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It Is becoming generally recognized among engineers that a 
correct knowledge of the strength of structural members cannot 
be obtained by breaking tests alone. This Is more especially 
the case with built up members In which It Is ble that, as
soon as some part reaches the elastic limit, thi 
the load may change, so that the breaking load

jtrlbutlon of 
the appear

ance of the specimen at fracture may not give any true guide to the 
action of the parts under working loads. ’•

The most satisfactory way of obtaining a knowledge of the latter 
Is by measuring the actual strain distribution under working loads, 
or, at any rate, at loads within the elastic limit of the parts, by 
means of some form of extensometer. Unfortunately, most forms of 
extensometers are open to many objections for this kind of work ; 
some are Inaccurate, others only measure the average strain over a 
long length, and nearly all are more or less complicated, take up a 
great deal of spare and cannot be used in positions which are diffi
cult of access, such as the Interior of a built up column or between 
two angles. The writer knows of only one form of extensometer 
which, when proper precautions are taken, may be said to approach 
the Ideal for this purpose. This Is the Martens Extensometer. 
invented by Professor Martens, director of the Kbntgllche Material 
Prtlfungs Anstalt at Grosse Llchtefelde West, Berlin. This In
strument Is extremely simple In construction, easy to calibrate, and 
may be used In the most confined positions. (See Fig. 4.) It does not 
appear to have received the attention it deserves, possibly because of 
Its simplicity, or because of Inaccurate results obtained by lack of 
certain necessary precautions In Its use. Under the conditions of 
the experiments described later. It was found to be capable of aceur-

1 -, Theately estimating the strain over a length of 4" to
100,000
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Martens' Extensometer was flrst used In the Testing Laboratory of 
McGill University, In 1906, for such work as Is here described, but, 
owing to the «re of 1907, research work was considerably delayed, 
and has only lately been resumed.

The present paper gives an account of experiments made at 
McGill University to determine, by means of strain measurements 
with the Martens Extensometer, the distribution of stress In single ' 
and double angles with riveted end-plates loaded In tension, and to 
compare It with the theoretical distribution under different assump
tions. Experiments are still In progress on similar members In 
impression and on built up members, and It Is hoped that the 
present paper may be only a flrst contribution on the subject,

The experiments on built up members Indicate that these do net, 
In general, act as one solid piece, but that the separate parts must 
be considered as eccentrically loaded members subject to constraints. 
From this It appears that the only way to build up a satisfactory 
theory of the action of such members Is to commence with the pro
blem, which Is Important In Itself, of a uniform piece subjected to an 
eccentric load, and to work up gradually to more complicated 
members. This preliminary problem, with Its application to the 
simplest form of compound member made from two angles placed 
back to back, Is the subject of the present discussion.

Theoretical Consideration*.

The method of finding the distribution of stress In a piece of 
uniform cross section, subjected to a load which Is eccentrically 
applied, but which lies In an axis of symmetry of the cross-section, 
Is well known and need not be considered In detail here. In this 
case the resultant stress at any iiolnt of the cross-section, the lateral 
deflection due to eccentricity being neglected, Is given by the 
formula

/-
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Where Jf Is, the normal load, A the area of cross-section, / the 
moment of Inertia of the croes-sectlon about an axis In Its plane 
through Its centre of gravity and perpendicular to the line of 
symmetry on which the load axis lies, y the perpendicular distance 

- of the given point from this axis, and e the eccentricity of the load, 
I. c, the distance of Its point of application from the centre of 
gravity of the section. The + sign must be taken for points on 
that side of the centre of gravity on which the loading axis lies, 
and the — sign for points on the other side of the centre of gravity.

The equally, If not more Important case of a load applied 
eccentrically, and not In a line of symmetry of the cross-section
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(which Include», for exemple, the case of a single angje under 
tension rlreted by one leg, and probably, as will be seen later, many 
cases of bulinft members where the load Is apparently la a plane of 
symmetry) seems to be little known In this country, although It has 
been Investigated thoroughly by many German writers. The 
only complete account In English, known to the writer, Is In a paper 
by L. J. Johnson, Trans. Am. 8oc. Civil Eng., Vol. 66, 1906*. The full 
development of the formule Is considered In Appendix I, 
and only an outline of the method and the details of actual calcu
lation will be given here.

„ Fig. 1.
v

Consider a straight bar of uniform cross-section subjected to a 
load N, parallel to the axis of the bar, but which does not pass 
through the centre of gravity of the section. Let K (Fig. 1) be the 
loading point and O the centre of gravity of the cross-section. If 
KO is an axis of symmetry of the cross-section, the case will be 
that considered above, bending will take place about an axis in the 
plane perpendicular to KO and the maximum stress will be at o. 
If, however, K does not lie on an axis of symmetry, the neutral axis

.i

•See Appendix I.
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will be In some other direction such as iim. and the maximum stress, 
will occur at 6. Choose any convenient rectangular axes Ox, Oy 
through the centre of gravity (If the section Is a standard one ef 
which the moments of inertia are tabulated In the hand books. Ox 
and Oy should be the axes of the given moments of Inertia) and 
Indicate the angle KOr by X. Then the Inclination, a, of the 
neutral axis to the axis Or Is given by the equation

Where /> is the moment of Inertia of the cross-section about Ox, /, 
the moment of Inertia about Oy and J. the product of inertia about 
Or. Oy. The only assumption made In deducing this Is that the 
distribution of stress follows a linear law. Expressing this symboli
cally, and forming three equations expressing that the total normal 
Internal force across the section Is equal to N, and, that the sums of 
the moments of the Internal forces about Ox and Oy are equal to 
the moments of N about Or and Oy respectively, equation (*) may 
be deduced. (See page 23.) In a similar way the equations

y - x /mm
.4 j - ly tan a

y - .v hm a
lx J la" « 4

giving the stress, f, at any point (x, y) of the cross-section, may be 
found. In these equations A is the area of the cross-section and x> 
and yk are the co-ordinates of the load point K. In order to find the 
maximum stress, all that Is necessary is to substitute for x and y In 
(3) or (4) the co-ordinates of the point 6 furthest away from the 
neutral axis. This may usually be determined readily by inspection. 
If / be made zero, either (3) or (4) will give the equations of the 
neutral axis and thus Its position may be found.

The above equations become much simpler If Ox and Oy happen 
to be the principal axes of Inertia of the cross-section, for in this 
case J Is equal to zero. The moments of inertia given In the hand 
books for standard angle sections, etc., are not taken about the 
principal axes. For this and other reasons, It Is better to take the 
axes for such sections parallel to the legs of the angle and to calcu
late J. which Is

xy tlx dy

taken over the section. This Is usually easy to evaluate, as will be 
seen from the example considered later.

A few points In the application- of this theory to long members 
subjected to tension or compression must now be considered. In
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deducing the above equal Iona it Is. of course, assumed that the piece 
Is free to bend In any direction. If It does so, the point X will be 
differently situated * relatively to the cross-section at different» 
sections, and this must be taken Into account -Jf correct values are 
to be obtained for the stresses, especially when near to the central 
section of a long member. In practice thlp will usually be a need
less refinement, but In attempting to verljfy the theory by experi
ment, It must be considered. If the end\^ of the piece are con
strained In any way. say for example, by the grips of the testing ma
chine or the end connecting plate, or by riveted connections In actual 
structures, a constraining couple will be Introduced, and this will 
have the effect of altering the position of the resultant force X. One 
of the deductions made from the experiments to be described is that 
the connecting plate Int the case'of riveted single angles does not 
Introduce any considerable flxjng couple, except In the plane of the 
plate, but, in attempting to build up a correct theory for the double 
angle, this constraint must be considered.

As an example of the method of calculation of the position of the 
neutral axis and the maximum stress in the cross-section, the case 
of a single angle :t" x 3"x V’ In cross-section, loaded at the middle 
point of one orlts external faces, will now be worked out In full. 
This was the section of the angles use* In experiments, and the 
results obtained from calculation will be necessary in the discussion 
of the experimental results.

Fig. 2
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Figure 2 shows the cross-section. The axes Ox and Oy are taken ! 
parallel to the two legs of the angle. The following data are 
obtained from the Cambria fl^el Handbook.

A = 1.44 square Inches.
/. = /,as 1.24 (Inch)* units.
Distance of O from the back of the leg = 0.84". . It Is not very 

convenient to calculate J for the axes Ox and Oy, but as the calcu
lation Is very easy for the axes BC, BA. It will be made for these 
axes first, and then found for the axes through Ox, Oy by means of 
the formula

JB = Jg + Akk
where Jg Is the product of Inertia about BC, BA.

JG Is the product of Inertia about Ox. Oy and (ft. ft) are the co
ordinates of O referred to BC, BA. Now, using x' y' for co
ordinates referred to BC, BA.

J/f = J j x' y dx' dy 
.1 a * a

= | j v' y dx' dy — j | x‘ y dx' dy 
‘ n « iÙriiw

= 0.28 (Inch)1 units,
the angle being considered as the difference between two squares. 
Hence

Jg= 11.28 - 1 44 * (0 84)»
= — 0.74 (Inch)1 units.

This Is correct to the second place of decimals, neglecting the round
ing of the corners of the angles, etc., which Is close enough for most 
purposes. It would save a great deal of calculation If the quantity 
J were tabulated In the handbooks on steel.

The angle Is supposed to be loaded at the point K. Thus few X 
KH 1.6 — 0.84

Is In this case equal to — __ =-----------------
HO 0.84

= — 0.786
and the Inclination of the neutral axis to the axis Ox Is, from 
equation (2), given by

1.24 0.74 xjf.780
0.74 + 1.24 x 0.786 

2.81 
70“ 24'.

The maximum stress obviously occurs at A and may be obtained

tan e =

Therefore
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from equation (3) ot (4). From 3, aubetltutlng y = 2.16, x = — 0.84,

•2.16 - 0.8* * |,H 
—0 74 1.24 » 2. HIf A , N [<» »« +

The ratio of the maximum to the mean stress Is, therefore,' 
1.59x 1.44 = 2.2», and thus the stress estimated on the not unusual 
assumption that the load Is uniformly distributed Is approximately 
130% too small. •

The equation of th<* neutral axis may be obtained by giving 
f the value^zero in equation (31 page 4.

• 0.84
0 = 0.69 + --~ (y — x X 2.81)

or y = 2.81 x— 3.87.
It cuts Ox at the point x = 1.22 and Is shown by the line tin In the 
figure.

It will be seen from the above that the calculation, using the 
correct theory, is simpler than that assuming bending perpendicular 
to KO and equation (1) for the stress distribution, because the latter 
would Involve the calculation of the moment of Inertia of the cross- 
section about an axis perpendicular to KO. If bending were In
correctly assumed to take place about Oy the eccentricity of the 
load would be 0.84" and the stress at A would be, from equation (1)

0.84 X 0.84
+ 0.69

= 1J6A\

which Is about 20% too small, whilst If it were assumed to take place 
about Ox the eccentricity would be 0.66" and the stress A would be

0.64 X 2.16
-+- 0.69

= 1.84 X.

which Is approximately 16% too great, so that the correct value In 
the case of the given angle is approximately the mean of the values 
assuming bending about Ox and Oy'respectively.

The Experiment».

All the experiments to be described were made In tension on 
specimens consisting of 3" x 3" x 1" angles having different forms 
of end connections. In the first experiments a simple angle was used, 
one leg being cut off shorter than the other, so that the specimens 
could be gripped In the machine by the other leg. It was tested

\

>



fch tension under different conditions, with the object 'of verifying 
the theory described above. It was found, however, that although 
the distribution of stress was linear, the positions of the line of 
pull varied with each placing In the machine, and the results are 
not thought sufficiently Interesting to be published. Experiments 
were then wide on the two single angle members shown In Fig. 3. 
The angle* were 4' 71" long and 3" x 1" x 1” cross section, and were 
riveted by means of four f" rivets having a pitch of 21" to end 
plates V and 1" thick respectively, different thicknesses of end 
plate being used with the object of determining the effect of the 
restraint to bending offered by end connections of different stiff- 

. nesses. The results of the test are given In Tables I, II, and IV. 
The remaining experiments were made on the double angle member 
shown In Fig. 3. This consisted of two angles placed back to 
back and connected at the ends to a loading plate 2" thick, by four 
1" rivets jfcf 21" pltch.The results of. the tests on this angle are 
given In Tables III and IV. The machine used was the Emery test
ing machine In the McGill University Testing laboratory. This 
machine Is of the vertical type and has a capacity of 150,000 lbs. The 
length of the specimens was governed by the limits of the machine. 
The Emery type Is eminently adapted to this kind of work, because 
the line of pull Is constant, the load may be very accurately esti
mated, and there Is an entire absence of vibrations which would 
make the reading of the extensometer difficult.

a ft ft
%*-■v- s

aï -

Fig. 8.

i
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The extensometers used were a simplified form of the .Marlene' 
type, designed and constructed In the McGill Testing Laboratory, 
where they have been In use since l!t()6, and have been proved 
callable of giving very accurate results. Figure 4 shows the prin

ciple of the Instrument, and Figs. 5 and 6 show It In actual use on 
the specimens. It consists essentially of a double knife-edge. A. 
which fits between the specimen under test and a V groove In one 
end of a steel strip S, which Is In contact with the specimen at A. 
and Is pressed against It by means of a clip C. A'change In the 
length of AB causes the knife edge to tilt and tlje tilt Is 
measured by means of a telescope and scale, the scale being re
flected In a mirror H attached to the knife edge. In the actual In
strument the steel strip Is wide, J" thick, and the length A B Is 4".
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The end A Is turned at right angles and brought to a sharp edge so 
that It may not slip on the specimen. The knife edge Is of hardened 
steel about 0.18" by 0.12" by 0.45", and the mirror Is attached by 
means of a piece of steel knitting needle. The mirror Is held In a 
clip of thin sheet steel which Is arranged so that It can slide and 
rotate on the needle, a thin copper strip protecting Its back from 
Injury./ This dip permits of a small amount of lateral adjustment. 
The mirror Is about 1" square and must be as truly plane as possible, 
as otherwise there will be an error introduced when the Image of the 
scale moves to a different part of Its surface, as It must do If the 
specimen deflects at all during test. In the original form of 
Martens' Extensometer there was a device for adjusting the mirror 
and also a balance weight at the opposite side of the knife-edge, but 
these refinements are not only unnecessary but cumbersome, and 
make the Instrument less adapted to use In restricted positions.

The extensometer is calibrated In a Whitworth Measuring 
Machine and a calibrating rod Is prepared for each Instrument, 
giving the distance from the scale to the mirror, so that a definite 
distance on the scale may correspond to a given extension or com
pression on the specimen. In the rase of the experiments described 
below, à" on the si ,ifd subdivided Into ten equal divisions, corre
sponded to 1 ", so'fnat the change of length of the specimens was

1000
easily read to 1 ". The length of the rod was about 4’, varying

100,000
with different Instruments. The angle turned by the mirror In any 
test Is so small that there is no appreciable error In using a straight 
scale for the readings. This is verified by turning the mirror In the 
Whitworth measuring machine through much greater angles than 
those through which it turns in the tests. It was also found that 
different strips (S) did riot affect the calibration, so that a knife- 
edge could be used with different lengths of strip without re-call- 
bration. It Is estimated that, under the conditions of test, the 
instrument reads accurately to 1 ",

100,000
The kind of telescope used affects greatly the facility with 

which readings may be taken. The McGill Testing Laboratory 
telescopes were made at Charlottenburg, and are adjustable vertically 
and horizontally, besides moving bodily about a vertical axis (See 
Fig. 5). The extensometer must be carefully used In order to give 
correct results. The mirror should be, In Its mean position, parallel 
to the scale and the telescope should be opposite to the mirror. The 
clip must be arranged so that the knife edge is held quite firmly, 
otherwise It will not tilt correctly. The best forms of clips are made 
from pieces of copper wire.
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Fig. 5.

>-7

If-the direction of A B remains unchanged during test, the 
difference of the scale reading between two loads will be an accu
rate measure of the strain of A B for the given load difference, but 
if A B alters In direction this will not be the case. If, however, two 
readings are taken, one with the extensometer In the position shown, 
and the other with the knife-edge at A and the sharp edge of the



Fig. 6.

strip fat B, the mean of the two will be correct. When any doubt 
exlst^ it is always better to do this so as to eliminate possible error.

In the opinion of all who have used these instruments at McGill 
University, they are the most simple, practicable, and accurate 
extensometers In use. It will be seen that they may be readily used
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in the most restricted positions, as, for instance, between the two 
angles of the double angle members, where the width is only 1". 
(Fig. 6.1 The photograph shows two extensometers in use simul
taneously between the angles.

The Tests.
All the tests, with one exception, were made with V exten

someters, and, therefore the stresses tabulated are mean stresses 
over lengths of 4”. In the rase of the central sections, these stresses 

* must be very close Indeed to the actual intensities of stress at the 
middle points of the 4“. For the end sections there may be some 
error introduced by considering them as such, but It is not likely to 
be large. It is only when the stress varies considerably over the 
extensometer range, as at the rivets, that the readings cannot be 
used to obtain values very close to the actual stresses at any point.

It will be understood then, wherever the reading at a given point 
is spoken of, that it was actually taken over 4” range having the 
point as centre. The extensometers were always arranged with the 
strip parallel to the axis of pull, and, therefore the stresses de
duced front them give the distribution of normal stress over the

Fig. 7.



14

cross-section. All the stresses tabulated are for points on the outside 
faces of the angles. In the case of the single angles, the readings were 
taken at the central section and at a section 3" from the loading 
plate. The readings were taken across each section at Intervals 
of 1” (See Fig. 7). For the double angle, 10 readings with the 
mirror at the lower end of the extensometer, and 10 with the mirror 
at the upper end were taken at the same Intervals across each angle 
at the central section, and at two other sections, one fl, 71", and the 
other C, 11" from the loading plate (See Table III). Other readings 
were taken at the rivets, but are not, at present, thought sufficiently 
Interesting for publication, as they do not give a measure of the 
actual stress at the rivets.

The procedure of the tests was as follows. The specimen be
ing placed between the grips of the machine, an Initial load of 100 
lbs. was applied. When two extensometers had been adjusted In 
position, and convenient zeros taken, the load was Increased to the 
full amount, brought back to lOO lbs. and then again Increased, 
readings being taken In the case of the single angles at 5,000, 10,000, 
16,000, and 20,000 lbs., and In the case of the double angle at 10,000, 
16,000, 20,000, 26,000, and 30,000 lbs. The load was then decreased 
and the zero checked. Usually the extensometers returned to zero 
and no readings were allowed to pass In which they failed to do so. 
All the readings were repeated at least once before the extensometers 
were moved to other points. It was determined early In the course 
of the experiments that the readings for all the riveted pieces did 
not alter when the piece was taken out of the- machine and replaced, 
and so this was done whenever the machine was Inquired for other 
purposes. Three complete sets of experiments were made at the 
sections tabulated, but there was very little variation In the results, 
and the Tables are complied from one complete set. The value of 
E (Young’s Modulus) for each specimen was found by cutting 
pieces from different parts of the actual sections and testing them 
in tension. The mean value of E, which did not differ greatly for 
the different specimens, was 28.6 x 10' lbs. per square Inch, and this 
has been used In reducing all the results.

Careful measurements were also made of the lateral bending of 
the specimens at different points along them, by means of small 
scales graduated In 1 ", and read through telescopes.

100
The scales were arranged so that the deflections of the points 

A and B (Fig. 7) at each cross-section, were obtained In the direc
tions x and v, and thus the actual twist of Afi was found. Table IV 
gives the principal results of these tests, which are used In determin
ing the exact position of the load axis, as will be described later. 
Only the mean of the deflections at A and B Is given In the table, as



15

these were the values used In the reduction ot the experimental 
results.

The Hr suits.

In Tables 1-111 the stresses at the given points ot the various 
cross-sections calculated from the actual extensometer readings 
are given. These were obtained by dividing the mean ot the exten
someter readings (with the mirror at upper end and with It at the 
lower end respectively) by and multiplying by the mean modulus 
of elasticity for the piece, this being obtained by experiment, as 
described above, in Figures 8-13 the actual mean extensometer 
readings are plotted, the mean straight lines being continued so as 
to give the maximum strain occurring at each section. The stresses 
corresponding to these estimated maximum strains are tabulated In 
Tables VI and VII, together with the ratio they bear to the average 

v stresses over the sections.
It will be noticed, on examining Figs. 8-13, how very closely the 

assumption of a linear distribution of stress over the cross-section 
Is borne out by the experimental results. This Is especially remark
able as the specimens were not elaborately prepared, but were ordin
ary shop products. The greater deviations from the mean occur In 
Figs. 9 and 11, which are for the unconnected limbs of the two single 
angle specimens at sections 3" from the loading plate. In these 
cases the deviations seem to follow definite curves, which arc not 
only similar for the same piece at different loads, but for the two 
different pieces. It Is, therefore, prpMlffle that they are due to a 

. real deviation from the linear law caused by the proximity of the 
sections to the rivets. This view Is borne out by the results of 
experiments made with the object of determining the stress dis 
trlbution near the rivets. Figs 10 and 12 also Show rather large 
deviations, but these nnwt^be set down to Irregularities of cross- 
section. The largest of these, In Fig. 10, (for specimen. with \" 

plate), Is at point 8, for the 20,000 lb. load, and amounts to about 
6.6%, whilst the largest in Fig 12, for the left side of the double 
angle, is about 4.5%. In the other ligures there Is scarcely any 
deviation from the straight line. The stresses for the corner of the 
angle, obtained by producing the curves for the points 6-10, 
downwards, and those for 1-5 upwards, also agree In a very striking 
manner, as will be noticed from the figures, where the points sur
rounded by circles on the curves for 1-5 correspond with those 
found by producing 6-10.

These results show that the greatest confidence may be placed 
In the extensometers used, and that the assumption of a linear law 
for the stress distribution Is justifiable.



The truth of this law having been established, the position of 
the neutral axis may.be found for each load on a given section, and 
also the iiosltlon of the load axis, according to the theory described 
above ipage 4).

As the method of reduction is similar for all the experiments, 
one example will suffice to explain it. Consider the central 
section of the single angle member with !" end plate, for which 
the stresses are given in Table 1, and the strains are plotted 
in Fig. 8. The constants of the cross-section are given in Table I. 
The line of stress for the points 1-5, at the 20,000 lb. load, inter
sects the base line at a point distant 1.88" from the corner of the 
angle. This is, therefore, the point where the neutral}axls cuts the 
leg BC of the angle for this load. Its distance from B is called 6 
(See Table V). If the line of stress for the points 6-10 be produced 
until It reaches the base-line, as shown to a different scale by the 
small figure (Fig. 8), another point of zero stress may be found. 
Its distance from B is 7.6", and is called o (Table V). The ratio of 
o to b gives the tangent of the angle of slope of the neutral axis to the 
axis Or. which Is called e in the analysis given above (page 4). In this 
case it is equal to 3.99 corresponding to an angle e =75° 5'. The 
neutral axis Is thus determined and the loading point (zt. y>) may 
be found from equations 3 and 4, the axes being ta,ken through the 
centre of gravity parallel to the legs. In order to simplify the cal
culations, the point of zero stress on the leg BC is taken. Thus / 
In equations 3 and 4 is equal to zero, whilst the co-ordinates (z, y ), 
are z 7!= 1.88— 0.85 = 1.03, and y =— 0.85, the distance of the 
centre of gravity from the back of .the angle. (This is a little 
different from the distance for the standard angle, because the 
section was slightly heavy. See Table 1.). The values Zi and y., 
found In this way, are z = — 0.80, y = 0.59. These are the co-ordin
ates of the point of action of the resultant load at these sections 
referred to axes through the centre of gravity of the section. In 
Table IV the deflections of this specimen at different cross-sections 
for different loads are given. Considering the central section, 
taking the mean of the deflections at these points A and B for a 
load of 20,000 lbs., and subtracting from these the deflections 
similarly taken at the middle of the riveting, a correction may be 
found for x*. y*. and, If this is applied, It will be found that the 
point of loading referred to the co-ordinates through- the centre of 
gravity of the section, midway between the extreme rivets at the 
ends, is zt = — 0.89, y„ = 0.63. In a similar manner all the other 
figures in Table V have been obtained.

Discussion of the Results—Single Angles.
Consider Figs. 8-11. If the point, of application of the resultant 

force remained unchanged relatively to the section during loading,
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the stress lines in each of the figures would Intersect at one point 
for all loads, i. e;, the distances a and b would be the same for 
different loads on the same section. This is not quite the case, as 
will be seen on inspection of the figures and tables. For example, 
at the central section of the angle with the g" plate, the point of 
application varies from (—0.90, 0.65) at 5,000 lbs. load to 
(—0.80, 0.59) at the 20,000 lb. load. This is largely due to the 
lateral bending of the members, and may be corrected from 
Table V. In order to obtain a proper basis for comparison, the load 
point should be referred to the sections at which the load enters the 
angle. There is, of course, some uncertainty as to the exact position 
of this cross-section. It must be somewhere between the end of the 
angle and the end of the loading-plate, and it seems most correct to 
take it at the mean section of the rivets, i. e., between the two 
middle rivets. This has been done in the tables and the results 
must be close to the correct positions of the loads. - It will be seen 
that this position is practically constant for the central section of 
the angle with the 3" plate, and its mean is a point laving co
ordinates (—0.91", 0.64") (referred to the axes througlrthe centre 
of gravity) which is 1 " away from the centre of the connected

100 .

limbs, and .06" within the load plate. For the angle with the 
g" plate the results are slightly more variable, their mean being a 
point having co-ordinates (0.91", 0.67") (referred to the axes through 
the centre of gravity) which is 0.02" from the centre of the con
nected leg, and 0.06" within the load plate. The mean angle of 
Inclination of the neutral axis to the unconnected leg, for the angle 
with the 1" plate, Is 76°, and fer the other angle 76’ 50'. It appears 
from these results that there Is a remarkable agreement between 
the action of the two angles, notwithstanding the great difference In 
the stiffness of their end connectlqps. The results for the sections 
near to the ends give for the load points (—1.01, 0.67) and 
(1.04, 0.71) for the specimens with the g" plate and 1" plate re
spectively. These points are 0.16" and 0.20" respectively within the 
plate, and are .03" and .07" respectively from the centre of the con
nected leg. Here also the two different angles behave alike. The 
reason for the change in position of the load axis at this position is 
probably that some moment is caused here by proximity to the 
riveted joint.

Additional evidence that the heavy end plate does not appreciably 
restrain the bending of the angle is afforded by the deflections given 
In Table IV. It will be seen from these that the' mean deflectfon of 
the central section of. the connected leg in the direction of », 
measured from the end of the angle, is 0.14" In the case of the g" 
end plate, and 0.15" in the case of the g" end plate, whilst In the

i
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direction of y, the values are 0.04" and 0.06" respectively. The 
difference between these values for the plates is small, especially 
considering that the first angle Is slightly heavier than the other. 
In Appendix II a formula Is developed for the central deflection of a 
piece subjected to an eccentric tensile force. It Is shown that, when 
applied to a single angle of the dimensions of the specimens, the 
deflection of the centre of gravity arrived at ^s 0.15". This is in a 
direction perpendicular to the neutral axis and assumes the load 
axis to be at the middle of the outside face of. the connected leg. 
When this displacement Is resolved parallel to Qx it gives 0.145", 
and parallel to Oy 0.05", which are close to the experimental values.

Now the constraint offered to bending by the S" end plates is 
probably greater than that due to any end connections used in 
practice. •' Thus it will be evident, from the above, that in very 
few pracitioal cases can the end of a single angle structural mem
ber be said to be fixed. / \

Careful measurements were made of the deflections of the plate 
and the angle near to the rivets, which showed that both bent to
gether. The want of end rigidity must, therefore, be due to the stiffness 
of the angle being much greater than the stiffness of the plate, and 
not to any yielding ^of the rivets.

The next question which must be considered, is the position of 
the load axis. Evidently, from the above, it will not depend very 
much on the stiffness of the end connections. In Table V the actual 
maximum stresses from measurements are given, together with 
those obtained from the theory, assuming the load axis as worked 
out from the experimental results. It will be seen that the agree
ment between the two is very close for the angle, with the i" plate. 
For the other angle, the calculated results are all 3% or 4% higher 
than the extensometer results, but a small variation in E would 
obviously bring them into agreement, and in any case the differ
ence is small.

The truth of the theory may thus be said to be verified by „the 
experimental values, and the stresses given in the second column of 
Table VI must be very close indeed to the aotual maximum stresses.. 
Considering the ratios of maximum to mean stress over the section, 
given in the last column of Table VI, it will be seen again that the 
two different angles behave very g^nllarly, the ratio falling at the 
central sections from 2.23, gt the lowest load, to about 2.10, at the 
highest. This change is, of course, due to the bending of the speci
mens. In the first column of Table VIII the stresses calculated 
from the mean position of the load axis, allowing for bending, are 
given, the ratio of maximum to mean stress being 2.16 for each 
angle. This may be taken as the mean experimental ratio for both 
of the sections. In this table the theoretical maximum stresses for 
different assumptions of the load axis, neglecting bending, are also

*
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given. It will be seen that the assumption which best tits the actual 
case Is that the load axis Is 1" from the centre of gravity, corre
sponding to a point 0.15" and 0.16" respectively, within the load 
plate. (The values of « do not, of course, correspond exactly, be
cause the deflection has not been considered.) The stresses at the 
ends of the piece are somewhat higher and correspond more closely 
to a load-axis at the junction of the plate and the angle, and<4t would 
seem that the best practical rule for obtaining the maximum stress 
of such a member would be to take the load-axis as along the line 
of rivets, and at the junction of the plate and angle, neglecting 
deflection. This would give results slightly on the safe side.

The Double Angle. c
In figuring a section consisting of two angles placed hack ‘to 

back, connected by a plate to which the load Is applied and riveted 
together at intervals, It is usually assumed that the section acts as 
one piece, i. e., as a T section, thus bending about a neutral axis 
parallel to the unconnected legs of the angles. The load is thus 
assumed to act In an axis of symmetry of the cross-section, and the 
maximum stress In any given case may be easily calculated from 
equation. 1 above. Applied to the experimental section, this method 
would give the ratio of maximum to mean stress as 2.65. A glance 
at Table VII will show how very far such calculated results are from 
the actual experimental values. In the actual specimen, the two 
angles did not take equal portions of the load, the angle L taking 

-more than the angle R. but the greatest of the maximum stresses 
is only 2.28N at the lowest load, falling to 2.15N at the "highest. 
The reason for this will be evident from Fig. 12, where the distri
bution of strain across the central cross-section is plotted for 
different loads in exactly the same way as in the case of the single 
angles. It will be seen from these figures that the two angles of 
thé member bend each about its own neutral axis, and that they thus 
act like separate angles constrained at their ends. The results were, 
therefore, reduced to find the point of loading and the angle of 
inclination of the neutral axils, In the same way as for the single 
angles, and the results of the analysis are given in Table V. It 
will be seen from these that the angle of inclination is 20” 18' for 
the right hand angle, and 18° 48' for the left hand angle. The load 
axis for the right hand angle has a mean position (—0.36, 0.46),and 
for the left hand (—0.43, 0.55), and is constant for all the loads, 
except the lowest (10,000 lbs.). The results were not corrected for 
lateral bending, although deflections were measured (See Table IV), 
because the deflections were small, and it was recognized that these 
results could not, by reason of the unequal distribution of the load 
between the two angles, be so closely^ analysed as the results for a

*
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single angle. Assuming that the angles, it acting separately and 
unconstrained at the ends, behaved as In the experiments described 
above, the effect of the end constraint, caused by the riveting of the 
angles back to back, may be found from the shift of the axis of 
loading. This may be assumed at the centre of the connected leg for 
separate action, 4. e., at the point (—0.84, 0.66). It has, therefore, 
shifted in the case of the angle R through a distance equal to 
V t (0.84 — 0.36)'+ (0.66 —0.46)»] =0.62", and in the case of the 
left hand angle through a distance of 0.42". This means that a 
restraining couple of moment 0.52 N Inch lbs. acts on the right hand 
angle and a couple of 0.42 N Inch lbs. on the left hand angle. 
Consider the adjoined figure (Fig. 14), which represents the two

Fig. 14.

4-^

angles, G, being the centre of gravity of the right hand angle, G, 
that of the left hand angle. K, and K, represent the loading points 
for separate action, and D, and L, represent the actual axes of load 
found as above. The bending moment on the sections acting 
separately would be N, X K, G, and N, X K, 0, respectively, where 
Iff, and N, are the loads carried by the angles. The actual moment 
for the right hand angle Is L, G, X Jf„ and thus the constraining 
moment Is K, L, X X,— 0.62 X. about an axis perpendicular to 
K, L,. This may be resolved into moments

X, X K, L, cot h — N, X 0.52 cot »,
N, X nr, L, sin *, = N, X 0.52 sin »,

parallel to Oty and 0,x respectively.
0.66 — 0.46Now, tan », = ________=0.417,0.84 — 0.36

0
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and the constraining moments are thus 0.48 X, about an axis parallel 
to 0,y and 0.20 X, about an axis parallel to 0,x. Similar analysis 
for the left hand angle leads to the values tan = 0.27, moment 
parallel to Q,y — 0.41 X, and parallel to Qjc =0.11 X„

It is thus clear that the experimental angle is subject to Im
perfect constraints in directions parallel to the legs of the angles, 
the constraint parallel to the unconnected legs being roughly 50% 
of that required for perfect fixing, and the corresponding figure for 
the connected .legs being 20%. If the load had been applied through 
pins in the end plates, the latter restraint would probably have been 
almost zero, since It Is due to the stiffness of the end connections. 
In any actual members, however, there must be a certain fixing 
moment In this direction, which is probably never very much 
greater than the above experimental value. The length of uncon
nected angles in this case was 28.5", which is not greater than 
that frequently vised in practice, so that the restraining moment 
parallel to the connected leg is probably of the same order as 
that obtained In practice. It Is hoped that other members 
with different lengths of unconnected angles, etc., may be 
tested In this way. With perfect constraint in both directions the 
stress would, of course, be uniformly distributed over the section, 
because the fixing moment would entirely counteract the eccen
tricity. With perfect fixing about the axis ivarallel to the con
nected leg and perfect freedom in a direction at right angles to It, 
the ordinary theory would be correct, because the line of pull would 
then be on O,y at a distance O, X, (Fig. 14). If, pn the other hand, 
there were no constraint in either direction, the action would be 
like that of the single angle. In most practical cases there Is prob
ably Imperfect restraint in both directions, as In the experimental 
member. It must not be assumed, however, that the greater the 
restraint the lower the maximum stress will be, because if, for 
example, the angles in a member of the section considered above 
acted separately, the ratio of maximum to mean stress would be 2.29, 
whilst with perfect constraint against bending of the unconnected 
limb, the ideal usually aimed at, it would be 2.65, about 16% higher. 
(See page 14.) With perfect constraint in the direction at right 
angles, the ratio would be only 1.82, and With the actual imperfect 
restraints in both directions it is 2.15. From these results it will 
be seen that, for a member consisting of equal angles placed back 
to back, it is not desirable to stiffen the member so as to make it 
act as one single piece, and there must be many other cases of 
built up members in practice where extra stiffness gjVen by distance 
pieces, diaphragms, etc., is a doubtful advantage. It must be re
membered that the above figures only hold good for angles having 
equal legs. In the case of unequal legged angles connected by the 
longer legs, the stresses may be much greater if they act separately.
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whilst it they are connected by the shorter legs, the reverse will be 
the case.

Hemarki oh Built Up Jnntrri.

A built up tension or compression member is one which is made 
of two or more simple sections, such as angles or channels, fastened 
together by rivets and by tie plates, ^lattice bars, or other con
nections, as in the case of a large column. Probably the simplest 
form is the double angle considered above. Such a built up member 
is usually considered as acting like one piece, and the forces in the 
tie plate or lattice connections are found on the assumption that, 
if any bending takes place, the whole member bends like a beam. 
The above experiments show that this Is not true for the specimens 
tested, and it would probably be more correct to consider such a 
member as an assemblage of simple members each trying to bend 
about its own neutral axis, but more or less constrained by the sub
sidiary latticing, etc. In the opinion of the writer, the only way to 
arrive at a correct theory of the action of such structures is to con
sider the simplest cases first and to approach gradually the more 
complex cases by introducing one constraint after the other, and 
finding their effect by experiment and analysis. This opens the way 
to a large field of research, to which it is hoped that the present 
paper may form a first contribution. An example will make this 
point clear. Consider a column in the form of a rectangle, built up 
of four angles, connected by tie-plates or lattice bars, and loaded 
through two loading plates riveted to the angles at the ends. The 
ordinary theory would assume that the whole member behaves like 
one piece, the tie-plates or lattice bars slinky taking up the stress 
like the web of a girder. According to the theory advanced here, 
the four angles would be regarded as trying to bend about their own 
neutral axes In the way a single angle has been shown to behave 
above, and the tie-plates would constrain them against twisting, and 
so would themselves be under bending stresses, the whole action 
being, of course, somewhat complicated. It may be stated here that 
actual extensometer experiments on such a column, carried out 
under the direction of Professor H. M. Mackay, at McGill 
University, entirely bear out this view, the stresses in the tie-plates 
being found to be tensile on one side and compressive on the other. 
It is hoped that these results will be published shortly. The writer 
hopes to investigate the theory of this type of member by con
sidering first the relatively simple case of two angles connected by 
tfe-plates.

J
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Summary and Conclusion.

As stated in the introduction, experiments of the kind described 
here are still in progress at McGill University. It is hoped to in
vestigate in a similar manner single angle members in compression, 
double angle members with equal and unequal legs in tension and 
compression, as well as various forms of built up members. Experi
ments on some of these are in progress.

The chief conclusions to which the present liaper leads are:

(1) That the form of extensometer described Is very accurate and 
simple in operation, and that it is possible by its means to 
obtain very closely the distribution of stress in a piece of 
material under load;

(2) That experiments maiW with these extensometers on tension 
specimens of uniform crtpss-sectlon subjected to eccentric axial 
loads not !tn an axis of symmetry of the cross-section, bear out 
very closely the geperal theory for such a case;

(3) That the point of application of the load for a single angle 
member loaded through a plate riveted to one of its legs may be 
taken ag in the line of rivets and at the common face of the 
plate and angles;

(4) That the end plate, under ordinary conditions, offers no appreci
able restraint to the bending of such a member;

(5) That a member consisting of two angles riveted together
through a connecting plate does not act as one piece, but that 
each angle bends about its own neutral axis, and that it is not 
always an advantage to attempt to make it act as onej piece by 
further constraints; '

(6) That a built up member should not be regarded as a single 
piece-bending as a beam, but as several pieces each trying 
to bend about its own neutral axis, but restrained from doing 
so by the subsidiary members, such as the tie-plates, or 
latticing.

In conclusion, the writer wishes to thank Professor H. M. Mackay 
(at whose suggestion the work was commenced), Professor E. 
Brown, and Mr. P. P. Shearwood, of the Dominion Bridge Co., for 
their personal interest and advice; and Mr. 8. D. Macnab, of the 
McGill University Testing Laboratory, who was associated with him 
throughout in the experimental parts of the work. He Is indebted 
to the Dominion Bridge Co. for the specimens used in the tests.



APPENDIX I.

Theory of the Distribution of Stress in a Utiiform Bar subjected 
to an eccentric force parallel to its axis, which does not lie in an 
axis of symmetry of the Cross-section.

This theory is to be found in the German text-books on Strength 
of Materials, but does not seem to be considered in any of those 
written in English*. It was developed in one form by Mohr (See 
"Technische Mechanik,” Otto Mohr, Berlin, 1906, P. 241). This form, 
however, although elegant, is not adapted to practical computations. 
C. Bach^in his work “Elasticit&t und Festigkeit” (p. 223,4th edition) 
gives the results referred to the principal axes of inertia of the cross- 
section, and L. J. Johnson in Proc. Am. Soc. C. E.. Vol. 56, 1906, 
works out .the results in the form given here, which is that best 
suited for calculation. *

Fig. 15.

.* Since writing this, a brief account of the theory has been published in the 
second edition of Morley’e “Strength of Materials” (Longman's).
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Let O (Fig. 15) be the centre of gravity of the cross-section, K the 
point of application of the normal load N. and Ox and Oy any 

1 rectangular axes through O. If the point K coincides with O, the

stress over the cross-section will, everywhere have the intensity ^

where A is the area of the section. If K does not coincide yvith O. 
there will be in addition to this stress bending stresses caused by 
the moment Sf = N.K 0, which has the axis GB perpendicular to OK. 

' Consider the effect of this moment acting alone. It would cause the bar 
to bend about some neutral axis nn inclined at an angle a to the x — 
axis. Let i> be the perpendicular distance of any element 5a of the 
cross-section from nn and let (x, y) be its co-ordinates. By the 
ordinary laws of bending

/ = L ,
where E is Young’s Modulus, R the radius of curvature of the cross- 
section, and 1 the intensity of stress over 5a. For equilibrium 

tthe sum of the. moments of the stresses about Ox and Oy must be 
equal to the components of the bending moments about these axes.

Therefore M sin X — 2) f y 5a ....
Af cos X = 2 / .r 5a ....

But rj = jç - [y cos a - x sin a)

Therefore R
-g M sin X = 2 y* 6a cos

•2

-- lx cos a — J sin a 4

and M cos X = 2 x y 5a. cos a — .v* 5a sin aE
J cos a - ly sin a .................................... 5

Where /« and I, are the moments of inertia of the section about Oy 
andG® respectively, and J is the product of inertia about (Ox, Oy) 
Divide 4 by 5 and obtain

. . Ix cos a — J sin atan X =  ------------- =7 :—
J cos a — ly sin a

and on rearranging the terms

tan a ■■ Ix - J tan X 
J — ly tan X

which gives the angle of inclination of th^heutral axis to Ox. (The
N

effect of the direct stress — will be to shift this axis parallel to A -
itself to a position determined later).

t
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From (1)
M sin X (y cos a - x sin a) 

Ix cos e — 7 sin a
N_yk (y ~ * tan e) 

lx — J fan a

and similarly from 1 and 5

f
N xk iy — x /an «) 

J — Iy tan a

Thus the actual stress at any point {xy) will be

N xk {y — x tan a) »
J - Iy tan a

8

9

the positive sign being taken because ij was taken positive on the 
side of nn on which the point K lies. Putting f = o in equation 9, 
the equation of the neutral axis may be obtained. Various graphical 
and semi-graphical methods have been devised by Mohr and others, 
but they do not appear to the writer to have any advantages over 
the above.

Vote on the Calculation of J.

Let J be the product of inertia about any rectangular axes, 
and Jg that about parallel axes through the centre of gravity of the 
section. Then, if (x, y) are the co-ordinates of any point of the 
cross-section referred to the former axes, (x'y') those referred to 
the parallel axes through the centre of gravity, and ('*, y) the co
ordinates of the centre of gravity referred to the first axes

J = 2 xy 5a over the section
or J - Z (V + -r) (/ + .y) da

= 2 x V da f 2 x y da -h 2 .v y da -f 2 )/ .r' da
= Jc. + A xy

because 2 y' fta =■■ Ay' — o
and 2 . v' da A x' — o
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APPENDIX II.

The laterdtdeflection of a uniform bar under an eccentric tensile 
force parallel to the axis, but dot in an axis of symmetry of the 
cross-section.

V

Let OA (flgur^KH represent the axis of the bar and let N be the 
applied force of7eccentrlclty d.

A\

Fig. 16.

If the load were applied in an axis of symmetry the equation for 
bending would be

d' y
EI^i = N(y d)

but since this is not the case, equations 4 and 6 of Appendix I must 
be used. Squaring and adding, these give—

*M 1d2z = 1
d.v‘‘ A* E v/ [(/jr cos a — J sin a) + { / cos a — ly sin a)11

Now, at any section M = N multiplied by the distance of the load 
point from the centre of gravity.

The bending will be perpendicular to the neutral axis, and thus if 
y be the distance of the centre of gravity from its position at the 
end o, the eccentricity of any section

- j/ Jd* + y* - 2 dy ros ji)0° - (X + a)} ]

In many cases, including the angle section, the last term is 
practically equal to 2dy, and the eccentricity then becomes.

id - y)

Thus the differential equation of the axis is
dJ y
dx' = ** & d) 10



h

where

28

N 1
** — E j/[|/i<w « - / $«» a)* + (J cas tt - Iy sin e)’j

or for the equal legged angle, since /« = /, = / 
N

*» = £ j/ |1* + y* - 4 I f sin o cos a|

Be-*v
Solving (10)

y = d + A e k*

where A and B are constants.
dy

Now, when x = o, y = o and when x = a,— =odx
therefore - d = A + £

and o = .4 c ■“ - B e ~ k* 
and (12) becomes

[e-ka 

1 " » - .
and the central deflection is given by

ehx - -ta +

This result will now be applied to the 3" x 3" x i" angle loaded at 
the ends at the mid-point of one of its sides as in the case considered 
above, (page 5). In order that the results may apply to the experi
ments, a has been taken 28.25", which is the half length of the | 
experimental angles, and N = 20,000 lbs.

The value of d is /[ (0.84)* + (0.66)*] = 1.07"
jV

** = sin a cos «)

= Vo 20,000
*28.6 x 10« x 1.8

=4.02"

The deflection at the middle is, therefore, from equation 13
y — 1.07 £l — t mu + f .mu J ^

=» 0.15"

In the experiments, deflections were measured parallel to the legs] 
of the angle. The components of the above in these directions are

0.15" cos 0 = 0.15" X 0.942 = - 0.14"
0.15" sin a = 0.15" x 0.336 = 0.05" 

which agree very olosely with the experimental values. (See] 
page (17).



p r
ï i s| i | î

1 III

s s g ; o

«w te

i#i i g i 6 8 8 tr =,

8 illoaded at 
msldered 
le expert- 
h of the M S

* *s $ S

ë ï ï s

» % g

o the legs

8H I Ions are

» 4»
CJi lit5 S 5 S



3 c> * '5

1 i $S 5

C >g g g g

*• \ *- » i \S i ï ï ï i
sir

* *. K,8 S I

Oi £

III » Ï

-5& 58 8 8 8

K> t$
5 £

TA
BLE H

.—
Stresses corresponding: to the m

ean extensom
eter reading for .T x 

.*>" x 4" angle w
ith 4" end-plate.



For this section, a 2" extensom
eter w

as used.

SA from • 7 H" from 
end end

Right Left Right Left

8 8 .8 8 8885:5 8885:5 5- £
o o o o so s s s ooooo Vi ** >

SolSi

W CO CO tv 4k COW tv J-
-I’-lbioV -ICOtOM© 

8888©

W CO CO Oi 4* 05 to 4*- W ]0 to ^
•— M CO to tv W C? —1 Cl CnûCOOH-58 8 i is§85 Ills

**■ — 4^ O ly C - C Ç 4* Cl Cl 3> M8 8 8 I i5888 80008

;► 4*- 4k 4k ^ 1 014*- Wtv 35 pi »► CC 10
V| en © M 05 4k to M 05 CO to O
X * 5 g ^ M

4k -4 00 tO Ci 0C tO tv 4k'IÇ — W
g ‘g g ^*5g§

g I i ilsii ëliii
tC CC 4k to CO ^1 Cl 4k to c—1 Oi
4k 
4- C:

3 W X On- CO Ci © Cl ©5S§§5 8 = §83

to 00 OI to CO 05 OMWO‘l

5 5888



s
TABLE IV. Mean lateral deflection of the specimens.

V

SPECIMEN

----------- -------

«>

SECTION

‘ X

s
LOAD
(LBS.)

MEAN DEFLECTION OF A B

With respect to middle With respect to end
of rivets of angle

X Y X Y

ALL MEASURED IN INCHES

' 5,1 KM) 0.03 <1.01 - 0.04 0.01

10,000 0.06 0.02 0.08 0.02
Central

15,000 0.08 0.03 0.11 o.ai
£ v •20,000 11.10 0.04 0.14 0.04a m
"it 0.
= "2

5,000 0.02 0.01 0.03 0.01
He
c from 10,000 0.04 0.01 0.05 0.01
/ end-plate 15,000 0.05 0.01 0.08 0 02

20,01*1 0.07 0.02 0.11 0.02

5,1*10 0.03 0.02 0.05 0.02

10,1*10 0.1 *i 0.03 0.08 0.03
-«■ Central
•5 151**1 0.08 0.04 0.13 0.04
^ 3 •20,1100 0.10 0.05 0.15 0.06
br. c.J! i
« 5 5,000 0.0-2 0.1*1 0.04 0.1*1

He
Ï 3" from 0.03 0.01 0.07 0.01 .

end-plate 15,1**1 0.05 j <1.01 0.09 0.02

‘20,(*l0 0.08 | 0.03 0.12 0.0.1-

II 1.000 0.00 0.01 ~ 0.410 0.02
, Central 20,<«*l 0.01 0.02 0.01 0.03

Leftbjt 30,1**» 0.0-2 0.04 0.02 0.04
<
V 1 10,1**1 0.1*1 0.01 0.00 0.02
a Central •211,1**1 0.01

f
0.02 0.01 0.03

R!Kht
:*),<**! 0.02 0.04 0.02 0.04

N.B.—All the deflections in the direction x are negative. The values 
given are the mean of readings taken at A and B.
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TABLE V.— Reduction of experimental results to find load axis.

SPECIMEN SECTION
lAxn

Position
of

Neutral Line

Inclina- Estimated
tion of Point ol loading .*»
Neutral / ,rn referred to

Ljne z,tr° *>,ress axes thro e g 
of section

Estimated
loading axis 
referred to 

axes thro' e g 
of mid rivet 

section(L^S)

a h

INCHES

tan ax y x 1

ALL MEASURED IN INCHES

5,1* *> 6.80 1.75 3.88 0.90 0.85 0.90 0.65 0.93 0.66
x Central 10,1100 7.40 1.80 4 11 0.95 0.85 0.86 0.63 0.91 0.65
* 15,000 7.50 1.85 4.l*i 1.00 0.85 0.82 0.1*1 0.90 0.63

2 20.000 7.50 1.88 3.09 1.03 0.85 0.80 0.59 0.89 0.63
V

"5c "E. Mean values 4.01 a = 76" 0.84 0.62 0.91 0 64

c 5,000 11.07 1.66 5.461
6.98

0.81 0.85 0 99 0.69 1.01 0.70
"be
c

3" from 10,1*10 11.86 1.70 0.85 0.86 0 96 0.65 1.00 0.66
end-plate 15,000 12.07 1.70 7.09 0.85 0.85 0.96 0 65 1.01 0.66

£ 20,1**1 12.45 1.73 7.20 0.88 0.85- 0.94 0.66 1.01 0.68
Mean values 6.68 n = 8i'.nr 0.96 0.66 1.01 0.67

5,INN) 6.1*1 1.70 3.53 0.86 0.84 0.84 0.64 0.87 0.66
Central IU.IHNI 8.55 1.74 4.91 0.911 0.84 0.90 0.64 0.96 0.67

15,000 8.10 1.80 4.50 0.96 0.84 0.85 0.62 0.93 0.66
V 20,1**) 7.87 1 89 4.15 1.05 0.84 0.79 0.66 0.89 0.715
CL Mean values 4.27 a = 76 "50 0.84 0.04 0.91 0.67

5,01*1 9.67 1 60 6.04 0.76 0.84 1.05 0.73 1.07 0.73
10,INN) 9.00 1 63 5.52 0.79 0.84 1.01 0.71 1.04 0.72

end-plate I5.INNI 9.67 1.67 5.79 0.83 0.84 0.97 0.68 1.02 0 70
211,1**1 9.67 1.71 5.65 0.87 0.84 0 95 0. tits 1.03 0.69

Mean values 5.75 a =80" 10' 0 99 0.69 1.04 0.71

in ooo 1.48 4.77 0.31 3.93 0.84
Central 15,1**) 1.77 4.77 0.37 3.93 0.84

2ll.l**l 1.77 4.77 0.37 3.93 0.84 0.36 0.46Right 25,1**) 1.77 4.77 0.37 3.93 0.84
» 1,000 1 77 4 77 037 3.93 0.84

Mean values 0.37 a = 20» 18'

10,01*) 1 47 3.97 0.37 3 13 0,84
JV

Central 15,1**) 1.42 3.87 0.37 3 03 0 84
c 20,000 1 41 3.87 0.37 3 03 0.84 1
< Left 25,(8*) 1.24 3.87 0.32 3.03 0.84 III 43 0.55

<v 30,(**) 1.15 3.87 0.30 3 03j 0.84 1
X Mean values 0.34 a=18"48l
0
Û *7 Vt” from.^f

Û6 20,1**) 2.35 7.13 0.35 6.29 0.84 0.24 0.31

end-plate ^ 20,000 2.46 4.95 0.49 4 11 0.84 0.33 0.39

W from£ 20,(W*I 2.70 8.95 0.30 8.11 0.84 0.24 0.31

end-plate 'X 20,000 2.62 8.65 0 30 7.81 0.84 0.24 0.32

\



TABLE VI.—Maximum Stresses. Single Angles.

SPECIMEN SECTION

. '

LOAD
(LBS)

Max. Stress 
over section
rom extenso-

readings

RATIO
Max.

Mean

Max. Stress 
from calcu
lated load

RATIO
Max.

5,000 7,500 2.28 7,350 2*23
JS 10,000 14,420 2.20 14.5(H) 2,20

15,000 21,400 2.17 21,200 2 15& 20,000 28,000 2.13 28,000 2. IS
Tc "a.c< •à

5,000 7,">00 2.28 7.5(H) 2.28
"So 3" from 10,000 14,.-100 2.18 14.4(H) 2 20
c end-plate 15,000 21.1(H) 2.14 21.6(H) 2.19

20,000 27,600 2.10 29,400 2.23

5,000 7,850 2.26 7,710 2.22
-C 10.000 14 51H) : 2 o« 15,200 2 19
•"1 15,000 21,500 2.07 22,350 2 15

V 20,000 28,31 HI 2.04 29.IHHI 2.093
CL

< •à
5,000 7,7:io 2.23 8.1(H) 2.33

.1 from 10,000 15,000 2 16 15,90(1 2. *29
c end-plate 15,000 22,150 2.13 23,200 2.23

(/) 20,000 29,(H8I 2.09 30,600 2.21

N.B.—All stresses are measured in lbs per '
E =28.6 x 10” lbs. per 7'.

TABLE VII. Maximum stresses. Double Angle.
E = 28. ti x 10” lbs. per

SECTION

Maximum stress from 
LOAD extensometer readings' 
(LBS)

RATIO
Max.
Mean

Left Right Left Right

10,000 7,930 6,720 2.28 1.94
15,000 11,650 9.6(H) 2 24 1 84

Central 20,(HH) 15.3(H) 12,880 2.21 1.85
** 25,000 18,930 15.9(H) 2.18 1.83

30.IHH) 22,450 18,930 2.15 1.82

7 k" from end-plate 20,000 13,580 13..5(H) 1.95 1.94

3,V from
end-plate 20.IHH) 12,500 12,800 1.80 1.81
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