

CIHM Microfiche Series (Monographs)

> ICM引
> Collection de microfiches (monographies)

Thè Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter anty of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.
-
Coloured covers/
Couverture de couleur
Covers damaged/
Couverture endommagée
Covers restored and/or laminated/
Couverture restaurde et\%ou pelliculée

Cover title missing/
Le titre de couverture manque

Coloured maps/
Cartes géographiques en couleur

Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)*

Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion
along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible. ces pages n'ont pas èté filmées.

L'Institut a microfilmé le,meilleur exemplaire qu'il lui a été possible de se procurer. Las détails de cet exemplaire qui soñt peut-ftre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/

Pages de couleurPages damaged/
Pages endommagées

Pages restored and/or laminated/
Pages restaurdes et/ou pelliculbesPages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquéesPages detached/
Pages dátachées

Showthrough/
TransparenceQuality of print varies/
Qualité inégale de l'impressionContinuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index

Title on header taken from: /
Le titre de l'en-téte provient:Title page of issue/
Page de titre de la livraisonCaption of issue/
Titre de départ de la livraisonMasthead/
Gènérique (périodiques) de la livraisonAddritional comments:/
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed hpre has been reproduced thanks to the generosity of:

National Library of Canada

The images appearing here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

1

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impression, or the back cover when appropriate. All other original copies are filmed beginning on the first page with a printed or illustrated impression, and ending on the last page with a printed or illustrated impression.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"), whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'exemplaire filmé fut reproduit grâce à la générosité de:

Bibliothéque nationale du Canada

Lés images suivantes ont été reproduites avec le plus grand soin, compte tenu de la condition et de la netteté de l'exemplaire filmé, et en conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papier est imprimée sont filmés en commençant par le premier plat et en terminant soit par la dernière page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la première page qui comporte une empreinte d'impression ou dillustration et en terminant par la derniàre page qui comporte une telle empreinte.

Un des symboles suivants apparaitra sur la derniére image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole ∇ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction différents. Lorsque le document est trop grand pour être reproduit en un seul cliché, il est filmé à partir de l'angle supérieur gauche, de gauche à droite. et de haut en bas, en prenant le nombre d'images nécessaire. Les diagrammes suivants illustrent la méthode.

1	2	3
4	5	6

THE

LAYING 0F THE CABLE,

OR
\section*{THE OCEAN TELEGRAPH;}
beina

A COMPLETE AND AUTHENTIC NARRATIVE
attempt to lay the onble across the entrance to the gulf of st. Lawrence in 185s,

AND OF THE

THREE ATLANTIC TELEGRAPH EXPEDITIONS

OF. 185' 1 ND 1858:

WITE A DETAILED ACCOUNT OF
THK - MECHANICAL AND SCIRNTIFIC PART OF THR WORK, AS WELL AS BIOGRAPHICAL SKETCIES OF MESSRS. CTEUB W. FIELD, WILLIAM E EVERETT, AND OTHER PROMINENT PERSONS CONNECTED WITH THE ENTERPRISE O

LLLCETRATED WITLI POHTRAITS, ENGRAVINOS OF THE MAORINERY, AND GOENES IN THR PROGRESS OF TAK ERRAT FOKK.

BY
JOHN MULLALY, HISTORIAN OF THE ENTERPRIBE.

NEW YORK :
D. APPLETON AND COMPANY, $846 \& 848$ BROADWHY.
1858.

Errised sceording to Act of Congrems, in the year 185s,
Hy D. APPLETON \& CO,
In the Clerk's Offlee of the District Coart of the Cinited States for the Soathern Distriet of New York.

PREFACE.

Ir was the good fortune of the author to have been on board the U.S. frigate Niagara during the Atlantic Telegraph expeditions of 1857-'8, and to have been present on the occasion of the landing of the cable in Newfoundland on the memorable 5th of Augast. While on these expeditions he acted in the capacity of special correspondent of the New York Herald, and in that position collected a large amount of information in regard to the history, 1 rogress, and successful completion of the great enterprise. -This he embodies in the following pages, and it is enough to say that he was present at every
 step in the progress of the undertaking; that he knew the men by whom it was so successfully carried on, and that he has faithfully endeavored to deserve the title which he has received of "Historian of the Enterprise:"

He takes advantage of this opportanity to return his thanks to the ward-room officers of the Niagara for the many kindnesses and courtesies which he received at their hands during the eleven months he spent on board that ship as their guest, and to Captain Hudson for the
privileges he was permitted to énjoy on the two cruises which be made with that gallant commander. To Mr. Cyrus W. Field, from whom he obtained much of the information herein presented, he desires also to express his sincere acknowledgments for the many acts of personal friendship for which he is indebted to that gentle "man. He would likewise take this occasion to return his thanks to Messrs. Markwell and Arcedeckne of Condon, who were unremitting in their kind attentions during his visit to that city.

CONTENTS.

CONTENTS.

- Orem and History of time Atlamtio Thergrapa,等
Biograpinoal Sketohes of the Men of tife Enterpribs, 86
Cyrus W. Field, 26
${ }^{1}$ Prof. S. F. B. Morse, 34
Mr. Wur. E. Everett, 39
Mr. Woodhoune, 48
Mr. Canning, 48
Mr. De Sauty ${ }_{\text {n }}$ 48
Mr. Olifford, 44
Mr. J. C. Laws, 44
Mr. Chass. T. Bright, 44
Mr. Whitehouse, 44
Prof. Thomson, 145
Mr. J. W. Breth 45
Mr. Appold, 46
Captain Hodson, 46 46
Captain Preedy, 48
Captain Da: そan, 49
Captain Aldham, 50
Captain Qtter, 60
The Newfoundland Subuarine Teleqraph, 61
The Newfoundland Cable, 61 61
Fibgt Atlantio Telgoraph Expidition, 76
Life on board the Niagara, 77
Arrival of the Niagara in England, 91
Preparation of the Niagare at Portsmonth, 94
The Ceiling of the Cable, 99
The Niagara and Telegraph Fleet at Queenstown, 108
- Departure of the Squadron for Valentia Bay, 104
The Atlantió Telegraph Platean, 105
The Infusoria of the Platean 110
The Great Ocean Oable, 114
The Paying-out Machinery, 118
The Machinery for Winding-in, 180
Stowage of Coils on the Niagara, p10n The Cable Guards The Cable Guards 128 128 124 124
Passage to Valentia Bay, and Trial of the Machinery,
Passage to Valentia Bay, and Trial of the Machinery,
The Laying of the Cable from Valentia Bay, 126
First Day, August 6, 188 188
Second Day, 133
Third Day, 186
- Fourth Day; 141
Fifth Day, " 10, 144
Sixth Day, " 11, 147
Bound for Plymouth, 150
Arrival at Plymouth, 152
Tifi Sroond Atlantio Trlegraph Exprdition- 150
The Niagare again at Plymouth,
161
161
Inspection of the Payiog-ont Maohine,
172
172
The.Telegraph Squadron,
The.Telegraph Squadron,
174
174
The Engineering and Electrical Oorps, 176
The, Coiling Process Illustrated
177
177
The Cable Oircus, the Cone and Fairleaders,
184
184
The Coils, \&ce., on the Agamemnon, 186
The Coils, \&ro., on the Niagara
187
187
The Cable Guards,
The Cable Guards,
188
188
The Machine that laid the Oadber
190
190
The Cable Buoys, 197
Exprrimental Thip to the Bay of Breoay,
198
198
Second Day
Second Day
202
202
Third Day,
Third Day,
204
204
Mr. Evirett's Report on the Paying-out Maohons, 206
Unsuoorespul Expidition of 1858,
208
208
Commencement of the Work,
212
212
The Storm
224
224
Return of the Squadron, and arrival at Queenstown 288
The Final Exprdition of 1858-.The Cable laid, .
Ceremony of Laying the Cable, 240
First Day, July 28, 245 245
Second Day, " 30 ,
Second Day, " 30 ,
y. Third Day, " 81, 252
Fourth Day, August 1, 257
Fifth Day, m" 2, 860
Sirth Day, " 8, 268
Beventh Day, " 4, 265
Landing of the Qable, 269 269
Eighth Day, Augnat 5 271 271
First Announcement that the Oable is laid, 271 271

CONTIEATTA.

Founding Niagara City, P401
Home Echoes of the Glad Tidings, 283
Visit to the Telegraph Station, 286
Departure from Trinity Bay, and arrival at Bt. Johns, 291
Homeward Bound, 297
Arrival of the Niagara in New York, 298
The Queen's Message, 299
The President's Message, 300
The Niagara as she appeared after the Cruise, 800
Official Reports, 304
Report and Log of the Engineer, W. E. Everett, 814
Laying and Landing the Oable on the European 821 821

LIST OF ILLUSTRATIONS.

portrait of cyrus w. field,
498 97PORTRAIT OF W. E. EVERETT,
40
portrait of capt. W. L. ifudson, 47
ENTRANCE TO ET. JOHN, 66
shouting rock, near gt. JOHN, 50
HARBOR OF PORT AU RASQUE, © 0
TAKING THE RAFT ABHORE, 65
TAKLNG TIIE CABLEASHORE, 66
THE JAMES ADGER AND sARAII L bRYANT LEAVING CAPE RAT, 70
THE VICTORIA TOWING THE BARAH L. BRYÄNT, 76
the niagara and tender, 94
COILING SCENE ON BOARD THE NLAGARA, 102
higuly magnified infusoria taken from the thlegrapi plateau 11
END AND SIDE GECTIONS OF CABLE AND END OF GHORE CABLE, 116
THE PAYING-OUT MACHINERY, 119
FRICTION BRAKE OF PAYING-OUT MACHINE, 120
THE WINDLNG-IN MACHINE, 181
SEOTION OF THE FRICTION BRAKE, 188
gection of the nlagara with the cable on board, 188
8TERN OF THE NIAGARA, SHOWING CABLE GUARD, 194
gTERN AND sUBMARINE CABLE GUARD OF THE AGAMEMNON, 125
valentia bay, the rastern terminua of the atlantio telegrapi, 199 oolling in a cable cibcus, 178
gection of the nlagara, showing the giowage of the coms in the FORE PART OF THE SHIP,18
THE CABLE CIRCUS, THE CONE AND FAIR-LKADKRE, 185
8ECTION OF THE AGAMEMNON, WITH OABLE ON BOARD, 187
gTERN GUGRD OF THE NLAGARA, 188
gectional view of the nlagara, 188
gTERN GUARD OF THE AGAMEMNON, 180
THE PAYING-OUT MAOHLNE, 191
THE BRAKE WHEEL AND ITS CONNECTION, 19
GHOWING TIIE AOTION OF THE BRAKE, 1\%
FRONT GECTION OF PAYING-OUT MAOHINE, 19
SHEAVE WHEEL AND TAR BGRAPERS, 107
paying out the dable dubing the trial trip, 900
splicing of oable, 918
THE AGAMEMNON IN THE GALE OF JUNE, 1868 889ATLANTIO TELEGRAPH COMPANY' BTATION HOUSK,808
NEW YORK AND NEWFOUNDLAND TRLEGRAPH BTATION, 81

$P .12$

ORIGIN AND HISTORY OF THE ATLANTIC

TELEGRAPH.

In 1852 an act was passed by the Legislature of Newfoundland, incorporating certain parties for the organization of a company to construet a telegraph line across the island, extending from St. Johns on the eastern coast, to Cape Ray at its south-western extremity. Their object was to place New York and every city of the United States and British provinces within six days' communication of Europe, for the idea of a submarine telegraph had not yet taken practical form and shape. The better to carry this plan into execution, it was proposed to run a line of steamers from Galway in Ireland to St. Johns, Newfoundland, and to send the intelligence which was received on the arrival of the steamers at the latter port to Cape Ray, and thence by a small steamer connecting with the nearest available point on Cape Breton, from which it would then be transmitted by the land lines to all parts of the continent. This company failed, however, to fulfil the terms of their charter, and finally became utterly bankrupt, leaving some fifty thousand dollars unpaid, and this owing chiefly to the operatives on the line. While the company wai in this insolvent condition, its engineer, Mr. Fred. N. Gisborne, applied to Mr. Matthew D. Field, who was at that time in New York, to aid them in procuring a loan for the continuance of the work. Mr. Field immedistely presented the subjeet to his brothers Cyrus W. and David Dadley Field, and urged them to bay bonds of the company convertible into stock, or to subscribe for stock, and induce their friends to do the same. Mr. Cyrus Field took the sabject into earnest consideration, and struck with the idea of establishing telegraphic communication between Europe and America by a submarine cable stretching from Newfoundland to Ireland, he wrote two letters, one to Lient. Maury, with a view of consulting him about the practioability of submerging such a cable between the points proposed, and the other to Professor Morse, in regard to the electrical difficulties of the undertaking. In reply to these letters he received the most gratifying assurances of the practicsbility of the scheme from both these high
scientifio anthorities. This correspondence took place in February of 1854, and thus satisied of its feasibility, the two brothers resolved that an effort should be made to get up an association for the purpose of carrying it through. In reflecting apon the plan to be parsued, they came to the conclusion that it was better to confine the organization to a limited number of persons, in order to secure greater onity and decision. The following gentlomen were accordingly invited to Mr. Field's residence : Peter Cooper, Chandler White, Moses Taylor, and Marshall O. Roberts; and here we will lot Mr. David Dudley field relate this part of the history.
" They met Mr. Cyrus W. Field and myself at his house, where, around a table covercd with rifips, plans, and estimates, the subject was discussed for four successive evenings, the practicability of the undertaking examined, its adrantages, its cost, and the means of its accomplishment. The result of the conference was the agreement of all the six gentlemen to enter upon the undertaking. Mr. Cyrus W. Field, Mr. White, and myself wero to proceed to Newfoundland to procure a charter, and such aid in money and privilcges as the government of that istand could be induced to give. The agreement with the Electric Telegraph Conipany, and the formal surrender of its charter, were signed on the 10 th of March, and on the 14th we left New York, accompanied by Mr. Gisborne. The next morning we took the steamer at Boston for Halifax, and thence, on the night of the 18th, departed in the little steamer Merlin for St. Johns, Newfoundland. Three more disagreeable days voy. agers scarcely ever passed than we spent in that smallest of steamers. It scemed as if all the storms of winter had been reserved for the first month of spring. A frost-bound coast, an icy sea, rain, hail, snow and tempest, were the greetings of the telegraph adventurers in their first moyement towards Europe. In the darkest night, through which no man could see the ship's length, with snow filling the air and flying into the eyes of the sailors, with ice in the water, and a heavy sea rolling andmoaning about us, the captain felt his way around Cape Race with his lead, as the blind man feels his way with his staff, but as confidently and as safely as if the sky had been clear and the sea calm; and the light of morning dawned upon deck, and mast, and spar costed with glittering ice, but floating securely between the mountains which form the gates of the harbor of St. Johns. In that busy and hospitable town, we hrst person to whom we were introduced was Mr. Edward M. Archibald, then Attorney General of the colony, and now British Consul in New York. He entered warmly into our views, and from that day to this has been an efficient and consistent supporter of the undertaking. $\mathrm{B}_{\boldsymbol{f}}$ him we were introdueed to the Governor (Kerr Bailey Hamilton), who
uary of od that - earryame to imited The dence : berts; of the where, ct was taking ment. lemen e, and 1 such ld be pany, th of . Glislifax, Mer voymers. first and first h no into and. his and at of ring
also took an earnest interest in our plans. He convoked the Council to receive us, and hear an explanation of our views and wishes. In a few hours after the conference, the answer of the Governor and Council was received, consenting to recommend to the Assembly a guarantee of the interest of $£ 50,000$ of bonds, an immediate grant of fifty square miles of land, a further grant to the same extention the completion of the telegraph across the ocean, and a payment of $£ 5,000$ towards the constriction of a bridle path across the island, along the line of the land telegraph. Mr. Cyrus W. Field, thereupen, on the 25th of Mareh, took the return steamer from St. Johus, on lis way to New York, in order to fit out a steumer for the service of the company, while his two associates remained in Newfoundland, to obtain the charter and carry out the arrangements with the former company. They continued there nearly five weeks, during which, after many diseussions and negotiations, the charter was at length obtained, and the $\$ 50,000$ of debt of the old company was thẹreupon paid. The charter was liberal and provident. After declaring that it was 'advisable to establish a line of telegraphic communication between Amerioa and Europe, by way of Newfoundland,' it incorporated the associates for fifty years, established perfeet equality in respect to corporators and officers, between itizens of the United States and British subjects, allowed the meetings of the stookholders and directors to be held in New. York, or in Newfor adland, or in London, conoeded the exclusive right to establish a telegraph from the continent of America to Newfoundland, across the ocean, granted fifty square miles of land; and, further, provided that 'so soon as the said company shall have actually established a oommunication across the Atlantic ocean, by means of a submarine cable or wire from this island, the said company shall receive from the government of this island a grant of fifty square miles of ungranted and unoccupied wilderness land, to be selected by the said company, in addition to the grants hereinbefore mentioned,' a provision subsequently extended, so as to permit the company, to establish the communication by an auxiliary or associate company. In the early part of May, the two gentlemen who had remained behind in Newfoundland rejoined their associates in New York, and there the charter was formally accepted and the company organized. As all the associates had not arrived till Saturday evening, the 6th of May, and as one of them was to leave town on the morning of Monday, it was agreed that we should meet for organization at six o'clock of that day. At that hour they eame to ny house, and as the first rays of the morning sun streamed into the windows, the formal organization took place. The oharter was acoeptad, the atock subscribed, and the offioe-" ${ }^{2}$ psen. Mr_{2} Oooper: Mr. Taylor, Mr. Field, Mr. Roberts and Mr. Whave were the firstde
reetors. Mr. Cooper was ohosen president, Mr. White vice-president, and Mr. Taylor, treasurer. Thus was inaugurated that great enterprise whose eompletion wescelebrate to, day. The plan was formed, the arrangements made, and the work begun. What followed was the erecution of the great design. From the 8 th of May, 1854, to the 5th of August, 1858, there searcely passed four yeiars and three monthe; but they wore as fruitful of anxiety and toil as of suecessfal results. The land line aeross the island of Newfoundland-upwards of four hundred miles -was first to be mado. This was a work of ineredible labor. The country was for the most part a wilderness of rook and morass, 'a good and traversable bridle road eight feet wide, with bridges of the same width,' had to be made the whole distance; men, materials, and provisions had to be transported first from St. Johns to the heads of the: different bays on the southern coast, and afterwards chicfly on men's backs to the line of road. The first year Mr. White, as vice president;' directed in person the operations; the second and third years superintendents were sent down. In addition to the land line in Newfound. land, another of one hundred and forty miles in Cape Breton was constructed, and contracts made with companies in Nova Seotia, New Brunswick, Maine, New Hampshire, Massachusetts, Connectiout and New York, to connect their lines with the Newfoundland line. Then there was the submarine line between Newfoundland and Cape Breton, eighty-five miles in length, and another thirteen miles long across Northumberland Straits to Prinos Edwayd Island. To procure these Mr. Cyrus W. Field visited England twice-onee in December 1854, and again in January 1856. The first attempt to lay the submarine line across the Gulf of St. Lawrence was made in 1855, and wansuecessful. A second attempt made thé next year suceeedod. Thus was completed the chain of Telegraph from New York to the eastern coast of Newfoundland, and the projectors now stoed upon the ahore of the Atlantic in their progress eastward.
"The whole expense thus far with yery trifing exceptions, had fallen apon them-Mr. Cyrus W. Field having made the largest contributions -amounting to more than two hundred thousand dollars in moneyand Mr. Cooper, Mr. Taylor and Mr. Roberts each a little less. No other contributors beyond the six original subscribers had come, ex. eept Professor Morse, Mr. Robert W. Lowber, Mr. Wilson G. Hunt, and Mr. John W. Brett. The list of directors and officers remains to this day as it was at first, except that Mr. Hunt, as director, has taken the place of Mr. White, who died in 1856, and that Mr. Field is vice president and Mr. Lowber seeretary. In all the operations of the company thus far, the various negotiations, the plan of the work, the
ribe-president, eat enterprise , tho arrangeexecution of August, 1858, at they were he land line ndred miles labor. The "ass, 'a good of the same ds, and procads of the ly on men's e président,' rrs superinNewfound. 11 was concotia, New ctiout and ine. Thep pe Breton, ass Norththese Mr. 1854 , and arine line ansuocesswas comcoast of f the At and fatlen ributions moneyess. No ome, exł. Hunt, remains as taken 1 is vice of the ork, the
oversight of its execution, and the correspondence with the officers and others, mainly devolved upon Mr. Cyrus ${ }^{*}$ W. Field.
"The greatest and most difficult part of the original deaign still remained to be executed, and that was the submarine cable from New. foundland to Ireland. The distance was 1,950 statute miles; the sea was stormy and uncertain; no submarine line of more than three hundred miles had then been attempted. In anticipation of the task now to be undertaken, Mr. Fiold, on his first visit to England in 1854, had invited manufacturers to furnish him with speaimens of cable which they would recommend, and estimates of its cost, and he had entered into correspondence with various persons on the subject. In 1856, he procured an order from our government under which Lientenant Berryman made soundings of the Atlantic between Newfoundland and Ireland. Lieutenant Berryman sailed on that service on the 18 th of July, and the next day Mr. Field sailed for England, hating received the formal consent of the company to make arrangements in England for the submarine line, either by a subsoription to this company, or by organizing' a new company as auxiliary or associated with this. In England he had invited the co-operation of Mr. Brett, a gentleman of great experience, who in 1851 formed a company whioh had laid the first submarine cable from England to France. He afterwards brought in Mr. Edward O. W. Whitehouse, eleotrician, and Mr. Charles T. Bright, engineerboth gentlomen of high soientific sttainments. These four gentlemen on the 29th of September, 1856, entered into formal agreement to use their exertions for the formation of a new company, to be called tho Atlantic Telegraph Company; the object of whioh should "be to continue the existing line of the New York, Newfoundland and Loadon Telegraph Company to Ireland, by making or causing to be made, a submarine telegraph cable for the Atlantic.' This done, Mr. Field issued on the 1st of November, 1856, a circular signed by him, as Vice President of the New York, Newfoundland and Londoñ Telegraph Company."

The following is the circular referred to by Mr. Field:

THE ATLANTIC TELEGRAPH.

' Fifteen years have barely elspsed since the succese of the first line of eleotric telegraph demonstrated the immense praotical importance of that invention.
' Its rapid adoption by almost every oivilised nation, already givea promise of even greater things than-it has yet socomplished-in the furtheranoe of social and commercial intercourme.
' It is, however, only within the last five years that practical men have wrought out suocessfully the application of the same principles to the still later problem of the submarine telegraph.
' Surrounded by every specien of difficulty whioh besets a new and untried path, Mr, Brett, with the aid of a few assooiates, achieved in 1851^{\prime} his first sucoes in the electrio union of France and England.
' The result of this decisive experiment, favorable alike in its national, commercial, social, and, though last not least, in its remunerative aspects, has been such as to disarm all prejudioc, and to encourage a desire for the utmost possible extension of similar undertakings.
${ }^{6}$ 'England ia now united by six dintinct submarine cables to adjacent cosats, and other countries have not been slow to oatch her spirit of enterprise in this important application of ecience to the wants of man.
' America alone; the greatest and most' progressive of all the nations with whom we have intercourse, has hitherto been debarred from participating with us in' the advantages of eleletric intercommunication, 'while the idaily increasing requirements of the two nations render such an inatitation more than ever necessary to the well-being of both.
'The genius of seience and the spirit of commerce alike demand, that the obstacles of geographical position and distance alone shall no longer prevent the accomplishment of such a nion.

* Under the influence of these considerations, the subject of establishing a telegraph to America has been largely and anxiously studied on both mides of the Atlantic.
What 'The carreful and elaborate investigations of Lieutenant. Manry, of the U. S. Navy, into the physical geography of the sea, threw nem light apon what had been supposed to constitute the chief endinderich diffioulties of anch an enterprise. Histhear and accurate definity the currents of the ocean, and the mounding of the Atlan imperfeotly known previous to his researches-have developed an extraordinary, and, to speak with reverence, a providential fact. The two conditions to be ohiefly desired for the successful submersion of a telegrain ${ }^{2}$ cable are, the absence of currents interfering. with the steady. and Newfoundland; whioh ponsenses the additional advantage of being the shortest possible roate between the shores of the Old and New Worlds. So marked, indeed, are those featurea, and so favorable is
their bearing on the great project, that they seemed to the discoverer at the tige dachroxidential, as to justify his derignation of it as the

fertho minty current which taken its rise in tho Qulf of Mexieo, and flown not timud as far us the banks of Newfoundland, washes the eastern Whores of the United States with great forte; and tho precipitous hollowe 3 andexisting in its courne would render a route to the eouth of the banks impractieable for telegraphic purposea. Immediately to the north of the great bants these abysses cease to exist. Stretching away in a direct line from St. Johns, Newfoundland; to the bay of Valentia, on the Irish coast, lies the vast sub-oceanic plain already referred to, which is situated in the line of nearly absolute rest of the waters of the Atlantic, the bed of which has been shown, by the specimons obtained on sounding, to consist'throughout of the most minute microscopic shelle, . $_{0}$ which, from their delicate organism and the perfeot state in which they are found prove tho utter absence of all motion in the water surrounding them. To use the words of the highest authority on the subject,"" this platcau is not too deep for the cable to sink down and rest npon, and yet not so shallow that currents or icebergs or any abrading force can derange the wire after it is once lôdged upon it:"
' In April, 1854, a company was incorporated by act of the Colonial Legislature of Newfoundland for the parpose of establishing a line of telegraphio communication between Amerioa and Europe. That gorernment evinced the warmest interest in the undertaking, and in order to mark substantially their sense of its importance, and their desire to give to it all the aid and oncouragement in their power, they conforred upon it, in addition to important privileges of grants of land and sabsidy, the sole and exclusive right of landing telegraphic lines on the shores (4) land, the whole Atlantic coast of Labrador from the entrance of Eudson's Straits to the Straits of Bolle Isle. This act of the Colonial Legislature was subsequently ratified and confirmed by Her Majosty's Government at home. The company also obtained in May, 1854, an exclusive charter from the government of Prinee Edward's Island, and afterwards from the State of Maine, and a charter for telegraphio operations in Canada.
' The exclusive rights absolutely necessary for the encouragement of an undertaking of this nature, having thus boen necured along the only seaboard eligible for the western terminus of a Kuropean and American eable, the company in the first instance commenced operations

[^0]by proceeding to conncot St. Johns, Newfoundland, with the widely ramified tclegraph system of the British North American provinces and the United Ştates. This has been recently completed by the subraersion of two cables in connection with their land lines: one, eighty-five miles in length, under the waters of the Gulf of St. Lawrence, from Cape Ray Cove, Newfoundland, to Ashpee Bay, Cape Breton; the other, of thirteen miles, aeross the Straits of Northumberland, connecting Prince Edward's Island with New Brunswick. Electric commanication is thus eatablished direet from Newfoundland to all the British Ameriean Colonies and the United States.
' On the Irish side, lines of telegraph have been for some time in operation throughout the country, and are connected with England and the Continent by submarine cables. The only remaining link in this electric chain, required to conneet the two hemispheres by telegraph, is the Atlantie cable.
'The New York, Newfoundland, and Londen Telegraph Company being desirous that this great undertaking should be established on a broad and national basis, uniting the interests of the telegraph world on both sides of the Atlantic, have centered into alliance with persons of importance and influence in the telegraphic affairs of Great Britain: and in order, at the same time, to obtain the fullest possible information before entering upon the crowning effort of their labors, they have en. deavored to concentrate upon the various departments of the undertaking the energies of men of the highest acknowledged standing in their profession, and of others eminently fitted for the work, who were known to have deroted much time and attention to the subject.
'The route between the two shores had already been minutely suryeyed by Lieutenant Maury, whose name alone annongst nautieal men is a sufficient guarantee for the acouracy of the results obtained, and whose personal counsel and co-operation the promoters are authorized to say will be given to the undertaking in bringing it to completion. . The data obtained by him haive received the most ample corrobelation in the recent speeial soundings taken by order of the United States Government, at the instanec of the New York, Newfoundland, and London Telegraph Company, by Licutenant Berryman, U. S. ateamer "Afotio," whose valuable and able assistanco the company wish to acknowledge.
'It is with the highest satisfaction that the company are able to refer to the aid which Her Majesty's Government are inclined to give to their labors. A line of soundings taken at spots intermediate between those effected by Lieutenant Berryman, has been ordered by the Lords of the Admiralty to be made foriawith; and the readiness and cordiality with whioh every suggestion on the part of the promoters
the widely rovinces and the submer3, eighty-five rrence, from Breton; the I, connecting nmonication sh Ameriean
time in opeland and the ink in this telegraph, is b Company blished on a ph world on ${ }^{1}$ persons of sat Britain : information oy have enundertaking in their proe known to inutely surtioal men is , and whose ized to say etion. . The rroboation ited States and London : "Arotio," rowledge. ble to refer to give to ate between red by the adiness and promotera
has been met by their Lordships, and by those at the head of the several departments, call for the warmest thanks of all concerned in the undertaking.
' In the engineering department, advantage will again be taken of Licutenant Maury's invaluable advice in connection with the ruachinery employed in paying out the cable, and of the co-operation of others who have carried out the submersion of the submarine lines already laid. The soundings of the ocean along the plateau, which gradually increase from 1,000 fathoms to 2,070 fathoms at the middle and doepest part, present no obstacle in depositing a cable with regularity along a soft and almost level plaiu of such a nature--and the question of submerging a cable iu depths almost equal, and under less favorable conditions, has been already surmounted withent diffioulty.
' In order to determine various points connected with the electrical department of the undertaking, a continued investigation of all the phenomena connected with the use of long submarine circuits has been earried on during the last two years; and Professor Morse, who has recently visited England, has, for many days conseontively, gone into a rigid series of demonstrations on this subject in connection with those gentlemen who have devoted so much energy and patience to this department of the work. He declares his conviction that the problem is conolusively solved, and that the attainment of full commercial success is no longer doubtful.
' It may be mentioned here, that the possibility of readily and rapidly transmitting telegraphic signals beyond a certain distance by submarine wires, had been thrown into some doubt by the discovery of certain phenomena of induction and retardation, described by Professor Faraday.
'In the year 1854, at the instance of Mr. Brgtt, Mr. Wildman Whitehonse first took up the subject of the effecter of induction in long submarine conductors, in its relation to practical telegraphy, by commeneing a series of preliminary experiments upon a cable containing 660 mile of submarine wire. In the following year, when the great project of Transatlantio communication came more prominently into view, these experiments were continued more fully on 1,125 miles of similar wire, the results being obtained and recorded with the utmost care and accuracy, by means of apparatus contrived for the purpose, and new both in character and principle. Several facts of the highest importance to electrical science, and of the most encouraging nature as regards the (vondertaking, were thus determined; and in a still more extended series of experiments this year on $1,(100$ miles, condueted eonjointly by Mr. Whitehouse and Mr. Bright, Engineer to the Magnetio Telegraph Com-
pany, these two gentlemer have been enabled to realize and amplify every previous encouraging resalt, and at the same time to perfect instruments suitable for pra tical telegraphic use, and capable of working through almost unlimited lengths of submarine wire. The size of the conducting wire required for such distant operations has formed the subject of special inquiry with these gentlemen. They have finally established a claim to the foremost position in the scientifie department of the undertaking, by practically demonstrating to Professor Morse and others, on an unbroken length of over 2,000 miles of subterranean wire, the fact of telegraphic operations carried on with an amonut of aecuraoy and at a speed which determines at once the certainty of full commercial success. ${ }^{\text {- }}$
' Nothing can be more satisfactory than the result of those experimen. tal demonstrations, whieh have been verified by Professor Morse,-proving, as they do-First, that telegraphie signals can be transmitted without diffieulty through the required distance; Secondly, that a large conducting wire is not required for the purpose; and Thirdly, that the communication can be effected at a thoroughly satisfactory speed.
' All the points having a direct praotical bearing on any part of the undertaking have thns been subjected to a close and rigid serutiny; and the result of this examination proving to be in every respeet of the most favorable character, it remained only that those possessing the required power should take the initiative.
'The New York, Nowfoundland, and London Telegraph Company, possessing, in virtue of their charter, all the necessary powers, deputed their vice president to visit England in the summer of the present year; and they gave him full authority to make on their behalf such arrangements as ahould seem to him best fitted to carry forward the great work.
"The outline of the formation of the "Atlantic Telegraph Company" sufficiently explaias the nature of these arrangements.
'The expenditure to be inourred in carrying out the ondertaking. is small, compared with the magnitude and the national importance of the work.
'The Projectors confidently anticipate having the cable completed in time to lay it in the sainmer of 1857, and under any oircumstancoi, not later than the spring of 1858 . It is proposed to employ two steamships in the submersion, each laden with half tho cable, and that they shall proceed together to a point half way between the two coasts. The two ends of the cable having been carefully joined together, the vessels will otart in opposite directions, one towards Ireland and the other towards Newfoundlaud, uncoiling the cable and exohanging signals through it
cud anaplify perfeot inof working size of the formed the rave finally department Morse and anean wire, of accuraoy commercial 8, deputed seent year; h arrangethe great nee of tho
from ship to ship as they proceed. By this means, the period ordinarily required for traversing the distance between the two coasts will he lessened by one-half, each vessel having only to cover 820 nautical miles in order to finish the task assigned to it. It is expected that the operation of laying the cable will be completed in about eight days from the time of its commencement.

It is no less fortunate than remarkable that the greatest depth and difficulty will thus be eucountored first; hence, should any acoident opeur, it can only involve the loss of a very few miles of cable; this of safely accomplished, the progress of the vessels in the process of submersion will be hourly attended with less and less difficulty and rimk.
4. Tie grandeur of the undertaking eonstitutes a sufficient guarantee for its commercial success when earried out; as, in addition to the great use of the cable by the governments on each side of the Atlantio, and in ordinary social intercourse, it will oonstitute the chief mediam through which all the important business transactions between the Old and New World will be effected. The transmission of intelligence for the press in both Continents will also form a most important feature of its usofulness.

It will readily be admitted that the number of messages at present passed along the wires to or from a single oapital like London," where the rapidity of railway transit renders the Post Office a powerful competitor, will scareely constitute any criterion of the probable amount of traffic through a cable affording the only rapid means of communication between two vast and civilized Continents, and whioh in its operation will shorten the period of an interchange of correspondence almost from a month to an hour, and to which the whole of both networks of telegraph lines, alrcady established throughout Europe and Amerioa, amounting to not lest than 100,000 miles, will aet as feeders. A very limited number of commeroial nuessages forwarded from each side daily, occupying the cable but a few hours, will, withont any other sourecs of revenue, produce a large return on the entire capital.

The difference of longitude between the two Continonts presents another important consideration connected with the advantageous working of the line; for, owing to the time in Amerion being nearly five hours later than in Europe, the whole of the businoss messages of the day transmitted from this side between 10 A.m. and 3 p.m. will havo arrived in America by the time the mereantile community in the various

[^1]cities and towns throughont the New World have commenced business, and the cable be thus perfectly clear for the return flow of messages to Europe.

Whilst, however, the revenue of such a line must, on the lowest estimate, be exceedingly remunerative, the working expenses, being limited to the two terminal stations, will necessarily be very small. Under such circumstances, it appears diffieult to over-estimate the commercial returns that will acerue from this andertaking.

> (Signed)

Crrus W. Field,
Vice-President of the New York, Newfoundland, and
London,
November 1st, 1856.
"Withoot waiting for the formation of the new company," continues Mr. ${ }^{\text {ºn }}$ Field, "my brother, on behalf of the Newfoundland Company, mads application to the British government for its aid in ships and money, and received on the 20 th of November a letter from the Treasury, which I ann tempted to read, promising ships to assist in laying the cable, and a fixed yearly sum in payment for government messages. He also personally solicited bankers and merehants in London for subseriptions, and, with Mr. Brett, visited Liverpool and Manchester to address publio meetings. He subscribed $£ 100,000$ towards the capital of $£ 350,000$, and Mr . Brett followed with a subseription of $£ 25,000$. A-day or two after the Treasury letter was received, the subscriptions were closed, when it was found that the applieations for stock exceeded the capital by about $£ 30,000$, so that on the final allotment Mr. Field had eighty-eight shares and Mr. Breté twelve."

The Treasury letter referred to, reads as follows:
Treasdiy Cmanbers, Nonember 20, 1856.
Sir: Having laid"before the Lords Commissioners of her Majesty's Treasury your letter of the 13th ultimo, addressed to the Earl of Clarendon, requesting, on behalf of the New York, Newfoundland" and London Telegraph Company, certain privileges and protection in regard to the line of telegraph which it is proposed to establish between Newfoundland and Ireland, I am directed by their lordships to acquaint you that they are prepared to enter into a contract with the said Telegraph Company, based upon the following conditions, viz.:

1. It is understood that the capital required to lay down the line will be ($£ 350,000$) three hundred and fifty thousand pounds.
2. Her Majesty's Government engage to furnish the aid of ships to take what soundings may still be considered needful, or to verify those already taken, and favorably to consider any request that may be mado to furuish aid by their vessels in laying down the cable.
business, essages to he lowest es, being ry small. the com-

Field, dland, and zontinues Jompa ny, hips and ie Treasin laying nessages. for sublester to c capital C 25,000 . criptions axceeded Ir. Field
3. The British Government, from the time of the completion of the line, and so long as it shall continue in working order, undertakes to pay at the rate of $(£ 14,000)$ fourteen thousand pounds a sear, being at the rate of four per cent. on the assumed capital, as a fixed remuneration for the work done on behalf of the Government, in the conveyance outward and homeward of their messages. This payment to continue until the net profits of the company are equal to a dividend of six pounds per cent., when the payment shall be reduced to $(£ 10,000)$ ten thousand pounds a year, for a period of twenty-five years.

It is, however, understood that if the Government messages in any year shall, at the usual tariff-rate charged to the public, amount to a larger sum, such additional payment shall be made as is equivalent thereto.
4. That the British Government shall have a priority in the conveyance of their messages over all others, subject to the exception only of the Government of the United States, in the eventof their entering into av arrangement with the Telegraph Company similar in principle to that of the British Government, in which case the messages of the two Governments shall have priority in the order in which they arrive at the stations.

5 . That the tariff of charges shall be fixed with the ennsent of tho Treasury, and shall not be inereased, without such nonsent being obtained, as long at this contract lasts.

I am, sir, your obedient servant,
James Wilson:
Crres W. Figld, Esq., 37 Jermyn street.
"Too much praise eannot be awarded," continued Mr. David Dudley Field, "to the English government and people for the zeal with which they eame forward in answer to the call made upon them. Money was obtained from individuals as freely as it was wanted, and the government outran even the people. (Applanse.)
"Returning then to America, Mr. Field, with his American assooiates, made application to the Government of the United States for aid, similar to that given by the English Government, and he applied to individuals for a participation with him in the stoek he had taken. Congress voted the aid requested after a vehement opposition, against which tho measure was carried in the Scnate by a majority of ono. Of the stock twenty-seven shares were taken in the United States."

And here closes the account of the organization of the entorprise. The biographical sketches of the men who were engaged in its suceessful accomplishment, and the narrative of the expeditions commencing with the first attempt to lay the Newfoundland eable, and ending with the final one on the 5th of August, will be found in tho following pages.

TIIE MIEN OF THE ENTERPRISE.

In an undertaking of such magnitude as that which forms the subject of this work, it would be unjust and invidious to give all the credit to any one man, for an enterprise of this kind requires such a combination of rare faculties and varied talents as is rarely, if ever, found in one individual. In the following necessarily brief sketehes of the men who played a prominent part in the managerial, the soientific, and nautical departments of the enterprise, the author has endeavor td to show their different relations with it, and to present a simple stat :ment of the facts to the public.

CYRUS W. FIELD.

Cyrus West Field was born in Stockbridge, Massachusetts, in November, 1819. His father was the clergyman of that place, and is still living at the advanced age of seventy-eight. His mother is also alive, and although lut a few years younger than her husband, is a woman of remarkable energy and vitality, both of whieh qualities seemed to haye been inherited to the fullest extent by the subject of this sketch. In 1853 nearly all their children were assembled beneath the old homestead to celebrate their golden marriage, and among them was Mr. Cyrus W. Field, who had arrived just in time for the purpose from an extended tour in South America. We should have said that all their children, consisting of seven sonsf and two daughters were present, and a still larger number of grandchildren.

The eldest of the brothers, David Dudley Field, is a lawyer, and occupies a high position at the New York bar,

Matthew D. Field, who is by profession a civil ongineer, was a State Senator of Massachusetts, and is now in connection with Major Ripley, late of the U.S. Army, proprietor of a valuable lead mine on the land of the New York, Newfoundland, and London Telegraph Company, within some fifteen miles of Trinity Bay.

Jonathan Edwards Field is a lawyer at Stockbridge, and stands at the head of the bar in his native county. He has also been a State
the suble credit a combiar, found of the ific, and or d to at mont
in No 1 is still so alive, oman of to haye ch. In bome: 'as Mr. a an ex. ll their nt, and and oo. a State Ripley, he land mpany,
unds at a State

Senator, and was at one time nominated for the office of Secretary of State of Massaohusetts.

Stephen Johnson Field is now Justice of the Supreme Court of California, and has lately distinguished himself by two dissenting opinions from the court-one in favor of the constitntionality of the law for the obsorvance of the Sabbath, and the other in regard to the Fremont claim.

Another brother, Timothy Field, ontered the U. S. navy as a midshipman, and was lost at sea.

Henry Field is a elergyman, and was pastor of a chureh in St. Louis, and of another in West Springfield, Massachusetts. He is now one of the editors of the New York Evangelist, and a literary man of muah
ability. A book which he wrote some years ago, entitled, "The Irish Confederates of 1798 ," is one of his best efforts.

Cyrus W. Field, the subject of this sketch, resolved, when quite a boy, to become a merchant, and with this determination came to New York in 1835, being about sixteen years of age. His brother David Dudley procured him a situation in the store of Mr. A. T. Stewart, with whom he served his apprenticeship. He remained with Mr. Stewart about four years, and when he left the establishment his fellow clerks testified their appreciation of his many good qualitics by giving him a dinner, at which were a large number of his friends. Soon after leaving Mr. Stewart he engaged in the manufacture of paper in Westifield, Massachusetts. In 1840, three months before ho reached his majority, he married Miss Mary Bryant Stone, of Milford, Connecticut. He remained at Westfield abont two years, at the end of which time he re-- turned to New York, and estaplished a paper warehouse, but failed when he had been a comparatively short time in the business. A compromise, however, was obtained with his ereditors, and having succeeded in procuring a release from his obligations, he again started in business. This time he was suceessful, and in 1852 had rcalized a large fortune. But his creditors were not forgotten, for, having lept a striot account of the balance which he believed was still due, notwithstanding the fact that they had released him from the obligation, he sent each of thom a check for the amount. Having thassed a competeney for life, he gave up the business to Mr. Stone, his brother-in-law, and started on a tour to South America with Mr. Churoh, the well-known artist. The first place at which they arrived was Carthagena, at the mouth of the Mag. dalena River, from whieh they went to Honda, and thence to Bogota From Bogota the travellers proceeded across the Andes to Quito on the baeks of mules, and from Quito to Guayaquil. At Guayaquil they took the steamer to Panama, and reaching Aspinwall by the shortest route, took passage at once for New York-Mr. Field arriving at home in time for his father's golden wedding.

During the summer of 1854 , the death of his brother-in-law, Mr. Stone, rendered it neeessary for him to resume his business relations with his former partners, and he once more entered upon the aetive duties of the establishment which he had left bnt a comparatively short time before.

- Mr. Field's conncetion with the great work, the successful turmination of which has brought hin so prominently befote the public, commeneod in the year 1854, from which time up to the present he bas been the very life and soul of the enterprise. As an the facts and details or his connection with both the Newfoundland and Atlantic telegraphs are given in the history of the tro companies, it is needless to repeat them
here. Thicre are some facts, however, which we cannot avoid giving in detail. In the summer of $\mathbf{1 8 5 6} \mathbf{~ M r}$. Field arrived at Liveopool en route for London, in order to procure speciméns and samples of cable from which to select one for the Atlantic Telegraph Company. In August of the shathe year, Lieut. Berryman, commanding the Arctic, entered Qucenstown, having surveyed and sounded the plateau between Ireland and Newfoundland. As soon as Mr. Field was apprised of it he set out for Cork, and having consulted with Lieut. Berryman, returned to London by way of Milford Haven, Wales. In the cars that started from Milford Haven was Mr. Brunel, the celebrated ongineer, whom Mr. Field recognized, and to whom be introduced himself. The subjeet of conversation was tho eable, and in course of it Mr. Field brought forward a portion of the cable submerged in the Gulf of St. Lawrence, the core of which is composed of sevent twisted strands, which form the conductor. "Why not have the outer covering of the Atlantic cable formed of twisted strands as well as the conductor," said Mr. Branel. "By that means you will have a stronger, lighter, and more flexible cable than if you retain the outer covering or armor of solid wire." By one of those strange coincidenees that often happen in every-day life, Messrs Glass and Elliott, the well-known gutta percha manufacturers, were also in the ears, and overhearing the conversation, joined in. During a ride of three hundred miles, the party so opportunely thrown together discussed this subject, and the result was an order to Glass and Elliott to manufacture a apecimen cable after the plan suggested by Mr. Brunel.

Mr. Field is, as the public are already aware, a man of the most indonitable cuergy and suceess; a man who seems to delight in meeting obstacles, that he may have the pleasure of overeoming them. No defeat, po matter how discouraging, disheartens or sways him from his purpose, to which be holds with remarkable tenacity. An illustration of this was presented on the 11th of August, 1857, when the cable parted. The disaster. had just occurred when the news spread over the whole ahip, creating a most painful excitement. Mr. Field, who had more at stake in the enterprise than any member of the whole company, and who might be supposed to feel the effects of the failure more than any one aboard, proved himself equal torthe emergency. Losing no time in vain regrets, he called a meeting at once on board the Niagara; at which Captain IIudson and the commanders of the other ships were present, and it which it was resolved to make a beries of experiments in view of the resumption of the undertaking the following October, or in the summer of 1858. These experiments were intended to test the practicability of splicing and laying the cablo from mid-ocean, and it is enough to say that they were successful. Having
made the arfangements for these experiments and ascertained the amount of cable paid out, Mr. Field started for England on board the Cyclops, one of tho British ships of the squadron, and on landing procceded at once to London. When Mr. Field reached London he found that the news of the failure had got there before him, and the directors and shareholders met him with what it would require a terrible latitude of expression to call enoouraging looks. A meeting of the Board was immediately called, at which Mr. Field set forth the prospects and condition of the enterprise, and showed, whatever doubts there might have been, there could be none now regarding its practicability. He infused new hope into the company, and arrangements were immediately entered into to renew the attempt during the present summer. We should state that at this time Mr. Field was simply a director, bat at the particular and special request of the company he subsequently accepted the position of general manager. His appointment to this office was made when he was in the United States, and as soon as he secured the pensent of the Government giving Mr. Everett, the Chief Engineer of the .ifiagara, leave of absence, for the purpose of designing and superintending the construction of the paying-out machinery, he returned to. England, where he arrived on the 16 th of January. But there are some other points whieh should be mentioned bere, showing the nature of Mr . Field's connection with the undertaking. About four" years ago, as we bave said, he interested himself for the first time in telegraphic enterprises, and with an energy that appcars to characterize every thing be undertakes, entered upon this new field. It was through his efforts and the efforts of Mr. David Dudley Field, Mr. Chandler White, Mr. Moses Taylor, Mr. Marshall O. Roberts, and Mr. Peter Cooper, that an association, called the "New York, Newfoundland, and London Telegraph Company," was organized, for the purpose of laying a cable across the Gulf of St. Lawrence, and of connecting with the line which the Atlantic Telegraph Company intended to lay between Europe and America. Mr. Chandler, who was one of the most active and energetie of the early members, has since died, and his place is now occupied by Mr. Wilson G. Huut, a merchant of high reputation and standing in New York. This latter company had been organized, but the eapital was not subscribed. Mr. Field determined, however, that the enterprise should not be delayed on this account, went to England and held meetings in London, Liverpool; Manchester, and other places, where, by his speeches, he created such an enthusiasm, that in the course of a few weeks the whble amount of the stock was taken up. He had proviously, in connection with Mr. White and David Dudley Field, as we have stated, obtained a charter from the Colonial Government of Newfoundland, granting the Cyclops, cceded at that the tors and latitude oard was and conght have o infused entered ald state articular he poside when ment of fingara, ding the ngland, ot other of $\cdot \mathrm{Mr}_{\mathrm{r}}$ 0 , as we ; enteraing be rts and - Moses n assolegraph ors the Atlan. merica. e early Wilson York. t subald not a Lon. hes, ho whole ection ined a ag the

American Company the exclusive privilege for fifty years of rumning a telegraph across that island and through any of the adjacent taters In addition to this the company were secured the interest on two hundred and fifty thousand dollars for fifty years, and a present of fifty square miles of land, whioh they were at liberty to seleet in any part of the island. Through the efforts of Mr. Field, there were other minor and less substantial unarks of favor bestowed upon the company by the Newfoundland government. Charters had been previously granted by the governments of Prince Edward Island and New Brunswick, also giving the company exclusive privileges and benefits. Every thing had been thus favorably settled to prepare the way for the great work of the age. Through the same manager, the gavernments of the United States and Great Britain were induced to grant the use of six national ships with which to perform the task of submerging the cable. As a proof of the services which were rendered by Mr. Field, from his eonnection with the great undertaking, it is only necessary to quote the following incontrovertible testimony.

Mr. P. Christopher Bushell; President of the Liverpool Chamber of Commerce, addressing a meeting of the Atlantio Telegraph Company on the 18 th of February, 1858, made use of the following language:
${ }^{16}$ We know that the greatest sacrifices have been made-I think I may say by all the gentlemen connected with this enterprise, especially by the great originator of it, Mr. Cyrus W. Field."

And at the same meeting the following res? lution was unanimously adopted:
"Resolved, That the warm and hearty thanks of the company be tendered to Mr. Cyrus W. Field, of New. York, for the great services he has rendered to the Atlantie Telegraph Company, by his untiring zeal, energy, and devotion from its first formation, and for the great personal talent which he has ever displayed and exerted to the utmost in the advancement of its interests."

In seconding the resolution, Mr. Brooking, the Vice-Chairmarr, said:
"It is now abont a year and a half ago sinee I had the pleasure of making the acquaintance of my friend Mr. Field. It was he who initiated me into this company, and indroed me to take an interest in it from its earliest stage. From that period to the present I have observed in Mr. Field the most determined perseverance, and the exercise of great talent, extraordinary assiduity and diligence, coupled with an amount of: fortitude which has seldom been equalled. I have known him oross the Atlantio in the depth of winter, and, within twenty-four hours after his arrival in New York, kaving ascertained that his presence was necessary in a distant British colouy, he has not hesitated at once to direet his oourse thitherward. That colony is one with which I am intimately
quainted, having resided in it for upwards of twenty years, and am enabled to speak to the havards and daingor whict attend a voyage to it in winter. Mr. Field no sooner arrived at Now York, in the latter, part of December, than he got aboard as steamer for Halifax and proceeded to St. Johns, Newfoundland. In three weoks he accomplished there a very great object for this company. He procured the passing of an Act of the Legislature which has given to our company the right of establishing a footing on those shores, which ere long, I hope, will result in conneéting us with Freland. You have now the right to go on the shores of Newfoundland. Without that right conceded by the Legislature of that island you would not have been emabled to go there; and that right which we have secured is confined exelusively to our company. That is only one of the great acts whieh Mr. Field has performed with a desire to promote the interests of this great enterprise. (Hear, hear.) I have worked carly and late with Mr. Field, and can speak to bis diligence with the greatest possible satisfaction: and I feel persuaded that in selecting that gentleman to assist the Directors in the general management of the company there has been imparted into it an element of sucoess which has given to roe and to others a large inerease of confidonce in the result of our undertaking. I have in him and in his judgment every possible faith, and I believe that my colleagues repose equal confidence in his ability."

To this high compliment Mr. Field responded as follows:
"I feel, gentlemen, that I have scarcely time to cat, drink, or sleep, and none to make a speech; but I assure you that all the energy and little talent which God has given me shall be bestowed between now and next June in endeavoring to carry out this enterprise; and it will give me great pleasure, when I am in America, to talk through the cable with any of you upon this side of the Atlantio. (Loud cheers.). Before you separate I hope you will pass one resolution for me-it is a vote of thanks to the direetors of this company. I am not a director: but I know something of companies on both sides of the Atlantic, and I may safely say that I never knew a eompany in which the directors wosacd si hard, and exhibited so little of selfish motive, as in this. Your Board eomprises gentlemen in London, Manchester, Liverpool, and Glasgow, and day after day I have seen almost every meniber attending the meetings of the directors, not for the sake of patting a guinea a day into their pockets; for they aro above that; "but from higher motives and loftior considerations. (Cheers. Your directors have never received a farthing of your money, and I hope that the meeting will unanimously pass a vote of thanks to those gentlemen." (Applause.)

Extract from the Minutes of the Board of Directors, dated January, 27, 1858.

"The Directors having for several months felt that it would greatly advance the interests of this enterprise, if Mr. Oyrus W. Field of New York, could be indneed to come over to England, for the purpose of undertaking the general management and supervision of all the various
tm enabled e to it in ter part of oceeded to d there a of an Act of estab1 result in the shores egislature and that company. rmed with oar, hear.) o his diliraded that 1 manageof sucoess nee in the ent every confidence , or sleep, ergy and now and will give able with efore you a vote of at I know ay safely - su hard, ard comgow, and meetings nto their ad loftier ed a farasly páss
anuary, greatly of New rpose of various
arrangements that would be required to be carried out before the sailing of the next expedition; application was made to Mr . Field, with the riew of securing his consent to this proposal, and ho arrived in this country on the 16 th instant, when it was ascertained that ho would be willing if unanimously desired by the Directors, to act in behalf of the Company as proposed, and Mr. Field having retired, it was unanimously resolved to tender him in respect to such services, the sum of $£ 1000$ over and above his travelling and other expenses, as remuneration."

Mr. Field declined to acrept any thing in compensation for his services, at the came timo that he complied with the request of the Company. Whereupon the following resolution was passed :
"Resolved, That Mr. Field's kind and gencrous offer bo accepted. by this Board; that their best thanks are hereby tendered to him for his devotion to the interests of this undertaking."

Extract from the Proceedings of the Meeting of the Managing Committee, dated at London, 26th of March, 1858.
"Resolved, That Mr. Cyrus W. Field, General Manager of the Company, is hereby authorized and empowered to give such directions and orders to the officers compcsing the staff of the Company, as he may from time to time deem necessary and expedient with regard to all matters connected with the business proceedings of the Company, subject to the control of the-Directors."
"Resolved, That the Staff of the Company be notified hereof, and required to observe and follow such directions as may be issued by the General Manager."

On the reception in London of the news of the success of the undertaking, the Secretary of the Company, Mr. George Saward, addressed a letter to Mr. Field, from which the following is an extract: "At last the great work is successful. I rejoice at it for the sake of humanity at large. I rejoice at it for the sake of our common nationalities, and last but not least, for your personal sake. I most heartily and sincerely rejoice with you, and congratulate you, upon this happy termination to the trouble and anriety, the continnous and persevering labor, and neverceasing and slecpless energy, which the successful accomplishment of this vast and noble enterprise have cost you. Never was man more devoted-never did man's onergy better 'deserve success than yours has done. May you in the bosom of your family reap those rewards of repose and affection, which will be doubly sweet from the reflection; that you return to them after having been under Providence the main and: leading principal in conferring a vast and enduring benefit on mankind. If the contemplation of fame has a charm for you, you may woll indulge

4
\cdots
都
ゅy

in the reflection, for the name of Cyrus W. Field will now go onward to immortality, as long as that of the Atlantio Telegraph ahall be known to mankind." For some time after the return of the flect from the second unsuccessful expedition, it was doubtful whether another attempt would be made at orice or whether the enterprise would be postponed indefinitely. 'Many of the directors, discouraged by repeated disappointments, were in favor of selling the cable and giring up the idea ald gether, rather than risk all their capital by a disastrous failure. A despatch was sent to Mr. Field, at Queenstown, informing him of the feeling prevailing among the directors, and the probability that they would abandon the enterprise. He lost not a moment in indecision, but hastening to London, called together the directors and endeavored to infuse among them his own high hopes and sanguine expectations. One director left the meeting, refusing to take any part in the proccedings; but the other members who were present at last concurred in his views, and gave their sanction to another and final attemption

PROF. S. F. B. MORSE.

The inventor of the electro-magnetic telegraph is so wcll known, not only in his own country, but throughout the civilized world, that it would appear almost unnecessary to say any thing further of him than that he acted as electrician on the first Atlantic telegraph expedition. There are, however, some circumstances connected with his invention which are of such particular interest at this time as to justify a relation of them here. Before, however, entering into theso, it may be well to state a few facts in connection with the earlier life of Professor Morse. It is not, perhaps, generally known that at the time he invented the magneto-electric telegraph he was engaged In the active pursuit of his profession as an artist, in which he had obtained a high reputation for some original works. IIe was a sculptor as well as a painter, and his model of the Dying Hercules, which was made in England in the year 1813, gained for him the highest medal of the Adelphi Society of Arts. This model was intended aimply as a copy from which to paint his picture of the mame subject-a work of art which received at the time the greatest praise, and which was seleoted from among the first for particular notice by the oritics,

Professor Morse left England in the year 1815, having resided in that conntry about four years, and retarned to his native land, where he continued the active pursuit of his profesion as an artist In 1829 he again visited England and remained till 1832, in whioh year he went home in the ship Sully. It was during the pagage in this abip that he first conceived the idea of the clectro-magnetio recording telograph, the invention of mioh bas given him so prominent a place among the great
o onward be known from the rattempt postponed ed disapthe iden ilure. A m of the that they ision, but cvored to ng. One seedings; is views,
lown, not , that it than that

There vhich are ıèm here. w facts in perhaps, tric telean artist, ks. He Tercules, e higheat d aimply work of seleoted where he 1829 he he went that he: raph_{2} the he great
scientific men of the world. Among the passengers on the Sully was Hon. Wm. C. Rives, United States Minister to France, and a number of other gentlemen who have since been the most ardent friends of the Professor. In one of the many social gatherings which took place among the company, a conversation arose in regard to a subject which was at that time extensively discussed among scientific circles-the obtaining of a apark from the electro-magnet, which showed the identity of electricity and magnetiam, a fact which had often been supposed to exist, bat the existence of which had not been conclusively proved by actual experiments. In the course of conversation the well-known circumstance of Franklin's having caused electricity to pass through three or four miles of wire, for the purpose of measuring its velocity, was related, and it was this partioular circumstance which led the Professor to an investigation of the subject, with the view of amploying the subtle agent as the messenger of man. He made the ofservation, that "if electricity can be made visible in any desired part of the circait, there is no reason why a system of signs could not be devised by which intelligenoe might be transmitted between distant points." The remark excited little or no attention at the time, but the idea took such firm possession of his mind that he devoted the greatest part of his leisure time to the invention of an instrument by which, what was before but an idea, was to be converted into ia fixed fact. The result was the invention of a machine of which an illustration and description are presented on another page. In the year 1835 he exhibited this model to his class of pupils in the New York University, where he had his studio, and gave an explanation of the purpose for which it had been constructed; but it was not till the month of Oc tober, 1837, that he entered a caveat at the Patent Office in Washington. This caveat contained a detailed description of the invention. In 1838 he applied to Congress for an appropriation for the erection of a telegraph line between Washington and Baltimore, a distance of thirty miles, the sum reqnired being thirty thousand dollars. The application was before Congress about fíve years before it was acted upon, and it was not till the month of May, 1844, that the line was in operation. The first message sent over the wire was by Miss Annie Eilsworth, the daughter of the Commissioner of Patents, who had taken an active interest in the passage of the bill granting the appropriation. Miss Ellsworth was the first to convey the intelligence of the fact to the Professor, whio had despaired of the passage of the bill that year, as the close of the eession was at hand and there was no prospect of its being taken up before the next session. At the last hour, however, it was passed, and the folldwing morning the Professor, who whe in ignorance of the circumstance, and was prepering to leave Washington, was informed by Mise Ellsworth of the final auccess of the application.
"Annie," said he, when she had imparted the welcome tidings"Annie, the first message that goes over the wires shall be sent by you." And, true to his promise, the first message was sent by her. This corresponded with the high character of the event, and has connected her name with it forever. In answer to the Prefessor's notification, she sent the following as the message which she deemed should be transmitted from Washington to Baltimore :
" What hath God wrought!'
The estahlishment of this telegraph was soon followed by the construction of others, and from that time to the present they have increased with such rapidity that there are now about forty.five thousand miles in operation in the United States.

In 1838, while the application for an appropriation was pending before Congress, he went to England and applied for a patent for his invention there, but it was denied on the ground that a description of it, as it had been exhibited to his class, was copied from an American into an English publication, and it had thus become public property. It is needless to say any thing further to show the absurdity of such a reason-a mere statement of the grounds apon which the denial was based is sufficient for that. Varions claimants have since risen to dispute his right to the invention; but, after a tedious litigation and a display of the most bitter hostility, the justice of his claims has not only been reoognized, but his instrument is now almost universally used and acknowledged as the most perfect that has been invented.

It was a matter of regret to all connected with the undertaking, to whom Professor Morse had endeared himself by his many admirable qualities, that he was not on board the Niagara during the final expedition, but he bad previously withdrawn from the enterprise. He is now in Europe receiving the well-deserved rewards of his labor from the crowned heads who have thus honored themselves by honoring genius in the person of the inventor of the Electro-Magnetic Telegraph. We cannot better olose our aketoh of this distinguished gentleman, than by giving deseriptions of the first model of his recording machine:

THE FIRST ELECTROMMGNETIC RECORDING INSTRUMENT.
The Morse ayntem is based upon the important discovery made by Profestor Oersted, of Copenhagen, in the winter of 1819, which laid the foundation of the soience of electro-magnetism. He ascertained that when a wire oonducting electrieity is plaoed parallel to a magnetio needle properly suspended, the needle will deviate from its natural position, and place itself at right anglen with the conduoting wire. Other new and important facts were soop after diseovered.

The following illastration and demoription of the model of the first

BIOGRAPHIOAI BKETCHEB.

tidingsth by you." This coraected her n , she sent cansmitted
y the conincreased d miles in
nding behis invenf it, as it an into an It is needn -a mere sufficient ght to the lost bitter 1 , but his the most taking, to admirable nal expe-
He_{e} is bor from honoring tic Teleshed genrecording
electro-magnotio recording machine, invented by Pro. fessor Morse, possesses much intorest in this connection:
(Fig. 1.) \mathbf{A} is a juncture frame, nailed upon a commontable to serve for the building up of the machinery. B is a sort of trough simply for sustaining the three drums, C, B, and E.
C is the paper drum, on which the paper is rolled.

E is moved by a cord passing over the little pulleywheel on the outside of the axle of the second wheel of the clock train of \mathbf{F}, and is moved by the train when in motion. F is a elock train of wheels moved by the weight G, and regulated by a fly.
G is the weight passing over a pulloy clevated for the purpose of a longer run.
H (figs 1 and 2) is a pendulom lever, having the fuleram at A, and a limited movement of about a quarter of an inch at the other extremity, whieh carries a pencil made to be in constant contaict with the paper strip passing over the drum \mathbf{D}. About half way up on the lever is attached the keeper d of an eleotro-magnet e, fixed upon a small bracket from the oross bar of the frame, and on the other side is the fixture for a spring and regulating sorew, to retain the lever or withdraw it, when the magnet is not in motion.

made by laid the ned that magnetic ral posiOther the first

I is a galvanio battery of copper and sine, from one pole of whioh one end of the conjanctive wire, which is continnous around the electromagnet forming its helices, is attaolied.... From the other pole the conjunctive wire goes to the mercury oup (fig 3) n, at one extreming of the port rale J, while the other end of the conjunctive wire from the eleotromagnet goes to the other mercury oup o; leaving the only broken part of the circuit of battery I between the two cups n and 0 .
J is the port rule (fig. 3) whioh carries the type rules. The port rule is composed of a contact lever M, whose fulcrum is sapported from the sides of the frames, and has upon one end of the lever a forked wire for bridging the broken space between the mercury cups n and o, and upon the other end a weight, and beneath it a cog.

At each end of the port rule frame is a drum (\mathbf{K} and \mathbf{L}), carrying an endless band (whioh was $06.1 \frac{1}{2}$ inch carpet binding) whose motion is regulated by the orank and handle K.

Figure 4 is a side view of the rule in which the type were set up, having pins underneath to atick into the endless band; there were many of these made to follow each other by simply placing a second behind the first until the whole message is sent.

[The characters in the alphabet that would be mariked by the type in the above port rule.]

The clockwort being set in motion by releasing the fly wheel of the clock train, the paper begins elowly to be untolled from the dram C, over the drum D, and to be rolled tupon E, after passing under the pen.cil which is at the end of the lever'H. The lever \mathbf{H} has a motion of about one-fourth of an fhch at the pencil end; the penciris held by the spring (see figure 2) on gne side (tho left) of the paper stipip, and while thus held makes a continuous line on that.side.

Now, the crank handle, K, of the port rule (fgure 8) in turned, and the "endless band bringe the type rule," with its type; wader the oog apon the lever M. The first type lifts the oog and lever, and plunges the fork at the other end into the two cups; N, and O, oloning the circuit of the battery, I, and charging the magnet, e, which, attracting the keeper, d, upon the lever H; draws the pencil to the other (right) wide of the paper, making a mark saromend now the frut-type hising pusied the
cog of the lever M, the weight causes the lever to fall, and withdraws the fork from the mercury cups, breaking the circuit and discharging the magnet, leaving the spring again to act and restore the lever. \mathbf{H}, with its pencil, to its position on the left side of the paper, having in its retreat made another mark across the paper and completed the first oharacter, whioh is in the form of a V. Thus, by the continnous movement of the port rule, with its type, the forms of the type, whether dots or lines, are similarly marked upon the paper. (An example of the oharacters thus marked is seen in figure 6.)

This plan and history of the recording telegraph of Prof. Morse is frgm the evidence in the courts of the United States, proved by several witnesses to have been in operation in 1835. It may well be asked, then, why in every history of the telegraph published in England or elsewhere, this date of 1835 ahould be ignored, and the injustice towards Prof. Morse perpetrated by constantly giving the date of his invention 1837. He planned it in 1832, and executed it in 1835. The date of the caveat or patent is not tho date of the invention, for it will scarcoly be maintained that the invention was not made if he had not taken his patent.

Prof. Morse, in 1835, oonoeived the idea of making an electro-magnet record words by having a ateel point fixed to the end of a lever, upon which wàs attached an qrmature-the armature, in being attracted by the electrio-magnet, to indent paper, which should be drawn forward at an uniform rate of apeed. Prof. Morse found himself unable to make use of his instrument for great distances, from the resistance to and dissipation of the electrical current along the conductors. To overoome this difficulty he adopted, in the spring of 1837, a receiving magnet, and a relay or repeating circoit. Prof. Morse made application for a patent in April, 1838, and in December, 1842, Congress appropriated $\$ 30,000$ for the purpose of testing its practical application. In the monti of June, 1844 , the instrument was working in an eminently suocessfur manner for a distance of forty miles between the cities of Baltimore and Wamington. Prof. Morse has obtained for his ingtrument several patente-the firat was dated June 20,1840 . This was re-iespued January 15, 1846. A socond patent was taken out on the 11th of April, 1846. These were both reissued on the 18 th of June, 1848; and another patant, containing improvements, was tuken out on the lst of May, 1840.

MR. WM. E. EVERETT.
The subjeot of this bketoh is a native of Watertown; in the Biate of Net York, and wag born on the 17 th of April, 1826. He obtained

Entering the navy in 1845 as Assistant Engineer, his promotion was very rapid, and he was intrusted with the performance of important and responsible duties by the government. While Assistant Engineer, Mr. Everett served a considerable time under Mr. Haswell, a gentlemen to whum he considers himself muoh indebted for his proficiency in the science in which he has obtained such an enviable reputation. Mr. Everett was one of the members of the Board of Engineers appointed to examine and report upan the construction of the engines for the six war steamers, of which the Niagara was one In the beginning of 1857 he received his appointment as Chief Engineer of that vessel, and acted in that capacity during the first Atlantio T'elegraph Expedition.

It was while holding this position that he rendered the efficient service to the undertaking that brought his mechanicala kill and ingenuity into such prominence. When it was decided by the committee appointed by Capt. Hudson last year, and consisting of Mr. James H. North, the first Lieutenant of the Niagare, Oommander Pennock and Mr. Everett, that there was suffieient space in the ship' for the reception of the cable, he (Mr. Everett) contribnted largely towarda her preparation for the coiling of the great sea line. Subsequently his suggestions, when followed out by the Chief Engineer of the company, were attended with the most satisfaotory results. When the cable, parted and the vessels returned to Plymonth, he was requested by the directors to make a report in regard to the machinery; and to nuggest whatever alterations and improvements he considered neeessary to adapt it to the Work. In the performance of this task, he called in to his assistande Mesarn Penn, Lloyd and Field, three engineers of distinotion in Kng: land, with whom he consulted and mado a joint report. After this, the Niegara having discharged the remainder of the cable, returned to New. York, arriving on the 20th of November, 1857. She was nome deys after put out of ogmmission, and on the application of Mr. Field, again granted by the government for the renewal of the attempt this summer. From what they had aeen and known of Mr, Eivetty the company resolved on applying, through the general manager, Mr. Oyrus W. Field, to our government for" "the loan" of that gentleman, as an Engligh paper axpressed it. The application was not only a high compliment to Mr. Everett personally, but a high compliment to the character of our country. Not only by the expressed desire, but at the earnest solicitation of the Board of Directors, leave of absence was asked for him, that the enterprise might have the advantage of his abilities. The engineering departnent was to be placed under his direction; he was to draw up the plan of the machinery, and the whole Wha to be constracted under fis -
momewhat unusual one, our government hemituted for some time before granting it, but on due consideration acoeded to the request. "Mr. Everett obtained the required permission and started for England with Mr. Field, the 6th day of January last, in the Persia, arriving in Liverpool on the 16th of the same month. No time was to be lost. The two proceeded at once to London, where they found that nothing had yet been done towards making the experiments preliminary to the adoption of the required form of machines for paying-out the cable, although it had been explicitly understood before Mr. Everett's departure from England, that the experiments would be announced to 'him on his arrival. Nothing, however, as we have said, had been done, and he was obliged himself to enter apon the experiments, the results of which were of such consequence. Night and day he worked in the dirty, miserable-looking, ont of the way factory, in a dirty, miserablelooking, ont of the way place, called Gravel lane, and in some four or five weeks had developed the plan of the admirable machine, copies of which are now on board the Agamemnon and Niagara, and a detailed and illustrated description of which is placed before our readers. "The machinery was tested for soveral days, and at an appointed time a number of the most distinguished engineers of England wert invited to its inspection. It is almost needless to state what is already known, that it met with general approval, and that it was deoided to be the best adapted to the purpose for which it was designed. Abont three weeks before the departure of the expedition, it was sent down to Rly. mouth and put on board both ships, Mr. Everett attending more espe;cially to that which had been deaigned for the Niagara. The same ex. pedition which had marked the whole work attended its fitting up at Plymonth, where it was sleo tried with equal succees. Mr. Everet having thus far performed the work, was further requented by the company to take charge of the paying-ont on the Niagara, as it was impossible for him to superintend it on board of both ships. In the labors incident to this position, he was assisted by Mr. Henry Woodhouse, a gentleman who cocupies a distinguished position among the scientifio men of England, of which country he is a native.

Before taking chargo of the paying-out machinery on the Niagara, Mr. Everett reveived the following offioial letter :
and that you do not consider any alteration necessary to increase its efficieney; and as-another set is required for the United States frigate Niagara, the managing committee have anthorized and instrueted me to request that you will immediatoly give directions to Messra. Faston \& Amor to pat another set in hand for that ship; and I am further to request that you will continue your supervision over the construction of the machinery, and also undertake to superintend and direot its being properly fixed and fitted on board the Niagara.

I am further instructed to request, that You will take charge of the operation of experimenting upon, and subsequetly of paying out the cable from that ship; in doing which you will have the cooperation of Messra. Woodhouse, Follansbee, and of such assistant ongineern as you may consider it requisite to appropriate to such service. You are also anthorised to make such preparations and arrangemente as are necessary to enable you to carry out the foregoing instruotions.

I remaim, yours truly,
Geo. SHiward, Sooretary.
To W: E. Everett.

MR. WOODHOUSE.

Mr. Woodhouse is Assistant Engineer of the Telegraph Company, and was appointed to aid Mr. Everett in the laying of the ouble. He whs on the first expedition, and has been ever since retained in the ser vice of the company. The work whioh oame under his charge has always been thoroughly performed, and his efficienoy and practionl talont have renderëd him an invaluable attache to the undertaking. Mr. Woodhouse has had a most extensive experience in the work of aubmerging cables, having being engaged in the business since he laid that aoross the. Black Sea from. Varna to Balaklave. He attended boone espeepially this time to the construction of the ceils and other workon the Niagara; and it is sufficient to say that he was one of the most effioient officers. connected with the company. He was also on the Niagara last year, and, when his services were demanded, was always prompt, solf-pomemed and afficient.

MR. CANNING.

This gentleman is an English Fingineer, and was one of the ecien. tifie corps of the expedition of August, 1858, who had aharge of the work on the Niagara. Like Mr. Woodhouse, he has, had a good deal of experience in the laying of submarine lines, having had the direetion and superintendence of the first but ansuccessfal attempt to submerge the eable neresie the Gulf of St. Lawrence; the undertaking having been defeated by a gate. Previous to this, however, he was engaged in iconnecting Spessia with Gerdinia by a line coross the Straits of Bonftoio's and in superintending the union of Prince Edward Island with Now

Branswick by the same means. While in the Niagara, during the expedition of 1857, Mr. Canning was always rcady in every emergency, and when the cable surged off the wheel, he succeeded by his quiokness in getting it on twice without damaga. In the final expedition, he was one of the numerous staff of the Agamemnon, and was among the most energetic and the most skilful.

MR. DE SAUTY

Is one of the most practical electricians in the employment of the company, and has had considerable experience in the working of both land and sabmarine lines. He was on the Niagara daring the first expedition, Dr, Whitehouse having been too unwell to go to sea. Mr. de Santy has been over six years engaged in telegraphing, the greater portion of which time he devoted his attention more especially to the laying of submarine lines and the construation of those erected on poles. The laying of the submarino cable across the Gulf of St. Lawrence was successfully sccomplished under his superintendence-the first attempt, which was made in 1855, under the direction of Mr. Canning, having failed in consoquence of a storm, during which they were obliged to cut the cable. Mr. de Santy is entitled also to the credit of having put down the second Black'Sea cable, whioh oonnected Yarna with Balaklava. We may add that he was the first to employ the Korse instrument in submarine telegraphing. Mr. do Sauty is an Englishman.

MR. CLIFFORD.

Although occupying a comparatively subordinate position, Mr. Olifford is an engineer of great skill and ingenuity, and a draughtsman of more than ordinary ahility and acquirements. He was connected with Mr. Eiverett as an assistant in superintending and forwardigg the conatruction of the present machinery" in which work he rendered material service. The experience which he obtained from his oonnection with the engineering departuent of the enterprise during the first expedition was of great advantage to him, as it has proved indeed to all who were then connected with the andertaking. The patting ap of the machinery on board the Agamemnon was effeoted under his direction, and he had partial oharge of the laying of the cable from that ship. One of the main features in Mr. Clifiord's charnoter is his good, sound practioal common sense, to which he appears to subordinate erery thing and Whioh enables him to see thinge in their right light. Mr. Olifford is also a native of England.
ag the oxmergenoy, quickness n, ho was tho most
the comboth land t expedide Sauty ortion of laying of es. The wàs ancattempt, , having d to cut ut down laklava. ment in
tr. Olif. sman of d with he oonaterial with edition - were binery he had of the notical g, and is also

MR. J. O. LAWS

Was at the head of the practical members of the eleotrical department, and has considerable ingenuity in mechanical mattors. Mr. Laws is quite a young man, and has not long cómmenced his education in the science of electricity, but from the knowledge he has already acquired, he promises to become prominent among the eleetricians of England. H_{0} accompanied the Niagara on the last expedition.

MR. CHAS. T. BRIGHT

Is. the Chief Engineer of the company, although he had nothing to do with the construction of the paying-out machincry ased in the last expedition. He is a native of England, where he ocoupies a prominent position among scientifio men. He is one of those who joined with Mr. Field in the formation of the Atlantio Telograph Company, and rendered con'siderablo serviee to the enterprise in the early stages of its history.

MR. WHITEHOUSE.

This gentleman is one of the prinoipal electricians of the Atlantio Telegraph Company, and has devoted a great deal of time and attention to the submarine telegraph instruments and submarine telegraphing. He was originally a physician, but his devotion to this particular branch of science led him to abandon the prattice of his profession, and to apply himeelf exclusively to electric telegraphing, particylarly to experiments, having in view the invention of an instrument, by which to ascertain and register the volocity of eleetrie ourrente through submarine cables, and the result of which has been the production of a maohine, by means of which the possibility of transmitting miessages through two thousand five handred miles has been proved so conclusively, that it has put to rest all doubts that might have been entertained upon the subjeot. The instrument by which the speed of the "lightning" is calcolated, is a triplicate Morse registoring machipe, apon which matlis are made by means of an astronomical clock or pendulum, and by which signals are produced on the entering of the corrent lito and its paskage out of the wires showing the retardation of the last current in going through great lengthis. This is accomplished by a pendulum arrangement, beating seconds and making marks on the appet part of a strip of Morte registering paper, the middle marking. style or electric pen being conineoted with the neare end of the cable, and the bottom style being conneedtea with the distant end. On a current being sent into the wire, it registert its passage immediately on the middle atylo, and, coming out of the wirt, shown it passage by registering on the lower part of the Strip of paper.

PROF. THOMPSON

Is a native of Scotland, and a man of high coientifio attainments. He has devoted many years tot the soience of telegraphing, in which he has made some improvementa. Prof. Thompeon was at the head of the Eleotrical corps on the Agamemnon difring the second and third expeditions. He is one of the Direetors of the Company.

MR. J. W. BRETY.

From the prominent part this gentleman has played in the organisation of submarine telegraph companies, he is: known in England as the father or founder of them. This is in fot his great forto, and the many successful companios which have been entablished through him instrumentality is the strongest proof that ean be presented of his ability in this important departmient He obtained the first privilege from the French government of landing a oable on the shores of France, and connecting that country with England. He was present at the making and laying of it down, and asaisted in the establishment of the Dover and Ostend, the Dover and Calaig, the Spemia and Corvica, the Eardinia and Corsica, and other lines of which he was mainly the originator Ho was specially interested in the suecess of the Atlantic Telegraph, being one of the original projectore of the company.

MR. $\triangle P P O L D$

Is the inventor of the brakes, which have been so modified by Mr. Ererett as to adapt them to the paying-aut machine. He is an amateur mechanic, and possesses more that ordinary inventive powers. Having plenty of money, plenty of time, and nothing else to do, he occapies himself mostly in experimenta of a mechanical nature. Mechanios are his hobby, and a machine shop has attraotiona for him that are irresistible. He is always/inventing something, and is never satisfed except when working with iron. In fact this feature in his character is carried to such an excess as to become an ecoentrioity. Hf own house is full of evidences of his peculiar inolinationa, By some peculiar contrivance every gis barner is lit at the anme time, and every window shotter closes with a nimultaneous bang.: These are but a few of the aohievements of his genios when applied to domentio purposes, and his
nts. He h he has ad of the ird expe-
rganiza1 as the he many trumenthis imFrench ing that g of it mad, the Dorsica, specialof the

Ir. Evnateur Iaving cupies cs are t are tisfied ter is house con ndow f the d his re

the captain of the niagara.
Captain W. L. Hadson is already well known to our readers on account of the prominent part he played in the first expedition, and the important service he rendered on one oocasion in saving the cable. Thronghout the whole undertaking he took a most active interest in every thing that, tended to promote its success. On the memorable evening of the 7 th of August, 1857, when it seemed almost impossible to save the cablo from slipping overboard after it had parted, and when the then ohiof angineer, Mr. Bright, had made no provision to meet sugh an omergeney, he held the broken end on board for an hour with a hawser, until the aplioe was effected, and the work of paying-out could be retmed. Captain Hudson is one of the oldest and most respected officers of the American navy, and enjoys a high reputation for his abilities and judgment as a meaman, which are said to be of the first order.

During the forty-two years which ho eppent in the service of his country he was noted for his probity of oharacter and true benevolence of heart. He has a high sense of the responsibilities which his position devolves upon him, and endeavors to meet them as an honest man should. During the terrible cholera year of 1832 he was a resident of Brooklyn. Seeing the fearful extent of its ravages-that it was impossible by ordinary means to keep it in check, and believing that it was the duty of every man to do all in his power towards the relief of the sufferers-he devoted himself to the noble work of attending on the sick. In this heroic task he was assisted by Mayor Hall, of Brooklyn, Bishop Molvaine, and two other gentlemen. This committee of dive would nally out every day to find out now objects for their assintance, and in their searoh would enter such hotses as were inhabited by the poorer classes, who they rightfully sapposed were most in need of their aid. If they found any of the occupants afficted with; the cholera they had them removed to the hospital or attended by a physician at their own hapes. Fach day the captain and the other members of the committee would visit their patients, note their condition, and when any of them died, see that the last rites were properly performed. At that time blood-letting was practised to some extent as a remedial measure; but as it whe found to terminate fatally in many cases, it was abandonied. The Viditing Committee were, it is understood, among the first to adopt the use of loo, which was generally successful. Captain Hudson was never in active servioe, but who imagines that his claims to courage or heroism want higher evidence than what we have given P He was promoted to the position of Post Oaptain by the late Retiring Board, having served through all the gradee When the pirates of the Grecian Archipelago had become so bold and andacious in their depredations upon Ameriann oommerce as to call for detefrmined and prompt action on the part of our government, he oecnpied the post of sailing master on board the sloop of war Watren. After this he mado a four 'years' craise in the Peacook,' one of the vessels of the Exploring Expedition under Commodore Wilkes, which was erbenequently lost in the quicksands of Columbia river. Nof a soul on board, however, was lost. While on thin cruino the Pescook was placed in many a periloue position, and on several occasions would inevitably have beon wrecked smid the ioe but for the coolnem, belfpossesion and neamanship of her commander. Provious to his taling command of, the Niagari," Ohptain Hudson held the post of Commandes
his country ce of heart. - devolves 1. During n. Seeing y ordinary y of every rs-he dethis heroic Mollvaine out every troh would who they found any wod to the h day the their paat the last practised terminato itte were, was gen,but who evidence of Post grades bold and call for he oecaWarren. of the es, which + Not Peacock as woula and belf. taking mandes cond

THE CAPTAIN OF THE AGAMEMNON.

A change took place in the command of the Agamemnon since 1857, her former commander, Mr. Noddall, having been recently appointed to another post. The gentleman who now occupies this responsible position is George W. Preedy, who holds the rank of Post Captain, and who is some twenty odd years younger than Captain Hudson. The difference in age and yet the quality in rank in both these cases is explained by the fact that while in our service seniority is almost always the only rule for promotion, favoritism, and distinction in service of any eonsequence, generally leads to elevation in rank in the British navy. The difference in the ages of the two Post Captains need not therefore be a subject of astonishment. Captain Preedy has served over twenty years in the British navy, and is now sout that middle age whieh those who profess to know every thing about the matterand who, it is to be boped, are fully informed-say that a man is in full possession of all his physical and mental powers. The age is fixed somewhere between forty and forty-five, the very summit of the hill, which is always regarded as an emblom or figure of life. The eaptain of the Agamemnon was in the Baltie fleet during the Russian war, and served in the capacity of commander on board the Duke of Welling. ton,"one of the largest propellers'ly the English navy. He is regarded in the service to which he belongs as an admirable seaman and navigator, independent of which his many fine qualities as a man have acquired for him a well deserved popularity. He takes a special pride in the work to which he has been appointed, and to which his qualifications as a commander have been one of his principal recommendations.

During the fearful gale of eight days which oyertook the telegraph squadron while on their way to mid ocean, his ship was plaeed in imminent peril. There never was an occasion that required more coolness and self-possession, and Captain Preedy proved himself fully equal to the emergency. For eight long and anxious days and nighta she was buffeted by the fieree storm, but the gallant captain and his brave offieers battled with it to the end, and saved their ship and its preeious freight in the midst of dangers that might well appal the atout: est hearts. All honor to the heroic commander and to the gallant offieers and crew who so nobly seconded his efforts.

THE CAPTAIN OF THE GORGON.

The British Admiralty have certainly shown a great deal of jadg. ment in the appointment of the commander of the Gorgon. It was a
matter of some importance to the Atlantio Telegraph Company that this officer should be assigned to the post, in consequence of the prominent part he performed last year. He rendered important serviée by soundings which he took on the plateau, and the new sources of information which he opened to scientifie investigation. In the report which he made of the work, he bas shotn himself to be a man of extensive acquirements and of a liberal and generous mind-a character which is rarely met with, and is, therefore, the more to be prized. After referring in a modest and moderate manner to the way in which he acquitted himself of the task he was intrusted with, bhe speaks of his indebtedness to Lieut. Brook and the use of bis "ingenious sounding apparatus;" alludes to the assistance be obtained from his own officers in complimentary terms, and acknowledges the aid he received from the mochanics in the preparation of the maehinery for the work. It was Commander Dayman, it may be remembered, who made the sounding at the time the cable broke in August, 1857, and roported the depth at 1,950 fathoms. Soon after his return and the presentation of his report he was promoted from the rank of lieutenant to that of commander, and still further rewarded by being appointed to the command of one of the vessels detached for the expedition. Exelusive of the servieo which he has performed in connection with the present enterprise, he is looked upon as, one of the most accomplished officers in the lritish navy, and is reputed to be a gentleman of very fine scientific attainments. The result of his soundings on the platean are very elearly set forth in his report, which is an unpretending, unaffected statement of all the details. He is the only one of the English commanders of last year's expedition who has been reappointed.

CAPTAIN W. C. ALDHAM.

This gentleman is the captain of her Majesty's steamship Valorous, which accompanied the Agamemnon while laying the cable. He is considered one of the most effieient officers in the British navy, and is a goneral favorite among all who know him in the serviee.

CAPTAIN HENRY O. OTTER

Is one of the junior Post Captains of the British navy, being about forty years of age. He commanded one of the survoying steamers in the Baltic during the Russian war. He has but recently been aseigned the command of the Porcupine, which is one of the smallest steamers in the English navy. Captain Otter met the Niagara while ou her way up Trinity Bay, and piloted her up the Bay of Bulle Arm, the landing plave of the euble.
oy that this prominent by soundnformation which be tensive acer which is fter referθ aequitted debtedness paratus ; " omplimenchanics in ader Daye the cable ns. Soon toted from rewarded ached for. formed in ne of the d to be a is soundioh is an the only has been

Valorous, Ie is conand is ${ }^{\prime \prime}$
ng about amers in aspigned :amers in her way landing

THE NEWFOUNDLAND SUBMARINE TELEGRAPH.

THE AUXILIARY TO THE ATLANTIC LINE.

Tue laying of would have been nate aecident, or rather series of accidents, which postponed the completion of the work for another year. The steamer James Adger was chartered by the New York, Newfoundland, and London Telegraph Company to tow the vessel in which the cable was coiled, and which it was supposed was then awaiting her arrival at Port an Basque, a small fisling village on the southern coast of Newfoundland. The James Adger left New York, at ten o'elock on the morning of the 7th of August, and as it was intended by the Company that the voyage should be one of pleasure as well as business, they invited a large party of their friends, to whom we shall without firther ceremony introduce our readers:Peter Cooper, Mrs. Conper, Prof. S. F. B. Morse, Mrs. Morse, Master A. B. Morse, Cyrus W. Field, James S. Sluyter, Robert W. Lowber, Mre. R. W. Lowber, Miss Ann Redfield, Rev. Gardiner Spring, Rev. D. D. Field, Rev. II. M. Field, Miss Gracie Field, Miss Alice Field, Miss Allen L. Herndon, Dr. Lewis A. Sayre, Mrs. Lewis A. Sayre, David A. Sayre, Wm. M. Swain, Master W. J. Swain, John Thornley, Prof. F. Sheppard, Bayard Taylor, Miss Lizzie Alger, John Conger, Rev. J. M. Sherwood, Mrs. Ann Palmer, Mrs. Edward D. Jones, Miss Mary Sterns, Marshall Brewer, F. N. Gisbourne, Chas. T. Middlebrook, John Mullaly, T. W. Strong, D. C. Hitehcock, S. A. Riohards, B. F. - Ely, H. W. Barron, Geo. H. Brown, A. A. Raven, F. O'Brien, F. H. Palmer, J. P. Palmer, Chas. J. Smith, Dr. P. A. Bruyere, John G. Kip, Chas. H. Houghton, J. W. Kennedy, Francia Winton, L. P. Palmer, Joseph Jones, Miss Cooper, Robert Russell.

The weather on the morning of which we have spoken was all that could be desired; the sun shone out in an almost oloudless sky, and the light breeze that rippled the surface of the water served only to moderate the intensity of the summer's beat. Every thing seemed to favor the enterprise, and the orowd that thronged the deok of the ateamer were
buoyant with bright and hopeful anticipations of the future. There was an unusual bustle on Pier No. 4, North River, that morning; earriager e:me dashing down with heavy laggage and light-hearted passengers; every body was in every body elise's way; people stood upon eaoh other'a toes, and, atrange' to say, smiled good humoredly ; porters with atlantean shoulders carried off trunks and portmanteaus of all imaginable shapes and sizes, and deposited them in the most out-of-the-way places; newsheys were eagerly eoliciting customers for the morning papers; venders of light literature were loud in their praises of "the Blood-red Avenger," "The Desperate Burglar, or the Miser's Fate," "The Bandit's Cave, or the Robber's Oath," and a host of other works equally taking and terrible; friends congratulated friends, and wished eaoh other a happy voyage and safe return; scientific men looked graver and more important than ever, and pronounced their opinion for the handredth time how "that cable" should be, laid; and loud above the din and bustle and confusion rose the shrill whistle of the steam-pipe, announcing that the moment of depar wre was near.
"Let go that hawser there," shonted several of the hands as they made ready to start, and the passengers, who had till this time been in complete possession of the deck, at once gave way. Then there was a general shaking of hands, "a hurrying to and fro," the last passenger arrived on board after losing his hat and cane in his desperate strug"gle to be in time, the last rope was unfastened, the steam whistle gave out its last warning note, every body was told for the last time to "look out," and the James Adger commenced slowly moving ont into the river. Three hearty cheers greeted her as she swung loose from the pier, and were repeated again and again as we swept past. A salute of three guns was fired from her bow, which was responded to by another from one of Spofford \& Tileston's steamers, and the United States frigate Potomac honored the company ind the enterprise in which they were engaged, as far as the striot rules of the Navy allowed, by ranning up the Stata and Stripes to her peak. Again and again we were cheered by our friends who crowded the end of the pier, until only the faint echo of their voices conld be heard, and again and again we responded with a rivalry of friendship that was determined not to be outdone.'

We were soon under full headway down the bay, and in a fow' minuter our friends became indistinguishable in the lengthening distance. The last we saw of them was thrc agh a telescope, and there they still stood at the end of the pier wanigg their adieus. Gradually we lost sight of the large publio buildings, and then the city itself began to disappear below the horizon. And now we have lef Staten Ifinad behind us, and sweeping past Nevisink are out upon the open dea. ch other's aflantean le shapes s; newn; ; vend-Blood-red - Bandit's ly taking other ind more andredth din and nouncing been in re was a assenger te atrugtle gave to " look he river. ier, and of three er from frigate ey were ning up sered by nt echo od with listance. ley still we lost egan to Island

Our first night on the water was marked by a grand display of celestial pyrotechnies that illuminated the whole heavens, and converted the Kíquid element through which we ploughed our way into an ocean of fire. It appeared as if the powers of the air had determined to signalize our mission, and they did so in à peculiarly appropriate manner. The scene was one of those whioh could never be forgotten. Daring the evening an electrie machine was brought upon the apper deok, and it was there when the night set in. Beside it sat Professor Morse, its inventor, who had been explaining the principle of its construction to the company but a few hours before. Here and there were little gronps, some on the bow, some on the wheel-house, and others seattered about the deok enjoying themselves in pleasant social interoourse. The sweet music of woman's voice singing some favorite melody gave a new attraction to the scene. At first the lightning flashed in broad sheets along the horizon, then rapidly extending towards the zenith it lit up the skg with an almost dazzling brilliancy. From behind the dense heary massés of black clouds that hung on the ccean's verge wete flang, as, if by unseen hands, hage balla of fire that left a track of fiame to mark their course along the heavens. At intervals gigantio fiery serpents darted from their place of ambush, writhing and twristing in their tortuous why through, the ebon vault above, and then again all was dark as midnight... (Gradually the clouds spread over the sky, shutting out the palo and twinkling light of the stars, and the flasher of lightning became more vivid and more frequent until the whole heavens was one mass of flame. For two hours we'gased on this magnificent spectacle, until the heayy drops of rain warned us of the coming storm and drove us unwillingly to seek shelter from its fury.

That night we bad a conocrt in tho after cabin at which every body was present, and in which all who had voice for music and some who had not, joined. Some of the best airs from Robert Le Diable, and other popular operas, were sung with the most exquisite taste by one of our lady passengers, and then, to give variety to the entertainment, we had the choicest pele stion from Negro Minstreley. "Robert tpi que jaime," was followed by the "Dandy Broadway Swell;" and "The Coloned Fanoy Ball,", shared the applause with "Come per meesereno." The sailor's farequell to his lady-love was gung by a votary of the comio muse, and although evidently a pathetic subjeet, and one in which the aforesaid fair one and her "galliant" lovor claimed the sympathy of the hearers, the tale of their distress.was heard with the most unfeeling indifference and the end of each veree wan the signal for;an outburat of langhter. This fiom a company, too that should have known better was, as. Dogberry maya, "most tolerable and not to be endured." There
was one portion of the song which in justice to the composer we must quote, as it is in its way a petfect gem, and will serve to show the reader ata glance the sad plight of the lovers:

> "While you are on your sheñtle bed ashleepln' fast auhleep, Zent we poor jolly sillore are ploughing on ze zeep."

The reader will perceive from this that the song is slightly foreign, and that "the Sweet German accent" is one of its most attractive foatures.

But the coneert like all other sublunary things had an end, and all retired for the night to dream over the pleasing seenes and incidents of the day. The strains of musio gradually died away, the merry laughter of the gay and light-hearted company was hushed, and the only sounds that broke the stillness of the night were the mcuotonous dash of the waves and the ceaseless din and clangor of the mighty machinery.

Early on Sunday morning, the 12th of August, we came within. sight of Newfoundland, and as may be supposed, there was considerable excitement on board. There it lay like a dark cloud on the horizon, and there were sago speculations among those who professed to be learned in nantical matters, as to whether it was really a eloud or the Island itself. Grave arguments were hold on the subject, always terminating, however, with the unsatisfactory conolusion of "wait and yon'll see," which we all philosophically coneluded to do, as it was the only course left. Gradually the eloudy indistinctness of the land disappeared, and as the more prominent points of the coast became visible, not a soul could be found who didn't believe it was real, genuine, bona fide terra firma from the very commencement. About' five hours before we reached Port an Basque,' where it was expeoted we would find the Cable Ship, the bold promontory of Cape Ray, which is the extreme south-western limit of Newfoundland, was visible from the deek of the steamer. All the telescopes on board were brought into requisition, opera glasses were in great demand, and those who were not so fortunate as to possess either, strained their eyes looking through speotacles and spy-glasses in tho vain hope that they would see somethling like a ship twenty miles off, and firmly believing that that ship when found would be the very one we were in search of. We could perceive the fishermen's hats when within a distanoe of eight or ten miles, bat no vessel except a few fishing smasks greeted our anxious gaze. It was suggested that as a portion of the harbor was hidden from the view by high rocks, she might not be visible from sca; but even that hope whis dispelled when we arrived at its entrance. Two schooners were lying at anchor there, but the Cable Ship had not made her appearance, al-
we must the reader horizon, d to be ed or the ys termind you'll the only d disapvisible, ne, bona ours beuld find the exhe deok requisinot so gh speonething ip when serceive les, but It was iew by pe whis e lying noe, al-
though they were expecting her arrival over two weeks. A vessel:was seeu on the morning of Saturday answering to the description of our ship standing off Port au Basque; it was blowing so hard, however, and the wind was so adverse, that she was obliged to put to sea again. ${ }_{\text {ra }}$.

This was a great disappointment, as the weather was most favarable for the laying of the cable, and as we intended to begin work at the earlicst hour ,a Monday morhing. In this dilemma we could do nothing but either await the arrival of the Sarah L. Bryant, or go direct to St. Johns, which we intended to visit before our return to New York, pay our respects while there to the authorities of Newfoundland, and after a brief stay, call at Porit an Basque again, where it was confidently expected we would find the object of our search if she had not founđered at sea. We lay outside the harbor three or four hours to land some articles which were required in the construction of the telegraph at that point. Some of the members of the Company went ashore, where fhey were met by Mr. Canning, an experienced engineer from London, who was engaged to superintend the laying of the cable. He oonfirmed what we had heard about a vessel having been seen off the coast the day before.

As our stay here was very bricf, and as many of us only saw the land from the deck of our steamer, we could form no correot idea of its character. It had a wild, bleak and inhospitable look, however, and the account that our pilot, who had visite? it frequently, gave us of it was any thing but pleasing. It was, he said, nothing but rock and bog, iuterspersed here and there with deep holes and quagmires, which, he jocularly informed us, it would be muoh easier to get into than to get out of. But after all, the majestic hills that towered to the height of fifteen hundred feet, above the ocean, the huge masses of rocks that lined the coast, and the restless sea, whose waves broke in foam at their feet, imparted to the soene a sublimity that all the bogs and quagmires and holes could not affeet.

The greater portion of the southern coast of Newfoundland was visible from the deok of our steamer during nearly the whole period of our passage from Port au Basque to St. Johins The' charaoter of the coast soenery was the same throughout, presenting to the eye of the voyagar nothing but bold rugged cliffs, which in some plages rose precipitously out of the water to the height of three or four hundred feet. On the morning of the 14th of Angust, about seven o'cloak, we were within a fow miles of our place of destination. Every body was up early, for we had heard so much of the harbor of St . Johns and the approaeh to it , that we determined to see all that was to be seen.

The morning of our arrival, unfortunately, was rainy, and, as may supposed, the city did not appeara to the best advàutage; but the grandeur of the surrounding scenery, and especially that of the coast, more than made up for the annoyance we felt in consequence of the weather. The island is protected on the east bythe same bold mona. tainous line of coast whieh we had observed all along its southern ex. tremity. Steep rocks rise to the height of seven and eight handred feet almost perpendicularly out of the water, whieh is so deep that the largest vessel might pass alongside within a few feet with perfect safety. In some plaees their front is searred by deep seams which extend from their very summits, not anfrequently terminating in huge caves at their base. We felt the strongest curiosity to onter some of these, and make explorations in their hidden recesses, byt had no opportunity of doing 80, and wore obliged to leave without gratifying our desire. They were just such caves as we had read of long ago in our days of novel reading; recalling to mind the thrilling adventures of pirates and smugglors, with their long, low, black schooners.

The entrance into the harbor is so concoaled from the view at sea, that we conld not porceive it till withina distapee of half a mile. On the right rises Signal Hill, to a height of at least six hundred feet, overlooking the town, and commanding a fine view of the country, whioh extende behind it like a gigantie panorama. The summit of this hill is crowned with a fortification, and at its base ia another, neither of which,
in their present condition, would be oapable of resigting a well sustained attack by sea and land. The entrance or Narrows, as it is called, is, however, well defended by other forts, and in the last war; it was proteoted by an immense iron ohain extending accoss and fastened to the rocks on either side. The marks left by drilling holes in the rooks are still visible, as are also the remains of an old cannon and anchor whieh had served as holdfasts for the ohain. Opposite Signal Hill, on the other side of the Narrows, rises another hill, or mountain, as it should more properly be termed, to an elevation above the level of the water of over six handred feet. On the other side of this, and about one hundred and fifty feet from its base, another fort has been ereoted, in the centre of which stands the light-honsc. While pasaing this point ${ }^{\text {tw }}$ e were hailed by a seldier, who inquired where we were from, and how many days we were out, and hading answered him, we gave the good people of 8 t . Johns notice of our approadil with a thundering salute that was repeated a hundred times by the gohoing hills. The Narrows is - about a third of a mile in length, while it varies in width from three to fifteen hundred yards, and was doubtlese formed in one of those terrible convulsions to which the whole island seems to have been subjected, and to which it probably owes its origin. It appeared as if the mountain had been torn apart, learing a safe passage open to the harbor. The city is built on the side of a hill that ascends gradually to a height of about a handred and fifty feet, and presents an exceedingly picturesque appearance. It overlooks the harbor, which is a little over a mile in length, and a quarter of a milo in width; and which is one of the best in the world, affording at all times a safe anchorage for shipa of the largest dimendions. The first thing that strikes the visitor is it peculiar formation. After yon have passed the ontranoe it has the appearance of a lake, so completely is it shat in from the ocean. Gigantio hills tower above you on every side, exdept that on which the city stands, and on their rough and rugged declivition little patches of gardens have been made by the more industrious of the fishermen, whose cottages help to subdue the natural wildness of the seene. Near the water's edge, and all around the harbor, are erected the atages or "flakes" as they are termed, on which the codish are cured.

The town of St. Johns has no public buildings that can lay claim to architectural pretensions, with the exception of the Catholic Cathedral whioh is a large and imposing edifice, built in the style of the Roman Basilica, and capable of holding ten thousand persons, or little lees than half the population of the whole city. It cost about five hundred thopsand dollars, and has several frue pieces of eculpture, among whichrare tro or three of the best productions of Hogan, the oelebrated Irish sculptor.

The Colonial Building, as the structure in which the legislative buslness of the Island is transsoted is called, was built a few years ago at an expense of about two hundred thousand dollars. It is a square granite bnilding, two stories high, with a large portico in front, supported by six Ionic pillars. It containe the chambers of the two logislative branches, the House of Assembly and the Legislative Council, besides the library and a number of smaller apartments. A short diatance from the Colonial Building is tho Governor's house, in which Chas. H. Darling, the then Gevernor of the Island, resided. The country around St. Johns is remsrkable for, the diversity as well as the beanty of its aceucry. In the afternoon of the day on whioh wo arrived, a party of us enjoyed tho luxury of a ride along an exquisite little valley called the Vale of Riverhead. The roads, which branoh out in every direction from the city are, without the least exaggeration, among the finest in the world; and Topsail Road, which runs along the side of one of tho hills that form tho boundary of this valley, affords one of the most delightful drives irs this part of the country. As you ascend the more elevated parts of it you can see the whole town of St. Johns, the harbor which lios at its feet, and the lofty crest of Gibbet and Signal Hills, towering in the more remote distance, beyond which the deep ${ }^{\prime}$ blue of the Atlantic is visible through the huge gaps of the coast mountains. Below you, almost af your feet, lies the Vale of Riverhead, forming in its quict beanty a marked oontrast with the wild monntain scenery by whioh it is surrounded. A amall stresm fed by tiny rivulcts from the rough sides of the mountains poprs its clear waters through the centre of the valley, making sweet music as it sweeps sparkling over its rocky bed. In some places its course is broken by miniatare cascades, that glitter like s shower of diamonds in the warm sunlight, while in others it is almost wholly concealed from the sight by overhanging trees, beneath whose shade its waters become blaok as midnight. It is a trout stream too-just suoh a one as Walton would have delighted to angle in. Beautiful little cottages dot its bahks, and here and there may be seen, through the jealous foliage that olings around them, the more impesing msnsions of the wealthier inhabitants of St. Johns. It is a lovely scene, and might have tempted a less ardent admirer of the beauties of nature than we professed to be, to linger a few weeks among its attractions. But necessity-." stern necessity," as the poet calls it-interposes: the cable must be laid, and in a few days more tho charming Vale of Riverhead will be lost to our view, perbaps forever.

Saturday, the 18th, was the day fixed for our departure, but still we were unwilling to leave till we had made some return for the hospitality
we had received from the people of St. Johns. The Company, therefore, invited over two hundred of the principal inhabitants of the oity on an exeursion about ten miles outside the harbor; ‘and about twelve o'olock we set out with one of the most pleasant and sociable parties that was ever collected on the deck of a steamer. The day was as fino as could be desired, and the scenery of the coast magnifioent. Wo saw the "Spenting Rock" as it is called, which is one of the greatest natural curiosities in the island, and, perhaps, in the world. The rock itself is not more than thirty fect above the surfaee of the water, and has a eavity in its centre whigh runs through it to the base, and whieh is from six to sefien feet in dinmeter. A small stream of fresh water flows from an overhanging hill into this carity, and when the tide is out finds its way through an opening in the rofok into the sea. - When the tide is coming in the waves rush with sue force into this hole as to throw the fresh water in the cavity to a height of twenty, and sometinnes forty feet.

After a pleasant trip of two or three hours along the coast we returned with our guests to the harbor, where we parted with many/mutual regrets. Cheer after oheer was given and returned, handkerohiefs were waved, and when we could hear each other no longer, the cannon thundured out our adieus. While passing through the narrows, Mr. Huested, who was engaged by the Company to blast the Merlin Rock, whioh lay right in the way of vessels entering the harbor, and which was very dangerous to those of the largest class, got up a grand submarine explosion for our especial ontertainment. We had hardly passed over the rock when the explosion took place, throwing up a vast body of water to the
height of sixty or seventy feet, and shaking the mountains on either side like an earthquake. Our vessel trembled with the concussion, and tho spray fell in a shower apon the deek, sprinkling a number of our passengers, to the groat amusement of those who escaped. On clearing the Narrows a parting salute was given as our bow turned in the direction of Port an Basque, whore we expected to find the Sarah L. Bryant awaiting our return.

About five o'clook on the morning of the 20th of Angust, we came within sight of Cape Ray, and about seven o'clock were sufficiently near to Port au Basque to difoern objects through the telescope. Some of our company went aloft, and gavo us the oheering intelligence that they saw a large vessel lying behind the bigh rocks which protected the entrance to the harbor, but we were afraid to hope lest we should be doomed to a second disappointment. There was no doubt, however, ats to a vessel being there, for she had been seen also through the telesoope; but it was confidently believed by some that it would prove to bo the French frigate, Iphigenie, which, it was said, took a northern course after leaving Halifax. In fact, every one, even the most sanguine, feared to hope. While we were speoulating on the probability of its being the Sarah L. Bryant, a small row boat was observed approaching our steamer and in leas than half an' hour we were within hailing distance. Among those in it was Mr. Sluyter, the eaptain of tho Viotoria, which could also be seen lying in the harbor. 'Mr. Field, who, with several others, was on the bow of the steamer anxiously awaiting their approach, now
hailed them.

"Has the bark arrived ρ " he cried out, in a stentorian voioe.
A wave of the hat was the only reply; bat it was enough, and one wild, enthusiastic hurra broke from those on board the James. Adger.
"Hold on, hold on," said Mr. Field, "wait till we are certain."

Then repeating his quostion, he was answered in the affirmative. The company were all impatience to give vent to their enthusiasm, bat they reatrained their feelings for a few moments longer.
"When did she arrive P " he askod.
"On Wodnesday," was the reply.
Thie was sufficient, we were amply (cpeth for or anxiety we suffered, and three such eheers as followed the of ghanga a After all, we had not come from New k the ${ }^{4}$ fruitless errand, and we would yet, if favored a little longer \% enablod to lay the cable which is to be the first link in eonneeting the Old World with the New, and bringing the people of beth continenta into instant communication with each other. After all, we could tell our friends on our return that we had accomplished the great undertaking, and that the first important submarine telegraph had been laid on this side of the Atlantio.

We had now reached the entrance to the harbor, and could distinctly see the masts of the long expected vessel towering above the rociss, with the stars and atripes flying from her mizzen peak. In a few minutes more we gave her a salnte from our cannon, and ere the echoes died away among the distan hills, the little Victoria responded again and again, till she was completely enveloped in a cloud of srooke. It wan ${ }^{\text {a }}$ grand sight for the people of Port an Basque, the quiet of whose little village was never before diftarbed with such boisterons rejoieing. A number of children were amusing themselves on the side of the hills which bound the harber, and enjoying the acene before thom 6, Whe greatest zest, but the first report set them scampering like a fook of frightoned deer, and fearing a second attack, they disappeared like magio o_{s} In a few minutes we were anchored alongside the bark, acc, all was excitement and bustle among the passengeras. We all wanted to go ashore, but as the nunber of boats was not equal to the demand, many had to remain on board. It was soon ascertained that it would be impossible to commence the work of laying the cable for two or three days, so that there would be an opportunity for every one to gratify their desire. The Sarah L. Bryant had, it appeared, very tempestaons weather, and for twenty-six hoors wís exposed to all the fury of a terrible gale, during whicl l.er hatebes were battened and she was running under bare poles.

On the arri' al of the James Adger at Port au Basque, we fonnd that the mechani Varrangements on board the Sarah L. Bryant, for the laying of the oable, were not completed. It was resolved, under theme ciroumstances, that the steamer should go to Cape North and select the best and nearest portion of the coast to Oape Ray, the point of coninection. Mr. Field and zome sixteen or eightoen of the passengers remained at Port gu Basque till the return of the steamer, and as we

were among those we took advantage of the earliest opportnnity to visit the bark, which was about five hundred tons burthen, and strongly buiff. The cable itself weighed four hundred tons, and was seventy-four miles long, while the distanee between the points of connection on Newfoundland and Cape Breton is sixty-five. The extra nine miles were allowed to make up for the inequalities in the bottom of the ocean, and any variation that might be produced in the direet line by, the wind or currents. The eable lay in immense ooils in the hold of the vessel, and the operation of coiling alone took fourteèn days. The machinery was very simple in its construction, and was the bame that was used in laying the Mediterranean cable. The cable as it came out of the hold passed over iron rollers, and from these between vertical guide rollers, from which it passed agnin over two large wheels, each eight feet in diameter. As these revolved it was thrown out on a oast iron saddle, over the stern of the ressel. The wheels were supplied with four brakes, worked by two long levers and two compressors, which were employed to prevent the cable from surging as it passed round the wheels, as well as to prevent it from running off by its own weight. These completed the whgle of the inachinery.

The morning of the 22d of August the Sarab L. ${ }^{\text {r.c. yant was towed }}$ by the Victoria up to Cape Ray Cove, which was dicided upon as the starting place, being uearer by five miles to Cape North. There was also another great advantage it possessed over Port au Basque : it bad a fine saudy beach, which experience has proved; forms a better and siffor resting place for the cablo than rocks. Ouce it becomes imbedded in sand, it
may lie there for a century, but if exposed to friction on rocks, it would be worn a way or cut through in less than a year.

It was found necessary to remove the telegraph instruments from Port au Basque to the point selected on the beach of Cape Ray Core, which in itself was a most tedious and laberious work. As a number of
to visit y builit. r milos foundallowed y varirrents. ad the 18 very ng the d over which As stern ad by event prewhole owed s the also. fine ting ω
d, it
the passengers volunteered their assistance, however, it was expedited, and by twelve o'elock every thing was transported to the place desig. nated. Here it was decided to erect a frame house, which was an undertaking of no small magnitude when the limited means and facilities of the place are considered. The Vietoria was employed in carrying the frame and timber for the parpose from Port au Basque, but when she arrived with them at the Cove it was found that she could not approsch within several hundred feet of the shore on account of the shallowness of the water. They were obliged under these circumstancos therefore to form a raft, and on it to land all the timber required for the building of the house. The largest planks were accordingly thrown over the propeller's side, laghed 'together with ropes in the form of a square, and on this was placed the frame work, the shingles and the other parts of the strueture.

After an hour's hard work, in the course of which the raft gave way two or three times, they sncceeded in getting all the timber upon it and attaching it to a boat prepared to tow it ulhore. The progress made in rowing was rather slow, but they at last succeeded by hard tugging and pulling to get it within fifty or sixty yards of the beach. Hero, however, the waves were so high, that it was oonsidered by some exceedingly perilous to land in the midst of them; but as the whole shore was lined with breakers, and it became evident that there waif no other resource, they went to work in atter defiance of the danger.
"Row ahead," said Onptain Sluyter, who was on the raft with one of his orew, "row ahead." The fishermen pollod with might and main, and in a few minute after the order was given, they were in the midst
of the breakers They saw they n rowed with redo better than was hibited strong s among the brea Sluyter on one 1 became every m stood were very they succeeded i A large portion receding tide hai armpits in the wi beach. In this t in their teeth, an ashore with them

When all the and in an incredib tion of the batteri dug in the oentre timber about the

> THE NEWFOUNDLAND OABLE.

4 65
sxpedited, ace desigas an unfacilities carrying but when d not apthe shalmstanoes uired for y thrown rm of a and the

ve way 1 it and nade in ing and e, how-exoeedre was her reth one 1 main, midst of the breakers, which threatened every moment to swamp the boat. They saw they were in for it now, and as there was no retreating, they rowed with redonbled energy; but the raft, which had held together better than was expected after leaving the side of the steamer, now exhibited strong symptoms of going to pieces, and it had hardly got in among the breakers before it parted in the centre, leaving Captain Sluyter on one portion and his assistunt on the other. Their position became every moment more dangerons, the planks on which they stood were very slightly secured, but by the most unremitting exertions they succeeded in keeping them together, and in getting safely ashore. A large portion of the timbers would donblless have floated off with the receding tide had it not been for those on shore ho rushed, up to their armpits in the water, and not without some risk, hauled them up on the beach. In this they were assisted by the dogs, which seized the planks in their teeth, and although sometimes over a hundred feet out, swam ashore with them.

When all the timber was landed the frame of the house was put up, and in an inoredibly short space of time it was prepared for the reception of the batteriea and other telegraph instruments. Δ deep hole was dug in the oentre of the building, and in this was sunk a heavy piece of timber about the thickness of an ordinary capstan. A hogshead was
placed over this again, and the intermediate spaes between it and the oapstan, as we shall call it, being filled up, it was rendered eo firm that it would hold the largest vessel in a gale of wind. Around this the cable was to be wound, and although the straining produced by it was comparatively slight, it was considered necessary to have it well secured in case of emergency.

Every thing was now prepared and in readiness for the laying of the cable, which was commenced on Thurgday, the 28d of August.

It was a most exciting scene, although attended with little danger to those employed in the laying and paying out of the line. The Sarah L. Bryant wis lying a little loss than a mile from the shore, and the steamer Viotoria about half that distance. A sufficient quantity of the cable was taken from her hold and placed in the form of a coil upon two boats lashed together. This was performed with little difficulty; but ane towing of it ashore was a most critioal task, and required all the attention and oare of Mr. Canning. 'It was impossible, without imminent risk, to employ either the James Adger or the propeller in this part of the work, as neither could approach safficiently near the shore to land the cable. It was therefore decided, as the only safe and practicable plan, that the boats should be towed ashore by two others manned by fishermen, and some of the hands from the steamers. As soon as the cable was placed on board the boats, they were taken in tow, and then commenced the tedions process of paying out. Its whole weight was abont four tons, and as it had to be paid out with more cantion than would be required in laying it from the ehip, at least five hours were consumed in landing and placing it in oconnection with the batteriea

and the -firm that 1 this the by it was 11 secured ing of the le danger Che Slarah and the ity of the apon timp alty; but ll the atimminent is part of to land ble plan, by. fisherthe cable hen com. ras abont would be sumad in

Whon the boats having the cable on board commenced paying it out, they moved so slowly that their progress was hardly perceptible from the depk of the stcamer. It was known that the work had begun, bat, unfortunately, the James Adger was too far off to allow the comping on board to see what was doing. A portion of the most enthusiastio volunteered their services, and having procured one of the steamer's boats, assisted in tawing. They were determined on sharing the glory of the undertiking, that they might hereafter have the gratification of seying that they were among those who laid the great submarine eable on thise aide of the Atlantic. They worked hard for two or three hours, and did not give up till they saw it successfally landed; than giving three enthusiastio cheers, which were answered in the same spirit by thowe on shore, they started for the steamer with the gratifying intelligence...
"Now boys," said one of the party, "let us be the first to bring the neemb, and we will call ourselves the Sabmarine Telegraph Express, for the ocqasion." A general assent was given to this proposal, and away (hioy started for the James Adger, making their little boat fly aver the wayes in their impatience to reach thervessel. As they passed the propeller one of the hands hailed them and asked the news.
"What is the matter $?$ " he inquired. "Have they got through ? Is all right 9 "
"Yes," they all replied in one voice; "the cable is landed-all right. Let us have three more cheers-hipulip, hurra." And three more cheers were given that made the welkiriring. While passing the Sarah I. Bryant the same question was asked, and the response greeted with another burst of euthusiasm. In ten minates they were on board the Jamer Adgery where, however, they found the ghtifying intelligence had preseded thom. Little did they imagine then that their effof Fould be rendered worse than useless, and that in the course of a w one-half the cable would be lost?
ars The end of the cable having been secured by several coils around the oapatan, we remained at anohor that night, and made ready to start early the following morning. That morning; however, we were provented by a dense fog; whioh rendered it exccedingly dangerous for us to attempt such an undertaking. In fact, if we felt ever so mueh inclined it gould have been almost impossible, as we conld not discern objectu at a distanee of a hundred yards. We were obliged, therefore, to remain where wa wore during the greater part of the day, anxiously watching every sign of a change in the weathor. One of our hoats, contnining seven or eight persans, ventured out, and having mistaken the direotion of the land, eame very near being lont. The error, however,
it when the ship was observed drifting down upon us with such rapidity as rendered a collision inevitable. From the moment her anohor was alipped she beeame unmanageable, and although every effort was made to get her bow ig a'straight line with our stern, it was found impossible to do so. There seemed to be some terrible fatality hanging over her, and as she came down stêrn foremost upon our bow, our worst fears were excited for the safety of both vessels. The propeller was. lying off at a distance of two or three hundred yards, but she could render no assistance, and any attompt she might make would only render the matter more serious.

The scene on board our steamer was painfully exciting every one, crowded to the larboard side, awaiting the collision in breathlcss anxiety. The captain, as soon as he discovered the imminence of the danger, gave orders to reverse the wheels, and we were now mosing out of the way of the ship, but so slowly that we appeared to make日, no progress. "Back her I back her I" be cried out to the first mate, who passed the order to the engineer. "Back her! why don't you back her?" roared the captain of the Sarah L. Bryant; but tho ships, appeared to be drawn together by some irresistible attraction, and in a few minutes after the order was given they struck. The larboard bow of our steamer came in contact with the stern of the berk; but not with such violence as we anticipated. None of our timbers were started, themanly damage we received being two slight scratches about five feet above tre water line, while the bark was uninjured. Our escape appeared almosit miraeulous, for at one time it seemed as if nothing could save us, but now that the fearful suspense was over the excitement died away. The ladies were not on deok when the accident oecurred, as they had in compliance with the request of the eaptain getired to dhelbabin a short time before. They were ignorant of hat dapger, thefefoxe, till tit was all over.

We escaped, ás we have said, almbst by a miraele, a serious catastrophe; but wiwere not as yet olear of the bark, and more thą once we were near coming in eontact again. It was foundquecessary to cut the hawser on board our ship, and to let her take care of benself until Weould get into a better posinon. As soon as we parted from her she dropped her remaining anohor, still holding pn to the submarine oable, and we also eame to anchor about the samie thme. We remained in this state for aboat an hour, when we saw two or three flegs or streamers run up at half mast on bagrd the bark-a signal of distress Shortly after
 anchor, and to mak h day from drifting on the rools, was obliged to out the subuharine caby fitand off from the shore. In efew minutes

her to our stern by a hawser. When we first approached, several efforts were made to throw a rope over her side, but without success, when our captain changed the position of our vessel so as to let her drop under our stern, and allow a rope to be flung to one of the men on her bowsprit. The rope was caught, the hawser hauled on board, and in less than a quarter of an hour we had her anfely in tow.

During this difficulty the bark lost two of her anchors, and the steamer was obliged to part with one of hers, leaving only two between both vessels. Both of these belonged to our steamer, bat as it was im. possible for her to return near the land without nome security, our cap. tain was obliged to give her one of his own.

The 26th being Sunday we did not move from the Cove, and a part of the day was spent in ropairing the cable, which broke again soon after. It was evident now that the portion whioh had been laid must be abandoned, and that it should be relanded and mecured anew to the fastenings in the telegraph house.

At an early hour on Monday morning the 27 th, the Victoria took the bark in tow, and brought her within a distanoe ef about six hundred yards from the beach. The cable was then placed apon the boats, as described in the preceding chapter, suecessfully landed, and placed in connection with the batteries. A stiff breese from the north-west however prevented the prosecution of the work, and it was deemed adrisable
to defer it till the next morning. Outside the Cove the waves ran so bigh that any attempt to land the cable would have endangered the safety of both vessels. That day therefore we remained at anchor, and flattered ourselves with the hope that the weather would soon prove" more auspicious.

The following morning was all that could be desired; the waves had subsided to a gentle ripple, there was scaroely a cloud to dim the brightness of the sun, Cape Ray appeared resplendent in his beams, and every thing seemed to favor the enterprise. As the first dawn of morning tinged the eastern horizon, the bark raised her anchor and was towed out to our steamer, which lay at a distance of half a mile from the beach. In less than an hour she was attached to the James Adger with a hawser, and the process of laying the cable was commenced in earnest. All our delay seemed triling in view of our certainty of success-for no one entertained any doubts. now of its success, so long as the weather proved favorable. The first two miles of the aable were laid without an accident, bat just as they were commencing on the third a kink ovourred, and it was found necessary to stop the steamer to repair the damage. In the oourse of an hour all was set right and we were under way again; but in a few minutes more the white flag "which had been agreed upon as a signal before starting, was displayed, and we were obliged to attop. Mr. Canning afterwards said, that the speed of the steamer, even at its lowest rate, was too fast for the parpose, and that it was almost impossible for his men to pay out the cable with sufficient rapidity. Eight were employed in the hold turning out the coils, and eight more in attendance on the machinery. The position of those in the hold was one of considerable danger, and two or three were severely bruised by the cable as they were in the act of uncoiling it. It required their constant vigilance, and greatest activity to keep clear of it as it swept up through the hold, for if onge caught within its folds, the consequence would have been serions, if not fatal. To avoid this, they atood on the outside of fine coil, raisingit. up and passing it out at the rate of two, and sometimes, three mild hour.

Several kinks ofoctud up to twelve o'elock on Tuesday night, and inwas reported on boagh of our steamer at one time that the cable had parted. This report, however, was found to be incorrect, and it was ascertinined that it only required splicing, and that it had to be out to splice it suceessfull This was $\cdot \frac{1}{2}$ tedious task, and took till seven o'clock the followin morning to accomplish. From this till four in the afternoen they had very few stoppages-cthe machiffery workal-admir-ably-and although our steamer was still somewhat to past, the ahble Was paid out with less difficulty than hâd been experienced before 4 yp
to this time they had to pay it out frometaf mall coil in the bow of the vessel but the work was not so arduous when they reached the larger ope, which lay in the main hold. The kinks, therefore, became less frequent; and as we were now within sight of St. Paul'h, which was about fourteen mile distant, we felt elated at the prospect of landing it there in a few hours more. We wore, it is true, somewhat discouraged by a break taking place in two of the three copper wires, one lung by 2 having remained perfect. Still, strong hopes were entertained that when once landed, all the wires would be in good working order. Forty miles of the cable had been paid out from the time we started, while the actual distance traversed did not, exceed thirty-two at the ${ }^{\circ}$ utmost. It was, therefore, considered advisable to land it at the island of St. Paul's, instead of Cape North, as was at first proposed, and to make the connection next year. Not more than thirty-three miles of - the cable remained and it was on making the allowance for the loss of this, that Mr. Caning reluctantly concluded to give up the design originally entertained of running to Cape North.

At four o'clock the wind, which had been increasing for the last two or three hours, blew with such violence as" tinue the work on board the bark. The sea ran wo high flat it was only at intervals we could discern those on her deck. The sky looked wild and threatening, and the wives bate in spray over the decks of both vessels. The ocean was odrcred with a mist that rendered objects, at the distance of four or fir miles, invisible, and St. Paul's Island could no longer be seen. To readerty position still more criticupanother kink ofecurred in the cable, and both vessels were compelled ho lay to. They made several attempts to repair the damage, but ali was useless, the bark rolled with such violence that the menghla not work, and it was with the greatest difficulty they copt oven stand on the tweak, Every eye was now fixed on Mr. Cannitis ad by all waited with feverish sariety for him to give the order co out the cable. They had for mont thanh hour abandoned all hope of being able to land it, and their fears were aroused for their own safety and that of the vessel. BU Mr. Canning was unwilling to give the word, still hoping, even gainat "hope, that the gale would abate, and that before morning he would be able to resume work. Although both vessels were holding on by the cable, it showed no sign of parting, and would doubtless have remained whole to the end, had it been considered prudent to hold on by it. It was at this juncture that its strength was tested, and suocener *fly proved. We had heard that it was capable of holding a seventyfour in a gale of wind, but it seemed hardly possible that even a rope of
bow of ed the became which ject of newhat - wires, -tained order. tarted, the it the d, and iles of oss of lesigo
iron wire, not mach more than an inch in diameter, conld hold two vessels under such circumstances.

When Mr. Canning refused to cut the oable, and there appeared to be no prospect of the gale abating, the captain of the bark, Mr. Pousland, told him be would have tgive the order, as the safety of his ship was now endangered.
"4 "Mr. Canning," said he, "I shall be obliged to out the cable."
"ty You can do as you please," said Mr. C. in reply, for he would persist no longer in his attempts to save it, as it had now becomo a matter of life ind death. The next minute tho cable was out, the white flag which had beend displayed on the bow for the last two hours wasi lowpred, and we were once more in motion with the barle in tow.

On board our steamer the paying out of the oable was regarded with -1. greatest interest, from the moment we started from Cape Ray Corve. A whatoh of twa hours was organized among the oompany, to be kept up till wheaohed the place of destination. Two persons were appointed on eschr itratch, whose duty it was to attend to the signals on the bark, and to stop pui steamer when required. During the daytime, the chief engineer, Mr. Deptt, assisted in this part of the work, and the passengers will never forget the feelings with which they heard him call ont to the man at the engine to "Stop her," or the relief they felt when he gave the word to "Hook her on, and let ber go slow." We dreaded the appearance of the white flag, for it was an indication that something was wrong on board the bark, and when it was lowered it ceemed as if an oppressive weight had been removed from our minds. But when the gale came on, and the lives of all on board the Sarah L. Bryant appeared to be in imminent danger, the interest beoame painfully intense. Although not more than five hundrod feet from us, we conld only see those on her deck at brief intervals. She plunged violently, and as she rose at times on the crest of the waves, we could see at least one half of her keel. For two long hours we watched her tugging at the cable, anticipating with impatience the word to out it; but etill she held on, and there seemed to be no intention on the part of those in command to give the order. At last the white flag disappeared, after an/hour of painful snspense, and we soon perceived that the cable had been cat. The order was immedistely given to our engineer to go ahead, but as there was some danger of the hawser breaking, our steamer was not put under full headway. At one time we were ourselves in a most critical condition, and were laboring heavily in the trough of the sea. It was only for a few minutes, however: our stoamer was placed head to the waves, and we were soon out of danger. We now made as direot as possible for

Sydney, going at the rate of from two and a half to three milea an hour, and expeoting to reach that port on Thursday.

Ther evening previous to the day on which the cable was cut the British war ateamer Argus, Captain Purvia, which had been visible for the last two hours, came alongside the propoller; and was spoken by Captain Sluyter. Orders had been received by Admiral Fanshawe of the North American atation, from the British Board of Admiralty, to * render any assistance in his power to the vessels employed in laying the cable. The order was transmitted to Capt. Purvis, who immediately set out from Halifax, but anfortunately arrived too late for the purpose. He asked Capt. Sluyter if he required any assistance.
"Are you in want of assistance P " he inquired, whon the propeller camo within speaking distance.
"No," was the reply.
"Are you short of coal?"
"Yes, rather."
"Is the other steamer ahort of coal also ρ ", he again asked
"Yes, we are both short."
"Then I shall lie by you all night, and if you should need ascistance you shall have it."

True to his word, Captain Purvis remained by us, and as we saw the green and red lights of his steamer gleaming through the darkness of that long and weary night, we onjoyed a feeling of secusity for those on board the bark we had not felt for hours before.

About seven o'elook on Tharsday morning, the Argus came alongside again, and we observed one of her men holding a black board on her paddle box, having the following inscribed in large letters apon it:

OAN WR RENDEA YOU ANT ABSIBTANOM ?

Our captain shook his heid in roply, bat the Englishman was not satisfled with this, and taking a short turn, oame baok and again displayed his blaek board, with the following words:

> ARGWRR-YEs, OR NO I AB I AM ON HY PAgRAGM.

This was definite enough and required an explieit answor, which was given promptly. A piece of chalk was produced, and the aignificant monosyllable "No" written in gigantic characters on the side of our smoke stack. This was sufficient; and in a few minutes more the Argis left us; but long after she disappeared beyond the horizon we could trace her course by the black line of smoke which;she left along tho sky.

On Thureday afternoon, about four o'elock, we took a pilot on board, and an hour after we were safely anchored opposite the coal wharf of

North Sydney. Our stay here was much longer than we antieipated, but we made the best use of our time, and befere our departure had "formed numerous acquaintances, and were tolerably well posted up in the character of the place and its people

The Sarah L. Bryant was left at Sydney, where the remaining thirtythree miles of the eable were taken ashore, and the propeller Vietoria took her departure For St. Johns at an early hour on Sunday morning, September 2d. A few hours later we startod for home, and after a favorable passage of three days, we arrived within sight of Long Island, about five o'olook on the moming of the 5th. Our pilot, Mr. Thomas Vail, who came with us from New York, now took charge of our steamer, which arrived safely at pier No. 4, North River, on Wednesday, September 5th. This ended the first attempt to lay the cable aoross the Gulf of St. Lawrence. The following year, however, a second attempt was made, and with complete success.

THE FIRST ATLANTIC TELEGRAPH EXPEDITION.

Tue United States Frigate Niagara, which had beeñ detailed for the purpose of assisting in the work of submerging the Atlantic Subularine Cable, left New York on the 22d of April on her trial trip, and two days afterwards, set out for England. Never before had a vessel sailed op so grand an enterprise, an enterprise which taxed the faith of the most credulous, and afforded the scientifio sceptic another field for the digplay of his argumentative powers. The impractioability of the work had been shown again and again, bat the men by whom it was undertaken wero not to bo dismayed by vague fears or idle predictions. They were c̆alled enthusiasts, and caatious capitalists wondered that men whom they had previously regarded as possessing sound common sense should have beep so far led astray by a splendid jmpossibility To lay a cable almost two thousand miles across the bed of the ocean seemed to thern as ehimerieal as the idea of establishing communication between the earth and -its attĕndant planet by means of a line of nerial steamers. Besides the knowhe dfficulties which stood in the way of tho accomplishmont of such a wofk, who could tell what strange obstuxcles impossible to foresee and impossible to guard against, lay in the unknown depths of the wild and stormy Atlantio? True, the ocean had been sonnded, and specimens talken from a depth of two miles exhibited, bat what of that? Were there not men who contended, and who were ready to prowe by. scientific reasoning, that the ocean had no bottom, and that those who made the so-called soundings were the dupes of their own imaginations, or something worse? Then there were others who were dismayed by the magnitude of the enterprise, and wlo shrank from its contemplation as they would from the full glare of the midsummer sun. Humin genius had worked wonders, but it could not achieve imponsibilities. And so they argued, that the idea of the Atlantio telegraph nevor oould betis realized. But the announcement has been made to the believing of the unbelieving, that the Niagara has sailed from the port of Now York to assist in the work of uniting two worlds by an olectric chain, along which the thoughts of men "will fly with the speed of the lightning. iteelf. Our Government, to its credit be it said, had acted generously
in the matter in selecting the largest and best appointed ship for the great experiment, and the English Government on its part displayed no less liberality. And now that the Niagara is fairly off, wo will introduee the reader to her commander and officers:-

Captain, W. L. Hudson; Commander, A. M. Pennock; Lieutenants, Jaï. 'H. North, J. D. Todd, John Guest, Clark H. Wells, W. D. Whit ing, E. Y. Macaulay, Beverley Kenion ; Surgeon, J. C. Palmer; Purser, Joseph C. Eildredge; Passed Assistant Surgeon, A. M. Lynah; Assistant"Surgeon, T. W. M. Washington; Captain of Marines, J. C. Rich; Lieutenant of Marines, W. S. Boyd; Chief Engineer, W. E. Fiverett ; First Assts., John Faron, T. A. Shoek; Second do., M. Kellogg, John W. Moore; Third do., Alex. Grier, Thios. R. Ely, J. McElwell and H. Kuts; Boatswain, Robt. Dixon; Carpenter, H. P. Leslie ; Gunner, John Webber;' Sailmaker, Wm. B. Fugitt; Captain's Clerk, J. W. Hudson ; Pursor's Clerk, Edward Willard.

There were a fer gentlemen who went out on the expedition as passengers on board the Niagari. These were: Professor Morse, Captain Sohwartz, and. Lieut. Kolobnin, of the Russian Navy, and the author. Mry Field subsequently joined the vessel in England.
nind now, as the Niagara is fairly entered upon the expedition, and midy . m id to have an individuality of her own, we will invite the at tention 6 our readers to the character of the vessel herself and the little world whioh moves within her. They will thas be better enabled to understand more perfectly many of the details whioh averepresented in the course of this narrative. Very little in fact is known about life on board a naval vessel, except what is obtained from novtls, and that is so interwoven with romance, that it is not to be relied on. For those, therefore, who have obtained their information only from such sources, or who have no knowledge whatever on the subjeet, there maty be some interest in the following sketch of the ship:

LIfE ON BOARD THE NIAGARA.

To begin, then, at the beginning, the spar deck is the firrt pirt of the ship that olaime attention. It is the principal deck on the vessel, and is so mamed from the fact that all the masts and rigging are visiblem from it. The spar deck of the Niagara differs in many panticularin from that of other vessels of war in the American navy, and presents perhápe a greater extent of clear and unobstructed space than is to be found in any othes ship of war in the world. In nautical language it is what it callod "a flush deck," which, reduced to placi English, means that it is an free from all obstruations as it is possible to make it on a vessel of wo mach a character. Thia is a most essential objeot in the cast of a ship
like the Niagara, which differs in' mapy points from war stenmers. Sbe is the largest steam frigate in the world, and exceeds in tonnage the heaviest of the line of battle ships in the British navy. While, however, she surpasses them in size, she numbers but twelve gans; but these are of such great calibre, and are eapable of doing such terrible execution, as to place her, it is claimed, on a porfect equality with any of them, if they should, not render her superior. Each' of these guns weighs fourteen tons, including the carriage, and is capable of throwing's shell of one hundred and thirty pounds a distance of three miles. These terrible engines of destraction can be fired with as much aoouracy as a rifte, and possess a great advantage over other kinda now in use, not merely on account of their great size, but from the fact that thoy can throw a shell to a distance which is beyond the range of those employed on the other vessels of our nary. The art of throwing projectilea has reached, such a state of perfeotion that from the moment the shell leavis the gun the time which mast elapse before it strikes the objeot is, so nicely calcolated that it explodes immediately on reaching ite destimation. Each of these gans is worked by twenty-five men, and from this number a "captain of the gun," a seoond captain, first and second losders, first and second spongers, and others, are selected for special duty. The shell itself is loaded with sir pounds of powder, and the quantity required for a charge is thirty pounds. Tho total weight of the twelve guns, with their carriages, is ono hundred and sixty-eight tons; and if to this be added the shells and powder reduired for one hundred rounds to each, we will have an aggregate of about two hundred and seventy tons. To support such a weight of guns the spar deck, which on the Niagara is also the gun deck, is construeted of the atrongest timber, and is atrengthened by both wooden and iron stanchions. As these guns would only serve to encumber the vessel and interfere with the work for which she has been detached from the regular service, they were not taken on board. Their place, however, was supplied by four signal guns of less than one half their sizo, but which twenty or thirty years ago would have been regarded as gigantio specimeng of their kind.

For the purpose of securing all the clear space possible on this deck, the poop and forecastlo wore greatly reduced in size, dompared even with vessels of, one-third the tonagge of the Niagara: In fact, on both there is hardly sufficient standing room for forty men. -Some idea, how. ever, of the great size of the vessel and the arne of the spar deak, may be formed from the feot that in walking from the poop to the forceastle and from the forecastle to the poop eight timen, you traverse a dietance of shout a mile. Of summer', evening-moh, erenings: ss some of those we have had since our departare frese Now York, with a seandol
calm that there was hardly a ripple on its surface, and the long swells were soarcely felt on our ship-a walk upon the deck is a luxary which Broadway, with all its varied beauties and attractions, conld not surpass. Abaft the bridge or gangway, which divides the deck into two.parts, is the officers' promennde or quarter-deck. As the execative authority reposes in the officer of the deck or the officer on watch, which is the same thing, and" as the representative-of the captain; he is supreme in his decision on all matters that do not require the arbitration of the commander himself; every ontward mark of respect is to be paid to him py all who present themselves on thls part of tho quarter-deok. In compliance with this, regulation every offioer or man attached to the ship raises his cap when stepping on the quarter-deck, in deference not menely to the offioer to whose charge the vessel has been consigued for the time being, bat to the government of the United States, whose representative he is, and to the great people whosie will has called that government into existence. This officer may be distinguished from the rest by his carrying in his hand a trampet, by whioh he is enabled to give his orders to the men in the most distant parts of the ship. Forward of the bripothat is, from the bridge to and including the forecastlo-is that portion of the ship assigned partioularly to the men, although of eprose they are restricted to no particular part in the performance of their daty; but this portion is free to those who are not on watch, and who are at liberty to pasa' their time in any way that may not confliot with the roles, Here, when the weather permits, they are to be neen employd am teste or inclinatiote dietates; some engaged in reading some in telling yarns, some in relating the adventures of their last ortise, some in making or mending their olothes, and others of a less sociable or induatrious tum of mind dosing away their leisure time, like many of the same disponition on ahore, who are too sluggish or indolent either to think or work. If must not be supposed, however, that their leisure camiot be broken in
 erly speaking, asailor is always at the command of his superior, and necesearily no, as his services may be required at any moment. When the order is given to have "all hands on deck," all who "re on and.-of watch must be prepared to take in sail or perform any other duty that is required of them. This dothe, they are at liberty to enjoy the rest of their leisure time, subject, however, to be called upon again whenever their wervices may be required.
\because Prom the spar deck a partof the engine is visible, and looking down through the hatoh you see the machinery by which this immense made is propolled through the water at a speed of from ten to twelve miles an hour. "Thin hatoh is situated abont"miduhips, put on walking forward
a few feet nearer to the forecastle you discover two other hatches, by means of which the fire room is supplied with pure air and light. This room is at least twenty-five feet below the spar deck, and a few feet still further down is the keel of the vessel. Rising above these hatches are the two smoke-pipes, both of which are capsble of being lowered, by some telescopic contrivance, so as not to be higher than ten or twelve feet above the level of the deck. This arangement is absolutely pecessary, aty they would otherwise be in the way of the mainsail; but all danger'from fire is avoided by the consumption of the caloric, which in nearly all-other steamers passes through thé smoke-pipes. In fact, so little danger is to be apprehended from fire; that the temperature of the air at the top of these pipes never exceeds 130 degrees, and is generally much lower. Forward of the fire room hatehes is the launch, a large open boat, about thirty feet long, and capable of holding one hundred and twenty men in case of shipwreck. Inside of this is nnother launch somewhat smaller, and inside of this again a cutter smaller still. They are all well secured to the deck "by iron chains, bat are so, moored, or, to use a less nantical term, so firmly secured that in an eraergency they oan be detaohed in less than five minutes, and made ready in a very fow minutes more for the important work for which they are mainly designod. The launch is also employed to water the ship-that in, to supply her with fresh water, and if necessary with provisions.' There are besides these three boats another, callod the dinkey, which is also placed in the launch, and six cutter which are secured to the davits on eaeh side of the vessel. In all, there is room for between four and five hundred men. These, amplo as they"may appear, are not the only means for saving life, as in many cases they would of themselves be entirely useless for the purpose without oome auxiliary. In the event of a man falling overboard; for instance, even five minates would be too long, and the best swimmer might not be able to keep himself above water till a boat could reach him. To moet such in emergeney, there are two life buoys attached to the stern, and connected by means of wires to two handles, which are within the reach of either of the two men stationet $\frac{\text { B }}{3}$ this part of the versel. By pulling this handle the buoy is immediately detached, and falling into the sea is, in nine cases out of ten, effectite in the saving of life. The instant the ory of "s man overboard" in heard by the watoh pupon this atation, his liand is on ψ the handle, the buoy falls from its place, and it not unfrequently hap. pens that it is seived before it is i minate afloat. All this in aoodm. plished in less time than is taken in the description. During this " operation, the ship is arrested in her course, the gang of men who are stationed at the life-bont are engaged it unmooring and lannobing its,
and in about ten minutes from the moment the man has fallen overboard he is rescued and restored to his shipmates. As the life buoy would not be visibte at night, it is ligh by means of a trigger, which ignites a sort of roman candle or blue light, that oontinues burning ten or fifteen minutes. To prevent the possibility of mistake, the following words are inseribed above both handles-" irfa nuoy-port fire."

At night, the handle under the words "port fire" is the first thatris pulled, and immediately after the life buoy with the light thus produce mast be set afloat. This, admirable invention has been the means of saving many lives, and all vessels, whether belonging to our commercial marine or nary, ought to be provided with one at least.

- Descending from the spar deck to the depth of ten or twelve feet, you reach the main or berth deck, which may not improperly be termed the domestic department of the ship. The captain's cabin, the officers' wardroom, the petty offieers' mass, the cook's galleys, 'and in fact every thing that is required in the household arrangements of so large a number of men, are all on this deok. Hềre, too, they eat and sleep, while nearly all the $\begin{array}{r}\text { ork of the tessel is done on the spar deck. The }\end{array}$ captain's cabin is situated, of eaurse, nearest to the stern, and i fitted up and furnished with a degree of neatness and taste that you migh look for in vain in some of the best hotels in New York. Here is the ship's library, and here, too, all the orders are issued to, and reports recelved from, the various officers in command. Every day the doctor sends in his account of the number of siek in the hospital, and every day the sailing master submits the result of his obseryations and calculations in regard to the sailing and position of the shis, while the first lieutenant, who is his chief exccutive officer, reports to him every thing of inpor'tance that comes under his charge. Matters which a landspran might regard as trifling ate somotimes made the subject of a detailed report, and entered upon the ship's journal with the same caro that would be given to the entry of a debt in a ledger. "If a piece of timber is observed floating past the veisel, official information of the fact is conveyed to the captain by the orderly, who keeps guard near the ce bind or one of the crew despatched by an officer for that purpose. Unimportant, how. ever, as such things may, appear to those who have but a limited knowl odge of life at sea, they ate sometimes of the utmost consequeno. Beaide the seientife works required for tho use of the ship, there is a library for the sailore, containing principally books of a moral and roliglouis tendency, "With some histories, lives of celebrated men, adventares by sed and land, and a few works of fiction. "These afford excellent and initructive reading to such of the crew as aro disposêt to golend their leisure trime in that way, anicare cortainly a great sipprom ment upon
the yellow covered literature and other trash that too often find their Jay on board both men of war and merehant vessels. This library is also in tho eabin, and is fitted up with thiat regularity and regard to order twhich should eharacterize all the departments of a ship-of-war. As a genersl thing, the opportunity whieh it affords to sailors for mental improvement is very seldom taken advantage of, while the Life of Jaok Sheppard, Dick Turpin, and the biographies of celchrated pirates and buccaneers, are read with the most intense interest. Occasionally, it is true, there are to be found fin't, sterling, good-learted, single-minded, honest fellows, whom all the vioious associations and evil inflpences to which they have been' exposed are wioble to corrapt or deprave, añd to such libraries of this kind are among the favors that they prize most. Every way itois regarded, the ship's library is an institution that should be sustained, as one of the means ly which the moral and mental standard of our seamen is to be improved and elevated.

The wardroom of the officers is the most spacious apariment, not only in the Niagara, but is aaid to be the largest and most cormodious in the Amerioan or any other navy. It is about fifty feet by thirty, and beitween nine and ten feet from the floor to the ceiling. The furniture is of a simple and unpretending character, but there is an appearance of clegance about the style of the apartment itself which more than makes up for the absenee of mahogany, or miore costly rosewood. An engraved portrait of Washington, in a plain gilt frame, hangs in the most conspicuous place in the apartment, and this is the only work of art by which it is enbellished. But the visitor must not take this as an indication of a want of appreciation of the fine arts in the officers, for nothing would be moro incorrect, or more unjust. Enter almost any of the fifteen snug and neatly furnished little eight-by-ten bedrooms, and you will see taore than one painting, and among these perhaps copies of some gems of the old Italian mastera and articles of vertu obtained during a cruise in the Mediterranean. And there, prized still more, hanging beside these, is some present from dear friends at home, whom absence and distarce shave only served to render dearer than ever. Wherever you turn your eyes you see. evidences of woman's faste and ingeanity; it ruay be in i beautifally wrought wateh-poeket, or pincushion, or other trifle, all giving an air of taste, if not of luxury, to the little bedroom. The governmont in its bounty has furnished it with a tolerably good bureau, a washstand, a chair and a bedstead, or rather some contrivance to place a bed on, bat bere its liberality has stopped ${ }_{\mathrm{j}}$ and the officers have to supply the hundred other necessaries that make up the sum total of a well regulated, well provided household. They have to purchase bed olothing, looking-glasses, towels, pitchers,
their cary is ard to. f-war. aental Jack s and r, it is inded, ees to , añd most. hould iental
basins, soap, knives and forks, spoons, cookirs atensilf, plates, tables, table covers, coffice and tea pots, plates and dishes, cups and saucers, bowls and all the other articles which are consideted indispenssable in the proper management of domestic matters. The experience which they obtain in this way gives them a decided• advantage over landsmen, and makes them, as may be supposed, somewhat of a domestic turn. In fact, the close and intimate connection into which they are brought with each other binds them together like nembers of oue family, and the friendship which is formed in the wardroom and at the mess table often lasts through life, and with a firneness and sineerity sometimes exceeding that which exists in the family relations.

The mess fund is formed by equal contributions levied on each member of the wardroom, and with this is purchased the provision necessaty for the cruise. The caterer of the mess is selected from among the officers, and to his charge is consigned the direction and management of all those things which fall to the oare of caterers generally. This office is purely an honorary ono, but, unlike most offices of an honorary kind, there is considerable responsibility attached to it. He looks after all the table appointments, and requires of the steward an account of the breakages, takes notes of the consumption of provisions, and at the end of the cruise renders an account of his charge.

The wardroom is exclusively the officers' apartment, and not ëven the captain is privileged to enter it, except for the purpose of official inspection, when it is of course thrown open to him. While, however, it is their own, indeed as much as any gentleman's house is his, and no one can force himself uninvited into the mess, it would be wrong to suppose that there are, therefore, no interchange of conrtesies, or that it is enclosed by a sort of Chinese wall for the exclusion of all but those who are mombers of the mess. So far from this being the case, it is a comphn thing, I understand, in our navy, for the officers to finvite the captain to-partake of their hospitality, and some of the plcasantest hours whioh are spent on board a man-of-war, are those passed by the officers and the captain in the interchange of mutual courtesies and friendly feeling. During the passage of the Niagara I had the pleasure of being present at one of these re-unions, the company consisting of all the wardroom officerre, the captain, Professor Morse, and the two Russian officers, Captain Schwarg and Lieutenant Kolobien, and I had a full opportunity of realising the fact that the amenities of social life are as well understood and as much appreciatod at sea as on land.

According to the rules of the skip all the lights in the berth-room are extinguished at ten o'clock, but permission can be obtained from the
offioer of the deok to keep them lighted for one or two hours after that time if necessary.

After ten o'olock, also, all conversation or noise that may disturb the sleep of the offieers who have kept watch or are going on watch is striotly prohibited, and only one light is allowed in the wardroom. Whatever may be said about late hours and dissipation ashore, there oan be very little if any at sea, and however mon may be inolined to indelgo while on land, they have certainly no opportanity for it on board as ship of war.

The messrooms of the warrant officers are not equal in appearance to that which has just been described; but their rooms are hardly inferior in point of accommodations and general appearance to those of the wardroom officers. In this particular the Niagara differs from nearly every other ship in our naval service, and for this point of difference the warrant officors are indebted, to a considerable extent, to Mr. George Steers, who was determined that his fellow-mechanic should have no reason to complain of limited or inferior accommodation. The warrant officers are so called on account of their being appointed by a warrant signed by the President, and differ from the lientenayts in their not being confirmed by the Senate. They are also inferior in rank, and are out of the line of promotion. Their mess consists of the carpenter, the sailmaker, the boatswain, the ganner and assistant engineersi, the chief engineer being one of the wardroom officers.

Forward of the mess and berth rooms is the part appropriated especially to the sailors and marines, and it extends on either side of the masts and hatchways, which occupy pearly the whole of the central space, about two hundred feet each side, by from fifteen to trenty in width. It is in this portion of the berth deck that the marines and sailors sleep, eat, and transact nearly all their little domentic affairs. At twelve o'clock some two hundred men here sit down to dinner, all divided into separate messes of fifteen men, each of which has its own cook, who is generally selected on account of his qualifications in, the culinary department. Let a man obtain a character among his messmates far saporior attainments in cooking, and he is at once elevated to the position. He must understand thoroughly the making of dunderfunk, be au fait in the oooking of lobscouse-two very favorite dishes among sailore-and if his abilities are of so high an order as to compreheng the baking of puddings or pies, so much the better for his owh standing and the palates of his messmates. Lobsconse, which, as has been stated, is a dish in great favor among sailors, is a kind of stow, and is usually oomposed of salt beef, potatoes, onions, a liberal sprinkling of pepper, and
rb the ristly tever very while hip of
ferior
ward-
svery
waro
eers,
in to
icers
d by
con-
out
the
hief
spe
the
dth.
eep,
ive
nto
0 is
art
H_{A}
in
nd
of
the
3
m-
ad
his slumbers by the ory of "all hands on deek," and is sotnetimes obliged to postpone his sleep till the rext night if the weather should prove atormy. In groh cases, however, he generally manages to make up for lost time by snatching a moment of rest on the deok, or wherever and whenever he can daring any intervals that he may have. With all his tronbles and labors, Jack is, perhaps, one of the most cheerfol of mon, and if he is somctimes too ardent a votary of the jolly god, he is not a stranger to the finer sentiments and feelings. He has a strong love for music, and indulges it whenever he has an opportunity. Thero is not, perhaps, a vessel in the American nary whose crew numbers over thirty or forty men that has not a musician of somo kind among them, and they are generally held in the highest estimation.

As for the Niste, she has quite a large force of them, independent of the two offig . Scians, if they may be so oalled, that the government of the U . W 新tes has provided. These aro ontered npon the ship's list 4 , 4 , but lest thore should be any misapprehension in regard to their pay far grade, or the instruments on which they perform, it may as well be stated that the musicians in this instance are simply a fifer and drummer. It will, however, satisfy all true and patriotic Americans to know that their abilities aro fully equal to the performance of "Hail Columbia," and "Yankee Doodlo," and the American who after that would stop to inquire into their knowledge of tho works of the great composers has not a spark of feeling in his whole composition. These are the official masicians, but there are, as I have said, a number of others on board, amateurs , who play for the love of it, and without hope or prospeet of pay. It was my good fortune to be a witness of a concert which took place here a few.evenings ago, and although not one of the assembly I had atill a fair chance of seeing and hearing all that was going on. The concert came off on the berth deck, within a few feet of the cook's galley; the performers wére two rival violiniste, who have been contending for the palm ever since they came on board, and the audience consisted of some three or four of the cooks, two or three powder monkoys, and some twenty or thirty sailors. The performers sat opposite each other, and suspended between them was a large ship's lamp, which threw a dim and clonded light on the admiring faces around. One of the fiddlers entertained his andience with the wonderful performan cea of the "Bob-tailed Nag," while the other played "Villikins and his Dinah," with an expression that even Jem Baggs himself could not surpass. . The contest was maintained with about equal success on both sides, and when the change of watch called the rivals awny to the spar deck and broke up the assembly, it was impossible to decide which had the adrantage. The affair furnished a topio for conversation
many days after, and I believe the remembrance of it will remain with the hearers long aftor the cable is laid.

This sketch of the maingeck and social life among the wars would be incomplete if I failed to unention one of the most important institations in the vessel-the ship's dispensary. The dispensary is situated at one ond of the warrant offieers' mess and berth rooms, on the starboard side, and is supplied with all the r rodicines necessary for the treatment of every disease. It is under the ,harge of the surgeon's steward, who makes up all the preseriptions, and who is to all intents and parposes the same as an apotheeary. There have been very few casos of sickness among tho crew of any ennsequence, but wore it not for the course which has beon pursued by the ship's physicians they would have more patients on tho list than they eould well attend to. On board of almost every man-of-war there are a number of good-for-nothing idle fellows who endeavor on cyery oceasion to shirk their work by feigning siekness. ${ }^{\circ}$ Sometimes they succeed, but the detection of one or two generally leads to the dis. oovery of the rest, when their namez are at ofice taken of the siok list, and they are obliged to perform their duty.

The orlep deck is almost exclusively used for the storage of provisions, water, the ship's anmunition, extra hawser, ropes, sails, and all the other articles that constitute a ship's stores. The part appropriated to the provisions is protected from the invasion of rats or mice by a casing of tin, and the magazines, besides being earefully loeked and sealed, have a sentry always on guard near them. At the extreme forward end of the orlop deok is the hospital, which has aceommodations for fifteen or twenty patients, but fortunately there are not more than two or three in it at present, and those are not seriously siek. The engine and fire rooms are situated about the centre of the vessel, and extend from the bottom of the ship to the spar deck. In comparison with her immense size, they take , up very little space. The firomen, whose watches, like the sailors, are divided into four hours each, sleep on tho orlop deek, have separate messes, and are never, except in eases of emergoncy, required to do any work upon deek.

Aceording to naval discipline, every man ou board a ship of war is supposed to be always ready for duty, unless prevented by sicknoss; but, as sailors require rest, as well as other men, their hours of labor are so divided, that while one-half of the erew are on watch or duty, the other half are at leisure. There are two watehes, which are known by the names of port and starboard, eaeh of which are four hours long. As this system, however, if followed out, would only give one-half the erew fonr hours' sleep every night, another wateh, called the dog-watoh, which is intended to obviate this difficulty, was established. This is a

，

氺
5
\cdots
没
＂進居

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences Corporation

23 WEST MAIN STREET WEBSTER, N.Y. 14580

watch of two hours, and extends from four to six and from six to eight in the evening, and by this meana each of the two watches of the ship are enabled every eecond night to get eight hours' aleeep. Thus the watch which is relieved from duty at eight o'oloek in the evening, ean sleep till twelve, and being again relieved at four, may at that hour take possession of their hammocks and aleep till eight in the morning. These watches are stationed in different parts of the ship, both day and night, some in the foretop, atr elevated position on the foremast abont a hundred feet from the deck, and some in the main and mizzen tops, while others are placed on the forecastle or poop, by the ship's boats, a. the helm, and other stations, where they are always ready when their services are required. One of the men on the foretop keeps a look-out for all vessels, and on account of his position is ablo to see them half an honr or more before they are visible from the deek. The moment he deseries a sail, though it looks like a mere speek on the horizon, the announces it to the officer of the deck. "Sail ho!" he eries alond, from his station, when the officer, if he desires to know the direction in which he has seen it, asks," Where away?" and is told in reply that it is on the weather quarter or lee bow, as the case masy be. But in mid-ocean the announcement that a vessel is in sight is received with the greatest interest Every one id anxiously looking out for her, and all the teloscopes and opera glasses on board are in immediate demand.

The men. stationed at the poop are required to be particularly vigilant, so that if a man should fall overboard, they may be ready at a moment's warning to detach the life-bnoy. There are several other watches for the reefing, furling, and setting sails, and for various other duties, the details of which possess little interest for the general reader.

The force of marines on the Niagara does not exceed sixty men, bat they are among the most effeetive and the best drilled in the service. They are the sentry of the ship, and are always placed on guard over the grog, the ship's stores, the provisions, and on the different decks. The marine, besides being the sentry of the ship, is also a soldier, and his drilling and training differ in no material reapects from the diviling and training of the soldier in our military service.

Every ship of war in our navy is provided with sailors'. olothing of all kinds, sufficient to supply their demands during the eruise, and longer if necessary. These are given to the men at cost price, and the total amount deducted from their wage., In this respeot the senmen on board a man of war have a great adrantage over those who ship on a mere merchant vessel, and who are obliged to purchase their outfit at exorbitant rates in retail egtivtifupents. In addition to this the aloth-
ing furniahed by the government is of a superior quality, and Jaok has the satisfagtion of enowing that he gets the full value of his money. If he is of a saving, economical nature, this is a great consideration to him; and as his means are limited, and he is not very judieiouis in the expenditure of them, it is the bent thing the government can do, as long as it deals only with honest contractors, and not with men who never seruple to make money even by frauds npon those who labor hard for a living.

The clothes are served out by the purser on a specified day, when all who have applied for various articles of dress must be in attendance. This officer has their names written on a schedule opposite the different pieces of clothing of which they aro in want, and as he calls them out in their tarn, they step forward and receive them from one of the purser's assistants. One pile of clothing consists entirely of pants, another of drawers, another of caps, another of socks and stockings, anothef of pea-jackets, another of flannel overshirts, another of boots and shoes, and so on to. the end of the list. As they are not very partioular about the exact sixe of the pants or pea-jackets, it is easy to suit them, but the ohief tropble is in the fitting on of the shoes. He has, however, an immense number of all sizes to seleet from, and he generally finds his measure some time between five minutes and half an hour. The flannel and cloth he converts into a shirt or tronsers, as taste or necessity may dictate, and when he wants to lay in a good supply he obtains from ten to twenty yards of it for the parpose. Some are not so expert at the needle as others, and those will pay three or four yards of their flannel for the making of a pair of pants or a shirt, and more in proportion for a pea-jaoket or other article of dress that requires a larger expenditufe of time and labor in its manufacture. The tailoring is carried on prininoipally on the forward parts of the spar deck, in favorable weather, when as many as twenty or thirty may be scen silting under the bulwarks and working away as if they had served a regular apprenticeship to the trade. There, in the midst of that group of lookergonn, is an experienced hand at the work, chalking out the varions parts for the aleeves, the collars and the body, before cutting it ont; while here, in the centre of another little knot of spectators, is an amateur in the same business, employed in embroidering a star of various colors, for the top of a oep, or the coller of if fannel shirt. They are not only supplied with oloth and olothing, but with threed, needles, thimbles, bodkins and every thing neoessary to carry on tho tailoring sucoessfully. And this is not all. The ingenious sailor is not only able to make his own clothes, but he oan turn out of his hands as good hats as he can purchase in the store. They are made of straw, or some similar mate-
rial, which he'first plaits and afterwards stitches together without even a fitting block, and yet with as mach neatnoss and success as if he had all the appliances of a manufactory at his control. From all this it will be seen that however different they may appear, it is not impossible to combine the two oecupations of sailor and tailor in the one person, and that the samo man who is accustomed to handle a marlinspike can use a needle with as much skill and dexterity.

That particular hour of the whole twenty-four which' possesses the most interest for sailors, and which is always looked forward to with pleasure, is that appointed for serving out the grog. No matter how dilatory they may be on all other occasions, they are always on the alert when Uncle Qam, as they say, is going to "stand treat." All hands are on deck then, and collected in an eager, expectant throng before the grog tub, ready to "stand by" when their names are called. *The vessel ased for serving out the liquor is a small tin cup called a "tot," which contains somewhat more than a glass full, which is emptied by each man with a rapidity that would astonish any one ignorant of the ease with which Jack disposes of such welcome favors. Occasionally somo mon are to bo found among a ship's crew who are striotly temperate, and to these the government always makes an allomese in money when paying their bills, equal to the value of their gre pins. In the course of a year this amounts to nine or ten dollars td anacriman, sufficient to keep him in shoes for nearly the whole of thest time. By saving in this and other rations he is casbled to add, if he is so disposed, at least twenty dollars to his twelve months' pay, whieh at the rate of eighteen dollars a month for a good seaman, is over two hundred dollars. The green hands, who come under the title of landsmen, and of whom there are a large number on board the Niagara, are not so well paid. Whatever saving or coonomy they may exhibit in the consumption of their mess rations is very rarely extended to their grog, and one of the severest penalties you can inflict upon them is to deprive them of their daily allowance. When other punishments for minor offences have failed, "cutting off the grog'thas alpost invariably succeeded in bringing the oulprit to his senses. Notwithstanding, all the efforts of the temperance advocates for the abolition of this particular institution on shiphoard, it seems destined to a long life; and it is much to be feared that although Jack is the party whom their efforts are intended to benefit, he, is so far unable to appreoiate their kindness that he would prove one of their most strenuous opponents.

ARRIVAL OF THE NIAGRBA IN ENGLAND.

The Niagara arrived in the Thames on the 14th of May, and came to anohor off Gravesend, a small port about twenty-five miles from London. She remained here till the 5th of June, when she left for Portsmonth, to undorgo the alterations necessary to fit her for the reception and laying of the cable. While lying in the Thames she was an objeot of much interest, and was visited daily by a large concourse of people.

The inhabitants of Gravesend flocked in erowds to see the ship, and when it was reported that we would not remain more than 2 week, recoived the announcement as they would the departure of old and cherished friends. The first and second day after we had anchored opposite their picturesque little city, only a few of them came to see us. There would, however, have been a large number, had it not been generally believed that they would not be allowed on board; but as soon as thes learned that they were not only allowed on board but that they,were not restricted to any part of the ship, we were almost overwhelmed with visitors. The weather was favorable, and they took advantage of it, determined that it should not be their fault if they did not see us and asoertain for themselves what kind of people the Yankees are. The river in the immediate vicinity of our ship swarmed with small oraft of every description, and from eady morning till eight in the evening a steady, constant stream of imen, women, and children poured in and out over her sides. They flooked in throngs into the officers' wardroom, the captain's cabin, the engine-room, ahd all parts of the vessel, and appeared as if they would never weary in looking at every thing they saw. It was the first American man-of-war, they said, that had ever anchored in the Thames, and as they had never seen one before, their curiosity was excited to the highest pitch. They wanted to know if all dor vessels were of the same size, and were astonished that we should allow persons to visit every part of her. The boatmen, who hailed her appearanoe with general joy on a.0count of the impulse she gave to their business, were unbounded in their praises of her immense sizo, and the symmetry of her model. One of these a a tough, weather-beaten old fellow who had, he told us, been in miany a hard blow off the English coast, had quite an interesting conversation with one of a party belonging to the Niagara, whom he was taking out to the vessel.
"What kind of a ship is that ?" said the gentleman, professing to be ignorant of her oharacter.
"That? Vy that's a Hamerican ship," he replied.
"Well," said his questioner, " are the people civil aboard of her $?$ Will they let you see her?"
"Yes," he said, "they're wery good-wery civil; their civility is n'countable-they're no eivil."
"Well, I see," the other rejoined, "I see she" a very large ship for a frigate."
"Aye, you may may that Eood, I believe you sir. If they aulls such a ship as that a frigate, I dunna what their liners be. Ha! ha!"

The womea aro in rapture with both officers and men, and sometimen give pretty free expression to their feelinga.
"I really thought," one of them said the other day to an officer who was showing her the vessel and explaining all the parts of it to her, "I really thought that they didn't allow poople to look, about the ship. But we find the officers and the men so very oivil and so willing to oblige us that we were quite taken by surprise. Indeed," she oontinued, "I like the officers so much that if I had a ohanoe I think I'd ran away with one." Here was a female kidnapper with a vengeance; but abe did not show any desire to carry out her design then and there.

Among the celebrities who visited the ship was Lady Franklin, who was, of course, a great objeot of interest on account of the position in which her melancholy loas, her self-devotion, enduring hope and noble fortitude have placed her before every lover of true womanhood in both the Old World and the Now. She is now about sixty-five years old, and in stature is rather below the medium height. Her face is peculiarly expressive, and overy feature of it is indicative of that remarkable tenacity of purpose and undring hope which have buoyed her ap in the midst of her affliotion gnd which at this time still characterize her.' It is asid that ahe has at laat abandoned all hope of ever seeing her hasband alive, but believes that his body and the records of his cruise will yet be found. A proper feeling of delicapy farbade all alluaion to the sabject ainong the company; but those who.were present conld not avoid soeing the emotion which ahe endeavored to subdue. She had viaited the Resolute when in London, and her presence again among Americaps awoke reopl. lections of a pleasing but still of a painful oharaeter, recalling to her mind the efforts which our countrymen have made for the digcovery of the lost navigator and the early death of one of those who was foremost in the ranks of Aretio exploregrs.

Before leaving for Portsmoath the Agamemnon, which was appointed by the British Government to take one-half the cabla at Greenviel, arrived in the Thames. As she passed us on her way up the river, three thundering oheers burst from her deoks and shronds, that roused the slumbering eohoes on either ahore, and before they died away they ware answered by our men with one long sustained hurrab, that seemed to pierce the very clouds. The three that greeted and came thunder-
ing to as from the British ship were as distinct and as nicely graduated as if they wero timed and marked by the roll of a drum ; bat ours appeared to be under no restraint, and blended and mingled in one long wild hurrs like the sound of a whirlwind. After one more eheer-a parting one before the British vessel passed beyond hailing distauce -the rigginge were eleared, and wo watched her as she ploughed her way up the Thames, part of her hull looming above the banke, even as she turned the bend in the river.

It was supposed that the Niagara would take her half the cable from the inanufactory at Greenwioh, and that the Agamemnon would ship the other half from the manufactory at Birkenhead, opposite Liverpool, but this order was reversed on account of the great size of our ship and the difficulty of procuring sufficient room for her near the wharf in front of the cable works.

The arrival of the Susquehanna in the Thames was daily expected, as she had sonue time before received orders to join the Ningara and to act as her escort during the expedition. It was known throngh private letters that she had left Sperzia on the 18th of May, and she was therefore looked for several days previous to her arrival. On her way, however, she stopped five days at Lisbon, from which she made the passage to Cowes in four more. While lying in this part of the British Channel she was passed by the Osborne, the British Admiralty yaeht, a on board of which was the Grand Doke Constantine of Russia, who was on a brief private visit to the Qucen, and the details of whose reception were given at length in the English papers. There was considerable consumption of gunpowder on the occasion, bot not quite such an experiditure of the article as took place duffing the eleven long and weary months that the allies lay before Sebastopol. But a comparatively brief period has elapsed since the cclebrated siege of that eity, and now we see the two royal families who at that time were at deadly feud with each other, meeting on terms of apparently the most friendly social intercourse. It appearis that the Grand Duke was somewhat jocular on the occasion of his introduction to Mr. Bower, who at the time of the siego was sailing master on board the Agamemnon, one of the vessels of the immense fleet with which the English assailed the great Russian naval depoot of the Black Sea. It is said that he asked Mr. Bower if he did not find himself in a "very hot berth," but the future historian is left in complete ignorance of Mr. B.'s answer, for the journalist, while he has recorded the pleasantry of the Grand Dake, has said nothing about the reply of the sailing master. There was, as has been already stated, a considerable consumption of gunpowder at the reception of the distinguished visitor, and it may not be unworthy
of notice that the Sosquebanna was the first to salute him. Her yards were manned, and twenty-one guns fired, a compliment which, it in said, the Grand Duke expressed his high appreciation of is teadered by a nation with which Russia had always been on the most friendly terms.

The Susquehanna atrived in the Thames about 7 o'olook on Sunday morning, the 31st of May, and a few hours after was seen from our doek. As she neared our ship our aignals were run up, and after she had passed and auchored within a few hundred yards of us, one of our officers was sent on board of her. Captain Hudson subsequently visited Captain Sands, her commander, according to the rules of our naval mervice, which require the junior captain to pay this mark of respect to the senior on all suoh oceasions. This was the only demonstration which was mado-there was no oheering, nor any of those manifestations of fceling which were displayed on both sides the Sunday before, when the Agamemnon passed us on her way op the river. It is only, it appears, when our ships are parting company that they choer eaeh other. But if our men were not permitted to indulge in those friendly demonstrations, the gratification which they felt at seeing anothor of our national vessels in a foreign port, with the flag of the republic flying from her peak, was none the less sincere and beartfelt. This was the.first time that two American war vessels had been seen in the Thames, and it is gratifying to be able to state that they were the largest vessels of their class in the world, the Niagara being the largest propeller, and the ginsquehanna the largest side wheel steamer. The officers of both ve...en soon made or renewed acquaintance with each other, for some were formerly old companions in the service, and their meeting, as may be supposed, was of the most pleasant character.

PREPARATION OF THE NIAGARA AT PLYMOUTH.

The Niagara left the Thames for Portsmouth on the 5th of June, where she arrived the following day. She was detained here two weeks, while the necessary alterations were being made for the coiling of the oable at Birkenhead. Those who were on the ship before she left New York the previous April, would have been astonished at some of the changes ahe underwent during her stay at this port. The officers' wardroom was broken into, three of their state-rooms on each side of it taken down, and the partition which divided it from. the rest of the main or berth deek completely removed. The open space which extended outside of this apartment, away beyond the stearage, is called "the country" among the sailors; but the barrier once removed, the officers' wardroom might now properly be said to form a part of haxural distriots, and the whole meas enjoyed all the

r' yarde

 is said, d by a erms. 3unday r dook.pleasures of rastication for meveral montha They amorifloed whatover conveniences they had to the suocess of the entorprise, oheerfally, abandoned their berthas for a hammook, and turued out of their state-rooms, that there might be suffioient apace for the ooiling of the cable," which was spread over a large triot of "the country." The moment the carpenters and other workmen made their appearanoe, there was a general moving among those whose quarters were invaded, which, on a amall soale, might not inaptly be compared to the first of May in Now York. Looking-glasses were intrusted to the hands of carefut waiters, and stowed away in plaoes of safety; little libraries taken down from thoir shelves above the bortha, and paoked in trunks for the time beigg; then followed the wardrobo in all ita variety-the naval uniform and the dress of the oivilian, the cooked hats of the officers in, three-cornered japanned boxes, all by themselves, and the beavers of the sitizens, with and without bozes; the three or four dozen shirts and the five or sir dozen collars, carried as carefully on the outstretohed arms of the waiters at if they were so many new-born babies; India-rubber overooats, India-rabber overalls, and India-rubber boots, forming an impervious armor againgt the rain; combs, brushes, razors, bootjacks, hat brashes, pin coshions, needles, seissors, and all the nther great and little thinga without which no domestic establishment can be carried on either on ship or ashore. Varibus contrivances were resorted to by those who loat their state-rooms, and the ingenuity exhibited under the ciroumstances would have astonished a landsman. Here is a little corner which was set apart for a water jar, but which ${ }^{\text {sen }}$ beon converted into a sort of dressing ohamber. The jar has blyfremoved, and in its stead a basin atand is ereoted, while upon a little hook above it hangs a towel, and the whole three-cornered concern is enolosed by a ourtain formed of canvas, behind which the owner performs his morning ablutions and arranges his toilet. The oil carpet furnished by Unole Sam's agents (and it's a very poor affair) was taken up, the bulliheads torn down, and the atanchions soon ahared the same fate; but in their stend were plaoed strong iron braces, or arches, to support the immense beams which extended under the apary deck, from side to side of the vessel. In some places, while the state-rooms were torn down, just enough of the berths were left to allow the occupant to lie upon one side, making it absolutely necessary for him to get up altogether before he could turn on the other. But after all the inconvenience and annoyance which aitended these alterations, there was a novelty in the ohange whioh gave it a sort of attraction. The carpenters made a tremendous noise. whon at work, and the confused sound of hammering, sawing and filing, was any thing bat pleasant; but it was nothing compared to a good atrong
patriotio demooratic man meeting in ther Park, or an excitod, belligerent and pugilistio orowd in Tammany Hall.

Other changes and preparations were made on the Niagara at Ports: month, among which was the attachment of a oable geard to her stern, and of which a decoription will be found in' the more adranood pages of this work.

THE NLAGARA AT LIVRRPOOL

The necessary alterations haring been mado in the shtp during hof atay at Portsmouth, she left that port for Liverpool on the 20 th of June, where the cable was to be boiled and the machinery fitted op previous to her departure for Queenstown, Ireland, whioh had been deoided ou as the place of rendervous for the Telograph Squadron. The Niagars arrived in the Mersey on the 22d, wherd ahe attractod ars muoh attontion as she recoived daring her detention in the Thamem The Captain and offioers were overwhelmed with attentions, and found it imponsible to moet all the domands, of public and private hoapitality. The Chamber of Commerce gave them a dimmer; the Major of Liverpool another, and the Amorican revidentes a grand banquet on the Fourth of July.

It was the first celobration of the national anniveraary which had ever taken place in that city, and from beginning to ond was a most muccessfal affair. There are only twenty-five American residenta in Liver; pool-a small number, it must be acknowledged, but they wera not, as they proved, too amall numerically for what they undertook, and what there is no doubt will serve as" a preoedent for fature imitation.

The officers of the Niagara were all dremeed in uniform, and as the ateamboat whioh conveyed tham from, the ship landed at the pier, they became the aubjeot of the most intense curiosity to all who gaw them, and wondering eyes displayed their anxiety to know what the whole thing meint, " As they passed on their way up the pier, the following colloquy took place between two of the most carious.
"What are all these officers doing here? -what does it all mean, I wonder?" inquired one of these of the other.
"That's what I've been trying to find out myself," he replied, "but nobody seems to know. I hear that they"re the officers of the greast Yanlee man-of-war that's agoin' to take that 'ere cable, but what they're a goin' to do I don't mow."
" I'll tell you what they're about" naid a third ohiming in-"II toll you what they're about: this is the Fourth of July, and they re going to a great dinner."

Byit this did not enlighton them any the more, no the third party had
\square
him that all the Amerioan flagg wére diaplayed in honor of the' oos oasion.

On the arrival of the officers at the hotel, they were recoived by the committee, by whore they were introduced to the rent of the ompany. When the ceremony of introduction was over, the whole party procepded to the dining hall. This apartment was handsomely ornamented for the oobasion. Over the entrance the Ameriecin flag was diaplayed : at the opposite end was a rather fiercertooking apecimen of the bird of Jove, while upon the walls around the apartment were hung engravinga of the telegraph ficet, the signers of the Declaration of Independenee, a portrait of Washington, the Amerioan Senate in sossion, and a fac ainuile - of the Deoleration Itself. When the dinner was thoroughly disounsed, the company passed the rest of the evening in gpoesh making and the interohange of friendly sentiments.

Among those who visited the ship while in the Mersey was Prince Napoleon, the son of Jerome, and another of the nephewe of his uncle. Ho was attended by his suito, consisting of the followifg gentlemen :Le Barón de la Ronciere, eapitaine; le ehef d' esondrón d'état Major Ferri ; Disant, aido-dercamp du Princo ohef d'encadron de cavalerie ; Clure, bouyer du Prince ; M. Regnault, membre de 1'Tantitat ; M. de - Chanconrtais, engenieur des mines; M. Arago, son of the getronomer; Inepectear Gónéral dos Beaux Arts; le capitaine de frégate Silva; commandant le jucht Poine Hortense; Hamelin, lientenant-de vaisseau, and Miet, enseigne de vaisseau. It was understood that the prince was to visit the ship incog.-that is, every body, from the captain down to ${ }^{\circ}$ the 'powder monkeys, were to know who he was-at least such is the meaning of the word, as established by royal usage and custom. The young Eigglish Prince is to make his tour of Enrope in the same style ; and when all the other members of the rgyal fapily set out on their travels, it is to be presumed they will adopt a similar course.

Thie Prince and his suite cande alongaide in a steamboat, and his Imperial Highness was the first to come on board. Thereaptain invitod the whole company into the cabin, where he explained the different featuree of interest in the enterprise to them. The Prince is said to be a remarkable likeness of his gryat uncle, bat he is much taller, being

- about five feet-eleven. He kas certainly the Napoleonic face, and might eavily, be pioked out in a crowd as-a member of the familly; but that imperial expression whioh is seen in all the portraits of the First Napoleon, is wanting in the nephew. He is phout thirty-five years of age; and resemblies his uncle, not only in the face, but in the peculiar stoop of the uhoulders by which the Littlo Corporal was distingnished. The Prinde is exoeedingly affable in hin mannors, and although his

4

knowledge of English appears to be somewhat limited, he manages to carry on a tolerably animated:conversation with the partial aid of an interpreter. Captain Hudson posted him up in all the particulars about the cable, the way it was made, the way it was to be laid, and, last of all, the way the ships werf to take when engaged in paying it out. He then took the Prince and suite around the vessel, and showed them all that was worth seeing, and when he was taking his depapfare manned the riggling and gave him three oheers. The Prince was very much gratified with his receptionjand invited the captain to dine with him the same afternoon.

The Niagara was as great an object of ouriosity and wonder here as she was to the people of Gravesend, when she was lying in the Thames, and her fame extended far and wide throughout the coantry. Captain Hudson, for the purpose of giving all who desired to see her an opportunity of doing so, permitted one of the ferry compaxies to bring passengers alongside, but issued an order that they should not be allowed to go below the spar deck, or in any part of the ship where they might in any way interrupt or interfere with the workmen while employed in coiling the cable and putting up the maohinery. As a large number of peraons ayailed themselves of this privilege, the ferry com. pany reaped quite a harvest, and of course took every means to keep up the publio interest in the ship. They issued large posters, which stared at one from the walls near the wharves, and ornamented the wheelbouses of the steamboats plying to and from the ship. The public were notified, through the means of these, that "the Leviathan United States frigate Niagara is to be seen from nine o'clook A. M. to eight P. M.;" and further, knowing that no visitors were permitted to come aboard on Sunday, they endeavored to attract passengers by announcing that suoh and such boats pass. the Leviathan American Ship on their way to auch a place, and that they would g° ronnd her for the parpose of letting them have a full view of this "monater of the deep." For the privilege of visiting the ship the ferry company charged one shilling sterling a head-about twenty-five cents of our money-the price of admission to any of the negro operatio entertainments in New York. With some of the people a shilling is quite a large amount of money, and it is often as, mach as many receive for half a day's labor. It is ensy to imagine from this what an evont they considered the appearance of a vessel of this description in their waters, and that a visit to her is something to look forward to as a treat which they might enjoy only once in half a century. . In this atato of "mind they came on board, and were astonished that they were not allowed to go all over; even into the cabin and officers' wardroom, both of whioh are as private "en any gentleman's house coold
be, and which it is really a privilege to be permitted to enter. Some of them did not understand this, but, supposing that the shilling entitled them to the right of going wherever they pleased, were considerably disappointed when they found that they were confined to the spar deck, and that the other parts of the ressel were shut against them. One of these went up to the officer of the deck, and, with a look of extreme disgust and dissatisfaetion, said he desired to go below.
"I should certainly allow you to do so with pleasure," replied the officer, "but there is an order against permitting persons to go below this deck, as they might interfere with the - atives."
"But I want to see it, yon know," said the visitor; "I paid my shilling to look at every part of the ship. I was promised that I should see the berths below and all the ship underneath, when I gave my money."

This was said with a manner and in a tone of voiee which would lead a person to suppose that he had been swindled out of his shilling, and that the offieer himself was a party to the transaction.

This ended the conversation, and the visitor left the ship in high dudgeon, leaving an undecided impression on the mind of the officer whether he intended to suep hin for obtaining money under false pretences, or that his indignation had so far got the better of him as to deprive him utterly of the power of replying in a mauncr that would do justice to his feelings.

the coilling of the cable.

The coiling of the cable at Liverpool occupied three weeks, and although a somowhat tedions operation, possessed many features of interest.

The men employed in the work were, with the exception of half a dozen who were engaged by the Atlantic Telegraph Company, sailors on the Niagara, who volunteered for the purpose, as none but such as were willing to serve and freely offered themselves, were drafted from the crew for this service. They were informed that none but volunteers should be employed, and of its nature and eharaeter; the difficulties by which it would be attended; the wear and tear of elothes, and the tedious task on which they were about to enter-explaining, in fact, all its objectionable features, so that after they should have entered upon it they might not be able to say they did so in ignorance of what they were required to do. The objectionable features, however, did not seem to deter them from coming forward in large numbers, and offering their names, from which a strong force was made out for the work. They were perfeotly enthusiastio about it, and it seemed to be a
matter of rivalry among them as to who shonld be aceepted. About one handred and twenty were enlisted for the servico, and these, with ten of the operatives of the company, formed the great corps of cable coilers on the Niagara. The fay was divided into watches, and as there were about thirty men oneach watch, they were required to work only sir hours out of the twenty-four.

A visit to the oil when all hands are engaged in packing the oable, and when it is coming down through the hatoh into the circle or circus that is prepared for its reception, is full of interest. To make your way successfully into that part of the ship is no easy task, and if not acquainted "with the ropes," one must expeot to receive many a mock in the head or legs, by running foul of planks, or chains, or ringbolts, and twenty other things, the names of which are known only to the initiated. After a descent of some twenty feet you find yourself in the lower hold of the vessel, looking over the little wooden wall that bounds the cireas and keeps, the outer part of the coil in its proper place, on a large mass of what appeares at first sight to be solidified tar, with a cone rising in the centre like a miniature representation of a mountain peak. Thirty men, with blackened hands, blaokened feet, and olothes that are rapidly changing to a deep mourning color, are standing in a circle about half way between this same oone and the outer edge of the ooil. There is one who is constantly walking round this cirole with somewhat of the steady jog trot speed of an old mill horse, and who, in his revolutions, pays out the cable to each man as he passes him. He just gives him suffioient for his share, for if he were to give him a foot over the exact amount required, the separate coils would be unevenly laid, and great delay would be caused by having to go over the work again. If he walks fast, therefore, he is obliged to pay out in proportion to his rate of speed, but both walking and paying out are so nicely proportiofed in this respect that he is very seldom obliged to correct any mistakes.

This is the simple process of coiling the cable-the mere mechanical part of the work, and nothing can be more dull or monotonons, or stupidly uninteresting. It has, however, a sooial aspeot which it would be unjust to overlook. The thirty operatives who sit around the cone, sometimes a few inohes, and at other times twelve 0^{-}thirteen feet from it, are not mere antomata, bat men, and a good jolly set of fellows they are, with the ready joke, the quick repartee, budgets barsting with yarns, and riddles, and connndrums, and Joe Millerisme, mixed np with an abandance of mother wit that if possessed by one individual would immortalize him forever in the annals of the comic and humorous. There is one who stands high in repute among the partioular watoh to th ten of e coilers ero were only sir
he eable, or oircus ke your d if not a knock ingbolts, y to the If in the all that 3 proper ified tar, ion of a feet, and standing - edge of cle with who, in im. He m a foot inevenly he work propornicely correct chanical nous, or it would he cone, et from fellows ng with up with I wotuld morouts. atch to
whi i he belongs, and whose fame has spread to snch an extent among the the otusr watches that they would raise a subscription to bny his time for their own especial amusement. He is a prince of good fellows-a regular Jack Tar-well stocked with yarns that leave even the inventive powers of Munchausen in the shade, and as full of fun as an egg is full of meal-provided it be a good one, which makce all the difference in the word, so far as the accuracy of the comparison is regarded. But with all their jokes, and riddles, and yarns, and conundrums, they do not neglect their work, for while in their merriest mood, the cable is packed away with as much rapidity as if they bestowed their undivided attention on it, and kept gs silent as a congregation at a prayer meeting. They call themselves the telegraph watch, and it is with no little feeling of pride they regard their position as coilers. The saperintendent, who is placed over them to see that they do not neglect their work, and who sits in that little box outside of the circle, has no occasion to display his authority, for they are so willing, and so active, and so quick, and so earnest, too, that there is really no necessity for his supervision. He may now and then throw in a word by way of showing that he is in his box; but his ocoasional requests or exhortations to the men to "be lively now," are entirely unnecessary; they are both active and lively, and he knows it as well as a man ever knew any thing with which he whs thoroughly aoquainted. He has his part to perform, however, and when he tells them about once every half hour the same thing that he has been telling them ever since the first yard of the cable was taken on board, they know that after all it is only a matter of form, and no insinuation or hint that they are not attending to their work. They know, too, that he is just as good a fellow as any one of their own number, and that he enjoys. joke as well as those inside the circle. After all the dulness and monotony of the work, there is no dulness about the workmen, and the time passes so rapidly with them, that they are sometmes astonished when a fresh "telegraph watch" comes to their relief.

The cable men of the Niagara were like so many Mark Tapleys, and oame out most creditably under circumstances that would have damped the ardor of any other body of men. The circle of coilers, as they sat round the ring piling ap flake on flake, were more like a social party assembled for amusemont than a body of operatives who had a monotonous work to perform. They amused themselves with conundrums, both good and bad, related yarns as long as the maintop-bowline, and laughed at jokes that they had heard for the twentieth time. But withal there was no negleet of the work, which went on uncessingly from morn to night, and from nightoto morn, till the twenty-first day saw the last mile of it placed on board. .Nearly one-half the time, too, they

again is attached an iron ring through whioh the cable passes, and by means of which it is thus paid out to the operators: When this ingenious contrivance was introduced, it was welcomed amid a shower of jokes from every part of the circle, and when harnessed to the "payer out," the provocation was so perfectly irresistible, that from that time to the end of the work there Here enough yarns spunand stories told to make a dozen such volumes as Baron Munchausen, with a whole library of Joe Millers to boot. He was called "a fast hoss," " \AA bob-tailed nag," " a full-blooded racer," \&c, \&c., \&c, and small bets were offored on his trotting round the courso in less than two forty. "Hey-get along there-what're you abont-trot round, my filly-jee up now and show your training," and such like exclamations greeted him as he proceeded on all fours round the conc. "Give me a grip of your tail, old Joey." "There 're goes off in a canter-ten to one on his pacing," aud so the fun was kept up, the fast nag himself occ:*sionally joining in with the company. Take it altogether, there was never such a combination of humor, fun, genius and art, as was to be fonnd in the submarine cable circles of the Niagara, and if the cireles of the Agamomnon had only half the complement, they must have been as jolly a set of fellows as ever assembled on a British man of war.

While the Niagara was receiving the oable in the Mersey, a meeting of the members of the Atlantie Telegraph Company was held in London to decide upon the debated question, whether the laying of the cable should be commenced from Valentia Bay or from mid-ocean. The engineers were in favor of the latter courso, but they were overruled by the electricians, who advocated the former. And so it was dcoided, that the cable should be landed at Valentia Ba_{j}, and paid out across the ocean to Newfoundland. According to the plan adopted, the Niagara was to pay out her portion of the cable first, and then to splice the end to that on board the Agamemnon, which was to lay the remaining half, and land her end at Trinity Bay, the point of connection on the American side. Whatever donbts there may have been as to the greater feasibility of the mid-ocean plan, there certainly can be none now in view of the results which have attended the first and last expeditions.

the miagara and the telbgraph fleet at queenstown.

The coiling of the cable on the Niagara at Liverpool occupied three weeks, as we have said, but her departuro was delayed by the fitting up of the machinery. She left Liverpool, however, on the 27 th of July for Queenstown, Ireland, where she arrived on the 29th of the same month. While at Queenstown several electrical experiments were made, and satisfaotory results reported, although it was subsequently admitted, that,
if the cable had been successfully submerged on the first expedition, the eleotricians could not have sent messages through it. The Agamemnon arrived at Queenstown on the 30th of July, three days after the Niagara ; and while the vessels were lying within a few hundred yards of eaph another, the ends of the cable on both were joined so as to make one continuous line of twenty-five hundred miles. The insulation was found to be perfeot, and about ninety currents were sent through the condnctor in a minate, bat the electrioians had not attained that perfeotion in their instruments necessary to secure the oorrect transmis. sion of words and messages.

The whole telegraph squadron, consisting of the following veasels, sailed from Queenstown :

The U. S. Steam Frigate Niagara, to lay the half of the cable from Valentia Bay, Ireland.

The U S. Steam Frigate Susquehanna, to attend upon the Niagara.
H. M. Steamer Agamemnon, to lay the half of the cable on the American side.
H. M. Steamer Leopard, to attend upon the Agamemnon.
H. M. Steamer Oyclops, to go ahead of the steamers, and keep the course.

The steamers" Advice" and "Willing Mind," to assist in landing the cable in Valentia

In Trinity Bay the U. S. Steamer Arctio and the Telegraph Company's steamer Victoria were to await the arrival of the fleet, and assist in landing the cable there.

DEPARTURE OF THE SQUADRON FOR VALENTIA BAY-THE MAOHINERY AND OTHER APPLIances for laying the cable.

The squadron left Queenstown for Valentia Bay on Monday, the 3d of August, and arrived there the following day. Advantage was taken of the passage to experiment with the maohinery, which up to that time had not been tested on board the Niagara. Before referring more partioularly to these experimentr, however, it beoomes necessary at this atage of the undertaking, to lay before the reader a detailed desoription of the various points whioh are neoessary to an underatanding of the whole subjeot. And, first of all, let us look at that wonderful plateau-that great submarine prairie, whioh lies between Ireland and Newfoundland, and
dition, amemor the yards se to dation rough 1 that asmis.
eassels,
from
were literally thawed out and deposited where they are now seen. By the deposits of these and other materials, it is argued the prairies of Illineis and Iowa have been fornsed in the course of those incalculable, unknown ages which passod before the earth was considered by the Creator a fit habitation for the last and most perfect of his creatures. Now, whether true or folse, the theory is very plausible, and should receive a fair consideration. Here, however, it does not rest-its application comes next. If far stretching plains, which it is believed once formed the bed of the ocean, were thus built ap, why should not the action of a sinilar ageney produce a similar result? Here we have gigantio icebergs floating down every year from the north-some of them carrying with them immense rooks whioh they have torn from the Arctio mountains on their descent into the sea. As these icebergs have floated down into milder latitudes they have gradually become weaker and weaker, until, unable any longer to carry their weighty burdens, they have deposited them in the bed of the ocean, and on that particular part of it whioh has been mapped out in the oharts of Lieut. Berryman, of the United States Navy, and Captain Dayinan, of H. M. Navy, as the line of the telegraph plateau. Although there is no proof either for or against this statement, and cannot be so long as the depths of the sea remain unrevealed to the cye of man, it is a well ascertained fact, that large quantities of earth and heavy fragments of rock are carriod down yearly from the polar regions by the hage icebergs, which descend in such numbers as frequently to render the ocean almost impassable in some latitudes. The Gulf Stream is, however, said to be tho great agent by which this plateau has been built up, and but for it the Atlantic Telegraph Company would be under slight obligation to those same icebergs for the part they have performed. The Gulf Stream meets them every year just in the right spot, and, wending off in a northeasterly direction, immediately above the line of the platean, earries with it the more solid matter with which they were freighted, and which it scatters along its route. This matter, combined with what is held in solution by itself, forms in the course of thousands of years an immense mass, sufficient, perhaps, to make an island larger than that of Great Britain. The telegraph plateau has been called a plain; bat it is, more properly speaking, an immense table-land, like the steppes of the Andes, rising up from the bed of the ocean. To the south of it the Atlantic is four, five, and six miles deep, while on the plateau alone is there any thing like a uniform level. In addition to the rooks whioh have been deposited by the melting or melted icebergs, there is, as has been stated, a large quantity of other matter, consisting, if we are to judge from the soundings of the two officers of the United States and British navies, just

```
            ion
```

```
            ion
```

```
            ion
```

```
            ion
```

 4s8,
 in.

named, in great part of exceedingly minate shells, no minnte indeed, as to be imperceptible to the naked eye. The finding of these is oonsidered an infallible indication of the absonoe of currents at the bottom of this part of the ocean. This belief is further sustained by the fact, that in the soundings of Captain Dayman and Lieut. Berryman, the slack line would be coiled and kinked over the lead, showing plainly that it had reached the bottom after the lead had become detached, whieh oonld not have been the case if the plateau were swept by eurrents.

The firat soundings whioh were made were taken by Lieut. Berryman in the summer of 1853 , and the second and last in the fall of 1856. These were very successful, establishing, beyond all peradventure, the existence of the platean. In June and July of 1857, Captain Dayman, of H. M. S. Cyolops, also made soundings on the line of the proposed telegraph, and with the same satisfactory result. Some exoeptions had been taken in regard to the reliability of Lieut. Berryman's soundings, but those of Captain Dayman were strongly corroborative of their correctness, making allowance for the variations of locality in the soundings of the two officers.

It must not be forgotten that the soundings of Capt. Dayman and Lieat. Berryman were made at distances of from five to thirty miles apart, and were seldom if ever taken within a mile of each other.* In view of this fact the reader will at once perceive their remarkable ooinoidenoe. Capt. Dayman states in his report that whatever errors there may be in the depths given by marked lines, they are on the side of excess. The reason for this is twofold: "Firstly, the loss of time (and consequently loss of line also) in estimating at great depths, by the intervals, the exaot moment when the sinker ceases to descend. Secondly, the loss of line which may be caused by the deviations from the perpendicular of oertain portions of it in passing through water moved by under currents." He is of opinion that soundings in depthe above 1,000 or 1,500 fathoms can be depended apon as atrictly as within twenty or twenty-five fathoms, except with very small and light lines. In regard to the dispated existence of under currents, he relates the following intaresting ineident: "On the evening of the 16th of July, the sea being too high for the employment of smaller lines with any chance of bringing up the bottom, I sounded with the tapered whale line and a sinker of ninety-xix pounds weight, trusting for the depth to the sounding machine attached, corrected for index error, ascertained with the same line. The depth thus found was 2,176 ; but 2,400 fathoms of line had boen paid out, to make sure of detreting the weight, and, to our surprise, the 200 fathoms neart to the m . came up to the finface in one tringlod coil. The sinker was detached, and the valve (as usual in the
deepest water) full of soft ooze ; but that part of the line which had lain at the bottom in a coil was in many plaoes oovered with the same kind of oove, which had adhered to it throughout its passage to the surface. Subtracting 200 from 2,400, the amount of line out, we obtain by the marks the approximate depth of 2,200 fathoms, or about.twenty-four fathoms more than that shown by the machine. As the ship was kept throughout the operation exactly over the line, and the depth marked thas (minus the 200 fathoms foul on the bottom) agrees within twentyfour fathoms of that regorded by the sounding maohine, the indications of which may fortunately in this instance be depended upon, it would appear that thé line must hafe been carried down nearly perpendioularly, and that, therefore, no under current affeoted it."

This onght to be a sufficient answer to those who insist that the whole bed of the ooean is swept by ourrenta, and that in consequence thereof it is impossible to lay a cable ever in the great depthí

The specimens of the bottom whioh were brought up by Capt. Dayman and Lieat. Berryman are exceedingly intereating in more than one point of view. They show that the platean is covered almost throughout its whole length by a soft kind of mud, which has been called ooze, and which is composed mainly of the remaine of the smallent form of marine life-of oreatures so minute an to require the strongeat pquers of the microscope to make them visible to the human eye. The plateau must not be understood as stretching across the ooean from Newfoundland, bat lies rather between the 15 th and 48 th degrees of west longitude. The greatest depth is 2,400 fathoms, acoording to Capt. Dayman, while according to the soundings of Lieut. Berryman, it does not exceed 2,070. The most remarkable, and indeed almost the only doclivity which has been found along the line, is that lying under the 15th degree of wert longitude, where, within the course of a fow milea, the depth varies from 550 to 1,750 , and the nature of the bottom ohanges from rock to oose, the latter having been taken up from the greatest depth.

It should be remembered here, however, that these soundings were made at such a distanoe from each other that the declivity may not bo $s 0$ great as is supposed, and that the descent, instead of being abruptior preoipitous, is rather in the form of a 'gentle slope.'. Whatever may bie its charactef, there can now be no dispute in regard to the posisibility of laying the cable in this particular part of the platent. This has been proved in the most satisfactory mimaner by the result of the expedition of 1857 and and the final expedition of 1858 , which ohowed that there were none of those suuden rums of the cable which formed the chief obstacle in the laying of the Mediterranean cable from Aurdinia to Algeria.

An attempt was made to lay the line between those two pointa in September, 1855, and it was proceeding most favorably, when a most alarming flight of the eable ocourred. "About two milos, weighing sixteen tons, flew out with the greatest violence in four or fivo minutes, Glying round even when the drums were brought to a dead atop, creating the greatest alarm for the safety of the men in the hold, and for the vessel." In the laying of the Atlantic eable in Auguat of 1857 there was, as has been stated, no difficulty of this kind, although they had passed the abrupt declivity alluded to the day before the cable partod, through the mismanagement of the then chief engineer, Mr. Bright, and the defective character of his mashinery. If there was one fact favorable to the success of the enterprise, which was proved more clearly than any other, it was the ease with whioh the line was laid on this partioular part of the plateau.

From Valentis Bay to 15 dogrees 6 minates west, the bottom consiats of rock, of sand, and of mud. The bottom betheen the forty-fifth degree of west longitude and the Newfoundland coast in irregular, and is made np of stones and gravel, but by steering to the north of the arc of the great circle, this is changed, and a thiok mud, peculiarly adapted for the reception of the cable, is obtained. The ame maddy bottom is found in Trinity Bay; no that no danger need bo apprehended in regard to the safety of the line. On one occasion, while in latitude 52 degrees 14 minutes north, longitude 30 degrees 45 minutes west, the depth being 1,675 fathomis, "broken shells of large sive, which unfortunately disappeared in the bands of the surgeon who was washing," were taken up. These were the only "shells of large size" which were brought to the surface, and their disappearance is to be regretted from the new scientifio facts or information which their disoovery might have established. "The sounding machines," says, Oaptain Dayman in his report, "were by Massey; with dials graduated from 160, the uspal deep sea lead, to 1,500 and 3,000 fathoms." Oaptain Dayman also saye that "the detaching counding apparatus used was a modification of that invented by Mr. Brooke, an offioer of the United States Naty." The specimens of the soupdinge were brought up in a tabe, which being the first to strike the bottom, seldom failed to secure a portion of the material of whioh it was formed. Of course there was no means of ascertaining the depth or thickness of the atratum of oase or the nature of that po which it rested, Whether it was one foot, a hundred or a thousand feet; and it is doubtful Whether this point will aver be embraced in the discoveries of scienoe; nox does there moern: to be any means of ascertaining whether the telograph plateau has bean built up by the deposit of immense boulders borne down from the Aretio regions by gigantic ioebergs. Until scienoe
has penotrated into the profoundeat depth of the ocean, and laid them an open to us as the surface of the earth, nothing matimfaotory or definito, we suppose, will ever be known in regard to this theory. One fact which is at present of the greatent imporgance, 绝 that the telograph plateau, which was at one time considered a my'th, does really and actually exist ; and that faot being established, we can afford to wait for the solution of those other questions whiof have arisen from its disoovery.

the infusoria of tife platead.

The specimens which have been brought up from the platean, and which to the unaided vision appear when dried of a white or reddish white color, bear a vory strong resemblanoe to very fine chalk. Their appearance as they lie at tho bottom of a glass vessel is that of a light brown muddy mediment, in which are obsorved minute hard particles, hardly any of which exceed one-iftieth of an inch in diamcter. The explanation which Mr. Thomas H_{k} Huxley, F. R. S., to whose inspeetion they were submitted, has nurnilfod us, is nearly all the information we have upon this interesting subject. We have seen the highly magnified specimens which the illustration is intended to represent, and to the perfeot aocuracy of which we can bear teatimony. Those specimens which have just been referred to were obtained from deptha ranging from 1,700 to 2,400 fathom, and of these specimens "fully nine-tenths oonbist of minute animal organisma, called foraminifora, provided with thick skeletons composed of carbonate of lime." Proof of their composition is found in the fret that the application of a dilute acid produces a violent effervescenoe and the disappearance of the larger portion of the master. The use of the scid is not attended with such a result it the apecimen be previously exposed to a full red heat. The spoct) foraminiforas, of which eighty-five per cent. of the speois is called globigerina.

The specimens shown have been magnified about three hundred time their natural sise, and are, as may be seen, of various dimensions and shapes, yet with general points of rememblance. Hevinese foraminiforo, at found in the soundings, vary in sise from onephot the une-sirtieth of an inch in diametor; and as the seientifio may dênire to know something more about their ley. wall shery and inter in? "In the very young globigorines the wal y. the ongl, or cells, of which it is composed, is smooth and thin, but oles, the wall to cell the older ones become beset externally with taberwhith run perpendicularly to thiokering and exhibiting narrow oanals whilh run perpendicularly to its plane and open between or in the taber-
them finite， e fact graph tually nolu－
qles．A The tubercles multiply in number and clongato，so as eventually ${ }^{4}$ At fraf to resemble close not and wharp－pointed palisaden，and then by the －rotndh of of their outer ends，to constitute a more monoth，enamel－like geoat，which attains is threa hundred ntud filtietti of an inch，or moro，in Quthiekness．The smallest globigerine are either clear or have but slighty gramular eontenta，but a vary large proportion of the larger onen are reudered opaque by a reddiah brown granular mass contained in their interior．When such apecimens are treated with very dilute acids which dissolve away the calcareous skeleton，a dulicato pale membrane is left enclosing the granular mass，which seems to be held together by a con－ tinuation of the same snbatance．The granular contents have the same－ form as tho skeleton，and äre quite soft and easily orushed．I ean hardly doubt that these are the soft and onen living parts of the animal italf， mith or without imbedded foreign matters．The other five per cent．of the calcares organisma are foraminiferis，of at most，not more than four or five species．The remaining ten per cent．of the whole doposit consists．pa．tly of granular matter，partly of animal，and partly of vege－ table organisms，provided with siliceous skeletons and envelopes．The other speeimens consist，of broken fragments of diatomacea，so imper－ fect and so broken that they catn with difficulty be distinguished among the mass．＂

A considerable difference of opinion exists among seientifio men in regard to the birthplace of these singular forms of life．It is con－ tended by some that they have beeu carried to that part of tho ocean where they are now found by the Gulf Stream，and by others that they have sunk from the surface of the ocean，where they have lived and died． Both these pouitions，however，are assumed，a．s wo understand；merely as a matter of speculation，in the absence of such information as further and fuller research may give．If they have drifted into their present bed by the action of the Gulf Stream，they must have had their birth in ahallow waters ；but then it is argued in opposition to this view that none of the cohini which inhabit ahallow water are found with them．In regard to the iden advanced that they have lived and died at the suriace，from whioh they have gradually sunk to the bottom，it is said that sone globigerince， or something that resembles them，have been found in the W eatern Padific． In opposition to this，however，it is denied that these are globigerinos，and so that speculation is disposed of．There is yet another proposition， whioh，as we have entered opon the seientific explaniation of the subject， should not be forgotten．We have given the two positions－－that is，that these minute organisms have lived and died in shallow waters，from whioh they have been carried by that wonder－working agent whioh per－ forms such an indispenseble part in the economy of nature－the Gule

Stream-and that they have lived, died, and been deposited from above where they are now found; but there is yet another which must be stated. The existence of any form of life in the great depths of the sea was supposed to be impossible, but it appears now that it is not, and it is argued that if animals of a higher organization can live three or four hundred fathoms below the surface, "the difference in the amount of light and heat at 400 and at 2,000 fathoms is probably, so to speak, very far less than tho difference in complexity of organization between these animals and the humble protozoa and protophyta of the deep sea soundings."

Here then we have presented the various theories to which the discoveries of these microscopic specimens have given rise, and the scientific explanations by which they are enforced. These may or may not
 be interesting, as the reader may determine, but they are subjects of the greatest importance to naturalists, who, it is to be hoped, will some day render them sufficiently clear and intelligible to the unscientific portion of the civilized world by divesting their description of those technioalities which, however gratifying they are to the learned writers, are generally heavy, dull, stupid, unintelligible, and sometimes alarm. ing to the uninitiated and nilearned readers. When they know that these infusoria, or (not to be soientific ourselves) when these minute forms of life, some of which are not larger than the point of a pin, are just the things to form a bed for the cable to rest on or in, Where there are plenty of them, as there are; that they will in course of time enter into combination with the iron wire of the cable when it is in procese of oxidization, thus forn-
ing a concrete mass around the gutta percha insulation, and protecting it beyond possibility of injury; 'and that finally, no matter whether they. have lived and died above the spot wihence they have been taken, or have drifted there with the Gulf Stream, they are just in the very place where they are wanted-understanding these things, the people will realize their importance to the great enterrrise, no matter bow much naturalists may dispute regarding their birth-place.

These engravings represent the infusoria magnified three hundred times their natural size, which are so infinitesimal as to be the merest mites on the surface of a microscopic glass. Notwithstanding they are so perfect in form, so delicate in construction, and so minnte in size, the bed of the plateau is so quiet and undisturbed from the action of the ocean that soarcely any of them, comparatively speaking, are injured or broken by abrasion or attrition. They do, indeed, form a sort of bed of down for the cable to rest upon.

THE GREAT OCEAN CABLE.

The manufacture of the Atlantic Telegraph Osble is one of the most interesting and at the same time one of the most simple processes it is possible to conccive. The cable is formed of the strand of seven copper wires which compose the conductor and which occupy the centre; the gutta percha insulator, the hempen serving, and the outer wire covering or proteoting armor.

The discovery of the peculiar properties of gutta pereha, dates baek to the year 1842 or 1843 , but its application to submarine telegraphing did not take place till about the year 1850, when its value as an insulator was proved by the laying of a cable across the English ohannel. Up to this period, the manufacture of the raw material was confined to the making of water pipes, machine beltg, pieture frames, and-innumerable other articles for which it was considered especially adapted; but the impulse given to the trade by the new use which was found for it created an increased demand, and it eventually became one of the most valuable and important articles of import.

The tree from which the gatta percha is obtained grows in the East Indies, and the primeipal market is at Singapore, from which the London' Gutta Percha Company procure their supply. It is sent to them in its erude state, and has to be subjected to the several processes of mastication, boiling and kneading, before it can be employed in the manufacture of the submarine cable. "In this condition, as it lies in the storehouse of the company, you diseover among the mass several rough specimens of the skill of the natives. Here is something that was
evidently intended for a camel, although there is no trace of a hump on his back, and he has lost a log during his long sea voyage, bat the artist has still left sufficient evidence by which to tell the upecies to. which he belongs. There are quite a large number of animals besides this, but tho task of classifying them would exoced even the powers of Cuvier himself. This one has the bill of a duck on a head that otherwise resembles that of a monkey, and that other is a combination of bird and quadruped, for the like of which you might search in vain among all the fabulous mythological or manufactured animaln that were ever created by the inventive genius of ancient poet or modern showman. All theso-the animal with the monkey's head and duck's bill; the three-legged and humploss camel-in a word, the whole menagerio-are pat into immense caul. drons, with the common mass, and boiled, and boiled again, until they are rendered as soft as dough. In this state the gutta percha is thrown into a machine called a mastieator, in which it is literally torn into shreds, and from which it is again taken to be again boiled. By this process it is purified and freed from all foreign materials whioh may have entered into it while it was being collected by the Hindoos. But it is not yet fit for the work for which it is designed, and must be again masticated, cleansed, and kneaded several times before it can be used in the covering or insulation of the copper wire along which the eleotrio current is to pass. When it has been thoroughly kneaded, it is so perfectly plastic, that it can be joined with the greateat ense, and in such a manner that it cannot be torn apart at the point of adhesion. The two parts being joined, beoome as completely one, as united and blended as two glases of water when poured into the same venel. This property which it ponsesses is peouliarly valueble, when it is found nocessary to repair any defects in a cable during the process of paying it out. In such eases it is only necessary, after splioing the internal copper wire or conductor, to heat the parts of the gutte percha which are to be: joined. When this is done, the open space or break is covered by layem of gutta percha as thin as the page on whioh we write, and eight or ten of whioh layers are required to make the broken part aniform with the rest.

Over twenty tons of the raw material ave menufactured every week in the factory, and in the boiling department alone, mone forty or fifty vate or cauldrons are constantly in use. On entering the firnt floor, you see them throwing out their little jets of steam on every side, while the boiling waters bubble ap threugh the openinge on top, reminding you of the dencriptions which travellers in Ioeland have given of the hot aprings of that strange country. Paseing from this departmant to the floer above, the finishing room is remohed, and hero the procens of oont- uich he put the imself. hat of for the aythoentive nimal aploss caul. they brown into this may Bat again red in elea is so id in wion. 1 and This d ne ag it pper to be
ing the condactor is performed. The conductor is composed of seven copper wires, six being wound spirally round theseventh, which is perfectly straight and occupies the centre. The conductor itself, on acconnt of its peculiar spiral form, is capable of being extended twenty per cent. of its own length before breaking, and the seven wires of which it is composed give it decided and important advantage over that formerly used. In the cisse of the first cable, which the New York, Nowfoindland and London Telegraph Company attempted unsuccessfully to lay across the Gulf of St. Lawrence, one of the greatest difficulties they had to contend against, was the breaking of the three conductors, which, it is more than probable, would never have occurred had they been composed of seven wires each, instead of one. Should the whole seven break noder an excessive strain, the continuity or electrio connection will not necessarily be destroyed unless they all give at one point, an occurrence which may be almost regarded as beyond probability. The advantage which it has over the single wire conductor cannot be doubted, since it has been practically tested with the most gratifying success. It has been proved that the drawing out or attenuation of a mile of the copper wire to ten-elevenths of its thickness reduces its power of conduction only a thirty-seventh part.

The covering or insulating process is effected by means of a cylinder, in one end of which a die of the required size is placed, and through which the gutta percha is forced with a piston. As it passes through this die in the form of an elongated pipe-stem, or macoaroni, the core is forced through its centre at a uniform rate of speed, and the now insulated condactor is cooled by drawing it through a water conduit some fifty feet in length. To insure its perfect insulation the core is covered with three coats of gutta percha, after which it is ready to receive its additional protection of prepared hemp and iron wire. The shore part of the cable, which will be about an inch and a-half in diameter, or twice the thickness of the portion intended for the deep sea, has five coverings of gutta percha, and each one of the outer wires which are to serve as an armor for it, is at least a quarter of an inch thick. It is a massive affair, and capable of resisting a strain equal to forty or fifty tons. Some idea may be formed of the quantity of iron consumed in the worik, when it is known that the protecting armor requires 379,312 miles of wire about the thickness of a common piu, while the length of the copper wire required for the conduotor is 21,084 miles. The proteoting armor is composed of eighteep strands, eaoh strand consisting of seven wires, wound round the insulated core in a spiral form, and being about the tweinh of an ineh thiok.

The following engravings show the exact thiokness of the deep sea and shore end cables.

END AND BIDE BRCTIONE OF CABLE AND END OF BRORE CABLE,

1. Wire-Elghteen strands of seven wires. 2. Stx strands of yarn.
2. Gutta percha-Three coats.
3. Telograph wires-Seven in namber.

The manufacture of this part of the cable is very simple. The conductor having been thoroughly tested, to prove its complete insulation, the cable is sent to the factory, where it is covered with the iron wire and prepared for coiling. Before the insulated wire leaves the gutta percha factory, every sixty miles of it are thoroughly examined. Should any flaw be found it is immediately repaired, and the cable is again subjected to the electrio test, when, if it prove perfect, it is allowed to remain undisturbed until such time as it is placed on ahipboard! The break of continuity or connection in the core from imperfect insulation, or a parting of the copper wire, is made. known by the ringing of a bell, which sounds the alarm the instant the interruption takes place, and continues ringing so long as the battery sends the electric stream along the conduotor. The author was an observer of this test, and saw it applied with the most perfect success. The connection was temporarily destroyed ; but the moment the battery was brought to bear upon the conductor, the unerring indicator, the little bell, commenced ringing, and kept it up till the battery was detaehed. Through the means of that same infallible detective every mile of it is not only proved before leaving the factory, but as it goes into coils on shipboard.

The covering of the Atlantio eable with its wire protection or armor is performed by a separate establishment, and is an entirely different process from that just described. There are in fact two of these manufactories, one at Birkenhead, opposite Liverpool, and the other at Greenwich, about five miles from London.

The factory at Greenwioh is situated on the banks of the Thames, and about a mile from the hospital for superannuated sailors. It is in the very centre of a manufacturing district, and in view of the mammoth iron steamer Grest Eastern. There is nothing in the external appearance of the building which would give any indication of the char-
aired,
prove
it is
n the
made.
the
senda
ver of
action
acter of the work performed within its walls, and the only intimation which the spectator who is not privileged to enter has of it, is that conveyed in the immense sign on the roof, which informs him that the submarine telegraph cable is manufactured there. The whole establishment is aurrounded by a wall eight or ten feet high, to keep out that spirit of inquiry whieh, whether laudable or not on the part of the publie, does not receive the same amount of toleration, or the same opportunity in England that it does in the United States. There ia, in addition to this wall, a porter at the gate, whot is one of the most polite of Cerberuses, and who guards it as well against all unprivileged applieants as did the Russians the fortress of Sebastopol. The only approach to it is by a gravelled pathway which is terribly destructive to ahoe-leather, and a journey over half a dozen miles of which would ase up the best pair of boots ever made; and yet, strange to say, these gravel footpaths are so common about London, and all over England, as to give rise to the belief that the interest of the shoomakers is among the strougest in the kingdom, and that the authorities who have the charge of the making and repairing of roads, must have a strong sympathy with that time-honored and indispensable class of tradesmen. Happening fortunately to be one of the privileged few who wore permitted to enter the factory, I visited it during my stay in London. On passing the gate, I discovered on each side a circus, thirty or forty feet in diameter, which had been dug to the depth of about four feet. In both there were eight coils, each containing from twenty to three hundred miles of the cable, and some three or four of which were receiving it as it eame frestly made out of the factory. The men who were engaged in packing or coiling it had their hands and feet beemeared with tar, and the whole establishment was redolent of the same material. But no matter how objectionable the tar may be, it is an excellent preventive of rust, and absolutely indispensable in the manufacture of the cable.

The two circuses, or basins, as they are, perhaps, more properly called, are so constructed, that they can be filled to the top with water, to allow of the complete submersion of the cable.

The machinery in the cable factory is very simple, and although at the first glance it appears rather intricate and complicated, a few minutes' inspeotion makes it all perfeetly plain. The first process is the serving or covering of the gutta percha insulation with hemp steoped in a composition of tar and pitch, after which it receives the extornal proteetion or wire armor. The preparation of the hemp and the winding of it on bobhins engage the services of a dozen boys, who work from morning to night, and from Monday to Saturday,
with all the steadiness and regularity of their older fellow operativea. Hundreds of miles of this hemp passes through their hands every week, and although it is the least important of the different materials of which the cable is composed, still it could not well be done without. The serving of, the hemp on the core is accomplished by means of ã revolving machine, on the periphery of which are placed seven or eight of these bobbins, the core of the cable passing direetly and perpendioularly through the oentre. As this machine revolves, the bobbins also revolve on their own axes, paying out the hemp, which is thus served on the core. The prooess oan perhaps be more simply illustrated by taking two flat circular pieces of wood of the same sise, say about three feet in diameter, and eaeh having a hole in the centre. Let these be joined by three or four upright bars of wood or iron set at equal distances apart, all placed within about an ineh of the periphery. This dong, the hext thing is to get the requisite number of spools, each spool representing a bobbin seven being suffieient for tho purpose, and to fasten them on ares to the lower one of the two oircular pieces of mood. The machine is now finished and in working order. "Through the central holes run a small rope, and wind apon eaeh one of the spools enough twine to illastrate the process. The machine having been set on a pivot must now be pat in motion, the ends of the twine joined to the rope about an inch sbove the top of the spools, and the rope itself drawn slowly through the central holes. Then, as the machine revolves and the rope is drawn upward, the apools will also revolve, paying the twine out and serving it. on the rope. Here you have a tolerably fair illustration of the manner in whioh not only the gutta peroha is covered with the hemp, but in which the last or wire protection is laid on. The velocity with which these machines revolve is somewhat calculated to startle nervous people on a first visit to the faotory, and should some of the bobbins happen by any ohanoe to fly off while they are in motion, they would make wild work with any thing whth which they might happen to come in contact. But fortunathly they are so well secured that accidents of the kind seldom or never occur. While the cable is being paid ont from the machine in its finished state, it passes over soveral small wheels and through yats of tar, as it is drawn out by the men who are engaged in ooiling it in the basins. Five of the wire-covering machines were in operation at the time of our visit, and these gave about twelve miles as the aggregate of their day's work.

the paying-odt machinery.

The machinery which was put up on the Agamemnon is a duplicate of that on the Niagara, and a description of one will therefore answer for
ratives y week, ials of rithout. revólv. of those hrough n their

The cirou meter, bree or placed g is to ${ }^{\text {obbin }}$, to the ow fin1 rope, to the pat in we the θ oenoup. ing it. anner ut in whioh eople en by wild ntact. aldom ine in ts of n the t the to of
both. In addition to the winding-in and paying-out part of it, there was an engine of twenty horse power, which was always to be kept in readiness should it be found necessary to use it in taking up the cable, an operation which had always failed.

This portion of the maohinery was made the subject of severe oriticism, and it was asserted, in advance of its trial, that it was too heavy and too powerful for the work for which it was construoted.

The machine was composed of four V sheave wheels, which are indicated in the following engrav. ing by the letters a a a a.

The cable passees over these in the manner exhibited in the engraving first entering the groove or sheave in the secon ! sheave wheel, passing over and under it. It then passes over the first sheave wheel, and taking a turn over tho greater part of its periphery, is carried to the fourth, from which it is delivered to the third, passing finally from that to the sheave wheel at tho stern, and over that again into the ocean.

The brake wheela, which are shown by the

letter. b, are turned by a pinion, as in the winding-in machine, and revolve with a velocity proportioned to the size of the sheavo wheels, each of which is five fett in diameter. The brake wheels are acted upon by wooden blocks, screwed together as rep. rescnted in the ${ }^{\prime}$ Friction Brake, and when compressed, act npon the lover c, which is connected with the indicator d. This indieator shows the strain on the cable.

The brake is worked by moans of the handle e, beside which thero was always a man stationed to work it when required. The indicator is similar to a patent spring scale, and f, f, is simply a line and weight to keep it from being pulled out of its plaee by the action of the lever.

THE MACHINERY FOR WINDING IN.
Although it was hoped that there would be no occasion for the use of this machine, yet it would have been a culpable want of foresight to have neglected providing one for each of the cable ships. One of the most serious difficulties which was to be apprehended in the work of paying out was that which might arise from the kinking of the cable. But the ease with which it was coiled on the Niagara-frequently at the rate of three miles an hour, and on one occasion at the rate of five miles-was certainly most auspicions and promising for the success of the final operation. There was no strain, no tendency to kink, and with the exich-
tion of a slight twist whieh would be perceptible even on a thread when unwound from a spool，there was nothing to justify the fear that there would be any obstacle in the way of the successful aecom－ plishment of the work from such a cause．Still，as has been said，it would have been culpable in tho engineers to have neglected to make pro－ vision for such an emergeney． The winding－machine，al－ though it added considerably to the weight of the machin． ery for paying out，was，ac－ cording to the opinion of the engineers connected with the enterprise，as compact and as light as it could possibly be， considering the work which it had to perform．The fol－ lowing representation gives a correct view of it，and with the explanations of the vari－ ous parts，will render it olearer to the popular un－ derstanding than any unaid－ ed verbal description．

A A are two grooved drums，sheaves about seven feet in diameter，having five grooves on the periphery of each．The cable is wound round eaeh drum five times， passing from one to the oth－ er in suocession till all the grooves are filled，when each revolution of both wheels
 pays it out to the hands of the men who stand ready to coil it as it is taken up from the ocean．The object of passing it round these drums so often
is to render it easier for the ongineer to check it by the application of the brake, which is indicated by letter E, and which is presented moresin another engraving. The winding-maehine is so constructed that it can be made to perform the work of the paying-r ut machine should it be found necessary to employ it in that way. In the event of its leeing

used for such a purpose the brake becomes absolutely necessary to restrain the speed of the eable in going out over the stern. The grooves are for the purpose of kecping the cable from becoming entangled, or rather from erowding and cutting the outer wire, which would be very liable to occur were the periphery of the drum perfoctly flat. The five grooves are seen to advantage in the following engraving, the lucter a showing the groove in which the deep sea line rests, and the letter b that in which is represented the shore cablo, the end sections of both deep sea line and shore cable being represented by proportionately sized circles, the first of which (a) fills up only a part of a groove, and the second (b) nearly the whole of one.

On the same shafts as the groove drums of the winding-in machine are the spur wheels C C, in gear with the pinion placed betweon them, and whieh is indicated by D. The quaft on which this pinion is fixed also carries the brake alluded to, and which, as has been stated, was only to be used when the winding-in machine was employed in paying out. The two iron levers A A, which are seon in the engraving of the friction brake, hold the blooks of wood a a to the brake wheel S. By screwing the nut C , which is connected with a right and left hand screw, the levers A A are pressed together on the wheel C, which
utops the large wheels, and by which of course the whole machine is cheeked when sufficient pressure is employed. There are two brakes, one of whioh, is immediately behind the other, and cannot, therefore, be seen. The whole weight of the winding-in machine is about five tons.

The grooved wheels, it was calculated, would run with a velocity of ten revolutions to the minute, and at this speed would wind up the cable over the wheel at the stern at the rate of three miles an hour. The paying out is regulated in the same way-that is, for every three miles of the cable passed over these grooved wheels to the wheel at the stern and from it down into the ocean, each of the grooved' wheels would make ten revolutions a minute. In the winding up of the cable, which is a much slower process than the paying out, on account of the greater strain produced by the operation, the length of cable taken in would not exceed one mile and a half an hour, and the revolutions would be reduced, therefore, to five per minate.

On the same shaft with the brakes is represented the third large spar wheel I, which is worked by a pinion driven by the engino.
stowage of the coils on the niagara.
The following engraving is designed to show tho stowage of the coils on board the Niagara.

The paying-out and winding-in machinery is shown on a small soale by letter a, and "the ooils by the numbers $1,2,3,4,5$, and 6 , which also present the order in which they were to be paid out, No. 1 being the ton
 oter the stern, and was to be used when it became necessary in consequence of a gale, to remove the cable to the bow, so 'as to enable the vessel to stean up against the wind;"as it would inevitably have been broken otherwise.

The length of miles in the different coils on board the Niagara, the remainder being on board the Agamemnon, is presented in the following tables:

The shore and decp sea eables were to be passed to the paying-out machinery over a sefies of small-sized drums, placed at regular intervals between the coil from which it was taken and the machine.

THE CABLE GUARDS.

Among the most important parts of the machinery which was required in the laying of the cable, were the guards for the propellers of the Agamemnon and Niagara, and without which its successful accomplishment was considered doubtful, these being absolutely neccssary to prevent the fouling of the submarinc cable in the event of the ship being obliged to back out of the way of icebergs, or from other causes. It was a poin't to which the greatest attention was very properly given, as the break. ing of the cable, after several hundred miles of it had been paid out, would postpone the completion of the enterprise for a year, in addition to the great pecuniary loss by whieh suoh a disaster would bd attended. It was propused to avoid such a disaster by surrounding the serew with a cage, which

- would effectually prevent the cable from coming in contact; but as the two vessels were differently constructed, and as it would be absolutely necessary to place the Ni agara in dry dock before

 -Horizontal braces. e.-Water line.
the eage could be fastened to her, it was decided to abandon it in her case, and to adopt a guard in its stead. The.cage was, therefore, only used on the Agamemnon, which was doeked for the purpose. Frou the subjoined drawingy the reader will perceive at once the difference between tho two contrivanees.

In thin drawing it will be seen that thero are two guards of iron which sweep round the sterri of the Niagara, in the form of a semi-circle or horseshoe, enclosing both the propetler and the rudder, tho lower being about a foot above the water line, and the other at an elevation of some seven or eight feet from it. As the ship drew three or four feet more when loaded with the eable, the lower guard would, of course, be submerged to a corresponding depth, ferming a still better protection when in the process of backing. This guard was placed about three feet from the flange of the serew, and between eleven and twelve from the sidc of the rudder post, so that its full diameter at this point was from twenty-two to twenty-four feet." The longth of the perpendicular bara varied from seven to fourtcen feet, and tho whole presented so small a surface to the action of the water, and was so well fastened with bolts and serews, that it was expected to resist all the pressure to which it inight be subjected, either from the inside or outsido.

In the case of the Aggmemnou, to which the cago was applied, and of the stern of which the following is a correct drawing, tle differ ence will at once bo seen when compared with the Niaga a. The counter or under rounding of the stern is muel neares to the w.ter mark than that of tho Niagara, and to this cause is owing the difference in the open space which is so apparout in a comparisou of the sterns of both ships.

The eable protector presented in this drawing is, literally speaking, a cage made of bars of iron placed almost at right angles with each other, and inside of which the screw is obscrved. It descends below the water-mark; the perpendicuiar bars, of which there are two on each side, being screwed to the counter and the keel of the ship, not more than three or four feet of the whole cage being visible above the surface of the water. The horizontal bars are rouuded out so as to

劳隹
\％

3

8
form a section of a eircle, the diameter of which is about twenty-four feet, leaving a space of about two feet and a balf between them and the sweep of the screw. The horizontal bars in this instance, instead of being brought round the radder, are serewed into the rudder post, and the whole cage was subj cted more to the action of the water than the guard of the Niagara, on aecount of its deeper submersion. Both the guard and the cage were the best that could be devised at the time, and proved efficient for the purpose they were intended to subserye.

PASSAGE TO VALENTLA BAY, AND TRIAL, OF THE MACHINERY.
The day of the departury of the Telegraph Squadron from Cork, was not as auspicious as could have been desfed, but there was no time to be lost, and, fair or stormy, it was absolutely essential that they should leave. Five o'elock was the hour fixed for their departure, but it was past six before the whole squadron was under way and out of the harbor. The British aide wheel steamer, the Leopard, was the first to move, and about half an hour after she had got out to sea the Agamemnon followed. Next in order was the Susquehanna, the Niagara bringing up the rear. Soon after we passed the entrance the order of the procession underwent a complete change, for the Niagara in a few hours took the lead, leaving the other throo behind. "In less than an hour after we had left the Cove of Cork we lost sight of the entranee, behind the bold headlands which mark nearly the whole of the Irish coast; and early the following morning we had passed Cape Clear, the most southern point of the island. The Susquehanna and the Leopard were the only two vessels in sight, the Agamemnon having disappeared during the night. Wo proceeded, however, on our course, and at eleven o'clock were off the Skelligs; two bluff rocks which stand out a mile or so from the mainland, and which are about eight or nino miles from Dingle bay. In a little more than an hour we were at its entrance, and before running in made three experiments apon ten mileos of discarded cable, which had been put on bond our ship while lying in the Cove for the purpose. It was the same wire with whioh the man chincry on the Agamemnon had been tested, and whieh, although someWhat'defective, served almost as well as that whioh had not yet been used. The cable was passed round the sheave wheels of the payingout machine, and then, as it was passed over the stern, a kedge anchor was tied to the end to sink it, and thus by bringing a weight upon the wheels, caused them to revolve until a sufficient portion of the cablo was paid out to enable the vessel to proceed at the desired apeed. The
enty-four n and the astead of post, and iter than a. Both the time, serye.

RY.

n Cork, no time lat they ure, but it of the first to he AgaNiagara rder of n a few than an the enof the Clear, ad the baving course, stand r nine at its mile ing in e ma somebeen ying. nehor n the θ was The
anehor having been fastened, was dropped into the water, but the weight was not heavy cnough to produce the desired result. The wheels of the ponderois machinery refused to move, and the anchor, after swinging to and fro from the stern for a few moments, dropped sluggishly into the water, but without effect. The shafts were oiled, and about forty men were put to wonk to pull the eable over the whecls by main strength, and pay it out until such time as there should be enough of it over the stern to bring the strain neecssary to set thent in motion, without the aid of any other force than that exercised by the weight and strain of the eable itself. It was a slow and tedious process, and to some who were impatient of delay, it was doubtless a most vexatious one. The first half hour passed, and still the men eontinued hauling it over the sheaves and passing it overboard, without effecting the slightest change, but in less than five minutes the wheels began to move, slowly at first, and then
x^{2}. With increased speed, till the rate of paying out reached from two to three miles an hour. All this time there was no apparent tendency to kink, and thete was now au opportunity after all the trouble, and all the pulling and dragging, to test the machinery in a satisfactory manner. There was no dificulty about paying out, but there was one most essential point to be settled before its succesa could be finally established. It was neeessary to try the action of the brakes, and to do that the cable would be most probably suljected to a strain which it might be found too weak to resist. It was, however, valueless for any other purposo, and so it mattered little what strain it might be subjected to. So the brakes were put on, and the wheels over which it passed having been stopped in this way, it broke in a very few minutes. The object of the brakes, as has been explained, is to stop the cable when a kink takes place, or when any defect is discovered before it passes over the wheel, so that it may be repaired before it descends into the water.

A second experiment was tried and with the same result, and a third ended in the same manner. The Niagara now proceeded on her way into Valeutia Bay, which is three or four miles from the entrance of Dingle Bay. While on our passage in we had a magnificent view of this part of the coast, and a fine opportunity of judging of its acenery. The County of Kerry is one of the most southern counties of Ireland, and its whole line of eoast is remarkable for its rugged character, and for the deep indentations which the aotion of the sea, from age to age, has made upon" it. Huge mountains rise up on almost every side, and great masses of rook, in a thousand fantastic sltapes, stand out milea from the land, terrible as those of which the Greck mariners stood in such awo, and of which such tales of horrer have been handed down to us. Two
immense rocks, which look as if they had been. flung from the huge mountais that guards the left side of the entrance of Dingle Bay, stand there like grim and weather-beaten sentinels. On the ,other side is a long mountain range, the face of which, looking seaward, is worn with deep fissures, while its base is hollowed out at irregular intervals by caves, some of which extend, as we were told, several hundred feet into the very heart of the mountains. The bay is between two and three hundred fathoms deep, but it is so open to the sea, and the anchorage is so bad, that it is one of the worst places which a vessel could select in a storm. The waves break with terrible force on the rocks, throwing their spray far up the bleak mountain sides, and the wind sweeps with relentloss fury on the ill-fated vessel that may be caught here on a lee shore. But Valentia Bay is more protected, and although not safe in a storin, affords mueh better anchorage. .The land for miles into the interior 'i very rocky and barren, and affords a poor pastarage for the diminuti e but hardy race of cattle for which the County of Kerry is famous. It is a difficult matter to distinguish the huts of the peasantry on the great hillsides; but here and there can be seen the ruins of churches, which were bnilt by pious Christians of the fifth and sixth centuries, and whose walls have long since crumbled into decay. This Island of Valentia suffered fearfully during the famine in Ireland, and hundreds died of starvation on the roadside or in the miserable dwellings, some of which still remain, and in whieh their bodies were found many weeks after their death, unburied. Within the last few years it is said the condition of the people has considerably improved, bat if what I saw is called improvement, they must have been in a terrible state before the process of amelioration commeneed. Some of them live at present by fishing, some by caltivating the ungrateful soil, and some by quarrying slate from the hillsides. About three, miles from the head of Valentia Bay is the village of Caherciveen, and at the same distance from where our ship now lies is Knightstown, a small village of one thousand inhabitants, called after the Knight of Kerry, a gentleman who has been one of the strongest adyocates of the Atlantie Telegraph. From the deck of our ship we could see a small sandy cove, which was selected as the place for the landing of the shore end of the cable, and a handred yards from which a temporary tent was erected for the batteries and other telegraph instruments. In front of it was displayed an attempt at the stars and stripes but it was only an attempt, and it would require one of the most shrewd guessing Yankees that ever lived in or eame out of Connectiout to tell what it was intended for. It was soon replaced by
the huge ay, stand her side , is worn intervals hundred . een two sea, and a vessel on the and the may be ted, and The land a a poor ich the uish the be seen the fifth ed into mine in he misbodies tho last bly im. t have eom. ivating llsides. ge of lies is 1 after ongest hip we ce for from telestars of the Con-
\qquad
d by

another, of a more unmistakable kind, however, and that ought to be suffeient to satisfy the most exaeting pritriot.

Although it was certain that we could not take the shore and of the cable out, yet it was cencluded to empley our spare time in trying another experiment with a part of the 1,250 miles of the deep sea line which made up our half of the Atlantic telegraph, and which wads free from defects. The Willing Mind, a steamer which came round from Cork as an additional tender to the Adviee, took the end of this on board, and securing it firmly, started off from the Niagara at a speed of about four miles, an hour, and when about five or aix hundred yards from her the brakes were put on. The little steamer tagged and pulled away, but the wheels refused to turn while the brakes remained as they were, and after tugging and pulling for about five minutes the cable parted, having given way at last to a dragging force equal to a weight of three tons and a half. This was regarded as very satisfactory, but there is one thing which I think it proves-that the brakes could net be brought to bear upon the cable with such an immense mass as the Niagara hauling on it. The only plan was to let it run free, and if a kink should occur, to take the ehances rather than put on the brakes, which appeared to be certain destruction.

We arrived and anchered in Valentia Bay on the evening of the 4th, but at too late an hour to commenee operations other than described. The work of landing the shore part of the cable was deferred therefore antil the following morning at eight o'clock. At the appointed time every thing was prepared for the work, the Willing Mind came under our stern ready to tow the heavy shore line, and in addition to this there were some half dozen boats from the Susquehanna and Leopard, with two or three from the Niagara, all prepared to assist in the work. The engineers, however, before beginning, at once decided on testing both the shore cable and maehinery, and for that purpose got the Willing Mind to tow out some five or six hundred yards. This preliminary operation was attended with such success that it was determined to oommence work without further delay. Two of the launches of the Leopard and one from the Susquehanna were brought under the stern of the Niagara, and about a mile and three-quarters of the cable coiled upon them; then another mile of three-quarters was pat on board the Willing Mind, and the whole four towed by the Adviee, went off in procession towards the point indicated as the landing placo by the American flag, already alluded to. On the shore there were about two thousand persons, the whole population of the plaee, and large contributions from miles around, waiting thore from seven in the inorning till seven in the evening for the arrival of the fleet of cable
boats, whose progress they had watehed with so much anxiety and impatience. It whs five o'clock when wo started; never before was such a scene presented in Valentia Bay, and the poorest spectator there, though he could not tell what strange agency it was that lay in that cable, understood what it was intended to effeot, and his face beamed with joy as he heard his comrades say that it brought them nearer to that great land that had so gencrously stretched out the helping hand to their starving countrymen, and that had given a, shelter and a home to those who had found neither the one nor the other in the land of theirbirth. It was a happy day for them, and when later in the evening that cable was landed, and it was proposed to give three cheers for America, - there were none there who responded with more sincerity and honest enthusiasm than the poor peasantry.

It took about two hours to land the cable, but the shallowness of the water prevented the Advice from running close to the shore. The passengers, therefore, consisting of a number of friends of the enterprise, got into one of the small boats, and rowed in as hear as they oould, but still not near enough for us to get àshore without wetting our feet. We were not long left in doubt, however, as to what we should do, for we had hardly run our boat aground before there was a whole orowd of men in the water, regardless of wet clothes, proffering their assistance, and offering as many backs as there were passengers in the boat. It was one of the incidents of the great scene which was being enacted, and occasioned oonsiderable merriment among the bystanders. Here a little fellow presented himself ta a gentleman of the most portly dimensions, and insisted upon his ability to take him ashore. It was no use, however, for had he the strength of Atlas he could not have persuaded the passenger that he was able to carry him, and so he had to call another to his help, when both of them succeeded in landing him safely, to his great satisfaction and relief. These two performed the job so well, that the rest of the passengers at once entered into a contract with them, and were landed high and dry upon the beach. About half an hour after we got ashore the small fleet of cable boats were observed rapidly approaching, headed by one bearing the united unions of England and the States -that is, the Union Jaek and the Stars alone 'on a bue ground, while the words "Atlantio Telegraph" wefe inseribed apon it in large letters.

Among those on shore were the Lord Lieutenant of Ireland, (Lord Morpeth, of anti-slavery proolivities,)Lord Hillsborough, the Knight of Kerry, and ncarly all the gentlemen connected with the enterprise. But here comes the cable in the hande of the crew of the Niagara's boat, who rush up the beach with it dripping with water, for in their haste to carry it ashore they have to wade knee deep. Mr. Cyrus W.

Field is thero beside Lord Morpeth, or, as he is now called, Lord Carliste, and as Captain Pennock comes up in adrance of his men with the cable he introduces bim. There is no time for the passage of formalities, and the introduction and, $\therefore .$. ing are therefore free from them.
"I am most happy to see you, Captaiu," says Lord Morpeth; and the Captain most appropriately replies:.
"This, sir, is tho betrothal of"England and Ameriea; and I hope in twenty days the marriage will be consummated.".

The orowd now press around, all eagerness to help in pulling up the cable, and when the work is through, those who have been furtunate enough to put their hands to it show fhe marks of the tar to those who have failed in the attempt, as a proof of their suecess. By dint of pulling and hauling, they get it into the trench in whieh it is to be laid, and take up the end to the top of a little hill, where they secure it by rolling it around a number of strong stakes driven fast into the earth, and placed in the form of a eirele. This is the centre of the site marked out for a house, in which the batteries and instruments are to be placed, and which was used as a temporary station till a better and more substantial one could be crected. When the cable was placed here, and the enthusiasm of the people had somewhat subsided, the rectur of the parish made an appropriate prayer.

At the close of the prayer, Lord Carlisle addressed the people as follows:
"My American, Irish, and Euglish friends, I feel at such a moment as this that no language can be becoming, except that of prayer and praise. Helvever, it is always allowable to any human lips, though they have not been specially qualified for the offiee, to raise the aseription of 'Glory to God on earth, peace, good-will to men' That, I believe, is the spirit in which this great work has been undertaken; and it is this reflection which encoturges nie to feel the strongest hopes of its final suecess. (Hear, hear.) I believe the great undertaking, now so happily begun, will accomplish many great and noble purposes of trade, of national policy, and of empire; but there is only one view in whioh.I will now present it to those whom I have the pleasure to address. You are aware-you must know, some of youn, from your own experience, that many of your dearfriends and only relations have left their native land to receive hospitable shelter in Ameriea. (Applause.). Well, then, I don't expect you oan all understand the wondrous meehanism by which this great undertaking is to be carried on, but this I think you will all of you understand. If you wish to commanieate bome piece of intelligenoe straightway to your relations across the wide world of
waters-if you wish to tell those whom yon know it would interest in their heart of hearts, of a marriage, a birth, or a death among you, this little cord which we have piled ap on the shore will impart those tidings quicker than the flash of the lightnings. (Applause.) Let us now hope, let us now pray, that the hopes of those who have set in operation this great design may be rewarded by its entire suecess, and let.us hope further that this Atlantio cable will, in all future time, serve as an emblem of that strong cord of love which, I trust, will always unite the British Islands and the great continent of America, and join with me in my fervent wish that the great Giver of all good, who has enabled all his servants to discern so much of the workings of those mighty laws by which he governs the universe, will further this wonderful work, and will further so bless its operation, as to make it serve the high purposes of the good of man and his own greai glory. (Hear, hear.) And now, my friends, as there can be no project or undertaking which ought not to receive the approbation and applause of the people, let all join with me in giving three hearty cheers."

Three cheers were given with a will; but it was not enough, and they cheered and cheered until they were obliged to give up from exhaustion. "Three eheers," said Lord Carlisle, "are not enough-they are what they give on common occasions. Now, for the success of the Atlantic oable, I must have at least one dozen." The crowd responded with the full number, and then cheered the following:
"The Lord Lieutenant of Ireland."
"The United States of America."
"Mr. Cyrus W. Field."
Mr. Field, in reply, spoke as follows: "Ladies and gentlemenwords cannot express to you the feelings within this heart. It beats with affection towards every man, woman and child that hears me; and if ever on the other side of the water one of you present yourselves at my door, and say yen had a hand in this, I promise you a true Ameriean weloome. (Cheers) 'What God hath joined together let no man pat asunder.' " (Cheers.)

And more cheers were given for the following:
"For the sailors."
"For Yankee Doodle."
"For the officers and sailors on board the ships that are intended to lay the cable."
"The Queen."
"The President of the United States."
"The American Navy."
Captain Wainwright, of the Leopard, returned his thanks on the ${ }^{5}$
part of the officers of the squadron, and said that there was not a man who would not be ready to make almost any sacrifice to promote the success of this undertaking.

This closed the great ceremony of landing the first Atlantie submarine cable, and if we had been as successful in taking it ashore at Newfoundland, we certainly would have had reason for congratulation and rejoicing. On our return to the wardrogm of the Niagara, we had a pleasant social gathering of all the officers, at which Lieat. Boyd brought out an immense cake, with which we celebrated the event.

the laying of the cable from valentia bay.

* the thest dat-agateat 0.

The landing of the shore cable in Doulus Bay was successfully accomplished, as has been stated, on the evening of the 6th of August, a day which will be ever memorable in the minds of all who were present on the occasion. To the people of that part of Ireland it was an event of the most absorbing interest; and although there were many there to whom the scientific eharacter of the work was an inexplicable mystery, it was, as we have said, enough for them to know that it brought them nearer to that great nation where myriads of their countrymen had found a home, and where by honest industry they were enabled to obtain an independent livelihood. Never before had such a mass of people assembled on the shores of that bay, and never did people regard any spectacle with deeper interest. They camc from miles around-from their huts on the stecp hill sides and the dark mountain passes, from the storied scenes of Killarney in the interior, and the bleak-iron bound coast for which the south as well as the north of Ireland is so celebrated. It was a great day for all-from the Lord Lieutenant down to the poorest man who quarried slate for eight pence or a shilling a day, on the side of the hill that overlooks the harbor of Valentia. From seven in the morning till seven in the evening they awaited with impatient eagerness the landing of the cable; and when the boats which bore it to the beach were within a handred feet of the place designated, they could with difficulty be restrained by the police from rushing into the water and pulling it ashore. People may talk about the popular enthusiasm which is manifested at ooronations, the visits of monarcha, and all that, but he must indeed have been a great monarch who was received with such heartfelt welcome as the crowd gave to that electric chain. The moment the cable boats touched the shore, the people, animated by one im. pulse, ran forward, and the guardiant of the public pcace, unable to restrain their eagerness, were swept aside by the rush. A handred hands seized the cable, and running ap the elevated ground which fronts
the bay, landed it about fifty feet above the water mark. Then followed the seene which has been already deseribed, a scene of the wildest enthusiasm, in which the name of America was hailed with cheers that made the mountains ring. They never tired of cheering, and the man who proposed "three more for Yankee Doodle," when each voico was hoarse from tho extraordinary duty it was called upon to perform, was answered with a deafening hurrah, that was repeated again and again, till the crowd could almost cheer no more from sheer exhaustion.

Thut night there was a grand ball at the little village of Knightstown, and the day dawn eaught the merry-makers still engaged in their fr,tivities. A bonfire of peat, piled up as high as a good-sized two-story house, sent its ruddy and cheerful light far out into the dirkness, brightening up the black crevices in the frowning rocks, and throwing a glow on the faees of the light-hearted peasantry that gathered around it in a huge cirele. There was a fiddler among them, and though his music was not quite so scientific as Paganini's, and be would occasionally throw in a few dubious notes of his own by way of improvement on the composer, yet to that crowd it was as acceptable as the best that cultivated ear ever listened to, or that was ever applauded by kid-gloved hands at the Academy of Music. "The wee sma' hours ayont the twal" were fast passing away when they dispersed to their several homes, but the bright fire kept it up still longer, and lad a terrible battle with the daylight before it was subdued. The bright red glow whieh but a few hours before illuminated and made cheerful every thing it touched, became paler and paler, till it was lest in the still brighter light of day, and before night, there was nothing left bat a mound of white smouldering ashes, beneath which the fire gradually expired. The following morning, about four o'clock, the author was making his way in a small boat from the Niagara up to the scene of the festivities of the evening before, with his last letter for friends at home, but he foand the little village of Knightstown sound asleep, and even the owner of the inn, which in this part of the country rises into the dignity of a hotel, was as oblivious as ever wearied and worn-out traveller could desire to be.

It may be as well to state here, lest the reader should mistake the object of the visit, that the innkeeper was also the postmaster of the village, and that, in his offieial capacity, he was a great man in Knightstown. On this occasion, he seémed' to be somewhat put out by being roused from his slumbers at such an early hour; but when he learned that it was a visitor from the Niagara, his door was thrown wide open, and the letters, having received the postage stamps, were dropped through the little crevice in the huge slate that stands like a door in lest en* that le man ce was m, was again, nightstheir 1-story kness, ving a and it h his onally on the cultiloved it tho veral rible glow thing ghter ad of ired. g his ities at he wner of a ould
front of the Knightstown Hotel. Feeling considerably relieve the writer returned to the Niagara, which way to have started at five o'clock that morning, and which, when he had cleared the harbor of Valentia, he saw standing out to sea at the rate of two miles an hour, with her bow turned westward. The cable was over her stern, and the process of paying out appeared to be progressing with perfect success; when she commenced suddenly blowing off steam, and her stoppage soon after gave evidence that there was something wrong on board. In a few minutes more the cause was explained.

In paying out, the cable slipped off the wheel, through the-want of proper caution on the part of one of the men who had charge of it at this point redged so tight that it was impossible to extricate it in time. The motion of the vessel was arrested in a few moments, but it was too late; the strain was more than the cable, strong as it was, could bear, and in less than five minutes from the time it was caught in the machinery it parted in the water, leaving the loose part swinging over the stern. As may well be supposed, this was a most trying time; but as every hour lost only made the difficulty worse, preparations were immediately made for the recovery of the broken end, which lay on the bottom at a depth of between thirty and forty fathoms, and at a distance of about four miles from the point where it had been landed the evening before amid such enthusiastie rejoicings. Mr. Woodhouse, Mr: Canning, and Captain Kell, started off the Niagara; and by the aid of two paddle-box boats from the Leopard, one from the Susquehanna, and the little "steamtug the Willing Mind, they accomplished the tedious and difficult task of under-running the cable from the shore to the place where it had parted, and where they took up the end for the purpose of making a splice. Unfortunately the roughness of the sea prevented this, and after several ineffectual attempts they were obliged to give it up till the following day, when it was hoped the elements would prove more favorable. Accordingly our ship's head was turned once more towards Valentia, and in less than an hour she was anchored in the bay. That night it was arranged that the cable should be again underrun from the shore, and spliced under the shelter of the headland which protects the entrance on the left of the bay. This was to be done as early as possible on the following morning.

Up to this time we had met with nothing but reverses, and the prospect, to say the least of it, did not appear very promising. We had lost a day by this aceident, and any further delays might cause the postponement of the enterprise till the following year. All felt, therefore, that not an hour could be spared, and that every minute should be
carcfily economized if wo expected to succeed at all. There were many anxious minds on board the Niagara that night, and many an inquiring look was taken at the barometer, which had shown some indications' of au unfavorable change in the weather ; but about 12 o'cloek the wind moderated and the barometer again rose.

For three-quarters of an hour only was the electric conncetion complete, and during that time some signals and a few messages wero transmitted through the cable. The test, so far as the oontinuity was concerned, was as perfect as could be desired, but it must be observed that the current did not pass through the whole wire, but only through one hundred and forty miles, consisting of the coil of the shore cablo and the spar-deck ooil of the deep sea line. It is proper to state here that the paying out of the shore cable, which is an inob and a-half in diameter, and weighs about eight tons to the mile, was a rather difficult operation, and attended with considerable risk. While the decp sea line is remarkable for its great flexibility, this portion of the cable is as much tho reverse ao it is possible to conceive. It was made with the vicw of resisting all the strain to which it might be subjected by the fouling of anchors or otherwise, and the wires of which the outer covering or protection was composed are each about one-eighth of an inch in diameter. While, therefore, great strongun was obtained, it was impossible at the same time to have the additional advantage of great flexibility, and the consequence was, that when it came to be wound round the wheels for the purpose of paying out, it conld not be made to run olear into the sheaves, but was constantly bulging out somewhere; requiring unremitting care and attention on the part of the workmen to prevent it from running off ailtogether. It was through the neglect of one of these, as has been stated, that it really did run off, and that it became neeessary to splive it a second time. How much we longed to see the last yard of it overboard and the process of paying out the deep sea line commence ! We felt confident, from its pliability, that there would be little or no difficulty experienced in its manipulation; that on this account partioularly there would be no danger of its ruuning off the sheaves, and thought that the power of the brakes could be so nicely graduated as to bring little if any strain npon it. Had we it once asfely down, we were confident that, if favored with fair weather, we would be able to nay out our twelve hundred and fifty miles successfully.

The Second Day-August 7. I ~ni

This was in reality the third day on which the work of laying the cable was continued, but as the mere luading of the shore portion of it oannot fairly be entered to the account of paying it out, it should more pro-
perly be called the seeond. It is, therefore, in thim order that it is recorded, and it is for this reasol that the mere process of landing is not included in the regular minutes of the expedition, which may be said to have commenced only when the ship herself was under way and paying out the cable over her stern. After all, however, thim may be regarded as an immaterial point, although it may be well to state it in this connection, if for nothing clse than the sake of accuraey.

The work was commenced about half-past five o'clock in the morning, when the Willing Mind, which played such a conspicuous part in nearly all the preliminary operations in and about this place, proceeded, with a number of workmen on board, to the buoy which marked the spot where the cable lay. She was acoompanied by two boats from the Leopard and Susquehanna, each of which had a strong force to assist whenever they might be required. For three or four hours, during which they worked with might and main, they endeavored to raise it, but finding it impossible to accomplish their purpose within any reasonable time, they concluded to underrun it onoe pore from the shorc. About an hour was. taken to do this, and the only dhing that now remained to be done was to splice the end on board the Niagara with that which had been recorered. The Willing Mird started once more for our ship, taking one end with ber to the boats of the Susquehanna and Leopard, which were lying under the lee of the land, and where the work of splioing could be oar-a ried on with less risk and greater despateh. We could see them from the deck of the Niagare working hard and fast, and during the two or three hours they were employed in this way they were objects of the most eager curiosity. The splicers wero sturrounded by a portion of the crew of both boats, and were almost conoealed from our view, so that we had no chance of seeing what was going on. At last, after three of what appeared the longest hours, the Willing Mind and the other boats parted company, the latter returning to their soparate ships. This was proof positive that the oable had not only been spliced, but that the spliced portion had been laid. By seven o'olock the anchor wăs up, and: we were once more under way, paying out as if nothing had oceurred to interrupt our progress. For the first five or ten minutes the maehinery did not run as well as oould be wished, and a thumping sound, that excited the most unpleasant sensation, was made by its passage over the wheels. But the ear soon became accustomed to this, and so long as it passed safely into the water every one was satisfied. The coil from which it was paid out was in the forepart of the ship, within a few feet of the forecastle, and as the distance from that to the stern was nearly her whole length, a namber of men were stationed at intervals, like sentinels, between the two points, to weo that every foot of it reached its
destination in safety. Every thing that could be done was done to give it a safe and easy passage, but it still continued to thump away at the machinery, and before the last part of it left the ship, it oreated such an excitement on board that all we had previously gone through in that line seemed trifling in comparison. The part where the shore cable is joined to the deep sea line gave way as it was passing over one of the wheels, and in a minute more the broken portion would have been out over the stern, and lost beyond all hope of recovery, at least in time to permit of the seasonable prosecution of the work that year.,

This was the most critical moment of the enterprise. The provision which was made for such an emergency saved it, and the admirable management of the ship, by which the strain was taken off it during the process of splicing, is worthy of all praise. The captain had ordered a strong hawser, of sufficient length, to be placed near the stern of the vessel, where it could be used at any moment, and then awaited with no small degree of anxiety the time when it should be announced that they were ready to pay out that portion where the two cables were joined. At last it was reached, and the speed of the vessel having been reduced to a fraction of a mile, so that she could only be said to be moving through the water, it was passed through the hands of the men as carefully as if it were the most tender fabric in the world, and had just gone over one of the wheels, when it was observed giving way at the joint. The men in charge were at once on the alort, and in a moment had it firmly securèd to the hawser. Mr. Everett, the chief engineer of the ship, seemed ubiquitous, and rendered most efficient serviee at this part of the enterprise. With a coolness and self-possession desorving of all praise, he observed every thing that was going on around him, and was ready for every emergeney. His conduct on this occession pointed him out as the proper man to, take charge of the cable on the next expedition; and Mr. Field never showed his foresight and judgment to better advantage than when he mentioned Mr. Everett to the Telegraph Company as the engineer who should construct the paying-out machinery. The accident occurred at half-past eleven, and the ship was about seven miles from the point from which she started that afternoon. The other vessels of course could not have been aware of its exaot nature, but they must have known from the stoppage of the ship that there was something wrong. Whatever may have been their anziety during the long and weary hour and a half whieh it took to renew the splice, it certainly did not exceed what we felt during that time. Not a word was spoken excopt by those in command, and the orders were promptly and quietly obeyod. Those who could take no active part in the work, looked on with something of the feeling with which a man awaits the result of
a chance on which his very life may depend. Many au inquiring look was directed to that portion of the eable that hung over the stern, and at the men who were employed at the work of splieing. Itaseemed às if it would never be finished, although the joiners went at it with a will, knowing how much depended on their expedition, and performed it in half the time that would be given to it under other circumstances. The, hemp serving and gutta percha insulation were cut off, leaving-both ends of the copper wirc or conduetor perfeetly bare. This was done in almostless time than it takes to relate the circumstance. The two conduotors were then laid together, bound up with a single wire, and the whole soldered together. After this the gutta pereha was placed over the eonductor in a perfectly plastic state, and the insulation having heen thus effected, the hempen strands were served upon it, the iron proteeting wire or external armor plaeed over that again, and the whole securely bound with strong hemp. Having been spliced in this way, it was lowered down cautiously over the stern by the same hawser, so that there was little or no strain brought upon it, and in less than half an hour more the ship was on her course, going at a rate of from two to three miles an hour.

Many an impagient look is directed toward the splicer, but he performs his duty well; he is working with all possible dispateb, and although we wish he were quieker, he is doing all a man oan do; if the cable be lost, it will certainly bo through ng fault of his. In the midst of the subdued excitement-for as I have said, no one attempted to speak but in whispers, except those in command-we could not but think, when we looked out üpon the calm sea as it sparkled under the bright light of the full moon, with a feeling of gratitude upon the auspicious weather with which our onterprise had been blessed thus far. Never was a vessel more favored than ours, and if we are only permitted to lay this cable, what a time of rejoieing we will have when we get baek to New York. It is almost too muoh to hope, and as we think what we have yet to go through, our sensations become painful in the extrome. Let us, when we return to the Empire City, be able to tell our friends that the cable is laid, and the United States, big as they are, will not be able to hold us.

Let us lay this cable saccessfully and we will-but it is useless saying what we will do. After all our anxicty, after all the exeitement, it may be that we are not destined to accomplish our great work this time, but onr hopes are strong, and I know that there is not a man on board, from the captain to tho humblest hand, that is not wrapt up heart and soul in the enterprise. So strong is the feeling, that I believe there would bo less excitement among them at the ery of "man overboard"
than there would at/the announcement that the eable had parted, perhaps it is because they think the man might be pieked up, bot that the cable never could.

The cable meantime has been paid out, and in less than an hour we are at least two miles off from where the splice, whieh had put overy one into such a terrible state of anxiety, is lying safely upon its ocean bed. We are glad to get rid of it, for it was one of the worst customers with which we had yet to deal, and every body congratulates every body else that it is safely overboard. "I tell you what," says one of the quartermasters, two or three hours after; "I tell you what, that was a hard tug, and I hope we won't soon have such another "-a hope in which it is almost needless to say evory one who heard him.joined.

The next point of interest now is the telegraph office, the door of whioh is beset with eager inquirers, all desirous of knowing how the cable works, and a considerable number of these with messages for friends not only in Valentia, Liverpool and London, but away off in the United States. Among these was the writer, who took advantage of the first opportunity to transmit tho following despateh to the New York Iferald, and which he feels considerable pric'e in being able to say was the first sent to any newspaper over the Atlantic Telegraph; or that portion of it which was laid. And here it is:

Unitrd Statrg Frigatr Niagara

At Sea, off the Coast of Ireland, August 8-1 P. M. $\}$ To James Gokpon Bennett; Esq., New York Herald Office.
The eable is being paid out over the stern in capital style, and the ship is going at the rate of two miles an hour. We have just paid out the twelfth mile most successfnlly, and are getting on admirably. The insolation was found to be perfect after a splice had been paid out, and the cable is in such excellent working order that messages are transmitted between the ship and the shore with the greatest ease. All are woll on board the Niagara, and sanguine as to the result of the expedition. We can see the lights of the other steamers as they hover around ns, and can imagine what intense anxiety they must feel to know how we aro getting on. J. M.

The subjoined despatoh was reoeived from the telegraph office at Valentia Bay:

We see the Niagara broadside on. Is there any thing wrong in tho paying out?

To which the following reply was received:
All is right. Every thing is going on well. The ship's broadsido being on arises from her drifting, as she was going very alowly-only a mile and a half an hour.
ed, perthat the 10ur we ery one an bed. rs with dy else nartera hard which oor of ow the es for off in antage 3 New to say ph, or

d the

 id out The t, and trans. 11 are cxpeound howThe messages that were sent by the officers to their friends und relatives in different parts of the United States would fill nearly a volume, and the operatives were kept busy at the instrument the whole time.

Third Day-August 8.

Since the Niagara left New York, she was not and could not have been favored with fairer weather than she had to-day. The sun rose in an almonstindess sky, and the wind was so light that it hardly raised a ripp whe water. The rest of the telegraph squadron had spread. a partuchefif canvas in the hope of being able to save their coal ; but they made nothing by it, and were obliged to furl their sails which were hanging loosely from the yards. Even the light eusigns hung from the peaks in folds, and there was hardly strength enough in the breeze to shake out the still lighter streamers that floated from the main. We heard the bells of the Susquehanna as she stood off about half a mile on our starboard quarter, and, were it necessary, could have hailed her at that distance without any great straining of lungs. The Leopard was taking it easy away off four or five hundred yards on the port side, and the Agamemnon, with her massive and warlike-looking hull, , although a mile and a half away, loomed up as visibly as if she were not more than one-third that distance off. The Cyelops amused herself running ahead of the rest of the squadron, as if on the look-out for something which she never sneceeded in finding. She had a jolly, rollicking way of her own, that contrasted strongly with the rolling gait of the bluff Agamemnon and the dashing stylo of the Leopard, which pitched into every sea, no matter how small, as if it had some insidious designs upon her, throwing it from her in showers of spray. The Snsquehanna took it quietly enough, and seemed as perfectly satisfied at going two miles an hour as if she had been going a dozen in the same time. About twenty miles astern of the squadron the Skelligs, two high roeks that stand out from the main land like gigantie outposts, were distinctly visible, and although the little light-house at the entrance to Valentia harbor had sunk below the horizon some hours before, we could still tell its position by the high landmarks by which it was surrounded. There were the Blaskette, an island mountain, and one of the first of the many highlands which the mariner sees on this part of the Irish coast before he enters Dingle bay; and those low, half-sunken, treacherous-looking rooks, with which the waves are at perpetual war, are the Foze, and are the dread of all the shipmasters who trade about this part of the island. Away off beyond the Foze and the Blasketta, among those highlands of the county Kerry, is some of the most magnificent scenery that ever
delighted the eyes of a traveller; and as those highlands ai ${ }^{\text {a }}$ rad ually below the horizon, the valleys darken with the evening shadows, and the mrountain peaks, suffused with the red glow of the descending sun, look more like the creations of dreamand than a living, actual reality

It is Captain Pennock's wateh to-day, although Captain Hudson may be said to be always on, with the exception of the few hours which he gives to rest. . The Captain's first question is in regard to the cable. as it is in fact the first with almost every one when they have got the sleep out of their eyes.
"What is the rate at which the cable is being paid out?" he inquires, addressing Mr. Fugitt, the sailmaker, who is one of the guardians of the coils.
"Three miles, sir," is the response. This is not so fast as had been expected, but it*is doing very well for the present, although the intention is to do mu better before a hundred miles of the cable shall have been passed over the stern. Λ visit to the coil proves that the report of Mr. Fugitt is correct, and also proves another thing, that whatever fears might bave been felt in regard to kinks, or any thing of that kind, are entirely groundless. Nothing could be more gratifying than the way in which it comes up out of the coil-so flexible, and yet possessing so much strength. There is no trouble whatever with it-no twisting into knots nor entangling of the flakes-but the whole process of unooiling goes on without the slightest difficulty. The men who stand around the circle looking out for accidents have an easy time of it, and might be in New York or Liverpool, or away in the Punjaub, for all their services are required That cable couldn't kink if it tried; and so, long as it passes out of the ship safely, and is deposited secarely on the bottom, it may twist as much as it pleases. The iron wires which form the outer covering or protection may become so corroded with the action of the salt water as to afford it"no longer any protection; but while the insulation remains intact, the essential part of the cable requires no other protection than that given it by the gutta percha. It has been urged, as an argument in favor of the success of the Atlantic telegraph, that the iron wire, in the process of decomposition to which it would be subjected after its submersion, would enter into combination with the cal. careous substances, which, as has been shown by the soundings of Lient. Berryman and Capt. Daymani, form a part of the deposit of the bed of the ocean. Once the cable is down, however, and down securely, who cares whether it does or not, or whether there is not a particle of the protecting wire left?

The first coil will be all run out some time to-morrow (Sunday)
morning, and then what a time there will be in passing the second splieing safely out of the ship, and how we shall rejoice at having even one-tenth part of our half laid! Various speculations are afloat as to the length submerged and the distance run; and when it is announced from some quarter or another that the twenty-five hundred miles aboard both ships will fall short before the Agamemnon reaches the Newfoundland terminus, a rather uncasy feeling takes possession of some, although the engineers express their confidence that two or three days' reckoning will show there is not only enough, but plenty to spare. The only thing that remained now to be done was to get rid of the cable as fast as we could, for although.we might have been satisfied with three miles when we started, now that we had attained that, we would not be contẹnt tial we reached four or five. The only objection to this was that it might bring too great a strain upon it,and that in our impatience to get ${ }^{\text {G }}$ hrough with our part of the work we might lose the cable-a catastrophe, the very dread of which haunted us like a mightmare. True, the strain at the present rate, as appeared from the indicator, 'did not exceed four hundred pounds, while the cable, as had been proved by the experiment in Valentia Bay, was capablo of bearing a strain of three and a half todns.

It has just been proved from a calculation of the distance pun and the amount of the cable paid out, that there is at present no reason to fear we shall not have enough. The ship is thirty-nive miles from the point at which the shore end of the cable was landed, while the num: ber laid does not exceed forty-ane, showing that only two miles migre than the actual distance traversed have been expended, and that if they continue et this rate they will. have sufficient with :which to lay a submarine telegraph line from Cape Race, Newfoundland, to Cape-North, the most northern part of Capo Breton. But all this is premature. When we reach mid-ocean, if ever we succeed in getting so far, - we will be better able to tell.

This day closed with fine weather, and a promise of its continuance. Th the evening, about seven or eight o'clock, thee remarkable color of the sea attracted general attention. But only a few hopurs previous it had a deep blue, but it was now à very*ight pea green, and, looking closely at the surface, we diseovered that it was strewed witly dead meduse. For miles and miles we passed through these, and would doubtless have continued to see them had we not been prevented by the darkness of night. Another visit to the ooil and the telegraph office before going to bed, satisfied us that the cable was going out in fine style, and that the continuity was perfect. That word "continuity" had become quite a pet op board; and if any thing went wrong, with the cable, the first question was alvays of course in regard to its eafety, ged the next as to
the continuify being all right. Once at ease on both these points every one alepf more soundly, but the moment the slightest breath was whispered of any thing wrong with either, the greatest anxiety was manifested till the cheering intelligence was given that the work was going on, successfally. If the "old coffee-mil!" stopped for a minate, all hands in the cabin and wardroom were on deck to know the cause of it, and did not" go below again till it went on as before. The "coffeemill" was the name given to the paying-out machine, from the peculiar noise made by the wheels, and which bore somewhat of a resemblance to that which would be produced by a mill for grinding coffee. The sound became as familiar to us as that of our own voices, and so long as we heard it, we knew that overy thing was safe-that is, that the osble, which was every thing to us, was going out without difficulty. The first thing we heard in the morning was the paying-out machine grinding away ${ }^{\dot{y}}$ above our heads, and although it made what some might consider a disagreeable racket, to us it was more pleasing than the best opera ever produced by Italian, German, or any other composer. This night, particularly, it seems more noisy than ever, but instead of interfering with our rest, it will only make us sleep the sounder.

Fourth Day-August 9.

The now familiar sound of the paying-oat maohine, which never ceases except when there is something wrong ith the cable, kept on through the whole night without interruption, and was the first thing that greeted our waking senses. We were doing wonders, and so long as the brakes were not applied, the machine showed no sign of balting in its work. At our mess table it was the principal subject of conversa. tion, and all were of the opinion that the laying of a cable across the Atlantie was not only feasible, but that it would be accomplished in this present month of August, and by the ships Niagara and Agamem. non. There were some, it is true, who thought that there might be a difficulty when we came to the great depths, and that the increased weight and atrain which would then be brought apon the cable, with the pitching and rolling of the ship in a heavy sea, might be more than it could bear; but after all, there was little danger to be apprehended from this, if the brakes were not pat on, for it was observed that when thay were employed for the purpose of ohecking its speed, they very frequently stopped the wheels from turning, and brought upon it the strain produced by the speed of the vessel-a strain whieh would part the strongest cable ever made, as it parted the ahore cable but a few duys ago, and only a short time after we got out of Doulus Bay. "Those brakes, in fact, are the only things that we have to dread; and if they

- were once overboard, thore is no diffieulty, so far as our experience has yet proved, in the way of the successful accomplishment of this enterprise.

We are in high hnmor at the progress we have alresdy made, as well as the fine weather we have had, and being on the second coil of the deep soa line which was put on the berth deck, are now looking forward to the time wher we shall get rid of that too. The coil which had been formed on the spar deek, and the last mile of which was paid out at a quarter to 8 o'clock this muming, contained one hundred and thirty miles; which, with tho ten miles of heavy shore cable, made one hnndred and forty, or about one-ninth of the whole amovnt on board. It was known last evening that if no accident occurre !, we would reach the foremain deek coil some time this morining; and as the critical moment arrived, all who could were up on deck to see the splice by which the two were conneeted go over the stern. This moment was looked forward to with considerable interest and anxiety. It was thought that the strain produced by the machinery on the joint, which is certainly not so strong as the other parts of the cable, would be too much for it, and that it would give on being paid out. Every preeaution was therefore taken to prevent such an oecurrence. The speed of the ship was reduced to a mile an hour, and the spliced portion lowered gently from the stern. About thirty men were stationed about the coil and att the machinery, while a dozen stood near the stern, all ready for any emergency that might arise. Standing by the cirele from which the cable was now going up with greatly diminished speed, we watched flake aftel flake and turn after turn as it was nowound from about the cone, until the last turn-the spliced part-was reached, and following it up to the machinery, saw it pass safely over the five wheelsiand down into the water. In a half hour more all danger was oycr; a few more revolutions were given to the propeller, and we were soon going at the rate of three miles an hour towards Trinity Bay, Newfoundland. This speed was increased to three and a half, and bcfore night we were going at the rate of five, the highest we had reached yet. The rest of the squadron were somewhat astonished, for having gradnated their speed by what we had been rumning, they began to fall astern very rapidly for two or three hours. They soon found out the cause, however, and putting on a little more steam, took their formor position. The ease with which the cable was paid ont at this rate convinced all of the practicability of continuing it with perfect success, and with such favorable weather as had attended the enterprise up to this time, of laying the cable inside of sirteen days. All that was necessary was to look ont for tho splices, to reduce the speed at tho proper time, and
especially to avoid the use of the brakes except when imperatively necessary. The accumulation of tar in the grooves or shcaves it was feared might have a tendency to throw the cable off the wheels, but as it was brushed away again by the cable almost as quick as it gathercd, little, attention was paid to it.

In the early part of the day divine servioe was celebrated, the captain performing the duties of chaplain. There was not, however, any interruption in the work; the men were at their stations as usual, and mingled with the captain's voice was the din of the maohinery. At the close the prayer for the success of the expedition, which was read at the celebration of the luding of the cable, was repeated, and the carnest amen which followed, showed how deep an interest every one felt in it.

The greatest depth over which we had passed was four hundred fathoms, but to-morrow we crpect to be paying the cable out into two thousand fathoms of water, or somewhat over two miles. This will test the practicability of laying it in great depths, and settle forever one of the most serious questions to which this enterprise has given rise. It is supposed by some, in opposition to tho "telegraph platean" theory of Lieut. Maury, that the bettom of the ocean, instead of being cof one uniform level between Ireland and Newfoundland, has the sạme depressions and heights, the rame abrupt declivitios and mountain ranges, which are to be found upon the surface of the earth.

The soundings of Lieut. Berryman, of the United States navy, and Commander Dayman, of the British navy, have proved the existence of this plateau; but still it is urged that, as these soundings were taken at intervals of thirty, forty or fifty miles, it is impossible to tell the exact character of the bed of the sea from them, or to form any thing more than a speculative opinion in regard to the subject. The laying, therefore, of this cable will do much towards putting an end to all doubts whatever regarding it, as, well as towards proving the practicability of the present enterprise. Sne of the great difficulties which Mr. Brett had to contend with in laying a cable across the Mediterranean, was caused by the great depth of water, which in parts equals the deenest soundings found on the telegraphic platean, but those were abrupt and not gradual descents, like what we shall have. We will not be alarmed by any of those rapid runs of the cable that threaten destruetion to all in its way, for the descents over which we shall pass will not be greater than one thousand feet to the mile, while the average will be perhaps about three hundred. This is certainly most promising, and if the promise holds good and the cable don't part, we may have an opportunity of realizing it to-morrow.

During the day we signalled the squadron that "all was right," which meant that the cable was going out safely, that the continuity was perfect, and, in a word, that we were getting along, as well, if not better, than could bo expeeted. They were satisfied, and during the remainder of the day kept on their westward course witheut interruption, while we pursued ours steadily, paying out the cable at the rato of from five to six miles per hour. The electricians said the cable was in good working order, and messages were sent through it to America by the officers of the Niagara to their fri ids and relatives, all of whom will doubtless have received them before we reach the other side of the Atlantie. There is evidently a determination not to let it remain idle for want of work, and the operators have enough to do if they get through the pile of manuscript whieh lies on their' desk before morning.

䎸话th Pay—August 10.

There was a pretty heavy sea on during the whole of this day, and it was evident that there had been a gale somewhere in the imnediate vieinity, judging from the size of the waves. The rate of paying out raried from four and a half to six knots an hour, and the cable came up from the coil as easily as if the ship were only making two knots. It is certainly a wonderful cable, and those coils are admirably adapted to the work. There was, it must be confessed, a prejudiee against them at first, and when they were suggested as the best form that could be devised, some objeeted to them, on the ground that they would be so liable to kink. This opinion has now been proved to be erroneous, and those who opposed the circles are convineed by practical demonstration that they were the best that could be adopted.

This morning about ten o'elock a sail hove in sight, when the squadron, in addition to their own national colors, displayed the Telegraph flag. Our quartermaster, when she was some three or four miles off, proclaimed her to be "a Dutehman." In half an hour he took another observation of her; said he could see her colors, that she was Norwegisn, idding, in a triumphant tone, that be knew "she was some kind of Duteh," but he guessed it was "pretty high up."

About eleven o'clock the Agamemnon signalled to us, desiring to know if we had any ncws, through the cable, from 'the East Indies, a part of the British dominions which at this particular time exeites the most painful interest throughout Eigland. We replied that we had not. There were, we understood, some on board who had relatives there, and who natarally felt anxious to hear about the condition of things in that country. At this time we were in 2,150 fathoms water, and the cable was going out in magnifieent style. There were none of
those sadden alarming runs whieh had been predieted for us when our ahip should come to the great depths, and had we not known from the chart of the soundings where we were, we could not have told the difference, bo far as its effect opon the line was concerned. We could partly tell the strain by the angle which it made with the water, while the speed at which it went out was marked upon an indicator couneoted with the machinery. The strain was shown more eccurately by another indicator, so that we could tell the exact number of pounds it was sabjected to at any particular time. -This hardly exceeded three handred, except when the brakes were put on, and then it was incrcased to fifteen and twenty hundred, and sometimes more. In all cases, however, it would not do to take the indicator as a true guide, as the pitching of the vessel produced a strain which is not always, if it is ever, correctly marked upon it.

There was a great deal of excitement created by the cable getting off the wheels twice this evening, but fortunately it was pat on again without any ôther accident. It was to a considerable extent a repetition of the same acene that took place when the cable broke off the coast of Ireland. The ship was backed immediately, the caple released from the strain, and in five minutes, which seemed so many hours, it was put on the wheels again. When the order was given to the engineer ,to "go ahead slow," it is impossible to describe the scene which followed-the relief from a feeling of terrible suspense and psinful excitement to which every one was wound up, the warm and hearty congratulations that were interchanged, and the eagerness with whioh we still continued to watch the wheels, fearful of a repetition of the accident. The engineers kept near the machine, ready in case of emergeney to go over the work again; but fortunately there was no call for their services in the same way this night, after the second catastrophe.

The throwing of the cable off the wheels was caused by the aocumulation of tar in the sheaves, which are not so deep and so wide as experience has proved they should have been. Thê tar, which is pressed out of the iron or protecting wire as the cable passes over the wheels, sticks in the " sheavess until it gathers in some parts in large lumpe, which beceme hardened by exposure to the air. The effect of this is to throw the cable off altogether, as occurred in the two cases just mentioned.

We had hardly recovered from the alarm created by these accidents, when the whole ship was thrown into another state of exoitement by the report that the continuity was gone-that the cable refused any longer to transmit the electric current; in a word, that all communication between the ship and the shore had ceased, in consequence of some acoident to the copper wire or conductor, of which no one knew the cause.
 ff the eased urs, it

For twe hours and a half the continuity was lost; and we beliered that all was over, that the three hundred and odd miles which had been laid were laid in vain, that we would be obliged to return, and report our own failure, when the eyes of the whole world were turned upon us, and ace time, too, when we confidently hoped that success was within our reach if we only exercised a due amount of vigilance and caution. The Engineers, Captain Hudson and Professor Morse had all agreed that the only thing to be done was to out the cable for the "purpose of getting it off the paying-out machine, and transferring it to that which was to be used for winding up, and in regard to the successful operation of which thero were very serious and well-founded donbts.

Mr. De Sautyp the assistant eleotrician, and Mr. Bright, consulted with Professor M rso as to the best course to be pursued, when he expressed the opinioh that the strain to which the cable had beel, subjected at the time it slipped off the wheels had opened the gutta percha, and thus deatroyed the insulation. This eertainly seemed the only reasonable explanation that could be given of the affair, and the cause stated was generally accepted as the true one. About two miles of the cable had been paid ont since that aecident oceurred, and the only question that now remained to be decided was whether the winding-in machine could be safely employed in under-running this length. This, as Professor Morse said, was for the chief engineer, Mr. Bright, to determine, and it rested, with him to give the order to have the cable eat, in case he should so decide. Mr. Bright did so decide, and preparations were being made to carry his order into execution, when Mr. De Sauty informed Professor Morse that the continuity had been restored, and that the insulation had not been destroyed. In five minutes more the intelligence would have come too late, for in that time the cable would have been eut, and the conductor thus detached from the telegraph instrument could jot have given any indication of its being perfeet up to the terminus on the vessel. The glad news was soen circulated throughout the ship, and all felt as if they had been imbued with a new life. A rough, weather-beaten old sailor, who had assisted in coiling many a long mile of it on board the Niagara, and who was among the first to run to the telegraph office to have the news confirmed, said he would have given fifty dollars out of his pay to have saved that eable. "I have watched nearly every mile of it," he added, "as it pame over the side, and I would have given fifty dollars, poor a man as I am, to have saved it, although I don't expect to make any thing by it when it is laid down." In his own simple way he expressed the feelings of every one on board, for all are as much interested in the success of the enterprise as the largest shareliolder in the company. They talked of the cable as they would of a pet ohild,
and never was child treated with deeper molicitude than that with whieh the cable is watched by them. You could see the tears standing in the eyes of some as they almost cried for joy, and told their messmates that it was all right. They did not know any thing about the scientifie defnition of the word "continuity," for to them it was a mystory which was incapable of explanation, but when they heard it was gone, they scemed to understand it as if by instinct, and to appreoiate the fall extent of the loss.

I have said that it was a great relief to all to learn that the electric connection was still perfeet, but each man, as he retircs for the night, has a feeling of nervousness and nncertainty, lest the morrow should have something still worse in store for us.

Sixth Day-August 11.

This has been a sad day. We had retired full of hope, not, it is true, unmised with a sort of dread that there was something still worse than what had yet happened inpending over the enterprise. This morning, about four o'cloek, we were awakened out of our sleep to hear the cablo had parted in over two thousand fathoms water. Five minates after it had been announced every one was out of his bed to ascertain for himself if it was indeed true. There was, however, no reasion to doubt, for there hung the broken end over the stern swinging loosely, and there were the wheels as motionless as a rock. The other erid had not yet sunk to the bottom; it had to descend more than two miles before it reached the plateau, and it would require more time to aecomplish-that. The noise that sounded like pleasant music in our ears had ceased, and the machine which had eaused us such anxiety had now become as so much useless lumber, blocking up the quarter deok. The eanse of the calamity was the application of the brakes, at a time when it was fatal to use them. There was a pretty heavy swell on, and as usual under such circumstances, the stern of the vessel was elevated or depressed as she rose on each wave. It was while her stern was down that the brakes were put on, so that in addition to the strain produced by its rising again, the cable had to bearan additional strain of three thousand pounds, as marked upon the indicator. This was more than it could bear, and the consequence was that it parted. The moment the brakes were used the wheels stopped, and when the stern rose again they remained immovable, so that, between the strain brought apon the cable by the ressel and that caused by the application of the brakes, it had, as I have said, to bear more than it was ever calculated to sustain. The indicator showed a strain of three thousand pounds; but it is impossible to calculate the strain by which it was broken.

Had the brake not been applicd, there is no doubt whatever that the cable would have remained perfect to the end, unless we were compelled by very great stress of weather to eut it. The circumstance, to say the least of it, was most unfo"whate;" but if the enterprise has failed, the expedition has proved Whe Thimbeyond all possibility of doubt, the
 between Ireland and Necturnadity for this every man on board is as fully convinced as he iṣ oygung xistence, whether it be laid next year, or its accomplishment (abtponed for fifty years to come.

The order to put on the 'brakes was, given by Mr. Bright at this eritical moment, and there is no doubt whatever on the inind of any one conversant with the facts, that it was that order that eaused the fraeture of the cable. The anthor, however, confidently believes that it was inpossible to lay it successfully with that maehinery, and that some such aocident must have inevitably eccurred before the arrival of the fleet at Newfoundland.

This uorning, soon after the catastrophe, a consultation was held in the cabin of the Niagara, at which Captain Hudson, Captain Pennock, Captain Xainwright, Mr. Bright, Mr. Woodhouse, Mr. Canning, and Professor Morse were present, when the question of commencing the work over agfin with what cable remained on board both ressels was discussed, but as it was found, after due calculation, that there was not enough to comnect the two peints, the proposition vail. The following table and statement show trich paid out and the balauce of cable on hand:-

				Stainto miles.	Cantical miles,
	Cpper deck	-	-	. 180	$11]$
	Main deek	-	-	- 294	255
1	Iower deck	-	-	- 182	157
	Lower hold	.	.	. 352	305
	Wardroom	- .	-	. 287	257
	Total	,	-	1,255	1,985 \%

This, with ten miles of shore cable, made a total of 1,095 nautical miles. Of this, 334 were paid out when the cable parted, leaving 759 miles on board the Niagara, which, with the half in the Agamemnon, left $1,8 \pm 7$, or a surplus of 207 over 1,700 miles-the distance between the termini at Newfoundland and Ireland-an excess of 12 per cent. This was, as has been said, considered insufficient, and the proposition was accordingly rejected as impracticable. Indeed, it was deemed doubtful whether, if the cable had not parted, there would have been enough to reack Trinity Bay.

Another proposition was made, that when the vessels returned to Entland an additional leagth of cable be prooured, and with this and new
machinery the work be recommenced in October. This, however, was to be decided by the direotors, and in the mean time it was understood that the Niagara was to lie at Plymouth until further orders. It was believed that if this proposition should not be carried out, our ship would be detained till the following year, when the Telegraph Squadron were to take a fresh start.

Soon after the meeting Mr. Field, with his usual promptitudc, left the squadron in the Cyclops-the rest of the vessels; with the excej,tion of the Leopard, remaining to make some experiments to test the practicability of splicing the onds of the cable from both the Niagara and Agamemnon. This occupied another day, and proved that it was perfectly practicable to join the ends of the cable in mid ocean.

BOUND FOR PLYMOLTH.

Having made the experiments suggested by Mr. Field, and which, as has been stated, were entirely successful, the Telegraph Squadron started for Plymouth, one of the first naval depots in Great Britaio. On their way to that port a trial of speed took place between the Niagara, the Aganemnon, and the Susquehanna. Properly speaking it could hardly be called a race, for we were all so confident of the superior merits of point of specd, that we looked upon such a thing as en or comparison as not only out of the question, but absolutely preposterous. True, we had heard a great deal of the qualitice of the Agamemnon under sail and steam, and we certainly felt no inelination - to depreciate ber either as a sai!ling ship or a steamer; but at the same time the superiority which was elaimed for her over our vessel we were not prepared to admit. We were told that she was the "crack" ship of the British fleet; that she could steam from twelve to fourteen knots an hour; and that she was, in a word, the fastest propeller on either side of tho ocean; but all this we took with a certain degree of latitude, and while we listened to the relation of her wonderful performances, our opinion of the Niagara underwent no ehange. The fact is, as I have said, that we felt so contident of the superiority of the Niagara, as to regard suoh a thing as a trial of speed perfeetly preposterous. There was then, literally speaking, no race between the two ships, for several reasons:-in tho first place the vessols were ant in ptpper trim or condition; in the second, we had only three boilers in operation, being deprivel entirely of the use of our fourth by the proximity of the furnaces to the ooils of eable, which might havo been damaged by the heat of the fires; and in the third, we knew that the Agamemnon bad frigates' masts instead of her own sparg, which had been taken out the better to qualify her for the work of laying tho great soa lime. Fet I 阆ve no
doubt that she made an effort to outrun us, if it be fair tojodge from her increase of speed and the indications afforded by the dease columns of black smoke which occasionally issued from her pipes, that they were piling on the coal below. This is not all, however, for there was still stronger evidence in the frank acknowledgments of her men as to the great qualities of the Niagara, and the astonishment which they unfeignedly express at her speed and steaciiness. And now let me state what it was that caused this change of opinion in men who were so full of praises of their own ship, and who, with a pardonable pride, believed she was superior to any other, although that other was the Niagara.

The day on which the cable was broken-that ill-fated 11th of August-some experiments were tried, all of whioh, as has been stated, proved successful. The following day, Wednesday, the 12th of August, we were on our way to Plymouth, and desiring to keep company with the Agamemnon, we kept under steam alone, while

- she was under both sail and steam. It was not, however, till the 13th, that what has been called the race between the two ships took place, and then the faot is, the Susquehanna was the only competitor we had. About 10 o'elook Captain Sands made the following signal to us:-"Going to Plymouth," intimating that he was bound for that port, and if we intended to keep company we had better "hurry up our cakcs." We thoroughly understood the meaning of this signal to be a reflection upon the speed of our vessel, for on board of the Susquehanna they were rather inelined to depreciate her in this partieular. They had been talking some time before about her failure, and in proof of it referred to the length of her passage from New York to England. It was apon this that they based their estimates of her qualities, and under the impression that their own was her superior, they gave us a challenge in this indireot way. At this time, that is, about 10 o'clock, the Susquehanna was a few hundred yards ahead of us, on our starboard bow, and as if to clear up any doubt we might have had in regard to the signal being a challenge, she slowed down nntil she was right abeam with our ship. In reply to the signal of Captain Sands, Captain Hudson made the following:-_" We can only use two boilers, in consequence of cable."

Only two boilers were in use, but as a portion of the other two could be used without risk to the cable, we also got them under steam, so that three boilers may be aaid to have been in operation.

There was no doobt on the Susquehanna that they were certain of beating us, and although labering under all the disadvantages already referred to, we were detorminod to-lower their pride and punish them for their presumption. It must be remembered that we had the cable guard
attached to our stern, that we were below our regular bearings with the cable, and that we had but three boilers in use; while the Susquehanna was in admirable condition, and there is no doubt was nuder a full head of steam when she dropped down and came abeam with the Niagara. As soon as she tonk that position, her wheels, which before this had being going at an ordinary rate, began to revolve with accelerated veloeity, and finally with a rapidity that cleared up whatever doubts we might havo had of her intentions. All the sails that were of any service were put on, and every evidence was given that she was doing her very best under tho circunstances. Her rate of speed was about ten miles an hour.

All the steam that could with safety be used was raised, and we also made as much sail as was considered profitable. For twenty minutes or half-an-hour the Susquehanna occupied the same position, so that her gangways were within our line of vision during that time. We had not, however, got properly under way for the first fifteen or twenty minutes, but after this it became ecident that the gangways were closing upthat is, they were falling below the line of vision, so that we could only see the gangway on the port side, or the side next to our ship. It was now apparent they were doing all in their power to maintain their position, but from this time the Susquehanna gradually began to fall astern, uutil her foremast was brought in a direct line with our mizen. In a few minutes more were ahead of her, and an hour from the time she dropped down and eame abeam with us she was about half-a-mile astern. Still she kept at it, although Captain Sands must have been pretty well satisfiod regarding the comparative merits of both ships. From ten o'cloek till four they kept it up, the Agamemnon doing her best also. At four, the Agameminon was about twelve miles astern, and the Susquehanna about five. As we did not wish to run away from them altogether, and as Captain Hudson desired to keep company with the former, wo hove too and let off steam till she came up. At twenty-five minutes past four the Susquehanna passed us, and at half-past-five the Agamemnon went by us under sail and steam. The race was over, and the Susquehanna displayed no more signals after this about going to Plymouth.

Notwithstanding all this the Agamemnon proved herself, with all the disadvantages under which she labored, and to whieh we were also subject, both a good steamer and a fast ship. She oould hardly be expeeted to equal the Niagara in speed, for the two are construeted on very different models; and the only wonder is that any doubt could be entertained with regard to their qualities. Whatever may be said sbout her sailing and ateaming abilities, the Agamemnon is one of the
finest line-of-battle ships in the world; and it is no wonder that she is the pet of the British navy after her gallant performanees before Sebastopol, when she distinguished herself by the fearlessuess with which she steamed up to within eight or nine hundred yards of the frowning batteries of that terrible fortress.

The officers of the Susquehanna not only acknowledge that their ship was well beaten, but express their helief that the Niagara is one of the swiftest vessels in the world-that she is, in fact, withow an equal. Since their conversion we,shape pardoned them for their presumption in thinking that they could beat us, and acoept their voluntary praises of the Niagara as a proof of their sincerity. There is no doubt whatever that the long passage-a passige which was made under the most unfavorable cireumstances-of our shinfrom New York to London in April, 1857, disappointed every one regarding her character as a steamer and sailing vessel ; but those who knew her, and who have witnessed ber performances under all circumstances, are satisfied that she will realize the high expectations that were formed of ber.

ARRIVAL AT PLYMOUTII.

The Niagara arrived at Plymouth op the 13th of August, 1857, where she remained till the 5th of November following, when she sailed for New York. Mr. Field had arrived sometime before, and had called a meeting of the Board of Directors at London, at whioh Mr. Everett and the commanders of the expedition were present. The result of these meetings was, that" Mr. Everctt was requested to examine and report upon the form of machincriy best gdapted to secure the success of the next expedition.

While oceupying this position, he was literally deluged with plans of proposed machines, suggestions in regard to the laying of the cable, and advice from every quarter as to the manner in which the work should be perfermed. Some of those correspoudents offered their suggestions and advice without hope of pay, or at least without saying any thing about it, but it must be confessed that the majority were worldly minded and looked after the almighty dollar. Mpchines of the most remarkable strueture were presented on paper for cousideration, accompanied with detailed deseriptions and explanations covering whole reams of foolscap. Take them all together they were rich specimens of literature, and should not be allowed to pass into that obseurity to which the efforts of aspiring genius are so often consigned. They were from clergymen, artist, mechanios, engineers, sailors, soldiers, officers, and gentlemen of teisare-that is, those who are supposed to have plenty of money, and
plenty of time to spend it in. The following is one of the voluntear letters, and, as will be seen, the suggestions which it contains are the joint production of two parties, although, according to the laws of the ohurch, they should properly be regarded as one:-
"I was talking to my wife in bed last night, whose brother was in the navy, as to depositing your Atlantic telegraph rope, when she suggested whether you would not have difficulties with the currente, whioh she had heard her late brother speak of as interfering with the soundings. It immediately struck me that you were beginning at the wrong end, and that the rope ought to start from the American side, so thatthe Gulf Stream might act on the concave, or inside of the curve of denending rope and facilitate its deposit, instead of aoting on the conver side and tend to throw it down-it curves and renders a mnoh longer length as necessary. If there be weight in this suggestion, and you begin at the American end, the course of your vessel should ourte southward to allow for or compensate the northward tendenoy of the Gulf Stream. As yon know the depths and the surface rates of the current, and its angle with the ship's course, you may guess the rates and the direction of the current at different depths, or average them, and thus get across with the shortest possible amount of rope, and therefore in the straightest line. If these suggestions reach you before you sail, but too late to be directly of use, they may put you on methods of reducing tho evil I have anticipated."

Whatever "weight" there may be in the auggestions of this correspondent, he is certaing entitled to the credit of originality, and it is to be hoped that in the laying of the next cable the engineers will have a proper regard for the concavity and convexity of the curve of the descending rope and the northward tendency of the Gulf Stream. But here is anothen and although not quite so clear as that already given, still it is a remarkable production:-
"Grntlamen-Permit me to suggest to your notice the fact, as time will prove, that you will never lay your electrio cable complete till you adopt very different means to those at present employed. When you find the broken cable you will find it broken at a knot, and many more knots may be found tied. This I consider to be self evident. There has been a hundred miles of the cable used beyond the actual distanoe laid-nearly two-thirds I compnte more than shown by the main depths of soundings. I can give an efficient method of how to lay safely, without strain, the cable in a direet line without any waste in angles, at a greater saving in cost. I will say no more at present in
justice to myself."

Every one who reads the foregoing will no doubt appreoiate the sense of justice by which the writer was actuated, although they may not clearly understand the "angle." diffioulty to which be allades.

Some of the letters were very olaborate, ;and began weully with
voluntear B are the ws of the
was in she sug. tte, which e soundhe wrong so that urve of the cona mnoh ion, and d curte y of the s of the he rates e them, pe, and u before methods
may
cessay on sonne subject that was supposed to have an intimate connection with th, enterprise. Of this character was one which gave some carious particulars concerning the habits of who s, and all of which was intended to show how much easier the cable could be laid by the plan proposed. Conspicuous among the applicants figured a elairvoyant, who expressed a strong desire to be employed by the compary for or proper consideration, in return tor whieh, she engaged in cases if break of continuity, to tell exactly in what part the break had occurred, and in the event of fracture of the eable, where the end could be fớund. All these disintercsted applicants, clairvoyants, inveutors and all, were summarily disposed of ; but not at all discouraged, they kept up their applications and correspondence to the end, and some even threatened to sue the company if they did not adopt their suggestions. It will be strange hereafter if some of them do not lay claim to the credit of having invented the machinery, and seek to deprive Mr. Everett of the fame to which he is so justly entitled.

Mr. Everett having signified his intention of complying with the request of the Atlantic Telegraph Company, associated with himself Messrs. Penn, Lloyd and Field, three English engineers of high reputation, with whom he conjointly made the following report :-

London, Skptsyber, 1857.
Gentlempn:-Having examined, agrieably to your request, the apparatus aud arrangements on board the Niagara for paying outhote Atlantie telegraph cable, and given the whole subject our carefulcypsideration, we beg to lay bchose you the conclusions at which we bavo arrived.

We consider the paying out shcayes require no alterations except those suggested by Mr. Bright in a memorandum which he was good enough to place in our hauds, a copy of aich we append, namely:-To hàve one groove only, in each of the shdaves, to make the gioove deoper and wider at the periphery, and fit them"with guards, tof tavent the cable coming off, to apply serapers for removing the tar fronf wre grooves, and to make the circumference of each successive sheave which the cable passes over as much larger than the preceding, one as the cable is found to stretch by the application of the increasing strain which it has to bedar ln passing round the several sheaves when it is being paid out with the maximum straiu, and thus greatly diminish, or perhaps entircly obviate, the slipping of the cable on all the sheaves. We may add, that we: seo no reason why this apparatus should not also be used for hauling in the cable when necessary, if sufficient engine power be provided for that purpose.

The most important vonsideration, however, to which we have directed our attention, is how to guard against the strain being brought. on tho cable while paying out, greater than it is considered capable of bearing without fiok of damage-that-is, having determined the max-

may, we think, be regulated with cousiderable exactnes, and the exeess, we venture to suggest, should not be less than one-third. This appears to be the only means of allowing the cable to sink into the hollows at the bottom of the sea, instead of hanging, as it might otherwise do in some places, in long loops, supported only at their cuds, and eonsequently having to. bear strains which, if not at first, might ultimately produce fractut when the strength of the iron wire became impaired by oxidationt. All the machinery should be covered by a kind of house on deck, to protect the attendants from the weather. It should be well lighted at night, end proper accommodation provided for the men when off duty. An adequate number of efficient attendants should be hired to superintend the machinery, who should relieve each other at short intervals, and the greatest care should be taken to kcep all the indicators and other instruments in good working order.

In concluxsion, we beg to say that we think no practical diffienlty would be found in carrying out all the mechanical arrangements we have suggested, and we also think that they should be carried out under tho special superintendence of the officer intrusted by the company with the important duty of laying the cable, assintid by the most able, practical machinist, who may be willing to undertake the execution of the work, who should make an experimentashore on the proposed brake as soon as one can be finished, and such other experiments as be may deem nocessary to enable him to arrange the details in the most effectual manner. We are, gentlemen, your very humble servants,
T. Lioud,

Josuva Field, Joun Pens,
W. E. Eteretr.

Alterations recommended to be made in the Paying-out Machinery.

The sheaves should have single grooves, decper than those at present fixed, and a slight differenceashould be made in the diameter of each sheave, the larget leaping off towhe stern of the vessel, and the smallest of the (wemver leading from theicoil. By this the adhesion of the cable to the sheaves will be contiderally increased.
a Guards should be plaeed at the lead to the sheaves over the grooves capable of being readily opened to put the eable in its position, orvake it out if required, and serapers should be provided to remove the super ${ }^{2}$ fluous tar.

Experiments should be tried in the lubrication of the brakes and of the material of the surfaces in egutact, with the view of ohtaining the most regular drag.

A travelling pulloy should be placed between the stern whecl and the payingout maehine, by which the requal pulbsecasioned by the pitching of the vessel will be such reduced, at the same time that an additio theto tion is given of the straiú upoñ the cable

Some of these suggestions were adopted by Mr. Everett, but, as may be seen by the deseription of the machinery employed on the final expedition, the plan adopted and followed ont was almost entirely different from that which had been used on the first ansuccessful attempt.

On the fifth of November, as has been stated, the Niagara left Ply. mouth for New York, but it was understood before her departure that Mr. Everett should tako charge of the construotion of the machinery, and for this purpose should retarn as early as possiblo the following year. A few days 'before the departure of the vessel at grand ball and entertainment was given by the officers to the many friends whose hospitality they had enjoyed while in England, and the officers themselves partook of a sumptuous banquet which Capt. Ștewart, of H. M. S. Impregnable, gave it their honor. Fifteen days after leaving Plymouth the Niagara arrived in New York, and soon after was put out of commission till she should be again required for the resumption of the great work in 1858.

THE SECOND ATLANTIC TELEGRAPH EXPEDITION．

the magara again atrplyaocth．

THE experience which had been gained by the results of the Expe－ dition of August，1857，led to many changes in the plan of operations for the expedition which was to sail in the month of Junc．The ma－ chinery，as has been shown，had proved utterly inadequate to the per－ formance of the work for which it was constructed，and it was therefore
 determined，as the reader is aware，that this important matter should be entrusted to the skill and ingenuity of Mr．W．E．Everett．The vessels which had been detailed for the laying of the cable before，were again detached for the renewal of the attempt．Mr：Field had accepted the position of General Manager of the Company at the urgent solicita－ tion of the Board of Directors，and the services of Mr．Everett were also secured on application for leave of absence to the United States Government．Both these gentlemen entered upon the duties before them with all the energy and zeal which so great a work demanded Some delay attended the application of Mr．Field for the appointmont of the Niagara；but that point satisfactorily settled，they，started for England in the Persia，on the 6th of January，1858，and arrived at Liverpool the 16 th of the same month．As the subsequent move－ ments of Mr．Field are given in detail in the biographical sketch of that gentleman，we will proceed at once in our narrative of the Second Atlantio Te＊erraph Expedition．

The 1 皘 rigate Niagara，having receivêd her complement of officers and men，started from New York for Plymonth on the 9 th of March， 1858．＂．As／somo changes had been made in the appointment of the former，the following list will enable the reader to recognize the names of those．who were re－appointed ： ．．

Capfan Wm．L．Hudson；Lientenants，Jas．H．North，J．D．Todd， John Gutht，Wm．A．Webb，E．Y．Mampley，B．Gherardi；Surgeon， D．S．Grén；Purser，J．CnEldridge；Tieptanant commanding Marine Guard，Wm．S．Boyd；Fassed Assistant－Surgeon，MI M．Gunnell； Assistant－Surgeon，Wm．C．Hay；Chief ngineopyt Follansbee，

* ant-Engineers, G. R. Johnson, M. Kellogg, Third Assistunt-Kngineers, Wm. A. Buehler, Jas. H. Bailey, J. McElwefl, II. Kutz; Captain's Secretary, J. W. Hudson; Purser's Clerk, Edwarl Willard; Boatswain, Robert Dixon; Gunner, J. Webber; Sailmaber, W'm. B. Fugit; Carpenter, H. P. Leslie ; Acting-Master's Maten, J. W. Göodrich, W. W. Brooke, Stephen B. Hudson, A. M. Mason, G. Keyworth, A. Stockholm. The Niagara arrived at Plymouth on the 23 d of March, after a passage of a little over thirteen days. She experienced very heavy weather during the greater part of the passage, and never did she display her sptendid qualities to better adpantage. From the 9 th to the 16th it was unpleasautly rough, and on the 13th, 14th, and 15th if blew a perfect gale. There is no doubt that this was the equinoctuand it did full justice to itself so far as heavy blowing is concerned. Those who haye crossed the Atlantio in the months of March and September can form some idea of the nature of equinoctial gales and of the terrifie force with wich they sweep over that ocean. Under tho heaviest stress of weather, however, the Niagara behaved magnificently, and went. through the storm at the rate of ten and cleven knots an hour, and this, too, while ether'ships were hove-to. Her quitckest dsy's run was three hundred and four miles, and there is no doubt that she would have accomplished fie passtye in ten days but for the head winds which prevailed from tho 17 th to the 22 d . During the gale she had the wind from thy south and south-east, from which it changed to the east, and stuck thepe whe most doged obstinaey, While blowing from this quarter we had, however, na complainta to rake in regard to the quality of the weather, which, with this onde exception, wis as fine as could be desired.

A rather melancholy circy tance oocurred when the ship was three days out from port. A satio mmel William Wilson, fell from the maintop and wasjinstantly kiffic It is supposed that he was struck on the head with a boom, and was thus thrown from the yard. He was engaged at the time in clewing the yard down. Another death took place later in the passage, but it was from a protraeted siekness. The name of the deceased was Samuel Scudder, and the disease of which he died pleurisy. They were both buried in a seaman's grave, and had the funeral service read over their remains. Poor fellows, whatever pleasing prospects they may have had when they entered on this special service *. Were doomed to a fearful disappointment. One man fell over the fore-topsail-yard, but fortunately was caught by another who was on the same yard, and held there till he was relieved from his perilons pexition.

The Niagara, as I have said, arrived in the channel opposite Plymouth on the night of the 22 d instant, and entered the Sound the following morning. Hardly had she anchored before a number of the officials of the place made their appearance on board, and among these, strange to say, two revenue officers. What their object could have been in thus thrusting himselvei on a national vessel of another country, and outraging the rules of iuternational courtesy it is impossible to say; but it is to be presumed that their conduct in this instance was attributable to ignoranoe-certainly the only reasonable explanation that can be given, for such a breach of all the rales of international etiquette. After making their abode on the "ship for about two days, they took their departure, and that.was the last we saw of them. The Niagara. lay in the Sound till the 24th instant, when she weighed anchor and proceeded up the harbor, preparatory to going into dock for the reception of the cable. After her arrival the numerous friends which the "officers made during their stay here the year before, paid a welcome visit, and again teadered their hospitalities. Invitations were extended by nearly all the regiments stationed at this port to tho ${ }^{\circ}$ off of the Niagara. I should state here that as an evidence of the friendly feelings which were manifested towards them, all, or nearly all the vessels lying in the harbor oheeted them as the ship passed up to her anchorage. The rigging of the Impregnable and other vessels were manned by their crews, who gave three cheers that waked all the slumbering echoes of the surrounding hills. The welcpme was responded to with an enthusiasm on the part of the Niagara) mmen which proved that they were determined not to be outchnod this demonstration of friendly feeling.

Besides the attentions which the officers received from their friends, they were honcred with others of the most pressing character. The wardroom was slmost literally deluged with cironlars and business cards of eveny description. Tailors, shoemakers, washerwomen, hotel keepers, latters, \&cc., \&cc., were most assiduous in their attentions and solicitations for patronage. Among the business applications was the following gem, which is worthy of publication on this side of the ocean:
" Mr. Wm. H. Weatcott (pupil of Conlon and nephew of Mrs. Williams, the Octagon), professor of dancing, Princess street, Plymouth, teacher for the nobilities' balls, \&cc., begs to announce to the officers of the army and navy, and bis friends generally, that he continues to receive daily adults, irrespective of age, for private tuition in all that is prevailing among the elite."

As our readers might imagine that Mrs. Williams is the octagon, it.
may be as well to state that she is nothing of the kind, but that the particular part of the city in whieh her nephew receives "daily adults," and teaohes "all that is prevailing among the elite," is dignified with that title.

It was rumored that the Queen intended to witness tho departure of the telegraph squadron from Plymouth, but as there was no certainty about the matter, and as many of us naturally felt desirous of aeeing for vurselves what the head of so great a nation looked like, a nation that was to be brought next. door to ns by the successful termination of the enterprise in which we were engaged, we were determined to go to London and see her, not only in her capital, but in her palace. We were desirous of seeing a real, genuine, bona-fide queen, one who wore a crown, for though we were accustomed every day to see sovereigns in our own country, they were without that indispensable adjunct of royalty.

To come to England and go away without having seen the qucen is indeed a terrible oversight, a crime, for the commission of which every traveller from the United States must expect to meet with the stern eensure of all those curious and wonder-loving friends who expect to be informed on the minutest points. Fortunately, I have seen the queen, and although I was not at her drawing-room; nor honored with an introduction by our minister-for the simple reason that the favor was not requested of him-I had just as fair an opportunity as those who were, and who were graoiously permitted to bend the knee before the royal lady, and to kiss her royal hand. By the kindness of a friend I was placed in possession of the following tickot of admission to Buckingham Palace, through the grand hall of which the Queen always passes on her way to hold her drawing-rooms in St. Janes's:

Provided with this, I started out at least half an hour before the appointed time, and made my way to the palace, in front of which I arrived about one o'elock. The next point was to makenont the preciso
at the lults," 1 with re of tainty ng for that of the Lon3 were rore a ns in et of is in-ravelansure ormed , and roduc-

```
        | not
```

 were,
 royal
 I was
 igham
 es on
part of that building to which it would ford me admission, and which I sueceeded in finding by inquiries among the soldiers and police. Tho ontrance to the hall was besieged by somewhat over a hundred anxious expectants, a large majority of whom were ladies, and each of whom possessed a ticket similar to the above. Few, if any, of theso had over seen the Queen before, and it was somewhat amusing to hear the speculations in which they passed the time, regarding her personal appearance and stylo of dress. Some had heard that she was dunmpy, and not at all like a queen; whilo others were of opinion that her portraits, so far from being flattering, did not do her any thing liko justice. There was one who did not appear to be imbued with the proper respect for royalty, and who insisted with a democratio persistence that would not be cheeked, that the Queen was-jnst like any other woman, and that she could indulge in a glass of ale as well as the next one. A lady, who happened to hear tho romark, and who was standing beside the speaker, manifested considerable indignation, and gave a look that expressed, as plainly as a look could, that the aforessid speaker was "very low." Now, "whether she was indignant at the want of reverence manifested by the remark, or whether she supposed she was meant by the "next one," I am unable to say, and will not, therefore, venture an opinion on the subjeet; but it is a fact that she was very indignant.

A quarter-past one was the hour specified in the tieket of admission, but it was nearly half-past one when the door of the grand hall was thrown open-a faet which shows plainly that they have not a very particolar regard for punetuality in a palace. However, the door was opened at last, and that was something. Two of the officials of the Queen's household took the tiekets, and wo were permitted to enter the palaee, the majority of us perhaps for the first time. We had to pass through two halls before coming to that which is called, by way of preeminence, the grand and, and is certainly worthy of the title. All that marble and statuary apd mirrors and fresoo painting, under the hands of ingenious archifects and artists could do to make it magnifi-, cent, has been done. .The only drawback, perhaps, is the insufficienoy of light, and this want divests it of half its beauties. The palace itself is a splendid structure, and is deserving of all that is said for it in the guide books of London.

But here we are in the grand hall, with servants in knee breeches and red coats glittering in all the effulgence of gold lace, hovering about. Among these same servants is a very dignified old fellow in a blue coat with brass buttons, a white neck-tie, and a waistcoas of the same color-a terribly pompous individual, who holds his head so high that it is only hy great excrtion he can see any one near him. This
character is no less a persionage than the master of the outside ceremonies, which signifies that it is his duty to keep the crowd in order, and to preserve the sanctified decorum of the place. Show the slightest indication of a desire to go any further than the prescribed limits, and to use a homely but expressive phrase, he will come down non yon like a " thousand of brick." He is a rough customer-so rough that it is a wonder somebody don't put him in mind of it by an occasional castigation. His treatment of ladies is any thing but courteous; and the exhibition he made of himself on the day in question, was not of that kind which one would expect to see within the walls of a palace. But perhaps such exhibitions aro only got up for the benefit and instruction of plebeians, and are never indulged in when any of the aristocracy are in his immediate neighborhood. Ho is, however, an "efficient charaoter in his place, and it may be after all that this roughness only arises from his strong desire to perform his duty to the utmost. Bnt however striet he may be in this particular, the claims of friendship lead him into aots of partiality, which show that be is not altogether a Brutas in his line. His fyiends and favorites eame in for the best seats, and those who were strangers, and who, ignorant of the state of affairs in this department of the palace, imagined that they were open to all alike, were very soon apprised"that presumption of that kind was not to be tolerated.
"What are you going to do there ?" he said to three ladies who were about to take a sent where thay would have a better view of the Queen. "What aro you going to do there P "i"
"Going to sit down," was the very natural reply.
" Well," said the old follow, "that's a good idea."
The lady smiled as if she thought it was, and the official frówned as if he didn't at all believe what he said.
"Come back here! Who told you to go there?" he rejoined in V tone that wàs not to be mistaken.
"Nobody, " replied the lady' in a mollifying miny ;" "but I sapposed, seeing others go, I might do the samo."
"Ah! indeed, " ho answered. "Did you? :Well, I am afraid yon can't. . That's quite another thing. You can't sit there." \$

And so the three were, obliged "to stand aside, that his favorites might be accommodated. Now, it may have been all vy well for him to show more partiality to his friends than to strangers, hat his way of doing it was not exactly in accordance with good taste or a meffict regard' for the feelings of others.

The spectators have taken their places in front of 1 , ${ }^{3}$. dd staircase down which the Queen in expected to come, and asthe the passes they beoome more and more anixious. "At last the royil garriages are"
seen approaching through the court-yard, and one of them draws up opposite the door whiels opens on the grand hall, ready to reeeive the sovereign. It is a fine establishment in its way, with plenty of gold fringe, and royal coats of arms, and sniall erowns and other regal appurtenances. A number of the household servants, almost covered with gold lace, now make their appearance, and tlourish around the hall through which the ladies of the court are continually passing, on their way to St. James's. Some of these ladies, by the way, are renarkably handsome, and all are dressed in the most elaborate style of ornamentation. They have evidontly a great contempt for high-neeked dresses, if their foolings are to be judged by the excessive lowness to which they have attained: Their crinolines are wonders in their way, and exeited the eavying adnuiration of the fair spectators. But the Queen is aid to he on her way, and all eyes are strained to eatch a glimpse of her. Pshaw ! it is not her, after all. It is merely a gouty ohd lord, who is making his way slowly down the grand stairease, and who has been mistaken as one of the avant courier's of her Majesty. Five minutes more clapse, und the, eqrowd is becoming atill mare impatient. Now, however, she is certainly coming-no mistake this time--liere is a forerunuer whose particular duty it is topprepare the way for her approach, and here are six gentlemen, some of them with stars or their breasts-ithe sign which indieates the difference between a lord, a marquis, or any other member of the aristocraey, and a common man-here are six of them eoming down the grand stairs, and aecording to the rule thade and provided in such eases the Queen must soon make lier appearance, A_{8} the forerumer and the six just refarred to, who and dressed in something that looks like a military costurue, s. ow themelves, the laokeys at the foot of the stairs and in the hall become wonderfully aetive, and say something in a loud voice which soands like the words "stand up," and which, it is to be presumed, is intended for the spectators. However, I am not certain as to the words, and will not, therefore, certify to them, no 缊ore than I would to the announcement made by the braketnen on railroads,' when they intend to inform the passengers that they have "arrived at a particular station; but I do know this-and the fact may be taken as presumptive evidenes en this point - that the spectiators did "stand up,". aud remained standing till sle passed. The six mar" quises, or lords, or sirs, or whatever they are, have arrived safely at the foot of thostairs, and the Queen, leauing on the urm"on Prince Albert, appears on the landing above - There she is at last, the ruler of the English people, the sovereign of theat Britain, and of cqlonial posses. "sions whoge extent execeds thatiferritories of any other nation in the world. There she is, a low-sized, and so far as you ean judgo of har
figure, enveloped in a crinoline that Broadway in its most refulgent days never equalled, and probably never will be able to equal, a dumpy, roundabout little woman, in whose appearance, in whose walk, and in the expression of whose face there is about as little of what some call the attributes of royalty, as it is possible to conceive. To say that her portraits flatter ber is dowaright absurdity-they don't flatter her at all -they have made a good-looking woman and written "Qucen Victoria ψ below it, so that those' who have seen her may not be mistaken in regard to who it is intended for. Now, in giving a true description, I wish to be historically accurate, although at the same time I'm in hopes that the royal lady; if she ever reads an American book, may not come across the volume in which this aceount is published. Keeping strictly, therefore, to historical accuracy, let mesay, in the first place; that tho stature of the Qucen is considerably below the medium, that her faco is so decidedly not handsome that it may be considered positively ordinary. To offet, this, bowever, it is said that it is particularly pleasing when she smiles, while on the other hand, when she is determined to be unpleasant, the expression it assumes is of the most unprepossessing character. On this head I do not profess to be in possession of the most reliable information, as it is obtained altogether from hearsay. In describing the Queen's personal appearance, my desire is merely to present her to iny readers as she looked to nie, and I must not, therefore, be accused of writing with a prejudiced mind. The fact is, those who have written about her have been so far under the influcnce of partiality or projudice that it would be unsafe to give credit to all they say. But, to continue: Her dress-in regard to whioh I must confess my utter ignorance of the details, and must, therefore, be excused for attempting any thing like a description-was white silk or moire antique, whichever the ladies pleaso; but which it is only fair to suppose was of the richest, the best and the most appropriate material. It terminated in a grand train, which was upheld by two pages, bright-looking little fellows, about twelve years old. On her arrival at the foot of the stairs, she released herself from the arm of the Prince Consort, and relieving tho pages fron the train, took it up and threw it over her right arm. As she passed the spectators, she acknowledgod their presence with a most gracious smile, one in which there was much kindncss of feeling and goodness of heart exprossed, whatover may be said to the contrary. All her "dumpiness" and waut of beauty oould not offace this, and you felt in looking at her that you were looking at a woman upon whon the vices of the Cout had not and could not make any impros. sion. Whatever ebullitions of feelings she may, as it if stated she does, sometimes exhibit, the fact that she is one of the most virtuous women
refulgent a dumpy, , and in ome call that her ter at all ictoria 4 regard wish to that the e across strictly, hat the face is dinary. ghen be un5 char${ }^{3}$ most In de. oresent there, thonse ace of y sáy. 38 my or alat tique, as of ted in little f the d reright sence ss of the fface man
ros.
that ever sat upon a throne cannot be denied. In fact, it is this leading point in her charaeter that has gained her the affection of her people; for virtue in royalty is so rare a thing that it can never be tho bighly prized. The Court of Queen Victoria is in striking contrass with the courts of many of those who have sat on the same throne which sho now occupies. In this regard she is is most excmplary ayeman, and to this is owing the title by which ber people delight to call her. It if particularly pleasing to be able to speak in this way of any woman, and to have it in one's power to state a fact that no want of persomal beauty can affeet, and that camot be compensated for by any amount of attraction. While on this suhject, let, ine relate a little aneedote which I have leard here regarding the Queen, and which is suid to be perfectly true. It appears that during one of ber visits te her country seat on the Isle of Wight, tho. Prinee of 'Wales got into a difficulty, which resulted in his being whipped by a little fellow less than his own age. His assailant was amusing himself in loading a miniature cart with sund, when the Prinee approaehing threatened to kick it over.
"Do it," said the boy, " and it 'll be worsied for ygu."
True to his nurd, and undeterred by the threat, the seion of royalty did upset it with his foot; and true also to hif promise, the boy did make it worse for him. The overthrow of the caft was the signal for a fight, in which the Prinoe eame off second best, and was spot home with tears in his eyes. When brought before the Qupen, however, he told whit had aetpally happened, what he had done to provoke the boy and to bring on his own punishmeut. Tho royal mother thereupon sent for the little fellow, who, finding out the full extent of what he had dome, was terribly frightened. When he mado his appearance, howevcr, sho spoke to him kiadly, said he had done right, and magnanimonsly providerd for his uducation and support at her own expeuse, on disenvering that his pareats were in poor cireunstances. A woman who could do such an act can well afford to be ordinary.

Prince Albert, who was dressed in military costume, is a tall and good-looking man. He is bald-from the top of the forehead to uear the crown uf the head. His face is so German, that it would be impossible to mistake his nationality; in fact, both himself and the Queen look note t German than English. She of course entexed the carriage ${ }^{\circ}$ first, and when she had succeeded in adjusting her dress as well as she could, bez took a seat beslde her. But that dress, with sueh an amount of rebel. lious uprising orinoline beneath, would not be put lown; and"would surge and boil ovepton every side so as to completely euretope the lower half of the body of the Prince, leaving the upper part alone visible, like a wax-work bust in a barber's bloo. When they were botic seated, the

THE OCFAN TELEGRAPH.

royal carriage drove off, ind the last we saw of the Queen, she was en-* gaged in vain endeavors to suppress the swelling and rebellipus crinoline. I. would like to have seen her at the drawing-room; bit the fact that I was not prepared with a court dress proved an insuperable bar to the indulgence of my desire.

Complying wish the directions in the card of admission, the speetators left the palace, and once more made their way into the open stroet opposite the park. Here there was a considerable military foree, the plands uttached to which wete performing the national anthem. A long line of carriages-over a thousand, I was informed-were drawn up on one sidf, and almost blocked up a number of the contiguous streets. Among thene were those of the Marshal Pelissier, the Ministers of Austria, Prussia and other European nations, and the carriage of Mr. Dallas, our Minister at the Court of St. James. I regretted that my presence in the grand hall rendered it impossible io see the occupants of any of these establishments, and particularly do I regret my consequent inability to have seen Mr. Dallas; but if I had seen him, I could not have seeu the Queen, and therein I must find whatever consolation I can. If I did not see him, however, I saw his carriage, as I have intimated, and that was something; and as people may be curious to know what kind of a carriage it is, they must be informed. Let me say, then, at the beginning, that it is so simple and unpretending; that there is really very little to be said about it. It is such a vohicle as you can see any day in Broadway, with a pair of fine horses attiohed to ith a driver in. livery in that position where a driver generally sits, and a footman in that particular spot, whero footinen have generally stood. The footman is also in livery, with arr Anerican eaglo on every button, and both himself and the driver have their hats set off with a gold band and a cockade, or rosette, formed of the Aneriean colors. On the carriage doors are the armis of the United States, and, altogether, the vehicle is quite a reapectable affair, simple and unpretending. And here I must close the account of my visit to Buckingham Palace, again expressing my regret that I had not seen. Mr. Dallas, and was not provided with an opportunity of knowing whether he was habited in the early ropublican stghe of old Hen Franklio, or in the modern costune not set forth in the Court circular of the late Mr. Marey.

Among the crowds of titled fashionables whe visited the Niagara previous to her departure from Hingland on the seoond telegraph expedition, were the membors offa family whieh, but a few' yoars kgo, were at the head of cho the grafost nations of the world.

Their hintory is one of the most, remarkable on record," and furnisho, auother proof of the furt that there is no station in life freo from
e was gncrinoline. act that I ar to the

e specta-

ien street

 orce, the A long pn np os streets. Austria, dlas, our sence in f any of uent innot have n I can. timated, w what then, at \& really see any river in man in botman th him. cock A doors 8 quite t close my rean opblican in thethose vicissitudes to which royalty and poverty are alike subject. These illustriourpisitora.were the Prince de Joinville, the Due d'Aumale, the Duchesse d'Orleans, and the Duchessu d'Aumale, the exiled members of the Orleans family, and the rival aspirants with the B urbuns to the throne of France. Ttopy came unheralded and in the most unostentations manner, and during their stay visited ovory part of the ship. The Pance de Joinville, whe is au fait in naval matters, is a man forty-three or forty-four fears old, about six feet two, with a frank and intelligent countenance. He wears a heavy pair of whiskers and mustache of a light brown color, dressea plainly and neatly, and his pearance, and manners are those of a refined and courteous gentleman.

The Prince de Joinville is, as almost everybody knows, quite a sailor, and startled all England by a pamphlet which he wrote some years ago showing the defenceless state of ber coasts, and the ease with which an enemy could bo thrown upon hor shores. He inspected every part of the ship, under the guidance of Jieut. Guest, who was at the time the senior officer on board. The engine room attracted hin greatest attention, and the minuteness with which he examined into all the dotails-the throttles, the cut-off, and all those mysterions parts, which are known only to the initiated-shotved that he was thoroughly eonversant with the whole subject. The model of the ship particularly ex. cited his udmiration, and he was much pleased with her general appearance. He uppeared to be thoroughly posted in regard to the particular duty on which she wus detailed, and expressed his opinina prefty freely upon the nature and character of the cuterprise.. It was hin belief that tho eable phould lie lighter than it is, and that the outer covering or. wire armor should be dispensed fith: The stcength which it reoelved from this was, according to bis ideas, nop sufficient to compensate fur: the disadvantage arising from the greatly inereased weight. He acknowledged that, by makiog the line without the wire armor it gight become too buoyant; but he thought this dificulty might be renovel by attaching some solnble material to it sufficiently heary to sink it to the botwon, where tho cable wonld remain even after the material itself should linve been removed by the aotion of the water. the Prince had more tif ny on all subjects than any other of the party.

The Due d'Aumale appears to be srome four or five yeare tiw junior" of the Prince de Joinville, and does not uven look sufficiently like hin to be of the game famlly. His hair is of a light red color, soly are his Whiskors, and he is less in statare by about three inches. "Both brothers speak English with an unnistakably French aćcent, but, wel this excoption, they speak it well and fluently.

The ladies ano both olegant nod distingué looking, ngther above than
below the medium height, and are very unassuming and courteons in their manners. They are all free from that hauteur and reserve which are supposed to be the peculiar attribute of royalty, and are as cordial, as frank, and as sociable as the most unpretending republican could be. On leaving the ship they expressed themselves much preased with all they had seen, thanked. Mr. Guest again and again for his kindness, shook him warmly by the hand at parting, and expressed their hope in the success of the experition.

INSPECTION OF THE PAYING-OCT MACHNE.

In the factory of Messrs. Easton \& Anoin, Gravel Lane, London, Mri. Everett was daily gnd nightly engaged in attending to the construc. tio: of the paying-out machinery; and when at last after weeks of un- " remitting labor it was ready for inspection, invitations were sent to the following gentlemen: Captain Hudson, of the Niagara; Capt. Gebrgo W. Preedy, of the Aganemuon; Cap. J. Dayman, of the Gorgon; Mr. Joshua Follansbee, Chief Fingineer of the Niagara; Mr. Faron, (hinef Pagincer, and Mr. MeEllwell, Assistant Engincer of do; Mr Hoare, Chief Eno gineer of the Agamemnon; Mr. Moure, Assistant Eingineer of do; Mr. Morris, Mr. Samuel Canning, H. Clifford, HI Woodhouse, Mr. Brunel, J. S. Gilliatt, Rev. W. Mitchell, Messrs. C. \& J. Johnson, Mr. J. Bower, Capt. Nolloth, R. N., Mr. C. W. Tafting, Mr. Kiddle, Mr. E. Stephenson, Mr. W. Brown, M. F' ; Prof. Thompson, Mr. Gurney, M. P.; Rev. G. C. Schwabe, Mr. Pickering, Mr. Pender, Mr. Peabody, Mr. Logie, Mr. Le Bretod, Messrs. Lampson, Johnston, Hornby, Harrison and Dugdale.
'The majority of these gentlemen were presint, and among them Mr. Bronel, who has gained such a world-wide reputation as an engineer, and whe is one of the greatest seientifie men of the day. Mr. Brunel is the son of tho constructor of tho Thames Tunnel, and is the architect of that eighth wonder of the world, tho Leviathan. He is about forty years of age, of a plain, goed-natured and most propossessing exterior, Like all true men of genius, Mr. Brunel is a modest and anassuming man, and is what might be called the beauideal of a mechanic. Among the convogatiou of scientifie men who assembled yesterday to exmaine and pass their verdict opon the machinery, he was the least conspienous in personal appeaŕance, and certainly the very last who would have been selected as the great English engineer. Ho was accompanied, by his son, a perfect fac simile of himsolf, having, how. ever, the advantago of being a couple of inches taller. The two wero the most demoeratio in their manner, in their dress, and in their general appearance, of thoso present. Mr. Everett explained the prinuiples
and details of the machine to them both, after whieh tho father and son had a little quiet tour of inspeetion to themselves. Mr. Bzunel expressed himself much pleased with the whole affair, aud was confident of its successful operation. The machine was running during the whole day, and necomplished all that swas rlaimed for it. An iflustrated and detailed description of it is givel, further on in this work. - \&

The following letters were subsequently reccived from the gentlemen whose signatures are appeñded:

London, April 23, 1858.
George Saward, Esq., Sec. of Atlantic Telegraph Co.
Sir-I beg to say that I have attended at the works of Messrs. Easton \& Amos every day during the construction of the new paying: out maehinery, and saw it working on Thursday last. It is, in my opinion, well adapted to the intended purpose, and I have nothing to suggest that could render it more perfeet. I am, dear sir, y'our most obedient,

HENRY CLIFFORD.

 with Mr. Everett, of the 6th inst., in regard to the paying-out machinery and the result of the experiments relating thercto, a complete machine had been crected at the works of Messrs. Easton \& Amos. The trials which have been made with this during the last few days have been perfectly satisfactory', and I have nothing further tosuggest as an addition to, or an alteration in, the maehinery, unless the experiments at sea should give rise to any modifications of our appliances prior to the departure of the actual expedition I am, gentlemen, yours very faithfully,CHARLES T. BRIGHT, Engineer.
While Mr. Everett was engaged in the construction of his machinery, Prof.,Hughes was experimenting with his printing telegraph, on the whole length of the eable, while it was being eoiled on the Niagara and Agamemnon. His instrument was not as perfectiy adjusted as ho desired, but he accomplished enough to show that it was the best adapted to the working of the cable, and with a few modifications, could be made to transmit from scyen to ten words a minute nuder the most favorable electrical conditions of the line.

Every preparation was made to hasten the departure of the Telegraph Squadron on the trial trip, which it was decided should take place in_{n} the Bay of Biscay, and by the 29th of May the vessels were ready to sail. Before, however, describing their operations there, we will lay before our readers a detailed description of the vesaels composing the quadron, the mechanical and other arrangements which had been made for the great work, and all that is necessary to a proper understanding of the subject.

THE TELEGRAPH SQUXDRON.

The vessels composing the Squadron were the U. S. frigate Niagara, H. M. steamers Agamemnon, Gorgpn, Valorous, and Porcupine As a description of the Niagara has been given in the narrative of the first expedition, it is merely necessary to mention her name.

The Agamemnon is one of the best line-of-battle ships in the Brit $\$$ Napy. Her dimensions are as follows: Length between perpendiculat. 230 feet; breadth of beam, 551, and dopth of hold $24 \frac{1}{2}$ feet. The oapacity of the ship is 3,102 tons, and ber enginen, of which she has two; are both 600 horse power. Her force at present numbers about 450 , but her full complement, when on a war footing, is over 600. Her full armament consists of 91 guns, of which 84 are 8 inch shell guns on ber
lower deek, 14 on her spar deek, 32 pounders, and 36 on her main deek are also 8 inch. In addition to those, she carries on the forceastle six 32 pounders, nad one heavy gun of 0,550 pounds, for throwing 8 inch solid shot. All the gunṣ are made for firing shells. ©The Agamemnon was gauriched at Woolwich in the year 1852, and is said to be one of the fastest of the serew vessels of the British fleet. Her engines are kuown as the trunk; ; ith horizontal cylindere, and their nominal horse power is capable of being worked up to 1,800 . The motive force is supplied by four tubular boilers, which are made to resist a fressure of 17° younds to the square inch. There are fire furnaces under each of these, and the whole machinery is two and a half feet below the water line. The boilers, in addition to this, are protected from shot by the coal bunkers. As the engines and frerooms are nearer than usual to the stefii, it aceounts for the shortness of the shaft, which is sixty feet less than that of the Niagara. Its diameter is thirteen inches, and length forty feet, while the propeller is about eighteen feet in diameter, with a pitch of wenty feet six inches. Its weight is eight tons, exclusive of the gearing, and it is made of a composition called gun'metal. The number of revolutions at the highest speed is fifty-four to the minute, ind rate with is. consumption of fifty tons of coal a day frongine to ten miles per heur.

The Agamemnon was Sir Fl. (now Lord) Lyly's flag ship, and took a "part in the assault on Sebastopol on the 17 th of October, 1855, from which she retifed considerably damaged. On thiat ociasion she approached within seven or eight hundred yards of the place, from which she retired with threo or four of her ports knocked into one, several of her spars splintered, and with considerable other damage. To fit her for the work in which she is now employled, all her guns have been removed, and she has had frigate masts put in her. The, following is a correct list of her officers, those with the asterisk prefixed having served on the last expedition: Captain, George W. Preedy; lieutenantal E. H. Murray, Hon. F. Fitzmaurice, F.C.'T. Robinson, R. Gibsomi' master, H. A. Moriarty; paymaster, John N. De Vries; 'engineer; すdates Brffun; assistant engineers, John Brown, W. B. Harvey, Edwin Pearce, Samuel Clements, William Smily, John Heffernan; surgeon, William D. Kerr ; ussistant surgeon, "W. W. P. Smyth; clerk, F. A. Pountncy; carpenter, R. Rian; gunner, E. Snell; boatswain, Richard Farrell.

The Gorgon is one of the oldeat on wers in the British pavy, having. beon built some nineteen or twentary Sago. She is a comparatively smah vessel, but at the time she w. dongryacted she wss regarded as one of the largest veseelalin the whate tigligh flect, and as a wonderful specimen of naval architfecture in her wate. Her measurement is 1,111 tons, her armament six gans, which the captes on. her spar deek; and
her eugines arc 320 horse power. She accompanied the Niagara as an escort in the place of the United States stam frigate Suspuchanna, which was in the last expedition, but which was prevented from accompanying thís on account of the yellow fever having breken out on board of her while in the West Indies. The following is a list of the officers of the Gorgon: Commander, Joseph Dayman; senior licutenant, J. B. Michell; lieutenant, J. B. Butler; master and pilot, C. Albert; paymaster, A. F. M. Roberts; surgeon, H. Gimlette; chief engineer R. E., Horne ; clerk, Charles Wm. King; Grst assistant eagineer, W. Pilcher; second assistant engimeer, J. Spinks; third assistant engineer, P. Richmond; beatswain, II. Blake ; carpenter, John Harens; gunner, B. Howe; third assistants, R. Dillon, P. Baldwin.

The surveying steamer Porcupine is one of tho -smallest class of steamers in the English navy, and was built in 1844 for surveying pur09. Wer engines are 132 borse power, and her measurement is 382 he will also accompany the Niagara as a leading vessel to steer
the Gorgon will be employed when necessary only in towing, foll in the event of any accident happening to the Niagara. The followigg is a list of the Porcupine's officers: Captain, Henry C. Otter; lieutenants, Albert Dent, Edward W. Hawes; master, William Stanton; surgeon;- Francis McAree; sceond master, George Stanleg; assistant paymaster in charge, Edmund B. Walker.

The stcamship Valorous took tho place of the Leopard, which accompanied the Agamemnon on the expedition of 1857 as her escort. She is reputed to be one of the finest side wheel steamers in the British navy, and carries an armament of sixteen guns. Her horso power is 400, her measurement 1,250 tons, and her full complement 220 offieers and men. The following is a list of her officers: Captain, Wm. C. Aldham; lieutenants, R. Moore, G. S. Key, Hon. J. S. Fitzmaurice; master, S. Braddon; surgeon, A. Murray; paymaster, W. M. Shanks; chaplain and naval instructor, Rev. D. J. Boutflower; assistant surgeon, P. B. Mansfield; mates, Hon. E. L. Y. Mostyn, W. H. Ryde, C. P. Heaslop; lieutenant, Rd. Willianson; assistant engineers, W. Farquharson, J. Broach, J. Scott, H. Walker, Robt. Gilehrist.

THE ENGINEERING AND ELEOTRICAL CORPS

The organization of this department on board both tho cable ships was much better than it was in 1857, so that there could be no complaint in regard to its effectivoness, and the watches wers arrangod in such a manner that the machine need not at any time be left withont proper attention. "In addition to Mr. Everett and Mr. Woodhouse, there were Mr.
yara as an na, which mpanying od of her arg of the J. B. rt; payer R. E., Pilcher; P. RichHowe; class of ng purt is 382 to steer towing,' 2. The Otter; tanton; ssistant
lich aeescort. British wer is officers m. \mathbf{C}. urice ; anks rgeon, C. P. Far-

Joshun Follanabee, the chief enginecr of the ship, Mr. M. Kellogg, and Mr. McEllwell, assistant engineers, all of whome kept watch. This made ${ }^{\circ}$. a force of enginecra for this particular duty al Captain Kell had special charge of the coil, which he shared wina Mr. Goodrich, master's mate, Mr. Fugitt, wailmaker, and Mr. Webber, the gamer of the Niagara.

On the Agamemnon wore Mr. Amos, Mr. Cliffori, Mr. Caming, and Mr. Bright, who were assisted by Mr. Hoaro and Mr. Mooro-two of the ongineers of tho Agameminon. Mr. Amos did not go out on the expedition. The following is the numcrical force of the staff en board both ships:

$$
\begin{aligned}
& \text { Engineers and assistants on Niagara, } \\
& \text { Engineers and assistants on Agamelnnon, }
\end{aligned}
$$

The electrical department was composed of the electricians, the operators and the splicers. Mr. De Sauty and Mr. Laws had the elcetrical force on the Niagara under their charge, while that on the Agamemnon was directed by Dr. Thompson and Mr. Bartholomow. The following talle gives) the number in each branch of the electrical departments on board both ships:

- the coiling process industrated.

As a great deal of importance is properly attached to the process of coiling, there is no part of the work which receives more care and attention, and which demands the exerciso of a larger degree of vigilance. Some idea of it may be formed when it is known that every mile, every yard, every foot of tho cable is laid down with as much precision, as much regularity, and as much neatDess, as thread is wound upon a spool. The way the work of coiling is performed is exhibited in the following drawing, which was made on board the Niagara, and which presents an accurate and life-like representation of the seene.

Here the coilers are represented at work, while the manner in whieh the cable is drawn on board is also shown. The coiling is commenoed

A A A-The cable pajarin B-Prasage ontalde of the cable O-Roller over whith the cable peneen. three to four miles in length, accoraing ing to the diameter of the circus, its height. On the Niagare a from one to two hnudred, according to coilers was organized, and these force of one hundred and twenty cable gang for the forward and the were divided into two equal gange-one sixty is next subdivided into twer for the after coils. Each gang of four hours. By this arranger watches, who relieve each other every one coil, and of these one or two is eng men are employed at a time on inboard over the rollers or two is engaged on deck hauling the cable way immediately ease into the oircus belo cones, so that it is drawn with the greatest men on deok, it is below. As it is thus transpaid down by the cable paying out a portion to by another who runs around the circle with it, and who pack it as close as possible. The a by whom he is eiricircled, with which it is covered as a protection against the rust adds to its floxibility, and helps to keep it in its place when once laid. Hech flake is as it were glued together, but not so firmly as to prevent its uncoiling without difficulty, when the prooess of paying ont has commenced. The effect is rather bencfioisl than otherwise, as there is no danger on account of this adhesiveness of its being uncoiled faster than it is row out over the ship's stern, and consequently less liability to kinking. Under eaeh flake are placed thin lath-like boards, at intervals of seven or eight feet apart, to prevent the possibility of one firke sinking through the interstices of the coil, and becoming confounded with the one immediately below.

Every precaytign, sat has been utated, is taken to secure the propor performange *this part of the work. Each gang of coilers has a foroman, and enoh foreman an aspietant. The foreman inspeets eich layer
f the oircone, tchem nemirer ach round ae is finally firit flake voeds flake d-that is, - near the posesiblespace be. te coil and nsuffioient unce of the ares from he oirous, ording to aty oable nga-one ${ }^{\mathrm{h}}$ gang of her every time on the cable te hatch. greatest be cable with it, iciroled, tho tar 8 to its ch flake acoiling

The nmedi.
of fakces, while the assistant follows close apon the heels of the payer, and sees that the men pack the cable closely. The payer himself is one of the coilers, each coiler taking his turn of hauling down and trotting round the circus every twenty minates or balf an hour, by which time it is eupposed his arms will be pretty well tired. From two to two miles and a half of cable is coiled in an hour, and from fifty to sixty miles, when the men are obliged to work night and day. The kneeling position in which the coilers are placed would seep to indicate that they are engaged in devotional exercises, but they are supposed to be resting just at this particular time, having been seated for some two hours before they changed their posture. Each operative is provided with a seat of the most primitive description-sometimes a plain block of wood hollowed at the top so as to form a fitting receptacle for that part of the corporeal aystem which is to be deposited thereon. Others are less primitive, and occasionally assume the form of a stool of the most lowly dimensions, that the coiler may not be obliged to stoop too much. But-after all, there is very little stooping, as eaoh man is obliged to bend but onoe every time the payer goes round the circus. The work is not therefore very heary, and the coilers make it more a labor of pleasure than any thing else: They are dressed in a regular uniform of duck, which is in glaring contrast with the tarred cable, the frequent contact with which does not tend to improve its color. As their hands are not exaotly in that atate of cleanliness in which a man would sit down to dinner, and as the tar makes them somewhat sticky, they are supplied with oil to lubriaste tham aboat once every two hours.

Those same cable coilers were wonderful fellows-as "wonderfal indeed as those who performed the work last year while the Niagara lay in the Mersey, and are therefore as deserving of as mach attention. The cable circles, too, were the scenes of performances as interesting mas extroordinary, and as amusing as before. I know there are sceptics who will mpear at such an assertion, and who imagine that where there is no moch tar there can be little or no sociall enjoyment; bat they are Jike all other anbelievers-they have no heart or sonl for any thing, and That other men would find pleasure in has no alluremont or interest for them, but is a dull, mnmeaning blank. So maoh for the sceptios, and now for the sighte and acenee among the cable men.
ght The wardropm circus if pitueted on the main or berth deck, and is generally an objegt of the greateat interest to visitors. On either side of it is a narrow pamage, which was formed by ontting off about one-half of the offioers' rooms The privery of both these mimiatore apart ments is mecured by meant of a canves wall, behind which, as behind a Antage ourtaig, all thooe changen in the personal appearance of the oceu-
pant are affected which transforms the nataral into the civilized man.
Here he maken his toilet, and here, in this little room-seven by ten- he has his library of half a dozen volumes, his wardrobe, and all the other etoeteras which make up the domestic part of an officer's world on shipboard. It requires no urdinary amoant of genius to economize the little space in which he is cooped, and when nearly one-half the room is cut away, he is a prodigy indeed who can succesafully manage with the other half.'

Every morning abont seven o'elock the cable coilers oommence operations, and from that hour till six in the evening they never cease working. There are two watches of thirty men each, who relieve each other every four hours, and who are under the supervision of several directors or muperintendents. When the firat of these watches took possession of the circus and began their work, their uniform of duok was almost as white as snow, but hardly three days elapsed before it became as black as mourning weed, with here and there a patch of white gleaming through. "The Knights of the Blaok Hand," as the coilers were dubbed, rather like this ohange, and never omit an opportunity to improve upon it. "Thus the backs of all of them are marked with the armorial bearings of their knighthood, the sign may their title of nobility. The emblem is stamped upon the woode of the circus, among an array of artistio decorations and embelishintionts such as the world has raroly, if ever witnessed. The star'apangled banner is repeated again and again, with a patriotio persistenoy that never tires, while whole flocks of American eagles are soaring on tireless-wing These extraordinary exhibitions of artistio skill are got up withont the aid of brush, pencil, or any of the nsual instruments known to the world of art, and are to be regarded with still more consideration on that account. The forefinger of the right hand is employed as a substitute for the pencil, the brash, and the crayon, while the well. tarred palm of the left answers all the purposes of a palettc. With suoh facilities as these present you would be astonished at the new wonders that are overy day created withip tho circumference of the cable oircus. Some of the artists devote their attention to illustrations of animated nature, and the apecimens they give of the feathered tribe and other forms of animal life are without parallel in the works of Andubon, Cuvier, or any of the great naturalists. There are horses and deer suoh as Rosa Bonheur or Landseer never dreamed of, and probably never could, with all their wealth of genius, imagine. Dogs of thost remarkable dimensions, some with elephants on their baoks, and others with eagles, attraot the admiring gase of the spectator, and share the praise with tom-cats, whose belligerent eharaoter is indicated by the
swelled tail and raised back;infallible proofs of feline antagonism. Then there are fat porkers that would gladdeu the heart of a Cincinnati dealer to look at, and sheep with tails of the most remarkable dimensions. One portion of the oircus is deyoted exclusively to a grotesque procession of animals of every conceivable and inconccivable description, suppesedeto be on the march to some invisible Noah's ark. Fishes are to be seen out of their element, and apparently on the most sociable and companionable terms with the feathered donizens of the air. But the fancies of art do not stop here. They seek other fields for their flights, and illustrato the achievements of the champions of the ring, and the prowess of that enlightened portion of the community who patronize and maintain the manly art of self-defence. Prize fights are quite numerous on the boarded wall, and by way of variety, and to satisfy those whose refned natures and nice ideas revolt at sach a vulgar way of settling private disputes or claims to personal superiority, duels with swords and pistols are also ill ilustrated. The pugilists are in a large majority, however, and their tremendous muscular developmghts as compared with the skeleton-like forms of the duelists, would seem to convey the idea that their peculiar profession is good for the health; Now from all this there is but one conclusion to be drawn-that a cable circus is a remarkable promoter for the development of genius. But after all, the coilers have not muoh time to devote to works of art, and perhaps"to this fact may be attributed the difficulty whioh the speetator sometimes finds in making out the exact character of the object intended to be represented. Occasionally a horse is mistaken for a dog, and were it not for the indispensable trunk the elophant might not be recognised at once. As for the pigs, sheep, and cows, it must be conféssed that nature is not exactly oopied, and that the aberrations of genius roam unrestricted through such extended fields of fancy, that it is impossible for ordinary minds to follow. No matter how much critics, however, may differ in regard to the quality or the truthfulness of these works of art, they must agree in one thing, that cable coiling is not the disagreeable occupation which some suppose, and that the cable coilers are as jolly, as pleasant, as jovial, as witty, and as humorous a set of fellows as were ever gathered together. While they coil flake after flake and layer after layer, they are as merry as the day is long, that is, in midsummer or thereabonts, when the day is longest, which makes all the difference in the world, so far' as the force of the comparison is considered. Unpleasant work! Why, there never was work which was performed with greater alacrity and willingness. So eager were the men in regard to it, and so willing were they to offer their services, that when the demand was made for volunteers, the whole chip's crew came forward, and some difficalty was found in the selection
of the necessary foroe. Every mile that is coiled; instead of wearying, appears but to give renewed strength to the coilers, and at the end of every four hours' wateh they are apparently as fresh and vigorons as when they eommenced. Each day, too, they have new jokes, new yarns, new conundrums, new Joe Millerisms, and a whole budget of new things in the jocular and hamoroas line. So exacting are they on this point, that an old joke is scouted at with indigaation, and the joker himself severely censured for the attempt which he has made to impose on the good nature of his hearers. All the coils are distinguished by the same pleasant seenes, the same social featares. In describing, therefore, one circle, We have, in fact, described all, but as there are some points of difference in that which is now being filled in the hold a brief refer. once to it may-not be altogether unnecessary.

In making our way from the wardroom coil to that to which we propose to takc our reader, the path is beset with difficulties to the uninjtiated, and an attempt to reach it without a thorough knowledge of these is gencrally attended with a penalty, suoh as those who have tender feet and legs, or who are at all inclined either to "lightness or heaviness in the upper regions, should avoid by securing the services of a gaide. Leaving the wardroom coil behind us, we go forward on the main deck, pass the engine batch on the left, and the ship's dispensary, the sailing master's, the purser's, and other rooms on the right. Pressing on still further, we reach the forward main deck coil, which will be one of the last filled up, and which is now only partially boarded up. A narrow " passage on either side is the only means of egress to the fore part of the ship, where the cooking for the captain, officers, and men is carried on, and the odor from which tells us that interesting prelude to a more in. teresting performance is being enacted. But the way up to this point, that is, to the coil, is the easiest part of the passago-the most diffoult has yet to be encountered.

By looking through the opening in the cone of the circle, where we now It and, we can get an indistinet view of that into which we will soon descend. It looks dark and gloomy, contrasted with the dim daylight which lights by which it is faine occasional gleam from the forty or fifty oandles darknoss atill more down through the centre. Down through the oentre of this cone, deok, down into the circle of the cone of the circle on the orlop oring to get a glance, of the coil at which we are now endear. with which I write, and as it is deep sea line, black as the ink flakes by the thirty men who is hauled down it is packed away in as you look, and you have below the circle. Close your cars you look, and you'have below you a scene which necromancer's
craft never equalled; yes, in comparison with which even the boasted powers of his magio art appear insignificant. Through that black uned wire rope, as it is laid on the bottom of the great deep, will flash the subtle messenger of man, with a speed that' outruns the sun in his ccurse, and with which thought itself would run ap unequal race. This is the neeromancy of seience, the creation of human genius, the very olimax of human invention. Let your hearing return, and listen-that hearty laughter has no unearthly sound, but is as rollicking, as jovial and as cheerful as ever camo out of mortal throat. Haviug given full liberty to one of your senses, you must now make another do donble duty. You must open your cyes, and be just as wide awake as it is possible for you to be. Descending about ten feet we reach the orlop ' deok circle, which is almest similar to that on the deek above. Another deseont-fotrteen feet further down-and we stand upon the top flake of the rapidly inereasing coil, the hold goil, the largest in the ship, which is to contain four hundred miles of the great sea line. We are now twelve feet below the water level, and in the lowest point of the vessel which it is possible for us to reach. An immense cone, larger than any that we have yet seen, stands in the centro of the circle liko the peak of an extinot voleano. Around us is the magie, the necromantio circle, who are no more nor no less thau thirty "Knights of the Black Hand" bearing the device upon backs, breasts, and sides, which attest-their position on board ship as unmistakably as the red oross distinguished the crusader from his Saracenic foe. They are all out of the reach of daylight, and all the candles they ean find places for are barely suffioient to chase away the darkness. Still there is plenty of light, not only to enable the coilers to see what they are about, but to enable them to coil as neatly, as rapidly, and altogether successfully as those in the wardroom circus, between whom and themselves there is considerable rivalry. In point of wit, humor, fun, story-telling, ability, and all the other qualifications which are necessary to make what is called "a good follow," they are not a whit behind those same wardroom cireus men; and although they may be somewhat belew them in position, considering the distance the ooils are apart, they are their equals in every respoct, and thoir title to knighthood is just as well earned and as well graced. They can coil at the rate of two and a half miles on hour, and take as much pride in doing their work well. In faet, it would be impossible to deeide which should have the palm. They are both well drilled, and for this due oredit mast be given to Mr. Fugitt, the sailmaker; Mr. Webber, the gunner; Capt. Kell, and Mr. Goodrich, master's mate, for their careful and attentive supervision of the ceiling.

The following engraving, representing the coils in the forepart of
the ship, is intended to show their exact proportion, and is according to a scale of tyenenty-five feet to an inch:

BEOTION OF TRE NIAGA期, BHOWTVG THE BTO WACE ON
TPE COILS IN TH POREPAET OF THE BIEP.

The base of the ooil in tho hold, it will be perceived, is not so regular and does not cover so much space as that of any of the others, on account of the oonstruction of this part of the ship. The height from the floor to the deck above afforda a large space for the coiling of the cable, and a much greater length is therefore placed here. This may be seen by referenoe to the ta-
in the construction of these four circles that has been deseribed already, so that it is merely necessary to call attention to the fact.

THE CABLE CIRCUS, THE CONF AND FAIR-LEADERS.

The greatest vigilance and caution are required in the making of the coils, and in the paying-out process-in fact, every thing depeads upon these two easential points, and any inattention to either is franght with the most dangerous consequences to the success of the enterprise. The propor form of coil was at one time a subject of considerable discussion, and great difference of opinion prevailed in regard to the respective advantages of the circular and elongated, both of which had warm advocates. After satisfactory and conelusive trials the circular was finally adopted, and whatever merits the other form may have, it is now generally considered obsolete. The circular coils were the kind used on the Niagara and on the Agamemnon, with one trifing exception. The hold coil on the lattor was of an oval form, but far from being what is regarded as an elongated one. The construetion of a proper receptacle for the coil was also a mattor of much debate, and no inconsiderable amount of labor was expended before the present cable circus-or, as it is sometimes called, cable tank-was perfected. There were two things to be accomplished by its comstruction-the first was to prevent the cable from bulging out and the second to prevent it from becoming entangled in the centre. Then there was another and no less essentid matter to be attended to to secure it from kinking, as it was urtoond from the top or surface flake. Now, seived, is does not ss that of account of this e height he deck pace for c , and a s therenis may the taof these 2ecessa. ing of epeads raught rprise. lerable rd to th of trials form coils h one a, but otion bate, esent veted. -the d to was re it Now,
simple as the arrangements to secure these ends mas appear, they did not reach their present state of perfection till the work of laying the Atlantic cable was entered upon. In the followingengraving is presented a corrcet representation of the circus, the cone and the fairleadors:

> a-Targe iron rings for falr-leadors and to provent klnklng.
> B-Cono.
> o-Palieye with iron tricing fines for raising fair-leaders.
> D-Portion of cone calied.
> E-Hatcbway with tho cable golng up.

The circus is enclosed to a height of four or five feet, or as high as the coil rises-the enclosure being made of ordinary uprights or stancheons and rough boards. The floor is gerolaid with common planking, upon which is placed a covering of zinc, for the protection of the deek, which would otherwise be stained by the tar with which the cable is saturated. The cone, which occupies the centre of the circus and coil, and is made of oak or some other hard wood, rangei, according to eircumstances, from seven to nine feet in diameter at the base, and from three to five at the top. The particular part it is required to perform is to prevent the cable from becoming entangled in the centre of the circle, and to seoure it a safe passage through the hatchway. The large iron rings, or fair-leaders, which eneircle the cone, are intended to prevent the cable from kinking as it is unwound. The cable passes under these, and up between them and the cone, and in this way any tendenoy which it might have to kink is removed. The fair-leaders are secured by wire rope to the beams, and are capable of being lowered by means of palleys, as the cable is rednced in paying out. The operative, who is represented in the act of lowering one of the fair-lcaders by means
of the wire rope, stands in a narrow passage, betweon the outer planking of the circus and the side of the ship.

> THE COLLS, ETC., on the agameknon.
. Where is perhaps no vessel in the British navy better adapted for the coiling and paying out of the oable than the Agamemanon. Her massiveness and great atrength, as well as the peculiar advantages wh.oh she possesses for the stowage of the great eca line, were her chief reoommendations. In 1857, the whole 1,250 miles which constituted her part of the cable were coiled in the forward hold, and it was feared at the time that ahe would be seriously danaged by the strain produced by so much dead weight in one part of the ship. A report was eirculated then that she was "hogged," which, when translated into common Eng. lish for the unlearned in nautical matters, signifies that she had broken her back, and was in an unfit state to go to sea. This report was, however, ascertained to be without foundation, and the ship was found, on investigation, to be in perfectly seaworthy condition.

The proportions of the ship, as given in the following engraving, are preserved as exactly and accurately as it is possible to do so, the scale being forty-six feet to an inch. The whole weight of the cable is thrown on the forepart of the vessel, between the fore and nain masta; the ma. chincry, stores, and ceal, being in the after part, keep her on an even kecl, aud thus preserve that steadiness which is so nectessary in the work she has to perform. With cable, coal, and all her sea stores on board, the Agamemnon drew about twenty-seven feet, which brought the water line almost to a level with the cable guard attached to the stern. An accurate idea may be formed of the way in which the cable was paid out from the several coils by reference to the engraving. The coil indicated by the letter A was first paid out, then coil B followed next in order, the hold eoil C being the last reached. As the distance between all the coils and the paying-out machine (c) is over a hundred feet, the rollers ($d d d d$) are placed at regular intervals, to steady it in its progress. These rollers are made of iron, and are raised on a framework to the height of six or seven feet above the level of the spar deck. After the cable is delivered from the maohinc, it passes out over the wheel (b), which is secured by large wooden beams over the stern of the ship. This wheel, or sheave, as it is sometimes called, is about five feet in diameter, and has a groove five inches deep. As the forepart of the ship was of course lightened in proportion to the amount of cable paid oat, the afterpart was lightened in an equal degree by the consumption of coal and by the removal of the ship's stores. Thus the equilibrium was preserved until the whole work was completed.
dapted for aon. Her agen wh.oh thief recomituted her 8 feared at oduced by cireulated mon Eng. ad broken was, howfound, on
sving, are the soale is thrown the ma. an even the work on board, ho water rn. An paid out ndicated der, the all the e rollers rogress. to the fter the eel (b), 0 ship. feet in he ship id out, tion of im

After the firat coil, \mathbf{A}, is exhansted, tho line is taken from the coil, B, through the hatehes of the spar, main, and berth deoks, its-course being regulated by the iron rings or fair-leaders through whioh it pnsses, and which prevent its. surging. These fair-leaders are different from those represented in an- \% other engraving in thus being fastened to the hatches, and cannot of course be raised or lowered. The part of the il: lustration representing the pay-ing-out maohine is necessarily on such a limited scale as to render any gattempt to give the detail altogether impossible. It is, however, illastrated in another part of this work, and will be found, with a full deseription, under the appropriate head.
the coils, etc, on the NIAGARA.
The subjoined engraving is intended to show the internal arrangements and apparatus. for the coiling and paying out of the cable, and may be regarded as substantially accurate in its details. At first view there appears to be very slight differ. enoe between the two oable ships, bat it will be seen that the number of coils 'on board the Niagara is about doable the number on the Agameminon, and that the coil in the hold of the former is not so large as that in the hold of the latter by several hundred miles. The strain on this part of the Niagara, therefore, was not

30 great, and she was consequently better able to withentand the 'effeots of a heavy sea. The number of coils on the Niagara was seven, and bf these five were placed in the fore and two in the after part of the vessel. The aheaves were placed over the bow as well as in the stern, and there were the same contrivances in the way of rollers and fair: leaders. The strength of each dock, or that particular part of it on which the cable was coiled, was increased ob largo irgur trusses, whioh ortended from one side of the ship to the other, and which were the best kind of subatitutea for atanchions." The removal of a large number of these stanchions was necessary to make room for the coils, and the trusses were designed to answer the same purpose-that is, as supports for the deoks. The hatches in the forepart of the ship were made the centre of the cable circles, so that when the coll was exhausted in cne the cable was drawn up from the circle beneath through the cone, which was hollow, and which had an opening at the bage and at the top. The machine was placed as near the stern as possible, to facilitate the process of paying ont; the sheaves wero socured and held in their places by

the cable àuards.

Among the precautions which were taken to prevent damage to the. cable is that of the stern gaards, which were plaoed over the worew of each of the ships. These guards were to prevent it from coming in contact with the screws, in. Which case it is almost needless to add the cable would be broken. In 1857, they wero secured to the sterns with atrong iron bars, which it was supposed would withstand the pressure or resistance of the water when the ressel was under way. This, however, was proved by experience to be a fallacious idea, several of the bars having
 yielded and broke under the pressure. In view of this fact Mr. Everett docided on adopting another atyle of guard, which would answar the same purpose, and which would also be free from the difficulty to whioh the other was subjoot. 4 glence at the engraping will give a correot idea of that which was adepted. This was a movable guard, and could be raised or lowerred by means of the chains by which it was suspended. The hinge (b) was secured by

THE AFCOND ATLANTIC EXPEDTIION.

a strong brass plate, which was fastened to the side of the ship with twelve copper bolts. The advantage of this movable guard will be readily appreoiated. It could be raised to such a height when necessary. as to entirely olear it from the water. Then it was intended, that if icebergs or other obstructions should render it necessary to back the ship, the guard should be immediately lowered, and lowered to such a depth as to prevent the oable being injured or broken by the screw. The longth of the guard from the hinge (b) to the outer line (d) is 27 feet, and its greatest diameter athwart ships is 22 feet 6 inchcs. When hauled up, the extreme end (d) cleared the rudder-iron (a) about two feet. The stern sheave (c) over which the cable ran in its course before it reached the water was about four and a-half feet in diameter, and the groove at least five inches deep. A guard kept the cable from surging and workitg ont of the groove.

The Agamemnon, as may be seen from the following illustration, is provided with a guard similar to that on the Niagara.

A passage was left on either side of the wheel, to render it accessible when necessary, and this was rendered secure and safe by strong wooden railings, strengthened by iron uprighte, the whole reating or construeted upon two massive beams, which ran in on the deok of the ship, where they were firmly attaohed.

The following engraving presents the stern sheave or wheel on a more enlarged acale.

It was intended to puta cage around the propeller, like that which was attached to the Niagara in 1857, but the preference was given to a movable guard, to that in this partieular both shipe were alike:

the machine that laid the cable, CONSTRDCTED BY MR. W. E. BVERMTT.

As the success of the enterprise depended mainly upon the construction of the paying-out machinery, and its adaptability to the work it was intended for, a detailed description of its various parts becomes neccssary to a perfect understanding of the subjeet. To render the matter more easy of comprehension, we have presented in the accompanying illustrations not only the prominent features, but the minor details of the machine. Before proceeding, however, to the deseription, we wish to make a few preliminary remarks, for the purpose of showing the nature of the work which it has to perform. It is needless, almost, to state that the machine used on the expedition of 1857 , was so imperfect that it caused the parting of the cable. That fact has been estab. lished beyond dispute, but it may not be generally understood that the prinicipal defect in the machine was in the form of brake used. The object of a brake is to counteract or diminish the speed of the wheels by increasing the pressure. This is done by tightening the wooden blooks which surround the periphery of the brake wheel, and inside of which the brake wheel revolves. As this tightening or pressure is increased or diminished, the sheaves round which the cable passes, and which are on the same shaft with the brakes, revolve with increased or diminished rapidity. This, then, is the objeet of the brake; but the brake to be fitted for this particular work most be self-releasing, so that after reaching the required pressure it cannot exceed it. It was the entire want of this essential requisite in the brakes of the machine used on the first expedition, that rendered it not only useless, but fatal to its success. In the construction of the machinery which was put on board the Agamemnen and Niagara, and which was designed by and made under the direction and sapervision of Mr. W. E. Everett, this point received particular attention. In the first place the machine subserves two pur-poses-it is both winding in and paying out-while two separate machines were required last year for these rperations. In the second place it was not'so cumbensome, being about one-fourth the weight; and in the third place it ocoapied much less space. But the most important fear ture, and that by which it is most distinguished, is the self-releasing character of the brake, and the much greater ease with which it can be regulated and controlled. Of the large number of engineers who witnessed it in operation, not one expressed an unfaverable opinion.

The following illustration is intexided to give a rear view of the machinc, to show the action of the brakes, the way the cable enters and leaves the sheaves or four grooved wheels $(c 0)$, which are but partially seen, and the object of the dynamometer.
construce work it s becomes ender the ho accom. minor desseription, © showing w, almost, so imperen eatab. that the ed. The wheels by n blocks of which ncreased bich are ainished ce to be reachire want the first ess. In gamemder the eceived wo purte mad place 1 in the nt fear leasing can be ho witbe mars and rtially

machinery is placed, is represented by A, and the process is easily explained by the letters which mark the different parts. The large pulley (D) moves up and down in grooves, and is attached to the piston (F) moving in the water cylinder (B). The cable (H) which passes from the guide wheel (K) under the pulley to another wheel on the opposite side of the dynamometer, forms an angle under the pulley that is rendered more or less acute by the strain or pressure produced by the brakos. The greater tho strain, the less acute the angle becomes, and the higher the pulley rises on the scale (C). Now this scale (C) is marked or graduated from twelve hundred to thirty-six handred pounds. It is, in fact, a sort of a spring balance, the only difference being in the graduating of the scale, which in the dynamometer shows a numerical increase as you asoend, while in the spring balande the numbers beoome greater as you descend the scale. The weights by which the strain is increased on the oable at this point in proportion to the pressure on the brakes, are placed apon the rest, which is seen above the water cylinder (B). The other purpose which the dynamoneter serves is as follows: By a simplo contrivance it is made to act as a means of yoleasing the brakos when they have failed in releasing themselves. The man who stands behind is shown in the act of using this brago releaser. The wheel (E) whioh he hoIds in his hand, by being turned to the right or left, tightens the ahain (C) whioh is attaohed to the triangular shaped frame on the paying-out machine. The tightening or drawing on this chain raises the weights, which are attached to a rod or shaft at the end of this trianglo, and by thus raising the weights releases the brakes from the pressure. This process is more fully explained further on, in the description of the next illustration.

The tanks ($g g$) are always well sapplied with water, to prevent the heating of the brake wheels from friotion, an operation whioh consumes about two gallons an hour. It was proposed to use oil, bat as oil was not considered better than water, considerations of economy prevailed, and the latter was adopted in preferenee. Beyond the brake wheels are the grooved sheaves (oc) round which the oable is passed four times, bat whiok are only partially visible. These sheaves are each six feet in diameter, while the brake wheels are not more than four and a half. On the shafts (B B) are placed gear wheels whioh are connected with a pinion on C; but this gearing is never pot on except the machine is to be employed in winding in, in which case a pinion wheel is put on the main shaft (A) in connection with a donble forty-horse engine on the port side of the ship. None of this gearing is shown in the engraving, for, the simple reason that its purpose can be easily understood without illustration, and also for the no less forcible reason that it would only help
to make the drawing confused and complicated to no purpose. There are four brake wheels, the pressure on which cau be increased byweights to two tons and upwards. The passage of the cable from the coil to the sea is so arranged that the slightest tendency to kink is stopped at once. From the very moment it leaves the cireles till it passes over the bobbins and on the maehine, it is subject to a greater or less strain, which keeps it etraight throughont its whole courso until it euters the wator. After passing over several bobbins, it enters the edmpressor (i), which carries it safely to the guide wheel (a), on which it tukes one turn, and on which it is subject to a still higher strain, regulated by the frietion wheel (b). The strain produeed by this antl the compressor (i) is very slight, and only helps to straighton it out before it reaches the sheaves. From the guide wheel (a) it passes into the grooves and around the wheels or sheaves four times, after which it is delivered to the guide wheel (k); ? then going under the pulley, it reaches another wheel beyoud the dynamometer, from which it is transferred to the sheave at the stern, the last part of the machinery it touches on its way into the ocean.

Upon the operation of the brakes, the suceess of the expedition, as wo Lave already said, depends in a great measure. The greatest care and attention havo thercfore been given to their construction. The defects of those used last year have been pointed out already, and out readers will consequently be the better able to appreciate the way in which these are planned. For the principle on which they are made Mr. Appold is entitled to some credit ; but material alterations and modifications were réquired before they could be adapted to the uso to which they have been applied. In tho following illustration is presented a perfect representation of the brake and its mode of action.

The shaft which is marked B in the preceding figure, and on which is placed the four grooved sheave, is shown by the letter a in the foregoing. The speed of the shoave and brake wheel is thas made uniform, a point which is of course absolutely essential in ehecking at any time the rate at which the eable is being paid ont. That the simple action of the brake may be the better understood, we have, however, merely shown those parts whieh are necessary to that end, leaving out whatever would tend to complicate or confuse the drawing. The parts hero presented are the shafts, the brake, the friction strap, the elm blocks, the levers, the connecting rods, the weights by which the strain on the cable is increased, the water oylinder, the ehain conneoting the shaft on which the weights are put, with dynamometer, portion of water tank, and a section of pillar to which the triangular part of the brake apparatus is attached. All of these may be easily distinguished by reference to the explanation at the foot of the engraving.

The periphery (b) of the brake whecl is twelve inches wide, and the whole, without the brake fixtures, is somewhat more thau four feet in diameter. The shafts, as may be seen, are of a curved form, and the wheel is made of cast iron. On the periphery are the elm blocks ($d d$), which are bound together by a strong strap or band of iron (c). The blocks are seeared by incans of screws, the heads of which can be seen above the strap. The two ends of this strap, or band, are attached to the lever (g), which is held by the stirrup or socket (r). The tightening of the strap, and the consequent compressing of the elm blocks upon the periphery of the brake wheel causes it to revolve more slowly, and produces the same effect apon the sheave wheel over which the cable is passing Bat while the brake wheel revolves the brake blocks are of course stationary, moving only sufficient for the purpose of comprossing or releasing the brake wheel. The tightening or compressing is effected by increasing the weights on the piston, which can be raised to two tons if necessary. There are four brakes to the machinery, so that by putting ten hundred pounds on each piston the pressure ean be increasod to four thousand. Now as this weight is increased on the pistons, the pis-
iphery (b) 3 whecl is res. wide, ole, with e fixtures, at more eet in dise shafts, cn , are of n , and the le of cast the perithe elm d), which together strap or (c). The eared by rews, the ch can be he strap. s of this and, are the lever s held by or socket ightening , and the sompressm blocks periphery re wheel repolve and procable is 8 are of ppressing effected two tone by putreasod to the pis-
tons partially descend into the oylinder, pulling down to a proportionate degree the rod (h), which tightens the brake band ($c c$), thus produeing the required strain upou the cable, which strain is indicated upon the soale of the dynamometer. As the shaft is drawn over to the right by the incresse of weights upon the piston, the lever is acted upon as illustrated in the following:

The engraving is intended to represent the brake strap, the lever, and the stirrup. If you desire to compress by reducing the circumference of the strap (whioh is shown here without the elin blooks) you pull the lever (o) to the left hand, and by so doing move the other end of the strap (b) towards the right. This is a simple process and easily understood. As you pull on the lever (c) you
 draw upon the two ends (b and a) of the showing the action on tran maxia brake strap, bat the distance travelled by b and a at the same time is not equal, and in this consists the principle of the tightening or compression. The end a being nearest the centre does not of course move over so much epace as b, which is on the circumference, so that when the lever is moved, the end b, by travelling further than a, tightens the strap. Bnt in the engraving of "the brake wheel and its connections," the rod (h) which is attached to the brake strap at s, performs this part of the operation-that is, the tightening of the brake strap. The junetion of the ends of the strap at the lever (g) is on the same prineiple as that we have illastrated. As the rod is drawn to the right by the increase of weights on the piston, the same aetion is produced on the brake band as if the lever were used. The onds of the strap travel unequal distances, as has been shown, the outer one going over more apace. The end of the lever is held in the stirrap or socket, against which it is pulled eloser by the action of the rod (h) upon the straps. The action of the chain $(k m)$ and wheel (n) is explained in the description of the dynamometer. When the brakes do not release themselves from the pressure of the weigbts on the piston rod, and exceed that pressurego inuch as to endanger the safety of the cablo, the man at the dynamometer by a turn of the wheel raises the weights, and thus relieves the brakes. The rods ($O B$) are intended to relieve the upper part of friotion strap of weight of lower part.

The fallowing subjoined front view of paying-out machine is designeat to show the sheave wheela, the guides, the compresser, and the scrapers,
all the other portions being left out that these may be more distinetly seon :

The cable passes through the guide (A) on to a light sheet iron wheel (B)placed for the purpose of steadying it on entering the groove of the large wheel -passes round (C) and ${ }^{\prime}$ back and under and over (D), thus making four half ; turns on each wheel-finally over the small wheel (E^{\prime}), thence under the dynamometer and over another wheel similar to (G) and overboard.

The cable first enters through the compresser or guide (A), takes one turn round the guide wheel (B), which is made of sheet iron, and which is goverwed and regulated by the friction wheel (d), and weighted as shown in the drawing of "the paying-out machine." From this it passes round C, and from O to D, and so on till it has passed four times over both, when it is received by, the small guide wheel, from which it is transferred to the dynamometer. The scraper (\mathbf{T}), which is secured on the shaft between the two wheels, is armed with eight teeth, four on each side, which fit into the grooves. These teeth clear out tho tar as the whoels pass round, and thus prevent it from hardoning and colleoting in the grooves. The
listinetly
through 0 a light (B) rpose of ering the se wheel C) and ${ }^{4}$ nd over four half , - inalleel (E), - dynaanother (G) and
entersresser or one turn leel (B), of sheet goverwed the fric| weightdrawing ant mathis it ad from n till it mes over received - wheel, ansferred 9r. The ${ }^{-1}$ h is sebetween armed four on into the and, and The
following is a representation of a sleave wheel, which will serve to give a clearer idea of its form and the form of the grooves than could possibly be given by a front view of the machine iteslf :-

(a) Shat.
b) Fingers of scraper.
(d) g ping bolted to deek, to which is attached lever (o), but whioh releases it it any thing bhould overolog the grooves.

The objeet of the scraper has becn already explained, but its form cannot be perfectly seen, on account of its position on the machine. Tho foregoing illustration, therefore, becomes necessary.
A is the shaft on which the scrapers are placed, and b tho four teeth which enter the grooves of the wheel for the parpose of preventing the accamulation of tar. By means of the spring (d), which is bolted to the deck, and the lever (c), the scraper could be at once released, if the grooves were overologged or filled up by any foreign substance getting into them.

the cable buoys.

In addition to the mechanical contrivances which have been so fully described, two large buoys, each capable of sustaining a weight of five or six tons, were put on board the Niagara, so that in the event of her being obliged by stress of weather to slip the cable, it might be attached ta this. This was to be effected by means of a wire cable eight or ten miles in length; one end of which was secured to the end of the submarine cable, and the otherr to the buoy, thus taking the great strain off it.

THE RXPERIMENTAL TRIP OF THE BQUADRON TO THE DAY OF BISCAY.

The 29th of May, the day on which the sepuadron aailed from Ply. month, on the exporimental trip to the Bay of Biscay, was remarkably fine, and as there had been a continuous gale of some twe weeks' duration, wo entered upon the work before us with every prompect of a long spell of fair weather - prospeot in which we were not disappointed. Evory thing necessary to the sucoess of the trip was arranged two or three days previous to our departure. The maohinéfy was in excellent working order, the bnoys were provided with the necessary taoklo, and the experience whioh the mon had obtained by working at the oable -proved of the greatest advantage in making the experiments A consultation was had between the captains and the engineers of the company in regard to the point at which the vessels should oommence their experiments, and after due deliberation it was decided that lat. 47, lon. 10, wonld be quite far-onough. This is jugt on the verge of the Bay of Biseay, which bears such a terfible reputation for boistereans weather, and which it was supposed would afford evory opportunity for testing the practicability of splicing and laytit the cable in a rough sea, and under the most unfavorable circumatances. "So lat. 47, lon. 10, was seleoted as the precise locality for the experiments. After leaving Plymouth Sound, therefore, the squadroi made as direct a course as possible for this point. It was betweon four and fivo o'olock in the afternogn of the 29th of May whon the four vessels got under way-the Agamemnon leading, the Gorgon, the' Niagara, and the Valorous, following in regular succession. They atarted at a rate of five miles, and during their course out varied from that to a speed of oight milea per Wour. The whole of Sunday no obange was observed in the green color of the water denoting a greater depth, and the squadran kopt on withomet. making soundings. Monday, however, it had turned to a diting how showing that we had reaohed the great topths, although we hatah mex arrived at the locality decided upon for the experiments.
made by the Gorgon, under the command of Captain Dajman, to sound, and the whole squadron hove to to await the result.
W'We were now in latitude $47^{\circ} 12^{\prime} \mathrm{N}$., long. $9^{\circ} 82^{\prime}$ W., or about thirty mile staty from the point decided upon before starting from $\mathbf{P l y}$ moktit .
 we what a fof, and it che determined that we should proceed to
 by the engineers, the Niagara approached the Agamemnon within, a convenient distance, when a line was passed in a boat to the Agamemnon,
by which a haworer was haulend on board the latter, and by whiel also the two shipa werg fastened stern to atern. It must not be supposed from thisidowerer, that they were actually in contact, for they wore some whetherfinghuthdred feet apart, and as each vessel had stoam up farc win wanger, with proper management, of ther coming in bolfing the two vessels now being firmly secared, the ond of the tolegraph danle was passed from the Niagara to the Agamemnon, where it Whas agreed the splice should be uffected. The object of this expriment was to prove the practicability of accomplishing what is, or was eonsidered, cne of the most difficult operations of the whole expelition tho splicing and submerging of the, cable in pid-ocean. The greatest interest was manifested on board our ship while the splieing was being perfonned on the Agameimion, and exery one was impatient to sea the cable lowered from her stern, although the work was performed with praiseworthy, celerity. It was abofit half-past five when the signal was displayed from that ship announcing that they were ready, and a few minutes after we could see the spliced portion hanging over the stern. Down'it went until it disappeared below the surface, and the revolving oable wheel on the stern proved that it was on its way to tho bottom, which lay at a depth of some twenty-five bundred fathoms bencath the ship. A longth of oable having been paid out from the Agamemuon equal to the quantity used in passing the eablo from thip to ship, so that the spliee might be in the centre of the line formed by the cable betwoen the ships, aflag was hoisted from the Agamemnon convoying intelligence of the fact to the Niagara. This was answerod by a similar sigaal on the Niagara, when the two commenced paying out a quarter of a mile of eable each, at the rate of a mile an hour.

The cablo used in this trial was a portion of that which had been laid last year, and which was much weakoned by exposure. In some parts the outter wires, or protecting armor, was so oxidized, that the rust had rotted the hemp which covered the gutta percha. For this reason it parted soveral times during the experiments, but et the same time with ont interfering with their sucoessful accomplishment.

A quarter of a mile, as has been statod, was paid out, and, in conformity with the " memorauda,", the signals on both ships were hauled down, indicating that no more paying out should be done until they were again displayed. About ten minutes elapsed, when the flags were hoisted, and another quarter of a milo was, let down into the sea at the same speed-a mile an hour. This process was repeated untila whole milo had been run out from the coil and over the machinery of each ship, making a total expenditure of two miles from both vessels. The process of paying out was performed by the engine connected with the
machinery until the weight of the cable in the water was suffieient to turn the wheels. Mr. Fellansbee, the chief engineer of the Niagara, had the engine under his charge all this time, and Mr. Fiverett took his stand at the dynamometer, where he regulated the pressure of the brakes. The Valorous and the Gorgon were obliged to play the part of lookers on, and with little profit or information, as they were of course entirely ignorant of the operation board either of the cable ships.

While the first splice was being made, Captain Preedy, of the Agamemnon, sent the following despatch through the insulated conductor, to Captain Hudson-" We shall finish the splice in half an hour."

Throughout the experiments thus far the machinory answered our highest expectations, and proved its entire adaptability to the work. The brakes were under the most complete control, and the dynamimeter, by showing the strain to whieh the cable was subject, placed it in the power of the man at the wheel to increase or lessen that strain as ciroumstances might demand or justify. . In the expedition of 1857, the only dificulty was in the machinery. The wheels over which the cable passed would not revolve when required, and the strength of twenty men was exerted upon them in vain. Then the brakes, when put on, generally stopped the action of the whole machine, and brought a strain upon the line that was almost always fatal. Indeed, so patent had this fact begome to all in the expedition, that it was doubted if a hundred miles of the cable could be successfully submerged, and the only wonder was that they had managed to get over threc hundred miles out of the ship before it parted. Every one is agreed in regard to the qualities of the now employed paying-out machine. On that there is no differenco of opinion, whatever there may be in regard to other matters connected with the Atlantie Telegraph enterprise. The strain, as indicated by the dynamometer, was equal to twelve humdred pounds, and this can be graduated from any amouht between five handred and fifty-five hundred, as the engineer in charge of the brakes may determine. It is now six $o^{\text {chelock, and the waiters hapo announced to the officers that supper is on }}$ the table; but it may be on or under the table just now for all any one cares; there is more interesting matter on hand, and until that is settled the supper may wait until it is cold. Looking at the cable as it comes out of the coil, passes over the paying-out sheaves, and descends from the stern, is the only thing worth attending to now, and the eager cyes of the sailors as they atrain them in vain cudeavers to see from the sides of the ship what is going, on under the poop-an attempt to accomplish an impossibility-a sort of shooting-round-the-corner operation-proves only that the spirit of curiosity will try to surmount the most insurmountable obstaeles. "Now it is going out graudly,"

PAYING OUT THE CAB RING THE TRIAL TH

PAYING OUT THE CABL RING THE TRIAL TRIP
some enthusiastic individual exelaims. A faot which a glance at both s maehine and cable proves beyond the possibility of a doubt: The machine revolves with the greatest ease; the indicator attached to it records the number of fathoms, and the cable comes out of the coil without exhibiting the slightest tendeney to kink. Whatever speculations may be entertained about its kinking as it goes out of the ship, they are of very little account compared with the convineing ocular demonstration which is now presented. And this, too, is the experimental cable-the weakest, the most, imperfect, and the worst in every way on board the two ships. There is a number of men around the coil looking out for kinks, but they have not yet been able to detect a single one, and they may atop where they are for many hours to come before they will succeed. Captain Kell is overlooking this part of the work, and although about as wide awake as he can be, ho ean't see any thing. Lieutenant North, Lieutenant Macauly, Lieutenant Guest, Lieutenant Webb, Lieutenant Todd, Dr. Green, Dr. Hay, and all the lieutenants and doctors in the ship pay a visit to the coil, and they can't see a kink ; and no it is concluded on board tho ship that the thing that could be seen if it existed, can't be seen at all; "argal," that thing consequently don't exist.

The supper has been an hour on the table before the officers think it worth while attending to, and then they go to work so slowly at it you would believe it was a subjeet hardly worth discussing. The experiments that have been made form the topic of conversation, and there is but one genersl expression of opinion regarding them, which is one of eutire satisfaction. The supper is quickly despatehed, and, as the experiments are still going on, the poop is soon occupied by a crowd of speotators. Over a mile of cable has been paid out from eaeh ship (both vessels being still seven or eight hundred feet apart and conneeted by the hawser), and operations are suspended till it has had ample time to reach the bottom, which is 2,530 fathoms down. The dynamometer at this point shows a pressure of 3,200 pounds upou the brake, which is a atrain of a little more than a ton and a-half upon the cable. While they are still waiting for the sinking of the line, the Gorgon comes alongside, and Captain Dayman, who stands upon her wheel-house, annonnces in his loudegt tones that they have sounded again and got 2,530 fathoms. Now this is deeper than any soundings that have been had upon the Atlantie Telegraph plateau, and the experimeuts which are made ought certainly to be regarded as thoroughly testing the practieability of laying the eable between Ireland and Newfoundland, the two immediate points of connection. This, however, was satisfaotorily tested and proved last year, although it may be well now to state the
faet for the benefit of these who are atill inclined to be seeptical npon the subject.

Agreeably with the terms of the programme, or memoranda of the engineers, as it is called, the next thing is to prove the practicability of hauling in the cable on board both ships. The engine is put in gear with the paying-out machine, the action of whieh is reversed, so that it oan be used as well for the purpose of winding in'. 'Every thing being in readiness, the process of hauling in was commeneed. The ship was backed very slowly until the cable was "up and down," whieh means at right angles with the water, in which position it appears there is less strain upon it than in any other. The whecls revolved very slowly as the line was drawn on board, and half a mile of it returned to the ceil from which it had been" taken about an hoar before. At this point of the process a message was received, signed Bright, stating that it was that gentleman's wish the operation should be suspended until he had time to make a " new splice." It took about three hours to accomplish this, and when the work was finished'a message was sent to Mr. Everctt, to the effect that "all was ready." The paying-out process waa resumed on the receipt of this message, and by half-past ten we had succeeded in submerging two miles. The strain upon the cable, as shown by the dynamometer, varied frotu thirty-six to forty-one hundred pounds, while this length was suspended from the stern. Again the action of the machine was reversed, and the hanliug in process repeated, at a rate of a mile an hour. This Mr. Everett considered the higheat speed at which it would be safe to work the machinery, in consequenee of the weakuess of the cable, which, it must not be forgotten, had been previously condemned and set aside as only fit to make experiments with. It was intended, however, before the close of the trip to use the new cable for the purpose of testing its strength, and to settle the disputed point as to the practicability of taking it up, ahould it be found necessary during the final expedition. About a quarter to twelve this night the bawaer.which held both ships atern to stern parted on board the Agamemnon, and thus concluded the experiments for the first dayMonday, May 31.

Second Day's Experimpnts.

Although the oable which kept the Niagara and Agamemon together had parted, the two vessels were still kept in about the same position, aud the work proeeeded with little or no intermission. Something more than a mile and a-half wap hauled in, when word was sent from the office of the electrician on the maindeek that the continuity Was broken. Still the hauling in went on successfully; and as that was
the matter with which Mr. Fverett had more immediately to do, little attention was paid to the loss of the electrical continuity. Besides, it was the imperfect eable we wero using, and it was never supposed that it would be of much service, if any, for clectrical experiments. Tho hauling in, therefore, was contaued till about half-past two A. M., when the end of the cable cane up over the stern. Of the whole length paid out not more than one hundred and ten fathoms were lost. This concluded the experiments till after breakfast, when they were commenced with renewed energy.

At a quarter to nine A. M. a new hawser was passed from the Niag. ara to the Agamemnon, and both ships attaebed in the manner already deseribed. The two ends of the oable were again spliced, and a quarter of a mile paid ont from ench ship, after which the hawser was released. Up to this time they had not allowed the cable to pass out of the Niagara faster than a mile an hour; but a change. Was now to be made in this respect, and it was concluded to see the effect of a more rapid movenent of the machinery and an accelerated speed in the paying-out process. Two miles of it were permitted, in the language of the engineer's report, to "run quite freely," when the speed was gradually checked while an additional mile and about four hundred fathoms were being submerged. The ships were under way from the time the hawser was released, and continued moving, though at a comparatively slow rate, most of the time the line was passing out. It was now about halfpast ten, and three miles had been transferred from the ship to the sea. in the most satisfactory maner, as showing the admirable working of the machinery, and the case with which it could be controlled. There was one point, however, which was not so satisfactory, and which it was seen would require the attention of the engineer before the departure of the ships on the final expedition. This was the excessive accumulation and bardening of the tar in the sbeaves, which it is rightly feared mary endanger the safety of the cable if some provision the not made in time. The necessity of making such provision as will obviate the difficulty is - fully appreciated by Mr. Everett, who will devise some means by which it will bo altogether prevented, or so counteracted as to render all danger therefrom a matter of impossibility. If the experimental trip made only this difficulty obvious, it was worth all the time and money and labor whieh have been expended. The aecumulation of the tar in the grooves of the pulley or indirator of the dynamometer, and the grooves of the wheel leading to the stern, rendered the use of o seraper absolutely necessary to keep thom elear. Λ man was aceordingly appointed for this work; but while cleaning the groove of the indieator wheel, the tar was so hard und so thick that it broke the scraper,
and forced it into contact with the cable, which was almost immediately severed at the point of contact. Here, then, was an additional experience of the greatest ralue in the suceessfinl aecomplishment of the undertaking. It was made manifest, by the aceumulation of the tar in he grooves, that some plan should be devised to glbviate any difficulty from such a caise, and it was also chown that it was unsafe to trust a scrapor in the liands of any man for tac removal of the tar. The serapers which were placed on the paying-out machine to keep the tar from collecting in the grooves of the theave wheels are just the thing, but the abrasion and consequent wearing to which they are subjeeted will render an abundant supply of scrapers indispensable.

After paying nut the length of cable stated (over three miles), the engineer gave the order to reverse the machine and to wind in. This was but the work of : few minutes, and soon after the order was given it was carried ilto execution. Not more than two hundred fathoms had

- been recovered from the sea before the line parted, and from the cause referred to.

The new cable was now brought into requisition for the first time, and the Agamemmon having been signalled, the ends were spliced as before in the case of the experimental line. At a quarter to five the wheels of the machine began to revolve, and by six, two miles and a half of cable were paid out, when a sigual was observed on the Agamemon conveying the unvelcome intelligense that it had parted. This, it was afterwards understood, was caused hy a change which had been made in the paying-out machine of the Agamemnon, under the directions of Messrs. Bright and Canning. The wheel leading on to the machinery was made of east, instead of fheet-iron, and was consequently mueh heavier and less adapted to the work for which it was designed*ssimply to act as a check in preventing the too rapid passage of the cable on tho paying-out sheaves. Its unfitness for the purpose becane so clearly apparent from this mishap-or fortunate accident, we should perhaps say-that it was at once removed, and the shect-iron wheel. similar to that on the Niagara, substituted.

As nothing further could now be dowe in the way of paying out, it was concluded to haul in, and by half-past nine the whole of our portion of the cable was reenvered. A glance at the indicator or dynamometer showed a strain of a little over two tons and a half, while the first quarter of a mile was pussing over the stern sheave.

Third Day.
The last experiment which was to settio the praeticability of buoying up the cable, was set down for this day. To appreeiate the value of
this experiment, it is necessary to know that serious fears were entertained about the capability of a buoy to retain its hold upon the deep sea line when exposed to the action of the sea in a gale. The foree of the waves, it was urged, would act upon it in such a manner as to cause it to give way at the point where it is joined, or some other part of the cablethat may be subjeet to the greatest strain. An immense bnoy; shape somewhat like a segar, capable of sustaining five or six tons, and sixteen or eighteen feet in length, was put on board of each ship. This was now brought into use on board the Niagara, and attached to the cable after three and a quarter miles had been paid out. Away it went from the side of the vessel, and the moment the weight of the cable nuspended from it was felt, it assumed an erect position, about two-thirds or ten feet of its length appearing above the surface of the water. A smaller buoy, called the watch buoy, had bcén attached to it by a rope, and the two floated off from the Niagara, which continued paying out the cable until it gave wny again at a part whieh inspection showed was completely destroyed by the rusting of the outer wire. This occurred about half-past nine A. M. At half-past ten the watch buoy was taken up, and the ship was proceeding in the direction of the cable buoy for the parpose of hauling it on board, also, when it was observed falling from its erect position, and lying its whole length on the surface. There was only one explanation for this. The cable had parted, and the booy relieved from the weight of it, assumed a recumbent state. When taken ap, it was observed that the three and a quarter inch ropestopper bad been cut off by the working or abrasion of the cable.

This was the last experiment on the memoranda, as we have said, but it was agreed to try another before starting for Plymouth. There were some miles of experimental cable left, and as it was desirable to know bow fast the wire bould be laid with safety, it was concluded to employ this with that view. The engine was set to work in submerging a sufficient length or weight of it to put the wheels in motion so that the machinery would work of itself. Less than half a mile of it was submerged in this way, when the engine was detached; the paying-ont wheels, being subjected to the weight of the submerged portion, commenced revolving, and as a comparatively slight pressure was put upon the brakes, the cable went out at the rate of between seven and eight miles an hour, without exhibiting the least tendency to kink. Nothing could be more satisfactory or conclusive than this last experiment, as showing the high speed at which the line can be submerged with safety; and should it be adopted by the engineer, we shall accomplish the laying of our half of the three thousand miles in somewhat less than six days.

As there was nothing more to be done, the Telegraph Squadron made as direet a line as possible for Plymoth, where it arrived at six o'cloek on Thursday, the 3d of Junc. During the passage the Agamemnon attempted another trial of speed with the Niagara, but with no better success than she, had lasi year. She was, in fact, rather badly "beaten, and fiad her new commader, Captain Preedy, only known the qualities of the Niagara, he would hardly have risked another defeat. Nothing like-one's own experienee, however.

Report of Mr. W. E. Everett in, regard to the paying-out machinery and the submerging of the Cable.
?

$$
\left.\begin{array}{r}
\text { Unitian Statea Steay Friatati Niagara, } \\
\text { At Sea, June 3, } 1858 .
\end{array}\right\}
$$

Crros W. Fixid, General Manager of the Atlantic Telegraph Company:
Sir :-For the information of yourself and the directors, I sabmit the following statement of experiments made during this trip.

Monday, 4 P. M., May 31, lat. $47^{\circ} 12^{\prime} \mathrm{N}$., lon. $9^{\circ} 32^{\prime}$ W $\mathrm{B}_{\text {a orndings }}$ 2,530 fathoms, this ship and the Agamemnon being attachedestern to stern by a hawser, 180 fathoms of cable were veered out for"the end to be taken on board that ship to be spliged. At $5 \cdot 30$, signal being made "all ready," in accordance with previens arrangement, one mile of eable was veered out. We then commenced hauling it in. At 6.30 had recovered half a mile, when Mr. Bright's message was reeeived sayiog he deflred ta make anew splice. At 9.40 received message " all is ready," and again commenced paying out as before. At $10.34{ }^{\circ} \mathrm{P}$. M., two miles were out. After this amount was paid out, the strain upon the eable was 3,600 to 4,100 pounds. At $11 \cdot 28$ commenced hauling in, but very slowly, as the strain nearly approached the breaking point of the rope. At 11.45 the hawser securing the ships together parted on the Agamemoon, but the ships were retained nearly in the same relative positions by working the engine when required. At $1 \cdot 40$, having hauled in one mile $506 \frac{1}{2}$ fathoms, the continuity was reported broken. We continued to haul in untll $2 \cdot 15$, when the end came, having lost of the two miles paid out 110 fathoms.

On Tuesday, at $8.40 \mathrm{~A} . \mathrm{M}_{1}$, the ships having been seeured and splice made as before, a quarter of a mile was paid out, hawser released and ships started ahead slowly, at the same time the cable was allowed to run quite freely until two miles had been paid out, when a gradual restraint was applied uotil an additional one mile 387 fathoms had been paid out, making in all three miles 387 fathoms. At this time ($10 \cdot 23$) commeneed hauling in, and had recovered 190 fathoms when the cable parted. At 4.44 P . M., the two ends of the new cable having been spliced, we paid out $2 \frac{1}{2}$ miles at a rate which had been previously agreed upon, the electricians passing signals through the whole length of cable. At 6.15 P. M., the Agamemnon made signal the cable was parted. We at onee commenced hauling in, the strain running up to 5,100 pounds during the receiving of the first quarter of a mile. At $9 \cdot 20$ the end came in, having lost 80 fathoms of the $2 \frac{1}{2}^{\prime}$ miles paid out.

Squadron ed at six the Agat with no aer badly 20wn the defeat.
achinery

```
RA,}
```

ay : I sabmit andings管tern to 0 end to ng mado ; of oable had reaying he s ready," wo miles he cable but very ho rope. be Agaive posibauled in We conthe two nd splice red and lowed to dual read been (10.23) he cable ng been y agreed of cablo. d. We ads durad eame

Wednesday, Junc 2, at 7•30, experimental cable was again spliced, one quartor of a mile paid out, hawaer released, and the ships started ahcad. In a few minutea the Agamemnon made signal cable parted. We conthued to pay out until $3 \frac{1}{2}$ miles were out. Tho ship was then backed, large buoy and watch buoy attached to the cable. Ship again run ahead, and when 300 fathoms had been paid out the cablo parted on the maohinery. The ship then made"for the buoy with the pope of : recoveriog the end of the cable; but while hauling in the watch buoy, the large buoy suddonly fell over, showing it had separated from the oable Upon recovering it we found the rope-stopper ($3 \frac{1}{2}$ inch rope) had been cut off by the cable. At $12 \cdot 55$, by the request ōf Mr. Woodhouse, we paid over tho end of experimental cable, to ascertain how rapidly it could be run off the coil with aafety, but no greater speed was attained than seven knots, as the cable was being often stranded on the machine by the accumulation of tar in the grooves, which was so hard that no soraper could be made to removo it at any speed. All the cablo used to-day was that brought from Greenwich expressly for cxperimentiag, and was long aince condemned. Undoubtedly it has been nuch exposed to the weather, and stowed where conaiderable sand or dirt lias been thrown upon it. With the cable whicle'was recovered last year, and used by us during the experiment, we had no serious difficulty in keeping the tar out of the grooves, it being comparatitely soft, though the nmount was beyond what I could have believed. The amount of tar on this oable is much greater than that upon the cable intended to be laid down, thérefore I believe we can make such provision as that it shall not become a serious obataole.

- The result of this experimental trip has demonstrated that we have the capability of hauling in the cable to a greater extent than I had expected. Not that I believe any great distance could be recoverd, but in the general depth of water where the cable is to be laid, in good weather, should a fault go overboard before the ship could be stopped, I âm of the opinion sufficient of the cable may be hauled in to remedy the fault.

The oporation of the machinery generally is certainly satisfactory, and there is no alteration I can suggest other than in the tar scrapers, whieh will require modifieation. The amount of tar acoumulating is so much beyond what could havé been expected from last year's experience, owing to the repeated eoatings it has received since it was uoloaded from this vessel last October, that extraordinary provision will be roquired. As regards the attaching of bnoys, we can attach them, but at a great risk of breaking the cable, and they should not be ased in deop water except as a last resort.

The arrangoments for coils, provisions for leading the rope, and all the other many partieulars incidental to this work, which have been under the direction of Mr. Woodlouse, do not require any alteration, and fully meet the requirements. I am, respectfully, your obedient servant,
W. E. Everett.

THE SAILING OF THE SECOND, OR THE UNSUCCESSFUL EXPEDITION OF 1858.
 -

Tus Telegraph Squadrou arrived, as has been stated, at Plymouth, after the experimental trip on the 3 d of June, and having received a fresh supply of coal, started for mid-occan on the 10th of the same month. The point in mid-ocean which had been decided on as the place of ${ }_{\text {a }}$ rendezveus was in lat. $52^{\circ} 02^{\prime}$, long. $33^{\circ} 18^{\prime}$.

Each vessel had about fifteen humdred statute miles of cable on board; making a total of three thousand, or a little more than fifty per cent. over the dlstance to be traversed by both. The weather had been very fine, and there was every appearauce that it would continue so for some weeks. In faet, the summer had now fairly set in, and we folt hopeful in the assurance given us by Lieutenant Manry, that the month of June was the mildest of all the months in the year. We now looked forward with the most sanguine expeetations to the time when we should land our end at the Newfoundland terminus, and with swelling hearts thought of the enthasiastic welcome which we knew would greet us, when we returned to the commercial metropolis of the Union, after the suecessful accomplishment of the greatest, work which has cver been conceived or attempted by the genius of man. The Sunday before our departure we were visited by a friend from New York (Rev. Henry Field), who told us with what interest and anxiety our people regarded the enterprise in which we are engaged, and how eagerly they awaited the moment when the first despatch from Newfoundland should apprise them that the cable was laid. That Sunday he preached a most appropriate sermon, in the course of which be made frequent reference to the great enterprise, and to its importance not only in a material but in a moral point of view, as bringing the nations of the earth into more intimate relationship with each other. The scene was certsinly one that will not be forgotten easily, and the words of the preacher made a deep impression on the minds of his hearers.

On the 10th of June, as has been' stated, we left Plymonth about ten o'eloek in the morning, and took the direct course for the point of rendeavous, the four ships sailing in company. The Porcupine, whioh
was the smallest stcamer in the squadron, had been sent to St. John's with orders to meet the Niagara on her way to Trinity Bay, so that besides our own vessel and the Agamemnon there wers but two others, the Valorous and Gorgon, the last of which was to act as our escort. There was no publio demonstration at our departure, and with the exception of a few of the members of the company and their friends, there were noné to bid us furewoll. Iu ar few hours we lost sight of the landmarks along the coast, and Eddystone light, whieh staids upon a reef of rocks out in the channel, and about seventeen miles from Plymouth, was rapidly disáppearing below the horizou. About eight o'elock tho land, which was gradually becoming more indistinct, was lost amid the evening shadows, but we could still see through the hazy twilight objects at the ulstance of four or five miles. For the two following days the weather continued very fine ; but on the third, (Sunday, June 13,) the wind, which in the morning was moderate, freshened considerably towards evening, and at uight blew a perfect gale. We were not a little surprised at this, especially as we hind been led to believe, from the staten. n ts of those who were supposed to know something about the subject, that wo were to have had nething but gentle breezes and smiling skics. The delusion, however, was very soon dispelled, and before the end of the gale we were pretty well tircd of our sea experience, and sighed most carnestly for what some poet songster, iu an unaecountable fit of enthusiasm about the ocean, has called the "dull, tame shore." It was certainly a most severe gale; but in the Niagara wo could not realize its severity, and it was only when we came to hear what wild work it was nearly making with the Gorgon and Valorous, and did make with the Agamemnon, that we began to have a proper-idea of its true character. During the gale we had our spritsail yard and flying. jibboom broken, ahd the same sea by whieh this damage was done dislocated the right, or, as the sailors call it, the starboard wing of the American eagle, which forms the figure head of the Niagara. The injury, however, was repaired on the first opportunity, and the national bird restored to his pristine beauty and strength. It may be interesting to know that his mate on the stern, another terribly warlike-looking fellow, bad not a feather ruffled, and looks as terrible and as warlike as over. This was the only damage inflicted upon the ship by the gale; but the fearful havoc it made among the domestio utensils of the wardroom, and particularly those of a brittle kind, would have gladdened the heart of a dealer in crockery.

On the 19th of June we had a heary see and some bad squalls. The baromater fell as low as 28, and stuck there with such obstinaoy as to render it doubtful whether it would ever rise again as high as 30 . Each

4trin
day was but a repetition of the day before, and the log-book was one unwarying record of the samé particulars. Ono day it was "blowing heavy in squalls," and the next day it was "blowing heavy in squalls," and the only change was at the end of the gale, when the reader was informed there was "a fresh gale" and "heavy sea with squalls." We had managed to keep the Agamemnon in sight till Monday, June 21, when we lost her abput 7 owtock in the morning. The sea was heavier than we had yet seen it, and we found it impossible on that aecount to run down to her, as we were frequently obliged to do, in consequence of her drifting so rapidly to leeward. We were actusted in this solely by considerations for the safety of our own ship, which would have been mach endangered by attempting to follow her under sueh circumstances. - On the evening of the 21st of June, the wind maderated; the barometer began to rise rapidly, and thero were other pleasant indications of an agree'able change in the weather. As the barometer rose the sea fell, and "the following day, according to the stereotype phrase, was ": all that could be desired." We had been buffeted about long enough, and were driven 'nearly three degrees further north than we wished, having drifted to lat. $54^{\circ} 30^{\prime}$, when we never intended to go higher north than lat. 52 . So much for the operations of the gale. We now set out for the rendezvous, and arrived there on the afternoon of the 23d, when we found the Valorons and Gorgon there before us-the former having reaehed it on the 21st, and the Gorgon on the morning of the 23d. An officer oame on board from the Valorous, and informed us that they, too, had had very bad weather, and that they had not seen the Agamemnon since the 18th. We were also informed that the Gorgon nearly lost both her masts, and the Valorous her quarter boats. Captains Aldham and Dayman said that it was the worst weather they had ever experienoed in tho North Atlantic.

This night a thick fog set in, in whieh we lost sight of the two escorts. The next morning, at five o'olock, Lieut. Guest, who was offioer of the deck at the time, spoke a packet ship bound from Liverpool to New York. She was not in sight more than ten minutes, on account of the fog, and had she not been quite close to the ship it is doubtful whether she would have been seen at all. When Mr. Guest first saw her she was loonuing up through the fog.
"Where are you bound for?" said he, as soon as she came near enongh to speak her.
" To New York,", was the answer.
"Please to report the United States frigate Niagara."
"Ayel aye!" responded a voice which it is supposed belonged to the oaptain; and he immediately asked in tum: "Where are the other vensels ? ${ }^{\prime \prime}$
" In company around us," Mr." Guest replied.
It was supposed by this time that the other vessels and the Agamemnon were close at hand, although not visible in consequence of the fog, and it was under this impression that Mr. Guest answered as he did. There was no time for a more lengthened conversation, and the object was to make it as laconic and as much to the point as possible. The last answor was' received by the captain with a wave of his hat, to which a similar pantomimic return was made, and both vessels lost sight of each other almost immediately after.

Before the close of this day we had another gale, during which it blew in heavy squalls. The morning of Friday, June 25th, however, broke clear and pleasant, and about two o'clock in the afternoon, we saw the Valorous, the Gorgon, and the Aganemnon, all on the rendezvous. At half-past four o'clock we received a visit from Captain Preedy, from whom we learned that be had reaehed the rendezvous at twelve o clock. He also reported severe weather, and said that during the gale, of which we have already spoken, the upper part of the main coil, which contained a thousand miles of cable, had shifted, and that for some time they were in a very perilous condition. About a hundred miles had to be remeved and coiled on another part of the ship; and as soon as the coiling of this was finished he would be ready to make the aplice and commence the work of paying out. Some idea of the effects of the gale on the Agamemnon may be conceived from the fact that the strain to whieh she was exposed by the great weight and peculiar nature of her cargo, opened her water ways about two inches and a half. The water ways are that part of the ship where the deck and the sides are joined, and when they part to any great extent, the vessel is considered in a dangerous state. Captain Preedy finding it impossible to keep the ship's bead to the sea, on account of the shifting and working of the cable in the main coil, determined to scud before the gale, whioh he was obliged to do for thirty-six hours. The scene on beard was reported to have been fearful. •The ship rolled very beavily, and at one time nearly every man on deok was thrown off his feet; one man, a marine, was literally frightened ont of his wits, and was crazy for some days. One man had his arm fraetured in two places, and another had his leg broken. Every eye was turned on Captain Preedy, who, fully aware of the imminence of the danger, exhibited the greatest coolness and self-possession, and finally succeeded by his admirable seamanship in saving his vessel. It was peculiarly gratifying to see him once more, and to know that he was ready to g 0 on with the work. In the midst of the fearful scene that took place on the Agamemnon a rather ludicrous inoident oceurred, which must not be omitted. One of the landsmen, who, it would appear, had
very little experience of the sea, had not been seen for a long time, and his friends, anxious about him, searohed all over the ship in their endearors to discover his whereabouts; their efforts, however, were unsuccessful, and they were just giving up all hope of ever seeing him again, when some one suggested that the bread eloset had net been looked into. The idea of his being in such a place was treated with contempt, but it was decided, however, to take a peep at it. The door was accordingly opened, and there, snugly ensconced in a corner, was the individual who had caused all the anxiety and trouble. It was never discovered why he.went there, but sone people are uncharitable enough to say that he bad designs upon the provisions.

COMMENCEMENT OF THE WORK.

Saturday-Juna 26
The state of the weather was most propitious for the beginning of the work, and we all felt anxious to see the splice lowered into the water. It had been agreed upon that it should be male on the Agamemnon, and that as soon as they had begun to pay out a red flag should be hoisted as a signal that we should do the same. The splieing was one of the most important and at the same time one of the simplest opera. tions connected with the work of laying the oable. The process may be divided into three distinct branches-the joining of the copper core or ognductor, the insulation with gutta percha, and the splieing of the outer protecting wire. The gutta percha is stripped off the conductor to the length of about two inches on both ends, whieh are laid over each other, and bound with copper wire, as is seen in figure 4 of the annexed engraving:

Fig. 1.

Fig. 1.

Fige

He H

ong time, and their endeave unsuccess. again, when dinto. Tho t , but it was accordingly lividual who covered why say that he
ginning of ad into the n the Agaflag should ing was one lest operaress may be er core or f the outer tor to the ach other, nexed en-

Fig. 6.

Over this again is laid another binding of copper wire, and the soldering repeated, so that the part which is spliecd by being thus strengthened, is made stronger than any other. This double binding is seen in figures 1 and 5 , the ends having been previously prepared as they appear in figures 2 and 3 . The great advantago of this manner of eplicing will be at once pereeived by reference to figure 6, which shows that in the event of the rupture of the splice the connection is still kept up by the single wire, which in this case being in contact with the several ends preserves the clectrical continuity. Should there be any so skeptical as to disbelieve this, it ought to be sufficient for then to know that were the wire eleven times smaller than the small strand of sev. 'wires which form the core, its power as a conductor of the electrical current is reduced only one thirty-seventh part in a whole milea The splieing is completed by the insulation of the core with three layers of gutta percha, each of which is abont as thick as ordinary foolseap. Layer after layer of this is laid on till it is brought to a uniform surface with the rest of the gutta percha insulation, after which the outer protecting wire is laid on and bound in a somewhat similar manner to the splicing of the condnctor. To the splice when thus form is attached a crescent-shaped piece of wood, about eight *et in length, through a groove, in which the eable is plaeed, and in which it is seeured by a flat picce of sheet-iron of the same length and form as the wood. The spliced portion is in the centreof the wood, but to prevent any strait upon it a strong iron-bound loop is made of the cable at either'end of the erescent, and these two loops are afterwards fastened by an iron shackle, which takes all the strain off the splice. This operation took about two hours, and the moment it was finished tho lawser which held the two yessels was released, and the prociss of paying out commenced. The continuity was tested by the electricians and found to be perfect, and we had fulmerged something like two miles and a balf of the cable when it parted on the machine. The canse of its fracture in this instanee was very simple, and by proper attention might very easily have been avoided. The cable was allowed to run on the machine too slack, se that the leading on part of it got into the wrong groove, and in the endeavor to put it back into ita proper position it was thrown off the wheels altogether, and, falling down on the for seraper, was broken. The break of-omatinuity was som disoovered on the Agamemnon, and both ships immediatels returned and
made a new splice, when the work of paying out was onee more resümed. This time there was no running of the cable into the wrong groove, and the utmost eantion and vigilance were exercised over the machinery. About half-past six nearly ten miles were paid out from both ships, and at eight the tro vessely lost sight of each other. The electrieians were at their post, and repo ted the continuity "all right." The cable was going out at the rate of five and six miles an hour, while the speed of the ship varied from four to five, so that by midnight thirty one miles had been submerged. This certainly looked like work, and augured favorably for our suceess. Our hopes, however, were destined to be shortlivel, for about ten minutes to 1 A . 3. of the following morning the continuity was destroyed. How this was done could not be satisfactorily explained, but the general supposition on board the ship was that it was caused by the parting of the cable on the Agam monn. .

Suxday, June 27.-The continuity; 2A has been stated, ceased at ten minutes to one o'elock this morning, and after about thirty-one miles of cable had been paid out. The vessels had long since ran ont of sight of each other, and it would, perhaps, require another day before they could return to the rendezvous. After the electric comminication was severed the speed of the ship was reduced to less than two miles, and the cable paid out at a proportionate rate for three hours. This was considered a sufficient length of time to allow for the prolability of its returning; but being now thoroughly convinced that it was gone forover, the action of the machinery was reversed, and they comm aced winding in. About a hundred fathoms had been recovered when the cable parted, the amount lost in this seenod attempt being forty-two miles and 300 fathoms. The Gorgon was informed by signal of the disaster, and both vessels proceeded on their course to the, rendezrous. The ill success which lad thus far attended the expedition was very discouraging, and as we were altogether ignorant of the cause of the loss of continuity we were growing very doubtful about our chances of success. Some were under the delasion that the difficulty was ereated by the brakes, the prejudice against which still existed from the first expedition, when the cable was broken by the defective machinery; but this part of our paying-out marhine was perfect, and realized all the expectations that were formed of it. It was inpossible, however, to disabuse the miods of those who had eonceived this prejudice of its iugustice. It was their belief that the weights on the brakes, which never exceoded nineteen hundred pounds, produced a heavier strain than tho cable was calculated to bear, and that it stretched until the inner core or electrical eonductor parted, thus destroying the continuity. Finding prose too dull and heavy to express their feelings on the subject, they inveked the aid of the muse,
and gave vent to their feelings in the following remarkable piece of com. ${ }^{-1}$ position :

> Pay it out, oh ! pay it out, As long as you are able; For if yoin put the darned breaks on, Pop goes the cable.
'It was intended to be a parody on the popular song of "Pop goes the Weasel," but after one verse the mose became exhausted, refused to get off another, and literally broke dows. The brakes were put on in a poetical sense, and the composer found that he could not continue to "psy it out." .

The Alice Munroe, a packet ship bound from Liverpool to Boston, was spoken about ten o'elock this morning, and a boat sent out with Mr. Field and Lieatenant Gherardi. Mr. Field gave a brief account to the captain of the proceedings of the expedition. He was also entrusted with a large number of letters to be put in the Post Office on his arrival in Boston, in the hope that our friends would hear from us before we could reach Newfoundland. A few hours after, the Alice Munroe was out of sight, and we resumed our course for the rendezvous.

Monday, June 28.-We were on the look out the whole morning and a portion of the afternoon for the Agamemnon and ${ }^{`}$ Valorous, and as there was no appearance of either of them, we felt somewhat apprehensive about seeing them at all this day. The Gorgon was also out of sight, but we naturally supposed that she was cruising around in the hope of falling in "with one or both, as they very seldom lost track of each other. The weather was every thing we could desire; the sea was comparatively smooth, and it was just the very time to make a splice. The ill success of our two first attempts, it is true, was rather discouraging, but it was resolver auat as long as we had suffieient cable to justify is in trying again and again, and sufficient coal with which to make the passage from the rendezvous to each side, we should not absadon the expedition. The failure which attended the first was purely the result of an sccident, but it was very different with the second; and as no satisfactory or reliable explanation could be given as to the cause, our confidence in the ultimate success of the undertaking. was terribly shaken. Various were the surmises and conjectures in regard to the subject. One was of opinion that too great a strain had been put upon the cable, and that either while on its way to, or resting on, the bottom, the conductor parted and the continuity was thus destroyed. Another believed that it was cut by lying on the top of a aharp roek : but the fact that the eougdings both of Lieutenant Berryman and Commander Dayman prove that the bottom on this part of the
plateau consists of ooze, is a suffieient refutation of this theory. Mr. De Sauty, ono of the principal electricians, expressed his belief that the cable was broken on board the Agamemnon, while his associate, Mr. Laws, thought it had given way near the splice. Our soxiety to have this disputed point settled by the appearance of the Agamelu on became painfully intense, and the feeling was rather inereased than diminished when she made her appearance. We bad made up our minds upon two points-first, if the cable parted on the Agamemnon, the prevention of such an occurrence might be found in the increased vigilance and carefulness of those having charge of the work; second, but if it gave way on the bottom our ignorance of the cause must consequently render us totally unable to provide against it. What, therefore, was our dismay, when we heard from the Agamemnon that the break had i.ot taken place on board that ship, and that they had supposed it happened on the Niagara. But this is anticipating, and we will, therefore, proceed in the regular arder of our narrative.,

The Agamemnon hove in sight at two o'elock in the afternoon, in company with the Valorous, and abont two hours after the Gorgon became visible. There was no mistaking the line of battle.ship, with her heavy massive hull looming above the horizon, as she was driven forward under an immense cloud of canvas. Nearer and nearer she came, until her two long white streaks could be plainly distinguished, and in little more than an hour from the time she was first seen she was within a few hundred yards of our ship, exehanging signals with us. Tho following question was asked from the Niagara as sho came near enough to read our numbers:
"How did the cable part?"
To which she replied-
"The cable did not part-current ceased."
Thus were our worst fears realized-it must have given way on some part of the bottom, whether at or near the splice it was impossible to deeide. The eurrent had ceased. This was our case too-it was the same story on board of both vessels; but there was no use in further conjecture, or in repining over what could not now be avoided. There was but one course left, and that was to spliee again and make another, and what we fondly hoped would be, a final attempt. Those on board the Agamemnon had evidently come to the same oonelusion, as wh'shown by the signal which they displayed, and which, translated from the: numbers, read as follows:
"Are you ready to splice ?"
To this an affirmative was at once returned, and preparations were immediately made to enter once more apon the great work wo had un-
ry. Mr. De ief that the ssociate, Mr. :iety to have -ou became diminished minds upon n, the pree increased the work; of the cause t it. What, emnon that it they had pating, and ive.
fternoon, in Gorgon beip, with her ren forward e came, unhed, and in on she was als with us. oame near
en way on impossible -it was the urther conThere was nother, and board the a/s'shown from the:
dertaken. Our confidence, however, as we have stated, in the prospect of success, was greatly impaired. The Valorous sent her two boats to the Niagara to receive the hawser which was to connect her with the Agamemnon preparatory to making the splice, and in the mean time a boat was sent from the Niagara to the last-named slip, with Lieut. North, Mr. Field, Mr. Everett, and Mr. Dé Sauty. At the interview of Mr. Field with the engineers on the British cable ship the jullowing agreement was drawn up and sigued:

Aameanon, June 28, 1858.
Should any'accident oceur to part the cable before the ships have run one hundred miles from rendezvous-viz, N. lat. $62^{\circ} 62^{\prime}$; W. long. $33^{\circ} 18^{\prime}$-ships to return to rendeavous and wait eight days, when, if the other ships do not appear, then to proceed to Queenstown.

If ships (Niagara and Agamemnon) should return to rendezvous they will at once make the splice and proceed paying out, not waiting for either the Valorous or Gorgon.

Cyres W. Field, Wm. Thombon, Chas. T. Bright, S. Cannina, W. E. Everett.

During the absence of Mr. Field the work of connecting the two vessels by a hawser, and of making the splice, was successfully and promptly performed, so that by half-past seven, the time at which the red flags were displayed on both ships, the process of paying out for the third time, was commenced. The wheels revolved very slowly at first, as if they were living sentient beings, and were imbued with the general feeling of the caution which had taken possession of every one. A slight commotion of the water around the stern of each ship showed phat they were both under way, although they hardly seemed to move. The engineers wero determined that the cable should have a fair ehance to reach the bottom before it was subjeet to any strain. As soon, however, as a sufficient length had been paid out the apeed was slightly augmented, and by nine o'cloek the distance was gradually increased at the rato of some five miles an hour, each ship going at two miles and a half in the same time. The evening, which in this northern latitude is so much lengthened ont as to leave little or no night, was now setting in, and the mists, olosing over the Agamemnon; like a huge veil, rendered her huge hull but dimly visible, while the upper portion of her lofty spars had entirely disappeared. The Valorous had taken her position ou the starboard bow, and our little eacort, the Gorgon, had resumed her postas our guide. It was a beautiful evening, more beautiful than any we had yet been favored
with since we left Plymouth, and the severe gale through which we had - passed, and which was yet fresh in our minds, gave us a more thorough appreciation of it than we might otherwise havefelt. Δ ten o'elock the Agamemnon was dimly visible, and in less than half an hour we lost sight of her altogether, as she stcamed on her eastward course. No accident had yet occurred to interrupt the work; but we almost dreaded to think of the future, lest it should have some other misfortune still in store for us. Nothing could be more satisfactory than the manner in which the machinery worked, and the process of paying-out was going on most successfully, but we could know nothing of the agencies that were at work, perhaps at the botton of the ocean, to overthrow what little hope or prospect of success was yet left. Were there sharp pointed rocks lying on that plateau which Licut. Maury had told us. way a level plain, a great submarine prairie, or was it covered with a soft coating of mud or ooze, in which it had been said the cable might rest undisturbed for years, as on a bed of down? The soundings of Lieut. Berryman and Captain Dayman show that at least this part of the plateau is covered with this soft, and for our purpose, inyaluable deposit.

It is now twelve o'clock, and the work is progressing in splendid style -in such splendid style, in fact, that, to use the frequent phrase on board, stock has gone up nearly a hundrod per cent. The question is asked, if we can lay forty miles of it successfully; what is to prevent us from laying a thousand, should this fine weather continue ?-and as we know of nothing, it is generally agreed that it is practicable. Ah, but then the cable is such a delicate thing, and is, therefore so liable to injury, for if, by any accident, a hole, through whieh it would be impossible to force even a hair, were to be made in it as far as the conductor, the insulation and electrical continuity of the whole three thousand miles would be gone forever. Then again the slightest accident arising from the carelessness of the men might defeat the whole undertaking just whon we were within a hundred miles of Newfoundland. One thing, however, is certain-that every day which brings us nearer to our terminus reduees the risks and chances of failure, while the increasing prospects of success will render the engineers more vigilant and cautious. Looking at the magnitude of the enterprise and the wonderful results which must attend its successful termination, our triumph seems almost too much to expect, and we are hourly haunted with a dread that the worst has yet to happen. Every one who can spare the time from his other dutics seems to regard the paying-out machine as under his special supervision, and visits it as often as those duties will allow. The samo feeling prevails alike among the officers and men, and although there is a rule that none but the engineers shall be allowed to approach within a cer-
ich we had e thorough ten o'elock our we lost urse. No ost dreaded nes still in manner in was going encies that hrow what cre sharp d told us with a soft night rest of Licut. of the pladeposit. endid style on board, is asked, ; us from we know but then to injury, ossible to r, the inund miles from the ast when however, s reduces f success g at the ch must much to has yet dutics ervision, ing pre8. a rule a a cer-
tain distance, yet they are content with a glance at its operation if they are satisfied that the cable is going out in good order. The parting of the cable, however, is not-as hias been shown by our expericice on this expeditlon-the only thing to be dreaded. There is yet another point which is a cause of as much, if not more, disquictude. Let the cable. be laid across the plateau, yet, if the little strand of seven copper wires which compose the electrical conductor should be broken, the whole line is absolutely valueless, and the million and-a-half dollars expended in its purchase, might as well bave been submerged in the ocean. There is no word perhaps in the English language which was fraught with such important meaning to those engaged on the first expedition as the term "continuity;" and cven those who had not the slightest pretensions to scientific knowledge soon learned to appreciate its significance. We approach the elcetricians' office with a feeling of dread, lest at any moment some one may come out to inform the engincers that the continuity is lost. Let one of the operators inquire for either of the principal electricians and in a few minutes he will have a crowd of cager inquirers about him, all anxious to know if there is any thing, wrong with the cable. Talk of the mental excitement of the gambler in comparison with that state of anxiety and suspense in which the mind is kept while
sthe process of paying-out the cable is going on. The machinery may be working in the most satisfactory manner; but as we have shown, it does not dcpend on the machine alone, for there may be other agencies at work on the bottom of the ocean of which we are at prosent in ignorance. There is no reason as yet to say positively that there are; but the canse of the break of continuity the first time on this expedition still remains in oncertainty and doubt. The most reasonable theory is, that the outer wires were untwisted in tho process of laying, and that the strand of copper wires of which the conductor is composed, parted ander the excessive strain to which they were subjected. Whatcver theories may be formed in regard to the way in which the continuity was destroyed, and whatever apprehensions may be felt in regard to the final success of the undertaking, the admirable manner in which the operation of paying-out is performed, and the gratifying reports which come from the telegraph office, are certainly calculated tg inspire oonfidence and hope. Stepping upon the poop of our ship, one can trace the'long blaek line of eable as it passes over the stern and enters the water. It is now going out at the rate of about five miles and a half an hour, while the speed of the ship is four and a half; so that the part that is now seen running out over the stern will take something like half an hour to reach the bottom, whieh lies at a depth of about two miles beneath us. The strain upon it is nipeteen hundred pounds,
which some say is too much, but which tho engineers of the company insist is the very least that can be used. By redueing the weight to a still less amount they contend it would be imposibible to prevent the cable from runuing out perfectly slack, and the loss of a mueh greater length than the surplus provided over and above the distance between the two points of conncction in Ircland and Newfoundland. There is, in fact, a great difference of opinion on this point, and each party holds to its belief with the greatest tenacity. Says ono party-those in favor of a strain being pat upon the cable-" We might as well not attempt to lay it at all as to lay it without a strain; it would be expending cable to no purpose, and we should not have enough to reach land with."
"Yes," the other party reply, "but the diffieulty is in your putting on too great a weight."
"Too great a weight!" is tie rejoinder, "why certainly nineteen hundred pounds cannot be called too great a weight."
"You may think not; but look at the cable as it goes over the stern, and observo how many turns it takes before it reaches the water."

Thil is a feature which appears rather unfavorable, whatever may be the result, and $i t_{0}$ is well to speak of it here, on account of the importance which some attach to it. The number of tarns the cable takes opposite to the twist is cleven in a length of one hundred feet, which is the distance between the stern and the surface of tho water. Now, as it is contended, if it takes so many in a hundred feet, will not the outer wifes be wholly unlaid before the cable reaches the bottom, and will not the whole strain be brought upon the gutta pereha and the conduetor?

Whatever party is right, those for or those against the strain, there is no difference of opinion in regard to the successful manner in whieh the work is going on to-night, or rather this morning, for it is now past one o^{\prime} 'olock. The men are as watehful as men can be, and it will ecrtainly be through no indifference or neglect on their part if any mishap should befall the cable. The coilers are in the circle wide awake and on the look out for kinks, with the determination to "squash" them the moment they make their appearance, while the tar gatherers, who look after the grooves of the different wheels over which the cable passes, aro determined that none of the black and glutinous stuff shall intorfere with its progress. Every thing is going on well ; all appear to be doing their best towards the promotion of the undertaking; and having now laid some twenty-five miles snccessfully, there appear to be no reasons why we ahould not lay twenty five or a thousand more with equal success. And so with this conclusivo argument we retire for the night, and after turning about from one Bide to the other for at least an hour, in
our efforts to go to slecp, we at last suceced, and drean about cable laying, and the terrible effecte of too gr at a strain, till the colored boy Thomas wakes us with the inforination that it is now seven bells, and that in half au hour breakfast will be op the table.

Toesdar, June 29th.-The first question which every one aske on awakening is about the cable, and anbeing informed that it is all right, he is satisfied, until he gets his breakfast, when it is to be presumed he is atill more satisfied. Such a question, however, is entirely superfluons, if the individual hangs up his hamnock anywhere within the sound of the delightful and harmonious musio made by the maohine. He can hear for himself, and if he should happen to ask it is simply that he may have the pleasure of being informed of what he knows already, like most men who think they never can hear good news repeated too often. Every thing seent favorable at present for the success of the expedition; the weather never looked more propitious, and the barometer is up so high that it appears as if fixed for the remathder of the summer. The late gale was evidently the closing up of the windy season, which, in these latitudes, renders navigation rather an unpleasant occupation. Had the poet who was so anxious for "life on the occan wave, and a home on the rolling deep," beeu with 'us in that eight days' blow, he would have been perfeetly satisfied, and perhaps a little more desirous for a fixed habitation. We were not a little astonished at its duration when we remembered that it was in the mild and balmy month of June, which Lieut. Maury informs us is the best for laying the cable, if gales alono are to be taken into the account. His calculations, however, have proved in our case to be terribly astray, and have been partly the cause of the expedition sailing in this month. Had we but known what was in store for us, and that by delaying our departure for two or three weeks we would have escaped the most severe weather we have yet experienced, wo certainly would not have sailed before the latter part of June or the commencement of July. However, as has been stated, we are at last favored with good weather, although not so pleasant ay could be desired. It is very seldom during the day that the san is visible, and the fog is one of our most frequent and unwelcome visitors. But no matter; let us lay the cable this time, and all these little annoyanees will soon be forgotten.

At ten o'eloek this morning, the length of the cable paid out was about eighty miles, and the whole amount submerged between the two ships, at least one hundred and sixty. This is certainly doing well, and as there is apparently nothing to prevent us from doing this way all the time, confidence is reviving rapidly. The continuity is still perfeet, and the electricians report that the signals which are passing between tho ships are very satisfactory. No messages are tranuitted, as it was
agreed bofore etarting that none should be sent. The objuet of this is to prevent the possihility of those crrors which might arise from imperfect manipulation of the uperators, or diffientios from the subutitution of a more complex form of instrument than is reguired merely for the transmission of sigmals. By adopting the present plan, the electricians have not only prevented the occurrenee of mistakes from such a cause, but they have succeceded in securing the most perfeet way of sucertaining the electrical condition of the conductor. Now it is merely necensary to look at the needle to be assured that the continuity is perfect and that the signal+ are passing through the whole length of the cable. A great deal of interest centres around the electricians' office, and athough there are few, if any, who are scientific enough to understand the various operations that are going on therein, there are none who are dispused to undervalue their importance. The door is almost always shut, and the electricians pursue their work undisturbed; but it is impossible to exclude that spirit of inpuiry which will satiate its thirst for information even through a keyhole. The office, which is of the most limited dimensions, has been fitted up alongside of the wardroom coil, and that part of the top of the coil whieh overlooks it affords a complete view of the movements of the electricians and of the instrament which tells then, all about the continuity. The slender piece of steel whieh is attached to the centre of the dial that stands on the little bench before you, never fails to indicate the condition of the conductor. If there is no curreut passing through the cable, the piene of steel is perfectly motionless; but the moment a wave is sent through the conductor it exhibits nomistakable signs of activity, and refuses to return to its former quiescent state till the subtle current ceases to pass from ship to ship.

Various reports are current among the similors in regard to the operations of the electricians and the mysterious performances which are snp. pored to be going on in the little office. The continuity is something they don't exactly understand, but they are fully aware of its importanee, and know as well as the most learned that when it is gone the further laying of the cable is only a loss of time and a useless expenditure of money. Their interest in the work appears to increase every day, and although they will be the least gainers by its success they are none the less"anxious to witness its triumphant termination. The cable guardthat is, the body of men by whom the cable was coiled-appear to have taken the whole enterprise, under their special charge, and when among their associates who were not so fortunate as to have been enlistod in the service, speak in the tone of Sir Oracles upon every thing connacted with the subject, and are regarded by some of their messmates as undisputed authority. There are certainty nowe on thoship more willing to do
dject of ght arise from the required cut plan, des from rfeet way Now it is ontinuity ength of ns' office, is underare noue is almost ; but it its thirst the prost ou coil, complete ut which which is th before thero is etly moexhibitg mer quiip. e operaare sap. mething ortanee, furt ther turre of lay, and one the guardto have among 1 in the od with ispưthed

whatever is required of them, and none that should be mote substantially remembered by the Atlantic Telegraph Conopany. They hav, "erformed the hardest part of the work, and as long as theres was is font bif the cable to be coiled they wero always ready. As the payius-out process does not require so many, their number has been redued fiom over a humired to about sixty, and tho greater part of these are angaged on the coils, looking out for kinks-certainly an easy task compared with that on which they were formerly employed. There they stand, watching the enble as it is unwound at the rate of five anl six miles an hour, anl passes out over the cone on its way to the paying-out machiue. Turn after turn is unwound, faster than a man can walk, until there is not more than six Hakes left. The superintendent of the coil now calls ont to the man who is at the speaking tube which exteuds to the engine room to "go slow," an order he immediately repeats through the tube to the engineer on watch. The speed of the ship is at nuce redneed, the eable is paid out at a diminished rate, and as the last flake goes up, and as the centre of the coil-where the turns are perhaps six times less than near its cir-cumferences-is reached, the danger of kinking is entirely obviated. This process is performed every time a now fluky is commenced, as the rate of paying out from the centre-whem the tupas aive not more than seven or "oight fect in diameter-cannot, of course, be carried on safely with the same rapidity as at those points where the diameter of the tnrns varies from ten to forty foet. The coil is already reduced to one-half its originatsize, and adding what was paid out at the fatal termination of the seeond attempt, nearly one hundred and thirty tons of cable have been deposited at the bottom of the occan. Tho remainder will probably be payed ont between twelve and one o'elock to-night, should no aceident occur. Then there will be an exciting time, and the commencement on a new coil will be watehed with iutense interest, for the transfer from one cable circle to another is an operation which is sometimes attended with risk. All the preliminary preparations, however, have been made; the men thoroughly understand the nature of the operation, and it is almost impossible for an accident to take place. As there is considerable anxiety, however, exhibited in regard to its success, there won't be much sleeping done until it is all over. Although the machinery is working perfectly, and the angle the cable makes with the water shows that nothing is to be apprehended from the strain, the electricians' office is watched with an uneasy feeling, and the movements of the elcetricians themselves are eagerly followed, as if their very thoughts could be read therefrom. "Wcll, Mr. de Sauty," says one of the most anxious of the cable layers"well, how is the continuity now?" "Capital, and the signals are coming out in grand style, ${ }^{22}$ he rcplies; and adds, "I hope they will continuc̣

部空，
so "-a hope in which it is almust needless to say every oue indulges. The vessel was going about four miles and a half an hour at six o'eloek, and the expenditure of cable is about a mile more, the strain being nincteen hundred pounds, or a little less than one-fourth the amount the ealle is calculated to bear. Nine o'olock has struek, and the writer has just sat duwn in one of the little rooms of the wardroom to record the occurronces of the day in his note-book, when he hears a hasty step : utside across the floor, and some one asking in a hurried, nervous manaer for Mr. Laws. Thero is something in both that tells him all is not right, and in a few minutes more his worst fears are realized. The continuity is gono again, although the cable still goes out over the stern in the sanie style, and thero is no indication, so far as appears from the operation of the thachinery that there is any thing wrong. But the little magnetic peedle in the eleetricians' office-the unerring indicator of the eleotrical condition of the cable-refuses to move, and the electricians, after going through all the tests, have at last to suceumb. The continuity is gone, and they find it im ' issible to restore it, although they may use all the appliauces of the wor lerful seienee they have at command. It was subsequeutly, on the return of the squadren to Queenstown, found that the accident was caused by the parting of the cable a few feet from the stern of the A gamemnon.

After all hope of the continuity being restored was abandoned, a most satisfactory test was made in regard to the strength of the eable. The procoss of paying-out was stopped for about an hour and a balf during which the Niagara was literally held by it, the wind blowing fresh all the time. A pressure of over four tons was put upon the brakes, and it absolutely seomed impossible to break the cable. At length it gave way, after holding the ship, as we have said, on hour and au half, and resisting a strain of over four tons which was put upon the brakes. The amount of cable paid out was 142 miles and 280 fathoms, and the Gotal ampuut lost in the three attempts was 190 miles and 257 fathoms, while the distance run in the last attempt was 109 nautical n iles. This is a loss of $\because 1$ per cent, or about two-fifths of the surplus which was allowed for excessive expenditure in laying the cable. We have now on board $1,090 \frac{1}{2}$ nautical niles, whioh, added to a similar length on the Aganiemnon, makes a total of nearly 2,200 nautical miles.

THE STORM.

The severe gale through whieh wo passed was'so little felt on board our ship, that we could not realize its terrible force until we heard of its effects on the Agamemnon. AB, however, those who were ou board of her during the storm are best qualified to degcribe the sernes and inoi. aiu being nount the qriter has ecord the step ut9 manizer not right, ontinuity n in the he operathe little or of the ctrieians, he contithey may ommand. n, found eet from
doned, a he eable. balf durag fresh 3 brakes, ength it au half, brakes. and the fathoms, 3. This t mas al. now on on the nd inoj.
dents which occurred during thiose eight long aud anxjous days of its continuance, we will let them tell tho story. The following vivid and thrilling account is from the pen of Mr. Wood, the special correspondent of the London Times:

At half-past twelve, on Monday morning, the 12th July, the Agamemnon anchored off Queenstown, after having, us your readers are nov. aware, failed in the attempt to submerge the Athatie cable. The arrival of the Niagara must have made known the bare fact that the cable had parted, and the tremendous gales and unfavorable weather which all the squadron had to contend against, more or less, though only those on board the Agamemnon can be said to know the real nature of the peril which was encountered, and the long series of difficulties, mishaps, and misfortunes which marked almost the entire cruise from first to last. Not often have so many adverse and disheartening eircumstances been crammed into a royage of thirty-three days, and never have the enterprise, akill, and courage of all connected with the undertaking been more conspiouously displayed than in overcoming each obstaclo as it arose, alnost with every day. The next thing to success is to deserve it ; and certainly, if any scheme was ever entitled to prosper from the perseveranco and devotio 1 of those engaged in carrying it out, that success was unquestionably due to the efforts of all on board the Agamemnon in favor of the undertaking. For onee, howerer, fortune did not favor the bold. The attempt to lay the cable failed three times, and once in the most mysterious manner ; and those on board heve only the satisfaction of knowing that every thing that care and foresight could suggest was done. Beyond this conseiousness that all has been achieved that was possible with such materials, no comfort is to be gleaned from the latenattempts, except, perhaps, in the fact that as muc'l wire or more still remains than the expedition was commeneed with last year a a d that both vessels will start again for another and a last attempt tho instant they have filled up with coal-that is, by Saturday next at latest.
Y.our readers are already aware both the "wire" ships quitted England in the most unfavorable trim possible for bad weather. According to appearances at atarting, however, bad weather seemed of all others the risk least likely to be eneountered, so every thing had been foreseen, prognosticated, and provided for but a gale; that, of course, was out of the question. That traditional veteran, Brown, of tho Translantic line, who liad weathered so many storins in tho Atlautic, showed bow in June ono never had oceurred, whilo Jones proved how it wouldn't, and Robinson made "all sereno" by demonstrating clearly how it couldn't bappon. We might meet light wiuds and encounter some delay from calms and sultry weather, but a gale-a regular Athatie storm-the very idea
was food for laughter. So the wire squadron went to sea, with the two chief vessels laden almost to the water's edge, and in all other respects so little fitted for rough wator, that, had a tithe of the tremendous weather they experienced been foreseen at home, not a ship would have moved from Plymouth Sound. The Agamemnon had 2,840 tons dead weight in her, a monstrous load for any ship of her tonnage, but made still more dangerous and overbearing by the manner in which it was stowed. In her hold was the main coil, a compact mass of 1,100 miles in length, and therefore 1,100 tons in weight. On hor orlop deck, right forwaid, between the eyes, as sailors say, was another coil of 100 tons, while on her upper deck, and also right forward, was a coil of 236 tons. The latter was of suffecient size to interfere seriously with the proper working of the vessel from the deck, and the united weights of all, of course, brought the Agamemnon down by the head to an almost unsafe extent. The two small coils, it was said, counteracted the weight of the ponderous mass in the botton of the ship, aud certainly, if they did not tend to cheek the vessel's rolling, they made it easier and less dangerous to the masts. When the ship did roll, however, there was a constant struggle between the weights at the bottom and the weights at the top, and the ship's sides, as the levers along which the force of both was exerted and resisted, suffered in proportion. This, however, was not the evil of the upper deck coil, nor the reason which, after the bad weather had set in, made it an olject of constant anxiety and almosy, of dread to all on board. It was bad enough to cruise with a dead weight forward of some 250 tons, a weight under whieh her deek planks gaped an inch apart, and her beams threatened daily to give way; but when to these evils was added the fear in bad weather that in somo of her heavy rolls the whole mass would slip and take the vessel's side out, it will be seen that in the whole the precious coil was justly esteemed the bete noire of the entire affair-the millstono about the neeks of all. However, as we have said, nobody thought of these things when on the morning of the 10 th of June the squadron quitted Plymouth. It was then to be a yachting eruise-a mere summer-trip-and any talk of waterproofs and sou'westers would not have been more out of place in a drawing-room than on the deck of tho Agamemnon. The day favored this illusion. The barometer stood at 3064 , the weather was hot and sultry, and ufter all sail had boen set and re-set and every naval artifice adopted to cateh the breeze that would not come, Captain Preedy reluctantly (for we had little more than ooal for the voyage home) gave orders to get up stcam. The Niagara, having plenty of coal, had tho advantage of boing always under steam, and the Valorous and Gorgon did mostly as the Agamemnon. Friday was the ditto of the previous day. The
rith the two er respecta tremendous would have 2,840 tons onnage, but in which it 38 of 1,100 her orlop nothor coil was a coil: iously with ed weights d to an alracted the l certainly, easier and ever, there he weights he force of , however, , after the and almost th a dead cek planks way; but in some of 's side out, esteemed eks of all. on on the

It was alk of waplace in a vored this nd sultry, ice adoptluotantly orders to dvantage d mostly
ay. The
same eoquettish. breeze came fluttering through the rigging now and then, aud it was "Hands, up screw and make sail," and "down serew and shorten-sail," all day, till even Capt. Preedy wearied in his efforts to save fuel. Every ono wished for a brecre, and there were some who, never having been at sea before, muttered rash hopes that they might rather meet an Atlantic gale ; and their wishes were gratified as it turned out far more than the people who expressed them wished. Saturday the weather was cold and dull, but the breeze was so prononce, that the seres was finally hoisted, and the fires raked out, while the Agamemnon, under royals and stadding sails, went through the water at a rare pace, sending the foam from her bows and leaving a broad trail of still water upon the angry sea brigrt. What could be better?

It became less ${ }^{\text {a }}$. We towards noou, when the wind and sea got up as the glass we actanit whe the water grew darker, and the clouds on the horizon were merged iuto a dirty baze, thickening towards the sea, and boding very ill, indeed, to a sunmer cruise. Before evening came the sail on the ship was reduced to half, for the wind was up, with squally gusts of heavy rain, and the barometer had gone helow 29, and was still falling rapidly. Such was the night ; but Sunday told its own tale, for even those least versed in the boisterous premonitory symptoms of an Atlantio gale equld see at a glance that we were in for it. The ofky seemed a wretehed mist--half rain, half vapor-through which the other vessels of the aquadron loomed faintly like shadows, watery and unsulustantial as the Flying Dutshman. The sea had changed its bright crisp blue for a turgid foamy aspect, and the great waves of the Atlantic eame rolling towards us in tremendous succession, like hills of water with their tops all jagged and broken by the ficree wind, and their white esests of foan blown out into a stream of feathery spray that alnost hid the luge dark gulfs between them. The Aganemnon, however, still kept on her way, rolling and straining heavily, and giving all a fair foretaste of what they might expect when the gale set in worse, for the wind was fast going round to the southwest, and it was evident we were only at the beginning. There was Divine service that day on the main deck, and, as officers and men sat in respectful silenee, every change in the fast increasing violence of the gale could be distinctly noted through the open hatchways. Heavy rain was falling, and a grayish-looking scud was flying across the sky with inconceivable rapidity ; and every rope and shroud, tautened to the utmost, was humming with a loud and clear noise, as if ten thousand aecordoons were going at onec, while now and then, as tho ship fetehed up near the wind, her great sails flapped and shotted like penls of thunder, jerking the vessel with an mneasy vibram tion, as if the masts were coming out of her. Still, among the little oon-
gregation, no one moved more than was neeessary to keep his seat as the ship lurehed over, and the serviee proceeded as litte disturbed by the war of elements outside as if all were assembled within the walls of a cathedral. Toriards the end, however, Capt. Preedy looked up wistfully through the hatchway once or twiee, scrutimizing the masts and sails with a keen glance, for the storm was getting worse and the airdarker and thieker every minute, and the hoarse roar through the rig. ging was drowning every other sound. Serviee over, and it was "Hands, reef topsails ;" then again, after a little lapse, the same cry; and yet again. till at four in the afternoon the Agamemnon was rushing through the foam under elose-reefed topsailstand foresail. At half-past four we caught the last glimpse of the Gorgon, as making a long streteh to windward she was lest in the misty darkness that marked the borizon. At five the Valorous began to drop astern, and by six she also had disappeared; bat still the Niagara and Agamemnon held on together-the foriner under sail and bteam, the latter, like all the 'English vessels, under sail alone. Of the two vessels specially appointed to convoy and assist, if necessary, the gar.enumon and Niagara, we sawa no more till all danger was past and the squadron had re-assembled at the rendezvous some twelve days afternards. On Sunday night the grle seomed at its worst. The ocean resembled one vast snowdrift, the whitish glare from which, reflected on the dark clouds that almost rested on the sea, had a tremendous and unnatural effect, as if tho ordinary laws of nature had been reversed by the storm.

The Niagara, which had hitherto kept close, began to give us a "very wide berth, and, as darkness inereased, she too went out of sight, and it was every one for thenselves. There must be many of your readers who know what a line-of-battle ship is in a gale of wind, though sugh experience would give them but a faint notion of how the Agamemnon vent at it all that night. She strained and labored under her heary burden as if she were breaking up, and the massive beams under her upper deek coil craeked and snapped with a noise resembling that of small artillery, alunost drowning the hideous roar of the wind as it moaned and howled through the rigging, jerking and straining the little stormsails as though it meant to tear them fron the yards. Those in the improvised cabing on the main deek liad little sleep tha. night, for the upper deek planks abovo them were working themselves free, as sailors say, and, beyond a doubt, they were infinitely more free than casy, for they groaned under the pressure of the ecil with a dreadful uproar, and availed themselves of the opportunity to let in a little light, with a good deal of water, at every roll. The sea, too, kept strikigg with dull heavy violence against the vessel's bows, forcing its way through hawse holes and ill closed ports
seat as the bed by th walls of d up wistmasts and rid the air gh the rigs "Hands, ; and yet ng through ast four we ch to windrizon. At had disap-ether-the ish vessels, onvoy and more till he rendezdee seemed ritish glare on the sea, ; of nature us à very ght, and it ur readers ough suç gamemnon ry burden pper deck 1 artillery, ad howled as though sed cabins ck planks beyond a led under hemselves water, at ce against sed port

Hith a heavy slush, and thence, hissing and winding aft, it roused the occupants of the cabins aforesaid to a knowledge that their floors were under water, and that the flotsam and jetsam noises they heard beneath were only caused by their outfit for the voyage taking a eruise of its own in some five or six inches of dirty bilgo. Such was Sunday night, and such was a fair average of all the nights throughout the weck, varying only from bad to worse.

Daybreak on Monday ushered in as fierce a gale as ever swept over the Atlantic. The barometer was lower, and, as a matter of course, the wind and sea were infinitely higher than the day before. It was singular, but at twelve o'clock the sun piereed through the pall of elouds and shone brilliantly for half an hour, and during that brief time it blew as it has not often blown before. So fierce was this gust that its roar drowned every other sound, and it was almost innossible to give the watch the necessary orders for taking in the close reefed foresail, which, when furled, almost left the Agamemnon under bare poles, though still surging through the water at speed. This ${ }^{6}$ gust past, and the usual gale set in-now blowing steadily from the southwest, and taking us more and more out of our course each minute.' Every hour the storm got worse, until towards five in the afteruoon, when it seemed at its height, and raged with such a violenee of wind and sea that matters really looked serious, even for such a strong and large ship as thiẹ Agamemnon. The upper deok coil had strained her decks throughout exccssively, and, though this mass in theory was supposed to provent her rolling so quickly and heavily as she would have done without it, yet;: still she heeled aver to such an alarming extent that fears of the coil itsolf shifting again occupied every mind, and it was accordingly strengthened with additional shores, bolted down' to the deck. 'The spacc occupied by the main coil below had deprived the Agamemnon of several of her coal bunkers, and in order to make up for this defieiency, as well as to endeavor to counterbalance the immense mass which weighed lier down by the head, a large quantity of coals had been stowed on the deck aft. On each side of her main deck were thirty-five tons, secured in a mass, while on the lower deck ninety tons were stowed awiay in the same manner. The precautions taken to secure theso great masses also required attention as the great ship surged from arde to side. 'But these coals seemed secure, and were so, in fact, unless the vessel should almost capsize-an unpleasant alternative which no one certainly anticipated then. Every thing, therefore, was made " snug," as sailors oall it, though their efforts by no means resulted in the comfort which might have been expected from the term.

The night, however, passed over without any mischance beyond the
smashing of all things ineautiously' left loose and eapable of rolling, and one or two attempts which the Agamemnon made in the middle watch app.rently to turn bottom upwards. In all other matters it was the mere ditto of Sunday night, exeept, perhaps, a little worse, and certainly much more wet below.

Tuesday the gale continued with almost unabated force, though the barometer had risen 29 to 30, aud there was sufficient sun to take a clear obscrvation, which showed our distance from the rendezvous to be 563 miles. During this afternoon the Niagara rejoined company, and, the wind going more ahead, the Agamemnon took to violent pitching, plunging ateadily into the trough of the sea, as if she meant to break her back and lay the Atlantic cable in a heap. This change in her motion strained and tazed every inch of timber near the coils to the very utmost. It was curious to see how they worked and bent as the Agamemnon went at evory thing she met head first. One time she pitched so heavily as to break one of the main beams of the lower deck, which had to be ahored with acrewjacke forthwith. It is dull work, however, writing a journal of auch mishaps, and dullegr still to read it.

Suffice, then, to say that there was the same sea and less wind on Wednesday, heavy rain and sea on Thursday, with gusts and squalls and heavy rain on Friday.

Saturday, the 19th of June, things looked a little better. The barometer seemed inolined to go up and the sea to go down, and for the first time that morning sinee the gale began, some six days previous, the decks could be walked with tolerable comfort and security; but, alas! appearances are as deceitful in the Atlantio as elsewhere, and during a comparative calm that afternoon, the glass fell lower, while a thin line of black haze to windward seemed to grow up into the sky, until it covered the heavens with a sombre darkness, and warned us that, after all, the worst was yet to come. There was much heavy rain that evening, and then the nd began-not violently, nor in gusts, bnt with a steadily increasing force, as if the gale was determined to do its work slowly, buta to do it well. The sea was "ready-built to hand," as sailors say, so that at first the storm did little more than urge on the ponderous masses of water with redoubled foree, and fill the air with the foam and spray it tore from their rugged crests. By and by, however, it grew more dangerous, and Captain Preedy himself remained on deok throughout the niddle watch, for the wind was hourly getting worse and worse, and the Agamemnon, rolling thirty degrees each way, was laboring heavily, and straining to a dangerous extent.

At four A. m., sail was shortened to olose-reefed fore and main-top-
of rolling, the middle tters it was se, and cer-
ce, though icient sun from the Viagara remon took sea, as if in a heap. of timber ey worked head first. beams of awith. It and dullegr 8 wind on qualls and ter. The ad for the previous, :ity; but, bere, and , while a the sky, arned us cavy rain custs, bat to do its aand," as e on the with the wever, it on deek orse and ay, was sain-top-
sail and reefed foresails-a long, and tedious job, for the wind so roared and howled, and the hiss of the boiling sca was so deafening, that words of command were useless, and the men aloft holding on, with all their might to the yards as tho ship rolled over and over almost to the water, were quite incapable of struggling with the masses of wet canvas that flapped and plunged as if men and yards and every thing were going away together. The ship was almost as wet inside as out; and no things wore on till eight or nine o'clock, every thing getting adrift and being smashed, and every one on board jamming themselves up in corners or holding on to beams to prevent their going adrift likewise. At ten o'clock the Agamemnon was rolling and laboring fearfully, with the sky getting darker, and both wind and sea indróased every minute. At about half-past ten o'clock three or foar gigantic waves were seen approaching the ship, coming heavily and slowly on through the mist, nearer and nearer, rolling on like hills of green water, with a erown of foam that seemed to double thoir height. The Agamemnon rose heavily to the first, and then went down quickly into the deep trough of the sca, falling over as she did so, as almost to capsize completely on the port side. There was a fearful crashing as she lay over this way, for every thing broke adrift, whether secured or not, and the uproar and confusion were terrific for a minute; then back sho came again on the starboard beam in the same manner, only quicker, and still deeper than before. Again there were the same noise and erasbing; and the officers in the wardroom, who knew the danger of the ship, struggled to their fect and opened the door leading to the main deck. Here, for an instant, the scene almost defies description. Amid loud shouts and efforts to save themselves, a confused mass of sailors, boys and marines, with deck buckets, ropes, ladders, and every thing that could get loose, and which had fallen back again to the port side, were being hurled again in a mass across the ship to starboard. Dimly, and only for an instant, could this be seen, with groups of men elinging to the beams with all their might, with a mass of water, which had forced its way in through ports and decks, surging about; and then, with a tremendous crash, as the ship fell still deeper over, the coals stowed on the main deck broke loose, and, smashing every thing before them, went over among the rest to lceward. The coal dust hid every thing on the main dook in an instant, but the erashing could atill be heard in all directions, as the lumps and sacks of coal, with stancheons, ladders, and moss tins went leaping about the decks, pouring down the hatchways, and crashing through the glass skylights into the engine-room below. Still it was not done; and, anrging again over another tremendous wave, the Agamemnon dropped down still more to port, and the coals on the starboard side of the lower deok
gave way also, and carried every thing before them. Matters now beeame most serious, for it was evident that two or three more such lurches and the masts would go like reeds, while half the crew might be maimed or killed below. Captain Preedy was already on the poop, with Lieutenant Gibson, and it was, "Hands wear ship," at once, while Mr. Brown, the indefatigable cngineer, was grdered to get steam up immediately. The crew gained the deck with diffieulty, and not till after a lapse of some minutes, for all the ladders had been broken away and the men were grimed with coal dust, and many bore still more serious marks upon their faces of how they had been knocked about below. There was some confusion at first, for the storm was fearful ; the officers were quite inaudible, and a wild dangerous sea, running mountains high, heeled the great ship backwards and forwards, so that the crew were unable to keep their fect, even for an instant, and in some cases were thrown across the decks in a dreadful manner; two marines went with a rush head foremost into the paying-out machine, as if they meant to butt it over the side; yet, stithige to say, neither the men nor machine suffercd. What made matters worse, the ship's barge, though lashed down to the deck, had partly broken loose, and dropping from side to side as the vessel lurched; it threatened to crush any who ventured to pass it. The regular discipline of the ship, however, soon prevailed, and the crew set to work to wear round the ship on the starboard tack, whilo Lieutenants Robinson and Murray went below to see after those who had been hurt, and about the number of whom cxtravagant rutnors prevailed among the men.

Thure were, however, unfortanately but too many. The marine sentry outside the wardroom door on the main deck had not had time to escape, and was completely buried under the coals. Some time elapsed before he could be got out, for one of the beams used to ahore up the saeks, which had crushed his arm very badly, still lay across the mangled limb, jamming it in such a manner that it was found impowsible to move it without risking the man's life. Saws, therefore, had to be sent for, and the timber sawn away beforo the poer fellow could be extricated. Another marine on the lower deek endeavored to save himself by catching hold of what seemed a ledgo in the planks, but, unfortunately, it was only caused by the beams straining apart, and, of course, as the Agamemnon righted they closed again, and orushed his fingers :flat. One of the assistant engineers; (Mr. Harvey) whas alao baried among the coals on the lower deok, and sustained some severe internal injuries. The lareh of the ship was calculated at 45 degrees each way for five times in rapid succession. The galley coppers were onty half filled with soup, yet, nevertheless, it nearly all poured out,
ers now bemore such w might be the poop, once, while steam up nd not till oken away more serisut below. the officers ains high, crew were cases were went with meant to : machine gh lashed m side to atured to orevailed, ard tack, fter those it rutnors
marine had time me time to shore ross the possible d to be d be extve himb, unforand, of hed his ras also a severe degreef 1\% vere ed out,

and scalded some of the poor fellows who were extrnded on the decks, holding on to any thing in reach. These, with a di-location, were the chicf casualties; but there were others of bruises and contusions, more or less severe, and of course a long list of extapes more natryhous than any injury. One poor fellow went head first from the main deck into the hold withont being hurt, and one on the orlop deck was "cheried" about for some ten minutes by three large casks of wil which had got adrift, and any one of which would bave flattened him tike a paneake had it orertaken him.

As soon as we had grone round on the other tack the Niagarit wore alsó, and bore down as if to render assistance. She had witurssed our danger, and, as we ifterwards learnt, imagiued that the upper deck coil had broken lonse and that we were sinking. Things, hovever, were not so bad as that, though they pere had enough, hearen kne "s, for every thing seemed to go wrong t at day. The uhper deck evil had strained the ship to the very uttermosy, but still beld on fast; but not so the coil in the main bold, whieh had begun to get adrift, and the top kept working and shifting over from side to side as the ship lurched, till sorue forty or fifty miles were in a hopoless state of tapgle, resembling nothing so minch as a cargo of live cels, and there was every proipeet of the tangle epreading decper and deeper as the bad weather ecutinucd.

Going round upon the starbeard tack had eased the ship to a certain extent, but with such a wiud and such a sea, both of which were rather getting worse than better, it was impossible to effect muel for the Agamemnon's relief, and so, by tiwelve o'clock, she was rolling almost as bad as ever. The crew, who had been at work since nearly four in the morning, were set to clear up the deeks from the masses of conl that covered them, and while this was. going forward a heavy sea struck the stern, and smashed the lave iron guard frame, which had been fixed there to prevent the eablefouling the serew in paying out. This gat l, which, from its peculiar hooped shape, suspeuded round the stern by chains, the sailors had nieknaned "the crinoline," was abont the most cumbersome and ill-contrived piece of meehanism which could possibly have been adopted. From the first hour every one had known that it was perfectly useless for the purpose it was intended to effeet, and, what was worse than useless, that it was a source of positive danger also. Now that one side lad broken, it was expeeted every moment that other parts would go, and the picees hanging down either smash the screw or foul the rudder post. It is not over estimating the danger to say that had the latter accident occurred in such a sea, and with a ressel so overladen, the chancta would have been gadly against the Agamemnon ever appearing at the rendezvous. Fortunately it was found possible to secure
the broken frame temporarily with hawsers, so as to preventits ilropping further, though nothing could prevent the fracturet end from striking against the versel'a side with such foree as to load to serious apprehensions that it would extablish a damgernas leak under water. It was near three o'check in the afternoon befere this was quie securect, the gale still continuing and the sea running even worse. The comdition of the mants, tho, at this time were a sinuree of nuch anxiety both to Captain Proe ly and Mr. Mutiarty, the master. The heavy rolling had strainel and wlakkened the wire shrouls to such an extent that they had berome prifectly useless as supports. The lnwer nasts bent visibly at ever. rull, and once or twien it semed as if they must go by the board. Unfortuately, nothing whatever eould be dene to relicve this strain by sonding luwi any of the upper spars, since it was only her masts which prevented the ship rolling st ill mote and quicker; and so cvery man knew that if oure they were carried away it might snon he all over with the ship, as then the deek coil could not help going after them; so there whe nothing for it but, to watch in anxious silence the way they bent and strainel, and trust in Providenge for the result. About six in the evening it was thonght botter to wear ship ngain and stand for the rendezvous under casy steam, und ber head aceordingly was put about and onee mire faced the storm. As she went round she of course fell into the trough of the sea again, and rolled so awfully tas to break her waste steam pipe, filling her engine room with steam and depriving her of the services of one hoiler when it was sorely needed. The sun set upon a wild amd wieked a night as ever taxed the courage and coolness of a sailor. Theren re, of course, men on board who were familiar with gales and storms in all parts of the world, and there were some who, with the writer of this artiele, had witnessed the tremendous hurricane which swept the Black Sea on the memorable 14th of November, when seores of vessely were lost nad seamen perished by thousands; but of all on board none had ever seen a fiereer or mero dangerous sea than raged that night and the following moruing, tossing the Agamemnon from side to side like a mere plaything amoug the waters. The night was thick and very dark, the low black clouds almost hemming the vessel in; now and then a fierece blast than usual drove the great mar:es slowly aside, and showod tho moon. a ding greasy blotch upon the sh, with the ocean, white as driven snow, boiling and secthing like a caldron. But these were only glimpes, whieh were soon lost, and again it was all darkness, through which the waves, suddenly upheaving, rushed upon the ship as though they must overwhelm it, and, dealing it one staggering blow, went hissing and surging past intn the darkness again. The grandeur of the seone was almost lost in its dangers and terrors, for of
is tropping m striking a repprehear. It was acured, the ondition of y both to olling had \& they had visibly at the hoard. strain by astes whioh man knew r with the ; so there bent and ix in the or the renabout and e fell into leer waste eer of the t upon as ness of a liar with who, with ne which en scores of all on an raged rom side as thick ssel in; s slowly with the 1. But was all ed upon staggera. The s , for of
all the many forms which death approaehes man, there is none so easy in fact, though so terrifie in appearance, as death by shipwreck.

Sleeping was impossible that night on board the Agamemmon. Even those in cots were thrown ont, from their striking ayainst the vessel's side 118 she pitehed. The berths of wood fixed athwartships in the cabins on the main deck had worked to pieces," waict and tables were broken, ohests of drawers capsized, and a littlatitwhranning ver the floors

 the scuppers it came in fastor by the heshote pand ports, white the beams aud knees strained with a dolofughat, as if it was impussible they could hold together much longer; and on the whote it was as miseruble and evert allxious a night as ever was passed on board any line of battle ship in Her' Majesty's service. Captain Preedy mever left the poop all night, though it was hard work to remain there, even holding on to the poop ruil with both hunds. Morning brouglit no ohange, 'save that the storin was still as fierce as ever, and, thongh the sea could not bo hicher or wilder, yet tbe additional amount of bruken water made it still more dangerous to the ship.

Very dimly, and only now and then through the thick scurl, tho Niagara cou. be scelfone moment on a monstrons hill of wator and the next quite .ost to view, as the Aganomnon went down between waves. But even theso glimpses ghowed us that our transatlantic consort was plunging heavily, shipping seas, and evidently having a bad time of it, though shọ got through it better than the Agamemnon, as of course she
 it came on darker and thicker, and we lost sight of her in the thiok spray, and had only ourgelves to look after, which was quite enough, for every minute made matters worse, and the aspect of affairs began to excite most kerious misrivings in the minds of those in olarge. The Agamemnon is one of the best line of battie ships in the whole navy, but in auch a storm, and so heavily overladen, what could she do but make bad weather worse, and strain and labor and fall into the trough. of the sea, as if she were going down headformost?

Three or four hours more and the vessel had borne all whioh sho could bear with safety; the masts were rapidly getting worse, the deek coil worked more and more with each tremendous plunge, and, even if both these held, it was evident that the rhip itself would soon struin to pieces if the weather continued so. The sea, forcing its way through ports and hawseholes, had accumulated on the lower deek to such an extent that it flooded the stokehole, so that the men could scarcely remain at their posts.

Every thing went smashing and rolling abou'. Oue plunge pat all the clectrical instruments hors de combat at a blow, and staved some barrels of strong solution of wolphate of copper, wheh went cruising about, turning all it thached to a light pea green. By and by she began to ship sens. Water eame down the wentilators nar the fimel into the eugien 1 wom. Then a tremendous sea struck her forward, drenehing those on den k, and leaving them up to their kuese in water, and the least versed on board could see that things, were fast going to the bad unless 1 a change took placo either in the wenther or the eondition of the ship. Of the first there seemed little chance. The weather certainly showed an"diposition the clear, on the contrary, livid looking black clouds secusd to be closing round the vessel faster aud fuster than ever. For the reln f of the ship three courses were epen to Capt. Preedy-one to wear round and try her or the starboard tack, as be had hecu compelled to do the day before; another, to tairly rum for it betose the wind; and, the third and last, to endeavar to lighten the vessel by getting some of the cable overboard. Of eourse the latter would not have been thought of till the first two had been tried and failed, in fact, not till it was evident that nothing else would save the ship. Against wearing' round there was the danger of her sigain falling off into the trough of the sea, losing her mast: shittine the upper deek coil, and so tinding her way to the bottur in ten minutes, while to attempt rumning before the storn with such a sea ch was to risk leer stern being stove in, and a huntred otons of water added to her burden with each wave that come up ufterwards, till the poor Agamemmon went under them all fore eer.

A litte atter ten ciclack on Monday, the 21 st , the: anpect of affairs was so alarming that Capt. Preedy resolred at all risks to try wraring the ship ronnd on the other tack. It.was hard enough to make the words of command andible, but to exceute then semed almost impossible. The ship' heal went roumdenongh to leave her broadside on to the seas, and then for a time it scemed as if nothing conld be done. All the rolls which she had ever given on the previons day seemed pere trifles compared with her performamee then. Of mire than 200 men ons deck :t least 150 węe thrown down and falling over from side to side in leapy; while others, holding on to ropes, swung to and fro with every heave. It really seemed as if the last hour of the stont ship had cone, and to this uinute it secmas almost miraculous that her masts held ou. Each time she fell ouer her main chains went deep under water. Tho lower decks were tlooded; and those above could hear by the forful erashitig, audible amitl the hoarse roar of the storm, that the coals had got lousc again below, aud had broken into the engine room; and were carrying all before them. Iluring these rolls the main derk coil shifted
age put all wed somo t cruising by she beunacl into drenehing 1 the least ad unless the ship. certainly whelouds er. For -one to oupelled ind; :and. ; some of thought
 ig' round the sea, r way to e storm hundred 1p after-
f affair wharing rake the impos. le on to ne. All d mere men on: to side hevery 1 come, eld on. Tho葆rful ils had đ रेere hifted
over to such a degree as to quite envelope four men, who, sitting on the top, were trying to wedge it down with beams. One of them was so much jammed by the mass which oame over him, that he was serivusly contused, and had to be removed to the sick bay, makip up the sick list to forty-five, of whieh ten were from injuries caused by the rollid of the ship, and very many of the rest from continual fatigue and exposure during the gale. Once rennd on the starboard tack, and it was seen in an instant that the ship was in no degree relieved by the change. Another heary sea struck her forward, swceping clean over the forepart of the vessel; and carrying away the wood work and platforms which had been placed there round the machinery for under running. This and a few more plunges were quito suffieient to settle the matter, and at last, reluctantly, Capt. Preedy succumbed to the storm he could neither conquer nor contend against. Full steam was got on, and, with a foresail and foretopsail to lift her head, the Agamemoon ran before the storm, rolling and tumbling over the huge waves at a tromendeus pace. It was well for all that the wind gave this much way on her, or her stern would infallibly have been stove in. As it was, a wave partly struck her on the starbnard quarter, smashing the quarter galley and wardroom windows oh that side, and sending such a sea into the wardroom itself, as literally almost to wash two officers off a sofa on whieh they were resting on that side of the ship. This was a kind of parting blow, for the glass began to rise, and the storm was evidently beginning to moderate; and though the sea still ran as high as ever, there was less broken water, and altogether, towards mid-day, affairs assumed a better and more eheering aspect. Tho wardroom that afternoon was a study for an artist, with its windows half darkened and smashed, the sea water still slushing about in odd corners, with every thing that was capable of being broken strewn over the floor in pieces, and some fifteen or twenty officers seated amid the ruins, holding on to the deck or table with one hand, while with the other they contended at a disadvantage with a tough meal-the first which most had eaten for twenty-four hours,

Throughout the whole of Monday the Agamemnen ran before the: wind, which moderatei so much that at four A.m. on Tuesday, her heal was again put about, and, for the second time she commenced beating up for the rendezvous, then some two hundred miles further from us than when the gale was at its beight on Sunday morning. Tuesday was a calm, fine day, thongh of course with a heavy swell on. Wednesday was also warm, fine, and calm, and for the first time for a fortnight we had a real summer day, and the reefs were shaken out of the topsails. Inamediately the ship began to run before the wind. On Monday the shrouds of the main and fore masts were lashed in such a way as to give some sup-
port to the masts, and on Wednesday advantage was taken of the calm to "tauten" up the main rigging three inches, whieh for wire rope was a great gain. It was well that this was done in time, for on Wednesday, the 23 d , the glass again went down; it was the old song of wind and rain, with heavy squalls, rough sea, and reefed topsails. So little was gained agaiust this wind that Friday, the 25th, sixteen days after leaving Plymouth, still ,found us some fifty miles from the rendezvous. So it was determined to get up steam and run down on it at once.

As we approaehed the place of meeting, the Valorous hove in sight at noon, and in the afternoon the Niagara eame in from the north, and in the crening the Gorgon from the south; and then, almost for the first time since starting, the squadron was reunited near the spot where the great work was to commenee. The rendezvons actually agreed upon was $52^{\circ} 2^{\prime} \mathrm{N}$. latitude, $33^{\circ} 18^{\prime} \mathrm{W}$. longitude, but the place where the vessels met was in $51^{\circ} 54^{\prime}$ latitude, $32^{\circ} 33^{\prime}$ longitude, or about thirty miles more towards the English coast than had been agreed upon. The Valorous, it appeared, had been first on the real rendezvous. The Niagara was the next, arriving under steam tra days before the Agamemnon, and the Gorgon, which had had a very bad time of it, and was also near losing her masts, was third. The Niagara seemed to have weathered the gale splendidly, though, nevertheless, with her, as with all others, it had been a hard and anxious time. She had lost her jibboom, and her spare spare and buoys for the cable had been washed from her sidés and gone no man knew where.* On the evening of Friday, the 25th of June, the four vessels lay together side by side, and there was sueh a stillness in the sea and air as would have seemed remarkable in an inland lake; on the Atlantie, and after what we had all so lately witnessed, it seemed almost unnatural.

return of the squadidnn, and arrival at queenstown.

According to the terms of the written agreement, which has been given in the narrative of the expedition, the whole flect were to return after the two eable ships should have gone over one hundred miles towards their separate destinations, and it was in compliance with this explicit understanding that the Niagara proeeeded to the point indicated therein. Wo arrived on the 5th of July, expecting to find the Agamomnon had got in beforo us. We were considerably disappointed, however, when we learned there were as yet no tidings of her, although sho had over two hundred miles the start of us on her course. The supposition

[^2]the oalm rope was ednesday, and rain, as gained ing PlySo it was in sight rth, and the first bere the ed upon vere the ty miles te ValorNiagara nemnon, lso near athered thers, it and her idés and 25th of such a 11 an intnessed,
that she had, not gone one hundred miles wat greatly strengthened by her non-appearance, and we were foreed to the cunclusion, atter two or three days, that she had really returned to the rendearous, and was there awaiting us. Day after day passed, and yet there was no Agamemnon, no Valorous. Terrible stories were einenlated about the missing ships; it was said that we had abandoned them, and that the Agamennon had gone down. The London Times, with the most iudecent haste, accused us of cireulating repolss throwing the diseredit of the tailure on the Agamemnon, and intimated that they must wait her arrival before they received reliable intelligence. At last the Agamemmon made her appearanee, having returned, as we supposed, to the rendezvoms in midocean. The reliable intelligeuce had at length arrived, and it was ascos; tained that the cable had parted abmititwenty feet from her stern, and that, she had gone a distanee of one hundred and sixtecn miles, or seven miles more thau our ship. The reader will be soluewhat surprised at the course pursued by her.engiveers in this instance, when he is informed that the agreement was made entirely on apenunt of her not having a sufficient supply of coul. On leaving Plynoth she had but 450 tons, while the Niagara had 850 , and although the reports in the London Times about our "water-logged" appearanee, the strong probability of our going to the bottom, and the deplorable condition of our ship, were 'well calculated to arouse the fears of our people at home about our safety, we came out of one of the worst gales that has ever been seen in the North Athantie, with no other damage to our noble ship than the loss of part of her bowsprit and one of the wings of the eagle which forms her figure-head. How the Agamemnon fared the reader is already aware. It is astrange fact that the breaking of the cable at the stern of the Aganemnon was never satisfactorily accounted for by the engineers in charge of the paying-out machinery on board that ship.

While the Telegraph squadron were lying" in tho harbor of Queenstown, meetings were held by the Board of Directors in Eondon, at which it was proposed to abandon the enterprise, and, if possible, to sell the cable. The news of this proposition no sooner reached Mr. Field than he started with all possible dispateh for London. On his arrival there, he proceeded at once to the office of the Company, remonstrated with the despondent, upheld the wavering, and finalls, by the force of his own unconquerable will, and the efficient aid of those who still hoped in the midst of defeat, succeeded at last in obtaining the consent of the Company to make another attempt. Thiceffeed, he returned to Queenstown, where immediate preparations were made for the sailing of the squadron on the last and successful expedition.

THE FINAL EXPEDITION OF 1858.
 the cable laid.

The Niagara left the Cove of Cork for the telegraph rendezvous on the 17 th of July, and arrived at her destination, or within a few miles of it, on the evening of the 23 d , having made the passage in six days. As it had been previously decided that each ship should make the best of her way to mid-ocean, the vessels did not sail in company, the Gorgon and Valorous having started some hours before the Niagara, while the Agamemnon did not leave till three o'clock next morning. We saw none of the ships, therefore, till after our arrival at the rendezvous.

The weather, whieh had been, with one day's exception, very'fine. during our stay in Cork, looked heary and threatening the evening of our departure. Great masses of leaden-colored elouds shut out the blue sky, and sent down shower after shower of drenehing rain. Then sweeping in upon the land, they descended upon it in the form of a dense fog, eoncealing the iuland mountaine, and throwing out in striong relief the bold headlands of the iron-bound coast. The heavens bad certainly a most funereal aspeet, and overshadowed our prospects with a gloom that seemed to affect every one more or less. We were now on our way to make the secoud attempt to lay the Atlantic telegraph cable, and when we remembered the result of the first, we might be pardoned if we were somewhat dubious as to its termination; although, of course, we all "hoped for the best." Were we to pass through another gale before we should be able to make the splice, and when that splice was made, were our efforts to ond in another inexplicable break of continuity, or fracture of the eable? Thesce were questions that pressed rather heavily upon some of μ, and converted a considerable number into confirmed sceptios. However, here we were outside of the Cove of Cork, bound for the telegraph rendesvous, and determined to resume the work with the same energy, if not with the same buoyant and sanguine feelings with which we entered upon it the preceding month. The sceptics still remained seeptical, and the hopeful sustained themselvea with the idea that there was a chance of suecess yet.

The prospect of fine weather, which appenced so doomy nt the time of our departure, grew brighter as we inereased our distance from the land; the gray sombre-looking clouds begau to clear away, and the barometer, which had exhibited a very decided downward tendeney, now began to rise, and continued rising till it had reached the gratifying altitude of $30^{\circ} 40^{\prime}$ The only thing of which we had any just canse of complaint was the wind, and that blew from the wrong gitarter with the most disgusting persistency: But it did not blow all the time, for whe had some three or'four days of the calnest weather, both before and after arrival at the rendezvous, that has ever been seen in these latitudes. Tos say that it was calm is not doing full justice to it-there was not a breath in the air, and the water was as sucioth ns fhat of a mill-pond. Fiven the wake of the ship scarce ruffled its surface, and the gulls-which have visited us almost daily, and to which our benevolent liberality has dispensed innumerable pieces of pork-throw an almost unbroken sladow upon it as they stoop in their flight to piek up the largest and most tempting. Those lazy-looking white clouds hanging over the western horizon have not changed either their form or their position for the last two hours, and that particular one to which the inagination has given the form of a human face, is just as grotesque and as much like a human face as it was an hour ago. The officer of the deck has been trying to persuade himself that those flecey, vaporous affairs are "mares' tails," and that the breeze, of which they are regarded by the nautically learned as the sure forerunuers, must son come; but watever may be the rules in such cases made and provided, they are certainly at fault this time, for there is no breeze, and not the renotert probability of any. The long streamer which is displayed from our main track hangs, lazily against the mast, and eveu the dog-vane, which telly from whieh quarter the wind comes, says nothing upon the subject. "altit indeed a dead caln, and but for that nerer-ceasing swell, which has rightly been denominated "the pulse of the sea," our vessel would be ss motiehless as "a painted ship upon a painted ocean." The smoke which cometesp from our engino fires through the binge chimneys rises like pillars, and spreads out in a broad canopy over the nasts. "There comes a breete dead aheat," one of the sailore, pointing in the direction of the low, gnd the clear and distinctly defined blue line whieh marks the horizon seemed to indicate the appearance of wind in that quarter; but an hour has pasied since then, and still the dog-vane remaius unmoved, the streamer hangs idly against the mast, and the chaopy of smoke is becoming denser. The clouds have changed, it is true, but no wind will seme from them. The human fuce has keten oonverted into the head of an eagle, and those tunks of white silver cumuli are very slowly ! tranging their appearanoe.

So thoroughly hat the calm affected evcrythince and operybody and aboubthe vessel，as to throw iwart of dreant repose，㒄路 all＂t is
 would imagine that our ship had ceaised to bo ar part of the great orthd in which she moved，and that her tiving froight beh no thgigncemmon With the rest of tumanity but belougel to the unded cre⿻tione of dream 8

 wues buth ${ }^{\circ}$ and ogodus abgat for eight or nine days．This settled， dreatay canto fow thacemn for four days，which are closed by supfes he geng to Hoy fer seen under a tropical sky．The，whole
 as Whatheerntow the ligrizon it turus to a deep crimsom，which is reffectelt t the unrufled ocean until there appears to be but une sky，and the shit seems sifspended in space．The silver gray of eventug brings un bicl again tot the world；the golden glow and the deep crintion have disalyearod，but the pleasant twilight remains，and will continue with as so long wh to leave but a，small portion of the twenty－four hours for the night．Tr fact the sumuer nights in these high latitudes are harilly en－ titled to the name，and what between the long twilight and earty day－ Hfeal，have searcely time enough to get rightly dark．

We have now been five days out，and if we have only ordinary luck ， ＊we will certainly be at or near the precise point，which is marked by a dot on the cliart of tho North Athantic，about half way between Ireland and Newfoundland．To－morrow evening，Friday the 23d，is fixed upon as the time of our arrival，and everybody is in lulging in speculations as to the Agamemnon being there before us．In this alliabsorbing question every thing else acoms to be forgotten．Wo no longer hear of the pros－ pects of the heroes and bercines of the romances and novels which have furnished topies for animated discussion for some days past，and no one seems to care whether the hard－hearted father has or has not been struck with remorse，aud consented to make his lovely and amiable daughter superlatively happy by marrying the man of her choice．Theg dark designs of the schener whe has been baffed by the superior at thet the lover（lovers are always a very superior class of men，alt，，wen－ erally poor），have exfaned that condĕmnation and sentenceg．© مall virtuous and high－ph meaders are supposed，to pawht at ohar－
 tion which gitates the minds of oll on board our ship， 4 ， 1 ．
 at fifyrate we are nuw going we shall be at our post to－morivitung ing，
cody in and all. Xt is pic, and your great 范性d intrommon of dream 1 guile of Rage ant wis settled, e closed by The, whole g sun x_{2} and a, which is de sky, and thy brings int ion have nub with us ans lar the hardly enearly day-
linary luck marked by a sen Ireland fixed upon ulations as ag question f the proswhich have ind no one cen struck 6 daughter The dark
so that we may commence the work of laying the cable the following morning by daybreak.

- Throughout the whole of Friday every one was on the lookout for ship agamemnon, but the bert telescope on board fated to disenvere that s, and so we hay as near that imaginary point called thenemezvous, as the wind and surface current would permit. Saturday nioruing 'arrived, but, with it no Agamemnon, and by seven v'clock, Saturday evening, we again made the rendezvous, having drifted ensiderably during Friday, night. To be brief, we had no better success wow than the day before; and as man is a somewhat restless animal, we became

4. both restless and inpatient in our desire to begin the work. The weather, which cannot be too highly eulogized, was magnificent for cable laying, and the barometer gave the strongest assurance of its continuance. Had she arrived on Sunday it would have been useless, as the deligoons scruples of our captain interpnyn and insuperable obstacle; and 30 . we must patiently wait till Monday, the '26th. It was, however, some-' what consoling to learn that the Valorous had arrived on the morning of the 25 th, although she had neither seen nor heard of the long expected ship. She was first seen at six o'clock, but as winceame along under sail alone, she did not approach near enough to exchange signals till nine.
"I hone you are all "w ll," was the purport of the signal made by our ship.
"Very well, I thank you," was the reply.
"Have you seen the Agamemnon?" asked the captain of the Valorous.
"No," replica Captain Hudson; and then asked in return if he had seen the Gorgon, but to this he received a negative response.

And after this brief interview and still more laconic conversation, the two ships separated. Monday afternoon, July 26 , the Valorous was in sight, and tho'sea was as calm as we had yet observed it--so calm, to use the words of one of the crew, that would be mere child's play to lay the cable up fer men- circtustanees. "About ten o'flock Captain Aldham and oud of his lieutenants paid un ta feicodly visit, and remained about an hour. The 27 th was, so far as the weather was regarded, a perfect counterpart of the 26 th. This day we wergiavored with another arrival, though not that we had first expected. The Gorgon was devaried about two o'clock in the afternoon coming, from the eastward, and If was but a few minutes after five when she came up. Now of two ships can hardly. come together on the high peas without havialg something to say to each other, it is not to be expected that the Niagara and Gorgon would pass each other ${ }^{4}$ without indulging in some remarks. And so,

Captain Indson and Captain Daymau had the following brief but pithy
dialogue
Captain 11.-I hope you are all well on board?
Captain II.-All well, thank you-hope you ore the same?
Ciftain II,--(Nodding an affirmative, and finishing the rest of the santence by word of mouth)-Thank gon.

Captains II. and D. (together)-Have you seen the Agamemnon?
A pause, and the question is repeated by Captain Hudsen alone.
Gapitain D.-No, not since we parted. Have jou any eoal to spare? We have had head winds all the way out.

Captain II. - None at all. We have also had head winds. I think the Agamemnon could give yau some, as she cann't have bumed much singes she left.

Thus ended the conversation, and the Gorgon passed on to pay her . respects to the Valorous, which was about two miles off our port quarter Towards evening we observed both vessels had hoisted their ensigns, but the weather had become overeast and we could not discern any wher ship. We also displayed ours, however, so that if it should turn out to be the Agameman she might he fully aware of our arrival. We felt contident that she had been seon by the Gorgon and Valugens, ind that she wonk make ber appearance next morning and anawer for herself. Five lays bofore we had tuade the rendezvous, and we were just hegin. ning to get tired of wating; and during that tine what splendid y we have had--days, which the Atlantic Telegraph Cumpany could not purchase at ten thousaud dollary apiece from that inexorable moyth the Clerk of the Weather! However, according, to Lieut, Maury, we ean afferd to be a little prodigal this mopth, and if we do lore a few days, why, after all it can hardly be considered a loss when we come to reflect that July and August are the two best months in the year for cable laying. We are certainly cutitled to some consideration after the gale through which we pasodd last noonth-a month we were led to believe was the mildest in the whole gear.

On board of our ship every precaution has been taken to ensure suceess: The machinery has been nut in proper running, order, and the watches are all mide out for the differont departments. The captain and the first lieqtenant, Mr. North, keep watch and watch, that is, they divide \$ the day into alternate watches of four bours each, with the usual interposition of " ${ }^{\text {log watches," between four and cight in the afternoon. }}$ Mr. North, it may be remembered, thas also first lieutenant of the Niagara last year, and has taken the most aotive interest in the enterprise. The duty wheh he performed in oonncetion with Captain Hudson is an entirely voluutary one, as, aecording to the rufes of the navy, he is not
considered a watch offeer, and his services nte therefore given freely, and not in complianoe with any obligations arising from his official position.

All we want now is a continuance of the fine weather we have had ucarly the whole of this month, to lay the eable, for we still feel convinced of the practicability of the work; despite the unexplained break of continuity and fracture of the wire.

CEREMONY OF LAYING THE CABLE,

FIRAT BAY-JCLY 28.

We wero right in our surmizes that there must have been some reasons for the Valorous and Gorgon displaying their flags, and our hopes that the Agamemnon had at last made Ler appearance, though iavisible to us in consequence of the fog prevailing at the time, were now fully realized. About five o'elock this morning the mist began to clear away; and some ten or fifteen minutes after, our sister ship could be distinctly seen between two and three miles off our port quarter. Mr. Field had offered a reward to the man who would first discover her, and as may be * supposed the erew were ti.uroughly wide awake, and on the lookout for the expected vessel. Two or three days before she came there were reports innumerable as to her having been seen, and at almost every point of the compass. The smallest speek of a cloud; barely visible through the best telescope on board, was eonverted into smoke by those who were determined to see her, even if she were a hundred miles away. "That certainly must be her," said one of the quartermasters, pointing at some imaginary object with the telescope, which he had just taken from his eye. "Yes, that's her, and no mistake this time."
"Where?" asked a dozen anxious querists all at once, and all as eagerly stretching out their hands for the telescope.
""There, there!" he replied, looking towards the clondless horizon"there! don't you see it, right there on the starboard bow, about three points?"

The man who had been most fortunate in securing the glass first, : took a long observation at the point thus indicated, and after scanning it three or four times, announced in a tone of disgust that there was no smoke, ${ }^{\text {en }}$ and that it wases. Cape Flyaway "-a nautieal expression, which,

The more energes and enterprising would occasionally run up to the head of the topgallant-masts, and take a vierv of the horizon from that olevation, but with no better success than those who, of a less aspiring mind, remained on the deck, or kept their lookont from the forecastle or poop. Neter was greater interest manifested in any ship than

246

the proffered reward ercated in that vessel ；and yet it was not the amount，but rather the distinetion which the diseovery would confer upon the man by whom it should be maderneran there was the exeite－ ment of the thing itself，and that algascurtan to stficient to aronse the feelings of tho most indifferent．Only those who have been at sea for ariy length of time nan fully appreciate the value of this word，or how litidert takes to get up an excitement at sea，where life is but one con－
sthet round of monotonous incidents which follow each other in ns rega－
larfucecssion as the hours on a dial．The＂reward，＂therefore，grew into the magnitude of an important guestion，and with the addition of some whales，which oecasionally indutged in spouting，served to make the time pass less ligavily on our hands．

The arrival of the Agamemnon overtopped all other subjects，and －knocked intora cocked hat the various opinions whieh had been，eireu－ lated in regard to her engines having brofken down．＂There she is，sir，＂ said the delighted sailor to the officer of the deek，when ho observed heavy－looking hull slowly emerging from the mist which still hung over her masts like a veil．＂There she is，sir，on our port quarter．＂And there she certainly was－no mistake this time－there were the two white streaks，but still more conclusive than this－there was the cable－wheel over her stern，and there was the other over her bow．It was the Aga－ \because emnon，ten days＂out from Cork，having made the rendezvous the evening before，as we subsequatly learned．

As has been stated，she was between two and thiree miles off our port quarter when first 解解erved，ind as there was no indication of cither smoke or steam，we theluded that she had been＇saving her conl，and had sailed the greager part，if not the whole，of the way．This we after－ wards found to be ncorsgh as she had consumed twghundred of the Tive hundred tons with which she started and had during the pas． sage to mid－ocean met with bead winds．＂She had also a revetition， on a small seale，of the bad weather we eqjetenced during the monter ${ }^{3}$ of June，but as it lasted only twent four Hours，and as the wind did not freshen into a gale，there was no ghe 繁 for alarm．＇One sea，howover， made its way into the ward－ronthind b oke some of the bulkheads． But or the head winds she wouth have arrived two or three days sooner，and thus given ns the advantage of the fine weather with which we have been so wonderfully favored sineo we left Queenstown，and，in fact，from the time the squadron left mid－ocean in June，up to the date of our re－appearance on the rendezvous this month．Here we are at last，however，ready to commence operations onee more，and determined if success be possible，we will make every effort to secure and deserfe it． Whatever other charges may be preferred against the enterprise by the
dissatisfied, it canot ke enid that those who ary pugrged in it have shown any, wint of perseverince or energy. Although they have met with fillure after failure, and reverses that wond have lissomragen alumsi any wher body of men, they have axhilited a deternination that is deserving of all praise, and a hopefulness that mo disastore enuhl shluse. dereara-- ${ }^{4}$ ations are unw being made to resume the wirk, and althongh the re are many who think it a useless expenditare of times. atid money. get there are others who are sanguine as to the wosult. 'There is no "int of energy cortainly among our ufh, and if you simh only witurns the hourty assent that is given to the following insoription when hat been made in chatk on the outside of one of the cable circtes, wo world say thereg is no want of enthusiasm in them:
"The wire will be laid, "und we will go to New. York."

About half past nine o'elock the Agamemon, having got ny, stam, was observed showly, upproashing us, aul in somewhat less than as thous Gfyer she crossed our befr, previous to laking her position on onf atern,
1 hung over "ter." And de two white cable-wheel s the Agalezvous the
off our port of of either r coal and lis we after. dred of the g the pas. rewtition, the month ind did not , howover, bulkheads. three days vith which wn, and, in to the date we are at letermined deserfe it. rise by the been, circushe is, sir" bserved
thenade on board the Niagarib, and every thing was in readiness for the commencement of the work so far to she was concerned. The men were at hacir posts by the machinery, the stoppers were all arranged, the electacians were on watch in theong vacint offiee, the tar-tubs were put in the proper places, the serapers aljusted, and mothing was left v adone then haman foresight conld do. Within the boundaries of the rope that enclosed the machine, none but the privileged few were allowed to enter, and if any one did so, hrough iguorance, the inseription which wis posted conspicanusly in front, and which reads as follows, varned him against further intrusion:
"No one here except the enginecr's watch."
This wage ertainly laconic, but if it was not suffieient for the proprose
\& the marine who stood close by informed him that he must leave. Thisp was not all, howaver, for if, under the impresson that he was afer liberty to talk to the operator in charge of the dynamometer, he was soon made aware of the absurdity of such an idea by another notice, to the efficet that no eonversation was allowed with that particular individual. Then, in âdition to all this, the efficer in charge of the fiatform, which war raised above two of the coils to facilitate the paying out of the eable took care that none but thnese fully authorized should go up there. The curious were thas exchded from every point where they might iuterfere with the operations of thoee on watch, but still they had ample opportnities to witness all that wis going on, and outside of the brunds they certainly induiged themselvey to the utmost. There seened to bo a fascination for them in every thing connocted with the process of
paying out, but more particularly in the work of uneoiling the cable. Thlo outside of the circlo wat crowded with spectatore, who watched in silence the long black line as it wuwound itself and passen over the umbhinery on its way into tho great ocean depths. There they stnod, hour after hour, looking, it the removal of one flake after another, as if it were momething new, and each miles served but to increage the attraction.

The Agamemon has wow taken her pesition about a hundred futhoms from the stern of the Niagarn, and the hawser has heen passed between the two ships previons to making the splice. Before the commoneement of operations, howeser, Captai is Preedy and Aldham came oul hoard of our ship, and Mr. Field and one of the olcetricians sisited the Ayamemnen to make further arrangenonts in regarll to the work before ins After the necessary, time these are made, and it is coneluded that if the cable should be broken after 150 miles whull have been paid "ut from cach ship, both vessels shall at once proceed to Qucenstown, there to await orders from the company regarding the final disposal and, stowage of the cable. The captains have returnct to their ships, the splice is made, and the work of paying ont proceeds, while the two ships nore so lowly through the water that their motion is hardly perceptibe. The rate of the cable is certainly much faster than that of either of the ressels, for tho simple reason that it has to desecud to a depth of about two miles, and it.wilt take a considerable time to d_{o} that. The annonnecment comes from the electrician's office soon after the splice has been lowered, that the continuity is perfect, and with this assurance the engineers go on more boldly with" the work. In fact, the engineers may be said to be under the control of the electricians; for if they report any thing wrong with the cable they are brought in a stand, until they are allowed to go on with their operations by the announcement that the insulation is perfect and the contimuty is all right. The saibors, who are somewhat in the dark as to the scientifie definition of the term, are geacrally supposed to have a particular animosity to it, under th., belief that it is it which causes all the difficulty. "1 Marn the coatiouity," said an old sailor, at the end of a scientific but rather foggy discussion which a number of his messmates had on the subject-" Darn tho continuity; I wish they would get rid of it altogether. It has cuused a darned sight more trouble than tho hull thing is worth. I say they ought to do witheut it, and let it go. I believe they'd get the cable donn if they didn't pHy any attention to it. You see," he went on, "I was on the last exhibition" (expedition he meant, but it was all the same-his messmates did not misapprehend his meaning), "and I thought I'd never hear the end of it. They were always taiking about it, and one night, when we werc out last year, it was gone fo two hours, and we thought
the eablo. vatched in over the hey stnod. rer, as if it atraction. hundred en passed the comham came ns misited the work coneluided been paid censtown, posal and ships, the two ships perceptiof either a a depth do that. after the with this fact, the s; for if a stand, nnounceht. The on of the inder th. tinuity," iscussion he contia carned he to do if they on the dis messd never 16 night, thought
that wha the end of the affair, and we would never hear if it again. But it came back, and soon after the cable hasted Now. I thll you what wen; I 11 never forget the night. I tell ye; we all felt we. hat lont our lowst friend, and I never beard the word eantinuity or mantignity wentimed lut I was always afraill womething was going t hap:, it And that's a fart."

This was conclusive on the,minds of the majority uf hisherrers; but a number were of opinion that it was all right, and, at the $10 . \mathrm{h}$ of being considered hambuge, usserted their belief that whatever might tee said against the continuity they conaldn t do without it, and that beanate it was gove all the frouble hal oceured.

The work of paying out the cable was comucned at onte o'dock The raped of the vessel was graduaily increased after suthicicnt had been lowered over tho sterre to reath the britom, and ty wow oclock five miles had left the ship. mul whe had gone two mikes from ha: starting point. The observation taken hy the Agamemnon and Niagara nlowed
 accomplish the work, the former has cleves hundred naticul miles, and three hundred tons of coal; while the latter had the same amount of cable and five handred tons of eoal. This will give cur ship from ten to fifteen days ateaming; whik the Agamemnon has sufticiem for ten days, should she hurn at the rate of thirty tons per day. But, if we should find that we have'not enough to reach the land with; we will, if pecessary, burn the spare spars; and should we he still furthur pressed, we will take down even the hulkheads for fuel. It is net very probable. howerer, that we shall be reducud to such straits. Mr. Follanskee, our ehief engineer, assures us that we will have sufficient. Lot us onee get sight of Newfoundand, however, and though every ton of enal in our bunkers were expended, we will contrive to get into Trinity Bay aud land the cable. We have already paid out a little over thirty milis of cable; although it is not yet seren o'eloek, and the ship's speed varies from four ta five miles per hour. There is a long distance yet, it is truo, between this and Nowfoundland, and thirty, miles is a very small fraction of 884 miles-the distance from the entity at which we made the splice to the telegraph station at the head of Trinity Bay. In this respect the Agamemnon has certainly had the adyantage of us, as she will have but 813 miles to go-or sixty less than the Niagara. The depth of water here, according to the chart of seundings, is 1,550 fathoms; but the depth, so fur tas our experienco testifies, presents lit the or no obstaele to the laying of the cable. The sea is sinonth; the barineter twell up; and if we caan only do for the next seven days as well as we have donc since one a'elock, we will he at Nevfoundlatd by the sthe of

August, and to New York some time between the 15 th and '20th of the same month. But we have been somewhat too hasty in our calculations, for our ship has just sluwed down, and the propeller has ceased working for the last ten minutes There must be something wrong to cause'!his interruption. Let us take a look at the machine. The cable etill goes out, whicu eertainly would not be tho case if it had parted. Ah! the continuity | that's it-there's where the difficulty lies. And as the clectrigians are the only parties who can inform us on that point, we at ance go in search of them. A visit to their office explains the whole matter. The continuity is not gone altogether, but is defectiveso defectiv. that it is impossible to get a signal through the cable Still there is not "dend carth " upon it, and all hope, therefores is not lost. 1. When dead eirth, as it is terieed, is on the eonductor, thee, indeed, the difficulyy is beyond remedy, for it slowa that the conductor must be brukn. and is thrown mader the influence of terrestrial magnetism. Wut the contimity is not gine, and although with darkening prospects, ive are stift mafo while it remaing, even imperfoct as it is The old adage, that "bad news travels fast," was never more fully realized than in this instance. The sad intelligence was known to every one on board the ship thout fiften'minutes'after it"was announced to Mr. Field, and those whe predisted the failure of the expedition fell back upon their propleay, and binted iu a modest way at their own perception. It woild be absurd to say that the occurrenea was ont discouraging; it Was quantully su, for tho hopes of some of us had really begin to revive, and we were dainitig confdence every hour. 'Now nothing eould hif done. We'must wast until, the continuiteshould retirn or take its final departures And it did, return, and with grea or strength than. over. It the winutes past nine 1. M. the electrician on duty observed its hailing, and 11.30 he had the gratifying inteligence for us that it was "all rightagain." Tho machinery was ouce more set ill motion, the caple was soon going out at the rate of six miles an hour, and the electheal signims wero passing betreen the ships as regularly as if nothing had oferarsed to iuterferp with or interrapt the continuity. No explanation could be given as to the canze of the acoident, that was to be relied upon. It was supposed, however, that it had broken oh hoard the Aganemon, and thit the end was secured and spliced before it conld get out of the ship. This is favored by the faet that is would fake ath hour or so to make the splice, which was about the timo that elapserifrom the moment the continuity becanio imperfed till it Whas teitored: Auother reason, theugh probably not so good, was" given --that the whlle was subject to so severe a atrain as tn cause the parts iug of tho eupper wire or eunductor, altheugh the insulation remane did.
th of the - calcula as ceased wrong to The cable d parted. es. And lat point, lain the festive(a) Still not lost. , indene, tor must gnețism. prospects, Tho old zed thant m board iced, and on their ion. It sing; it previse, could be take its th than observed that it motion, and the if north 1 No $2 \times$ 4 to bo herd before that in
a time
till it
given
e para e pax
18 :
feet; and as soon as the strain was released the broken wires came together again, thus restoring the continuity. However it nay have been, or by whatever scientific means it might be explained, the one fact was evi-dent-the continuity was "all right," and we were satisfied. We were. alarmed by no more unpleasant reports this night, and retired to bedsome to sleep, and some to spend a restless night in anxious fears about the safety of the cable and in feverish hopes of success.

As every thing relating to the electrical department must be of deep interest during the process of the work, we are determined to visit the alectricians' office, which is situated in that little corner close by the wardroom pooil-a point to which no one on board can look without apprehension when he reflects that at any moment a messenger may start from it with the dread announcement that the continuity has taken flight. That is where the subtle current, which flows along the conductor, a part of which is now submerged in the great ocean depths, is generated, and where the mysterious apparatus by which electricity is weighed and measured; as a marketable commodity, is fitted up. In that little apartmus, which will not hold fore than five persons, one of the operators sleeps, because there is no rom for him to sleep elsewhere, every available place being already occupied. The electricians' office is never left without a. Watch, day or night, and every movement of the little ncealle That tells the existence of the current in the cable is watched with the greatest interest. A brief description of what this apartment contains will give the reader an insight into all the operations that are "perfirmed therein. thru This has been done by Mr. Laws and Mr. De Salty, the two gentles. men who have charge of the electrical department on board our ship, and was accepted by the directors of the company, wit made an order of the Board, by their minutes of June 7, 1858. F consists of ar exchange of current is" sent alternately during a period of ten minutes by each ship, which not only serve to give an accurate test of the contenuity and insulation of the conducting wire, but also to give certain signals which are required to be sent when the ships are far apart. Fer instance every ten milo of cable paid out is signalized from -ship to ship, as also the approach to land or momentary stoppage for splicing, shifting coils, \&e. The electrical apparatus employed on board the two vessels is not very complicated, and is simply composed of testing instrumental, Wholly different from those to bo used for the transmission of ineseages when the cads of the cable shall be landed.

The electric current is generated by sand batteries consisting of
*plates of zine and copper, about fourteen square inches each, arranged by pairs. These plates are immerged in a solutiou of sulphurie acid and water, mixed with saw dust, for the purpose of preventing the liquid from overflowing. Two hundred and forty of these pairs are in operation ou board of each ship. The instrument used for sendine the current thus created through the line is an ordinary commutati, , in the form af a reversiug key, by which the operator can, at will, send the zine of copper current of the battery into the cable, and by so doing change the nature of the signals. The curreut nest passes through an electro-magnetometer, an instrument very useful for the purposes of testing. It is composed of an electro-magnet, the armature of which can be "furthered " or "approached" by a small serew, so as to require a stronger or weaker current to attract it. It shows the charge as every current flows into the oable and the discharge as it comes out. Before entering the line the electrie current is made to pass through a second instrumont, called the marine galvanometer, which was iuvented by Professor Thomsion, of Glasgow University, one of the directors of the company. The magnetic ucedle, which is placed in the centre of a coil of wire, instead of marking its own deflentions as in ordinary galvanometers, has a little mirror fixed to it, the reflection of which ereates a swali spot of light according to the deflections, moving on a horizontal scale of white paper, placed at about eighteen inches from the instrument itself This instrument reports accurately the force of the currents, not only in the sending, but also in the receiving from the corresponding ship.

Besides this marine galyanomoter, the ouly other instrument iu circuit when receiving is the ordinary galvanometer usually empluyed for testing. Aecording to the nature of the current received, the ncedle is deflected to the right or the left of a point marked zero on the dial, and where the needle is in a vertical position when no current is passing through the coil of wire surrounding it. Every one of the deflections read on the galvanometer, as also the charge and discharge indicated by the magnetometer, are carefully recorded, so that if a defeet of continuity or insulation occurred it might be visible by comparison with those received before.

These are all the instruments in the electrical department, and this is a simplified explanation of their various uses, so that the unscientifie can underitand them.

$$
\text { Second Day_July } 30 .
$$

All through the night the sound of the machinety never ceased, and the continuity remained perfect. At half-past three o'clock this morn* ing the last flake of the forward spar deek coil began to ruu out, and
considerable anxiety is manifested in regard to the eliange to that on the forward main deck, which is inmediately beneath. Every precaur tion, however, has been taken to guard against aceident, and by a quarter to four the agony is over ; the first turn of. the new coil has lieen reached, and the cable is going out in splendid style. The interest is now transferred to the main deck, for there is nothing further to attract the attention in the appearance of the circle which has just become vaeant-nothing but the thick tar that covera the floor, the broken cone, and the rings or fair-leaders through which the cable passes before it runs over the bobbins that lead to the machiuc. Yet it would be wrong to say that there is little of interest in this circle, for have we not successfully paid ont all the cable it contained; and who doubts we world find more pleasure in looking at all the circles when empty? The wase with which the line ruus out of the ship at this distance from the stegn, for we are now about two hundred and seventy fect from that point, is calculated to infuse new confidence into every one who sees it, but it is, after all, a confidence terribly shaken by vague fears of the future. We have five or six days to run before we get into Txinity Bay, and in that time, which, in our state of suspense, seems so many yeara, what may not oceur? We are afraid even to think of success, so ofton have our. hopes been blasted by disappointment; the very thought of the naguitude of the undertaking brings with it a feeling almostyakin to discouragement. We know that the risk is doubled by the employment of two ships, while at the same time it must be acknowledged sur chances ofsuccess are increased by thus reducing the time one halfo.. But, again, in running the distance between the two points which it is desiguged to connect, there is the probability that either or both vessels will get into a gale, and in that event the prospect of laying the cable becoures fuarfully dubious. Such a gale as that we have had-an eight-tay affirwould very soon put an end to the undertakjog, and whill the work appears easy and practical enough. Follow the course of the cable as it. comes out of the coil, passes over the bobbins, round the sheaves of the paying-out machine, and so on till it goes overboatd, and you will be fully impressed with its practicabilit.y. Yet what is the reason that all the uttempts litherto made have failed, yon may ask? Why, if three huadrod miles have subwerged, is it not also possible to lay twb or three thensand? This is a question which appears very siuple, and which is yet rather difficult to answer. It is easy to say that the breaking of the eable is caused by defective machinery, but who is able to account satisfactorily for the break of continuity "phich oceurred in Juno last, after forty miles had been paid ont of both ships? This it is which raises tho greatest doubts in the ninds of all, and which makes gven the most hopeful ap-
prehensive as to the result. That word "continuity" has created more uneasiness and ausiety than any thing connected ${ }^{n}$ with the work, simply because it is seemingly beyond the control of soientifio skill, and, onee gone, cannot be restored by human ingenuiiy. At any moment wo may hear that it hats: parted, and sleeping or waking, the fear that it will haunts us like a nightmare. Oh, how wo long to see that bleak and barren, but to us, more desirable coast tadn any that ever met the gaze of enraptured voyager. What would we not give to be steaming ap towards the head of T'rinity"Bay with the telegraph station in full view? Five or six days yet to run, at the ead of which time we may be returning to Qucenstown, again to bring the nelts of disaster and defeat. But we must not think of defeat now-we are bound for Newfoundland, and if Providence favors us, two or three weeks at the farthest will see us entering the bay of New York, after having successfully accomplished the greatest work ever undertaken by man. But let us see what progress we have made during the last twenty-three hours, for it is now twelve o'clock, and we have been paying out since one yesterday afternoon. The following iable shows the distancerun aceording to the different logs therein stated:

The length of cable paid out, acoording to the indicator attached to the machine, is 131 miles and 900 fathoms, or a surplus over the distance run, as shown by observation, of 42 miles and 900 fathoms, which is equal to about 48 per cent. This is a ruinons expenditure, and if it should continue at the same rate for the next two or three duys, we night as well abandon the undertaking at once, turn our ship's, head toward Fingland, and nake the best of our way baek. It mast not be forgotten, however, that in starting, a large amount of slack was allowed, so as to prevent an undue strain upon the cable before some fifteen or twenty miles should have been paid out. Of course, it is almost needless to say that we will be forced into no such expenditure during the next twenty-four hours. Besides, we expeot to bo able to ran out, the cable at the rate of seven and eight miles an hour yet, and experience has proved the faster is is paid out the loss is proportionably diminished. There is suffioient to allow a surplus, of thirty per cent.; and if that should not be emough, we can land the end agt the ontrance instead of at the head of Trinity Bay, as was proposed in the event of our having sufficient for the purpose. The depth of water during the last twenty-four "hours has vurfed from 1,600 to 1,975 fathoms, but it appears to have nax
effect upon the laying of the cable-in fact, the great depth of water is one of the least obstacles against which we have to coutend.

The electrician on watch has just reported to Mr. Field that he recoived a despatch a Cowentyrone minutes past two from the Agamemnon, which is now some two hundred and thirty miles off. and that they had paid out from that vessel 150 miles; and at thirty-six minutes past two we inform them by electric signgh that we have laid the same length. This shows that she is ahead of us by fifteen minuter, which is equal to a mile and half. We have thus far got along most suecessfully, but the remembrance of that upleasant ineident about the continuity still clings to our minds, and forbids us to indulge in any sangutine expectations. The weather, too, is beginning to look unfavorable; and, whe is still worse, the barometer is falling, though slowly. A gale at thispar-
" "icular time would be a most unwelcome visitor, and we trust that although Licutenant Maury was wrong in lis meteorological calculations about the month of June, he will turn out to be correct on this occasion. The sky is overcast with gloomy-looking clouds, and the appearance of the horizou is very throatening and squally. The barometer bas fallen half au inch, and has still a downward tendency, while the wind is slowly but steadily increasing. It is evident that we are in for it, "nioss those" indications which have never deceived us before are at fault this time. The wind continues to increase towards evening; but up to seven riclock it has not reached the magnitude of a gale. It is only blowing freshwhat sallors would call a stiff top-gallant breeze, and as long os it keeps at that we are all right, and have nothing to fear. Nine occock, and still no gale; but anless the barometer isastray, we will catch jt somo time during the night. I'en o'clock has just struck, but, strange to say the wind is going down, and the sea is following the example. It is to bo hoped it will stay down, and remain so till we get into New York, for we have had quite enough of it already, and have learned by experience that a smooth sea is preferable to "rolling billows" at any time." The bight is clearing up, and through the patches of sky which are seen through openings in the drifting and broken soud, the quiet sitars are peeping out. The would-bo gale is literally used up, and we have ase calnt and beautiful night for the continuance of our work. Contidence is risiug rapidly, and the bids in favor of ith suceess are becoming quite heavy in the imaginary stock market which has been established on board. "When it was roported that the continuity was not so perfect as Wo vould wish, stocks went down with a terrible rush, and there, were no bidders at any prioc. But twenty four hours decided the matter; the Atlantio telegraph rai up to fifty per aent.; and contimied going up till it reached the remarkable figuro of eventy-five. Tho cable is, ind
the absorbing subject of conversation on board, and other things are only spoken of as they bear some relation to it. That group of suilors ncar the eook's galley are engaged in an animated diseussion on the all-pre. railing topic. One of the number is trying to persuade his messmates that it is iapossible to lay it; but they lend him a rather unwilling ear, and are evidently more strongly inclined to the other yiew of the subject. Among thein, too, is tho same individual who debivered fis upinion with such emphasig" some time ago on "continuity," but whe "has siuce become a nost sinceré convert, and a firm believer in the" fath "that the cable ean be laill. The very messenger bnys are as deeply it terested in the rukject as the oldest tar on board, and at their head stands a bright-looking lad, who was rewarded the othen day by Mr. Field for the look-out he kept for the Agamemnon. In the enthusiasm which has sncceeded the hopeless despondency, and in which nearls the whole ship was suok, a sort of veneration hay sprung up for every thing with which the cable has been placed in con'tact. Sone have desigus upon the pucces of flh anking which formed the floor of the eircles in which it thas heen or is coiled, and specimens of the cablo itself are more highly prized now than they ever were before. Nothing is thought if during the day but the cable, and at aight I belie two-therds of the crever don't dream of any thing else. We have all hecome superatitions, and the man who has the must auspicious dreams is as eagerly listened to as if he were an infallible oraole.
"I dreamed last night," idtide one of these, "that wo had laid the cable, and there was not a single break in it; and my dreams alwaya come in true, as M. can tell you; for I told him a thing that be found ont had happened exactly at the time revealed to me." This was considered by sone as proof positive, while those who looked with contempt at proghostications, auspicious dreams, auguries, omens, and such like, smiled upon the dreamer with indulgent consideration. They were evidently pleased to listen, and although they would emphatically bave contradicted the charge of being superstitions, the gratitication which they manifested had somewhat of a leaning in that direction. Whether they are or ure not superstitious, we hope the dream will be fulfiled, however, and that the Agamemuon as well as the Niagnra whll succee.l in'accomplishing her share of the work. If we should pass over another day in safety there will not be a singlo secptie on board; for those who were the most incredulous are fast giving way before the stróng evidence with which they have becu presented in the last twenty-four bours. The feeling of confidence in the prospects of to-morrow is 'greatly strengthened by the facility with which all the operations are carried on, and by the almirable manner in which the paying-out machine
yorks. Let the contiauity remain perfect and there will be no diffculty.

$$
\text { Third day-Jul, } 31 .
$$

The desperate effort which was made yeaterday by the barometer to get up a gale proved a total failure, and we have now one of the finest days for cable laying wo havo had during this expedition. The index. hand pointed 29.64 still, but the wind would not eome, the sea refused in rise without some provoeation, and, so the date of the storm was postfoned iafdefinitely. There is, however, a thick mist, through which the forgon is indistinctly visible a short distance in advance on our starboard bow; but this is already beginning to disappear, and before noon the horizon will be perfectly clear. The first point of attraction is the coil, for if the cable is running from it freely you may be certain that atl in right. The coilers who sit on the margin of each flake are amusing themselves in the intervals of their work by manufacturing little balls out of the tar, which has become hardened by exposure to the air, and throwing them down before each turn as it is taken up from the coil. As the cable passes out at the rate of from seven to eight miles an hour, it strikes these balls with considerable force while it courses rumad the circle, sending them before it with still greater speed. The rate at which they run depends to a great extent on their spherical form, and he who makes thein roundest is generally the wimer. As no hets, however are offered or made, no pecuniary advantage acerues to any of the partics concerned. Uceasionally a lump of chalk, a small potato, or a piree of was candle is entered for the race,-in which the chalk generally comes out ahead. As it is impossible for any aecident to oceur from this, and as it affords' a harmless amusoment to the men, without interrupting the work, they are net interfered with. They are always ready at the end of each flake to lead the eable into the centre, and perform the operation so well that a kink is almost a matter of impossibility. It is a pleasure to look upon their earnest, eager faces, and observe the eare with'which they handle the line while passing it from the outer edge of the circle to the cone. Although this operation requires to be repeated about fifty times a day, they always perform it sucoessfully. If they allow a single kink to take place the expedition might be considered as at an end, for it would be next to impossible to remedy the damage. Not a man mong them who does not know that, and who does not realize the full importanee of the duty with which he is cut. st - The reader must by this time be aware that in paying out the cable, the greatest caution hee to be observed to prevent it from kinking, and as there is a much greater tendency to kink near the coue,
which is in the centre of the circle, than as you approach the circumference, the ship is always slowed down about five minntes before the last or outermost turn is taken up. As soon, however, äs this critieal part of the work is safely performed, word is passed to the engineer to "go ahead," and immediately after the buge propeller is again revolving with its former velocity.

Contrary to the predictions of some, the change from the forward main deck coil to that on the deck immediately below, took place at half-past five this afternoon. It was thought that we would not have it all paid out before midnight, but the speed had been somewhat increased during the last twenty-four hours, and the rapidity with "which flabe after flake passed ont satisfied those on wateh that the coil would be exhausted fong before the time announced. At least an hour befure the change was made the outer boundaries of the eircle in which the cable lay was literally crowded with mon, and never was greater interest man. ifested in any spectacle than that which they exhibited in the proceed ings before them.' There were serious doubts and misgivings as to the successful performance of this inportant part of the work, and thesed only served to inerease the feeling of anxiety and suspense with which they silently and breathlessly await the critical moment. The last flake has been reached, and as turn after turn leaves the circle every eye is intently fixed on the eable. Now thereare but thirty turns remaining, and as the first of these is unwound, Mr. Everett, who has been in the circle during the last half hour, gives the order to the engineer on duty to " slow down." In a few moments there is a perceptible diminution in the speed, which continues diminishing till it has reached the rate of about two miles an hour.
"Look out now, men," says Mr. Everett, in his usual quiet, sulf-pos. sessed way. The men are as thoroughly wide awake an they ean be, and are waiting eagerly for the moment when they shall lift the bight of the cable, and deliver it out safely. One of the planks in the side of the coue hartbuen loosened, and just as they are about taking the eable in their hands, it is removed altogether, so that as the last yard passes nut of the now empty circle, the line compences paying out from the circle below, or the " orlop" deck coil, as it is called. The men, who are no other than the coilers, or "Knights of the Black Hand," as they have not inappropriately been termed, have done their work well, and the applause with which they have been greeted by the crowd of admiring spectators is the most gratifying testimony they can receive of the fact. They have bardly passed the cable out of the circle before they are reeeived with as enthusiastic a derunstration of approval as the rules of the navy will pormit. Such a clapping of hands was never heard at 7
c circumefore the is critical gincer to revolving
forward : place at thave it inereased aich flabe ld be ex. efore the the cable rest mall. proceed as to the nd tirese th which last Hake ry eye is maining, on in the - on duty minution e rate of self-posa be, annl hit of the le of the eable in asses out he circle 10 are no aey have the apudniring e of the ore they the rules heard at \Rightarrow
the Academy of Musie, and if they had only been indulged a little, they would have rai such a cheer as would have aroused old Neptune from the profonder: depths of his marine dominions. The hatches, which were covered over in the construction of the circle, are opened, and the daylight is thrown upon the top of the coil, from which the first flake, is now being paid out. The same seene is presented as that exhibited in all the eoils during the paying-ouit process, exeept that the rather ditn daylight which penetrates to this deek renders the aid of candles a matter of absolute necessity. The removal of the hatches discloses to the view of those above the Knighte of the Black 11 and sitting, or rather croueling in a very unknightly manner, on the top of the cable, as the narrow space between it and the keamiof the deek will not allow them to take a more crect or graceful position: Two dozen candles and a halfde cen lamps illuminate the circle: for, after all, it is hardly worth while saying any thing about the dubious instalment of daylight which is given " here. It is certainly a strange speetaele, that cable paved eircle from which the black line ts rapidly ascending to the deek abowe, on its way to the bottom of the ocean-those men who seen to have been placed there for mo other purpose than to look at it as it passes upwards-and Waistly, that superintendent, who sits on the outside of the circle, and whese presence is necessary to make the scene perfect. But those man
 tho. There they sit, it is true, and in a rather uncomfortable position for the tume being, but wait until the last, turn of this hake is about laving the cirele, and yon will see them diaplay the greatest activity. Now they seize it in their hands and run with it towards the centre or cone, so $2 s$ to prevent the possibility, of a kink when the change from the long to the short turns takes, place, and when this task is accomplished they return to their place, until they ard again summoned forth to a repetition of the same operation.

In a few minntes the excitement attendant on this in portant opera. tion ceases, but as we approach our destimation, and our chances of auceess. increase with every hour, the feeling of suspense and anxitty begmesabsobutely painful. This is our-third day, and since the two from mid-ecean we have paid out it greater length of cable than was ever Jid before. We hardly dare ask ourselves if we shall lay the line the whole distance-it seems too much to hope for-and we dread to think of the future. We count the day not by hours, but by minutes, and setire at uight not to slecp, but to thiak through thetedious and weary moments of the all-absorbing subjeet. The sou foy machinery bas lecome as familiar to us as that of our own voices, n. When it is drowifad in anyother notse we listen wiun eageryess to hear

The barometer is consulted hourly and its variations watelech with a jothens eyce, for we cam now appreciate fully how much deponds upon the weather So far we have been greatly favored, butwo can tell what another day may bring forth, sud the weather wise insisis that the barome. ter never fixhs so low without a gale. The auticipation of much a thing is antainl not calculated to spet one's mind at rest, belonguered in it is by the fear that some untoward aceidnt may hapen to the Agamemnon which 'would eause the rupture of the calle.

At twelre'oclook to day, we were in lat. 51 deg. 5 min , lon 38 deg. 23 min., having made the following run:

 hours wibs rhe dints es $b+3$ fathons, showing a sirplus of 22 miles nver
 eouth-e bt. Agameman informed as at a quarter to three velenck. 1. H., by tolegraph sigual, that they had pasid out 300 miles of cathe ung to that time.

Fourth Nay-August 1.

('unfidehces is growing strouger, und there is considerable spoculation as to the time we mall readi Newfondland. The pitot who is to bring us into Trinity Bay is unw in grat repate, and is becoming a more im. portant personage every day. Ifis opinion is solicited in regard to the Weather, as he is supposed to know sonnething ahou it m these latitudes, and he is partienarly catechized on the navigation of the bay and the formation and character of the coast. We are really beginning to have strong himes that his services will be called into reguisition, and that in the equase of a few days more we will be in sight of land The night bas passed without accident, the barometer is rising, and the wind has gone round to the north-west, a sure imblication that we will have elear weather. But the sea is aut at all sin smonth as it was the day befors, it is in fact so rough as to favor the belief that there mant have been a severe gale a short time sinee in these latitudes. The wind is also very perceptibly increasing, and there are seriout misgivings that we are go ing to have that threatened gale now. The condition of the vessel is :ach as to alarm us ereally for the safety of the cahe, should it come on t. ohow very had as the large amount already paid out, and the quan. we been a s also very we are go le vessel ins it comed on I the quan.

州
"Well," said a member of one of the messes, approaching some of his asseciates," well, it is done at last."
"What in done?" said half a dozen, with the nonst impatient haste; "What is donc, the cable ${ }^{*}$ "
"The cable? No, dinaer is dene!" he replied, with a tone of diygust that ghowed, however his comrades might regard his remark, he certainly did not intend it as a joke. They laughed, however, as mouch as if it were intended for one, probably more beeause his explanation relieved their minds from the apprehension that it.was really the cable be spoke of. However improbable it may appear, there are some who seem to think less of their own lives than they do of the tarred line now running over the stern; and there are few who would not risk their own safety to secure that of the cable. This is paramount to all other considerations, and every, one feels that it is so, from the apprentice boy up to the captain.

We have made a better rum to-day than during any tweuty-four hours sinee we started. At 12 o'elock we were in lat. 50 deg. 82 min., long. 41 deg. 55 min., having made from 139 to 145 miles, as is shown by the following:

In running this distanee we bare paid out 164 miles 683 fathoms of cable, whioh shows a surplus of 10 miles 683 fathons over the distance run by observation, or about 14 per cent. The depth of the water varies from 2,424 to 1,950 fathoms, and the wind, which blew from W. N. W., freshened very considerably. It did not, however, attain the force of a gale, and what was still more gratifying, began to fall as night approached, while the barometer coutinued rising.

Fifth Day-August 2.

At aeven o olock this morning a steamor was reported ecming from the wostward, and steering direetly on our course. What ressel could it be? Not the Porenpine, which the British government dospatehed to Trinity Bay to look out for the Niagara on her arrival. No, it could not be the Porcupine, for she wonld not come out so far. It must be one of tho Boston or New York steamers, which had followed the course of the Telegraph plateau for the express purpose of meeting and speaking the Niagara. Yee, it mast certainly be from either of these plaoes. I few minutes more, however, will place the matter beyond conjecture.

In half an hour from the time at whioh she was reported wo disoov-
og some of his patient hasto; a tone of diz. is rernark, he ver, ay much 8 explanation tlly the cabl are some who rred lipe now isk their own all other conantice boy up
twenty-four deg. 32 min., as is shown 5 miles.
9 "
$17-10$
3 fathoms of the distance witer varics IV. N. W., de force of a approached,
cming from ssel could it spatehed to fo, it could must be one e course of d speaking plabes. 1 jeeture. wo disoov-
ered that she was a Boston steamer bound for Livorpool. On coming up to the Gorgon she slowed dowa, and finally stopped to make signals with our escort, from which she learned the mission on which we are employed, as well as the success that has attended us thus far. As it was impossible for the Gorgon to stop, the steamer turned off her coarse, and proceeded westward with her until she obtained all the information she could glean. Then stopping and waiting till we eame up, she displayed a signal which we supposed indicated her number or name, but whieh we were unable to make out. Her deek was literally crowded with passengers, and from what we could see of them through the glass, it was evident that they were watching us with the greatest interest. Capt. Hudson had the telegraph flag displayed at the mizen, and as it is of somewhat gigantic dimensions, with the words "Atlantie Telegraph" wrought upo. it in large detters, they had no difficulty in determining who and what we were. Then, too, if they could not discern the delicato line between our stern and the water, they must certainly have seen the wheel over which it was paid out, revolving with a s.sped that showed we were doing our work rapidly and well. The rate of paying out had reached seven miles an hour, and we were going through the water at from five to six. How different from the expedition of last year, when the speed of the ship hardly exceeded an average of four miles per hour! After watching us for fifteen or twenty ninutes the stcamer proceeded on her course, dipping her flag to us as she went-a compliment, which was promptly returned. Less thian an hour after she had disappeared below the horizon, and we could ouly trace her couses by the black line of smoke she left along the sky.

A
\therefore There was a very heavy swoll, like that left after a gale, during the whole of this day, and our ship ralled as she never rolled before, and as we had hardly considered her eapable of doing. The cable, however, exhibited no sign of parting, and ran out at an angle with the water that showed that it was not affected by a strain greater than the eighteen hundred pounds which had been put upon the brakes. As for the machinery itself, uothing could be more perfect than the way it workedno jarring, no irregularity of notion, but cevery thing in and about it was as steady and as perfect in its operation as clock-work. It has been - running four days altogether, and is just as. reliable now as when it was set in motion after the spliee was lowered in mid-occan. The tar which is pressed out of the cable as it passes over the grooved wheels, collects in large quantities; but the scrapers, which the wiso foresight of Mr. Everett provided, prevent it from accumulating in the wheels and clog. ging their action. The brakes have never once failed, and never allow the strain upon the cable to exceed the pressure of the weights. They
are properly called self-releasing, aud although they can, by means of additional weights, be made to increase the pressuro or strain upon the cable, yet, until those weights are still further increased, it is impossible to augment that strain in any other way. Whether we are successful or not, no fault can be found with the machinery. The ship may roll still worse than she does now-and that is bad enough-but it is not in the least affected by her motion, and pays out as steadily and as easily in a beavy swell as if there was not a ripplo on the sea. The cloud of steam which rises from it, and which neeasionally envelopes the operatives, proves how indispensable the use of water is in working the brakes, for the heat prodaced by the friction is so great, that if not kept down it would char and burn up the elm blocks in a very short time. Several gallons of water aro consumed daily by the fiietion of the brakes, and thrown off in clouds of steam, sometimes as dense as that which is blown off by a locomotive. Large quantities of tar are pressed out of the rable as it enters and leaves the machine, and fall into tubs which are left ear the machine for its reception. Of this stuff a couple of ordinary sized barrels full are colleeted each day and thrown overboard. It is all-pervading, and besmears every thing about it within a distanceof twenty feet. The course of the cable is mar one continuous black line, and small feathery-looking flakes of , whirled through the air, besmearing every thing they toueh. Some parts of the ship look as if a heary shower of it had fallen, and il others it has become hard as it accumulated, and formed into little mounds. The front of the dynamometer has changed its original green color, and is now almost entirely black, while the operativen at work at and around the machine are covered with large patches of the same color. Yet with all its disadvantages it would be a difficult matter to get along without the tar, for it has proved the greatest preserver that could be found for the cable.

I have said that despite the bad weather and heavy sca the payingout process was going on well, but during the night the continuity was again affected, and although it was restored and becane as strong as ever, yet it was for about three hours a very unpleasant affair. It was subse: quently found that the difficulty was caused by a defect of insulation in a part of the wardroom coil, which was cut out in time to prevent any serious consequences. Thero were only a few on board the ship, however, aware of the occurronce until after the defect was removed, and the clectrical communioation was re-established between the two ships. Both Mr. Laws and Mr. De Sauty, the two eledricians on the Niagarn, were of the opinion that the insulation was broken in some part of the wardroom coil, and on using the tests for the purposo of ascertaining the presise point, they found that it was about sixty miles from the bottom of that impossiblo ccessful or y roll still not in the easily in a d of steam operatives, orakes, for down it Several rakes, and h is lown f the rable c left car nary slzed is all-perrenty feet. line, and , besmearf a beavy t aceuniuamometer ely black, ered with s it would roved the e paying. auity was ig as ever, ras subse: lation in sent any hip, how1, and the 1s. Both , were of rardroom e preoise 1 of that
wil, and hetween three and four hundred from the part. which was then paying-out. The cable was immediately out at this point and spliced to a deck coil of ninety miles, which it was intended to reserve fir laying in shallow water, and was therefore keft for Trisity Bay, About four o'clock in the morning the contimity was finally restored, and all was going on as well as if, nothing hal occurred to disturb the confidence we felt in the success of the expedition.

At, noon we wert in latitude $49^{\circ} 52^{\prime}$. longitude $45^{\circ} 87^{\prime}$, and had run, by observation, 154 miles, and by \log as foliows:

```
By ship's log, . . . . . . . . 144 miles.
By eugineer's log, . . . . . . \(1+1\) n-8 "
By pacent \(\log\), . . . . . . . . 141 3-10 "
```

The leugth of cable paid out was 177 miles 150 fathoms for the preceding 24 hours, which is a surplus of 23 miles 100 fathoms over the distance, or 15 per cent. The depth of water was from ",385 to 1,600 fathoms. Wind north. The signals which have been received from the Agamemon inform us that she is paying out at tho rate of seven and eight miles an hour, from which we derive the assurance that she has fine"weather, and that like ourselves, she is making tho most of it. The night has set in fine; the barometer continnes rising, and although the vessel still rolls considerably, we.have had experience coough to tell us there is nothing to be feared from this motion. It is, however, inpossible to throw off the feeling of uncasiness created by the interruption of the electrical communication, and those of us who have a more nervous temperament find it a difficult matter to sleep. The writer tried hard for something like four long hours to get into that blissful state of oblivion, but it was of no use; it was impossible to think of any thing else but the eablo; and abandoning the attempt, he got up, and passed the remainder of the night in visits to the coil, to the machine, the stern of ot the ship, and tho electrical department.

Sixth Day-August 3.

This is the anniversary of the day on which' Christopher Columbus - sailed on his royage of discovery to America-is it to be still further : signalized as one of those on which tho work of connecting the Ofd and the New Worlds, was accomplished? "Heaven grant that "it may be so, although it seems almost like presupption to hope. And yet there is a strong underourrent of confidence that is often the precursor of snccess, although we are still about two hundred miles from land, and a kink (in the cable, or a hole running through the gutta percha into the con-ductor-and through which you could not even force a hair-would render the labor of years utterly unavailing, we are so confident now, that
we are calculating on seeing land to-morrow morning sometime , bout six o'clock, as the observation which was taken at noon to-day shows that it is not more than one hundred and fifty miles off.

The great work of this morning was the change from the fore hold coil to that in tho wardroom, which are at least two hundred feet apart. This took place at eight o'clock in the morning, and as the time was known to all on board, there was even a larger crowd assembled to witness it than I observed at any of the other changes. It was considered a most critical time, and althongh the operation turned out to be very simple, it was anticipated by some with considerable uneasiness. The splice between the two coils had been made mome hours in advance, and men were stationed all along the line of its course from the hold to the wardroom. Mr. Eiverett and Mr. Woodhouse were both on band, the best men had been picked out to pass up the bight, or bend, when the last turn should be reached, and"one man, named Henry Paine, a splicer. was specially appointed to walk forward with the bight to the after or wardronm coil. As the last flake was about to berpaid out, the ship was slowed down, and by the time the last three or four turns came to be paid out, she conld hardly be said to be moving through the water. The line came up more slowly from the hold, until they were nearing the bight, where it could not lave been going out faster than half in mile an hour. One more turn and the bight comes up. There is not a sound to be heard from the crowd, who are watching it with eager and anxious faces from cuery point of view. No one speaks or kas ventured to speak for the last niuute, except the engineers, and they have very little to say, for their orders aro conveyed in the most laconic style, and the quick "aye, aye !" of the men show that they understand the full value of tine. "Now, men," says Mr. Everett, "look out for the bight," as those in the hold hand it up to the men on the orlop deok, and it is passed from land to hand till it reaches tho platform and long passage which has been built upon the spar deck for this part of the work. Here the bight arrives ut last, and Paine takes it in his hand, paying out as he follows the line of the cable to the wardroom coil. How anxiously the men watch him as he walks that terrible distance of two hundred feet, and think that if he shonld happen to trip or stumble while he holds that bight in his hand, the great enterprise may end in disaster. It is not a diffioult task, but how often have things that are so easily performed, been defeated by want of eoolness. . There is, however, such an easy self-possession about the man as he comes slowly after the long black line, that it ins]ires confidence. " All hands" have deserted the dooks below, and follow him as he walks aft, and one in his impatience to get a glimpse of him, has nearly fallen through the skylight of the
engine-room, in which he has smashed several panes of glass in the effort to save himself. "Pick up the picces," says Paine, in a vein of quiet humor, as he proceeds on his course, without interraption, and eoming up to the wheel, which is immediately above the wardroom, he straightens the bight, and the eable begins to run uut from the top of the coil on the deck beneath. 'His work is done, and as the line passens out of his hands, he receives a round of applause from the hands of the speof tators, who, but for those terrible have" rales, would have greeted him with a cheer that, would have done his heart good. As it is, they must give vent to their feelings in some way, and the exclamations of "Well done!" "That's the fellow!" "By thander, it's all right!" "Good boy, Paine!" are nota had compromise after all. Besides, it might be rather premature at this time to indulge in any triumphant expression of feeling before we aro cven in sight of land.

All the aiguals we have received from the Agamomnon are most enconraging, and sbow that up to the present moment she bas been as fortunate and suceessful as ourselves. If her per centage of loss does not exeeod ours, she will doubtless land the end of her half of the eable at twelve o'clock to-morrow. As we have some sixty mites further to go before we reach the bay of Bull's Arm, which is at the bead of Trinits Bay, wo cannot accomplish our part of the work before seven or eight o'clock in the evening, and it is doubtful-bin account of the condition of a portion of the cable which we have yet to pay out-whether we can do even that. The defective part, which was discovered yesterday in the wardroom coil, rendered it absolutely necessary to cuit about sizty miles of it off, and to splice the severed end to the quarter-deck eoil of ninety miles. This part of the line has been ooiled so often, that it is bent and twisted to such an extent as to render it difficult to pay it out. as fast as the other parts with safety. For this reason our landing will be delayed much longer than we expected, and it is hardly probable that we will be able to get into the bay of Bull's Arm before Thursday morning, the 5th instant.

The observation taken at noon to-day, places us in latitudo 49 deg. 17 min ., longitude 49 deg. 23 min ., showing that we have run since twelve o'cloek yosterday, 147 milos. Our run, according to the different logs, is as follows:

In making this distance, 161 miles 763 fathoms of cable were paid ont, which shows a surpius of 14 miles 613 fathoms expended, or an ex-
cess of ten per oent. The depth of water varied from 882 to 742 fathoms. Wind north-west.

At half-past two the Gorgon made a signal to us, which, translated from the numbers, reads as follows:
"I congratulate you on your success."
To this the following signal was sent:
" Accept my best thanks."
The weather was magnificent, and the surface of the ocean was hardly disturbed by a ripple. I have stated that the wind was W.N.W., and that is what the log of the ship says, but at times there was not enough to waft a feather, and the day was one of the mildest that this high northern latitude has ever seen. Thero wás no indication of fog, unless the light summer haze that rested over tho water could be tortured into the name. We saw several icebergs, some of the most gigantic dimensions, rising to an altitude of from fifty to a bundred feet. They were fashioned into a wonderful variety of forms, castles, towers, forts, Gothic church spires, columns, and one had a gigantic arch that seemed to rest of columns of emerald. The effeet of the sun upon this was magnificent. The rays striking upon the clear green surface of the icy columns, the upper part of which were cougred with a singulatly fantastio fretwork, reflected themselves in all the hues of the rainbow. As our vessel proceeded on her course the position of the berg was entirely altered, and the great arch which we had seen bu*nhlf an hour before, was transformed into a massive fort, with parapets and all the works of offence and defence. While looking at another, the crest of which rose above the water like a mountain peak, it fell apart, and sinking below the surface for a few moments, rose again in an entirely different form. One part resembled a large cliff with precipitons sides, in one of which was a miniature bay, on whose shores the swell of the sea broke in foam. The sky was one expanse of deep blue, except immedintely over our heads, where a peculiarly beautiful corona of fleecy white clonds had rested. There was something so remarkable in its form and appearance, that those who felt inclined to look upon it as an auspicions sign, asserted that Heaven intended thus to crown our success, and mark its encouragement of the enterprise.

The calm that rested on the waters during the day was prolonged into the night, in the subdued ditrkness of which we can still discover some of the icebergs looming up above the water like immense rocks. There will be little sleeping on board the Niagara this night, for early morning will bring the long'wished-for land in sight, and every one will be on the look-out.

Seventh day-Alugust 4.
The morning of this day will be memorable in the history of the world, as that on which the Niagara firs brame in sight of the inland ontpost of the American continent, learing to its whores one end of that great electric chain which is to destroy both tine and distance, and bring the Old World into the closest communinuwith the New. It is an occasion! only second to that on which the cable will be landed at the terwinus of the great ocear line. And what a nerning thes is, so bright and so . clear, within a few miles of the shores of a rountry ahich has been truly termed the land of fogs! There is not a breath of air, and were it, not for its ever heaving pulse, the occan would bu as still and as notionless as the depths of the great jlatean itself. As everybody is anxious to see the laud, everybody is on the look-out. The men in the forctop are not satisfied with that elevation, and have gone up some fifty or eixty feet higher, while the main and mizen-mavts have eath a number of volunteers, every one of whom expects to be the first to reprort land. The forecastle has its louk-outs too, although there is no prospect of thoir getting ahead of tho others.

At seven o'elock land was reperted from the main-mast, but the report was a little premature, for it was nut really seen. About eight, howeser, the sheoring ery of "land ho!" yot through the ship like a clarion note of triumph. Land at last, afadid days of such anxiety and susjense as few men ever pass through-si days of weary watching, of feverish restlessness, and ending in lights that brought wo repose Land at last-yes, ther it is, defined boldly and distiuctly against the western horizon. Oh! friends at home, who believed we could not suceeed, and who trembled us you read of that feartul gale, and the dangers through which we passed, had you seen the glowing aces, and the tears of joy that filled the eyes of all as we gazed umon the glad sight for hours, you too would have felt as we felt. With what deep carnestness we thought then of home, and how we eonjured up befure our mental vision the glad faces that would welcome us ou our arrival! What a seene of wild excitement New York will precent as the news that the "impracticuble enterprise" has succeeded. and that in little more than a week the Niagara will make her appearance in its bay! But the poice of caution warns against too sanguine anticipations, and reminds as of the truth of the unwelcome proverb which everybody knows,

As we approach the land, wo see more icebergs, some of, which ar: floating in the bay, aud others lying grounded on or near its shores These bergs bave assumed the most reharkable shapes, and are undergoing singular changes. There is one suspunded in mid-air, over an-
other, of which it is a perfeet, though inverted fae simite. The land itaelf appars to be undergoing no lass wonderful transformation x, and wherc but a tew lirief minuters agd thero was mothing visible but the rugged and wild-forking coast mountains, towns and viliag's have sprung up, as if the barren shores had beent tonched with a magician's wand and become an enchanted land. Far off, as far as the rision ean reach, appearg a stupendous railroad bridge, supported by a hundred abutments; but hardly has the cye rested on it before the abutments fade away, and a mountain with its peake dowimards and its base suspended in air takes its Iblee. What atrauge land "hs,this that startles the mind with its wondery? It is bleak, barren, rocky, foggy, mountainous Nev foundland, and there before us is the entrance to Trinity Bay, near the head of which the cable is to be landed.

The cities, and villages, und mountains suspended in mid-air with their praks downward, are simply so many forms of the virage, nn which we have been gazing in bewildered astonishment for several hours past

It is now half-past two o'elock, and we aro entering Trinity Bay at a speed of seven and a half knots an hour, paying out the cable nt a very slight increase on the same rate. The eurve whi h it forma between the ship and the water proves that there is little or no strain upen it, and proves also another thing, that it can be run out atreight, nine, and I belies ten miles with the geatest safety. This, however, as I have previonsly stated, cannot be done with old enble that has been coiled so often as to have a tendeney to kink, and there is, as has been already intinated, some of this kind which we will be obliged to pay out before landing. A signal, signifying, "all well," has been received from the Agamemnon, which must now be on the point of landing her cable in Valentia Bay, Ireland, which is about 1,640 mileg' from our present position.

There is as yet no sign of the Poreupine, the steamer which was gent out by the British gevernment to await our arrival, and render us any assistance we might require; and we fear she has gone round to St . John's, having abdndoned all hope, after our failure in July, of ever seeing the Niagara. The only sign of life we have yct seen is that presented by a few fishing smacks, whose occupants seem to know who and what we are, but who, with one exception, have not exhibited the slightest enthusicsm. This individual waved his hat three or four times, and gave other indications of his pleasyre at secing us, and this is the only demonstration have yet received of a private or public character.

A few minutes apast five a steamer was reported in the bay, and soon after she was pade ont to be the Poreupine. In half an hö̀r, her
commander, Captain Otter, came aboord, find had a ennsultation with ${ }^{\text {M M F Field and Captain Mudron. He had, ho said, given up all hopo of }}$ seeing the Niagara, but had nevertheless posted look outs on Bull's Island, which commands a view of tho bay and a long distance out to sea. Tho minute he heard of her arrival ho sent a telographic despateh to St. John's, to notify the people there of the fact. Mr. Field himself soon after went up to the telegraph station, which is fifteun miles from whore our ship now is, with deapatches for New York, and which, allowing for the difference in time between tho two places, will be recoived there to-night at least an hour earlier than they are sent.

The Gorgon*hoisted the Anerican flag some hours ago at the foro, and the Niagarn carries the Einghish at the fore, while tho tolegraph flag flonts from her mizen. Our progress up the bay is rather slow, on account of the condition of the cable, already ulhuled to; and it is now setuled that wo cannot get to our landing-place near the station beforo tof morrow morning. We are paying out the cable at three miles an hour, and as it is dark, the Porcupine goes ahead, and leads tho way towards the Bay of Bull's Arm. The bleak mountains loom up through the night, and a huge bonfire, which has been built up in honor of our arrival on a neighboring hill, throws out columis of denee black smoke and great tongues of flame. It is a strange scent, of which our ship is now the centre, and in which she is the principal olject. The moon has not yet risen, but it is not so dark us to prevent your seeing, though indistinetly, to a considerable distance. The after-deck coil, from which the cabfor now going out, is illuminated with lampr, and about a dozen men ardetanding around the circle, ready to pounce upon any kinks that may make their appearance. The work is continued suecessfully to the end of this day i and as there are but a few more miles of cable to be paid out, it will be landed to-morrow morning.

According to observation to-day, the latitude was $48^{\circ} 17^{\prime}$, longitude ${ }^{1 / \gamma}$ $52^{\circ} 43^{\prime}$, showing the distanco run to be 146 miles. The length of cable paid out was 154 miles 360 fathoms, tho loss on which did not execed 6 per cent. Depth of water from 742 to 200 fathoms.

LANDING OF THE CABLE.

Eighth Day-Augrast 5.

At ten minutes past two this morning preparations were made for the landing of the cablo, and the Niagara is brought to an anchor for the purpose. It is still quite dark, and we can only see the outlines of the hills which tower above us on cvery side, showing that we are in a completely landlocked harbor. We have just received the news from
 the Agamemron, informing them that a thensand aud ten miles of calle havo been paid out from that shep up to the last hour. The intelliguncon is peculiarly gratifying at this time, and adds to the pothusiasm which erery one feele, The nperntors have bero at work all, day and night, and still lalur with an much zeal as at the commencement. Nitroly has thought of going to bef, except:a few who are so exhausted by their lougr watching as tomender rest, a matter of imperative necessity. Threenf tho Niagara's binte have been lowered, and two of these are to hold or buoy the calle at some distance from the sturn of the yergel white the third receives a suffecent length to rench the telegraph station, which is abuet hali a mile from the shore. As the Ningara has been brought to anehor, the cable is paid out over the machine with the aid of the litule stesm engiue, arhich is put in gear with the paying-ont heaves. Aboutt a mile and a half is lowered and eoiled in the boat. and by suurise every thing is reaty for the complation of the work. There is such a singular coineidence conncted with this very part of the eable which is now ahont to be landed, that it deserves particular mention here. Hy reference to the areount of the expedition of list year, it will he reen that the laying of the cablo was commenced at Vulentia Bity, I reland, on the 5th of August, and that over three humdred miles of it hal been paid oat before it parted on the 11 th of the same innth. Some time after filty or sixdy miles were recoveded, and this is a part of the same cable whioh is now about being landod. It is also pomerrat siguular that the cable was broken on the 29th of June laist and splived again on the 29th of Inly.

Befure the landing of the eable, Captain Hyulson notified the Captains of othe Gorgon and l'orcupine, and about five o'cliek the boats of the Niagara were ranged in a reavar lino and connésted with a lawser, to tow that on which the cablo was coiled to the landirg-placo. The telegraph flag ras displayed from the mizen truck, while the Englisto flig was huisted at the fore, and the American at the mizen peak. A similar compliment was paid to the American flag by the British vessels; and soon after our beats pushed off front the ship we observed others coming from the fiorgon and Porcupine to participateolin the consummation of the great wrols. Al' the offieers of the Niagara, with the axception of those on watch on tho ship, wers in the troats, the crews of which numbered altogether ab nut sixty men? These, with the crews from the boats of the British slips, and all the officers, Figlish and American, inade a total of about noe humdred men. The ducustration was certain! yany thing but a pageant, for there were none of those accessories which make up what is generally understood by the word;
een sent fr "uin nilep of cathe ointelligencto siakm which r. and night, nt. M, Truly sted by their no neessity. of these aro of the vegsel raph station, a has brea ith the aid paying-ont on the boat. f the work. ry part of , particular ion of last imonocd at threo husthe of the vered, and aded. It a9th of

1 the Capae boats of a hawser, aco. The e Englisth peak. A. ritish ves observed te orin the yara, with the crews the crews glish and instration of those he word;
but there could be nene whe were imbued with a higher appreciation of the character of the oceasion, nor who wero better yualifled to do it honer;' and it is doubtful whether the presence of thousands would have added any thing to its importance or solemnity. It would be a difficult matter for one who has seen nething but civic processions to form an idea of, that which attended the last act in the completion of this gaterprise. The scene, the circumstances, all conspired to render it totally different from any celebration the world has ever seen.

The Bay of Bullie. Arm is an inlet of the sea at the head of Trinity Bay, from which it runs, between a range of irregular hills, a distanco of about ten miles. Some of these hills rise to the dignit of mountains, which are in many plaees wooded down to the water's edge. The iuhospitable nature of the elimate, combined with the barren and rocky soil, is rather unfavorable to vegetation, and the foreats are cormposed mainly of a stunted variety of pine, which seldom attains a height of mare than 30 feet; while the turf, which in some' plases covers the rooks. to the depth of three or four feet, is overspread with a thick growth of moss. The stream, which during the summer season become mere riv ${ }_{2}$, ulets, are converted into foaming torrents by the freshets which follow the breaking ap of the long and dreary winter. Judging from the hilly and mountainous character of this part of the country, and, indeed, of the whole island, the construction and establishment of railroads in the far distant future must prove a terribly expensive affair. The landing. place for the cable is a very picturesque little beach, on which a wharf has been constructed. A road, about the dimensions of a bridle path, has been cut through the forest, and up this road, through bog and mire, you find your way to the telegraph station, about half a mile distant. Aloogside of this road a trench has been dugg for the cable, to proserve r it from accidents, to which it might otherwise be liable.

Whan the boats arrived at the landing the officers and men jumped ashore, and Mr. North, first lientenant of the Niagara, presented Captain IIudson with the cnd of thể cable. Captain Otter, of the Poronpine, and Commander Dayman, of the Gorgon, now took hold of it, and all the officers and men following their example, a procession was formed along the line. As tho cable was covered with tar, the handling of it was rather objectionable, but there were none who, under the circumstances, refused to take a part in the landing. There were some; it is true, who would not at first put their bare hands to it, and who sought to protect them with gloves, or by covering the cable with moss. This movement, however, was rather unpopular ; so the gloves wore taken off, and although part of the moss adhered to the cable, there was little of it used aftorwards." The road or path over which we had to take the cable
was a most primitive affair. It led up the sido of a hill a couple of hundred feet high, and had been out out of the thick forest of pines and other evergreens. In some places the turf, whioh is to be found here on the top of the highest mountains, was so soft with recent rains that you would sink to your ankleg in it. The road-maker or road-makers, whoever they were, -had evideptly done all in their powor at the short notice they had to make it passable, and it is enough to say they succeeded to that extent, although we oould not help wishing that they had not placed the stepping-stones so far apart, and had been-a little more liberal in the use of timber. Well, it was up this road we had to march, with the cable, and a splendid time we had. It was but reasonable to suppose that the three captains, who headed the procession, would certainly pick out the best parts, and give us the advantage of the steppingstones, but it appeared all the same to them, and they plunged into the boggiest and dirtiest parts with a recklessuess and indifference that satiofied us they were about the worst pilots we could have had ou land, despite their well-known abilities as navigators.

This memorable procession started at a quarter to six o'clock, aud arrived at the telegraph station about twenty minutes after. The ascent of the hill was the worst part of the journey, but when we got to the top, the secne which opened before us wonld have repaid us for a jour. ney of twenty miles over a still worse road: There beneath us lay the harbor, shut in by mountains except at the entrance from Trinity Bay, and there, too, lay the stoamers of the two greatest maritiure nations in the world. On, every side lay an unbrokeu wilderness, and if we except the telegraph station, at which we will soon arrive, not a single habitation to tell that man has ever lived heres

Never was such a remarkable scone presonted since the world began. Even now, at the very point of its realisatiou, it does not seem as if the work in which we have been engaged bas been accomplished. Looking back on the past, the seven long days of anxicty and autpense appear but as one, and it in almost impossible for the mind to comprehend the great fact that the cable is really laid. It would seems like a dream, were it not for the visible, palpable evidonce which we now hold in our hands, the eleotric obain which binds the two worlds together. No, it is not a dream, but a great reality, the announoement of which will atartle the incredulous and unbelieving of both continents. The continnity, without which the cable would be utterly valueloss, is as perfeet now as it ever was. Mr. D. Laws and Mr. De Sauty, the two chief eleotricians, who have accompanied ue from England, havo "tasted" the current, and about a dowen others at the head of the procession have done tho same thing. The writer himelf is a witness on this point, and will
a couple of hunst of pines and be found hero cent rains that or road-makers, or at the short - say they suc3 that they had - little more e had to march, t reasobable to on, would ecrf the steppingunged into the nee that satis. id ou land, dex o'clook, aud

The ascent ve got to the in for a jour. wh us lay the Trinity Bay, we nations in and if we exa single habi-
world began. rem as if the d. Looking rense appear urrehend the ke a drean, hold in our her. No, it ch will atar. continuity, feot now as leotricians, earrent, re done the at, and will
never forget the singular acid taste whieh it had. Some received a pretty strong ahoek-so strong that they willingly resigned the chance of repeating the experiment.

About twenty minutes after we started from the beach we reached the station of the Atlantic telegraph on this side of the ocean, where we found some half dozen of the inmates awaiting our arrival. The station is a large frame building, two stories high, and eight windows wide. On the first floor is a kitchen, an office and a sittíng apartment, dignified with the title of pydir. The door opens on the side of the house, and there is no means of from the front, for the simple reason that the first story is eight or ten feet from the ground. This singular arrangement is explained by the fact that the building is situated on the side of a hill, and that there is a considerable difference between the height of the front and back walls. The second story is divided into sleeping apartments separated by a single corridor, and the whole establishment will lodgo about a dozen persons. A beginning has been made in the clearing away of the forest in the immediate vicinity of the house, and in the course of a year, they will have as pleasant and as conifortable a dwelling perhaps as any in Newfoundland, although it may not have all the luxifies of civilized life. Of the details of domestic life at the telegraph station more will be said hereafter. Meantime we must continue the particulars of our narrative.

On the arrival of the procession the eable is brought up to the house and the end placed in connection with the instrumont. The deflection of the needle on the galvanometer gives incontrovertible evidence that the electrical condition of the cable is satisfactory. The question now is, how shall we properly celebrate the consummation of the great event ? How, but by an acknowledgment to that Provideuce without whose favor the enterprise must have ended in disaster and defeat. Every one feels that this is all that is necessary to make the celebration complete, and to mark the undertaking as the work of two great Christian nations. When, therefore, they all gathered together before the telegraph station, they nnderstood the purpose for which they were assembled. Captain Hudson took up his position on a pile of boards, the officors and men standing round amid shavings, stumps of trees, picoes of broken furniture, sheets of copper, telegraph batteries, little mounds of lime and mortar, branches of trees, huge boulders, and a long catalogue of other things equally incongruous.
"We have," said the captaio, "just accomplished a work which has attracted the attention and enlisted the intorest of the whole world. That work," be continued, "has been performed, not by ourselves; there haa boen an Almighty Hand over us and aiding us; and without
the Divine assistanco thus extended us, success was impossible. With this conviction fimmly impressed upon our minds, it becomes onr duty to acknowledge our indebtedness to that overruling l'rovidence who holder the sea in the hollow of his hand. 'Not unto us, Oh Lord! not unto us, but to thy name, be all the glory: I hope the day will never cont. when, in all our works, we shall refuse to acknowledge the overruling hand of a Divine and Almighty Power. It is He who can rebuke the winds and calm the seas. He works in a mysterious way for his people. His path is on the mighty waters. We have seen his power in the tempest ; and when we have called upon Him in the time of trouble; He has heard our voiee. And yet how ungrateful we are for all His favors, and low soon we forget Him when the trouble passes away like the summer cloud or the morning dew. On a solenn oceasion like the present, we should feel more partioularly our indebtedness to Him, and it is with a feuling of heartfelt gratitude we should acknowledge the many favors which He has bestowed upon us. 'There are none here, I am sure, whose hearts are not overflowing with feelings of the liveliest gratitude to Him, in view of the great work which has been aceom. plished through His permission, and who are not willing to join in a prayer of thanksgiving for its suceesfful termination. I will, therefore. ank you to join me in the following prayer, which is the sane, with a few necessary alterations, that was offered for the laying of the eable :
"' O, Eternal Lord God, who alone spreadest out the heavens and rulest the raging of the sea, who hast compassed the waters with bounds till day and night come to an end, and whom the winds and the sea obey-look down in merey, we beseech Thee, upon us, Thy servants, who now approach the throno of grace, and let our prayer ascend berore Thee with acceptanee. Thou hast commanded aud eneouraged us in all our ways to acknowledge Thee, and to commit nur works to Thee; and Thou hast graciously promised to direct our paths and to prosper our handiwork. We desire now to thank Thee, believing that withont Thy help and blessing nothing ean prosper or succeed, and we dessire humbly to commit all who have been engaged in this undertaking to Thy care, protection and guidanee. It has pleased Thee to enable us to eomplete what we have been led by Thy providenco to undertake, that being ber un and carried on in the spirit of prayer and in dependence upou T ee, it may tend to Thy glory, and to the good of all nations, by promuting the increase of unity, peace, and coneord. May Thy hand of power and mercy be so ackuowledged by all, that the language of every heart may be "Not unto us, O Lord; not unto us, hut unto Thy name, give glory; "that so "Thy name may be hullowed and magnifiod in us and by us. Thou hast controlled the winds and the sea by Thy al
possible. With nes our duty to lence who holde Lord! net unto rill never eme the overruling can rebuke the for his people. ${ }^{3}$ power in the of trouble; He all His favors, away like the asion like the is to Him, and knowledge the e none bere, I of the liveliest is been aceonag to join in a will, therefore. : same, with a f the eable : e heavens and ${ }^{4}$ with bounds ; and the sea Thy servants, aseend betior aged us in all o Thee ; and o prosper our withont Thy exire humbly to Thy eare, to complete 3, that being adenee upon ions, by pro. Thy hand of age of every - Thy name, gnifiod in us ، by Thy al.
mighty po ver, and granted us such favorable weather that we were enabled to lay the cable safely and effectually. Finally, we beseech Thee to implant within us a spirit of humility and childlike dependence upon Thee; and tenoh us to feel, as well as to eay, "If the Lord will, we shall do this or that." Hear us, O Lord, and hear us in these our petitions according to Thy previous promise, for Jesus Christ's aake.'"

The "Amen" whieh followed the eonclusion of this prayer showed what a sincere response it received from the hearts of all present, and the depth of feeling it excited. "You recollect," proceeded the Captain; "what our Saviour told his disciples, that if they had faith, even as a grain of mustard seed, they could move mountains. We have performed a work, or rather we are thaukful to God for having performed a work for $u s$, which has been ridiculed by a great many who regarded it as an impossibility. We have been peculiarly favored in being permitted to be H is agents, and we are pleased to aeknowledgo that it was through His instrumentality the work was performed."

At the close of the foregoing remarks the audience of "eable layers" dispersed, somo to amuse thomselves in short excursions about the grounds adjoining the station, and others to explore the mysteries of the building itself. About an hoür after, the captain, offeers and men assembled on the beach where the cable had been landed, and where they fe-embarked for their several ships. Up to this point, every thing had been conducted with silence and in a spirit of moderation, which some might consider ill-suited to the greatness of the work, and the feeling whieh the oecasion might reasonably be supposed to call forth. Had such a soene oceurred in the harbor of Now York, it would have beeu impossible to restrain the wild enthusiasm and excitement of the people. And who is there under the eireumstances that would desire to do so? But the men who laid that tarred line aeross one half of the Atlantio, and who had passed sir days in anxious watching, in terriblo suspense and in the midst of apprehension, one day hoping against hope, and the next fearing when the prospect appeared brightest, thinking of the one thing by day and dreaming of the one thing in their short and troubled sleep, until it seemed as if on that slender cable their very lives depended, and the accident that proved fatal to its safety were to put an end to their existence-these men were not devoid of enthusiasm. No, no; there was no want of enthusiasm among them; but it was determined that they should not give vent to it till the work was wholly ac-; complished-ctill the oable was landed, till they had earried the end in safety to thdelegraph station, and till they had returued thanks to that Providene (whose agents they were in the working out of the greatest achievement which has ever been conceived or performed by man. Want
of enthasiasm ! Oh, had the people of New York+mof the United States -of the two worlds, heard the wild huzas that went ringing over the hills, chasing the deer from their eoverts, sending thousands of startled sea birds out upon the ocean, as if the land no longer afforded them a place of security-had they seen the faces of these men, they would understand what enthusiasm is, and how unjust the suspicion that denied them the possession of an attribate only second to hope itself. A cheer it could hardly be ealled; it was one wildyprolonged shout of delirious joy, such as might welcome the disenthralment of a nation, or the union of two worlds-a union in whieh we all participate, yon and I and every one of us, and the remembrance of which will live with us to the end. How eagerly we all waited for the word that told us the time had come when we might give vent to the feelings that had been so long restrain. ed I And when the first licutenant of the Niagira called apon us to give three cheers, what tongue could have remained, silent were it even the last anund it eould utter?
"Now, men, three cheers," he, cried; and the last word had hardly been apoken when the demand was responded to with an outborst that ane from the very depth of the heart. "Hurrah! hurrah !! hurrah !!!".. wach louder and wilder than the last; and as the final cheer burst forth, the echoes took it up and repeated it again and again, till it seemed as if the wilderness around were peopled, and thousands of voices in every ralley and on every mountain top joined in the glad shout of rejoicing But three checrs are not enough-we must give another "for eoming up"-that is for the last pull, for the landing of the cable. And still another is demanded, one which cannot be refused if it were the last cheer we should êter give. It is "One for America and England;" and it is called for by Captain Otter of the Poroupine, a gentleman whose earnest labors and whose untiring energy in his share of the work entitle him to the warmest praise. It was Captnin Otter who kurvey. ed the bay of Bull's Arm, and who guided us safely through all the intrieaeies of the passage the night of our entrance into Trinity Bay. To him and to Captain Dayman, of the Gorgon, who acted as our escort and pilot, from mid-ocean to the American termini, the line of the Atlantie Telegraph Company are largely indebted. It is doubtful if the British government conld have selected from its long list of naval officers two who have proved themselves more capable of performing the. work with which they were entrusted, or two who were more earnest in their exertions to promote the success of the great undertaking.

While the boats of the Niagara were on their way to that ship, they were cheered by the orews of the Gorgon and Porcapine, and at twelve o'slock a saiute of twenty-one gans was fired from the forner vessel.
he United States inging over the sands of startled afforded them a they would uncion that denied tself. A cheer it of delirious joy, or the union of nd I and every us to the end. time had come o long restrain. lled upon us to at were it even
ord had hardly outburst that !! hurrah !!!" er burst forth, 11 it secmed as voices in every It of rejoicing " for eoming le. And still were the last d Eingland; " , a gentleman re of the work r who surveyigh all the inity Bay. To ur escort and the Atlautic f the British oflicers two be work with n their oxer-
at ship, they nd at twelve er vessel.

As a large number of the men on board our ship had been at fork all night, those who wished were allowed to "turn in," and there were very few who did net take advantage of the permission, and fewer atill who did not enjoy their rest. They had worked hard and well, and took as deep an interest in the success of the work as those who had a groater stake in it.

mr. feld makes the first announceliest to the new world that the cable is laid.

About eight o'elock on the evening of the 4th instant, while the Niagara was proceeding up Trinity Bay, and some seventeen or eighteen miles distant from the landing place, Mr. Field left the ship for the parpose of visiting the telegraph station, and if possible, of sending a despateh to the United States announcing the success of the enterprise. As the boat of the Porcupine was alongeide, it was checrfully placed at his disposal by Captain Otter, who had now undertaken to pilot the Niagara. Mr Field immediately set out, and as the Gorgon was on her way to the Bay of Bull's Arm, at the head of which the cable was to be landed, he went on board that vessel, and his bout was taken in tow. Here he was warmly received by Captain Dayman and his officers, who wero in the full enjoyment of suecess. It was near two o'clock in the morning before he arrived at the beach, and as it was quite dark, he had considerable. difficulty in finding the path that led up to the station. There was no houso in sight, and the whole scene was as dreary and as desolate as a wilderness at night could be. A silence as of the grave reigned over every thing before him; while behind, at the distanee of a mile, he could see the huge hull of the Niagara looming up indiatinetly through the gloom of night, and the light of the lamps on ber deck making the darkness still darker and blacker by the contrast. He entered the narrow road, and after a journey of what appeared to be twenty miles came in sight of the station, which stands about balf a mile from the beach. There was, however, no sign of life there, aud the house, in its stillness, seemed strangely in unison with every thing around. It had a deserted appearance, as if it had long since ceased to be the habitation of man. In vain he looked for a door in the front, there was no entranoe there; he looked up at the windows in the hope, perhaps, of being able to enter by that way, but the windows of the lowor story were beyond his reach, and the house having been partly built on piles gave it the appearance of being raised on stilts. A detur of the establishment, however, led to the diseovery of a door in tho side, and through this he finally succeeded in effecting an entranoe. The noise he made in getting in, it was natural to expect, would arouse the inmates, but there
secmed to be oither no inmates to arouse, or those inmates were not easily disturbed. He stopped for a moment to listen, and as he listened be heard the breathing of sleepers in an apartment near bim. The door was immediately thrown open; and in a few seconds the slecpers were awake, wide awake, and opening their eyes wider and wider as the wonderful news fell upon their astonished and delighted ears. They could hardly believe the evidence of their senses, and were bewildered at what they heard. The cable laid! when but a few short weeks before they had received the news of disaster and defeat, and they lad looked only to the far distant future for the acoomplishment of the great work. The cable laid, and they unconscious of it-they who had waited and watelied so many weary days and weeks for the ships they had begon to believe would never come. What! and they wero now in the bay-those same ships-within a mile of them! can they be dreaning? Dreaming! no-what they have heard is truc, all true, and there is the livinf witness before them.
"What do you want?" was the exclamation of the first who was awakened, as be entleavored to rub the sleep out of his eyes.
"I waat you to get up," said Mr. Field, "and help us to take the eable ashore:"
"To take the eable ashore!" re-echoed the others, who were now just awaking, and who hrard the words with a dim, dreamy idea of their meaning-" To take the cable ashore."
"Yes," aaid Mr. Ficld, " and we want you at once."
They were now thornughly aroused, and directing Mr. Field to the bedrooms of the other sleepers-for there were four or five others in the house-they prepared themselves with all haste tomssist in landing the cable. But the other inmates were already awake, and when Mr. Field made his' appearance on the corridor which divides the sleeping apartments on each side of the house, be found them awaiting him in the lightest deseription of summer elothing. As they had neither pants, vests, coats, shoes nor stockings on, the eurious will have no dificulty in discovering in what they were dressed. They wfre as amazed at secing Mr. Field as if he were an apparition; and when they recovered themselves sufficiently to ask the meaning of such a strange visitation, they were thrown into another state of wonderment by what he related. When they learned all, they dressed, and prepared themselves for the work before them. Mr. Field found that the telegraph office would not be open till nine o'cloek tiat morning, and that the operator of the New York, Newfoundland and London Telegraph was absent at the time. He also ascertained that the nearest station at which he could find an operator was fifteen miles distant, and that the only way of r him. The the sleepers and wider as lighted ears. and were be; a few short eat, and they iment of the hey who had te ships they ey were now can they be ac, all trie,
rst who was

3 to take the
cre now just lea of their

Field to the thers in the landing the a Mr. Field eping aparthim in the ither pants, dificulty in ed at seeing ered themtation, they he related. ves for the fice would ator of the sent at the th be could ly way of
getting there was on foot. Now, fifteen miles in Newfoundland is about equal to twice the distance in a civilized country, and is a tolerably long walk; but it was something to be the bearer of such news to a whole continent, and so two of the young men willingly voluntecred for the journey, bearing with them, for transmission to New York and the whole United States, the following despatch, which contained the first announcement of the sucecssful ccomplishment of the work, and the historical importance of which will jusify its republication here:

United States Steau Frifate Niagara, Thinity Bay, Newfoundland, August 5, 1858. To the Asseciated Prkss, New York:-

The Atlantic Telegraph fleet sailed from Qucenstown, lreland, Saturday, July 17, met in mid-ocean, Wednesday, the 28th, made the spliee at one p. м. Thursday, the 29th, and separated. The Agamemnon and Valorous bound to Valentia, Ireland, the Niagara and Gorgon for this place, where they arrived yesterday, and this morning the end of the eable will be landed. It is 1,696 nautical, or 1,950 statute miles from the telegraph house at the head of Valentia harbor to the telegraph house at the Bay of Bull's Arm, Trinity Bay, and for more than twothirds of this distance the water is over two miles in depth.

The eable has been paid out from the Agamemnon at about the same speed as from the Niagara.

The electrical signals sent and received through the whole cable are perfect.

The machinery for paying out the cable worked in the most satisfactory manner, and was not stopped for a single moment from the time the splice was made till we arrived here.

Captain Hudson, Messrs. Everett and Woodhouse, the engineers, the electricians, officers of the ships, and, in fact, every man on board the telegraph fleet; have exerted themselves to the ytmost to mako the expedition successful, and by the blessing of Divine Providence it has susceeded.

After the end of the eable is landed and connected with the land line of telegraph, and the Niagara has discharged some rargo belong. ing to the Telegraph Company, she will go to St. Johns for coal and water, and then proceed at once to New York.

- Ornes W. Field.

HOW THE CREW OF THE NIAGARA CELEBRATED THE SUCCESS OF THE ENTERPRISE.

Daring the forenoon of the day on which the cable was landed, the greater part of the erew of the Niagara was permitted to go ashore and amuse themselves as well as they might in a perfect wildernass. And never did the crew of any vessel enjoy themselves with more zest under the circumstanoes-it was different from their shore experience in other places, but the novelty only served to increase the pleasure.

Some amused themselves in explorations over the hills and through the forests; others in piscatorial excursions up the tront streams; others in awimming; while others commemorated the occasion by erecting a mast near the point where the cable was landed, and dignified the place with the title of "" Niagara City." There wero no lots marked out, it is true; no boundaries, nor any thing of that kind; but there may be at some future day, and if the inhabitants do not retain the nane, they don't deserve to have a city-that's all., The portion of the orew who assisted in this work numbered about a hundred altogether, and among theso was a considerable body of the firemen, under the charge of Mr. Sexton, the engincers' storekeeper. The high officiating personage on the occasion-in fact the founder of the future oity-was John McMath, one of the sailors, and just the man to take the lead in such a movement. McMath resolved in his own mind that something more should be done to commemorate the great event in which he and his messmates had played a part, however humble, and acting apon this determination, he gathered a large number of the crow together, and addressed then on the subject. When they were all assembled he spoke in substance as follows:
"Now, boys, we are all here, and I want to smy a few words to you. We have laid the cable. (Cries of yos, yes, and hurra). Yes, boys, we have laid the cable, and that's a fact, this time-no mistake now. (A voiec-That's true, any way. Give us some more of that kind of talk, Mac.) It's down, and it'll stay down where we have put it. (Another voice-they'll have a job to lift it-that's all). Now, what I want to say to you is this-(Aye, aye). I want the people who come bere to know, that the Niagara's boys have been here before them, and that it was they that laid the eable. No objections to that. (No, no, from a hundred tongues). Well, then, I have got something to propose. (What is it ?-what is it?) I propose that we raise a mast on this very spot, and when we have got it up, that we shall call the place all round about " Niagara City." Are you all agreed ? (Aye, aye, we're with you, Mac.)

At the close of this brief, bot pithy and forcible address, they all unanimously decided that MoMath ahould be the leader, and the better to perform his part he manufactured from the branch of a tree a boatswain's whistle, with which to direct the men in putting up the mast and rigging. Under his direction they went to work at the forest, seleeted the tallest pine, put a rope around it, and tugged and pulled till they dragged it up by the roots. They then cut off the branches, until nothing remained but the straight trunk of the tree, which they planted firmly in a deep hole the v had dug for the purpose. This part of the
through the ns ; others in scting a mast he place with $u t$, it is true; y be at some e, they don't who assisted among these 'Mr. Sexton, age on the hn MoMath, a movemeut. ould be done ssmates had mination, he sed them on substance as ords to you. Yes, boys, istake now. hat kind of are put it. Now, what I a who come othem, and (No, no, to propose. n this very e all round e with you, 8s, they all the better treo a boate mast and st, selected 1 till they ohes, until rey planted part of the
work performed, they tore down neveral other trees to make yards for the mast. There was the main-yard, the maintop-yard, the maintopgallant, and the main-royal-yard, and above these all floated the flag, which they extemporized for tho occasion, and which bore the aimple inseription "Niagara." At tho close of their work, they gave three oheers, and separated, but the raising of the mast, and the founding of "Niagara City," furnished the subjeot of conversation among the crow for many days after.

home echoes or the glad tidings

The despatch which was sent to the Associated Press of New York did not, we understand, reach that eity before the 5 th, on account of the distance of the ncarest station from the place where the cable was landed. That same day, however, and for a whole week, we continued to reccive congratulations from all parts of the United States, and the British provinces. As they serve to show the feelings which our success called forth, and as they may be taken as the expression of the enthasiasm of the whole country, they will be read with interest. The following are pretty fair specimens of those received both at Trinity Bay and St. Johns:

> [From New York.]

To Mr. Firid:-
Despatch received. All well at home and store. Glorious.
C. W. Fifld \& Co.
[From New York.]
To C. W. Fisld :-
Acoept from your frionds in New York their portion of the world's congratulations.

Pitir Coopler.
St. Jobns, N. B. Auguast 7, 1858.
Trinity Bay, August 7, 1858. [From New Xork.]
To C. W. Firs.d, Esq : -
Sir-Your despatch has been recoived. I congratulate you, myself, and for the people of this city, on the success of the great work of uniting together the Old and New World, by the electrio telegraph. Science, will, and persererance have finally triumphed.

Daniku F. Tiemann.
Tramit Bix, August 7, 1858.
[From New York.]

We have no facts in addition to your despatch of the 5th to the press. Every incident connected with the landing of the cable, or with
the enterprise in any way, will be eagerly received by the publio. Throughout the country there is intense anxiety to know all in relation to it, and the press desires the line kept open in the evening, so long as there are any facts of interest to warrant.

Peter Cooper.
Sr. Jouns, August 9, 1858.
[From New York.]
Your family is all at Stockbridge, and well. The joyful news arrived there Thursday, and almost overwhelmed your wife. Father rejoiced like a boy. Mother was wild"with delight; brothers, sistersall were overjoyed. Bells were rung; guns fired; children let out of sohool, shouted, " the cable is laid "-" the cable is laid." The village was in a tumult of joy. My dear, brother, I eongratulate you. God bless you!

David Dudley Firel.
To Crach W. Firld :- [From New York.] Sr. Joink, August 9, 1858.
Returned from country and received your message. Congratulate you with my whole heart on the success with which Providence has blessed the undertaking. Your name on every tongue. I need not say on what terms a household word.
E. M. Archibald.

> Sr. Joins, August 9, 1858.
> [From Astor House, New York.]

To C. W. Field :-
The Common Council of New York have resolved on a great celebration of the laying of the oablo. The committee of arrangements desire to know the day on which the first message will be sent, in order to recommend a general illumination in the evening. Please send reply to the day.

Daniel F. Tiemann, Mayor.
St. Jouns, August 11, 1858.
[From New York.]
To C. W. Firid:-
Parties are pressing upon us messages to pay for them, and take eir turn, when the line opens. What shall we do? Please reply.

> W. G. Hont.

The following despatch was sent by Mr. Field to the President, informing him of the landing of the cable:

Trinity Bat, August 7', 1858.
To Hib Exchlemot James Bjchanan, President of the Unitid States, Bedyokid Speinge.
Your telegraph despatch duly received. We landed here in a wilderness, and, until the'telegraph instruments are all ready and perfectly adjusted, no message can be recordeqd over the cable.-You whall have the earliest intimation; but some days may elapse before all is perfected.
the publio. I in relation , so long as Cooper.
tt $9,1858$.
al news are. Father :s, sisterslet out of The village yon. God Fixld.
t 0, 1858.
ongratulate idence has sed not say hibald.

Thinity Bay, August 7, 1858.
[From Bedford Spring.]
To Cyrus W. Firld, Esq. :-
My Drar Sir-I congratulate you with all my heart on the suecess of the great enterprise with which your name is so ho orably conneeted. Under the blessing of Divine Providence, I trust it may prove instrumental in promoting peace and friendship between kings and nations. I have not yet received the Queen's despatch.

Yours, very respectfully, James Bccuanan.
${ }^{*}$
Trintty Bay, August $\mathrm{B}, 1858$.
[From Baltimore.]
To Mr. Firld :-
Have you laid and operated the cable suecesmully? We can't believe tho good news here. H. J. Roarre.

St. Jobing, Augubt 9, 18 s 8.
[From Baltimore.]
To C. W. Field :-
Your despateh, announcing that the Atlantie telegraph eable has been laid, was delivered to me yesterday. I thank you for it, and congratulate you heartily on your success. J. H. T. Manners Sutton.

St. Jomms, August 7, 1858.

[From Boston, August 6.]

To C. W. Fixplo:-
Dear Sir-The city authorities of Boston to-day ordered the firing of 100 guns upou the Common, and the ringing of bells for one hour from noon, in honor of the suceessful laying of the cable.

Respectfully yours, Alexander H. Price.
St. Jonks, August 7, 1858.
[From Boston.]
To C.W. FızLD:-
Your despatch is received; universal joy is expressed; 100 guns fired this morning in honor of the suckess of the great event of the age.
/ Natian. P. Banks.
St. Joans, August 10, 1858.

[From Washington.]

To O. W. Fikld:-
Sir-Please advise the quiekest route for sending you a flag-staff of oak, grown at Mount Vernon, for jour oompany to commemorate.

Accept the most hearty congratulations of Mewss, Jardine Mob son, inyself, and the inhabitants of this city generallaim All jointip gratulating you on your brilliant suecess. gequag Air joition

Triniti Bay, August hatasat To Cyrus W. Field, Eisq. :[From Malifax.]

* St. Jonks, Auguet θ, $18 \leq 8$.

Greatest enthusiasm here-overybody fired during Saturday afternoon from the full with joy. Salutes were the Halifax Volunteer Artillery of bunting in the eity displajery, under Capt. Tremain. Gvery piece all the public binildige and yod, and every bell cinging. In the evening vate residences illuminated. Many magnificently and gayly and priTelegraph offices shone forth with magnificently and gayly decorated brated in telegraph history in whieh that of Mr prominent men celemost anspicuous place. Immense torchlight proce reld occupied the Masof, Halifax Volunteer tho streets until's late of citizens who, in vast, discoursing swect music to the amusement enthusiasticall, in vast numbers, promenaded the streets, cheering in by railroad from passing the telegraph office. Many persons camo tion. Double royal salutroung country to witness the demonstras Citadel, flagship, and by the Halifax Artill each will be fired from message to President Buchanan is pasging through Nova Scotia.

Jesse Hoyt.
St. Joirss; Auguat 6, 1858.
To C. W. Fired:-
[From Toronto.]
Hia Excelleney the Governo fown wh desires foctpress his con-
 taking of laying the Atlantidy uphen ble.
R. J. Pennefratari, Governor's Seoretary.

To C. W. Firld:-

$$
\text { [From Montreal.] Trimiry Bay, Augast 7, } 1858 \text {. }
$$

I congratulate you most heartily -a flood of joy bursting forth from all parts of Canada at your indefatigable perseverance and final success.

A VISIT TO THE TELEGRAPH STATION.

The road which leads from the beach up to the telegraph station has already been described, and the reader is therefore atware that it is not the most inviting for those who are fond of rapid travelling. But it is a short road, and the passage over it is neither dangerons nor difficult, although the bog holes are but partially flled up, and the person who
would undertake to walk over it with clean shoes would be somewhat disappointed at the end of his journey. At ono end of this road, within a few fect of the beach, stood the telegraph atation, before it was removod on the day the cable was landed. There was neither house nor log eabin there, and wero the apectator not informed that the station had. occupied a particular spot, he would have some difficulty in finding the precise place where it was located. The station was simply two upright polep planted in the earth, and rising to a height of about three and a half feet, and having a board three feet long and five inches wide nailed on top:. © Upon this a small instrument for transmitting messages was placed, and on thie inatrument, Mr. MoKay, the Superintendent of -the lines of Newfoundind, operated. He tgok it down soon after the cable was landed, put the instrument in his pocket, and literally speaking, walked away with the station. It would, however, have been a ronewhat difficult matter to dispose of the Atlantic telegraph atation in the same manner, and the man who should undertake the task would have had a herculean labor to perform. The reader has been made acquainted with the fact that it is built on the side of a hill; that it has but one door, and that opens on the side; that it is two storice high, with a parlor, a kitchen, and several bedrooms; that it is conatruoted mainly of wood; that it is five miles from the nearest house and fifteen miles from the nearest village; that an attempt has been made to clear away the wood which hems it in on almost every side, and finally, that it is in the midst of a perfeet wilderness; but as yet he knows nothing of the wonderful domestic life that exiats inside of that same house, and of the strange doings that take place therein, eapecially in the culinary departments. I may begin by stating that there are eleven occupants, and when I eay that these ocoupants are all of tho maseuline gonder, the reason why things are pot as they ought to be in that bouse will at once become apparent. No man ought to be surprised, for inatgnce, if the bread is not well baked, the meat not sufficiently cooked; the tea too weak or too strong, the potatoes-whenever they get them-boiled to smash, or not boiled at all, or if the fire requirea to be kindled at least half a dozen times a day. Nor should they be astonished if tho beda are not madetill the occupant is just ready to get into them; and if, according to the same system, the table utensils are not oleaned till every thing is cooked and ready to go on the table. All this is explained by tho fact thent there are no women to attend to these things, and if the Telegraph Company abould permit the operators to live as they now are, their relapse into a state of nemi-harharism; so far as the domestic usages of civilised life me regarded, is only a question of time. Imagine eleven or twelve young men thrown for the first time on their own resources, endeavoring
to cook for themselves, to wash the dishes, to sweep the floor, to make the beds, to light the fires, and to perform the hundred and one little things of which men know nothing, but which, with those other "trifles," make up that greatest of all blessings-a comfortable and a happy home. Imagine, in fact, a man attempting to perform the part of woman in his clumsy, ungainly way, and you have some idea of what a house foll of men can effect in this line, and of the condition of the domestic portion of the Atlantic telegraph station in particular. What a scenc of confusion in the kitchen, what a terrible state of things in the half furuished parlor, withont a sofa, and with a few boxes and trunks for seats! what a frightful chaos in the dozen little bedrooms up stairs, where the blankets and sheets and pillows are rolled up in one mountainons lump, or so twisted about as to furnish a good half hour's work to the occupant to get each into its proper place again! But with all this confusion, the electricians and operators are as fine a set of fellows as ever lived in one house, and live more cheerfully and happily in the midst of discomforts than many in the Fifth Avenue, who can boast of all the luxuries and appliances of civilized life. It would be unjust to bring them to account if their domestic education has been neglected; and if, among ether things, they did not learn to bake bread and to cook a beef-steak propcrly, it is not their fault, although, in this instance, it is their misfortune. What matter if they do not know how long it takes to boil an egg, if they can translatesthe language of electricity, and send a message along the cable that now lies extended on the bed of the ocean between two continents? And if the company have not every thing provided for them, they can "wait a little longer" for the "good time coming"-a time that is to bring withe it a piano and billiard table to while away their leisure hours-a time when the parlor shall no longer want a sofa, but when it shall shine forth in all the refulgence of a pier glass, one mahogany table, perhaps two-the company can afford to be liberal now that the cable is laid-a dozen haindsome mahogany chairs, some ornaments for the mantelpiece, a stool for that piano, a substantial Brussels carpet with a handsome pattern, a hearth rug, new style, with a landscape, a lambliko lion, or ferocious tiger, in the centre; an accurate timepicee, in a neatly carved frame; and all the other articles that make up a well-furnished parlor. It may be asked what will they want with all these in the midst of a wilderness? The answer is very simple -they want them to keep them in mind of what civilized life is like, and of the homes which they have left behind in the Old World. With ${ }^{3}$ parlor furnished in the manner described, they will require few other things, except some paintings to decorate the walls, and these the
ror, to make ad one little her " triffes," happy home. woman in his wouse fall of estie portion one of confaalf furuished seats! what the blankets lump, or so occupant to nfusion, the lived in one discomforts uxuries and n to account mong other steak propteir misfors to boil an 1 a message an between rovided for oming "-a while away rant a sofa, glass, one be liberal hairs, some substantial style, with ; an accuticles that they want ery simple fe is like, id. With few other these the
talented artist who belongs to the corps of operators will supply with his brush and palette.

Then, after the company have attended to the parlor, or rather before they have attended to it, they must look out for the kitchen arrangements, the culinary utensils, and all that. They must provide a pan or pans, so that the volunteer cooks may not be obliged to use the pot for the donble parposes of boiling and frying; they must furnish more than one kettle, so that if the spout or handle should happen to be knocked off they may not be reduced to extremities. It will, however, assuredly be gratifying to the benevolent honsekeepers of New York, and indeed of all Christendom, to know that the domestic difficulties which these same elcetricians and operators have encountered will soon be bronght to an end, as a cook was on his way from St. Johns to take charge of the culinary department when we were about leaving that city. It is true the four occupants of the station who resided there hefore the arrival of the Niagara, did not take as muoh interest in the preparation of the house for the reception of the expected ones as they might have done, but, in extenuation of their neglect, it must be stated that they had given up all hope of ever seeing such a wonderful thing taking place, and as for the expected ones, they had long ceased to be expected. If, however, whether excasable or inexcusable, they did not attend to the few matters to which they could attend, there is no excuse for the company, should they neglect to furnish them with every thing necessary in the department now under our consideration, and to which we intend to direct their attention with all the particularity of which our knowledge of such matters will admit. In the first place, then, they must put a grate in the kitchen-that every cook considers almost indispensable. The next thing is an oven, and when this is put up, they will want toasting and roasting apparatus, chairs instead of hard boxes and harder blocks to sit upon-blocks which are particularly objectionable to men of tender and delicate feeling. It is needless to repeat the various things that the kitchen of the telegraph station will require to make it complete, but the directors of the company have only to get an inveutory of what their own kitchens contain, to be aware of the wants of the operators and to be enabled to supply them. The cook, there is no doubt, will prove a perfect treasure to them, and that same cook will hear of efforts in cooking before he is long in the station that will astound him. Just think, oh ! yo housekeepers of New York, who have been so often appealed to already, just think of Christian men putting a large lump of pork into a pot not big enough to hold one half the quantity, and that pot about one-third full of water! Is it any wondor that the water should all boil away, and that the bottom of the pot, be-
coming red hot, should set the pork in a blaze? Is it any wonder that this should occur, and that the cooks should throw a whole pailfal of water, fill the pot to overflowing, and put ont the fire altogether? What would you think of men who set out with the intention of making what they called a plum dumpling, and who were obliged, by their own incapacity and utter ignorance of the great art of cooling-an art that bas immortalized a Soyer and a Murray-to leave the dunpling unfinished, and then endeavor to convert it into a series of pancalkes? Just think of it, pancakes with plums in them, and those plums so haı red and bruised that the stones would persist in appearing wfiere they were not wanted, right on the top of the flattened sarface. But the cook will set every thing to rights, and take care, when the pork is boiling, the fat does not get into the fire. He will also see to it, that when dumplinga are cemmenced they do not end by becoming doubtful pancakes.

Now these little domestio mishaps and tronbles are, after all, not such troables as might be supposed, but furnish material for many a good joke to the dwellers at the station. They have plenty to eat, for the com. pany are determined that, though therc should happen to be a faminc in Newfoundland, they shall not want. They have also a capital barrel of ale, and there is the best water in the island within a few feet of the building. There is no lack of fuel, for firewood is abundant all around them, and they can cut down sufficient in a day to last them for a month. In addition to all this, there is plenty of game in the valleys and on the mountains, while the sea, near the coast, swarms with fish, and the streams are alive with trout. Newfoundland is in fact the sportsman's paradise, and when the Nimrods of the United States come to find it out, they will' rush there in crowds during the summer mont F; What do they thing of catching forty trout in the course of an hour and a half. and of taking them all from the one spot, in a stream not more than two yards wide in its widest part? What do they think of performing this feat with a rod made of the crooked branch of a tree, without a reel, and the hook baited with a piece of mutton? This feat the writer himself performed, and" he willingly testifies that the trout was the fincst he ever tasted-vastly superior to ${ }^{\text {º }}$ the wretched affairs called brook trout, which many of the Broadway restancants serve up at a dollar apicce. There are bears, too, in the island, affording fine sport for those who are fond of the rougher kind of game, and the wolves sometimes become so bold that they break into the farm-yards and kill the cattle. The deer, or the kariboo as it is called, affords very good venison, and there are several varieties of feathered game. All things considered, it will be seen from this that Newfoundland in not such a drcary, desolate place to live in, and that if the telegraph station is
is wonder that tole pailfal of ether? What (making what their own inan art that has ag unfinished, ? Just think bac red and they were not cook will set roiling, the fat ien dumplinga calkes. r all, not such y a good joke for the com. o be a faminc capital barrel ow feet of the nt all around them for a in the valleys rms with fish, s in fact the States come nemer montt :. an hour und sam not more think of pera tree, withThis feat the he trout was affairs oalled rre up at a ing fine sport l the wolves ands and kill. is very good All things not such a h station is
situated in the midst of a wilderness, it is one that is not devoid of attractions.

There is one particular part of the building which has not yet been alluded to, but which is, ufter all, the most important. This is the electricians' office, in which all the telegraphic instrunents have been put up. There are the batterics, which hear the came relation to the wire conductor that the boilers bear to the steam engine; and thére the delicate apparatus by means of which the weight or force of the electrical ourrent is told to a nicety; there, too, the needle, which tells whether the eontinuity or insulation is perfect. There, in a word, are all the instruments which were put on board the Niagara, and which, having served their purpose well, have been trinsferred to the telegraph station at Trinity Bay. The office is also furnished with a clook which keeps Greenwich time, and in the event of its running down there aro half a dozen chronometers by which to set it right again. Take it altogether, the electricians' office is the best arrauged part of the whole establishnent, and presents a strong contrast to the kitehen and parlor, both of which the company must have well furnistied.

The telegraph house has been called "Cyrus Station" by the electrieians, in honor of Mr. Cyrus W. Field, and will her 'after be known by that title. It could not reeeive a more'appropriate one, and will help to perpetuate the name of a man who has done more than any (ther to make the Atlantic telegraph a grand reality.

departure from trinity bay and arrivil at st. johns.

The Niagara, the Gorgon, and the Porcupine left Trinity Bay early of the morning of the 9th instant for St. Johns, where the arrived about six o'elock the evening of the same" day. From what we had heard, it was evident that the whole population were moved by the greatest cuthusiasm, and that they intended to make our risit the occasion of a grand demonstration. Indeed, sufficient evidence of this was to be found in the fact that the Spoaker of the Colonial Legislature, Mr. Shea, had been deputed to wait upon Captain Hndson at Trinity Bay for the purpose of ascertaining what time they should set out, so that preparations might be made for the intended demoustration the day of their arsival. They proposed, he said, illuminating the city, getting up a regatte, and giving a ball in honor of the occasion. It was evident that the good people of St. Johns were determined to give us a hearty reception, and that when wo left Newfoundland we should carry away a pleasant remembrance of their hospitality. The little steamer called the Blue Jacket, which brought Mr. Shea on his wission to Trinity

Bay, had about a dozen other gentlemen from St. Johns, whose impatience to see the Niagara before her arrival iu that port could not be restrained. It was impossible for the captain to refuse the pressing invitations he reecived, and they were accordingly accepted; but he determined on remaining no longer than was necessary to take in a sufficient supply of coal for the homeward passage. We were all impatient to get to New York to see our friends again, and to tell them ourselves how the cable was laid, and all the incidents of the eventful week through which we passed. Every day that delayed our departare; therefore, seemed as long as two, and we thought, in our eager haste, that the fog which hemued ns in would never lift. At last, the weather having partially cleared up, we started, after a detention of four days in Trinity Bay, and made all the speed we could for St. Johns. The little Blue Jacket met us about a mile from the eutrance of the harbor, with flags flying, and a large company of the residents of the city on board, and some four or five miles away to the sonth we could see Cape Spear light-house decurated with and almost concealed under a cloud of streamcrs. When at last we came within sight of St. Johns, and passed between the two lofty hills that form the outposts of the harbor, and which rise to the height of six or seven hundred fect, all the chureh hells in the city rang out their most joyful peals, the eannon thundered from their brazen throats a boisterous welcome, while cheer on checr arose from the crowded wharves, the hillsides, and the shipping. Yet in the midst of all this our yearnings for home grew stronger and stronger, for whilo we fully appreciated their friendship and hospitality, we could not help thinhing of those who were anxiously awaiting our return, and of the great city which we had left five monthe before. Our ship had hardly been anchored before she was boarded by several of the officials and citizens of the town. The cannon kept up their noisy demonstrations long after the crowds became tired of cheering, and at intervals could atill be heard "the chiming of tho bells." It was a grand festival in the city, the people abandoned their labor and kept holiday, and bondreds came pouring in from the country in their Sunday clothes. Never had St. Johns seen such a sight before, and the visit of the Niagara will be remembered hereafter as one of the greatest days in its annals. At night the publie and other baildings were illuminated, and a very striking particolored transpareney was displayed from the highest point of the market house. The office of the New York and Newfoundland Telegraph Company was also illuminated, and it may be added the operators were kept busy all night sending off despatches to New York. Over one of the butildings was the following inscription:
na, whose impa. t could not be the pressing in; but he detere in a sufficient Il impatient to them ourselves eventful week epartare; thereir eager haste, ast, tho weather of four days in hns. The little e harbor, with city on board, ee Capo Spear loud of stream. ind passed be. he harbor, and all the ehurch non thumdered cheer on eheer shipping. Yet strenger and nd hospitality, y awaiting our nonths before. led by several kept up their d of cheering, bells." It was abor and kept in their Suna, and the visit greatest days e illuminated, yed from the few York and and it may be despatches to inscription:

A wish to which every one, whether he is or is not a cable-layer, will heartily respond.

The rejoicing was kept up far into the night, and early morning caught some of th" merry-makers still engaged in their festivities. 'The big guns got theough with their part of the demonstration by dusk; but nuskets, rifles, and other small arms kept at it till late in the evening. It was evident the quiet people of St. Johns had resolved to make a day of it, and they succeeded in making a night of it, too. One heard of nothing in the streets but the Niagara and the cable, and indoors it was all the same. The little city seemed to be aetually beside itself with joy, and as if it had not done full justice, went at it the next day with as much zest as if it were but the beginning.

The following day Mr. Field was presented with an address at the Merchants' Exchange by the Chamber of Commeree. A deputation* from that body was present, headed by their President, Walter Greive, Esq., who spoke as follows:

Sin-The Chamber of Commeree of St. Johns, have the high gratification of welcoming you on your return to these shores, after the accomplishment of the grand undertaking in which you have been engaged for some years past. Personally known as you are, sir, to the menters of the Chamber of Commerce, they have watched with deep interest your indefatigable perseverance in earrying out the vast scheme of the trans. lantic telegraph; and whilst they sympathized with you in the disappoiutment you must have experienced at the failure of 1857, they felt assurred that your well-known energy, combined with the scientifie skill of those gentlemen who were associated with you, would eventually succeed, if suecess were practicable. Devoting, sir, as yon have done, your fortune, time and talents to this great enterprise, the Chamber of Comweree rejoice that you have seen the fulfilment of your most ardent wish; and they beg to express their fervent hopes that you may be spared many years to enjoy the fruit of your intense labor, aud that you may receive on your return to your native land, such a weleome from your countrymen and friends as may in some measure compensate you for the days and nights of anxious eare you have passed.

Mr. Field replied as follows, to the foregoing addrese:
Grntlemen-The address you have presented is decply grateful to my feelings on this oecasion. I will not affect to conecal from you that the suceessful result of laying the Atlantic telegraph cable fills me with great joy, while, I trast, Ifoel hambly thankful to the Giver of all Good for having permitted me to be an instrument in aiding the accomplish-
ment of a work that is destined to promote the happiness and welfich of the human fumily. I have certainly made somes saerifices, and bate had to contend with diffeulties of no small magnitude. But when I fud ny friends coming forward, as you have done, to congratulate me in the hour of suceess, I am more than repaid for any toils I may have bor.e in the furtherance of this great work. But it whuld iot only be ungencrou; but unjust, that I should for a moment forget the services of those who were my co-workers in this enterprise, and without whom any labors of mine would have been unavailing. It would be afficult to enumerate. the many gentlemen whose scientific acquirements, and skill and energy have been devoted to the advancement of this work, and who have on mainly produced the issue whieh has ealled forth this expres: ion of your good wishes on my behalf. But I could not do justiee to my own fied ings did I fail to acknowledge how mulh is owing' to Captain Hudsol and the offeers of the Niagara, whose hearts were in the work, and whosi toil was nneeasing. To Captain Dayman of her Majesty's ship Gorgon, for the soundings so accurately made by him last year, and for the perfect manner in which he led the Niagara over the great cirele are while lay ing the cable; to Captain Otter, of the Poreupine, for the carcful survey made by hin in Triuity Bay, and for the admirable manner in whieh he piloted the Niagara at night to her anchorage; to Mr. Everett, who has for wonths devoted his whole tine to designing and perfecting the beatiful wachinery that had so successfully paid that the cable from the shiph -nachinery so perfect in every respect, that it was not for nome monent stopped on board the Niagara until she reached her destination in 'írinity Bay; to Mr. Womdhonse, who superintended the eniling of the cable, and zalously maty co-operatend with his brother engineer during the; pogress of paying cut; to the electricians for their constant watchfuhtes-; to the men for their alnost ecaseless labor; and I feel confident that you will have a gond reput from the commanders, ongineere, ceectricians and others on board the Agamemnon and Valoroms-the Irish portion of the fleet-to the Directors of the Atlantic Telegraph Company, for the time they devoted to tho undertaking without receiving any conpensation for their services. And it nust bé a pleasure to many of you th know that the director, who has devoted more time than any other, wa, for many years a resident of this place, and well kuown to all of you, I allude to Mr. Mrooking, of Lundon; to Mr. C. M. I. Lampson, a native of New Eingland, but who has for the last twenty-seven yeara resided in London, whon appreclated the great importance of this euterprise to both countries, at ! gave it most valuable aid, bringing his sound judgment and great husiness talent to the serviee of the company; to that distinguishod Anerican, Mr. George Peaboly, and his most worthy parturer, (Mr. Morgin, " ho not only assinted it most liberally with their muans, but to whom I could always ge with confidence for advice. I shall wejnice to find that the commervial interest of this colony which you represent, may be largely benctited by the clowe bonds that will now be drawn by the ageney of the Atlantie tolegraph between them, and the varied relatigns they hold throughout the world, and wishing you all every pros. perity and happiness.

1sitter in the day Mr. Field was presented with another address by
loss and welficie rifice,s, and hato But when I frud atulate me in the nay have boruc in ly be ungeneron ${ }^{\text {a }}$ ces of those who m any labors of ilt to entmeratc skill and energy nd who have of prescion of your to my own feel Captain Hudsoz work, and whesi y's ship Gorgon, and for the percle are while lay te carcful survey ner in whieh he dverett, who has eting the beantifrom the ship. for one moment ation in Trinity of the cable, and during the: port watchfuincs 1 confideut that ert, èjeotriciaus Irish portion ompany, for the any" compensaany of you (1) any other, wa. to all of you, I mpson, a native ears resided iti terprise to buth und judgment to that distinvorthy partarer, heir means, but I shall rejone you reproscut, \checkmark bo drawn by he varied relaall every pro*-
the President of the Executive Council of Newfoundland, in the Council Chamber, a large number of the members being present. Mr. Lawrenee O'Brien, by whom the address was delivered, spoke as follows on behalf of the Executive Council:

We, the Executive Council of Newfoundland, have great and sincere pleasure in offering you our congratulations upou the success of the great project of the laying of the Atlantic telegraph cable. Intimately acquainted as we have been with the encrgy and enterprise which have distinguished you from the commencement of the great work of teiegraph conncotion between the Old and the New Worlds, and feeling that under
Providence this triumph of science $i_{\text {i }}$ and indomitable exertions, we desire to cepress to you our high appreciation of your success to the cause of the world's progress, and our hearty aympathy in these feclings, inseparable from its present proved result. We recognize in this achievement the creation of new bonds of conmercial and social union between the people of the two great nations thus marvellously connected; and we are gratified to remenber the aid contributed towards this most important object by the Colony of Newfoundland, in the privileges conferred upon the company yon represent. We sincercly trust the best expectations of the results of the enterprise to all interests connected with it may be immediately fulfilled, and that you, sir, individually, may reap from it an ample recompense for your many losses and sacrifices, from its inception to the present hour.

On behalf of the Exeeutivo Council of Newfoundland,

Lawrence O'Bhen, President.

St. Jonss, August $0,1858$.
Sm-At the request of the Executivo Council I enclose the copy of the address purposed to be presented to you by that body, and to request that you will be kind enough to intimate to me at what time it will suit your convenience to receive the Council for the purpose of its presentment.

Mr. Field replied as follows:
Mr. Prerident and Honoradif Gentlemen-I thank you with all my heart for this cordial manifestation of your good will. There is, however nothing new to me in the present tone of your feelings. Upwards of four years ago, when I first laid before the Legislature of this colony the plan of uniting the two continents by means of telegraphic communication, I received your ready countenance, and in the charter of ineorporation then passed, was unfolded the whole view, which has now arrived at it final accomplishment. The terms of that charter were liberal and encouraging. Hut had your councils been guided by a differcut apirit, the projeot would have been abatadoned, and years perhaps might have passed without witnessing this happy uniou of the two worlds, with the beneficial consequentes it is destiued to diffuse. The exclusive privileges conferred by the colony on the New York, Newfoundland, and London Telegraph Company, bave been the subject of hostile criticism, and it is therefore with satisfaction I obscrre the ap-
proving terms in which you refer to them. Every onlightened oountry recognizes a right of property in those who originate a work, where scicnec or skill or capital has been invested. This proteotigo is necessary to draw out the efforts of men in new works of public tility; for who would sow, if he couldn't reap? And while the individual has his reward, socicty is the gainer by his labors. In the exclusive privileges you have conferred on the oompany I represent, the principle of copyright only is involved, and I think there can now be no doubt that your policy has conserved the interests of the colony; while I confidently trust the future may be productive of much bencfit to your people from the great work, which from the beginning to the present time has had your consistent and liberal support. I shall look with peculiar pleasure on the advantages you may derive from the proud position of this eolony in the telegraphio connection with the Old and New Worlds, and shall be ever ready to promote your views of advancement by all means in my power.

An official visit was paid to Capt. Hudson, on board of his ship, by the Executive Council of Newfoundland, and a committec from the Chamber of Commerce, to congratulate him on the success of the undertaking in which he has played a part. Mr. Lawrence O'Brien addressed him on behalf of the Executive Council of Newfoundland, and Mr. Walter Greive on bchalf of the Chamber of Commerce, to both of which the Captain made brief and appropriate replies.

At seven o'clock on the evening of Tuesday, the 12th instant, Governor Bannerman and his lady entertained a large company at dinuer in the Government House. There were some sixty or seventy-persons prosent, among whom were Captain Hudson, Mr. Field, Purser Eildridge, Drs. Green and Gunnell, Lieut. Boyd, Lieut. Gherardi and the author, from the Niagara; Commander Dayman, of her Majesty's steamer Gorgon; Captain Otter, of her Majesty's steamer Porcupine ; Commander Paisley, of her Majesty's steamer Atlanta; Hon. Mr. Shea, Speaker of the Colonial Legislature; Mr. O'Brien, Chief Justice Brady, Mr. Kent, Colonial Secretary; Judges Little and Robinson, several offcers of the garrison and prominent public officials. At the close of the dinner Lady Bánerman.retired, after which the company indulged in specch-making for about an hour, when they adjourned to the ball. The first toast given by the Governor was "The Qucen of Great Britain and the President of the United States," which was drank with three times thfee. Then followed toasts complimentary to Mr. Ficld, Captain Hudson, Captain Otter, Captain Dayman and othere, to which brief speeches were made in reply. When the Governor and his guests entered the Colonial building, in which the Provincial Legislature holds its sessions, and in which the ball was given, they wero received with marked distinetion by the large company present. The ball-room a work, where ectign is necesblie trility; for dividual has his usive privileges inciple of copydoubt that your - I confidently our people from time has had eculiar pleasure tion of this oolew Worlds, and nt by all means
of his ship, by nittee from the ss of the underBrien addressed lland, and Mr. o both of whieh I instant, Govjany at dinner aventy-persons d, Purser El'cerardi and the her Majesty's er Porcupine ; Kon. Mr. Shea, Justice Brady, on, several offte close of the y indulged in the ball. The at Britain and th three times ield, Captain] which brief ad his guests 1 Legislature, wore received The ball-room
was handsomely decorated with American and English flags, and a portrait of Washington, in a wreath of evergreens, was suspended in the most conspicuous place. The ball, which was a most succesiful affair, was kept up till daybreak. It sastained the reputation of St. Johns for both the grace and beauty of the fairer part of the population, and it need not be wondered at if, some future day, we should hear of a union taking place between some of the sovercign citizens of the free republie and some of the fair daughters of Nuwfoundland-a union of a still stronger and merre indissoluble eharacter than even that established between the Old World and the New by the electric bond which now binds them.

The day after the ball there ras a regatta on Lake Quidy Vidi, but as Captain Hudson had determined on sthrting for New York that afternoon, we were unable to wait for the terwination.

HOMEWARD BQUND.

At length the hour of our departure arrived-we were at last home. ward bound. We could hardly realize the fact that we were not again going to England, instead of New York, and that the cable was successfully deposited at the bottom of the ecean. For home, crowned with success! How slowly the ship appears to move, and the fog, that sets in thicker and thicker around us, seems as if it never would lift. Bat we have no reason to be dissatisfied, and though the hours were never more dull and monotonous, yet every delay ouly enhances the pleasure of meeting our friends again. How we measured the distance each day on the chart, and wished that it were only what it appeared on paper. How we tried to prove that we had overrun our reckoning, and were nearer to our destination than we really were. How we calculated on the wind, that would not come from any other point than that from which it was not wanted; and how eagerly we looked for any clange in the sky that promised a favorable breeze. It is all useless, however, for here we are in our fourth day from St. Johns and three hundred and eighty-five miles from New York; but the fog would not clear, and the wind would not come, and without observation for two days, what could we do? Yes, here we are, over three hundred miles from New York, and it will hardly be eredited, with a pilot on board-a New York pilot, Mr. William Maxwell, whom we have just taken from 'he Mary Taylor-the first pilot boat built by George Steers, as our ship was one of the last he ever constructed. Here was a piece of enterprise deserving of encouragement. Even at a distance we thought she was a New York boat, and we were not deeeived when she came alonside. The pilot was soon aboard,
and as the graceful little véssel whieh be had just lefteailed by, one of her orew asked if we had been snccessful.
"Capt. Hudson," said he, "is the cable laid ?"
"Yes," replied the eaptain, " the eable is laid."
It was the first be had heard of thty fact, for the boat was twelve days out of New York; but it evidently "100k him by surprise. Pulling his cap off his head, he gave what was fientless inteuded for a cheer, but which was nothing more or less than a perfect yell of delight. That satisfied him and it satistied us, for it was worth a dozen hurras, both to hear and see the spixit with which it was done. An hour after the Mary. Taylor was away beyond the horizon, and the base of a rainbow rested on the point where we had watched her till she disappeared.

On the 15 th we sighted one of the European propellers bound to New York, but the fog soon after closed in and we sum no bore of her. As Captain Iludson figired to speak her two guns were fired, to which she responded with tho more, but she must have kept of her way, as we could not seeser when the fog partially lifted. On the 17 th we spoke Lthe pilot boat Wdwin Forrest, and asked if the Queen's message had arrived, to which we received a reply in the affirmative. This was enough-the cable was not only laid, but was in the best working order, and nothing more was necessary to complete our success. The pilot boat, as she passed astern, saluted us by firing a gun and dipping her fiags, to which we responded by dipping ours. At five o'elock in the morving the tugboat is alongside. Home at last!

ARRIVAL OF THE NLAGARA AT NEW YORK.

It was about five o'clock in the morning of the 18 th of August that the Niagara arrived off Sandy Hook, after one of the most eventful cruises on which ship had ever sailed. Already had the news of her arrival reached New York; and the waking city heard with a glad heart that the long expected ship had returned crowned with triumph. On her passage up the bay she was greeted with the thunders of cannon and the cheering of vast multitudes that had assembled on the wharves to weleome her home. The little tugboat, which had left her side early that morning with a few impatient passengers who would not await the return of the tide, reached the city hours before the bistoric ship herself. These passengers were Mr. Field, Mr. Everett, Mr. Woodhouse, Lieutenant the Baron de Boyé, of the Russian Navy, Mr. J. C. Nldridge, purser of the Niagara, Captain Matthew D. Field, who joined the vessel in Trinity Bay and the author. When leaving the Niagara, on board of which they had spent the most eventful period of their lives, the little oompany
led by, one of
was twelve days Pulling his or a cheer, but delight. That lurras, both to after thé Mary cainbow rested d.
llers bound to o facre of her. ired, to which der way, as we 7 th we spoke message bad e. This was vorking order, The pilot boat, g her flags, to e morsing the

August that entful cruises f her arrival heart that the n her passage the cheering welcome her that morning eturn of the self. These , Lieutenant ge, parser of sel in Trinity ard of which ttle company
gave the captain, officers and orew, three hearty cheers. The rigging was innmediately manned, and as the towboat started on her way to the eity three thundering cheers greeted the passengers in return.

It was four o'clock in the afternoon when the Niagara steamed up the bay, and soon after anehored in the East River, opposito the Navy Yard. While lying here her captain, officers and erew; were visited by the pnblie officials, and from morning to night her decks were so crowded an to render them almost impassable. The public enthusiasm was unbounded, and few thought of, or talked of, any thing else but the suecess of the great enterprise. The night before the arrival of the ship the city was illaminated, and althongh the news of the nucecssful landing of the cable was now two weeks old, the public mind seemed as excited as ever at the wondrous achievement. The uewspapers were filled with reporta of the celebration of the event all over the conntry, and preparations were going on for the 1st of September, which had been appointed as theqgreat day of jubilee and rejoicing. The 5th of August was justly regarded as the inauguration of a new era, an era bright with hopeful prospects for the whole human race. The thrilling announcement had been made to the world that time and space were no more, and that the great ocean itself no longer presented a barrier to the communion of the Old World with the Now. All the various nations of the earth were brought together again as members of the one family, and the great idea of the unity of the race was re-established. Whas it any wondc: that the mind of the people of the freest land under the sun should be moved to its profoundest de pth when the great prineiples wbieh they promulgated wiore thus brought nearer to their practioal realization? Not only the barriers of space and time were removed, but the entrance to the great domain of thê Infinite scemed open to man, and the light that broke in from the other world tinged with its golden radiance the glorious promises of that good time which is yet to come, when wars shall cease, and peace and happiness shallteign over all the earth.

Already the rulers of the two countries which are thns united have exchanged congratulations, and their messages speak the language of friendship and goodwill-language that deserves to be recorded in letters of light for future generations.

THE QUEENS MESSAGE.

To the President of the United States, Washivgton.

The Queen desires to oongratulate the President apon the suocessful completion of this great international work, in which the Queen has taken the deepest interest.

The Queen is convinced that the President wil join with her in fer-

THE OOKAN CTELEORAPI.

vently hoping that the electric cable which now connects Great Britain with the United Sfates will prove an additional link between the nations, whose, friendship is founded upon their common interest and reeiprocal esteem.

The Queen has much pleasure in thus communicating with the Presidont, and renewing to him her wishcs for the prosperity of the United States.

THE PRESIDENT'S MFSSAGE.

Washington City, August 16, 1868.
To Mer Majretz Victoria, Tile Qtepn of Gazat Britain.
The President cordially reriprocates the congratulations of her Majesty the Queen, on the sucecss of the great international enterprise adcomplished by the science, skill, and indomitable energy of the two oountrics.

It is a triumph more glorious, becauso far more useful to mankind, than was ever won by onnqueror on the field of battle.

May the Atlantic Telegraph, under the blessing of Heaven, prove to be a bond of perpetual peace and friendship between the kindred nations, and án instrument destined by Divine Providence to diffuse religion, civilization, liberty and law throughout the world.

In this view, will not all nations of Christendom spontaneously unite in the declaration that it shall bo for ever nentral, and that its communications shall be held sacred in passing to their places of destination, even in the midst of hostilitics?

James buchanan.

THE NIAGARA AS SHE APPEARED AFTER THE CRULSE
The Niagara, as wo have stated, was crowded with people after her arrival, and the greatest interest was exhibited in the cablo circles and the paying-out machinery, none of which had been removed. 'Those who visited the ship had, therefore, a pretty fair opportunity of seeing all that was worth seeing, so far as the work of laying tho cable is considered. The cones, the sheaves, the bobbins, the dynamometer, the rings or fair-leaders weré all intact; and besides all thesc, two of the circles contained some cighty or ninety miles of cablo coiled and ready for laying, all of which, however, was subsequently bought by a jowelor in New York, to be made up into ornaments. The flooring of two or three of the circles had been removed, but the remainder were as perfect as at any time while the work of aubmerging the cable in the depths of
reat Britain 1 the nations, d reeiprocal th the Pros. the United
it 18, 1868.
ons of her 1 enterprise of the $t w \dot{0}$. o mankind, wen, prove he kindred to diffuse
ously unite ts commuestination,

NAN.
after her rcles and

Those of seeing eable is aeter, the 0 of the nd ready joweler of two or s perfect lepths of
the ocean was in progress. There were three circles on the spar deok, two, which wete forward of the engine hatch, had no cable, but the third, which was aft of the same part of the ship, had twenty or thirty miles in one coil. Above each of these a temporary staging was crected for the purpose of facilitating the páying out proeess. While the work was going on no one was allowed on any part of this ataging who had no business therenot even the officers of the ship. This rule was carricd out to the follest extent, and with the most despotio rigor. It was along this staging that the oplieer, Paino, walked with the "bight" in his hand when the last fathom in the hold coil was paid out, and when the wardroom coil was reaehed. The cororing of the engine-hatchway bore the marks of the cariosity of one of the men, who, in his exertions to get a glimpse of Paine while performing this feat, smashed the glass and nearly lost his life by his temerity. The iron bobbins over which the cable passed on its way to the machine, were not touched, and although an effort was made to remove the tar, it was found impossible to do so wholly, and traces of it eould still be seen by the visitors. For six whole days and nights those same bobbins never stopped, revolving, and they always saluted the ear with the selfsame rattling sound-a sound, by the way, that was peculiarly pleasant, conveying at it did the information that the cable was going out successfully. Passing further aft, the visitor came to the great wachine itself, and it is as perfeet a piece of mechanism of ita kind as was ever constructed. While it was in operation none but those on duty were allowed to go near enough to brush their skirts against it-they could hardly get sufficiently close to touch it with a six-foot pole, so strict were the regulations. No ono dare transcend the written law which was displayed close by, informing all who had no business there that there they must not go. It was oertaiply a woll guarded spot, and the sentry who kept watch near it was as rigid as an ieiele-which means that he would sooner break than bend. Then, as if all this was not sufficient, the whole was inclosed with a rope that extended beyend the dynamometer, bringing that within the preseribed limits. All these regulations and rules, however, ended with the landing of the cable, and the maehinery was as free to inspection as any part of the ship. The rope was removed, and the sentry no longer kept watoh over the prohibited ground. The paying-ont machine had done its duty, and done it well, and was, perhaps, as deserving of attention as any thing else on board the ship. It was perfect in every particular, so that those who were of a meohanical or scientific turn of mind could stady it in all its details. There were the two sheaves, with the four grooves, in which the cable ran, and there the brake-wheels on the same shaft, so that the speed of the former could always be regulated by the latter. The end of the machine showed
the levers which acted upon the brakes, and whioh by means of oblong weights of a hundred pounds each were made to increase the strain upon the cable. But all this has been so frequently explained already that the reader must be familiar with its aotion. The dynamometer, which stood within a few feet of the maohine, of which it is an important part, was so siuple in its construction and operation, that the visitor had no difficulty in understanding the principle on which it worked. Further aft was another wheel, which the cable passed over before it entered the sheave at the stern on its way into the ocean. The staging erected on this part of the ship was for the men who were stationed here, and whose duty it was to stopper the cable in the event of its breaking on or before it entered the machine. The moment the word was passed to these men that a fracture had occurred, they were at once to pat on the rope stoppers, which were always at hand, and by which it was hoped to hold the cable until the fractured part could be spliced. Fortunately, their was no occasion for their services, and they had a merely nominal part to play.

From the forward deck coil to the stern the course of the cable was watched by more than a dozen men, while nearly thrice that nunber were stationed in the circle from which it was being paid out, to look out for and guard against kinks. The wardroom coil, containing some sixty miles of cable, was concealed beneath a covering of canvas, but as this covering could be partially raised, the manner is which the cable was coiled could be seen at a glance. On the port side of this coil was the electricians' office, but all the instruments had been removed, and the limits alone were traceable. As the visitor proceeded forward from this point he came to another circle, and looking through the hatchway, discovered two more on the orlop deck immediately beneath, and another atill lower down in the hold. It was at this point that the greatest interest was manifeated, as the last torn of the cable came out of the lower circle. This was the critical moment, and the visitor could imsgine, as he looked down into the depth below him, how thitense must have been the interest with which we awnited the moment when the bight came to be banded up through each of the circles ontil it reaohed the spar-deek above.

With all these arrangements on board of her the Niagara looked as much unlike a man of war as it was possible for her to look. There was nothing in fact belligerent in her appearance, except the four cannons which were intended as signal guns, and the twelve immense ports on her spar-deck. Those, therefore, who expected to see a man-of-war, were doubtless disappointed; but she has done more, during the great mission on which she was employed, to bring about the reign of peace,
ans of oblong e strain upon already that meter, which portant part, isitor had no sd. Further entered the gereeted on ed here, and eaking on or as passed to o pat on the vas hoped to Fortunately, ely nominal - cable was hat number out, to look aining some canvas, but h the cable is coil was noved, and ward from hatchway, ad another reatest inont of the itor could tense must when the it reached looked as 5. There four canmse ports n-of-war, the great of peace,
by drawing together in eloser communion the several nations of the oarth, than any mere man-of-war could have done. She has helped to lay the cable, and in what grander or nobler work could any vessel be engaged P This it is which has rendered her famons, and given ther an interest in the eyes of the people of the United States, greater than if she had gained the most brilliant vietory on record. She did not, perhaps, look as presentable to the cye of the naval critic as if cach side of her deck were lined with guns; and the tar spots which frequently met the eye, may have seemed unsightly to what are called refined tastes, but they are preferable to blood stains; and it is to be hoped there may be more frequent employment for the cable machinery than for the cannon.

4. т. Co.' Bratrox noter.

0FFICIAL REPORTS.

MR. CYRUS W. FIELD'S DIARY.

New York, August 18, 1858.
To tie Dirgotors of tite Atlantic Triegrapu Company, London: $G_{\text {ent: }}$ ypy-For your information I herewith submit a copy of my diary since leaving Queenstown, Irelaud

Satdiday, July 17, 1858.-Telegraph fleet sailed feam Queenstown as follows:-The Gorgon and Valorous at 11 A. m., the Niagara at 730 P. M., and the Agamemnon a few hours later. All the steaners to use as little coal blue:sky; from 5 teng to the rendezvous. Up to 5 P . м. clear weather and from 9 to 12 p. m. overcast, hazy and squally Sundar, July 18.-The Nlagarn passed C.
varying from W. by N. to N. N. W.; hased Cape Clear in the morning. Wind
Mondar, July 19.-Wind varying from Wosphere, cloudy and squally. cloudy and rainy.

Tumsiar, July 20.-Wind from N. W. to N.; hazy atmosphere, cloudy and squally.

Wednespay, July 21.-Wind N. W., with slight variations to the eastward. Cloudy.
Tuuradap, July 22.-Wind N. W. by W., blue sky and cloudy.
Fridar, July 23.-Wind from W. by S. to W. S. W. and N. N. W. P. m. latitude $52^{\circ} 5^{\prime} \mathrm{N}$, Sayurdat, July 24 , longitude $32^{\circ} 42^{\prime} \mathrm{W}$.
cloudy and squally. Wind N. N. W. and N. by E. Hazy atmosphere
Susdar, fuly 25.-Valorous arrived at 4 A. M. Calm, hazy atmosphere,
Monnit, July 26.-Calm, hazy atmosphere, cloudy. Capt. Oldham, of the Valorous, came on board of the Niagara.

Tonsonf, Jnly 27. - Oalm and hazy atmosphero. Gorgon arrived at 5 p. м.
Wepnisdar, July 28.-Light wind N. N. W., some sea, blue sky and hazy tmosphere. Agamemnon arrived at 5 P. M.
Thubranay, Jnly 29.-Latitude $52^{\circ} 9^{\prime} \mathrm{N}$., longitude $32^{\circ} 27^{\prime} \mathrm{W}$. Telegraph fleat all in sight. Sea smooth. Light wind from S. E. to S. S. E. Cloudy. board both ships perf. Signals through the whole length of the cable on entrance of Valentis hect. Depth of water 1,550 fathoms. Distance to the graph House the shore end 813 nantical miles, and from there to the Teleity Bay, Newfoundland end of cable is laid. Distance to the entrance of TrinHoase at the head of Be 822 nautical miles ; and from there to the Telegraph cal wiles. The Ningara has 69 miles form 60 miles-making in all 882 nauti-

The Niagara and the Agamemnon have each abaug 1,100 nautical miles of cable on board-nearly the same quantity as last ycar. At 745° p. m. ship's time, or 1005 p. m., Greenwich time, signals from Agatnenmon ceased, and the tests applied by the electricians showed that there was a want of continuity on the cable, but the insulation was perfect. Kept on paying out from Niagara very slowly, and constantly applying all kinds of electrical tests. until 910 p. m., ship's time, or 1130 Greenwich time, when again commenced receiving perfect signals from the Agamemnon.

Fmmay, July 30.-Latitude $51^{\circ} 50^{\prime}$ N., longitude $34^{\circ} 49^{\prime} \mathrm{W}$. Distance run by observation last 23 hours, 89 miles; do. by ship's $\log , 99 \frac{1}{8}$; do. by engineer's $\log , 102$; do. by patent $\log , 105.3$. I'aid out 131 miles 900 fathoms cable, or a surplus of 42 miles 900 fathoms over distance run by observation, equal to. 48 per cent. Depth of water, 1.550 to 1,975 fathoms. Wind from S. E. to S. Weather thick and rainy, with some sea. Gorgon in position. At $350 \mathrm{~A} . \mathrm{M}$. finished the main deck coil, and commenced paying out from the berth deck.

467	miles	from water,	1,465	fathoms.	
547	$"$	$"$	$"$	1,080	$"$
577	$"$	$"$	$"$	465	$"$
747	$"$	$"$	$"$	200	$"$
793	$"$	$"$	Telegraph House at Bay of Bulls' Arm, Trin.		

At 220 p. m. received signal from on board the Agamemnon that they had paid out 150 miles. At 236 P. m., had paid out from Niagara 150 miles cable, a: ' informed engineers on board of Agamemnon of the same.

Satirday, July 31 . -Latitude $51^{\circ} 5^{\prime}$ N. longitude $38^{\circ} 28^{\prime}$ W. Distance run by observation last 24 hours, 137 miles; distance run by ship's log last 24 hours, 141 量 miles; distance run by engineer's log last 24 hours, 1424 miles; distance run by patent \log last 24 hours, 137.6 miles. Paid out 159. miles 813 fathoms cable, or a surpltas of 22 miles 843 fathoms over distance run by observation-equsl to 17 per cent. Depth of water from 1,657 to 2,250 fathoms. Wind moderate, S. E. to S. W. $;$ and from 6 A. M., N. W. by N. Weather cloudy, with rain and some sea. Gorgon in position. Total amount of cablo payed out, 291 miles 730 fathoms. Total distance run by observation, 226 miles. Total distance run by patent $\log , 242.9$ miles. Total distance run by ship's $\log , 241+$ miles. Total distance run by engineer's \log, 2441 miles. Surplus cable paid out over distance run by observation, 65 miles 730 fathoms, equal to 29 per cent. 330 miles from water, 1,465 fathoms; 410 miles from water, 1,080 fathoms; 450 miles from water, 465 fathoms; 510 miles from water, 200 fathoms; 656 miles from Telegraph House. At 114 p. m. had paid out from Niagara 300 miles of cable, and informed engineers on board of Agamemnon of the same. At 245 p. m. received signal from on board the Agamemnon, that they had paid out from her 300 miles cablc. At 537 p. m. flnished the coil on berth deck, and commenced to pay out from the lower deck.

Sunday, August 1.-Latitude $50^{\circ} 32^{\prime}$ N., longitude $41^{\circ} 55^{\prime} \mathrm{W}$. Distance run by observation last twenty-four hours, 145 miles; distance run by shlp's log last twenty-four hours, 139 miles; distance run by engineer's log last twenty-four hours, 142 miles; distance run by pstent log last twenty-four hours, $1417-10$ miles. Paid out 164 miles 683 fathoms cablo, or a surplus of 19 miles, 683 fathoms ovor distance run by observstion-equal to 14 per cent. Depth of water, 1,950 to 2,424 fathoms. Wind moderate and fresh, from N. N. E, to N. E. Weather cloudy, misty with squalls and heavy swell. Gorgon in position and keeping our course very accurately. Total amount of cable paid out, 456 miles 400 fathoms. Total distance run by observation, 371 miles. Total distance run by pstent $\log , 384.6$ miles. Total distance run by ship's $\log , 3801$ miles. 'Total disthace run by enginerr's $\log , 386\}$
miles. Total amount of surplus cable paid out out over the distance run by observation, 85 miles 400 fathoms-equal to 23 per cent.; 185 miles to water, 1,465 fathoms; 265 mites to water, 1,080 fathoms; 305 miles to water, 465 Telegraph House miles to water, 200 fathonis; 451 miles to land, 511 miles to changed. to coil in the hold. r . M., finished paying out coil on lower deck, and

MondAy, August 2.-Latitude, $49^{\circ} 52^{\prime}$ N.; longitude, $45^{\circ} 37 \mathrm{~W}$. Distance run by observation last twenty-four hours, 154 miles ; distance run by ship's twenty four hours, 1414 miles; 144 miles ; distance run by engineer's log iast hours, 141.7 miles. Paid out 177 miles 150 fathoms cable, or a surfour of 23 miles 150 fathoms over distance run by observe cable, or a surplus cent. Depth of water, 1,600 to 2,385 fathoms. Wind north. Wenther cloudy. Gorgon in position. The Nlagara getting lighter and rolling heavily, it was not considered safe to carry sail to steady her, for in case of accident, it might be necessary to stop the ship as soon as possible. At 7 A. m. passed and signailed Cunard steamer from Boston to Liverpool. Total amount of 525 miles; total diles 500 fathoms; total distanoe run by observation, run by ship's $\log , 524$ miles; total distance run by engineer's \log g, 528 miles; 108 miles 500 fathoms, or cabse paid out over distance run by observation, fathoms; 111 miles from water, 1,080 fathoms; 151 miles from water, 1,465 fathoms; 211 miles from water, 200 fathoms; 297 miles from land; 357 miles from Telegraph frouse. At 1238 A. M., ship's time, or 338 Greenwich time, imperfect insulation of cable detected in sending and receiving signals Grom Agamemnon, which continued until 548 A. M., ship's time, or 8.40 A. M., Greenwich, time, when all was right again. The fault was found to be in the Whichoom coil, on board of this ship, about 60 miles from the lower end,
which immediately cut and taken out of circuit" Tuesmar, August 3. Lut and taken out of circuit.tance run by observation last twenty-four hours ; longitude, $49^{\circ} 23^{\prime}$ W. Disship's log last twenty-four hours, 137 miles ; distance run by dance run by last twenty-four honrs, 1181 miles ; distance run by pan by engineer's lng four hours, 1344 miles. Paid out 161 miles 63 by patent log last twentyplus of 14 miles 763 fathoms over distance rum by observation-oqual to 10 per cent. Depth of water 742 to 1,827 fathoms. Wy observation-equal to 10 very pleasant. Gorgon in position. Total amount of cable paid' out, 795
miles
300 distance run by patent total distance run by observation, 672 miles; total miles ; tolal distance run by engineer's $\log 6661$ miles ; total ship's $\log , 631$ plus cable paid out over distance run by observation; total amount of sar. -less than 19 per cent. 74 miles to water, 200 fatho, 123 miles 300 fathoms land ; 210 miles to Telegraph House. At 826 fathoms; 150 miles to water, from hold, and commenced paying out from wardroom coil: paying out coil remaining on board at noon. At 1115 A. M. whip's time coil; 805 miles cab? on board the Agumemnon, that they had paid out from ther 780 mivgnals from In the afternoon and evening they had paid out from her 780 miles of cable. time, received signal from the Agamemnon that ahe was in 910 r. M., ship's fathoms. At $10.20 \mathrm{p} . \mathrm{M}$, ship's time, Niagara in water of 200 water of 200 informed Agamemnion of the same. Wednespay, Aug. 4.-Latitud Distance run by bbeervation, 146 mill $48^{\circ} \quad 17^{\prime} \mathrm{N}$.; longitude; $2^{\circ} \quad 43^{\prime} \mathrm{W}$. dietance ran by enginoer's $\log 149$ miles; distance by nhip's $\log , 149$ villes; miles. Paid out 154 miles 060 fathoms cable, or a surplus of 8 m $\mathrm{n}_{\mathrm{m}}, 142$ fathoms over distance run by observation, equal to 6 per of 8 . Dut . . 60
distance run by 5 miles to wuter, les to water, 465 and, 511 miles to l lower deck, and

37 W. Distance ce run by ship's gineer's log ast last twenty-four e, or a surplus -equal to 15 per orth. Weather 1 rolling heavily, se of accident, it It 7 A. M. passed Cotal amount of by observation, total distance log, 528 miles ; by observation, on water, 1,465 rom .water, 465 rom land; 357 338 Greenwich cceiving signals e, or 8.40 A. m., ad to be in the the lower end, ${ }^{\circ} 23^{\prime}$ W. Diglistance run by engincer's log g last twentyble, or a sur-- equal to 10 W. Weather paid out, 795 miles; total hip's $\log , 631$ nonnt of sur. 8 300 fathoms viles to water, aying out coil 5 miles cab? d signals from niles of cable.) P. M., ship's water of 200 fathoms, and
$2^{\circ} 43^{\prime}$ W. $\mathrm{g}, 149$ milles; Cent $\log _{2} 142$ $8 \mathrm{n}_{\mathrm{t}}=\mathrm{me}^{2}=0$ 4. Deputh of Gorgon in
position. Total amount of cable paid out, 949 miles 660 fathoms; total amount run by observation, 818 miles; total amount run by patent \log, 802 4-10 miles; total amount run, by ship's $\log , 810 \neq$ miles ; total amount run by engineer's Tog, $815 \frac{1}{2}$ miles, Surplus cable paid out over distance run by observation, 131 miles 660 fathoms, about 10 persent.; 64 miles from the Telegraph House. Received signal from Agamemnon at noon that they had paid out from her 940 miles of cahle. Passed this morning several icebergs. Made the land off entrance to Trinity Bay at 8 r.m. Entered Trinity Bay at 1230 р. м. At 230 р. м. stopped sending signals to Agamemnon for 14 minutes, for the purpose of making splice.

Thurbday, August 5 .-At 145 A. m., Niagara anchored. Distance run since noon yesterday, 64 miles; amount of cable paid out, 66 miles 382 .fathoms, being a loss of less than 4 per cent. Total amount of cable payed out since splice was made, 1,016 miles 600 fathoms. Total amount of distance, 882 miles. Amount of cable paid out over distance run, 134 miles 600

- fathoms, being a surplus of about 15 per cent. At $2 \mathrm{~A} . \mathrm{m}$. I went ashore in a small boiat, and awoke persons in charge of the T'elegraph House, half a mile from landing, and informed them that the Telegraph fleet had arrived, and were ready to land the end of the cable. At 245 received signal from the Agamemnon that she had paid out 1,010 miles cable. At 4 A. M., delivered the following telegraphic despatch for the Associated Press, to be forwarded to Now York as early in the morning as the offices of the line were open:

United States Steay Frigate Niagara,
Trinity Bay, Newfoundrand, August 5, 1858.
To tere Associatmp Paess, New York-
The Atlantic Telegraph fleet sailed from Queenstown, Ireland, Saturday, July 17, to meet in mid ocean Wedossday, July 28. Made the splice at 1 P. M., Thursday, the 29 th, and separsted-thie Agamemnon aad Valorous, bound to Valentia, Ireland ; the Niagara and Gorgon for this place, where they arrived yesterday, and this morning the end of the cable will be landed.

It is 1,696 nautical, or 1,950 statute miles from the Tel grraph Mouse at the head of Valentia harbor to the Telegraph House at the Bay of Bulls, Trinity Bay, and for more than two-thirds of this distance the water is more than two miles in depth. The cable has been paid out from the Agameninon at about the same speed as from the Niagara. The electric signals sent and received through the whole cable are perfect.

The machinery for paying out the cable worked in the most satisfactory manner, and was not stopped for a single moment from the time the splice was made until we arrived here.

Captain Hudson, Messrs. Everett and Woodhouse, the engineers, the electricians, the officers of the ship, and in fact, every man on board the telegraph fleet, has exerted himself to the utmost to rake the expedition successful, and hy the blessing of Divine Providence it has succeeded.

After the end of the cable is landed and connected with the land line of telegraph, and the Niagara has discharged some cargo belonging to the Telegraph Company, she will go to St. Johna for coal, and then proceed to Nef York at once.

Craus W. Fiand.
The machinery for paying ont the cable is certainly all that conld be dosired. The brakes are perfect. The greatest strain ever upon the eable was 23 cwt , and that only for a short time. The cable was paid out at an angle of from ten to nineteen degress with the harizon, and at an average speed of six iniles and a half per bour; and the average speed of the slip during the
whole time the cable " as leing sabmetged, of five and two-third miles per hour.

The cable was well coiled, and ran out beautifully. Left with M. de Sauty, at his request, one and a half miles of the raised cable, and there is now remaining on board of this ship about sixty miles of the cable manufactured this yoar, and about twenty miles of the cable that was submerged last year and recovered.

For many interesting particulars in regard to the laying of the cable, I would refer you to the reports of the engineers and electricians.

At 515 A.m., telegraph cable landed. At. 6; end of cable carried into Telegraph House, and receiving very strong currents of electrioity through the whole cable from the other side of the Atlantic. Captain IIudson, of the Niagara, then read prayers, and made some remarks.

At I p. m., Her Majesty's steamer Gorgon fired a roy 1 salute of twentyone háns. All day discharging cargo, belonging to Telegraph Company, from Niagara and Gorgon. Telegraph Honse here not nearly f rished. Received a large number of telegraph messages, congra' ulating us on the successful landing of the cable. Great credit is due to Comruander Dayman, of Her Majesty's steamer Gorgon. for the careful and correc. way in which he led the Ningara during the laying of the cable, keeping, so near the line of the great eircle are. Too much praise cannot be awarded Captain Otter, of Her Majesty's steamer frompine, for the accurate and skilful manner in which he piloted the Niagara shore where the cable was in Trinity Bay until our final anchorage near the
was landed. Johns, and Mr Bust 6 , at 2 A. M., steam-tug Blue Jacket arrived from St. and myself urmed hoking's partner was one of the passengers. M. De Sauty M. De Sauty visions at the honse, and the prom the Niagara, as they had hardly any proat cost. At 11 A. M. receivel strong said they conld have what they wanted House, Valentia. Arranging officeng electric signals from the Telegraph forwarded to London as soon as the line was in the following despatch, to be was in operation :

Directors of Aflentic Thlegiraph Company, London:
Entered Trinity Bay at noon, Wednesday; landed cable at six Thursday morning. Ship at once to St. Johns two miles of shore cable, with ends prepared for splicing. Please request the Admiralty to permit the Gorgon, Com. Dayman, to accompany the Niagara to New York. When was the cable landed at Valentia? Please answer here by Telegraph, and forward by mail to New York my letters.

Cyrus W. Field.
As I feel confident that it will be impossible for us to transmit promptly through one cable all the messages that will be offered, I hope that you will order another, manufactured in time to lay next summer.

The experience that has been had the last and present year, should prove of great value to your company.

Sent and received by telgraph a number of messages, among which were the folloning :

Bedford Springs, Pa., August 6, 1858.
To Cfres W. Field, Esq., Trinlty Bay:
My Dear Sir :-I congratulate you with all, my heart upon the success of the great enterprise with which your name is so honorably connected.

Under the blessing of Divine Providence, I trust it may prove instrumental in promoting perpetual peace and friendship between kings and nations. I have not yet received the Queen's despatch.

Yours, very respectfully,
James Buohanan.

New York, August f, 1858.
To Craje W. Fikli, Trinity Bay:
The city is intensely excited over your success. The newa has reached all parts of the Union. Messages are offering for Europe. Shall we take them? Answer.* , J. Edvy.

St. Jouns, N. B., August 6, 1858.
To Cyrus W. Field, Trinity Bay:
Excitement here increasing. Partics in every moment for business. What tariff from here?
D. B. Srevens.

Boston; August 6, 1858.
To Gyaus W. Firld, Trinity Bay:
Dear Sir:-The city authorities of Boston to-day ordered the firing of 100 guns upon the Common, and the ringing of bells for one hour from noon: in ther of the successful laying of the cable.

Respectfully yoùs, Arex. H. Rice.
Toannto, August 6, 1858.
To Craves W. Field, Trinity Bay:
His Excellency, the Governor General, desires to express his' congratulations on the success of the accomplishing of the greal undertaking of laying the Atlantic telegraph cable. A. J. Pennefeather, Governor's suc'y.

Sent to the Associated Press the following messuges:
Tanity Bay, N. P., August 6, 1858.
Totere Associat̀ed Paers, New York:
The Atlantic telegraph cable was suecessfully landed here yesterday morning, and is in perfect order, The Agamemnon has landed her end of the cable, and we are now receiving signals from the Telegraph Hot se, Valentia.

The United States steam frigate Niagara and her Majesty's steamers Gorgon and Porcupine leave for St. Johns to-morrow.

Due notice will be given when the Atlantic telegraph line will be open for busipess. Oyrls W. Field.

Trinity Bay, N. F., Friday Evening, August 6, 1858.

To the Ahsoclated Press, New York:

Since our arrival here yesterdaymorning, I have been constantly recciving telegraphie messages asking for full particulars in regard to the laying of the Atlantic cable, to which it is impossible to reply, as every moment of my time will be fully accupied while I remain here; and I have handed to Mr. McKay, superintendent of the New York, Newfoundland, and London Telegraph Company's line, my daily journal, and given him full permission to send from the same any extracts that he might think of interest to the public, and especially. those portions which will reply to the communications that I have received.

Cyrus W. Field.
Mr. McKay sent to the press the noxt.day extracts from my journal. -
Saturday, August 7.-Steamers Niagara, Gorgon, and Porcupine sailed, and returned on account of the fog. I visited lead mines to engage men to work on Telegraph Uouse, cut wood, build road, \&c. Flectricians busy fitting up instrumenta. The following telegraphic nessages, with many others, were sent and received:

Thinity Bay, August 7, 1858.
To his Excelfency Javen Boceanan, President of the United S'ates, Bedford Springs, Penn. :
My Dear Sill:-Your telegraphic despatch is duly received. We landed here in a wilderness, and until the telegraph instmments are all ready and perfectly adjusted, in) message can be recorded over the cuble. You shall have the earliest intimation, but some daya may elapse before all is perfected. Tho first message from Europe will be from the Queen to jourself, and the first from America to Europe your-reply. With great respect, truly your servant,

> Cyaus W. Firld.

To Crace W. Firld, Trinity Bay:
New Yonit, August 7; 1858.
We have no facts in addition to your despatch of the 5th to the press. Every incident connected with the landing of the cable, or with the enterpriso in any way, will be eagerly received by the public throughout the country. There is intense anxiety to know all in relation to it, and the press degires the line kept open at evening, so long as there are any facts of intewat to transmit. Respectfully.

Peter Cooper.
To Mr. McKay, Trinity Bay :
New Yonk, August 7, 1858. Please avail yourself liberally of Mr. Field's kind permission, and send us for morning papers from one to two thousand words from his diary. Add to it a circumstantial report of what has been done since the Niagara arrived at Trinity Bay. We will cheerfully pay the operators extrafor their services. There is a degree of excitement here which you cannot conceive of, and tre want to meet public demand.
D. H Craio.

To the Assoclated Parse, Newi, York :
Trinity Bay, August 7, 1858.
We landed here in the woods, and until the telegraph instruments are all ready, and perfectly adjusted, no communiations can pass between the two continents; but the electric currents are received freely.

You shall have the earliest intimation when all is ready, but it may be some days before every thing is perfected. The first through message between Europe and America will be from the Queen of Great Britain to the President. of the United States, and the second his reply. Cyrus W. Field.

Sunday, August 8.-Good signals being received through the cable. Religious service at Telegraph House at 5 p. м.

Monday, August 9.-Offered to remain at Trinity Bay with the electricians, if I could be of any service to them; but as I could not, left in the United States steam frigate Niagara at half past 5 A . м., for St. Johus. Her Majesty's steamers Gorgon and Porcupine sailing in company. At 6p. m., arrived at St. Johns, where there was great rejoicing at the laying of the cable. Received here a great number of telegraphic messages, some of which I copy.

To Cynues W, Fired, St. Johns:
New Yore, August 9, 1858.
Your family are all at Stockbridge, and well. The joyful news arrived there on Thursday, and almost overwhelmed your wife. Father rejoiced liko a boy. Mother was wild with delight. Brothers, sisters, all were orerjoyed, Bells were rung, guns fired, children let out of school, shouted, "The cable is laid," "The cable is laid."

The village was in a tumult of joy. My dear brother, I congratulate you God bless you.
, August 7, 1858.
ived. Wé landed all ready and perYou şhall have \& perfected. Tho elf, and the first uly your servant, aus W. Firld.

August 7; 1858.
5 th to the press. ith the enterpriso put the country. he press diegires cts of inter at to eter Cooper.

August 7, 1858.
ion, and send ns 3 diary. Add to agara arrived at their services. aceive of, and we D. H Cbaig.
tugust 7, 1858.
ruments are all itween the two , but it may be essage between ;o the President us W. Field.
the cable. Reith the electrinot, left in the t. Johns. Her At 6 p. m., arg of the cable. which I copy.
Igust $9,1858$.
news arrived or rejoiced like ere overjoyed, "The cable is gratulate you. jey Fixld.

Tainity Bay, August 9, 1858.
To Craus W. Firld, St. Johna:
I have just joined up key and large ceils, and am now sending to Valentia. Shúl communicate again shortly.

De Sautr.
Trinity Bay, August 9,1858 .
To Crros W. Field, St. Johns:'
It is necessary to pass many preparatory signals for adjustment of our instruments, needing some slight alterations. Do not expect her Majesty's message before the morning. Still exchanging good signals ${ }^{\text {pe Sauty }}$

Tamity Bat, August 9, 1858.*
To Orbus W. Fizld, St. Johns:
Receiving good recorded currents from Valentia,
Perfectly satisfactory.
De Sauty.
Trinity Bat, August 9, 1858.
To Cyacs W. Field, St. Johns:
I have received perfectly a communication from Valentia, and they get our signals there. Please send early, without fail, the fly-wheel. De Saury.

New Yoric, Angust 9, 1858.
To Crrus Wं. Field, St. Johns:
Drar Sir:-The Common Council of New York have resolved on a great celebration of the laying of the cable. The Committee of Arrangements desire to know the day on which the first message will be sent, in order to recommend a general illumination in the eveniag. Please send reply today.

Daniel F. Themane, Mayor.

St. Jonss, Tuesday, August 10, 1858.
Wrote to Messrs. T. H. Brooking, Sons \& Co., in regard to completing Telegraph House and furnishing M. De Sauty with supplies. ${ }^{*}$

St. Joiks, Newfoundland, Auguat 10, 1858.

Memra. Brooriva. Sons \& Co., St. Johne:
Geistifmen :-I have to request you will, as quickly as possible, brickway cell, and otherwise finish the house in Bay of Bull's Arms, belonging to the Atlantic Telegraph Company, and make such additions thereto as M. Do Santy may require. Also please furnish M. De Sauty with any supplies that he may order on account of the company. I remain, gentlemen, very truly your friend,

Cyrus W. Figld,
 General Manager Atlantic Telegraph Company.

Received an address from the Executive Council of Newfoundland, and also one from the Chamber of Commerce of St. Johns, and below you have copies of the same and my replies.- [These will be found in full in the account of the reception at St. Jolins.-Author.]

The telegraph line to the United States was occupied every moment, and I gave the officers of the, steamers the privilege of sending and receiving free, as many messages as they choose.

The Governor had a large dinner party at seven, where I met many of my oldest Newfonadland friends; and later in the evening there was a grand ball at the Coloyal Building.

Sent and received many telegraph messages, of which the following are a portion:-

To Crrus W. Firid, St. Johas:
Nrw Yore, August 11, 1858
Parties are pressing upon us messages, wishing to pay for them, and have them take their turn when the line opens. What shall we do? Please reply.
W. G. Iunt.

Wilson G. Hunt, Eisq., New York.
St. Johne, N. F., Wednesday, August 11, P: m
Message received. I leave for New Y Before I left London the directors New York in the Niagara this afternoon. unanimously that for several weeks after Atlantic Telegrap ${ }^{\text {a }}$.....pany decided solely for the purpose of allowing after the cable was laid, it should be kept various modes, and decide which conld work thrount electricians to try their spoed and accuracy. Due notice will work through the cable with greatest America, when we are ready to rescive business.

> Crrus W. Field.

To the Absochated Press, New York.
St. Johns, Wednesday, Ang. 11, p. m.
Before I left London, the directors of the Atlantic Telegraph Company decided unanimously that, after the cable was laid and the Queen's and President's messages transmitted, the line should be kept for several weeks for the sole use of Dr. Whitehouse, Professor Thompson, and other electricians, to enable them to thoroughly test their several modes of telegraphing, so that the directors might decide which was the best and most rapid method for future use; for it was considered that after the line should be once thrown open for business, it would be very difficult to obtain it for experimental purposes, even for a short time.

Due notice will be given when the line will bo ready for business, and the
iff of prices. tariff of prices.

> Cyble W. Field.

St. Jouns, N. F., Wednesday, August 11, 1858.
Vice Admiral Sir Houston Stewart, K. C. B., \&c., Halifax, N. S.
Rrspicted Sir :-I should consider it a very great personal favor if you wrould permit the Gorgon, Captain Dayman, to accompany the Niagara, Captain Hudson, to New York.

English officers and English sailors have labored with American officers and American sailors to lay the Atlantic cable. They were with us in our days of trial, and pray let them, if you can, share with us our triumph.

I know this would be agreeable to Captain Dayman and his officers. Please answer here. With high regard, your obedient servant, Cyres W. Field.

To Crres W. Firit, St. Johns.
Trinity Bay, August 11, 1858.
We are doing our best. I do not think you can assist us by staying at St. Johns.

It is vulcanized India rubber, not vulcanite that is required.
De Sauty:
To Cyrus W. Firid, St. Johns.
Trinity Bay, Aügust 11, 1858.
Nothing to communicate, All progressing satisfactorily.
gust 11, 1858 them, and havo 'e do? Please Y. G. IIunt.
gust $11, P_{i} \mathbf{m}$ this afternoon. . pany decided should be kept is to try their with greatest in Europe and
W. Field.

听. 11, P. M.
aph Company en's and Presweeks for the electricians, to ng, so that the hod for future rown open for purposes, even
iness, and the
W. Field.
t 11, 1858.
favor if you Fiagara, Cap-
rican officers
th us in our mph .
his officers.
T. Field.

11, 1858.
y staying at

Sadty:
11, 1858.

SAUTX.

At your nnanimons reqnest, but at a very great personal sacrifice to myself, I accepted the office of Gencral Manager of the Atlantic Telegraph Company, for the sole purpose of doing all in my power to aid you to make the enterprise euccersful; and as that object has been attained, yout will please accept my resignation. It will always afford me pleasure to do any thing in my power, consistent with my duties to my family and my own private affairs, to proinote the interest of the Atlantic Telegraph Oompany.

I ahall write you by the noxt mail in regard to the cable and machinery on board of the Niagara.

Rejoicing with you in the success which has, under the blessing of God, attended our united efforts to connect the Old and New Worlds by the electric telegraph, I remain, gentlemen, very truly, your friend,

Cybus W. Fexld.
b

New Yoiz and Newrompland Teurgrapi Bration.

Report and Log of the Einginecr, Mr. W. E. Everett.
Untitid Statres Stmamer Niagara, August 17, 1858.
To the Dramorors of the Athantic Thesorapa Comparyp
22 Old Broid Strent, Londom.
Gentlimen:-I have the honor to enclose a copy of the engineersis log, which contains every particular of any importance connected with the paying than that the great percentage of ship, and requires no explanation further
rifice to myself, slegraph Comju to make the or will please o any thing in private affairs, nd machinery essing of God, by the electric
W. Figld.
the next day at noon, was undoubtedly caused, to an extent, by the ship not running directly on her course, as for that day there was a difference of sixteen and a third miles between distance run by observation and patent log, while for the remaining part of the voyage they nearly coidftidel. Also, that the apeed of the ship noted per hour nust not be cousidered strictly correct, as it is not possible to \log accurately by the ordinary means.

Nearly all of the stores were landed at the Telegraph llouse, Bay of Bulls' Arm, as they would be of much enore service to the company there than any other disposition which could have been mado of them.

There is now remaining on board about sixty miles of cable manufuctured by Glass, Elliott \& Co. during the present season, and about twenty miles of the cable recovered from Valentia Bay, most of which is not suitable for use.

The cable, machinery, and a few articles now on board, will be disposed of by the direction of Mr. Field.

It is almost needless for me to state, that each person connected with tho undertaking has been untiring in his efforts to bring about so gratifying a resnlt as the successful laying down of the Atlantic Telegraph Cable, and that Capt. Hudsou and all the offlcers have made any and every sacrifice to further the great work. Aocept my congratulations, and believe me, very truly, your obedient servant,
W. C. everettr.

Thursday, July 29.

Latitude 58 deg. 09 midak $\mathrm{N} . ;$ longttode, 89 deg. ${ }^{*} 4.4099$ malles out. 89 min. W. $\quad\left\{\begin{array}{l}\$ 0.5540 \text { milea ont. } \\ \$ 10.4650 \text { miles out }\end{array}\right.$
Depth of water, 1,560 fathom

Remarks.

July 29.-From 8 to meridian.-At 1020 , stem of ship being secured by hawser, commenced veering out cable to the Agamemnor to make splice. At 1030 veered out 100 fathoms.

From 18 to 4 commenced paying out the cable. At $1 \mathrm{p}, \mathrm{m}$. hnwser was let go , ship steaming ahead slow. At 254,10 miles of cable paid out." Smooth sea.

From 4 to 6, smooth sea. At 440,20 miles paid oat.
From 6 to 8 sea smooth. Light breeze on port beam. At 631 paid out 30 miles of cable. At 754 continuity reported to have ceased. Ship's spoed reduced.

From 8 to 12-At 911 contizuity restored. A't 855,40 miles paid out. At 1046,50 miles paid out. Distance run at midnight, by patent $\log , 41$ miles.
ineerss \log, the paying on further e splice to

Friday, July 30.

Remarks.

From midnight to 4 A. m.-At 12 34, 60 miles of cable paid out; at 210 70 miles. Sea smooth ; very light breezo on port quarter. At 355 finished paying out coil on spar deck, and commenced on the forward berth deck circle.

From 4 to 8.-At 410,80 miles of cable out ; at 545,90 miles ; at 717 , 100 miles. Light, fair breeze; smooth sea. At 8 A. w. had run $81+$ miles by From 8 to meridian.-At $8 \mathbf{5 0}, 110$ miles of cable out ; at 1027,120 miles ; at 1155,130 . Distance by patent \log, for the last 24 hours, 104.3 miles.
 02,160 niles. Distance by patent \log at 4 p. M., 23.4 knots. From 4 to 6.-A! $5 \quad 30,170$ miles of cable out. Strong wind and moderate From 6 to 8.-At 7 03, 180 miles of cable out. Fresh breeze and moderate sea on port quarter.

From 8 to midnight.-At $834,190 /$ miles of cable out ; at 1008,200 miles ; at 1134,210 miles. Wind and sea moderable out ; at 1008,200 quarter to port beam. Distanco run since noon by patent \log veered from port

Saturday, July 31.

Hour. A. M.	$\begin{aligned} & \text { Dyasmometer } \\ & \text { Stralu. } \end{aligned}$	Srake Btraln.	4agle of Rope.	Amoast per hour hy Rotometer.宣。 F.	Speed of chip.
			Horfantal. \| Verticel.		1. F.
9.	2050 2050	1800	Too dark to ate cable	6 600	
8	2000 9000	18140 1800	oothoard.	\% 600	57
4	2080	1800 1800	10****	6 6 070	00
9	096	1800	$0^{\circ}=\frac{8}{8} \mathrm{O}^{\circ}-19^{\circ}=$	5 \%	

thoms.
; at 210 35 finished erth deck
; at 717 , t miles by
20 miles;
4.3 miles.
miles ; at
moderate
nd mod-
08, 200 rom port niles.

Depth of water, 1,657 to 2,250 .
Knots of cablo praid out, 159 miles, 848 fathoms.
Latitade, 51 deg. 5 min .
Knots run by ehip, 18 ti.
Longitude, 88 deg. 28 min.
Loes, 17 per cent.

Remarks.

At 110,220 miles of cable out; at 235,230 miles; at 431,240 miles. Fresh breeze and moderate sea on port quarter. Distance run by patent log since meridian Friday to 4 P. M. Saturday, 90.4 miles.

From 4 to 8. - At 534,250 miles of cable out ; at 711,260 miles ; at 811 , $?$ miles, indicated by patent log since yesterday noon. Light breeze on port bow ; sea moderate.

From 8 to meridian.-At 844,270 miles of cable out; at 1030,280 niles; at 1156,290 miles. Distance run by patent \log since Friday noon, 137.5 miles.

From meridian to 4 p. m.-At 114,300 miles of cablo out ; at 235,310 milos; at 402,320 miles. Light head breeze ; moderate sea. Rotometer 313 milos 700 fathoms. 4 to 6 .-At 536 miles of cable out ; commenced orlop deck ${ }^{6}$

From 4 to 6 .-At 536,330 miles or cable out; commenced orlop
. 5 . circlo at 540 . Very light breeze on starboard bow, with but hithe sea. with
From 6 to 8 .-At 712,340 miles of cable out. Iight head wind, with moderate sea. At $8,44.3$ miles run by patent \log since meridian.

From 8 to midnight.-At 845,350 miles of cable out; at 1016,360 miles; at 1146,377 miles.

Sunday, August 1.

From midnight to 4.-At 115,330 miles of cable out ; at $: 36,390$ miles of cable out; at 359,400 . Fresh breeze on starboard bow ; moderate sea.

From 4 to 8.-At 520,410 miles of cable out; at 647,420 miles of cable at; at 5 A. M., 90 miles run by the ship since Saturday noon. Moderate sea and breeze forward of starbourd beam.

From 8 to meridian.-At 809, 430 miles of cable out; at 954,440 miles of cable ont ; at 1116,450 mles of cable ont. Distanco run by patent log, from meridian to meridian, 141.2 miles. Ship rolling considerably; strong breeze aud inoderate sea on starbo..rd beam.

From 4 to $6 .-$ At 445,490 miles of cable run out. Strong wind and heavy sea on starboard beam; ship rolling heavily.

From 6 to 8.-At 605,500 miles of cable out; at 733,510 miles of cable out. Distance run since noon, by patent $\log , 46 \frac{1}{2}$ miles. Fresh breeze and moderate sea forward of starboard beam.

From 8 to midnight.-At 850,520 miles cable out; 1010,530 miles of cable ont; at 1138,540 miles of cable ont. Wind moderating; heary sea;
ship rolling badly.

Monday, August 2.

24 fathoms.
6, 390 miles erate sea. iles of cable Ioderate sea 4,440 miles patent \log, bly ; strong $;$ wind and les of cable breeze and

0 miles of heary sea;

Bpeed of ahlp.
I. . F .

Dopth of water, from 1,600 to 8,885 . Latitude, 49 deg. $52 \mathrm{~min}, N$. Longitnde, 45 deg. 87 min . W.

Knots of cable paid out 127, 150.
Knots run by ship, 151.
Lose, 15 per cent.

Remarks.

From midnight to 4.-At 1258,550 miles of cable out; at 218,560 mites of cable out; at 338,570 miles of cable out. Wind and sea moderate. Distance by patent \log, from noon Sunday to 4 p. m. Munday, $106 \frac{1}{2}$ miles.

From 4 to 8 -At 453,580 miles of calle out; at $1 ; 20,590$ miles of cable ont; at 745,600 miles of cable out. Light breeze on starboard beam. Moderate sea. Ship rolling. At 520 commenced in uew. cable, which is very dry, leaving the circles, and four in number.

From 8 to meridian-At 9 11, 610 miles of cable out; at 1023,620 miles of cable out ; at 1147,630 miles of cable out. Light wind and moderate sea forward of starboard beam. Patent log at noon, 141.3 miles.

From meridian to 4.-At 1250,640 niles of cable out ; at 203,650 miles of cable out ; at 3 16, 660 . Light breeze on starboard beam. Ship rolling considerably.

From 4 to 6 .-At 442,670 miles of cable out ; at 609,680 miles of cable ont. Light breeze and moderate sea forwarl of starioard bean.

From 6 to 8.-At 740,690 miles of cable out. Wind and sea same as previous watch. Distance since noon by patent $\log , 47.7$ miles.

From 8 to midnight.-At 909,700 iniles of cable out ; at 1046,710 miles of cable out. Light wind and gently rolling sea, forward of starboard bean.

Tuesday, August 3.

Hour. A. M,	Dyammometer Strain.	Brake Strnix.	Angle of Rope.		Amount per hour ty Robopleter. K. $\quad \boldsymbol{F}$.		Speed of whip.	
			Hlarixontál.	Vertical.			E.	F.
1	1975	1900	-	-	5		5	0
2	1850	1700	\square	-	6	800	6	0
8	15109	1700 1700			6	(44)	${ }^{5}$	4
4	1800	1760	$10^{\circ} \mathrm{N}$.	12*	0	593	5	6
5	1775	1700	$18^{\circ} \mathrm{N}$.	12°	7	260	6	0
6	1600	1600 1600	$8{ }^{\circ}$	12	6	968	5	4
7	1650 1600	1600 1609	8°	11°	4	608	6	0
8	1600 1450	1400		12*	5	709	8	0
${ }^{9}$	1450	1500	$5^{\circ} \mathrm{N}$.	$15{ }^{*}$	6	2143	4	4
11	(210)	1200	-	11°	6	813	5	0
12	1200	1200	-	11.	5			
P. M -			5×8.	12	6	530	5	
1	1200	1200		12°	6	5118	${ }_{6}^{6}$	0
2	1200 1200	1200	$4{ }^{\circ}$	12°	6	3850	6	4
8	1200	1200	**	12°	6	8.0	6	4
5	1200	1200		11	6	803		-
	below	1800	-	19 ${ }^{*}$	6	513000	6	2
6	below						6	, 0
7	1200	1200	$10^{\circ} \mathrm{E}$.	18^{*}	6	59.3	6	, 0
	below			18*	,	843	6	2
8	1800	1200	-	1.	7	400	7	6
${ }^{9}$	100\%	11000	-	-	6	109	5	6
10	900	1000	-	-	8	$310)$	3	8
11	1000 1000	1000 1000	-	-	5		5	8

Knote run by ship, 141 .
Tatitude, 49 deg .17 min . Fongt $1 \mathrm{de}, 4928$.
Knots of cable pald out, 161, 768.
Remarks.
From midnight to 4 A. m.-At 1228 A. m, 720 miles of cable paid out; at $157 \mathrm{~A} . \mathrm{m} ., 730$ miles of cable paid ont ; at $330 \mathrm{~A} . \mathrm{M} ., 740$ miles of cable paid out. Light breeze on startoard teem; heavy awell; ship rolling moderately. Distance by patent \log, from 8 p. M. to 4 P. m., 43.1 miles.

From 4 to 8.-Light breeze and Act orward of etarboard beam: At 515 750 miles of cable out; at 629,760 miles of cable ont; at $7 \cdot 56,770$ miles of cable out.

From 8 to meridian.-At 826 , cable all paid out from the forward cir cles, and commenced 'in' the after circle. Total amount paid out 772 miles 700 fathoms. At 951 p. s., 780 miles of cable out ; at 1125 p. m., 790 miles miles cable out. Set clock back 13 minutes. Distance run by patent $\log _{9} 134.5$

From meridian to 4.-Distance run by' patent $\log , 24.5$ miles. At 1244 , 800 miles of calle ont; at 215,810 mives of cable out; at 347,820 miles of

From 4 to 6 .-Nearly calm, with smooth sea during the watch. At 516 830 miles of cable out.

From 6 to 8.-Distance run by patent \log, from noon to 8 p. M., 50.3 miles. At 647,840 miles of cable out.

From 8 to midnight.-Distance run by patent $\log , 15.7$ miles. At 815 850 miles of cable out; at 910,860 miles of cable out ; at 12,870 miles of cable out. At 830 tho Agamemion made signals that she was in'soundings.

Wednesday, August 4.

adeg. 17 min ; jongitulo, 02 deg, 43 mbn
Koote run be phid ont, 154 miles 80) fotbons
Losh 6 fucr ecat.
K nots run by ship, 146 miles.
Depth of water from 742 to 200 fathoms.

Remarks.

From midnight to 4 a. m.-At 133,880 miles of cable out; at 308,890 miles; nearly calm, with smooth sea. Patent log, from noon Tucsday to 4 P. M. on Wednesiday, indicated 91.6 miles.

From 4 to 8 .-At 148,900 miles of cable out ; at 625,910 miles; at 8 , 920 miles. Distance by patent \log, from Tuesday noon to Wednesday, 8 a. M., 115.7 miles.

From 8 to meridian-At 929,940 miles of cale out at at 1050,940 miles; at $12-4,060$ mites. Distance by patent \log, for last 24 hours, 142
miles. Set the clock back ten minutes.

From meridian to 4.-At 128,960 miles of cable out; st 310,970 miles.
From 4 to 6.-At 510,980 miles of cable out. Changed from wardsoom to quarter deck coil at 450 P . m., in order to cut out a fault which had been developed yesterday, when rotometer indicated 978 miles 400 fathoms paid out. From noon to 4 p. m., by patent $\log , 21.6$ miles.

From 6 to 8.-At 641,990 miles of cable out. Distance run, by patent log, since noon, 41.1 miles.

From 8 to midnight.-At $938,1,000$ miles of cable out ; at $1206,1,010$ miles. At midnight the patent \log indicated 58 miles run since noon.

Thursday, August 5.

Hoar, A. M.	Dymanometer Sirein.	Brake Strain,	Rotometer.	Amount per hour by Rotometer. K. $\quad \mathbf{F}$.	Speod of, thip. $\text { K. } \quad \mathbf{F} \text {. }$
$\frac{1}{2}$	400	400	$\begin{array}{rrr}1,018 & -600 \\ \cdots & 1,016 & 600\end{array}$	$\begin{array}{r}4 \\ 8 \\ 800 \\ \hline\end{array}$	$\begin{array}{ll}2 & 6 \\ 2 & 0\end{array}$
Remarks.					

From midnight to 4 A. m.-At 145 ship came to anchor off telegraph house, Bay of Bulls' Arm. At 1 A. m.-Distance run, by patent \log, since noon of previous day, 62.6 miles. At 330 , coiled 14 miles of cable aft, preparatory to the end being taken asphore in ships' boats. End of cable was. landed ashore at $5.15 \mathrm{~A} . \mathrm{M}$.

Total amount of cable paid "out since making splice in mid-ocean, 1,016 miles 600 fathoms. Total amount as per signal, per distance by the Agamemnon, 1,010 .

Total distance run since making splice, 882 miles.
Total percentage of cable paid out over distance run, 15,
During the day 3 miles of cable'was sent ashore, at the request of Mr. De Sauty, for future use.

THE LAYING AND LANDING OF THE CABLE ON TIE EUROPEAN SIDE:

As the history of the final expedition would necessarily be incomplete without the narrative of the laying and landing of the cable on the European side, we feel gratified in being able to lay before our readers the following account, which was written by the reporter of the London Times, and which we copy from that paper:

In the face of difficulties and dangers, the magnitude of which cannot be properly appreciated by those not engaged in the work, the engineers engaged in this uudertaking have, with almost untiring energy, adhered to their all but hopeless task with that persevcrance which is sure, sooner or later, to lead to success. There were but few some twenty days ago who, after the unsuccessful return of the equadron to Queenstown, would have dared to predict such a speedy and glorious termination to all the trials and difficulties that the promoters of this undertaking have undergone. The final accomplishment of the scheme seemed indeed, up to the last moment, to hang upon andir. Many serious difficulties had to be encountered during the six days and a half that the operations lasted, any one of which had not chance farored us, might have ruined the expedition, and delajed the advance of ocean telegraphs per haps more than half a century. But the difficult task has now been aecomplished, and it only remains for us to accept the benefits which it will undoubtedly confer upon the community. Wonderful as the conception of conveying sensations from continent to continent, across the almost unknown depths of the ocean, may sevin \boldsymbol{y} us now, yet in a very little time people will forget the marvel while profitug by the fact; and withont remembering the
years of anxious toil and discouragement which those who have secured this boon to the community have undergone to secure success, the wonder will be not that the undertaking has been carricd out at all, but that it had not been accomplished long before. It has been the custom of mankind to honor the lives and celebrate the deeds of great statesmen, successful warriors, and eminent divines. Indeed, of such materials are the links in the chain of history chiefly composed. But thoso men who, by patient thought and persevering action, have achieved victories over matter which secure to the community permanent advantages, very often have their trouble for their reward. It is to be hoped that this may not be the case with those who have been mainly instrumental in bringing this great seheme to a successful termination.

It must be confessed that the prospects of success were very remote when the squadron left Queenstown on the 17 th of last month. The amount of cable in the two ships had been reduced by nearly four handred miles, and the recollection of three separate and most unaccountable breakages was still fresh in the minds of all who had accompanied the first expedition, and there was - no reason whatever for supposing that the very same thing might not occur again. The cable might, and evidently did, as far as the contractors are concerned, fulfil all the guaranteed requirements ; and" the numerous accidents Which occurred might be due to the cable having become injured during the gale. This supposition, though it may be gratifying to Messre. Glass \& Co. was no consolation to either the engineers or the shareholders. Under these circumstances it is not sluprising that many regarded the prosecution of the scheme as a waste of the shareholders' money. However, in spite of the most vehement opposition, the majority of the directors determined to despateh the expedition to try their fortune again in mid-ocean before they abandoned the scheme altogether as impracticablo.

Accordingly, on the morning of Saturday, the 17th of July, the Valorous, Gorgon, and Niagara, having completed coaling, steamed away from Queenstown for the rendezvous. The Agamemnon, having to wait for Professor W. Thomson, one of the directors, who took charge of the electrical department on board, did not weigh anchor until two o'clock on the following morning. As the ships left the harbor, there was apparently no notice taken of their departure by those on shore or in the vessels anchored around them; every one seemed impressed with the conviction that we were engaged in a hopeless enterprise, and the squadron seemed rather to have slunk away on some discreditable mission, than to have sailed for tho accomplishment of a grand national scheme. It was just dawn when the Agamemnon got clear of Queenstown harbor, but as the wind blew stiffly from the south-west, it was nearly ten o'clock ${ }^{2}$ efore she rounded the Old Head of Kinsale, a distance of only a few miles. The weather remained fine during the day and as the Agamemnon skirted along the wild and roeky shore of the sonth-west coast of Ireland, those on board had an excellent opportunity of seeing the stupendous rocks which rise from the water in the most grotesque and fantastic shapes. About five o'clock in the afternoon Cape Clear was passed, and, though the coast gradually edged away to the northward of our course, yet it was nearly dark before we lost sight of the rocky mountains which surround Bantry Bay and the shores of the Kenmare River.

By Monday morning, the 19th, we had left the land far behind us, and thence fell into the usual dull monotony of sea life. Of the reyage out there is little to be said. It was not checkered by the excitement of continual storms or the tedium of perpetual calms, but wo had a suffecient admixture of both to render our passage to the rendezvous a very ordinary and uninteresting one indeed. For the first week the barometer remained unusually low, and the numbers of those natural barometers, Mother Garey's chickens, that
kept in our wake, kept us in continual expectation of heary weather. With every little breeze of wind the screw was got up and sail made, so as to hus-
secured this onder will be had not been I to honor the iors, and emi ain of history d persevering e community eward. It is been mainly lation.
remote when mount of caniles, and the ras still fresh
nd there was ht not oceur tors are conous accidents during the Glass \& Co. Under these sution of the e of the most despatch the andoned the
he Valorous, rom Queens?rofessor W. department gg morning. of their de; every one hopeless enon some disof a grand of Queenswas nearly ce of only a Agamemnon of Ireland, dous rocks ses. About bh the coast nearly dark ry Bay and ind us, and e out there of continual Imixture of uninterestsually low, cicens that her. With as to hus-
band our coal as much as possible, but it generally soon fell calm, and obliged Captain Preedy reluctantly to pet up steam again. In consequence of these continued delays and changes from steam to sail, and from sail to steam again, much fuel was expended, and not more than cighty miles of distance made good each day.

On Sunday, the 25th, however, the weather changed, and for several lays in succession there was an uninterrupted calm. The moon was just at the full, and for several nights it shone with a brilliancy which turned the smooth sea into one silvery sleet, which brought out the dark hull and white sails of the ship in strong contrast to the sea and sky, as the vessel lay all but motionless on the rater, the very impersonation of solitude and repose. Indeed, until the rendezvous was gained, we had such a succession of beautiful sunrises, gorgcous sunsets, and tranquil moonlight nights, as would have excited the most enthusiastic armiration of any one but persons situated as we were. But by us such scenes' were regarded only as the annoying indications of the calm which delayed our progress and wasted our coal. In spite of the unusual calmness of the weather in general, there were days on which our former unpleasant experiences of the Atlantic wero brought forcibly to our recollection-when it blew hard, and the sea ran sufficiently high to reproduce on a minor scale some of the discomforts of which the previous cruise had been so fruitful. These days, however, were the exception, and not the rule, and served to show how much more pleasant was the inconvenient calm than the weather which had previously prevailed. By dint, however, of a judicious expenditure of fuel, and a liberal use of the cheaper motive power of sail, the rendezvous was reached on the evening of Wednesday, the 28th of July, just eleven days after our departure from Qucenstown.

The rest of the squadron were in sight at nightfall, but at such a considerable distance that it was past"ten o'clock on the morning of Thursday, the 29th, before the Agamemnon joined them. We were as usual greeted by a perfect storm of questions as to what kept us so much behind our time, and learned that all had come to the conclusion that tho ship must have got on shore on leaving Queenstown harbor. The Niagara, it appeared, had arrived at the rendezvous on Friday night the 23d, the Valorous on Sunday tho 25th, and the Gorgon on the afternoon of Tuesday the 27th.

The day was beautifully calm, so rio time was to bo lost before making, the splice ; boats were soon lowered from the attendant ships, the two vessels made fast by a hawser, and the Niagara's end of the cable conveyed on board the Agamemuon. About half-past twelve o'clock the splice was effectually mado, but with materials very different from carefully-rounded semicircular boards which had been used to inelose the junctions on previous occasions. It consisted merely of two straight boards hauled over the joining, with the iron rod and leaden plummet, attached to the centre. In hoisting it out from the side of the ship, however, the leaden sinker broke short off and fell overboard; and there being no more convenient weight at hand, a thirty-two pound shot was fastened to the splice instead, and the whole apparatus was quickly dropped into the sea, without any formality, and, indeed, almost without a spectator, for those on board the ship had witnessed so many beginnings to the tele ${ }^{-}$ graphic line that it was evident they despaired of there ever being an end ta it. The stipulated 210 fathoms of cable having been paid out to allow the splice to sink well below the surface, the signal to start was hoisted, the hawser cast loose; and the Niagara and Agamemnon started for the last time for their opposite destinations.

For the first three hours the ships proceeded very slowly, paying out a great quantity of slack, but after the expiration of this time the speed of the Agamemnon was increased to about fve knots per hour, the cable going at about six, without indicating more than a few hundred pounds of strain upon about six, without indicating more than a fow hundred pounale was. seen ap-
the dynamometer. Shortly after six o'clock a very large whal
proaching the starboard bow at a great speed, rolling and tossing the sea into foam all around, and for the first time we felt the possibility of the supposition that our second mysterious breakage of the cable might have been cansed after all by one of these animals getting foul of it under wator. 'It appeared as
if it were making direct for the cation ponderous living direct for the cable, and great was the relief of all when the .Where it entered the water, but fortunately paithout just grazing the cable

All seemed to go well up to about eight orclock doing any mischicf. the hold with an evenness and regularity which showed cowle paid out from fectly it had been coiled away; rogularity to whard against accidents which miatarise in consequence of the cable having suffered injury during the might indicated strain upon the dynamometer was nevar during the storm, the $1,700 \mathrm{lbs}$, or less than one-quarter whar thas nevar allowed to go beyond thus far every thing looked promising of success. But in ested to bear, and work, no one knows what a few minute or success. But, in such a hazardous an injured portion of the cable was portion paying out. Not a moment wiscovered about a mile or two from the duty, in setting men to work' to cobble wo the injury as will as engineer on permit, for the cable was going out at such is rate that the damaged portion would be paid overboard in less than twenty minntes, and former experience in all probus that to check either the speed of the ship, or the cable, would,

Just before the lapping wis the most fatal results. electrical continuity of the wire had ceased buessor Thomson reported that the feet; attention was naturally directed to the injured the insulation was still perof the stoppage, and not a moment with the intention of making a perfect splice cutting tho cable at thiat point, electrical tests applied showed perfect splice. To the consternation of all, the some fifty miles from the ahip. Not a to overboard, and in all probability dent that the cut portion must be paid second was to be lost, for it was evimean time, the tedious and difficult paperation of making a splice had to in the formed. The ship was immediately stopped and no more cable had to be perwas absolutely necessary to provent stopped, and no more cablo paid out than

As the stern of the ship was lifted by the tense excitement followed. It seemed in the waves, a scene of the most inpossible speed, and paying out the least posible, everr by using the greatest junction conld be flisished before the least possiblo amount of cable, that the workmen. The main hold presented part was taken out of the hands of the officers of the ship and of those connected with the expedition; nearly all the about the coil, watching with intense anxiety the cable, as it sto it in groups itself nearer and nearer the joint, while the cable, as it slowly unwound ning, under whose auperintend, while the workmen, directed by Mr. Canworked at the splice as only of the expedition depended upon could work who falt that the life and death purpose, as the cable was unwindine rapidity. But all their speed was to no and desperate resource, the cable wis within ashundred fathoms, and, as a last tes, the ship hung on by the end. Fopped altogether, and, for a few minfew minutes, as the strain was continually rising showe ter, it, was only for a not hold on muoh longer ; when the eplic to loose the stopper, and it passed oripice was anished, the signal was made When the excit, had passed away, we swole to the conscioving so narrowly saved the cable hopeless as ever, for the electrical continuity parations were consequently made to piy ont was stitlle entirely wanting. Prehold on for six hours in the hopes thet thas as little rope as possible, and to mand itself before cutting the cable and returning to the rendezzous to might another splice. The magnetic needles on the receiving instruments were
ing the sea into of the supposiwe been cansed - It appeared as of all when the ring the cable mischief. paid out from refully and per${ }^{3}$ which might the storm, the to go beyond 1 to bear, and th a hazardous on after eight, two from the e engineer on as time would naged portion er experience cable, would,

orted that the

 1 was still perobable source at thiat point, jon of all, the 11 probability or it was evi38, and in the uad to be persaid out thanthe most inthe greatest ble, that the rands of the sarly all the od in groups rly unwound IJ Mr. Cananufactured, e and death d was to no ad, as a last a few mina only for a nd it would was made did the cable was still as ting. Preible, and to t be, might us to make nents were
watched closely for the returning signals; when, in a few minutes, the last hope was extinguished by their suddenly indicating dead earth, which tended to show that the cable had broken from the Niagara, or that, the insulation had been completely destroyed.

In three minutes, however, cvery one was agreeably surprised by the intelligence that the stoppage had disappeared, and that the signals had again appeared at their regular intervals from the Niagara. It is needless to say what

- a load of anticty this news removed from the minds of every one; but the general confldence in the ultimate success of the operations was much shaken by the occurrence, for all felt that every minuto a similar accident might oo cur. For some time the paying-out continued as usual, but towards the morning another damaged place was discovered in the cable; there was fortinately, iowever, time to repair it in the hold without in any way interfering with the operations beyond for a time slighty reducing the speed of the ship.

During the morning of Friday the 30th, every thing went well; the ship had been kept at the speed of about five knots, the cable paid out at abont six, the average angle with the horizon at which it left the ship being abont 15 deg., while the indicated strain upon the dynamometer seldom showed more than 1,600 pounds to 1,700 pounds. Observations made at noon showed that we had made good ninety miles from the starting point since the previous day, with an expenditure, ineluding the loss in lowering the splice and during the subsequent stoppages, of 135 miles of the cable. During the latter portion of the day the barometer fell considerably, and towards the evening it blew almost a gale of wind from the eastward, dend ahead of course. As the breeze freshened, the speed of the engines was gradnally increased, but the wind more than increased in proportion, so that before the sun went down, the Agamemnon was going full steam against the wind, only making a apeed of about four knots an hour. During the evening topmasts were lowered, and spars, yairds, sails, and indeed, every thing aloft that could offer resistance to the wind, was sent down on deck; but atill the ship made but little way, chiefly in consequence of the heary sea, though the enormous quantity of fuel consumed showed us that if the wind lasted, we should be reduced to burning the masts, spars, and even the decks, to bring the ship into Valentia.

It seemed to be our particalar ill-fortune to meet with head winds whichever way the ship's head was turned. On our journey' out we had been delayed and obliged to consume an undue proportion of coal for want of an easterly wind, and now all our fuel was wanted because of one. However, during the next day the wind gradually went around to the south-west, which, though it raised a very heavy sea, allowed us to hasband our small remaining store of fuel.

At noon on Saturday, the 31st of July, observations at noon showed us to be in latitude 52 deg .23 N. and longitude 26 deg. 44 W ., having made good 120 miles of distance since noon of the previous day, with a lose of about 27 per cent. of cable. The Niagara, as far as could be judged from the amount of cable she paid out, which by a previous arrangement was signalled at every 10 miles, kept pace with us, within one or two miles the whole distance across. During the afternoon of Saturday, the wind again fresk ed up, and before nightfall it again blew nearly a gale of wind, and a tremendous sen ran before it from the south-west, which made the Agamemnon pitch to such an extent thet it was thought impossible the cable could hold on through the night; indeed, had it not beeu for the constant care and watchfulness exercised by Mr. Bright and the two energetic engineers, Mr. Canning and Mr. Clifford, who acted with him, it could not have been done at all. Men were kept at the wheels of the machine to prevent, their stopping as the stern of the shlp rose and fell with the sea, for had they done so the cable must undoubtedly
Doring Sunday the sea and wind increased, and befor evening it blew

THE OLOEAN TELEORAPH.

a bmart gale. Now, indeed, were the energy. and activity of all engaged in the operation tagked to the utmost. Mr. Hoar and Mr. Moore, the two coginestr watch and watch alternately elieving wheels of the dynamonetcr, had to keep let their attention be removed from their hours, and whilo on duty durst not their releasing the brakes every time the stern ation for one moment, for on of the sem entirely depended the game the stern of the ship fell into the trough ably they discharged their duty. Throus cable, and the result showa how had the least expectation of the Throughout the night there were few who mained awake listenlng for the cound holding on till inorning, and many regun which should announce tho failure of all most dreaded to hear-viz, tho which, in comparison with the ship from all our hopes. But still the cable, tic waves among which it was delivered, which it was paid out and the giganhold on, ohly leaving a silvery phosphor, was but a mere thread, continued to they rolled on towards the ship.

With Sunday morning ship. remained black and stormy to wind improvement in the weather; still the sky wind and rain which prevailed duringard, and the constant violent squalls of to augment the height of the waves. during the night, that our confidence in the cable had gone through so much restored.

At noon observations showed ns to be in lat. $52^{\circ} 26^{\prime} \mathrm{N}$., and lon. $23^{\circ} 16^{\prime} \mathrm{W}$., having made good 130 miles from noon of the previous day and about 360 of 2,400 fathoms, and over morean. Wo had passed by the deepest sounding. the amourt of cable still remaining in the the deep water generafly, while carry us to the Irish coast, even supposing the was more than suffcient to should oblige us to pay out the sapposing the continuance of the bad weather erto wasting. Thus far things looked very of slack cable we had been hithcess. But former experience showed us only too pling for our ultimate sucsuppose that some accident might not arise until the ends wed could never landed on the opposite shores.

During Sunday night and boisterous as ever, and it was only Monday morning the weather continued as engineer apon duty that the wheels the most indefatigable exertions of the gether as the vessel rose and fell with the be prevented from stopping altocompletely to a standstill, in spite of the sea, and once or twice they did comet ing, but fortunately they wero again set in motild be done to keep them movWas thrown up by the succeeding wave. No strain cone the stern of the ship cable, of course, and though the dynamometer a could be placed upon the pounds as the ship lifted, it was oftener below occasionally registered 1,700 nothing, the cablorunning out as fast aser below 1,000, and was frequently ship could draw it But even with all these foreight and the apeed of the it the cable never paid itself out ata all these forces acting unresistedly upon the time the ship was going at the rete of sirpeed than eight knots an hour at however, when the apeed of the ship raten of six knots and a half, Subsequently never ran out so quick. The averagen exceeded six knots and a half, the cable time, and, indeed for the whole voye speed maintained by the ship up to this cable, with occasional exception voyage, was about five knots and a half, the At noon on Monday, August 2 runing about 30 per cent. faster. $52^{\circ} 35^{\prime} \mathrm{N}$., longitude $19^{\circ}{ }^{\circ} 48^{\prime} \mathrm{W}$., hebservations showed us to be in latitude the previous day, and completed more thate good 127 miles since noon of nation. wards proved to be the Chief American three-masted schooner, which afterus. "io nutice was taken of her wha seen standing from the eastward toward a mile of the Agememnon ahe aftered her course she was within about half

11 engaged in tho e two coginests cr, had to keep duty durst not moment, for on into the trough sult shows how e were few who and many re-hear-viz, the : still tho cable, and the giganl, continued to endous seas as
; still the sky ont squalls of eep up, if not ough so much ld was much
n. $23^{\circ} 16^{\prime} W_{\text {, }}$ Id about 360 pest sounding nerafly, while sufficieat to bad weather ad been hithultimate succould never been fairly

3ontinued as

 tions of the opping altoey did como p them movof the ship d upon the stered 1,700 frequently peed of the stedly upon an hour at bsequently If, the cable up to this a half, thein latitude noon of aate desti-
hich afterrd toward bout half wn across

 gun for luer to heabo to eflals. she did not appear to take much notice of, was quickly fillesed
 and as the only remon: laf: wint a collision the course of the Agamemon

 them, for all her crime …otwhem umal hain deek and rigging. At length they evidently diacovarter siln: seb Wede mat a bat wo were doing, for the cruw

 be cansed hy a ship in onr way or a misis ewerbourd.

Throughout the reator yortion of Moxday morning the electrion signales from the Niagura had faing getting gradually wowker, until they reasel alto. gether for nearly thene guerters of an hour. Onf unenamens, howeyer, was
 of continuity, and not any duflert in insulaturn, zull the was ronsequently
 the Niagara. Aocortingly Profusor Thomson sayti n muthto tw dhe pffeet that

 nt the homenke denth improved conkiderably the insulating proyw rime of ata

The watione diseta, drazelay night moderated a littlo, but atill thore anso

 of ber in Unt thatanta.

Tuesday was a much finer day than any we had experienced for nearly a week, but still there was a considerable sea running, and our dangers were far from passed; yet the hopes of onr ultimate success ran high. We had accomplished nearly the whole of the decp sea portion of the ronte in safety, and that, too, under the most unfavorable circumstances possible ; therefore there was every reason to believe that unlens some unforeseen nccident should occur, we should accomplish the remainder.

Observations at noon placed us In lat. $5^{\circ} 26^{\prime} \mathrm{N}$. , lon. $16^{\circ} 7^{\prime \prime} 40^{\prime \prime}$ W., having run 134 miles simce the previous day.

About five o'elock in the erening the steep submarine mountain whleh. divides the telegraphic plateau from the Irish coast was reached, and the effect of the sudden shallowing of the water hal a very marted effect upon the cable causing the strain on and the speed of it to lessen every minute. A great deal of slack was paid out to allow for any great inequalities which might exist, of 250 fondiscovered by the sounding line. About ten o'clock the shoal water from the lower main ched ; the only remaining anxiety now, was the changing and dangerous operation was successfully nerformed between thres, and fiffeult o'elock on Wednesfay morning.

Wednesday wna a beantifulf calm day; indeed, it wee the first on which any one wonld have thought of making a splice since the day we started from the rendezvoss. We therefore congratritated ourcelves on having saved a woek by creterenring operations of the Thurwlay previous. At goon we were in lat. $62^{\circ} 11^{\prime}$, lon. $12^{\circ} 42^{\prime}$ W., 8 miles distant from the telegraph statos at Valentia. Tho water was shallow, so that there was no difficulty in paying sut the wire almost without any loss of slack, and all looked upon the "uderisking as virtually accomplished.

At alootit one o'clock in the evening the socond change from the upper deok coil to that upos the orlop deck was safoly effected, and shortly nfter the vessels exchanged signals that they were in iwo hundred fathoms water. As tlie night adranced the speed of the ship was reducod, as it was known that wo were only a short distance from the land, and there would be no advantage in making it before daylight in the morning. About twelve o'clock, howevor, the Skelligs Light was seen in the distance, and the Valorotss steanied on ahend to lead us in to the coast, fring rockets at intervals to direct us, which were answered by us from the Agamemnon, though, according to Mr. Moriarty, the master's wish, the ship, disregarding the Valorous, kept her own course, which proved to be the right one in the end.

By daylight on the morning of Thuraday, the bold, and rocky mountains which entirely surround the wild and picturesque neighborhood of Valentia, rose right before us at a few miles' distance. Never, probably, was the kight of land more welcome, as it brought to a successful terminatiou one of the greatest, but, nt the same time, most diffleult schemes which was ever undertaken. Had it been the dullest and most melanclioly swamp on the face of the earth that lay before us, we should have found it a pleasant prospect; but, as the sun rose from the estuary of Dingle Bay, tinging with a deap sof parilluminating the manses of steep monntains which surround ite shores, and scene which might vie in beauty with any thing that could be producel by the most florid imagination of an artist.

No one on shore was apparently conscious of our approwch, oo the Valorvus steamed ahead to the mouth of the harbor and fired a gun. Buth ships made straight for Doulus Bay, and about dix o'clock came to anchor at the side of Beginish Island, opposite to Valentia. As soon as the inhabitants became aware of our approach there was a general desertion of the place, and lumndreds of boats crowded around us, their passengers in the greatest state of excitement to hear all about our voyage. The Knight of Eerry was absent
od for nearly a - dangers were high. We had oute in safety, ible ; therefore accident should
$6^{\circ} 7^{\prime} 40^{\prime \prime} \mathrm{W}$. ountain which 1, and the effect upon the cable A great deal h might exist, he shoal water s the changing most difffcult hreesand four
trst on which u started from aving saved a At noon we telegraph stao diflculty in oked upon the
m the upper ortly nfter the ts water. As known that no advantage ock, however, steamied on ect na, which Mr. Moriarty, own courso,
cy mountains of Valentia, Was the sight) one of the ever underthe face of ospect; but, aspsoft purhores, and m, It was a prodiwerl by the Valoruse 1 ships made the side of ints became x_{1}, and hunNet state of was absent

TIIE END.

$$
=+ \text { rin }
$$

TTOM noune
，

[^0]: * Maury'a Phy!ical Geography of the Sea, p. 256.

[^1]: - Not less than 3,000 messages are tranmmitted in and out of London, and a harger number in and ous of New Iorlc, daily.

[^2]: * The carrespondeat of the London Times in incorrect it this ntatement. The Niagara lost her jibboom, but not her apare spars.-Authos.

