IMAGE EVALUATION TEST TARGET (MT-3)

CIHM/ICMH Microfiche Series.

The Institute has attempted to obtain the best original copy available for filming. Physical features of thls copy which may alter eny of the images in the reproduction are checked below.Coloured covers/
Couvertures de couleur

Coloured maps/
Cartes géographiques en couleur

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées

Additional comments/ Commentaires supplémentaires

L'Institut a microfilmé le meilleur exemplairie qu'il lui a été possible de se procurer. Certains défeuts susceptib'es de nuire à la qualité de la reproduction sont notés ci-dessous.
\square Coloured pages/
Pages de couleur
\square Coloured plates/ Planches en couleur

Show through/ Transparence

Pages damaged/ Pages endommagées

Fold-out maps, charts, etc., may be filmed at a different reduction ratio than the rest of the book.

Bibliogrephic Notes / Notes bibliographiques

Only edition available/
Seule édition disponible

Bound with other material/
Relié avec d'autres documents

Cover title missing/
Le titre de couverture manque

Pagination incorrect/
Erreurs de pagination

Pages missing/
Des pages manquent

Maps missing/
Des cartes géographiques manquent

Plates missing/
Des plenches manquent

Additional comments/
Commentaires supplémentaires

The images appearing here are the best quality possible considering the condition and !egibility of the original copy and in keeping with the filming contract specificetions.

The last recorded frame on each microfiche shall contain ti, symbol \rightarrow (meaning CONTINUED"). or the symbol ∇ (meaning "END"), whichever applies.

The original copy was borrowed from, and filmed with, the kind consent of the following institution:

> Library of the Public
> Archives of Canada

Maps or plates too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

Les images sulvantes ont ét' reprodultes avec le plus grand soin, compte tenu de la condition et de la netteté de l'examplaire filmé, et en conformité avec les conditions du contrat de filmage.

Un des symboles suivants apparaitra sur la dernière Image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole V signifio "FIN".

L'exemplaire filmé fut reproduit grâce à la générosité de l'établissement prâteur suivant :

La blbliothàque des Archives publiques du Canada

Les cartes ou les planches trop grandes pour être reproduites en un seul cliché sont filmées à pertir de l'angle supérieure gauche, de gauche à droite et de haut en bas, en prenant le nombre d'images nécessaire. Le diagramme suivant illustre la méthode :

LOAN TABLES

BY

J. B. CHERRIMAN, M.A.,

Late Fellow of St Johe's College, Cambridge; Prof. of Nat. Phil. in University College, Toronto; Actuary to the Confederation Life Association.

AND
JAMES LOUDON, M.A.,
Mathematical Tutor and Dean in Univ. Coll., Toronto; Consulting Actuary to the Farmers' and Mochanics' Loan and Savings Company.

TORONTO:
Copp, ulark * Co., printerb, king gtreet east. J 873.

$$
\begin{array}{r}
1873 \\
(59)
\end{array}
$$

$$
52236
$$

The following Tables are an extension of a set published in the Canadian Almanac for 1870, which gavo the values from 1 to 12 years for rates of interest per cent. per annum 10, 101 $, 11,11 \frac{1}{2}, 12$ payable half-yearly. In the present set, the time runs up to 20 years, and the rates are $8,9,10,11,12,13$; with some additional 'Cables which seemed likely to be of use.

EXPLANATION AND USE OF THE TABLES.

When a loan is contracted to be repaid (principal and interest) by equal instalments extending over a term of years, the following tables will give the amount of the instalment, monthly, quarterly, half-yearly, or yearly, for various rates of interest, and will also give the present worth or surrender value of the instalments for any unexpired portion of the term.

As interest is in this comntry generally payable half-yearly, the half-yearly rate has been taken as the basis, and the calculations are made ou the true yearly rate corresponding and not the nominal rate. Thus 10 per cent. per anmum, payable half-y early, is understood to mean 5 per cent. per half-year, the true yearly rate in this case being 101; for, $\$ 100$ being put out for one year at 5 per cent. per half-year, would amount at the end of the year to $\$ 110.25$. Both the true and the nominal rates for the various periods are given in a foot note to each table.
(1.) Table I. gives the instalment payable at the end of each month, quarter, half-year, or year, to repay a loan of $\$ 1,000$ in any period from 1 to 20 years.
These instuments are given exact to the nearest cent above the true value when the difference exceeds one-tenth of a cent.
(2.) Table II. gives the present value of an instalment of $\$ 1$ payable at the end of each month, quarter, half-year, or year, during any number of years from 1 to 20.
By aid of this table, the present value c. an instalment for an exact number of years is at once found by multiplying the instal. ment by the corresponding number in the table.

Exampre.-Interest at 10 per cent. per annum, payable halfyearly. An instalment of $\$ 20$ is payable at the end of each month for 7 years: required, the present value.
No, corresponding in Table II. 60.6174
Instalinent 20
Present value $\$ 1212.35$
(3.) Table III. gives the present value of $\$ 1$ due at the end of any number of months from 1 to 12.

By aid of this Table and Table II., the present value of an instalment for a broken period of a number of years and some months can be found-as follows:

From Table II. take the present value of an instalment of $\$ 1$ for the named number of years, and discount it for the number of months by multiplying it by the factor corresponding to that number of months in Table III.; then add to it the present values taken from Table III. of the several instalments of \$1, payable during the broken period of months, and multiply the final sum by the given instalment.

Example 1.-Interest at 10 per cent. per annum, payable halfyearly A yearly instalment of $\$ 500$ has 3 years and 9 months to run: required, its present value.
From Table II., present value of $\$ 1$ for 3 years 2.47595

Multiply this by the factor for 9 monthis from Table III. 0.9294284

$$
\text { giving } \overline{2.301218}
$$

Add the present value of an instalment $\$ 1$ duc at the end of 9 months, from Table III. .
0.9 .9125
3.230646

Multiply the instalment $\$ 500$ by this number, giving Present value $\$ 1615.32$
Example 2.-Same rate.
A half-yearly instalment of 8250 has 6 years and 11 months to run: required, its present value.
From Table II., present value of half-yearly instalment $\$ 1$ for 6 years. 8.8632

Multiply this by the factor for 11 months from Table III. 0.9144350

$$
\text { giving } 8.10482
$$

Brought forward	8.10482
Add the present value of an instalment $\$ 1$ due at the end of 5 months, from Table III.	0.96016
And the present value of an instalment $\$ 1$ due at the end of 11 months	0.91443
	0.97941

Multiply the instalment $\$ 250$ by this number, giving Present value. . . $\$ 2494.85$
Example 3.-Required the present value of a quarterly instalment of $\$ 100$, unexpired period being 7 yenrs and 5 months, interest at 11 per cent. per anoum, payable half-yearly. From Table II., present value of instalment of $\$ 1$ for 7 years, is
19.4395

Multiply this by the factor for 5 mos., from Table III. 0.9563633

	giving	18.5912
Add the present value of $\$ 1$ due at end of 2 months..	0.9823	
And the present value of $\$ 1$ due at end of 5 months..	0.9564	
	giving	20.5299

Multiply the instalment $\$ 100$ by this number, giving..
Present value.... \$2052.99
In the same way by aid of these two Tables, the present value of a monthly instalment for a broken period may be found, but this will be more conveniently effected by Table IV.
(4.) Table IV. gives the present values of a monthly instalment for any number of months not exceeding a year.

By aid of this and the previous tables, the present value of a monthly instalment for a broken period of a number of years and some months ean be found, as follows:
From Table II. take the present value of an instalment of $\$ 1$ for the named number of years, and discount it for the number of months by multiplying it by the factor corresponding to that number of months in Table III ; then add the present value of an instalment of $\$ 1$ from Table 1V. for the number of months, and multiply the final sum by the given instalment.

Example.-Interest 10 per cent. per annum, payable half-yearly.
An instalment of $\$ 12.50$ per month has 4 years and 8 months to run: required, its present value.
Present value of monthly instalment $\$ 1$ for 4 years, fromTable II.89.6795
Multiply this by the factor for 8 months, from Table III. 0.93701 it , giving 37.0866
Add present value of monthly instulment of \&1 for 8 months, from Table IV.7.7139
44.8005
Multiply tho instalment $\$ 12.50$ by this number, giving Present value. ... §560.01
(5.) Table V. gives the mmount with interest of $\$ 1$ after any number of montis from 1 to 12.
liy aid of this and Table IS., the present value of an instalment for a broken period of a number of yeurs and some months can s.lso be found, as follows:

From Table II. take the present value of an instalment of sl for the number of years next ereater than the broken period, and find the amount of it for the difference between the given number of months and one year, by multiplying it by the factor corresponding to that difierence in 'Table V. Then subtract from it the amounts (with interest, of the several instalments of 81 (if any) paid during that difference as given in Table V., and multiply the resuli by the given instalment.

Example 1.-Interest 10 per cent. per annum, payable halfyenrly. A yearly instalment of $\$ 000$ has 3 years and 9 montlas to run: required, its present value.

From Table If., present value of yearly instalment of
$\$ 1$ for 4 years
3.15279

Multiply this by the factor for 3 montlis, from Table V.,
1.024695, giving
3.23065

No instalment has been paid during the 3 months. Therefore, multiply the instalment $\$ 500$ by the above, giving Present value \$1615.32

Esampliz 2.-A halfyearly iustalment of $\$ 250$ has 6 years and 11 months to run: required, its present value. (Same rate.)
From Tuble II., present value of half-yearly instalment of $\$ 1$ for 7 years, is
9.8986

Multiply this by the factor for 1 month, from Table V., 1.008165, giving.
9.9794

No instalment has been paid during the 1 month.
Therefore, multiply the instalment $\$ 2.50$ by the above, giving Present value
$\$ 2494.85$
Example 3.-Required the present value of a quarterly instal. ment of $\$ 100$, unexpired period being 7 years and 5 months. (Same rate.)
From Table II., present value of quarterly instalment of $\$ 1$ for 8 years, is.
21.2082

Multiply this by tho factor for 7 months, from Table V. 1.064456
giving 22.5751
Subtract the amount of the instalment of $\$ 1$ paid 4 months before
1.0363

And the amount of the instalment of $\$ 1$ paic! 1 month before.
$\frac{1.0089}{\text { giving }}-\frac{2.0452}{2.05299}$

Multiply the instalment $\$ 100$ by this number, giving Present value.
$\$ 2052.99$
In the same way by the aid of these two Tables the present value of a monthly instalinent for a broken period can be found; but this can be more couveniently effected by Table VI.
(6). Table VI. gives the amount at the end of any number of months, not exceeding a year, of a mouthly instalment of $\$ 1$ paid at the end of each month during that period.
By aid of this, and Tables II. and V., the present value of a monthly instalment for a broken period of a number of years and some months can be found as follows: From Table II, take the present value of a monthly instalment of $\$ 1$ for the number of years next greater than the broken period, and find the amount of
it for the difference between the given number of months and one year by multiplying it by the faetor corresponding to that difference in Table V.; then subtract from it the amount of an instalment of $\$ 1$ fur that difference given in Table VI., and multiply the result by the given instalment.

(7). Table VIII. gives the present value of $\$ 1$ dine at the end of any number of years, froun 1 to 20 .

With the aid of Table III. this also gives the present value of a sum due after a broken period of a number of yeurs and some months, as follows;
Multiply the sum by the factor corresponding to the number of years in Table VIII., and then multiply this product by the factor corresponding to the number of months in Table III.

Example. - Required the present value of 84,000 , due 17 years and 8 months hence, interest 10 per cent. payable half-yearly. Multiply $\$ 4,000$ by the faetor for 17 years, from Tablo VIII., 0.1903548, giving
761.4192 Multiply this by the factor for 8 months from Table III. 0.9370174
Present value..
(8) By the aid of this and previous Tables, the value of an ordinary mortgage, where the principal is paid at the end of the poriod, can be caloulated for any of the given rates of interest.

Consiler the interest payable on the mortgage as an instalment and calculate its present value by the preceding rules; then add
to it the present value of the principal payable at the end of the period, which will be found as in the last example.

Ex. 1.-A mortgage of $\$ 5,000$, interest at 6 per cent. per annum, has 7 years and 10 months to run: find its present value, interest at 10 per cent. per annum, payable half-yearly.

The interest, $\$ 300$, may be considered a yearly instalment.
The present value of yearly instalment of $\$ 1$ for 7 years, from Table II, is 4.82860

Multiply this by the factor for 10 months from Table III. 0.9219014
giving 4.451491
Add the present value of the instalment of $\$ 1$ due at the end of 10 mouths 0.921901
giving 5.373392
Multiply the instalment $\$ 300$ by this number, giving Present value.... \$1,612 02

Again: multiply the principal, $\$ 5,000$, by the factor for 7 years from Table V11I, 0.5050679 , giving..... 2525.34 Multiply this by the factor for 10 mos. from Table III. 0.9219014
giving $\$ 2,32811$
Adding these results, the present value required is. ... $\$ 3,940 \quad 13$
Ex. 2.-A mortgage of $\$ 4,000$, interest at 5 per cent. per annum, payable half-yearly, has 17 years and 8 months to run: finu its present value, interest 10 per cent. per annum, payable half-yearly.

The interest, $\$ 100$, will be considered a half-yearly instalment.
The present value of a half-yearly instalment of $\$ 1$ for
17 years, from Table II, is
16.1929

Multiply this by the factor for 8 months, from Table III. 0.937 Cl 74
giving 15.17303
Add the present value of instalment of $\$ 1$ due at end of 2 months, from Table III.
0.98387

And the present value of the same, due at end of $8 \mathrm{mos} . \quad 0.93702$
Multiply the interest, $\$ 100$, by this number, giving... $\$ 1,70039$
The present value of the principal, $\$ 4,000$, due 17 years
and 8 months hence, is found, in the last example
but one, to be
$\$ 71346$
Adding these two results, we find the present value.
required to bo $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots .{ }^{2} \ldots 2,42285$
(9). Sometimes the borrower may wish to pay off part of his debt by a lump sum at some time during the running of his payments. In this case, having calculated the present value of his future payments, deduct from it the sum he pays down, and consider the remainder as a new lonn. If the borrower wishes to continue his payments at a reduced rate for the same period, the new rate of instalment can be obtained at once from Table I, when the period is an exact number of years; but if he wishes to continue to pay the same amount of instalment, reducing the period during which the payments are to continue, obtain from Tables II. and III. the period which will give for that instalment a present value next less than the above-mentioned remainder; take the difference between this present value and such remainder; this difference improved for the period at the given rate of interest will be an additional sum, which he must pay along with the final instalment to clear the account. To obtain this difference so improved, if for a broken period of a number of years and some months, divide the difference by the factor corresponding to the number of years in Table VIII, and then divide this quotient by the factor corresponding to the number of months in Table III.
Example 1. - Interest at 10 per cent. per annum, payable halfyearly. A monthly instalment of $\$ 20$ as a lon has 5 years to run, and the borrower wishes to pay down $\$ 500$ along with his instalment: to find the reduced instalment for the remaining period.
The present value of the instalments from Table II. $\$ 94573$

Deduct.	500
Remainder	44573

Multiply this by the number for 5 years from Table I, 21.15, and dividing by 1000, we obtain $\$ 943$ for the reduced instalment,

Example 2.-Interest as abovo.
A monthly instalment of $\$ 10$ has 7 years and 3 months to run, and the borrower wishes to pay down along with his instalment $\$ 200$: to find the reduction in the period.
Present value of instalments, found as in (3) $\$ 62108$
Deduct............... 20000
Remainder
42108
The present value of a monthly instalment, $\$ 10$, is now to be found, which is next below $\$ 42108$ in the Tables.

From Table II, it is seen that the presen value of a monthly instalment of $\$ 10$ for 4 years is $\$ 39580$, and on trial with Table III. it is found that the present value of an instalment of $\$ 10$ for a period of 4 years and 3 months is $\$ 41578$, and is the next below the given remainder $\$ 22108$. Hence the period required is 4 years and 3 months, and the remaining difference $\$ 50$, amounting in this period to $\$ 803$, leaves this additional sum to be paid along with the final instalment.
(10). Given the loan, the instalment, and the number of years for repayment: it is required to determine the rate of interest.

When the instalment for $\$ 1,000$ lies between two values in the Tables, an approximate value of the rate of interest can at once bo obtained by interpolation, and this will in general be near enough for practical purposes; or from this approximate value, closer and closer values may be obtained by the method of "trial and error," or "double position."

When the instalment for $\$ 1,000$ is beyond the Tables, the method of proceeding will be found in the Appendix.

Interest 8 per Cent. per Annum, Payable Half-yearly.

TABLE I.
Instalments to repay a Loan of $\$ 1000$ in the named number of years, payable

Years.	Yearly.	Half-yearly.	Quarterly.	Montlly.	Years.
1	1081.60	530.20	262.00	86.93	1
2	562.00	275.49	136.40	45.17	2
3	389.16	190.77	94.45	3128	3
4	303.00	148.53	73.54	24.36	4
5	251.52	123.29	61.04	20.22	5
6	217.37	106.56	52.76	17.47	6
7	193.13	91.67	46.87	15.53	7
8	175.08	85.82	42.49	14.77	8
9	161.15	79.00	89.11	12.96	9
10	150.11	73.59	3643	12.07	10
11	141.17	69.20	34.26	11.35	11
12	133.80	65.59	32.48	10.76	12
13	127.64	62.57	30.98	10.26	13
14	122.43	60.02	29.72	9.84	14
15	117.98	57.83	28.64	9.49	15
16	114.14	55.95	27.70	9.18	16
17	110.81	54.32	26.90	8.91	17
18	107.89	52.89	26.19	8.68	18
19	105.33	51.64	25.51	8.47	19
20	103.07	50.53	25.02	8.29	20

Nominal Rates of Interest : S per eent. per annum payable half-yearly; 7.9216 per cent. per annum payable quarterly; 7.8708 per eent. per ancum payable monthly.

Actual llates : 8.16 per cent. per annum ; 4 per eent. per half-year ; 1.0804 per cent. per quarter; 0.6559 per cent. per month ${ }_{4}$

Interest 8 per Cent. per Anndy, Papabje Half-qrarly.

TABLE II.
Present Value of Instalment of $\$ 1$ payable

Years.	Yearly.	Half-Yearly.	Quarterly.	Monthly.	Years.
1	0.92456	1.8861	3.8095	11.5037	1
2	1.77936	3.6299	7.3317	22.1396	2
3	2.66968	5.2421	10.5881	31.9730	3
4	3.30037	6.7327	13.5988	41.0646	4
5	397593	8.1109	16.3824	49.4703	5
6	4.60053	9.8851	18.9560	57.2418	6
7	5.17800	10.5631	21.3354	64.4270	7
8	5.71191	11.6523	23.5353	71.0701	8
9	6.20554	12.6593	25.5693	77.2121	9
10	6.66192	13.5903	27.4498	82.8906	10
11	7.08388	14.4511	29.1884	88.1408	11
12	7.47400	15.2470	30.7969	92.9948	12
13	7.33469	15.9828	32.2821	97.4827	13
14	8.10817	166631	83.6561	101.6320	14
15	8.47649	17.2920	34.9265	105.4682	15
16	8.76154	17.8735	36.1011	109.0150	16
17	9.02510	18.4112	37.1870	112.2943	17
18	9.26876	18.9083	33.1910	115.3261	18
19	9.49405	19.3679	39.1193	118.1292	19
20	9.70234	19.7928	39.9775	120.7208	20

Interest 8 per Cent. per Annum, Payable Haly-yearlif.

TABLE III.

Present value of $\$ 1$ due after any number of months, from 1 to 12.

Months.	Present Value.
1	0.9934845
2	0.9870115
3	0.9805808
4	0.9741915
5	0.9678443
6	0.9615386
7	0.9552736
8	0.9490496
9	0.9428060
10	0.9367229
11	0.9306197
12	0.9245563

TABLE IV.
The present value of an Instal--ment of \$1, payable at the end of each month during the named numbtr of months.

Months.	Present Valuc.
1	0.993485
2	1.950496
8	2.961077
4	3.935268
5	4.903113
6	5.864651
7	8
8	7.768974
9	8.711840
10	9.648563
11	10.579183
12	11.503739

Interest 8 per Cent. fer Annuy, Parabli Halffearlt.

Table vi.

TABLE V.
Amount of \$1 in any number of months, from 1 to 12.

Mouths.	Anouuts.
1	1.006559
2	1.018160
3	1.019804
4	1.026492
5	1.033225
6	1.040000
7	1.046820
8	1.053685
9	1.060596
10	1.067552
11	1.074552
12	1.081600

Amount at the conl of amy mumber of months. from 1 to 12 , of a Momehly lustalment of 今\% paid at the end of cach mondh cluring that period.

Months.	Amounts.
1	1.000000
2	2.066559
3	3.019719
4	4.039523
5	6.066015
6	6.099240
7	7.139240
8	8.186060
9	9.239745
10	10.300341
11	11.367893
12	12.442445

TABLE VIII.
Present Value of $\$ 1$ due at the end of any number of years, from 1 to 20 .

Yrs.	Present Values.	Yrs.	Present Values.
1	0.924556	11	0.421955
2	0.854804	12	0.390121
3	0.790815	13	0.360689
4	0.730690	14	0.333477
5	0.675564	15	0.308319
6	0.624597	16	0.285058
7	0.577475	17	0.263552
8	$0.5 \% 3908$	18	0.243669
9	0.498628	19	0.225285
10	0.456397	20	0.208289

Interest 9 per Cent. per Annum, Payable Half-yearly.

TABLE I.
Instalments to repay a Loan of $\$ 1000$ in the named inumber of years, payable

Years.	Yearly.	Half-yearly.	Quarterly.	Monthly.	Years.
1	1092.03	534.00	264.06	87.38	1
2	570.04	278.75	137.84	45.61	2
3	396.48	19388	95.88	31.73	3
4	310.05	151.61	74.97	24.81	4
5	258.45	126.38	62.50	20.68	5
6	224.27	109.67	54.23	17.95	6
7	200.05	97.82	48.88	16.01	7
8	182.04	89.02	44.02	14.57	8
9	168.18	82.24	40.67	13.46	9
10	157.22	76.88	38.02	12.58	10
11	148.36	72.55	35.85	11.87	11
12	141.08	68.99	54.12	11.29	12
13	135.02	66.03	32.65	10.81	13
14	129.90	63.52	31.41	10.40	14
15	125.55	61.40	20.36	10.05	15
16	121.81	59.57	29.46	9.75	16
17	118.58	57.99	28.68	9.49	17
18	115.76	56.61	28.00	9.27	18
19	112.30	55.41	27.40	9.07	19
20	111.14	54.35	26.88	8.90	20

Nominal Rate of Interest : 9 per cent. per anumm payable half-yearly; 8.9008 per cent. per annum payable quarterly $; 8.8350$ per cent. per amum payable monthly.

Actual Rate : 9.2025 per cent. per annum ; $4 \frac{1}{2}$ per cent. per half-year; 2.2252 per cont. per quarter ; 0.7363 per cent. ver month.

Interest 9 fer Cent. per Annuy, Pafabie Half-yearly.

TABLE II.
Present Value of Instalmont of $\$ 1$ payable

Years	Yearly.	Half-Yearly.	Quarterly	Monthly:	Years.
1	0.91573	1.8797	3.7870	11.4449	1
2	1.75429	3.5875	7.2549	21.9253	2
3	2.52219	5.1579	10.4805	81.5225	3
4	3.22537	6. 5959	13.8385	40.8110	4
5	3.86930	7.9127	16.0015	48.3589	5
6	4.45896	9.1186	18.4401	55.7285	6
7	4.99894	10.2228	20.6781	62.4772	7
8	5.49341	11.2840	22.7180	68.6071	8
9	5.94621	12.164	24.5006	71.3162	9
10	6.36085	13.0079	$26.305: 3$	79.4985	10
11	6.74055	13.7844	27.8756	S4.2440	11
12	7.08825	14.4955	29.3135	88.5896	12
13	7.40566	15.1466	30.630\%	92.5690	13
14	7.69823	15.7429	31.8361	96.2131	14
15	7.96523	16.2889	529102	99.5501	15
16	8.20073	16.7889	83.9514	102.6459	16
17	8.43362	17.2468	34.875:	105.4042	17
18	8.63865	17.6660	35.7252	107.9666	18
19	8.82640	18.0500	36.5016	110.3131	19
20	8.99833	18.4016	37.2126	112.4619	20

Interrat 9 per Cent, per Annum, Payable Halfryearly.

TABLE III.
Present value of $\$ 1$ due after. any number of months, from 1 to 12.

Months.	Present Values.
1	0.9926908
2	0.9854349
3	0.9782321
4	0.9710818
5	0.9639839
6	09569378
7	0.9499433
8	0.9429998
9	0.9361072
10	0.9292650
11	0.9224722
12	0.9157301

TABLE IV.
The present value of an Instal. ment of \$1, payable at the end of each month during the named number of months.

Months.	Present Values.
1	0.992691
2	1.978126
3	2.956358
4	3.927440
5	4.891423
6	6.848361
7	6.798305
8	7.741304
9	8.677412
10	9.606677
11	10.529149
12	11.444879

Interest 9 per Cent. per Annum, Payable Half- fearly.

TABLE VI.

TABLE V.
Amount of \$1 in any number of months from 1 to 12.

Months.	Amounts.
1	1.007363
2	1.014780
3	1.022252
4	1.029779
5	1.037362
6	1.045000
7	1.052695
8	1.060446
9	1.068254
10	1.076119
11	1.084044
12	1.092025

Amount at the end of any number of months, from 1 to 12, of a monthly Instalment of \$1, paid at the end of each month during that period.

Months.	Amounts.
1	1.000000
2	2.007363
3	3.022143
4	4.044395
5	5.074174
6	6.111536
7	7.156536
8	8.209231
9	9.269677
10	10.337931
11	11.414050
12	12.498094

Intrrest 9 per Cent. per Annum, Payable Half-fearly.

TABLE VIII.
Present value of $\$ 1$ due at the end of any number of years from 1 to 20.

TABLE VII.

Amount at the end of any number of guarters, from 1 to 4, of a quarterly Instalment of \$1, paid at the end of each quarter during that period.

Yrs.	Present Values.	Yrs.	Present Values.
1	0.9157300	11	0.3797009
2	0.8385613	12	0.3477035
3	0.7678957	13	0.3184025
4	0.7031851	14	0.2915707
5	0.6439277	15	0.2670000
6	0.5896639	16	0.2444999
7	0.5399729	17	0.2238959
8	0.4944693	18	0.2050282
9	0.4528004	19	0.1877504
10	0.4146429	20	0.1719287

Interest 10 per Oent. per Annum, Payable Malf-yearly.

TABLE I.

Instalments to repay a Loan of $\$ 1000$, in the named number of years, payable

Years.	Yearly.	IIalf-yearly.	Quarterly.	Monthly.	Years.
1	1102.50	537.81	265.63	87.83	1
2	578.13	282.02	139.29	46.06	2
3	403.89	197.02	97.31	32.18	3
4	317.18	154.73	76.42	25.27	4
5	265.49	129.51	63.97	21.15	5
6	231.30	112.83	55.73	18.43	6
7	207.10	101.03	49.90	16.50	7
8	189.16	92.27	45.58	15.07	8
9	175.37	85.55	42.26	13.97	9
10	164.50	80.25	39.64	13.11	10
11	155.74	75.98	37.53	12.41	11
12	148.57	72.48	35.80	11.84	12
13	142.61	69.57	34.36	11.36	13
14	137.61	67.13	33.16	10.96	14
15	133.36	65.06	32.13	10.63	15
16	129.73	63.28	31.26	10.34	16
17	126.60	61.76	30.51	10.09	17
18	123.89	60.44	29.85	9.87	18
19	191.54	59.29	29.28	9.68	19
20	119.47	58.28	28.79	9.52	20

Nominal Rates of Interest : 10 per cent. per annum, payable half-yearly; 9.86304 per cent. per annum, payable quarterly ; 9.71788 per cent. per annum, payable monthly.

Actual Rates: 10.25 per cent. per annum; 5 per cent. per half-year 2.46591 per cent. per quarter ; 0.81649 per cent. per month.

Interest 10 fer Cent. per Annud, Payable Half-Yearly

TABLE II.
Present Value of Instalment of $\$ 1$ payable

Years.	Yearly.	Half-Yearly.	Quarterly.	Monthly.	Years.
1	0.90703	1.8594	3.7647	11.3867	1
2	1.72973	3.5460	7.1795	21.7147	2
3	2.47595	5.0757	10.2767	31.0826	3
4	3.15279	6.4632	13.0860	39.5795	4
5	3.76670	7.7217	15.6342	47.2865	5
6	4.32354	8.8632	17.9454	54.2769	6
7	4.82860	9.8986	200417	60.6174	7
8	5.28672	10.8378	21.9432	66.3685	8
9	5.70224	11.6896	2R.6679	71.5548	9
10	6.07913	12.4622	25.28:2	76.3163	10
11	6.42098	12.1630	26.6511	80.6078	11
12	6.78104	13.7986	279881	84.5003	12
13	7.01229	14.3752	29.1054	88.0310	13
14	7.26738	14.8981	30.1642	91.2334	14
15	7.49876	$15 \quad 3795$	31.1245	94.1380	15
16	7.70862	15.8027	31.9956	96.7726	16
17	7.89898	16.1929	32.7857	99.1623	17
18	8.07163	16.5469	33.5023	101.3298	18
19	8.22824	16.8679	34.1523	103.2958	19
20	837029	17.1591	34.7419	105.0790	20

Table III.
Present value of $\$ 1$ due after any number of months from
1 to 12.

TABLE IV.

The present value of an Instalmene of $\$ 1$, payable at the end of each month during the named number of months.

Months.	Present Values.
1	0.991901
2	1.975769
3	2.951669
4	3.919666
5	4.879823
6	5.832203
7	6.776871
8	7.713899
9	8.643317
10	9.565219
11	10.479654
12	11.386683

Interest 10 per Cent. per Annum, Payable Half-yearly.

TABLE V.
Amount of $\$ 1$ in any number of monthe from 1 to 12.

Months.	Amounts.	monthly instalment of :1 1 ut the end of cach month dur that perioil.	
1	1.008165	Months.	Amounts.
2	1016397	1	1.006000
3	1.024695	2	2.008165
4	1.038062	3	3.024562
5	1.041496	4	4.049257
6	1.050006	5	5.082319
7	1.058573	$\bullet 6$	6.123815
8	1.067216	7	7.173815
9	1.075930	8	8.232388
10	1.0847 .4	9	9299604
11	1.093571	10	10.875534
12	1.102500	11	11.460248
		12	12.553819

Interest 10 per Cent. per Annuy, Payable Halffyearly.

TABLE VIII.

Present value of $\$ 1$ due at the end of any

TABLE VII.
Amount at the end of any number of quarters from 1 to 4 of a quarterly instalment of $\$ 1$, paid at the end of each quarter during that period.

Qrs.	Amounts.
1	1.000000
2	2.024695
3	3.074695
4	4.150624

number of years, from 1 to 20.

Yrs.	Present Values.	Yrs.	Present Values.
1	0.9070295	11	0.3418409
2	0.8227025	12	0.3100679
3	0.7462154	15	0.2812407
4	0.6768394	14	0.2550936
5	0.6139132	15	0.2318774
6	0.5568374	16	0.2098662
7	0.5050679	17	0.1903548
8	0.4581115	18	0.1726574
9	0.4155206	19	0.1566054
10	0.3768895	20	0.1420457

Interest 11 per Cent. per Annum, Payaple Malf-yearly.

> TABLE I.
> Instalments to repay a Loan of $\leqslant 1000$ in the named number of years, payable

Years.	Yearly.	Half-yearly.	Quarterly.	Monthly.	Years.
1	1113.03	541.62	267.19	88.27	1
2	586.29	285.30	140.74	46.50	2
3	411.37	20018	98.75	32.63	3
4	324.42	157.87	77.88	25.73	4
5	272.64	132.67	65.45	21.63	5
6	238.44	116.03	57.24	18.91	6
7	214.30	104.28	51.45	17.00	7
8	196.43	95.59	47.16	15.58	8
9	182.74	88.92	43.87	14.50	9
10	171.97	83.68	41.28	13.64	10
11	163.32	79.48	39.21	12.96	11
12	156.26	76.04	37.51	12.40	12
13	150.42	73.20	36.11	11.93	13
14	145.53	70.82	34.94	11.54	14
15	141.40	68.81	33.95	11.22	15
16	137.88	67.10	33.10	10.94	16
17	134.87	65.63	32.38	10.70	17
18	132.28	64.37	31.76	10.49	18
19	130.03	63.28	31.22	10.32	19
20	128.07	62.32	30.75	10.16	20

Nomnal Rate of Interest : 11 per cent. per annum payable half-yearly; 10.85276 per cent. per annum payable quarterly; 10.75608 per cent. per annum payable monthly.

Actual Rate: 11.3025 per cent. per annum ; $5 \frac{1}{2}$ per cent. per half-year; 2.71319 per cent. per quarter ; 0.80634 per cent. per month.

Interest 11 per Cent. per Annum, Payable Malf-yearly.

TABLE II.
Present Value of Instalment of \$1 payable

Years	Yearly.	Half-Yearly.	Quarterly.	Monthly.	Years.
1	0.89845	1.8463	3.7427	11.8291	1
2	1.70567	3.5052	7.1024	21.5078	2
3	2.43092	4.9955	10.1266	30.6529	3
4	3.08252	6.3345	12.8410	38.8693	4
5	3.66795	7.5376	15.2798	46.2514	5
6	4.19393	8.6185	17.4709	52.8838	6
7	4.66650	9.5897	19.4395	58.8427	7
8	5.09108	10.4622	21.2082	64.1965	8
9	5.47254	11.2461	29.7973	69.0067	9
10	5.81527	11.9504	24.2250	73.3284	10
11	6.12320	12.5832	25.5077	77.2112	11
12	6.39986	13.1517	26.6602	80.6997	12
13	6.64841	13.6625	27.6957	83.8340	13
14	6.87174	14.1214	28.6260	86.6500	14
15	7.07238	14.5337	29.4618	89.1801	15
16	7.25265	14.9042	30.2128	91.4532	16
17	7.41461	15.2370	30.8875	93.4955	17
18	7.56013	15.5361	31.4937	95.3304	18
19	7.69087	15.8047	32.0883	96.9790	19
20	7.80833	16.0461	32.5276	98.4601	20

Interest 11 per Cent. per Annum, Payable Maly-yearly.

TABLE 11 .
Present value of $\$ 1$ dive after. ann, momber of months firom 1 to 12.

Months.	Present Value.
1	0.9911162
2	0.9823114
3	0.9785848
4	0.9649356
5	0.9563693
6	0.9478673
7	0.9394467
8	0.9311009
9	0.9298292
10	0.9146310
11	0.9065050
12	0.8984524

TABLE IV.
The present value of an Instalment of \$1, payable at the end of eachmonth churing the named member of months.

Months.	Present Value.
1	0.991110
2	1.978428
3	2.947012
4	3.911948
5	4.868311
6	5.816179
7	6.755625
8	7.686726
9	8.609555
10	9.524186
11	10.430692
12	11.329144

Interest 11 per Cent. per Annum, Payable Halfyearly.

TABLE VI.

TABLEV.
Amount of $\$ 1$ in any mumber of months from 1 to 12.

Months.	Amounts.
1	1.008963
2	1.018008
3	1.027132
4	1.036338
5	1.045628
6	1.055000
7	1.064456
8	1.073997
9	1.083624
10	1.093327
11	1.103137
12	1.113095

Amonnt at the end of any number. of monthes, from 1 to 12 , of a month!y Instalment of \$1, paid at the end of each month during that period.

Months.	Amounts.
1	1.000000
1	2.008963
9	3.026971
3	4.054103
4	5.090441
5	6.136069
6	7.191069
7	8.255525
8	9.329522
9	10.413146
10	11.506483
12	12.600620

Interest 11 per Cent. per Annum, Payable Half-yearly.

TABLE VIII.
Present value of \$1 due at the end of any number of years from 1 to 20 .

Yrs.	Present Values.	Yrs.	Present Values.
1	0.8984524	11	0.3079256
2	0.8072162	12	0.2766566
3	0.7252458	13	0.2485627
4	0.6515982	14	0.2238218
5	$0.585431) 5$	15	0.2006440
6	0.5259816	16	0.1802691
7	0.4725693	17	0.1619632
8	0.4245811	18	0.1455162
9	0.3814659	19	0.1307394
10	0.3427290	20	0.1174631

34

Interest 12 fer Cent. pre Annum, Payable Half-yearify.

TABLE I.
Instalments to repay a L.orm of $\$ 1000$, in the named number. of years, payatle

Years.	Yearly.	Half-yearly.	Quarterly.	Monthly.	Years.
1	1123.60	545.44	268.75	88.72	1
2	594.50	288.60	142.20	46.94	2
3	418.93	203.37	100.21	33.08	3
4	831.74	161.04	79.35	26.20	4
5	279.89	135.87	66.95	22.10	5
6	215.72	119.28	58.77	19.40	6
7	221.63	107.59	53.01	17.50	7
8	203.85	98.96	48.76	16.10	8
9	190.96	92.86	45.51	15.03	9
10	179.61	87.19	42.96	14.19	10
11	171.03	83.05	4092	13.51	11
12	161.14	79.68	39.26	12.96	12
13	158.43	76.91	3790	12.51	13
14	153.66	74.60	36.76	:2.14	14
15	149.66	72.65	35.80	11.82	15
16	146.27	71.01	34.99	11.55	16
17	143.38	6960	34.30	11.32	17
18	140.90	68.40	83.70	11.13	18
19	138.76	67.30	33.19	10.96	19
$\underline{0}$	136.91	66.47	32.75	10.81	20

Nominal Rates of Interest: 12 per cent per annm, payable half-yearly; 11.8252 per cent. per amum, payablequarterly; 11.71056 per cent. per annum, payable monthly.

Actual Rates: 12.36 per cent. per annum; 6 per cent. per half-year; 2.9563 per cent. per quarter; 0.97588 per cent. per month.

Interest 12 per Cent. per Annum, Payable Half-yearly.

TABLE II.
Present Value of Instalment of \$1 payable

Years.	Yearly.	Half-Yearly.	Quarterly.	Monthly.	Years.
1	0.89000	1.8334	3.7210	11.2722	1
	1.68209	3.4651	7.0326	21.8045	2
3	2.38705	4.9173	9.9800	20.2332	3
4	3.01446	6.2098	12.6032	38.1797	4
5	3.57286	7.3601	14.9378	45.2520	5
6	4.06983	8.3838	17.0155	51.5464	6
7	4.51213	9.2950	18.8648	57.1484	7
8	4.90577	10.1059	20.5106	62.1341	8
9	5.25612	10.8276	21.9753	66.5714	9
10	5.56792	11.4699	23.2789	70.5205	10
11	5.81543	12.0416	24.4392	74.0853	11
12	6.09241	12.5504	25.4717	77.1634	12
13	6.31222	13.0032	26.3908	79.9474	13
14	6.50785	13	4062	27.2087	82.4251
15	6.68196	13.7648	27.9366	84.6303	15
16	6.83691	14.0840	28.5845	86.5929	16
17	6.97483	14.3681	29.1611	88.3897	17
18	7.09757	14.6210	29.6742	89.8942	18
19	7.20681	14.8460	30.1509	91.2778	19
20	7.30403	15.0463	30.5874	92.5092	20

Interbst 12 per Cent. fer Annuar, Payable Halz-yearly.

TABLE III.
Present value of \$1 due after any number of months, from 1 to 12.

Months.	Present Values.
1	0.9903356
2	0.9807645
3	0.9712858
4	0.9618989
5	0.9526026
6	09433960
7	0.9342786
8	0.9252495
9	0.9163074
10	0.9074517
11	0.8986816
12	0.8899965

TABLE IV.
The present value of an Instal. ment of $\$ 1$, payable at the end of each month during the named momber of months.

Months.	Present Values,
1	0.990336
2	1.971100
3	2.942386
4	3.904285
5	4.856887
6	5.800283
7	6.734562
8	7.659812
9	8.576119
10	9.483571
11	10.382252
4	11.272249

Interest 12 per Cent. per Annum, Pafable Half-yearly.

TABLE VI.
TABLE V.
Amount of $\$ 1$ in any number of months, from 1 to 12.

Months.	Amounts.
1	1.009759
2	1.019612
3	1.029562
4	1.039610
5	1.049756
6	1.060000
7	1.070344
8	1.080789
9	1.091338
10	1.101987
11	1.112741
12	1.123600

Amount at the end of any number of months, from 1 to 12, of a Monthly Instalment of $\$ 1$, paid at the end of each month during that period.

Months.	Amounts.
1	1.000000
2	2.009759
3	3.029371
4	4.058933
5	5.098543
6	6.148299
7	7.208299
8	8.278643
9	9.359432
10	10.450770
11	11.552757
12	12.665498

Interest 12 per Cent. per Annum, Paynble Half-yearly.

TABLE VIII.
Present Value of \$1 due at the erd of any

TABLE VII.
Amount at the end of any number of quarters, from 1 to 4, of a quarterly Instalment of $\$ 1$, paid at the end of each quarter during that period.

Interest 13 per Cent. per Annum, Payable Half-yearly.

> TABLE I.
> Instalments to repay a Loan of $\$ 1000$ in the named number of years, payable

Years.	Yearly.	Half-yearly.	Quarterly.	Monthly.	Years.
1	1134.23	549.27	270.31	89.16	1
2	602.78	291.91	143.66	47.39	2
3	426.57	206.57	101.66	3354	3
4	339.15	164.24	80.83	26.66	4
5	287.26	139.11	68.46	22.58	5
6	253.11	122.57	60.32	19.90	6
7	229.10	110.94	54.60	18.01	7
8	211.41	102.38	50.39	16.62	8
9	197.94	95.86	47.18	15.56	9
10	187.42	90.76	44.67	14.74	10
11	179.02	86.70	42.67	14.88	11
12	172.22	83.40	41.05	13.54	12
19	166.64	80.70	39.72	13.10	13
14	162.01	78.46	38.61	12.74	14
15	158.14	76.58	37.69	12.43	15
16	154.87	75.00	36.91	12.18	16
17	152.10	73.66	36.25	11.96	17
18	149.74	72.52	85.69	11.77	18
19	147.72	71.54	35.21	11.62	19
20	145.99	70.70	34.79	11.48	20

Nominal Rates of Interest : 13 per eent. por anmm payable halfeycarly; 12.7956 yer cent. per annum payable quarterly ; 12.6612 per cent. per ansum payable monthly.

Actuál Rates: 13.4225 per cent. per annum ; $6 \frac{1}{2}$ per cent. per half-year; 3.1089 per cent. per quarter ; 1.0551 per cent. per month.

Interest 13 per Cent. per Annum, Payable Half-yearly.

TABLE II.
Present value of Instalment of $\$ 1$ payable

Years.	Yearly.	Half.yearly.	Quarterly.	Monthly.	Years.
1	0.88166	1.8206	3.6995	11.2160	$\mathbf{1}$
$\mathbf{1}$	1.65898	3.4258	6.9612	21.1047	2
3	2.34432	4.8410	9.8369	29.8231	3
4	2.94855	6.0888	12.3723	37.5098	4
5	3.48127	7.1888	14.6076	44.2869	5
6	3.95096	8.1587	16.5784	50.2619	6
7	4.36506	9.0138	18.3160	55.5299	7
8	4.73015	9.7678	19.8480	60.1744	8
9	5.05204	10.4825	21.1987	64.2693	9
10	5.33584	11.0185	22.3895	67.8796	10
11	5.58605	11.5352	23.4394	71.0627	11
12	5.80665	11.9907	24.3650	73.8691	12.
13	6.00115	12.3924	25.1812	76.3433	13
14	6.17263	12.7465	25.9007	78.5248	14
15	6.32381	18.0587	26.5351	80.4481	15
16	6.45711	13.3339	27.0944	82.1438	16
17	6.57463	13.5766	27.5875	83.6388	17
18	6.67824	137906	28	0223	84.9569
19	6.76959	13.9792	28	4056	86.1191
20	6.85013	14.1455	28.7436	87.1437	20

Interest 13 per Cent. per Annum, Payable Malf-yearly.

TABLE III.

Present value af $\$ 1$ due after any number of months, from 1 to 12.

Months.	Present Value.
1	0.9895592
2	0.9792270
3	0.9690082
4	0.9588859
5	0.9488743
6	0.9389672.
7	0.9291635
8	0.9194623
9	0.9098622
10	0.9003621
11	0.8909618
12	0.8816594

TABLE IV.
The present value of an Instalmont of \$1, payable at the end or each mon th during the named number of mouths.

Months.	Present Values.
1	0.989559
2	1.968786
3	2.937789
4	3.896675
5	4.845550
6	5.784517
7	6.713680
8	7.633143
9	8.543005
10	9.443367
11	10.334329
12	11.215988

Interest 13 per Cent. per Annum, Payable Inalf-yearly.

TAbLE V.

Amount of $\$ 1$ in amy mumber of moithes from 1 to 12.

Months.	Amounts.
1	1.010551
2	1021213
3	1.031989
4	1.042976
5	1.053981
6	1.065000
7	1.076237
8	1.087593
9	3.099068
10	1.110665
11	1.122383
12	1.134225

TABLE VI.
Amonnt at the end of any mumber. of mouths, firom 1 to 12 , of a Monthly Instalment of \& 1, paid at the end of ecrech month during that period.

Months.	Amounts.
1	1.000000
2	2.010551
3	3.031764
4	4.063753
5	5.106629
6	6.160510
7	7.225510
8	8.301747
9	9.389340
10	10.488408
12	11.599073
12.721456	

Interest 13 per Cent: per Annum, Payable Malf-yeably.

TABLE VIII.
Prescent value of $\$ 1$ due at the eml of any number of years from 1 to 20.
TABLE VII.
Amount at the end of any mumber of quarters, from ${ }^{1}$ to 4, of a quarterly Instalment of \$1, paid at the end of cach quarter during that period.

Qrs.	Amounts.
-	
1	1.000000
2	2.031989
3	3.096989
4	4.196057

Yrs.	Present Values.	Yrs.	Present Values.
1	0.581659	11	0.250212
2	0.777523	12	0.220602
3	0.685334	13	0.194496
4	0.604231	14	0.171479
5	0.532726	15	0.151186
6	0.469683	16	0.133295
7	0.414100	17	0.117520
8	0.365095	18	0.103611
9	0.321890	19	0.091351
10	0.283797	20	0.080541

APPENDIX.

Note I.-If i is the yearly rate of interest per unit, and $R=$ $1+i$, the amount (M) of a sum P in n years is given by

$$
M=P R^{n}
$$

and the present value (P) of a sum (M) due n years hence is given by

$$
P=M R^{-n} .
$$

In these formulas n may be integral or fractional ; thus, the amount of 1 in the p th part of a year is $\Gamma^{\frac{1}{p}}$, and the rate of interest per the p th part of the year is $R^{\frac{1}{p}}-1$.
Hence the rate per half-year is $R^{\frac{1}{2}}-1$.

$$
\begin{array}{ll}
\text { " } & \text { quarter is }{R^{\frac{1}{4}}}-1 \\
\text { " } & \text { " } \\
\text { month is } R^{\frac{1}{12}}-1
\end{array}
$$

But if i is the nominal yearly rate of interest per unit, payable p times a year, meaning thereby that $\frac{i}{p}$ is the interest payable at the end of each p th part of a year, then the amount of 1 in a year is $\left(1+\begin{array}{l}i \\ p\end{array}\right)^{p}$, and the true yearly rate of interest is $\left(1+\frac{i}{p}\right)^{p}-1$.

Note II.-If A is an instalment payable at the end of each year for n years from the present time, and P its present value, then

$$
P=A . \frac{1-R^{-n}}{R-1}
$$

in which formula n is necessarily a whole number.
If A is payable at the end of each of p equal intervals in a year, and the payments continue for n years, then

$$
P=A . \frac{1-R^{-n}}{R^{\frac{1}{p}}-1}
$$

where n may be fractional, but such that the whole time contains an exact number of the intervals.

Thus if the instalment A is payable

$$
\begin{aligned}
& \text { laalf-yearly, then } P=A . \quad \frac{1-R^{-n}}{R^{\frac{1}{2}}-1} \\
& \text { quarterly, } \quad \text { " } P=A . \quad \frac{1-R^{-n}}{R^{\frac{1}{4}}-1} \\
& \text { monthly, } \quad \text { " } P=A . \quad \frac{1-R^{-n}}{R^{1}{ }^{12}-1}
\end{aligned}
$$

These formulas give the relation between the loan and the instalment, and also give the present value of an instalment having any exact number of periods t r run.

If the time to rum is not an exact number of periods, the present value will be found by taking the present value for the whole number of periods less than the given period, discounting this for the broken interval, and adding the present value of the instalment payable at the end of the broken period. Thas, if a yearly instal. ment A has n years and m months to run, its present value is given by

$$
P=A R^{-\frac{n}{12} \cdot} \frac{1-R^{-n}}{R-1}+A R^{-\frac{m}{12}}
$$

Notn III.-If v is the present value of 1 due at the end of any interval, and A is an instalment payable at the end of each of u such intervals, then

$$
P=A\left(v+v^{2}+v^{3} \perp \ldots \text { to } n \text { terms. }\right)
$$

If the interval is a year, than $v=R^{-}$; if a half year, $v=R^{-\frac{1}{2}}$; if a quarter, $v-R^{-\frac{1}{2}}$; if a month, $v=R^{-\frac{1}{1} \Sigma}$

Tables III. and VIII. give the values of v for months and years.
Tables II. and IV. have been formed by the addition of the v 's.
Table I has been formed by taking the reciprocals of the numbers in Table II., and are given exact to the next cent above the true value when the difference exceeds ${ }_{3} \frac{1}{0}$ th of a cent. In all the other tables, the values are made true to the nearest decimal.

Note IV.-When the loan (P), instalment (A), and time are given, and it is required to find the rate of interest, R must be obtained from the equation

$$
i=A \cdot \frac{1-R^{-n}}{h-1}
$$

where n is the number of payments at the end of each interval, and $R=1+$ interest per unit for one interval $=1+i$.

The solution of this equation, ly Iorner's method, theugh theoretically possible in all cases, becomes impracticable when u is not a small number, on account of the length of the operations, and in general ityis better to proceed by Newton's approximation, which, however, converges but slowly and is often very troublesome to apply. Several approximate formulas have been devised to sare this labor, of which the following may be noticed.
(i.) Ialley's formula.

Calculating $\left(\frac{n A}{P}\right)^{\frac{2}{n+1}}-1$, and calling this value β, then

$$
i=\frac{6}{n-1}\left(1-\sqrt{1-\frac{n-1}{3} \beta}\right)
$$

(ii.) Using the same notation,

$$
i=\beta+\frac{1}{1 \frac{1}{2}} \overline{n-1} \beta^{2}+\frac{1}{7^{2}} \bar{n}-1^{2} \beta^{3} .
$$

(iii.) Baily's formula with the same notation: -

$$
i=\frac{(12-\overline{n-1} \beta) \beta}{12-2 \overline{n-13}}
$$

Of these formulas, (i.) fails altogether when β exceeds $\frac{3}{n-1}$ and becomes less correct the nearer β approaches to this limit; (ii.) is of more easy application than (i.), as the successive terms are readily found by aid of a table of squares and cubes; it becomes more and more erroneous vader the same circumstances as (i.), the degree of error being indicated by the less convergence of the second and third terms relatively to the first term. (iii.) is also a modification of (i.); it fails when β gets beyond $\frac{6}{n-1}$ and becomes less correct as β approaches this lin it. It is more troublesome to work than either (i.) or (ii.), but its great disadvantage is that it gives no indication in itself of its degree of error.

None of the three give good approximations when the period o: the rate is large. For example, $A=1, P=9.99927484, n=x 100$, $\beta=04762$. Here (i.) fails; in (ii.) the terms diverge; (iii.) gives $i=13477$, which is quite astray, the true value oeing $i=$ - 10000.

- The method of "reversion of series" may also be used for the solution, but it is liable to the same objections as above unless the series is carried to so large a number of terms as to render the operation too laborious to be practically useful.

Note V.-The foregoing Tables will be found useful in enabling. Building Socicties to keep a proper account with each borrower. These accounts should be kept on the principle that whenever an instalment is paid, the borrower is charged with interest at the Society's rate on the sum in his possession since the date of the last payment, and credited with the amount paid; or, which comes to the samo thing, instead of balancing an account whenevel an instalment is paid, the borrower may at the end of the year be debited with the amount due at the beginning of the year, with interest on the same, and credited with the instalments paid in this interval with interest from the times of payment. This method, which is the one to be adopted in practice, is illustrated in the following examples. The multiplications that oceur in the calculations are most conveniently performed by means of the Arithmometer of M. Thomas, of Colmar, France, an instrument which should be in the possession of every Building Society.* In these examples the books of the Society are closed on the first day of December in each year, payments made on that day being included in the accounts, and all loans are supposed to be contracted on the first day of a month.

[^0]Example 1.-August 1,1872 . A. B. borrows $\$ 1,000.00$, to be re-paid in 6 years by yearly instalments of $\$ 231.30$ cach.

The amounts on the Dr. side are calculated by means of Table V. by multiplying the sum at the head of a column by the factor corresponding to the number of months between the dates at the head and foot of the column.

Thus in the first column 1,000 is multiplied by the factor 1.033062 corresponding to the interval 4 months, giving 1033.06 .

The amounts on the Cr . side are calculated in like manner.
Thus in the second column the instalment, 231.30, is multiplied by the same factor, giving 238.95.

No instalment having been paid before Dec. 1, 18ヶ2, the borrower is charged with $\$ 1,033.06$ in opening the account for the next year. The difference between $\$ 1,138.95$ and $\$ 238.95$ is $\$ 900.00$, the present value of the mortgage on Dec. 1,1873 , and this is the amount with which the borrower is properly charged in opening the account for the next year. The account is closed Aug. 1, 1878, when there is a difference of nine cents between the Cr. and Dr. sides. This difference arises from the fact that the instalment, $\$ 231.30$, is somewhat greater than the true valuc. If the more accurate valuc, $\$ 231.202$, be taken, the account will be found to balance exactly. Omitting dates, \&c., the account would then stand as follows:

Dr.

| $1,000.000$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $1,033.062$ |$\left|\frac{1,033.062}{1,138.951}\right| \frac{000.012}{992.263}\left|\frac{753.324}{830.540}\right| \frac{591.601}{652.240}\left|\frac{413.301}{455.664}\right| \frac{216.725}{231.292}$

$C r$.

0.000	231.292	231.292	231.292	231.292	231.292	231.292
0.000	238.939	$\underline{288.939}$	238.939	238.939	238.939	231.292
1,033.062	900.012	753.324	591.601	413.301	216.725	0.000
1,033.062	1,138.951	992. 263	880.640	652.240	455.664	231.292

Example 2.-March 1, 1872. C. D. borrows $\$ 1,000.00$ to be repaid in 5 years by half-gearly instalments of $\$ 129.51$ each.

The amounts on the Dr. side aro calculated as in Example 1.
The amounts on the Cr. side are found by multiplying each instalment by the fuctor corresponding to the proper interval, and addin ${ }_{5}$ together the products so obtained.

Thus for 1873 the first instnlment is multiplied by tho factor for 9 months, and the second instalment by the factor for 3 months.

Example 3.-October 1, 1872. E. F. borrows $\$ 1,00000$ to be repaid in 3 years by quarterly instalments of $\$ 97.31$ ench.

The amounts on the Dr. side are calculated as in previous Examples.

The amounts on the Cr. side may be obtained by multiplying each instalment $\$ 97.31$ by the factor corresponding to the proper interval, and adding together the products so obtained.

Thus for 1873 the first instalment is multiplied by the factor for 11 months, the second by the factor for 8 months, the third by the factor for 5 months, and tho fourth by the factor for 2 months, thus giving 410.52.

But this result is more casily obtained with the aid of Table VII by multiplying the instalment by the factor corresponding to the number of payinents in Table VII, and then multiplying this result by the factor in Table V corresponding to the interval between the last payment and the end of the year.
Thus in the abjve example, the instalment 97.31 is multiplied by the factor 4.150624 in Table VII corresponding to four payments, and then by the factor 1.016597 in Table V, corresponding to the remaining period ${ }^{\circ}$ months, giving 410.52.

And in the last col $\quad 1875$ the amount of the instalments at date of last pa^{-}, given at once from Table VII by multiplying the instal. . 77.31 by the factor corresponding to 4 payments, 4.150624, giving 403.90.

Example 4.-September 1, 1872. G. II. borrows $\$ 1,000.00$ to be repaid in 3 years by monthly instalments of $\$ 32.18$ each.

The amounts on the Dr. side are obtained as before.
The amounts on the Cr, side are obtained by means oi Table VI, by multiplying the instalment 32.18 by the factor corresdonding to as many months as there have bean instalments paid.

Thus in the first column 32.18 is multiplied by the factor 3.024562 corresponding to 3 months, giving 97.33 . In the second column 32.18 is multiplied by the factor 12.553810 correspondine to 12 months, giving 403.98 ; and in the fourth column 32.18 is multiplied by the factor 9.299604 corresponding to 9 months, giving 299.26.

As in the previous examples, the small difference between the final amounts on the two sides 290.20 and 298.91 arises from the fact that the instalment was only given to the nearest cent above the true value; if the more correct value 32.17235 had been used, the balance would have come out exact, the final sums on each side of the account being 299.1 ©口. In the great majority of cases a small balance will be found to tho adrantage of the society, which may be carried to Profit and Loss.

A．B．

Prosent value of morlgage．．．．	$\begin{gathered} \text { 18ヶొ. } \\ \text { Aug. } 1 \ldots . . .81,000.00 \end{gathered}$	$\begin{gathered} 1872 . \\ \text { Dec. } 1 \ldots . .81,033.00 \end{gathered}$	$\begin{aligned} & 1873 . \\ & \text { De. } 1 \ldots . . \$ 900.00 \end{aligned}$	$\begin{aligned} & 1874 . \\ & \text { Dec. } 1 \ldots . \ldots 788.80 \end{aligned}$	$\begin{aligned} & 1875 . \\ & \text { Dee. } 1 \ldots . . .8591 .60 \end{aligned}$	$\begin{aligned} & 1876 . \\ & \text { Dec. } 1 \ldots . \ldots 412.24 \end{aligned}$	$\begin{aligned} & 1877 . \\ & \text { Dec. } 1 \ldots .8210 .65 \end{aligned}$
Amount lo date ．．	Dec．1．．．．81，033．06	$\begin{aligned} & 1873 . \\ & \text { Dec. } 1 \ldots . .81,188.95 \end{aligned}$	$\begin{gathered} 1874 . \\ \text { Dec. } 1 \ldots . . \\ 290.25 \end{gathered}$	$\stackrel{1875 .}{\text { Dec. } 1 \ldots . \ldots 830.51}$	$\begin{aligned} & 1876 . \\ & \text { Dec. } 1 \ldots . .8652 .19 \end{aligned}$	$\begin{aligned} & 1877 . \\ & \text { Dec, 1.... 8455. } 60 \end{aligned}$	$\begin{aligned} & 1878 . \\ & \text { Aug. } 1 \ldots . . . \$ 231.21 \end{aligned}$
Cr．A．B．							
Instniment ．．．．．．	1872．	$\begin{aligned} & 1873 . \\ & \text { Aug. } 1 \ldots . . \\ & \$ 231.30 \end{aligned}$	$\stackrel{\text { 187.1. }}{\text { Aug. } 18231 .80}$	$\begin{aligned} & 1875 . \\ & \text { Aug. } 1 \ldots . \ldots 231.30 \end{aligned}$	$\begin{aligned} & 1876 . \\ & \text { Aug. } 1 . \ldots .8231 .80 \end{aligned}$	$\stackrel{1877 .}{\text { Aug. } 1 \ldots . .8281 .80}$	$\begin{aligned} & 1878 . \\ & \text { Aug. } 1 . . .8231 .30 \end{aligned}$
Amount to date ．． Balance ．．．．．．．．．．		Dec． $1 . . .$. ．．．．．．． \＄238．95 940.00	Dec． $1{ }^{\text {a }}$ 238．95				
	\＄1，035 06	\＄1，138．95	\＄992．25	\＄830．51	\＄652．18	8455.60	\＄251．30
Dr．		C． D ．					
$\left.\begin{array}{r} \text { Present value of } \\ \text { mortgage.... } \end{array}\right\}$	$\begin{aligned} & 18,2 . \\ & \text { Mar. } 1 \ldots . \leqslant 1,000.00 \end{aligned}$	$\begin{array}{cc} 1872 . \\ \text { Dec, } 1 \ldots . . & 8913.22 \end{array}$	1873. Dee．1．．．．$\$ 707.85$	$\begin{aligned} & \text { 187.1. } \\ & \text { Dec. } 1 \ldots . .5574 .50 \end{aligned}$	$18 \% \%$ Dec． 1 ．．．$\$ 361.84$	$\begin{aligned} & 1876 . \\ & \text { Dee. } 1 \ldots . . .8120 .83 \end{aligned}$	
Amount to date ．．Dec．1．．．．81，0ヶ5．93		$\begin{aligned} & 18 \text { is. } \\ & \text { Dec. } 1 \ldots . \ldots 1,059.90 \end{aligned}$	$\begin{gathered} 1874 . \\ \text { Dec, } 1 \ldots . . . \$ 846.55 \end{gathered}$	$\begin{aligned} & \text { 1875. } \\ & \text { Dec. } 1 \ldots \ldots 33.39 \end{aligned}$	$\begin{aligned} & 1870 . \\ & \text { Dec. } 1 \ldots . \ldots 8398.38 \end{aligned}$	$\begin{aligned} & 1877 . \\ & \text { Mnr. } 1 . . .8129 .45 \end{aligned}$	
Cr．C．D．							
Instalment．．．．．．．	1872. Mar． $1 . . .$. 1	$\begin{array}{cc} 1873 . \\ \text { Mar. } 1 \ldots . & \\ \text { Sept. 1.... } & 129.51 \\ \hline \end{array}$	$\begin{aligned} & 1874 . \\ & \text { Mar. } 1 \ldots .{ }^{2} 129.51 \\ & \text { Sept. } 1129 .51 \end{aligned}$	1875.Mar． $1 \ldots . .8129 .51$Sept． $1 \ldots . .129 .51$	$\begin{aligned} & 1870 . \\ & \text { Mar. } 1 \ldots . . \$ 199.51 \\ & \text { Sept. } 1 \ldots .129 .51 \end{aligned}$	187. Mar．1．．．．8129．51	
	Sept．1．．． 129.15						
Ameunt to dalo．． Balance．．．．．．．．．．．		$\begin{array}{\|ccc\|} \hline \text { Yec. } 1 & \ldots . . & 8929.05 \\ \cdots . . & \frac{867.85}{\$ 1,039.90} \end{array}$	$\begin{gathered} \text { Dec. } \left.1 \ldots . . \begin{array}{\|c} \$ 272.05 \\ \ldots 74.50 \\ \$ 8.10 .55 \end{array} \right\rvert\, \end{gathered}$			Mar．1．．．．$\$ 129.51$	
	．．．．．．．．．．948．22					．．．．．．．．．． 0.00	
	\＄1，075．93				8398.88	\＄129．51	

$\left.\begin{array}{c}\text { Present value of } \\ \text { mortgage．．．．．}\end{array}\right\}$	$\stackrel{1872 .}{\text { Oet. } 1 \ldots \$ 1,00) .00}$	$\begin{aligned} & 1872 . \\ & \text { Dec. } 1 \ldots . \ldots 1,010.40 \end{aligned}$	$\begin{aligned} & 1873 . \\ & \text { Dec. } 1 \ldots . \ldots 710.06 \end{aligned}$	1874. Dec．1．．．．8372．32
Amount to date ．．	ec． 1 ．${ }^{\text {s }} 1,416.411$	$\stackrel{18 ヶ 3 .}{\text { Dee. } 1 . . .81,120.58}$	$\begin{aligned} & \text { 184. } \\ & \text { Dec. } 1 \$ 782.84 \end{aligned}$	$\stackrel{18 \% 5 .}{\text { Oct. } 1 \$ 408.86}$

Cr．		E．F．		
Instalment	1872.	187.6	1874.	1875.
	80.018	Jan．1．．．． 397.31	Jan．1．．．． 597.81	Jan．1．．．．§97．81
		Apl．1．．．． 97.31	Apl，1．．．． 97.31	Apl．1．．．． 97.81
		Jnly 1．．．． 97.31	July 1 ．．． 97.31	July 1．．．． 97.31
		Oct．1．．． 97.81	Oct．1．．．． 97.31	Oct．1．．．． 97.81
Amount to dnte． Balanee \qquad	．\％80．00	trec．1．．．\＄410．52	1）ee． 1 ．．\＄110．52	Oct， $1 . . .8163 .90$
	．1，016．40	－ 710.00	．．．．．．．．．．372．82	0.00
	\＄1，016．10	\＄1，120．58	\＄782．8．1	\＄108．40

I N D Fi X .

To tind the present value of a sum due after a number
of years.
p. 10; s. (7); Table VIII

To find the present value of a sum due after a number of months less than a year. p. 10; s. (7); Table III.

To find the present value of a sum due after a broken period of years and some moaths.
p. 10; s. (7); Tables III., VIII.

To find the amount, with interest, of a sum, after any number of monthe, from 1 to $12 . \quad$ p. 8; s. (5); Table V.

To find the amount, with interest, of a sum, after a period of years and some months.
p. 12; s. (9); Tables III., VIII., or V., VIII.
(Divide the sum by the factor corresponding to the number of year: in Table VIll.; then divide this quotient by the factor corresponding to the number of months in T'able 111., or multiply this quotient by the factor corresponding to the number of montlis in Table V.)

To find the yearly, half-yearly, quarterly, or monthly instalment required to repay a loan in a given number of years. p. 5 ; s. (1); Table I.

To find the present value of an instalment payable at the end of each year, half-year, quarter or month, during a given number of years.
p. 5; s. (2) ; Table II.

To find the present value of a yearly, half-yearly, or quarterly instalment, in payment of a loan having a broken period of years and some months to run.

First method (best) p. 6; s. (3); Tables II., III. Second method, p. 8; s. (5); Tables II., V

INDEX.

To find the present value of a monthly instalment, in payment of a loan having a period of years and some months to run.

First method, p. 7 ; s. (4); Tables II., III., IV. Second method, p 9; s. (6); Tables II., V., VI.

To find the present value of an ordinary mortgage.
p. 10: s. (8); Tables II., III., VIII.

To find the reduction in the instalment or in the period to run, produced by the payment of an additional sum at any time during the period.

To find the rate of interest when the instalment, loan, and period are given.

$$
\text { p. } 13 \text {; s. (10); and Appendix, Note IV., p. } 46 .
$$

How the account of a borrower should be kept.
Appendix, Note V., p. 48.
es II., III., IV. les II., V., VI.
II., III., VIII. period
tional
12, 13; s. (9).
loan,
Note IV., p. 46.

Note V., p. 48.

[^0]: * London agents: C. \& J. Layton, 150 Fleet Street. A 12-figure machine will be found sufficient. In multiplying a sum by a factor, it will be better to begin from the left of the multiplier, as follows: Having set the multiplicand with the buttons, raise the plate and carry it to the right, so as to leave at least one hole to the left of the left-hand button. Multiply by the left hand figure of the multiplier; raise the plate and carry it one stage to the left ; then multiply by the next figure, and so oll. In this way the operation can be stopped without taking in unnceessary figures, when sufflefent accuracy has been attaised.

