CIHM Microfiche Series (Monographs)

> ICMH
> Collection de microfiches (monographies)

回

Canadian Institute for Historical Microreproductions / Institut canadien de microreproductions historiques:

Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to oblain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming are checked below.

Coloured covers $/$
Couverture de couleurCovers damaged /
Couverture endommagéeCovers restored and/or laminated /
Couverture restaurée eVou pelliculéeCover title missing / Le titre de couverture manque
Coloured maps / Cartes géographiques en couleurColoured ink (i.e. other than blue or black) /
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations /
Planches et/ou illustrations en couleurBound with other material /
Relié avec d'autres documents
Only edition available /
Seule édition disponible
Tight binding may cause shadows or distortion along interior margin / La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from filming / II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.Additional comments /
Commentaires supplémentaires:

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.
\square Coloured pages / Pages de couleur

Pages damaged / Pages endommagées

Pages restored and/or laminated /
Pages restaurées et/ou pelliculées
Pages discoloured, slained or foxed /
Pages décolorées, tachetées ou piquées
Pages detached / Pages détachées

Showthrough / Transparence

Quality of print varies /
Qualité inégale de l'impression
Includes supplementary material /
Comprend du matériel supplémentaire
Pages wholly or partially obscured by elt:- : Pips, tissues, etc., have been refilmed to ensure $1=1$ possible image / Les pages totaleme:rt is partiellement obscurcies par un feuillet d'errata, une pelure, etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

Opposing pages with varying colouration or discolourations are filmed twice to ensure the best possible image / Les pages s'opposant ayant des colorations variables ou des décolorations sont filmées deux fois afin d'obtenir la meilleure image. possible.

This item is filmed at the reduction ratio checked below /
Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here has been reproduced thanks to the generosity of:

National Library of Canada

The imeges appearing here are the best quality possible considering the condition and legibility of the orlginal copy and in keeping with the filming contract apecificetions.

Original copies in printed peper covara are fllmed baginning with the front covar and ending on the lase paga with a printed or illustrated impression, or the back cover when appropriase. All other original copies are filmed beginning on the first page with a printed or lllustrated Impression, and ending on the last page with a printed or illustratad impression.

The last recorded freme on each microfiche shall contain the symbol \rightarrow (meaning "CON. TINUED"), or the symbol ∇ (meaning "END"). whichever applies.

Maps, plates, charts, otc., may be filmed at different reduction ratios. Those too lerge to be entirely included in one exposure are filmed beginning in the upper laft hand cornar, left to right and top to bottom. as many frames as pequired. The following diagrams illustrate the merhod:

L'exemplaire filme fut reproduit grảce al le gendrositd de:

Bibliothèque nationale du Canada

Les images suiventes ont dte reproduites avec le plus grand soin. compte tenu de le condition ot de le nertete de l'exemplaire filmb. ar an conformitd avec los conditions du contrat de filmege.

Les exemplelres originaux dont is couverture on papiar ese imprimte sont filmds an commancant par to premier plat at en terminant soit par la dernisre pege qui comporte une empreinte d'Impression ou d'llustration, soit par la secand plat, selon le ces. Tous les autres exemplaires originaux sont filmbs on commencant par le promidre page qui comporte une emprainte d'impression ou d'illustration ot on tepminant par la dernidre page qui comporte une telle empreinte.

Un des symboles suivants apparaitre sur la dernidre image de chaque microfiche. selon le cas: lo symbole \rightarrow signifie "A SUIVRE". Ie symbole ∇ signific "FIN".

Les cartes. planches, tableaux, etc., peuvent eire filmds a des taux de rdduction differents. Lorsque lo document est trop grand pour àtre reproduit on un soul clichd. il eat filme a partir de l'angle supdrieur gauche. de gauehe a droiza. et de haut en bas, on prenant to nombre d'images nécesseire. Les diagrammes suivants illustrent le methode.

MICROCOPY RESOLUTION TEST CHART

(ANSI and ISO TEST CHANT No. 2)

MODERN CARPENTRY

A PRACTICAL MANUAL

A new and complete guide containing hundreds of quick methods for perforniug work in carpentry, joining and general woodwork, written in a simple, every-day style that does not bewilder the workingman, illustrated with hundreds of diagrams which are especially made so that anyone can folow them

SECOND EDITION
 REVISED AND ENLARGED

Editor of the National, Bridieme, Author of "Common Sanar
Handrailing," "Practical Cses ol t! a Steei Square,"

Frederick jublemers
chicago Drake \& Co.
u.s. a.

TH5606

H69 1909
$p * * *$

COPYRIGHT 1902

BY
Frederick J. Drakr \& Co.
Chicago, lle. t. S. A.

Copyright 1909
EY
Frederick J. Drake \& Co.
Ciilcago

PREFACE

"Good wine," says Shakespeare, "needs no bush," which of course means that when a thing is good in itself, praise makes it no better. So with a book, if it is good, it needs no preface to make it better. The author of this book flatters himself that the work he has done on it , both as author and compiler, is good; therefore, from his standpoint a preface to it is somewhat a work of supererogation. His opinion regarding the quality of the book may be questioned, but after forty years' experience as a writer of books for builders, all of which have met with success, and during that time over thirty years editor of one of the most popular building journals in America, he feels his opinion, reinforced as it is by thousands of builders and woodworkers throughout the country, should be entitled to some weight. Be that as it may, however, this little book is sent out with a certainty that the one and a half million of men and boys who earn their living by working wood, and fashioning it fo seful or ornamental purposes, will appreciate it, be uuse of its main object, which is to lessen their labors by placing before them the quickest and most approved methods of construction.

To say more in this preface is unnecessary and a waste of time for both reader and author.
FRED T. HODGSON.

Collingwood, Ontario, July, 1902,

PREFACE TO SECOND EDITION.

MODERN CARPENTRY.

VOL. 1.

The neeessity of preparing a second edition of this work has beeome so urgent that its publication camnot be longer delayed. The demand for it has almost ontgrown our means of production, and our supply is about exhausted, so we hasten to taki advantage of this eondition to enlarge and improve the work and render it more acceptable and valuable tharr ever. The additions and improvements now made to the work, are of so very uscful and practical a character, that we are sure they will prove of benefit to the workman, and to the general student of the earpenter and joiners' art.

It is lardly necessary for ne to indulge in a long preamble setting forth the good qualities eontained in the contents of this work, as all this has been bofore tha people now for several years: all recent developments in the earpenter trade. however. have been added, so that the present volume will be fonnd to contain the very latest practice of doing things. The additional matter and diagrams will, I am sure, commend themselves to the workman, and will, I hope, prove a help to him in his everyday labors.
Coii.ngwood, Ont., Jnly, 1909. Fred T. Hodason.

MODERN CARPENTRY

PART I

CARPENTEK GEOMETRY

CHAPTER 1

The circle

Whise it is not absolutely necessary that, to become a good mechanic, a man must need be a good scholar or be well advanced in mathema'ics or geometry, yet, if a man be proficient in these sciences they will be a great help to him in aiding him to accomplish his work with greater speed and more exactness than if he did not know anything about them. This, is think, all will admit. It may be added, however, that a man, the moment he begins active operations in any of the construtitional trades, $c u$ nences, v sout knowing it, to learn the scicnce of geometry its rudimentary stages. He wishes to spuare over a board and employs a steel or other square for this purpose, and, when he scratches or per:? a line vioss the board, using the edge or the tong :- If the square as a guide, while the edge of the blade is against the edge of the board or parallel with it, he thus solves his first geometrical problem, that is, he makes a right angle with the edge of the board. This is one step for vard in the path of geometrical science.

He desires to describe a circle, say of eight inches diameter. He knows instinctively that if he opens his
compasses until the points of the legs are four inches apart,-or makin s. the radius four inches-he can, by keeping one point fixed, called a "center," describe a circle with the other leg, the diameter of which will be eight inches. By this process he has solved a second geometrical problem, or at least he has solved it so far that it suits his present purposes. These examples, of course, do not convey to the operator the more subtle qualities of the right angle or the circle, yet they serve, in a practical manner, as assistants in every-day work.

When a man becomes a good workman, it goes without saying that he has also become possessor of a fair amount of practical geometrical knowledge, though he may not be aware of the fact.

The workman who can construct a roof, hipped, gabled, or otherwise, cutting all his material on the ground, has attained an advanced practical knowledge of geometry, though he may never have heard of Euclid or opened a book relating to the science. Some of the best workmen I have met were men who knew nothing of geometry as taught in the books, yet it was no trouble for them to lay out a circular or elliptical stairway, or construct a rail over them, a feat that requires a knowledge of geometry of a high order to properly accomplish.

These few introductory remarks are made with the hope that the reader of this little volume will not be disheartened at the threshold of his trade, because of his lack of knowledge in any branch thereof. To become a good carpenter or a good joiner, a young man must begin at the bottom, and first learn his A, B, C's, and the difficulties that beset him will disappear one after anuther as his lessons are learned. It
must always be borne in mind, however, that the young fellow who enters a shop, fully equipped with a knowledge of general mathematics and geometry, is in a much better position to solve the work problems that crop up daily, than the one who starts work without such equipment. If, however, the latter fellow be a boy possessed of courage and perseverance, there is no

reason why he should not "catch up"-even over-take-the boy with the initial advantages, for what is then learned will be more apt to be better understood, and more readily applied to the requirements of his work. To assist him in "catching up" with his more favored shopmate, I propose to submit for his benefit a brief description and explanation of what may be termed "Carpenter's Geometry," which will be quite
sufficient if he learn it well, to enable him to execute any work that he may be called upon to perform; and I will do so as clearly and plainly as possible, and in as few words as the instructions can be framed so as to make them intelligible to the student.
The circle shown in Fig. I is drawn from the center 2, as shown, and may be said to be a plain figure within a continual curved line, every part of the line being equally distant from the center 2 . It is the simplest of ali figures to draw. The line $A B$, which cuts the circumference, is called the diameter, and the line DE is denominated a chord, and the area enclosed within the curved line and the chord is termed a segment. The radius of a circle is a line drawn from the center 2 to the circumference C, and is always onehalf the length of the diameter, no matter what that diameter may be. A tangent is a line which touches the circumference at some point and is at right angles with a radial line drawn to that point as shown at C.

The reader should remember these definitions as they will be frequently used when explanations of other figures are made; and it is essential that the learner should memorize both the terms and their sig. nifications in order that he may the more readily understand the problems submitted for solution.

It frequently happens that the center of a circle is not visible but must be found in order to complete the circle or form some part of the circumference. The center of any circle may be found follows: let BHC, Fig. 2, be a chord of the segnent H; and BJA a chord enclosing the segment. Bisect or div'de in equal parts, the chord $B C$, ac H, and square down from this point to D. Do the same with the chord AJB, squaring over from J to D, then the point where JD and HD intersect, will be the center of the circle.

This is one of the most important problems for the carpenter in the whole range of geometry as it enables the workman to locate any center, and to draw curves he could not otherwise describe without this or other similar methods. It is by aid of this problem that through any three points not in a straight line, a

circle can be drawn that will pass through each of the three points. Its usefulness will be shown further on as applied to laying out segmental or curved top window, door and other frames and sashes, and the learner should thoroughly master this problem before stepping further, as a full knowledge of it will assist him very materially in understanding other problems.

The circumference of every circle is measured by being supposed to be divided into 360 equal parts, called degrces; each degree containing 60 minuter, a
smaller division, and each minute into 60 seconds, a still smaller division. Degrees, minutes, and seconds are written thus: $45^{\circ} 15^{\prime} 30^{\prime \prime}$, which is read, forty-five degrees, fifteen minutes, and thirty seconds. This, I think, will be quite clear to the reader. Arcs are measured by the number of degrees which they contain: thus, in Fig. 3, the arc AE, which contains 90°, is called a quadrant, or the quarter of a circumference, because

90° is one quarter of 360°, and the arc $A B C$ which contains 180°, is a semi-circumference. Every angle is also measured by degrees, the degrees being reckoned on an arc included between its sides; described from the vertex of the angle as a center, as the point O, Fig. 3; thus, AOE contains 90°; and the angle BOD, which is half a right angle, is called an angle of 45°, which is

CARPENTER'S GEOMETRY

the number it contains, as will be seen by counting off the spaces as shown by the divisions on the curved line BD. These rules hold goud, no matter what may be the diameter of the circle. If large, the divisions are large; if small, the divisions are small, but the manner of reckoning is always the same.

One of the qualities of the circle is, that when divided in two by a diameter, making two semicircles, any cho1 ' starting at the extremity of such a diameter, as at A or B, Fig. 4, an ${ }^{\prime}$ cutting the circumference at any point, as at $\mathrm{C}, \mathrm{D} \subset \mathrm{E}$, a line drawn from this

point to the other extremity of the diameter, will form a right angle-or be square with the first chord, as is shown by the dotted lines BCA, BDA, and BEA. This is something to be remembered, as the problem will be found useful on many occasions.
The diagram shown at Fig. 5 represents a hexar'n within a circl:. This is obtained by steppin ${ }^{5}$ aro: the circumference, with the radius of the circle on tra. compasses, six times, which divides the circumference into six equal parts; then draw lines to each point, which, when completed, will form a hexagon, a sixsided figure. By drawing lines from the points obtained in the circumference to the center, we get a

MODERN CARPENTRY

three-sided figure, which is called an equilateral triangle, that is, a triangle having all its sides equal in

length; as $A B, A C$ and $B C$. The dotted lines show how an equilateral triangle may be produced on a straight line if necessary.

The diagram shown at Fig. 6 illustrates the method of trisecting a richt angle or quadrant into three equal parts. Let A be a center, and with the same radius intersect at E , thus the quadrant or right angle is divided into three equal parts.

If we wish to get the length of a straight line that shall equal the circumference of a circ: or part of circle or quadiant, we can do so by procceding as follows: Suppose Fig. 7 to represent half of the circle, as at $A B C$; then draw the chord $B C$. divide it at P, join it at A; then four times $P A$ is equal to the circumference of a circle whose diameter is AC, or equal to the curve CB.
To divide the quadrant $A B$ into any number of equal parts, say thirteen, we simply lay on a rule and make the distance from A to R measure three and one-

fourth inches, which are thirteen quarters or parts on the rule; make R2 equal one-fourth of an inch; join RP; draw fron 2 parallel with RP, cutting at V; now take PV in the dividers and set off from A on the circle thirteen parts, which end at B, each part being equal to PV, and the problem is solved. The "stretchout" or length of any curved line in the circle can then be obtained by breaking it into segments by chords, as shown at BN .

I hive shown in Fig. 5, how to construct an equilateral triangle by the use of the compasses. I give at

MODERN CARTENTRY

Fig 8 a practical example of how this figure, ia connection with circles, may be employed in describing a figure known as the trefoil, a figure made much use of in the construction of church or other Gothic work and for windows and carvings on doors and panelings. Each corner of the triangle, as ABC , is a center from which are described the curves shown within the outer circles. The latter curves are struck from the center

O , which is found by dividing the sides of the equilateral triangle and squaring down until the lines cross at O. The joint lines shown are the proper ones to be made use of by the carpenter when executing his work. The construction of this figure is quite simple and easy to understand, so that any one knowing how to handle a rule and compass should be able to construct it after a few minutes' thought. This figure is the key to most Gothic ornamentation, and is worth mastering.

CARPENTER'S GEOMETRY

There is another method of finding the length or "stretchout" of the circumference of a circle, which I show herewith at Fig. 9. Draw the semicircle S\%T, and parallel to the diameter ST draw the tangent UZV; upon S and T as centers, with ST as radius, mark the arcs $T R$ and $S R$; from R, the intersection of the arcs, draw RS and continue to U ; also draw RT , and continue to V ; then the line VU will nearly equal in

length the circumference of the semicircle. The length of any portion of a circle may be found as follows: Through X draw RIV, then IVU will be the "stretchout" or length of that portion of the circle marked SX. There are several other ways of determining by lines a near approach to the length of the circumference or a portion thereof; but, theoretically, the exact "stretchout" of a circumference has not been found by any of the known methods, either arith-
metically or geometrically, though for all practical purposes the methods given are quite near enough. No method, however, that is given geometrically is so simple, so convenient and so accurate as the arithmetical one, which I give herewith. If we multiply the diameter of a circle by 3.1416 , the product will give the length of the circumference, very nearly. These figures are based on the fact that a circle whose diameter is 1 -say one yard, one foot, or one inch-will have a circumference of nearly 3.1416 times the diameter.
With the exception of the formation of mouldings, and ornamentation where the circle and its parts take a prominent part, I have submitted nearly all concerning the figure, the everyday carpenter will be called

Kig. 10.

 upon to employ, and when I approach the chapter on Practical Carpentry later on, I will try and show how to use the knowledge now given.Before leaving the subject, however, it may be as well to show how a curve, having any reasonable radius, may be obtained-practically-if but three points in the circumference are available; as referred to in the explanation given of Fig. 5. Let us suppose there are three points given in the circumference of a circle, as ABC, Fig. Io, then the center of such circle can be found by connecting the points $A B$ and $B C$ by straight lines as shown, and by dividing these lines
and squaring down as shown until the lines intersect at O as shown This point O is the center of the circle. It frequently happens that it is not possible to find a place to locate a center, because of the diameter being so great, as in segme ntal window's and doors of large dimensions. To overcome this difficulty a method

has been devised by which the curve may be correctly drawn by railing three wooden strips together so as to form a triangle, as shown in Fig. II. Suppose NO to be the chord or width of frame, and QP the height of segment, measuring from the springing lines N and O ; drive nails or pins at O and N , keep the triangle close against the nails, and place a pencil at P, then slide the triangle against the pins or nails while sliding, and the pencil will describe the necessary curve. The arms of the triangle should be several inches longer than the line NO, so that when the pencil P arrives at N or O , the arms will still rest against the pins,

CHAPTER II

POLYGONS

A polygon is a figure that is bounded by any number of straight lines; three lines being the least that can be employed in surrounding any figure, as a triangle, Fig. 1.
A polygon having three sides is called a trigon; it is also called an equilateral triangle. A polygon of four sides is call a tetragon; it is also called a square and
 an equilateral rectangle. A polygon of five sides is a pentagon. A polygon of six sides is a hexagon. A polygon of seven sides is called a heptagon. A polygon of eight sides is called an octagon. A polygon of nine sides is called a nonagon. A polygon of ten sides is called a decagon. A polygon of eleven sides is called an undecagon. And a polygon of twelve sides is called a dodecagon.

There are regular and irregular polygons. Those havirg equal sides are regular; those having unequal sides are irregular. Polygons having more than twelve sides are known among carpenters by being denominated as a polygon having "so many sides." as a "polygon with fourteen sides," and so on.

Polygons are often made use of in carpenter work, particularly in the formation of bay-windows, oriels, towers, spires, and similar work; particularly is this the case with the hexagon and the octagon; but the most used is the equilateral rectangle, or square; therefore it is essential that the carpenter should know considerable regarding these figures, both as to their qualities and their construction.
The polygon having the least lines is the trigon, a three-sided figure. This is constructed as follows: Let CD, Fig. 1 , be any given line, and the distance $C D$ the length of the side required. Then with one leg of the compass on D as a center, and the other on C, describe the arc shown at P. Then with C as a center, describe another arc at P, cutting the first arc. From this point of intersection draw the lines PD and PC, and the figure is complete. To get the miter joint of this figure, divide one side into two equal parts, and
 from the point obtained draw a line through opposite angle as shown by the dotted line, and this line will be the line of joint at $こ$, or for any of the other angles.
The square, or equilateral rectangle, Fig. 2, may be obtained by a number of methods, many of which will suggest themseives to the reader. I give one method that may prove suggestive. Suppose two sides of a square are given, LHN the othe: sides are found by taking HL as radius, and with LN for centers make the intersection in P, draw LP and NP, which com-

MODERN CARPENTRY

pletes the figure. The miter for the joints of a figure of this kind is an angle of 45°, or the regular miter. The dotted line shows the line of "cut" or miter.

To construct a pentagon we proceed as follows: Let AB, Fig. 3, be a given line and spaced off to the length of one side of the figure required; divide this line into two equal parts. From B square up a line;
 make $B N$ equal to $A B$, strike an arc 3 N as shown by the dotted lines, with 2 as a center and N as a radius, cutting the given line at 3 . Take A_{3} for radius; from A and B as centers, make the intersoction in D; from D, with a
radius equal to AB , strike an arc; with the same radius and A and B as centers, intersect the arc in EC. By joining these points the pentagon is formed. The cut, or angle of joints, is found by raising a line from 2 and cutting D , as shown by the dotted line.

The hexagon, a six-sided figure shown at Fig. 4, is one of the simplest to construct. A quick method is described in Chapter I, when dealing with circles, but I show the method of construction in order to be certain that the student may be the better equipped to deal with the figure. Take the length of one side of the figure on compasses; make this length the radius of a circle, thus describe a circle as shown. Start from any point, as at A, and step around the circumference of the circle with the radius of $i t$, and the points from which to draw the sides are found, as the radius of any circle will divide the circumference of that circle into six equal parts.

This figure may be drawn without
 first making a circle if necessary. Set off two equal parts, ABC, Fig. 5, making three centers; from each, with radius AC, make the intersection as shown, through which draw straight lines, and a hexagon is formed. The miter joint follows either of the straight lines passing through the center, the bevel indicating the proper angle.

The construction of a heptagon or seven-sided figure may be accomplished as follows: Let AB, Fig. 6 , be a given line, and the distance $A B$ the length of the side of the figure. Divide at K, square up from this point, then take $A B$ for radius and B as a center; intersect the line from K at L; with same radius and A as center, draw the curve 2,3 ; then take KL as radius, and from 2 as a center, intersect the circle at 3 ; draw from it to B , cutting at N , through which point draw from A; make $A D$ equal B_{3}; join A_{3} and $B D$; draw from 3 parallel with $A D$; draw from B through L, cutting at C; join it and A; draw from 3 parallel

though I have sometime carpentry, bay windows and domedres HF, FE, and ED Hers, using the four sides, $3 H$, serves well in a conservatory or a bold front, and It is proper thervatory or other similar place. construct this figure, as it serves as anow how to Illustrates a principle of drawing as an exercise, and edge of which would be found invaluable to the ambi-
tinus young carpenter, who desires to become, not only a good workman, but a good draftsman as well.

The octagon or eight-sided figure claims rank next to the square and circle, in point of usefulness to the general carpenter, owing partly to its symmetry of form, and its simplicity of construction. There are a great number of methods of constructing this figure, but I will give only a few of the simplest, and the ones most likely to be readily understood by the ordinary workman.

One of the simplest methods of forming an nctagon is shown at Fig. 7 , where the corners of the square are used as centers, and to the center A of the square for radius. Parts of a circle are then drawn and continued until the boundary lines are cut. At the points found draw diagonal lines across the corner as
 shown, and the figure will be a complete octagon, having all its sides of equal length.

The method of obtaining the joint cut or miter for an nctagon is shown at Fig. 8, where the angie ABC, is divided into two equal angles by the llowing process: From B, with any radius, strike an arc, giving A and C as centers, from which, with any radius, make an intersuction, as shown, and through it from B, draw a line, and the proper angle for the cut is obtained, the dotted line being the angle sought. By this method
of bisecting an angle, no matter how obtuse or acute it may be, the miter joir: or cut may be obtained. This is a very useful problem, as it is often called into requisition for cutting moulding, in panels and other work, where the angles are not square, as in
stair spandrils and raking wainscot.
To construct an octagon when the length of one of its sides is \ldots en, as AB, Fig. 9, square up the two lines, AN, BF, then

take $A B$ as radius with A and B as centers, and draw the arcs, cutting the two lines at C and J;
draw from $A B$, through $C J$, and again from A diaw parallel with BJ; then draw from B para:le! with $A C$; make $B V$ and $C F$ equal $A B$; join $E V$; make CF equal CA; square over IN ; join FE ; draw NP parallel with AC, then join PR, and the figure is complete.

As the sides of all regular octagons are at an angle of 45° with each other, it follows that an oct: gon may be readily constructed by making use of a set square having its third side to correspond with an angle of 45°, for by extending the line $A B$, and laying the set square on the line with o: "point at B , as shown in Fig. 10, the line BT, Fig. 9, can be drawn, and when made the same ' th as BV, the process in be repeated to VE; so on untii all the points have been connected.

Suppose ioi have a square stick of timber 12×12 inches, and any length, and we wish to make it an octagon; we will first be obliged to find the gauge points so as to mark the stick, to snap a chalk line on it so as to tell how much of the corners must be removed in order to give to the stick eight sides of equal width. W' do this as follows: Make a drawing the size of a
section of the timber, that is, twelve inches square, then draw a line from corner to corner as AB, Fig. II, and make AC equal in length to $A D$, which is twelve BK , and run your lines oo this sauge, and remove the corners off to lines, and the stick will then be an octagon having eight equal sides.

There are a number of other methods of finding the

gauge points, some of which I may describe further on, but I think I have dwelt long enough on po!ygons to enable the reader to lay off all the examples given. The polygons not described are so seldom given. of in carpentry, that no authority so seldom made use describes them when writing for that I am aware of man; though in nearly all works the practical work-

CARPENTER'S GEOMETRY

stry the figures are given with all their qualities. If the solution of any of the problems offered in this work requires a description and explanation of polygons with a greater number of sides than eight, such explanation will be given.

CHAPTER III

SOME STRAIGHT LINE SOLUTIONS

The greatest number of difficult problems in carmentry are susceptible of solution by the use of straight lines and a proper application of the steel square, and
 in this chapter I will endeavor to show the reader how some of the problems may be solved, though it is not intended to offer a treatise on the subject of the utility of the steel square, as that subject has been treated at length in other works, and another and exhaustive work is now in preparation; but it is thought no work on carpentry can be complete without, at least, showing some of the solutions that may be accomplished by the proper use of this wonderful instrument, and this will be done as we proceed.

One of the most useful problems is one that enables us to make a perpendicular line on any given straight line without the aid of a square. This is obtained as follows: Let JK, Fig. I, be the given straight line, and make F any point in the square or perpendicular line required. From \mathbf{F} with any radius, strike the arc
cutting in JK; with these points as centers, and any radius greater than half JK, make intersection as shown, and from this point draw a line to F, and this line is the perpendicular required. Foundations, and other works on a large scale are often "squared" or laid out by this method, or by ancther which I will submit later.

In a previous illustration I showed how to bisect an angle by using the compasses and straight lines, so as to obtain the proper joints or miters for the angles. At Fig.2, I show how this may be done by the aid of the steel square alone, as follows: The angle is ob. tuse, and may be that of an octagon or pentagon or other polygon. M!.rk any two points on the angle, as DN,
 equally distant from the point of angle L; apply the steel square as shown, keeping the distance E.N and ED the same, then a line running through the angle L and the point of the square E will be the line sought.

To bisect an acute angle by the same method, proceed as follows: Mark any two points AC, Fig. 3, equally distant from B; apply the steel square as shown, keeping its sides on AC ; then the distance on each side of the square being equal from the corner gives it for a point, through which draw a line from B, and the angle is divided. Both angles shown are divided by the same method, making the intersection
in P the center of the triangle. The main thing to te considered in this solution is to have the distances A
 and C equal from the point B; also an equal distance from the point or toc of the square to the points of contact C and A on the boundary lines.
-1 repetition of the same method of bisecting angles, under other conditions, is shown at Fig. 4. The process is just the same, and the

reference letters are also the same, so any further explanation is unnecessary.

To get a correct miter cut, or, in other words, an angle of 45°. on a board. make either of the points \therefore or C, Fig. 5, the starting point for the wier, on the edge of the board, then apply the square as shown, keeping the figure $12^{\prime \prime}$ at A or C , as the sase may be, with the figure 12 " on the
 other blade of the square on the edge of the board as: shown; then the slopes on the edge of the sytare from A to B and C to B, will form angles of +5 with the base line AC. This problem is useful from many points of view, and will often suggest itself to the workman in his daily labor.

To construct a figure showing on one side an angle of 30° and on the other an angle of 60°, by the use of

the steel square, we go to work as follows: Mark on the edge of a board two equal spaces as AB, BC, Fig. 6, apply the siuare, keeping its blade on AC and making

MODERN CARPENTRY

$A D$ equal $A B$; then the angles 30° and 60° are formed as shown. If we make a templet cut exactly as shown in Fig. 5, also a templet cut as shown in this last figure, and these teniplets are made of some hard wood, we get a pair of set syuares for drawing purposes, by which a large number of geometrical problems and drawing kinks may be wrought out.
The diameter of any circle within the range of the steel square may be deternined by the instrument as follows: The corner of the square touching any part of the circumference A, Fig. 7, and the blade cutting in points C, B, gives the diameter of the circle as

shown. Another application of this principle is, that the diameter of a circle being known, the square may e employed to describe the circumference. Suppose CB to be the known diameter; then put in two nails as shown, one at B and the other at C, apply the square, keeping its edges firmly against the nails, continually sliding it around, then the point of the square A will describe half the circumference. Apply the
sypare to the other side of the nails, and repeat the process, when the whole circle will be described. This problem may be applied to the solution of many others of a similar nature.

At Fig. 8, 1 show how an equilateral triangle may be obtained by the use of a square. Draw the line

DC: take 12 on the blade and 7 on the tongue; mark on the tongue for one side of the figure. Make the distance from D to A equal to the desired length of one side of the figure Reserse the sumare, placing it as shown by the dotted lines in the sketch, bringing 7 of the tongue against the point A. Scribe along the tongue, pro ducing the line until it intersects the first line drawn in the point E, then $A E B$ will be an equilateral triangle. A method of describing a hexagon by the square, is shown at Fig. 9, which is quite simple. Draw the line GH; lay off the required length of one side on this line, as DE. Place the square as before, with 12 of the blade and 7 of the tongue against the line GH ; placing 7 of the tongre against the point D , seribe along the tongue for the side DC. Place the square as shown by the dotecd lines; bringing 7 of the tongue against the point E , scribe the side EF. Con-
tinue in this way until the other half of the figure is drawn. All is shown by FABC.

The manner of bisecting angles has been shown in Figs. 2, 3 and 4 of the present chapter, so that it is not necessary to repeat the process at this time.

The method of describing an octagon by using the square, is shown at Fig. Io. Lay off a square

section with any length of sides, as AB. Bisect this side and place the square as shown on the side
 $A B$, with the length bisected on the blade and tongue; then the tongue cuts the side at the point to gauge for the piece to be removed. To find the size of square required for an octagonal prism, when the side is given: Let CD equal the given side; place the square on the
line of the side, with one-half of the side on the blade and tone a; then the tongue cuts the line at the point B, wish deternises the size of the square, and the piect to be remove...

A iter approxiriation tu tic !esen or stretch-out of a circumference of a circle may be obtained by the aid of the steel square and a straight line, as follows: Take three diameters of the
 circle and measure up the side of the blade of the square, as shown at Fig. II, and fifteen-sixteenths of one diameter on the tongue. From these two points

draw a diagonal, and the length of this diagonal will te the length or stretch-out of the circumference nearly.

If it is desired to divide a board or other substance into any given number of equal parts, without going through the process of calculation, it may readily be done by the aid of the square or even a pocket rule. Let AC, BD, Fig. 12, be the width of the board or
other material, and this width is seven and one-quarter inches, and we wish to divide it into eight equal parts. Lay on the board diagonally, with furthermost point of the square fair with one edge, and the mark 8 on the square on the other edge; then prick off the inches, $1,2,3,4,5,6$ and 7 as shown, and these points will be the gauge points from which to draw the parallel lines. These lines, of course, will be something less than one inch apart.

If the board should be more than eight inches wide, then a greater length of the square may be used, as for instance, if the board is ten inches wide, and we wish to divide it into eight equal parts, we simply make use of the figure 12 on the square instead of 8 , and prick off the spaces every one and a half inches on the square. If the board is more than 12 inches wide, and we require the same number of divisions, we make use of figure 16 on the square, and prick off at every two inches. Any other divisions of the board may be obtained in a like manner, varying only the use of the figures on the square to get the number of divisions required.

As a number of problems in connection with actual work, will be wrought out on similar lines to the foregoing, further on in this book, I will close this chapter in order to give as much space as possible in describing the ellipse and the higher curves.

CHAPTER IV

ELLIPSES, SPIRALS, AND OTHER CURVES
The ellipse, next to the circle, is the curve the carpenter will be confronted with more than any other, and while it is not intended to discuss all, or even a major part, of the properties and characteristics of this curve, I will endeavor to lay before the reader all in connection with it that he may be called upon to deal with.

According to geometricians, an ellipse is a conic section formed by cutting a cone through the curved surface, neither parallel to the base nor making a subcontrary section, so that the ellipse like the circle is a curve that returns within itself, and completely encloses a space. One of the principal and useful properties of the ellipse is, that the rectangle under the two segments of a diameter is as the square of the - e. In the circle, the same ratio obtains, but t. tangle under the two segments of the diameter beiomes equal to the square of the ordinate.

It is not necessary that we enter into a learned description of the relations of the ellipse to the cone and the cylinder, as the ordinary carpenter may never have any practical use of such knowledge, though, if he have time and inclination, such knowledge would avail him much and tend to broaden his ideas. Suffice for us to show the various methods by which this curve may be obtained, and a few of its applications to actual work.

One of the simplest and most correct methods of describing an ellipse, is by the aid of two pins, a string
and a lead-pencil, as shown at Fig. r. Let FB be the major or longest axis or diameter, and DC the minor or shorter axis or diameter, and E and K the two foci.

These two points are obtained by taking the half of the major axis $A B$ or $F A$, on the compasses, and. standing one point at D , cut the points E and K on the line $F B$, and at these points insert the pins at E and K as shown. Take a string as shown by the dotted lines and tie to the pins at K, then stand the pencil at C and run the string round it and carry the string to the pin E, holding it tight and winding it once or twice around the pin, and then holding the string with the finger. Run the pencil around, keeping the loop of the string on the pencil and it will guide the latter in the formation of the curve as shown. When one-half of the ellipse is formed, the string may be used for the other half, sommencing the curve at F or B , as the case may be. This is commonly called "a gardener's oval," because gardeners make use of it for forming ornamental beds for flowers, or in making curves for
walks, etc. etc. This method of forming the curve, is based on the well-known property of the ellipse that the sum of any two lines drawn from the foci to their circumference is the same.

Another method of projecting an ellipse is shown at Fig. 2, by using a trammel. This is an instrument consisting of two principal
 parts, th: fixed part in the form of a cross as $C D, A B$, and the movable tracer HG. The fixed piece is made of two triangular bars or pieces of wood of equal thickness, joined together so as to be in the same plane. On one side of the frame when made, is a groove forming a rightangled cross; the groove is shown in the section at E . In this groove, two studs are fitted to slide easily, the studs having a section same as shewn at F . These studs are to carry the tracer and guide it on proper lines. The tracer may have a sliding stud on the end to carry a lead-pencil, or it may have a number of small holes passed through it as shown in the cut, to carry the pencil. To draw an ellipse with this instrument. we measure off half the distance of the major axis from the pencil to the stud G, and half the minor axis from the pencil point to the stud II, then swing the tracer round, and the pencil will describe the ellipse required. The studs have little projections on their tops, that fit easily into the holes in the tracer, but this may be done away with, and two brad awls or pins may be thrust through the tracer and into the studs, and then
proceed with the work. With this instrument an ellipse may easily be described.

Another method, based on the trammel principle. is shown at Figs. 3 and 4, where the steel square is substi-
 tuted for the instrument shown in Fig 2. Draw the line $A B$, bisecting it at right angles, draw CD. Set off these lines the required dimensions of the cllipse to be drawn. Place an ordinary square as shown. Lay the straightedge lengthwise of the figure, as shown in Fig. 3, and putting a pin at E against the square, place the pencil at F, at a point corresponding with the one of the figure. Next place the straightedge, as shown in Fig. 4, crosswise of the figure, and bring the pencil F to a point corresponding to one side of the figure, and set a pin at G. By keeping the two pins E and G against the square,
 and moving the straightedge so as to carry the pencil from side to side, one-quarter of the figure will be struck. By placing the square in the same relative position in each of the other three-quarters, the other parts may be struck.

A method,-and one that is very useful for many purposes, -of clrawing an ellipse approximately, is shown in Fig. 5. It is converient and may be applied to hundreds of purposes, some of which will be illustrated as $\because:$ proceed. Io apply this method, work as follows: First iay off the length of the required figure, as shown by AlB, Fig. 5, and the width as shown by CD. Construct a parallelogram that shall nave its sides tangent
 to the figure at the points of its length and width, all as shown by EFGII. Subdivide one-half of the end of the parallelogram into any convenient number of equal parts, as shown at A.E, and one-half of its side in the same manner, as shown by ED. Connect these two sets of points by intersecting lines in the manner shown in the engraving. Repeat the oper. :on for each of the other corners of the parallelogiam. A iine traced through the inner set of intersections will be a very close approximation to an cllipse.

There are a number of ways of describing figures that approximate ellipses by using the compasses, some of them being a near approach to a true ellipse, and it is well that the workman should acquaint himself with the methods of their construction. It is only necessary that a few examples be given in this work, as a knowledge of these shown will lead the way to the construction of others when required. The method exhibited in Fig. 6 is, perhaps, the most useful of any employed by workmen. than all other methods com-
bines. To describe it, lay off the length CD , and at right angles to it and bisecting it lay off the width 1 B . On the larger diameter lay off a space equal to the shorter diameter or width, as shown by DE. Divide
 the remainder of i.., e length or larger diameter EC into three equal parts; with two of these parts as a radius, and R as a center, strike the circle GSFT. Then, with F as a center and FG as radius, and G as center and $G F$ as radius, strike the arcs as shown, intersecting each other and cutting the line drawn through the shorter diameter at O and P respeclively From O, through the points G and F, draw OL and OM, and likewise from P through the sane points draw PK and PN. With O as center and OA as radius, strike the arc LM, and with P as center and with like radius, or PB which is the same, strike the arc KN. With F and G as centers, and with FD and CG which are the same, for radii,
 strike the arcs NM and KL respectively, thus compleating the figure. Another method in which the centers for the longer arc are outside the curve lines, is shown at Fig 7. Let $A B$ be the length and $C D$ the breadth; join BD through the center of the line EB , and at
right angles to BD draw the line CF indefinitely; then at the points of intersection of the dotted lines will be found the points to describe the required ellipse. A. method of describing an ellipse by the intersection of lines is shown at Fip. S, and which may be applied to any kind of an ellipse with longer or shorter axis. Let WX be the given major axis, and

YA the minor axis drawn at right angles to and at the center of each other.

Through Y parallel to WX draw ZT, parallel to AY, draw WZ and XT; divide WZ and XT into any number of equal parts, say four, and draw lines from the points

of division OOO, etc., to Y. Divide WS and XS each into the same number of equal parts as IVZ and XT, and draw lines from A through these last points of division intersecting the lines drawn from OOO, etc., and at these intersections trace the semi-ellipse WYX. The other half of the ellipse may be described in the same manner.

To describe an ellipse from given diameters, by intersection of lines, even though the figure be on a rake: Let SN and QP, Fig. 9, be the given diameters, drawn through the centers of each other at any required angle. Draw QV and PT parallel to SN, through S draw TV parallel to QP. Divide into any number of equal parts PT, QV, PO, and $O Q$; then proceed as in Fig. 8, and the work is complete

An ellipse may be described by the intersection of arcs as at Fig. 1o. Lay off HG and JK as the given axes; then find the foci as described in Fig. i. Between L and L and the center M mark any number of points at pleasure as 1, 2, 3. 4. Upon L. and L with Hi for radius describe ares at $\mathrm{O}, \mathrm{O}, \mathrm{O}, \mathrm{O}$; upon L and with C_{I} for radius describe intersecting arcs at O, O, O, and

O ; then these points of intersection will be in the curye of the ellipse. The other points V, S, C, are found in the same manner, as follows: For the point V take H_{2} for one radius, and G 2 for the other; S is found by taking H_{3} for one radius, and G_{3} for the other; C is found in like manner, with H_{4} for one radius, and G_{4} for the last radius, using the foci for centers as at first. Trace a curve through the points $\mathrm{H}, \mathrm{O}, \mathrm{V}, \mathrm{S}, \mathrm{C}, \mathrm{K}$, etc., to complete the ellipse

It frequently happens that the carpenter has to make
the radial lines for the masons to get their arches in proper form, as well as making the centers for the same, and, as s..e obtaining of such lines for elliptical work is very tedious, I illustrate a device that may be employed that will obviate a great deal of labor in producing such lines. The instrument and the method of using it is exhibited at Fig. II and marked Ee. The semi-ellipse HI, or $x x$, may be described with a string or strings, the outer line being described by use of a string fo tened to the foci F and D, with the extreme point i. E ; and the inner line, with the string being fastened at A and B , with the pencil point in the tightened string at O. The sectional line LKJ shows the center of the arch, and the lines SSS are at

right angles with this vertical line. The usual method of finding the normal by reometry is shown at GABC, but the more practical method of finding it is by the use of the instrument, where Ee shows the normal. I believe the device is of French origin, and I give a translation of a clescription and use of the instrument: "It is made of four pieces of lath or metal put together so as to form a perfect rectangle and having its joints loose, as shown in the diagram. Considering that the most perfect elliptical curve is that described by a string from the foci (foyer) of the ellipse, draw the profiles of the extrados and intrados, as shown in Fig. It, where your joints are to be, then take your
string, draw it to the point marked as at I., adjust two sides of your instrument to correspond with the lines of the string, then, from the point marked, draw a
 line passing through the two angles, E and e . and the line Ee will be the normal or the radial line sought."

The oval is not an ellipse,
 nor are any of the figures obtained by using the compasses, as no part of an ellipse is a circle, though it may approach closely to it. The oval may sometimes be useful to the carpenter, and it may be well to illustrate one or two methods by which these figures may be described.

Let us describe a diamond or lozenge-shaped figure, such as shown at Fig. 12, and then trace a curse inside of it as shown, touching the four sides of the figure, and a beautifu: egg-shaped curve will be formed. For effect we may elongate the lozenge or shorten it at will, placing the short diameter at any point. This form of oval is much used by turners and lathe men generally, in the formation of pillars, balusters, newelposts and turned ornamental work generally.

An egg-shaped oval may also be inscribed in a figure having two unequal but parallel sides, both of which
are bisected by the same line, perpendicular to both as shown in Fig. 13. These few examples are quite sufficient to satisfy the requirements of the workman, as they give the key by which he may construct any oval he may ever be called upon to form.

I have dwelt rather lengthily on the subject of the ellipse because of its being rather difficult for the workman to deal with, and it is meet he should acquire a fair knowledge of the methods of constructing it. It is not my province to enter: on all the details of the pr es of this very inter iect., figure, as the :/ediman can find many of these in any good work on mensuration, if he should require more. I may say here, however, that geometricians
 so far have failed to discover any scientific methol of forming parallel cllipses, so that while the inside or outside lines of an ellipse can be obtained by any of the methods I have given, the parallel line must be obtained either by gatuing the width of the material or space required, or must be obtained by "pricking off" with compasses or other aid. I thought it best to mention this as many a young man has spent hours in trying to solve the unsolvable problem when using the pins, pencil and string.

There are a number of other curves the carpenter will sornetimes meet in daily work, chief among these being the scroll or spiral, so it will be well for him to have some little knowledge of its structure. A true spiral can be drawn by unwinding a piece of string that
has been wrapped around a cone, and this is probably the method adopted by the ancients in the formation of the beautiful Ionic spirals they produced. A spiral
 drawn by this method is shown at Fig. 14. This was formed by using two lead-pencils which had been sharpened by one of those patent sharpeners and which gave them the shape seen in Fig. 15. A piece of string was then tied tightly around the pencil, and one end was wound round the conical end, so as to lie in notches made in one of the pencils; the point of a second pencil was pierced through the string at a convenient point near the first pencil, completing the arrangement shown in Fig. 15. To draw the spiral the pencils must be kept vertical, the point of the first being held firmly in the hole of the spiral, and the second pencil must then be carried around the first, the distance between
 the two increasing regularly, of course, as the string unwinds.

This is a rough-and-ready apparatus, but a true
spiral can be described by it in a very few minutes. By means of a larger cone, spirai of any size can, of course, be drawn, and that portion of the spiral can be used which conforms to the required height.

Another similar method is shown in Fig. 16, only in this case the string unwinds from a spool on a fixed center A, D, B. Make loop E in the end of the thread, in which place a pencil as shown. Hold the spool firmly and move the pencil around it, unwinding the thread. A curve will be described, as shown in the lines. It is evident that the proportions of the figure are determined by the size of the spool. Hence
 a larger or smaller spool is to be used, ascircum stances require. Asimple method of forming a figure that corresponds to the spiral somewhat, is shown in Fig. 17. This is drawn from two centers only, a and e, and if the distance between these centers is not too great, a fairly smooth appearance will be given to the figure. The method

MODERN CARPENTRY

of descrioing is simple. Take aI as radius and describe a semi-circle; then take el and describe semi-circle 12 on the lower side of the line AB. Then with as as radius describe semi-circle above the line; again, with e3 as radius, describe semi-circle below the line $A B$; lastly with a3 as radiss describe semicircle above the line.

In the spiral shown at Fig. 18 we have one drawn in a scientific manner, and which can be formed to
 dimensions. To draw it, proceed as follows: Let BA be the given breadth, and the number of revolutions, say one and three-fourths; now multiply one and three - fourths by four, which equals seven; to which add three, the number of times a side of a square is contained in the diameter of the eye, making ten in all. Now divide $A B$ into ten equal parts and set one from A to D, making eleven parts. Divide $D B$ into two equal parts at O, then $O B$ will be the radius of the first quarter OF, FE; make the side of the square, as shown at GF, equal to one of the eleven parts, and divide the number of parts obtained by multiplying the revolutions by four, which is seven; make the
diameter of the eye, 12 , equal to three of the eleven parts. With F as a center and E as a radius make the quarter EO; then, with G as a center, and GO as a radius, mark the quarter OJ. Take the next center at H and H.JL in the quarter; so keep on for centers, dropping one part each time as shown by the dotted angles. Let EK be any width desired, and carry it around on the same centers.

Another method of obtaining a spiral by arcs of circles is shown at Fig. 19, which may
 be confined to giver: dimensions. Proceed as follows: Draw SM and LK at right angles; at the intersection of these lines bisect the angles by the lines NO and QP; and on NO a 1 QP from the intersection each way set off three equal parts as shown. On I as center and tH as radius, describe the are HK , on 2 describe the arc KM, on 3 describe the arc ML, on 4 describe the arc LR. The fifth center to describe the arc RT is under 1 on the line QP; and so proceed to complete the curve.

There are a few other curves that may occasionally prove useful to the workman, and I submit an example or two of each in order that, should occasion arise where such a curve or curves are required, they may be met with a certain amount of knowledge of the subject.

The first is the parabola, a curve sometimes used in bridge work or similar construction. Two examples of the curve are shown at Fig. 20, and the methods of
 describing them. The upper one is drawn as follows:

1. Draw C8 perpendicular to AB , and make it equal to AD.

Next, join A8 and B8, and divide both lines into the same number of equal parts, say 8 ; number them as in the figure; draw I, I-2, 2-3, 3, etc., then these lines will be tangents to the curve; trace the curve to iouch the center of each of those lines between the points of intersection.

The lower example is described thus: I. Divide $A D$ and $B E$, into any number of equal parts; $C D$ and CE into a similar number.
2. Draw 1, 1-2, 2, etc., parallel to AD , and from the points of division in AD and BE , draw lines to C . The points of intersection of the respective lines are points in the curve.

The curves found, as in these figures, are quicker at the crown than a tre e circular segment; but, where the rise of the arch is not more than one-tenth of the span, the variation cannot be perceived.

A raking example of this curve is shown in Fig. 2I, and the method of describing it: Let AC be the ordinate or vertical line, and DB the axis, and B its vertex; produce the axis to E , and make BE equal to DB ; join EC, EA, and divide them each into the same number
of equal parts, and number the divisions as shown on the figures. Join the corresponding divisions by the lines II, 22, etc., and their intersections will produce the contour of the curve.

The hyperbola is somewhat similar in appearance to the parabola but it has properties peculiar to itself. It is a figure not much used in carpen-
 try, but it may be well to refer to it briefly: Suppose there be two right equal cones, Fig. 22, hav-

Fig. 22. ing the same axis, and cut by a plane Mm, Nm, parallel to that axis, the sections MAN, mna, which result, are hyperbolas. In place of two cones opposite to each other, geometricians sometimes suppose four cones, which join on the lines EH, GB, Fig. 23, and of which axis form two right lines, $\mathrm{Ff}, \mathrm{F}^{\prime} \mathrm{f}^{\prime}$, crossing the center C in the same plane.

To describe a cycloid: The cycloid is the curve described by a point in the circumference of a circle rolling on a straight line, and is described as follows:

1. Let GH, Fig. 24, be the edge of a straight ruler, and C the center of the generating circle.
2. Through C draw the diameter $A B$ perpendicular

to GH, and EF parallel to GH ; then $A B$ is the height of the curve, and EF is the place of the center of the generating circle at every point of its progress.
3. Divide the semi-circumference from B to A into any number of equal parts, say 8, and from A draw chords to the points of division.
4. From C, with a space in the dividers equal to one of the divisions on the circle, step off on each side the sam: number of spaces as the semi-circumference is divided into, and through the points draw perpendiculars to GH ; number them ds in the diagram.
5. From the points of division in EF with the

Fig. 24.
radius of the generating circle, describe indefinite arcs as shown by the dotted lines.
6. Take the chord $\mathrm{A} I$ in the dividers, and with the foot at I and I on the line GH, cut the indefinite arcs
described from I and I respectively at D and D^{\prime}, then D and D^{\prime} are points in the curve.
7. With the chord A2, from 2 and 2 in GH, cut the indefinite arcs in J and J^{\prime}, with the chord A_{3}, from 3 and 3, cut the arcs in K and K^{\prime} and apply the other chords in the same manner, cutting the arcs in LM, etc.
8. Through the points so found trace the curve.

Each of the indefinite arcs in the diagram represents the circle at that point of its revolution, and the points D. J. K, etc., the position of the generating point B at each place. This curve is frequently used for the arches of bridges, its proportions are always constant, viz.: the span is equal to the circumference of the generating circle and the rise equal to the diameter. Cycloida, arches are freq iently constructed which are
not true cycloids, but approach that curve in a greater or less degree.
The epicycloidal curve is formed by the revolution of a circle round a circle, either within or without its circumference, and described by a point B, Fig. 25, in the circumference of the revolving circle, and Q of the stationary circle.
The method of finding the points in the curve is here given:
I. Dr: w the diameter 8,8 and from Q the center, draw QB at right angles to 8,8 .
2. With the distance $Q P$ from Q, describe an arc O, O representing the position of the center P throughout its entire progress.
3. Divide the semi-circle BD and the quadrants D 8 into the same number of equal parts, draw chords from D to $1,2,3$, etc., and from Q_{χ} draw lines through the divisions in D8 to intersect the curve OO in I , 2, 3, etc.
4. With the radius $r^{-} n$ from $1,2,3$, etc., in OO, describe indefinite arcs; apply the chords $\mathrm{D}_{1}, \mathrm{D}_{2}$, "tc. from $1,2,3$, etc., in the circumference of Q , cutting the indefinite arcs in A, C, E, F, etc., which are points in the curve.
We are now in a position to undertake actual work, and in the next chapter, I will endeavor to apply a part of what has preceded to practical examples, such as are required for every-day use. Enough geometry has been given to enable the workman, when he has mastered it all, to lay out any geometrical figure he may be called upon to execute; and with, perhaps, the exception of circular and elliptical stairs and hand-railings, which require a separate study, by what has been formulated and what will follow, he shou!d be ahle to execute almost any work in a scientific manner, that may be placed under his control.

PART II

PRACTICAL EXAMPLES

CHAPTER I

We are now in a position to undertake the solution of practical examples, and I will commence this department by offering a few practical solutions that will bring into use some of the work already known to the student, if he has followed closely what has been presented.

It is a part of the carpenter's duty to lay out and construct all the wooden centers required by the bricklayer and mason for turning arches over openings of all kinds: therefore, it is essential he should know as much concerning arches as will enable him to attack the problems with intelligence. I have said something of arches, in Part I. but not sufficient to satisfy all the needs of the carpenter, so I supplement with the fo!lowing on the same subject: Arches used in building are named according to their curves,-circular, elliptic, cycloid, parabolic, hyperbolic, etc. Arches are also known as three or four centered arches. Pointed arches are ca'led lancet, equilateral and depressed. Voussoirs is the name given to the stones forming the arch; the central stone is called the keystone. The highest point in an arch is called the crown, the lowest the springing line, and the spaces between the crown and springing line on either side, the haunches or flanks. The under, or concave, sur-
face of an arch is ca ed the intrados or soffit, the upper or convex surface is called the extrados. The span of an arch is the width of the opening. The supports of an arch are called abutments, piers, or

springing walls. This applies to the centers of wood, as well as to brick, stone or cement. The following six illustrations show the manner of getting the curves, as well as obtaining the radiating lines, which, as a rule, the carpenter will be asked to prepare for the mason. We take them in the fol owing order:

Fig. 1. Δ Semi-circular Arch.- $R Q$ is the span, and the line $R Q$ is the springing line; S is 'ne' center from

Fig. 4.
whic the arch is described, and to which all joints of the voussoirs tend. T is the keystone of the arch.

Fig. 2. Δ Segment Arch. U is the center from which the arch is described, and from U radiate all
the joints of the arch stones. The bed line of the arch OP or MN is called by mason builders a skewback. OM is the span, and VW is the height or versed sine of the segment arch.

Figs. 3 and 4. Moorish or Saracenic Arches, one of which is pointed. Fig. 3 is sometimes called the
 horseshoe arch. The springing lines DC and ZX of both arches are below the centers BA and Y.

Fig. 5. A Form of Lintol Called a Platband, built in this form as a substityte for a segment arch over the opening of doors or windows, generally of brick, wedge-shaped.

Fig. 6. The Elliptic Arch.-This arch is most perfect when described with the trammel, and in that case

the joints of the arch stones are found as follows: Let ZZ be the foci, and B a point on the intrados where a joint is required; from ZZ draw lines to B , bisect the angle at B by a line drawn through the intersecting arcs D produced for the joint to F. Joints at I and 2
are found in the same manner. The joints for the opposile side of the arch may be transferred as shown. The sflul- xes of the ellipse, HG, GK, are in the same ratio as G i\% to $G A$. The voussoirs near the springing

line uf the arcin are thus increased in size for greater strength. I gave a very good description of this latter arch in Part I, which see.

A nother series of arches, known as Gothic arches, are shown as follows, with all the centers of the curve given, so that their formation is rendered quite simple. The arch shown at Fig. 7 is equilateral and its outlines have been shown before. I repeat, h wever, let $A B$ be the given span; on A and B as centers with AB as radius, describe the arcs. 1 C and BC .

The lancet arch, Fig. 8, is drawn as follows: DE is the given span; bisect DE in J, make DF and EG equal DJ; on F as center with FF: as radius descrije

the arc EH , and on G as center describe the are DH. A lancet arch, not so acute as the previous vilt, is
shown at Fig. 9. Let KL be the given span; bisect KL in M, make MP at right angles to KL and of the required height; connect LP, bisect LP by a line through the arcs R, Q produced to N; make $M O$ equal $M \mathrm{~N}$; with N and O as centers, with NL for radius describe the arcs KP and L.P. Fig. 10 shows a low or drop arch, and is obtained as follows: Let ST be the given span, bisect ST in W; let WX be the required height at right angles to TS; connect $T X$,

bisect TX by a line through the are VZ producer o V, make TU equal $S V$; un V and L as centers with VT as radius describe the arcs ΓX and : Another Gothic arch with a stii。 less height is = unn at Fig. 11. Suppose $A B$ to be the given spat then divide $A B$ in. four equal parts; mal \& $A F$ and $B G$ equal AB, connect L an \perp produce to L ; w th $\mathrm{C} A$ as radius, on C and E, describe the arc $1 D$ and $B K$; on F and G as centers, describe th ar JK and DK.

Anuther four-centered it h ot less height is shown at Fig. 12. Let SI be the given span, divide into six equai paits; on R m. \hat{Q} à en inters with $R Q$ as radius describe the arcs $Q V$ and $R V$, connect $Q V$ and $R V$ and produce to L and) . in K and Q as centers with $Q T$ as
radius describe the arcs TP and SO ; on L and M as centers describe the arcs PN and ON.

To describe an equilateral Ogee arch, like Fig. 13, proceed as follows: Make YZ the given span; make

YX equal Y, bisect $Y Z$ in A; on A as center with AY as radius describe the arcs YB and ZC ; on B and X as centers describe the arcs BD and XD , and on C and X as centers describe the arcs CE and XE, on E and D as centers describe the arcs BX and CX .

Fig. 14 shows the mcthod of obtaining the lines for an Ogee arch, having : height equal to half the span. Suppose FH to be the span, divide into four equal parts, and at each of the points of division draw lines LN, KG and JO at right angles to FH ; with LF for radius on L and J describe the quarter circles FM and HP ; and with the same radius on O and N describe the quarter circles PG and MG.

These examples-all or any of them-can be made use of in a great number of instances. Half of the Ogee curve is often employed for veranda rafters, as for the roofs of bay-windows, for tower roofs and for bell bases, for oriel and bay-windows, and many other pieces of work the carpenter will be confronted with from time to time. They also have value as aids in forming mouldings and other ornamental work, as for
example Fig. 15, which shows a moulding for a base or other like purpose. It is described as follows: Draw AB; divide it into five equal parts; make $C D$ equal to four of these. Through D draw DF parallel with AB. From D, with DC as radius, uraw the arc CE. Make EF equal to DE; divide EF into five parts; make the lire above F equal to one of these; draw FG equal to six of these. From G, with radius DE, describe the arc; bisect GF, and lay the distance to H . It is the center of the curve, meeting the semi-circle tescribed from M. Join NO, OS, and the moulding is complete.

The two illustrations shown at Figs. 16 and 17 will give the student an idea of the manner in
 which he can apply the knowledge he has now obtained, and it may not be out of place to say that with a little ingenuity he can form almost any sort of an ornament he wishes by using this knowledge. The two illustrations require no explanation as their formation is selfevident. Newel posts, balusters, pedestals and other turned or wrought ornaments, may be designed easily if a little thought be brought to bear on the subject.

The steel square is a great aid in working out problems in carpentry, and I will endeavor to show, as briefly as possible, how the square can be applied to some difficult problems, and insure correct solutions.

It is unnecessary to give a full and complete description of the steel square. Every carpenter and joiner is
supposed to be the possessor of one of these useful tools, and to have some knowledge of using it. It is not everyone, however, who thoroughly understands its powers or knows how to employ it in solving all

the difficulties of framing, or to take advantage of its capabilities in laying out work. While it is not my intention to go deeply into this subject in this volume, as that would lengthen it out to unreasonable limits, so it must be left for a separate work, yet there are some simple things connected with the steel square, that I think every carpenter and joiner should know, no matter whether he intends to go deeper into the study of the steel square or not. One of these things is the learning to read the tool. Strange as it may
appear, not over one in fifty of those who use the square are able to read it, or in other words, able to explain the meaning and uses of the figures stamped on its two sides. The following will assist the young fellows who want to master the subject.

The square consists of two arms, at right angles to each other, one of which is called the blade and which is two feet long, and generally two inches wide. The other arm is called the tongue, and may be any length from twelve to eighteen inches, and $11 / 4$ to 2 inches in width. The best square has always a blade 2 inches wide. Squares made by firms of repute are generally perfect and require no adjusting or "squaring."

The lines and figures formed on squares of different make sometimes vary, both as to their position on the square and their mode of application, but a thorough understanding of the application of the scales and lines shown on any first-class tool, will enable the student to comprehend the use of the lines and figures exhibited on any good square.

It is supposed the reader understands the ordinary divisions and subdivisions of the foot and inch into twelfths, inches, halves, quarters, eighths and sixteenths, and that he also understands how to use that part of the square that is subdivided into twelfths of an inch. This being conceded, we now proceed to describe the various rules as shown on all good squares. Sometimes the inch: is subdivided into thirty-seconds, in which the subdivision is very fine, but this scale will be found very convenient in the measurement of lrawings which are made to a scale of half, quarter, one-eighth or one-sixteenth of an inch to a foot.

In the illustration Fig. 18, will be noticed a series of lines extending from the junction of the blade and tongue to the fourinch limit. From the figures 2 to 3 these lines are crossed by diagonal lines. This figure, reaching from 2 to 4 , is called a diagonal scale, and is intended for taking off hundredths of an inch The

Fig. 19
lengths of the lines between the diagonal and the perpendicular are marked on the latter. Primary divisions are tenths, and the junction of the diagonal lines with the longitudinal parallel lines enables the operator to obtain divisions of one-hundredth part of an inch; as for example, if we wish to obtain twenty-four hundredths we operate on the seventh line, taking five primaries and the fraction of the sixth where the diagonal intersects the parallel line, as shown
by the "dots" on the compasses, and this gives us the distance required.

The use of the scale is obvious, and needs no furtner explanation, as the dots or points are shown.

The lines of figures running across the blade of the square, as shown in Fig. 19, forms what is a very convenient rule for determining the amount of material in length or width of stuff. To use it proceed as follows: If we examine we will find under the figure 12, on the outer edge of the blade, where the length of the boards, plank or scantling to be measured is given, and the answer in feet and inches is found under the inches in width that the board, ctc., measures. For example, take a board nine feet long and five inches wide, then under the figure 12 , on the second line, will be found the figure 9 , which is the length of the board; then run along this line to the figure directly under the five inches (the width of the board) and we find three feet nine inches, which is the correct answer in 'board measure." If the stuff is three inches thick it is trebled, etc., etc. If the stuff is longer than any figures shown on the square it can be measured as above and doubling the result. This rule is calculated, as its name indicates, for board meas are, or for surfaces I inch in thickness. It may be advantagenusly used, however, upon timber by multiplying the sult of the sace measure of one side of a piece by its cuepth i.1 inches. To illustrate, suppose it be required to measure a piece 25 feet long, roxit inches in size. For the length we will take 12 and 13 feet. For the width we will take 10 inches, and multiply the result by 14. By the rule a board i2 feet long and io inches wide contains 10 feet, and one 13 fect long and 10 inches wide, 10 feet 10 inches. Therefore, a board 25 teet long and to inches wide must contain 20 feet and

10 inches. In the timber above described, however, we have what is equivalent to 14 such boards, and therefore we multiply this resuit by 14 , which gives 29I feet and 8 inches the board measure.

Along the tongue of the square following the diagonal scale is the brace rule, which is a very simple and very convenient method of determining the length of any brace of regular run. The length of any brace simply represents the hypothenuse of a right-angled triangle. To find the hypothenuse extract the square root of the sum of the squares of the perpendicular and horizontal runs. For instance, if 6 feet is the horizontal run and 8 feet the perpendicular, 6 squared equals 36,8 squared equals $64 ; 36$ plus 64 equals 100, the square root of which is 10 . These are the rules generally used for squaring the frame of a building.

If the run is 42 inches, 42 squared is 1764 , double that amount, both sides being equal, gives 3528 , the square root of which is, in feet and inches, 4 feet II. 40 inches.
In cutting braces always allow in length from a sixteenth to an eighth of an inch more than the exact measurement calls for.

Directly under the half-inch marks on the outer edge of the back of the tongue, Fig. I9, will be noticed two figures, one above the other. These represent the run of the brace, or the length of two sides of a rightangled triangle; the figures immediately to the right represent the length of the brace or the hypothenuse. For instance, the figures ${ }_{5}^{5}$, and 80.61 show that the run on the post and beam is 57 inches, and the length of the brace is 80.61 inches.
Upon some squares will be found brace measurements given, where the run is not equal, as $\frac{18}{4} \cdot 30$. It will be noticed that the last set of figures are each just
three times those mentioned in the set that are usually used in squaring a building. So if the student or mechanic will fix in his mind the measurements of a few runs, with the length of braces, he can readily work almost any length required.

Take a run, for instance, of 9 inches on the beam and 12 inches on the post. The length of

brace is I 5 inches. In a run, therefore, of $\mathbf{1 2}, 16,20$, or any number of times above the figures, the length of the brace will bear the same proportion to the run as the multiple used. Thus if you multiply all the figures by 3 you will have 36 and 48 inches for the run, and 60 inches for the brace, or to remember still more easily, 3,4 and 5 feet.

There is still another and an easier method of obtaining the lengths of braces by aid of the square, also tine bevels as may be seen in Fig. 20, where the run is 3 feet, or 36 inches, as marked. The length and bevels of the brace are found by applying the square three times in the position as shown; placing 12 and 12 on the edge of the timber each time. By this method both length and bevel are obtained with the least amount of labor. Braces having irregular runs may be oberated in the same manner. For instance, suppose we wish to set in a brace where the run is 4 feet and 3 feet; we simply take 9 inches on the
tongue and 12 inches on the blade and apply the
 square four times, as shown in Fig. 2I, where the brace is given in position. Here we get both the proper length and the exact bevels. It is evident from this that braces, regular or irregular, and of any length, may be obtained with bevels for same by this method, only care must be taken in adopting the figures for the purpose.

If we want a brace with a twofoot run and a four-foot run, it must be evident that as two is the half of four, so on the square take 12 inches on the tongue, and 6 inches on the blade, apply four times and we have the length and the bevels of a brace for this run.

For a three-by-four foot run take 12 inches on the tongue and 9 inches on the blade, and apply four times, because as 3 feet is $3 / 4$ of four feet, so 9 inches is $3 / 4$ of 12 inches.
While on the subject of braces I submit the following table for determining the length of braces for any run from six inches to fourteen feet. This table has been carefully prepared and may be depended upon as giving correct measurements. Where the runs are regular or equal the b rel will always be a miter or angle of 45°, providing always the angle which the brace is to occupy is a right angle-a "s $:$: ? re ." If the run is not equal, or the angle not a 11 nt angle, then the bevels or "cuts" will not be miters, and will have to be obtained either by taking figures on the square or by a scaled diagram.

TABLE

$\begin{aligned} & \text { LENGTH UF } \\ & \text { HUN } \end{aligned}$			Lenctit or bhace	$\begin{aligned} & \text { LeNGTA or } \\ & \text { RUN } \end{aligned}$	$\begin{aligned} & \text { LENGTM OT } \\ & \text { BRACE } \end{aligned}$
	In.	f1. 10.	fi. in.	ft. in. fl. in.	f1. in.
	$6 \times$	$6=$	8.48	$43 \times 43=$	60.12
	$6 \times$	$9=$	10.81	$43 \times 46=$	$6 \quad 2.27$
	$9 \times$	9 =	0.72	$43 \times 49=$	$6 \quad 4.49$
	$0 \times$	10	4.97	$43 \times 50=$	$6 \quad 6.74$
	$10 \times$	13	7.20	$46 \times 46=$	$6 \quad 4.36$
	$3 \times$	1 $3=$	9.23	$46 \times 49=$	$6 \quad 6.51$
	$13 \times$	$16=$	11.43	$46 \times 50=$	68.72
	$16 \times$	($6=$	21.45	$49 \times 49=$	8.61
	$6 \times$	19	23.65	$49 \times 50=$	610.75
	$19 \times$	3 9 =	25.69	$50 \times 50=$	$7 \quad 0.85$
	$19 \times$	$20=$	27.89	$53 \times 53=$	$7 \quad 5.09$
	$20 \times$	$20=$	29.94	$56 \times 56=$	$7 \quad 9.33$
	$20 \times$	$23=$	30.12	59×59	8 I.58
	$20 \times$	$26=$	32.41	$60 \times 60=$	$8 \quad 5.82$
	$3 \times$	$26=$	34.36	$63 \times 63=$	810.06
	$26 \times$	$26=$	$3 \quad 6.42$	66×66	$9 \quad 2.30$
	$26 \times$	$29=$	38.59	$69 \times 69=$	$9 \quad 6.55$
	$29 \times$	$29=$	310.66	$70 \times 70=$	910.79
	$29 \times$	$30=$	40.83	73×73	103.03
	$30 \times$	$30=$	42.91	76×76	107.28
	$30 \times$	33	45.02	$79 \times 79=$	1011.52
	$30 \times$	$36=$	47.31	80×80	113.76
	$30 \times$	$39=$	49.62	83×83	1188.00
	$33 \times$	$33=$	47.15	86×86	$12 \quad 0.24$
	$33 \times$	$36=$	49.31	89×89	$12 \quad 4.49$
	$33 \times$	$39=$	411.54	$90 \times 90=$	128.73
	$33 \times$	$40=$	$5 \quad 1.84$	$96 \times 96=$	$13 \quad 5.22$
	$36 x$	$36=$	411.39	$100 \times 100=$	141.70
	$36 \times$	$39=$	$5 \quad 1.55$	$106 \times 106=$	1410.19
	$36 \times$	$40=$	$5 \quad 3.78$	110 0 II $0=$	156.67
	$39 \times$	$39=$	$5 \quad 3.63$	116×116	$16 \quad 3.16$
	$39 \times$	$40=$	$5 \quad 5.79$	$120 \times 120=$	16 II. 64
	$40 \times$	$40=$	57.88	$126 \times 126=$	178.13
	$40 \times$	43	510.03	$130 \times 130=$	184.61
	$40 \times$	$46=$	60.25	$136 \times 136=$	191.10
	$40 \times$	$43=$	$6 \quad 2.51$	$140 \times 140=$	$19 \quad 9.58$
	$40 \times$	$50=$	$6 \quad 4.83$		

Fig, 22 :

There is on the tongue of the square a scale called the "octagonal scale." This is generally on the opposite side to the scales shown on Fig. 19. Fig. 22 exhibits a portion of the tongue on which this scale is shown. It is the central division on which the number 10 is seen along with a number of divisions. It is used in this way: If you have a stick 10 inches square which you wish to dress up ostagonal, make a center mark on each face, then with the compasses, take 10 of the spaces marked by the short cross-lines in the middle of the scale, and lay off this distance each side of the center lines, do the same at the other end of the stick, and strike a chalk line through these marks. Dress off the corners to the lines, and the stick will be octagonal. If the stick is not straight it must be gauged, and not marked with the chalk line. Always take a number of spaces equal to the square width of the octagon in inches. This scale can be used for large octagons by doubling or trebling the measurements.

On some squares, there are other scales, but I do not advise the use of squares that are surcharged with too many scales and figures, as theylead to confusion and loss of time.

It will now be in order to offer a few things that can be done with the stecl square, in a shorter time than by applying any other methods. If we wish to get the

Fig. 23.
length and bevels for any common rafter it can be done on short notice by using the square as shown in Fig. 23. The pitch of the roof will, of course, govcrn the figures to be employed on the blade and tongue. For a quarter pitch, the figures must be 6 and 12 . For half pitch, 12 and 12 must be used. For a stecper pitch, 12 and a larger figure must be used according to the pitch required. For the lower pitches, 8 and 12 gives a one-third pitch and 9 and 12 a still steeper pitch; and from this the workman can obtain any pitch he requires. If the span is 24 feet, the square must be apniied 12 times, as 12 is half of 24 . And so with ar other span: The square must be applied half as many times as there are feet in the width. This is self-evident. The bevels and lengths of hip and valley rafters may be obtained in a similar manner, by first taking the length of the diagonal line between 12 and 12, on the square, which is 17 inches in round numbers. Use this figure on the blade, and the "rise" whatever that may be, on the tongue. Suppose we have a roof of one-third pitch, which has a span of 24 feet; then 8 , which is one-third of 24 , will be the height of the roof at the point or ridge, from the base of the roof on a line with the plates. For example, always use 8 , which is one-third of 24 , on tongue for altitude; 12, half the width of 24 , on blade for base. This cuts common rafter. Next is the hip rafter. It must be understood that the diagonal of $\mathbf{1 2}$ and 12 is 17 in framing, as before stated, and the hip is the diagonal of a square added to the rise of roof; therefore we take 8 on tongue and 17 on blade; run the same number of times as common rafter. To cut jack. rafters, divide the number of openings for common rafter. Suppose we have 5 jacks, with six open-
ings, our common rafter 12 feet long, each jack would be 2 feet shorter, first 10 feet, second 8 feet, third 6 feet, and so on. The top down cut the same as cut of common rafter; foot also the same. To ...t miter to fit hip: Take half the width of building on tongue and length of common rafter on blade; blade gives cut. Now find the diagonal of 8 and 12 , which is $14 \mathbf{Y}^{2}$, take 12 on tongue, $14 \mathrm{~T}^{9}$ s on blade; blade gives cut. The hip rafter must be beveled to suit; height of hip on tongue, length of hip on blade; tongue gives bevel. Then we take 8 on tongue, $83 / 4$ on blade; tongue gives the bevel. Those figures will span all cuts in putting on cornice or sheathing. To cut bed moulds for gable to fit under cornice, take half width of buildirg on
 tongue, length of common rafter on blade; blade gives cut; machine mouldings will not nember, but this gives a solid joint; and to member properly it is necessary to make moulding by hand, the diagonal plumb cut differences. To cut planceer to sun up valley, take height of rafter on tongue, length of rafter on blade; tongue gives cut. The plumb cut takes the height of hip rafter on tongue, length of hip rafter on blade; tongue gives cut. These figures give the cuts tor one-third pitch only, regardless of width of building. The construction of roofs generally will be taken up in another chapter.

A ready way of finding the length and cuts for crossbridging is shown at Fig. 24. If the joists are 8 inches wide and 16 inches centers, there will be 14 inches
between. Place the square on 8 and 14 , and cut on 8 . and you have it. The only point to observe is that the 8 is on the bower side of the piece of bridging. while the 14 is on the upper, and not both on same side of timber, as in nearly all work. Bridging for any depth of joists, to any realsonable distance of joists apart may be obtairect by this method. A quick way of finding the
 joists for living out t. amber to $1={ }^{\prime}$ w thad from the square to an octagon sec. dion is shown at Fit 25 . say \mathbf{y} or square diagonally across your timber ind mark at 7 aw 17 , which gives corner of octagon. The figures 7 and 17 , on either a square or two-foot packet rule, when laid on a board or piece of timber as shown, always define the points where the octagonal angle ut arris should be.

Fig. 26 shows a
 rapid method of dividing anytr into several fecula parts. If the board is $101 / 2$ inches wick, lay the square from
heel to 12, and mark at 3,6 and 9 , and you have it divided into four curtal parts. Any width of board or any number of parts may be worked with accuracy under the same method.
A method for obtaining the "cuts" for octagon and hexagon joints is shown at Fig. 2%. Lay of a charter circle XA, with C as a center; then along the horizontal line $A B$ the square is laid with $12^{\prime \prime}$ on the blade
at the center C, from which the quadrant was struck. If we divide this quadrant into halves, we get the point E, and a line drawn from $12^{\prime \prime}$ on the blade of the square and through the point E, we cut the tongue of the square at $12^{\prime \prime}$ and through to O , and the line thus drawn makes an angle of 45°, a true miter. If we divide the quadrant between E and X, and then draw a line from C , and $12^{\prime \prime}$ on the blade of the square, cutting the dividing point D , we get the octagon cut, which is the line DC. Again, if we divide the space

between E and X into three equal parts, making GC one of these parts, and draw a line from C to G cutting the tongue of the square at $7^{\prime \prime}$, we get a cut that will give us a miter for a hexagon; therefore, we see from this that if we set a steel square on any straight edge or straight line, $12^{\prime \prime}$ and $12^{\prime \prime}$ on blade and tongue on the line or edge, we get a true miter by marking along the edge of the blade. For an octagon miter, we set the blade on the line at $12^{\prime \prime}$, and the tongue at $5^{\prime \prime}$, and we get the angle on the line of the blade-nearly; and, for a hexagon cut, we place the blade at $12^{\prime \prime}$ on the
line, and the tongue at $7^{\prime \prime}$, and the line of the blade gives the angle of cut-nearly. The actual figure for octagon is $4 \frac{3}{3} \frac{1}{2}$, but $5^{\prime \prime}$ is close enough; and for a hexagon cut, the exact ficures are $12^{\prime \prime}$ and $6 \frac{1}{8} 8$, but $12^{\prime \prime}$ and $7^{\prime \prime}$ is as near as most workmen will require, unless the cut is a very !ong one.

The diagram shown at Fig. 28 iltustra'es a method o^{c}. defining the pitches of roofs, and also gives the figu:es on the square for laying out the rafters for such ritches. By a very common usage among carpenters and builders, the pitch of a roof is described by indicating what fraction the rise is of the span. If, for example, the span is 24 feet (and here it should be remarked that the diagram shows only one-half the span), then 6 feet rise would be called quarter pitch, because 6 is one-quarter of 24 . The rule, somewhat arbitrarily expressed, that is applica'.: :

in such cases in roof framing where the roof is onequarter pitch, is as follows: Use 12 of the blade, and 6 of the tongue. For other pitches use the figures appropriate thereto in the same general manner.

The diagram indicates the figures for sixth pitch, quarter pitch, third pitch and half pitch. The first three of these are in very common use, although the latter is somewhat exceptional.

It will take but a moment's reflection upon the part

82

of a practical man, with this diagram before him, to perceive that no changes are necessary in the rule where the span is more or less than 24 feet. The cuts are the same for quarter pitch irrespective of the actual dimensions of the building. The square in all such cases is used on the basis of similar triangles. The broad rule is simply this: To construct with ti.e square such a triangle as will proportionately and correctly represent the full size, the blade becomes the base, the tongue the altitude or rise, while the hypoth-
 enuse that results represents the rafter. The necessary cuts are shown by the tongue and blade respectively.

In order to give a general idea of the use of the square I herewith append a few illustrations of its application in framing a roof of, say, one-third pitch, which will be supposed to consist of common rafters, hips, valleys, jack rafters and ridges. Let it be assumed that the building to be dealt with measures 30 feet from outside to outside of wall plates; the toe of the rafters to be fair with the outside of the wall plates, the pitch being one-third (that is the roof rises from the top of the wall plate to the top of the ridge, one-third of the width of the building, or 10 feet), the half width of the building being 15 feet. Thus, the figures for working on the square are obtained; if other figures are usech, they must bear the same relative proportion to each other.

To get the required lengths of the stuff, measure across the corner of the square, from the 10 -inch mark
on the tongue to the 15 -inch mark on the blade, Fig. 29. This gives 18 feet as the length of the common rafter. To get the bottom bevel or cut to fit on the wall plate, lay the square flat on the side of the rafter. Start, say, at the right-hand end, with the blade of the square to the right, the point or angle of the square away from you, and the rafter, with its back (or what will be the top edge of it when it is fixed) towards you. Now place the 15 -inch mark of the blade and the ro-inch mark of the tongue on the corner of the rafter-that is, towards you-still keeping the square laid flat, and mark along the side of the blade. This gives the bottom cut, and will fit the wall plate. Now move the
 square to the other end of the rafter, place it in the same position as before to the 18 -foot mark on the rafter and to the ro-inch mark on the tongue, and the 15 -inch mark on the blade; then mark alongside the tongue. This gives the top cut to fit argainst the ridge. To get the length of the hip rafter, take 15 inches on the blade and 15 inches on the tongue of the square, and measure across the corner. This gives $2 \mathrm{I}_{1}{ }^{3}$ in inches. Now take this figure on the blade and to inches on the tongue, then measuring across the corner gives the length of the hip rafter.

Another method is to take the 17 -inch mark on the blade and the 8 -inch mark on the tongue and begin as with the common rafter, as at Fig. 30. Mark along
the side of the blade for the bottom cut. Move the square to the left as many times as there are feet in the half of the width of the building (in the present case, as we have seen, is feet is half the width), keeping the above mentioned figures 17 and 8 in line with
 the top edge of the hip rafter; step it along just the same as when applying a pitch board on a stair-string, and after moving it along 15 steps, mark alongside the tongue. This gives the top cut or bevel and the length. The reason 17 and 8 are taken on the square is that 12 and 8 represent the rise and run of the common rafter to I foot on plan, while 17 and 8 correspond with the plan of the hips.

To get the length of the jack rafters, proceed in the same manner as for common or hip rafters; or alternately space the jacks and divide the length of the common rafter into the same number of spaces. This gives the length of each jack rafter.

To get the bevel of the top edge of the jack rafter, Fig. 3I, take the length, $143 / 8$ of the common rafter
 on the blade and the run of the common rafter on the tongue, apply the square to the jack rafter, and mark along the side of the blade; this gives the bevel or cut. The down bevel and the bevel at the bottom end are the same as for the common rafter.
To get the bevel for the side of the purlin to fir
against the hip rafter, place the square flat against the side of the purlin, with 8 inches on the tongue and $143 / 8$ inches on the blade, Fig. 32. Mark alongside of the tongue. This gives the side cut or bevel. The 1436 inches is the length of the common rafter to the I-foot run, and the 8 inches represent the rise.

For the eage beve'. of purlin, lay the square flat against the "ge of purlin with 12 inches on the tongue and 14. .nckes on the hlade, as at Fig. 33, and mark along the side of the tongue. This gives the bevel or cut for the edge of the purlin.

The rafter patterns must be cut half the thickness of ridge shorter; and half the
 thickness of the hip rafter allowed off the jack rafters.

These examples of what may be achieved by the aid of the square are only a few of the hundreds that can be solved by an intelligent use of that wonderful instrument, but it is impossible in a work of this kind to illustrate more than are here presented. The subject will be dealt with at length in a separate volume.

CHAPTER II

GENERAI FKAMING AND ROOFING

Heavy framing is now almost a dead science in this country unless it be in the far west or south, as steel and iron have displaced the heavy timber structures that thity or forty years ago were so plentiful in roofs, bridges and trestle-work. As it will not be

necessary to go deeply into heavy-timber framing, therefore I will confine myself more particularly to the framing of ballon buildings generally.

A ballon frame consists chicfly of a frame-work of scantling. The scantling may be 2×4 inches, or any other size that may be determined. The scantlings are spiked to the sills, or are nailed to the sides of the joist which rests on the sills, or, as is sometimes the case, a rough floor may be nailed on the joists,

and on this, ribbon pieces of 2×4-inch stuff are spiked around to the outer edge of the foundation, and onto these ribbon pieces the scantling is placed and "toe-nailed" to them. The doors and windows are spaced off as shown in Fig. 34, which represents a ballon frame and roof in skeleton condition. These frames are generally boarded on both sides, always on the outside. Sometimes the boarding on the outside is nailed on diagonally, but more frequently horizontally, which, in my opinion, is the better way, providing always the boarding is dry and the joints laid close.

The joists are laid on "rolling," that is, there are no gains or tenons employed, unless in trimmers or similar work. The joists are simply 'toe-
 nailed'' onto sill plates, or ribbon pieces, as shown in the illustration. Sometimes the joists are made to rest on the sills, as shown in Fig. 35, the sill being no more
 than a 2×4-inch scantling laid in mortar on the foundation, the outside joists forming a sill for the side studs. A better plan is
shown in Fig. 36, which gives a method known as a "box-sill." The manner of construction is very simple.

All joists in a building of this kind must be bridged similar to the manner shown in Fig. 37, about every eight feet of their length; in spans less than sixteen feet, and more than eight feet, a row of bridging should always be put in midway in the span. Bridg-
 ing should not be less than I to $1 / 2$ inches in section.

In trimming around a chimney or a stair well-hole, several methods are em ployed. Sometimes the headers and trimmers are made from material fivice as thick and the same depth as the ordinary joists, and the intermediate joists are tenoned into the header, as shown in Fig. 38. Here we have T, T, for header, and T, J, T, J, for trimmers, and b, j, for the ordinary joists. In the western, and also some of the central States, the trimmers and headers are made un of two thicknesses, the header being murtised to secure the ends of the joists. The
two thicknesses are well nailed together. This method is exhibited at Fig. 39., which also shows one way to trim around a hearth; C shows the header with triminer joists with tusk tenons, keyed solid in place.

Frequently it happens that a chimney
 rises in a building from its own foundation, disconnected from the walls, in which case the chimney shaft will require to be trimmed all around, as shown in

Fig. 40. In cases of this kind the trimmers A, A, should be made of stuff very much thicker than the joists, as they have to bear a double burden; B, B shows the heading, and C, C, C, C the tail joist ${ }^{\circ}$ B, B, should have is thickness double that of C, C, etc., and A, A should at least be
three times as stout as C, C. This will to sone exter.t equalize the strength of the whole floor, which is a matter to be considered in laying down fivur umbers, for a fioor is no stronger than its weakest part.

There are a number of devices for trimming around stairs, fire-places and chimney-stacks by which the cutting or mortising of the timbers is avoided. One method is to cut the timbers the exact length, square
 in the ends, and then insert iron dowels-two or morein the ends of the joists, and then bore holes in the trimmers and headers to suit, and drive the whole solid together. The dowels are made from $3 / 4$-inch or r-inch round iron. Another and a better device is the "bridle iron," which may be hooked over the trimmer or header, as the case may be, the stirrup carrying the abutting timter, as shown in Fig. 41. These "bridle irons" are made of wrought tron$2 \times 21 / 2$ inches, or larger dimensions if the work requires such; for ordinary jobs, however. the size given will be found plenty heavy for carrying the tail joists, and a little heavier may be employed to carry the header. This style of connecting the trimmings does not hold the frame-work together, and in places where there is amy tendency to thrust the work apart, some provision must be made to prevent the work from spreading.
in trimming for a chimney in a roof, the "headers," "stretchers" or "trimmers," and "tail rafters," may be simply nailed in place, as the re is no great weight
beyond snow and wind pressure to carry, therefore the same precautions for strength are not necessary. The sketch shown at Fig. 42 explains how the chimney openings in the roof may be trimmed, the parts being only spiked together. A shows a hip rafter against which the ciipples on both sides are spiked. The chimney-stack is shown in the center of the roof -isolated-trimmed on the four sides. The sketch is

self-explanatory in a measure, and should be easily understood.

An example or two showing how the rafters may be connected with the plates at the eaves and finished for cornice and gutters, may not be out of place. A simple method is shown at Fig. 43, where the cornice is complete and consists of a few members only. The gutter is attached to the crown moulding, as shown.

Another method is shown at Fig. 44, this one being intended for a brick wall having ailing courses over cornice. The gutter is built in of wood, and is

MICROCOPY RESOLUTION TEST CHART

(ANSI and ISO TEST CHART No. 2)

APPLIED IMAGE Inc
1653 East Main Street
Rochester. New York 14609 USA
(716) 482-0300-Phone
(716) $288-5989$ - Fax
lined throughout with galvanized iron This makes a substantial job and may be used to good purpose on brick or stone warehouses, factories or similar buildings.

Another style of rafter finish is shown at Fig 45, which also shows scheme of cornice. A similar finish is shown at Fig. 46, the cornice oeing a little different. In both these examples, the gutiers are of wood, which should be lined with sheet metal of some sort in order to prevent their too rapid decay. At Fig. 47 a rafter finish is shown which is intended for a veranda or porch. Here the construction is very simple. The rafters are diressed and cut on projecting end to represent brackets and form a finish

From these examples the workman will get sufficient ideas for working his rafters to suit almost any condi-
 tion. Though there are many hundreds of styles which might be presented, the foregoing are ample for our purpose.

It will now be in order to take up the construction of roofs, and describe the methods by which such construction is obtained.

The method of obtaining the lengths and bevels of
rafters for ordinary roofs, such as that shown in Fig 48, has already been given in the chapter on the steel square. Something has also been said regarding hip and valley roofs; but not enough, I think, to satisfy the full requirements of the workman, so I will endeavor to give a clearer idea of the construction of these roofs by employing the graphic system, instead of depending altogether on the steel square, though I

earnestly advise the workman to "stick to the square." It never makes a mistake, though the owner may in its application.

A "hip roof," pure and simple, has no gables, and is often cal'ed a "c ttage rocf," because of its being best adapted for cottages having only one, or one and a half, stories. The chief difficulty in its construction is getting the lengths and bevels of the hip or angle rafter and the jack or cripple rafter. To the expert workman, this is an easy matter, as he can readily obtain both lengths and bevels by aid of the square, or b : l lines such as I am abnut to profuce.

The illustration shown at Fig. 49 shows the simplest form of a hip roof. Here the four hips or diagonal rafters meet in the center of the plan. Another style of hip roof, having a gable and a ridge in the center of the building, is shown at
 Fig. 50. This is quite a common style of roof, and under almost every condi-
tion it looks well and has a good effect. The plan shows lines of hips, valleys and ridges.

The simiplest form of roof is that known as the "iean-to" roof. This is formed by causing one side wall to be raised higher than the opposite side wall, so that when rafters or joists are laid from the high to the low wall a sloping roof is the result. This style of a roof is sometimes called a "shed roof" or a "pent roof." The shape is shown at Fig. 51, the upper sketch showing an end view and the lower one a plan of the roof. The method of framing this roof, or adjusting the timbers
 for it, is quite obvious and needs no explanation. This style of roof is in general use where an annex or shed is built up against a superior building, hence its name of "lean-to," as it usually "leans" against the main building the wall of which is utilized for the
high part of the shed or annex, thus saving the cost of the most important wall of the structure.

Next to the "lean-to" or "shed roof" in simplicity comes the "saddle" or "double roof." This roof is shown at Fig. 52 by the end view on the top of the figure, and the plan at the bottom. It will be seen that this roof has a double slope, the planes forming the slopes are equally inclined to the horizon; the meeting of their highest sides makes an arris which is

Fig: 51.
called the ridge of the roof; and the triangular spaces at the end of the walls are called gables.

It is but a few years ago when the mansard roof was very popular, and many of them can be found in the older parts of the country, having been erected between the early fifties and the eighties, but, for many reasons, they are now less

Fig. 52. used. Fig. 53 shows a roof of this kind. It is penetrated generally by dormers, as shown in the sketch, and the top is covered either ly a "deck root" or a very flat hip roof, as shown. Sometimes the sloping sides of these roofs are curved, which give them a graceful appearance, but adds materially to their cost.

Another style of roof is shown at Fig. 54. This is a gambrel roof, and was very much in evidence in prerevolutionary times, particularly among our Knickerbocker ancestors. In conjunction with appropriate dormers, this style of roof figures prominently in what is known as early "colonial style." It has some
advantages over the mansard. Besides these there are many other kinds of roofs, but it is not my purpose to enter largely into the matter of styles of roofs, but simply to arm the workman with such rules and prac-

tical equipment that he will be able to tackle with success almost any kind of a roof that he may be called upon to construct.

When dealing with the steel square I explained how the lengths and bevels for common rafters could be obtained by the use of the steel square alone; also hips, purlins, valleys and jack rafters might be obtained by the use of the square, but, in order to fully equip the workman, I deem it necessary to present for his benefit a graphic method of obtaining the lengths, cuts and backing of rafters and purlins required for a hip roof.
At Fig. 55, I show the plans of a simple hip roof having a ridge. The hips on the
 plan form an angle of 45°, or a miter, as it were. The plan being rectangular leaves the ridge the length of therdffererce between the length and the width of the building. Make $c d$ on the ridge-lire as shown, half the width of $a b$, and the angle $b d a$ will be a right angle. Then if we extend $b d$ to e, making $d e$ the rise of the roof, ae will be the length of the hip rafter, and the
angle at x will be the plumb cut at point of hip and the angle at a will be the cut at the foot of the rafter. The angle at r shows the backing of the hip. This bevel is obtained as follows: Make ag and ah equ-. d. :tances-any distance wil' serve-then draw a line h_{s} across the angle of the building, then with a center on $a d$ at p, touching the line $a c$ at s, describe a circle as shown by the dotted line, then draw the lines $k h$ and

$k g$, and that angle, as shown by the bevel v, will be the backing or bevel for the top of the hip, beveling th way from a center line of the hip. This rule for vacking a hip holds good in all kinds of hios, also for guttering a valley rafter, if the bevel is reversed. A hip roof wher all the hips abut each other in the center is shown in Fig. 56. T is style of roof is generally called a "pyramidal roo.' because it has the appearance of a low flattoned pyramid. The same rules governing Fig. 55 apply to this examp' 2 . The bevels C and B show the backing of the hip, B showing the

top from the center line $a \varepsilon$; and C showing the bevel as placed against the side of the hip, which is always the better way to work the hip. A portion of the hip backed is shown at C . The rise of the roof is shown at O.

At Fig. 57 a plan of a roof is shown where the seats of the hips are not on an angle of 45° an'l where the ends and sides of the roof are of different pitches. Take the base line of the hip, ac or eg, and make ef perpendicular to $a e$, from e, and equal to the rise at f; make $f a$ or f_{g} for the length of the hip, by drawing the line $l m$ at right angles to $a e$. This gives the length of the hip rafter. The backing of the hip is obtained in a like manner to former examples, only, in cases of this kind, there are two bevels for the backing, one side of the hip being more acute than the other, as shown at D and E. If the hips are to be mitered, as is sometimes the case in roofs of this kind, then

the back of the hip will assume the shape as shown by the two bevels at F. A lip roof having an irregular plan is shown at Fig. 58. This requires no explanation, as the hips and bevels are obtained in the same manner as in previous examples. The backing of the hips is shown at FG.

An octagon roof is shown at Fig. 59, with all the lines necessary for getting the l agths, buvels, and backing for the hips. The line $a x$ shows the seat of the hip, $x e$ the rise of roof, and ae the length of t and plumb cut and the bevel at E shows the backing of the bips.

These examples will be quite sufficient to enable the workman to understand the general theory of laying out hip roofs. I

may also state that to save a repetition of drawing and explaining the rules that govern the construction of hip roofs, such as I have presented serve equally well for skylights or similar work. Indeed, the clever workman will find hundreds of instances in his w.rk where the rules given will prove useful.

There are a number of methods for getting the lengths and bevels for purlins. I give one here which I think is equal to any other, and perhaps as simple. Suppose Fig. 60 shows one end of a hip roof, also the rise and length of common rafters. Let the purlin be in any place on the rafter, as I, and in its most common position, that is, standing square with the . aiter; then with the point b as a center with any radius, describe a circle. Draw two lines, $q l$ and $p n$, to touch
the circle p and q parallel to $f b$ and at the points s and r, where the two sides of the purlin intersert, draw two parallel lines to the former, to cut the diagonal in m and k; then G is the down bevel and F the side bevel of the purlin; these two bevels, when applied to the end of the purlin, and when cut by them, will exactly fit the side of tire hip rafters.

To find the cuts of a purlin where two sides are parallel to horizon: The square at B and the bevel at C will show how to draw the end of the purlin in this easy case. The following is universal in all positions of the purlin: Let $a b$ be the width of a square roof, make $E_{\text {f }}$ or $a c$ one-half of the width, and make c d perpendicular in the middle of ef, the height of the roof or rise, which in this case is one-third; then draw $d e$ and $d f$, which are each the length of the common rafter.

To find the bevel of a jack rafter against the hip, proceed as follows: Turn the s'ock of the side bevel at F from a around to the line $i z$, which will give the side bevel of the jack rafter The bevel at A, which is the top of the common rafter, is the down bevel of the jack rafter.

At D the method of getting the back if of hip rafter is shown the same as exprained in nther ures.

There are oiner methods of obtaining bey is for pu:lins, but the one offered here will suffice all practical purposes.

I gave a method of finding the back cuts rafters by the steel square, in a previous chad give another rule herewith for the steel square: ke the length of the comnion rafter on the blade ane e run of the same rafter on the tonguc, and the diaci is the square will give the bevel for the cut on the ba
of the jack raiter. For exampie, suppose the rise to b. 6 feet and the run 8 fect, the length of the common raiter will be to fert. Then take 10 feet on the blade of the square, and $\&$ feet on the tongue, and the blade will give the back bevel for the cut of the jack rafters.

To obtain the length of jack rafters is a very simple process, and may be obtained easily by a diagram, as shown in Fig. 61, which is a very common method:
 First lay off half the wielth of the tuilding to sce ${ }^{\prime}$ ', as from A to 13 , the lengen of the common rafter B to C , and the length of the hip rafter from λ to C. Space off the widths from jack rafter to jack rafter as shown by the lines $1,2,3$, and measure them accurately. Then the lines 1,2 , and 3 will be the exact ler.gths of the jack rafters in those divisions Any number of jack rafters may be laid uff this way, and the result will be the length of each rafter, no matter what may be the pitch of the roof or the distance the rafters are apart.

A table for determining the length of jack rafters is given beiow, which shows the lengths required for different spacing in three pitches:

One-quarter pitch roof:
They cut 135 inches shorter each time when spaced 12 inches

They cut 18 inches shorter each time when spaced 16 inches.

They cut 27 inches shorter each tirice when spaced 24 inches.

One-third pitch roof:
They cut 14.4 inches shorter each time when spaced 12 inches.
They cut 19.2 inches shorter each time when spaced 16 unches.
They cut 28.8 in s shortor each time when spaced 24 inches.
One-half pitch : :
They cut 17 inches shorter each time whell spaced 12 inches.

They cut 22.6 inches shorter each time when spaced inf hes.
"hey cut 34 inches shorter each time when spaced at inches.

It is not my intention to enter decply into a discussion of the proper methois of constructing roofs of all shapes, though a few hints and diagrams of octagonal, domical and other roofs and spires will doubtless be of sersice to the general workman. One of the most useful methods of trussing a roof is that known as a lattice "huilt-up" truss roof, similar te that shown at Fig. 62. The rafters, tie beams and the two main braces A, A, must be of one thickness-say, 2×4 or 2×6 inches, according to the length of the spanwhile the minor uraces are made,\vdots-inch stuff and
about 10 or 12 inches wide. These minor braces are well nailed to the tie beams, main braces and rafters. The main braces must be halved over each other at their juncture, and bolted. Sometimes the main braces are left only half the thickness of the rafters, then no halving will be necessary, but this method has the disadvantage of having the minor braces nailed to one side only. To obviate this, blocks may be nailed to the inside of the main braces to make up the thickness

required, as shown, and the minor braces can be nailed or bolted to the main brace.

The rafters and tie beams are held together at the foot of the rafter by an iron belt, the rafter having a crow-foot joint at the bottom, which is let into the tie beam. The main braces also are framed into the rafter with a square toe-joint and held in place with an iron bolt, and the foot of the brace is crow-footed into the tie beam over the wall.

This truss is easily made, may be put together on the ground, and, as it is light, may be hoisted in place with blocks and tackle, with but little trouble. This truss can be made sufficiently strong to span a roof from 40 to 75 feet. Where the span inclines to the
greater length, the tie beams and rafters may be made of built-up timbers, but in such a case the tie beams should not be less than $6 \times$ ro inches, nor the rafters less than 6×6 inches.

Another style of roof altogether is shown at Fig. 63. This is a self-supporting roof, but is somewhat expensive if intended for a building having a span of 30 feet or less. It is fairly well adapted for halls or for country churches, where a high ceiling is required and the span anywhere from 30 to 50 feet over all. It would not be safe to risk a roof of this kind on a building having a span more than 50 feet. The main feacures of this roof are: (1) having

collar beams, (2) truss bolts, and (3) iron straps at the joints and triple bolts at the feet.

I show a dome and the manner of its construction at Fig. 64. This is a fine example of French timber framing. The main carlins are shown at a, b, c, d and ε, Nos. I and 2, and the horizontal ribs are also shown in the same numbers, with the curve of the outer edge described on them. These ribs are cut in between the carlins or rafters and beveled off to suit. This dome may be boarded over either horizontally or with boards made into "gores" and
 laid on in line with the rafters or carlins.

The manner of framing is well illustrated in Nos. 3 and 4 in two ways, No. 3 being intended to form the two principal trusses which stretch over the whole diameter, while No. 4 may be built in between the main trusses.

The illustrations are simple and clear, and quite sufficient without further explanation.
Fig. 65 exhibits a portion of the dome of St. Paul's Cathedral, London, which was designed by Sir Christopher Wren The system of the framing of the external dome of this roof is given. The internal cupola, AAI, is of brick-work, two bricks in thickness, with a ourse of bricks 18 inches in length at every five feet of rise. These serve as a firm bond. This dome was turned upon a wooden center, whose only support was the projections at the springing of the dome, which is said to have been unique. Outside the brick cupola, which is only alluded to in order that the
description may be the more intelligible, rises a brickwork cone 13. A portion of this can be seen, by a spectator on the floor of the cathedral, through the central opening at A. The timbers which carry the external dome rest upon this conical brickwork. The horizontal hammer beams, C, D, E, F, are curiously tied to the corbels, G, H, I, K, by iron cramps, well bedded with lead into the

of the dome is made, pass among the roof trusses. The dome has a planking from the base upwards, and hence the principals are secured horizontally at a little distance from each other. The contour of this roof is that of a pointed dome or arch, the principals being segments of circles; but the central opening for the lantern, of course, hinders these arches from meeting at a point. The scantling of the curved principals is IO $\times 111 / 2$ inches at the base, decreasing to 6×6 inches
at the top. A lantern of Portland stone crowns the summit of the dome. The method of framing will be clearly seen in the diagram. It is in every respect an excellent specimen of roof construction, and is worthy of the genius and mathematical skill of a great workman.

With the rules offered herewith for the construction
 of an octagonal spire, I close the subject of roofs: To obtain bevels and lengths of braces for an octagonal spire, or for a spire of any number of sides, let AB, Fig. 66, be one of the sides. Let AC and $B C$ be the seat line of hip. Let AN be the seat of brace. Now, to find the position of the tie beam on the hips so as to be square with the boarding, draw a line through C, square with $A B$, indefinitely. From C, and square with EC, draw CM, making it equal to the height. Join EM. Let OF be the height of the tie beam. At F draw square with $E M$ a line, which produce until it cuts EC prolonged at G. Draw CL square with BC. Make CL in length equal to EM. Join BL, and make NH equal to OF. From G draw the line GS parallel witi: AB cutting $B C$ prolonged, at the point S; then the angle at H is the bevel on the hip for the tie beam. For a bevel to miter the tie beam, make FV equal ON. Join VX; then the bevel at V is the bevel on the face. For the down bevel see V, in Fig. 67. To find the length of brace, make AB, Fig. 67, equal to AB, Fig. 66. Make AL and BL equal to BL, Fig. 66. Make BP equal to BH. Join AP and BC, which will be the length of the I race. The bevels numbered $1,3,5$ and 7 are all to be
used, as shown on the edge of the brace. No. 1 is to be used at the top above No. 5. For the bevel on the face 10 miter on the hip, draw AG, Fig. 66, cutting BS at J. Join JH. Next, in Fig. 68, make AP equal AP, Fig. 67, and make AJ equal to AJ, Fig. 66. Make PJ equal to JH, Fig. 66, and make PI equal to HI. Join AI; then the bevel marked No. 5 will be correct for the beam next to the hip, and the bevel marked No. 6 will be correct for the top. Bevel No. 2 in this figure will be correct for the bean next to the plate. The edge of the brace is to correspond with the boarding.

A few examples of scarfing timber are presented at Figs. 69, 70, 71 and 72. The example shown at Fig. 69 exhibits a mechod by which the two ends of the timber are joined togrether with a stepsplice and spur or tenun on end, it being drawn tigh + together by the keys, as shown in the shader part.

Fig. 70 is a similar joint though simpler, and th retore a better one; A, A are generally joggles of hardwood, and not wedged key: but the latter are preferable, as they allow of tightening up. The shearing used along BF should be pine, and be not less than six and a half times BC; and $B C$ should be equal to at least twice the depth of the key. The shear in the keys being at right angles to the grain of th rod, a greater stress per square inch of shearing : can be put upon them lian along BF , but their shearing area should be equal in strensith to the other parts of the joint; oak is the best wood for them, as its shearing is from four to sive times that of pine

Scarfed joints with bolts and indents, such as that shown at Fig $; i$, are ajout the strongest of the kind. From this it will be seen that the strongest and most economical method in every way, ir lengthening ties, is by adoption of the common scarf joint, as shown at Fig. 71, and finishing the scarf as there represented.

The carpenter incets with many conditions when timbers of various $\%$ nds have to be lengthened out

and spliced, as in the case of wall plates, etc., where there is not much tensile stress. In such cases the timbers may simply be halved together and secured with nails, spikes, bolts, screws or pins, they may
he halved or beveled as shown in Fig. 72, which, when loarded above, as in the case of wall plates built in the wi l, or as stringers on which partitions are set, or joint beams on which the lower edges of the joists rest, will hold good together.

Treadgold gives the following rules, based upon the redative resistance to tension, crushing and shearing of different woods, for the proportion which the length or overlap of a scarf should bear to the depth of the tie:

	$\begin{gathered} \text { Winnelst } \\ \text { bot } \end{gathered}$	Woth	and indent 2
Pine and simular woods	12	6	4

There are many other kinds of scarfs that will occur to the workman, but it is thought the foregoing may be found useful on special occasions.

A few examples of odd joints in timber work will not be out of place. It sometimes happens that cross-beams are required to be fitted in between girders in position, as in
 renewing a defective one, and when this has to be done, and a mortise and tenon joint is used, a chase has to be cut leading into the mortise, as shown in the horizontal section, Fig 73. By inserting the tenon at the other end of the beams into a mortise cut so as to allow of fitting it in at an angie, the tenon can be slid along the chase b into its proper position. It is better in this case to dispense with the long tenon, and, if necessary, to substitute a bolt, as showr in the sketch. A mortise of this kind is called a chase mortise, but an
iron shoe made fast to the girder forms a better means of carrying the end of a cross-beam. The beams can be secured to the shoe with bolts or other fastenings.

To support the end of a horizontal beam or girt on the side of a post, the joint shown in Fig. 74 may be
 used where the mortise for the long tenon is placed, to weaken the post as little as possible, and the tenon made about one-third the thickness of the beam on which it is cut. The amount of bearing the beam has on the post must greatly depend on the work it has to do. A hardwood pin can be passed through the cheeks of the mortise and the tenon as shown to keep the latter in position, the holes being draw-bored in crder to bring the shoulders of the tenon tight home against the post, but care must be taken not to overdo the draw-boring or the wood at the end of the tenon will be forced out by the pin. The usual rule for draw-boring is to allow a quarter of an inch draw in soft woods and one-eighth of an inch for hard woods.
 These allowances may seem rather large, but it must be remembered that both holes in tenon and mortise will give a little, so also will the draw pin itself unless it is of iron, an uncommon circumstance.

Instead of a mortise and tenon, an iron strap or a screw bolt or nut may be used, similiar to that shown in Fig. 75.

The end of the beam may also be supported on a block which should be of hardwood, spiked or bolted
 on to the side of the post, as at A and B , Fig. 76. The end of the beam may either be tenoned into the post as shown, or it may have a shoulder, with the end of the beam beveled, as shown at A.

Heavy roof timbers are rapidly giving place to steel, but there yet remain many cases where timbers will remain employed and the old method of framing continued. The use of iron straps and bolts in fastening timbers together or for trussing purposes will never perhaps become obsolete, therefore a knowledge of the proper use of these will always remain valuable.

Heel straps are used to secure the joints between inclined struts and horizontal beams, such as the joints between rafters and
 bams. They may be placed either so as morly to rold the beams close together at the joints, is in Fig. $\%$ or so as to directly resist the thrust of the inclined sirut and prevent it from shearing off the portion of the horizontal beam against which it presses. Straps
of the former kind are sometimes called kicking-straps. The example shown at Fig. 77 is a good form of strap for holding a principal rafter down at the foot of the tie beam. The screws and nuts are prevented from sinking into the wood by the bearing plate B , which acts as a washer on which the nuts ride when tightening is done. A check plate is also provided under. neath to prevent
 the strap cutting into the tie beam.
At Fig. 78 I show a form of joint often used, but it represents a difficulty in getting the two parallel abutmerts to take their fair share of the work, both from want of accuracy in workmanship as well as from the disturbing influence of shrinkage. In making a joint of this sort, care must be taken that sufficient wood is left between the abutments and the end of the tie beam to prevent shearing. A little judgment in using straps will often save both time and money and yet be sufficient for all purposes.

I show a few examples of strengthening and trussing joints, girders, and timbers at Fig 79. The diagrams need no explanation, as they are self-evident.

It would expand this book far beyond the dimensions
awarded me, to even touch on all matters pertaining to carpentry, including bridges, trestles, trussed girders and trusses generally, so I must conte... myself

with what has already be:n given on the subject of narpentry, although, as the reader is aware, the subject is only surfaced.

PART III

JOINER'S WORK

CHAPTER \boldsymbol{r}

ERRFINC, RAKING MOULDIN

-PERS AND SPLAYS
This department could be e sended indefinitely, as the problems in joinery are much more numerous than in carpentry, but as the limits of this book will not permit me to cover the whole range of the art, even if
 I were competent, I must be contented with dealing with those problems the workman will most likely be confronted with in his daily occupation.
First of all, I give several methods of "kerfing," for few things puzzle the novice more than this little problein. Let us suppose any circle around which it is desired to bend a piece of stuff to be 2 inches larger on the outside than on the inside, or in other words, the veneer is to be I inch thick, then take out as many saw kerfs as will measure 2 inches. Thus, if a saw cuts a kerf one thirty-second of an inch in width, then il will take 64 kerfs in the half circle to wiow for the
vencer to bend around neatly. The pitce being placed in position and bent, the kerfs will exactly close.

Another way is to saw one kerf near the center of the piece to be bent, then place it on
 the plan of the frame, as indicated in the sketch and bend it until the kerf closes. The distance, DC, Fig. I, on the line DB, will be the space between the kerfs neces-

In kerfing the workman should be careful to use the same saw throughout, and to cut exactly the same depth every time, and the spaces must be of equal distance. In diagram Fig. I, DA shows the piece to be bent, and at O the thickness of the stuff is shown, also path of the inside and

Another, and a safe method of kerfing is shown at Fig. 2 , in which it is desired to bend a piece as shown, and which is intended to be secured at the ends. Up to A is the piece to be trcated. First gauge a line on about one-eighth inch back from the face edges, and try how far it will yield when the first cut is made up to the gauge line, being cut perfectly straight through from side to side, then place the work
on a flat board and try it gently until the kerf closes, and it goes as far as is shown at A, which is the first cut, B representing the second. Those are the distances the kerfs require to be placed apart to complete the curve. Try the work as it progresses. This eases the back of it and makes it much easier done when the whole cuts are finished. Now make certain that . \because job will fold to the curve, then fill them all with hot glue and proceed to fix. The plan shown here is a half semi, and may le in excess of what is wanted, but the principle holds good.

Another method is shown at Fig. 3 for determining
 the number and distances apart of the saw kerfs required to bend a board round a corner. The board is first drawn in position and a half of it divided into any number of equal parts by radii, as $1,2,3,4,5,6$. A straight piece is then marked off to cor-espond with the divisions on the circular one. By this it is seen that the part XX must be cut away by saw kerfs in order to let the board turn round. It therefore derends upon the thickness of the saw for the number of herfs, and when that is known the distances apart can be determined as shown on the right in the figure. Here eight kerfs are assumed to be requisite.

To make a kerf for bending round an ellipse, such as that shown at Fig. 4, proceed as shown, CC and OO being the distances for the kerfs; 2 to 2 and 2 to 3 are the lengths of the points EF , while BB is the length of the
points EE, making the whole head piece in one. In case it is necessary to joint D , leave the ends about 8 inches longer than is necessary, as shown by N in the

sketch, so that should a breakage occur this extra length may be utilized.

It is sometimes necessary to bend thick stuff around work that is on a rake, and when this is required, all that is necessary is to run in the kerfs the angle of the rake whatever that may be, as shown at Fig. 5. This rule holds good for all pitches or rakes. Fig. 6 shows a very common way of obtaining the distance to place the kerfs. The piece to be kerfed is shown at C; now make one at E ; hold firm the lower part of C and bend

Figs. 6.
the upper end on the circle F until the kerf is closed. The line started at E and cutting the circumference of the circle indicates at the circumference the distance the saw kerfs will be apart. Set the dividers to this space, and beginning at the center cut, space the piece to be kerfed both ways. Use the same saw in all cuts and let it be clean and keen, with all dust well cleaned out.

To miter
 mouldings, where straight lines must merge into lines having a curvature as in Figs. 7 and 8: In all cases, where a straight moulding is intersected with a curved moulding of the same profile at whatever angle, the miter is uecessarily other than a straight line. The miter line is found by the intersec-
 tion of lines from the several points of the profile as they occur respectively in the straight and the curved mouldings. In order to find the miter between two such mouldings, first project lines from all of the points of
the profile indefinitely to the right, as shown in the elevation of the sketch. Now, upon the center line of the curved portion, or upon any line radiating from the center around which the curved moulding is to be
 carricd, set off the several points of the profile, spacing them exactly the same as they are in the elevation of the straight moulding. Place one leg of the dividers. at the center of the circle, bringing the otter leg to each of the several points upon the curved moulding, and carry lines around the curve, intersecting each with a horizontal line from the corresponding point of the level moulding. The dotted line drawn through the intersections at the miter shows what must be the real miter line.
Another odd mitering of this class is shown in Fig. 9. In this it will be seen that the plain faces of the stiles and circular rail form junctions, the mouldings all being mitered. The miters are curved in order

to have all the meinbers of the mouldings merge in one another without overwood. Another example is shown at Fig. Io, where the circle and mouldiags make a series of panels. These examples are quite sufficient to enable the workman to deal effectively with every problem of this kind.

The workman sometimes finds it a little difficult to lay out a hip rafter for a veranda that has a curved roof. A
 very easy method of finding the curve of the hip is shown at Fig. II. Let AB be the length of the angle or seat of hip, and CO the curve; raise perpendicular on AB, as shown,
 same as those on DO, and trace through the points obtained, and the thing is done.

Another simple way of finding the hip for a single curve is shown at Fig. I2; A; represents the curve given the common rafter.
Now lay off any number of lines parallel with the seat from the rise, to and beyond the curve $A B$, as shown, and for each inch in length of these lines (between rise and curve), add $\frac{5}{12}$ of an inch to the same line to the left of the curve, and check. After
all lines have thus been measured, run an off-hand curve through the checks, and the curve will represent the corresponding hip at the center of its back.

To find the bevel or backing of the hip to coincide with the plane of the common rafter, measure back on the parallel lines to the right of the curve one-half the thickness of the hip and draw another curve, which will be the lines on the side to trim to from the center of the back. A like amount must be added to the plumb cut to fit the corner of deck. Proceed in like manner for the octagon hip, but instead of adding $\frac{8}{12}$, add $\frac{1}{12}$ of an inch as betore described.
[While this is worked sut on a given rise and run for the safter, the ruie is applicable to any rise or run, as the workman will readily understand.]

A more elaborate system for obtaining the curve of a hip rafter, where the common rafters have an ogee or corcave and convex shape, is shown at Fig. 121/2. This
is a very old method, and is shown-with slight varia-tions-in nearly all the old works on carpentry and joinery. Draw the seat of the common rafter, AB, and rise, $A C$. Then draw the curve of the common rafter, $C B$. Now divide the base line, $A B$, into any number of equal spaces, as $1,2,3,4,5$, etc., and draw perpendicular lines to construct the curve CB, as 10 , $20,30,40$, etc. Now draw the seat of the valley, or hip rafter, as BD , and continue the perpendicular lines referred ountil they meet BD , thus establishing the points IO, II, I2, 13, 14, etc. From these points draw lines at right angles to BD , making io \mathbf{x} equal in length to 10 , and $11 \times$ equal to 20 ;

Figs. 13.
also 12 x equal to 30 . and so on. When this has been done draw through the points indicated by \mathbf{x} the surve, which is the profile of the valley rafters.

Another method, based on the same principles Fig. 12 2 ², is shown at Fig. 13. Let ABCFED represent the plan of the roof. FCG represents the profile of the wide side of common rafter. First divide this common rafter, GC, into any number of ?arts-in this case 6.

Transfer these points to the miter line EB, or, what is the same, the line in the plan representing the hip rafter From the points thus established at E, erect perpendiculars indefinitely With the dividers take the distance from the points in the line FE, measuring to the points in the profile GC, and set the same off on corresponding lines, measuring from EB, thus establishing the points 1,2 , etc.; then a line traced through these points will be the required hip rafter: For the com. mon rafter, on the narrow side, con. tinue the lines from EB parallel with the lines of the: plan $D E$ and $A B$. Draw AD at right angle, to these lines. With the dividers, as before, measuring from FE to the points in GC, set off corresponding distances from AD, thus establishing the points shown between A and H. A line traced through the points thus obtained will be the line of the rafter on the narrow side.
These examples are quite sufficient to enable the workman to draw the exact form of any rafter no matter what the curve of its face may be, or whether it is for a veranda hip, or an angle bracket, for a cornice or niche.

Another class of angular curves the workman will meet with occasionally, is that when raking mouldings are used to work in level mouldings, as for
instance, a moulding down a gable that is to miter. The figures shaded in Fig. 14 represent the moulding in its various phases and angles. Draw the outline of the common level moulding, as shown at F, in the same position as if in its place on the building. I raw lines through as many prominent points in the profile as may be convenient, parallel with the line of rake. From the same points in the moulding draw ver-" tical lines, as shown by $\mathbf{I H}, 2,3,4$ and 5 , etc. From the point 1 , square with the lines of the rake, draw $\mathrm{I} M$,

as shown, and from 1 as center, with the dividers transfer the divisions 2, 3, 4, etc., as shown, and from the points thus obtained, on the upper line of the rake draw lines parallel to IM. Where these lines intersect with the lines of the rake will be points through ${ }^{\circ}$ ich the outline C may be traced.

In case there is a moulded head to put upon a raking
gable, the moulding D shown at the right hand must be worked out for the uppe..e. The manner in which this is done is self-evident upon examination of the drawing, and therefore needs no special description.

A good example of a raking moukling and its applications to actual work is shown in Fig. 15, on a different scale. The ogee moulding at the lower end is the regular moulding, while the midale line, a x, shows the shape of the raking moulding, and the curve on

the top end, cdo, shows the face of a moulding that would be required to return horizontally at that point. The manner of pricking off these curves is shown by the letters and figures.

At Fig. 16 a finished piece of work is shown, where this manner of work will be required, on the returns.

Fig. 17 shows the same mrulding pplied to a curved window or door head. The manner of pricking the curve is given in Fig. 18.

At No. 2 draw any line, $A D$, to the center of the
pediment, meeting the upper edge of the upper fillet in D , and intersecting the lines AAA, aaa, bbb, ccc,

BBB in $\mathrm{A}, a, b, c, \mathrm{~B}, \mathrm{E}$. From these points draw lines $a a, b b, c c, \mathrm{BB}, \mathrm{EE}$, tangents to their respective arcs;

on the tangent line DE , from D , make $\mathrm{D} d, \mathrm{D}_{\boldsymbol{c}}$. D f, $\cap \mathrm{E}$, respectively equal to the distances $\mathrm{D} d, \mathrm{D} e, \mathrm{D} f$, DE on the level line DE, at No. 1. Through the points d, c, f, E, draw $d a, e b, f c, E B$, then the curve drawn through the points A, a, b, c, B, will be the section of the circular moulding.

Sometimes mouldings for this kind of work are made of thin stuff,
 and are beveled on $1 e$ back at .he bottom in such a manner that the top portion of the member hangs over, which gives it the

Fig. 20

Fig. 2.2. appearance of heing solid. Mouldings of this kind are called
"spring mouldings," and much care is required in mitering them. This should always be done in a miter box, which must be made for the purpose; often two boxes are required, as shown in Figs. 19-22. The cuts across the box are regular miters, while the angles down the side are the same as the down cut of the rafter, or plumb cut of the moulding. When the box is ready, place the mouldings in it upside down, keeping the moulded side to the front, as seen in Fig. 2a,
making sure that the level of the moulding at c fits close to the side of the box.

To miter the rake mouldings together at the top, the box shown in Fig. 21 is used. The angles on the top of the box are the same as the down bevel at the top of the rafter, the sides being sawed down square. Put the moulding in the box, as shown in Fig. 22, keeping the bevel at c flat on the bottom of the box, and having the moulded side to the front, and the miter for the top is cut, which completes the moulding for one side of the gable. The miter for the top of the moulding for the other side of the gable may then be cut.

When the rake moulding is made of the proper form these boxes are very convenient; but a great deal of the machinemade mouldings are

not of the proper form to fit. In such cases the moulding should be made to suit, or they come bad; although many use the mouldings as they wane fonm the factory, and trim the miters so as to make them do.

The instructions given, however, in $\mathrm{Fi}_{\xi^{\prime \prime}, \text { I?, } 14,15}$ and 18 will enaús

the workman to make patterns for what he requires. While the "angle bar" is not much in vogue at the present time, the methods by which it is obtained, may be applied to many purposes, so it is but proper the method should be embodied in this work. In Fig. 23, B is a common sash bar, and C is the angle bar of the same thickness. Take the raking projection, II, in C, and set the foot of your compass in I at B, and cross the middle of the bar at the other I; then draw the points $2,2,3,3$, etc., parallel to 11 , then prick your bar at C from the ordinates so drawn at B, which, when traced, will give the angle bar.

This is a simple operation, and may be applied to
many other cases, and for enlarging or diminishing mouldings or other work.

The next figure, 24, gives the lines for a raking moulding, such as a cornice in a room with a sloping ceiling As may be seen from the iagram the three scctions s! วwn are drawn equal in thickness to miter at the angles of the room.
The construction should be easily understood When a straight moulding is mitered with a curved one the line of miter is some-
 times straight and sometimes curved, as seen at Fig. 18, and when the mouldings are all curved the miters are also straight and curved, as shown in previous examples.

If it is desired to make a cluster column of wood, it is first necessary to make a standard or core, which must have as many sides as there are to be faces of columns. Fig. 25 shows how the work is

Fig. 26 done. This shows a cluster of four columns, which are nailed to a square standard or core. Fig. 26 shows the base of a clustered column. These are blocks turned in the lathe, requiring four of them for each base, which are cut and mitered as shown in Fig. 25. The cap, or capital, is, of course, cut in the same manner.

Laying out lines for hopper cuts is often puzzling, and on this account I will devote more space to this subject than to those requiriag less explanations.

Fig. 27 shows an isometric view of three sides of a hopper. 'The fourth side, or end, is 'purposely left out, in order to show the exact build of the hopper. It will be noticed that AC and EO show the end of the work as squared
 up from the bottom, and that BC shows the gain of the splay or flare. This gives the idea of what a hopper is, though the width of side and amount of flare may be any measurement that may be 'ed upon. Th culty in this work is to get the proper lines for the miter and for a butt cut.

Let us suppose the flare of the sides aiad ends to be as shown at Fig. 28, though any flare or inclination will answer equally well. This diagran and the plan exhibit the method to be employed, where the sides and ends are to be mitered together. To obtain the bevel to apply for the side cut. use λ^{\prime} as center, !' as radius, and CDF parallel to BF . Project from B to D parallel to XY. Join AD, which gives the bevel required, as shown. If the top edge of the stuff is to be horizontal, as shown at $1 B^{\prime} C^{\prime}$, the bevel to apply to the edge will be simply as shown in plan by bG; but if
the edge of the stuff is to be square to the side, as shown at $\mathrm{B}^{\prime} \mathrm{C}^{\prime}$, Fig. 29, the bevel must be obtained as follows: Produce $E B^{\prime}$ to D^{\prime}, as indicated, Fig. 29. With B as center, describe the arc from C^{\prime}, which gives the point D. Project down from D, making DF

parallel to CC, as shown. Project from C parallel to XY This will give the point D . Join BD , and this will give the bevel line required. At A, Fig. 31, is shown the application of the bevel to the side of the stuff, and at B the application of the bevel to the edge of the stuff. When the ends butt to the sides, as indicated at H, Fig. 30 , the bevel, it will be noticed, is obtained in a similar manner to that shown at Fig. 28. it is not often that simply a butt joint is used between
the ends and sides, but the ends are usually housed into the sides, as indicated by the dotted lines shown at H, Fig. 30.

Another system, which was first taught by the celebrated Peter Nicholson, and afterwards by Robert

Riddell, ol Philadel. phia, is explained in the follow. ing: The
illustra. tion shown at Fig. 32 is intended to show how to find the lines forcutting butt joints for a hopper. Construct a right angle, as A, B, C, Fig. 32, continue A, B past K. From K, 13 make the inclination of the sides of the hopper, 2,3 .

Draw 3, 4 at right angles with 3,2; take 3 as center, and surike an arc touching the lower line, cutting in 4 . Draw from 4, cutting the miter line in 5 ; from 5 square draw a line cutting in 6 , join it and B; this gives bevel W, as the direction of cut on the surface of sides. To find the butt joint, take any th points, A, C, on the
right angle, equally distant from B, make the angle B, K, L, equal that of $3, K, L$, shown on the left; from B draw through point L; now take C as a center, and strike an arc, touching line BL. From A draw a line touching the arc at H , and cutting the extended iine through B in N , thus fixing N as a point. Then by drawing from C through N , we get the bevel X for the butt joint. Joints on the ends of timbers running horizontally in tapered framed structures, when the plan is square and the inclinations equal, may be found by this method.
The backing
 of a hip rafter may also be obtained by this method, as shown at J , where the pitch line is used as at 2,3 , which would be the inclination of the roof.

The solution just rendered is intended only for hoppers having right angles and equal pitches or splays, as hoppers having acute or obtuse angles, must be treated in a slightly different way.

Let us suppose a butt joint for a hopper having ant
acute angle, such as shown at A, B, C, Fig. 33, and with an inclination as shown at 2,3 . Take any two points, Λ, C, equally distant from B. Join A, C, bisect this line in P, draw through P, indefinitely. Find a bevel for the side cut by drawing 3,4, : fuare with 2,3 ; take 3 as a center, and strike an arc, touching the lower line cutting in 4 ; draw from 4 , cutting

the miter line in 5 , and from it square draw a line cutting in 6 . Join $6, \mathrm{~B}$, this gives bevel W , for direction of cut on the surface of inclined sides.

The bevel for a butt joint is found by drawing C, δ, square with A, B; make the angle $8, K, L$, equal that of $3, \mathrm{~K}, \mathrm{~L}$, shown on the icfi. Draw from 8 through point \mathbf{L}; take C as a center and strike an arc touching the line $8, L$; draw from A, touching the are at D, cutting
the line from P, in D, making it a point, then by drawing from C , through D , we get the bevel X for the butt joint.
is stated regarding the previous illustration, the backing for a hip in a roof having the pitch as shown at 2,3 , may be found at the bevel J. The same rule

also applies to end joints on timbers placed in a horizontal double inclined frame, having an acute angle same as described.

Having described the methods for finding the butt joints in right-angled and acute-angled hoppers, it will be proper now to define a method for describing an obtuse-angled hopper having butt joints.

Let the inclination of the sides of the hopper be
exhibited at the line 2, 3, and the angle of the obtuie corner of the! opper at A, B, C, then to find the joint, take any two points, A, C, equally distant from B_{1} join these points, and divide the line at P. Draw through P and F , indefinitely. At any distance below the side A, B, draw the line 2,6 ; make 3,4 , square with the inclination. Fiom 3, as a renter, describe an arc, touching the lower line and cutting in 4 ; from 4 draw to cut the miter line in 5 , and from it square

down $:$ line cutting in 6 , join $6, B$, and we get the bevel V_{v}^{\prime}. for cut on surface sides.

The bevel for the butt joint is found by drawing C, D square with B, A, and making the angle D, K, L equal to that of $3, K, L$ on the left. From C, as a center, strike an arc, touching the line D, L; then from A draw a line touching the arc H. This line having sut through P , in N , fixes N as a point, so that by drawing C through N an angle is determined, in which is bevel X for the butt joint.

To obtain the bevels or miters is a simple matter to one who has mastered the foregoing, as evidenced by the follow:ng:

Fig. 34 shows a right-angled hopper; its sides may stand on any inclination, as AB . The miter line,

2. W, on the plan, being fixed, draw B, C square with the inclination. Then from B, as center, strike an arc, touching the base line and cutting in CD. From CD draw parallel with the base line, cutting the miters in F and E ; and from these points square down the lines, cutting in 3 and 4 . From 2 draw through 3; this gives

bevel W for the direction of zat on the surface sides. Now join 2, 4, this gives bevel X to miter the edges, which in all cases must be square, in order that bevels may be properly applied.

Fig. 35 shows a plan forming an acute-angled hop-

142

 MODERN CARPENTRYper, the miter line being $2, W$. The sides of this plan are to stand on the inclination AB. Draw 13C square with the inclination, and from B , as center, strike an arc, touching the base line and cutting in CD. Draw from $C D$, cutting the miter line at E and F; from these points square down the lines, cutting in 3 and 4. From 2 draw through 4, which will give bevel iV to miter the edges of sides. Now join 2, 3, which gives bevel X for the direction of cut on the surface of sides.

Fig. 36 shows an obt!nse-angled hopper, its miter line on the plan being 2 W , and the inclination of sides

$A B$. Draw $B C$ square with the inclination, and from B as center strike an arc, touching the base line and cutting CD. Draw from CD, cutting the miter in F and E. From these points square down the lines, cutting the base; then by drawing from 2 through the point below E, we get bevel W for the direction of clits on the surface of sides, and in like manner the point below F being joined with 2. gives bevel X to miter the edges.

It will be noticed that the cuts for the three different angles are obtained on exactly the sam, principie, without the slightest variation, and so perfectly simple as to be understood by a glance at the drawing. The workman will notice that in each of the angles a

line from C_{1} cutting the miter, invariably gives a direction for the surface of sides, and the line from D directs the miter on their edges.

Unlike nany other systems employed, this one meets all and every condition, and is the system that has been employed by high class workmen and millwrights for ages.
One more example on hopper work and I am done with the subject: Suppose it is desired to build a hopper similar to the one shown at Fig. 37, several
 new cor 'tions will be with, as rill b ween by A.) xamination of the obtuse and acute angles, L and P. In order to work this out right make a diagram like that shown at Fig. 38, where the line AD is the given base line on which the slanting side of hopper or box rises at any angle to the base !inc, as CB, and the total height of the work is represented by the line B, E. By this diagram it will be seen that the horizontal lines or bevels of the slanting sides are indicated by the bevel 2 .

Having got this diagram, which of course is not drawn to scale, well in hand, the ground plan of the hopper may be laid down in such a shape as desired, with the sides, of course, having the slant is given in Fig. 38.

Take T2, 3 S, Fig. 37, as a part of the plan, then set off the width of sides equal to C, B, as shown in Fig. 38.

These are shown to intersect at P, L above; then draw lines from P, L through 2, 3, until they intersect at C, as the dotted lines show. Take C as a center, and with the radius A, describe the semi-circle Λ, Λ, and with the same radius transferred to $\mathrm{C}, \mathrm{Fig} .33$, describe the arc A, B, as shown. Again, with the same radius, set off Λ, B, A, B on Fig. 37 , cutting the semi-circle at B, as shown. Now draw throngh B, on the right, parallel with $S, 3$, cutting at J and F; square over F, H and J, K, and join H, C; this gives bevel X , as the cut for face of sides, which come together at the angle shown at 3 . The miters on the edge of stuff are parallel with the dotted line, L, 3. This is the acute corner of the hopper, and as the edges are worked off to the bevel 2 , as shown in Fig. 38, the miter must be correct.

Having mastered the details of the acute corner, the square corner at S will be next in order The first step is to join K, V, which gives the bevel Y , for the cut on the face of sides on the ends, which form the square corners. The method of obtaining these lines is the same as that explained for obtaining them for the acute-angled corner, as shown by the dotted lines, Fig. 35. As the angles, S, T, are both square, being right and left, the same operation answers both, that is, the bevel Y does for both corners.

Coming to the obtuse angle, $P, 2$, we draw a line B, E, on the left, parallel with $A, 2$, cutting at E, as shown by dotted line. Square over at E , cutting T, A, 2 at N ; join N, C, which will give the bevel W , which is the angle of cut for face of sides. The miters on edges are found by drawing a line parallel with $\mathrm{i}^{2}, 2$.

In this probleni. like Fig. 34, every line necessary to the cutting of a hopper after the plan as shown by
the boundary lines $2,3, \mathrm{~T}, \mathrm{~S}$. is complete and exhaustive, but it must be understood that in actual work the spreading out of the sides, as here exhibited, will not be necessary, as the angles will find themselves when the work is put together. When the plan of the basewhich is the small end of the hopper in this case-is giver, and the slant or inclination of the sides known, the rest may be easily obtained. In order to become thoroughly conversant with the problem, I would advise the workman to have the drawing made on cardboard, so as to cut out all the outer lines, including the open corners, which form the miters, leaving the whole piece loose. Then make slight cuts in the back of the cardboard, opposite the lines 2, 3. S, T, just deep enough to admit of the cardboard being bent upwards on the cut lines without breaking. Then run the knife along the lines, which indicates the edges of the hopper sides. This cut must be made on the face side of the drawing, so as to admit of the edges being turned downwards. After all cuts are made raise the sides until the corners come closely together, and let the edges fall level, or in such a position that the miters come closely together. If the lines have been drawn accurately and the cuts made on the lines in a proper manner, the work will adjust itself nicely, and the sides will have the exact inclination shown at Fig. 38, and a perfect model of the work will be the result.

This is a very interesting problem, and the working out of it, as suggested, cannot but afford both profit and pleasure to the young workman.

From what has preceded, it must be evident to the workman that the lines giving proper angles and bevels for the corner post of a hopper must of neces-
sity give the proper lines for the corner post for a pyramidal building, such as a railway tank frame, or any similar structure. True, ihe position of the post is inverted, as in the hopper, its top falls outward, while in the timber structure the top inclines inward; but this makes no difference in the theory, all the operator has to bear in mind is that the hopper in this case is reversed -inverted. Once the proper shape of the corner post has been otłained, all other bevels can readily be found, as the side cuts for joists and braces can be taken from them. A study of these two figures in this direction will lead the student up to a correct knowledge of tapered frarning.

CHAPTER II

COVERING SOLIDS, CIKCULAR WORK, DOVETAILING AND STAIRS

There are several ways to cover a circular tower roof. Some are covered by bending the boarding around

them, while others have the joints of the covering vertical, or inclined. In either case, the boarding has to be cut to shape. In the first instance, where the joints
are horizontal, the covering must be curved on both edges.
At Fig. 39 I show a part plan, elevation, and development of a conical tower roof. ABC shows half the plan; DO and EO show the inclination and height of the tower, while EH and EI show the development of the lower course of covering. This is obtained by using O as a center, with OE as radius, and striking the curve EI, which is the lower edge of the board, and corresponds to DE in the elevation. From the same center O, with radius $O F$, describe the curve FH, which is the joint GF on the elevation. The board, EFHI, may be any convenient width, as may also the other boards used for covering, but whatever the width decided upon, that same width must be continued throughout that course. The remaining tiers of covering must Le obtained in the same way. The joints are radial lines from the center O. Any convenient length of stuff over the distance of three ribs, or rafters, will answer. This solution is ap-

Fig. 40: plicable to many kinds of work. The rafters in this case are simply straight scantlings; the bevels for feet and points may be obtained from the diagram. The shape of a "gore," when such is required, is shown at Fig. 40, IJK showing the base, and L the top or apex. The method of getting it out will be easily understood by examining the diagram. When "gores" are used for covering it will be necessary
to have cross-ribs nailed in between the rafters, and these must be cut to the sweep of the circle, where they are nailed in, so that a rib placed in half way up will require only to be half the diameter of the base, and the other ribs must be cut accordingly.

To cover a domical roof with horizontal boarding we proceed in the manner shown in Fig. 41, where ABC

is a vertical section through the axis of a circular dome, and it is required to cover this dome horizontally. Bisect the base in the point D , and draw DBE perpendicular to AC, cutting the circumference in B. Now divide the arc, $B C$, into equal parts, so that each part will be rather less than the width of a board, and join the points of division by straight lines, which will form an inscribed poiygon of so many sides; and through these points draw lines parallel to
the base AC, meeting the opposite sides of the circumference. The trapezoids formed by the sides of the polygon and the horizontal lines may then be regarded as the sections of so many frustrums of cones; whence results the following mode of procedure: Produce, until they meet the line DE, the lines FG, etc., forming the sides of the polygon. Then to describe a board which corresponds to the surface of one of the zones, as FG, of which the trapezoid is a section from

the point E, where the line $F G$ produced meets $D E$, with the radii EF, EG describe two arcs and cut off the end of the board K on the line of a radius EK. The other boards are described in the same manner.

There are many other solids, some of which it is possible the workman may be called upon to cover, but as space will not admit of us discussing them all, we will illustrate one example, which includes within itself the principles by which almost any other solid
may be dealt with. Let us suppose a tower, having a domical roof, rising from another roof having an incli nation as shown at BC, Fig. 42, and we wish to board it with the joints of
 the boards on the same inclination as that of the roof through which the tower rises. To accomplish this, let A, B, C, D, Fig. 42, be the seat of the generating section; from A draw $A G$ perpendicular to AB , and produce $C D$ to rest it in E; on A, E describe the semi-circle, and transfer its perimeter to E, G by dividing it into equal parts, and setting off corresponding divisions on E, G. Through the divisions of the semi-circle draw lines at right angles to AE, producing them to meet the lines A, D and B, C in i, k, l, m, etc. Through the divisions on E, G, draw lines perpendicular to them; then through the intersections of the ordinates of the
semi-circle, with the line AD draw the lines i, a, k, z, l, y, etc., parallel to AG, and where these intersect the perpendiculars from EG, in points a, z, y, x, w, v, u, etc., trace a curved line, GD, and draw parallel to it the curved line HC; then will DC, HG be the development of the covering required.

Almost any description of dome, cone, ogee or other solid may be developed, or so dealt with under the principle as shown in the foregoing, that the workman, it is hoped, will experience but little difficulty in laying out lines for cutting material to cover any form of curved roof he may be confronted with.

Another class of covering is
 that of making soffits for splayed doors or windows having circular or segmental heads, such as shown in Fig. 43, which exhibits a door with a circular head and splayed jambs. The head or soffit is also tplayed and is paneled as shown. In order to obtain the curved soffit, to show the same splay or angle, from the vertical lines of the door, proceed as follows: Lay out the width of the doorway, showing the splay of the jambs, as at C, B and L, P; extend the angle lines, as shown by the dotted lines, to A, which gives A, B as the radius of the
inside curve, and A, C as radius of the outside curve. These radii correspond to the radii A, B and A, C in Fig. 43; the figure showing the flat plan of the paneled soffit complete. To find the development, F ig. 43. get the stretch-out of the quarter circle 2 and 3 , shown in the elevation at the top of the doorway, and

make 2, 3 and 3B, Fig. 43, equal to it, and the rest of the work is very simple.

If the soffit is to be laid off into panels, as shown at Fig. 44, it is best to prepare a veneer, having its edges curved similar to those of Fig. 43, making the veneer of some flexible wood, such as basswood, elm or the like, that will easily bend over a form, such as is shown at Fig. 44. The shape of this form is a portion of a cone, the circle L being less in diameter than the
circle P. The whole is covered with staves, which, of course, will be tapered to meet the situation. The veneer, x, x, etc., Fig. 43, may then be bent over the form and finished to suit the conditions. If the mouldings used in the panel work are bolection mouldings, they cannot be planted in place until after the veneer is taken off the form.

This method of dealing with splayed work is applicable to windows as well as doors, to circular pews in

churches and many other places where splayed work is required.

A simple method of finding the veneer for a soffit of the form shown in Fig. 43 is shown at Fig. 45. The splay is seen at C, from which a line is drawn on the angle of the splay to B through which the vertical line A passes. B forms the center from which the veneer
is descrioeri. A is the center of the circular head, for both inside and outside curves, as shown at D. The radial lines centering at B show how to kerf the stuff when necessary for bending. The line E is at right angles with the line $C B$, and the veneer $C E$ is the proper length to run half way around the soffit. The joints are radial lines just as shown.

Fig. 47.

A method for obtaining the correct shape of a veneer for a gothic splayed window or doorhead, is shown at Fig. 46; E shows the sill, and line BA the angle of splay. BC shows the outside of the splay; erect the inside line F to A, and this point will form the center from which to decribe the curve or veneer G. This veneer will be the proper shape to bend in the soffi: on either side of the window head.

The art of dovetailing is almost obsolete among carpenters, as most of this kind of work is now done by cabinet-makers, or by a few special workmen in the factories. It will be well, however, to preserve the art, and every young workman should not rest until he can do a good job of work in dovetailing; he will not find it a difficult operation.

There are three kinds of dovetailing, i.e., the common lovetail, Fig. 47; the lapped dovetail, Fig. 48, and the secret, or mitered dovetail, Fig. 49. These may be subdivided into other kinds of dovetailing, but there will be but little difference.

The common dovetail is the strongest, but shows the ends of the dovetails on buth faces of the angies,

and is, therefore, only used in such places as that of a drawer, where the external angle is not seen.

The lapped dovetail, where the ends of the dovetails show on one side of the angle only, is used in such places as the front of a drawer, the side being only scen when opened.

In the miter or secret dovetail, the dovetails are not seen at all. lt is the weakest of the three kinds.

158

MODERN CARPENTRY

At Figs. 50 and 511 show two methods of dovetailing hoppers, trays and other splayed work. The reference letters A and B show that when the work is together A will stand directly over B. Care must be

taken when preparing the ends i : stuff for dovetailing for hoppers, trays, etc., that the right bevels and angles are obtained. according to the rules explained

for finding the cuts and bevels for hoppers and work of a similar kind, in the examples given previously. All stuff for hopper work intending to be dovetailec
must be prepared with butt joints before the dovetails are laid out. Joints of this kind may be made common, lapped or mitered. In making the latter much skill and labor will be required.

Stair building and handrailing combined is a science in itself, and ofe that taxes the best skill in the market, and it will be impossible for me to do more than louch the subject, and that in such a mamer as to enable the workman to lay out an ordinary straight flight of stairs. For further instructions in stair building I would refer my readers to some one or two of the many works on the subject that can be obtained from any dealer in mechanical or scientific books.

The first thing the stair builder has co ascertain is the dimens on the spar the stairs are to occupy; then he mast get the heighe or the risers, and the width of the t ads, and, as architect generally draw the plan of the stairs, showing the pare they are to occupy and the number of tread, the stair builder has only to measure the height from floor to floor and divide by the nu: wer of risers . nd the listance frum first to last riser, and divide by the 1 imber of treads. (This refers only to str light stairs.) I et us take an example: Say that we have tea feet of height and fifteen feet ten inches of run, and we have ninctern treads; thus fifteen feet ten inches divided liv nineteen gives us ten inches for the width of the trad, and we have ten feet rise dis led by twenty (observe here that there is always one more riser than tread), which gives us six inches for $t\}$ height of the riser. The pitchboard must now be made, and as all the work has to be set out from it, cure must : , : to make exactly right. Take a piece of
in Fig. 52, about half an inch thick, dress it and square the side and end, A, B, C; set off the height of the rise from A to B, and the width of the tread from B to C; now cut the line AC, and the pitch-board is complete, as shown in Fig. 53. This may be done by the steel square as shown at Fig. 54. To get the width of string-boards draw the line AB, Fig. 53; add to the length of this line about half an inch more at A, the margin to be allowed, and the total will be the width of string-boards. Thus, say that we allow three inches

for margin, one-half inch to be left on the under side of string-board, will make the width of string-boards in this case about nine inches. Now get a plank, say one and a half inches, of any thickness that may be agreed upon, the length may be obtained by multiplying the longest side of the pitch-boards, AC, Fig. 52, by the number of risers; but as this is the only class of stairs that the length of string-boards can be obtained in this way I would recommer 1 the beginner to practice the sure plan of taking the pitch-board and applying it as at 1, 2, 3, 19, Fig. 55. Drawing all the steps
this way will prevent a mistake that some'ines occurs, viz. the string-boards being cut too short. Cut the foot at the line $A B$, and the top, as at CD. This will give about one and a half inches more than the extreme length. Now cut out the treads and risers; the width of stair is, say, three feet, and we have one and a half inches on each side for string-boards. Allow three-eights of an inch for housing on each side. This will make the length of tread and risers two and one-fourth inches less than the full width of stairs; and as the treads must project their own thickness over rise, which is, siy, one and a half inches, the full size of tread will be two feet by eleven and onehalf inches, and of the risers two feet nine and threefourths inches by six inches; and observe that the first riser will be the thickness of the tread less than the others; it will be only four and one-half inches wide. The reason of this riser being less than the others is because it has a tread thickness extra.

I will now leave the beginner to prepare all his work. Dress the risers on one face and one edge; dress the treads on one face and both edges, making them all of equal width; gauge the ends and the face edge to the required thickness, and round off the nosings; dress the string-boards to one face and edge to match each other.

A plan of a stair having 13 risers and three winders below is shown at Fig. 56. This shows how the whole stair may be laid out. It is inclosed between two walls.

The beginner in stair-work had better resort to the old method of using a story-rod for getting the number of risers. Take a rod and mark on it the exact height from top of lower floor to top of next floor, then
divide up and mark off the number of risers required. There is always one more riser than tread in every flight of stairs. The first riser must be cut the thickness of the tread less than the others.

When there are winders, special treatment will be

required, as shown in Fig. 56, for the treads, but the riser must always be the same width for each separate flight.

When the stair is straight and without winders, a rod may be used for laying off the steps. The width of the steps, or treads, will be governed somewhat by the space allotted for the run of the stairs.

There is a certain proportion existing between the tread and riser of a stair, that should be kept to as close as possible when laying out the work Architects
say that the exact measurement for a tread and riser should be sixteen inches, or thereabouts. That is, if a riser is made six inches, the tread should be ten inches wide, and so on. I give a table herewith, showing the rule generally made use of by stair builders for determining the widths of risers and treads:

Treads Inches	Risers Inches	Treads Inches	Risers Inches
5	9	12	$51 / 2$
6	$81 / 2$	13	5
7	8	14	$41 / 2$
8	$71 / 2$	15	4
9	7	16	$31 / 2$
10	$61 / 2$	17	3
11	6	18	$21 / 2$

It is seldom, however that the proportion of the

riser and step is exactly a matter of choice-the room
allotted to the stairs usually determines this proportion; but the above will be found a useful standard, to which it is desirable to approximate.

In better class buidings the number of steps is considered in the plan, which it is the business of the architect to arrange, and in such cases the height of the story-rod is simply divided to the number required.

An elevation of a stair with winders is shown at Fig. 57, where the story-rod is in evidence with the number of risers figured off.

Fig. 58 shows a portion of an open string stair, with a part of the rail laid on it at $A B, C D$, anc the newe! cap with the projection at A. This shows how the cap should stand over the lower step.

Fig. 59 shows the manner of constructing the step; S represents the string, R the risers, T the tread, U the nosing and cove moulding, and B is a block glued or otherwise fastened to both riser and tread to render
them strong and firm. It will be seen the riser is let into the tread, and has a shoulder on the inside. The bottom of the riser is nailed to the back of the next lower tread, which binds the whole lower part together. The nosing of the stair is generally returned at the open end of the tread, and this covers the end wood of the tread and the joints of the balusters, as shownat Fig 60.

When a stair is bracketed, as shown at B, Fig. 60, the point of the riser on its string end should be left standing past the string
 the thickness of the bracket, and the end of the bracket miters against it, thus avoiding the necessity of showing end wood or joint The cove should finish inside the length of the bracket, and the nosing should finish just outside the length of the bracket. When brackets are employed
they should continue along the cylinder and all around the well-hole trimmers, though they may be varied to suit conditions when continuously running on a straight horizontal facia.

CHAPTER III

JOINER'S WORK -USEFUL MISCELLANEOUS EXAMPLES
I am well aware that workmen are always on the lookout for details of work, and welcome everything in this line that is new. While styles and shapes change from year to year, like fashion in women's dress, the principles of construction never change, and styles of finish in woodwork that may be in vogue to-day, may be old-fashioned and discarded next year; therefore it may not be wise to load these pages with many examples of finish as made use of to-day. A few examples, however, may not be out of place, so I close this section by offering a few pages of such details as I feel assured will be found useful for a long time to come.

Fig. I is a full page illustration of three examples of stairs and newels in modern styles. The upper one is a colonial stairway with a square newel, as shown at A. A baluster is also shown, so that the whole may be copied if required. The second example shows two newels and balusters, and paneled string and spandril AB, also section of paneled work on end of short flight. The third shows a plain open stair, with baluster and newel, the latter starting from first step.

At Fig. 2, which is also a full page, seven of the latest designs for doors are shown. Those marked

ABCD are more particularly employed for inside work, while F and G may be used on outside work; the five-paneled door being the more popular.

There are ten different illustrations, shown at Fig. 3. of various details. The five upper ones show the general method of constructing and finishing a window frame for weighted sash. The section A shows a part of a wall intended for brick vencering, the upper story being shingled or clapboarded.

The position of windows and method of finishing bottom of frame, both inside and out, are shown in this section, also manner of cutting joists for sill. The same method-on a larger scal -is shown at C, only the latter is intended for a bal son frame, which is to be boarded and sided on the ourside.

At B another method for cutting joists for sill is shown, where the frame is a balloon one. This frame is supposed to be boarded inside and out, and grounds are planted on for finish, as shown at the base. There is also shown a carpet strip, or quarter-round. The outside is finished with siding.

The two smaller sections show foundation walls, heights of stories, position of windows, cornices and gutters, and methods of connecting sills to joists.

A number of examples are shown in Fig. 4 that will prove useful. One is an oval window with keys. This is often employed to light vestibules, back stairs or narrow hallways. Another one, without keys, is shown on the lower part of the page. There are three examples of eycbrow dormers shown. These are different in style, and wiil, of course, require different construction.

The dormer window, shown at the foot of the page,

JOINER'S WORE:

172 MODERN CARPENTRY

is designed for a house built in colonial style, but may be adapted to other styles.

The four first examples in ligg. 5 show the section of vari us parts of a bay window for a balloon frame. The manner of constrncting the angle is shown, alsc the sill and head of window, the various parts and manner of working them being given. A part of the section of the top of the an ulow is shown at E , "he inside finish being perpely leit off. At F is sh I all angle of greater longth, which is sometime, the case in boy windows. The manner a construction s quite simple. The lower pertion of the page sh ws some fine xanyph of turned and carved work. i cese will often be t,und usef:l in giving ideas for turned llork for a variety of purposes.

Six examples of shingling ars shown in Fig. 6. The first sketch, A, is intended for a hip, and is a fairly good example, and if well done will insure a water-tight roof at that point. In laying out the shingles for this plan the courses are managed as folLows: No. I is l.sid all the way out to the line of the hip,. ens of the shingle being planed off, so that cours ifo. 2 , on the adjacent side will line perfectly tight down upon it. Next No. 3 is laid and is dressed down in the same manner as the first, after which No. 4 is brought along the same as No. 2. The work proceeds in this manner, first right and then left.

In the second sketch, 13 , the shingles are laid on the hip in a way to bring the grain of the shingles more nearly parallel with the line of the hip. This method overcomes the projection of cross-grained points. Another method of shingling hips is shown at C and D. In putting on shingles by this method a line is snapped four inches from angle of hip on both sides

174 MODERN CARPENTRY

of the ridge, as indicated by the dotted lines in C, then bring the corner of the shingles of each course to the line as shown. When all through with the plain shingling, make a pattern to suit, and only cut the top to shape, as the bottoms or butts will break joints every time, and the hip line will lay square with the hip ine, as shown at D; thus making a first- c^{1} :ss watertight job, and one on which the shingles will not curl up, and it will have a good appearance as well.

At E a method is shown for shingling a valley, where no tin or netal is employed. The manner of doing this work is as follows: First take a strip 4 inches wide and chamfer it on the edges on the outside, so that it will lay down smooth to the sheeting, and mail it into the valley. Take a shingle about 4 inches wide to start with and lay lengthwise of the valley, fitting the shingle on each side. The first course, which is always double, would then start with the nariow shingle, marked B, and carried up the valley, as shown in the sketch. Half way between each course lay a shingle, A, ai out 4 or 5 inches wide, as the case requires, chamfering underneath on each side, so that the next course will lie smooth over it.

If tin or zinc can be obtained, it is better it should be laid in the valley, whether this method be adopted or not.

The sketch shown at F is intended to illustrate the manner in which a valley should be laid with tin, zinc or galvanized iron. The dotted lines show the width of the metal, which should never be less than fourteen inches to insure a tight roof. The shingles should lap over as shown, and not less than four inches of the valley, H, should be clear of shingles

JOINER'S WORK

in order to insure plenty of space for the water to flow during a heavy rain storm. A great deal of care should be taken in shingling and finishing a valley, as it is always a weak spot in the roof.

PART IV

USEFUL TABLES AND MEMORANDA FOR BUILDERS

Table showing quantity of material in every four lineal feet of exterior wall in a balloon frame building, height of wall being given:

$\begin{aligned} & \text { 万 } \\ & \text { 듷 } \\ & \text { d } \end{aligned}$		Size of Studs. Bracen, etc.				
8	6×1	2×4 studs.	42	36	40	74
10	6×8	4×4 braces	52	44	50	80
12	6×10	4×4 plates.	62	53	60	96
14	6×10	Ix6 ribbons.	69	62	70	112
16	8×10		52	71	80	128
18	8×10	studs.	87	$8)$	90	14.4
20	8×12	16 inches from	48	53	100	160
22	9×12	centers.	109	97	110	176
24	10×12		119	106	120	192
15	I0xio	2×6 studs.	122	80	(\%)	14
20	10×12	6×6 braces.	137	88	100	160
22	10×12	4×6 plates.	145	97	110	176
24	12×12	ix6 riblrons.	162	106	120	192
26	10×14		[60	114	130	208
28	10×14	studs 16 inch centers.	176	123	140	224
30	12×14		198	132	150	240

Table showing amount of lumber in rafters, collarpiece and boarding, and number of shingles to four lineal feet of roof, measured from eave to eave over ridge. Rafters 16 -inch centers:

Width Itouse, Feet.	Size of Rafters.	size of Collar. piece.	$\|$Quautity of J.umber lu Rnfler anll Collar. piece.	$\begin{aligned} & \text { Quantity } \\ & \text { of } \\ & \text { Boarding, } \\ & \text { Feet. } \end{aligned}$	No. of Shingles.
14	2 S 4	2×4	39	61	560
16	2x4	2×4	45	70	640
18	2×4	2x4	50	79	720
20	2x4	2×4	56	88	800
22	2×4	2×4	62	97	880
24	2×4	2x4	67	106	960
20	2×6	2×6	84	88	800
22	2×6	2×6	92	97	380
24	2×6	2×6	101	106	960
26	2×6	2×6	109	115	1040
28	2×6	2x6	117	124	1120
30	2x6	2×6	126	133	1200

A proper allowance for waste is included in the above. Roof, one-fourth pitch.

Table showing the requisite sizes of girders and joists for warehouses, the span and distances apart being given:

	Span of Ciaders.				Joists.	Remorks.
	0 Feet	8 Feet.	10 Feet.	12 Feet.		
Feet.	Inches.	Inches.	Inches.	tuchex		
10	8×12	12×13	12×16	14×18	$2 \frac{1}{2} \times 10$	Girders to have a
12	9×12	12×14	12x18	16×18	3×10	bearing at each
14	10x12	12×15	14×13:	3×12	end and joists 6 in.

Table as before, adapted for churches, public halls, etc.

EE品品0	Span of Girders.				Joists.	Remarks.
	6 Feet.	8 Feet.	10 Feet.	1: Feet.		
Heet 12	luches. 6×10	Inches. 8×12	$\begin{aligned} & \text { Inches. } \\ & 12 \times 14 \end{aligned}$	luche: 12×16	$\begin{aligned} & \text { tuches } \\ & 2 \times 8 \end{aligned}$	
13	9×11	9X12	11×15	12×17	2×9	Hearings of
14	6×12	10XI2	12×15	11×18	2×1	girclers a nd
15	7×12	11×12	11×16	12×16	2×10	ioists as
16	8×12	12×12	12×16	13×18	2×10	above.
17	8×12	9 XIL	12×17	14×18	2×12	
15	9 X 12	IOXI4	11818		2×12	
10	0) X 12	11×14	12×18	-	$2 \underline{1} \times 12$	Both tables
20	10×12	12×14	13×13	21×12	are calcu-
21	10×12	11×15	14×18	...	21×12	lated for yel-
22	11×12	12×15	3×12	low pine.
23	11×12	11×16			3×12	
24	10x13	12×16			3×13	
25	10×13	12×17	3×13	
26	IOXI4	12×18			3×14	
27	10×14	12×18		914	

Table showing quantity of lumber in every four lineal feet of partition, studs being placed 16 centers, waste included:

lleight of partition. Feet	Quantity of Studs : X 4 Heet.	If : :x Feet.
3	20	30
9	23	34
10	26	38
11	29	42
12	32	46
13	35	51
14	38	55
15	41	59
16	43	64

Lumber Measurement Table

				$\begin{aligned} & \text { E } \\ & \text { E } \\ & \text { 最 } \end{aligned}$				密		$\begin{aligned} & \text { d } \\ & \text { Ex } \\ & \frac{0}{d} \end{aligned}$	
2×4		2×6		2×8		2×10		3×6		3×8	
12	8	12	12	12	16	12	20	12	18	12	2.
14	9	14	14	14	19	14	23	14	21	14	28
16	11	16	16	16	21	16	27	16	24	16	32
18	12	18	18	18	2.4	18	30	18	27	18	36
20	13	20	20	20	27	20	33	20	30	20	40
22	15	22	22	22	29	22	37	22	33	22	44
24	16	24	24	21	32	24	40	24	36	24	48
26	17	26	26	26	35	$: 6$	43	26	39	26	52
3×10		3×12		4×4		4×6		+×8		6x6	
12	30	12	36	12	16	12	24	12	32	12	36
14	35	14	42	14	19	14	28	14	37	14	42
16	40	16	48	16	21	16	32	16	43	16	48
18	45	18	54	18	2.4	18	36	13	48	18	54
20	50	20	(6)	20	27	20	4)	20	53	20	60
22	55	22	60	22	29	22	44	22	59	22	66
24	(10)	24	72	24	32	24	48	24	64	2.1	72
26	1,5	26	7^{8}	21.	35	26	52	26	69	20	78
$6 . \times 4$		8×8		8×10		10.10		10×12		12×12	
	48	12	6.4	12	50	12	100	12	120	12	1.14
14	56	14	75	14	93	14	117	14	1.40	14	100
16	64	16	85	16	107	16	133	16	160	16	102
18	72	18	06	18	120	18	150	18	180	19	216
20	80	20	107	20	133	20	167	20	$2(10)$	20	240
22	88	22	117	22	147	22	: 83	2.	220	22	264
21	96	24	128	2.4	160	24	200	24	240	24	288
211	10.4	26	13.1	21.	173	26	217	26	$2(0)$	26	312

Strength of Materials
Resistance to extension and compression, in pounds per square inch section of some materials. .

Name of the Material.	Kesistance to Kxienmon.	Kesisiance 10Compresmbn	Tensile site ith sulbactuce	Compostrevalh in liractice.
White pine...	$10,0 \times 0$	6,000	2,000	1,20)
White oak....	15.000	7.500	$3 .(10 x)$	1.500
Rock elm....	$10,0 \times 0$	8,0111	3.200	1.602
Wroughtiron	60,0)0	50,000	12,000	11,000
Cost irnn.......	20, (x)	[(0), (10)	4,00n	20,000

In practice, from one-fifth to one-sixth of the strength is all that should be depended upon

Table of Superficial or Fiat Measure

By which the contents in Superficinl Feet, of Boards, Plank, Paving, etc., of any Length and Rreadih, can be obtained, by multiplying the decimal expressed in the table by the length of the board, elc.

Brasden Inchay	Ares of 1 lin . eal font.	Breadth Iniches.	Ares of a linelloot.	Sroadth inction	Ares nt alin. -al loot.	Sresden incties.	Ares of a lin. eal font.
1	O20\%	3.3	. 2708	64	. 5208	91	. 7708
1	.04ty	3)	.20:6	61	.5416	91	. 7917
1	. 0625	34	. 1125	68	. 5625	97	. 8125
1	.0834	4	. 3331	7	. 5833	10	. 8334
15	. 1042	11	. 3542	71	.6042	10)	. 8542
1.	. 125	45	3-5	71	. 625	10%	. 875
19	. 1459	4%	395^{3}	; 1	. $6+58$	104	. 8959
2	. 1667	5	. 4107	8	. 6667	11	. 9167
24	. 1875	"i	. 1375	83	. 6875	114	. 9375
21	.208.	5	4 ± 83	81	. 7084	111	.9583
24	- 2292	54	* 392	81	.7292	113	. 9792
3	. 25	1	- 5	9	. 75	12	1.0000

Round and Equal-Sided Timber Measure
Table for ascertaining the numher of Cubical Feet, or solid conlents, in a sitick of Round or Equal-Sided Timber, Trec, etc.

Kgint	Aresin	in ${ }^{\text {girt }}$	$\begin{aligned} & \text { Area in } \\ & \text { teet } \end{aligned}$		$\begin{aligned} & \text { Alaain } \\ & \text { loce? } \end{aligned}$	$1 / \mathrm{g}$ grt in in.		$17 \mathrm{in}^{1 / \mathrm{rt}}$	Area in loat
6	. 27	10^{3}	803	158	1, fies	20)	2.9リ9	25	1.34
64	. 272	11	84	159	1.722	201	2.917	$25\}$	+129
61	. 294	113	878	(1)	1.777	201	2.99	251	4. 516
6	.317	113	. 218	16.1	:. 833	21	3.612	254	4.605
7	. 34	113	.959	16.1	1.37	213	3.130	26	4.694
74	. 314	! 2	1.	16	1. 245	211	3. 209	264	4.785
7	. 37	121	1.042	17	2. $\mathrm{x}, \mathrm{t})$	218	3295	261	4.876
78	. 417	121	1085	178	2.10.6)	22	3.362	263	4.96
+	414	121	1.12\%	171	2. 126	221	3.438	27	5013
81	. 7.72	13	1.17 .1	178	2.15%	221	3. 516	274	5.158
8	. 501	131	1217	15	2.25	223	3.598	271	5.252
8	. 511	131	1. 215	191	2.313	23	3673	278	5.348
9	. 562	13 年	1.313	1-1	2 376	$\bigcirc 1$	3.754	28	5.444
$9!$. 524	14	- 361	137	2.42	231	3. ${ }^{3} 35$	283	5. 542
9) $\frac{1}{2}$. 626	141	1. 11	19	2. $5(0)$	23%	3917	281	5.64
9) ${ }^{8}$. 659	1.4	146	19!	$25 i 4$	24	4	288	5.74
10	. 694	14	1.511	59	$2(1$	$2+4$	4130	29	3.84
104	.73	15	1563	123	279	241	411	90. ${ }^{2}$	5941
1.1	.765	$15!$	1.615	20	270%	214	+354	20)	6.044

Shingling

To find the number of shingles required to cover 100 square feet deduct 3 inches from the length, divide the remainder by 3, the result will be the exposed length of a shingle; multiplying this with the average width of a shingle, the product will be the exposed area. Dividing 14.400 , the number of square inches in a square, by the exposed area of a shingle will give the number required to cover 100 square feet of roof.

In estimating the number of shingles required, an allowance should always be made for waste.

Estimates on cost of shingle roofs are usually given per 1,000 shingles.

Table for Estimating Shingles

Siding, Flooring, and Laths
One-fifth more siding and flooring is needed than the number of spuare feet of surface to be covered. because of the lap in the siding matching.

1,000 laths will cover 70 yards of surface, and it pounds of lath nails will nail them on. Bight bushels of good lime, 16 bushels of sand, and i bushel of hair, will make enough good mortar to plaster 100 square yards.

Excavations

Excabations are measured by the yard (27 cubic feet) and irregular depths or surfaces are generally averaged in practice.

Number of Nails Required in Carpentry Work
To case and hang one door, 1 pound.
To case and hang one window, $3 / 4$ pound.
Base, 100 lineal fect, 1 pound.
To put on rafters, joists, etc., 3 pounds to 1,000 feet.
To put up studding, same.
To lay a 6-inch pine floor, 15 pounds to 1,000 feet.

Sizes of Boxes for Different Measures

A box 24 inches long by 16 inches wide, and 28 inches deep will contain a barrel, or 3 bushels.

A box 24 inches long by 16 inches wide, and 14 inches deep will contain half a barrel.

A box 16 inches square and 81 inches deep, will contain I bushel.

A box 16 inches by 88 inches wide and 8 inches deep, will contain half a bushel.

A box 8 inches by $8 \frac{8}{5}$ inches square and 8 inches deep, will contain 1 peck.

A box 8 inches by 8 inches square and $4 f$ inches deep, will contain 1 gallon.

A box 8 inches by 4 inches square and $4 t$ inches deep, will contain half a gallon.

A box 4 inches by 4 inches square and $4 t$ inches deep, will contain I quart.

A box 4 feet long, 3 feet 5 inches wide, and 2 feet 8 inches deep, will contain 1 ton of coal.

Masonry

Stone masonry is measured by two systems, quarryman's and masun's measurements.

MICROCOPY RESOLUTION TEST CHART

(ANSI ond ISO TEST CHART No. 2)

By the quarryman's measurements the actual contents are measured-that is, all openings are taken out and all corners are measured single.

By the mason's measurements, corners and piers are doubled, and no allowance made for openings less than $3^{\prime} 0^{\prime \prime} \times 5^{\prime} 0^{\prime \prime}$ and only half the amount of openings larger than $3^{\prime} 0^{\prime \prime} \times 5^{\prime} 0^{\prime \prime}$.

Range work and cut work is measured superficially and in addition to wall measurement.

An average of six bushels of sand and cement per perch of rubble masonry.

Stone walls are measured by the perch ($243 / 4$ cubic feet, or by the cord of 128 feet). Openings less than 3 feet wide are counted solid; over 3 feet deducted, but 18 inches are added to the running measure for each jamb built.

Arches are counted solid from their spring. Corners of buildings are measured twice. Pillars less than 3 feet are counted on 3 sides as lineal, multiplied by fourth side and depth.

It is customary to measure all foundation and dimension stone by the cubic foot. Water tables and base courses by lineal feet. All sills and lintels or ashlar by superficial feet, and no wall less than 18 inches thick.

The height of brick or stone piers should not exceed 12 times their thickness at the base.

Masonry is usually measured by the perch (containing 24.75 cubic feet), but in practice 25 cubic feet are considered a perch of masonry.

Concreting is usually measured by the cubic yard (27 cubic feet).

A cord of stone, 3 bushels of lime and a cubic yard of sand, will lay 100 cubic feet of wall.

Cement, I bushel, and sand, 2 bushels, will cover $31 / 2$ square yards I inch thick, $41 / 2$ square yards $3 / 4$ inch thick, and $63 / 4$ square yards $1 / 2$ inch thick; i bushel of cement and 1 of sand will cover $21 / 4$ square yards 1 inch thick, 3 square yards $3 / 4$ inch thick and $41 / 2$ square yards $1 / 2$ inch thick.

Brick Work

Brick work is generally measured by 1,000 bricks laid in the wall. In consequence of variations in size of bricks, no rule for volume of laid brick can be exact. The following scale is, however, a fair average:

	om	,		pe			in.	wall.
14	،	"	.		"	,		
21	"	"	"	${ }^{\circ}$	"	13	"	"
28	"	"	"	${ }^{\circ}$	"	18	'	،
35	"	'6	"	،				

Corners are not measured twice, as in stone work. Openings over 2 feet square are deducted. Arches are counted from the spring. Fancy work counted $11 / 2$ bricks for I. Pillars are measured on their face only.

A cubic yard of mortar requires I cubic yard of sand and 9 bushels of lime, and will fill 30 hods.

One thousand bricks closely stacked occupy about 56 cubic feet.

One thousand old bricks, cleaned and loosely stacked, occupy about 72 cubic feet.

One superficial foot of gauged arches requires Io bricks.

Pavements, according to size of bricks, take 38 brick on flat and 60 brick on edge per square yard, on an average.

Five courses of brick will lay i foot in height on a chimney, 6 bricks in a course will make a flue 4 inches wide and 12 inches long, and 8 bricks in a course will make a flue 8 inches wide and 16 inches long.

Siating

A square of slate or slating is 100 superficial feet.
In measuring, the width of eaves is allowed at the widest part. Hips, valleys and cuttings are to be measured lineal, and 6 inches extra is allowed.

The thickness of slates required is from $\frac{3}{18}$ to $\frac{5}{7^{8}}$ of an inch, and their weight varies when lapped from $\frac{8}{5}$ to $63 / 4$ pounds per square foot.

The "laps" of slates vary from 2 to 4 inches, the standard assumed to be 3 inches.

To Compute the Number of Slates of a Given Size Required per Square

Subtract 3 inches from the length of the slate, multiply the remainder by the width and divide by 2. Divide 14,400 by the number so found and the result will be the number of slates required.

Table showing number of slates and pounds of nails required to cover 100 square feet of roof.

Sizes of Slate	I,ength of Exposure.	No. Required.	Nails R ${ }^{\text {duired. }}$
14 in. $\times 28$ in.	$12 \frac{1}{12}$ in.	83	.6 lbs .
12×24	101	114	. 833
11×22	91	138	
10×20	91	165	1.33
9×18	$7 \frac{1}{2}$	214	1.5
8×16	$6 \frac{1}{2}$	277	2.
7×14	$5 \frac{1}{2}$	377	2.66
6 K 12	$4 \frac{1}{2}$	533	3.8

Approximate Weight of Materials for Roofs

Material.	Average Weight, Lb. per Sq. Ft.
Corrugated galvanized iron, No. 20, unboarded.........	21/4
Copper, 16 oz. standing seam...........................	$11 / 2$
Felt and asphalt, without sheathing........................	2
Glass, $1 / 8$ in. thick...	$13 / 4$
Hemlock sheathing, i in. thick.	
Lead, about 1/8 in. thick	
Latli-and-plaster ceiling (-rdinary)...........................	6 to 8
Mackite, i in. thick, with plaster.............................	10
Neponset ioofing felt, 2 layers..	3/8
Spruce sheathing, 1 in. thick...	$21 / 2$
Slate, ${ }^{3} 6$ in. thick, $3^{\text {in }}$ in. double lap..	6\%/4
Slate, $1 / 8$ in. thick, 3 in. double lap........................	41/2
Shingles, $6 \mathrm{in} . x 18 \mathrm{in} ., 1 / 8$ to weather.....................	
Skylight of glass, ${ }^{3} 6$ to $1 / 2$ in., including frame.........	4 to 10
Slag roof, 4-ply............................	4
Terne Plate, IC, without sheathing.........................	1/2
Terne Plate, IX, without sheathing............................	88
Tiles (plain), $10^{3 / 6} 1 \mathrm{n} . \times 61 / 4 \times 5 / 8 \mathrm{in}$. $-51 / 4 \mathrm{in}$. to weather.	18
Tiles (Spanish) $141 / 2 \mathrm{in} . \times 101 / 2 \mathrm{in} .-71 / 4 \mathrm{in}$, to weather..	$81 / 2$
White-pine sioathing, 1 in. thick.	$21 / 2$
Yellow-pine sheathing, 1 in. thick.	4

Snow and Wind Loads

Data in regard to snow and wind loads are necessary in connection with the design of roof trusses.

Snow Load. - When the slope of a roof is over 12 inches rise per foot of horizontal run, a snow and accidental load of 8 pounds per square foot is ample. When the slope is under 12 inches rise per foot of run, a snow and accidental load of 12 pounds per square. foot should be used. The snow load acts vertically, and therefore should be added to the dead load in designing roof trusses. The snow load may be neglected when a high wind pressure has been considered, as a great wind storm wouid very l:kely remove all the snow from the roof.

MODERN CARPENTRY

Wind Load.-The wind is considered as blowing in a horizontal direction, but the resulting pressure upon the roof is always taken normal (at right angles) to the slope. The wind pressure against a vertical plane depends on the velocity of the wind, and, as ascertained by the United States Signal Service at Mount Washington, N. H., is as follows:

Velocity. (Mi. per Hr.) 10... 30...................................
\qquad

$$
50 .
$$

\qquad
\qquad
\qquad
\qquad .40.0 \qquad cane.

The wind pressure upon a cylindrical surface is onehalf that: upon a flat surface of the same height and width.
Since the wind is considered as traveling in a horizontal direction, it is evident that the more nearly vertical the slope of the roof, he greater will be the pressure, and the more nearly horizontal the slope, the less will be the pressure. The following table gives the pressure exerted upon roofs of different slopes, by a wind pressure of 40 pounds per square foot on a vertical plane, which is equivalent in intensity to a violent hurricane.

UNITED STATES WEIGHTS AND MEASURES
 Land Meas'rre

1 sq. acre $=10$ sq. chains $=100,000$ sq. links $=6,272,640$ sq. in. $1 " \quad "=1 \dot{10}$ sq. rods $=4,840 \mathrm{sq} . \mathrm{yds}=43,560 \mathrm{sq} . \mathrm{ft}$. Note. -208.7103 feet square, or 69.5701 yards square, or 220 feet by 198 feet $\mathrm{square}=\mathrm{I}$ acre.

UGEFUL TABLES

> Cubic or Solid Measure
> I cubic yard $=27$ cubic feet.
> I cubic foot $=1,728$ cubic inches.
> I cubic foot $=2,200$ cylindrical inches.
> I cubic foot $=3,300$ spherical inches.
> I cubic foot $=6,600$ conical inches.

Linear Measure

Square Measure

144	square inches (sq. in.) $=1$ squa
9	square feet............... = I square yar
301	square * $\quad=1$ square rod.
160	square $1 . \quad{ }^{\text {a }} 1$ acre
640	acres $=1$ square mile

Sq. mi. A. Sq. rd. Sq. yd. Sq. ft. Sq. in.
$1=640=102,400=3,097,600=27,878,400=4,014,489,{ }^{\circ} 00$

Miscellaneous Measures and Weights

1 perch of sione $=1 \mathrm{ft} . \times 1 \mathrm{ft} .6 \mathrm{in} . \times 16 \mathrm{ft} .6 \mathrm{in} .=24.75 \mathrm{ft}$. cublc. 1 cord of wood, clay, etc., $=4 \mathrm{ft} . \times 4 \mathrm{ft} . \times 3 \mathrm{ft} .=128 \mathrm{ft}$. cubic. I chaldron $=36$ busbeis or 57.25 ft . cubic.
I cubic foot of send, solid, weighs $112 \frac{1}{2}$ lis.
I cubic foot of sand, loose, weighs 95 lizis.
I cubic foot of earth, loose, weighs $933^{3} \mathrm{lbs}$. I cubic fout. of common soil weighs 124 lbs . 1 cubic foot of strong soil weighs 127 lbs . 1 cubic innt of clay weighs 120 to 135 lbs . 1 cubic foot of clay and stonc weighs $160^{\circ} \mathrm{lbs}$. I cubic toot of conimon stone weighs 1 to lbs. 1 cubic foot of brick weighs 95 to 120 lbs . I cubic foot of granite weighs 169 to 180 lbs . I cubic foot of marble weighs 166 to 170 lbs . 1 cubic yard of sand weighs $3,037 \mathrm{lbs}$. I cubic yard of commons soil weighs 3,429 lbs
Safe Bearing Loads

Brick and Stone Masonry.	Lb. per
Bricks, hard, laid in lime Work.	
Hard, laid in Portland cement mortar......................	100
Hard, laid in Rosendale cement mortar...................	200
Granite, capstone.................	150
Squared stonework......................	700
Sandstone, capstone...	350
Squared stonework..	350
Rubble stonework, laid in lime mortar...	175
Limestone, capstone...... in cement mortar..................	80 150
Squared stonework...	500
Rubble, laid in lime mortar.	250
Rubble, laid in cement mortar..	80
Concrete, I Portland, 2 sand, 5 broken stone..............	150 150

$\frac{\text { Foundation Soils. }}{\text { Rock, hardest in native hed... }}$

Equal to best ashlar maso

Equal to best brick masonry

pers

Clay, dry, in thick beds

Moderately dry, in thick bed.
Soft
有
Gravel and course sand, well cemented Sand, compact and well cemented Clean, dry.
Quicksand, alluvial soili, etc 10 150 150 $2:$
Hard, laid in Portland cement mortar 100
Masonry. 150
ranite, capstoneSandstone, capstone0
stonework 350
Rubbe mortar 80
Limestone, capstone500250
Cubble, laid in cement mortarCapacity of Cisterns for Each ro Inches in Depth
Twenty-five fcet in diameter holds
Twenty feet in diamcter holds
3059 gallons
3059 gallons
Fifteen feet in diameter holds 1953 gallons
Fourteen feet in diameter holds 101 gallons
Thirteen feet in diameter holds 959 gallons
Twelve feet in diamcter holds 827 gallons
Eleven feet in diameter holds 705 gallons
Ten feet in diameter holds 592 gallons
Nine feet in diametcr holds 489 gallons
Eight feet in diameiur holds 396 gallons
Seven feet in diameter holds 313 gallons
Six and one-half feet in diameter holds 239 gallons
Six feet in diameter holds 206 gallons
Five feet in diameter holds 176 gallons
Four and one-half feet in diancter houls 122 gallons99 gallons
Four feet in diameter holds... 78 gallons
I'hree feet in diameter holds
44 gallons
Two at.d one-half feet in diameter holds.
30 gallons
Two feet in diameter holds
19 gallons

Number of Nails and Tacks per P sund

Name.		NAILS. Size.		No. per lb.		Name.	TACKs. Length		Ner ib.$.16,000$
				760		1 oz	2......1/8 i		
3	114		480	"	$11 / 2{ }^{\prime}$	-......3-16	"10,666
4	"11/2	"	300	"	$2 \cdot$	c......1/4	" 8,000
5	"1 ${ }^{1 / 4}$	"	200	"	21/2.	-......5-16	" 6.400
6	" 21	"	160	"	 $3 / 8$	"	... 5.333
7	"21/4	"	128	"		-......7-16	'.	... 4.000
8	" $21 / 2$	"	92	"	6	'......0-16	" 2,666
9	" $23 / 4$,	72	\cdots	"	-...... 5 /8		¢,000
10	" 3	،	60	"	10 "	-......11-16	"	... 1,600
12	"31/4	.	44	"	12 "	-3/4	" 1,333
10	" $3^{1 / 2}$.	32	"	14 "	-......13-16	 1,143
20	 4	.	24	"	16	...1/8		. 1,000
30	"41/4	"	18	"	18	..15-16		888
40	" 5	"	14	,	20	. 1		800
50	"51/2	".	12	"	22 "	$\because \cdot11$.		127
6		ence 2	"	80		2411/8		660
8	"	" $21 / 2$	"	50					
10	"	$\cdots 3$		34					
12	"	" $31 / 4$		29					
Wind Pressures on Roofs (Pounds per Square Foot)									

Rise, lfiches per Foot of Run.	Angle with Horizontal.	Pitch. Proportion of Riso to Span.	Wind Pressure, Normal to Slope.
4	$18^{\circ} \quad 25^{\prime}$	$\frac{1}{6}$	16.8
6	26° 33 ${ }^{\prime}$	1	23.7
8	33° 41 ${ }^{\prime}$	1	29.1
12	$45^{\prime \prime} 0^{\prime}$	t	36. 1
16	$53^{\circ} 7^{\prime}$	\%	38.7
18	$56^{\circ} \quad 20^{\prime}$	$\frac{1}{4}$	39.3
24	$63^{\circ} \quad 27^{\prime}$	1	40.0

In addition to wind and snow loads upon roofs, the weight of the principals or roof trusses, including the other features of the construction, should be figured in the estimate. For light roofs, having a span of not over 50 feet, and not required to support any ceiling, the weight of the steel construction may be taken at 5 pounds per square foot; for greater spans, I pound per square foot should be added for each so feet increase in the span.

SUPPLEMENT TO

MODERN CARPENTRY AND JOINERY.

The aim in preparing this has been to supply necessary information for enabling a practical joiner to bes come a competent airtight-case maker, without the tedium of waiting, perhaps for years, until chance brings him into contact with one who has made a specialty of this class of work. I have endeavored, by means of illustrations, to elucidate as clearly as possible the poit ts which are so frequently the cause of failure to those who, while having a good knowledge of wood-working, have not had the advantages of direct practical tuition in the intricacies of airtight-case making.

Before proceeding with the explanations, I would point out that the first and most important rule in jomery is to have the stuff planed u, true, and gauged accurateiy to size.

I. AIRTIGIIT WALL CASE WITH GLASS OR WOOD ENDS.

The general drawings of the airtight wall-case with glazed ends are given in Figs. 1 to 5 and the details in Figs. 6 to 9.

Framework. Figs. 6 and 7 give the width of the top and bottom rails for the front frame of the case, and, by adding the width of the top and bottom door-rails to each we determine the width of the rails required for the ends of the case, as shown in Fig. 5. The anglestile must be $1 / 4$ inch more in thickness than the thick19j

Fig. 1.
ness of the doors, in order to allow of a rebate being formed to receive the glass at the encis of the case. (See M Fig. 8.)

In setting out the frameworik (which is mortised and tenoned together in the ordinary way) the face shoulders of the front rails should be $1 / 8$ inch longer than the

MCDERN CARPENTRY

back shoulders. An eighth inch bead-for which the allowance has been made-is worked on the angle-stiles and bottom rail only, the edge of the top rail being left square. The moulding which is planted round the case, as shown in Fig. 6, serves to break the joint of the doors. The shoulders on the end rails are square with each other, the rebate being the same depth as the moulding. Airtight joints. To make successfully the airtight joint between the angle-stile of the case and the hanging stile of the door (see Fig. 8) three planes are required. The first plane is used on the angle-stile for forming at the same time the two grooves, each $3 / 16$ inch wide;

Fig. 3.
the second is used for working the two fillets together and the third for working the two hollows in the door stiles.

The front part of the frame must now be fitted together and the joints at the back of the frame cleared off, to allow the airtight planes to be worked from the back of the frame, that is, from the inside of the case, as the doors would not close accurately if they were worked from the face or outside.

After the front frame has been fitted together as described, it must be taken apart, and the angle-stiles worked with plane No. I. When this has been done,

Fig. 6.
the fillets must be glued in the grooves, and, when set, rounded over with plane No. 2. The fillets will not require to be taken to the exact width before rounding over, as plane No. 2 works all surplus stuff away.

For the joint between the top and bottom rails of doors and the airtight fillets respectively, two planes are re-

quired; the first for sticking the airtight fillet, and the second for working the small hollow on the door rails to match the fillet.

Continuing with the framework. After rounding the fillets in the angle-stiles, groove the top and bottom

rails to receive the tongue on the airtight fillets as shown in Figs. 6 and 7 and rebate the bottom rails to rest on the plinth, Fig. 7. The top and bottom rails at each end
of the case are trenched to receive respectively the ends of the inside top and inside bottom, Fig. 5. Care must be taken to make these trenches in such a way as to keep the inside top and the inside bottom in the positions shown in the Figs. 6 and \%. Rebate the back angle-stile

Fig. 9.
of each end frame to receive the back, as in Fig. 8, and run a small hollow in the angle of the rebate. Glue and pin the airtight fillet on the front edges of the inside top and bottom respectively; also glue the fillet on the back of each in order to strengthen the airtight fillet, and
make out the thickness to receive the glue-blocks as shown. An ovolo or other moulding is now worked on the external angles of the two front angle-stiles as shown in Fig. 8, the moulding being stopped in a line with t'ie top and bo m rails respectively of the doors, Fig. I.

The body of the case must now be put together, care being taken to glue-block the front irame and ends securely to the bottom and top, as we'l as behind the plinth, which is screwed to the bottom raiis from the back.

Match-boards are used for the back, the boards being run to the floor, as shown in Fig. 2. Mitre the cornice round the front and ends, screwirg it from the back of the top rails; cut the dust-board to fit on the top edges of the rails and bevel against the cornice; having previously rebated it to receive the back of the c se. Before the back is fastened, the cloth, Fig. 8, should be placed in the rebate of the stile, the fillet placed on tep of the cloth and pressed into the hollow, and then fastened to the stile with screws, the cloth thus being securely heid between the fillet ard the stile. The cloth can now be stretcied taut and fixed at the other end in the same way, and the boards faster 'in.

Doors. In planing up the stuff for ... doors, the same gauge must be used as that for the frame of the case. When setting out for the doors, take the width and height accurately, and allow $1 / 16$ inch on the height for fitting in. The width is set out as for o:dinary folding doors, viz.: allowing half the hook-joint on each door, and $1 / 8$ inch for jointing and fitting in. The best way to allow for fitting is to have each stile $1 / 16$ inch greater in width " in the finished size required.

The rails abutting against each angle-stile are singlemortised and tenoned together as in ordinary work,
but double mortises and tenons must be used at the top and tottom of each meeting stile, as snown in Fig. 9. The reason for using the double tenon is, that if a single tenon were used, the ends of the tenon would slip off after the hook-joint had been made.

Presuming the doors to be wedged up, level off the joints at the shoulders, when the doors will be ready for jointing together and fitting to the case.

Hook-Joint. The following is the best method of making a well fitting joint. First rebate the stiles (the rebate being $1 / 8$ inch less in width than the thirkness of the doors, and $5 / 16$ inch deep), and next bevel the edges of the doors, bringing the rebate to a depth of $1 / 4$ inch, Fig. 8. The doors must now be worked with a hollow and round on the edge of the rebate to form the hookjoint. For this purpose a hook-joint plane is required. There is an adjustable deptli-gauge on the side of the plane, which can be easily set for working difierent thickness is of stuff. Before working the doors with the plane, it is advisable to work a piece of stuff of the same thickness as the doors. Cut the piece thus worked into two, and put the joint together. This will test the accuracy of the setting of the plane. If the faces do not come flush with each other, the gauge on the plane must be raised or lowered accordingly.

Having fitted the meeting stiles, place the doors together across the bench, as they can thus be more easily taken to the exact width and height of the frame of the case. After the doors have been fitted in the opening, work with the airtight planes as previously instructed, always remembering to hold the fence of plane No. 3 on the back side of the door while forming the hollows on the hanging stiles. With plane No. 2 the small hollow
on the top and buttom rails to match the airtight fillet is worked.

After working the doors as described, clean off the back side, place the doors in position, and clean off the face to the level of the frame. Take the doors out and

Fig. 10.
work the bead on the joint between the doors, Fig. 8. This bead is flatter than usual and has a very small quirk.

The doors are hung to the frame, each by thrte hinges. The top and bottom hinges are usually kept their own

MODERN CARPENTRY

depth from the top and bottom edges of the doors respectively, e. g., a $21 / 2$ inch hinge will be $21 / 2$ inches from the edge. The handles on the meeting stiles are respectively about 9 inches from the upper and lower edges of door.

All glass in the doors must be carefully packed with small slip: of wood between the edges of the glass and the frame of the door, in order $t r$ keep the frame rigid. The woodwork being so slight, the doors would sag when hung if the glass were not packed tightly, as all the weight of the glass would fall on the bottom rail.

Fig. 11.
Shelves. The following is the best method to adopt for fitting the case with shelves, as, when fitted in this way, the shelves can be moved to any required height. To the back of the case screw two pieces of iron, one at each side, extending from the top to the bottom of the case. These must previously have been drilled and tapped their who.e length, the space between each hole being $1 / 2$ inch from centre to centre, and each hole being large enough to rectue a $3 / 16$ inch s ew. A malleableiron bracket about 3 inches long on the back edge-the length of the top edge being the width of the shelf-is now required, having a small piece projecting above the top edge in which is drilled a plain hole, and having a pin near the bottom edge. The pin at the bottom edge
is placed in one of the holes in the tapped bar, and a $3 / 16$ inch screw is passerl through the hole at the top edge and screwed into the bar, thus securing the bracket firmly. Care must be taken to have the same distance between the centres of any two holes in the bar.

Fig. Io shows a horizontal section through a showcase having solid ends.

Fig. II shows a horizontal section through the centre hanging stile in the ' unt frame of a wide showcase, when two pairs of doors are required. It is worked in the same manner as previously described for hanging stiles.

Fig. 12.

Fig. 12 shows a section of a cross bar in doors. This is only required where sheet glass is used. Each end of the bar is sunk into the moulding of the door-stiles. The saddle is cut between the rebates, and secured to the bar.

Plinths scparate from the case. If the showcase is over 6 feet 6 inches in height, or the plinth is of a graater depth than 12 inches, it is advisable to make the plinth separate from the case. Instead of the bottom rail being rebated behind the plinth, as slown in Fig. 7, a frame must be made out of $11 / 2$ inch by 3 inch stuff dovetailed together at the angles; and two or three bearers should

be mortised and tenoned between the front and back rails (as the length of the case may require). At each angle, and under each end of the bearers, a leg is stump-
tenoned into the under side of the rails to support the case. When this is done, the plinth should be mitre.l round the frame. It should be screwed from the back, and glue-blocks used in all the angles.

Fig. 14.
An isometrical projection of a counter-case is shown in Fig. 3. The top, sides, and front are of plate-glass. Mirrors are placed on the inside of the doors at the back of the case. The divisions on the bottom show the position of the trays.

Fig. 15.
a commencing work, it is absolutely necessary to draw Figs. 14 and 15 full -ite, to enable the taking off and working to an exact si.: of the various carts required to be done.

Bottom of casc. Commerice with the frame, which should be miade out of well-scasoned pine. The width of the bottom frame will be the extreme wilth of the case less the thickness of the moulding on the front edge and $11 / 2$ inch for a hardwood slip on the back edge of the frame, Fig. 17. The length will be the extreme length of the case minus two thicknesses of moulding.

Mortise and tenon the frame together, and rebate it to receive $5 / 8$ inch panels flush on the inside, then glue up and take to size. The hardwou,: slip can now be jointed and glued on, a tongued and grooved joint being used for the purpose. After this has been clone, the air-

Fig. 16.
tight rebate to receive the doors shnuld be worked on the hardwood slip. In order to make a good job of the rebate, it will be necessary to have a special plane for working both the rebate and the small half-round tongue at one time.

To complete the bottom, groove the front edge and both ends for the tongue, then mitre and fix the moulding to the frame. The moulding must be specially noted. It must project above the bottom $3 / 16$ inch to form a rebate for the glass; and the first member, i. e. the part projecting, must be rounded to intersect with the upright angle-bars, Figs. 17 and 18, with mitre into the moutdings.

The pan:ls in the bottom are to be screwed to the frame. Before putting the whole case together, they

must be taken out for enabling the small fillets which secure the glass to be easily screwed into their respective positions.

MODERN CARPENTRY

Framework for glass. Plane up the stuff for the round angle-bars, gauging it to $9 / 16$ inch square, and rebate $1 / 8$ inch deep and $1 / 8$ inch from the face edges. The angle bars will then appear as seen in Fig. 2. For the back part of the frame, square up the stuff to $11 / 2$ inch by $3 / 4$ inch and rebate $1 / 4$ inch deep and $1 / 8$ inch from the face for the glass. For the doors, take out

Fig. 18.
the relate ${ }^{1} 4$ inch deep by sis inch wide; bevel the rebate to $5 / 16$ inch deep on the outside edge (as shown in Fig. 21), and work the hook-joint plane on the cdge of the rebate. It is best to make the mitred joints first, as they require careful fitting together, and the bottom ends can be afterwards casily taken to the required length and cut.

Fig. 23 contains isometrical projections showing the
joints at the intersection of the front and the end anglebars with the upright angle-bar. The position of the point is shown at A, Fig. 23.

Three pieces of the required section, Fig. 20, should be got out, and the joint worked as follows:

Commence with the front and end angle-bars, cutting
a square mitre, 45 degrees on each outside face of both bars, bringing the external angle to a point, as shown in bie sketch. Cut the mitre down to the rebate line and cut the surplus away, leaving the core of the bar projecting, which will be the part C. The internal frirt of the mitre E is the sight line. Square down and across

the core; then, from the sight-line, measure distances of $1 / 8$ inch and $7 / 16$ inch; the resulting lines will be the shoulder and end of the dovetail respectively. Cut the core off at the longest line and form the dovetail as shown in the sketch, when the two bars can be fitted together.

Proceed with the upright angle-bar. Cut the square
mitre as before, but instead of cutting to the depth of the rebate, it must be cut $1 / 32$ inch less. From the

sightline F measure the same distances as before, viz., $1 / 8$ inch and $7 / 16$ inch. Cut off at the longest line, taking care not to cut through the projecting point of the

Fig. 24.
mitre, then take out the core C back to the shoulder line, thus leaving a thin tenon as seen in the sketch. Cut the tenon back $1 / 16$ inch on each edge and continue the mitre through.

It will now be necessary to mortise the front and end bars to receive the tenon on the upright angle-bar. For the mortises, square a line across the mitre $1 / 16$ inch from the sight line E. Gauge a line down the mitre $3 / 32$ inch from the face of the bar, leaving $1 / 32$ inch (the width of the mortise) between the core of the bar and the gauge line. The der,th of the mortise will be to within $1 / 8$ inch from the other face.

The work must be done very carefully, and great care taken to have the tenon on the upright angle-bar of the thickness stated, viz., $1 / 32$ inch, as the result of having it of greater thickness would be that, when the bars were rounded, it would work through to the face.

न front angle-bar will have t.e same joint on both e1 The joint at the back of the case on the end ang - bar is cut as shown at Fig. 24. The joint at th bottom end of each upright angle-bar is simply a square shoulder cut to the depth of the rebate, leaving the core of the bar projecting to form a stump tenon. The bars are afterwards mitred with the moulding on both the front and the end, the projecting round of the moulding being cut away between the mitres in order to allow the shoulder to butt on the first square member, which will be flush with the bottom.

Fig. 24 contains isometrical projections showing the joints used to unite the back rail with the back: upright atigle-bar for forming the door opening; and also the end angle-bar. The position of the joint will be clearly understood by referring to B, Fig. 13 .

It will be well to follow the same system as in the last group of joints, i. e., to prepare a piece of the required section of back rail, Fig. 21, which, when cut into two parts, can be used for both the back rail and back anglebar; the only difference in the section of the two being that the back rail is rebated $1 / 16$ inch less than the thickness of the doors instead of $1 / 8$ inch less as in the back upright bar, Fig. 22. The reason for this is to allow the

Fig. 25.
round of the hook-joint on the back upright bar to project over the hook-joint on the back rail which butts against it. It also allows a continuous hollow on the edges of the doors, which would not be the case if the rebates were kept flush with each other.
The end angle-bar is dovetailed into the back rail and is also mitred both at the extreme end and at the rebate. Fig. 25 shows the plan of this joint. It will be observed
that the joint has been left open to show the bevel from the shoulder line to the dovetail on the back rail, as at A, Fig. 31.

The back rail is also dovetailed to receive the upright bar. If the reader will look at Fig. 24 and imagine the upright placed into position on the back rail, he will notice that D D meet and form the remaining part of the

Fig. 26.
mitre, leaving a shoulder and mitre to join the end anglebar when in position. The exact position of the latter is seen in Fig. 26, the dotted lines showing the position of the dovetail on the back rail.

We will now proceed to set out the work.
Commencing with the end angle bar, square off a line for the extreme end of the mitre at B, Fig. 25, and measure back the width of the back rail (namely $11 / 2$
inch) to C , which will be the sight line. From the sight line set off $5 / 16$ inch for the shoulder of the dovetail as at S, Figs. 24 and 25 ; then set off $13 / 8$ inch from the sight-line to the entl of the dovetail. Set a gauge to the centre of the angle-bar for the shoulders, as at D, Figs. 25 and 26. The shoulder at D, Fig. 25, is cut under on the bevel as shown in the section through the joint at A , and in the sketch of the end angle-bar, Fig. 24 , where the drawing is broken. It is necessary to bevel it in this way in order to obtain the requisite strength in the dovetail. The shoulder on the side, Fig. 26, is cut square, as shown in the sketch. Mark the mitres, cutting from the sight-line to the shoulder line. The mitre on the extreme end is cut through as shown in Fig. 25.

To set out the back rail as shown in Fig. 24, square a line for the extreme end of the mitre, ard from this line measure back for the sight-line, namely, $9 / 16$ inch, the width of the angle-bar, as at E, Fig. 25. Square a line between the two lines obtained, at an equal distance from each for the shoulder D. From E measure $7 / 16$ inch toward the end of the bar, and cut off square to within $1 / 8$ inch of the outside edge; this is clearly shown in Fig. 24.

To mark the dovetail of the end angle-bar, make a thin hardwood or zinc pattern to fit the dovetail on the angle-bar and apply it to the rebate of the back rail, cutting the dovetail out very carefully to within $1 / 8$ inch of the outside edge. On the top side of the rail mark the external mitre from the extreme point to the shoul-der-line, and cut as shown in Figs. 24 and 25. Before the mitre can be completed, the bevel must be cut along the shoulder-line and edge of dovetail, and must work
out against the mitre. The internal mitre is cut from the sight-line.

There now only remains the cutting of the dovetail to receive the upright bar. Referring to Fig. 24, it will be seen that it is necessary to obtain the shoulder-line only, which is accomplished by measuring from the extreme point of the mitre, D, Fig. 24, $3 / 4$ inch, the thickness of the upright bar. The position of the dovetailjoint between the back rail and the back upright bar is shown by the dotted line in Fig. 26.

Exact lines for setting out the back upright bar, Fig. 26, are found as follows: Square the shoulder-line D and set off for the back shoulder $1 / 4$ inch as shown by the dotted line G. The back shoulder is then cut off to within $1 / 8$ inch of the face, as in the sketch, Fig. 24. Make a pattern to fit the dovetail on the back rail, and apply it to the back of the bar. Mitre the $1 / 4$ inch projection on the outside edge, and also mitre the inside as shown.

It is absolutely necessary that the whole of this work should be executed very carefully and very neatly. When the above mentioned joints have been fitted, make the bars to the required length.

To set out the bottom end of the back upright bar, cut the face shoulder square and mitre with the moulding as previously described for the front angle-bar. Allow the back-shoulder to be $1 / 4$ inch longer, so as to fit the rebate for the doors, the tenon being in the position shown by the dotted lines in Fig. 17.

After all the joints have been made, round the anglebars and the back rail. The external angles of all upright angle-bars must lave the rounding turned out about $1 / 2$ inch above the bottom shoulder, leaving the
bottom part of the bar square to follow the line of the moulding. The joints can now be glued together and cleaned off.

The double-rebated upright bar between the doors, as at H, Fig. 19, is cut to give both the top and bottom reloate, a small dovetail being cut at both ends in the positions shown by the dreced lines. The front edge of the bar is slightly rounded to break the joint between the doors. Firom the inside of the bar a runner of the same thickness as the bar is screwed to the bottom of the case to keep the trays in position.
Doors. There is nothing special to note in framing up the doors; they ma: be either tenoned or dowelled together. The panel is prepared flush on the inside.
Carefully fit the doors to the opening and work the hook-joint on the top edge and both ends. It will be remembered that the hook-joint must be worked through on each end: and also that it is deeper than the hookjoint on the top rail. In working the small hollow to fit over the fillet on the bottom edge, work the plane from the back side of the door.

Hinge the doors on the bottom edge, fixing the butts against the outside edge of the half-round fillet. When fixed thus the airtight joint will remain intact. The drors are fastened by a spring catch or lock let into the top rail.

When the doors are hung. the position of the mirror fillet can be marked by lining down the back of the doors round the frame. The fillets should be fixed $1 / 32$ of an inch inside the lines to allow for clearing.

Trays. A cross section of the tray is shown in Fig. 18. The bottom is prepared for three pieces of $1 / 4$-inch pine. The grain of the centre piece runs from back to
front of the case, the grain of the side pieces being at right angles to it, and the three pieces are tongued and grooved together as shown. Glue the pieces together, and, when set, mitre the bead round the bottom.

Another method of ensuring the bottom against warping is to have the bottom in three thicknesses, the grain of the centre lying across the two outside pieces, and the pieces being glued together.

The inside of the tray and over the bead are covered with velvet or some other material; which must be glued to the tray. Glue should be used sparingly so as to prevent it penetrating the material.

CIRCUIAR-IFRONTEI) COUNTER-CASE WITII GLASS ENDS.

Fig. 28 shows a cross section through a circularfronted case with glass ends. The only difference in the construction of this case from that of the square case is the bent angle-bar, and, of course, the omission of the front angle-bar.

In making this case it is first necessary to have the glass bent to the shape required. For this purpose a pattern of the curve should be sent to a glass manufacturer. When the glass has been received make a mould of the same shape, on which to bend the angle-bar, as shown in Fig. 29. The convex side of the glass will give the rebate line from which to work the mould.

Use birch for the angle-bar, as it bends eacily: it can be stained to match the other part of the case. Have the bar longr enough to bend from the bottom of the case to the back rail.

To bend the bar successfully, cut the top side of the bar away down to the rebate line on the end iequired

MODERN CARPIENTRY

to be bent. The length of the part cut away will be from the bottom of the case to a little leyond the springing line. Care must be taken to cut the two bars for

the case in pairs. Steam the bars for several hours and t::en bend them round the monld (Fig. 29) by securing the extreme end first with a cleat, as shown at A. Draw
the bar gradually to the mould, secure it in position by the cleat B, and leave it to cool for several hours. It is better to leave it on the mould until the following day, when the strip to form the rebate-which replaces the part cut away-can be fitted and glued in position.

After the bar has been bent and the strip cleaned off, place it on the drawing-board and set out the position of the joints at the bottom of the case and on the back rail, as already described.

CIRCULAR-FRONTED CASE WITH SOLID ENDS.

It will only be necessary, after the preceding explanations, to notice the joint of the back rail, and the section

Fig. 30.
of the solid end. Fig. 30 shows a section through the solid end of the case, grooved to receive the glass. Fig. 3 I is a plan of the angle formed by the end of the case and the back rail. The clamp A is tongued and grooved to the end, the tongue being stopped $1 / 2$ inch below the top edge. The clamp is prepared with a hook-joint as shown by the dotted lines. The width of the clamp is the width of the back rail less the rebate for the glass.

Fig. 32 shows in isometrical projection the joint at the junction of the back rail with the solid end. Imagine

Fig. 32.
that A A are brought together. It will then be seen that they slide into position and present the appearance
shown in the plan in Fig 3I, and give the extra lines for setting work.

The solid ends are $5 / 8$ inch thick, finished size. They must be left wide enough to screw to the bottom frame of the case. Fix the moulding round the bottom and mitre it at each inside round of the ends, as beiore described for upright angle-bars, turning the round on

Fig. 33.
the outside of each end out $1 / 2$ inch above the moulding. The moulding mitred round the ends of the case must be reduced by the thickness of the quarter-round member which forms the rebate for glass at the front of the case.

These cases are often fitted with several trays, the bearers to carry them being screwed to the ends.

SOME FORMS OF PANELS.

We conclude this Volume by giving some illustrations of panels. In Fig. I we give a "flush" panel for a front or entrance door, in which in front elevation a, b, are the two rails, $\mathrm{d} \mathrm{d}, \mathrm{e}$ e, the stiles, $\mathrm{c} \mathrm{c}, \mathrm{g} \mathrm{g}$, the panel with

Fig. 1.
stuck-on mouldings all round and mitring at corners; $g h_{1}$ is a vertical section in line 34 . In this the recess between the stile and panel is one side only. Where there are recesses on both sides of the panel b b, Fig. 2 , and the stiles a a, the panel is known as a "square" panel. In this figure the lower diagram is front elevation; that on the left is a section on line 34 . In Fig. 3 we illustrate different forms of panels. In the upper diagram, a a, the stiles carry one "square panel,"

Fig. 2.

Fig. 3.
whicit is not flat, as in Fig. 2, on the inner side, but tapers to the centre, which is thickest, to the sides,

Fig. 4.

where it may be either square, as at the right hand, or finished with a mouldinz, as on the left.

Resuming our description of the drawing named, the second diagram shows a "flush panel," with stiles id d,

Fig. 5.
the panel having a raised position in the centre, as shown at a b, with flat spaces as at $\mathrm{c} c$, all round. The
lower diagram to the right is an enlarged view in section and elevation of the part of the panel of upper diagram to the right. The lower diagran to the left is an enlarged view of the left hand side of the panel, which is technically zalled a "raised panel." Figs. 12 and 13 are other views of raised panels, and diagram

B in next figure shows a form of panel in the Gothic. Other forms are illustrated in Figs. 8, 9, 10, and II. In Fig. 3 the flat part of the panel surrounding the raised central part is called the "margin." (Sce also Fig. 12 at b.) The panel, as in Fig. .3, is called a "moulded raised panel" when there is a moulding at
the margin, as f e h . There are other distinctions in panel work, yet to be noticed. In "flush panels," as in Fig. 1, the "moulding" or "bead" is worked only on the two sides (vertical) of the panel, as at d d, Fig. 5, and these terminate at the rails, as at f f, no moulding being at the ends of the panel. This is called "bead butt" panel. When the panel has mouldings all round,

Fig. 7.
that is at top and bottom as well as at the sides, the mouldings meet at the corners and are mitred, as shown in the lower part of the diagram in Fig. 6, this is known as a "bead flush panel." In panel work where a moulding is worked out of the solid, as at b in Fig. 4, or at a a in Fig. 5 of the style, as c c or b b, the term "stuck on" (a corruption of "struck on," which

MODERN CARPENTRY

is the true term) is applied. This is only applicable to "bead and butt" panel work vertically, as the mouldings would not mitre if struck horizontally on the rails.

When the mouldings ate made separatey and nailed onto the stiles $\mathrm{j} j$, and rails i i , Fig. 6, they are called "laid on" mouldings. They may be nailed on either to

Fig. 11.

Fig. 13.

Fig. 13.

Fig. 14.

MODERN CARPENTRY

the stiles and rails or to the panels in "flush" work, or all around the panels in "square" panels. In Fig. 1.4 in diagram Λ, we give a panel at upper part of

Fig. 15.
door, in which the upper rail a a is curved at top, $b \mathbf{b} b$ the stiles, separated in the centre by a moulding a a d the upper panel, with stuck-on mouldings cee. Diagram B is front elevation of lower panel. In Fig. ${ }^{13}$
we give a section of middle stile and panel; the middle stile b b being provided down the centre with a stuckon moulding, as at b a, corresponding to the vertical moulding a a in Fig. 15. A moulding as at c c is worked in the margin of the stile corresponding to c c in Fig. If. E shows the moulding in section stuck on the square panel f g, the margin f being in this way wide. In Fig. 15, and in Figs. 8, 9. 10, If and 12 we give illustrations of panel work, and in Fig. 9 section and elevation of mouldings for a panel.

JOINERS' WORK IN THE CONSTRUCTION OF DOORS-DIFFERENT KINDS OF DOORS.

We now come to illustrate the different forms of doors, and various details of their construction. Doors are either external or internal and both may be con-

Fig. 16.
structed much in the same way. The chief difference between them, if difference may be made at all, is that external doors are heavier in their timbers-that is, 240
thicker and broader-and are not quite so much ornamented with mouldings, or so highly and carefully finished, as internal or private room doors. Doors are of different classes, beginning with those adapted either for houses, of a simple character or for out-buildings, etc., where economy is carefully studied, and going up to the more elaborate forms, used in houses of the higher class.

The simplest form of doors is shown in part elevation at A, Fig. 16, in plan at B, looking down in direction of arrow I, in C side elevation or edge view looking in direction of arrow 2. This form is what is called a "batten door." In elevation in diagram A, the lower part is a a, next to floor or ground line b b. The door is made up of flat planks, a a c d d, running vertically from foot or floor, or ground line $b \mathbf{b}$ up to head. These are either laid as in plan B in the cheapest class of work, edge to edge, and held together by cross pieces, or bars, e e. In better work, these and the vertical parts, d d, are secured by joints of different kinds. In the section C the cross bars e are simply laid flat and nailed to the upright planks, d d. The edges of the cross-bars, d d, may either be left square, or have the lines or corners planed off and "chamfered" or beveled off as at $f \mathrm{f}$.

BATTEN AND BRACED AND BATTEN, BRACED AND FRAMED DOOR.

Fig. 17 is an elevation in diagram A of a "batten and braced" door. To the vertical and cross bars of the simple form in Fig. 16 the diagonal "brace" a a a a,

Fig. 17.
corresponding to the struts of a roof truss, are introduced; these butt against the cross bars or battens b b b b, while behind are the vertical boards cece,

Diagram B is side elevation or edge view and C vertical section. A still higher class of door is the "framed

Fig. 18.
braced and battened" door, in Fig. 18, here as in elevation in diagre 11 , we have an outer frame vertical
pieces, held together and secured by the cross-bars b, c, d, the ends of these being tenoned into the stiles a a. The central spaces are filled with braces e e, and the vertical boards $f f$. Diagram B is vertical section on line 2 and C is side view showing ends of tenons of cross bars $b, c, d ; D$ is plan of top edge, looking down; E is cross or horizontal section on line 34 in A.

PANELLED DOORS-NAMES AND OFFICES OF DIFFERENT PARTS-STILES-RAILSMORTISES.

The transition from this form of door to the highest class, the "panelled door," is easy and natural. We have

Fig. 19.
seen in the simplest timbers, which is the element of the "iruss," and which gives the strongest furm attainable.

In this view the panelled door, as in elevation in A, Fig. 19, is not so strong as the form in Fig. 18, from the absence of the diagonal braces, as e e, but those, if required in a door such as an external one, where strength is an object can be dispensed with in interior doors, which are always panelled in good houses.

Elegance or neatness of arrangement, with such ornamentation as mouldings, etc., can give, are what are looked for. In Fig. 19, the external framework enclosing the panels is made up of two side vertical boards, $\mathrm{a} a, \mathrm{~b}$ b varying in thickness from $11 / 2$ to $21 / 2$ inches, and in very superior work even 3 inches. These boards are called "stiles"; that by which door is hung to the casing, secured by hinges is called the "langing stile," as a a; thai to which the lock is secured the "lock stile," as b b. These stiles are held together by cross-bars called "rails". of which c is the "bottom rail," d the "top rail" and e the "middle or lock rail." The central vertical bars, as f f are called "muntins" (a corruption of mouldings). The assemblage of boards thus arranged leaves spaces as $\mathrm{g}, \mathrm{h}, \mathrm{i}, \mathrm{j}$, these are filled with panels, as a, b, c and d, in Fig. 20, which is the elevation of a four-panelled door. There are also six-panelled doors. Generally the panels are nearly equal in length, but in some the lower panels are short, the upper being longer. Figs. 2 and 4 illustrate outside doors in Continental style. The panels are secured to the framing by grooves, as shown in preceding figures and as further hereafter illustrated, and are ornamented with mouldings, as explained. In Fig. I9 diagram C is the vertical section, edge view of style b b. In Fig. 20 B is plan of top edge of door. The rails are sccured to the styles by tenons, sometimes single, but more frequently in good work
by double tenons, as in Fig. 21, in which is front elevation of rail, a a, b c two tenons. Diagram B is part of stile a cut vertically in two to show the seats of the mortises b and c, diagram C and view of rail. In left-hand dia-

Fig. 20.
gram in Fig. 12 is elevation of part of "lock stile," a a and "lock rail," b of a bedroom door, with simple lock, c, known as a "rim lock." In diagram B, part of the "hanging stile," a a, of this door is given in elevation, b
part of "top rail," a portion of upper "hinge" is shown at c. Diagram C is edge view. The inne. edges of stiles, rails, and mortises are generally, in good work, "stop chamfered" as at d d, or beveled off from end to end, as at e f, the two edges meeting in a mitre, as shown. The "top chamfer," d d, is the neatest, stopping, as it does, short of the end. A rim lock is screwed onto the outside of the lock stile; what is called a "mortise lock" is employed in superior doors, where the lock is concealed, nothing but the handle and keyhole being visible, the lock being inserted in a mortise or vacant part cut out in the stile to receive it. Fig. 29 contrasts the two locks. cd is the rim lock. In the morti. -~n nothing but the handle at g is seen, and the escutcheon h, i is the bolt of the lock, $a \operatorname{a}, \mathrm{~b} b, \mathrm{a}^{\prime} \mathrm{a}^{\prime}$, $b^{\prime} b^{\prime}$, are the chamfered stiles and rails.

DOOR CASINGS.

Doors are secured to "casings." These are of timber, and built into the walls, and are secured to wood, bricks or grounds. Fig. 23 illustrates in part elevation an outer "door casing." The sides b b, c c, are called "jambs," f f, the "head," into which the jambs are tenoned, the feet being also tenoned, at d , into the upper part of stone step a a. Fig. 22 is sectional plan showing arrangement and relative positions of various parts of a door and its casings. Th door, 11 , is hinged to the "jamb" b, this being secured to the "ground" or "wood brick" a a, bulit into the wall b b, c and j are the "architraves." The opposite "jamb," $f \mathrm{f}$, is rebated as at m to allow of a space into which the "door lock stile" falls, as shown by the dotted lines, which represent the lines of the door. The outer edge of the jamb may be left plain, but is often finished off with a "quirked head," as at $j ; k, k$, the hinge. The inner and outer architraves are at c and $j ; a$ a, the wood brick; $b b$, the wall; e, i, are the elevations of the architraves, d and h. The elevations of these two parts of sectional plan of door fittings are given in the under part of the drawing in Fig. 23. The edge of the door a, as looking at it from the inner side, is shown at $\mathrm{p} p, \mathrm{q} q$, being the ends of tenons of top rail, r r , the hinge, n n , from a view of architrave, o o the wall in the void of which the door is hung. In the under drawing to the right, part of front surface of door is shown, $s \mathrm{~s}$, the architrave, $\mathrm{t} t$ the wall.

Fig. 2.

JOINTS OF STILES AND RAII.S IN PANELLED DOORS.

Figs. 24 and 25 give illustrations of methods of joining rails and stiles, or rails and mortises. Let a b c d, Fig. 24, be the stile, with moulding stuck on edge; fg h is part of the rail, with tenon f , shown by dotted lines

Fig. 24.
in stile a b c d. Front view of tenon are face of mitre of chamfer at p, looking at a bcd in the direction of arrow 1 , is shown in the lower diagram at k^{\prime}, p^{\prime} and $e^{\prime \prime}$. The section of part \& g looking at its end, in direction of arrow 2, is shown at 1 mn ; the section of a moulding

252

MODERN CARPENTRY

is in this at é. In lower diagram to the right is given a view of under sioe of rail $f \mathrm{~g}$. In Fig. 25, a a , is

Fig. 25
front viou of part ,if stice w in ulding worked on edge, at b b; part of rail is at c ' d. The angular
face of part cut out in stile e f, fg corresponds with angular end $h i j$ rail, but a tenon $i l k$ is left on, or is inserted in end of piece $c^{\prime} c^{\prime} d$. The end view of the stile a a, looking at it in the direction opposite to that

Fig. \%!
of the arrow 3 , is hown in the 1 . Wlle diagram to the right with correnp ding letters at ented, showing corresponding parts. Tine line $i^{\prime \prime} i^{\prime \prime}$ corresponds to the line at point in r : $c^{\prime} c^{\prime} d i^{\prime}$ The plan of under side of rail $c^{\prime} c^{\prime} d$ is sho in in dia im immediately bele of $k, 1$ being edge view if enon 1 . The finished joint is shown at 0 o, $\mathrm{P} 1: 1$: diagra it below to the left leeing cross

Fig. 27
section the line 12 . Enlarged elevation q_{1}, and section , umbling $b b$, or $b^{\prime \prime}$, is given at the two a' gra the right at bottom of Irawing. Atwother methot 1 . $o r m i n g$ the junction is shown in the middle diagram a the foot of Fis. 25 , the shaded part sho wing form of tenon with the ends of moulding united.

A FOUR-PANELLED DOOR.

In Fg. 28 I give a drawing-to a scale of $1 / 8$, or $11 / 2$ inch to the foot-of a four-panelled interior or room

Fig. 28.
door, showing all the leading parts of the framework, wit!. the exception of top rail, which is usually about half the breadth or depth of the middle of lock rail, marked $b \mathrm{~b}$ in the drawing. The panels are not shown, 254
but the dimensions of the spaces they occupy are given. The panels are plan "square," the only ornamentation in this example being a "stop chamfer" worked on the margin of stiles, and rails, as shown at $g \mathrm{~g}$ and $\mathrm{h} h$. In the drawing a a is the "bottom rail," b b the middle, or usually "lock rail," as it carries the "mortise lock," the handle of which is shown at j. The "key hole" is covered by a movable part, hung or jointed at upper end, called the "escutcheon," or more frequently in technical talk, the "scutcheon," or "skutcheon," shown at k. The stiles are at c c, e e-the stiles c c, termed the "lock stile," being that in which the lock is mortised. The stile e e is called the "langing stile," being that on which the door is "linged" or "lung" to the door casing. The vertical pieces, or "muntins," which divide the panels from each other, placing them in pairs on each side of the door, are shown at $d \mathrm{~d}$. The door framing thus constructed is surrounded on both sides and at top by the architraves $\mathrm{f} \mathbf{f}$.

ARCHITRAVES OF A FOUR-PANELLED DOOR.

The section of architrave in relation to the door casing or check is in upper diagram to the left in Fig. 29, a a being part of the door casing, b b the section of architrave, of which part elevation is shown at $\mathbf{c} \mathrm{c}, \mathrm{I}$, 2,3 , and 4 showing similar parts in section correspondingly lettered. The edge view of the "lock stile" as a a f in the figure preceding, is shown at d d ; e e shows the brass plate let into the edge and secured by screw nails as shown. This is part of the lock furniture of the door, f indicating position and section of the shooting or locking bolt of the lock, which passes into the aperture of a brass plate secured to the inner side or edge of the door casing. The bolt, which secures the door, being closed -not locked-f being the locking bolt, is shown at g , this being worked by the handle j of the lock. The part of the lock furniture attached to the door casing opposite to the edge, as $\mathrm{d} d \mathrm{~d}$, of the door stile, is shown in the lower diagram to the right. The part 33 in this corresponds to the face of the recessed or rebated part p in urawing above, cut in the face of the door casing $n \mathrm{n} \mathrm{n}$, the door passing into and resting against the face of recess or rebate p. In the upper diagram to the right, 000 is the outer architrave secured to the door casing r $n \mathrm{n}, \mathrm{r}$ part of the inner architrave. The part of the lock furniture secured to the door casing is shown at $t \mathrm{t}$; it is a brass plate let into the face g , or 33 of recess or rebate p. The aperture in this into which the bolt f of the lock passes is shown at p; that into which the bolt

moved by the hand passes is at u, a spring w, cast unto the plate t, being shown at w. A small projecting part

Fig. 30.
as w^{\prime}, to make the opening and closing of the door more easy. The two diagrams to the left at lower part of

Fig. 31.
drawing show the elevation $k 1 \mathrm{~m}$, the chamfered part of framing with section at $k^{\prime} k^{\prime}$.

SOME EXAMPLES OF ORNAMENTAL WOOD WORK.

The following examples are introduced in order to

PLATE 1.
give the workman an idea of the shape and construction of low-cost ornamental wood-work. The figures

shown from No. I to No. 12, inclusive, exhibit a number of large boards, chiefly in Gothic style. Plate No. 2 is a style which was in vogue very much a few years ago

ARCHITRAVE OF DOOR

and was generally known among carpenters as GingerBread work. It is well adapted for sea-side cottages or

No. 18.
summer residences ; it consists mostly of cutwork. Nos. $2,5,8$ and 9 are well adapted for ordinary cottage

No. 14.
work. Nos. 13, 16 and 21 are well suited for balustrades, No. 16 being especially adapted for heavy balus-

No. 15.
trades on verandas or over bay windows. Nos. 14, 15 and 17 require no explanation, as they may be adapted

No. 16.

ARCIIITRAVE OF DOOR

to a thousand different purposes. Nos. 18 and 19 make very handsome drops for verandas and other similar

No. 17.
work. No. 29 shows a single drop with the grain of the wood running vertically. A number of these placed

No. 18.
together edge to edge make a very nice trimming for verandas. No. 22 shows a cut bracket which will often

No. 19.
be found useful. No. 23 shows an elaborate railing suitable for a veranda or balcony. No. 24 exhibits a

No 20.

No. 21.

No. 22.

No. 23.

No.
perforated panel suitable for many places. No. 26 shows a portion of a circular panel which may be perforated or the ornaments may be planted on, according to exigencies. See Plates. The balance of the examples shown speak for themselves. They offer a number of excellent sutygestions to the progressive workman. Tlese examples will doubtless prove of great value to the workman.

QUESTIONS ON MODERN CARPENTT: VOL I.

The strdent will be expected to real carefully these papers before duing any work. His natme and address " 11 rec 1 :e to be given on each page. He will be expe ted to write up the questions in a neat and intelligent mod ter, msing his own language and style, representing the answers in such a manner as will be intelligible. Make all drawings as clear as possible, and whenever it can be done render them in India ink. Let each answer be original, do not copy either from the instruction paper nor from any other source. The paper used may be of any kind, provided that it is c^{\prime} in turable. Do not attempt an answer until you have .!orouglily grasped the subject.

QUESTIONS.

1. Give definition of a "circle."
2. What term is given to a line that is drawn through center to circumference of a circle?
3. What term is given to a line drawn from center to circumference of a circle?
4. What term is given to a line (less than the diameter) that cuts the circumference of a circle at two points?
5. Give definition of a "tangent."
6. -Give definition of a "segment of a circle."
7. Give sketch of a circle showing the "diameter," "radius," "chord," "segment" and "tangent."
8. Give sketch and describe how to find the center of a circle.
9. Into how many equal parts is the measurement of the circumference of a circle divided?
10. Give the three terms used in measurement of the circumference of a circle, and show how they are written.
II. What is a quadrant of a circle ?
11. How many degrees are in a quadrant of a circle?
12. How many degrees are in a semi-circle?
13. What term is given to the angle of a circle that is half of a right angle?
14. Give sketch and describe how three right angles may be formed within a semi-circle.

I6. Give sketch and describe how a hexagon may be formed within a circle.
17. Give sketch of a hexagon showing how an equilateral triangle may be formed.
18. Give sketch and describe how a right angle or quadrant may be bisected.
19. Give sketch and describe how to get a straight line that shall equal the circumference of a circle or part of a circle or quadrant.
20. Give sketch and show how quadrant may be divided into any number of equal parts, say thirteen.
21. Give sketch and show how equilateral triangle may be employed in forming the trefoil.
22. Give sketch and describe method of finding the "stretch out" or !ength of circumference of a circle.
23. Give rule by arithmetic of how to finc the circumference of a circle.
24. Give sketch and describe how a curve having
any reasonable radius, niay be obtained, if but three points in the circumference are available.
25. Give a practical illustration of how to find a place to locate a center, where the diameter is great.
26. What is a "polygon?"
27. Give the names applied to polygons having three sides, four sides, five sides, six sides, seven sides, eight sides, nine sides, ten side, eleven sides, and twelve sides respectively.
28. Give the two names under which polygons are classified.
29. Give sketch showing how a trigon may be constructed and how the miter joint may be obtained.
30. Give sketch and describe how a square may be formed.
31. Give sketch and describe how to construct a pentagon.
32. Give sketch and describe how a hexagon may be formed.
33. Give sketch and describe how a heptagon may be formed.
34. Give sketch and describe how an octagon may be formed.
35. Show practically how all regular octagons may be constructed.
36. Give a practical illustration of how a perpendicular line may be made on any given straight line.
37. Give a practical illustration of how to bisect an angle by the aid of the steel square alone.
38. Give a practical illustration of how to bisect an acute angle by same method-steel square.
39. Show practicaliy how to get a correct miter cut, or angle of 45° on a board.
40. Show how to construct a figure showing an angle of 30° on one side, and on the other an angle of 60°.
41. Show how the diameter of a circle may be obtained through the aid of the steel square.
42. Show how an equilateral triangle may be obtained through use of the steel square.
43. Show how to describe an octagon $!;$ using the steel square.
44. Show how a near approximation of the circumference of a circle may be obtained by use of the steel square and a straight line.
45. Give illustration how a board may be divided into any given number of equal parts by aid of steel square or pocket rule.
46. Give the definition of an "ellipse."
47. Give an illustration of one of the simplest methods of describing an ellipse.
48. Give an illustration of projecting an ellipse by using a trammel.
49. Give illustration of describing an ellipse by the intersection of lines.
50. Give illustration of describing an ellipse by the intersection of arcs.
51. Show how radial lines may be obtained for arches and elliptical work.
52. Give an illustration how to describe a diamond or lozenge-shaped figure.
53. Give illustration how to describe a spiral or scroll by a simple method.
54. Give illustration of how a spiral may be described in a scientific manner, and which can be formed to dimension.
55. Give illustration of the method of obtaining a spiral by arcs of circles.
56. Give illustration and method of forming a "parabola."
57. Give illustration and method of forming an "hyperbola."
58. Give the names of the different kinds of arches in buildings.
59. Nlention the names given to pointed arches.
60. What is the name given to the stones forming an arch?
61. What is the name given to the centre stone in an arch?
62. Give the names applied to the various divisions of an arch, namely, the highest point, the lowest point, and the spaces between respectively.
63. What is the name given to the under or concave surface of an arch?
64. What is the name given to the upper or convex surface of an arch?
65. What are the names given to the supports of an arch?
66. Show by illustration and describe how to obtain the curves and radiating lines of a semi-circular arch.
67. Show by illustration and describe how to obtain the curves and radiating lines of a segment arch.
68. Show by illustration and describe two examples of Moorish or Saracenic arches, one of which is pointed.
69. What is a "flatband"?
70. Give illustration and describe how to obtain the curves and radiating lines of the elliptic arch.
71. Give illustration and describe how the centers and curves of an equilateral arch may be obtained.

MODERN CARPENTRY

72. Give illustration and describe how the centers and curves of a lancet arch may be obtained.
73. Give illustration and describe how the center and curves of a low or drop arch may be obtained.
74. Give illustration and describe how the centers and curves of a Gothic arch with a still less height, may be obtained.
75. Give illustration and describe another four-centered arch of less height.
76. Give illustration and describe how to obtain an equilateral Ogee arch.
77. Give illustration and describe method of obtaining the lines for an Ogee arch, having a height equal to half the span.
78. Give some instances in carpenter work where half of the Ogee curve is employed.
79. Give a description of the steel square and its several divisions.
80. Give a practical illustration of how a board or scantling may be measured by use of steel square.
81. Give rule how to find hypothenuse of a rightangled triangle.
82. Give an illustration of how length of braces may be obtained by use of the square.
83. Describe the use of the "octagonal scale" on the tongue of the square.
84. Show method how the pitch of a roof may be obtained by use of the square.
85. Show method to obtain bevels and lengths of hip rafters by use of the square.
86. Show method for finding the length and cuts for cross-bridging.
87. Show method for obtaining the "cuts" for octagon and hexagon joints.
88. Show by illustration the method of defining the pitches of roofs, and giving the figures on the square for laying out the rafters for such pitches.
89. Give a short description of what is known as balloon framing, and how the different parts are constructed.
90. Give illustration and describe a "hip-roof."
91. Give illustration and describe a "lean-to-roof.."
92. Give illustration and clescribe a "saddle-roof."
93. Give illustration and describe a "mansard roof."
94. Give illustration and describe a simple hip-roof having a ridge.
95. Give illustration and describe an "octagon roof."
96. Give illustration and describe manner of construction of a "dome roof."
97. Give illustration and rules for construction of an octagonal spire.
98. Give a few illustrations of scarfing timbers.
99. Showv a few examples of strengthening and trussing joints, girclers and timbers.
100. Explain what is meant by the term "kerfing."
101. Give illustration showing how to determine the number and distances apart of saw kerfs required to bend a board round a corner.
102. Give illustration of how to make a "kerf" for bending round an ellipse.
103. Describe how to bend thick stuff around work that is on a rake.
104. Give illustration and describe how to lay out a hip rafter for a veranda having a curved roof.
105. Give illustration and describe how to obtain
the curve of a hip rafter, when the common rafters hav an ogee or concave and convex shape.
106. Give illustration and describe how raking mouldings are used to work in level mouldings.
107. Describe the kind of mouldings called "spring mouldings."
108. Give illustrations showing plan and elevation of cluster column of wood for 4 columns and describe how constructed.
rog. Give illustration of a hopper and describe how to be constructed.

IIo. Give illustration and describe how a conical tower roof may be curved.

1II. Give illustration and describe how to cover a dome roof.
112. Give illustration and deseribe how the semicircular soffit of a doorway may be made.

II3. Describe how a circle soffit may be laid off into panels.
114. Give illustration and describe method for obtaining correct shape of a vencer for a gothic-splayed window or door head.
115. Give illustrations and describe two methods of dovetailing hoppers, trays and other splayed work.
116. Give description of how an ordinary straight flight of stairs may be constructed.
117. Give sketch showing part of a straight stair.
118. Give sketch showing stair with winders and landing.
119. Give sketch and describe a stair with brackets.
120. Give sketch showing stair with two newels and -balusters, also paneled string and spandrel.
121. Give sketches of seven of the latest designs for doors.
122. Give five sketches showing methods of constructing and finishing a window frame for weighted sash.
123. Give sketches showing the various parts of a bay window for a balloon frame.
124. Give illustration and describe six examples of shingling roofs.
125. Show by sketch how panels are formed.
126. Describe the various kinds of panels naıned.
127. Make sketch of a four-panel door.
128. How are air-tight cases made? Describe the method of making.
129. What is meant by the word "stile"?
130. What is a reil in a door? What is a muntin?
131. What is a chamfer? Describe one.
132. Examine examples of sketches of ornamental wood-work, draw and describe a "baye-board."
133. Make a design of perforated insular panel.

INDEX

A
Airtight wall case 195
Angle bars at different angles 131
Arches, elliptical 63
Flat 62
Four centered 65
Horseshoe 62
Lancet 64
Lintel 63
Ogee 66
Segmental 61
Arehitrave of door 263
13
Balloon framing, description of 173
Balusters and turned work 68
Bay window frames, sections of 174
Bending blocks for splayed heads 153
Bevels and cuts for rafters 83
Bevels for hips, jack lafters and purlins 85
Bisecting antles 28
Bisec ing angles with steel square 34
Boxes for different measures, sizes of 185
Brace rule 73
Braces, table of 75
Brick work 187
Case mahing 195
Centers, finding 20
Circle, the 9
Circular door entrances 152
Cisterns, capacity of 192
Cluster coluınns 133
Cluster columns, bases and capitals of 133
Cornices on a rake, inside 132
Cutting bridging 78
Cutting raking monldings in miter box 130
Cycloidal curves 57
D
Degrees
14
14
Dividing lines
79
79
Door, architrave of 263
Architrave of a four paneled 256
Casings 249
Doors, batten and braced 242
Construction of 240
Description of 170
Four paneled 254
Joints of stiles and rails 251
Names of different parts 245
Paneled 245
Styles of 169
Dovetailing 156
Blind 159
Common 157
Lapped 158
Splayed 159

E

Ellipses, spirals and other curves 41
Elliptical curves, lescription of. 46
Excavations 184
F
Flashings for valleys 177
Flexible radial guide 49
Framing comers, ete 91
Sills, ete. 87
Triangular 109
II
Hopper euts, housed 137
Hopper lines, compound 143
Hoppers, butt cuts for 136
Corner blocks for 139
Corner blocks for obtuse 140
Miter cuts for 135
Miters for obtuse 142
Miters for square 141
Regular 134
J
Jack rafters, lengtlis of. 102
Joiner's work generally 167
K
Kerfed stuff, bending 119
Kerfing for an ellipse 120
Kerfing on a rake 121
Kerfs, laying out 118

(ANSI and ISO TEST CHART No. 2)

APPLIED MAGE Inc
1653 East Man Street
Rochester, New York 14639 USA
(716) 482 - 0300-Phone
(716) 288 - 5989 - Fox
280 INDEX
L
Laying out curved hips 123
Curved hips and jack rafters 125
Ogee hips and rafters 124
Raking mouldings for circular pediments 129
Loads, safe-bearing 192
Lumber, measurement table 182
Rule 71
M
Masonry 185
Materials for roofs, weight of 189
Strength of 182
Miscellaneous illustrations 172
Mitering circular and straight :nouldings 122
Circular mouldings 121
Curved mouldings in panels 122
Mortise and tennon in timber. 111
Mouldings 67
N
Nails and tacks, number per pound 193
Number of required in carpentry work 185
0
Octagon rule on steel square 76
Octagons 30
Ornamental woodwork 259
Ornamentation 18
Ovals 50
INDEX281
\mathbf{P}
Panels, forms of 229
Parabola and its uses 56
Pitch-board and strings 160
Pitches, laying off 81
Polygons 22
Q
Questions for students 267
R
Rafter rule by steel square 76
Raking mouldings 126
Raking mouldings for pediments 128
Reinforcing timber 113
Roof, core for conical 150
Covering of a conical 149
Inclined domical 151
Roofs and roofing generally 96
Covering domical 150
Domical 105
Lines for hip 98
Octagon hip 99
Sisser 104
Trussed 103
S
Setting rail and newel post 164
Shingles, table for estimating 184
Shingling 184
Different methods 175
Hip rafters 175

$$
282
$$

LNDEX

Shingling-Continued.
Illustrations of 176
Valleys 175
Siding, flooring and laths 184
Slates, number of, required per square yard 188
Slating 188
Snow and wind loads. 189
Soffits, Gothic 155
Splayed 154
Solutions of problems with steel square 34
Spirals 52
Spires and spire framing 108
Steps brackete? 165
Method of forming 165
Stair building 159
Stairs, dog-legged 162
Open string 164
Various styles of 168
Winding 163
Steel square, description of 70
Straight line solutions 32
Strapping timber 112
Superficial or flat measure, table of 183
T
Tangents 11
Timber scarfing 110
Timber measure, round and equal-sided 183
Treads and risers, table of 163
Treads, risers and strings 161
Trimming stairs, climneys, ete 89
Trussing and strengthening timber 114
Turned mouldings and carved newels 174
INDEX 283
W
Weights and measures, cubic or solid. 191
Land measure 190
Lincar measure 191
Miseellaneous measures 191
Square measure 191
United States measure 190
Window frames and seetions 171
Wind pressure on roofs 193

HOUSE PLAN SUPPLEMENT

PERSPECTIVE VIEWS AND FLOOR PLANS

of Fifty Low and Medium Priced Houses

FULL AND COMPLETE WORKING PLANS AND SPECIFICATIONS OF ANY OF THESE HUUSES WILL BE MAILED AT THE LOW PRICES NAMED, ON THE SAME DAY THE ORDER IS PECEIVED.

Other Plans

WR ILLUSTRATE IN ALL BOOKS UNDER THE AUTHORSHIP OF FRED T. HODGSON FROM 25 TO 50 PLANS, NONR OF WHICH ARE

IUUPLICATES OF THOSE ILLUSTRATED HEREIN.
FOR FURTHER INFORMATION, ADDRESS THE PUBLISHERS.

SEND ALL ORDERS FOR PLANS TO FREDERICK J. DRAKE \& COMPANY ARCHITFETIURAL DEPARTMENT
CHICAGO, ILL.

Fifty House Designs

WITHOUT EXTRA COST to our readers we have added to this and each of Fred T. Hodgson's books published by us the perspective view and floor plans of fifty low and medium priced houses, none of which are duplicates, such as are being built by 90 per cent of the home builders of to-day. We have given the sizes of the houses, the cost of the plans and the estimated cost of the buildings based on favorable conditions and exclusive of plumbing and heating.

The extremely low prices at which we will sel! these complete working plans and specifications make it possible for everyone to have a set to be " :d. .ot only as a guide when building, but a on the ${ }^{-\prime}$ made thr :onvenience in getting bids $\because \mathrm{u}$: of work. They can be cintract between the contractor an. nome builder. They will save mistakes which cost a oney, and they will prevent disputes which are never settled satisfactorily to both parties. They will save money for the contractor, because then it will not be necessary for the workman to lose time waiting for instructions. We are able to furnish these complete plans at these prices because we sell sc many and they are now used in every known country of the world where frame houses are built.

> The regular price of these plans, when oraered in the usual manner, is from $\$ 50.00$ to $\$ 75.00$ per set, while our charge is but $\$ 5.00$, at the same time furnishing them to you more complete and better bound.

Of What our Plans Consist

A
LL OF OUR PLANS are accurately drawn one-quarter inch scale to the foot.
We use only the best quality heavy Gallia Blue Print Paper No. 1000 X, taking every precaution to have all the blue prints of even color and every line and figure perfect and distinct.

We furnish for a complete set of plans :

```
FRONT ELEVATION REAR ELEVATION LEFT ELEVATION RIGHT ELEVATION ALL FLOOR PLANS
CELLAR AND FOUNDATION PLANS ALL NECESSARY INTERIOR DETAILS
```

Specifications consist of several pages of typewritten matter, giving full instructions for carrying out the work.

We guarantee all plans and specifications to be full, complete and accurate in every particular. Every plan being designed and drawn by a licensed architect.

Our equipment is so complete that we can mail to you the same day the order is received, a complete set of plans and specifications of any house illustrated herein.

Our large sales of these plans demonstrates to us the wisdom of making these very low prices.

ADDRESS ALL ORDERS TO
FREDERICK J. DRAKE \& CO.

Full and complete working plans and specifications will be furnished for $\$ 5.00$.
Cost of this bungaiow is about $\$ 700$, according to the locality in which it is built.
Floor Plan of No. 2001

Blue prints consist of cellar and foundation plans; floor plan; roof plan; front ano zide elevationse Complete typewritten specifications with each set of plans.
Price of Plans and
Specifications
$\$ 5.00$

Full and complete working plans and specificat as will be furnished for $\$ 5.00$.
Cost of this bungalow is about $\$ 650$ according to the locality in which it is built.

Price of Plans and $\$ 6.00$ Specifications \downarrow

Floor Plans of No. 2006

Blue prints con-
sist of cellar and
foundation plans;
floor plans: roof
plan; front and
side elevations.
Complete type-
written specifica-
tions with each
set of plans.

Blue prints consist of cellar and foundation plans; fioor plans; roof plan; front and side elevatlons. Complete typewritten specifications with each set of plans.
$\underset{\substack{\text { Price of Plans and } \\ \text { Specifications }}}{\$ 5.00}$

Full and comp!ete working plans and specifications will be furnished for $\$ 5.00$.
Cost of this bungalow is about $\$ 900$, according to the locality in which it is built.

F'loor I'lans of No. 3008

secomo rioor r root na
mplan, floor and roof plans, fonr elevations and complete
typewritten specifications.

Cost of this hungalow is from $\$ 1,850$ to $\$ 2,100$, according to the locality in whict it is built.
Floor l'an of No. 3012

Floor Plan of No. 3017
Blue prints consist of foundation plan, and roof plans, four elevations and conn, lom irfiten specifications.
Length, 36 feet 6 inches

$$
\begin{gathered}
\text { SIZF: } \\
\text { Width, } 25 \text { feet } 6 \text { inches } \\
\text { Length, } 36 \text { feet } 6 \text { inches }
\end{gathered}
$$

Floor Plan of No. 3021

Flat Design No. 3023
Cost of this flat is from $\$ 4,250$ to $\$ 4,500$, according to the locality in which it is built.
Floor Plans of No. 3023

Floor Plans of
No. 304.6

FIRST FLOOR DLAFY* 3046
SIue prints consist of foundation plan, floor and roof plans, four elevations and complete typewritten specifications.

House Design No. 3066
Cost of this house is from $\$ 3,600$ to $\$ 3,800$, according to the locality in which
Floor 1'lans No. 3066

SIZE: Width, 32 feet 6 inches. Length, 30 feet.
Blue prints consist of foundation plan, floor and roof plans, four elevations and complete typewritten specifications.

[^0]
"The Southern"

Blue prints consist of cellar and foundation plar iico; plans; roof plan; front and side elavations.
Complete typewritten specifications with each $\varepsilon f:: \%$ ns.

Floor Plans of "The Southern'

$$
\begin{gathered}
\text { SIZE } \\
\text { Width, } 22 \text { feet } \\
\text { Length, } 32 \text { feet } \\
\text { Exclusive of Porch }
\end{gathered}
$$

"The Minnetonka"
Floor Plans of "The Minnetonka"
"The American"

Cost of this house is about $\$ 500$, according to the locality in which it is built.
Floor Plan of "The American"

Blue prints consist of foundati on plan; floor plan; roof plan; front and side eievallo:28
Cornplete typewritten specifications with each set of plans.
"The Pomeroy"
Price of Plans and
Specifications

$$
\$ 5.00
$$至 !

SIZE
$\begin{aligned} & \text { Width, } 29 \text { feet } \\ & \text { Length, } 27 \text { fret }\end{aligned}$
Floor Plan of "The Pomeroy"

Blue prints consist of foundation plan; floor plan; roof plan; front and side elevations. Compleie typewritten specifications with each set of plans.
"The Trainer"
ans and
$\$ 5.00$
Full and complete working plans and specifications of this house will be furnished for $\$ 5.00$.
Cost of this house is from $\$ 1,100$ to $\$ 1,200$, according to the locality in which it is built.
Floor Plans of "The Trainer"

PIRST PLOOR PLAN

$$
\begin{gathered}
\text { SIZE } \\
\text { Width, } 24 \text { feet } \\
\text { Length, } 30 \text { feet }
\end{gathered}
$$

Blue prints consist of cellar and foundatlon plan; roof plan; floor plans; front and side elevations.
Complete typewritten specifications with each set of plans.
"The Workingman"
₹nce of Plans and
Specifications
 - Man and and

Q $\|^{\circ}=1 N^{+}+=$
Cost of th is house is from $\$ 400$ to $\$ 500$, arcording to locality in which it is built.
Floor Plan of "The Workingman"

Blue prints consist of collar and foundation plan; floor plan; roof plan; froat and alde elevations Complete typewritten specifications with each set of plans.
"The National"

F!RST FLOOR PLAN
Blue prints consist of cellar and foundation plan; floor jlans; roof plan; front and side elevations.
Complete typewritten specifications with each set if plans.
"The Gastonia"
Price of Plans and
Specyfications

Floor Plan of "The Gastonia"

"'The Johns"
Floor Plans of "The Johns"

"The Farmer"

Blue prints consist of cellar and foundation plan; roof plan; foor plan; front and side eievations
Compiete typewritten specifications with each set of olans.
"The Omaha"
Floor Plans of "The Omaha"

Blue prints consist of cellar a.d foundation plan; flour plans; roof plan; front and side elevations.
Coinplete typewritten specifications with each set of plans.
"The St. Charles"

Floor Plans of "The St. Charles"

Blee prints consist of cellar and foundation plan; roof plan; floor plans; front and side elevations.
Complete typewritten specifications with each set of plans.
"The Linwood"
Floor Plan of "The Linwood"

Blie prints consist of floor plan; roof plan; front and side elevations.
Complete typewritten specifications with each set of dians.
No. 1017

FLOOR PLANS OF DESIGN No. 1017

FLOUR PLAN
Blue prints consist of cellar and foundation plan; floor plan; roof plan; front, rear, two side elevations; wall sections and all necessary interior details.
Specifications consist of about fifteen pages of typewritten matter.
No. 1025

No. 1049

FLOOR PLAN OF DESIGN No. 1049

SIZE
Blue prints consist of cellar foundation plan; floor and roof plans; front, rear, two side elevations: wall

[^1]No. 1097
FLOOR PLAN OF DESIGN No. 1097
S I Z E
Width, 32 feet.
Length, 42 feet.
\[

$$
\begin{aligned}
& \text { front, rear, two side elevations; wall sections and all necessary } \\
& \text { interior details. } \\
& \text { Specifications consist of about twenty pages of typr.writted } \\
& \text { ?atter. }
\end{aligned}
$$
\]

No. 1073

FLOOR PLANS OF DESIGN No. 1073

No. 1042
P R I C E
of Plans and
Specifications
$\$ 5.00$
FLOOR PLAN OF DESIGN No. 1042

[^2]
FLOOR PLAN OF DESIGN No. 1096
Blue prints consist of foundation plan; floor plan; front, rear,
two side elevations; wall sections and all necessary interior detaus.
Sp cifications consist of about fifteen pages of typewritten matter.

P R I C E
of Plans and
Specifications
$\$ 5.00$
8801 ${ }^{\circ} \mathrm{N}$

House Design No. 1038

Full and complete working plans and specifications of this house will be furnished for $\$ 5.00$.
Cost of this house is from $\$ 1,100$ to 81,350 according to the lucality in which it is built.
FLOOR PLAN OF DESIGN No. 1038.

FLOOR PLAN
No. 1040

No. 1034

FLOOR PLANS OF DESIGN No. 1034

SECOND FLOOR PLAN

Blue prints consist of cellar and foundation plan; first and secoind floor plans; front, rear, two side elevations; wall sections and all necessary interior details.
Specifications consist of twenty pages of typewritten matter.
No. 1005
P R I C E
of Plans and
Specifications
$\$ 5.00$

House 1)esign No. 1005

Cost of this house is from $\$ 800$ to 81,050 accorations of this house will be furnished for $\$ 5.00$. according to the locality in which it is built.
FLOOR PLANS OF DESIGN No. 1005

SECOND FLOOK PLAN
Blue prints consist of foundation plan, first and second floor plans; front, rear, two side elevations; wall sections and all necessary interior detaiis. Specifications consist of about fifteen pages of typewritten matter.
No. $10 C 3$
P R I C E
of Plans and
Specifications
$\$ 5.00$

House Design No. 1003
Cost of this bouse is from 8750 to $\$ 900$ accorications of this house will be furnished for $\$ 5.00$. according to the locality in which it is built.

41
No. 1018
House Design No. 1013
Full and complete working plans and specifications of this house will be furnished for $\$ 5.00$. Cost of this house is from $\$ 1,000$ to 81,250 , according to lucality in which it is built.

No. 1001
P R I C E
of Plans and
Specifications
$\$ 5.00$

Blue prints consist of cellar and foundation plar; floor plan; roof plan; front, rear, iwo side elevations;
wall sections and all necessary interior details.
Specifications consist of about fifteen pages of typewriten matter.

MICROCOPY RESOLUTION TEST CHART

(ANSI and ISO TEST CHART No. 2)

APPLIED IMAGE Inc
No. 1051
P R I C E
of Plans ana
Specifications
$\$ 5.00$
FLOOR PLAN OF DESIGN No. 105 I
Blue prints consist of foundation plan; floor plan; front, rear, two
elevations; wall sections and all necessary interior details.
Specifications consist of about fifteen pages of typewritten matter

No. 1046

FLOOR $-A N$ OF DESIGN No. 1016.

SI Z.E
Width, 31 feet. Length, 60 feet
and all necessary interior details.
Specifications consist of about fifteen pages of typewritten matter.
No. 1024

FLOOR PLAN OF DESIGN No. 1024

Width, 30 feet. Length, 42 feet.

amı 'seos 'suouj : uejd sooy :uejd uollepunol jo is!suos siu!sd angg side elevations; wall sections and all necessary interior details.
Specifications consist of about fifteen pages of typewritten matter.
N. 1053

FLOOR PLANS OF DESIGN No. 1053

SEC(OAD FLOUK PLAN
 nterior details.
SIZE
Width, 28 feet.
Length, 46 feet,
exclusive of parch.
SI $Z \mathrm{E}$
Width, 28 feet.
Length, 46 feet,
पonod jo 2nisnjoxa Moc. interior details.
twenty pages of typewritten matter.

Blue prints consist of r side elevatior : wall ser
Specification:
Specificatio:

SECOND FLUOR PLAN
FLOOR PLANS OF
DES \because No. 1072
Blue prints consist of foun-
dation plan, first and second

PR R 1 C E E of Plans and Specifications $\mathbf{\$ 5 . 0 0}$

Full and complete working plans and specifications of this house will be furnished for $\$ 5,00$.
Cost of this house is from $\$ 900$ to $\$ 1,250$ according to the locality in which it is built.
FLOOR PLANS OF DESIGN No. 1088

[^3]Specifications consist of about fifteen pages of typewritten matter.

Remember

We can mail out the same day we receive the order any complete set of working plans and specifications we illustrate in this book.

Remember also

That, if you are going to build, complete working plans and specifications always

Save Money

tor both the owner and contractor.

They prevent mistakes and disputes.
They save time and money.
They tell you what you will get a.id what you are to do.

Estimated Cost

It is impossible for any one to estimate the cost of a building and have the figures hold good in all sections of the country.

We do not claim to be able to do it.
The estimated cost of the houses we illustrate is based on the most favorable conditions in all respects and does not include Plumbing and Heating.

Possibly these houses cannot be built by you at the prices we name because we have used minimum material and labor prices as our basis.

The home builder should consult the Lumber Dealer, the Hardware Dealer, and the Reliable Contractors of his town. Their knowledge of conditions in your particular locality makes them, and them only, capable of making you a correct estimate of the cost.

Modern Carpentry ${ }^{\text {rit }}$
 ADVANCED BEREIES

TBy fred c. Todgson
This is a continuation of Mr. Hodgson's first volume on Modera Carpentry and is intended to carry the student to a higher plane that is reached by the first volume. The first volume of this series mav be considered as the al-
 phabet of the science of carpentry and joinery, while the present volume leads the student into the intricacies of the art and shows how certain difficult prollems may be solved witt a minimum of labor. Every progressive workman and especially those who have purchased the first volume of this series-cannot afford to te without this volume, as it contains so many things -scessary the advanced workman should know, and that is likely to crop up at any time during his daily labors. The work is well illustrated with over 100 diagrams, sketches and scale drawings which are fully described and explained in the text. Many puzzling working problems are sh.iwn, descibed and solved. This is truly a valuable aid and assistant for the progressive workman.
300 pages, fully illustrated. 12 mo , cloth, price,
Sold by Booksellers generally or sent postpaid to any address upon receipt of price by the Publishers

FREDERICK J. DRAKE \& CO. PUBLISHERS

By UM. DONALDSON

A
MODERN treatise on Hot ${ }^{-}$ater, Steam and Furnace Heating, and Stear and (is Fitting, which is intended for the use and information of the owners of buildings and the mechanics who install the heating plants in the 1 . It gives full and concise information with regard to Stcam Loilers and Water Heaters and Furnaces, Pipe Systems for Steam and Hot Water Plants, Radiation, Radiator Valves and counections, Systems of Radiation, Heating Surfaces, Pipe ind Pipe Fittings, Damper Regulators, Fitters' Tools, He:'ting Surface of Pipes, Installing a Heating Flant and Specifications. Plans and Elevations of Ste:m and Hot Water Heat . Plants are shown and all other subjects in the buok are Illustrated.
256 pages, 121 Illus.4. ions, 12 mo , cloth, price, $\$ 1.50$

Eold by Booksollors tonerally or sont postpaid to any address upon recelpt of price by the Publishers

FREDERICK J. DRAKE \& CO. CHICAGO, U.S.A.

Concretes,

Cements, Mortars. Plasters and Stuccos

How to Make and How to Use Them

By

fred T. Hodggon Architect

THIS is another of Mr. Hodgson's practical works that appeals directly to the workman whose business it is to π ake and apply the materials named in the title. As far as it has been possible to avoid chemical descriptions of limes, cements and other materials. and theories of no value to the workman, such has been done. and nothing has been admitted into the pages of the work that does not possess a truly practical character.

Concretes and cements have received special attention, and the latest methods of making and using cenent building blocks, laying cement sidewaiks, pulting in concrete foundations, making cement casts and ornaments, are unscusced at length. Hlastering and stucco work receive a fair shaie of consideration and the best methods of making and using are ascribed in the usual simple manner so characteristic of Mr. Hodgsc's style. The book contains a large number of illustrations of tools, appliances and methods employed in making and applying con'retes, cements, mortars, plasters and stucco, which will greatly arsist in making it easy for the student to follow and understand the text

300 pages Eully illusirated.

$$
12 \text { Mo. Cloth, Price, } \$ 1.50
$$

Sold by Boolisellers generally of sunt postpald to any address upon rer alpt of prlce by the Publishers

Frederick J. Drake
 CHICAGO, U. S. A.

Cuntrartar's (buide

TO CORRECT MEASUREMENTS of areas and cubic contents in all matters relating to buildings of any kind. Illustrated with numerous diagrams, sketches and examples showing how various and intricate measurements should be taken :: :: :: :: :: :: :: :: ::

By Fred T. Hodsson, Archifect, and W. M. Brawn, C.E. and quantity Surveyor

πHIS is a real practical book, showing bow all kinds of odd, crooked and dificult measurements may be taken to secure correct results. Tbis work in no way conflicts with any work on estimating as it does not give prices, neither does it attempt to deal with questions of labor or estimate how much th. execution of certain works will cos!. It simply deals with the questions of areas and cubic contents of any given work and shows how their areas and contents may readily be obtained, and furnishes for the regular estimator the data upon which he can base his prices. In fact, the work is a great aid and assistant to the regular estimator and of inestimable value to tho general builder and contractor.

[^4]

解naprn Alphatreta

Engraved by F. Dolamotte

Largeoblons octavo, 208 pages, 100 designs Price, $\$ 1.50$
.. B.-We guarantee this book to be the largest and best work of this kind publishet

PLAIN and Ornamental, ancient and medieval, from the Eight to the Twentieth Century, with numerals. Including German, Old English, Saxon, Italic, Perspective, Greek, Hebrew, Court Hand, Engrossing, Tuscan, Riband, Gothic, Rustic, and Arabesque, with several Original Designs and an Analysis of the Roman and Old English Alphabets, Large, Small, and Numerals, Church Text, Large and Small; German Arabesque; Initials for Illumination, Monograms, Crosses, etc., for the use of Architectural and Engineering Draughtsmen, Surveyors, Masons, Decorative Painters, Lithographers, Engravers, Carvers, etc.

Sold by Bookecllers enerally or sead poetpaid to any address upon seceipt of price by the Publshers

PUBLISHERS

Sheet Metal

 Workers' InstructorBy
Joseph H. Rose

Profusely Illustrated.

THIS work consists of useful information for Sheet Metal
Workers in all branches of the industry, and contains practical rules for describing the various patterns for sheet iron, copper and tin work. Gsometrical construction of plane figures. Examples of practical pattern drawing. Tools and appliances used in sheet metal work. Examples of practical sheet metal work. Geometrical construction and development of solid figures. Soldering and brazing. Tinning. Ret'aning and galvanizing. Materials used in sheet metal work. Useful i_{i} १ rm mation. Tables, etc.

320 Pages, 240 Illustrations
12 Mo. Cloth, . . . Price. $\$ 2.00$
Sold by Bookssilors genersily, or sent postpald to any address upon recelpt of price by the Publishers
$\underset{\text { Fubushers }}{\text { Frederick }} \begin{aligned} & \text { J. Drake © © } \\ & \text { chicago. u. s. A. }\end{aligned}$

PRACTICAL BUNGALOWS AND COTTAGES FOR TOWN AND COUNTRY

THIS BOOK CONTAINS PERSPECTI E DRAWINGS AND FLOOR PLA

Of one hundred and fifty low and medlum priced
housew ranking from lour hundred to four thot
wand dollars each. Also thirty selerted design-
of bunculows for summer and coumtry homen
furnishing the prospectlve bulder with many new
and un-tudate deas and suggestions in moderu armbiteeture.
The lior es advertised in this book are entirely
different in style from those showu in Hodgson's
Low Cost IIntes.
12 MO. CLOTH, 200 PAGES, 300 ILI.USTRATIONS
IRICE, POSTPAID $\$ 1.00$
FREDERICK J. DRAKE \& CO.

CHICAGO

Complete Examination Questions and Answers for Marine and Stationary Engineers

By Calvin F. Swingle, M.E. Author of Swingle's Twentieth Century Hand Book for Steam Engineers and Electricians. Modern Locomotive Engineering Handy Book, and Steam Boilers - Their construction, care and management

HIS book is a compendium of useful knowledze, a:Id practical pointers, for all engineers. whether in the marine, or stationary servlce. For busy men and for those who are not iluclined to snend any more time at study than is absolutely necessary, the book wili prove a rich mine froin which they may draw nuprets of just the kind of infurmation that they are looking for.

The method pursued by the auther in the complation of the work and in tho arrangenent of the subject matter, is such that a man in search of any partirular item of information relative to the operation of his steain Ji electric plant. will experience no tronble in triding that particular item. ald he will not be under the necessity of going over a couple of hundred pages. either, before he findo it because the matter is systellatically arranged and classified.
Thd book will he a valuable addition to any enkineer's library, not alone as a convenient reference book, but also as a book for study. It also contains a complete chanter on refrizeration for enginters. 300 pague fully illustrated, durably bound in full Perstan Morocco limp round coiners, red edges.

PRICE - $\$ 1.50$
N. B.-This is the verylatest and best book on the subject in print.

Sold by Bookseller denerally or ment postpaid to any address upon receipt of price by the Publishers
FREDERICK J. DRAKE \& CO. CHICAGO. U.S. A.

The AMATEUR

 ARTIST

Or Oil and Water Color Painting without the Aid of .s Teacher z: : : a

By F. DELAMOTTE

9 The aim of this book is 10 instruct the atudent in the fund. amental prisciples underlying those branches of art of which it treate and to teach the application of those principles in a clear and concise manner. The knowledge it contains is available, alike to the amateur whose only desire it is to beautify the home and to pass pleasunt hours at agreeable work and also to those talented ones who lack the opportunities eforded by ant schools and teachers who are out of reach. To the latter, this work contains elements that will quicken the germ of talent or genius into life and send it well on its road ti, success. IT This very late and most complete work on amasear art gives thorough instructions in nine branches of decorative art. Each part is the product of the pen of a famous teacher and lecturer who has made that branch his especial life study. I Unlike other works on the market, it is brought up-todate - no obsolete braaches being dragged in, to fill out space. I Each chapter contains a complete list of materials and equipment, and instruction enough to develop natural ability to point where the student may continue, independent of furthes aid, and trustiag to his owa individuality of style.

200 pages, fully illustrated, price $\$ 1.00$

Sold by Booksellers senerally or seat postpsid to say sdd. ess upon receipt of price by the Publishers

FREDERICK J. DRAKE $\boldsymbol{F} \mathbf{C O}$. PUBLISHERS

UP=T0=DATE HARDW00D FINISHER IN TWO PARTS

By FRED T. HODGSON, Architect

Member of Ontario Association of Architects, Editor of "National Builder," and author of the "Miodern Estimator and Contractors' Guide," "SModern Carpentry," "Architectural Drawing Self-Taught," "Practical Uses of the Steel Square." etc.
IRT ONE, glving rules and methods for working hardwoods, with clescrlptlon of tools required, the methods of using, and how to sharpen and care for them, including saws, pianes, files, scrapers, chisels, gouges and other wond-working tools. How to choose hardwoods for various purposes, and how to work and properiy manage veneers. The proper use of giue, directions for preparing glue, blind or secret nailing; how done and how finlalicd. How to sharpen and use serapers of various forms, with illustrations showing the tools and how to handie tisem properly, etc.

PART TWO treats on the filing, staining, varnlshing, polisiing, gllding and enameling woolwork of all kinds of woods. It also treats on renovating oid work, repolishing, revarnishing and wood-finishing generaliy. Therelsa sinort treatise en dyelng woods Ie various colors for inliying and marquetry work, with rules for making staining, ciyes, fillers, and poilshes of various kinds, French polishling, hard-oliflnish, rubbed hnd flat flnish, treatment of hard: wood floors, waxing, poilining, shellacking and general finlshing of hardwood in all couditlons.

LARGE 12M0 CLOTH, 320 PAGES, I17 ILLUSTRATIONS. PRICE, $\$ 1.00$ half Leather binding, gilet Tops PRICE, $\$ 1.50$

[^0]: Cottage Design No. 3080
 Cost of this cottage is from $\$ 2,000$ to $\$ 2,200$, according to the locality in which it is built

[^1]: Specifications consist of about fifteen pages of typewritten matter.

[^2]: Blue Prints consist of foundation plan; floor plan; front, rear, two side elevations; wall sections and all
 necessary interior details.
 Specifications consist of fiffeen pages of typewritten matter.

[^3]: Blue prints consist of foundation plan; first and second floor plans; front, rear, two side elevations; wall sections and all necessary interior details.

[^4]: 12 mo , cloth, 300 pages, fully illustrated, price - \$1.50
 Sold by Bookeellers rene.ally or sent postpaid to any address upon receipt of price by the Publishers

 FREDERICK J. DRAKE \& CO. PUBLISHERS
CHICAGO. U.S.A.

