IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences
Corporation

CIHM/ICMH Microfiche Series.

CIHM/ICMH Coliection de microfiches.

(C)

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique. which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur
Covers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manque
Coloured maps/
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur
Bound with other material/
Relié avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distortion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

Additional comments:/
Commentaires supplémentaires:

STUDENT HAS WRITTEN IN PENCIL THROUGHOUT.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur
Pages damaged/
Pages endommagées
Pages restored and/or laminated/
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées
Pages detached/
Pages détachées
Showthrough/
Transparence
Quality of print varies/
Qualité inégale de l'impression
Includes supplementary material/
Comprend du matériel supplémentaire
Only edition available/
Seule édition disponible
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image/ Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure. etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"), whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:
The copy filmed here has been reproduced thanks to the generosity of:

Metropolitan Toronto Library
Sciance \& Technology Department
The images appearing hare are the best quallty possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impression, or the back cover when appropriate. All other original copies are filmed beginning on the first page with a printed or illustrated impression, and ending on the last page with a printed or illustrated impression.

L'exemplaire filmé fut reproduit grâce à la générosité de:

Metropolitan Toronto Library
Science \& Technology Department
Les images suivantes ont été reproduites avec le plus grand soin, compte tenu de la condition et de la netteté de l'exemplaire filmé, et en conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papier est imprimée sont filmés en commençant par le premier plat et en terminant soit par la derniàre page qui comporte une emprainte d'impression ou dillustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la première page qui comporte une empreinte d'impression ou d'illustration et en terminant par la dernière page qui comporte une telle empreinte.

Un des symboles suivants apparaitre sur la dernière image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole $\boldsymbol{\nabla}$ signifie "FIN".

Les cartes, plenches, tableaux, etc., peuvent être filmés à des taux de réduction différents. Lorsque le document est trop grand pour être reproduit en un seul cliché, il est filmé à partir de l'angle supérieur gauche, de gauche à droite, et de haut en bas, en prenant le nombre d'images nécessaire. Les diagrammes suivants illustrent la méthode.

H.B. Bruce's PLANE TRIGONOMETRY

SOLUTION 0F TRIANGLES;

BY

J. B. CHERRIMAN, M.A.,

late fellow of st. joirn's college, cambridge. and professor of natural philosophy in university college, toronto.

SECOND EDITION.

TORONTO:

COPP, CLARK \& CO., PRINTERS, KING STREET NAST. 1869.
$C 8093$

printed at the steam press establishment of comp, clark \& co., hAG STREET EAST, TORONTO.
516.24

634

1. The common logarithm of a number is the index of the \boldsymbol{A} logarithm power to which ten must be raised in order to produce that pumber; so that in the equation

$$
10^{x}=a
$$

x is the legarithm of the number a, and this is written

$$
x=\log a
$$

2. The logarithms of numbers which are integral powers of ten are immediately known ; for example:

$$
\begin{array}{ll}
10^{3}=1000, & \log 1000=3, \\
10^{2}=100, & \log 100=2, \\
10^{1}=10, & \log 10=1, \\
10^{0}=1, & \log 1=0, \\
10^{-1}=0 \cdot 1, & \log 0 \cdot 1=-1, \\
10^{-2}=001, & \log 0 \cdot 01=-2, \\
10^{-3}=0 \cdot 001, & \log 0 \cdot 001=-3,
\end{array}
$$

For numbers greater than ten, the logarithms will be positive integers or mixed numbers; for numbers between 10 and 1 , the logarithms will be positive decimals; for numbers less than 1, the logarithms will be negative quantities; the logarithm of zero is negative infinity, and negative numbers have no logarithms.
3. When the logarithm of a number is a negative quantity, Characterisit is convenient to express it so that the integral part alone is Mantissa.
negative, the decimal part remaining always positive, and the negative sign is written over the integral part to indicate this:

$$
\begin{aligned}
& \text { Thus, } \log 0.05=-(1.30103) \\
& =-1-0.30103 \\
& =-2+(1-0.30103) \\
& =-2+0.69897 \\
& =\overline{2} \cdot 69897 \text {. }
\end{aligned}
$$

With this convention, the integral part of the logarithm is called the characteristic, and the decimal part the mantissa.
4. Since numbers which have $(n+1)$ figures in their integral part commence with 10^{n} and run up to 10^{n+1}, their logarithms will commence with n and run up to $(n+1)$, and the characteristic, for all such numbers will therefore be n. Again, since pure decimals in which the first significant digit occurs in the nth place from the decimal point commence with 10^{-n} and run up to $10^{-(n-1)}$, their logarithms will commence with - n and run up to - ($n-1$), that is, will be $-n$ increased by some decimal, and the characteristic for all such will therefore be \bar{n}. Hence we have the following rule for finding the cbaracteristic of the logarithm for any number.

Rule for finding the claracteristic.

If the numbrr be an integer or a mixed number, the characteristic is positive and is less by unity than the number of figures in the integral part; if the number be a decimal the characteristic is the number of the place of the first significant digit, counting from the decimal point, and is negative.

Thus for the following numbers

$$
12345, \quad 12 \cdot 345, \quad 1 \cdot 23, \quad 0.54, \quad 0.000543,
$$

the characteristics are respectively

$$
4, \quad 1, \quad 0, \overline{1}, \overline{4} .
$$

Conversely, when a logarithm is given, the position of the decimal point in the corresponding number depends only on the characteristic, and we have the following rule for placing it.
ositive, and to indicate
ogarithm is manlissa.
s in their n^{n+1}, their +1), and fore be n. significant commence thms will lat is, will eristic for following a for any mber, the e number a decimal irst signinegative. rule for

If the characteristic be positive or zero, the number of Rule for the figures in the integral part of the number will le greater by decinul the one than the characteristic ; if the characteristic le negative, numuler. the number will be a pure decimal having its jirst significant digit in the place indicated by the number of the characteristic.
5. The following are the rules on which are founded the uses of logarithms in performing arithmetical operations.
(1)................ $\log (a b)=\log a+\log b$.

Let

$$
x=\log a, \quad y=\log b
$$

so that

$$
10^{x}=a, 10^{y}=b .
$$

Then,

$$
a l=10^{x} \times 10^{y}=10^{x+y}
$$

so that $\quad x+y$ is the logarithm of $(a b)$,
or, $\quad \log (a b)=\log a+\log b$.
(2)................. $\log \frac{a}{b}=\log a-\log l$.

Let

$$
x=\log a, \quad y=\log b,
$$

so that

$$
10^{x}=a, 10 y=b
$$

Then,

$$
\frac{a}{b}=\frac{10^{x}}{10^{y}}=10^{x-y}
$$

so that $x-y$ is the logarithm of $\frac{a}{b}$
or

$$
\log \left(\frac{a}{b}\right)=\log a-\log b
$$

(3) $. \log \left(a^{n}\right)=n \log a$.
Let $\quad x=\log a$, so that $10^{x}=a$.
Then,

$$
a^{n}=\left(10^{x}\right)^{n}=10^{n x}
$$

so that
$u x$ is the logarithm of a^{n}
or

$$
\log \left(a^{n}\right)=u \log a .
$$

(4)

$$
\log (n / a)=\frac{1}{n} \log a .
$$

Fet

$$
x=\log a, \text { so that } 10^{x}=a .
$$

Then

$$
{ }^{n} \sqrt{ } a=a^{\frac{1}{n}}=\left(10^{x}\right)^{\frac{1}{n}}=10^{\frac{x}{n}},
$$

so that

$$
\frac{x}{n} \text { is the logarithm of }{ }^{n} / a \text {, }
$$

$0:$

$$
\log (\sqrt[n]{ } \sqrt{ })=\frac{1}{n} \log a
$$

6. Any of these operations may be combined: thus

$$
\begin{aligned}
& \log (a b c d)=\log a+\log b+\log c+\log d ; \\
& \log \left(\frac{a}{b c}\right)=\log a-\log b-\log c \\
& \log _{\frac{c^{2}}{2}}^{a} \sqrt{z^{\prime} d}=\log a+\frac{1}{2} \log b-2 \log c-\frac{1}{3} \log d .
\end{aligned}
$$

The mantissa independent of the place of the decimal
point in the number.
7. The mantissa of the logarillm is the same for all numbers which differ only in the position of the decimal point.
For any change in the position of the decimal point in a number is effected by a continued multiplication or division by ten; and since $\log 10=1$, each such multiplication or division alters the characteristic of the logarithm only by the addition or subtraction of 1 , thus leaving the mantissa unchanged.
8. In the tables of logarithms of numbers, the mantissas Arrangealone are given (exact to a certain number of decimals), and tallis of the characteristics must be supplied by the rule of § 4. The number of figures in the given mantissas determines the number of figures for which the logarithm is given with supficient accuracy in these tables. Thus when six figures are given in the mantissas, the tables will be available only for numbers consisting of six figures or less, that is (disregarding the decimal point) for numbers ranging from 1 to $1000,000$. The mantissas however are not entered for all those numbers, but only for those terminating in the hundreds: for the intermediate numbers, the mantissas must be calculated by aid of the principle that the difference between the logarithms of two numbers is proportional to the difference between the numbers, when the numbers are taken sufficiently close. Thus the difference between two consecutive mantissas in the table corresponds to a difference of 100 between the numbers, and we obtain by a simple proportion the difference of mantissa corresponding to any less difference than 100 in the numbers.

Egg. . . Required the mantissa for the logarithm of 675347.
From the tables,

oint. int in a sion by ion or by the ssa un-
 I

[^0]

 1

[^1] ,

 --

Then, by the principle,

$$
\begin{aligned}
& \qquad \begin{array}{l}
\text { required difference for } 47=\frac{47}{100} \times 64=30 \cdot 08 \\
\text { and therefore the mantissa for } 675347 \text { is } 829497+30 \text {, or } 829527
\end{array}
\end{aligned}
$$

In many tables, the trouble of performing the multiplica- Table of ton in the above is avoided by the insertion of tables of pro- prats. portional parts, in which are set down the products of the difference for 100 by the respective units, so that these products can at sight be taken out and added to the mantissa.

Thus, in the previous example,

From the table, Number 675300;
From table of p.p., for 40,
7, 675347,

Mantissa, 829497
difference, $\quad 25.2$
4.4

Mantissa, 829527°

Aocording to the usual rule in decimals, in carrying out to n certain number only of places, the last figure must be increased by 1 When the first of the neglected figures is 5 or a higher digit.

To take out the logarithm of a number.
9. The following is then the rule for finding the logarithn of a number of six or less figures.

Disregarding the decimal point, look in the table for the first three figures of the number in the left-hand column, and for the fourth figure in the top line; at the intersection of the corresponding line and column will be found the mantissa; for the fifth figure, look in the table of proportional parts and take out the number for that column ; and for the sisth figure, also from the table of proportional parts, take out the corresponding number, removing the decimal point one place to the left. Add these two latter numbers to the uantissa proviously found, and then, by consideration of the position of the decimal point in the original number, prefix the proper claracteristic.*

[^2]Exnmple. Required the logarithm of 327.605 .

From the table,	3276..,	Mnntissa	16344
From p.p.,	9 ,	diff.	1197
..............	5,	6 '	6.6
	327695,	Mant.	515470

and the characteristic is 2 ; therefore the logarithm of $327 \cdot 605$ is 2.515470 .
10. The reverse process of finding the number correspond- To take out ing to a given logarithm is performed on the same principle. correspoudDisregarding the characteristic, look out in the tables for the mantissa next below the given mantissa. In the corresponding line and column will be found the first three and the fourth figures of the number. Then taking the difference between tho mantissa thus found and the given one, and also that between the former and the next higher in the tables (which will be the difference for 100 in the number), by a simple proportion the tens and units in the required number are found. The decimal point must then be inserted by consideration of the characteristic of the given logarithm.

Example. Find the number corresponding to the given logarithm, $\overline{2} \cdot 767108$. The mantissa next below is 767156, and the corresponding uumber is 585000 . The difference between the two mantissas is 42 .

Again in the tables,
Mantissa corresponding to 585100 is 767230
…..................... 585000 " 767156
Difference of mantissa for $\quad-100$ is $\quad \overline{74}$

Then, by the proportion, the required difference in the number for a difference of 42 in the mantissa is

$$
100 \times \frac{42}{74}=56.7
$$

and the number for this mantissa is $585000+57$, or 585057 . The characteristic in the given logarithm being 2 , the number required. will be 00585057.

Table of As in the previous case, the trouble of performing the proportional parts.

> Use of logarithms in multiplication. division in the above is avoided by the tables of proportional parts in which the quotients corresponding to the division are set down. Thus, having taken the difference between the given mantissa and the one next below it in the tables, look jut in the corresponding table of proportional parts for the number next below this difference, and the column in which this is found gives the fifth figure: again take the difference between the previous difference and the number found in the table of propertional parts, and removing the decimal point in it one place to the right, look out again in the table of proportional parts for the number nearest to it, and the column in which this is found gives the sixth figure.

The previous example would be thus worked :

n mantissa, 767198;				
Mantissa next below, 767156 ,				
Difference	42,			
In table of p. p., diff. next below is	37.0,	"	"	5
Residual difference	5.0	"	6	7

This gives for the six figures, 585057 , and the number required is therefore 0.0585057 .

We shall now exemplify the rules for performing arithmetical operations by aid of logarithms, demonstrated in § 5 , using five-figure logarithins only.
11. To multiply numbers together.

Rule. Add the logarithins of the numbers, and take from the talles the number corresponding to this sum as a logarithm.

Ex. (1). Multiply $379 \cdot 45$ into $2 \cdot 4672$.
Number, $379 \cdot 45 ; \log , 2.57915$
" $2 \cdot 4672$; ", 0.39220
Product, 936.16; log, 2.97135
rming the roportional ivision are tween the ables, look rts for the 1 in which difference und in the al point in ble of prohe column logaritlm.

Ex. (2). Multiply 907 into 0.0325
Number, $\quad 997$; log, 2.99870
" 0.0325 ; ", $\overline{2} .51188$
Product, 32,403; log, 1•51058
Observe that the addition is $+2+(-2)+0.9 \ldots+0.5 \ldots$

Ex. (3).	Multiply	7240000 into	93201
	Number,	$72+0000$; log,	6.85974
	"	93こ01; ",	4:96042

Product, $674780000000 ; \log , 11 \cdot 82916$
Here the product has 12 figares in its integral part, of which only five are determined; the remaining 7 being unknown are replaced by cyphers.

Ex. (4). Multiply 0.076905 into 0.000094397

Product, $\overline{0.000007 \cdot 2.596} ; \log , \overline{6} \cdot 86091$
Here the addition is $-2-5+0.8 \ldots+0.9 \ldots$
12. To divide one number by another.

Division.
Rulc. Subtract the logarithm of the divisor from that of the dividend, and take from the tables the number corresponding to this difference as a logarithm.

Fix. (1). Tivide $32 \cdot 495$ by 7 •f993.
Dividend, $32 \cdot 495$; log, 151182
Divisor, 7.6993; ", 0.88645
Quotient, $\quad \overline{4 \cdot 2 \cdot 206} ; \log , 0 \cdot 62537$

Ex. (2). Divide 2.7045 by 312.79.
Dividend, $\quad 2.7045$; log, 0.43209
Divisor, $\quad 312.79$; log, $2 \cdot 49525$
Quotient, 0.0086465 ; $\log , \overline{3} \cdot 93684$
Here the subtraction is $1 \cdot 43 \ldots-0 \cdot 49 \ldots, 2-1$.

Ex. (3). Divide 405.94 by 0.793 .
Dividend, $\quad 465.94 ; \log , 2.66833$
Divisor, 0.793 ; ", $\overline{1} \cdot 89927$
Quotient, $\quad 587.57$; $\log , 2 \cdot 76906$
Here the subtraction is $26 \ldots, 0 \cdot 8 \ldots-(-1)$.
Ex. (4). Divide 0.0037095 by 0.00001605 .
Dividend, 0.0037095 ; log, $\overline{3} \cdot 56932$
Divisor, $0 \cdot 00001605$; ", $\overline{5} \cdot 20548$
Quotient, $231 \cdot 12$; log, $2 \cdot 36: 384$
Here the subtraction is $0 \cdot 5 \ldots-0 \cdot 2 \ldots+(-3)-(-5)$.
In cases of this kind, it may be easier to make both characteristics positive by adding the same number to each : for example, add 10 in the abore, and the process is

$$
75 \ldots-5 \cdot 2 \ldots=2 \cdot 3 \ldots
$$

Use of arithmetical complements.
13. It is convenient to convert the process of subtraction into one of addition by the use of what is called the arithmetical complement. Thus if l is to be subtracted from a, instead of subtracting l, add $10-b$, and subtract 10 from the result ; for

$$
a-b=a+(10-b)-10
$$

This quantity $(10-b)$ is called the arithmetical complement of b, and is found by subtracting the first significant digit,

13

beginning from the right hand, from 10, and each following digit from 9 , including, in the case of a logarithm, the characteristic with its proper sign.

For example,

Number, $239 \cdot 31$; log, $2 \cdot 37896$; co-log, 7.62104;
" 0.0025177 ; log, $\overline{3} \cdot 40100$; co-log, 12.50900.
The working of the previous examples would then stand thus,

Ex. (1).

Dividend, Divisor,	$\begin{aligned} & 32 \cdot 495 \\ & 7 \cdot 6993 \end{aligned}$	$\begin{gathered} \log , \\ \text { co-log}, \end{gathered}$	$\begin{aligned} & 1 \cdot 51182 \\ & 9 \cdot 11355 \end{aligned}$
			0.62587

Ex. (2).
Dividend, $\quad 2.7045 ; \quad \log , \quad 0.43209$
Divisor, $\quad 312.79$; co-log, 7.50475

Ex. (1). Find the sixth power of 23.91 .
Number, 23.91 ; $\log , 187858$
6
Required power, $186840000 ; \log , \mathrm{S} \cdot 27148$

Here the power has 9 figures in its integral part, of which only 5 are determined, the remaining 4 being unknown are replaced by cyphers.

Ex. (2). Find $(0.032507)^{20}$.
Number, $0.032507 ; \log , \overline{2} \cdot 51198$
10
Power $=0 \cdot 0000000000000018177 ; \log , \overline{15} \cdot 11980$
Here the multiplication is $10(-2)+10(\cdot 5 .$.$) .$

Evolution.
15. To extract any root of a number.

Rule. Divide the logarithm of the mumber by the root, and take from the tables the momber corresponding to this quotient as a logarithm.

Ex. (1). Required the fifth root of 2.

Ex. (2). Required the 8th root of 0.700:35.

$$
\begin{array}{ll}
\text { Number, } 0.79635 ; & \log , \\
8 & \overline{\mathbf{1}} \cdot 90110 \\
\text { Root, } & 0.97194 ;
\end{array}
$$

Here the characteristic being negative and not exactly divisible by the root, we add to it a sufficient number (negative) to make it
ry the root, onding to this

30103
exactly divisible, and therefore the same number (positive) to the mantissa. Thus,
$-847.9 .$. , which on division gives $-1+0.9 \ldots$ or $\overline{1} \cdot 9 \ldots$
16. As lefore remarked, any of these operations may be Combined combined, but when more than one arithmetical complement is used, a ten must be subtracted from the result for each complement.

Ex. (1). Find the value of $\frac{(12 \cdot 845)^{3}}{670 \cdot 5!9 \times 50.823}$.
Number, $12.345 ; \log , 1.09149$

		5		
		$5 \cdot 45745$	$5 \cdot 45745$
i6	C70.59; log,	$2 \cdot 82646$	co-log,	$7 \cdot 17354$
"	$50 \cdot 323$; log,	$1 \cdot 70177$	"	8.29823
	Required value,	8.4961	log,	0.92922

Ex. (2). Find $3^{3 / 5}$.
Number, $\overline{5} ; \quad \log , 0.69897$
" 6; co-log, $9 \cdot 2 \cdot 2185$
8) $\overline{1} \cdot 92082$

Required value, 0.94105 ; $\log , \overline{1} \cdot 97361$.
The operation here is this:

$$
\begin{aligned}
\log V^{3 / 5}=\frac{1}{3} \log \frac{5}{6} & =\frac{1}{3}(\log 5-\log 6) \\
& =\frac{1}{3}(\log 5+\operatorname{co-log} 6-10) ;
\end{aligned}
$$

THE TRIGONOMLTRICAL \cdot RATIOS:
17. It is proved by liuclid that in a right-angled triangle, The trigonometrical when one of the other angles is given, the ratios of the sides angle delined. are also given. 'To these ratios, six in number, distinctive Fig. 1.
names are attached, and they are called the trigonometrical ratios of the given angle. Thusin the triangle $A B C$, (fig. 1) having the angle C right, with reference to the angle A, calling the side opposite to A the perpendicular, the other side the base, that opposite to C being the hypothenuse, the ratio of perpendicular to hypothenuse is called the sine of the angle A; the ratio of perpendicular to base the tangent; and the ratio of hypothenuse to base, the secant; or, as they are written,

$$
\begin{aligned}
& \frac{B C}{A C}=\tan A \\
& \frac{A B}{A C}=\sec A
\end{aligned}
$$

The other three ratios-namely:

$$
\begin{array}{lll}
\frac{A C}{\overline{A B}}, & \bar{A} C & A B \\
\bar{B}, & \bar{B} C
\end{array}
$$

are evidently the sine, tangent, and secant with reference to the angle B, and this angle being the complement of A, the term "sine of the complement of A " is abbreviated into the cosine of A; and similarly the names, cotangent, cosccant are formed for the other two. These are written,

$$
\begin{aligned}
& \text {. - - } \frac{A C}{A B}=\cos A, \quad 1<
\end{aligned}
$$

$$
\begin{aligned}
& \text { " }-\cdots \cdots \quad \overrightarrow{B C}=\operatorname{cosec} A \text {. } \quad \cdots,
\end{aligned}
$$

Their nature.
18. These ratios, when the angle is given, are independent of the magnitude of the triangle, and are in effect determinate positive numbers. Since the perpendicular and base are always less than the hypothenuse, it is plain that the sines and cosines are proper fractions, while the secants and cosecants are whole numbers or improper fractions, but the tangents and cotangents may have any positive values.
19. As the allgle A increases, retaining the same hypothe- Their nuse, the perpendicular increases and the base diminishes value. continually, and therefore the sine, tangent, and secant increase, while the cosine, cotangent, and cosecant diminish, and when A approaches near to 90°, the perpendicular approaches to coincidence with the hypothenuse, while the base vanishes, and we have therefure for 90°,

$$
\begin{array}{ll}
\sin 93^{\circ}=1, \tan 90^{\circ}=\infty, \sec 90^{\circ}=\alpha, \cos 90^{\circ}=0, & \begin{array}{l}
\text { Particular } \\
\text { values for }
\end{array} \\
\cot 90^{\circ}=0, \operatorname{cosec} 90^{\circ}=1 & 90^{\circ}, 0^{\circ}, 45^{\circ}
\end{array}
$$

Also since 0° is the complement of 90°, these values give $\cos 0^{\circ}=1, \cot 0=\propto, \operatorname{cosec} 0=\alpha, \sin 0=0, \tan 0=0$, $\sec 0=1$.
20. The following intermediate values may be noticed.

Take a right-angled isosceles triangle (fig. 2), in which the
Fig. 2. perpendicular and base are each $=1$, and the hypothenuse therefore $=\sqrt{ }$.
Then either angle being 45°, it is seen by inspection that $\sin 45^{\circ}=\cos 45^{\circ}=\frac{1}{\sqrt{2}} ; \tan 45^{\circ}=\cot 45^{\circ}=1 ; \sec 45^{\circ}$ $=\operatorname{cosec} 45^{\circ}=1 / 2$.

Hence also the tangent of an angle less than 45° is less than 1, and of an angle greater than 45° is greater than 1 , while the reverse is the case for the cotangent.

Again, take an equilateral triangle (fig. 3) each of whose Fig. 3. sides $=2$, and from one of the vertexes drop a perpendicular on the opposite side; this perpendicular bisects both the side and the angle, giving two right-angled triangles with the angles $30^{\circ}, 60^{\circ}$, and the length of this perpendicular is $\sqrt{ } / 3$. Hence by inspection

$$
\begin{aligned}
& \sin 30^{\circ} \text { or } \cos 60^{\circ}=\frac{1}{2} ; \cos 30^{\circ} \text { or } \sin 60^{\circ}=\frac{\sqrt{3}}{2} ; \\
& \tan 30^{\circ} \text { or } \cot 60^{\circ}=\frac{1}{\sqrt{3}} ; \cot 30^{\circ} \text { or } \tan 60^{\circ}=\sqrt{ } 3 \\
& \sec 30^{\circ} \text { or } \operatorname{cosec} 60^{\circ}=\frac{2}{\sqrt{3}} ; \operatorname{cosec} 30^{\circ} \text { or } \sec 60^{\circ}=2 \\
& 2
\end{aligned}
$$

Fire independent rependent renect them.

21 It is also proved by Euclid that when the ratio of two sides in a right-angled triangle is given, the angles are also given. Consequently when any one of the six trigonometrical ratios of an angle is given, the angle itself is determinate, and the other five ratios can be found. Hence there must be five independent relations connecting the six ratios of an angle. By inspection it is seen that the sine and cosecant, the tangent and cotangent, the cosino and secant are reciprocals, so that

$$
\sin A=\frac{1}{\operatorname{cosec} A}, \tan A=\frac{1}{\cot A}, \cos A=\frac{1}{\sec A}
$$

Again,

$$
\frac{\sin A}{\cos A}=\frac{B C}{A B} \div \frac{A C}{A B}=\frac{B C}{A C}=\tan A .
$$

These are four of the relations; a fifth, coanesting sine and cosine is given by Euclid, B. I. Prop. 47^{*}; for

$$
A B^{2}=D U^{2}+A O^{2}
$$

and therefers

$$
\begin{aligned}
I & =\left(\frac{P C}{A B}\right)^{2}+\left(\frac{A C}{A B}\right)^{2} \\
& =(\sin \angle)^{2}+(\cos \angle)^{2}
\end{aligned}
$$

or, as it is usually mritten

$$
\sin ^{2} A+\cos ^{2} A=1
$$

Numerous other reletions exist between these ratios, but they are all deducible from the fizo aoovs given, which enable us by a simple algebraic process to cxpress ajy one ratio in terms of any other.

Tables of their values.
22. The values of all these ratios are calculated for all ang', between 0 end 90°, aud are entered in tables called natural cines, \&o.; but these valucs are not so useful as the logarithms of then which form the tables called logaritimic siaes, \&ic. Nince, howezer, the sines and cosines are proper fractions, and so also are cozo of the tangents ond cotangents,

[^3]e ratio of two ogles are also rigonometrical erminate, and must be five of an angle. it, the tangent cals, so that
$\frac{1}{\sec A}$.

A.

ting sine and
s, but they aro us by a simple any other.
ulated for all tables called , useful as the d logaritimic les are proper à cotangents,

on, will be sub-

their logarithms will have negative characteristics, and to avoid the iuconvenience of printing these, every logarithm of a trigonometrical ratio is increased by 10 baforo being The tabular entered in the table. To distinguish therefore the real logar- ligarithm as ithm from that given in the tables, the latter will always be $\begin{gathered}\text { ed from tho } \\ \text { reat logar- }\end{gathered}$ written with an italic capital L, and it must always be borne ithm. in mind that 10 is to be taken from each such logarithm when used instead of the real logarithm, the operation being either expressed or understood.

For instance

$$
\begin{aligned}
\sin 30^{\circ} & =\frac{1}{2}=0.5 \\
\log \sin 30^{\circ} & =\log (0.5)=\overline{1} \cdot 69807 \\
L \sin 30^{\circ} & =9.69897 .
\end{aligned}
$$

Also,

$$
\begin{aligned}
\tan 45^{\circ} & =1 \\
\log \tan 45^{\circ} & =0 \\
L \tan 45^{\circ} & =10.00000 .
\end{aligned}
$$

23. Again, since
$\sin A \times \operatorname{cosec} A=1$, we have
$\log \sin A+\log \operatorname{cosec} A=9$,

$$
L \sin A-10+\Sigma \text { sosec } A-10=0
$$

or,

$$
L \sin A+L \operatorname{cosec} A=20
$$

And similarly,

$$
\begin{aligned}
& L \tan A+L \cot A=20 \\
& L \cos A+L \sec A=20 .
\end{aligned}
$$

Also,

$$
\begin{aligned}
\tan A & =\frac{\sin A}{\cos A} \\
\log \tan A & =\log \sin A-\log \cos A \\
L \tan A & -10=L \sin A-10-(L \cos A-10) \\
L \tan A & =L \sin A+10-L \cos A
\end{aligned}
$$

By aid of these formulas, if $L \sin A$ and $L \cos A$ be tabulated from 0 to 45°, the values of the other logaritimic functions from 0 to 90° can be formed.

Arrangement of the tibles of logarithmic wines, \&c.
24. In the ordinary tables, these logarithmic sines, cosines, \&o., are given for all angles from 0° to 90° at intervals of one minute, and it will be sufficient for most purposes to take out any required angle to the nearest minute, but if greater accuracy be needed, recourse must be had to the principle of proportional parts already explained in discussing the logarithms of numbers.

The usual arrangement is that the angles from 0 to 45° are placed at intervals of one degree at the head of the page, the minutes running down the left-hand column, while the angles from 45° to 90° are placed at the foot of the page, and the minutes run up the right-hand column. By this arrangement the same column is used for the sine of an angle and for the cosine of its complement; and in the same way for the tangent and cotangent, and for secant and cosecant.
25. Since sines and cosines are proper fractions, the tabular logarithms of them will always be less than 10 ; and since secants and cosecants are integers or improper fractions, their tabular logarithn.s will always be greater than 10 . The logarithmic tangents will be less than 10 up to 45°, and after this will be greater than 10 , and the reverse will be the case for the cotangents. The following table exhibits the changes as the angle passes from 0 to 90° :

$L \tan$ and L cot are each 10 at 40°.

Direct rclations connecting the sidesand tho trigon metrical ratios of one of the angles in a right-angled triangle.

SOLUTION OF RIGHT-ANGLED TRIANGLES.

26. Taking the triangle $A B C$, where C is 90°, and denoting the lengths of the sides opposite to each angle by the

21

s , cosines, tervals of es to take if greater rinciple of the logar-
to 45° are page, the tho angles e, and the β arrangele and for ay for the the tabuand since ions, their The logand after e the case changes
$-x$ to 10
10 "
$-x "+x$
$-\infty$ "-
10 " $+\infty$
$-\infty$ " 10 .

خLES.
ind denotgle by the
small letter corresponding, the definitions of the trigonometrical ratios give the following relations:

$$
\begin{aligned}
\sin A & =\frac{a}{b}, \quad \text { or } \quad a=c \sin A \\
\tan A & =\frac{a}{b} \ldots \ldots \ldots \ldots a=b \tan A \\
\sec A & =\frac{c}{b} \ldots \ldots \ldots \ldots c=b \sec A \\
\cos A & =\frac{b}{a} \ldots \ldots \ldots b=c \cos A \\
\cot A & =\frac{b}{a} \ldots \ldots \ldots \ldots l=a \cot A \\
\operatorname{cosec} A & =\frac{c}{a} \ldots \ldots \ldots \ldots c=a \operatorname{cosec} A
\end{aligned}
$$

Fig. 4.

Two parts being given a, b, c, A being given, the other two could be found by aid (one at least
befingarine),
of the tables of natural sines, cosines, \&c.; and the remain- the triangle a, b, c, A being given, the other two could be found by aid (one at least
befingarine),
of the tables of natural sines, cosines, \&c.; and the remain- the triangle ing angle B, whieh is the complement of A, being thus found san bed. also, the triangle would be completely determined. Such a mode of solution would however be inconvenient, as involving long processes of multiplication, and we shall proceed to discuss the different cases of the solution of right-angled triangles by means of the logarithmic tables.
28. Four distinct eases will arise, (1), an angle and a side ; Four cases (2), an angle and the hypothenuse; (3), the two sides; (4), a side and the hypothenasc. In cases (1) and (2), it is indifferent which angle be given, as the other is at once known. The solution will be effeeted in each case by picking out from among the foregoing relations one which connects the quantity sought for with two quantities which have been given or found, and it will be noticed that in each case there will be two of these relations which would serve this purpose. If one involves a process of addition, and the other a process of subtraction, we shall always take the former.

Case (1). Given a, A; to find B, b, c.
Case 1.

$$
\begin{aligned}
& B=90^{\circ}-A \text {. } \\
& l=a \cot A \text {. } \\
& B \text { found. an angle } \begin{array}{c}
\text { a side and } \\
\text { given. }
\end{array}
\end{aligned}
$$

Taking the logarithms of both sides,
$\log \dot{b}=\log a+\log \cot A$
or
$\log \dot{b}=\log a+z \cot A-10 \ldots \ldots .$. if found.
$c=c \operatorname{cosec} A$
or
$\log c=\log a+j \operatorname{cosec} A-10 \ldots \ldots . . c$. iound.
Case 2.
The bypothennse andan angle given.

$B=90^{\circ}-A . \ldots \ldots \ldots .$. found.
$a=c \sin A$,
$\log _{0} a=\log c+\Sigma \sin A-I!\ldots \ldots$ aiound.
$b=c \cos A$,
$\log b=\log c+i \cos .4-10 \ldots . .$. is found.
Case 3.
The two sides given.

Case (III). Given a, b; to han \therefore, \because, c.
$\tan A=\frac{a}{b}$,
$\log \tan A=\log a-\operatorname{lng}{ }^{2}$,

$$
L \tan A-10=\log a \cos -10
$$

and therefore

$$
\begin{aligned}
& L \tan A=\log a+\operatorname{celog} b \ldots A \text { found. } \\
& B=90^{\circ}-A . \text {. } 3 \text { found. } \\
& c=a \operatorname{cosec} A, \\
& \log c=\log a+L \text { eosec } A-10 \ldots . . c \text { found. }
\end{aligned}
$$

In this case it is indifferent whether wo determine A from tho formula $\tan A=\frac{a}{b}$, or from $\cot A=\frac{b}{a}$. Also there is not among our relations one connecting c with the given quantities a, b, ard although we know from Euclid that $c^{2}=a^{2}+l^{2}$, this formula is zot convenient for logarithmio computation, and we therefore detern.ino c by means of A, which though not given has beer already fouzd. We might also have deternined c by means of $c=b \mathrm{sec} A$.

Case 4.

4 side cs. 1 the bypoth. enuse given.

Case (IV). Given c, c; to find A, B, b.
$\sin A=\frac{a}{\imath}$,
$\log \sin A=\log c-\log c$
$L \sin A-10==\log a+\operatorname{colog} c-10$,
and therefore

$$
\begin{aligned}
& L \sin A=\log a+\operatorname{colog} c \ldots \ldots \ldots \ldots
\end{aligned}
$$

$$
\begin{aligned}
& b=a \cot A \\
& \log b=\log a+L \cot A-10 \ldots \ldots . . b \text { found. }
\end{aligned}
$$

In this case it is indifferent whether we determine A from the formula $\sin A=\frac{a}{c}$, or from $\operatorname{cosec} A=\frac{c}{a}$. Also, the:s bo: ng nens of the relations which connects b directly with tho givez quantities a, c, it is determined by means of A which h-g plaziously veen found; it might also havo been founc from tha $2, b=e \cos A$. It is known from Luclid that $b^{2}=c^{2}-a^{2}$, anc. \bar{i} a...ght have thas been found direct!", but the formult is aot ocerenicat for lognrithms.
29. The solution of an isosselas trianglo can bo effected by $\begin{gathered}\text { Isosceles } \\ \text { triankles }\end{gathered}$ aid o? the preceding; for such a triangle can be divided by a solved. parpendicular dropped from the vertex on the base into two right-angled triangles, equal in all respects, and by solving these, the parts of the isosce!es triangle also are determined.
30. Examples of right-angled triangles.

Case (1). Given $a=129 \cdot 5, A=37^{\circ} 07^{\prime}$.

$$
B=90^{\circ}-A
$$

$$
\begin{aligned}
& 90^{\circ} 00^{\prime} \\
& A=87^{\circ} 07^{\prime} \\
& B=52^{\circ} 53^{\prime} \\
& \text { (} B \text { found.) } \\
& \log b=\log a+L \cot A-10 . \\
& a=129.5 ; \log a, \quad 2 \cdot 11227 \\
& A=37^{\circ} 07^{\prime} ; L \cot A, 1012105 \\
& l=171 \cdot 13 ; \log b, \quad 2 \cdot 23333 \quad \text { (} b \text { found.) } \\
& \log c=\log a+L \operatorname{cosec} A-10 \text {. } \\
& \log a ; \quad 2 \cdot 11227 \\
& A=37^{\circ} 07^{\prime} ; L \operatorname{cosec} A, 1021937 \\
& c=214 \cdot 61 ; \log c, \quad 2 \cdot 3316 \pm \text { (} c \text { found.) }
\end{aligned}
$$

Case (II). Given $c=31459, A=46^{\circ} 32^{\prime}$.

$$
\begin{gathered}
B=90^{\circ}-A . \\
A=40^{\circ} \quad 00^{\prime} \\
B=\begin{array}{|c}
43^{\circ} \quad 32 \\
\hline
\end{array}
\end{gathered}
$$

$$
\log a=\log c+L \sin A-10
$$

$$
c=31459 ; \log c, \quad 4 \cdot 49774
$$

$$
A=46^{\circ} 32 ; L \sin A, 9 \cdot 86080
$$

$$
a=22832 ; \log a, \quad 4.35854 \quad \text { (} a \text { found. })
$$

$$
\log b=\log c+L \cos A-10
$$

$$
\log c, 4 \cdot 49774
$$

$$
A=46^{\circ} 32^{\prime} ; L \cos A, 9 \cdot 83755
$$

$$
b=21642 ; \log b, \quad \overline{433529}
$$

Case (III). Given $a=2 \cdot 7039, b=3 \cdot 4505$.
$L \tan A=\log a+\operatorname{colog} b$.
$a=2.7039 ; \quad \log a, 043199$
$b=3 \cdot 4505 ; ~ c o l o g ~ b, 946212$
$\underline{\underline{A=38^{\circ} 05^{\prime}}} ; \quad L \tan A, \overline{9.89411}$
(A found.)
$B=90^{\circ}-A$.

$90^{\circ} \quad 00^{\prime}$	
A	$=38 \quad 05^{\prime}$
B	$=51^{\circ} 55^{\prime}$

$\log c=\log a+L \operatorname{cosec} A-10$.
$\log a, 0$
$A=38^{\circ} 05^{\prime} ; L \operatorname{cosec} A, 10 \cdot 20985$
$c=4.3837 ; \quad \log c, 0.64184$
(c found.)

25

Case (IV). Given $a=21, c=21.981$.

> | $L \sin A=\log a+\operatorname{colog} c$. | |
| :---: | :---: |
| $a=21 \quad ;$ | $\log a, 1 \cdot 32222$ |
| $c=21.981 ;$ | $\operatorname{colog} c, 8.65795$ |
| $A=72^{\circ} 49^{\prime} ;$ | $L \sin A, 9.98017$ |

(A found.)
$E=90^{\circ}-A$.

$$
\begin{aligned}
& 90^{\circ} 00^{\prime} \\
A & =\tau 2^{\circ} 49 \\
B & =\begin{array}{l}
17^{\circ} 11^{\prime}
\end{array} \quad \text { (} B \text { found.) }
\end{aligned}
$$

$$
\begin{array}{r}
\log b=\log a+L \cot A-10 . \\
\log a, 1 \cdot 32222 \\
A=72^{\circ} 49^{\prime} ; \quad L \cot A, 9 \cdot 49029 \\
\hline b=6 \cdot 4940 ; \quad \log b, \overline{0 \cdot 81251}
\end{array}
$$

TRIGONOMETRICAL FORMULAS.
31. It is vecessary now to extend our definitions to the Extension of case of an angle greater than one, but less than two, right the detiniangles. Let $C A B$ be such an angle and be denoted by A. tricanome ratios Produce $C A$ through A and drop $B C^{\prime}$ perpendicularly upon tothe case of it. The angle $B A C^{\prime}$ is called the supplement of A, and greater than $=180^{\circ}-A$. We now define the trigonometrical ratios of the angle the corresponding ratios for the angle $B A C^{\prime \prime}$ in triangle $B C^{\prime} A$, with the convention that $A C^{\prime \text { Fig. } 5 .}$ is to be considered a negative magnitude. Let p, b, h be the numerical values of the lengths of the perpendicular, base, and hypothenuse in the triangle: then

Felations
Bel:izon the ratios C . angle and is. supplement.
32. It will be seen on inspection that the ratios according to this exiended definition still satisfy the sare five fundamental relations as before; and although the complemeat of an engle (A) which is greater than 90°, being $90^{\circ}-A$, is a negative quantity, and ceases at present to have any signitcation, we shall still that the cosine, cotangent, cosecant of such an angle are tue sine, tangent, and secant of its complement, and hereafter, if necessary, give a consistent interpretatinn to the quantity.

The ratios for angles Erataricha ex found iromithose angles less than 90°.
33. From the above is :s seon that the trigonometrical ratio of an angle is the same in nucenionl value as the corresponding ratio of its supplement, bat bears a different sign except in the cases of cine and coscent which bear the same sign. It is therefore unnecessary to constract additional tables for angles greater than 90°, as tia ratios for such angles can be found from those of thei: supplements, which are less than 90°. Further, for stch angles, the tangents, secants, cosincs, and eotangents being negative cquantities, have no logarithms, and it is only for the sines and cosecants that the logarithms Lave real values, being the same as those given in the tables for the supplements of these angles.

The object of the convention in $Z 31$ being to distinguish as far as possible between the ratios of an angle and its supplement, it will ho ecticed that we have succeeded in diotinguishing between four only
of the six; now the signs of all the lines of the triangle $B A C^{\prime}$ being ai our disposal, if we were to make them all negative, we shou!d haso the same values for all the ratios; if we were to make two of wem negative, we should have four of the ratios with changed signc, and the other two the same, which is the same result as obtaiged by macking one only of the lines negative. Hence the latter method co being more simple is adopted, and of the three lines the base is selientac as the one to be ehanged, becavse (as will be seen in the uezt satiole) the relations bitween the sices of a triangle and the watics scr its angles can thas be expressed by the same formulas, whatcrea jo the nature of tia triangle.
34. We can now proceed to the discussion of trismote in general, to the angles of which, whether acute cr chotuse, our definitions of the ratics will now apply.

Tha triangle being $A B C$, the lengths of the sides opposite to the respective angles will be denoted by the saxill lettcre corresponding. The triangle then is said to have siz perts :-

Three independient r selations connesi tho eiz Fants of an whiligue trinamely, the three angles, A, B, C, and the three sides, a, b, c. anslue. It is proved by Euclid that when three of these parti aro given (one of them being a side), the other parts san jo found. There mnst therefore be three independent relations connecting these six quantities. Otie such relation is already established by Vaclid, namely:

$$
\begin{equation*}
A+B+B=120^{\circ} \tag{1}
\end{equation*}
$$

Orarelion tion.

 BA praveod (fs. 7).
Then in the ribtrangled tranct $E D D$,

$$
C D=B D \sin C B=a \operatorname{cin} B
$$

 $C_{i}: A C \sin C A D=3 \sin A$, i. AC. O,

Yo:ze

$$
\operatorname{cin} 3=\therefore \therefore A
$$

 oviain

$$
b \sin 0==c \sin B
$$

The other two.

And hence

$$
\begin{equation*}
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c} \tag{2}
\end{equation*}
$$

Another reliation found indepencently, but actually deducible from
the above. the above.
35. From these three relations (1), (2), all others can be deduced, but for such as we require at present, it will sometimes be casier to give proofs which do not directly depend on these.

Resuming the figures and construction of the previous proposition,

$$
\begin{aligned}
A B & =D B+A D, \text { in fig. } 6 . \\
& =B C \cos C B D+A C \cos C A D \\
& =a \cos B+b \cos A .
\end{aligned}
$$

A.lso,

$$
\begin{align*}
A B & =D B-A D, \text { in fig. } 7 . \\
& =B C \cos C B D-A C \cos C A D \\
& =a \cos B-b \cos \left(180^{\circ}-A\right) \\
& =a \cos B+b \cos A .
\end{align*}
$$

Deduction
of certain general forinnlas.
36. Multiplying the reepective terms of this equation by the equal quantities $\frac{\sin C}{c}, \frac{\sin A}{a}, \frac{\sin B}{b}$, we obtain

$$
\sin C=\sin A \cos B+\cos A \sin B
$$

* \ln this formula, writing it

$$
1=\frac{a}{c} \cos B+\frac{b}{c} \cos A
$$

suppose that C is a right angle. Then $\cos B=-\sin A$,
$\frac{a}{c}=\sin A, \frac{b}{c}=\cos A$, and, making these substitutions, it becomes

$$
1=(\sin A)^{2}+(\cos A)^{2}
$$

This is the proof alluded to in page 18, as not depending on Euclid, B. I. Prop. 47, but in fact being also 2 proof of that proposition.
but C is the supplement of $(A+B)$; therefore

$$
\sin (A+B)=\sin A \cos B+\cos A \sin B . \ldots \ldots(4) \quad(\sin A+B)
$$

can be 11 somepend on
37. We can express the sine of the difference of two angles in a similar way, for, by § 31 ,

$$
\begin{aligned}
& \sin (A-B)=\sin \left\{180^{\circ}-(A-B)\right\}=\sin \left\{\left(180^{\circ}-A\right)+B\right\} \\
& \quad=\sin \left(180^{\circ}-A\right) \cos B+\cos \left(180^{\circ}-A\right) \sin B, \\
& \quad=\sin A \cos B-\cos A \sin B \ldots \ldots \ldots \ldots \ldots(5) \quad \sin (A-D)
\end{aligned}
$$

Also we can thus express the cosine of the sum of two angles; for

$$
\begin{align*}
& \cos (A+B)=\sin \left\{90^{\circ}-(A+B)\right\}=\sin \left\{\left(90^{\circ}-A\right)-B\right\} \\
& =\sin \left(90^{\circ}-A\right) \cos B-\cos \left(90^{\circ}-A\right) \sin B \\
& =\cos A \cos B-\sin A \sin B \quad \ldots \ldots \ldots \ldots(6) \quad \cos (A+B) \tag{6}
\end{align*}
$$

The above proof of the last three formulas restricts the angles A and B to have their sum less than 180°. The formulas however are universal, but it is not necessary to extend them beyond this case, as it is the only case in which their uso is at present required.
33. In (4), and (6), putting $B=A$, we obtain

$$
\begin{aligned}
\sin 2 A & =\sin A \cos A+\cos A \sin A \\
& =2 \sin A \cos A \\
\cos 2 A & =\cos A \cos A-\sin A \sin A \\
& =\cos ^{2} A-\sin ^{2} A
\end{aligned}
$$

and therefore, (since $\cos ^{2} A+\sin ^{2} A=1$,)
or $\quad=1-2 \sin ^{2} A$.
Writing $\frac{1}{2} A$ instead of A, these become

$$
\begin{array}{ll}
\sin A=2 \sin \frac{1}{2} A \cos \frac{1}{2} A, \ldots \ldots \ldots \ldots \ldots \ldots(7) & \begin{array}{l}
\sin A \text { and } \\
\cos A \operatorname{in} \\
\cos A \sin \\
\sin \frac{1}{} A, \\
\cos A
\end{array} .
\end{array}
$$

39. Adding (4) and (5), we obtain

$$
\sin (A+B)+\sin (A-B)=2 \sin A \cos B
$$

And subtracting (5) from (4),

$$
\sin (A+B)-\sin (A-B)=2 \cos A \sin B
$$

Dividing the terms of these two equalities, we obtain

$$
\begin{aligned}
\frac{\sin (A+B)+\sin (A-B)}{\sin (A+B)-\sin (A-B)} & =\frac{2 \sin A \cos B}{2 \cos A \sin B} \\
& =\frac{\sin A}{\cos A} \div \frac{\sin B}{\cos B} \\
& =\frac{\tan A}{\tan B}
\end{aligned}
$$

In this formula, instead of $(A+B)$ write A, and instead of $(A-B)$ write B, and the:efone also instead of A write $\frac{1}{2}(A+B)$, and instead of B write $\frac{1}{2}(A-B)$, and we obtain

$$
\begin{equation*}
\frac{\sin A+\sin B}{\sin A-\sin B}=\frac{\tan \frac{1}{4}(A+B)}{\tan \frac{1}{2}(A-B)} \cdots \cdots \cdots \tag{9}
\end{equation*}
$$

40. To express the cosiae of an angle of a triangle in terms of the sides.

Resuming (3),

$$
c=a \cos 3+b \cos A .
$$

From the analogy we sec 隹at

$$
\begin{aligned}
& a=b \cos C+c \cos B \\
& b=c \cos A+a \cos C
\end{aligned}
$$

If from these three equations we eliminate $\cos B$ and $\cos C$, the required result will be obtained. Multiplying the first by c, and the third by b, and then adding; we have

$$
\begin{aligned}
c^{2}+b^{2} & =a c \cos B+a b \cos C+2 b c \cos A \\
& =a(c \cos B+3 \cos C)+2 b c \cos A \\
& =a^{2}+2 b c \cos A,(\text { from the second }), *
\end{aligned}
$$

$$
\begin{aligned}
& \text { * Written in the form, } \\
& \qquad a^{2}-b^{2}+c^{2}-2 b c \cos A
\end{aligned}
$$

this is identical with Euclid p.p 12, 13, $B I I$; for in fig. (6) $A D=b \cos A$, and in fig. (7), $A D=-b \cos A$, and therefore

$$
B C^{2}=A C^{2}+A B^{2} \mp 2 A B . A D,
$$

- or + according as A is acute or obtuse.
or,

$$
\begin{equation*}
\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c} \tag{10}
\end{equation*}
$$

Analogous expressions can now be written down for $\cos B$ and cos C. These expressions are not adapted to logarithmic calculation, and we therefore proceed to modify them.

$$
\begin{aligned}
& \text { 41. From (8), } \\
& 2 \sin ^{2} \frac{1}{2} A=1-\cos A \\
& =1-\frac{b^{2}+c^{2}-a^{2}}{2 b c} \ldots \text { from (10) }
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{a^{2}-(b-c)^{2}}{2 b c} \\
& =\frac{(a+b-c)(a-b+c)}{2 b c} \\
& \text { The pre- } \\
& \text { vious ex } \\
& \text { pression } \\
& \text { modified for } \\
& \text { logarithmic } \\
& \text { use. }
\end{aligned}
$$

Again from (8),

$$
\begin{aligned}
2 \cos ^{2} \frac{1}{2} A & =1+\cos A \\
& =1+\frac{b^{2}+c^{2}-a^{2}}{2 b c} \\
& =\frac{\left(b^{2}+2 b c+c^{2}\right)-a^{2}}{2 b c} \quad \text { no midex coer aquike these miful hing } \\
& =\frac{(b+c)^{2}-a^{2}}{2 b c} \\
& =\frac{(b+c+a)(b+c-a)}{2 b c}
\end{aligned}
$$

Now putting

$$
a+b+c=2 s
$$

s the semi-
perimeter.
and therefore

$$
\begin{aligned}
& a+b-c=2(s-c) \\
& b+c-a=2(s-a) \\
& c+a-b=2(s-b)
\end{aligned}
$$

these become

$$
\left.\begin{array}{l}
\sin ^{2} \frac{1}{2} A=\frac{(s-b)(s-c)}{b c} \tag{11}\\
\cos ^{2} \frac{1}{2} A=\frac{s(s-a)}{b c}
\end{array}\right\}
$$

And dividing the former by the latter,

$$
\tan ^{2} \frac{1}{2} A=\frac{(s-b)(s-c)}{s(s-a)},
$$

or
$\tan \frac{1}{2} A$ in
terms of s and the sides.

$$
\begin{equation*}
\tan \frac{1}{2} A=\sqrt{\frac{(s-b)(s-c)}{s(s-a)}} \tag{12}
\end{equation*}
$$

SOLUTION OF OBLIQUE TRIANGLES.

Solution of oblique triangles.
42. Four distinct cases occur in the solution of oblique triangles, according to the way in which three parts out of the six which compose the triangle are selected, one at least of the given parts being a side.
These are,
Four cases
(1), two angles and a side. (Euclid, B. I. Prop. 26.)
(2), the three sides.
(..... Prop. 8)
(3), two sides and the included angle. (...... Prop. 4)
(4), two sides and an angle not included. (.........The omitted casc.)*

* If two triangles have two sides of the one equal to two sides of the other, each to each, and have also one angle in each cqual, being opposite to equal sides; then if each of the angles opposite to the other equal sides be greater than a right angle, or be less than a right angle, or if one of them be a right angic, the triangles will be equal in every respeet.
$S=$ Suripperiviter

43. Case I. Given A, B, a; to find C, b, c.

Case I. Two angles and a side given.

$$
C=180^{\circ}-A-B . . . \ldots C \text { found. }
$$

To find b,

$$
\frac{\sin B}{b}=\frac{\sin A}{a}
$$

or

$$
b=\frac{a \sin B}{\sin A}=a \sin B \operatorname{cosec} A
$$

and taking logarithms
$\log Z=\log a+L \sin B-10+L \operatorname{cosec} A-10$

$$
=\log a+L \sin B+L \operatorname{cosec} A-20
$$

from whish there is 8 found.

To find c,

$$
\frac{\sin C}{c}=\frac{\sin A}{a}
$$

or

$$
c=a \sin C \operatorname{cosec} A
$$

$\log c=\log a+L \sin C+L \operatorname{cosec} A-20$,
from which there is c found.
In this case it is indifferent which of the sides is given, as all three angles are at once known.
44. Case II. Given a, b, c; to find A, B, C.

Case II.
The three sides given.

To find A, we have, (where $s=\frac{1}{2}(a+b+c)$),

$$
\tan \frac{z}{2} A=\sqrt{\frac{(s-b)(s-c)}{s(s-a)}} \ldots \ldots \ldots \ldots \ldots \text {............. (12) }
$$

and taking logarithms,

$$
\begin{aligned}
& L \tan \frac{1}{2} A-10=\frac{1}{2} \log \frac{(s-b)}{s} \frac{(s-c)}{(s-a)} \\
& =\frac{1}{2}\{\log (s-b)+\log (s-c)-\log s-\log (s-a)\} \\
& =\frac{1}{2}\left\{\operatorname { l o g } \left(\frac{s-b)+\log (s-c)+\operatorname{colog} s+\operatorname{colog}(s-a)-20\}}{3}\right.\right.
\end{aligned}
$$

and therefore
$L \tan \frac{1}{2} A=\frac{1}{2}\{\log (s-b)+\log (s-c)+c o l o g(s-a)+c o l o g s\}$, from which there is $\frac{1}{2} \Lambda$ and thereforo $\quad \Lambda$ found.

By the analogous formula, B can bo found and then C which is $180^{\circ}-A-B$. It is however better in practice to find C also by its analogous formula, and the sum of tho three angles amounting to 180° will serve as verification.
We might also have used either of tho formulas (11) for $\sin \frac{1}{2} A$, $\cos \frac{1}{2} A$, but that for tho tangent is practically preferable. If the sum of two of the quantities a, b, c, be not greater than the third, one of the quantities $s-a, s-b, s-c$, will be negative, and its logarithm imaginary.

Case 3.
Two silles and the inclualed angle given.
45. Case III. Givon a, l, C; to find $A, B, c . \quad(a>b)$. To find A, B.

$$
\frac{\sin A}{a}=\frac{\sin B 3}{b}
$$

or

$$
\frac{a}{b}=\frac{\sin A}{\sin b^{\prime}}
$$

and therefore

$$
\begin{aligned}
& \frac{a+b}{a-b}=\frac{\sin A+\sin B}{\sin A-\sin B} \\
& \quad=\frac{\tan \frac{1}{2}(A+B)}{\tan \frac{1}{2}(A-B)}, \ldots \ldots \ldots \ldots . \text { from }(9)
\end{aligned}
$$

or

$$
\tan \frac{1}{2}(A-B)=\frac{c-b}{a+b} \tan \frac{1}{2}(A+B)
$$

Now
$\frac{1}{2}(A+B)=\frac{1}{2}\left(180^{\circ}-C\right)=90^{\circ}-\frac{1}{2} C$, and is known; also $\quad \tan \frac{1}{2}(A+B)=\cot \frac{1}{2} C$,
and therefore

$$
\tan \frac{1}{2}(A-B)=\frac{a-8}{a+b} \cot \frac{1}{2} C
$$

and taking logarithms,
$L \tan \frac{1}{2}(A-B)-10=\log (a-b)+\operatorname{colog}(a+b)-10$ $+L \cot \frac{1}{2} C-10$,
or
$L \tan \frac{1}{2}(A-B)=\log (a-b)+\operatorname{colog}(a+-b)+L \cot \frac{1}{2} C-10$,
$+\operatorname{colog} s\}$, Λ found. nd then O practico to um of the cation.
for $\sin \frac{1}{2} A$, ble. If the n the third, ad its logar-
$(a>b)$.
.from (9)
s known;
from which $\frac{?}{?}(A-B)$ is found ; also $\frac{1}{2}(A+B)$ being known, we have by addition and subtriction........... A and B f fuund.
A having thus been found, we obtain c from the formula

$$
\begin{gathered}
\frac{\sin C}{c}=\frac{\sin A}{a} \\
c=a \sin C \operatorname{cosec} A \\
\log _{0} c=\log a+L \sin C+L \operatorname{cosec} A-20,
\end{gathered}
$$ (c found,)

in which formula b, B might also be used in place of a, A.
In this case, c is known directily in terms of the given parts from

$$
c^{2}=a^{2}+b^{2}-2 a \dot{b} \cos C,
$$

but this formula is not adapted to logarithmic calculation, and it is better to find c jy aill of one of the angles which have been previonsly found.

46. Case IV. Given A, a, Z; to find B, C, c.

In this caso there are eometimes two triangles which have the given parts. For let A be acute, and (fig. S) drop the perpendicular $C D$, which is equal to $b \sin A$; then thete can be drawn two lines, each $=a$, one on each sile of $C D$, and if both these fall (as $C D_{1}$, $C B_{i 2}$) on the right of b, the two triangles $A C i i_{1}, A C B_{2}$ will have tho same three given paris. This requires a to be less than b and grenter than $C D$; if however $a=C D$, the two triangles coincide in a rightangled triangle, and if a be less than $C D$, no triangle exists having the given quantities for parts. Also if $a=b$, the triangle $A C D_{2}$ vanishes, and only one is left, and if a be greater than b, the liue $C B_{2}$ falls to the left of b, and tho triangle so formed would not have the angle A, and in this case there is only one triangle.

Again if A be obtuse (fig. 10), in order that Ω triangle may exist, a must be greater than l, and the other line equal to a will fall to the left of b, so that only oue triangle exists.

Collecting these results, we see that, when A is aente, if $a<b \sin A$, there is no triangle; if $a=b \sin A$, there is one only; if $a>b \sin A$ and $<b$, there are two ; if $a=$ or $>b$, there is only one, and when A is obtuse, if $a<$ or $=b$, there is no triangle; and if $a>b$, there is one only. If A be a right angle, then a must be $>b$, and the

Case IV:
Two sided ani antable not theladent ly them given. 'Tle ambignity Fig. s.

Fis. 9.

Fig. 10.
two triangles on opposite sides of b are equal in every respect, and therefore only givo the same triangle in different positions.

The analyticai solution which follows will of itself shew which of these varieties occurs in any particular case.

Solution.
To find B;

$$
\frac{\sin B}{b}=\frac{\sin A}{a}
$$

or

$$
\sin B=\frac{b \sin A}{a}
$$

and taking logarithms

$$
L \sin B-10=\log b+c o \log a-10+L \sin A-10
$$ whence

$$
L \sin B=\log b+c o l o g a+L \sin A-10
$$

This gives $L \sin B$, but as the L sin of an angle is the same as the L sin of the supplement of that angle, there are two angles which have this value of L sin, and both manc be taken. Let B_{1}, B_{2} be these two angles, the former being less than 90° and taken directly from the tables, the latter being its supplement. Let C_{1}, C_{2} bo the corresponding values for C, so that

$$
\begin{aligned}
& C_{1}=180^{\circ}-A-B_{1} \\
& C_{2}=180^{\circ}-A-B_{12}
\end{aligned}
$$

If both these values are positive, two triangles exist.
Let c_{1}, c_{2} be the corresponding values of c. To find them;

$$
\begin{gathered}
\frac{\sin C_{1}}{c_{1}}=\frac{\sin A}{a} \\
c_{1}=a \sin C_{1} \operatorname{cosec} A \\
\log c_{1}=\log a+L \sin C_{1}+L \operatorname{cosec} A-20
\end{gathered}
$$

Similarly
$\log c_{2}=\log a+L \sin C_{2}+L \operatorname{cosec} A-20$.
If the second value of C be 0 or negative, the second solution has no existence; and if both values of C are nega-
st.
nd them;
tive, no solution exists. Also if the valuo of L sin B be greater than 10 , there is no solution.
47. Examples.
Examples.
Caso I.
Given $A=120^{\circ} 08^{\prime}, B=24^{\circ} 40^{\prime}, a=931 \cdot 23$.

A, In, "gire to Alin'l

C
$A=120^{\circ} 08^{\prime}$
$B=2440$
14448
10.
gle is the , there aro h maLi do being less atter being values for

st.
 nd them;

0
sccond ro nega-
0.
0.

Case II.

$$
\text { Given } \begin{aligned}
a & =753 \cdot 09, b=333 \cdot 33, c=666 \cdot 66 \\
a & =753 \cdot 09 \\
b & =33 \% \cdot 33 \\
c & =666 \cdot 66 \\
\hline \Omega_{s} & =1753 \cdot 08
\end{aligned}
$$

	\log	colog.
$s=8765 \frac{1}{4}$	-04:-7	7.05723
$s-a=123 \cdot 45$	$\bigcirc 091.19$	7.00850
$s-i=543 \cdot 21$	2 73.497	726503
$s-c=233 \cdot 88$	2\%3937	767803
$L \tan \frac{1}{2} A=\frac{1}{2}\{\log (s-b)+\operatorname{los}(s-c)+\operatorname{colog}(s-a)+\operatorname{colog} s\}$		
$\begin{array}{ll} \log (s-b), & 2 \cdot 73497 \\ \log (s-c), & 2 \cdot 32197 \\ \operatorname{colog}(s-c i), & 7 \cdot 90559 \\ \operatorname{colog} s, & 7.05723 \end{array}$		
$\because) 20.02 \div 67$		
$\begin{aligned} \frac{1}{2} A & =45^{\circ} 45^{\prime} ; \quad L \\ A & =91^{\circ} 30^{\prime} \end{aligned}$	$10 \cdot 0$	(A f

$L \tan \frac{1}{2} B=\{\log (s-c)+\log (s-a)+\operatorname{colog}(s-b)+\operatorname{colog} s\}$.
I.
$\log (s-c), \quad 282197$
$\log (s-\pi), \quad 209149$
colog $(s-b), \quad 7 \div 650:$;
culog $s, \quad 7.057: 3$
$\frac{1}{2} B=19^{\circ} 0 S^{\prime} ; \quad L \tan \frac{1}{2} B, \quad \frac{(2) 15 \cdot 7 \cdot 3972}{9 \cdot 34986}$
$B=96^{\circ} 16^{\prime}$
(i) found.)
$L \tan \frac{1}{2} C^{v}=\frac{1}{2}\{\log (s-a)+\log (s-b)+\operatorname{colog}(s-b)+\operatorname{colog} s\}$.

$\log \left(s-{ }^{\prime}\right)$,	$\because \cdot 00149$
$\log (s-b)$,	2.73 .497
colog $(s-c)$,	7.6780\%
colog s,	7.05723
	$2) 1956172$
$L \tan \stackrel{1}{2}$,	9.78086

(C^{y} found)

Verification.

$$
\begin{aligned}
& A=91^{\circ} 30^{\prime} \\
& B=26 \quad 16 \\
& C=62 \quad 14 \\
& A+B+C=\overline{180^{\circ}} \\
& \hline
\end{aligned}
$$

Case III.
Given $a=209 \cdot 88, b=333 \cdot 33, C=122^{\circ} 26^{\prime} . \quad \begin{gathered}a, b, c \text { given } \\ \text { to find }\end{gathered}$
Here, ' being greater than a, we must interchange a, A, with b, B in the formulas of solution.

$$
90^{\circ} 00
$$

$$
\begin{gathered}
C=122^{\circ} 26^{\prime} ; \quad \frac{1}{2} C=\frac{61}{} \frac{13}{28^{\circ} 47^{\prime}} \\
\frac{1}{2}(B+A)=90^{\circ}-\frac{1}{2} C=
\end{gathered}
$$

$L \tan \frac{1}{2}(B-\mathcal{L})=\log (b-a)+\operatorname{colog}(b+a)+L \cot \frac{1}{2} C-10 . \Delta$ and B.

$$
l=833 \cdot 33
$$

$$
\begin{aligned}
& b=330 \cdot 83 \\
& a=209 \cdot 58 ; \log , 2 \cdot 32197
\end{aligned}
$$

$$
b-a=\overline{123 \cdot 45} ; \log , 2 \cdot 09149
$$

$$
\begin{aligned}
& b-a=123 \cdot 45 ; \log , 2 \cdot 09149 \\
& b+a=543 \cdot 21 ; \log , 2 \cdot 73497 ; \text { colog, } 7 \cdot 26503
\end{aligned}
$$

$$
\begin{array}{r}
\log (b-a), 2 \cdot 09149 \\
\operatorname{colog}(b+a), 7 \cdot 26503
\end{array}
$$

$$
\frac{1}{2} C=61^{\circ} 1 B^{\prime} ; L \cot \frac{1}{2} C, 9 \cdot 73987
$$

$$
\frac{1}{2}(B-\Lambda)=7^{\circ} 07^{\prime} ; L \tan \frac{1}{2}(B-A), \overline{9 \cdot 09639}
$$

$$
\frac{2}{2}(B+A)=28 \quad 47
$$

$$
13=35^{\circ} 54^{\prime}
$$

$$
A=21^{\circ} 40^{\prime}
$$

$\log c=\log a+L \sin C+L \operatorname{cosec} A-20$.

$$
\log a, \quad 2 \cdot 32197
$$

$C=129^{\circ} 26^{\prime} ; \quad L \sin C, 9.92685$
$A=\therefore 1^{\circ} 40^{\prime} ; L \operatorname{cosec} A, 10 \cdot 43273$

$$
c=479 \cdot 79 ; \quad \log c, \overline{2.68105}
$$

Case IV.

A, n, b, given, to find
D.

Ex. (1). Given $A=57^{\circ} 34^{\prime}, ~ 九=47 \cdot 979, b=54 \cdot 321$.
$L \sin B=\log b+c o l o g a+L \sin A-10$.
(B_{1} and B_{2} found.)

c.	$C_{1}=180-\left(A+B_{1}\right)$	$C_{2}=180-\left(A+B_{2}\right)$
	$\Lambda=57^{\circ} 34^{\prime}$	$L^{\prime}=57^{\circ} 34^{\prime}$
	$B_{1}=7252$	$\Sigma_{2}=107 \quad 08$
tions $^{\text {olu- }}$	$C_{1}=180^{\circ}-130^{\circ} 26^{\prime}$	$C_{2}=180^{\circ}-16442$
tions.	$=49^{\circ} 34^{\prime}$	$=15^{\circ} 18^{\prime}$.

Hence there are two solutions.
c_{1}.

$$
\begin{aligned}
& \log c_{1}=\log a+L \sin C_{1}+L \operatorname{cosec} A-20 . \\
& a=47.979 ; \quad \log a, \quad 1 \cdot 68105 \\
& C_{1}=49^{\circ} 34^{\prime} ; \quad L \sin C_{1}, \quad 9 \cdot 88148 \\
& A=57^{\circ} 34^{\prime} ; L \operatorname{cosec} A, 10 \cdot 07365 \\
& \hline n_{1}=43 \cdot 269 ; \quad \log c_{1}, \quad 1 \cdot 63618 \quad \text { (c. found.) }
\end{aligned}
$$

$$
\log c_{2}=\log a+L \sin C_{2}+L \operatorname{cosec} A-20
$$

$$
\log a, \quad 1 \cdot 68105
$$

$$
C_{2}=15^{\circ} 1 \mathrm{~S}^{\prime} ; \quad L \sin C_{2}, \quad 9 \cdot 42139
$$

$$
L \operatorname{cosec} A, 10.07365
$$

$$
\overline{c_{2}=15 ;} \quad \log c_{2}, \overline{1 \cdot 17600}
$$

(c_{2} found.)
Ex. (2). Given $A=49^{\circ} 41^{\prime}, a=323 \cdot 1, b=21 \cdot 808$.
I: $\sin B \equiv \log b+\mathrm{colog} a+L \sin A-10$.

$$
\begin{aligned}
& l=54.321 ; \quad \log Z, 1.73497 \\
& a=47.979 ; \quad \operatorname{colog} a, 8.31895 \\
& \Lambda=57^{\circ} 34^{\prime} ; \quad L \sin A, 9 \cdot 90635 \\
& \left\{\begin{array}{l}
B_{1}=72^{\circ} 52^{\prime} ; \\
B_{2}=107^{\circ} 08^{\prime} ;
\end{array}\right. \\
& L \sin B, 9.98027
\end{aligned}
$$

41

$$
\begin{aligned}
& b=21.808 ; \quad \log b, 1 \cdot 33862 \\
& a=323 \cdot 1 \quad ; \quad \operatorname{colog} a, 7 \cdot 49066 \\
& A=49^{\circ} 41^{\prime} ; \quad L \sin A, 9.88223 \\
& \left\{\begin{array}{l}
B_{1}=9^{\circ} 57^{\prime} ; \\
B_{2}=177^{\circ} 03^{\prime}
\end{array}\right. \\
& L \sin B, \overline{8.71151} \\
& \begin{array}{c}
C_{1}=180-\left(A+B_{1}\right) \\
A=49^{\circ} 41^{\prime}
\end{array} \\
& C_{2}=180-\left(A+B_{2}\right) \\
& A=49^{\circ} 41^{\prime} \\
& B_{2}=177^{\circ} \text { 饭 } \\
& B_{1}=2^{\circ} 5 \mathbf{7}^{\prime} \\
& C_{1}=180^{\circ}-52^{\circ} 38^{\prime} \\
& =127^{\circ} 22^{\prime} \\
& C_{2}=180^{\circ}-\overline{226^{\circ} 44^{\prime}} \quad \begin{array}{c}
\text { Ono s } \\
\text { tion. }
\end{array} \\
& \% \\
& \text { (} B_{1} \text { and } B_{2} \text { found.) }
\end{aligned}
$$

The second so found as in the previous example．

Ex．（3）．Given $A=30^{\circ}, a=18 \cdot 4, b=38.9$ ．
A，a，b givers to find b ．
$L \sin B=\log b+\operatorname{colog} a+L \sin \Lambda-10$ ．

$$
\begin{array}{r}
L=38 \cdot 9 ; \quad \log u, 1.58995 \\
a=18 \cdot 4 ; \quad \operatorname{colog} c, 0 \cdot 78518 \\
A=30^{\circ} ; z \sin \lambda, 0 \cdot 69897 \\
\quad 亡 \sin B, \overline{10 \cdot 0 \div-110}
\end{array}
$$

No solution exists．

$L \sin B=\log b+\operatorname{colog} a+L \sin A-10$.
$b=19342$ ；$\quad \log b, 4 \cdot 28650$
$a=21700 ; \operatorname{colog} a, 5 \cdot 6685 t$
$A=128^{\circ} 57$ ；$L \sin A, 9.89081$
$\left\{\begin{array}{l}B_{1}=43^{\circ} 53^{\prime} ; \\ B \sin B, \overline{9 \cdot 84085}\end{array}\right.$

$$
C_{1}=180-\left(A+B_{1}\right) \quad C_{2}=180-\left(A+B_{2}\right)
$$

$$
\begin{aligned}
C_{1} & =180^{\circ}-\overline{179^{\circ} 50^{\prime}} & C_{2} & =180^{\circ}-26504 \\
& =7^{\circ} 10^{\prime} & & =-
\end{aligned}
$$

The arond solution does not exist.
A, a, b given to tind B.

$$
\text { Bx. (5), Given } A=160^{\circ} 24^{\prime}, a=4.2, b=5 \cdot 3004
$$

$L \sin B=\log b+\operatorname{colog} a+L \sin A-10$.
$b=53.004 ; \quad \log b, 1.72481$
$a=42 \quad ; \quad \operatorname{colog} a, 8.37675$
$A=163^{\circ}-4^{\prime} ; \quad L \sin A, 9.45589$

$$
\left\{\begin{array}{l}
\overline{B_{1}=21^{\circ} 08^{\prime}} ; \quad \Sigma \sin B, \overline{955695} \\
B_{2}=158^{\circ} 5 \underline{ }^{\prime} ;
\end{array}\right.
$$

c.

$$
C_{2}=180^{\circ}-\left(\therefore-B_{2}\right)
$$

$$
A=169^{\circ} 24^{\prime}
$$

$$
\vec{L}_{1}=21^{\circ} 0 \mathrm{~S}^{\prime}
$$

$$
B_{2}=158^{\circ} 52^{\prime}
$$

No solu-
tioll.

$$
C_{1}=180^{\circ}-\left(A+B_{1}\right)
$$

$$
A=100^{\circ} \Omega 4^{\prime}
$$

$$
C_{1}=180^{\circ}-184^{\circ} 32^{\prime}
$$

$$
C_{2}=180^{\circ}-322 \quad 16
$$

$$
=-
$$

$$
=-
$$

ITc solution exists.

42. Expressions for the area of a triangle.

The area of a tianluct.

It is proved by Euclid ($B \mathrm{I}$. prop. 41) that the area of a triangle is half that of a rectangle having the same base and height. Now the number of square units in the area of a rectangle is equal to the product of the numbers of linear units in the base and height respectively, which is briefly expressed by saying that the area of a rectangle is the product of the base and height. Hence the area of a triangle is half the product of its base and height.

Fig. 6, 7. In fig. 6, 7, area of triangle $A B C$

$$
\begin{aligned}
& =\frac{1}{2} A B . \quad C D \\
& =\frac{1}{2} c b \sin A \\
& =\frac{1}{2} b c \sin A
\end{aligned}
$$

Again

$\sin A=2 \sin \frac{1}{2} A \cos \frac{1}{3} A \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ from (7)

$$
\begin{align*}
& =2 \sqrt{ } \frac{(s-b)}{b} \frac{(s-c)}{c} \cdot \frac{s(s-a)}{b c} \ldots \text { from (11) } \tag{11}\\
& =\frac{2}{b c} \sqrt{\{s(s-i)(s-i)(s-i)\} .}
\end{align*}
$$

Therefore the area

$$
=\sqrt{ }\{s(s-a)(s-b)(s-c)\} .
$$

TRLANGLES FOR VERIFICATION.

$$
\begin{aligned}
& a=16 \cdot 39, \quad b=23 \cdot 960^{2}, \quad c=1 ; 3^{\circ} 14^{\prime} \\
& A=15^{\circ} 08^{\prime}, \quad B=28^{\circ}: 38^{\prime}, \quad C=0,10
\end{aligned}
$$

$$
\begin{aligned}
a & =325 \cdot 74, \quad b=403 \cdot 58, \quad c=250 \cdot 10 \\
A & =53^{\circ} 46^{\prime}, \quad B=87^{\circ} 58^{\prime}, \quad \mathcal{C}=35^{\circ} 16^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& a=325 \cdot 74, \quad b=405 \cdot 50, \quad \mathcal{C}=35^{\circ} 10^{\prime} \\
& A=53^{\circ} 46^{\prime}, \quad B=87^{\circ} 58^{\prime}, \quad \mathbb{C}
\end{aligned}
$$

$$
\begin{gathered}
c=209 \cdot 88, \quad U=333 \cdot 33, \quad c=479 \cdot 79 \\
A=21^{\circ} 40^{\prime}, \quad B=35^{\circ} 54^{\prime}, \quad C=192^{\circ} 96
\end{gathered}
$$

$$
\begin{array}{ll}
\alpha=209 \cdot 88, \quad b=333 \cdot 33, \quad c=4 \\
A=21^{\circ} 40^{\prime}, \quad B=35^{\circ} 54^{\prime}, \quad C=129^{\circ} 20^{\prime}
\end{array}
$$

$$
\begin{aligned}
& a=7.5316, \quad \ell=3.3342, \quad c=6 \cdot 6665 \\
& a=60^{\circ} 14^{\prime}
\end{aligned}
$$

$$
\begin{gathered}
a=7 \cdot 5316, \quad b=01^{\circ} B^{\prime}, \quad B=26^{\circ} 16^{\prime}, \quad C=60^{\circ} 14^{\prime} \\
A=1.00
\end{gathered}
$$

$$
\begin{array}{ll}
a=4797 \cdot 9, \quad b=5432 \cdot 3, \quad c=1500 \\
a=107^{\circ} 0 S^{\prime}, \quad \mathcal{C}=15^{\circ} 1
\end{array}
$$

$$
\begin{aligned}
& a=4797 \cdot 9, \quad b=5432^{\circ} 3, \quad C=15^{\circ} 18^{\prime} \\
& A=57^{\circ} 34^{\prime}, \quad B=107^{\circ} 0 S^{\prime}, \quad C=45 \cdot 0!
\end{aligned}
$$

$$
\begin{array}{ll}
a=123+5, & l=34516, \quad c=45324 \\
a=24^{\circ} 52^{\prime}, & C=146^{\circ} 20
\end{array}
$$

$$
\begin{array}{ll}
a=33 \cdot 45, & z=07 \cdot 54, \quad c=62 \cdot 09 \\
& z=85^{\circ} 05^{\prime}, \quad \\
c & =69^{\circ} 10
\end{array}
$$

$$
\begin{array}{ll}
A=900, & b=235, \quad c=48942 \\
a=150^{\prime} 8, \quad J=-9^{\circ} 03^{\prime}
\end{array}
$$

$$
\begin{array}{ll}
a=200, \\
A=40^{\circ}, \quad & E=150^{\circ} 87^{\circ}, \quad J=-9^{\circ} 03^{\prime}
\end{array}
$$

$$
a=815, \quad b=227, \quad c=154
$$

$$
\begin{aligned}
& a=10 \cdot 1032, \quad b=15 \cdot 2008, c=\mathrm{i} 4.6884 \\
& a=60^{\circ} 3 د^{\prime}
\end{aligned}
$$

$$
a=16 \cdot 39, \quad \ell=23 \cdot 962, \quad c=37 \cdot 024
$$

$$
\begin{array}{ll}
a=123+5, & b=3410, \\
A=5^{\circ} 39^{\prime}, & B=24^{\circ} 5 د^{\prime}, \\
\end{array}
$$

$$
\begin{array}{lll}
a=815, & b=927, & c \\
A-110^{\circ} 04^{\prime}, & B=42^{\circ} \dot{0} 6^{\prime}, & C=97^{\circ} 20^{\prime}
\end{array}
$$

$$
\begin{array}{ll}
a & =10 \cdot 103 \\
\angle & =39^{\circ} 28^{\prime}, \quad B=73^{\circ}, \quad C=67^{\circ} 32^{\prime}
\end{array}
$$

APPENDIX.

FORMULAS, \&c.

$\log 10=1, \log 1=0, \log 0=-\infty$.
$\log (a b)=\log a+\log b$.
$\log \frac{a}{b}=\log a-\operatorname{iog} b$.
$\log a^{n}=n \log a$.
$\log ^{n} \sqrt{ } a=\frac{1}{n} \log a$.
Any trigonometrical ratio of an angle is the co-ratio of the complement.
$\sin A=\frac{1}{\operatorname{cosec} A}, \tan A=\frac{1}{\cot A}, \cos A=\frac{1}{\sec A}, \tan A=\frac{\sin A}{\cos A}$

$$
\sin ^{2} A+\cos ^{2} A=1
$$

$\sin 30^{\circ}=\frac{1}{2}, \cos 30^{\circ}=\frac{\sqrt{3}}{2}, \tan 45^{\circ}=1$.
As the angle changes from 0 to 90°

$$
L \tan 45^{\circ}=10=L \cot 45^{\circ}
$$

In a right-angled triangle, C the right angle,
$a=c \sin A ; a=b \tan A ; b=c \cos A ; b=a \cot A ; c=b \sec A$;

$$
c=a \operatorname{cosec} A
$$

$$
\begin{array}{ll}
\sin A=\sin \left(180^{\circ}-A\right), & \operatorname{cosec} A=\operatorname{cosec}\left(180^{\circ}-A\right) ; \\
L \sin A=I \sin \left(180^{\circ}-A\right), & L \operatorname{cosec} A=I \operatorname{cosec}\left(180^{\circ}-A ;\right. \\
\cos A=-\cos \left(180^{\circ}-A\right), & \sec A=-\sec \left(180^{\circ}-A\right) ; \\
\tan A=-\tan \left(180^{\circ}-A\right), & \cot A=-\cot \left(180^{\circ}-A\right)
\end{array}
$$

Ceneral formulas,

$$
\begin{align*}
& \sin (A+B)-\sin A \cos B+\cos A \sin B \tag{4}\\
& \sin (A-B)=\sin A \cos B-\cos A \sin B \tag{5}\\
& \cos (A+B)=\cos A \cos B-\sin .4 \sin B \tag{6}\\
& \sin A \quad=2 \sin \frac{1}{2} A \cos \frac{1}{2} A \tag{7}\\
& \cos A=2 \cos ^{2} \frac{1}{2} A-1=1-2 \sin ^{2} \frac{1}{2} A \ldots \ldots \ldots \ldots \ldots \text { (8) } \\
& \frac{\sin A+\sin B}{\sin A-\sin B}=\frac{\tan \frac{1}{2}(A+B)}{\tan \frac{1}{2}(A-B)} \tag{9}
\end{align*}
$$

In any triangle $A E C$,

$$
\begin{gather*}
A+B+C=180^{\circ} \ldots \ldots \ldots \ldots \ldots \tag{1}\\
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c} \ldots \ldots \ldots \ldots \tag{2}\\
c=a \cos B+b \cos A \ldots \ldots \ldots \ldots \tag{8}\\
a^{2}-b^{2}+c^{2}-2 b c \cos A \\
\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c} \tag{10}\\
\sin \frac{1}{2} A=\sqrt{\frac{(s-b)}{b} \frac{(s-c)}{c}} \\
\cos \frac{1}{2} A=\sqrt{\frac{s(s-a)}{b c}} \tag{11}\\
\tan \frac{1}{2} A=\sqrt{\frac{(s-b)(s-c)}{s(s-a)}} \ldots \ldots \ldots . \tag{12}\\
\tan \frac{1}{2}(A-B)=\frac{a-b}{a+b} \cot \frac{1}{2} C .
\end{gather*}
$$

Area of triangle $=\frac{1}{2}($ base \times height $)$

$$
\begin{aligned}
& =\frac{1}{2} b c \sin A \\
& \left.=\downarrow^{\prime}\{s(s-a)(s-b) s-c)\right\}
\end{aligned}
$$

Circumference of a circle of radius $r=2 \pi r$.
Area
$=\pi r^{2}$.
π is an incommensurable quantity of which an approximate value is $\frac{22}{7}$; and a still more approximate, $3 \cdot 14150$.
Length of are in a circle (radius r) which subtends an angle of A degrees at the centre $=\frac{A}{180} \cdot r$.

Angle subtended at the centre of a circle (radius r) by an are of length $l=\frac{180^{\circ}}{\pi} \times \frac{l}{r}$.

Length of are in a circle (radius r) subtending at the centre an angle of $1^{\circ}=\frac{\pi}{180} r=(.01745) \times r$.

Angle subtended at the centre of a circle by an are whose length is equal to the radius $=\frac{180^{\circ}}{\pi}=57^{\circ} \cdot 29578$.
$\operatorname{Sin} 1^{\prime}=0.000291=\tan 1^{\prime}$.
$\operatorname{Sin} 1^{\prime \prime}=0.000004848=\tan 1^{\prime \prime}$.
Surface of a sphere (radius r) $=4 \pi r^{2}$.
Volume $=\frac{4}{3} \pi r^{3}$.
Volume of a pyramid or cone $=\frac{1}{3}($ base \times height $)$.

Ans

$?$

$$
\nabla
$$

[^0]:

[^1]:

[^2]: * In five-figure tables, the first three figures are to be looked for in the.left-hand column, the fourth figure in the top line, and the fifth must be calculated for from the table of proportional parts. In seven-figure tables, the first four are given in the left-band column, the fifth in the top line, and the sixth and seventh must be calculated for. As the arrangement of the tables varies according to the fancy of the compiler, the student must learn the peculiarities of the set he uses. The remarks in the test apply to Law's Mathemntical Tables.(abridged), Toronto: Chewett \& Co. In practice, five figures will generally be found sufficient, and in the sequel five only will be used.

[^3]: * Anotier proof, not depending on this proposition, will be subsequently given.

