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It is becoming generally recognized among engineers that a
correct knowledge of the strength of structural members cannot
be obtained by breaking tests alone. This is more especially
the case with built up members in which it is p ble that, as
soon as some part reaches the elastic limit, th@trlbutlon of
the load may change, so that the breaking load % the appear-
ance of the specimen at fracture may not give any true guide to the
action of the parts under working loads.

The most satisfactory way of obtaining a knowledge of the latter
is by measuring the actual strain distribution under working loads,
or, at any rate, at loads within the elastic limit of the parts, by
means of some form of extensometer. Unfortunately, most forms of
extensometers are open to many objections for this kind of work;
some are inaccurate, others only measure the average strain over a
long length, and nearly all are more or less complicated, take up a
great deal of space and cannot be used in positions which are difi-
cult of access, such as the interior of a built up column or between
two angles. The writer knows of only one form of extensometer
which, when proper precautions are taken, may be said to approach
the ideal for this purpose. This is the Martens Extensometer,
invented by Professor Martens, director of the Konigliche Material
Priifungs Anstalt at Grosse Lichtefelde West, Berlin. This in-
strument is extremely simple in construction, easy to calibrate, and
may be used in the most confined positions. (See Fig. 4.) It does not
appear to have received the attention it deserves, possibly because of
its simplicity, or because of inaccurate results obtaimed by lack of
certain necessary precautions in its use. Under the conditions .of
the experiments described later, it was found to be capable of accur-
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ately estimating the strain over a length of 4” to . The
100,000




Martens' Extensometer was first used in the Testing Laboratory of
McGill University, in 19086, for such work as is here described, but,
owing to the fire of 1907, research work was considerably delayed,
and has only lately been resumed.

The present paper gives an account of experiments made at |

McGiN University to determine, by means of strain measurements

with the Martens Extensometer, the distribution of stress in single '

and double angles with riveted end-plates loaded In tension, and to
compare it with the theoretical distribution under different assump-
tions. Experiments are still in progress on similar members in
compression and on built up members, and it is hoped that the
present paper may be only a first contribution on the subject,

The experiments on built up members indicate that these do net,
in general, act as one solid plece, but that the separate parts must
be considered as eccentrically loaded members subject to constraints,
From this it appears that the only way to build up a satisfactory
theory of the action of such members is to commence with the pro-
blem, which is important in itself, of a uniform plece subjected to an
eccentric load, and to work up gradually to more complicated
members. This preliminary problem, with its application to the
simplest form of compound member made from two angles placed
back to back, is the subject of the present discussion.

Theoretical Considerations.

The method of finding the distribution of stress in a plece of
uniform cross section, subjected to a load which is eccentrically
applied, but which lies in an axis of symmetry of the cross-section,
is well known and need not be considered in detail here. In this
case the resultant stress at any point of the cross-section, the lateral
deflection due to eccentricity being neglected, is given by the
formula &
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Where N is.the normal load, A the area of cross-section, I the
moment of inertia of the cross-section about an axis in its plane
through its centre of gravity and perpendicular to the line of
symmetry on which the load axis lies, y the perpendicular distance
of the given point from this axis, and ¢ the eccentricity of the load,
i. e, the distance of its point of application from the centre of
gravity of the section. The 4 sign must be taken for points on
that side of the centre of gravity on which the loading axis lies,
and the — sign for points on the other side of the centre of gravity.

The equally, if not more important case of a load applied
eccentrically, and not in a line of symmetry of the cross-section

th
loa
K¢
tht
pls
If,



s .

(which includes, for example, the case of a single angle under
tension riveted by one leg, and probably, as will be seen later, many
cases of bull members where the load is apparently in a plane of
symmetry) seems to be little known in this country, although it has
been Investigated thoroughly by ms&ny German writers. The
only complete account in English, known to the writer, is in a paper
by L. J. Johnson, Trans. Am. Soc. Civil Eng., Vol. 56, 1906*. The full v
development of the formule is considered in Appendix I,
and only an outllng of the method and the detalls of actual calcu-
lation will be given here.

o

Fig. 1.

N\

Consider a straight bar of uniform cross-section subjected to a
load N, parallel to the axis of the bar, but which does not pass
through the centre of gravity of the section. Let K (Fig. 1) be the
loading point and G the centre of gravity of the cross-section. If
KG is an axis of symmetry of the cross-section, the case will be
that considered above, bending will take place about an axis in the
plane perpendicular to KG and the maximum stress will be at a.
If, however, K does not lie on an axis of symmetry, the neutral axis

*See Appendix 1. ‘
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will be in some other direction such as nn, and the maximpum stress.
will occur at b. Choose any convenient rectangular axes Gz, Gy
through the centre of gravity (if the section is a standard one of
which the moments of inertia are tabulated in the hand books, Gz
and Gy should be the axes of the given moments of inertia) and
indicate the angle KGr by ). Then the inclination, a«, of the
neutral axis to the axis Gr is given by the equation

Iy ] tan )\

tan a =

Where I is the moment of inertia of the cross-section about Gz, I,
the moment of inertia about Gy and J, the product of idertia about
Gz, Gy. The only assumption made in deducing this is that the
distribution of stress follows a linear law. Expressing this symboli-
cally, and forming three equations expressing that the total normal
internal force across the section is equal to N, and that Ye sums of
the moments of the internal forces about Gx and Gy aye equal to
the moments of N about Gr and Gy respectively, equation (2) may
be deduced. (See page 23.) In a similar way the equations

i / y-x flan @ -
f= N [.l ' J -1y tan a wh ] S
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f N [.vl ' }. J tan a ol ] ' 4
giving the stress, f, at any point (z, y) of the cross-section, may be
found. In these equations A is the area of the cross-section and a
and y; are the co-ordinates of the load point K. In order to find the
maximum stress, all that is necessary is to substitute for z and y in
(3) or (4) the co-ordinates of the point b furthest away from the
neutral axis. This may usually be determined readily by inspection.
If / be made zero, either (3) or (4) will give the equations of the

neutral axis and thus its position may be found,

The above equations become much simpler if Gz and Gy happen
to be the principal axes of inertia of the cross-section, for in this
case J is equal to zero. The moments of inertia given in the hand
books for standard angle sections, etc., are not taken about the
principal axes. For this and other reasons, it is better to take the

axes for such sections parallel to the legs of the angle and to calcu-
late J, which is

'. ’ zy dx dy

taken over the section. This is usually easy to evaluate, as will be
seen from the example considered later.

A few points in the application' of this theory to long members
subjected to tension or compression must now be considered. In
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deducing the above equations it is, of course, assumed that the piece
is free to bend in any direction. If it does so, the point X will be
differently situated vrelatively to the cross-section at different~
sections, and this must be taken into account . jf correct values are
to be obtained for the stresses, especially when near to the central
section of a long mémber, In practice thig will usually be a need-
less refinement, but in attempting to verify the theory by experi-
ment, it must be considered. If the endy of the plece are con-
strained in any way, say for example, by lhv‘\u'lpx of the testing ma
chine or the end connecting plate, or by riveted connections in actual
structures, a constraining couple will be intreduced, and this will
have the effect of altering the position of the resultant force N. One
of the deductions made from the experiments to be described is that
the connecting plate in_the case of riveted single angles does not
introduce any considerable fixjng couple, except in the plane of the
plate, but, in attempting to build up a correct theory for the double
angle, this constraint must be considered.

As an example of the method of calculation of the position of the
neutral axis and the maximum stress in the cross-section, the case
of a single angle 3” x 3" x 1” in cross-section, loaded at the middle
point of one ofits external faces, will now be worked out in full.
This was the section of the angles used in experiments, and the
results obtained from calculation will be necessary in the discussion
of the experimental results.
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Figure 2 shows the cross-section. The axes Gz and Gy are taken
parallel to the two legs of the angle. The following data are
obtained from the Cambria Sjeel Handbook.

A == 1.44 square inches,

Is=1Il,=1.24 (inch)* units.

Distance of @G from the back of the leg ==0.84". It is not very
convenient to calculate J for the axes Gz and Gy, but as the calcu-
lation is very easy for the axes B, B A, it will be made for these
axes first, and then found for the axes through Gz, Gy by means of
the formula

JB =Jc + Ahk
where "n is the product of inertia about BC, BA.
-l(. is the product of inertia about Gz, Gy and (h, k) are the co-

ordln'nes of G referred to BC, BA. Now, using z' ¥ for co-
ordinates referred to BC, BA,

Ja= "\ v dx' dy

. 33
= ‘ ’ vy dy' dy ‘ ' ' v odx dy
00 0.25 0.2
==0.28 (inch)' units,

the angle being considered as the difference between two squares.
Hence #

<

JG=0.28 — 1. .44 ~ (0.84)*

==-=0.74 (inch)* units.

This is correct to the second place of decimals, neglecting the round-
ing of the corners of the angles, ete., which is close enough for most
purposes. It would save a great deal of calculation if the quantity
J were tabulated in the handbooks on steel,

The angle is supposed to be loaded at the point K. Thus tan )\

KH 1.6 —0.84
is In this case equal to — = — -
HG 0.84

= 0.786
and the inclination of the neutral axis to the axis Gz is, from
equation (2), given by

24 0.74 x 0.786

fan a 0.74 + 1.24 ~ 0.786
. 2.81
Therefore a = T70° 24",

The maximum stress obviously occurs at A and may be obtained
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from equation (3) ot (4). From 3, substituting y == 2.16, r = — 0.84,
'] 0.69 $.30.+ 0.9 x 3.0 0.84)
fa "["*wu:l 124« 281 ]
= MmN

The ratio of the maximum to the mean stress is, therefore,
1.69 x 1.44 = 2.29, and thus the stress estimated on the not unusual
assumption that the load is uniformly distributed is approximately
1309% too small.

The equation of the neutral axis may be obtained by giving
f the value Zero in equation (3) page 4.

0.84
0==0.69 + (y—x x 2.81)
4.71
or y=281x—387.
It cuts Gz at the point #=1.22 and is shown by the line nn in the
figure.

It will be seen from the above that the calculation, using the
correct theory, is simpler than that assuming bending perpendicular
to KG and equation (1) for the stress distribution, because the latter
would involve the calculation of the moment of inertia of the cross-
section about an axis perpendicular to KG. If bending were in-
correctly assumed to take place about Gy the eccentricity of the
load would be 0.84” and the stress at A would be, from equation (1)

0.84 < 0.84
= 4 0.69 N
1.24

=126N,

which is about 209% too small, whilst if it were assumed to take place
about Gz the eccentricity would be 0.66” and the stress A would be

0.64 < 2.16
= - + 0.69 N
1.24

=184 N,

which is approximately 16% too great, so that the correct value in
the case of the given angle is approximately the mean of the values
assuming bending about Gx and Gy respectively.

The Experiments.

All the experiments to be described were made in tension on
specimens consisting of 3” x3” x1” angles having different forms
of end connections. In the first experiments a simple angle was used,
one leg being cut off shorter than the other, so that the specimens
could be gripped in the machine by the other leg. It was tested




Rh tension under different conditions, with the object ‘of verifying
the theory described above. It was found, however, that although
the distribution of stress was linear, the positions of the line of
pull varied with each placing in the ‘mm-hlnv, and the results are
not thought sufficiently interesting to be published. Experiments
were then pifide on the two single angle members shown in Fig. 3.
The angle$ were 4° 7}” long and 3" x 3” x {” cross section, and were
riveted by means of four " rivets having a pitch of 2}” to end
plates §” and 1" thick respectively, different thicknesses of end
plate being used with the object of determining the effect of the
restraint to bending offered by end connections of different stiff-
nesses. The results of the test are given in Tables I, II, and IV.
The remaining experiments were made on the double angle member
shown in Fig. 3. This consisted of two angles placed back to
back and connected at the ends to a loading plate {” thick, by four
1" rivetsjof 23" pitch.The results of the tests on this angle are
given in Tables Il and IV. The machine used was the Emery test-
ing machine in the McGill University Testing Laboratory. This
machine is of the vertical type and has a capacity of 150,000 1bs. The
length of the specimens was governed by the limits of the machine.
The Emery type is eminently adapted to this kind of work, because
the line of pull is constant, the load may be very acturately esti-
mated, and there is an entire absence of vibrations which would
make the reading of the extensometer difficult.
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The Extensometers

The extensometers used were a simplified form of the Martens'
type, designed and constructed in the McGill Testing Laboratory,
where they have been in use since 1906, and have been proyed
capable of giving very accurate results. Figure 4 shows the ;»Hn

W
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Fig. 4.

ciple of the instrument, and Figs. 5 and 6 show it in actual use on
the specimens. It consists essentially of a double knife-edge, K.
which fits between the specimen under test and a V groove in one
end of a steel strip 8, which is in contact with the specimen at A,
and is pressed against it by means of a clip C. A’change in the
length of AB causes the knife edge to tilt and the tilt is
measured by means of a telescope and ‘scale, the scale being re-
flected in a mirror M attached to the knife edge. In the actual in-
strument the steel strip is §” wide, §” thick, and the length A B is 4".
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The end A is turned at right angles and brought to a sharp edge so
that it may not slip on the specimen. The knife edge is of hardened
steel about 0.18” by 0.12” by 0.45”, and the mirror is attached by
means of a piece of steel knitting needle. The mirror is held in a
clip of thin sheet steel which is arranged so that it can slide and
rotate on the needle, a thin copper strip protecting its back from
injury.; This clip permits of a small amount of lateral adjustment.
The mé‘rnr is about }” square and must be as truly plane as possible,
as otherwise there will be an error introduced when the image of the
scale moves to a different part of its surface, as it must do if the
specimen deflects at all during test. In the original form of
Martens' Extensometer there was a device for adjusting the mirror
and also a balance weight at the opposite side of the knife-edge, but
these refinements are not only unnecessary but cumbersome, and
make the instrument less adapted to use in restricted positions.

The extensometer is calibrated in a Whitworth Measuring
Machine and a calibrating rod is prepared for each instrument,
giving the distance from the scale to the mirror, so that a definite
distance on the scale may correspond to a given extension or com-
pression on the specimen. In the case of the experiments described
below, 3” on the s« a’ subdivided into ten equal divisions, corre-
sponded to 1 ”, sotlat the change of length of the specimens was

1000
easily read to 1 ”. The length of the rod was about 4, varying
100,000
with different instruments. The angle turned by the mirror in any
test is so small that there is no appreciable error in using a straight
scale for the readimgs. This is verified by turning the mirror in the
Whitworth measuring machine through much greater angles than
those through which it turns in the tests. It was also found that
different strips (S) did not affect the calibration, so that a knife-
edge could be used with different lengths of strip without re-cali-
bration It is estimated that, under the conditions of test, the
instrument reads accurately to I *
100,000

The kind of telescope used affects greatly the facility with
which readings may be taken. The McGill Testing Laboratory
telescopes were made at Charlottenburg, and are adjustable vertically
and horizontally, besides moving bodily about a vertical axis (See
Fig. 5). The extensometer must be carefully used in order to give
correct results. The mirror should be, in its mean position, parallel
to the scale and the telescope should be opposite to the mirror. The
clip must be arranged so that the knife edge is held quite firmly,
otherwise it will not tilt correctly. The best forms of clips are made
from pieces of copper wire,
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Fig. 5.

If~the direction of A B remains unchanged during test, the
difference of the scale reading between two loads will be an accu-
rate measure of the strain of A B for the given load difference, but
if A B alters in direction this will not be the case. If, however, two
readings are taken, one with the extensometer in the position shown,
and the other with the knife-edge at A and the sharp edge of the




Fig. 6.

strip fat B, the mean of the two will be correct. When any doubt
existq it is always better to do this so as to eliminate possible error.

In the opNion of all who have used these instruments at McGill
University, they are the most simple, practicable, and accurate
extensometers in use. It will be seen that they may be readily used

2
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in the most restricted positions, as, for instance, between the two
angles of the double angle members, where the width is only 3”.
(Fig. 6.) The photograph shows two extensometers in use simul-
taneously between the angles.

The Tests.

All the tests, with one exception, were made with 4” exten-
someters, and, therefore the stresses tabulated are mean stresses
over lengths of 4. ‘In the case of the central sections, these stresses

*must be very clogse indeed to the actual intensities of stress at the
middle points of the 4”. For the end sections there may be some
error introduced by censidering them as such, but it is not likely to
be large. It is only when the stress varies considerably over the
extensometer range, as at the rivets, that the readings cannot be
used to obtain values very close to the actual stresses at any point.

It will be understood then, wherever the reading at a given point
is spoken of, that it was actually taken over 4” range having the
point as centre. The extensometers were always arranged with the
strip parallel to the axis of pull, and, therefore the stresses de-
duced from them give the distribution of normal stress over the
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cross-section. All the stresses tabulated are for points on the outside
faces of the angles. In the case of the single angles, the readings were
taken at the central section and at a section 3” from the loading
plate. The readings were taken across each section at intervals
of 3" (See Fig. 7). For the double angle, 10 readings with the
mirror at the lower end of the extensometer, and 10 with the mirror
at the upper end were taken at the same intervals across each angle
at the central section, and at two other sections, one B, 74", and the
other C, 13" from the loading plate (See Table 1II). Other readings
were taken at the rivets, but are mot, at present, thought sufficiently
interesting for publication, as they do not give a measure of the
actual stress at the rivets.

The procedure of the tests was as follows. The specimen be-
ing placed between the grips of the machine, an initial load of 100
Ibs. was applied. When two extensometers had been adjusted in
position, and convenient zeros taken, the load was increased to the
full amount, brought back to 100 Ilbs. and then again increased,
readings being taken in the case of the single angles at 5,000, 10,000,
15,000, and 20,000 1bs,, and in the case of the double angle at 10,000,
156,000, 20,000, 25,000, and 30,000 Ibs. The load was then decreased
and the zero checked. Usually the extensometers returned to zero
and no readings were allowed to pass in which they failed to do so.
All the readings were repeated at least once before the extensometers
were moved to other points. It was determined early in the course
of the experiments that the readings for all the riveted pieces did
not alter when the piece was taken out of thevmachine and replaced,
and so this was done whenever the machine was uired for other
purposes. Three complete sets of experiments were made at the
sections tabulated, but there was very little variation in the results,
and the Tables are compiled from one complete set. The value of
E (Young's Modulus) for each specimen was found by cutting
pieces from different parts of the actual sections and testing them
in tension. The mean value of E, which did not differ greatly for
the different specimens, was 28.6 x 10° 1bs. per square inch, and this
has been used in reducing all the results.

Careful measurements were also made of the lateral bending of
the specimens at different points along them, by means of small
scales graduated in 1 ”, and read through telescopes.

100

The scales were arranged so that the deflections of the points

A and B (Fig. 7) at each cross-section, were obtained in the direc-
tions z and y, and thus the actual twist of AB was found. Table IV
gives the principal results of these tests, which are used in determin-
ing the exact position of the load axis, as will be described later.
Only the mean of the deflections at A and B is given in the table, as
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these were the values used in the reduction of the experimental
results.

The Results.

In Tables I-111 the stresses at the given points of the various
cross-sections calculated from the actual extensometer readings
are given. These were obtained by dividing the mean of the exten-
someter readings (with the mirror at upper end and with it at the
lower end respectively) by 47, and multiplying by the mean modulus
of elasticity for the piece, this being obtained by experiment, as
described above. In Figures 8-13 the actual mean extensometer
readings are plotted, the mean straight lines being continued so as
to give the maximum strain occurring at each section. The stresses
corresponding to these estimated maximum strains are tabulated in
Tables VI and VII, together with the ratio they bear to the average
stresses over the sections.

It will be noticed, on examining Figs. 8-13, how very closely the
assumption of a linear distribution of stress over the cross-section
is borne out by the experimental results. This is especially remark-
able as the specimens were not elaborately prepared, but were ordin-
ary shop products. The greater deviations from the mean occur in
Figs. 9 and 11, which are for the unconnected limbs of the two single
angle specimens at sections 3” from the loading plate. In these
cases the deviations seem to follow definite curves, which are not
only similar for the same piece at dlffergnt loads, but for the two
different pieces. It is, therefore, probMe that they are due to a

, real deviation from the linear law caused by the proximity of the

sections to the rivets. This view is borne out by the results of
experiments made with the object of determining the stress dis
tribution near the rivets. Figs 10 and 12 also show rather large
deviations, but these must be set down to irregularities of cross-
section. The largest of these, in Fig. 10, (for specimen. with }”
plate), is at point 8, for the 20,000 1b. load, and amounts to about
6.6%, whilst the largest in Fig 12, for the left side of the double
angle, is about 45%. In the other figures there is scarcely any
deviation from the straight line. The stresses for the corner of the
angle, obtained by producing the curves for the points 6-10,
downwards, and those for 1-5 upwards, also agree in a very striking
manner, as will be noticed from the figures, where the points sur-
rounded by circles on the curves for 1-5 correspond with those
found by producing 6-10.

These results show that the greatest confidence may be placed
in the extensometers used, and that the assumption of a linear law
for the stress distribution is justifiable. .
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The truth of this law having been established, the position of
the meutral axis may, be found for each load on a given section, and
also the position of the load axis, according to the theory described
above (page 4).

As the method of reduction is similar for all the experiments,
one example will suffice to explain it. Consider the central
section of the single angle member with 3" end plate, for which
the stresses are given in Table 1, and the strains are plotted
in Fig. 8. The constants of the cross-section are given in Table I.
The line of stress for the points 1-5, at the 20,000 1b. load, inter-
sects the base line at a point distant 1.88” from the corner of the
angle. This is,therefore, the point where the neutraljaxis cuts the
leg BC of the angle for this load. Its distance from B is called b
(See Table V). If the line of stress for the points 6-10 be produced
until it reaches the base-line, as shown to a different scale by the
small figure (Fig. 8), another point of zero stress may be found.
Its distance from B is 7.5, and is called a (Table V). The ratio of
a to b gives the tangent of the angle of slope of the neutral axis to the
axis Gr, which is called « in the analysis given above (page 4). In this
case it is equal to 3.99 corresponding to an angle a =75° §5'. The
neutral axis is thus determined and the loading point (&, y«) may
be found from equations 3 and 4, the axes being taken through the
centre of gravity parallel to the legs. In order to simplify the cal-
culations, the point of zero stress on the leg BC is taken. Thus f
in equations 3 and 4 is equal to zero, whilst the co-ordinates (z, y)‘
are r=188—0.85=1.03, and y=—0.85, the distance of the
centre of gravity from the back of .the angle. (This is a little
different from the distance for the standard angle, because the
section was slightly heavy. See Table 1.). The values #x and y,
found in this way, are 2 = — 0.80, y = 0.59. These are the co-ordin-
ates of the point of action of the resultant load at these sections
referred to axes through the centre of gravity of the section. In
Table IV the deflections of this specimen at different cross-sections
for different loads are given. Considering the central section,
taking the mean of the deflections at these points A and B for a
load of 20,000 Ibs.,, and subtracting from these the deflections
similarly taken at the middle of the riveting, a correction may be
found for zx, yx, and, if this is applied, it will be found that the
point of loading referred to the co-ordinates through the centre of
gravity of the section, midway between the extreme rivets at the
ends, I8 rx=—0.89, yx=0.63. In a similar manner all the other
figures in Table V have been obtained.

Discussion of the Results—Single Angles.

Consider Figs. 8-11. If the pointiof application of the resultant
force remained unchanged relatively to the section during loading,
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the stress lines in each of the figures would intersect at one point
for all loads, i. e., the distances @ and b would be the same for
different loads on the same section. This is not quite the case, as
will be seen on inspection of the figures and tables. For example,
at the central section of the angle with the §” plate, the point of
application varies from (—0.90, 0.65) at 5,000 1bs. load to
(—0.80, 0.59) at the 20,000 1b. load. This is largely due to the
lateral bending of the members, and may be corrected from
Table V. In order to obtain a proper basis for comparison, the load
point should be referred to the sections at which the load enters the
angle. There i8, of course, some uncertainty as to the exact position
of this cross-seetion. It must be somewhere between the end of the
angle and the end of the loading-plate, and it seems most correct to
take it at the mean section of the rivets, i. e., between the two
middle rivets. This has been done in the tables and the results
must be close to the correct positions of the loads. - It will be seen
that this position is practically constant for the central section of
the angle with the §” plate, and its mean is a poln;}avlng co-
ordinates (— 0.91”, 0.64”) (referred to the axes through“the centre
of gravity) which is 1 ” away from the centre of the connected

100

limbs, and .06” within the load plate. For the angle with the
1” plate the results are slightly more variable, their mean being a
point having co-ordinates (0.91”, 0.67”) (referred to the axes through
the centre of gravity) which is 0.02” from the centre of the con-
nected leg, and 0.06” within the load plate. The mean angle of
inclination of the neutral axis to the unconnected leg, for the angle
with the §” plate, is 76°, and for the other angle 76° 50°. It appears
from these results that there is a remarkable agreement between
the action of the two angles, notwithstanding the great difference in
the stiffness of their end connectiqns. The results for the sections
near to the ends give for the load points (—1.01, 0.67) and
(1.04, 0.71) for the specimens with the §” plate and }” plate re-
spectively. These points are 0.16” and 0.20” respectively within the
plate, and are .03” and .07” respectively from the centre of the con-
nected leg. Here also the two different angles behave alike. The
reason for the change in position of the load axis at this position is
probably that some moment is caused here by proximity to the
riveted joint.

Additional evidence that the heavy end plate does not appreciably
restrain the bending of the angle is afforded by the deflections given
in Table IV. It will be seen from these that the' mean deflectfon of
the central section of the connected leg in the direction of «z,
measured from the end of the angle, is 0.14” in the case of the §”
end plate, and 0.15” in the case of the }” end plate, whilst in the
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direction of y, the values are 0.04” and 0.06” respectively. The
differenee between these values for the plates is small, especially
considering that the first angle is slightly heavier than the other.
In Appendix II a formula is developed for the central deflection of a
piece subjected to an eccentric tensile force. It is shown that, when
applied to a single angle of the dimensions of the specimens, the
deflection of the centre of gravity arrived at is 0.15”. This is in a
direction perpendicular to the neutral axis and assumes the load
axis to be at the middle of the outside face of. the connected leg.
When this displacement is resolved parallel to Gz it gives 0.145",
and parallel to Gy 0.05”, which are close to the experimental values.

Now the constraint offered to bending by the §” end plates is
probably greater than that due to any end comnections used in
practice.- Thus it will be evident, from the above, that in very
few pracitical cases can the end of a single angle siructura] mem-
ber be said to be fixed. \,

Careful measurements were made of the deflections of the plate
and the angle near to the rivets, which showed that both bent to-
gether. The want of end rigidity must, thereforé, be due to the stiffness
of the angle being much greater than the stiffness of the plate, and
not to any yielding ,of the rivets.

The next question which must be considered, is the position of
the load axis. Evidently, from the above, it will not depend very
much on the stiffness of the end connections. In Table V the actual
maximum stresses from measurements are given, together with
those obtained from the theory, assuming the load axis as worked
out from the experimental results. It will be seen that the agree-
ment between the two is very close for the angle with the §” plate.
For the other angle, the calculated results are all 39 or 4% higher
than the extensometer resuits, but a small variation in E would
obviously bring them into agreement, and in any case the differ-
ence is small.

The truth of the theory may thus be said to be verified by the
experimental values, and the stresses given in the second column of
Table VI must be very close indeed to the actual maximum stresses.
Considering the ratios of maximum to mean stress over the section,
given in the last column of Table VI, it will be seen again that the
two different angles behave very milarly, the ratio falling at the
central sections from 2.23, at the lowest load, to about 2.10, at the
highest. This change is, of course, due to the bending of the speci-
mens. In the first column of Table VIII the stresses calculated
from the mean position of the load axis, allowing for bending, are
given, the ratio of maximum to mean stress being 2.16 for each
angle. This may be taken as the mean experimental ratio for both
of the sections. In this table the theoretical maximum stresses for
different assumptions of the load axis, neglecting bending, are also

-
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given. It will be seen that the assumption which best fits the actual
case is that the load axis is 1” from the centre of gravity, corre-
sponding to a point 0.15” and 0.16” respectively, within the load
plate. (The values of « do not, of course, correspond exactly, be-
cause the deflection has not been considered.) The stresses at the
ends of the piece are somewhat higher and correspond more closely
to a load-axis at the junction of the plate and the angle, and-t would
seem that the best practical rule for obtaining the maximum stress
of such a member would be to take the load-axis as along the line
of rivets, and at the junction of the plate and angle, neglecting
deflection. This would give results slightly on the safe side.

The Double Angle.

In figuring a section consisting of two angles placed back 'to
back, connected by a plate to which the load is applied and riveted
together at intervals, it is usually assumed that the section acts as
one piece, i. ¢, as a T section, thus bending about a neutral axis
parallel to the unconnected legs of the angles. The load is thus
assumed to act in an axis of symmetry of the . cross-section, and the
maximum stress in any given case may be easily calculated from
equation. 1 above. Applied to the experimental section, this method
would give the ratio of maximum to mean stress as 2.65. A glance
at Table VII will show how very far such calculated results are from
the actual experimental values. In the actual specimen, the two
angles did not take equal portions of the load, the angle L taking

-more than the angle R, but the greatest of the maximum stresses

is only 2.28N'at the lowest load, falting to 2.15N at the highest.
The reason for this will be evident from Fig. 12, where the distri-
bution of strain across the central cross-section is plotted for
different loads in exactly the same way as in the case of the single
angln-s. It will be seen from these figures that the two angles of
the member bend each about its own neutral axis, and that they thus
act like separate angles constrained at their ends. The results were,
therefore, reduced to find the point of loading and the angle of
inclination of the neutral axis, in the same way as for the single
angles, and the results of the analysis are given in Table V. It
will be seen from these that the angle of inclination is 20° 18’ for
the right hand angle, and 18° 48’ for the left hand angle. The load
axis for the right hand angle has a mean position (— 0.36, 0.46), and
for the left hand (— 0.43, 0.55), and is constant for all the loads,
except the lowest (10,000 1bs.). The results were not corrected for
lateral bending, although deflections were measured (See Table IV),
because the deflections were small, and it was recognized that these
results could not, by reason of the unequal distribution of the load
between the two angles, be so 1*|(7H¢'l)“ analysed as the results for a
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single angle. Assuming that the angles, if acting separately and
unconstrained at the ends, behaved as in the experiments described
above, the effect of the end constraint, caused by the riveting of the
angles back to back, may be found from the shift of the ‘axis of
loading. This may be assumed at the centre of the connected leg for
separate action, i, e., at the point (— 0.84, 0.66). It has, therefore,
shifted in the case of the angle R through a distance equal to
vV [ (0.84 —0.36)* 4 (0.66 — 0.46)%] =0.52”, and in the case of the
left hand angle through a distance of 0.42”. This means that a
restraining couple of moment 0.52 N inch Ibs. acts on the right hand
angle and a couple of 0.42N inch 1bs. on the left hand angle.
Consider the adjoined figure (Fig. 14), which represents the two

Fig. 14. p

angles, G, being the centre of gravity of the right hand angie, G,
that of the left hand angle. K, and K, represent the loading points
for separate action, and L, and L, represent the actual axes of load
found as above. The bending moment on the sections acting
separately would be N, X K, @, and N, X K, G, respectively, where
N, and N, are the loads carried by the angles. The actual moment
for the right hand angle is L, @, X N,, and thus the constraining
moment is K,L, X N,=—0.52 N, about an axis perpendicular to
K,L,. This may be resolved into moments

N, X K, L, cos ¢$,=N, X 0.52 cos ¢,
N, X K, L, giné,=N, X 0.62 gin o,
parallel to G,y and G,x respectively.
0.66 — 0.46

Now, tan ¢, = =0.417,
0.84 — 0.36
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and the constraining moments are thus 0.48 N, about an axis parallel
to G,y and 0.20 N, about an axis parallel to G,z. Similar analysis
for the left hand angle leads to the values tan ¢,==0.27, moment
parallel to G,y = 0.41 N, and parallel to G,z =0.11 N,

It is thus clear that the experimental angle is subject to im-
perfect constraints in directions parallel to the legs of the angles,
the constraint parallel to the unconnected legs being roughly 50%
of that required for perfect fixing, and the corresponding figure for
the connected Jegs being 20%. If the load had been applied through
pins in the end plates, the latter restraint would probably have been
almost zero, since it is due to the ‘stiffness of the end connections.
In any actual members, however, there must be a certain fixing
moment in this direction, which is probably never very much
greater than the above experimental value. The length of uncon-
nected angles in this case was 28.5”, which is not greater than
that frequently used in practice, so that the restraining moment
parallel to the connected leg is probably of the same order as
that obtained in practice. It is hoped that other members
with different lengths of unconnected angles, etc., may be
tested in this way. With perfect constraint in both directions the
stress would, of course, be uniformly distributed over the section,
because the fixing moment would entirely counteract the eccen-
tricity. With perfect fixing about the axis parallel to the con-
nected leg and perfect freedom in a direction at right angles to it,
the ordinary theory would be correct, because the line of pull would
then be on G,y at a distance @G, N, (Fig. 14). If, on the other hand,
there were no constraint in either direction, the action would be
like that of the single angle. In most practical cases there is prob-
ably imperfect restraint in both directions, as in the experimental
member. It must not be assumed, however, that the greater the
restraint the lower the maximum stress will be, because if, for
example, the angles in a member of the section considered above
acted separately, the ratio of maximum to mean stress would be 2.29,
whilst with perfect constraint against bending of the unconnected
limb, the ideal usually aimed at, it would be 2.65, about 169% higher.
(See page 14.) With perfect constraint in the direction at right
angles, the ratio would be only 1.82, and with the actual imperfect
restraints in both directions it is 2.15. From these results it will
be seen that, for a member consisting of equal angles placed back
to back, it is not desirable to stiffen the member so as to make it
act as one single piece, and there must be many other cases of
built up members in practice where extra stiffness gy'ven by distance
pieces, diaphragms, etc., is a doubtful advantage.” It must be re-
membered that the above figures only hold good for angles having
equal legs. In the case of unequal legged angles connected by the
longer legs, the stresses may be much greater if they act separately,



whilst if they are connected by the shorter legs, the reverse will be

the case.

Remarks on Built Up .ll\r)mlwrx.

A built up tension or «¢0mpr(>sslon member is one which is made
of two or more simple sections, such as angles or channels, fastened
together by rivets and by tie pla(es.‘lattlre bars, or other con-
nections, as in the case of a large column. .Probably the simplest
form is the double angle considered above. -Such a built up member
is usually considered as acting like one piece, and the forces in the
tie plate or lattice connections are found on the assumption that,
if any bending takes place, the whole member bends like a beam.
The above experiments show that this is not true for the specimens
tested, and it would probably be more correct to consider such a
member as an assemblage of simple members each trying to bend
about its own neutral axis, but more or less constrained by the sub-
sidiary latticing, ete. In the opinion of the writer, the only way to
arrive at a correct theory of the action of such structures is to con-
sider the simplest cases first and to approach gradually the more
complex cases by introducing one constraint after the other, and
finding their effect by experiment and analysis. This opens the way
to a large field of research, to which it is hoped that the present
paper may form a first contribution. An example will make this
point clear. Consider a column in the form of a rectangle, built up
of four angles, connected by tie-plates or lattice bars, and loaded
through two loading plates riveted to the angles at the ends. The
ordinary theory would assume that the whole member behaves like
one piece, the tie-plates or lattice bars simply taking up the stress
like the web of a girder. According to the theory advanced here,
the four angles would be regarded as trying to bend about their own
neutral axes in the way a single angle has been shown to behave
above, and the tie-plates would constrain them against twisting, and
so would themselves be under bending stresses, the whole action
being, of course, somewhat complicated. It may be stated here that
actual extensometer experiments on such a column, carried out
under the direction of Professor H. M. Mackay, at McGill
University, entirely bear out this view, the stresses in the tie-plates
being found to be tensile on one side and compressive on the other.
It is hoped that these results will be published shortly. The writer
hopes to investigate the theory of this type of member by con-
sidering first the relatively simple case of two angles connected by
tie-plates.
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Summary and Conclusgion.

As stated in the introduction, experiments of the kind described
here are still in progress at McGill University. It is hoped to in-
vestigate in a similar manner single angle members in compression,
double angle members with equal and unequal legs in tension and
compression, as well as various forms of built up members. Experi-
ments on some of these are in progress.

The chief conclusions to which the present paper leads are:

(1) That the form of extensometer described is very accurate and
simple in operation, and that it is possible by its means to
obtain very closely the distribution of stress in a piece of
material under load;

(2) That experiments ma'de with these extensometers on tension
specimens of uniform cross-section subjected to eccentric axial
loads not in an axis of symmetry of the cross-section, bear out
very closely the geperal theory for such a case;

(3) That the point of application of the load for a single angle
member loaded through a plate riveted to one of its legs may be
taken as in the line of rivets and at the common face of the
plate and angles;

(4

That the end plate, under ordinary conditions, offers no appreci-
able restraint to the bending of such a member;

(6) That a member consisting of two angles riveted together
through a connecting plate does not act as one piece, but that
each angle bends about its own neuatral axis, and that it is not
always an acCvantage to attempt to make it act as ()'l«‘{ll“('(‘, by
further constraints; \

(6

That a built up member should not be regarded as a single
piece 'bending as a beam, but as several pieces each trying
to bend about its own neutral axis, but restrained from doing
80 by the subsidiary members, such as the tie-plates, or
latticing.

In conclusion, the writer wishes to thank Professor H. M. Mackay
(at whose suggestion the work was commenced), Professor E.
Brown, and Mr. F. P. Shearwood, of the Dominion Bridge Co., for
thelr personal interest and advice; and Mr. S. D. Macnab, of the
McGill University Testing Laboratory, who was associated with him
throughout in the experimental parts of the work. He is indebted
to the Dominion Bridge Co. for the specimens used in the tests.
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APPENDTX 1.

Theory of the Distribution of Stress in a Uniform Bar subjected
to an eccentric force parallel to its axis, which does not lie in an
azxis of symmetry of the Cross-scction.

This theory is to be found in the German text-books on Strength
of Materials, but does not seem to be considered in any of those
written in English*. It was developed in one form by Mohr (See
“Technische Mechanik,” Otto Mohr, Berlin, 1906, P. 241). This form,
however, although elegant, is not adapted to practical computations.
C. Bachin his work “Elasticitit und Festigkeit” (p. 223, 4th edition)
gives the results referred to the principal axes of inertia of the cross-
section, and L. J. Johnson in Proc. Am. Soc. C. E.. Vol. 56, 1906,
works out .the results in the form given here, which is that best

suited for calculation.

.

Fig. 16.

* Since writing this, a brief account of the theory has been published in the
second edition of Morley’'s “‘Strength of Materials” (Longman’s)
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Let G (Fig. 15) be the centre of gravity of the cross-section, K the
point of application of the normal load N, and Gz and Gy any

ected rectangular axes through @. If the point K coincides with G, the
n an N
: stress over the cross-section will.everywhere have the intensity

ngth ' where A is the area of the section. If K does not coincide with G,
those § there will be in addition to this stress bending stresses caused by
(See ] the moment M — N.K @, which has the axis GB perpendicular to GK.
florm, Consider the effect of this moment acting alone. It would cause the bar
fons. to bend about some neutral axis nn inclined at an angle a to the z -
tion) . axis. Let n be the perpendicular distance of any element &a of the
"TO8S- cross-section from nn and let (&, y) be its co-ordinates. By the
1906, ordinary laws of bending
best f /

I:jry R l
_-‘ where E is Young’s Modulus, R the radius of curvature of the cross-

gection, and f the intensity of stress over Sa. For equilibrium
the sum of the. moments of the stresses about Gz and Gy must be
equal to the components of the bending moments about these axes,

Therefore M sin \ Zfyda o R o ool F 2
M cos \ Zfxd T s 3
En
But f ® (y cos a X sin a)
Therefore R ; ’ ; :
ereiore i M sin N\ Z y? da cos a Zarydasina
Ixcosa — [sina ...... ; 4 /
R ¢
4 and E M cos \ Zxydacosa Tatdasina
J cos a Iy 8IN& oo i 35

Where I. and Iy are the moments of inertia of the section about Gy
andGz respectively, and J is the product of inertia about (Gz, Gy)
Divide 4 by 5 and obtain

. ) Iy cos a — ] sina

fan \ .
J cosa Iy sin a

and on rearranging the terms

p Iy — ] tan \
na=
L an 8 J Iy tan \
I %
which gives the angle of inclination of théeutral axis to Gx. (The
— N

effect of the direct stress 7 will be to shift this axis parallel to

in the itself to a position determined later).

\




From (1) f £y
R
M sin \ (y cos a asina)
Ixcosa — '] sina
Nye (y - xtan a) N

Iy — Jtan a
and similarly from 1 and 5

Naxp(y v lan a) g
f o J — Iy tan a

Thus the actual stress at any point (zy) will be

N N xe (v x lan a)

f = 4 9
A J Iy tan a

the positive sign being taken because » was taken positive on the
side of nn on which the point K lies, Putting f=o0 in equation 9,
the equation of the neutral axis may be obtained. Various graphical
and semi-graphical methods have been devised by Mohr and others,
but they do not appear to the writer to have any advantages over
the above.

Note on the Calculation of J.

Let J be the product of inertia about any rectangular axes,
and /¢ that about parallel axes through the centre of gravity of the
section. Then, if (x, y) are the co-ordinates of any point of the
cross-section referred to the former axes, (2'y') those referred to
the parallel axes through the centre of gravity, and (z, y)the co-
ordinates of the centre of gravity referred to the first axes

J=Zxyda over the section
or J Z@+2)(+ y)da
Za'y'da + Zryda+ Zayda+ Zyada
JG i x )
because Z ) da Ay’ =0
and I 1’ da Ax' - o
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APPENDIX II

The lateratdeflection of a uniform bar under an eccentric tensile
force parallel to the axis, but not in an azis of symmetry of the
cross-section.

Let OA (figure,16) represent the axis of the bar and let N be the

applied force of’eccentricity d.
4

py—————— a =]JO

L

Fig. 16.

If the load were applied in an axis of symmetry the equation for
bending would be
dy

£l dx*

N(y - d
but since this is not the case, equations 4 and 5 of Appendix.I must
be used. Squaring and adding, these give—

-

ay 1 M 1
dx* R E V |(Ixcosa — ] sina)® + (/] cosa — Iy sin a)?|
Now, at any section M =— N multiplied by the distance of the load
point from the centre of gravity.
The bending will be perpendicular to the neutral axis, and thus if

v be the distance of the centre of gravity from its position at the
end o, the eccentricity of any section

vV [d* + yt - 2 dy cos{90 N+ a))

In many cases, including the angle section, the last term is
practically equal to 2dy, and the eccentricity then becomes.

(d — )
Thug the differential equation of the axis is
\ d*y 5
\ axt k(y - d) . 10

\



N 1
- E y [(1_.-(‘051;1 Jsina)® + (J cos a Iy sin a)?)

k®

or for the equal legged angle, since Ir=1I,=1
N
& T , —
Ey|1* + J* - 41 ] sin a cos a
Solving (10)
y=d+ 4 ekx + Be-—kx
where A and B are constants.

dy

Now, when z=0, y =0 and when z=a,
dx

ﬁ‘herefore d=A4+ B
and Aeka
and (12) becomes

e — ka
y=d]l - he + ,.~ka"h

and the central deflection is given by

2

This result will now be applied to the 3” x 3” x }” angle loaded at
the ends at the mid-point of one of its sides as in the case considered
above, (page 5). In order that the results may apply to the experi- §
ments, ¢ has been taken 28.25”, which is the half length of the |
experimental angles, and N = 20,000 lbs, !

The value of d is /[ (0.84)* + (0.66)*] =—=1.07"

F1] S ,7fY PR
Ey[I*]*— 4] 1sinacosal
[ 20,000
Vas.5 « 100

=0.02"

The deflection at the middle is, therefore, from equation 13

= 1.07 [l YT

= 0.15"
In the experiments, deflections were measured parallel to the legs 4
of the angle. The components of the above in these directions are
0.15"cosa = 0.15" x (0.942 0.14"
0.15" sin a 0.15" x 0.336 0.05"
which agree very closely with the experimental values. (See
page (17).




TABLE I.—Stresses corresponding to the mean extensometer readings for 3" x 3" x }” angle with §” end-plate.

Area of cross-section 1.52
Distance from e. g. to back of angle 0.85"

I 1.31 (in)* units. ] 77 (in)* units.
E == 28.6 x 10° lbs per

» Tension

Stresses in Ibs per [ | \Goavﬂmniz: i

Loap
N : 9 | 9
LBS.

5,000 2,360 780 2,290 3,570 5,710 6.000 | 6,360 6,790 7,150

CRNTRAL 10,000 4,000 1,140 g 4,650 7,290 11,100 __..‘.v:” 12,430 _..w._...xy 3,880
SECTION

15,000 5,360 1,140 2,7¢ 7,000 11,000 16,400 17,500 18,200 19,300 20,450

20,000 6,360 1,070 9,360 14,370 21,400 23,200 25,400 26,950

5,000 2,860 .- 1,220 2,070 3,640 6,080 6,290 6,650 6,800
vf.ﬁsz 10,000 5,290 2,430 4,290 7,360 11,900 2,300 12,950 13,300 13,880

FROM 5 ax 2 9q °p ax 2 e . P
Sl 7,650 3,290 6,650 10,930 17,600 18,730 19,720 20,400

4,080 8,930 14,980 23,200 23,95 25,000 25,900 26,500

loaded at
ynsidered
e experi-
h of the §
ons are



x For this section, a 2’ extensometer was used.

TABLE W.—Stresses corresponding to the mean extensometer readings for 3" x " x ] angle with }” end-plate.

\rea of cross-section |.44
Distance from e. g. to back of angle (L85

I 1.24 (m) * units.

E ) Ibs. per

Loab STRESSES IN LBs. TENSION COMPRESSION

N
(LBS.)

5,000 2,430 ( 3,000 6,080

CENTRAL 10,000 4,360 1,280 . 7,150 12,000 13,300 , 940

SECTION N = -
15,000 6,000 | - 1,280 y A 10,670 7,800 17,930 19,600 , 600

20,000 7,000 930 4 10,000 14,000 5 23,300 23,450 25, 6% 27,100

5,000 2,430 4,000 5 6,430 ¢ 7,150 7,440

,ff,.w.‘_:.z. 10,000 - 1,430 4,860 | 7,720 12,500 13,720 14,380
FROM

_ ( 2,48 7 3 : : 21 .2
END-PLATE 15,000 2,430 7,440 11,430 21,300

20,000 | - 10,300 3,430 9,930 15,000 25,420 % ,900




TABLE WI.- Stresses corresponding to the mean extensometer readings for 2—: < angles with

end-plate.

SECTION

CENTRAL

Loap
N
(LBS.)

10,000
15,000
20,000

25,000
), 000

10,000
15,000

25,000
30,000

20,000

Constants for each angle are the same as in table No. 1]

2,220 2,790

1,360
2,150
2,860
3,860
4,580

1,570
2,720
3,500
4,360
5,290

STRESSES IN LBS.

1,720 2,070

gl &

2,640 3,290

6,290

4,000

4,080
6,150
8,290
10,380
12,430

4,080
6,150
8.210
10,380
12,430

8,150

5,070
7,580
10,000
12,500
14,930

5,140

14,910

9,500

6,000

8,860
11.800
14,
17,500

5,710
R 500
11,430
14,000
16,800

10

7,000
10,580
13,920
17,420
20,740

6,710
9,650
12,880
15,920
18,920

12,220

20,000 3,220 3,500 4,430 4,710 6,720 8,090 9,440 10,720 12,160

Right Left

20,000 3,140 3,140 4,140 4,290 7,720 10,140 11,300

20,000 3,720 3,290 4,140 4,860 s $ | 10,300 11,330

| Right Left

!

x For this section, a 2’ extensometer was used.




TABLE IV. Mean lateral deflection of the specimens.

TABLE
3
| MEAN DEFLECTION OF A B
|
N With respect to middle With respect to end
of rivits of angle
SPECIMEN SECTION LOAD v ‘ .
(LRBS.) X \ X Y
‘ d SPECIME
ALL. MEASURED IN INCHES
5,000 0.04 0.01 0.04 | 0.01
10,000 0.06 0,02 0.08 0.02 :
- Central -
= 15,000 0.08 0.03 0.11 0.03 =
- 20,000 0.10 0.04 0.14 0.04 P
- = Y
i u o -
| = 9 <
! s 2 ;
: b} 5,000 0.02 0.01 0.03 0.01 o
i} —E:l E‘
j € 4” from 10,000 0.04 0.01 0.05 0.01 =
I ’ -plate
i end-plate 15,000 0.05 0.01 0.08 002
!!
'} 20,000 0.07 0.02 0.11 | 0.02 N
H | -
¢ 5,000 0.03 0.02 0.05 0.02 L
| 2 =
{ 10,000 0.06 0.03 0.08 0.03 o
: : : <
t e Central < c
i - 15.000 0.08 0.04 0.13 0.04 v
; . ) ) o
} . = 20,000 0.10 0.05 0.15 0.06
i T
i £ :
i 6 O 5,000 0.02 0.00 0.04 0.00
| o Y
| Y, [ -
£ € 3" from 10000 | 0.03 0.01 | 0.07 0.01 ,
i J ' |
! end-plate X =
| 13,000 0.05 0.01 0.09 0.02
|
20,000 | 0.08 0.03 0.12 0.03
i "
| 10,000 0.00 0.01 040 0.02 <
| Central 20,000 0.01 0.02 0.01 0.03 <
K Left v
] > 30,000 0.2 0.04 0.02 0.04 z
1 - 2
g o)
E 10,000 0.00 0.01 0.00 0.02
~ entral
Lentra 20,000 0.01 0.02 0.01 0.03
Right
30,000 0.02 0.04 0.02 0.04
1 { N.B.—All the deflections in the direction x are negative. The values
given are the mean of readings taken at A and B.

|
i
|
!
|
|
Il
|
|




TABLE V.—Reduction of experimental results to find load axis.

Estimated
load loading axis
tion of Point of foading axis | referred to

Position Inclina- Estimated

of

Neutral 7 referred to  oyeq thro' e g
> - Lero Stress " L ) [ 4
Neutral Line  Line it Mo thro' € g “of mid rivet
LD of section .
SPECIMEN SECTION ection
(LRS)
3 tan a x \ X v X ¥
a b k k k k
INCHES ALL MEASURED IN INCHES

e 5,000 6. .80 1.76 3.88 0.90 0.85 0.9 0.65 0.93 0.66
= Central 10,000 7.40 1.80 4.11 0.95 0.85 0.86 0.63 0.91 0.65
3 15,000 7.50 1.85 4.06 1.00/ 0.85 0.82 0.60 0.90 0.63
.. 20000, 7.50 1.88 3.99 1.03/ 0.85 0.80 0.59 0.89 0.63
2 2 Mean values 4.01 a=76 0.84 0.62 0.91 0.64
< 2
b 5,000 9.07 1.66 5.46. 0.81 0.85 0.99 069 1.01 0.70
i 3" from 10,000(11.86 1.70 6.98" 0.85 0.85 0.96 0.65 1.00 0.66
€ end-plate 15,000(12.07 1.70 7.09 0.85 0.85 0.96 0.65 1.01 0.66
& 20,000/12.45 1.73 7.20  0.88/ 0.85 0.94 0.66 1.01 0.68
Mean values 6.68 a-81"30 0.96 0.66 1.01 0.67
" 5,000 6.00 1.70 3.53 0.86 0.84 0.84 0.64 0.87 0.66
_ . 10,000 8.55 1.74 4.91 0.90 0.84 0.90 0.64 0.96 0.67
= Central = & g 4= & p >4
= 15000 8.10 1.80 4.50 0.96 0.84 0.85 0.62 0.93 0.66
29 20,000 7.87 1.89 4.15 1.05 0.84 0.79 0.66 0.89 0.71
2 Z Mean values 1.27 a=76°50 0.84 0.64 0.91 0.67
23
N 5,000 9.67 1.60 6.04 0.76/ 0.84 1.06 0.73 1.07 0.73
j 8" from 10,000 9.00 1.63 5.52 0.79/ 0.84 1.0l 0.71 1.04, 0.72
15,000 9.67 1.67 5.79 0.83] 0.84 0.97 0.68 1.02 0.70
end-plate 20,000 9.67 1.71 5.65 0.87 0.84 0.95 0.66 1.03 0.69
Mean values 5 a=80"10" 0.99 0.69 1.04 0.71
10000 1.48 4.77 0.31  3.93 0.84
Central 16,000 1.77 4.77 0.37 3.93 0.84
20,000 1.77 4.77 0.37 3.93 0.84 :
Right 25,000 1.77 4.77 0.37 | 3.93 0.84 056 0.46
30,0000 1.77 4.77 0.37 3.93 0.84
Mean values 0.37 a=20°18
10,000 1.47 3.97 0.37 3.13| 0.84 |
';,:1 Central 15,000 1.42' 3.87 0.37 3.03 0.84
e 20,000 1.41 3.87 0.37  3.03 0.84
< Left 25,000 1.24 3.87 0.32 3.03/ 0.84[0.43 0.55
30,000 1.15 3.87 0.30 3.03 0.84
Mean values 0.34 a-=18"48"

Double

E
% Irnmi‘ 20,000 2.35 7.13 0.35 6.29 0.84 0.24 0.31

-

end-plate § 20,000 2.46 4.95 0.49 11 0.84 0.33 0.39

| | |
20,0000 2.70 8.95/ 0.30 8.11 0.84 0.24 0.31|

ht

3

igl

9 "
ya from;

R

end-plate

Left

20,000 2.62 8.65 0.30 7.81 0.84 0.24 0.32




TABLE VI.—Maximum Stresses. Single Angles.

Max. Stress
: . Max. Stress 3
over section RATIO RATIO
from calcu-
from extenso- Max Max
(LBS) lated load
meter

_ LOAD
SPECIMEN | SECTION

Mean axis Mean
readings

5,000 7,600 2.2 7,350
10,000 14,420 2.2 14,500
15,000 21,400 y 21,200
20,000 28,000 ¢ 28,000

Central

N

end-plate

) 5,000 7,500 2.28 7,500

3" from 10,000 14,300 2.1 14,400
end-plate 15,000 21,100 p 21.600
20,000 27,600 Y 29,400

(S0

“ily

5,000 7,850
10,000 14 500
15,000 21,500
20,000 28,300

7,710

Central

(S S L S

(o0

-
=

) 5,000 7,730 : 8,100
3" from 10,000 15,000 ¢ 15,900
end-plate ' 15,000 22,150 2.1 23,200
20,000 29,000 2.0¢ 30,600

All stresses are measured in 1bs per

E =28.6 x 10° Ibs. per

TABLE VII. Maximum stresses. Double Angle.
E =28.6 x 10° 1bs. per

RATIO
Max.
LOAD extensometer n';uhngs’ Mean

(LBS)

Maximum stress from
SECTION

Left Right Left Right

10,000 7,930 6,720 2.28 CO4

15,000 11,650 9,600 2.2 84

Central 20,000 15,3 12,880 2 85
15,900 2. 1¢ 83

30,000 18,930 b5 82

74" from end-plate 20,000 13,580 13,500 | 94

3.%" from

20,000 12,500 12,600
end-plate




TABLE vill.

LOAD
(LBS)

5,000
10,000
15,000
20,000
Max-Mean

a

LOAD
(LBS)

5,000
10,000
15,000
20.000
Max - Mean
a

Maximum Stresses for different positions of Load Axis.

(a) ANGLE WITH ¥ END-PLATE

Load axis having

co-ord

7,100
14,200
21,600
28,400

2.16

74°

mean experimental
load axis allowing
for bending

1

84

ates

1.00,

7,100
14,200
21,600
28,400

2.16
36

(b)

Load axis having
co-ordinates

66)

00,

7,490

14,980

29,960
216

10

MAXIMUM

Load axis at
face of

1.60,

5,610
11,220
16,830
22 440
1.70

12

ANGLE WIIH

MAXIMUM

ad axis at outsid

late

66)

STRESSES (THEORETICAL)
Load axis at m Lo axis at j
of plate tion of plate &
-1.23, (- 0.85,

7,480
14,970
22,450
29,940

2.28

=)o
iz

13,000
19,630
26,180
1.99
84" 54

25

END-PLATE

STRESSES (THEORETICAL)

le Load axis at middle
ot plate

96, .66)

Load axis at j
tion of plate &

0.84,

nc-
wgle
66)

7,600
15,200
22,800
30,400
2.19
I8

NEGLECTING

gle

NEGLECTING

Load axis

BENDING

Load axis at middle

Load axis at inner
of angle

face of angle
0.72

[k

7,800

BENDING

middle
ot angle
0.72

iz,

Load axis at inner
face of angle

66) 0.59, .66)
8,300
16,600
24,900 25,950
33,200 34,600
2.39 2.49

21

54° 48 320

8,650
17,300
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