IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences
Corporation

CIHM Microfiche Series (Monographs)

> ICMH
> Collection de microfiches (monographies)

Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.
\square Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagée
Covers restored and/or laminated/
Couverture restaurée et/ou pelliculée
Cover title missing/
Le titre de couverture manque

Coloured maps/
Caı tes géographiques en couleur

Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dansle texte, mais, lorsque cela ètait possible. ces pages n'ont pas èté filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-ếre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

\square
Coloured pages/
Pages de couleurPages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculéesPages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquéesPages detached/
Pages détachées

Showthrough/
TransparenceQuality of print varies/
Qualité inégale de l'impressionContinuous pagination/
Pagination continue

Includes index(es)/
Comprend un (des) index

Title on header taken from:/
Le titre de l'en-tête provient:Title page of issue/
Page de titre de la livraisonCaption of issue/
Titre de départ de la livraisonMasthead/
Gènérique (périodiques) de la livraison

Additional comments:/
Coınmentaires supplémentaires:

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here has been reproduced thanks to the generosity of:

National Library of Canada

The images appearing here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impression, or the back cover when appropriate. All other original copies are filmed beginning on the first page with a printed or illustrated impression, and ending on the last page with a printed or illustrated impression.

The last recorded frame on each microfiche shail contain the symbol \rightarrow (meaning "CON TINUED"), or the symbol $\boldsymbol{\nabla}$ (meaning "END"), whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'exemplaire filmé fut reproduit grâce à la générosité de:

Bibliothèque nationale du Canada

Les images suivantes ont été reproduites avec le plus grand soin, compte tenu de la condition et de la netteté de l'exemplaire filmé, et en conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papier est imprimée sont filmés en commençant par le premier plat et en terminant soit par la dernière page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la première page qui comporte une empreinte d'impression ou d'illustration et en terminant par la dernière page qui comporte une telle empreinte.

Un des symboles suivants apparaîtra sur la dernière image de chaque microfiche, seion le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole $\boldsymbol{\nabla}$ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction différents. Lorsque le document est trop grand pour être reproduit en un seul cliché, il est filmé à partir de l'angle supérieur gauche, de gauche à droite, et de haut en bas, en prenant le nombre d'image's nécessaire. Les diagrammes suivants illustrent la méthode.

AUTHORIZED BY THE COUNCIL OF PUBIIC INSTRUCTION.

tanadian copyright rdition.

EUCLID'S

Elements of Geomotry:

BOOK I.,

designed for the usks of junior classes in piblic anh PRIVATE SOHOOLS.

BT
ROBERT POTTS, M. A.

FIVE HUNDREDTH THOISANI).

TORONTO :
ADAM MILLER \& \& U. 1876.

A po

A lin

The e

A str

A sup

The ex

A plan straight li

A plan plane, why:

A plan one another

EUCLID'S
 E: EMENTS OF GEOMETRY.

BOOK I.

Definitions.

I.
A. yornt is that which has no parts, or which has no magnitude.
II.

A line is length vithout breadth.
III.

The extremities of a line are points.
IV.

A straight line is that which iies evenly between its extreme points.
V.

A superficies is that which has ondy length and breadth.
VI.

The extremities of a superficies are lines.
VII.

A plane superficies is that in which any two points being taken, the straight line between them lies wholly in that superficies.
VIII.

A plane angle is the inclination of two lines to each other in a plane, which meet together, but are not in the same direction.
IX.

A plane rectilineal angle is the inclination of two straight lines to one another, which meet together, but are not in the same straight line.

EUCLID's El.fMENTS.

N.B. If there be only one angle at a point, it may be expressed by are at one point B, either of the the angle at E : but when several angles the letter that is at the vertex of the expressed by three letters, of which the other two lethat contain the angle meet one is, at the point in which these straight lines, and and of these two one another, is put between which is contained by the other upon the other linewhere upon one of $A B C$, or $C B A$; that which is cont lines $A B, C B$, is. Thus the angle angle or $D B A$; and that whieh is coned by $A B, D B$, is named the angle angle $D B C$, or $C B D$. Whieh is contained by $D B$, named the angle

When a straight line X.
adjacent angles equal to one ano on another straight line, makes the right angle; and the straight line which of these angles is called a a perpendicular to it.

An obtuse angle is that which is greater than a right angle. -

XII.
An acute angle is that which is less than a right angle.

A term or oonadary is the extremity of any throg.
A figure is that whieh is enclosed bv one or more boundaries,
$x \mathrm{~V}$.
A circle is a pialle ligure contained by one line, which is called the circumference, and is such that all straight lines drawn from a certain point within the figure to the circumference, are equal to one another.

XVI.

And this point is called the center of the circle.
XVII.

A diameter of a circle is a straight line drawn through the center, and terminated both ways by the circumference.

A semicircle is the figure contained by a diameter and the part of the circumference cut off by the diameter.

XIX.

The center of a semicircle is the same with that of the cirole.
XX.

Rectilineal figures are those which are contained by straight lines.
XXI.

Trilateral figures, or triangles, by three straight lines.
XXII.

Quadrilateral, by four straight lines.
XXIII.

Multilateral figures, or polygons, by more than four straight lines,
XXIV.

Of three-sided figures, an equilateral triangle is that which has
chree equal sides.

XXV.

An isosceles triangle is that which has two sides equal.

XXVI.

A scalene triangle is that which has three unequal sidcs

XXVII.

A right-angled triangle is that which has a right angle.

XXVIII.

An obtuse-angled triangle is that which has an obtuse angle.

An acute-angled triangle is that which has three acute angles.

Of quadrilateral or four-sided figures, a square has all its sides equa] and all its angles right angles.

DRFINITIONE.
XXXI.

An oblong is that which has all its angles right angles, but has not all its sides equal.

XXXII.

A rhombus has all its sides equal, but its angles are not right angles.

XXXIII.

A rhomboid has its opposite sides equal to each cther, but all ita sides are not equal, nor its angles right angles.

All other four-sided figures besides these, are called Traperiums. XXXV.

Parallel straight lines are such as are in the same plane, and which being produced ever so far both ways, do not meet.

A.

A parallelogram is a four-sided figure, of which the opposite sides are parallel : and the diameter, or the diagonal is the straight line joining two of its opposite angles.

POSTULATES.

I.

Let it be granted that a straight line may be drawn from any one point to any other point.

II.

That a terminated straight line may be produced to any length in a straight line.
III.

And that a circle may be described from any center, at any distance from that center.

6
EUCLID'R RTIRMRNTE.

AXIOMS.

I.

Tringes which are equal to the same thing are equal to one another. II.

If equals he added to equals, the wholes are equal.
III.

If equals be taken from equals, the remainders are equal.
IV.

Uf equals be added to unequals, the wholes are unequal.
V.

If equals be taken from unequals, the remainders are unequal.
VI.

Things which are double of the same, are equal to riae another.
VII.

Things which are halves of the same, are equal to one another.
VIII.

Magnitudes which ooincide with one another, that is, which exactly Gill the same space, are equal to one another.

> IX.

The whole is greater than its part.
$\mathbf{X .}$
Two straight lines cannot enclose a space.

XI.

All right angles are equal to one another.
XII.

If a straight line meets two straight lines, so as to make the two interior angles on the same side of it taken together less than two right angles; these straight lines being continually produced, shall at length meet upon that side on which are the angles which are less than
two right angles.

PROPOSITION I. PROBLFM.

To describe an aguilateral triangle upon a given finite atruight line.
Let $A l l$ be the given straight line.
It is required to describe an equilateral triangle upon AB.

From the center A, at the distance $A B$, describe the circle $B C D$; (post. 3.)
from the center 13 , at the distance $B A$, describe the circle $A C E$;
and from C, one of the points in which the circles cut one another, draw the straight lines $C A, C ' B$ to the points A, B. (post. 1.)

Then $A B C$ shall be an equilateral triungle.
Because the point A is the center of the circle $B C D$, therefore $A C$ is equal to $A B$; (def. 10 .)
and because the point B is the center of the circle $A C E$, therefore $B C$ is equal to $A B$;
but it has been proved that $A C$ is equal to $A B$;
therefore $A C, B C$ are each of them equal to $A B$;
but things which are equal to the same thing are equal to one another;
therefore $A C$ is equal to $B C$; (ax.1.)
wherefore $A B, B C, C A$ are equal to one another:
and the triangle $A B C$ is therefore equilateral,
and it is described upon the given straight line $A B$.
Which was required to be done.
PROPOSITION II. PROBLEM.
From a given point, to draw a straight line equal to a given straight lint Let A be the given point, and $P C$ the given straight line. It is required to draw frem the point A, a straight line equal to $B C$.

From the point A to B draw the straight line $A B$; (post. 1.)
upon $A B$ describe the equilateral triangle $A B D$, (1. 1.) and produce the straight lines $D A, D B$ to E and F; (post. 2.) from the center B. at the distance $B C$, describe the circle $C G H$.
(post. 3.) cutting $D F$ in the point G :
and from the center D, at the distance $D G$, describe the circle $G K I$. cutting $A E$ in the point L.

Then the straight line $A L$ shall be equal to $B C$.
Because the point B is the center of the circie $C G H$, therefore $B C$ is equal to $B G$; (def. 15 .)
and because D is the center of the circle $G K L$, therefore $D L$ is equal to $D G$,
and $D A, D B$ parts of them are equal; (1. 1.)
therefore the remainder $A L$ is equal to the remainder $B G$; (ax. 3.) but it has been shewn that $D C$ is equal to $B G$, and things that are $A L$ and $B C$ are each of them equal to $B G$; therefore are equal to the same thing are equal to one another Wherefore from the given point $A L$ is equal to $B C$. (ax. 1.) equal to the given straight line $\boldsymbol{B C}$, a straig!' line $A L$ has been draw r Which was to be done.

PROPOSITION III. PRORLEM.

From the greater of two given etraight lines to cut off a part equal to the less.

Let $\boldsymbol{A} B$ and \boldsymbol{C} be the two given straight lines, of which $\boldsymbol{A} B$ is the greater.
It is required to cut off from $A B$ the greater, a part equal to C, the less.

From the point A draw the straight line $A D$ equal to $C_{;}$(1.2.)
and from the center A, at the distance $A D$, describe the circle (2.)
(post. 3.) cutting $A B$ in the point E.
Then $A E$ shall be equal to C.
Because A is the center of the circle $D E F$, therefore $A E$ is equal to $A D$; (def. 15.)
but the straight line C is equal to $A D$; (constr.) whence $A E$ and C are each of them equal to $A D$;
wherefore the straight line $A E$ is equal to C. (ax. 1.)
And therefore from $A B$ the greater of two straight lines, a part $A E$ tas been cut off equal to C, the less.

Which was to be cone.

PROPOSITION IV. THEOREM.

If two triangles have tivo sides of the one equal to two sides of the other, ach to each, and have likeroise the angles contained by those sides equal to each other; they shall likewise have their bases or third sides equal, and the two triangles shall be equal, and their other angles shall be equal, each to each, viz. those to which the equal sides are opposite.

Let $A B C, D E F$ be two triangles, which have ine two sides $A P$ $A C$ equal to the two sides $D E, D F$, each to each. viz. $A B$ to $D E$. and $A C$ to $D F$, and the included angle $B A C$ equal to the included angle

Then shall the base $B C$ be equa! to the base $E F$; and the triangle $A B C$ to the rriangle $D E F$; and the other angles to which the equal sides are oppocite shall be equal. each to each. viz. the angle $A B C$ to the angle $D E \prime F$, and the angle $A C^{\prime} B$ to the angle $D F E$ '.

For, if the triangle $A B C$ be applied to the triangle $D E F$, so that the point A nay be on D, and the straight lire $A B$ on $D E$; then the point B shall coincide with the point $\dot{\delta}$, because $A B$ is equal to D^{D}; and $A B$ coinciding with $D E$, the straight line $A C$ shall fall on ${ }^{n} F$, because the angle $B A C$ is equal to the ; le $E D F$;
therefore also the point C shall coincide with the point F, because $A C$ is equal to $D F$;
but the point B was shewn to coincide with the point E; wherefore the base $B C$ shall coincide with the base $E F$; becanse the point B coinciding with E, and C with F, if the base $B C$ do not coincide with the base $E F$, the two straight lines $B C$ and $E F$ would enclose a space, which is impossible. (ax. 10.) Therefore the base $B C$ does coincide with $E F$, and is equal to it; and the whole triangle $A B C$ coincides with the whole triangle $D E F$, and is equal to it;
also the remaining angles of one triangle coincide with the remain-
ing angles of the other, and are equal to them,
viz. the angle $A B C$ to the angle $D E F$, and the angle $A C B$ tn $I F E$.
Therefore, if two triangles have two sides of the one equal to two sides, \&c. Which was to be demonstrated.

PROPOSITION V. THEOREM.

The angles at the base of an isosceles triangle are equal to each other; and if the equal sides be produced, the angles on the other side of the base shall be equal.

Let $A B C$ be an isosceles triangle of which the side $A B$ is equal to $A C$, and let the equal sides $A B, A C$ be produced to D and E.
Then the angle $A B C$ shall be equal to the angle $A C B$, and the angle $D B C$ to the angle $E C B$. $\ln B D$ take any point F;
from $A E$ the greater, cut oft $A C_{x}$ equal to $A F^{\prime}$ the less, (1. 3.) and join $F C, G B$.
Because $A F$ is equal to $A G$, (constr.) and $A B$ to $A C$; (hyp.) the two sides $F A, A C$ are enual to the two $\mathcal{A} A, A, A R$, ararh to tach and they contain the angle $F A G$ common to the two uriangles $A F C, A G B ;$

EUCLID'S ELEMENTS.

therefore the base $F C$ is equal to the base $G B$, (1. 4.)
and the triangle $A F C$ is equal to the triangle $A G B$,
also the remaining angles of the one are equal to the remainin
of the other, each to each, to which the equal sidemaining angles viz. the angle $\mathcal{A C F}$ to the angle $A B G$ are opposite; and the angle $A F C$ to the angle $A G B$.
And because the whole $A F$ is equal to the whole $A G$, of which the parts $A B, A C$, are equal;
therefore the remainder $B F$ is equal to the remainder $C G$; (ax. 3.)
and $F C$ has been proved to be equal to $G B$;
hence, because the two sides $B F, F C$ are equal to the two $C G, G B$.
each to each;
nd the angle $B F C$ has been proved to be equal to the angle $C G B$,
also the base $B C$ is common to the two triangles $B F C, C G B$; wherefore these triangles are equal, (r. 4.)
and their remaining angles, each to each, to which the equal sider
therefore the angle $F B C$ is equal to the angle $G C B$, and the angle $B C F$ to the angle $C B G$. And, since it has been demonstrated,
that the whole angle $A B G$ is equal to the whole $A C F$, therefore the remaining, the angles $C B G, B C F$ are also equal; which are the gangle $A B$ Cis equal to the remaining angle $A C B$. and it has also been proved,
that the angle p proved,
which are angle $\mathcal{F B C}$ is equal to the angle $G C B$,
Therefore the upon the other side of the base.
Cor. Hence en angles at the base, \&c. Q.E.d.
PROPOSITION VI. THEOREM.
If two angles of a triangle be equal to each other; the sides also which subtend, or are opposite to, the equal angles, shall be equal to one another.
Let $A B C$ be a triangle having the angle $A B C$ equal to the angle $A C B$ Then the side $\boldsymbol{A} \boldsymbol{B}$ shall be equal to the side $\boldsymbol{A C}$.

For, if $A B$ be not equal to $A C$, one of them is greater than the other. If possible, let $A B$ be greater than $A C$;
and from $B A$ cut off $B D$ equal to $C A$ the less, (1. 3.) and join DC. Then, in the triangles $D B C, A B C$,
because $D B$ is equal to $A C$, and $B C$ is common to both triangles, the two sides $D B, B C$ are equal to the two sides $A C, C^{\prime} B$, each to each; and the angle $D B C$ is equal to the angle $A C B$; (hyp.) therefore the base $D C$ is equal to the base $A B$, (i. 4.) and the triangle $D B C$ is equal to the triangle $A B C$,
Therefore less equal to the greater, which is absurd. (ax. 9.)
is not unequal to $A C$, that is, $A B$ is equal to $A C$. Wherefore, if two angles, \&c. Q.E.D.
Cor. Hence an equiangular triangle is also equilateral.

PROPOSITION VII. THEOREM.

Upon the same base, and on the same side of it, there cannot be twoo triangles that have their sides which are terminated in one extremity of the base, equal to one another, and likewise those which are terminated in the
other extremity.

If it be possible, on the same base $A B$, and upon the same side of it, let there be two triangles $A C B, A D B$, which have their sides $C A$, $D A$, terminated in the extremity A of the base, equal to one another, and likewise their sides $C B, D B$, that are terminated in B.

Join CD.
First. When the vertex of each of the triangles is without the other triangle.

Because $A C$ is equal to $A D$ in the triangle $A C D$,
therefore the angle $A D C$ is equal to the angle $A C D$; (1. 5.)
but the angle $A C D$ is greater than the angle $B C D$; (ax. 9.)
therefore also the angle $A D C$ is greater than $B C D$;
much more therefore is the angle $B D C$ greater than $B C D$. Again, because the side $B C$ is equal to $B D$ in the triangle $B C D$, (hyp.)
therefore the angle $B D C$ is equal to the angle $B C D$; (1. 5 .)
but the angle $B D C$ was proved greater than the angle $B C D$, hence the angle $B D C$ is both equal to, and greater than the angle $B C D ;$ which is impossible.
Secondly. Let the vertex D of the triangle $A D B$ fall within the

EUCLID'S FIEMENTS.

Produce $A C$ to E, and $A D$ to F, and join $C D$.
therefore the angles $E C D$, $F D C$ up $A D$ in the triangle $A C D$,
are equal to one another; (r. 5.) upon the other side of the base $C D$, but the angle $E C D$ is (I. 5.)
thercfore also the angle than the angle $B C D$; (ax. 9.) much more thon is the angle is greater than the angle $B C D$; Again, because $B C$ is equ $B D C$ greater than the angle $B C D$. therefore the angle $B D C$ is equal to in the triangle $B C D$,
but the angle $B D C$ has been pal to the angle $B C D$, (I. 5.) wherefore the angle $D D C$ been proved greater than $B C D$, angle $B C D$;
whieh is impossible. and greater than the side Ther of the other, needs no demonstration. Therefore, upon the same base and on the

. Q.E.D.

PROPOSIIIION VIII. TIIEOREM.

If two triangles have two sides of the one equal to two sides of the other, tained by the two have likewise their bases equal; the angle which is conthe two sides equal to them, of the other. equal to the angle contained by

Let $A B C$ DEF equal to the two sides $D E$ triangles, having the two sides $A B, A C$, $A C$ to $D F$, and also the base $B C$, each to each, viz. $A B$ to $D E$, and

Then the angle $B A C$ shall $\underset{F}{E}$
For, if the triangie $A B C$ be a to the angle $E D F$. so that the point B be on E, and the straightied to $D E F$,
then because $B C$ is straight line $B C$ on $E F^{\prime}$;
therefore the point C shall equal to $E F$, (hyp.)
wherefore $B C$ coincide with the point F.
$B A$ and $A C$ shall coineiding with $E F$,
for, if the base $B C$ coincide with coineide with $E D, D F$;
do not coincide with the sides $E D$, base $E F$, but the sides $B A, A C$, is $E G, G F$:
be two triangles which base, and upon the same side of it, there can extremity of the base, equal to toir sides which are terminated in one which are terminated in the oth one another, and likewise those sides

Therefore, if the base B extremity; but this isimpossible. (I. 7.) the sides $B A, A C$ cannot $B C$ coincide with the base $E F$, wherefore likewise the angle but coincide with the sides $E D, D F$;
is equal to it. (ax. 8.) $D A C$ coincides with the angle $E D F$, and
Therefore if two triangles have two sides, \&c.
Q.K.D.

D.

$A C D$

the base $C D$,
(ax. 9.)
rle $B C D$; ngle $B C D$. $B C D$,
. (I. 5.)
$B C D$,
ater than the
gle is upon a
\&c. Q.E.D.
of the other,
which is con
contained by
es $A B, A C$
to $D E$, and

OF.
F;
$B A, A C$, situatior
there can d in one ose sides
sle. (1. 7.)
$D F$;
$D F$, and
f PROPOSITION IX. PROBLEM.
To bisect a given rectilineal angle, that is, to divide it into too equal angles.

Let $B A C$ be the given rectilineal angle.
It is required to bisect it.

In $A B$ take any point D;
from $A C$ cut off $A E$ equal to $A D$, (1. 3.) and join $D E$;
on the side of $D E$ remote from A,
describe the equilateral triangle $D E F$ (1. 1.), and join $A F$.
Then the straight line $A F$ shall bisect the angle $B A C$.
Because $A D$ is equal to $A E$, (constr.)
and $A F$ is common to the two triangles $D A F, E A F$;
the two sides $D A, A F$, are equal to the two sides $E A, A F$, each to each; and the base $D F$ is equal to the base $E F$: (constr.)
therefore the angle $D A F$ is equal to the angle $E A F$. (I. 8.) Wherefore the angle $B A C$ is bisected by the straight line $A F$, Q.E.f.

PROPOSITION X. PROBLEM.

To bisect a given finite straight line, that is, to divide it into two aqual parts.

Let $A B$ be the given straight line.
It is required to divide $A .3$ into two equal parts. Upon $A B$ describe the equilateral triangle $A B C$; (1. 1.)

and bisect the angle $A C B$ by the straight line $C D$ meeting $A B$ in the point D. (I. 9.)

Then $A B$ shall be cut into two equal parts in the point \mathbf{D}.
Because $A C$ is equal to $C B$, (constr.)
and $C D$ is common to the two triangles $A C D, B C D$;
the two sides $A C, C D$ are equal to the two $B C, C D$, each to each; and the angle $A C D$ is equal to $B C D$; (constr.)
therefore the base $A D$ is equal to the base $R D$, (I .4.)
Wherofore the straight line $\boldsymbol{A} \boldsymbol{B}$ is divided into two equal parts in the point D. a.E.F.

PROPOSI'IIUN XI. PHOBLELI.

To dravo a straight line at right angles to a given strailght line, from a given point in the same

Let $A B$ be the given straight line, and C a given point in it.
It is reguired to draw a straight line from the point C at right angles to $\boldsymbol{A} \boldsymbol{B}$

In $A C$ take any point D, and make $C E$ equal to $C D$; (1. 3.) upon $D E$ describe the equilateral triangle $D E F$ (I. 1,) and join $C F$ Then $C F$ drawn from the point C,shall be at right angles to $A B$.
Because $D C$ is equal to $E C$, and $F C$ is common to the two triangles $D C F, E C F$;
the two sides $D C, C F$ are equal to the two sides $E C, C F$, each to each; and the base.$D F$ is equal to the base $E F$; (constr.)
therefore the angle $D C F$ is equal to the angle $E C F$: (I. 8.) and these two angles are adjacent angles.
But when the two adjacent angles which one straight line makes with another straight line, are equal to one another, each of them is called a right angle: (def. 10.)
therefore each of the angles $D C F, E C F$ is a right angle.
Wherefore from the given point C, in the given straight line $A B$, $F C$ has been drawn at right angles to $A B$. Q.E.F.

Cor. By help of this problem, it may be demonstrated that two atraight lines cannot have a common segment.

If it be possible, let the segment $A B$ be common to the two straight lines $A B C, A B D$.

From the point B, draw $B E$ at right angles to $A B$; (1. 11.) therefore the then because $A B C$ is a stranght line,

Similgle $A B E$ is equal to the angle $E B C$. (def. 10.)
therefore the, because $A B D$ is a straight line,
but the angle $A B E$ is equal to the angle $E R D$;
wherefore the angle $A B E$ is equal to the angle $E B C$,
the less equal to $F, B D$ is equal to the angle $E B C$, (ax. 1.)
Therefore two
ant lines cannot have a common segment
To PROPOSITION XII. PROBLEM.

Let $\boldsymbol{A B}$ be the given straight line, which may be produced any length hoth ways, and let C be a point without it.
it is required to draw a straight line perpendicular to $A B$ from the point C.

Upon the other side of $A B$ take any point D, and from the center C, at the distance $C D$, describe the circle $E G P$ meeting $A B$, produced if necessary, in F and G : (post. 3.)
bisect $F G$ in H (I. 10.), and join $C H$.
Then the straight line CH drawn from the given point C, shall be perpendicular to the given straight line $A B$.

Join $F C$, and $C G$.
Because $F H$ is equal to $H G$, (constr.)
and $H C$ is common to the triangles $F H C, G H C$;
the two sides $F H, H C$, are equal to the two G1I, $H C$, each to each; and the base $C F$ is equal to the base $C G$; (def. 15.) therefore the angle $F H C$ is equal to the angle $G H C$; (I. 8.) and these are adjacent angles.
But when a straight line standing on another straight line, makes the adjacent angles equal to one another, each of them is a right angle, and the straight line which stands upon the other is called a perpendicular to it. (def. 10.)

Therefore from the given point C, a perpendicular $C H$ has been drawn to the given straight line $A B$. Q.E.F.

PROPOSITION XIII. THEOREM.

The angles which one straight line makes with another upon one side of it, are either two right angles, or are together equal to two right angles.

Let the straight line $A B$ make with $C D$, upon one side of it, the angles $C B A, A B D$.

Then these shall be either two right angles, or, shall be together, equal to two right angles.

For if the angle $C B A$ be equal to the angle $A B D$, each of them is a right angle. (def. 10.) But if the angle $C B A$ be not equal to the angle $A B D$, from the point \bar{B} draw $\overline{B E}$ at right angles to $C D$. (I. 11.) Then the angles $C B E, E D D$ are two right angles. (def. 10.)

And because the angle $C B E$ is equal to the angles $C B A, A B E$, add the angle $E B D$ to each of these equals; therefore the angles $C B E, E B D$ are equal to the equals; $A B E, E B D$. (ax. 2.) are equal to the three angles $C B A$, Again, because the angle D
add to each of th is equal to the two angles DBEE, EBA, therefore the angles $D B A$, $A B C$ equals the angle $A B C$;
$E B A, A B C$.
But the angles $C B E$, $B B D$ three angles;
therefore the angles $C B E$ the same thing are equal to one another;
therefore but the angles $C B E, E B D$ are two right angles; $A, A B C$; (ax. 1.) Wherefore, when a straight line, \&c. Q.e.D

PROPOSITION XIV. THEOREM.

If at a point in a straight line, two otner straight lines, upon the opposite sides of it, make the adjacent angles together equal to two right angles; then
these two straight lines At the point B. $B C, B D$ upon the the straight line $A B$, let the two straight lines $A B C, A B D$ together equate sides of $A B$, make the adjacent angles Then $B D$ shall be equal to two right angles.

For, if $B D$ be not in the same straight line with $B C$, if possible, let $B E$ be in the same straight line with it. Then because $\boldsymbol{A} \boldsymbol{B}$ meets the straight line $\boldsymbol{C B E}$;
therefore the adjacent angles $C B A, A B E$ are $C B E$;
(I. 13.)
but the angles $C B A, A B D$
therefore the angles $C B A B D$ are equal to two right angles; (hyp.)
(ax. 1.)
take a
a
therefore the away from these equals the common angle $\boldsymbol{C B A}$, $A B D$; (ax. 3.)
remaining angle
therefore $B E$ equal to the greater, which is impossible: And in the same mann in the same straight line with $B C$. can be in the same straight line may be demonstrated, that no other the same straight line with $B C$. Wheretiore, if at a point, \&o.
es $C B A, A B E$, puals;
hree angles $C 13 A$, gles $D B E E, E B A$, $B C$ uree angles $D B E$, equal to the same al to one another; les $D B A, A B C ;$ ngles; two right angles.
$B A, \boldsymbol{A} B D:$
$B A$, aining angle
ible :
$B C$.
it no other refore is in

BOOR I. PROP. XV, XVI.
17

PROPOSITION XV. THEOREM,

If two straight lines cut one another, the vertical, or opposite anoles
hall be equal. Let the two straight lines $A B, C D$ cut one another in the point E.
Then the angle $A E C$ shall be equal to the angle $D E B$, and the angle C ' $E B$ to the angle $A E D$.

Because the straight line $A E$ nakes with $C D$ at the point E, th.o adjacent angles CEA, AED;
these angles are together equal to two right angles. (I. 13.)
Again, because the straight line $D E$ makes with $\boldsymbol{A} B$ at the point E, the adjacent angles $A E D, D E B$; these angles also are equal to two right angles;
!ut the angles $C E A, A E D$ have been shewn to be equal to two right angles;
wherefore the angles $C E A, A E D$ are equal to the angles $A E D, \angle E B$: take away from each the common angle $A E D$, and the remaining angle $C E A$ is equal to the remaining angle $D E B$. (ax. 3.)

In the same manner it may be demonstrated, that the angle CEB is equal to the angle $A E D$.

Therefore, if two straight lines cut one another, \&c. Q.E.D.
Cor. 1. From this it is manifest, that, if two straight lines cut each other, the angles which they make at the point where they cut, are together equal to four right angles.

Cor. 2. And consequently that all the angles made by any number of lines meeting in one point, are together equal to four right

PROPOSITION XVI. THEOREM.

If one side of a triangle be produced, the exterior angle is greater than tither of the interior opposite angles.
let $A B C$ be a triangle, and let the side $B C$ be produced to D.
Then the exterior angle $A C D$ shall be greater than either of the interior opposite angles $C B A$ or $B A C$.

Bisect $A C$ in E (1. 10.) and join $B \bar{E}$; produce $B E$ to F, making $E F$ equal to $B E$, (土. 3.) and join $F O_{\text {. }}$

EUCLID's ELEMENTS.

Because $A E$ is equal to $E C$, and $B E$ to $E F ;$ (constr.) the two sides $A E, E B$ are equal to the two $C E, E F$, each to each, in the triangles $A B E, C F E$;
and the angle $A E B$ is equal to the angle $C E F$, because they are opposite vertical angles; (1. 10.) therefore the base $A B$ is equal to the base $C F$, (1. 4.) and the remaining the triangle $A E B$ to the triangie $C E F$,
the other, each to angles of one triangle to the remaining angles of wherefore the angle to which the equal sides are opposite; but the angle $E C D$ or $A C D$ is equal to the angle $E^{\prime} C^{\prime} F$; therefore the angle $A C D$ is greas greater than the angle $E C F$;
In the same manner, if the duced to G; it may be demone side $B C$ be bisected, and $A C$ be proangle $A C D$, (1. 15.) is greater thated the the angle $B C G$, that is, the I'herefore, if one side of a triale ABC. Therefore, if one side of a triangle, \&c. Q.E.D.

PROPOSITION XVII. THEOREM.

 Any two angles of a triangle are together less than two right angles. Then any two of its angles togethe any triangle.

Produce any side $B C$ to D.
Then because $A C D$ is the exterior angle of the triangle $A B C$; therefore the angle $A C D$ is greater than the interior and opposite angle to each of these unequals ado the angle $A C B$; therefore the angles $A C D, A C B$ are greater than the angles $A B C$, $A C B$;
but the angles $A C D, A C B$ are equal to two right angles; (1. 13.) therefore the angles $A B C, A C B$ are less than two right angles. that the In like manner it may be demonstrated,
as also the angles $C A B, A B C$.
Therefore any two angles of a triangle, \&c.

PROPOSITION XVIII. THEOREM.

The greater side of every triangle is opposite to the greater angle.
Let $A B C$ be a triangle, of which the side $A C$ is greater than the

BOOK 1. PROP. XVIII-XX.
Then the angle $A B C$ shall be greater than the angle $A C B$

Since the side $A C$ is greater than the side $A B$, (hyp.)
make $A 1$) equal to $A B$, (1. 3.) and join $B D$.
Then, because $A D$ is equal to $A B$, in the triangle $A B D$, therefore the angle $A B I$) is equal to the angle $A D B$, (1. 5.$)$ but because the side $C D$ of the triangle $B D C$ is produced to A therefore the exterior angle $A D B$ is greater than the interior anci opposite angle DC7; (1. 16.)
but the angle $A D B$ has been proved equal to the angle $A B D$,
therefore the augle $A B D$ is greater than the angls $D C D$;
wherefore much more is the angle $A B C$ greater thap the angle $A C Z$ Therefore the greater side, \&c. Q.E.D.

PROPOSITION XIX. THEOREM.

The greater angle of every triaugle is subtended by the greater side, or, has the greater side opposite to it.

Let $A B C$ be a triangle of which the angle $A B C$ is greater than the angle $B C A$.

Then the side $A C$ shall be greater than the side $A B$.

For, if $A C$ be not greater than $A B$, $A C$ must either be equal to, or less than $A B$; if $A C$ were equal to $A B$,
then the angle $A B C$ would be equal to the angle $A C B$; (1. 5.)
but it is not equal; (hyp.)
therefore the side $A C$ is not equal to $A B$.
Again, if ' $A C$ ' were less than $A B$,
then the angle $A B C$ would be less than the angle $A C B ;(1.18$.
therefore but it is not less, (hyp.)
an $A C$ he side $A C$ is not less than $A B$;
ther been shewn to be not equal to $A B$;
Wherefore $A C$ is greater than $A B$.
Wherefore the greater angle, \&c. Q.E.D.
PROPOSITION XX. THEOREM.
Any two sides of a triangle are together greater than the third side.
Let $A B C$ be a triangle.
Then any two sides of it together shall be greater than the third side,
viz. the sides $B \boldsymbol{A}, A C$ greater than the side $B C$;

Pirtions mpravti.
B, $B C$ greater than $A C$; and $B C$; C 'A greater than $A \mathcal{B}$.

Produce the side BA to the proint D, make $A J$ equal to $A C$, (1. 3.) and join $D C$. Then because $A D$ is equal to $A C$, (constr.) therefore the angle $A C D$) is equal to the angle $A D C$; (1. 6.$)$ hut the angle BCD is greater than the angle $A C D$; (ax. 9.) therefore also the angle $B C \cdot 1)$ is greater than the angle $A D C$.

And because in the triangle $D 1 B C$,
the angle $B C D$ is greater than the angle BDC,
and that the greater anyle is subtended by the
therefore the side $D B$ is renter ine greater side; (r. 19.)
but $l B$ is equal to $1 A$ an the side $B C$;
therefore the sides $P A$ al to $B A$ and $A C$,
In the same inum and $A C$ are erreater than $H C$.
that the sides $A B$ it may be demonstruted,
also thut $B C, C C$ are greater than $C A$;
'herefore any two se die than $A B$.

PROPOSITION XXI. THEOREM.

If from the ends of a side of a triangle, there be drawn two straight lines to a point within the triangle; these shall be less than the other two sades of the triangle, but shall conto': a greater angle.

Let $A B C$ be a triangle, and from the points B, C, the ends of the side $B C$. let the two straight lines $B I$), $C D$ be drawn to a point D within the triangle.

Then BI) and DC shall be less than BA and $A C$ the other two sides of the triangle,
but shall contain an angle $B D C$ greater than the angle BAC:

Produce $B D$ to meet the side $A C$ in E.
Becanse two sides of a triangle are greater than the thi
therefore the two sides $B A, A E$ of the triun the third side, (1. 20.) han $\because E$;
to each of these unequals add $E C$;
therefci, "ises $A A, A C$ are greater than $B E$; $E C$
Again, :s, st the sides CE,
 at $D E$ bio exem of these unequals;
the:efore the sides $C E, E B$ are greater than $C /$), $D B$. (ax. 4.) But it has been shewn that $B A, A C$ are greater than $B E, E C$; much more then are $\boldsymbol{B A}, A C^{C}$ greater than $\left.B I\right), D C$
Again. hecause the exterior angle of a triangle is greater than the interior and opposite angle; (1. 10.)
therefore the exterior angle $B D C$ of the triangle $C D E$ is gracter than the interior and opposite angle CE1);
for the same reasnn, the exterior angle CED of the triangle $A B E$ is grenter than the interior and opposite angle $\boldsymbol{B A C}$; and it has been demonstrated,
that the angle B1) C is greater than the angle $C E B$;
much more therefore is the angle BI)C greater than the angle BAC. Therefore, if from the ends of the side, \&c. Q. E.D.

PROPOSI'IION XXII. PROBILMM.

To make a triangle of which the sides shall be equal to three given straight lines, but any two whatever of these must be greater than the third.

Let A, B, C be the three given straight lines,
of which any two whatever are greater than the third,
namely, A and B greater than C; A and C greater than B;
and B and C'greater than A.
It is required to make a triangle of which the sides shall be equal to A, B, C, each to each.

Take ε straight line $D E$ terminated at the point D, but unlimited towards E.
make I F'equal to $A, F G$ equal to B, and $G I I$ equal to C; (I. 3.) from the center F, at the distance $F\left(D\right.$, describe the circle $D K^{\prime} L_{\text {: }}$ (post 3.)
from the center G, at the distance $G H$, describe the circle $H L K_{1}$ from K where the circles cut each other, draw $K F, K G$ to the points $\boldsymbol{F}, \boldsymbol{G}$

Then the triangle $K F G$ shall have its sides equal to the three straight lines $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}$.

Because the point \boldsymbol{F} is the center of the circle $D K L$,
therefore $F \boldsymbol{D}$ is equal to $F K$; (def. 15.)
but $F D$ is equal to the straight line A;
therefore $F K$ is equal to A.
Again, beeause G is the center of the circle $H K L$,
thercfore $G H$ is equal to $G K$, (def. 15.)
but $C H$ is equal to C;
therefore also $G K$ is equal to C; (ax. 1.) and $F G$ is equal to $B_{;}$

EUCLID'S EL.EMRNTS.

thensfore the three straight lines $K F, F G, G K$. are respectively equat to the three, A, B, C^{\prime} : and therefore the triangle $K F G$ has its three sides $K F, F G, G K$, Quluil to the three given straight lines A, B, C. Q.E.P.

PROPOSITION XXIII. PROBLEM.

At a given point in a given straight line, to make a rectilineal angle equal to a given rectilineal angle.

Let $\boldsymbol{A B}$ be the given straight line, and \boldsymbol{A} the given point in it, lt is required, at the given goinen rectilineal angle. make an angle that shall be equal to the given straight line $A B$, to

In $C D, C E$, take any points D, E, and join $D E$;
on $A B$, make the triangle $A F G$, the sides of which shall to the three straight lines $C D D E$, $A C$ of which shall be equal $C D, A G$ to $C E$, and $F G$ to $D E$. (I. 22.) so that $A F$ be equal to Then the angle FAG
Because $F A, A G$ shall be equal to the angle $D C E$.
and the base equal to $D C, C E$, each to each, therefore the angle $D G$ is equal to the base $D E$;
Wherefore, at the give poin equal to the angle $D C E$. (I. 8.) angle $F A G$ is made equal to the A in the given straight line $A B$, the

PROPOSITION XXIV. THEOREM.
If two triangles have two sides of the one equal to two sides of the other, sach to each, but the angle contained by the two sides of one of them greater, base of thate contained by the two sides equal to them, of the other; the of the other.

Let $A B C, D E F$ be two triangles, which have the two sides $A B$ $A C$, equal to the two $D E, D F$, each to each, namely, $A B$ equal to $D E$, and $A C$ to $D F$; but the angle $B A C$ greater than the angle $E D$) Then the base $B C$ shall be greater than the base $E F$.

K. are respectively
des $\boldsymbol{K F}, \boldsymbol{F} \boldsymbol{G}, \boldsymbol{G} \boldsymbol{K}$,
, C. Q.E.f.
EM.
a rectilineal angle
ven point in it. le.
raight line $A B$, to tineal angle $D C E$
n $D E$;
hhall be equal $A F$ be equal to

le $\boldsymbol{D C E}$.

to each,
$E ;$
$C E$ (1.8.)
tht line $A B$, the le DCE. Q.E.r.
des of the other, of them greater f the other; the r than the base
two sides $A B$. Ali equal to de angle E) \boldsymbol{C}^{\prime} E' F.

Of the two sides $D E, D F$, let $D E$ be not greater than $D F$, at the point D, in the line $D E$, and on the same side of it as D1, make the angle $E D G$ equal to the angle $B A C$; (1. 23.) make $D G$ equal to $D F$ or $A C$, (1. 3.) and join $E G, G F$. Then, because $D E$ is equal to $A B$, and $D G$ to $A C$, the two sides $D E, D G$ are equal to the two $A B, A C$, each to eacl, and the angle $E D G$ is equal to the angle $B A C$;
therefore the base $E G$ is equal to the base $B C$. (I. 4.)
And because $D G$ is equal to $D F$ in the triangle $D F G$, therefore the angle $D F G$ is equal to the angle $D G F$; (1. 5.) but the angle $D G F$ is greater than the angle $E G F$; (ax. 9.) therefore the angle $D F G$ is also greater than the angle $E G F$; much more therefore is the angle $E F G$ greater than the angle $E G F$.

And because in the triangle $E F G$, the angle $E F G$ is greater than the angle $E G F$,
and that the greater angle is subtended by the greater side; (1. 19.)
therefore the side $E G$ is greater than the side $E F$;
but $E G$ was proved equal to $B C$;
therefore $B C$ is greater than $E F$.
Wherefore, if two triangles, \&c. Q.E.D.

PROPOSITION XXV. THEOREM.

If two triangles have two sides of the one equal to two sides of the othar, tach to each, but the base of one greater than the base of the other; the angle contained by the sides of the one which has the greater base, shall be greater than the angle contained by the sides, equal to them, of the other.
Let $A B C, D E F$ be two triangles which have the two sides $A B, A C$, equal to the two sides $D E, D F$, each to each, namely, $A B$ equal to $D E$, and $A C$ to $D F$; but the base $B C$ greater than the base $E F$.

Then the angle $B A C$ shall be greater than the angle EDF.

For, if the angle $B A C^{\prime}$ be not greater than the angle $E D P$, it must either be equal to it, or less than it.
If the angle $B A C$ were equal to the angle $E D F$,
then the base $B C$ would be equal to the base $E F$; (1. 4.) but it is not equal, (hyp.)
therefore the angle $B A C$ is not equal to the angle $E D F$.
Again, if the angle $B A C$ were less than the angle $E D F$,
then the base $B C^{\prime}$ would be less than the base $E F$; (I. 24.) but it is not less, (hyp.)
therefore the angle $B A C$ is not less than the angle $E D F$; and it has been shewn, that the angle $\boldsymbol{B A} \boldsymbol{C}$ is not equal to the angle $\boldsymbol{E D F}$;
therefore the angle $B A C$ is greater than the angle $E D F$.
Wherefore, if two triangles, \&c. Q. E.n

EUCLIDS ELEMENTS.

PROPOSITION XXVI. THEOREML

If two triangles have two angles of the one

other, each to each, and one side eqles of the one equal to two angles of the ceut to the equal angles. in each, equal to one side, viz. either the sides adjaother sides be equal, each to each, and ale.: opposite to them; then shall che to the third angle of the other.

Let $A B C, D E F$ be two triaugles which have the angles $A B C$, $B C A$, equal to the angles $D E F, E F D$, each to each, namely, $A B C$ to $D E F$, ind $B C A$ to $E F D$; also one side equal to one side. are equal in the two triance equal which are adjacent to the angles that
Then the other sides shang namely, $B C$ to $E F$. $D E$, and $A C$ to $D F$, and thall be equal, each to each, namely, $A B$ to

For, if $A B$ be not equal to $D E$, one of them must be greater than the other. If possible, let $A B$ be greater than $D E$, make $B G$ equal to $E D$, (土. 3) and join $G C$. because $G B$ in the two triangles $G B C, D E F$, the two sides, $G B, B C$ are equal to the $B C$ to $E F$, (hyp.)
and the angle $G B C$ is equal to $D E, E F$, each to each; therefore the base $G C$ is equal to the angle $D E F$;
and the triangle $G B C$ to the the base $D H$, (I. 4.) and the other angles to the other the triangle $D E F$,
the equal sides are opposite;
therefore the apposite;
but the angle $A C B$ is, by the eq is equal to the angle $D F E$;
wherefore also the angle $G C B$ is G hethesis, equal to the angle $D F E$;
the less angle equal to the equal to the angle $A C D$; (ax. 1.)
thercfore $A B$ is not unequal to is impossible;
that is, $A B$ not unequal to $D E$,
Hence, in the is equal to $D E$.
because $A B$ is equal to triangles $A B C, D E F$;
and the angle $A B C$ is to $D E$, and $B C$ to $E F^{\prime}$, (hyp.)
therefore the base $A C$ is equal to the angle $D E F$; (lyp.)
and the third angle $B A$ equal to the hase $D F$, (I. 4.)
Secondly, let the sides whieh are to the third angle EDF .
Then triangle he equal to one another and $B C$ to $E F$ ease likewise the other sides ely $A B$ equal to $D E$. and $B C$ to $E F$ and also the third angle $B A C$ to the cqual, $A C$ to $D F$,

4

two angles of the her the sides adjaem; then shall the le of the one equal
e angles $A B C$, h, namely, $A B C$ side. the angles that namely, $A B$ to ird angle E'D
p.) ch to each;
: 4.)
ch, to which
E;
gle $D F E ;$
; (ax. 1.)
ble;
p.)
qual angles
DE.
10 to $D F$, gle EDF'

For if $B C$ be not equal io $E F$, one of them must be greater than the other.

If possible, let $B C$ be greater than $E F$; make $B H$ equal to $E F$, (I. 3.) and join $A H$.

Then in the two triangles $A B M$. DEF because $A B$ is equal to $D E$, and B / L to $E F F$, and the angle $A B I I$ to the angle $D E F$; (hyp.) therefore the base $A H$ is equal to the base $D F ;(1,4$. and the triangle $A B H$ to the triangle $D E F$.
and the other angles to the other angles, each to each, in which uie equal sides are opposite;
therefore the angle $B H A$ is equal to the angle $E F D$
but the angle $E F D$ is equal to the angle $B C A$; (hyp.)
therefore the angle $B I I A$ is equal to the angle $B C^{\prime} A$, (ax. ., that is, the exterior angle $B H A$ of the triangle $A H C^{\prime}$, is equal to its interior and opposite angle $B C A$; whish is impossible; (I. 16.)
wherefore $B C$ is not unequal to $E F$, that is, $B C$ is equal to $E F$.
Hence, in the triangles $A B C, D E F$; because $A B$ is equal to $I) E$, and $B C$ to $E F$, (hyp.) and the ineluded angle $A B C$ is equal to the ineluded angle $D E^{2} F^{\prime}$; (hyp. therefore the base $A C$ is equal to the base D) $F_{\text {, (I. 4.) }}$ and the third angle $B A C$ to the third angle EEDF. Wherefore, if two triangles, \&e. o. E. D.

PROPOSITION XXVII. THEOREM.

If a straight line falling on two other straight lines, make the alternot, angles equal to each other; these two straight lines shall be parallel.

Let the straight line $E F$, which falls upon the two straight lines $A D$: CD , make the alternate angles $A E F, E F D$, equal to one another.

I'hen $A B$ shall be parallel to $C D$.

For, if $A B$ be not parallel to $C D$,
then $A B$ and $C D$ being produced will meet, either towards A and O, or towards B and D.
Let $A B, C D$ be produced and meet, if possible, towards $i s$ and L, in the point G, then $u k i r y$ is a triangle.

EUCLID'S RI.FMENTS.

And because a side $G E$ of the triangle $G E F$ is produced to A, therefore its exterior angle $A E F$ is greater than the interior and opposite angle $E F G$; (I. 16.)
but the angle $A E F$ is equal to the angle $E F G$; (hyp.)
therefcre the angle $A E F$ is greater than, and equal to, the angle
$E F G$; which is impossible.
Therefore $A B, C D$ being produced, do not meet towards B, D.
In like manner, it may be demonstrated, that they do not mee: when produced towards A, C.

But those straight lines in the same plane, which meet neither way though produced ever so far, are parallel to one another; (def. 35.) therefore $A B$ is parallel to $C D$. Wherefore, if a straight line, \&c. Q.E.D.

PROPOSITION XXVIII. THEOREM.

If a straight line falling upon two other straight lines, make the axterio angle equal to the interior and opposite upon the same side of the line; or make the interior angles upon the same side together equal to two right angles; the twoo straight lines shall be parallel to one another.

Let the straight line $E F$, which falls upon the two straight lines $A B, C D$, make the exterior angle $E G B$ equal to the interior and opposite angle $G H D$, upon the same side of the line $E F$; or make the two interior angles $B G H, G H D$ on the same side together equal to two right angles.

Ihen $A B$ shall be parallel to $C D$.

Because the angle $E G B$ is equal to the angle $G H D$, (hyp.)
and the angle $E G B$ is equal to the angle $A G H$, (I. 15.)
therefore the angle $A G H$ is equal to the angle $G H D$; (ax. 1.) and they are alternate angles, therefore $A B$ is parallel to $C D$. (1. 27.)
Again, because the angles $B G H, G H D$ are together equal to two right angles, (hyp.)
and that the angles $A G H, B G H$ are also together equal to two right angles; (1. 13.)
therefore the angles $A G H, B G H$ are equal to the angles $B G H$. GHD; (ax. 1.)
take away from these equals, the common angle $B G H$; therefore the remaining angle $A G H$ is equal to angle $B G H$;

AHD; (ax. 3.)
and they are alternate angles;
Wherefore therefore $A B$ is parallel to $C D$. (I. 27.)

PROPOSITION XXIX. THEOREM.

If a straight line fall upon two parallel straight lines, it makes the alternate angles equal to one another; and the exterior angle equal to the interior and opposite upon the same side; and likewise the two interior angles upon the same side together equal to two right angles.

Let the straight line $E F$ fall upon the parallel straight lines $A B, C D$.
Then the alternate angles $A G H, G H D$ shall be equal to one another; the exterior angle $E G B$ shall be equal to the interior and opposite angle $G H D$ upon the same side of the line $E F$;
and the two interior angles $B G H, G H D$ upon the same side of $E F$ shall be together equal to two right angles.

First. For, if the angle $A G H$ be not equal to the alternate angle $G H D$, one of them must be greater than the other;
if possible, let $A G H$ be greater than $G H D$,
then because the angle $A G H$ is greater than the angle $G H D$. add to each of these unequals the angle $B G H$;
therefore the angles $A G H, B G H$ are greater than the angles $B G H$ $G H D$; (ax. 4.)
but the angles $A G H, B G H$ are equal to two right angles; (1.13.) therefore the angles $B G H, G H D$ are less than two right angles;
but those straight lines, which with another straight line falling upon them, make the two interior angles on the same side less than two right angles, will meet together if continually produced; (ax. 12.)
therefore the straight lines $A B, C D$, if produced far enough, will meet towards B, D;
but they never meet, since they are parallel by the hypothesis; therefore the angle $A G H$ is not unequal to the angle $G H D$,
that is, the angle $A G H$ is equal to the alternate angle $G H D$.
Secondly. Because the angle $A G H$ is equal to the angle $E G B$, (1. 15.) and the angle $A G H$ is equal to the angle $G H D$,
therefore the exterior angle $E G B$ is equal to the interior and opposite. angle $G H D$, on the same side of the line.
Thirdly. Becuuse the angle $E G B$ is equal to the angle $G H D$, add to each of them the angle $B G H$;
therefort the angles $E G B, B G H$ are equal to the angles $B G H, G H D$:
(ax. 2.)
but $E G B, B G H$ are equal to two right angles: (1. 13.)
theretore also the two interior angles $B G H, G H D$ on the sambs side of the line are equal to two right angles. (ax. 1.)

Wherefore, if a straight line, \&o. Q.E.D.

28

PROPOSITION XXX. THEOKEM.

Straiaht lines which are parallei to the same straight line are parallel th each other.

Let the straight lines $A B, C D$, he each of them paralied to $B F$.
Then shall $A B$ be also parallel to $C D$.

Let the straight line $G H K$ cut $A B, E F, C L$. G, H: therefore the angle $A G H$ is equal to the

Ayain, because GMK cuts H, $H_{\text {; }}$ therefore the exterior and it was shewn that $G I I F$ is equal to the interior angle $H \mathscr{\prime}$ therefore the the angle $A G H$ is equal to the angle $G I I F$; and these are alterual to the angle GKD; therefore $A B$ is parallel to $C D$ anes;
Wherefore, straight lines which are $C D$. (I. 27.)
Q.E.A.

PROPOSITIION XXXI. PROBLEM

 line.Let A be the given point, and $B C$ the given straight line.
It is required to draw, through the point \boldsymbol{A}, a straipht line. to the straight line $B C$.

In the line $B C$ take any point D, and join $A D ;$
at the point A in the straight line $A D$,
waise the angle $D_{A E}$ equal to the angle $A D$ (
site side of $A D$; \quad, 1.23 .) on the opp,
and produce the straight line $E A$ to F.
Because the stran $E F$ shall be parallel to $B C$.
and makes the alternate angles meets the two straight lines $E F P . B C$;
therefore $E F$ is parall, $A D C$, equal to one another.
Wherefore, through the given parallel to $B C$. (1. 27.)
line $\dot{L} A F$ parallel to the given straigt A, has been drawn a straight
QoE. F.

PROPOSITION XXXIT. THEORMM.

If a side of any triangle be produced, the exterior angle is equal to the two interior and opposite angles; and the three interior anyles of every triunyle are together equial to two right angles.

Let $A B C$ be a triangle, and let one of its sides $B C$ be produced to D.
Then the exterior angle $A C D$ shall be equal to the two interior and opposite angles $C A B, A D C^{\prime}$:
and the three interior angles $A P^{P}, E C A, C A B$ sitall be equai to two right angles.

Through the point C draw $C E$ parallel to the side $B A$. (1. 31.)
Then because $C E$ is parallel to $B A$, and $A C$ mects them, thisefore the angle $A C E$ is equal to the alteruate angle $B A C$. (I. 29.)

Again, because $C E$ is parallel to $A D$, and $B D$ falls upon them,
thercfore the exterior angle $E C D$ is equal to the interior and opposite angle $A B C$; (1. 29.)
but the angle $A C E$ was shewn to be equal to the angle $B A C$;
thercfore the whole exterior angle $A C D$ is equal to the two interior and opposite angles $C A D, A B C$. (ax. 2.)
Again, because the angle $A C D$ is equal to the two angles $A B C, B A C$, to each of these cquais add the angle $A C B$,
therefore the angles $A C D$ and $A C B$ are equal to the three angles $A B C, B A C$, and $A C B$. (ax. 2.)
but the angles $A C D, A C B$ are equal to two right angles, (I. 13.)
therefore also the angles $A B C, B A C, A C B$ are equal to two right angles. (ax. 1.)
Wherefore, if a side of any triangle be produced, \&c. Q.E.D.
Cor. 1. All the interior angles of any rectilineal figure t. t ther with four right angles, are equal to twice as many right angles as the tigure has sides.

For any rectilineal figure $A B C D E$ can be divided into as many triangles as the figure has sides, by drawing straight lines from a point F within the figure to each of its pangles.

Then, because the three interior angles of a triangle are equal to two right angles, and there are as many triangles as the figure has sides,
therefore all the angles of these tri:ngles are equal to twice as many right angles as the figure has sides;
but the same angles of these triangles are equal to the interior angles of the figure together with the angles at the point B :

EUCLID's ELEMENTS.

and the angles at the point F, which is the common vertex of all the triangles, are equal to four right angles, (I. 15. Cor. 2.)
therefore the same angles of these triangles are equal to the angles of the figure together with four right angles;
but it has been proved that the angles of the triangles are equ
twiee as many right angles as the figure has sides are equal to therefore all the angles of the figure together sides;
are equal to twice as many right anglether with four right angles,
Cor. 2. All the exterior angles of angles as the figure has sides. producing the sides successively in the same dineal figure, made by equal to four right angles.

Since every interior angle $A B C$ with its adjacent exterior angle $A B D$, is equal to two right angles, (I. 13.)
are equal to twice as many right
but it has been proved by the angles as the figure has sides; terior angles together with four rimht foregoing corollary, that all the inright angles as the figure has sidight angles are equal to twice as many therefore all the inas sides;
are equal to all the interior angles together with all the exterior angles, therefore all the exterior angles of the interior angles, angles. (ax. 3.)

PROPOSITION XXXIII. THEOREM.

The straight lines which join the extramites straight lines towards the same parts, are almities of two equal and parallel Let $A B, C D$ be , and joined towards the equal and parallel straight lines,

Then $A C, B D$ sarts by the straight lines $A C, B D$.
Then $A C, B D$ shall be cqual and parallel.

Then because $A B$ is yarallel to $C D$, and $B C$ meets them,
therefore the angle $A B C$ is equal to the alternat $B C$ meets them,
and because $A B$ is equal to $C D$, and $B C$ cominon to the $B C D$; (I. 29.) $A B C, D C B$; the two sides $A B, B C$ and $B C$ cominon to the two triangles to each, and the angle $A B C$ was proved are to the two $D C, C D$, each
therefore the base $A C$ is equal to be equal to the angle $B C D$: and the triangle $A D C$ to the triangle $B C D$, (I. 4.)
in vertex of all Cor. 2.) 1 to the angles es are equal to r right angles, e has sides. gure, made by are together
terior angle crior angles, les;
all the inice as many
rior angles, 1.)
four right
nd parallel d parallel.
$y, B D$.
(I. 29.)
riangles D, each $B C D$
and the other angles to the other angles, each to each, to which the equal sides are opposite; therefore the angle $A C B$ is equal to the angle $C B D$.
And because the straight line $B C$ meets the two straight lines $A C$, $Z D$, and makes the alternate angles $A C B, C B D$ pqual to one another; therefore $A C$ is parallel to $B D$; (1.27.) and $A C$ was shewn to be equal to $B D$. Therefore, straight lines which, \&c. Q, R.D

PROPOSITION XXXIV. THEOREM.

The opposite sides and angles of a parallelogram are equal to one another, and the diameter bisects it, that is, divides it into two equal parts.

Let $A C D B$ be a parallelogram, of which $B C$ is a diameter.
Then the opposite sides and angles of the figure shall be equal to one another; and the diameter $B C$ shall bisect it.

Because $\boldsymbol{A} B$ is parallel to $C D$, a. $\mathrm{d} B C$ meets them, therefore the angle $A B C$ is equal to the alternate angle $B C D$. (1. 29.) And because $A C$ is parallel to $B D$, and $B C$ meets them, therefore the angle $A C B$ is equal to the alternate angle $C B D$. (1. 20.) Hence in the two triangles $A B C, C B D$,
because the two angles $A B C, B C A$ in the one, are equal to the two angles $B C D, C B D$ in the other, each to each; and one side $B C$, which is adjacent to their equal angies, common to the two triangles;
therefore their other sides are equal, each to each, and the third angle of the one to the third angle of the other, (I. 26.)
namely, the side $A B$ to the side $C D$, and $A C$ to $B D$, and the angle
$B A C$ to the angle BDC.
And because the angle $A B C$ is equal to the angle $B C D$, and the angle $C B D$ to the angle $A C B$,
therefore the whole angle $A B D$ is equal to the whole angle $A C D$;
(ax. 2.)
and the angle $B A C$ has been shewn to be equal to $B D C$;
therefore the opposite sides and angles of a parallelogram are equal to one another.
Also the diameter $B C$ bisects it.
For since $A B$ is equal to $C D$, and $B C$ common, the two sides $A B$, $B C$, are equal to the two $D C, C B$, each to each, and the angle $A B C$ has been proved to be equal to the angle $B C D$; therefore the triangle $A B C$ is equal to the triangle $B C D$; (1.4.) and the diameter $D C$ divides the parallelogram $A C D \bar{D}$ into two equal parta, Q.e.D.

PROPOSITION XXXV. THEOREM.

Parallelograms upon the same base, and between the same parallels, are squal to one another.

Let the parallelograms $A B C D, E B C F$ be upon the same base $B C$ and between the sume parallels $A F, B C$.
'Then the parallelogram $A B C D$ shall be equal to the parallelogram EBCF.

If the sides $A D, D F$ of the parallelograms $\left.A B C^{\prime}\right), D B C F$, opposite to the base $B C$, be terminated in the same point D;
then it is plain that each of the parallelograms is double of the triangle 13DC; (1. 34.)
and therefore the parallelogram $A B C D$ is equal to the parallelogram DBCF. (ax. 6.)

But if the sides $A D, E F$, opposite to the base $B C$, be not termi-

- ated in the same point;

> Then, because $A B C D$ is a parallelogram, therefore $A D$ is equal to $R C$.
therefore $A D$ is equal to $B C$; (1. 34.)
and for a similar reason, $E F$ is equal to $B C ;$ wherefore $A D$ is equal to $E F$; (ax. 1.)
therefore the whole, or the remainder $D E$ is common
the remainder $D F ;($ ax. 2 or 3 .) $A E$, is equal to the whole, or and $A B$ is equal to $D C$; (1. 34.)
hence in the triangles $E A B, F I C$,
because $F D$ is equal to $E A$; and $D C$ to $A B$,
and the exterior angle $F D C$ is equal to the interior and opposite angls
therefore the base $F C$ is equal to the base $E B$, (1. 4.)
and the triangle $F D C$ is equal to the triangle $E A B$.
From the trapezium $A B C F$ take the triangle $F D C$,
and from the same trapezium take the triangle $\boldsymbol{E A B}$, and the remainders are equal, (ax. 3.)
therefore the parallelogram $A B C D$ is equal to the parallelogram $E B C F$.
Therefore, parallelograms upon the same, \&c. Q.E.D.

PROPOSITION XXXVI. THEOREM. oqual to one another. upon equal bases and between the same parallels, are

Let $A B C D, E F G H$ be parallelograms upon equal bases $B C, F G$. and between the same parallels $A H, B G$.

Then the parallelogram $A B C D$ shall be equal to the parallelogram

Join BE, CII.
Tren because $B C$ is equal to $F G$, (hyp.) and $F\left(Y^{\prime}\right.$ to $E H$, (1. 34.) therefore $B C$ is equal to $X: M$; (ax. 1.)
e.: these lines are parallels, and joined towards the same parts by the atraight lines $13 X, C M$;
but straight lines which join the extremities of equal and parallel siraight lines towards the same parts, ars themselves equal and parallel; (I. 33.)
therefore $B E, C H$ are both equal and parallel; wherefore $E B C H$ is a paralle ogram. (def. A.)
And because the parallelograms $A B C D, E B C H$, are upon the same base $B C$, and between the same parallels $B C, A I I$;
therefore the parallelogram $A B C D$ is equal to the parallelogram EBCHI. (1. 35.)

For the same reason, the parallelogram EFGH is equal to the parallelogram EBCH;
therefore the parallelegram $A B C D$ is equal to the parallelogram EFGH. (ax. 1.)
Therefore, parallelograms upon equal, \&c. Q.E.D.

PROPOSITION XXXVII. THEOREM.

Triangles upon the same base and between the same parallels, are equal to one another.

Let the triangles $A B C, D B C$ be upon the same base $B C$, and between the same parallels $A D, B C$.
Then the triangie $A D C$ shall be equal to the triangle $D B C$.

Produce $A D$ both ways to the points E, F;
through B draw $B E$ parallel to $C A$, (I. 31.)
and through C draw $C F$ parallel to $B D$.
Then each of the figures $E B C A, D B C F$ is a parallelogram; and $E B C A$ is equal to $D B C F$, (1. 35.) because they are upon the sarie base $B C$, and between the same parallels $B C, E F$. And because the diameter $A B$ bisects the parallelogram $E B C A$, therefore the triangle $A B C$ is half of the parallelogram $E B C A$; (1. 34.) also because the diameter $D C$ bisects the parallelogram $D B C F$, therefore the triangle $D B C$ is half of the parallelogram $D B C F$,
but the halyes of equal things are equal ; (ax. 7.)
therefore the triangle $A B C$ is equal to the triangle $D B C$. Wherefore, triangles, \&c. Q.E.D. is one another.

Let the triangles $A B C, D E F$ be upon equal bases $B C, E F$, and between the same parallels $13 F, A D$.
'I'hen the triangle $A E C$ 'shall be equal to the triangle $D E F F_{0}$

Produce $A D$ both ways to the points $G, 1 I_{3}$ through 13 draw $73 G$ parallel to CA, (I. 31.) and through F draw F 'H parallel to ED). Then each of the figures GDCA, I)EFII is a parallelogram; and they are equal to one another, (I. 36.) because they are upon equal bases $B C, B F F$, and between the same parallels $B F, G I T$.
And because the-diameter $A B$ bisects the parallelogram $G B C A$, therefore the triangle $A B C$ is the half of the parallelogram $G B C A ;$ also,
also, because the clameter $D F$ bisects the parallelogram DEFUI, therefore the triangle DEF' is the half of the parallelogram $D E L \cdot I I$ but the halves of equal things are equal; (ax.7.) DELII: therefore the triangle $A B C$ is equal to the ; ; (ax. 7 .)

Wherefore, triangles upon equal to the triangle DEF.

> equal bases, \&c.

- PROPOSITION XXXIX. THEOREM.

Equal triangles upon the same base and upon the same side of it, are betwecn the same parallels.

Let the equal triangles $A B C, D B C$ be upon the same base $B C$ and upon the same side of it.
Then the triangles $A B C, D B C$ shall be between the same parallels.

Join $A D$; then $A D$ shall be parallel to $B C$.
For if $A D$ be not parallel to $P C$,
if possible, through the point A, draw $A E$ parallel to $B C$, (1. 31.) meeting $B D$, or 131 produced, in E, and join $E C$.

Then the triangle $A B C^{\prime}$ is equal to the triangle $E B C$, (1. 37.)
beeause they are upon the same base $B C$, and between the same parallels $B C, A E$:
bat the triangle $A B C$ is equal to the triangle $D B C$; (hyp.)
therefore the triengle $D R C$ is equal to the iriangle EDC,
the greater trinngle equal to the less, which is impossible:
theretore $A S$ is not parallel to $B C$.
In the same manner it ean be demonstrated,
tia! no other line drawn from A but $A D$) is parallel to $B C_{3}$ $A 1)$ is therefore parallel to $13 C$:
Wherefore, equal triangles upon, \&c. Q.E.D.

PROPOSITION XL. TILEOREM.

riqual triangles tpon equal bases in the same straight line, and towarts he sime parts, are between the sume parallels.

Jet the equal triancles $A B C, D E F$ be upon equal hases $B C, E F$, in the same strairht line $1 ; l^{\prime}$, and towards the same parts.
"hen they shall be between the same parallels.

Join $A D$; then $A D$ shall be parallel to $B F$.
loo if $A D$ be not parallel to $B F$,
if possible, through A draw $A(G$ parallel to $B F$, (r. 31.)
meeting $E I$), or $E T$) produced in $(B$, and join ($i k$.
Then the trimgre $A B C$ is equal to the triangle $C E F ;$; (1. 38.)
because they are upon equal lases $B C, L P F$, and between the same paraliels $B F, A G$;
but the triangle $A B C$ is equal to the triangle I) $E F$; (hyp.) therefore the triangle $D E F$ is equal to the triangle $G E F$, (ax. 1.)
the greater triangle equal to the less, which is impossible:
therefore $A G$ is $r n t$ parallel to $B F$.
And in the same manner .c can be demonstrated, t'ult there is no other line drawn from A parallel to it but $A D$; $A D$ is therefore parallel to $D F$. Wherefore, equal triangles upon, \&e. Q.E.D.

PROPOSITION XLI. TIEOREM.

If a parallelogram and c. triangle be upon the same base, and betuceen the same purallels; the parallelogram shall be double of the triangle.

Let the parallelogram $A B C D$, and the triangle $E B C$ be upon the same base $1 B C$, and between the same parallels $B C, A E$.

Then the parallelogram $A 1 B C D$ shall be double of the triangle $E B C$

$$
\text { Join } A C
$$

Then the triangle $A B C$ is equal to the triangle $E B C$, (1.87.)
because they are upon the same base $B C$, and between the samo parollels $13 C, A E$.
But the parallelogram $A B C D$ is double of the triangle $A B C$,
because the diameter $A C$ bisects it; (1. 34.) wherefore $A B C D$ is also double of the triangle $E B C$. Therefore, if a parallelogram and a triangle, \&c. Q.E.D.

PROPOSITION XLII. PROBLEM.

ro describe a parallelogram that shall be equal to a given triangle, and lave one of its anglos equal to a given rectitincal angle.

Let $A B C$ be the given triangle, and D the given rectilineal angle.
It is required to describe a parallelogram that shall be equal to the inven triangle $A B C$, and have one of its angles equal to D.

Bisect $B C$ in $E,(1.10$.$) and join A E$; at the point E in the straight line $E C$, make the angle $C E F$ equal to the angle 1); (1. 23.)
through C draw $C G$ parallel to $E F$, and through A draw $A F G$ parallel to $B C$, (1. 31.) meeting $E F$ in F, and $C G$ in G.

Then the figure $C E F G$ is a parallelogram. (def. A.)
And because the triangles $A B E, A E C$ are on the equal bases $B E$, $E C$, and between the same parallels $B C, A G_{T}$;
they are therefore equal to one another ; (1. 38.)
and the triangle $A B C$ is double of the triangle $A E C$; hut the parallelogram FECG is double of the triangle $A E C$, (1. 41.) because they are upon the same base $E C$, and between the same parallels $E C, A G$; therefore the parallelogram $F E C G$ is equal to the triangle $A B C$, (ax.6.)
and it has one of its angies $C E F$ equal to the given angle D.
Wherefore, a parallelogram $F E C G$ has been described equal to the given triangle $A B C$, and having one of its angles $C E F$ equal to the giver angle D. Q.E.F.

PROPOSITION XLIII. TIIEOREM.

The complements of the parallelograms, which are about the diameter of any parallelogram, are equal to one another.

Let $A B C D$ be a parallelogram, of which the diameter is $A C$: and E,H,GF the parallelograms about $A C$, that is, through which $A C$ passes: also $B K, K D$ the other parallelograms which make up the whole
figure $A B C D$, which are therefore called the complements.
Then the complement $B K$ shall be equal to the complement $K D$.

Because $A B C D$ is a parallelogram, and $A C$ ita diameter, therefore the triangle $A B C$ is equal to the triangle $A D C$. (I. 34.) Again, because $E K H A$ is a parallelogram, and $A K$ its diameter. therefore the triangle $A E K$ is equal to the triangle $A H K$; (i. B: and for the same reason, the triangle $\mathrm{Kr}(\mathrm{C}$ is equal to the triangle $K]$: Wherefore the two triangles $A F K, ~ K G C$ are equal to the (wr triangles $A H K, K F C$, (ax. 2.)
but the whole triangle $A B C$ is equal to the whole triangle $A D C$; therefore the remaining complement $B K$ is equal to the remaining complement $K D$. (ax. 3.)

Wherefore the complements, \&c. Q.e.d.
PROPOSITION XLIV. PROBLEM.
To a given straight line to apply a parallelogram, which shall be equin? to a given triangle, and have one of its augles equal to a given rectilinemi angle.

Let $A B$ be the given straight line, and C the given triangle, and I the givon rectilineal angle.

It is required to apply to the straight line $A B$, a parallelogram equal to the triangle C, and having an angle equal to the angle D.

Make the parallelogram $B E F G$ equal to the triangle C, and having the angle $E B G$ equal to the angle D, (i. 42.)
so that $B E$ be in the same straight line with $A B$;
produce $F G$ to $I T$,
through A draw $A I I$ parallel to $B G$ or $E F$, (r. 31.) and join $H 3$. Then because the straight line $I I F$ falls upon the parallels $A H, E F$
tuerefore the angles $A M F F, I I F E$ are together equal to two right anyles ; (1. 29.)
wherefore the angles $B I I F, I I F E$ are less than two right angles:
but straight lines which with another straight line, make the twe interior angles upon the same side less than two right angles, do meet if produced far enough : (ax. 12.)
therefore $I I M, F E$ shall meet if produced;
let them be produced and meet in π,
through K draw $K L$ parallel to $E A$ or $F H$, and produce $H A, G B$ to meet $K L$ in the points L, M.
Then $\boldsymbol{I I}, \boldsymbol{K} F \boldsymbol{F}$ is a parallelogram, of which the diameter is $\boldsymbol{H} \boldsymbol{R}_{\boldsymbol{i}}$

EUCLID'S ELEMENTS.

and $A G, N L E$, are the parallelograms about $H K$; also $I M, B F$ are the complements;
there fore the complement I, B is equal to the complement $B F$; (1. 13.) but the complement $J F F$ is equal to the triangle C^{\prime}; (constr.)
wherefore $L B$ is equal to the trianyle C.
And because the angle $G B E$ is equal to the angle $A B M$, (1. 15.) and likewise to the angle D; (constr.) therefore the angle $A B M$ is equal to the angle D. (ax. 1.)
Therefore to the given straight line $A B$, the parallelogram $L B$ has been applied, equal to the triangle C, and having the angle $A D M$ equal to the given angle D. Q.E.F.

PROPOSITION XLV. PROBLEM.

To describe a parallelogram equal to a given rectilineal figure, and having an angle equal to a given rectilineal angle.

Let $A B C D$ be the given rectilineal figure, and E the given rectilineal angle.

It is required to describe a parallelogram that shall be equal to the dgure $A B C D$, and having an angle equal to the given angle E.

Describe the parallelogram $\begin{aligned} & \text { Join } D R \text { equa }\end{aligned}$
having the angle FhM equal to the equal to the triangle $A D B$, and to the straight line $G H$, apply the angle E; (I. 42.)
triangle $D B C$, having the parallelegram $G M I$ equal to the (1. 44.)

Then the figure $F K M L$ shall be the parallelogram required.
Because each of the angles $F H M, G H M$, is equal to the angle E, therefore the angle $F K M I$ is equal to the angle GHMM; therefore the angles $F^{\prime} H M$, $K H G$ equals the angle $K H G$;

therefore also $K M G$ are equal to two right angles; (1. 29.)
and because at the point are equal to two right angles; straight lines $K M, M M$, point M, in the straight line GiII, the tuo jacent angles $K^{\prime} M G^{\prime}, G \neq M M O$ op the opite sides of it, make the adtherefore $H K^{\circ}$ is in the samal to two right angles,

And because the line same straight line with $H M$. (I. 14.) therefore the angle $M I I G$ is $M G$ meets the parallels $K M F, F G$, add to each of these equals the anate angle $M G F^{\prime}$; (1. 29.) therefore the angles $M I I G$. $H G \dot{G}$ equals the angle $H C i L$; but the angles $M M G, H G L$ are equal to to the angles $H F F, I I G L_{i}$ therefore also the anyles $H G F$, HGL to two right angles; (1. 29.) and therefore $F G$ is in the,$F L$ are equal to two right angies, and therefore $F G$ is in the same straight line with $G L$. (I. 14.)

Ard because $K F$ is parallel to $M G$, and $I I G$ to $M I \tilde{L}$, therefore $K F$ is parallel to $M L L$; (1. 30.) and $F L$ has been proved parallel to KMI, wherefore the figure $F K M L$ is a parallelogram; and since the parallelogram $H F$ is equal to the triangle $A B D$, and the parallelogram $G M$ to the triangle $B D C$;
therefore the whole parallelogram KFLM is equal to the whole rectilineal figure $A B C D$.
Therefore the parallelogran $K F L M$ has been described equal to the given rectilineal figure $A B C D$, having the angle $F K M$ equal to the given angle E. Q.E.F.

Cor. From this it is manifest how, to a given str" "rht line, to apply a parallelogram, which shall have an angle equal to a given rectilineal angle, and shall be equal to a given rectilineal figure; viz. by applying on the given straight line a parallelogram equal to the first triangle $A B I)$, (1. 44.) and having an angle equal to the given angle.

PROPOSITION XLVI. PROBLEM.

To describe a square upon a given straight line.
Let $A B$ be the given straight line.

It is required to describe a square upon $A B$.
From the point A draw $A C$ at right angles to $A B$; (1. 11.) make $A D$ equal to $A B$; (I. 3.)
through the point D draw $D E$ parallel to $A B$; (1. 31.)
and through B, draw $B E$ parallel to $A D$, meeting $D E$ in E;
therefore $A B E D$ is a parallelogram;
whence $A B$ is equal to $D E$, and $A D$ to $B E$; (1. 34.) but $A D$ is equal to $A B$,
therefore the four lines $A B, B E, E D, D A$ are equal to one another, and the parallelogram $A B E D$ is equilateral.
It has likewise all its angles right angles; since $A D$ meets the parallels $A B, D E$, therefore the angles $B A D, A D E$ are equal to two right angles; (1.20.) but $B A D$ is a right angle; (constr.)
therefore also $A D E$ is a right angle.
But the opposite angles of parallelograms are equal ; (1. 34.) therefore each of the opposite angles $A B E, B E D$ is a right angle; wherefore the figure $A B E D$ is rectangular, and it has been proved to be equilateral;
therefore the figure $A B E D$ is a square, (def. 30.) and it is described upon the given straight line $A B$. Q.E.F.

Cor. Hence, every parallelogram that has one of its angles a richit angle, has all its angles right angles.

PROPOSITION XLVII. TIIEOREM.

In any right-angled triangle, the square which is described upon the side subtending the right angle, is equal to the squares described upon the sides which contain the right angle.

Let $A B C$ be a right-angled triangle, having the right angle $B A C$.
Then the square described upon the side $B C$, shall be equal to the squares described upon $B A, A C$.

On $B C$ describe the square $B D E C$, (1.46.)
and on $B A, A C$ the squares $G B H C$; through A draw $A L$ parallel to $B D$ or $C E$; (r. 31.) and join $A D, F C$.
Then because the angle $B A C$ is a right angle, (hyp.) and that the angle $B A G$ is a right angle, (def. 30.) the tro straight lines $A C, A G$ upon the opposite sides of $A B$, make with it at the point A, the adjacent angles equal to two right angles; therefore $C A$ is in the same straight line with $A G_{n}$ (I. 14.) For the same reason, $B A$ and $A I I$ are in the same straight line.

And because the angle $D B C$ is equal to the angle $F B A$, each of them being a right angle,
therefore the whole angle $A B D$ is equals the angle $A B C$,
And because the two $A B D$ is equal to the whole angle $F B C$. (ax.2.) $B C$, each to cach, and the ins $A B, B D$, are equal to the two sides $F B$, angle $F B C$,
therefore the base $A D$ is equal to the base $F C$, (1. 4.) and the triangle $A B D$ to the triangle $F B C$. Now the parallelogram $B L$ is double of the triangle $A B D$, (1. 41.)
because they are upon the same base $B D$, and between the same parallels $B D, A L$;
also the square $G B$ is double of the triangle $F B C$,
because these also are upon the same base $F B$, and between ito
vere parallels $F B, G C$.
Lat the doubles of equals are equal to one another; (ax. 6.) therefore the parallelogram $D^{L} L$ is equal to the square $G B$.

Similarly, by joining $A E, B K$, it can be proved,
that the parallelogram $C L$ is equal to the square $M C$.

Therefore the whole square $B D E C$ is equal to the two squares $G E$, IIC; (ax. 2.)
and the square $B D E C$ is descrihed upon the straight line $B C$, and the squares $G B, H C$, upon $A B, A C$:
therefore the square upon the side $B C$, is equal to the squares upon the sides $A B, A C$.

Therefore, in any right-angled triangle, \&c. Q.E.D.

PROPOSITION XLVIII. THEOREM.

If the square described upon one of the sides of a triangle, be equal to the squares described upon the other two sides of it; the angle contained by these two sides is a right angle.

Let the square deseribed upon $B C$, one of the sides of the triangle $A B C$, be equal to the squares upon the other two sides, $A B, A C$.

Then the angle $B A C$ shall be a right angle.

From the point A draw $A D$ at right angles to $A C$ (1. 11.) make $A D$ equal to $A B$, and join $D C$. Then, because $A D$ is equal to $A B$, the square on $A D$ is equal to the square on $A B$; to each of these equals add the square on $A C$;

NOTES TO BOOK I.

ON THE DEFINITICNS.

Geometry is one of the most perfeet of the deductive Sciences, and
seems to rest on the simplest inductions from experienee and observation.
The first principles of Geometry are therefore in this view consistent hypotheses founded on facts cognizable by the senses, and it is a subject of primary importance to draw a distinction between the coneeption of property contrary to the remselves. These hypotheses do not involve any be regarded as arbitrary, but in ere the things, and consequently cannot tions which the things themselvain respects, agree with the concepmedium of the senses. The esselves suggest to the mind through the being inductions from observation and detinitions of Geometry therefore evidence of the senses..

It is by experience we become acquainted with the existence of individual forms of magnitudes; but by the mental process of abstraction, which begins with a partieular instance, and proceeds to the general idea of all objects of the same kind, we attain to the general conception of those forms which come under the sane general idea. of real existences in thins of Geometry express generalized conceptions ances of nature, and the operations ideal forms: the laws and appearposed uniform and consistent. or the human intellect being sup-

But in cases where the sub the terms of the definitions so call falls under the class of simple ideas, expressions. The simple idea dea, are no more than merely equivalent not in fact admit of definition Euclid's Elements may be divided properly so called. The detinitions in explain the meaning of the terms employe classes, those which merely explaining the meaning of the terms employed, and those, which, besides described in the definitions.
. Definitions in Geometry cannot be of such a form as to explain the nature and properties of the figures defined : it is sufficient that they give marks whereby the thing defined may be distinguished from every other of the same kind. It will at once be obvious, that the definitions of Geometry, one of the pure seiences, being abstractions of space, are not like the definitions in any one of the physieal sciences. The discovery of any new physical facts may render neeessary some alteration or modification in the definitions of the latter.

Def. I. Simson has adopted Theon's definition of a point. Fuclid's definition is, $\sigma \eta \mu \varepsilon i o \nu ~ \varepsilon ̇ \sigma \tau \iota \nu$ oú $\mu \dot{\rho} \rho o s c_{i o i ́ v, ~ " A ~ p o i n t ~ i s ~ t h a t, ~ o f ~ w h i c h ~ t h e r e ~}^{s}$ is no part,"' or which cannot be parted or divided, as it is explained by on a surface, in other terin $\sigma \eta \mu \varepsilon i o \nu$, litcrally means, a visible sign or munk means the sharp end of any a physical point. The English term point, point comes from the Latin pung, or a mark made by it. The word Neither of these terms in it punctum, through the French word point. notion of what is to be understond sense, appears to give a very exact definition of a point merely expresses by a point in Geometry. Euclid's the proper and literal meanine of th negative property, which exchudes physical point, or a mark which is Greek term, as applied to denote a Pythagoras detined a point to be visible to the senses. position." By uniting the to be μ ovas $\theta_{\text {éal }}$ exouaa, " a monad having idea of defeet of magnitude, the conception of position, with the negative
be rendered perhaps more intelligible. A point is defined to be that which has no magnitude, but position only.
Def. II. Every visible line has both length and breadth, and it is im. possible to draw any line whatever whieh shall have no breadth. The definition requires the conception of the length only of the line to be considered, abstracted from, and independently of, all idea of its breadth.

Def. III. This definition renders more intelligible the exact meaning of the definition of a point: and we may add, that, in the Elements, Euclid supposes that the intersection of two linces is a point, and that two lines can intersect each other in one point only.

Def. iv. The straight line or right line is a term so clear and intelligible as to be incapable of becoming more so by formal definition.
 oŋयzios кहírat, wherein he states it to lie evenly, or equally, or upon an equality ($\xi \xi$ ícou) between its extremities, and which Proclus explains as

If the line be conceived to be drawn on a plane surface, the words $i \xi$ igou may mean, that no part of the line which is called a straight line deviates either from one side or the other of the direction which is fixed by the extremities of the line; and thus it may be distinguished from a curved line, which does not lie, in this sense, evenly between its extreme points. If the line be conceived to be drawn in space, the words $\dot{\xi} \xi$ igov, must be understood to apply to every direction on every side of the line between its extremities.

Every straight line situated in a plane, is considered to have two sides; and when the direction of a line is known, the line is said to be given in position; also, when the length is known or can be found, it is said to be given in magnitude.

From the definition of a straight line, it follows, that two points fix a straight line in position, which is the foundation of the first and seeond postulates. Hence straight lines which are proved tocoineidein twoor more points, are called, "one and the same straight line," Prop. 14, Book r, or, which is the same thing, that "two straight lines cannot have a common segment," as Simson shews in his Corollary to Prop. 11, Book i.

The following definition of straight lines has also been proposed. "Straight lines are those which, if they coincide in any two points, coincide as far as they are produced." But this is rather a criterion of straight lines, and analogous to the eleventh axiom, which states that, "all right angles are equal to one another," and suggests that all straight lines may be made to coincide wholly, if the lines be equal; or partially, if the lines be of unequal lengths. A definition should properly be restricted to the description of the thing defined, as it exists, independently of any comparison of its properties or of tacitly assuming the existence of axioms.

 that which lies evenly or equally with the straight lines in it;" instead of which Simson has given the definition which was originally proposed by Hero the Elder. A plane superficies may be supposed to be situated in any position, and to be continued in every direetion to any extent.

Def. viri. Simson remarks that this definition seems to include the angles formed by two curved lines, or a curve and a straight line, as weil as that formed by two straight lines.

Angles made by straight lincs oniy, are trested of in Elementary Preometry.

Def. Ix. It is of the highest impoztance to attain a clear annception of an angle, and of the sum and difference of two angles. The literal meaning of the term angulus suggests the Geometrical conception of an angle, which may be regarded as formed by the divergence of two straight lines from a point. In the definition of an angle, the magnitude of the angle is independent of the lengths of the two lines by which it is included; their mutual divergence from the point at which they meet, is the criterion of the magnitude of an angle, as it is pointed out in the the angular point or the The point at which the two lines meet is called with the magnitude of the sntex of the angle, and must not be confounded nitude, and, on this account itself. The right angle is fixed in mag. other angles are compared. it is made the standard with which ail

Two straight lines whi when produced would intersect, are said to be inclined to or, or which and the inclination of the two lines is determined by the one another, they make with one another.

Def. x. It may be here ob assumes that when one line is also perpendicular to the formerpendicular to another line, the latter is

Def. xix. This has been restored fr. meaning in the construction of Pred from Proclus, as it seems to have a 33, Book IIt, and Prop. 13, Jook vi. 14, Book 1 ; the first case of Prop. circle is not once alluded to in Book The definition of the segment of a cussion of the properties of the circle in is not required before the disthis definition: "Hence you may collect thook inf. Proclus remarks on for it is either within the figure collect that the center has three places :in the semicircle; or without the as in the circle; or in its perimeter, as

Def. xxty-xxix. Triangles a figare, as in certain conic fines." to the relations of their sides; are divided into three classes, by reference to their angles. A further classification other classes, by reference both the relation of the sides and angles in each be made by considering

In Simson's definition of the angles in each triangle. omitted, as in the Cor. Prop. 5, Book triangle, the word only must be equilateral, and an equilateral triangle is cons isosceles triangle may be Book iv. Objection has bren male is considered isosceles in Prop. 15, triangle. It is said that it cannot be to the definition of an acute-angled three angles of a triangle are acue admitted as a definition, that all the may be replied, that the definacute, which is supposed in Def. 20. It and seem to supply a foundation for the three kinds of angles point out Def. xxx-xxxiv. The definitior a similar distinction of triangles. objection. All of them, except ths of quadrilateral figures are iiable to idea of a parallelogram; but as Euclideezium, fall under the general after he had defined four-sided figures defined parallel straight lines adopted than the one he has followes, no other arrangement could be him, without doubt, some probable ; and for which there appeared to Seventh Lecture, renarks on some reasons. Sir Henry Savile, in his dissimulandum aliquot harum in of the definitions of Euclid, "Nee metriâ." A few verbal emendationibus exiguum esse usum in Geo-

A square is a four-sided plane fise been made in some of them. one angle a right angle : because it figure having all its sides equai, and parallelogram have one angle a righoved in Prop. 46, Book r, that if a angles.

Ain oblong, in the same manner, may be defined as a plane figure of four sides, having only its opposite sides equal, and one of its angles ss right angle.

A rhomboid is a four-sided plane figure having only its opposite sides equal to one another and its angles not right angles.

Sometimes an irregular four-sided figure which has two sides parallel, is called a trapezoid.

Def. xxyv. It is possible for two right lines never to meet when produced, and not be paraliel.

Def. A. The term parallelogram literally implies a figure formed by parallel straight lines, and may consist of four, six, eight, or any even number of sides, where every two of the opposite sides are parallel to one another. In the Elements, however, the term is restricted to four-sided figures, and includes the four species of figures named in the Definitions xxx-xxxili.

The synthetic method is followed by Euclil not only in the demonstrations of the propositions, but also in laying down the definitions. He commences with the simplest abstractions, defning a point, a line, an angle, a superficies, and their different varieties. This mode of proceeding involves the difficulty, almost insurmountable, of defining satisfactorily the elementary abstractions of Geometry. It has been observed, that it is necessary to consider a colid, that is, a magnitude which has length, breadth, and thickness, in order to understand aright the definitions of a point, a line, and a superficies. A solid or volume considered apart from its physical properties, suggests the idea of the surfaces by which it is bounded: a surface, the idea of the line or lines which form its boundaries: and a finite line, the points which form its extremities. A solid is therefore bounded by surfaces; a surface is bounded by lines; and a line is terminated by two points. A point marks position only : a line has cne dimension, length only, and defines distance: a supericies has two dimensions, length and breadth, and defines extension: and a

- solid has three dimensions, length, breadth, and thickness, and detines some portion of space.

It may also be remarked that two points are sufficient to determine the position of a straight line, and three points not in the same straight line, are necessary to tix the position of a plane.

ON THE POSTULATES.

The definitions assume the possible existence of straight lines and circles, and the postulates predicate the possibility of drawing and of producing straight lines, and of describing circles. The postulates form the principles of construction assumed in the Elements ; and are, in fact, problems, the possibiiity of which is admitted to be self-evident, and to require no proof.

It must, however, be carefully remarked, that the third postulate only admits that when any line is given in position and magnitude, a circle may be described from either extremity of the line as a center, and with a radius equal to the length of the line, as in Euc. I, 1. It does not admit the description of a circle with any other point as a center than one of the extremities of the given line.

Euc. 1. 2, shews how, from any given point, to draw a straight line equal to another straight line which is given in magnitude and position.

hUCLID's ELEMENTS.

ON THE AXIOMS.

Axions are usually defined to be self-evident truths, which cannot be rendered more evident by demonstration; in otleer words, the a:ioms of Geometry are theorems, the truth of which is mhinited without proof. It is by experience we first become aequainted with the different forms of geometrical magnitudes, and the axioms, or the fundamental ideas of their equality or inequality appear to rest on the same basis. The conception of the truth of the axioms does not appear to be more removed from experience than the conception of the detinitions.

These axioms, or first principles of demonstration, are such theorems as cannot be resolved into simpler theorems, and "o theot m ought to be admitted as a first principle of reasoning which is capable of being demonstrated. An axiom, and (when it is convertible) its converse, should both be of such a nature as that neither of them should requise a formal demonstration.

The first and most simple idea, derived from experience is, that every magnitude fills a certain space, and that several magnitudes may successively fill the same space.

All the knowledge we have of magnitude is purely relative, and the most simple relations are those of equality and inequality. In the comparison of magnitudes, some are considered as givea or known, and the unknown are compared with the known, and conclusions are synthetically deduced with respect to the equality or inequality of the magnitudes under consideration. In this manner we form our idea of equality, which is thus formally stated in the eighth nxiom: "Magnitudes which coincide with one another, that is, which exactly fill the same space, are equal to one another."

Every specific definition is referred to this universal princinle. With regard to a few more general definitions which do not furnish a s equality, it will be found that some hypothesis is always made reducing them to that principle, before any theory is built upon them. As for example, the definition of a straight line is to be referred to the tenth axiom; the definition of a right angle to the eleventh axiom; and the definition of parallel straicht lines to the twelfth axiom.

The eighth axiom is called the principle of superposition, or, the mental process by which one Gcometrical magnitude may be conceived to be placed on another, so as exactly to coincide with it, in the parts which are made the subject of comparison. Thus, if one siraight line be conce:ved to be placed upon another, so that their extremities are coincident, the two straight lines are equal. If the directions of two lines which include one angle, coincide with the directions of the two lines which contain another angle, where the points, from which the angles diverge, coincide, then the two angles are equal: the lengths of the lines not affecting in any way the magnitudes of the angles. When one plane figure is conceived to be placed upon another, so that the boundaries of one exactly coincide with the boundaries of the other, then the two plane figures are equal. It may also be remarked, that the converse of this proposition is not universally true, namely, that when two magnitudes are equal, they coincide with one another: since two magnitudes may be equal in area, as two parallelograms or two triangles, Eue. I. 35, sup but thcir boundaries may not be equal: and, consequently, by superposition, the figures could not exactly coincide: all such figures, towever, having equal areas, by a different arrangement of their parts, may be made to coincide exactly.
h cannot be a:ioms of hout proor. erent forms tal ideas of The conre removed h theorems might to lie being derse, should e a formal

that every

 ay succes.e, and the the comn, and the synthetiagnitudes equality, des which space, are
e. With equality, g them to example, iom ; the inition of
or, the onceived the parts it line be are coinwo lines wo lines te angles the lines ne plane daries of the two verse of magnisnitudes c. 1. 35 , itly, by figures, $\mathrm{r}_{\mathrm{parts}}^{1}$

This axion is the criterion of geomesrical equality, and is essentially different from the criterion of Arithmetical equality. "wo geometrical magnitudes are equal, when they coincide or may be mide to comeide : two abstract numbers are equal, when they contain the same ugyregate of units; and two concrete numbers are equal, when they continin the same number of units of the same kind of magnitnde. It is at once obvious, that Arithmetical representations of Geometrical maguitudes are nst admissible in Euclid's criterion of Geometrical Equality, as he has not fixed the unit of magnitude of either the straight line, the angle, or the superficies. Yerhaps Euclid intended that the first seyen axioms should be upplicaule to numbers as well as to Geometrical magnitudes, and this is in accordance with the words of Proclus, who calls the axions, common notions, not peculiar to the subject of Geometry.

Several of the axioms may be generally excmplified thus :
Axiom 1. If the straight line $A B$ be equal to the straight line $C D$; and if the straight line $E F$ be also equal to the straight line $C D$; then the straight line $A B$ is equal to the straight line $E F$.

Axiom n. If the line $A B$ be equal to the line $C D$; and if the line $E F$ be also equal to the line GII: then the sum of the lines $A B$ and $E F$ is equal to the sum of the lines $C D$ and $G H$.

Axiom ini. If the line $A B$ be equal to the
 line $C D$; and if the line $E F$ be also equal to the line $G I I$; then the difference of $A B$ and $E F$, is equal to the difference of $C D$ and $G I I$.

Axiom iv. admits of being exemplified under the two following forms:

1. If the line $A B$ be equal to the line $C D$; and if the line EF be greater than the line GII; then the sum of the lines $A B$ and $E F$ ls greater than the sum of the lines $C D$ and $G I I$.
2. If the line $A B$ be equal to the line $C D$; and if the line EF be less than the line GII; then the sum of the lines $A B$ and $E F$ is less than the sum of the lines $C D$ and GII.

Axiom \mathbf{v}. also admits of two forms of exemplification.

1. If the line $A B$ be equal to the line $E D$; and if the line EF be greater than the line GII; then the difference of the lines $A B$ and $E F$ is greater than the difference of $C D$ and $G M$.
2. If the line $A B$ be equal to the line $C D$; and if the line $E F$ be iess than the line $G I I$; then the difference of the lines $A B$ and $E F$ is
 less than the difference of the lines $C D$ and $G I I$.

The axiom, "If unequals be taken from equals, the remainders are unequal," nay be exemplified in the same manner.

Axiom vi. If the line $A B$ be double of the A line $C D$; and if the line $E F$ be also double of the line $C D$;
then the line $A B$ is equal to the line $E F$.
Axiom vir. If the line $A B$ be the half of the line $C D$; and if the line $E F$ be alco the holl of the line $C D$;
then the line $A B$ is equal to the line $E F$.

$A B$

0
\pm

It may be observed that when equal magnitudes are taken from unequal magnitudes, the greater remainder exceeds the less remainder by es much as the greater of the unequal magnitudes exceeds the less.

If unequals be taken from unequals, the remainders are not always unequal; they may be equal: also if unequals be added to unequals the wholes are not always unequal, they may also be equal.

Axiom Ix. The whole is greater than its part, and conversely, the part is less than the whole. This axiom appears to assert the contrary of the eighth axiom, namely, that two magnitudes, of which one is greater than the other, cannot be made to coincide with one another.

Axiom x. The property of straight lines expressed by the tenth axiom, namely, "that two straight lines cannot enclose a space," is obviously implied in the definition of straight lines; for if they enclosed a space, they could not coincide between their extreme points, when the two lines are equal.

Axiom xi. This axiom has been asserted to be a demonstrable theorem. As an angle is a species of magnitude, this axiom is only a particular application of the eighth axiom to right angles.

Axiom xir. See the notes on Prop. xxix. Jook r.

ON THE PROPOSITIONS.

Whenever a judgment is formally expressed, there must be something respecting which the judgment is expressed, and something else which constitutes the judgment. The former is called the subject of the proposition, and the latter, the predicate, which may be anything which can be affirmed or denied respecting the subject.

The propositions in Euclid's Elements of Geometry may be divided into two classes, problems and theorems. A proposition, as the term imports, is someching proposed; it is a problem, when some Geometrical construction is required to be effected: and it is a theorem when some Geometrical property is to be demonstrated. Every proposition is natu. rally divided into two parts; a problem consists of the data, or things given; and the quasita, on things required: a theorem, consists of the subject or hypothesis, and the ronclusion, or predicate. Hence the distinction between a problem and a theorem is this, that a problem consists of the data and the quesita, and requires solution: and a theorem consists of the hypothesis and the predicate, and requires demonstration.

All propositions areaffirmative or negative; that is, they either asser some property, as Euc. I. 4, or deny the existence of some property, as Euc. 1. 7; and every proposition which is affirmatively stated has a contradictory corresponding proposition. If the affirmative be proved to be true, the contradictory is false.

All propositions may be viewed as (1) universally affirmative, or universally negative ; (2) as particularly affirmative, or particularly negative.

The connected course of reasoning by which any Geometrical truth is established is called a demonstration It is called a direct demonstration when the predicate of the proposition is inferred directly from the premisses, as the conclusion of a series oi successive deductions. The demonstration is called indirect, when the conelusion shows that the introduction of any other supposition contrary to the hypothesis stated in the proposition, necessarily leads to an absurdity.

It has been remarked by Paseal, that "Geometry is almost the only subject as to which we find truths wherein all men agree; and one cause of this in, that Gcometion alivie segard the true laws of demonstration."

These are enumerated by him as eight in number. "1. To defino nothing which cannot be expressed in clearer terms than those in which it is already expressed. 2. To leave no obscure or equivocal terms undelined. 3. To employ in the definition no terms not already known. 4. To omit nothing in the principles from which we argue, unless we are sure it is granted. S. To lay down no axiom which is not perfeetly evident. 6. To demonstrate nothing which is as elear already as we can make it. 7. To prove every thing in the least doubtful by means of self-evident axioms, or of propositions already demonstrated; 8. To substituto mentally the definition instead of the thing defined." Of these rules, ho says, "the first, fourth and sixth are not absolutely necessary to avoid error, but the other five are indispensable; and though they may be fonnd in looks of logic, none but the Geometers have paid any regard to them.'

The course pursued in the clemonstrations of the propositions in Euclid's Elements of Geometry, is always to refer directly to some expressed principle, to leave nothing to be inforred from vague expressions, and to make every step of the demonstrations the object of the understanding.

It has been maintained by some philosophers, that a genuine definition contains some property or properties which can form a basis for demonstration, and that the seience of Geometry is deduced from the definitions, and that on them alone the demonstrations depend. Others have maintained that a definition explains only the meaning of a tern, and does not embrace the nature and propertics of the thing defined.

If the propositions usually called postulates and axioms are either taeitly assumed or expressly stated in the definitions; in this view, demonstrations may be said to be legitimately fornd led on definitions. If, on the other hand, a definition is simply of a term, whether abstrat of the meaning of a term, whether abstract or conerete, ly such marks as may prevent a misconception of the thing defined; it will be at once obvious that some constructive and theoretic principles must be assumed, besides the definitions to form the ground of legitimate demonstration. These prineiples we conceive to be the postulates and axioms. The postulates describe constructions which may be admitted as possible by direet appeal to our experienee; and the axioms assert general theoretic truths so simple and self-evident as to require nu proof, but to be admitted as the assumed frst principles of demonstration. Under this view all Geometrical reasonings proceed upon the admission of the hypotheses assumed in the definitions, and the unquestioned possibility of the postulates, and the truth of the axioms.
Deductive reasoning is gencrally delivered in the form of an enthymenie, or an argument wherein one enunciation is not expressed, but is readily supplied by the reader: and it may be observed, that although this is the urdinary mode of speaking and writing, it is not in the strictly syllogistie form ; as either the majnr or the minor premiss only is formally stated before the conclusion: 'Thus in Euc. i, 1.

Beeause the point A is the center of the circle $B C D$;
therefore the straight line $A B$ is equal to the straight line $A C$.
The premiss here omitted, is: all straight lines drawn from the center of a cirele to the circumference are equal.

In a similar way may be supplied the reserved premiss in every enthy. meme. The eonclusion of two enthymemes may form the major and minor prenise of o thired syllogism, wind so on, and thus any process of reasoning is reduced to the strictly syllegistic form. And in this way it is shown
that the general theorems of Geometry are demonstrated by means of syllogisms founded on the axioms and definitions.

Every syllogism consists of three propositions, of which, two are called the premisses, and the third, the conclusion. These propositions contain three terms, the subject and predicate of the conclusion, and the middile term which connects the predicate and the conclusion together. The subject of the conclusion is called the minor, and the predicate of the conclusion is called the major term, of the syllogism. The major term appears in one premiss, and the minor term in the other, with the middle term, which is in both premisses. That premiss which contains the middle terin and the major term, is called the major premiss; and that which contains the middie term and the minor term, is called the minor premiss of the syllogism. As an example, we may take the syllogism in the demonstration of Prop. 1, Book 1, wherein it will be seen that the middle ferm is the subject of the major premiss and the predicate of the minor.
Major premiss: beeause the straight line $A B$ is equal to the straight line $A C$;
Minor premiss: and, because the straight line $\dot{B} C$ is equal to the straight

- line $A B$;

Conclusion : therefore the straight line $B C$ is equal to the straight line $A C$.
Here, $B C$ is the subject, and $A C$ the predicate of the conclusion. $B C$ is the subject, and $A B$ the predicate of the minor premiss. $A B$ is the subject, and $A C$ the predicate of the major premiss. Also, $A C$ is the major term, $B C$ the minor term, and $A B$ the middle term of the syllogism.

In this syllogism, it may be remarked that the definition of a straight line is assumed, and the definition of the Geometrical equality of two straight lines; also that a general theoretic truth, or axiom, forms the ground of the conclusion. And further, though it be impossible to make any point, mark or sign (onueiov) which has not both length and breadth, and any line which has not both length and breadth; the demonstrations in Geometry do not on this account become invalid. For they are pursued on the hypothesis that the point has no parts, but position only : and the line has length only, but no breadth or thickness : also that the surface has length and breadth only, but no thickness: and all the conclusions at which we arrive are independent of every other consideration.

The truth of the conclusion in the syllogism depends upon the truth of the premisses. If the premisses, or only one of them be not true, the conclusion is false. The conclusion is said to follow from the premisses; whereas, in truth, it is contained in the premisses. The expression must be understood of the mind apprelending in succession, the truth of the premisses, and subsequent to that, the truth of the conclusion; so thet the conclusion follows from the Fiemisses in order of time as far as reference is made to the mind's apprehension of the whole argument.

Every proposition, when complete, may be divided into six parrs, as Proclus has pointed out in his commentary.

1. The proposition, or general enunciation, which states in ger.eral terms the conditions of the problem or theorem.
2. The exposition, or particular enumciation, which exhibits the subject of the proposition in particular terms as a fact, and refers it to some diagram described.
3. The determination contalr the predicate in particular terms, as it is pointed out in the diagram, aht directs attention to the demonstration. by pronouncing the thing sought,
o are called ons contain the middile ther. The of the con. rm appcars ddle term, he middle hat which nor premiss he demondle term is r.
it line $A C$; te straight
at line $A C$. sion. premiss. premiss. iddle term a straight ty of two orms the e to make 1 breadth, nstrations e pursued : and the e surface nelugions the truth true, the emisses; ion must truth of relusion ; of tine ie whole
parts, as
ral terms te subject to some ns, as it stration,
4. The construction applies the postulates to prepare the diagram for the demonstration.
5. The demonstration is the connexion of syllogisms, which p:ove the truth or falsehood of the theorem, the possibility or impossibility of the problem, in that particular case exhibited in the diagram.
6. The conclusion is merely the repetition of the general enunciation. wherein the predicate is asserted as a demonstrated truth.

Prop. I. In the first two books, the circle is employed as a mechancal instrument, in the same manner as the straight line, and the use nuade of it rests entirely on the thirl postulate. No properties of the circle are discussed in these books beyond the definition and the third postulate. When two cireles are described, one of which has its center in the circumference of the other, the two circles being each of them partly within and partly without the other, their circumferences must intersect each other in two points; and it is obvious from the two circles eutting each other, in two points, one on each side of the given line, that two equilateral triangles may be formed on the given line.

Prop. II. When the given point is neither in the line, nor in the line produced, this problem admits of eight different lines being drawn from the given point in different directions, every one of which is a solution of the problem. For, 1. The given line las two extremities, to each of which a line may be drawn from the given point. 2. The equilateral triangle may be described on either side of this line. 3. And the side $B D$ of the equilateral triangle $A B I$) may be produced either way.

But when the given point lies either in the line or in the line produced, the distinction which arises from joining the two ends of the line with the given point, no longer exists, and there are ondy four cases of the problem.

The construction of this problem assumes a neater form, by first deBcribing the circle c' $G I l$ with center B and radius $B C$, and preducing $D B$ the side of the equilateral triangle DBA to meet the circumference in G : next, with center D and radius $D G$, describing the circle $G L i L$, and then producing $D A$ to meet the circumference in L.

By a similar construction the less of two given straight lines may be produced, so that the less together with the part produced may be equal to the greater.

Prop. ir. This problem admits of two solutions, and it is left undetermined from which end of the greater line the part is to be cut off.

By means of this prohlem, a straight line may be found equal to the sum or the difference of two given lines.

Prop. Iv. This forms the first case of equal triangles, two other cases are proved in Prop. virs. and P'rop. xxvi.

The term base is obviously taken from the idea of a building, and the same may be said of the term altilude. In Geometry, however, these terins are not restricted to wne particular position of a figure, as in the case of a building, but may be in any position whatever.

Prop. v. Proclus has given, in his commentary, a proof for the equality of the angles at the base, without producing the equal sides. The construction follows the same order, taking in $A B$ one side of the isosceles triangle $A B C$, a point L and cutting off from $A C$ a part $A D$ equal to $A D$, and then joining $C D$ and $B E$.

A corollary is a theorem which results from the demonstration of a proposition.

Prop. vi. is the converse of one part of Prop. v. One proposition

eUolid's elements.

is defined to be the converse of another when the hypothesis of the former becomes the predicate of the latter ; and vice versa.

There is besides this, another kind of conversion, when a theorem has several hypotheses and one predicate; by assuming the predicate and one, or more than one of the hypotheses, some one of the hypotheses may be inferred as the predicate of the converse. In this manner, Prop. vili, is the converse of Prop. Iv. It may here be observed, that converse theorems are not universally true: as for instance, the following direct proposition is universally true; "If two triangles have their three sides respectively equal, the three angles of each sinall be respectively equal." But the converse is not universally true; namely, "If two triangles have the three angles in each respectively equal, the three sides are respectively equal." Converse theorems require, in some instances, the consideration of other conditions than those which enter into the preof of the direct theorem. Converse and contrary propositions are by no means to be confounded; the contrary proposition denies what is asserted, or asserts what is denied, in the direct proposition, but the subject and predicate in each are the same. A contrary proposition is a completely contradictory proposition, and the distinction consists in this-that two contrary propositions may both be false, but of two contradictory propositions, one of them must be true, and the other false. It may here be remarked, that one of the nost common intellectual mistakes of learners, is to imagine that the denial of a proposition is a legitimate ground for affirming the contrary as true: whereas the rules of sound reasoning allow that the affirmation of a proposition as true, only affords a ground for the denial of the contrary
as false.
lrop. vi. is the first instance of indirect demonstrations, and they are more suited for the proof of converse propositions. All those propositiens which are demonstrated ex absurdo, are properly analytical demonstrations, according to the Greek notion of analysis, which first supposed the thing required, to be done, or to be true, and then shewed the consistency or inconsistency of this construction or hypothesis with truths admitted or already demonstrated.

In indirect demonstrations, where hypotheses are made which are not true und contrary to the truth stated in the proposition, it seems desirable that a form of expression shouid be employed different from that in which the hypotheses are tiue. In all cases therefore, whether noted by Euclid or not, the words if possible lave been introduced, or some such qualifying expression, as in Euc. I. 6, so as not to leave upon the mind of the learner, the impression that the hypothesis which conta adicts the proposition, is really true.

Prop. viil. When the three sides of one triangle are shewn to $l \mathrm{~s}$ coincide with the three sides of any other, the cquality of the triangles is at once obvious. This, however, is not stated at the conclusion of Prop. vinf, or of Prop. xxvi. For the equality of the areas of two coincident triangles, reference is always made by Euclid to Prop. iv.

A direct demonstration may be given of this proposition, and Prop. vir. may be dispensed with altogether.

Let the triangles $A B C$, $D E F$ be so placed that the base $B C$ may coincide with the base $E F$, and the vertices A, D may be on opposite sides of $E F$. Join $A D$. Then because $E A D$ is an isosceles triangle, the angle $E A D$ is equal to the angle EDA; and because CDA is on isosceles triangle, the angle CAD is cqual to the angle CDA. Hence
the angle $E A F$ is equal to the angle $E D F$, (ax. 2 or 3): or the angle $B D C$ is equal to the angle EDF.

Prop. Ix. If $B A, A C$ be in the same straight line. This problem then becomies the same as Prob. xI, which may be regarded as drawing a line which bisects an angle equal to two right angles.

If $F A$ be produced in the fig. Prop. 9 , it bisects the angle which is the defect of the angle BAC from four right angles.

By means of this problem, any angle may be divided into four, eight, sixteen, \&c. equal angles.

Prop. x. A finite straight line may, by this problem, be divided into four, eight, sixteen, \&c. equal parts.

Prop. XI. When the point is at the extremity of the line: by the second nostulate the line may be produced, and then the construction applies. See note on Euc. III. 31.

The distance between two points is the straight line which joins the points; but the distance between a point and a straight line, is the shortest line which can be drawn from the point to the line.

From this Prop. it follows that only one perpendicular can be drawn from a given point to a given line; and this perpendicular may be shewn to be less than any other line which can be drawn from the given point to the giver the and of the rest, the line which is nearer to the perpendicular and than one remote from it also only two equal straight lin se drawn from the same point to the line, one on each side of the perpendicular or the least. This property is analogous to Euc. 1II. 7, 8.

The corollary to this proposition is not in the Greek text, but was added by Simson, who states that it "is neeessary to Prop. 1, Book xI., and otherwise."

Prop. xir. The third postulate requires that the line $C D$ should be drawn before the circle can be described with the center C, and radius $C D$.

Prop. XIV. is the converse of Prop. xili. "Upon the opposite sides of it." If these words were omitted, it is possible for two lines to make with a third, two angles, which together are equal to two right angles, in such a manner that the two lines shall not be in the same straight line.

The line $B E$ may be supposed to fall above, as in Euclid's tigure, or below the line $B D$, and the demonstration is the same in form.

Prop. xv. is the development of the definition of an angle. If the lines at the angular point be produced, the produced lines have the same inclination to one another as the original lines, but in a differeht position.

The converse of this Proposition is not proved by Euclid, nanely :If the vertical angles made by four straight lines at the same point be respectively equal to each other, each pair of opposite lines shall be in the same straight line.

Prop. xvir. appears to be only a corollary to the preceding proposition, and it seems to be introduced to explain Axiom xir, of which it is the converse The exact truth respecting the angles of a triangle $1 s$ proved in Prop. xxxil.

Prop. xvill. It may here be remarked, for the purpose of guarding the student against a very common mistake, that in this proposition and in the converse of it, the hypothesis is stated before the predicate.

Prop. xix. is the converse of Prop. xviri. It may be remarked, that Prop. xix. hears the same relation to Prop. xvur, as Prop, Fif does to Prop, ${ }^{\text {v. }}$

Prop. xx. The followirg corollary arises from this proposition:-
A straight line is the shortest distance between two points. For -he straight line $B C$ i elways less than $B A$ and $A C$, however near the point A may be to th. line $B C$.

It may be easily shewn from this proposition, that the difference of any two sides of a triangle is less than the third side.

Prap. xxir. When the sum of two of the lines is equal to, and when it is less than, the third line; let the diagrams be deseribed, and they will exhibit the impossibility implied by the restriction laid down in the Proposition.

The same remark may be made here, as was made under the first Proposition, namely :-if one circle lies partly within and partly without another circle, the circumferences of the circles intersect each other in two points.

Prop. xxilf, $C D$ might be taken equal to $C E$, and the construction affeeted by means of an isoseeles triangle. It would, however, be less gencral than Euclid's, but is more convenient in practice.

Prop. xxiv. Simson anakes the angle $E D G$ at D in the line $E D$, the side which is not the greater of the two $E D, D F$; otherwise, three different cases would arise, as may be seen by forming the different figures. The point G might fall below or upon the base $E F$ produced as well as above it. Prop. xxiv. and Prop. xxv. bear to each other the same relation as Prop. Iv, and Prop. viri.

Prop. Xxvi. This forms the third case of the equality of two triangles. Every triangle has tliree sides and three angles, and when any three of one triangle are given equal to any three of another, the triangles may be proved to be equal to one another, whenever the three magnitudes given in the hypothesis are independent of one another. Prop. 1v. contains the first case, when the hypothesis consists of two sides and the ineluded angle of each triangle. Prop. viri. contains the second, when the hypothesis consists of the three sides of each triangle. Prop. xxys. contains the third, when the hypothesis consists of two angles, and one side. either adjaeent to the equal angles, or opposite to one of the equal angles in each triangle. There is another case, not proved by Euclid, when the hypothesis consists of two sides and one angle in each triangle, but these not the angles included by the two given sides in each triangle. This case however is only true under a certain restriction, thus:

If two triangles have two sitles of one of them equal to two sides of the other, each to each, and have also the angles opposite to one of the equal sides in each triangle, equal to one another, and if the angles opposite to the other equal sides be both acute, or both obtuse angles; then shall the third sides be equal in each triangle, as, also the remaining angles of the one to the remaining angles of the other.

Let $A B C, D E F$ be two triangles which have the sides $A B, A C$ equal to the two sides $D E, D F$, each to eaeh, and the angle $A B C$ equal to the angle $D E F$: then, if the angles $A C B, D E F$, be both acute, or both obtuse angles, the third side $B C$ shall be equal to the third side $E F$, and also the angle $B C A$ to the angle $E F D$, and the angle $B A C$ to the angle EDF.

First. Let the angles $A C B, D F E$ opnosite to the equal sides $A B$, $D E$, be both acute angles.

If $B C$ be not equal to $E F$; let $B C$ be the greater, and from $B C$, cut off $B G$ equal to $E F$, and join $A G$.

Then in the triangles $A P G, D E F$, Euc. i. $4 . A G$ is equal to $D F_{1}$
and the angle $A G B$ to $D F E$. But since $A C$ is equal to $D F, A G$ is equal to $A C$: and therefore the angle $A C G$ is equal to the angle $A G C$, which is also an acute angle. But because $A G C, A G B$ are together equal to two right angles, and that $A G C$ is an acute angle, $A G B$ must be an obtuse angle; which is absurd. Wherefore, $B C$ is not unequal to $E F$, that is, $B C$ is equal to $E F$, and also the remaining angles of one triangle to the remaining angles of the other.

Secondly. Let the angles $A C B, D F E$, be both obtuse angles. By proceeding in a similar way, it may be shewn that $L C$ canot be other wise than equal to $E F$.

If $A C P, D F E$ be both right angles: the case falls under Euc. I. 26.
Prop. xxvir. Alternate angles are defined to be the two angles which two straight lines make with another at its extremities, but upon opposite sides of it.

When a straight line intersects two other straight lines, two pairs or alternate angles are formed by the lines at their intersections, as in the tigure, $D E F, E F C$ are alternate angles as well as the angles $A E F, E F D$.
l'rop. xxvir. One angle is called "the exterior angle," and another "the interior and opposite angle," when they are formed on the same side of a straight line which falls upon or intersects two other straight lines. It is also obvious that on each side of the line, tnere will be two exterior and two interior and opposite angles. The exterior angle LGB has the angle GUID for its corresponding interior and opposite angle: slso the exterior angle $F H D$ has the angle $H G B$ for its interior and opposite angie.

Prop. xxix is the converse of Prop. xxvir and Prop. xxviri.
As the definition of parallel straight lines simply describes them by a statement of the negative property, that they never meet; it is necessary that some positive property of parallel lines should be assumed as an axiom, on which reasonings on such lines insy be founded.

Euclid has assumed the statement in the twelfth axiom, which has heen objected to, as not being self-evident. A stronger objection appears to be, that the converse of it forms Euc. 1. 17; for both the assumed axiom and its converse, should be so obvious as not to require formal demonstration.

Simson lias attempted to overcome the objection, not by any improved definition and axiom respecting parallel lines; but, by considering Euelid's twelfth axiom to be a theorem, and for its proof, assuming two detinitions and one axiom, and then demonstrating five subsidiary Propositions.

Instead of Euclid's twelfth axiom, the following has been proposed as a more simple property for the foundation of reasonings on parallel lines; namely, "If a straight line fall on two parallel straight lines, the alternate angles are equal to one another." In whatever this may exceed Euclid's definition in simplicity, it is liable to a similar objection, being the converse of Euc. 1. 27.

Professor Playfair has adopted in his Elements of Geometry, that "Two straight lines which intersect ons another cannot be both paralle? to the same straight line." This apparently more simple axiom follows as a direct inference from Euc. 1. 30 .

But one of the least objectionable of all the definitions which have been proposed on this subject, appears to be that which simply expresses the conception of equidistance. It may be formally stated thus: "Parallel lines are such as lie in the same plane. and which neither secede from, noe anproach to, each other," This ineludes the son=

EUCLID'S ELEMENTS.

ception stated by Euclid, that paralle! lines never meet. Dr. Wallis observes on this subject, "Parallelismus et æquidistantia vel idem sunt, vel certe se mutuo comitantur."

As an additional reason for this definition being preferred, it may be remarked that the meaning of the terms $\gamma \rho a \mu \mu \alpha l$ $\pi \alpha \rho \dot{\alpha} \lambda \lambda \eta \lambda o c$, suggests the exact idea of such lines.

An account of thirty methods which have been proposed at different times for avoiding the difficulty in the twelfth axiom, will be found in the appendix to Colonel 'Ihompson's "Geometry without

Prop. x
one on each side of diagram, the two lines $A B$ and $C D$ are placed when both $A B$ and $C D$ e line $E F$: the proposition may also be proved

Prop. xxxir. From this the same side of $E F$. of a triangle be equal to the sum is a right angle, as is shewn in Euc. the other two angles, that angle of an equilateral triangle, is suc. III. 31, and that each of the angles it is shewn in Euc. Iv. 15. Also, if two thirds of a right angle, as be a right angle, then each of the equal angle of an isosceles triangle in Euc. II. 9.

The three angles of a triangle may be shewn to be to right angles without producing a side of the triangle, by drawing through any angle of the triangle a line parallel to the opposite side, as Proclus has remerked in his Commentary on this proposition. It is manifest from this proposition, that the third angle of a triangle is not independent of the sum of the other two; but is known if the sum of any two is known. Cor. 1 may be also proved by drawing lines from any one of the angles of the figure to the other angles. If any of the sides of the figure betid inwards and form what are called re-entering angles, the enunciation of these two corollaries will require some modification. As Euclid gives no definition of re-entering angles, it may fairly be concluded, he did not intend to enter into the proofs of the properties of figures which contain such angles.

Prop. xxxiri. The words "towards the same parts" are a neeessary restrietion: for if they were omitted, it would be doubtful whether the extremities A, C, and B, D were to be joined by the lines $A C$ and $B D$; or the extremities A, D, and B, C, by the lines $A D$ and $B C$.

Prop. xxxiv. If the other diameter be drawn, it may be shewn that the diameters of a parallelogram bisect each other, as well as bistet the area of the parallelogram. If the parallelogram be right angled, the diagonals are equal; if the parallelogram be a square or a rhomibus, the diagonals bisect each other at right ancles. The converse of this Prop., namely, "If the opposite sides or opposite angles of a quadrilaieral figure be equal, the opposite sides shall also be parallel; that is, the tigure shall be a parallelogram,' is not proved by Euclid.

Prop. xxxv. The latter part of the demonstration is not expressed very intelligibly. Simson, who altered the demonstration, seems in faet to consider two trapeziums of the same form and magnitude, and from one of them, to take the triangle $A B E$; and from the other, the triangle $D C F$; and then the remainders are equal by the third axiom: that is, the parallelogram $A B C D$ is equal to the parallelogram EBCF. Otherwise, the triangle, whose base is $D E$, (fig. 2.) is talcen twice from the trapezium, which would appear to be impossible, if the sense in which Euclid applies the third axiom, is to be retained here.
r. Wallis dem sunt,
d, it may , suggests t different will be without re placed e proved
ne angle at angle e angles ingle, as triangle angle, as

It may be observed, that the two parallelograms exhibited in fig. 2 partially lie on one another, and that the triangle whose base is $B C$ is a common part of them, but that the triangle whose base is $D E$ is entirely without both the parallelograms. After having proved the triangle $A B E$ equal to the triangle $D C F$, if we take from these equals (fig. 2.) the triangle whose base is $D E$, and to each of the remainders add the triangle whose base is $B C$, then the parallelogram $A B C D$ is equal to the parallelogram $E B C F$. In fig. 3 , the equality of the parallelograms $A B C D, E B C F$, is shewn by adding the figure $E B C D$ to each of the triangles $A B E, D C F$.

In this proposition, the word equal assumes a new meaning, and is no longer restricted to mean coincidence in all the parts of two figures.

Prop. xxxviri. In this proposition, it is to be understood that the bases of the two triangles are in the same straight line. If in the diagram the point E coincide with C, and D with A, then the angle of one triangle is supplemental to the other. Hence the following property:-If two triangles have two sides of the one respectively equal to two sides of the other, and the contained angles supplemental, the two triangles are equal.

A distinction ought to be made between equil triangles and equivalent triangles, the former including those whose sidec and angles mutually coincide, the latter those whose areas only are equivalent.

Prop. xxxix. If the vertices of all the equal triangles which ean be described upon the same base, or upon the equal bases as in Prop. 40, be joined, the line thus formed will be a straight line, and is called the locus of the vertices of equal triangles uron the same base, or upon equal bases.

A locus in plane Geometry is a straight line or a plane curve, every point of which and none else satisfies a certain condition. With the exception of the straight line and the cirele, the two most simple loci; all other loci, perhaps including also the Conic Sections, may be more readily and effectually investigated algebraically by means of their rectangular or polar equations.

Prop. xLI. The converse of this proposition is not proved by Euclid; viz. If a parallelogram is double of a triangle, and they have the same base, or equal bases upon the same straight line, and towards the same parts, they shall be between the same parallels. Also, it may easily be shewn that if two equal triangles are between the same parallels; they are either upon the same base, or upon equal bases.

Prop. xliv. A parallelogram described on a straight line is said to be applied to that line.

Prop. xuv. The problem is solved only for a rectilineal figure of four sides. If the given rectilineal figure have more than four sides, it may be divided into triangles by drawing straight lines from any angle of the figure to the opposite angles, and then a parallelogram equal to the third triangle can be applied to $L M$, and having an angle equal to E : and so on for all the triangles of which the rectilineal figure is composed.

Prop. xuvi. The square being considered as an equitiateral rectangle, its area or surface may be expressed numerically if the number of lineal urits in a side of the square be given, as is shewn in the note on Prop. I., Book II.

The student will not fail to remark the analogy which exists between the area of a square and the product of two equal numbers; and between the sidt of m oguare end the square soot of a number. There is, however
this distinction to be observed; it is always possible to find the product of two equal numbers, (or to find the square of a number, as it is usually called,) and to deseribe a square on a given line; but conversely, though the side of a given square is known from the figure itself, the exact number of units in the side of a square of given area, can only be fonnd exactly, in such cases where the given number is a square nuinber. For example, if the area of a square contain 9 square units, then the simiro root of 9 or 3, indicates the number of lineal units in the side of that square. Again, if the area of a square contain 12 square units, the ssice of the square is greater than 3, but less than 4 lineal units, and there is no number which will exactly express the side of that square: an approximation to the true length, however, may be obtained to any assigned degree of accuraey.

Prop. xuvir. In a right-angled triangle, the side opposite to the right angle is called the hypotenuse, and the other two sides, the base and perpendicular, according to the ' s position.

In the diagram the three squares are deseribed on the outer sides of the triangle ABC. The Proposition may also be demonstrated (1) when the three squares are described upon the inner sides of the triangle: (2) when one square is described on the outer side and the other two squares on the inner sides of the triangle: (3) when one square is described on the inner side and the other two squares on the outer sides of the triangle.

As one instance of the third case. If the square $B E$ on the hypotenuse be described on the inner side of $B C$ and the squares $B G$, $H C$ on the outer sides of $A B, A C$; the point D falls on the side $F G$ (Euclid's fig.) of the square $B G$, and $K I I$ produced meets $C E$ in E. Let $L A$ meet $B C$ in M. Join $D A$; then the square $G B$ and the oblong $L B$ are each double of the triangle DAB, (Enc. I. 41.); and similarly by joining EA, the square IIC and oblong LC are each double of the triangle EAC. Whence it follows that the squares on the sides $A B, A C$ are together equal to the square on the hypotenuse $B C$.

By this proposition may be found a square equal to the sum of any given squares, or equal to any multiple of a given square: or equal to the difference of two civen squares.

The truth of this proposition may be exhibited to the eye in some particular instances. As in the case of that right-angled triangle whose three sides are 3,4 , and 5 units respectively. If through the points of division of two contignous sides of each of the squares upon the sides, lines be drawn parallel to the sides (see the notes on Book ir.), it will be obvious, that the squares will be divided into 9,16 and $2 \dot{5}$ small squares, each of the same magnitude; and that the number of the small squares into which the squares on the perpendicular and base are divided is equal to the number into which the square on the hypotenuse is divided.

Prop. xlviri is the converse of Prop. xlvir. In this Prop. is assumed the Corollary that "the squares described upon two equal lines are equal," and the converse, which properly ought to have been appended to Prop. xlvi.

The First Book of Euclid's Elements, it has been seen, is conversant with the consinuction and properties of rectilineal figures. . It first lays down the defiuitions which limit the subjects of discussion in the First liook, next the three postulates, which restrict the instruments by which the constructions in Plane Geometry are effected; and thirdly, the twelve axioms, which express the principles by which a comparison is made between the iders of the things defined.

This Book may be divided into three parts. The first part treats of the origin and properties of triangles, both with respeet to their sides and angles; and the comparison of these mutually, both with regard to equality and inequality. The second part treats of the propertics of parallel lines and of parallelograms. The third part exhibits the conneetion of the properties of triangles and parallelograms, and the equality of the squues on the base and perpendicular of a right-angled triangle to the square on the hypotenuse.

When the propositions of the First Book have heen sead with the notes, the student is recommended to use different letters in the diagrams, and where it is possible, diagrams of a form somewhat different from those exhibited in the text, for the purpose of testing the aecuraey of his knowledge of the demonstrations. And further, when he has become sutticiently familiar with the method of geometrieal reasoning, he may dispense with the aid of letters altogether, and acquire the power of expressing in general terms the process of reasoning in the demonstration of any proposition. Also, he is advised to answer the following question; before he attempts to apply the principles of the First Book to the so lution of Problems and the demonstration of Theorems.

QUESTIONS ON BOOK I.

1. What is the name of the Science of which Euclid gives the Elements? What is meant by Solid Geometry? Is there any distinction between Plane Geometry, and the Geometry of Planes;
2. Detine the term mannitude, and specify the different kinds of magnitude considered in Geometry. What dimensions of space belons to figures treated of in the first six Books of Fuclid?
3. Give Euclid's definition of a "straight line." What does he really use as his test of rectilinearity, and where does he first employ it? What objections have been made to it, and what substitute has been proposed as an available detinition? Ifow many pints are necessary th tix the position of a straight line in a plane? When is one straight line said to cut, and when to meet another?
4. What positive property has a Geometrical point? From the definition of a straight line, shew that the intersection of two lines is a point.
5. Give Euclid's definition of a plane reetilineal angle. What are the limits of the angles considered in Geometry? Does Euclid consider angles greater than two rirht angles?
6. When is a straight line said to be drawn at right angles, and whes perpendicular, to a given straight line?
7. Define a triangle; shew how many kinds of triangles there are ac. cording to the variation both of the angles, and of the sides.
8. What is Euclid's definition of a circle? Point out the assumertion involved in your definition. Is any axiom implied in it? Shew that in this as in all other definitions, some geometrical fact is assumed as somehow previously known.
9. Detine the quadrilateral figures mentioned by Euelid.
10. Deseribe briefly the use and foundation of definitions, axioms; and postulates: give illustrations by an instance of each.
11. What objection may be made to the method and order in which Euclid has laid down the elementury abstractions ot the Science of Geofuetry f What uther method has been suggested?

EUCLID'S ELEMENTS.

12. What distinctions may be made between definitions in the Science of Gcometry and in the Physical Sciences ?
13. What is necessary to constitute an exaet definition? Are definitions propositions? Are they arbitrary? Are they convertible? Does a Mathematical definition admit of proof on the principles of the Science to which it relates?
14. Enumerate the principles of construction assumed by Euclid.
15. Of what instruments may the use be considered to meet approxi. mately the demands of Euclid's postulates? Why only approximatcly? 16. "A circle may be deseribed from any center, with any straight line as radius." How does this postulate differ from Luclid's, and which of his problems is assumed in it?
16. What principles in the Physical Sciences correspond to axioms in Geometry ?
17. Enumerate Enclid's twelve axioms and point out those which have special reference to Gcometry. State the converse of those which admit of being so expressed.
18. What two tests of equality are assumed by Euelid? Is the assumption of the principle of superposition (ax. 8.), essential to all Geometrical reasoning? Is it correct to say, that it is "an appeal, though of the most familiar sort, to external observation"?
19. Could any, and if any, which of the axioms of Euclid be turned into definitions; and with what advantages or disadrantages?
20. Define the terms, Problem, Postulate, Aximm and Theorem. Are any of Euclid's axioms improperly so called?
21. Of what two parts does the enunciation of a Problem, and of 8 Theorem consist? Distinguish them in Euc. 1. 4, 5, 18, 19.
22. When is a problem said to be indeterminate? Give an example.
23. When is one proposition said to be the converse or reciprocal of another? Give examples. Are converse propositions universally true? If not, under what circumstances are they necessarily true? Why is it necessary to demonstrate converse propositions? How are they proved?
24. Explain the meaning of the word proposition. Distinguish between converse and contrary propositions, and give examples.
25. State the grounds as to whether Geometrical reasonings depend for their conclusiveness upon axioms or definitions.
26. Explain the meaning of enthymeme and syllogism. How is the enthymeme made to assume the form of the syllogism ? Give examples.
27. What constitutesa demonstration? State the laws of demonstration.
28. What are the principal parts, in the entire process of establishing a proposition?
29. Distinguish between a direct and indirect demonstration.
30. What is meant by the term synthesis, and what, by the term a palysis 9 Which of these modes of reasoning does Euclid adopt in his Liements of Geometry?
31. In what sense is it true that the conclusions of Geometry are necessary truths?
32. Enunciate thoso Geometrical delinitions which are used in the proof of the propositions of the First Book.
33. If in Euclid r. 1, an equal triangle be described on the other side of the given line, what figure wiil the two triangles form?
34. In the diagram, Euclid r. 2, if $D B$ a side of the equilateral triangle $D A B$ be produced both ways and cut the circle whose center is B and zadius $B C$ in two points G and H; shew that either of the dis.
cances D give the 36. 1 by the \mathbf{r} the roo Could given bo
35.

"From
a given
38. directio
39.
how m
40. needs 1
41. which
42.
43.
plane t
opposi
44.
corolla
45.
length
46.
cular
distan
47.
the sh
in the e defini. ? Does Science
clid. approxi. rately? straight l's, and axioms which e which

Is the to all appeal, turned reorcm. ad of s :ample. ocal of y true? y is it roved ? etween
lepend is the miles. ration. ishing
term in his
cances $D G, D I I$ may be taken as the radius of the second circle; and give the proof in each case.
36. Explain how the propositions Euc. 1. 2, 3, are rendered necessary by the restriction imposed by the third postulate. Is it necessary for the roof, that the triangle described in Euc. i. 2, should be equilateral? Could we, at this stage of the subject, describe an isosceles triangle on a given base?
37. State how Euc. x. 2, may be extended to the following problem:
"From a given point to draw a straight line in a given direction equal to a given straight line."
38. How would you cut off from a straight line unlimited in both directions, a length equal to a given straight line?
39. In the proof of Euclid x .4 , how much depends upon Definition, how much upon Axiom?
40. Draw the figure for the third case of Euc. x. 7, and state why it needs no demonstration.
41. In the construction Euclid 1. 9, is it indifferent in all cases on which side of the joining line the equilateral triangle is deseribed?
42. Shew how a given straight line may be bisected by Euc. 1. 1.
43. In what cases do the lines which bisect the interior angles of plane triangles, also bisect one, or more than one of the corresponding opposite sides of the triangles?
44. "Two straight lines cannot have a common segment." Has this corollary been tacitly assumed in any preceding proposition?
45. In Euc. I. 12, must the given line necessarily be "of unlimited length"'?
46. Shew that (fig. Euc. r. 11) every point without the perpendicular drawn from the middle point of every straight line $D E$, is at unequal distances from the extremitics D, E of that line.
47. From what proposition may it be inferred that a straight line is the shortest distance between two points?
48. Enunciate the propositions you employ in the proof of Euc. x. 16.
49. Is it essential to the truth of Euc. I. 21, that the two straight
lines be drawn from the extremities of the base?
50. In the diagram, Euc. 1. 21, by how much does the greater angle $B D C$ exceed the less $B A C$?
51. To form a triangle with three straight lines, any two of them must be greater than the third : is a similar limitation necessary with respect to the three angles ?
52. Is it possible to form a triangle with three lines whose lengths arc $1,2,3$ units: or one with three lines whose lengths are $1, \sqrt{ } 2, \sqrt{3}$?
53. Is it possible to construct a triangle whose angles shall be as the numbers 1, 2, 3? Prove or disprove your answer.
54. What is the reason of the limitation in the construction of Euc. 2. 2.4. viz. "that $D E$ is that side which is not greater than the other?"
55. Qunte the first proposition in which the equality of two areas which cannot be superposed on each other is considered.
56. Is the following proposition universally true? "If two plane triangles have three elements of the one respectively equal to three elements of the other, the triangles are equal in every respect." Enumerate all the cases in which this equality is proved in the First Book. What case is omitted?
67. What parts of a triangle must be given in order that the triangle may be duescribecu :
58. State the converse of the ancond case of Euc. 1. 26? Under What limitations is it true? Prove the proposition so limited ?
59. Shew that the angle contained between the perpendiculars drawn to two given straight lines which meee each other, is equal to the angle contained by the lines themselves.
60. Are iwo triangles necessarily equal in all respects, where a side and two angles of the one are equal to a side and two angles of the other,
each to each ?
61. Illustrate fully the difference between analytical and synthetica proofs. What propositions in Euclid are demonstrated analyticully ? never meet if inderoperly predieated of any two straight lines that they ledge of some other proproduced either way, antecedently to our knowfirst predicated of them a 63. Enunciate
straight lines; and state in definition and axiom relating to parallel
64. What proposition is Props. of Book r. they are used.

First Book ? What other is the converse to the twellth nxiom of the
65. If lines being produced ever so sare complementary to these? otherwise than parallel? If so, under what circumstaneet; can they be 66. Define adjucent angles, opposite angles, irtirstanees : angles; and give examples from the First 1 , vertiral angles, and alternate 67. Can you sugrest anythine to Hook of Euclid. twelfth axion unon whe 68. What objicetions have proof of Euc. s. 29, depends ? doctrine of parallel straight lines as luded against the definition and the the difficulty originate? What other asmptions have Where does and for what reasons ?
69. Ascumit another caunot both anem that two straight lines whieh eut one twellth axiom as a corollary of to the same straight line; deduce Euclid's 70. From Eue. I. 27 , shew that th. that the distance between two parallel 71. If two straight lin falling on them, make alterne not parallel, shew that all straight lines 72. Taking as the definitionges, which differ by the same angle. equally inclined to the same stra of parallel straight lines that they are that "being produeed ever so far be line towards the same parts ; prove also Euclid's axiom 12, by means of ways they do not meet?" Prove
73. What is meant by exterion of the same definition.
74. Can the three angles of a trianderior angles? Point out examples. angles without producing a side of the triangle proved equal to two right
75. Shew how the corners of a triangle : turned down, so as to exlibit to the eygular piece of paper may be iriangle are equal to two right angles. eye that the three angles of a 76. Explain the meaning of the corollaries appended to Eue of the term corollary. Rnunciate the two What other corollaries may b. 3n, and give another proof of the first.
77. Shew that the two beduced from this proposition? angles of a triangle, as well which bisect the exterior and interior angles of a parallelogram, contain a
78. The opposite sides and angle right angle. one another, and the diameters angles of a parallelogram are equal to of this proposition, Also shew that it. State and prove the converse of this proposition, Also shew that a quacirilateral figure, is a parab-

Under s drawn re angle sideand other, theticai 1 y ? at they knowroperty barallel of the these? acy be
ternato
n the nd the 2 loes gested t one clid's
rallel
lines gle.
y are rove rove
ples.
right
lelogram, when its diagonala bisect each other: and when litd diagonals divide it into four triangles, which are equal, two and two, vis. those which have the samo vertical angles.
79. If two straight lines join the extrepities of two parallel straight lines, but not towards the same parts, when are the joining lines equal, and when are they unequal?
80. If either dianeter of a four-sided figure divide it into two equal triangles, is the figure necessarily a parallelogram? Prove your answer.
81. Shew how to divide one of the parallelograms in Euc. 1. 35, by straight lines so that the parts when properly arranged shall make up the other parallelogram.
82. Distinguish between equal triangles and equivalent triangles, and give examples from the First Book of Euclid.
83. What is meant by the locus of a prent? Aa'uce instances of loci from the first Book of Euclid.
84. How is it shewn that equal triang es :tpora the same base or equal bases have equal altitudes, whether the, ure situnted on the same or opposite sides of the same straight line?
85. In Euc. 1. 37, 38, if the triangles are not , wards the same parts, shew that the straight line joining the vertices of the triangles is bisected by the line containing the bases.
86. If the complements (fig. Kuc. I. 43) be squares, determine their rolation to the whole parallelogram.
87. What is meant by a parallelogram being applied to a straight line ?
88. Is the proof of Euc. 1.45 , perfectly general?
89. Define a square without including superfuous conditions, and explain the mode of constructing a square upon a given straight line in conformity with such a definition.
90. The sum of the angles of a square is equal to four right angles. Is the converse true? If not, why?
91. Coneeiving a square to be a figure bounded by four cqual straight lines not necessarily in the same plane, what condition respecting the angles is necessary to complete the definition?
92. In Euclid 1. 47, why is it necessary to prove that one side oi each square described upon each of the sides containing the right angle, should be in the same straight line with the other side of the triangle?
93. On what assumption is an analogy shewn to exist between the product of two equal numbers and the surtace of a square?
94. Is the triangle whose sides are $3,4,5$ right-angled, or not?
95. Can the side and diagonal of a square be represented simultineously by any finite numbers?
96. By means of Euc. 1. 47, the square roots of the natural numbers, $1,2,3,4$, \&c. may be represented by straight lines.
97. If the square on the hypotenuse in the fig. Euc. 1. 47, be described on the other side of it: sliew from the diagram how the squares on the two sides of the triangle may be made to cover exactly the square on the hypotenuse.
98. If Euclid y. 2, be assumed, enunciate the form in which Euc. I. 47 may be expressed.
99. Classify all the properties of triangles and parallelograms, proved in the First Book of Euclid.
100. Mention any propositions in Book 1. which are included in mo:0 general ones which follow.

$$
\nabla
$$

