The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de cculeur

Covers damaged/
Couverture endommasée

Covers restored and/or laminated/
Couverture restaurée et/ou peiliculée

Cover title missing/
Le titre de couverture manqueColoured maps/
Cat tes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ol noire)

Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

\square
Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

\square
Coloured pages/
Pages de couleurPages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquéesPages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index

Title on header taken from:/
Le titre de l'en-téte provient:

Title page of issue/
Page de titre de la livraisonCaption of issue/
Titre de départ de la livraisonMasthead/
Générique (périodiques) de la livraison
\square Additional comments:/
Commentaires supplėmentaires:

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

APPARATUS FOR DRIVING SEWING MACHINES. Designed by Mr. Joseph E. Holmes, Engineer, London.

MOTIVE YOWER FOR SMALL MLACHINES.-(Seo page 33.)

The want of a cheap motive power capable of driving sewing and other machines has long been folt, and much ingenuty has been expended in attempting to supply it. The contrivances which have been designed to attain this end may be divided into two classes, the first being composed of motive powers properly so called, and the sccond consiating of accumulators of power, or contrivances by which a considerable amount of manual force exerted for a short interval is stored up and given out as required in the form of a lisser force exerted for a longer neriod. Amongst the motive powers of the first class we have had small turbines diven by water supplied Irom the ordinary mains, " domestic" steam engines, smal' gas engines, and electro-magnetic engines, some few of these contrivances being welt designed, but none of them, so far as we are awaro having ome into gencral use.

Aachines of the sccond class have consisted, with but fow exceptions, of arrangements of springs brought into a state of compression or tension by gear worked by hand, their recoil being utilized to actunte the machine to be driven. The arrangement which we now illustrate on page 33 and which has been designed by Mr. Joseph Holmes, Loudun, Englend, belongs to the second class, but it difiers from its fredecessors in an important respect, namely. that instead of the power being stored up by the tension or cumpression of steel spangs or loy raising dead weights, the necessary force is obtained by the pressure of the atmosphere upon the surface of a pistom moving in a cylinder, and beluw which a vacuum has been formed. The advantages of this arrangement are that a pracically constant force is oltained acting through any required distance, while, at the same time, the whole machine can be kept comparatively light. Thus, for instance, if we suppose a vacuum of 14 lhs . per square inch (and the arrangement admits of an almost perfect vacuum beiug obtaned) 10 exist below a piston 9 in. in diameter, the pressure on that piston will amount to 890 lbs., or be nearly equal to a dead werght of 8 cwt , while the weight of the parts required to obtan this result is very moderate. On the other hand, too, the furce crerted on the piston, veing practically cumbtaut throughont its stroke, there is no necessity to resort to fusees or other contrivances to equalive the furce exerted, as is the case when steel springs with their variable resistance are employed.

The arrangement adopted by Mr. Hulmes will be readily understood by reference to the engravings, tig. 1 being a front, and fig. 2, an end elevation of the motor.
\Rightarrow In these figures, A, is a cylinder of suitable diameter and length fitted with a piston, B, which moves frecly-but perfectly arr-ight-in it. To this piston is attached a band or chain C, which extends through one end of the cylinder over a pulley D, to the dirum E; the latter being geared to a shaft F, which can be turned by the wrench or key P, so as to wind up or raise the piston from the bottom to the top of the cylinder. Instead of the chain or bsnd C, a rack may lo employed. The shaft F, is connected by a clutch O, or a ratchet and pawl or other suitable contrivance, with toothed or frictional gearing, or with belts and pulleys whereby the motion imparted to the shaft on which the drum E, is fixed, is communicated to other shafts. The gearing or pulleys aro so proportioned that any speed communicated to the first wheel or shaft is greatly accelcrated in its iransmission from it to the last shaft H, of the series, which is connected directly or indirectly with the sewing or other machine to be driven. Hl, is a fy or land wheel, which may have grooves at different diameters to correspond with the pulley attached to the machine to bo dris on, and by which the speed or power may bo regulated to suit the work to be performed.

Tho piston B, as before siatod is fitted to work air-tight in the cylinder A, and the lattor is closed air-tight at thr bottom or at one end, the top or other end being open. Whon the piston is raised or drawn towards the top or open ond of tho cylinder a vacuum will be produced in the cylinder bolow the piston, and tho latter will bo pressed down with the full pressure of the atmosphere, and this force is communicated as
explained through the aforesaid gearing to the machine to be explained through the aforesaid gearing to the machine to be driven. It will be seon from the engraving that the motor is provided with a simple brake applied to the wheel H_{1}, this brake being so arranged that it is always in action except When removed by the pressure of the foot on the treadle shown.
By simply pressing or releasing this treadle the motor is started
or stopped at pleasure, and thus porfect conmand is obtained over the motion of the machino which is being driven.

Of course, in such an arrangement as that we have described a vital point is to obtain a piston which shall move frecly in the cylinder, and which shall yet maintain itsulf air-tight without skilled attention. Practical oxperience has proved that such a piston can bo constructed.

With a motor of the kind we havo descr: $d_{\text {, laving a } 9}$ inch cylinder and 2 ft . stroke of piston, a force of about 1800 foot-pounds can be stored up, the piston being raised by 82 turns of the crank handle, and the work of winding up being easily accomplished in one minute. This umount of stored-up work is suflicient to make about 5000 stitches with a sewing machine, or to sew about seven or eight yards, according to the quality of the work. The arrangement in modified forms is also available for a variety of purposes where the exertion of a small power for long periods is rejuired, and we anticipate that numerous applications will be fuuad for it.-Engeneering.

PEAT-CUNDENSING MACHINERY.-(See page 30.)

The total absence of coal in the strats of this and the adjoining province is a source of weakness which has fur a lorg time been patent to the most careless consi lerer of our jrogress in manafactures. Our water jower is abundant, but we hase no coal and our vast forests already begin to fail to supply fael necessary even for ioousehold consumption. We havo however vast deposits of a most useful fuel hitherto almost untuuclied, in the peat-beds of Anticosti and other places. Deposits of this fuel exist to a great extent in Great Britain and Irelanil aud the present high price of coal there has turned the attention of the public to this hitherto neglected source of heat. Experimental trialgof peat-condensing machiacry have recently bean made there in the presense of induential capitalints and engincers, all of whom expressed their opinton that the success of the project was undoniable. It is quite unnecessary to remind our readess that the question of fuel here, in Quebec and Ontario, is in a very unsatisfactory state. Our forests are beginning to fail, and our deposits of metallic ores aro for the most part necessarily neglected. This being the case we may learn a profitable lesson from the misfortuno of the present scas ity of coal in England.

We give on page 36 a plan and side elevation of a jeat-condensing machine by Messrs. Clayton, Son, and Howlett, recently introduced to public notice. The illustration is from the t.ngineer which romarks upon it as follows: "It is unnecessary for us here to enlarge on the importonce which, us our readers know, we have always attached to the utilisation in some form or other of the immense deposits of fuel contained in the peat fields of Great Britaia and Ireland, and we will therefore at once proceed to a description of the details of this machinery, which, to our minds, is cortainly the nearest approach to a solution of the great question of how peat can be freos from the hygroscopic and fixed water it contains in its natural state, and also reduced in bulk as to bo convenisnt for transport storage, yet brought forward.
In the system which Messers. Clayton, Son and Howlett propose to pursue, however, the peat, when cut, is first of all filled into what they called "squeezing trucks," in which, durir.g its journey to tho works, by the action of a scrow or lever, a large proportion of free water is forced out through verforations in the bottom and sides of the said trucks It will be seen from our illustration that, separate from the moveable irivingjongine, the condensing machine itself consists primarily of huisting gear, which is connected or disengaged from the motive puwer by a hand lever, and is used to raise the peat as it arrives from the bogs to the lovel of the vertical hopper, but which is clearly an arrangement quite extraneous to the vital principle of the manufacture. The mastication or trituration of the peat, after it has been filled into the hopper, is effected by a vertical shaft revolving in the upright chamber, and carrying a series of cutting blades set round the shaft like the thread of a scrow, and by the action of which the peat is forced down into the long horizontally-placed cylicder. This also is fitted vith a revorving shaft pessing through its contre, on which is a forcmg screw and also a set of discs arrauged to form a dissecting double screw, and at the end of this cylindur furthes. from the hopper are fitted cutting blados of hard steel. The $\boldsymbol{s}^{\text {t }}$ on of the machine is then this: the peat, furced into the horizonial cylinder by tho joint action of the blades and screws, is carriea
forward by tho twisting movement of the di es, nvery revolution driving it against the cutters, whereby pry effective trituration is effected of the fibrous and other un the whole thens reduced to a pulpy, ho composed portions, and out through orifice., of may siction that pay be found suitabl on to a syatem of rollers, which carry it torward to traya, where it is cut into lengths, and either carri d or passod along a tramway to the Jrying sheds, wherr in about thror days it becomes suticiently dry to permit of its being taken from the portable trays, and stacked in open racks of a some what special consiruction, but the s is merely a question of getting the best ventilation in the smullest space, where the fiaal drying is completed.
The great feature, as it appears to us, in the whole of this manipulation, is the breaking ep of the eellular tissues of the peat, which cuntain what may not inaptly be called the fixed moisture; the mere hygroscopic or free water ian always be readily got rid of, but fine and cluse trituration is absolutely necessary to enable th. other to be removed, and that this is really realised the remarkable shrinkage which takes place in the ble ks or briquettes in drying is the best and most tangible proof. Thu con lensed peat, when mado ready for the market, which, we are assure d, dues not require mor, than eight days at the very outsid., is of groat firmness and solidity, and quite as strong in its resistance to a cutting cdg" as many of our softer woods As to its inthumatice qualities, we can only say that we saw a bright, clear fire burning in one of the office-rooms at Messrs. Clay ton's which was made up of the condensed peat, and which was distinctly most admir, bly adapted to cooking. Until further experiments have been male it is impossiblo for us to give any data as to what may be dio water-evaporating power of this new fucl; but, judging from appearances, we are disposed to believe that it will be fuund high, whilst as to the reduction of iron in blast furnaces, w. are prepared at once to say-and our , xperiences with wood charcoal has not beeninconsiderable -that it is admirably a.lapted for that use. Tho difticulty in this prucess has always been to get the peat in a sufficiently solid form to resist the pressure of blast just at the tuyeres, but we believe that Messis. Clayton, Son and Howlett's pateni froduces it so condensed that it will. be found equal to sustaining the impingement of a pillar of blast of, say, 2 lb . to $2 \frac{1}{2} 1 \mathrm{l}$, which is amply sullicient. We may al-o call the attertion of the manufacturers of charcoal timned-plates, whose supplies of voo d are necessarily daily decreasing, to this process, which places within their reach a fuel admirably adapted for use in their hollow and sinking-down fites."
It is stated that this fucl can be prepared in Euglend at a cost of from five to six shillings per ton of the dry briquettes. The cist of production here should be, if auything, less than that, and would moreover give employment to hundreds of our population who now go annually to work in the factories aud bick-fit lds of the states.

MILL'S FUEL ECONOMISER.-(See page 45.)

Mr. R. Mill, of Val Plaisant, Jersey, has lately patented a simple and, as it seems, very effective arrangement of nubes for promoting the circulation of water in steam boilers, while at the same time increasing the heating surface, besides possessing collateral advantages which will be mentioned further on. The accompanying drawings illustrate some modes of carrying this invention into effect. Fig. 1 is a vertical section through an ordinary Cornish boiler; Fig. 4 is a horizontal section through the flue of the same; and Fig. 2 is a front elevation. Two pipe systems are shown over the grate, bent serpentine fashion, or similarly joined by bends, as shown; and each connected with its side of the boiler, viz., at the back, connected to the water space over the crown of the furnace, and in front connected to the water spaco near the bottom of the fluo; A is a circulation cock, and Ba blow-off cock; by shutting the former, and opening the latter, the tubes may be cleared of any sediment, though very little deposit takes place because of the scouring action of the rapid circulation. The pipes are supported by brackets, Fig. 3 is a front elevation of a Cornish boiler, fitted with two similar pipe systems, but without circulation cocks. There is bo-ides shown a thisd system, in the centre of the flue, and which will be described with referenco to Fig. 5. Fig. 5 is a vortical longitudinal
section of a furnace ltuo for a Cornish, Lancashiro, marine, or other furnnee fue boiler. D is the lower limb of a pipe system, and is by the pipo F connected to the water space in the lower part of the boiler, close oy the ashpit, or frout side of the bridgo. Where the pipe passes tbrough the grate the bars are cut short, and supported from their neljoin' ng bars, or in any other suitable manner. F is the upper limb of the system, which is carried to the back of the boiler and terminates in the water space at or near the furnace crown. This arrangemeat may, for very small furuace flues, be used alone, but for larger flues, in combination with the pipe systems described, with reference to Figs. 1. 2, and 3, and either separa from or connected to them.

Fig. 6 is a vertical elevation of an egg-ended boiler, fitted with two pine systems, one on ench nide, and with their tubes arranged verticaily, or slanting one abovo the other, but 80 as to leave the middle of the furnace clear. I, K , and L are three tubes, connected together by double bends, or in ono piece bent to the shape. The pipe I runs along the whole length of the underside of the boiler, and has its exit in the water space at the back ond of the boiler; the pipes K and L are arranged under the pipe I, but only in the furnace part of the lue. L runs to the front of the brickwork setting, and is by the pipe M connected to the water space at the front of the boiler: N is the circulation cock, aud 0 the blow-off cock, as described with reference to Figs. 1, 2, and 3.

As to the advantages resulting from the application of these circulating tubes, some experience, extending over from two to eloven months, has already been zained in respect to land boilers. F'irstly, a clear and considerable saving in fuel, because of the additional and effective heating surface, and increased circulation, and secondly, a saving in wear and tear in the furnace crown or in the bottom plates as regards boilers fired underneath, because of the equalisatiol of the heat given out in the furnace, a great part of it being used to heat and ovapornte water drawn from other parts of the boiler, instead of as heretofore, being for the greatest part absorbed by the plates over the furnace, which thus do many times more work than any other part of the boiler. Unequal expansion, with its disadvantages, is also lessened. Thirdly, obtaining a much lower temperature at, and in front of the furnace door, which by the application of this inv ntion, has been effected. Fourthly, a savin in the wear and tear of the brickwork in $^{\text {a }}$ the furnace of externally-fired boilers, as it remains black instead of being red, or white hot, thereby preventing the possibility and inconvenient stoppagis for relining.-Ẽngineer.

CULINARY BOILER.-(See page 6l.)

Mr. Israel Kinney, of London, Canada, is the inventor of the novel form of culinary vessel represented in our illustration. The object sought is to provide a means of conducting away vapours arising from the cooking article, so that they will pass into the stove and up the chimney, and thus not be disseminated through the house. This is effected by casting the side wall of the pot with a vertical recess, extending down from the top to the bottom, following the offset made by the pit. The outer edges of the recess, down to the plane of the offet for the pit, are formed with fianges to reccive a sheet metal slide, A, which closes the recess and preserves the circular form of the vessel, and at the same time forms a flue. The papours rising are drawn down through tho latter, and thence into the stove. This improvement is applicable to all vessels used in cooking. Patented August 27, 1872.-Scientific American.

The total annual producion of ion is estimated at ab, ut a levey and one-eighth millions of to . s for the whole wor. d , in 1869 , and must have i icroased greatly in more recent yrars. At that time Engla \cdot d pioduc d oier five millions; the United States of North America, over one nd i-half milliun = , Francencarl, onv and s-yuarter millions ; Prus-ia rather more than one million ; Belgium not quite half a million, the Austrian Empire a third of a milli, n, Sweden and No, way nearly 400,000 ; hussia and thir Zollverefn nearly half a milliun tons between them. of which fou - evenths came from the former. Spain and It: ly made up nearly 100 .rimu tons, two-fifths from the latter Tho in reaso in the productior of the United Slates in the five precediog years was nearly 6: per cent; in Prussia, 36 per cent. ; and in: England, in six year;, 26 per cen.

SILAW'S PLANER BAR.

We illustrate above a most ingenious invention patented recently in the United States. Our illustration is from the Scientific American, which describes the machine as follows:
"In brief, the device is a planer bar; its object, to reach through work on planing machines, and thus serve to perform a large proportion of the labor of slotting and shaping apparatug, at, of course, a materially decreased expense. It consists ot a heavy shaft, A, at the rear of the planer, which rides upou centers, B. Ou this shaft the bar, 0 , is pivoted; 30 that by this mode of connection a universal joint is obtained, and the outer end of the bar rendered capable of motion in all directions. Near the centre of the bar is a pivoted box, D, from which a pin projects, which is securely fastened to the tool post and carriage. The bar is therefore subject to the movements of the latter, and is regulated by the ordinary feed motion of the planer. At E the tool end is represented as operating on the inside of a wide casiling.
"It is claimed that the ability of the device to reach through work is unlimited, and that it will plane one third the length of the planer; while its action being of an end thrust chareoter, it will cut all that the machine is able to pull without chattering. Oar illastration presents so cularged a view of the invention that any farther details here are unnecessary to insure its comprehension"

THE SUPLEE NEEDLE-(See page 61.)
The Suplee needle is a recent California invention and one which, says the San Franciseo Mining and Scientz't Press, 1 s destined to do away entirely with the old-fashioned cewing muchine needles so long in use. It difers from all otber sewing machine needles by having an open eje or slit so arrang d that it can be threadert instantly by taking the thread in both hands as shown in the accompanying cat, placing it at the eje, and palling it gently against the needle with a cownward motion. This dispenses at once with the slow process of biting off the thread and twisting the end into a point so as to get it through the ordinary ase. The saving of time alone is an item in its favour, without taking into consideration the trouble incident to threading old-fasbloned needles. The manufacture of sewing machine needles in the United States bas heretofore been confined almost exclusively to North Bridgewater, Mass., but a factory for turning out neerles of this patent is now under way in this city, owned by the Suplee Needle Company.

THE PRINCIPAL ENACTMENTS OF THE BILL INTRO. DUCED BY DR. TUPPER, RESIPE'IING WEIGH'S and measures.

It is not so very long since our Canadian coinage, or rather the coins which were current here were of such different descriptions and values as sometimes to puzzle even the most experienced dealers. Now that is all changed, and the next step is to systematize our weights and measures. Wo had an occasion, not long since, of witnessing the painful efforts of a profession-1 scientific gentleman of this province in his scarch after legal standards of weights and measares. The search was very arduous, and the results by no means satisfactory. We hail with pleasure an attempt on the part of the Government to remedy this state of affiais. We are indebted to the columns of the Monireal Herald for the following summary:

WHIGUTE AND ARABURRE.

The "Imperial yard" shall bo the standard of length, wherefrom all other measures of length, whether lineal, superficial or solid, ahall bo derived, and all measures of length shall bo certain proportions of the standard yard.
Here follow descriptions of measures of length and superficies derived as above:

The "Imperial pound Avoirdupois" shall be the standard measure of weight from which all other weights and measures having reference to weight shall be derived; and shall be in parts, multiples or proportions of the pound avoirdupois.
Here follow descriptions of waights as derived above, and it is stated that:

One hundred pounds shall be a hundred weight, and two thousand pounds a ton.

One hundred standard pounds shall also be called a "Central."
The Troy ounce shall be equal to four hundred and eighty avoirdupois grains, and shall be the standard measure of weight for gold, silver, platina, and precious stones; and all measures of Troy wcight shall be taken in parts, multiples, and cortain proportions of the Troy ounce.

Contracts for gold, silver, platina, and precious stones by the Troy uance, and by any weights, being decimal parts or multiples of such ounce, shall be valid.

The gallon known as the "Imperial gallon," containing ten pounds weight of distilled water, weighed in air at a temperature of 62 degrees Fahrenheit and the barometer standing at thirty inches, shall be the standard measure of capacicy for liquids, from which all other measures of capacity in respect of liquids shall be derived.

One fourth of the gallon shall be a quart, and one eighth part a pint.

The "Imperial bushel," contairing eight Imperial or standard gallons, shall be the standard measuro of commoditics sold by dry measure, from which all other measures of capacity in respect of such commodities shall be derived.
But in cuntracts for any of the articles in this section mentioned, the standard bushel shall mean the weight of a bushel, as hereinafter mentioned, and not a bushel in measure, unless the contrary appears to havo been ayrecd upon by the parties, viz:

Wheat	pounds.
Indian Corn	. Fifty-six pounds.
Rye.	.Fifty-six pounds.
Peas	. Sixty pounds.
Barley	.Forty-eight pounds.
Oats.	.Thirty-two pounds.
Beans	.Sixty pounds.
Clover Sec	Sixty pounds.
Timothy Seed	Forty-eight pounds.
Buckwheat	Forty-cight pounds.
Flax Seed	Fifty pounds.
Hemp Seed	Forty-four pounds.
Blue Grass Seed	Fourteen pounds.
Castor Beans	Forty pounds.

Castor Beans...
Putatoes, Turnips, Carrots, Parsnips, Beets
and Onions............................ Sixty pounds.
Salt........... Fifty-six pounds.
Dried Apples...............................Twenty-two pounds.
Dricd Peaches.Thirty-threc pounds.
Malt. Thirty-six pounds.
"Provided that for years the Wine gallon of 231 cubic inches, and the Winchester bushel of 2150 42-100ths cubic
inches, may be used by special understanding between parties, and during the same period the ratio which such measuresshali bear to the standard measures, shall be se follows:-Twelvo Wine gallons shall bo equal to ten Standard galions; one Winchester bushel and thirty-one thousandth parts thereof, shall bo equal to one Standard bushel. Provided nlso that the Govornor may make such provisions, not inconsistent with this Act, for the verification of the measures authorized in this proviso and thoir sub-multiples, as may be demed nocessary."

Every steelyard or other weighing machine shall have marked upon some essential part of it, the actual avoirdupois weight of each weight used with it.

Tho Gcvernor in Council may declaro any multiples or submuluples of any of the weights or measures hercinbefore montioned, to be legal weight" or measures, and may order tho discontinuation of any standards, and the substitution of others not inconsistent with this Act.

standards or feights and measureg.

The Minister of Inland Revenue shall cause to be prepared three sets of Primary Standards of length and woight, cach set consisting of - 1 Standard Yard; A Standard Pound Avoirdupois; A Standard Ounce Troy; and A Standard Gallon.

The Governor may declare she same to be the only Primary Standards for Canada under the name of "The Dominion Standards," from which all other woights and measures shall be computed; and from and after the date of such proclamation, all Primary Standards legalized by the Legislature of Canada, or Nova Scotia, Now Brunswick and British Columbia, shall be transferreci to e possession of the Department of Inland Revenue.

One set of the Dominion Standard shall be placed in the custody of the Speaker of the Senate, one in the custody of the Speaker of the Honse of Commons, and one in the custody of the Minister of Inland Revenue, undor such precautions against deterioration as determined.
The Minister of Inland Revenue shall also cause to be prepared two sets of Secondary Standards; and the Governor may declare Secondary Standards to be legal Secondary Standards under the name of The Departmental Standards.
The Commissioner of Inland Revenue shall have the custody of the Departmental Standards, and all oparations with reference to standards, shall be conducted under his supervision, and the said Commissioner may be paid, in addition to his salary as Commissioner, such further allowance as may be directed.
The Minister of Inland Revenue shall also procure the necessary apparatus for use in connection with the Standards.
As soom as the Standards have been legalized and deposited, the Governor may fix a day, giving not less than six months previous notice, after which all contracts for work to be done, or things to be sold where no special agreement is made to the contrary, sball be deemed to be made according to the standards fixed by this Act.
Provided that is the Province of Quebec the measures of length, superficies and capacity hereinafter mentioned, may be used by special nnderstanding between the parties and shall be understood when such contract rolates to any of the purposes for which they are established by the laws of that Province, unless by the express terms of such contract, it appears that the parties intended standard measure; and the proportion which such measures shall bear to the standard measures, shall be as follows :
The French or "Paris foot"-shall be twelve inches and seventy-nine hundreths standard measure. Here follows a description of the arpent and perch according to the above standard.

The "Canada minot" shall contain two thousand three iundred and thirty-nine cubic standard inches; provided that in contracts for any articles mentioned in section five, the word "minot" shall mean the weight of a " bushel," as fixed by the said section and not a Canada minot, unless it appears that the parties must have intended a Canada minot of measure.

After the day fixed by proclamation as above, Her Majesty's revenues shall be payable, in accordance therewith, and such as are now charged by the wine gallon shall be charged by the standard gallon in proportion to the greater capacity of that measure; that is to say, in the proportion of six cents on the Imperial gallon for five cents on the wine gallon.

The Governor appoints Inspectors of Weights nad Measures for each Provinco, whose dutics aro detalled in the next succeeding sections, of which those which concern the public are as follows:

The Inspector within the District assigned to him shall see that each Doputy Inspector is furnished with the apparatus necessary; shall carefully comparo his standards with tho official standards and shall certlify to the correctness of the same by a suitable mark, as may be directed; shall detormine any disputes between any Denuty Inspector and any other person in relatica to any duties of inspection performed by such Deputy Inspector, and shall have such other duties and powera as may bo assigned to him by order in council.

The Governor may appoint in each district deputy inspectors.

Each Deputy Inspector shall, upon such day and at such place es may bo appointed by the Inapector of his Districtand of which public notice shall be given-attend with his apparatus, for the purpose of inspecting all weights, measures and weighing machines, and shall inspect and if found correct shall rertify all weights and measures, scales and woighingmachines brought to him for inspection.

Tho Deputy Inspector may, at all reasonable times, enter any place where any rommodity is kept for sale, or charged for carriage weight or measure, and there examine all weights, measures, beams, or other weighing machines, and shall do sn, without previous notice, and shall attend at anp reasonable time and place, for the purpose of inspecting any fixed weighing machine in his division; and he may also certify any weights, measures, or weighing machines at the request of the owner.
The Doputy Inspector shall enter all verifications maute by him, and at the time deliver to the person procuring verification, a certificate setting forth the fact.

Within two monthe after the expiration of one year from the first verification, and of each period of one year after each subsequent verification, every weight, measure, and weighing machine shall be again veriffed and a new certificate obtaned.
Every person, who, after the expiration of the time appointed under this Act, offers for salo or uses, any weight, measure, or weighing machine not duly inspected according to this Act, or which may be found deficient shall, on conviction, incur a penalty of not more than fifty or less than five dollars for ench offence; and every such deficient weight shall bu forfeited and broken.
Any person who refuses to produce for inspection, when required, all weights, measures, beams, or weighing machines in his possession, shall, on his conviction, forfeit as sum not exceeding twenty dollars for the first, and forty dollars for each subsequent offence.

If any person counterfeits any mark used for inspection purposes, or alters any balance, weight or weighing machine marked under this Act, or sells any things by any weight, measure, or weighing machine, marked with any countefeit mark, he shall, for the first offence incur a penalty of forty dollars, and for each subsequent offence, one hundred dollars, and suffer two months' imprisonment.

Any person who causes to be made or sold, any unjust measure, or any other weighing machi shall for the first offence incur a penalty not exueeding, y dollars; and for each subsequent offence one hundred dollars, and suffer two weeks' imprisonment.

If any person obstructs any officer acting in execution of this Act, he shall on conviction, incur a penalty of one hundred dollars and the Deputy Inspector, or any person whom he may call to his assistance, may seize the offender and detain him until he can be dealt with according to the law.

All penalties shall be recoverable before any justice for the place in which the offence was committed, if such penalty does not oxceed fifty dollars; and before any two Justices, or any Magistrate having the power of two Justices, if it exceeds that sum, upon proof by confession, or the oath of one creditable witness, and may be levied by distress.
No contract shall be invalid, on the ground that the weights or measures expressed in such contract, are weights or measures of the Metric System, or on the ground that the decimal subdivisons of legal weights and measures, Fhether Metric or otherwise, are used in such contracts or dealing.
The taibes in a Schedule hereto annexed shall be deemed to set forth the equivalents of the weights and measures therein expressed in the ternas of the Metric System; and
such table may bo lawfully used for computing and oxpressing in weights and measures of Canada, woights and measures of the Motric System.
'The Governor may direct Standards of Sotric weights and measures to bo procured and legalized, and verified copies of them to be provided.

('ANADIAN PLUMBAGO.

Since the failuro of the celebrated Borrowilale mines in Cumberlani, Eagland, most of the prescat supply of plumbago has been drawn from the East Indies. Small quantities are also producel in Scotland and in Cornwall, England, and in Norway. The present supply is howover considerably short of the demanil, a great quantity being used in the manufacture of crucubles. This being the case it is a source of great interest to Canadians to find that some extensive deposits of this mineral have been discusered near Buakigham on the River du Lievre, a tributary of the Ottawn. These mines are said to bo very favourably situated, both as regards the working of the ore aud its transport. A recent number of Engineering states that an examination of these mines made by Mr. George Henwood has disclosed the fact that there are fourteen welldrfinel lodes, in whi. large quantities. Several of tho lodes intersect each other and the minersl in si me of them varies in thickntss from 6 to 10 fir t. Besides this there is a quarry of disseminated ore, over a quarter of a mile in length, and 70 ft . in height, producing a very good percentage of plumbago. Some fine sjecimens of the mineral taken from the lodes by Mr. Henwood were lately to be seen at the School of Mines, but are now at the offices of Mr Harvey, in St. Clement's Husse, where we recently inspected them. They are exceediogly rich in appearance. and are remarkable fur their crystallute formation and purity. They dis lay all the varictice of the ore, some beng colu’anar fand reticulated, and others laminated. Une specimen measures 2 ft in length, 16 in. in $\mathrm{def}_{\mathrm{p}}$ th, abd abuat: in. in thackness. lasays f this ore, made by Mesors. Juhnsun any sons, show it to contain 97 per cent. of plumbago, the mummum annual virld of whit h the ludes are capable, beang estimated by Mr. Heniwood at snoo tuns, whist twice that quantit, it is stated, ran be btaindi annually from the workings in the quarry The, roduce of th, se mincs is sand to bo preterred before the best Ceylon ores, and to command a higher price in the local markets. From the appearance of the samples and the extent of the deposit in which they vecul, we may infer that this discovery will, in its results, exercise an important influenco upon the market.

NAIRN'S HOAD LOCOMOTIVA.
We illustrate on page 44, from Engineering, one of Nairn's patent road locomotives, constructed by Messrs. J. and T. Dale, of Kirkcaldy, giving a perspective viev of this engine, showing it as arranged for driving machivery, the road wheels being thrown out of gear. The crankshafl-which is unde: the boiler-is extended for the purpose of putting on the belt pulley, and is supported by a malleable cast-iron bracket attached to the framing of the eugine. In order to prevent the crankshaft extending beyond the frame, the \in ye of the pulley is cast upon one side, and the pulleg is fised upon the shaft by means of two steel pinching screws. A belt from the eye of pulley drives a horizontal spring governor for regulating the speed of engine, the spindle of this governor being supported upon two light malleable iron brackets bolted on the top of tank. The governor works a butterily valve in the steam pipe in the usual way. No parts of engine after coming in from hauling loads upon the road or field require to be disconnected or altered for the purpose of driving stationary machinery, the pulleys and the governor simply require to be fixed in their places, which can easily bo done in a few minutes. Messrs. Dale are now making these engines as high as 20 horse power, we believe the largest engines with elastic tires ever constructed.

Saccuaring Matter in Mushroons.-A. Muntz bays that mushrooms yield a sirup, readily crystallizable, which presents all the properties of the sugar obtained from the manna of the East.

TEE VIENNA EXHIBITION OX 1873.-(See page 64.)

In our last issue we gave an illustration of the interior of the Industry Palace of the Virona Universal Exhibition and stated that, in this number, we would give some accounts of the details of construction. The Prater or Park on which the building is being erected lies close to the river Danube, and consists mainly of alternate layers of loose sand and gravel. Water is seached by penetrating on an average 10 feet below the level of the \approx und. In consequenve of this and of the very uneven surface of the ground it was determined that wherever porsible the Industry Palace should be built on piles. Those parts, however, which were to be permanent it was determined to build on solid concrete footings. It was originally intended that the superstructure should consist of wooden columns, supporting arched roof principals, which were also to have been made of wood. The columns were to have been connected together by timber frames, in order to give them lateral stability, while the walls were intended to have been formed by filling in the panels of this framework with bricks in the Swass cottage style. This becoming known to the Austrian contractors caused such a rise in the price of wood that it was resolved to abandon the construction in wood for the nave and tynnsepts and resort to a somewhat similar one in light wrought iron work.
The superstructure, as at present constructed, consists of wroaght-iron. lattice columns of the lightest possible construction standing on castiron foundation plates, whici are borne on piles. These colvmas support the roof principals, which
are parabolic arches, also formed of lattice work, an 1 are connected one to another by wooden purlins which rest in angleiron sockets rivetted to the top flauge of the arch. Over the purling is nailed down a light wooden boarding, the whole being covered in and readered water tight by a plating of zinc. It will thus be seen that the entire weight of the roof is carried by the columns, the walls having nothing to do but to serve as a panelling. The colnmas of the nave and transepts differ only in dimensions, the arrangement of their parts being exectly the same. The girders which carry the roof are eimply lattice-work arches. Between cach pair of columns is situated one of the windows which servo to light the buỉding. The windows are so consi' .eted thrit their frames form part of the wood work between the columns.
The ring aisle surrounding the Rotunda and the transverse buildings forming the façades were built in a different manner.

The ring afsle being intended for a permanent building was constructed of solid brick piers connected together by arches, the whole being arranged in the Soman Renaissance style of architecture. The spaces between the piers is occupied by colossal windows which serve to illuminate not only the sisle but slso the Rotunda itself.

The roof principals are formed of semi-arch gisders, which are simply those of the nave cut in two, with this difference, however, that whereas the nave archesare of lattice-work, those of the ring aisle are formed of solid plate. One ond of each of tinese semi-arches rests on the brickwork pic:, while the other is fastened to the iron columns of the Rotunda. The junction with the piers is horizontal, and that with the columns is ver-
tical, thus the entire thrust outwards is balanced by the stiffness of the columne, while the piers have nuly to suppurt part of the webght of the roof acting vertirally downwards Thu re are two of these semi-arches fastened to each of the columns of the lotunda, and they are all emnerend together by purlins and covered by boarding and zinc in precisely the same manner ns are the trusses of the navj and trinsepts.

It was foum that the Industry P lace, large as it is, could not furnish nearly enough covered space to meet the demands which were put upon it. Instiad of weeding the collections of the different comentries of the more inferior objects announced for exhibition, it was unfortunately determined to cover in as many of the garden courts as were necessary, in orde- to make up the space wanted, and accordingly all the courts in the rear, and some even of those in the front of tho building were sacrificed. No courso that could jossibly have been adopted could have been more injurious to the real interests of the Exhibition. Not only is the original plan completely marred therehy, but also the lighting of the building will be greatly interfered with; and as the courts thus closed do not share in the general plan for the ventilation, the heat in them will probably be very trying The covering sheds, such as they are, are made of timber and brickwork, but not being remarkable in any way, except as eycsores, they do not merit further description here.

All the important structural details of the Industry Palace have now been described, but it remains still to give an account of the internal decorations. The decoration of the Vienna Exhibition was a problem of the greatest difficulty to all concerned in it. So accustomed are the Viennese to a gorgeous style of decoration in all their public buildings, from their palaces and muscums down to the commonest eafes an' birr halle, that it was felt by the architects, that a"yuite plain building, or one even so simply got up as the Crystal Palareat Sydenham, would not meet with popular approbation. On the other hand, to go in for the style of richly painted walls and ceilings, common enough in the town, would not only have cost an immense sum of money, but could also never hove been finished in tine. They were furtunately helped out of ths dilemma by the tincely invention of an Italian, M. Bossi, of Milan, who discovered how to print patterns on common canvas in such a manner that at a little distance the effect thus produced could int he distiagutshed from real fanting

Herr von Gugita, who is iosuchated with Ilessis. Hasenaner and Korompay, as one of the chat aculutects of the Exhibition, heard of this in: ention whale stayng at Minam, and at once conceived the idea of applying it to the decoration of the Industry Palace. All throngh last summer thousands of square , ards of this material were bean' prepared at the estabhshment of 31. Bossi, near Vienna, and vere ready to be hung in their proper places as suva as the: walls were ready to recerve them. The material whein finshed costs from 7 d. to 15 . per yard, according to the colour and has this greatadvantage over paperhaugings, that it has no tendency to bag when applied to damp walls, and consequently can be used as coon as the structure is finished, without waiting for it to dry Thus the difficulty of time and monev was nerrome, and the best method of applying the new invention to the existing state of things was all that remained for consideration

It was neceseary to fix upon a style of deromation which should do away with the commonplare railway station apucarance caused bv the perpetually rerurring lattice-work colamns and arches. The orjcinal intention was to rloah that flange of the iron columns which was not huriod in the brichuork of the wells with an ormamental column of light woodwork, whach should seem to upport a cornice from which the arches of the roof would appear to spring, but an unfriresernaccident occurred which rendered a sliseht liut very expensive modification of the above plan necessary It will be rememberd that the culumas are all supported on pilnes, whirh arre indrpendent of those piles which form the foundations of the wall- One tlange of the columns, however, is not indenendent of the walls, but is, un the contriry, brickerl into it for the sake of ohtaining that lateral stiffurss in whirb it is itself slefirient, and is conscqucutly liable t. be affected by any movement of the walls caushat by is siuking of the foundations, a shrinking of the brickwork wi otherwise Snme such movement is preciscly what oucurred. Probably the piles whirb supported the walls of the transepts sunk uader the weight of the lrinkwork, carry.ug with the latter the encastrú fanges of t ' 'lumus, wianc the frec flanges, being carried by indrpel...nt piles, were prevented
from sinking equally with the other, and were in consequence hent intes S curves, the bending taking place id a plane parallel to the wall. A great many anstances of this occurred directly after the walls were built, and as at was thought quito likely that in process of time the whole of the walls might sink a little, it was deemed necessary to provide against such a contingency by so strengthening the free flange, that it would be enabled to resist any buckling strain to which it would to subjected. This end was accomplished by bolting stout trecs 12 in . and 13 in in diameter to the outer sides of the flanges is: question. The trees were first turned quite round to the required diameter, so that they might be employed also so ornamental columns. Then a strip bounded by about onequarter of tho circumference was sawn off in order that the flat side thus obtained might butt directly agsinst the flange. 'Lhis strip was then sawn in tivo, and one-half laid in the corner of ench of the angle irons which form the flange. The wholo was lastly bound together by wrought-iron straps, and bolts passing through both trees and angle irons. Thus it happens that the chicf flature of the decuration of this building is not a mere encumbrance or make-believe. but is a real integral portion of the structure itsulf, and thas fulfils the most essential requirements of the modern theory of ornament. The decorative character of the columns is completed by furnishing them with light wooden pedestals and mouldings, and plaster-of-paris capitals, all painted to resemble bronze, while the smooth porlion of the tree is covered with tightly-strained crimson canvas adorned with spiral lines in gold. 'line columns carry a handsome cornice made of sood, and painted of a creamy grey colour picked out with gold. From this cornice the rocf girders secm to spring. The latter are left perfectly plain and are painted olive green, the buarding of the roof behind them being whitewashed in order to obtain a light effect. Between the columans the walls are decorated in tie following manner: The lower portion, is it is destined to be partially covered by the cases containing objects of exhibition, is simply painted in panels of a light neutral green, which harmonises remarkabl well with the crimson of the columns; while above the piers between, and the f ortions of the wall around the windows, are covered with canvas in its natural colour, but yrinted with arabesque patterns in dark blue and orange. It is utterly imprssible for any spectator standing on the floor to distinguish this printed canvas from the most carefully execuled painting It will thus be seen that the docoralions are confined to the walls of the building, the roof being left perfectly plain.

HCNTER'S COMBINATION RAIL.

We find in the ('hicago Railway Review, the leading railway journal of the West, Ω very favorable notice of the cumbination railiond rail, invented by Mr. W. S. Hunter, of Stanstead, Que. One of the great difficulties to be overcome in the construction of railways is the providing a permanent way possessing sufficient elasticity to do away with the vibratory jar by which the molecular structure of the entire iron employed in roadled, engines and rolling stock is so injured. And although many and good changes have been made, it is admitted by all railway men that the present system is open to vast improvements. Experiments made with various appliances to rolling stock, according to the Ralecay Revere, show a diminution of wear and breakage of from 10 to 35 per cent., according as the vibration had been dono away with. Experience teaches that the prime couse of this viliration is rigidity in tho rail $\mathrm{cm}-$ ployed, and the jar occasioned by loose and unreliable joints. The great desideratom is a rall perfectly continuous, yet regulated for cuntraction and expansion, and possessing the much desured elasticity wath capability of augmenting strength to any degrec, thus asuring dumbility of road and stock, a saving of expense 10 manntenance of road-bed, besidesincreaso of comfortand safets to travelters. Mr. Hunter's rail is formed by a combination of aron, or steel and wood. Tho steel and iron portion is beld throughout on wood, and kopt in position ly means of boits passing through the eceb, the wooden rail, and the chars, which secure the later to tho ties; the web fitting tho groove of tho wooden portion, and tho jaws rolled on the head of the ron ral securingits lateral position perfectly The chars or fastenings may be spiked or bolted to tho ties as desirable The rail is rolled in tho shape of an old fashoned (or Euglish) letter T with the "foot" takon off. Tho aeb is calculated to givo tho rail the proper vertical
rigidity, it beirg almost impossible to curve or bend it upwards, upon the same principal that it is exceedingly difficult to bend even a verg light board edgewise,-i. e., in a direction parallel to its plane. The bolt-holes through the web are slotted so as to allow for contraction and expansion. The face of the rail from its peculiar form, for the same reasons which enable it to resist a vertical strain, preserves adequate strength against any lateral strains to which it may be subjected. This rail, in the opinion of prominent civil engineers, combines all the advantages of any yet used. One of the most important advantages is its perfect continuity, the iroa and wood breaking joints alternately. Another highly important feature is its immunity from fracture by frost, which is now the cause of so many frightful disasters; for even if the rail should break there would bo strength enough in the stringer to mainuain a passing train of cars in place. The proprietors of the patent, we learn, intend to organise a joint stock company for the manufacture and supply of this rail to ralway cumpanies. ang information respecting it may be obtained from Mr. E. H. Goff, Secretary of the "Hunter Combnation Railroad Rail Co., 245 St. James street, in this city.-Gazette.

SCIENTIFIC NEWS.

[We thould be plad to receree scientafic neeve, sutuble to this jerrt of our jmjar, from any of our corrcsjondents.]
M. Jacubi has lately communicated to the St. Petersburg Academy a note on "The galvanic reduction of iron through the action of a strong electro-magnetic solenoid."

Guarasa appears to be almost a specilic for sick-headache. The British Medical Journal is collecting reports from those of its readers who may have used it, and these have hitherto been of a very faiourable character. It is easily administernd as at powder in coffee, \&c. Un the Continent it is also used with success in the treatment of diarrhea.

With reference to ozone, we may mention the publication of "Uzone and Antozone; When, Where, Why, Hull is Uzune ubserved in the Atmosphere?" by Comelius B. Fox, M.D., M.R.L.P., which professes to be an exhaustacetratise on a subject which the author has studied for several years.
Ozuniser water is a beverage likely to be much in puired after. It appears that ozone is soluble in water, in the proportion of one part ly weight in 106,000 of water, and a firm of chermists in Berlin are engaged in the manufacture of ozunised water fur medicinal use.

Dr. Louvel has been awarded a prize of 400 dollars, by the French Academy of Sciences, for designing an apparatus for heepuig grain in a vacuum, or rather within a vessel in which the nir is su marefied as to kill any gravivorous insect.

A Nem Batterx.-M. H. Cauderay, of Lausanne, describes the construction of a small, portable, and ecunomical galvanic batt ry, which, he says, will be particularly useful for purposes of military tcl graphy. Its fuudamental part will certanhly be peculiarly accessible to military mon, for the cells, which berve at the same time as the positive electromutore, cunsist of the used cupper cases of rific cartridges. These are suraped clean, and armanged in holes made in a small hoard. They are then charged with a layer of sbe ut half an inch of pounded and muistened sulphate of copper, and filled up nearly to the top, with sawdust suaked in pure waler. The a a gative electromutor is a small cylinder of zinc, about an , ibhth of an inch thich, which is passed down into the sawdust through a hole in a varnished cork, closing the aperture of the cell. A small nutch must be made in one side of the cort, to allow of the cocape of gas. Of course the cupper cell and the ginc cy huder must have wires attached to them, for the purpuse of attaching them to the opposite joles of the acighiburing cells. A battery of twenty such cells, exhlited by M. Cauduray to the Suciety of Sciences at Lausanne, sufficed to wotk a purtable miltary telegraph against a resistance of 4000 Sicmens units. The hnowledge ui su cheap a fuma of battery wall be welcome to many whe like to annuse themselves with experiments in galvanism.

A new obmometer, whichappears to offur cortain advantages in the study of usmosis, mat especially with reference to the diffirence of pressure on the two sides of the membrane, is described by M. Carlet in Comptes-Rendus.
An instrumunt has been invented in Germauy for testing colour blindness. It consists of a rotating apparatus, which moves a dise whose centre is a curcle, one half black and the other white; outside of this is a riug half red and half green, then another ring of violet and red, then the outside ring of violet and green. When rapidly rotated the centre appears to be coloured grey, then is black and white mixed. 'To a green blind person the middle line will appear grey, that being the result to him of a mixture of violet and red. The outer ring will appear grey to the red blind patient, and the inner, grey to the violet blind. By the use of this instrument, a large number of patients may be simultaucously cxamined for one or more kinds of colour blindness.

A convenient method for renderiug ordinary drawing paper transparent for the purpose of making tracings, and of removing its traneparency so as t restore its former appearance When the drawing is compl. I, has been invented by C. Puscher. It consists in disso . ing a given quantity of castoroil, in one, two, or three voluness of absolute alcohol, according to the thickness of the paper, and applying it by means of a sponge. The alcohol evaporates in a few minutes and the tracing paper is dry and ready for immediato use. The drawing or tracing can be made either with lead pencil or india-ink, and the oil removed from the paper by immersing it in absolute alcohol, thus restoring its original opacity. The alcohol, employed ir removing the oil is, of course, preserved for diluting the oil used in preparing the next sheet.

Profebsor C. A. Young in a lecture to the American Institute, has given the following ingenious illustratione of the sun's distance. At present we consider the distance of the son from the carth to be $92,000,000$ of miles, with a margin of error of about 500,000 miles. It would take a railroad train 263 years to move from the sun to the earth; 50 that if the Pilgrim Fathers had started from the sun at the time they startod from England, by a train whose only stopping place would be Mercury and Venus, they would nut have arrived yet. It would take a cannon ball, going at full speed, about nine years to make the journey. Light takes eight minutes. Sound, if it could be carried over the colestial spates, would be fourtecn years on the way. You know, continued the lecturcr, that if you touch a part of the body, one does not feel it instantly. If you touch the baul of any one with a pin, it will be an appreciable part of a second before he will feel it and draw his hand back. Now if I had an arm long envugh to reach to the sun, and should put my fingers into the solar flame and burn them there, it would be one hundred years before I should find it out, and another hundred years before I could remove my hand.
M. DE Leverss has communicated to the Academy of Sciences of Paris s n account of the results of an investigation that he has made upon the breaking of those curious glass objects known in this country as "Prince Rupert's drops," and in France, it appears, as "Dutch tears." They are long drops of usanucaled glass, drawn out into a thin stalk at one end, and if even the extremity of this thin part is broken away whilst the thick part is held in the hand, the whole mass instantly breaks up into a thousand pieces, producing a stioging sensation in the hand holding it, which is rather astulushing to those unacquainted with the pecularity of the drups. By enclosing the drops in plaster of Paris, M. de Luynes, bucceeded in breaking them withuat allowing any of the fragments to change their pusition. He then fuund that each particle is a little cone, with its apex alwayo turned towards the point where the force causing the ruptur had been applied. The little cones are partly cnclosed one within the other, and are rematkably regular in their armagernent, and a similar regulatity of rupture is ulserved in alass reds whach break spontancously in consey, nce of their nut being sufficiently anncaled. The rugture may beaccompanied by an clevation of temperature of about iv cieg. Fahrenhcit, and often by a flash of light. Small things frequently furnish a clue to tho cxplanation of great phenomena, and Ms. Elie de Beaumont thinke that something analogous to what takes place in the little Rupert's drops is constantly going on in the interior of our earth.

FIC 5

MIIJS patenj fuef ECONOMISER.

Mechanics' Magazine.

MONTIREAI, MIAY, 1873.

Industirations :	Bill respecting welghts and
Apparatus for driving sew-	meatures.................... 38
ing machines................ 33	Nalrn's ruad locomotlve.... 39
Peat condensing machine 30	Vienma Exhlbition........... 11
Shaw's planer bar............ 37	Hunter's comblnation rall.. 42
Vienma Exhibition, detalts	Srlentitle news. 43
of foundations..........40, 41	Eilltorlal \&c.................... 46
Natrn's rusul lucumutlve.... $4 \pm$	Iteviews.. 46
Fuel amonnimicr. 15	Currespundence:
Steam-launch englues...18, 49	Patent Law.............. 47
Nolet engine..............52, 53	Saving life at rea....... 60
Nile borts, Soudan rallway............................. 56	Vteuna Exhibition, foundations. 51
Sectlons of Cliannel Steam-	Rook drill points.... 51
shijs...... 67	Ventlating bricks........... 51
Saw illing apparatus.......... 60	Nolet englne.................. 53
Cullmary boiler................ 01	The Detrolt Rlver tunnels 63
Suplee needre................. 61	Soudan rallway expedition 54
Difierent forms of drill points 61	Trip through Mexico........ 55 Saw fllhig apparatus......... 55
Viemma Exhibition, central	Nicarngia ship canal........ 55
rotunda......... 6i	Stenmshtps for Channel
C'ontents:	pas age....................... 57
Notlve power for small	Stram-launch engines...... 57
machines.................... 34	Coments ${ }^{\text {cos }}$
Peat condensing machinery 34	Ventilation of small houses 69
Mill's fuel economiser........ 35	Magneto-clectric machino 59
Culinary boiler............. ... 35	Wiring the work............. 62
Planer bar.............. 37	Míscellanca.................... 62
Supleo needlo................. 37	Rotunda, Vionna Exhib'n.... 63
Canalian plumbago........ 39	Rallway matters............. 63

NOTICE.

By reason of the delay which occurred in the issue of the first number of this publication, and the consequent lateness in the present issue, we have dated thas second number May instead of April. But subscribers will not suffer thereby, and will receive their full complement of 12 full numbers.

We have on our table a copy of a report by Chas. Legge, Esq., C. E., on a proposed railway bridge over the River St. Lawrence. The bridge is to form part of a railroad to connect the Ottawa Valley with the New England States, forming a short cut for the traffic between those places, and likely to be useful in helping to carry the inter-oceanic freight of the Canadian Pacific Railway A charter for this purpose was granted by the Dominion Parliament last session.
The provisions of the Charter are extremely liberal, giving the right to the adoption of a low level bridge, with swing sections over the navigable channels, a right previously rofused to other companies.

Tho point selected for crossing the St. Larrence is at the foot of Lake St. Francis, a sheet of water 21 miles in length by 4 miles in width. The outlet of this lake is blocked up with a number of islands, some of considerable extent. The banks of the river and of the islands being but from five to ten fee: abovo water lovel; and the navigable channels bcing closs to each shore, the project of a high level bridge to permit the passage under it of passenger steamboats, \&c., would not be feasible, on account of the vast exteut of cmbankment that would be required at either shoro and on the islands. It was less difficult to accomplish this matter in the caso of the Victoria Bridge, where the banks being of considerablo height, the rail level was carried to the centre channel on a rising grado from cach bank, and thus 60 ft . clear headway was easily obtained. At Cotcau, where it is proposed to build this bridge, the banks are low and the two channels occur but
a few hundred feet from either shore. A high level-crossing is thus rondered impracticable except at a cost too great to bo contemplated.

There seems, howover, to be no great objection to the construction of a low level bridgo, with swing sections to permit the passage of vessels. The bridge will be visible for half an hour from approaching stuamboats, and as the channel is only used in the day time, the bridge can hardly be a source of danger. There will be two swing sections of 80 feet each, with wing cribs for greater security, placed above the openings and splaying from them \ln a funael-like manner.

The estimated cost of the bridge is from $\$ 850,000$ to $\$ 1,000,000$ according to construction.
The railway of which the bridge is to form part, is proposed to be constructed from Ottawa Clity to some point on the Ogdensburgh railway-probably a little east of Centreville Station. This would give a length of road of about 112 miles, independent of the bridge. The cost of building this is estimated at $\$ 25,000$ per mile, which with the cost of the bridge gives a total estimated cost of $\$ 3,800,000$.

The road when constructed would be a grand outlet for the sawn lumber of the Ottawa, and would have numerous other sources of revenue, which are carefully enumerated in the report, but which we havo not room to state here. 'There is no doubt but that such a line would be of great servi \pm to the Ottawa and St. Lawrence valleys, and would also play an importaut part in the Canadian extension of the Northern Pacific Railway.

We call attention to the letter from Mr. Edward W. Furrell under the head of "Correspondence." The fearful loss of life by recent disasters to ocean vessels has made it clearly apparent that something should, at any rate, be tried to increase the power of saving life under such circumstances. Small boats have almost invariably proved inadequate. Something analogous to Mr Furrell's idea exists, we believe in the Royal Navy. There are several plans by which a raft may be rapidly constructed from certain spars, etc. These plans being known and a regular system existing, it would not take long, on a well manned war vessel, to rig up a raft. Still this even is very far behind the plan in question and would be of little avail on a crowded passenger ship. Certainly something should be done in this direction. Mr. Furrell's plan, so far as we can judge of it from the short description in his letter, is in the right direction. The false deck need not be much in the way, and in case of danger especially near shore, as in the recent Atlantic disaster, would prove far more serviceable than small boats.

REVIEWS.

How to Make Money by Patents; or Hints and Suggestions to Inventors and Patentecs. By Charles Barlow. (London: E. Marlborough \& Cu.)
This is a very useful title work by an Englash patent agont of great experionce. The subject of inventions in themselics is gono into at consi ierable leugth, especiully as to the ascertaining of what are really inventions and what not, and also as to what inventions are likely to prove remunerative or otherwise. Patont law, liko most other law, is shown to bo casily misunderstood by those in whos interests it has been framed, and the fair conciusion is dmwn that inventors geuerally do well to entrust their business of this kind to reliable agents who make the study of these laws thoir business and who aro liable to damages if thoir clivnt suffer injury through rentissness
on thoir part. On the subject of meking money out of patents there is much good practical ndvico with reforence to disposing of the patent when obtained, to publishing and advertising it, ctc., ctc. TLe following extract shows the practical turn of the work :
"There may bo said to bo four ways of commonly dealing with a patent. The first mode is for the pateuteo himself to put the invention into practical operation; the second plan is to grant licenses for its use; the thitd is to dispose of the whese right; and the fourth is to divide the right into shares, and disposc of part of them; but the powers and privileges of the grant permit of a variety of dealings, including mortgages. Unquestionably, the pref.rable mode is for the patentee himself, if possible, to initiate the practical introduction of the invention into the market. If he possesses the requiste capital and knowledge of the trade, he can introduce it more advantageously to public notice than any other person, because he can best combat the difficulties which are Ikely tu spring up, and soften down the asperities which generally are exeited by the appearance of a new competitor for public favour. Fortunate is the patontee who is able to manufacture his patented articles without extrancous assistance,-who can appeal to the public at large, who, in the long run, adopt whatever is practically useful. Not a few novices in patents fall into the error of demanding exorbitant prices for their merchandise; they assert that there would be littlo advantage in a patent did it not enable the owner to gain high profits. Certainly a higher profit than is usually made in trade is due to the patentee who is layed for his privilege, and who has to incur heavy expenses in experiments, models, and trials. Bat sound policy will dictate moderation and the patentee will find it to his real interest to cultivate an extensive trade at fair and reasonable prices. The effect of placing too high a price upon articles is to prevent trial of them, and it should bo the object of the patentee to promote by all means in his power a speedy demend."

There are few, even of old inventors, to whom this littlo work will not prove of service and we recommend it, with confidence, to the consideration of those who have, or think they have, occasion to apply for the protection of the laws respecting patents.

CORRESPONDENCE

[We do not hold ourseloce accounfable for the opinions of our Correspondents.]

PATENT LAW.

To the Editor of the Mecmanics' Magazing,
Sir,-Having in your last issue promised to review in this number the 11 th section of the Patent Act of 1872 and somo of the other objectionablo clauses, I will at onco proceed to do 80.

Tho llth section reads as follows:-
"11. Every inventor, before a patont can be obtained, shall make oath, or, when entitled by law to mako an affirmation instead of an oath, shall make an affirmation, that ho verily believes that he is, or, in the case of the inventor being decoased, the annlicant shall make oath or affirm that the person whose 8 ree or ropresentative he is, was the inventor of the invention for which the patent is solicited, and that the several allegations in the petition contained are respectively true and correct. Such oath or affirmation may bo made beforo any Justice of the Peace in Cansda; but if the inventor or the applicant is not at tho time in Canada the oath or affirmation may be made before any Minister plenipotentiary, cherge d'affaires, consul, vice-consul or consular agent holding commission under the Government of the United Eingdom, or any Jadge of the country in which the spplicant happens at the time to bo."

This section of tho law must bo read in conjunction with one of the recent additions to the Rules and Regulations of the Patent Office issucd on tho 14th day of January last, numbered 3 and headed "Affidavit," which is to this eftect:
3. Arpidavit.-In all cases of applications for Patent, whero tho affidavits are made out of Canada, and before a Judgo, the Seal of the Court, presided over by such Judge, must bo aftixed to such affidavit."

Taling these together (when we consider the requirements in the caso of any oath taken out of Canada) thero perhaps nover was a more reckless and ill-considered piece of legislation promulgated in any civilized country during the present contury:

Let us viow the effects of the Section and Rule above referred to in England, where there are no Ministers plenipotentiary, charges daffaires, consuls, vice-consuls, or consular agents, and where therefore, the only persons who can legally administer the oath are Judges.
It would be sufficiently difficult even in the City of London to get a Judge in Chambers to administer the oath, but undor this section inventors residing in the provinces would be compelled, tirst to solve the question of where they could find a Judge sitting in Chambers, and then to take a journey thither. Now calling on an English Judge is not like calling a boot-black, who is ready to attend you at any moment, the jndge has certain hours, during which alone he can be seen, and at that time he may very likely bo so much engaged thent he will not leave the business before him that day. The inventor may thus be compelled to call for two or three days before he can get an opportunity to take his affidavit and obtain the Judge's signature.
I will do the officials of the Department of Justice the credit to asy that when these facts (apparently entirely unknown to them before,) were brought to their notice, it was stated that the attestation of a County Court Judge to an affidavit would be received. (I presume that thoy imagined that the County Courts in England were similar in constitution to those of Canada.)

Even with this permission one would think that the diff. culties ontailed on the inventor were enough to satisfy the Department of Justice, but such a supposition would be entirely wrong; the edict has been issued that the Judge must attach the Seal of the Court, thus to begin with completely annulling their former concession, as County Court Judges have no seal.
Besides this, as the Judges of the Courts of Queen's Bench and Common Pleas only administer affidavits in Chambers they cannot use the seal of any court snd the consequence therefore is that in the whole of the United Kingdom of Great Britain and Ireland there are only three persons who can, properly and strictly speaking, administer the oath and attost it in the prescribed form.

These are three magistrates who, by virtue of thei: , office, are also Judges and have a seal that they can attach. They are as follow8:

The Lord Mayor of London, the Lord Provost of Edinburgh, and the Lord Mayor of Dublin, and to one of these three all inventors throughout the $\mathrm{R}, \mathrm{ng} \mathrm{g}_{\mathrm{om}}$ must travel. Imagine the difficulty of making a joint application for three persons who live in different parts of England!

The affidavit thus taken must be signed by people who, as a rule are not acquainted with the niceties of the forms of the Cansdian Patent Office, and bo attested by a person who feels that he is conferring a favour in 80 doing, and that the affair is entirely out of his province; the consequence is thst some trifling discrepancy occurs, and 50 full of red tape is our Department of Justice that, (so to speak) if an z is not dotted, or a t left uncrossed the oath is rejected and a new one demanded; it thus often happens that three osths have to be taken before one correctly prepared according to the ideas of our Department of Justice can be obtained.

So much is this difficulty felt that many of the leading patent agents in England and the Dnited States, and all inventors who have applied for Canadian Patents are beginning to come to the conclusion that while our Government is supposed to have opened the doors of its Patent Olife to them, thoy aro virtually shut out by ridiculous requirements and red tapo restrictions.

I do not, however, myself think that the action of the Department of Justice was wilfully directed to that ond, but am

inclined to take a more charitable viow of the subject, and ascribe these ill effects of their proccedings simply to rash legislation on their part on a subject of which they wore utterly ignorant.

In the United States, England, France, Russia, and many other countries an oath taken before a notary public, duly authorized and practising as such, will suffice. Some of these countries have ten times the number of inhabitants that Canada possesses, and a patent in oither of thom is often worth one hundred dollars for each dollar that the Canada Patent may produce.

The Government of Canada, by the regulations we have referred to, therefore places itself in the position of a divarf, who, when he goes out must have a huge stick, which, in his opinion enhances his importance, but in reality only makes his insignificance moro apparent.

I will now proceed to the 12 th Section which reads as follows:
" 12. The petitioner ior a patont shall for all the purposes of this Act elect his domicile at some known and specified place in Canada and mention the same in his petition for a patent."

I have often beon asked by foreign patent solicitors and inventors what use this clause is, or what is the intention in making the inventor state that he elects a domicile in Canada.

I have myself also asked the same question of Government Officials and Members of Parliament, and have never yet found any one who could give me a satisfactory answer. I can only suppose that this forms part of the "dwarf"arrangement above referred to.
The 13th Section is in this shape:
"13. The applicant eball, in his petition for a patent, insert the title or name of the invention, and shall, with the petition, send in a specification, in duplicate."
This is all well enough, but the practice of our Patent Office requires a name to be given as well as the title. This is demanded by no other country and my concluding remarbs on the 12th Section equally applies to this.
It is needless to comment on the 14th Section of the Act, as I am informed on the best authority that the practice of preparing the application in duplicate will be abandoned about $M_{\text {ay }}$ next, and a form of procedure adopted resembling as far as possible that of the United States Patent Office.
Nothing further of note occurs until we come to the 18th Section which follows:
"18. Every patent and instrument for the extension of time as aforesaid shall, ciore it is signed by the Commissioner or any other member of the Privy Council and before the seal hereinbefore mentioned is afficed to it, be examined by the Minister of Justice, who, if he finds it conformable to law, shall certify accordingly, and such patent or instrument may then be signed and the seal affixed thereto, and being duly registered, shall avail to the grantes thereof."

It is very desirable that the Patent Office should be selfcontained and competent to perfurm all work within its own province, and it should therefore be supplied with proper legal advisers attached to the office, to consult on all points arising from the proceedings in Patent cases. These proceedings should be strietly in equity and not in common law.
By proceeding at common law the business of the office is impeded by technical objections and useless quibbles, and in proof of this I may cite the recent decision of the Department of Justice that the oath must be attached to the specification with a pin, tape, wire, or some other fastening, and that if this be omitted and the papers be simply sent in one enclosure, the affidavit will be returned and a now one demanded as if the pin or tape had any legal bearing on the case.

I have already referred in my remarks on the 11 th Section to the requirement by the last additions tothe Rules and Regula. tions of the Scal of the Court, and will now bring before the notice of your readers another new requirement referring to the specifications.
"2. Spsomoations.-The Duplicate Specifcations, in every application, must each be identificd by the justice or judge, who takes the affidavit of the inventor, as 'the Specification referred to in the inventor's affidavit annexed.' Such identifi-
cation to bo, by cortificato, written at end of, and in each, such Bpecification. Thus:-
'This is tho Specification referred to in the affidavit of
Sworn before me this
day of , hereto annexed;

Judas, or J. P."
Now as there are two specifications and but one oath the certificate at the ond of one of them must be absolutely false, and this false statemont is, according to the Rules and Regutions and the law, requircd to bu certified by the Judge orJ. P. who attests the oath.
I need hardly say that, should ho do so, ho would deserve to bo ignominiously deprived of his commission.

To get over the difficulty it may be ingeniously arranged to attach the two specifications together and the oath to both of them; but, when they arrive at the Patent Office they must be separated, as one specification is to remain there, and tho other to be attached to tho patent and sent to the inventor. If thercfore one of the certificates is not a lie at the time it is written it must of necessity become one afterwards.
A department that can thus lay down, for strict observance, rules and regulations which on their face are self-contradictory and absurd, can hardly be called fit to guide and direct another department the practice of which should be entirely governed by the rules of equity.

This communication has already, Mr. Editor, extonded to a greater length than I had intended, and I fear that I have trespassed on your valuable space. With your permission I will resume the subject in your next issue.

I am, Sir,
Your obd't. servant,
C. G. O. Simpson.

SAVING LIFE AT SEA.

To the 'Editor of the Meghanics' Magazine.

Sir-The late lamontable disaster and sacrifice of human life off the coast of Nova Scotia, must render it painfully evident to the public and particularly to those acquainted with the sea, that the present system of saving life from sbipwrecks by means of the boats usually carried for that purpose, is almost useless, and I quite coincide with the opinions expressed in a recont article of the Scientific American, as to the desirability of engineers and inventors endeavouring to discover some effectual and reliable life-preserver at sea, which shall be capable of rapid manipulation and render sea voyages less fraught with such fearful danger and anxiety to ship passengers as the recent examples of the "Northflect" and "Atlaitic" are justly calculated to inspire.
I have been a passenger on the ocean several times during my life and can readily undorstand the awfol difficulties that have to be contended with in rescuing human beings from shipboard in the face of fire, rock or tempest. In such cases which generally occur at night, all is darkness and confusion, and, with the exception of a few whose minds accustomed by training to the sea, comprehend the situation at once and do their duty nobly, all lose their presence of mind and in their frantic efforts to escape, only hasten their destruction. In such cases also, time is so short, that the attempts made to lower the boats carried by the ship are generally futile. Some of the boats are perhaps found lealiy and stove in by previous sturms, others never reach the sea, owing to derangement of their lowering tackle, while the remainder are generally swamped by heavy seas after leaving the wreck.
I beg, therefore, to offer to your notice a plan for dealing with this subject, which may or may not be the desideratum sought. If the idea should meet with the approbation of the nautical world, who are alone capable of judging as to its character, I shall bo happy to furnish full particulars of my proposed plan. If condemned, I shall still have the satisfaction of having endeavoured to aid in the cause of humenity.
My plan is as follows:- I propose to place on the uppermost after-deck of a ship a false deck in the form of a raft, say 100 feet long from the stern by 45 feet wide (according to the length and beam of the ship) and of suitable thickness, constructed with alternate lajers of planking and cork thoroughly secured together, and capable of supporting from 500 to 600 persons without inconvenience. This falso deck
or raft to have sides or bulwarks of thin plato iron in the form of air-tight tubes (which might be used for the stowago of provisions, and for other purposes) and the ouds to bo closed with strong wire-ropo nettíng. Other suitabla gear also to be provided for the safety of passengors.

When not reyuired for use, the raft would simply rest on and form a raised portion of the ship's decl, but in case of accident, I propose to launch it by simple, powerful, rapid, and sufficient gearing from the storn of the ship into the sea.

The following are some of the most important features of my proposed raft :

1. From the nature of the materials ured in its construction, as well as from its form and size, tho raft would bo unsinkable, and could bo made of any floating power.
2. In case of fire, the raft could be instantly launched from tu. stern of the ship, and the passongers and crew betako themselves to it.
3. In the case of the ship foundering the raft would of .tself float free from the wreck, with its living freight.

It is not my intention in this letter to describo how I propose to securo the raft, when not in use to the deek, on which it is to be placed, nor to meet the many objections which may be justly raised to its adoption, such as the disposition of the wheel-house, mizon-mast, sky-light, and other impeding gear. These objections, serious as they may appear at first sight, are mere matters of detail which can be easily overcome and which I am prepared to mect. In caso of ius adoption, alterations would necessarily have to be made in the disposition of the stern-gear of a ship. But the importance of the subject is such, that no expense should be spared, and these alterations once made, my proposed raft would form the safest, simplest, and most efficient life-preserver ever invented.

I beg to enclose my card, and to solicit the assistance of the scientific world in doveloning my invention.

I am gours truly,
EDWARD W. FURRELL, C. E. 60 King Street,
Toronto, April 22.
We publish on pages 40 and 41 illustrations of the pile foundations employed in the construction of the nave and transepts of the Industry Palace, which will further explain the arrangements adopted. In the annexed engravings figs. 1 , and 2, show the foundations of one of the colamne or standards of the transepts; fige. 3 , and 4 , are umilar views of the foundations of the columns of the nave; figg. 5 , and 6 , show the foundations employed at the intersections of the nave and transepts: figs. 7, and 8, show the foundations at the front corncrs of the transepts; while figs. 9 , and 10 , ropresent the foundations of the corner parilions.

IMPROVED FORDS OF ROCK DRILL POINTS. (See page 61.)

There few brancbes of mining which are not more indelted to modern scicnce than Rock Drilling. The holes in the rock in mining and quarrying are beaten by blows of the hand in the same manner that the builders of the Pyramids wrought three or four or more thousand years ago. Whether they used the same form of drill point that we do, is uncertain, but it is probable that they did. We probably have better steel than they, but that is the ouly point wheroby wo surpass them. After the boles are drilled, we have in gunpowder and other explosives a means of rapidly tearing rock, which they did not possess.
In our cuts on pare 61, we have not shown the diamond drill point which is a gection of a cylinder with diamonds set on its face, so that revolving the cylinder srinds out the hole. Or the diamonds are set in, in the ead of a pipe, and when the pipe is revolved under heavy pressure, the diamonds wear away the rock and make a hole with a core in the center.
The use of diamonds is very limited and tho supply small when compared to steel, and if all the rock rork that is done by steel in one year were done by diamonds, all the known diamonds both carbons and brilliants would be required. The few reguired to supply rock drills have caused an adrance in the price in tho last three years of several hundred per cent., even tho fabulous yield of the Arizona diamond fields failing to keep down the price.

In our engraving No. 1 represents what is called the diamond or lozengeshaped point. It is the almost universal form used
in drilling metals and is largely omployed in rock-drilling. Its sharp point is particular!y useful in starting a holo in any given point; and in soft rock it is as efficient as one with a rounder form. No. 2 shows a form that is better adapted to harder rock, but No. 3 is the form most commonly propared for the hardest rock, such as granite, mica slate, containing a large amount of silex, some varieties of trap and amygdaloid, etc.

Figuxes 7 and 8 (the samo figures though different views of the same drill) represent the cross and three-leaved ponit, and sometimes as many as seven leaves are used. Fig. 7, shows an end viow of the drill. The cross is gencrally adapted for machine drills and will sustain a heavier blow without breaking than a chisel point. All of these cut out the entive size of the hole as is shown at No. G, which shows the form of the cuts at the bottom of the hole. No. 4 shows a double drill, (front and side view) two chisel puints with tho edges set parallel ; 4, shows the manner in which it operates. It cuts around on tho sides of the hole and the conter fiakes off, thus saving a large amount of cutting in drilling a hole.

This ingenious arrangement was invented by Charles Braids of Copperopolis, twelve or fourteen ycars ago. No. 5 represenus a side and front viow of a modification of this drill; the cutting edges are rounded so as to conform to this side of the hole es is shown at Fig. 5. This cuts a still smaller portion of rock, as is shown at fig. 5. This form of drill bores a hole with less uxpenditure of powor than any other known form; the chips are larger, showing less cutting than when they are finer.

No. 6 represents a curious form which is sometimes used for leaving a centro for holding a tool for chambering out this pattern of a hole. Ono of the greatest improvements in blasting rocks, that has been made in later times, is the use of Giant Powder. By its great explosive force as much execution can bo done with an inch and a quarter hole as by an inch and a half charged with ordinary gunpowder, reducing the work of drilling as elcven to seven, and one man with a hand hammer and a small drill can penetrate this rock nearly as fast as two men with a larger drill.-Mineng and Scientific Press.

LOOKER'S VENILLATING BRICES.

Mfr. Benjamin Looker, of Kingston-upon-Thames, thus describes this valuable invention in the specification of his patent recently filed:-
My hollow ventilating bricks are to be constructed as parallelograms, though they may be constructed in other forms if desired, but open at the ends with internal ridges or protuberances extending from end to end so as to provide grooves therein for the purpose hereafter described.

At each end of these bricks or slabs, portions of the sides are removed, or notches made so that, thereby, when two bricks or slabs are brougat end to end, an opening on cach side shall be constituted, so that when these bricks or slabs are laid or set in position in a lide, a namber of ventilating openings will be provided which may be opened and closed, or partly upened or closed by means of sliding boards or plates, which should be pronded at the lower edge with small rullers to facilitate motion, and placed in the grooves formed in the tops and bottoms of the slabs or bricks (by the ridges or protuberances aforesaid), such sliding boarcis or plates being made with corresponding openings to those above-mentioned, in order that sy braging these last mentioned openings opposite the swal opening. in the line of bricks or slabs, the ventilating holes may bo opened, and by withdrawing the said boards or plates from that position, the ventilating openings can be closed. Openings, if required, are made (in the sides of the bricks or slabs) of the same character and for the same purpose as above described; and in somn cases, if allowed, a brick or slab of the above internal form, but without the notches or parts of the sudes removed as above described are used if interposed between the others.

When these bricks or slabs are used in constructing horticultural structures, especinlly those known as "Iookers,' a line of these bricks is placed along the base or lower part of the structare, so that, by opening and shutting the ventilating openings aforesaid, ventilation of the lower part of the structure may be provided, and by opeaing the top lighte, or in "Looker's" structures removing the caps or ridge tiles, top ventilatica will be provided.-Sctentific and Literary Reviet:

CONDENSING EXPANSIVE ENGINE.

open till the last moment, hance the back pressure on the piston in the direction of the condenser or the atmosphere is relieved. On the other hand the admission port is opened gradually, to nvoid the shock at the commencement of the stroke, and to admit the steain in proportion to the velocity of the piston. The governor acts on the valves in euch a manner that the steam is shut off at each stroke precisely at the necessary moment, in order to maintain rigorously the constant peed of the engine, whatever may be the work put apon the engine by the machinery moved by it. Henco it results, in the first place, that the cousumption of steam is exsctly proportioned to the work to be done, in which lies the great superiority of engines If the Corliss type over the old systems wherein the governor is made to act on a trottlo valve; in the second place it follows that the regular running of this ongine is exceptional, and it is intended to replace double cylinder engines, bean engines, \&c., wherein the resistances

The Corliss engiue of the orfginal American type, together with its derivatives, in which the steam is admitted and withdrawn through tap valvee, present, in the midst of many drantages, one serious inconvenience, that the valves are not capable of being maintained tight for any longth of time through wear, and, in spite of many attempls to cure the evil, these valves persist in wearing unequally. Engines fitted with valves other than of the tap form are consequently more satisfactory. The valves do not wear out so easily. The exhaust ports are also often somewhat narrowed, because the diameter of the valve can only fall within certain limits; and, morcover, the opening and closing of the exhaust occur gradually, which keeps up the back pressure. M. Nolet, in common with tho Sulzer system, makes use of an equitibrium valve, and he has adopted another device in making use for the exhaust of two gridiron valves, which by a very slight movement provide a large passage for the exhaust steam and keep it open during the whole of the stroke. This valve is shown in the section of the engine.

The Nolet engine is also held to possess other advantages over engines of the Corliss type. The valve gear is simpler and stronger, and is reduced to a smaller number of parts, and

Referring to the engravings, it will be seen that on a shaft worked by the crank shaft there are two eccentrics for moving the steam valves, and two for the exhaust. The latter communicate short oscillations to a rocking lever for working the gridded valves of the exhaust. At the commencement of each stroke one of the eccentrics raises a spindle, on which is fitted a sleeve, carrying an arm attached to the valve. At the commencement of its lift this spindle engages with the sleeve, but this latter carries a particularly curved lever; the sleeve scarcely commences to rise when this curved lever engages with a catch on a freely working arm belonging to the governor; the sleceve is then released from the spindle, and the valve closes instantly by reason of the counterweight with which it is provided, the spindle meanwhile continuing to ascend. Now it is evident that as the moment the

TEE NOLET ENGINE.

We illustrate on this and the opposite pare one of the bighly economical engines of Messrs Nolet et Cie., Fugineers, Ghent. The illinstrations are from the The Engineer.
It will be seen that after the manner of the Corliss and Allen engines, it is supported on two sole plates, one carrying the cylinder, the other the crank shaft. The connection between the two is completed by a cast iron beam fitted with slide bars for the crosshead to work in. The condenser and air and feed pumps are placed below the bed plates, and the latter are worked by means of a counter crank and drag link. The steam is supplied to the cylinder by means of two separate valves, and there ars two exhaust ports placed at the extremities of the cylinder to separate completely the steam ports from the exhaust ports, so that the steam coming from the boiler is kept apart from that to be condensed, and so does not enter the cylinder through ports already cooled by the spent steam. The closing of the admission valve is in a way instantancous, and is not gradual, as in all those of the ordinary slide valve type. With this arrangement expansion is not sacrificed. Diagrams taken from this engine show remarkably well when compared with others, as in them, when examined with those taken from engines of the old type for corresponding abscisse of the curve which represents decreasing pressure during expansion, the ordinates are often greater. The exhaust is kept

Falve closes is dependent upon the position of the governor, any variation whatever in the speed of the engine, from stroke to stroke, being promptly felt by the governor, operates to close the valve more or less quickly in order to keep the speed cven.

THE DETBOIT RIVER TUNNELS.

The works on these tannols have been suspended indefinitely from want of fands, and the connection of the Uni led States with Canada is therefore for the present absndoned. The original plan contemplated the connection of the Great Western Railway of Canada with the Michigan Central Railmay, at Detroit, Michigan, by two independent tunnels of masonry, each 15 feet in diameter, driven under the bed of the river. Each tunnel was to have been 8,568 feet in length. The preliminary work consisted in drifting a small tunnel 5 feet in diameter, intended as a drain for the two larger works, and it is upon this small tannel that considerable labour has been expended. Headings were made on both sides of the river, and when orders were given to stop the works, these headings had been carried 1,700 feet in all, or 1,220 feet on the American side and 480 feet on the Cauadian side.

IHL SUL DAN RAILWAY EXPEDITION

Our last issur contained a map and a deseription of the scheme of milway communicntion between Lpper and Lower Egypt, suggested to the Khedive by Mr. John "owler, and surveys for which were made in 1872. The various cataracte which obstruet the mavigation of the vile in its lung and circuitous route betwen' Khartoum nud Assounn, render useless this great and natural line of water commmaication, and made it necessary, if the rextensive and fertile districts of the Soudan are to be developed, to establish some other link ietween the great producing grounds and their points of demand in Lower Legpt. Moreover, as we have stated, this projected line of railvay, joining the Soudan to Wady Halfin above the first Cataract, thongli in itself 560 miles in length, is to form only the first length of a great through line to the west shore of the Red Sen, which shall, when it is completed, enter into direct comperition for the convezance of passengers and merchandtse with the Sue\% Canal unte.

The complete project whichis nuw under the consideration of His Ilighness the Khedive of Egypt, and which, in all probability, will be decided upon shortly, consists of the formation of a direct lime of inland communication between the Mediterrasnean and the southern end of the led Sen, by whel means not only will a most important saving in time be effected, but the almost intolerable daugers and inconveniences of the tred Sen passage will be entirely avoided.

The proposed new route between the Mediterranean and the hed Sea will be 1900 miles in length. Commencing at Alexandia, the existing railways terninating at looda wall cover $31 n$ miles of the distance. At Reda the passengers will be transferred to light and srift steambuats, and for 600 miles sonthwards the Nile will furm the highway for malmd tratic. Perheps the most interesting portion of tho Nale whll thus be traversed by travellers, and an additional feature of interest will be the crossing of the First Cataract by Mr. Fowler's ship railway, which, it is understood, is to be commenced forthwit 1.

The termination of the preceding limk of river communication will be at Vrady Iralfa-the cummencement of the soudan Railway. A transference from steamboats to ralway will therefore take place at this point, and the 560 Niles in length of the Soudan Railmay will be quichly traversed. Thas takes us to Shendy, and from Shends to Massowah-the port on the Red Sea where the sea passage will be again resumed-is but a distance of 430 miles, which will be accomplished by ma extension of the Soudan Railway. There can be no doubt that this important line of inland communication will produce almost incalculable results as regards the development of the resources of Egypt. The products of the rich valley of the Nile will have seady access to the markets of the world in every direction: thus mative productions will be stimulated, and in return the manufactures of the western world will und a market in previously inaccessible regions. At the same time the facilities afforded by the overland ruate for through communication with India and the East caunot be too highly apprased, cither as regards time or comfort. Meantime the local traftic upon the Noudan Railway will, accurding to Mr. Fowler's report, be cousiderable, comprising all the varied articles of freight which now converge by the various camel routes that meet at Metemmeh, on the Nile, opposite the sonthern terminus of the line, as well as from Khartoum up, and from lierber down, stream. In addition to this freight, there will be created a new traftic in the corn, cotton, and other vegetable produce grown in the soudan, so soon as there is a means provided for its export. As we have already stated, Mr. Fowler has wisely selected a 3 ft 6 in. gauge for this line, for the oluvious reasons that it combines ample capacity fur a large aud maned trathe sarying from pressid or half-pressed cotton, cuming down north ward, to marlinery going suiths, with the greatest connomy in construction, maintenance, and working.

The surveying expedition, eightern in number, including the chiff, Mr F. Graham, was organised in London, and sinled from Southampton on the 16th beptember, 1871 . I ents, stores, and all the necessary impedimenta were despatched with the staff, which, on arriving at Alexanina, na, receved by tho Egyptian officials, and no time was lust in preparmg for the journey, beyond that required for unloading the stores at Alexandria, and transhipling them agan at cairu on the river boats destined to carry the expudition as far above the First Catarnct os should be found practicable. It was arranged that a steamer should tow four of the native buats or lahabuahs, and
carry, besides, the bulk of the stores, whilst the staff was divided into two parties of four ench in the smaller, and two of tive each in the larger boats. As it was grobable that the nature of the work would compel the expedition to work in pairs, a further subdivision was eftected, by which all necessary arrangements were made for forming right reparate parties, ench being fully provided with storres, a dragomnn, cook, de. As events turned out, however, this sublivision was unnecessary, for, with few exceptions, the surveys were completed in parties of four.

The four Dahabeahs left Cairo astern of the light paddlewheel steamer on the bth of October, about seven days after the time of high Nile. As during these seven days the water level had fallen some 14 in., it was necessary to push forward as mpidly an possible in order to reall the foot of the l'irst Contaract, when the difierence in the water level above and below the falls should tre comparatively slight, but owing to the prevalence of strong adverse currents, the steamer with her heavy train astern did mot make buch rapid prugress as was anticipated, and she was thirteen days in reaching Assounn, at the foot of the cataract

The sketelt on page 5u, sliows a par of Dahabeabs lashed together, and cunveys a good thes of the type of vessel. The aremge length of these loats is about tu0 ft., the beam 15 ft . the depth of hold 4 ft ., nind the draught of water 2 ft . 6 in . They draw, however, moro water forward that aft, being built in this way in consequence of the common incident of ruming aground on shallows, when with the light draught aft it is casita fol the cruw tugct then atluat agam We shos! publish next month a drawing of une of toe fastest bonts of this class, a modern aftair altogether, and an mnovation on the time'honoured practice of Esyptian shipwrights, being built of mon

With a fair wind this Dahnbeah could make a speed of 1 n miles an hour, but the light draught of these vessels, and the large surface of their cabins, deck honses, \&e., when expinsed to any but a far wind, prevent them from having good sailing qualities of any kind beyond that just mentionerl-of sailing frec That they would be improved ny the addition of lecboards there is little doubt, and these would have been introduced long since, no doubt, did not eternal custom prohibit alteration As a rule the Dahabeahs sail up the Nile abont November, before a fair and prevaling north wind, which arries them as far as the First Cataract. Indeed, this wind blows for about six months in the year, and in gome up st eam the gond sailing quality of the bahabeah is seen to advantage In returning, however, with the current, and against the wind, other characteristics are developed, and it is then manifest how greatly the improvement mentioned above would add to their sailing power.

The vessels shown in the sketch are arranged almost invariably with a cabin on deck, two others forward of the saloon, two lavatories, two other cabins similar to thase tor ward, and a large saloun in the stern, frequently used for the harem or Jadies' calun. The kitchon is in the oprn air, and placed furward of the foremast, a wooden sercen usually keepia.g it out of sight from the after-part of the boat 'rhe deck on the cabms is generally provided with an awning, and forms the favorite resort of passengers by day, but is given up at night to the captain, dragomen, \&c., for theirsleeping accommodation. Whis deck is approached by a ladder placed on each side. The floor of the saloon and cabins is generally from 1 to 2 ft beluw the levol of the deck. The space under slecping berths sofas, \&e., is titted with lockers and drawers.

The method of towing the Dahabeahs is that shown in the shetch. Ench pair is made fast together fore and aft, and the tow rojes are crossed so that the line from the port quartel of the steamer is made fast to the starboard bow of the starboard Dahabeah, and vere versa The objert of this arrangement is tu prevent the boats from swerving when any current cateles either bow, the tendency heing immediately corrected by the tow rope. This systom is almost universally sdopted on the Nile.

The hours of eailing are limited butween sumrine and sumect, the towing steamer does not anchor, but merely lies alongsidu the bank, while the Dahabenhe take their regular order alsu alongside the bank, as shown in the skotch. 'lhe boats are moored to posts, which are carried on board and driven into the ground at night, if no natural moorings present themselves.

Frequently the surreying expedition was met ly a guard of honour at the halting-places, despatched by the shiekh of the
district; this guard, which usually consisteci of four Arabs, two armed with poles, and tw. with nacient battle-axes, formed in all cases sufficient protection during the night, as no occasion for their services ever aroso.

In ascending the Nile at the season chosen by the expedition, sand-banks present little or no difficulty, and the course taken is therefore far more direct than at low Vile, when the numerous beads in the river have to be caufully traversed, and the decpest channels selected by the experienced Nilo pilots.
The mainsail carried by the Dahabeahs is similar to those with which one is familiar in many Mediterranean ports. The spar or yard carrying the sail is seldom lowered, and is usually about the length of the vessel (100 ft .), made in two lengths, and jointed. The sail is reefed in the usual way. The mizzen or after-kail is similar in shape. Each Dahnbeah usually requires a crew of six sailors, and anis or captain. It is steered ly a tiller about 6 ft . in length, the steermans place leeng on the upper deck. In descendang the Nile it is often necessary to empluy sweeps, the hatches of the vessel are taken off, and the crew stand on the floor, so that their arms are brought to funwale or rolloch level. The length of stroke taken being abouts ft , the men stand to their work, wabking forward at cach stroke, and pulling through. In rowing down strean it is usual to increase the crew to ten or twelve men.-Engencering.
(To be continued.)

A lap ranumbinexico. The currespondent of the Morniny Pust, who, we beliche, is the unly representative of an Euglish jutual ith Mesico, descultes the first junruey made over the uc, railsay from Menicu to Vera Cruz. He says:-We lett the capital very early in che morning of Nen Iear's day. The Mexican President's train went tirst-uirs fulluwed at a iespeetful distance. The first stage of our journey-from the capital to buea del Munte, a distanre of $\mathrm{l}=\mathrm{o}$ miles-was uneventful. The line for this distame is quite level, and its constenction wuld have been casy had nut the numberless ravines and watercuurses with wheh it is crossed necessitated the construction of as many bridges. At Boca del llonte-which we reahed before nuvit-the President and his party had been regaled with a bulutiful breahfast. They hau here been met by the Goven nur of Sira Cruzand his suite, and here also the Presidents carriage was replaced by a very elegant saloon carriage, so atranged that its vechpants could see the beantiful secucry urer which the line nuw passed without running fiom one side of the carriage to the other. The engine which drew his train, as also that which diew uurs, was one of the Fairlie patent, with stean brakes, which were highly useful in regulating the speed of the trains when descenuing the fearfully steep grades un which we entered after leaving Boca del Monte, for from this point the charater of the country sud-, denly changes. We left behind us the dull and dreary plans, ant pluaged at once into anuther world-a world e^{r} muuntans and valleys, tropical vegetation, buttumless ravines, and steep, precipices. Immediately east of Buca del Monte the road runs; thruagh a tumit, then plunges upon a narrow iron bradge which seems suspended in the air, and which spans a ravine of which you can scarcely sce the bottom; and then goes whirling down a descent of sixteen miles, with a fall of 1 in 25 -the longest gradient of this proportion in the world. It was considered unsaic to allow our train to run down this descent in one connection. It was divided into two, and so it happened that as we looked from our windows we saw the President's train under our feet and the other half of our train over our heads. The end of this exciting flight browitht us at six o'clock to the charming valley of the Orizaba, and in the delightful city of that name we remained that ni, ht and the next morning, resuming our journey to Vera Cruz the following afternoon. From Orizaiba to the coast is eighty miles, and on the way we crossed the Metlac River, which runs through a ravine 1000 ft . wide and 500 ft . deep. Instead of crossing the ravine rin a bridge, the railmay runs down the side of the valley, crosses the river on a low bridge, and then climbs up the opposite side. The road here goes through a succession of cuttings and tunnels, and over a number of small bridges, and nothing can be more strange and picturesque than this portion of the route. The descent on the western side of the ravine is 1 in 33, and the metals here are laid on the solid rock through which the route bas been cut. Soon afterwards we come to Fortin, 70 miles from Vera Cruz, and from this point
onmards the scenery is wonderfully benutiful and varied. Our tran had preceded that of the President from Orizaba, so that he did not arrive untal mine oclock at night. The station and tho city were illumiunted, and there was a grand ball : : the theatre. The President remaned in Vera Crua until fae afternoon of the fth, and during these three days thero was a constant succession of festivities. I do not know but that gou have often regarded me as too sangune when I have told you not to despair of Mexico. But now my fath in her is stanger than ever. We have completed our first railway.

FLFXIble SAW AND TOOTII FILING APPARATUS.

We illustrate on page 60, from the Scientific American, an invention of the above description, recently patented in the Cuited states by Messrs. Frey, and Sheckler and to., Eagle Machine Works, Bucyrus, Ohiu.

This invention consisis in an abraling theel of emery or corundum, ha.... upon a fexille frame and sit in rapid motion. By means of a handle, it is cultrullud by the operator, and may be placei at any angle to the article to be filed. The device is especially applicable to the gumming of saws, circular or upright, and the sharpening of molding hits or similar tools.
The working portions are cumposed of a movable frame, A, which, by a ball joint, is hung on the main frame, B, so that thi griming wheel, C, has a unicicral mon mutht contrullable by the handle, D. Still frear mution is affurded by a secund joint on the frame, A, or the latter may le :o arranged that only a straight up and duwn ur side motion can $b=$ imparted to the whecl, which is thus hept square t_{1}, the wurk. The lever and weight shown strve to balatice the frame and wheel, and so r. lieve the hand of the op rator.

The ill trations represent the adaptations of the ramhene to various purposes. Fig. 1 shaw it arranged for use in circu-'ar-saw mills. The apparatus is pacocd imandiately behind the saw upon the plank, on the side where the tecth turn up, the shaft of the emery wheel being in lime with the blade. The cuuntershaft is attached to the lach obl of the plank in a direct line with the driviag pulley of the engine. Tlae bult or cord is placed upon the small pulley of the mak hine, then around the pulleys on the countershaft, turning an angle thence to the driving pulley. The operator applits the whech, which revolves at the rate of fromi 1, suo to 2, wou r volutions per minute, to the saw by menas of the handle.

Fig. 2 represents the machine as applitel to the dressing of muley, drag, or cross-cut eaws. and alsu to circular saws when removed from thio mandrels. The appliances fur hulding tho implements are the principal features, and are clearly depicted in the illustration. Fig. 3 shows the apparatus adapted to shaping molding bits or a utters fur woul working machincry. The adjustable device for 1 olding these tuols is represented at G, in Fig. 4. It can - e readil; removed from the bar, H, by luusening a set screw. The arrangement shown in Fig. 2, fur hulding sars, may then be substituted and fastened in place in a similar manner.

Nicarauca Sup Canal.-The last EZnited States exploring evpedition was, sccurding to the latest accounts, encamped ncar Virgin Bay on the Lake of Nicaragua, having gone up the San Juan river by a tediuns voyage in a steamer. The river San Juan is sald to be filaed with rocks forming rapids in one place half a m:le lung. In case the San Juan is selected as the outlet on th - itlantic side, long dams whll have to be built, and canals will have to be constructed. From the camp, near Virgin Bay, two exploring parties have been sent out to investigate the country, resuming the surveys at the points at which the work was left off last year. The line across the ridge betreen the Pacific and Lake Nicaragua lavaug been found impracticable, another line, commencing at the Gonzales river, which empties into the lake 20 miles further south, will be surveyed at once. Still further south, another exploring party is also engaged in seeking a route to the Pacific. Until the Pacific side is thoroughly explored, operations will not be commenced on the country between the lake and the atlantic. The chief difficulties, it is believed, whll be found on tne Atlantic side.

TUWING DAIIABEAITS UP THE NILE.

STEAMER AND DAUABEAIIS MOOKED FUR TBE NIGIYT.

mival steamsinips foll tue chanivel passige.
The immense proportions attained be the cummeree lietween England and France and the constantly increasing passenizer traffic have led to the most extmagant froposals if ramiole bridges an 1 other cngucering works. The capit. 1 demanded for the carrying out of such works iv, however, 10 cnormins that there is little proepert of auy of them being carricd ont in our day. More reasonable proposals are those which louk to the use of the existing harbours, improved to such an extent as will make them safe and easy of access to tessels of the peculiar type it is proposed to construct.
The griat drawisa h tu all locomithon by sea in sea ne kness. in our last issur we illustrated Mr Besciner s uewly invented cabin. Stcamships calculated to carry the swinging cabin have been designed by Mr E: J liced, C IS The fillowing descrip tion as taken from mformation furnisined by the desmgers.
"These stcamships are donale-ctuded, and are propelled by four large paldle-wheels, two at cach side The ends are kept Iow for the purpose of redua ing the motions produced by the action of the wind and of the kra, and the muld! portiun in mad, sufficiently high to enable them to steam at a hi. h speed against the worst seas they will have to meet A rudder is fitted at eath end with means for locking, so that the ship will be able to stram in cither direction, and will nut require to be turned reund in harbour.
"Each stcamer will be 350 ft . long, 45 ft . wide along the deck beam and 65 ft . wide across the padlle-boxes. She will drave 7 ft . 6 in . of rater and be propelled by two pairs of ragines of the collective fower of 4,600 horses.

The great neculiarity of these sinips is that ench wall contan a Bessemer saloon suspended in the midille of the ship (see fig 1). The Bes-mer Saloon will form by far the fincsi
cabin that has ever been titted in a ship. It is supposed that the great length of the vessel, the speed at which it will br propelled, and the peculiar construction of the gatoon will totally prevent sea-sickness m even the most deliente papscagers.

Another plan, remarkable for its divergence from the ordinary form of shins is the double steam-ship proposed by Captain Vices. A sketch or this type of ship is giver (in section) in Fig. 2.

Inagine that an odinary ship, 45 feet broad, nad 350 fect long, is gawn rigat down the middle, longitudinally, that the two halves are separated by an interval of 30 feet; that a fat side is then fitted on the inner side of cach haif ghip, and that they are then britged together los a strong platform, which connects them rigidly There is thas a clear waten way, or rectangulat canal, 30 feet wide, along the whole length of the ship, right down the middle, open at both conds and at the bottom, but covered as the top by the lower deck of the saloons. Propulsion is effectrd by a paiir of ordinary padtlewheels placed in this canal, right amidshps-one paddle beins close to cach nat side, with a clear waterwas ten or twolve feet wide between them.

Ships of this kind are remarkably steady in a rough sca and are admirably adapted to secure immmity fom sea-sickncss.
The objectious are, that these vessels are unhandy, and steer badly, aud that their form is ill adapted for speed. These are very berious fatilts, and render them unsafe vessels for the channel service. Our mail steamers frequently find it no eary matter to enter Calais harbour, or to cross Boulogne bar in safety, and they sometimes have to give up the attempt. Nor every one who has experience of twin boats with that sides, is aware that they canuot be depuended on for steering in a heavg sea. Their flat sides made them answer the helm very sluggishly, and at the same time give double effect to the tendency of the waves to turu them against their helm. This is a bad quality in the open sea; it might bea fatal quality in attempting to enter or leave a gutway in a cross sca-like buulogne harbour in a south-wester. The danger is enhauced by defective propulsion.

A trin ship has nearly twice as much wetted surface as an ordiuary vesiel of the same displacement.

Another proposal, which has been much before the public. is that of Mr. S. J. Diackic, C.E. This is a donble-ended and flat bottomed boat, 400 fect long, 90 feet broad, mind drawing 6 feet 6 inches of water. A section of it is given in Fig. 3. B and B_{1}, are rectaugular waterway ${ }^{\circ}$ going risht fore and aft, differing from that in Caphain Dicey's phan by having a unttom as well as a top and sides, and in there lueing twe of them, instead of one central canal. Mr. Mackie's monle oi propulsion is by two or thrce pilis of paddio whecls wurking iu ther rectangular watermays He caims, as the alvantage of his design, great steadiness at sea, anple and well-dintributed space for the accommodation of passengers, areat longitudinal and transverse strength, aud the absence of any projections which could ree ive injury from waves or piers. He also exects to attina high speed.

ENGINES OF THE STEAM LAUNCHEM " buJAE DERE" AND "GENERAL ADMIRAL."

We illustrate at pages 18 and 43 evgines fitted to the steam lauarhes " Bujak Dere," and "Grnernl Admiral," by Messrs. Crichton, of Abo, Finland. The " Bujak Dere," is 46ft. long, and loft beam Sho was transported on the deck of a stenmer to Constantinople, for the use of tha Russian Ambassador there. The" General Admiral "is nearly the same size, shu wrs taken in pieces to Moscow, and there put together for the use of Mr. Xayne, the Cominodore uf the Moncow Yacht Club. Both bosts are of iron, and the " Bujak Dere" is very handsome. The other is too flat, being constracted to draw very little little water. Both boate are elegantly appointed. The drawings of the engines, for which we are indelted to The Engineer, explain themeelves. They are fitted pith cjectors, injectore, and donkey props. They obtained tho large gold medal at the Moscow Exbibition last ycar.

CEMENTS.-(Concluded.)

cemgnts from caskine.

For glass, porcelain, stone and wood, the very best cement is made of a suitable quantity of old checse rubbed fine and mixed with water to a thick magma, and a fourth part of pulverized lime added.

A still stronger cement for the same purpose is made by slaking 1 pound of quicklime in water, and mixing with 3 pound pulverized lime or sandstone and 1 pound pulverized cheese. Before using, it is well to moisten the fractures or edges with warm water.

A so-called caseine waterglass is made as follows:-The careine of skimmed milk is separated from it by the addition of acetic acid, filtered, a ad the acid washed out with water The pure caseine thus obtained is mixed with six times its volume of concentrated waterglass. This cement is thoroughly commendable, and well repays the trouble taken to make it.

An excellent cement for artificial meerschaum, and one that may be used to give consistency to silk goods or to coat artificial flowers and court plaster, to give more adhesiveness and firmness, is made by rubhing two to four parts of the above caseine with cold borax solution till a thick liquid is obtained that becomes clear on standing. This also renders goods waterproof.

Naterglass ceyents.

For glass, earthenware, porcelain, and all kinds of stoneware, these cements are excellent. A cement for glass and marble is prepared by rubbing together one part of fine pulverized glass and two parts of pulverized fuorspar, and then adding enough waterglass solution to give it the consistency necessary in a cement.

Waterglass mixed with hydraulic cement to a thick dough makes a good cement for the edges and joints of stone and marble slabs. It is well to mix but little at a time, as it hardens very quickly.

LIME, GYPSCYS, CLAY AND CEMENT, MIXED WITH WATER, OII. Ol BLOOD.

For cementing stone and for filling crevices in buildings, before they are painted, the masons use a cement made of fresh blood, slaked lime, brick dust, broken up coal ashes, hammerslag and sand in all proportions. This excellent cement hardens quickly, and offers great resistance to the action of the weather.
A lime cement for connecting water pipes, bathing tubs, ctc. ; a mixture of two-thirds fine brick dust, two-thirds unslaked lime, and two-thirds hammerslag, is made and stirred up with lye or hot oil to a stiff dough.
Another cement, intended to render Hessian clay retorts impenctrable, is obtained by rubbing freshly slaked lime into a concentrated solution of borax. The solution is applied with a stiff brush and allowed to dry, after which it is heated until the glazing begins to fuse.
Clay mixed with water and fresh warm blood, containing some unslaked lime, is used in Germany to close joints in stoves. The cement is applied while the stove is hot. Wood ashes, firc ciny and salt mixed with water is used ior the same purpose. Fat and burat clay, in equal proportions, monlded with mater into a dough, is also used.

Plaster of Paris mixed with water nnd a cold solution of alum is an cxeclicat cement for stoneware. It sets slowly, but becomes as hardas stone.

inow cements.

Their essential const.tnents are iron filings or borings. By the addition of some common salt or gal-ammoniac they are ryidly oxidized, and the cement being thereby increased in volume completely fills the crevices where it is aut. An excellent luting or cemeat for the joints and crevices in iron surfaces, and for rendering tight cast-iron steam and water pipes and water tank is made of filings of cast iron. The filings are sifted to obtain those of the size of a grain of rice, and then rubbed with horse urine and one-half part snlt ammoniac,
well worked togother, and an equal quantity of flowers of sulphur added. The mass is hammered until its gets warm, and then cold, and, finally, it begins to bo brittle. In this condition it is put in the joints, and soon hardens. The surfaces where it is applied must be free from rust. Greasy and oily substances are most readily removed by rubbiag with cotton dipped in benzine. The cement keeps best under water.

Another good iron cementis made by stirring 5 parts clay, 1 part salt, and 15 parts iron filings together with vinegar to a magma. It will stand heat, and is used for bellows and air pipes.

OHL CEMESTS.

An excellent oil coment for porcelain and for luting of retorts, flasks and porcelain cvaporating dishes is obtained when ordinary brick dust s powdered, sitted and mixed with an equal quantity of red lead, and then rubbed, under great pressure, into old boiled linseed oil to a thick paste, which is mixed with coarse sand to the stiffness of cement. When a dish is to be covered with it, paste is applied before the sand is put in, and the sand then strewn upon it. The dish isafterward exposed to a steady heat for a long time.
For larger vessels take 6 parts litharge, 4 parts fresh-burnt pulverifed lime and 2 parts white bole, and mix with cold linseed oil.
To fasten metallic letters to a smooth surface a cement is made as follows :- 30 parts copal varnish, 10 parts linseed oil varnish, 6 parts crude oil of turpentine, 10 parts glue dissolved in a little warm water, and 20 parts pulverulent slaked lime. It is very pliaut and soon hardens.
To unite copper and sandstone, take $3 \frac{1}{2}$ parts white lead, 3 parts litharge, 3 parts bole, 2 parts broken glass, and rub up with two parts linseed oil varuish.
As a polish for gravestones, basins, etc., a paint is made of 9 parts of fincly sifted and burat brick clay and 1 part litharge, mixed with a suficent quantity of linseed oil.

For connecting cast-iron water pipes, 12 parts Roman cement, 4 parts white lead, 1 part litbarge, and $\frac{2}{2}$ part colophonium are pulverized and mixed ; from $2 \frac{1}{2}$ to 3 pounds of it is triturated with old linseed oil, in which is boiled 2 ounces of colophonium.
Another for the same purpose is made of equal parts of burnt lime, Roman cement, potters' clay and clay, separately well dried, finely ground, sifted, well mixed and triturated with linsed oil. Common lead lute for stopping openings in apparatus is best made from litharge and red lead mixed with old boiled oil. In cil cases the surfaces must be clean. They stand well under water.
As lead lutings are somewhat expensive, the following is recommended :-Take 2 parts red led, 5 parts white lead, and is parts of the fincst clay, and mix with boiled linseed oil.
A good oil cement for wood, especially for antique carvings, is made of 1 part pulverized slaked lime and 2 parts rye llour, mixed with linseed oil varnish. It takes any desired colour and polisl.
'To make water holders tight we may use pulverized slaked lime and cod-liver oil.
A cement to make chemical apparatus tight can be prepared from oil cake or pressed almond cake rubbed with water.
miscellaneots cements, etc.
Furniture polish :-Moisten 120 ma . is beeswax with oil of turpentine, and add $7-5$ parts finally pulverized resin, and enoughaniline red to give the desired mahogany colour.

Oil cement :-100 parts red lead, 250 parts white lead, 200 parts pipe clay ; mixed with boiled oil.
Water cement:-100 parts slaked lime. 190 parts brick dust, 160 parts sand, 50 parts blacksmiths' dross, 50 parts powdcred lime ; mix with water.
Another :-600 parts iron filings, 100 parts ignited sand, 100 parts powdered slaked lime ; mix with water.
Iron and blood cemeat :-100 parts pulverized lime, triturated fith bullock's blood, 290 parts cement, and from 5 to 10 parts irou filings.-Tournal of Applied Chemistry.

It has been noticed in Fiansas that the buffalo grass of the prairies gradually dissppears and is replaced by other grasses, as the countiy becomes the home of civilized men.

THE VENTILATION OF SMALI, HOUSES.

We condense the following from a paper read by Dr. J. Baker Edwards, at the roums of the Natural History Society in this city.

At the last meeting I dwelt with much emphass on the fint that the exhalations from the skin and from the lunge of human beings are sor justly estimated by the mere chemical products of combustion (i. e., by the amount of oxygen consumed and by the amount of carbonic acid and steam produced.) Such an estimate is only one element in the general ralculation.
Any one who has attended a crowded police cuart for a few hours must realize the fact that the air hecomes laden with "dirty smells" arising from organic matters given off from the bodies and clothing of the multitude, and which may more properly be regard d as vapours thanas gases. These condense continually in woollen clothing, drapery, and bed-cluthing. and the first mode of ventilation to which I would call attention, and which is worth the notice of every householder, is the arcat value of periodically turning out every article of clothing and of drapery to get a thorough ventilation in the fresh air.

The practice, which is only occasionally observed, of puttug blankets, coats, \&c., out of the window, especially in the sun's rays, is of inestimable value, and ought to be universal. 'I'he relief thus afforded to invalids confmed to one room I have myself experienced, and been grateful for; and the value of such disinfection, as well as the process of heating to 2120 the garments of patients recovering from infectious disorders, should not be cost sight of.
a second mode of indirect ventilation is by the frequent lime-washing of the basement premises of small houses. Lime an ! carbolic acid have each great purifyntr powers, and when combined and used every month or so, will purify most effectually air which is otherwise musty, fnsty and mwholesome. The cellars of the smaller class of houses are frequently damp and unhealthy. A plentiful use of the lime-wash is the best remedy for this. It is bad economy to devote the basement of a smail house to the rats; jt should be clean and habitable.
3rdly. The use of carbolic soap in scrubbing floors is highty to be recommended. Noreover, during the summer months, the house will be mach swceter and cleaner ii curtains and carpets are rolled up and put awny. In this climate they are worse than useless in summer, and are only harbourers of dust and insects.
thly. The stovepipe holes are the proper apertures for ventilation during summer. It is an absurd practice to stop them up. They may be made available for the verv best mems of ventilation, rad the mode I now exhbit, and fur which I have made application for a patent, is, I think, a cheap and perfoct ventilation, but if this is too dear at a dollar you may nail a piece of perforated zinc over your stove-pipe hole aud obtain a great deal of comfort therefrom durag the summer.
Firthermore, if you have good clean lime-washed basements and kitchens, you can keep your house much cooler and less oppressive if you keep your donble windors on during the summer, and only open them at night. The coatiug of air between the windows arrests the heat rays of the sun, and keeps the house cool. For winter the chiefouject in a small house is to equalize the temperature so that there shall be no chill in yassing from one room to another, or from a room to the stair-case. The hall stove usually arcomplishes this; it is desimble that water should always be kept evaporating upon it to moisten the heated air. Comfort will be best secured by pasting paper round every double window and nailing list round every door to fill up all chinks and crannies, let all the fresh air come up from the bisement, and ventilate by the chimnies or by the attic. In rooms which are apt to be over-heated at night from the use of gas, or stove heat, the best contrivance is a ventilator such as 1 have described, placed in a T pipe in place of the clbow of the stove. This may be regulated if the stove be burning, by a danaper. A similar use of the ventilator in a kitchen stove would carry of all the smell of cooking which now generally ascends the stairease of small honses, and is not always agrecable.

Simple attention to these hints will afford tenauts the comfort of a good ventilation at a very small expense, and if these or
similar precantions be neglected by them, I fear landlords will in vain seek for any perfect system of automatic ventilntion. To obtain a good draught from the chimney top without back smoke, I recommend the form of chimner now exhibited, which should be made in gal vanized iron, and which will under almost all circumstances insure an ascendiut current of air sufficient to ventilate sewral apartments It consists of thre I' pipes put together, and is both cheap and eficient. Lastly, I call your attention to a simplom form of ventilation for hanging window, consisting of an oval tube of perforated ziuc, containing a hanging curtain for the exclusiot of dust, which is so great a muisance and a foe to ventilation during some months in the year in this city.

One of the forms in which this useful contrivance is now offered to the pablic is represented in the accompanying illustration.

Its ohject is Economy, Epficiencs, and Reabiness of Appincapmor. It is adapted to things as they are; and furmishes a cheap and ready improvement thercon, which may be at once adnpted with advantage in cury humsehuld whah is grovaded with "a stove-pipe hole," and where is the house in Canada without one?

The simple primiple of the hanging cartain, placed between two perforated surfaces, ensures at current of air, inwards to the chinney, whenever the atao-phere in an apatment becomes heated and before it becomes oppressive. Cold air falling as a down draught in the chimney is on the other band distributed in fine streams by the perforated back, and closes the curtain. Soot and smoke are thus prevented from entering the chamber, and the wntilator can only act, and will att constantly, as a vent for overheated air and the products of its combustion. By its constant action an oppr ssive condition of the air is effectually prevented.
The principle is adapted to muh largar application, but the above is the every day-and every house-convenience which will meet the requirements and the ponhets of the multitude of Canadian houscholders.

New Magaero-elfctric Macmise-We have had ar opportunity of witnessing the trial of a magnetwerelectric machine, which appears to be likely to give satisfactory results. The machine in question was made in France, but Messrs. Whicldon and Clarke, of Westminster Bridge-road, at whose works it now stands, are engaged in bulding a larger mathme on the same principle. It will be remembered that on Wides machine the large electro-magnets were excited by an induced current deived from a now of small steel magnets, between which worked a Sjemens armature. The present machine dispenses with the permanent magnets, ther inducel carrents being made to circulate round the soft iron magnets whic h produced them. To Siemens and Wheatstune is due the proponal that sucha machine should be constructed. Iron has usually some traces of permanent magnetism, especially if it has onee been magnetised, and this magnctism is sufficicnt to induce feeble currents in a revolving armature. These currents are sent round the iron magnet, thus increasing its masnetism. Ladd also constructed a machine which embodied the principle. By the rotation of one Siemens armatuse, he obtained an juduced current from a soft iron magnet, which he in turn further excited be the induced current. A second Siemens armature then collected the induced current from the other end of the magnet for use. The mas hine-nt the tral of wheh we were present-consists of a row of moditied horseshoe electro-maguets, surmounted by mother row of inverted similar electro-masnets, the poles cons quently being face to face, but oi course separated by a space. In the central space there revolves a drum carrying the armatures, one armature being supplied to every pair of mugnets. The armatures are simply rings or hoops of soft iron. surounded hy a number of helices containing wire. The ends of the wires of each helix are brought down to the shaft of the drum, cach insulated from the other, and thence the curr nts are collected in the usual way. Pieces of iron attached to the poles of the magnets partly cmbrace without tonching the armatures. In the machine in question there were three armatures, on of which was sufficient to excite all the nagnets by mans of the induced currents, as above described, and the other two were suthicient to provide a powerful current, which gate ann "x.eilent light in one of Mr. ladd's lamps. The power regnired to drive the machine was about $3 \frac{1}{2}$ or 4 horse.-Engincer.

FLEXIDIEE SAW AND TOOTI FHLNG APPARATUS.

A PAGE OF SUNDRIES.

CLINNARY BOILER.

TMREADNGG IIE SUPLEE NEEDLE.
ENlaRGED Strlee needle.

WIBING THE WORK.

Mr. Humphrey Turuer, of the Cardigan Steel aud Wire Mills, has patented an invention of his for applying wire to building and other purposes The invention consists in the application of wre, stecl cut in strips, ot iron rolled to paricular patterns, for walls, ceilings, roofs, and floors of buildings, it is also applicable for large cisterns, water-tanks, brewers' squares, and other vessels. In the erection of a house it is thus applied. The foundation is laid and brought up 12 in or 18 in. avove the ground. Iron, cast metal standards, and straining posts are fixed at certain distances To these wire is attached from $\frac{1}{2}$ in, to 2 in , apart, and is strained from the posts through holes in the standads Pands and proper stay posts are then tixed iuside the wire at proper distances, acording to the thickness of the walls required. The walls are formed by means of a conctete, and while this is being laid on inside, the plast-rer may carry on his work on the outside, by laying on a better material consisting of cement and sharp sand. The walls being brought up to the height required for the first floor, iron ghates are laid upon them with holes for the wire to pass through An iron or cast metal beam is then thrown across the centre of the rooms from wall to wall, and when the walls are complete, the wire is strained upon them through the plates; and in this way the whole of the building is securely tied. Mr. Turner claims that the wires will supersede the use of floor joists of wood, and will form beds for concrete floors. They will also answer on the under side as laths for the plastered ceilings, and the plastering may be carried on at the same time as the laying of the floors in concrete. The next floor is completed in a similar manner. When the reguired height is reached, the plates and beams are land so as to given proper fall for the water, and a wall is carried on the top of the plates for 3 ft . or 4 ft . The wires are then strained across the whole of the top and on these concrete is laid, thus doing away with rafters and slates. Mr. Turner contends that the ouly wood equired in the construction of a dwelling-house will be for doors, cupboards, window sashes, and panes. The stairs may be of concrete or wood. Houses thus built would be almost fire-proof, and no vermin could get a ludgment in the floor and skirting boards, because they wuld be made of solid concrete.-Bulder.

MSCELLANEA.

Florida is shipping alligator hides to Europe.
The Japanese coast is to be lighted with mineral oil.
Peat was being used in Fond du Lac, Wisconsin, more extensively last wider than ever before, both in offices, residences, and for making steam. The results are said to be generally satisfactory.

The International Railroad will cross the Rio Grande at 'Toledo, and gne branch of the Missouri, Kinasas, and Texas road will cross it a little above Rio Grande City, near the mouth of San Juan River.

As association for the promotion of exploration in Africa has been formed at Berlin under the name of the African Society. Dr. Schweinfurth, the botanist, and Dr Peterman, the geographer, are among its founders.

Tue Vibnna Exmbition.-The Tageblatl states that Austria has come to an understanding with the other Governments that no decorations are to be given in connection with the Vienna Exhibition.

Edony weighs eighty-three pounds to the cubic foot; lignum vite, the same; hickory, fifty-two pounds; birch, forty-five pounds ; beech, forty; yellow pinc, thirty-eight; white pine, twenty-five; cork, fifteen, and water sixty-two.

Is Egypt mummies have been found with teeth filled with gold, and in Quito a skeleton has been discovered with falee tecth secured to the check bone by gold wire. In the muscum at Naples, among some of the eargical instruments discovered at Pompeii, there is a facsimile of Sims' speculum. In the roins of Nineveb, Layard found several magniffing glasses.

Progress of the Hoosac Tennel in Mabch, 1873 -Heading advanced from east end westward, 155 feet; from west castward, 162 feet; total extension of headings during March, 317 feet. Total lengths opened to April 1st, 22,193 feet, remaining to bo openco, 2,238 feet, being 402 feet less than half a mile.

Tus Contral Yacific Railroad Company are constructing wharf and warchouse facilitios on an oxtensive scale at Knight's Landing, in Yolo county, California, for the accommodation of the grain and other traffic from the Upper Sacramento river and valley.

Pror. Rankine says the weight of rails per yard in length should equal fifteon times the greatest load on the locomotive drivers in tons. Perdonet, in France, takes twelve instead of fifteen. The United States Philadelphia and Reading Railway Company, on rails made with grcat care by the company, prefer not to exceed 4 tons on a 64 lb . rail.
Ir is a well known fact that iodine, when dissolved in liquids cont aning tannin, cannot be detected by the ordinary starch test. Tessier has found, however, that on adding to such a solution a fow drops of a neutral solution of chloride of iron, the iodine is at once set free, and can be detected by covering the test glass with a watch glass or an inverted funnel, coated on the inside with a starch paste.
Tus total valuo of the Allantic stcamship was probably over £100,000. She was of 3,535 tons, and 600 -horse power, and was built at Belfast in 1870 for the Oceanic Steam Navigation Company (the White Star line), of Messrs. Ismay, Imrie, and Co., of Liverpool. Her number of saloon passengers was 33, and of stoorage 760 , while the crew amounted to 136.
At a recent mecting of the Frankfort Polytechnic Association, Professor Boettger exinibited a novel kind of ink, which is admitably adapted to take on journeys and exploring expeditions. White blotting paper is saturated with aniline black and several sheets are pasted to form a thin pad. When wanted for use, a small piece is torn off and covered with a little wator. The black liquid which dissolves out is a good writing ink. A square inch of the paper will give enough ink to last for a considerable writing, and a fow pads would be all that an exploring party need carry with them. As water is always available, the ink is readily made.
The New York Bazaar says - It was a pleasant story, but not exactly true, that Professor T'yndall proposed to give all the money he made here for the foundation of something scientufic. He has made a handsome sum, though not so much as is generally supposed. The agents and such have taken the lion's share. In Philadelphia he got at the rate of $\$ 500$ out of $\$ 1,500$ profit, in Washington $\$ 2,000$ out of $\$ 5,000$; in Boston be cleared $\$ 3,000$. But he made the most in this city and Brooklyn, where everything after the bare expenses went to him. In these two cities he has "salted" about $\$ 13,000$. After paying all expenses he will take home with him about $\$ 15,000$, which on the whole, is what printers call a "fat take" for three mouths' work. He cxpresses himself as delighted with everything and everybody in this broad Western expanse.

Paldiontology.-On the estate of Raron Busche Streithorst, of Thale, in the Hanoverian Harz Mountains, a very curious throve has been made in the shape of a well-preserved mammoth skeleton, whether of the megatherium or dinotherium description is not mentioned. This antediluvian relic measures 15 feet in length and 9 feet in height, and includes four teeth weighing 7 lbs . each, and two powerful bent tusks 5 feet long, in such a state of preservation that they might compete with ivory powder for the manufacture of jelly. The hip and shoulder sockets measure from 7 to 8 inches diameter The monster was discovercred in an old clay and marl pit, five feet belor the present level, or from 80 to 90 feet below the original one.
The sizo of the sun may thus be comparatively shown :-If the earth were represeated by a ball $2 \frac{1}{2} \mathrm{in}$. in dismeter, the sun would require a ball of 18 ft . in diameter. If the carth were placed at the centre of the sun, the moon would be so far inside the sun's surface that there would be almost room for another moon beyond, the distance of the moon from the earth being 240,000 miles, and of the surface of the sun from its ceutre 430,000 miles. In bulk, the sun is a million and aquarter times larger than the earth; that is, it would take that number of earths rolled into ono to make up the bulk of the sun. It would not take that number to make up the weight of the sun, for the sun is lighter, bushel for bushel, than the earth. It weighs about 325,000 times as much as the earth. With that enormous mass, the force of gravity must be twenty-cight times as great as on the surface of the earth; so that the weight of au ordinarily heavy man on its surface would be about two tons.

THE HOTUNDA FOR THE VIENNA EXHIBITION.

We have alrcady given some particulars and an illustration of the building orected for tho Vionna Exhibition. Let us add a few statements made by the correspondent of the Journal of the Franklin Institute:-

Accurately stated, the exterior diameter of the Rotunda is 10783 metres, and its height 84.1 metres. A rounded roof, supported upon thirty-one iron columns, 24.35 metres high, rises, with an angle of 31°, to a height of 48.2 metres, and is terminated by a central ring of 30.9 metres diameter. Tho exterior of the roof is covered smoothly with shect metal, and, viewed from below, has the appearance of a smooth truncated cone. Upon this conical roof is placed a so-called observatory, composed, like the rest of the structure, entirely of iron, the outer diameter of which is $33 \cdot 4$ metres, and the beight 10 metres. Upon this, finally, there is placed another building. 8 metres in diameter, and 18.5 metres high, which terminates in a crown, whose highest point is $84 \cdot 1$ metres above the looring below
At a height of 23 metres in the irterior of the Rotunda there is placed a gallery, directly agatnst the pillars, having a breadth of 142 metres. This may be reached by two stairways, on opposite sides of the Rotunda, or by two elevators, introduced for the purpose.

The entire space covered by the Rotunda measures 338.8 metres in circumference, and the surface covered by the roof measures 9,405 square metres, the interior circumference is 3196 metres, and the spacs available for the purposes of the Exhibition and accommedation of the visitors is 8,129 square metres.

To give an idea of the forces operating upon the various portions of this structure, a few data are attached.

The vertical pressure upon one of the iron columns of the Rotunda $=109$ tons. Pressure on the lower portions of the radial rafters $=211$ tons; horizontal strain on same $=181$ tons 'langential strain on the lower roof ring $=863$ tons. Pressure on the upper ring, upon which the observatory rests $=217$ tons. The total weight of the structure of the Rotunda may be stated in round numbers at 80,000 hundred-weight (Zoll centner), or about 4,000 tons. The pillars rest upon beton foundations, which were prepared for this purpose as early as October 30th, 1871.

Lahe Suremor Mines.-The statement has frequently been made that the shipments of iron ore from the Lake Superior mines thas year will reach enormous figures. According to estimates made last fall 800,000 tons were to be shipped fiom Escauba alone, and adding the probable shipments from Marquette and L'Anse, and possibly from s shiand, the grand tutal of shipments from the Lake Supenor mines this year were to reach nearly, if not quite, $1,500,000$ tons, against about 900,000 tons last year. It is now said, however, that present prospects do not warrant any such conclusion. The iron markets are falling, and it is expected that the demand for iron must decrease, and prices decline, being far in advance of those the iron manufacturers are willing to pay. Of the whole prospective product there have been but about 300,000 tons entered upon as sold at " the market price." In order to get out anything like the amount of ore estimated last fall to be shipped this year, a heavy force in the mines would be required; but mines in work are run very light, the owners not being willing to take the risks of the market. From this it is inferred that the estimated product for this year is too high, and that in reality it will not be very much in excess of last year.

RAILWAY MATTERS.

Car Wheels and Axles.-It is stated that 104 patents have been granted in this country upon car axles and wheels having the idea in view, of making car wheels to run independently, as in turning a curve.
Sutro Tonnel.-The Territorial Enterprase of the 11 th says: It was gesterday reported that Adolph Sutro had succeeded in negotiating in Europe a loan of $\$ 3,000,000$ for the Sutro T'unnel Company. What foundations there may be for the report we are unable to say.

Tus rallroad tunnel at Baltimore, which is to unito tho roads on the north and south sides of the city, is to be completed before the end of June, and, until the completion of the Broadway Underground Railway in Now York, will form the largest underground railroad possessed by any city in America.

Actobatic Rallfay Coullings.-In reference to the premiums proposed to bo offered by the Association of German Railway Companies for the best system of Automatic Couplings for Railway Carriages, we understand that the full details and arrangements are not as yet definitively decided upon; but in the course of a few weeks the particulars will be made known by tho Geschaftyfthrdeen Direction Deutscher Esenbahn Verwallungen at Berlin.

Fireless Locobotive - Dr. Lamm's "fireless locomotive" has been introduced to the inbabitants of Brooklyn. The machine consists of a thickly-clothed and strong reservoir and a small steam-engine. Into the reservoir, water, at a very high temperature, is forced from a stationary boiler, and suflicient steam is thus obtained to propel an ordinary car at trelvo miles an hour. During the first half of the journey this pressure fell to $90 l$ bs., but decreased less rapidly in the second half, when the gauge showed 65lbs. at the termination of the six miles. The journey appears to be continuous.

The importance of railroads in the development of the resources of the American States may bo estimated from the fact that the cost of transporting Indian corn or wheat over an ordinary lighway is about twenty cents per ton per mile, Thile those cercals may be moved upon railroads at ono and one-fourth por cent. per mile.

It is expected that in a few years Germany will equal, if not surpass, England in her resources. She is now constructing a new network of strategical railway, which will extend in extent four thousand kilometres. The backward state of France has occasioned some natural annoyance, and the French press urge the importance of making some vigorous efforts to make up for past deficiencies. They point out that the General Councils have given a veritable pronunctamiento in favour of multiplying the railways. If she cannot do better, they trust that France will prove sufficiently ambitious to raise herself to the level of Switzerland and Denmark in the statistics of railways.

Constantinople Tramways.-The report of the directors of the Coustantinople Tramways Company for 1872, states that the company's four original lines of tramways were in full work eight months before the poriod stipulated. There are 16,000 metres of tramway, and 5,300 motres of omnibus lines at present worked by the company, or rather over 13 miles in all. These lines were served last year by 64 vehicles. The number of passengers conveyed last year was $5,035,042$, who paid $6,515,597$ piastres. The present number of passengers ranges from 125,000 to 130,000 per week, and this namber, it is expected, will increase when the fine season sets in to from 180,000 to 200,000 . The company's staff consists of 431 persons, exclusive of fore-runners. The roturn realised upon the shares last year was at the rate of 6 per cent. per annum.

A Revonter of the Hartford, L.S., Daily Times, thus describes smith's vacuum brake, which is in use on the road between that city and New Haven: "The appa:atus is simply an ar ejector placed in the cab of the locomotive, which is connected by pipes and hose to a fexible air chamber, similar in construction to an accordion, and this is counected to the bake rod underncath each car. The engineer, by opening a steam valve, produces a vacuum in the ejector, causing the evpulsion of air from the flexible air chamber, bringing the heads of the air chamber together, which movenemt contracts or shortens the brake rod and applies the brake. The moment the engineer opens the air valve, the pressure is mstantanconsly relieved The pressure is applied externally and gradually, and is applied to the rear car first. This obviates the breaking of couplings and hose; and the jerking, unpleasant motion of the cars that arcompanes the usual method of applying the brakes is done away with. Another advantage is, that when the vacuum imoduced it draws the hose coupling and joints together, while other power brakes, operated by inward pressure, strain and open the couplings and joints.

