The Institute has attempted to obtain the best original copy available for scanning. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of scanning are checked below.

Coloured covers /
 Couverture de couleur

Covers damaged /
Couverture endommagée
Covers restored and/or laminated /
Couverture restauree etou pelliculée
Cover title missing /
Le titre de couverture manque
Coloured maps /
Cartes geographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations /
Planches et/ou illustrations en couleur

Bound with other material /
Relié avec d'autres documents

Only edition available /
Seule édition disponible

Tight binding may cause shadows or distortion along interior margin / La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

L'Institut a numérisé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la methode normale de numerisation sont indiqués ci-dessous.Coloured pages / Pages de couleur

Pages damaged / Pages endommagées
Pages restored and/or laminated)
Pages restaurees et/ou pelliculees
Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées
Pages detached / Pages détachées
Showthrough / Transparence
Quality of print varies /
Qualité inégale de l'impression

Includes supplementary materials / Comprend du matériel supplémentaire

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from scanning / Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas eté numérisees.

TECHNICAL EDUCATION AND APPRENTICE sCH00LS.

E are glad to find that the Board of Education in the digtrict of Ontario is awakening to the necessity of a change on the subject of education taught in our public schools, and that there is a gleam of hope that technical teaching will, in the future, receive more attention. We have, during the past year, dilated considerably upon this subject, and a few remarks on the same in the concluding number of this year's volume of the Scientific Canadian will not be out of place. Hitherto we have spoken of the efforts made by the Guilds of London to impart technical teaching and practical training in Ondor that English workmen shall not fall back from the high stunding which they have hitherto held in art Oork, machinery and tools, but that they shall have an opportunity always of keeping up with the times and bold their own against all nations.
It would appear from all that has been written on this ${ }^{8}$ of ject by those well calculated to form a just opinion of the matter that what is particularly wanted is manual ${ }^{\text {dexterity }}$ and technical knowledge to enable workmen being earn more wages and to produce better work without al ing at the mercy of fluctuations in trade-which always is felt most by the unpractical machinist.
A system adopted in this country that would impart aid to instruction in technical principles would be a great ald to many of our mechanics who serve an apprentice${ }^{\text {shipe }}$. To compete with foreign nations-and the day, * cerust, is not far off when we shall be able to do so to ${ }^{\text {a }}{ }^{\text {b }}$ certain extent--it is clear that our manufactures must ${ }^{b_{\theta}}$ better than this, and whether or not our policy is educection or Free Trade in the future, the technical Whatation of our artisan classes should be a sine quer non. What particularly is wanted in this country is that forebo should be specially trained and that there should more practical training on the part of employees
themselves, many of whom being men of capital, have found the money expecting to find in others the practical knowledge to do the woik, which they have not done, and hence the cause of many failures. Nothing is more deplorable than the position of an employer who is ignorant of the practical details of his business, and at the mercy of employees whose workmanship he is unable personally to direct. The polytechnical schools of Germany afford a fair example for us to copy, under certain changes, most suitable to a free people, because in them the general intelligence of pupils is cultivated. To succeed, however, we must commence at the beginning, that is in the class of education inparted in our publis schools must be changed even if we do got adopt the prastice of Germany which prevents children to go forth to factories at an early age, first on half cime, and then technical training would go on simultaneously with the ordinary teaching of the schools. But besides this, the rising generation of workers need more kuowledge of science applied to industry, for hitherto too much has been trusted to rule of thumb. We sincerely truast this subject will receive the attention of the government, and if su most assuredly it will bear good fruits for the future.

SPECIAL ANMOUNCEMENT.

We have already announced to our patrons in our Prospectus for 1880 the great efforts we are making to render the Scientific Cunadian particularly useful to every class of our subscribers by the addition of Illustrated Supplement Sheets of Tecenical Ingtrootion on nearly all the mechanical trades. We more than doubled our subscriptions last year and bruaght it up almost equal in ratio to our English reading population, to the circulation of many long established scientific papers.

As we fully intend, diring the coming year, to push it to the utmost in every part of the Duminion, we particularlr desir: to call the attention of Manofacturers of all Machinery, Tools, Agricultural Implements, Wood-work, Paints, Varnishes, Oils, \&c., to the medium this Magazine offers for advertising, and reaching a class of readers interested in the use of all articlea relating to mechanics and manufactures.

TO OUR READERS.

Although our prospectus for next year's volume fully explains the extraordinary efforts we are making to establish for the Scientific Canadian and Mechanics' Magazine a reputation for usefulness to members of every mechanical trade, we desire to say a few words of thanks to our present subscribers for their past support, and in requesting a renewal of their subscriptions we can assure them that every effort will be made to raise the magazine to as high a standard as that obtained by many of its senior contemporaries.

In one branch of support, however, we have been greatly lacking, and that is in original contributions from our subscrihers of their own practical knowledge, for the benefit of their fellow-men. This branch has been found particularly interesting to readers, if we may judge of the number of communications received and published in the columns of the English Mechanic, and many of the American scientific and mechanics' journals, particularly the Metal Worker and the Stmitary Enyinerer, both published in New York. We trust, for the future, diffidence will not deprive us of many valuable hints and suggestions which we know many of our subscribers are well competent to afford. We shall in next year's issue devote a page, or more if required, entirely to Questions and Replies, and we hope that much information will be obtained from this new and attractive feature in our journal. The publication of illustrated sheets of technical instruction, with the coming volume, is a novel and most useful feature, and cancot but win for the Scientific Canadian a very large increase of patronage for the coming year. The very fact that any mechanic can obtain 1% illustrated sheets of practical iustruction in his own particular line of trade (equal in value to a whole work), in addition to the magazine itself, and also the Patent Office Record, places the Scientific Canadian at the head of all monthly periodicals for general usefulness and cheapness. The Solextific Canadian, in its issue for the past year, shows no less than 400 illustrations and over 1000 articles on different subjects.

By publishing so much extra information in our illustrated sheets of technical instruction, we shall also be enabled to devote much more space to the discussion of current topics, scientific progress, the manufactures of the country, its resources, and other subjects of iuterest ; but particularly will it be our object to afford to the young information in a pleasing and instructive form, so as to render this magazine a cyclopedia of useful knowledge which should tind a place on the library shelf of every family. We most particularly desire young people not to be bashful in seeking to acquire knowledge through our columns, oi to be ashamed to ask a question. A cilebrated Italian philosopher, being asked once how he came to acquire such a fund of information, replied : " Because I was never ashamed to ank for information when I was ignorant."

Although the return of prosperity is only just dawning upon us, yet we cannot but feel assured that the mist is cloaring off the face of the land and brighter day. are in store. We sinerrely trust that we are entering upon a period of renewed prosperity, and hope that from the lessou of the past we may steer our course in an open sea, and aroid those rocks upen which so many of our mannfacturers and business men, during the past five yoars, Wure earried by the whirlwind of speculation, shattered and lont. We heartily wish you all a bappy
and prosperous new year, and only ask, in return for our efforts to serve you, a return in kind.

A FEW WORDS TO APPRENTICES AND YOUNG MECHANICS.

By the Editor.

My lads, before concluding the last month's numiber of this magazine for the closing year, I desire to have a little talk with you, not in my character as Editor of the Scientific Canadian, but as a friend interested in your welfare, and in that of our country. wish you to think more of yourself hereafter as a body, for the prosperity of your country and its great future is depending upon the ability, perseverance and moral character of a body of men upon whom it has to rely to develope, work into shape and use its resources, and that body is represented by you. You have only to recall to memory for a moment those who have done so much for the world's progress during the past half century, and a catalogue of names will present itself to the mind of working men who have done more for mankind by their inventive genius and perseverance than all those who existed before them since the commencement of the Christian era. A host of such men I could mention to you whose names will ever have a place in the world's history, and in viry tanguage of the civilized globe. Most of these brilliant men were of humble origin, many of them were, in fact, mechanics that even never had the benefit of a common school education; but how did they rise to eminence and tame! Not by indolence and lethargy surely. A yonth who can take no active interest in business or lawful pleasures, is deficient in vitality, and is to be pitied for his turpidity, rather than condemned for his wrong doing. Not by devoting spare hours to reading trashy "dime novels" and low class literature, or hy frequenting billiard rooms and salions, where a youth cannot fail, in a short time, to become demoralized both in mind and body. No, bat by a steady determination to cast avide the ignoble things of life, to improve the minds by the study of works treating on their avocations whatever they may be, and a determined spirit to overcome difficulties, ho wo ever hard they might at first appear. Let me give you one or two instances of this :-

Nearly eighty years ago there was a poor weaver at Cockenell, working hard to keep the thatch whole over his head, and to support a large family beside him. His name was Fallows. His eldest son, a lad with legs just long enough to reach the treadles, had to help his father to raise the needful, The lad had talent, and by-and-by about the "wee sma' hour ayont the twall," father and son might be seen together conuing the voungster's le9sons. In this way the lad became a good grammarian and a first-rate mathematician. By-and-ly he started a village school ; crept up to college at Cambridge; contested with Hershell for the otfice of Astronomer Royal, and lost the election by only a simele' vote. Ho afterterwards became Astronomer Ruyal at the Cape of Good Hope. There he drew a plan of the southern hemisphere and stampod himself as a first of his class. He published a catalogue of the stars in $18: 24$ and died in 1831. Another instance of what perseverance will accomplish in the face of disadvantages is that of Richard

al l_{80} a very remark:able man. He began life under many bitter disappointments and disalvantages, but rose superior to them all and achieved a high position among mechanicians. His father was a shoemaker in an obscure village in. Nor h Wales. For some reason Richard Was never sent to school. At an early age he went to Work at a slate quarry, subsequently he was employed in a canal hoat, and later he held the position of servant to a gentleman in the neighborhood. It was while in the last position that the youth's latent talent was awakened. His employer was an anateur turner and the boy became fascinated by the lathe, seizing every opportunity of practicing on it until he became an expert turner. Step by step he advanced until he became an expert machinist. He then sought to improve his condition in a Fider field, and walked all the way from Manchester to Iondon, where he succeeded in obtaining employment in Mandslay's famous establishment. Soon after he established a business for himself, and ultimately became in partner in one of the most important engineering firms in Manchester. It was as a member of this firm that he offected his well-known improvements on the locumotive engine, and invented the self acting mule. Refore entering into this firm be invented a gas meter; the slide lathe; the slotting machine and other ongineering tools Which acquired for him a high position in the world. On_{e} of his biographers, referring to that early period of his life, says: "His fly-wheel was in the cellar and his lathe upstairs in a bedroom. The strap passed through the living roons of the ground floor and the power that Surned the fly wheel was his wife." In the United States like fise how many examples we could point out to you of men who, from small biginnings, have achieved buccess by merit. For instance the case of Aaron French, Who served as a blacksmith at Pittsburg, Wisconsin, and Who afterwards became the proprietor of the great railway car spring manufactory, which in the year 1872 sold two thousand tous of springs.
A mechanic to succeed in life must show zeal and energy in the trade he is learning, he must have ambition likowise, and feel an interest in his; wurk. Nothing is more common than for a lad to imagine that he can learn to be a machinist, carpenter, sinith or painter, by serving two or three years in the capacity of an apprentice, and yet nothing is more false. It is work and perof braince alone that wins the golden apple-work both of brain and muscle. Whatever you have to do make it ${ }^{\text {a rule }}$ ceed in life to do it well. If you heartily wish to succeed, put into your work the same heart and life you Would into a game of lacrosse or other youthful sport, it Will pay you in the end. You may often feel tired and dispirited over your work; you may feel that your employer does not appreciate your efforts to improve yourleese and perform his work well above an adler and careless workman at the bench beside you, but never be discouraged, all those who have gone before you and have $\mathrm{ri}_{8, n}$ to eminence and wealth, have had all these discour${ }^{2}{ }^{2} \theta_{\text {efl }}$ ents and disadvautages to contend against, therefore $f_{\text {efl }}$ assured that by serving your employer well and faithfully, you are not only doing your duty in life, but building up you are not only doing your duty in life, but
al ways yourself. A good workman will al ways obtain employment in hard times in preference to the uncompetent and untrustworthy.
Mud here let me say a few words about shop manners. Pach will be gained at the start if a youth is not only patient under provocation and uniformly good tem-
pered, but als, pleasant and agreeable in his manners. It costs nothing to be polite and politeness makes friends. We know of no place where it will pay better to show the instincts of a genlleman than in the workshop, and here we feel it our painful duty to speak of the coarseness and vulgarity which so often abounds there. He who exhibits ill-breeding while at his daily task will exhibit it wherever he goes, and it will place a mark upon him wherever he goes. We thoroughly believe in the dignity of labour, and no matter how grimy a man's trade may be, he can always be a gentleman in spirit, and as Burn's says, "a man'e a man for a" that."

As the Editor of the Scientific Canadian, it has been my endeavour to do my utmost, in my limited capacity, to improve through the columns of the magazine the status of Canadian mechanics. The donation of Illustrated Supplement sheets of Technical Instruction to such of our subscribers who follow trades, is an evidence of this, the value of which we trust they will appreciate. It is my desire as Editor to afford you every information within my power, and knowing how diffcult it is in Canada for mechanics' to obtain trade manuals and other useful works, he will afford you every information upon application and obtain the books for you at the published price whenever practicable, all he asks in return is that you would take that interest in the work which it surely now deserves, by affording to the publishers by your subscription the means wherby to maintain a work which, under the most favorable circumstances, can only expect to obtain a limited remuneration for some years to come, that is until our English reading population is more than doubled.

PATENT INVENTIONS.

The Scientific Canadian, being a monthly journal cannot afford space in its columns for notices of Patent Inventions. Occasionally, however, when we have met with one of really practical utility to Canadian Mech1nics, we have given an illustration or description of the same. We do not in fact consider it fair to our readers to appropriate the pages intended for their special reating to descriptions of inventions of very little practical use, although we have frequently been solicited to $d n$ sw as an advertis.ment.

But, as a new feature to the Magazine, this we will do. We will print one or more extra pages if reguired, im nediately preceeding the Patent Office Recorl and use them entirely for illustrations and descriptions o urefal iuventions taken out in Canada. Only patents of real practical use will be noticed in these pages. The cost of 1 his method of advertising we will, on account of the benefitit may be to our readers, make very low. Inventurs desiring to advertise in this form will please communicate with the Company or the Editor, who will inform them of the rate of charges.

A Great Conservatory.-Possibly the largrst private conservatory in the world is that recently completed for the King of Holland in the Schlos Park, adjoining his favorite country residence. It contains about 46,000 cubic yards of space, while its glass dome is 95 feet in height and 180 in diameter. This is flanked by two lofty towers resembling Turkish minarets in shape, which given an Oriental character to the whole structure. Ttee hot-water pipes laid down for its heating are 15,000 feet long.

NOTICE TO BUMSCRTEFRS

Recelving ter Scientific Canadian and Mechunics＇Ma－

gazine throdgr Agents or Stationers．

With reference to our Prospeotus for 1880，in which we state our intention to donate to each subscriber be－ louging to a mechanical trade，one Ilrustrated Sup plement Sheet of Technical Instruction，every month，relating to his own trade，we will therefore feel obliged to such subscribers as obtain the Magazine through Agents or Stationers，and whose names we know not，to notify to us the trade，of any they follow， in order that we may enter in each monthly number the proper Illustrated Supplement．

We would prefer，if convenient，that all subscriptions should be sent in direct to the office．

TO SUBSCRIBERS IN ARREARS．

We respectfully call the attention of such of our subscribers who are in arrears of payment，to the pro－ priety of remitting to the office the amount due before the close of the current year．

The heavy expense the company is incurring by printing Illustrated Supplement sheets of Technical Instruction in every trade，twelve of which will contain as much information as many books sold at from $\$ 2$ to $\$ 3$ ，is the grea！est boon to mechanics ever offered by a Mechanics＇Journal．We sincerely trust，therefore， that not only will remittances be more prompt in future， but that the Mechanics of the Dominion will appreciate our endeavours to afford them and their children mecha－ nical instruction and general knowledge in the most practical form，by liberally supporting for the future this useful magazine．

As there are many who have sent in their names as new subscribers for the coming year，who may wibe to obtain the first volume of the Magazine UNDER its changed title of the

SCIENTIFIC CANADIAN AND MECHANICS＇ MAGAZINE，

we desire to intimate that we shall have a few unbound volumes of this year remaining on hand which can be obsined at the usual rate，vizt．$\$ 2$ ．This volume is especially valuable to young mechanics，as it contains the whole of Collin＇s Elementary work on Machine Draw－ ing，and illustrated by over 50 plates and as many more of minor illustrations．We have slso some back numbers for the years ${ }^{\circ} 1873, ' 74, ' 75, ' 76, ' 77$ and＇78 of the Magazine under its old title of Canadian Meceanics＇Magazine which are lacking one or two numbers，these we will dispose of for SEVENTY FIVE CENTS per volume．

These papers contain much matter of permanent in－ terest，and are profuscly illustrated；they will be found particularly useful for constant reference by every Ma－ ciinist and Mechanics of almost any trade，as well as to Architriots and Builders．Each number contains the Paterit Ofyioe Record of patents issued in Canada during the previous month．

OER AMERICAN EXCHANGES．

We beg to acknowledge，with many thanks，our in debtedness to our Fixchanges for much valuable informas tion derived from their columns．We have given a free advertisement to several of them in our monthly catalogue of useful books and periodicals，published for the infor－ mation of our subscribers，and shall always have much pleasure in recommending them to those whose business lies in the line represented by each particular paper．

敢的 Wublication．

The Milling World and Chronicle of ter Grain arid Flour Trade．

This new monthly journal which is published by C．A．Wenborn， 194 Main Street，Buffalo，N．Y．，appears to be a woik of great merit and should be taken by all Canadian willers，the subscription price is only $\$ 1$ per annum．We cannot pass a higher compliment upon its merits than by giving to our milling friend two of its leading articles and an example of its editorial ability．

SHALL THE TMLIETONE BE SUPERBEDED？

The greatly improved methods of milling that in the past for years have been so universally adopted，have but stimulated spirit of progress，and awakened a desire to attain still graades perfection in the art of flourmaking ；and，in seeking new aren for advancement in the science，it is but natural that the feab bility of improvement in the methods of reducing the wheath should be canvassed and discussed ；and it is questionable if any topic now under consideration by the theoretic miller excites of lively interest，or one concerning which a greater diversity opinions exist．

With the advent of＂New Process＂milling came the necessity for improved methods of reduction，or rathei improvements in the devices by which the reduction of the wheat berry was as complished，and whether the full＂high grinding＂system，or the modification known as＂half high grinding＂was adopted as the practice，important changes in the dress and suspension of ibot burrs were essential to the successful reslization of the oos sought．At first changes in the dress of the burrs were supposert to be sufficient，and innumerable＂patent＂drasses，and oun the profoundly＂secret＂have at various times been offered that milling fraternity as embodying everything desirable to facilitiont proper granulation．The necessity for having the burrs in propert train and balance was recognized，and numberless devices wis originated to ostensibly meet this requirement，but after pro tracted experience in the manufacture of the finest flour in thbo world（with one exception），the inevitable Yankee spirit of amb the tion to excel steps in and suggests possibly better results，by thble adoption of another system，and the advisability of，or probing boing
benefit to be derived from a change of methods is now benefit to be derived from a change of methods is now agitated．

In past years namerous attempts have been made to obtains substitute for the millstone，a substitute that would not when in operation become heated，that would not need dressing so oftom， and under the old aystom of milling，that would not past so easily－but in this country very little attempt was made at of substitution of a device which should perform the function the flourmaking in a mechanically different manner，until within past three or four years．

With a view of arriving at an intelligent decision of this vesca question，let us consider the advantages and disadvantages of ${ }^{\text {and }}$ ， 0 time－honored millstone，as compared with those of its（shall ith say formidalile）proposed rival，the roller．It is hard to part wrdor； an old and tried friend under any circumstances，and still har he is if from lack of proper championship of his good qualities bees banished to make way for one whose purposely or unwittingly concealed．

It is well to bear in mind in considering this matter，that the
roller now clamoring for recognition from the American milling public, is an approved auxiliary of the Hungarian system, and has its results in practical operation in those countries where it alth been most thoroughly tried are seemingly satisfactory, although scientific tests are constantly being made to still further increase its efficiency and value.
of the demand of the miller belonging to the progressive school of to-day is, that in the reduction of the wheat berry, the bran thall be kept in such large particles as to prevent its passing through the cloths in the processes of bolting, and this desirable result, it is claimed by many, cannot be accomplished by the ragency of the millstone, because its tendency in operation is to rab and tear the berry apart, and as a consequence the bran is abraded and more or less reduced so that minute particles are produced which it is found impossible to prevent becoming incor porated with the flour.
Again, it is said that this rubbing and tearing action decintegrates the germ and it too passes into the flour product, capsing it to assume a yellow cast, thereby injuring its commercial value.
It is further claimed by some that upon millstones all degrees of granulation are effected at a point about mid-way between iajuriond skirt, and all frictional contact beyond that point is superious, as the tendency is to produce a greater quantity of superfine flour, in addition to the liability of reducing the germ and bran.
It is urged that the amount of care and attention necessary in Keeping the stones in proper condition, the power required to torbalam, and their liability to derangement, more than countorbalance the difference in first cost as compared with rolls. To sum up the superiority claimed for the roller system of reduction ${ }^{0}$ have,
1st. The bran and germ are better preserved.
2nd. The product in the form of middlings, somolina or flour 8rd freer from impurities.
8ird. The effect of the pressure is to burst the berry, and in 4th gration its granular formation is preserved.
4th. The flour obtained is not in the slightest degree heated.
bth. The flour will be more absorptive, and consequently the
6th made therefrom will better retain moisture.
6th. As the degree of reduction can be regulated with the freatest accuracy, the middlings can be more easily and thoroughpurified.
7th. As the point of frictional action is reduced to the minimaces, there is a perceptible decrease in the quantity of power 8thery to perform the operations of granulation.
8th. Their remarkable durability as compared with the mill9th
Oth. The time consumed in dressing the millstone is saved.
On the other hand some advocates of the retention of the millproperige that, where care is taken to select close burrg, they are
roperly dressed and the fittings as accurately and carefully con-
betred and arranged, equally as good if not better results will
It is obd than by the employment of rills.
It is claimed by some that the flour obtained by the roller
andem is coarser in textare than that produced on the millstone, and that for this reason the bread will not as well retain its thoistare; that it the whest is damp and tough it is necessary to tharoughly dry it before subjecting it to the process of reduction; that the middlings produced are not, by reason of their elongated Whape, so readily purified; that the cost of operation is greatly increased; that the first cost is greater, and that much longer N_{0} in required in the operations of flourmaking.
Now, if both sides to this question can adduce sabstantial Will
$1_{8 t}$. Both evident that
1st. Both systems are the best, and
Ind. Neither one is calculated to produce satisfactory results. foller system of granulation, and it is to-day, probably, in greater faror system of granulation, and it is to-day, probably, in greater mills as many as previous time, but the fact that in some of the good ground for supposing that the system in its entirety could lot ground for supposing that the system in it
The fact that constant experiments are being made there to devise other. means of reduction, would also indicate that the Stem, although in use, leaves something to be desired.
the Again that the roll is not generally taken to be, theoretically unoest adapted for the first reduction, is shown by the fact that and, thas cutting machines have been devised for this purpose; sequirement "finishing up" it does not satisfactorily meet the
the leading mills in Austro-Hungary this operation is perfermed upon millstones.

A careful consideration of all the theories advanced, and facts obtainable having a bearing upon this question, leads to the following conclusions:
lst. Roller milling in a somewhat modified form might be profitably employed in this country in mills that now operate on strictly the "high grinding" plan, as in this system all operations may be performed upon rolls, except regrinding the bran.
We think it must be admitted that the cost of operation will exceed that of millstones, and certainly the first cost is greater, but, as there appears to be ample evidence that a greater percentage of high grade flour is obtainable from their nse, the increased value of this product will probably more than counter-balance the objections.

The operations of reducing, scalping, purifying and bolting, consume more time, and the system demands more wetchful care and attention than that now in vogue, but if adopted, as it bids fair to be in some of our large mills, we look for the happiest results.
2nd. Rolls will be found valuable auxiliaries in half high grinding for the purpose of flattening the germ, and middlings to which particles of bran adhere.

To perform this office, we look to see them almost universally employed, as for the purpose they have yet found no worthy competitor.

In discussing the probabilities of the millstone being discarded, and the roller adopted in the United States, it must be borne in mind that mills which parsue " high grinding" are few in num. ber as compared with those that do not.

The great mills at St. Louis, whose products find ready market at home and abroad, and other well-known and extensive mills throughout Missouri, Wisconsin, Illinois, Michigan, Indiana and other States where soft wheats are grown and milled, have not thought it economical or wise, in a commercial sense, to adopt the system of high grinding prevalent in those sections where hard wheat is obtainable, and so long as this is the case millstones will be employed and regarded with favor.

That changes will be made in them and their methods of opera. tion, that their capabilities and value will be augmented is to be expected, as we are progressive in our ideas and aspirations, but the time when they will be entirely superseded, is, we believe, far distant.-The Milling World.

Messrs. Rambert and Robert are bringing out a magnificient serial publication of what I might call, the Natural History of Familiar Birds ; of those birds that we know, that we love, which interest all ages, even in fancy. About sixty species are noticed, and what is certainly new, the drawings are all from nature. The authors are very severe on the inhabitants of Southern Spain, of Carsica and Italy, for their massecres of featherel friends; they slaughter with the coldest cruelty, some of the most charm. ing species, seeing in them nothing but game. The havoc is more terrible as it is by these regions the migrations pass. The Italian markets are encumbered with robin red breasts, larks, red-wings, finches and thrushes; the nightingale is a good take also, and even young swallows. The ohapter on the tomtit is peculiarly interesting. This birdi is a veritable acrobat, and executes gymnastic fents on the extrenity of a leat with a marvellous dexterity-a combination of a monkey and the squirrel ; but its play is hunting all the while, the eggs of caterpillars, bugs and spiders. It is terribly cruel if caged with a weaker bird-will kill it in order to sack its brains. As a parent, it is kind, and it cracks bard seeds and grains affectionately for its young. The hawk is the only bird of which tomtits have a mortal dread.

Messrs. Cerbeland and Dumont publish a volume of 600 pages of a work treating on the industries of France, and deploring that while there is no falling off in point of intelligence in the part of the French artisan and manufacturer, they are being.cut out of their own narket by the foreigner. The French are not sufficiently speculative and are timid to change old plane for new. In the matter of coal, France ranks only fourth in the production of that combustible-on a par with Belgium, though she is not deficient in coal mines. England produces as much coal as all the nations of the world together. Exceptiog in iron, France has to depend on the foreigner for her supply of the other metals, although she is comparatively rich in them herself. It is an English company that works the chief iron mine at Bone, in Algeria.

SIMPLE HIGH-PRESSURE TAP.

The introduction of a cheap and simple high-pressure tap would doubthess facilitate the introduction of a constant supply of water in the metropolis, by relieving the companies of the necessity for insisting upon the adoption of rather costly fittings. The illustration shows a form of tap patented hy Messrs. Warner and Brown, having a cone (or it may be a disc) closing against a diaphrugm or partition within the body or shell, so as to cover an aperture therein, ly which, when the cone or disc-valve is removed, the fluid is free to pass. The cone or disc is carried at the end of a spindle, passing through the aperture or water way in the diaphragm or partition; there is also a screw thread formed upon the spindle, and the screwed portion is somewhat larger in diampter than the other parts. A boss is formed upon the shell or body, which has a hole through it, traversed by the

spindle, and which is tapped with a sorew thread corresponding to that upon the suindle, so that the latter working in the boss as a screw in a nut draws the cone or disc to its seat. On the side of the shell or body opposite to the boss there is a hole sufficiently large to admit the cone or disc, and when that has been insprtel the hole is closed hy a plug screwed into it. The part of the spindle beyond the screw thread may pass through a stuffing-hox formed in the boss, or it may simply have a conical collar upin it, which when the spindle is serewed in in such a manner as to remove the cone or dise from its seat, and to open the water way, comes down upon the top of the hoss, forming a fluid-tighi joint, preventing any es'rpe around the spindle. In the figure, which is a section, the spindle is shown passing through a stuffing-box, but in a modification the stuffing-box is dispensed with, and a metal cone fixed on the spindle descends with it and makes a joint sufficiently fluid-tight for most purposes.

A WONDERFUL LUBRICANT.

Grease has been deprived of one of its constituents by Senor Unciti, which gives it many wondertul qualities, if we may judge from the experiments lately made at the present exhibition of applied science in Yaris, Frauce. The Iron says: Two open boilers, made of tinned sheet iron, were put upon two coke furnaces of equal intensity ; bnt the bottom of one of the boilers was coated with the grease outside, 80 as to be in immediate contact with the flame, whereas the other was not 80 coated. The former began to give off steam in a quarter of an hour, and the latter not until half an hour had elapsed; whence it may be inferred that the grease increases the conductability of the metal, so that with a given quantity of fuel more water is turned into steam. A brass lubricator, of cylindrical form, filled with the grease, was then plunged into the water in the coated boiler, and, almost immediately, minute particles of the lubricant began to issue from a small hole in one eud, rise to the surface, and gradually spread themselves over it. This was to show the application to the interior of a steam boiler for preventing incrustations, three grammes (about $1 \frac{1}{2}$ drachms avoird.) being used for each horse-power. The grease is also carried along by the steam into the cylinders, rendering any other lubrication unnecessary. Notwithstanding the cooling effect produced by the lubricator, a large budy in proportion, the water in the coated boiler bubbled violently in an hour from the time of its being placed in the fire, whereas the other, not coated, did not boil in an hour and a half, when the experiment was stopped.

A portion of the grease was wiped off from the bottom of the coated boiler and thrown on to the fire, when it immediately flared and was consumed. The tin bottom was as bright as before, but that of the other boiler gave evidence of the action of fire. This was to shew, on a small scale, that boiler plates exposed to the action of the fire do not become burnt. And, indeed, this fact follows as a natural consequence of the othet point established, viz. : the increased conductibility given to the plates. Those who witnessed the demonstration were most astonished to see that a stick dipped in the grease made marks on the hot sides of the boiler and furnace as distinct as lines with s drawing-pen, and which did not run together, as they would have done if made with ordinary grease. So far the experimepti have been most conclusive, fully bearing ont the official certificate of the Spanish government ; and it will be interesting to watch the result of a continued application to steam boilers of the scale of actual practice.

A NEW IITRE CUTTER.

The accompanying engraving represents an improved mitrecutter recently patented by Mr. W. R. Fox, of Rockfall, ConnIts construction is so simple that it can be readily understood by a glance at the engraving, Fig. 1. The cutters, which are mado of the finest cast steel, are secured to a slide that moves in guides along one edge of the bed, and the slide is moved by a pinion placed between the rack on its outer side and a rack on the bed, the pinion being provided with a long lever by which cutters may be moved in either direction with force sufficient for any work that the tool is capable of doing. Upon the bed, Fig. ${ }^{2}$, there are gauges and guide marks to which the work is adjusted. At each end of the bed and near the path of the knife there is * pivoted support for the end of the piece being squared.

The tool seems superior to the block plane, says the Sciontifs American, as it will do the work quicker and better. It is pas ticularly useful in squaring across the end of the grain; whem used for this purpose, the piece being cut may be backed up by another piece to prevent slivering. The tool is strong and woddesigned, and well calculated to meet the wants of woode workers.

To Polisi Iron or Steel. - For those in the metal or hardware tradea who wish to obtain that beautiful deep black polish on iron or steel which is so much sought after, all that is so quired is to boil one part of sulphur in ten parts of oil of turpentine, the product of which is a brown sulpharic oil of disagreesble, smell. This should be put on the outside as lightly as possible, and heated over a spirit lamp till the required black polish obtained.

Metallic Laces.-Debray uses wires of German silver in the manufacture of metallic laces. He colors metallic foils for the same purpose by depositing upon them iridescent films of oxide of lead. Litharge is dissolved in caustic alkali and the resulting solution is decomposed by a current of constant intensity, the positive pole of the battery being in communication with the metallic surface to be coated.

IT is stated that very large quantities of tin plates made from steel are branded charcoal and cest charcoal, and so exported, and these plates, it is affirmed, are exceptionally well received, especially for stamping purposes in the United States.
$\mathrm{O}_{\mathbf{n}}$ the subject of connecting a bath waste pipe, to a soil pipe 8n which we made some remarks, in November number of the the viric Canadias, we now add another illustration from ded Sanitary E'ugineer. in the hope that plumbers will be guided accordingly.-ED $S C$

Philadelphia. Sept. 5th 1879

Bditor of The Plumber and Sanitary Enginecr:
We
ipe
ider
e herewith submit to you two plans of connecting bath waste to soil pipe, with requ.st that you decide which you conthe best or least objectionable.
Plan No. 1 is the usual way of connecting the bath waste to the trap, but the owner objects, saying it is wrong in principle, atevery time the w. c. is used the filth will be driven up the Wate pipe of the bath and cause a smell in the tub. We contend 14 it will not act so because one pipe is 4 inches and the other Finches, and there can be but little pressure if any. We also aing that there will be no smell if fresh water is run after the the w. c. We also contend that the waste of bath flushes less.c. trap and keeps it clean. We also contend that there happed liability of the hath to choke and yet it is as effectively tapped as if it had a separate trap.

Pig. No. 2 is the owner's plan, and wo object to it hocauseontly, the trap is small and liable to be syphoned by the w. c. ; hable, he cannot flush his w. c.; third, sewer gas will be more Hahle to force a small trap than a large one; fourth, the trap is Boping become choked aud very dificult of access to clean out. plag you will favor us with an early reply, we remain,
"We those questions the Sanitary Engineer replied as follows: We consider Plan 2 the least objectinnable, though drawing "We ghow the best practice. Plan No 3 is the better way. 4. the gave our views of Plan 1 in our criticism of the article Hply Montreal Winness, on Page 294, August 15 th , and in
ith letter of C. E. Inlsley, on page 230 , issue of September

Our objection are mainly based on a supposed defective conof the surrounding work. With drains properiy arranged, reps would not be subjected to sewer gas pressure. Pro. rentilate the trap under the bath aud you will avoid onage. If this is not practicable, then, as the next bes ${ }_{t}$ g. ase some of the numerous forms of traps and a deep seal. t,

[^0]
THE LAY OF THE DEMON PLUMBER.

(From the Sanitary Engineer.)

That much-abused yet indispensable mechanic, the plumber, is frequently held up to ridicule as well as to severe censure by writers for the press. Indeed, quite a literature has been formed having this genernl character. According to it, the plumber is a cold-hearted, mercenary wretch, who practices bad workmanship that he may have bills of repairs, who is elated at a severe frost which bursts pipes, because it brings his services into demand, and whose geaeral prosperity is at other people's expense. We have much sympathy for the plumber, and frequently have roason to look i pon him as a much-abused and misrepresented man. The following lay, clipped from a London paper, we, of course, believe does him great injustice. No one for a moment supposes that our plumbers entertain any such sentiments as are here set forth. If such ideas were entertained by them, the approach of cold weather would be a source of delightful anticipation, and we should even now see mumbers of the trade hugging themselves and rejoicing at everg indication of approaching cold as it is published in the daily bulletins of the Signal Service. Cold weather we shall undoubtedly have soon enough, and many pipes there are which will then require repairing, and many a plumber there is who will then reap the customary harvest ; but hardly any of them, we are sure, will sing out loud the "Ho! and oho !" of the following lines :

It's ho! and oho! for the jolly Jack Froast,
And the pranks he plays up, to my eastomers' coat
Tis a precious ill wind ar blowis noborly cood,
And a nipping north easter is most to my mood:
When it freezen the cisterns, and plags up the pipes,
Oh, I laughs till the tears from my hop'ios I wipes;
For it's folluwed in course by the lovliest thaw,
And then there's such gammonkn an dever you saw ;
For the men and the servint maids comes all a-blow,
From a'most every house in a'most every row.
Crying, "Come, Mr. Plumber-immejit-you must !
For the ostern is lesking, the pipas is all bust !
The water's all spouting. and rinning to warte
We are reg'lar sivomped out-ito, for gracious, make hente! "
They all sing the aame song, but I dordlea alows:
To expent me to 'urry is coming it strong I
And when I arrives, oh $!$ the bloken and their wives,
And the slavers nifh worritted nut of their livee!
Such larks! There's the water all equashin' and squirtis'
And tricklia', and atreamin', and spontio' and spirtin'
And everythink dancin', ani drenohin', and dirtin',
8pilin' ceilinger and walix, and the gur'mor's front-shirtin',
As he tries to stop wents, bis white Insokles much 'artin',
Which makes him use languidge -0 b, Rin't it diwertio':
Then the menn 'uns, as, bent upon saving a mag.
ries botchin' the 'oles up with putty and rat
Don't I drenoh them to righta ! Don't I tip it om atiel ?
An't it scrumptious to watch 'ow ther boggie and sniff !
Oh, I do hate a stingy and medilin' old messer !
Then I outs with my tools, with my shaveback and dreaser My turnpin and ega iron, soliter and soll.
My ialler. and rusin, and white leed, and oil :
(Arf on em's no ose, but they maka a good show,
And with gruen 'uns that's jest 'arf the fight, don't yor keuw ${ }^{\text {P }}$
Then I tarna up the carpats and fle-eloths all round:
Tramps up and downatairs with a thanderin' sound;
Aod I arsks for a fire, and I 'ints for some beer,
And I kinks up a stink as makes Miseis turn queet
If they "part." wy I eock my boye knowing and obat:
If they don't, I turn sulky and swear at the cat-
Whloh she alwayn comes suiffing and toes on the mare-
If they 'niries, I tella 'em to keep on their 'air ;
For a job cuob as this is a thing as taker time.
Wy not i Easy does it, and fuigin's no orime.
Then, when they're well soaked, worried out of their wits,
And the fire nigh poked out with my irone and bits,
When the fumes of my solder has cokin their ayes,
When I've ap'iled a few gimoracks with lamphlack apd sies. Oropmed taller in lumps on the tions here and there
And broken the bsck or seat of a ohair,
Broke three or four bella, or may be 'arf is dozen.
When everyone's grabby and criss and 'art frozen.
Wy I manares somehow to take up a jint-
If they think it's a laster, it may disappint,
Cos we've got to make hav while the snn shines, yer koow
Leastways. plle the dibs while there's frost, ice and snow.
Thare is lote more a waiting, I sarves them the same,
And so. smart and lively, Iterps up the frme.
Other trades may spnut atrong 'bout the beautieq o' sammer,
Bat a jolly 'ard winter's the time for the Plamber!

A Substifutr for Terra-Cotta.- The weight and brittleness of terra-cotta are considered objections to its use in interior decoration and for household utensils and ornaments. To avoid these drawhacks a Spanish South American firm employs cotton pulp covered with a special composition, which contains a soluble varnish. Articles wi;ch are made with this material are said to be very light and stiong. - Pntery und class 'Tradee' journol.

NOVEL STYLE OF TURBINE, WI'CH HORIZONTAL AXIS.

A FOVEL TURBINE ABRANGEMESTT.

Turbine wheels as thus far employed, have most always been placed in a horizontal position, while in consequence the shaft Was placed vertically. This may be advantageous under most of thastances, but it is often necessary to change the direction of the vertical rotating shaft into a horizontal one, and in this this. some special arrangement of gearing or belts is used to effect

The firm of James Leffel \& Co., of Springfield, Ohio, have recently con.mencrd the manufacture of a turbine intended to the pla ed with its axis in a horizoutal position, so as to make the special arrangement for changing the direction of the motion its necessary. It is represented in the adjoined engraving, with it connections to the marhinury to be operated. The water has acrese to one side of the wheel case, and its exit at the other, the raft passing through proper packing boxes, while a workman is Thisesented in the act $n f$ lubricating the anti-friction bearings. This shaft carries one or more driving pulleys, one of which is ety in our engraving. Its belt carries this puwer to the counterIt ist above, and from this to any other machine to be operated. It is evident that a first advantage of this arrangement is that it or penses with the resistance unavoiduly connected with gearing, or any other device intended to change the direction of rotation. Another important advantage of this new arrangement is that of exy part is accessible for lubrication as well as for the purpose of examination at any time; while where gearing is used this is difficult, especially for small wheels under high heads.

THE CASTITG OF SMATL STEAT CYLINDERS.*

It is a difficult matter to cast perfectly a small cast-iron Colinder. The difficulty always lies in the moving of the port cores, due to the buoyant effect and force of the metal entering the mould. The writer has put up a $2 \frac{1}{2}$ by 5 in . cylinder seven Thes, and then only in part succeeded in getting a good one. The entire difficulty resulting from attempting to keep the port Cores in place in shallow print on the valve seat, there being an Will nidual print for each core. A great many foundry foremen will not touch a small cylinder with separute steam-port core prints, as they have time and time again experienced the difinculty I speak of, and only succeeded in keeping the port cores in place by anchoring them with half a pound of nails, and last, but not least, to have the machinist tell them the casting is $t \sim 0$ hard in spots ; due, of course, to the chilling around the nails. small cylinders are also very apt to be "dirty."

The writer, in his life, has had a great many small cylinders to plen and experiencing the troubles mentioned, studied up the Ig here presented, and has never had any trouble since adopt. this it. In fact the moul ling and casting of a small cylinder by Pappen is a pleasure. The plan consists in forming on the Onee. Teat of the pattern one large print instead of three separate be nearly print is somewhat larger than the seat, and ought to panted in as deep. The port cores are made as usual in a box and Thised into the recesses of another which fits the valve seat print. than core is shown in section at a, Fig. 3, and should be deeper of this shown to give it solidity in the print. Fig. 4 is a face view tion, core. Fig. 1 is a side view of the steam port core in section, $a, a, a, a, \& c$., are the ends of short wires (shown in eleva. throng a, a, Fig. 2) to prevent the vent strings A B from cutting tringh the corners when withdrawn. C C in Fig. 2 shows their and b, b, b, the stiffening wires. The extent of the
wiring and venting of conrse depend on the size of the core. The writer has tried the plan of forming the three port cores, and the one into which they are pasted in one; but prefers making them in separate boxes, and pasting them in-less trouble arising. When they are pasted in they should be well "blacked." Blacklead, charcoal, and glue, or finely-powdered coke dust and charcoal and glue forming a good blacking which will leave smooth holes. The cylinder is moulded and cast, valve seat down, the vent from the port ccres being taken off at a, a, a, Fig. 3, down through the drag and out at the bottom board. The vent holes left at the upper ends D, D, of the pore cores, by the ventstrings, should be stopped off to prevent the metal entering the vents, The surface at I. I, of the port cores is joined by the box to fit either up against or into recesses in the central core, which in either case should just touch them, unless the plan of pasting the port cores also into the large central core is adjusted. Cylinders, up to 10 in . bore, may be successtully cast in green sand, clean and solid. The mould should not be blacked or slicked. Shrink heads should be placed on each flange.

A, Fig. 5, represents the flange of a cylinder, and cthe gato. To keep the casting clean, cleaner gates should be used, as shown, a being the pouring gate, which should be smaller than the cleaners b^{1}, b^{2}, b_{3}. Tbe object of these gates is this ; the gates a being kept full ip pouring, the metal runs throngh the cut gate to b_{1}, where it is somewhat arrested by the change of direction. This gives time for any dirt in the iron to rise in the cleaner gate b^{\prime}, and this dirt is kept at the top of gate b^{x} by the height of the iron in the pouring gate a.
The cleaners b^{2} and b^{3} act the same $28 b^{r}$, the metal finally entering the mould through the cutgate 0 . The heat of the iron depends of course on the iron itself, some iron running up sharp at a less heat than others. By exercising care, first-class cylindera can be cast equal in all respects to dry sand castings. No bother with the port cores will be experienced, the openings being square and perfect. Several shops, building small engines, have adopted this plan of casting their cylinders with success. The vexation and trouble so often caused by attempting to set small, frail port cores on the same plan as larger ones, will be done away with by this plan, and I give it to your readers trusting it may be of service to a few, at least.

Boors of Olden Time.- From the opening of the ninth century, parchment took the place of papyrus. Ancient booke were rolled instead of being in square form, as we have them. About this time paper made fiom cotton and linen raga began to be made, but its manufacture was so limited that the facility for copying was not much increased. Ali writing material was exceedingly scarce in that age, and had the invention of printing dated earlier, it could not have made any substantial progress on this account. In many instances the only way to issue a new work was to erase the original writing from a manuscript, and then to trace another book upon the same parchment. Thus the writings on many valuable manuscripts were destroyed, and some even more valuable than those which took their place. Written language had almost perished for the want of material upon which to record the burning thoughts which were struggling for expression. The books of those days were written out by hand, and the work of the copyists was both honorable and lucrative. They were generally employed by booksellers on a salary. The rich employed favorite slaves to copy works of antiquity and of their own times, for their own libraries. Orators secured the copying of their own diecussions; and the government, of its edicts.

AN EXTRAORDINARY WAR SHIP.

The torpedo ram Polyphemus now being constructed by the British Government, will be, when tinished, entirely different both in form and st:ucture fro.n any other vessel heretofore built, and her weapons of attack are such that, whenever brought into action, she must be fought differently from any other war vessel. The Polyphemus is to have a powerful ram bow, an efficient torpedo buttery, high rate of speed, handiness, moderate size, and but small extent of surface above the water exposed to the enemy's fire, such portion of the vessel as is above the water-line being convex in form, so as to deflect any projecticle that may strike it. The appearance of the vessel at sea will be that of a cylinder floating on its side and deeply im. mersed. tapered at the ends to form a bow and stern. The top of the cylinder will be 4 ft .6 in . above the water-line, and will be flattened over a large portion of its area to form a deck, which deck will be plated over with steel-armor, thus covering in an! protecting the ship and all her machinery and fighting appliances. The ship proper as she will thus appear will be surmounted by a light structure carrying a hurricane deck about two-thirds her length, and upon this deck will be seen a signal mast, pilot tower, boats, etc. The form under water of the Polyphemus is as strange as the portion above. The sides are curred cylindrically for several feet below the water line and are armor-plated to that depth. Below this point the section assumes a ∇ form and ends in a sharp angle at the keel. Conseyurntly a cross-section of the vessel is similar in form to a peg-top. The flattened convex curvature of the upper part of the peg-top would represent the part of the vessel above water, and the lower portion, which ends in a point, would represent the part of the ship that is below water. The Polyhemues is 240 feet long, brtween perpendiculars 40 feet in breadth: load draught 20 feet. She will carry no masts or sails, but simply a pole for signalling purposes or for making observations from. She will have two pair of high-pressure compound horizontal engines with twin wrew propellers. Each high-pressure cylınder will be 35 inches in diameter, and the low-pressure 64 inches. The stroke will be 45 inches. The boilers, 12 in number, will be of locomotive type, and made of steel. The engines are 5,560 horse-power, aud the speed is expected to be 17 knots. The Polyhemus will car's no guns, except a few light shell guns and Gatiings on the hurricane deck for repeling boat or torpedo attack. Her only weapon will be her ram-bow and Whiteheal torpedoes. The ram will project 12 leet in advance of the stern of the ship, and is so placed as to strike sereval feet below an enemy's armor. The spur is being fitted so that it may be unstripped from the stern when not required for active use. Under the ratm is a torpedo port, which will enathe. Whiteheat torpedoes to be rjected right ahead of the ship. There are also two torpedo ports on each side amidships, for ejecting torpedoes on the broadsides. All the torpedo ports are below the water. The under-water attack will be supplemented hy torpedo tiring from the armored deck above water, the same as in ordinary tor-pedo-launches. Commanibation is mate between the hurricane deck and the interior of the ship by openings cut through the armored deck, which openings are protected hy glacis plates amd armor, and hy casings which are curied up to the hurricane deck. On this deck the boats are carried, and the ship is steered and worked from it. Au armored pilet tower, with pro. tected medis of access to the lower purt of the ship, is placed at the fore end of hurricane deck and titted with steering wherl, telegraphs, upparatus for firing off the torpedoes, and all other anpliances for coursing and working the ship: The Folyphemus is built throughout of steel; the frames of B issemer, and the bottom plating of Landure.Siemmustiel. The lower part of the ship has been subdivided into as many watertight compartments as possiltle. The cabins and accommodation for the erew will be all below the armored deck, and will be ventilated artificially, as in the irou-clad monitors. They will me lighted throag ont by the electris: light. An electric hight wall also be placed in the look-out on the polemast for reconnoitring athl signalling purpoies. The most novel fature in the ship is the arrangement of the krell. The bottom plating on each side, instead of ending in a keel or that keel-plate at the midde line, is formed into a recess, or that in phace of the usual keel there is a rectangular groove, 1 foot S huches wide and 3 feec beep, taken out of the bottom of the ship. This groove is intended to be filled with cast iron ballast up to a weight of 300 tons. The ballase will be so attached to the ship that in the event of a compartment becoming bilged, and it being necessary to lighten the ship, the ballast can be let go and dropped from any part is may be required. The draught and trim may thus be regulated to a
certain extent, should the vessel be damaged in action. The ballast will be carried to keep the ship down in the water so as to prevent the deck becoming too much exposed, when in action, to the fire of an enemy, but should she become further emersond from any cause, the dropping of the ballast will relieve su-
lighten her. Tie Polyphemus is expected to be ready for launchlighten her. Tine Pol
ing in a few months.

A NEW PORTABLE STEAM TRANWAY.
The first of a series of experiments with a new portable stesm tramway, invented by M. Dccanville, and further developed by Messrs. J. Fuwler and Co., took place recently in the garden od. Stafford House, by the permission of the Duke of Sutherlanu. Among those present, all of whom appeared to take great interest in the proceedings, were the Turkish Ambassarlor, the Chinese Minister, the Secretary to the Japanese Legation, General Lysons, Sir J. M'Garel Hogg, Sir Charles Reed, and Earl Gras ville. The main items on which the success of portable railwaing seem to depend are that the weight of all the pieces, including wagons, shall be kept within such a limit that each piece can be removed by men without the aid of mechanical appliance, silts that each piece shall be complete in itself without any loose bod in or spikes, or fish plates. These conditions are fully observed aw the new invention. The most important advantage of this new railway is that the rails are rigidly fastened to the sleepers and joint plates; thus the line can be laid down anywhere, tak ${ }^{\circ}$ away, and relaid with great expedition and without the employ ment of skilled labour. I ron rails have been found not to answer, from their bending under the action of a load when laid on even ground, and steel has therefore heen employed. The raiway is perfectly portable, since it can be laiddown and taken ap without the help of any tool whatever. To give an idea of the tacility of these operations where frequent removals are necessary -that is to say, in clearing lam of beetroot or sugar cane, \&c. it is stated that four men can take up 400 yards of railway and relay them 30 yards further on in less than an hour. It is aldat urged as an alditional recommendation to the new railway, that it is not merely snitable for being worked by steam power on at level, but that on steep inclines, or when steam power is not readily sttainable, horses an l canels can easily supply the pe cessary motive power. It is asserted that on such a line a csmel could haul a load of about five tons, whereas it can only carry about $350 \mathrm{ll}_{\mathrm{s}}$. The railway is meant for not only arriectilurap
but also for military purposas, and in India especilly it is sup fosed it will be particiarly useful.

HOW THE ANCIENTS ENGRAVED GEMS.

A writer in Herper's Mugrine lor September says:-We must remain as yrt some little in doubt as to the methods omployed by the old arti-ts to perfect these mirales of taste. We have, however, the absolute certainty that these an-ient masters wo by familiar with the diamond, and that their hest work was made by using this, the hardest of all substances, as a tool. I splanterero frayment of the diamond served as a scraping tool, and they wert well acquainted with the irill. Prehistoric man worked a drem at the very commencement of his existence. A Plonenician gem. a lion attacking a bull-shows how the drill was used. A nu the ber of circular lepressions are found in the gem which mark the extremitiey of the tigures. This was done not for the sake th. effect, but to show the artist the limit of his work as to deptin After the holes were sink, the at tist untied the various portions of his work hy scratching. Now the use of the diamond point splinter, fixed in a style of iron socket, aliowed a certain flexib do ity of handling which our modern processes of gemengraving do not permit. To-day the work is done by means of a minnad rotating disc of copper, which is whettel with oil and diano the dust. On the least application of the substances to be cut to the dise, it is the dise which hites into the stono. The difference to manipulation is, then, that to-day it is the stone which goes it is the tonl, and not, as in olden times, the tool to the stone. horse. more convenient, then, in 1879, to bring the cart to the horme It cau now be reatily understood why, in modern work, the and labour being spared (the art-conception not entering for to present into the subject), why this work of to-day is interior for the art which is pist. It is purely a mechanical process now, for a retating disc wall no more drav lines which have feeling thand will photographing processes paint pictures. It has been stated that we are not entirely acquainted with the methods employ this by the old glyptic artists. This becomes ifuite evident from
fact, that their best work seems to have been both cut and polished
at one and the same time. Today we have no tool, no substance Which will accomplish this double feat. Mr. King, dwelling on the diamond point, says, "its extensive use is the great distinction between the anticue and modern work."

SOME EXPERIMENTS IN BURNING SLUDGE INTO CEMENT.

Portland cement is manufactured from chalk or limestone and clay. The component parts of these materials vary very slightly, and therfore the manufacture is nearly constant. The average analysis of five large manufactories gives the following results, namely, lime, 56.21 per cent ; silica 24.44 per cent; iron, alumina, 121 per cent.
The manufacture of Portland cement from sewage is much more precarious. Sewage, according to my experience, varies in every place and during every hour, and consequently has to be carefully watched in order that the requisite quantity of milk of lime may be added. At Burnley, on certain days, large quantities of dye water come down, on other days butchers' refuse, and once or twice we have observed the sewers full of coal tar and oily refuse. Ail these facts have to be carefully observed, and only after careful experiments can the quantity of lime necessary to precipitate the seware be deternined. The resultant sludge at Burnley on an average only contains 46 to 50 per cent of lime, and therefore before it is fit to be burnt into Portland cement clinker, more lime has to be added. This is done after the supernutant water has been run off the sludge deposited in the tanks. The sludge has afterwards to be passed through ${ }^{\text {a }}$ pug.mill in order that a uniform compound may be obtained.
At Birmingham, where Portland cement was also made, the sewage is so capricious that a uniform mannfacture could not be guaranteed. This i; accounted for by the fact that at certain times very large quantities of acid from the hartware manufactories of the town are poured into the sewers.
At Portstnouth, where I have studied the sewagre, which has Wholly water closet and house drainage, there is little or nothing to interfere with the mannfacture of a high class Portland cement. I believe the same remark would apply to the lower Thames val. loy sewage. The sewage requires only a small quantity of lime to defreate it : 16 grains of quicklime per gallon is ample. The 8ludgr 1 have fonnd generally contains from 58 to 60 prr cent of lime, and therefure no fresh lime would have to be maded. The: fact that at l'ortsmouth the storm-water is partially kept out of the sewers is also greatly in favor of the manufacture if gool centeut. And in places where the separate system is in force,
and and where the proportion of water-closets is large, it would be, Perhaps, worth while to allow the finely surpended organir mat-
ter ter to subside before lining, and to treat the organic matter described in General Scott's patent.
The sludge resulting from limed sewage, may also be burnt at a Clink temperature than that necessary to produce Portland clinker, and be re-used to precipitate the sewaye. After this has been done several times the lime becomes rich in phopphates, and may be profitably sold as a first-class agricultural lime.
conclu result of my experifnce I have arrived at the following conclusions:-
experime sewage of every town should be carefully watched and experimented on before any plans or estimates are made.
bewers The storm-water should, if possible, be kept out of the sewers.
than A paved tuwn is more favorable to cement manufacture than un unpared one.
interfere manufacturing refuse, except acids, does not materially interfere with cement manufacture.
Bur conclusion, I may state that the cement now being made at Burnley is much improved in quality since the manufacture began, and much has been sold. The latest tests give excellent results, Mr. Deacon, borough engineer of Liverpool, reports the
tensite tensile strain, of 695 pounds on the $1 \frac{1}{2}$ inch square, and that the
cement Cement passed through a sieve of 50 meshes to the inch, leaving pound y per cent of residue. The latest test at Burnley gives 398 $\mathrm{Poun}_{\mathrm{A}} \mathrm{s}_{8}$.
and it hartion of a spa-wall at Portsmouth has been built with it, Mud it has stood this test remarkably well.
Much has heen learnt since the process was first started
at ${ }^{\text {Burnley }}$, purificaley, mad it may be fairly expected that towns will obtain purification, and at the same time will recover the greater part of cost of so doing, by alopting this process.

[^1]
THE FLEXIBLE 8HAFT.

Although great strides have been made during the past 10 years in all kiuds of machiuery, the expert recognizes most of them as extensions and developments of known ideas and methods. The principles involved in the flexible shaft are, however, radically different from the principles involved in other machinery. The different stages of its growth towards perfection were so unobserved by the world at large, that when exhibited at the Centennial exhibition, it excited the greatest astonishment of every beholder. Almost all machinery is characterized by fixity in certain places of motion. The whole value of a turning lathe consists in the maintenance of its centres in a true line, and in all reciprocating machine tools, the moving portions of the mechanism are confined to fixed lines and planes. But here is a device which sets at naught the transmission of rotary motion through straight lines, and conveys it through through curves varied at the will of the operator., It upsets all our ideas of rigidity. The first "flxexible shaft" was a simple coil of wire, used as a universal joint in sheep-shearing machines, dental and a limited number of light power machines. Flexihility was obtained at a great sacrifice of streugth, and the coil therefore made inconveniently large.

Where primitive motion was desirable the angle of torsion was too great, to correct which defect i coil of wire was wound on a center or flaxible material. This was an improvement, but only to the extent of the resistance to compression offered by the filling material. The next step was an important one and consisted in two concentric coils, wound in opposite directions, instead of a single coil. By this arrangement the teudency of the onter coil to contract is met by an equal effort of the inner coil to expand. Flexibility was lost, however, since it required more effirt to bend two coils than our. It could not be used on any but light power machines on account of its liability to kink or twist out of line, and double up into twisted loops. The shaft, too, when running at a high rate of spead, vibrated in a very curious manner, dividing into equi-distant nodes lik. the string of a musial instrument, and thas interfering with the proper functions of the working tool, gnang it a tremulous metion im possible to control. The defects were finally overcome by en. closing the revolving shaft in a thexilile stutioncty sherath or ${ }_{f}$ Ease, and at the same time the carring power of the shaft itsel was increased by making it solil all the way through, in the sense that wire rop. is solid, the sleath enabling an indefinitn number of bearings to be given the revolving core, preverting all tenden. y to kink or vibrate. As now constructed the flexible shaft is mate up of a coos, a case ant appropriate fittings by which the two are joined, rotary motion commanicated at one end of the shatt and delivered at the other.
The core is composid of a series of coneentric steel wire coils wound hard on cach other, the direction of the pitth changing with each layer. The pitch diruction of the oursib, layer is
always such that the latter will tend to contract uud strain, the shaft always runni:g one way. The care is made of a hinllow coil of square wire, with a slight groove on the outer side. This coil is covred! with leather, which is prewented from wliping by the proove in the wirr. The inside diameter of the casse is slightly larger than that of the corr, and the ends are furnished with iron ferruies, to receive the driving pulley and the hamd-pirce carrying the working tool.
The flexible shaft is not a special tool for a particula purpose, but a connecting link between a given power source and a multitude of tools, and its uses are very varied. It is used in light operations as well as heavier ones, particularly metal drilling. By means of a pair of idler pulleys, mounted one over the other in a wrighted frame, and secondly of a pair of pulleys in a swivel frame attached to a hanger aljoining the counter-shaft, the shaft and its drill may be carried at will to any part of the shop.
It reaches into remote corners, and is applied to manifold applications, from drilling, polishing, horst and cattle brushing, morocco finishing, even to boot blacking. A correspondent of the London Times, speaking of this shaft, says: "Pharaoh himself could not have been inore surprised at see Moses' rol turn to a serpent than we were to see this rope-like afthir eating into the planks set on all sides for it to work upon."

Surgery can justly boast of a new conquest; when an eye is severely wounded, the healthy one is in danger of being impaired by "sympathy"; to preserve the good "ye, it was hitherto the practice to remove the injured one. Dr. B ucheron has discoverel, that by cutting the ciliary nerves, the "sympathy" is stopped, and thus dispenses with the necessity of removing the injured organ. Forty surgrons have thus operated successfully.

PIRET-FLOOR PJAN:

ELCOND-FLOUR PLAN.
a SUBURBAN VILLa.-From the "Manufagturer and Builder."

A COUNTRY CHURCH.-From the "American Bullder."

Sctentific.

BORAX FOR BALTITG BUTTER.

The Italian Minister of Agriculture has addressed a communication to the Chamber of Commerce of Milan relative to experiments in salting butter with borax which have been carried out at the agricultural station a^{2}. Florence. From the account which appears in the Giornale di Agricoltura, borax would appear to have a most marvelous effect in insuring its absolute preservation. Samples of fresh butter made at the Florence station, and purprosely not carefully freed of their buttermilk, were found, on the addition of about 8% of botax, to maintain their natural fine flavor, without the least change whatever, for upwards of three months. To attain this satisfactory result it is necessary that the borax should be perfectly dry and in very fine powder, and care must be taken to insure its thorough mixture with the whole mass of the butter operated on. Among the further advantages of this plan, it is noted that borax imparts no flavor of any kind to the butter, while it is entirely harmless in its nature, and also reasonably cheap. Still later experiments have shown that a very much smaller proportion of borax suffices to produce the desired effect, and also that simple solutions of the salt act quite as well as the dried powder.

It has been alleged that too much borax imparts a bitter flavor. This might be lessened by washing in water. The main point is that if borax should prove a useful preservative element for butter, meats, \&c., the borar industries of Nevada might be very properly advanced.

The National Board of Health, in its circular on "Desinfectants and Huw to Use Them," makes a clear distinction be. tween disinfectants and deodorizers, and diseeminates the wholesome truth that "disinfection can not compensate for want of cleanliness or of ventilation." The recommendations of the hoard as to the disinfectants to be employed are as follows: For fumigation (that is, the purification of an infected atmosphere), roll-sulphur; for sewers, cess-pools, and the like, sulphate of iron (copperas), dissolved in water in the proportion of $1 \frac{1}{2} p$ unds to the gallon ; for clothing, bed-linen, etc., sulphate of zinc and common salt in the proportions of 4 ounces sulphate and 2 ounces salt to the gallon. The interaction of these two compounds doubtless results more or less promptly in the formation of sulphate of sodium and chloride of zinc, which last is recognized as being the most energetic of the mineral disinfectants. The re. cominendation of the board to employ the zinc compound in the form of sulphate (with salt), instead of applying the chloride of zinc directly, may perhaps be explained on the ground that the sulphate of zinc is a stable salt that remains in solid form, and nay bo exposed to the atmosphere without change; whereas the chloride of zinc can not be preserved in solid form asve in hermetically-sealed vessels, having such a powerful avidity for moisture that it rapidly liquefies by abstraction of moisture from the air. This property renders zinc chloride inconvenient to handle. By its indirect production after the racipe of the board, this objection is overcome. The board dnes not recommend the use of carbolic acid for general uses, for the reasons that the quality of the commercial article varies greatly, that it is difficult to determine its quality, that it must be used in comparatively large quantity to be serviceable, and that it is liable, by its strong odor, to give a false sense of security.

The Magnitude of the Beet-Sugar industry in Europe may be gleaned trom the following facts relating to the citse in Fravice:

There were in that country in 1876,530 beet-sugar factories, which produced 400 million kilograms (880 million pounds), and representing the following values

	Franos.
Sugar, 400 million kilos.	$\therefore 64,000,000$
Molassen 235 million kilos.	*6.000, \%00
Puhp, 1, $2(0), 000$ turs.	20,000,000
Mathure, 900.100 cubio meters	2,700,000
Total	319,700,000

or athout $62 \frac{1}{2}$ million dollars.
The industry in France consumes eight million tons of heetroot:, bought of cultivators in a half-dozen departments, at an anmual cost of 160 million francs. It employs, in labor and in tattening, thousands of cattle, and consumps nearly $1 \frac{1}{2}$ million tons of coal, to say n_{1} thing of the host of collateral industries
to the cultivators of about 200,000 hectares of land; gives back to the agriculturist a value of 20 millions in the form of cattle food, on which 200,000 head of cattle are fed during the year.

New Theory of Terrestrial Magnetism.-The theory lately advanced by Professors Perry and Ayrton, of Japan, to account for the magnetism of the earth, and which has provoked much discussion, is thus briefly summarized in the Phylosophical Magazine. They find this cause in the revolution of the earth beneath the electrical charge originally and at all times present in the atmosphere. By calculation, they find that the difference of potentials between the earth and space nesessary to produce a distribution sufficient to bring about all the observed magnetic effects would be represented by $54,000,000$ Daniell cells. And, adds our authority, they prove that "if the earth be electrified, it must, from its very rotation, quite independently of all other hodies in the universe, be magnetic ; and if it consists of a shell of iron, thick or thin, then that the law of distribution of nagg netism produced by this electrical charge in mechanical rotation will be identically that given by Bist; and lastly, if the earth were wholly of iron, a difference of potentials of about $54,000,000$ volts between it and space would be sufficient to produce the ${ }^{0}$ cessary amount of charge."

Travelling Stones.-Many of our readers have doubtlees heard of the famous travelling stones of Australia. Similas curiosities have recently been found in Nevada, which are de scribed as almost perfectly round, the majority of them as large as a walnut, and of an irony nature. When distributed about upon the floor, table, or other level surface, within two or three feet of each other, they immediately begin travelling toward a common centre, and there lie huddled up in a bunch like a lot of eggs in a nest. A single stone, removen to a distance of three and a half fert, upon being released, at once started off, with wonderful and somewhat comical celerity, to join its fellows taken away four or five feet, it remained motionless. They ar found in a region that is comparatively level, and is nothing but bare rock. Scattered over this barren region are little basins, from a few feet to a rod or two in diameter, and it is in the bot tom of those that the rolling stones are found. They are from the size of a pra to five or six inches in diameter. The cause on these utones rolling together is doubtless to be found in the material of which they are composed, which appears to be losdstone or magnetic iron ore. -Virginia City Enterprise.

Detection of Fictitious Butter.-Herr Fisher asserts that the examination of butter by polarized light with a magnifying power of about 200 to 300 diameters, affords a much nore certain criterion of its purity than a specific gravity test. ES amined in this way, fictitious butter shows not only the globular drops and salt crystals characteristic of genuine butter, but like wise other more or less perfectly developed crystals. The author also finds this method may be applied to the determination of different kinds of fats, inasmuch as each of these shows chai acteristic colors in polarized light. Mutton-talow, for instance, always gives a blue tone; cocod butter gives colors passing from the brightest green to the deepest red; the fat of oxen gives green and white luminous effects; while small bight greent. semi-lunar and vermiculur bodies appear in common light Hog's lard shows many colors, especially red and blue-yellows which is charateristic of cocoa-butter, being absent. For the accuracy of this abstract, we refer to the Journal of the A^{m} Society.

Carbon in Comets.-It is generally believed that some como pound of carbon exists in comets, aud it has been assumed that the bright lines in the spectra of these bodies were due to thatcompound being in an incandescent state. G. J. Stoney has advanced another hypothesis. He suggests that the bright lines are caused by the light of the sun falling on the compound of carbow and rendering it. isible in the sume way that light renders the moon, the planots, and other opaque ohjects visible, the vapor carbon being opaque to the particular ray's which appear as bright lines in its spectrim.

Jaldsese (ement. - Mix the best powdered rice with a little culd water, then gradually add boiling water until a proper consistence is nequired, being careful to keep it well stirred all the time ; lastly it must be boiled for one minute in a clean sathe- for pan. This glue is beautifully white and almost transpareut, forb which reatson it is well adapted for fancy paper work, which requires a strong ant rolorlas mament.

A NEW OZONE GENERATOR.

At a meeting of the New York Academy of Sciences, held a few weeks, Professor Albert R. Leeds exhibited his new form of ozone get:erator, by the aid of which he has been enabled to overcome the difficulty hitherto experienced by investigators of preparing ozone in sufficiently large quantities for experimental parposes. Formerly sticks of phosphorus were placed in contact With moist air in large glass carbors ; and so great was the uncertainty of the process that sometimes after the lapse of several hours the operator had scarcely enough ozone to show its properties. In the new ozonator the phosphorus used is first melted under water in a watch glass, and when cool it is placed with its convex surface upward on a perforated lead tray, provided with 8lots, so that it may be easily introduced into a bell jar and brought to rest upon short glass rods attached to the jar a little above the rim. A bell glass thus furnished with five or six phosphorus cakes is then plunged into a glass jar containing a solution of 25 grammes bichromate of potash in $1,250 \mathrm{cc}$. water acidulated with 150 cc. sulphuric acid, so that the convex surface of the phosphorus, kept clean by the energetic action of the solution, remains exposed and ozonises the air in the jar. It is advantageous to use the phosphorus in this form, because of the rapid consumption of sticks and the consequent danger of infammation. A series of careful experiments has revealed the fact that the temperature is a potent factor in the generation of oxone. Below $6^{\circ} \mathrm{C}$. no ozone is given off ; as the temperature rises the evolution of gas increases up to 24°, and from that point on it again rapidly diminishes. In consequence of this, Professor Leeds finds it advantageous to place the jar in a copper Water bath, and to provide it with a thermometer, so that the apparatus may he maintained at the maximum temperature. When two jars are used in conjunction, the amount of ozone obtained is 25 per cent. greater than from one alone, but with three the increase is but slight. A great point of diffeulty in the construction of ozone apparatus is in connecting the parts. Where rigid connections are allowable they may be made by the use of paraffine, and all corks through which glass tubes pass must be coated with it. Kubber is almost instantly destroyed. Fortunately Mr. Day, of New York, has succerded in making a species of kerite, suitable for flexible connections. Tubes made of this material have now bern in use for several weeks without show. ing the slightest sigus of deterioration.
M. Gaston Bonnier has written a most interesting essay on the hectaries of plants. His ain is to invalidate the couclusions of the Darw in School; if he has lailed in this, he has not the less produced many remarkable facts. The Darwinists may have erred in being too absolute, but it dops not follow that the laws of the sehool :re false, hecause rxceptions to these laws can be adduced. The general illeas respecting nectaries, and the matters they secrete are, that they have fur end to furnish to inserty a saccharial matter which attrarts them, and thus compel them, latonsciously, to directly fecundate or cross the flowers. The latter would be destined together and protect the nectar, to attract by their colors and their perfume, the insects, and affording them a passage in such a manner, that in penetrating into the corolla, they will deposit on the stigma the pallen with which play are charged. This view has numernus exceptions, as some Plants-the vicia-are visited by insects for their nectar before even being in Hower. A flower deficient in color, can still entice insects by its odor. Nägeli for example attracted bees on artificial cowers coated with odoriferous honey; when the latter had been consumed, the bees disappeared. M. Bonnier took four square pieces of different colored stuffs, covered them with honey, and regead them on the grass; the bees came and sucked all the same, regardless of the colors, and flew away when the honey had been consumed. But insects not the less know such and such a lower has colors indicative of a nectariferous corolla. M. Sachs 8ays: an insect visits always a certain flower in the same manner. Bees, if a flower be closed, will tear or perforate it, in order to the ave-ever in the same direction-at the nectary. Some flowers, the geranium, digitalis, \&c., are visited for their nectar alter the fall of the corolla. Insects too large to penetrate into certain Gowers, perforate them, to reach the nectar; such insects are not agents of fecundati $\cdot \mathrm{n}$, but all insects are not adapted for this latter function to all plants. The secretion of nectar varies with be neather, and following the hours of the day. If the weather at fine, the volume secreted diminishes from the morning, is least at noon, augmenting towards the night. Certain species of plants may have nectar in one country, as in Norwaj, and none in antother, as in France. The humidity of the air and soil, increase
the emission of saccharine juice, and the latter is most productive at the moment of pollenisation, and in proportion as the sugar diminishes the ghacuse augments. The latter ferds the ovary, which changes and swe.ls into fruit. This alteration in the saccharine matters is due to a ferment, which acts in the same manner as the leaven of beer. M. Bonnier agrees with Bravais, that plants can re-absorb their secreted nectar.

Thine Dangerov's Scientists. - The New York Herald in its usual sardonic style, makes the following remarks in regard to the dangers to which scieuce exposes the nodern condition of this world in a religious as well as secular aspeot. We reprint it for the sake of a few well deserved hits. Says the Herald:
"Modern science has its adiantages and its disadvantages. It is all very well to tell the sun he needn't trouble himself to rise any more, because we can light up the world with electricity ; but when it comes to the use of the telephone in such a way that the Christian Ministry is in danger of abolition, the matter becomes sprions. In Lowell the telephone is attached to a certain pulpit and then carried into the honses of the parishioners, who sit in their easy chairs or puff away at the friendly cigar, while the voice of the preacher resounds through the room. If this thing is carried much further Othello's occupation's gone. Dr. Storrs can be hired to preach to the entire continent. Sitting in his study, he can deliver a discourse to a large bundle of wires connecting with every house this side of the Rocky Mountains, and the rest of the ministers will have to engage in somp honest but respectable employment. However, there would be a compensation for even that misfortune, for Dr. Talmage would have no use for the clerical trapeze, and even Dr Fulton would be compelled to be civil. These two advantages would make the world seem brighter, and we are almost inclineld to hupe that Mr. Edison may complete his invention."

Srkaw. Wood.-To make bricks without straw was in times past deemed an equivalent for an impossibility. But to huild a house without wood very nearly approaches to the ancient puzzle. In Iliinois, U.S., some ingenious person has discovered a method by which straw can be used for wood as a building matrial, and the invention has alrealy attracted attention. suveral sheets of the ordinary straw-hoard, as produced in papermills, are passed through a chemical solution which softens the filbre. These sheets are then rolled, dried, and when hardened come out in a block impervious to water, and capable of taking a high polish. It is stated thit when proporly and carefully produced this straw is so like natural wood that it can with diffculty be distingruished from it. The continuous demand for timber in Ameriod will be protably lemsentid should tais ingenions plan become g nerally adoptrd. .--Ctuspl's Mugazine.

A SAl.t Extmactor. - The victnalling departments of the Almiralty have under consideration a now culinary utensil destined to improve the seaman's diet on board ship, and expecially his peasoup. The apparatus is termed a salt extractor, and has been constructed at the suggestion of Mr. Badet Pritchard, F.C.S., of the Royal Arsenal, Woolwich, being in fact the application of a well-known chemical process to cooking purposes. Boilings from salt beef, or salt pork, or soup that is too much salted, as it usually is on board ship, when placed in the salt extractor, and this in its tarn put into coll water, will part with its salt in a few hours, and the soup thus rendered once more palatable. Special attention appears to have been called to the invention by its exhibition at the dairy show.

Coal Oil as a Pain-Killer.-The efficacy of coal oil as a pain-killer is nut generally known, nevertheless it has curative properties to a remarkable degree. This was illustrated by an incident which happened at the Talismine a few days ago. On Sunday afternoon a man named John Jones was sitting in the hoisting works, when a large black spider, of the venomous species, bit him on the side. It caused great pain, and the resources of the workmen were taxed to suggest ineans to relieve the sufferer. At length Mr. Green, the engineer, got some coal oil and applied to the affected part, when the pain ceased almost instantly, and no trouble has since been experienced from the bite.-Amador Ledger.

Professor Saccardo of Parlua, continues his interesting expe ${ }^{2}$ ments of artificially coloring the corolls of flowers. Tbre is nothing new in the plan, but the matters employed aro uriginal. He simply causes the plants to drink certain colo:al solutions-
aniline chiefly, which, penetrating the tissues, modify color--in fact dye the neqyelets and veins of the corolla. Gardeners are aware, that by mixing iron filings with the soil around hortensias the latter receive a blue tint. The roots of pansies and stocks, dipped in a solution of green aniline, become colored in their flowers in fifteen minates. But the plant dies in the conrse of a week. Watering the soil with a colored solution does no goodas the earth absorbs the coloring material.

THE RELIABLE BTEAI PUTP.

It is instructive to note how mechanical appliances on board ship have steadily replaced manual labour in a very large number of instances. The use of steam pumps for general purposes on board ship is now almost universal. They prove very handy for deck washing, as fire engines, and in case of sudden leakage. We might not have heard of so many crews giving out after exhausting labour at the pumps, had the wooden ships of many years back been supplied with steam pumps.

The next step from the old chain pumps were improvementa in hand piston pumps, but now all these are substituted by independent donkey pumps worked by steam.

There are many descriptions of these pumps now in use, but one rule which is kept principally in view for ship pumps of all kinds, is that they must be thoroughly reliable in their action.

Some direct acting steam pumps, without fly-wheel, have been entirely disqualitied for such purposes owing to their liability to hang fire during work or at starting, so that they cannot always be depended upon for prompt service when reyuired.

In some fly-wheels pumps, too, where the piston and pump are direct acting, and the fly-wheel driven by a slot crank of a sideconnecting rod, a stoppage is very likely to occur on the centres when the pump is attempted to be worked at a slow speed.
The pump we illustrate well deserves the the title of "reliable" given to it by its makers and inventors, Joseph Evans \& Rons of Wolverhampton. It will be seen that the steam-cylinder and pump are mounted side by side upon a strong bed-plate, and the apper frame is supported on four wrought-iron distance columns uled to the pump and cylinder. These bars also serve as slidin ${ }^{\circ}$ caides for the pump and cylinder cross-heads. The top frame carripe two bearings, which support the two throw cranks to which the orlinder and pump connecting rods are attached.

This arrangement of crank, with ita two small but hespy fiyo wheels, is most efficacious in ensuring the pump from sticking on the dead ceritres, and we have ourselves personally inspected it only just creeping round, but still maintaining perfect regularity and reliability. This perfect regularity at a slow speed is most valuable for boiler feeding, as it is the most economical method of feeding a boiler to do so with regularity, and only supplying exactly what is required for evaporation.
The chief peculiarities of Messrs. Evans' pump is the water valve arrangement. It is not, as most frequent, a pair of series of flap, mushroom, or other lifting valves, but both the admission and exit of the water into and from the pump is effected blt a slide valve operated by an eccentric from the crank shaft.
This side valve is in the form of a hollow piston sliding in bored seating, from which the passages lead to each end of the pump respectively. The sliding motion of the piston valve causes each end successively to be put into communication, one with the section, and one with the delivery, and then vice versa rendering the action regular and constant.
This species of pump valve gear has several advantages. First, the valve is absolutely certain in its action, as it cannot "haug up" by reason of any obstruction or grit under it. This is often the case with lift valves of any description, and much inconvenience and stoppage are frequently caused by so simple ad thing as a piece of chip getting under one of the lift valves, and thas causing the water to play backwards and forwards through the valve without effective delivery.
In thick or muddy fluids it is almost impossible to use pumpe with ordinary lift valves, as they will not return to their seatings again.
Secondly, another very great advantage of Messrs. Evans' * Sons' slide valve is that the eccentric driving the said valve can be easily reversed, thus reversing the action in the suction and exhaust pipes, making the former suction delivery, and the former delivery saction. This is most important where it bo desired te pump two different liquids, such as alt and fresh water, or to clear an obstruction.

There is a palm tree in South America-papayacarica, which possesses very remarkable properties. Its sap is a very powerful digestive agent. Digestion is a complex act. Meat is digested in the stomach ; feculas, already modified by the saliva, achieve their transformation in the intestines, while fatty matters are only digested in the iutestine. Hence the explanation, why some persons can digest meats and eggs without difficulty, while theis stomachs are rebellious to feculent and fatty substanees. In dividuals on the other hand who cannot eat veal, can partake of fatty preparations and pastry without incon venience. Thus ench organ has its rôle, and on their state of health depends the integrity of digestion. Inhabitants of cities suffer most from dyspepsia, that is, from an alteration of the digestive ferment. It is to this latter class of sufferers, that Messrs. Wurtz and Bouchat have investigated the action of the papaya. The latter gentile man has experimented with the preparation since two years, and with success, in the hospital for Sick Children. The papaya is more generally known in America as the "melon tree"; the fruit is rose colored, sweet, and is eaten like an ordinary melon; the trunk and the veins of the leaves contain a bitter, milky sap or juice, which, after a short exposure to the air, emits an odor resembling rotten cabbage. The sap exudes when an incision is made in the trunk ; it immediately coagulates, and separates into two parts, a more or less saluble puip, and a limpid, colorlose serum. Now if this juice, in its natural state, be placed in con tact with raw meat, fibrine, the white of eggs, or gluten, it will soften these substances in a few minutes, and in some hourt dissolve them at a temperature of 40 degrees centigrade. Mild is rapidly coagulated by the juice, and its caseine precipitated and dissolved. False membranes froun croup, and intestinal parasites, as the tape worm, \&c., are similarly disposed of in a few hours. If a beefsteak be cut up in morsels, and placed in a saucer containing some papaya juice, they will be seen to gradually dis appear, to melt away as if they were lumps of sugar. Clearly the papaya contains a ferment resembling that pecaliar to cas niverous plaits, as the drosera, nepenthes, \&c. Vogetable pepsine is not exactly a novelty, but that in the sap of the papsya is stronger than what is secreted by the stomach, and possesses thia superiority, that it can dissolve nitrogenous matters not only in presence of a small quantity of acid, but even in a nentral medium x_{1} or one slightly alkaline. While weak digestions have reason to rejoice, it is not less important to bear in mind, the efficacy
the preparation in the treatment of croup and of tape worm.

BAPTISIAL FONT.

The marble baptismal font shown in the engraving is from the entablishment of Messrs. Struthers \& Sons, Philadelphia. In simplicity and grace, in purity of sentiment and harmonious blending of ornament, it is comparable with anything we have soen.

MARBLE BAPTISMAL FONT.

From a plain octagonal base rises a slender, round shaft, on Which rests a circular basin, with receding mouldings lessening berard the rim. Around the foot of the shaft are stre'en num. bers of pond lilies, their round, flat leaves disposed on a horizontal plane, while here and there among the group are sprnys of desheate lilies of the valley, the blossoms half hidden in their sheltering sheath-like leaf. Rising above these, almost to the rim of the basin, is a sheaf of beautiful white water lilies, their ${ }^{l} \mathrm{ong}_{\text {g }}$ smooth stems bound to the shaft of the columns by a ribbon bend, their broad leaves and graceful flowers encircling and com. pletely hiding the lower portion of the basin.
play

MEICORY IN DIFFEREST PEOPLE.

M. Delauney has made a communication to the Societe de Bio. logic respecting memory as studied under varions biological con. ditions. The inferior races of mankind, such as Negroes, the Chinese, etc., have more memory than those of a higher type of civilization. Primitive races which are unacquainted with the art of writing have a wonderful memory, and were fordages in the habit of handing down from one generation to another hymns as voluminous as the Bible. Prompters and professors of declamation know that women have more memory than men. French women will learn a foreign language quicker than their husbands. Youths have more memory than adults. It is well developed in children, attains its maximum about the 14th or 15th year, and then decreases. Feeble individuals of a lymphatic temperament have more memory than the strong. Students who obtain the prize for memory and recitation chiefly belong to the former class. farisian students have also less memory than those who come from the provinces. At the Ecole Normale and other schools, the pupils who have the best memory are not the most intelligent. The memory is more developed among the peasantry than among the citizens, and among the clergymen than among the laity. The memory remains intact in diseases of the left side of the brain, and is much affected in those of the right, from which it may be inferred that the right side is more the seat of this faculty than the left. From a physiological point of view, memory is diminished by over-feeding, by physical exercise, and by education, in this sense, that the illiterate have potentially more memory than those who know how to read aud write. We remember, moreover, better in the morning than in the evening, in the summer than in the winter, and better in warm than in cold climates. Memory is, therefore to a certain extent, in inverse proportion to nutrition, and more than that, it is in inverse proportion to evolution, since it is greatest in those individuals who are the least advanced from an evolutionary point of view-inferior races, women, children, the feeble, etc. ln short, according to M. Delanney, there is an ev.olution of the memory, which is first sensorial, linerial and then intelligent ; but memory, properly speaking, diminishes inversely as the evolution.-Medical Press and Circular.

Brain Work and Brain Development.-According to the Gakette des Hospitaux, MM. Lacassagne and Cliquet have examined, by aid of the conformateur, the heads of 190 doctors of medicine, 133 rudimentarily educated, 90 illiterate, and 91 prisoner soldiers,. with the following result :

Soldiern.

Diamoters.	Eduoated.	Uneducated.	Prisoners.
Longitudinal...85.29	81.97	79.13	81.10
Frontal.......48.91	43.65	42.35	41.18
Parietal.......52.58	49.66	50.27	49.90

There is thus a considerable difference in favor of the doctors, and this is especially marked in the frontal measurements. Moreover, the two sides of the head are not symmetrical-in the educated the frontal region is more developed to the left, in the uneducated the occipital region is more developed to the right. The head is larger (more developed) in the case of the educated than in those of inactive intelligence. Among the educated the frontal region is more developed in proportion than the occipital ; and if the difference is greater in the occipital it is very trifling, while among the illiterate it is considerable.
The Evils of Smoking in Early Youth.-It appears that the German goverument has seriously taken this matter in hand, as smoking is practised to a great excess by the youth of that country, so that it has been considered to have damaged their constitution, and incapacitated them for the defence of their country. In certain towns in Germany the police have had orders to forbid all lads under sixteen years of age to smoke in the streets, and to punish the offence by fine and imprisonment. Moreover, a Belgian physician has found, during a journey of observation and inquiry, made at the request of the Belgian government, that the too general and excessive use of tobacco is the main cause of color blindness, an affection which is occasioning increasing anxiety, both in Belgium and Germany, from its influence upon railway and other accidents, and also upon military inefficiency.
A fungus, similar to that which Dr. Salisbury first noticed in the blood of persons suffering from malaria, is now announced as constantly present in the blood of consumptives, and therefore is suspectsd as being the cause of this dreadful malady.

CORROSION OF BOILERS BY FATTY MATTERS.

The Chief of the Experimental Kailway Company of France, M. A. Mercier, gives, in the Annales des Mines, the results of some experiments upon the changes produced by fatty matter in the wrought and cast-iron parts of engines exposed to the action of steam. M. Mercier had occasion to examine in the laboratory some hard balls taken from the cylinders of steam engines, and which were generally attributed to the use of acid lubricating oil. The balls, when crushed and digested in ether, left an insoluble residue of peroxide of iron, while the soluble part was composed of oleic acid, combined with the oxide of iron mixed with a non-decomposed oil.
A series of experiments was made to determine whether the formation of this oleate of iron resulted from the use of oil more or less rancid, having an acid reaction, or whether it was the product of the decomposition of neutral fatty matter in presence of iron and of steam at a high pressure. According to these experiments, the fatty matters have no need of being acid or rancid, nor of being heated above $212^{\circ} \mathrm{F}$., to decompose steam in presence of iron, and thus produce oleate of iren, glycerine and hydrogen. Observations made upon steam engines which showed corrosion in those parts exposed to oil and steam, suggested the following experiment: An iron bucket containing wrought-iron chippings, thoroughly saturated with oil of colza previously neutralized, was left during eight days in a reservoir supplying steam to several steam hamners. At the expiration of this time there were taken from the bucket about $30 \frac{1}{3}$ cubic iaches of very thick oil, which Howed with dificulty and omitted an odor similar to what is produced by the action of an acid on iron; the iron was strongly corroded, and the oilcolored to a dark brown and entirely soluble in ether-contained 7% of the oxide of iron. This oleate of iron oxidized raphdly on contact with air, and, like all the minimum salts of iron, gave up some paroxide of iron; when again placed in contact with iron it attacked the iron and was thus brought back to its irst state of saturation. In this manner can be explained the large proportion of non-combined peroxide of iron contained in the matter found on the valve-face of an engine at Valence, upon which an observation was made.

These facts appear to clearly explain the corrosions of certin boilers receiving fatty matters brought over from the cylinders by the exhaust steam, or used to lubricate the throttle valve of locomotives.

In locomotives the steam is generally taken from the upper part of the boiler by means of an immersed slide throttle valve ; the oil used for lubricating the latter becomes saturated with iron, and being thus made heavier than water sinks to the bottom of the boiler where it attacks the iron plates, forming in them those excavations which are only found when teed-water is used of such purity as not to deposit the lime-scale that in most cases preserves the boilers.

The use of mineral oil, thickonet if necessary with wax or parffine, for the lubrication of moving parts placed in the stea:n, would be without donbt a good means of preventing changes in the materidl of such organs.

BIG ORES.

The roots of trees appear to have power to reduce the peroxide of iron, contained in sands with which they come in contact, to the soluble protoxide. When the water which dissolves this runs into low places, whre branches, twigs and leaves of trees are slowly decaying. the protoxide becomes reoxized and is deposited in the interstices of the vegetable forms left by the decomposition of the woody fiher. Thus, parts of the trees are not petrified, but ferrified; the whole beds of iron ore consist of these roots of dead vegetation. Where the ferruginous waters do not encounter masses of decomposing wood, but merely lie at rest, as in swamps and ponds, the evaporation causes the ore to be deposited in lumps, from the size of a shot to five hundred pounds weight. From the bottom of ponds these lumps can be raised with tongs, like oysters. In either form the large amonnt of vegetable matter which this ore contains makes the melted iron reduced from it exceedingly fluid, so that it runs into every nook and cranny of the casting mold, and reproduces it with sharp and precise outlines. When bog ores can be procured to mix with other iron ores, they produce a highly heneticial effect in the running of the furnace and quality of metal turned out; though, as a rule. they will not yield forty per cent. of metal. The pig metal obtained from them is so brittle that it breaks to pieces on being dropped on hard ground. Its weakness is in part due to its containing phosphorus, arsenic, etc. When taken
from swamps, the workmen often throw into the cavities loose earth, leaves, bushes, etc., which, often within eight years, leave behind them fresh deposits of ore. The most uoted places of supply for bog ore in this country are : Monmonth county, New Jersey. Piseataquis county, Main and Snowhill, on the eastern shore of Maryland. In the rarly part of the century much was ohtained from the ponls of Plymouth county, Mass., and from Egg Harbor, New Jersey.

New Properties of Carbolic Acin.-- The chemistry of carbolic acid has recently become better understo.d. For instance, Stardler has shown that it is a conatant constituent of the urine; Brieger has shown that it is a normal constituent of the contents of the bowels ; and Baumann has discovered that it is one of the products of the putrefaction of albumen. Dr. Jay has lately discovered that it is a powerful deoxodizing ayent, and shows this property by experiment. He oxidizes Guaiacum resin with potash, manganese, iodium and chlorine, and deoxodines it as well as restores it to its normal color by the addition of carbolic acid. A very curious reaction is effecte. by this acid uponiodine. When carbolic acid is added to tincture of iodine no perceptible change takes place, but when carbolic acid is adiled to tincture of iodine freely diluted with water. the fluid is almost instantly decolorized, and a compound is formed which is incapible of acting on starch and turning it blue, as free iodıne does. Whence the Doctor thinks this combination might form a gool antiseptic dressing for wounds. The investigations of Pasteur, Tyadyll, Sanderson, Lister and others have clearly shown that putrefaction changes never take place without the prosence of bacteria; and, further, that the bacteria are dependent on oxygen for their existence. The deoxidizing preperties of carboli": neid would prevent the furmation of bacteria.

Action of Sewer Gas on Lead, etc.-The sanitary inspector of Dunclee, Mr. T. Kinnear, hay watched the effect of the gas on portions of the zinc eaves of buildings where it was striking on the under part, and found, in the course of a couple of ycars or so, pretty large holes eaten completely through, showing that material could not long withstand the effect of the gas. Lead is, of a course, more durable than zinc, but the diffurence is only ${ }^{\text {a }}$ question of degree, as shown by the fact, in not a few of the water-closets repaired by the oftiers of the department during the year, small apertures were found in the main vertical lead pipe, and in the cross or horizontal one leading from it to the trap of the closet various purf rations were found on the top, indicating cle rly the operation of foul air from the drain. Lead traps and soil pipes frum water-closets, baths and fixed basins are all subject to wear and tear ; but the traps, being burdened with the additional strain of barring the pissige of sewer gas, do their work less efficiently, and fur it much shortur period, than they are generaliy credited with, heace the necessity for proper ventilation and occasional inspection.
New Percussion Cap for Dynamite. - Parties in Dusselde ${ }^{\text {r }}$ f have devised improvements in caus for dynamite, which consist, first, in weakening the botton of the cap, by a ring or cross; secondly, in closing the cap as firmly as possible at the top, which is effected by placing a conical copper cap within the same, provided with a hole in its bottom; and thirdly, in strengthening the sides of the cap as much as possible. Detonsting caps, as is well known, serve to explode dynamite and similar substances by a strong shock and great heat. By concentrating these as much as possible towards the center of the exploding cartridge or blasting hole charge, the latter are rendered the morer reliable. The conical copper cap can also he hell within the outer cap by narrowing the mouth of the latter. The m nner of applying the above-named principles of construction may be varied as desired according to circumstances.

Iubricanrs. - The choice of a lubricant is frequently ill-made. Common kerosene oil is too often injudiciously used in place of a thicker or mor bland oul, because the heat produced by the friction rapidly vaporizes the oil and leaves the journal dry. Crude petroleuin for the same reason is fitted only for very slowly revolving journals, such as water wheels. For very heavy man chinery, or for gearing, tallow and black lead rubbed up togethes is the best lubricant, and is also the best for wagon anil carriage axles during the hot weather. For ligit running machinery sperm oil is the best ; good olive oil, that has not become rancid a is and, is perhaps the socond best, and for wintur une lard oil excellent. but is rather too drying to be a first..last lubricant. Castor oil is better for axles in the winter, and hlack lead with it is a help at any time.

HARDENING HOLLOW PIECES OF STEEL.

A method of hardening hollow steel articles has been pitented in this country by W. Lorenz, of Carlstuhe, by which tools, dies, \&c., can be rehardened many times with facility and without deterioration. In the ordinary process for hardening hollow steel articles, by which these when heated are cooled simultaneously and equally on their inner and outer surfaces, the contraction ol the material cannot take place proportionately to the radially decreasing sections in the direction from the outside to the inside, and unequal tensions are thus produced in the article, whereby When the inner hardened surface once becumes worn the article is rendered useless. By the use of his invention (says the patentee) such tensions are prevented, so that hollow steel tools or dies can be re-hardened 20 to 30 times without deterioration, the to tion being such that the tool or die at each hardening is caused to controct in proportion to the thickness of its sides, so that When the inner surface has become worn the inner space is brought to the proper dimensions again merely by the shrinkage caused by the act of hardening. For this purpose the wnter for cooling is applied partially to the ir ner surtace and partially to the outer surface, and according to the thickness of the article it is applied either simultaneously in regulated quantity to hoth the inuer and outer surface, or first only to the outer surface and then quickly to the inner surface, or first to the inner and then to the outer surface, causing the same water that has acted on the one surfuce to act on the other. The hollow steel articles are for this purpose placed in specially formed receptacles, in which they rest upou their supports, so that the water flowing down through the interior can find its way underneath the lowerend and up between the outer surface and the sides of the receptacle. The ${ }^{\text {apparatus for carrying out the above described process consists, }}$ firstly, of the receptacle, which may be in two or more parts, according to the form of the article to be hardened ; secondly, of a discharge pipe supporting the said receptacle, through which the Water after having done duty is conducted away; thirdly, of a atand having a dish-shaped top for receiving any water that may - verflow the sides of the receptacle, and that conducts it through channels into the discharge tube ; and, fourthly, of a nozzle carried by a bracket at the top of the stand, through which the reguisite Water is supplied. The discharge tube is carried by a treadle pressed upwards by a spring, and in commencing operations the tube is drawn inwards by in ans of the treadle. thereby lovering the receptacle to allow of the introduction of the hented sterl article. The tube and receptacle are then passed upwards by the spring, so as to cause either the upper end of the steel article ilstlf or the upper end of the receptacle to abut against the end of the nozzle, the lower part of which is removable, so that nozzles of different firms corresponding to those of the steel articles or of the receptacle can be used. The upper part of the nozzle contains a valve which is screwed up or down so :1s to regulate the quantity of water admitted to the receptacle, and its lower end contains a loose movable stem held centrally by wings, and having a conical piece screwed on its lower end projecting somewhat heyoud the nozzle, so that by screwing such couical piece farther in or out the water may either be spread on issuing from the nozzle, so as to flow both over the inner and outer surface of the steel article, or it may be concentrated so as to flow only through the interior thereof.
The figure shows a vertical section of the complete apparatus. Water is supplied through the pipe R to the nozzle. This nozzle is supported by three supports fixed to the dish D. Inmediately below it is the receptacle S, into which the steel article to be hardened is introduced, and below this is the escape nipe, through Which the water entering at R is conducted away after use. The escape pipe, together with the teceptacle S, is supported by the treadle, so that by depressing the litter the pipe and receptacle are lowered tor introducing the steel article, while when the latter is bewing operated upon the pipe and recoptacle are pressed upWurds so that the latter bears against the nozzle N.
The hardening process is carried on as follows:-The steel article being plac.d in position as indicated, a valve is opened atore or less by turning the screw up means of the handles H so as to admit a regulited quantity of water, which for simple cylindrical articles tlows through the noz\%le into the interior of the artucle, and directly into the escape pilu, while any portion required for cooling the onter surtace flows over the upper edge on to the dish D , and thence through oprangs into a funnel at tached to the escape pipe into which it flys whinugh perforaale, For stel articles of more complex configuration, such as ate, for instance, used in the manulacture of nortal cartriuge cases, a nozzle is cmplyyed which has within it a cylindrical
rod held centrally bu ribs, and hiving at jts lower culd a screw
thread on which is screwed a conical piece; by screwing the latter inwards or outwards the area of the annular orifice is decreased or increased, and the stream of water issuing through it is directed either more to the outer surface or more to the interior of the steel article, according as the peculiar form of the article may require. Thus in the figure the steel article is first cooled internally by the stream of water, which then partly flows underneath the bottom thereof, and up over its outer surface, escaping over the edge of the receptable, while the remainder escapes directly through the hole in the brttom of the receptacle into the pipe.

The Railroad up Mount Vesuvius.-The latest report from Naples represent the railway desined to carry tourists to the top of Vesuvius as progressing fast towards completion, and the walls of the station which forms its terminus are already rising above the ground. The line is to be laid along the western slope of the mountain, and will be rather less than 1,000 yards in length. The station itself, which stands at the bottom of the volcanic cone, is 2,505 feet above the level nf the sea, and the line rises rapidly to the verge of the crater, at an incline which averages 56 feet in the 100 , but reaches at its steepest part as much as 63 in 100. The construction of the railway has been a matter for serious debate, and it was only after long considers. tion that the projectors determined upon the system planned by the engineer, Olivieri. According to the principle adopted in this plan, the whole of the inclined plane, from top to bottom, is covered with a thick platform of wood, resting upon the lava and other crumbling soil, which wculd of itself be much too unsteady to form a proper bed for the sleepers. Above the cinders and detritus, of which the mountain-side is composed, the platform is like a gigantic raft, and upon it the rails will be laid with ease and regularity. The wheels of the carriages are to be so firmly attached to the rails that they can never jump or slip off, and the trains are to be drawn up by means of two steel cables worked by a steam engine stationed at the bottom of the volcann. They will also be provided with a brake so powerful that even in the unlikely case of the breakage of both cables they can be brought to a standstill very quickly, even on an incline of 50 in 100. The only difficulty which faced the projectors of the new railway was that of water-supply, for it was calculated that the expense of bringing from Resina enough water to supply the engine would run away with more than all the profits that could reasonably be expected. In order to avoid this alternative, two large reservoirs are being constructed, which are expected, even under the peculiar circumstances of the position, never to run dry.-London Globe.

The Antiquity or Glass.-The oldest specimen of glass bearing anything like a date is a little moulded lion's head, bearing the name of an Egyptian king of the eleventh dynasty, in the Slade collection at the British Museum. That is to say, at a period which may be moderately placed as more than 2,000 years b. c. glass was not only made, but made with a skill which shows that the art was nothing new. The invention of glazing pottery with a film or varnish of glass is so old that among the fragments which bear inscriptions of the early Egyptian monarch are heads, possibly of the first dynasty. It cannot be doubted that the story preserved by Pliny, which assigns the credit of the invention to the Phoenicians, is so far true that these adventurous merchants brought specimens to other countries from Eigypt. That the modern art of glassblowing was known long before is certain from representations among the pictures on the walls of a tomb at Beni Hassan, of the twelfth Egyptian dynasty, but a much older picture, which probably represented the same manufacture, is among the halfobliterated scenes in a chamber of the tomb at Thy, at Sakkara, and dates from the time of the fifth dynasty, a time so remnte that it is not possible, in spite of the assidnous researches of many Egyptologists, to give it a date in years.--Saturday Revieu.

Best Antiskitic.-Prof. Klebs, of Prague, announces thaf the benzoate of soda is the best antiseptic in all infectiont diseases. It acts, as the experiments of the author show, very powerfully. It is claimed that a daily dose of from 30 to 50 grammes to a full-grown man will render the poison of diphtheria inoperative. The henzoate is prepared by dissolving crystallized benzoie acid in water, ueutralizing at a slight heat with a solution of canstic soda, drying and then allowing the solution to crystallize over sulphuice acid under a bell-glass. Large doses do not appear to be absolutely necessary. Good results may be olitained hiy the daily administration of about 12 grammes.

BY F. T. HODGSON, ARCHITECT, EDITOR American Builder.
These papers are written especially for the consideration of apprentices. There is nothing of more importance to a young man who is learning the business of house-joinering and carpentry than that he should make himself thoroughly conversant with the capabilities of the tools he employs. It may be that, in some cases, the result could be attained much readier with other aids than the square; but the progressive mechanic will not rest tatisfied with one string to his bow when others are within his reach.

The great improvement which the arts and manufactures have attained, within the last fifty years, renders it essential that every person engaged therein should use his utmost exertions to obtain a perfect knowledge of the trade he professes to follow. It is not enough, nowadays, for a person to have attained the character of a good workman; that phrase implies that quantum of excellence, which censists in working correctly and neatly, under the directions of others. The workman of to-day, to excel, must understand the principles of his trade, and be able to apply them correctly in practice. Such an one has a decided advantage over his fellow-workman ; and if to his superior knowledge he poseasses a steady manner, and industrious habits, his efforts cannot fail of being rewarded.
Whatever time the young mechanic may devote, while in his apprenticeship, to the acquirement of knowledge, will be like "casting bread on the waters," for, most assuredly, "it will re. turo to him tenfold after many days."
In the illustrations of the "Square and its Uses," this month, Fig. 1 is supposed to be the pitch of a roof furnished by an architect, with the square applied to the pitch. The end of the long blade must only just enter the fence, as shown in the draw: ing, and the short end must be adjusted to the pitch of the roof, Whatever it may be. Fig. 2 shows the square set to the pitch of the hip rafter. The squares as set give the plumb and level cuts. Fig. 3 is the rafter plan of a house 18 by 24 feet ; the rafters ar, laid off on the level, and measure nine feet from centre of ridge to outside of wall; there should be a rafter pattern with the plomb cut at one end, and the foot cut at the other, got out as previously shown. When the rafter foot is marked, place the end of the long blade of the square to the wall line, as in drawing, and mark across the rafter at the outside of the short blade, and these marks on the rafter pitch will correspond with two feet on the level plan; slide the square up the rafter and place the end of the long blade to the mark last made, and mark outside the short blade as before, repeat the application until nine feet are measured off, and then the length of the rafter is correct; remember to mark off one-half the thickness of ridge-piece. The rafters are laid off on part of plan to show the appearance of the rafters in a roof of this kind, but for working purposes the rafters $1,2,3,4,5$, and 6 , with one hip rafter, is all that is reguired.
Fig. 4 exhibits two methods of funding the barking of the angle or hip rafter. This drawing is taken from "Gould's Wood Workers' Guide.: The methods are as simple as any I know of. Take the length of the rafter on the blade, and the rise on the short blade or tongue, place the square on the line $D E$, the plan of the hip, the angle is given to bevel the hip rafter, as shown at F . This method gives the angle, only for a right-angled plan, Where the pitches are the same, and no other."
The other method applies to right, obtuse and acute angles, Where the pitches are the same. At the angle D will be seen the line from the points K L , at the intersection of the sides of the angle rafter with the sides of the plan.

With one point of the compass at D, describe the curve from the line K L. Tangential to the curve draw the dotted line, Cutting A H at I ; draw I J parallel to A B, the pitch of the hip. The pitch, or level, will be found at G, which is a section of the hip rafter.
Fig. 5 exhibits a method of fiuding the cuts in a mitre box, by placing the square on the line A B at equal distan ces from the heel of the square, say ten inches. The bevel is shown to prove the trath of the lines by applying it to opposite sides of the equare.

The Palace or the Trocadero.- It has finally been decided that the Trocadero building will be utilized by making it the home of the Ministry of Fine Arts.

[^2]

SHABP \& FURNIVAI'S PATETT TRAVERSITG DBITING MACEINE.

This machine is chiefly designed to cut key grooves in shafts and railway axles, cotter holes in connecting rods and straps, piston rods, and cross-heads, valve rods, cutting out joints and shaping nuts, \&c. This invention is one of the best modern labour-saving tools we have seen. It supplies a σ rant that engineers have often experienced when cutting cotter holes in con. necting rods, straps, \&c., of a machine to do them with speed and perfect accuracy. This is a vast improvement on the old -mode of drilling, chipping, and fling, which not only left the work finished in a very unsatisfactory manner, but was at best a slow and costly process. Messrs. Kendall \& Gent, Victoria Works, Salford, Manchester, are the manufacturers.-Birmingham Hardware Circular.

Welding Steel Hammers.-A correspondent in the English Mechanic asks if it is possible to wold a face on a cast-steel hammer. The answer given is as follows: "I suppose to make it heavier ; this cannot be done even with sheer steel. Many men wili assert that they have seen it done many times. Files may be put together very easy and to look sound, but as to their being welded I doubt it very much. Sometimes old swords can be put together to look sound, still they are not so. Many workmen are not aware that there is a kind of steel made, called welded cast steel; this will account for so much cast steel being welded. I know one firm that sent an order for 100 tons of sheer steel to one of our best steel makers, and they, not having it in stock, sent welding cast steel, and it gave great satifaction; and as the order came from a Sheffield firm no doubt it was tested very severe as to its welding property. Of course, the firm it was for took it for sheer steel, and no doubt had the order been for cast steel the same would have been sent, that is if no other was on stock. I have some cast steel and I know it is the right sort, and I should like to give anybody a piece who would try to weld it. I have seen this kind of thing tried in many of our best workshops and by some of our best workmen hundreds of times, and welding files I regard as an old tale."

MICHELA'S REPORTING MACHINE.

The Michela system of reporting and the type-writer which forms an important complement of the system have been patented in this country on behalf of A. \& J. Michela and G. de Petro, of Turin. For the system and the type-writer many things have been promised, not the least valuable of which is that by its means a manipulator would be able to transmit speeches as he heard them in several different directions, and if necessary in several different languages, the latter, however, depending entirely upon the choice or necessity of receiver, who would merely have to translate the code signals. In cerrying out the invention it is proposed to employ stenographic signs or characters of an elementary shape, such, for example, as the following series
ruplicated, 8023 to produce the whole or a portion of which are quad represent without ambiguity the whole of the phonetic elements which the vocal organs are capable of pronouncing in any spoken language. Assuming that twenty elementary signs or characters are sufficient for this purpose, they are arranged on a double keyboard, each half containing ten keys, and corresponding to double the number of fingers on the human hand so that each hand may operate one keyboard, and each finger manipulate two of the keys of the same. Thus the six signs or characters enumerated may occupy the first six keys of one of the two keyboards, of which the double keyboard is composed, and the same signs or characters in the reverse order may occupy the last six keys of the other keyboard, whilst the remaining four keys of each keyboard nay be occupied by four of the signs or characters in reverse order on each keyboard. There will thus be produced four series of stenographic signs or characters, which it is proposed to appropriate as follows, viz., the first series to represent the initial consonants or initial phonetic consonantal elements of syllables, the second series to denote the second consonants (in the cases where two consonants occur together), the third series, the vowels or vocal elements, and the fourth series to represent the final consonants or final phonetic consonantal elements of syllables. Each of these consonants or phonetic consonantal elements, and each of these vowels or vocal elements, is assumed to be of the numerical value of $1,2,3,6,9$, or 18 , or of a number formed by the addition of say two of the first five or of the first four of the before-mentioned figures, and on the keys of the donble keyboaril are mirked the figures $1,2,3,6,9,18$, $1,2,3,6,6,3,2,1,18,9,6,3,2,1$. If, therefore, in either of the series the number of the sound to be reproduced is simple, its appropriate stenographic sign or character will be found on the corresponding portion of one of the keyboards. When it is compound it is to be reproduced by two of the keys in accordance with the component numbers forming the numerical value of the sound.

In writing with this code each syllable composed of the requisite number of phonetic elements is impressed or printed sepa. rately in a transverse direction upon a strip or web of paper, which is fed forward intermittently by the action of the apparatus. Suitable conventional signs may be employed for denoting a parenthesis and the termination of a sentence, and numbers may also be represented in a similar manner to the consonantal and vocal elements.

The mechanism of the apparatus for printing the stenographic signs or charscters is divided into two parts, one of which performs the operation of printing or impressing the signs or characters upon the paper, and the other effects the automatic feed of the strip of paper upon which the said signs or characters are printed or impressed. The printing mechanism is constructed with a double keyboard, each portion containing ten keys, as above mentioned. These keys may be of a similar description to the keys of a pianoforte, or of any other suitable form, and be suspended on fixed centres at one end, and provided with guides or springs to maintain them in the proper positions.

The keys rest at or about their centres upou the ends of vertical rods connected to the front ends of a series of equal armed levers of the first order, arranged undernuath and transversely to the keys, and connected at their other ends to a corresponding number of type's or punches situate underneath an openillg in a table between the kiyboards, over which types or punches the strip of paper is drawn as it is unrolled from a suitable reel or roller. The feed motion of the strip of paper is obtained by means of a lever arranged underneath the keys, the lever heing common to the whole series of $k+y$, and receiving motion from the same simultaneorsly with the types or panches; the extent of motion is the same, irrespertict of the number of keys operated at once. When one or more of the keys are depressed the
lever acts upon a spring or weight by means of a pulley or other contrivance, in such a manner that when the kes or keys rise after each impression upon the paper, a forward motion is imparted to a pawl engaging with the teeth of a ratchet wheel fast on the axis of a cylinder, causing the said ratchet wheel and cylinder to rotate to the extent of one tooth at each motion of the lever. Two small rollers are maintained in contact with the cylinder referred to, and are caused to partake of its motion by friction, being pressed against its surface by a screw. The strip of paper, alter receiving the impression of the types or punches as they rise through the opening in the table, is drawn between the two small rollers and the cylinder by the intermittent rotstory motion of the latter, and issuses from the apparatus with the chalacters impressed upon it in the form of sinall indentations, or, if rsquired, the characters may be pinted in ink by providing suitable mechanism for the purpose. Each key corresponds to one of the characters of the system of stenography adopted, and when depressed by the finger of the operator, the key causes the correspondiug type or punch to rise through the opening in the table supporting the strip of paper, and makes the required impression on the latter, a suitable pad or block being provided above the strip to afford the requisite support. The apparatus may be modified in the details of its construction ayd arrangement. For example, the keyboard may be situate below the mechanism, and the keys in this case may be arranged to pull the levers in lieu of pushing them. The feed motion for the strip of paper may be effected by means of a small rod secured to the common lever, which, being provided with an oblique notch, serves to actuate a small apparatus, with two arms acting upon a wheel attached to the cylinder, one arm acting during the forward stroke, and the other on the return stroke. The motion of the printed strip may also be transmitted to it in any suitable manner by clockwork or otherwise. It will be seen that the Michela system is based on a principle frequently proposed, and to a certain extent carried out by merchants. T'here seems no reason why it should not be utilized by reporters, if the typewriter described is a portable and practical instrument, and printers can be induced to learn the code. There would not be much difficulty with the printers, for they would prefer printed marks to written words, as they often appear in MS.; but it may be donbted whether the type-writer could be manipulated with the requisite speed, and without getting out of order.

The preservation of the sight is engaging much serious attention. Professor Javal is not far from considering that defective eyesight is due to the bad lighting of school-rooms, hence the importance of the subject, when France intends erecting thousands of new primary schools. As general rules, the light should never strike the pupil's eyes directly ; it ought to enter the classroam bi-laterally, and by windows built on a north west and north east axis, in lining if possible rather to the latter. The healthy rye re, uires no protecting glasses, save when travelling across glaciers or in countries full of too brilliant sunshine. The eye has a wonderful power of adaptation; thus the light of the sun is about one million times more intense than that of the full moon, and yet the eye can distinguish objects hy the light of either orbs. The variations in the diameter of the pupil contribute something to this power of adaptability; it is in the retina that the sensibility of the eye resides, and which produces the faculty of contraction and expansion following light and obscurity. Reading a book under the direct infiuence of the sun's rays, will invariably end by protucing blindness, and for a time, prevent seeing in demi-obscurity. The houses in Madrid are so protected from sun light by shutters half closed and blinds entirely drawn down, that persons entering such apartments directly from the street, can perceive nothing for eight or ten minutes, while the occupants can see quite well. Insufficient lighting is more injurious for children than allults; the pupils of the latter are less dilatable, thus compelling immediate abstention from work when dark'vess sets in. Aiso grown up persons generally patronize glasses, and if not short-sighted in youlh, they rarely contract the infirmity in advanciag years. It is an error to suppose that the number of windows in a school ought to be proportionate to the number of scholats. Artificial light is a cause of fatigue for many persons, as it entails a greater dilation of the pupil. The difference in intensity betwern natural and antificial light can be seen in the burning of a lamp during full day. A lustre with one million of cardles, would still be very inferior in illmminating a room to the direct light of the sun. A well-known litterateur cannot work by day, unless th: shutters be closed and the lamps lighted; this is owing to
the action of the chemical rays, and that yellow glasses ought to remedy. After every eclipse of the sun, occulists have an in©reased number of patients, who have injured their eyes by looking thrnugh imperfectly smoked giass. In one of the railway terminii of Paris, when the electric light was first employed. there was a general out-cry against its effulgency; when it was replaced ly gas, the complaints were equally loud by the em. ployés that they were plunged in Eyyptian darkness. The fatigue resulting from working by artificial light is not due to the dazzle of the flame, but to the iundequacy of the light it emits.

THE TMMENSITY OF THE STARS.

We take from Le Monde dc la Science the following interesting "Considerations on the Stars," by Professor J. Vinot. "It is known that the stars are true suns, thit some of them are larger than our own sun, and that around these enormous centres of heat and light revolve planets on which life certainly exists. Our sun is distant from us $38,000,000$ leagues, but these stars are distant at least 500,000 times as fiar-a distance that in fact is inconmensurable and unimaginable for us. Viewed with the unaided eye the stars and the planets look alike; that is, appear to have the same diameter. But, viewed through the telescope, while the planets are seen to possews clearly appreciable diameters, the stars are still mere luminons points. The most powerful of existing telescopes, that of Melbourne, which magnifies 8,000 times, gives us an image of one of our planets possessing an apparent diameter of seviral degrees. Jupiter, for instance, which seen with the naked "ye, appears as a star of the first magnitude, with a diameter of 45° at the most, will in this telescope have its diampter multuplied 8,000 times, and will be seen as if it occupied in the heavens at an angle of 100°. Meanwhile a star alongside of Jupiter, and which to the eyr is as bright as that planet, will still be a simple demensionless point. Neverthelr'ss that star is thousands of tim:s more voluminous than the planet!
"Divide the distance between us and a planet by $8, n 00$, and you have for result a distance relatively very small; hut divide by 8,000 the enormous number of leagues which represents the distance of a star, and there still remain a number of leagues too great to promit of the stars being seen hy us in a perceptible form. In cousidering Jupiter, or any of the planets, we are filled wiih wonder at the thought that this litule luminous point might hide not ouly all the visible stars, but a number 5,000 filld givater, for of stars visible to our eyes there are only about 5,000 . All the stars of these many constellations, as the Great Bear, Cassiopem, Orim, Andromeda, all the stars of the zollace, even all the stars which are visible only from the earth's south.rn hemisphere, might be set in one plane, side by side, with no out overlapping another, even without the slightest contact betwerll star and star, and yet they would ocenpy so sinall : space that, w.r. it to be multiphed 5,000 fold, that ${ }^{\text {8p }}$ thace would be cutirely covered by the dink of Jupitw, allwit that diak to ns semes to be an mapreciable point.

THE WAY TO HEALTH.

The only tru" way to health is that which common sense dictates to man. Live within the hounds of reason. Eit moderately, drink temprately, sleep regularly, avoid excess in anything, and preserve a conscience "void of offense." Some men eat them elves to death, some drink themselves to death, some Wear out their lives by indolence, and some i,y over vertion, others are killed by the doctors, while not a few sink into the grave under the effects of vicious and heastly practices. All the medici ies in cruation are not worth a farthing to a man who is Constantly dud labitally violating the laws of his uwn nature. All the medical science in the world cannot save him from a premature grave. With a suicidal course of conduct, he is planting the speds of decay in his own constitution, and accelerating the destruction of his own life.

THE MICROSCOPE IN THE WITNESS BOX.

As the New York Tribune says, the scientific aspects of the evidence against the Rev. Mr. Hayden of Madison, Conn., for the murder of Mary Stannard, are truly remarkable; indeed the microscopic exhibition of arsenic and the comparison of arsenical crystals show that the law has a powerful auxilliary in chemistry. After the arrest of Mr. Hayden, and the disinter.
ment of the remain:s of the dead girl for examination, it was claimed that all of the arsenic which Hayden had bought was still in a box in the barn. There a box was found containing a full ounce. It was shown that the arsenic found in Mary Stannari's stomach could not have been taken from this box. At this point recourse by the prosecution was had to Prof. Dana, who visited England, ntudied the manufacture of arsenic, and then, by the use of his microscope on the crystals, demonstrated that the arsenic from the girl's stomach was an entirely different lot from that hidden in the barn, and that it was identical with the arsenic sold by Tyler, at the time when Hayden is known to have bought his ounce. The conclusion sought tol be established is that a part of the arsenic: bought by Hayden was used to poison the girl, and that the rest was flung away, and that the barn arsenic was bought elsewhere afterward merely as a blind. The crystals of the stomach arsenic are three or four t mes as large as those of the barn arsenic, but none of them are 1 rge enjugh to be visible without the microscope. Hereafter criminals will do well to recognize in science one of the agents of possible detection.

The Poison of thy Rattlesnake a Ferment.-Hitheto the general belief has been that the poisonous matter secreted by certain species of reptiles was nothing more than a poisonous saliva, acting in the manner of ferments. M. Lacerdo has been making at Rin de Janeiro, some researches into the action of the venom of the rattlesnake. whirh throws much new light on the subject. His investigation shows that the saliva contains what are called figured terments, the analogy of which with bacterides is very remarkable. From a young and vigorous crotalus, subjicted to the action of chloruform, he obtained a - Irop of the venom on a chemically clean piece of glass, and at once placed it under a microscope. Almost immediately he olserved the formation of a filamentous pulp in an arborescent disposition. Gradually the thickened filamant, after having pushed out spores, dissolved and disappeared, and the liberated spores swelled and enlarged visibly, each of them sending out a minute tube which lengthened rapidly. After a very short period the latter separated from the first spore, and constituted another nucleus for engendering the deadly contamination. In the examination of the blood of animals killed by the bite of one of these suakex, M. Lacurdo noticed that the rea globules of the hood commenced to changed by presenting some sinall, brilliant points on the surface, which spread with great rapidity, and ultimately the globules melted one into the other, forming a sort of anorous paste which could no longer circulate in the vrins. Other animals in which that hlood was injected immediately after the death of the first, expired in if few hours, presenting all the symptoms of having themselves been bitten, and their blood always showed the same alteration. M. Lacerdo conclules his memoir by stating that numerous experiments have shown that the true antidote for serpent poisouing is the injection of alcohol under the skin, or its administration through the month.

Mabor Phorografus.-The Deutsch Allgemeine Zeitung makes the incredible statement that a german, named Karl Steinbach, has made an important discovery in photography. After years of study and experiment, he has succeeded in obtaining a chemical composition, by means of which a mirror image may he fixed and sold as a photograph. With this composition the mirror surface is painted, and the back part of the mirror receives also a coating of oil. The mirror thus prepared is held before the per on who is to be protographed. The oil coating evaporates, and the likeness of the person remains in natural colors on the light surface. The image, so fixed, is brought into a bath, and is exponsed half an hour to the sunlight, before delivery. A nice capitalist in Pern, it is said, has acquir d this invention for $\$ 400,000$, and large establishments are to he formed in Nort $\cdot 1$ and South America for carrying it out.
Borax and Nitrate of Polash for Hoarseness.-These two salts have heen employed with advantage in eases of hoarseness ant aphonia occurring suddenly from the action of cold. The remedy is recommended to signers and orators whose voices suddenly become lost, but which by these means can be recovered almost instantly. A little piece of borax, the size of a pea, is to be dissolved in the mouth ten minutes before singing or speaking; the remedy provokes an abundant secretion of saliva, which moistens the mouth and throat. This local action of the borax should be aided by an equal dose of nitrate of potassilum, taken in warm solution before going to bed.-La France Medicale.

BAMFORD'S SELF AUTING HAY RAKE.

Ewglish Axxicultuxal ${ }^{2} \mathfrak{m p l e m e n t s}$.

BAMFORD'S PATENT "PROGRESS" DOUBLE-ACTION HAYMAKER.

This illustration shows a new machine possessing special advaitages in tedding or turning unusually heavy crops of grass. As will be seen, this haymaker is provided with a new shaped open screen which does not confine, but permits the grass to be freely circulated in the air during the process of tedding, and without loading on the axles in windy weather. It has a simple arrangement for regulating the height of forks by a spring knob placed on the front of the machine, and a new system of gearing so contrived that every bearing can be got at and instantly lubricated by an ordinary oil can. The gearing is all machine cat, thus securing the greatest ease in work and lightuess of draught, while the action is placed well behind the machine, thus balancing the shafts. The machine is fitted with double
lap C springs, and the main axle is solid steel. The road wheels are 4 ft . high, combining strength with lightness, and they are of wrought iron. With this machine clogging is impossible. We also give an illustration of Bamford's new Patent "Lion" anglo-American Self-Acting Horse Rake. This rake is made as a manual rake, or combined self-acting and manaal delivery. These horse rakes combine important improvernents in construction with arrangements for easy adjustment. The teeth are of rolled spring steel of H section, having great capascity and strength to ensure clean ruking. The axle is solid round iron, with turued ends working in chilled bushes, and the wheels are constructed on a ne system, with channel iron spokes. Kunning parallel with the mairí axle is a solid round bar which is coupled to the draw bars and the seat bow, thus forming a rigid framework of immense strength, and will bear not only the weight of the driver without deflecting the axle, but also effectually resists any strain to which the rake may be subjected when working on rough ground. The leverage which is placed on the right hand of the driver is extremely light, may be easily worked
by a boy, and is adapted for either hand or foot. A new yet simple self-locking motion is introduced, which perfectly locks the teeth when raking, and admits of their free action over uneven ground. An ingenious arrangement adjusts the pitch of the teeth, and, if necessary, enables the rake to be regulated to suit horses of different heights. Both of these machines are manufactured by Messrs. H. Bamford \& Sons, Leighton Iron Works, Uttoxeter, England.-Birminghum Hardware Circular.

Fig. 2.-Rrar view of Wind Mill.

Fig. 1.-The Victor Wind Mill.

EEW WIND MmL.

The annezed engravings represent a wind mill patented by Mr. C. B. Post, and made by C. B. Post \& Co., of New London, Ohio. The design of the inventor has been to produce a mill that will maintain a regular speed under a varying wind pressure and to prevent damage to the mill daring high winds. The wheel is composed of iron sails mounted npon iron arms, upon which they are capable of turning, and the motion of the mill ia controlled by the weighted arms attached to the sails, which, by centrifugal action, turn the sails more or less toward the wind. The inventor claims that the same sail area, when presented to the wind in large surfaces, is much more effective than it is when it is divided up among small ones.

The weighted lever hung near the tail vane is connected with a sleeve that operates the sails and holds the sails to the wind antil the centrifugal force of the weighted arms, projecting from the face of the sails, is sufficient to overcome the action of the lever, when the sails will be automatically adjusted to the proper angle in relation to the wind to maintain a uniform speed. By changing the adjustment of the weights the speed may be varied to suit different purposes.

The manufacturers inform us that the running parts of this mill are large and well proportioned. The crank for imparting motion to a pump is formed by bending the shaft, and it worka in a slot in the pump rod. The mill swivels on a gas pipe standard, and turns easily, allowing the wheel to stand squarely to the wind. The mill is thrown out of action by means of a wire attached to the weighted lever, and it may easily be arranged so that a float in a water tank will stop the mill when the tank is full.

This mill is certainly very simple and easily made, and appeara to be well designed.

The Celluloid Marvel.-A capital example of these numerous industrial revolutions of which we have spoken, and which are peculiarly characteristic of America, is furnished by the new article celluloid. Although it was invented nine or ten years ago (by two brothers named Hyatt), its perfect manufacture has been regularly in practice for only about five years, and is considered to be still in its infancy; yet immense quantities of the substance are produced; it is converted into a wonderful variety of forms, and new modes of applying it are discovered almost daily. This composition of tissue paper, camphor, and certain chemicals is already used for billiard balls, combs, backs of brushes, hand mirrors and other toilet articles, whip, cane and umbrella handles, every kind of harness trimmings, foot rules, chessmen, handles of knives and forks, pencil cases, jewelry of all kinds, pocket-books, mouth-pieces for pipes, cigar-holders, musical instruments, doll heads, porcelain imitations, hat bands, neckties, opticul goods, sh'e tips and insoles, thimbles, emery wheels, shirt cuffs, collars, etc. Its use as a substitute for ivory has already exercised a world-wide effect upon the ivory industry, the falling off in the demand having been felt in the remotest regions of Africa. It has lately been introduced as a substitute for linen or paper in the making of shirt cuffs, collars, etc. It has the appearance of well-starcted linen, is sufficiently light and flexible, does not wrinkle, is not affected by perspiration and can be worn for months without injury. It becomes soiled much less readily than linen, and when dirty is quickly cleaned by the application of a little soap and water with a sponge or rag.

Fusing Metals Without Fire.-A remarkable discovery has been made by Jacob Reese, of Pittsburg, Pa. He says he is able to melt instancly a bar of cast-steel one inch in diameterwhich cannot be fused in less than five minut-s in the higheat furnace heat attainable-simply by throwing against it a column of air having a velocity of 25,000 feet a minute. The instant the air touches the metal fusion takes place. He says further "By furnace heat it requires many hours, and sometimes many days, to anneal metals. By a recent discovery which I have made, I can anneal bars of iron or steel at the rate of one foot per second, thus increasing the ductility of the metal 100%, without the use of other fuel than that contained in the meta itself. I simply unlock the occluded (latent) heat. It becomes sensible and enlarges the metal, and by the method of doing this the enlargement is made permanent, that is, it does not contract to its original limit.
New Metals, -Eleven new metals have been discovered within the last two years which have received the following names : Davium, morsandrium, phillipium, ytterbium, deci. pium, neptunium, lavæsium, norwegium, uralium, scandínm and thaumasitic.

CARE IN EMPTYING STEAM BOILERS.

In regard to emptying and blowing-off steam boilers, a French comtemporary gives the following useful hists: "Those who possess externally fired boilerb, working only by day, have all observed that the fire being covered by night, and the doors closed, the pressure rises during the night, often sufficient to open the valves. This shows that the masonry, being at a much higher te nperature than the boiler which it envelops, imparts to it some of its heat. The same effect of heating the boilers is produced, to a less degree it is true, but nevertheless to some extent on the outer jacket of interually fired boilers. It is, consequently, injurious to empty boilers soon after having stopped them, because after emptying, the plates would be heated by the action of the masonry. It is well to admit a current of air through the flues some hours after the stoppage of the generator, and not to empty it before the flues become cooled to a temperatare below 300°. When the flues are not too hot, no serious inconvenience is experienced in emptying the boiler uadsr pressure. We do not say at high pressure, as for a builer the pressure of which would be 10 pounds, the temperature of the water being 304', a greater quantity of steam would be ginerated during the process of emptying; we think at a pressure of 2 pounds the boiler could very well be emptied. In internally fired boilers, as there is no masonry to coo! in the furnace tubes, it would be well to admit the current of air intended to cool the masonry behind the boiler, as in this cage the furnaces would be cooled more rapidly than the jacket. We have sometimes seen owners empty their boilers almost immediately after the fires have been extinguished, clean them with cold water as soon as they were empty, and keep up a current of water so that the workmen might work there. Boilers of small dimensions sometimes resist such treatment, but in large boilers it will be seen that unequal contractions must take place, causing thr rivets to hurnt."

AN INCREDIBLE INVENTION.

The American Manufacturer reports the invention of a gas machine, for which so much is claimed as to make it incredibly wonderful. It is said to have been patented by J. T. Guthrie, of Leesburg, Ohio, to utilize the gas from bituminous coal otherwise lost with the smoke through the flues and chimneys. The machine is said to be very simple, and can be attached to a common cooking or heating stove. The advantages claimed for it are, that any person cau handle it easily, the same fuel used to cook the breakfast producing an abundance of pure gas, sulficient to illuminate the house during the night, withont any expense whatever. Mr. Guthrie also claims the right of attaching it to furnaces, grates, and any and all places where coal is used for fuel and heating purposes. It is sai.I that he proposed to the Commissioners of the Cincinnati Exposition to light the entire exposition building with as good ard pure a quality of gas as can be produced in the city gas works, and this by using the same fuel that heats the boilers of their power engine, without the cost of one ceut for the fuel. It is also said that this invention is insuccessful operation in Leesburg, that the inventor is visited daily by hundreds of peoplo to see the wonderful machine, and that all, so far, bear testimony to its wonderful merits and general utility. The inventor claims that good, pure gas can be produced by the machine at a cost not to exceed 20 cents per 1,000 cubic feet, and earnestly invites practical men fiom all parts of the country to come, see, and examine the working of his invention.

IMPROVEMENT IN IAMPS FOR STREBTS.

A new system of improved street lighting by gas has been tested at Bristol, England. "The preseut burner is rrtained, but the light is divided into two jets, between which and placed in each street lamp is suspended odouble convex lens, forming a powerful reflector, and the result is found to be an increase of lighting power to the extent of 50 per cent. Ordinary batwing burners are used, and the only care required to insure a perfect light is a nice adjustment of the suspended lens, so as to get the right focus and a full reflection of the light. When this is secured the jets, even at a distance, are very brilliant, and have the appearance of globes of light." It is said that they illuminate the foot-paths between the lights with mueh of the effinctiveness of the electrical light, while the amonnt of gas consumpd is no more than hy the present system. Bristol is to put the syntem into general use.

In onfe sense it is true that the two burners do not take more gae than whe one which they replace; but it must be remembered
that two smal! burners do not give as much light as one larger one would burning the same amount of gas. The more economical methol of applying this invention, and one which would not require alteration of the burners, would he to use two leuses, hanging one on each side of the burni r. The best lens for this purpose would be such as are used in street cars for concentrating the rays of light used. The statement that the double convex lens is a powerful reflector is only partially true, we think. Althongh we have often silvered one side of convex lenses and used them for the purpose of concave mirrors, we do not find them even then very powerful as reflectors, and do not think, unless the lens used is of a very large size, that its reflecting powers would be found to be s very valaable means of increasing the brilliancy of the burner in the street. The theory of the increase of light is that the lens concentrates a great deat of light that would otherwise be sent upward or wasted upon the houses, and directs it along the streets, where it is most wanted.

A REMAREABLE RAILROAD.

The Mount Washington railrond is a marvel of engineering. It is three miles in length, and rises 8,625 feet, or one foot in four. The principal feature of the railroad is the cog-rail in the centre of the track. On each driving-shaft of the engine is a cog-wheel. The teeth catch the cogs in the centre rail, propelling the car up the monntain. The boilers of the engine are inclined downward, and when on a steep grade are quite horizontal. Every locomotive takes one car, and is providell with a double set of driving-wheels, thit any danger from breakage of machinery is prevented. The ascent requires one hour and a half, and one could step off and on at any point. The track is strongly built, and is daily inspected by the men continually employed to police it. In ascending, persons in the forward car have their feet ou a level with the heads of those who sit uft near the engine, which, going up, is the propelling power, and going down, the repellin' force.

The steepest point is Jacob's ladder, a trestle 30 feet high and 300 feet long, the grade 1,604 feet to the mile, or thirteen and one-half inches to the yard.

Ducrile Zinc.-In order to remove from plates and other forms of zinc its natural rigidity and consefpent frangibility, which render it difficult to work and greatly limits the range of its use, Mr. Janes Eade, of Waltham New Town, proposes to subject it to special treatment. Supposing sheet zinc is the material to be treated he prepares a bath of linseed oil, and into it he plunges the zinc plates, subjecting the same to the action of oil while in a state of ebullition for 30 minutes, more or less, according to the thickness of the metal ; he then removes the plates from the buth, and after the oil is drained therefrom he cleans their surfaces, when they will be ready for the market. Plates treated after this manner will be found to possess great ductibility, and to be capable of receiving and retaining a high polish; they muy be enployed in lieu of lead or pewter at a great reduction of cost for a variety of purposes, as, for example, the linings of sinks and cisterns, and the covering of counter and other surfaces requiring a protective metallic covering. It is proposed to treat other articles than plates in a similar manner to that above described to facllitate the working of the same into varions forms.
A "Tea 'Bus."-An American is about to carry out the railway dining-car system in a novel direction. He has designed, especially for the use of Londoners, a "tea bus." In this vehicle there will be every accommodation for "five o'clock tea." It is expected that the 'bus will be a great favourite with ladies, who will take advantage of it not merely fur shopping purposes, but also as a pleasant way of spending the afternoon and having agreeable chats with each other over their teacups. A narrow table runs along the middle of the vehiclo, and behind the seats there will be room for the conductor to wait on the tea-drinkers. Water will be boiled in a little apparatus beneath the seat of the driver, the tap being inside the 'bus, so that kettles may be flled without difficulty. The ties of the wheels are to be indiarubber to prevent unpleasant jolting, and the springs of the carriage will be adjusted on an entirely new and improved priaciple, ensuring the complete ease and comfort of its occupants. With a plentiful supply of biscuits and bread-and-butter the scheme may prove a success, but the 'bus will have to be driven with extreme care, for the horrors of a colliaion in the struet will be greatlvenhaneed liy broken creckery and beiling water. Pall Mall Gazette.

7xiscrl!:urous.

Heating and Vextilating rail cars.-The Pennsylvania Railroad is ex nerimenting with a new system of heating and ventilating cars, invented and perfected by its mechanical engineers at Altoona. Th system nsed to accouplish the desired end is by means of heated water passing through pipes. In the baggage car of the train is located a y portable engine, in which hard cual is used, thus avoi ling both dust and smoke. Two pipes are ${ }^{\circ} \mathrm{n}$ one side of the boiler, above the lowest gauge-cock, running through the car floor. To one of these pipes is attached a 1 ting. atearn hose pipe, passing down to the rear car and going around it and returning back to a pipe on the other side. Into this is pumped the hot water, passing through and back again into the boiler, so that the same stream of water is constantly used. Near the door of each car is attached an elbow, going ap into the car, along the box at the side, and then under the seats, forming a loop, at the end of which is a register, and over it a galvanised-iron cover, thus preventing the heat from rising directly underneath. Beneath each seat are four boxes which catch the cold air, and this passing up into the car over the Nater pipes, diffuses the hot air, casting it to the top, where it goes out at the ventilator, and keeps a constant stream of pure thir passing 'hrough the car. In case of separation or breakage the supply can be checked and another connection effected. The apparatas banishes dust, and in addition to thoroughly keating and ventilating the cars, gives room for eight more pasrengers in each car.
Jupiter at present shines with astonishing brilliancy ; yet its light is not peculiar to itself, it is reflected. That colossal planet is 309 times heavier thin our earth, and 1,230 times its superior in volume. Were it surrounded by a vast ocean, a steamship sailing at the rate of 14 knots an hour night and day, while able $t^{\text {to }}$ make the tour of our globe in three months, would take nearly three years to circumnavigate Jupiter. And yet the leaf of a tree ${ }^{\text {can }}$ obscure him from our vision; a a aly alighting on the glass of a telescope, seems to swallow him. After Venus, Jupiter is the most brilliant of all the planets; his diameter is eleven ${ }^{\text {times g greater than the earth's, aud his surface equal to } 114 \text { of }}$ our globe's. And yet the diameter of Jepiter is ten times less than that of the sun's ! The materials of which Jupiter is com. Pared are lighter than those of our earth's, but attraction bot g greater, they weigh more heavily. It takes Jupiter nearlv in Jears and 11 months to revolve round the sun, yet it diurnal Thtation is effected in ten hours-five hours day ani: five night. There are no seasons in Jupiter, all is an eternal spring, and four moons marry their light to illuminate him. If inhabitated, it must be by extra-terrestrial beings.
Philigeing the Eye.-From recent experiments made by Mr. Philinewux, a French occlist, it appears that the optic organ
bas the ame $\mathrm{has}_{\text {ha }}$ the same capatilities of reconstruction as the bones. M. Pbilipeaux andertook to discover whether on completely emptying the eyes of young rabbits and guinea-pigs.the vitreous humour would be reorganized and whether even the crystalline Tould be reproducted. With this view he conducted his operations, always, of course, taking care not to touch the crystalline capasule, for experience has shown that in order for an organ to regenerate, a part of it must be left in its place. It seems that a roonth after the mutilation was made, M. Philipeaux was able to thee that the eyes which had been emptied, were filled afresh, and that the crystaline was reconstituted. He operated on 24 animals, ${ }^{2}$ and in every cases the mutilated eye revived. How far similar rexalts would be obtainable with the human eye does not appear. If the same regenerating power is found to be in general, a decid. ed improvement may be possible in the treatment of certain
injories and diseses of the injories and diseases of the eye.
Anisal Rubber.-An insect which prodaces a species of $\mathrm{Y}_{\text {un }}$ rubber has been recently discovered in the district of Yucatan, Central America, by an American explorer. It is called Neen, und belongs to the Coccas family; feeds on the miango tree, and swarms in these regions. It is of considerable
size, size, yellowish brown in color, and emits a peculiar oily odor. The body of the insect contains a large proportion of grease, Which is highly prized by the natives for applying to the grin on ${ }^{\text {account of }}$ its medicinal properties. When exposed to great heat the lighter oils of the grease volatilize, leaving a tough wax Vehind which resembles shellac, and may be used for making Varnish or lacequem. When burnt this wax produces a thick
ne ni.fluid mase, like a snlution of india rubber, and it is expect.
ed that this glutinons liquid will be very valuable for cementing and waterproofing.
Crede Pbtroleum as a Remedy is Consumption.-Dr. M. M. Griffith, of Bradford, Pa., reports some astonishing results obtained by the alministration of crude potroleum to consumptives. He claims that out of twenty-five cases of well marked tuberculosis so treated twenty are to all means of diagnosis cured; the rest have been materially benefitted; and none have been under treatment more than four months. The nausea attending the nse of ordinary crude petroleum led him to adopt the semi-solid oil that forms on the casing and tabing of wells. This, made into three to five grain pills hy incorporating any inert vegetable powder, was administered from three to five times a day in one pill doses. The first effect, he says, is the disappearance of the cough; night sweats are relieved, appetite improves, and weight is rapidly gained It is to be hoped that Dr. Grififth has not mistaken some self-limiting phase of throat or bronc ial disorder for true consumption of the langs ; also that continued trial of the alleged remedy will justify the high opinion he has formed in regard to its efficacy.

A Raci With Thumbs on their Feet.-Mr. Tremlett, the British Consul at Saigon, in his report this year, mentions as a remarkable peculiarity of the natives of the country that they have the great toe of each foot separated from the others, like the thumb of the hand, and it can be used in much the same manner, though not to the same extent. This distinctive mark of an Annamite is not, however, usually seen in the vicinity of Saigon, but is now confined to the inhabitants of the more northern section of the empire, where the race has remained more distinct. This peculiarity is the meaning of the native name for the Annamite race; and that the name and peculiarity are of great antiquity is shown by the mention in Chinese annaly $2,300 \mathrm{~B}$. C. as that (or those) of one of the "four barbarian" tribes that then formed the boundaries of the Chinese Enpire.
" Business embarrassment !-You call it embarrassment, do you!" said old Cashinhand, banging his fist down upon a newspaper with a column headed with that title. "You call it business embarrassment, for these young Dashrounds to rush into business with ten thousand dollars borrowed capital apiece, and come out of it in five years with both their wives owning twenty thousand dollars houses, solitaire diamonds and good wardrobes, and themselves and families living at the sea-shore while their creditors are getting twenty cents on the dollar! I tell you, sir, in my time that sort of embarrassment would have put them behind the jail bars, and it would be a confounded sight better for the business community if it did now-for at least it would prevent some of you aiders and abettors in this kind of embar. rassment giving any more credit to these embarrassed pretenders." -Com. Bulletin.

Dompstication and Brain Growth.-At the recent meeting of the British dssociation, Dr. Crichton Browne gave an address on the influence of domestication on brain growth. He had found by experiments that domestication had greatly reduced the brains of the duck, and he argued that men, like ducks, might be fed and housed, fenced aboat, and exempted from participation in the life struggle, antil, like the dacks, they would depreciate in mental capacity. Their bodies might increase in size and succulence, but their brains would become straightened and withered. Disease and luxury crippled the brains. It was as true as ever that men were perfected through suffering, toil, and conflict, and it was not through affluence and comfort that genuine civilization was attaiued. It was the civilization, not merely the domestication, of mankind that must be aimed at.
The Hydromotor.-The Scientific American gives an illustrated description of a novel form of motor, invented by Dr. Fleischer, of Kiel (Germany), and applied by him to ship propulsion. The principle of the motor is the reactive water jet, a device not new in itself, but which, our anthority asserts, this inventor has materially improved. The engraving shows a vessel propelled by two water-jets, without the aid of paddle-wheels, propeller, engines, or rudder. The discharge-nozzles are swiveled so that they may be directed this way or that, and so control the direction of the vessel. The motor, as applied to the Pellworm (a vessel 75 feet long, 12 feet beam, flam-bottomed and drawing $3 \frac{1}{2}$ feet of water), prupels her at the rate of six knots her hour, and develops 25 horse-power, or about 40 per cent of the power of the steam used.

Fig. 1.-FRENCH ELECTRIC JEWELRY.
Fig. 2.-The Scarf Pin.

WLTOTRIC JEWRLRY.

Among the specialties for which the French are noted there is nothing more curious than the electric jewelry, several specimens of which are shown in the accompanyiug cuts, which we take from La Nature.
The scarf pin represented in the left-hand figure consists of a small golden rabbit holding a liliputian mallet in each paw, with which it beata a roll on a small golden gong. The right-hand figure represents a golden skull, with povable diamond eyes and an articulated jaw. This is also a scarf pin, and its eyes and jnw arn made to move in a singular manner. The bird shown in the center of the engraving is an ornament for the head dress. It is of gold, thickly studded with diamonds.
These pieces are connceted by a fine concealed wire with a small bettery carried in the vest pocket. When the battery is made to operate, the rabbit will strike the gong, the bird will move its wings, and the skull will roll its eyes and guash its teeth.
The battery consists of a zinc and carbon couple contained in a hermetically closed vulcanite case, the zinc and carbon occupying the upper half of and the exciting fluid the lower half of the case. When the case is in a vertical position the exciting fuid does not touch the zinc or carbon, but when it is inverted or placed horizontally, the fluid comos into contact with the zinc and carbon, and the curreut traverses the coils of the diminutive maguets, which operate the mechanism of the pieces. The arrangement of the internal parts of both hattery and scarf pin will be understood by reference to Fig. 2. The mechanisu is much like that of an ordinary vibratory electrical bell.

Artificial Precious Stones. - Two French chemiste, MM. E. Fremy and Feil, have discovered a method of making, in large guantities, precious stones which rank in value next to diamonds. Such an announcement would naturally bave the effect of exciting dealers in precious stones, since this method must enable - large quantity to be thrown upon the market; and as their value depends, not upon intrinsic worth, but upon the law of supply and demand, it must necessarily decrease the value of this class of goods.
Be this as it may, the experiment has been tried with success, and of it is a matter of interest to our scientific inventors, we give the m thod by which they are produced. The principle is based upon that of separating the argillaceous clay slowly from its usual combination with silicic acid as it is found in nature overywhere, by bringing to bear upon it a subs:ance of stronger affnity for the acid. By this means small crystals of argiliucoous tarth are formed in the fiery liquid. and which, in the course of
further separation, grow slowly. Quantities of this fiery "mother liquor," as it is called, weighing from 30 to 50 pounds. woro kept in a fiery liquid state in M. Feil's glass factories for two or three weeks, and the experimenters were theretore enabled to test the matter thoronghly and conclusively. Oxid of lead wal used to separate the argillaceous earth from the silicic acid, and to accomplish this a mixture of equal parts of pure porcelain cial and red lead was made and placed in a fire-proof clay crucible, and exposed for weeks to an intense heat. It was then takely out and allowed to cool. When the crucible was destroyed, they found two strata above a glassy one; the glassy structure con tained the most beautiful clusters of round ciystals, which wero found hard enough to cut rock crystal, os even the very hardeat topaz.

Vegetable Ivoliy Plant.-The Colonies and India farnigh some interesting particulars respecting the so.called "vegetable ivory" which is now so nuch used as a substitute for ivory. The vegetable ivory used is the produce of a species of palm foupd wild in South America and Africa. Inside the bard shell is the white keruel, which, being softer than ivory and easily carved, as well of readily dyed, and being less brittle than bone, is largely used in making buttons, etc. The unripe frait consists of green sheel, containing a watery flaid, which, as the nut ripens, gradua!ly thickens, until it becomes a pulpy mass and eventue ally hardens into solid matter. The water, though bitter to the taste, is wholesome, and often render invaluable service to trave on ers who cannot otherwise obtain water to drink. The trees little which the fruit grows is unlike an ordinary palm, having littio or no stem, and drooping downwards, especially when the branches are over-weighted with the six or seven bunches of nuthe each contoining siz or seven seed, enclosed in thick, heary shelle and outer sheath, and weighing altogether from 20 to 24 pounds.

Ornamenting Glass.- A recent French invention for decotating glass objects so as to produce metallized effects consiste in substituting a reducing gas or vapor, such as hydrogen or common coal-gas, for the air by which it is now blown into moulds or shaped by hand. By this artifice, the ssits of the metallic oxides which have been added to the glass in the conrse of its manufacture, are reduced, and metallized effects more or leas varied and intense are produced, according to the compositioz of the glass. It is apparent chat the process is applicable to s wide range of glass manufacture. One of the most beantiful these efficts is produced by inclosing a thin laper of gold-les between two layers of glasa, and subsequently expanding the glass so as to break rp the gold into infinitesimal fragmentis which, remaining disseminated throughout its mass, produce moat brilliant spangled effect--like that presented by the mingun sabatance knowa as aventurine.

aRBEY'S CARVING ATTACHMENT FOR LATHES.

CARVITG ATMACHCRIT FOB IATERS.

The carving attachment shown in the engraving is from the shops of M. Arbey, of Paris, France. It is intended to be affixed to common lathes for the purpose of grooving, chanueling, and ornamenting columns, balusters, table legs, and similar articles of irregular shape. The carving attachment is placed on a travelling carriage, and supported on an adjustable cylindrical standard, to Which the balanced arms of the cutter shaft ars piroted, the latter being revolved by a pulley and belt connection with a travelling pulley of the cutter actuating shaft. The cutter shaft is movable on its bearings by a level handle, while the pulley is retained ty a clatch connection with a fixed brace of the weighted arms, and it is raised or lowered by means of a curved arm and gaide roller passing along the pattern of the form. . When a table log or other object is held in position of rest in the lathe, the cutting tool passes longitudinally along the same, and Works out in it a groove or chaunel. The dividing disk being turned for the distance of one subdivision after each channel is completed, the next, channel is then produced by the return motion of the carriage. By turning the object slowly in the lathe, simaltaneously with the revolving and traversing motion of the catter, holicoidal channels or grooves are formed. For grooving conical parts, the cutter shaft is guided along an inclined guide patt ra, or its axis is placed at an angle to the longitudinal axis of the lathe. The cutter adjusts itsell to the shape of the object, and carres, by its uniform forward mution, an ornamental groove of equal depth throughout the entire length. For the purpose of pearling or doing other ornamental carving, the cutting tool is guided to the work by a handle, while the object is turned in the regalar manner by the dividing disk, so that the pearls may be formed at uniform distances.

The adjustability of the cylindrical standard, in connection with the balanced catter shaft and handles, admits of the conVenient and accurate handling of the carving attachment, 80 that a large variety of ornamental work may be accomplished on this machine quictly and economically.

Asbagtitute for Porcelain Capguleg.-A German chemist *tates that ordinary crockery vessels may for most purposes be The instead of the expensive porcelain capsales of the laboratory. The glaze on some of the forimer is superior to that on most of the Ordinary porcelain vessels, and while they cannot be used for operations requiring the applicaton of direct heat, they will Whater well far making certain ferric, and other compounds Which readily stain or atteck the porcelain laboratory ware com. bo aly found. Moreover, the crockery wure can always readily ble obtained, while the porcelainware is not obtainable in suita-

Pathat autollatic metp-sustantnga hift.

An excellent contrivance for use in hotels, warehonses, \&c., to which was awarded a silver medal. The wood-cnt sh' ws the principle of the invention as applied to a sack lift or hoist. The advantages of this self-sustaining patent litt are obvious, as the raising and lowering of the cage or weight are effected entirely by the endless rope, while the danger of the cage or weight run. ning wild, a very frequent occurrence in lifts at present in use, is completely overcome. This feature renders it invaluable, as its working will allay the constant dread of acridente where lifte are necessary. It is impossible to over-estimate the value of the Automatic Lift, as its principle can be applied to every operation where the lowering of great wrights is required to be under the absolute control of the machine itself, and not of the operator. These lifts are strong and weil made, and applicable to a variety of purposes for saving time and labour. Messrs. Thos. Thomas \& Sons, of Merthyr Tydfil and Cardiff, Wales, Eugland, are the manufacturers.

Medicinal Effects of Onions.-A mother write to an English agricultural journal as fullows: "Twice a week-and it was generally when we had cold meat minced-1 gave the children a dinner which was hailed with delight and looked forward to. This whs a dish of boiled onions. Tho little ones knew not that they were taking the best medicine for expelling what most children suffer from-worms. Mine were kept free by, this remedy alone. It was a merical man who taught me to eat boiled onions as a specific for cold in the chest. He did not know at the time, till I told him, that they were good for anything else." The editor of the journal adds : "A case is now under our own observation in which a rheumatic patient, an extrtme sufferer, finds great relief from eating onions freels, either. cooked or raw." Dr. G. W. Balfour, in the Edinburgh Medicat: Journal, records three cases in which much benefit was afforded patients by the eating of raw onions in large quantitices. They ncted as a diuretic in each instance.
Sanitas.-Russian torpentine and water aro placed in hage earthenware jars, surrounded by hot water. Air is driven through the mixture in the jars continually for three hundred houra, the result being a decomposition of the turpentine, and the formation of a watery solation of the substance, to which Dr. Kingsett, the discoverer, has given the name of "Sanitas." A iter evaporation, the substance, as sold in tin cans, is a light brown powder, of a pleasant taste and odor, and capable in a very remarkablo degree of preventing or arresting potrefactive changes. This new disinfectant has been in use for some time in England, and is highly spoken of. It is said to have a plessant odor, is not poisonous, and does not injure clothing, furnitare, etc. For hourchold usee it would seem to be well adapted.

COMPARATIVE MORTALITY OF RICH AND POOR.

Dr. Drysdale, Senior Physician to the Metropolitan Free Hospital, called attention in the Social Science Convention, recently in session at Manchester, England, to the comprarative mortality of rich and poor. How came it, he asked, that in Great Britain, in the face of improvements in every direction in the domain of hygiene, there still remains a death-rate in our cities ranging from 30 down to 20 per 1,000 of the population annually? If we look to one city, London, for instance, we find that, with all the advances recently made in that wonderfully healthy city, the death-rate was actually 22.2 per 1,000 in 1856, and in 1876 a little higher, or 22.3. Many persons have asked, on reading such figures, "What is the use of medical science if it can effect nothing more than this ${ }^{\prime \prime}$. The real casse of the non-effect of the countless bygienic advances was indigence. Villerme, the French medical writer on hygiene, found some 30 years ago, that persons over 40, if in easy circumstances, had a death-rate of only 8.5 per 1,000 , whilst the mortality in a similar class among the poor was more than donble, or 18.7. He also showed that in Paris, there died, between the years 1817 and 1836, 1 inhabitant in 13 in the 13th arrondissement, chiefly inhabited by the poor, and but 1 in 63 in the second or ricl, quarter.

The most accurate statistics ever compiled on this subject are from the pen of C. Ansell, Jr., entitled "Statistics of Families of the Upper and Professional Classes," published in 1874. The author collected information concerning 48,044 children of the well-to-du classes in England and Wales, including members of the legal, clerical and medical professions, as well as that of the nobility and gentry. He found, from these inquiries, that in the first year of life, only 80.45 per 1,000 deaths occurred among the infants of the easy classes in this country, as against 149.49 among the children of the gerseral population. The death-rate then, of the children of the comfortable classes being 80 per 1,000 in their first year, we found it to be 240 per 1,000 in cities like Manchester and Liverpool, and as high as 300 in the poorer quarters of our cities, and in Berlin actually 500 . From one to five years of age, 46.84 children of the uppler classes die of 1,000 born, and as many as 113.69 in the general population. During the remainder of eally youth from 5 to 20 , the difference is not marked; but 65.47 per 1,000 deaths occur among the richer classes, as against 74.04 in the general puhlic. Between 20 and 40 there die among the richer classes, 125 per 1,000 , and 124 among the general population ; and between 40 and 60 there die 147 per 1,000 among the rich, against 168 among the general population. The general result of this calculation shows that the average age at death is, among the rich in England and Wales, 55 years, whilst it is not probably 35 among the artisan class : so that Mr. Ansell estimates that in one year there die in England and Wales, under the age of $60,368,179$ per ons, which figure should only have been 216,048 , if the population had all been in easy circumstances. Ttius some 142,000 deaths annually in England and Wales are due to indigence. Health is very imperfectly secured in the lower grades even of respectable citizenship. The public registers have demonstrated that mortality and diseases diminish with every rise in the scale of wealth.

Insect Stings.-The pain caused by the sting of a plant or inséct is the result of a certain amount of acid poison injected into the blood. The first thing to be done is to press the tube of a small key from side to side, to facillitate the expulsion of the sting and its accompanying poison. The sting, if left in the wound, should be carefully extracted, otherwise it will greatly. increase the local irritation. The poison of atings being acid, common sense points to the alkalies as the proper means of cure. Among the most easily procured remedies may be mentioned soft soap, liquor of ammonia (spirits of hartshorn), smelling salts, washing soda, quicklime made into a paste with water, the juice of an ouion, tobacco juice, chewed tobacco, bruised dock leaves, tomato juice, wood ashes, tobacco ashes, and carbonate of soda. If the sting be severe, rest and coolness should be added to the other remedies, more especially in the case of nervoas subjects. Nothing is so apt to make the poison active as heat, and nothing favors its activity less than cold. Let the body be kept cool and at rest and the activity of the poison will be reduced to a minimum. Any active exertion whereby the circulation is quickened will increase both painand swelling. If the swelling be severp, the part may be rubbed with sweet oil or a drop or two of laudanum. Stings in the eye, ear, mouth or throat sometimes lead to serious consequences. In such cases medical advice should always be sought as soon as possible.

Impiovement in Ships.-A nautical invention has recently been brought out in France. The invention consists in forming the upper portion of the bulwarks of ships, of loose sections, composed chitfly of hollow, thin metallic tubes, divided into compartments by diaphragnis, the sections to be about 12 feet long; these are to be divided into a number of couppartments of suitable form, and provided with projections on their uuder sides, so as to be fitted on to the place of the top rail of the bulwarks, serving as a substitute therefor. These sections, when immersed in the water, would form so many pontoons, and, being provided with cords and loops along their sides, would, in the event of the ship going down, be lifted out of their place by the action of the water. It is likewise proposed to construct the seats on the deck in the same manner, and nuderneath every seat, and along the entire length of the bulwarks, other floating tubes may be provided. In the case of sea-going vessels, the bulwark tubes are fitted with holes, rings or slots, so that in case of foundering they can at once be joined together either before or after taking to the water.
The Rain Triee.-Some travellers in Columbia, South America, in traversing an arid and desolate tract of country, were struck with a strange contrast. On one side there was a b.irren desert ; on the other a rich and luxuriant vegetation. The French Consal at Loetto, Mexico, says that this remarkable contrast is due to the presence of the "Tamai caspi," or the rain tree. This tree grows to the height of 60 feet, with a diameter of three feet at its base, pissesses the power of strongly attracting, absorbing and condensing the humidity of the atmosphere. Water is always to be seen dripping from its trunk in such quantity as to convert the surrounding soil into a veritable marsh. It is in summer especially, when the rivers are nearly dried up, that the tree is most active. If this admirable quality of the rain tree was atilized in the arid regions near the equator, the people there, living in misery on account of the unproductive soil, would derive grest advantages from its introduction, as well as the people of more favored countries where the climate is dry and drouths are frequent.

Chlorate of Potash from the Dead Sea. - Chemical analysis having long ago shown that the waters of the Dead Ses in Palestine are rich in chlorate of potash, a company has beed formed, and already commenced operations, to extract this salt from its waters. It is stated that in this way chlorate of potash can be obtained 30 per cent. cheaper than by the cheapest process thus far known ; and as there is an increasing demand for thi salt, it is a safe and profitable investment. In order to save fuel, which is scarce in those regions, the works are kept in the most active operation during the dry season, when the water in low and the river Jordan does not dilute them much, the water level varying considerably, and consequently the concentration This body of water, of course, contains the soluble ingredients from the heights surrounding the whole water-shed, of which the rains have made a lye, and solar evapuration has concentrated in that sea.

Care of the Teeth.-Rare, indeed, do we find a person of 30 years of age with a sound set of teeth. Fur more often do ${ }^{\text {we }}$ find young lads and giris of 10 to 16 years of age whose teeth aro mere shells of decaying tissue, rotting away with almost visible rapidity, depositories of decaying particles of food, and the source of contiminating elements which deteriorate digestion, and offensive odors which contaminate the breath. In connection with this, it is said that there are 12,000 dentists in the United States, who annnally extract $20,000,000$ teeth, manufacture aul insert $3,000,000$ artificial teeth, and consume about three tons of pure gold, to say nothing of the enormous quantity of mercury, tin, silver and other metals used as "fillings" for carious teeth We have this upon the authority of Good Words, and can only add that judging from the vulcanized rubber required for gums and plates, the rubber-tree cultivation nust needs be assiduons.

A New Therapeutic agent.-A new method of tresting cancerous growths, tumors, etc., consists in suhjecting the parto to a striam of hot, dry air. This is proposed and has beell succeasfully applied by Dr. G. A. Keyworth, of England. By mean of a foot-bellows he caused air to pass through a glass vessel containing calcic chloride, then through a heated iron tube, and thence directed the hot, dry air against the surface of a cuncering sore. The treatment was continued for an hour, the effect being to relieve the pain and cause the parts heated to shrink and aill up very considerably. It is believed that this new method win prove valuable when proper appliances are employed to

Painless Death.-In one of his lectures Prof. Tydall spoke of the great probability that entire absence of pain accompanied denth by lightning. It is popularly supposed that an impression made by the nurves, a blow or puncture is felt at the precise instant it is inflicted, but such is not the fact. The seat of senisation is the brain, and intelligence of the injury must be transmitted to this organ through a certain set of nerves, acting as telegraph wires, before we become conscious of pain. This transmission or telegraphing from the seat of injury to the brain takes time, longer or shorter, according to the distance of the injured pait from the brain, and according to the susceptibility of the particular nervous system operated on. Helmholtz, by experiments, determined the velocity of this nervous transmission in the frog to be a little over 85 feet per second, in the whale about 100 feet per second, and in man at an average of 200 feet per thecond. If, for instance, a whale 59 fect long were wounded in the tail, it would not become conscious of the injury until half a second after the wound had been inflicted. But this is not the only ingredient in the delay. Is is believed that in every act of consciousness a determined molecular arrangement of the brain takes place, so that, besides the interval of transmission, a or further time is necessary for the brain to put itself in order or its moleculars to take up the motions or positions necessary for the completion of consciousness. Helmholtz considers that one-tenth of a second is required for this purpose. Therefore, in the case of a whale, one second and one-teuth would elapse before an impression made apon its caudal nerves could be responded to by a whale 50 feet long.
Discovery of a Colossal Statue at Gaza.-At Gaza, on the 6th ult., an Arab was quarrying stone at a place about for and a half miles distant from the town, and unearthed a marble figure of a man. The following are the dimensions given by an Arab eye-witness, namely: "Three feet from top of head to end of beard; 27 inches from ear to ear ; fron top of forehead to mouth, $13 \frac{1}{2}$ inches; from shonlder to shoulder, 54 inches; from crown of head to waist, 81 inches; and 54 inches the circumference of the neck; the total height is 15 feet. The hair hangs in long ringlets down upon the shoulders, and the iseard is long, indicating a man of venerable age. The right arm the oken in half, while the loft arm is crossed over the breast to the right shoulder, where the hand is hidden by the drapery of a thoak covering the shoulders." I presume the statue is nude, theugh this fact is not stated. There is no inscription either on the figare or on the pedestal, and the latter is a huge block, carved in one piece with the god. It was found in a recumbent position, buried in the sand upon the top of a hill near the sea, Itsidently removed from its original site, which is unknown. Its estimated weight is 12,000 pounds. The Pasha of Jerusalem and ordered a guard to watch this interesting relic of ancient art, and prevent any injury by the tanatics of Gaza. Judging merely lem the "long hair and long beard," and the position of the left hand, 1 should be disposed to assume that it is an Assyrian monument commemorative of their invasion of Palestine. But tical premature to :onjecture until further and more precise particulars can he had from (${ }^{\text {Haza..- Jaffa Correspondence of } \boldsymbol{N} \text {. } Y \text {. }}$ rala.
Pliooene Man.-_Prof. J. D. Whitney has lately published of interesting memoir summarizing the results of the discoverips of the Geological Survey of California respecting the antiquity of the human race. His memoir is entitled "Human Remains and Works of Art of the Gravel Series," and the m re important of disconclusions are given below. Prof. Whitney affirms that the discoveries and investigations of the California survey have de. monstrated the clear and unequivocal proof, beyond any possiWith of doubt or cavil, of the contemporary existence of man - ith the mastodon, fossil elephant, and other extinct species at hery remote epoch as compared with anything recorded in tion ory. That man existed in California previous to the cessathe of volcanic activity in the Sierra Nevala, to the epoch of erogreatest extension of the glaciers in that region, and to the
the of the present river canons and valleys, at a time when the flora of the present river canons and valleys, at a time when When the topographical features of the State were extremely unise those exhibited by the present surface. That the discoveries present Califia and elsewhere (notably in Portugal and India), present a strong body of evidence going to prove tho existence, primitan immensely long period, of the human race, in its primitive condition. That, so far as we know, there is no evience of the existence of any primordial stock from which man thuy have been derived, so far back, at least as the Pliocene. Man, and reeent formations.

The Observation of the Circulation of the Blood in living creatures has always been regarded as the most interesting and instru tive sight that the microscope could afford. The delicate membrane of the foot of the frog has hitherto afforded the microscopist the most convenient subject for this beautiful demonstration of Harvey's discovery. Perkinje's experiment, by which an observer is enabled to observe the circulation in his own retiual blood-vessels, has hitherto been the only method known of actually showing the circulation of the blood in the human subj ct. Dr. Huber, of Greifswald, it may interest our readers to know, has lately described a simple experiment by which it is possible for an olsserver to see the circulation of the blood in the blood-vessels of another person.
Dr. Huber fixes the head of the subject to be examined in a frame not unlike that used by photographers, on which is fixed a holder for the microscope and lamp. He then draws down the lower lip of the subject upon the stage of the instrument, with its delicate inner surface upward for inspection, throws a strong light on the same with a condenser, and focuses the microacope, provided with a low-power objective, down upon the delicate net-work of blood-vessels, which can be seen there even with the naked eye. By this simple means the circulation can be observed with the greatest ease and perfection. The value of this novel and beautiful experiment in the study of the abnormal conditions of the blood, presented in various diseases, it is anticipa ${ }^{+}$ed, will be very great, and important results are expected to flow from it. Huber distinguishes his new process by the terrific name of " cheiloangioscopy.'

Spurious Coloring of Wine. - Mix together equal parts of diacetate of lead and the wine to be tested, well shake and filter. If the wine be pure the filtrate will be quite clear, but if colored with aniline it will be more or less colored, according to the amount of coloring present. Another method is to add a solution of caustic potash, in sutficient quantity to neutralize the acid. If the wine be pure it will first produce a bright red coloration, then after a short time turn to bottle-green, and then to a brownish green, but no precipitate is formed; but if the wine has been artificially colored the following colorations will be produced :

Wine colored with	Color produced
Elderberries	. P urple
Logwood.	. Reddish Purple
Mulberries Parplish
Beetroot	Red
Litmus	Light Violet

A good test for logwood is to evaporate the wine to dryness, and then add hot water with a little alum, which will produce a blue coloration if the wine has been colored, but will have no effect if the wine be pure.-English Mcchanic.

Silvering Mirrors.- An improvement in silvering mirrors, by which excellent results are obtained, and which at the same time spares the workmen the danger of exposure to the effect of mercurial vapors, has just been accorded a prize of 2,500 franos by the French Academy. The inventor is M. Lenoir, and his procudure is substantially as follows: The glass is first silvered by means of tartaric acid and ammoniacal nitrate of silver, and then exposed to the action of a weak solution of double cyanide of mercury and potassium. When the mercurial solution has spread uniformly over the surface, fine zinc dost is powdered over it, which promptly reduces the quicksilver, and permits it to form a white and brilliant silver amalgam, adhering strongly to the glass, and which is affirmed to be free from the yellowish tint of ordinary silvered glass, and not easily affected by sulphurous emanations.

Prize for Essay on Diptieria. - The Empress of Germany has offered a prize of 2,000 marks ($\$ 500$) for the best essay on diptheria. The conditions are that the writer is to bring forward important now facts as to the essential nature (das Weson) of the disease, especially with regard to the infectious matter which propagates it, its dissemination, and the means of arresting its progress. The essays inay be written in German, English or French, and must be sent to Prof. v. Langenbeek, Berlin, N. W. 3 Roonstrasse, on or before December 15 th, 1880 . The committee which will award the prize consists of Professor Klebs of Prague; Liebreich and Virchow of Berlin, voe Nageli and Oertel of Munich, and Thiersch of Ieipsic. Each essay is to have a motto corresponding to a similar motto on a sealed envelope containing the author's name.

Fig. 2.-Portable Mill.

FRENCH HORIZONTAL FLOUR ImLS.

The mills exhibited at the late Exhibition in Paris by Mesars. Bresson, Fanchon \& Co., of Orleans, are novel in several particulars. The stones are arrauged so that they lie parallel to each other, and they are arranged so that they may yield when subjected to sudden jars or shocks. This avoids serious damage to the mill, and prevents the heating of the stones and grain. The grain is drawn in through the eye of the stone, and equally distributed between the stoues by an apparatus which also furnishes cool air for the spaces between the stones, which cools both the stones and the grain. A cast iron case incloses the stones, leaving an air space all around them, in which air currents are produced by a blower at the top of the casing. These mills are provided with conveniences for removing and replacing the prones, and they are compact and efficient.
The staticuary milis shown in Fig. 1 are supported by a strong cast iron frame, and the portable mills, Fig. 2, are supported by a substantial waggon frame. The bolting box is connected with the mill and has no special shafting, but takes its power directly from the shaft that drives the stones.-Scientific American.

We are glad to believe, says the American Architect, that Lord Dufferin's scheme for the use of Niagara Falls is more likely to be carried out than Dr. Siemuens's or Sir Willian Thompson's. The joint commis ion of the State of New York and the Dominion of Canada met on the ground not long ago to discuss the proposition to which we have before referred, for so-curing the lands about the falls to be maintained by the two governments as a perpetual park, free from private encroachment. The commissioners had apparently ue difficulty in deciding that the grounds needed the care of the governments to protect the scenery from disfigurement or destruction; and find themselves substantially agreed, we understand, as to the unanner in which the thing should be done. It is expectud that they will meet again in November, and render a decisive roport, with a scheme for carrying out the project. This action comes none too coon. The degradation of the surroundings warrants the New York Times in saying that already "the superb adjuncts of the fall scenery, on both the American and Canadian sides of the chasm, have been robbed of much of their original beauty and grandeur. Where picturesque groves once stood, unsightly mill-sheds and rickety drinking booths now appear, On the Canadian side, only a few stunted trees remains to remind the visitor of the old-time forests. Year after year the change goes on, the rocks are covered with the signs of quack medicine men, overy prominent outlook is crowned with the booth of some vagabond peddler, and the grand old trees, once the pride of the neighborhood, are being cut down to build mill-races or supply with fuel some petty factory." The vexatious exactions of people in possession of the approaches to the falls have done as much as anything to win the public mind to the idea of protection ; buta atill more seriotas argument is the need of securing the falls against the ravages of speculators, who would ruin them for the saise of mechanical uses, or of savants who itch to convert them to some meientific toy.

Fig. 1.-Stationary Mill.

JAPANESE PAPER.

Many varieties of paper are made in Japan, and all from bark of trees. The leest, and that most generally in use, is prob duced from a shrub called there Kozou (Broussonetia papyrifora), which grows to a height of about two metres and a half. It was introduced from China, and is now cultivated throughout Japan for this express purpose. It is ordinarily planted as s sort of hedge along the fields, the roots being about two feet aparit After a short time the branches interlace and form a very efficient protection against cattle. Under favorable conditions it sende out shoots three metres long each year, and it is said to produce as much as 1,800 kilos. of bark per hectare annually. The mand ufacture of the paper is conducted as follows: The stem and is branches are laid in water for a fortnight, and if the water the stagnant the bark becomes gradually detached; if runni"g, the outer coating, which is useless, is carried away. The interior layer is then peeled off in strips, combed, washed and dried, and put away if not to be used immediately. This is the raw materiah and to convert it into paper it is suljected tor three or four hours to the action of hot water and steam, which renders it soft; then it is pounded and vigorously beaten with knotty sticks. A sort of pulp is thus produoed, which can be made as fine as is requisite. It is mixed with water in a vat, and taken out in the mould ol the paper to be made. The Kozou paper is very strong, particularly in the direction in which the fibre extends. Owing to this property, the Japanese can employ their paper in many way unknown in Europe. For instance, they use it instead of glase for their windows, banduges for wounds, pocket-handkerchifish cords, thread, etc. When a still stronger paper is required, the mould is ayain dipped in the pulp, but in a direction at right angles with the first operation, so as to have the fibre crossed, when it becomer extremely strong. This process is nometime repeated three or four times antil a product is obtained flich is used for covering umbrellas, packing goods, making cloaks fof used for covering umbrellas, packing goods, making cloak mado travellers, etc. In these cases the paper is oiled and thus made imperneable to moisture.

INDEX T0 V0LUME VII.

AGRICULTURE.

A Mine of Wealth to every nation..33, 65 Engilsh Agricultural Implements (llinsirated) Hay Forks.
Farm Houses (illistrated). .. 110
New Hay Press (Illustıated)

ARCHITECIURAL DESIGNS.

Old Homes made new.

Deslons

Elizabethan Fire-P،ace
and Mantle Plece. 89
St. Louis Gatu, Quebre.....................
Dangerous Honses.
Designs
The Kent Gate, Quebec \qquad
New Court House, Hamilton.
Asphatie and Timber Floors
Firt Prof Parilitions.
Artistic Brick work
Paper Dome-Descriptiou of ope...... an Obvervatory
Lightning Rods, not insuiated.......... 293
Sanltary Sclence and Architect's responsibilities in relation therel
321
An Architect's Letter on the Pro fession.
Design for a cottage :ind church...

ARTB, FIFE.

Mosaics

7
Papler Maché
20
Decorating Tin Surfaces
Bronze Vases.
36, 37
Chimney Pitce Exhibli at Paris Ex-
bibltion.
53
Inlaying, Imitalion of 189
Drawings, How to Fix......................... 188

CARPENTRY AND BUIDDING.

Designs
The Steel Square, lis uses $.82,167, \quad 21$ Balusters and Newels (lllusirated)..... 64 Apparatus for Meásuring Raflers.
Portable Flooring, Fluted 86
Portable Flooring, Fluted................. 118
Door Fastenings, Improvements in.. 109
Bricks, Flint
roved.
158
Planes, Improved
179
Cheap Cisterns
2. 0

How to Giind Edye Tools
11
Centring Gaige
256

Circular Gnage

Improved Try-Sguares.
310
New Levelling Device. 338

Artistic Brickwork
26

CARVERS' AND GILDERS' WORK.

Composilion Ornaments................. 19
Gilders' Tools
Receipts
48
narvings, Protection of.
Gllder's Work
Example of French Carving.
Gilt Lettering.
112 209

Carver's Squeezing Wax
Gildiug on Steel
Gllaing

DOMESTIC.

How th sit Skin. Imporiance of a Clean. Health and Talent.
Gond Temper, Advantage of.
Cheerfulness at Meals.
Bread, the Philonophy of Making..... Oatmeal, How forat
Phogem in the Throat
Carpet Beetles, How to destros.
Lamps, Waste Light in...................... Burning Green Wood, Waste of........ Hints for House Cleaners.
The Prime of Life
Danser of Hies in the E..................
the Ear.
Pre Sclence of Life
Hygienic Biscuits.
Diphliseria, How spre:ad.
Poultices, How to inake
S) rains, Treatment of. \qquad
Ventilation of Cupboatils.
Hair, R-ceipt to plevent falliu.....

Conkery

Piann, How to keep in order
Tue Use and Abuse of Tra.
Onld ns, Raw, as a Diuretic.
Food ton Easily Digested.
Sanltary Effict of House Wurk on Woman
Diphtheria Spread by Kisses
Borax as a Preserv tive.
Corks, How to make water tight.....

The Art of Cooking.
g...

Rheumntism, Cooked Celery grod for. 139
Facts of Value to the House Wife 159 Windor Gardening-D.sign for a

Stand.
171
Spring Bed Buttom................................... 179
Dle, Notis in regard to.................... 102
Fond, A Theory in regird to............. 19:2
Alum, dotes on breaul...................... 192
Oatmeal and Milk Diet.................... 109
To remove Grease and Paint Spots... 219
1R. medy for Whooping Cough.......... 222
Remarks on Diet.
Kissing Pels, 4 cause of Sore Throat.. 22. ${ }^{2}$
R-st for Heariaches........................ 223
Tue Morning Congh.
2.

How to Wash Silks..................................... $22: 3$
Things Worth Remembering.
Alum in Bread.
251

Milk and Lime Water ia Nervous

 DiseasesCure for Poison Oak....................... 25 . 25
Constipation.................................. 25
How Coffee is Adulterated............... 2:5
Pou'tices, How to make................... 255
To Ciean Sitk....... 255
Fiod and Digestion......................... 26i0
Light and Reading..................................... 27!

Epidemies.
 279

To Preserve Natural Leaves... 282
Preserving Insects....... 282
Cold Feet and Sleeplessness............. 287
The Eifects of Drinking Cuffee......... 287
Hearing and how tu keep it............. 287
Typhoid Fever, How it may be propoyated.
Skin, How to harden.
307
Winter Bıuquets.................... 318
Onions, Medicinal Effect of 918

EDUCATION.

Educational Notes.
117
The necesily of Practical teariling and Practical Tralning in Public schools. 257
Drawing in public Schouls................. 800
Jrawing as the Language of Me-
chanics.. 82
Technion Education in sweden
and Russla 331, 343
Techmical required la public schools $35: 3$

ELECTRIC LIGHT AND TELEGRAPH.

Fahrig's Pian.

20
Esectuc Light in Bristol Cathedral...................... 50
The Rapialf Light............................ 56
Autonraphic Telegrapl...................... 55

Elucho Gildins................................ 74
Engiaving by Electricily................. 84
Dangerous to the Nervou* Bystem... 125
Tel.graphing wilhout Wires............. 125
Electric Spatk Pell.......................... 125
Transmitting Power by E.ectricity.. 142
Electric L•m|'s......... 182
Electric Brevif s..................................... 185
Electric Lhmp- Sieluens \& Holnkes.. 189
Car Signal, Electric...... 185
Submarine Telephone..................... 202
Telegrapti, The Writiuy.................... 21)2
216

Phonograph, Sixpenny Toys
Phonograph, Sixpenny Toys............ 215
Electric Lignt, Enormous Power re-
quired for.
263
Gas and Electricity.......................... 283
The Horograph............................... 298
Printing Carbon Photographs.......... 297
Engraving, E ectro-Photo................ 297
E.lipsngraph, Simple....................... 803

The Telephone, An Instrument of
the Present
268
Electric Light Generator, Westou's.. 819

ENGINEERING, CIVIL \& MECHANICAI.

Tramway Rail Experiment.............
Ship Canal, B Iyiat...........................
Sieel Stip-, The "Iris'...................... 3
Excavator used in Sbip Caisul at
Obent...................................... 8
Iron, Effect of Vibraifon upon................................ 28
Steel, The Manulacture of................ 47
Steel, Compression in Casting.......... 48
Bullers, Washing out in Hot Water.. 48
" Lining tor............................ 48
Manner of Repuiriug............ 88
Of Steel 88
Low Water in................... 27
Iron, Loss of, hy Rusting.................... 48
Nickel, Nutes on...................................... 48
Drawbridge, New Systea of........... 107
In proved Car-Coupler..................... 108
Saw, Gulde for Ciroular....................... 109
l'wes for Bridges................................ 109
Emery Wherls, How to Make......... 110
Steam Wheel, Thomas'................... 118
Welding, The Philosopliy of............. 120
Castings, Solidlty In........................ 121
Strel, A New Test for....................... 121
Flanges steel Tire, Method tor Harde- 118
\qquad
Holsts, Double Safety 11
Alloys, Composition \& Working of.... 116
Iron, I'rotecting from Rust.............. 117
Soft Bolder to Brass Work............... 210
Amateur Mechanjcs, Rotary Cutlers
8
3387

 48

8

120

Mateur Mechanics, Rotary Cutters
Sand Moulds, Machinery for Mating 213Bessemer Steel for Cutlery 219Warnling to Locomolive Engineers 210Bollers, Care of.of......210Boilers, Care of......284
Moulds and Cares for Casting Steel... 238
Handsaw, How to File and Se 238
Coating Lead Pipes
Distinguishing I ron and Steel Tool:...................................To prevent Corrosion216
To make Inscriptionson Steel Touls..246
To make holes in hard steel.Lubricates
Cement, A new Steam Pioof.
\qquadCements for Cast Iron....Silde-rest, easily madeІ......Cuting Threads in Plpes.Casting MeialLiaul............Compressling Liquid MetalIs Condensed Steam Explosive?Centrifugal force of Fly-wheels.Uilising Iron and Steel shearings.Babbitt Anti-friction Metal
.........246247217Babbit Anti-miction Metal.247248256

\qquad
Wrenches, Rouse's Improved ood unditon.To temper Drills and Gravers273
Welding Cant Iron251250251Cast Irou, Peculiar Behaviour of.27
To prevint Explosion143
143Britg., Robinsou's Paleut.
Extaut Sceam, utilising the use of 145
Boiler Fires, How to Minage.95
154Welding of Metals at low tempe-
rature. 154
15To Chill cast ron wery tur
Shear-, Sisles Improvid Power...... 55
Sted Faced Iron Plates 162
Shafting, fratnsmitting Power 105
Concrete, How to make165
Fire Boxes, Stephensonsed Plates177
Brick making Machine 175
Iron Curlous Facis about 185
The Suspension Bridge betweenBrooklyn and New York...224Transmission of Power by Belting..The Rallway of the Future..........Cements. Mastic and Concretes...230
Submarine Engineering. 271Brass CusloBrass Castings from old MetalsBolld Emery Wheels.Workins Steam at Ligbt PressureSteel-faced Iron PlatesSoft Steel ustd for tin PlatesA new Cut-offIron into Steel without Fusion274274
252282
283283
283
Various Useful Receipts.Mitreing Machine, Improved..Belgian Furniture. Illustrated.Fret-wort How to polist
w to polish..... 88,283
FURNITURE DESIGNS ATD BECEIPT8
Cabinet Makers' Recelpts. 105
To Trantfer Engravings. 105
Veneers, Dyed 105
French Varnish, How 10 Make 105
Scrapers, Cut steel plate for. 105
Ebony, Imitation of 106
Satinwood Stains 106Whitewood do106
Stsine, Various 106
An Elegant Cabinet. 170
Rosewood, Imitatiou of 188
Designs 208, 233 208, 233
Furbiture and Decoration 802
HORSE BHOEING
To Prevent Interfering82
Insir ctlons ot出
Horse Shoeing, Notes on............. 80, 113
A Spring Shoe............................ 272
Horse Shoe Pads 272
Improvements tu Tue Welghts for Horses 340
SACHINERY.
Boilers, Lining for23
paratus25
Amatenr Mechanics: The Lathe.. $2 t$
Planting Machine for Granite 108
Joint and Mitre Planer 146
Tree Feller, Sinyth's. 148
Boi.ers, Apparatus for feeding 1×5
The Larest $2 \div 6$
Falence and its Manufacture..... 244, 245 44, 245
Roiary Engine, A Novel
Surface Planer witb Friction Fued. 273
Aaw Tonth, Schley's Improved 47
Agricultural Implements
Drilling Machine, English Rudial.81
Drrack Portable Balancra +d... Derrick Portable Batanced 217
Piston Packing, Improved 248
Stuam Engine, Automatic 308and Slide Rests.
The Britannia Company's Lathe321
Hoisting by Hot Air 336
Steam pump 368
Steam tramway 362
Simple high presure trap 353
New stile of turbine whed $3 \overline{3} 9$
The flexible shaft 36
Currosion of boters by taity maters 370
Mchelus.370
373
3
374Agricultural implements, Englist....
376
Abbey's carving altachment forlathes................................ 381Patent automalic self-sustaining lift 381ft 381
Portable millFlles, A Treatise onMachlue Construction \& Diawing.....$\begin{array}{r}1 \\ \hline . \\ \hline\end{array}$
"
186. 126186,190
220$\begin{array}{r}7 . .220 \\ 252 \\ \hline\end{array}$
Marking Tools by Etching 125
Steel, To polish
125
Belts, Wire 143
Band Saw 145
Gang Edgers, Improved 141
Coating Metals with Platinum 142
Brass Goods, How to culor and finish142
150
Filing, The best height for workmen 150
Wrought Iron and Steel Shearings.. 150To make Iron tate a Brigitt Polishlike Steel
155
Malleable Brass 155
To chill Cast Iron very hard 155
Athateur Mechanics : Tools for
Chasing and Knurling.. 155
Nickel Plating Solution 168
Razor Strop, How to make 168
Drills, How to Temper 168
Silvering Metals, simple mode of.. 169
British vs. American Tools 173
Amateur Mechanics: Centreing and Steadying Tools 174
Twist Drills, Grinding of 181
Lathe Chuck-plates 183

Soap, Scientific Reliance on.
Bpinal Cord. Remarkable case
Tobacco, Brain Polsoned by
Tobacco, Brain Poisoned by
Bad Temper and Insanity. Whooping Cougt, Carbolate of Boda for.
Rheumatism
Blood, Spectroscopic test of, while in
the human body....................
128 Rheumatism, Bee Stings tie cure of.. 143 Fevers, A new Theory Concerning... The Pulse in Health and Disease.. Diphtheria, Germs in Disease of.. Hot Water versus Fever Germs... The Hypophosphites of Sulphur in Erysipelas.
Eucalyptus for a cold in the head....
New Antiseptic Salt
Polsoning by Strychuine.......................
Antidote to Poison
Chemical Tests. \qquad
Erysipelas from Sewer Gas.
Lime Juice for Rheumatism.

MISCELLANEOUS.

Chess Player, The Mecbanical. Poison for Rats and Mice.
Milking Machine
Ivory, Vegetable
The Great Hungarian Wine Cask..
Room for Invention.
Copying Penctis, Improved.
The Population of the World
Type Made of Glas.
Self-Made Men, Louis Cotê.
Flying Machines.
Why are we Right-Handed?
Broz-Binding, India Rubber for....
Paper, Wood Pulp for..
Feathers, How to Bleach
Bricks, Paper.
Rヶts, A Novel Way of Desiroying.
Petroleum Lampblack.
Torpedo Launch, The Herreshoff.
Morphine Drinking.
Notes on the Canadian Tariff
English Manufactures and Foreign Capitalists

The
A Mountain Sinking.
162
A Mountain Sinking..
162
Bronzing Wood, Leather, Paper, \&e................. 168
Straw, Lumber made from
171
Improvements in Fire-Escapes..
Africans, Wbite
Wood, Incombustible
Sailing on Rails. 286
.................... 307
On How to take........ 31
Gelatine in Gum, Peculiar action of
Water Gas as Fuel.
A Wonderful Clock. Illustrated.
The Declive in Prices.
The End of the World
A Plague of Moths.
d.............................

The Origin ol Macbine-Made Pens.
Discovery of a Remarkable Cave..
A Year's Railway Acclidents
Diverting the Oxus from its Present Course
Expensiveness of English Patents..
Splitting Paper. How to do it....
New Copying Process.
Rules and Symbols for Correctiog Printers' Proofs. Illustrated...
Poison for Rats and Mice
Artesian Wells in Australla......
Reaping Twenty Miles of Wheat.
Single Story Cotton Mills.
A New Surf Boat. Illustrated.
The Universal Bath. Illustrated.
A Perfect Marking Ink.
k....................

Antidote to Poison Ivy.....................
\qquad tor
Address to our readers.
Books of olden time.

An extraordinary war ship

Borax for salting butter
Dete:tion of fictitlous butter
Japanese Cement.
Quicksilver alarm
866 866

The rallroad up Mount Vesuvius.
The microscope in the witness box. Mirror photographs 371

Mirror photographs ...
An incredible invention
A remarkable railroad
A race with thumbs on their feet
Heating and ventilating rallway cars
French electric jewelry
Ornamenting glas
Comparative mortality of rich and puor
The rain tree
Care of the teeth
Spurious coloring of wine................ 383
Painless death.
Pilocene man \qquad
Discovery of a colossal statute at Gaza
383

PAINTERS WORK, GLASS STALINNG.

Putty for Repairing broken Walls..... 27
Kalsomining and Distemper............ 51
Whitewash, how to Make................ 5
Artists Canvas.
.72, 267
Decoration of stairs and Ceflings...... 138
Treatment of Wall paper for stains 137
Varnish for replacing Turpentine....
soil paints.
176
Varnishes, polishes, stains and va-
rious rectipts
206. 207

Water Colors, imperishable.......................... 20
Cariage Painting, priming, rough
stuff, putty-fulshin:, coloring,
atriping, giluing-varnishes, \&c......
Paint, process of preparing sul-
phate of Baryta for.
\qquad
Turpentine Varnish........................ 234
A new Paint for plastered Walls...... 282
Painting on Word......................... 275
Glazing, a new Process of............... 300
Principles of Glass staining 330
A voltaic Pencil............................... 339
Arsento in water colors................... 839

POTIERY FAIENCE.

How to paint in Olls........................ 6
Examples of Anclent Cyprus............. 84
Falence................................... 101, 804
Uuglased Pottery, how to print...... 215

RECELPTS.

Ink, Indelible tor Marking............... 26
Plaster of Paris, how to make for
Carving and Turning........... 3
Cements, Marble.
59
Tinted Paper..
59
Mother of Pear!, how to imitate....... 83
To Dye Oak Black.....................
Cement for Acquariums.
Indian Ink, bow to make
Looking Glasses how to repuir

Coment, insoluble
stains for Wood
Cement, for Sealing Bottles.
To make Green Ink
Bottles.
Writing lnk, indestructable
Halr, Recelpt to prevent Falling
Ink, an Indellible and cancelling 185, 985
Grease Spots in Clothing, how to
Remove
169
Aponges, bow to Clean............................. 169
Wax Pencils, how to make............ 169
Cement for Fixing Metal Letters on Brass.

169
Brass...................................... 185
A Fast Cement........................... 189
Red Fire.
Red Fire.
203

Ink, Indelible, for Zinc Labels......... 208
To Remove Fusil Oil and Clarify liquor.

234
Cement Mahogany Color........................ 234
Universal Cement 234
Ink, black .. 247
Cement for Lealher........................... 110
Mill for Grinding Maize...................... 178
Carriage Tops, Improved.................. 178
Bone and Muscle............................ 184
Ivory, Initation of Carved............... 188
Drawings, how to fix......................... 188
Coal, the mysterles of...................... 188
Brine as a Preservalive.................. 208
Chloride of Lime as an Insecticide..... 208
Brain Work and Skull Growth.......... 214
Consumpition of Rubber.................... 218
Gigantic Trees. 222
Fern Drying and Mounting.............. 222
Is British Indusiry on the Wane?
Will a Protective Tariff Arrest the Cause? 225
Warman's Upright Pianoforte Action 231
Lead Explosions............................... 234
Speed of Elevators................................. 234
To Bronze a Plaster Statue.............. 234
A Novel Bird Box 241
Cutting Glass.. 240
Plaster Casts, how to take.... 243
Spontaneous Combustion and Re-
markable Cases..................... 24
The Eddystone Lixhtbouse 262
The Worlds Commerce...................... 263
A Powerful Spectroscone................... 267
The Hellograpn.................................... 267
The Likeness of the late Prince Imperial.

269
The Ble-sing of Labwr........................ 271
Patent Knife Cleaner........................... 272
Origin of Kerosene............................... 272
Spiders Killing Trout......................... 273
Pianoforte Steel Wire Annealing....... 271
Plaster Figures, how to treat............. 275
Polishing Horn.................................... 275
Enamel for Porcelain Kettles............. 282
Balanced Field Gate Posts.................. 342
Gutta-Percha Sol vant............................. 282
Glues to Resist Water...................... 273
Cement for Bisulphide Prisms.......... 282
Artificial Stone, a new process............ 282
New Dye.. 282
To Cut a Hole In G!ass...................... 282
Cement, Insoluble for Bottles........... 805
Gold and Silver, Imitation of............. $\mathbf{8 1 0}$
Dyeing, a new process....................... 315
Palnting Flowers upon Mirrors......... 847
Good Mucilage.................................. 346
Cement Floors for Cellars................. 346
Lithographic Ink............................... 846
santitary matisas and plomiberg WOBR.

Ventilators for Stove Pipes and Rooms.
Ventilation for Bedrooms.................. 12
Filtration of Drinking Water................ 12
House Drainage, Official Regulations 12
Essay - The Removal of Sewage, \&c., by J. W. Hughes.70

Sewer Gas, Burning of...................... 88
Illustration of Bad Plumbers' Work.. 144
Sewage Contamination of, Test for .. 158
House, to Poison a............................ 172
A Warning to Plumbers'......................... 172
Furnaces, Ventilation to........................ 173
Sewage, Utilization of a Fallure......... 178
Roofing Tongs................................... 178
Bad Plumbing, Bad Tile-Drain Laying, Bad Sanitary Arrangements Inside of Houses is the Principal cause of Zymotic Diseases.

193
Poisoned Air in Dwellings..................... 227
Painting Walls, Hints on.. 226
Draingge, Reporinf Board of Hpalth, Ma-sachilletts, on.Ventilation, Ingenious.810
Ventilation 819
A Montreal Plumber's Views. 321
mportance of Testing Water Pipes and Pipe Joints 332
A few Words to young Sieam Filters 334
Erysipeias from Sewer Gas 839
884
Cleaning and Tinning Metal Platem 886
8CIEMSIITO.
Jelly Fisbes Inebriuted.
Deep Sea §oundiugs.
Mars Satellites
Mans, Life in
$\begin{array}{ll}\text { Mars, Life In } & 46 \\ \text { Arsenious Acid, Volatization of...... } 27\end{array}$
Smoke Burning Furnace.
Leatherold
Stridulation, New Notes on
Coloring Metals.
Pole, Proposed Overland Expioration
Glass Tougliened, Caution against using.
Spontaneous Combustion................
Color Binduesa, remedy for.
esa, remedy for...............
Dynamite and Water, danger of.....
Poisonous Tin Plate
Action of Water and sult Solutions in Zinc.
Lead as Iodate.
Tue Rings of Newton
Man's Age
Life Preserving Bulwarks.
Candle Fi-h, or the Ulikon of Alaska
Signals, New for Dangerous Coasis....
Magnetic Needle, Cause of Secular
Variations.
Polar Bea, The Open
The Telemachon.
Bawdust. New Uses if
Is the Moon Inhabited?
Tyndall's new Views.
Water Molecules
Toad Poisoning 124
Heat Value of Fuel, Method of Determining
23
7

Oxygen, Liquefsctiou of.................... 125
Poisonous Colors..................
Gewdust the Uliidzation of.

Iron 239
The Velocily of Sound
Brautiful Bisck Culor tor Bronze.
251
Lightning Rods.................. 263
A new Theory if the Earth's Maynetic
Poles.
270
Prehisioric Remuins... 274
Protecting Vulcanized Rublier........... $2 \not 22$ Flavoring Meat on Fout.................. 2×2
Can a Sieam Pipe set fire to Wond ?... $2 \leqslant 2$
lireaking up Slag wilh Rock Salt....... 279
Nolh Pole, proposed Expedilion 10...... 277
Forination of Coal............................ 282
Wind Guage..... ... 2×2
Chilnese Porcelain............................ 28. 28
Saleulum Camera 282
The Deep Mines of the World............ 282
River Taming in Engiand................. 282
Sclence in Pubile Schools 289
The Antiquity of Man....................... 294
Storms, Forecasting 295
Boiler Explosions, Myrterious cause of.
Spontaneous Generation 300
298
Fos:il Fool prints in Coal...... 303
Dynamitr, Explosive force of............ 309
Shlt in Well Water, Significauce of...... 305
The Flooding of the Desert of Sahara 826
Sounding Niagara River................. . 827
How to Sun a Bath................. 328
A Voltaic Pencil
328
Arsenic in Whter Colors
Pencils for Wriling on Metal................ 839
Apparatns :or Removing Torpedoes.. 239
How the ancient engraved gems....... 803
Travelling stones............................... 368
Sewer Gas, Inflammabliliy of...
Ply Lead from Smoke142Water a new Theory of the Value 147
The Wirn a Plan
The Wirn a Plan
Another new Metal
Dangerous scientista 867
The neciarles of plants 367
Memory in difierent people 369
Brain work and brain developm 360
The action of sewer gas on lead 870
The antiquily of glass 371
The immensity of the stars. 875
The polison of the rattlesnake a fer- ment 378
Mirror photographs 373
The cellalold marvel 377
Silvering mirrors 878
Animal rubiber 379
R newing the eye. 379
Insect stings 382
Painless derth 383
The observation of the circulation of
the blood. 383
WATCHMAKERS' AND JEWKTLERS WATCHMAKER8' AND
WORK.
Jacot's Regulator. 22
Ilorology and Goldsmith's Wor k... 54
4 " 6 104
Pncumatic Regulator 104
Charcoal Mssay 177
Touch Stone. 177
To remove the Devil or Tin from the Stock 177
To Temper Stafri, Cylinders orPiaions without springingthem177
Testing Alloys 180
To reinove Quicksilver fur Hingsand Chains.177
To tighten a Ruby Pin 177
Wood for Clock Pendulums 210
Case-Spring, how to temper 210
Tu draw the temper from delfortepleces without springing them 210
To temper Clicks, Ruchets, \&c....... 210To restore the lustre of Jewellery..... 250Detecllve delacbed Lever Escape-ment278
What to do witha Magnelized Watch 278
Removiug Tarnish and Blueing 2782
77
7

[^0]:
 provad Method of Lubrication.-In a recent French of the screw is applied to lubrication of shafts and other of machinery. In the case of a shaft, the oil is poured into oil below, and a screw placed slantingly in the tube mels to the level of the shaft, whence it is d.stributed by tyels over the hreadth of the journal. The axis of the serew fin the bottom of the reservoir, and its head turns in a bearfit by in the tube. Motion is communicated to it from the the by means of gearing with helicoidal teeth. The impurities veltom of the reservoir are neither stirred nor carried up. ited. If the shaft has a high velocity that of the screw is If the shaft has a high velocity that of the screw is
 , so as to raise more oil beeause of the strong pressure. regular, continuous and economical pressure is obtained.

 ## Spanish International Exhibiton.-A Freneh archi. Colibert, has just been charged with the preparation of

 ng of the building which will be meoded for the iuternaexhibition at Madrid in 1882.[^1]: Core fur Brasi..-An iron-foundry man recommends Powdereft pur Brewool chan incoal as "a never-fitiling, speedy
 remedy"

[^2]: *indinere are forms of hip roofs where none of these rules can be applied; in Working up these papers I will thow a fow axamplea, and the methods of -orking themese p. T. H.

