b: b-c:: b: c$, show that b is a mean proportional between a and c.
2. If $a: b:: c: d$, show that

$$
a^{2}+b^{2}: \frac{a^{3}}{a+b}=c^{2}+c^{2}: \frac{c^{3}}{c+d} .
$$

and

$$
a: b:: \sqrt[4]{ }\left(m a^{4}+n c^{4}\right): \sqrt[4]{ }\left(m b^{4}+n d^{4}\right)
$$

3. If $a: b:: c: d$, prove that

$$
\frac{m a-n b}{m a+n b}=\frac{m c-n d}{m c+n d}
$$

4. If $5 a+3 b: 7 a+3 b:: 5 b+3 c: 7 b+3 c$,
b is a mean proportional between a and c.
5. If 4 quantities be proportional, and the first be the greatest, the fourth is the least.
If $a+b, m+n, m-n, a-b$ be four such quantities, show that b is greater than u.
6. Solve the equation

$$
x-1: x-2=2 x+1: x+2
$$

7. If $\frac{a+b}{b}=\frac{c+d}{d}$, show that the ratios $a: b$ and $c: d$ are also equal.
8. In a mile race between a bicycle and a tricycle, their rates were proportional to 5 and 4 . The tricycle had half-it minute start, but was beaten by 176 yards. Find the rates of each.
9. If $a: b:: c: d$ and a is the greatest of the for cuautities, show that $u^{2}+d^{2}$ is greater than $b^{2}+c^{2}$.
10. Show that if $\frac{10 a+b}{10 c+d}=\frac{12 a+b}{12 c+d}$, then $a: b:: c: d$.
11. If $x: y:: 3: 2$ and $x: 25:: 24: y$, find x and y.
12. If a, b, c be in continued proportion, then
(1) $a: a+b:: a-b: a-c$;
(2) $\left(a^{2}+b^{2}\right)\left(b^{2}+c^{2}\right):=(a b+b c)^{2}$.
13. If $a: b:: c: d$, show that $\frac{a+b}{b}=\frac{c+d}{d}$; and hence solve the equation

$$
\frac{a b-b c-d x}{b c+d x}=\frac{a-b-c}{b+c} .
$$

14. If a, b, c are in continued proportion, show that

$$
a+m b: a-m b:: b+m c: b-m c .
$$

15. If $a: b:: 5: 4$, find the value of the ratio

$$
a^{2}-b^{2}: a^{2}+b^{2} .
$$

16. The siles of a triangle are as $2 \frac{1}{2}: 3 \frac{3}{4}: 4$, and the peri. meter is 205 yards: fiml the sides.
17. The sides of a triangle are as $3: 4: 5$, and the perimeter is 480 yards: find the sides.
18. of the g the sum

19.

 he finds time as:20. T tains wat If the cor mixture i had been water in

2I. A

 sells agair dears £16 have clear How many cost him ?22. A much per the horse?
23. I b much per c
24. A n gaining as give for the
25. A c at a distanc mother cre the former hetween the
26. The journey of $9: 14$. Thi as it would express train
[s.a.]
27. Assuming $a+b: p+q:: p-q: a-b$, prove that the sum of the greatest and least terms of any proportion is greater than the sum of the other two.
28. A waterman rows 30 miles and back in 12 hours, and he finds that he can row 3 miles with the strean in the same time as 3 against it. Find the rate of the stream.
29. There are three equal vessels A, B, C; the first contains water, the second brandy, the third brandy and water. If the contents of B and C be put together, it is found that the mixture is nine times as strong as if the contents of A and C had been put together. Find the raiio of the brandy to the water in the vessel C.

2I. A factor buys a certain quantity of wheat which he sells again so as to gain 5 per cent. on his outlay, and thus clears $£ 16$. Had he sold it at a gain of 5 s. a quarter he would have cleared as many pounds as each quarter cost shillings. How many quarters did he buy, and what did each quarter cost him?
22. A man buys a horse and sells it for $£ 144$, gaining as much per cent. as the horse cost him. What was the price of the horse ?
23. I buy goods and sell them again for $£ 96$, gaming as much per cent. as the goods cost. What is the cost price?
24. A man bought some sheep and sold them asain for $£ 24$, gaining as much per cent. as the sheep cost him. What did he give for them?
25. A certain crew, who row 40 strokes per minute, start at a distance equivalent to four of their own strokes behind mother crew, who row 45 strokes to the minute. In 8 minutes the former succeed in bumping the latter. Find the ratio hetween the lengths of the strokes of the two boats.
the peri-
l the peri-
26. The time which an express train takes to travel a journey of 180 miles is to that taken by an ordinary train as 9: 14. The ordinary train loses as much time from stoppages as it would take to travel 30 miles withort stopping. The express train only loses half as much time as the other in this [s.A.]
manner, and it also travels 15 miles an homr quirker. Sup posing the rates of travelling miform, what are they in miles per hour?
27. An article is sold at a loss of as much per cent. as it is worth in pounds. Show that it camont be sold for more than $£ 25$.

XXIX. ON VARIATION.

363. If a sum of money is put out at interest at 5 per cent., the principal is 20 times as great as the ammal interest. Whatever the sum may be.

Hence if a be the principal, and y the interest,

$$
x=20 y .
$$

Now if we change x we must change y in the same proportion, for so long as the rate of interest remains the same, x will always be 20 times as great as y, and hence if x be doubled or trebled, y will also be doubled or trebled.

This is an instance of what is called Direct Variation, of which we may give the following definition.

Def. One quantity y is said to vary directly as another quantity x, when y depends on x in such a manner that any increase or decrease made in the value of x produces a proportional increase or decrease in the value of y.
364. If $x=m y$, where m is a constant quantity, that is, a quantity which is mot altered by any change in the values of is and y,

$$
y \text { will vary directly as } x .
$$

For any increase made in the value of x must produce " proportional increase in the value of y. Thus if x be doubled, y must also be doubled, to greserve the equality of x and $m y$, since m camnot lee changed.
365.

Then and

So th number

This i of which

Der. quantity increase o tional dec
366.

For any prortional y must be

For
367.
and
10
That is, anveluct of

This is : the followi

Der. $\quad 0$ y and $\%$, w? change in
368. O inversely a
ker. S川! y in miles
cent. as it. l for more
; 5 per cent., erest. What-
ame proporthe same, x nce if x be ed.

Variation,
ys another per that any ces a proporty, that is, : e values of , c be doulled, of x and $m y$,
365. Suppose a man can reap an acre of corn in a day.

Then 10 men can reap 60 acres in 6 days, and 20 men can reap 60 acres in 3 days.
So that to do the same amoment of work if we clouble the number of men we must halve the number of days.

This is an instance of what is called Inverse Variation, of which we may give the following definition.

Def. One quantity y is said to vary inversely as another quantity x, when y depends on x in such a manner that any increase or decrease made in the value of x produces a proportional decrease or increase in the value of y.
> 366. If $x=\frac{m}{y}$, where m is constant, y will vary inversely as x.

For any increase made in the value of x must produce a proportional dechease in the value of y. Thus if a be doubled, y must be halved, to preserve the equality of x and $\frac{m}{y}$.

For

$$
2 x=\frac{2 m}{y}=\frac{m}{\frac{y}{2}}
$$

367. If 1 man can reap 1 acre in 1 day, 5 men can reap 20 acres in 4 days, and 10 men can reap 80 acres in 8 days.

That is, the momber of acres reaped will depend on the product of the sumber of men into the number of days.

This is an example of joint variation, of which we maty give the following definition.

Der. One quantity x is said to vary jointly as two others y and $\%$, when any change made in x produces a proportional change in the product of y and $:$.
368. One quantity x is said to vary directly as y and inversely as z when x varies as $\frac{y}{z}$.
369. Theorem. If x varies as y when \approx is constant, and as z when y is constant, then when y and z are both variable, x varies as $y z$.

Let

$$
x=m . y z .
$$

Then we have to show that m is constant.
Now when $\%$ is constant, x varies as y;
$\therefore m=$ is constant.
Now z cannot involve y, since z is constant when y changes, and therefore m cannot involve y.

Similarly it may be shown that m cannot involve z;
$\therefore m$ is constant,
and x varies as $y \%$.
370. The symbel \propto is used to express variation; thus $x \propto y$ stands for the words x varies as y.
371. Variation is only an abbreviated form of expressing proportion.

Thus when we say that x varies as y, we mean that x bears to y the same ratio that any given value of x bears to the corresponding value of y, or
$x: y=$ a given value of $x:$ the corresponding value of y.
And similarly for the other kinds of variation, as will be sech fron our examples.

Ex. 1. If $x \propto y$ and $y \propto i$, to show that $x \propto$:
leet

$$
x=m y, \text { and } y=n
$$

Then substituting this value of y in the first ecuation.

$$
x=m n \tilde{n} ;
$$

and therefore, since $m n$ is constant,
the

Ex. 2. If $x \propto y$ and $x \propto z$, then will $x \propto \sqrt{ }(y z)$.
Let

$$
x=m y, \text { and } x=n z
$$

'Then

$$
x^{2}=m n y z ;
$$

$$
\therefore x=\sqrt{ }(m n) \cdot \sqrt{ }(y z)
$$

Now $\sqrt{ }(m n)$ is constant;

$$
\therefore x \propto \sqrt{ }(y z)
$$

EX. 3. If y vary as x, and when $x=1, y=2$, what will be the value of y when $x=2$?

Here $y: x=$ a given value of $y:$ corresponding value of x;

$$
\therefore y: x=2: 1:
$$

$$
\therefore y=2 x
$$

Hence, when $x=2, y=4$.
Ex. 4. If A vary inversely as B, ard when $A=2, B=12$, what will B become when $A=9$?

Here $A: \frac{1}{B}=$ a given value of $A: \frac{1}{\text { corresponding value of } D}$;

$$
\begin{aligned}
& \therefore A: \frac{1}{1}=2: \frac{1}{12} ; \\
& \therefore A=\frac{2}{B}
\end{aligned}
$$

Hence, when $A=9$,

$$
\frac{9}{12}=\frac{2}{B},
$$

whence

$$
B=\frac{24}{9}=\frac{8}{3}=2 \frac{2}{3} .
$$

Ex. 5. If A vary jointly as B and C, and when $A=6, B=6$, and $C=15$, find the value of A when $B=10$ and $C=3$.

Here
$A: B C=$ a given value of $A:$ corresunnding value of $B C$;

$$
\begin{aligned}
& \therefore A: J B C=6: 6 \times 15 ; \\
& \therefore 90 . A=6 B C:
\end{aligned}
$$

Hence, when $B=10$ and $C=3$,

$$
\begin{aligned}
& 90 A=6 \times 10 \times 3 ; \\
& \therefore A=\frac{180}{90}=2 .
\end{aligned}
$$

Ex. 6. If z vary as x directly and y inversely, and if when $z=2, x=3$ and $y=4$, what is the value of \approx when $x=15$ and $y=8$?

Here $z: \frac{x}{y}=$ a given value of $z: \frac{\text { corresponding value of } x}{\text { corresponding value of } y}$;

$$
\begin{aligned}
\therefore z & : \frac{x}{y}=2: \frac{3}{4} ; \\
& \therefore \frac{3 z}{4}=\frac{2 x}{y} .
\end{aligned}
$$

Hence, when $x=15$ and $y=8$,

$$
\begin{aligned}
& \frac{3 z}{4}=\frac{30}{8} \\
& \therefore z=\frac{120}{24}=5 .
\end{aligned}
$$

EXAMPLES.-cXXXiii.

I. If $A \propto \frac{1}{B}$ and $B \propto \frac{1}{C}$ then will $A \propto C$.
2. If $A \propto B$ then will $\frac{A}{P} \propto \frac{B}{P}$.
3. If $A \propto B$ and $C \propto D$ then will $A C \propto B D$.
4. If $x \propto y$, and when $x=7, y=5$, find the value of x when $y=12$.
5. If $x \propto \frac{1}{y}$, and when $x=10, y=2$, find the value of y when $x=4$.
6. If $x \propto y z$, and when $x=1, y=2, z=3$, find the value of y when $x=4$ and $\%=2$.
7. If $x \propto \frac{y}{z}$, and when $x=6, y=4$, and $z=3$, find the value of x when $y=5$ and $z=7$.
8. If $3 x+5 y \propto 5 x+3 y$, and when $x=2, y=5$, find the value of $\frac{x}{y}$.
9. If $A \propto B$ and $B^{3} \propto C^{2}$, express how A varies in respect of C.
10. If z vary conjointly as x and y, and $i=4$ when $x=1$ and $y=2$, what will be the value of x when $z=30$ and $y=3$?
II. If $A \propto B$, and when A is $8, B$ is 12 ; express A in terms of B.
12. If the square of x vary as the cube of y, and $x=3$ when $y=4$, find the equation between x and !/.
13. If the square of x vary inversely as the cuthe of y, and $x=2$ when $y=3$, find the equation between x and y.
14. If the cube of x vary as the square of y anl $x=3$, when $y=2$, find the equation between x and y.
15. If $x \propto \%$ and $y \propto \frac{1}{z}$, show that $x \propto \frac{1}{y}$.
16. Show that in triangles of equal area the altitudes vary inversely as the bases.
17. Show that in parallelograms of equal area the altitudes vary inversely as the bases.
18. If $y=p+q+r$, where f is invariable, q vimies as x, and r vames as x^{2}, find the relation between y and s, supposing that when $x=1, y=6$; when $x=2, y=11$; and when $x=3$, $y=18$.
19. The volume of a pyrmind varies jointly as the area of its base and its altitude. A , ramid, the base of which is!

dio conpyranici n 2 cabic
of which ngth, anis ber varies gth varies ies as the rerence.

RESSIONS:
and -2
rogression represent numbers in

Conserfuently the cocflicient of d in the $n^{\text {th }}$ term will be $n-1$.

Therefore the $n^{\text {th }}$ term of the series will be $a+(n-1, d$.
374. If the series be

$$
a, a+d, a+2 d, \ldots \ldots \ldots
$$

and z the last term, the term next before z will clearly be $z-d$, and the term next before it will be $z-2 d$, and so on.

Hence, the series written backwards will be

$$
z, z-l, z-2 d, \ldots \ldots \ldots . a+2 d, a+d, u .
$$

375. To find the sum of a series of numbers in Arithmetical Progression.

Let a denote the first term.
... d. the constant tiifierence.
... * the last term.
... n......... the number of terms.
... s......... the sum of the n terms.
Then $s=a+(a+d)+(c+2 d)+\ldots \ldots+(z-2 d)+(z-d)+z$.
Also $s=z+(z-d)+(z-2 d)+\ldots \ldots+(a+2 d)+(a+d)+a$,
the series in the second ease being the same as in the first, but written in the reverse order.

Therefore, by adding the two series together, we get

$$
2 s=(a+z)+(u+z)+(u+z)+\ldots \ldots+(u+z)+(u+z)+(a+z) ;
$$

and since on the right-hand side of this equation we have a series of n mumbers each equial to $a+\because$, we get

$$
\begin{aligned}
& 2 s=n(u+z) ; \\
& \therefore s={ }_{2}^{\prime \prime}(u+i) .
\end{aligned}
$$

This result may be put in another form, hecanse in the place of 2 we may put $\ell \cdot(n-1) d$, l, Article 373.

Hence

$$
==_{2}^{n}\{u+u+(n-1) u\}_{0} \text {. }
$$

that is,

$$
=\frac{n}{2}!2!1+11+1 \cdot 1!
$$

376. We have now oltaince the following results :

$$
\begin{align*}
& z=a+(n-1) d \ldots \ldots . \tag{A}\\
& s=\frac{n}{2}\left(a+=y^{\prime}\right) \ldots \ldots \ldots \ldots \tag{B}\\
& s=\frac{n}{2}\{2 a+(n-1) d\} . \tag{C}
\end{align*}
$$

From one or more of these equations we have in Examples to determine the values of a, d, n, s or z. We shall now proceed to give instances of such Examples.

Ex. 1. Find the last them of the series

$$
7,10,13, \ldots \ldots \text { to } 20 \text { terms. }
$$

Taking the equation $z=a+(n-1) d$, for a put 7 and for n put 20 , and we get

$$
\begin{aligned}
& z=7+(20-1) d, \\
& z=7+19 d .
\end{aligned}
$$

or,
Now d is always found ly taking the first term from the second, and in this case,

$$
\begin{gathered}
d=10-7=3 ; \\
\therefore z=7+19 \times 3=7+57=64 .
\end{gathered}
$$

Ex. 2. Find the last term of the series $12,8,4, \ldots \ldots$ to 11 terms.

In the equation put

Ther
Now
Hence

$$
\begin{gathered}
\because=u+(n-1) d, \\
a=12 \text { and } u=11 . \\
z=12+10 d . \\
d=8-12=-4 . \\
z=12-40=-28 .
\end{gathered}
$$

EXAMPLES.-cxxxiv.
Find thie last term of each of the following series :

> I. $\quad 2,5,8 \ldots \ldots$ to 17 terms.
> 2. $\quad 4,8,12 \ldots$. to 50 terms.
3. $7, \frac{29}{4}, \frac{15}{2} \ldots \ldots$ to 16 terms.
4. $\frac{1}{2},-1,-\frac{5}{2} \ldots \ldots$ to 23 terms.
5. $\frac{5}{6}, \frac{1}{2}, \frac{1}{6}, \ldots$. to 12 terms.
6. $-12,-8,-4 \ldots .$. to 14 terms.
7. $-3,5,13 \ldots \ldots$ to 16 terms.
8. $\frac{n-1}{n}, \frac{n-2}{n}, \frac{n-3}{n} \ldots .$. to n terms.
9. $(x+y)^{2}, x^{2}+y^{2},(x-y)^{2} \ldots .$. to n terms.
10. $\frac{a-b}{a+b}, \frac{4-3 b}{a+b}, \frac{7 a-5 b}{a+b} \ldots \ldots$ to n terms.
377. Ex. 1. Find the sum of the series

$$
3,5,7 \ldots \ldots \text { to } 12 \text { terms. }
$$

In the equation $s=\frac{n}{2}\{2 a+(n-1) d\}$
put 3 for a and 12 for n, and we get

$$
s=\frac{12}{2}\{6+11 d\} .
$$

Now $d=5-3=2$, and so

$$
s=\frac{12}{2}\{6+22\}=6 \times 28=168
$$

Ex. 2. Find the sum of the series

$$
\begin{aligned}
& 10,7,4 \ldots . . \text { to } 10 \text { terms. } \\
& \therefore=\frac{n}{2}\{2 a+(n-1) d\}
\end{aligned}
$$

put 10 for a and 10 for n, then

$$
s=\frac{10}{2}\{20+9 u\}
$$

Now $d=7-10=-3$, and therefore

$$
s=\frac{10}{2}\{20-27\}=5 \times(-7)=-35 .
$$

EXAMPLES.-cXXXV.

Find the sum of the following series:
I. 1,2, : \qquad to 100 terms.
2. $2,4,6$ \qquad to 50 terms.
3. $3,7,11$ \qquad to 20 terms.
4. $\frac{1}{4}, \frac{1}{2}, \frac{3}{4}$ to 15 terms.
5. $-9,-7,-5$ \qquad to 12 terms.
6. $\frac{5}{6}, \frac{1}{2}, \frac{1}{6}$ to 17 terms.
7. 1, 2, 3 \qquad to $\mu \mathrm{te}$ " ms .
8. $1,4,7$ \qquad to n terms.
9. $1,8,15$ \qquad to n terms.

1. $\frac{n-1}{n}, \frac{n-2}{n}, \frac{n-3}{n}$ to n tcrms.
2. Ex. What is the Consiant Difference when the first term is 24 and the tenth term is -12 ?

Taking the equation (A),

$$
z=(6+(n-1) d,
$$

and regarding the tenth as the last term, we get

$$
\begin{aligned}
& -12 \\
\text { or } & =24+(10-1) d, \\
\text { whence we obtain } & d \\
\text { wh } & =-4 d
\end{aligned}
$$

EXAMPLES.-CXXXVi.

What is the Constant Difference in the following cases?
x. When the first term is 100 and the twentieth is -14 .
2. $\quad . \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . \ldots \ldots$ fifty-first is $-x$.
3. $\ldots \ldots \ldots \ldots \ldots \ldots \ldots . .-\frac{1}{2} \ldots \ldots$. forty-ninth is $5 \frac{1}{2}$.
4. $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .-\frac{3}{4} \ldots \ldots \ldots$ twenty-filth is -21_{4}^{3}.
5. $\ldots \ldots .-10$. sixth is -20 .

379. Ex. What is the First Term when the 40 th term is 28 and the 43 rd term is 32 ?

Taking equation (A),

$$
z=a+(n-1) d,
$$

and regarding the last term to he the 40 th , we get

$$
\begin{equation*}
28=a+39 d . \tag{1}
\end{equation*}
$$

Again, regarding the last term to be the 43rl, we get

$$
\begin{equation*}
32=a+42 l . \tag{¿}
\end{equation*}
$$

From equations (1) and (2) we may find the value of a to be -24 .

EXAMPLES.-CXXXVii.

I. What is the first term when
(1) The 59 th term is 70 and the 66 th term is 84 ;
(2) The 20th term is $93-35 b$ and the 21 st is $98-37 b$;
(3) The second term is $\frac{1}{2}$ and the 55 th is $5 \cdot 8$;
(4) The second term is 4 and the 37 th is -30 ?
2. The sum of the 3 rol and 8 th terms of a series is 31 , and the sum of the 5th and 10 th terms is 43 . Find the sum of 10 terms.
3. The sum of the 1 st and 3 rd terms of a series is 0 , and the sum of the 2nd and 7 th terms is 40 . Find the sum of 7 terms.
4. If 24 and 33 be the fourth and fifth rms of a series, what is the looth term?
5. Of how many terms does an Arithmetical Progression consist, whose difference is 3 , first term 5 and last term 302?
6. Supposing that a borly falls through a space of $16 \frac{1}{12}$ feet in the first second of its fall, and in each succeeding second $.32 \frac{1}{6}$ feet more than in the next preceding one, how far will a body fall in 20 seconds?
7. What debt can be discharged in a year by weekly payments in arithmetical progression ; the first payment being 1 shilling and the last $£ 5.3 \mathrm{~s}$. ?
8. Find the 41st term and the sum of 41 terms in each of the following series:

$$
\begin{aligned}
& \text { (1) }-5,4,13 \ldots \ldots \\
& \text { (2) } 4 a^{2}, 0,-4 a^{2} \ldots \ldots \\
& \text { (3) } 1+x, 5+3 x, 9+5 x \ldots \ldots \\
& \text { (4) }-4 \frac{1}{2},-1 \cdot 4 \ldots \ldots \\
& \text { (5) } \frac{1}{4}, \frac{9}{20} \ldots \ldots
\end{aligned}
$$

9. To how many terms do the following series extend, and what is the sum of all the terms?

$$
\text { (1) } 1002 \ldots \ldots .10,2 .
$$

(2) $-6, 』 \ldots \ldots, 186$.
381.

The are to term b.

Taki
we hav
(3) $2 \frac{1}{2} x, \cdot 8 x \ldots \ldots-72 \cdot 3 x$.
(4) $\frac{1}{2}, \frac{1}{4} \ldots \ldots-24$
(5) $m-1 \ldots \ldots 137(1-m), 138(1-m)$.
(6) $x+254, \ldots \ldots x+2, x-2$.
380. To insert 3 arithmetic means between 2 and 10.

The number of terms will be 5 .
Taking the equation $z=a+(n-1) d$, we have $\quad 10=2+(5-1) d$.

Whence

$$
8=4 d ; \quad \therefore d=2 .
$$

Hence the series will be

$$
\text { 2. } 4,6,8,10
$$

EXAMPLES:-cXXXViii.

r. Insert 4 arithmetic means between 3 and 18 .
2. Insert 5 arithmetic means between 2 and - $\mathbf{- 2}$.
3. Insert 3 arithmetic means between 3 and $\frac{2}{3}$.
4. Insert 4 arithmetic means between $\frac{1}{2}$ and $\frac{1}{3}$.
381. To insert 3 arithmetic means between a and b.

The number of tems in the series will be 5 , since there are to be 3 terms in addition to the first term a and the last term b.

Taking the equation $z=a+(n-1) d$, we have to find d, having given

$$
a, z=b \text { and } n=5 .
$$

IMAGE EVALUATION

 TEST TARGET (MT-3)

Photographic Sciences
Corporation

Hence

$$
b=a+(5-1) d
$$

or,

$$
4 d=b-a, \therefore d=\frac{b-a}{4} .
$$

Hence the serics will be
that is,

$$
a, a+\frac{b-a}{4}, u+\frac{b-a}{2}, a+\frac{3(b-a)}{4}, b,
$$

$$
a, \frac{3 a+b}{4}, \frac{a+b}{2}, \frac{a+3 b}{4}, b .
$$

EXAMPLES.-cXXXIX.

I. Insert 3 arithmetic means between m and n.
2. Insert 4 arithmetic means between $m+1$ and $m-1$.
3. Insert 4 arithmetic means between n^{2} and $n^{2}+1$.
4. Insert 3 arithmetic means between $x^{2}+y^{2}$ and $x^{2}-y^{2}$.
382. We shall now give the general form of the proposition "To insert marithmetic means between a and b."

The number of terms in the series will be $m+2$
Then taking the equation $z=a+(n-1) d$, we have in this case $b=a+(m+2-1) d$, or, $\quad b=a+(m+1) d$.

Hence

$$
d=\frac{b-a}{m+1},
$$

and the form of the series will be

$$
a, a+\frac{b-a}{m+1}, a+\frac{2 b-2 a}{m+1}, \ldots \ldots, b-\frac{2 k-2 a}{m+1}, b-\frac{h-a}{m+1}, b,
$$

that is,

$$
a, \frac{a m+b}{m+1}, \frac{a m-a+2 b}{m+1}, \ldots \ldots, \frac{l_{m}-l+2 a}{m+1}, \frac{b m+a}{m+1}, b,
$$

XXXI. ON GEOMETRICAL PROGRESSION.

383. A Geometrical Progression is a series of numbers which increase or decrease ly a constant factor:

Thus the following series are Geometrical Progressions,

$$
\begin{gathered}
2,4,8,16,32,64 ; \\
12,3, \frac{3}{4}, \frac{3}{16}, \frac{3}{64} \\
4,-\frac{1}{2}, \frac{1}{16},-\frac{1}{125}, \frac{1}{1024} .
\end{gathered}
$$

The Constant Factors being 2 in the first series, $\frac{1}{4}$ in the second, and $-\frac{1}{8}$ in the third.

Note. That which we shall call the Constant Factor is usually called the Common Ratio.
384. In Algebra we express a Geometrieal Progression thus : taking a to represent the first term and f to represent the Constant Factor, we shall have as a series of numbers in Geometrical Progression

We observe that the terms of the series liffer only in the inde.c of f, and that each index of f is always less by 1 than the number of the term in which that particular index stands.

Thus the index of f in the 3rd term is 2 ,

$$
\text { in the } 4 \text { th } 3 \text {, }
$$

in the 5th 4.
Consequently the index of f in the nth term will be $n-1$.
Therefore the nth term of the series will be a f^{n-1}. [s.a.]

Hence if z be the last term.

$$
;=a f^{n-1}
$$

385. If the series contain n terms, a being the first term and f the Constant Factor,
the last term will be $a f^{n-1}$,
the last term but one will be $a f^{n-2}$,
the last term but two will be $a f^{n-3}$.
Now $a f^{n-1} \times f=a f^{n-1} \times f^{1}=u f^{n-1+1}=u f^{n}$,

$$
\begin{aligned}
& u f^{n-2} \times f=u f^{n-2} \times f^{1}=u f^{n-2+1}=a f^{n-1}, \\
& u f^{n-3} \times f=u f^{n-3} \times f^{1}=u f^{n-3+1}=a f^{n-2} .
\end{aligned}
$$

386. We may now proceed to find the sum of a series of mumbers in Geometrical Progression.

Let a denote the first term,
f the constant factor,
n the number of terms,
$s \quad$ the sum of the n terms.
Then $s=a+a f+a f^{2}+\ldots+a f^{n-3}+a f^{n-2}+a f^{n-1}$.
Now multiply both sides of this equation by f, then

$$
f_{s}=a f+a f^{2}+a f^{3}+\ldots+a j^{n-2}+a f^{n-1}+a f^{n} .
$$

Hence, subtracting the first equation from the second,

$$
\begin{aligned}
f s-s & =a f^{n}-a . \\
\therefore s(f-1) & =a\left(f^{n}-1\right) ; \\
\therefore s & =\frac{a\left(f^{n}-1\right)}{f-1} .
\end{aligned}
$$

Note. The proposition just proved presents a difficulty to a beginner, which we shall endeavour to explain. When we multiply the series of n terms

$$
a+a f+a f^{2}+\ldots \ldots+a f^{n-3}+a f^{n-2}+a f^{n-1}
$$

ly f, we shall obtain another series

$$
a f+u f^{2}+a f^{3}+\ldots \ldots+u f^{n-2}+a f^{n-1}+u f^{n}
$$

which also contains n terms.
Though we cannot fill up the gap in each series completely, we see that the terms in the two series must be the same, except the first term in the former series, and the lust term in the latter. Henee, when we subtract, all the terms will disappear except these two.
387. From the formula :
prove the following :

$$
\begin{aligned}
& \text { (a) } s=\frac{f:-"}{f-1} \text {. } \\
& \text { (} \gamma \text {) } \quad a=f:-(f-1) s \text {. } \\
& \text { (} \beta \text {) } a=\frac{z}{f^{n-1}} \text {. } \\
& \text { (i) } f=\frac{s-a}{s-z} \text {. }
\end{aligned}
$$

388. Ex. Find the last term of the series

$$
3,6,12 \ldots . . . \text { to } 9 \text { terms. }
$$

The Constant Factor is $\frac{6}{3}$, that is, 2.
In the formula

$$
z=a f^{n-1},
$$

putting 3 for $a, 2$ for f, and 9 for n, we get

$$
z=3 \times 2^{9}=3 \times 256=763 .
$$

EXAMPLES.-cxl.
Find the last term of the following series
I. $1,2,4 \ldots \ldots$ to 7 terms.
2. $4,12,3(; \ldots .$. to 10 terms.
3. 5, 20,80 to 9 terus.
4. $8,4,2 \ldots .$. to 15 terms.
5. 2, $6,18 \ldots .$. to 9 terms.
6. $\frac{i}{64}, \frac{1}{16}, \frac{1}{4} \ldots .$. to 11 temms.
7. $-\frac{2}{3}, \frac{1}{3},-\frac{1}{6} \ldots .$. to 7 terms.
389. Ex. Find the sum of the series

$$
6,3, \frac{3}{2} \ldots \ldots \text { to } 8 \text { terms. }
$$

Generally,

$$
s=\frac{a\left(f^{\prime \prime}-1\right)}{f-1}
$$

2. $1,3,9$..... to 6 terms.
3. $a, a x^{2}, a x^{4} \ldots \ldots$ to 13 terms.
4. $\quad a, \frac{a}{x}, \frac{a}{x^{2}} \ldots \ldots$ to 9 terms
5. $\quad a^{2}-x^{2}, a-x, \frac{a-x}{a+x} \ldots \ldots$ to 7 terms.

Find the sum of the following series:
เ. $\because, 4,8 \ldots \ldots$ to 15 terms.
6. $2,6,18$ \qquad to n terms.
7. $7,14,28$ \qquad to n terms.
8. $5,-10,20$ \qquad to 8 terma.
9. $-\frac{2}{3}, \frac{1}{3},-\frac{1}{6}$ to 7 terms.
390. To find the sum of an Infinite Series in Geometrical Progression, when the Comstant Factor is a proper fraction.

If f be a proper fraction and u very latge, f^{n} is a very sn:all number.
Hence if the number of terms be infinite, $f^{\prime \prime}$ is so small that we may neglect it in the expression

$$
s=\frac{a\left(f^{n}-1\right)}{f-1,}
$$

and we get

$$
\begin{aligned}
s & =\frac{-a}{f-1} \\
& =\frac{a}{1-f} .
\end{aligned}
$$

391. Ex. 1. Find the sum of the series $\frac{4}{3}+1+\frac{3}{4}+\ldots .$. to mfinity.

Here

$$
\begin{gathered}
f=1 \div \frac{4}{3}=\frac{3}{4} ; \\
\therefore s=\frac{a}{1-f}=\frac{4}{1-\frac{4}{4}}=\frac{16}{3}=5 \frac{1}{3} .
\end{gathered}
$$

Ex. 2. Sum to infinity the series $\frac{3}{2}-\frac{2}{3}+\frac{8}{27}-\ldots \ldots$
Here

$$
\begin{gathered}
f=-\frac{2}{3} \div \frac{3}{2}=-\frac{4}{9} ; \\
\therefore s=\frac{a}{i-f}=\frac{\frac{3}{2}}{1-\left(-\frac{4}{9}\right)}=\frac{\frac{3}{2}}{1+\frac{4}{9}}=\frac{27}{26} .
\end{gathered}
$$

EXAMPLES.-cxlii.

Find the sum of the following infinite series:
I. $1, \frac{1}{2}, \frac{1}{4}, \ldots \ldots$
9. $4^{3}, 2^{4}, \ldots \ldots$
2. $1, \frac{1}{4}, \frac{1}{16}, \ldots \ldots$
10. $2 x^{3},-25 x$,
3. $3, \frac{1}{3}, \frac{1}{27}$,
11. $a, b, \ldots \ldots$
4. $\frac{2}{3}, \frac{1}{3}, \frac{1}{6}, \ldots \ldots$
12. $\frac{1}{10}, \frac{1}{10^{2}}, \ldots \ldots$
5. $\frac{3}{4}, \frac{1}{4}, \ldots \ldots$
13. $x,-y, \ldots .$.
6. $\frac{1}{2},-\frac{1}{3}, \ldots \ldots$
14. $\frac{86}{100}, \frac{86}{10000}, \ldots .$.
7. $8, \frac{2}{3}, \ldots \ldots$
15. $\cdot 54444, \ldots .$.
8. $1 \frac{1}{2}, 5, \ldots \ldots$
16. • $83636, \ldots .$.
392. To insert 3 geometric means between 10 and 160 .

Taking the equation $\quad z=u f^{n-1}$, we put 10 for $a, 160$ for z, and 5 for n, and we obtain

$$
\begin{gathered}
160=10 \cdot f^{3-1} ; \\
\therefore 16=f^{4} .
\end{gathered}
$$

Now

$$
16=2 \times 2 \times 2 \times 2=2^{4} ;
$$

$$
\therefore 2^{4}=f^{4} \text {. }
$$

Hence $f=2$, and the series will he

$$
10,20,40,80,160 .
$$

EXAMPLES.-cxliii.

1. Insert 3 geometric means between $\mathbf{3}$ and 24:3.
2. Insert 4 geometric means between 1 and 1024 .
3. Insert 3 geometric means between 1 and 16 .
4. Insert 4 geometric means between $\frac{1}{2}$ and $\frac{24 ?}{(i, 4}$.
5. To insert ml grometric means betwecn a emil.

The number of terms in the series will be $m+2$.
In the formula $\quad z=a f^{n-1}$, putting b for a, and $a+2$ for n, we get
or,

$$
\begin{aligned}
& b=a f^{m+2-1} \\
& b=a f^{m+1} ; \\
& \therefore f^{m+1}=\frac{b}{u},
\end{aligned}
$$

or,

$$
f=\frac{b^{m+1}}{a^{\frac{1}{m+1}}}
$$

Hence the series will be,
that is,
$a,\left(a^{m} \cdot b\right)^{\frac{1}{m+1}},\left(a^{m-1} \cdot b^{2}\right)^{\frac{1}{m+1}}, \ldots \ldots,\left(a^{2} \cdot b^{m-1}\right)^{\frac{1}{m+1}},\left(a \cdot b^{m}\right)^{m+1}, b$.
394. We hall now give some mixed Examples on Arithmetical and Geometrical Progression.

EXAMPLES.-cXliv.

1. Sim the following series:
(I) $8+15+22+$ \qquad to 13 terms.
(2) $116+108+100+$ \qquad to 10 terms.
(3) $3+\frac{1}{2}+\frac{1}{12}+\ldots \ldots$ to infinity:
(4) $2-\frac{1}{4}+\frac{1}{32}-\ldots \ldots$ to infinity:
(5) $\frac{1}{2}-\frac{2}{3}-\frac{11}{6}-\ldots .$. to 13 terms.
(6) $\frac{1}{2}-\frac{1}{3}+\frac{2}{9}-\ldots \ldots$ to 6 terms.
(7) $\frac{1}{2}-1-\frac{5}{2}-\ldots$. to 29 terms.
(8) $\frac{5}{7}+1+1 \frac{2}{7}+\ldots .$. to 8 terms.
(9) $\frac{1}{3}+\frac{2}{9}+\frac{4}{27}+\ldots \ldots$ to infinity.
(10) $\frac{3}{5}-\frac{14}{10}-\frac{51}{15}-\ldots .$. to 10 terms.
(iI) $\sqrt{\frac{3}{5}}-\sqrt{\prime}(6+2 \sqrt{ }(15)-\ldots \ldots$ to 8 terms.
(12) $-\frac{7}{5}+\frac{7}{2}-\frac{33}{4}+\ldots \ldots$ to 5 terms.
2. If the continued product of 5 terms in Geometrical Progression be 32 , show that the middle term is 2 .
3. If a, b, c are in arithmetic progression, and a, b^{\prime}, c are in geometrical progression, show that $\frac{b}{b^{\prime}}=\frac{a+c}{2 \sqrt{ }(a c)}$.
4. Show that the arithmetical mean between a and b is greater than the geometrical mean.
5. The sum of the first three terms of an arithmetic series is 12 , and the sixth term is 12 also. Find the sum of the first 6 terms.
6. What is necessary that a, b, c may be in geometric progression?
7. If $2 n, x$ and $\frac{1}{2 n}$ are in geometric progression, what is x ?
8. If $2 n, y$ and $\frac{1}{2 n}$ are in arithmetic progression, what is !! ?
9. The sum of a geometric progression whose first term is 1 , constant factor 3, and number of terms 4 , is equal to the sum of an arithmetic progression, whose first term is 4 and constant difference 4 : how many terms are there in the arithmetic progression?
10. The first $(7+n)$ natural numbers when added together make 153. Find n.
II. Prove that the sum of any number of terms of the series $1,3,5, \ldots \ldots$ is the square of the number of terms.
11. It the sum of a series of 5 terms in arithmetic progression be 95 , show that the middle term is 19 .
12. There is an arithmetical progression whose first term is 3_{3}^{1}, the constant difference is $1 \frac{4}{9}$, and the sum of the terms is 22. Required the number of terms.
13. The 3 digits of a certain number are in arithmetical progression; if the number be divided by the sum of the digits in the units' and tens' place, the quotient is 107 . If 396 be subtracted from the number, its digits will be inverted. Required the number.
14. If the $(p+q)^{\text {th }}$ term of a geometric progression be m, and the $(p-q)^{\text {th }}$ term be n, show that the $p^{\text {th }}$ term is $J^{\prime}(m n)$.
15. The difference between two numbers is 48 , and the arithmetic mean exceeds the geometric by 18 . Finl the numbers.
16. Place three arithmetic means between 1 and 11.
17. The first term of an increasing arithmetic series is ()3.4, the constant difference $\cdot 0004$, and the sum $2 \cdot 748$. Find the number of terms.
18. Place nine arithmetic means between 1 and -1 .
19. Prove that every term of the series $1,2,4, \ldots \ldots$ is greater by unity than the sum of all that precede it.
20. Show that if a series of $m p$ trims forming a geometrical progression whose constant factor is r be divided into sets of p consecntive terms, the sims of the sets will form a geometrical progression whose constant factor is r^{p}.
21. Find five numbers in arithmetical progression, such that their sum is 55 , and the sum of their sfuares 765 .
22. In a geometrical progression of 5 terms the difference of the extremes is to the difference of the $2 n d$ and 4 th terms as 10 to 3 , and the smm of the 2 nd and 4 th terms equals twice the product of the 1 st and 2 nd . Find the series.
23. Show that the amounts of a sum of money put out at Compond Interest form a series in geometrical progression.
24. A certain number consists of three digits in geometrical progression. The sum of the digits is 13 , and if 792 be added to the number, the digits will be inverted. Find the number.
25. The population of a county increases in 4 ycars from 10000 to 14641 ; what is the rate of increase ?
XXXII. ON HARMONICAL PROGRESSION.
26. A Harmonical Progression is a series of numbers of which the reciprocals form an Arithmetical Progression.

Thus the suries of numbers $a, b, c, d, \ldots \ldots$ is a Harmonical. Prograssion, if the series $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}, \frac{1}{d}$, is an Arithnetical Progression.

If a, b, c i,e in Harmonical Progression, b is called the Harmonical Mcan between a and c.

Note. There is no way of finding a general expression fur
refere and t_{1}

396

Sinc
or
or
or
397.

First
Proce
or

Hence

$$
\begin{array}{cc}
1 & 1 \\
\because & \cdots
\end{array}
$$

or,
Theref the sum of a Harmonical Series, but many problems with
reference to such a series may be solved by inverting the terms and treating the reciprocais as an A. ithmetical series.
396. If $\mathrm{a}, \mathrm{b}, \mathrm{e}$ be in Harmonical Progression, to show that

$$
a: c:: 11-1: 11-:
$$

Since $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in Arithmetical Progression,
or

$$
\begin{aligned}
& \frac{1}{c}-\frac{1}{b}=\frac{1}{b}-\frac{1}{a} \\
& \frac{b-c}{b c}=\frac{a-b}{a b},
\end{aligned}
$$

$$
\frac{a b}{b c}=\frac{a-b}{b-b}
$$

or

$$
\frac{a}{c}=\frac{a-b}{b-c}
$$

397. To insert mharmonic means between a and b.

First to insert m arithmetic means between $\frac{1}{\iota}$ and $\frac{1}{b}$.
Proceeding as in Art. 357, we have
or

$$
\begin{aligned}
& \frac{1}{b}=\frac{1}{a}+(m+1) d, \\
& a=b+(m+1) \cdot a b d \\
& \therefore d=\frac{a-b}{a b(m+1)} .
\end{aligned}
$$

Hence the arithmetic scries will he
or,

Therefore the Harmonic Series is

$$
a, \frac{a b(m+1)}{b m+a}, \frac{a b(m+1)}{b m+2 a-b}, \ldots \ldots \frac{a b(m+1)}{a m+b}, b .
$$

$$
\begin{aligned}
& \frac{1}{a} \frac{1}{a}+\frac{a-b}{a b(m+1)}, \frac{1}{a}+\frac{2(a-b)}{a b(m+1)}, \ldots \ldots \frac{1}{a}+\frac{m(a-b)}{a b(m+1)}, \frac{1}{b}, \\
& \frac{1}{a}, \frac{l m+a}{a b(m+1)}, \frac{l m+2 a-b}{a b(m+1)}, \cdots \cdots \underset{a b(m+1)}{a}, \frac{1}{b}
\end{aligned}
$$

398. Given a and b the first two terms of a series in Harmonical Progression, to find the $n^{\text {th }}$ term.
$\frac{1}{a}, \frac{1}{b}$ are the first two terms of an Arithmetical Series of which the common difference is $\frac{1}{b}-\frac{1}{a}$.

The $n^{\text {th }}$ term of this Arithmetical Series is

$$
\begin{aligned}
& \frac{1}{a}+(n-1)\left(\frac{1}{b}-\frac{1}{a}\right) \\
&= \frac{1}{a}+\frac{(n-1)(a-b)}{a b}=\frac{b+n a-a-n b+b}{a b)} \\
&= \frac{(n a-a)-(n b-2 b)}{a b}=\frac{(n-1)(a-(n-2) b}{a b}
\end{aligned}
$$

\therefore the $n^{\text {th }}$ term of the Hammonical Series is

$$
\frac{a b}{(n-1) a-(n-2)} b \cdot
$$

399. Let a and c be any two mumbers,

$$
b \text { the Harmonical Mean between them. }
$$

Then

$$
\frac{1}{b}-\frac{1}{a}=\frac{1}{c}-\frac{1}{b}
$$

or

$$
\begin{aligned}
& \frac{2}{b}=\frac{a+c}{a c} \\
& \therefore b=\frac{2 a c}{a+c} .
\end{aligned}
$$

400. The following results should be remembered.

Arithmetical Mean bufween a aml $c=\frac{a+r}{2}$.
Geometrieal Mran between a and $c=\sqrt{\text { ac. }}$
Harmonical Mean between a and $c=\frac{2 u c}{a+c}$.

Henc respecti
that is,
$4(1)$. magnitu

Since

Or
or
or
thai is, A
Also, si

Hence if we denote the Means by the letters A, G, H respectively,

$$
\begin{aligned}
A \times I I & =\frac{a+c}{\sigma} \times \frac{2 a c}{a+\cdots} \\
& =a c \\
& =G^{\prime 2}
\end{aligned}
$$

that is, C is a mean proportional hetween A and H.
401. 'To show that $A, G, I I$ are in deseending order of magnitule.

Since $(\sqrt{ } \text { a }-\sqrt{ } \text { C })^{2}$ must be a positive quantity. $\left(\sqrt{ } a-\sqrt{ }()^{2}\right.$ is greater than 0 ,
or $a-2 \sqrt{a c}+c$ greater than 0 .
or $\quad u+c$ greater tham $2 \sqrt{a c}$,
or

$$
\frac{a+c}{2} \text { greater than } \sqrt{a c}
$$

thai is, A is greater tham G.
Also, since $a+c$ is greater than $2 \sqrt{a c}$,
$\sqrt{a c}(a+c)$ is greater than $2 a c$;
$\therefore \sqrt{ } a c$ is greater than $\frac{2 \not t r}{a+c}$;
i.c. G is greater than H.

EXAMPLES:-cxlv.
I. Insert two hamonic means beiween $\mathbf{6}$ and 24.
2. four.................................. 2 and 3.

4. $\ldots .$. four.. $\frac{1}{18}$.
5. Insert five harmonic means between -1 an 2^{-1}.
6. \qquad
7. six 3 and $\frac{6}{23}$.
8. n $2 x: 413 y$.
9. The sum of three terms of a hamonical series is $\frac{11}{12}$, and the first term is $\frac{1}{2}$: find the series, and continue it both ways.
10. The arithmetical mean between two numbers exceeds the geometrical by 13 , and the geometrical exceeds the harmonical by 12 . What are the numbers?
II. There are four numbers a, b, c, d, the first three in arithmetical, the last three in harmonical progression; show that $a: b=c: d$.
12. If x is the harmonic mean between m and n, show that

$$
\frac{1}{x-m}+\frac{1}{x-n}=\frac{1}{m}+\frac{1}{n}
$$

13. The sum of three terms of a harmonic series is 11 , and the sum of their squares is 49 ; find the numbers.
14. If x, y, a be the $p^{\text {th }}, q^{\text {th }}$, and $r^{\text {th }}$ terms of a H.p., show that

$$
(r-q) y+(p-r) x z+(q-p) x y=0 .
$$

15. If the h.m. between each pair of the numbers, a, b, c be in A.P., then b^{2}, a^{2}, c^{2} will be in H.P.: and if the H.m. be in h.p., b, a, c will be in H.p.
16. Show that $\frac{c+2 a}{c-b}+\frac{c+2 b}{c-a}=4,>7$, or >10, according as c is the A., G. or H. mean between a and b.
17.

cession called.

Thus make t_{1} then on

If In mutation

403 are taken permutat certain n

Thus t I^{\prime}, Q, and
404. talien r at

Let a, b
First to laken two

If a be which the in which

XXXIII. PERMUTATIONS.

402. The different armugemonts in respect of order of suceession which can he made of a given mmber of things are called Permutations.

Thus if from a box of letters I select tero, l^{\prime} and Q, I can make tuo permutations of them, placing P first on the left ant then on the right of Q, thus:

$$
I, Q \text { and } Q, P
$$

If I now take three letters, P, Q and R, I can make six permutations of them, thms:

$$
\begin{aligned}
& P, Q, R ; P, R, Q, \text { two in which } P \text { stimld dirst. } \\
& Q, P, R ; Q, R, P, \ldots \ldots \ldots \ldots \ldots . Q \ldots \ldots \ldots \ldots . . \\
& R, P, Q ; R, Q, P, \ldots \ldots \ldots \ldots \ldots . . . \ldots \ldots \ldots \ldots . .
\end{aligned}
$$

403. In the Examples just given all the things in each case are taken together; but we may be required to lind how many permutations can be made out of a number of things, when a certain number only of them are taken at a time.

Thus the permutations that can be formed ont of the letters r, Q, and R taken two at a time are six in mmber, thus:

$$
P, Q ; P, R ; Q, P ; Q, R ; R, P ; R, Q .
$$

404. To find the number of permutations of 11 different things tulien r at a time.

Let $a, b, c, d \ldots$ stand for n diflerent things.
First to find the number of permutations of the n things laken two at a time.

If a be placed before each of the other things $l, c, d \ldots$ of which the number is $n-1$, we shall have $n-1$ permutations in which a stands first, thus

$$
a b, a c, a d, \ldots \ldots
$$

If b be placed before each of the other things, $a, c, d \ldots$ we shall have $n-1$ permutations in which b stands first, thus:

$$
b a, b c, b d, \ldots \ldots
$$

Similarly there will be $n-1$ permutations in which c stands first: and so of the rest. In this way we get every possible permatation of the n things taken two at a time.

Hence there will be n. $(n-1)$ permutations of n things taken two at a time.

Next to find the number of permutations of the n thinges taken three at a time.

Leaving a out, we can form $(n-1) \cdot(n-2)$ permutations of the remaining $(n-1)$ things taken two at a time, and if we place a before each of these permutations we shall have $(n-1) \cdot(n-2)$ permutations of the n things taken three at a time in which a stands first.

Similarly there will be $(n-1) \cdot(n-2)$ permutations of the n things taken three at a time in which b stands first: and so for the rest.

Hence the whole number of permutations of the n things taken three at a time will be $n \cdot(n-1) \cdot(n-2)$, the fitctors of the formula decreasing each by 1 , and the figure in the last factor being 1 less than the number talien at a time.

We now assume that the formula holds good for the number of permutations of n things taken $r-1$ at a time, and we shall proceed to show that it will hold good for the number of permutations of n things taken r at a time.

The number of permutations of the n things taken $r-1$ at a time will be

$$
\begin{array}{ll}
& n \cdot(n-1) \cdot(n-2) \ldots \ldots[n-\{(r-1)-1\}], \\
\text { that is } & n \cdot(n-1) \cdot(n-2) \ldots \ldots(n-r+2) .
\end{array}
$$

Leaving a out we can form $(n-1) \cdot(n-2) \ldots \ldots(n-1-r+2)$ permutations of the $(n-1)$ renaining things taken $r-1$ at a time.

Putting a before each of these, we shall have

$$
(n-1) \cdot(n-2) \ldots \ldots \cdot(n-v+1)
$$

permutations of the n things taken r at a time in which n stands first.

So aga mutations first ; and

Hence taken r at

If then $r-1$ at a time.

But we 1 time; henc so on : ther
405. If formula giv
that is,
as the nhm
ferent things
For brevit
which is the is written : n
Similarly
r) 17 s.
4) (1). To fi together when

Let the n t and suppose t
allul so on.

[^1]d ... we lhus:
c stands possible
ms taken
n thing
tations of and if we hall have there at a
ons of the st : and su
e n thing factor's of e last fuctor
he number ad we shall ber of per-
sen $r-1$ at
$-1-r+2)$
n $r-1$ at a
in which "

So again we shall have $(n-1) \cdot(n-2) \ldots \ldots(n-r+1)$ permutations of the n things taken r at a time in which b stands first ; and so on.

Hence the whole number of prmmations of the n things taken r at a time will be

$$
n \cdot(n-1) \cdot(n-2) \ldots \ldots(n-r+1)
$$

If then the formula holds good when the n things are taken $r-1$ at a time, it will hold good when they are taken r at a time.

But we have shown it to hold when they are taken 3 at a time; hence it will hold when they are taken 4 at a time, and so on: therelore it is true for all integral values of r.*
405. If the n things be taken all together, $r=n$, and the formula gives

$$
n \cdot(n-1) \cdot(n-2) \ldots \ldots(n-n+1) ;
$$

that is,

$$
n \cdot(n-1) \cdot(n-2) \ldots \ldots .1
$$

as the number of primutations that can be formed of n different things taken all together.

For brevity the formula

$$
n \cdot(n-1) \cdot(n-2) \ldots \ldots 1
$$

which is the se ae as $1.6 .3 \ldots . . n$, is written n. This symbol is called factorial n.

Similarly $\quad \mid r$ is pat for $1.2 .3 \ldots \ldots r$;

$$
\mid r-1 \ldots \ldots \text { for } 1.2 .3 \ldots \ldots(r-1) .
$$

Ons. $\quad|n=n \cdot| n-1=n \cdot(n-1) \cdot n-2=\& \mathrm{Ec}$.
40\%. To fiml the mumber of permutations of n things taken all bogether when certuin of the things are ulitie.

Let the n things be represented by the latters $a, b, c, d \ldots .$. anl suppose that a recurs p times, b...... q times, r r times,
and so on.

[^2]Let I represent the whole number of permutations.
Then if all the p letters a were changed into p other letters, different from each other and from all the rest of the n latters. the places of these p letters in amy one permutation could now be interchanged, each interchange giving rise to a new permutation, and thes from each single permatation we conld form $1.2 \ldots \ldots p$ permutations in all, and the whole number of permutations would be $(1.2 \ldots p) P$, that is $p . P$.

Similarly if in addition the q letters b were changed into q letters different from each other and from all the rest of the n letters, the whole number of permutations would be

$$
\underline{q} \cdot \underline{p} \cdot P
$$

and if the r letters e were also similarly changed, the whole number of permutations would be

$$
\mid r \cdot q \cdot p \cdot P
$$

and so on, if mole were alike.
But when the p, q, and r, \&c., letters have thus been changed, we slall have n letters all different, and the number of permutations that can be formed of them is \underline{n} (Art. 40\%).

Hence

$$
\begin{aligned}
& P \cdot|p \cdot| q \cdot|r \ldots \ldots=| n ; \\
& \therefore P=\frac{n}{\eta \cdot \underline{n} \cdot \cdots}
\end{aligned}
$$

EXAMPLES.-cxlvi.

1. How many permutations can be formed out of 12 things taken 2 at a time ?
2. How many permutations can be formed out of 16 things taken 3 at a time?
3. How many permutations can be formed out of 20 things taken 4 at a time?
4. How many changes can be rming with 5 bells out of 8 ?
5. How many permatations can be made of ins letters in the word Edemimation taken all together?
6. In how many ways can 8 men be placed side by side?
7. 1
8. T signals being 4 9. H the lette

IO. '] things ta
ir. 'I time : th a time $=$

I2. I torether,

I3. F product a
14. Fi out of th Ticluvera,
407. 'T different c a certain which the

Thus th $\cdots b, a c, a d$, Here fir tions: thut combinatic

Similarl are abc, abc Here firo tions; thus
7. In how many ways can 10 men be placed side by side?
8. Tharee flags are required to make a signal. How many signals can be given hy 20 thags of 5 diflerent colours, there being 4 of each colom?
9. How many different permutations can be formed out of the letters in Alyebru taken all together?
10. The mumber of things: number of permutations of the things taken 3 at a time $=1: 20$. How many things are there?

If. The number of permutations of m things taken 3 at a time : the number of permutations of $m+2$ things taken 3 at a time $=1: 5$. Find m.
12. In the permutations of a, b, c, d, e, f, g taken all togrether, find how many beroin with cel.
13. Find the nomber of permatations of the letters of the product $a^{2} b^{3} c^{1}$ written at full lingth.
14. Find the number of permutations that can be formed out of the letters in cach of the following words: Conceit, I'alavera, Calcutta, Proposition, Mississippi.

XXXIV. COMBINATIONS.

407. The Combinations of a number of things are the different collections that can be formed out of them by taking a certain number at a time, withont regard to the order in which the things stand in each eollection.

Thus the combinations of a, b, c, d taken two at a time are ab, $u c, a d, b c, b c l, c d$.

Here from each combination we could make tuo permutations: thas $a b, b a ; a c, c a ;$ and so on: for $a b, b a$ are the same combination, and so are $a c$, ca.

Similarly the combinations of a, b, c, d taken three at a time we abc, abd, acd, bcd.

Here from each combination we could make six permuta tions; thus $a b c, a c b, b u c, b c c, c u b, c b a$: and so on.

And, generally, in accordance with Art. 405, any combination of n thing.s may be made into $1.2 .3 \ldots n$ permutations.
408. To find the number of combinations of n different thing; teken r at a time.

Let C_{r} denote the number of combinations required.
Since each combination contains r things it can be made into \underline{r} permutations (Art. 405);

$$
\therefore \text { the whole number of permutations }=r \cdot C_{r}
$$

But also (from Art. 4().4) the whole number of permutations of u things taken r at a time

$$
\begin{aligned}
& =n(n-1) \ldots \ldots(n-r+1) \\
\therefore \operatorname{ra}_{r} & =n(n-1) \ldots(n-r+1) \\
\therefore C_{r} & =\frac{n(n-1) \ldots \ldots(n-r+1)}{\underline{r}}
\end{aligned}
$$

409. To show that the number of combinations of n things tuken r at a time is the same as the number taken $\mathrm{n}-\mathrm{r}$ at a time.

$$
\begin{aligned}
C_{r} & =\frac{n \cdot(n-1) \ldots \ldots(n-r+1)}{1 \cdot 2 \cdot 3 \ldots \ldots \cdot r} ; \\
C_{n \rightarrow r} & =\frac{n \cdot(n-1) \ldots \ldots\{n-(n-)+1\}}{1 \cdot 2 \cdot 3 \ldots \ldots(n-r)} \\
& =\frac{n \cdot(n-1) \ldots \ldots(r+1)}{1 \cdot 2 \cdot 3 \ldots \ldots \cdot(n-r)} .
\end{aligned}
$$

and

Hence

$$
\begin{aligned}
\frac{C_{r}}{C_{n-r}} & =\frac{n \cdot(n-1) \ldots \ldots(n-r+1)}{1 \cdot 2 \cdot 3 \ldots \ldots r} \times \frac{1 \cdot 2 \cdot 3 \ldots \ldots(n-r)}{n \cdot(n-1) \ldots \ldots(r+1)} \\
& =\frac{n \cdot(n-1) \ldots \ldots(n-r+1) \cdot(n-r) \ldots \ldots 3 \cdot 2 \cdot 1}{1 \cdot 2 \cdot 3 \ldots \ldots \cdot \cdot(r+1) \ldots \ldots(n-1) \cdot n} \\
& =\frac{\mid n}{\frac{\mid n}{2}} \\
& =1 .
\end{aligned}
$$

That is,

$$
C_{r}=C_{n-r}
$$

Henc one of that wh

With

> (1) II
(2) It
which de
(3) T
successive each of th
(4) W respondin
410. Making $r=1,2,3 \ldots \ldots r-1, r, r+1$ in order,

$$
\begin{aligned}
& C_{1}=n, C_{2}=\frac{n}{1} \cdot \frac{n-1}{2}, C_{3}=\frac{n}{1} \cdot \frac{n-1}{2} \cdot \frac{n-2}{3} . \\
& C_{r-1}=\frac{n \cdot(n-1) \ldots \ldots(-r+2)}{1 \cdot 2 \ldots \ldots(r-1)} \\
& C_{r}^{\prime}=\frac{n \cdot(n-1) \ldots \ldots(n-r+2) \cdot(n-r+1)}{1 \cdot 2 \ldots \ldots(r-1) \cdot r} \\
& C_{r+1}=\frac{n \cdot(n-1) \ldots \ldots(n-r+1) \cdot(n-r)}{1 \cdot 2 \ldots \ldots \cdot(r+1)} \\
& C_{n}=1 .
\end{aligned}
$$

Hence the general expression for the factor connecting C_{r}, one of the set of numbers $C_{1}, C_{2} \ldots \ldots C_{r+1} \ldots \ldots C_{n}$, with C_{r-1}, that which stands next before it, is $\frac{n-r+1}{r}$, that is,

$$
C_{r}=\frac{n-r+1}{r} . C_{r-1}
$$

With regard to this factor $\frac{n-r+1}{r}$, we observe
(1) It is always positive, becanse $n+1$ is greater than r.
(2) Its value continually decreases, for

$$
\frac{n-r+1}{r}=\frac{n+1}{r}-1,
$$

which decreases as r increases.
(3) Though $\frac{n-r+1}{r}$ continually decreases, yet for several successive values of r it is greater than unity, and therefore each of the corresponding terms is greater than the breceding.
(4) When r is such that $\frac{n-r+1}{r}$ is less than unity the corresponding term is less than the preceding.
(5) If n and r be such that $\frac{n-r+1}{r}=1, C_{r}$ and C_{r-1} are a pair of equal tomis, each greater than any preceding or subsequent term.

Hence up to a ceriain term (or pair of terms) the terms increase, and after that decrease : this term (or pair of terms) is the greatest of the series, and it is the olject of the next Article to determine what value of r gives this greatest term (or pair of terms).
411. To find the value of. r for which the number of combinations of n things taken r together is the greatest.

$$
\begin{aligned}
C_{r-1}^{\prime} & =\frac{n \cdot(n-1) \ldots \ldots(n-r+2)}{1 \cdot 2 \ldots \ldots(r-1)} \\
C_{r} & =\frac{n \cdot(n-1) \ldots \ldots(n-r+2)}{1 \cdot 2 \ldots \ldots(r-1)} \cdot \frac{(n-r+1)}{r} \\
C_{r+1} & =\frac{n \cdot(n-1) \ldots \ldots(n-r+1)}{1 \cdot 2 \ldots \ldots \cdot r} \cdot \frac{n-r}{r+1}
\end{aligned}
$$

Ex.

 that th sible?Here taken i

Ex. to be t respecti
I. C
and

$$
\begin{aligned}
& \frac{C_{r}^{\prime}}{U_{r-1}^{\prime}}=\frac{n-r+1}{r} \\
& \frac{C_{r}^{\prime}}{U_{r+1}}=\frac{r+1}{n-r}
\end{aligned}
$$

Hence $\frac{n-r+1}{r}$ is not less than 1 and $\frac{r+1}{n-r}$ is not less than 1 , or, $\quad n-r+1$ is not less than r and $r+1$ not less than $n-r$, or, $\quad n+1$ is not less than $2 r$ and $2 r$ not less than $n-1$;
$\therefore 2 r$ is not greater than $n+1$ and not less than $n-1$.
Hence $2 r$ can have only three values, $n-1, n, n+1$.
Now $2 r$ must be an even number, and therefore
(1) If n be odd, $n-1$ and $n+1$ being both even numbers, $2 r$ may be equal to $n-1$ or $n+1$;
be chos
2. F 5 at a
3. taken 5
4. F sonents and 5 v
5. T time : t
6. I

$$
\therefore r=\frac{n-1}{2} \text { or } r=\frac{n+1}{2} .
$$

(2) If n be even, $n-1$ and $n+1$ being both odd numbers, $2 r$ can only be equal to n;

$$
\therefore r=\frac{n}{2} .
$$

Ex. 1. Of eight things how many must be taken together that the number of combinations may be the greatest possible ?

Here $n=8$, an even number, therefore the number to be taken is 4 , which will give $\frac{8 \times 7 \times 6 \times 5}{1 \times 2 \times 3 \times 4}$ or 70 combinations.

Ex. 2. If the number of things be 9 , then the number to be taken is $\frac{9-1}{2}$ or $\frac{9+1}{2}$, that is 4 or 5 , which will give respectively

$$
\begin{aligned}
& \frac{9 \times 8 \times 7 \times 6}{1 \times 2 \times 3 \times 4}, \text { or } 126 \text { combinations, and } \\
& \frac{9 \times 8 \times 7 \times 6 \times 5}{1 \times 2 \times 3 \times 4 \times 5}, \text { or } 126 \text { combinations. }
\end{aligned}
$$

EXAMPLES.-cxlvii.

r. Out of 100 soldiers how many different parties of 4 can be chosen?
2. How many combinations can be made of 6 things taken 5 at a time?
3. Of the combinations of the first 10 letters of the alphabet taken 5 together, in how many will a occur?
4. How many words can be formed, consisting of 3 consonents and one vowel, in a language containing 19 consonants and 5 vowels?
5. The number of compinations of n things taken 4 at a time: the number taken 2 at a time $=15: 2$. Find n.
6. The number of combinations of n things, taken 5 at
a time, is 3_{5}^{3} times the number of combinations taken 3 it a time. Find n.
7. Out of 17 consomants and 5 vowels, how mamy worls can be formed, cach containing 2 vowels anl 3 consomants ?
8. Ont of 12 comsonants and 5 vowels how many words ean be formed, each containing 6 consonants and 3 vowels?
9. The mumber of permutations of n things, 3 at a time, is 6 times the number of combinations, 4 at a time. Find n.

Io. How many diferent smms may be formed with a ghinea, a half-guinea, a crown, a half-crown, a shilling, and a sixpence?

I I. At a game of cards, 3 being dealt to each person, any one can have 425 times as may hunds as there are cards in the pack. How many cards are there?
12. There are 12 soldiers and 16 sailors. How many different parties of 6 cam be made, tach party consisting of 3 soldiers and 3 sailors?
13. On how many nights can a lifferent patrol of 5 men be dranghted from a corps of 36 ? On how many of these would any one man be taken?
XXXV. THE BINOMIAL THEOREM. POSITIVE INTEGRAL INDEX.
412. The Binomial Theorem, first explained by Newton, is a method of rusing a binomial expression to any power without going through the process of actual multiplication.
413. To incestigute the Binomiul Theorem for a Positive Integral Intex.
liy actual multiplication we cam show that.

$$
\begin{aligned}
& \left(a+u_{1}\right)\left(x+u_{2}\right)=a+\left(u_{1}+u_{12}\right), u+\left(u_{1} u_{2}\right. \\
& \left(x+a_{1}\right)\left(x+u_{1}\right)\left(x+u_{3}\right)=x^{3}+\left(u_{1}+u_{2}+u_{3}\right) x^{2} \\
& +\left(a_{1} a_{2}+a_{1} a_{3}+\left(a_{2} a_{3}\right) x+a_{1} a_{2} a_{3}\right. \\
& \left(x+a_{1}\right)\left(x+a_{4}\right)\left(x+a_{3}\right)\left(x+a_{4}\right)=x^{4}+\left(u_{1}+a_{2}+a_{3}+a_{4}\right) x^{3}
\end{aligned}
$$

In these results we observe the following laws :
I. Each prombet is composed of 11 descending series of powers of x. The intex of ex in the linst term is the same as the number of finctor: and the indies of x decrease ly mity in each suceeeding term.
11. 'The number of terms is greater by 1 than the number of factors.
III. The cocflicient of the forst term is mity.
of the second the simm of $a_{1}, a_{2}, a_{3} \ldots$
of the third the sum of the products of $a_{1}, u_{2}, a_{3} \ldots$. wken two at a time.
of the foreth the sum of the products of $u_{1}, u_{2}, u_{3} \ldots$ tuken three at a time.
and the last term is the product of all the quantities

$$
u_{1}, t_{2}, u_{3} \ldots \ldots
$$

Suppose now this haw to hoh for $u-1$ factors, so that

$$
\begin{aligned}
&\left(x+a_{1}\right)\left(x+a_{2}\right)\left(c+a_{3}\right) \ldots \ldots\left(a+a_{n-1}\right) \\
&=x^{n-1}+S_{1} \cdot x^{n-2}+S_{3} \cdot x^{n-3}+S_{3} \cdot x^{n-4}+\ldots \ldots+S_{n-1},
\end{aligned}
$$

where $S_{1}=u_{1}+u_{2}+u_{3}+\ldots+u_{n-1}$,
that is, the sum of $a_{1}, a_{2}, a_{3} \ldots a_{n-1}$,
$S_{2}=a_{1} a_{2}+a_{1} a_{3}+a_{2} a_{3}+\ldots+a_{1} u_{n-1}+a_{2} a_{n-1}+\ldots$ that is, the sum of the products of $a_{1}, a_{2}, a_{3} \ldots a_{n-1}$, taken two at a time,
$S_{3}=a_{1} u_{2} c_{3}+u_{1} u_{2} u_{4}+\ldots+u_{1}{ }^{\prime} u_{2} u_{n-1}+u_{1} \epsilon_{3} u_{n-1}+\ldots$
that is, the sum of the products of $a_{1}, a_{2} \ldots a_{n-1}$, taken three at a time,

$$
S_{n-1}=a_{1} a_{2} a_{3} \ldots u_{n-1}
$$

that is, the product of $a_{1}, a_{2}, a_{3} \ldots a_{n-1}$.
Now multiply both sides by $x+a_{n}$.
Then

$$
\begin{aligned}
& \left(x+a_{1}\right)\left(x+u_{n}\right) \ldots\left(x+a_{n-1}\right)\left(x+a_{n}\right) \\
& =x^{n}+S_{1} x^{n-1}+S_{2} x^{n-2}+S_{3} x^{n-3}+\ldots \\
& \quad+a_{n} x^{n-1}+u_{n} S_{1} x^{n-2}+u_{n} S_{2} x^{n-3}+\ldots+a_{n} S_{n-1} \\
& = \\
& =x^{n}+\left(S_{1}+u_{n}\right) u^{n-1}+\left(S_{2}+u_{n} S_{1}\right) x^{n-2} \\
& \quad+\left(S_{3}+u_{n} S_{2}\right) x^{n-3}+\ldots+u_{n} S_{n-1} .
\end{aligned}
$$

Now $S_{1}+a_{n}=a_{1}+a_{2}+a_{3}+\ldots+u_{n-1}+a_{n}$,
that is, the sum of $a_{1}, a_{2}, u_{3} \ldots u_{n}$,
$S_{2}+a_{n} S_{1}=S_{2}+a_{n}\left(a_{1}+a_{2}+\ldots+a_{n-1}\right)$,
that is, the sum of the products of $a_{1}, a_{2} \ldots a_{n}$, taken two at a time,

$$
S_{3}+u_{n} S_{2}=S_{3}+u_{n}\left(u_{1} u_{2}+a_{1} u_{3}+\ldots\right),
$$

that is, the sum of the products of $a_{1}, a_{2} \ldots a_{n}$, taken three at a time,

$$
a_{n} S_{n-1}=a_{1} a_{2} u_{3} \ldots u_{n-1} a_{n}
$$

that is, the product of $a_{1}, a_{2}, a_{3} \ldots a_{n}$.
If then the law holds good for $n-1$ factors, it will hold good for n factors: and as we have shown that it holds good up to 4 factors it will hold for 5 factors : and hence for 6 factors : and so on for any number.

Now let each of the n rquantities $a_{1}, a_{2}, a_{3} \ldots a_{n}$ bee equal to a, and let us write our result thus:

$$
\left(x+a_{1}\right)\left(x+a_{2}\right) \ldots\left(x+u_{n}\right)=w^{n}+A_{1} \cdot x^{n-1}+A_{2} \cdot x^{n-2}+\ldots+A_{n} .
$$

The left-hand side becomes

$$
(x+a)(x+a) \ldots(x+a) \text { to } n \text { factors, that is, }(x+a)^{n} .
$$

And on the right-hand side

$$
A_{1}=a+a+a+\ldots \text { to } n \text { terms }=n a
$$

$A_{2}=u^{2}+a^{2}+u^{2}+\ldots$ to as many terms as are equal to the number of combinations of n things taken two at a time, that is $\frac{n \cdot(n-1)}{1.2}$;

$$
\therefore A_{2}=\frac{n \cdot(n-1)}{1 \cdot 2} \cdot u^{2},
$$

$A_{3}=a^{3}+a^{3}+a^{3}+\ldots$ to as many terms as are equal to the number of combinations of n things taken three at a time, that is $\frac{n \cdot(n-1) \cdot(n-2)}{1 \cdot 2 \cdot 3}$;

$$
\therefore A_{3}=\frac{n \cdot(n-1) \cdot(n-2)}{1 \cdot 2 \cdot 3} \cdot \iota^{3}
$$

$$
A_{n}=a \cdot a \cdot a \ldots \text { to } n \text { factors }=u^{n} .
$$

Hence we obtain as our final result

$$
\begin{aligned}
(x+a)^{n}=x^{n}+n a x^{n-1} & +\frac{n \cdot(n-1)}{1 \cdot 2} a^{2} \cdot x^{n-2} \\
& +\frac{n \cdot(n-1) \cdot(n-2)}{1 \cdot 2 \cdot 3} \cdot a^{3} x^{n-3}+\ldots+a^{n}
\end{aligned}
$$

414. Ex. Exphand $(x+a)^{6}$.

Here the number of terms will be seven, and we have

$$
\begin{aligned}
(x+a)^{6}= & x^{6}+6 a x^{5}
\end{aligned}+\frac{6 \cdot 5}{1 \cdot 2} a^{2} \cdot x^{4}+\frac{6 \cdot 5 \cdot 4}{1 \cdot 2 \cdot 3} a^{3} \cdot x^{3} .
$$

Note. The coefficients of terms equidistant from the end and from the lecgimning are the same. 'The general proof of this will be given in Art. 420.

Hence in the Example just given when the coefficients of four terms had been fomd those of the other three might have been written down at ouce.

Expand the following expressions:
I. $(a+x)^{4}$.
2. $(b+c)^{i}$.
3. $(a+b)^{7}$.
4. $(x+y)^{8}$.
5. $\quad(5+4 a)^{4}$.
6. $\left(a^{2}+b c\right)^{5}$.
415. Since

$$
(x+a)^{n}=x^{n}+n a x^{n-1}+\begin{gathered}
n \cdot(n-1) \\
1 \cdot 2
\end{gathered} \cdot a^{2} x^{n-2}+\ldots+a^{n}
$$

if we put $x=1$, we shall have

$$
(1+a)^{n}=1+n a+\frac{n \cdot(n-1)}{1.2} \cdot a^{2}+\ldots+u^{n}
$$

416. Every binomial may be reduced to such a form that the part to be expanded may have 1 for its first term.

Thus since

$$
\begin{aligned}
x+a & =x\left(1+\frac{a}{x}\right), \\
(x+a)^{n} & =x^{n}\left(1+\frac{a}{x}\right)^{n} ;
\end{aligned}
$$

and we may then expand $\left(1+\frac{d}{x}\right)^{n}$ and multiply each term of the result by x^{n}.

Ex. Expand $(2 x+3 y)^{5}$.

$$
\begin{aligned}
(2 x+3 y)^{5}= & (2 x)^{5} \cdot\left(1+\frac{3 y}{2 x}\right)^{5} \\
= & 32 x^{5} \cdot\left\{1+5 \cdot \frac{3 y}{2 x}+\frac{5 \cdot 4}{1 \cdot 2 \cdot\left(\frac{3 y}{2 x}\right)^{2}+\frac{5 \cdot 4 \cdot 3}{1 \cdot 2 \cdot 3} \cdot\left(\frac{3 y}{2 x}\right)^{3}}\right. \\
& \left.+\frac{5 \cdot 4 \cdot 3 \cdot 2}{1 \cdot 2 \cdot 3 \cdot 4} \cdot\left(\frac{3 y}{2 x}\right)^{4}+\left(\frac{3 y}{2 x}\right)^{5}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =32 x^{5}\left\{1+\frac{15 y}{2 x^{2}}+\frac{90 y^{2}}{4 x^{2}}+\frac{270 y^{3}}{8 x^{3}}+\frac{405 y^{4}}{16 x^{4}}+\frac{243 y^{5}}{32 x^{5}}\right\} \\
& =32 x^{5}+240 x^{4} y+720 x^{3} y^{2}+1080 x^{2} y^{3}+810 x^{4}+243 y^{5}
\end{aligned}
$$

417. The expansion of $(x-a)^{n}$ will be preciscly the same as that of $(x+a)^{n}$, except that the sign of terms in which the orld power's of a enter, that is the second, fourth, sixth, and other even terms, will be negative.

Thus $(x-a)^{n}=x^{n}-n a x^{n-1}+\frac{n \cdot(n-1)}{1 \cdot 2} \cdot a^{2} \cdot x^{n-2}$

$$
-\frac{n \cdot(n-1) \cdot(n-2)}{1 \cdot 2 \cdot 3} \cdot a^{3} x^{n-3}+\ldots \ldots
$$

for

$$
\begin{aligned}
(x-a)^{n} & =\{x+(-a)\}^{n} \\
& =x^{n}+n(-a) x^{n-1}+\frac{n \cdot(n-1)}{1 \cdot 2^{-}}(-a)^{2} x^{n-2}+\& c . \\
& =x^{n}-n a x^{n-1}+\frac{n \cdot(n-1)}{1 \cdot 2} a^{2} \cdot x^{n-2}+\& c .
\end{aligned}
$$

Ex. Expand $(a-c)^{\circ}$.

$$
\begin{aligned}
(i-c)^{5} & =a^{5}-5 a^{4} c+\frac{5 \cdot 4}{1 \cdot 2} a^{3} c^{2}-\frac{5 \cdot 4 \cdot 3}{1 \cdot 2 \cdot 3 u^{2} c^{3}+\frac{5 \cdot 4 \cdot 3 \cdot 2}{1 \cdot 2 \cdot 3 \cdot 4} a c^{4}-c^{5} .} \\
& =a^{5}-5 a^{4} c+10 u^{3} c^{2}-10 a^{2} c^{3}+5 u c^{4}-t^{5}
\end{aligned}
$$

EXAMPLES.- CXIIX.

Expand the following expressions:
I. $(a-x)^{6}$.
2. $(b-c)^{7}$.
3. $(2 x-3 y)^{5}$.
4. $(1-2 x)^{5}$.
5. $(1-x)^{10}$.
6. $\left(a^{3}-l^{2}\right)^{8}$.
418. A trinomial, as $a+b+c$, may be raised to any power hy the Binomial Theorem, if we regatd two terms as one, thens:
$(a+b+c)^{n}=(a+b)^{n}+n \cdot(a+b)^{n-1} \cdot c$

$$
+\frac{n \cdot(n-1)}{1 \cdot 2} \cdot(a+l)^{n-2} \cdot c^{2}+\ldots \ldots
$$

Ex. Expand $\left(1+x+x^{2}\right)^{3}$.

$$
\begin{aligned}
&\left(1+x+x^{2}\right)^{3}=(1+x)^{3}+3(1+x)^{2} \cdot x^{2}+\frac{3.2}{1.2}(1+x) \cdot x^{4}+x^{6} \\
&=\left(1+3 x+3 x^{2}+x^{3}\right)+3\left(1+2 x+x^{2}\right) x^{2} \\
& \quad+3(1+x) x^{4}+x^{6} \\
&= 1+3 x+3 x^{2}+x^{3}+3 x^{2}+6 x^{3}+3 x^{4}+3 x^{4} \\
& \quad+3 x^{5}+x^{6} \\
&= 1+3 x+6 x^{2}+7 x^{3}+6 x^{4}+3 x^{5}+x^{6} .
\end{aligned}
$$

EXAMPLES.-cl.

Expand the following expressions:
I. $(a+2 b-c)^{3}$.
2. $\left(1-2 x+3 x^{2}\right)^{3}$.
3. $\left(x^{3}-x^{2}+x\right)^{3}$.
4. $\left(3 x^{\frac{1}{3}}+2 x^{\frac{1}{8}}+1\right)^{3}$.
5. $\left(x+1-\frac{1}{x}\right)^{3}$.
6. $\left(a^{\frac{1}{4}}+b^{\frac{1}{4}}-c^{\frac{1}{4}}\right)^{3}$.
419. To find the $1^{\text {th }}$ or general term of the expansion of $(x+a)^{n}$.

We have to determine three things to enable us to write down the $r^{\text {th }}$ term of the expansion of $(x+a)^{n}$.

1. The index of x in that term.
2. The index of a in that term.
3. The coefficient of that term.

Now the index of x, decreasing by 1 in each term, is in the $r^{\text {th }}$ term $n-r+1$; and the index of a, increasing loy 1 in each term, is in the $r^{\text {th }}$ term $r-1$.

For example, in the third term
the index of x is $n-3+1$, that is, $n-2$;
the index of a is $3-1$, that is, 2 .
All assigning its proper coefficient to the $r^{\text {th }}$ term we have to determine the last factor in the denominator and also in the numerator of the fraction

$$
\frac{n \cdot(n-1) \cdot(n-2) \cdot(n-3) \ldots \ldots}{1 \cdot 2 \cdot 3 \cdot 4 \ldots \ldots}
$$

Now the last factor of the denominator is less by 1 than the number of the term to which it belongs. Thus in the $3^{\text {rd }}$ term the last factor of the denominator is 2 , and in the $r^{\text {th }}$ term the last factor of the denominator is $r-1$.

The last factor of the numerator is formed by subtracting from n the number of the term to which it belongs and adding 2 to the result.

Thus in the $3^{\text {rd }}$ term the last factor of the numerator is

$$
n-3+2 \text {, that is } n-1 \text {; }
$$

in the $4^{\text {th }}$
$n-4+2$, that is $n-2$;

Observe also that the factors of the numerator derrease ly unity, and the factors of the denominator increase b_{j} unity, so that the coefficient of the $r^{\text {th }}$ term is

$$
\frac{n \cdot(n-1) \cdot(n-2) \ldots \ldots(n-r+2)}{1 \cdot 2 \cdot 3 \ldots \ldots(r-1)}
$$

Collecting our results, we write the $r^{\text {th }}$ term of the expansion of $(x+a)^{n}$ thus :

$$
\frac{n \cdot(n-1) \cdot(n-2) \ldots \ldots(n-r+2)}{1 \cdot 2 \cdot 3 \ldots \ldots(r-1)} \cdot a^{r-1} \cdot x^{n-r+1} .
$$

Obs. The index of a is the same as the last factor in the denominator. The sum of the indices of a and x is n.

EXAMPLES.-cli.

Find
I. The $8^{\text {th }}$ term of $(1+x)^{11}$.
2. The $5^{\text {th }}$ term of $\left(a^{2}-b^{2}\right)^{12}$.
3. The $4^{\text {th }}$ term of $(a-b)^{10 n}$.
4. The $9^{\text {th }}$ term of $(2 a b-c d)^{14}$.
5. The middle term of $(a-3)^{16}$.
6. The middle term of $\left(a^{\frac{1}{8}}+b^{\frac{1}{8}}\right)^{8}$.
7. The two middle terms of $(a-b)^{19}$.
8. The two middle terms of $(a+x)^{13}$.
9. Show that the coefficient of the middle term of

$$
(a+x)^{4 n} \text { is } 2^{2 n} \times \frac{1.3 .5 \ldots \ldots(4 n-1)}{1.2 .3 \ldots \ldots 2 n}
$$

10: Show that the coefficient of the middle term of

$$
(n+x)^{4 n+2} \text { is } 2^{n+1} \times \frac{(2 n+3)(2 n+5) \ldots \ldots(4 n-1)(4 n+1)}{1.2 \ldots \ldots n}
$$

420. To show that the coefficient of the $\mathrm{r}^{\text {th }}$ term from the beginning of the expansion of $(x+a)^{n}$ is identical with the coefficient of the $\mathbf{1}^{\text {tr }}$ term from the end.

Since the number of terms in the expansion is $n+1$, there are $n+1-r$ terms before the $r^{\text {th }}$ term from the end, and therefore the $r^{\text {th }}$ term from the end is the $(n-r+2)^{\text {th }}$ term from the begimning.

Thus in the expansion of $(x+a)^{5}$, that is,

$$
x^{5}+5 a x^{4}+10 a^{2} x^{3}+10 a^{3} x^{2}+5 a^{4} x+a^{5}
$$

the $3 \mathrm{r} d$ term from the end is the $(5-3+2)^{\text {th }}$, that is the $4^{\text {th }}$ term from the beginning.

Now if we denote the coefficient of the $r^{\text {th }}$ term by C_{r}, and the coefficient of the $(n-r+2)^{\text {th }}$ term by C_{n-r+2}, we have

$$
\begin{aligned}
C_{r} & =\frac{n \cdot(n-1) \ldots \ldots(n-r+2)}{1 \cdot 2 \ldots \ldots \cdot(r-1)}, \\
C_{n-r+2} & =\frac{n \cdot(n-1) \ldots \ldots \cdot(n-(n-r+2)+2\}}{1 \cdot 2 \ldots \ldots(n-r+2-1)} \\
& =\frac{n \cdot(n-1) \ldots \ldots \cdot r}{1 \cdot 2 \ldots \ldots(n-r+1)} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
C_{r} & =\frac{n \cdot(n-1) \ldots \ldots(n-r+2)}{1 \cdot 2 \ldots \ldots(r-1)} \times \frac{1 \cdot 2 \ldots \ldots(n-r+1)}{\cdot n \cdot(n-1) \ldots \ldots \cdot r} \\
& =\frac{n \cdot(n-1) \ldots \ldots(n-r+2) \cdot(n-r+1) \ldots \ldots 2 \cdot 1}{1 \cdot 2 \ldots \ldots(r-1) \cdot r \ldots \ldots \cdot(n-1) \cdot n} \\
& =\frac{n}{n}=1, \text { which proves the proposition. }
\end{aligned}
$$

> If

The

421. Tis find the greatest term in the equension of $(x+a)^{n}, n$ 1). ing a positive integer.

The $r^{\text {th }}$ term of the expansion $(a+c)^{n}$ is

$$
\frac{n \cdot(n-1) \ldots \ldots(n-r+2)}{1 \cdot 2 \ldots \ldots(r-1)} \cdot u^{r-1} \cdot u^{n-r+1}
$$

The $(r+1)^{\text {th }}$ term of the expansion $(x+a)^{n}$ is

$$
\frac{n \cdot(n-1) \ldots \ldots \cdot(n-r+2) \cdot(n-r+1)}{1 \cdot 2 \ldots \ldots(r-1) \cdot r} \cdot u^{r} \cdot w^{n-r} .
$$

Hence it follows that we obtain the $(r+1)^{\text {th }}$ term loy multiplying the $r^{\text {th }}$ term by

$$
\frac{n-r+1}{r} \cdot \frac{\pi}{\pi}
$$

When this multiplier is first less than 1 , the $r^{\text {th }}$ term is the greatest in the expansion.

Now

$$
\frac{n-r+1}{r} \cdot \frac{a}{x} \text { is first less than } 1
$$

when

$$
n u-r a+a \text { is first less than } r x,
$$

or

$$
u a+a \text { first less than } r u+r u
$$

$r(a+a)$ first greater than $a(n+1)$,
or

$$
r \text { first greater than } \frac{a(n+1)}{x+a}
$$

If r be equal to $\frac{u(u+1)}{a+a}$, then $\frac{u-r+1}{r} \cdot \frac{a}{a}=1$, and the $(r+1)^{\text {th }}$ term is equal to the $r^{\text {th }}$, and each is greater than any other term.

Ex. Find the greatest term in the expansion of $(t+a)^{7}$, when $a=\frac{3}{2}$.

$$
\frac{u(n+1)}{x+u}=\frac{2(7+1)}{4+\frac{3}{2}}=\frac{12}{\frac{21}{2}}=\frac{24}{11}=21_{11}^{2} .
$$

The first whole number greater than 2_{1}^{2} is 3 , therefore the greatest term of the expansion is the 3rol.
422. To fiul the sum of all the coefficients in the expansion of $(1+x)^{n}$.

$$
\text { Since } \begin{aligned}
&(1+x)^{n}=1+n x+\frac{n \cdot(n-1)_{x^{2}}+\ldots \ldots}{1 \cdot 2} \\
&+\frac{n \cdot(n-1)}{1.2} x^{n-2}+n x^{n-1}+x^{n} \ldots \ldots
\end{aligned}
$$

putting

$$
x=1 \text {, we get }
$$

$$
2^{n}=1+n+\frac{n \cdot(n-1)}{1.2}+\ldots \ldots+\frac{n \cdot(n-1)}{1.2}+n+1 ;
$$

or, $\quad 2^{n}=$ the sum of all the coefticients.
423. T'o show that the sum of the coefficients of the odd term in the expansion of $(1+x)^{\text {os }}$ is equal to the sum of ihe coefficionts of the cven terms.

Since

$$
(1+n)^{n}=1+n x+\frac{n \cdot(n-1)}{1 \cdot 2} x^{2}+\frac{n \cdot(n-1) \cdot(n-2)}{1 \cdot 2 \cdot 3} x^{3}+\ldots \ldots
$$

putting $\quad i c=-1$, we get

$$
\begin{aligned}
(1-1)^{n}= & 1-n+\frac{n \cdot(n-1)}{1 \cdot 2}-\frac{n \cdot(n-1) \cdot(n-2)}{1 \cdot 2 \cdot 3}+\ldots \ldots \\
0= & \left\{1+\frac{n \cdot(n-1)}{1 \cdot 2}+\ldots \ldots\right\} \\
& \quad-\left\{n+\frac{n \cdot(n-1) \cdot(n-2)}{1 \cdot 2 \cdot 3}+\ldots \ldots\right\}
\end{aligned}
$$

$=$ sum of coefficients of odd terms - sum of coeflicients of even terms;
\therefore sum of cocfficients of odd terms $=$ stun of coefficients of even terms.

Hence, by the preceding Article,

$$
\begin{aligned}
& \text { sum of coeflicients of odd terms }=\frac{2^{n}}{2}=2^{n-1} ; \\
& \text { sum of coefficients of even terms }=\frac{2^{n}}{2}=2^{n-1}
\end{aligned}
$$

XXXVI. THE BINOMIAL THEOREM. FRACTIONAL AND NEGATIVE INDICES.
424. We have shown that when m is a positive integer,

$$
(1+x)^{m}=1+m x+\frac{m \cdot(m-1)}{1 \cdot 2} x^{2}+\ldots \ldots
$$

We have now to show that this equation holds grood when m is a positive fraction, as $\frac{3}{2}$, a negrative integer, as -3 , or a negative fraction, as $-\frac{3}{4}$.

We shall give the proof devised ly Euler.
425. If m be a positive integer we know that $(1+x)^{m}=1+m x+\frac{m \cdot(m-1)}{1 \cdot 2} x^{2}+\frac{m \cdot(m-1) \cdot(m-2)}{1 \cdot 2 \cdot 3} x^{3}+\ldots \ldots$

Let us agree to represent a series of the form

$$
1+m x+\frac{m \cdot(m-1)}{1.2} x^{2}+\ldots \ldots
$$

by the symbol $f(m)$, whatever the value of m may be.
Then we know that when m is a positive integer

$$
(1+x)^{m}=f(m) ;
$$

and we have to show that, also, when m is fractional or negative

$$
(1+x)^{m}=f(m) .
$$

Since

$$
\begin{aligned}
& f(m)=1+m x+\frac{m \cdot(n-1)}{1 \cdot 2} x^{2}+\ldots \ldots \\
& f(n)=1+n x+\frac{n \cdot(n-1)}{1 \cdot 2} x^{2}+\ldots \ldots
\end{aligned}
$$

If we multiply together the two series, we shall obtain an expression of the form

$$
1+a x+b x^{2}+c x^{3}+d x^{4}+
$$

that is, a series of ascending, powrers of a in which the coetticicuts a, b, r \qquad are formed hey varioms combinations of m and n.
'To determine the morle in which a and bare formed, let us commence the multiplication of the two series and continue it as far as terms involving x^{2}, thas

$$
\begin{aligned}
& f(m)=1+m x+\frac{m \cdot(m-1)}{1 \cdot 2} x^{2}+\ldots \ldots \\
& f(n)=1+n x+\frac{n \cdot(n-1)}{1 \cdot 2} x^{2}+\ldots \ldots
\end{aligned}
$$

$$
\begin{aligned}
f(m) \times f(n)=1 & +m x
\end{aligned}+\frac{m \cdot(m-1)}{1 \cdot 2} x^{2}+\ldots \ldots .
$$

$$
\begin{aligned}
1+(m+n) \cdot x+ & \left\{\frac{m \cdot(m-1)}{1 \cdot 2}\right. \\
& \left.+m n+\frac{n \cdot(n-1)}{1.2}\right\} x^{2}+\ldots \ldots
\end{aligned}
$$

Comparing this product with the assumed expression

$$
1+a x+b x^{2}+c x^{3}+d x^{4}+\ldots \ldots
$$

we see that
and

$$
\begin{aligned}
u & =m+n, \\
b & =\frac{m \cdot(m-1)}{1 \cdot 2}+m n+\frac{n \cdot(n-1)}{1 \cdot 2} \\
& =\frac{m^{2}-n+2 m n+n^{2}-n}{1 \cdot 2} \\
& =\frac{(m+n) \cdot(m+n-1)}{1 \cdot 2}
\end{aligned}
$$

Thu extent follow
'I小 and n velues and n

If th m and formati

Now
\therefore

Henc

Henc
and so s

Similarly we could show by actual nulliplicetion that

$$
\begin{gathered}
c=\frac{(m+n) \cdot(m+n-1) \cdot(m+n-2)}{1 \cdot 2 \cdot 3} \\
d=\frac{(m+n) \cdot(m+n-1) \cdot(m+n-2) \cdot(m+n-3)}{1 \cdot 2 \cdot 3 \cdot 4}
\end{gathered}
$$

Thus we might determine the strecessive coefficients to any extent, but we mat ascertain the leov of their formution by the following considerations.
'The forms of the coetlicients, that is, the way in which m and n are involved in them, do not depend in any way on the values of m and n, but will be precisely the same whether m and n be positive integers or any numbers whatsoever.

If then we can determine the law of their formation when m and u are positive integers, we shall know the law of their formation for all values of m and n.

Now when m and u are positive integers,

$$
\begin{aligned}
& f(m)=(1+c)^{m} \\
& f(n)=(1+c)^{n} ; \\
& \therefore f(m) \times f(n)=(1+x)^{m} \times(1+x)^{n} \\
& \\
& =(1+x)^{m+n} \\
& \\
& =1+(m+n) x+\frac{(m+n) \cdot(m+n-1)}{1 \cdot 2} \cdot w^{2}+\cdots \\
& \\
& =
\end{aligned}
$$

Hence we conchule that whatever be the values of m and n

$$
f(m) \times f(n)=f(m+n)
$$

Hence

$$
\begin{aligned}
f(m+n+p) & =f(m) \cdot f(n+p) \\
& =f(m) \cdot f(n) \cdot f(p)
\end{aligned}
$$

and so generally

$$
f(m+n+p+\ldots)=f(m) \cdot f(n) \cdot f\left(l^{\prime}\right) \ldots
$$

Now let $m=n=p=\ldots=\stackrel{h}{k}, h$ and k being positive integers, then

$$
\begin{aligned}
& f\left(\frac{h}{k}+\frac{h}{k_{i}}+\frac{h}{k}+\ldots \text { to } k \text { terms }\right) \\
& =f\binom{h}{k} \cdot f\binom{h}{k} \cdot f\left(\frac{h}{k}\right) \ldots \text { to } k \text { fictors. } \\
& \text { or, } \\
& \therefore(h)=\left\{f\binom{h}{k}\right\}^{*}, \\
& \text { or, } \\
& \left(1+r^{n}\right)^{n}=\left\{f\binom{h}{k}\right\}^{n} ; \\
& \therefore(1+x)^{\frac{h}{k}}=f\binom{h}{\frac{h}{i}} \\
& =1+\frac{h}{k} t+\frac{\sum_{i} \cdot\binom{h}{2}}{1 \cdot 2} x^{2}+\ldots
\end{aligned}
$$

which proves the theorem for a positive fractional index.
Again, since $f(m) \cdot f(n)=f(m+n)$ for all values of m and n, let $n=-m$, then

$$
\begin{aligned}
f(m) \cdot f(-m) & =f(m-m) \\
& =f(0) .
\end{aligned}
$$

Now the series

$$
1+m x+\frac{m \cdot(m-1)}{1 \cdot 2} x^{2}+\ldots
$$

becomes 1 when $m=0$, that is, $f(0)=1$;

$$
\begin{aligned}
& \therefore f(m) \cdot f(-m)=1 \text {; } \\
& \therefore f(-m)=\frac{1}{f(m)}=\frac{1}{(1+s)^{n}}=(1+x)^{-n} \text {; } \\
& \therefore(1+c)^{-m}=f(-m) \\
& =1+(-m) x+\frac{-m(-m-1)}{1.2} x^{2}+\ldots
\end{aligned}
$$

which proves the theorem for a neyetive index, integral or firactional.
426. Ex. Expand $(a+x)^{\frac{1}{2}}$ to four terms.

$$
\begin{array}{r}
(a+x)^{\frac{1}{2}}=a^{\frac{1}{2}}+\frac{1}{2} \cdot a^{\frac{1}{2}-1} \cdot x+\frac{\frac{1}{2} \cdot\left(\frac{1}{2}-1\right)}{1 \cdot 2} \cdot a^{\frac{1}{2}-2} \cdot x^{2}+ \\
\frac{\frac{1}{2} \cdot\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right)}{1 \cdot 2 \cdot 3} \cdot a^{\frac{1}{2}-3} \cdot x^{3} \cdots
\end{array}
$$

$$
=a^{\frac{1}{2}}+\frac{1}{2} \cdot a^{-\frac{1}{2}} \cdot x+\frac{-\frac{1}{4}}{2} \cdot a^{-\frac{3}{2}} \cdot a^{2}+\frac{3}{8} \cdot a^{-\frac{5}{2}} \cdot x^{3} \ldots \ldots
$$

$$
=a^{\frac{1}{2}}+\frac{a}{2 a^{\frac{1}{2}}}-\frac{x^{2}}{8 a^{3}}+\frac{x^{3}}{16 u^{\frac{3}{2}}} \cdots \cdots
$$

Or we might proceed thus, ats is explained in Art. 416.

$$
\begin{aligned}
&(a+x)^{\frac{1}{2}}=u^{\frac{1}{2}}\left(1+\frac{x}{u}\right)^{\frac{1}{2}} \\
&=a^{\frac{1}{2}}\left\{1+\frac{1}{2} \cdot \frac{x}{a}+\frac{\frac{1}{2} \cdot\left(\frac{1}{2}-1\right)}{1 \cdot 2} \cdot \frac{x^{2}}{u^{2}}+\frac{\frac{1}{2}\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right)}{1 \cdot 2 \cdot 3} \cdot \frac{x^{3}}{a^{3}} \cdots\right\} \\
&=u^{\frac{1}{3}}\left\{1+\frac{x}{2 u}-\frac{x^{2}}{8 u^{2}}+\frac{x^{3}}{16 a^{3}} \cdots\right\} \\
&=u^{\frac{7}{2}}+\frac{x}{2 u^{\frac{1}{2}}}-\frac{u^{2}}{8 u^{3}}+\frac{x^{2}}{16 a^{\frac{5}{2}}} \cdots
\end{aligned}
$$

EXAMPLES.-clii.

Expand the following expressions:

1. $(1+x)^{\frac{1}{2}}$ to five terms.
2. $(1+a)^{\frac{\pi}{3}}$ to four terms.
3. $(a+x)^{\frac{1}{3}}$ to five terms.
$4(1+2 x)^{\frac{1}{2}}$ to five terms.
4. $\left(a+\frac{4 x}{3}\right)^{\frac{3}{4}}$ to four terms.
5. $\left(a^{\frac{1}{4}}+x^{\frac{1}{4}}\right)^{\frac{1}{2}}$ to four terms.
6. $\left(1-x^{2}\right)^{\frac{1}{2}}$ to five terms.
7. $\left(1-a^{2}\right)^{\frac{7}{3}}$ to four terms.
8. $(1-3 x)^{\frac{3}{4}}$ to four terms.
9. $\left(4^{2}-\frac{2!}{3}\right)^{\frac{3}{2}}$ to four terms.
10. $(1-x)^{\frac{5}{6}}$ to fon terms.
11. $\left(\begin{array}{c}2 x \\ 3\end{array}-\frac{3!}{2}\right)^{23}$ to three terms.
12. 'To c. ${ }^{\prime}$ pemel $(1+r)^{-n}$.

$$
\begin{aligned}
& (1+x)^{-n}=1+(-u) \cdot x+\frac{-n \cdot(-n-1)}{1 \cdot 2} x^{2} \\
& +\frac{-n \cdot(-n-1) \cdot(-n-2)}{1 \cdot 2 \cdot 3} x^{3}+\ldots \ldots \\
& =1-n \cdot+\frac{n(n+1)^{2}-}{1.2(n+1)(n+2)} \begin{array}{c}
n+w^{3}+\ldots \ldots \\
1.2 .3
\end{array}
\end{aligned}
$$

the terms being altermately positive and negative.
Ex. Expand $(1+x)^{-3}$ to five terms.
$(1+)^{-3}=1-3 x^{+}+\frac{3.4}{1.2} x^{2}-\frac{3.4 .5}{1.2 .3} x^{3}+\frac{3.4 .5 .6}{1.2 .3 .4} \cdot x^{4}-\ldots$

$$
=1-3 x+6 \cdot x^{2}-10 x^{3}+15 x^{4}-\ldots
$$

428. To expand $(1-x)^{-n}$.

$$
\begin{aligned}
(1-x)^{-n}= & 1-(-n) \cdot x+\frac{-n \cdot(-n-1)}{1 \cdot 2} \cdot x^{2} \\
& \quad-\frac{-n(-n-1)(-n-2)}{1 \cdot 2 \cdot 3} x^{3}+\ldots \\
= & 1+n x+\frac{n \cdot(n+1)}{1.2} \cdot v^{2}+\frac{n \cdot(n+1)(n+2)}{1 \cdot 2 \cdot 3} x^{3}+\ldots
\end{aligned}
$$

the terms being all positive.
Ex. Expand $(1-x)^{-3}$ to five termt.

$$
\begin{aligned}
(1-x)^{-3} & =1+3 x+\frac{3 \cdot 4}{1 \cdot x^{2}}+\frac{3 \cdot 4 \cdot 5}{1 \cdot 2 \cdot 3} x^{3}+\frac{3 \cdot 4 \cdot 5 \cdot 6}{1 \cdot 2 \cdot 3 \cdot 4} x^{4}+\ldots \\
& =1+3 x+6 x^{2}+10 x^{3}+15 x^{4}+\ldots
\end{aligned}
$$

EXAMPLES.-cliii.

Expand

1. $(1+a)^{-2}$ to five terms.
2. $\left(1-\frac{x}{2}\right)^{-2}$ to five terms.
3. $\left(1-3 a^{4}\right)^{-1}$ to five terms.
4. ($\left.t^{2}-2 x\right)^{-i}$ to five terms.
5. $\left(1-\frac{x}{4}\right)^{-1}$ to four terms.
6. $\left(a^{\frac{1}{3}}-s^{\frac{1}{3}}\right)^{-6}$ to lour terms.

Expa
I. $(1+$
2. $(1-x$
$3\left(x^{5}+\right.$
430. r^{r} in the

The g $(r+1)^{\text {th }}$

From
Thus 1 by chang
429. To erpand $(1+x)^{-\frac{1}{n}}$.

$$
\begin{aligned}
(1+x)^{-\frac{1}{n}}= & 1+\left(-\frac{1}{n}\right) x+\frac{-\frac{1}{n} \cdot(-1 \cdot-1)}{1 \cdot 2} \\
& +\frac{-\frac{1}{n}\left(-\frac{1}{n}-1\right)\left(-\frac{1}{n}-2\right)}{1 \cdot 2 \cdot 3} \cdot x^{3}+\ldots \\
& =1-\frac{1}{n} x+\frac{n+1}{2 n^{2}} x^{2}-\frac{(n+1)(2 n+1)}{6 n^{3}} x^{3}+\ldots
\end{aligned}
$$

EXAMPLES.-cliv.

Expand
I. $\left(1+x^{2}\right)^{-\frac{1}{2}}$ to five terms.
2. $\left(1-x^{2}\right)^{-\frac{3}{2}}$ fo five terms.
$3\left(x^{5}+y^{5}\right)^{-\frac{2}{5}}$ to four terms.
4. $\left(1+2 . r^{-\frac{1}{2}}\right.$ to five terms.
5. $\left(n^{2}+r^{2}\right)^{-\frac{1}{2}}$ to four terms.
6. $\left(a^{3}+x^{3}\right)^{-k}$ to four terms.
430. Observations on the general expression for the term involving a^{r} in the exprensions $(1+\infty)^{n}$ and $(1-x)^{n}$.

The general expression for the term involving x^{*}, that is the $(r+1)^{\text {th }}$ term, in the expansion of $(1+x)^{n}$ is

$$
\begin{gathered}
n \cdot(n-1) \ldots(n-r+1) \\
1 \cdot 2 \ldots \ldots \ldots r
\end{gathered}
$$

From this we must deduce the form in all eases.
Thas the $(r+1)^{\text {th }}$ torm of the expansion of $(1-a)^{n}$ is fombl ly changing x into $(-a)$, and therefore it is

$$
\begin{gathered}
n \cdot(n-1) \ldots(n-r+1) \cdot(-\infty)^{r} \\
1 \cdot \pm \ldots \ldots \cdot r \\
(-1)^{r} \frac{n \cdot(n-1) \ldots(n-r+1)}{1.2 \ldots \ldots \ldots r} \cdot t^{r} .
\end{gathered}
$$

If u be negative and $=-m$, the $(r+1)^{\text {th }}$ term of the expansion of $(1+x)^{n}$ is
or,

$$
\begin{gathered}
\frac{(-m)(-m-1) \ldots(-m-r+1)}{1 \cdot 2 \ldots \ldots \ldots \ldots \cdot r} x^{r} \\
(-1)^{r} \cdot\{m \cdot(m+1) \ldots(m+r-1)\} x^{r} \\
1 \cdot 2 \ldots \ldots \ldots \ldots \cdot r
\end{gathered}
$$

If n be negative and $=-m$, the $(r+1)^{\text {th }}$ term of the expansion of $(1+x)^{n}$ is
or,

$$
\begin{gathered}
\frac{(-1)^{r} \cdot\{m \cdot(m+1) \ldots(m+r-1)\}}{1 \cdot 2 \ldots \ldots \ldots \ldots \ldots \cdot r} \cdot(-x)^{r} . \\
\frac{m \cdot(m+1) \ldots(m+r-1)}{1 \cdot 2 \ldots \ldots \ldots r} \cdot x^{r} .
\end{gathered}
$$

EXAMPLES.-clv.

Find the $r^{\text {th }}$ terms of the following expansions:

1. $(1+x)^{7}$.
2. $(1-x)^{12}$.
3. $(a-x)^{8}$.
4. $(5 x+2 y)^{9}$.
5. $(1+x)^{-2}$.
6. $\left(1-3, r^{-4}\right.$.
7. $(1-x)^{-\frac{1}{2}}$.
S. $(a+x)^{\frac{1}{3}}$.
8. $(1-2 x)^{-\frac{7}{2}}$.
9. $\left(u^{2}-a^{2}\right)^{-\frac{3}{4}}$.
10. Find the $(r+1)^{\text {th }}$ term of $(1-a)^{-3}$.
11. Find the $(r+1)^{\text {th }}$ term of $(1-4 x)^{-\frac{1}{2}}$.
12. Find the $(r+1)^{\text {th }}$ term of $(1+x)^{2 n}$.
13. Show that the coefficient of x^{r+1} in $(1+x)^{n+1}$ is the sum of the coefficients of x^{r} and x^{r+1} in $(1+x)^{\prime \prime}$.
1.5. What is the fourth term of $\left(a-\frac{1}{x}\right) \frac{1}{2}$?
14. What is the fifth term of $\left(a^{2}--v^{2}\right)^{3}$?
15. What is the ninth term of $\left(a^{2}+2 x^{2}\right)^{\frac{1}{2}}$?
16. What is the tenth term of $(a+b)^{-m}$?
17. What is the seventh term of $(a+b)^{\frac{1}{m i}}$?
18.

Binomia
$\sqrt{104}=$

$$
=
$$

$$
=1
$$

$=1$
(2) $\mathrm{\Gamma}$
$8^{8 / 2}=($
$=1$
$=1$
$=1$
$=1$.
(3) T

Here w second ter proceed as

Approxi

1. $1^{3 / 3}$
2. The following are examples of the application of the Binomial Theorem to the approximation to roots of numbers.
(1) To approximate to the spuare root of 104.

$$
\begin{aligned}
\sqrt{\prime}^{\prime 104} & =\sqrt{ }(100+4)-10\left(1+\frac{4}{100}\right)^{\frac{1}{2}} \\
& =10\left\{\begin{array}{l}
1+\frac{1}{2} \cdot \frac{4}{100}+\frac{\frac{1}{2}\left(\frac{1}{2}-1\right)}{1.2} \cdot\left(\frac{4}{100}\right)^{2}
\end{array}\right.
\end{aligned}
$$

$$
+\frac{1\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right)}{1 \cdot 2 \cdot 3} \cdot\binom{4}{100}^{3}+\ldots
$$

$$
=10\left\{1+\frac{.2}{100}-\frac{2}{10000}+\frac{4}{1000000}-\cdots\right\}
$$

$$
=10 \cdot 19804 \text { nearl } y .
$$

(2) 'To approximate to the fifth root of 2.

$$
\begin{aligned}
8 / 2 & =(1+1)^{\frac{1}{5}} \\
& =1+\frac{1}{5}+\frac{1}{2} \cdot \frac{1}{5}\left(\frac{1}{5}-1\right)+\frac{1}{6} \cdot \frac{1}{5} \cdot\left(\frac{1}{5}-1\right)\left(\frac{1}{5}-2\right)+\ldots \\
& =1+\frac{1}{5}-\frac{2}{25}+\frac{3}{250}-\frac{21}{2500}+\ldots \\
& =1+\frac{3}{25}+\frac{9}{2500} \text { nearly } \\
& =1 \cdot 1236 \text { nearly. }
\end{aligned}
$$

(3) To approximate to the cube root of 25

$$
\sqrt[3]{2} 5=3(27-2)=3\left\{1-\frac{2}{27}\right\} 3
$$

Here we take the cube next above 25 , so as to make the second term of the binomial as small as possible, and then proceed is hefore.

EXAMPLES.-clvi.
Approximate to the lollowing root: :

1. $3^{3}: 31$.
2. 7108.
1. $5 / 260$.
2. $\sqrt[3]{3} 1$.

XXXVII. SCALES OF NOTATION.

432. The symbols employed in our common system of Arithmetical Notation are the nine digits and zero. These digits when written consecutively acquire local values from their positions with respect to the place of mits, the value of every digit increasing ten-fold as we advance towards the left hand, and hence the number ten is called the Radix of the Scale.

If we agree to represent the number ten by the letter t, a momber, expressed according to the comventions of Arithmetical Notation by 3245, would assume the form

$$
3 t^{3}+2 t^{2}+4 t+5
$$

if expressed according to the conventions of Algebra.
433. Let us now suppose that some other mumber, as five, is the radix of a seale of notation, then a momber expressed in this scale arithmetically by $23-41$ will, if five be represented by f, assume the form

$$
2 f^{3}+3 f^{2}+4 f+1
$$

if expressed algebraically.
And, generally, if r be the radix of a scale of notation, a number expressed arithmetically in that scale 1 y 6789 will, When expressen alsolmaically, since the value of each digit inereases r-fold ats we advame fowards the left hand, be represented by

$$
\left(r^{3}+7 r^{2}+8 r+9\right)
$$

434. The number which denotes the radix of any scale will be represented in that soale ly 10 .

Thus in the sale whose ralix is five, the number five will be represented by 10 .

In the therefore

Hence 1 be represe

1, 2, 3,
$435 . \quad 1$ a new syn number el ten in this as far as t
$1,2,3$,
436. It another n agree to e numbers f whose rali

Again, be represe
437. T callerl the

The nat radix is t Septenary, ienary.
438. T Mrultiplicat is r, we ${ }^{11}$ pressed in must be us which will.

In the same scale seven, being equal to five $+t w o$, will therefore be represented loy 12 .

Hence the series of matural mombers as far as trenty-fice will be represented in the sate whese max is five thus:

$$
\begin{array}{r}
1,2,: 3,4,10,11,12,13,1+, 20,21,22,23,24,30,31, \\
32,3: 3,: 31,41,11,42,43,44,100 .
\end{array}
$$

435. In the sate whese rulix is cleren we shall require a new symbl to expres the mumber tom, fior in that sale the mumber eleven is represented by 10 . If we agree to express ten in this seale ly the symbol t, the series of natumat mombers as far as twenty-three will be represented in this seale thus:

$$
\begin{array}{r}
1,2,3,4,5,(6,7,8,9, t, 10,11,12,13,1+15,1(6,17 \\
18,1!), 1 t, 2() ; 21
\end{array}
$$

436. In the scale whose radix is twelve we shall reguire another new symbol to express the mumber eleven. If we agree to express this number by the symbol e, the natural numbers from nine to thirteen will be represented in the scale whose malix is twelve thas:

$$
9, t, c, 10,11
$$

Again, the matmal numbers fiose twenty to twenty-five will be represented thus:

$$
18,19,1 t, 1 e, 20,21 .
$$

437. The scale of notation of which the radix is tevo, is called the Pinary scale.

The names given to the scales, up to that of which the madix is twelve, are Tomary, Quaternary, Quinary, Senay, Septenary, Octonary, Nonary, Denary, Undenary and Duoilenary.
438. To perform the operations of Addition, Subtraction, Multiplication, and Division in a scale of notation whose index is r, we proced in the same way at we lo for nombers expressed in the common seale, with this difference only, that r. must be used where ten would le weal in the common seale:

Ex. l. Find the sum of 4325 and $323 \pm$ in the senary scale. 4325:
5234
the sum. $=1400 ?$
which is ohtained by adding the numbers in vertical lines. carrying I for every six contained in the several results, and setting down the excesses above it.

Thus 4 mits and 5 units make nine units, that is, six unit, n,gether with 3 units, so we set down 3 and carry 1 to the next columm.

Ex. 2. Find the difference between 62345 and 52466 in the septenary scale.
the difference

$$
\begin{array}{r}
6234 \% \\
53.466 \\
=5546 \\
\hline
\end{array}
$$

which is obtained by the following process, We cannot take six units from five units, we therefore add seven units to the five units, making 12 units, and take six mits from twolve units, and then we add 1 to the lower figure in the seconl colnmn, and so 0.1 .

Ex. 3. Mul'iply 2471 by 358 in the duodenary scale.

$$
\begin{array}{r}
2471 \\
358 \\
\hline 17088 \\
e t e 5 \\
7193 \\
833318
\end{array}
$$

Ex. 4. Divide 367286 by 8 in the nonary scale.
8) 367286

42033
The following is the process. We ask how often 8 is containeld in 36, which in the nonary scale represents thirty-three mintr; the answer is t and 1 over. We then ask how oftem 8 is comtained in 17, wisch on the nonary scale represents sirteen mits; the answer is 2 and no remainder. And so for the other digits.

Ex. 5

Ex. 6. scale.
I. Ad
2. All
3. Su
4. Sul
5. Mı
б. Mu
7. Div
8. Div
9. Ext
10. Ext scale.

Ex. 5. Divide 1184323 by 589 in the duodenary scale.

589) | $\frac{e 56}{e 56}$ |
| :---: |
| $\frac{11843}{22 t 3}$ |
| $\frac{1 t e 0}{3 e 32}$ |
| $\frac{39 t 0}{1523}$ |
| 1523 |

Ex. 6. Extract the square root of 10534521 in the senary scale.

	$105 \dot{3} 4 \dot{5} 2 i$
43	253
	213
504	4045
	3224
5125	42121
	42121

EXAMPLES.-clvii.

1. Add $23561,42513,645325$ in the septenary scale.
2. Adil $3074852,4635628,1247653$ in the nonary scale.
3. Subtract 267862 from 358423 in the nonary scale.
4. Sultract 124321 from 211010 in the quinary scale.
5. Multiply 57264 by 675 in the octonary scale.
6. Multiply 1456 by 6541 in the septenary scale.
7. Divide 243012 by 5 in the senary scale.
8. Divide 3756025 ly 6 in the octonary scale.
9. Extract the spuare root of $2540(0) 44$ in the senary scale.
10. Extract the square root of $56898 t 1$ in the duodenary scale.
11. To transform a given intagral number from one scale to another.

Let N be the given integer expressed in the first sale, r the radix of the new scale in which the number is 1 , be expressenl,
" $, b, c \ldots \ldots m, p, q$ the digits, $n+1$ in mumber, expressing the number in the new seale;
so that the mumber in the new scale will be expressed thes:

$$
a r^{n}+l r^{n-1}+c r^{n-2}+\ldots \ldots+m r^{2}+p r^{2}+q
$$

We have now from the equation

$$
N=a r^{n}+b r^{r^{-1}}+c r^{n-2}+\ldots \ldots+m r^{2}+p r+q
$$

to determine the values of $a, b, c \ldots \ldots m, p, q$.
Divide N by r, the remainder is q. Let A be the quotient: then

$$
A=\left(l r^{n-1}+l r^{n-2}+c r^{n-3}+\ldots \ldots+m r+p\right)
$$

Divide A by r, the remainder is p. Let B be the quotient: then

$$
B=c r^{n-2}+b r^{n-3}+c r^{n-4}+\ldots \ldots+m .
$$

Hence the
first digit to the right of the number expressed in the new scale is q, the first remander ; second $. \ldots .1$, the second remainder ; third $\ldots .{ }^{\prime \prime}$, the third 1 emainder ; and thus all the digits may be determined.

Ex. 1. Transform 2:35791 from the common scale to the scale whose radix is 6 .

6	2:35791
6	39298 rematimer 3
6	6a) 49 remainter 4
(i)	1091 remainder 3
6	181 remainder 5
6	30 remainder]
6	5 remainder 0
	0 remainder 5

The number requred is therefore 5015343.

The digit whose radix are the onl which the il

Ex. 2.
440. The scale to anot scales are otl be careful to with the 1 uin

Ex. T1aı the scale who

The requir

Express
I. 1828
2. 1820
3. 4375
[s.A.]

The digits by which a number can be expressed in a scale whose radix is r will be $1,2,3 \ldots \ldots r-1$, becanse these, with 0 , are the only remainler: which can arise from a division in which the divisor is r.

Er. 2. Express 3598 in the seale whose radix is $\mathbf{1 2}$.

| 12 | :n9s | |
| :--- | :--- | :--- | :--- |
| 12 | 299 | remainder t |
| 12 | 24 | remainder e |
| 12 | \vdots | remainder 0 |
| | 0 | remainder 2 |

\therefore the number required is $20 e t$.
440. The method of transforming a given integer from one scale to another is of course applicable tr, cases in which both seales are other than the common scale. We must, however, he careful to perform the operation ol division in accordance with the principles explamed in Art. 438, Ex. 4.

Ex. Tansform 1425:3 from the scale whose radix is 6 to the scale whose matix is 5 .

5	142532	
5	20330	remainder 2
5	$230: 3$	remainder 3
5	300	rer inder 3
5	$3: 3$	renainder 3
5	$+\quad$ remainder 1	
0	remainder 4	

The required number is therefore 413332.

EXAMPLES.-clviii.

Express
I. 1828 in the septenary scale.
2. 1820 in the senary scale.
3. 43751 in the duodenary scale.
[S.A.]
4. 3700 in the quinary scale.
5. 7631 in the binary scale.
6. 215855 in the duodenary scale.
7. 790158 in the septenary scale.

Transifom
8. 34002 from the quinary to the quaternary scale.
9. 8978 from the undenary to the duodenary scale.
10. 3256 from the septenary to the duodenary scale.
II. 37704 from the nonary to the octonary seale.
12. 5056 from the septenary to the quaternary seale.
13. 654321 from the duodenary to the septenary scale.
14. 2304 from the quinary to the modenary scale.
441. In any scale the positive integral powers of the mumber which denotes the ratix of the scale are expressed by $10,100,1000 \ldots$.

Thus twenty-five, which is the square of five, is expressed in the scale whose radix is five by 100: one hundred and twentrfive will be expressed by 1000 , and so on.

Generally, the $n^{\text {th }}$ power of the number denoting the radix in any scale is expressed by 1 followed by n eyphers.

The highest number that can be expressed by p digits in a scale whose ralix is r is expressed by $r^{\mu}-1$.

Thus the highest number that can be expressed by 4 digits in the scale whose ratix is five is

$$
10^{4}-1 \text {, or } 10000-1 \text {, that is } 444 .
$$

The least number that can be expressed ly ? digits in a seale whose radix is r is expressed her r^{p+1}.

Thus the least momber that can be expressed by 4 digits in the seale whose radix is tive is 10^{4-1} or 10^{3}, that is 1000 .
442. In an integer d the integer

Let N be
N
Then
$N=a\left(r^{n}-1\right)$

Now all divisible by
$\therefore \frac{1}{r}$
which prove an integer, remainders

Note. $\quad \mathrm{F}$ accuracy of ing out the n

For let and
then
that is, $A B$ remainder.
443. As is r increase the local va advance fro

If then w place, each one- $r^{\text {th }}$ part further to units' place
442. In a scale whose radix is r, the sum of the digits of an integer divided by $(r-1)$ will leave the same remainder as the integer leaves when divided by $r-1$.

Let N be the number, and suppose

$$
N=a r^{n}+b r^{n-1}+c r^{n-2}+\ldots \ldots+m r^{2}+p r+q .
$$

Then

$$
\begin{gathered}
N=a\left(r^{n}-1\right)+b\left(r^{n-1}-1\right)+c\left(r^{n-2}-1\right)+\ldots+m\left(r^{2}-1\right)+p(r-1) \\
+\{a+b+c+\ldots . .+m+p+q\}
\end{gathered}
$$

Now all the expressions $r^{n}-1, r^{n-1}-1 \ldots \ldots r^{2}-1, r-1$ are divisible by $r-1$;

$$
\therefore \frac{N}{r-1}=\text { an integer }+\frac{a+b+c+\ldots \ldots m+p+q}{r-1} ;
$$

Which prove: the proposition, for since the quotients differ by an integer, their fractional parts must be the same, that is, the remainders after division are the same.

Note. From this proposition is derived the test of the aceuracy of the result of Multiplication in Arithmetic by casting out the nines.

For let

$$
A=9 m+a,
$$

and

$$
B=9 n+b ;
$$

then

$$
A B=9(9 m n+a n+b m)+c b ;
$$

that is, $A B$ and $a b$ when divided by 9 will leave the same remainder.

Radical Fraction:.

443. As the local value of each digit in a scale whose radix is r increases r-fold as we advance from right to left, so does the local value of each decrease in the same proportion as we alvance from left to right.

If then we affix a line of digits to the right of the units' place, each one of these having from its position a value one- $\gamma^{\text {th }}$ part of the value it would have if it were one place further to the left, we shall have on the right hand of the units' place a series of Fractions of which the denominators
are successively $r, r^{2}, r^{3}, \ldots .$. , while the momerators may he any numbers between $r-1$ and zero. Thesc are called Radical Fractions.

In our common system of notation the word Rudical is replaced by Decimal, because ten is the radix of the scale.

Now adopting the ordinary system of notation, and markin: the place of units by putting a dot to the right of it, we have the following resultis:

In the denary scale

$$
246 \cdot 4789=2 \times 10^{2}+4 \times 10+6+\frac{4}{10}+\frac{7}{10^{2}}+\frac{8}{10^{3}}+\frac{9}{10^{1}}
$$

in the quinary scale

$$
324 \cdot 4213=3 \times 10^{2}+2 \times 10+4+\frac{4}{10^{2}}+\frac{2}{10^{2}}+\frac{1}{10^{3}}+\frac{3}{10^{4}}
$$

remembering that in this scale 10 stands for five and not for ten (Art. 434).
444. To show that in any scale a radical fraction is a proper fraction.

Suppose the fraction to contain n digits, $a, b, c \ldots \ldots$
Then, since $r-1$ is the highest value that each of the digits can have,
$\frac{a}{r}+\frac{b}{r^{2}}+\ldots$ is not greater than $(r-1)\left(\frac{1}{r}+\frac{1}{r^{2}}+\ldots\right.$ to n terms $)$

not greater than $(r-1)\left\{\begin{array}{c}r^{n}-1 \\ r^{\prime}(r-1)\end{array}\right\}$;
not greater than $\frac{r^{n}-1}{r^{n}}$;
not greater than $1-\frac{1}{r^{2}}$.

Hence proper fr
44. a radicul

Let F
u,
from wh mined.

Mulip

Now $\frac{b}{r}$
Hence new fract

Giving

Multi

Hence fraction, new frac

Hence the given fraction is less than 1 , and is therefore a proper fraction.
445. To transform a fraction expressed in a given scale into a rudical fruction in any other scale.

Let F be the given fraction expressed in the first scale,
r the radix of the new scale in which the fraction is to be exprossed,
$a, b, c \ldots$ the digits expressing the fraction in the new scale, so that

$$
J^{\prime}={ }^{\prime \prime} r_{r}^{\prime \prime}+{ }_{r}^{r}+\ldots
$$

from which equation the values of $a, b, c \ldots$ are to be determined.

Muliplying both sides of the equation by r,

$$
F r=a+\frac{b}{r}+\frac{c}{r^{2}}+\ldots
$$

Now $\frac{b}{r}+\frac{c}{r^{2}}+\ldots$ is a proper fraction by Art. 444.
Hence the integral part of Fr will $=a$, the first digit of the new fraction, and the fractional part of Fr will

$$
=\frac{b}{r}+\frac{c}{r^{2}}+\ldots
$$

Giving to this fractional part of $F r$ the symbol F_{1} we have

$$
F_{1}=\frac{b}{r}+\frac{c}{r^{2}}+\ldots
$$

Multiplying both sides of the equation by r,

$$
F_{1} r=b+\frac{c}{r}+\ldots
$$

Hence the integral part of $F_{1} r=b$, the seconl digit of the new fraction, and thus, by a similar process, all the digits of the new fraction may be found.

Ex. 1. Express $\frac{3}{7}$ as a radical fraction in the quinary scale:

$$
\begin{aligned}
& \frac{3}{7} \times 5=\frac{15}{7}=2+\frac{1}{7} \\
& \frac{1}{7} \times 5=\frac{5}{7}=0+\frac{5}{7}, \\
& \frac{5}{7} \times 5=\frac{25}{7}=3+\frac{4}{7}, \\
& \frac{4}{7} \times 5=\frac{20}{7}=2+\frac{6}{7}, \\
& \frac{6}{7} \times 5=\frac{30}{7}=4+\frac{2}{7}, \\
& \frac{2}{7} \times 5=\frac{10}{7}=1+\frac{3}{7}
\end{aligned}
$$

therefore fraction is $\cdot \dot{20324 i}$ recurring.
Ex. 2. Express 84375 in the octonary scale:

$$
\cdot 84375
$$

8
$6 \cdot 75000$
$6 \cdot 00000$

The fraction required is 66 .
Ex. 3. Transform 42765 from the nonary to the senary scale.

	-42765
	$2 \cdot 78133$
	6
	$\overline{5 \cdot 23820}$
	6
	$\xrightarrow[1.55430]{ }$
	6
	$3 \cdot 65800$
T'he fraction required is	2513.

Ex. quaterna

Ex. 4. Transfom eletet275 from the duodenary to the quaternary seale :

4	e124	-6275
4	2937 - remainter 0	4
4	$83 t$ - remaminder:3	$3 \cdot 408$
4	$20 c$-remainder 2	
4	6 2 - remainder 3	4
4	16 - remainder \because	2-5e6s
4	4 -remainder :	4
4	1-remaimier ()	1-et28
	$0-$ remainder 1	

Number required is 102232:30.3121...

EXAMPLES.-clix.
I. Express $\frac{25}{36}$ in the senary scale.
2. Jixpress $\frac{3}{11}$ in the septenary seale.
3. Express 23.12: in the nonary scale.
4. Express 1820:3:3\% in the senary scile.
5. In what scale is 17486 written 212n42?
6. In what seale is 511173 written 174630.5 ?
7. Show that a number in the Common scale is divisible :
(I) by: if the sum of its digits is divisible by 3.
(2) by 4 if the last two digits he divisible by 4.
(3) by 8 if the last three digits be divisible ly 8.
(4) by 5 if the number ends with 5 or 0 .
(5) by 11 if the difference between the sum of the digits in the odd places and the sum of those in the even places be divisible by 11 .
8. If N be a number in the scale whose radix is r, and $\|$ be the number resulting when the digits of N are reversed, show that $N-n$ is divisible by $r-1$.

XXXVIII, ON LOGARITHMS.

446. Der. The Logarithm of a number to a given base is the index of the power to which the base must be raised to give the number.

Thus if $m=a^{x}, x$ is called the logarithm of m to the base a.
For instance, if the base of a system of Logarithms be 2, 3 is the logarithm of the mmber 8 , because $8=2^{3}$:
and if the base be 5 , then
3 is the logarithm of the number 125 , because $125=5^{3}$.
447. The logathm of a momber m to the base a is written thus, $\log _{a} m$; and so, if $m=u^{x}$,

$$
x=\log _{4} m .
$$

Hence it follows that $m=a^{\log _{4} m}$.
448. Since $1=a^{0}$, the logarithm of mity to any base is zero.
Since $a=a^{1}$, the logarithm of the base of any system is unity.
449. We now proceed to describe that which is called the Common System of logarithms.

The base of the system is 10 .

By a system of logatithms to the base 10, we mean a succession of values of x which satisfy the equation

$$
m=10^{r}
$$

for all positive values of m, intergal or fractional.
Such it system is formed by the seties of logarithms of the natural numbers from 1 to 10 orooo, which constitute the logarithms resistered in our ordinary tables, and which are therefore called tebuletr loyerithms.

$$
\text { 450. Now } \begin{aligned}
1 & =10^{\prime \prime}, \\
10 & =10^{\prime}, \\
1(0) & =10^{2}, \\
1(0) & =111^{3},
\end{aligned}
$$

and so on.
Hence he logathm of 1 is 0 , of 10 is 1,
of 100 is: 2,
of 1000 is $: 3$,
and so on.
Hence for all mombers between 1 and 10 the logathom is a decimal less than 1 ,
between 10 and 100 the logathinn is a decimal between 1 and 2,
between 100 and 1000 a decimal between 2 and 3 , and so on.
tish. The logarithoms of the natural numbers from 1 to 12 stand thas in the tables:

No.	Lors		1.ng
1	W000\% 10	7	(084.00980
2	(1:3010:300	δ	(1)0033090)
3	$0 \cdot 4771213$!	10:9.4.2.425
4	$0 \cdot 6020600$	10	1 (0)00000)
5	0.6989700	11	1.0413927
(0.778131:3	12	1.0701812

The logarithms are calculated to seven places of decimats:

452 . The interral pats of the lorathms of numbers higher than 10 are eallerl the churecteristics of those lograthms, and the decimal parts of the logarithms are called the mantisso.

Thus $\quad 1$ is the characteristic, -07918!2 the mantissa, of the logarithm of 12 .
453. The logarithms for 100 and the numbers that succeed it (and in some tables those wat precede 100) have no chanacteristic prefixed, because it can be supplied by the reader, being 2 for all mumbers between 100 and 1000,3 for all between 1000 and 10000 , and so on. Thus in the Tables we shall tind

No.	Log
100	0000000
101	0043214
102	0086002
103	0128372
104	0170333
105	0211893

which we read thus:

> the logarithm of 100 is 2 ,
> of 101 is $2 \cdot 0043214$.
> of 102 is $2 \cdot 0086002$; and so on.
454. Jogarithms are of great hae in makines arithmetical computations more easy, for by means of a 'Table of Logrithms the operation
which i

Note
treating
the sulfi
450.
the divic
Let
and
Then
as we shall show in the next form Articles.
455. The lngarithm of a product is cqual to the sum of the logarithms of its fectors. tissa.

Then

$$
\begin{aligned}
m & =u^{z} \\
n & =a^{\prime \prime} \\
\frac{m}{n} & =u^{x-y} ; \\
\therefore \log _{a} \frac{m}{n} & =a-y \\
& =\log _{a} m-\log _{a} n .
\end{aligned}
$$

456. The logurithm of a quotient is equal to the logarithm of the dividend diminishal by the loyderithm of the divisor.

Let
and

Thus the operation of Division is changed into that of Subtraction.

If, for example, we are required to divide 371.49 by 52376 , we proceed thus,

$$
\begin{aligned}
\log 371 \cdot 49 & =2.5699471 \\
\log 52: 376 & =1.7191323 \\
\text { their difference } & =\% 85081.48
\end{aligned}
$$

which is the logarithm of $7 \cdot 092752$, the quotient required.
457. The logarithm of any poucer of a number is equal to the product of the logarithm of the number and the index denoting the power.

Let

$$
\begin{aligned}
m & =a^{x} . \\
m & =u^{r z} ; \\
\therefore \log _{a} m m^{r} & =r \cdot c \\
& =r \cdot \log _{a} m .
\end{aligned}
$$

Then
which
459. over al same a

Hent which positio For,

Thus the operation of Involution is changed into Multiplication.

Suppose, for instance, we have to find the fourth power of 13, we may proceed thus,

$$
\begin{array}{r}
\log 13=1 \cdot 113913 \cdot 4 \\
\\
4 \cdot 4557736
\end{array}
$$

which is the logarithm of 28561 , the number repuired.
458. The logarithen of an! root of a namber is equal to the quotient arising from the division of the logurithm of the member by the number denoting the root.
I.et

$$
\begin{aligned}
& m=u^{x} . \\
& \frac{1}{2}=a^{r} ; \\
& m^{\frac{1}{2}} \\
& \therefore \log _{a} m^{r}=\frac{x}{r} \\
&=\frac{1}{r} \cdot \log _{n} m .
\end{aligned}
$$

it is cle we also multipl

So as
we also
460. than un

Since

Thus the operation of Evolu ion is changed into Division.

If, for example, we have to find the fifth root of 16807 , we proceed thus,

$$
5 \left\lvert\, \frac{4 \cdot 2254902, \text { the } \log \text { of } 16807}{.8450980}\right.
$$

Which is the logarithm of \bar{T}, the root required.
459. The common system of Logirithms has this advantage over all others for momerical calcnlations, that its base is the same as the radix of the common scale of motation.

Hence it is that the same mantissa serves for all numbers which have the same significunt digits and difler only in the position of the place of mits relatively to those digits.

For, since $\log _{g} \quad 60=\log \quad 10+\log 6=1+\log (6$,

$$
\begin{aligned}
& \log (600=\log 100+\log 6=2+\log 6, \\
& \log 6000=\log 1000+\log 6=3+\log (6,
\end{aligned}
$$

it is clear that if we know the logarithm of any number, as 6 , we also know the logarithms of the numbers resulting from multiplying that number by the powers of 10.

So again, if we know that
$\log 1 \cdot 7692$ is $\cdot 247783$,
we also know that
$\log 17 \cdot 692$ is $1 \cdot 2 \cdot 47783$,
log 176.92 is $2 \cdot 247783$,
$\log 1769 \cdot 2$ is $3 \cdot 247783$,
$\log 17692$ is $4 \cdot 247783$, $\log 176920$ is $5 \cdot 247783$.
460. We must now treat of the logarithms of numbers less than unity.

Since

$$
\begin{aligned}
& 1=10^{0} \\
& \cdot 1=\frac{1}{10}=10^{-1} \\
& \cdot 01=\frac{1}{100}=10^{-2}
\end{aligned}
$$

the logarithm of a number

and so on.
Hence the logarithms of all mumbers less than unity are nerative.

We do not require a separate taible for these logarithms, for we can deduce them from the lugarithms of numbers greater than unity by the following process:

$$
\begin{aligned}
& \log \cdot 6=\log \frac{6}{10}=\log 6-\log 10=\log 6-1, \\
& \log \cdot 06=\log \frac{6}{100}=\log 6-\log 100=\log 6-2, \\
& \log \cdot 006=\log \frac{6}{1000}=\log 6-\log 1000=\log 6-3 .
\end{aligned}
$$

Now the logarithm of 6 is $\cdot 781513$.

Hence

$\log \cdot 6=-1+7781513$, which is written $\overline{1} \cdot 7 / 81513$,
lon $06=-2+5 \pi 1513$, which is written $2 \cdot-781513$,
$\log \cdot 006=-3+\cdot 761513$, which is written $3 \cdot 7781513$, the characteristics only being negative and the mantisse positive.
461. Thus the same mantisse serve for the logarithat, of all numbers, whether greater or less than unity, which have the same significant digits, and differ only in the position of the place of units relatively to those digits.

It is best to regard the Table as a register of the logarithms of numbers which have one significant digit before the decimal point.

For interpr

We be atta
I. places
II. places

Thus
462. the rale

The f
(2)
the nun
the 1 car changing
1 as a re
Hence

$$
\begin{array}{r}
-3+\cdot 2456973 \\
-5+\cdot(249372 \\
\hline 1+\cdot 6207601
\end{array}
$$

the 1 carried on from the last sulbtraction in the decimal places changing -5 into -4 , and then -4 subtracted from -3 giving 1 as a result.

Hence the resulting logarithm is 16207601 .
(3) To multiply $\overline{3} 7482569 \mathrm{ly}$ 5.
$\overline{3} 7482599$
5
$\overline{5} 2.7412845$
the 3 carried on from the last multiplication of the decimal places being added to -- 15, and thens giving - 12 as a result.
(4) To livide $1424563: 364$.

Increase the nogrative characteristic so that it may be exactly divisible by 4 , making a proper compensatiom, thas,

$$
14 \cdot 2+56736=16+2 \cdot 2456736 .
$$

Then $\frac{\overline{1} \cdot 2456 \%: 36}{4}=\frac{\overline{1} \overline{6}+2 \cdot 2456736}{4}=\overline{4}+561418.1 ;$ and so the result is $\overline{4} 5614184$.

EXAMPLES.-clX.

1. Aild $\bar{B} \cdot 16 \cdot 51553, \overline{4} \cdot 7505855,6 \cdot 6879746, \overline{2} \cdot 6150026$.
2. Aill $\overline{4} \cdot 6843785, \overline{5} \cdot 6650657,3 \cdot 8905196, \overline{3} \cdot 4675284$.
3. Ald $2 \div 324716,3 \cdot 6620657, \overline{5} 5905196,: 3156215$.
4. From $2 \cdot 483269$ take $\overline{3} \cdot 742891$.
5. From $\overline{2} \cdot 352678$ take $\overline{5} 428619$.
6. From $\overline{5} \cdot 349162$ take $\overline{3} \cdot 624 ; 329$.
7. Multiply $\overline{2}+596 \sigma^{21}$ by 3.
8. Multiply $\overline{7} \cdot 429683$ ly 6 .
9. Mnltiply $\overline{9} 2843617$ by 7 .
10. Divide $\overline{6} \cdot 3725409$ by 3 .

1 I. Divide $\overline{1} 4 \cdot 432962$ by 6 .
12. Divide $\overline{4} \cdot 53627188$ by 9.
463. We shall now explain how a system of logarithms calculated to a base a may be transformed into another system of which the base is b.

Let m be a number of which the lograthm in the first system is x and in the second y.

Then
and

Hence

Hence if we multiply the lugarithon of any mumber in the system of which the base is a hy $\frac{1}{\operatorname{lor} / \text {, }}$, we shath obtain the logarithm of the same mumber in the system of which the base is b.

This constant multiphier $\frac{1}{\log _{a} b}$ is alled The Monulus of the system of which the buse is b with reference to the system of which the base is a.
464. The common system of logarithms is used in all numerical calculations, but there is another sysm, which we must notice, employed by the discoverer of logatims, Napier, and hence called The Napabian System.

The base of this system, denoted by the symbol e, is the number which is the sum of the series

$$
2+\frac{1}{2}+\frac{1}{2.3}+\frac{1}{2 \cdot 3.4}+\ldots \text { al } i n f .
$$

of which sum the first eight digits are 2.7182518 .
465. Our common logarithms are formed from the Loga. rithms of the Napierian System by multiplying each of the [s.A.]

$$
\begin{aligned}
& m=u^{n} \text {, } \\
& b^{\prime \prime}=u^{\prime} \text {, } \\
& \text {.. } b=4^{x} \text {; } \\
& \therefore \frac{x}{y}=\log _{6}^{\prime} l \text {; } \\
& \therefore{ }^{\prime \prime}=\frac{1}{l_{n, n} l} \text {; } \\
& \therefore y=\frac{1}{\log _{4} b^{3} \%}
\end{aligned}
$$

latter hy a common multiphior called The Norblus of the (6mmon System

This monhlus is, in aceordance with the conclusion of Art. $4\left(6: 3, \underset{\log _{e} 10^{\circ}}{1}\right.$

That is, if l and N be the logarithms of the same number in the common and Napierian systems respectively,

$$
l=\frac{1}{\log _{e} 10} \cdot N .
$$

Now $\log _{e} 10$ is $2 \cdot 30258509$;

$$
\therefore \frac{1}{\log _{e} 10} \text { is } \frac{1}{2 \cdot 30258509} \text { or } \cdot 33429448
$$

and so the morlulus of the common system is $\cdot 43429448$.
466. To prove that $\log _{a} b \times \log _{b} t=1$.

Let

$$
x=\log _{a} h
$$

Then

$$
\begin{aligned}
\quad b & =u^{x} ; \\
\therefore b^{\frac{1}{x}} & =u ; \\
\therefore \frac{1}{x} & =\log _{\iota} \iota .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\log _{a} b \times \log _{b} t & =a \times \frac{1}{s} \\
& =1 .
\end{aligned}
$$

467. The following are simple examples of the method of applying the principles explained in this Chapter.

Ex. 1. Given $\log 2=3010300, \log 3=4771213$ and $\log 7=8450980$, find $\log 42$.

Since

$$
\begin{aligned}
42 & =2 \times 3 \times 7 \\
\log 42 & =\log 2+\log 3+\log 7 \\
& =3010300+4771213+8450980 \\
& =1.6232493
\end{aligned}
$$

Ex. 2. Given $\log 2=\cdot 3010300$ and $\log 0=\cdot 47.1213$, tind the logarithms of 64,81 and 96 .

$$
\begin{aligned}
& \log 64=\log 26=6 \log 2 \\
& \log 2=83010300
\end{aligned}
$$

$\therefore \log 64=1.8061800$

$$
\log 81=\log 3^{2}=4 \log 3
$$

$$
\log 3=\cdot 4771213
$$

$$
4
$$

$$
\therefore \log 81=1.0084852
$$

$$
\log 96=: \log (32 \times 3)=\log 32+\log 3
$$

$$
\log 32=\log 23=5 \log 2 ;
$$

$\therefore \log 96=5 \log 2+\log 3=1 \cdot 5051500+9571213=1 \cdot 9822713$.
Ex. 3. Given $\log 5=(6989700$, find the logarithm of $\sqrt{7}(6 \cdot 25)$.

$$
\begin{aligned}
\log (6 \cdot 25)^{\frac{1}{4}} & =\frac{1}{7} \log 6 \cdot 25=\frac{1}{7} \log \frac{625}{100}=\frac{1}{6}(\log 625-\log 100) \\
& =\frac{1}{7}\left(\log 50^{4}-2\right)=\frac{1}{7}(4 \log 5-2) \\
& =\frac{1}{7}(2 \cdot 7958800-2)=\cdot 1136657 .
\end{aligned}
$$

EXAMPLES.-clXi.

1. Given $\log 2=: 3010: 300$, fiml $\log 128$, $\log 125$ and $\log 2500$.
2. Given $\log 2=3010300$ and $\log 7=\cdot 8+50980$, find the logarithms of 50 , 005 and 196.
3. Given $\log 2=: 3010: 300$, and $\log 3=4771218$, find the

4. Given $\log 9=3010301, \log : 3=\cdot+77121: 3, \log 7=8450980$, find $\log 60, \log ^{\circ}(0,3, \log 1 \cdot(\%)$, and $\log 0(0) 04 ; 32$.
5. Given $\log 2=3010300, \log 18=1 \cdot 2522725$ and
$\log 21=1: 3222193$, find $\log \cdot 00075$ and $\log 31 \cdot 5$.
6. Given $\log 5=6989700$, find the logarithms of $2, \cdot 064$, and $\left(\frac{2^{60}}{50^{20}}\right)^{\frac{1}{14}}$.
7. Given $\log 2=3010300$, find the logarithms of $5, \cdot 125$, and $\binom{590}{2^{40}}^{\frac{1}{15}}$.
8. What are the logarithns of 01,1 and 100 to the base 10 ! What to the base $\cdot 01$?
9. What is the characteristic of $\log 1593$, (1) to base 10 , (2) to base 12 ?

1o. Given $\frac{4^{r}}{2^{x+y}}=8$, and $x=3!$, find x and y.
II. Given $\operatorname{lng} 4=6020600, \log 1 \cdot 04=0170333:$
(11) Find the logarithms of $2,25,83 \cdot 2,(\cdot 625)^{1 / 100}$.
(b) How many digits are there in the integral part of $(1.04)^{6000}$?
12. Given $\log 25=1 \cdot 3979400, \log 1 \cdot 0 \cdot 3=\cdot 0128372 \cdot:$
(a) Find the logarithms of $5,4,51 \%,(064)^{\frac{1}{100}}$.
(b) How many digits are there in the integral part of $(1 \cdot 03)^{600}$?
13. Having given $\log 3=\cdot 4771213, \log 7=8450980$, $\log 11=1 \cdot() 413927:$
find the logarithms of $7623, \frac{77}{300}$ and $\frac{3}{5399^{\circ}}$
I4. Suive the equations:
(i) $4090^{x}=\frac{8}{64} 4^{x}$.
(4) $a^{m x} b^{2 x}=c$.
(2) $\binom{1}{.4}^{x}=6=2 \%$.
(5) $a^{3 x} \cdot l^{1 \cdots x}=r^{n-1}$.
(3) $\iota^{x} \cdot l^{x}=m$.
(6) $a^{x} b^{m}=c^{1-3 x}$.
468. We have explained in Arts. 459-461 the advantages of the Common System of Loganthms, which may be stated in a more general form thus:

Let A be any serpence of fisures (:nth an 203916), having one digit in the integral pint.

Then any momber N having the same sefuence of figures (such as 235916 or 00235916) is of the form $A \times 10^{n}$, where n is an integer, positive or negative.

Therefore $\log _{10} N=\log _{10}\left(A \times 10^{\prime \prime}\right)=\log _{10} .1+n$.
Now A lies between 10° and 10^{\prime}, and therefore $\log A$ lies between 0 and 1 , and is therefore a proper fraction.

But $\log _{10} N$ and $\log _{10} A$ differ only hy the interger n; $\therefore \log _{10} A$ is the fractional part of $\log _{10} N$.
Hence the loyferithms of all mumhers haring the same sequence of figurbs hate the same mantisse.

Therefore one register serves for the momtissate of logarithoms of all such numbers. This remders the tubles more comprehousice.

Again, considering all mombers which have the same serpuence of fignres, the momber contaming tho digits in the intergal part $=10$. A, and therefore the chameteristic of its logathom is 1.

Similarly the number contaning m digits in the integral part $=10^{m}$. A, and therefore the chameteristic of its logarithm is m.

Also mumbers which hare no digit in the intedral part and one cypher after the decimat point are equal to $A \cdot 10^{-1}$ and A. 10^{-2} respectively, and therefore the chanacteristics of their logarithms are -1 and -2 respectively.

Similarly the mumber having of eypers following the decimal point $=A \cdot 10^{-(m+1)}$;
\therefore the chanateristic of its loyarithm is $-(m+1)$.
Hence we see that the charrecteristids of the lomprithons of all numbers rom lee determined by inspectime rant therefore nocel not be registered. This renders the tubles less bulliy.
469. The mothod of using Tables of Logarithms does not fall within the scope of this treatise, but an account of it may be found in the Author's work on Elementary Trigonovietry.
470. Wie proceed to give a short explamation of the way in which logarithms are applied to the solution of questions relating to Compound Interest.
471. Suppose r to represent the interest on \dot{x} for a year, then the interest on P poumis for a year is represented by Pr, and the amomnt of P lounds for a year is represented by $P+P i$.
472. 'To find the amount of a given sum for any time at compound interest.

Let P be the original principal,
r the interest on $£ 1$ for a year,
n the number of years.
Then if $P_{1}, P_{2}, P_{3} \ldots P_{n}$ lee the amounts at the end of $1,2,3 \ldots n$ years,

$$
\begin{aligned}
& P_{1}=P^{\prime}+P^{\prime} r=P^{\prime}(1+r) \\
& P_{2}^{\prime}=I_{1}^{\prime}+P_{1}^{\prime} r=P_{1}(1+r)=P(1+r)^{2} \\
& P_{3}=P_{2}^{\prime}+P_{2} r=P_{2}(1+r)=P(1+r)^{3}, \\
& \ldots \\
& P_{n}^{\prime}=P^{\prime}\left(1+r^{\prime \prime} .\right.
\end{aligned}
$$

473. Now suppose $P_{1} . P^{\text {and }} r$ to he given: then by the aid of Logarithms we can find n, for

$$
\begin{aligned}
\log P_{n} & =\log \left|P(1+r)^{\prime \prime}\right| \\
& \left.=\log I^{\prime}+\prime \log 1+r\right) ; \\
\therefore n & =\frac{\log I_{n}-\log I}{\log (1+r)} .
\end{aligned}
$$

does

 int of sTARY474. If the interest he payable at intervals other than a year, the formula $P_{n}=P^{\prime}(1+r)^{n}$ is applicable to the solution of the question, it being observed that r represents the interest on $£ 1$ for the period on which the interest is calculated, halfyearly, quarterly, or for any other period, and n represents the number of such periods.

For example, to find the interest on P pounds for 4 years at compound interest, reckoned quarterly, at 5 per cent. per annum.

Here

$$
\begin{aligned}
r & =\frac{1}{4} \text { of } \frac{5}{100}=\frac{1 \cdot 25}{100}=\cdot 0125 \\
n & =4 \times 4=16 \\
\therefore P_{n} & =P(1+\cdot 0125)^{16}
\end{aligned}
$$

EXAMPLES.-clXii.

N.B.-The Logarithms required maty be found from the extracts from the Tables given in pages 329, 330.
I. In how many years will a stm of money donble itself at 4 per cent. compound interest?
2. In how many years will a sum of money donble itself at 3 per cent. compomm interest !
3. In how many years will a sum of money donble itself at l^{0} per cent. compound interest ?
4. In how many years will a sam of money treble itself at 5 jer cent. compound interest ?
5. If $x P$ at compomil interest, rate r, flonble itself in n years, and at rate $2 r$ in m years: show that $m: n$ is greater than 1 : 2.
6. In how many years will $\mathfrak{E l 0 0 0}$ amount to $\mathfrak{E l} 800$ at 5 pre cent. compound interust
7. Tn how many years will $£ P^{\prime}$ domble itarli at 6 per cent. per ann. compound interes payable half-yenly?

APPENDIX.

475. The: following is another method of poving the principal theorem in Permutations, to which reference is made in the note on prge 289.

To prove that the mumber of mimututions of n things tecken r at a time is $\mathrm{n} .(\mathrm{n}-1) \ldots \ldots(11-1+1)$.

Let there be n things $a, b, c, d, \ldots .$.
If n things be taken 1 at a time, the number of permutations is of course u.

Now take any eno of them, as a, then $n-1$ are left, and any one of these may be put after a to form a permutation, 2 at a time, in which a stands first: and hence since there are n things whieh may begin and each of these n may have $n-1$ put after it, there are altogether $n(n-1)$ permutations of n things taken 2 at a time.

Take any one of these, as al, then there are $n-2$ left, and any one of these may be put alter al, to form a permutation, 3 at a time, in which $a b$ stands first: and hence since there are $n(n-1)$ things which may begin, and ach of these $n(n-1)$ may have $n-2$ put after it, there are altogether $n(n-1)(n-2)$ permatations of n things taken 3 at a time.

If we take any one of these as abr, there are $n-3$ left, and so the momber of permatations of n things taken 4 at a time is $n \cdot(n-1)(n-2)(n-3)$.

So we see that to find the number of permutations, taken r at a time, we must multiply tite number of permutations, taken $r-1$ at a time, by the number formed by subtrateting $r-1$ from n, since this will he the number of endings any one of these permutations may have.

Hence the number oi permutations of n things taken 5 at a time is

1. 50
2.
3. 12
I. 2
4.

9.1

1. 2
2.

I. 4
5.
9. $\quad 2$
13.

A
I.
4.
7. 7
[S. A
$n(n-1)(n-2)(n-3) \times(n-4)$, or $n(n-1)(n-2)(n-3)(n-4)$; and since each time we multiply by an additional factor the number of factors is equal to the number of things taken at a time, it follows that the momber of permatations of n things taken r at a time is the product of the factors

$$
n \cdot(n-1)(n-2) \ldots \ldots(n-r+1)
$$

prin-

 le in ८ r at tions and tion, e are $n-1$ of n and tion, hereand we is

Ken ions, ting unc ingry

A NSWERS.

i. (Page 10.)

1. $5 a+7 h+12 c$.
2. $a+3 b+2 c$.
3. $211+2 b+2 c$.
4. $8 a+2 b+2 c$.
5. $2 c-\ddot{i} a+3 b-2$.
6. 0.
1. $12 b+3 c$.
ii. (Page 10.)
2. $2 u$.

3. $3 九-3 c$.
4. $8 \dot{b}+\bar{b} y$.
5. $4 u+1 u+2 c$.
6. $2 u$.
7. 4.
1. $13 c-y-6 \%$
2. $10 x-7 b-x$.
iii. (Page 10.)
3. $2 h$.
4. $x+2 y$.
5. $\quad 1+5 c+d$.
6. $2 y+2 \%$
7. 2
8. $2 b+2 c$.
9. $11-311-\mathrm{c}$.
10. $3 y+\%$
iv. (Page 11.)
I. $4 a-b$.
11. 41 .
12. $11+11-4 c$.
13. 21 .
14. $14 c+2$.
15. $2 \boldsymbol{2}+\boldsymbol{6}$
16. $6 . c-u$.
17. a.
18. $211-b$.
19. 2u.
20. c.
21. $x+3 u$.
22. $29 a-2 T b+6 c$.
v. (Page 16.)

Addition.

1. $\quad 711-2 b$.
2. $-101+6 c$.
3. $-11 . c-8 y-6$.
4. $-6 \mathrm{f}-\mathrm{-ac}+3 \mathrm{~m}$.
5. 2α
6. $-2 c-2 a+b+4 y$
7. $7 u+41-4 c$.
8. $7 a-h+7 c$.
9. $-6 y+2$.
[S.A.]

Subtraction.

1. $21+2 b$.
2. $a-c$.
3. $2 t-2 b+2 c$.
4. $8 x-17 y+5$.
5. $711-16 b+20 c$.
6. $\quad 5 u-3 b-8 x$.
7. $-3 a+3 b-4 c$.
8. $2 b+2 c-15$.
9. $11 x-7 y+4 z$
10. $6 a-b+5 c$.
I I. $12 p-9 q+2 r$.
vi. (Page 20.)

vii. (Pago 2.2.)
11. $a^{2}+a b-a c$.
12. $2 u^{2}+6 u b-8 u c$.
13. $\quad a^{4}+3 a^{3}+4 a^{2}$.
14. $9 u^{5}-15 u^{4}-18 u^{3}+21 u^{2}$. 5. $\quad a^{3} b-2 a^{2} b^{2}+a b^{3}$.
15. $3 a^{3} b-9 a^{+} b^{3}+3 c^{2} l^{4}$.
16. $\operatorname{s} m^{3} n+9 m^{2} n^{2}+10 m n^{3}$.
17. $\quad 1 s^{6} t^{6} b+8 c^{2} b^{2}-6 a^{4} b^{3}+8 c^{2} b^{4}$.
18. $x^{4} y^{4}-x^{3} y^{2}+x^{2} y^{2}-7 \cdot y^{2}!$
19. $m^{3} n-3 m^{2}-n^{2}+3 m n^{2}-n^{4}$.
II. $144 a^{3} b^{4}-72 a^{4} b^{5}+60 t^{3} b^{5}$.
20. $104 x^{4} y-136 x^{3} y^{2}+40 x^{2} y^{3}-8 x^{4} y^{4}$.
viii. (Page 27.)
21. $x^{2}+12 c+27$.
22. $x^{2}+8 x-105$.
23. $x^{2}-2 x-120$.
24. $x^{2}-15 x+56$.
25. $\quad 4-8 u+15$.
26. $y^{2}+7!-78$.
27. $a^{4}+x^{2}-20$.
ㅇ. $x^{4}-12 x^{3}+50 x^{2}-84 x+45$.
28. $c^{4}-31 c^{2}+9$.
29. $\quad u^{6}-3 u^{3}-3 u^{4}+13 u^{3}-6 a^{2}-6 a+4$.
30. $x^{4}-\cdots+\because a-1$.
31. $x^{4}+x^{2} x^{2}+y^{4}$.
32. : $:^{3}-y^{3}$.
33. $u^{6}-x^{6}$.
34. $x^{3}-5 x^{3}+5 x^{2}-1$.
35. $x^{4}-81 y^{4}$.
1\%. $\quad u^{4}-16 b^{1}$.
IS. $16 a^{4}-b^{4}$.
36. $a^{5}-4 a^{4} b+4 a^{3} b^{2}+4 a^{2} b^{3}-17 c l^{4}-12 b^{3}$.
37. $\quad a^{5}+5 a^{4} b+a^{3} b^{2}-10 a^{2} b^{3} \pm 12 a b^{4}-9 b^{5}$.

2I. $a^{4}+4 a^{2} x^{2}+16 x^{4}$.
22. $81 a^{4}+9 a^{2} x^{2}+x^{4}$.
23. $x^{8}+4 x^{2} x^{4}+16 u^{4}$.
24. $\quad a^{3}+b^{3}+c^{3}-3 a b c$.
25. $\quad x^{5}+x^{4} y-9 x^{3} y^{2}-20 x^{2} y^{3}+2 x y^{4}+15 y^{3}$.
26. $\quad a^{2} l^{2}+c^{2} d^{2}-t^{2} c^{2}-b^{2} d^{2}$. 27. $x^{8}-a^{8}$.
28. $x^{3}-a x^{2}+b x^{2}-c x^{2}-a b x+a c x-b c x+a b c$.
29. $1 \quad s^{8 .} . \quad 30 . s^{4}-y^{6} . \quad 3 \mathrm{I} . \quad a^{16}-x^{16} . \quad 32 . \quad-47$.
33. 2. $34 .-14 . \quad 35 . a b+a c+b c . \quad 36 . \quad \cdots 60$.
37. 2. 38. m^{2}.

ix. (Page 28.)

1. $-u^{2} b$.
2. $-a^{i}$.
3. $-a^{3} b^{3}$.
4. $\quad 12 a^{3} b^{3}$.
5. $-30 x^{4} y^{3}$.
6. $-a^{3}+a^{2} b-a b^{2}$. 7. $\quad-6 a^{5}-8 a^{4}+10 a^{3}$.
7. $a^{4}+2 u^{3}+2 a^{2}+a$.
8. $-6 x^{3} y+x^{2} y^{2}+7 x y^{3}-12 y^{4}$.
9. $5 m^{3}+m^{2} n-13 m n^{2}+7 n^{3}$. II. $\quad-13 r^{3}-22 n^{2}+96 r+135$.
10. $-7 w^{4}+z^{3} z+8 x^{2} \pi^{2}+9 x z^{2}+9 z^{3}$.

I3. $x^{6}+x^{3} y^{3}$.
I4. $x^{4}+2 x^{3} y+2 x^{2} y^{2}+2 x y^{3}+y^{4}$.

X. (Page 32.)

1. $x^{2}+2 a x+a^{2}$.
2. $x^{2}-2 a x+a^{2}$.
3. $x^{2}+4 x+4$.
4. $x^{2}-6 x+9$.
5. $x^{4}+2 x^{2} y^{2}+y^{4}$.
6. $x^{4}-2 x^{2} y^{2}+y^{4}$.
7. $\quad a^{6}+2 u^{3} b^{3}+b^{6}$.
8. $\quad u^{6}-2 a^{3} b^{3}+b^{6}$.
9. $x^{2}+y^{2}+z^{2}+2 x y+2 x+2 y z$.
10. $x^{2}+y^{2}+z^{2}-2 x y+2 x-2 y \%$.
II. $m^{2}+n^{2}+p^{2}+r^{2}+2 m n-2 m p-2 m r-2 m p-2 m+2 p r$.
11. $x^{4}+4 x^{3}-2 x^{2}-12 x+9 . \quad 13 . \quad x^{4}-12 x^{2}+50 x^{2}-84 x+4$.
12. $4 x^{4}-28 x^{3}+85 x^{2}-126 x+81$.
13. $\quad x^{4}+y^{4}+x^{4}+2 x^{2} y^{2}-2 x^{2} x^{2}-2 y^{2} x^{2}$.
14. $\quad x^{8}-8 x^{6} y^{2}+18 x^{4} y^{4}-8 x^{2} y^{6}+y^{8}$.
15. $\quad c^{6}+b^{6}+c^{6}+2 t^{3} b^{3}+2 t^{3} c^{3}+2 l^{3} c^{3}$.
16. $\quad x^{6}+y^{6}+z^{3}-2 x^{3} y^{3}-2 x^{3} z^{3}+2 y^{3} z^{3}$.
17. $x^{2}+4 y^{2}+9 z^{2}+4 x y-6 x z-12 y z$.
18. $x^{4}+4 y^{4}+25 z^{4}-4 x^{2} y^{2}+10 x^{2} z^{2}-20 y^{2} z^{2}$.
19. $x^{3}+3 a x^{2}+3 a^{2} x+z^{3}$.
20. $x^{3}-3 a x^{2}+3 x^{2} x-a^{3}$.
21. $x^{3}+3 x^{2}+3 x+1$.
22. $x^{3}-3 x^{2}+3 x-1$.
23. $x^{3}+6 x^{2}+12 x+8$.
24. $a^{6}-3 a^{4} b^{2}+3 a^{2} b^{4}-b^{6}$.
25. $a^{3}+3 a^{2} b+3 a b^{2}+b^{3}+c^{3}+3 a^{2} c+6 a b c+3 b^{2} c+3 a c^{2}+3 b c^{2}$.
26. $\quad x^{3}-3 c^{2} b+3 a b^{2}-b^{3}-c^{3}-3 a^{2} c+6 a b c-3 b^{2} c+3 a c^{2}-3 b c^{2}$.
27. $m^{4}-2 m^{2} n^{2}+n^{4}$.
28. $m^{4}+2 m^{3} n-2 m n^{3}-n^{4}$.
xi. (Page 34.)
I. x^{3}.
29. x^{8}.
30. $x^{3} y$
31. $x^{4} y z^{2 i} . \quad 5.6 b c$.
32. $\dot{8} c^{2}$.
33. $16 a^{2} \int^{6} c^{6}$.
34. $121 m^{8} n^{8} n^{8}$.
35. $12 a^{3} x y^{4}$.
36. $8 a^{4} h c^{2}$.

xii. (Page 35.)

1. $x^{2}+2 x+1$.
2. $y^{3}-y^{2}+y-1$.
3. $a^{2}+2 a b+3 b^{2}$.
4. $x^{4}+m p x^{2}+m^{2} p^{2}$.
5. $4 a y-7 x+x^{2}$.
6. $8 x^{3} y^{5}-4 x^{2} y^{2}-2 y$.
7. $27 m^{6} n^{5}-18 n^{3} u^{4}+9 m p$.
8. $\quad 3 x^{2} y^{2}-2 x y^{3}-y^{4}$.
9. $13 a^{2} b-9 a b^{2}+7 b$.
10. $19 b^{3} c^{2}+12 b^{2} c^{3}-7 h c^{4}$.

xiii. (Page 36.)

I. -8 .
2. $15 a^{5}$.
3. $-21 x^{3} y^{6}$.
4. $-6 m^{2} n$.
5. $\left.16 a^{3} b\right)$
6. $a^{2} x^{2}+a x+1$.
7. $-2 u^{2}+3 u-x^{2}$.
8. $2+6 a^{2} b-8 a^{4} b^{6}$.
9. $-12 x^{2}+9 x!y-8 y^{2}$.
10. $-x^{3}+b^{3} x^{2} z^{2}+b y^{4}$.
xiv. (Page 38.)
I. $x+5$.
2. $x-10$.
3. $x+4$.
+. $\quad x+12$.
5. $x^{2}+7 x+12$.
6. $x^{2}-1$.
7. $x^{2}+x+1$.
8.
II.
14.
16.
18.
21.
23.
25.
27.
29.
31.
33.
35.

37
39.
41.
44.
46.
$+8$.
弓о.
53.
56.
59. x
62. x^{2}

1. $x^{2}+$
2. $x^{2}+$
I. m
3. $x^{3}-3 x^{2}+3 x+1 . \quad$ 9. $x^{2}-2 x-1$. 10. $x^{2}-2 x+1$.

I 1. $x^{2}-x+1$.
12. $x^{3}-2 x^{2}+8$. 13. $x^{2}+3 y^{2}$.
14. $a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$.
15. $\quad a^{4}-4 a^{3} b+6 a^{2} b^{2}-a^{2} b^{3}+b^{4}$.
16. $x^{2}-6 x+5$.
17. $a^{3}-2 a^{2} b+3 a b^{2}+4 a^{3}$.
$a^{2} b^{4}-b^{6}$.
-3bc:
$-3 b c^{2}$.
$m n^{3}-n^{4}$
6. $\bar{\delta} c^{2}$. , $8 a^{4} b c^{2}$.
$a b+3 b^{2}$
$x^{2} y^{2}-2 y$
XV. (Page 40.)

1. $x^{2}+a x+b$.
2. $\quad y^{2}-(l+m) y+l m$.
3. $x^{2}+c x+d$.
4. $x^{2}+a x-b$.
5. $x^{2}-(b+d) x+b d$.
xvi. (Page 42.)
6. $\quad m--n, m^{2}-m n+n^{2}, m^{4}-m^{3} n+m^{2} n^{2}-m n^{3}+n^{4}$, $m^{5}-m^{i} n+\& c \cdot, m^{8}-m^{i} n+\& c$.
7. $m+n, m^{2}+m n+u^{2}, m^{3}+m^{2} n+\& c \cdot, m^{5}+m^{4} n+\& c .$,
$m^{6}+m^{5} n+\& c$.
8. $a-1, a^{2}-a+1, a^{4}-a^{3}+\& c ., a^{6}-a^{5}+\& c ., a^{7}-a^{6}+\& c$.
9. $\quad y+1, y^{2}+y+1, y^{4}+y^{3}+\& c ., y^{6}+y^{5}+\& c ., y^{8}+y^{7}+\& c$.
xvii. (Page 43.)
10. $5 \cdot(x-3)$.
11. $3 x\left(x^{2}+6 x-2\right)$.
12. $7\left(7 y^{2}-2 y+1\right)$.
13. $4 x y\left(x^{2}-3 x y+2 y^{2}\right)$.
૪. $45 x^{4} y^{7}\left(x^{3} y^{3}-2 x-8 y\right)$.
14. $x\left(x^{3}-a x^{2}+b x+c\right)$.
15. $3 x^{3} y^{2}\left(x^{2} y-7 x+9 y^{2}\right)$.
16. $27 a^{3} b^{6}\left(2+4 a^{3} b^{2}-9 a^{5} b^{3}\right)$.

xviii. (Page 44.)

I. $(x-a)(x-b)$ 2. $(a-x)(b+x)$. 3. $\quad(b-y)(c+y)$.
4. $(a+m)(b+n)$.
5. $\quad(a x+y)(b x-y) . \quad 6 . \quad(a b+c d)(x-y)$.
7. $(c x+m y)(d x-n y)$.
8. $(a c-b d)(b x-d y)$.

xix. (Page 45.)

I. $(x+5)(x+6)$.
2. $(x+5)(x+12)$ 3. $(y+12)(y+1)$.
4. $(y+11)(y+10)$.
5. $(m+20)(m+15)$. 6. $(m+6)(m+17)$.
7. $(a+8 b)(a+b)$.
8. $(x+4 m)(x+9 m)$. 9. $(y+3 n)(y+16 n)$.
10. $(\%+4 p)(z+25 p)$.
II. $\left(x^{2}+2\right)\left(x^{2}+3\right)$.
12. $\left(x^{3}+1\right)\left(x^{3}+3\right)$.
13. $(x y+2)(x y+16)$.
14. $\left(x^{4} y^{2}+3\right)\left(x^{4} y^{2}+4\right)$.

1弓. $\quad\left(m^{5}+8\right)\left(m^{5}+2\right)$.
Іб́. $(n+20 q)(n+7 q)$.
$\mathbf{X X} \quad$ (Page 45.)
$1(x-5)(x-2)$.
2. $(x-19)(x-10)$.
3. $(y-11)(y-12)$.
4. $(y-20)(y-10)$.
5. $(n-23)(n-20)$.
6. $(n-56)(n-1)$.
7. $\left(x^{3}-4\right)\left(x^{3}-3\right)$.
S. $(a b-26)(c b-1)$.
9. $\left(b^{2} c^{3}-5\right)\left(b^{2} c^{3}-6\right)$.
10. $(x y z-11)(x y z-2)$.
xxi. (Page 46.)
I. $(x+12)(x-5)$.
2. $(x+15)(x-3)$.
3. $(a+12)(a-1)$.
4. $(a+20)(a-7)$.
$5 .(b+25)(b-12)$.
6. $(b+30)(b-5)$.
7. $\left(x^{4}+4\right)\left(x^{4}-1\right)$.
8. $(x y+14)(x y-11)$.
9. $\left(m^{5}+20\right)\left(m^{5}-5\right)$.
10. $(n+30)(n-13)$.

xxii. (Page 46.)

1. $(x-11)(x+6)$ 2. $(x-9)(x+2)$ 3. $(m-12)(m+3)$.
2. $(n-15)(n+4)$.
3. $(y-14)(y+1)$.
4. $(z-20)(z+5)$.
5. $\left(x^{5}-10\right)\left(x^{3}+1\right)$.
6. $(c d-30)(c d+6)$.
7. $\left(m^{3} n-2\right)\left(m^{3} n+1\right)$.
!०. $\left(p^{4} q^{2}-12\right)\left(p^{4} q^{2}+7\right)$.

xxiii. (Page 47.)

I. $(x-3)(x-12)$.
2. $(x+9)(x-5)$.
3. $(a b-18)(a b+2)$.
4. $\left(x^{4}-5 m\right)\left(x^{4}+2 m\right)$.
5. $\left(y^{3}+10\right)\left(y^{3}-9\right)$.
6. $\left(x^{2}+10\right)\left(x^{2}-11\right)$.
7. $: c\left(x^{2}+3 a x+4 a^{2}\right)$.
8. $(x+m)(x+n)$.
9. $\left(y^{3}-3\right)\left(y^{3}-1\right)$.
10. $(a y-a b)(x-c)$.
II. $(x+a)(x-b)$.
12. $(x-c)(x+d)$.
13. $(a b-d)(b-c)$.
xxiv. (Page 48.)
I. $(x+9)^{2}$.
2. $(x+13)^{2}$.
3. $(x+17)^{2}$.
4. $(y+1)^{2}$.
5. $(z+100)^{2}$.
6. $\left(x^{2}+7\right)^{2}$.
7. $(x+5 y)^{2}$.
8. $\left(m^{2}+8 n^{2}\right)^{2}$.
9. $\left(x^{3}+12\right)^{2}$.
10. $(x y+81)^{2}$.

XXV: (Page 48.)
I. $(x-4)^{2}$.
2. $(x-14)^{4}$.
3. $(x-18)^{2}$
4. $(y-20)^{2}$.
5. $(z-50)^{2}$.
6. $\left(x^{2}-11\right)^{2}$.
7. $(x-15 y)^{2}$.
8. $\left(m^{2}-16 n^{2}\right)^{2}$.
9. $\left(x^{3}-19\right)^{2}$.

xxvi. (Page 50.)

I. $(x+y)(x-y)$.
2. $(x+3)(x-3)$.
3. $(2 x+5)(2 x-5)$.
4. $\left(a^{2}+x^{2}\right)\left(a^{2}-x^{2}\right)$.
5. $(x+1)(x-1)$.
6. $\left(x^{3}+1\right)\left(x^{3}-1\right)$.
7. $\left(x^{4}+1\right)\left(x^{4}-1\right)$.
8. $\left(m^{2}+4\right)\left(m^{2}-4\right)$.
9. $(6 y+7 i)(6 y-7 i)$.
10. $(9 x y+11(d i)(9 x y-11 a b)$.
11. $(a-b+c)(a-b-c)$.
12. $(x+m-n)(x-m+n)$.
13. $(a+b+c+d)(a+b-c-d)$.
14. $2 x \times 2 y$.
15. $(x-y+z)(x-y-i)$.
16. $(a-b+m+n)(a-b-m-n)$.
17. $(a-c+b+d)(a-c-b-d)$.
18. $(a+b--c)(a-b+c)$.
19. $(x+y+z)(x+y-z)$. 20. $(a-b+m-n)(a-b-m+n)$.
21. $(u x+b y+1)(a x+b y-1)$.
22. $2 a x \times 2 b y$.
23. $(1+a-b)(1-a+b)$.
24. $(1+x-y)(1-x+y)$.
25. $(x+y+z)(x-y-z)$.
26. $(a+2 b-3 c)(a-2 b+3 c)$.
27. $\left(a^{2}+4 b\right)\left(a^{2}-4 b\right)$.
28. $(1+7 c)(1-7 c)$.
29. $(a-b+c+d)(a-b-c-d)$.
30. $(a+b-c-l)(a-b-c+d)$.
3I. $3 a x(a x+3)(a x-3)$.
32. $\left(a^{2} b^{3}+c^{4}\right)\left(a^{2} b^{3}-c^{4}\right)$.
33. $12(x-1)(2 x+1)$.
34. $(9 x+7 y)(5 x+y)$.
35. 1000×506.

xxvii. (Page 51.)

1. $(a+b)\left(a^{2}-a b+b^{2}\right)$.
2. $(a-b)\left(a^{2}+a b+b^{2}\right)$.
3. $(a-2)\left(a^{2}+2 a+4\right)$.
4. $(x+7)\left(x^{2}-7 x+49\right)$.
5. $(b-5)\left(b^{2}+5 b+25\right)$.
6. $(x+4 y)\left(x^{2}-4 x y+16 y^{2}\right)$.
7. $(a-6)\left(a^{2}+6 a+36\right)$.
8. $(2 x+3 y)\left(4 x^{2}-6 x y+9 y^{2}\right)$.
9. $(4 a-10 b)\left(16 c^{2}+40 a b+100 b^{2}\right)$.
10. $(9 x+8 y)\left(81 x^{2}-72 x y+64 y^{2}\right)$.
11. $(x+y)\left(x^{2}-x y+y^{2}\right)(x-y)\left(x^{2}+x y+y^{2}\right)$.
12. $(x+1)\left(x^{2}-x+1\right)(x-1)\left(x^{2}+x+1\right)$.
13. $(a+2)\left(a^{2}-2 a+4\right)(11-2)\left(a^{2}+2 a+4\right)$.
14. $(3+y)\left(9-3 y+y^{2}\right)(3-y)\left(9+3 y+y^{2}\right)$.

xxviii. (Page 51.)

I. $a+b$.
2. 'Take b from a and add c to the result.
3. $2 x$.
4. $a-5$.
5. $x \div 1$.
6. $x-2, x-1, x, x+1, x+2$.
7. 0. 8. 0. 9. du. 10. c. 11. $x-y$. 12. $x-y$.
13. ${ }^{-365-6 x}$.
14. $x-10$.
15. $x+5 u$.
16. A has $x+5$ shillings, B has $y-5$ shillings.
17. $x-8$. 18. xy. 19. 12-x-y. 20. nq. 21. 25-x.
22. y-25. 23. $256 m^{8}$. 24. 4b. 25. $x-5 . \quad 26 . y+7$.
27. $x^{2}-y^{2} . \quad 28 . \quad(x+y)(x-y) . \quad 29 . \quad \therefore \quad$ 30. 2.

xxix. (Page 53.)

1. To a add b.
2. From the square of a take the square of b.
3. To fom times the square of a add the cube of b.
4. 'Take four times the sum of the squares of a and b.
5. From the square of a take twice b, and ard to the result thare times c.
6. To a add the product of m and b, and take c from the result.
7. To a add m. From b take c. Muliply the results together.
S. Take the square root of the cube of x.
8. Take the square root of the sum of the squ $\bar{\cdots}$ of x and y.
9. Add to a twice the excess of $?$ above r.
II. Maltiply the sum of u and 2 by the excess of 3 above c. [S.A.]
10. Divide the sum of the squares of a and b by four times the product of a and b.
11. From the square oi x subtract the square of y, and take the square root of the result. Then divide this result by the excess of x above y.
12. To the square of x add the square of y, and take the square root of the result. Then divide this result by the square root of the sum of x and y.
$\mathbf{x X X}$. (Page 53.)
І. 2.
13. 0 .
14. 17.
1. 31.
1. 20.
1. 33.
1. (1) \%.
2. 27 .
3. 14.
1. 120 .
II. 210 .
2. 1458.
1. 30.
1. 5. 15. 3.
1. 4.
1. 49.
1. 10.
1. 12.
1. 4. 21. 43.
1. 20.23.
2. 41536.

25.52.
XXXI. (Page 54.)
I. 0.
2. 0 .
3. $2 a c$.
4. ${ }^{2} x y$.
5. $a^{2}+b^{2}$.
6. $4 x^{4}+(6 m-6 n) x^{3}-\left(4 m^{2}+9 m n+4 n^{2}\right) x^{2}$
$+\left(6 m^{2} n-6 m n^{2}\right) x+4 m^{2} n^{2}$.
7. $c r^{2}+d r+e$.
8. $-a^{4}-b^{4}-c^{4}+2 a^{2} b^{2}+2 a^{2} c^{2}+2 b^{2} c^{2}$.

When $c=0$, this becomes $-a^{4}-b^{4}+2 a^{2} b^{2}$. When $b+c=a$, the product becomes 0 . When $a=b=c$, it lecomes $3 a^{4}$. 9. 0. \quad Io. 34.
12. (a) $(a+b) x^{2}+(c+l) x$.
(β) $(11-1) n^{3}-(r+1-2) x^{2}$.
(γ) $(4-a) x^{3}-(3+b) x^{2}-(5+c) x$ (($) a^{2}-b^{2}+(2 u+2 b) x$.
(є) $\left(m^{2}-n^{2}\right) x^{4}+(2 m q-2 n q) x^{3}+(2 m-2 n) x^{2}$.
13. $x^{3}-(a+b+c) x^{2}+(a b+a c+b c) x-c b c \cdot$
14. $\left.x^{3}+(a+b+c) x^{2}+(a b)+a c+b c\right) x+a b c$.
15. $(a+b+c)^{3}=a^{3}+3 c^{2} b+3 c b^{2}+b^{3}+c^{3}+3 u^{2} c^{2}$

$$
+6 a b c+3 b^{2} c+3 a c^{2}+3 b c^{2}
$$

$(a+b-c)^{3}=a^{3}+3 u^{2} b+3 u b^{2}+b^{3}-r^{3}-3 a^{2} c$
$-6 c h a c-3 b^{2} c+3 u c^{2}+3 m n^{2}$.
I.
four times

I, and take this result
d take the result by
6. 33.
12. 1458.
18. 10.
36. 25.52.
5. $a^{2}+b^{2}$.
$\left.{ }^{2}\right) x+4 m^{2} n^{2}$. $2 a^{2} c^{2}+2 b^{2} c^{2}$ b^{2}. When $a=b=c$, it b. 34.
$\left(x+(1-2) x^{2}\right.$. $+(2 a+2 l) x$.

$$
\begin{aligned}
&(b+c-1)^{3}=-a^{3}+3 a^{2} b-3 a b^{2}+ b^{3}+c^{3}+3 a^{2} c \\
&-6 a b c+3 b^{2} c-3 a c^{2}+3 b c^{2} . \\
&(c+a-b)^{3}=a^{3}-3 a^{2} b+3 a b^{2}-b^{3}+c^{3}+3 a^{2} c \\
&-6 a b c+3 b^{2} c+3 a c^{2}-3 b r^{2} .
\end{aligned}
$$

The sum of the last three sulbtracted from the first gives $24 a b c$.
16. $9 a^{2}+6 a c-3 a b+4 b c-6 b^{2}$. 17. $a^{116}-b^{16}$.
18. $2 a c-2 b c-2 a d+2 b d$. The value of the result is $-2 b c$.
19. $a b+a y+(b+1+2 a) x+(2 a-b-1) y$.
20. 9.
21. $a b+x^{2}+(a-b+1) x-(a+b+1) y$.
22. 2.
23. $(7 m+4 n+1) x+(1-6 n-4 m) y$.
25. $4 a^{2}+6 a c+2 a b+9 b c-6 b^{2}$.
26. $3 ; 128 ; 3 ; 118$.
27. 9.
28. 44.
29. 20.
30. 35.
31. 18.
XXXii. (Page 60.)

1. 3.
1. 2.
1. 2.
1. 7.
1. 2.
1. 2.
1. 3.
1. 4.
1. 9.
1. Ans. 5t.
II. 2. I2. 9. 13. 9. It. $-7.15 .3 . \quad 16.7$
2. 2.
1. 8.
1. 10.
1. 6.

21.4.
22. 110 .
23.3.
24. 15. 25.1.
26. 2.
27. 3.
28. 4. 29. 6. 30. -1 .
xxxiii. (Page 62.)

1. 70. 2. 43. 3. 23. 小. 7, 21. 5. 36, 26, 14, 12.
1. 12,8 . 7. 50,30 . S. $10,14,18,22,26,30$. 9. £65.
2. 12 shillings, 24 shillings. 11.52.
3. A has $£ 130,1 ; £ 150, C \notin 13(1), 1) \not(90$.
 15.21, 13. 16. £8. 15s. 17. 84, 26. 18. 62, 28.
 20. 49 gallons.
4. E14. $\mathscr{E} 24, f 38$.
5. $31,17$.
6. 421.
1. 48, 36.
2. 50, 40.
3. $42,18$.
4. 60, 24 .
5. $8,12$.
6. 88.
1. 18.
1. 44
2. 57,19 .
3. 4.
1. 23, 20 .
2. $80,128$.
3. 19, 22.
4. 200,100 .
5. $53,318$.
6. $5,10,15$.
xxxiv. (Page 68.)
I. $u^{2} b$.
7. $x^{2} y^{2} z$.
8. $2 x^{2} y$.
9. $15 m^{2} n p$.
10. 18ubcd.
11. $a^{2} b^{2}$.
12. 2.
1. $1 \pi \mathrm{mq}$
2. $4 x^{2} y^{2} z^{2}$.
3. $30 x^{2} y^{3}$.
xxxv. (Page 69.)
4. $a \cdots b$.
5. $a^{2}-b^{2}$.
6. $a-\pi$
7. $u+x$
8. $3 x+1$.
9. 1-5u.
10. $x+?$
11. $x-y$.
12. $a-1$.
13. $1+u$.

xxxvi. (Page 70.)

1. 3453.
1. 36.
1. $9: 36$.
2. 355.

5.23.
6. 20.45
xxxvii. (Page 74.)

xxxviii: (Page 76.)
I. $x+2$.
2. $n-1$.
3. $x+1$.
4. $: 1-1$.
5. $x^{2}-2 x+i$
6. \because.
7. $y^{2}-2!+5$.
$42,18$.
31.41. $19,22$.
$5,10,15$.
$18 u b c d$. $30 x^{2} y^{3}$.
5. $3 . c+1$
o. $1+r$.
6. 2: 25%
$+12$
$-15 y$
$+!$
$\cdots-\eta$
$2 x+4$
$2 \cdot b-1$.
b.
$-u^{2}$.
(2.c)
4. $!1-1$.

xxxix. (Page 81.)

1. $\begin{gathered}\mathrm{l} \\ 3 i e^{-}\end{gathered}$
2. $\frac{2 x}{9}$.
3. $\frac{5 b}{12} i$
4. $\frac{2 x^{2}}{5 z}$.
5. $\frac{a^{2} b^{5} \mathrm{c}^{3}}{3}$.
6. $\frac{4 x y}{3} b c$
7. $\frac{3!}{2 a z}$.
8. $\frac{5 b^{2} c}{4 t^{2}}$
9. $\frac{4}{3 \cdot e^{2} y^{3}}$
Io. ${ }^{5} m$.
1I. $\frac{a}{a+b}$.
10. $\frac{2 m x}{3 m^{2} p-i}$.
11. $\frac{1}{3 y-5}$.
12. $\frac{21+x}{411 x^{2}-i} \quad$ I5. $\frac{y}{b c}$.
13. $\frac{u^{2}}{2 i-3 y}$.
14. $\frac{3 a d}{2 b c+c}$.
15. $\frac{c-2 a}{c+2 u}$
16. $\frac{3}{5}$.
17. $\begin{gathered}5 \\ 2 \pi-2!\end{gathered}$
18. $\frac{1}{7 u x-76 y}$.
19. $\frac{2}{9 \operatorname{acta}-12 c d x}$.
20. $\frac{x y}{2 a z}$.
$2+\frac{b^{2}}{2 a^{2} \cdot c^{2}}$
21. $\frac{1}{2 c}$.
22. $\frac{2 a+2 b}{a^{2}}$.
23. $\begin{gathered}1 \\ 12\end{gathered}$
24. $\frac{x}{1!}$
xl. (Page 82.)
25. $\frac{a+5}{a+3}$
26. $\frac{x-\pi}{x-3}$
27. $\frac{x+1}{x-7}$.
28. $\frac{x-3!}{x+7!}$
29. $x^{2}-x+1$
30. $\frac{x^{3}+y^{3}}{x^{3}-y^{3}}$.
31. $\begin{gathered}x-2 \\ x+4\end{gathered}$.
32. $\frac{x-3}{x+1}$.
33. $\begin{gathered}x^{2}-5 x+6 \\ 3 x^{2}-7 x\end{gathered}$.
34. $\frac{x^{2}-5 x+6}{3, x^{2}-8 x}$.
35. $\begin{aligned} & x^{2}+x y-y^{2} \\ & x^{2}-x y-y^{2}\end{aligned}$
36. $a^{2}+5 u+5$
37. $\frac{b^{2}+5 b}{b^{2}+b-b}$.
1.4. $\begin{gathered}m^{2}+4 m \\ m^{2}+m-6\end{gathered}$.
38. $\begin{aligned} & a^{2}-a+3 \\ & u^{2}+u+1\end{aligned}$
39. $\begin{aligned} & 3\left(1, r^{2}-7 u\right. \\ & 7, u^{2}-3, b^{2}\end{aligned}$
$1-4 x-6$
I8 $\quad \begin{aligned} & 10 a-14 a^{2} \\ & 15-9 n-2 u^{2}\end{aligned}$
40. $\frac{2+6 b^{2}+3 a b-5 a}{7 b_{2}-5 l_{1}}$.
41. $\overline{9} a x-21 i^{\circ}$
42. $\begin{gathered}a^{2}-a+1 \\ a^{2}-2 a+2\end{gathered}$
43. $\begin{gathered}3 x-1 \\ x^{2}-1\end{gathered}$
44. $\frac{a-5}{a-3}$.
45. $\frac{x^{2}-2 x+2}{x^{2}-2}$.
46. 3.
1. $\frac{2 x^{2}+3 x-5}{7 x-5}$.
2. $\frac{4 x^{2}+9 x+1}{2 x^{2}-3 x-2}$.
3. $\frac{2 x-3 a}{4 x^{2}+6 a x+9 a^{2}}$.
4. $\frac{x-3}{x-2}$.
5. $\frac{x-3}{x+1}$.
6. $\frac{m-1}{m+1}$.
7. $\frac{a-b-c}{a+b-c}$
8. $\frac{5 a+2 b}{3 a+2 b}$
9. $\frac{x-5}{2 x+3}$.
10. $\frac{x^{2}+5}{x+3}$.
11. $\frac{x^{2}+4}{x^{2}+x+1}$.
12. $\frac{x^{3}+x^{2}-2}{2 x^{2}+2 x+1}$.
13. $\frac{x^{2}+x-12}{3 x+5}$.
14. $\frac{x^{2}-2 x+3}{2 x^{2}+5 x-3}$.
15. $\frac{x^{3}-2 x^{2}-2 x+1}{4 x^{2}-7 x}$.
16. $\frac{a^{2}-5 a+6}{3 a^{2}-8 a}$.
xli. (Page 86.)
17. $\frac{7 x^{2}}{12 y^{2}}$.
18. $\frac{1}{2}$.
19. $\begin{aligned} & 2 x^{3} \\ & 3 y^{3}\end{aligned}$
20. $\frac{b y}{9 a x}$
21. $a x$.
22. $\frac{4}{9}$.
23. $\frac{3}{8}$.
24. $\frac{8 a^{2} c^{2}}{9 d^{2}}$.
25. $\frac{3 m n x y}{4 p q^{2}}$
26. $\frac{5 l m m^{2}}{4 p q}$.
xlii. (Page 86.)
27. $\frac{a-b}{a^{2}}$.
28. $\frac{4}{3}$
29. $\frac{(x+2)(x-4)}{x(x-2)}$.
30. $(x-1)(x-6)$
31. $\begin{array}{cc}a & 6 \\ a-\cdots\end{array}$
32. $\frac{(x-2)(x-5)}{x^{2}}$.
\%. 1.
33. 4.
1. $\frac{y}{x-y}$.
2. $\frac{c-a+b}{c-a-b}$.
II. $\begin{aligned} & i-m+n \\ & x+m-n\end{aligned}$
3. 1 .
4. $\begin{aligned} & x-y-z \\ & x+y+z\end{aligned}$
Xliii. (Page 87.)
5. $\frac{10 a c}{3 b x}$.
6. $\frac{3}{2 i j}$.
7. $\frac{8 x y}{b}$.
8. $\frac{4}{3 b n x} \quad ; \cdot \frac{3}{4}$
9. $\frac{5 x}{4 a}$
10. $\frac{5 x}{14}$
11. $\frac{1}{x-2}$.
12. $\frac{1}{2-\cdots}$
$\frac{x-3}{x-2}$
$\frac{2+5 x}{x+3}$.
$\frac{5-5}{x+3}$
$+x-12$
$3 . c+5$
$\frac{-5 a+6}{3 a^{2}-8 a}$

$\frac{b y}{9 a x}$

$\frac{8 a^{2} c^{2}}{9 d^{2}}$.
$(i i-5)$
$\frac{-a+b}{-a-b}$
7. $\left(x^{2}+y\right)(x+y)\left(x^{2}+y^{2}\right)(x-y)$.
8. $(x-5)(x-3)(x+5)$.
9. $(7 x-4)(3 x-2)\left(x^{2}-3\right)$.

IO. $\left(x^{2}+y^{2}\right)(x+y)(x-y)$.
II. $\left(a^{2}-b^{2}\right)(a+2 b)(a-2 b)$.
xlvii. (Page 94.)
I. $(x-2)(x-1)(x-3)(x-4)$.
2. $(x+4)(x+1)(x+3)$.
3. $(x-4)(x-5)(x-7)$.
4. $(3 x-2)(2 x+1)(7 x-1)$.
5. $(x+1)(x-1)(x+3)(3 x-2)(2 x+1)$.
6. $(x-3)\left(x^{2}+3 x+9\right)(x-12)\left(x^{2}-2\right)$.
xlviii. (Page 95.).
I. $\frac{15 x}{20}, \frac{16 x}{20}$.
2. $\frac{9 x-21}{18}, \frac{4 x-9}{18}$.
3. $\frac{4 x-8 y}{10 x^{2}}, \frac{3 x^{2}-8 x y}{10 x^{2}}$.
4. $\frac{20 a+25 b}{10 a^{2}}, \frac{6 a^{2}-8 a b}{10 a^{2}}$.
5. $\frac{48 a^{2}-60 c}{60 a^{2} c}, \frac{15 a-10 c}{60 a^{2} c}$.
6. $\frac{a b-b^{2}}{a^{3} b^{2}}, \frac{a^{4}-a^{3} b}{a^{3} b^{2}}$.
7. $\frac{3-3 x}{} \frac{3+3 x}{1-x^{2}}, \frac{1-x^{2}}{}$
8. $\frac{2+2 y^{2}}{1-y^{4}}, \frac{2-2 y^{2}}{1-y^{4}}$.
9. $\frac{5+5 x}{1-x^{2}}, \quad \begin{gathered}6 \\ 1-x^{2}\end{gathered}$
10. $\frac{a b+a, r}{c\left(b+r^{\prime}\right)}, \frac{b}{c(b+x)}$.
II. $\frac{a-c}{(a-b)(b-c)(a-c)}, \frac{b-c}{(a-b)(b-c)(a-c)}$.
12. $\frac{c(b-c)}{a b c(a-b)(a-c)(b-c)}, \frac{b(a-b)}{a b c(a-b)(a-c)(b-c)}$.
xlix. (Page 98.)
$15 . c+17$
2. $\begin{gathered}71 a-20 b-56 c \\ 84\end{gathered}$.
3. $\frac{32 x+9 y}{42}$.
4. $16 x^{2}+55 \cdot+4 x y-55!$
5. $\quad 27 x^{2}-2 x^{2} y-16 x y-28 y^{2}$.
6. $\frac{180 a^{2}+54 a b+331 b^{2} \cdots 20 a b b^{2}}{90 b^{2}} . \quad$ 7. $\quad \begin{gathered}80 x^{3}+64 x^{2}+84 x+45 \\ 60 x^{2}\end{gathered}$
8. $\frac{35 a^{2}+23 a b+21 b c-42 c^{2}}{21 a c}$.
9. $\frac{4 a^{2} c-3 a c^{2}-3 a c+7 c^{2}}{a^{2} c^{2}}$.
10. $\frac{11 y^{2}-8 x^{2} y^{2}-4 x y-7 x^{2}}{x^{3} y^{3}}$.
11. $\frac{3 a^{4}-7 a^{3} b+4 a^{2} b c-5 a b^{2} c+a b c^{2}-b^{2} c^{2}}{a^{3} b^{2} c^{2}}$.

1. (Page 99.)
I. $\frac{2 x-1}{(x-6)(x+5)}$.
2. $\frac{4}{(x-7)(x-3)}$.
3. $\frac{2}{(1+1)}{ }^{(1-x)}$.
4. $\frac{4 x y}{(x+y)(x-y)}$.
5. $\frac{-1}{1+x}$.
6. $\frac{a+b}{c+d x}$
7. $\frac{2 x^{2}}{(x+y)(x-y)}$.
8. $\frac{2 x-y}{(x-y)^{2}}$.
9. $\frac{2 x+5 \iota}{(x+a)^{2}}$.
10. $\frac{1}{(a+x)(a-x)}$.
li. (Page 100.)
I. $\frac{2}{1-a}$.
11. $\frac{4 x}{1-x^{4}}$.
12. $\frac{2 x}{1-x^{4}}$.
13. $\frac{8 b^{\bar{i}}}{a^{8}-b^{b}}$
14. $\frac{x+y}{y}$.
15. $\begin{aligned} 3 x^{3}+20 x^{2}-32 x-235 \\ (x+4)(x-3)(x+7)\end{aligned}$.
16. $\begin{aligned} & 3 x^{3}-24 x^{2}+60 x-46 \\ & (x-2)(x-3)(x-4)\end{aligned}$.
17. $\frac{3 r^{2}-2 \pi-6 r^{2}}{(x-t)^{3}}$.
18. $(x-1)(x+2)(x+1)$
19. $(x+1)(x+2)(x+3)^{\circ}$
20. $\begin{gathered}3 x^{2} \\ x^{2}-1^{0}\end{gathered}$
21. $(a+c)\left(\begin{array}{c}c-d \\ (a+d) \\ (a+e)\end{array}\right.$.
22. 0.
1. 2.
1. $\begin{gathered}n \\ 4+y\end{gathered}$
2. 0 .
3. $\frac{r^{2}+x y}{x^{\prime}-y^{3}}$
4. 0 .
5. $\frac{b}{a+b}$
6. 0 .
2I. 0 .
lii. (Page 103.)
I. $\frac{y}{x-y}$.
7. $\frac{1}{2+\dot{x}}$.
8. $\frac{3 x^{2}}{x^{2}-1}$.
9. $\begin{gathered}y+6 \\ 3\left(1-y^{2}\right)\end{gathered}$
10. (\%
11. $\frac{1}{(x+a)(x+b)}$.
12. $\frac{a^{6}-2 a b^{5}+2 a^{5} b+b^{6}}{a^{6}-b^{6}}$.
13. $\frac{1}{1-x^{4}}$.
14. $\frac{2}{(x-i)(y-i)}$.
15. $\frac{1}{a b c}$.
liii. (Page 110.)
16. $\frac{2 x+11}{(x+4)(x+5)(x+7)^{2}}$
17. $\frac{2(x-8)}{(x-6)(x-7)(x-9)}$
18. $\frac{2 x-17}{(x-4)(x+11)(x-13)}$.
19. $\frac{2}{x+3}$
20. $\frac{m^{3}+4 m^{2} n+m n^{2}}{n(m+n)^{2}}$.
21. 0 .
22. $\frac{11 x^{3}-x^{2}+25 x-1}{3\left(1-x^{4}\right)}$.
23. 0.
1. $\frac{1}{1+x}$.
liv. (Page 107.)

1.	16.	2.	12.	3.	15.	4.	28.	5.	63.
6.	24.	7.	60.	S.	45.	9.	36.	10.	120.
11.	72.	12.	96.	13.	64.	14.	12.	15.	28.
16.	1.	17.	8.	18.	9.	19.	7.	20.	4.
21.	5.	22.	1.	23.	3.	24.	3.	25.	100.
26.	24.	27.	$\frac{2}{3}$.	28.	6.	29.	24.	30.	4.

lv. (Page 108.)

1. 16 ,
2. 5.
1. ${ }_{2}^{1}$
2. 3.
1. \&
2. $-\frac{1}{9}$
3. 3
S. 2.
4. 11. 10. 6.
1. 2.
1. 12.
1. 8.
1. 7.
1. 9.
1. 7.
1. 7.
1. 9.
1. 9.
1. 9.
1. 10 .
lvi. (Page 109.)
2. $\frac{c}{a+b}$.
3. $\frac{3 u-2 u}{5} b-\epsilon$.
4. $\frac{a^{2} b-b c+1}{11+f}$.
5. $\frac{b c-d m}{1-5-5}$.
6. $\frac{b(a+c)}{1+a}$.
7. $\frac{6 b c l+a b}{3 a-12 i}$
8. $\frac{3 c h-2 k-3}{4 u-1}$.
9. 1 .
10. $\frac{(a+b)^{2}}{1--a}$.
11. $-\frac{a}{2}$
12. 2.
1. 0.
1. $\stackrel{l}{a-1}$
2. $\frac{3 a+1}{2 a+b}$.
3. $\frac{18 a+2 h}{4 a+3}$.
4. $\frac{a-1}{b}$.
5. ${ }^{\prime \prime}$
6. $\frac{a b d+a c}{a d+d}$.
7. $b-1$.
8. $\frac{b}{c}$.
9. $\begin{array}{r}2 a^{3} \\ b-1\end{array}$
10. 11.
1. $b m$.
2. $\frac{3 a^{3} b c+2 a^{3} b^{4}+a b^{4}}{b^{3}+3 a^{3} c+3 a^{2} b c+2 a^{2} b^{3}}$
3. $\stackrel{b c}{c^{2}-b}$
4. $\frac{d}{c}$.
5. $\frac{a b-1}{b c+d}$
6. $\begin{gathered}a(m-3 c+3 u) \\ c-a+m\end{gathered}$.
7. $\frac{a c}{b}$
8. $\frac{a^{2} e(c-d)}{\left(a^{2}+b^{2}\right) d}$
9. 63.

o. 120 .
5. 28.
o. 4.
5.100 .
o. 4.
I. 2.
2. 15.3 .1 .
4. $\begin{gathered}6 \\ 13\end{gathered}$
3. $\begin{gathered}7 \\ 10\end{gathered}$
6. $\frac{1}{7}$
7. $\quad 3$
8. 6.
9. -7
10. 6.
11. 9 .
12. 19.
13. 1.
14. 4.
$15-\frac{3 \pi}{6}$
16.12. 17. 2.
13. $\frac{1}{2}$
19. $\frac{1}{8}$.
20. 3.
lviii. (Page 113.)
.1. 20 .
2. 3.
3. 40 .
4. $\frac{459}{46}$.
5. 60 .
6. 10 .
7. 5.
8. 20.
9. 3.
10. $-\frac{1}{9}$
II. 8 .
12. 100.
13. 0 .
14. 1 .
15. 5.
16. $\begin{gathered}5 \\ 6\end{gathered}$
17. 5.
lix. (Page 114.)
I. 100 .
2. 240 .
3. 80 .
4. 700.
5. $28,32$.
6. $2 \frac{6}{7}, 4{ }^{1}{ }_{7}^{1}$.
7. 24,76 .
8. 120.
9. 60 .

Io. 960 .
11. 36.
12. $12,4$.
13. £1897.
14. $5-10,36$.
15. 3456, 2304.
16. 50.
17. 35,15 .

I8. $29340,1867$.
19. 21,6 .
20. $105 \frac{1}{3}, 131 \frac{9}{3}$.

2I. A has $£ 1400, B$ has $£ 400$.
22. 28,18 .
23. $\frac{m(n b-a)}{n-m}, \frac{n(m b-a)}{m-n}$. 24. $\begin{gathered}a+b \\ 2\end{gathered}, \frac{a-b}{2}$. 25. 18.
26. $£ 135, £ 297, £ 432$.
27. $£ 200$.
28. 47, 23.
29. 7, 32 .
30. 112, 96.
31. 78.
32. 75 gallons.
33. 40,10 .
34. 20.
35. 42 years.
36. $1 \frac{1}{5}$ days.
37. 20 days. 3 3. 10 days. 39.6 hours. $\quad 40.1 \frac{1}{29}$ days.
41. 4_{11}^{6} days.
42. 1_{7}^{5} hours. 43. 48^{\prime}.
44. 2 home.
45. $a b+a c+b c^{\text {minutes. }}$
46. $488_{4}^{\prime \prime}$
47. $51 \frac{1}{3}, 61 \frac{1}{3}, 47 \frac{1}{3}$ gallons.
4. $\quad 9 \frac{1}{7}$ miles from Ely.
5. 60.
o. $\begin{aligned} & \quad 1 \\ & -9\end{aligned}$
5. 5.

28, 32.
9. 60.
$£ 1897$.
7. 35,15 .
$131 \frac{2}{3}$
25. 18.

47, 23.
5 gallons. $1 \frac{1}{5}$ days. $1 \frac{1}{29}$ days. 48^{\prime}.
6. $48_{4}^{33^{\prime}}$
m Ely.
49. 14 miles.
50. $\frac{a c}{b}, \frac{b d}{a}$.
51. $11 \frac{13}{21^{\circ}}$
52. 42 hours.
53. $30{ }_{31}^{30}$ miles.
54. 50 hours.
55. (1) $38 \frac{2^{\prime}}{11}$ past 1.
(2) $54 \frac{6^{\prime}}{11}$ past 4 .
(3) $10 \frac{10^{\prime}}{11}$ past 8 .
56. (1) $27 \frac{3^{\prime}}{11} 1^{\text {nast }} 2$.
(2) $5 \frac{5^{\prime}}{11}$ and also $38 \frac{2^{\prime}}{11}$ past 4 .
(:3) $21 \frac{9}{11}^{9^{\prime}}$ last 7 , and also $5 \cdot \frac{6^{\prime}}{11}$ past 7 .
57. (1) $16 \frac{4^{\prime}}{11}$ past 3 .
(2) $32 \frac{8^{\prime}}{11}$ past 6.
(3) $49 \frac{1^{\prime}}{11}$ past 9 .
58. 60.
59. $2: 3$.
60. $\frac{1}{30}$.

6I. $18 \frac{1}{5}$ days.
62. $£ 600$.
63. £275.
64. 60.

$$
\text { 66. } 126,63, \tilde{0} \text { days. }
$$

67. 24.

$$
67.24 .
$$

68. $2,4,94$.
69. 200.
1. $2^{4}, 5 \frac{5^{\prime}}{11}$.

7I. 30000 .
72. $£ 200000000$.
73. 50.

1x. (Page 197.)

$$
\begin{aligned}
& \text { 1. } \begin{array}{c}
x^{2}+a x+3 a \\
x \\
\text { 3. } \frac{x^{2}+y^{2}}{x(x-y)}
\end{array} .
\end{aligned}
$$

65. 90', $72^{\prime}, 60^{\prime}$.
66. 126, 63, 56 days.
lxi. (Page 128.)
I. $\frac{8-13 x}{70}$.
67. $x+y$.
68. $x(1-x)$.
69.

$x+y$
$x-y$.
5: $\frac{x^{3}+5 x^{2}+1}{2 x^{2}-x^{3}+1}$.
6. $\frac{x^{2}-x+1}{x}$.
7. $a^{2}+\frac{a}{a}+1$.

$$
0
$$

IMAGE EVALUATION

TEST TARGET (MT-3)

Photographic Sciences Corporation

8. x.
9. $\frac{1}{x}$.
10 a.
11. $\frac{x^{2}+y^{2}}{-2 x y}$.
12. x^{2}.
13. $\frac{a\left(a^{2}+2 a b+2 b^{2}\right)}{(a+b)^{2}}$.
14. $m-1$.
15. $\frac{1}{c(a-b-c)}$.
II.
12.
13. x
lxii. (Page 129.)

1. $\frac{1}{2}+\frac{3}{2 a}+\frac{1}{a^{2}}+\frac{5}{2 a^{3}}$
2. $\frac{x}{y^{2}}-\frac{3}{y}+\frac{3}{x}-\frac{y}{x^{2}}$.
3. $\frac{6 p}{q r s}+\frac{4 q}{p r s}-\frac{12 r}{p q s}+\frac{24 s}{p q}$.
4. $\frac{x^{3}}{100}-\frac{x^{2}}{40}+\frac{3 x}{40}-\frac{1}{8}$.
lxiii. (Page 131.)
I. $2-2 a+2 a^{2}-2 a^{3}+2 a^{4} \ldots \ldots$
5. $1-\frac{2}{m}+\frac{4}{m^{2}}-\frac{8}{m^{3}}+\frac{16}{m^{1}} \cdots \cdots$.
6. $1-\frac{2 b}{a}+\frac{2 b^{2}}{a^{2}}-\frac{2 b^{3}}{a^{3}}+\frac{2 b^{4}}{a^{4}} \ldots \ldots$
7. $1+\frac{2 x^{2}}{a^{2}}+\frac{2 x^{4}}{a^{4}}+\frac{2 x^{6}}{a^{6}}+\frac{2 \cdot c^{5}}{a^{5}} \cdots \cdots$
8. $x+\frac{x^{2}}{a}+\frac{x^{3}}{a^{2}}+\frac{x^{4}}{a^{3}}+\frac{x^{3}}{a^{4}} \cdots \cdots$
9. $\frac{b}{a}-\frac{b x}{a^{2}}+\frac{b \cdot x^{2}}{a^{3}}-\frac{b x^{3}}{a^{4}}+\frac{b x^{4}}{a^{3}} \cdots \cdots$
10. $1-2 x+6 x^{2}-16 x^{3}+44 x^{4} \ldots .$.
11. $1+2 x+x^{2}-x^{3}-2 x^{4} \ldots \ldots$
12. $1+3 b+6 b^{2}+12 b^{3}+24 h^{4} \ldots \ldots$
13. $x^{2}-b x+b^{2}-\frac{2 b^{3}}{x}+\frac{2 l^{1}}{x^{2}} \cdots \cdots$.
14. $\frac{a^{2}}{x}+\frac{a^{2} b}{x^{2}}+\frac{a^{2} b^{2}}{x^{3}}+\frac{\frac{1}{2}^{2} b^{3}}{x^{4}}+\frac{a^{2} b^{4}}{x^{3}} \ldots \ldots$
15. $1-\frac{2 x}{a}+\frac{3 x^{2}}{a^{2}}-\frac{4 x^{3}}{u^{3}}+\frac{5 x^{4}}{u^{4}} \cdots \cdots$.
16. $x^{3}-3 u x^{2}+2 u^{2} x+4 t^{3}$.
17. $m^{4}-10 m^{2}-41 m-95$.
lxiv. (Page 132.)
18. $\frac{x^{3}}{9}+\frac{x^{2}}{4}+\frac{23 x}{120}+\frac{1}{20}$.
19. $\frac{\pi^{3}}{20}-\frac{49 a^{2}}{600}+\frac{7 \pi}{60}-\frac{1}{1 \pi}$
20. $x^{4}-\frac{1}{x^{4}}$.
21. $x^{4}+1+\frac{1}{x^{4}}$.
22. $\frac{1}{a^{4}}-\frac{1}{b^{\frac{1}{2}}}$.
23. $\frac{1}{a^{2}}+\frac{2}{a c}-\frac{1}{b^{2}}+\frac{1}{c^{2}}$.
24. $1+\frac{b^{2}}{a^{2}}+\frac{l^{2}}{1^{2}}$.
S. $1+\frac{x^{2}}{8}-\frac{x^{2}}{8}-\frac{x^{3}}{6 t}$
25. $\frac{5}{x^{4}}+\frac{7}{2 x^{3}}-\frac{107}{12 x^{2}}+\frac{5}{6 x}+\frac{7}{6}$.
26. $\frac{a^{4}}{b^{4}}-\frac{b^{4}}{a^{4}}-\frac{4 b^{2}}{a^{2}}-4$.
lXV. (Page 134.)
I. $x-\frac{1}{x}$.
27. $a+\frac{1}{b}$.
28. $m^{2}-\frac{m}{n}+\frac{1}{n^{2}}$
29. $c^{4}+\frac{c^{3}}{d}+\frac{c^{2}}{d^{2}}+\frac{c}{d^{3}}+\frac{1}{1 \cdot}$.
30. $\frac{x}{y}+\frac{y}{x}$
31. $\frac{1}{a^{2}}+\frac{1}{a b}+\frac{1}{b^{2}}$.
32. $\frac{x^{2}}{y^{2}}-2+\frac{y^{2}}{x^{2}}$.
33. $\frac{3}{2} x^{3}-5 x^{2}+\frac{1}{4} x+9$
34. $\frac{a^{2}}{b^{2}}-1+\frac{b^{2}}{a^{2}}$.
35. $\frac{1}{a^{2}}-\frac{1}{a b}-\frac{1}{a c}+\frac{1}{l^{2}}-\frac{1}{b c}+\frac{1}{a^{2}}$.
lxvi. (Page 135.)
36. $\cdot 05 x^{2}-\cdot 143 x-021$.
37. $01 x^{2}+1 \cdot 25 x-21$.
38. $\cdot 12 x^{2}+13 x y-14 y^{2}$.
39. $172 x^{2}-05 \cdot y-312 y^{\prime}$.
40. 0 .
41. 300763.

lxvii. (Page 135.)

1. $a_{1} r\left(1+\frac{a_{2}}{a_{1}} x+\frac{a_{3}}{a_{1}} c^{2}+\frac{a_{4}}{a_{1}} x^{3}+\ldots\right)$.
2. $x y z\left(\frac{1}{z}-\frac{1}{y}+\frac{1}{x}\right)$.
3. $x^{2}\left(1+\frac{y}{x}+\frac{y^{2}}{x^{2}}\right)$.
4. $(a+b)\left\{(a+b)^{2}-c(a+b)-d+\frac{e}{a+b}\right\}$.
lxix. (Page 138.)
I. 46 .
5. $\frac{2 x^{2}+3 x-5}{7 x-5}$ and $\frac{a^{2}+5 a-14}{a+9}$.
6. $\frac{2 a p}{a^{2}+p^{2}}$.
7. $\frac{37 x^{2}-7 y^{2}-102^{2}}{24}$.
8. $\frac{11}{9}$.
9. $\frac{60 x^{4}+42 a x^{3}-107 a^{2} x^{2}+10 a^{3} x+14 a^{4}}{12}$.
10. $\frac{x^{3}+x^{2} y+2 y^{3}}{x\left(x^{2}-y^{2}\right)}$.
11. $\frac{x-8}{x+8}$.
I I. $\frac{x^{2}}{1-x^{4}}$.
12. $\frac{a}{1-b}$
13. $l^{4}-\frac{1}{l^{4}}$.
14. $\frac{a b+a c+b c+2 a+2 b+2 c+3}{a b c+a b+a c+b c+a+b+c+1}$.
15. $\frac{1}{a}-\frac{b}{a x}-\frac{b^{2}}{a^{2} x}-\frac{b^{2}}{a x^{2}}$.
16. $\begin{gathered}8 a^{2} b^{2} \\ a^{4}-b^{4}\end{gathered}$
17. $\frac{b\left(a^{2}+b^{2}\right)}{a\left(a^{2}-b^{2}\right)}$.
18. $\frac{a^{3}+b^{3}}{(a-b)^{2} \cdot\left(a^{2}+b^{2}\right)}$.
19. $\frac{1}{2(x+1)^{2}}$.
20. $\frac{a+b-c}{a-b+c}$
21. x
22. 0.
1. 2.
1. $(x-4)(x+2)^{2}$.
2. $\frac{a^{4}+a^{2}+1}{a^{2}}$.
3. $\frac{(x-1)^{2}}{x^{3}\left(x^{2}+1\right)^{2}}$
4. $\frac{x^{2}}{a^{2}}+\frac{a^{2}}{x^{2}}$
5. 6.

3I. 3.
32. $\frac{-2+5 x+17 x^{2}-11 x^{3}-21 x^{4}}{\left(3-2 x-7 x^{2}\right)^{4}}$.
33. $\frac{x y}{x^{2}+y^{2}}$.
34. 2.
I.
5.
9.
1.
5.
9.
35. $\frac{2 a-b}{a+b}$.
36. 0.
39. $\begin{gathered}x^{2}-y^{2} \\ :\left(x^{2}+y^{2}\right)^{2}\end{gathered}$.
40. a
41. $x^{2}+3 x+3-\frac{3}{x}+\frac{1}{x^{2}}$
43. $\begin{gathered}\left(x^{2}+y^{2}\right)^{2} \\ x^{4}+y^{4}\end{gathered}$.
H. 1.
46. $\frac{p+q}{p-q}$
47. $\frac{1}{\left(x^{2}+1\right)\left(x^{3}+1\right)}$.
+8. 1 .
49. $2 u^{2}-a x-a y$.
50. $\frac{a+b+c}{a+b-c}$.
51. $\left(a^{3}-b^{3}\right)^{2}$.
lxx. (Page 145.)

1. $\quad \lambda=10$
$y=3$.
2. $\begin{aligned} x & =\mathbf{6} \\ y & =8 .\end{aligned}$
3. $: x=16$
4. $x=9$
$y=7$.
5. $x=19$
$y=\boldsymbol{2}$.
6. $\begin{aligned} x & =8 \\ y & =5 .\end{aligned}$
7. $x=5$
$y=3$.
$y=35$.
8. $x=2$
$y=1$.
9. $x=4$
$y=3$.
lxxi. (Page 145.)
I. $x=12$
10. $x=9$
$y=2$.
11. $x=49$
$y=47$.
12. $x=13$
$y=3$.
13. $x=40$
$y=3$.
14. $x=7$
$y=2$.
15. $x=5$
$y=1$.
16. $x=6$
$y=4$,
17. $x=7$
$y=17$.

1xxii. (Page $1+6$.)

1. $\begin{aligned} u & =23 \\ ! & =10 .\end{aligned}$
2. $x=8$
$y=4$.
3. $\begin{aligned} x & =3 \\ y & =2 .\end{aligned}$
4. $\begin{aligned} x & =5 \\ y & =9 .\end{aligned}$
5. $\begin{aligned} & t=2 \\ y & =2 .\end{aligned}$
6. $x=7$
7. $: 1=12$
$y=9$.
S. $x=2$
$y=3$.
8. $r=3$
$y=20$.
[s....]
9. 2.

lxxiii. (Page 147.)

1. $x=7$
.2. $s=$?
2. $x=12$
$y=-3$.
3. $x=-2$
$y=19$.
$y=-2$.
$y=-3$.
4. $x=7$
$y=-5$.
5. $x=\frac{1}{2}$
$y=-\frac{1}{3}$.
6. $x=-2$
$y=1$.
lxxiv. (Page 148.)
7. $x=6$
$y=12$.
.2. $x=20$
$y=30$.
8. $x=42$
$y=35$.
9. $x=10$
$y=5$.
10. $: x=9$
$y=140$.
11. $x=12$
$y=6$.
12. $: x=4$
$y=9$.
13. $x=5$
$y=2$.
14. $x=40$.
$y=60$.
15. $x=19$
$y=3$.
16. $x=6$
$y=12$.
17. $x=\frac{3201}{708}$
$y=\frac{278}{59}$.
18. $x=6$
$y=5$.
19. $x=19 \frac{1}{2}$
20. $x=\frac{1}{4}$
$y=-17$

$$
y=\frac{1}{5}
$$

- 1xXV. (Page 149.)

1. $i=\frac{e q-\eta f}{m q-n \eta}$
2. $x=\frac{c e+b f}{b d+a c}$
3. $c=\frac{e m+b n}{a e+b c}$
$y=\frac{m f-e p}{m q-m}$.
$y=-\frac{c d-a f}{b l+a e}$.

$$
y=\frac{a n-c m}{a e+b c}
$$

4. $x=\frac{d e}{c+d}$
5. $x=\frac{n^{\prime} r+u r^{\prime}}{m i n^{\prime}+m^{\prime} n}$
6. $x=\frac{a+b}{2}$
$y=\begin{gathered}c e \\ c+d\end{gathered}$
$y=\begin{aligned} & m r^{\prime}-m^{\prime} r \\ & m r^{\prime}+m^{\prime} n\end{aligned}$.
$y=\frac{a-b}{2}$.
7. $x=\frac{c(f-b c)}{a f-b d}$
8. $x=\frac{1}{a b}$
$y=\begin{gathered}c(c c-d) \\ (d f-b d\end{gathered}$.
$y-\frac{1}{c}$.
9. $x=\frac{2 h^{2}-6 a^{2}+d}{3 a}$
$y=\frac{3 a^{2}-b^{2}+d}{3 b}$.
10. $x=\frac{a}{b c}$
$y=\frac{a+2 b}{c}$.
11. $x=\frac{a^{2}}{b+c}$
$12 x=\frac{b m}{b-m}$
$y=\frac{b^{2}-c^{2}}{l}$.

$$
y=\frac{b m}{b+m i} .
$$

lxxvi. (Page 151.)
I. $x=\frac{1}{2}$
$y=\frac{1}{4}$.
4. $x=\frac{2 a}{m+n}$
$y=\frac{2 b}{m-u}$.
2. $x=\frac{1}{b-2 a}$
3. $i=\frac{b^{2}-a^{2}}{b d-a c}$
$y=\frac{2}{3 a-b}$.

$$
!=\frac{b^{2}-a^{2}}{b c-c^{\prime} b^{\circ}}
$$

5. $x=\frac{61}{92}$
6. $x=\frac{1}{3}$
$y=\frac{61}{103}$.
$y=\frac{1}{5}$.
7. $x=\frac{1}{a}$
8. $x=\frac{1}{n}$

$$
y=\frac{1}{m}
$$

lxxvii. (Page 153.)

1. $x=1$
$y=2$
$z=3$.
2. $x=2$
$y=2$
$y=2$.
3. $x=4$
$y=5$
$\%=8$.
4. $x=5$
$y=6$
$z=8$.
5. $x=1$
$y=2$
$z=3$.
6. $\begin{aligned} x & =1 \\ & y=4 \\ & z=6 .\end{aligned}$
7. $x=\frac{2}{3}$
$y=-\ddot{7}$
8. $x=5$
$y=6$
9. $x=2$
$y=9$
$z=10$.
10. $x=20$
$y=10$
$z=5$.

1xxviii. (Page 155.)
I. 16,12 .
2. $1333,123$.
3. $7 \cdot 25,6 \cdot 25$.
4. $31,23$.
5. 35, 14.
6. $30,40,50$.
 10. 41,7 . 11. 47,11 . 12. $35,11,98$. 13. t^{90}. 560 . 14. 60, 36. 15.6,4. 16.40,10. 17.503, 1.072
18. 10 barrels.

2ा. 15s. 10\%., 12s. 6ir.
2+. 26.
25.28.
29. 84.
30. 75.
34. 584.
35. 759.
19. :3s., ls. הrl.
22. 4s. 6icl., 3s.
26. 45.
27. 24.
23. 35: (65.
31. 36.
32. 12.
33. 33:3.
39. $\frac{2}{3}$.
40. $\frac{7}{19}$.
41. $\frac{35}{41}$.
37. $\frac{4}{15}$.
38. $\frac{3}{8}$.
 46. $31 \frac{1}{4}, 18 \frac{3}{4}$.
47. 20, 10 .
48. 3 miles an hour.
49. 20 miles, 8 miles an hour.
52. $72,60$.
53. 12, 5 s.
50. 700. $\quad 5 \mathrm{I} .450$, 600 .
54. $750,158,148$.
55. 15 and 2 miles
56. The second, 320 strokes. 58. 50, 30. 59. 4 yd. and 5 yd.
60. $\frac{5}{6}, 6,4$ miles an hour respectively. 6 т. 142857 .
lxxix. (Page 164.)

1. $2 x y$.
2. $9 a^{3} b^{4}$.
3. $11 m^{5} n^{6} r^{7}$.
4. $8 a^{2} b^{5} c$.
5. $267 a^{2} b x^{3}$.
6. $13 a^{8} b^{4} c^{6}$.
7. $\stackrel{3 a}{4 b}$.
8. $\frac{1}{2 a c^{2}}$
9. $\frac{5 a^{2} b^{3}}{11 x^{4} y^{4}}$
10. $\frac{16 x^{8}}{17 y^{2}}$.
11. $\begin{aligned} & 25 \% \\ & 181 \%\end{aligned}$
lxxx. (Page 167.)
I. $2 a+3 b$.
12. $4 l^{5}-3 l^{3}$. 3. $\quad a l+81$.
13. $y^{3}-19$.
14. $3 a b c-17$.
15. $x^{2}-3 x+5$.
16. $3 x^{2}+2 x+1$.
17. $2{ }^{\prime}$
18. x^{3}
1.4. a^{3}
19. 2
20. tel
21. 2y
22. 4
23. 52
24. 2
25. $\frac{a}{b}$
26. 2
27. $\frac{1}{6}$
28.
29.
30.
31.
32.

j.
8. $2 r^{2}-3 r+1$.
9. $2 u^{2}+n-2$.
10. $1-3 x+2 x^{2}$.
11. $x^{3}-2 x^{2}+3 x$.
12. $2 y^{2}-3 y z+4 z^{2}$.
13. $a+2 b+3 c$.
1.. $a^{3}+a^{2} b+a b^{2}+b^{3}$.
15. $x^{3}-2 x^{2}-2 x-1$.
16. $2 x^{2}+2 a x+4 b^{2}$.
17. $3-4 x+7 x^{2}-10 x^{3}$.
18. $4 t^{2}-5 a b+8 b c$.
19. $3 a^{2}-4(t)^{3}-5 t$.
20. $2 y^{2} x-3 y x^{2}+2 x^{3}$.
21. $5 x^{2} y-3 x y^{2}+2 y^{3}$.
22. $4 x^{2}-3 x y+2 y^{2}$.
23. $3 a-2 b+4 c$.
24. $x^{2}-3 x+5$.
25. $5 x-2 y+3 \%$
26. $2 x^{2}-y+y^{2}$.
lxxxi. (Page 168.)
I. $2 a^{3}-\frac{a b b^{2}}{4}$.
2. $\frac{3}{a}-\frac{a}{3}$.
3. $a^{2}-\frac{1}{a^{2}}$.
4. $\frac{a}{b}+\frac{b}{a}$
5. $x^{2}-x+\frac{1}{2}$.
6. $x^{2}+x-\frac{1}{2}$.
7. $2 a-3 b+\frac{b^{2}}{4}$.
8. $x^{2}+4+\frac{4}{x^{2}}$.
9. $\frac{4}{3} a^{3} x+2 u^{2}-\frac{3}{4}$.
10. $\frac{1}{x}-\frac{2}{y}+\frac{3}{z}$.
11. $6 m-\frac{4}{n}+\frac{p}{5}$.
12. $u b-3 c d+\frac{e f}{7}$.
13. $\frac{2 x}{z}-\frac{3 y}{z}+\frac{\ddot{z}}{x}$.

1. $\frac{2 m}{n}-4-\frac{3 n}{m}$.
2. $\frac{a}{3}-\frac{b}{4}+\frac{c}{5}-\frac{d}{2}$.
3. $7 x^{2}-2 x-\frac{3}{2}$.
4. $3 x^{2}-\frac{a x}{2}+b x$.
5. $3 x^{2}-\frac{x}{3}-3$.
lxxxii. (Page 170.)
6. 24.
1. $3 x^{4 y} y^{2}$.
2. $-5 m n$.
3. $-6 a^{4} b$.
4. $7 \operatorname{lom}^{6}$.
5. $-10 a b^{2} c^{4}$.
6. $-12 n^{7} n^{8}$.
7. $11 a^{3} b^{6}$.
${ }^{\circ}$ lxxxiii. (Page 172.)
8. $a-b$.
9. $2 a+1$.
10. $a+8 b$.
11. $a+b+c$.
12. $x-y+z$
13. $3 x^{2}-2 x+1$.
14. $1-a+a^{2}$.
15. $x-y+2 \%$.
16. $a^{2}-4 a+2$.
17. $2 m^{2}-3 m+1$.
18. $x+2 y-\cdots$
19. $2 m-3 n-r$.
20. $m+1-\frac{1}{m}$.
lxxxiv. (Page 173.)
I. $2 x-3 x$.
21. $1-2 n$.
22. $5+4 x$.
23. $(t-b$.
24. $x+1$.
25. $m-2$.
lxxxv. (Page 175.)
I. ± 8.
26. $\pm u b$.
27. ± 100.
28. ± 7.
29. $\pm \sqrt{ }(11)$.
30. $\pm 8 a^{2} c^{*}$.
31. ± 6.
32. ± 129.
33. ± 52.
34. ± 4.
II. $\pm \sqrt{ }\left(\frac{q-n}{m}\right)$.
35. $\left.\pm \sqrt{\left(\frac{b}{a-1}\right)}\right)$ 13. $\pm \sqrt{ } 6$
36. $\pm 2 \sqrt{ } 2$.
lxxxvi. (Page 179.)
I. $6,-12$.
37. $4,-16$.
38. $1,-15$.
+. $2,-48$.
39. $3,-131$.
40. $5,-13$.
41. $9,-27$.
42. $14,-30$.
lxxxvii. (Page 180.)
43. $7,-1$.
44. $:,-1$.
45. $21,-1$.
46. $9,-7$.
47. 8,4 .
48. 9 , i.
49. 118,116 .
50. $10 \pm 2 \sqrt{34}$.
51. 12,10 . 10. 14,2 .
lxxxviii. (Page 181.)
52. $3,-10$.
53. $12,-1$.
54. $\stackrel{7}{2},-\frac{25}{2}$.
55. $20,-7$.
56. $\frac{1}{4},-\frac{5}{4}$
57. $9,-8$.
58. 45, -82 .
59. $8,-7$.
60. 4, 15 .
61. $290,1$.
I.
62.

Ixxxix. (Page 18:.)

1. $\frac{7}{3},-\frac{5}{3}$.
2. $-\frac{1}{5},-\frac{3}{5}$.
3. $3, \stackrel{1}{9}$
4. $1,-\frac{3}{11}$.
5. $\quad .3-\frac{5}{7}$.
6. $4,-\frac{4}{5}$.
7. $8, \stackrel{2}{3}$
S. $7,-\frac{45}{7}$.
xc. (Page 182.)
8. $3,-\frac{8}{3}$.
9. $11,-\frac{49}{5}$.
10. $6,-\frac{13}{2} \cdot$
11. $8,-\frac{19}{2}$.
12. $5,-\frac{16}{5}$.
13. $4, \frac{3}{2}$.
14. $8,-\frac{17}{4}$.
15. $\frac{7}{2},-\frac{3}{14}$.
xci. (Page 184.)
I. $-a \pm \sqrt{ } 2 . \mu$.
16. $2 u \pm \sqrt{ } 11 . u$. 3. $\frac{m}{2},-\frac{7 m}{2}$.
-48.
-30 .

17. $\frac{d}{c},-\frac{b}{a}$.
18. $\frac{c+\sqrt{ }\left(c^{2}+f(c c)\right.}{2(c+b)}, \frac{c-\sqrt{\left(c^{2}+f(c c)\right.}}{2(c+b)}$.
19. $\frac{b^{2}}{a c}, \frac{b^{2}}{a c}$.
20. $\frac{2(1-b}{t e},-\frac{3 a+2 b}{b c}$.
21. $-\frac{u c^{2}+b d^{2}}{2 a+3 d \sqrt{ } c^{\prime}}-\frac{u c^{2}+b d^{2}}{2 a-3 d \sqrt{ }}$.
xcii. (Page 185.)
22. $8,-1$.
23. $6,-1$.
24. $12,-1$.
25. $14,-1$.
26. $2,-9$.
27. $6, \stackrel{9}{4} \quad 7.5,4$.
28. $4,-1$.
29. $8,-2$.
30. $3,-\frac{7}{3}$.
31. $7, \frac{1}{3}$.
32. $12,-1$.
33. $14,-1$.
34. $\frac{3}{2},-\frac{5}{6}$
35. $13,-\frac{13}{3}$.
36. 5,4 .
37. 36, 12.
38. 6, 2.
39. $\begin{array}{ll}25 \\ 18 & -5 \\ 3\end{array}$
40. $7,-\frac{11}{7}$
41. $7,-\frac{11}{7}$.
42. $7,-5$.
43. $3,-\frac{1}{2}$.
44. ${ }_{2}^{1},-\frac{2}{3}$
45. $\stackrel{2}{3},-\frac{1}{6}$
46. 15, -14 .
47. $2,-\frac{1}{3}$.
48. $3,-\frac{11}{4}$.
49. $2, \frac{1}{3}$.
50. $2,-\frac{23}{15}$
51. $3,-\frac{14}{3}$.
52. $4,-\frac{5}{3}$.
53. $3, \frac{21}{11^{\circ}}$.
54. 14. $-10 . \quad 35.2, \frac{58}{13} . \quad 36.5,2 . \quad 37 .-a,-b . \quad 38 .-u, b$.
1. $a+b, a-b$ 40. $a^{2},-u^{3} . \quad$ 4I. $\frac{a}{b},-\frac{2 u}{b} . \quad$ 42. $\frac{a}{b}, \frac{b}{c} \cdot$
xciii. (Page 187.)

$$
\text { 1. } \begin{aligned}
x & =30 \text { or } 10 \\
y & =10 \text { or } 30 . \\
\text { 4. } x & =22 \text { or }-3 . \\
y & =3 \text { or }-22 .
\end{aligned}
$$

2. $t=9$ or 4
$y=4$ or 9 .
3. $\begin{aligned} x=50 \text { or }-5 \\ y=5 \text { or }-50 .\end{aligned}$
4. $1=25$ or 4
$y=4$ or 25.
5. $x=100$ or -J .
$y=1$ or -100
xciv. (Page 187.)

$$
\begin{aligned}
\text { 1. } \begin{aligned}
& x=6 \text { or }-2 \\
& y=2 \text { or }-6 . \\
& \text { +. } \\
& x=4 \\
& y=4 .
\end{aligned}
\end{aligned}
$$

2. $x=13$ or -3
$y=3$ or -13 .
3. $x=20$ or -6 $y=6 \mathrm{or}-20$.
4. $x=10$ or 2
$y=2$ or 10 .
5. $: x=4(1)$ or 9
$y=9$ or 40 .
xcv. (Page 188.)
I. $\begin{aligned} x & =4 \text { or } 3 \\ y & =3 \text { or } 4 .\end{aligned}$
6. $x=4$ or -2
7. $x=5$ or 6
$y=6 \mathrm{~m}_{5} 5$.
8. $\begin{aligned} x & =5 \text { or }-3 . \\ y & =3 \text { or }-5 .\end{aligned}$
9. $x=10$ or 2
y-2 or 10 .
10. $\begin{aligned} x & =7 \text { or }-4 \\ y & =4 \text { or }-7 .\end{aligned}$
xcvi. (Page 189.)
I. $a=5$ or 4
11. $x=4$ or 2
12. $x=\frac{1}{3} 0 \frac{1}{2}$
$y=4$ or 5.
$y=2$ or 4.
$y=\frac{1}{2}$ or $\frac{1}{\because}$
13. $x=3$
14. $x=\frac{1}{3}$
15. $r=\frac{1}{5}$
$y=4$.
$y=2$.
$y=\frac{1}{2}$
xcvii. (Page 191.)
16. $\begin{aligned} & x=4 \text { or }-3 \\ & y=3 \text { cr }-4 .\end{aligned}$
17. $\begin{aligned} x & = \pm 6 \\ y & = \pm 3 .\end{aligned}$
18. $x= \pm 10$
$y= \pm 11$.
.f. $\begin{aligned} x & = \pm 8 \\ y & = \pm 2 .\end{aligned}$
19. $x=5$ or 3
$y=3$ or 5 .
20. $x=5$ or $-\frac{95}{25}$

$$
y=2 \text { or }-\frac{33}{7}
$$

7. $x= \pm 2$
$y= \pm 5$.
8. $x=6$
$y=5$.
9. $x= \pm 2$
$y= \pm 1$.
10. $x= \pm 2$
$y= \pm 3$.
II. $x= \pm 7$
$y= \pm 2$.
11. $x=3$ or $\frac{11}{6}$
$y=2$ or $\frac{7}{6}$.
12. $x=10$ or 12
$y=12$ or 10 .
13. $x=4$ or $\frac{8.5}{8}$
$y=9$ or $\frac{19}{-}$.
$15 . x= \pm 9$ (1) ± 12
$y= \pm 12$ or ± 9.
xcviii. (lage 193.)
14. 72.
1. 224.
1. 18.
1. $50,15$.
2. $85,76$.
3. $29,13$.
4. 30.
1. 107.
1. 75.
1. 20 , 6 .

2. 2601. \quad 17. 6, 4. IS. 12, 5. I9. 12, 7. 20. 1, 2, 3 .
1. $7,8.22 .15,16 . \quad 23.10,11,12 . \quad 24.12 .25 .16$. 26. $£ 2$, 5s. 27. $12 . \quad 28.6 . \quad 29.75 . \quad 30.5$ imd 7 hours. 3 I .101 yds. and 100 yds. 32 . 63. $33.6: \mathrm{ft}$., 45 ft . 34.16 yds., 2 yds. $35.37 . \quad 36.100 . \quad 37.1975$.

I. | $x=3$ | 2. $x=5$ | 3. $x=90,71,52 \ldots$ down to 14 |
| ---: | ---: | ---: |
| $y=2$. | $y=3$. | $y=0,13,26 \ldots \ldots$ up to 52. |$.. . ~$

4. $x=7,2$ 5. $x=3,8,13 \ldots$
5. $x=91,76,61 \ldots$ down to 1 . $y=1,4 . \quad y=7,21,30 \ldots \quad y=2,13,24 \ldots \ldots$ up to 68 .
6. $x=0,7,14,21,28$
$y=44,3: 3,22,11,0^{\circ}$.
7. $r=4,11 \ldots$ i 1 to 123
$\eta=53,5 \div$... down to 2 .
8. $t=20,39 \ldots$
$y=3,7 \ldots$
9. $a=40,49 \ldots$ $y=13,33 \ldots$
10. $x=2$
$y=0$.
11. $x=92,83 \ldots .2$
$y=1,8 \ldots 71$.

I $3 \cdot \frac{4}{7}$ and $\frac{3}{9} \quad$ I4. $\frac{8}{11}$ and $\frac{2}{13} . \quad$ I 5.3 ways, viz. $12,7,2 ; 2,6,10$.
16. 7.
17. 12, $57,102 \ldots$
18. 3.
19. 2.
21. 19 oxen, 1 shecp and 80 hens. There is but one other solution, that is, in the case where he bought no oxen, and no hens, and 100 sheep.
22. A gives $B 11$ sixpences, and B gives $A 2$ fourpenny pieces. 23. 2, 106, 27. 24. 3.
25. A gives 6 sovercigns and receives 28 dollars.
26. 22,$3 ; 16,9 ; 10,15 ; 4,21$.
27.5.
28. 56,44 .
29. 82,$18 ; 47,53 ; 12,88$.
30. 301.
c. (Page 205.)
(1) 1. $x^{\frac{5}{2}}+x^{\frac{2}{3}}+x^{\frac{7}{2}}$.
3. $a^{\frac{4}{3}}+a^{\frac{5}{3}}+a^{\frac{5}{2}}$.
2. $x^{\frac{2}{3}} y+x^{2} y^{\frac{8}{5}}+x^{\frac{2}{5}} y^{\frac{9}{4}}$.

1. $x^{-1}+a x^{-2}+b^{2} x^{-3}+3 x^{-4}$.
2. $r^{\frac{1}{3}} m^{\frac{9}{3}}+u^{\frac{1}{2}} y^{\frac{3}{4}} \because+u^{\frac{1}{3}} \eta r^{\frac{2}{3}}$.
(2)
3. $\quad x^{3} y^{-2} y^{-2}+\frac{5 x^{2} y^{-1} y^{-3}}{7}+y^{-1, y^{-1}}$.
4. $\frac{a y z^{-2}}{3}+\frac{x^{-2}!y^{-2}}{3}+x^{-3}!y^{-4} \pi$
(3) 1. $\frac{1}{a}+\frac{1}{a^{2} x^{-1}}+\frac{1}{b^{2} x^{-3}}+\frac{1}{3 x^{-4}}$
5. $\frac{1}{x^{2} y^{-2}}+\frac{1}{3 x^{2} y^{3}}+\frac{1}{5 y^{-3}}$.
. down to 14
.... up to 52 . . down to 1. up to 68 .
$4=40,49 \ldots$
$I=13,33 \ldots$
$=92,83 \ldots .2$
$=1,8 \ldots 71$.
,7,2;2,6,10.
6. 2.

ane other rht no oxen, enny pieces.
28. 56,44 .
3. $\quad \frac{4}{a^{-2} b^{2} c^{3}}+\frac{3}{a^{-1} b^{\frac{1}{2}} c^{\frac{1}{2}}}+\frac{1}{a^{-3}!}$.
4. $\frac{1}{3 x^{-\frac{1}{4}} y^{-\frac{1}{4}} z}+\frac{1}{a^{-1} b^{-\frac{2}{3}} c^{2}}+\frac{1}{a^{-2} b^{-1} c^{2}}$.
(4)
I. $2 \sqrt[3]{x^{2}}+3 \sqrt[3]{ }^{3}\left(x y^{2}\right)+\frac{1}{x y}$
2. $\frac{1}{\sqrt[3]{3} x}+\frac{1}{\sqrt[3]{\sqrt[3]{2}}}+\frac{1}{z^{3}}$.
3. $\frac{\sqrt[3]{2} y^{2}}{\sqrt[3]{x}}+\frac{3 \sqrt{2}^{\prime} y^{3}}{x^{2}}+\frac{3 / y}{3 \sqrt[3]{x^{2}}}$.
4. $\frac{1}{x^{2} \sqrt[3]{3}}+\frac{y}{\sqrt[3]{1} x}+\frac{\sqrt[3]{3} y}{\sqrt[3]{1} x^{2}}$.
ci. (Page 206.)
I. $x^{4 p}+x^{2 p} y^{2 p}+y^{4 p}$.
2. $i^{4 m}-817^{4 n}$.
3. $x^{8, t}+4 c^{2} x^{4 d}+16\left(t^{4}\right.$.
4. $i^{2 m}+2 u^{m} c^{r}-b^{2 n}+c^{2 r}$.
5. $2 a^{2 n}+2 u^{m} c^{n},-4 u^{m} c^{r}-a^{m} b-b^{n+1}+2 h c^{r}+u^{m} c^{2}+b^{n} c^{2}-2 c^{r+2}$.
6. $x^{m n}+x^{m n-n} \cdot ?^{m n-n}-x^{n}!^{m}-y^{m n-n+m}$. 7. $x^{4 n}+x^{2 n}!^{2 n}+y^{4 n}$.
8. $a^{2 p^{2}}-u^{p^{2}-p} b^{r^{2}}+u^{\mu^{2}-p} c^{p}+a^{r^{2}+p} \cdot b^{1-p^{2}-b+b^{1-p^{2}} r^{p}+u^{p^{2}+p} r^{1-p},{ }^{1-p}}$

$$
-b^{r^{2}} c^{1-p}+r
$$

9. $x^{4 p}+2 x^{3 \mu}+3 x^{2 \mu}+2 x^{p}+1$.
10. $x^{4 p}-2 x^{3 p}+3 x^{2 p}-2 x^{p}+1$.
cii. (Page 207.)
I. $x^{s m}+x^{s m} y^{m}+x^{m} y^{2 m}+y^{3 m}$.
11. $x^{4 n}-x^{3 n} y^{n}+x^{2 n} y^{2 n}-x^{n} y^{3 n}+y^{1 "}$.
12. $x^{5 r}+x^{4 n} y^{n}+y^{3 r} y^{9^{2}}+x^{2 r} y^{3 n}+x^{r} y^{4 n}+y^{y^{r}}$.

13. $x^{41}+3 x^{32}+9 x^{21}+27 x^{d}+81$.
14. $a^{2 m}-2 a^{m} x^{n}+4 a^{2 n}$. 7. $2-x^{p}+3 x^{2 p}$.
15. $4 l^{m} 1^{m}-5 l^{2 m}$.
16. $a^{3 m}+3 t^{2 n}+3 a^{m}+1, \quad$ IO. $a^{m}+b^{n}+c^{n}$.
ciii. (Page 208.)
17. $x-3 x^{\frac{2}{3}}+3 x^{\frac{1}{4}}-1$.
18. $y-1$.
19. $a^{2}-a^{2}$.
20. $a+b+c-3 c^{\frac{1}{3} b^{\frac{1}{2}} b^{\frac{1}{3}} \text {. }}$
21. $10, x-11, x^{3}!1^{\frac{1}{2}}+5 x^{\frac{1}{2}} y^{3} \sigma-21 y$.
22. $m-n$.
23. $m^{4}+41^{\frac{1}{2}} m^{\frac{2}{3}}+16 \pi$.
 $-27 b$.
24. $a^{\frac{2}{3}}+2 a^{\frac{1}{3}, a^{\frac{1}{3}}}+a^{\frac{2}{3}}$.
25. $x^{\frac{2}{3}}-2 u^{\frac{1}{3}},^{\frac{1}{3}}+u^{\frac{2}{3}}$.

I I. $x^{\frac{4}{3}}+2 x^{2} y^{2} y^{\frac{1}{3}}+y^{\frac{4}{3}}$.
12. $a^{2}+2 a l^{\frac{1}{4}}+l^{\frac{1}{2}}$.
13. $x-4 x^{\frac{3}{4}}+10 x^{\frac{1}{2}}-12 x^{\frac{1}{4}}+9$.
14. $4 x^{\frac{4}{7}}+12 x^{\frac{3}{4}}+25 x^{c^{\frac{2}{2}}}+24 x^{\frac{1}{7}}+16$.
15. $x^{\frac{9}{3}}-2 x^{\frac{1}{3}} y^{\frac{1}{3}}+2 x^{\frac{1}{3}} x^{\frac{1}{3}}+y^{\frac{2}{3}}-2 y^{\frac{1}{3}} z^{\frac{1}{3}}+z^{\frac{2}{3}}$.
16. $x^{\frac{1}{2}}+4 x^{\frac{1}{2}} y^{\frac{1}{4}}-2 x^{4^{4}} z^{\frac{1}{4}}+4 y^{\frac{1}{2}}-4 y^{\frac{1}{4}} z^{\frac{1}{4}}+z^{\frac{1}{2}}$.
civ. (Page 209.)
I. $x^{\frac{1}{2}}+y^{\frac{1}{2}}$.
2. $a^{\frac{1}{2}}-b^{\frac{1}{2}}$.
3. $x^{\frac{2}{3}}+x^{\frac{1}{3}} y^{\frac{1}{3}}+y^{\frac{2}{3}}$.
4. $\cdot a^{\frac{2}{3}}-a^{\frac{1}{3}} l^{\frac{1}{3}}+b^{\frac{2}{3}}$.
5. $x^{\frac{4}{5}}-x^{3} y^{\frac{1}{3}}+x^{\frac{2}{3}} y^{\frac{2}{3}}-x^{\frac{1}{3}} y^{\frac{3}{3}}+y^{\frac{4}{3}}$.
6. $m^{\frac{5}{3}}+m^{\frac{2}{3}} n^{\frac{1}{6}}+m^{\frac{1}{2}} n^{\frac{1}{3}}+m^{\frac{1}{3}} n^{\frac{1}{2}}+m^{\frac{1}{6}} n^{\frac{1}{3}}+n^{\frac{5}{3}}$.
7. $x^{3}+3 x^{\frac{1}{2}} y^{\frac{1}{4}}+9 x^{\frac{1}{2}} y^{\frac{1}{2}}+2 \pi y^{\frac{3}{4}}$.
8. $2 \pi u^{3}+18 u^{\frac{1}{2}} b^{\frac{1}{4}}+12 a^{\frac{1}{4}} b^{\frac{1}{2}}+8 b^{\frac{3}{4}}$.
9. $a^{\frac{1}{2}}-x^{\frac{1}{2}}$.
10. $m^{\frac{4}{3}}+3 m^{\frac{3}{5}}+9 m^{\frac{2}{3}}+27 m^{\frac{1}{5}}+81$.
11. $x^{\frac{1}{2}}+10$.
12. $n^{1}+4$.
13. $-b+2 b^{23}-l^{3}$.
14. $x^{\frac{3}{3}}-x^{\frac{1}{3}} y^{\frac{1}{3}}-x^{\frac{1}{2} z^{\frac{1}{3}}}+y^{y_{3}^{3}}+z^{3}-y^{\frac{1}{3} x^{\frac{1}{3}}}$.

16. $m^{\frac{1}{2}}+m^{\frac{1}{4}} n^{\frac{1}{4}}+n^{\frac{1}{2}}$.
17. $p^{\frac{1}{2}}-2 p^{\frac{1}{4}}+1$.
18. $x^{\frac{1}{2}}-y^{\frac{1}{2}}-z^{\frac{1}{2}}$.
19. $x^{\frac{1}{3}}+y^{\frac{1}{3}}$.
I. a^{-2}
4. x^{4}
7. $1+$
9. 4,
10. $5 x$

1. $x-$
2. c^{4}
3.
4. ${ }_{2}^{3}$
5.

cv. (Page 210.)
I. $a^{-2}-b^{-2}$.
2. $x^{-6}-b^{-4}$.
3. $x^{4}-x^{-4}$.
.f. $x^{4}+1+x^{-4}$.
5. $a^{-4}-b^{-4}$.
6. $a^{-2}+2 a^{-1} c^{-1}-b^{-2}+c^{-2}$.
7. $1+a^{2} b^{-2}+a^{4} b^{-4}$.
8. $a^{4} b^{-4}-a^{-4} b^{4}-4 a^{-2} b^{2}-4$.
9. $4 x^{5}-x^{-4}+3 x^{-3}+2 x^{-2}+x^{-1}+1$.
10. $5 x^{-4}+\frac{7 x^{-3}}{2} \cdot \frac{107 x^{-2}}{12}+\frac{5 x^{-1}}{6}+\frac{7}{6}$

cvi. (Page 211.)

I. $x-x^{-1}$.
2. $a+b^{-1}$.
3. $m^{2}-m n^{-1}+n^{-2}$.
4. $c^{4}+c^{3} d^{-1}+c^{2} d^{-2}+c d^{-3}+d^{-4}$.
5. $x y^{-1}+x^{-1} y$.
6. $a^{-2}+a^{-1} b^{-1}+b^{-2}$.
7. $x^{2} y^{-2}-2+x^{-2} y^{2}$.
8. $\quad 2^{3} x^{-3}-5 x^{-2}+\frac{1}{4} x^{-1}+9$.
9. $a^{2} b^{-2}-1+a^{-2} b^{2}$.
10. $a^{-2}-a^{-1} b^{-1}-a^{-1} c^{-1}+b^{-2}-b^{-1} c^{-1}+c^{-2}$.
cvii. (Page 211.)

1. $r^{\frac{2}{3}}-2 r^{\frac{1}{2}} y^{\frac{1}{2}}+2 y$.

2. $x^{102+198}$
3. $\underset{\left(r^{4}-a^{1}\right)^{\frac{1}{2}}}{2}$
4. $7 x^{-1}+\frac{22}{3} x^{-3}-\frac{421}{42} x^{-2}-\frac{10}{7} x^{-1}+\frac{1}{7}$
5. $a^{\prime \prime}$.

19. $x^{\frac{4}{3}}+x^{\frac{3}{3}}+1$.

20. $a^{m+n}+2 a^{m+n-3} . b c x^{3}-a^{m+n-2} b^{2} x^{2}-a^{m+n-4} c^{2} x^{4}$.
21. $x^{p(q-1)}-y^{q(p-1)}$.
22. a^{n-1}.
23. $x^{4 r}-y^{4 p}$.
24. $\overline{5}, \frac{1}{144}$.
25. $x^{m n}-x^{n} y^{(n-1) m}-x^{(n-1) n} y^{m}+y^{m n}$.
26. $x+3 x^{\frac{3}{4}}-2 x^{\frac{1}{2}}-7 x^{\frac{1}{4}}+2 x^{-\frac{1}{4}}$.
cviii. (Page 215.)
I. $\sqrt[6]{ } x^{3}, \sqrt[6]{ } y^{2}$.
27. $\sqrt[15]{ }(1024), \sqrt[13]{ } 8$.
28. $\sqrt[6]{ } /(5832), \sqrt[6]{\sqrt{2}}(2500) . \quad 4 \cdot \sqrt[m n]{2} 2^{n}, \sqrt[m n]{2} 2^{m}$. 5. $\sqrt[m n]{ } / a^{n}, \sqrt[m n]{ } / b^{m}$.
29. $\sqrt[6]{ }\left(a^{2}+2 a b+b^{2}\right), \sqrt[6]{(}\left(a^{3}-3 a^{2} b+3 a b^{2}-b^{3}\right)$.
cix. (Page 217.)
I. $2 \sqrt{ } 6$.
30. $5 \sqrt{ } 2$.
31. $2 a \sqrt{ } a$.
32. $5 a^{3} d \sqrt{ }(5 d)$.
33. $4 z \sqrt{ }(2 y z)$.
34. $10 \boldsymbol{v}^{\prime}(10 a)$.
35. $6 x \sqrt{\frac{5 x}{3}}$.
36. $12 c \sqrt{ } 5$.
37. $42 \sqrt{ }(11 x)$.
38. $(x-y) \sqrt{ } x$.
39. $a^{2} \sqrt{\frac{a}{b}}$.
40. $(a+x) . \sqrt{ } a$.
41. $5(a-b) \cdot \sqrt{2}$.
42. $\left(3 c^{2}-y\right) \cdot \sqrt{ }(7 y)$.
43. $3 a^{2} \sqrt[3]{(}\left(2 b^{2}\right)$.
44. $2 x y^{2} \cdot \sqrt[3]{(20 x y)}$.
45. $3 m^{3} n^{3} \sqrt[3]{(4 n)}$.
46. $7 a^{5} b^{5} \sqrt[3]{(}(4 b)$.
47. $(x+y) \cdot \sqrt[3]{x}$.
-20. $(a-b) \cdot \sqrt[3]{a}$.
cx. (Page 217.)
I. $\quad \sqrt{ }(48)$.
48. $\sqrt{ }(63) . \quad 3 \cdot \sqrt[3]{ }(1125)$.
49. $\sqrt[4]{ }(96)$.
50. $\sqrt[3]{\frac{81}{7}}$.
51. $\sqrt{ }(9 a)$. $\quad 7 \cdot \sqrt{ }\left(48 a^{2} x\right)$.
52. $\sqrt{\prime}^{\prime}\left(3 a^{3} x\right)$.
53. $\sqrt{ }\left(m^{2}-n^{2}\right)$.
54. $\binom{a+b}{(i-b}^{\frac{1}{2}}$.
55. $\left(\frac{x}{a+y}\right)^{\frac{1}{2}}$.

The left hau
I. $\sqrt{ }$
4.
6. 2
8. 5
10. $\frac{1}{2}$
I. $2!$
4. 1:
8. 4
12. 2
16. 2
20.
1.
5. 1
9.
13.
16.
1.
4.
8.

cxi. (Page 218.)

The numbers are here arranged in order, the lighest on the left hand.
I. $\sqrt{ } 3, \sqrt[3]{4}$.
2. $/ 10, \sqrt[3]{ } 15$.
3. $3 \sqrt{ } 2,2 \sqrt{ } 3$.
4. $\sqrt[3]{\left(\frac{14}{15}\right), \sqrt{3}}$
5. $3 \sqrt{7}, 4 \sqrt{ } 3$.
6. $2 \sqrt{ } 87,3 \sqrt{ } 33$.
7. $3 \sqrt[3]{7}, 4 \sqrt{12}, 2 \sqrt[3]{ } / 22$.
8. $5 \sqrt[3]{ } 18,3 / 19,33^{3 / 82}$.
9. $5 \sqrt[3]{2}, 2 \sqrt[3]{ } 14,3 \sqrt[3]{3}$.
10. $\frac{1}{2} \sqrt{ } 2, \frac{1}{3} \sqrt{ } / 3, \frac{1}{4} \sqrt{ } 4$.
cxii. (Page 219.)

1. $29 \sqrt{ } / 3$.
2. $30 \sqrt{ } 10+164 \sqrt{ } 2$.
3. $\left(a^{2}+b^{2}+c^{2}\right) \sqrt{x}$.
4. $13 \sqrt[3]{2}$.
5. $33 \sqrt[3]{2}$.
6. $\sqrt{ } 6$.
7. $5 \sqrt{ } 3$.
8. $48 \sqrt{ } 2$.
9. $4 \sqrt[3]{2}$.
10. 0 .
11. $4 \sqrt{ } 3$.
12. $2 \sqrt{ }(70)$.
I 3. 100 .
13. $3 a b$.
14. $2 a b \sqrt[3]{3}(12 b)$.
15. 2.
1. $\frac{3}{5}$.
2. $\sqrt[3]{\frac{a}{b}}$.
3. $\sqrt{\frac{a}{b}}$.
4. $\sqrt{\frac{x}{1+x y}}$.
cxiii. (Page 220.)
I. $\sqrt{ }(x y)$.
5. $\sqrt{ }\left(x y-y^{2}\right)$.
6. $x+y$.
7. $\sqrt{ }\left(x^{2}-y^{2}\right)$.
8. $18 x$.
9. $56(x+1)$.
10. $90 \sqrt{ }\left(x^{2}-x\right)$.
11. $2 x \sqrt{ } 3$.
12. $-x$.
13. $1-x$.
14. $-12 x$.
15. $6 a$.
16. $-\sqrt{ }\left(x^{2}-7 x\right)$. 14. $6 \sqrt{ }\left(x^{2}+7 x\right)$. 15. $8\left(a^{2}-1\right)$. 16. $-6 a^{2}+12 a-18$.
cxiv. (Page 221.)
17. $x+9 \sqrt{ } x+14$.
18. $x-2 \sqrt{ } x-15$.
19. a.
20. $a-53$.
21. $3 x+5 \sqrt{ } x-28$.
22. $6 x-54$.
23. 6.
1. $\sqrt{ }\left(9 x^{2}+3 x\right)+\sqrt{ }\left(6 x^{2}-3 x\right)-\sqrt{ }\left(6 x^{2}-x-1\right)-2 x+1$.
2. $\sqrt{ }(u x)+\sqrt{ }\left(u x-x^{2}\right)-\sqrt{ }\left(a^{2}-a x\right)-u+a$.
3. $: 3+x+\sqrt{ }\left(3 x+x^{2}\right)$.
4. $2 x+2 \sqrt{ }(a x)$.
5. $2 x+11+2 \sqrt{ }\left(x^{2}+11 x+24\right)$.
6. $2 x-6+2 \sqrt{ }\left(x^{2}-6 x\right)$.
7. $2 x-2 \sqrt{ }\left(x^{2}-y^{2}\right)$.
8. $x^{2}+1+2 \sqrt{ }\left(x^{3}-x\right)$.
9. $x-y+i+2 \sqrt{ } x i$
10. $432+42 \sqrt{ }\left(x^{2}-9\right)+\cdots$
11. $2 . x-4+2 \sqrt{\sqrt{2}\left(x^{2}-4 x\right) \text {. }}$
12. $4 x+9-12 \sqrt{ } x$.
13. $x^{2}+2 x-1-2 \sqrt{ }\left(x^{3}-x\right)$.
cxv. (Page 222.)
I. $(\sqrt{ } c+\sqrt{ } d)(\sqrt{ } c-\sqrt{ } d)$.
14. $(c+\sqrt{ } d)(c-\sqrt{ } d)$.
15. $(\sqrt{ } c+d)(\sqrt{c}-d)$.
16. $(1+\sqrt{ } y)(1-\sqrt{ } y)$.
17. $(1+\sqrt{ } / 3 . x)(1-\sqrt{ } 3 . x)$.
18. $(\sqrt{ } 5 \cdot m+1)(\sqrt{ } 5 \cdot m-1)$.
19. $\{2 a+\sqrt{ }(3 x)\}\{2 a-\sqrt{ }(3 x)\}$.
20. $\{3+2 \sqrt{ }(2 n\}\{\{3-2 \sqrt{ }(2 n)\}$.
21. $\{\sqrt{ }(11) \cdot n+4\}\{\sqrt{ }(11) \cdot n-4\}$.
Io. $(p+2 \sqrt{ } r)\left(p-2 \sqrt{\prime}^{\prime} r\right)$.
II. $(\sqrt{ } p+\sqrt{ } 3 . q)(\sqrt{ } p-\sqrt{ } 3 . q)$.
22. $\left\{a^{m}+b^{\frac{n}{2}}\right\}\left\{a^{m}-b^{\frac{n}{2}}\right\}$.
23. $\frac{a+\sqrt{ } b}{a^{2}-b}$.
24. $\frac{a+\sqrt{ }(a b)}{a-b}$.
25. $24+17 \sqrt{ } 2$.
26. $2+\sqrt{ } 2$.
27. $3+2 \sqrt{ } 3$.
28. $3-2 \sqrt{ } / 2$.
29. $\frac{a+x+2 \sqrt{ }(a x)}{a-x}$.
30. $\frac{1+r+2 \sqrt{\prime} x}{1-x}$.
31. $\frac{a+\sqrt{\prime}\left(a^{2}-x^{2}\right)}{x}$.
32. $m^{2}-\sqrt{ }\left(m^{4}-1\right)$.
33. $2 a^{2}-1+2 a \sqrt{ }\left(c^{2}-1\right)$.
34. $\frac{2 a^{2}-x^{2}+2 a \sqrt{ }\left(a^{2}-x^{2}\right)}{x^{2}}$.
35. 19.
1. 11 .
2. $8-26 \sqrt{ }(-1)$.
3. $5+4 \sqrt{ } 3$.
4. $2 b+2 \sqrt{ }(a b)-12(t$.
5. $a^{2}+a$.
6. $b^{3}-c^{3}$.
7. $\alpha^{2}+\beta^{2}$.
8. $\iota^{\prime \prime}$.
9. $e^{2 \mu V(-1)}-e^{-n p V(-1)}$.
10. $\sqrt{ } 7+$
11. 110
$9.3 \sqrt{7}$
I. 49.
12. 9
I. 3
13. m^{2}
14. $\frac{r^{2} c}{b}$

I I. $\frac{2 x^{2}}{a^{2}}$
I4. $\frac{x}{2}$
16. $a^{2} b^{6}$
18. $8+$

2 I. $\frac{1}{n} \sqrt[3]{ }$
13. 12.
17. 3.
/ s .
cxvii. (Page 224.)
I. $\frac{x+y}{3 \sqrt{ }(x y)}$.
3. $\begin{gathered}x+y \\ 2 \sqrt{ }(x y)\end{gathered}$
5. $a^{2}-\sqrt{2} \cdot a x+a^{2}$.
6. $m^{2}+\sqrt{\prime}^{\prime 2} \cdot m n+n^{2}$.
7. $2 x \sqrt{ }$
8. $\frac{2 a \sqrt{\prime \prime}-2 b \checkmark^{\prime} a}{a-b}$.
9. $\frac{u^{2} c}{b}+c d-2 \pi \sqrt{\frac{d}{b}}$.
11. $\frac{2 x^{2}}{1 a^{2}}$.
12. $\sqrt{ }(1-x)$.
10. $a^{2} \sqrt{2}^{2}-2+\frac{1}{a^{2} \sqrt{2}^{2}}$.
14. $\left.\frac{x}{2}-2 \sqrt{\left(x^{2}\right.}-9\right)$.
15. $2 x-2 \sqrt{1}\left(x^{2}-a^{2}\right)$.

I6. $a^{2} b^{6} c$.
17. $-1+5 a^{2}\left(2-a^{2}\right)+a\left(10 u^{2} \quad a^{4}-5\right) \sqrt{\prime}(-1)$.
18. $8+7 \sqrt[3]{3}$.
19. $4 \sqrt{\prime}^{\prime}(3 c x)$.
20. $x \sqrt[3]{\left(3 p^{2}\right)}$.
21. $\frac{1}{n} \Delta^{3 /\left(-4 u^{2}\right)}$.
22. $(9 n-10) \cdot \sqrt{17}$.
23. 0 .
cxviii. (Page 228.)

9. $3 \sqrt{ } \sqrt{ } 7-2 \sqrt{ } / 3.10 .3 \sqrt{ } 7-2 \sqrt{ } 6.11 \cdot \frac{1}{2}(\sqrt{ } / 10-2) .12 .3 \sqrt{ } / 5-2 \sqrt{ } / 3$.
cxix. (Page 229.)
I. 49.
2. 81 .
3. 25.
4. 8.
5. 27.
6. 256.
7. 97
8. 56.
9. 79.
10. 153. 11. 6.
12. 36.
13. 12.
14. ${\stackrel{(a-b)^{2}}{c^{2}} \text {. }}_{\text {. }}$
15.5.
16. 6.
17. 3.
18. 10 .
19. $\frac{b-a^{2}}{3 a}$. 20. $\frac{n-m^{2}}{13 n}$. [s.a.] 2 B
cxx. (Page 231.)
I. 9.
2. 25 .
3. 49.
4. 121. 5. $1 \frac{4}{9}$.
6. 8,0 .
7. $0,-8$.
8. $\left(\frac{4+1}{2}\right)^{2}$.
9. $\left(\frac{m+4}{4}\right)^{2}$.
10. 5.
cxxi. (Page 231.)
I. 25 .
2. 25 .
3. 9.
4. 64.
5. $\frac{36}{5}$.
6. $\frac{12 \pi}{5}$
7. a.
8. $\frac{1}{4}$ or 0 .
9. 64.
10. 100 .
cxxii. (Page 232.)

1. 16,1 .
2. 81,25 .
3. $3,2_{9}^{5}$.
4. $10,-13$.
5. $5, \frac{5}{9}$.
6. $-4,-32$.
7. $9,-3 \frac{3}{5}$
8. $28, \frac{12252}{529}$.
9. 49 .
10. 729.

II. $4,-21$.
12. 1 or $\frac{1}{21}$.
13. ± 24.
14. 5 or $221 . \quad 15.5$ or $\frac{145}{121} . \quad 16.5$ or $0 . \quad 17 . \frac{25}{36} . \quad 18.25$.
19. $\pm 9 \sqrt{ } 2$.
20. $\pm \sqrt{ } 65$ or $\pm \sqrt{5}$.
21. $2 a$.
22. $-2 a$.
23. $\frac{1}{2}$ or $-4 \frac{1}{6}$.
24. $\frac{1}{4}$.
25. $\frac{1}{12}$.
26. $\frac{1276}{81}$.
27. $\frac{36}{5}$.
28. ± 5 or $\pm 3 \sqrt{ } 2$.
29. ± 14.
Γ_{3} O. 6 or $-\frac{10}{9}$. 3r. 1. 32. $\frac{5}{4}$. 33. 2 or $0 . \quad 34.0$ or $\frac{9 a}{16}$.
cxxiii. (Page 235.)

1. 2,5 .
2. $3,-7$.
3. $-9,-2$.
4. $5 a, 8 h$
5. $-\frac{7}{2}, \frac{5}{3}$.
6. $\frac{297}{19},-\frac{83}{14}$.
7. $\frac{4 m}{5}, \frac{11 n}{6}$.
8. -2
9. $\frac{2 a}{\text { a }}$
10. $x^{2}-$
11. $6 x^{2}$
12. x^{2}
13. x^{2}
14. (x
15. $(x$
16. $(x$
17. x
18. (a
19. (
20. $(x$
21.
22.

7
10.
6. 8,0 .
10. 5.
5. $\frac{36}{5}$.
10. 100 .
4. $10,-13$.
8. $\frac{12252}{529}$

I3. ± 24.
18. 25.
21. $2 a$.
25. $\frac{1}{12}$.
29. ± 14.
4. 0 or $\frac{9 a}{16}$.
4. $5 a, \mathrm{hb}$
$\frac{m}{5}, \frac{11 n}{6}$
8. $-2 a,-3 a$ and $3 a$, 4a.
9. $\pm 2, a$.
10. 0,5 .
11. $\frac{2 a-b}{a c}, \frac{b-3 a}{b c}$.
12. $\frac{d}{c}, \frac{e}{c}$.
cxxv. (Page 239.)

1. $x^{2}-11 x+30=0$. 2. $x^{2}+x-20=0$. 3. $x^{2}+9 x+14=0$.
2. $x^{2}-2 m x+m^{2}-n^{2}=0$.
3. $6 x^{2}-7 x+2=0$.
4. $9 x^{2}-58 x-35=0$.
5. $x^{2}-3=0$.
6. $x^{2}+\frac{\alpha^{2}-\beta^{2}}{\alpha \beta} x-1=0$.
cxXvi. (Page 240.)
7. $(x-2)(x-3)(x-6)$.
8. $(x-1)(x-2)(x-4)$.
9. $(x-10)(x+1)(x+4)$ 4. $4(x+1)\left(x+\frac{1-\sqrt{ } 5}{4}\right)\left(x+\frac{1+\downarrow^{/ 5}}{4}\right)$.
10. $(x+2)(x+1)(6 x-7)$.
11. $(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-x z-y z\right)$.
12. $(a-b-c)\left(a^{2}+b^{2}+c^{2}+a b+a c-b c\right)$.
13. $(x-1)(x+3)(3 x-7)$.
14. $(x-1)(x-4)(2 x+5)$.
15. $(x+1)(3 x+7)(5 x-3)$.

cxxvii. (Page 242.)

1. $\sqrt{ } 13$ or $\sqrt{\prime}-1 . \quad$ 2. $\sqrt[3]{\prime}-2$ or $\sqrt[3]{ }-12 . \quad 3 . \sqrt[4]{ }-1$ or $\sqrt[4]{ }-21$.
2. 1 or $\sqrt[m]{-4}$.
3. $\sqrt[2 n]{\frac{5}{2}}$ or $\sqrt[2 n]{-\frac{5}{6}}$
4. 25 or $\frac{1}{4}$.
5. $\frac{6}{-9 \pm \sqrt{ } 97^{\circ}}$
6. $\left(\frac{1}{5}\right)^{\frac{1}{x}}$ or $\left(-\frac{1}{4}\right)^{\frac{1}{n}}$.
7. 1 or $1 \pm 2 \sqrt{ } 15$.
8. 3 or $-\frac{1}{2}$ or $\frac{5 \pm 11329}{4}$.
9. $a+2$, or $-\frac{a+6}{3}$, or $\frac{a \pm 2 \sqrt{ }\left(a^{2}-3 a\right)}{3}$.
10. 0 , or a, or $\frac{a \pm \sqrt{ }\left(a^{2}-16 a+16\right)}{2}$.
cxxviii. (Page 245.)
I. $6: 7,7: 9,2: 3$ 2. The second is the greater.
11. The second is the greater.
12. $\frac{a d-b c}{c-d}$.
13. $10: 9$ or $9: 10$.
cxxix. (Page 246.)
14. $2: 3$.
15. $b: a$.
16. $b+d: a-c$.
17. $\pm \sqrt{ } 6-1: 1$.
18. $13: 1$, or, $-1: 1$.
19. $\pm \sqrt{\prime}^{\prime}\left(m^{2}+4 n^{2}\right)-m: 2$.
20. 6, 8.
21. 12,14 .
22. 35,65 .
23. 13,11 .
if. 4: 1 .
24. $1: 5$.
cxXX. (Page 247.)
25. $\frac{8}{15}$.
26. $\frac{8}{9}$.
27. $\frac{x-y}{x+y}$.
28. $\begin{aligned} & a-b+c \\ & a-b-c\end{aligned}$
29. $\frac{m^{2}-m n+n^{2}}{m^{2}+m n+n^{2}}$
30. $\frac{(x+2) y}{(y-4) x}$.
cxxxii. (Page 255.)
31. $x=4$ or 0 .
32. 440 yds. and 352 yds. per minute.
II. $x=30, y=20$.
33. $\frac{b^{2}}{d}$ 15. $\frac{9}{41}$.
34. 50, 75 and 80 yards.
35. 120, 160, 200 yards.
36. $1 \frac{1}{3}$ miles per hour.
37. $1: 7$.
38. 160 quarters, $£ 2$.
39. $£ 80$.
40. $£ 60$.
41. $£ 20$.
2弓. $90: 79$.
42. 45 miles and 30 miles.
cxxxiii. (Page 262.)
43. $16 \frac{4}{5}$.
44. 5.
1. 12.
1. $3 \frac{3}{14}$.
2. $\frac{2}{5}$.
3. $A \propto C^{\frac{2}{3}}$.
4. 5.

(I. $A=\frac{2}{3} B$.
12. $64 x^{2}=9 y^{3}$.
$\begin{aligned} & \text { 13. } x^{2}=\frac{108}{y^{3}} . \text { 14. } 4 x^{3}=27 y^{2} . \\ & \text { 18. } y=3+2 x+ \\ & \text { cxxxiv. (Page 266.) }\end{aligned}$
I. 50.
2. 200 .
3. $10 \frac{3}{4}$.
4. $-32 \frac{1}{2}$.
5. $-2 \frac{5}{6}$.
6. 40 .
7. 117 .
8. 0.
9. $x^{2}+y^{2}-2(n-2) x y$.
10. $\frac{3 a n-2 b n-2 a+b}{a+b}$.
7. $6,8$.
12. $1: 5$.
$-b+c$
$-b-c$
inute.
I. 5050 .
2. 2550 .
3. 820.
4. 30 .
5. 24.
6. $-31 \frac{1}{6}$.
7. $\frac{n \cdot(n+1)}{2}$.
8. $\frac{3 n^{2}-n}{2}$.

- $\frac{7 n^{2}-5 n}{2}$.

10. $\frac{n-1}{2}$.
cxxxvi. (Page 269.)
11. -6 .
12. $-\frac{x}{25}$.
13. $\frac{1}{8}$.
14. $-\frac{7}{8}$.
15. -2 .
16. $-1 \frac{2}{3}$.
cxxxvii. (Page 269.)
I. (1) - 46 .
(2) $3 b-2$.
(3) $\frac{2}{5}$.
(4) $4 \cdot 4$.
17. 155 .
18. 112.
1. 888.
1. 100.
1. $6433 \frac{1}{3}$.
2. $£ 135.48$.
3. (I) $355,7175$.
(2) $-156 a^{2},-3116 a^{2}$.
(3) $161+81 x, 3321+1681 x$
(4) $119 \frac{1}{2}, 2357 \frac{1}{2}$.
(5) $8 \frac{1}{4}, 174 \frac{1}{4}$.
4. (I) 126, 63252.
(2) 25,2250 .
(3) $45,-1570 \cdot 5 x$.
(4) $99,-1163 \frac{1}{4}$.
(5) 71, $4899(1-m)$.
(6) $65,65 x+8190$.
cxxxviii. (Page 271.)
I. $6,9,12,15$.
5. $1 \frac{1}{3}, \frac{2}{3}, 0,-\frac{2}{3},-1 \frac{1}{3}$.
6. $2 \frac{5}{12}, 1 \frac{5}{6}, 1 \frac{1}{4}$.
7. $\frac{7}{15}, \frac{13}{30}, \frac{2}{5}, \frac{11}{30} 0^{\circ}$
cxxxix. (Page 272.)
I. $\frac{3 m+n}{4}, \frac{m+n}{2}, \frac{m+3 n}{4}$.
8. $\frac{5 m+3}{5}, \frac{5 m+1}{5}, \frac{5 m-1}{5}, \frac{5 m-3}{5}$.
9. $\frac{5 n^{2}+1}{5}, \frac{5 n^{2}+2}{5}, \frac{5 n^{2}+3}{5}, \frac{5 n^{2}+4}{5}$.
10. $\frac{2 x^{2}+y^{2}}{2}, x^{2}, \frac{2 x^{2}-y^{2}}{2}$.
cxl. (Page 275.)
I. 64 .
11. 78732 .
12. 327680 .
13. $\frac{1}{2048}$.
14. 13122.
1. 16384.
1. $-\frac{1}{96}$.
cxli. (Page 276.)
$-3116 a^{2}$.
I. 65534 .
2. 364 .
3. $\frac{a\left(x^{26}-1\right)}{x^{2}-1}$.
4. $\begin{array}{lll}\frac{a\left(x^{9}-1\right)}{x^{8}(x-1)^{\circ}} & \text { 5. } \frac{(a-x)\left\{1-(a+x)^{7}\right\}}{(a+x)^{3} \cdot(1-a-x)} & \text { 6. } 3^{n}-1 . \\ \text { 7. } 7\left(2^{n}-1\right) . & \text { 8. }-425 . & \text { 9. }-\frac{43}{96}\end{array}$
cxlii. (Page 278.)
I. (I) 558 .
5. $\frac{4}{3}$.
6. $1 \frac{1}{8}$
I. 2 .
7. 3.
1. $8 \frac{8}{11}$.
2. $2 \frac{1}{4}$.
3. $85 \frac{1}{3}$.
4. $\frac{16 x^{5}}{8 x^{2}+1}$.
5. $\frac{a^{2}}{a-b}$
6. $\frac{1}{9}$.
7. $\frac{x^{2}}{x+y}$.
8. $\frac{86}{99}$.

I5. $\frac{49}{90}$.
16. $\frac{46}{55}$.
cxliii. (Page 279.)
$\begin{array}{lll}\text { 1. } 9,27,81 & \text { 2. } 4,16,64,256 & \text { 3. } 2,4,8 .\end{array}$
4. $\frac{3}{4}, \frac{9}{8}, \frac{27}{16} . \frac{81}{32}$.
cxliv. (Page 279.)
(5) $-\frac{169}{2}$.
(6) $\frac{133}{486}$.
(7) $-\frac{1189}{2}$.
(8) $13 \frac{5}{7}$.
(9) 1.
(10) -84 .
(I I) $-\frac{9999 \sqrt{3}}{(\sqrt{10+1}) \cdot \sqrt{5}}$.
(12) $-\frac{3157}{80}$.
5. 42.
6. $a c=b^{2}$.
7. ± 1.
8. $n+\frac{1}{4 n}$.
9. 4.
Io. 10 .
13. 4.
14. 642.
16. 49,1 .
17. $3 \frac{1}{2}, 6 . \quad 8_{2}^{1}$.
I8. 60.
19. $\frac{4}{5}, \frac{3}{5}, \frac{2}{5}, \frac{1}{5}, 0,-\frac{1}{5},-\frac{2}{5},-\frac{3}{5},-\frac{4}{5}$.
22. $3,7,11,15,19$.
23. 5, 15, 45, 135, 405.
25. 139.
26. 10 per cent.
cxlv. (Page 285.)
I. 8,12 .
2. $\frac{15}{7}, \frac{30}{13}, \frac{5}{2}, \frac{30}{11}$.
3. $\frac{12}{29}, \frac{6}{11}, \frac{4}{5}$.
4. $\frac{1}{6}, \frac{1}{9}, \frac{1}{12}, \frac{1}{15}$.
5. $-2, \infty, 2,1, \frac{2}{3}$.
6. $\frac{3}{4}, \frac{3}{2}, \quad \infty,-\frac{3}{2},-\frac{3}{4}$.
7. $\frac{6}{5}, \frac{3}{4}, \frac{6}{11}, \frac{3}{7}, \frac{6}{17}, \frac{3}{10}$.
8. $\quad(!!(11+1) \quad(\pi n(11+1)$
$6 u y(n+1)$
$2 u n+3!$.

10. 104,234 .
13. $2, \quad: \quad 6$.
cxlvi. (Page 290.)

1. 132.
1. 3360 .
2. 116280.
1. 6720 .
2. $\frac{11}{8}$.
3. $40: 20$.
4. :6288800.
5. 125.
1. 2520 .
1o. 6.
II. 4.
2. $1: 20$.
3. 1260.
1. 2520, $6200,5040,160: 200,34650$.
cxlvii. (Page 29\%.)
I. 3921225.
2. 6.
1. 126.
1. 116280 .
2. 12.
1. $1 \ddot{2}$.
2. 816000 .
S. 335.3011200 .
3. 7. 10. 63.
1. 52.
1. 123200.
1. 376092; 52:360.
cxlviii. (Page 300.)
I. $\quad a^{\prime}+4 a^{3}, x+6 a^{2} \cdot x^{2}+4\left(a, x^{\prime \prime}+x^{4}\right.$.
2. $\quad b^{6}+6 b^{5} c+15 b^{4} c^{2}+2\left(b b^{3} c^{3}+15 b^{2} c^{4}+6 h h^{3}+r^{3}\right.$.

3. $\quad x^{8}+8 x^{2} y+28 x^{4} y^{2}+56 x^{2} y^{3}+50 x^{4} y^{4}+56, y^{3} y^{3}+28 x^{2}, y^{3}$

$$
+8 x y b+y^{3}
$$

5. $\quad 625+2000 a+2400 a^{2}+1280 a^{3}+256 a^{4}$.
6. $\quad a^{10}+5 a^{8} b c+10 a^{8} b^{2} c^{2}+10 a^{1} b^{3} c^{3}+5 a^{2} b^{4} c^{4}+b^{5} c^{5}$.
cxlix. (Page 301.)
7. $u^{6}-6 a^{5} x+15 c^{4} x^{2}-20 c^{3} x^{3}+15 a^{2} x^{4}-6 a x^{3}+x^{6}$.

8. $32 x^{3}-240 x^{4} y+720 x^{3} y^{2}-1080 x^{2} y^{3}+810 x^{2} y^{4}-243 y^{3}$.
9. $1-10 x+40 x^{2}-80 x^{3}+80 x^{4}-32 x^{5}$.
10. $\quad 1-10 x+45 x^{2}-120 x^{3}+210 x^{4}-252 x^{5}+210 x^{6}-120 x^{7}$

$$
+45 x^{4}-10 x^{9}+x^{10}
$$

6. $u^{24}-8 a^{27} b^{2}+28 u^{18} b^{4}-56 u^{15} b^{6}+7\left(0 a^{12} l^{8}-5\left(a^{9} b^{19}\right.\right.$
$+28 a^{6} b^{12}-8 a^{3} b^{14}+b^{16}$.

cl. (Page 302.)

1. $a^{3}+6 a^{2} h-3 a^{2} c+12 a b^{2}-12 a b c+3 a c^{2}+8 b^{3}-12 b^{3} c+6 b c^{2}-c^{3}$.

2. $x^{9}-3 x^{4}+6, x^{7}-7, x^{6}+6 x^{3}-3 x^{4}+x^{3}$.
3. $27 x+54 x^{3}+63 x^{2} x^{3}+44 x^{\frac{1}{2}}+21 x^{\frac{1}{3}}+6 x^{\frac{1}{6}}+1$.
4. $\quad x^{3}+3 x^{2}-5+\frac{3}{x^{2}}-\frac{1}{x^{3}}$.
5. $\quad a^{\frac{3}{4}}+b^{\frac{3}{4}}-c^{\frac{3}{4}}+3 a^{\frac{1}{2}} b^{\frac{1}{4}}+3 u^{\frac{1}{1}} b^{\frac{1}{2}}-3 u^{\frac{1}{2}} c^{\frac{1}{4}}-3 z^{\frac{1}{2}} a^{\frac{1}{4}}+3 a^{\frac{1}{4}} c^{\frac{1}{2}}$

cli. (Page 303.)

I. $330 x^{7}$.
2. $495 a^{16} b^{8}$.
3. $-161700 a^{97} b^{3}$.
4. $\quad 192192 a^{6} b^{6} c^{8} d^{8}$.
5. $12870 a^{8} b^{8}$.
6. $70 a^{\frac{1}{2}} b^{\frac{1}{2}}$.
7. $-92378 a^{10} b^{9}$ and $92378 a^{9} b^{10}$.
8. $1716 a^{7} x^{6}$ and $1716 a^{6}, c^{7}$.
clii. (Page 311.)
I. $1+\frac{1}{2} x-\frac{1}{8^{2}}+\frac{1}{16} 6^{x^{3}}-\frac{5}{128} x^{4}$.
2. $1+\frac{2 \pi}{3}-\frac{u^{2}}{9}+\frac{4 a^{3}}{81}$.
3. $a^{\frac{1}{3}}+\frac{x}{3 a^{\frac{3}{3}}}-\frac{x^{2}}{9 a^{\frac{5}{3}}}+\frac{5 x^{3}}{81 a^{\frac{8}{3}}}-\frac{10 x^{4}}{243 a^{\frac{13}{3}}}$.
4. $1+x-\frac{1}{2} x^{2}+\frac{1}{2} x^{3}-\frac{5}{8} x^{4}$.
5. $a^{\frac{3}{4}}+a^{-\frac{1}{4}} x-\frac{1}{6} a^{-\frac{5}{4}} x^{2}+\frac{5}{54} a^{-\frac{9}{4}} \cdot x^{3}$.
6. $u^{\frac{1}{5}}+\frac{4}{5} \cdot u^{-\frac{1}{20}} x^{\frac{1}{4}}-\frac{2}{25} \cdot u^{-\frac{3}{10}} x^{\frac{1}{2}}+\frac{4}{125} \cdot u^{-\frac{11}{20} x^{\frac{3}{7}}}$.
7. $1-\frac{x^{2}}{2}-\frac{x^{4}}{8}-\frac{x^{6}}{16}-\frac{5 x^{8}}{128}$.
8. $\quad 1-\frac{7}{3} a^{2}+\frac{14}{9} a^{4}-\frac{14}{81} a^{6}$.
9. $\quad 1-\frac{9 x}{4}-\frac{27 x^{2}}{32}-\frac{135}{128} \cdot x^{3}$.
10. $x^{3}-x y+\frac{y^{2}}{6 x}+\frac{y^{3}}{54 x^{3}}$.

I I. $\quad 1-\frac{5}{6}-\frac{5}{7} 2^{x-1}-\frac{35}{29} x^{x^{3}}$.
12. $\left(\frac{2}{3}\right)^{\frac{2}{3}} x^{2}-\binom{\frac{3}{3}}{2}^{\frac{1}{3}} x^{-\frac{1}{3}} y-\frac{3}{8}\left(\frac{3}{2}\right)^{\frac{1}{3}} x^{-\frac{1}{3}} y^{2}$.
cliii. (Page 312.)

1. $\quad 1-2 a+3 a^{2}-4 a^{3}+5 a^{1}$.
2. $1+3 x+9 x^{2}+27 x^{3}+81 x^{4}$.
3. $1+x+\frac{5}{8} x^{2}+\frac{5}{10} 6^{3}$.
4. $1+x+\frac{3, x^{2}}{4}+\frac{x^{3}}{2}+\frac{5 c^{4}}{16} 0^{\circ}$
5. $\quad a^{-10}+10 a^{-12} a+60 a^{-14} x^{2}+280 a^{-18} \cdot u^{3}+1120 a^{-18} u^{4}$.
6. $\frac{1}{a^{2}}+\frac{6 u^{\frac{1}{3}}}{a^{\frac{7}{3}}}+\frac{21 u^{\frac{3}{3}}}{a^{\frac{8}{3}}}+\frac{5(i, c}{u^{3}}$.
cliv. (Page 313.)
7. $\quad 1-\frac{x^{2}}{2}+\frac{3 x^{4}}{8}-\frac{5 y^{6}}{16}+\frac{35 x^{8}}{128}$.
8. $1+\frac{3 x^{2}}{2}+\frac{15 x^{4}}{8}+\frac{35 x^{4}}{16}+\frac{315 x^{4}}{128}$.
9. $x^{-2}-\frac{2}{5} x^{-7} z^{3}+\frac{7}{25} x^{-12} z^{10}-\frac{28}{125} x^{-17} \tilde{z}^{15}$.
10. $1-x+\frac{3 x^{2}}{2}-\frac{5 x^{3}}{2}+\frac{35 x^{4}}{8}$.
11. $\frac{1}{a}-\frac{x^{2}}{2 a^{3}}+\frac{3 x^{4}}{8 a^{5}}-\frac{5 x^{6}}{16 a^{7}}$.
12. $\frac{1}{a}-\frac{x^{3}}{3 a^{4}}+\frac{2 x^{3}}{9 a^{7}}-\frac{14 x^{9}}{81 a^{10}}$
clv. (Page 314.)
13. $\frac{7 .(6 \ldots(0-r)}{1.2 \ldots(r-1)} \cdot r^{r-1}$ 2. $(-1)^{r-1} \cdot \frac{12.11 \ldots(1 t-r)}{1.2 \ldots(r-1)} \cdot x^{r-1}$.
14. $(-1)^{r-1} \cdot \frac{8.7 \ldots(10-r)}{1.2 \ldots(r-1)} \cdot u^{9-r} \cdot u^{r-1}$.

$$
\text { 13. } \begin{gathered}
1.3 .5 \ldots(2 r-1) \\
1.2 .3 \ldots r
\end{gathered} \cdot(2 x)^{r} . \quad \quad 15 \cdot \frac{5}{16} \cdot \frac{1}{t^{\frac{7}{2}, r^{3}}} .
$$

$$
\text { 16. } \frac{3}{128} \cdot t^{-2} b^{8}
$$

$$
17-\frac{429}{128} \cdot a^{16} a^{15}
$$

$$
\text { 18. }-\frac{m \cdot(m+1) \ldots \ldots(m+8)}{1.2 \ldots \ldots 9} \cdot a^{-(m+0)} \cdot b^{9}
$$

$$
\text { 19. } \frac{(1-5 m)(1-4 m) \ldots \ldots(1-m)}{1.2 \ldots \ldots .6 m^{6}} \cdot a^{1-n}
$$

clvi, (Page 315.)
I. $3 \cdot 141: 37 . .$.
2. $1.95204 . .$.
3. $304084 . .$.
f. $198734 . .$.
clvii. (Page 319.)

1. $10450: 32$.
2. $10070: 34$.
3. 80451.
1. 31134 .
2. $\quad 1117344$.
3. 14332216 .
4. 31450 and remainder 2. S. 522256 and remainder 1.
5. 4112. 10. 2437.

$$
\begin{aligned}
& \text { 4. } \begin{array}{c}
9.8 \ldots(11-r) \\
1.2 \ldots(r-1)
\end{array} \cdot(0, r)^{10-r} \cdot(2 y)^{r-1} . \\
& \text { 5. }(-1)^{r-1} \cdot r \cdot x^{r-1} \text {. } \\
& \text { 6. } \frac{r \cdot(r+1) \cdot(r+2)}{6} \cdot(3 x)^{r-1} \text {. } \\
& 7 \frac{1.3 .5 \ldots(2 r-3)}{1.2 .3 \ldots(r-1)} \cdot\left(\frac{x}{2}\right)^{r-1} . \\
& \text { S. } \frac{1.2 .5 \ldots(3 r-7)}{1.2 .3 \ldots(r-1)} \cdot\left(-\frac{a}{3 a}\right)^{r-1} \cdot a^{\frac{1}{3}} . \\
& \text { 9. } \frac{7.9 .11 \ldots(2 r+3)}{1.2 .3 \ldots(r-1)} \cdot t^{r-1} \text {. } \\
& \text { 10. } \frac{a^{-\frac{2}{2}}}{4^{r-1}} \cdot \frac{3 \cdot 7 \cdot 11 \ldots(4 r-5)}{1 \cdot 2 \cdot 3 \ldots(r-1)} \cdot\left(\frac{x}{u}\right)^{2(r-1)} \text {. } \\
& \text { II. } \frac{(r+1)(r+2)}{2}, r^{r} \text {. } \\
& \text { 12. } \begin{array}{c}
1.3 .5 \ldots(2 r-1) \\
1.2 .3 \ldots r
\end{array} .(2 x)^{r} \text {. }
\end{aligned}
$$

clviii. (Page 321.)
I. 5221.
2. 12232.
3. $2139 e$.
4. 104300 .
5. 1110111001111.
6. $t+t e e$.
7 6500445.
S. 211021.
9. ${ }^{6} 6 t 12$.
IO. 814.
II. 61415 .
12. 123130 .
I3. 16430335 .
14. $27 t$.
clix. (Page 327.)
I. $\cdot 41$.
2. $16235504 \dot{3}$.
3. $25 \cdot i$.
4. $12232 \cdot 2005 \dot{2}$.
5. Senary.
6. Octonary.
clx. (Page 336.)
ィ. $\overline{1} \cdot 2187180$.
2. $\overline{7} \cdot 7074922$.
3. $2 \cdot 4036784$.
4. 4740378.
5. 2924059.
6. $3 \cdot 724833$.
7. $5: 3790163$.
8. $\overline{40} \cdot 578098$.
9. $\overline{62} \cdot 9905319$.
10. $\mathbf{E} \cdot 1241803$.
и 1.
12. 161514132
clxi. (Page 339.)

1. $2 \cdot 1072100 ; 2 \cdot 0969100 ; 3 \cdot 3979400$.
2. $1 \cdot 6989700 ; \overline{3} \cdot 6989700 ; 2 \cdot 2922560$.
3. $7781513 ; 14313639 ; 1 \cdot 323939 ; 27604226$.
4. $1 \cdot 7781513 ; \overline{2} \cdot 771213 ; \cdot 0211893 ; \overline{5} \cdot 6354839$.
5. 4.8750613 ; 1.4983106.
6. 3010300 ; $\overline{2} \cdot 8061800 ; \cdot 2916000$.
7. $6989700 ; ~ 1 \cdot 0969100 ; 3: 3910733$.
8. $-2,0,2: 1,0,-1$.
9. (1) 3.
(2) 2.
10. $x=\frac{9}{2}, y=\frac{3}{2}$

ІІ. (a) $3010300 ; 1 \cdot 3979400 ; 1 \cdot 9201233 ; \overline{1} \cdot 9979588$. (b) 103.
12. (a) $6989700 ; 6020600 ; 1 \cdot 7118072 ; \overline{1} \cdot 9880618$.
(l) 8 .
13. $3 \cdot 8821260 ; \overline{1} \cdot 4093694 ; \overline{3} \cdot 7455326$.
14. (1) $x=\frac{1}{6}$.
(2) $x=2$.
(3) $x=\frac{\log m}{\log a+\log l}$.
(4) $x=\frac{\log c}{m \log a+2 \log b}$.
(5) $x=\frac{4 \log b+\log c}{2 \log c+\log b-3 \log a}$.
(6) $x=\frac{\log c}{\log a+m \log b+3 \log c}$.
clxii. (Page 343.)
I. $17 \cdot 6$ years.
2. $23 \cdot 4$ years.
3. 72725 years nearly.
6. 12 years nearly.
4. $22 \cdot 5$ years nearly.
7. $11724 \ldots .$. years.

APPENDIX.

The following papers are from those set at the Matriculation Examinations of Toronto, Victoria, and McGill Universities, and at the Examinations for Second Class Provincial Certificates for Ontario.

UNIVERSITY OF 'TORONTO.

———

Junior Matric., 1872. Pass.

1. Multiply $\frac{1}{3} x^{8}-\frac{1}{4} x y+y^{2}$ by $\frac{1}{3} x^{2}+\frac{1}{4} x y-y^{9}$.

Divide $a^{4}-81 b^{4}$ by $a \pm 3 b$ and $(x+a)^{3}-(y-b)^{3}$ by $x+a-y+b$.
2. What quantity subtracted from $x^{2}+p x+q$ will make the remainder exactly divisible by $x-a$?

Shew that

$$
(a+b+c)^{3}-(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)
$$

$-3 a b c=3(a+b)(b+c)(c+a)$.
3. Solve the following equations:
(a) $\frac{1}{3}(2 x-3)+\frac{1}{4}(6 x-7)=\frac{1}{6}\left(x-\frac{1}{2}\right)$.
(b) $\frac{4 x-7}{\frac{1}{2} x-1}+\frac{3 x-5}{\frac{1}{4} x-2}=20$.
(c) $\frac{1}{x-3}-\frac{1}{x-4}=\frac{1}{x-5}-\frac{1}{x-6}$.
(d) $x+\frac{y+\frac{2}{3}}{2}=1, \frac{y}{3}+\frac{x+2}{5}=\frac{11}{18}$.
4. In a certain constituency are 1,300 voters, and two candidates, A and $B . A$ is elected by a
certain majority. But the election having been declared void, in the second contest (A and B being again the candid!ates), B is elected by a majority of 10 more than A 's majority in the first election; find the number o." votes polled for each in the second election; havisg given that, the number of votes polled for B in tic first case: number polled in the second case : : 43 : $\because 4$.

Junior Matric., 1872. Pass and Honor.

1. Multiply $x+y+z^{\frac{1}{2}}-2 y^{\frac{1}{2}} z^{\frac{1}{2}}+2 z^{\frac{1}{2}} x^{\frac{1}{2}}-2 x^{\frac{1}{2}} y^{\frac{1}{2}}$ by $x+y+z^{\frac{1}{2}}+2 y^{\frac{1}{2}} z^{\frac{2}{2}}-2 z^{\frac{1}{2}} x^{\frac{1}{2}}-2 x^{\frac{1}{2}} y^{\frac{1}{2}}$, and divide $a^{3}+8 b^{3}+27 c^{3}-18 a b c$ by $a^{2}+4 b^{2}+9 c^{9}-$ $2 a b-3 a c-6 b c$.
2. Investigate a rule for finding the $H . C . D$. of two algebraical expressions.

If $x+c$ be the H.C.D. of $x^{2}+p x+q$, and $x^{2}+$ $p^{\prime} x+q^{\prime}$, show that

$$
\left(q-q^{\prime}\right)^{2}-p\left(q-q^{\prime}\right)\left(p-p^{\prime}\right)+q\left(p-p^{\prime}\right)^{2}=0
$$

3. Shew how to find the square root of a binomial, one oi whose terms is rational and the other a quadratic surd. What is the condition that the result may be more simple than the indicated square root of the given binomial? Does the reasoning apply if one of the terms is imaginary? Show that ${ }^{4} \sqrt{ }-4 m^{2}=\sqrt{ } m$ $+\sqrt{ }-m$.
4. Shew how to solve the quadratic equation $a x^{2}+$ $b x+c=0$, and discuss the results of giving different values to the coetficients.

If the roots of the above equation be as p to q show that $\frac{b^{2}}{a_{c}}=\underline{(p+q)^{2}}$.
5. Solve the equations
(a) $\frac{x}{2}+\sqrt{\sqrt{x^{2}}+3 x-3}=14-\begin{gathered}2 x^{2}+3 x \\ 6\end{gathered}$.
(b) $x^{2}-3 x y+2 y^{3}+1=0$.

$$
x y+y^{2}-10=0 .
$$

(c) $\frac{x^{2}+6 x+2}{x^{2}+6 x+4}-\frac{x^{2}+6 x+6}{x^{2}+6 x+8}=\frac{x^{8}+6 x+4}{x^{2}+6 x+6}-$

$$
\frac{x^{2}+6 x+8}{x^{2}+6 x+10} .
$$

(d) $6 x^{4}-5 x^{3}-38 x^{2}-5 x+6=0$.
6. Shew how to find the sum of n terms of a geometrio series. What is meant by the sum of an infinite series? When can such a series be said to have a sum?

Sum to infinity the series $1+2 r+3 r^{9}+$ dc., and find the series of which the sum of n terms is $a^{p} \cdot \frac{a^{n q}-1}{a-1}$.
7. Find the condition that the equations

$$
\begin{aligned}
& a x+b y-c z=0 . \\
& a_{1} x+b_{1} y-c_{1} z=0 . \\
& a_{2} x+b_{2} y-c_{2} z=0 .
\end{aligned}
$$

may be satisfied by the same values of x, y, z.
8. A number of persons were engaged to do a piece of work which would have cocupied them m hours it they had commenced at the same time; instead of doing so, they commenced at equal intervals, and then continued to work till the whole was finished, the payments being proportional to the work done by each ; the first comer received r times as much as tho last: find the time occupied.

Junior Matric., 1872. Honor.

1. There are three towns, A, B, and C; the road from B to A forming a right angle with that from B to C. A person travels a certain distance from B towards A, and then crosses by the nearest way to the road leading from C to A, and finds himself three miles from A and seven from C. Arriving at A, he finds he has gone farther by one-fourth of the distance from B to C than he would have done had he not left the direct road. Required the distance of B from A and C.
2. If $\frac{a y+b x}{c}=\frac{c x+a z}{b}=\frac{b z+c y}{a}$, then will

$$
\stackrel{\underset{\sim}{a}}{\stackrel{y}{a}} \underset{b^{2}+c^{2}-a^{2}}{ }=\stackrel{y}{\bar{b}} a^{2}+a^{9}-b^{2}=\frac{\frac{z}{c}}{a^{2}+b^{2}-c^{2}} .
$$

3. Solve the equations $x^{2}-y z=a^{2}, y^{2}-z x=b^{2}, z^{2}-$ $x y=c^{2}$.
4. If a, b, and c be positive quantities, shew that $a^{2}(b+c)+b^{2}(c+a)+c^{2}(a+b)>6 a b c$.
5. Find the values of x and y from the equations

$$
\begin{aligned}
& 2 y+\frac{5 y+3}{x}=1 \\
& x^{2}+5 x+y(y-1)=24 .
\end{aligned}
$$

6. A steamer made the trip from St. John to Boston via Yarmouth in 33 hours; on her return she made two miles an hour less between Boston and Yarmouth, but resmed her former speed between the latter place and St. John, thereby making the entire return pasnage in $\frac{52}{5}$ of the time she would have required had her diminished speed lasted throughout; had she made her usual time between Boston and Yarmouth, and two miles an hour less between Yarmouth and

St. John, her return trip would have been made in ${ }^{\frac{1}{5} 5}$ of the time she would have taken had the whole of her return trip been made at the diminished rate. Find the distance between St. John and Yamonth and between the latter place and Boston.
$\left.\begin{array}{l}\text { Junior Matric., Honor. } \\ \text { Senior Mutric., P'ass. }\end{array}\right\} 1814$.

1. Solve the following equations:
(a) $\ldots\left\{\begin{aligned} x^{2}-2 x y+2 y^{2} & =x!\% \\ x^{2}+x y+y^{2} & =63 .\end{aligned}\right.$
(b) $\ldots\left\{\begin{array}{l}4 x-3 x y=171 \text {. } \\ 3 y-4 x y=150 .\end{array}\right.$
(c)

$$
\left\{\begin{array}{l}
\frac{1}{x^{2}}+\frac{1}{x y}+\frac{1}{y^{2}}=19 . \\
\frac{1}{x^{4}}+\frac{1}{x^{2} y^{2}}+\frac{1}{y^{4}}=133 .
\end{array}\right.
$$

And find one solution of the equations:
(d)

$$
\left\{\begin{array}{l}
y^{2}-x^{4}=68 . \\
x^{2}+\sqrt{ } x=y .
\end{array}\right.
$$

2. Find a number whose cube exceeds six times the next greater number by three.
3. Explain the meaning of the terms Highest common measure and Lowest common multiple as applied to algebraical quantities, and prove the rule for finding the Highest common measure of two quantities.
4. Reduce to their lowest terms the following fractions:
(a) $\ldots .\left\{\begin{array}{l}99 x^{4}+117 x^{3}-257 x^{2}-325 x-50 \\ 3 x^{3}+4 x^{2}-9 x-10 .\end{array}\right.$.
(b) $\quad \ldots\left\{\begin{array}{l}x^{4}+10 x^{3}+35 x^{2}+50 x+24 \\ x^{4}+18 x^{3}+119 x^{2}+342 x+360\end{array}\right.$.
5. Find the sum of n terms of the series - $\frac{1}{2}, \frac{1}{4},-\cdots$ $\frac{1}{8}, d c$, and the x th term of the series

$$
\begin{array}{lcc}
x+1 \\
x-1 & \frac{2}{x-1}, & 3-x \\
x-1
\end{array}, \text { sc. }
$$

6. Find the relations between the roots and coefficients of the equation $a x^{2}+p x+q=0$.

Solve the equation

$$
x^{4}+6 x^{3}+10 x^{2}+3 x=110
$$

7. A cask contains 15 gallons of a mixture of wine and water, which is poured into a second cask containing wine and water in the proportion of two of the former to one of the latter, and in the resulting mixture the wine and water are found to be equal. Had the quantity in the second cask originally been only onehalf of what it was, the resulting mixture would have been in the proportion of seven of wine to eight of water. Find the quantity in the second cask.
8. What rate per cent. per annum, payable halfyearly, is equivalent to ten per cent. per annum, payable yearly.
9. A is engaged to do a piece of work and is to receive $\$ 3$ for every day he works, but is to forfeit one dollar for the first day he is absent, t. . for the second, three for the third, and so on. Sixteen days elapse before he finishes the work and he receives \$26. Find the number of days he is absent.

Change the enunciation of this problem so as to apply to the negative solution.

> Junior Matric., 1876. Peuss.

1. Explain the use of negative and fractional indices in Algebra.

$$
\text { Multiply } \sqrt{\sqrt{a}} \text { by } \sqrt[6]{a^{7}} \text {, and the product by } \sqrt[12]{\alpha^{13}} .
$$

Simplify $\frac{a^{m} b^{n} c d^{3}}{a^{n} b^{3} c^{3} d}$, writing the factors all in one line.
2. Multiply togethgr $a^{3}+a x+x^{2}, a+x, a^{2}-a x+x^{2}$, $a-x$, and divide the proluct by $a^{3}-a^{3}$.
3. Divide 1 by $1-2 x+x^{2}$ to six terms, and give the remainder. Also divide $27 . x^{4}-6 . x^{2}+\frac{1}{3}$ by $3 x^{3}+$ $2 x+\frac{1}{3}$.
4. Multiply $a^{m+n}+b^{m-n}$ by $a^{m-n}+b^{m+n}$.
5. Solve the equations :
(1). $\frac{3 x+4}{5}-\frac{7 x-3}{2}=\frac{x-16}{4}$.
(2). $\left\{\begin{array}{l}x(y+z)=24, \\ y(z+x)=45, \\ z(x+y)=49 .\end{array}\right.$

Junior Matric., 187E. Hounr.

1. An oarsman finds that during the first half of the time of rowing over any course he rows at the rate of five miles an hour, and during the second half, at the rate of four and a half miles. His course is up and down a stream which flows at the rate of three miles an hour, and he finds that by going down the stream first, and up afterwards, it takes him one hour longer to go over the course than by going first up and then down. Find the length of the course.
2. Shew that if a^{3}, b^{2}, c^{2} be in A.P., then will $b+c$, e $+a, a+b$ be in M.P.

Also, if a, b, c be in d.P., then will

$$
a+\frac{b c}{b+c}, b+\frac{c a}{c+a}, c+\frac{a b}{a+b}
$$

be in II.J'.
$($ If $s=a+b+c$, then

$$
\sqrt{ }(c c s+b c)(b s+a c)(c s+a b)=(s-a)(s-b)(s-c)
$$

4. If $a_{1}+a_{2}+\ldots \ldots \ldots+a_{n}=\frac{n s}{2}$, then

$$
\left(s-u_{1}\right)^{2}+\ldots \ldots+\left(s-u_{n}\right)^{2}=u_{1}^{2}+a_{2}^{2}+\ldots \ldots+a_{n}^{2} .
$$

5. If the fraction $\frac{1}{2 x+1}$, when reduced to a refermil, contains $2 n$ figures, shew how to infer the last n digits after obtaining the first n.

Find the value of $\frac{1}{17}$ by dividing to 8 digits,
6. Solve the equations

$$
\left.\begin{array}{l}
x-y+z=3 \\
x y+x z=2+y z, \\
x^{2}+y^{2}+z^{2}=29 .
\end{array}\right\}
$$

Junior Matric., 1876. Honor.

1. Shew that the method of finding the square root of a number is analagous to that of finding the square root of an algebraic quantity.

Fencing of given length is phaced in the form of a rectangle, so as to include the greatest possible area, which is found to be 10 acres. The shape of the field is then altered, but still remains a rectangle, and it is found that with 162 yards more fencing, the same area as before may be encloset. Find the sides of the latter rectangle.
2. Prove the rule for finding the Lowest Common Multiple of two compound algebraie quantities.

Find the L.C.M. of $a^{3}-l^{3}+c^{3}+3 a b c$ and $a^{2}(b+c)$ $-\delta^{2}(c+a)+c^{2}(a+b)+a b c$.
3. If $a,\left(\beta\right.$ the the roots of the equation $x^{2}+p x+q=$ 0 , shew that the equation may be thrown into the fiorm $(x-a)(x-\beta)=0$.
$3+\sqrt{2}$ is a root of the equation $x^{4}-5 x^{3}+2 x^{2}+x$ $+7=0$: find the other roots.
4. (1) Shew how to extract the square root of a linomial, one of whose terms is rational, and the other a quadratic surd.
(2) Find a factor which will rationalize $x^{\frac{1}{2}}-y^{\frac{1}{4}}$.
5. a, b are the first two terms of an $H . P$., what is the nth term?

If a, l, c be in $H . P$., shew that

$$
b^{2}(a-c)^{2}=2 c^{2}(b-a)^{2}+2 c^{2}(c-b)^{3}
$$

6. A and B are to race from M to N and back. A moves at the rate of 10 miles an hour, and gets a start of 20 minutes. On A's returning from \mathbf{N}, he meets B moving towards it, and one mile from it ; but A is overtaken by B when one mile from M. Find the distance from M to N .
7. Solve the equations
(1). $x^{3}+8=2 x^{3}+11 x+14$.
(2). $\left\{\begin{array}{l}\frac{x}{y}=\frac{51}{4}-x y, \\ \frac{y}{x}=\frac{17}{12}-\frac{1}{x y}\end{array}\right.$

Second Class Certificates, 1873.

1. Multiply $\frac{a}{b}+\frac{b}{a}+1$ by $\frac{a}{b}+\frac{b}{a}-1$.
2. Rerluce to its lowest terms the fraction,

$$
\frac{x^{4}+\frac{5 x^{2}}{12}+\frac{1}{9}}{x^{4}-x^{3}+\frac{x^{2}}{4}-\frac{1}{9}}
$$

4. (a) Prove that $x^{\prime \prime \prime}-y^{m}$ is divisible by $x-y$ without remainder, when m is any positive integer.
(b) Is there a remainder when $x^{100}-100$ is livided by $x-1 ?$ If so, write it down.
5. Given $a x+b y=1$,
and $\frac{x}{a}+\frac{y}{b}=\frac{1}{a b}$.
Find the difference between x and y.
6. Given $3-\frac{7\left\{3 x-2\left(m-\frac{1}{2}\right)\right\}}{8(x-1)}-\frac{\frac{9}{8}(x-4)}{3(x+1)}=0$.

Find x in terms of m.
7. Given $\frac{x}{y}=\frac{2}{3}$. Find the value of $\begin{aligned} & 7 x+16 \\ & 7 y+24\end{aligned}$.
8. Given $\frac{2}{x-y}-\frac{5}{x+y}=1$,

$$
\text { and } \frac{5}{x-y}-\frac{10}{x+y}=3 . \quad \text { Find } x \text { and } y
$$

9. There is a number of two digits. By inverting the digits we obtain a number which is less by 8 than three times the original number; but if we increase each of the digits of the original number by unity, and inver't the digits thus augmented, a number is obtained which exceeds the original number by 29. Find the number.
10. A student takes, certain number of minutes to walk from his residence to the Normal School. Were the distance $\frac{1}{8}$ th of a mile greater, he would ${ }^{-}$ need to increase his pace (number of miles per hour)
by $\frac{4}{7}$ of a mile in the hour, in order to reach the school in the same time. Find how much he would have to diminish his pace in order still to reach the school in exactly the same time, if the distance were ${ }_{3}^{\frac{3}{2}}$ of a mile less than it is.

Second Class Certificates, 1875.

1. Find the continued product of the expressions, $a+b+c, c+a-b, b+c-a, a+b-c$.
2. Simplify $\frac{a^{3}+a^{2} b}{a^{2} b-b^{3}}-\frac{a(a-b)}{b(a+b)}-\frac{2 a b}{a^{2}-b^{2}}$.
3. Find the Lowest Common Multiple of $3 x^{3}-2 x-1$ and $4 x^{3}-2 x^{2}-3 x+1$.
4. Find the value of x from the equation, $a x-$ $\iota^{2}-\frac{8 b x}{a}-a b^{2}=b x+\frac{6 b x-5 a^{2}}{2 a}-\frac{b x+4 t}{4}$.
5. Solve the simultaneous equations,

$$
\begin{aligned}
& \frac{a}{x}+\frac{b}{y}=n \\
& \frac{c}{x}+\frac{d}{y}=n
\end{aligned}
$$

6. I_{1} the immediately preceding question, if a pupil should say that, when $n b=n d$, and $b c=a d$, the values of x and y obtained in the ordinary method, have the form $:$, and that he does not know how to interpret such ia result, what would you reply?
7. Two travellers set out on a journey, one with $\$ 100$, the other with $\$ 48$; they meet with robbers, who take from the first twire as much as they take from tre second ; and what remains with the first is 3 times that whish remains with the second. How murth money did each traveller lose?
8. A and B labor together on a piece of work for two days; and then B finishes the work by himself in 8 days ; but A, with half of the assistance that B could render, would have finished the work in 6 days. In what time could each of them do the whole work alone?
9. P and Q are travelling along the same road in the same direction. At noon P, who goes at the rate of m miles an hour, is at a point A; while Q, who goes at the rate of n miles in the hour, is at a point B, two miles in advance of A. When are they together?

Has the answer a meaning when $m-n$ is negative? Has it a meaning when $m=n\}$ If so, state what interpretation it must receive in these cases.
10. P is a number of two digits, x being the left hand digit and y the right. By inverting the digits, the number Q is obtained. Prove that $11(x+y)$ $(P-Q)=9(x-y)(P+Q)$.

Second Class Certificates, 1876.

1. Divide $(1+m) x^{3}-(n+n) x y(x-y)-(n-1) y^{3}$ by $x^{2}-x y+y^{2}$.

Shew that $\left(a+a^{\frac{1}{2}} b^{\frac{1}{2}}+b\right)^{3}-\left(a-a^{\frac{1}{2}} b^{\frac{1}{2}}+b\right)^{3}$ is ex. actly divisible by $2 a^{\frac{1}{2} b \frac{1}{2}}$.
2. Resolve into facters $x^{4}+2 x y\left(x^{3}-y^{2}\right)-y^{4}$,

$$
a^{2}(b-c)+b^{2}(c-a)+c^{2}(a-b) \text {, and } 25 x^{4}+
$$ $5 x^{3}-x-1$.

3. If $x^{3}+p x^{2}+q x+r$ is exactly divisible by $x^{3}+$ $m x+n$, then $n q-n^{2}=r m$.
4. Prove that if m be a common measure of p and
q, it will also measure the difference of any multiples of p and q.

Find the G. C. M. of $x^{4}-p x^{3}+(q-1) x^{2}+p x-$ q and $x^{4}-q x^{3}+(p-1) x^{3}+q x-p$ and of $1+$ $x^{\frac{1}{2}}+x+x^{\frac{3}{2}}$ and $2 x+2 x^{\frac{3}{2}}+3 x^{2}+3 x^{2}$.
5. Frove the rule for multiplication of fiactions.

$$
\begin{aligned}
& \text { Simplify } \frac{x^{2}-(y-z)^{2}}{(y+z)^{2}-x^{2}} \times \frac{y^{2}-(z-x)^{2}}{(z+x)^{2}-y^{2}} \times \frac{z^{3}-(x-y)^{3}}{(x+y)^{2}-z^{3}} \\
& \text { and } \frac{a}{a^{2}+b^{2}}-\frac{a}{a^{2}-b^{2}}+\frac{a^{2}}{(a-b)\left(a^{2}+b^{2}\right)} \\
& \frac{2 a^{3}-b^{3}-u b^{3}}{a^{4}-b^{4}} .
\end{aligned}
$$

6. What is the distinction between an ideritity and an equation? If $x-a=y+b$, prove $x-b=y+a$.

Solve the equations $(2+x)(n-3)=-4-2 m x$, and $\frac{16 x-13}{4 x-3}+\frac{40 x-43}{8 x-9}=\frac{32 x-30}{8 x-7}+\frac{20 x-24}{4 x-5}$.
7. What are simultaneous equations? Explain why there must be given as many independent equations as there are unknown quantities involved. If there is a greater number of equations than unknown quantities, what is the inference's

Eliminate x and u from the eanations $a x+b y$ $=c, a^{\prime} x+b^{\prime} y=c^{\prime}, a^{\prime \prime} x+l^{\prime \prime} y=c^{\prime \prime}$.
8. Solve the equations-
(1) $\sqrt{n+x}+\sqrt[3]{ } \sqrt{n}-x=m$
(2) $3 x+y+z=13$
$3 y+z+x=15$
$3 z+x+y=17$
9. A person has two kinds of foreign money ; it takes a pieces of the first kind to make one $£$, and b pieces of the second kind: he is offered one $£$ for c pieces, how many pieces of ench kind must he take?
10. A person starts to walk to a railway station four and a-half miles off, intending to arrive at a certain time ; but after walking a mile and a-half he is detained twenty minutes, in consequence of which he is ohliged to walk a mile and a-half an hour faster in order to reach the station at the appointed time. Find at what pace he started.
11. (a) If $\frac{a}{b}=\frac{c}{d}$ then will $\frac{a^{4}+c^{4}}{b^{4}+d^{4}}=\frac{a^{2} c^{2}}{b^{2} d^{2}}$.
(b) Find by Horner's method of division the value of

$$
x^{5}+290 x^{4}+279 x^{3}-2892 x^{2}-586 x-312 \text { when }
$$

$$
x=-289
$$

(c) Shew without actual multiplication that

$$
\begin{gathered}
(a+b+c)^{3}-(a+b+c)\left(a^{2}-a b+b^{2}-b c+c^{2}-(a c)\right. \\
-3 a b a=3(a+b)(b+c)(c+a) .
\end{gathered}
$$

1. four the di them.
2. $]$ the ha
3. two s respec
4.
5. 30^{\prime} res what togeth

McGILL UNIVERSITY.

First Year Exhibitions, 1873.

1. The difference between the first and second of four numbers in geometrical progression is 12, and the difference between the 3 rd and 4 th is 300 ; find them.
2. Find two numbers whose difference is 8 , and the harmonical mean between them $1 \frac{4}{5}$.
3. Prove the general formula for finding the sum of an arithmetical series.
4. The differences between the hypotenuse and the two sides of a right-angled triangle are 3 and 6 respectively; find the sides.
5. Solve the equations

$$
\begin{aligned}
& \begin{array}{l}
x^{2}+y^{2}=2 \overline{5} \\
\quad \frac{x}{x+1}+\frac{x+1}{x}= \\
=\frac{13}{6} ; \\
x+y+z=5, x+y=z-7 ; x-3=y+z \\
\frac{x+4}{3 x+5}+1 \frac{1}{6}
\end{array}=\frac{3 x+8}{2 x+3} .
\end{aligned}
$$

6. A cistern can be filled by two pros in 24^{\prime} and 30^{\prime} respectively, and emptied by a third in 20^{\prime}; in what time would it be filled, if all three were running together.
7. Shew that

$$
1+\frac{a^{2}+b^{3}-c^{2}}{2 a b}=\frac{(a+b+c)(a+b-c)}{2 a b} .
$$

First Year Exhilitions, 1874.

1. The sum of 15 terms of an arithmetic series is 600 , and the common difference is 5 ; find the first term.
2. Find the last term and the sum to 7 terms of the series

$$
1-4+16-8 c
$$

3. Find the arithmeticai, geometric, and harmonic means between $3 \frac{3}{8}$ and $1 \frac{1}{2}$.
4. The difference between the hypotenuse and each of the two sides of a right-angled triangle is 3 and 6 respectively; find the sides.
5. The sum of the two digits of a certain number is six times their difference, and the number itself exceeds six times their sum by 3 ; find i.
6. Solve the equations :-

$$
\begin{gathered}
x-y=1 ; x^{3}-y^{3}=19 \\
\frac{3 x-7}{x}+\frac{4 x-10}{x+5}=3 \frac{1}{2}, \\
x-\frac{1}{7}(y-2)=5 ; 4 y-\frac{1}{3}(x+10)=3 . \\
\frac{132 x+1}{3 x+1}+\frac{8 x+5}{x-1}=52 .
\end{gathered}
$$

7. A man could reap a field by himself in 20 hours, but with his son's help for 6 hours, he could do it in 16 hours; how long would the son be in reaping the lield by himself?
8. Find the value in its simplest form of

$$
\frac{x+y}{y}-\frac{2 x}{x+y}+\frac{x^{2} y-x^{3}}{x^{2} y-y^{3}} .
$$

9. Find the greatest common measure of $3 x^{3}+3 x^{2}-15 x+9$ and $3 x^{4}+3 x^{3}-21 x^{2}-9 x$.

First Year Exhilitions, 1876.

1. Solve the equations

$$
\begin{aligned}
& \sqrt{a+x}+\sqrt{a-x}=\frac{12 a}{5 \sqrt{a+x}}, \\
& a y \\
& -y^{2}=1-\frac{x}{c} ; \quad \frac{y}{a}+\frac{x}{b}=1+\frac{y}{c}
\end{aligned}
$$

2. Reduce to its simplest form the expression :-

$$
7 \sqrt[3]{54}+3 \sqrt[3]{16}+\sqrt[3]{2}-5 \sqrt[3]{123}
$$

3. Find the greatest common measure of

$$
2 x^{3}+x^{2}-8 x+5 \text { and } 7 x^{2}-12 x+5
$$

4. Simplify $\frac{\frac{m^{2}+n^{2}}{n}-m}{\frac{1}{n}-\frac{1}{m}}+\frac{m^{2}-n^{2}}{m^{3}+n^{3}}$
5. A number consists of two digits, of which the left is twice the right, and the sum of the digits is one-seventh of the number itself. Find the namber.
6. Solve the following:-

$$
\begin{gathered}
\frac{x}{a}+\frac{y}{b}=+1, \frac{x}{a}+\frac{z}{c}=2, \frac{y}{b}+\frac{z}{c}=3 ; \\
\frac{1}{x}+\frac{1}{y}=2, x+y=2 .
\end{gathered}
$$

7. Find the sum of n terms of the series $1,3,5$, 7, de.
(a.) Shew that the reciprocals of the first four terms, and also of any consecutive four terms, are irs harmonical proportion.

UNIVERSITY OF VIOTOKIA COLLEGE.

Matriculation, 1873.

1. What is the "dimension" of a term? When is an expression said to be "homogeneous"?
2. Remove the backets from, and simplify the following expression:-

$$
\begin{gathered}
(2 a-3 c+4 d)-\{5 d-(m+3 a)\}+\{5 a-(-4 \\
-d)\}-\{3 a-(4 a-5 d-4)\} .
\end{gathered}
$$

3. Prove the "Rule of Signs" in Multiplication.
4. Multiply $a-\frac{a^{2}+x^{2}}{a}$ by $x+\frac{a^{2}-x^{2}}{x}$.
5. Divide $a x^{3}+b x^{2}+c x+d$ by $x-r$.
6. Divide 1 by $1+x$.

- 7. Find the Greatest C mmon Measure of $6 a^{4}$ $a^{2} x^{2}-12 x$ and $9 a^{5}+12 a^{3} x^{2}-6 a^{2} x^{3}-8 x^{5}$.

8. From $3 a-2 x-\frac{a x-x^{2}}{x^{2}-1}$ subtract $2 a-x-$

$$
\frac{a-x}{x+1}
$$

9. Given $\left\{\begin{array}{l}\frac{x}{8}+\frac{y}{9}=42 \\ \frac{x}{9}+\frac{y}{8}=43\end{array}\right\}$ to find x and y.
10. Divide the nurioer a into four such parts that the second shall exceed the first by m, the third shall exceed the second by n, and the fourth shall exceed the third by p.
11. A sum of money put out at simple interest
amour to $b \mathrm{~d}$
12.
13.

the q be to t as $\frac{4}{3}$ tc
14. their I square
15.
16.
and if he wo he buy

1. $10 a b^{9}$ monst
2.
3. and re
4.

$=10 a$
5. suns, oscerd
amounts in m months to a dollars, and in n month to b dollars. Required the sum and rate per cent.
12. Given $x^{2}+a b=5 x^{2}$, to find the values of x.
13. Divide the mumber 49 into two such parts that the quotient of the greater divided by the less may be to the quotient of the less divided by the greater, as $\frac{4}{3}$ to $\frac{3}{4}$.
14. Jivide the number 100 into two such parts that their product may be equal to the difference of their squares.
15. Given $\left\{\begin{array}{l}x^{9}+x y=56, \\ x y+2 y^{2}=60,\end{array}\right\}$ to find values of x and y.
16. A farmer bought a number of sheep for $\$ 80$, and if he had bought four more for the same money, he would have paid $\$ 1$ less for each. How many did he buy?

Matriculation, 1874.

1. Find the Greatest Common Measure of $2 b^{3}$ $10 a b^{9}+8 a^{2} b$, and $9 a^{4}-3 a b^{3}+3 a^{2} b^{2}-9 a^{3} b$, and demunstrate the rule.
2. Add together $a-x+\frac{a^{2}+x^{2}}{a+x}, 3 a-\frac{a^{3}-a x}{a+x}$,

$$
2 x-\frac{3 a^{2}-2 x^{4}}{a-x} \text {, and }-4 a-\frac{a^{2}+x}{a-x^{2}} .
$$

3. Divide $\frac{1}{1+x}+\frac{x}{1-x}$ by $\frac{1}{1-2}-\frac{x}{1+x}$ and reduce.
4. Given $\frac{1}{3}(x-a)-15(2 x-3 b)-\frac{1}{2}(a-x)$ $=10 a+11 b$ to find x.
5. A. sum of mone" was divided among three persuns, A, R, and C, as follows: the share of \triangle oacecded to: the shases of E and C br $\$ 120$; the
share of $B, \frac{3}{8}$ of the shares of A and C by $\$ 120$; and the share of $C, \frac{3}{9}$ of the shares of A and B by $\$ 120$. What was earch person's share?
6. Given $\left\{\begin{array}{l}x^{2}+y^{2}+x y(x+y)=68 \\ x^{3}+y^{3}-3 x^{2}-3 y^{2}=12\end{array}\right\}$ to find x and y.
7. Shew that a quarlatic equation of one unknown quantity cannot have more than two roots.
8. Given $\frac{2 \sqrt{ } x+2}{4+\sqrt{ } x}=\frac{4-\sqrt{ } x}{\sqrt{ } x}$; to find the value of x.
9. The e is a stack of hay whose length is to its breadth as 5 to 4 , and whose height is to its breadth as 7 to 8 . It is wo th as maryy cents yer cubic foot as it is fect in broadth; and the whole is worth at that rate 224 times as many cents as there are square feet on the bottom. Find the dimensions of the stack.
10. Given $\left\{\begin{array}{l}\frac{x+y}{2}=\sqrt{ } x y+5 \\ \frac{2 x y}{x+y}=\sqrt{ } x y-4\end{array}\right\}$ to find x and y.
11. In attempting to arrange a number of counters in the form of a square it was found there were seven uver, and when the side of the square was increased by one, there was a deficiency of 8 to complete the square. Find the number of counters.
12. Reduce to its simplest form

$$
\frac{a^{2}-(b-c)^{2}}{(a+c)^{8}-b^{2}}+\frac{b^{2}-(c-a)^{2}}{(a+b)^{2}-c^{2}}+\frac{c^{2}-(a-b)^{2}}{(b+c)^{2}-a^{2}}
$$

13. A and B can do a piece of work in 12 days; in hew many days could each do it alone, if it would take A 10 days longer than B ?
14. Given $\left\{\begin{array}{l}\frac{x}{y}=\frac{z}{w} \\ x-y=4 \\ z-y=3 \\ x^{2}+y^{2}+z^{2}+w^{3}=62 \frac{1}{2}\end{array}\left\{\begin{array}{l}\text { to find } \\ x, y, z, \\ \text { and } w .\end{array}\right.\right.$

by $\$ 120$; and B by

nd x and y. e unknown
value of x.
h is to its its breadth cubic foot is worth at are square f the stack.
15. Find the last term, and the sum of 50 terms, of the series $2,4,6,8$, dc.
16. Write down the expansion of $\left\{x-\frac{1}{x}\right\}^{7}$
17. How many differonc surains may be rung on tem different bells, supposing all the combinations to produce different notea ?
in 12 days; if it would
of counters were seven s increased mplete the
x and y.

ANSWERE:

Funior Matric., 1872. Pass.

1. $\frac{1}{9} x^{4}-\left(\frac{1}{1 \overline{0}} x^{2} y^{2}-\frac{1}{2} x y^{3}+y^{4}\right)$; $\left(a^{2}+9 b^{2}\right)(a \overline{+} 3 b)$;

$$
(x+a)^{2}+(x+a)(y-b)+(y-b)^{2} . \quad \text { 2. } a^{2}+a p+q
$$

3. (a) $1 \frac{1}{3} ;(b), \frac{37}{3} ;(c), 4 \frac{1}{2} ;(d), \frac{1}{2}, \frac{1}{3}$.
4. 640,660 .

Junior Matric, 1879. Pass and Honor.

1. $\left\{x^{\frac{1}{2}}+\left(x^{\frac{1}{2}}-y^{\frac{1}{2}}\right)\right\}^{2}\left\{z^{\frac{1}{2}}-\left(x^{\frac{1}{2}}-y^{\frac{1}{2}}\right)\right\}^{2}=$
$\left\{z-\cdots\left(c+\cdots v^{2}\right)^{2}\right\}^{2} ; u+2 b+3 c$. 2. We have $c^{2}-p c+q=0$ and $c^{2}-p^{\prime} c+q^{\prime}=0$, from which to elim_nate: c.
2. If β be one root, $-\frac{b}{a}-\beta\left(1+\frac{p}{q}\right),{ }_{a}^{c}=\beta \frac{p}{q}$, and, eliminating $9, \frac{b^{3}}{a c}=\frac{(p+q)^{2}}{p q}$.
3. (a) $, 1,-\ldots 7, \frac{1}{2}(-3 \pm \sqrt{ } 2 \overline{7}) ;(b), 3,2, ;-3,-2$

$$
\frac{7}{\sqrt{6}}, \frac{5}{\sqrt{6}} ;-\frac{7}{\sqrt{6}}=-\frac{5}{\sqrt{6}} . \quad(c),-3
$$

$$
\pm \sqrt{2 .}(d) \text {, Divide through by } x^{2} \text { and put } y \text { for }
$$ $x+\frac{1}{x}$, and $\therefore y^{2}-2 \mathrm{f}_{\mathrm{O}} \cdot x^{2}+\frac{1}{x^{2}}$, then $y=$

$$
\frac{10}{3} \text { or }-\frac{5}{2} \text { and } x=3 \frac{1}{3},-\frac{1}{2} \text { or }-2 \text {. }
$$

6. $\left.\left.\frac{1}{(1-r)^{2}} ; \frac{a^{q}-1}{a-1}\right\} a^{p}+a^{p+q}+a^{p+2 q}+\cdots,\right\}$
7. $a \cdot\left(b_{1} c_{2}-b_{2} c_{1}\right)+a_{1}\left(b_{2} c-b c_{2}\right)+a_{2}\left(b c_{1}-b_{1} c\right)=0$.
8. $\frac{2 r m}{1+r}$.

Junior Matric., 18i2. Monor.

1. 8 and 6 miles.
2. Each of the first set of fraetions may be shewn equal to
$2 a b c \frac{\frac{x}{a}}{b^{2}+c^{2}-a^{2}}$ or $2 a b c \frac{\frac{y}{b}}{c^{2}+c^{2}-b^{2}}$, or $2 a b c$ $\frac{\frac{\boldsymbol{z}}{c}}{a^{2}+b^{2}-c^{2}}$, which are therefore equal.
3. Multiplying the equations successively by y, z, ∞ and z, x, y, we obtain $c^{2} x+a^{2} y+b^{2} z=0$,
$b^{2} x+c^{2} y+a^{2} z=0$; thence $\frac{x}{a^{4}-b^{8} c^{0}}=\frac{y}{b^{4}-c^{2} a^{9}}=$ $\frac{z}{c^{4}-a^{2} b^{2}}$, and $x=\frac{ \pm a\left(a^{4}-b^{2} c^{2}\right)}{\sqrt{ }\left\{\left(a^{4}-b^{2} c^{2}\right)^{2}-\left(b^{4}-c^{2} c^{2}\right)\right.}$
4. $a^{2}+b^{2}>2 a b, . \therefore c\left(a^{2}+b^{2}\right)>2 a b c$, \&c.
5. 3,$0 ;-2,-5 ;-3,6 ;-8,1$.
6. 90 and 240 mls
$\left.\begin{array}{l}\text { Simior Matric., Honor. } \\ \text { Senior Matric., I'ass. }\end{array}\right\} 1874$.
7. (a), From first $x=2 y$ or y, and then solutions are $3, \frac{3}{2} ;-3,-\frac{3}{2} ; \sqrt{21}, \sqrt{21} ;-\sqrt{21},-\sqrt{21}$. (b), $\frac{3}{16}(41 \pm \sqrt{769}), \frac{1}{3}(-37 \pm \sqrt{769})$. (c), $\frac{1}{3}, \frac{1}{2}$; $-\frac{1}{3},-\frac{1}{2} ; \frac{1}{2}, \frac{1}{3} ;-\frac{1}{2},-\frac{1}{3}$. (1), 4, 18. 2. 3 .
8. (a), $\frac{33 x^{2}+61 x+10}{x+2} ;(b), \frac{x^{2}+3 x+2}{x^{2}+11 x+30}$.
9. $\frac{1}{3}\left\{\left(-\frac{1}{2}\right)^{n}-1\right\} ; \frac{1}{x-1}\{x+1+(x-1)(1-x)\}$

$$
=\frac{x(3-x)}{x-1}
$$

6. $x-2$ and $x+5$ are factors, and roots are, $2,-5$, $\frac{1}{2}(-3 \pm \sqrt{35}) . \quad$ 7. $7 \frac{1}{2}$ gals.
7. 4.88per cent. 9.1 days.

He receives $\$ 3$ every day the work continues; he returns nothing the first day he is idle, $\$ 1$ the second, and so on, and the number of days he works is 16 .

Junior Matric., 1876. Paws.
$\begin{array}{ll}\text { 1. } a^{2} ; a^{m-n} b^{n-2} c^{-1} d . & \text { 2. } a^{6}-x^{5} ; a^{3}+x^{3}\end{array}$
3. $1+2 x+3 x^{2}+4 x^{3}+5 x^{4}+6 x^{5}+\ldots \ldots$; rem. $7 x^{6}-$ $6 x^{7} . \quad 9 x^{2}-6 x+1$.
4. $a^{2 n}+(a b)^{m} n+(a b)+b^{2 m}$.
5. (1), 2 .
(2), $2,5,7$; or $-2,-5,-7$.

Junior Matric., 1876. Honor.

1. 35 mls . 2. (2), These quantities are in $H . P$. if $\frac{b+c}{a b+a c+b c}, \& c .$, are in A.P., i.e., if a, b, c are in A.P.
2. It may be shewn that the remainder at the $n t h$ decimal place is $2 n$; hence if the $n t h$ digit be increased by unity, and the whole subtracted from 1 , the remainder is the remaining part of the period.
3. $z=4, x=2$ or $-3, y=3$ or $-2 ; z=-1, x=2 \pm \sqrt{10}$, $y=-2 \neq \sqrt{10}$.

Sunior Matric., 1876. Honor.

1. 121 and 400 yards.
2. $(a-b+c)(a b+b c+c a)\left(a^{2}+b^{2}+c^{2}+a b+b c-c a\right)$.
3. Irrational roots go in pairs.: 3-- $\sqrt{2}$ is a root; and other roots a:e $\frac{1}{2}(-1 \pm \sqrt{\prime}=3)$.
4. $x^{\frac{5}{2}}+x^{2} y^{\frac{1}{3}}+x^{\frac{3}{2}} y^{\frac{2}{3}}+x y+x^{\frac{1}{2}} y^{\frac{4}{3}}+y^{\frac{5}{3}}$.
5.

6. 3 mls .
7. (1), Plainly $x+2$ divides both sides, and roots are $-2,2 \pm \sqrt{7}$. (2), $x=3, y=4$ or $\frac{1}{4} ; x=$ $-3, y \cdots-4$ or $-\frac{1}{4}$.

Second Class Certificates, 1873.

1. $\left(\frac{a}{b}+\frac{b}{a}\right)^{2}-1=\frac{a^{2}}{b^{2}}+1+\frac{b^{2}}{a^{2}}$.
2. $(a-b)-(a-4 b)=3 b$.
3. $=\frac{\left(x^{2}+\frac{1}{3}\right)^{2}-\left(\frac{x}{2}\right)^{2}}{\left(x^{2}-\frac{x}{2}\right)^{2}-\left(\frac{1}{3}\right)^{2}}=\frac{x^{2}+\frac{1}{2}+\frac{1}{3}}{x^{3}-\frac{1}{2}-\frac{1}{3}}$.
4. (b), - 99 .
5. $(a-b)(x-y)=0 ; \therefore$ if a be not $=b, x-y=0$;
if $a=b, x-y$ may have any value.
6. $\frac{43-14 m}{14 m-13} \quad$ 7. $\frac{2}{3}$, provided x be not $=-2 \frac{3}{4}$; then fraction becomes $\frac{0}{0}$ and is indeterminate.
7. $\frac{1}{x-y}=1, \frac{1}{x+7}=\frac{1}{6} ; x=3, y=2$.
8. 13 .
9. $\frac{3}{7}$ of a mile per hour.

Second Class Certificates, 1875:

1. $2\left(a^{9} b^{9}+b^{2} c^{2}+c^{2} a^{2}\right)-\left(a^{4}+b^{4}+c^{4}\right)$. 2. $\frac{\hat{3} a}{a+\bar{b}}$.
2. $(3 x+1)\left(4 x^{3}-2 x^{2}-3 x+1\right)$.
3. $\frac{2 a\left(2 b^{2}-5\right)}{4 a-3 b}$
4. $x=\frac{b c-a d}{n b-m d}, y=\frac{b c-a d}{m c-n a}$.
5. x and y are indeterminate: there is but one equation. 7. $\$ 88, \$ 44$. 8. 14 days, $11 \frac{2}{3}$ days.
6. In $\frac{2}{m-n}$ hrs. $m-n$ negative means that they were together $\frac{2}{n-n}$ hrs. before noon. $m=n$, they aro never together.
7. Each side equals $99\left(x^{2}-y^{2}\right)$.

Secona Class Certificates, 1876.

1. $(1+m) x-(1-n) y$. $\quad 2 .(x+y)^{3}(x-y) ;(a-b)$ $(b-c)(c-a) ;\left(5 x^{2}-1\right)\left(5 x^{2}+x+1\right)$.
2. Let the other factor be $x+a$; multiply and equate co-eflicients; eliminating $a, n q-n^{2}=r m$; other condition is $p n-m n=r$.
3. $x-1 ; 1+x+$.
4. $\frac{(x+y-z)(x-y+z)(y+z-x)}{(x+y+z)^{3}} ; \frac{1}{a-b}$.
5. $-\frac{2}{3} ; 1$.
6. $a^{\prime \prime}\left(b^{\prime} c-b c^{\prime}\right)+b^{\prime \prime}\left(a c^{\prime}-a^{\prime} c\right)+c^{\prime \prime}\left(a^{\prime} b-a b^{\prime}\right)=\mathbf{0}$.
7. (1,$)^{2}$ Cube, and $3(n+x)^{\frac{1}{2}}(n-x)^{\frac{1}{\frac{1}{2}}}(m)=m^{3}-2 n$,

$$
\therefore x=\left\{n^{2}-\left(\frac{m^{3}-2 n}{3 m}\right)^{3}\right\}^{\frac{1}{2}} ; 2, \text { 5, } 4
$$

9. $\frac{a(c-b)}{a-b}, \frac{b(a-c)}{a-b}$.
10. 3 miles an hour.
11. (a), See $\S 359$. (b), 2,000. (c), Substitute successively $-b,-c,-a$ for a, b, c, in the left hand side, and it appears that $a+b, b+c$, $c+a$ are factors, and \therefore expression is of form $N(a+b)(b+c)(c+a) ;$ putting $a=b=c=1$, we get $N=3$.

First Year Exhibitions, 1873.

1. $3,15,75,375$. 2. 9 and 1 , or $\frac{8}{10}$ and $-\frac{72}{10}$. 4. 9, 12 .
2. $(a), 4,-3 ;-3,4$. (b) , 2, - 3. (c) $, 4,-5,6$. (d),$-\frac{9}{6}$.
3. 40^{\prime}. 7. $=\frac{(a+b)^{2}-c^{2}}{2 a b}=$.

First Year Exhibitions, 1874.

1. 5. 2. $(-4)^{6} ; 3277$. $3.2 \frac{7}{16} ; 2 \frac{1}{4} ; 2 \frac{1}{13}$.
1. 9,12 . 5.75 .
2. $(a), 3,2 ;-2,-3$. (b), 7 or $-1 \frac{3}{7}$. (c), 5, 3. (d), 14 .
3. 30 hours.
4. $\frac{y}{x+y}$.
5. $3(x+3)$.

First Year Exhibitions, 1876.

1. $\frac{4}{5} a, \frac{3}{\overline{5}}\left(\frac{\frac{1}{a}-\frac{1}{b}-\frac{1}{c}}{\frac{1}{a^{2}}-\frac{1}{b^{2}}-\frac{1}{c^{2}}}, \frac{\frac{1}{a}-\frac{1}{b}+\frac{1}{c}}{\frac{1}{a^{9}}-\frac{1}{b^{3}}-\frac{1}{c^{8}}}\right.$
2. $-12^{3} \sqrt{2} . \quad 3 . x-1 . \quad 4 . m$.
3. $21,42,63$, or $84 . \quad$ 6. $o, b, 2 c ; 1,1 . \quad$ 7. $n^{\text {i }}$.

Matriculation, 1873.
2. $11 a-3 c-5 d+m$.
4. - $a x$.
5. $a x^{2}+(a r+b) x+\left(a r^{2}+b r+c\right)+$ $\frac{a r^{3}+b r^{2}+c r+d}{x-r}$.
6. $1-x+x^{2}-x^{3}+\ldots .$. 7. $3 a^{2}+4 x^{2}$
8. $\frac{(a-x)\left(x^{2}-2\right)}{x^{2}-1}$.
9. $144,216$.
10. $\frac{1}{4}(a-3 m-2 n-p)$, dec.
11. $\frac{m b-u a}{m--u}, \frac{1200(a-b)}{m b-n a}$.
12. $\pm \frac{1}{2} \sqrt{\overline{4 b}}$. 13. 28, 21.
14. $50(\sqrt{5}-1), 50(3-\sqrt{5})$.
15. $x= \pm 10, y=\mp 10 ; x= \pm 4 \sqrt{ } \overline{2}, y= \pm 3 \sqrt{2}$.
16. 16.

Matriculation, 1874.

1. $a-b$.
2. $\frac{4 a^{3}+a^{2} x-2 a x^{2}+x^{3}}{x^{2}-a^{3}}$.
3. 1
4. $-5 a-3 b$.
5. $600,480,360$.
6. 2,$4 ; 4,2$.
S. 4 or $9 \frac{1}{9}$.
7. $20,16,14 \mathrm{ft}$.
8. 40,$10 ; 10,40$.
9. 56.
1. 2.
1. 30 and 20 days.
1.4. $6,2,4 \frac{1}{2}, 1 \frac{1}{2}$, or $-2,-6,-1 \frac{1}{2},-4 \frac{1}{2}$.
2. 100,2550 .
3. $x^{7}-7 x^{5}+21 x^{3}-35 x+35 x^{-1}-21 x^{-3}+7 x^{-1}$ $-x^{-7}$.
4. 1023.

FOR THE USE OF INTERMEDIATE STUDENTS AND TEACHERS.

Gage's School Examiner,

Of Science and Literature.
A Magazine for the School Room and Stady, containing Fxamination Papers on the subjects taught in the High and Public Schools, and designed for the use of Teachers in conducting Monthly Examinations, and in the daily work of the School Room, and for the use of Students preparing for the Intermediate and all Official Examinations. In addition to Original Papers prepared by Specialists on the various subjeots, valumble selections will be made from the University, High School and Public School Examinations in Europe and America, as well as from Normal School and other Examinations for Teachers, both Professional and Non-professional. Subscription, $\$ 1.00$ per year-payable in advance.
Apdress-W. J. GAGE \& CO., Toronto, Canada.
Bro. Halucerd, Prin. Chris. Bros.' School, Kingston.
Am much pleased with the plan, ambigement, and matter of Gace's School Examiner, and trust it will obtai:a the gencrous patronaye of all earnest educationicts.

S. Burwash, Colborne.

It is just what we wanted. I have no doubt of its complete success.

L. Gilchrist, Woodville.

I think it an excellent periodical, especiany for Teachers who hold Monthly Examinations.

W. W. Rutherford, Port Rowan.

I find it a very uscful Joumal in School work and cannot afford to be without it.
James McBrien, I. P. S., Myrtle.
The "Sehool Examiner" is rapidly winning its way into nearly all the sehools.
George Harper, Anchoraye, Wiseonsin, U. S.
It is attractive in form, neat and handsome in appearance, and, in my humble opinion, contains more solid and useful matter than any similar Journal in the United States.
D. R. Boyle, West Arichat, C. B.

Indecd, the solution of No. 2 Arithmetic, in the April number is alone worth the subscription price.

; BOOKS FOR TEACIIERS AND STUDENTS, BY DR. MCLELLAN.

Examination Papers in Arithmetic.

By J. A. McKellan, M. A., LL. D.. Inspector of High Schools, Ont., and Thomas Kirkland, M. A., Science Master, Normal School, Toronto.
"In our opinion the best Collection of Problems on the American Con. tinent."--National Teachers' Monthly, N. Y.
Seventh Complete Edition,
Price. \$1.00.

Examination Paper $=$ in Arithmetic.---Part i. By J. A. Mclrllan, M. A., LL. D., and Thob. Kirfland, M. A.
 Price, - - - - 50 Cents.

This Edition has been issued at the request of a large number of Public School teachers who wish to have a Cheap Edition for the use of their pupils preparing for admission to High School.
Hints and Answers to Examination Papers in Arithmetic.

By J. A. Mclellan, M. A., LI.. D, and Thos. Kirkland, M. A. Fourth Edition,

- \$1.00.

McLellan's Mental Arith́metic.-.-Part I.
Containing the Fundamental Rules, Fractions and Analysis.
By J. A. Mclellan, M. A., LL. D., Inspector High Schools, Ontario. Third Edition, - - - 30 Cents. Authorized for use in the Schools of Nova Scotia.
McLellan's Mental Arithmetic.-...Part II. Specially adapted for Model and High School Students.
Third Edition,
Price, 45 Cents.
The Teacher's Hand Book of Algebra. By J. A. McLehlan, M. A., LL. D.
Second Complete Edition,
\$1.25.
Teacher's Hand Book of Algebra...-Part I.
Prepared for the use of Intermediate Students.
Price, - - - - 75 Cents.
Key to Teacher's Hand Book of Algebra. Second Edition, - - Price, \$1.50.

HAMBLIN SMITH'S MATHEMATICAL WORLS.
Authorized for usc, and now used in nearly all the principal Schools of Ontario, Qucbec, Nova Scotia and Manitoba.
Hamblin Smith's Arithmetic.
An Advanced treatise, on the Unitary Systum, by J. Hamblin Smith,
M. A., of Gonvillo and Caius Colleges, and late lecturer of St. Peter's Col-
lege, Cambridge. Adapted to Canadian Schools, hy Thomas Kirkland,
M. A., Science Master, Normal School, Toronto, and William Scott, B. A.,
Head Master Model School for Ontario.
12th Edition,
KEY.-A complete Key to the above Arithmetic, by the Authors. Price,
$\$ 2.00$.

Hamblin Smith's Algebra.

An Elementary Algebra, by J. Hamblin Smith, M. A., with Appendix by Alfred Baker, B. A., Mathematical Tutor, University College, Toronto. 8th Edition

Price, 90 Cents.

> KEY.-A complete Key to Hamblin Smith's Algelra. Price,

Hamblin Smith's Elements of Geometry.
Containing Books 1. to VI., and portions of Books XI. and XII., of Euclld, with Exercises and Notes, by J. Hamblin Smith, M. A., \&e., and Examination Papers, from the Toronto and McGill Universities, and Normal School, Toronto.
Price,
90 Cents.

Hamblin Smith's Geometry Books, I and 2. Price, 30 Cents.

Hamblin Smith's Statics.
By J. Hasblin Smith, M. A., with Appendix hy Thomas Kirkland, M. A., Science Master, Normal School, Toronto.
Price,
Hamblin Smith's Hydrostatics. 75 Cents.
KEY.—Statics and Hydrostatics, in one volume. \$2.00.
Hamblin Smith's Trigonometry. \$1.25.
KEY.-To the above, $\$ 2.50$.

NEW BOOKS BY DR. McLELLAN.

The Teacher's Handbook of Algebra.

licvised and enlarged. By J. A. McLellas, M. A. LL. D., Inspector of Iligh Schools, Ontario. iv
Price,
\$1.25

Teacher's Hand Bóok of Algebra.---Part 1 .

Abridged Edition. Contaiming portions ot the a ove suitable for Intermediate students.
Price,

Key to Teacher's Hand Book.

It contains over 2,500 Exercises, ineluding about three hundred and fifty solv.d examples, illustrating every type of question set in elementary Algeb.t.

- It contains complete explanation of Horncr's Multiplication and Division, with appliention not given in the Text-Books.
It contains a full ex olanation of the principles of symmetry, with numerous illustrative examples.
It contains a more complete illustration of the theory of divisors, with its ocantifu, applications, thar: is to be found in any text-book.
It contains what able mathematical teachers have pronounced to be the
"finest chapter on factoring that has eve appeared."
It contains the latest and best methods of treatment as given by the great Masters of Analysis.
It contains the finest selections of properly classified equations, with methods of resolution and reduction, that has yet appeared.
It contains a set of practice papers made up by sclecting the best of the questions set by the University of Toronto during twenty years.

It is a key of the methods, a repertory of exercises, which camot fail to make the teacher a better teacher, and the student a more thorough algelimast.

Read the following notices from the leading authorities in Great Britain and United States:
"This is the work of a Canadian Teacher and Inspector, whose name is honorably known beyond the bounds of his native province, for his exertions in developing and promoting that admirable system of public instruction, which has placed the Dominion of Canada so high, as regards education, not only anong the British Colonies, but among the civilized nations of the world. We know of no work in this country that exactly occupies the place of Dr. McLellan's, which is not merely a text book of Algebra, in the ordinary sense, lut a Manual of Methods for Teachers, illustrating the best and most recent treatment of algebraical problems and solutions of ceery kind."

From Barnes' Edicational Montily, N. Y.
"The best American Alyebra for Teachers that we have ever examined."

(2). (bage \& \mathfrak{C} o's. Glew CDucational ©lorks.

Revised Ed, of Miller's Language Lessons.

Now in indestructible iron binding. Sixth edition; 200th thousand, with Examination Papers for admission to High Schools. Adapted as an Introductory Text Book to Mason's Grammar.
proors of tile superiority of mller's editiok.
Miller's Swinton's is authorized by the Education Department for use in the Schools of Ontario.

Only Edition adopted by the Protestant Board of Edncation of Montreal, and used in many of the principal Schools of the Province of Quebec.

Only Edition used in the Schools of Newfoundland.
Only Edition adopted by the Supt.of Education for the Schools of Manitoba.
Miller's Revised Swinton's is used in nine-tenths of the principal Schools of Ontario.
Only Edition prepared as an introductory Book to Mason's Grammar both having the same Definitions.
(a thorough examination given).
St. Thomas, Nov. 30th, 1878.
To the Tresident and Members of the County of Elyin Teacher's Association :-In adcordance with a motion passed at the last regular meeting of the Association, appointing the undersigned a Committee to consider the respective merits of different English Grammars, with a view to suggest the most suitable one for Public Schools, we beg leave to report, that, after fully comparing the various editions that have been recommended, we believe that "Miller's Swinton's Language Lessons" is best adapted to the wants of junior pupils, and we would urge its authorization on the Government, and its introduction into our Public Schools.
Signed, A. F. Butler, Co. Inspector, J. McLean, Town Inspector. J. Millar, M. A., Head Master St. Thomas High School.

A. Stekle, M. A.,	$"$	Orangeville High School.
N. Campbell,	$"$	Co. of Elgin Model Sehool.

It was moved and seconded that the report be received and adopted.-Carried unanimously.

CGI TO AVOLD MISTARES, ASK FOR REVISED EDITION MILLER'S SWINTON'S.

orks.

on.

sons.
md, with an Intro or use in Hontreal, ce. Ianitoba. 1 Schools
rammar h, 1578. Associa. reeting of sider the ggest the after fulve belicue the wants ernment,

Tit. 3. Gage \& Co's. flew (5ymational ©ullorls.

EXAMINATION SERIES.

Canadian History.

by James L. Hughes, Inspector of Puhlic Schools, Toronto. Price,

history talgit by topical method.

A PRIMER IN CANADIAN IUSTURY, FOR SCllOOLS AND STUDENTS PRERARING FOR EX.MMINATIONS.

1. The history is divided into periods in accordance with the great national changes that have taken place.
2. The history of each period is given topically instend of in chronolog. ical order.
3. Examination questions are given at the end of each ehapter.
4. Examination papers, selected from the otlicial examinations of the different provinees, are given in the Appendix.
5. Student's review outlines, to enable a student to thoroughly test his own progress, are inserted at the end of each ehapter.
6. Special attention is paid to the educational, social and commercial progress of the country.
7. Constitutional growth is treated in a brief but comprehensive exercise.

4T3 By the aid of this work students can prepare and review for exam. inations in Canadian History more quickly than by the use of any other work.

Epoch Primer of English History.

by Rev. m. Creigutur, M. A., Late Fellow and Tutor of Merton College, Oxford.
Authorized by the Education Department for use in Public Schools, and for admission to the High Sehools of Outario.

Its adaptability to Ptiblic School use over all other Sehool IIstories will be shown by the fact that-

In a brief compass of one hundred and eighty pages it covers all the work required for pupils preparing for entrance to High Schools.

The price is less than one-half that of the other authorized histories.
In using the other Histories, pupils are compelled to read nearly three times as much in order to secure the same resilts.

Creighton's Epoch Primer has been adopted by the Toronto School Board, and many of the principal Public Schools in Ontario.

Authorized for use in the Schools of Ontario.

The Epoch Primer of English History.

By Rev M. Creigiron, M. A., Late Fellow and Tutor of Merton College, Oxford
Sixth Edition, - - . - Price, 3C Cents.
Most thorough.
Anerdera Jorrnaf.
This volume, taken with the eight small volumes containing the accounts of the different epochs, presents what may be regarded as the most thorough course of elementary English History ever published.
What was needed.
Tobgnto I ally Gigbe.
It is just such a manual as is needed bup public school pupils who are groing up for a Iligh School cours.
Used in separate schools.
M. Starford. Priest.

We are using this Ilistory in our Consent and Scparate Schools in Lindsay.
Very concise.
hamilon Times.
A very concise little book that should he used in the Schools. In its pares will be fonnd incidents of English History from A. D. 43 to 1870, in' teresting alike to young and old.

A favorite.

London Aderrtiser.
The book will jrove a favorite with teachers preparing jupils for the entrance examinations to the High Schools.

Very attractive.
British Whag, Kingston.
This little book, of one hundred and forty pares, presents history in a very attractive shaje.

Wisely arranged.

\qquad
Canada Presbyterian.
Th epoch chosen for the division of English Ilistory are well marked -hot mere artificial milestones, arbitrarily ereeted by the author, but reat natural landmarks, consisting of great and important events or remarkanhe changes.

Interesting.

Yarmotti Triblere, Nuca Scotia.
With a perfect freedom from all looseness of style the interest is so well snstained throurhourt the narrative that those who commence to read it will find it diffente to leave of with its perusal incomptete.

The special value of this historical suthine is that i_{i} gives the reader a comprehensive view of the course of memorable events and epochs,

THE BEST ELEMENTARY TEXT-BOOK OF TIIE YEAR.

Gage's Practical Speller.

a manual of sirelling and dictation.
Pl se,
30 Cents. Sixty copies ordered.

Monst Forest adyocate.
After careful inspect on we unhesitatingly pronounce it the best spelling book ever in use in our public schools. The Practical Speller secures an easy access to its contents by the very systematic arrangements of the words in tapical classes; a permanent impression on the memory by the frequent review of difficult words; and a saving of time and effort by the selection of only such wordis as are ditlicult and of common oceurrence. Mr. Reid, II. S. Master heartily recommends the work, and ordered some sisty copies. It is a book that should be on every business man's table as well as in the school room.

Is a necessity.

Presil, Witiness, halifax.
We have already had repeated occasion to speak highly of the Educational Series of whieh this book is one. The "Speller" is a neeessity; and we have seen no book which we can recommend more heartily than the one before us.

Good print.
Bowmanville Obskrybr.
The "Practical Speller" is a eredit to the publishers in its general get up, classification of sulbjects, and clearness of treatment. The child who uses this book will not have damared eyesight tirongh bad print.

What it is.
Stratiroy Age.
It is a series of graded lessons, containing the words in general use, with abbreviations, etc.; words of similar pronmeiation and different spelling a collection of the most difticult words in the language, and a number of literary selections which may be used for dictation lessons, and commit* ced to memory by the pupils.
\qquad
Every teaciler sinould introduce it.
Canadian Statesman.
It is fon improvement on the old spelling book. Every teacher should introduce it into his classes

The best yet seen.
It is away ahead of any"speller"that we have heretofore seen. Onr public sehools want a grood spelhing book. The publication before us is the best we have vet seen.

Gage's Practical Speller.

A new Mannal of Spelling and Dietation.
Price, 30 Cents

PROMINENT FEATURES:

The book is divided into five parts as follows:
PART I.
Contains the words in common use in daily life together with abbreviations, forms, etc. If a boy has to leave sehool early, he should at least know how to spel the words of common occurrence in commection with his business.

PART II.
Gives words liable to be spelled incorrectly because the same sounds are spelled in various ways in them.

PART 111
Contains words pronounced alike but spelled differently with different meanings.

PART IV.
Contains a large collection of the most difficult words in common use, and is intended to supply material for a general review, and for spelling matches and tests.

PART V.
Contains literary selections whieh are intended to le memorized and re. cited as well as used for dictation lessons and lessons in morals.

DICTATION LESSONS.
All the lessons are suitable for dictation lessons on the slate or in dictation book.

RFviews.
These will b ; found throughout the book.
An excellent compendium. Alex. McRae, Prin. Aead'y, Digby,N.S.
I regard it as a necessity and an excellent compendium of the subject of which it treats. Its natural and judicious arrangement well accords with its title. Pupils instructed in its principles, under the eare of diligent teachers, cannot fail to bccome correct spellers. It great value will, doubtless, secure for it a wide circulation. I have seen no book on the subject which I can more cordially recommend than "The Practical Speller."

Supply a want long felt. John Johnston, I.P.S., Belleville.

The hints for teaching spelling are excellent. I have shown it to a number of experienced tenchers, and they all think it is the best and most praetical work on spelling and dictation ever presented to the public. It will supply a want long felt by teachers.

Admirably adapted. Colin W. Roscoe, I.P.S., Wolfville, N. S.
The arrangement and grading of the different classes of words I regard as excellent. Much benefit must arise from committing to memory the "Literary Selections." The work is admirably adapted to our public schools, and I shall recommend it as the best I have scen.

TEXT BOOKS ON ENGLISH GRAMMAR.
by mason and macmillan.

Revised Ed. Miller's Language Lessons.

Adapted as an introductory Text Book to Mason's Grammar. By J. A. Macmillan, B. A. It contains the Examination Papers for admission to IIigh Schools, and teaches Grammar and Composition simultaneously. Sixth Edition, 200th thousand.

Price,
25 Cents.

Mason's Outlines of English Grammar.

Authorized for use in Schools. Suitable for Junior Classes.
Price,
45 Cents.

Mason's Shorter English Grammar.

New and improved edition. With copious and carefully graded exercises, 243 pages.
Price,
60 Dents.

Mason's Advanced Grammar.

Authorized for use in the Schools of Ontario. Including the principles of Grammatical Analysis. By C. l'. Masos, B. A., F. C. P., Fellow of University College, London. Enlarged and thoroughly revised with Examin. ation Papers added by W. Houston, M. A

Price,

75 Cents.
"I asked a Grammar School Inspector in the old country to send me the best grammar published there. He immediately sent Mason's. The chapters on the analysis of difficult sentences is of itself sufficient to place the work far beyond any EnglishGrammar before the Canadian public."-Alex. Sims, M. A., II. M. II. S., Oakville.

English Grammar Exercises.

By C. I' Mason. Reprinted from Common School Edition. Price,

30 Cents.

WORKS FOR TEACHERS AND STUDENTS, BY JAS. L. HUGIES.
Examination Primer in Canadian Histury.
On the Topical Methor. By Jas. L. Huants, Inspector of Schools, To ronto. A Primer for Students preparing for Examination. Price, $25 c$.

Mistakes in Teaching.

by Jas. Lavomin Huanes. Sccond edition.
Price, 50c.
ADOPTED BY STATG UNIVERBITY OF 10 WA , AS AN ELEMENTARY wORK FOR USE OF TEACIIERS.

This work discusses in a terse manner over one hundren of the mistakes commonly made by untrained or inexperienced Teachers. It is designed to warin young Teachers of the errors they are liable to make, ano to help the older members of the profession to discard whatever methods or habits may be preventing their higher success.

The nnistakes are arranged under the following heads:

1. Mistakes in Management. 2. Mistakes in Discipline. 3. Mistakes in Methods. 4. Mistakes in Manner.

How to Secure and Retain Attention.
 By Jas. Lavghin Hughes. Price, 25 Cents.

Comprising Kinds of Attention. Characteristics of Positive Attention. Characteristics of The Teacher. How to Control a Class. Developing Men tal Activity. Cultivation of the Senses.
(From The Schooh and University Magazine, London, Eng.)
"Replete with valuable hints and practical suggestions which are evidently the result of wide experience in the scholastic profession."

Manual of Drill and Calisthenics for use in Schools.

By J. L. Hugnes, Public School Inspector, Toronto, Graluate of Military School, H. M. 29th Regiment.

Tho work contains: The Squad Drill prescribed for Public Schoo's in Ontario, with full and explicit directions for teaching it. Free Gymnastic Exercises, carefully selected from the best German and Amrrican systems, and arranged in proper classes. German Calisthenic Exercis as, as tanght by the late Colonel Goodwin in Toronto Normal School, and in England. Several of the best Kindergarten Games, and a few choics Exereise songs. The instructions throughout the book are divested, as $f_{i} r$ as possible, of unnecessary technicalities.
" A most valuable book for every teacher, particularly in country places. It embraces all that a school teacher should teach his pipils on this subject. Any teacher can use the eaky drill lessons, and by doing so he will be conferring a henefit on his country."-C. Ranchafre Ieannabr, Major First Life Guards, Deill Instructor Normal and Model Schools, Toronto.

new englisil classics for intermediate examinations. Goldsmith's Deserted Village, Cowper's Task, and Addison's Sir Roger De Coverley, in one Vol.,
Asprescribed for the University Matriculation, Second Class 'reachers' and Intermediate Examinations, with Notes by John Miflar, M. A., Head Master, Collegiate Institute, St. Thomas.

special features of the work.

I.-An Introduction, embracing Definitions of Literary Terms, Classifications of Prose and Poetry, Figures of Speech, Qontemporary Writers (with their works) of Addison, Goidsmith and Cowper.
N.-Lives of Goldsmith, Cowper and Adiuison.
III.-Chapters on (1) The Development of English Poetry, (2) The Rise of Periodical Literature, (3) Literary CLIFacter of Goldsmith, (4) of Cowper, (5) of Addison.
IV.-Appropriato selections from Standard Criticisms on the writings of Goldsmith, Cowper and Addison.
V.-Copious Explanatory Notes (Grammatical, Historical, Biographical, de.) on The Deserted Village, The Task, and Sir Roger Be Coverley, with numerous references to Mason's Grammar.

The Deserted Village, The Task, and Addison's Sir Roger De Coverley.

In one volume. Interleaved. With remarks on Analysis of Sentences ; Exercises in Parsing; Notes Critical, Explanatory and Grammatical ; and Lives of the Authors. By Walter MeLeod, F.R.G.S., F.C.P., Francis Storr, B. A., and Rev. Chas. Pelham Mulvany, M. A.

Price, 60 Cents.

The Deserted Village and the Task.

In one volume, interleaved. By McLeod \& Storr. Price, 50 Cents.

Addison's Sir Roger De Coverley.

With Sketch of Life and Notes, by Rev. Chas. Pelhan Mulvany. 4th Edi tlon.

Price, 12 Cents-

Marmion.

With Introluction, Notes, Maps and Glossary, Interleaved. By Edwarl E. Morris, Lincoln College, Oxford. Price, 00 Cent:

The Canada School Journal

ilas rechived an honorable mention at paris exilibition, 1878 Adopted by nearly every County in Canada.
Recommended by the Minister of Education, Ontario.
Recommended by the Council of Public Instruction, Quebec.
Recommended by Chief Supt. of Education, New Brunswiek.
Recommended by Chicf Supt. of Education, Nova Scotia.
Recommended by Chief Supt. of Education, British Columbia
Recommended ly Chief Supt. of Education, Manitoha.
it is Edi'red by
A Conmitiee of some of the Leading Educationists in Ontario, assistea by able Provincial Editors in the Provinces of Qucbec, Nova Scotia, New Brunswick, Prince Edward Island, Manitoba, and British Columbia, thus having each section of the Dominion fully represented.
contains twenty-four pages of reading matter.
Live Editorials ; Contributions on important Educational topics; Sclec-tions-Readings for the School Room ; and Notes and News from each Province.

Practical Departmext will always contain useful hints on methods of teaching different subjects.

Mathenatical Department gives solutions to difficult problems also on Examination Papers.

Official، Department contains sucb regulations as may be issued from time to time.

Subscription, $\$ 1.00$ per annum, strictly in advance.
Read tif Followina Letter from Join Greenleaf Winttier, the Famous Anerican Poet.
I have also received a No. of the "Canada School Journal," which seems to me the brightest and most readable of Educational Magazines. I am very truly thy friend, John Greenleaf Whitti/r.

A. Club of 1,000 Subscribers from Nova Scotia.

(Copy)
Edecation Office, Malifax, N. S., Nov. 17, "i878. Messis. Adam Miller \& Co., Toronto, Ont.

Dear Sirs,-In order to meet the wishes of our teachess in various parts of the Province, and to secure for them the advantare of your excellent periodical, I hereby sulscribe in their lochalf for one thousand $(1,000)$ eopies at elub rates mentioned in your recent estecmed favor. Subscriptions wil ${ }_{l}$ begin with January issue, and lists will be forwarded to your office in a. few days.

Yours truly,
Dayid Allison, Chief Supt. of Education.
Address, W. J. GAGE \& CO., Toronto, Canada.

1. hame Gitiol
2. Shatararmí. Anorndula,
b-Shata momer cheir boinlais
3. Gal- chif brasches inciorth
of the wntide o unist Cimesiea
P- Late" wownt? Done al wort
Bovilas To exdrád the of a monomal (one terin) divide its indeysly?
(1) $a^{m} \times a^{n}=a^{m+n}$
(II) $a^{m} \div a^{x}=a^{m=n}$
$(\pi)(0)^{n}=k^{m m}$
7 actois asethoic which compose a numbes.
terms of number which wherinadted löychas proctuce linül numbere B lerins Inollynomel Lrynomal lally numbal,

The Canada School Journal

HAS RECEIVED

An Honorable Mention at Paris Exhibition, 1878.
Recommended by the Minister of Education, Ontario. Rec.mmended by the Council of Public Instruction, Quebec. Recommended by Chief Supt. of Education, N. Brunswick. Recommended by Chief Supt. of Education, Nora Scotia. Recommended by Chief Supt. of Education, B Columbia. Recommended by Chief Supt. of Education, Manitoba.

S EDITED BY
A Committe $r e$ of the Leading Educationists in Ontario, assisted Provincial Editors in the Provinces of Quebec, Nova votia New Brunswick, Prince Edward Island, Manitoba, and Britiss Columbia, thus having each section of the Dominion fully represented,

Contains Twenty-four pages of Reading Matter; Live Editorials, Contributions in important Educational topics: Sclections-Readings for the School Room; and Notes and News from each Province.

PRACTICAL DEPARTMENT will always contain useful hints on methods of teaching different subjects.

MATHEMATICAL DEPARTMENT gives solutions to difficult problems also on Examination Papers.

OFFICIAL DEPARTMENT contains such regulations as may be issued from time to time.

Subscription, \$1.00 per annum, strictly in advance.
A Club of 1,000 Subscriber's from Nova Scotia. (Cojpy) Education Office, Malifax, N.S., Nov. 16, 1878. Messrs. Adam Miller \& Co., Toronto, Ont.

Dear Sirs,--In order to mect the wishes of our teachers in various parts of the Province, and to secure for them the advantage of your excellent periodical, I hereby subscribe in their behalf for one thousand (1,000) copies at club rates mentioned in your recent estemed favor. Subscriptions will begin with January issue, and lists will be forwarded to your office in a few days. Yours truly,

DAVID ALLISON, Chief Supt. of Education.
Read extract from letter from the fomous American Poct, Fohn Greenleaf Whittier:-

I have also received a number of the "Canada School Journal," which seem to me the brightest and most readable of Educational Magazines. I am, ve. ${ }_{j}$ truly, thy friend,

JOHN G. WHITTIER.

$4 a 1$

78.

rio.
1, Quebec. unswick. Scotia. lumbia. oba.
tionists in Provinces e Edward wing each
ter; Live nal topics Notes and
ntain use-
olutions to ulations as
ance.
tia.
16, 1878.
ar teachers r them the ubscribe in rates menptions will ied to your
ducation.
Poet, Fohn
chool Jourble of EduITTIER.

NADA.

Gace's Echool

FOR THE USE OF INTERMEDIATE STUDENTS AND TEACHERS

A magazine for the School Room and Shatritoptginiug Exaniqs. tion Papers on the subjects taugl.t in the Ryaneane qlubid statrols, and oisigned for the use of Teachers in condurimb Hrantryicminations, and in the daily work of t : e School Room. and for the use of Students preparing for the Intermediate and all Oflcial Examinations.
In addition to Original Papers preparea by Specialists on the various subjects. valuable selections will be made from the University, High School, an:d Public School Examinatious in Europe and America, as well as from Normal School and other Examinations for Te whers, both Professional and Non-professional.

TABUTD I6TEI OF EAOFI MUNTEE.

Subsoription \$i.00 per year-payable in advance.
"Am much pleased with the plan, arrangement, and matter of Gage's School Examiner, and trust it will nhtain the gonerous patronage or all educationists. - Bro. Halward. Principal rihristian Brothers' School, Kingston.
"It is just what we wanted. I have no doubt of is complete suc. cens."-S. Burwash, Colborne.
"I think it an excellent periodical, especialiy for teachers who hold Monthly Examinations."-L. Gilchrist, Woodville.
" 1 find lt a very useful journal in school work, and canno- afford to be without it." W. W. Rutherfurd, B.A., Port Rowan.
"It is attractive in form, neat and handsome in appearance, and ${ }_{0}$ in my humole opinion, contalns more solid and useful matter than any similar jourual in the United States."-Georee Harper, Anciorage, Wis., U.S.

Indeed the solution of $\mathrm{N} n .2$ Arithmetic, in the April numher, is alone wurth the subscription price.-D. R. Boyle, West Arichat, C.B.
"It appears to be an exc \rightarrow lient publication for the teacher; one of its distinctive features being sets of Examination Papers ;-Picton Times.

The different departments of Elementary Mathematics, English Grammar, Literature and Science, form an important featuie. Wo have no esitation in recommending it to teachers and others. - Barrie Gazette.
wy
The number before us is certainly rich in informati aind interesting articles, problems, etc.-East Kent Plain Dealer.

Address W. J GAGA \& CO., TORONTO, CANADA.

[^0]: * Note.-The meaning of Subtraction is here extended so that the result in Art. 18, Case iv. may be true when b is less than c.

[^1]: * Anothe [s.a.]

[^2]: * Another proof of this Theorem may he seen in Art. 475.

 โs.A. \rceil

