THE JOURNAL

OF THE

B0ARD OF ARTS AND MANUFACTURES

TOR

UPPER CANADA.

EDITED BY HENRY YOULE HIND, ESQ., M:A., F.R.G.S. (piofessol of ciemistry and abology in tie unitensity of teintty college.)

TORONTO:

PRINTED FOR THE BOARD OF ARTS AND MANUFACTURES FOR UPPER CANADA, BY W. O. CHEWETT \& CO., KING STREET EAST.

BOARD OF ARTS AND MANUFACTURES FOR UPPER CANADA,

FOR TIIE T゙EAR 186民.

Jix-OFFICIO MEMBERS.

The Minister of Agriculture, The Chief Superintendent of Education for Upper Canada, The Professors and Lecturers on the various branches of Physical Science, in the Chartered Universities and Colleges of Upper Canada, The Presidents of Incorporated Mechanics' Institutes in Upper Canada, The Presidents of Incorporated Arts Associations in Upper Canada, The Presidents of Boards of Trade in Upper Canada.

deLegates from incorporated mechanics' institutes.

Dundis. . . James Sommerville and George Bickle.
Hanmuton. . Dr. Craigie, Thos. Hilton, Alex. Stuart, Sam. Sharp, Richard Bull, and James Cummings. Tononto... John Paterson, Patrick Frecland, Wm. Edwards, W. H. Sheppard, John McBean, E. Langley, A. Bruncl, H. E. Clarle, W. S. Lee and R. J. Grifith.

OFFICE BEARERS.

INDEX.

Board of Arts, \&c.:

Draft of Memorial respecting Renewal of Grants to Mechanics' Institutes 105
Draft of Memorial respecting Amendments to the Patent Laws 134
Agricultural Association of Upper Canada 297
Draft of Rules and Regulations of the Ag- ricultural Association of Upper Canada 299
Boiler, Safe working pressure of 248
Boiler Explosions, prevention of 190
Books, Notices of (see Notices of Books) 361
Books added to the Free Library of Reference
B. A. U. C. ... 14, 51, 114, 134, 171, 265, 301, 361
Boring and Winding Machinery 250
British Railway Statistics 32
" Mercantile Steam Fleet 37
" Publications ... 19, 52, 80, 120, 139, 171, 211285, 266, 301, 334, 362
" Patent Laws 150
" Museum 192
" Nary 70
" Ships and British Seamen. 94
" Association for Advancement of Science.. 355
" America, Resources of 358
Brunswick, New, Mineral Resources of 286
.. " Census of 274
Bruncl's Mishaps 281
" The 343
Canaba-Oil Springs of 89
" Economic Minerals of ... 167, 169, 200, 228
" Census of 273
" Copper Mining in. 374
Canadian Manufactures, improvement in 36
" Rock Oil, Analysis of 223
" Industry and Trade. 331
" Early Industry 353 :
Canadian Patents..... 16, 48, 75, 153, 208, 269, 335
" Patent Laws-Result of the PresentCondition of173
" Inventions, Recent 206
" Coppor 191
cs Mincrals at the Great Exhibition 282
© Flax Mill 82
، Lands, Sale of in 1801 237
" Mines and Minerals 237
" Copper Mining on Lake Huroll 239
" Mica 254

PAGE.
Canal, Ship, across the Isthmas of Darien 91
Candles, Improvements in 91
Candle Manufactory, description of the operations 154
Cattle Show, International, 1862 92, 128
" in Buenos Ayres 96
Caution to Petroleum Refiners 332
Cement for Petroleum Stills 317
" for Leaky House-Roors 317
Census, Agricultural, of 1861 227
" of Canada 273
" of New Brunswick 274
Chloride of Lime, as an Insecticide 192
Charcoal, Revivification of Animal 192
" as a Disinfectant 127
" in Medicine 64
Circulars of the Board of Arts for U. C. 64
Clinkers, how to remove from Stoves 95
Coal Tar, to check Potatoe Disense 192
" of Michignn. 287
" 'Par made picturesque 285
" and British Industry 248
" Illaminating Oil from 284
" Albert, or Albertite 352
Cog Wheels superseded 254
Colour, the Art of 333
" Green, used in Confectionery 321
Coloured Materials, considered with reference to their application to internal design 220
Combustion, Spontaneous 222
Commerce and Trade of the Lakes 157
Cooling, Laws of. 87
Copper, Canadian 191
" Lake Superior 82
" Deleterious effects of 160
46 Mining in Canada 374
Coral Reefs, on the recent growth of 84
Cornish Engines 74
Correspondence, Actual \& Nominal Horse Power 78
" Montreal Mechanics' Institute 121

* W. Wagner 149
"، Toronto Mechanics' Institute. 371
" Agricultural Statistics 372
Cotton, Substitute for 224
Cupola Principle, Comper Cole's 224, 288
Delegates, Convention of 43
Dialysis, and its applioation to the Manufactur- ing Arts. 124
Dianium 92
Discovery, a new 222
Discoveries of 1861 188
" at Pompeii. 355
Disinfection, Atmospheric 70
Disinfectant, Charcoal as a 127
Donations to the Library of Referonce. 862
Drift of the Sea 160
Emwands, W., on the Warming of Buildings 267
Egge, Sex of.
PAGE.
ge, Sex of 192
Electoral Division Society 204
Electric Apparatus 205
" Gas Shell 181
" " Engine. 181
" Current, New kind of 188
" Light 191
" Clock 284
" Lamp for Miners 376
Electricity Generated by Evaporation 188
Engineers, Mr. Gladstone on 283
Enginecring Examples, the Brunels 343
English Patents, Abridged Specifications of.....16, 49
$76,115,151,172,209,236,268,303$
Ennisimilen, the Oil Wells of. 61
" the Flowing Wells of. 65, 272
Exilibition, Paovincial-
Local Committee for 1862 106
Prize List, Arts and Manufac. Departm't 106
Rules and Regulations of 140
Local Committee of 204
Approach of 205, 228
Entries for, Rules respecting 233
Notice of 289
Why was there not an Address. 290
Exhibition, Internationat-
Progress of 26
Building of 62
Machinery Department of 63
and Working Classes. 64
Rules for Distribution of Prizes at 75
a Supplementary Company. 75
Hardware in the 85
the International 129
Opening of. 161
the Western Annexe. 163
the Eastern Annexe 165
Photography at 167, 308
the Eastern Annexe. 195
the Western Annexe 196
The American Court at 198
Western and Eastern Annezes 229
The American Court 231
Canadian Timber at the 232
Jottings from 256
Best Grain at 256
Award of Medals to Britigh Americans 262
India Rubber Manufactures at 313
Eye, the, Photographed. 254
Factories and Factory Workers 253
Filtration of Air 187
" of Aoids. 808
Fire Insurance in London 96
Fisherilis of the Gulf 221
Fish Culture 275
Frsaer's Hollow Bricks 172
Flax Cultivation. 21, 55

PAGE.	Page
Flax, Dressing... 95	Inventions, Foreign 95
" Mill, a Canadian 32	Iron, the Allotropio state of 92
" Rowan's Machine for Scutching.............. 88	" Galvanizing Cast
Fleming's Farm or Railway Fence...... 207	" Architecture 97
Flour Barrels, Bad, Losses by 274	Crystalline Structure of 188
Foga, Thonas, his Improved Ballasting Car...... 73	Fleet of Great Britain............ 191
	Platcd Navy of France 224
" 2 New Motive 181	" Paint, Belgian 256
" on, (a Lecture)........................... 245, 311	
" the Indestructibility of 348	Japanning, Black 317
Fruit, How to Pack 95	" Tortoise-ehell 317
Fuel-saving Fireplace, Sheppard's 297	Japan Work, Painting............ 317
Fur Trade, the ... 324	Journal of the Board, Reduction in Subscrip. to. 859
Gas, on the Carburation of Illuminating........... 1	Keadne's Strapless Skate 208
" on the Manufacture of, from Petroleum...... 1	
" Illuminating, Price of 108	Lake Nyssa, Central Africa 315
* Illuminating from Petroleum 126	Lakes (Canadian) on the Trade of 91
" Carburretted, in London 221	" Commerce and Trado of....................... 157
" Coal, on the Igniting Point of.................. 253	Lamp, Electric, for Miners.. 376
"، Petroleum 272, 321	Lathe, New 192
" Thomson's Patent Petroleum 361	Leather Cloth, the Manufacture of 183
Gases given off by Leaves 128	Lecture, Mechanics' Institute, Toronto, by Mr.
Geoffrey St. Hilaire 128	Lewis 337
Geology, Progress of.........73, 98, 131	Lectures on Spoctrum Analysis 174
Geological Discovery at Hastings 191	، on some of the Chemical Arts
Ginseng, why do we not Cultivate it ? 261	Lecture I................................ 211
Gladstone on Engincers 283	، II. 241, 277
Glazes for Cooking Utensils. 319	، III............................ 345
Glaisher, Mr., his Balloon Ascents. 355, 376	Library of Reference,
Gold in Nova Scotia and New Brunswick.. 93	for U. C...14, 51, 105, 114, 134, 171, 265, 301, 361
" in the Saskatchewan...... 93	Library, Donations to...... 362
" in Nova Scotia 185	Light......... 95
" of Nova Scotia, Age of...... 252	cs . Deleterious effect of, on Potatoes.
" Statistics of Australia 256	Lime Lig
Governor-General, Visit of, to the Toronto Mechanics' Institute \qquad	Looal Committee, Provincial Exbibition, 1862... 106
Grain, Best, at the World's Fair 256	
Grease and India Rubber 254	Great Exhibition...................... 282
Green Colour for Confectionery....................... 320	Locomotive-Martin's improved Superkeater
Gunpowder, New kind of.............................. 287	" Explosion of a......................... 69
Gutta Percha, Artificial Substitute for.............. 216 "، " Solution 317	
Gule of St. Latmence, the Fisheries of............ 291	Machinery for Printing Calicoes 189
" Anticosti 828	Man, Antiquity of \qquad 122
	Manufactures from Human Hair
Hamilton and Gore Mechanics' Institute 115	Manufactory of Candles......... 154
Heat Lightning 189	Manufacture of Leather Cloth 183
" Erolved by the Combustion of Carbon...... 288	Manufactures, Home versus Imported Articles... 193
Horticultural Curiosity. 192	"، in Montreal 273
Hot-water Circulating Apparatus.................... 264	Manufacture and Art
	Marble, to clean...... ...
India Rubber Manufactures at Great Exhibition.. 318	Marine Disasters.
"6 and Gutta Percha, Substitutes for. 216	Martin's improved Super-heater for Locom
Industry, Early Canadian 353	Matches, Lucifer....................... 94, 159
Inks, Receipts for 30	" 6 improved 190
Inundation of the Marshland Fens 317	Meats, Preservation of 286

PAGE.
Mechanics' Institutes-
Toronto 14
Draft of Memorial respecting 105
Hamilton and Gore. 115
Toronto 143
Toronto 204
Whitby 205
Quarterly Meeting of Toronto 266
Fortnightly Meetings at 267
Address of the Toronto to the Gov. General 802
" Hamilton 803
Toronto, and Evening Classes 303
Toronto, Mr. Lewis' Lecture 337
Mechanical Power of the Tides 319
Medals awarded to Brit. Americans, In.Ex., 1862 262
Metal, valuable Substitute for 221
Metals, cohesive strength of 224
Meteorological Register for 1855 to 1861 inclus. 288
Metcorology-The Season of 1862 257
Mrchian Salt Works 309
Michigan Coal Field 287
Microscopic Writing 224
Minerale, Canadian-
Building Stones, Dolomites, Labradorite, Gneiss, Syenite, Granite 168
Limetones, Serpentines, Slates, Flagstones, Lime, Bricks and Drain Tiles 200
Copper, Lead, Gold, Peat, Miscellaneous. 226
Lithographic Stone 228
Mineral Oils and their uses 223
Mincral Resources of Canada; the use we make of them 225
" " of New Brunswick. 286
Mint, British, Coinage of 288
Mitoreec's Patent Type-Composing and Distri- buting Machine 248
Montreal, Commerce of. 91, 128
Manufactures of. 273
Moodie's Rotary Interest Indicator 172
Miount Cenis Works 104, 256
McNaugaten, Report of, to the Board of Arts and Manufactures for Upper Canada. 112, 130
Naphthometer, Smith \& Jones' 210
Newspapers, British 31
North-West Territort-The Fur Trade 324
" " English, Emigration Co 333
Notiess of Books-

1. The Pbysical Geagrayby of the Sea, by Lieat. Maury 17
2. The Works of Francis Bacon 19
3. Chemistry, Theoretical, Practical and Analytical, by Dr. Sheridan Muspratt 81
4. Appleton's Dictionary of Machines, \&cc 81
5. The Art of Illuminating 235
6. A Treatise on the Steam Engine 236
7. The Practical Mechanic's Journal 236
PAGE.
8. Practical Mechanic's Journal, Record of the Great Exhibition of 1862 236
9. The Annual Retrospect of Engineering 30 302
10. Ventilation and Warming of Buildings.. 237
Nova Scotia, Gold Fields of 28, 90
" Gold in 185
0'Hara's Light-draft Propeller 206
Oil, Rock, of Enniskillen 61
" Springs of America and Canada. 89
" Region of America 96
" in Shropshire 169
" Region of Pennsylvania 224
" Association, the Canadian 270
" Native Canadian Company 271
" from Coal 284
"Oil Springs Chronicle," Oil Springs 305
Oils, Specific Gravity of 352
Ordeal Root 128
Oriainal Articles-
Standard Horse-power for Steam Engines. 36
The Flowing Wells of Enniskillen, and the importance of finding a Market for Canadian Petroleum in Europe 65
Tron Architecture 97
Home Manufactures vs. Imported Articles 193
The Use we make of our Mineral Resources 225
The Agricultaral Census of 1861 227
On the Cultivation of Wheat in Canada, and on the Season of 1862 257
The Provincial Exhibition 289
The Fisheries of the Gulf. 291
The Bending of Wood 293
Where a large portion of our Surplus Pro- duce goes. 295
Petroleum Gas 321
The North-West Territory-the Fur Trade 324
Gulf of St. Lawrence-Anticosti 329
Oyster Beds, Artificial, in Gulf of St. Lawrence. 237
Oysters, Artificial Production of. 334
Ozone 256
Paint, to Clean 95
Paper-making, Substitute for Rags in 122
Paper, Sensitive, Preserving 308
Parchment Paper 317
Patents of Inventiong, Rules and Regulations made by British Commissioners respecting... 11 117
Patent Laws, Canadian, Draft of Memorial of the Board of Arts respecting. 134
" " to Amend 152
Patent Laws, Britisk 150
Patents, Canadian 335
"، English, Abridged Specifications of....16, 49
76, 115, 151, 172, 209, 236, 268, 303
Paris Permanent Universal Exhibition 256
Pell, G. E., Report of. 9, 46
page.
?ernoleva, on the Carburation of Illuminating Gas by.

1
"s Maunfacture of Gas from 1
" Note on the Formation of.............. 4
" Historical and Scientific Facts res-
pecting 5
". . Its Uses.s.................................... 66
" Its Properties 158
" Cost of Shipping to Europe............ 209
" Shipments of 210

* Necessity for a Governm't Inspector 261
" Gas, Testimonial respecting........... 272
"6 Flowing Wells at Enniskillen......... 273
" its Comparative Illuminating Power 282
" Production of, in the United States. 285
"t the Price of Canadian.................. 296
" Gas, Stevenson House...... 304
" Stills, Cement for........................ 317
"6 McCrea's Circular 320
". Trade .. 320
" Gתs................................... 321, 361
"، Refiners, Caution to 332
" Thomson's Patent Gas................... 360
"، on Refining 374
Phenic Acid.................................... 223
Philurms' Patent Marine Drop 75
Phosphorous Allotropic, Condition of................ 92
Peotoarapiex-Side Light vs. Vertical Light...... 167
6 At International Exhibition. 167, 308
" Appreciated........................ ... 288
، its Uses 306
، of the Sun 274
، Disderi's Formulae................... 309
Phosphorescent Pork...................................... 320
Phosphorescence... 96
Photographio Lens 95
،6 Ware Baths 128
، Notes 308
Pickles, Method of Coloring Green without copper 288
Planks, to check the Warping of 192
Port Dover Woollen Factory..................... 71, 128
Potato Disease, Conl Tar to check 192
Prize List, Arts and Manufaotures Department, Provincial Exhibition, 1802 10
Prizes awarded, Provincial Eshibition, 1832 363
Produce, our Surplus, where a large portion of it goes ... 295
Progress, Commercial, of the Nineteenth Century 39 " of Geology.......................... 73, 98, 131
Projectiles, Modern... 160
Propeller, O'Hara's Light-draft......................... 206
Provincial Exitbition, Rules \& Regulat's...140, 233
" \quad " \quad Local Committee of. .106, 204

Publications, British. ... 19, 52, 80, 120, 139, 171, 211 $235,266,301,334,362$
Publications, American.....20, 53, 121, 172, 211, 235 $266,335,362$
Pump, Flood, Patent Double-actioned 71
Pump, a Cheap and Effective 251
Puraez's Hot-water Apparatus 265
Railway, British Statistics 32
Railvays of the World 63
Railway Experiment, Curious 253
" Subterranean 319
Report of Mr. G. E. Pell, Agent of the Board of Arts for U. C. 9,46
" of Sub-Committee of B. of Arts for U. C. 12
" of Mr. E. A. MoNaughton, Agent of the D. of Arts, \&c. 112, 135
Reviews-See Notices of Books.Royal Institution and its Lectures149
Rules and Regulations respecting English Patents 117
Rupert's Land, Institute of 145
Salt, production of in the \mathbb{U}. S. 288
" Michigan Vorks 309
Safcty Matches 159
Salines of the Vulley of the Kanawha 239
Science, Government aid to in England 157
Sea Water, Potabilization of by the Electric
Current 287
Sewers, Main, London. 320
Sheppard, W. H., on Feating and Ventilation of Buildings 267
" 6 Fuel Saving Fire Place 297
Silk, Resin spots from 317
Silvering Solution 319
" Glass 95
Solar System, on the Grological Phenomena of. 88
Spectrum Analysis, Lectures on 174
St. Nicholas Hotel, New York 360
Steam Engines, a standard horse power for 33
Steam Engine, permanency of 92
" on Common Roarls 94
" Boiler Explosions prevented 128
Steamers, New and Improved War 81
" Improvement in Screw 92
Steamships for the Montreal Ocean Steamship Co. 96
Steam-Hammer, a large 251
Steel for Fire Boxes 223
Stone, artificial 255
Suez Canal 254
Sulphurous Acid, test for 192
Sun, Mr. de la Rue's Photographs of 274
Superheater, Martin's improved 6
Telegraph, Russian Pacific 28
" Important Discovery respecting 31
" Recent Progress of the Magnetio 88
" Overland to India 90
" a New Atlantic 92

* Speed of Transmisaion in Cables 156

156
" the Atlantic Company 159

* the Red Sea.

159
" the Atlantic................................... 255
" Instrument, a new
256
"6 the Cape Race................... 280
" the Atlantic.
288
Temperature, effect of small elevations on the mean of the air 255
Thalleum 255
Timber, consumption of in Great Britain 192
Toronto Meghanics' Institute 14, 143, 204, 266 302, 303, 337, 371
Trade with Continental Europe 274
Underground Treasury 93
Vapours, Nozious, the Earl of Derky on 187
Ventilation and Warming of Buildings, Ruttan's336
Eebsels, Coles' Shield 288
Victoria, Auriferous Rocks of 64PAGE." the Colony of
Wagner, W., Communication from 149253Waterproof Cloth, Porous
Water Converted into Fire 318 160
" Purification of, for Photographic purposes 375
Weights safely borne by Columns 94
"* and Measures, uniform 190
Wells, Flowing, at Enniskillen 272
Wheat, on the cultivation of, in Canada. 257
Where a large portion of our Surplus Produce goes 295
Whitby Mechanics' Institnte 205
Whitewash, brilliant 286
Wood, the bending of 293
"f for Ship Building 93
Woods, Tables respecting 95
" Native, at the Great Exhibition 160
Woollen Factory-Port Dover 71, 128
Zinc, a Black Varnish for. 256

THE JOURNAL
 OF TILE

 FOR UPPER CANADA.

JANUART, 186R.

on the carburation of illuminating gas
 by purified petroleum; and on the manufacture of gas from the crude petroleum of canada and the u. s.

The importance of petroleum or rock oil, may be gathered from the following extract which we take from a circular by Mr. Alexander Macrae, oil and produce broker, of Liverpool, dated 16th December:-
"The introduction of petroleum, kerosine, photogenc, or rock and well oil, is making tremendous strides, though it does not surpass the prediction in my first circular; namely, that it would be second only in extent to cotton. I will even go a step further, and venture to assert that if the rocks and wells of Pennsylvinia, Canada, and other districts continue their exudation at the present rate of supply, the value of the trade in this oil may even equal American cotton. Nontreal (internally, and likely externally by this time) is lit with the white refined, and I can see no renson why London and Liverpool should not also be, for the oil gas distilled from the raw petroleum is immensoly superior and much more brilliant than our own coal gas. For years we have sent coals to America for gas works, and it will be a singular freak of events if she and Canada should now supply us with a better expedient. Invested interests will perhaps stay it for the moment, but will they ultimately?
"The refined for burning (known in this country as paraffin oil, and of which about 500 tuns a week are sold), has been selling at $£ 30$ to $£ 40$ per tun (of 252 gallons) for yellow to white, while the crude varies in value from $£ 6$ to $\mathfrak{L 2 5}$, according to test. The merits of the petroleum will be better understood Then importers are informed that beside the uses already named, lubricating oils of overy colour and specific gravity can be obtained from it; was also for the manufncture of paraffin candles, naptha, and consequently benzole (from which the fashionable dyes, magenta, rosenine, aniline, \&c., are obtained), pitch, \&c., \&c., all of them having several other applications. It is reported on the very best nuthority, that they have discovered from it now, an available substitute for spixits of turpentine for paints, and also a solvent for india-rubber, results, I understand, that they have not effected in America or Canadn, and the importance of which cannot be over estimated.
'In my first circular it was stated that some 7,000 barrels of crude and refined were on their way to this country, and the Times of the 13th instant, mentions 8,000 barrels on the way to London. There are 10,000 barrels coming to Liverpool, and 2,000 barrels to Glasgow, in all about 20,000 barrels (or $£ 100,000$ sterling, and the trade not six monthe old), a simple tithe of what wo want! American hostilities and the ice in the St. Lawrence (although we have still St. John's, New Brunswick) may stop supplies to some extent, but I have no doubt the future will vindicate the expectations I Lave so frequently expressed."

The London Engineer of recent date, says, that-
"A prospectus has been issued inviting subscriptions for an incrense of the capital of the Aspbaltum Company to $£ 200,000$, or double its original amount. The business of the company, which is respectably consti: tuted, is to work certain mines of asphaltum near Inavana, for the distillation of oil, which commands a ready sale in Eagland at apparently a very remunerative price. The outlay for the property in Havans has been $£ 68,000$, of which only $£ 18,000$ was in cash, the payment for the remainder being in shares, which are not to rank for dividend until ordianary holders have reccived 5 per cent. The purchase included Ω concession from the Spanish Government of the exclusive privilege of making oil from aspbaltum in Cuba and Porto Rico for fifteen years, and as the annual consumption of oil in Cuba is estimated at $£ 250,000$, this is considered waiurble. The directors, engineer, and mannger of the company are to be remunerated by a per centage on the profits."

The exportation of rock oil from Canada will probably affect the interests of this Company. Assoon as easy and chenp communication witir the petroleum springs of Enniskillen is effected the attention of English capitalists will no doubt be directed to the abundant supply of this material which exists in Canada. If the Graspé springs yield freely great advantages will accrue to that part of the province in consequence of its proximity to the seaboard.

One of the most recent and important applications of Petroleum is the carburation of gas, by its introduction into common coal gas, as ordinarily supplied to consumers. Subjoined is a brief description, from the Amcrican Gas-light Journal, of 'Gwynne's Gias Carbonizer.'

A hollow glohe, A, is introduced into the gas pipe before the burner. This globe is partly filled with naphtia, benzole, or other suitable liquid hydrocarbon, and the illuminating gas is brought into it at the top through the pipe B. The gas passes down through the hollow wick, C, into the liquid, and rising charged with vapour, passes out through the pipe, D, to the burner. The lower end
of the wich, \mathbf{C}, is supported by Ω float resting;upon the liquid, and thus fullows the suriface down as the liquid is consumed: The pipe, Dis rises above $^{\text {a }}$ the level of the filling tube, to prevent all danger of its over receiving any:liquid.

'HEYNNE'S GAS CARBONIZER.
The "company which manufactures this carbonizor guarantees a saving by its use of 33 per cent. in the gas bills, and the production of a better light than that of the city gas. Tue ibtentor says that an article of nhphtha is now obtained which is free fron any objéctioniable odour.
"The Roport of the Engineer to the Commis sioners of Semers of the city of London, on" "The Carburation of Gas." was referred by that body to Dr. Letheby. The testimong of this distinguished chemist on the mode ndopted in England for "carburating gns," is of groat falne
" The apparatus, cansints of a chamber for hold ing coal naphtha, and of a contrivance for direct Hing the strenml of fens) ofer :the sarfaceiof the raphtha.e Byithis meains the gas beoomes charged with volatile hydrucarbons, and, achaires o higher illuminnting power.
"Three sets of experiments were made for the purpose of determining the value of the apparad s:tus. In the first set ia naphthe (rich in benzole :uyas employed, and the resulte were, that at first it raiged the illuminating power of ordinary twelyecandle gas to twenty four candles, and in the courso
of three days the power fell to eighteen candles, the menn of the whole being twenty-one candles. This is an increase of 77 per cent., and it was effected by giving 10.77 grains of naphtha to ench cabic foot of gas.
"In both of the other sets of experiments an inferior kind of naphitha was used, and in one cnse the nverage increase of illuminating power, during a period:of ten days, and after the passage of a thousand cubic feet of ges, was 25 per cent. In the other case, after a duration of five days, the average increase: was 30 per cent. The former was effected by the addition of faur grains of naphtha, vapour to each cubic foot of gae and the latter by 656 graine:
"Thése data are sufficient' to indicate the general capabilities of the apparatus; for they show that , with a: good :naphtha, supplied in: proper qunntity, and furnishing from ten to eleven grains of vapour to each cubic foot of gas, the illumin. ating power of an inferior gas may be nearly doubled: A less volatile naphtha, giving only from four to seven grains of vapour per cubic foot, will incrense the power of twelve-candle gas from 25 to 30 per cent. I am, therefore, of opinion, that the apparatus is of practical value as a carburetting agent, and that if supplied with good naphtha, in proper quantity, there:will be no difficulty in sustaining a power of twenty candles with ordinary coal gas:"

Upon receiving this Report and: Appendix, the Commissioners of Sewers, resolved that it should be referred to the Engineer and Medical Officer of Health, to consider the conditions of the contracts for public lighting; having special reference to the increased illuminatiog power of the gas to be supplied, and to the possibility of carburating the gas by the process of the Carburating Company.

These gentlemen, Dr. Letheby and Mr. Hay wood, have now reported upon this subject in the following terme :-

Before considering the general conditions of a contract, it is necessary firstly to obtain the determination of your honourable Board to the lending principles upon which the contract sthould be framed, and it is to those we inow specially address ourselves. 1

4, Ae regards that portion of the reference. which relates to the posible reduction of the consumption of gas in the street lamps, wo are of opibion that, if thé carburating prodess is not' applied, the incrëase of the :illuminuting power ; proposed by the Metrepolitan:GasiAct:of 1861; dues:not:render it expedient to diminish; the amount of gis to be supplied at the burners, of the public lapps; and that the contract sbould therefure remain as beretófore in this respect, unless the Coftrounies alter the "quality of thé présent" supply, aid 'fürnish Cannel gis to the phbliculamps : us the Act: of Parliament empowers them to do unders whith circumatances it will be pecessary to readjust the contract and mode of supply agcordingly.
"With regard to the carburatiog process, we are of opinion, from the data obtained by the laboritory esperiments quoted in the report to the Commission of the 30 ch - $\mathrm{July} \mathrm{l}_{\text {last; }}$ and the experi-
ments made on the public lamps in Moorgate Street, during the monthe of June nnd July last, that the process of carburation appeare to be capable of econumising the use of gas in the public lamps, to the extent of from 40 to 50 per cent. This conclusion is founded on the assumption that the best quality of naphtha is to be used, namely, in naphtha which will give to the gas continuously a'proportion of about ten grnin's of volatile bydrocarbon to each clabic fiot of gas: these being the arerage resiltes of thé laboratory experimeota. If an inferior kind of aplitha be employed, the resulte will be less satiefuctory; for the laboratory experiments shoir that a naphtha yielding four grains of volatite hydrocarbon will increase the filuminnting power of the gas to only about from 15 to 20 per cent.
"It is manifest, therefore, that the praction efficaey of these results will be entirely dependent on the perfection of the apparatus and the quality of the naphtha, and we are of npinion that these essential conditions can only be secured during the earlier application of the process by an arrajgement with the Oarburating Compnny for the supply of the apparatus and the paphithr, as also for the maintenance of the same in complete work
ing order; according to the terms of a contract founded on the preceding data, namely, that a burver cofatuming three feet of the naphthalised ghis per hourishnill give continuously the light of a a burner consuming tive feet per hour of the same gas not naphthalised ; and to secure this, the naphtha should be of such quality as to furnish continuously not less than seven grains of volutile hydrocarbon to each ciibic foot of the gas. If the Cumpany is willing to undertake such a contract upon suitable terms, we see no dificulty in the praction application of the system.
"If these suggestions are adopted, it will be necessary to contruct both with the Gas Com panies and the Carburating Company; the terms under such contracts, which shotid have due relation to each other, zust be a matter for future consideration.".
The most recent, and perhaps the most important application of the crude petroleum of this continent to the parposes of practical life is its use for the manufacture of illuminating gar. In various patte of the United States this product has already bền applied with success for the above

purpose, and recently in Toronto, Mr. James Thomson announced that he bad succeeded in making gas of very superior cquality, andiat a very low rate, by using the portable rosin oil gas works similar to those figured on the preceding page. No alteration in form is oeeded, and the petroleum is used quite in the crude state.
These improved portable gas works are manufactured by Mr. Thomson, at his establishment on King Street, Toronto, and are furnished by him complete, with gasometers, which govern the price of the worke, of a cupacity of one hundred cubic feet to that of one thousard or more. A gasometer of the first-named cubical contents requires one retort; of 600 cubic feet capacity, two retorts, and of 1000 cubic feet capacity, three retorts.

The apparatus is very simple and consists of retort, wash-box or condenser, gas-holder and tank, which are common to all gas-works; but one of the greatest difficulties encountered by inexperienced persons, has been freeing the retorts from in in. crustation of carbon which accumulates during the operation of making gas. By the old process, this cleaning was done when the retorts were cold, and the scale adherod firmly to the bottom and sides, requiring the aid of a bar of iron to remove it. Mr. Thomson's improvement obviates this diff. culty; for by simply raising the cover of the retort, which is set in a groove of fusible alloy, and admitting n current of atmospheric air, the carbonaceous matter is consumed and passess off through a pipe connected with the flue, carrying with it all the smell and smoke; this is dune when the retort is hot, and the cleaning process occupies but a few minutes, leaving the retort in a condition to continue the operation of making gas if required.

The apparatus employed for the manufacture of gas from rosin, oil, \&c., has been so successfully used for making itfrom crude petroleun, without the slightest change in the arrangement for supplying the retorts with the material, and without any difficulties arising from impurities as yet observed, that we have no doubt the application of this abundant material for illuminating and other purposes, is fraught with very important consequences to those parts of the cauntry where petroleum abounds, and to all interests dependent upon the manufacture and use of the products which may be obtained from it.

The illuminating power of petroleum gas is much greater than that of common coal gas, and the expense of production amounts to about onethird, but with regard to this important question we shall hare more to say in a future number.

All information with respect to price of the portable gas works, will be furnisked by Mr. Jar. E. Thomson, 109 King Street West, Toronto.

NOTE ON THE FORMATION OF PETROLEUM AND ALLIED SUBSTANCES FROM WOODY Fibre or animal tissue.*
We have stated in the preceding paper that the different mineral combustibles bave been derived from the transformations of vegetable matters, or in some cases of animal tissues analagons to these in composition. The composition of woody fibre or cellulose, in its purest state, may be represented by $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{O}_{20}$, or as a compound of the elements of water with carbon: the incrusting matter of vegetable cells, to which the name of lignine has been given, contains however a less proportion of oxygen and more carbon and hydrogen than cellulose, so that the mean composition of recent woods, as deduced from numerous analsses of various kinds, may be represented by $\mathrm{C}_{24} \mathrm{II}_{18.4} \mathrm{O}_{16.4}$. We may conceive of four different modes of transformation of woody fibre, all of which probnbly intervene to a greater or less degree in the production of mineral combustibles; and in considering these changes we shall for greater simplicity adopt for the composition of woody fibre the first named formula, $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{O}_{20}$.
I. When wood is exposed to the action of moist air, oxygen is absorbed, and carbonic acid and water are evolved in the proportion of one equivalent of the first for two of the last. We may suppose that for H_{2} which is ozydised by O_{g} from the air, the wood loses CO_{2}, so that while the carbon increases in amount the proportions of oxygen and hydrogen are unchanged. In this way an equivalent of cellulose, by absorbing sixteen equivalents of oxygen and losing eight of carbonic acid, $\left(8 \mathrm{CO}_{2}\right)$ and sisteen of water, (16 HO) would leave $\mathrm{C}_{16} \mathrm{H}_{4} \mathrm{O}_{4}$. Such is the nature of the decay of wood whea exposed to the air, and the process, could it be carried out, mould leave a residue of carbon only. If however the wood is deeply buried and excluded from the oxygen of the air two reactions are conceivable.
II. The whole of the oxygen of the wood may be given off in the form of carbonic acid, while the hydrogen remains with the residual earboo. The abstraction of ten equivalents of carbonic acid from one of woody fibre, would leave a hydrocarbon, $\mathrm{C}_{14} \mathrm{H}_{20}$.
III. Instead of combining exclusively with the carbon, a part of the oxygen of the wood may be set free as water, in combination of the hydrogen. The abstraction from an equivalent of woody tibre of four equivalents of carbonic acid and twelve of water would leave a hydrocarbon $\mathrm{C}_{20} \mathrm{H}_{8}$.
IV. These decompositions are however never so simple as we have supposed in II. and III., for a portion of hydrogen is at the same time evolved in combination with carbon, chiefly as marsh gas, $\mathrm{C}_{2} \mathrm{H}_{4}$. The amount of this gas evolved from decaying plants subnerged in water, and the in. mense quantities of it condensed in coal beds and other rocky strata, (forming fire damp) shew the great extent to which this mode of decomposition prevails.

In nature these various modes of decomposition ofton go on together, or intervene at different stages in the decomposition of the same mass;
*. By Dr. Sterry Hunt, in a paper commnnicated by that gantloman to the "Canadian Naturalist and Qeologist."
they are besides seldom so complete as we have represented them. The first process results in the formation of vegetable muuld, which always retains portions of carbon and hydrogen; while the incomplete operation of the processes II., III. and 14. gives rise to peat, lignite, brown coal, bituminous coal, and pyroschists, in all of which the proportion of the oxygen is much less than the hydrogen, so that their composition may be approximately represented by mixtures of hydrocarbons with vegetable fibre. The following results have been selected from a great number of anialyses by various chemists, and are for the most part taken from Bischof's Ohemical Geology, (Vol. i. cap 15.) The nitrogen, which in most cases was included with the oxygen in the analysis, has been disregarded, and the oxygen and hydrogen, for the sake of comparison, have been calculated for twenty-four equivalents of carbon:-
. Vegetable fibre or cellulose...... $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{O}_{20}$
2. Wood, mean composition......... $\mathrm{O}_{21}^{24} \mathrm{H}_{18 \cdot 1} \mathrm{O}_{\mathrm{TG} \cdot 1}$
. Peat (Vaux) $\mathrm{O}_{24}^{-1} \mathrm{H}_{14.4} \mathrm{O}_{10}$
. Do. (Regnault)........................... 24 $_{24} \mathrm{H}_{14.4}^{14.4} \mathrm{O}_{9 \cdot 6}^{10}$
5. Brown coal (Schrötter)........... $\mathrm{C}_{24} \mathrm{H}_{14 \cdot 3}^{1 / \mathrm{O}_{10 \cdot 5}^{2}}$
6. do. do. (Woskresensky) ... $\mathrm{C}_{24}^{24} \mathrm{H}_{13}^{1 / 3} \mathrm{O}_{76}$
7. Lignite (Vaux).................... $\mathrm{C}_{24} \mathrm{H}_{11 \cdot 3} \mathrm{O}_{6 \cdot 4}$
. do passing into mineral re-
\sin (Regnaulc)....................... $\mathrm{C}_{24} \mathrm{HI}_{15} \mathrm{O}_{3 \cdot 3}$
9. Bituminous coal (Regrault).... $\mathrm{C}_{34} \mathrm{H}_{1,} \mathrm{O}_{3 \cdot 3}$
10. do. do. do. $\quad \ldots \ldots . \mathrm{C}_{24} \mathrm{HH}_{10} \mathrm{O}_{1.7}$
$\begin{array}{lllll}11 . & \text { do. } & \text { do. do. } & \ldots \ldots . . \mathrm{C}_{24} \mathrm{H}_{8}^{10} \mathrm{H}_{1 \cdot 7} \\ 12 . & \text { do. } & \text { do. do. } & \ldots \ldots . \mathrm{O}_{24} \mathrm{H}_{8} \mathrm{O}_{\mathrm{a} \cdot 9}\end{array}$
Griiger).............................. $\mathrm{C}_{24} \mathrm{II}_{7 \cdot 1} \mathrm{O}_{1 \cdot 3}$ do. do., mean composi-
tion (Johnston) $\ldots \ldots \ldots \ldots \ldots \ldots \mathrm{C}_{21} \mathrm{H}_{9} \mathrm{O}_{2}-\mathrm{O}_{4}$
25. Albert cual (Wetherell)........... $\mathrm{C}_{24} \mathrm{HI}_{15 \cdot 9} \mathrm{O}_{1 \cdot 6}$
16. Asphalt Auvergne.................. $\mathrm{C}_{24} \mathrm{II}_{17 \cdot 7} \mathrm{O}_{2 \cdot 2}$
17. do. Naples..................... $\mathrm{C}_{24}^{2 \mathrm{II}_{14 \cdot 6} \mathrm{O}_{2}}$
18. do. Bastennes $\mathrm{O}_{24} \mathrm{H}_{16} \mathrm{U}_{0.7}$
10. Elastic bitumen, Derbyshire,
(Johnston) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \mathrm{C}_{2}, \mathrm{H}_{2} \mathrm{O}_{0} \cdot 3$
20. litumen of Idria....................... $\mathrm{O}_{24}^{24} \mathrm{H}_{3}^{2}$
21. Petroleum and naphtha........... $\mathrm{C}_{24}^{24} \mathrm{II}_{24}^{3}$

In the above table we see the transition from peat and brown coal to lignite, and thence to bituminous coal. Professor Johnston, from his esperiments in various coals, including cannel from Wigan, splint coal from Workington, and caking coal from Newcastle, deduced the composition given in 14 , in which with $\mathrm{C}_{2} \mathrm{H}_{9}$ the oxygen varies from two to four equivalents. It will be seen from a comparison of the infusible Alber coal with the bitumens 16,17 and 18 , how gradual is the transitions to the true petroleums aud naphthas, from which oxygen is absent. The asphalts also, as will be observed, differ very much in their composition, and though generally much richer in hydrogen than the bituminous coals, the rariety from Naples, (17) which is completely fusible nt $140^{\circ} \mathrm{C}$., contains less hydrogen and more oxpgen than the Albert coal analysed by Wetherell ; while the idrialine or bitumen found with the mercury ores of Idria, approaches very nearly in composition to the bituminous coals 11,12 and 13 , with Which many asphalts may be said to be isomeric. It is however probable that those oxygenized bitumens, unlize the coals, are producte of tho oxydn.
tion of naphtha or petroleum, by a process similar to that by which resins are derived from vegetable hydrocarbons. These formulas must be taken as representiag not the true equivalents, bnt only the proportions of the elements in the bodies in question, which are in most cases mistures of varioud substance. This is especially true of naphtha, which may be taken as the representative of pure unozydised petroleum, and which is separated by distillation into oils of very different boiling points. The late analyses by Uelsmann of the rectified rock oil from Sehnde, near Inanover, gave the formula $\mathrm{C}_{19} \mathrm{H}_{20}$, and according to De la Rue and Muller the greater part of the Rangoon petroleum consists of hydrocarbons in which the number of equivalents of hydrogen is a little greater than the carbon; one gave $\mathrm{C}_{26} \mathrm{FH}_{28}$. Associated with these are however portions of bodies containing a less proportion of hydrogen, so that we may conceive the mean composition of petroleum to be represented, as in the preceding table, by equal equivalente of lydrogen and carbon; many forms of solid bitumen also, as ozokerite and hatchetine, have the same general composition.

By referring to what has been said above it will be seen thit the final result of the third process of decomposition of woody fibre, in which the air being excluded, the oxygen is shared between the carbon and hydrogen, would be $\mathrm{C}_{20} \mathrm{H}_{8}$. A similar result would be obtilined, with the simultaneous evolution of marsh gas, if we suppose $6 \mathrm{CO}_{2}+8 \mathrm{HO}+3 \mathrm{CH}_{2}$ to be removed from an equivalent of woody fibre, leaving $\mathrm{C}_{15} \mathrm{H}_{6}=\mathrm{C}_{20}$ $\mathrm{H}_{8}=\mathrm{C}_{24} \mathrm{H}_{9: 5}$, which approaches the composition of most bituminous coals and of idrialine. A farther elimination of marsh gas would leave a residue of pure carbon, and thus, as Bischof has suggested, vegetable matters may be converted into anthracite without the intervention of a high temperature.

The elimination of the whole of the oxygen in the form of carbonic acid would leave a compound with a large excess of hydrogen, of which it would be necessary to remove a portion in the form of water or marsh gas in order to reduce the residue to the composition of petroleum. We know of no combination of carbon and hydrogen in which the number of atoms of hydrogen surpasses by more than two, those of hydrogen, the general formula being CnIIn $+_{2}$, so that oils like $\mathrm{C}_{19} \mathrm{H}_{20}$ and C_{26} H_{28} contain nearly the maximum quantity of hydrogen, and a body like $\mathrm{C}_{14} \mathrm{H}_{20}$, whose formation we have supposed above, could not exist, but must break up into marsh gas and some less hydrogenous oil like petroleum.

We do not know the precise conditions which in certain strata favour the production of petroleum rather than of lignite or cual, but in the fermentation of sugar, to which we may compare the transformations of woody fibre, we find that under different conditions it may yield either alcohol and carbonic acid, or butyric and carbonic acids with hydrogen, and oven in certain modifed fermentations the acetic, lactio and propionic acids, and the higher alcohols, like $\mathrm{C}_{10} \mathrm{HI}_{12} \mathrm{O}_{2}$. These analogies furnish suggestions which may lead to a satisfuctory explanation of the peculiar transformation by which, in certain sedimentary strata, organic matters have been converted into bitumen.

MARTLN'S IMPROVED SUPERHEATER FOR LOCOMOTIVES.
In the Journal of the Board for the year 1861, we noticed the important invention of Mr. Martin, the Locomotive Superintendent of the Western Divisiou of the Grand Trunk Railway of Canada,
for economizing fuel in Locomotives. We have now the opportunity of illustrating this invention from stereotyped plates, which first appeared, we believe, in the Scientific American, with the si:bjoined descriptive notice from the same excellent Mechanical Juurnal.

In boiling water that portion is converted into stinm which is nearest to the fire, and ns the little al hes of steam rise on from the buttom of the briler through the water, they drive up a portion of whter, filling the steam space with spray. . As this water is carried into the cylinder it of course dios no work there, and thus all the fuel expended in heating it is wisted. To complete the evapora-
tion of this spray, the plan has heen adnpted of imparting to the steam an additional quantity of heat after it has left the water. This is called superhenting; it has attracted a great deal of attention, and many forms of mechanian baye been devised to accomplish it. 'The plan rehich we here illustrate is designed for locomotive engines only. It is now in use on several locomotives on the

Grand Trunk Railway of Canada, where it is said to have the most satisfactory success.

In the accompanying engravings Fig. 1 is a transverse section of a locomotive smoke bos, in which is placed the improved exhaust ehamber and steam surcharger, shown partly in elevation. Fig. 2 is a longitudinal section of the same.

Like letters refer to like parts in each of the figures.
A. A nee tubular chambers arranged within the smoke box, having a number of flues, J, opening at the bottom into the smoke box, and opening at the top into the large flues or pipes, B B. These pipes, B B are connected to the tubular chambers,

ns shown at S. Their upper ends are bent inwardly toward each other, and flattened and elongated and connected to, and passing nearly around the short cylinder, C, placed within the smoke pipe, and forming by their junction therewith an annular chamber, S, which opens into the smoke nipe, D, and causes a strong draught through the flues, J, and through the lower flues of the boiler.

FF are ateam pipes branching from the main steam pipe leading from the boiler, and conveying steam from the boiler into the tubular chambers, A, in which the steam will fill the spaces between the flues, and become superheated by the flues.

From the chambers, $A A$, it is conveyed to the steam cylinders of the engive by the pipes, II. G are the exhaust pipes opening into the smoke box
in the usual way. HI II represent the pipes leading from the superheatiog apparatus to the steam chest.

The operation of this improvement may be described as follows :- The exhaust steam, as it is d.scharged from the exhaust pipes, G, will cause a strong dranght through the chinney. But this. diaught, though it will strongly exhaust those flues of the boiler which open into the smoke box near the top and centre, or at the level of the mouths of the exhaust pipes, will only partially exbaust the lower and side flues, and hence, without further improvement, the lower flues become more or less choked up, as is well known. But the strong draught through the chimney, made by the exhaust, will cause a vacuum to be formed in the annular chamber, S, to fill which vacuum a strong draught will be formed through the fluee, J, of the chambers, A, and the pipes, B B. As these flues (If en into the the smoke box near the bottom and sides thereof, the draught through them will thoroughly exhaust the lower and side flues of the l.oiler, and thereby keep them free from all ob-
structions and allow the flame a frec passage. The smoke and hot grases a hieh pass up these flues, J, will superheat the steam as it circulates in the space around them in the chambers, Λ, on its wry to the steam cylinders, so that, when it passes from the chambers, it will be perfectly dry and free from moisture. It will thas be seen that, by the use of this improvement, is accomplished several great and important advantages: 1st, The increase of the draught through the lower and side flues of the boiler: $2 d$, The superheating of the steam by the use of waste smoke and hot gases which accumulate in the smoke box or which pass out of the smoke pipe; 3rd, And as a consequence thereof, an increased power of steam and great economy in the use of fuel.

It is needless to say that this admirable invention has created considerable interest in England and the United States, and it promises to become of great importance in economizing fuel, a very serious item of Railkay expenditure.

 FOR UPPER CANADA.
MEEING OF THE SUB-COMMITREE.

Toronto, January 14th, 1862.
The Sub-Committee met at $11 \frac{1}{2}$ A. m., in the Board Room, Mecharics' Institute; Prof. Hincks, j_{i}, the absence of the President, in the chair.

After reading' of minutes, letters were read from the Secretary of the Board for Lower Canada, in r spect to the Journal for 1862 ; and from Mr . IS. Λ. McNaughton, the appointed agent for the Board east of 'loronto, stating that after a short a bsence on his canvassing tour, be had been called
home by illness and death in his family, but that he intended starting again on Monday the 13th instiant.
Reports wero received from Mr. George E. Pell, Agent for the Board west of Toronto, in reference to manufactures, and to his canvass for specimens for the International Exhilition.

After the transaction of some routine business, the Secretary read a draft of a Report to be submitted to the Annual Meeting of the Board, which was unanimously adopted.

The Secretary stated that in addition to the pianos reparted by Mr. Pell, for the International Exhibition, he had received a notification fron Messrs. Thomas \& Co., of Toronto, of their inten-
tion to prepare a grand pinno, on a new and patented principle of construction, for the same purpose.
The meoting then adjourned.
W. Edward's, Secretary.

IReport of George E. Pell, Agent of the Board of Arts and Manufactures for Upper Canada.

January 7th, 1861.

hamilton.

Messrs. Bridge, Higby \& Co., employ one hundred men and fifty women in the manufacture of felt hats; the wages of the men will average $\$ 1.50$, the women 75 cents per diem.
They consume wool of the value of twenty-seven thousand dollars per anvum ; it is imported, Canadian wool not being of sufficient fiueness. Skivers, or the leather trimming used inside the hats, they have induced a tanner to manufacture for them; heretufore they were imported. Annual value of skivers, two thousand seven hundred dollars.
Twenty-five of their men epigrated to Canada to enter their employment.
Five bundred persons at least, depend upon the employees in the factory.
The annual value of their manufactures will be seventy-five thousand dollars.
Messrs. Sanford \& McInnes, employ from four to five hundred men and women in the manufacture of rendy-made clothing. From twenty to twentyfive were induced to come to Cabada to enter their emplogment.
Canadian cloths enter largely into their manufactures.
The business having only recently been estaidlished, no estimate was given of the extent or valuo of their manufactures, excepting what might be gathered from the number of hands employed, together with the fact that sewing machines are used by the employees, they working in gangs and by the piece.
Messrs. Nisbet \& Co., boot and sboe manufacturers, employ one hundred men and women, average wages of men, one dollar per diem.
Annual value of sales, fifty thousnod dollars (of their own woris,) they sell imported goods besides.
They use all the material they can of Canadian manufacture.
P. W. Dayfoot, boot and shoe manufacturer. Particulars same as of Nisbet \& Co., in reference to shoe business, but P. W. D. carries on the tanning (in addition) at Georgetomn. Imports hides, the supply not being sufficient for the demand in Canada.
Hopkins \& Ackland, boot and shoe manoufacturers. Same as others. (A. Gordon, one half.)

Wanzer \& Co., sewing machine manufacturers, the Wheeler'\& Wilson \& Singer Machines. Employ sisty hands, at an average wage of one dollar and fifty cents per diem. From trenty to thirty were induced to emigrate to Canada to enter their employment. Import nothing that they can procure in Canada. The annual value of their manufactures is about sixty thousand dollars.

In this city there are also three other factories making sewing machines of the Singer, Dale's Excentric and Rogers' Patent. They employ from five to ten hands each. It was not agreeable for them to give further particulars.
F. G. Beckett \& Co., steam ongine and boiler manufacturers, employ on the average twenty-five men. Average wages one dollar and fifty cents. Manufactures principally agricultural portable engines. (At this establishment they were working night and day to get worms, stills, \&e., made for two coal oil refineries.)

- Yearly value of their manufictures twenty-fire thousand dollars.

Nortly \& Sons, saw-mill and stationary engine manufacturers. Ten men in gnod years. Erect few engines to crder. Now confined principally to repairs.

At this establishment I was shown a condensing engine, invented by Mr. Thomas Northy, of about five horse power, which cunsumed no more fuel than a box stove of medium size would. Mr. N. is getting it patented in Cavada and the United States, expecting to reap a large amount of money by selling rights to manuficturers.

I also had explained to me "a man guard," that this same person has invented, to protect the persons of sawjers from the terrible consequences of a fall upon the large circular saws now so commonly in use in the lumber districts.

Messrs. I.\& P. Sawyer, manufacturers of threshing and mowing and reaping machines, fanning mills, ploughs and stoves. Employ on the average twenty-four men.

Manufacture twenty thousand dollars worth per annum.
Turnbull \& Co., stores, ploughs, \&c., \&e., employ twenty men. Average wages one dollar and thirty cents. Consume about one hundred and fifty tons of pig irun in the year.
D. Moor \& Co., tin und japanacd ware, stamped and pressed tin ware; also, stoves and castings. Employ forty-five men at an averige wage of one dollar and twenty-five cents per diem.

Import about fifty thousand dollars worth. Manufacture about twenty-five thousand dollars worth. (This Firm collects about twelve to fifteen thousand dollars worth of rays in the course of the year).
N. B. Robbins, coal grates and irdh railings. Annual value of manufactures about five thousand dellais.
Imports fire bricks. Does not think the clay exists in Canada suitable for their manufacture.
B. C. Charlton, vinegar manufacturer, employs four med. Average wages one dollar and'six cents per diem. Consumes in a year twelve thousand gallons proof spirits, two thousand pounds refined sugar, four hundred bushels barley malt, and some cider. Has not imported any article he uses since alteration in tariff.
C. L. Thomas, pianoforte manufacturer, employs sixteen men at an average wage of one dollar and fifty cents per diem. Eight men left the United States to enter his employment, they with their families numbering thirty persons. Sixty persons derive their support from this manufactory.

Manufactures pianos during the year, to the value of twelve thousand dollars. Experiences no difficulty in selling all he makes. Arerages two per week.
(Mr. Thomas was furmerly an importer, and then sold as many pianos as now, but owing to the tariff, commenced their manufacture, which is now advantageous to him).
E. \& C. Gurney, founders and stove manufacturers, employ sixty-fuur men. Average wage one dollar and sisty cents. Consumes one thousand tons of pig iron and three hundred tons of coal in a year.

Value of manufactures for the year, about one hundred thousiand dullars.

Gurney, Ware \& Co., platform and counter scales, employ twolve men. Average amount of wage one dollar and forty cents. Seven men emigrated to Cadada to enter their employ.

Annual value of manufactures, about twentyfive thousand dollars.

Bruce \& Mugrige-brooms-employ twenty men. Average daily wage, one dollar and seventy-five cents. Consumes une hundred tons of broom corn per annum-value, one hundred dollars per ton.

Annual value of their manufactures, forty thousand dollars.

Import all their material.
In ILamilton I found that many of the manufacturers were indifferent to the object of my visit, and excused themselves from replying to my enquiries on acconnt of reasons best known to themselves, especially was this the case in the smaller concerns. Among the establishments from which I obtained no particulars, is the nail, spike and rivet works of Messrs. R. Juson \& Co. They employ about ten or twelve men, and mavufacture all kinds of cut nails, railroad spikes and rivets.

Young Brothers, coal oil lamps manufacturers; Meakins \& Sons, and Green, brushmaisers; Stewart $\&$ Co., iron founders and stove manufacturers; Main \& Co., rope and twine manufacturers.

I have ascertained from Mr. E. Roper, wood engraver, that he had made some experiments with Canadian woods; in order to substitute the same fur box, to engrave upon. In his experiments be fuund white thorn answer best, and in fact, so satisfactorily, that he is endeavoring to secure a good supply for his own use. I urged him to get samples engraved, and prepared for the engraver, to secd to the International Exhibition. If he can get good specimons seasoned and ready he will contribute them. Messrs. Wanzer \& Co. will probably send a sewing machine to London. C. L. Thomas will send a first-class pianoforte, if the arrangement with the Commissioners are satisfactorg. The superintendents of the locomotive and car departments have promised to enclose me particulars concerning the works of the Great Western Railroad. I have not received them yet. A rumor was prevalent in Hamilton to the effect that an establishment that has lain unused for some years was aibout to be converted into a cotton factory. Further particulars I could not gather.

To the Committee of the Board of Arts and Mannfactures for Opper Canada.
Gentlemen,-The Secretary of the Board having requested me to give the particulars of my success in securing articles for the International Exhibition, I therefore in complying with his request, would state that in Hamilton I met the Buard of Directore of the Mechanics' Institute, and they formed a Committee of influential gentlemen in the City, to carry out the objects of the Commissioners in inviting the coöperation of Locul Committees.

I canvassed the manufacturers, and endeavored to induce many to prepare articles. In the follow ing instances I received favorable ansirers, viz.: Mr. C. L. Thomas would hạve a very superior piano ready by the time the Commissions would be in Hamilton, and if the arrangenents of the Commissions in forwarding the articles, were satio factory, he would send it.

Wanzer \& Co. would hare a sewing machine ready, Wheeler \& Wilson improved, it having the shuttle attached to it.

Ocher manafacturers would bave prepared articles, but the time was not sufficient. In Dundas a Cummittee was also furmed; and in my canrass for articles I obtained the promise of a crackor and biscuit machine from Mr. Gibson, edge tools from Mr. Huurigan, and some lasts, buot trees, \&c.,
from Mr. Young. I visited the two woollen mills at Ancaster, but was unable to obtain the promise of anything, they being very busy; in the case of Mr. Crane, who manufactures knitted goods, I think this is much to be regretted as he produces very superior fabrics, specimens of which were shown in London in September last. At Brant ford I could hear of nothing. I drove to Port Duver and obtained the promise of somo woollen clothe from the new factory just now in operation; they will be forwarded to Isaac Buchanan, Esq., of Hamilton, in time for the Commissioners. If what I have learned is correct, the person who is carrying on this factory is one of the most experienced and able factors that bas been engaged in the manufacture of woollen goods in the Eastern States; (Mr. J. N. Pitts), something very excellent may be expected, as it is an establishment of very superior character, the machinery being the best made in New England, and of very recent improvements, and the intention being to manufacture high priced and fine cloths.
At Paris I could learn of nothing. (I spent but a few hours in this place, having to lay over for the train).

In London I was unable to personally meet the Bonrd of the Institute, but I communicated with some of the manufacturers, and then giving a list of the promises I had received from persons who could and would contribute to the Exhibition, I urged the Buard by note, to form a Committee, and to still further canvass the City for more articles. I obtained in this City a promise from Mr. M. Anderson to prepare some agricultural implements; from Mr. Brown, the promise of an improved Singer sewing machine, and from Mr. Suupders, a collection of Canadian herbs, (which were eshibited at the last Provincial Exhibition, with the exception of additions since made), extracts and perfumery, if it is possible for him to prepare them in time.
I endearored to obtain specimens of Canadian woods, but to no purpose; I however, learned of a collection that is in the possession of the Hamilton Scientific Suciety. I suggested to one of their leading members that they should be sent to England. The collection I believe to be a good and pretty extensive one, although the specimens are not as large as might be desired. Whether my suggestion would be acted upon I know not. I found generally a want of interest in the Exhibition, and every where the escuse was made, there is not sufficient time, and little encourage. ment. In stating the amount of time I devoted to the work of the Commission, I may say at least half of the nineteen days was spent in serving
them. Thpee days wholly was spent in visiting Ancaster and Port Dover; I thought it proper to do so, as in both places fine qualities of goods in 3 manufactured. I think it unfurtunate that Mr. Crain, of the first named place, could not be induced to send specimens of his hosiery and knitted goods, as they are very superior, and such as would favorably compare with the products of other countries.

> I am, Gentlemen,
> Yours, with respect;

George E. Pell.
January 9th, 1862.

PROCEEDINGS OF TIIE BOARD.

Toronto, January 14th, 1861.? The Board met this day, according to adjournment, at two o'clock, r. m.

The members present were:-Professor Hincks University Cullege, Professor IIind Trinity College University, Toronto ; W. Craigie, M.D., James Cummings, Thos. Hilton, Samuel Sharp and Richard"Bull, delegates from the Hamilton Mechanics' Institute; Rice Lewis, President, and Patrick Freeland; William Edwards, W. H. Sheppard, John McBean and H. E. Clarke, delegates, 'Toronto Mechanics' Institute.

In the absence of the President, and the Vice. President, Professor Hincks was appointed to the Cbair.

The Minutes of the last Annual Meeting were read and confirmed.
The Secretary read Telegrams from the President, Dr. Beatty ; and from Mr. Sheldrick, stating that owing to detention of trains they would not be able to attend the Meeting.

The Report of the Sub-Committee for the past year was then read by the Secretary, when it was Moved by Mr. Freeland
Seconded by Mr. Lewis, and Resolved-That the Report of the Sub-committee now read, be adopted.

The Election of Office bearers and Sub-Committee for the ensuing year then took place, when the. following Gentlemen were elected :-
President-John Beatty, Jun., M.D.
Vice-President-Wm. Craigie, M.D.
Secretary and ITeasurer-Win. Edwards.
Sub. Committec-Professor llincks, Professor
Hind, Patrick Freeland, W. II. Sheppard, Professor Buckland, Rice Lewis, Alfred Brunel, Richard Bull and Thos. Sheldrick.

Moved by Mr. Bull, seconded by Mr. Hilton, and Resolved-That the thanks of the Board be given to the Office-bearers and Cummittee of the past year, for the close attention given to their duties during their term of Office.

Moved by Mr. Hilton, seconded by Mr; Clarke, and Resolved-That the Committee be instructed t_{0} Menorialize the Government and Legislature to renew the Annual Grants formerly made to the Mechanics' Institutes of Upper Canada.

The Meecing then adjourned.

REPORT.

The Sub-Committee of the Buard of Arts and Manufactures for Upper Canada, beg to submit to the Board the fullowing Report of their proceedings for the past year:

Owing to the very limited sum placed at the disposal of your Committee, they have not been able to render the operations of the Board so useful to the public, or so advantageous to the several Institutes connected with it, as they otherwise might have done. They have, however, the satisfaction of reporting that in some departments of the Buard's operations, considerable improvements have bees made during their year of office.
Nine Mechanics' Institutes have been represented at the Board during the year, either by their respective Presidents, or by accredited Delegates, elected according to the statute, namely: Ayr, Cobourg, Dundas, Hamilton, Newcastle, Paris, Toronto, Whitby and Woodstock.

The withdrawal from the Mechanics' Institutes of all Government aid, has resulted in the total failure of some, and the paralyzing of the efforts of many others of these institutions, and will no doubt in a great measure account fur the absence of a more general co-operation on their part with the objects of this Board. Your Committee look upon these institutions as Schools, or Colleges, for the adult mechanical and industrial classes of the community, affording them means of instruction, and of healthful recreation, so essential to their well-boing, and such as is not to be obtained by them through any other agencies now in existence; and are therefore justly entitled to legislative aid correeponding to that given to societies for the encouragement of agriculture, and for purposes of general education.

Your Committee are gratified to know that some fer of these institutions in the smaller towns, as well as those of the larger towns and cities, are not only self-supporting, but prosperous and progressive in their operation.

IINANCES.

The Treasurer's detailed Statement, herewith submitted, shows total Receipts for the year \$4,685 43; Expenditure, $\$ 3,04880$; leaving a balance in hand of $\$ 1,636 \mathrm{C3}$. Besides this balance, there are assets due on account of the Journal of \$28700, which leaves the whole amount in favor of the Board $\$ 1,92363$.

fref libraty of referince.

During the year nearly 200 volumes of valuable books have been added to the Library, which now comprises 449 folio and octavo rolumes of Plates and Specifications of English, American and Canadian Patents; 100 volumes of Statutes and other Parliamentary publications of Cannda; and 268 volumes of the latest Cyclopedias and works on the Fine and Decorative Arts, Manufactures, \&c.; making in all about 817 volumes-a classified Catalogue of which has been published in the September number of the Journal of the Board for 1861, with the monthly addition in each subsequent number.
Your Committee hare already acknowledged in the pages of the Journal, a donation from the Hon. the Commissioner of Patents for the United States, of 30 volumes of Reports, embracing drawings and abridged specifications of patents issued in the United States from the year 1850 to 1860 ,inclusire.
Since the Board took possession of its excellent suite of rooms in the new Mall of the Toronto Mechanies' Institute, in July last, the Library has been consulted by a large number of persons; and it will no doubt become more and more appreciated as it becomes better known, containing as it does so large a number of works-including some of the best British and American periodicals-of the highest practical ralue to the professional man, the decorator and the mechanic ; and being entirely free for consultation, and more readily accessible than any other free library of a similar character in the Province.

MODEL ROOMS.
In consequence of a recent ordor of the Patent Office, all now models have to be forwarded to Quebec with the applications for patents, so that but few additions hare been made in this department since the last annual Report. Your committee would however acknowledge a donation from Messrs. Maw \& Co., England, of four large and beautiful frames of examples of their manufacture of tesselated pavements, and three frames of patterns; also some specimens of building and. flagging stone by Mr. Pearson, from his quarries in Esquesing.

With a view to establishing a Museum of specimeas of Foreiga and Canadian Manufaotures, your Committee have invited manufaoturers to furnish specimens of their various productions, or of any natural products capable of being used in manufactures, for exhibition in the Rooms.

EXAYINATIONS.

In August last, your Committee issued programmes of Examinations of members of the Mechanica' Institutes, similar to the programme of the year previous; and also offered the sum of ten
dollars to "each Institute establishing and keeping in operation for three months a class of not less than six members, for the study of any of the subjects named in the programme, and submitting at least two members of such class as candidates at the final examination by the Board in May nest;" and also offering in addition to the certificates, "silver medals to the most successful candidates, in the proportion of one to every fipe who shall pass such examinations." Your Committee trusts that Institutes intending to submit candidates for examination in May next will at once notify the Board of such their intention.

JODRNAL.

Your Committee have much pleasure in being able to report, that the first volume of the Journal of the Board has been completed, and that it has in all respects fulfilled their expectations, with the exception of correspondence from those engaged in the manufactures of the Province, and correspondence and support from the larger number of the Mecbanics' Institutes, whose interests it is one of the principal objects of the Journal to adrocate.

Arrangements have been made for publishing the second volume in an enlarged and improved form, each number to contain four pages more of Reading Matter, be supplied with a cover, and stitched and cut; these improvements your Committee believe will be very acceptable to its readers, and be the means of inducing a large increase to the Subscription list.

It is also intended to publish the Journal on the 15 th of each Month, instead of the 1st, as being more convenient for the Publishers.

Your committee would respectfully invite the coöperation of such Institutes as have not yet taken any steps towards sustaining the Journal, either by obtaining Subscribers, or by forwarding information relating to their proceedinge, for publica. tion in its pages.

AMENDMENTS TO ACT.

The draft of Bill to amend that portion of the Act constituting this board, and the Manugement of the Provincial Exhibition, as adopted at the last Annual Meeting and submitted to the Legislature, was published in the April number of the Journal, and the result fully reported upon by your Committee at the July meeting of the Board, as per minutes published in the Journal for August.

At the Annual Meeting of the Provincial Exhibition Association, held in London, in September last, it was Resolved-
"That the Board of Agriculture are hereby requested to give notice to the several Electoral Division Agricultural Societies to send up each one delegate to attend a meeting to be held in Toronto
the month preceding the meeting of the Legislature, for the parpose of agreeing upon, and recommending, such alterations as they mny deem necessary in the Agricultural Statute, and that the Board of Arts and Manufnctures, and the Horticultural Societies be invited to attend; and in order more fully to carry out the spirit of the foregoing resolution, a synopsis of the Bill introduced at the last meeting of the Lagislature be published, and a copy thereof sent to ench County and Electoral Division Society, in order that the delegates may bave a thorough knowledge of the subject under discussion; and that the travelling expenses of such delegates be paid out of the general funds of the Association, and that the President of the Board of Agriculture be authorized to name the day, and place of meeting by circular."
Your Committee therefore recommend that the Boârd now discuss such amendments as they may deem it desirable to propose; and that the Members of the Buard attend the meeting of delegates, which has been called for Thursday the 30th of January instant, at noon, at the Rooms of the Board of Agriculture, King street West, Toronto.
international exhibition of 1862
In answer to the urgent representations of the Boards of Arts and Manufactures, and the Boards of Agriculture, for Upper and Lower Canada, the Government appointed a Commission-of which the President of this Board is a member-for the purpose of ubtaining a representation of this Province at the Interational Exhibition of 1862.
Your Committee have used every available means, by publishing the official announcements of the Commissioners, and appeals to Manufacturers and others through the pages of the Journal, and the issusing of 3000 extras, urging upon them to rrepare and send in their contributions at the time and place named for their reception; and also by instructing their Agents, who have been and are now canvassing for the Journal, specially to canvas for specimens for the Exhibition, and to ubtain, if possible, the formation of Conmittees for the same purpose, in the several localities they may visit.

essay on mandfactores.

As the result of the offer of two Prizes by the Board, of $\$ 150$ and $\$ 75$ respectively, for the best two Essays on "The Manufactures which are best suited to the circumstances and capabilitios of Upper Canada," but one production wras sent in. The gentlemen who kiodly consented to act as Judges thereon, reported that-" They do not find it such as, in their judgment, to warrant their nwarding to it either of the Prizes offered, or recommending its publication as likely to subserve tbe ends, which they presumo the Board of Arts and

Manufactures to have had in view, in the appeal made by them to the Country's mind. At the same time, as the Fssay affords evidence both of the bestowal of attention on the subject, and of a commendable interest in it, it may be a question for the consideration of the Board whether it might not be advisable to mark in some way their appreciation of these qualities, and how this might best be done."

All which is respectfully submitted,
W. Epwards, Joun Beatty, Junior, President.

TORONTO MECHANICS' INSTITUTE.

We are much gratified to witness the success attending the extraordinary efforts of the successive Managers of this Institution, for the past few gears, in the erection and completion, in all its details, of the noble building which it now occupies; costing, at the lowest calculation, including the land it stands on, not less than fifty thousand dollars; and with a debt remaining upon it of only nineteen thousand.
The last heary item of expense was that of heating by steam. The contract for this work was taken by Mr. James E. Thompson, of this city, at a cost of something over two thousand dollars, and is guaranteed to heat the entire building (80 feet by 104 feet, and three stories high) to seventy-five degrees.

The whole of the first floor is sufficiently heated in the coldest weather, by a pressure of from three to five pounds of steam, ind the upper floor and music hall with from six to ten pounds. We are also informed by the officers in charge, that it is easily managed by the House-keeper of the Institute, is perfectly secure from firo, and is expected to be very economical in the consumption of fuel
(anthracite coal), not using one half the quantity. that would be required to heat by any of the ordinary methods.

We can speal from personal knowledge of the agreeable heat at all times pervading the building, so different from the atmosphere of rooms heated by ordinary stoves, or hot-air furnaces.
In incurring the expense of these works, the Directors exceeded their available balance by about a thousand dollars; but some few Lidies connected with the Institute, came nobly forward, and got up a Bazaar, which was held during the Christmas holidays, and realized the handsome sum of about four hundred dollars towards relieving the Directors from this difficulty.
Since the Institute took possession of the building, in July last, the membership has nearly doubled, and now numbers about eleven hundred. This is not to be wondered at, when we state that all its privileges-including an exsellent Reading Room, and a Library of upwards of five thousand volumes-are secured for the small sum of two dollars a jear. The number of members regularly taking books out of the Library is upwards of eight hundred.
Besides the Rooms permanently rented to the Board of Arts and Manufactures, and to Messrs. Roaf and Davis for Law offices, the Institute is? deriving a large revenue from its beautiful Music and Lecture Halls, and the various other smaller rooms, for which there is a constant demand.

A Chess Class of about sixty members, and Classes for Mechanical and Free-hand Drawing and Painting, are in operation in connection with the Institute. The number of Classes we hope to see largely increased during another winter session, as we look upon this department of a Mechanics' Institute's' operations as one of very great importance.
books added to the free library of reference puring the past momth.

CLASS II.

Roman and Greek antiquities, with nearly 2000 illustrations; 12mo; 1860........ A. Rich.

CLASS VI.

Pictorial Gallery of the Fine and useful Arts; 2 Fols., folio ; Iondon, 1847.......

Class vir.

Dictionary of Machines, Mechanics, Engine-Work and Engineering, with 4000
Engravings ; 2 Vols., 8 vo ; 1861 .. 1860

Appleton \& Co
Dictionary of Roman aná Greek Antiquities, with nearly 200 Engravings; 12mo;
English Dictionary. 12mo 184\%
French Dicionary; 12 mo ; 184 ... H. Reed.
German and English Dictionary; 12mo ; 1861.. G. J. Adler.
Spanish and English Dictiouary ; 12 mo ; 1861... Seoue, Nevoman \& Barretti.

CLASS XV.
Year Book of Facts in Science and Art, Exhibiting all the most important Discoveries in Mechanics and the useful Arts; Nitural Philosuphy; Electricity; Chemistry; Zoology and Botany; Gerlogy nad Mineralogy; Meteorology and Astronomy; 23 Vols., 12 mo ; complete from the beiginning; 1839 to 1861.
Jolin Tinbs, F. S. A.
CLASS XVII.
Naval and Mail Steamers of the United States; folio; 1853.
Charles. B. Stuart.

THE DEATH OF PRINCE ALRERT.

In respectful memory of the death of one so much endenred, by a singular variety of associations in public life, to all who live under British rule, the death of Prince Albert has been the painful subject of an Address to Her Majesty the Queen by the Society of Arts in England.

The sympathies expressed by the Society will be felt by all kindred institutions in alliance with that body, or working, however humbly, in the same field.

ADDRESS

to the quebn's most excellent majesty.
We, your Majesty's most dutiful and loyal subjects; the Society for the Encouragement of Arts, Manufactures, and Commerce, incorporated by Royal Charter, humbly approach your Mujesty; witl the assurance of our devoted attachment to your throne and person, and of our respectful sympathy with your Mnjesty in the great affiction which has so unexpectediy befallen your Majesty and the Nation, in the early death of His Royal Highress the Prince: Consort.

Whilst the death of a Prince, distinguished by rare intellectual gifts and eminent virtues, is deeply lamented by all classes of your Majesty's subjects, his loss is especinlly deplored by this Society, which has for mang years enjoyed the great advantage of his judicious counsel and support:
His Royal Highness was elected President in 1843.

His high position, his refined tastes, his enlightened judgment and his candour ; his great command of general principles and his power of applying them to details; and his special knowledge on a great variety of subjects, extended the influence and greatly promoted the objects of the Society. Science, Art, and Literature, were, by his judicious patronage, constantly introduced to the notice and recommended to the favour of your Majesty.
The great conception of the Exhibition of 1851, with its countless influences on the progress of human industry, was duc to His Royal Highness, and in overcoming the difficulties of such a new and gigantic work, he solved the problem of conducting futuro Exhibitions, and their success will be an ever-recurring memorial of their author.
The Society can never forget the obligations which His Royal Higinness has conferred on them, and they bumbly express a hope that the recollection of his virtues and of his public ser-: vicos: may, with God's help, in some measure soften the intensity of your Majesty's aftliction.

That your Mnjesty may long reign over a loyal and devoted people, is tho prayer of your dutiful and loyal subjects and servants.

By order of the Council, sealed with the seal of the Society for the Enoouragement of Arts, Manufactures, and Commerce, this twenty-seventh day of December, ono thousand eight bundred and sixtyone, in the presence of
P. Le Neve Foster, Secretary.

CANADIAN PATENTS.

Bureau of Agriculture and Statistics; Qüebec, 28th December, 1861:-

IHenry Yates, of Brantford, Assignee for the residue of the unexpired period of a certain patent granted to one James McLellan, on 15th December, 1855 , for "A new machine for the repairing of iron rails used for cars and carriages to run upon railways."-(Dated 16th February, 1861.)

William Douglas Westman, of the township of King, in the County of York, Machinist, for "An improved screen for Fanning Mills."-Dated 12th March, 1861.

Henry W. Ostrum, Yeoman, and Joseph Sutton, Machinist, both of the township of Sidney, in the County of IIastings, for "An improved Fanning Mill." (Dated 12th March, 1861.)

Henry W. Ostrum, Yeoman, and Joseph Sutton, Machinist, both of the township of Sydoey, in the County of Hastings, for "An improved Churning Gear." (Dated 12 March, 1861.)

Wm. Douglas Westman, of the township of King, in the Courity of York, Machinist, for "An improved Lever for Fanning Mills."-(Dated 12th March, 1861.)

Albert O. Fuller, of the township of Erin, in the County of Wellington, Milluright, for "A new and portable Labor Saving Machine for cutting mortices in carriage and all other hubs, by havd." - (Dated 21st March, 1861.)

Calvin Bently, of the township of Pickering, in the County of Ontario, Joiner, for "An Fave Trough and Finish."-(Dated 21st March, 1861.)

William Watson, of the township of Vaughan, in the County of York, Watchmaker, for "An improvement in the Manufacture of Oil Gas."(Disted 23rd March, 1861.

William Brown and Jesse Weaver, both of the township of Malahide, in the county of Elgin Farmers, for, "An evaporating furnace."-(Dated 23rd March, 1861).

Hubbard Joslyn, of the townsbip of Stanstend, in the county of Stanstead, Mechanic, for "An improved machine for wringing clothes, to be cilled "Juslyn's improved Clothes Wringer."(Dated 4th April, 1861.)

John Carter Park, of the town of Brantford, in the County of Brant, Mechanical Engineer; for "A machine for removing snow and ice from railway tracks."-(Dated 0ih April 1861.)

Germain M. Cossitt, Newton Cossitt, and Alexander Young, of the village of Smith's Falls, in the county of Lanark, Iron Founders and Machinists, for "An improved Reaper Attachment."-(Dated 10th April, 1861.

George-Ives, of the town of Windsor, in the County of Essex, for "An improved Saw Horse." -(Dated 10th April, 1861.)

George Robinson, of Drummondville, in the County of Welland, Miller, for "An improved extension Clothes IIorse."-(Dated 10th April, 1861.)

Alesander Fraser Cockburn, of the city of Montreal, Brass Founder and Finisher, for "A compression Swivel Action Water Cock."-(Dated 11th April, 1861.)

Richard Hill, of the town of Port Hope, in the county of Durham, Plough Maker, for "rn improved Plough."-(Dated 17 th April, 1861."

Henry Lehan, of the township of Reach. in the county of Ontario, Manufacturer, for "The Farmers improved Hay Rake."-(Dated 17th April, 1861.)

David Henri Tetu, of Riviere Ouelle, Trader, for "A fishing apparatus in deep Water:"-(Dated 18th April. 1861.)

Jas. P. Davidson, of Belleville, in the County of IJastings, Agricultural Implement Maker, for "An improved Power for Churning, Pumping and Washing."-(Dated 20th April, 1861.)

John Abner Burton Hannum, of the town of Cornwall, in the County of Stormnnt, for "A. Churn Power."-(Dated 25th April, 1861.)

We purpose publishing in each number of the Journal a selection from the London Mechanics' Magazine (a valuable periodical, with but limited circulation in this cuuntry) of abridged specifications of such English patents as may be deemed useful or interesting to our Canadian readers.

Full specifications of all English patents issued may be obtained on application to Bennet Woodcroft, Esq., Great Seal Patent Office, 25 Southampton Buildings, Holborn, London; the price of which-varying from 3d. to 5 s . sterling-must be remitted by Post Office order, made payable at the Post Office, Holborn.

Lists of all specifications may be seen at the Free Library of Reference of the Board of Arts and Manufactures, Toronto, as published in the Commissioner of Patents Journal.

We shall use our best endeavors to obtain for publication abridged specifications of patents issued in Canada, so as to make this department of our Journal as interesting as possible to Canadian manufacturers and inventors.

ABRIDGED SPECIFICATIONS OF ENGLISH PATENTS.

1022. J. Rhodes and R. Kemp. Improvements in rag machines. Dated April 24, 1861.

This consists in applying a toothed roller or rollers over or above the feed rollers in near contact with the teeth or points of the swift or cylinder for stripping or removing the untorn rags therefrom which rags, by other rollers placed in contact therewith, are carried back to the feed npron, which again passes them through the feed rollers to the swift, to be again operated upon. Patent completed.
1029. G. Scotr. Improvements in steam engines and their apparatus for generating steam. Dated April 25, 1861.

This relates to oscillating cylinders, nod consists in making the trunnion bearings bollow, with suitable openings in the bearings for the admission to, and withdrawal of the steam from either of the sides of the piston. The bed-plate is made hollow to be used as a steam chest, from whence the steam is admitted to the cylinder through the openings in the bearings. The invention also relates to a mode of exposing the exhaust steam from the cylinder to
the cooling and condensing action of cold water or air, and also to the mode of construction of the condenser. The invention also relates to a means for saturating highly superheated steam. There are other features included. Patent completed.
1035. W. Harris. Improvements in treating hides and slins, to render them suitable to be made into straps for driving machinery, and to be used for other purposes for which leather is commonly employed. Dated April 25, 1861.

Here the hide is first sonked in milk, then drained, and placed in a bath of tar; it is next removed from the tar bath, scraped, dried, and finally dressed with dubbing as usual. Patent completed.
1056. J. Dellegana. Improvements in apparatus for embossing and taking casts or matrices for stereotype and other purposes. Dated April 26, 1861.

This consists in the use of rollers in combination with a table supporting the article to be embossed, such table being geared with a pressure roller, so that the surface speed of the pressure roller shall be the same as that of the table. Patent completed.
1057. E. H. Joynson. Improvements in machinery for the manufacture of paper. Dated April 26, 1861.

This consists, 1, in a machine for washing rags preparatory to converting them into pulp. 2. To an improvement in that part of the paper machine at which the pulp is supplied to the wire. 3. To a novel arrangement of apparatus for the sizing of paper. We cannot here quote the details of the invention. Patent completed.
1071. J. Masi. Improvements in steam engines. Dated April 29, 1861.
This consists in rendering available for power the impulsive force due to the velocity of steam, by causing steam to act on the ordinary or other pistons of sterm engines in jets. Patent completed.
1078. G. Hocare. An improvement or improvements in the process of carding wool, cotton, silk, or fibrous materials, and in machinery or apparatus applicable for that purpose. Dated April 30, 1861.

This consists in imparting certainty and regularity to the motion of the creeper, by making a positive connection betreen it and its driving roller, by means of interlocking projections and depressions, pins, teeth, or other mechanical means. Patent completed.
1079. J. Meyer. Certain new chemical combinations, and for the application thereof to fixing aniline and pigment colours in printing and dyeing, to tanning, waterproofing and other industrial purposes. (A communication.) Dated April 30, 1861.
This consists in the combination of certain organic substances, such as albumen, fibrine, glue, noimal tissues, and other nnalogous substances With the oxide or salts of tungsten or niolybdenum. Patent completed.
1081. W. Horn. Improvements in steam and water-tight joints for fixing tubes in plates, such as used for surface condensers, distillers, refrigerators, vessels for heating feed water or tubular boilers. (A communication.) Dated May 1, 1861.

The novelty here is the use of rings or short tubes of compressed wood for making water and steam-tight connections between tubes and plates,
such as are used for surface condensers and other apparatuses. Patent completcd.
1096. W. Scholes. Improvements in carding engines for carding wool, cotton, silk, or other fibrous stances. Dated May 2, 1861.
This consists in making the periphery or surface of the "licker in," or in covering the pame with portable wood bags, which the patentee sets with ateel or other metal pins or points. Patent completed.
1097. W. Hoxle. Certain innprovements in machinery for preparing, spinning, and doubling cotton and other fibrous substances. Dated May 2, 1861.

The patentee claims the application of pressure to top rollers by means of a weight, which remains stationary while the endless band revolves round the top roller, and round a pulley or pulleys to which the weight is suspended or connected as described. Patent completed.
1117. W. E. Newton. Improvements in the treatment of copper ores. (A communication.) Dated May 3, 1861.

Here the pyrites are first pulverized, and then, by ordinary tluzes and sulphur, and chloride of lime, the ore, whether roasted or not, may be operated upon. In the use of roasted ore a certain weight of the ore is to be mised with variable quantities of sulphur and chloride of lime according to the richness of the ore, and the aature of its gauge. Patent completed.

NOTICES OF BOOKS.
The Physical Geography of the Sea, by Lievtenant Madry, late of the D. S. Navy, and Supcrintendent of the National Observatory. Sixth edition. 1 vol., 8vo. New Tork: Harper \& Brothers. Toronto: Rollo \& Adam.
In accordance with our design of noticing in this journal books suitable in an especial degree for the Libraries of Mechanics' Institutes; we desire in the present issue to draw the attention of our readers to a work which has been long and favourably known to the public in general, as is testified by its: having lately reached a sixth edition, but which, nevertheless, is still replete with much that is novel and interesting to all who have not already made acquaintance with its pages.
Under the title of the "Physical Geography of: the Sea," the author includes all that relates to the vast domain of waters upon the earth-the ooeans, seas, and lakes, into which they are distributed, with their various depths and temperature; the circulation of the atmosphere, and of the ocean; the phenomena of the tides, and of the winds; the mysterious effects of electric and mag-. netic forces; the laws of evaporation, and the variations of climate in the different.latitudes of the watery world-all, in short, that relates to the economy of the sea and its adaptations. A vast and comprehensive subject truly; and one which embraces within it operations of great importanoe
not only to the principles and pratice of nivigation, but also to the general interests of the world.

The Atlantic Ocean is the especial object of our anthor's labours, and occupies a large portion of his volume; the first two chapters, indeed, are devoted to a single current in it-the Gulf-streamsome of the most peculiar features of which he beautifully describes in the following passage:-

> "There is a river in the ocenn: In the severest droughts it never fuils, and in the mightiest floods it never overflows. Its banks and its bottom are of cold water, while its current is of warm. The Gulf of Mexico is its fountain, and its mouth is in the Arctic Seas. It is the Gulf Stream. There is in the world no other such majestic flow of waters. Its current is more rapid than the Mississippi or the Amazon, and its volume more than a thousand timeg greater. Its waters, ns far out from the Gulf as the Carolina coasts, are of an indigo blue. They are so distinctly marked that their line of junction with the common sea-water may be traced by the eye. Often one half of the vessel nay be perceived flontiog in Guilf Strenin water, while the other half is in comnon water of the sea; so sharp is the line, and such the want of nffinity between those waters, and such, too, the reluctance, so to spenk, on the part of the Gulf Stream to mingle with the common water of the sea:".

There are other features no less striking and peculiar to be observed in this wonderful ocean-stream-features so remarkable that it will not be unprofitable to consider them somewhat in detail. The general aspect of the Gulf-stream is that of a strong and rapid river, \dot{a} it were, fluwing forth from the Mexican Gulf and Carribean Sea, and passing round the southern coast of Florida. It then proceeds to the north-east in a line almost parallel to the const of the United States, as fur as the Grand Banks of Newfioundland; here, being unrestrained, it widens its bounds, and slackens its speed, though such is its impetus that even to the coasts of Great Britain and Ireland, the Norwegian shores, and down to the Bay of Biseay, this mighty marine river continues to rollitis wonderful waters. Throughout its course of many thousand tiles it preserves its remarkable physical characters-the only change it undergoes being that of degree. Asits waters gradually mingle with those of the surrounding ocean, their deep blue tint becomes more faint, their temperature diminishes, and the speed with which they advance declines. When the stream first emerges from the Gulf, and pasees through the Channel of Bemini, its velocity is about 4 miles an hour ; when it reaches Cape Hateras, having attained a brerdth of 75 miles, its speed is reduced to 3 miles an hour ; and on its arrival at the Banke, it is still further diminished to $1 \frac{1}{2}$ miles an hour. Its temperature also undergoes a corresponding change. In the Straits of Elorida it has been observed as high as $88^{\circ} 52^{\prime}$ Fah. ; in latitude 40°
its warmth is still about 25° above that of the surrounding ocean. And even when it reaches the coasts of Northern Europe, its beat, though much diminished, is not altogether lost; as far north; indeed, as the polar basin of Spitzbergen its waters are 6 or 7 degrees warmer than those around them. To quote our author's words-"it is the influence of this stream that makes Eria the 'Emerald Isle of the Sea,' and that clothes the shores of Albion in evergreen robes; while in the same latitude on this side, the coasts of Labrador are fast bound in fetters of ice." He declares also, that " the quantity of heat discharged over the Atlantic from the Gulf Stream in a winter's day, would be sufficient to raise the whole column of atmosphere that rests upon France and the British Isles from the freezing point to summer heat."

Many theories have been put forward with regard to the causes that produce this vast and important stream. Some rest upon very iusufficient grounds, and others are palpably absurd. It is now, however, generally agreed that one main influence which puts it in motion is "the tendency of the polar and equatorial waters to equalize their temperature by currents flowing at different depths through the ocean." Another cause, which combines with the foregoing, and produces the northeasterly flow of the current, is the daily rotation of the earth upon its axis. In addition to these, there must alsu be taken into consideration the influence and action of the atmosphere; the tides, and the variations of temperature in different regions. The trade-winds, too, no doubt, perform their share of the task of keeping up the flow of this vast stream, which carries to the northern parts of the eastern hemisphere the warmth derived from the perpetual summer of the equatorial seas.

But our limited space forbids our dwelling any longer upon this very interesting subject; we must be content merely to draw the attention of our readers to some of its most remarkable features, a full acconnt of which can be found in the work itself. Otlier topics; too, of interest and importance to all, are discussed in the volume before us; foremost among which may be mentioned that of the atmosphere in its various relations to the physical geography of the sea, as displayed in the winds, rains, and fogs, and in the phenomena of evaporation and electrical changes. Next, we have an riccount of the Salts of the Sea; the Geological Agency of the Winds; the Depths of the Ocean, with a description of the apparatus for determining them; the "Telegraphic Platenu" of the AtIantic; the Winds and Storms; the Climate of the Ocean ; its Drift ; and the Rontes commorily ob-
served in traversing it. Such is a brief enumeration of the various subjecte so graphically described by our author; subjects alike interesting and instructive to all who desire to look into "the wonders of the great deep."
We cannot better conclude than by quating our author's remarks with regard to the design of his work. "No expression," he states, "uttered, nor act performed by the agents of nature upon our planet, is without meaning. The wind and rain, the vapor and the cloud, the tide, the current, the saltness and depth, and warmth, and color of the sea, the shade of the sky, the tewperature of the air, the tint and shape of the clouds, the height of the tree on the shore, the size of its leaves, the brilliancy of its flowers-each and all may be regarded as the exponent of certain physical combinations, and therefore as the expression in which nature chooses to announce her own doings, or, if we please, as the language in which she writes down or chooses to make known her own laws. To understand that langunge and to interpret aright those laws is the object of the undertaking which we have now in hand. No fact gathered in such a field as the one before us can therefore come amiss to those who tread the walks of instructive philosophy; for, in the hand book of nature, every such fact is a syllable; and it is by patiently collecting fact after faot, and by joining sylliable after syllable, that we may finally seek to read aright from the great volume which the mariner at sea, as well as the philosopher on the mountain, each sees spread out before him."

The Works of Francis Bacon, Barme of Verulam, Discouint St. Albans, and Lnrd High Chuniellor of England. Collected and Edied by James Speding, M.A., of I'rinity College, Cambridge: Robert Leslef Eliss, M.A., Iate Fellow of Trinity College, Cambridge; and Duvelas Denon Ileath, Barrister-at-Law, late Fellow of Trinity College, Cambridge. Volume II. Buston: Brown \& Taggard. Toronto: Rollo \& Adam. 12 mo . pp. 503.
We Intely noticed the publication of the first volume of this magnificent edition of Lord Bacon's Works. The second volume, now befire us, is a continuation of the first part of his Philosophical Works, and contains the Parasceve ad Historiam Naturalem et Experimentalem, and the De Augmentis. Scientiarum, with a prefice to each by Mr. Spedding. In the preface to the Parasceve, the editor gives an interesting account of what are, to a great extent, the distinctive peculiarities of Bacon's philosophy, the main foundation of which he himeself considered to consist in "the compilation of a natural and experimental history ;" in fact, it was for the purpose of obtaining assistance in this design that he published his Novum Organum in so imperfect à shape.

We have already alluded, in our former notice, to the typographical excellence and beauty of this edition, and to the credit it reflecte upon the enterprising publishers; it only remains for us now to express our, sincere hope that in the present state of things on this continent, so unfavourable as it is to all literary undertalsing, the publiontion of this work may not prove to them a sourco of loss and disappuintment.

BRITISII PUBLICATIONS FOR OCIOBER.

AMERICAN PDBLICATIONS FOR NOVEMBER.

Brimley.-Essays by the late George Brimley, M.A., Librarian of Trinity College, Cambridge: with an Introduction, by R. H. Stoddard. 12mo, pp. 409......
Jenkins' Vest Pocket Lexicon. An English Dictionary of all except Familiar Words; including the principal Scientific and Technical Terms, and Foreign Moneys, Weights and Measures. Omitting what every body knows, and containing what every body wants to know, and cannot easily find. By Jabez Jenkins. 64mo, pp. 563

050 Lippincott d Co
Mc Clellan.-European Cavalry, Including the details of the Organization of Cavalry Service among the Principal Nations in Europe. By George B. McClellan, Major-General U. S. Army. Fully Illustrated. 12mo, pp. 214.
Poe.-The Poetical Works of Edgar Allan Poe. With an Original Memoir. Blue and gold, pp. 278
Poe.-The Works of Edgar Allan Poe in four Volumes, 12 mo
$\$ 125$ Rudd \& Carl.

Saxe.-Poems. By J. G. Sare ; complete in 1 Vol. 18mo, blue and gold. pp. 308
Ncott--Tales of a Grandfather: By Sir Walter Scott, 6 Vols. Vols. III., IV., V., VI., 16 mo , ench.

125 Lippincott \& Co
075 W.J. Widdleton
500 W.J. Widdlcton
075 Ticknor \& Field
075 Ticknor\& Field
Titcomb.-Lessons in Life. A Series of Familiar Essays. By Timothy Titcomb, Author of "Letters to the Young," " Gold Foil," \&c. Fifth Edition. 12mo, pp. 344

100 Chas. Scribner
Warren.-A Manual of Elementary Geometrical Drawings, involving Three Dimensions. Designed for the use of High Schools, Acndemies, Engineering Schools, \&e.; and for the Self-Instruction of Inventors, Artizans, \&ec. In Five Divisions. Div. 1. Elementary Projections. Div. 2. Details of Constructions in Masonry, Wood and Metal. Div. 3. Rudimentary Exercises in Shades and Shadows. Div. 4. Isometrical Drawing. Div. 5. Elementary Structural Drawing. By S. Edward Warren, C. E., Professor of Descriptive Geometry and Geometrical Drawing in the Rensselaer Poletechnic Institute, Troy, N. Y.; and author of a Treatise on the Orthographic Projections of Deseriptive Geometry. 8vo, pp. 105.

100 John Wiley

FLAX CULTIVATION IN CANADA.

In the present aspect of affairs, attention is being turned to other staples than cotton for a supply of fibre suitable for textile fabrics. The soil and climate of Canada are well adapted to the cultivation of flax, and it is to this fibre-producing vegetable that the thoughts of farmers should now be directed. We intend to publish, in successive numbers of this journal, short articles* on the preparation of flax, leaving the details of its cultivation to the pages of the Agricolturist, in which numerous articles on the preparation of the soil necessary for this valuable plant bare already appeared, and which should be carefully studied hy those who intend to grow it. As there are no other products of the farm which promise so fairly as the ons under review, it is not improbable that flax cultivation may become general in Canada.

Sowing.

The seed generally preferred is Riga; it seems adapted to most soils. Dutch is occasionally used with great success; but the American seed does not generally suit well, being apt to produce a coarse, branchy stem, which skilful flax-growers aim against as much as possible. A tall, tapering, firm stem, with few branches, and those not spreading, are considered good signs in a crop of flax.

If the American seed be used, it slould be sown in a deep, loamy soil. In selecting seed, eare should be taken that it is plump, shining, and heavy; and if it be of foreign growth, the character of the merchant from whom it is purchased, and the brand by which its quality is known, ought both to be attended to. Care, as we have just observed, must be taken to have it well sifted, to clear it of the seeds of weeds which are often mixed with it, and which, if not removed, cause a great deal of subsequent labour when the crop is growing. The process of separation is generally effected by fanners and π wire-sieve, which has twelve bars to the inch. Home-saved seed is occasionally used, and produces excellent crops; but it is highly necessary to select a good quality, otherwise the result will be anything but favourable. The time, however, will come, it is to be hoped, when the bulk of home-raised seed can be used for sowing instead of foreign.

The produce of seed averages about twelve bushels the statute acre; so that the seed off one statute acre would sow about five. When flas is thinly sown it produces much seed; it is therefore better to sow thick, which enuses, in general, the stem to grow tall and straight, with only one or two seed capsules at the top. The fibre is also much superior, in fineness and length, to that produced from thin sown flaz, which grows coarse, branches out, and bears a great quantity of seed. Under good cultivation, after the ground is pulverized and well cleaned, it is rolled nod sown ; and,
if laid. without ridges, it is marked off in divisions, eight to ten feet brond, in order to give an equable supply of seed. After sowing, the ground is corered with a seed-harrow, which goes over it three times-once up, ance down, and once across, or anglewise, in order that the seed should be equally spread, and the small drills made level by the teeth of theibarrow. The greand is finished with a roller, which covers the seed about an inch, the depth generally considered the best for growing freely. When the ridges are too much raised in the centre, at the time of sowing, it is liable to injure the crop, preventing it from growing equally; but when the land is properly drained, no ridges are required. The sowing of clover and grass-seeds along with the flax is rarely considered judicious, and ought, if possible, to be avoided, as those plants injure the root-ends of the flax. Carrots are occasionally sown in drills, in suitable soits, which enables the individual pulling the far to step over the rows, which are afterwards boed and cleaned, and receive some liquid manure. In the case, however, of rolling the ground, after sowing, care should be taken not to roll when it is wet, as the mould is liable to stick to the roller.

Pulling.

The time for pulling the flax is a point of great importance. The fibre is in the best state before the seed is quite ripe. If pulled too soon, though the fibre be fine, there is great waste in scutching nnd hackling, which renders the crop unprofitable; and if pulled too late, the additional weight of the fibre rarely compensates for its coarseness. The best time for pulling, however, is when the seeds begin to change from a green to a pale brown, and the stalk to a yellow colour, to about two-thirds of its length. When any portion of the crop is lying, and suffering from wet, it should be pulled as soon as possible, nad kept separate from the other. Whenever the flax is of unequal length, from the land being imperfectly drained and levelled before sowing, each length should be pulled separately, and steeped in a separate pool, or kept from the other in the same pool. If there be a large second growth, the flax should be caught by the puller just underneath the bolls, so as to leave the short stalks behind; and if there be not many of the latter, it is better to leave them on the ground, as the mixture and discoloration are apt to deteriorate the crop. If the ground has been thoroughly drained, and laid out evenly, the flax in general will be all of the same length; but it is necessary to keep the finx even at the roots, which jocreases its value both to the spinner and to the grower, and amply repays the trouble bestowed upon it.

Ripplang.

The handfuls of flax, when pulled, should be laid across ench other diagonally, to facilitate the process of rippling, which should be carried on at the same time, and in the same field. Rippling the flax not only renders it easier to be handled, but saves the seed, which is a valuable portion of the crop. If the seed be sold for the oil, it realizes about £3 to the acre; but if used for feeding purposes, $\mathfrak{j i t}$ is worth about f4. The ripple is composed of a row of iron teeth, screwed into a block of wood; when used, it is taken to the field where the flax is pulled, and screwed down to the centre of a nine-feet plank, resting on two stools.

The ripplers may either stand, or sit astride at opposite ends of the plank; but they must be sufficiently near to the comb, to enable them to strike the fias properly and alternately. A winnowingsheet should be placed under them, to receive the bolls as they are rippled iff. The ripplers, moreover, should be sufficiently near to receive the flax as it is pulled and laid down at their right hand in sheaves. When the sheaf is untied the rippler takes up a certain quantity, holding it about six inches from the root with one hand, and near the top with the other. He then spreads the top of the handful like a fan, and draws one-half of it through the conib, the other passing by the side; with a half-turn of the wrist he then performs the same operation upon the remainder. Some ripplers, however, prefer rippling without turning the hand, by giving the flia one or two pulls through the comb; lint this depends upon the quantity of the bolls. The straw, when stripped of its bolls, is carefully laid down by the rippler, placiog each handful diagonally, after which it is tied up into shenres and removed. The object of crossing the bandfuls, after rippling, is that the buts or sheaves should separate easily when taken out of the steep to spread on the grass for drying. If the weather be dry, the bolls should be kept in the field, spread on the winnow-cloths, and, if turned occasionally, they will sion win; or dry. Passing the bolls, bowever, first through a coarse riddle, and afterwards through finners, which remove the straws and leares, will faiciliate the drying process. If, on the contrary, the weather be moist, the bolls should be taken in-doors and spread out thinly and eveuly on a barn floor, or loft, and turned twice a day, leaving the windows and diors open, to allow a thorough current of air. When nearly dry, they are remuved to a corn-kiln, care being taken not to raise the kiln above suminer heat; where they are turned gently until no moisture remains. This slow-drying process enables the seed to imbibe all the juices that remain in the husk, and to become thoroughly ripe. If the bolls be taken direct from the feid. and dried in a hurried manner on the kiln, the juices will be aluorbbed, tho seed become shirivelled and parched, and little nutritious natter will remain in them. In fine weather, the bolls should he dried in the open air, the seed thrashed out, and the heaviest and plumpest portion of it reserved for sowing or crushing. The light seed nnd the chaff contain exceedingly wholesome food for cattle, and can be always profitably applied. Flax, however, ought not to remmin in the feld, if pos:sible, even the second day, unless the Belgian system, which we shall shortly notice, be adopted. As suon as pulled it ought to be rippled; and then carried to the water to prevent it becoming too hard.

Watoring or Stecping.

The operation of steeping requires the grentest care, nes it is very critical in its results. River Water is the best, and may be let in the pond the duy before the flax is steeped; but if spring water is used, the pond should be filled some weeks before the flax is put in, so that the sui and hir miy goften thé woter. Water containing any mineral substince must be studiously avoided. The dimeigions of the pol are from twelve to eighteen feet broad, and three and a half to four feet deep. The
flas is placed in a sloping direction in the pool, the root-end downwards, and in regular rows, forming a single layer. The root of one row of sheaves should reach the tie of the next, and, when thus placed, they are covered with moss-sud, or old leaz-sud, cut thin and laid close together. In new ponds, a layer of rushes, or riag.weeds, is generally placed on the flax, with the sods above it; and, where sods are not alwars available, a light covering of straw is used, which; whien pressed with stones, keeps the flax just under the water. In this condition fermentation takes place, and, as it continues, additional weight is applied, which is removed when the fermentation ceises, to prevent the flaz siuking too deep in the pool. In this state the flax is neither affected by lightor air. A small stream of water, bowever, if allowed to run through the pool, sometimes in proves the collour of the fias. The average time of steeping is from eight to fourteen diys; but it varies according to the heat of the weather and the condition of the water; and great nicety is required to ascertain when the fiax has received sufficient water, a few hours, mure or less, being liable to injure it. The farmere, bowever, more frequently under-water than over-whater their flax. The usual test tio ascertain the condition of the fing is to try a few stalks, of average thickness, by breaking the shove, or woody part, in two places, about six or eight inches apart, in the middle of the stalk; the woody part is then taken out, and if it comes freely downwards, without breaking or tearing the fibre, the flas is ready to be taken out of the pool. This test is tried about every six hours after fermentalion has censed, as the change is simetimes rapid. The flis should never be lifted roughly from the pool, either with forks or grapes, but carefilly handed out of the drain by men standing in the water; and it is generally an advaritage to let the fax drain from twelve to twenty-fiur hours when taken out of the pool, the hundles being placer on their root-ends close together. Cure, however, must he taken not to place the crop in heaps, or it will be injured by heating.

Spreading.

The place selected for this operation is, if at hand, a clean, short, and thick pasture-ground, with the weeds carefully mown down to the level of the sward, or removed altogether. The flas is laid evenly on the grass, in thin but equal hayers; and, if care has been taken in the rippling process, the bundles will readily separate without heing entangled. While on the grase, it is turned two or three times with Ω rud, abiut a foot in length and an inch and a half in diameter, to prevent it being discoloured by the unequal action of the san upon its surface. When there is a prospect of rain, the flax is turned, in order that it mang be beaten down a little, and prevented from being blown about.

Listing.

When the flax has been upon the grass from six to twelve days, "it is considered ready for lifting; and, if the weather be showery, the shorter tine will be sufficient to prepare it. The general test of its being ready to lift is, to rub a few stalks from top to boitom; if the wood breaks easily, and separates from the fibre, leaving it sound, it has received a sufficient grissing. The most cer-
tain test, however, is to prove a small quantity with the hand break, or in Ω flax-mill. When lifting, the length of the flas ought to be kept straight, and the ends even, otherwise there will be considerable loss in the rolling and scutching operations. If not scutched immediately after lifting, it is tied up in small bundles, and placed. in stacke, loosely built, with stones or brambles at the bottom, which keep it dry, and allow a free circulation of air. Stacks, however, built on pillars are considered the best.

Drying:

The procese of drying by fire is generally condemned, simple exposure to the sun being sufficient to prepare the fax for brenking and scutcbing. In some parts of Ireland, the flax is placed in a damp state to dry on kilns, and in many instances it is burned by excessive heat before it becomes dry, which impairs its rich oily property. In this state the flax is reduced in value nearly one balf.

Breaking and Scutching-

There are two modes of breaking and scutching, the one by hand, and the other by the mill; if the first be adopted, the Belgian mode is the best, as it is not so wasteful as that geverally practised in Ireland. If scutched at a mill, the fibre should be sent where the best machinery is in use, and where the mill-owner pays his men by the day, and not by the stone, as the scutchers are more anxious to turn out a large quantity than to produce a good yield from the straw.
(To be continued.)

ART EDUCATION AND SCHOOLS OF ART.

Some time ago in reviewing the rise and progress of Schools of Design in England, and endeavouring to account for their natural development into Schools of Art as at present existing, we gave a promise to our readers of making a further examination, and thus laying befure them the present condition and operation of the latter. That we have not already fultilled this promise has resulted from a convietion, then expressed and since borne out by experience, that, in reality, Schools of Art in the United Kingdom are undergoing great and fundamental changes; and, even at this present time, are in a very embryotic state of existence. What has hitherto been done in them, with reference to their constitution and management, has been necessarily experimental: what is now being accomplished is the result of experiments fairly tried in what is to us an untrodden path; and, though we think Schools of Art, and the means adupted by the State for the advancement of art-education generally, a subject of sufficient importunce to interest our readers; yet we can only now refer to the suhject as a problem in process of silution, -an experiment which has arrived at a certain stage of its existence, -and which, though by uo means a perfectiy-developed scheme, is so far matired as to offer itself as a fair subject of cri-: ticism. It will be impossible, in the narrow limits of our reriew, to trace the whole history of Schools of Art since their first assumption of that name, or to detail the many and various changes whioh have occurred in them. It must suffice if
we record some of the results achieved in the tenyears of their existence.
The Schools of Design were established in order to give an art education to the designeer as a means of influencing those branches of mapufacture which required skilled workmen to carry them on successfully. The partial succeas which resulted from this effort on the part of the Government seemed to indicate that a more comprehensive scheme was necessary to achieve such an end. Accordingly, in the year 1851, overtures weremade by the School of Design authorities in London, to the Committee of Privy Council for Education, baving as an object the introduction of elementary drawing into the pational or parochial sehools which were under the Committee of Council on Education. These overtinree were favourably received, and it was resolved to initiate. the formation of drawing elasses in national schools by the gratuitous distribution of books. and drawing-copies among those schoolmasters who were apparently able to use them, and manifesteda willingness to do so. The hend-masters of the Schools of Design were charged with the task of distributing these examples.

This, as might have been expected, was as unsuccessful as that which had already been done by the Schools of Design. The school-muisters were also to be allowed to study in the Schools of Design gratuitously. The Privy Council for Trade seemed persistently to shat its eyes to the fact that ordinary people value things at precisely the cost of such things, aod that to present books and copies, and give the privileges of study to persons who themselves made no sacrifices or exertion to: obtain such advantages, was precisely the method best adapted to cause these persons to undervalue the advantiges offered. The same mistake which we noticed as having been made in the appointment of masters to Schools of Design on fised salaries was again reenacted in this minor matter.
In 1853, on the formation of the Departiment of Practicnl Art, the system of grants to Sehouls of: Art was entirely reorganized; the errors of theprevious directors of the soliools were carefully avoided; a masculine and comprehensive scheme of art education was inaugurated, and the foundation was laid of a sound, busioess-lity manngement, whereby the benefits of art education should be estended to all alike. We must in candour confess that, though possessing many deficiencies in detail, and though the Department has blundered in some cases, as Govornment uffices. will ; yet the result of the Department's operations is convincing proof of the soundness of its system. Setting minor matters aside, the Department's career has been one long cuarse of uneximipled prusperity, which is, in a great ineasury, due to the masterly manner in which it is conducted.
The first subject which received the serious attention of the new Department was the cost of maintaining the nineteen Schools of Design already in esistence. It was found that it would be im possible to establish new Schools of Art on the principle of subsidizing each school by a direct grant. The nineteen Schools of Design existing in 185 k . cost h3 country $£ 7,750$, aid, as one of the schemes of tho Department was to establish a

School of Art in every considerable town in the United Kingdom, the somewhat novel and startling principle was enunciated, that all new schools would have to be founded on the self-supporting system, as far as this was practicable. Other alterations are so well described in the second Report of the Department of 1855, that a quotation from its pages will give the clearest idea of the new system. Speaking of the Schools of Art the late Schools of Design) receiving direct grants from the Department, the Report states that:-
"It was judged expedient that, while the local expenses should be entirely regulated by the committees, which were best able to control them, Parliamentary grants should be devoted to the proportion of instruction, either in fixed salaries paid direct to the masters, in an increase of masters, especially where necessary for public school teaching, in affording aid by means of examples, and in lectures and scholarships. It was also proposed, as an equitable arrangement, and as an inducement to exertion on the part of the masters, that a proportion of the students' fees should be in future paid to them as part of their income, their fixed salaries being at the same time reduced. Accordingly, throughout the year 185.3, the grant. schools were conducted under the new arrangement; and the result, as described in last year's Report, showed a marked improvement in the attendance of students, as well as in the amount of fees.
"Although the progress in the improvement of the schools was thus considerable, the establisbment of the elementary local Schools of Art, which to the number of sixteen were opened in different towns in the course of the year, indicated the possibility of extending to the public increased advantages from the subsidized scbools.
"Being in operation together, the new schools Were found, upon comparison, to possess many advantages over the old; as they were not only conducted at less cost to the State, but also enlisted a greater amount of local interest in their suceess, and extended the fincilities for instruction to all classes of the community, while they were founded on a system which stimulated the exertion of the masters by identifying their interest with the extension of the instruction afforded by their schools. A further re-adjostment of the grants to the Schools of Design thus became absolutely necessary. It was felt that the expenditure of $£ 7,750$ in maintaining nineteen schools would not be justified to Parliament, when sixteen schools were established and carried on, the greater part in a very satisfactory manner, at an aggregate fixed cost of oaly $£ 160$ per annum, and a further liability of $£ 960$ in the shape of guarantees of salaries to masters, which liability a year's experience has shown to be rarely called into operation. It was determined, therefore, no longer to ask Parliament to voto specific sums for each looality, but rather to extend the advantages afforded by Parliamentary aid wherever it might be found to be most required and appreciated.
"A circular, dated March, 1854; was issued, in which the old schools were invited to extend elementary instruction to parish schools, and to assist in the promotion of art-knowledge amoug the operative classes. It was pointed out to the committees that a better guarantee of efficiency, as respects the teachers, could not be afforded than by the certificates of the Department, obtained under the new eystem after long study and severe training; and that it was desirable to stimulate the teachers to energy and perseverance, when appointed, by the hope of augmenting
their income by a commensurate increase of fees. It was also observed, that instead of the appointment. of the masters remaining with the Government, and their control partly with the Government and partly with the committees, as must necessarily be the case on the plan hitherto parsued; the appointment and control of the masters ought rather to be entirely in the hands of the local committees, so as to avoid a divided authority; and it was at tho same time explained that, although it was not intended to supersede the master of any subsidized schnol receiving a snlary from the Depariment, the new system would be extended to all, either on the application of committees, or as favourable opportunities arising out of the retirement of the old masters might occur."

It should have been before remarked, that the Department had wholly discontinued the practice of appointing masters to Schools of Art on the mere exhibition of testimonials, and works executed by themselves. A training class for masters had been established previously to the location of the central school at Marlborough House; and the most promising of the students in it, as well as others who joined for the specific object of becoming art masters, were now required to go through a severe course of study, and present themselves for examination, at stated times, for certificates of competency to give art-instruction. It was determined to appoint no masters whri could not take these certificates; and though the Department avowed itself averse to sudden or violent changes in the masterships of schools, fair warning was given to all committees that, upon new appointments, certificated masters would alone be recognized, and the new system of self-support from fees and subscriptions immediately be sub. stituted for direct subsidy. This caused a commotion among the subsidized schools. From Manchester, Macclesfield, Sheffield, Dublin, Belfast, Cork and Limerick, urgent protests and remonstrances were received by the Department. The Coric school and Belfast school were closed: at Stourbridge and York, the masters resigned, and consternation reigned supreme amongst the masters, whilst utter dismay seized upon the committees. These manifestations, however, seem to have had very little effect on the Departmental directors. Birmingham, which came under the same regulations, instead of venting its wrath in pithily worded protests and remonstrances. founded on bad arguments and supported by infamous logic, set itself resolutely to work to try the new system; and the result was seen from the report of the head master, who informed the Department that "the influence of the school has been largely extended, and nearly three times more persons are under a systematic course of instruction in drawing at the present time than in 1851; the cost to the public fund is less, whilst the masters are better paid."

Encouraged by this example, no notice was taken of old schools in the agonies of dissolution; but where it was found practicable, as at Leeds, York, Stourbridge, and Coventry, the new system was introduced, with the asquiescence of the committees, and the teaching re-organized and most successfully carried on by the new-appointed trained masters. Manchester consented to try the experiment for a year, and has never had cause to regret its sensible resolution.

The Department resolved also no longer to pay a new master according to the size of his school, or the importance of the town in which it was placed. Instead of this, allowances were to be made accurding to a scale, regulated by the number of examinations the masters hind pnssed through in London. The whole curriculum of art-education and study was divided into six groups, having a certain number of branches of axt in each. For the successful passing, in both theory and practice, of each grqup, a master would receive au annual alloveance of $£ 10$: the maximum aid to be given to each teacher was not to exceed $£ 50$. Thus a desire to excel in all branches of art-study was generated amongst the masters, when it was seen that direct pecuniary advantages accrued to them from their superior qualitications. Very bu-siness-like arguments were used by the Department in explanation of this arrangement. The advantages of it were stated as being-"That, whereas the vote of $£ 7,550$ now promotes the instruction of operatives in only twenty places, by means of less than forty masters, non-certificated, the said sum would provide at least 200 masters certificated; and that by the rules aud conditions of the appointment the influence of each master would be more extensively distributed." As before remarked, the Department did not interfere with masters alrendy in recejpt of direct grants, or make them subservient to this rule, which only applied to new masters.
The most characteristic feature of the new system was the unconditional demand of the Department, that a certain number of National or poor schouls should be instructed by the masters of each School of Art. The minimum number apon which a School of Art would be recugnized, and the artmasters' certificates be paid, was three, which was afterwards increased to tive. It was sought by this means to extend art-instruction among the mass of the people, instead of confining it as heretofore to a small class of adult artisans. It was suggested that all towns possessing a School of Art should have a minimum of one per cent. of the population under instruction in drawing.

To provide for the teaching of elementary drawing in poor schools, the art-masters were allowed to nominate advanced students of the School of Art to assistantships in it; the Department recognizing them as art-pupil teachers, and paying them $£ 10$ per anoum, besides giving them the advantage of free instruction in the Schouls of Art. The sum allowed to assistants was afterwards increased to $£ 20$ per annum, and thus remains. Under the direction of the head master these assis:ants gave to poor schools one lesson per week of one honr's duration for the sum of $£ 5$ per annum; though, in many cases, as at present, the art-master himself gave the lesson, and his nasistant a second lesson, in the same week, or in nlternate weeks. It was a well considered question whether the time usually devoted to drawing in these National Schools, viz., one hour per week, would be sufficient to give the pupils any practical power in drawing. The department was at some trouble to obtain opinions from a large number of art-masters on this point. These opinions were as various as the temperaments of the authors of them. Some flatly asserted that one hour per week,
or for forty hours per year (reckoning. vacations). was totally insufficient to give even a smattering knowledge to adults, of any subject, and ridiculously so to impart art-instruction to yrung children. Others, more sanguine, mantained a directly opposite opinion. The examination of children who had received a jear's instruction of one hour per week speedily set at rest the vexed question. By means of esercises in the subjects of free-hand drawiag, geometry, perspective, and model drawing, worked in the space of forty minutes for ench subject, it was found that a very valuable power of drawing had been acquired. The accurate imitation of a form in outline clemaly executed from a copy; the power of remembering, solving, and working out as many as six geumetrical probleass selected from a text-book containing sixty or seventy problems; the representation in outline of a geometric model drawn freehond from. the model itsolf; and the working out of simple perspective exercises, -all these were found to be executed with facility by children of from ten to fourteen years of age, who had receired a year's instruction of forty hours. A method of teaching drawing in these subjects, by means of copice drawn by the teacher on the black board, enabled large classes to be taught simultantously,-accurate proportions, carefally pointed out to the chil-dren,--simple cunstructional lines used in drawing symmetrical oljects, familiar suljects being chusen as examples, through explanation of the terms used in geometrical figures, with test of the accuracy of the problems given, these being attended to by the teachers,-were fuund to give great interess to the drawing lesson. Mure than one case hats come to uar lnowledge where a scboul which has been irregalarly attended during the week has been crowded on the occasion of the drawing lesson,-a gratifying testimony to the interest awakened by the new lessun.

Among other reforms introduced by the Department, the re-adjustment of the conditions on which grants of copies for teaching drawing in parcobial schools and Schouls of Art are given deserves to be mentioned. Instead of presenting such eopies gratuituasly to poor sehools, all schools were required to pay a proportion towards the cost of such examples. Thus Schools of Art aud paruchial and aational schools ubtained brooks, examples, and casts, through the appointed arents, paying the usual price fir them, upon which the Deparrment and the agent together allowed a discount of nearly fifty per cent., whilst private middle class schools received a discount of fifteen per cent.; and this arrangement is still in operation with admirable effect. The only drawbatek to the arrangement is the existence of only one agency in London for the supply of examples, and the consequent prevention of requisitions being mide for small supplies of examples, on account of the great delay arising in complying with the demands, and the proportionate important cost of carriage for small parcels. We have no besitation in predicting the doubling or trebling of the demand for these cupies if the Departuent would make arrangements for the supply of them through lacal agents in all large towns where a Sclawel of Art exists. This would dispense with the cuat of carriage and the terrible delay of passing the
copies through the London agent alone. No difficulties seem to have heen experienced in inducing Messis. Chapman \& ILall to undortake the qgency for casts and examples in London ; and we see no reason why respectable pullishing or bookselling firms in provincial towns should not be appointed as local agents. Whether appointed by the Department. or by Messrs. Chapman \& IIall, is a matter of no moment; for in either case the increased facilities of obtaining the examples would materially extend the demand for them. This is a point we earnestly recommend to the serious attention of the Department's officers, and feel assured it will repay any amount of triouble taken in bringing the suggestion into operation.

The completion of our review, and touching one or two points in the management with which we may be less contented, must form another article. -Mechanics' Magazine.

PROGRESS OF THE INTERNATIONAL EXHIBITION.
Notwithstanding the number of days in the last week od which no work was done, partly on account of the national mourniag, and partly in consequeace of the Christmas holidays, the progress made is very apparent, and may be pronounced to be highly satisfictory. So far has the building now advanced, that it is beginning to assume an air of completeness, which promises well for the easy fulfilment of the contract within thoappointed time.
The eastern dome is no longer a cause of anxiety; all the ribs are in their places; three of them are entirely finished, and the others only want the top jointings; in a short period it may be expected to be ready for the glaziert. All the wood-work of the lower portion is fixed, and ouly waits to be boarded to be protecred from the weather. The brickwork of the great arch over the entrance, which has a span of about 80 feet, is completed.
It may be seen that the dome scaffuld at the western end of the nave has a somewhat different appearance to its fellow before the raising of the ribs. This is owing to the arrangements which have been made to $\dot{6}$ the ribs, which are different from thise on țhe opposite scaffold, and promise an easier and more speedy accomplishment of that object. The brick arch over the western end is also finished, and the arrangements for fixing the ribs being completed, the task itself will soon commence.
The flooring has been carried over the whole of the south-eastern and south central courts; this portion of the work proceeds with a rapidity which is traly marvellous. Visitors can now wall on dry plank fiooring over the whole of the southern courts, as well as the long corridors underaeath the picture galleries. The offices underneath the smaller or water-colour galleries are also fast approaching completion, so that the staff of her Majesty's Commissioners will anon be enabled to transact business in the building itself when it may be determined to be more convenient to do so.

The brickwork of the refreshment courts has been executed in cement, and will not be affected by the frost. It is nearly finished. The joiners and carpenters works are also in a forwardstate, and there seems no reason why the structural purtions should
not be completed with the rest of the building, although such a condition does not form part of the contract of Messrs. Kelk and Lucas. The plastering and decorations will take some longer time: A suggeation has been mado that Messrs. Minton should floor the part which forms the entrance to the horticultural gardens with tiles, for the making of which they have obtained so deservedly high and wide-spread a reputation.
Some experiments have been commenced in the nave for colouriag the interior, and are still in progress. They are under the direction of Mr. Octavius Hudson, who has obtained su much credit for his works in Salisbury, Ely and Chester Cathedrals, and who is known for his great learning on coloured decoration. It is obvivus that as there are large surfaces in the present building which did not exist in the building of $1831, \Omega$ very different system of colouring will be required, ns great quantities of the primitve colours, suitable enough for thin lines, would be inappropriate bere.

The acceptances of space are being fast returned from British exhibitors; no less than 2,500 have been received since Saturday last. It is expected that the total number will reach 8,000 .

The mothod adopted for the production of the Illustrated Catalogue appears to be received with favour; many pages have already been taken by exhibitors for the more detailed descriptions and illustrations of their goods.

The Imperial Commission at Paris has issued its 24th bulletin by which it appears that the detailed plans for the arrangement of space are completed. Exhibitors are requested to act, as far as possible, in concert, in order to render the whole exhibition as harmonious and effective as possible. Many of the French exhibitors, after complaining of the smalluess of the space allotted to them, and after obtaining twice that allotment, now state that they will be unable to fill even the space originally placed at their disposal. Such a course of conduct threatens to disarrange entirely the plans of the Imperial Commission, who may be put to great inconvenience to induce fresh esbibitors to como forward and fill the vacant spaces. French goods are to be delivered at the railway stations by the 10th of March under the penalty of having the space destined for them transferred to others.Journal of the Sociely of Arts.

the lime light at the south foreland.

Five-and-thirty years ago Lieutenant Drummond brought into notice the oxyhydrogen light; and applied it to a practical purpose. Having been appointed to conduct the Ordnance survey in Scotland and Ireland, he used this light in focus of a parabolic reflector on lofty eminences, where the stations were usually placed, as it was of the greatest importance in those operations to have certain and determinate signals, which could be scen, under any circumstances as to weather, at great distances. Thus he succeeded in connecting the shores in England and Ireland, near Holyhead, a distance of 65 miles; and afterwards, in Scotland; the summit of Ben Lomond with that of Knock Layd, no less tban 95 miles apart. It did not escape the comprehensive mind of Drommond to perceive that such a light, if capable of
practical application, would be invaluable for lighthouse purprses. With the means he devised however, he failed to sbtain anything appronching practical command over the continuity of the light; and as a light that is liable to go out is inadmisailie for lighthouse purposes, it is not surprising that it wess condemued

Since Drummond's time, until quite recently, the oxghydrugen, or lime light, has been used only for the purposes of the microscope, or to produce scenic effects; not that the value of a light of soub power and intensity has been lost sight of. but because all attempts to render it practically avaidable in a commercial sense had failed.
'lie impossibility of turning it to a useful purpose seems to have so 'tiken possession "f the public mind, scientific as well as general, that although within the last two or three years, exhibition after exhibition, rarying in duration from hours to montios. have given the most incontestable proufs that with Bartable's apparatus the lime light can be burned as easily and certainly as a wiux eandle, yet, with a silugle but notable exception, nut one eminent man of ecience has been fiund who has not scouted the idea of $i t$, practical utility: Upon almose every ocearion of late when our men of science bave condescended to mention the lime light, it has heen condemued by them as impracticalle, and the idea of its applacability to any useful marposes comtempraously dismissed; whilst the assumption that it can be used for ordirary donoestio pürposes has met with most prositive contradiction, interspersed, upon one or two "ceasions, with assertions an to the availatio sources and expense of oxygen gias, which, although valueless in themselves, are useful as indicating the amount and atecuracy of infurmation upon the subject possessed by some of thuse who have promunaced the severest condemmations of it. It has been the farthion in scientific circles to condemn the lime light, and there are few amonges those who have not compromised themsetves more or less liy decrying it; and eaperience will have taught us that from such we can expect but a tardy recormition of even a fact that is nubversive of a long cheristed doyma. This prejudice, which has serinusly iulpeded the general introduction of the lime lizht, is traceable to its usual sonrce-watnt of accurate information on the subject; for although the means were at hund, nit one of those who ridiculed the idea that the lime light hall been brought to a state of perfection, readering its pracical application to illuminating parpuses ensy and certain, took any trouble to make such an investigution as to the alleged finet as cond justify the expression of any opinion at all. The puldic at large took the view of the sapans, olhuse opiniuns were readily adopted and disseminated by those who are incerented in the continuance of the present methods of producing artificial light; whilst the verdiet of gat engineers. seientific adFisers to Gas Companies, and wher vested interests, upur the lime light was such as a notorious poacher might expect at the hands of a jury compused of cock-pheasints.

In the mein time, hawover, whilst the learned condemn it, and capital fought sho of it, the light weut on burning steadily-carefully watched, ex-
amined, and, in course of time, appreciated by one, at whose biands truth never suffiers, imposture is nevier spared, and whose opiniuns are ever furred for himself by patient and careful investigration, and not expressed until all doubt bas been removed. Without having been made aware of the exict conclusions arrived at by this investigation, it must be supposed to bave heen favourable, as it led to a decision on the purt of the Trinity Burd to give the light a fair trial in a first order lighthouse, for which its peculiar qualities are preëminently fitted. To this end a contrict wits entered into with the Universal Lime Light Company by the Elder Brethern for the exhilition of the light in the South Foreland Lighthouse for three months, and upon its success will in all probabibity, depend its extensive adopcion for the purposes of const lighting The light was introduced on the 26 th of August, and bis continued to burn steadily and brilliantly every night since its substitution for the oil light. Indeed, after the repurt of Mr. Page, the engineer of Westminster bridge, upin the success if the lime light which for two months illuminased thefinished part of that structure, no doubt cin exist as to the faceility with which it can be mainained for no case of falure occurred there in maintuining regularly eighteen lights in nine different lamps where the operation of niaking the grises had to be conducred up.n temporary platformas, suspanded between wind and water, ans the whole arrangements necessariiy of an incomplete and temporiry character, added very largely to the ordinary risk of a fuilure accurring. The lamp at the Shuth. Fireland is ficed with eight burners, to ineet therequirements of the Fersnel apparatus, which is composed of eight panela: orly six out of the eight burners, however, are required, as the two panels. towards the land are dirkened. Tbe minipulation of the limp is perfectly simple, not necessitiating an ammun of intelligence greater than is required in the case of an ordinary Argazd hamp. When the time for lighting comes the lime wicks are inserted, the clonk which moves them wound up, and the gaves curned on, and no further altention is required until the hour arrives for putting wat the light, when the gases are curned off, and the clock is stuppual ; the lime wioks are then removed, and nothing further remains to ho done. The brilliancy of the fight has not escapeal the notice of our friends. on the wther side of the Channel, many of whom. hare been woer to visit it. It is but fair tor state that the present apparatus in which the lamp is exhibited is not calculited to give the masimum effect, hivving been expecially adjusted for the maunl Argand oil lamp, which differs from the lime light in the essential particular of fueal distance, which. is measured frum the centre of the firmer, but from the surface of the latter ; the line light, therefire, alth ugh of the same diamerer ats the wil Hame; is tho near the lenses by balf its diameter-in this case hy $\mathrm{t}_{8} \mathrm{~T}_{\text {inchers. }}$ It is to he huped that this light will be tried both in a French apparatus, npecintly adjusted, and in the fucus of a paratulaid, for it appears to possess every element, rendering it by far the hest light fur const purposes ever introduced.
Amongst other attributes of the lime light is anothor of the very last importance. It is mit effected by wind, even though unprotected by glass. fit Liverpoul, where the lime light was exhibited for
two months upon the landing stage where the Birkenhead ferry boats ply, this property was most severely tested. One night a gale of wind, came on, and jocreased in violence uatil the glasses of the lanterns were dashed in, and the light was exposed to its full power. No apparent offect was produced upon them, for they continued to burn as steadily and brightly as before. It has happened not so unfrequedtly as might be imagiaed, that the glass of our lighthouses has been broken, in violent gales, and the light blown out.

THE RUSSIAN PACIFIC TELEGRAPII.
The plan for establishing a telegraph line connecting Europe through Siberia with the Parific Ocean has, during four years, had time to take shape and form, so that, at the commencement of the present year, the supreme sanction was given to the project for constructing a telegraphic line in the counties bordering on the Amoor and Oussouri, from Nikolaiewsk by Kabirrovka to the port of Norgorod, (1,900 versts,) the most important point of the possessions recently annexed to Russia on the sea of Japan. The establisbment of this line is undertaken by the Ministry of Marine,. at its cost and under its direction; and at the same time the superior direction of the means of communication (Board of Works) has commenced the construction of a line starting from Kasnn in the direction of Siberia, which proposes opening at the end of the present year a telegraphic communication from Kasan to Omsk, (1,900 versts) and continue it afterwards to Irkutsk, a distance of 2,475 versts from Omsk. Thus, probably within two or three years, on the one side there will be telegraphic communication between Europe and Asia to Irkutsk, and, on the other hand, our new colonies on the Amoor and Oussouri will be connected with each other, and with our principal ports on the Japanese witers. Thus of the extent of 10,000 versts, which the Siberian telegraph will embrace, there only remains the central portion, that of Irkutsk by Kyachtio to Kabarovka, about 3,500 versts, where as yet nothing had been settled; but it is beyond a doubt that as soon as the works actually projected shall have been sucuassfully completed, this intermedinte line will be constructed, and thus, within four or five years at the latest, the gigantic project of a telegraph from Europe to the diatnot lands on the shores of the Pacific Ocean will be realized. The year 1861 promises to be a memorable one, if we consider the great questions which will receive a solution. Among those questions we must place the commevcement of a durable connection and the establishment of rapid communication between Siberia and civilized Europe, and the apparatus of the electric telegraph on the virgin shores of the Amoor and Sea of Japan. It seems needless to point out the inuportance and usefulness of so vast an extension of improved commanication by the promoters of civilization and commeroe.-St.p Petcrslurgh Gazette.

Colonel Romanoff, of the imperial Russian engineers, was introduced to the members of the New York Chamber of Commerce, October 11 th, to lay before them the project of a telegraphic line to run from St. Petersburgli to some point on the
eastern shore of Siberia, and from thence to the Russian possessions on this continent.

The great overland telegraph to be erected, will, when completed, form a direct chain of communication throughout the world. It was first started in accordance with an ukiase from the Emperor of Russia, issued in 1858, since which time three thousand miles of it have been laid from St. Petersburgh to Omsk, in Eastern Siberia. Moscow, three thousand five hundred miles from that point, will be tho principal station. The wires will go over Behring's Straits, a distance of forty miles, the currents of which depend on the winds, and are never beyond three miles. The widest gap in the Straits is eight miles. The line will cross from Omsk to Orkutek, thence to Kyachta-- the great entrepot of commerce from Siberia to China; from that point it will be continued to the Altai Mountains to Cheta, and thence to Nicoleisk, at the mouth of the Amoor River. This will end the Russian project which his been guaranteed by the government. The propriety of continuing the line to the United States is now under udvisement, and the project is considered easily practicable, involving only an additional outlay of $\$ 1,000,000$ or $\$ 3,000,000$, according to the route taken, The following table shows the number of miles to be embraced by the whole line:

Miles.
St. Louis to San Francisco, (1,800 miles finished,) 2,000
San Francisco to Prince of Wales' Cape,......... 2,500
Behring's Straits (submerged,
40
East Cape to mouth of Amoor River, 2,400
Amoor River to Moscow, (1,200 miles finished, 7,000
Total............ 13, 940
Count Romanoff states that the line will be completed to Irkutsk in about a year, which will enable the merchants of London to communicate with Pekin in fourteen days. It has been proposed to extend it from the mouth of the Amoor to Jeddo, Japan, which will involve but three submergesone of six miles, one of eight and another of twelve. Count Romanoff also stated that the cable sunk in the Red Sea by the British government, to communicate with India, was eaten by insects, with which the water abounds, after it had successfully operated for abont three months, and it is now considered impracticable to renew the enterprise at that point. The British government had appointed a commission to inquire into the causes of the failure.

American vessels frequently sail to the Amoor with spices, tea, coffee, iron, \&c., and the establishment of telegraphic communication between the United States and that point, and Russia in general, must tend to increase the trade between both countries.

Cu!. Romanoff will prosecute his inquries in the United States for about two months, and then return to Russia. Mr. Collins, in the mean time, will give him many of the facilities necessary to his mission.

The proposed line will unite all the telegraphs in the world, without crossing the Atlantic Ucean, so that the great "cable" enterprise need not be resuscitated. The cost is set down for two wires at $\$ 3,000,000$. To maintain this line, one thousand men, at $\$ 300$ each per annum, would become
necessary, making a total of $\$ 300,000$. To this force it is proposed to add one hundred etations, at $\$ 1,000$ per annum ; two supply vessels at $\$ 40,000$; interest on capital at $7 \frac{1}{2}$ per cent. per annum, $\$ 210,000$; contiogencies, $\$ 100,000$. Total, $\$ 750$,000 . It is calculated that 300,000 messages, at $\$ 5$ each, would be received, making a total of $\$ 1,500,000$ revenue.

THE DELETERIOUS EFFECT OF LIGHT ON POTATOES.

The influence of light on vegetation is now regarded as a matter of the utmost importance, and although the precise mode of action may not be always understood, yet powerful effects of it are everywhere perceptible. In its absence leaves become blanched that would otherwise be greer. Roots that are white underground become green when exposed. Turnips, white beneath, are green or perhaps red above, and many kinds of fruit, naturally pale, color under bright sunlight. By the action of light on leaves, the different secretions peculiar to plants are formed, such as gum, sugar, starch, oils, and even, in certain liads of plants, deadly poisons. In some plants, too, the sceretions due to the action of light are in certain portions harmless and nutritious, whilst in other parts of the same plant, through the same agency, highly deleterious principles are formed. The potato offers an example. Everybody knows that its tubers contain wholesome food, and it is also generally known that the stems, and especinlly the apples or seed vessels, are deleterivus. But the treatment to which the potato is sometimes subjected is calculated to develope the poisonous quality in the tubes themselves, a change which can only take place during exposure to light. The poison found in the green parts of potatoes is called "solanine." This exists in several species of Sulanum, and is found in considerable quartity in the shoots of potatoes. To obtain it the shonts are bruised and acted on by water acidulated with sulphuric acid. It is very poisonous. ('Turner's "Elements of Chemistry.") Liebig says it is a powerful poison.

Although the stems of potatoes, according to the autborities just quoted, contain in notable quantity the noxious and easily-extracted principle, so dangerous in its concentrated form, yet the tubers grown underground and kept in the dark are floury and white when cooked, if the variety of potato is good, and quite free from acrid taste, which is one of the characteristics of solanine, and a sure indiention of its presence. But the potato tuber is in reality a sort of stem; for it is furnished with buds, which, under favourable circumstances, push into shoots, as buds do on stems above ground. It is therefore, highly susceptible of the influence of light; for although both its skin and flesh are white, they soon become green by exposure; and the continued presence of light renders them as green as stems inbove ground.? It is said that pigs have been kilied by giving them potatoes greened to this estent. Such, of course could not be sold for human food. For this purpose potatoes exposed to light must be housed or otherwise shaded before thic green tinge is apparent, at least to the naked eye. But under the impression that the tubers keep better after having well basked in
the sun, many cultivators are in the habit of turning them up, and spreading them out on the surface of the ground in bright sunny weather. This has the effect of greatly deteriorating their quality. Notwithstanding disease, really good potatoes can be found; but even slightly diseased ones, with the infected portions cat away, are infinitely better than quantities of otbers which, though they have a goodly appearacce, have been greened. Instead of being white and Goury when cooked, they are yellow, and bave a disagreeable acrid taste, which can scarcely be disguised, or, if it should, there is no proof that the deletericus effects of the acrid principle are counteracted. At all events, it would certainly be very deairable that such means should be adopted as would prevent that principle being generated, or in other words, the tubers should be kept as much as possible in the darts instead of exposing them to light. The, advantage of exposure as regards better keeping is donbtful, whereas the deterioration it occasions in the quality of the tubers as an article of food is certain. I have thus endeavoured to draw attention to the subject, and it is the duty of every one who is aware of the deleterious effects of light on the potato to explain it to those who are not for a knowledge of it, if acted upon, would prose beneficial to both rich and poor.-IThe Gardener's Chronicle and Agricultural Gazetle.

THE GOLD MINES OF NOVA SCOTIA.

A paper was lately read on the above sulject by Principal J. W. Dawson, of McGill College, before the Natural History Society of Montreal. He snys, "There is little room to doubt that gold will be found throughout the entire coast metamorphic district of Nova Scotia. Careful examination may show that the gold occurs chielly or entirely in the veins traversing certain bands of the thick beds of slate and quartz rock in these districts; and these may be recognized by their mineral character, especially if defined in their relation to the other ljeds by a detailed surrey of the productive localities."

In the last number of Silliman's Journal there is an article on this subject by O. C. Marsh, A.B., of the Scientific School, Yulo College. IIe states that there is a belt of metamorphic rocksextending the whole length of the province of Nova Scotin, varying in width from ten to fifty miles, and that it is composed mainly of clay slate and quartzite, replaced by mica slate, gneiss and granite in some sections. This coast range, according to Prof. Dawson, probably belongs to the old eilurian. Mr. Marsh has visited the Tangier mines, situnted sixty-seven miles cast of Halifar. The strata which contain the gold consist of clay slate, traversed with compact veins of quartz.

The strata is much disturbed, and an examination for fossils was unsuccessful, the igneous action so evident in this region had probably obliterated all traces of such. Perfect fussils, however. have lately been discovered near St. John, New Brunswick, in clay slate. The gold at Tangier occurs mainly in the quartz veins, which are about one foot in width. Guld, in no small quantity, has also been found in the soil and in the bed of a small stream near the mincs.

Among the specimens of gold obtained, Mr. Marsh noticed three isoliated crystals which resembled in general appearance those brought from Califurnia. The mines at Tangier are on government lands; a claim of 30 by 33 feet is rented at $\$ 20$ per annum, and during last Auqust 700 men were working on the clains, and a large amount of gild had heen taken, but at lenst one-third was lost by the rude meahanism used for itw extraction. One ripparatio used consisted of two liarge granite boulders atuched tig short ropes to a horizuntal beam on either side of an upright shaft, and two horses drauged them round about, as in the old horse gin. The quirtz was put on a paved floor, and kept wet, and was crushed by the two boulders as they were dragged over it.

At Lunenbargh, abuat seventy miles west of Halifix, and ahnut one hundred and thirty from Tangier, the gold also occurs in quartz veins, traversing the clay slate. This locality has yielded large quantities of gold with very litwle lator. Thene mines are upon the sear shre. Mispickel is abundant, and its presence makes gold washing amung sand very troublesome. "While at Lunenburg." says Mr. Marsh, "I was informed of a circumstance cannected with the discovery of gold, which illustrates the utility of even a little scientific knowledge, and the need of its more general difusion. Some yenrs since, a farmer living in the neighlorhood uif Chester, thought he had discovered a valuable copper mine on his land, and at great expmene he runk a shaft atniut 80 feet in denth. Finding little copper to repay his labor, and having exhalusted all his means, the work was finally abiandoned. In his exertious he had cut throurh a large quartz rein richly stored with gold, which he had noticed, but suppused it was merely onpper pyrites. The present owner works this copper mine for golld."

The Trangier wold of 18.95 specific gravity, as analyzed hy Mr. Marsh, contains, gold, $9 x, 13$ parts; silver, 1.76 ; copper, . 05 ; irum, a trace. The Lunenhurg grold is rery similar in composition. The metamorphic strata of Noval Scotia are similar to the guld-hearing racks of other countries, and are of vast extent. The extiastion of the gold at these mines ty guick silver had nut been crmmenced honce atl the finest grild was lost in the washing The total amount of geld hitherto obtained bas not been ascertained.-Sicientific Aniericun.

I NK. S.

Black Permanent Iuk.-Nitrate of silver 2 parts; distilled water 28 parts; satpgreen 1 parr. Dissilve.

For the Mordint.-Common goda 2 parts; grom arahic 1 part ; suffi water 8 parts. Mix, and moisten the linen with this fluid, and well dry before using the ink.

Fellono Luk.-l. French berries 1 pouad; alum 2 ounces; water 1 yallom. Buil and strnin, then add gumarabic 4 cunces.
2. Water 30 parts; Avignon berries 7 parts; gum and alum each 5 parts. Buil for one hour, and strain.

Blue Iule fme Ruling.-'Take 4 ounces of vitrol, best quality, to 1 ounce of Indige; pulverize the indigo very fine; put the indigo on the vitrol, let
them stand exposed to the air for six days, or until dissolved; then fill the pot with chalk, and add half ia gill of fresh gall, boiling it before use.

Black Int for Ruling.-Llake good black ink, and add gall as for blue; do not cork it, as it will pre vent it from tarning black.

Red Ink for liuling.-One pound of Brazil wood to one gallion of the best vinegar; let the vinegar simmer befure you add the wood, then let them simmer together for half an hour, then add three quarters of a pound of alum to set the color; strain it through a woolen or cotton cloth, cork it tight in a stone or glass bottle. For ruling, add half a gill of fresh gall to 1 quart of red ink, then eork it up in a buttle fur use.

Iudian Iulc.-1. Take finest lamp-black, and make it intu a thick paste with thin isinglass; size, then mould it ; attich the gold leaf, and scent with a little essence of musk.

Carbon Ink.-Dissolve real India Ink in common black ints; or add a small quantity of lampDack, previously heated to redness, and ground perfectly suooth with a small portion of the ink.

Gold and Silver Ink.-Tine bronze powder, or gold or silver leaf, grousd with a little sulphate of putash, and wiasted from the salt, is mixed with water and a sufficient quantity of gum.

Glutcn Iulc.-Dissolve wheaten gluten, free from starch, in weals acetic acid of the strength of commun vinegar; mix 10 gr . of lamp-black and 2 gr . of indigo with 5 oz . of the solution, and a drop or two of vil of cluves.

Ink firr writaing on Zinc Labels-Horticultural Inc.- 1 . Disoolve 100 gr. of chloride of platina in a pint of water. A little mucilage and hampblack may be added.
2. Sial-ammoniac $1 \frac{1}{2}$ dr., verdigris 1 dr., limpblack 1 dr., water 10 dr . Mix.

Chione Ink. - Extract of logwood $\frac{3}{}$ oz: gum oz; water a pint. Dissolve also in 12 oz . of water $\frac{1}{2}$ oz. of yell,w chromate of potish (or $\frac{1}{4}$ oz. each of biellowatite of potash). Mix the two solutions. The ink is ready for iumediate use.

Inle for writing on Steel, T'in Plate, or Sheet Zinc. - Mix 1 ounce of powdered sulphate of copper and $\frac{1}{2}$ suace of powdered sal-ammoniac, with 2 wances of diluted acetic acid; adaing lamp-black or vermillion.
ludelible lak for Marking Linen.-1. The juice of slues 1 pint; gum $\frac{1}{2}$ ounce. This requires no inordant, and is sery durable.
2. Nitrate of silver 1 part ; water 6 parts: gum 1 part. Dissolve. If too thick dilute with. warm suft water.

Autographic Ink for Jithographers.-White soap 25 parta; white wax 25 parts; maton suet 6 parts; lamp-black o parts; shell:lac 10 pairts; mustic 10 pirrts. Mix with heat, and proceed as for lithographic ink.

To restore weriling effuced with Chlorine - 1. Expose it to the vapour of sulphuret of ammovia, or dip it into a sulution of the sulphuret.
2. Ferrocyanide of potass 5 parts; water 85 prits Dissolve, and immerse the paper in the:fluid, then slightly nicidulate the solution with sulphuric acid.

British Newspapers.

There are 210 newspapers of all descriptions, published in.London aud the metropolitan districts. of these twenty are published daily; five of them being devoted exclusively to commercial and shipping affairs. Of the religious class, nine are conservative, advocating the opinions of the Church of England; seven are liberals, and advocate the various opinions of dissenters; and four defend the Roman Catholic creed. Seventeen journals are exclusively dedicated to various branches of commerce; nine papers attend to the concerns of railways, engineering, mining, and building. Agriculture is attended to by eight papers: and the turf, the prize ring, and what the French term Le Sporl, by seven. Law supports four journals, and medicine the same number. Rifle volunteers and military subjects in general, are attended to by six. Musical matters and the theatre each occupy two journals. Three weekly papers criticise pew books. The Pawnbrokers and the police have each one journal ; court and firshionable matters have two.

In the thirty-nine counties of England (excluding Middlesea) there are about 580 journals, published at various prices, ranging from 1d. to jd., nearly one-half the pumber being sold at 1d.; 230 of these support liberal political and religious views; 110 are conservative, or liberal conservative: 47 call themselves independent, and 193 are avowedly neutral.

The increase in the number of newspapers within the last twenty pears may be counted by hundreds, and the circulation by hundreds of thousands. One of the penny dailies has a circulation of seventy thousand, and one of tho cheap reckly more than three times as many. The political infuence of a newspaper is not always in proportion to its circulation. The Times does not circulate sixty thousand copies daily, jet its influence, both on government and throughout the country, is incomparably greater than that of any other journal.

Wiales publishes 32 papers; 28 printed in English, 4 in Welsh ; of these, one third is liberal, another third neutral, and the remainder various shades.

Scotiand publishes 160 papers; of which 90 are liberal, 17 conservative, 14 independent, and the remainder style themselves neutral.

Ireland numbers 138 newspapers; of which 38 nre liberal and 38 conservative, 11 independent, and the remainder neutral.
There are 32 papers published in the Isle of Man, and the Channel Islands.

The brief summary is 1,142 in number; of which 464 are liberal papers, 100 conservative and liberal conservative, 83 independent, and the remainder neutral.-Scientific American.

Importanat Telegraph Discovery-

An English paper makes public the discovery of a "telegraphic cable" and a mode of working it, that renders distance and the media through which such cable is luid, an auxilliary instead of an
obstruction, obtaining supplies of power from a hitherto unsispected source. The invention is the produet of William P. Piggott, of Lonion, an eminent medical electrician. The peculiarity of the cable is that instead of requiring an enormous electrical charge to be furced through the whole length of a line by powerful batteries, at each successive transmission of a signal, as at present, in long ser and land routes, the wire continues statically charged as it is laid, whilst the least disturbance of the equilibrium of this passive electric charge-inoperatve and uninfluenced until called into action by the operator-answers through all its length to the slightest transmitted influence, and so serves every practical purpose. The enormous tension that electric cables now undergo, arising from the great power of the electric current required for long distances, and which is believed to have caused the fatilure of all marine cables more than three hundred and fifty miles long hitherto laid, is thus obviated. The earth currents, which have previouslo been great obstacles, are abserbed and utilized. The cable depends for its supplies, either on the voltaic current created by bringing togetider wires of different electric property in its construction, or by self-acting generators placed at any desired distances througlout its length, as so many relayy of power abs rbing from the moisture of surrounding media, whether air, or earth, or sea, enough electricity to become statically charged; and so, at the slightest impulse, is capable of conyeying communication to any conceirable distance. The invention is in the hands of the British government. Not its least merit is the probability that it will reduce the cost of telegraphic communication to a fifth of the prosent rates.

Manufactures from Hinman Haiz.

In the Zoology section of the British Association Mr. Danson offered a few observitions on the manufacture of human bair as an article of consumption and general use. He sulmitted for inspection specimens of articles manufactured from human hair, and which appeared to be of a very massive and heavy character. The paper ran thus: Truth goes further than fiction; therefore I can say my sister conceived the iden, and caused the collection of about 3,500 pounds of human hair, in a few months in Liverpocl, by one female, who was merely assisted by her husband and son in currying it out, received $£ 1$ to $\mathcal{L} 2$ per week.-We had two shawls made frow it-cotton warp, (exhibited to the section.) It is extremely warm and durable clothing; and with care and attention any quantity of the stutf can be ohtained, It wrould appear fabulous to say that 100.000 or 200.000 bales might be obtained perhaps 500.000 or 1,000 , 000 , conld be obtnined, even within twenty-one years, that is, annually, and of all sorts, loth long and short, and of all which is at present wasted and not enumerated in the articles of commerce or of general consumption. I am authorised to state that this has been in the possessinn of Messrs. R. W. Ronald and Son, of Liverpool, for some jears, who will forward $1001 b$ weight to any consumer on receipt of a post-ufice order for £2 15s. (The items making up this sum, commission, \&e, were enumerated.) The article is as collected; and heary foreign shecp's wool, in dirt and grease,
being 6d. to 14 d . per 1 lb ., shows its cheapness for consumption generally. The Manchester goods are exchanged in Germany for long hair, whioh is sold in London. There are 3,500lbs. in seven bales, and insured in the Manchester Fire Office for $£ 200$; so any one can test their existence by policy 180, 631. The manufactured gonds can be shown at the Great Exhibition in 1862 ! and if it were collected in fuctories the value would be quarterly-divided, and added to the saving's bank deposit. At the conclusion Mr. Danson suggested that specimens of these works should be placed in every museum in the kingdom, and trusted that the Smithsonian Institution would give the question their ablest support. Dr. Lankester observed that be thought the adoption of that manufacture would be a source of profitable industry. The girls in Germany and France looked forward every year regularly for pocket money by the sale of their hair, considering it as a harvest. The French girls, with their dark hair, usually got from 30s. to 40 s., whilst the lighter hair of the Germans realised less. Mr. Danson said the human hair was capable of being mude into the finest fabrics for ladies' wear.

British Railway Statistics.

Returns just issued cover two years-1859 and 1860-and show the annual traffic of all kinds, and the annual working expenditure, in the bulk and in detail. There were at the end of $1860,10,433$ miles of railway in use, or 43 I miles mure than in the previous year. The total passenger traffic over these lines was $163,435,678$, or $13,678,384$ more than in 1859.

The total returns from all sources of traffic in 1859 was $£ 25.743 .502$, and in 1860 this was increased to $£ 27,766,662$. If we turn to the table showing the working expenditure, we find some striking figures. The actual cost of working 10.433 miles of railway in the United Kingdom is $£ 13$,189,368 . In this item are ineluded $£ 2,437,362$ for maintenance of way; $£ 3,801,282$ fur locomotive power ; $£ 3,699,708$ for traffic charges, (conching and merchandise;) and no less than $£ 181,170$ for "compensation," a charge alone of 1.37 per cent. The grent items of expense are thus:-maintenance of way, locomotive power and traffic charges; but repairs and renewals of carriages and waggons swallow up the $£ 1,118.7 \times 4$, and there is a cumprehensive item for our old acquaintance, "s sundries." Thus it comes about that the propirtion per cent. of expenditure to the total revenue is, in England, 48, in Scothand, 44, in Ireland, 40 , per cent. 'Scotland, therefore, seems to have the most cheaply - managed lines, and Ireland where railways pay no government duty, exceeds by one per cent the Scottish cost of management. These enornious figures explain the comparatively low dividends of railway companies; for the $£ 14,561,118$ available for division has to be distributed aming the shareholders who have contributed the $£ 330,000,000$ of capital sunk in our railways.

A. Canadian Flax Mill.

The Paris Slar contains an account of a visit to the flas mill of Mr. J. Brown, situated in Warsaw, townshin of Bleinheim, near the Richwood Statin n of the Buffalo and Lake Iluron Railruad. The

Star says: Mr. Brown has cultivated 180 acres of flax this year, and two hundred and twenty acres more; so that when the season's operation are complete, he will have prepared for market the product of four hundred acres. The Wolverton Mill is in charge of Mr. William Armour.. The flax-straw comes to the mill in small bundles or sheaves, denuded of the seed, and with the pith so much decomposed as to be easily separated from the fibre. In this state it looks very much like hay tied up in small bunches. The first process through which it is put is one designed to breats the pith into fragments. This is done by passing the straw repeatedly through heary-fluted iron rollers. When the pith is sufficiently broken, the straw is taken to another machine, consisting of a series of knives about two feet long, made to revolve rapidly, each knife striking the straw as it passes and pulling out the pith from the fibre. This has to be done repeatedly, handful by handful till the whole is reduced to a bunch of soft silky fibres. In the last mentioned process a quantity of short fibre is pulled out with the refuse pith, this is tow and is used in the manufacture of coarsc ${ }^{\circ}$ cloth.-Essex Juurnal, December 14th, 1861.

TO INVENTORS AND PATENTEES IN CANADA.

Inventors and Patentees are requested to transmit to the Secretary of the Board short descriptive accounts of their respective inventions, with illustrative wood-cuts, for insertion in this Journal. It is essential that the description should be concise and exnct. Attention is invited to the continually increasing value which a descriptive public record of all Canadian inventions can scarcely fail to secure: but it must also be bnrne in mind, that the Editor will exercise his judgment in curtailing descriptions, if too long or not strictly appropriate; and such notices only will be inserted as are likely to be of value to the public.

TO CORRESPONDENTS.

Correspondents sending communientions for insertion are particularly requested to write on one side only of half sheets or slips of paper. All communications relating to industry and Manafactures will receive carefal attention and reply, and it is confidently boped that this department will become one of the most valuable in the Journal.

to manufactures and mechanics in CANADA.

Statistics, hints, facts, and even theories are respectfully solicited. Manufacturers and Mechanics can afford useful coöperation by transmitting descriptive accounts of Local Industry, and suggestions as to the introduction of new branches, or the improvenient and extension of old, in the localities where they reside.

TO PUBLISHERS AND AUTHORS.

Short reviews and notices of books suitnble to Mechanics' Institutes will always have a place in the Journal, and the attention of publishers and nuthors is ealled to the excellent advertising medium it presents for works suitable to Publjo Eibraries. A copy of a work it is desirel should be noticed can be sent to the Secretury of the Board.

