IMAGE EVALUATION

 TEST TARGET (MT-3)
© 1993. Applied Image, Inc., All Rights Reserved

CIHM Microfiche Series (Monographs)

ICMH
 Collection de microfiches (monographies)

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur
Covers damaged/
Couverture endommagée
Covers restored and/or laminated/
Couverture restaurée et/ou pelliculée
Cover title nrissing/
Le titre de couverture manque
Coloured maps/
Caıtes géographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with othe: material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée pcut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du poinê de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.Coloured pages/
Pages de couleurPages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculéesPages discoloured. stained or foxed/
Pages décolorées, tachetées ou piquéesPages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index

Title on header taken from:/
Le titre de l'en-téte provient:Title page of issue/
Page de titre de la livraisonCaption of issue/
Titre de depart de la livraison
\square Masthead/
Générique (périodiques) de la livraison

Additional comments:/
Pagination is as follows: p. [225]-277.
Commentaires supplèmentaires:

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here has been reproduced thanks to the generosity of:

National Library of Canada

The images appearing here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impression, or the back cover when approprlate. All other original copies are filmed beginning on the first page with a printed or illustrated impression, and ending on the last page with a printed or illustrated impression.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"), whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'exemplaire filmé fut reproduit grâce à la générosité de:

Bibliothéque nationale du Canada

Les images suivantes ont été reproduites avec le plus grand soin, compte tenu de la condition et de la netteté de l'exemplaire filmé, et en conformité avec les conditions du contrat des filmage.

Les exemplaires originaux dont la couverture en papier est imprimée sont filmés en commenc̣ant par le premier plat et en terminant soit par la derniere page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la première page qui comporte une empreinte d'impression ou d'ilustration et on terminant par la dernière page qui comporte une telle empreinte.

Un des symboles suivants apparaîtra sur la derniére image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole ∇ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction différents. Lersque le document est trop grand pour être reproduit en un seul cliché, il est filmé à partir de l'angle supérieur gauche, de gauche à droite, et de haut en bas, on prenant le nombre d'images nécessaire. Les diagrammes suivants illustrent la méthode.

FORMS, NECESSARY AND SUFFICIENT, OF THE ROOTS OF PURE UNI-SERIAL ABELIAN EQUATIONS.

By GEORGE PAXTON YOUNG.

Reprinted from American Iournal of Muthematicu, Val. IX, No. 3.

Forms, Necessury and Sufficient, of the Roots of Pupe Uni-Serial Abelian Equations.

By George Paxton Young, Univerwit! Colleye, Toronto, Cumulu.

Obiect of the Paper.
§1. An Abelian equation, that is, an irreducible equation in which one root is a rational function of another and of known quantities, may be called uni-serial when the roots form a single circulating series. If the equation, suy $f(x)=0$, be of the $n^{\text {th }}$ degree, its roots, in the ordinary Abelian notation, are

$$
\begin{equation*}
x_{1}, \theta x_{1}, \theta^{2} x_{1}, \ldots, \theta^{n-1} x_{1} \tag{1}
\end{equation*}
$$

§2. When the coefficients of θ are rational, in other words, when one root of the equation $f(x)=0$ is a rational function of another, the equation is a pure A belian. For instance, the irreducible cubic equation

$$
x^{3}+p x+q=0
$$

in which the coefficients p^{\prime} and q are such that $\sqrt{ }\left(-4 \mu^{3}-27 q^{2}\right)$ is rational, is a pure Abelian, because, as is well known, one root of the cubic is a rational function of either of the others.
§3. The object of the following paper is to investigate the necessary and sufficient forms of the roots of pure uni-serial Abelian equations. First, n Criterion of pure uni-serial Abelimism is established ($\S 12-\S 15$). A deduction is then given of the necessary and sufficient forms of the roots of pure uni-serial Abelian equations of all prime degrees $(\S 16-\S 26)$. Then the necessary and sufficient forms of the roots of the pure uni-serial Abelian quartic are obtained by two different methods (\$27-§39). Then the necessary and sufficient forms of the roots of the pure uni-serial Abelian of a degree which is the continued product of any number of distinct prime numbers are found $(\$ 40-\S 46)$. Then the problem is solved for the pure mi-serial Abelian of a degree which is four times the continued product of any number of distinet odd

where R_{1} is a rational function of the primitive $n^{\text {th }}$ root of unity w and of the known quantities involved in the coefficients of θ; and, z being any integer, R_{s} is derived from R_{1} by changing w into w^{2}. Putting

$$
\begin{equation*}
x_{s+1}=R_{0}^{\frac{1}{2}}+w^{*} R_{1}^{\frac{1}{4}}+w^{2 s} R_{2}^{\frac{1}{n}}+\ldots+w^{(n-1)} R_{n-1}^{\frac{1}{n}} \tag{2}
\end{equation*}
$$

the n roots of the equation $f(x)=0$ are obtained by giving s in x_{s+1} successively the values $0,1,2, \ldots, n-1$. Therefore $n R_{0}^{\frac{1}{n}}$ is the sum of the roots of the equation; consequently, $R_{0}^{\frac{1}{4}}$ is rational. An equation of the type

$$
\begin{equation*}
\left(R_{z} R_{1}^{-}\right)^{\prime}=F(w) \tag{3}
\end{equation*}
$$

subsists for every integral value of $z, \boldsymbol{F}^{\prime}(w)$ being a rational function of w and of the known quantities involved in the coefficients of θ. As w may be any one of the primitive $n^{\text {th }}$ roots of unity, if the general primitive $n^{\text {th }}$ root of unity be w^{c}, we may suppose w in R_{1} to be changed into w^{6}. The n roots of the equation $f(x)=0$ will then be obtained by giving t, in the expression

$$
\begin{equation*}
R_{0}^{\frac{1}{2}}+w^{t} R_{e}^{\frac{1}{1}}+w^{2 s} R_{2 e}^{\frac{1}{2}}+\text { ete } \tag{4}
\end{equation*}
$$ successively the values $0,1,2, \ldots, n-1$. Abel's investigation shows that the form of the function $F^{\prime}(w)$ in (3) is independent of the particular primitive $v^{\text {th }}$ root of unity denoted by w. Hence the change of w into w^{e} causes equation (3) to become

$$
\begin{equation*}
\left(R_{c z} R_{e}^{-e}\right)^{\frac{1}{2}}=F\left(w^{e}\right), \tag{5}
\end{equation*}
$$

the symbol F having the same meaning for every value of e.

Fundamental Element of the Ror.

§6. Because R_{0}, R_{2}, etc., are derived from R_{1} by changing w into w^{0}, w^{2}, etc., the root x_{1} can be constructed when R_{1} is given. We may therefore call R_{1} the fundamental element of the root. Examples of the way in which the root is constructed from its fundamental clement will present themselves in the course of the paper.

A Certain Rational Function of the Primitive $n^{\text {th }}$ Root of Unity, n being an Odd Prime Number.

§ 7. Taking n an odd prime number, there is a certain rational function of the primitive $n^{\text {th }}$ root of unity w, of which we shall have occasion to make
frequent use. It will be convenient to describe it here, and to point out two of its properties. Let $\quad w, w^{\lambda}, w^{\lambda i}, \ldots, w^{\lambda n-1}$,
be a cycle containing all the primitive $n^{\text {th }}$ roots of unity. 'The number λ may bo assumed to be less than n. With a view to convenience in printing, the indices of the powers of w in (6) may be written

$$
\begin{equation*}
1, \lambda, \mu, \beta, \ldots, \delta, \varepsilon, 0 \tag{7}
\end{equation*}
$$

that is to say, $\alpha=\lambda^{3}, \beta=\lambda^{3}$, and so on. Take P_{1} a rational function of w, and, z being any integer, let P_{s} be what ρ_{1} becones when w is changed into w^{*}. Then the function to which we desire to call attention is

$$
\begin{equation*}
P_{1}^{\theta} P_{\lambda}^{e} I_{a}^{S} \ldots \ldots P_{\delta}^{2} I_{d}^{\lambda} P_{\theta} \tag{8}
\end{equation*}
$$

The subscripts of the factors of the expression (8) are the terms in (7), while the indices are the terms in (7) in reverse order. The expression (8) may be denoted by the symbol ϕ_{1}. From ϕ_{1}, as expressed in (8), derive ϕ_{t} by changing w into w^{*}, z being any integer. Then

The second of these equations is derived from the first by changing w into w^{λ}. This, since $\alpha=\lambda^{3}$ and $\beta=\lambda^{3}$, and so on, causes w^{λ} to become w^{a}, and $w^{\text {a }}$ to become w^{β}, and so on. Hence it causes P_{λ} to become P_{a}, P_{a} to become P_{β}, and so on. Thus the second of equations (9) is obtained. The rest are obtained in a similar manner.
§8. One property which the function ϕ_{1} possesses is that $\phi_{0}^{\frac{1}{n}}$ has a rational value. For $\phi_{0}=P_{0}^{\phi} P_{0}^{e} \ldots P_{0}^{\lambda} P_{0}=P_{0}^{t}$,
where $\quad t=1+\lambda+\lambda^{2}+\ldots+\lambda^{n-2}=\frac{\lambda^{n-1}-1}{\lambda-1}$.
Because (6) is a cycle of primitive $n^{\text {th }}$ roots of unity, $\lambda^{n-1}-1$ is a multiple of n. And, since λ is less than $u, \lambda-1$ is not a multiple of n; therefore t is a multiple of n. Put $t=m n$; then

$$
\phi_{0}=\left(P_{0}^{m}\right)^{n} ;
$$

consequently, one of the values of ϕ_{0}^{1} is the rational quantity P_{0}^{m}.
89. A second property of the finction ϕ_{1} is that an equation of the type

$$
\begin{equation*}
\left(\phi \cdot \phi_{1}^{-v}\right)^{\frac{1}{6}}=r^{\prime}(k) \tag{10}
\end{equation*}
$$

subsists for every integral value of $z, r(w)$ being in rational function of w. For, taking $z=\lambda$,

$$
\phi_{1}^{\lambda}=P_{1}^{\lambda \theta} P_{\lambda}^{\lambda e} P_{a}^{\lambda A} \ldots P_{d}^{\lambda a} P_{i}^{a^{2}} P_{\Delta}^{\lambda} .
$$

But $\lambda^{2}=\alpha, \alpha \lambda=\beta_{1} \ldots, \lambda_{s}=0$. And $\lambda \theta=\lambda_{n}^{n-1}$. Since $\lambda^{n-1}-1$ is a multiple of n, put $\dot{n}^{n-1}-1=$ cu. Then

$$
\phi_{1}^{\lambda}=I_{1}^{r n}\left(I_{1} I_{\lambda}^{\prime} \ldots . P_{\theta}^{\prime}\right) .
$$

Comparing this with the second of equations (9),

Therefore

$$
\begin{gather*}
\phi_{\lambda} \phi_{1}^{-\lambda}=P_{1}^{-c n} . \\
\left(\phi_{\lambda} \phi_{1}^{-\lambda}\right)^{\frac{1}{4}}=u^{\prime} P_{1}^{-c}, \tag{11}
\end{gather*}
$$

w^{\prime} being an $n^{\text {th }}$ root of unity. In like manner, from the second and third of equations (9), $\quad \phi_{a} \phi_{\lambda}^{-\lambda}=P_{\lambda}^{-c n}$.
Substitute here the value of ϕ_{λ} in (11). Then $\phi_{a} \phi_{1}^{-a}=\left(P_{\lambda}^{-c} I_{1}^{-A c}\right)^{n}$. Therefore

$$
\begin{equation*}
\left(\phi_{a} \phi_{1}^{-a}\right)^{\frac{1}{n}}=u^{\prime \prime}\left(P_{\lambda}^{-c} P_{1}^{-\lambda c}\right), \tag{12}
\end{equation*}
$$

$w^{\prime \prime}$ being an $n^{\text {th }}$ root of unity. The equations (11) and (12) are of the type (10). Therefore an equation of the type (10) subsists when z is equal either to λ or to α. In the same waty we can go on to show that an equation of the type (10) subsists when z is equal to any of the terms in (7). Should $z=0, \phi_{s} \phi_{1}^{-x}=\phi_{0}$. Therefore, by $\S 8, \phi_{2} \phi_{1}^{-3}=P_{0}^{m n}$. Hence in this case also $\left(\phi_{s} \phi_{1}^{-s}\right)^{\frac{1}{n}}$ is a rational function of w. Therefore, whether z be zero or one of the terms in the series (7), an equation of the type (10) subsists. This implies that an equation of the type (10) subsists for every integral value of $\%$.

Criterion of Pure Uni-Serial Abelianism.
 The Criterion Stated.

§10. A Criterion of pure uni-serial Abelianism may now be given. Let R_{1} be a rational function of the primitive $n^{\text {th }}$ root of unity w, and, z being any integer, let R_{z} be derived from R_{1} by changing w into w^{ℓ}. Then, if R_{0}^{n} is rational, and if the terms $R_{1}^{\frac{1}{n}}, R_{2}^{i}$, etc., are such that an equation of the type
(3) subsists for every integral value of z, un equation (5), in which the symbol f lans the same meming as in (3), at the same time subsisting for every value of ' prime to n, the n vilnes of x_{s+1} in (2), ohtaned by giving ${ }^{*}$ successively the values $0,1,2, \ldots, n-1$, are the roots of a pure uni-serial Abelinn equmtion, provided alwnys that the equation of the $n^{\text {th }}$ degree, of which they cun be shown to be the roots, is inveducible.

Proof of the Criterion.

§11. Here we ussume that the conditions specified in § 10 are satisfied, and we have to show that the n values of x_{s+1} in (2), obtained by putting s suceessively equal to $0,1,2, \ldots, n-1$, are the roots of a pure uni-serial Abelian equation.
§12. We will tirst prove that the n values of the expression (4) obtained by giving t stecessively the n values $0,1,2, \ldots, n-1$, are the same, the order of the terms not being considered, as the n values of x_{a+1} in (2) obtained by giving 8 suceessively the values $0,1,2, \ldots, n-1$.

Because w^{e} is a primitive $u^{\text {mh }}$ root of unity, all the $u^{\text {lh }}$ roots of unity distinet from unity are contained in the series

Therefore the two series

$$
\begin{gathered}
w^{e}, w^{2 e}, w^{3 e}, \ldots, w^{(n-1) e} \\
R_{1}, R_{2}, R_{3}, \ldots, R_{n-1} \\
R_{e}, R_{2 e}, R_{3 e}, \ldots, R_{(n-1) e}
\end{gathered}
$$

are identical with one another, the order of the terms not being considered. Therefore, also, the two series

$$
\begin{aligned}
& R_{1}^{\frac{1}{n}}, R_{2}^{\frac{1}{n}}, R_{3}^{\frac{1}{n}}, \ldots, R_{n-1}^{\frac{1}{n}} \\
& R_{e}^{\frac{1}{n}}, R_{2 e}^{\frac{1}{n}}, R_{3 e}^{\frac{1}{n}}, \ldots, R_{(n-1) e}^{1}
\end{aligned}
$$

are identical with one another, the order of the terms not being considered, it being understood that $R_{e}^{\frac{1}{e}}, R_{2 e}^{\frac{1}{n}}$, etc., are the same $n^{\operatorname{Lh}_{2}}$ roots of $R_{e}, R_{2 e}$, etc., or of R_{1}, R_{2}, ete., that are taken in the series $R_{1}^{\frac{1}{n}}, R_{2}^{1}$, ete. Let the expression (4) be called x_{i+1}^{\prime}. The separate members of the expression x_{s+1} are

$$
\begin{equation*}
R_{0}^{\frac{1}{n}}, u^{s} R_{1}^{\frac{1}{n}}, u^{2 s} R_{2}^{\frac{1}{\pi}}, \text { etc. } \tag{13}
\end{equation*}
$$

Taking s with a definite value, let

$$
e s=b n+c
$$

he symbol wery value :sisely the lime equahey can be
tisfied, and g 8 succesial Abelian
btained by , the order btained by ity distinct considered. nsidered, it , etc., or of sion (4) be
where b and c are whole numbers, and c is less than n. Then, putting $t=c$, the separate members of the expression $x_{0}^{\prime}+1$ are

$$
\begin{equation*}
l_{n}^{\frac{1}{2}}, w^{o} R_{o}^{\frac{1}{4}}, w^{8} R_{2 n}^{\frac{1}{4}}, \text { etc. } \tag{14}
\end{equation*}
$$

Because $c_{8}=l_{m}+c, w^{\circ}=u^{\circ n}$. Therefore $w^{\circ} R_{0}^{\frac{1}{5}}=u^{\circ \circ} R_{c}^{\frac{1}{4}}$; that is, the second term in (14) is equal to the $(e+1)^{\text {th }}$ term in (13). Again, if $2 e=d u+v$, where d and v are whole numbers, mid v is less than $n, l_{i s}^{\frac{1}{4}}=R_{v}^{\frac{1}{v}}$. Also, because $e_{s}=l n+c, u^{2 s}=w^{2 e n}$. Therefore $u^{2 c} R_{2 s}^{\frac{1}{t}}=u^{2 c \cdot c} L_{0}^{\frac{1}{4}}=u^{r s} R_{v}^{\frac{1}{t}} ;$ that is, the third term in (14) is equal to the $(v+1)^{\text {th }}$ term in (13); and so on. Hence $x_{o+1}^{\prime}=x_{s+1}$. Let now 8 and σ be two distinct values of s, both less than n; and let

$$
x_{c+1}^{\prime}=x_{n+1}, \text { and } x_{o+1}^{\prime}=x_{o+1} .
$$

By what has been proved, the numbers c and z are determined by the equations

$$
\epsilon s=b m+c, c \sigma=\beta n+z
$$

In and β_{n} being multiples of n. But, since s and σ are different, and e is primo to n, c and z must be different. Hence, as x_{a+1} runs through its n values, x_{1}, x_{2}, etc., x_{t+1}^{\prime} must run through its n values, severally equal, in some order, to those of x_{a+1}.

$$
\begin{aligned}
& \text { § 13. From (5), } \\
& R_{2 e}^{\frac{1}{1}}=A_{e} R_{e}^{\frac{2}{2}}, \\
& R_{3 e}^{\frac{1}{4}}=B_{\varepsilon} R_{e}^{\frac{1}{4}}, \\
& R_{(n-1)}^{\frac{1}{4}}=O_{i} R_{i}^{n_{n}^{n}} .
\end{aligned}
$$

where A_{e}, B_{e}, etc., are rational functions of w^{e}. These values of $R_{i_{e},}^{\frac{1}{2}}, R_{3,}^{\frac{1}{4}}$, etce, substituted in (4), enuse that expression to become

$$
\begin{equation*}
R_{0}^{\frac{1}{6}}+w^{t} R_{e}^{\frac{1}{2}}+w^{2} A_{e} R_{e}^{\frac{2}{2}}+w^{s} B_{e} R_{e}^{\frac{3}{e}}+\text { etc. } \tag{15}
\end{equation*}
$$

Let the n values of the expression (15), obtained by putting t successively equal to $0,1,2, \ldots, n-1$, be
Then, v being a whole number,

$$
\begin{align*}
& r_{1}^{r_{0}^{0}}=a_{e}+b_{e} R_{e}^{\frac{1}{e}}+c_{e} R_{e}^{\frac{2}{x}}+\ldots+d_{e} R_{e}^{\frac{n-1}{n}}, \tag{16}\\
& r_{2}^{v}=u_{e}+u b_{e} R_{e}^{\frac{1}{e}}+w^{2} \varepsilon_{e} R_{e}^{\frac{2}{8}}+\ldots+w^{(n-1)} d_{e} R_{e}^{n-1}, \\
& r_{n}^{v}=a_{e}+w^{-1} b_{e} R_{n}^{\frac{1}{n}}+w^{-2} c_{e} R_{e}^{\frac{a}{2}}+\cdots \cdots+w d_{e} R_{e}^{n-\frac{1}{n}},
\end{align*}
$$

where a_{e}, b_{e}, etc., are rational functions of w^{e}. Therefore, if S_{v} be the sum of the $v^{\text {th }}$ powers of the terms in (16), $S_{v}=n a_{e}$. Because a_{e} is a rational function of w^{e}, we may put

$$
n a_{e}=g+h w^{e}+l w^{2 e}+\ldots+l w^{(n-2) e}, \text { where } g, h, \text { etc., are rational. }
$$

But, by § 12, the n values of the expression (15), obtained by giving t successively the values $0,1,2, \ldots, n-1$, are the same whatever value, making w^{e} a primitive $n^{\text {th }}$ root of unity, be given to e. We may therefore substitute for w^{e}, in the expression for $n u_{e}$ or S_{v}, any one of the primitive $n^{\text {th }}$ roots of unity

$$
\begin{align*}
& w, w^{c}, w^{d}, \ldots, w^{z} \tag{17}\\
& S_{v}=g+h w+k w w^{2}+\text { etc. } \\
& =g+h w^{c}+k w^{2 c}+\text { etc. } \\
& \quad=\cdots \cdots \cdots \cdots w^{2}+k w^{2 z}+\text { etc. }
\end{align*}
$$

Therefore
'I'herefore

$$
m S_{v}=m g+h\left(w+w^{c}+\text { etc. }\right)+k\left(w^{2}+w^{2 c}+\text { etc. }\right)+\text { etc. }
$$

m being the number of the terms in the series (17). Consequently S_{v} is a rational and symmetrical function of the primitive $n^{\text {th }}$ roots of unity. Hence, by Kronecker's law, referred to in $\S 4, S_{v}$ is rational. This implies that the n terms in (16), which have been shown to be identical with the n values of x_{s+1} in (2) obtained ly giving s successively the values $0,1,2, \ldots, n-1$, are the roots of an equation of the $n^{\text {th }}$ degree; that is, of an equation of the $n^{\text {th }}$ degree with rational coefficients. Let this equation be $f(x)=0$.
§14. In accordance with the proviso in $\S 10$, let the equation $f(x)=0$ be irreducible. It is then a pure Abelian. For, taking r_{1}, r_{2}, etc., as in $\S 13$,

$$
\left.\begin{array}{rl}
r_{1} & =R_{0}^{\frac{1}{n}}+R_{e}^{\frac{1}{n}}+A_{e} R_{e}^{\frac{3}{n}}+\ldots+C_{e} R_{e}^{\frac{n-1}{n}} \\
r_{1}^{2} & =D_{e}+F_{e} R_{e}^{\frac{1}{n}}+G_{e} R_{e}^{\frac{2}{n}}+\ldots \ldots+H_{e} R_{e}^{\frac{n-1}{n}} \tag{18}\\
\cdots \cdots \cdots \cdots \cdots M_{e} \\
r_{1}^{n-1} & =K_{e}+L_{e} R_{e}^{\frac{1}{n}}+M_{e} R_{e}^{\frac{2}{n}}+\ldots .+Q_{e} R_{e}^{\frac{n-1}{n}}
\end{array}\right\}
$$

where A_{e}, D_{e}, F_{e}, etc., are rational functions of u^{e}. Multiply the first of equations (18) by l_{e}, the second by k_{e}, and so on, the last being multiplied by l_{e}; then, by addition,

$$
\begin{aligned}
& h_{e} r_{1}+h_{e} r_{1}^{2}+\ldots+l_{e} e_{1}^{n_{1}^{2}-1}=\left(h_{e} R_{0}^{1}+l_{e} D_{e}+\ldots .+l_{e} K_{e}\right) \\
& +\left(h_{e} \quad+h_{e} F_{e}+\ldots+l_{e} L_{e}\right) R_{e}^{\frac{1}{e}}
\end{aligned}
$$

Let the $n-1$ quantities, h_{e}, k_{e}, etc., be determined by the $n-1$ equations

$$
h_{e}+h_{e} F_{e}+\ldots+l_{e} L_{e}=w^{e}
$$

$$
h_{e} A_{e}+l_{e} G_{e}+\ldots+l_{e} M_{e}=u^{2 e} A_{e}
$$

Then

$$
h_{e} C_{e}+h_{e} H_{e}+\ldots+l^{e} Q_{e}=w^{(n-1) e} C_{e}
$$

$$
\begin{aligned}
h_{e} r_{1}+l_{e} r_{1}^{2}+\text { ctc. } & =\left(h_{e} R_{0}^{\frac{1}{n}}+l_{e} D_{e}+\ldots+l_{e} h_{e}^{-}\right) \\
& +u^{e} R_{e}^{\frac{1}{2}}+u^{2 e} A_{e} R_{e}^{\frac{2}{4}}+\ldots+w^{(n-1, e} C_{e} R_{e}^{\frac{n-1}{e}}
\end{aligned}
$$

or, putting $R_{2 e}^{\frac{1}{n}}$ for $A_{e} l_{e}^{\frac{2}{n}}$, and so on,

$$
\begin{align*}
h_{e} r_{1}+l_{e} r_{1}^{2}+\text { etc. } & =\left(h_{e} R_{0}^{\frac{1}{n}}+l_{e} D_{e}+\ldots+l_{e} K_{e}\right) \\
& +w^{e} R_{e}^{\frac{1}{n}}+w^{2 e} R_{2 e}^{\frac{1}{n}}+\ldots+w^{(n-1 e} R_{(n-1) e}^{\frac{1}{n}} \tag{19}
\end{align*}
$$

By $\S 12, x_{c+1}^{\prime}=x_{s+1}$, where $e s=l n+c$. When $s=0, c=0$, and when $s=1$,
$c=e$; therefore $c=e$; therefore
and

$$
\begin{aligned}
& x_{1}=x_{1}^{\prime}=n_{i}^{\frac{1}{1}}+R_{e}^{\frac{1}{4}}+R_{2 e}^{\frac{1}{4}}+\text { etc. }=r_{1} \\
& x_{2}=x_{e}^{\prime}+1=R_{0}^{\frac{1}{1}}+w^{e} R_{e}^{\frac{1}{4}}+u^{2 e} R_{2 e}^{\frac{1}{4}}+\text { etc. }
\end{aligned}
$$

Therefore (19) may be written

$$
h_{e} x_{1}+l_{e} x_{1}^{2}+\text { etc. }=\left(h_{e} R_{0}^{\frac{1}{x}}+\text { etc. }\right)-R_{0}^{\frac{1}{4}}+x_{2}
$$

But e may be any number that makes w^{e} a primitive $n^{\text {th }}$ root of unity, and (17) is the series of the primitive $n^{\text {th }}$ roots of unity. Therefore
where h_{1}, h_{c}, etc., are what h_{e} becomes when w^{e} is changed into w, w^{c}, etc., and k_{1}, k_{c}, etc., are what k_{e} becomes when w^{e} is changed into w, w^{c}, etc., and so on. Therefore, by addition, m being the number of the primitive $n^{\text {th }}$ roots of unity,

$$
m x_{2}=p+q x_{1}+t x_{1}^{2}+\ldots+v x_{1}^{n-1}
$$

where p, q, etc., are rational and symmetrical functions of the primitive $n^{\text {th }}$ roots of unity, and therefore are rational. Hence x_{2} is a rational function of x_{1}. Therefore the equation $f(x)=0$ is a pure Abelian.
$\S 15$. It is also uni-serial. For, by what has been proved,

$$
x_{2}=\theta x_{1}
$$

$$
\begin{aligned}
& x_{2}=\left\{R_{0}^{\frac{1}{n}}-\left(h_{1} R_{0}^{\frac{1}{t}}+\text { etc. }\right)\right\}_{+l_{1} x_{1}+k_{1} x_{1}^{2}+\ldots+l_{1} x_{1}^{n}-1} \\
& =\left\{R_{0}^{\frac{1}{n}}-\left(h_{c} l_{0}^{\frac{1}{2}}+\text { etc. }\right)\right\}+h_{e} x_{1}+k_{c} x_{1}^{2}+\ldots+l_{c} x_{1}^{n-1} \\
& =\left\{R_{0}^{\frac{1}{2}}-\left(h_{s} R_{0}^{\frac{1}{\pi}}+\text { etc. }\right)\right\}_{+h_{z} x_{1}+k_{z} x_{1}^{2}+\ldots+l_{z} x_{1}^{n-1}, ~}^{\text {, }}
\end{aligned}
$$

θx_{1} denoting a rational function of x_{1}. But, from the form of x_{a+1} in (2), since $R_{2}^{\frac{1}{n}}=A_{1} R_{1}^{\frac{2}{n}}$, and $R_{3}^{\frac{1}{n}}=B_{1} R_{1}^{\frac{3}{n}}$, and so on, we pass from x_{1} to x_{2} by simply changing $h_{1}^{\frac{1}{n}}$ into $w R_{1}^{\frac{1}{n}}$. The same change transforms x_{2} into x_{3}. Therefore

$$
x_{3}=\theta x_{2}=\theta^{2} x_{1} .
$$

In like manner $x_{4}=\theta^{3} x_{1}$, and so on, till ultimately $\theta^{n} x_{1}=x_{1}$. Thus all the roots of the equation $f(x)=0$ are comprised in the series

$$
x_{1}, \theta x_{1}, \theta^{2} x_{1}, \ldots, \theta^{n-1} x_{1}
$$

Pure Abelian Lquations of Odd Prime Degrees.

Fundumental Element of the Root; the Root Constructed from its Fundamental Element.
§16. We confine ourselves to pure Abelians of odd prime degrees, because the irreducible quadratic is always a pure Abelian. Let n be an odd prime number, and let the primitive $n^{\text {th }}$ roots of unity be the terms $w, w^{\lambda}, w^{\lambda 2}$, etc., forming the series (6). Take ϕ_{1} as in the first of equations (9); then, if R_{1} be the fundamental element (see $\S 6$) of the root of a pure Abelian equation $f(x)=0$ of the $n^{\text {th }}$ degree, it will be found that

$$
\begin{equation*}
R_{1}=A_{1}^{n} \phi_{1} \tag{20}
\end{equation*}
$$

A_{1} being a rational function of w.
§17. From R_{1}, as expressed in (20), derive R_{0}, R_{2}, etc., by changing w into w^{0}, w^{2}. etc. By $\S 5$, the root of the equation $f(x)=0$ is

$$
\begin{equation*}
R_{0}^{\frac{1}{n}}+R_{1}^{\frac{1}{n}}+R_{2}^{\frac{1}{n}}+\ldots+R_{n-1}^{\frac{1}{n}} \tag{21}
\end{equation*}
$$

To construct the root, we have to determine the particular $n^{\text {th }}$ roots of R_{0}, R_{1}, etc., that are to be taken together in (21). When w is changed into w^{2}, let A_{1} become A_{2}, as ϕ_{1} becomes ϕ_{z}. Then

Therefore

$$
\begin{align*}
& R_{z}=A_{z}^{n} \phi_{z} \\
& R_{z}^{\frac{1}{n}}=w^{\prime} A_{z} \phi_{z}^{\frac{1}{n}} \tag{22}
\end{align*}
$$

w^{\prime} being an $n^{\text {th }}$ root of unity. In proceeding to make $R_{z}^{\frac{1}{n}}$ definite, we may first make $\phi_{z}^{\frac{1}{11}}$ definite. By (9),

$$
\phi_{1}^{\frac{1}{1}}=u^{a}\left(P_{1}^{\theta} P_{\lambda}^{e} P_{a}^{\delta} \ldots P_{\theta}\right)^{\frac{1}{n}}
$$

v^{a} being an : wot of unity. Let

$$
P_{1}^{\frac{1}{1}}, P_{\lambda}^{\frac{1}{n}}, P_{a}^{\frac{1}{1}}, \ldots, P_{a}^{\frac{1}{n}},
$$

be determinate ; then, by taking w^{4} with the value unity, we get $\phi_{1}^{\frac{1}{7}}$ with the determinate value , $\phi_{1}^{\frac{1}{4}}=\left(P_{1}^{g} P_{\mathrm{a}}^{t} P_{a}^{\phi} \ldots . P_{\theta}\right)^{\frac{1}{1}}$.
Let us now consider $\dot{\phi}_{\lambda}^{\frac{1}{n}}$. By (9), $w^{\text {o }}$ being an $n^{\text {th }}$ root of unity,

$$
\phi_{\lambda}^{\frac{1}{n}}=w^{c}\left(P_{1} P_{\wedge}^{9} P_{a}^{c} \ldots P_{\theta}^{\mathfrak{a}}\right)^{\frac{1}{c}}
$$

Understanding that $P_{1}^{\frac{1}{1}}, P_{\lambda}^{\frac{1}{4}}$, ete., on the right-land side of this equation are the same quantities that appear in (23), they have already been made definite. We can then make $\phi_{\lambda}^{\frac{1}{\lambda}}$ definite by taking u^{c} with the value unity. Generally, if z be any number in the series $1,2, \ldots, n-1$,

$$
\phi_{z}^{\frac{1}{4}}=w^{d}\left(P_{z}^{s} P_{z s}^{s} P_{z a}^{s} \ldots P_{z g}\right)^{\frac{1}{4}},
$$

w^{d} being an $n^{\text {th }}$ root of unity. Because z is prime to n, the $n-1$ terms $w^{2}, w^{2 \lambda}, w^{2 a}, \ldots, w^{2 \theta}$, are the same, in a certain order, with the terms $w, w^{\lambda}, w^{a}, \ldots, w^{\natural}$. Therefore the terms

$$
P_{z}^{\frac{1}{2}}, P_{z \lambda}^{\frac{1}{x}}, P_{z a}^{\frac{1}{2 a}}, \ldots, P_{z \theta}^{\frac{1}{4}},
$$

may be taken to be the same, in a certain order, with the terms in (23). They are accordingly determinate. We may then make $\varphi_{2}^{\frac{1}{4}}$ definite by taking u^{d} with the value unity. Therefore, for every value of z in the series $1,2, \ldots, n-1$,

$$
\begin{equation*}
\phi_{z}^{\frac{1}{n}}=\left(P_{z}^{s} P_{s \lambda}^{s} P_{z a}^{s} \ldots P_{z \theta}\right)^{\frac{1}{4}} . \tag{24}
\end{equation*}
$$

Having thus determined $\phi_{2}^{\frac{1}{2}}$, we can make $R_{z}^{\frac{1}{4}}$ definite by taking u^{\prime} in (2ء) equal to unity for every value of z in the series $1,2, \ldots, n-1$; that is,

$$
\left.\begin{array}{c}
R_{1}^{\frac{1}{4}}=A_{1} \phi_{1}^{\frac{1}{4}} \tag{25}\\
R_{\lambda}^{\frac{1}{n}}=A_{\lambda} \phi_{1}^{\frac{1}{n}} \\
\cdots \cdots \\
R_{\theta}^{\frac{1}{s}}=A_{\theta} \phi_{\theta}^{\frac{1}{i}}
\end{array}\right\}
$$

As regards $R_{0}^{\frac{1}{\tau}}$, we have $R_{0}=A_{0}^{n} \phi_{0}$. But, by $\S 8, \phi_{0}=P_{0}^{m n}$. Therefore $\phi_{0}^{\frac{1}{n}}$ has a rational value. Consequently $R_{0}^{\frac{1}{1}}$ has a rational value. In (21) substitute the rational value of $R_{0}^{\frac{1}{\pi}}$, and the values of $R_{1}^{\frac{1}{1}}, R_{\lambda}^{\frac{1}{4}}$, ete., given in (25), and the
root is constructed. In other words, the expression (21) is the root of a pure uni-serial Abelian equation of the $n^{\text {th }}$ degree, provided always that the equation of the $n^{\text {th }}$ degree, of which it can be shown to be the root, is irreducible.

Necessity of the above Forms.

§18. The root x_{1} of the pure Λ belian equation $f(x)=0$ of the $n^{\text {th }}$ degree, n an odd prime, being assumed to be expressible as in (21), we have to show that its fundamental element R_{1} has the form (20), and that $R_{1}^{\frac{1}{n}}, R_{\lambda}^{\frac{1}{n}}$, etc., are to be taken as in (25), while $R_{0}^{\frac{1}{n}}$ receives its rational value.
§19. By (3), z bein ${ }_{\delta}$ any integer,

$$
R_{s}^{\frac{1}{n}}=\left\{F^{\prime}(w)\right\} R_{1}^{\frac{2}{n}}
$$

$F(w)$ being a rational function of v. And equation (5) subsists along with (3); that is, e being any whole number prime to n,

$$
R_{e z}^{\frac{1}{n}}=\left\{\dot{F}\left(w^{e}\right)\right\} R_{e}^{\frac{2}{n}}
$$

Give z here successively the values $1, \lambda, \alpha$, etc., these terms being the same as in the series (7). Then

$$
\begin{aligned}
& R_{e}^{\frac{1}{n}}=R_{e}^{\frac{1}{n}} \\
& R_{e \lambda}^{\frac{1}{n}}=B_{e} R_{e}^{\frac{1}{n}}, \\
& R_{e a}^{\frac{1}{n}}=C_{e} R_{e}^{\frac{a}{n}} \\
& \cdots \cdots \\
& R_{e \theta}^{\frac{1}{n}}=D_{e} R_{e}^{\frac{\theta}{n}},
\end{aligned}
$$

B_{e}, C_{e}, etc., being rational functions of v°. Therefore

$$
\left(R_{e}^{\theta} R_{e \lambda}^{e} R_{e a}^{s} \ldots R_{e \theta}\right)^{\frac{1}{n}}=G_{e} R_{e}^{\frac{1}{n}}
$$

where G_{e} is a rational function of v^{e}, and

$$
t=\theta+\varepsilon \lambda+\delta \alpha+\ldots+\theta
$$

From the nature of the series (7), $\theta=\lambda^{n-2}$, and $\varepsilon=\lambda^{n-3}$. Therefore $\varepsilon \lambda=\theta$. In like manner, each of the $n-1$ separate members of t is equal to θ. Therefore $t=(n-1) \theta$. Because (6) is a cycle of primitive $n^{\text {th }}$ roots of unity, in other words, because λ is a prime root of n, and $\theta=\lambda^{n-2}, \theta$ is prime to n. And $n-1$ is necessarily prime to n. Therefore whole numbers h and k exist such that

$$
h t=k n+1
$$

of a pure equation le.
$\imath^{\text {th }}$ degree, ve to show etc., are to
g with (3);
he same as
fore $\varepsilon \lambda=\theta$. o θ. Thereof unity, in prime to n. t and k exist

Therefore

$$
\left(R_{e}^{A} R_{e \lambda}^{e} \ldots R_{\cdot} .\right)^{\frac{n}{n}}=\left(G_{e}^{n} R_{e}^{k}\right) R_{e}^{\frac{1}{n}}
$$

For every integral value of z let $\left(R_{e z}^{h}\right)^{\frac{1}{n}}$ be written $P_{\theta z}^{\frac{1}{n}}$; then, putting A_{e}^{-1} for $G_{e}^{h} R_{e}^{k}$,

$$
\begin{equation*}
R_{e}^{\frac{1}{n}}=A_{e}\left(P_{e}^{\theta} P_{e \lambda}^{e} P_{e a}^{s} \ldots P_{e \theta}\right)^{\frac{1}{4}} \tag{26}
\end{equation*}
$$

Hence, by putting $e=1$, and taking ϕ_{1} as in (9),

$$
R_{1}=A_{1}^{n} \phi_{1}
$$

Thus the form of the fundamental element in (20) is established. Also, when $e=1, \quad \quad R_{1}^{\frac{1}{n}}=A_{1}\left(P_{1}^{9} P_{\lambda}^{e} P_{a}^{s} \ldots P_{\theta}\right)^{\frac{1}{1 "}}$.
Therefore, by (24), $R_{1}^{\frac{1}{n}}=A_{1} \phi_{1}^{\frac{1}{n}}$. This is the first of equations (25). Sinee e may be any term prime to n, let $e=\lambda$. Then, from (26), because $\lambda^{2}=\alpha$ and $\lambda \alpha=\beta$, and so on,

$$
R_{\lambda}^{\frac{1}{n}}=A_{\lambda}\left(P_{\lambda}^{\theta} P_{a}^{\epsilon} P_{\beta}^{s} \ldots P_{1}\right)^{\frac{1}{x}}
$$

Therefore, giving z in (24) the value $\lambda, R_{\lambda}^{\frac{1}{\lambda}}=A_{\lambda} \phi_{\lambda}^{\frac{1}{n}}$. This is the second of equations (25). In like manner we can show that all the terms $R_{1}^{\frac{1}{n}}, R_{\lambda}^{\frac{1}{4}}, \ldots, l_{\theta}^{\frac{1}{n}}$ are to be taken as in (25). It has only to be added that $R_{0}^{\frac{1}{5}}$ must be takell with its rational value, because, by $\S 5, n R_{0}^{\frac{1}{n}}$ is the sum of the roots of the equation $f(x)=0$.

Sufficiency of the Forms.

$\S 20$. We here assume that R_{1} has the form (20), that $R_{0}^{\frac{1}{n}}$ is rational, and that $R_{1}^{\frac{1}{n}}, R_{\lambda}^{\frac{1}{n}}$, etc., are taken as in (25), and we have to show that the n values of x_{s+1} in (2), obtained by giving s successively the n values $0,1,2, \ldots, n-1$, are the roots of a pure uni-serial Abelian equation of the $n^{\text {th }}$ degree, provided always that the equation of the $n^{\text {th }}$ degree, of which they are the roots, is irreducible. In the first place, $R_{0}^{\frac{1}{4}}$ has been taken rational. In the next place, an equation of the type (3) subsists for every integral value of z. For, let z not be a multiple of n. In this case it may be taken to be a number in the series $1,2, \ldots, n-1$. Then, by (25),

$$
\begin{equation*}
\left(R_{2} R_{1}^{-z}\right)^{\frac{1}{n}}=\left(A_{z} A_{1}^{-z}\right)\left(\phi_{2} \phi_{1}^{-z}\right)^{\frac{1}{n}} \tag{27}
\end{equation*}
$$

But ϕ_{1} is the expression (8). Therefore, by $\S 9$,

$$
\left(\phi_{\varepsilon} \phi_{1}^{-z}\right)^{\frac{1}{n}}=F(w)
$$

$F(w)$ being a rational function of w. This makes (27) an equation of the type (3). Next, let z be a multiple of n, in whieh case it may be taken to be zero. Then

$$
R_{a}^{\frac{1}{n}}=R_{0}^{\frac{1}{n}}, \text { and } R_{1}^{\frac{\pi}{n}}=1
$$

Therefore

$$
\begin{equation*}
\left(R_{2} R_{1}^{-2}\right)^{\frac{1}{n}}=R_{0}^{\frac{1}{4}} \tag{28}
\end{equation*}
$$

Since $R_{0}^{\frac{1}{n}}$ is rational, (28) is an equation of the type (3). Therefore, whether \% be a multiple of n or not, an equation of the type (3) subsists. In the third place, the equation (5) subsists along with (3) for every value of e that makes w^{e} a primitive $n^{\text {th }}$ root of unity. For, let z be a multiple of n; it may be taken to be zero. Therefore

Therefore

$$
\begin{gather*}
R_{e z}^{\frac{1}{n}}=R_{0}^{\frac{1}{n}}, \text { and } R_{e}^{\frac{z}{n}}=1 \\
\left(R_{e z} R_{e}^{-z}\right)^{\frac{1}{n}}=R_{0}^{\frac{1}{n}} \tag{29}
\end{gather*}
$$

But, equation (28) being regarded as (3), (29) is (5). Next, let z not be a multiple of n. It may be taken to be a number in the series $1,2, \ldots, n-1$. Then equation (27) is (3). But, in (27), z may be any number not a multiple of n, and $e z$ is not a multiple of n. Therefore we may substitute for z either $e z$ or e. Thus we have
and

$$
\begin{align*}
& \left(R_{e z} R_{1}^{-e z}\right)^{\frac{1}{n}}=\left(A_{e z} A_{1}^{-\theta z}\right)\left(\phi_{e z} \phi_{1}^{-e s}\right)^{\frac{1}{n}} \\
& \left(R_{e} R_{1}^{-\theta}\right)^{\frac{1}{n}}=\left(A_{e} A_{1}^{-e}\right)\left(\phi_{e} \phi_{1}^{-\theta}\right)^{\frac{1}{n}} \\
& \left(R_{e z} R_{e}^{-s}\right)^{\frac{1}{n}}=\left(A_{e z} A_{e}^{-z}\right)\left(\phi_{e z} \phi_{e}^{-z}\right)^{\frac{1}{n}} \tag{30}
\end{align*}
$$

But, equation (27) being regarded as (3), equation (30) is (5). Therefore, whether z be a multiple of n or not, equation (5) subsists along with (3). Hence, by the Criterion in $\S 10$, the n values of x_{8+1} in (2), obtained by giving s successively the values $0,1,2, \ldots, n-1$, are the roots of a pure uni-serial Abelian equation.

Particular Values of n; the Pure Abelian Cubic,

$\S 21$. When the equation $f(x)=0$ is of the third degree, taking $\lambda=2$, the series (7) is reduced to the terms 1,2 , and the equations (25) become

$$
R_{1}^{\frac{1}{1}}=A_{1}\left(P_{1}^{2} P_{2}\right)^{\frac{1}{3}}, R_{2}^{\frac{1}{2}}=A_{2}\left(P_{2}^{2} P_{1}\right)^{\frac{1}{4}}
$$

Also $1 R_{0}^{\downarrow}=A_{0} \phi_{0}$. Therefore

$$
x_{1}=A_{0} \phi_{0}+A_{1}\left(P_{1}^{2} P_{2}\right)^{\frac{3}{2}}+A_{2}\left(P_{1} P_{2}^{2}\right)^{\frac{1}{2}}
$$

If $A_{0} \phi_{0}=0$, the equation wants its second term. Then, putting
we get

$$
\begin{aligned}
& \psi_{1}=A_{1}^{2} A_{2}^{-1} P_{1} \text { and } \psi_{2}=A_{2}^{2} A_{1}^{-1} P_{2}, \\
& x_{1}=\left(\psi_{1}^{2} \psi_{2}\right)^{\frac{4}{4}}+\left(\psi_{2}^{2} \psi_{1}\right)^{4} .
\end{aligned}
$$

§22. Let the pure Abelian cubic of which x_{1} is the root be

$$
x^{3}+p x+q=0 .
$$

Because ψ_{1} is a rational function of the primitive third root of unity,
and

$$
\begin{aligned}
& \psi_{1}=b+c \sqrt{ }-3 \\
& \psi_{2}=b-c \sqrt{ }-3
\end{aligned}
$$

b and c being rational. Therefore $\psi_{1} \psi_{2}=b^{2}+3 c^{2}$. Therefore

$$
\begin{aligned}
& x_{1}=\left\{\left(l^{2}+3 c^{2}\right)(b+c \sqrt{ }-3)\right\}^{3}+\left\{\left(b^{2}+3 c^{2}\right)(b-c \sqrt{ }-3)\right\}^{\frac{3}{2}} .
\end{aligned}
$$

But $\quad r_{1}=\left\{-\frac{q}{2}+\sqrt{ }\left(\frac{q^{2}}{4}+\frac{p^{3}}{27}\right)\right\}^{\frac{1}{3}}+\left\{-\frac{q}{2}-\sqrt{ }\left(\frac{q^{2}}{4}+\frac{p^{3}}{27}\right)\right\}^{\frac{1}{3}}$.
Therefore

$$
\begin{aligned}
& \sqrt{ }\left(\frac{q^{2}}{4}+\frac{p^{8}}{27}\right)=c\left(b^{2}+3 c^{2}\right) \sqrt{ }-3 . \\
& \sqrt{ }\left(-4 p^{3}-27 q^{2}\right)=18 c\left(b^{2}+3 c^{2}\right) .
\end{aligned}
$$

Thus $\left.\sqrt{ }(-4)^{3}-27 q^{2}\right)$ is rational: the well known re
cients which makes the irreducible cubic $x^{3}+p x+q=0$ between the coeff.

The Pure Abelian Quintic.

§ 23. When $n=5, \lambda$ may be taken to be 2 . The series (7) then becomes $1,2,4,8$; or, rejecting multiples of $5,1,2,4,3$. We may then put

If we assume R_{0} to be zero,

$$
\begin{aligned}
& R_{1}^{\frac{1}{2}}=A_{1}\left(P_{1}^{3} P_{2}^{4} P_{4}^{2} P_{3}\right)^{\frac{2}{2}} \\
& R_{5}^{\frac{1}{2}}=A_{2}\left(P_{1} P_{2}^{3} P_{4}^{4} P_{3}^{2}\right)^{\frac{1}{4}} \\
& R_{4}^{\frac{1}{4}}=A_{4}\left(P_{1}^{2} P_{2} P_{4}^{3} P_{3}^{4}\right)^{\frac{1}{2}} \\
& R_{1}^{\frac{1}{4}}=A_{3}\left(P_{1}^{4} P_{2}^{2} P_{4} P_{3}^{3}\right)^{\frac{2}{2}}
\end{aligned}
$$

$x_{1}=A_{1}\left(P_{1}^{3} P_{2}^{4} P_{4}^{2} P_{3}\right)^{\frac{1}{4}}+A_{2}\left(P_{1} P_{2}^{3} P_{4}^{4} P_{3}^{2}\right)^{\frac{2}{2}}+A_{4}\left(P_{1}^{2} P_{2} P_{4}^{3} P_{3}^{4}\right)^{\frac{3}{4}}+A_{3}\left(P_{1}^{1} P_{2}^{2} P_{4} P_{3}^{9}\right)^{\frac{1}{2}}$. among the papers of Abl (see Crelle's Journal, Vol. V, p. 336) found of the fifth degree wanting the accompanying demonstration, substantially os was stated, though without any accompanying demonstration, substantially as follows: Let

$$
\left.\begin{array}{l}
\alpha_{i}=p+q \sqrt{ } z+\sqrt{ }(h z+h \sqrt{ } z) \tag{32}\\
\alpha_{2}=p-q \sqrt{ } z+\sqrt{ }(h z-h \sqrt{ } z) \\
\alpha_{4}=p+q \sqrt{ } z-\sqrt{ }(h z+h \sqrt{ } z) \\
\alpha_{3}=p-q \sqrt{ } z-\sqrt{ }(h z-h \sqrt{ } z)
\end{array}\right\}
$$

where p, q and h are rational, and

$$
\begin{equation*}
\because=e^{2}+1 \text {, } \tag{33}
\end{equation*}
$$

e being rational. Then, B_{1} being a rational function of α_{1}, B_{2} the same rational function of α_{2}, and so on,

$$
\begin{equation*}
r_{1}=B_{1}\left(\alpha_{1}^{3} \alpha_{2}^{4} \alpha_{4}^{2} \alpha_{3}\right)^{\frac{1}{2}}+B_{2}\left(\alpha_{1} \alpha_{2}^{3} \alpha_{4}^{4} \alpha_{3}^{2}\right)^{\frac{1}{2}}+B_{1}\left(\alpha_{1}^{2} \alpha_{2} \alpha_{1}^{3} \alpha_{3}^{4}\right)^{\frac{1}{2}}+B_{3}\left(\alpha_{1}^{4} \alpha_{2}^{2} \alpha_{4} \alpha_{3}^{3}\right)^{\frac{1}{2}} \tag{34}
\end{equation*}
$$

§ 25. The expression for r_{1} in (34) is the root of a solvable irredueible quintic, not necessarily a pure Abelian. To obtain from it the necessary and sufficient form of the root of a pure Abelian quintic, we make use of the law referred to in $\S 5$, aceording to which the root of the pure Abelian quintic wanting the second term is

$$
R_{1}^{\frac{1}{2}}+R_{2}^{\frac{1}{2}}+R_{3}^{\frac{1}{2}}+R_{4}^{\frac{1}{4}}
$$

where R_{1} is a rational function of the primitive fifth root of unity w. By this law, to deduce the root x_{1} of a pure Abelian quintic from the root r_{1} of an irredueible solvable quintie as in (34), we have simply to pass from the more general expression α_{1} to the less general expression which we have called P_{1}, because, in doing this, we necessarily pass from B_{1} to A_{1}, B_{1} being a rational function of μ_{1}, and A_{1} a rational function of P_{1}. The question, however, is: Can we pass from α_{1} to P_{1} ? In other words, can the general rational function of the primitive fifth root of unity be subsumed under α_{1} ? That it can, may be thus shown : The value of w is

$$
\begin{equation*}
w=\frac{\sqrt{ } 5-1}{4}+\frac{\sqrt{ }(-10-2 \sqrt{ } 5)}{4} \tag{35}
\end{equation*}
$$

Hence, if $F^{\prime}(w)$ be the general rutional function of w,

$$
\begin{equation*}
F(w)=p+l \sqrt{ } 5+(l+m \sqrt{ } 5) \sqrt{ }(-10-2 \sqrt{ } 5), \tag{36}
\end{equation*}
$$

where p, k, l and m are rational. Putting
and

$$
\begin{aligned}
& z=\frac{5\left(l^{2}+5 m^{2}+2 l m\right)^{2}}{\left(l^{2}+5 m^{2}+10 l m\right)^{2}} \\
& l=\frac{-2\left(l^{2}+5 m^{2}+10 l m\right)^{2}}{l^{2}+5 m^{2}+2 l m}
\end{aligned}
$$

(36) becomes

$$
F(w)=p+\frac{k\left(l^{2}+5 m^{2}+10 l m\right) \sqrt{ } z}{l^{2}+5 m^{2}+2 l m}+\sqrt{ }(h z+h \sqrt{ } z)
$$

or, putting

$$
\begin{align*}
q & =\frac{k\left(l^{2}+5 m^{2}+10 l m\right)}{l^{2}+5 m^{2}+2 l m} \\
f(w) & =p+q \sqrt{ } z+\sqrt{ }(h z+h \sqrt{ } z) \tag{37}
\end{align*}
$$

The value of z given above conforms to the type (33), for it can be changed into

Hence the general rational function of the primitive fifth root of unity falls under the expression for α_{1} in (32).
§26. The writer may perhaps be permitted to refer to a paper of his, entitled "Solution of Solvable Irreducible Quintic Equations," which uppenred in this Journal, Vol. VII, No. 2. Assuming that the quintic to be solved has, by Jerrard's application of the method of Tschirnhaus, been brought to the trinomial form

$$
\begin{equation*}
x^{5}+p x+q=0 \tag{38}
\end{equation*}
$$

he proved, in the article referred to, that it admits of algebraical solution only if
and

$$
\begin{aligned}
& p=\frac{5 A^{4}(3-B)}{16+B^{2}} \\
& q=\frac{A^{5}(22+B)}{16+B^{2}}
\end{aligned}
$$

When the coefficients are thus related, take λ a root of the equation
Put

$$
x^{4}-B x^{3}-6 x^{2}+B x+1=0
$$

The Pure Uni-Serial Abeifan Quartic.

Necessary and Sufficient Forms of the Roots.

§27. Taking $z=e^{2}+1$ as in (33), the necessary and sufficient forms of the roots of the pure uni-serial Abelian quartic are the expressions $\alpha_{1}, \alpha_{8}, \alpha_{4}, \alpha_{8}$ in
(32) ; the rational expressions p, q, h, e being subject to the sole restriction that they must leave the equation of the fourth degree, which has $\alpha_{1}, \alpha_{2}, \alpha_{4}$ and α_{3} for its roots, irreducible. There is thus an intimate relation between the pure uni-serial Abelian of the fourth degree and the solvable irreducible equation of the fifth degree. This is only a ease of a more general law. If $2 n+1$ be any prime number, and if the forms of the roots of the pure uni-serial Abelian of degree $2 n$ have been found, the necessary and sufficient forms of the roots of the solvable irreducible equation of degree $2 n+1$ can be found.

Necessity of the Forms (32).

$\S 28$. Here an equation of the fourth degree $f(x)=0$ is assumed to be a pure uni-serial Abelian; and we have to show that its roots are of the forms $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{3}$ in (32). The roots of the equation $f(x)=0$, in the familiar Abelian notation, are

$$
\begin{equation*}
x_{1}, \theta x_{1}, \theta^{2} x_{1}, \theta^{3} x_{1} \tag{39}
\end{equation*}
$$

Because x_{1} is the root of an irreducible quartic, its form is

$$
x_{1}=P+\sqrt{ } Q
$$

where P is clear of the radical $\sqrt{ } Q$. Another root of the quartic is $P-\sqrt{ } Q$. This is obtained from x_{1} by changing the sign of $\sqrt{ } Q$; and, by changing the sign of $\sqrt{ } Q$ in $P-\sqrt{ } Q$, we return to $P+\sqrt{ } Q$ or x_{1}. Hence $P-\sqrt{ } Q$ must be the third term in (39). Therefore

$$
\theta^{2} x_{1}=P-\sqrt{ } Q
$$

In passing from x_{1} to θx_{1}, let P and Q become P^{\prime} and Q^{\prime} respectively ; then

$$
\begin{aligned}
\theta x_{1} & =P^{\prime}+\sqrt{ } Q^{\prime} \\
\theta^{3} x_{1} & =P^{\prime \prime}-\sqrt{ } Q^{\prime}
\end{aligned}
$$

therefore
In running through the series (39), the root of the equation $f(x)=0$ undergoes all its possible changes. But, from the expressions that have been obtained for $x_{1}, \theta x_{1}, \theta^{2} x_{1}$ and $\theta^{3} x_{1}, P$ can take only the two values P, P^{\prime}, and Q can take only the two values Q, Q. Therefore each of the expressions P and Q is the root of a quadratic equation. Hence the only radicals occurring in x_{1} are square roots. But, when square roots are the only radicals in the root of an equation of the fourth degree, its root must be either

$$
\left.\begin{array}{l}
p+\sqrt{ } s+\sqrt{ } t \tag{40}\\
1+k \sqrt{ } s+\sqrt{ }(l+m \sqrt{ } s)
\end{array}\right\}
$$

p, s, t, k, l and m being rational. Suppose, if possible, that x_{1} is of the first of the forms (40); then either
or

$$
\begin{aligned}
& \theta x_{1}=p+\sqrt{ } s-\sqrt{ } t \therefore \theta^{2} x_{1}=p+\sqrt{ } s+\sqrt{ } t=x_{1} \\
& \theta x_{1}=p-\sqrt{ } s+\sqrt{ } t \therefore \theta^{2} x_{1}=p+\sqrt{ } s+\sqrt{ } t=x_{1} \\
& \theta x_{1}=p-\sqrt{ } s-\sqrt{ } t \therefore \theta^{2} x_{1}=p+\sqrt{ } s+\sqrt{ } t=x_{1} .
\end{aligned}
$$

But the equation $f(x)=0$, being a pure Abelian, is irreducible, und therefore cennot have equal roots. Therefore x_{1} is not of the first of the forms (40). It is therefore of the second. Consequently we may put

$$
\left.\begin{array}{r}
x_{1}=p+l \cdot \sqrt{ } s+\sqrt{ }(l+m \sqrt{ } s) \tag{41}\\
0 x_{1}=l-l \sqrt{ } s+\sqrt{ }(l-m \sqrt{ } s) \\
\theta^{2} x_{1}=p+l \sqrt{ } s-\sqrt{ }(l+m \sqrt{ } s) \\
\theta^{3} x_{1}=p-l i \sqrt{ } s-\sqrt{ }(l-m \sqrt{ } s)
\end{array}\right\}
$$

It is plain that $\theta^{2} x_{1}$ must have the place assigned to it in (41), because the change that causes x_{1} to become $\theta^{2} x_{1}$ must transform $\theta^{2} x_{1}$ into x_{1}. We can now determine the expression $\sqrt{ }(l+m \boldsymbol{V} 8)$ more definitely. To pass from x_{1} to θx_{1} we change the sign of $\sqrt{ } s$ and take the resulting radical $\sqrt{ }(l-m \sqrt{ } s)$ with the positive sign. In order that these ehanges may cause θx_{1} to become $\theta^{2} x_{1}$, the changes must admit of being made on $0 x_{1}$. In other words, the radical $\sqrt{ }(l-m \sqrt{ } s)$, which does not oceur in that form in x_{1}, must be expressible in terms of the radicals in x_{1}. Therefore we must have

$$
\sqrt{ }(l-m \sqrt{ } s)=(c+d \sqrt{ } s)+(g-r \sqrt{ } s) \sqrt{ }(l+m \sqrt{ } s)
$$

c, d, g and r being rational. Therefore
$l-m \sqrt{ } s=(c+d \sqrt{ } s)^{2}+(g-r \sqrt{ } s)^{2}(l+m \sqrt{ } s)+2(c+d \sqrt{ } s)(g-r \sqrt{ } s) \sqrt{ }(l+m \sqrt{ } s)$.
Hence $(c+d \sqrt{ } s)(g-r \sqrt{ } s)$ must be zero; for, if it were not, $\mathcal{N}(l+m \sqrt{ } s)$ would be a rational function of $\sqrt{ } s$, which would make x_{1} in (41) the root of a quadratic. And $g-r \sqrt{ } s$ cannot be zero, for this would make

$$
\sqrt{ }(l-m \sqrt{ } \delta)=c+d \sqrt{ } s
$$

and therefore, by (41), θx_{1} would be the root of a quadratic. Hence $c+d \sqrt{ } s$ is zero, and therefore

$$
\begin{equation*}
\boldsymbol{V}(l-m \sqrt{ } \delta)=(g-r \sqrt{ } s) \sqrt{ }(l+m \sqrt{ } s) \tag{42}
\end{equation*}
$$

By comparing the first three of equations (41) with one another, it appears that the change which transforms $\sqrt{ }(l+m \sqrt{ } s)$ into $\sqrt{ }(l-m \sqrt{ } s)$ causes $\sqrt{ }(l-m \sqrt{ } s)$ to become $-\sqrt{ }(l+m \sqrt{ } s)$. Consequently, from (42),

$$
\begin{equation*}
-\sqrt{ }(l+m \sqrt{ } s)=(g+r \sqrt{ } s) \sqrt{ }(l-m \sqrt{ } s) \tag{43}
\end{equation*}
$$

From (42) and (43),

$$
\begin{equation*}
g^{x}-r^{2} s=-1 \therefore \sqrt{ }_{s}=\frac{\left(r^{\prime}+1\right)}{r} \tag{44}
\end{equation*}
$$

By squaring both siden of (43) and equating the parts involving the radical $\sqrt{ } 8$,

$$
B \mu^{2}=m\left(1+g^{2}+r^{2} s\right)
$$

Therefore, by (44),

$$
2 y r l=2 m\left(1+y^{2}\right)
$$

$$
\therefore \quad l=\frac{m}{g r}\left(1+g^{2}\right)
$$

Substitute in the first of equations (41) this value of l, substituting at the same time for $\sqrt{ } \&$ its value in (44). Then, writing z for $1+\left(\frac{1}{g}\right)^{2}$ and h for $\frac{m g}{r}$, and q for $\frac{k g}{r}$,

$$
x_{1}=p+q \sqrt{ } z+\sqrt{ }(h z+h \sqrt{ } z)
$$

Thus the necessity of the forms in (32) is established.

Sufficiency of the Forms.

$\S^{2 n}$. We now take $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{3}$, as in (32), subject to the restriction that the quarrie equ tion of which they are the roots must be irreducible, and we have to show that this equation is a pure uni-serial Abelian. The radical $\mathcal{V}(h z-h \sqrt{ } z)$, which occurs in α_{2}, is not found in that form in α_{1}. But, keeping in view that $z=c^{2}+1$,

$$
\begin{equation*}
\sqrt{ }(h z-h \sqrt{ } z)=\frac{\sqrt{ } z-1}{e} \sqrt{ }(h z+h \sqrt{ } z) \tag{45}
\end{equation*}
$$

It is obvious that the expression

$$
p-q \sqrt{ } z+\frac{\sqrt{ } z-1}{e} \sqrt{ }(h z+h \sqrt{ } z)
$$

is a rational function of the expression

$$
p+q \sqrt{ } z+\sqrt{ }(h z+h \sqrt{ } z)
$$

Therefore α_{2} is a rational firnction of α_{1}; and the equation $f(x)=0$ is a pure Abelian. That it is uni-serial may be thus shown. To pass from α_{1} to α_{2}, we change the sign of $\sqrt{ } z$, and take the resulting radical $\sqrt{ }(h z-h \sqrt{ } z)$ with the positive sign. Let these same changes be made on α_{2}. The result, by (45), is

$$
p+q \sqrt{ } z-\frac{\sqrt{ } z+1}{b} \sqrt{ }(h z-h \sqrt{ } z)
$$

And this again, by (45), is equivalent to

$$
p+q \sqrt{ } z-\cdots+1 \frac{\sqrt{ } z-1}{e} \sqrt{ }(h z+h \sqrt{ } z)
$$

which, because $z=e^{3}+1$, is

$$
11+q \sqrt{ } z-\sqrt{ }(1 z+h \sqrt{ } z), \text { or } \alpha_{1}
$$

Hence, in passing from α_{1} to u_{2}, we pass from α_{9} to u_{4}; and in like manner it may be shown that the same changes of the radicals carry us from α_{4} to α_{3} and from α_{3} back to α_{1}; consequently the pure Abelian equation $f(x)=0$ is uni. serial.

The Fundumental Element of the Root.

§ 30. The problem of the necessary and sufficient forms of the roots of the pure uni-serinl Abelian equation of the fourth degree has been solved. We propose to find the solution by another method; and, with a view to a comparison of the result obtained nbove with that at which we shall arrive by the second method, we may now find expressions for R_{1}, the fundamental element of the root, and for the derived expressions R_{0}, R_{3}, R_{3}.
$\S 31$. By $\S 5$ the four roots of the pure uni-serial A belian quartic equation $f(x)=0$ are
w being a primitive fourth root of unity. Therefore, because $w^{2}=-1$, and $w^{3}=-w$,

But, by what was proved above,

$$
\begin{aligned}
& x_{1}=p+q \sqrt{ } z+\sqrt{ }(h z+h \sqrt{ } z) \\
& x_{2}=p-q \sqrt{ } z+\sqrt{ }(h z-h \sqrt{ } z) \\
& x_{4}=p+q \sqrt{ } z-\sqrt{ }(h z+h \sqrt{ } z) \\
& x_{8}=p-q \sqrt{ } z-\sqrt{ }(h z-h \sqrt{ } z) .
\end{aligned}
$$

Therefore, by (46),

$$
R_{0}^{1}=p
$$

$$
\begin{aligned}
2 R_{1}^{\mathrm{j}} & =\sqrt{ }(h z+h \sqrt{ } z)-\operatorname{vol}(h z-h \sqrt{ } z),
\end{aligned}
$$

$$
R_{2}^{\dagger}=q \sqrt{ } z
$$

$$
2 R_{z}^{\dagger}=\sqrt{ }(h z+h \sqrt{ } z)+w \sqrt{ }(h z-h \sqrt{ } z)
$$

$$
\begin{align*}
& 4 R_{0}{ }^{f}=x_{1}+x_{2}+x_{4}+x_{3} \\
& 4 R \frac{1}{\mathrm{j}}=x_{1}+w^{4} x_{2}+w^{2} x_{4}+w x_{3}=\left(x_{1}-x_{4}\right)-w\left(x_{2}-x_{3}\right) \\
& 4 R_{5}=x_{1}+w^{3} x_{2}+x_{4}+w^{9} x_{3}=\left(x_{1}+x_{4}\right)-\left(x_{3}+x_{3}\right) \tag{46}\\
& 4 R_{3}^{k}=x_{1}+w x_{2}+w^{2} x_{4}+w^{3} x_{3}=\left(x_{1}-x_{4}\right)+w\left(x_{3}-x_{3}\right)
\end{align*}
$$

$$
\begin{aligned}
& x_{1}=R_{0}^{\frac{d}{2}}+R_{i}^{d}+R_{2}^{t}+R_{3}^{\ell}, \\
& \theta x_{1}=x_{2}=R_{0}^{\}}+w R_{1}^{\}}+w^{3} R_{2}^{\zeta}+w^{3} R_{3}^{b}, \\
& \theta^{2} x_{1}=x_{4}=R_{0}^{\frac{b}{b}}+w^{2} R_{\}}^{k}+R_{3}^{\xi}+w^{9} R_{3}^{\xi} \text {, } \\
& \theta^{3} x_{1}=x_{3}=R_{0}^{\}}+w^{3} R_{1}^{\xi}+w^{2} R_{3}^{\}}+w R_{3}^{f},
\end{aligned}
$$

Therefore, keeping in view that $z=e^{9}+1$, and making use of the relation $\sqrt{ }(h z+h \sqrt{ } z) \sqrt{ }(h z-h \sqrt{ } z)=h e \sqrt{ } z$,

$$
\left.\begin{array}{rl}
R_{0} & =p^{4} \tag{47}\\
4 R_{1} & =h^{2}\left(e^{9}+1\right)(w e-1)^{2} \\
R_{2} & =q^{4} z^{2} \\
4 R_{3} & =h^{2}\left(e^{2}+1\right)(w e+1)^{2}
\end{array}\right\}
$$

§ 32. It may not be out of place to observe that, in (47), R_{1} is not presented in the form in which it is a fundamental element of the root of the pure uniserial Abelian quartic equation $f(x)=0$; that is to say, it is not in the form in which R_{0}, R_{2} and R_{3} can be derived from it by changing w into w^{0}, w^{2} and w^{8} respectively. In fact, by changing w in R_{1}, as given in (47), into w^{2}, we should obtain $\frac{1}{4} h^{2}\left(e^{2}+1\right)(e+1)^{2}$; whereas, by $(47), R_{2}$ is $q^{4} z^{2}$ or $q^{4}\left(e^{2}+1\right)^{2}$. The form of R_{1}, in which it is the fundamental element of a root of a pure uni-serial Abelian quartic, will be determined afterwards.

The Problem of the Necessary and Sufficient Forms of the Roots of the Pure Uni-Serial Abelian Quartic Solved from Another Point of View.

The Fundamental Element of the Root.

$\S 33$. The necessary and sufficient forms of the roots of the pure uni-serial Abelian equation of the fourth degree may be found in another manner; namely, by making use of the principles laid down in $\S 5$, so as to determine the fundamental element R_{1} of the root. Let w be a primitive fourth root of unity. Take any rational quantities, b, c, d, m. Find the rational quantities, p, q, r, s, by means of the three equations, equivalent to four linear equations,

$$
\left.\begin{array}{ll}
p+q+r+s & =d^{4} \tag{48}\\
p-q+r-s & =\frac{m^{4}}{\left(b^{2}+c^{2}\right)^{2}} \\
(p-r)+w(q-s) & =\frac{m^{2}(b+c w)^{2}}{b^{2}+c^{2}}
\end{array}\right\}
$$

Then it will be found that

$$
\begin{equation*}
R_{1}=p+q w+r u^{2}+s u^{8} \tag{49}
\end{equation*}
$$

The Root Constructed from its Fundamental Element.

§34. Having found R_{1} as in (49), derive from it R_{0}, R_{2}, R_{3} by changing w into w^{0}, w^{2}, w^{3} respectively. But, since each of the expressions $R_{1}^{\ell}, R_{2}^{\ell}$, etc., has four values for given values of R_{1}, R_{2}, etc., we must settle what values of these expressions are to be taken together in order that
may be the root of a pure uni-serial Abelian quartic. From the two equations

$$
\begin{aligned}
& R_{1}=(p-r)+w(q-s)=\frac{m^{2}(b+c v)^{2}}{b^{2}+c^{2}} \\
& R_{3}=(p-r)-w(q-s)=\frac{m^{2}(b-c v)^{3}}{b^{2}+c^{2}},
\end{aligned}
$$

it follows that $R_{1} R_{3}=m^{4}$. Having taken R_{1}^{\dagger} a definite fourth root of unity, take $R_{3}^{\mathbf{k}}$ such that

$$
\begin{equation*}
R_{\mathbf{i}}^{\mathbf{l}} R_{\mathrm{s}}^{\mathbf{t}}=m \tag{51}
\end{equation*}
$$

Then, because $R_{0}=p+q+r+s=d^{4}$, take R_{0}^{f} such that

$$
\begin{equation*}
R_{0}^{\prime}=d \tag{52}
\end{equation*}
$$

Finally, because $R_{2}=p-q+r-s=\frac{m^{4}}{\left(b^{2}+c^{2}\right)^{2}}$, let $R \frac{1}{2}$ be such that $R_{2}^{\frac{1}{2}}$ is positive. The expressions $R_{0}^{f}, R_{1}^{\}}$, etc., being thus determined, the expression (50) shall be the root of a pure uni-serial Abelian equation of the fourth degree, provided always that the equation of the fourth degree, of which it can be shown to be a root, is irreducible.

Necessity of the Above Forms.

$\S 35$. Here we assume x_{1} to be the root of a pure uni-serial Abelian quartic equation $f(x)=0$. By §5,

$$
\begin{equation*}
x_{1}=R_{0}^{\frac{1}{2}}+R_{1}^{\frac{1}{2}}+R_{2}^{\frac{1}{2}}+R_{\mathrm{s}}^{\frac{1}{2}} \tag{53}
\end{equation*}
$$

and what we have to make out is that R_{1} has the form given in (49), and that $R_{1}^{\frac{1}{2}}$ and $R_{3}^{\frac{1}{2}}$ are related in such a manner that the equation (51) subsists, while $R_{2}^{\frac{1}{t}}$ is essentially positive. When we say that R_{1} has the form given in (49), it is understood that p, q, r and s are determined by the equations (48).
§36. Because $F(w)$ in (3) is a rational function of w, we may put

$$
F(w)=(b+c w)^{-1}
$$

b and c being rational. Therefore, from (3), taking $z=2$,

$$
\begin{equation*}
R_{2}^{\frac{1}{2}}=(b+c w)^{-1} R_{1}^{Z} \tag{54}
\end{equation*}
$$

Therefore, by (5), taking $e=3$,

$$
\left.\begin{array}{rl}
R_{3}^{\dagger} & =(b-c w)^{-1} R_{3}^{2} . \\
R_{2}^{\frac{1}{2}} & =\left(b^{2}+c^{2}\right)^{-1}\left(R_{1} R_{3}\right)^{\frac{1}{2}} \\
\therefore R_{2} & =\left(b^{2}+c^{2}\right)^{-2}\left(R_{1} R_{3}\right) \tag{55}
\end{array}\right\} .
$$

Therefore

But R_{1} is a rational function of w. We may put $R_{1}=t+\tau w$ and $R_{3}=t-\tau w$, t and τ being rational. Therefore $R_{1} R_{3}$ is equal to the positive quantity $t^{2}+\tau^{2}$. Therefore, from the second of equations (55), R_{2} is positive.
§37. Because $b+c w$ and R_{1} are rational functions of w, we may put

$$
(b+c w)^{-2} R_{\mathbf{1}}=d+\delta v
$$

d and δ being rational. Therefore, from (54),

$$
R_{2}=\left\{(b+c w)^{-2} R_{1}\right\}^{2}=d^{2}-\delta^{2}+2 d \delta w
$$

Since R_{2} is rational, $d \delta=0$. And δ must be zero; for, if it were not, d would be zero, and we should have $R_{2}=-\delta^{2}$, which, because R_{2} has been shown to be positive, is impossible. Therefore

Therefore also

$$
\left.\begin{array}{l}
(b+c w)^{-2} R_{1}=d \tag{56}\\
(b-c w)^{-2} R_{3}=d
\end{array}\right\}
$$

Therefore

$$
R_{3} R_{1}^{-3}=\left\{d(b+c w)^{2}\right\}^{-4}\left\{d\left(b^{2}+c^{2}\right)\right\}^{2}
$$

From (3), $R_{3} R_{1}^{-3}$ is the fourth power of a rational function of w. Therefore $\left\{d .\left(b^{2}+c^{2}\right)\right\}^{2}$ is the fourth power of a rational function of w. Therefore

$$
\pm d\left(b^{2}+c^{2}\right)=(g+k w)^{2}=g^{2}-k^{2}+2 g k w
$$

g and k being rational, the double sign on the extreme left of the equation indicating that it is not yet determined which of the two signs is to be taken. Hence $g l=0$. Therefore $\pm d\left(b^{2}+c^{2}\right)$ is equal either to g^{2} or to $-k^{2}$. That is, $d\left(b^{2}+c^{2}\right)$ is the square of a rational quantity, with the positive or negative sign. Hence we may put

$$
d\left(b^{2}+c^{2}\right)=m^{2} w^{2 z}
$$

m being rational and $w^{2 x}$ having one of the two values $1,-1$. Substituting for d in (56) its value now oltained,
and

$$
\begin{aligned}
& R_{1}=\frac{m^{2} w^{2 x}(b+c w)^{2}}{l^{2}+c^{2}} \\
& R_{3}=\frac{m^{2} w^{2 x}(b-c w)^{2}}{b^{2}+c^{2}}
\end{aligned}
$$

But w^{92} is either 1 or -1 . In the former case,

In the latter case, $w^{2_{2}}=w^{2} . \quad$ Then

$$
\begin{equation*}
R_{1}=\frac{m^{2}(b+c w)^{2}}{\left(b^{2}+c^{2}\right)} \tag{57}
\end{equation*}
$$

$$
R_{1}=\frac{m^{2}(b w-c)^{2}}{b^{2}+c^{2}}
$$

an expression essentially of the same character as (57). Therefore (57) is the universal form of R_{1}. From (57),

$$
R_{3}=\frac{m^{2}(b-c w)^{2}}{b^{2}+c^{2}}
$$

Therefore $R_{1} R_{3}=m^{4}$. Hence, from (55),

$$
\begin{equation*}
R_{2}=\frac{m^{4}}{\left(b^{2}+c^{2}\right)^{2}} \tag{58}
\end{equation*}
$$

Let R_{1}, when so expressed that it is the fundamental element of the root of a pure uni-serial Abelian quartic, be

$$
R_{1}=p^{\prime}+q^{\prime} w+r^{\prime} w^{2}+s^{\prime} w^{3}=\left(p^{\prime}-r^{\prime}\right)+w\left(q^{\prime}-s^{\prime}\right)
$$

$p^{\prime}, q^{\prime}, r^{\prime}$ and s^{\prime} being rational. Then

$$
R_{2}=p^{\prime}+q^{\prime} w^{2}+r^{\prime}+s^{\prime} w^{2}=\left(p^{\prime}+r^{\prime}\right)-\left(q^{\prime}+s^{\prime}\right)
$$

Therefore, by (57) and (58),
and

$$
\left.\begin{array}{l}
\left(p^{\prime}+r^{\prime}\right)-\left(q^{\prime}+s^{\prime}\right)=\frac{m^{4}}{\left(b^{2}+c^{2}\right)^{2}} \tag{59}\\
\left(p^{\prime}-r^{\prime}\right)+w\left(q^{\prime}-s^{\prime}\right)=\frac{m^{2}(b+c w)^{2}}{b^{2}+c^{2}}
\end{array}\right\}
$$

And, by $\S 5, R_{0}^{\frac{1}{n}}$ is rational. Therefore, d being some rational quantity,

$$
\begin{equation*}
p^{\prime}+q^{\prime}+r^{\prime}+s^{\prime}=d^{4} \tag{60}
\end{equation*}
$$

The equations (59) and (60) for the determination of $p^{\prime}, q^{\prime}, r^{\prime}, s^{\prime}$ are the same as the equations (48) for the determination of p, q, r, s. Therefore

Hence

$$
\begin{aligned}
& p^{\prime}=p, q^{\prime}=q, r^{\prime}=r, s^{\prime}=s \\
& R_{1}=p+q w+r w^{2}+s w^{3}
\end{aligned}
$$

which is the form of the fundamental element in (49). And, by $\S 34$, in constructing the root x_{1} from its fundamental element, having assigned a definite character to $R_{1}^{\frac{1}{2}}$, we then, knowing that $R_{1} R_{3}$ is equal to m^{4}, selected the value of $R_{3}^{\frac{1}{s}}$ so as to make $R_{1}^{\frac{1}{1}} R_{3}^{\frac{1}{3}}$ equal to m. Hence the necessity of the form of R_{1} in (49) and of the relation between the roots R_{1}^{\nmid} and $R_{3}^{ł}$ indicated in (51) is made
good. At the same time, because $R_{1}^{\frac{1}{1}} R_{3}^{\frac{1}{3}}=m, R_{1}^{\frac{1}{f}} R_{3}^{\frac{d}{3}}=m^{2}$; therefore, by the first of equations (55), $R_{2}^{\frac{2}{2}}$ is positive.

Sufficiency of the Forms.

§38. To prove that the above forms are sufficient, we have to show that the conditions specified in $\S 10$ are satisfied, it being assumed that the equation of the fourth degree, of which the root is given in (53), is irreducible. The first condition is that $R_{0}^{\frac{1}{n}}$ must be rational. This is satisfied by the first of equations (48). The next condition is that an equation of the type (3) subsists for every integral value of z. It will be enough to consider two values of z, namely, 2 and 3. Because
and

$$
\begin{aligned}
& R_{1}=p+q w+r w^{2}+s w^{3}=(p-r)+w(q-s) \\
& R_{2}=p+q w^{2}+r+s w^{3}=(p+r)-(q+s)
\end{aligned}
$$

we have, from the last two of equations (48),

$$
R_{2} R_{1}^{-2}=\frac{m^{4}}{\left(b^{2}+c^{2}\right)^{2}} \times \frac{m^{-4}}{\left(b^{2}+c^{2}\right)^{-2}}(b+c w)^{-4}=(b+c w)^{-4} .
$$

Hence an equation of the type (3) subsists when $z=2$. Again,

$$
R_{8}=p+q v^{3}+r w^{2}+s w=(p-r)-w(q-s)
$$

But

$$
(p-r)+w(q-s)=\frac{m^{2}(b+c w)^{2}}{b^{2}+c^{2}}
$$

therefore

$$
(p-r)-w(q-s)=\frac{m^{2}(b-c w)^{2}}{b^{2}+c^{2}}
$$

Therefore

$$
R_{3} R_{1}^{-8}=m^{-4}(b+c w)^{4}(b-c w)^{-4}
$$

pe (3) subsists when $z=3$
Hence an equation of the type (3) subsists when $z=3$. Consequently an equation of the type (3) subsists for every integral value of z. The third condition is that equation (5) must subsist along with (3) for every value of e prime to 4 . As we may leave out of view values of e greater than 4 , we have only to consider the case in which $e=3$. Also it will be enough to consider the cases in which z is equal to one of the numbers $0,2,3$. Let $z=0$. Then equation (3) is $\quad R_{0}^{\frac{t}{f}}=\{F(w)\} R_{\mathrm{f}}^{\mathrm{f}}=F(w)$.
But $R_{0}^{\frac{1}{6}}$ is rational. Hence, changing w into w^{3},

$$
R_{0}^{\frac{t}{2}}=F\left(w^{3}\right)
$$

Also $R_{e z}^{4}=R_{0}^{\ddagger}$. Therefore

$$
R_{e z}^{l}=F^{\prime}\left(w^{3}\right)=\left\{F\left(w^{3}\right)\right\} R_{j}^{0} .
$$

This is equation (5); so that, when $z=0$, equation (5) subsists along with (3). Next, let $z=2$. Then equation (3) is

$$
\begin{align*}
R_{2}^{\prime} & =\left\{F^{\prime}(w)\right\} h_{1}^{2} . \tag{61}\\
\therefore R_{2} & =\{F(w)\}^{4} R_{1}^{2} .
\end{align*}
$$

Therefore, changing w into w^{3},

$$
\begin{array}{lc}
\text { Therefore } & \left.R_{2}=\left\{F\left(w^{3}\right)\right\}\right\}_{3}^{4} R_{3}^{2} . \\
w_{2}^{i}=w^{\prime}\left\{F\left(w^{3}\right)\right\} R_{3}^{2}, \\
w^{\prime} \text { being an } n^{\text {th }} \text { root of unity. } & \text { From }(61) \text { and }(62), \tag{62}\\
R_{8}^{\frac{1}{2}}=w^{\prime}\{F(w)\}\left\{F\left(w^{3}\right)\right\}\left(R_{1} R_{3}\right)^{\frac{1}{2} .}
\end{array}
$$

Let $F(w)=g+h w, g$ and l being rational. Therefore $F\left(w^{3}\right)=g-k w$. Therefore $\{F(w)\}\left\{F\left(w^{3}\right)\right\}$ is equal to the positive quantity $g^{2}+h^{2}$. Also, from the manner in which the root x_{1} was constructed in $\S 34$ from its fundamental element, $R_{1}^{1} R_{\mathrm{s}}^{\frac{1}{3}}=m$. Therefore $\left(R_{1} R_{3}\right)^{\frac{1}{2}}$ is positive. Also, in constructing the root, $R_{2}^{\frac{1}{2}}$ was taken positive. Therefore w^{\prime} is positive; that is, $w^{\prime}=1$. Therefore, from (62),

$$
\begin{equation*}
R_{2}^{2}=\left\{F\left(w^{3}\right)\right\} R_{3}^{2} \tag{63}
\end{equation*}
$$

But, equation (61) being (3), (63) is (5); so that, when $z \pm 2$, equation (5) subsists along with (3) Finally, let $z=3$. Then equation (3) is

$$
\begin{equation*}
R_{S}=q_{1} R_{\mathrm{i}}^{2} \tag{64}
\end{equation*}
$$

q_{1} being a rational function of w. Therefore

$$
R_{3}=g_{1}^{3} R_{1}^{3} .
$$

Therefore, changing w into w^{3}, and denoting by q_{3} what q_{1} becomes when w is changed into w^{3},

$$
R_{1}=q_{3}^{4} R_{3}^{8} .
$$

$$
\begin{equation*}
R_{\mathrm{f}}^{\}}=w^{\prime} q_{3} R_{3}^{2}, \tag{65}
\end{equation*}
$$

w^{\prime} being one of the fourth roots of unity. From (64) and (65),

$$
\left(R_{1} R_{3}\right)^{\frac{1}{2}}\left(q_{1} q_{3}\right) w^{\prime}=1 .
$$

But in the same way in which the product of $F^{\prime}(w)$ and $F\left(w^{s}\right)$ was shown to be positive, $q_{1} q_{3}$ can be shown to be positive. Also $\left(R_{1} R_{3}\right)^{4}=m$. Therefore $\left(R_{1} R_{3}\right)^{\frac{1}{2}}=m^{2}$. Hence w^{\prime} must be positive. Therefore $w^{\prime}=1$, and (65) becomes

$$
\begin{equation*}
R_{i}^{k}=q_{3} R_{3}^{\frac{2}{2}} . \tag{66}
\end{equation*}
$$

Equation (64) being (3), equation (66) is (5). Hence, whether z be zero, or 2 or 3 , equation (5) subsists along with (3). Thus all the conditions specified in $\S 12$ are satisfied, and hence, by the Criterion in $\S 10, x_{1}$ is the root of a pure uni-serial Abelian quartic.

Identity of the Results Obtained by the Two Methods.

§39. It may be well to show that the results obtained by the two methods that have been employed for finding the necessary and sufficient forms of the roots of the pure uni-serial Abelian equation of the fourth degree are identical. In (47) we have expressions for R_{1}, R_{2} and R_{3} as determined by the first method. What we need to make out is that these are substantially the sanie as the expressions for R_{1}, R_{2} and R_{3} obtained by the second method. By (48),

$$
R_{1}=\frac{m^{2}(b+c w)^{2}}{b^{2}+c^{2}}
$$

Write $\frac{h}{2}$ for $\frac{n l^{2}}{b^{2}+c^{2}}$ and $-e$ for $\frac{c}{b}$. Then

$$
\frac{m^{o}}{b^{2}+c^{3}}=\frac{h^{2}\left(b^{2}+c^{2}\right)}{4 b^{4}}
$$

Also $\frac{b^{2}+c}{b^{2}}=1-c^{2}$ and $\frac{2 b c}{b^{2}}=-2 e$. Therefore

$$
b^{2}-c^{2}+2 b c w=b^{2}\left(1-c^{8}-2 \epsilon w\right) ;
$$

or

$$
(b+c w)^{2}=b^{2}(1-e w)^{2}
$$

Therefore $\quad \frac{m^{2}(b+c w)^{2}}{b^{2}+c^{2}}=\frac{h^{2}\left(b^{2}+c^{2}\right)}{4 b^{2}}(1-\epsilon w)^{2}=\frac{h^{2}}{4}\left(1+c^{2}\right)(1-e w)^{2}$.
The expression on the extreme left of this result is the value of R_{1} obtained by the second method, while that on the extreme right is the value of R_{1} obtained by the first method. The value of R_{3} by either method is what R_{1} becomes by changing w into w^{3} or $-w$; so that, when the identity of the expressions obtained for R_{1} by the two methods has been established, the identity of the expressions for R_{3} follows. Finally, by the second of equations (48),

$$
R_{2}=\frac{m^{4}}{\left(b^{2}+c^{2}\right)^{2}}
$$

The above values of h and e make this

$$
R_{2}=\frac{h^{4}}{16 b^{4}}\left(1+\epsilon^{2}\right)^{2}
$$

Put z for $1+\epsilon^{2}$, and q for $\frac{h}{2 b}$. Then

$$
R_{2}=q^{4} z^{2}
$$

which is the expression for R_{2} in (47).

The Pure Uni-Serial Abelian of a Degree whici is the Continued Product of a Number of Distinct Prime Numbers.

Fundamental Element of the Root.

§40. Let n be the continued product of the distinct prime numbers

$$
\begin{equation*}
s, t, \ldots, d, \ell . \tag{67}
\end{equation*}
$$

Take w a primitive $n^{\text {th }}$ root of unity. Then, if

$$
\begin{equation*}
\sigma, \tau, \ldots, \delta, \beta \tag{68}
\end{equation*}
$$

be such that $n=s \sigma=t \tau=\ldots=b \beta$, w^{σ} is a primitive $s^{\text {th }}$ root of unity, w^{\top} a primitive $t^{\text {th }}$ root of unity, and so on. Let
be cycles containing respectively all the primitive $s^{\text {th }}$ roots of unity, all the primitive $t^{\text {th }}$ roots of unity, and so on. Should the numbers forming the serios (67) be all odd, each of the cycles (69) consists of more terms than one. Should the prime number 2 be a term in (67), say b, the last of the cycles (69) would be reduced to the single term w^{s}, which it will be convenient to regard as a cycle though it consists of only one term. In this case $k=1$. It may be assumed that λ is less than s, l less than t, and so on as regards all the numbers s, t, etc., in (67) which are odd primes. The numbers λ, h, etc., are prime roots of s, t, etc., respẻctively. Take P_{1} a rational function of w, and, z being any integer, let P_{z} be what P_{1} becomes when z is changed into w^{z}. Put

$$
\begin{align*}
& X_{s}=P_{\delta}^{t^{t-2}} P_{b l}^{t^{t-2}} P_{s l^{d}}^{d^{d}} \ldots \ldots P_{b l^{t-2}} \tag{70}\\
& F_{\beta}=P_{\beta}^{k^{b-3}} P_{\beta k}^{b_{k}^{b-3}} P_{\beta k z}^{l^{t^{2-1}}} \ldots P_{\beta k^{b-8}}
\end{align*}
$$

In the case when one of the numbers in (67), say b, is 2 , the last of equations (70) is reduced to

$$
\begin{equation*}
F_{\beta}=P_{\beta} . \tag{71}
\end{equation*}
$$

Then, if R_{1} be the fundamental element of the root of a pure uni-serial Abelian equation $f(x)=0$ of the $n^{\text {th }}$ degree, it will be found that

$$
\begin{equation*}
R_{1}=A_{1}^{n}\left(\phi_{\sigma}^{\sigma} \psi_{\tau}^{\tau} \ldots X_{\delta}^{\delta} F_{\beta}^{\beta}\right), \tag{72}
\end{equation*}
$$

The Root Constructed from its Fundamental Element.

§41. From R_{1}, as expressed in (72), derive R_{0}, R_{2}, ete., by changing w into w^{0}, w^{2}, etc. By $\S 5$, the root of the equation $f(x)=0$ is

$$
\begin{equation*}
R_{0}^{\frac{1}{6}}+R_{1}^{\frac{1}{n}}+R_{2}^{\frac{1}{n}}+\ldots+l_{n-1}^{\frac{1}{n}} \tag{73}
\end{equation*}
$$

To construct the root, we have to determine the partieular $u^{\text {th }}$ roots of R_{0}, R_{1}, etc., that are to be taken together in (73). When w is changed into w^{2}, let $A_{1}, \phi_{1}, \psi_{1}$, etc., become $A_{a}, \phi_{s}, \psi_{s}$, ete., respectively. Then
therefore

$$
\left.\begin{array}{l}
R_{s}^{s}=A_{s}^{n}\left(\phi_{s \sigma}^{\sigma} \psi_{s \tau}^{\tau} \ldots . X_{z \delta}^{s} F_{s \beta}^{\beta}\right) \\
\left.R_{z}^{\frac{1}{n}}=w^{\prime} A_{z}^{\prime} \cdot \phi_{s \sigma}^{\sigma} \psi_{s \tau}^{\tau} \ldots X_{s \delta}^{s} F_{s \beta}^{\beta}\right)^{\frac{1}{n}} \tag{74}
\end{array}\right\}
$$

w^{\prime} being an $n^{\text {th }}$ root of unity. Let the integers not greater than n that measure n, unity not ineluded, be

$$
\begin{equation*}
n, y, \text { etc. } \tag{75}
\end{equation*}
$$

For instance, if $n=3 \times 5 \times 7=105$, the series (75) is

$$
105,35,21,15,7,5,3 .
$$

The $n^{\text {th }}$ roots of unity distinct from unity are the primitive $n^{\text {th }}$ roots of unity, the primitive $y^{\text {th }}$ roots of unity, and so ons. For instance, the series of the $105^{\text {th }}$ roots of unity distinct from unity, containing 104 terms, is made up of the 48 primitive $105^{\text {th }}$ roots of unity, the 24 primitive $35^{\text {th }}$ roots of unity, the 12 primitive $21^{\text {st }}$ roots of unity, the 8 primitive $15^{\text {th }}$ roots of unity, the 6 primitive $7^{\text {th }}$ roots of unity, the 4 primitive $5^{\text {th }}$ roots of unity, and the 2 primitive $3^{\text {d }}$ roots of unity. The general primitive $n^{\text {th }}$ root of unity being $w^{\text {e }}$, give $w^{\text {d }}$ in the second of equations (74) the value unity for every value of z included under e. Then

$$
\begin{equation*}
R_{e}^{\frac{1}{\alpha}}=A_{\theta}\left(\phi_{e o}^{\sigma} \psi_{e r}^{r} \ldots X_{e \delta}^{\delta} F_{e \beta}^{\beta}\right)^{\frac{1}{n}} \tag{76}
\end{equation*}
$$

Taking any other term than n, say y, in the series (75), since y is a factor of n, let $y v=n$. Then w^{v} is a primitive $y^{\text {th }}$ root of unity. Hence, since v^{e} is the general primitive $n^{\text {th }}$ root of unity, all the primitive $y^{\text {th }}$ roots of unity are included in $w^{e v}$. If w^{\prime}, in the second of equations (74), be w^{a} when $z=v$, let it have the value $w^{e a}$ when $z=e v$. Then

$$
\begin{equation*}
R_{e v}^{\frac{1}{v}}=w^{e a} A_{e v}\left(\phi_{e v \sigma}^{\sigma} \psi_{e v \tau}^{\tau} \ldots X_{e v \delta}^{\delta} F_{e v \beta}^{\beta}\right)^{\frac{1}{{ }^{2}}} \tag{77}
\end{equation*}
$$

Form equations similar to (77) for the remaining terms in (75). In this way, because the series of the $n^{\text {th }}$ roots of unity distinct from unity is made up of the primitive $n^{\text {th }}$ roots of unity, the primitive $y^{\text {th }}$ roots of unity, and so forth, all the terms $1,2, \ldots, n-1$ are found in the groups of numbers represented
by the subseripts $e, e v$, etc., with multiples of n rejected. Consequently, in determining $R_{e}^{\frac{1}{x}}, R_{e v}^{\frac{1}{6}}$, etc., as in (76), (77), etc., we have determined all the terms

$$
\begin{equation*}
R_{1}^{\frac{1}{4}}, R_{2}^{\frac{1}{n}}, \ldots, R_{n-1}^{\frac{1}{n}} \tag{78}
\end{equation*}
$$

Substitute, then, in (73) the rational value which $R_{0}^{\frac{1}{7}}$ can be shown, as in §8, to possess, and the values of the terms in (78) as these are determined in (76), (77), etc., and the root is constructed; in other words, the expression (73) shall be the root of a pure uni-serial Abelian equation of the $n^{\text {th }}$ degree, provided always that the equation of the $n^{\text {th }}$ degree, of which it is the root, is irreducible.

Necessity of the Alove Forms.

§42. Here we assume that the root of a pure uni-serial Abelian equation $f(x)=0$ of the $n^{\text {th }}$ degree is expressible as in (73), and we have to prove that its fundamental element R_{1} has the form (72), and that the terms in (78) are to be taken as in (76), (77), etc., while $R_{0}^{\frac{1}{6}}$ receives its rational value.
§43. By (3), z being any integer,

$$
R_{* \sigma}^{\frac{1}{n}}=\{F(w)\} R_{1}^{\frac{s \sigma}{n}}
$$

$\boldsymbol{F}(w)$ being a rationel function of w. And equation (5) subsists along with (3); that is, w^{e} being the general primitive $n^{\text {th }}$ root of unity,

Taking $z=1$,

$$
\begin{aligned}
R_{e z \sigma}^{\frac{1}{n}} & =\left\{F\left(w^{e}\right), R_{e}^{z \sigma}\right. \\
R_{e \sigma}^{\frac{\lambda^{-2}}{\frac{2}{x}}} & =B_{e} R_{e}^{\sigma \lambda^{\alpha^{-2}}}
\end{aligned}
$$

B_{e} being a rational function of w^{e}. In like manner, taking $z=\lambda$,

$$
R_{e \sigma \lambda}^{\frac{\lambda^{-j}-3}{\theta}}=C_{e} R_{\mathrm{e}}^{\frac{\sigma^{0}-2}{n}}
$$

C_{e} being a rational function of w^{e}. In this way it can be shown that each of the terms in the series
is the product of $R_{e}^{o \lambda^{n-1}}$ by a rational function of w^{e}. Therefore

$$
\begin{equation*}
\left(R_{e \sigma}^{\lambda^{0-9}} R_{e \sigma \lambda}^{\lambda^{-1}-1} R_{e \sigma \lambda 2}^{\lambda^{\prime-1}} \ldots R_{e \sigma \lambda^{\prime-2}}\right)^{\frac{\sigma}{n}}=F_{e} R_{e}^{\frac{d}{\lambda}} \tag{79}
\end{equation*}
$$

where F_{e} is a rational function of w^{e}, and

So also

$$
\begin{align*}
& d=\sigma^{2}(s-1) \lambda^{s-2} . \tag{80}
\end{align*}
$$

where G_{0}, H_{n}, etc., are rational functions of w^{e}, und

$$
\left.\begin{array}{l}
\delta=\tau^{2}(t-1) h^{t-2} \tag{82}\\
\dot{D}=\beta^{2}(b-1) k^{b-2}
\end{array}\right\}
$$

From (79) and (81),
where Q_{e} is a ratioual function of w^{e}, and Δ is the sum of the terms d, δ, \ldots, D; that is, by (80) and (82),

$$
\begin{equation*}
\Delta=\sigma^{2}(s-1) \lambda^{0-2}+\tau^{2}(t-1) h^{t-2}+\ldots+\left(\beta^{2}(b-1) k^{b-2}\right. \tag{84}
\end{equation*}
$$

Because $b \beta=n=s \sigma$, and the prime numbers b and s are factors of n distinct from one another, b is a factor of σ. Hence b is a factor of the first of the separate members of the expression for Δ in (84). In like manner b is a factor of all the separate members of the expression for Δ except the last. And it is not a factor of the last. For, assuming the prime factors of n in (67) to be all odd, since the last line in (69) is a cycle of primitive $b^{\text {th }}$ roots of unity, Z_{B} is prime to b. And $b-1$ is necessarily prime to b. And β is prime to l, because β is the continued product of those prime factors of n which are distinct from b. Hence $\beta^{2}(b-1) k^{b-2}$ is prime to b. The conclusion still holds if b is not odd, but equal to 2. For, in that case, $k=1$ and $b-1=1$; so that

$$
\beta^{2}(b-1) l^{b-2}=\beta^{2}
$$

Now, β^{2} is odd, because β is the continued product of the odd factors of n. Hence β^{2} is prime to b or 2. Whether, therefore, the terms in (67) are all odd or not, every one of the separate members of the expression for Δ in (84) except the last is divisible by b, but the last is not divisible by b. Hence Δ is prime to b. In like manner Δ is prime to each of the factors of n. Therefore it is prime to n. Therefore there are whole numbers m and r such that

Therefore, from (83),

$$
m \Delta=m n+1
$$

$$
\left(R_{e \sigma}^{\lambda+-} \ldots\right)^{\frac{m \sigma}{n}}\left(R_{e r}^{h^{t-q}} \ldots .\right)^{\frac{m \tau}{n}} \ldots\left(R_{e \beta}^{k^{b}-2} \ldots\right)^{\frac{m \beta}{n}}=\left(Q_{e}^{m} R_{e}^{r}\right) R_{e}^{\frac{1}{\varepsilon}}
$$

For any integral value of z, let $\left(R_{s}^{m}\right)^{\frac{1}{n}}$ be written $P_{s}^{\frac{1}{n}}$. Then, putting A_{s}^{-1} for $Q_{e}^{m} R_{e}^{r}, R_{e}^{\frac{1}{n}} A_{e}^{-1}$ is the continued product of the expressions

$$
\begin{aligned}
& \left(P_{e \sigma}^{\lambda^{\alpha}-2} P_{e \sigma \lambda}^{\lambda^{-}-8} \ldots P_{e \sigma \lambda^{\prime}-2}\right)^{\frac{\sigma}{\pi}} \text {, } \\
& \left(P_{e t}^{h^{t-2}} P_{e t h}^{h^{t}-3} \ldots P_{e t h^{t-2}}\right)^{\frac{\tau}{4}} \text {, } \\
& \left(P_{e \delta}^{l^{d-2}} P_{e \delta l}^{t^{d-3}} \ldots P_{e \delta l^{t-2}}\right)^{\frac{\delta}{n}} \text {, } \\
& \left(P_{\epsilon \beta}^{k^{b-8}} P_{e \beta k}^{k^{b-3}} \ldots P_{\epsilon \beta b^{0-2}}\right)^{\frac{\beta}{n}} \text {; }
\end{aligned}
$$

therefore, by (70),
Therefore

$$
\begin{align*}
R_{o}^{\frac{1}{a}} & =A_{\iota}\left(\phi_{\sigma}^{\sigma} \psi_{\tau}^{\tau} \ldots X_{\delta}^{\delta} F_{\beta}^{g}\right)^{\frac{1}{n}} \tag{85}\\
R_{1} & =A_{1}^{n}\left(\phi_{\sigma}^{\sigma} \psi_{\tau}^{\tau} \ldots X_{\delta}^{\alpha} F_{\beta}^{\rho}\right)
\end{align*}
$$

Thus the form of the fundamental element in (72) is established. Also, it was necessary to take $R_{0}^{\frac{1}{n}}$ with its rational value, because, by $\S 5, n R_{0}^{\frac{1}{8}}$ is the sum of the roots of the equation $f(x)=0$. And equation (85) is identical with (76), which establishes the necessity of the forms assigned to all those expressions which are contained under $l_{e}^{\frac{1}{1}}$. It remains to prove that the expressions contained under $R_{e 0}^{\frac{1}{r}}, \frac{n}{v}$ or y being a term in the series (75) distinct from n, have the forms assigned to them in (77).
§44. Since $y v=n$, and y is not equal to n, y is the coutinued product of some of the prime factors of n, but not of them all. Let s, t, etc., be the factors of n that are factors of y, while b, d, etc., are not factors of y. Because $y v=n=b \beta$, and b is not a factor of y, b is a factor of v. Let $v=a b$; then $v \beta=a n$. Therefore $w^{e v \beta}=w^{e a n}=w^{0}$. Therefore $F_{e t \beta}=F_{0}$. In like manner $X_{\text {evo }}=X_{0}$. And so on as regards all those terms of the type $F_{\text {ev } \beta}$ in which $\frac{n}{\beta}$ or b is not a measure of y. Hence, putting $e v$ for z in the second of equations (74), and separating those factors of $R_{e v}^{\frac{1}{n}}$ that are of the type $F_{e v \beta}^{\frac{1}{1 /}}$ from those that are not,

$$
\begin{equation*}
R_{e v}^{\frac{1}{x}}=w^{\prime \prime} A_{e v}\left(F_{0}^{\beta} X_{0}^{\delta} \ldots .\right)^{\frac{1}{n}}\left(\dot{\phi}_{e v \sigma}^{\sigma} \psi_{e v \tau}^{\tau} \ldots\right)^{\frac{1}{n}} \tag{86}
\end{equation*}
$$

$w^{\prime \prime}$ being an $n^{\text {th }}$ root of unity. We understand that $F_{0}^{\frac{\beta}{n}}, X_{0}^{\frac{\delta}{f}}$, etc., are here taken with the rational values which it has been proved that they admit. The continued product of these expressions may be called Q, which gives us

$$
R_{e v}^{\frac{1}{x}}=w^{\prime \prime} A_{e v} Q\left(\phi_{e v \sigma}^{\sigma} \psi_{e v r}^{\tau} \ldots .\right)^{\frac{1}{x}}
$$

When e is taken with the particular value c, let $w^{\prime \prime}$ become w^{7}, and when e has the value unity, let $v^{\prime \prime}$ become w^{a}. Then
and

$$
\left.\begin{array}{rl}
R_{c v}^{\frac{1}{n}} & =w^{r} A_{c v} Q\left(\phi_{c v \sigma}^{\sigma} \psi_{c v r}^{\tau} \ldots\right)^{\frac{1}{n}} \\
R_{v}^{\frac{1}{v}} & =w^{a} A_{v} Q\left(\phi_{v \sigma}^{\sigma} \psi_{v \tau}^{\tau} \ldots\right)^{\frac{1}{n}} \tag{87}
\end{array}\right\}
$$

Because equations (3) and (5) subsist together, and w^{c} is included under w^{c},
and

$$
\left.\begin{array}{l}
R_{v}^{\frac{1}{n}}=R_{1} R_{1}^{\frac{\circ}{n}} \\
R_{c v}^{\frac{1}{n}}=R_{c} R_{c}^{\frac{0}{n}} \tag{88}
\end{array}\right\}
$$

where k_{1} is a rational function of w, and k_{0} is what k_{1} becomes by changing v into w^{c}. By putting $e=1 \mathrm{in}(85)$,

$$
J_{1}^{\frac{1}{2}}=A_{1}\left(\phi_{\sigma}^{\sigma} \psi_{\mathrm{r}}^{r} \ldots X_{0}^{s} F_{B}^{\beta}\right)^{\frac{1}{1}}
$$

Taking this in connection with the second of equations (87),

$$
\begin{equation*}
\left(R_{v} R_{1}^{-v}\right)^{\frac{1}{v}}=w^{\prime \prime}\left(4_{v} A_{1}^{-v}\right) Q\left(F_{\beta}^{-v \beta} X_{b}^{-v b} \ldots .\right)^{\frac{1}{n}}\left\{\left(\phi_{v v}^{\sigma} \psi_{\sigma}^{-v o}\right)\left(\psi_{v r}^{\prime} \psi_{r}^{-v_{r}}\right) \ldots\right\}^{\frac{1}{n}} \tag{89}
\end{equation*}
$$

In like manner, by putting c for e in (85), and taking the result in connection with the first of equations (87),

$$
\begin{equation*}
\left(R_{c v} i_{c}^{-r}\right)^{\frac{1}{n}}=w^{r}\left(A_{c v} A_{c}^{-v}\right) Q\left(F_{c \beta}^{-v \beta} \ldots\right)^{\frac{1}{n}}\left\{\left(\phi_{c v}^{\sigma} \phi_{c v}^{-v v}\right)\left(\psi_{c v r}^{\tau} \psi_{c r}^{-v r}\right) \ldots\right\}^{\frac{1}{n}} \tag{90}
\end{equation*}
$$

From (89) compared with the first of equations (88), and from (90) compared with the second of equations (88),
und $\left.\quad i_{c}=w^{r}\left(A_{c r} A_{0}^{-r}\right) Q\left(F_{c \beta}^{-r 9} \ldots\right)^{\frac{1}{r}}\left\{\left(\boldsymbol{\phi}_{c v o}^{r} \phi_{o v}^{-v \sigma}\right)\left(\psi_{o r r}^{r} \psi_{c r}^{-v r}\right) \ldots\right\}^{\frac{1}{4}}\right\}$
By $\S 9$, because ϕ_{σ} is of the saine structure as the expression (8),

$$
\left(\phi_{v_{0}} \phi_{\sigma}^{-y}\right)^{\frac{1}{x}}=q_{\sigma}
$$

η_{0} being a rational function of the primitive $s^{\text {th }}$ root of unity w^{σ}. And, since it appeared from the reasoning in $\S 9$ that the nature of the function does not depend on the particular primitive $s^{\text {th }}$ root of unity denoted by u°, we have at the same time

$$
\left(\phi_{c v o} \phi_{c o}^{-v}\right)^{\frac{1}{\varphi}}=q_{0 \sigma}
$$

$q_{o \sigma}$ being what q_{0} becomes when w is changed into w^{σ}. Therefore, because $s \sigma=n$,

$$
\begin{aligned}
& \left(\phi_{c \sigma}^{\sigma} \phi_{\sigma}^{-v \sigma}\right)^{\frac{1}{4}}=q_{\sigma} \\
& \left(\phi_{c r q}^{\sigma} \phi_{c \sigma}^{-v \sigma}\right)^{\frac{1}{n}}=q_{c \sigma} \\
& \left(\psi_{r \tau}^{\tau} \psi_{\tau}^{-v r}\right)^{\frac{1}{n}}=q_{\tau}^{\prime} \\
& \left(\psi_{c v \tau}^{\tau} \psi_{c r}^{-r \tau}\right)^{\frac{1}{x}}=q_{c r}^{\prime}
\end{aligned}
$$

and
Similarly,
and
where q_{r}^{\prime} is a rational function of u^{τ}, and $q_{o r}^{\prime}$ is what q_{τ}^{\prime} becomes when w is changed into u°. Therefore, from (91),
and

$$
\left.\begin{array}{l}
k_{1}=w^{a}\left(A_{v} A_{1}^{-v}\right) Q\left(F_{\beta}^{-v \beta} \ldots .\right)^{\frac{1}{n}}\left(q_{c} q_{r}^{\prime} \ldots .\right) \\
k_{c}=w^{r}\left(A_{c v} A_{c}^{-v}\right) Q\left(F_{c \beta}^{-v \beta} \ldots .\right)^{\frac{1}{v}}\left(q_{c o} q_{c r}^{\prime} \ldots .\right) \tag{92}
\end{array}\right\}
$$

But again, because $b \beta=n=y v$, and y is not a multiple of b, v is a multiple of b. Therefore $v \beta$ is a multiple of $b \beta$ or n. Therefore $F_{c \beta}^{-n \beta}$ is a rational
function of u°. In like manner $\boldsymbol{X}_{08^{\circ}}{ }^{v 8}$ is a rational tunction of w°, and so on
Therefore the second of equations (92) may be written

$$
k_{o}=w^{n}\left(A_{c o} A_{o}^{-v}\right) Q \boldsymbol{N}_{o}\left(q_{o \sigma} q_{o r}^{\prime} \ldots . .\right.
$$

where $J I_{c}$ is a rational fimetion of u°. In like manner, from the tirst of equations (92),

$$
k_{\mathrm{r}}=u^{\imath}\left(A_{v} A_{1}^{-v}\right) Q M_{1}\left(\left(_{\sigma} q_{r}^{\prime} \ldots .\right.\right.
$$

M_{1} being what M_{0} becomes in passing from w° to π. By $\S 4$ we can change w in this last equation into u°. This gives us

$$
k_{o}=w^{a 0}\left(A_{c v} A_{0}^{-\eta}\right) Q M_{a}\left(\eta_{c o} l_{c r}^{\prime} \ldots .\right)
$$

Comparing this with the value of k_{0} previously obtained, $w^{r}=w^{t c}$. Therefore the first of equations (87) becomes

$$
M_{o v}^{\frac{1}{n}}=u^{a c} A_{v v} Q\left(\phi_{c v o}^{a} \psi_{c v r}^{r} \ldots .\right)^{\frac{1}{n}} .
$$

Replacing Q by $\left(F_{\text {onp }}^{\beta} X_{\text {crs }}^{s} \ldots .\right)^{\frac{1}{4}}$, and putting e for c, which we are entitled to do because w^{c} may be any one of the roots included under w^{a},
 which is the form of $R_{\text {ev }}^{\frac{1}{x}}$ in (77).

Sufficiency of the Formes.

§45. Here we assume that R_{1} has the form (72), and that the terms in (78) are determined by the equations (76), (77), etc., while $R_{0}^{\frac{1}{4}}$ receives its rational value. We have then to prove that the expression (73) is the root of a pure uni-serial Abelian equation of the $n^{\text {th }}$ degree, provided always that the equation of the $n^{\text {th }}$ degree, of which it is the root, is irreducible.
§46. In the first place, it has been shown that there is an $n^{\text {th }}$ root of R_{0} which has a rational value; and, by hypothesis, $R_{0}^{\frac{1}{6}}$ has been taken with this rational value. In the second place, an equation of the type (3) subsists for every integral value of z. For, let z be a multiple of n. In that case it may be taken to be zero. Then

$$
\left(R_{s} R_{1}^{-s}\right)^{\frac{1}{n}}=R_{0}^{\frac{1}{n}}
$$

But R_{0} is the $n^{\text {th }}$ power of a rational quantity. Therefore (93) is an equation (93) the type (3). If z is not a multiple of n, it may be a multiple of equation of factors of n, say b, d, etc., though not of others, say s, t, ete of some of the multiple of b, and $b \beta=n, z \beta$ is a multiple of n. Therefore F Because z is a F_{0}^{β} is the $n^{\text {th }}$ power of a rational quantity. Therefore F^{β} is the $F_{z \beta}=F_{0}$. And
rational quantity. In like manner $X_{z \delta}^{\delta}$ is the $n^{\text {th }}$ power of a rational quant; ${ }^{2} y$, and so on. But

$$
R_{s}=A_{s}^{n}\left(F_{z \beta}^{\beta} X_{z \delta}^{\delta} \ldots .\right)\left(\phi_{s \sigma}^{\sigma} \psi_{z \tau}^{\tau} \ldots .\right)
$$

Since each of the quantities $F_{\varepsilon \beta}^{\beta}, X_{z 8}^{\delta}$, etc., is the $n^{\text {th }}$ power of a rational quantity, let their continued product be Q^{n}, Q being rational. Then

$$
\begin{equation*}
R_{z}=\left(A_{z} Q\right)^{n}\left(\phi_{z \sigma}^{\sigma} \psi_{z \tau}^{\tau} \ldots\right) \tag{94}
\end{equation*}
$$

Again, because $z \beta$ is a multiple of $n, F_{\beta}^{-z \beta}$ is the $n^{\text {th }}$ power of a rational function of w. In like manner X_{δ}^{-28} is the $n^{\text {th }}$ power of a rational function of w, and so on. Let $\quad\left(F_{\beta}^{-a \beta} X_{8}^{-2 \delta} \ldots\right)=M_{1}^{-n}$,
M_{1} being a rational function of w. Then

$$
\begin{gather*}
R_{1}^{-z}=A_{1}^{-n z}\left(F_{\beta}^{-\beta z} \ldots\right)\left(\phi_{\sigma}^{-\sigma z} \psi_{\tau}^{-\tau z} \ldots\right) \\
=\left(A_{1}^{2} M_{1}\right)^{-n}\left(\phi_{\sigma}^{-\sigma z} \psi_{\tau}^{-r z} \ldots\right) \tag{95}\\
\mathrm{d}(95), \tag{96}\\
R_{z} R_{1}^{-z}=\left(A_{z} A_{1}^{-z}\right)^{n}\left(Q M_{1}^{-1}\right)^{n}\left\{\left(\phi_{z \sigma}^{\sigma} \phi_{\sigma}^{-z \sigma}\right)\left(\psi_{z \tau}^{\tau} \psi_{\tau}^{-z \tau}\right) \ldots\right\} .
\end{gather*}
$$

From (94) and (95),
From the structure of the expression $\phi_{\sigma}, \phi_{z \sigma} \phi_{\sigma}^{-z}$ is, by $\S 9$, the $s^{\text {th }}$ power of a rational function of w^{σ}. Therefore, because $s \sigma=n, \phi_{z \sigma}^{\sigma} \phi_{\sigma}^{-z s}$ is the $n^{\text {th }}$ power of a rational function of w. In like manner $\psi_{z \tau}^{\tau} \psi_{\tau}^{-2 \tau}$ is the $n^{\text {th }}$ power of a rational function of w, and so on. Therefore, from (96), $R_{z} R_{1}^{-z}$ is the $n^{\text {th }}$ power of a rational function of w. This establishes equation (3) when z is the continued product of some of the prime factors of n, but not of all. It virtually establishes equation (3) also when z is prime to n, because this caso may be regarded as included in the preceding by taking the view that the factors of n which measure z have disappeared. Thus, whether z be a multiple of n or be a multiple of some factors of n, but not of others, or be prime to n, an equation of the type (3) subsists. In the third place, an equation of the type (5) subsists along with (3) for every value of e that makes w^{e} a primitive $n^{\text {th }}$ root of unity. For, let z be prime to n. It is then included in e. Also, since z and e are both prime to $n, z e$ is included in e; and unity is included in e. But, from the manner in which the root was constructed from its fundamental element, $R_{e}^{\frac{1}{6}}$ is determined as in (76). Therefore we have the four equations

$$
\begin{aligned}
& R_{1}^{\frac{1}{n}}=A_{1}\left(\phi_{\sigma}^{\sigma} \psi_{\tau}^{\tau} \quad \ldots . F_{\beta}^{\beta}\right)^{\frac{1}{n}}, \\
& R_{z}^{\frac{1}{n}}=A_{z}\left(\phi_{z \sigma}^{\sigma} \psi_{z r}^{\tau} \ldots F_{z \beta}^{\beta}\right)^{\frac{1}{n}}, \\
& R_{e z}^{\frac{1}{\phi}}=A_{e z}\left(\phi_{e z o}^{\sigma} \psi_{e z r}^{\tau} \ldots F_{e z \beta}^{\beta}\right)^{\frac{1}{{ }_{2}}} \text {, } \\
& R_{e}^{\frac{1}{x}}=A_{e}\left(\phi_{e \sigma}^{\sigma} \psi_{e r}^{\gamma} \quad \ldots . F_{e \beta}^{\beta}\right)^{\frac{1}{n}} .
\end{aligned}
$$

Therefore
and

$$
\left.\begin{array}{l}
\left(R_{z} R_{1}^{-z}\right)^{\frac{1}{n}}=\left(A_{z} A_{1}^{-z}\right)\left(\phi_{z \sigma} \phi_{\sigma}^{-z}\right)^{\frac{\sigma}{4}} \cdots\left(F_{z \beta} F_{\beta}^{-z}\right)^{\frac{\beta}{4}} \\
\left(R_{e z} R_{e}^{-z}\right)^{\frac{1}{n}}=\left(A_{e z} A_{e}^{-z}\right)\left(\phi_{e z \sigma} \phi_{e \sigma}^{-z}\right)^{\frac{\sigma}{n}} \cdots\left(F_{e z \beta} F_{e \beta}^{-z}\right)^{\frac{\beta}{n}} \tag{97}
\end{array}\right\}
$$

Because $\left(\phi_{z o} \varphi_{\sigma}^{-z}\right)^{\frac{\sigma}{n}}$ and other corresponding expressions have been shown to be rational functions of the primitive $n^{\text {th }}$ ront of unity w, the two equations (97) correspond respectively to (3) and (5). If z be not prime to n, and yet not a multiple of n, it may be taken to be $e v$, where v is equal to $\frac{n}{y}, y$ being one of the terms in the series (75) distinct from n, and w^{e} being the general primitive $n^{\text {th }}$ root of unity. Then, just as we obtained the pair of equations (97) by means of (76), we can now, by means of (77), obtain the pair of equations

$$
\left.\begin{array}{rl}
\left(R_{e v} R_{1}^{-e v}\right)^{\frac{1}{n}} & =\left(A_{e v} A_{1}^{-e v}\right)\left(\phi_{e v \sigma} \phi_{\sigma}^{-e v}\right)^{\frac{\sigma}{n}} \ldots \ldots \tag{98}\\
\left(R_{c e v} R_{c}^{-e v}\right)^{\frac{1}{n}} & =\left(A_{c e v} A_{\sigma}^{-e v}\right)\left(\phi_{c e v o} \phi_{c \sigma}^{-e v}\right)^{\frac{\sigma}{n}} \ldots
\end{array}\right\}
$$

where w^{c} represents any one of the primitive $n^{\text {th }}$ roots of unity. Because such expressions as $\left(\phi_{e v_{0}} \phi_{\sigma}^{-e v}\right)^{\frac{\sigma}{n}}$ and $\left(\phi_{c e r \sigma} \dot{\phi}_{c \sigma}^{-e v}\right)^{\frac{\sigma}{n}}$ are rational functions of w, the two equations (98) correspond respectively to (3) and (5). Finally, should z be a multiple of n, it may be taken to be zero. Then the equation corresponding to (3) is, q_{1} being a rational function of w_{1}

But $R_{0}^{\frac{1}{n}}$ is rational. Therefore q_{1} is rational. Therefore $q_{1}=q_{\theta}$; in other words,

$$
R_{z}^{\frac{1}{n}}=q_{1} R_{1}^{\frac{z}{n}} ; \text { or, since } z=0, R_{0}^{\frac{1}{x}}=q_{1}
$$ q_{1} undergoes no change when w becomes w^{e}. Also $R_{e z}^{\frac{1}{n}}=R_{0}^{\frac{1}{n}}=q_{e}$. Therefore, since $R_{e}^{\frac{\pi}{n}}=1$,

$$
R_{e z}^{\frac{1}{n}}=q_{e} R_{e}^{\frac{\pi}{n}},
$$

which is the equation corresponding to (5). Therefore, whatever z be, the equation (5) subsists along with (3). Hence, by the Criterion in $\S 10$, the expression (73) is the root of a pure uni-serial Abelian equation of the $n^{\text {th }}$ degree.

The Pure Uni-Serial Abelian of a Degree which is Four Times the
Continued Product of a Number of Distinct Odd Primes.

Fundamental Element of the Root.

§47. Let $n=4 m$, where m is the continued product of the distinct odd prime numbers,

$$
\begin{gather*}
s, t, \ldots, d, l \tag{99}\\
\sigma, \tau, \ldots, \delta, \beta \tag{100}
\end{gather*}
$$

such that $n=s \sigma=t \tau=\ldots=b \beta$. Let w be a primitive $n^{\text {th }}$ root of unity. Then w^{m} is a primitive fourth root of unity, w^{σ} a primitive $s^{\text {th }}$ root of unity, and so on. Let

be cycles containing respectively all the primitive $s^{\text {th }}$ roots of unity, all the primitive $t^{\text {th }}$ roots of unity, and so on. Let P_{1} be a rational function of w, and, for any integral value of z, let P_{z} be what P_{1} becomes by changing w into w^{2}. We can always take P_{1} such that P_{m} shall have the form of the fundamental element of the root of a pure uni-serial Abelian quartic; that is, P_{m} may receive the form of R_{1} in (49) as determined by the equations (48). For, because P_{1} is a rational function of w,

$$
P_{1}=a+a_{1} v+a_{2} u^{2}+\ldots+a_{n-1} w^{n-1},
$$

the coefficients a, a_{1}, etc., being rational. Therefore

$$
\begin{aligned}
P_{m} & =a+a_{1} v^{m}+a_{2} w^{2 m}+\text { etc. } \\
& =\left(a+a_{4}+\text { etc. }\right)+w^{m}\left(a_{1}+a_{5}+\text { etc. }\right)+w^{2 m}\left(a_{2}+\text { etc. }\right)+w^{3 m}\left(a_{3}+\text { etc. }\right) .
\end{aligned}
$$

This may be written

$$
\begin{equation*}
P_{m}=f+f^{\prime} \prime w^{m}+f^{\prime \prime} w^{2 m}+f^{\prime \prime \prime} w_{w^{3 m}} \tag{102}
\end{equation*}
$$

All that is required in order that P_{1} may be a function of the kind described is that P_{m} in (102) be of the same character with R_{1} in (49). That is, we have to make

$$
f=p, f^{\prime}=q, f^{\prime \prime}=r, f^{\prime \prime \prime}=s
$$

By means of these four linear equations, the necessary relations between the quantities a, a_{1}, a_{2}, etc., can be constituted. Having thus taken P_{1} subject to the condition that P_{m} shall have the form of the fundamental element of the root of a pure uni-serial Abelian quartic, put

Then, if R_{1} be the fundamental element of the root of a pure uni-serial Abelian equation of the $n^{\text {th }}$ degree, it will be found that

$$
\begin{equation*}
R_{1}=A_{1}^{n}\left(P_{m}^{m} \phi_{\sigma}^{\sigma} \psi_{\tau}^{r} \ldots X_{\delta}^{\delta} F_{\beta}^{\beta}\right), \tag{104}
\end{equation*}
$$

A_{1} being a rational function of w.

The Root Constructed from its Fundamental Element.

§48. From R_{1}, as expressed in (104), derive R_{0}, R_{2}, etc., by changing w into w^{0}, w^{2}, etc. Then, assuming that the root of the pure uni-serial Abelian equation $f(x)=0$ of the $n^{\text {th }}$ degree is

$$
\begin{equation*}
R_{0}^{\frac{1}{n}}+R_{1}^{\frac{1}{n}}+R_{2}^{\frac{1}{n}}+\ldots+R_{n-1}^{\frac{1}{n}} \tag{105}
\end{equation*}
$$

what we have to do in order to construct the root is to determine what values of $n_{0}^{\frac{1}{n}}, l_{1}^{\frac{1}{n}}$, ete., are to be taken together in (105).
§49. From (104) we have

$$
R_{0}=A_{0}^{n}\left(P_{0}^{m} \phi_{0}^{\sigma} \ldots F_{0}^{\beta}\right)
$$

By $\S 8, \phi_{0}$ is the $s^{\text {th }}$ power of a rational quautity. Therefore, because $\delta \sigma=n$ ϕ_{0}^{σ} is the $n^{\text {th }}$ power of a rational quantity. In like manner each of the expressions $\psi_{0}^{r}, F_{\theta}^{\beta}$, etc., is the $n^{\text {th }}$ power of a rational quantity. And, because P_{m} is of the same form with the fundamental element of the root of a pure uni-serial Abelian quartic, P_{0} is the fourth power of a rational quautity. Therefore, since $n=4 m, P_{0}^{m}$ is the $n^{\text {th }}$ power of a rational quantity. Therefore, from (106), R_{0} is the $n^{\text {th }}$ power of a rational quantity, and $R_{0}^{\frac{2}{n}}$ has a rational value.
be
§50. Let the numbers not exceeding n that measure n, unity not included,
For instance, if $n=4 \times 3 \times 5=60$, the series (107) is

$$
\begin{equation*}
60,30,20,15,12,10,6,5,4,3,2 . \tag{107}
\end{equation*}
$$

The $n^{\text {th }}$ roots of unity distiuct from unity are made up of the primitive $n^{\text {th }}$ roots of unity, the primitive $y^{\text {th }}$ roots of unity, and so on. For instance, when $n=60$, the fifty-nine $n^{\text {th }}$ roots of unity distinct from unity are the sixteen primitive $60^{\text {th }}$ roots of unity, and the eight primitive $30^{\text {th }}$ roots of unity, and the eight primitive $20^{\text {th }}$ roots of unity, and the eight primitive $15^{\text {th }}$ roots of unity, and the four primitive $12^{\text {th }}$ roots of unity, and the four primitive $10^{\text {th }}$ roots of unity, and the two primitive $6^{\text {th }}$ roots of unity, and the four primitive $5^{\text {th }}$ roots of unity, and the two primitive $4^{\text {th }}$ roots of unity, and the two primitive 3^{d} roots of unity, and
the primitive 2^{d} root of unity. According to our usual notation, let P_{z}, ϕ_{z}, ete., be what P_{1}, ϕ_{1}, etc., become when w is changed into w^{2}, z being any integer. Then, from (104),

$$
\left.\begin{array}{c}
R_{z}=A_{z}^{n}\left(P_{z m}^{m} \phi_{z \sigma}^{\sigma} \psi_{z \tau}^{\tau} \ldots \ldots F_{z \beta}^{\beta}\right) \tag{108}\\
R_{z}^{\frac{1}{n}}=w^{\prime} A_{z}\left(P_{z m}^{m} \phi_{z \sigma}^{\sigma} \psi_{z \tau}^{\tau} \ldots F_{z \beta}^{\beta}\right)^{\frac{1}{n}}
\end{array}\right\}
$$

Therefore
he general primitive $n^{\text {th }}$ root of unity being w^{e}, give w^{\prime} in the second of equations (108) the value unity for every value of z included under e. Then

$$
\begin{equation*}
R_{e}^{\frac{1}{n}}=A_{e}\left(P_{e m}^{m} \phi_{e q}^{\sigma} \psi_{e r}^{\tau} \ldots F_{e \beta}^{\beta}\right)^{\frac{1}{n}} \tag{109}
\end{equation*}
$$

Taking any number y distinct from n in the series (107), since y is a factor of n, let $y v=n$. Then w^{v} is a primitive $y^{\text {th }}$ ront of unity. Hence, since w^{e} is the general primitive $n^{\text {th }}$ root of unity, all the primitive $y^{\text {th }}$ roots of unity are included in $w^{e v}$. If w^{\prime} in the second of equations (108) be w^{a} when $z=v$, give w^{\prime} the value $u^{n e n}$ when $z=e v$. Then

$$
\begin{equation*}
R_{e v}^{\frac{1}{e}}=w^{e a} A_{e v}\left(P_{e v m}^{m} \phi_{e r \sigma}^{\sigma} \ldots F_{e r \beta}^{\beta}\right)^{\frac{1}{n}} \tag{110}
\end{equation*}
$$

The expression P_{n} having the form of the fundamental element of the root of a pure uni-serial Abelion quartic, it is understood that, in (110), $P_{e v m}^{\frac{m}{n}}$ or $P_{e v m}^{\frac{1}{e}}$ is taken with the value which it has in the root

$$
P_{0}^{\frac{q}{2}}+P_{m}^{l}+P_{2 m}^{l}+P_{3 m}^{l}
$$

of a pure uniserial Abelian quartic; and consequently, when v is a multiple of 2, $w^{m a}$ must have the value unity. Form equations similar to (110) for the remaining terms in (107). In this way, because the series of the $n^{\text {th }}$ roots of unity dis.inct from unity is made up of the primitive $n^{\text {th }}$ roots of unity, and the primitive $y^{\text {th }}$ roots of unity, and so on, all the terms $1,2, \ldots, n-1$ will be found in the groups of numbers represented by the subscripts $c, e v$, etc., when multiples of n are rejected. Consequently, in determining $R_{e}^{\frac{1}{n}}, R_{e v}^{\frac{1}{8}}$, etc., as in (109), (110), etc., we have determined all the terms

$$
\begin{equation*}
R_{1}^{\frac{1}{n}}, R_{2}^{\frac{1}{n}}, \ldots, R_{n-1}^{\frac{1}{n}} \tag{111}
\end{equation*}
$$

Substitute, then, in (105) the rational value of $R_{0}^{\frac{1}{n}}$, and the terms in (111) as these are determined by the equations (109), (110), etc., and the root is constructed; that is, the expression (105) is the root of a pure uni-serial Abelian equation of the $n^{\text {th }}$ degree, provided always that the equation of the $n^{\text {th }}$ degree, of which it is the root, is irreducitle.

Pure Uni-Serial Abelian Equations.

Necessity of the above Forms.

§51. Take s, any one of the odd prime numbers in the series (99). Let a_{0}, a_{1}, a_{2}, ete., be rational functio ss of w°. Then, because $s \sigma=n, a_{0}, a_{1}$, etc., are clear of w^{σ}, though they may involve the primitive fourth root of unity w^{m}, the primitive $t^{\text {th }}$ root of unity w^{r}, and other corresponding roots exclusive of w^{σ}. The terms $w^{\sigma}, w^{\sigma \lambda}$, etc., in the first of the cycles (101), being all the primitive $s^{\text {th }}$ roots of unity, I assume that if

$$
a_{0}+a_{1} w^{\sigma}+a_{2} w^{\sigma \lambda}+\ldots+a_{\varepsilon-1} w^{\sigma v^{\alpha}-2}=0,
$$

the coefficients a_{0}, a_{1}, etc., are all equal to one another.
§52. The general primitive $n^{\text {th }}$ root of unity being $w^{e}, s-1 \cdot$ values of e, leaving distinct residues when multiples of s are rejected, can be found of the form

$$
\begin{equation*}
g \sigma+1, \tag{112}
\end{equation*}
$$

g being a whole number. For, since $s \sigma=n$, the $s-1$ terms

$$
\sigma+1,2 \sigma+1, \ldots,(s-1) \sigma+1
$$

in (112), zero included, which make $x^{g \sigma+1}$ a primitive $n^{\text {th }}$ root of unity. Let two of these values of g be g_{1} and g_{2}. Put

$$
\begin{aligned}
& g_{1} \sigma+1=q_{1} s+r_{1} \\
& g_{2} \sigma+1=q_{2} s+r_{3}
\end{aligned}
$$

and
η_{1} and q_{2} being whole numbers, and r_{1} and r_{8} whole numbers less than s. Suppose, if possible, that $r_{1}=r_{2}$; then

$$
\left(g_{1}-g_{2}\right) \sigma=\left(q_{1}-q_{2}\right) s,
$$

which, as above, makes σ a multiple of s, and is therefore impossible. Consequently, the $s-1$ residues after multiples of s have been rejected from the $s-1$ different values of $g \sigma+1$ are all different from one another.
§53. It can now be shown that equations
and

$$
\left.\begin{array}{l}
\left(R_{m z} R_{m}^{-z}\right)^{\frac{1}{4}}=p_{m} \\
\left(R_{e m z} R_{e m}^{-z}\right)^{\frac{1}{2}}=p_{e m} \tag{114}
\end{array}\right\}
$$

subsist for every integral value of z and every value of e that makes w^{e} a primitive $n^{\text {th }}$ root of unity, p_{m} being a rational function of w^{m}, and $p_{e m}$ being what p_{m} becomes when w is changed into w^{e}. By (3) and (5), because R_{1} is the fundamental element of the root of a pure uni-serial Abelian equation of the $n^{\text {th }}$ degree,
and

$$
\begin{aligned}
& \left(R_{m z} R_{m}^{-z}\right)^{\frac{1}{4}}=l_{1}, \\
& \left(R_{e m z} R_{e m i}^{-z}\right)^{\frac{1}{n}}=h_{e},
\end{aligned}
$$

k_{1} being a rational function of w, and k_{e} being what l_{1} becomes when w is changed into w^{e}. Therefore
and

$$
\left.\begin{array}{l}
\left(R_{m z} R_{m}^{-z}\right)^{\frac{4}{4}}=l_{1}^{m} \\
\left(R_{e m z} R_{e m}^{-z}\right)^{\frac{4}{4}}=l_{e}^{m} \tag{115}
\end{array}\right\}
$$

In the second of these equations, give e a value, say c, falling under the form (112). Then

$$
\begin{equation*}
\left(R_{c m z} R_{c m}^{-z}\right)^{\frac{1}{2}}=l_{6}^{m} . \tag{116}
\end{equation*}
$$

Since σ is a multiple of 4 , we may put $c=4 d+1$. Therefore $c m=d n+m$. Therefore $w^{c m}=w^{m}$, and $w^{c m z}=w^{m z}$. Therefore (116) may be written

$$
\left(R_{m z} R_{m}^{-z}\right)^{\frac{1}{2}}=l_{c}^{m} .
$$

This, compared with the first of equations (115), gives us

$$
\begin{equation*}
l_{c}^{m}=h_{1}^{m} . \tag{117}
\end{equation*}
$$

Since k_{1}^{m} is a rational function of a primitive $n^{\text {th }}$ root of unity, and the first of the cycles (101) contains all the primitive $s^{\text {th }}$. roots of unity, we may put

$$
\begin{equation*}
l_{1}^{m}=a_{0}+a_{1} w^{\sigma}+a_{2} u^{\sigma \lambda}+\ldots+a_{s-1} w^{\sigma \lambda^{\prime \lambda}}, \tag{118}
\end{equation*}
$$

where the coefficients a_{0}, a_{1}, etc., are clear of w^{σ}; though, for anything that has yet been proved, they may involve w^{m}, w^{\top} and other corresponding roots exclusive of w^{σ}. In (118), by the Corollary in §4, we can change w into $w^{\text {. }}$. This causes l_{1}^{m} to become l_{c}^{m}, and v^{σ} to become $w^{c o}$. The coefficients a_{0}, a_{1}, etc., are rational functions of w^{s}, and, when w is changed into w^{0}, w^{s} becomes $w^{c s}$; but, by (112), cs $=g n+s$; therefore $u^{c \theta}=u^{s}$. This implies that the coefficients a_{0}, a_{1}, etc., remain unaffected when w is clanged into u^{c}. Therefore

$$
k_{c}^{m}=a_{0}+a_{1} u^{c \sigma}+a_{2} u^{c \sigma \lambda}+\text { etc. }
$$

Therefore, from (117) and (118),

$$
\begin{equation*}
a_{1} v^{c \sigma}+a_{2} u^{c \alpha \lambda}+\text { etc. }=a_{1} u^{\sigma}+u_{2} u^{\prime \sigma \lambda}+\text { etc. } \tag{119}
\end{equation*}
$$

It was proved in §52 that c may have $s-1$ values, including unity, which leave distinct residues when multiples of s are rejected. Therefore one of these residues distinct from unity must be λ, which was supposed less than ε, and is not unity. Giving c in (119) the value which leaves the residue λ when multiples of s are rejected, the equation (119) becomes

$$
w^{\sigma \lambda}\left(a_{1}-a_{2}\right)+w^{\sigma \lambda 2}\left(a_{2}-a_{3}\right)+\text { etc. }=0
$$

Here, by $\S 51$, the coefficients $a_{1}-a_{2}, a_{2}-a_{3}$, etc., must all vanish. This implies that $a_{1}, a_{2}, \ldots, a_{s-1}$ are all equal to one another. Hence

$$
\begin{equation*}
l_{1}^{m}=a_{0}+a_{1}\left(w^{\sigma}+w^{\sigma \lambda}+\text { otc. }\right)=a_{0}-a_{1} . \tag{120}
\end{equation*}
$$

Thus l_{1}^{m} is clear of w^{c}. In like manner it can be shown to be clear of all the roots

$$
w^{\sigma}, w^{\tau}, \ldots, w^{\delta}, v^{\beta} ;
$$

it is therefore a rational function of w^{m}. Let it be written p_{m}. Then the equations (115) become

$$
\begin{aligned}
& \left(R_{m z} R_{m}^{-2}\right)^{\frac{1}{4}}=p_{m}, \\
& \left(R_{e m 2} R_{e m}^{-z}\right)^{\frac{1}{2}}=p_{e m},
\end{aligned}
$$

$p_{e m}$ heing what p_{m} becomes when w is changed into w^{e}. These are the equations ${ }^{\text {e }}$ (114).
§54. From what has been established, it follows that l_{m} has the form of the fundamental element of a pure uni-serial Abelian quartic. For, by §10, all that is required in order that R_{m} may have such a form is that the equations (114) should subsist, and that R_{0}^{k} should have a rational value. By §5, since R_{1} is the fundamental element of the root of a pure uni-serial Abelian equation of the $n^{\text {th }}$ degree, $R_{0}^{\frac{1}{x}}$ has a rational value. Therefore $R_{0}^{\frac{t}{t}}$ has a rational vaiue.
§55. In the very same way in which (83) was established, it can be proved
that
where Q_{e} is a rational function of x^{e}, and

$$
\begin{equation*}
\Delta=m^{2}+\sigma^{2}(s-1) \lambda^{s-2}+\tau^{2}(t-1) h^{t-2}+\ldots+\beta^{2}(b-1) k^{b-2} \tag{122}
\end{equation*}
$$

Because m is the continued product of the odd factors of n, m^{2} is odd. But each of the expressions $s-1, t-1$, etc., is even. Therefore Δ is odd. Therefore Δ is prime to 4 . Again, because m is the continued product of the odd factors of n, it is a multiple of l. And, because $\sigma \sigma=b \beta, \sigma$ is a multiple of b. In like manner τ is a multiple of b. In this way all the separate members of the expression for Δ in (122) except the last are multiples of b. And, by the same reasoning as was used in $\S 44, \beta^{2}(b-1) k^{b-2}$ is not a multiple of b. Therefore Δ is prime to b. In like manner it is prime to s, t, etc. Therefore it is prime to n. Therefore there are whole numbers v and r such that

$$
v \Delta=r n+1
$$

Therefore, from (121),

For any integral value of z, let $R_{z}^{\frac{2}{n}}$ be written $P_{z}^{\frac{1}{n}}$. Then, by (103), putting A_{e}^{-1} for $Q_{e}^{v} R_{e}^{r}$, (123) becomes

$$
\begin{align*}
& R_{e}^{\frac{1}{n}}=A_{e}\left(P_{e m}^{m} \phi_{e \sigma}^{\sigma} \psi_{e_{r r}^{\tau}}^{\tau} \ldots F_{e \beta}^{\beta}\right)^{\frac{1}{n}} . \tag{124}\\
& R_{1}=A_{1}^{n}\left(P_{m}^{m} \phi_{\sigma}^{\sigma} \psi_{\tau}^{\tau} \ldots F_{\beta}^{\beta}\right) . \tag{125}
\end{align*}
$$

Therefore
But P_{m} is the same as R_{m}^{v}. Therefore, by $\S 54, P_{m}$ is of the form of the fundamental element of the root of a pure uni-serial Abelian quartic. Therefore the expression for R_{1} in (125) is identical with that in (104), and thus the form of the fundamental element in (104) is established. Also, it was necessary to take $R_{0}^{\frac{1}{n}}$ with its rational value, because, by $\S 5, n R_{0}^{\frac{1}{n}}$ is the sum of the roots of the equation $f(x)=0$. And equation (124) is identical with (109), which establishes the necessity of the forms assigned to all those expressions which are contained under $R_{e}^{\frac{1}{4}}$. It remains to prove that the expressions contained under $R_{e v}^{\frac{1}{n}}, \frac{n}{v}$ or y being a term in the series (107) distinct from n, have the forms assigned to them in (110). The details to be given here are very much a repetition of what is found in $\S 44$; but, to prevent the confusion that might arise
from explanations and re ${ }^{f} \ldots$ nees, it is thought better to present the reasoning again with some fulness.
§56. Since $y v=n$, and y is not equal to n, y is the continued product of some of the factors of n, but not of them all. Let s, t, ete., be the odd factors of n of which y is a multiple; and b, d, etc., the odd factors of n of which y is not a multiple. Because $y v=n=b, \beta$, and b is not a factor of y, b is a factor of v. Let $v=a b$; then $v \beta=a n$. Therefore $F_{e, n}=F_{0}$. In like manner $X_{\text {ers }}=X_{0}$, and so on as regards all those terms of the type $F_{\text {er } \beta}$ in which $\frac{n}{\beta}$ or b is an odd factor of n, but not a factor of y. Hence, putting $e v$ for z in the second of equations (108), and separating those factors of $R_{e v}^{\frac{1}{6}}$ that are of the type $F_{\text {evf }}^{\frac{1}{6}}$ from those that are not,

$$
R_{e v}^{\frac{1}{s}}=w^{\prime \prime} A_{e v}\left(F_{0}^{\beta} X_{0}^{s} \ldots\right)^{\frac{1}{n}}\left(P_{e m}^{m} \phi_{e v c}^{\sigma} \ldots\right)^{\frac{1}{1}}
$$

$w^{\prime \prime}$ being an $n^{\text {th }}$ root of unity. We understand that $F_{0}^{\frac{8}{8}}, X_{0}^{\frac{8}{4}}$, etc., are taken with the rational values which it has been proved that they admit, and, as in §44, their continued product may be called Q. Then

$$
\begin{equation*}
R_{e v}^{\frac{1}{\sigma}}=w^{\prime \prime} A_{e v} Q\left(P_{e m m}^{m} \phi_{e v o}^{\sigma} \ldots .\right)^{\frac{1}{1}} . \tag{126}
\end{equation*}
$$

When e is taken with the particular value c, let $w^{\prime \prime}$ become w^{r}, and when e has the value unity, let $w^{\prime \prime}$ become w^{a}. Then
and

$$
\left.\begin{array}{l}
R_{c v}^{\frac{1}{v}}=w^{r} A_{c v} Q\left(P_{c t m}^{m} \phi_{c v \sigma}^{\sigma} \ldots .\right)^{\frac{1}{n}} \\
R_{v}^{\frac{1}{4}}=w^{a} A_{v} Q\left(P_{v m}^{m} \phi_{v \sigma}^{\sigma} \ldots .\right)^{\frac{1}{n}} \tag{127}
\end{array}\right\}
$$

Because R_{1} is the fundamental element of the root of a pure uni-serial Abelian equation of the $n^{\text {th }}$ degree, equations (3) and (5) subsist together; hence, because w^{c} is included in w^{e},
and

$$
\left.\begin{array}{l}
\left(R_{v} R_{1}^{-v}\right)^{\frac{1}{n}}=k_{1} \\
\left(R_{c v} R_{c}^{-v}\right)^{\frac{1}{n}}=k_{c} \tag{128}
\end{array}\right\}
$$

where k_{1} is a rational function of w, and k_{c} is what k_{1} becomes by changing w into w^{c}. By putting e equal to unity in (100),

$$
l_{1}^{\frac{1}{n}}=A_{1}\left(P_{m}^{m} \phi_{\sigma}^{\sigma} \ldots \ldots F_{\beta}^{g}\right)^{\frac{1}{n}}
$$

Taking this in connection with the second of equations (127),

$$
\begin{equation*}
\left(R_{v} R_{1}^{-\vee}\right)^{\frac{1}{n}}=w^{a}\left(A_{v} A_{1}^{-v}\right) Q\left(F_{\beta}^{-\vee \beta} \ldots\right)^{\frac{1}{\pi}}\left\{\left(P_{v n}^{m} P_{m}^{-v m}\right)\left(\phi_{o \phi_{\sigma}^{o}}^{\sigma}-\mathrm{to}\right) \ldots\right\}^{\frac{1}{n}} \tag{129}
\end{equation*}
$$

In like manner, by putting c for c in (109), and taking the result in connection with the first of equations (127),

$$
\begin{equation*}
\left(R_{c v} R_{c}^{-v}\right)^{\frac{1}{n}}=w^{r}\left(A_{c v} A_{c}^{-v}\right) Q\left(F_{c \beta}^{-r \beta} \ldots\right)^{\frac{1}{n}}\left\{\left(P_{c r m}^{m} P_{c m}^{-v m}\right)\left(\phi_{c v o}^{\sigma} \phi_{c \sigma}^{-r v}\right) \ldots\right\}^{\frac{1}{n}} \tag{130}
\end{equation*}
$$

From (129) compared with the first of equations (128), and from (130) compared with the second of equations (128),

$$
\begin{equation*}
\left.k_{1}=w^{a}\left(A_{v} A_{1}^{-v}\right) Q\left(F_{\beta}^{-w \rho} \ldots\right)^{\frac{1}{n}}\left\{\left(P_{v m}^{m} P_{m}^{-v m}\right)\left(\phi_{v \sigma}^{\sigma} \phi_{\sigma}^{-v \sigma}\right) \ldots\right)^{\frac{1}{v}},\right\} \tag{131}
\end{equation*}
$$

$$
\text { and } \left.\quad k_{c}=w^{r}\left(A_{c o} A_{c}^{-v}\right) Q\left(F_{c \beta}^{-v \beta} \ldots .\right)^{\frac{1}{4}}\left\{\left(P_{c r m}^{m} P_{c m}^{-v m}\right)\left(\phi_{c v o}^{\sigma} \phi_{o \sigma}^{-v \sigma}\right) \ldots\right\}^{\frac{1}{v}}\right\}
$$

Exactly as in §44, it can be shown that

$$
\begin{equation*}
\left(\phi_{c v o}^{\sigma} \phi_{c o}^{-v \sigma}\right)^{\frac{1}{n}}=q_{c}, \tag{132}
\end{equation*}
$$

q_{0} being a rational function of the primitive $n^{\text {th }}$ root of unity $w^{\text {c }}$. Also, it has been proved that P_{m} is of the form of the fundamental element of the root of a pure uni-serial Abelian quartic. Therefore, by (3), $\left(P_{c \mathrm{~cm}} P_{c m}^{-7}\right)^{\frac{1}{4}}$ is a rational function of the primitive fourth root of unity w^{m}. Therefore, because $n=4 m$, $\left(P_{o m m}^{m} P_{c m}^{-\mathrm{vm}}\right)^{\frac{1}{n}}$ is a rational function of the primitive $n^{\text {th }}$ root of unity w^{c}. Put

$$
\begin{gather*}
\left(P_{c o m}^{m} P_{c m}^{-v m}\right)^{\frac{1}{n}}=q_{c}^{\prime} \tag{133}\\
F_{c v}^{-\frac{v \beta}{n}}=q_{0}^{\prime \prime} \tag{134}
\end{gather*}
$$

Again, exactly as in §44,
$q_{c}^{\prime \prime}$ being a rational function of w^{c}. By (132), (133), (134), and other corresponding equations, the second of equations (131) becomes

$$
\begin{equation*}
k_{c}=w^{r}\left(A_{o v} A_{c}^{-v}\right) Q\left(q_{c} q_{c}^{\prime} q_{c}^{\prime \prime} \ldots\right) \tag{135}
\end{equation*}
$$

In like manner, from the first of equations (131),

$$
k_{1}=w^{a}\left(A_{v} A_{1}^{-v}\right) Q\left(q_{1} q_{1}^{\prime} q_{1}^{\prime \prime} \ldots\right)
$$

q_{1}, q_{1}^{\prime}, etc., being what q_{c}, q_{c}^{\prime}, etc., become in passing from w^{c} to w. It may be noted that this assumes that we are entitled to change equation (133) into

$$
\left(P_{v m}^{m} P_{m}^{-v m}\right)^{\frac{1}{n}}=q_{1}^{\prime}
$$

The warrant for this lies in the fact that the roots $P_{m}^{\frac{m}{m}}, P_{2 m}^{\frac{m}{m}}, P_{3 m}^{\frac{m}{m}}$, or $P_{m}^{\frac{1}{b}}, P_{2 m}^{\frac{1}{2}}, P_{3 m}^{\downarrow}$, were taken with the values they have in the root

$$
P_{0}^{\mathrm{l}}+P_{m}^{\mathfrak{k}}+P_{8 m}^{\mathfrak{l}}+P_{3 m}^{\mathfrak{l}}
$$

of a pure uni-serial Abelian quartic. This being so, the equation

$$
\left(P_{v m}^{m} P_{m}^{-v m}\right)^{\frac{1}{x}}=q_{1}^{\prime}
$$

corresponds to equation (3), while (133) corresponds to (5), and, by $\S 5$, equations
(3) and (5) subsist together. In l_{1}, by the Corollary in $\S 4$, we can change w into w^{6}. Therefore

$$
k_{c}=w^{n c}\left(A_{c v} A_{o}^{-v}\right) Q\left(q_{c} \eta_{c}^{\prime} q_{c}^{\prime \prime} \ldots\right)
$$

By comparing this with (135), $w^{r}=w^{a c}$. Therefore the first of equations (127) hecomes

$$
P_{c v}^{\frac{1}{v}}=w^{a v} A_{c v} Q\left(P_{c v m}^{m} \phi_{c r o}^{\sigma} \ldots . .\right)^{\frac{1}{n}} .
$$

Replacing Q by $\left(F_{\text {cr月 }}^{\beta} \ldots\right)^{\frac{1}{n}}$, and putting c for c, which we are entitled to do because w^{c} may be any one of the roots included in the general form w^{c}, which is the form of $R_{e v}^{\frac{1}{n}} R_{e v}^{\frac{1}{x}}=w^{e a} A_{e v}\left(P_{e v m}^{m} \phi_{e v \sigma}^{\sigma} \ldots V_{e v \beta}^{\beta}\right)^{\frac{1}{n}}$,

Sufficiency of the Forms.

§57. Here we assume that R_{1} has the form (104), and that the forms in (111) are determined by the equations (109), (110), etc., while $R_{0}^{\frac{1}{2}}$ receives its rational value; and we have to prove that the expression (105) is the root of a pure uni-serial Abelian equation of the $n^{\text {th }}$ degree, provided always that the equation of the $n^{\text {th }}$ degree, of which it is the root, is irreducible. In the first place, it has been shown that there is an $n^{\text {th }}$ root of R_{0} which has a rational value; and, by hypothesis, $R_{0}^{\frac{1}{8}}$ has been taken with this rational value. In the second place, an equation of the type (3) subsists for every integral value of z. For

$$
R_{z} R_{1}^{-z}=\left(A_{z} A_{1}^{-2}\right)^{n}\left(P_{m z}^{m} P_{m}^{-m z}\right)\left(\phi_{\sigma z}^{\sigma} \phi_{\sigma}^{-\sigma z}\right) \ldots\left(F_{\beta z}^{\beta} I_{\beta}^{-\beta z}\right)
$$

But P_{m} is of the form of the fundamental element of the root of a pure uniserial Abelian quartic. Therefore, by $\S 5, P_{m_{2}} P_{m}^{-z}$ is the fourth power of a rational function of the primitive fourth root of unity w^{m}. Therefore, because $n=4 m, P_{m_{z}}^{m} P_{m}^{-m z}$ is the $n^{\text {th }}$ power of a rational function of w. Also, it can be proved, exactly as in $\S 44$, that, whether z be a multiple of s or not, $\phi_{\sigma z}^{\sigma} \phi_{\sigma}^{-\sigma z}$ is the $n^{\text {th }}$ power of a rational function of w. And so of the other corresponding the third place, we have $R_{z} R_{1}^{-}$is the $n^{\text {th }}$ power of a rational function of w. In corresponding equation (3) show that an equation such as (5) subsists for every Also, since z and e are both prim let z be prime to n. It is then included in e. cluded in e. But, from the prime to $n, z e$ is included in e; and unity is infundamental element, $R_{e}^{\frac{1}{1}}$ is determined which the root was constructed from its fundamental element, $R_{e}^{\frac{1}{4}}$ is determined as in (109). Therefore

Therefore

$$
\begin{align*}
& R_{1}^{\frac{1}{1}}=\Lambda_{1}\left(I_{m}^{m} \phi_{\sigma}^{\sigma} \quad \ldots F_{\beta}^{)^{g}}\right)_{1}^{\frac{1}{n}}, \\
& I_{s}^{\frac{1}{n}}=A_{s}\left(I_{s m}^{m} \phi_{z \sigma}^{\sigma} \ldots I_{s \beta}^{\prime \beta}\right)_{i}^{\frac{1}{n}} \\
& R_{e z}^{\frac{1}{n}}=A_{e z}\left(P_{e s m}^{m} \phi_{e a s}^{\sigma} \ldots \ldots V_{\varepsilon z \beta}^{\gamma \beta}\right)^{\frac{1}{n}} . \\
& \left.\begin{array}{l}
\left.\left(R_{z} R_{1}^{-s}\right)^{\frac{1}{n}}=\left(A_{s} A_{1}^{-z}\right)\left(P_{n m} P_{m}^{-z}\right)^{\frac{m}{n}}\left(\phi_{z \sigma} \phi_{\sigma}^{-s}\right)^{\frac{\sigma}{m}} \ldots\right\} \\
\left(R_{e s} R_{e}^{-s}\right)^{\frac{1}{n}}=\left(A_{e z} A_{e}^{-z}\right)\left(P_{e z m} P_{e m}^{-z}\right)^{\frac{m}{n}}\left(\phi_{n \in \sigma} \phi_{e \sigma}^{-z}\right)^{\frac{\sigma}{n}} \ldots
\end{array}\right\} \tag{136}
\end{align*}
$$

and
Because $\left(P_{s m} P_{m}^{-z}\right)^{\frac{m}{n}}$ and other such expressions have been shown to be rational functions of the primitive $n^{\text {th }}$ root of unity, the two equations (106) correspond respectively to (3) and (5). If z be not prime to n, and yet not a multiple of n, it may be taken to be $e v$, where v is equal to $\frac{n}{y}, y$ being one of the terms in the series (107) distinct from n, and w^{e} being the general primitive $n^{\text {th }}$ root of unity. Then, just as we obtained the pair of equations (136) by means of (109), we can now, by means of (110), obtain

$$
\left.\begin{array}{l}
\left.\left(R_{e v} P_{1}^{-e v}\right)^{\frac{1}{n}}=\left(A_{e v} A_{1}^{-e v}\right)\left(P_{e r m} P_{m}^{-e v}\right)^{\frac{m}{7}} \ldots\right\} \tag{137}\\
\left(R_{c e v} R_{c}^{-e v}\right)^{\frac{1}{n}}=\left(A_{c e v} A_{c}^{-e v}\right)\left(P_{c e r n} P_{c m}^{-e v}\right)^{\frac{m_{t}}{n}} \ldots
\end{array}\right\}
$$

where w^{6} represents any one of the primitive $n^{\text {th }}$ roots of unity. Because $\left(P_{\text {ecm }} P_{m}^{-e v}\right)^{\frac{12}{n}}$ and other such expressions have been shown to be rational functions of the primitive $n^{\text {th }}$ root of unity, the two equations (137) correspond respectively to (3) and (5). Finally, should z be a multiple of n, it may be taken to be zero. Then the equation corresponding to (3) is

$$
R_{z}^{\frac{1}{n}}=q_{1} R^{\frac{1}{n}}
$$

q_{1} being a rational function of w. Or^{r}, since $z=0$,

$$
R_{0}^{\frac{1}{6}}=q_{1}
$$

But $R_{0}^{\frac{1}{6}}$ is rational. Therefore q_{1} is rational. Hence, if q_{e} be what q_{1} becomes in passing from w to $w^{e}, q_{e}=q_{1}$. Also $R_{e z}^{\frac{1}{6}}=R_{0}^{\frac{1}{6}}=q_{e}$. Therefore, since $R_{e}^{\frac{1}{6}}=1$,

$$
R_{e z}^{\frac{1}{e}}=q_{e} R_{e}^{\frac{n}{e}},
$$

which is the equation corresponding to (5). Therefore, whatever z be, the equation (5) subsists along with (3). Hence, by the Criterion in §10, the expression (105) is the root of a pure uni-serial Abelian equation of the $n^{\text {th }}$ degree.

Solvable Inreduchin Equations of Prme Degrers.

§58. Let $f(x)=0$ be a solvable irreducible equation of the prine degree n. Even if it be not a pure Abelian, the necessary and sufficient forms of its roots can, by means of the problems solved above, be determined in all cuses in which n is either the continued product of " number of distinct primes or four times the continued product of a number of distinet odd primes.
§59. It is known that the root of the equation is of the form where l_{i} is rational ; and ${ }^{k+l_{1}^{\frac{1}{1}}+l_{2}^{\frac{1}{4}}+\ldots+R_{n-1}^{\frac{1}{3}}, ~}$

$$
\begin{equation*}
l_{1}, I_{2}, \ldots, R_{n-1} \tag{138}
\end{equation*}
$$

are the roots of an equation of the $n^{\text {th }}$ degree, that is, of an equation with rational coefficients. Let this equation be $\phi(x)=0$. The root of the equation $f(x)=0$ may also be expressed in the form

$$
\begin{equation*}
l_{1}+R_{1}^{\frac{1}{n}}+a_{1} R_{1}^{\frac{3}{n}}+l_{1} l_{1}^{\frac{\pi}{n}}+\ldots+c_{1} R_{1}^{\frac{\pi}{n}} \tag{140}
\end{equation*}
$$

where a_{1}, b_{1}, etc., are rational functions of R_{1}. The separate mombers of the expression (140) are severally equal to those of the expression (138); that is,

$$
\begin{equation*}
R_{3}^{\frac{1}{2}}=a_{1} R_{1}^{\frac{2}{n}}, R_{3}^{\frac{1}{n}}=b_{1} R_{1}^{\frac{3}{n}}, \ldots, R_{n-1}^{\frac{1}{n}}=c_{1} R_{1}^{m-1} \tag{141}
\end{equation*}
$$

Therefore $R_{2}=a_{1}^{n}$. Hence, since a_{1} is a rational function of R_{1}, R_{2} is a rational function of R_{1}. The expression R_{1} is thus the root of a pure Abelinn equation, which, moreover, is known to be capable of having its roots arranged in a single circulating series, and therefore to be what we have called a pure uni-serial Abelian. A quotation from a remarkable memoir which was presented in 1853 by Herr Leopold Kronecker to the Academy of Berlin, and of which a translation is given in Serret's Cours d'Algèbre Supéricure (Vol. II, p. 654, 3d edition), will show how the case stands. In Kronecker's memoir μ indicates the degree of the equation, and is therefore our n, while A, B, C, ete., are quantities involved rationally in the coefficients of the equation $f(x)=0$. Having given, after Abel, what are substantiaily the two forms (138) and (140), Kronecker adds: "Il est bien vrai que toute fonction algébrique, satisfaisant au problème proposé, doit pouvoir se mettre sous ces deux formes; mais ces formes sont encore trop génírales, c'est-ì-dire qu'elles renferment des fonctions algébriques qui ne répondent pas à la question. Je les ai donc étudiées de plus près, et j'ai trouvé d'abord que parmi les fonctions renfermées dans la forme (2)" [the
same as (138)] "celles qui satisfont au problème proposé doivent avoir la propriété nonseulment que les fonctions symétriques de R_{1}, R_{2}, etc., soient rationnelles en A, B, C, etc. (ce qu'Abel a remarqué), mais aussi que les fonctions cycliques des quantités R_{1}, R_{2}, etc., prises dans un certain ordre, soient également rationnclles en A, B, C, etc.; en d'autres termes, l'équation de degré $\mu-1$, dont R_{1}, R_{2}, etc., sont les racines, doit être une équation abélienne. J'entendrai toujours ici par équations abéliennes cette classe particulière d'équations résoluble qu'Abel a considérées dans le Memoire XI du premier volume des EEuvres complètes, et dont je supposerai les coefficients fonctions rationnelles de A, B, C, etc. En désignant par $x_{1}, x_{2}, \ldots, x_{n}$, des racines prises dans un ordre déterminé, ces équations peuvent être définies soit en disant que les fonctions cycliques des racines sont rationnelles en A, B, C, etc., soit en disant qu'on a les rela-
tions, $\quad x_{2}=\theta\left(x_{1}\right), x_{3}=\theta\left(x_{2}\right), \ldots, x_{n}=\theta\left(x_{n-1}\right), x_{1}=\theta x_{n}$,
où $\theta(x)$ est une fonction entière de x dont les coefficients sont rationnels en A, B, C, etc." In saying that the $\mu-1$ (or, in our notation, the $n-1$) terms, R_{1}, R_{2}, etc., are the roots of an Abelian equation, Kronecker must be understood to assume that the equation $\phi(x)=0$, which has the terms in (139) for its roots, is irreducible. As a matter of fact, in the most general case, which includes all the others, the equation $\phi(x)=0$ is irreducible. But in particular cases it may be reducible, and then it is not an Abelian. In a paper by the present writer, entitled "Principles of the Solution of Equations of the Higher Degrees," which appeared in this Journal (Vol. VI, No. 1), it was proved that when the equation $\phi(x)=0$ is reducible, it can be broken into a number of irreducible equations,

$$
\psi_{1}(x)=0, \psi_{2}(x)=0, \ldots, \psi_{z}(x)=0
$$

each a pure uni-serial Abelian. Hence, for a detailed discussion of the problem we have now before us, we should require to deal not only with the general case in which the equation $\phi(x)=0$ is irreducible, but also with the several. cases in which equations such as $\psi_{1}(x)=0, \psi_{2}(x)=0$, etc., can be formed. But since, as has been stated above, the particular cases are included in the general, we shall confine ourselves to the problem of the necessary and sufficient forms of the roots of the solvable irreducible equation $f(x)=0$ of degree n, when the subordinate equation $\phi(x)=0$ of degree $n-1$ is irreducible, and is therefore a pure uni-serial Abelian; it being understood that $n-1$ is either the continued product of a number of distinct primes, or four times the continued product of a number of distinct odd primes.

Form of the Root.

§60. The solutions of the problems investigated in the preceding part of the paper have furnished us with the necessary and sufficient form of the root of the pure uni-serial Abelian equation $\phi(x)=0$ of degree $u-1$. Let this be r_{1}. Let

$$
\begin{equation*}
w, w^{\lambda}, w^{\lambda 2}, \ldots \ldots, w^{\lambda^{n-2}} \tag{142}
\end{equation*}
$$

be a cycle containing all the primitive $n^{\text {th }}$ roots of unity. We may assume that λ is less than n. Let

$$
\begin{equation*}
1, \lambda, \alpha, \beta, \ldots, \delta, \varepsilon, \theta \tag{143}
\end{equation*}
$$

be the indices of the powers of w in (143); that is, $\alpha=\lambda^{2}, \beta=\lambda^{3}$, and so on. The $n-1$ roots of the equation $\phi(x)=0$ can be arranged in a single circulating series. Let them, so arranged, be

$$
\begin{equation*}
r_{1}, r_{\lambda}, r_{a}, \ldots, r_{c}, r_{\theta} \tag{144}
\end{equation*}
$$

It will be found that the terms $R_{1}^{\frac{1}{4}}, R_{2}^{\frac{1}{n}}$, etc., in (138), which are the same, in a certain order, as $R_{1}^{\frac{1}{1}}, R_{\lambda}^{\frac{1}{n}}, R_{a}^{\frac{1}{n}}$, etc., with multiples of n rejected from the subscripts, are given by the equations

In (145) the subscripts of the factors of the expression for $R_{1}^{\frac{1}{1}} A_{1}^{-1}$ are the terms in (143), while the indices are the terms in (143) in reverse order. Because the series (144) circulates, R_{λ} is formed from R_{1} by changing r_{1} into r_{λ}, and, through the same change, $R_{\mathrm{\lambda}}$ becomes R_{a}, and so on.

Necessity of the above Forms.

§61. Here, assuming that the root of a solvable irreducible equation of degree n is expressible as in (138), we have to show that $R_{1}^{\frac{1}{1}}, R_{2}^{\frac{1}{n}}$, etc., have the forms (145).
§62. In (138) $R_{1}^{\frac{1}{n}}$ is an $n^{\text {th }}$ root of R_{1}, one of the roots of a pure uniserial Abelian equation $\phi(x)=0$, the series of whose roots is contained in (139). But
R_{1} may be any one of the roots. This implies that if the roots, in the order in which they circulate, are

$$
R_{1}, R_{\lambda}, R_{a}, \ldots, R_{\delta}, R_{e}, R_{\theta}
$$

the change of $R_{1}^{\frac{1}{4}}$ in the system of equations (141) into $R_{\lambda}^{\frac{1}{14}}$ will cause $R_{\lambda}^{\frac{1}{n}}$ to become $R_{a}^{\frac{1}{a}}$, and $R_{a}^{\frac{1}{n}}$ to become $R_{\beta}^{\frac{1}{n}}$, and so on. In fact, by exactly the same reasoning as that used in establishing the Criterion of pure uni-serial Abelianism, it can be made to appear that the n values of the expression (138) or of (140) obtained by taking the n values of $R_{1}^{\frac{1}{n}}$ for a given value of R_{1}, and taking at the same time the appropriate values of $R_{2}^{\frac{1}{n}}, R_{3}^{\frac{1}{n}}$, etc., as determined by the equations (141), would not be the roots of an equation of the $n^{\text {th }}$ degree with rational coefficients unless $R_{\lambda}^{\frac{1}{n}}$ could replace $R_{1}^{\frac{1}{n}}$ in the manner above indicated. In like manner, by changing $R_{1}^{\frac{1}{n}}$ in the system of equations (141) into $R_{a}^{\frac{1}{a}}, R_{\lambda}^{\frac{1}{4}}$ becomes $R_{\beta}^{\frac{1}{n}}$, and so on. The principle can be extended to all the terms in the series

$$
\begin{equation*}
R_{1}^{\frac{1}{1}}, R_{\lambda}^{\frac{1}{n}}, R_{a}^{\frac{1}{n}}, \ldots, R_{a}^{\frac{1}{4}}, R_{\theta}^{\frac{1}{n}} \tag{146}
\end{equation*}
$$

$\S 63$. Let, then, the system of equations (141) be written

$$
\begin{equation*}
R_{e \lambda}^{\frac{1}{n}}=a_{e}^{\prime} R_{e}^{\frac{\lambda}{i}}, R_{e a}^{\frac{1}{a}}=b_{e}^{\prime} R_{e}^{a}, \text { etc. } \tag{147}
\end{equation*}
$$

e being a general symbol under which all the terms in the series (143) are contained, while $a_{e}^{\prime}, b_{e}^{\prime}$, etc., are rational functions of R_{e}. These equations give us

$$
\left(R_{e}^{\theta} R_{e \lambda}^{e} R_{e a}^{b} \ldots R_{e \delta}^{\alpha} R_{e c}^{\lambda} R_{e \theta}\right)^{\frac{1}{n}}=G_{e} R_{e}^{\frac{1}{n}},
$$

where G_{0} is a rational function of R_{0}, and

$$
t=\theta+\varepsilon \lambda+\delta \alpha+\ldots+\theta=(n-1) \theta=(n-1) \lambda^{n-2} .
$$

Because λ is a prime root of $n,(n-1) \lambda^{n-2}$ is prime to n. Therefore t is prime to n. Therefore whole numbers h and k exist such that

$$
h t=k n+1
$$

Therefore
For every integral value of z, let $\left(R_{e z}^{h}\right)^{\frac{1}{4}}$ be written $r_{e z}^{\frac{1}{n}}$. Then, putting $A_{e^{-1}}$ for $G_{d}^{h} R_{e}^{k}$,

$$
\begin{equation*}
R_{e}^{\frac{1}{a}}=A_{e}\left(r_{e}^{\theta} r_{e \lambda}^{e} r_{e a}^{b} \ldots r_{s}^{s} r_{e}^{\lambda} r_{\theta}\right)^{\frac{1}{n}} \tag{148}
\end{equation*}
$$

Because $r_{e z}$ is simply another way of writing $R_{e z}^{h}$, and the terms R_{1}, R_{λ}, etc., are the roots of a pure uni-serial Abelian, it follows that r_{1}, r_{λ}, ete., have the forms of the roots of a pure uni-serial Abelian. By putting e, then, in (148) successively equal to $1, \lambda, \alpha, \ldots, \theta$, the $n-1$ terms in (146) are obtained with the forms assigned to them in (145).

Sufficiency of the Forms.

§64. We here assume that the terms forming the series (146) are taken as in (145), and we have to show that the expression (140) is the root of a solvable irreducible equation of the $n^{\text {th }}$ degree; provided always that the equation of the $n^{\text {th }}$ degree, of which it is a root, is irredueible. Because the terms forming the series (146) are laken as in (145), the system of equations (147) subsists. Therefore, by a course of reasoning precisely similar to that used in an earlier part of the paper to show that the n values of the expression (2), obtained by giving s successively the va? $0,1,2, \ldots, n-1$, are the roots of an equation of the $n^{\text {th }}$ degree, it can)e shown that the n values of the expression (140), obtained by taking the n values of $R_{1}^{\frac{1}{n}}$ for a given value of R_{1}, are the roots of an equation of the $n^{\text {th }}$ degree, that is, of an equation of the $n^{\text {th }}$ degree with rational coefficients.

$$
\nabla
$$

