IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences
Corporation

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

回

Canadian Institute for Historical Microreproductions / Institut canadien de microreproductions historiques

The Institute has attempted to obtain the best original copy avnilable for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, ere checked below.

Coloured covers/
Couverture de couleurCovers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculée

Cover title missing/
Le titre de couverture manqueColoured maps/
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleurBound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distortion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

\square
Additional comments:/
Commentaires supplémentaires:

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here has been reproduced thanks to the ganarosity of:

Univarsity of British Columbia Library

The images appearing here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

Orlginal copies in printed paper covers are filmed beginning with the front covar and ending on the last page with a printed or illustrated impression, or the back cover when appropriate. All other origlnal coples are filmad beginning on the first page with e printed or illustrated impression, and ending on the last page with a printed or illustrated impression.

The last recordad frame on each microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the eymbol ∇ (meaning "END"), whlchever applies.

Maps, plates, charts, etc., may be filmed at differant reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the uppar laft hand corner, laft to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'axomplaire filmd fut reproduit grafce at la générosité de:

University of British Columbia Library

Les images suivantes ont 6 t't reproduites avec le plus grand soin, compte tenu de la condition et de la netteté de l'exemplaire filmb, et en conformite avec les conditions du contrat de filmage.

Les exemplaires originaux dont le couverture en papier est imprimbe sont filmbs en commençant par le premier plat et en terminant soit par la derniare page qui comporte une empraint) d'impression ou d'illustration, soit par le second plet, selon le cas. Tous les autres exemplaires originaux sont filmes en commençant par la pramiere page qui comporte une empreinte d'impression ou d'illustration et en terminant par la dernidre page qui comporte une telie empreinte.

Un des symboles suivants apparaîtra sur la derniére image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole ∇ signifie "FIN".

Les cartes, planches, tebleaux, etc., peuvent être filmés à des taux de réduction diffórents. Lorique le document est trop grand pour être reproduit on un seul cliché, il est filme al partir de l'angle supérieur gauche, de gauche à droite. ot de haut en bas, en prenant le nombre d'images nd́cessaire. Les diagrammes suivants illustrent la méthode.

REPORT

RECONNAISSANCE OF THE YUKON RIVER,

ALASKA TERRITORN.

```
BY CAPINAIN CHAARIES WV. RAYMOND,
corpS of enginerrs, u. s. armit.
```

WASHINGTON:
overniment printing offide. 1871.
1

LETTER

()F

THE SECRETARY OF WAR.
 TRANSMOTRE:

Report of enginecr reconmuissanee of the Yukon Rirer, Alaske Trritory. with appendix and met.

Aphac 17. 1871.-Rederred to the Committere on Military Atiairs and ertered to he printed.

War Departanent, Amil $15,1871$.
The Secretary of War las the honor to submit to the United States Senate the accompanying report of an ongineer recomnaissance of the Yukon Tiver, Alaska Territory, made under the orders of the commanding general Military Division of the Pacifte, which, with the accompanying appendix and map, it is believed will be of interest to the public generally.

WM. W, BELKNAT,
Secretary of War.
\square

LETTER OF TRANSMITTAL.

Office board of Exginemis for Fonthications, New Lork, April 1, 18 B 1.

General: I have the honor to tramsmit, throngh the Engineer Binrean, to the eommanding general of the Military Division of the Pacific, the accompanying report of a recomaissance on the Vnkon River, Alaska, made inning the smmer of the year 1869, together with a maj, illustrative of the same.

The reduction of the fiedd-motes and the constrmetion of the map have insolved considerable labor, most of whieh has been undertaken by myself'; and as this work has been the oecenation of my leisure from other daties, the delay in its completion until the present time has been mavoidable.

Mr. Johm I. Major, my ansistant in the lield, rendered valuable and zealons aid thronghont the experlition. IIis serviees are. indicated in the report and reoords.

Acknowledgment is also due to Protessor George Davidson. United States C'oast Survey, for kind assistance and advice in the preparation of the expedition; to Brevet Lientenant Colonel Willianson, Corps of Engineers, Commodore Emmons, United States Navy, and Protessors Hilgard and Schott, of the United States Coast Survey, for useful suggestions, and for data necessany in the reduction of fied-notes; and to Messrs. William II. Dall, Frederick Whymper, and Willian II. Eunis, for maps and gencral intormation.

I an muder obligations to Captain Riedell, superintendent of the trad-ing-station at Redonbt St. Michael's, for a series of meteorological observations at that station ; to Mr. Ferdinand Westdahl for skillful aid on several occasions in the repair of instruments, and in the observatory ; and to Mr. John Clark for his generons cö̈peration during our return journey to the coast, mention of which will be found in the leport.

To the tralers of Northern Mlaska, and especially to those who were my companions during our journey up the Tukon, I am indebted for ready and effective assistance on many occasions.

I would also express my sense of the conrteons hospitality of Mr. John Wilson, of the Hudson Bay Company, in charge at Fort Yukon at the time of my arrival at that post.

The reduction of the astronomical field-notes has been essentially facilitated by the able and diligent assistance of Messus. A. Faber du Faur and Willian C. Gmmell, to whom, as also to Mr. E. v. Diezelski for his intelligent coiperation in the construction of the accompanying map, my thanks are due.

In transmitting this report I camot but regret that the information which it contans is in so many respects incomplete. I may, however, call attention to the fact that it is the result of a mpid recomaissance, executed under peculiar disadvantages, and scarcely to be diguified by the title of an explonation. The eireumstances of the expedition are
described in detail in the report, and it is helieven that they will sufficiently account for many inaceuracies and omissions.

Very respecthlly your obedient sprvant.
(IIAS. W. RAYMOND, Captain o! Engincers.
The Chme of Evginelers.
United States Arm!, Wreshingtom, I) C.

(HRHER= ANH iNRTRUTHON:

 sien Francisco. Califiornite. dmill 2. 1s69.
Captain C. W. Ramomb, Conpof Engineers, will proceed by the first opportmity, via Sitka aml Kodiak. to Fort Jukoh, Alaska, and will chry out instructions given fom this oftice. Upon completion of these detios he will retmen to, and report for daty att. these healquaters.

By order of Major (ipheral hableck:
dAMES B. FRI, Ansistent A! jutent Gecacral.
Ohtrial:

> II. R. suldDBLRG,

Nou Franciven, Celiformia, April $\because, 1869$.
 from this office, Major General Lalleck directs me to say that the man object of your visit to Maska is. the detemmation of the latitude and longitude of Fort Yukon. He directs, also, that. so fir as practicable, you ascertain and report upon the amount of trade carried on ly the IIndson Bay Company within our territory. reporting more particularly upon the quantity of goods brought by them from British territory. He further desires all information that von can obtain in reference to the resourees of the Yukon and its tributaries, and with regard to thes number and disposition of the mative tribes on or in its ricinity.

The general directs you to make a report upon the number and con dition of the public buildings at Michaclorski.

Vory respectull,-your obedient sercant,
ROBER'I N. SCOTT,
Breret Lieutenant Colonel ami A. A. A. (i.
Captain U. W. Ramond,
United States Corps of Engiuecrs, present.

INTRODUCTION.

When the transter of the territory of Alaska to the United States was consummated, few Americans were aware that we had aequired a river which, rising fin in the interior and draining a vast area, flows two thousand miles in its course to the sea. The Yukon is the largest and longest stream emptying on the western coast of the Ameriean continent. and it may we begarded as on of the areat rivers of the world.

This mighty stream, the region which it waters. and the tribes which inhabit its bunks, will be the sulpects of subsequent chapters. In these introductory pages I propose to give, as brietly as may be, a history of the explorations which have been mate in this portion of the new Territory : to indicate the soures of information which exist concerning it ; to explain the character and seope of the duty with which I have been honored: and, finally, to deseribe the system which has been followed in the preparation of this report.

The const of Rassian America and the islands of the Sieutian Arehipelago have been well examined by hoth lissian and English navi. gators. The interior of Alaska is, however, comparatively monown. In the rear 1842 Lieutenant Zagoskin, of the Russian nary, visited, under the direction of the Russian government, the region of the Kivehpak (Yukon) liver and made extensive explorations, remaning in the comotry about two years. 1Ie afterwards published a book (which I believe has been translated into German) containing the results of his observations. This book I have not been able to obtain, and consequently the little I have gathered concerning Lientenant Zagoskin's explorations has been derived entirely from secondiry somees. Ife traveled from the month of the river to a point a littlo above Nulato, the most eastern post of the Russian company, a distance from the sea of about six hundred miles. His book was almost the only authority eoncening the river, until, in the year 185a, the Western Union Telegraph Company commenced explorations for an overland telegraph route, in order, by a cable crossing Behring Strait, to connect the eastern and western hemispheres. This enterprising company emploved several linndred explorers on both sides of the Pacifie; and their explorations in the northern section of Russian Ameriea have added greatly to our knowledge of this part of the continent.

It is said that the honor of having made the first jommey from the western coast to Fort Yukon belongs to Iran Simonsen Lukeen, an employé of the Russian company at St. Michael's, who succeeded in reaching the fort in the summer of 1863; but the information thus obtained was not made public. This journey was next made, in the summer of 1866, by Messis. Ketchum and Labarge, of the telegraph company. Up to this time the Yukon River of the English and the Kvichpak Ricer of the Russians had been supposed to be distinct streams; and they are represented on quite recent maps, the former emptying into the Aretic Ocean and the latter into Norton Sound. From this exploration we first learn that they are one and the same stream.

In the winter of 1866-'67, these adventurons travelers again made their

Way, this time wat gee, to Fort Yokon, and in the following summer pushed on to Font solkirk, more than fom homdred miles farther up the river, and the highest point ret reached by explorers from the coast. These gentlemen lave phblished no accomit of their adventures. I have, however, hand the plensure of traveling a considerable distance on the Vakon River with Mr. Michael Labarge. Since the year 1 Stit he has been almos aynstantly umon the river, and is well infomed con"erning its topowaphy and the mamers and costoms of the native tribes which inhalit its beanks. I am indebted to him for a large amount of valuable informations. Whieh I conld not otherwise have obtancd.

The nest expmition the the river to Fort Cukon was mate by Messrs. William H. Wall and Frederick Whymper, the former director of the
 of the compana and an artiast. In the athom of 1 sifig these gentlemen (rosisel the poraze from Chalachlect to Nubato, where ther wintered. and started eady in the spring of $18 \mathrm{sin}^{\circ}$ for Fort Yukon. Making their

 ing ahost examantly, blay amd night, for twentr-nine dars. They remaned at Font Iakon tor abont two weeks, and then, mankarking in their light loate- $t a r t e r l$ hown the river. Traveling night and day. and
 jommer of fiftate "hays and a half, which Mr. Whymper terms a mere holiday exemejom. To this exploration we are indrbted for a larse amonnt of rejablue intomation concerning the Yukn. In 1sty Mr.
 give : plesabat weonnt. acompanied with excellent illustrations of this amd uther wexphations. and couvegs a clane and trithful idea of the regions which is opereribes. After this jommer, Mr. Dall remained for more than a seate wet the lowe part of the river. Me was able to collect fiont the Jinamans and English a vast amome of information. and he seems to hase ambined with these alvantages great energy and a sucial fitues for the work. In 1570 he published a large vame, rutitled "Aladian and its Lesources," which is tilled with information eonceming the Territory, gathered not only from his wwn expriences, hat from evers onther arailable souree, and which will, I an contident, fong remain our bent anthority on many points of interest regaring Alaska.
 has been hatwainor many rears to the traders of the Hudson Bar Compalus. Ahore the bater point the river was partially explored in 1867 by Michat Branes an employe of the telegraph company. The remaining portion is ondre known from the reports of Indians.

In the sping oft 1869 it was thought desirable that an othicer should be sent to Nontheastern Alaska for the purpose of ascertaining the geograhical jwoition of Fort Yukon. Having oftered my services in the performance of this eluty, I was ordered to report to Major General H. W. Hallech, thememmanding the Military Division of the Pacifie, and I received from lum the order and instructions which are pretixed to this report.

In this plawe it seems proper that I should brietly state the cirenmstances which leal to the experlition.

Fort Inkobs sitater at the most northerly point of the Yukon River, had bean for the past twenty rears the extreme western trading-station of the IIudan Way Company. It was smposed to be west of the boumlay letyewill Rassian and British America, (althongh its position
had mever been definitely aseertaned, and its establishment was therefore contrary to the terms of a treaty existing between the Rinssian and English govermments. The traders of the Rassian company had, however, with one exeeption, never ascended the river beyond a point several homdred miles below the post, and seem to have had mo disposition to objere to this invasion of rights which the did mot desire to enjog. Nevertheless, this post was the oceasion of great loss to the Rassian company; for upon the opening of the Yakon in the spring, the enterprising and energetie seotehmen of the station wore acenstomed to desemol the river for some three humbed mikes to a station ralled Suchuyette, where they met the assembled ladian tribes, and purchased their stores of winter skins, before the tardy Rassians, dedayed

 the transter of the teritory tor the Gited states, inangurated a new order of things. Immediately several Americat "ompanims lowated small establishmots mon the river and near the coast, and one com-
 in reaching a point nem Nuchucavel and wintared opposite the month of the erveat Tamam.

In the tollowing sumis, when the tralders of the Indson Bay Company
 "Indian eomatry" of the luited siates was it verly contersted, and they were informed ly the Amaricans that any fatme attempt to purchase skims within our taritory wond be resisted, if wecessary, hy fore

In the suring of Ista, a mew renture vas projected by apitalists in San Fanciseo. It was propesed to transort a small steamor upon the dech of a sailing-vessed to some point near the mouth of the river, and lamehing it, to ascem, it possible, as lan as Fort linkon, tambing along the banks. In eommetion with this entompine it was regarded an extremely desimble that the question of English right to trade in this portion of om temitory should be defintely settled; amd as the region in the vicinity of Fort Vukon was supposed to be pecaliarly rich in furs, it was also desired that the position of this posit shoold be officially determined, amd, if it was fomd to be within the Trimitory of the United States, that measmes shombla be taken to came its abmionment lye English company.

The chaties with which l was chargod by Genemal Latleck's letrer of instructions are as follows:

1. 'To determine the latitule and longitude of Fort Yukon.
2. No aseertain and report upon the amome of trade carried on by the IIudson Bay Company withan our temitory, reportag more particulary upon the quantity of quods brought by them from British teritory.
3. To obtain as much intormation as practicable concerning the resomees of the lakon and its tributaries, and with regard to the monber and disposition of the mative tribes in its vicinity:
4. To report upon the mumer and comlition of the public buildings at Michaelorski, (Redoubt St. Michael's.)

The obstacles encountered in making the required astronomical observations, and the means by which they were fortnately overcome, will be reterred to in the proper place.

The collection of general information was a matter of considerable difficulty. The Russians had refired from this part of the Territory, and the experience of the American thans was for the most part extremely limited. The chief tander was also unfortunately absent from

Fort Yukon, his place being filled by an ofticer but lately arrived, and consequently unable to give much information.
The measure of success which has attended my efforts to carry ont my instructions will be shown by the following chapters.

In the arrangement of this report the following system has been adopted:
The report is divided into two parts and is accompanied by four appendixes.

Part I is the "General Report." It is divided into five chapters, as follows:

Chapter I. Narrative of the expedition.
Chapter II. Description of the river and adjacent comitry.
Chapter III. The native tribes.
Chapter IV. Trade of Hudson Bay Company-Buildings.
Chapter Y. Resources of the country.
Part Il contains a deseription of the varions observations made in the field, the methods employed in their reduction, and the results obtained. It is clivided into fom chapters, as follows:

Chapter I. Astronomical determinations.
Chapter II. Magnetic observations.
Chapter III. Meteorological observations-Altitude of Fort Yukon.
Chapter IV. The map.
The appendixes are distinguished by the letters $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D .
Appendix A contains a large portion of the astronomical record, and such of the computations, in a condensed form, as have been thonght necessary to indicate clealy the methods followed.

Appendix is contains the entire record and reduction of magnetic observations.

Appendix C contans the meteorological record and the computation of the altitude of Fort Yinkon.

Appendix D contains a table of distances on the Cukon liver.
A map, of the Fukon River, from Fort Fukon to the sea, aceompanies this report.

PARTI.

GENERAL. REPORT.

GENERAL REPORT.

CHAP'ERI.

NARRATIVE OE THE EAPEDITION.

On the 6th day of April, 1869, accompanied by Mr. John J. Major, my assistant, I sailed from the harbor of San Franciseo, on the brig Commodore, bound for the port of Sitka. This vessel was to transport the employes and supplies of a new trading company to St. Michael's Island, in Norton Sound, and she carried upon her deek a small steruwheel steamer, albout fifty feet in length, entitled the Yukon, whieh was to attempt the ascent of the great Kvichpak or Yinkon River.

We arrived at Sitka on the "th day of April, atter an umeventful voyage of eighteen days. We remained here two weeks, and during this time, although the weather was generally unfavorable. we suceeded in obtaining a few observations to determine the errors of the chronometers.

At this point private Michael Foley, Ninth United States lufantry, joined my party, being ordered to report to me for duty by Brevet Major General Davis commanding the department. He accompanied me during the remainder of the expedition.

On the 9th day of May we sailed from the harbor of Sitkat. and atter a stormy voyage of twelve days we arrived at Omalaska Harhor, in the Alentian Islands. The circmastances of the expedition detained us here for abont two weeks, and during this time the chron moter arror was determined on several occasions.

We sailed from the harbor of Omalaska on the Sth day of Jume, expecting to arrive at St. Michacl's Island in abont a week. The weather was, however, generally unfavorable, and on the 13th we encountered extensive fields of ice, which had been detached and driven oft from the northern coast. To eseape this danger we were compelled to turn back sereal times and fimally to make considerable castimg in order to pass between the ice-fields and the coast. Much delayed by these obstacles, and also by a severe northwestem gale which hasted for several days, we arrived finally at St. Michacl's Islimat, on the e9th day ot Jume, atter a voyage of twenty-four days.

I shall describe this island in another chapter. It is sufficient to say here that, although the anchorage is entirely open, the island covers it firom most of the prevailing winds, and it is the nearest position to the months of the Yukon at which a vessel can lie with satety.

We remaned at St. Michael's Island four days, making the neressan'y preparations for our journer up the river. On the 1st of Juty the littlo steamer Yukon was sucessfinll hanched, and a short trial-trip gave exeellent results. Sextant onservations for the determination of time were made at this station. I left here a set of meteorological instruments, with which Captain Riedell, the chief trader of the station, kimdly volunteered to observe.

Having obtained two large open boats, which we loaded with supplies and trading goods, and having constructed a small rough pilot-house upon the steamer's deck, we were prepared for departure. Early on the
morning of the 4th of July, taking our boats in tow, with flags flying and guns firing, we started on our voyage to the upper mouth of the great river. Onr party was composed as follows: Captain Benjamin Hall, master; John R. Forbes, engineer; Frederick M. Smith, superintendent; Ferdinand Westdahl, chief trader; Michael Labarge, chief trader; John Godfrey, trader; Robert Bird, trader; Lewis B. Parrort. passenger: Captain Charles W. Raymond, John J. Major, Michael Foles, and two laborers. Our course lay through the narrow channel which separates the island from the main-land and along the coast for about seventy miles. We accomplished this portion of our journey without mnch difficulty, although our little vessel was hardly fitted for this sort of navigation, and early on the morning of July is we entered the upper month of the Yukon River.

A native, well acquainted with the lower portion of the river, had been eugaged at St. Michalls, and under his guidance we groped our way among the islands and shoals, oceasionally gromeding or turning back to seek a more favorable chammel. As there was a bright twilight luring the short time that the sun was below the horizon we traveled night and day; only stopping oceasionally to obtain wood or topurehase a tew skins or a lit te game at some mative vilhage. Our appromb was nsually the occasion of considerable excitement. Is we drew near a village. we were arenstomed to herah our coming by a vigorous somming of the whistle, and this was nsually followed by a general stampede of melı, woment chidren, and dogs. One little stemmer, which, puifing ahout the hay of Sin Franciseo, had semed a mere tos, appeared to them a huge monster, breathing fire and smoke. Cariosity would, however. bring the more daning ones to the rivers bank, and, having won thoil conitilenace bew fowlicious presents, we would soon tind our bat sumomaded by a seore or two of noisy and expited hatives. These people and the matives of the eomatry gememalle, will form the whe fert on a subsequent chapiter.

Thenghont the trip I alternated with Mr. Major in taking notes and bearing* fiom which to eonstruet amap of the biver, and we employed - very aportunty to make observations on shome. We fomed this dhaty somewhat sesure, as it had to be contimed thromgont both day and night: and one ancommodations were so limited that it was often impossible to obtain a place in which to slerp when not at work. Wir per-
 this repurt is the resul.

The swams of mosquitors and gnats which abomal on the river during time monthis ot Jome and Inly proved a bery serions amorance. When the boat was not in motion we were obliged to wan face nots and whons: amb on onm oceasion an attempt to makn sextant observations faile completely trom this camse. The mospuitoe are much larger but 1 think not so active as those met with in lower latitmes. The ganats or
 firom them.
Two or rhee times a day the steamer stopped to obtain wool. 'This was usually ent from dritt-timber, which is piled in large heaps at short intervals along the river, where it collects in the spring. Oecasionally in the latter part of the jonney we were obliged to ent standing timber.

On the 12 th of July we arived at Anvic, a small mative village sitnated at the month of the Auvic River. Here we stopped two days, and established a trading-station, leaviug Bird temporarily in charge ot it. At this place we obtained a variety of observations.

We left Anvie on the 14 th. Abont twenty miles above, the river nor-
rows and the current runs with great velocity. Doubts had been expressed as to the possibility of our passing this point. By skillful management, however, this obstacle was overcome without serious difticulty. At the request of the entire party, I have given this place the name of "Hall's Rapids," in honor of Captain Benjamin Hall, who thus first passed this point with a steamer. This is the only name which has been left by my expedition in the territory.

We arrived at Nulato on the 19th. This was once the easternmost station of the Russian company; but at the time of our visit it had been abandoned. We stopped here two days. A trading-station was established, and a few observations were obtained.

Leaving Nulato on the 19th, we arrived at Fort Atams on the $29 d$. This station is near the month of the Tanana River, the most important tributary of the Yukon, and was at this time the eastermmost station ever established on the river from the western coast. Shortly before our arrival at this place we met two traders, Robert and Moses, Canadian Frenchmen and friends of Labarge, who were slowly making their way down the river in a rudely constructed boat. They were immediately engaged hy the superintendent of the company; and Labarge started on a emoe jommey down the river for a temporary visit to St. Michael's.

Our party remained at Fort Adams two days, lamding supplies and making necessary repars; and here a variety of observations were ob tainerl.

We left Fort Alams on the - thth. Abont sevantect miles above the station, we passed Nucheavette and the month of the Tanamí liver, the waters of which increase the entrent of the Yakon for a consifierable distane. From this point the river gradually marows, and its banks increase in height: and we learmed, from these indications, that we were gradnally appoaching the Rampart Momatans, and the mpids, of whose dangers we had heard so much from the matives below. Ahout noon on the e.the warived at the entrance of these rapids, and, ater taking on a good supply of wool, we passed through them withont expat difticulty. althongh the clamed is marow and the cmrent rmse with great 1apility.

After passing this point, we met with mo farther obstacles, althong the shallowness of the uper pretion of the river, and the sureat velocity of the current in many phers, rembered on woging extremely show.

On the 31st of July, at +p . im., we arived at Fort Vikon. Thas shecesstinly teminating the first journey by stam ever mate on the Yukon liser. The time of actual travel, including stoppages for worl, was twentr-thee days, and the distane passed over about one thonsamd and forty statute miles.

At Fort Vokon, notwinstanding the somewhat unpleasant chanacter of our ermand, we were eordially weleomed hy Mr. John Wilson, the agent of the Hudson Bay Company at the station, and by the liev. Mr. Bumpus, a missionary of the Chured of England, lately arrised from Fort Simpson, on the Mackenzie River. Mr. Major and I werespeedily established in one of the comfortable log buihlings which compose the fort, while the remander of the party were domiciled in the steamer or encamped on the shore near by.

As the river was mpidly falling, it was necessary that the steamer should start on her seaward journey as soon as possible, and I was, of course, anxions to make an approximate determination of our geographical position withont delay, in order that my companions might make their arrangements acombingly, and cary back the intormation to the
coast. A wew of mufarable weather entirely prevented us from obs. taining suitable observations; but on the 7th of Angust we obtained a good obecration of the solar eclipse, from which we were able to compute an apmpoximate longitude, sufficiently accurate to set at rest the question at issue, and intorm our traders that they were in Ameriean territory.

It seems promper to say, in this comection, that by General Halleck's permission I had consented temporarily to represent the Treasmry Department, and unter the instuctions of that Department, on the !th of Angust, at 12 m.. I notitied the representative of the Hudson Bay Company that the station is in the territory of the United States; that the introduction of trading goods, or any trade hy foreigners with the natives, is illegal. and must cease; and that the IIudson Bay Company must yacate the buildings as soon as practicable. I then took possession of the lonidhags and raised the flag of the United States over the fort.

Earls on the morning of August 10 the steamer started on her return trip down the river, leaving Mr. Westahat and Moses in charge of the trading-stamion which had leen established at the fort. 1 also remained, with Mr. Major and Private Foler, in order to obtain observations for more acourate determinations. The nights were so light as to greatly embarrass astronomical observations, and I desired, therefore, to renain as long as ponssible.

In the latter part of Angust the river commenced falling rapidly. This, we prosumed, wasoccasioned by the freezing of the tributaries near their sommes, and it was regarded as an indication that the season was near its emose. We reluctantly decided that it would be unsafe to delay our deparimer longer, and made our armgements to leave the fort early on the enth.
l was anximos to employ the bark canoes of the country for our journer, as they are considered by far the best boats for this sort of travel, and this opionion is contirmed by my subsequent experience; but none cond ine abtanned. The ingennity of Moses bad, howerer, devised and. with mar assistance, constructed a small skiff of well-seasoned timber sama from spuce drift-logs. She was calked with rags, and finally coaten thickly with pitch. Moses called her the "Eclipse."

On the vening of the efth she was completed, and we placed her in the water. fastening her with astrip of moose-hide. On the next day we intended to dismantle our observatory, and toward evening begin our jonmer. But in the morning we diseovered that the hangiv dogs of the station had eaten the moose-skin tastening, and our boat had started off ann an independent voyage to the coast. A pursinit was immediatedy instituted, and toward evening the party returned, bringing with them the Eelipse, in a somewhat dilapidated condition. In excuse
 during the summer.

This little areilent was the occasion of some delay; but on the 28th of Angnst. at 4 p. m., we timally left the fort. The party consisted of Mr. Major. Irivate Foley, and myself, and two natives, who had been brought up from Nulato, and were to accompany us as far as that place. We were obliged to leave our observatory tents and some of our instruments, to be sent down at the first convenient opportmaity. We took with us, lownever, a small A tent, which had been used as a magnetie obserwators. For provisions we had a ham, a small piece of bacon, and a little handiack, and about twenty-five pounds of "moose pemmican," a very smamable present from Mr. Wilson. This pemmican is an article of coasiderable importance ameng the traders of the Hudson Bay

Company, and well deserves a description. Moose (or any other) meat is carefully and thoronghly dried in the sum, and then pounded to a powder. The sinews having been picked ont, it is placed in a tight bucksin bag, and boiling fat is ponred on it. Marrow is preferrea. The bag is then fastened and pressed with a heary weight. In cooking it, a small portion is placed with a little water in a trying-pan over a bright tire, and a little salt is added when it ean be obtained. By abosorbing water it increases to at least thice its former bulk, and a handful will make a hearty meal for one man. When jroperly prepared, it has an agreeable taste. We tomn it atmirahly adapted to persons working hard and reguining strong food. In addition to the provisions mentioned we had an suphy of tea, the minasal drink of travelers of every deseription in this cometry.

On jommer down the river was too monotonons to require much deseription. Whe felt the necessity of traveling with rapidity, and muless the weather was mitaomble we were at the oars from smmise motil it becume too dank to proced with safety. We then landed and went into camp for the night. When the wind was faroable a small sail Which Mh'. Westabal hat rigerd for ns powed of material assistance. We were occasionally compelled to hand to repair our boat, which it was amost imposible to keep reasombly tight, and we were mold dehyed ly this canse. Lassing thromen the hamparts wo sall a good many moose. Vatly on the moming of September :3, we entered the mapids. They were covered with a dense white fogg, hat this lifted before we came to the most dangerons part, and we were dabled to pase in safety. Abont \bar{i} p. 16 . on the same day we anived at Fort Alams.

Wre fomd Robert alone in chare of the station. Ite informed us that the stemme had come down from Fort lukon to this point in one deig. Being, of consse, ohliged to rm ahead of the emrent, she had leseented with grat rapidity. From this point the jommer up the diver had comsmad seven dasio. We remained here matil the erening of the next day, as om boat was sadly in meed of repairs.

Having ohtamed a sapply of provisions, we agan started, and, after traveling four days and a half, armed at Nulato alont noon on the Sth. Lere we expected to dimd Ameriean traders, and also to obtain a good boat; lint ho hoat ronld be procured, and the traders had gome to St . Michacls, leawing the station in charge of a native. Our Indians could not he persiaded to accompay us farther, nor conld others be obtained, amb, after a delay of an hour or two, we started again, somewhat disconsolately, in our hattered and leaky boat, with our foree serionsly weakened, and the most laborions part of onr jomer still before as.

On the 12th, at abont 4 p. m., a subden turn brought us to IFall's Rapids. A strong brecze blowing against the current made this portion of the river very rough. Snddenly, and almost withont notice, our boat was swept into the mpids, and it was only by great exertions that we were able to reach the shore in safety. This last trial was almost too mach for the Eclipse. She was now very nearly a wreck. Nevertheless, not being in a condition to choose, we reembarked early the next morning, one man bailing and the two others at the oars, and, swiftly passing the rapids, worked our way slowly down the river. At 4 p. m. we pulled the Eclipse, now thoroughly useless, upon the shore near Anvic, where I presume she still remains, unless the process of disintegration has at length been completed.

At Anvic we found Mr. John Clark in charge of the station, and also our old frients, John Godfrey and Robert Bird, the trappers. We en-
S. Ex. 12-2
deavored to obtain here one of the large mative seal-skin boats. called "baidarras," and some lndians; but the season was so fate alvanced that the natives were afiad to attempt the jommer down the river and along the coast, a state of affins which gitve us not a little amaiety. On guestioning the old edidf of the village, howerer, I asecrtaned that the Indians are arenstoned oceasionally, in the smmmer, to aseemd the Auvic River, (which, at some distance thom the Cukon, makes a great bend toward the coast.) to a point near its head-waters, and cross by a tolemble portage to the mative village of lkikiktoik, sitnated on Norton Sound, abont eighteen miles north of St. Michatl's Island. But it was feared that an ascent of the river would prove impracticable so late in the season; and Mr. Clank, bring a new-comer to this part of the comtry, was mable to adrise me, although he promptly volmoteered to accompany me it I should decide to make the attempt. This being apparently the only avemue of escane, I did not hesitate long. Mr. Clark went energetically to work, mul in a few hours had procured six birchbark canoes dud a sufficient number of Indians.

At 4 p. m. on the 14 th we left Anvic. Our jommey up the river mas extremely slow. We were obliged to pole the canoes all the way, on accoment of the shallowness of the water and the great rapidity of the current. We were somewhat delayed by frequent injuries to our boats; but the birch-bark canoe is easily and guickly repaired. Our Indians, not fancying hard work, were often quite anxions to leave our service, in most cases taking an informal departmre luming the night; but we managed to keep our force pretty well recuited by a system of mild conseription on the native villages along the river.

On the evening of the 14 th we made an mpleasant discovery. The larger portion of our provisions, which we supposed safely packed in one of the emoes, had been left behind. An Indian was immediately sent back to Amvir, with a note from Mr. Clark, direeting Bird to send us supplies for five days. Onr messenger overtook us on the evening of the next day. Ife bronght a note fiom Bird, saying that he could not make ont Mr. Clark's "hamdwite," lont he presmed we wanted vomething to eat. The provisions accompaning this epistle consisted of about sufticient hard-tack for a single meal, which we proceeded to eat upon the spot, making up our minds to live upon the comiry thereafter. Fortmately wo had plenter of tea.

On the erening of the 1 Sth we ariven at a large village. We were received with great kinduess hy the chicf. and comfortably installed in the best house, which he vacated for onr accommodation. He informed us that, on accome of the shallowness of the river, it would be impossible for us to reach the entrance of the portage by water. We were determined, howerer, to go on as far as possible. We made a hearts meal on fish, seasoned with gumbowider. and spent a rery comfortable night at the village.

On the next morning, having cxelanged our canoes for a large skin "baidarra," drawing somewhat less water, we resumed our junmey. The ehief' accomphaied us at his own desire. Previously we hat had considerable rain, but on this day the weather was delighttua. We worked our way along very slowly until night, the water becoming more and more shallow. It dark we went into camp, and an examination of the river from the shore proved further progress by boats inpossible.

We were now about fifty miles from the river's month, and probably abont twenty miles from the portage, and we had to choose between two courses. We could easily return to Anvic and winter at that place,
or we conld attempt to eross the country in a direct line to Ikikiktoik, on the coast. The first comse seemed out of the question, since the station was provisioned for only ther men. On the other hand, a portage across an mexplored conntry of an extremely difneult eharacter, known to be intersected with monntan range, necessitating a dependence principalty upon the rivers for our supply of food, which might be cat off in a moment by a sudden change of weather, appeared equally impracticable. After much ansions disenssion, it was finallydetermined to keej on, and not to turn bark muless it shond become absolutely necessar?:

During the night there was a violent ran-storm. In the morning we packed evorything which it was necessary to cany on the backs of the Indians. We abamloned our tent and such other articles as were not absolutely required, and, muler the guitance of the chief, began our journer. Our course lay thest over a gentle ascent covered with pines and thick underbrush, which much impeded our progress. After an hours thavel we descended into a mossy swamp, through which we traveled until night. At dark we went into camp, wet and very tired. Of our provisions there only remained a small piece of ham, which we had carefully laid aside while on the river, to be used when fish could not be obtained. This we divided, the ration consisting of a thin piece about the size of a half-dollar. Fortumately we were able to recruit exhansted nature with unlimited tea, although we had been for severe: days withont sugar. It may appear strange that we did not bring fish with us from the river, but they could not have been obtained without delar; and we had underestimated the distance to the second crossing of the Anvic River, where we supposed we could obtain an abmedant supply.

On the next morning we mate an early start, withont breakfast. Ascending the first range of hills we passed over a divide, and earlyin the afternoon we began to descend into the valler berond. As the valley first came in view, a weleome sight grected one cye. It was the smoke of a camp-fire, amt, as we drew nearer. we saw a little hat eovered with hides, and near by rude firames, from which were suspended areat sides of reindeer meat. During our day's jounty we had seen many herds of reindere feeding on the hills, but we cond not spare time to hont them. On approaching the hat we fumd that it was the habitation of one of the natives of the eonst. Earlier in the season he had penetrated to this valley to hunt, but, having been seized with a severe attack of rhemmatism, he had been compelfed to remain later than manal. until his friembs shoukl come for him. His wife was with him. [pon intuiny we found that he was a brother of "New Years," and, I believe. nearly related to "Ihungry" and "Lamehy," all Indians celcorated in the amals of the telegraph companc's explorations. He begged so eamestly for "American medicine" that we had mot the heart to refuse him, although we had nothing of that chancter except a Seillitz powder. We gave him the contents of the hue paper, and, to our astonishment, he soon dechared that he felt much better.

At this camp we feasted to our hearts' content. New 'ears brother most generonsly told us to take all the meat we wished, refinsing any compensation. We decided to remain here during this day, and prepare provisions for the rest of the journey. The meat not having locen dried, we could not make " pemmiean," but we prepared a substitute for it in the following way: The meat was thoronghly boiled, and then cut into very small pieces. These were paced in a bag and boiling grease penred over them. The whole was then pressed tighty into the smal
est possible space. This would have proved a very good substitute had not a good deal of the meat which we were obliged to use been tainted, which made it all olfensive.

Mr. Major mate, from a deseription given by Sew Year's brother, a little topographical sketeh of the comutry, which was very useful to us, and proved wonderfully correct.

On the morning of September sed we agan broke camp, and hegan the ascent of the range of hills on the west side of the valley. From this point the timber entirely disapears, except a little low hrosh near the watereoursos. The nights had now become cold, and, in order to find a camp Where brush-wood conld be ohtained. it Was necessary to reach the second crossing of the Smic River. We passed wer two ranges of high hills, alternately phonging throngh a thick, wet moss, and stmmbling over rongh stones. At 8 p . min we tinally amived at the Ansie liver, almost tead with titione. On the last mage of hills Foley"s strength completely fated him. Vanly in the mareh his shoes had become maserviceable, and he was obliged to substitute for them mooseskin moceasins; consequently, his fect hat been sererely bruised. Te made a great eftort to keep on, but, being taken with voniting. he declared that he cond go no finther. Wemade hima bed on the hill-side. and then went on down to the river, where the light of a distant camp. fire assured us that assistance and food conld be obtained. Ont our arrival at the river we fomm a temporar fishingeamp, ocemped by Coast Indians. A party was immediately sant batek with ford and fuel to Foley, and he amined sately at the eamp about noon on the next day. It this emmp we fomm plenty of provisions. We obtained here a bew rember tongmes, which are justly eonsidered a great delieacy. We remained at this eamp motil about 1 pom. Haviag protited a good deal by this rest, we starled with renewed pirits on on fommey. We aseended the hills on the west of the Anvic Valler, and when we reached the summit we salw with delight the broad expanse of Sorton Somel in the distance. We then tescended into the valley of the Gobsova lichlat, and at smaset we armed at the little river. Wialing it, we went into eamp on its westem bank. On the next morning we made an endy start, as there is no finel and mo place suitable for a camp between the Golsora and the coast, and it was therefore necessary to conclude our jommey in one day. We first pased over a low range of hilhs bordering the river. Onu jommey then hay orer an anost level comtry, with the exception of a high hill near the const, which we crossed to aroid swamps.

Thand in this part of the conntry is extremely dilicult. The gromed is corered with hmmocks and deep moss, and it is nearly all a swamp. Throngh this terrible region we flomadered mitil eight odock in the erening, when our tronbles. were teminated by our sate arrival at Ikikiktoik. This was perhaps our most thtigning tay's journeg. We traveled about twenty miles throngh a country which, under any ciremmstances exeept those of actual necessity, might well be called impassable.

It Ikikiktoik we expected to find plenty of matives and boats, and we intended to conchde our journey to St. Michael's Island on the same night. Unfortmately, howerer, we found the village temporarily deserted. But one native remaneel-a sick man-and one small boat, capable of carrying only one person. We were therefore compelled to spend the night here. We had eaten the last of our provisions, supposing our jommey to be practically ended; but, fortnuately, one of the Indians had killed a rabbit as we were entering the village. With this,
and some satwater, we made a somp, which we fancied delicions, as we had not tasted salt for more than a week.
larly the next morning I dispatched a messenger to St. Michael's Island with aregnest for assistince, and about nightfall the superintendent of the company, Captain Ennis, arrived with a whale.boat and a bomitiful supply of provisions, and tramsported us to the ship. Thas ehderl one erentinl and, in some respects, mupeasant jonney:

On the " 2 th of September the Commodore sailed for San Frameiseo. On the 3 l of October we arrived at the Ishan of St. George, and here we ohtained the first news which we had reedived from the eivilized word far abont sis months. On the Gith of October we amived at Onmalaska I Wanl. Where we whe delayed several days. A voyage of twenty-seren fays thom this phae, during which we experienced a suceession of
 way. lomght us at length to san Fmemeo. where we amived on No. rember fith, exartly warm monthe from the time of one departmere.

(CHA1'TEに I

IBESCRIPTION OF THE RIVER ANI AD.ACENT EOCNTRI.

The grat Yakon Fixer, the largest strean emptring on the western const ot' America, is supposed to take its rise apmoximatry in latitume
 linown as the Tanco liver, and it is said to have been visited many years ago by the traders and traprers of the Hudson Pay Territore. The northermost point of the river is at Fort linkon. where it makes a sudden and decided bend towam the sonthwest. The little that we lanow conceming this portion of the Yakn is derived fom the accomes
 \bar{F} and S.) and rations reports of luthans. which establish the defentity of the Taheo River and the Vinkon. The exeneral divection of the diver from its head waters to Fort Vakm is smpmesed to be about morthwest. The length of this portion of the river mast be at least one thonsand miks. From Lake Labarge (abont latitnde gio to' north and longitudd 18:5 8 west) to Fort Lukon it is ealled the Lewis River. Just below the lake a tributary enters from the sonth. From its head-waters the Inctian tribes inhabiting the vienits are acenstome to make a portage to the heal-waters of the Chileat, proceding via the latter river to Sitla for p moposes of trade.

Probably the largest tributary of the Tukon above Fort Inkon is the Pells, which enters the main river from the east, approximately in latitude $6: 30$ north amd !ongitude $13 \sigma^{\circ} 40^{\prime}$ west. At its month the Hudson Bay Company formerly had a traling-station, called Fort Selkirk, which was destroced by Indians in the year 1851, and since that time has remained moceupied. This portion of the river is described as flowing, with an extremely rapid cmrent, through a momntainous country.

Fort Fukon, situated in latitude $60^{\circ} 33^{\prime} 4 \overline{7}^{\prime \prime}$ north and longitude 145° $10^{\prime \prime} 4 \mathbf{i}^{\prime \prime}$ west, is the highest point which my expedition reached. Here the Yukon receives the waters of the Rat, or Poreupine, a large tributary, emptying on the right bank, and flowing from its lead-waters in a general direction a little south of west.

From Fort Vukon to the mouth of the Chetant Rirer, a distance of
abont two hamandmiles, measured atone the deepest chammel, the river has a gemeral dinerem abont west-southwest. The windings of the stream, howeser. within this distance are innmerable, the air-line distance between the eve points being only abont one humbed and filty miles. The exantry on both sides of the river is low and level. mathe: consisting of saty or grabel. The areage width of the river is abont three fom the a mito but in some pares, measming across its mumer ous islanks. it wingets ont to tive on six miles. The curment throngh all its passiges is extremely rapid, and in mang paces the best chanmel is not more than there teet in depth. The regetation on the banks and

 portion of the river are the Achenehik, Notochargh or Dall. Chetletchuk. and Clatanat Iivers. all of which flow from the north. None of these rivers aterat to be of moh impotaner, with the exception of tho Chetant, which lear been aseemded for a few miles amd tomm to ahomal in fish and ganso. There are no native villages on this portion of the river.
:From the ajanefr of the Chetant the Fibon rapidly changes in character. It gradmall harrows into one chamel ; the ishands disappear; the hanks raxe into hills: the stream becomes deep and rapid, until timally it phanes with grat velocity throngh the hampart hange. The bhff hills enamong this rage rise close to the water's edge. They are compered priveipally of a hard, greenish rock. Slate is we andonally seen, and at the raphos true granite appeas in a ledge ruming anoss the river. Most of the hills are covered with groves of sipuce intermingled with birch. bat the trees are all smanl, and in many paces they lie for some dintatme seattered in every direction, showing the small depth to whiche their roots attain in the frozen gromed and the great force of the wimer minks.

From the Cluetant River to the Rampart Rapids, a distance of some sixty miles. the seneral direction is about sonthwest. The river aterages ahout a 5 worlhirds of a mile in width, but at the rapids the width does not excend ome hombed and fifty yards. The tributaries emptring 'into this laotion of the river are, from the north, the Atonisonik. ants. tron the somatio. the lakuchargut or Whymper River. Neither is important.

The tirst manive village met with in deseending the river is situated on the right Joank. Inst below the Rampart Rapids. It is oceuphed by Senati. an omplatehin chief, and his peophe, whose permanent home is probably in the wieinity of Fort Vinkon, but who have established themselves in this prame for the purpose of fishing. It is indicated on my map as Suatu"s Village.

Fiom the Itamparts to Nulato, a distance of some two hondred and forty miles. the river has a genema direction about west by sonth. There are homerer, many bends, althongh these are less sudiden and numerous than the the portions of the river.

After leaving the Lampart gorge, the strean widens and the current diminishes ina ranillty. The right bank is for the most part hilly, and on the left, althotigh this shore is generally low and that, hints and bhufts, occasionally rise close to the water's edge. The chamel, as a general rule, runs close to the right bank, a remark which holds good for all that portion of the river below the Ramparts. The average width is abont three-forths of a mile. Now and then islands are encountered, but for the most part the stream is open and the channel plain.
This portion of the river, in my opinion, far surpasses all other parts
in matmal beants. Abont fifty miles berow Fort Adams, the Surnonillá range of momatans commeners on the right bank. It is a sucession of elegant, wedl-detined peaks and ridges, deseribing a beantitul curve for many miles, with its conavity towne the river and its Hanks resting at the watere alde. The right hank of the river is well timbered with spruce, poplar, and hirels.

The primeipal rocks of this pate of the river are state and sandstone. Some of the sambtone blatis are very remamable in appeanace.

- Quat\% is fomad, and oceasomally gramite, 1 examined a specimen of bituminons con which we obtaned on this part of the river. It in of sood quality, hat the seam is very limited in extent.

The principal tributaries emptying into this pat of the river are as follows: From the north, the Tosekngut, Newehmikargit, Newikirgit, Melozelanght, and the Kuynkok; liom the somth, the Tanamí, Atntsa-
 hiorgut or Chergut signifes, in the mative dialegta little stream. Some of these "little streams", nerertheless, ate lare and important rivers, popmated hy may Indian tribes, amb mavigable for a eomsiderable distance. Chide among all these rivers in importanes, size, and beantychief, indeed, among all the tributaries of the Fukon-stands the great Tananí, "the river of the momatains." It empties into the linkon about thirty miles below the Ramparts, and its rapid waters increase the current of the main river for a long distance. Only a few miles from its month have been traveled by white men. It apparently comes liom the sontheast; but it is believed that many miles above the explored portion it makes a great bend from the east, its sources lying near the Upper Yiukon.

It the month of the Tanani is the trading gromed ealled Nucheavette, where the Indians inhabiting t^{\prime} a banks of this tributary are acenstomed to congregate in the spring. Abont seventeen miles below, and on the right bank of the Fakon, at the mouth of the Tasekargit Raser, is the American traling-station called Fort Adans. The prineipal trading villages between this point and Nalato are Choknik, Newikargit, and Sakadelontin. A mile above the old Rimsian fort at Sulato, (now abmaloned, there is an American tralingstation.

From Xulato to Andreaskis, an abamboned Rassian tading-station, situated about three humdred and fifty miles below the first-named place, the river has the following approximate directions: From Nulatoto Auvie, sonth-southwest; from Anvic to the upper entrance of the Shagelook Slongh, south-southeast; from the pper entrance of the Shagelook Slough to the Great Bend, sonthwest; from the Great Bend to Ambearsky, west by somth. It is difficult to convey an idea of this portion of the river, its mmerons windings, its thousand ishands, its bars and shoals, ever changing and shifting, bating the traveler in his seareh for the chamel. Generally spaking the right bank is high, exhibiting many bluns of sand and rock, formed by the ice torrents in the spring.

In this comection I may mention a rapid change which is going on here and in many other parts of the river. The ice molemines the high banks sometimes to a distance of twenty or thirty feet. On the projecting tops of the banks there are usually many trees. These, loosened by the action of frost and water, are soon precipitated into the stream bencath; and thus the river goes on widening and shoaling, while immense (f.' n itities of drift-wood are sent down to the sea. Sometimes the right bo k rises into high hills; again it falls away to rolling ground, and ocen sionally to flats. The left bank is low and level. Here
and there, however, small hills are seen standing back a mile or two from the water, and for nearly the whole distance a range of distant monntains parallel to this shore is visible. In these mountains lie the sources of the great river Kinskokvin. The sandstones and slates continue throughont this portion of the river, but on the lower part a dark voleanic rock makes its appearance. Between a point near Andrearsky and the sea no rocks were observed. The hilhs on the right bank air generally well covered with spruce and poplar, occasionally intermingled with a little birch. Owing to the coldness of the winter climate. these trees do not usually grow to a great size; the left bank and the ishands are genemby covered with chanamat of willow and ahler. This portion of the river has few tributaries of sufficient size to repuire notice, althongh there are mans small steams, entering wathaty from the north. The prineipal tributanes thom the now are the Takatski, the Anvie, and the Komekova or Clear River. The Takaitski empties into the Tukon aboat fifty miles below Sulato. It abomeds in lish, and it is said that many Indians dwell upon its hamks. The Anvie enters the Yukon about one hundred and sisty miles below Nulato. It is the only tributary of the great river which I have asecuded for any considerable distance. It has its somee in the momatain mages which mom paralled to the sea-coast; runs from its hearl-waters in a montherl direction fon abont twelve miles, and then, making a long remalar bend to the eas and south, flows generally in a sontherly direction matil it rathes the main river. Its banks are often high and stepp. The hills of the right bank of the Inkon turn at Anvic and follow the left bank of this riven u_{p} to the point where it makes its great bend amar fom the coast. Its rery shallow waters run with great vomity. It is, in a word, thonghout neary its whole extent a toment. This river is travern somewhat ia sammer by Indians, who orasionally reach its hemf-waters and bake firm thence a portane to the const.
 miles helow Amvic. At its mouth it is about tire bandred yarls in width. and moshabow that a hark dane can harder dide man its waters. It aboumds in fish, and empties a char silfor strem inta the muldy waters of the Sikom. Two rivers join this portion ot the Vakon liom the sumth. the kaymh and the Shagedook.

The month of the Kaguh Liver is said to be sitnated abont forty miken below Nubato. It was not noted in our it incray, amd I have no intarmation concerning it.

About one hundred and thint miles below Nobato the Tukon separates into two branches. The man stream pursmes a sonthely eomes, but the lesser brameh, rumine, at thest a lithe sonth of east, makes dinally a great bend to the south and west, and enters the main diver asain about sixty miles below the point of separation. This leser bram is entitled the Shagelook Slongh, and on it, a few miles fom its entraner, is situaterd the month of the Shageok River. Of this river little is kmown. ! have not even seen its month, but its valley is said to be the richest fin country on the lower Jukon.

A little below Andrearsky the Iukon bends abruptly to the northward, and runs about north by west fiom this point to the sea. There are said to be three principal outlets-the A_{p} hoon or upper, the Kviehpak or middle, and the Konsilvak or lower mouth. Ot these I hatd an opportunity to examine butone-the Aphoon. Alittle below Andrearsky the hills of the right bank die away, and the coustry on both sides of the river becomes low and flat. Shoals and sand-bars are found on every side. The river spreads out to a width of about three miles, and finally,
ated the building's composing " the redonbt," described elsewhere in this report. This was the depot station established in 1833 by the Russian Ameriean Company for this portion of the teritory. Back of the rea lonbt for a mile or two the island is low, level, and swames. Berond the low gromed are two low hills. There are no trees on the island. Wood for fuel is obtaned from the drift-timber bronght down by the Yukon in the spring. Directly west of St. Michael's, and at no great distance, is Stuat's 1 eand, which is of about the same size and has the same general chameteristios as the former.

I have now couchuded the aceome of that portion of the Yukon River territory which I have personally bisited. There are, however, some arljacent portions of the combtre which are well known from the frequent journeys which have been made across them, and a few remarks on these portages will not be imapropriate.

Dbont forty miles northeast of St. Michael's Island the Unalarlilect River empties into Norton sombl. Its general direction from its headwaters, which are some fifty miles from the eoast, is about southwest. At its month was formeng sitnated an important trading-station of the Russian company, now abondoned. This river is navigable for small boats for a considerable distance. The Rassians, and in later years the explorers of the Western Union Telegrapll Company, were acenstomed to trasel to Nulato by ascending the river, either by boats or on the ice. aceording to the season of the sear, as far as the mative village of Uhakin, whence they suste a portage to the liokon, conclading the fourney on that river.

The winter portage from Clukak has, for about fourten miles, a genead direction ahout east-sontheast to the Vesolia Sopka, "Checrtal Mountain,") which forms the termination of the Cluknk Mills. The ronte to this point lies prineipally across an almost lerel conntry, with hillocks here and there, and occasional clumps of low willows. It is intersected by small streams emptring into a branch of the Unalachleet River. From the Vesolia sopka the portage has a general divection of about northeast, and it terminates on the right bank of the Finkon, a few miles below Kahlog. The distance is abont dift: miles. This portion of the ronte traverses sparsely wooded hills, and beyoud these a low comitry, bordering a marsh ealled Bearer Lake: then over the tlanks of sume high hills, beyond which lies the Yolan. This brief deseription is drawn from Mr. Dall's accome of his explorations.

The smmer portage trom Chank is along the valley of a branch of the Unalacheet Riser, in a sonthenstery direction, and reaches the rakon at Yakutskalituik. a point about eighty miles brow Fulato.

I have spolsen hefore of the portage from the heal-waters of the Abvic River to the coast. A portage fiom the head-waters of the Golsora Richka to the month of the Anvie River, indieated on the man of Lientemant Zagoskin, of the Russian nary, seems to me extremely doubtful.

The Rossiams formerly had a station ealled Redoubt Kolmakotf, on the Knaskovim Riser, which is south of the Yakon, and empties into Behring Sea in appoximate latitude boo north and longitude 1620 west. From this river they were acenstomed to cross to the Yukon, striking the latter abont six miles below the Mission.

For the following description I am indebted to Mr. Zandt, a trader, Who made the jomrney in the summer of the year 1869, and kindly furnished me with a sketch of the country. The general direction of the route, starting from the Kaskokrim, is abont northwest. The journey commences by the ascent for abont fire miles of a small river called the Mahkalisatule. A short portage of half a mile is then made to Lake

Kuklaclekuhta, which is abont one mile in length. This lake is crossed, ant a portage of three-fourths of a mile orer a swampe plain covered with birch leads to another lake, which is a little larger than the first, and constitutes one of the somres of the Knichavak liver. Crossing this lake and descending the Kuinhavak for about seven miles, the ronto ascends one of its branches called Onkahlal to a lake of the same name. This lake is about two miles in width. A small strem commects it with the next lake, which is called Koulakh, and is the largest in the clain. From Lake Koulakh a short portage is mate to Lake Philikhorulik, which is somewhat smaller than the foregoing. A portage of one mile from this lake over low pine-chat hills leads to the Talbiksok! River, which is descended for about eight miles to its junction with the Yukon. The conntry smromming the lakes is generally low and swampy. The journey from the Kuskokvim River to the Mission can be made by rapid traveling in two days. The distance is estimated at fifty-five miles. From the month of the Fuskokrim to the Mission the jomney requires about nine days.

- From the head-waters of the Kotelkaknt liver, (the eastern !ranch of the Kuynknk River, which empties into the Iulon a few miles above Nulato,) the natives are said to make a portage to the hear-waters of the Quisnon, and descending this and the Tosecargnt River, of whel it is a western tributary, to make their way to Fort Alams. I have no information regarding the chameter of the comery in the vicinity ${ }^{\prime \prime}$ " these streams.
A variety of game is found in the vicinity of the Yukon River and its, tributaries. I shall mention here only the kinds commonly used for food which were observed during the expedition. The fin-beang animals are enmmerated in at subsequent chapter.

Moose are abondant on the upper part of the river, especially in the Ramparts, where we saw a great number in the month of September during our return journes. Lynx and bear tracks were observed on this part of the river. The black hear is the most eommon. It Fort Alams I saw a gray bear-skin measming ten feet and six inches in length. Moose are ravely fomblodow Nulato. One was killed, howerer, on an island near the mouth of the riser in the summer of 1stia. Juing the smmmer reindeer are abontant among the hills, especially on the lower part of the river. They are satid to have diminished greatly in momber since the introdnction of fire-arms. We observed many herds of these animals during our journey trom the Anvie River to the sea. In the months of July and "Agust the moose and reindeev are freguently seen in the river, where they seek a refuge from the mospuitoes. Brown and black bears aro abmelant on the lower part of the river. Sbont the first of May vast flocks of dheks and geese make thein appenance. They seek the ponds and small lakes in the interior to breed, and early in the fall they commence their departure southward. They are seen along the whole extent of the Sukon. The raricties of geese I eonld not dis. tinguish. Of the ducks the teal, perhaps, was the most common, and after this the mallard. The eamsas-hack was also often observed. Swats amd samd-hill cranes are abmont, expecially between Nulato and Fort Adams.

CHAPTER III

THE NATIVE TRIDES.

Owing to the rapidity with which we were obliged to thavel, and the time remined for other cluties, my opportmities for ohservation among the mative tribes were limited. I have endeavored, howerer, to collect ats much information as possihle concerning them. The tribes that have fallen moler my observation may be divided into two great classes. To these the names Oratian amd Indian have been apronnately given by Mr. Dall. The Orarian tribes are those which live upon the coast. or at on near the montls of lase tributaries: the ladian tribes are those which are fomul only in the interior. Those Orarian tribes concerning Which I ean speak from personal knowledge are located between Behring Strat and the mper or Aphoon month of the Kivichak on Gukon, and along the banks of the lower pat of the river for a distance of abont three hmmed miles. Ther belong to the sub-group "Immit" of Dall. The Indian tribes reside mpon the hanks of the Inkon and its tributaries to some distance above Fort Yukon. That this classitication of the mative tribes is a matural one is apmant fiom several ronsingrations. The orarian languses. while bearing more or less resemblance to each other, difine entirely from the Intian langages. whirla also seem to have had a common origit. Moreover, there is a marked difference between Oratians and Thdims, in appearance, dress, (hameter. habits, and elustoms.
 to all these hatives, but eorrectly there are sevaral hare tribes, of which the Malemute is one. The principal tribes secen to be the Ferecths, the
 mutes. and cometimes lrimoske. The Kaveaks inhabit a portion of the coast botween Behming Stat and Somb Golovin; the Malmutes are sithated between the somm and the lashachere liver, and at the month and along the banks of that river; and the Ikragmotes are fomm at the montlis of the Krialpats or Ginkon and for a distance of abont there hamdred miles along its banks. These natives are often lamwn by the manes of the villages they inimbit; but this momenclature eems to be merely aceidentai and has no connection with theis combinn, character, or habits. Ther intermingle with each other to a what extent having hen browht together during many years by their tranline interests at St. Xichaters, amd consequently there is a great smilanity in their langage, chstoms, chanacter, and appearance. It is ahnost impossible to form an estimate of the mumber of these people. as the contimally travel n, and down the coast and rivers, and are rarely met with in large parties. A lassian trater of long experience informs me that in his opinion they mumber about five thonsand.

Dming the winter these tribes live in their villages, trapping for skins in the vicinity, and making oceasional trips to St. Michael's for purposes of trading. In the summer they scatter more widely, collecting stores of food for winter use. The Kaveaks and Malemntes in their skin canoes hont the wahns ant the hair-sal, and, making their way into the vallevs between the low coast ranges, kill the reindeer in great numbers. During the summer the Ikvagmutes are engaged in fishing for salmon, which frequent in enormons numbers neally all the rivers of Sorthern Alaska.

Most of these natives seem rigorous and healthy, and among them
are many very fine-looking men. In these respects the Kaveaks and Malemutes are fir superior to the others, as might be expected from their more active and hazardous pursuits; nevertheless, I found among them many of the diseases incident to reckless exposurt. Consumption, colds, asthma, rhemmatism, and croup were by no means uneonmon. Of the last-ngemed disease great mumbers of their children die yearly.

The food of these people consists of fish, (fresh and dried, reindeer meat, walrus and seal meat, and oil. Their villages contain from two or three to a dozen fimilies, and are composed of rude, low houses, huilt of logs and covered with earth. The door is simple a small rombl hole placed near the gromal, so that it is impossible to enter except on the hands and knees. The fire is phaced in the center of the building, furl the smoke makes its way through an opening in the roof. Rude as these honses are, they are nevertheless tight and warm. In the winter they are exchanged for houses entirely or partially undergromm. Nearly every village contains a large building called the "dance-honse," which is used as a hath-honse, and on occasions of testivity. It also serves as a sort of hotel for the accommorlation of travelers. It is simiar to the other houses except in size, and does not require particular description.

The Orarians all wear skin clothing hoth in snmmer and in winter. The "parca" is a sort of long shint of rembecreskin, the hair beine wornontward indry weather and inward in wht. It has a hood athached, which forms a covering for the head, and which is usually trimmed with the "cacajou" or wolverine-skin. In the summer leggins and boots of reindeer-skin are worn, the latter being provided with "moelock" or seal-skin soles. The winter hoots are entirely of moclock, and are made with so much skill that they are completely water-tight. Rein-deer-skins, being of such extensive use, are objects of great value anong these tribes; and I have known them, and also wolverine-skins, to be brought from other portions of the Territory by the traders, to be amphoced in the purchase of tars. 'The reindeer, howerer, abounds in the vallegs near the coast.

The natives do not seem to be fond of ormaments. The upper lip is usually perforated umber the eorners of the month, and throngh these holes pieces of bone or bits of round stone or metal are inserted. Whe women tattoo their chins in rertical parallel lines. The dress of the women so elosely resembles that of the men ilat it word be almost impossible to distinguish them but for these marks.

These people, especially the Lower Kvichpaks, are very unclean in their habits. Urine is used in tanning all the skins which they wear, which conserpently have an exceedingly oftemsive smell. They use the same lifuid for bathing their persons also. Their villages are filthy, and their houses swam with remm. They have no idea of eomfort, few artiticial wants, and conserpuently little industry. Virtue seems to be unknown among their women. They are all more or less acquainted with the use of intoxicating liquor, and the northern tribes obtain quantities of spirits from the whalers who trade with them along the coast; but as in all my experience I did not observe a single case of intoxication, I do not believe them to be intemperate. Indeed, I am told that they often resold spirits to the Russians, among whom the use of intoxicating licuors was carried to a great excess. The use of tobaceo for smoking is common. They prefer a very strong, coarse variety, which they have been accustomed to receive from the Rnssians. The native pipe consists of a leaden lowl and a stem formed of two pieces of
rood hollowed out and lashed firmly together with a deer skin thong womd spirally about them. The bowl will contain a bit of tobaceo scareely as large as a pea; one or two whift's and the operation is over. The effect is so powerful that for a moment ther are intoxicated. Mr. Jall says that they inhale the smoke, and he thinks that the prevalene of asthana ame congestion of the langs, to which I have betore referred, is due to this calase.

During the stmmer the matives travel along the coast and on the rivers. They have three kints of boats-the bidark or bidnork, the bidarra, and the bark canoe. The bidark is a long, flat-bottomed, cano-shamet boat, consisting of a light frame-work of wood, tightly lashed together, amb eovered with oiled seal-skin. This covering extends completely orer the top, holes being left for the ocenpants. The bidard has usually one hole, but sometimes two, or aven three. The traveler. having taken his seat, envelopes the upper portion of his bods in a disht, thin, water-proof shirt, made, I believe, of seal-gut, which is fastemed to the rim of the hole. Thms prepared the matives do not hesitate to venture out even in a very rough sea. The bidark is propelled with the paddle, and the skill which they attain in its management is surpoising. I have been repeatedly told that the people in the ricomity of Behring Strait will turn their boats over and come up on the enther side. (Dr. Kane has described the performance of the same feat by Greeulanders in their kajacks.) These boats differ little, if at all. frome those of the Aleuts of Onnalaska 1sland.

The bidarria is also a skin boat, closely resembling the bidark in construction: but it is much larger, and the top is not covered. It is usually propelled with paddles, but I have oceasionally seen rute sails employed. Sone of them will carry filteen or twenty persons apiece, anil possibly eveu more. This boat draws very little water, is extremely light, and easily and rapidly propelled, and has a great carring capacity. The objection to it as a river-boat is that it is easily infured and not very readily repaired, and it requires frequent oiling to keep it impmervious to water.

The wheth-burk eanoe is found only on the rivers. It is entirely monitathe for coast travel. It is more common among the Indian than among the Omatian tribes, thongh I have often seen it anong the hower Kivichaks: It is constructed by sewing, with spuce-roots, a covering of himb-hava over a strong fame-work of wood, and then earefully pitching the seams. The largest bark canoes which I saw would easilyrarry formem. The usual size is designed for one or two only.

Oir jonmer up the Anvic River was made entirely in these boats, amd I fomad them admirably adapted to river travel. They are light and dran rexy little water, and though easily injured they are quickly repairal. In the bow of each canoe a little pitch and birch-hark are ahwirs kent. It a boat is injured it is taken out of the water and tumed mavile down. A small fire is quickly made. If the hole in the hoat is smanl, a burning brand is held over it and a little piteh melted npon it and pressed into shape with the wetted ball of the thmmb. If the damage is mere serious, a pateh of bark is cut and fastened firmly in the proper place by a layer of melted piteh run along its edges. The natives make these repairs very rapidly and skillfully, so that an aceident ondinarily canses a delay of a few minutes only:

During the winter the natives travel in sledges drawn by dogs. The dogs are of varions colors and sizes. The prevailing color on the coast seems to be a light gray. At Redonbt St. Michael's there was a number of tine large dogs. the Russians having evidently taken considerable
pains in selecting and preserving the most promising. The dogs of the natives generally are miserable curs. Except when traveling, they are never fed ; and they are, consequently, always ravenoms, and will devous the most disgusting filth. They olten go into the water and catel fish very skillfully. Ther will eat any articles composed of leather, such as loots or harnoss, and sometimes even doth. Thes never bate, hut howl dismally. They are very cowardy; and mbays slink away at the approach of at white man. The sledges are mate of spuce, and most of those that I saw were shod with bone. I had no opportunity of seeing the dogs in lamess, but I was informed that a team usinally consists of seven dogs, hamessed two and two, with one leading. Ushally a native runs before the tean and leads the was. In traveling, provisions have to be camied for the dogs as well as the men; a!d this is a serious obstacle to long jompers. When the country is in a proper condition for sledge-traveling, show-shoes are a necessits. Those which I saw consisted of a strong light frame, rarying from two to four feet in leugth, covered with a netting of deer or seal skiu.

The time of year dhring which 1 was among these tribes was not favorable for observing their customs. I an told that in the long nights of winter, when they are gathered together in their villages, they indulge in may curions ceremonies and festivities.

On the coast and at different points on the lower part of the Yukou, the Greco-Rassian church has had for years its establishments and its priests, but I conld see no traces of religions influence beyond a few natives who had been in the service of the Russian company. Owing to my limited opportunities, I did not become aequainted with any of the superstitions which these savages, like all others, are said to possess. They do not seem to have any belief in a Supreme Being, and I think it may be fairly asserted that they are withont a religion.

Finally, these Orarian tribes are kind, peaceable, gencrous, and hospitable. i had many opportmities of judging them in these respects, and am indebted to them for cheerfal assistance on many difterent occasions.

Indian trimes.-The Indian tribes of which I shall speak are all located on the banks of the Lukon amd its tributaries. They may, for the purpose of description, be subdiviled into two classes; the tribes situated on the river and below Nuclucayette, and accustomed to tradeprincipally hitherto at the Rassian stations, amb those near or east of Fort Lukon, who have traded principally at that station with the Indson Bay Company onls.

Tribes belore Vuchuctyette.-The principal tribes of which I have ans knowledge are the lugeletes and the Knynkuks. The Ingelete prople occupe looth banks of the lukon and its tributaries, from a short distance above the Mission to Nulato. I was informed that one of their villages on the Yukon, alont sistr-five miles above the Mission, is called Makaymute, but other exploress have giver it the mame of Memki, and probably on quite as good anthority. Their most inuportat vilage. however, is Anvie, sitnated at the month of the Anvic River, and they have several vilages on the banks of that stream.

At first observation this people might be elassified as Oramian. Their character, customs, and apmeance closely resemble those of the coast natives; but their language is rery similar to that of the Kinguknks. while it is entirely different from the Orarian dialects, containing, I believe, no words in common with them. Their villages and honses do not differ materially from those ahready described. They wear the same dress as the coast tribes, and have the same disegad for omanents. Those on the Amve River occasionally cross a portage to the coast, and
trade at Redoubt St. Michael's, and this intercourse probably accomis for the similarities referred to. Indeed, I should remirk that what I have said applies to the Ingeletes ot the Anvic and Yukon, and may not be true of the subtivisions of this timily farther to the eastward.

The principal Ingelete tribe east of the Yukon is the Shagelook tribe, sitnated on the banks of the Great Shagelook Slongh and River. I am informed that they are superior in may respects to the lngeletes of the Yukon. They are said to be warlike, enterprising, and intelligent. Hunting is their ehief mems of livelhood. They weat a der-skin dress, and are addicted to ormaments. In a word, the chamateristies which they exhibit are decidedly Iuliun, while those of the other Ingeletes are as decidedly Orurian.

The Ingeletes of the Fukon, like all the Indians on the lower portion of the river, are much less active and energetie than the natives of the coast. Drawing their entire subsistence with little labor fom the waters of the great river, ther seem utterly destitute of ambition and of any desire to improve their comdition. Cowardly and dequaled in the extreme, ther live in eonstant chend of the lumians who inhabit the higher portions of the river. Severtheless they are remarkably honest, goonmatured, hospitable, and semerons.

The Indians between Nulato and Nuchuearette, at the month of the 'Tanam River, were msually called by the limsians, Kuyukunki. The nane huynkuk belongs poperly, howerar, to a powerful tribe inbabitins the banks of the Kuraknk River, a large tributary, which enters the Lukon from the noth, abont twaty-two miles above Nulato. Muring the summer many of their fishingeamps are seen on the banks of the Inkon. Other tribes may be oceasionally met with on hais part of the river, but this is certainly by far the most important. In dress. customs, and appearance, these people do not differ materially fom the Ingeletes. The langmages of the two tribes are dealy allied. In chameter, however, the difterence is decided. Ther possess few, it ans, ot the goml traits which 1 have aseribed to the lower tribes. They are very cowardy, but at the same time ermel and treacherons. © No trombe has been experienced from them during late reass; but in the vear 1851 they mate a descent upon the Russian tradins-station at Fort Nulato, killed neady all the gamison, and almost exterminated a tribe of Ingeletes, whose village was near the fort. I cond not find any one in the Territory who conld give me a detailed and tinstworthe narative of this ocemrence, and I am mable to resist the tomptation to frote entire Mr. Dalles graphie account, which wes matonbtedy obtained from reliable: Rassian somees. In memory of a bave onticer, whose assassins still remain umpuished, the story may well be repeated:
For ten years, thongh frequmtly throatened, the little settlement eseapen injury, Derábin meanwhile carring on a lacrative tratio with the maves for firs. In the spring of 1 sish, Lientemant Bamard, of her Majesty's steamer Enterpise, arrived at Nulato with the hishashik, in seareh of inlmmation with reqard to the fate ot Sir John Franklin. He was a member of Captain Collinson's expedition, and, with Mr. Adams, a surgeon, and one man, had been lett by the linterprise at st. Miehacl's the preceding fall. Being probably a blant, straght forward Englishman, with no knowledge of Indian eharacter and sispieion, ho made the remark in the presence of others that he intended to "send" for the prineipal chief of the Koguknn tribe of Indians, whose headftuarters were on the Koynkik and Kotelkakat Rivers, and who were then holding one of their ammal festivals, abont twenty-five miles fiom Nulato. This mufortmately worded remark was conveyed to the ehief in question, throngh somo of the Indians at the post, by a passing mative. This chied was the most wealthy and inthential in that part of the comatr, widely known and listinguished by a remarkably large and prominent Roman mose, from whieh ho had received in name which, literally translated, means "hmmp-backed nose." He was not accustomed to be "sent" for. When the Russians desired to see him they respeetfully requested the honor of his presence. Ilis Indian
pride rese at the insult, and he immediately ealled a comecil to discuss the romor. The shaming wre of courso first consulted, anil they manimonsly deelarel that it bombed no gowd to the ehief in question. The comel then decided that if the report proved true they womld, with all the Indians there assembled, go together to the firt and drmand satisfiaction. They waited some time, and linally were abont to disperse to - their homes when a single ilog-sled apprated om the river. This sled was accompanied by Ivin Búlegin, a Russian, aud au Ludian workman of the Nulato tribe, who hat heen sent np to see if any intormation were attanable, and, if so, to bring down the Tyou of Koyukuk. The ill-tated Bílegin drew his sled up on the bank, sending the Inilian who aecompaniel him for water to boil the chynik. Sitting down on his sled to rest himself, he was alpuroachad stealthily from helinind, and, heing struck on the head with an ax or clul, was instantly killed. The sled was dragged a way and phondered; when the Nulato Ludian returned cund saw what had leen lone he turned to run, but the, Koyíkus cailed to him, saying, "Are you not one of ns? We will nut hurt you," Overeome by fear, he returned amb unwillingly assisted in the atrocity which followad. Binegin's hoily wa stripped, the flesh ent in slices from the bones, and the savages, infuriated like wild animals hy the sight of blood, roasted these remains and devmired them. An Indian, who noticed the relnetance with which Brilegin's companion joined in the lurried teast, crept up behimd him nud drove his knitis np to the hilt in his neek. The tighting-men present then stripped themselves of all incmubrances except their bows and arrows, and putting on their snow-shoes set out at onee for Nulato. Less tham a halt mile lom low the trankingost were three large winter-houses crowded with Ingaliks of the Sulato tribe, in all about a humbed men, women, and chidren. These honses were sithaterl near the river bank, a few rows northeast of the month of the Nulato River, It luing in the month of Felruary and an unsually wam spring, the Nulato Indians had taken the precaution to char away the snow from alove their birel-hark callons, firty or tifty of which wrep lying alout. Intemding to forestall retaliation fior the death of Binlegin's companion, the Kayiknus approached with the greatest ruictness, not to disturb the sleeping innates. The canoes were seizul, broken ne, thmst into the apertures ing the roots and the narow mudergromel entrances of the lonses, and tired. The frightened inhabitants, wakened by the moise aul crack-- ling of the thames, culeavored ciinly to force a passage through the fire. Some of the men, seizing axes, cut their way ont throngh the woolen walls, bint were mercilessly shot down ly the arrows of the Koyíkins. Many were suffocated in the smoke. A few women were taken by the victors, and one or two children were able to save themselves in the wools, throught the negligence or pity of the conprerors.
A young man called Wolasitux, renowned for his skill with the how, escaped to the momatains, elading the vigilance of the pursuers by his swiftness of foot. All thes rest were smothered or fell beneath the knives and arows of the assailants. But little noise was made, exeept by the screans of the women and slonts of the destroyers, for at that time the Indians had no gmes. The slmmers of the Russians were not disturbed.

It is saill that two Indian women, who were emploged at the fort, having risen earls to boil the chyniks for the morning meal, heard and understoon the eries of the victims, but, overeone ly fear and anguish at the death of their kindred, stupidly shat themselves into the cook-lonse; andil did not alarm the Russians.

The Koyikkns next made for the trading-post and found the bidarshik, just risen, sitting behind one of the houses. Saying to Ivain, one of their tribe, who had been em-, phoyed at the fort as interpreter, "If you do not kill the bidarshik, we will kill yon," they forced him to consent. He approached Derálin and stabbed him in the back repeatedly, so that he fell to rise no more. The Rassian interpreter, a man said to have mulerstooid seven languages, happening to come out, saw the act, mad turning unarmed to the Imlimus uphaided them for the murder, but fell in the doorway piereed with seven arows. linshing over his prostrate boly, they entered the honse. Barnard was lying on his beal realing; at the sight of the hostile Indians he raised himself up to reach his gun, whieh hing above his hem. Twiee he fired, and twice the barrel was struck upwird, the balls taking effeet in the ceiling. An Ludian shamán, christened Larriówn ly the Russians, ant his brothen seized the arms, and one plunged his kuife into the Englishman's abilomen, so that when it was withdrawn the intestines followed it, and he fell baek mortally womded. Several shots were fired, and one struek Larriown in the groin. Thire elilldren and their mother were killed; their

- father, Teléczhik, beiug absent in the Kđviak Peninsula, as interpreter, with Captain Belford Pim.

Leaving the bidírshik's house, the Indians next attacked the easarmer or room where the workmen liven, where there wero two Rnssians mal several creoles. They had barricaded the door, and, being at some distance from the other honse, knew nothing that hat happence. One of them amed throngh the window at the crowd of Indians; whon the other, hoping to avoid bloodshed, alvised him to fire above their heads, in hope that they would disperse The erowel separated, but did not retreat, and only answered ly a shower of arrows. The next shot, better amed, killed one of the ludi-
ans, when a panic semerl to seize them, and they immediately retreated with the ir hooty
 shik's homse. A linssimu liy in the inner room, helpless from fever, who had bean werlooked by the Indians in the excitement. Ilis wife, an Imdian woman, named Mania, bromeht him a loaded pistol, and hold him ny whice be tired at the shamain. His trembling hame embl not direct the hall, and hamiown daged himselt ont to the river
 baby on a little sled, which she was dhawing be a hamd owe leer formand. He threw the child into the suow, and ordered her to draw him to Koynkink. She redised, and he stabled her to the heart. How he dimally got away no one knows. Thus ended the Nulato massacre.

An lngalik, named Lofki, was sent he the Rossians with a letter to the redombt. Itr placed it in his hoot fortmately, for he was stgped on the river and searehed by two kogiknms, who suspected his rrand. Finding nothing, they het him go.

Dr. Alams, the surgeom, immediately started, with Telóczhik aml a paty of Rus-

The: Russians had sewed in, the womds; lint betore Mr. Adams anrived. Lientenant Bamard was drad. It maly wimined fin him to perfom the last sad oftices mod to "reet a moss wer his grave, with the following inseription:
 Imilins.-F'. A."

The linssian Amorican Company, as is the wont of trading companios, never took any measures of rataliation for this massarre Latriown and I wan, the momerers of the bidirshik, are freguent visioms at the fort. I'resents were sent to the Koynkm chiets, and there the matter robled. A stockaded fort was soom hilt on the present site, and the arave of Barmad and Derábin lie a stome's throw behind it. The exeavir tions where the Ludian homses stoma are still to be seen, and form the graves of those natives who perished by the massacre.

The complete success of this affair has modonbtedre been the occasion of what I take to be the most prominent chamateristic of this tribetheir intolemble insolence. They look at a stranger with an impudent, half-theatening stare. They are, howerer, too cowardy to offer open violence. They are sometimes, althongh not usnally, dishonest. One of them, having appropriated some small articles, received a somad thashing from an American trader of our party, to his intense disgust and astonishment ; but he made no resistance.

The people who inhabit the banks ot the Tananá River, the prineipal tributary of the Yukon, are called Tenan-Kutchin,* ("People of the Momtains,") and are known at Fort Yukon as Geus des Buttes. They do not trequent the Yukon during the summer; and, consequently, I saw very few of them. In the eary spring they descend to the mouth of the Tananí, amd make their camps at Nuclncayette, where they meet the traders and dispose of the fius which they have collected during the winter. They are said to be active, intelligent, and enterprising; but violent and warlike. They live principally by hanting. They are much addicted to the use of omaments, such as beads and feathers.

The inthence of the Russian ('linreh (it' it had any inthence) did not extend leyond Nulato; and no attempt has ever been made to instruct or eivilize the lndians of this part of the river. Their superstitions are endless: every trihe has its medicine-man. But I had no opportmity to obtain any connected itlea of their beliets or worships.

The Tenan-Kitchin amd the Indians of Fort Yukon are oceasionally met with between Nuehuavette and the Ramparts. Beyond this point there are no Indians until we arive at Fort Fukon.

The principal tribes which have been accustomed to trade at this post are the Kotchí-Kutchin, (or "Low-handers,") who live between the Porcupine and Yukon Rivers near their junction; the Hur-Kutchin, or Gens

[^0]
CHAPTER IV.

TRADE OF HUDSON BAY COMPANY-BUILDINGS.

The only establishment which the Indson Bay Company has omponied on the Cukon River during late sears was Fent Lukon. In the year 1stir employes of the company descended the Porrmpine River and establishell this station at its month. Trading goods amb smpplies were bronght from Fort Simpson, on the Mackenzie, to Lapierre Honse, on the P'orenpine, to which phace a party from Fort Kinkon annally ascended to receive them and deliver their furs.
The force at the station ansially consisted of one chief trader and two or three men. The chief trader received abont $£ 100$, the men abont $£$. eath per immom. Whenever any material was needed for clothing, whether burkskin, fur, or eloth, it was purchased at a lixed, and nsually pretty high, price from the company. The men were not allowed, muder amy eircumstances, to trade with the hadians on their own accomb.
Owing to the diffienlty of tramsportation, the suphies sent to this station were very limited in quantity. The ehief trater received an allowance of tea sufficient to last a year, and sumicient sugar and flour to last a month or two. The men receivel only an allowance of tea. All other supplies were drawn from the comutry.
From this brief statement it will appear that the bnsiness of the station was conducted on the lowest possible seale of expense.
The skins obtained were principally those of the stome marten or American sable, mink, beaver, otter, black bear, white, red, black, and

[^1]silvergay foxe The most valuahle skins are, I believe, those of the bark and the dilveremy fox. comparativery few of which are obtained; and mext to theos ate the be:dver and stome-manten.

 of pires wase evalisherl, the beaver-skin being the stambara. Thas the pire of a a taken at the rate of two to one beaverskin, and inferion fars were

The followine list shews the kind of goods at Fort Yakon in the year 1stat: Gum- dombly and single banel, made in Lombon; pocket knises,
 mid hammen surts: malien hirts: "yacht" shits; prints; heave ehoth;

 neckties: Eandials befts: (imadian belts; gmpowder; ribhon, (wide:)
 one thom and two handred pombls were disposed of ammally, there were lat small onantities ot these articles on hamb, the riffienty of thans-
 tation of lanze stipllies.

I口us wera obonaben at this station in two ways-first, by trame with the tribes inhanditus the vicinity and those on the Pormpine and Chere
 and trating with the tribes at Nudncayette. Probably about halt the tims ammalla a colterteni at this station were purchased at the month of the Tanant.

From the inapertert data which I have been able to olitain it is diftianlt to fix wifh abything like acematey the ammal trate at this station. It has beren estimated at ten thomsand skins, a momber which is perhapos romewhat in exeses of the truth. Five thonsand skins, pimejpally mantens. are saind to have been purchased by English traders in the Noping of 1 atisat Sinclucisette.

The fin tambe oh the lower portion of the river below Nuehucayette wat comblactatil. previons to the transter of the temitory, entirely by the Linssian Ametienu Company. This company had a mumber of stations oll the biver and const. the priacipal of wheh were Unabachect, St. Michatel"s. Amblrarsky. Mission, and Nubato. As the employés of this company hall left the comotry hefore my arival, there were no sources of information from which to estimate the amomet of tarle. From the hest infonation whioh I eonhl obtain, Amenican traders, in the season
 anul the eroasit.

The lonidinges on St. Michael's Island (Michaclovski) consist of the "redomht." a suall chired belonging to the Greek church, and two or three small lowergser put np by American traders.

The buidiness which constitute what is called the "redoubt" I presume to be, under the terms of the treaty of cessiom, the property of the United States, refermen to in my instructions as pmblic buillings. They are all within a reerangular inclosure, tormed partly by the buidings themselves and parthr big a stockade. The stockade is loop-holed and the inclosure flanked hy two small towers.

The house are constructed of drift-logs. The following list exhibits
their momber, eapacity, mud condition: Threre stomehomses, two in and
 cond adeommondate f wenty mon, in good eomdition: one harrack for mar. ried men, one harge and one smatl room, needs repair: one homse four suall romms, in good comdition; one honse, two roms, in good comdition; one honse, fomr rooms, in good condition; one bath-honse, two sumall rooms, needs repair.

At Unalachaet, Audrearsky, Mission, Nulato, and Font Yukon, there are also log buiddings which are presimed to be poblice properts. Thery are all in poor condition, exerpt those at lowt Conkon, whichare supuran to amy others on the river. They are of no valar to the diovermment.

CHAPTER V. RESOURCES OF TILE COUNTRE.

The information which I have been able to wollect ronmerning the $\begin{array}{r}\text { w. }\end{array}$ somees of the Yukon River is too uncertain and limited to justifir definite conchasions. The remarks which follow will therefore he very gromal in chatacter, and the opinions which I adsance may be much modified when more accumate statistics are obtabimed.

In the examination of this smbject the fur trade demands the first consideration. Indeed, it is the only resomee of the combtry as retaveoped. This trade has been heretofore in the hands of two companies, the Inudson Bay Company, having one station at Font Yukon, and the Russian American Company, having varions stations along the lower part of the river and on the coast.

I have before remarked that the trade of the Hulson Bay Company was earried on at the very minimmot expense, and the same may be said with reference to the Russian company. The Rnssian forer on the Yukon eonsisted principally of men sent from varions phaces in the Territory who had been guilty of erimes and mishlmeanors. The Emglish force at Fort Yukon consisted of men fan fiom rivilization, without means of transportation, and usually, by reason of debt, in the power of the company. The employes of both companies were practically slaves.

It is searedy necessary to remark that the business of collecting furs camot be conducted in this way by Americans. In the smmmer of 1sia) traders in the employ of American companies were receiving firom sinn to $\$ 100$ per month in coin, while men ocenpying corresponding positions in the Hudson Bay Company were paid $£ 5$ per anman. The former required a large and expensive variety of supplies, and cond not be engaged on any other terms. The latter may be said to have practically subsisted on the comntry:

It is to be remarked that the Hudson Bay Company, in abmonding its station, does not necessarily lose the trade which it enjoyed at loort Fukon. A large portion of the business was conducted with tribes lising in or near the English temitory, and these people, having been acenstomed to trade with the eompany for may years, will cany their furs to Lapierre Honse, on the Porcupine, or to the new station which will probably be constructed near the bommary.

The trade which will be controlled by Americans will therefore be that of the Russian company, incereased ly the nmber of skins anmally
ohtained by the English at Nuclucayette. I suppose the aggregate from both somedes does not axed fifteen thomsind skins.

The geography of the river and adjacent territory rontrols in a marked mamer the character of the trade carried on upon the Sakon. In previons chapters I have remaked that the river mans in many haces with a switt empent ; that it is tilled with shoals and diftionlt of mavigation Wen for small boats; and that there is not sulticient water at any of its monthis, as far as has been determined, to float a ressed of suthicient size to vogage mon the sea. Vessels, therefore, which eome to the coast for fins must lie at St. Niehael's, and the river must be aseemeded and the different points of tarde visited in boats. Owing to the comdition of the ire in beloring sa a ressel eamot reach St. Michatel's lshand mach before the midalle of Jume. I tripin open hoats to Nuclueavette would then reguire the whole seasm, laving no time for retmo. Such a journey wonld be fombl extremely difficult, as trading goods and provisions womb have to be transpoted, and very mprotitable, sine few good furs wond be obtained, as the summer skins are worthless.

From these remarks it follows that a protitable management of the fur hate of the Vokon regnives the establishment and mantenance of promanent stations on the river. This is no place for smanl enterprises. It is impossible for sloops and schoners to rum in and rapidly trate with the matives, delaying mily for a few homes or thes, as dan be done in sume other parts of the Temitory.

I suppose about five stations are regaral to collect, with comvenience, the fins on the lower pant ot the river, and fin these there will be neressamy a force of about filteren men. Whether the amomet of trate will justify the expense of smeh an establishment, incluming the cost of mansporting gonds, supplien, and fins to and from the river, remans to be seell.

A hridet acemut of Ambriean enterprises on the Yukon sine the transfer of the Teritory to the present time will not be minstractive.

Tate company on whose ressel I thaveled established its stations on the Yakon in the smmer of 1s6:9, duming the jomer described in this report. Epon om amival at st. Michatels Island we fomm the stations of two eompanies, both of which had been engaged in the trate since the thasfer of the Territory. Before one departure one of the companies abmitomed the busimess and sold its stock to the new eompany. A large shom, with a comphete stock of trading goods, had arived abont the sime time, with the propose of opening an establishment. The owner, howerer, did not appear to think the prospect encouraging, and he also sold out to the new eompany. As for small vessels, many of which visited Norton Somml dming the year followidg the transler, they in every case went analy empty-hamed.

When I left St. Michaels Ishand in the fall of 1860, the comdition of things was this: two powerthl and determined companies, having abmdant capital, oreupien varions stations on the river and eoast, and an artive eompertion had commenced. This was ecreainly calcmated to develop the fin trabe to its ntmost extent, get I am informed that the result was a loss to hotb parties; and in the following year the cotapanies combined, having fomd that the trade cond not be probitably divided.

I have ahready said that the statisties are mot sutheiently exate for aremate comelnsions: merertheless, it apmans to me that a better indea of the value of the tanle mas he gathered fom the gemeral statements I have given than from the statisties of the old eompanies, which cxisted mader vasoly difterent combitions. At least one dednction may h: drawn
from the facts: the amount of trade infurs on the rukon River will at most furnish a business for one company, and employment on the river for clonit fifteen men.

The timber of the Yukon River may in the distant future become of considerable value. It consists principally of sprue, pophar, bireh, alder, ant willow. The spruce and birch are the only varicties of any value for practical purposes. The former is very abundant upon the upper and middle portions of the river. It does hat usially grow to a harge or even medinm size, and at Fort Yukon, where I had oceasion to use a good deal of it, it did not appear to be of rery good prality. Bireh is comparatively searce. The lower fortion of the river for a distance of about one limdred miles from its moatin is devoid of trees. The timber of the Yukon River cannot for many years become an article of commeree, hecanse large supplies, superior in quality and much more accessible, exist nearer the market.

The waters of the Fukon swarm with a variety of fish, the prineipal of whieh is the salmon. This fish is f.and in almost incredible quantities, especially on the lower portion of the river. The fish of the Fukon camot, however, at present become an articie of commerce, becanse a sufficient market has not yet been fonnd for the salmon of the Colmmbia River and Puget Somud, while the southern rivers of Alaska are equally prolifie and ret almost montonched. Noreover, the cost of labor is too great; Indian labor is not to be depended mon for this or any other purpuse.

The region bordering the Fukon cannot properly he said to have any agricuitural resonrees. I shall not attempt to discuss the guestion as to what grains or vegetables may, by careful prepmation of the soil, be made to grow, becanse it seems to be a question of little patactical conseguence. A refrence to preceding chapters will prove sufficiently the fact that this portion of the Territory is not of such a character as to invite the immigration of an agdicultmal population. Hence, agrienlture in this region will at best be merely an ansiliay or incidental ocenpation of persons principally engaged in other pmsmits. But the furtrader is not usually a willing tiller of the earth, and even mader the most fivorable ciremmstances the utmost efionts of a dozen or filtera men would searcely be suthicient to develop, in this direction, an important industig:

No valuable mineral deposits in workable quantities have been fomd in the vicinity of the Sukon River me the juesent time,

PARTII.
; OBSERVATIONS AND METHODS OF REDUCTION.

OBSERVATIOSS AND METHODS OF REDUCTION.

CHAPTERI.
ASTRONOMICAL DETERMINATIONS.

I. OBSELVATIONS.

As Fort Yukon was believed to be situated very near the eastern boundary of Alaska, it seemed necessary to make as acemate determinations as possible of its latitude and longitude, in order to fix its position beyond a dombt. Owing to the limited time for preanation, I was mable to obtain suitable instrments from Washington; but, forthattely, I succeded in obtaining in San Francisco all that were required. The astronomical instrments employed were as follows: Portable tamsit instrument, \mathbf{b} Tronghton and Sims, Loudon; an admianWe instrment, and in excellent condition. Zenith telesenpe, by Wiirdenar: Washington; an old instrment, and in poor condition. Sextant: (2.) by. Wiirdemann, Wishington; in excellent condition. Chronumeters, (6 ;) Boml, Nos. 260 and 231 , (sidereal;) Bliss and Creighton,
 (watclı.) No. 5149, (mean.)

On wheral days before our departure Professor George Davidson, of the Coast Survey, kindly gave me comparisons with the sidereal clock in his observatory, of which the error was determined with great acelranc.

Our first astronomical observations were made at Sitka. The weather was exceredingly mufaromble during our stay at this place. On April $\because \sim$ and 24, and May 1, I observed equal altitudes of the sum for time. East ind west stars were also observed on the evening of $A_{\text {pril }}^{2} 28$, but as the atmosphere was satmated with moistme the observations gave poor results.

Our next ohservations were made in the larbor of Omalaska, on the extremity of a point of land the position of which had been accurately determined by the Coast Survey. On May 23 and 24 , sextant observations were attempted, but tailed on aceonnt of the weather. On May 25 amd $2(6$, equal altitures of the sin were observed for time.

At St. Michael's Island the weather was again mpropitions. Sextant observations of single altitudes of the sun were obtained, however, on July 1 and 3. I was anxions to make a good determination of the chronometer error at this blace, as its position is fairly determined, and there was sa well-located point between it and Fort Yukon. The circumstances of the expedition not admitting of delay, I was eompelled to content myself with these meager results.

On July t, during our jomme along the const, we stopped at the month of the Pikmiktalik Creek to proemre wood. I obtained observations of cirem-meridian altitules of the sm for the determination of latitule.

It Anvic, the next position where the circmastances of tavel ren-
dered observations practicable, we obtained, on July 1:3, sextant observations of equal and cirem-meridan altitudes of the sum for determining latitude and longitude.

At Nulatwo on July 1!, we obtained a few sextant observations for latitude. The sim was toonear the meridian at the time of observation to give gowl results for longitude.

It Fort Natans. on July $\mathbf{2} 3$ and 24 , saxtant observations of equal altitudes of the sin were obtained for the determination ot latitule and longitule.
Practically, there was no night dming onr jommey on the ricer, and consequenty stars conld not be observed.

Our next olservations were made at Fort Yukon. We arrived at this bince on the atternoon of July 31, and on the next day we commenced the preparation of our observatory.
The astmammieal observatory eonsisted of two large wall-tents, without flies. whith were pitched end to end, and opened one into the other. From each tent a breadth had been removed on both sides of the ridgepole, leavinge two observing-slits, abont two fieet in width. When not in use these were eovered with wider breadths, fastened in phace with ties. By means of a system of pulleys, they could be rapidly rom up or down as reypurat. This observatory was devised by Mr. Major, and prepared moler his direction in San Franciseo. It served its purpose admiraluy. being perfectly tight in bad weather, and aftording phentry of interior spare. It is more portable than the wooden traveling observatory ofthon meth, which is, moreover, inconveniently small.

In the ermber of the onter tent a somind spruce log, about twenty inches in diameter, was tirmly phated. The top was approximately leveled, and upon it was placed the zenith telescope. The inner tent was ocenpied hy the transit instrment. I was mable to obtain a single block of sufficient size for this instrment, althongh a party was sent a considerable distance up the river in search of one. Finally, two spruco logs were fastened tirmly together with wooden tree-nails, and phated about three feet deep in the gromed.

The transit instrument employed has at each eorner of its stand oo serew workine in a brass feableserew, the intention being that the latter shombl be leaded into a stono block. The instrmment having been put appresimately into position, and the eorners marked, it was removed, and the female serews were firmly leaded into the block. It was then replaced. and being withont adjusting foot-serews, it was bronght to an apmoximate level by serewing it down tighty upon thin sheets of lead phaced under the bearings.

A meriwan-mark was established on the sonth bank of the wer, at a distance of about three guarters of a mile from the observatory. I was compellem to phace it "over water," as the locality did not and of any other arramement. It eonsisted of a square piece of wood, on which two namow strips of dark eloth were fastened in the form of the letter N , the intersection being marked by a small tack. This was armaged to move enst or west in a groove made in a long piece of wood, which was fastedmal horizontally on two strong posts. The mark was put approximately in the meridian, and its azimuth ascertained by means of the mierometer of the transit instrment.

During the journey the closest attention was paid to the proper transportation of our instioments. Everything was packed and stowed in the most farful mamer. The chronometers were placed in a strong basket padiled with felt and hair, and covered with a cushion of the same materials. They were transported on one of the large boats which
we hat in tow, in order that they might not be subjected to the con stant jaring of the stemmer. The smaller instruments wre kept in the wheelhonse. The transit instrmment and menith teleseone, in fom large boxes, were stowed moder eover in the forwarl part of the boat, as fir as possible from the heat of the furnace. We hoperl to get all ond instrments to Fort Finkon in wood condition. By an mitortmate ocemrence on the river, howera, onr endavors were nealy finstrated. During a stormy night, some of the men who had to sleep on deck, exposed to the weather, conceiving, perhaps with reason, that their bodies hadd guite as good a right to protection as my loses, removed the instrmments from their shelter, and pacing them near the furnace, disposed themselves in their place. This armgement was soon discovered, and the hoxes were replated : but on our arival at Fort Fikon I fomed that considerable mischict had been done. Two of the seven threads had been broken from the retiente of the transit instrment, and both of the levols of the zenith teleseope were utterly ruined; so much ether having evaporated that the hubbles cond not be read.

As soon as I discovered these injuries I set abont repaining them. The retiesale frame was tived in the tube of the transit instrument in such a way that, in the absence of the proper tools, it could not be removed withont danger to the remaning threals. Laving procmed some fiesh thread trom a spider, I made a little fame of paper, with a hamble bent vertically, and tixing the lines to it, lowered them into position, adjusting them with my pocket-michoseope, and thally secming them in pace, her means of a little shellate vamish, with which I was fortmately provided. After a great many trials, I timally succeded in aljusting them to my satistaction; and lomulaferward that the intervals were puite as gond as those tixed by the instroment-maker.

I attempted to repair the zenith-telescope levels by the introluetion of ether obtained hy opming the little levels at the ends of the spare transit level, which are not necessary to its use. This expedient completely tailed, and I was finally eompelled to make nse of the following device: The spare transit leve! was taken to pieces and its fube was firmly lashed with copper wire upon a piece of wood cat to a suitable shape. The tube of the teleseope level having been removed, this was bomad tighty in its phace. I was compelled to dispense with the striding level, but the horizontal axis was readily leveled by other means.

To return to omr observations: During the first week of om stay at Fort Finkon the weather was extremely mufaromble. The occasional appearace ot the sm, howerer, gave us a fen opportunities. On Angust $\because, \overline{0}$, and 6 , we obtained sextant observations, which gave us ant apmoximate latitude and ehmometer aror. Daring this week we had no opportmity to put our instruments in position.

On Angust 7 the solar edpuse ocemred. The weather was fitfon, and the sky partly obsemred hy thoating clouds. Bat we succereled in obtaining good observations of equal altitules of the sun for the determination of the chronometer emor.

I had previonsly made a propection of the eclipse with an assumed longitude, which proved more accurate than I expected, coming within a minute or two of first contact. I observed with the zenith telescope, using the colored glass from a sextant. Mr. Ferdinam Westdahl, a gentleman of the trading party, observed with a poeket-glass, at my reguest; Mr. Major made the record. Owing to an imperfect arrangement of the colored glass, not diseovered until too late, I lost the first
 mean time.) The greatest obscuration was recorded at $0^{\mathrm{h}} 01^{\mathrm{m}} \mathbf{4 0} .(0)$.

The quantity of the edipse was about 11 digits. The last eontact was
 seeond.

During the erlipse thore were quantities of light, Hecer elouds in the north, east, and west, and stratms-cmmalin the sonth. The temperatme at greatest obsenation was 62 F . ; at last contact, 700 F .

The next day the ehronomater eror was computed, and as it was necessary for the steamer to return immediately to the coast, we commenced the computation of longitude on the same evening, thishing it at $\mathrm{b}_{\mathrm{c}}^{\mathrm{c}} \mathrm{lock}$ on the following morning. We thus obtanined an aproximate longitude, which proved that we were a considerable distance west of the boundary.

During the early part of Angust the shomess of the night was the occasion of much embarassment. On the sth of August the transit instrument was phaced approximately in the meridian, and on the !th its adjustment was perfected. On the loth the meridian-mank was placed in position, and observations for time by transit of stars were ohtained on the 10th, 11th, 12th, 13th, 14th, and 17th. The weather on the 15th and 16th was untavomble.

On the 17 th, by an mfintmate accident, the level of the thansit instrmment was broken. I therefore derided to suspend transit observations for a night or two, and make a few observations for latitude with the zenith telescope.

On Anginst 10, the values of single divisions of the two thansit levels were determined in terms of the zenith-telescope microncter. The levels were lashed suceessively to the tube of the zenith telescope. and the instrment tmone on the meridian-mark. The values were then determined in the usial way.

On Anginst 1.5 , the value of one revohation (10f divisions) of the zenithtelescope mierometer in are was determined by observations on Polaris near its castern elongation.

On Angist 16, observations for latitule were commenced with the zenith telescope, but fialed on arcome of unfarmable wather. On the 17th two observations were obtained after the transit observations. On the 18 th and 1 !th observations were obtained; although at the latter date the weather was unfarombie.

With the instrment amanged as I have deseribed, we conld mothone for a high degree of acemacy in the results; and, moreover, we fomm that the micrometer serew was much worn and did not work smoothly. The latitude observations were therefore abondoned, and the spare tramsit level put together again for we with the transit instrument.

On Angnst 20 we recommenced observations with the transit instrument, and contimed them on the elst, $2 \cdot 2 l$, and 23 l . On the esth, the day of our departure fiom Fort Fukon, the transit of the sum was observed.

On the 21 st, $2 \because(1$, and $2: 3 d$, observations of moon culminations were obtained. Much to mer regret, the weather and the times of culmination prevented on. obtaining more of these observations.

During our jonrmey down the river, the pressing necessity for rapid progress, and the hard physical habor consequent thereon, forced us to abambon our observations, exept on a few tavorable occasions. At Nulato, on Septeinber 8 , sextant observations of single altitudes of the sum were obtained for time, and also at Redonbt St. Michae"'s on September $\because 6$.

This concludes the accome of the astronomical observations of the expedition.

if. Computations.

1. Preparatory compututions.

(1.) From sextent obserrations.-The chronometer eorrection from sextant observations is computed as follows, and on the following dates:

Sitka, April 29 , mean noom, beg equal altitules of the smu.
Sitka, May 1 , mean moon, hy equal altitules of the sm.
Oumalaska, May $\boldsymbol{2}$ (6, mean noon, by equal altitudes of the smi.
St. Michael's Ishand, July 1, mean noon by single altitudes of the still.

Auvic, July 13, mean noon, by equal altitndes of the sm.
Fort Arams, July 93 , mean noon, by equal altitudes of the sme.
Fort Adams, Jnly 23 , midnight, ly equal altitudes of the sum.
Fort Yukon, Angist 6, mean noon, he equal altitndes of the smu.
Fort Yukon, Angist 7, mean noon, by equal altitudes of the smo.
(Sce Apmonlix A, pages it and is.)
At Pikmiktalik and Senatiss Village, the chronometer correction cond not be well determined, as the observations were all too near the meridian for this purpose. Where observations for equal altitules had been obtained, it was thonght monecessary to compute from the remaining single altitules.

The chronometers were compared daily, hont, owing to the small munber of time observations obtained, the rates conhl not be weil fixed. It would have been desirable to establish from the eomparison the relative rate and difterence of each pair of chronometers, so as to exchule errors, but this was omitted in orler to expedite the preparation of the report. From the indication of one of the chomometers at local mean noon, the corrections of the other chronometers were determined in the usmal was. (See Appendix A, page 75.)
(…) Level determiuntions.-The valnes of single divisions of transit levels Nos. 1 and 2 , in terms of the zenith-telescope micrometer, are computed from the ohservations of Angust 10, (see Appendix A, pages if and 77,) with the following results:

> No. $1, d=1.785$ divisions of micrometer.
> No. $2, d=5.933$ divisions of micrometer.

The condition of the micrometer screw rembered a high degree of accuraty impossible.

The value of one revolution (100 divisions) of the zenith-telescope micrometer has been computed from the observations on Polaris, near its eastern elongation, on August 15, (see Appendix A, page 2.5 , with the following result :
hence for

$$
R=69^{\prime \prime} .029
$$

The value of $\left[\left(x+c^{\prime}\right)-\left(e+e^{\prime}\right)\right]$, interpolated between the observations, is given in red tignres in the level colnmo of the original transit record.
(3.) Trunsit acterminations.-The time-list emploved (inchaling moon euminations) comprises forty-six well-determined stars, selected principally from the American Ephemeris, one or two having been taken from the British Nhanac. It is not thonght necessary to give the names of the stars in this phace, as they will be found in the transit record.
(a.) Corrections for rate.-The apmoximate rate of the chrmometer emploved in the observations (231 Bond) was determined at 04.15 gain per homr. The corrections for mate were then determined mechanically, be means of a calenating circle constructed as follows: A circular disk of paper was graduated to homs and minutes. This was made to thon concentrically mon another eirele having the same madis. The circumference of the latter was graduated in hours, and theso spaces divided into filteen equal parts, representing humbedths of a second. The "assmmed time" being found on the inner circle, and placed at the zerodivision of the onter circle, the time corresponding to the mean of the threads on the imer circle will indicate the correction for mate on the onter cirele. If this reating is on the lett of the zero-division, the correction is positive; it on the right, negative. This contrivance was devised by Mr. Faber du Fiur. It is puite as aceurate as computation, and less liable to error.
(b.) Reduction of apmerent places of stars for trensit at Fori Iution.The right accension and the dectination being given in the Ephemeris for erery tenth transit at Washington, these ganatios must be interpolated for transit at Fort Yukon, adding the difference of longitude in time betwecn Washington and Fort Yukon to the whole number of days between date of ohservation and date in Ephemeris.

Longitude of Washington. $0.131973=0.914$ ©
Difterence in sidereal time .. 18694
Difference in mean time.. 0.186 .
$R=$ ten times the daily rate of motion from Ephemeris ; d=difterence between 12 and next following rate; $t=$ momber of days from date in Ephemeris to date of observation.

Mean ten days for interpolation-

$$
1 i+\frac{d}{20}(t+0.1865)
$$

Change of right ascension or dechination, (upper culmination)-

$$
(t+0.186 .5)\left[\frac{k}{10}+\frac{d}{200}(t+0.186 t)\right]=\frac{R}{10}(t+0.1865)+\frac{d}{200}(t+0.186 .1)^{2}
$$

The values of $\frac{1}{20}(t+0.1864)^{2}$ have been tabulated (see Appendix A, page 78) with the argments $\frac{d}{10}$ and t.

For lower culminations the change of position is-

$$
\frac{12}{10}(t+0.685)+\frac{d}{200}(t+0.685)^{2}
$$

The values of $\frac{1}{20}(t+0.685)^{2}$ are also tabulated, (see Appendix A, page 78.)
(c.) A未imuth, level, and collimation factors.-In the computation of these
 phys biti-it, have been employed.
(d.) The ceputurial interals from the mana of the theads hasw bern determine from thiaty observations for rach therat, the time not.
 error of the mean of the thrads is 0^{*}.ons.

From the edmatorial intervals, the corrections for missed threans were determinel in the nsuad wat.
 and tablated in the usinal way.
(f.) The nomal cquatious, their sohntions, and the determinations af the chromeneter corrertion and of instrumental ronrections from deviations in azimuth and collimation thas anerptained have been computed in the usial way. The final results are given in the transit meend.

The ohsorvations of Angenst ! and 17 hase been rejected. On the finmer oceasion the aldinstment of the instrment han not been pertereted: and oin the latter, the obervations were insatiocient to determine the instrmmental comertions.

 pages sé and 83.
$\quad=$ deviation in azimnth beffre reversal.
$"^{\prime}=$ deviation in azimuth atere reversal.
$c=$ collimation for indicated position of the lamp.

From the chromometer corrections as fomd tor the several days, the rate and a corrected correction have been determined by the method of least spunes, (see Appendix 1 , page $8: 3$, the assumption being a constant rate from Angist 10 to Angust 23.

Chrommeter correction at \bar{i} homrs tine indieation at night. Angost $10 .+14^{\text {h }} 10^{m} 00 . \underline{3} 93$. Correction at 7 homs tor any othor dite,
 eter time, atter a at night, Angist 10.
(4.) Zenith telescope determinutions.-The stans emplowed were silereded from the British Association Catalogur. In the computation, nine patis, giving thirteen deteminations, hare beon used.
For a conrected list of the mean positions of these stars tor 1 a 69 , (January 1,) I am indebted to the kindness of Protessor J. E. Hilgand, of the Coast smrvey.

> 2. Final rexults.
(1.) Lomyitude of Fart Yukon.
(a.) By solur eclipse of August 7. -Ther eontacts were timed with elironometer 231 , and the earection of the same; the local sidereal times of eontact were fomm as follows:

$$
\text { Second contact. } 10 \text {, } 10.420 .4
$$

The elments of the eclipse for the homs $\overline{7}, 8,9,10,11$, and 12 ,

- Greenwich mean time, were computed ind tabmated, and firom the values interpolated for the times of contact, the longitude of Fort Yukon was determined as follows:

> By first contact.
> By last contact.
> $9^{4} 39{ }^{\text {min }} 19^{4} .27$
> $9^{\mathrm{h}} 41^{1 \mathrm{IL}} 23^{4} .74$

The result by first contact is untrustworthy, owing to the character S. Ex. 12-1
of' the whervationg. Whinh has bern hefore almed to. lossibly the
 arratom. I have not thonght it worth while to recomphte on this suppraition.
(b.) Jiy mamomanminations.-The observed times of transit were eorrected for iastrumental deviations, and the longitude then determined

The resulto arm an follows:

The result from the whervations of Augnst 2ed is reperterl, as it ditiers tan mand from all the other results, and the instrmental corrections arce large.
(e.) By ditimence betreen local and Greemtich sideretl times of mean nom. - The Final time of mean noon at Fort Yukon by chronometer 160!!,
 siderath timu whem mown was determined fom the romparison of (hmomoneters 1 ded and $2: 31$, and the eorrection of the latter for sidereal time bev tansit ofservations. The difterence between the sidereal times of mean mand at Fort lakon and Greenwich, divided by the homly chane in diyhtarension. gives the difference in longitudr. Alhwing for the probable error of the sextant observations, the result condims the lomathado fomme he mom comimations. The result thas comected is ! 41^{12} ! 4.4
(d.) The andapted bongitmate af Fort Irukon.-Trom so small a mmber of dramimations it is. of cousice, impossible to obtain a probable error of li.e final lesplat. or to reject doubthal values with certainty. A mean of all the deterninations.rejecting only the value by first contact of ealipse,

 latitule to a distance less than one-tenth of a mile.

I have thonght best to adopt the mean firom moon culminations, Which mathe the longitule of Fort Yokon $\left.9^{\prime \prime}+1^{\prime \prime \prime} 11^{8} .14.\right)=145^{\circ} 17^{\prime} 5^{\prime \prime}$.
(ㄹ.) Letutande of Fort Fukon.-The right ascension and declination of the stars emplogiel have boen comphten from the values wiven at the begimning wif the vear. In consequence of the high declination of most of the stars. the computation has been made by the second method, given on pate ent of the American Ephemeris for 1869.

The wharvathons were reduced in the usual way. The assmmed chrononetar cometion and the rate differ too little from the values finally determineal to atheet the result, the corrections for reduction to meridian heing smath.

Latitude of Fort Yukon, $66033^{\prime} 46^{\prime \prime} . \mathrm{S} 7$.
The computation is given in Appendix A, page 84.
(3.) Loragifudex of Auric and Fort Adams.-The longitudes of St. Michan's Inand aml Ansic were first determined by five chronometers, the data being the observed ehronometer time of loeal mean noon at these pluces.and at Sitka and Omalaska, the known longitmdes of the lastnamed places. ami the assumption of a uniform rate from Sitka to Allic.

The lengitules of Anvir and Fort Adams have been computed non the supmotiton of a mitom mate from St. Michael's lisame to Fort linkon, and the results corrected tor change of rate determined as follows:
irst station-Chromometer time of mean noon T_{1}
First station-late R_{1}
Second station-Chronometer time of mean noom T
Second station-hate h_{2}
Daily increase of bate r
1)ifference of longitude L
Mean rate between stations.

- Chronometer time between stations (in dass) 1)
For an intermediate point, difference of longitnde from tirst station. Chronometer time of mean noon 1
Chronometer time between stations (in days) a

Assmming a miform increase of rate-

$$
\left.R_{2}=R_{1}+r l\right) ; r=\frac{R_{2}-R_{1}}{D}
$$

Also-

$$
\mathrm{T}_{2}=\mathrm{T}_{1}-\mathrm{L}+\mathrm{S} ; \mathrm{S}=\mathrm{T}_{2}-\mathrm{T}_{1}+\mathrm{L}
$$

in which $S=$ grin of chronometer due to ante, (in seconds.)

$$
\begin{aligned}
& \mathrm{S}=\mathrm{D}\left(\mathrm{R}_{1}+{ }_{2}^{r} \mathrm{D}\right) \\
& \stackrel{\mathrm{S}}{\mathrm{D}}=\mathrm{R}_{1}+{ }_{2}^{\circ} \mathrm{D} \\
& t=\mathrm{T}_{1}-l+d\left(\mathrm{R}_{1}+{ }_{9}^{r} d\right) \\
& \frac{t-\mathrm{T}_{1}+l}{d}=\mathrm{R}_{1}+. \quad l \\
& \underset{\mathrm{I}}{\mathrm{~S}}+\underset{d}{\mathrm{~T}} \mathrm{~T}_{1}-{ }_{d}^{l}=\underset{\underset{\sim}{9}}{r}(\mathrm{D}-1) \\
& l=\frac{S_{1}}{\mathrm{D}} d+\left(\mathrm{T}_{1}-t\right)-\frac{r}{2} d(\mathrm{D}-d)=\mathrm{R}_{0} d+\left(\mathrm{T}_{1}-t\right)-\left(\mathrm{R}_{2}-\mathrm{R}_{0}\right)_{\mathrm{D}}^{\boldsymbol{d}}(\mathrm{I}-d)
\end{aligned}
$$

since

$$
r=\frac{0 \mathrm{R}_{2}-\mathrm{R}_{0}}{\mathrm{D}}
$$

In this formula $\left[-\left(R_{2}-R_{0}\right) \frac{d}{D}(D-d)\right]$ is a correction for the longitude. computed under the supposition of a uniform rate.

The rates of the different chronometers were found at Fort Yukon, from mean noon by chronometer 931 , (assmming the longitule as $9^{h} 62 \frac{1}{3}$, the error of which assumption does not affect the results,) is as follows:

Chronometer (mean) 1609.

Mean noon, Angust 10	$1^{\mathrm{h}} 13^{\mathrm{m}} 19^{\mathrm{s}} .44$
Mean noon, Angust 7.	$1^{\mathrm{h}} 133^{\mathrm{mm}} 45^{\text {s. }} 633$
Gain.	- 995.19
Daily rate.	- 9.83

Chronometer (sidereal) 231.
Gain in 24 hours sidereal time $=3^{s} .5142$, (chronometer time; 24 hours sidereal time $=\because 4^{h 1} 00^{\mathrm{m}} 3^{s} .514^{2}$, , (ehronometer time,) $=24^{h}-235^{5} .91$ mean

 time.)

Chronometer (mectir) 115\%.

Noratre on mean time, (chamging after this to a positive ratre.)
Chronometer (widercal) 2 (00.

The value of ($\mathrm{H}_{2}-\mathrm{R}_{\mathrm{s}}$) for each chmometer is ohtamen as follows:

Chrommerar-	1693.	$2: 11$.	!in	Ulir.	2475
$\begin{aligned} & \mathrm{R}_{2} \\ & \mathrm{R}_{1} \end{aligned}$	$\begin{array}{r} 4, \\ -11,: 3 \\ =11: 21 \end{array}$				8. $+\quad 53$ $+\quad 1.6$
R:- R_{0}	+ 11.4	+ 19.2	+ 9.65	- i.1ir	$+3.7$

 and applied to the differemes of lomatule ohtamed on the supposition of a miform ratte, we have the following results:

(4.) Latilules of Pilimilitelik, Ameic. Nulato, Fort Arlames. amd Nrumti.s
 served eiremm-meridian altitmes of the sull at these phaters.
 olservationts:

Table of latitules and lon!fitades.

Aition.

likmiltalik... Amvir Nilita. Fort Idatas.... Sruntio Vilhis. Fort 「ıknn...	

Latilnd Lamgithald.
(ii) $1: 341$
$1: 2: 3: 4$
(i) $4112: 3$
(i.) $11=11$
(ii) 24 51

1ili : : : 17

161011711

$120: 11$
$11.51 \% 4$

CHADTERII.

MAGNETIC ORSERVVTHONS.

The magurtio ohserations which 1 have to shbmit are fow in munher and were whtamen with comsidrable dibientts. The rivematanes in-
 instrmants expent at Fort Yokm. Whike at that phace me time was so much : to give atcention to matters outside of my instruetions. Spmeriating,

 time as po:sible to this subieet, and I submit the vesults, rexrettine that the data are meressarily so ineomplete. The observations were all made is misalt withent assistanner, and I must plead in finthere extemation of then many impertertions my inexpernere in work of this chanactur.
 abont tifty yans mast of the astromomical ohsematory, this bering the most distant position whid was eomerniont and available. 'the poles were without iron pins or bastrmings, and the ereatest rame was taken to remore fom the viemity everything whid might affert the position of the mandet.

Within the ohsurvatory asomb pinepost was timb imbediled. I peon

 days which I conld spare for this purpuse. The observations of deflecetion were made on the 1 tha, and thase of vibuation, with and withont the
 male on the elth.
 ןhas at :

Apparently the effer of the amrora mon the smispended merdle was to daw it strongly to the eastward. To this statement. howerer, there is
 15th, during an interval of the astromomical ohservations, at which times there were slight indieations of anrora in the sky, indicates a very great deflection in the onposite direction. My recollection of the ciremnstandes muler which this ohservation was uade do not justili its rejeetion as and rion in the record. Besides this horizontail deflection, the maghet was often agitated varically. The record shows this to have
 same day slight asidlations, both horizontal and vertical, were ohserved, which f presme were prombed by the same canse.

The anmall lights were most billiant in the northeast or about the
 toward the west and sonth. They presented the apmeanare of a series of delieate, tramsament, siken contains of a solt, white color, milliantly illuminaterl, and mowing though the heavens with a slow, wating motion, with many folling and mfohlings, as if swayed by gembe breares. On one areasion the apparently eame so near the eat that they seemed almost within the reach of an ointstretehed hand.

Some persoms say that dming there displays they have heard a low, sighing somad ; bit this I have nevarnotied, and 1 an indined to eomsider it as all inomstio illusion. So impressive is the efted prolluced by these phemomena that the very stilloness semes to be andible.

The reeded of maturtie ohservations and anso the comphation of the
 tion in dectination for each day has beren obtained bẹ taking a mean of the observed variations, rejecting one observation on the lith, at which time an ahmomal motion was moted. The olserevation on the gith is aks rejerted. A mean of the comeded declinations for the two days is assimed as the most probable absolute vahue.

The experiments of deflection were made in the usimal mammer, with the deollerting magne at thare distanes. The value of the ratio of the magnetie monent of the dethertor to the horizontal intensits, detemined at the nearest distamer, difiers so much fom the other dememinations, aren after the wepection of ome donbthal obsemation, that I have thonght poner to rejert it and take as the most probable value the mean of the other two results.

Tha other eomputations do not require exphation. The final results are as follows:

Fowt Inlom, Alaska.

CHAPTER III．

「UKON．

1．Obserretions．－The imstrmments amployed in these whervations
 mometers，he（bred of New Vork，and an anmod barometor．

 lowing results were obtained：

$$
\begin{aligned}
& \text { Cortection of No. 160! to No. } 1613: \text {, at }: 3: 3 \mathrm{~F} . \mathrm{C} \quad 10.01: 3 \mathrm{in} \text {. }
\end{aligned}
$$

1．Reading of hatometer．
\because. Readiny，of attached thermometor．
3．Realibg of detarhed thermometer．
4．Raading of wet－halh thermometer．
i．Dirention of the wind．
（i．Finer of the wind，（estimaterl．）
7．Amonilit of clomls．
s．Kind of clomds．
！．Ramaths．
 1613.

 tion of Mr．Major，was the uhserver．

 Moreover，the ohservations are mot taken at surh homs ans to give a de－ liable mean daily temperature．Sa attempt to comstrint a protile of the river from the data ohtamed woid，therefore，he useless：berallse．

 the suat is omly almat tive inelaes to the mile.

 Font Shem: and thene apmoximately the height of Fort Yokon alsowe the Fred of the sea. For this perpose, obsemations at remerepondings

 with the tirst remblt. For the promere of distinetion, the tirst set is -atherl A. and the sieromed B.

 Enemarornitel states Amix, No. 1.i.) have bern emploped in the computation. The following is the firmma:

From set 1 -

$$
\begin{aligned}
& (11 \mu)=50.5 . \%
\end{aligned}
$$

Wean of sets ber watht-
 home wharately, givers

$$
A \log \frac{h}{11}=34!.6
$$

$$
\text { I } \log _{11} \frac{h}{11}=3.30 .4 \pm 4.9 \text { fect. }
$$

Commotion liom sot $13=+2 \boldsymbol{2}=$
 firr.

Ditimated hejght of St. Michacls Ishand alowe the level of the seat $=f 11 \mathrm{fint}$.

All the obsereations aro wiven in dpernlix B, as they have a mote.

CHAŋTER IV.

TIIE M.AI'.
Fomr malse of the Yukom liver have been pmblished. The tidst was

 inaremate. The sereond is a map of Alaska, constructed from mapsamd other information in the passession of the Westem Lhion 'relempals
 on Sterators popeetion. The lower part of the Yinkon Liver is prohaWy taken fom Zagoskins map. The aprer portion seems to be altogether inawinary

In the sumin of 1 sta the map of Mr. Fiederiek Whymper apmentod. It is on a very suall soale, having been ronstructed to arompany his lowk. The lower part of the river is pineipally from the man of Zat grskin. exerpt the lokon Delta, which is from the recomaisance of Captain E. E. Smith, one of the explorers of the telegraph company. 'The "Ider part of the river is latid down from hearings and estimated dis.
 Font linkins.

Mr. Whympry phbished this map simply as anseteh, mot (laiming fon it any dogree of acemater. It possesses. af eomse, miny drferets. hat. comsidering the ciremmstames mader which it was producerl, it is remankably good. It is constracted on Mereators properetion.
 Willian H. Dall, late dimentor of the sementite corps of the telecriph explomition. This maly includes the whole 'Temitory of Ahaskit, and is

 Suken Delta is taken fiom the recomanssame of Captain Smith, and
 distaners, ohtained dhring : canoe jommey fiom lout iukn, in wheh he was the companion of Mr. Whympere. Mr. Dall also han the heneft of several sears experime on the lower part of the river.

This is the most satistartory map that has appared up to the present

 [uliconice propections.

The map which I have the homer to submit with this report is manly

do mot elam, however, for on recomaissamer, which was in most resuects of the simplest chameter, the acomacy of a smeres. Nevertheless, our adratates, in some particnars, so moth exereded thase of prevons explorers, that I do not hesitate to claim for ome mapa greater degre of acemany than protains to any that has yet apmand.

I will weseribe beterly the plan on which the recomaissanme was conducted and the methol of comsinetion employed, and endeator to indirate, in erery instane what assistance has been obtained from other malus and from individuals.
 ton Sman ten the Aphom montl, throngh this month and the Kriehpak monta to the main river, and thence to Fort Vomen, the map is constracted hom one observations.

These wherrations were commenced July t, when we laft St. Mi-
 when we arrived at Fort Vatom. The ohservations were all taken by
 maned wh thty tom homs, and was then relieved bey the other, the observanos eontiming lay and night. The itinerary was kept in ordimary mote-lmoks, which combla be conveniently caried in the hand or pocker. The lefthand page was ruled in colnmas. In the tirst colmmo the blate and the time. be an ordinary elock, were noted; in the mext the
 ins tonderes: in the next the estimated rate of prowres per home based on the minnere of revolutions of the steamers whed per minnte and
 ohserved time orempied by a small piece of wood thating hy the length of the ste:mer.

On the riwhthamd page miseellameons information of every chararter Was boterl. sum an the wilth of the river, (estimated:) the perition ot the bat with reteratue to the axis of the stream; the positions of islamb; the pheitimus of the monthe of tributarios: their names. dirertions, amd gemomathameter: the topography on both banks, oceasionally illusthated hy mogh sketehes; the timier: the reological ehamateristies; the positions and mames of villages and tanding-stations, der. It was the dhty of the observer toobtain and note as minde information as pessible
 When relinsed. the observer recorded the whole distance thated (estimatead durine his tour of duts.

The mann is construrted on a polyonid projection, the tables poublished hy the buran of Navigation, Xary Department, being used. The scale is 1 ineh to 50,000 tect, or fagon.

The paraliels amd meridians hatring been constructed, the positions of the pents known trom astronomical observations, manely. Reroubt St. Michacl's. Anvic, Nulato, Fort Adams, and Fort Yakon, were caretnly lovated.

The line of tate was then poted fiom the itinerary on a large seale, forty shers being used. The distance (in wars) corveponding to ans romre was assumed as proportional to the estimated rate per hom. In this prolimitary construetion sixteen humed and fifty eomsess were plotterl.

The river was then plotted on the salale of the map, in four socetions, viz: from Retloult St. Michand's to Anvie; from Anvie to Nulato; trom Nulato to Font Mans; and from Fort Mdams to Fort Vinkon, Lis this constration the comeses shown on the preliainary sheets, being too small to be photteal on the seale of the map, were reduced to longer ones. The
shore-lines were then earefilly skethed in from the notes, the peliminary sheets bering consulted at every step.
The fond sections were then rednced (in length) and "swomg in" between the determined positions at the in extremities. Inevery instanere, the estimated distances were fomblto to too great. This is owing partly to the fact that many slight changes of direction, taking in the ageregate comsiderable time, arre neglected, and somewhat, probably, to a

Under the eibeamstane of the expedition, deseribed in a previons chapter, we fomm it difticult to obtain comrections for change in masnetic variation. Owing to the promble position of the a asmetic pobe the change is not great between Nulato and Fort Vokon. Inded, the error in measmement of the angle between two comses dhe fo a neglect of this change mast he within the error of the reading. This may he rexarded as gemerally trae for the lower portion of the river also. The directions at the first section ot the river from the month to A Avie are probable the mest in erom. Nevertheless, by this construction Andrearsky and the Mission fall very wear the points where the have beall heretotore located, and this portion of the river agres well in other resueds with previons maps. The latitudes her romstrurtion at

The ontline of the const fiom Kotzabe Somed to St. Dichatels Istaml is from the man of the United States Chant Smere.

The ontlimes of St. Mielmels and Sthatis lsamis, exerept the sidn of the latter bordering on "the camal," are isom Mr. Dall's map.
 borderiag the eoast, the valles of the Golsovat libhki, and the valley of the Upper Anvic, are fiom notes and a sketeh mate during one portage to the eomst.

The hills parallel to the coast, from St. Miehatel's to a print mear Andravsky, are merely indicated, as we had mo opportmity to mote their chameteristies, althomgh they combla been in the distanme.

The momthe of the Iukon, with the exception of the Aphoon, :mal
 map of Captain E. E. Smith, Western Cuion Telemaph Compans, which 1 have adapted to my own observations.

The tributaries as far as the Alatie are, with the exreption of the monthe, sketehed fiom infomation obtained from tradens amb matives.

The comntry in the vicinity of the pertage trom the Konsknevim Rism
 a tramer, whe thaversed it cally in the summer of tsib!.
 but atetails comald mot be reorded, as we were obliged to keepenmstantly at work at the palilles.

The Shamelook Shongh (with the exerption of i. cutmores, and the cross slomghs, which were obsemed) and the Shagelow lisere are taken from the map of Zagoskin, and membation fom tanders.

The tributarias gemerally, as lim as Nalato, with the exereption of their months, are taken tiom the reports of tamers and atatives. The month
 it has beed sketched in fiom the map of Mr. Dall.

The valler of the Chalablect River, and the topographer wem that
 indiated generally fom Mr. Dalles maj and deseriptions.
 made by Ciaptain Riedell, superintendent of the tarding-station at St.

Midmed"s Islamh and from infomation eollereded among the trabers and matives: and the Toselargut River and its bamehes are obtamed trom the sambersore.

The tributaries, gemerally, from Nubatu to Fort Vakom, with the exreption of theid months, are taken trom the reports of tanders and
 tion ohtamed from a mative.

The ishands have qearerally bera earefally lowated. Between the Ramparts and Fort lukon, howerer, the river is so widre, and the islands are so mameroms, that ane emate determinations of their position was fomd imparaticahle. The istands along the chanmel taveled were moteland the rest filled in fiom the desceiptions and rongh sketehes of matives.

The trallingestations and villages are all earefinly lowated fiom the notes. Exan raches and grases have been maked, sine they may he usectill as lamedarks to finture explorems.

For manes in common man amon the traders, 1 have, in every rase, adopted the enstomary orthography. Such names are V'melardert, An-
 those of native villages and amall tributaries) were moted in the itherary
 This sperling has orcasionally been subseqnently simplitien, hat gemerally it has beren retamed without change. The phometie sostem proposed and (mploped her Mr. Dall has its adrantages, but I have not folt at librerty to follon it in cases where other forms are actually in ase.

Mans mandes are given wheh will not be lomm on of ler maps. and some whid have bern given lof others are omitted. I have abso for a faw localities msed difterent bames from those heretotere mophed. These diserepancios may be acemmed for her the fact that the mative villates (with a fow exceptions) are constantly rhanging, some heing abmulonem and others eomstructed. Another eanse of difterence in mames is the marertaints of the somres of infomation. I hase in hemes. all eases used the mames actually recorled in the itimeany; but I emmot dam tor them any degree of correcthess greater than that of the mames emplosed hy others.

An ontline map of Aaska and aljacent temitory, showing the relative position of the Yakon River, has beren constracted in an eomreniant patace "Inon the mipr. With the exerpion of the sketeh of the Vinkon livin from Fort lakon to the sea, it is taken from the mal of the Cuited States Const simver, published in 1s6!, in which, however, all known arom have berol correted.

I have eomstructed a table of distamees on the Vonkon River, and along the coast to St. Mielanel's Islam, which will be fomm in Apmendia D, paige 11:\%. In these determinations the following method has been (\quad mployed: The distance (on a areat eirele) between two points, determined by astromomical obsemations, was eomputed tirst from the known latitules and lomgitudes, and, seemally, from the observed eombes and estimated distameres. It was then assmmel that the secomd eomputed distance is to the first as the estimated length of any conrse sitmated betwen the detemined points is to the true length. The eroms were fomal to be always positive, amoleonsemently the eorrections are always nexative. Tha river was divided into live parts and the comeetions were determined separately for eath part. The aremge comeretion is abont 0.24 of the extimated distances ran. This method ianowes two sombers of inamanary. The limst is the assumption that for a short dis-
 to the distances rum. It is thomert that the efrors anising from this
saml 1 fiom hie s allid (arip)-

R:imds are timilll 1. : inll res. III the ar be cise, t. An ch -皃 sible. generposed ill at
: :Ind for : ared. lative beillig re in |cally amoit tames
lative place River nited nown
along ix I), been leter110w s anlil mited nated were Ways tions 011 is ; Wo t dis. tomal this
 fractions than hatf a mile. The seromel is the tart that un romertion is
 mination. It is to be obsurved, howerer, that the romstant brow in the

 bied to the werative romections determined for the extimated dis-tancers-in other words, the distames as letermined are mohably a little tow small: but as an allowame most be made for moneressary thenims, and the fact that the shortest eomse was probahly not alwats taken, I have thought best to meglert this arom.

The tahle gives the fiereled distames, which are mot alwas smeasmed
 terially shorten the ronte: whike in others a tortums chamel, wimbing among ishands, increases it much beyond the distamee measmed on the minl.

To the best of my knowledge the only table of distances on the Ta-
 - its Rasommes." Mr. Walles chamener as an observor demands tor at a high degree of respert.

A romparisom of the distances estimated ley Mr. Dall and hement will exhibit many apment diserepanies, but 1 believe that they may all he satistartorily aromited for be the fowing rimemstames:

1st. Mr. Dall estimated along the axis of the rivar, while 1 estimated along the taveled ehamel.

은. Mr. Dall uncessarily assmmed erroneous positions for some points which are now lowated with tolerable achary ; for instance, Fort Vakon and the montlo of the Tosekargit.
:ar. Mr. Wall estimated while thading down the stram, wherats 1 extimated against the coment.

The differemes dine to the tirst two canses mamed com be apposimaterys. asiderained, and I have, in tact, computed them for a large portion of the
 place. The semeral roincidence of the results contimes me in the beliet' that my table of distances is reasonably acemate.

APIENIIXA.

RECORD AND REDCOTUOK OF ASTRONOMICAL OBSERVA. TIONS.

OBSERCATHN: WITH SEXTANT.

$$
\text { Sirks, Ip;il :9, } 1 \text { eti } 9 .
$$

$$
\phi=30^{\circ} 10 y^{\prime} 53^{\prime \prime} N . \quad \lambda=135^{\prime} .
$$

 30.400 ; thermoneter, 55.50 .

Sitki, Ma! 1, 1869.
 Charles W. Dasmond, Linited States Envinerm-Recorder, Mr. J.J. Major.

Object oharerved.

Sun's lower limb, a. ma...

(1) iseryed domble altitude.	Time of obs.rvation	Ohject ol served.	Oburrved donhlealti tinde.	Timent obs. stration.
1	h. m. ${ }_{\text {a }}$	Stun'a lower limb, p. m		
C400 00	10 5x 44. 3		844000	\% 12.80
1040			30100	13310.0
200 00	110010.4		20100	1419.0
3000	0101.8		1000	1.515 .5 .4
4000	01 \%.3. 1		0000	1608.0

Hegiming of observations: Barometer, 30,030 ; thermometer, 53.00 . End of observations: Barome. ter, 31.010; thermometer, $5 \mathbf{H}^{2} .50$.
S. Ex. 12-5

Obsercation* with sertant-C'ontiunerl.

Ö̈vantia, M, 26. 1е69.

Sr. Mehama's ismand, duly 1 , Iemb.

$$
\phi 133^{\circ} \operatorname{sw}^{\prime} 60^{\prime \prime} N, \quad \lambda=164^{\circ} 5 w^{\prime} 2 d^{\prime \prime} \text { W. }
$$

Ohficet whatered.	obsurvial thanhernlt. tivite.	'l'imentiol. nervation.	Ghinct obacrved.	1) hareval dethluenhithats.	'Timentoh. sevalen.
Sum's liwir limh, a.m.fr.m.	0 ' 1	A. m. M.	Suma loxer limb, in m	\bigcirc	1. m. $x^{\text {. }}$
	11:3 8100	1516104.4		87 II100	3 in 30.0
	! 1110000	17 51. 2		\%1109	0.10 .1
	11100	19 45, 6		11100	int +1.1
	81010	21111.6		(1410)	5it 4.4
	S10 60	迷 4.4.4		[6: 51) 0	5×2.4
	स*30 311	314310.4		8100	9 ln 01.3
	10) ml	20 04.4		(51) 10	a) 17.6
	(171) 110	\$1 14.1		20) 69	O2, mion
	[4\% 500	\% 102		10) 00	03030

Obsertations with sarfent－C＇ontintionl．

 $\phi-6: 0^{2} 13^{\prime}+11^{\prime \prime} \quad \lambda 1 t^{2}=25^{\prime} 90^{\prime \prime}$

Obfect observah．	Ohnerval dondmalli－ shll：	Time of ab． N．JTationt．	Hhiget whitrual．	（H）werval Nomblealti－ tmile．	＇lime of obs． ar．pationt．
Suris lower liuts，is an	$\text { ? } 16$	$\begin{aligned} & \text { h. m. s. } \\ & \text { 1二 ini us.o } \end{aligned}$	Suns lower limb．1， 11		h．m．${ }_{\text {cos }}$
	$11 . \%$ U10	合 15.7		：！！：11	
	10100	5\％ 11.4		\％！ 119	40045
	1．5 610	20 15\％		\％\％ 19	01 13， 1
	$2{ }^{2} 1610$	1 \％10（1．）		37111	（11）iti） 0
	\％． 51	1131．19		21 ： 11	（12）5\％
	：11）（19）	0： 37.		40） 3.1	（0）lin ${ }^{\text {c }}$
		$150: 10.4$		1－3．5	$01: 1 \mathrm{cr} .1$
	（13） 10	51020.1		15.5	05.10 .6

ANuIC，July 1：3．1－til．

（hyjuet ole crved．	Hosiverui rloublatali． tiols．	＇Tintaral． nurvalion．	Ohiect mhatrat．	1）hesernal houlberalio． tiste．	＇Timulon strvation．
Sun＇s lower litab，at．in	－	h．．it． 8 ．		1 ＂	h．m．x．
	－t ： $0_{0} 00$	11 19 \％	Simis uplur linb，pr．11．．．	9x 361 614	\cdots
		10 11 1150 10		$3 \mathrm{3}-601$	
	Ift 111	119 3．\％		－ a （5）(1)	11 ： $\mathrm{H}_{1} 10$
	91161	15810.5	Suncs lowne limh，pra．	－1 int 01	$11: \% 10$
	31180	H 9．		110 mb	1110.5
	50） 1111	－10 15， 11		：119 109	4.545
	$\triangle 1018111$	5101.3		： 310	110
	$11111 / 1$	30！11．1．		1119	17 ： 51.5
	410 fil	51111.8		17114	is ： 10.7
	：30 010			cis 50161	（1）12．
	1110	$\therefore 1$ ：\％̌．0		10 （6）	\％at 15，
	ill 114	$\therefore 1.14$		39） 14	万19．
	－4 176	碞		210	
	11180	Si il． 11		11161	5310%
	3118	iv 15， 1		（10） 141	54，\％1） 0
	311 141	51.10 at 1		－2 Stith	5is in． 7
	（1） 16	120110		：171100	Sti ist．
	511010	（1）06， 0		＊21） 410	Sti 16.3
Stata upher limb，pr． 21.	（1）4！ 15	9 \％\％M		11110	Sm 41.11
	15485	31150		（ii）（6）	－514．81．
	18	3114		$r 1$ int 0\％	is 100 tis is
	4160	315		100	11141.8
	40111			31）（1）	

 Index erros， 0.

Ohfeet obsarved．	Ohacract dombla alli． tule．	survatlon．	Ohjut minervert．	（haserval dandbealif． inde．	Tline of ab． aecwallon．
		h．b．R． 11 us lin． 5 Wi．Oit， 0 11413 B	Sın＇s lower limb，n．in	$\begin{array}{ccc} \circ & 1 & 11 \\ \therefore \therefore & (6) & 019 \\ 10 & 100 \end{array}$	h．M．N． 11 IH 57． 51 0.580

[^2]Obserations with sertant－Cuntimned．
Font Abams，July 23 ，1869．

$\phi=65^{\circ} 0 \varepsilon^{\prime} 00^{\prime \prime}$
$\lambda=1.2 z^{2} ; 10^{\prime \prime} 11^{\prime \prime}$

1Hyeat obserrad．	Ihlowervad domblanti－ Indr．	w．rvition．	Olijut oharreal．	Ohererval dimilaralt titice．	＂Tinmentol． nervalion．
Sun＇s luwner limbs，a．m	－＇ 1	1．17． N ．	Sua＇n lower itmb，a．m 14． 116	－＇＂	h．3．1．8．
	711006	10 163：4．		49） 11 in	1 號
	$\because 1109$	1！ 113.3		11130	
		415		01610	59.16 .0
	（11） 06	（0）Hi， 11		（1） 0.5	58.5
	\％${ }_{1} 10$	61 4． 10		61： 56	¢＇ 4.5
	\％ 060	\％ 91.5		it 0000	41 mbs 3
	111（1）			36	19110.1
	20 cm	54.6		in ${ }^{\text {a }}$（1）	20）（6，：
	30， 61	50% \％ 10.9		I．7（17）	
	（1）${ }^{(1)}$	An 4．11		4001	40.58 .11
	Sil）（10）	it sis．is		3500	21： 3
	73 （10）ta	5x 14.5		9514	\＃3 3．1．7
	1010	5938		15151	－3 46，\％
	［311915	11 （6）16． 5		10 （16）	－1 11.6
	30161	01 fil．${ }^{3}$		3160	25\％ 5
	．11100	0 O S． 1		I5 ： 510	ali 3： 3
	514 610	613 34， 5		if 50103	3： 31.0
	If（thl 00	111 ＋1） 5		10010	3it 15.0
	1110	（1i）ficis		（17） 00	1717.0
	\％110 110	（1）50， 10		3.3510	3N H． 5
	75． 81819	110331.0		1010	33131.5
	if） 611 （1）	17 僦 5		Sill 10	1113.3 .11
	$10^{16} 10$	1－ $1: 3$		Sll 110	1158
	1.510	14180		（i） 610	42：30．
	$4{ }^{4}$	3111911		（11100	13354
	$33^{\circ} 1010$	：110， 11		：3 31110	14.84 .0
	10．${ }^{\text {cid }}$	4 11.5		（1） 610	f． 4.8
	1．5 19	＂2．1：1．		31016	4tite．
	［14） 14	23： 16.8		21） 101	45 \％${ }^{4} 0$
	Sis 110			111 tio	4N 35.7
	$\because 6000$	43 5\％．N		（10）（17）	＋1： 51.5
		（1： 112		T1 sin 01	［13131．6
		$11 \mathrm{nis}$. \％		4008	51 12． 11
	01918			：10100	5： 3 l
	1110	17 \％		40616	Sat
	10 \％	$4!16,0$		11110	511911

Font Amas，July $84,186 \%$

Ohjuet miserval．	Oherrual domberales． lide．	Timenf ub． nervallion．	Uhyret observal．	glineiveral domble alts． tille．	Thmerfal． survatlon．
Ninn＇m lower thmb，it，m．．．．	011	h．\quad ．${ }_{\text {c }}$	Sinn＇m lower limb，a．m．．．．	－ 1	h． 11.8
		10.513 .18		$711 \begin{array}{ll}\text { cos } \\ 3\end{array}$	11 嵒 19.90
		If 110		3.5 f0 100	4．3 24． 24， 010
	：51 10	$12 \mathrm{1a}$,		4， 61	24， 410
		10 \％ 010		：AIIII	9．5 16， 4
	ill（m） 101	20）（1）．A		fis（M1）	4， 16.5
	1006 15000			77040	9617．4

It ex error， $\mathbf{- i s}^{\mathbf{\prime}} \mathbf{0 0 ^ { \prime \prime }}$ ．

RECONNAISSANCE OE THE YUKON RIVER.

SEvatis Vilamik, July 25, $1<69$.

$\phi 0.530^{\prime \prime} 1^{\prime \prime} \quad \lambda=1.51^{\circ} 10^{\prime} 00^{\prime \prime}$

 Captath Chates W, laymuad, V.

Whinet ubsirved.	Hhenoved emblate alti taile.	Thateriols. norvation.	Ohjeet olswerved.	Absurvel douhla :alif. inele.	wivathon.
Surs lower limb, it mi	- ' "	h. im. ${ }^{\text {s. }}$	Simis lowirlimb, 1. m.		h. m. N.
	619 第 010	10.519 .1		is 150161	(3) 4ns. 31
		30118		11.5	
	111111	11 (19) \$2.		(6) 19	9\% 12:
	15 110	winesis		70 5.5101	2N 1\%-
	[4100	$01: 12.0$		511 111	\% \%Hi.
	3. 01	$0: 16.5$		fi. 161	4114. 11.
	50 (14) 16	$10: 150$		11101	S11111.
	10.500	0.181 .8		3.5 119	(11) 3i, \%
	1016	111.4 .4		(5) 19	
	15198 41911				杜 5 \%
	4.500	(fitu! 10		1.500	a: 1 l (\%) 0
	:10) 010	116151		101010	31145
	:1, 110	11590.5		O.) 61	31.10 .0
	11103	110 an.		OII (4)	35.5
	1.7 109				314 1:1. 3
	51111	$10!113.11$		if) (6)	: 1416.0
	5i, (H)	111017		15, 190	\% 14
	\%1160 16	111 :17. 5		$10) 16$	3×18.1
	18.7 01	1117.1		1.50	
	101010	$11 \mathrm{~nm}, \mathrm{~m}$:61 (N)	319
	1.56	1423\% 0		$4{ }^{4} 16$	3415

Indes (rror, -iV no '.

Observations with sextant--Continned.
Font Y'ekon, Auguat 7, 1819.

Objuct ohservad.	Ohnerval doublin: altiturle.	'lime of obs. servation.	Ohigel whsurvet.	(Amertud dumberall. tull.	time of oh. servathon.
sun s lowr timb, a. m .	$\bigcirc{ }^{\circ}$ ' ${ }^{\prime}$		Sim's lower limb, jo. In .	- ' 1	h. mi. 8.
		10 :31 :3, (1: (m) 0)			:1 4.500 .5
	1.5 50	3:3 31. x		$0: 100$	4i 10.40
	200	I: 51.5		iti 5.50	414 49, 5
	4500	IT3 36, 2		5000	17 in 0
	30100	11103.7		411010	1* 41.5
	3500	3411.8		2016	5015.5.0
	40101	3511.1		1.5101	5131.4
	45010	:h. 46.1		1003	5810 m
	50109	(13)		015 mm	5 E 125
	5500	3 3		0010	5 mit 10.2
	660060	158		66850	51.16
	0.5010	Is 0.5. 0		all 10	it 40. 2
	11810	3×26.4		4.500	\$450.0
	150	398.3		111 10	53.50
	90100			Sis 00	56 1.5.
	95\%	40 gic.a		36100	5154.18 .8
	3000	41 10.\%		250	5178
	3.500	41.36 .3		4015	57 13. 0
	40100	4211.5		1500	5818.0
	4500	424.5		10) 16	$55^{2} 50.5$
	51010	4317.0		0.519	5413515
		4101.0		(11) 00	100096
	67008	415		6.5 55.) (1)	11034.5
	0.5 (6)	4510.0		al) (\%)	01 15.5.
	10 \% 16	4511.0		4510	01 1..3
	1500	f19 30. 7		(11) 111	11: 17.5
	211011	46: 519.1		:15 111	19, +2.0
	4116	$4!18.15$		30	00195.5
	5080	50100.5		95 0:	04030
	5.5101	3108.5		$\because 010$	$04: 17.1$
	fix 011)	51316		1.510	0.5) 18.8
	15.5111	ix 12, 3		10101	10. 114%
	10611	it 410.5		0500	11610.5

Indre ctror, - \mathbf{l}^{\prime} nis".

COMPARINON OF CHRONOMETERS.

 apmonlix.

CHHONOMENEIS,

Nos. 11° - hiroul.	liast.	Slow.	(ialus daily.	I.inens daily.	N゙ロ. 01° chroll.	Fiast.	Slow.	linins dalla.	laisen dails.
1609	8.		*.		514:	8. 31.3	8.	A. ${ }_{\text {a }}$	8.
115%	9-0		$11 . \mathrm{F}$		4, ifl		11.1		1.0
\%4\%		7.1	1.1		Sll	5\%. 1		\%.9	

Comparison of rhronometers－Contimsel．

，in this

Harrmin，

Onualanka Islid
x

Statlon．	Hate．	No．of chron．	Fure inti． （：ajoll rhron．	Station．	Jhate．	No． $0{ }^{\circ}$ chrom．		indi． tion of roll．
Sitka	$\begin{aligned} & 1-698 \\ & \therefore 15,: 37 \end{aligned}$	413		thmalankaldan－ Cont C ．	$1-693$ May ${ }^{2}$	231	11.	17．H． i上 20.0
		11.5	！ 5 ： 2 ： 31.5			1 H0：	11	10 10．11
		$4: 51$	＊ 10 51．11			纽成	11	il 35．0
		1604	3831020			1601	11	30 Sis．
		Ulit）	＊ 111 Ini． 11			$2: 11$	3	20131111
		24.5	521116.11			248.5	$\stackrel{1}{1}$	
		± 11	80.006			：liv	11	in 15．01
	Apr．es	H2．i．				$: 15$	7	$12 \quad 36.5$
		3il！	\％ 16 \％\times \％			Stin	11	as 316.11
		21：in	9 12 30.0			$514!$	11	50 ： 310
		231	\％小－			2：11	3	33330.11
		115	（）10 5 \％． 11			11.5	\because	it 00．3．
			7 4！ 374			411	3	$\because 110$
		1 lial！	！ $10!805$			1 tals	2	19 311．11
		Hill	7 ti 56.5			（10）	3	\％ 10.0
		1 Itan	$\begin{array}{llll}9 & 111 & 35.0\end{array}$			1 lim	：	（1）J1． 0
		21619	T 12 is in			314	3	94000
		915	15 s 111.11			31.5	10	t：0E． 0
		418）	3 l			$4{ }^{2}$	3	115
		51.81				5119	i 1	10 16，0
		M1111	3 J 518		May 27	413	11	16 i 10．0
		5147	1 54 39，\％		May	21.7	11	坴 10.0
	Apr． 29	23.1				2：14	11	$4!$ 16．5． 0
		24is	9 ㅍ4 $4 * 11$			Higa	11	10 ［1．0
		2： 11	－ 0150			240	11	4\％45．0
		115．5	3885				11	12.514 .6
		2：11	807 ± 0			264	11	－0 35． 0
		1 1xil4	$\begin{array}{llll}1 & 24 \\ 4 & 31 & 3 \\ 0\end{array}$			24.1	i	4.581 .5
		214	$\times 1078$			（ti）	11	45 020．0
		1609	920616.0			$514!$	10	14 120
		20819	8 13\％ 27.0			2：11	11	15 15.9
		245	511 15．0			1150	11	1．5 1＊． 10
			1： 10 ： 10.0	beirring Sea ．．．	lune	y：11	1	is is in． 0
		51.19	$\geq 1!1 \mathrm{HI}$.			948.5	11	11 E 35．0
		3010	$1: 41810$			931	1	11.31 .0
		is 4 ！	$21!111$.			115．）	111	示 5 5
	May	2311	－1！dic． 5			3：11	1	43 （A）． 11
		24.5	$93: 18.810$			$1 \mathrm{tim!}$	10	1！） 83.11
		411	\％ $2: 11$ inc 11			Slict	1	． 10 ： 610
Onualaska Islid		11：5	$93: 3$ in． 11			1609	10	il 16.5
		2is1	\％ 20.5			皿恠	1	fictio
		1619	9 3．1 161.11			4	${ }^{6}$	4i 3：\％
		3193	＊ 27 \％ 21.0			（c）	1	11 ： 51.0
		161013	433780			311！	11	（1）
		4：11	4 出 $11!0$	St．Mirland＇s Is ${ }^{\text {d }}$	Inme： 0	y：11	2	14 35．0
		31.5	51710.0			21%	$1:$	$10 \mathrm{Cl3}$,
		9till	\％\％ 4.5			218	12	11.10 .1
		94.7	540			41.5	i	11） $1-.11$
		뱃）	－ 4.54 .5			431	\because	J10 Sh． 11
		5149				11.5	11	31 31.11
		¢titil	\cdots－ 41 2．ta			11．5）	11	is 11.0
		$51.1!1$	9）5\％0．3			415	；	4281019
	May \quad－	$2: 11$	${ }^{3} 505$			4！11	$\underline{1}$	$4!13.0$
		$21: 5$	11014110			（iai）！	11	5101.5
		281	981110.0			$1610!$	$1!$	（1）19，0
		115.5	10 5ti 319， 11			26	：	11 im． 11
		$\because 31$	！ 5 S（ 61.5			44）	$\stackrel{3}{*}$	4．t sis． 0
		164：1	10 is Jicil			Lialt	11	$3{ }^{3}$
		310	950515			Stio	\cdots	AN 10．0
		1604	10 ： 511183.0			44.1	i	fr 50
		${ }^{6}$ and	$10 \quad 11117.1$			41410	\＃	（i）
		91.5				51114		136181.19
		3till	！ 5480.11			\＃15	i	\％3 13
		$514!$	11 \＄6 10．－			51.14	11	11 1in． 0
	May ${ }^{\text {a }}$	cris	11111010		Jıly 1	${ }^{\text {cis }} 11$	\because	
Onualanka Islid		34：\％	1112080				11	：11 31．5
		2：11	11 13 11 311 11			－ 6 洼	11	： 1413110
		115i5	11119810.11			$\because 4.5$	7	
		231	11 lis 10，0			011	$\stackrel{*}{10}$	11 ：m．a
		16 ar （1）	11 1：1 0．5．			1105	11	311813， 11
			11113			11 in	11	\％304． 11
		1604	111780			$\because 1.5$	t	Mi 1N． 11
		410	11858			$2: 11$	\because	16300.11
		514：1	11 ［15 4is． 0			Ifin！	11	13818
	Miry 46	231	1110 IN 110			1619，	11	11 191， 11
		24：5	11 年4，5\％．0			015	\＃	1 N
		2：31	1150			4	1	1110.0
		115.5	11 M1 4x．5			1609	11	1i 10， 5

Comprixon of chronometrex-Continned.

* Sloppred.
('ompurixom of chronometers-C'intinusil.

74 reconvaissance of the yukon river.
(amparison of thronometors-Continneal.

Station.	Dato.	Latitule, N:	1.angl:ule, W.		$\begin{aligned} & \text { Ni. of ellowi- } \\ & \text { ometir. } \end{aligned}$	'Timu.					r_{0}
							1ppar ham.			$\begin{aligned} & \text { meati } \\ & \text { in. } \end{aligned}$	
	1 F 6.	$\bigcirc \quad 1$	$\bigcirc{ }^{\circ}$	l'riox.		A. m.	${ }^{8}$.	1.	${ }^{\prime \prime} 11$.		N.
Silka	Spril 99	56 1018	$13.51 \times 0 \%$	15	5149	1117	13.1!			0.3. 51	
Silkit	May 1			5	$511!$	$1{ }^{1}$	0:3. 33		10	10. 51	
Onhatanian	May 碞i	515	166 92 51.7	:31	51.19	31.13	1.5, 37		1 li	34. 31	1. 0.14
Auvir:	July 1:3	tig 51	160015	9	140:!	9	1-311	"	15	19. 55	
Fint . Dinturs.	July wis	(i.3) 1 N 11	$152: 3011$:11	1100!)	15	23, tit	I	45	23.3. 60	0. 211
Forl Jilamm	Jty			14	110:)	1 51	48.108	-	4.7	15. 014	0. 3131
Furt Yakotr..	A15 \%	163 :31 47	$11517 \quad 17$	Q3	1 1hily	114	31. 11.8	-	$1: 1$	Sx. 35	0. 460
F'mil 「akon..	Alyg. 7			$3: 3$	16il!!	119	11. 1i:		$1: 1$	13. 10	0. 191

TIME BY NLNGLE MLTITUDES．

Stalion．	$1{ }_{\text {atat }}$ ．	latitule， N ．	Konsiabile，WV．	$\begin{aligned} & =4 \\ & = \end{aligned}$	Chronometer time of lacal lutath nomb．
St．Mirhatis INJand	．［nly 1，｜ 2 6is	6．1） $25^{\prime \prime} 00^{\prime \prime}$		5111	

CHRONOMETER TRME OF LOCAI MEAN NOON BY゙ COMPARINON．

VALEE OF A REVOLETJON OF THE Z．T．MCROMETER．

	$\begin{aligned} & \frac{x}{z} \\ & \vdots \\ & y \\ & y \end{aligned}$		IN以．		L	＇		＇$-{ }^{\prime} \mathrm{l}_{0}$		$z-z$,
			N	S．						
$\stackrel{\circ}{62.0}$								h．\quad ．		＂
	1	0．5	36．0	6．5， 0	－3． 31	$5: 11$		$11: 1$		$4 \% 1.60$
	\because	1.0	36.0	Di．i． 0	－i． 0	S	11． 11	い！	Si． 19	ill 108
	3	1.5	53， 0	（in． 0	－1． 11	31	16i．：	$\because 1$	21.8	\％i31． 5
	1	$\pm .0$	50.11	（ini． 0	－i． 0	3．5	＋1．$\%$	2．＂	Hi，\％	64te． 17
	5	3.5	518.11	tiis． 0	－i． 0	34	9：1．	\because	－7．	
	6	3． 11	51.0	Ai．i． 11	-3.11	：	30． T	：	4i．$\overline{5}$	（ixti． 41
	7	3.5	56． 0	（in． 0	－3． 0	10	115．\times	III	115．	（i）
	$\stackrel{N}{N}$	1． 0	3b． 0	Ai．is	-3.0	11	15．：	31	13．3	6inl 91
	$!$	4．5	59.0	（ii．）． 0	－i． 0	42	\％ B	：	5\％M	杖－5
	10	5． 10	20.0	（i．i． 11	－3．0	1	13.1	： 4	17． 1	－Hi，－
	11	5.5	519．11	（is． 11	-3.0	1.5	17．：	3.1	5．3	－1．-2
	13	6． 10	59． 0	（ii． 11	－3．0	17	（1．）	：i	131．	＋10． 4
	1：1	6.5	51.0	（ii．i． 1	-3.0	4.	10． 1	：1	1．3． 1	－18．21
	14	7.1	53， 0	fis． 0	-3.0	51	61．	111	141．	－3， 30
	1.7	7． 5	510	fis． 0	-3.0	S	ㄴ！， 0	11	31． 11	！112．$=1$
	16	$\therefore 1$	519， 11	เi．． 11	－3．0	52	$\therefore 20$	411	0：1． 11	913．5． 3 ：
	$1 \hat{1}$	$8 .:$	tio． 13	（iis． 0	-4.5	T	20，	11	11． 3	ใix． 31
	14	＊！ 0	60．0	（iis． 11	－3．5	5.5	5．5． 1			1039． 10.7
	19	！ 5	tio． 0	（ii． 11	－4．	it	3． 5	11	\％	10：0．0． ta
	$\because 1$	11． 0	6i0． 0	fii． 0	－\％．	5	17．0	＋	50，	tumat． 3 I
57.0	31	10． 5	fit． 10	1inio 1	－\％\％	619	13！	5	1\％1	1014．供
	$8:$	11.1	6i6． 6	（in． 0	-4.5	11	11． 11	01	Hit．${ }^{\text {a }}$	11\％．11
	\＃1	11.5	6i6． 0	（is． 0	－4．：	$0: 3$	13．11	S． 1	1×11	1151．$=$
	31	112.1	$\text { 1.11. } 11$	（ii．e 0	－3：	111	\％ 1	O1	：17． 1	11－2．$!1$
	8	19.5	$6 i 0.0$	Ai．． 0	－4．	01.	St． 0	Sid	111．${ }^{19}$	101205
	± 6	13.0	$\text { (i0. } 0$	（i．i．， 0	－4．2	17	30，	：17	：31．${ }^{\text {a }}$	1：11．191
	4	$13: 3$	$\text { tio. } 0$	6is． 0	－4．5	0	＊6． 0	，品	55， 11	15： 1.10
	\％	11.0	$\text { fio. } 0$	$\text { (6.5. } 0$	－3．5	10	些，x	1 （111	＂－\％	1314． 26
	\＃！	11.5	$\text { (ii). } 0$	$\text { (isi. } 11$	－4．	11	5ib． 0	0：	111， 11	$\text { 1:133. } 46$
	310	150	tio． 10	finio 0	－！．	$1:$	\％1．0	0.1		1310． 10.
	31	15.5	$\text { 60. } 0$	$\text { fi.i. } 0$	－3．5	11	（1）． 3	111	Sin） 3	$11 \mathrm{NH}, 5$
	$:$	16.0	$\text { fitit. } 0$	$\text { (i.i. } 11$	－4．5	16	1.5	1 Hi		1193
	In	16.5	$\text { to. } 0$	$\text { fin. } 0$	-5.5	17	11． 3	117		$1 \mathrm{flil}, 2 \mathrm{~s}$
	： 4	17.0	$\text { (ii) } 0$	fin． 0	－4．5	19	1：1．3			1115．31
	：15	17.5	60.0	fi．i． 0	－4． 5	4	12．			103：\％ 3
	：16	12.10	60.0	（6．i． 0	－6．5	4	13．			10．5．4．1is
	：17	1×5	60.11	（in． 0	－4．\％	4				liwti，r4
	：	$1!1.0$	66.0	（in． 11	－4．5	2	¢．l．：			1ti：3．It
	319	19．5	60．0	6i5． 0	－4．5	21	80．：	10	Si．${ }^{1}$	11i， 11.40
	10	20． 0	6i0． 0	（is． 0	－4．5	2	23． $\mathrm{i}^{\text {i }}$	15	：11． t	（tisid．5it

[^3]\ddagger Fowne doranged；riject．

Finlue of it revolution of the \%. T. micrometer-Continmed.

 M('RいMETER.

 M('RいMb:TRR.

Fislve of oue divixion of trmait livel No．P，dro－Continned．

CHSNGF OF RHEHT ASCRNSHON AND HECHINATHON：
Limbic Thascit．

$\frac{d}{10}$	t								
	I	\pm	3	1	5	6	？	\cdots	4
1	（1）Hatus：	的－28＊ $1:$	0．（1）3tins	0．$-5+5 \times 10$	1． $3+4.33 \%$	1． 11.15%	＊．5）		1． 31515%
－	（1．） 140 ± 4		1．035311	1．-5.8591	2．lia！	3． $0 \cdot 5151$	5．Willill	6． 711 ］ 11	＊．33－3： 11
\％ 1	（1． 211171	以 51 －10．1	1．itum\％1		4．13：3－11	\％． 7117013	7．－｜tibis	10．10．203\％	1：120－1！ 10
4	1．$=-1$ 10	4．Sumintio	－11：16i\％	at．nilm	5． $17!1719$	7．Biilitus		1：1．114：\％	11i，－76！1－3
\％	（1．Ei．］－tic	1．198ati		1． $3 \times 11-10$	（i，$\because=110 \times 1$	！1． ditisali $^{\text {a }}$	1：3． 113 （hati	14i，－．11：－13	$\because 1.12011015$
4	（1． $4= \pm 363$	1．E以Jい！	3．113．2133	5． $9: 7503$		11．1－1 113.3	1．），4！1： 51.1	41.110 .148	－5，3ftila 3
7	（1） 4 1－3600		3．＂inutab	6．13110～0	1．H3 fink	13．131， 1130		W3，lixiont	＊\％Fibilu）
\cdots	（1．intali：	1．91：1\％	4．Hils\％	\％．010：37\％	10．7．5！1：17	15．30－617	20）， 10.508		316． 75.597
9	（1．cisext	$\pm 1311 \mathrm{in}$	4．\＃Ne－tbs	7．ernilios	12．401135	17． $2 \times 21!5$	\＃1．	（3）． $30.10 \% 1 \%$	$3 \% .1551 \%$

Lawt：Tusnilt．

	t								
	1	2	3	4	5	6	7	$=$	9
1	（0．14136］	9．3004t	0． 615048		1．615，96il		2.50×161	3． 274 tal	4．fix9061
2	0， 2×3	－$\square^{\text {a }}$	1．3545！	21010	3．wilm：	4．H6M以！	5． 9160		4，369042
3	0． 2×5		2 cminc 3	3．	4．Witrri］	6． 71933×3	\％，mintis 3	11.31138 .3	14．1689re3
4	（0． 5 niom	1． 4 H1－6．${ }^{\text {a }}$	281504	4．3041－45	6． $41: 1818.45$	8． 93184%	11．6114．4．	15． 0×6.545	18． 3.906
3		1．－- Pum	a． 3 ¢	3．¢atiact	c． 1791 cmi	11． 19.2316	14． $814+106$	1－．п．	23． 419×16
6	1．－3150\％	2 10：56：	4．07：3567		9． 6993767	11． 11163767	12． 717667		4－13．13：767
\％	0． 8105%	二心些	4． 8 isitx		11．311724	15．611：14	90． 61505	96．1100nt	39．
8	1． 13800 m	2－－3x00	－5． 43168	＊．$冖$ \％	12． 12.8 ata	17．si．ata	24.6	30．1316：0	：17．519690
9	1． 2.6 .61	2 24151	6． 1101051	9，e：71．51	14． 531651	201． 31015	96， 57665	13， 94315	42899301

－Explanation and nutation in I＇art II，Chapter I，of the report．

OF' TIE WIRES.

TRAN゙STT OBSERRVATION.S.

Ohyjet obswrivd.	Jheclimation.	Talubar A.J.	Transit bus 	Limor ul 	Inmuks.
	01	h. m. ${ }^{\text {a }}$	h. m. *.	h. 17. $x^{\text {a }}$	
a Ayuilat	$\bigcirc 31$ tat	$1!114$	501940.51	111504.8	sleady,
c 1rauromis		$1!18810.11$	5 :n ilvoins	01. 010	Standy:
- Lirmar Majont		\% 54.4	\% 11.12	(1). $\mathrm{bil}^{\text {a }}$	- undraly
- Dיjphini	10 51 14, ! 1		$00^{11} 5.56$	(10.50 5	[uns-muls.
a Lygni ${ }^{\text {a }}$,	11 114018.18	S0 35	15 \% 16.7	10, 18	flaring.
\% 1rame Majorim	I- 31816.5	8 all 14, -11	10 35 11, i4	113.814	
$\%$ Cywnh	E1 +11 10. 0.5	3106		161.	
1 liamonis		It is 0is.	$70: 112000$	191. 1.1	
β Aluaril	tiow 30. 1 S.	! 31 小. 107	711918.816	(16, 17,	Fiarlig.
18 Copher	645151%		\% 13111. 11	160.81)	Jiariag.
ε lugham	016 16. 0 N.	?137 17.51	\% 20110.90	00, 614	
a Squaril	0.8703 .115	214	7 If 15, ed	11538	
$3{ }^{3} \mathrm{l}$ Vmar Majoria.	(i) 4.5 3. $1.4 \times$	100050	78.3 an. 0.5	1500.51	Lamp cast.
\% Lexmas Majuris.	6.5 4.5 3i. 14.	100080	753	00.318	1.thil went.
\% I'egani.....	10 050 07. 4 N.	20 3150.03	-1! 5 5 \% 5	00. 19	High whul huthg ulewervillens.

Tianail aharerationa－fionthonat．

a Aımilia	－ 3114.58 N\％				1－1aty．
c Pramoriq		1！1－14．13－		Stio 9	
a Pisar Majaris		－512	at 41 Iticis	anti 1－	
ℓ 1thtulat	1115		（\％193． 11	ati．1：1	
a＇szui				aniou	
\pm Vram Magur	10：csuly	－＂al	435 16．	5atis	
o：Sma Vatorix．			¢ ！\％ 31	5tic． 3	
8^{6}＇＇1，дия	2．1 11 11．11 \times	$\cdots 1179$	（1）	Stiou	
1 Hatemis	matis．as	419 18．1．		S．1．i． 61	1．amprani ：lamp
A Sumait		$\therefore 1: 1 \mathrm{H}$		Sth，	
15 ［rphei	（3） $0^{4} 1 \times 0 \times 1$.	11 3515	；19，mition	itit 11	
\＆19\％and		± 3 ¢ 48	7 \％	50， 51	
a A！и，аii		：30．0．0．0．	¢ 11 M M ． i	：nill	
ate I＇tas Majurim		11109089\％	$\therefore \therefore 1811.31$	Prin	
9 万rammis			－ 10×5	tit tit	
\％1404xi．	1111940\％，\％	20： 31114	（4） 616.6	inti，is	

fralinatan．Tabular d．di．
Trunsit la
Virror ni

Sinubitim．

h．\quad ．$\quad x$ ． 	
	＊\％ 1% ， 11
	$\because 1$ 0\％\because \％
	！ 14.10 a int
	201 13．10
	？l ：17 17．
	－19 int lb，lif

Anjut f fornved．
14．4 linallon．

Tranmed by －h＇ulublidís．

Ramathe．

	th．
	1910 34． 1.6
	！！；\％in． 7
	$1!111111.11$
	$1!1114.4$
	1！10．tw
	\％\％19 14．9\％
	\％ 4
	频 it（10）it
	N（11）12，10\％
	46 50： 5108
	\times \％ $0^{4}+7.8$
	$3115 \% 1.31$
	！is li．t． 36
	31 481210
	21 in 1\％．in
	（1） 10×5

h．\％．1．N．
1 in dis nis
\％ 14.1 mi 17
5 4．5 14．3！
51185
（i）14 419，ma
（1） 11.4
$10: 4.51 .8$
6fis ind m
18 in sat 4
711.111 .11
\％111 11． $3: 5$
71414.15
\％ 11 1．5． 6
8 （twe
8 ，4）0\％． L

h．m．${ }^{\text {n．}}$	
1.111 int． 61	
19， 1.6	
J14．is	
11．M1	
il．14	
1N， 14	
4：1， 1 fit	
115． 4 H	
＋11，10：	
1！1） 11	
Ja，M，${ }^{\text {a }}$	
int． 711	
\％上，\％	（？）Lan！！Dant．
2．10． $\mathrm{ti} \mathrm{\%}$	¢ Allif Wast．
f11，if：	
1！1，in＊	
17，Bill	
49．${ }^{\text {\％}}$	
511．1！	

Trunsif whatretions－C＇undimual．

			＇Tr．ansit lo	l．wan 4

1＇1311mall lis
V：GH114

				1．IH．N．	1．．＂．${ }_{\text {a }}$	11．mis．${ }^{\text {a }}$	
1	1！rambuls	（i）$i_{\text {di }} 1:$ \％	λ	1！1 1： 12.1 .11	1 is 1i \％	1111 in il	
：	Aı日ila．		\％	101 1－3， 0 ，	$\therefore 17118$	$\because 1.1 i$	
7	Iyuilar	$1111011:$	\therefore S．	$1: 1$（1）111．｜11	is ！ 10.6	\％1．11	
4	S＇prilo	¢ ！J Jl．！	8	$1!1$ 11 19%		\％1．${ }^{\text {a }}$	
t		161 3141%	N		\therefore it 10．1．0	$\because 111.1$	
il	I Ima Vajotis	1：$=1111 \mathrm{i} .11$	N	Finl 1．1．\＄ti	i di ＋103	$\because 1 . \quad 11$	
1	｜1．1plinil	111515	\geqslant	：011	1） $1: 1615$	$\because 161$	
－ 1	t＇s碞	11 1： $163,: 1$	\cdots	U11 ： 17 IH．Hi：	li $\because: 1 \mathrm{~lm}$ il	$\because 1.1$	
1	1＇rail \at｜u1a	Im＊IS 110.1	K	\sim Sal 1：1． 1 m		$\because 1.8 \mathrm{~m}$	
1	（＇う以上	11111115	S		li ：1\％Sis． 1	＊！4．15	
$\mathrm{m}^{\text {P }}$	Irait Minjolim	lin（ll）：nt． 1	N	π is 1\％ 16	li 11416.11	$\because 11$	
i，	1＇1遍1	$\cdots!11110$	N	－1 11\％\＃！\％\％	1 in （1）0\％． 111	\％． 1.1	
1		rl is sbran^{11}	Σ	！）in lits im	i 11.1 1．． 3.1	！1．Sti	1．athy W1：4
1	11／11／6uis	－1＂b sis．It	\cdots	$\because 1 / \mathrm{llil}$ im	； 11.1110119	！！iti	1．al｜il
i）	（i）｜lill	lin 514	\triangle		：1\％ 111.11	$\because 111$	
§	－Syharil		\therefore		\％1n \％in	$\because!$	
；		181.1118	\therefore		¢ 10 ill 3i	$\because 1.1 .1$	
5		（1）If 1m． 11	N．	el itic 1\％，it	i 41061.	$\because 1.15$	
4		lif li．t 141， 11	＊		；＂\％\％！H1．4	$\because 1 . \%$	
4	by⿴囗十介1	\＃15 \＃1． 11	\therefore		；11 11．11！	$\because 1.1 .1$	
1）	－ $11 / 1 / 1 /$ il	\cdots \％1＊， 11	N，	婪 $11: 14$ ，偻		\＃1．4\％	
	Numbin 1				－11：1 11\％．1．		
	Mrotim II				\％ $11,111.11 i$		
\cdots	－Iflatil	$1101(H), 11$	\therefore	－6，		\％1．	
H	－ duntil $^{\text {a }}$	11.18 11．7	S		$\cdots 111 \begin{gathered}\text { chil }\end{gathered}$	± 1.11	
；	＂r｜ithit．．．．		\．		－渻 11 i	\＃1 41	

[^4]S．Ex．1： f

Wyjul nlewivad.

Jimur inf
limiliothan

f゚ul! I Si mex.

			11	12	＇\prime^{\prime}	－1．＂	1.10	$f^{\prime \prime}$		E E E E	e^{-2}	NH^{2}
111	（1．．41	11	11.	11	11.	11． 3110	11.	13.	$\begin{array}{ll} \text { h. w. } \\ \text { if } & 1.5 \\ \hline 10, & 4.4 \% i d \end{array}$	10．：11	11．13：Hil	II． $111-11$,
11	（1．in）	1	－11． 1 i	1	II，．81	－11．17，	－11．17：11	11．（1）	11 iti．\％wil	－11．13	6．Im $\!9$	IV， 1 H1： 1 I，\％
1：	（1）．1！ 1	\because	－11．119	1	0． 36	－11． 11111	－11．11：84	11．iti	i1，－ 40×1	－11．1：1	11． $1141!$	11，10．3：， 11
1.3	0． 311	i）	－111．7	！ 1	0， 9.1 .1	11． 117%	11．类1，	\％：\％ 11	14． 1.115	0． 911	1． 0 （in）	（1． $111: 1$
11	11． 11	1	－11． 1	141	$\because 111$	－11． $11 \mathrm{Hil}=$	－11． 3111	N． 111	14， 31115	－01．11i	0．10：citi	（6． 1.1 ith，in
：41	1．161	（1）	，1．－11	（ 141	111． 1111	11．： 1 －114	，A，－ 1104	101． 10	OF，linia	11．1：	（1）．1ibid	11．1\％ 11
：1	1．（14）	11	－ 4.9	1：1	11． 101		－！引mat	1：1．（1）1	Y1． 1.111	－（1． 11	（I． 6190	（1．） 119 m
－1	1． 181	$1:$	－1．$\square_{1} 1$	111	1\％．（1）	－16． 1001.1	－1．31461	［11．（1）1	1\％．1\％6：	－0． 1113		0．Mam：
W1	（1），M：I	1.1	－1． $\mathrm{S}_{1} 1$	16：1）	111． 71	－11． $2: 51$	－： 5.11 .8 .1	1117．$\%$	11.1015%	－11．1\％	19． $10: 31$	0，1ratis，17：
	in 4				1． $\mathrm{Ifl}^{\text {d }}$	－11． 115%	－\％．	\％1\％．1／				

＂rol＂．
t lisur alapined ind days．

$$
\begin{aligned}
& \text { 1: 2.1fは. }
\end{aligned}
$$

NFMAHKッ．

 IIr．If．I，Ni，（jort．

Intranminteal dite
Fare indie：allon of chronomatir

－llgravt 6．					
h．	II，	\cdots.	h.	1 H ，	x ．
1：3	11	©（1）＂nl	\cdots	4	1\％． 36
111	：＊	（11．17\％	1	11：	4．f． im
－	1.1	317， 111	1：1	1.1	\＄6． 47
＂ 1	311	$1!1 \mathrm{lig}$	1	11	4 1.011

A1PIENDINIB．

Aroust l:. (י. M..) Istin.
 lifty yards cast of astromomian station．It was leveled，collimation examined，and＂vertidal＂wire made vertical．The womben lwa was Insed．

The bass detorsion－eglinder wis phaced in the stimep，athl the tersion

Nlintost liz. INBi!.

 lows：

 fermined the \％erom its swalc as follows：

19ventic
livertent
Direet
Inverted．

Sin＇uld 10.141 ily凶。	（16t＋6）	\％$\%$ ，160．	
9．141	－ 1 ¢		．．．．
11． 111	18． 111	16．\％1\％	
［1． 411	11．111	16．1．1	＋．．$*$
16． 16	M，淮	t． 0.7	115，10：1
－${ }^{\text {a }} 11$	11． 4.1	14． m i 1	
11．：111	．．．．．．		．

		Naillu Brial. lıan.	$\begin{aligned} & -1 / 1 \text { mий" } \\ & \text { Hevills. } \end{aligned}$	\% lion.	Mran \%rio.
Hixuc 1		1i. 1.11			
Incurtial		17. im	12. 31	12, 1.11	
liturs		13. (w)	1-. 1111	11, 111	
Imursfol	1-. 810	1 c .10	$1-.11$	1-10.\%
forme		1. 11	1-.	1-10 11
Pavertal	. . \cdot...........	$1-11$	

 division of the sata. The lime of eollimation is now in the ilimetion of

 survidians.

1. \%avo wi derlination magnet, 10.0.3.

[^5]

 18.magnetios nortlı cind mbitimu-

| $11 / 110$. | | $\begin{gathered} \text { lininp. } \\ 1 \mid \end{gathered}$ | Sints. | \|:10n| |
| :---: | :---: | :---: | :---: | :---: |
| . 11 ¢11-1 \| | - 1 | h. $1 \cdot$.
 * 116 II. 111 | H.I. 11 | 1\%.116 | |
| | - 1i li. 11. | 1.1.1. 11 | $1 \times+11$ | |
| | | li.1. 11 | $1=1 m 1$ | |
| | - 11, 11. 11. | lim. . | 1\% 1111 | |
| | ! \|lit \&. 11\%. | *11. 11 | 1\%. 11 | |
| | ! 1: s1, 111. | \#11 | 11. 111 | |
| | "10. 11.110. | $\because \square$ | 11. 11 | |
| | [1 i: \%1. 11. | $\because 11$ | 11. :11 | |
| | III IIII II. III. | il i | 1.8. $=11$ | $\left\{\\|_{1 a+1} \mid 1,1\right)\left\|X_{1}\right\| V_{1} \cdot-1+1.1 \mid$ |
| | lil I I A. 14. | i1 is | 11.31 | |
| | $111: 11111$. | :1i, 11 | 1 \| ' 'M1 | |
| | III lis 11.11. | :1i, is | 1.1. 81 | |
| | 11 llil al. 110. | iti, it | 1.1. 131 | |
| | $11 \mathrm{li} \mathrm{11.11}$. | im \% | 1:111 | |
| | $11: 3111.18$. | -11, 11 | 11. 1/11 | |
| | 11 It II. 14. | -11 is | 11.111 | |
| | $1!\|m\|$ III, | -1. ${ }^{11}$ | (11) '17] | |
| | $1: 11: 11,17$. | - \% \% 0 | 11.111 | |
| | 1:! :111 14. 11. | P! ! | 11.111 | |
| | 1:1 171 19. 11. | ": 11 | 111. 1.11 | |
| | | -1.11 | III. \|inl | |
| | $1: 11$ \|r. 11. | $\because \cdots$ | $\text { 11. : } 11$ | |
| | :1 lis j1. 111. | \therefore : 11 | 1! ! 111 | nll lu'lorl. |
| | 1i in jo. W1. | $\cdots 11$ | 11.111 | |
| | it lis lo, 118, | a!. 11 | $11 . i 1$ | |
| | ¢i ins \|r. 111. | m11. 11 ii. 11 | $\begin{aligned} & 11.101 \\ & 11.141 \end{aligned}$ |
 |
| | 7 if1 11.11 | 13: 11 | (1) 114 | |
| | - 141 10.111. | 19.11 | 11.81 | |
| | - ill j1. III. | im, 11 | 1.1. 131 | |
| | $\because 111 \mathrm{j} 1 \mathrm{ll}$ | $\therefore 11$ | 121171 | |
| | $1!1!11.11$. | Vit. 11 | 1 ! 111 | |
| | | | $\|!1,11\|$ | |
| | 101 lin i1. 311, | $\because 11$ | \#11. 141 | |
| | II 1H1 $11.1+1$. | il 11 | 11.9141 | |
| | If 1: \%. II. | m1, 11 | - thi | |
| | $11: 1118.111$. | N11, 11 | 1.7. 111 | |
| | 11 liz 11.11. | -11. 11 | 11. 5111 | |
| | 1 lis 11 ll . | -i.11 | 11.1 .11 | |
| | $\because 1+111^{10} 181$. | -1 is | 1:1 (M) | |
| | if th1 \|1 111. | -i. 11 | \| 11.1 III | |
| | 1 (1) 14. 111 | -1i. 11 | 1fi. $1 \mathrm{ll\mid}$ | |
| | \therefore '101 11110 | mi, 11 | $1 \%: 111$ | |

1H:T \IIN.
 hox used lies the expromente at de thetion as well as vibations.

 thermometor gnite dase to the magery. The instroment was mover
 ion of the scalle. The verniers were then man amblte time noted, in order to follow the changes of deephation durinu the experiments of

 division of the seale. 'The thermametar and time were noted and the verniers wal.
 grome throngh, and the sime at l.!日 feet. The manked and of the de-

 tion was taken on the west before the detleetor was removed.
 sertical wire of the felescope mande to bise the $10.0 ;$ devision of the seale, the verniers reall, and the time boted, in order to show the changes of derlination during the experiments.
'The defleretor was then placed upon the opposite rime of the dedlectinge

 senpe made to hisent the 10.0:3 division of the seale, and the vermiers

16tyest

[^6]3 divis. itenl, in ents of ast cull - 1 แи! retion, (1) 10.0.:; ninl the Mration the the жimuth, -
(i.) fiont,
 biserval
terl, the 1 of the changes

- Hecting leflector the televiniers

[^7]Alter these expriments the deflector was rumove. 'The forsion was they tested an follows:

Clirli rumas-	Neale (easis -	lill. urars.	litticumade.	Mrathlor (a) :
11. 9.7	11. 31			
(11). ! 10	(i, 6,11	! 4	S. 10	
130.10	16i. il	$1-11$	111. 111	2. 13
2. 4.1	11. 31	! 41	S. 111	

Moxbly, 1 ugust lif, Lisho.

The following exproments of vibation wime mande. The ehrommertar
 was ontside the lax, but bear it, aml on the opposite side fiom the lamp.

The collimation-man thas suspumed for the experiments af vinat tion. Instrmment turami in arimuth matil the vertioal wire hisected the 10.00 division of the sualr.

 that the assmmen \%rodivision did mot pass the vertical wire. The in-

 combl be timed, as it was fomm impersible to make the magnet vibate any longer.

Apmosimate time ot six vibations at the hergming, :3s.
 $14=121 \mathrm{Im}$.
rinl: ATIONS.

ioll Was

lon（10）

$11+14 \cdot|\cdot|$
 וי lam． I＇vilura． inseled hanges
t10 5．00， 11 simall The in－ challig． mations vilu：atr ：ximuth II． at and and

Aproximate time of six vibations at the Ineximing．
23：＂ lometiarring．miltsile diammer Bom inches．
iasild diamerter 1.801 inches． wright ，onioz grains．
 ．10．010．

V1H1：ATルパス。
Glovertationn wilh weithts．

 1．1．． 1.4141 ．

P＇irclo prialv－	Srial 10：alvor		lill．＂1：sials．	
［1． 3.1	11． 119			
（21）！1\％	$\therefore 1141$	！ 41	in． 161	
1．1 91\％	15．mil	$1-41$	10．$=11$	i． 0^{4}
：3． 1%	111 in	141	ㄷ．（11）	

[^8]

IMAGE EVALUATION TEST TARGET (MT-3)

OBSERYATIONG FOR ABSOLETE MAGNETIC INCLINATION.

 W Wirdemanile
Previous to the observations the ne dlos wre perharged. Readings on vernier when the instrument

Nember No, 1.-Mabken end Nometh.

Nemphe No. 1.-Marked END soctil.

Fime of vertical cirele.	Fiace of nerdle.	$\begin{array}{r} 3 \\ 6111 \\ \text { No } 11 \end{array}$:mil uls.	Mraths.	Means.	Temp.,
L.			1	"	- , "	- , "	\bigcirc
		*)	12	100	$\cdots 009$		70.0
			19	(i1)		(9) 4i 45	70.0
		70	崖		$7!86$		70.11
			N				70.0
W.			12		7! SR : 10		80.0
			4:	010	7! 3:300		70.0
							\%0.0
Itram.						: 143	

Nemple No. ©-Mathed mid Nonth.

Gbserations for aboolute matmetir inclination-Continmed.

;

COMLITTATIONS.

MAINETLE DHOLINATION.

To determane the agnatar value of one divixion of the seale of the declination-magnot, comected for matio of torsion and magnetic: force, a mean of the ohservations of Angist $1+$ and 16 is emploged. The computation is as follows:
$m=$ mean of seale-readings for $n^{2} ; u=$ same remberl to angular value; $x=$ mean of circle-readings for $90^{\circ} ; \quad a=$ angular value of ono division of scale $=148^{\prime \prime}$. .

$$
\begin{aligned}
& m \times u=u=760^{\prime \prime} .26 ; u=324000^{\prime \prime} ; \quad u-u=3232333^{\prime \prime} .7 \\
& \log t=2.8343762 \\
& \log (u-u)=5.509 .5167 \\
& \operatorname{lon}_{5} \frac{I I}{5}=7.3748505 \\
& \frac{H}{F}=0.00: 3: 306 \\
& 1+\frac{\mathrm{II}}{\mathrm{~F}}=1.002: 3700 \\
& a\left(1+\frac{I I}{\mathrm{~F}}\right)=148^{\prime \prime} . \mathrm{B} \pi=2^{\prime} 28^{\prime \prime} . \mathrm{S}^{\circ}
\end{aligned}
$$

Mern declination, Iugust 14, 1869.
Scale 10.03-Verniers \qquad E. $6: 33^{\circ} 54^{\prime}$
$29 \quad 00$ W. $243^{\circ} 54^{\prime}$

Meridian-mark
20900

Corr. for azimuth of mark
$34 \quad 54$
Mean of sale-readings. $+130$
............ 13.36
$13.36-10.03=+3.33 ; 3.33 \times \times^{\prime \prime} 48^{\prime \prime}=8^{\prime} .2384=$
Mean declination $=$

8 15'5
$36 \quad 32$ 15 . 5

Mean declination, August 16, 1869.
Reject observation at $10^{\mathrm{h}} 45^{\mathrm{m}}$ a. m.
Mean of scale-readings $=13.74$.
$13.74-10.03=+3.71$
$3.71 \times \mathfrak{2}^{\prime} .48=9^{\prime} .2008=+9^{\prime} 12^{\prime \prime} .05$
Mean declination $=36{ }^{\circ} 33^{\prime} 12^{\prime \prime} .05$.
Mean of rellues for A uyust 14 and 16, 1869.
Magnetic declination $=30^{\circ} 32^{\prime} 44^{\prime \prime}$.
RATIO OF MAGNETIC MOMENT OF DEFLECTING MAGNET TO HORIZONTAL INTENSITY.
$r=$ distance between centers of magnets in feet. $u=$ corrected angle of deflection.

ill. co. $\log (2)=9.6989700$
$\log r=0.8199134$

$$
\begin{aligned}
\log \left(r^{3}\right) & =9.4387402 \\
\log \frac{m}{\mathrm{X}} & =9.0448736 \\
m & =0.1108852 \\
\overline{\mathrm{X}} & =0 .
\end{aligned}
$$

$$
\begin{aligned}
& r=0.57 ; u=155^{\circ} ; 66^{\prime} 30^{\prime \prime} . \bar{\prime} \quad \text { log tan } u=9.4461711 \\
& \log \left(r^{3}\right)=5.81855 .59 \\
& \text { ar. co. } \log (\because)=9.6989700 \\
& \log \frac{m}{X}=5.96336990 \\
& \begin{array}{ll}
m \\
X & =0.0919814
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& r=1.09 ; \text {; } \quad=70.56^{\prime}: 36^{\prime \prime} .7 \quad \text { log tan } u=-9.1 \cdot 1468.5 \\
& \log \left(r^{3}\right)=0.11 \pm 2 \pi!!\% \\
& \text { a1. co. log }(\because)=9.6989700 \\
& \log x=8.9 .5!3.3 ; \\
& \begin{array}{l}
\prime \prime \prime \\
x
\end{array} 0.090: 3.515
\end{aligned}
$$

Mean at 0.87 and $1.09, \begin{aligned} & m \\ & x^{\prime}\end{aligned}=0.091166 t ; \log =5.9 .59534 \mathrm{~s}$

PRODUCT OF MAGNETIC MOMDN'I OF VIBRATING MAGNET ANI) HORIZONTAL LNTENSITY.

Corvection of times of ribration.
The correction tor rate and are being inappreciable, the correction of the times is compnted by the following formala:

$$
\mathrm{T}^{2}=\mathbf{T}^{\prime 2} \times\left(1+\frac{\mathrm{H}}{\mathrm{~F}^{2}}\right)\left[1-\left(t^{\prime}-t\right) q\right]
$$

in which T and T^{\prime} are the true and observed times ot' vibration respect ively; $\begin{aligned} & \mathrm{H} \\ & \mathrm{F}\end{aligned}$, the ratio of the torsion and magnetic forces; t, the temperature of the magnet while leflecting; t^{\prime}, the temperature of the magnet while vibrating; and q, the change of magnetic moment for one degree of temperature.

Maving had no opportunity to olitain the value of $I f$ by experiment, it is assmmed $0.0001 \overline{0}$.
I. Time withont weight.

$$
\begin{aligned}
& t^{\prime}=8^{2} 2.7 ; t=8.3^{\circ} .3 ; t^{\prime}-t=03.06 ;\left(t^{\prime}-t\right) q=1.00009 \\
& \log \left[1-\left(t^{\prime}-t\right) q\right]=0.0000391 \\
& \log \left(\mathrm{~T}^{12}\right)=1.050 .3176 \\
& \log \left(1+\frac{11}{1}\right)=0.0010283 \\
& \log \left(\mathrm{~T}^{2}\right)=1.5513850 \\
& \log T=0.7756025 \\
& T=5.9661
\end{aligned}
$$

II. Time with weight.

$$
\begin{aligned}
& t^{\prime}=820.7 ; \quad t=7.2 .4 ; \quad t^{\prime}-t=10^{\circ} .3 ;\left(t^{\prime}-t\right) q=0.001545 ; \\
& 1-\left(t^{\prime}-t\right) q=0.99845 \\
& \log \left[1-\left(t^{\prime}-t\right) 4\right]=9.99032 \mathrm{~S} 5 \\
& \log \left(1^{12}\right)=1.8885704 \\
& \log \left(1+\frac{\mathrm{II}}{\mathrm{~F}}\right)=0.0010283 \\
& \log \left(\mathrm{~T}^{2}\right)=1.558 .2 \pi \\
& \log T=0.9446: 36 \\
& T=S^{s} .500
\end{aligned}
$$

Momemit of inert'" of meight.
The inertiaring is of bell-metal. Its moment of inertia is computed by the following formula:

$$
K^{\prime}=\underline{d}\left(r^{2}+r^{\prime 2}\right) r
$$

in which-

$$
\begin{aligned}
& r=\text { onter radius in fect }=0.083390 \\
& r^{\prime}=\text { imner radius in leet }=0.066670 \mathrm{~s} \\
& u=\text { weight in grains. . }=\text { ont.02 } \\
& r^{2}=0.0069322241 \\
& r^{\prime 2}=0.004449957: 3 \\
& r^{2}+r^{\prime 2}=0.0113871814 \quad \log =8.0 .064162 \\
& \text { ! } w-2 \pi 3.5 \\
& \log =2.4039951 \\
& \log K^{\prime}=11.460411: 3
\end{aligned}
$$

Moment of inertin of' suspended magnet and stiorup.
This quantity is computed by the following formula:

$$
K=K^{\prime}\binom{T^{2}}{T^{1 / 2}-T^{2}}
$$

in which T^{\prime} and T are the corrected times of vibution with and withont weight respectively.

$$
\begin{aligned}
& \mathrm{T}^{1 / 2}=7.440000 \\
& \mathrm{~T}^{2}=3.5 .593150 \\
& \log =1.5513850 \\
& \mathrm{~T}^{1 / 2}-\mathrm{T}^{2}=41.846844 ; \log =\mathbf{i} .6216627 ; \text { ar. } c o . \log =8.3783373 \\
& t^{\prime}-t=10^{\circ} .9 ; \underline{e} e=0.0000136 \quad \log \mathrm{~K}^{\prime}=0.4604113 \\
& 1+2 r\left(t^{\prime}-t\right)=i .00014824 \quad \log =0.0000644 \\
& \log K=0.3901980
\end{aligned}
$$

'lhe prodnct of the horizontal intensity int' the magnetic moment is computed by the following formula:

$$
m \mathrm{X}=\frac{\pi^{2} \mathrm{~K}}{\mathrm{~K}^{2}}
$$

in which $K=$ moment of inertia of magnet and stirrup, and $T=$ corrected time of vibration.
$\log \left(\pi^{2}\right)=0.9942097$
losK $=0.3901980$
$\log \left(\mathrm{T}^{2}\right)=1.5513850 ;$
ar. co. $\log =8 .+186150$
$\log m x=9.5: 31112 \pi$
HOREZONTAL INTENSITY AND MAGNETLE MOMENT OF SUSPENDED magnet.
The quantities are computed by the following formula :

$$
\mathrm{X}=\sqrt{\frac{B}{A}} ; m=\sqrt{\mathrm{AB}}
$$

in which

$$
\mathrm{A}=\frac{m}{\mathrm{X}} ; \mathrm{B}=m \mathrm{X}
$$

$$
\begin{aligned}
& \log A=8.9598318 \\
& \log \mathrm{~B}=9.83: 31127 \\
& \text { ar. co. } 10 \mathrm{n}=1.0 .4016 ; 2 \\
& \log \left(\mathrm{~N}^{2}\right)=\overline{10.83: 32 \mathrm{a} \%!} \\
& \log X=0.4360: 3515 \\
& \mathrm{X}=2.7310 \\
& \log A=8.9505: 35 \\
& \log 1 \mathrm{~B}=9.8331127 \\
& \log \left(m^{2}\right)=5.70 \cdot 3.7 \\
& \log m=0.3964037, \\
& m=0.24916
\end{aligned}
$$

ABSOLU'TE MAGNETIC INCLINATION.

Needle No. 1-Mean of observations
Needle No. 2-Xiem of observations
\qquad

TOTAL INOENSITY.
The following formula is employed:

$$
\mathrm{I}=\frac{\mathrm{X}}{\cos \mathrm{D}}
$$

in which $\mathrm{X}=$ horizontal intensity, and $\mathrm{D}=$ the inclination.

$$
\begin{aligned}
\log \mathrm{log} & =0.4366390 \\
\log \mathrm{D}=9.24710314 \quad \operatorname{ar} \cdot \operatorname{cog} \log & =0.7525969 \\
\log \mathrm{I} & =1.1895359 \\
\mathrm{I} & =15.47162
\end{aligned}
$$

Computations by Captain Charles W. Raymond, Cuited States Eingineers.

$$
\text { S. Ex. } 12-7
$$

A1DNXIDIC．

IREORD ANI）REDEOTOON OF METEOROLOGICAL， OBSERVITIONS．

COMDARIEON OF BAROMETERS．

Ingre．	$\begin{aligned} & \text { Baromel } \\ & \text { ree } \end{aligned}$	"4.	－ 11 ． 1 hermo． metres．		Elrots of haromi－ 102s．		Fimers ol thermoneters．	
	1613.	1609.	161%	1600.	1613.	J6i09．	1613.	160：\％．
h．m ．			\bigcirc	\bigcirc				－
10：30 it． 114	29．145	29． 813	5，\％	56.5	0.1100	0.1013	11.00	－i． 0
$11: 30 \mathrm{a} .11 \mathrm{l}$	－ 6.5	．1ill	25．0	心家	． 16 （10）	． 1 mis	． 00	1． 5
1： $3: 11 \mathrm{p} .1$	－13is	． 633	\％io． 3	\％is	． 1116	． 10.4	． 10	0.5
$130 \mathrm{p} . \mathrm{m}$	－ 6.011	． 633.	Ci3．	或：	． 6160	． 11211	． 010	0.7
！ 000 р．	－（iain	． 013	5	． H ． 5	． 61510	． 1112	． 00	1.0
300 l ． 1 m	－ 6159	－bis	Ans	\％\％ 0	－ 160	－ 11014	． 10	1．${ }^{\text {a }}$
400 p .1 m ．	－titis	． 6.0	53.5	54.5	.000	． 1113	． 00	$1.1)$
stun． Stan＝part of comredion tha to dith reate on hambers ra Pint of corverime due to difference of att，theromanetars．								

Six Franclact．
Cistern barometurs Nus，1571， 1609 ，anl lisis，hy James Grom，Now Fork－Amereid barometer－ Observer，Mr．J．J，Mag．m．

Date．	Hons，	Paromeder mocor－ remed．				Att．Themom－ 			Eitors of biremeters．				Eirors af thermmater．			
		1.571.	1609.	1613.	Alin＇	1.31.		13.		$10,0$.	1013.	Alte roich．	$15 \% 1$	1609.	1413.	
1869.	h．m ．															
Nus． 17	$9330 \mathrm{LL} . \mathrm{m}$ ．	30.350	30.31 .1	3） 3130		6ie．${ }^{\text {\％}}$	10．2	tient	00：11	－． 014	－．035		0.0	0.0	$+0.5$	
Dec． 1	$1: \mathrm{mm}$ ．		$\therefore 4$	足场		133．：	ti3．，	ti3．${ }^{\text {a }}$	．（01\％	．111i	．102i		． 0	． 0	． 11	
	$3041 . \mathrm{mm}$ ．	．1！ 11	．	$\therefore 1$	39.350	1i．t	68.0	13.0	．1031	． 1116	．13，30	$-.159$	（1）	． 0	． 1	
2	$!100 \mathrm{it.m}$.	．123	．19：3	． 175	． 89.1	5x．11	会． 0	之－01	． 1000	．06\％	．0：31	.161	． 0	． 0	．1）	
	：3101．m．	．10．	．013	．14．3	．1911	luti．5	16.5	tic．${ }^{\text {a }}$	． 11010	＋．015	.017	． 1102	． 0	． 0	． 1	
3	！ 180 ： L ．111．	99．963	2918	． H （1）	120	50\％	Ex． 0	5x．0		－．016\％	．13：3	．158	． 11	$+0.5$	＋0．5	
	3011 1．17．	． 2137	（1） 19	20．970，	．090	dis．	65.5		．010）	＋012	， 10313	${ }_{15}^{153}$	0	0.0	． 0	
4	$900 \mathrm{t} . \mathrm{mm}$ ．	30.187	0.170	30．192	． 340	61.5	131.5	61.0		$+.017$	． 0.5	． 123	． 0	0	＋ 0.5	
Insirumental error ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．${ }^{\text {a }}$－．013s－．026																

METEOROLOGICAL OBSERVATIONS AT REDOUBT ST. MICHAELS.
Cistern barometer No. 16t3, and thermomoters, hy James Gron, New Vork-Observer, Captain Ridell. supurinfondent of tradingestation.

IIAEL'S.
Captain Ricdell.

Detached thrrmometers.

Meteorologieal observations at Redoubl Sh. Wichacl's-Cuntinuad.

Meteorological observations at Redonbt St．Michuel＇s－Continued．

Date．	IIour．	Att．thermome－			Wind．		Clouds．		Defacherd thermoneters．	
					号	恳	药	Kind．	$\stackrel{\leftrightarrow}{\square}$	H
1×69.		\bigcirc							\bigcirc	\bigcirc
＊緼． 15	： $1 \mathrm{p} . \mathrm{mm}$ ．	21．0	29．834	29． 739	N．W，	3	9	Nim．cum．	48.5	49． 0
16		23． 2	． 870	． 777	S．	5	9	Nim．cum．	4．1．0	39.0
	9 ：1．11．	52． 0	30.070	29．980	S．S．E．	1	9	Nim	46.5	42.0
	12 m.	51.7	． 074	． 985	S．W．	1	10	Xim	47.0	43.0
	$3 \mathrm{p} . \mathrm{m}$ ．	52.0	． 0×0	.990	S．	3	10	Nim	47.7	43.5
	${ }_{9}^{9} \mathrm{p} . \mathrm{mm}$ ．	54.8	． 074	． 978	S．	H015	10	Nim．	16． 2	43.0
17	9 IL 111	55.3	29．96：	29．813：	S．S．E．	3	9	Сぃぃ． 1 im	48.3	44．：
	12 m ．	515．${ }^{\text {a }}$	． 966	． 810	s．s．W．	3	7	Cum．	50.0	45.0
	$3 \mathrm{p} . \mathrm{m}$ ．	5s． 0	． 966	． 860	S．s．W．	3	6	Cir．Clnm．	50.0	45.0
	$9 \mathrm{p} . \mathrm{m}$ ．	61．${ }^{2}$	． 966	，8． 51	S．S．W．	9	4	（＇i1．＇1mul	4 S .0	＋13．0
18	9 m m．	59.0	30．062	29．93is	S．	3	8	Cum，nim	50.0	4．5． 0
	12 m ．	59.0	． 070	． 961	N．N．E．	3	4	（i1．cum	53.5	47.0
	${ }_{3}^{3} \mathrm{p} . \mathrm{mm}$ ．	$5{ }^{2} .0$	． 074	． 968	N．N．E．	4015	1	Cir	52.0	46．0
19		57.0	29．982	29．879	E．N．E．	4	4	Cir．strat	48.0	42， 0
	12 m.	57．0	． 990	． 8×7	E．	3	7	Strat．nim	52.0	46.0
	${ }^{3} \mathrm{p} . \mathrm{m}$ ．	58.5	30.00 .1	． 897		0	9	Nim．；light 1	53.0	47.0
	$9 \mathrm{p} . \mathrm{li} \mathrm{\prime}$ ．	60.0	． 09.4	． 898	S．F．	2	10	Sim．；rain．	50．0	44.0
20	$9 \mathrm{~A} . \mathrm{mi}$ ．	59．0	¢9．960	29．8．51	N． 1.	3	9	Sfat．uim．	50．5	46.0
	12 m ．	58.0	． 904	． 794	N．E．	4	9	Strat	51.5	47.5
	$3 \mathrm{p} . \mathrm{m}$ ．	57.0	， 212	． 729	N．E．	5	8	Sirat．eir	53.5	46.5
	9 p .1 ll ．	59， 0	． 826	． 777	N． N	5	2	（iir	49.8	4．5． 0
21	$9 \mathrm{at} . \mathrm{m}$ ．	37． 5	29， 20	89． 717	N． 1.	5	8	Cimm，cir	49.7	43.3
	$1: \mathrm{m}$ ．	5z． 0	． 814	． 708	N． N ．	5	7	Cum．cir	52.3	47.5
	$3 \mathrm{p} . \mathrm{m}$ ．	61.4	，cos	． 69.1	N． E ．	4	9	Cimm．cir	52.0	46.5
${ }_{2}$	$9 \mathrm{p}, \mathrm{m}$ ．	56． 5	． 808	． 706	N．E．	1	7	Culil	50.5	46.0
	9 ı． II ．	54．${ }^{3}$	90． 860	99． 76%	N．E．	1	7	Strit．nim	51.0	45.7
	18 mm ．	5．5． 3	． 881	． 78.5	N．	$\stackrel{1}{2}$	6	Slat．nim	54.5	48.7
	$3 \mathrm{p} . \mathrm{m}$ ．	5is． 3	．Fer	． 7×6	N．	1	7	Nim．	51.0	48.0
23	$9 \mathrm{f} . \mathrm{m}$ ．	55.5	． 914	．835	N．	2	6	Nim	49.7	45.5
	$41 \mathrm{ar}, \mathrm{m}$ ．	23． 3	29．960	89． 866	S． E ．	4	9	Strat．cil	47.5	43.5
	$1 \stackrel{1}{\sim} \mathrm{~m}$ ．	73． 7	． 96.1	． 869	$\stackrel{5}{5}$	3	5	Strat．cir	52.5	46.3
	${ }^{3} \mathrm{f} . \mathrm{mm}$ ．	55．tir	． 966	． 69%	N	4	6	Ciir，ntrat	51.3	45.4
24	$9 \mathrm{p} . \mathrm{mm}$	57.3	． 968	． 81.1	S．	3	7	Cir	48.0	42.5
	913．11．	1：3． 3	99．906	29．726	S．E．	3	7	Cir	51.0	46.0
	12 m ．	（i：2． 7	． 860	． 741	S．	$\stackrel{9}{9}$	6	Cumb cir	52． 0	46.5
	$3 \mathrm{p} . \mathrm{ml}$ ．	61.5	． 753	． 638	N．	9	7	Comm．cir．；light hatlling winl．	52， 0	47.0
25	$9 \mathrm{p} . \mathrm{m}$.	6 c 5	． 6134	． 516	N．N．W\％．	1	8	Cumb．nim．；rain－squalls	48.0	43.0
	$9 \mathrm{a}$. m．	60． 0	20． 506	29． 115	N．E．	${ }_{2}^{2}$	0	Clear sky ．．．．．．．．．．．．．．．．	50.0	4.50
	12 m ．	60.0	． 524	． 413	N．E．	3	0	Clear sky	51.0	40.0
	3 p .11.	62．0	． 50	． 403	N．N．E．	5	1	Cir，cmm．	51.5	44.5

Metcorologieal obserrations at Redoubt．St．Michat＇s－Concludent．

Date．	Hour．	Att．therm．				Wind．		Clouls，		Dotached thermometers．	
		1613.	1609.				范	关 关	Kind．	官	تِّ
1869.		\bigcirc	\bigcirc							\bigcirc	\bigcirc
sept． 20	$9 \mathrm{a} . \mathrm{m}$.	60.0		29．630			1		Strat．cir	47.0	41.0
	10．5a．1m．	55． 5	56． 5	． 645	29． 632	N．N．F．	3	9	Strit．cir	59.0	45.0
	11．54．m．	57．11	28．5	，0．3：1	． 644	N N．	3	$\stackrel{9}{3}$	Stat，cir	52.5	45.0
	12.51 mm	5．5． 0	5．5． 5	－（i52	－ 6310	N．N．E．	3	$\stackrel{3}{2}$	Sirat．cir	51.10	45.5
	1．5p，m．	73． 5	54． 5	－ 650	－ $6: 30$	N．N．S．	3	$\stackrel{9}{2}$	Strat．cir	53.0	45.5
	$\stackrel{2}{\mathrm{p}} \mathrm{p} . \mathrm{mm}$ ．	5 m .5	54． 5	－6．5）	， 6388	N．N．E．	\cdots	$\stackrel{2}{2}$	Strat cir	5i． 0	45.5
	3 p .17 ll	5．5． 5	57.0	－ 0.20		N．N．E．	4	$\stackrel{2}{2}$		5.115	45.5
	4 P .311.	53．5	54.5	． 663	． 650	N．N．E．	4	2	Cir．stra	52.5	46.0

METEOROLOGICAL OBSERVATIONS EN ROUTE.

Cistern barometer No. 1609 and thrmometers, by James Green, Niw Fork-Anerond barometerObservers, Mr. J. J. Major and Irivate Michat Foley, United States Army.

Meteorological obserrations an routc--Continned.

Meteorological obserrations en ronte－Continued．

Station．	$\stackrel{\text { ¢ }}{\substack{\text { ® }}}$	\＃	華	Thermome－ ters．		皆	Winul．		Clouds．	
				تِّتِّ			淢			Kind．
Fort Adams	$\begin{gathered} 1869 . \\ \text { Sept. } 4 \end{gathered}$	A． M ． m.		\bigcirc	\bigcirc					
		800	1609	51.5	52.0	99． 413	N．E．	1	6	Nim．cir．strat．
		900	1609	51.3	520	． 419	N． 16	1	7	Nim．cir．strat．
		1100	1609	5.35	54． 0	． 460	N．	1	$\stackrel{8}{8}$	Nill．
		$1: 3$.	1609	53.5	51.5	.470	N．E．	1	8	Nim．；rain．
Nulata．．．．．．．．．	Sept．＊	1 3 00 180	1609	52.0	51.0	． 478	N．F．	1	8	
		is 00	1 1609	31.0	5.5	． 482	N．	1	8	Niu．；rain．
		400 800	${ }^{1609}$	510.5	S．3．0	． 482	N．E．	1	8	Nim．；rim．
		$\stackrel{3}{2} 30$	1609	－1． 5	52． 5	29． 79.9	S．	$\stackrel{3}{ }$	3	Cir．cmm．
		245	1609	50.5	53.0	． 74	s．	：	3	Cir．cum．

METEOROLOGICAL OBSERVATIONS AT FORT YUKON．
Cistern barometor No．1609，anll thermometor，by James Green，New York－Observers，Mr．J．J．Major and l＇rivate Michat Foley，United States Ams．

Date．	Time．	THERMOMETEIS．						Wrind．		Clourls．	
		$\begin{gathered} \text { Cultu cos- } \\ \text { fer } \end{gathered}$		$\begin{gathered} \text { Operu } \\ \text { itir. } \end{gathered}$					5	范	Kind．
		بتخ	$\dot{\Delta}$	$\stackrel{ே}{\Xi}$							
$\begin{gathered} 1869 . \\ \text { Aug. } 3 \end{gathered}$	h．m ．	\bigcirc	\bigcirc								
	9 mo \％．m．	630	6i．） 0			2）． 011	28． 910		0	8	Nim．；min．
	$310 \mathrm{p} . \mathrm{ml}$ ．	（i5） 0	6x． 5				， 2102		0		Nim．
Ang． 1	$6100 \mathrm{j} . \mathrm{m}$ ．	64． 0	tie． 0			．96：1	． 8.7	S．F．	1	i	Nim．；rain at intervals
	$10 \mathrm{mfa} \mathrm{a} . \mathrm{mm}$ ．	tio． 0	dit． 0			2）． $0: 11$	38． 9124	N． 15	$\stackrel{1}{8}$	8	Nim．
	${ }_{\square}^{2} 100 \mathrm{I} . \mathrm{mm}$ ．	60.0	tis． 0			．004	． 912	N．${ }^{\text {cr }}$	2	8	Nim．
	700 P \％ 11.	60．0	63.10			2－934	． 900	N．Wr．	$\stackrel{2}{2}$	8	Nim．
Ang． 5	$10 \mathrm{ckit.m}$.	6， 01	13.3 .0			23． 10.4	28.908	N．Wr．	$\stackrel{9}{1}$	8	Nim．
	$1: 100 \mathrm{~m}$ ．	510 0	14.0			－ 116	． 931	W．	1	（i）	Cum，nim．
	300 p .11.	13．30	17.0			． 0.7	－ 124	IV．	1	4	Cilm，nillı．
	$400 \mathrm{p} . \mathrm{ml}$ ．	\％） 0	6i\％．			．08：	－ 96	IV．	1	4	（＇imis．
	6100 fr 11.	6	1\％． 10			，0i4	． 173		0	3	Cmme strat．
Aug． 6	9600 LL 1 ll		6iw 0			89．10，	29， 0102		0	7.5	Cumin stmit．
	$11 \mathrm{tmom.m}$.	10， 11	1.10			． 17 ift	． 010		0	5	Cimm．striat．
	$3: 10 \mathrm{p}$ m．	61.0	610.5			．1－1	． 045		9	5	Cumb NTrit．
Aug． 7	6 45 $\mathrm{l} . \mathrm{m}$.	816． 5	1 l （1） 5			29．3：3	29． 259	N． N ．	2	7	Cum．nim．strat．
	700 nc 1 m.	87． 5	（ii）． 5		．．	－3：3	． 913	－W．	9	7	Cumb nins．strat．
	\％ $30 \mathrm{~m}, \mathrm{ml}$ ．	Br． 0	130			． 310	－ 2410	N．W．	$\stackrel{3}{3}$	7	C＇um，nim．strat．
	$88^{8} 00 \div 1211$.	It．	（i25			． 3.11	－ 25	W゙．	1	5	Cimm．strat．
	8 ：10 ：t．m．	54， 0	6			－1， 0	－ 0^{3}	W．	，	5	Cimm，strat．
	$9{ }^{9} 00 \mathrm{~A} . \mathrm{m}$ ．	29， 0	（i．） 0			． 3.3	． $25!$	W．	1	5	Cimin strat．
	1： 00 mm ．	1i9． 0	6i3． 0			． 352 si	－ 29	E．	1		（＇il＇，c＇llil．
	$20.1 \mathrm{p} . \mathrm{mm}$ ．	lin． 5	（ix．0			．31\％	． 20.3	S．W．	1	\checkmark	Cir．cmin．
	$3001,111$.	64， 0	（if． 5			． 300	，192		0	1	Cir，camb．
	$400 \mathrm{p} . \mathrm{m}$.	6．5． 0	（ii． 10			． 84	． 164		0	1	Cir．©min．
	5010 p .11.	lis． 1	fii． 0			－ 116	． 198 s		0	4	
	$10^{3} 1010$ 1． ml ．	ific 0	67.1			－Wliti	． 123		0	4	Cir． $\mathrm{m}_{\text {min．}}$
	$700 \mathrm{j} . \mathrm{mm}$ ．	（it．0	19．0			． 9.54	146		0	4	Clicemm，
A1世	900 ：1，m．	as． 1	$6 \mathrm{f} \cdot 0$			20． 333	29， 9.17	S ．	1	3	disht dreey clouds．
Alug． 9	1000 a． 111.	61． 0	6．\％ 11			29． 201	29． 401	S．W．	1	5	Cir．strat．
	1100 21． 111.	6．2．1	liti． 0			． 801	． 319	S．W	1	4	Cir，strat．
	300 p .1 m ．	lit． 3	73． 0			－ 495	． 378	N． $1:$.	1	4	Cilr，strat．
	$100 \mathrm{p}, \mathrm{m}$.	\％${ }^{3}$	31.0			－ 444	.36 .1	N．E．	，	3	（＇ir．slrit．
	$800 \mathrm{j} . \mathrm{m}$.	（ifi， 0	\＄1．0			．40x	． 175		（）	$\stackrel{1}{2}$	Ciir strat．
Aug． 10	$800 \mathrm{il} . \mathrm{m}$.	58． 11	（id） 0			99， 310	89． 41%	N．	1	1	Cir．stut．light and fleecy．
	$930 \mathrm{at} . \mathrm{ml}$ ．	6i0． 5	$12+0$			． 514	． 416	N．	2	1	Cir．strat．；lightaml meecy．
Ang． 11	$1180 \mathrm{nc} . \mathrm{m}$	di0． 0	ti4．0			20．5，3	29． 4.83	N．	2	5	Clx nemit．
Augis	$1100 \mathrm{a} . \mathrm{m}$.	${ }^{6} 0.0$	1i．0			20． 5 \％	6！ 4 4＊		0	1	Clum．
	1210 m ．	（il． 0	（i．）． 0			－itid	． 46.1	W．	1	0	
		64． 0	i10．0			． 563	． 405	W．	1	3	Cimin．
	$600 \mathrm{p}, \mathrm{m}$ ．	65， 0	73．0			． 5350	． 420	W．	1	3	Cilim．

Meterorogicel observations at Fort liwkor-Contimush.

Meteorological obstrutions at Fort lukon－Contimuct．

Sate．	＇Time．	Themmometers．			華	兰	Wiml．		Chonds．		
		$\begin{aligned} & \text { Vulur cos. } \\ & \text { יr: } \end{aligned}$		Unen ait．			シี่	+		Kimi．	
		تٌ تٌ	$\stackrel{\text { ¢ }}{ \pm}$	$\begin{aligned} & \dot{\Xi} \\ & \Xi \end{aligned}$		$=$					
$\begin{gathered} 1869 . \\ \text { A } 1 \mathrm{~g} .21 \end{gathered}$	h．m ．	\bigcirc	－	\bigcirc							
	\％ $000 \mathrm{p} . \mathrm{m}$ ．	61.0	64．0	61． 0.515 .5	89， 6	20， 20	S．	1	1	（1um，cirs atrat．	
	\％ $017 \mathrm{p} . \mathrm{m}$ ．	8if． 0	©i3． 0	23， 11.381	． 311 i	． $21!$	N．	1	t	Prilit cir．strat．	
Angr 25	－ 001 j .1 mr ．	8il． 11	6i3． 0	（it． 11.310	：163	Hix	N．	1	i	f＇ulti．＇fir，stat．	
	$10: 31 \mathrm{it} . \mathrm{m}$.	39．0	tis． 0	\％h． 1.51 .0	2！ 318	20． 2.4		0	I	Nim．emm．	
	$1: 100118$.	60， 1	til． 0	18－5．5．11	． 3111	． $31!$	N．E．	1	\％	（＇ir．nitu．	
		bila	dis． 0	tis ： 4 S．0	． 3.17	－ 3 3！		0	${ }^{1}$		
	$300 \mathrm{j} . \mathrm{mm}$ ．	（ii）． 11	61．1）	6it． 7 －6．5	． $3: 35$	． 83	S．	1	$\stackrel{1}{4}$	Nill．＂lmm，strat，eir lait．	light
An¢f． Z 6	$000 \mathrm{nt.m}$.	ה，	10\％ 0	\％i， 7 Stio	90．314	29， $9 \% 3$		0	i	（＇ı11．1ir，nim．	
	$10: 60: 11.10$.	51．	（i3） 11	．at， 5.5160	$\therefore 34$	． 2.51	S．	1	1	（＇ir，＇rim，	
	$1: 116411$.	8i9．：	（i4．${ }^{\text {d }}$		． 315	． 217	s．1＊	1	1	（ $\mathrm{i} 1 \mathrm{i}, 1 \mathrm{~mm}$ ．	
	$1011 \mathrm{mm}$.	620	9\％．	tia， 36 tio． 11	． 3.413	． 231	\therefore S	1	4	（＇ir：＇11\％．	
		tis． 13	1it．	15． 11.5	． 3341	． 9.34	\therefore S．	1	6		
	4 （10） $1+\ldots$	13． S	6itis	titi．is thal． 11	． 3311	－$\because 21$	S．W．	1	6		
	\％ 104 p 1 m ．	tien	tik． 11	15.35011	． 302	$\therefore 1$		0	－	（＇i1． 1×131.	
Aug． 27	911111.11.	8． 0	\％t． 11	＋6． 170	－11． 417	24，36：5	N．11．	\because	7	Nim．	
	11100 ta .111.	：11．0	54．0	4！ 0116	．Hit	． 33.3	N．17．	3	－	Nim．：lisht min．	
	1：明 ml ．	26．	（60．）	31． 1114.5	． 18.15	． 3 H	N．W．	$\stackrel{3}{2}$	\therefore		
	$\pm 110) p .110$.	（ill． 0	68．0	30．115．11	． 1 tici	． $37!$	N．W．	\％	T	＇ıum．nim．	
	； 1001 mm ．	5， 0	iil） 5	118．51\％．5	． 493	． 9111	̇ill	3	8	才im．	

Date．	要		Date．	里	
	\bigcirc	\bigcirc		，	\bigcirc
Allusist 19，1－69，	41.0	39， 19		36． 3	34． 9
Alugust mo，	48.5	4	Thunst en，retia．	46.9	4．4．4
A	＋1919	40．：1	Anghat 4i，if69．	1． 11	46．3
Auguat 93，1－dia．	414	10，！		4.5	413．0

Computation of $A \log \frac{h_{t}}{1 l^{*}}$. Set 13.

[^0]: *I give this name on the anthority of Mr. Dall, as I did not happen to hear it applied to them. There can be no donbt that this is one of the Kiutchin tribes.

[^1]: * I horrow this name also from Mr. Dall, as the latter name only was noted.
 \dagger Beruard R. Ross, esti, Sunthsouian Report, 1866, page 303.

[^2]:

[^3]: ＊Chasged lan！；obworvation uncertata；mject．

[^4]:

[^5]:

[^6]:

 Vermitr, N, 6is it', W, wis is.

[^7]: thine to plulet il.

[^8]:

