The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.Coloured covers/
Couverture de couleurCovers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manqueColoured maps/
Car tes géographiqres en couleur

Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion
along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

\square
Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela ètait possible. ces pages nont pas ètė filmées.

\squareAdditional comments:/

Commentaires supplémentaires:

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur
$\square \begin{aligned} & \text { Pages damaged/ } \\ & \text { Pages endommagées }\end{aligned}$Pages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured. stained or foxed/
Pages décolorées, tachetées ou piquées

Pages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impressionContinuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index

Title on header taken from:/ Le titre de l'en-tête provient:Title page of issue/
Page de titre de la livraisonCaption of issue/
Titre de départ de la livraison

Masthead/
Gėnérique (périodiques) de la livraison

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-desっous.

$10 x$	$14 x$

On the Introduction of Metrical Woights and Measures for use in Pharmas.

H5 mi. MEDw(oob.
In proposings to submit the subject of weights and measures for discussion, my mincipal object has been to draw forth the expression of opinion as to the desirability of taking some steps to promote the introduction of the metrical system for use in pharuacy.
The subject has come under the considerntion of the Pharmacentical Society or its members on several previo is occasions, and although sono difference coi $^{\text {ophinion has been }}$ manifested on those occinions with referenco to the practical cxpedicacy of attenyting ${ }^{3}$ sudden or specdy change from the system nt present used in this country to the metrical system, yet the superiority, in many respects, of the latter, and tho probability, muounting almost to certainty, that sooner or hater it will supersede all other systems, have been generally admittecl.
The object of establishing one system of weights and measures for all nations, commends itself so forcibly to the approval of those who are engaged in scientific or commercial pursuits, that the abstract proposition that it is desirable to accomplish such am object meets with ready assent, and any differences of opinion that may arise in connection with it almust exclusively relate to tho comparative merits of different systens proposed for adoption, or to the balance between the anticipated gain from the adoption of that which is considered the best system and the loss or incenvenience which mast inevitably attend a change while it is being made, or to the means by which, in the event of a change being decided upon, it may be most adrantascously effected.

At the present time it scems hardly necessary to consider the question of the comparative merits of competing systems. The greater part of those who live studicd the subject, and are capable of appreciatrigg the selative nerits of the system in use in thus country and of the French system, lave decided in favor of the latter; but with the gencral public the question is not one of comparativo merits but of comparative aequaintance or familiarity with these or other incans for estimating the measurcment of quantities, and as they have daly occasion for the application of such means, they are satisfied to use those with which they are mast faniliar.

As far as the general public is concerned, I have no doubt the prevailing fechng would bo in favor of leaving things as they are, or of mending but not recolutionizing onr system; yet thero is undoubtedly a growing tendency to aim at a nearer approach to perfection than is attainable by any mere patching of that which is already, but a clumsy piece of patchwork.
I believe the practical requirements of pharmacy preseut stronger grounds for a thorough reformof our system of weights and measures thinn can he adduced with relation to any other application of it, and the subject is one, therciforc, which hass strong clams upoll our attention.

The acknorledsment in the Pharmacopoia "that the alsence in the present systcum of any denomination of veight betwcen tho grain and the aroirdupois ounce of 437.5 grains, and tho fact thet the ounce is not a simple multiplo of the grian, are grave defects," is
sufficient to establish the necessity for further clange, and the only question is, as to the
naturo of change to be made Shall we try naturo of change to be made. Shall we try again to patch up our own system, or shall we adopt an entirely new ong?
The only new system that we can hepe, or indeed could desire to hare substituted for the ono with which so mueh dissatisfaction has been expressed, is the metrical system, which has alteady received the simetion and approval of sclentific and commercial men in almost every part of the civilised worla.
In deciding to change our system for the metrical system, however, we do not necessarilly imply that we are whilly disantisfied with the une or entirely approve of the other. It is a great mistake, nut mifrequently committecl, to endeayor to discredit our system, in the hope of bringin, about a spreely chang to another, by ascribing to it defects that do not belong to it, and at the same time to extol the alvanzages of the metrical systen by claming for it more than it is entitited to.
It is sometimes represented that our weiglts and measures are not accurately defined, that they are liable to variation, and therefore camot be relted upon, that in fact thariz construction is not based upou scientific puncupes, and that they are indefinite and uncertain.
On the other hand, the metrical system is sometimes represented as having a scientific basis, which gives to it in all its details a greater degree of certaisty and accumecy than can be clamed for our system.
Now these are entirely erroncous nutions, and it is muportant that no argunents in favor of the metrical system should be fomided upon such false assumptions. Originally, it is true, there were no well defined standards w whech our weights and mensures could be referred for verification, and no scientific means by which they coutd be reproduced in the ovent of all existing messures being destroyed. When a troy grain had no better defintion than the weight of a grain of wheat, when the inch was defined as laving the leagth of three barleycorns, the foot the length of a man's foot, and the yard that of the king's arm, there was indeed mocertainty cnungh in these measures. And esen when, in course of time, the natural standards owgmally reforred to were superseded and mure rehable ones adopted, manch still remaned requirmg furthering roventent.
In the latter part of the last century, the reformers of the great French Revolution, in reforming the thenexisturgsystems of weights and measures, adopted three fundamental propositions on which to baso therr new system.

1. That some natural object or phenomenon, presenting an umbarying moazure of extension, should be taken as the unit from which all their measures should be calcuinted.
2. That measurcs oi extension, of cempeity,
and of weight, should bear a definite and simple relationship to cach other and to the fundanicntal unit.
3. That the different denominations of weight and measure should be multiples and submultiples of cach oither by ten; in fact, that the system should be throughout a decimal system.

In secking for a matural standard to bo used as tho unit of mensure, thes took the metre, not, as it would appear, because it was found or cousidered to be the most suitable measure that could lec fixed upon, but becanse it wias the ten-millionth part of a
guadrant of the earth's meridian. Ls it has since turned out, no advantage resulted from taking this particular measurement as the initial standard or unit, nud in fact the frrst proposition might have been omitted withont any practical disadrantage.
ta this country we haro pmrsned a somewhat siumlar course to that aderited by tho French reformers, in reforming our system and framing that whech has been established here by hav, but we have not acted entirely upon the same principles.
We propiosed to tike an object ropresenting an mavaing me:sure of extension, which deyeneling upon a fixed law of mature, could be reprodiced at any time and applied for the evification of our standards. But insteal of tiking the measurement of the carth's circtunference, we took the length of a pendulum vibratang seconds of mean time, in the latutude of Lundem, in a vatum at the level of the sea. This measure scarcely differs from the French metre, but instend of using this measure as our unit, we used it mly for indicating the proper length of the ach, from which all other measures of extension, capacity, and weight, according to our system, ure calculated.
We have not established the same simple relationsh ρ between measures of extension, capacity, and weight, as exist in the French system, but have nostly yetained such measures as were previonsly in use; and as the old measure was nut framed in accordance with a decimal division, such a division docs not claracterise our system.
The essential differences between our system and the metrical system are these, that there is great incongrimity between the different parts of our systen, which is not the case with the metrical, and that the metrical system is a decimal one, which ours is not.
It may be stated of both systens, and equally of both, that the means originally propssed and provided for serifying the standard by reference to natural objects or phenomena have not proved to be practically arailable. Both systens in this respect have, to $\frac{\pi}{}$ certain extent, siven way under the rigid appl:cation of the test of experience, and it is found that the most accurate method of verfying all weights and measures is by comparison with artifcial standards carefully kept for that purpose.
Any superiority for which the metrical system may possess of ours must be referred not to the method of cetermining the fundamental unit from a natumal standard, but to the more perfect systematic mamner in which all mensures are related to the first integer in this system, to the decimal arragement in it of all measures, and abovo all to the fact that it presents the only apparent means iy which we can reasonably liope to establish one uniform system of weights and measures for all comatrics.

The adrantages which in these respects the metrical ssstem presents would probably ensure a ready assent to its adoption, if those required to use it conld be induced so far to master the details of the subject as to acquire definite ideas of the quantities represented by the integral mocasures. It is with reference to this part of the subject that I wish particularly to invite discussion.

If we are to look to the metrical usystem as that which is ultimately to replace our present system we must prepare the way for its adoption by making those who aro engaged in the practice of phamancy acquainted with
it, and not merely acquainted with tho system, which involves very little dificulty, but what is of far more importance, acquainted with the values of the integral measures, so is to have some definite ideas of what they represent.
Until this has been done I cannot conceive that it would be practicable, aud certainly it would not be compatiblo with a due regard for the interests of the public, to introduco so great a change as would be involved in the adoption of the metrical werghts and meitsures in preparing, prescribing, and dispensing medicines. The difliculty, and I think almost the only difficulty exprerienced by those who are unaccustumed to the use of metrical weights in adopting them for any special purpose, is caused by the absence of clear conceptions of the quantitics represented by the different integers. What is wanted in the first instance is that we should be ablo to associate some familiar objects with the several units of metrical weights and me:sures. I should like to hear the opinions of practical phamaccutists as to the practicability and desirability of introducing forms of medicine representing the mure important metrical mits, or some even multiples of them. Thus, for instance, most of the lozenges ordered in the Pharmacopociat weigh about 15 grains. Night they not all be made to weigh exactly a gram, and be marked with this weight? In fact the same rule, modified perhaps in some cases so as to make the weight 2 grams, might be applied to medicinal lozenges generally, by which means the public would become faniliar with the quantities represented by the weights which rould be marked on each lozenge. If in this way we conld establish forms of medicine representing different metrical units we should be doing much towards preparing ourselves and the public for the recention of the new system, to which we should all become more reconciled as we became acquainted with the values of the terms used.
Our greatest difficulty would probably be with reference to measures of capacity. In France liquids as well as solids are weighed, and the measure-nlass is rarely if ever used; but I belicve it would be very difficult to establish that practice among our pharmacists, and there is no measure of capacity in the metrical system that aecords well with the fluid drachnn or ounce. There is room for the exercise of ingenuity or judgment in devising the most suitable means of mecting the requirements of the physician and pharmacist in adjusting quantitics by measure in prescribing and dispensing.

If tho metricai system were alopted by us in pharmacy, it would have to be adopred, of cuurse, by the physician as well as the pharmacentist ; and those who n^{-1} vocate its introduction must ba prepared to show how, for instance, the physician is to indicate the quantities of the several ingredients in a six or cight ounce mixture containing drachms of some ingredients, such as tinctures, and ounces of others, such as infusions. At present we have no better method of representing the metrical equiralent for the fluid ounce than by 28 cubic centimetres, but the multiples of this mumber would be inconvenient for use, as they rould havo to be used in prescribing and dispensing.
To meet this and similar cases, it may perhaps be rorth a consideration whether it would not be desirable to do something similar to that which was attempted by the Firench
in 1812, and again in 1827, that is, to approximato the old system to the new by cstablishing some intermediate links hetween them, taling care in doing this to maintain the integrity of the new system, but slightly bending the old so as to bring them into juxtaposition. If we were to do something of this sart we might construct a new measure both for capacity and weight, consisting of 4 grams, corresponding to 403.8 grains, and thisimight bo called a tetram. In the same way we might construct a new representative for the ounce, consisting of 8 totrams, or 32 grams, corresponding to 617 grains, and thes might be called an octrem. If it were thonght advisable to go further we might have a representative of the pound, consisting of 16 octrams, or 128 tetrams, or 512 grams, corresponding to 493.8 grains, and this might be called a libram. Theso three new measures of weight and capacity, for in each case the weiglyt of distilled water would represent a measure of capacity, whle they would correspond with metrical measures, would be sufficiently near approximations to the drachm, ounce, and pound of our system to render them convenient integers to replace those measures in making a change from one system to the other. I throw out the suggestion for the purpose of courting discussion.

I would also suggest that, in introducing the metrical system in this country, the names of the different integers should be written according to English rather than French orthngraphy. This would, I think, tend to reconcile some persons to the system who are accustomed to laok upon it as a toreign innovation, besides which it would simplify the spelling of the names.

Provision has been made in the Pharmacopocia for the use of metrical weights and measures m volumetric testing, and if chemists and dinggists would adopt that method of conducting those and other similar operations, the practice of doing so would soon render them familiar with the system.

It has been proposed that in the Pharmacopoia, in addition to the weights and measures now specified in tho processes, the metrical equivalents should also be given, with the view of showing the relationship existing between the values of the terms used in the trro systems. I am not prepared to say that this might not with advintage be done in some cases where integral quantities can be expressed, and simple relationship shown; but to do it in all cases would, I think, encumber the descriptions of the processes without producing an adequate amount of good. Indeed, I am not sure that such an array of figures is the carrying out of this suggestion would necessitate would not tend move to involve the subject in confusion than to supply any useful information.

I have brought the subject forward on this occasion for the purpose of raising a discussion upon it; and the suggestions I have thrown out may, I hope, serve to call forth the expression of opinion upon the points I have alluded to, and induce others to contribute in the same direction.

Tue Adulteration of Olive Oil.-The President of the Comite du Des Alpes-Martolimes publishes a letter in which he offers, on behalf of that body, a prize of 15,000 francs to the inventor of a rapid and easy method, not involving strict chemical manipulation, for detecting the admixture of sced oils with olive oil.

On Elixir of Calisaya, Iron and Bismuth.
by hobert w. (andmen.
As an unoflicinal preparation, known as "Elixir Calisaya, Iron and Bismuth," has acquired considerable reputation, and is being commonly used in various parts of the country, and having seen no reliablo formula published in any of our leading pharmaceutical joumals, I would most respectfully submic my process, which I have for ycars employed, and which furnishes a permanent and reliable preparation containing just proportions of each active ingredient, freo from any disagrecable quality, and the bismuth of which does not conceivo such an affection for tho bottom of the buttlo that it fails to remain in solution.
Take of Pyrophosphate of fron scales, one troy ounce.
Citrate Bismuth, one troy ounce,
Sulphate Quinine, twenty-four grains,
Citric Acid, cight grains,
Carbonate Magnesia, one drachm,
Sugar, half a troy ounce,
Water of Armmonia, sufficient,
Oil Orange, best, half a thuid drachm,
Oil Lemon, fifteen minims,
Oil Cararsy, five minims,
Oil Nutmegs, five minims,
Alcohol, eight fluid ounces,
Syrup, tisenty fluid nunces,
Water, sufficient,
Rub the oils with the sugar and magnesia, gradually adding one pint of water, and filter. lut it into a half-gallon bottle and add the syrup.
Dissolve the pyrophosphate iron in two finid ounces water, and add to the mixture.

Now add seven fluid ounces of alcohol.
Put the quinine, citric acid, one fluid ounce of water, and the balance (one ounce) of the alcohol in a capsule; heat over a spirit lamp until dissolved, and mix with the other ingregients.
liub the citrate bismuth with one ounce water, and carefully add sufficient water of ammonia to effect the solution. NLix with the other ingredients.

Add water of ammonia until neutral to litmus paper (avoiding excess), and finally as much water as will bring the whole to the measure of sixty Ruid ounces, and filter. To be leept and dispensed in dark bottles.

One fluid ounce contains about eight grains ammonia-citrate bismuth, cight grains pyrophosphate iron, and the equivalent in quinino of sixteen grains of calisaya berk.
The following is the process I have employed for making citrate bismuth: First,

Take of pure Sub-nitrato Bismuth, two troy ounces.

Nitric Acid (sp. gr. 1-44), 1450 grains,
Water sufficient.
Put the bismuth in a porcelain dish; add the acid, an: heat over a spirit lamp until the bismuth is dissolved; then add one fluid ounce water, and let stind until cold; then gradually add water, constantly stirring with a glass rod, until a further addition produces milkiness, or until the whole neasures one and a half pints. Filter and set aside. Next,

Take of Carbonate Suda crystals, sufficient quantity,
Citric Acid, three troy ounces,
Water, one and a half pints.
Dissolve the citric acid in the water and add sufficient carbonate of soda (previously
dissolved in water) to exactly neutralize the acid. It is important that there shall bo mo excess of soda, as the resulting citrate bismuth would be contaminated with the oxide after decomposition.

Put the bismuth solution in a suitable yessel, and add, stirring constantly with a glass rod, sulticient of the solution citrato sodit exactly to decompose; the precise quantity is known to havo been added, when, after placing the whole upon a cloth filter, the washings after having been suffered to rim awhile mitil clear, first, fail to precipitate bismuth when dropped into water, and secome, show no precipitato upon the addition of a few drops of ternitrato bismuth, a small quantity of which should bo reserved for this purpose. When the liqud purtson has mostly passed, pour water upon the filter until thoroughly washed from nitrate soda, or until the water passes tasteless; then after draining, transfer to bibulous paper, and dry by gentle heat.-Am. Jour. of Pherm.

Observations on Ferric Hydrate, the so-called
Soluble Peroxide of Iron.
by frofessor attieicld, fin.d.
In a memoir, noticed in the 'Chemical News' of June 12, as having been recently presented to the Academy of Sciences, M. Jeannel, in allusion to the fact that forrichydrate is not always soluble in acids, states that the incomplete solublity is, in his opinion, generally due to the influences of traces of sulphates. He says, according to the Paris correspondent of the 'Chemical News,' "sesquioxide, precipitated from the persulphato, is always to a certain extent insoluble or yields unstable salts; the same is the case with the sesquioxide precipitated from the perchloride, when this has lieen contammated by sulphuric acid, or equally when the alkalies employed as precipitints havo been so contaminated, or, fimally, when the ferric hydrate, precipitated from pure solutions by pure alkalies, has been washed by common water. This explanation does not accord with my experience of the properties of ferric hydrates and oxylyydrates. Firstly, in England the ferric citrates and tartrates used m medicine, are successfully made in large quantities by dissolving ferric hydrate, prepared from ferric sulphate, in solutions of the respective acids and acid-salts. Secondly, I have frequently seen moist ferrichydrateperfectly dissolve in solutions of acids or acidsalts, even though the precipitate has been washed with common water containing sulphate of calcium, a final washing with distilled water having, for various reasons, been neglected. Thirdly, I have oftennoticed that pure ferric hydrate, soluble when freshly precipitated, becomes inperfectly so if long kept moist or dry. It is true that when alkali is added to solution of ferric sulphate, instead of the latter io the former, an insoluble oxysulphate is precipitated, and a similar compound may, possibly, be formed under other circumstances; but ferric hydrate, properly prepared and fairly washed, is readily soluble if only it he used in the moist and recently precipitated condition, with asolution of acid or acid-salt which is not ton weak, and the mixture be not boiled or evenstrongly heated for any considerablo length of time. The fact is that ferric hydrate, even though kept under water, decomposesaftoratime, or more
guckly if lieated, losing the clements of water, and becomn an oxyhydrate, a body insoluble in weak acids, and, also unliko ferric hydrate, incapable of acting as an antidote to arsenic, that is, incapable of formung ferrous arseniate.
It may bo useful again to draw attention to the decided alteration in properties which ferric hydrato spontancously midergocs when exposed bencath the surfaco of water; or when voiled with water, as ovdence that thas substance ($\mathrm{Fe}_{\mathrm{e}} 6 \mathrm{IIO}$) is in trioe analogue of liydrato of sodium (Nil HO), cte., nail not a hydrous ferric oxide $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}, 3 \mathrm{H}_{2} \mathrm{O}\right)$. It is more reasomable to supposo that in acqumag new properties ferrichydrate becomes elamged to new compoumds then to consuder that the changes result from the loss of a portion of water already existing as water. Between ferric liydrate ($\mathrm{Fe}, \mathrm{s} \mathrm{HO}$) and ferric oxide ($\mathrm{Fe}_{2} \mathrm{O}_{3}$) there would appear to be several oxyhydrates, analyses, etc., of mostof which have already been given in the 'Chemical News' (wii 56) by Brush and Rodman.

In the abow formule, No. 1 represents two molecules of ferric hydrate; Church found a stalactite of tane ferric liydrate, mative, in Cormwall, and Wittstein gives a similar formula to fresh artificial ferre hydrate. No. 2 is the only oxhydrate, in this serics, still unknown, unless, indecd, Hanghton's Kilbride mineral contains this body. No. 3 is brown iron-ore from the Huttenrode Hartz. No. 4 is the formula of a limonite ame of artificial ferric hydrate altered by age,-described by Wittstein as laving a crystallune structure. No. 5isthe mineral gothite, and also the dried oxyhydrate commonly used in pharmacy. No. 6 is urgite, hydro-hematite, or the mineral from saissbury, Conn., analysed by Brush and Rodman. No. 7 represents two molecules of ferric oxide.-Chemical N'eus.
As stated in the March number of the 'Pharmaceutical Journal,' M. Jeannel prepared a ferricprecipitate, which is soluble, not only in solntions of weak acids or acid salts, but even in water. The substance appears to be a misture of ferric hydrate, or, when dried, osylydrate, with a small quantity of ferric oxychloride or oxynitrate. This compound merits further investigation. Hitherto peroxide and perhydrate of iron, pure or inspure, have only be?n dissolved in water under the extraordinary conditions of dialysis. It would be especially interesting to know whether or not M. Jeannel's compounds in the dry, or even in the moist, state is an eflicient permanent antidote to arsenic.-J. A. - in Pll. Joural (Eng.)

On the Use of the Ohloride of Gold in Microscopy.
by thonas dwigut, Jr., M. D.
Perhaps no re-agent has of late years played so important a part in microscopy as the chloride of gold. By means of it Conheim first demonstrated the terminations of the nerves in the comea; and since it has been very generally used, particularly in investigations of the nerves. Its application is very
difficult, and it is only after a long series of experiments and failures that proficiency is obtaincel.
IIaving had considemble experience with thus re-agent in the laboratery of professor Stricker, in Viemma, amed having whtained some very satisfactory results, I hope that a few words on its application maty nut be out of place. The chioride should be dissolved in distilled water, and tho sohution should never be suronger than the half of one per cent. The object to be examined should bo as fresh as possille, and should remain in the flud for three minutes to perhaps an. hour, according to its aflimity for the re-agent, durus which time it assume s a palo straw color If the piece be small enough to be readhly acted unon, ten or fiiteen mimites is almost always sufficient. It is then haid in distilled water, to which just enough acetic acid has been added to give it the faintest possible reaction. In two or three days it will have becom: purple, verging sometimes on bhe, sometimes on red; tho latter is the least favomable. The preparation is now enclosed inglycerine, and improves for several days as the color becomes deeper and as tho finest fibres are the last to be atiected. If the experiment has succeeded, for it sometimes unaccountably fails, the picture presented is one of the most beantiful and instruclive that can be imagined. The nerves, muscular fibres and filnous tissue appear black on the purple backgromid. Epithelial cells aro colored, but not so well as by nitrate of silver.

Although the color makes fibres visible which are so fine that they can be seen by no other method, it dues not determine their character. To prove beyond all doubt that a mumute fibre is a nerve, we must be able to follow it to a large branch. On a very successinl preparation of the cornea of a frog, observed nerve fibres of such minnteness that with a magnifying power of nearly two thousand diameters it was impossible to folow them to theirterminations. I particularly endearoured to verify the cunnection, asserted by Kuhne butnot gencrally accepted, between the nerves and the corneal corpuscles. With every advantage, such a connection is very dafficult to prove. I oiten thought I had tound une; but, when examined by a higher power, and placed in diferent lights, it proved to be only apparent, except in a single instance, md then it was not certain that the fibre in question was a nerve. I mention these facts as proofs of the value of the method, for it is nu paradox to say that the better the preparation the more difficult it is to obtain results. As the magnifying power is increased, elements come into view, which, by inferior methods, are never seen and spaces are discovered betreen bodies supprosed to be in connection. The use of the chloride of gold, however, is not yet thoroughly understood, and offers alarge field for originalinvestigatigtion.
[The preceling article was written at the suggestion of Prof. Stricker, of Vienna, by whom it has been examined and fully ap-proved.-ED.]-Boston Med. \& Surg. Jenernal.

- A sew illuminating material, recently patented in Germany, consists of a mixture of two parts of the ponrest rape seed oil, and one pert of good petroleum. It is burned in a lanip of peculiar construction, but somewhat similar to that of the ordintary noderator lamp, and gires a light not to be surpassed for purity and brilliancy.

CRNADEAN PEARTEACETTHCAB,

 Gqutwiry.
Phesident,

Wa, ELLIOT, Esq.
The regular mectings of the society take plece on the first. Wednesedey ceening of curd month, at the Mecluenics'? !nstitate, when, afiter the transaction of husincss, there is a peper reat, or discussion enyujeel in, upon suljeets of interest and value to the members.

The Suciety admits as members, Chemists and Drugyists of gmod standiny, and their assistants and apprentices, if cicctal by a majurity rote, and on puyment of the following fees:
Prinoipals
$\$ 100$ per Annum Assistants \& Apprentices, 200
The Journal is furnished frees to all members.

Parties wishing to juin the sucict! may sent their numes for proposal to ceny of the members of the Sucicty. A copy of the vonstitution and By-luws of the Socicty will be fromished on application.

HENRY J. ROSE, Sceretary.

CANADIAN MEDIOINAL PLANTS. Prizes.

Prizes are offered for collections of indigenous medical substances of vegetable orign, as follows:-
Ist Priae-Fifieris Dullales-a cupy of Grifith's Mrelical Botany, and ('ertificate.
20 Phee-Tex Doldaks-a copy oi Wond's Cluss-Book of Dotany.
3d Prize:-FiveDullahs-a cupy oí Wool's Class-Book of Boteray, and Cortifititc.
Conditions of competition to be-
Ist. Competiturs to have been cagaged in the dive trade, and for not morc then therec years, and to be mentbers of the Pharmuceutical society provious to 1509 .
2. Sipeci:nciss to be formarded (carriage paid) to the Secretury of the Society, Toronto, by 1st September, 1800, with a scaled letter, cenclosing the address of the competitor, a certificate from his employer that the collection hes been matle by the competitor solely within a year; that he has bean engayed in the drug toude during that time, and theit he has not been more then tiree yoars so cangeycel at the dute of thes notece.
3. Each specimen is to be carcfully prepared ready for sale or wes, aul packed in a p paper baty. On cachi shall be written legibly, the common cond scicntific namks, the date anel locality of collection, and a private mart, achich shail also be put on the outside of the letter accompanying the collection.
4. Threc judjes shall determine the order of merit; they shall be at liberty to weithwoll any or all of the Prizcs, if the collcetions do not warrant an ausard, and to sclect such specinens as they may deem meritorious for the Museum of the Socicty, telich syccimens will have the name of the collector put upon them.
5. The points of compectition to be number of spccimens, condition, correctnass of naming, and gencral cxccllence; quantity a secondary consideration.

Collections to which Prizes are awarded wil be sent to the Provincial Exhibition at the cxpense of the Socicty; and any Prizes scowed there, shall be for the bencfit of the collector.

Addices-Collections.
Canadian Pharmaceutical Socicty,
H. J. ROSE, Secretary,

September 15th, 1863.
Toronto.

THE CANADIAN z. 1. SHUTTLEWORTH, RDITUL.

TORONTO, OSI', JUNE, 186J
Correspondencer nul genemal connmaicitions. of a chanacter suited to the objects of this Juctisim, me invited, and will ahays be wetcome. The writer's name should acoompany his communication, hat not neesssatily for publication.

Subscripticns will not he acknowledged by letter, us un sending the paper may be taken as sufficient evidence of the receipt of the money.
Al! commanieations connceted with the paper to lee addressed, posi jmin,
 Ton:osto."

A TORD TO OUR APPRENTICES.

We heve received mumerous inguiries from appentices commected with tho Society, as to the course of study laid down by the Pharmaceatical Board, and the text books which are recommended to be used. At the present time it impossible to give a definite answer to these prestions, as the Council: have not yot decided on what subjects examination is to be made. The matter was broached at the list monthly mecting, and there appeared to be an evident inclimation to follow in the steps of the Phamaceatical Society of Great Britian. The subject is at present, in the hands of thu Conncil, and as soon as a fual conclusion is arrivel at, we shall duly apprise our young readers.

We camot forbear expressing our gratification at the evident desire, evinced on the part of our apprentices, to qualify and render themselves fit for the position which they expect to occupy in the future. We are also glad to see that the apprentices themselves have taken the initiative and are not actuated by compulsatory motives. It should be an object of ambition "to learn all that can be learned," and never to rest while thereis anything to ho attained. There is no danger in aiming high, if impatience is curbed, and every step taken with deliberation. The great error is aiming too low-the requirements of an examination-the general opinion of the public-the imitation oí supposed perfection in another, are all motives beneath the true student.

But for the attaimment of true perfection a certain course must be laid out, which once entered, must be pursued with undeviating perseverence and deternination. It will not do to branch off at every turn, or to lose sight of the desired object for a moment. Nor will it answer to stand stiil and contemplate, from afar, the consumation of desire; a steady, plodding step must be maintained throughont; and though the way be difficult,
and tho hills hard to climb, yet success is certain.

Although wo thus hold out ambition as a motive to action, we do not fail to rocognizo the fact that. the luve fur knowledge itsell should form one of the strongest incontives to leaming. In this, is in other eases, love and ambition go hand in land; both go unsatisfied wit? object, and alite seck preferment and superiority.
It may be said that our remarks are visionary and unpractical ; that the druggist does not engage in his calling either for the advancement of knowledge, or a desire to excel, but for the earning of his daily bread. This is, in many respects, undeniably true, and there is little danger of our ignoring the fact, but, nevertheless, we believe the comrse wo have recommended to be the most certain way of gaining the public confidence, and theeir consequent support; and at the same time, rolieving the mind of the drudgery of mere labor. An intelligent community-and it is, principally, with such the druggist deals -are sure to find out and approciate real merit; and chough disability or charlatanism, may for a time succued, yet, sooner or later, the deceit will be umasked, and the protender reminded that pharmacy is not a trade but a profession, and that the public know it.

While alvucating lugh asprations on the part of the student we must not be undersivol to mean the grasping of too much at once. A very hittle must bo ittempted at a time, and that little leamed thoroughly and effectually. If a book is to be studied let it be stulied and not racl. It is suite possible to get over a large amount of reading in a very short time, but this is not at all true with regard to study. A man may read a whole work in a few ovenings, and when he has finished, his mind may retain nothing of it, whatever. Let no statement pass without thoroughly understanding it, thinking it out in all its relations and bearings. If one pase of an ordinary text book is comprchended and retained, a good day's work will have been done. Let there be no skipping of sontences or pages; no looking what is to come next; or a habit will be contracted, which is, of all others, the most fatal to study. Finally, let what is to be done, be done at once; procrastination and impatience are the two great evils to be guarded against. Bear in mind the old proverbs, "Never put off until tomorrow what may be done to-day," and "That which is worth doing at all is worth doing well," and your labors will be certain to be crowned with an abundant reward.

A great deal depends on the works which are selected for study, but we must not anticinate the wishes of the Sucicty, and shanl defer any observations on the subject until a further issuc.

EDITORIAL SUMMARY.

Adulteration of Food and Drugs. A bill is now bofore the British Parliament "Ho amend the Adulteration of Articles of Food or Drink Act, 1860, and to extend its provisions to Drugs." The former Act was, from various causes, found to be ineflectual, and tho present measure, introduced by Mr. Dixon, is supposed to put matters in a practicablo shape.

The first clause declares that any person Who shall admix, or cause to be admixed, with any article of food or drink, my injurious or poisonous ingredient to adulterate the samo for sale, or any person who shall mix, or cause to be mixed with any drug, any material to adulterate it for sale shall, for the first offence, pay a penalty of fifty pounds sterling, with costs, and if convieted a second time shall be deemed guilty of a misdemennor and be imprisoned for six callendar months, with hard labor.

The second clanse imposes a penalty of twenty pounds, on any person who slaall sell any adulterated article of food, or drug, whether le knows it to be such or not; a repetition of the ofencs is punishable by the publication of the offender's name in in newspaper, or any such method as the justices may deem desireble. Public analysts are to be appointed, to which suspected articles may be submittcd by inspectors of markets, muismees, \&c., whoso business it slall be to find outedulterated substances. Purchasers of adulterated articles can also submit them for analysis on payment of a fee not exceeding five shillings, and the certificate of the analyst shall be deemed suflicient evidence for conviction.

The nbove are the principal features of the Act, which is certainly sufficiently stringent for all purposes, and if enforced will be of great service to the community.

Trichina Spiralis,-A most interesting lecture on trichinosis was delivered recently by Prof. J. C. Dalton, at the College of Physicians and Surgeons, New York, and is published in the Boston Medical and Surgical Journal. The Dr. states, that by investigations made in Chicayo, it was found that one pig in every firty was infected by disense, and that the Gormans in that city furnished most, if not all, the cases of trichinosis which had occurred. This is to be accounted for by their eating badly cooked sausages and underdone ham. A temperature at ieast $160^{\circ} \mathrm{F}$. is necessary to destroy the wom. The Dr. accounts for the perpetuation of the species by the following hypothesis :-
Suppose we start with the pig infected with quiescent and sexless trichina. This pig is butchered. You know that butchoring
establishments are the abundant resort of rats, which feed on tho refnso scraps of meat, and of course these after a time become infected with trichina. tho worms aro developed in tho intestine of the rat, and produce living young. These not only infect the muscular system of the rat, but they are also discharged with the feces. These feces become mingled with the blood of the pigan animal, as wo know, not very fastidious with regard to his food, and consequently subject to several parasitic diseases-and thus the round of development of the trichina is comploter. Again, its perpetuation is provided for by a similar round between the cat and the monse. d'he monse becomes infected by feeding upon refuse meat, and the cat by devouring the mouse or rat. We have, therefore, the natural history of the animal, embracing in each case two different phases, in one of which it undergoes an active development, in the interior of the intestine, while in the other it assumes the quieseent form, becoming cncysted in the substance of the muscular system.

Weights and Measures.-The introduction of the metrical system of weights and measures into phamacy is exciting considerable attention in England. The subject wasbrought before the Pharmacentical Society at their last meeting, by Dr. Relwuol, and considerable discussion ensued, which will be continued at the next mecting, as members thought it desirable that the question should be thoroughly ventilated, and a means devised to xender the adoption of the metrical system imucrative Mr. Easelden remarked, that for the future it was intended to examine young gentlemen who intended to pass the Pharmaceutical Board, in this system, and that after Oct 1st, he believed the examination would bo enforced. The sooner, therefore, students become acquainted with the subject tho better. France, Belgium, Holland. Italy, Spain, Portugal, Greece, and part of Germany, have now adopted the system in full, and wo hope this attempt to introduce it in England may prove successful, and that Canada may not s?ow herself behind the times. Prof. Redwood's remarks will be found in a

New Law regarding Dispensing in Now York.-A bill has been introduced, and is now awaiting the governor's signature, regulating the dispensing of physician's prescriptions, in New York. The act declares it unlawful for any person to prepare a medical prescription unless he has served two years apprenticeship in a drug store, or is a graduate of a medical college or college of pharmacy. The employer, or person in charge as proprietor, is also held amenable for permitting an unqualified person to dispense. The penalty is a fine, not exceeding $\$ 100$; or six months inpriscmment in tho county jail. In case of death arising from violation of the act, the person offending is to be deemed
guilty of a fclony, and is punishable by a fine of not less than 31,000 , nor more than Sij, 000 ; or by a term of imprisomment of nut luss than two, or moro than fonr years; or by buth line and impusomment, if tho court so direct. The act is to take effect immediately.

A New Jolement.-Spectrum amalysis has again proved the means of discovering a fresh addition to the rapidly increasing list of elementary substances. II.J. Sorby, F.R.S., while examining a specimen of jargon, noticed certain bands which he could not attribute to the presence of zirconinm, or any other kiomm element, and which he therefore held to denote a now substance. At a recent meeting of the Royal Society, he exhibited these bands, by means of a spectrum microscope, and fommally amomeced the discovery of a ney metal, for which he proposes the name juryonium. It is, howover, questionable whether the same appenrances which led Mr. Sorby to this conclusion, wero not observed previously by Prof. Church, who attributed the phenomena to the presence of Svanberg's nurium. The Ctromical Neus, for May, contims a letter from Prof. Clurch to this effect. At all events, Mr. Sorby was ignorant of Prof. Claurch's investigations, which werc, huwerer, published in the May number of the Stadent, 1sic. Whe Chemical News thinks it probable that further researches may show that Svanberg's norna, Church's nigria, and Sorby's jargonia, are each separate entities.

Composition of Road Dust.-MIr. Dancer, F.R.A.S., has been making microscopic examinations of dust, and has embodied his observations in a paper read beforo the Manchester Philosophical Society at their last meeting. A liberal allurance of animal life was found to be present in ordinary road dust, the largest amount being about five feet above the surface of the earth. The main portion at this point was composed of vegetable matter which had passed through the stomachs of animals, or suffered decomposition in other ways. This is a very pleasing reflection, when we consider that five feet from the curface is about the height of a man's mouth. The investigations of Mr. Dancer may go far to show how the germs of disease may be inhaled into tho system through the medium of the air, and will doubtless prove useful in a samitary point of view.

Hew Lucifer Match.-Dr. Fleck, of Dresden, has invented anon-poisonous match, in which sodium, in a fine state of division, is mado to take the place of phosphorus. A mixture of sodium, nitrate of potseh and sulphide of antimony is made into a paste, with a solution of cacutchouc, and small pellets
aro made of the composition. The matches ignite ly being moistened with water. Although several German manufacturers are said to have taken up the invention, wo do not think the new match is likely to supersede the old-fashioned lucifer-not to to mention the Special Safety's of Bryant \& May.
Emp. Belladonnæ-1.Balmer,(Pharmatical Journal) proposes the use of the resinous extract of belladomar root, in place of the spirituous extract of the leaf, for the production of this plaster. The advantages claimed are, greater reliability, superior adhesion, and greater convenience in use, as the plaster rerquires no adhesive margm, loes not 2 m or exude, nor will it stain the linen by being worn a month or longer. The proportion of extruct used is one-third the veight of the plaster. The color is said to resemble that of emp. cerat. sapunis.

Composition of Englist and Aleppo Galls.-An analysis by Mr. Watsun Smith, F.C.S., gave the following result:

	Galls.	English Gnlls.
Gallo-tanmic acid.........	$61 \cdot 65$	26.71
Gallic ncid	$1 \cdot 60$	trace
Woody fibre	16.68	$46 \cdot 88$
Water...	12.32	$20 \cdot 61$
Coloring matter and luss...	8.75	$4 \cdot 30$
	$100 \cdot 0$	100.00

Lanthanum.-M. Zschiesche gives the atomic weight of this element as 45%. This number is deduced from the mean of six experiments.
East India Cinchona.-At the last meoting of tine Pharmaceutical Society of Great Britain, Mr. J. E. Howard, F. L. S., made some remarks regarding several samples of bark, cultivated in the East Indies, which were presented to the Society by Mr. Broughton. He said that the number of varietics and species now cultivated in the East Indics was somewhat embarrassing, many of them being eract reproductions of the barks found in South America; whilst some varieties did not appear to correspond exactly with any that they were as yet acquainted with from South America. The subject, therefore, still required investigation among these new varieties. Mr. Broughton had quite recently found a variety which was quite new to them, possessing lanceolato leaves almost approaching appearance to the Cinchona lancifolia, the bark differing entinely from the characteristic of the bark of tho la cicifolia, and pertaining more to that of the best species of Pitayo or of Loja. Mr. Broughtun had found this varicty to bo so extraordinarily rich in quinine that he had obtained from it the almost incredible quantity of 10 per cent. of sulphate of quinine. Though this fact had only been communicated to him (Mr. Howard) in a letter from Mr. Broughton, thero could not be any objection to his mentioning it at that
mecting. Ho had himself examined a small portion of the bark, and his oxamination fully confirmed Mr. Broughton's analysis. This circunstance, together with other collateral observations, showed the great importance of attending with even minute accuracy to discrimination of the species and varieties which were alrealy growing luxuriantly in the Eiast Indies, some of which wero so very much more productive than others. The neighboring plants to that he had mentioned did not produce one-third of the amoust of sulphate of quinine. In Mr. Broughton's last report he mentioned the circumstances connected with finding this species and his annlysis of it, and he stated there that he had found 8.5 per cont. of sulphato of quinine, but since then he had obtitined what he (Mr. Howard) had just mentivned. One specimen on the table was this extraordinarily rich bark. There was another specimen, which was the third harvest of bark renewed from the same tree, the Cuchona succirubra, or red bark of commerce. The bark had been three times stripped from the treo and then renewed; and certainly it was greatly improved from the original bark. Some pieces of wood on the table were transverse sections of some of the trees of Ciachona succirubre, which had been stripped of their bark and had replaced it. They would observe the lines representing the first, second, third, and fourth growth, the old part contrasting with the appearance of the new.
In answer to an inquiry, Mr. Howard said ${ }^{\prime}$ it appeared to him the effect of cultivation was to increase the value of the product. There was one thing to be noticed, and that was that perhaps the quantity of cinchonidine was rather larger in East Indian bark than in Peruvian bark. The greater warmth and dryness of the atmosphere in the East Indies probably tended to the production of this alkaloid.

OANADIAN PHARMAOEUTIOAL SOOIETY.
The regular mecting of the Society wis held at the usual place on 2nd inst., with the Vice- President in the chair.
After reading and adoption of the minutes, the following were proposed as members:principals.
G. Jackson,Egmondville.
P. Cruickshank,Parkhill. assistants.
Thos. B. Fraser,Napance. Wm. H. Clarke,
Letter from W. A. McCollum was read, and the Secretary instructed to reply that the engagements of the Society would searcely permit a reduction of the membership fee at present.
The Secretary said he had received (charges paid) from Mr. J. M. Maisch, Secretary of the American Pharmaceutical Association. a file of the proceedings of that Suciety up to date.

Mored by Mr. R. W. Elliott, seconded by Mr. J. T. Shapter, That the thanks of this Society bo tendered to the American Pharmaceutical Association, for their valuable
contribution, and that the Secretary and the movers of this resolution be instructed to convey the same to Mr. J. M. Maisch. Carried.

Mr. R. W. Elliout said that during his lato visit to Europe he had received the promise of some contributions to the Muscum, consisting of salts of opium from MIr. Snith, of Edinburgh, and other contributors. Ho procecded to give some account of a visit to the Museum of the London Pharmacoutical Society, and at the request of the members present promised to give a more cxtended account in a paper, for the Society, at a future meeting.
The question of legislation was brought up, and whether it would be advisable to communicate with the Premier on the subject, but the members were of opinion that it would be useless on account of the pressure of more public measures.
The attention of the Suciety was called to the fact of the next meeting being the annual one for the clection of officers, and according to the Constitution, two auditors should be appointed-one by the Chairman and one by the meeting.

Mr. Shuttleworth was appointed by the meeting, and Mr. Brydon by the Chairman. Mceting adjourned.

Henry J: Rose,
Sccretary.

OBITUARY.

It is our painful duty to record the death of Josepl W. Parker, of Owen Sound, on Saturday, May 22nd, from an attack of inflammation of the bowels.

Mr. Parker was born in Yorkshire, England, Nov. 26, and consequently was under 43 years of age. His frame was hardy amd vigorous, until a few days before his decease, and he looked like one in the noon of existence with many years of active life beiore him.
His first connection with pharmacy, was as apprentice to Mr. Sager, of Haywood, Lan. cashire. He was afterwards, for short periods, assistant at Macclesfield and Diss. Then manager of a business in Southampton for several years. In 1855 he came to Canada and was for a year with Lyman, Elliot \& Co. Having by this time the necossary lucal knowledge, he entered into partnership with Mr. George Cattle and commenced business in Owen Sound. In 1859, Mr. Cattle started the Goderich business to which he has since devoted his attention. About 1861 a commencement was made in Durham under Mr. H. Parker, and last year tho firm of Parker \& Cattle bought a business, in Paris, to be conducted by Mr. J. S. Parker.
All tho operations with which he was con-
nected were marked by enterprise, onergy and prudence. The very idea of a mean or dishonorable action was hateful to him. 'Taking great pride in his business, he was one of the most thorough pharmacists in this country.

Fis loss just when lis experience was ripe, and his physical powers were at their prime, will be felt by the entire pharmacentical body, and his family lave the sympathy of all who had the pleasume of his acquantance.

Steiger's Literarischer Monatsberichit : A. Monthly Record of German Literature. New York.
This is the title of a clissified list issued by E. Steiger, containing a full register of recent German publications, amoumeements of forthcoming works, literary criticisms, and items of interest to the literary world. It will prove of undoubted value to all book buyers, and may be procured, gratis, by addressing the publisher, 22 and 24 Frankfort sircet, New York.

Silfitionk.
The Action of Light on Oitrate of Iron and
Quinino.
BY C. H. WOOD, F.c.s.

I was engaged about two years ago in preparing some citrate of iron and quinine, and by scaling my product in a hot cupboard, I obtained good-sized scales-bright, of it golden-rreen color, and perfecily ssluble in water. Remembering, howover, that potissiotartrate of iron gives far better scales when scaled in the sun's rays, than by any artificial heat (a fact I learnt from Mr. Braithwaite), I spread sume of my solution on plates of glass, and exposed them in a window to an April sun. I was soon surprised, however, to obserre tho citrate becoming darker in color and exhibiting a very good photograpic image of some bottles which cast their shadows on the plates. After a time, but while still wet, it gradually became opaque, as if the quinine had been precipitated. It ultimately came of in minute brownishcolored powdery scales. Tho two results from the same solntion were $2 s$ different as they possibly could be. The sum-scaled specimens when put into water became white and opaque, and only dissolved after the lapso of a lonry time. The scales produced by heat, when thrown on water, rapidly melted, retaining their perfect transparency to the last. Tho salt contained 17 per cent. of quina.

T then thought it would be worth while to
rain whether the strong solution only is suaject to this change, or whether the finished product would bealso affected in like manner by exposure to the light. About a drachm of the good citrate, scaled by heat and dissolving freely without opacity, was therefore spread out on a shect of whito paper and laid in the sun's rays. After a quarter of an hour's cxposure, it was perceptibly decpened in color. In twenty minutes it had become brownish, and when put into water became at once white and opaque. The white spongy bits floated about in the liquid, and gradually
but slowly dissolved. Some samples of citrate of iron and quinino were then obtained from screral diffurent makers, and exposed in the samo manner. All wero more or less sinularly aflected, but nevertheless the results varied considerably. In some cases the salt was even more decidedly affected than my own had been ; but in others the result was less injurious, and when the scales, after isolation, were treated with water, although they became white and opaque, their ultimate sulution took place rapidly. Portions of these | exposed specimens were wrapped up and put aviay in a dark place for some time; upon subsequently exanmining thems they had to a great cotent passed bick to their original condition. It has often happened that samples of this salt have been disparaged on account of then difticult solubility; from these results, howerer, it wouk apyear yossuble that this defect has liut been so much due to any fanlt in the manufacture as to sume arciclental circumstance in the preservation of the product. Should time and opportunity offer, I hope on some future occision to investigate more fully the nature of tho change which thus occurs in citaate of iron and quinine by exposure to light. -Ph. Journal (Eng).

Shellac for Water-Proof Ooatings, Dyes, Paints and Printing-Inks.
A solution of shellac in ammonia, after having become to a certain extent concentrated from exposure to the air, pussesses, according to Puscher, very remarkable proper. ties. They are of such anature as to waraint the belicf that the use of ammoniacal solution of shellac will soon prevail extensively in the arts. The solution is prepared by putting three parts of white shellac, one part of sal-ammoniac, and from six to cight parts of water in a bottle, and then allowing the bottle to stand well corked for twelve hours. Thereafter the contents must be boiled until dissolved. During the process of boiling a constant stirring must be kept up. Thesolution as thus obtained may take the place of the alcolsolic shellac solution used by the hatters, or, if diluted with twelve parts of water and mixed with terra de sienma amd ochre, it may be used as a paint for floors. If to an animoniacal solution of shellac a dilute solution of Cassel brown in sal-ammoniac be added, a durable water-pioof brown dye for wrood is obtained, By previously digesting the sal-anmoniac solution with logwood or Brazil-wood, various shades of brown in combimation with the Cassel brown may be produced. Mixed half and half with Runge's ink, or ground with suot, an ammomacal solution of shellac forms a preparation for coating leather or wood, or for addressing boyed goods. Such a coating is perfectly water-proof. By ginding it with carefully prepared chalk, it may be used in the mannfacture of pergament paper, or ground with colors it becomes an element in the mamufacture of water-proof wall paper. But for this purpose colors that have beenadulterated wath rypsum, as, for instance, some carmme lakes inferior chrome yellows, or green of Neuwied, should be rejected, from the fact they decompose the shellac solution. The most interesting and uscful property of this solutton consists in its solvent action upun some the anline dyes. Aniline green, which is solublo only in acidulated spirits of wine, is readily taken up by a hot shellac solution that con-
tains eight parts of water to ono part of the original preparation, Aniline yellow is readely taken up by means of boiling water, but in such cases orily a pale shade of color is produced upon non-nitrogenous, such as papuer and wood. If a shollac preparation of the proper degre of concentration is added to a solution of yellow aniline dyo in water, dyes are obtained which aro water-proof, and? applacapable to both woud and paper. Jifferent shates of color may bo given to this yellow dye by means of the abovo-mentioned solution of arecai anihne, or a most beantiful red ink or dye for wood may bo obtained by aldung a solution of ca:nine in ammonia to 1t. If a solution of Magnetia red in water is bolled for some time with the origimal shellac solution, it is first converted into violet and then into blue. Chis process takes placo with the separation of in instuble blue color, and the blue solntion obtained may be used m the mamifncture of inks, wood-dyes, and fur coloring payer pulp. Again, by thoroughly mixing small quantitics of common salt, gypsum, or dilute acids with theso colored inks, dyes of great vivacity and body separate, which when leached with water may be cmployed for marbling paper, or as print colors for wall-paper and fabrics of varipus kinds. It mity be used alone, or mixed with starch paste. When ground with linseed-oil and printer's varnish, they may bo used for book, stono and calico printing. If they ano mixed with more sulphate of lead or gypsum they give rise to a series of bright-colured paints. If, insteal of the ordinary shellac, Slint of the best quality is cmployed, the solution is particularly serviceable as a binding material for water-colors. Pictures painted with such a culor posses not only more freshness and greater durability, but also waterprof like oil-paintings. It it is quite certain that these ammoniacal solutions of shellac will find application in the decorative art instead! of glue; and finally, as ahint to painters it may be remarked that they form an excellent dryingmaterial when usedin combination with white-lead and zinc-white.-Manufociturer and builder.

Leeches.

In buying lecches, it is well to select from a dealer of reputation, and the invoice, if reccived in winter, must not at once be taken into a warm room, but placed in one, the temperature of which is a few degrees above freczing, where the parcel ofturfy earth is sprinkled over with cold water and allowed to thaw gradually and slowly. A cold of $14^{\circ} \mathrm{F}$. , renders the animal immovable, withont, however, causing death, provided the warming tikes place in a cool place at a few degrees higher than 32°. Lapid changes of temperature, or sudden warming, kills or sickens the leech, as does also a cold below 10 degrees F., or long continued cold between 10 and 20 degrees. The best mode of prescriation is in a glass or porcelain jar, with perforated lid, or linen cuver, loslding soft water, as free as possible from lime and 1ron, at a temperature of 50 to 70 decrees F., which should be in a place where there are no ammoniacal, acid, or acrid vapors. The water, as often as it becomes turbid, or when threads of mucus are found floating in it, is to be replaced by water of the same temperature, and at every one of theso chanres the vessel and its sides must ho thoroughl, cleansed, after remoring the leeches into a basket or
dish lined with soft linen eloth, where they can bo washed by pouring on water and softly rubbing them. Rain water must ahways be avoided. The vessel should not be filled to more than half its licight, and not be crowded with the animals. For a more lengthy storing, the wooden boxes, with most turfy earth, in which they are nsually tramsported, or one of a large sizo with a little dish of water wichin, are advis:b'c. Tho carth used must at any rate be freo from linee, or marl, or iron pyrites. The water shouh be renewal overy week, and tho earth examined every month or two, to allow the removal of larver or other forcign denizens. The whole should be kept apart from any noxions vapor that may be created by the laboratory or otherwise, as well as from all kinds of salts, alkalies, and acids. The ordinary disease of the leech, which renders the inimal unfit for use, is a nodosity that prevents it from contracting when tonched, anl shows irressular knotty aggregations, which give it an masightly appearance. As suon as noticed the whole number must lee searched through, examined, and all those showing the knotty condition are to bo removed, as contagious; and they may be treated in a sepanate ressel with a daily change of fresh soft water. Another contagious affection is dysblemmin, an abnomal secretion of mucons matter; it usually arises from calcarcous water, uncleanliness, or a temperature above $\mathbf{T} 0 \mathrm{de}$ grees T. Jaundice or typhus is the disease m which the leech dies sudden? after gencral cmaciation and loss of culor has show itself. The dead must be removed as soon as possible, on accomet of their contagions influence. This disease may be brought about by protracted starvation, the very common lot of leeches. They ought, when in good health, to be treated to a dimeer of frogs, threo or four times a year. Sugar and farinaccous food are injurious to the leech, but it readily digests the blood of cold-blooded animals, while it requires half a year to digest that of warl..-blooded. Ficeding on the latter also often canses dysentery; a symptom of which discase is seen in a red-dish-colored, thin mucous liyuill issumg from the passages, mid usually followed by dysblemma. All lecelies that show the slightest t : anes of diseases must be kept separate from the healthy ones, and under no circumstances be dispensed for medicinal purposes. Clenalaness is the great meservative. -Druggists' Circuler.

Whales and their Oils.

Mr. Bird read a paper before the Liverpool Chemists'Association on "Whales :and Whale Fishing, and the Products Obtained," in which he stated that there are a very large number of species of whales, of whinh the most important are-the sperm whale, which yields speran oil, spermaceti, and ambergris; the Grecnland whale, whel, gives the best whaleboneand the most hubber, but which is now becoming scarce; the hump backed whate, ant the rorqual, which was the one with the capture of whichho was persomaliy acquainted. This whale, of an averigelength of seventy to ninety feet, does not yield so much bubber as thu Greealand whale, and the whalebone s s:ncit shorter. It hats only been ciptured of late years, owing to its great strength iud swiftness, it cannot be caught by the old methool of harpooning. The netr method consisting of the use of a rocket-harpoon with explosive shell,
which sometimes killy tho animal at once, was described, and the harpoon exhibited and its use explained. Tho blubler is stripped of spirally from the body of the whale. The lecturer looked upon tho blubber rather as a store of food in time of scarcity of the minute animals on which the whale feeds, than as a preservativo against cold. The variousmethods of extracting the oil were then given, vie. the purcfartive methon, principally used by the the Scotch whaters; the dry pot method; and a new steam process, which ho recommended, as yielding more oil, of a more pleasant odor and higher lubricating power. The average emprosition of blubber was given as-

The oil on cooling becomes thick. It is pressed in bagg, giving a solid iat used for sheepsheariag and suap-making, and an oil known as train oil. The nature and ases of whalebone were mentioned, nad the lecture concluded with a:a accomnt of an attempt to uthlize the gelatine in making gla:, which, though of good quality, would not sell well, owing to itsunpleasent smell.-London Jowr. of Pharm.

Dyeing Wool with Magents.

The prncess of dycing with magenta is extremely simple. For animal fibres it is sunticient simply to dip them in a bath of magenta. For dyeing silk: amd wool the maronta crystals are dissolved in diluted acetic acid or in vinegar. The magenta might just as well be dissolved in simple water or in diluted sulphuric acid as in vinegar: Practico has, however, shown that by being dissolved in acetic acid, the colors produced ubtain a very agreeable bluish shade, which is very pepular among the ladies. In preparing the magenta solntion it is best to pince the crystals together with vinegar or acctic acid in a retort, and to allow the erystals to dissolve. The retort must be placed in some warm locality, and shaken at intervals mitil the crystals are quite dissolved. Then the resulting thick, red haid is oltained perfectly clean; it may be decanted or filtered and added to the bath. For the purpose of preparing the dyeing bath in a vat, witer is heated by stean; when it has attained the correct temperat.are, as much of the above-mentiuned sulation is added as is sufficient to give the entire bath a perfect red huc. Into this, then, the silk or wool, after being well washed, is dipped ; when wool is to be dyed the bath must be heated to boiling. We may readily observe that as the bath gradually loses its color the wool and silk attract it, and inally the entire coloring matter is fixed on the fibre. The goods aro then remored from the bath, to which a fresh quantity of magenta solution is added, and the whole bath thoroughly stirred. The goods are inserted a sccom! time, if a deeper shade be desired. In this manner every shade of red may be oltained from the brightest rose color to the darlest red. Whenever the desired shate is attained, the gools are sumply removed from the liath. The main difficulty 11 dyeng is to prevent the coloring substance from spreadang with unequal intensty, over the gools. Phis is very liable to lappen throngh the rapidity with which the colner is attrected by the animal fibre. That portion of tine fibre which is first inserted in the bath has alveady attracted a quantity of color before the last part of the goods
has been thrown into the bath, and therefore, unless considerible caution be exercised, one part will receiveadeeper shade than theother. It is advisable mot to put too much color into tho bath, and if the same goods are immersed several times, those goods which, on tho first occasion, land been last immersed should on the second occasion be immersed first. Also by addition of a littlo sulphate of sudia (salt-calke) the too rapid attraction of the coloring matter may ho prevented, and thus the goods will be dyed more equally. After the dying process has been completed, the goods are washed and dried. As wo have ahready stated, the color produced in dyeing depends upon the quantity of magenta employed. In buying coloring matters, dyers must regard the purity rather than the cheap)ness of the article.

Glycerine.

Tubs and pails saturated with glycerino will not shrink and dry up, the hoops will not fall off, and there will be no necessity for kecping these articles soaked. Butter tubs will heep fresh and sweet, and can bo used a second time. Leather treated with it also remains moist, and is not liable to crack and break. It is used for the extraction of perfume from rose leaves and other scented matcrials; employed to preserve animal matter from decay, and therefore also to prevent many articles of fuod from undergoing decomposition; mixed with its own bulk of water it is used in gas-mechronometers, clucks and watches are hibricated with it. It is largely used in pharmany to keep moist and preserve extracts, pills and other preparations; it is used in dyeing some of our beautifnl organic colors; in chemistry it is employed to prevent the precipitstion of tho heary metals by the alkalics, and is thus a reagent in ans:lysis; it is used in brewing beer for making an extract of malt, as also in the manufacture of liquers (cordials); it is applied to the preservation, and no doubt to more than that, viz, the making of wincs and champagne. Since olycerine can be fermented into alcohul with chalk and checes, it may in future become a source of alcolol and acetic acid. Lastly, glycerine is the source of mitroglycerine, a most dangerous explosive substance, and of dymanite, which is simply nitruglyeerine mined with sand, and is much less dangerous than nitroglycerine, aud nearly as destructive in its eflects, as it contains 76 per cent of nitroglycerine.

Poppies and Opium.

'lhe following letter appears in the Scientific American:-

Messrs. Enitons:-During the war, a farmer in Middle Gcorgia, hatitude $33^{\circ} 20^{\prime}$, made opium from the comiron poppies, some had white and others red bloo:ns. The poppies raised in Turkey, for opium, have larger capsules than those usually grown in tho Southern State3. Both are hardy and easily raised, the seeds folling on the gromms where raised one year and come up the next spring in great abundance. A deep, riel, moist soil is best for the poppy ; in dry seasons irrigation would increase the crop. The seeds may be planted at any time in the wintel, or early spring November or December is the best time.
Some of the opiam was given to a practising physician, who made it into laudanum,
and used it in his practice. Ho said it was much stronger than the opinm he purchased at the drug stores.
Three feet is wide enough between tho rows, with the plants six to ten inches apart. When the blooms drop, the capsules, or seed pods nave cut with a sharp knife, the incisions shailow and perpendicular, and nearly the whole length of the capanles. This operation must bo performed near sunset, and whilo there is enough light to see, to prevent craporation and desicantion of the nium, and it must bo scraped of as carly as practicablo the next morning, for the same reason. A spoon with sharp edges is a good implement for that purpose. Three or four incisions in pach pod is sulficient at one time, equi-distant apart; they may be cut again between the first incisions
with liko sucess the second time. Cutting the capsules perpendicularly facilitites the gathering of the opium. Tho tediousness of slitting and scraping the seed pods will limit the quantity of opium made.
Here is a fine field for the chemist to extract opium, or morphia, at least, from the leares, stalks, and capsules, as they all contain opium. After the juice that exudes from
the pods is scraped onf, it is placel in phates the pods is scraped onf, it is placed in phates in the sunshinn to dry, ind is worked by hand,
before it becomes dyy and hard; that is all before it becomes dry med hard; that is all
that is necessary. When dry; it is pure that is necessary. When dry; it is pure
opimm. No flower gavden can excel a fieh of poppies in bloom.

Indian Springs, Ga.
W.

New Method for preparing Pure Hydrochloric Acid.
Mr. Hofmann, chemist at Dicuze, has improved the usual method for preparing muriatic acid in the following particulars:
The receivers, which lold about 200 litres, and of which there are 60 attiched to each furnace, aro Woulfe's ilasks, connected together by a pipe on top, in order to allow
the circulation of the vapor, the circulation of the vapor, and one near the middle height, for that, of the liquid. Hoping that the first 00 hasks were those that contained all the impurities, he disconnected the lower commumication between tho first ten receivers, filling them to one-third with distilled water; but was rreatly surprised
on noticing that it was the last bottles that on noticing that it was the last bottles that
contained the largest proportion of sulphuric acid. Experiments proved afterwirds that sulphuric acid, when conducted over water in the form of gas, is absorbed only with dif-
ficulty. ficulty.
To find a better method, Hofmamn used a vessel with double tubulus, which he flled a with crude murintic acid, to which he added by means of a fummel oil of vitriol of 1.848 specific gravity. Hydrochloric acid was im-
mediately disengaged, was passed through mediately disengaged, was passed through
a Woulfe's a Woulfe's washer, and conducted into a
vessel with distilled water. The disengagement of acid gas proceeds quite regularly and does not bring about much rise of tenperature; it ceases only when the specific gravity of the oil of vitriol has sunk to $1 \cdot 566$. The cost of this purification of muriatic acid then
is very small; the dilute sulphuvic acid is is very small; the dilute sulphuric acid is at once used in preparing sulphate, hence, calculating the cost of evaporation to 1.848 as amounting to 1 franc for 100 kilogrammes, and since 100 kilo. furnish 40 of muriatic will be only $2 t$ iranes above that of the crude acid.-(Berichte der deutschen Chemischen Gesellschafl aı Berlin, 186S.)

Assay of Gold Quartz.

First let the rock containing yold be roasted at a red heat, as is practised in regard to flats intended for pottery-waro manufacturo; this roasting renders it easy to break the rock afterwards into small pieces. In this state the rock should be placed in at large earthenware (fire clay) tube, fixed in a fur:ace in a mamer similar to the largo tire clay retorts used in the manufiteture of pas (double retorts), open at both ends and projecting beyond the fmonace at each end ; the heat in the interior of the tube should bo bright cherry red. If, under theso circumstances, a current of chlorine gas bo passed through the retort, the gold contained m the rock will combine at tho high temperature with the chlorine, and become volatile therewith, Wherens at the place were tho heat of the
tube or retort s less tube or retort is less high, the chloride of deposited. -Chemicul News.

Paraffin.

Dr. Bolleg has found that parallin (a pure sample of which having its melting point at $53^{\circ} \mathrm{C}$, and which on malysis was found to contain in 100 parts-C $\mathrm{C}, 85 \cdot 61 ; \mathrm{H}, 14 \cdot 69$), after having been kept for cight diays at a temperature of $150^{\circ} \mathrm{C}$., had become a brownish pasty mass. A portion thercof was soluble in alcohol, and was unaltered parafin, but the dark colored residue yielded on malysis $\mathrm{C}, 70 \cdot 04 ; \mathrm{H}, 10.25 ; \mathrm{O}, 19 \%$. A samplo of paraflin which had been kept for some time at 300^{n}, gave off vapors on being afterwards again heated up to 150 . Paraltin if, in all probability, a mixture of various hydrocarbons, all of wich have various melting and
boiling points. boiling points.

Purifcation of Bisulphide of Uarbon.

According to Mr. Nillon, the disagrecable odlor of hisulphide of carbon can be got rid of by distilling it with quickline, the two having been in contact twenty-fom hours. The distillate is received in a flask partially filled with clean copper turnings. The lime
remaining an the retort is strongy colorel remaining in the retort is strongly colored. By means of the deodorized bisulphide, MM. Millon and Commaille have sepmaterl this
perfune of milk to the entent of recormizing perfunce of milk to the extent of recogizing nium olusatrum among nthers.
Wolding Oopper.

The great obstacle litherto experienced in welding copper has been that the oxide formed is not fusible. Mr. P. Rust, starting from the well known fact, that libethenite and psendomalachite (both native compounds of copper and phosphomus acil) are very readily fusible below the blow pipe, concluded that my salt containing free phosphorus acid, or capable of yielding it at red lhent, would make the weld easy by renoving the oxide as a fusible slas. A first trial was made with microcosmic salt (phosphate of soda and ammonia) and succecded perfectly; as that salt, howover, is rather expensive, he substituted for it a mixture of one part of phosphate of soda, and two parts of borax, which answers the purpose, aithongh the slag furmed is not so fusible. $\frac{\text { Ald }}{\text { Aldreviated from }}$
Dingl. Jour. in Chemical Ncus.

Mosquitces.

The eggs of the mosquito are laid in a bowlslaped mass ypon tho surface of stagnant Water by the mother ily. After hatehing out they fimally become the "wiggle-tails" or wriggling worms that may bo seen in the summer in any burrel of water that is exposed to the atmosplere for any length of time. Finally, the "wiggle-tails" come to the surfece, and tho full-fledged mosquito bursts out of them, at first with very short limp wings, which ma a short time grow both in longth and in stifiness. The sexes then conplo. and the above process is repented again and again, probably seyeral times in the course of one season. It is a curious fact that the malo moscunito, which may be known b-its feathered antenna, is physieally incapabile of sucking
blood. Tho mosquito is mot blood. Tho mosyuito is not an ummitigated pest. Althongh in the winged state the female sucks our blood and disturbs our rest, in the larrastate the insect is decidedly bent,ficial, by purifying stagame water, that would otherwise breed malarial diseases. Limmens long ago showed that if you placo two barrels of stagmant water sido by side, neither of them containing any "wiggle-tails" or other living animals, and cover one of them over with ganze, leaving the other one uncovered, so th:it it will suon become full of " riggletails" hatched out from the egss deposited by the female mosquito; then the covered barrel will in a few weels become very offensive, and the uncovered barrel will emit no impure and uns:vory vapors.-Entomolngist.

Use of Phonate of Potash to Detect Water in Ether.

As dry phenate of potash is almost insoluble in anhydrons ether, while hydrated ether partially dissolves it, amplthe mudissolved part, after some time, becomes reddish-brown, tho anthor applics those characters to detect water in ether. By this means he has recog-
nized the presence of so small a guantity nized the presence of so small a quantity as
$2 .-5$ parts of water in 1000 of 2.5 parts of water in 1000 of cther.

Preservation of Hydriodic Acid,

This acid is lecpt and properly preserved in a white state in the presenco of turnings of copper ; the iodide of copper which is slowly formed is not dissolved by the acid; hydriodic sacid which has become brown colored will be restored to its pare color
when shaken up with conper When shaken up with copper turnings.Deutscle Industric Zcitung.

Oempat for Leather.

This is not the cement hawked abunt the streets in wagons with hay, which is certainly never fed to the horses. We find it in the Polytrchnische Notitblett, a very excellent publication-im Gcrman, and to be liad of E. Steigher, 17 North Willian Strcet, New York. In a mixture of ten parts of bisulphide of carbon and one of oil of turpentine enough of gitta-perchis is dissolved to form a mass of dense consistence. For the purpose of uniting the surfaces of two pieces of leather, they must all be free from fatty sub-
stances, which is accomplished by stances, which is accomplished by placing upon each some blotting paper and heating them with a dat iron. After putting on the cement, pressure is applied until it is quito
dry.-Dreggists dry.-Dreggists' Circulur.

.Glycerino Comont.

When a cement is to amswer only temporary purpose, as for instance in making the corks or stoppers of bottles perfectly air and vipor tight, it will not do to cmploy : kind which becomes very hated, as is the case with oil and lend cempounds nor, again, other kinds, such as wax and resin, which are softened by many chemical vajors. The best cement in such cases is red-lend, or fincly powdered hetharge mixed with umdiluted glycerene. This himdens soonenongh, and when required, can be easily remored.

Cement to resist Red Heat and Boiling Water.

To four or five parts of clay, thoroughly dried and pulverised, add two parts of fine iron filings free from oxide, one part of puroxide of maganese, one-half of common salt, and one-half of borax; mingle thoroughly; render as fine as possible; then reduce to a thick paste with the necessary quantity of water, mixing thorouglly well. It must be used immediately. After application it should be exposed to warmth, gradually increasing almost to a whise hat. This cement is very hard, and presents complete resistance alibe to a red heat and boiling water.

Another Cement.

To equal parts of sifted peroxide of manganese and well pulverized zinc white ald a sufficient quantity of commercial soluble glass to form a thin paste. This mixture, when used immediately, forms a cement quate equal in hadaess and resisiance to that obtained by the first method.-Btatter fur Geiceric.

A how Styptic Collodion.

Mr. Canlo Pavesi gives in the "Gazette de Turin' the following form for ancw collodion

$$
\begin{aligned}
& \text { Collodion } \begin{array}{c}
\text { Carbolic Acid. } 100 \\
10
\end{array} \\
& \text { Carbolic Acid } 10 \\
& \text { Tamin } \\
& \text { Benzoic Acid } \\
& \begin{array}{l}
3 \\
3
\end{array}
\end{aligned}
$$

A gitate until a periect solution be formed. It is of a brownish color, gives a pellicle similar to ordinary collodion, and instantly congulates blood.

Esserce of Patchouli.
Ether when left to itself, or when treated with delyedrating substances, yields a cantphor which has a black culured suld sulb. stance, and has a composition which is isomeric with the essence, its compusition represented by CoOH H , it inelts at between 54^{3} and $\overline{5} \bar{J}^{7} \mathrm{C}$, and hoils at $29 \mathrm{C}^{3}$; density $=$ 1.061 at $4.0^{\circ} \mathrm{C}$. Vapor density at $324^{\circ}=$ 8.00 . When essence of Patchonli is heated up to from 282° to 294°, it is cntircly cenrerted into this camphor, which is, moreover, homologous with Boraco camphor.-Chicmicul Nicies.

A New Copjing Ink.

A black erpying ink, which flows canily: from the pen, and will enable any one tio obtain rery suexp coples without the aid of a prese, can be prepared in the following manne: One ounce of coarsely broken extract of logrood and two duachms oi crystallized car-
bonate of soda are phaced in a porcelain cap. sule with eight ounces of distilled water, and heated until the solution is of a deep rea culor, and all the exiract is dissolved. Whe cupsule is then taken from the fire. Stir well inte the mixture one ounce of glyeerim of a specific gravity of 1,25 , fifteen grains of neutral chromate of potash, dissolved in at little watir, and iwo drachms of finely pulverized gum ambic, which may be previously dissolved in a little hot water so as to produce \therefore muciliginous solution. dhe ink is now complete and ready for use.
In well-closed botties it may be kept for a long time without getting mould, and, however old it may be, will allow copics of writing to be taken without the aid of a corying press. It dues not attach steel pens. This ink camot be used with a copring peess. Its impression is taken on thin muistencal copying laper, at the back of which is phaced a shect of writing paper.

Blue Indeliblo Inls.

Bhe indulible ink for marking linen, is made of five parts of oxido of molybdenum, dissolved in the requisite quantity of hyorrochlarie acid; two parts of the extract of liquorice, and six of gum-arabic dissolved in two humdred parts of water. These two solutions are mixed, and after writing with then on the objects, the spot written upons is suoistened wit! a solution of chlornde of tin in water. This indelible mk not only wathin water. Mashis, but also all kinds of aerds and alkalies, except those which also destroy the linen.-Mannfuctwor stud Bulder.

"disfrlancouts.

Bloor,-The age of blood-stains may be deternined by immersing the material in one grain of arsenic and two drachms of water. If the stain be recent it will bleach in a few minutes. If one yenr chl, iunr or six hours will only mperfectly dissolve it.

Camuonac Parem-Pueliari, an Italian chemist, has invented akinidof paper, wherein carbolic acid is so thoroughly incorporated that the paper, when used to pack :nimal substances therein, preserves the same in a fresh state without salt or any curing whatever.

Sustitet: fon: Wmid: Lead. - ise. Sace has cailed attention to the fact that tungstate r.f barita forms an wacellent white pant, which has as guve a tune and depth as white lead, and has the ant sutate abuve this of not becoming blackened on exposure th the atmosphere. Winc white, which was tried as a substitute for white leal, has failed through a wint of boty.

Cont, Asufs - A scrics of experiments conducted at the Muscum of Niatural Iistory, Paris, during the gast year, by Irufessor Arandia, has resulted in the corclusion that coal ashes act neither as a mamure nor even as carth of the mast imertile quality. It is certaia, however, that upon a heary chay they act as disintegrators, an eflect which cannot rery well be only mechanical, as a ver; small amount of coal ashes is sufficient to destroy the adhesireness of a very large amonat of -liy.-Engincer.

Sonubility of Inmgo.-M. Camillo Kouhlin lass discovered the curious fact of the soluinility of indigo in alkaloid salts, and particularly in the acetates :and chlorides of amiline, morphine, ctc.

Pronsison Nickels, of the Faculty of Sciences of Nancy, in France, recently met with his death in a yery peculiar mamerby aceidentally inhating the vapor of concentrated hydrolluoric acid, while engared in making experiments to isolate thurime. Professor Fiickels was the author of many valuable publishth scientific works.
On somp aew Phoducts gbtained from Avemeas Petholevar. - Lefevre has found therein a substance which boils at $23^{\circ} \mathrm{C}$., and the composition of which it is expressed by $\mathrm{C}_{6} \mathrm{H}_{8}$; the specific gravity of this hquid is $0 \cdot 613$, the vapor density is 1.60 ; with hydrochloric acid it forms propyl-chlorhydric ether. The residue of the recitication of these kinds of petroleum yielded hydride of butyl $\mathrm{C}_{s} \mathrm{E} / 0$, which boils at $0^{\circ} \mathrm{C}$, and has a specilic gravity of 0.624.

A Nover Way of Renucgig Sthangelated Mervia. - Dr. Gco. Weller cites a caso of strangulated hernia, where manipulation in the warm bath failed to give relief. After covering the patient's ejes with a towel, the leg of the afiected side nas flexed upon the abdomen, and about a pint of cold watcr dashed suddenly upon the chest and epigastrium which caused a quick and deep inspirntion, and the slipping back of the hernia into the :ibdomen. - Ohio Med. aul Surg. Rep,

Constifition memales.-Dr. Thompson, of New lork, recommends for the abovo the use of belladoma, in combination with nux vomica and colocynth. He remarks that to induce a matural setion of the bowels with slight catharsis after prolonged constipation, he prescribed a pill cumpounded of $\frac{7}{4} \mathrm{gr}$. ext. bellindoma, $\frac{1}{2}$ gr. ext. nucis vom., 3 grs. ext. colocynth comp. to be taken at night. In obstimate cases asecond pill issometimesrequired to take effect, but in a short time one will become sumicient.-Ec. Med. Jour. of Cin.

Greneti of Fuxal in Chlomof of MagNesium. - Mr. Shacli recently noticed a quantity of flocculent matter in a strong solution of chloride of magnesium, which had been kept a long time in a dark cupboard. On examination it prored to be:rgelatinous mass, in which imnnerable fungoid threads were discernable. This may be ndded to the numeruus cases of fungi growing in chemical solutiuns that might have been supposed unfavomble to their existence.

Agan man Winto - All natural wines, if my improvement is to be effected by are, must throm dom a deposit, and thereby they become serecter in bottce by the climination of their tennin, hutrates, de. From red wine the deposit contains tannin, which, uniting with the albuminous matter contained in the wine, forms a crust, that γ ear by year becomes less and less, untal at length it becomes so thin that itacnuires the nanc of "becswing." The deposit also takes the form of crystals, which will broth adhere to the corl: and fall to the hottem of the bottle like pordered glass. All matuml wincs that haro boen any length of time in bottle should therefore be decanted with care.

Vamicline.-Mr. Gobley has instituted researches concerning the odoriferons principle of vamilla. IIe foum a bubstanco therein which crystallises in long colorless needles: to the taste this substance was aromatic and hot; it does not effect litmus paper, fuses at $70^{\circ} \mathrm{C}$. volatises at $150^{\circ} \mathrm{C}$., is ncarly insoluble in cold, somewhat more soluble m hot watrr, and very soluble in alcohol, ether, and volatile as well as fatty vils. Its compositio s is expressed by $\mathrm{C}_{20} \mathrm{H}_{6} \mathrm{O}_{4}$. Gobley call it ranillinc.
Lreveraction of Gases.-Mr. Ladd has lately exhibited at the Royal Institution, London, a very elegant experiment, showing the liquefaction of gases by pressure. Three glass tubes, open at the bottom, containing cyanogen, sulphurvus aed and ammoniat in their upper parts, and filled with mercury below, are enclosed in a strons glass cylinder filled with water. At the top of the cylinder is a small force-pump, which, when worked, drives more water into the cylinder, and forees the mercury; which acts as a piston up the tubes. As the mercury rises the gases are condensed, and now appear as liquids at the top. When the pressure is reduced by opening a stop-cock the liquids boil, and the gases speedily resume their normal dimensions.
-A not uncommon adulteration of glyecrin is to mix sugar and dextrine with it . These substances linee not hitherto becn easy to discover when mixed with the glycerin; the following process is, however, said to answer perfectly:-To 5 drops of the glyeerin to be tested, add 100 to 120 drops of water, 3 to 4 centigrammes of ammonium molybdaic, 1 drop of pure nitric acid ($2: 5$ per cent.), and boil for about a minute :ma a half. If any sugar or dextrine is present, the mixture assumes a deep blue color.

Witu microscopic and blowpipe, Mre. Sorby is developing a new method for the examination of minerals. He fuses a small portion (a bead) of the substance to be cxamined, in borax, adds rarious re-agents according to circmmstances, keeps the bead at a dull red heat for a short time, when crystals appear claracteristic of the substance, and in some instances singularly beautiful in form. The whole process can be seen and the crjstals identified under the microscope.

A cement said to possess many advantages, and to be especially adapted for scaling up ressels containing benzoles, ctherial oils, cte., is prepared by rubbing up fincly ground litharse with concentrated glycerin. The liquid cement is to be poured upon the cork or stopper, or it may be applied with a brush.

Mifleted lead, which has a specific spavity oi 11: $:$ will float on melted iron, which has as specificgravity of 7. This has becu recently
explained by Prof. Karnarsch, of Hanover, who finds that the lead when melted forms a hollor spheroid, which is filled with some mpor of lead, making it specifically lighter than iron. In smelting, however, certing ores of iron which contain lend, the Iead is found at the bottom, where, owing to its specific gravity, we should expect to find it.

- Pree clay rubbed on the hands will remore the unpleasant ordor caused by the uso of chloride of lime and salts.

The Stans of Iodme.- By adding a few drops of liquid carrolic:acid to the iodme tincture, the later will mot stain. According to Dr: Juogs, of the Indian Service, carbolicacid also denders the eflicacy of tincture of iodine more certain. He recummends the following formuli, whenever injections of the latter are indicated: Alcohulic tincturo of idome, 45 drops; puro liquid carbolic acid six drops; glycerime, one ounce; distilled water, five onnces. In blemnorrhear and lencorrhoua, his mixture is said to be superior to tar-water.

Cinchonamajamalca.-From S, 000 to 10 .000 phants of cinchona succirnbun are ready for sale in the islam of Jamaci, at the plantation at G.ralen Town, thas sprin:.

Elates and (Qucuics.

(. B. I.-Coloming fon Smurs.-Raspberry and strawberry syrups are commonly colored with magenta. If you have any objections to that substance, on account of its poisonous properties, tincture of cudbear may be substituted. The following proyortions may be used :-

$$
\begin{aligned}
& \text { Cudbear, } 8 \text { oz. } \\
& \text { Alcohol......... } 1 \text { pint. }
\end{aligned}
$$

For sarsaparilla syrup, use caramel or brandy coloring.

Inquirer.-On or Amach.- There is an oil bearing this name, derived from both the root and leaves of arnica montana. That from the root is soluble in two parts of rectified spirit ; that from the flowers requires one handred parts for solution.
Noca Scutian.-It is commonly, but erroneously, supposed that a gallon of castor oil equals eight pounds in weight. The specific gravity of the oil is about 970 ; consequently one gallon would weigh, only $7 \$$ pounds.
W. Il. L.-Filtration:-Acids, and acid substances, which usually destroy a paper filter, may be cleared by filtration through a little asbestus, placed in the neck of a innmel. It will be necessary to cover the asbestus with a perferated diaphram of stoneware, or a few pieces of glass, in arder to prevent it from floating, which will certainly occur if the fluid to be filtered is of great density. Asbestus is only about two and a lalf times heavier than water, consequently, it will rise to the surface of a liquid whose specific grarity is over 2-G. Common olass, powdered in a mortar will also make a good filtering medium; and ordinary cotton rool placed in the bettom of the funnel with slight pressure, and having been preriously wetted, will often ansiser for acid solutions, when a paper filter is inapplicable.
Apprenticc-We are not in aposition, at presciat, to answer your enquiry; but as soon as the snciety has taken a definite course in the matter, re shall be happy to do so. In the mean time, use such books as are within reach. See editorial in present issue.

Chaugles.

L. W. Youmans is commencing in Belloville, with a new stuck and stand.
J. S. Parker intends taking charge of the Owen Sound busincss of Parker \& Cattle, and ufiers their Paris branch for sale.

Heary K. Knowles is commencing a new business, in Toronto, under the management of R. C. Newman.

The business at Arthar, belonging to L. H. Youmans, has been purchased by Dr. E. Allen.
J. L. Margach, Turonto, has taken into partuership W. Anderson and J. P. Buchan. The style of the new firm is Margach, Anderson \& Co.
Mr. Killman, formerly of Barric, is about to commence business in Eewmarket.

Trade licpart.

The unsettled weather during the past month has tended somewhat to keep back husiness, but during the past week there has been a decided improvement. A great many of the best buyers have been down, and, on the whele, they have bought largely, especially of sundries and fancy goods.
The spring importations lave been coming forward during the whole of the past month, and are pretty nearly all in stock; we would advise all buyers who intend making a persomal selection of roods, to come during the coming month, as stocks have never been so good as at present, and will rell repay a journey for this purpose.

The changes in our l'rice List are not very numerous; lut in some instances, shor a very decided advance. Vanilla beans are very scarce, and are steadily going up; ergot, also, is very firm at higher rates; glyecrine is quoted lower than in our last; English oil of lavender is decidedly higher; opium still remains at its high figure, but is not held quite so firmly; bromide of potassiuun which of late has come into such extensive use is adranced in England, equal to about thirty-five cents per 1 lb . Quinine is still rery firm, and at last adrices had risen one penny per ounce during the week. Cardamons are almost out of market, and consequently command very high figures.
In dyestuffs the only material change is in Logwood, which both in the shape of mood, and extract, is very much higher. Aradder is slightly lower.

Olive oil is quoted sery low, rod and Scal oils are very scarce at present, but in all probability, will be rery low as soon as ner stock comes in.
Spirits of Turpentine lavo fallen considerably, and can be bought at a very reasonable price at present.

WIIOIESAIE PRICES CURIREMNT-TUNIE, 1889.

