FROM THE TRANSACTIONS OF THE ROYAL SOCIETY OF CANADA THIRD SERIES-1912

v. W. O. LBRARTM

THE SOLAR ROTATION

BY
J. S. PLASKETT, B.A., F.R.S.C., and R. E. DbLURY, M.A., Ph.D.

OTTAWA
PRINTED FOR THE ROYAL SOCIETY OF CANADA 1912

The Solar Rotation.

By J. S. Plaskett, B.A., F.R.S.C., and R. E. DeLury, M.A., Ph.D.

(Read May 16, 1912)

General.

1. A paper published by the authors in last year's Transactions bearing a similar title gave a brief historical summary of the previous work in the determination of the Solar Rotation by the Doppler displacement of the spectral lines at opposite limbs of the sun. It described the instruments and methods employed in obtaining the spectra, the difficulties encountered, and the precautions required for accurate work. It also gave some preliminary measures of the velocity at the solar equator, but refrained from discussing, except very slightly, these results. The present paper contains the results of the measures of the three series of rotation plates made during the year 1911, and a discussion of the various points of interest and value arising from these results. It has not been thought necessary to again describe the instruments and methods as reference can be made to the previous paper.* It may, however, be well to state here that, although the determination of the rotation of the sun by the spectrographic method was, as early as 1905, planned as one of the investigations to be undertaken at the Dominion Observatory, delays in the construction of the shelter for the coelestat telescope and especially the long delay in obtaining a suitable grating prevented much work being done until last year.
2. The whole plan was placed upon a much more definite basis at the Mount Wilson meeting of the International Union for Co-operation in Solar Research in 1910, where the regions of spectrum to be investigated were allotted to the different members of the Rotation Committee, a general region to be observed by all was selected (centre at $\lambda 4250$) and the various questions to be determined were laid down. It may be useful to summarize here the principal points.
(A) The region to be observed at the Dominion Observatory is in the yellow green, $\lambda 5500-\boldsymbol{\lambda} 5700$.
(B) The general region to be observed by all is from $\lambda 4220$ to $\lambda 4280$ in the violet.

[^0][PLASKETT-
(C) The latitudes to be observed in the special region are $-0^{\circ}, 15^{\circ}$, $30^{\circ}, 45^{\circ}, 60^{\circ}, 75^{\circ}$ and if possible 80° and 85°. The latitudes to be observed in the general region are- $0^{\circ}, 30^{\circ}$ and 60°.
(D) 15 or 20 lines are to be measured in the special regions, these to be selected to include as many elements as possible especially those of high or low atomic weight; about 10 lines, selected by the Secretary of the Committee after consultation, are to be measured in the general region.
3. The principal objects of a study of the sun's rotation by the spectroscopic method are:-
(a) The accurate determination of the velocity of rotation at various latitudes and the derivation of a formula representing the variation of velocity with latitude.
(b) A definite conclusion in regard to the existence of variations in the rate of rotation.
(c) The investigation of the rate of rotation, as shown by the lines of different elements and of the are and enhanced lines of the same element, to determine whether either the absolute rate of rotation or the law of variation with latitude differs for different elements.
(d) The detection of possible systematic proper motions or drifts in the sun's reversing layer.
4. In accordance with the above plan three series of plates were made during 1911, two in the special region at $\lambda 5600$ and one in the general region at $\lambda 4250$. With a solar diameter of, on the average, 227 mm ., the distance of the observed points from the limb in the first series, at $\lambda 5600$, varied from $3.0-4.5 \mathrm{~mm}$.; in the second series, also at $\lambda 5600$, was nearly 10 mm .; and in the third series at $\lambda 4250$ was about 6.5 mm . The distance was varied in order to see if any difference in the rotational value was obtained, and also to see if much change in the definition occurred as the distance from the limb was increased. As will be seen later, the difference, if any, is slight both in the velocity and the definition. Owing to the considerably larger corrections required to reduce the measured to the actual values of the rotation as the distance from the limb increases, it is not deemed desirable to, in future, make the spectra from points at a greater distance than 5 mm . from the limb.

Precautions.

5. In all these plates particular care was taken to guard against every known cause of instrumental and other error tending to introduce spurious displacements of the lines, and the experience of one of the writers in stellar radial velocity determinations was of great value in this similar work. Temperature changes and flexure, the chief
difficultie here for, limbs, tes can be r exposure. cautions i
(a) 7
focus of t
(b) $]$
sun must
(c) $]$
sky free f
(d)
the desire
6. I
which ms are very as a whol either a, other sho to get or and unifc limbs, the possible. both by t of extra-fs and in th mm . long inclined a normal to before an one of ea This was of the illu front sur: central fos ing screw: position o exposures ably large illuminati to the hea the heatin
difficulties in stellar spectroscopy, are not however of much moment here for, owing to the short and simultaneous exposures on opposite limbs, temperature changes will have no appreciable effect, and there can be no flexure when the spectrograph is stationary during the exposure. It may not be amiss to repeat here the four essential precautions for accurate observations given in the previous paper.
(a) The emulsion on the photographic plate must be exactly in the focus of the spectrum.
(b) The illumination of the grating from the opposite limbs of the sun must be similar and uniform.
(c) The solar definition must be good, the image steady, and the sky free from haze.
(d) Care must be taken that the reflecting prisms receive light from the desired latitudes.
7. Precautions a and b, conditions inside the spectrograph, to which may be added the avoidance of undue heating of the slit jaws, are very necessary to prevent systematic displacements of the lines as a whole introducing corresponding errors in the velocity values. If either a or b are exactly fulfilled an approximate realization of the other should be sufficient; but, as it is practically impossible either to get or keep the plate at the exact focus or to have absolutely equal and uniform illumination of the lens and grating from the opposite limbs, the only safe procedure is to fulfil both conditions as closely as possible. Consequently the plate focus was determined frequently both by the definition test and, as a check, by the Hartmann method of extra-focal exposures. It was found that the field both in the $\boldsymbol{\lambda} 5600$ and in the $\lambda 4250$ region was curved, concave to the lens, about 2.5 mm . longer at the centre than at the ends of a plate 30 cm . long and inclined about 1°, in opposite directions for the two regions, to the normal to the axis. The illumination of lens and grating was tested before and after each plate, which consisted usually of seven spectra one of each of the six latitudes from 0° to 75°, and one of the pole. This was done by opening the slit wide enough to allow a visible image of the illuminated concave mirror to be projected on the diaphragmed front surface of the collimating objective. If this image was not central for both systems of prisms it was easily made so by the adjusting screws provided. It was found frequently that a slight change in position of the overlapping images occurred during the time the seven exposures were made, but never sufficient (since the image is considerably larger than the used portion of the grating) to prevent uniform illumination. This change of adjustment of the prisms must be due to the heating produced by the sun's rays and to minimise this effect, the heating of the slit jaws, and the distortion of the coelostat, secondary
[PLASKETT
and concave mirrors, the coelostat mirror, and consequently the whole system is kept shaded by a blind except during the actual exposures, which occupy from 30 to 60 seconds each.:
8. Precautions c and d, conditions external to the spectrograph, were always carefully looked after. The solar definition during the summer months, on the clear and bright days which only were employed, is usually fairly good and, as undue heating of the mirrors was prevented by keeping them shaded for suitable intervals between the exposures, the definition did not much deteriorate. It is essential that there be fair definition to ensure that the light reaching the 'slit may be confined to a small region around the desired portion on the sun's disc. Great care was taken in the relative adjustment of guide plate and prisms, so that when the image was kept central and the spectrograph rotated to the desired and previously calculated position angle from the E. W. line (determined by the drift of the solar image when the coelostat clock was stopped), the positions of the points on the disc from which the light was taken were accurately known. This is rendered much easier and more certain by the large size of the solar image (about 227 mm .), and consequently it is improbable that any errors can have arisen either in this regard or due to poor definition. The only effect of the latter would be to introduce a small amount of light at slightly higher and lower latitudes or at greater and less distances from the limb, and the effects thereby produced would practically compensate one another. The necessity of observing only when the sky is free from haze will be evident when it is realized that the effect of the superposed sky spectrum, which is a blend of the spectrum from the whole disc of the sun is, to diminish the displacement and give too low a value of the velocity. DeLury made some experiments on this effect, and found a measurable influence on the equatorial displacement only when the ratio of intensity of sky spectrum to limb spectrum reached about 1 to 20. As on a clear day this ratio is 1 to 100 or less it is evident that no error can thereby be introduced.

Observational Data.

8. The plates were made by the authors jointly, as to make the focus and illumination tests and to guide the sun's image carefully can be much more easily and satisfactorily done by two than one. The dates of the plates used will be given in the tables of measures to follow to save space.

As stated al ove, in the $\lambda 5600$ region, rotation spectra of each of the six latitudes to be observed, $0^{\circ}, 15^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}, 75^{\circ}$, with one of the pole, 90°,for check purposes were made on each plate, but in the higher latitudes 80° and 85°, three of each with one of the pole were
made or latitudes of the p pole tha) some ins other lat

9.

the Reps those of Machine at $\lambda 5600$ constant: line in tl measuren remeasur also, as t and the I

No.	W LeI
1	5501
2	551
3	551
4	5524
5	554
6	5564
7	5564
8	5574
9	5584
10	5594

No.	W Le1
1	$419!$
2	4197
3	4216
4	4220
5	$422!$
6	4232
7	4241
8	$424 e^{2}$

made on each plate. In the $\lambda 4250$ region, two spectra each of the latitudes $0^{\circ}, 30^{\circ}, 60^{\circ}$, and one at 90° were made on each plate. If any of the plates showed a greater displacement in the spectrum at the pole than about .03 km ., they were rejected on the assumption that some instrumental displacement had occurred, and that possibly the other latitudes were affected.
9. The plates of series I and III were measured by Plaskett on the Repsold Measuring Engine with an eyepiece micrometer, while those of series II were measured by DeLury on the Toepfer Measuring Machine with 300 mm . screw. The lines measured in series I and II at $\lambda 5600$ and in series III at $\lambda 4250$ are given with intensities, velocity, constants, etc., in the following tables. Four settings are made on the line in the centre strip and two each on the outside strips, and after measurement of all the lines the plate is reversed on the machine and remeasured. This diminishes the danger of systematic errors and also, as the lines are viewed in the opposite direction in the two cases and the number of settings doubled, the accidental errors.

Table I-Lines in 2.5600 Region

No.	Wave Length	Ele.	Int.	Velocity Constant	No.	Wave Length	Ele.	Int.	Velocity Constant
1	5506-095	Mn	1	$19 \cdot 336$	11	5598.524	Fe	1	18.801
2	5514-563	Ti	2	$19 \cdot 289$	12	$5601 \cdot 505$	Ca	3	18.788
3	5514-753	Ti	2	19.287	13	5624-769	Fe	3	18.653
4	$5528 \cdot 641$	Mg	8	$19 \cdot 207$	14	$5638 \cdot 488$	Fe	3	18.575
5	5544-157	Fe	2	$19 \cdot 118$	15	5658.097	Y	2	18.461
6	5560-434	Fe	2	$19 \cdot 024$	16	5682-869	Na	5	18.320
7	5562.933	$\mathrm{Fe}^{\text {er }}$	2	$19 \cdot 010$	17	5684.710	Si	3	$18 \cdot 309$
8	5578.946	Ni	1	18.919	18	$5686 \cdot 757$	Fe	3	18.297
9 10	$5582 \cdot 198$ $5590 \cdot 343$	$\mathrm{Ca}^{\text {ca }}$	4	18.899 18.852	19	$5688 \cdot 436$	Na	6	18.288
10	$5590 \cdot 343$	Ca	3	18.852					

Table II-Lines in 24250 Reaton

No.	Wave Length	Ele.	Int.	Velocity Constant	No.	Wave Length	Ele.	Int.	Velocity Constant
1	$4196 \cdot 699$	La	2	$26 \cdot 906$	9	$4257 \cdot 815$	Mn	2	$26 \cdot 400$
2	$4197 \cdot 257$	C	2	$26 \cdot 902$	10	$4258 \cdot 477$	Fe	2	$26 \cdot 394$
3	$4216 \cdot 136$	C	1	$26 \cdot 745$	11	$4266 \cdot 081$	Mn	2	$26 \cdot 331$
4	4220.509	Fe	3	$26 \cdot 710$	12	$4268 \cdot 915$	Fe	2	$26 \cdot 296$
5	$4225 \cdot 619$	Fe	3	$26 \cdot 666$	13	$4276 \cdot 836$	Zr	2	$26 \cdot 243$
6	$4232 \cdot 887$	Fe	2	$26 \cdot 606$	14	$4290 \cdot 377$	Ti	2	$26 \cdot 133$
7	$4241 \cdot 285$	$\mathrm{Fe}-\mathrm{Zr}$	2	$26 \cdot 502$	15	$4291 \cdot 630$	Fe	2	$26 \cdot 122$
8	$4246 \cdot 996$	Se	5	$26 \cdot 490$					

The lines in the yellow green region were selected to include as many elements as possible among the limited number of measurable lines in the region. Some, such as the lines of $\mathrm{Mn}, \mathrm{Ti}, \mathrm{Si}$, are not of very good quality for measurement, but were included in order to give evidence in regard to question c., Section 3 above. In the violet region No. 4 to No. 13 inclusive, are the ten lines selected to be measured by all observatories co-operating in this work and the other five are lines which Adams and Lasby* found gave systematically higher or lower values of the rotation than the general reversing layer. The column "Velocity Constant" gives the half value of the multiplier required to reduce the millimetre displacement to kilometres per second, and will evidently give the observed velocity of the sun's limb. These multipliers are readily determined, in the well known way, when the linear dispersion at the region is known. As the grating gives practically a normal spectrum over the narrow limits used, it is sufficient to determine this dispersion, which is about $0.70^{\circ} \AA$. per millimetre at $\lambda 5600$ and $0.75 \AA$ at X 4250 , for five or six lines over the region used. When these values and the multipliers are plotted on cross section paper they are found to lie within the errors of observation on a straight line, and the constants for all the lines measured can be at once read off.

Reduction of Measures.

10. The observed or measured velocities are the radial components of the actual velocities at certain points on the sun's disc whose latitudes can be readily computed, and it is hence necessary to know the angle of inclination between the radius vector and the direction of motion at the point in order to apply the necessary corrections, the further correction for the motion of the earth in its orbit being made to obtain the sidereal rate. In the early observations, by Dunér and Halm, of the rotation of the sun by the spectroscopic method, the measurements were made at the limb and the computations and corrections were straightforward. When, however, as in Adams' work and our own the observed points are some distance within the limb, the matter is not quite so simple. Adams' method of reduction** depends upon projecting the observed points radially to the limb and obtaining the corrections by Dunér's methods and tables, but this assumes the rotation of the sun to be that of a solid body, which is of course not the case. A further correction is therefore necessary for the difference in angular velocity at the observed and computed points.

[^1][PLASKET]
Nearly to the 1 apprecia $60^{\circ}, 0.01$ rection, observat greater : second. served ts tion to taining while thr sidereal clearly v formulæ
11.
*At t appeared I our compu found e con-

1 com's disc sary to a direcections, t being , Dunér nethod, ons and Adams' hin the action** mb and out this ich is of y for the 1 points.

Nearly all of Adams' plates were made with the observed points close to the limb, and this final correction is in the majority of cases inappreciable and only reaches in a few plates, around latitudes 45° and $60^{\circ}, 0.01 \mathrm{~km}$. per second. Nevertheless, as it is always in the same direction, it should be applied. This is especially necessary in our own observations where the distance from the sun's limb is frequently much greater and where the value of the correction may reach 0.03 km . per second. Two methods have been followed here in reducing the observed to the actual velocity. The first consists in applying a correction to Adams' method for the change in angular velocity, thus obtaining the sidereal rate at the radially projected point on the limb, while the second determines the corrections to be applied to obtain the sidereal velocity at the observed points. In order to make the methods clearly understood it will be desirable to give a brief summary of the formulæ used.

Let $\mathrm{R}=$ Radius of sun's dise.
$\mathrm{r}=$ Distance of observed points from centre of disc.
$\chi=$ Position angle of observed point.
$\varphi=$ Heliographic latitude of observed point.
$\lambda=$ Difference of heliographic longitude between the observed point and the earth.
$\mathrm{D}=$ Heliographic latitude of the earth.
$i=$ Inclination of sun's equator to ecliptic $=7^{\circ} 15^{\prime}$.
$\Omega=$ Longitude of ascending node of sun's equator on ecliptic $=74^{\circ} 31^{\prime}$.*
$\odot=$ Longitude of the sun.
$\rho=$ Angular distance of observed point from centre of apparent dise as viewed from sun's centre.
$\eta=$ Angle between direction of motion and line of sight.
$s=$ Sidereal correction at limb (Dunér's Tables).
$v=$ Measured velocity (linear).
$\mathrm{V}=$ Corrected velocity.
$\hat{\xi}=$ Daily angular sidereal velocity.
11. First Method-Projection to Limb.

Latitude at limb. $\quad \operatorname{Sin} \varphi=\cos \chi \sin \mathrm{D}$
Angle at limb

$$
\sin \eta=\frac{\sin \hat{i} \sin (\odot-\Omega)}{\cos \varphi}
$$

[^2]\[

$$
\begin{aligned}
& \text { Synodic radial Compt. at limb }=v \cdot \frac{\mathrm{R}}{\mathrm{r}} \\
& \text { Sidereal } \quad a \quad a=v \cdot \frac{\mathrm{R}}{\mathrm{r}}+s \\
& \text { Sidereal velocity of rotation } \mathrm{V}=\frac{\xi}{\xi^{\prime}-\left(v \cdot \frac{\mathrm{R}}{\mathrm{r}}+s\right) \text { see } \eta}
\end{aligned}
$$
\]

(c')
more sit with lat

It n mean latitude \dagger of the observed points φ_{1} and φ_{2} obtained from the second method

$$
\xi(\text { Adams })=11^{\circ} .04+3^{\circ} .5 \cos ^{2} \varphi
$$

12. Second Method-Corrections at observed points.
(a) Determine the heliographic latitudes φ_{1} and φ_{2} of the observed points by the Greenwich method

$$
\sin \varphi=\cos \rho \sin \mathrm{D}+\sin \rho \cos \mathrm{D} \cos \chi
$$

($\sin \rho$ and $\cos \rho$ obtained from De LaRue's tables argument $\frac{R}{r}$) also the differences of longitude λ_{1} and λ_{2}

$$
\sin \lambda=\sin \chi \sin \rho \sec \varphi
$$

(b) Determine the angles η_{1}, η_{2} at the two observed points

$$
\cos \eta=\cos \mathrm{D} \cos \left(\frac{\pi}{2}-\lambda\right)
$$

(c) Divide the total sidereal radial velocity into the two following parts proportional to the angular velocities at the latitudes φ_{1}, φ_{2} (obtained closely enough from Adams' formula $\xi=11^{\circ} .04+3^{\circ} .5 \cos ^{2} \varphi$)

$$
2\left(v+\frac{\mathrm{r}}{\mathrm{R}} s\right) \frac{\xi_{1}}{\xi_{1}+\hat{\xi}_{2}} \quad, \quad 2\left(v+\frac{\mathrm{r}}{\mathrm{R}} s\right) \frac{\xi_{2}}{\xi_{1}+\xi_{2}}
$$

(d) Sidereal Velocities of Rotation:-

$$
\begin{aligned}
& \mathrm{V}_{1}=2\left(v+\frac{\mathrm{r}}{\mathrm{R}} s\right) \frac{\xi_{1}}{\xi_{1}+\xi_{2}} \sec \eta_{1} \\
& \mathrm{~V}_{2}=2\left(v+\frac{\mathrm{r}}{\mathrm{R}} s\right) \frac{\xi_{2}}{\xi_{1}+\xi_{2}} \sec \eta_{2}
\end{aligned}
$$

For c and d may preferably be substituted the following practically identical but simpler method.

[^3](c') Obtain the ratio of V_{2} to V_{1} from the formula of Adams, or more simply from the curve representing the change of linear velocity with latitude.
(d^{\prime}) The final velocities V_{1} and V_{2} can then be obtained from the formula
$$
\mathrm{V}_{1} \cos \eta_{1}+\mathrm{V}_{2} \cos \eta_{2}=2\left(v+\frac{\mathrm{r}}{\mathrm{R}} s\right)
$$

It may be seen by comparing the residuals in Table IX, Section 19, that they are practically the same for the three reduced values of each observed value obtained by the two methods of reduction, and it is therefore immaterial so far as accuracy is concerned which is employed. Both have been carried through in this investigation for the sake of comparison and to determine which is the more suitable.

Summary of Measures.

13. It is impossible within the limits of this paper to give the separate measures for each spectrum, and so in the succeeding tables a summary of the measures and other necessary data are given. In series I the 19 lines given in the preceding tables were measured on 14 of the 19 plates. On the remaining 5 plates, 8 of the best defined lines only were measured. This number was reduced to diminish the great labor of measurement and because the measures of the 14 plates had shown that, as will be seen later, any differences in rotational value for different elements were accidental in character. Furthermore, even with the reduced number of lines, the probable error of a plate as determined from the internal agreement among the lines was on the average less than half the probable error obtained from the measures of different plates. In series II, however, owing to the much higher probable error of measurement all the lines were measured throughout and in series III also on account of the systematic differences previously found for the different lines by Adams.

In these summaries $\varphi_{1} \varphi_{2}$ and $V_{1} V_{2}$ represent as above the latitudes and velocities at the observed points on the dise of the sun, while φ and V are the latitudes and velocities at the points radially projected through the observed points to the limb.
[PLAskEtT-

Table III-Summary of Measures.
Series I-Measured by Plaskett $-\lambda 5600$. 0°

Plate	$\begin{gathered} \text { Date } \\ \text { G.M.T. } 1911 \end{gathered}$	Measured Velocity	1st Correction Method		2nd Correction Method			
			φ	V at φ	φ_{1}	φ_{2}	V_{1}	V_{2}
772a	June 15-22	1.812	$0^{\circ} 0^{\prime}$	1.991	$0^{\circ} \quad 15^{\prime}$	$0^{\circ} \quad 15^{\prime}$	1.990	1.990
777a	" 17.13	1.840	0	$2 \cdot 022$	0	018	2.025	2.025
7796	- 17.20	1.825	0	2.003	0	0	2.004	2.004
782a	" $19 \cdot 15$	1.854	0	2.031	0	$0 \quad 18$	$2 \cdot 030$	2.030
784 d	" $19 \cdot 20$	1.818	0	1.995	0	$0 \quad 20$	1.997	1.997
787 a	${ }^{4} \quad 20 \cdot 15$	1.848	0	$2 \cdot 026$	0	$\begin{array}{ll}0 & 22\end{array}$	2.028	2.028
789 g	$\begin{array}{ll}\text { a } & 21.30\end{array}$	1.824	$\begin{array}{ll}0 & 0\end{array}$	1.998	$\begin{array}{ll}0 & 23\end{array}$	0	1.999	1.999
7968	" 30.23	1.841	030	${ }_{2} 2.036$	1212	0	2.035	2.037
8043	July 8.15	1.833	0	${ }_{2} 2.030$	$\begin{array}{ll}0 & 57\end{array}$	$\begin{array}{ll}0 & 57\end{array}$	2.033	2.033
813 a	${ }^{4} \quad 20 \cdot 32$	1.858	0	$2 \cdot 058$	113	113	2.059	2.059
814 g	- $20 \cdot 35$	1.801	0	1.999	113	113	1.999	1.999
817 a	" 22.20	1.839	0	$2 \cdot 040$	120	113	2.042	2.042
819 a	a	1.809	0	$2 \cdot 009$	$\begin{array}{ll}1 & 22\end{array}$	$1 \begin{array}{ll}1 & 22\end{array}$	2.011	2.011
820 a	a	1.799	0	$2 \cdot 000$	$1 \begin{array}{ll}1 & 22\end{array}$	$1 \begin{array}{ll}1 & 22\end{array}$	2.002	2.002
821 a	" 27.22	1.806	0	$2 \cdot 007$	$1 \begin{array}{ll}1 & 22\end{array}$	$1 \begin{array}{ll}1 & 22\end{array}$	2.009	2.009
822 a	a 27.35	1.800		2.003	$1 \begin{array}{ll}1 & 24 \\ 1\end{array}$	1	$2 \cdot 005$	$2 \cdot 005$
826 a	Aug. 1.15	1.800	0	2.004	$\begin{array}{ll}1 & 30 \\ 1 & 20\end{array}$	$\begin{array}{ll}1 & 30 \\ 1 & 29\end{array}$	2.006	2.006
$827 a$ $831 a$	"$\quad 1.18$	1.815 1.840		2.019 2.045	1 29 1 32	$\begin{array}{ll} 1 & 29 \\ 1 & 25 \end{array}$	2.021 2.046	2.021 2.046
Means	(Linear)			2.017	1	$0 \quad 54$	2.018	$2 \cdot 018$
Means	(Angular)			$14 \cdot 32$			$14 \cdot 33$	$14 \cdot 33$

Probable Error Single Plate........ $= \pm .013 \mathrm{~km}$. per second Mean............ $= \pm .003 \mathrm{~km}$. per second

772e	June 15-22	1.680	15°	0^{\prime}	1.844	14°	52^{\prime}	14°	21^{\prime}	1.850	1.856
777e	17-13	1.732	15	0	1.901	14	54	14	16	1.905	1.912
779 c	" 17-20	1.718	15	0	1.891	14	56	14	19	1.892	1.898
782b	" $19 \cdot 15$	1.761	15	0	1.933	15	0	14	18	1.935	1.943
784b	" 19.20	1.672	15	0	1.841	15	0	14	18	1.842	1.850
787b	" 20.15	1.704	15	0	1.868	15	0	14	14	1.868	1.876
789b	$21 \cdot 30$	1.702	15	0	1.861	15	3	14	16	1.861	1.870
796b	$30 \cdot 23$	1.751	15	29	1.940	15	43	14	13	1.938	1.958
799b	July 4.17	1.709	14	58	1.902	15	20	13	33	1.901	1.923
804b	4 8.15	1.677	14	58	1.866	15	26	13	28	1.865	1.887
813b	$20 \cdot 32$	1.645	14	57	1.828	15	43	13	12	1.822	1.852
814b	$20 \cdot 35$	1.670	14	57	1.855	15	43	13	14	1.845	1.875
817 b	22.20	1.651	15	0	1.842	15	50	13	11	1.835	1.865
819b	$27 \cdot 15$	1.722	14	56	1.915	15	51	13	2	1.906	1.941
820 b	$27 \cdot 19$	1.702	14	56	1.896	15	52	13	1	1.887	1.922
821 b	$27 \cdot 22$	1.710	14	56	1.904	15	52	13	1	1.895	1.930
822b	27.35	1.760	14	56	1.953	15	52	12	59	1.941	1.977
826 b	Aug. 1.15	1.641	14	55	1.837	15	57	12	52	1.826	1.863
827 b	1.18	1.766	14	55	1.960	15	58	12	53	1.947	1.986
Means	(Linear)		15	0	1.886	15	28	13	37	1.882	1.907
Means	(Angular)				$13 \cdot 86$					13.86	13.93

Probable Error Single Plate
$= \pm .027$
Mean. $=$
. 006

	V_{2}
)	$1 \cdot 990$
,	$2 \cdot 025$
	2.004
)	2.030
	1.997
,	2.028
,	1.999
;	2.037
I	2.033
1	2.059
)	1.999
!	2.042
	2.011
$!$	2.002
1	$2 \cdot 009$
;	2.005
1	2.006
	2.021
1	2.046
\}	2.018
1	$14 \cdot 33$
cond cond	
15°	
)	1.856
;	1.912
!	1.898
5	1.943
?	1.850
3	1.876
1	1.870
3	1.958
1	1.923
;	1.887
	1.852
5	1.875
5	1.865
3	1.941
1	1.922
5	1.930
1	1.977
3	1.863
\dagger	1.986
2	1.907
3	13.93

Table III.-Summary of Measures.
Series I-Measured by Plaskett- $\lambda 5600$.

Plate	$\begin{gathered} \text { Date } \\ \text { G.M.T. } 1911 \end{gathered}$	Measured Velocity	1st Correction Method			2nd Correction Method					
					V at φ	φ		P		V_{1}	V_{2}
772d	June 15-22	1.493	30°	0^{\prime}	1.633	29°	26^{\prime}	28°	52	1.647	1.658
777 d	a 4 17.13	1.496	29	59	1.639	29	27	28	44	1.651	1.667
779 d	a 17.20	1. 545	29	59	1.701	29	32	28	50	1.715	1.730
782c	$\begin{array}{ll}4 & 19.15\end{array}$	1. 483	29	59	1.639	29	37	28	50	1.646	1.662
784 c	a 19.20	1.546	29	59	1.699	29	38	28	52	1.706	1.729
787e	a	1.447	29	59	1.583	29	23	28	45	1-600	1.611
7890	a a 21.30	1.487	29	59	1.622	29	42	28	49	1.630	1-649
796 c	a $30 \cdot 23$	1.498	30	27	1.665	30	12	28	33	1.672	1.707
804 c	July 8.15	1.455	29	56	1.622	29	55	27	44	1.628	1.673
813 c	- 20.32	1.468	29	53	1.627	30	13	27	25	1.620	1.680
814 c	[$20 \cdot 35$	1.455	29	53	1.614	30	15	27	30	1-605	1.665
817 e	- 22.20	1.520	29	56	1.692	30	20	27	15	1.683	1.751
819 c	[27.15	1. 440	29	51	1.611	30	23	27	16	1-602	1.669
820 c	- 27.19	1.504	29	51	1.678	30	22	27	13	1.670	1.740
821 c	${ }^{4} \quad 27 \cdot 22$	1.555	29	51	1.731	30	22	27	13	1.721	1.793
822 c	27.35	1.517	29	51	1.680	30	22	27	11	1.671	1.741
826 c	Aug. 1.15	1.467	30	20	1.642	30	56	27	31	1.630	1.707
827 c	1.18	1.491	29	50	$1 \cdot 657$	30	27	27	3	1-642	1.716
831 c	$1 \cdot 36$	1.494	29	46	1-660	30	24	27	2	1-645	1.719
Means	(Linear)			58	$1 \cdot 652$	30	5	27	56	1-652	$1 \cdot 698$
Means	(Angular)				$23^{\circ} 54$					13:55	$13^{\circ} \cdot 64$

Probable Error Single Plate $=$ = .025
Mean................................... $= \pm .006$

772e	June 15-22	1-133	44°	59^{\prime}	1.238	43°	54^{\prime}	43°	$13{ }^{\prime}$	1-269	1.286
777e	17.13	1.063	44	59	1-168	43	51	43	0	1.197	1.220
779 e	${ }^{4} 17.20$	1.172	44	59	1.271	44	1	43	10	$1 \cdot 300$	1.323
782 d	$19 \cdot 15$	1.081	44	59	1-205	44	4	43	5	1.231	1.256
$784^{1 / a}$	$19 \cdot 20$	1.163	44	59	1.288	44	9	43	12	1-312	1.336
787 d	20.15	1.048	44	59	1.151	44	5	43	1	1.176	1.200
789d	21.30	1-126	44	58	1.227	44	12	43	8	1.249	1.280
796d	$30 \cdot 23$	1-181	45	26	$1 \cdot 316$	44	34	42	34	$1 \cdot 350$	1.394
804 d	July 8.15	1.142	44	53	1.275	44	17	41	39	1.295	1.370
813 d	$20 \cdot 32$	1.193	44	48	1.317	44	40	41	16	1-321	1.416
814 d	20-35	1.171	44	48	1.294	44	42	41	23	1.296	1-389
817 d	a 22.20	1.195	44	43	1.336	44	47	41	17	$1 \cdot 340$	1.440
819 d	(1) 27.15	1.134	44	44	1.274	44	51	41	6	1.275	1.375
820 d	" $27 \cdot 19$	1-125	44	44	1-266	44	50	41	3	1.266	1.368
821d	" 27.22	1. 083	44	44	1-221	44	50	41	3	1.221	1.319
822 d	$27 \cdot 35$	1.162	44	44	1.288	44	49	40	59	1.268	1.394
826 d	Aug. 1-15	1.227	44	42	1-372	44	55	40	50	1.370	1.487
827 d	1.18	1.274	44	42	1.406	44	55	40	51	1.402	1.522
831d	1.36	1.152	44	39	1.279	44	52	40	51	1.276	1.384
Means	(Lingear)			52	1.273	44	29	41	56	$1 \cdot 286$	1.356
Means	(Angular)				$12 \cdot 75$					$12 \cdot 80$	$12 \cdot 94$

Probable Error Single Plate.

- . 042

Table III.-Summary of Measures-Continued.
Series I-Measured by Plaskett- $\lambda 5600$.
60°

Plate	$\begin{gathered} \text { Date } \\ \text { G.M.T. } 1911 \end{gathered}$	Measured Velocity	1st Correction Method			2nd Correction Method					
			φ		V at φ	φ		φ		V_{1}	V_{2}
772 f	June 15-22	-643	59°	59^{\prime}	. 703	58°	1^{\prime}	57°	4	. 754	. 778
777 f	" 17.13	. 700		58	. 764	57	52		41	. 821	. 852
7798	" $17 \cdot 20$	- 791		58	. 883	58	8	57	0	. 940	. 974
782 e	${ }^{4} \quad 19 \cdot 15$. 724		58	. 814	58	14	56	54	. 865	. 901
$784{ }^{\text {¹ }}$ b	${ }^{4} \quad 19 \cdot 20$. 795	59	58	. 886	58	15	56	59	. 940	. 978
787 e	$4 \quad 20 \cdot 15$	- 800	59	57	. 867	58	16	56	50	. 918	. 958
789 e	$\begin{array}{ll}4 & 21.30 \\ \\ \end{array}$	-703	59	57	. 765	58	29	57	1	. 810	. 851
796 e	${ }^{4} \quad 30.23$	-621	60	22	. 715	58	34	55	55	. 761	. 827
804 e	July 8.15	. 850	59	48	-950	58	22	54	55	-999	1-112
813 e	4 	-643	59	38	. 721	58	52	54	21	. 742	. 852
814 e	4 20.35	- 692	59	38	. 772	58	58	54	32	. 789	. 908
817 e	a 22.20	. 771	59	41	. 871	58	49	54	11	-900	1.036
819 e	" 27.15	-689	59	33	-789	59	9	54	9	. 799	. 931
820 e	a	-652	59	33	. 754	59	4	54	1	-762	. 892
821 e	" 27.22	- 703	59	33	. 803	59	4	54	1	. 821	. 957
822 e	4 27.35	-702	59	33	. 785	59	3	53	59	. 802	-936
826 e	Aug. 1.15	-723	59	29	. 826	59	10	53	45	. 840	-992
827 e	* 1.18	. 731	59	29	. 819	59	12	53	48	. 830	. 977
831 e	1.36	. 796	59	26	-886	59	10	53	49	-898	1.056
Means	(Linear)			46	. 809	58	40	55	16	. 842	. 935
Means	(Angular)				$11^{\circ} \cdot 41$					$11^{\circ} \cdot 50$	$11^{\circ} \cdot 65$

772 g	June 15.22	. 379	74°	57^{\prime}	- 403	71°	0^{\prime}	69°	30^{\prime}	. 512	. 554
777 g	" 17.13	. 329	74	56	-353	70	44	68	52	. 455	- 500
779 g	" 17.20	. 408	74	56	-463	71	11	69	23	- 583	. 638
782 g	" $19 \cdot 15$	-314	74	55	-367	71	22	69	16	. 457	- 509
$784{ }^{\text {c }}$	" 19.20	-383	74	55	. 438	71	28	69	22	-544	-607
787 f	" 20.15	-389	74	54	-414	71	21	69	5	. 513	-576
789 f	" 21.30	-342	74	53	-366	71	49	69	28	. 444	- 502
$796 f$	$30 \cdot 23$	-329	75	14	-390	71	27	67	20	- 493	-601
$804 f$	July 8.15	. 294	74	33	-355	71	24	66	9	. 429	-493
813 f	- 20.32	. 351	74	15	- 400	72	13	65	21	. 453	-630
814 f	20.35	- 370	74	15	. 418	72	18	65	33	. 473	-658
817 f	" 22.20	. 373	74	15	- 445	72	26	65	21	. 500	-704
819 f	" 27.15	. 304	74	3	-374	72	44	65	4	. 407	- 590
$820 f$	$\begin{array}{ll}\text { a } & 27.19\end{array}$. 415	74	3	. 494	72	32	64	52	. 544	-788
821 f	$\begin{array}{ll}4 & 27.22 \\ 4\end{array}$	$\cdot 407$	74	3	-485	72	32	64	52	. 535	-774
8227	" 27.35	-344	74	3	-398	72	30	64	47	. 439	-638
826 f	Aug. $1 \cdot 15$. 395	73	56	-474	72	42	64	30	. 515	. 759
827 f	1.18	. 371	73	56	. 431	72	46	64	34	. 467	-691
831 f	1.36	-393	73	52	-456	72	46	64	37	-490	. 722
Means	(Linear)			28	. 417	71	58	66	44	. 487	-628
Means	(Angular)				$11^{\circ} .06$					$11^{\circ} \cdot 17$	$11^{\circ} \cdot 29$

Prohnhle Error Single Plate...................... $=$. .020 per km .
Mean............................... $=$. 005 per km.
[PLASKETT
Table IV.-Summary of Measures.
Series II.-Measured by DeLury -25600 .
0°

Plate	$\begin{gathered} \text { Date } \\ \text { G.M.T. } 1911 \end{gathered}$	Measured Velocity	1st Correction Method			2nd Correction Method					
			φ		V at φ	φ		φ		V_{1}	V_{2}
L. 833	Aug. 10-18	1.715	0°	0^{\prime}	1.994	2°	23^{\prime}	2°	$23 '$	1.993	1.993
834	- 10.21	1.771	0	0	2.054	2	23	2	23	$2 \cdot 052$	2.052
836	${ }^{4} \quad 30 \cdot 15$	1.565	0	0	1.844	2	46	2	46	1.844	1.844
837	${ }^{4} 30 \cdot 18$	1.615	0	0	1.898	2	45	2	45	1.897	1.897
838	" $30 \cdot 20$	$1 \cdot 664$	0	0	1.949	2	45	2	45	1.950	1.950
839	" 30.22	1-682	0	0	1.970	2	45	2	45	1.970	1.970
842	Sep. 8.13	1.651	0	0	1.949	2	52	2	52	1.947	1.947
843	8.16	1.763	0	0	2.068	2	51	2	51	$2 \cdot 068$	2.068
844	8.18	1.671	0	0	1.966	2	50	2	50	1.966	1.966
845	8.21	1.633	0	0	1.925	2	50	2	50	1.924	1.924
846	- 8.22	1.626	0	0	1.920	2	52	2	52	1.920	1.920
847	4	1.605	0	0	1.896	2	52	2	52	1.896	1.896
848	8.31	1.643	0	0	1.938	2	51	2	51	1.936	1.936
849	4	1.619	0	0	1.910	2	51	2	51	1.910	1.910
851	a 11.20	1.705	0	0	2.005	2	50	2	50	2.004	2.004
L 852	" 11.21	$1 \cdot 616$	0	0	1.908	2	51	2	51	$1 \cdot 908$	1.908
Means	(Linear)			0	1.950	2				1.949	1.949
Means	(Angular)				$13^{\circ} .84$					$13^{\circ} .85$	$13^{\circ} \cdot 85$

Probable Error Single Plate $= \pm .038$

L. 833	Aug. 10-18	1. 526	14°	54^{\prime}	1.780	16°	17^{\prime}	11°	23^{\prime}	1.768	1.831
834	\% 10.21	1. 526	14	54	1.779	16	17	11	24	1.763	1.826
836	30.15	1.533	14	53	1.801	16	34	10	52	1.780	1.852
837	$30 \cdot 18$	1.406	14	53	1. 661	16	36	10	56	1.641	1.709
838	a 30.20	1.461	14	53	1.720	16	34	10	55	1-670	1.738
839	30.42	1. 529	14	53	1.795	16	36	10	56	1.773	1.846
842	Sept. 8-13	1.454	14	41	1.722	16	25	10	32	1.701	1.770
843	${ }^{4} \quad 8.16$	1.580	15	5	1.859	16	47	10	55	1.834	1.912
844	8.18	1.568	15	5	1.845	16	47	10	56	1.821	1.898
845	8.21	1.574	15	5	1.851	16	47	10	57	1.827	1-903
846	8.22	1.667	15	5	1.956	16	47	10	53	1.930	2.012
847	$8 \cdot 30$	1.639	15	5	1.925	16	47	10	54	1.900	1.981
848	8.31	1.657	15	5	1.943	16	47	10	55	1.918	1.999
849	8.33	1. 590	15	5	1.870	16	47	10	55	1.845	1.923
851	11.20	1.614	15	5	1.896	16	47	10	56	1.871	1.950
L 852	11.21	1.649	15	5	1.935	16	47	10	54	1.910	1.991
Means	(Linear)		14	59	1.834	16	39		57	1.810	1.884
Means	(Angular)				$13^{\circ} \cdot 48$					$13^{\circ} \cdot 41$	$13^{\circ} \cdot 62$

Plate
L. 833

834
836
837
838
839
842
843
844
845
846
847
848
849
839
831
L. 852

$\overline{\text { Means }}$	(
$\overline{\text { Means }}$	(

P_{1}
L. 833

A
834
836
837
838
839
842
S
$\begin{array}{r}851 \\ \text { L } 852 \\ \hline\end{array}$

$\overline{\text { Means }}$
$\overline{\text { Means }}$
(1)

Probable error single plate......................... $=$ = .058
Mean
Mean................................. . . 014

Table IV.-Summary of Meabures.
Series II.-Measured by DeLury.-- $\lambda 5600$.
30°

l_{1}	V_{2}
993	1.993
352	2.052
344	1.844
397	1.897
350	1.950
770	1.970
747	1.947
768	2.068
366	1.966
324	1.924
320	1.920
396	1.896
736	1.936
110	1.910
104	2.004
108	1.908
149	1.949
85	$13^{\circ} .85$

68	1.831
63	1.826
80	1.852
41	1.709
70	1.738
73	1.846
01	1.770
34	1.912
21	1.898
27	1.903
30	2.012
00	1.981
18	1.999
45	1.923
71	1.950
10	1.991
10	1.884
41	$13^{\circ} .62$

$\underset{\text { Probable Error }}{\text { a }} \underset{\text { Mean }}{\text { Single Plate }}$

L 833	Aug. 10.19	1.143	44°	39^{\prime}	1.322	43°	55	37°	37^{\prime}	1.353	1.517
834	" 10.30	1.003	44	39	1.172	43	56	37	39	1.201	1.344
836	$30 \cdot 15$	1.122	44	33	1.306	44	5	36	48	1.328	1.516
837	30-19	1.168	44	33	1-354	44	12	36	58	1-376	1.568
838	$30 \cdot 21$	1.098	44	33	1.278	44	5	36	53	1-292	1.472
839	$30 \cdot 22$	1. 126	44	33	1-309	44	12	36	58	1-330	1.515
842	Sep. $8 \cdot 14$	1.065	44	3	1-248	43	31	36	4	1.271	1.499
843	- 8.17	1-050	45	2	1.231	44	26	36	56	1.255	1.439
844	$8 \cdot 19$	1. 064	45	2	1.246	44	24	36	52	1. 270	1.455
845	8.22	1. 017	45	2	1-195	44	24	36	52	1. 221	1.399
846	8.23	. 981	45	2	1.057	44	24	36	52	1.178	1-350
847	$8 \cdot 30$	1.028	45	2	$1 \cdot 207$	44	25	36	53	1. 232	1.412
848	$8 \cdot 32$	$1 \cdot 060$	45	2	1.241	44	26	36	56	1. 266	1.451
849	$8 \cdot 33$	1-106	45	2	1.291	44	26	36	56	1.317	1.510
851	11.20	1. 006	45	2	1-183	44	26	36	56	1.208	1.384
L 852	11.22	1.086	45	2	1-270	44	24	36	53	1.298	1.487
Means	(Linear)		44	58	$1 \cdot 251$	44	14	36	56	1.274	1.457
Means	(Angular)				$12^{\circ} \cdot 52$					$12^{\circ} \cdot 62$	$12^{\circ} \cdot 94$

[^4]PLASKETT
Table IV.-Summary of Meabures.
Series II.-Measured by DeLury.- $\lambda 5600$
60°

Plate	$\begin{gathered} \text { Date } \\ \text { G.M.T. } 1911 \end{gathered}$	Measured Velocity	1st Correction Method			2nd Correction Method					
			φ	,	V at φ	φ		φ		V_{1}	V_{2}
L 833	Aug. $10 \cdot 19$. 717	59°		. 839	57°	10^{\prime}	49°	11^{\prime}	. 897	$1 \cdot 145$
834	- 10.30	-699		23	. 820	57	12	49	14	. 875	1.117
836	${ }^{4} 30 \cdot 16$	-678		14	. 801	57	15	48	7	. 847	1.116
837	- $30 \cdot 19$	-624		14	. 740	57	22	48	21	. 782	1-029
838	" 30.21	-634		14	. 751	57	17	48	13	. 795	1.047
839	" $30 \cdot 23$	-681	59	14	. 802	57	22	48	21	. 847	1.115
842	Sep. 8.15	-682		15	. 805	56	12	47	9	. 853	1.114
843	8.18	- 595		11	-708	57	45	48	25	. 766	1.020
844	- 8.19	- 588		11	. 706	57	52	48	19	. 755	1-012
845	a 8.22	-569		11	-684	57	52	48	19	. 733	. 983
846	a 8.23	. 603		11	. 722	57	52	48	19	. 773	$1 \cdot 036$
847	a $8 \cdot 30$. 563		11	-679	57	53	48	21	. 726	. 973
848	" 8.32	-630		11	. 750	57	45	48	25	. 806	$1 \cdot 075$
849	$8 \cdot 33$. 563		11	-678	57	45	48	25	. 728	. 971
851	4 11.20	. 719		11	. 847	57	55	48	26	. 906	$1 \cdot 212$
852	11.22	-584		11	-701	57	52	48	21	. 751	$1 \cdot 005$
Means	(Linear)			47	. 752	57	31	48	16	. 809	1-061
Means	(Angular)		10°.	61	$10^{\circ} \cdot 61$					$10^{\circ} \cdot 70$	$11^{\circ} .08$

Probable Error Single Plate.......................... $=$ = .039
Mean
75°

L 833	Aug. $10 \cdot 19$	-319	73°	43^{\prime}	397	68°	48'	58°	6^{\prime}	524	796
834	- $10 \cdot 30$. 332	73	43	. 412	68	51	58	10	. 543	. 832
836	- $30 \cdot 16$. 344	73	24	. 431	68	50	56	43	. 554	. 895
837	- 30.19	- 320	73	24	- 403	69	12	57	2	-510	. 821
838	" $30 \cdot 22$. 384	73	24	. 476	68	54	56	51	. 611	. 986
839	" $30 \cdot 23$. 419	73	24	-516	69	12	57	2	-654	1.063
842	Sep. 8.15	. 246	75	8	. 325	69	33	56	51	. 534	. 888
843	$8 \cdot 18$	- 270	75	8	-354	69	46	57	2	. 488	. 818
844	8.19	. 246	75	8	. 325	69	39	56	54	. 452	. 755
845	8.22	. 213	75	8	. 285	69	39	56	54	. 398	. 665
846	8.23	. 273	75	8	. 357	69	39	56	54	. 496	. 829
847	8.30	. 332	75	8	- 427	69	41	56	56	-592	-991
848	8-32	. 252	75	8	-331	69	46	57	2	-459	. 768
849	$8 \cdot 33$	-319	75	8	-412	69	46	57	2	. 568	-952
851	11.20	. 244	75	8	. 323	69	45	57		. 448	. 748
852	$11 \cdot 22$. 310	75	8	- 402	69	40	56	57	-558	. 933
Means	(Linear)		74	31	. 386	69	25	57	6	. 525	. 859
Means	(Angular)				$10^{\circ} \cdot 37$					$10^{\circ} \cdot 61$	$11^{\circ} \cdot 23$

[^5]Table V.-Summary of Meabures.
Series III.-Measured by Plaskett- $\lambda 4250$
ion

V_{1}	V_{2}
897	1.145
875	1.117
847	1.116
782	1.029
795	1.047
847	1.115
853	1.114
766	1.020
755	1.012
733	.983
773	1.036
726	.973
806	1.075
728	.971
906	1.212
751	1.005
809	1.061
.70	$11^{\circ} .08$

039
010
75°

524	.796
543	.832
554	.895
510	.821
611	.986
654	1.063
534	.888
488	.818
452	.755
398	.665
496	.829
592	.991
459	.768
568	.952
148	.748
558	.933
525	.859
61	$11^{\circ} .23$

[PLASKET"
Table V.-Suamary of Measures.
Series I Measured by Plaskett- $\lambda \mathbf{4 2 5 0}$.

Plate	$\begin{gathered} \text { Date } \\ \text { G.M.T. } 1911 \end{gathered}$		Measured Velocity	1st Correction Method			2nd Correction Method						
			φ	V at φ	41		\%		V_{1}	V_{2}			
859 c	Oct.	3-13		1.410	29°	59^{\prime}	1-611	30°	33^{\prime}	25°	36^{\prime}	1.606	1.711
860 c		$3 \cdot 17$	1. 450	29	59	1-664	30	35	25	31	1.653	1.767	
		$3 \cdot 17$	1.450	29	59	1.658	30	35	25	31	1.645	1.753	
861 c	$\stackrel{\square}{4}$	3.18	1.429	29	59	1.632	30	35	25	31	1.623	1.735	
	$\stackrel{\square}{4}$	$3 \cdot 18$ $5 \cdot 13$	1.419 1.416	29	59 59	1.622	30	35	25	31	1.612	1.723	
863 c 865 c	"	5.13	1.416	29	59	1-619	30	35	25	39	1.608	1.713	
		$5 \cdot 28$ $5 \cdot 28$	1.376 1.374	29	59	1.572	30	35	25	43	1.561	1.666	
866 c	a	5.30	1.474	29 29	59	1.570	30 30	35 35	25	43	1.559 1.594	1.665	
d	"	5. 30	1. 400	29	59	1.597	30	35	25	43	1.594 1.585	1.703 1.695	
867 c	a	5-32	1.391	29	59	1.587	30	35	25	43	1.577	$1 \cdot 683$	
${ }^{\text {d }}$	a	5-32	1.445	29	59	1.645	30	35	25	43	1.634	1.746	
869 c	a	7.13	1.428	30	0	1.630	30	31	25	39	1.620	1.731	
${ }_{870}{ }^{\text {d }}$	${ }^{\circ}$	7.13	1.444	30	0	1.648	30	31	25	39	1.637	1.748	
870 c		$7 \cdot 15$	1.453	30	0	$1 \cdot 657$	30	31	25	39	1. 646	1.759	
d 871 e		$7 \cdot 15$	1. 460	30	0	1-665	30	31	25	39	1.654	1.767	
871 c		7-18	1.469	30	0	1.674	30	31	25	39	1.664	1.777	
d 872 e		7-18	1.390	30	0	1. 590	30	31	25	39	1.581	1.687	
872 c		7-19	1.480	30	0	1-686	30	31	25	39	1.674	1.791	
d 873 e		7.19	1.425	30	0	1.626	30	31	25	39	1.617	1.727	
873 e d		$9 \cdot 12$	1.415	30	0	1.815	30	29	25	43	1-608	1.712	
d 874 c		9.12	1.416	30	0	1.616	30	29	25	43	1.609	1.713	
874 c d		$9 \cdot 14$	1.412	30	0	$1 \cdot 612$	30	29	25	43	1.605	1.709	
		$9 \cdot 14$	1.414	30	0	$1 \cdot 614$	30	29	25	43	1.606	1.711	
Means	Linear			29	59	1.625	30	33	25	39	$1 \cdot 616$	1.725	
Means	Angular					$13^{\circ} \cdot 32$					$13^{\circ} \cdot 32$	$13^{\circ} \cdot 59$	

Probable Error Single Plate $= \pm .020$

Plate
$859 f$
860 e
f
861 e
863 e
865 f
866 e
867
869 e
870 e
871 e
872 e
873
873 e
f
874
Means
Means
$59 f$
f
f
63 e
65e
66 e
f
foe
1 f
2 e
3 e
f
si

[PLAs)
km. made the u meas the s each
and I plate differ anoth tively readil comp diffict magn to ob under to th order a dou spectı respec such displa of the made of the of me (for e of mes magni be
and in Beside propos of mes require under i ing thi

[^6]km . on the average. It is an open question, as these measures were made at different epochs, whether this difference is to be ascribed to the use of the mask or to a change in the habit of measurement. The measures were made with great care by both observers and in precisely the same way:-four settings on the line in the centre strip and two on each of the outside strips with the screw moving alternately forward and back, and, after all the lines were measured, repeated with the plate reversed on the carriage. Moreover, as the measures are purely differential, the displacement of one absorption line with respect to another precisely similar absorption line, the presence of this comparatively large systematic difference between the two observers is not readily explainable. Different methods of measurement and various comparisons were made in an attempt to explain or overcome the difficulty, but the difference still persisted practically unchanged in magnitude and sign throughout. It is proposed * by De Lury in order to obtain absolute values of the displacement, which are uncertain under present circumstances, to impress upon the spectra, in addition to the rotation displacement, an arbitrary displacement of say the order of a millimetre in magnitude. This would be effected by using a double or broken slit, the central section (of the width of one of the spectral strips) being displaced laterally any desired distance with respect to the body of the slit. If a rotation spectrum be made through such a slit the displacement will be $s+r$, where r is the rotation displacement and s the displacement due to the slit. If a spectrum of the limb at the pole where there is no rotational displacement be made through this slit the displacement will be s. The measured value of these displacements will be $s+\mathrm{r}+e$ and $s+e$ where e is the error of measurement, varying with different observers, yet which should (for each observer) have the same value in the mean of a large series of measures, as the two displacements are relatively of nearly the same magnitude. The true value of the rotational displacement will then be
$$
s+r+e-(s+e)=r
$$
and in this result personal habits of measurements should be eliminated. Besides the mechanical and observational difficulties in the way of this proposal, however, there is the further one that the accidental error of measurement would be increased and the amount of measuring required doubled. Furthermore, as these spectra could not be taken under identical conditions, the possibility of instrumental errors affecting the results is rather a serious one. Even with rotation spectra

[^7]made directly following one another on the same plate, and under apparently identical conditions, such errors creep in, as for example in Table V in the equator plates of series III. In plates $860,865,867$, 869 , the difference in the displacements of successive exposures are $0.066, .074, .051, .051 \mathrm{~km}$. per second, a greater difference than the one in question. Consequently although the method will be tried later it was not deemed desirable to delay further the publication of the obtained values, but to determine if possible, the probable corrections to be applied to the above given velocities.
15. For this purpose all the equator spectra of Series I and 7 of Series III were measured by De Lury and all of Series II by Plaskett to determine systematic differences at the equator. In addition, to see how this difference varied with the latitude, 5 complete plates (7 latitudes on each) of Series I were measured by De Lury and 5 complete pates of Series II by Plaskett. Two representative plates of Series I, Nos. 813 and 820 were sent to Mt. Wilson and were kindly measured by Mr. Adams and Miss Lasby in order to compare Ottawa and Mt. Wilson measures. All these comparisons are tabulated below and serve to show not only the difference in velocity obtained by different measures from the same plates which appear to be generally systematic in character, but indicate also the accidental errors of measurement to be looked for. The detailed measures for plates 813 and 820 show the great differences in accuracy of setting, for the probable error of setting on a single line (given below the means) varies on the average from 0.008 by Miss Lasby to 0.019 by Adams and Plaskett to 0.052 km . ner sec. by De Lury equivalent, in linear values, to $0.0004, .001$, and .003 mm .

Table VI.-Comparisons of Measures.
Plates at Equator.

Series I.				Series II.						Series III.			
Plate	Plaskett	De Lury (Mask)	Diff. P-D	Plate	Plaskett	De Lury (No Mask)	De Lury (Mask)	Diff. D (Mas:- No Mask)	Diff. P-D (Mask)	Plate	Plaskett	De Lury	Diff. P-D
772	1.812	$1 \cdot 770$.042	833	1-770		1.715		-055	859	1-764	$1 \cdot 791$	$-.027$
777	1.840	1.814	26	834	1-807	1-765	1.771	6	36	860	1.733	1.721	12
779	1.850	1.839	11	836		$1 \cdot 549$	1-565	16		861	1.780	1.776	4
782	1.854	1-832	22	837	1-660	1-608	1-615	7	45	865	1.710	1-674	36
784	1.818	1-740	78	838	1-694	$1 \cdot 651$	1-664	7	30	866	1.774	1.768	6
787	1.848	1.786	62	839	1.703	$1 \cdot 651$	1.682	31	21	867	1.766	1.716	50
789	1.776	1.770	6	842	1.731	1-644	1.651	7	80	869	1.719	1.752	- 33
796	1.841	1.805	36	843	1.786	1.732	1.763	31	23				
804	1.833	1.748	85	844	1.709	1.690	1-671	-19	38	Means	$1 \cdot 749$	$1 \cdot 742$	$+.007$
813	1.858	1.845	13	845	1-695*	1.611*	1-620	9	75				
814	1-801	1.794	7	846	1.669	1.639	1-626	-13	43				
817	1.839	1.823	16	847	1-694	1.574	1-605	31	89				
819	1.809	1.784	25	848	1.705	1-632	1.643	11	62				
820	1.792*	1.750*	42	849	1-638	1-580	1-619	39	19				
821	1.806	1.744	62	851	1.772	1-691	1.705	14	67				
822	1. 800	1.734	66	852	1-679	1-607	1-616	9	63				
826	1.800 1.815	1.709 1.713	91 102	Means	$1 \cdot 711$	1-642	1.658	12	.050				
831	1.840	1.823	17										
Means	1.823	$1 \cdot 780$.043										

Table VII--Comparisons of Measures.
Plates with all Latitudes.
Series I.

		0°		15°		30°		45°		60°		75°		39	
Plate	Observer	Measures	Diff.	Meas.	Diff.										
813	P.	1.858		1.645		1.468		1-193		-643		-351		-. 001	
813	D	1.827	$+31$	1.627	$+18$	1.456	$+12$	1.170	$+23$. 635	+ 8	-331	$+20$	+.034	-35
814	P	1.801		1.670		1.455		1.171		-692		-370		+.029 +.063	
814	D	1.805	-4	1.599	$+71$	1.402	$+53$	1-117	$+54$	-670	$+22$	+343 -373	$+27$	+.063 +.006	-34
817	P	1.839 1.828 1		1.651 1.578		1.520 1.458		1.195 1.138		. 774		- 362			-23
817 819	D	1.828	+ 11	1.578 1.722 1.788	$+73$	1.458 1.440	$+62$	1-138	$+57$.743 .689	$+28$	-362	+ 11	+.017 +.044	- 23
819 819	P	1.809 1.787	+22	1.722	- 45	1.450	- 12	1.118	+16	-678	$+11$	-318	- 14	-. 081	$+37$
820	P	1. 799		1.702		1.504		1-125		-652		. 415		+.001	
820	D	1.757	+ 42	1.675	$+27$	1.404	$+100$	1-055	+ 70	-676	-24	-345	+ 70	$+.006$	5
Mean Diffs.			+ 20		+ 29		$+43$		+ 44		+ 9		$+23$		-12

Table ViI.-Comparisons of Measures.-Continued.
Plates with all Latitudes.
Series II.

		0°		15°		30°		45°		60°		75°		90°	
Plate	Observer	Measures	Diff.	Meas.	Diff.										
839	P	1.683		1.501		1.372		1-156		-696		. 421		+.056	
839	D	1.682	+ 1	1.529	-28	1.320	+ 52	1.126	$+30$. 681	$+15$. 419	+ 2	+.015 +.007	+ 41
842	P	1.717 1.651 1		1.519 1.454 1		1.499 1.482		1.132 1.065		. 723		.247 .246		二.007	
842 843	${ }_{\text {P }}$	1.651	$+66$	1.454 1.593	$+65$	1.482 1.398	$+17$	1.065 1.087	$+67$	-682	$+41$	- 2415	$+1$	+.028 +.025	$+21$
843	D	1.763	+23	1-580	+13	1-369	$+29$	1.050	$+37$	- 595	+29	- 270	$+45$	+.043	- 18
844	P	1.709		1.595		1.425		1.059		-630		-261		+.001	
844	D	1.671	+ 38	1.568	$+27$	1.371	$+54$	1.064	- 5	- 588	$+42$. 246	+ 15	-020	$+21$
845	P	1.679		1.601		1.410		1.048		619 .569		. 2313		+.023 +.011	
845	D	1.633	$+46$	1.574	$+27$	1.411	-1	1.017	$+31$		$+50$. 213	$+17$	+.011	+ 12
			$+35$		$+21$		$+30$		+ 32		$+35$		$+16$		$+15$
P.-D.															
Mean Diffs. Series I and	II		$+27$		$+25$		$+36$		$+38$		$+22$		$+20$		+ 1

Table VIII.-Comparison of Ottawa \& Mt. Wilson Measures.
Plate 813.

No. of Line	0°			15°			30°		
	Plaskett	De Lury	Lasby	Plaskett	De Lury	Lasby	Plaskett	De Lury	Lasby
1	1.843	1.935	1-861	1-667	1-508	1.746	1.435	$1 \cdot 322$	$1 \cdot 471$
2	1.864	1.874	1.870	1.551	1.512	$1 \cdot 717$	1.478	1.514	$1 \cdot 503$
3	1.872	1.846	1.872	1.636	1.543	1.719	1.484	1.519	$1 \cdot 510$
4	1.842	1.778	1.858	1-659	1.730	1.719	1.463	1.408	$1 \cdot 515$
5	1.833	1.759	1.858	1-631	1-585	1.718	1.450	1.428	1.489
6	1.866	1.814	1.849	1.730	1.846	$1 \cdot 688$	1.476	1.497	1 - 500
7	1.853	1.882	1.858	1 -651	1-654	1.716	1.446	1-365	1-464
8	1.819	1-689	1.841	$1 \cdot 655$	1-617	1.726	1.481	1-562	1.493
9	1.872	1.827	1.844	1.658	$1 \cdot 727$	1.715	$1 \cdot 452$	1 -358	$1 \cdot 453$
10	1.878	1.893	1.856	$1 \cdot 652$	1-630	1.705	1.438	1.494	1.467
11	1.870	1.855	1.850	1.637	1-466	1.711	$1 \cdot 512$	1.457	1.458
12	1.865	1.796	1-849	1-620	1-593	1.710	1.452	1.533	1.476
13	1.846	$1 \cdot 917$	1.857	1.644	1-675	1.710	1.483	1.405	1.474
14	1.866	1.840	1.844	1.711	1-580	1-702	1-482	1-491	1.488
15	1.861	1.761	1.841	1.633	1-812	1.691	1.440	1.373	1-462
16	1.845	1.813	1-862	1-594	1-594	1-691	1-463	1.432	1-461
17	1.871	1.882	1.831	1-656	1-580	1.701	1.490	1.518	1.462
18	1.870	1.731	1.856	1.621	1-612	1-691	1.489	$1 \cdot 522$	1.479
19	1.860	1.812	1.863	1.65\%	1-656	1.702	1.470	1.470	1.476
Means	1.858	1.827	1.854	$1 \cdot 645$	1-627	$1 \cdot 710$	$1 \cdot 468$	$1 \cdot 456$	$1 \cdot 479$
P. Error single line	=. 010	. 043	.007	-. 021	.068	- 010	.015	. 046	-012

Table VIII.-Comparison of Ottawa \& Mt. Wilson Measures.
Plate 813.

No. of Line	45°			60°			75°		
	Plaskett	De Lury	Lasby	Plaskett	De Lury	Lasby	Plaskett	De Lury	Lasby
1	1-193	$1-040$	1-126	$0 \cdot 742$	0.738	$0 \cdot 640$	$0 \cdot 369$	0.411	$0 \cdot 333$
2	1. 214	1-261	1-132	. 615	. 473	. 642	-345	-440	. 329
3	1-235	1.236	1-140	. 642	. 549	. 646	-276	- 165	-325
4	1-191	1-202	1-126	. 677	. 773	-658	-281	-324	-344
5	1.182	1-171	1-145	-666	-529	. 637	-363	-301	-327
6	1-174	1.027	1-148	-689	-677	-641	-324	-345	-351
7	1-165	1.079	1. 138	. 640	.712	. 645	-350	-331	-330
8	1-200	1-284	1-123	-686	. 788	656	. 356	$\cdot 359$	-333
9	1-177	1-241	1-118	-615	-619	-646	. 395	-360	-338
10	1-234	1-191	1. 128	-651	. 628	-651	-369	-354	-338
11	1.200	$1 \cdot 208$	1-140	. 652	. 686	683	-380	-338	-333
12	1-225	$1 \cdot 224$	$1 \cdot 154$	-648	.747	-648	-348	$\cdot 257$	-350
13	1. 229	1.318	1-118	. 596	-600	-636	-304	-283	-338
14	1-158	1-119	1-101	-640	-659	-643	. 409	. 434	+340 .337
15	1-147	1-107	1-113	-580	-552	. 633	. 388	.443 .184	. 337
16	1.142	1.100	1-124	-603 .610	.644 .556	.638	.356 .337	.184 .349	.323 .341
17 18	1.195 1.219	1.201 1.127	1-132 1.127	.610 .635	.556 .560	.646 .653	-.337	.349 .250	.341 .319
19	1-182	1-093	1-133	. 630	. 581	-647	. 406	. 355	-326
Means	1.193	$1 \cdot 176$	$1 \cdot 130$	$0 \cdot 643$	$0 \cdot 635$	$0 \cdot 644$	$0 \cdot 351$	$0 \cdot 331$	$0 \cdot 334$
Error single line	$\pm .019$	-060	.009	. 023	.059	. 005	.025	-050	. 006

Plate 820.

No. of Line	0°						15°		
	Plaskett 1.	Plaskett 2.	De Lury 1.	De Lury 2.	Lasby	Adams	Plaskett	De Lury	Lasby
1	1.852	1.823	1.818	1.869	1.850	1.797	1.725	1.784	1.758
2	1.849	1.814	1.721	1-622	1.847	1.821	1.729	1.635	1.746
3	1. 790	1. 854	1.711	1.836	1.851	1.876	1.739	1.790	1.778
4	1.753	1.783	1.823	1.823	1.854	1.817	1.687	1.508	1.76!
5	1.824	1. 847	1.812	1.699	1.841	1.785	1.746	1.719 1.655 1.692	1.790 1.751 1.751
6	1.826 1.783 1.810	1.776 1.744 1.765	1.729 1.808 1.723	1.725 1.762 1.758	1.868 1.861 1.861	1.779 1.806 1.784	1.688 1.696	1.655	1.751 1.759 1.759
7 8	1.783 1.810	1.744 1.765	1.808	1.762 1.757	1.861 1.861 1.851	1.806 1.774	1.696 1.696	1-692 $1 \cdot 697$	1.759 1.767
8	1.810 1.795	1.785	1-671	1.682	1.855	1.800	1.696	1.695	1.742
10	1.780	1. 770	1.727	1.854	1.854	1.770	1.696	1.642	1.758
11	1.764	1.754	1-628	1.693	1.855	1.776	1.713	1-676	1.765
12	1.830	1.780	1.707	1-687	1.871	1.793	1.712	1-621	1.762
13	1.787	1.749	1.746	1.805	1.839	1.786	1.721	1-635	1.755
14	1.823	1.805	1. 804	1.779	1.851	1.808	1.699	1.745	1.765
15	1.806	1.824	1.787	1.818	1.848	1.855	1.705	1.759	1.749
16	1.756	1.746	1.663	1. 709	1.841	1.767	1-650	1-606	1.763
17	1.778	1.781	1-677	1.788	1.835	1.767	1.653	1-613	1.762
18	1.760	1.751	1.735	1.745	1.856	1.785	1.706	1.769	1. 743
19	1.808	1.749	1.827	1.721	1.829	1.802	1.685	1-576	1.746
Means	1.799	1.784	1.744	1.757	1.851	1.798	$1 \cdot 702$	1-675	1.758
P. Error Single line	$\pm .020$	-023	-043	. 047	-007	-019	-017	-052	-008

16. The comparison of plates at the equator shows a systematic difference for measures of the same plates of 0.046 km . per second. When the 5 complete plates of Series I and II are compared it is found that in these plates the average difference at the equator is smaller about 0.027 , and that this remains unchanged practically for all latitudes except the pole. This shows that the difference is evidently not due to any effect of the magnitude of the displacement of the lines of one strip with respect to the other, else it should vary with the latter which changes from 0.1 mm . at equator to about 0.017 mm . at 75°. It may be said therefore that Plaskett measures the displacements from 0.03 to 0.05 km . per second higher than De Lury in the region at $\lambda 5600$. The peculiar nature of the difference $\mathrm{P}-\mathrm{D}$ at the pole should not pass without comment. The mean value of this difference is +0.001 . Although it is of the same sign as the other differences in the Series II plates it is of the opposite sign in Series I, and is hence not systematic as at the other latitudes, and it might therefore be regarded as evidence that the magnitude or sense of the displacement influences the measures of one or both of the observers. Owing to the method of measurement used by De Lury he would seem to be less likely to be influenced in this way. When we compare the measures in the $\lambda 4250$ region we find that the difference found in the $\lambda 5600$ region nearly vanishes, being only 0.007 km ., scarcely large enough considering the few plates measured by De Lury to be deemed systematic. The spectra in the $\lambda 4250$ region are much more easily measurable than at $\lambda 5600$. Not only is the grain of the plate finer, but the lines themselves are much more uniform in character and better defined. Consequently it seems likely that the large difference between the two measures in the $\lambda 5600$ region depends in some way upon the character of the lines for measurement. Although the probable error of measurement of a single line, given for plates 813 and 820 above, for Plaskett is only about a third of that for De Lury, ± 0.019 and $\pm 0.052 \mathrm{~km}$. per sec., and hence the former's measures should be considered of greater weight, yet that does not settle the question of the correct value of the velocity. Possibly some information may be obtained from the Mt. Wilson measures.
17. Mr. Adams and Miss Lasby have had greater experience than anyone else in the measurement of photographic rotation spectra, and their measurements should be given great weight. Yet when we come to make comparisons, Table VIII, plates 813 and 820 we find practically the same difficulties and the same differences between them as between the writers. For example, in plate 820 at the equator we have Miss Lasby's value 1.851, Mr. Adams 1,798, Plaskett's 1,799 and 1,784, De Lury's 1,757 and 1,744 . Indeed in several cases Miss Lasby's value is as much higher than Plaskett's, as his is than De Lury's. On the
other hand, in $813,45^{\circ}$ it is lower than both, and in $813,60^{\circ}$ and 75° all three are practically the same. When we compare these differences with the probable error of measurement of the plates, less than one quarter of the numbers given at the bottom of the tables varying from .002 to .015 , we are forced to the conclusion that they are systematic and personal in nature, but are at a loss to account for their cause.

It is unfortunate that Mr. Adams was unable to measure more than one spectrum, but the close agreement of his result with Plaskett's and the generally higher values of Miss Lasby and lower of De Lury would naturally, from the law of averages, lead to the acceptance of Adams' and of Plaskett's measures as probably being nearest to the true values. If such a conclusion be accepted then it would be necessary to apply a positive correction to De Lury's measures in the $\lambda 5600$ region, which, when all the comparisons are taken into account, should be about 0.040 km . at the equator and possibly slightly less at the higher latitudes. A further evidence that this is probably the proper course is given by the practical agreement of Plaskett's and De Lury's measures in Series III at $\lambda 4250$. As the velocities of rotation obtained by Plaskett from the measures of Series I, II, and III are all practically the same, while those obtained by De Lury are about 3 per cent. lower for Series I and II, but the same for Series III, the inference is that, in the poorer quality lines in the yellow green, some personal effect causes the difference and that this disappears when the lines become better defined, as is the case in the violet. On the other hand, if there be no systematic differences in the measuring of the line displacements by De Lury at the two regions $\lambda 4250$ and $\lambda 5600$, this would imply a difference in the rates of rotation as determined from lines of different wave length, a thing which though in itself not impossible is perhaps not very probable.

Absolute Value of Velocity.
 Variation of Velocity with Latitude.

18. The above discussion and comparison of measures have shown that it is hardly possible to state exactly the absolute velocity of the rotation of the sun and furthermore if, as seems likely, earlier determinations were affected in the same way, they are also uncertain to to the same extent, that of the "personal equation" of measurement.
19. In order to place the preceding summaries of measures in a more convenient form for discussion and comparison, the following tables containing the observed mean linear velocities at the mean latitudes have been compiled. From these linear velocities, the observed angular velocities have been directly computed, while the other columns will be explained below:-

 	$\begin{aligned} & \text { 彦 } \\ & \text { 曹 } \end{aligned}$		$\stackrel{\frac{\mathrm{e}}{\frac{1}{2}}}{\stackrel{2}{2}}$	 		
					$\frac{9}{4}$	E
	咗				魣	等
						$\stackrel{7}{7}$
＝ニニいまた 	\％ $\frac{3}{4}$ 3			 	星	
ニニニぁぁぁむ二 				 	¢	
	O㜢				O等	

68

II soplas

THE ROYAL SOCIETY OF CANADA
20. From these mean values about one-third of which are due to Method I of reduction and two-thirds to Method II, the law of variation of latitude has to be obtained. Many different forms containing both sine and cosine terms of the latitude in different powers were tried and, although some gave close agreement, none, on the whole, were as good as the simple Faye formula

$$
\begin{aligned}
& \mathrm{V}=\left(\mathrm{a}+\mathrm{b} \cos ^{2} \varphi\right) \cos \varphi \\
& \xi=\mathrm{a}^{\prime}+\mathrm{b}^{\prime} \cos ^{2} \varphi .
\end{aligned}
$$

Using the method of least squares to determine the constants the following formulx were obtained.

$$
\begin{aligned}
& \text { Series I }\left\{\begin{array}{l}
\mathrm{V}=\left(1.504+.509 \cos ^{2} \varphi\right) \cos \varphi \\
\xi=10^{\circ} .34+4^{\circ} .06 \cos ^{2} \varphi
\end{array}\right. \\
& \text { Series II }\left\{\begin{array}{l}
\mathrm{V}=\left(1.448+.523 \cos ^{2} \varphi\right) \cos \varphi \\
\xi=10^{\circ} .04+4^{\circ} .00 \cos ^{2} \varphi
\end{array}\right. \\
& \text { Series III }\left\{\begin{array}{l}
\mathrm{V}=\left(1.421+.599 \cos ^{2} \varphi\right) \cos \varphi \\
\xi=10^{\circ} .10+4^{\circ} .23 \cos ^{2} \varphi
\end{array}\right.
\end{aligned}
$$

From these formule the values in columns headed "Computed" and "Residual" in the preceding tables (Table IX) were obtained. The residuals in Series I and III are satisfactorily small and show no tendency to systematic arrangement of sign. In Series II, however, they are considerably larger and systematically grouped as to sign, indicating the necessity of an additional term in the Faye formula.

If the observations of Series I and III are grouped together we get formulæ which represent the observations in both series nearly as well as the separate formulx. The difference between the formule for Series I and III above is probably due to the small number of latitudes observed (only three) in Series III, in which case a small deviation of one of the values would make a large change in the coefficients. The formulæ from both Series

$$
\text { Series I and III (combd.) }\left\{\begin{array}{l}
V=\left(1.483+.532 \cos ^{2} \varphi\right) \cos \varphi \\
\xi=10^{\circ} .32+4^{\circ} .05 \cos ^{2} \varphi
\end{array}\right.
$$

may therefore be considered as the formulæ obtained from Plaskett's measurements. Series II is not included in this on account of the systematic difference and because another term would be necessary to obtain reasonable agreement between the observed and computed values. However, if we compare the co-efficients from Series II with those from Series I and III combined we find them practically the same except for the difference in the first terms which is in line with
what has been found by comparison of the measures. Moreover, this difference, when the necessary allowance is made for the difference of the co-efficients of the second terms, is 0.044 km . or $0^{\circ} .33$ which is not far from the assumed 0.040 km .
21. For convenience of comparison the previously obtained formula are tabulated beside those just given and we at once notice a remarkable similarity between the Ottawa and Mt. Wilson co-efficients.

Table X.-Formulae for Solar Rotation.

Observer.	V, Linear Velocities.	§, Angular Velocities.
Dunér.		$10^{\circ} \cdot 60+4^{\circ} \cdot 21 \cos ^{2} \varphi$
Halm.		$12 \cdot 03+2 \cdot 50 \cos ^{2} \varphi$
Adams (1906-7)	$\left(1.575+0.480 \cos ^{2} \varphi\right)$ $\left(1.507+0.546 \cos ^{2} \varphi\right)$ cos φ cos φ	$10 \cdot 57+4 \cdot 04 \cos ^{2} \varphi$
Adams (Mean).	$\left(1.550+0.501 \cos ^{2} \varphi\right) \cos \varphi$	$11 \cdot 04+3 \cdot 50 \cos ^{2} \varphi$
Plaskett (1911).	$\left(1.483+0.532 \cos ^{2} \varphi\right) \cos \varphi$	$10 \cdot 32+4 \cdot 05 \cos ^{2} \varphi$
De Lury (1911)	$\left(1.448+0.523 \cos ^{2} \varphi\right)$ cos φ	$10 \cdot 04+4 \cdot 00 \cos ^{2} \varphi$

This is especially the case with the 1908 Mt. Wilson determination and the mean formula from Series I and III where, in the angular form, the difference is only in the constant term. In the linear form also they are quite similar, and their agreement in both forms is so marked as compared with the widely different co-efficients obtained from the $1906-7 \mathrm{Mt}$. Wilson observations as to confirm the presence of some systematic error in the latter, suspected by Adams, and to indicate the substantial accuracy of the law of variation obtained.
22. For convenience of comparison the daily angular value of the rotational velocity has been computed from the empirical formulæ given in the preceding table for the latitudes from the equator to the pole by intervals of 5°. A column containing the results of Storey and Wilson* at Edinburgh is added and a column for the velocities of sunspots, the means from three formule given in Adams' \dagger work. Further the linear velocities from Adams, 1908, and Plaskett's formule have been computed and are given in the two last columns.

[^8]Table XI.-Velocities of Rotation.

Latitude	Daily Angular Velocities.								Linear Velocities.	
	Sun Spots	Duner	Halm	1906-7 Adams	$\begin{aligned} & 1908 \\ & \text { Adams } \end{aligned}$	1908-10 Storey and Wilson	$\begin{gathered} 1911 \\ \text { Plaskett } \end{gathered}$	$\begin{gathered} 1911 \\ \text { DeLury } \end{gathered}$	$\begin{gathered} 1908 \\ \text { Adams } \end{gathered}$	$\begin{gathered} 1911 \\ \text { Plaskett } \end{gathered}$
$0^{\text {a }}$	$14^{\circ} \cdot 40$	$14^{\circ} \cdot 81$	$14^{\text {c }} \cdot 53$	$14^{\circ} \cdot 63$	$14^{\circ} \cdot 61$	$14^{\circ} \cdot 81$	$14^{\circ} \cdot 37$	$14^{\circ} \cdot 05$	2.053	2 -015
5	$14 \cdot 38$	14.78	$14 \cdot 50$	$14 \cdot 59$	$14 \cdot 58$	14.72	$14 \cdot 34$	14.02	2.041	2 -003
10	$\begin{array}{lll}14 & 31\end{array}$	14.68	14.46	14.50	14.49	14.59	14.25	$\begin{aligned} 13 & -93\end{aligned}$	2.007	1.968
15			$\begin{array}{llll}14 & -37\end{array}$	$\begin{array}{lll}14 & 37 \\ 14 & 17\end{array}$	$\begin{array}{ll}14 & -34 \\ 14 & 13\end{array}$	$\begin{array}{ll}14 & 46 \\ 14.39\end{array}$	14.10	$\begin{array}{rrr}13 & .78 \\ 13 & 58\end{array}$	- 1.948	1-912
20	14.06	$14 \cdot 32$	$14 \cdot 24$	$14 \cdot 17$	$14 \cdot 13$	$14 \cdot 32$	$13 \cdot 89$	$13 \cdot 58$	1.869	1.855
25	13.89	$14 \cdot 06$	14.09	$13 \cdot 94$	13.89	$14 \cdot 15$	13 -65	$13 \cdot 34$	1.772	1.740
30	13.69	$13 \cdot 76$	13.90	$13 \cdot 67$	$13 \cdot 60$	13.97	$13 \cdot 36$	$13-05$	$1 \cdot 659$	$1 \cdot 630$
35	13.47	13.42	13.70	13.39	13.28	13.74	13.04	$12 \cdot 73$	1.535	1-508
40		13.07	$13 \cdot 50$	13.09	12.94	$13 \cdot 52$	$12 \cdot 70$	$12 \cdot 40$	1.400	1-375
45		12-70	13.28	12.81	$12 \cdot 58$	$13 \cdot 26$	$12 \cdot 34$	$12 \cdot 05$	1.259	1-237
50		$12 \cdot 34$	$13-07$	$12 \cdot 54$	$12 \cdot 24$	13.01	11.99	11.70	1-113	1 -093
55		11.99	12-86	12-30	11.91	$12 \cdot 71$	$11 \cdot 65$	11.37	. 967	-950
60		11.65	12 -66	$12 \cdot 11$	11.58	12.43	11.33	$11 \cdot 05$. 821	. 807
65		11.35	12.48	11.97	11.29	12.04	11.04	$10 \cdot 76$	-677	-666
70		11.09	$12 \cdot 32$	11.91	11.05	11.64	$10 \cdot 80$	$10 \cdot 52$	-538	- 528
75		$10 \cdot 88$	$12 \cdot 20$	$\begin{array}{ll}11 & 91\end{array}$	$10 \cdot 84$	$11-24$	$10 \cdot 59$	$10 \cdot 32$. 399	-392
80		$10 \cdot 74$	$12 \cdot 11$	12.00	10 -69		$10 \cdot 44$	$10 \cdot 17$	-265	-260
85		$10 \cdot 63$	12.05	12-17	$10 \cdot 60$		$10 \cdot 35$	10 -08	-130	-128
90		$10 \cdot 60$	12-03	$12 \cdot 43$	$10 \cdot 57$		$10 \cdot 32$	10.05	0	0

The agreement of Dunér's, Adams', 1908, and the Ottawa values, except for small and nearly constant differences, is quite striking, and gives good grounds for the belief that the law of variation with latitude is represented to a high degree of accuracy by a Faye formula with coefficients approximately the same as those given in these three formulæ.
23. In regard to the absolute value of the rotational velocity the question can not be regarded as by any means settled. Considering the velocity values at the lower latitudes we find that Halm and Adams get nearly the same values, Dunér and Storey and Wilson are about 1 per cent. higher, Plaskett about 2 per cent. lower and De Lury about 4 per cent. lower. But at the higher latitudes Dunér and Adams (1908) agree, Plaskett is 2 per cent. lower as before, De Lury about 5 per cent. lower, Storey and Wilson are 5 per cent, higher, while Halm and Adams (1906-7) are some 15 or 20 per cent. higher. At the equator Plaskett's values are in practical agreement with the motion of sun spots. As it is generally considered that the reversing layer and sunspots are at the same level from the practical identity of their spectra, this so far as it goes gives weight to the lower value of $14^{\circ} .4$ at the equator. On the other hand as the latitude increases the sun spot velocities agree better with the higher values of the reversing layer such as those of Halm and of Adams', 1906-7 observations.
24. These differences in values may be due to one or more of three causes:-a. A variation in the rate of rotation of the Sun. b. Instrumental errors. c. Personal errors of measurement.
(a) The question of a change in the rotational velocity of the Sun, which was raised by Halm *, was quite fully discussed by Adams, \dagger who reached the conclusion that the evidence to date was against variation. The later values by Storey and Wilson and those obtained here, of which the former is higher and the latter lower than Adams' results, would indicate a variation in the rate of rotation were it not for the possibility of small instrumental and the probability of personal measurement errors (Sections $15-17$). As it is, until the latter are eliminated, it will be impossible to make any definite statement in regard to either the variation or constancy of the rate. Certainly the possibility of a variation must, until further evidence is available, be taken into account in considering the difference obtained.
(b) So far as instrumental errors are concerned although every known precaution was taken to avoid them, it is possible that some small systematic effects may be present in these results. The only

[^9]means of detecting such an error would be by the comparison of spectra made at the same epoch by different instruments and methods and measured by the same observer, but such is not easy to arrange. The differences in value for successive plates taken under so far as known identical conditions (previously referrel to in Section 16) is most likely due to some sort of instrumental error unless rapid changes in local motions in the reversing layer are responsible. Although these differences are apparently quite accidental they may nevertheless contain a small systematic deviation.
(c) Personal Errors of Measurement.-It has been shown (Sections 15-17) that it is possible, even probable, for such differences as those in question to be obtained on measurement of the same plate by different observers, and it seems useless to consider other sources of error until it is possible to eliminate this. Although the difference between Plaskett and De Lury is fairly well determined at $\lambda 5600$ as at present about 0.040 km . per second, sufficient plates in common have not yet been measured to determine the difference between Miss Lasby, by whom most of the Mt. Wilson plates were measured, and the writers. Her measures appear to be somewhat higher on the whole (Section 17) than Plaskett's, and the same tendency was shown even more markedly during a visit of the latter to Mt. Wilson in 1910, where comparisons of the measured displacements of several lines on rotation plates at the equator showed that Miss Lasby's measures were always two or three per cent. higher than Plaskett's. If there is this difference, then the actual velocity displacements on the Mt. Wilson and Ottawa plates are approximately the same, and it only remains to determine whose measurement is the most nearly correct. At present, however, we will have to be satisfied with recognizing the presence of personal differences of measurement, as accounting for part at any rate of the differences in velocity obtained.
25. In view of these actual differences of velocity obtained by the different observers and after the discussion of the probable causes of these differences, we can only state that the velocity of the solar rotation as determined from Plaskett's measurements is represented by the formulæ
\[

$$
\begin{aligned}
& \mathrm{V}=\left(1.483+0.532 \cos ^{2} \varphi\right) \cos \varphi \\
& \xi=10^{\circ} .32+4^{\circ} .05 \cos _{2} \varphi
\end{aligned}
$$
\]

and that this angular formula differs from Adams' 1908 formula practically only in the constant term and is also in good agreement with Dunér's, and that hence it probably represents very closely the relative velocities at the different latitudes, although the absolute values may be uncertain by, say, 2 per cent.

Probable Errors.

26. As Adams* has already compared his errors of measurement with those of Dunér and Halm, showing the marked advantage of the photographic method, it will suffice here to give the Ottawa values and compare them with Adams.

The mean probable error of measurement of the velocity from a single line determined by the use of all the lines on all the plates is

$$
\begin{aligned}
& \text { Series } I= \pm 0.024 \mathrm{~km} \text {. per sec. } \\
& \text { Series III }= \pm 0.015 \quad, \quad ",
\end{aligned}
$$

The probable errors in Series I vary for the different plates from 0.010 to 0.040 and in Series III from 0.006 to 0.023 . As the number of lines measured in each plate in the two series have been 19 and 15 respectively the probable error of an average plate as determined from the internal agreement of the measure is

$$
\begin{aligned}
& \text { Series I }= \pm 0.0055 \mathrm{~km} \text {. per sec. } \\
& \text { Series III }= \pm 0.0038 \quad \eta \quad \eta
\end{aligned}
$$

The average probable error of a plate determined from comparisons of the velocities of all plates at the same latitudes and for all the latitudes is for

$$
\begin{aligned}
& \text { Series I }= \pm 0.028 \quad \mathrm{~km} \text {. per sec. } \\
& \text { Series III }= \pm 0.026 \quad \# \#, ~
\end{aligned}
$$

or 5 and 7 times the probable error as determined from the internal agreement of the lines.

These somewhat anomalous results are however not unusual as about the same ratio of probable errors is obtained in stellar radial velocity work and in many other astrophotographic methods, but the cause of this comparatively high ratio can not be satisfactorily explained.

One can imagine that changing instrumental conditions might cause differences in displacement in plates taken on different dates but where, as in the example previously cited, differences of from 0.05 to 0.07 km . were found on exposures taken one immediately after the other on the same plate on the same region of the sun and under, so far as known, identical conditions, no explanation, except that of rapidly changing proper motions on the sun, can be assigned.
27. In comparing these probable errors with those of Mt. Wilson, only series III which is in the same region, $\lambda 4250$, as the Mt. Wilson plates must be considered for, as the relative probable errors indicate,

[^10]the lines are of much better quality for measurement than at $\lambda 5600$. When the probable errors (in kilometres) are reduced to linear measure they become more than twice as great at $\lambda 5600$ as at $\lambda 4250$. The probable errors for a single line obtained at Mt. Wilson are
\[

$$
\begin{aligned}
& \text { p. e. }= \pm 0.015 \mathrm{~km} . \text { per sec. } \quad\left(\begin{array}{l}
(1906-7) . \\
\text { p. e. }== \pm 0.009 \quad \# \quad \eta \quad \eta
\end{array}(1908)\right.
\end{aligned}
$$
\]

The Ottawa value as above stated is ± 0.015. It must not be forgotten, however, that the Mt. Wilson values are from one or two plates, the Ottawa from the mean of all the plates; On the Mt. Wilson plates the lines giving, systematically, velocities differing from the mean were excluded, on the Ottawa plates these and all lines were included; and lastly that the Mt. Wilson linear dispersion was in 1906-7, 10 per cent. and in 190830 per cent. greater than the Ottawa. Hence it is evident that the probable error of measurement is about the same at the two places. Although the probable error of a plate determined from the agreement among the plates is not given, it is readily computed, and for the equator (1908) is $\pm 0.011 \mathrm{~km}$. per sec. as compared with ± 0.018 here. This is considerably smaller, but yet about 5 times that obtained from agreement among the lines.
28. It is evident from the ratios of the probable errors that a great many more lines than necessary for the actual determination of the rotation have been measured, and that it would be preferable to measure four or five times as many plates with only one fourth or fifth the number of lines, and that even then the probable error obtained from comparison of the plates would be twice that deduced from the internal agreement of the lines. However, in this investigation a larger number of lines was measured for the purpose of determining whether different elements and different lines of the same element give different velocities of rotation.

Systematic Differences of Velocity for Different Elements.

29. Considerable attention has been devoted to this phase of the investigation which is of importance not only because of its interest in the theory of the sun, but also because it was one of the questions proposed by the Rotation Committee, and because Adams has found some small systematic differences for different elements and his results should be confirmed.

As previously mentioned in the $\lambda 5600$ region the lines were chosen particularly with this point in view and include as large a number of elements as is possible among the limited number avail-
able for measurement. Similarly in the $\lambda 4250$ region besides the 10 lines selected for measurement by the committee 5 other lines, embracing those found by Adams to give systematic deviations were included.
30. The following table contains the mean residuals in metres per second grouped according to latitude, obtained from Plaskett's measures of about 14 plates and from DeLury's measures of 16 plates at $\lambda 5600$. The first three columns contain the wave-length and the source and intensity of the lines measured. The next seven columns contain the mean residuals, taking account of the signs, at the seven different latitudes observed. Each of these is the mean of the residuals from 14 or 16 plates. The separate residuals are not given on account of the space that would be required. The last column but one is the mean of all the residuals without regard to sign or the average residual, while in the last column the sign is taken into account, and we have the mean algebraic residual. At the foot of the columns the mean probable errors of measurement of a single line at each latitude are given.

安要		
	\%	$+1+11+++1+++1\|1\|+1$
	is	\| $1++1++++1+1++1+++$
	\%	$++11111+1+111++1111$
	i	$11+\|1++++\|1+1\| \quad 1+1$
	\%	
	19	$+1++1++1++1++11++$
	8	

The trend and magnitude of these mean residuals in Plaskett's measures for the different latitudes and the ratio of the mean algebraic to the mean numerical residual, which is except in one case less than one-third, do not indicate any systematic differences for the different lines. If any lines or elements gave a different velocity to the mean reversing layer, then the mean residuals for the different latitudes should be of the same sign, should diminish as the latitude increased and should vanish at the pole; but we find, on the contrary, that none of the lines fulfils this condition, but that the residuals bear the appearance of being quite accidental in character. Even take the case of the Na line 5682.869 which gives a strong negative residual, we find no decrease with higher latitudes and the mean residual for the pole is much higher than the average, showing that the difference is probably due to something in the line. Again, if this sodium line did give a lower value of the velocity, the other sodium line, the last on the list, should also give a negative residual, whereas we see its residuals are entirely accidental. The same condition of affairs is shown by the tabulated residuals from De Lury's measures of Series II in which the mean algebraic is always less than one-fourth the mean numerical residual, although the numbers are higher owing to his higher probable error of measurement.

These considerations form sufficient grounds for the statement that in the region around $\lambda 5600$ none of these lines or elements shows any differences of velocity from that of the reversing layer other than can readily be accounted for by accidental errors of measurement.
31. The same thing appears to be the case in the $\lambda 4250$ region. The following table contains the residuals in metres per second from the 15 lines measured on 24 plates at the equator.

There are of course similar tables of residuals for the 24 plates measured at each of the latitudes 30° and 60°; but it is only necessary to give the mean numerical and algebraic residuals for each of these latitudes the same as has been done at the foot of the preceding table.

The following table contains a summary of the mean residuals for each line at each of these latitudes and then the final mean residuals for the 72 measures of each line.
Table XIV．－Mean Residuals at Different Latitudes－Region a 4250

17	\pm	©	워줏뜽	$\begin{array}{ll} \therefore \quad 000- \\ & +1+ \end{array}$	＋	φ +
$=$	1 $=$	s	サヅ	$\cong \quad \begin{gathered} --\infty \\ \|\|\mid \end{gathered}$	\sim	$\begin{gathered} 4 \pi \\ 1 \end{gathered}$
\because	走	© 1	뎌운	$\triangleq \quad \rho=0$	4	$\begin{aligned} & \text { N } \\ & + \end{aligned}$
희	2	＊		$\begin{array}{cc} \pm & -1-10 \\ & 1 \mid 1 \end{array}$	15	t－ $+$
$=$	\cdots	©	๑9ニ	$\pm \quad \begin{array}{ll} \pm & +1 \\ & +1 \end{array}$	a	$\begin{aligned} & \text { t } \\ & + \end{aligned}$
Q	\pm	a	にた8	$\therefore \quad 9000$	t－	10 +
の	号	©	19939	$\pm \quad-00$	\bigcirc	$\begin{gathered} \text { ma } \\ + \end{gathered}$
∞	$\%$	18	1995	$\begin{array}{r} \infty \quad \infty<a \\ 1++ \end{array}$	ar +	
－	走	©	の゙っこ	$\begin{aligned} & \pm \quad 1000 \\ &+1 \end{aligned}$	－	
ω	\pm	－9	29.95	$\pm \begin{array}{cc} +00- \\ 11+ \end{array}$	－ 1	Cl $+$
15	\pm	∞	ジล	$\begin{array}{cc} \text { ब1 } & 0 \times 0 \\ & 1+ \end{array}$	10 +	
＋	\％	∞	1295	$9 \quad 0 \infty \infty$	\％	+ +
02	0	©	19\％＊	$\begin{array}{ll} \text { ब̈ } & \infty+0 \\ & ++ \end{array}$	－1 +	$-1=$
s	0	©	ニู่ง	$\begin{array}{ll} \text { ล1 } & \text { N०N } \\ & +1+ \end{array}$		
－	\pm	－	ลิ－งส	$\begin{array}{ll} \text { 죠 } & \infty \infty \infty \\ & +++ \end{array}$		$+\underset{1}{1}$
					睳	㕸

is ol thre as t the dire

Again, it will be noticed that in the final values no mean algebraie is one-third as large as the mean numerical residual, even though in three cases the algebraic mean for one of the latitudes is nearly as large as the corresponding numerical mean. At the foot of the table are given the mean residuals obtained from Adams' 1908 values and indicated directly above by the letters L and H those lines which Adams claimed gave lower or higher values than the general reversing layer. It will at once be seen that the results obtained from the 72 plates measured by Plaskett do not agree with those of Adams, but are generally of the opposite sign. It seems to us therefore that the only safe conclusion to be drawn from the evidence at hand is that any differences found in both Adams' and Plaskett's values are not real differences of velocity but are, if not wholly accidental, rather some personal effect in the measurement due possibly to the character of the line. It is unfortunate that no plates containing H_{a} and $\mathrm{Ca} \lambda 4227$ were obtained here in order to compare the rotational values obtained from these lines with the general reversing layer, as was done by Adams; but it seems likely that personal differences, at least as high as those occurring in the general reversing layer, would be present in the measures of these broad and difficult lines.

Summary.

32. The principal conclusions reached from this investigation may be bijefly summarized as follow:-
(a) The Ottawa values of the solar rotation may be represented by the formula

$$
\left.\begin{array}{l}
\left.\begin{array}{l}
\mathrm{V}=\left(1.483+.532 \cos ^{2} \varphi\right) \cos \varphi \\
\xi=10^{\circ} .32+4^{\circ} .05 \cos ^{2} \varphi
\end{array}\right\} \text { Plaskett } \\
\mathrm{V}=\left(1.448+.532 \cos ^{2} \varphi\right) \cos \varphi \\
\xi=10^{\circ} .04+4^{\circ} .00 \cos ^{2} \varphi
\end{array}\right\} \text { De Lury }
$$

which are in remarklaby good agreement with Dunér's and Adams' 1908 results except for small and nearly constant differences, and which probably represent very closely the law of variation with latitude.
(b) The absolute velocity of the solar rotation seems to be un-' certain by the small differences above referred to, of the order of two or three per cent. which is apparently due to personal differences in the habit of measurement of the rotational displacements on the plates.
(c) The tabulation and discussion of about 3,000 residuals from different lines and elements in the regions measured, show that no
systematic difference of velocity for different elements is present in the Ottawa plates. The frequently opposite signs of the mean residuals at Ottawa and Mt. Wilson from the same lines, (those found at the latter place to give systematically higher or lower velocities) would point to the conclusion that the deviations previously found might have been either accidental, or more probably personal and due to the character of the lines.

It gives us much pleasure to record here our appreciation of the interest the Director, Dr. W. F. King, has taken in this work, of the help he has afforded, and of his willingness to meet the many needs in the matter of apparatus arising in the course of the work.

Dominion Observatory,
Ottawa.

[^0]: * Transactions Royal Society of Canada, 1911, Sec. III, p. 107.

[^1]: * Adams and Lasby-An investigation of the Rotation Period of the Sun by Spectroscopic Methods, p. 119.
 ** Adams and Lasby, p. 13.

[^2]: * At the time of writing new values obtained by the Maunders for i and Ω have appeared but these corrections would introduce only quite inappreciable changes in our computed values.

[^3]: \dagger Instead of taking the mean latitude $\frac{\varphi_{1}+\varphi_{2}}{2}$ it is more correct to take the angle φ^{1} such that $11^{\circ} .04+3.5 \cos ^{2} \varphi^{1}=\frac{1}{2}\left(11^{\circ} .04+3.5 \cos ^{2} \varphi_{1}+11^{\circ} .04+3.5\right.$ $\cos ^{2} \varphi_{2}$). This was not necessary in Series I and III but in Series II this difference in one case reaches 23^{\prime} which changes the correction slightly.

[^4]: $=1$
 052

[^5]: Probable Error Single Plate. Mean $= \pm .041$
 $=-.010$

[^6]: * Jour. Roy. Astron. Soc. Can. 5, 381-107.

[^7]: * Jour. Roy. Astron. Soc. Can. 5, 405.

[^8]: * M, N. LXII, p. 674.
 † Adams \& Lashy, p. 118.

[^9]: *A. N. 173 p. 294.
 \dagger Adams \& Lasby, p. 115.

[^10]: * Adams \& Lasby, p. 117

