CIHM Microfiche Series (Monographs)

ICMH
 Collection de microfiches (monographies)

Technical and Bibliographic Notes /

The institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantiy change the usuai method of filming are checked below.

Coloured covers /
Couverture de couleur
Covers damaged /
Couverture endommagée

Covers restored and/or laminated /
Couverture restaurée etlou pelliculée
Cover title missing / Le titre de couverture manque
Coloured maps / Cartes géographiques en couleur

Co'oured ink (i.e. other than blue or black) /
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations /
Planches etou illustrations en couleur
Bound with other material /
Relié avec d'autres documents
Only edition available /
Seule édition disponible
Tight binding may cause shadows or distortion along interior margin / La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from filming / II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

Additional comments /
Commentaires supplémentaires:

L'institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qul peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages / Pages de couleur

Pages damaged / Pages endommagées

Pages restored and/or laminated /
Pages restaurées etou pelliculées
Pages discoloured, stained or foxed /
Pages décolorées, tachetées ou piquées

Pages detached / Pages détachées

Showthrough / Transparence

Quality of print varies /
Qualité inégale de l'impression
Includes sifuncine ary material /
Comprend du male... 1 supplémentaire
Pages wholly o* Dartially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image / Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure, etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

Opposing pages with varying colouration or discolourations are filmed twice to ensure the best possible image / Les pages s'opposant ayant des colorations variables ou des décolorations sont filmées deux fois afin d'obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below /
Ce document est filmé au taux de réduction indiqué ci-des5ous.

The copy filmed here has been reproduced thanks to the generosity of:

Engincering Sciences Library
Queen's University

This title was microfilmed with the generous permission of the rights holder:

James D. Bain

The images appearing here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impression, or the back cover when appropriate. All other orig : al copies are filmed beginning on the first page with a printed or illustrated impression, and ending on the last page with a printed or illustrated impression.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"), whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L' exemplaire filmé fut reproduit gráce à la générosité de:

Engineering Sciences Library
Queen's Universit.y

Ce titre a été microfilmé avec l'aimable autorisation du détenteur des droits:

James D. Bain

Les images suivantes ont été reproduites avec le plus grand soin, compte tenu de la condition et de la netteté de l'exemplaire filmé, et en conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papier est imprimée sont filmés en commençant par le premier plat et en terminant soit par la dernière page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la première page qui comporte une empreinte d'impression ou d'illustration et en terminant par la dernière page qui comporte une telle empreinte.

Un des symboles suivants apparaîtra sur la dernière image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole ∇ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction différents. Lorsque le document est trop grand pour être reproduit en un seul cliché, il est filmé à partir de l'angle supérieur gauche, de gauche à droite, et de haut en bas, en prenant le nombre d'images nécessaire. Les diagrammes suivants illustrent la méthode.

[Reqrinited frm the Journal of Industrial and lingineering Chemistry. Vol. 6. Nu. 8, page 672. Ausual, 1914.)

STUDIES ON FHTRATION'

Hy J. W. bain ant A. E. Wishe
In connection with factory operation quite recently, one of the authors had to form an estimate, in advance, of the amount of moisture which would be retained by a finely divided solid on a vachum filter. A search among the usual sources of information yielded no serviceable data. When the filters were in actual operation, their performance in this respect was very much better than had been anticipated, and had this fact been known in advance some economy in construction might have been effected.

With a view to gaining information on this point, the authors investigated the literature at their disposal, and with the exception of the interesting and valuable paper by Hatschek, ${ }^{2}$ they were unable to find any useful data. When the experimental work had progressed to a ccrtain extent, an accident drew our attention to the exhaustive monograph of King and Slichter. "Principles and Conditions of the Movements of Ground Waters,' ${ }^{3}$ from which we have drawn freely in this discussion.

In the problem which is here under investigation, the solid is assumed to be bathed by a liquid in which it is insoluble, such as, for instance, the mother liquor of a crystalline magma. It is proposed, therefore, to investigate the amount of liquid retained by a mass of fin.iy divided solid when filtration is carried out under atmospheric or other pressure and also in the centrifuge.

The experimental work was considerably simplified by the condition laid down above, which permitted the use of a solid insoluble in water. A quantity of pure well-rounded lake sand was carefully sieved, and the grains which were retained on the 40 mesh screen but which passed the 30 mesh, are referred to throughout as 40 mesh sand. The screens used were not of very good quality in the regularity of the mesh opening, as will be seen from the data given later, but this point is of no particular significance in this investigat on.

[^0]The ratr of flow of a given liquid under a constant head through a filter-mass of a finely divided solid will obviously be dependen: '! on the amount of space which is not occupied by the grains, i. e., what is cominonly called the "pore space." On first considera. tion, it would appear that the pore space would vary a good deal according to the size of the grains composing the mass, and the results of computation and experiment are an astonishing contradiction to this idea. The pore space is almost independent of the size of the grains, and the arrangement of the latter of chief importance. By considering a number of i 11 spheres of uniform diameter packed as closely
possible in a given space, it is possible to arrive at a mathematical formula from which the pore space may readily be calculated.

Slichter ${ }^{1}$ has shown that if the spheres are so arranged that their centers lie at the corners of a cube, the pore space will be $47.6+$ per cent; while if the centers of the spheres lie at the corners of a rhombohedron which permits the close , Jssible packing, the pore space is 25.95 per cent. 'Etween these limits we may expect to find the porosities of all ordinary materials.

With actual materials, in the case where the grains are of approximately equal size, the pore space and also the diameter of the particles may be readily determined by counting a numbrr of the grains, determining their combined weight and the specific gravity of the material; the total volume may be ascertained by adding the sand in small quantivies to a cylinder, tapping gently with a flat-faced pestlc until no further decrease in volume takes placr the results of this procedure on our sands are : is in Table I.

TABLEI

Menh sereen	No of trains	Total wt. tm .	Oto Erain frm. $\times 10$	Sp. gravity	Pore spuce per cent	D. Mm
30	$\left\{\begin{array}{l}300 \\ 300\end{array}\right.$	$\begin{aligned} & 0.0307 \\ & 0.0316 \end{aligned}$	$\begin{aligned} & 10.23 \\ & 10.36 \end{aligned}$	2.74	35.4	0.420
40	+ 400	0.0251	6.3 3	2.68	14.1	0.354
40	400 400	0.0253	6.35	2.73		
50	1500	0.0246	4.92	2.73	36.4	0.315
60	$\left\{\begin{array}{l}800 \\ 600\end{array}\right.$	0.0238 0.0172	2.97 2.57	2.82	36.8	0.269
80	1800	0.0202	2.523	2.55	37.7	0.257

The comparatively slight variation in pore space is worthy of note; and it may be added at this point that mixtures of small and large grains show a surprising similarity in their porosity to that of either taken alone. For all practical purposes, the pore I Loc. cil., p. 309.
space of masses of crystals, such as are commonly produced by rapid cooling, may be placed at 37 pe: cent of the total volume occupied.

FILTRATION UNDER ATMOSPHEMIC PREBEURE

This part of the subjeet has been so curcfully woo sed out by King ${ }^{1}$ that it suffices to reproduce some of the resulte, slightly modified to suit the present purpose. Cylinders 8 feet long, 5 inches in diameter, were filled with special, sorted sands, wire gauze being used as a support at the bottom. Water was introduced from below, and when the tubes were full, percolation was allowed to commence, and the water which drained away was collected and weighed at intervals.

		Waler retained-per ceni of dry mand	
Effective size of grains Mm.	Fore space ler cenl	Alter 1 hour	Afler 9 days
0.4745	38.86	11.23	4.24
0.1848	10.06	12.72	5.05
0.1531	40.76	14.73	7.25
0.1183	40.37	14.30	9.41
0 OH26	39.77	20.15	11.82
	RRATION	Tii vacuu	

Experiments were carried out by the authors with the idea of approximating to factory conditions.

The sand was poured into a Buchner funnel provided vith a piece of wire gauze, and gently tamped down with a flat-faced pestle; the depth of the layer was $1^{1 / 4}$ inches. The top of the funnel was closed by a glass plate ground to fit and provided with a central aperture through which air could be admitted. To avoid the error of surface evaporation during filtration, this air was drawn through a tower, down which water trickled slowly. The funnel was placed in a suction flask and a simple gauge enabled the vacuum to be read. When the sand had been under vacuum for a given period, it was thoroughly mixed and a sample removed; water was once morc poured on and the vacuum was maintained for a longer period. The results are given in Table III.

Mesh acreen	TALN III Moiature at the end of			Vacuum In. mercury
	5 min .	15 min .	30 min .	
30	7.20	5.69	4.75	1.5
40	8.20	6.84	5.19	1.75
50	8.65	7.50	6.41	0.75
60	8.42	7.38	6.40	2.0
80	9.15	7.32	7.37	2.25
-c. ${ }^{\text {cit. }}$				

(3)

It is seeu from these results that the moisture content increases inversely as the diameter of the grains of sand. In erch experiment the water pump was worked at full capacity, and as might be predicted, the vacunm inereases slightly as the size of the grains decreases.

By way of comparison, a single experiment with sand of mesh 50 may lie quoted. Water was poured on the layer and no vacuum was used; after 15 minutes. stinding, the moisture content was found to be 27.4 per cent against the 7.50 per cent under vacuum.

The amount of liguid retained by different portions of a mass of grains in a filter, liccomes important when the question of washing away an impure mother liquor has to be considered. A series of experiments was performed with the object of ascertaining the amount of water retained in the sands at lifferent levels while under vacuum.

To earry this out, a tube about 80 cm . long and provided with side tules closed with corks at 10 cm .

intervals, was filled with each sand, and connected as has been described in the case of the Buchner funnel. A powerful water pump was run to full capacity and the pressure, as before, varied with the size of the grain. The results are given in Tables IV and V.

Tambin IV-Pmecea aga Monsuyiz at find of 15 Minuthe

$\begin{gathered} \text { Mesh } \\ \text { creen } \end{gathered}$	Pressure In. mercury	Depth of sample from top in cm.						70	Meanper cemt molature
		10	20	30	40	50	60		
creen	4.5	3.13	3.78	3.77	4.28	3.56	4.13	4.90	3.97
40	4.0	3.82	4.10	4.33 500	4.88	4.08 5.30	5.08 5.60	6.45 7.60	4.60 3.30
30	6.5	3.90	4.40	5.00 5.32	5.80	5. 20	5.63	6.60	5.30
60	7.0	4.14	4.95	5.32	5.2	5. 20			

These results were plotted and curves were drawn as shown in the accompanying illustrations. The

individual points were sometimes decidedly of the curves, but although the experiments were repeated in these cases, no better agreement could be obtained; the accurate determination of small a mounts of moisture in these sands proved to he difficult, probably owing to sampling. The average per cent of moisture was determined by measuring the areas under the curve, and dividing this by the height which gave the width of the rectangle of equal area.

ILLTRATION WITH CENTRIfUGE
This well-known method of separating solids from liquids was next subjected to test for the sake of comparison with the previous experiments.

A small hand centrifugal, $4^{1 / 4}$ inches inside diameter, was used; it could be run at 5000 r. p. m. without any trouble. A cylinder of wire gauze, $1^{3} / 4$ inches in diameter, was placed over the axis of the machine and the sand was poured into the annular space thus formed; the layer had, therefore, a thickness of $1 /$, inches which was the same as that in the Buchner funnel.
As a preliminary experiment, the sand was thoroughly welted, and the centrifugal run at 2000 r. p. m. for

```
& minuteg. The pereentagen of moisture are given
in Table I'I.
```


The markerl "ficiency of the centrifugal is noteworthy mat the methenf of procerlare was attered to show this more forcilily.

Siand was plawed in the Huchorr firnnel, wetted
 the sand was plated while still moist, in the centrifugal Which wis thril run for: minites at 2000 r. p. m . Tialde V'll shows the percentages of moisture.

TAmbr Monh wreat	Vacnum $\$$ mis.	C'entrilugal 2 mis
1	17.18	236
ul	1712	± 20
41	1780	193
	18.08	2.3n
41	(18 (1)	2 \%
	15.39	$1 \mathrm{M}_{1}$
1.1	(x 40	316
$* 4$		249
w	14.5	1 th

It is seen (rom the alowe results, that the mosistre cuntent unler vacumm varies inversely as the diameter of the ar:ins; the moisture content after centrifuging, however, is nearly the same for the finer as it is for the coarser sands.

The distribution of the water at several points in the annulus of sand was also investigated and Table V'll presents the results in percentage of moisture.

The virriation, while sufficient to permit measurement, is smatl athit inght twe noglectet for practical purpusis.

The whjection maty lo raisel that these results, whtaned in the latsoratory with a small centrifugal, are of little value for comparison with the larger machines used in the factory. While with the hand centrifugal, the diameter is small, the speed is high, and we have calculated that a weight of ilb. revolving at at 2 inch radius at $2000 \mathrm{r} . \mathrm{p} . \mathrm{m}$. is subjected to praceticatly the same centrifugat force as a weight of $1 / 11$. revolving at a radias of 12 inches at $600 \mathrm{r}, \mathrm{p} . \mathrm{m}$. The comparison is, therefore, justifiathe and a goobl idea of the lehatior of : mosist miss when centrifuged in
the futhory, inay be whtained leforehaml in this laturas. tory.
 - Hlated the preswitre as the prophery uf the 1 , ims
 7.66 Hfs . per sif. in.

Hatechek' has discussed the behavior of very fisely divided sulestanees on the filter, and has peinted out the value of a mieroscopie examintion in this connestion. The probable arrangement of the particles, with respect to the pures of the seption, are point $\cdot{ }^{\circ}$ out, and the influence of the llexilility of the latte taken into consideration.

The retention of small quastities of liguial in mass of fine grains is due, undouhtedly. to cinillarity. The extraurlinary difficulty in remosing the list few per eent is well known atnl is agaill set forth aloove. In considering the reasons for this, it seemed to be wort h while to ealenlate what would be the thickness of the film, if all the residual water were assumel to be distributel uniformly wer the stuperficies of the grains. For this purpose, sand of 30 mesh with 6 per cent moisture wats selected; the thichness of the film of water on eich grain was found to he 0.0116 mm .

It would be interesting to calculate what stress must be applied to a gratin thus coated. to overomme the surface tension of the liguid in sof far ats to allow the removal of at least part of the water: such a computation, if it could is effected, might furnish a scientitie basis for the liction of the behavior of finely divided solids on rifuging. Th: authors have been umable .. find t. to carry this out, but hope to rlo so in the fulare.

The ahove dise:ssica assumes that all the water is pres: : on the $s s_{\text {, }}$ rio ies of the grains, but the capillary tion of the srath spates between the grains is undoubudly of kreat importance. In the case of the sand just quoted, which hiss a pore spice of 35.4 per cent, the moishure present would fill 30 per cent of this; thist is, 70 per cent of the pore space is filled only with air. This gives some idea of the comparittively poor performance of the ordinary filter and of the vacultm filter; in cou-h rese, air chatnels form and the downward pressure on the water-filled pores is

[^1]thus relieved. In the case of the centrifugal, cach particle of water experiences practically the same stress, and only the capillarity of the fincst pores and the surface tension of the filus on the grains are sufficient to resist its action.

SUMMARY

1--The pore space in a mass of fine grains averages ahout 37 per cent of the total volume.

2-The amount of water retained when an ordinary filter is used varies from 11 per eent, with 20 mesh material, to 20 per cent with 100 mesh material, one hour being allowed for drainage.

3-The amount of water retained on a filter with ${ }^{2}$ in. vacuum averages 7 per cent after 15 minutes for naterial varying from 30 to 80 mcsh .

4 - In a layer of material 70 cm . deep on a filter, with 5 in . vaeuum, the top layer will average, after 15 minutes, 4 per cent moisture, and the bottom 6.5 per cent; the size of the grains is not of importanec within the limits discussed. If the vacuum be maintained for 15 minutes longer, the above figures will lec reduced by another half per cent.

5- By the use of a centrifugal, the percentage of moisture, in all the materials employed, may be reduced to an arerage of 2.5 per cent.
$6-\ln$ the case of a sand of 30 mesh with 6 per cent moisture, if all the water be distributed over the surface of the particles, cach grain would have a film 0.0116 mm . thick; or the water would fill 30 per cent of the pore space.

Facelity of Aprlikd science
Ciniveratity or Toronto
Toronto. Canada

[^0]: 1 Presenced at the 6 th : einl-annual Mreting nf the American Institute of Chemical Encineers, Troy. © Cw York, June 17-20, 1914.

 2 J. Soc. Chem. Ind., 180日, p. 538.
 ${ }_{3}$ Nineteenth Ann. Report. U. S. Geol. Survey.

[^1]: : Helal und Chem Eing. . Diond. 1913.
 : Lun. sil.

