The Institute has attempted to obtain the best original copy avallable for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filmina, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculée

Cover title missing/
Le titre de couverture manqueColoured maps/
Cartes géographiques en couleurColoured ink (i.e. other shan blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustraticns/
Planches et/ou illustrations en couleur

Bound with other material/
Reliè avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Wheneve! possible, these have been omitted from filming/
Il se peur que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le melleur exemplaire qu'll lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite. ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.
Pages restored and/or laminated/
Pages restaurées et/ou pellicuiées

Pages discoloured, stained or foxed/
Pages dézolorées, tachetées ou piquées

\square
Pages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index
Title on header taken from:/ Le titre de l'en-tête provient:

Title page of issue/
Page de titre de la livraison

Caption of issue/
Titre de départ de la livraison

Masthead/
Génézique (périodiques) de la livraison

Additional comments:/
Commentarres supplèmentaires:
This it?m is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

M M GOOMS
Hegh Scotie Lith. Torento.

cily Cumuinu Murunl.

'IORON'O, OC'OLBER, 1853.

Tucn'yerhlril Meeting of the Brit.sh Awociation for the Adrancement of science. Hult, Scpt. 7, 1853.

GENEHAL MEETING.

The finst Gencral Meeting was held in the Saloon of the Mechanies' lastitute, at eight oclock in the evenings: when Colonel Sabine took the chair,-but only for the purpese of resigning it to his sinecesior. This he did in the following words:-"In addresing you for the last time from this chair, in which your kindness hits been pleased to plate me I have yet one duty to perform,-and it is one which is extremely agreeable. It is to jutroluce to you a gentleman who by the (ieneral Committeo has been selected as ay sucecsoor. It has been considered necessary by gentemen who have preceded me gan several oceasious to dwell on the qualifications and on the merits of the gentleman selected; but in this case Mr. Hopkins is so eminemly distinguished, his axemplishments in the various branches of seieuce, his gearral courtesy and amiability, and his kind dioposition, have been so long and so univenally ajpreciated, that I feel confident I shath take the course which is most arercesble ty your wishes in introducing him to yon in the ferwest posible words. I will, therefore, with your jermission, reguest Sr. Ilopkins to take the chair to which the General Committee has so worthily cleted him."

The Presilent for the year then took the chair, aud delivereal the following inaugraral iduress on the objects and proceedings of the Asociation :-

The Presilent's Address.

Geatlenen of the British Association,-Before I proseed to those remaths which I may bave to address to you on matters of science, let me avail mysulf of this opportunity of expreseing to you the sense I entertain of the honour which yon have conferred upme me in electing we to the Dresidency of this Association. When the high otive was finst proposed to me, I cauk not but feel the importance of the datios attached to it. I felt, also, that there mast be others who haul higher clams to the honoar than myself. But I was aware how frequently difticalties will oceur in the immediate apjointment to such offices of the persons most comjutent to fill hem; and after having been invited to the oflice by those best qualified to decide sar h points, I conceived it right nut to shrink from it; responsibilitits, but at onee to aceept it, with the decermination of performing the duties it might mpose upoa me to the leot of my ability: I have hal the lesis hevitation in :nhuphing this conse from the knowledge of the ctleetive and reuly astitance which I shoul. a aways receive, noi only from our execllem Secretary, Mr. 1'hillips, but also from my predeccion in this chair, who is so intimately acquainted with the whole working of the asociation, to which he has rembered so loug and s", cheerfully such invaluable serviecs. After thanking you, gentlenen, as I do most sincenely, for the ligh compliment you have paid me, and assuring you of my best cfiorts in the cance of the Asioviation, I proced to lay before you such statements and remarks on sedenific suljeces as have presented themselves to my own miml for this occaion. In doing this, I cannot but regret my inability to do justiec to many subjects which might be mteresting to you; and indeed, the limited tine for

Vol. 2, No. 3, October, 1853.
which I should be justitied in de:":nhbing your attention to an oral communiation, will oblige me to omit this evening several even of those points which \bar{I} was prepared to beting under your notice.

Astronomicad science still continues to prove to us how much more populans is that portion of space ocenpied hy the soiar system tham was susiected only a few years ago. butween the 23 red of June, 1502 , and the C th of May, 1853 , nine new phanets were discolered, of which menen were fombl since the last meeting of the asseriation. Of these nine phanct, our countryman, Mr. Wind, has discovered four. The number now known, exclusive of the large plamets, but including the four old asteroids, amounts to twenty-six; nor hate we any reason to suppose that we have yet aproximated to the whole number of thete minor phanctarg budtes. All those which have been reently recognized uppear like stas of magnitude not loaer than the eighth or ainth, and are comerquently invisibe th the maked eye. The search for them has now assmad, ω a considerable extent, a more systematic form, by a pravious maping of the stars up to a certain magnitude, a:ad contained ia :a bett of a few degrees in breadth on either side of the ectiptic. Any small phanet will in the first instance be insurted in the map as a stanall star, but will oan the reexamination of the sume area sone tine atterwards be recognized in its true character, from tiee fact of its having moved from the place in which it rias titet olscrved. This maphing of the ecliptic stars from the eightila to higher magnitude; in still ecm. paratively limited; nor hiss tise length of time during which any one portion, perhiphs, of the space which has been thus mapped, been sulficiently great to ensure the passige through it, within that time, of any planet whose period is as long as the possible periods of those which may yet remain undnown to us. Analogy would therefure lead us to conchude in fivour of the probability of their number being mach greater than that at preent recognized. All those which are buw bnown lie between the orbits of Mars and Japiter, but many may exist more distant, and of much smaller apponent mampatudes, and thas amost the sume careful telcopopic research may be ucecsary to make us acequanted with some of our jlamtary :meghhours is with the remoter regions of space. Nor is the telecojise mode the only one hy which we may detect the existence of remoter phates; for as Uramus letrayeal the existence of Neptune, so mity tise l:tter heecafer reveal to us the retreats in which sone more distani momber of the system has hilherto hiddea himself from the observation of man.
There wouk seen to be atemheney in the hamam mind to rejose on the contenplation of athy ereat truhatier is fir.t establishment. Thuy atiter the undieputed reseption of the theory of gravitation, and the compleic exphatation which it alforded of the plametary monions, men seemed to think lituic of any further revelations which the solar system might still have to make oo us respecting its comitutior:, or the phyisual canses which it calls into operation. The seceat disorery; however, of so many plat net, shows how inumferly we may yet be acquanted with tho planctary part of the sisse:n; asad the contimat discovery of new conets serms to indicate that in this department atill more remains to be done These curibus bodices too, may possibly have to reveal to us fects more interesting than any which the phats may stinl have in reserve for us. The experience of these latter bodies, it I misy so sipe:th, is more limited, and their testimony, consequenty, mose revideted. Hut they lave already told us a noble tale. In moninis, as they do, in caact olverienco to the law of gravianim, and thus eatablishing that baw, they have ailime the laghest genegatiantion in physical seience which it has been aconded to ihe ham: n mind to conceive. At the same time, the apronimate cincua ity of their orbits prevents their pasing through those varie. connitions to which cometa ane
subjected. Thus while the hatter olvey in commum with tho planels, the lawe of gratation, they fregurnty firsingt to an in their apparent changes of whame, form and inemeral charenter,

 phenomina has twen recontly ubowed in Bielais comet. This
 observed a considerable nomber of times on its pe ionlical return to the neighboulnod of the sun. It apmemed in Xonember,
 wits doverel for the tint time. The connet had loweme , is ident into two distinct parts with separate mblei. Somuctime- the one and sometimes the other aypeared the brighter, till their tinal disuypearme. The elements of the ortits of the e ewin comets were calulated by Profenur Plantan our, from shervations made at (ieneva in 1845-6, ansuning them to be uninthened by each other's attractions. The correthess of the doments conath be deternimed only on the neat return of the comot, whide texik phace in the antuma of lat year, one of t! andei hating heen first eeen by Siguor Secechi at Rome, on the esth of Augrit, and the other on the 150 of of Septeminer. The sulinepuent uberevations made upon them show that the dements of the crints, as previously calculated fiom the (xaneta whervations, we:e far from exact. A complete diselnsion of all the charvations whid hate been made on thene comets duriug their last and grevinns:aynarances; is now in progress by l'rofecoor Hubbard, of the Wishington Obervatory: The distance between the two nuded wis much increased on their list appoarance. Judeing from the appares.t absence of all intluence inn sympathy between these bendies, it would seem that their phesical divorement, thugh without known precedent, is final and complete.

Stellar Astronomy continues to manifent a virent :my activity worthy of the lofty interont which att:eches to it. Beard haid made a survey of all stan to thone of the nimbly matube indusive, in a zone lyine lntween to of morth, and $15=$ of sonth
 north, to $31{ }^{2}$ of sututh delintictu. It casupives mose than 100,000 stas. Lant lear was puldi-hed alw the lomer eapectel
 servol by him at Durpat, in the yean 1s:3-43. They are pin-

 The introlurion contains the diechasion of valous infortant points in stellar athonongy.

Notices lave ben brought before us from time to time of the nebule ntserned throught Lord Ruse's telleseple. This muble instrument, so unrivalicel for olscrationg of thi kinm, continues to be ap. liend io the cante purpmise, athe to and yearly to ans knowhedige of the telnatest respus of spare into which the eve of
 appeans to contirm the fact of dhat curions tombucy th a epiral
 frequently tre a male. Tin thase promis lumener, who have

 of the apiral furms whind they anume. fhatco therefore hiwl the draninge made which are suspondent in the timinf for yomer inapere-

 uee of the original Iraminurs-and for there larere amb accurate
 his useal activity in the cance of the Answiation, has had them prepared for the purpose of this evening. Nost of them are representations of acbule which have leen very recently obeerved.

Tha pain of these are refurcticely draniugs of the nome objects; the laterur one of each pair repicestaines the nebula as wers

 how litte resem!ande there is le: wisen them, except in the external fromilary, and how entinty the chanauterasine detnils of the larrer diaminge are lust in the -inather ones; athl if I had exhilutell to gisa drationge of mume cothers of these nelanke, as seren by presins observers wath interior teleserpic power, it would have frent still mure obvinus to yan how mexeswary are telerexper with large and perfectly gromi mirrors for the development of the real charater of the :atunishur and enigranixal aggrygation of stans.

It is fur this rearon that it hax luen thought dexirable to have the ublbule of the southern hemiyphere examin if with higher telescopic power than has hitherto been brought to bear upon them. You are aware with what a noble devetion to science Sir
 examination of the smathern heavon; bat his telasenpic power was limitent to that of a reflector of $18 \frac{1}{2}$ inchess apecture. It is how progmend to mend ont to some convenient station in the sonthern lemisplare a retlecting teleseolle; with a mirnor of four fert :perture. Mr. (irubh, of Dublin, hits undertaken to construct such ins introment, (should the ghan propoced be adoptexi.) under
 Lawel, and one or twa other gentlemen. The general canstruction of the in-tnument, and the best monle of moming it, have bean derided on with cateful deliberation, after consulting all the bert :athorities on the suliject.

These important preliminaries being agreed upon, and an estimate of the whole cxprone of the instrument having bern mate by Mr. Cirabl, the deputation appointed proceceled to wait on borl Aberdeen, to :scertain whether the (icvernment were willing to bear the everose which the plan propeced would involve. His loordhipe eypreseal hinnedt, without hevitation, as favourable to the un lertahing: lut will that, siuce it involved a grant of money, it wemht be nereary to consult the Clamellon of the Fxeheyuer, Who, sulywime him to take a farourable view of the subject, wouht probably brins it lefiore the llouse of Commons among the entumates of the ersuing year. With this answer, the depttation conhal nut be ohlorwine that perfectly sat:sfied, nor cauld they fail aloo to la: gratifind hy the perfect courtesy with which they were recedo al. Judging from all we know nopecting Mr. (iliahtone's enlightenet views on subjects of this uature, and tho farourable manuer in which the Houne of Commons has alwaya reveived propnsitions for the adoancement of sejemes, we have, I think. every reison to hope that m surcasor in this chair may have the sitisfaction of announcing to you amother example of the likerality of the (ivernuent in their aceptance of the plan pmjnsel to them. In such casp, the result, I doubt not, will atio:d a new proof that the aswomiation is doinge effectively what it profonses ω do as an assuciation for the alvancement of science.

The refinement of inomern uethods of astmommical observatiou hats b:xome on greath that astromomen appear very generally to think that a ingher dexreer of refinement in the calculations of physical astronomy than has yet lnen attained is beenming bucesary: D!r. Ailams has heen engagnal in some researches of this kinil. He has corrected an errror in Burckhandt's value of the moxn's parallax ; and he has aloo determined to a nearer approcimation than that olitained by Laplace the secular variation in the moon's mean motion. I'he former incestigntion is publistime in an apyentix to the Niutical Almanac for 1850; the latter has been very recently presented to the Royal Societs.

Before I quit this suliject, I may state, that an American 'Ephemeris and Nautical Almanac for 1855^{7} has been publianed this
vear. It is the first Ampricam nantical almanac and is consi-
 It is under the sumerimemence of Livu. (. II. Janis, ansisted in the phasical department by proticsor Pierce.

No one has comeributed more to the knowhedge of Terrential Magnetism, during the lant fen year, than my distingrishod pre-

 of knowledge, but from the commensument of the sutematic olnervations which Col. Sibute has been so actise in promotins, this rague and useless theorizing caned,-is le succeeded, pobably ere long, by the somul syecedative thearies of thane who may be cepable of grappling with the real dithentits of the sulject, when the true laws of the phenomenashall have lueen determined. There laws are spriturag forth with beantiful precision from the reductions which Colonel satine is wow making of tho enumerons aborsations taken at the different magnetice sations. In his address of last year, he statend to as that the seroular chamou of the magnetic forces were confirmed by these recent chserna-tions-and also that geriolical variations depending on the s lar day, and on the time of the year had ben distimety made ont, indieating the sun as the canse of theve variations. During the perant year the results of the reluction of the: olecreatinns made, at Toronto, have bronght out, with equal perpicuity, a ciniation in the direction of the magnetic metle going thromen all its changes exactly in mols ham day. Thene ronits with weforpe to the sun prove, as Colonel Sabine has remarked, the inmediate and dinet exercie of a mannetic influence conathating from that luminary; and the additinnal reselts baw obtancel ebtablibh the same conchusion with regard to the influence of the moon. It would seem, therefore, that some of the curious phenomena of magretism which have hitherto been regarded as strietly terreseriai are really due to solar and lumar, as mueh as to terrestrial magnetism. It is beatifin to trace with such jrecision these delicate intitences of bodies so distant, probucing phenomena scarcely less striking cither to the innariation or to the phinwopuic mind than more obvious phenonkina which originate in the great lamanary of our system.

New views which bave recently sprung up respecting the nalure of heat have been mentioned, though not in deatil, ly my two immediate predecessors in the chair of the Association. They are highly interesting theoretically, and importan in their practical application, inamath as they molify in a considerable dearee the therry of the stomengine, the airengine, or any other in which the motive power is derivel imme liately fom ineat; and it is correct theory alone whech com point suit to the pratiand engluece the dugree of perferion at which he may aim in the construction of such machines, and which can enable him to compare accurately their merits when the best construction is arrived at.

A theory which propuses to explain the thermal angey by which motive power is produced, atad to determine the mamerical relations between the guantity of haot and the guantuly of mechanical effect proiluced by it, may be termed a dynamicul theory of heat. Cannot was the first to give to sucha a theory a matiematical form. His theory rented on two propositions which were regarded as axiomatic. The first cmberdied the aintract conception of a profert thermo-dynamic engine, and has leen equally adopted by the adrocate of the new theory of heat.Agrain, suppose a given puantity of heat to enter a body by any pricess, and therehy to change fits temprerature and gencroil jliysical state, and then, by a secoud process, supprose the bod, to be restored exactly to its primitive tellymenture and condition,Carnot's second findamental proposition as erts that the quantity of heat which pasees ont of the body into surmeunding space, or
into nther bodics, in the form of heul, during the second operation, is precisely the same as ilat whoh piaved into the tody during the first opration Thes view dens not revornaze tho presiblity of hert heins lat lys runcession into something dse, -anl in this particular it is at variance with the new theory, wh ciaserts that han mis lo ling by comersion moto mechumial

 that, in comp ving the wesed again, we must peur ont just as much
 to C'arnots propusitim with beynet to hoat. But suppose a part of the water while in the vincel to le convertad into rapour; then it would unt be true that in ruptying the vesel the same guantity of water in the form of "atier, mast pass out of the
 paved ont in the furm of vapuar. This is anadagunt to the assertion of the new theory with rergud to heat,-which may ba bot ate ordays to that thens, ley conversim into mechamian eflect, in a mamer andagen, io t at in which water may be sid to be lust hy conversion into vepour. Bat the new theory nut ouls asserts isencally the comertibhaty of heat iuto mochansieal eftect, and the comerece-lom ah-i; more de-finitely, that, whater le the made of comenting the one into the other-ind whelher the heat be emploned to junduce mechanial ethert or mednainal force le enploicel to produce heat, -the sume yuattity of the one is almats che cepuicalent of the same quantity of the other. 'The properi ion eam only be established live experiment, Rumborl, who was ons of the finst to anopt the fumbamental notion of this the ry as regrands the nature of heat, make: at mugh attemy to detormine the selation lreween the force gro-
 for Ar. Jume to lay the trae fimmation of this theory by a series of experiments which. in the phatosuphical dixe ermane with which they were conceined and the ingeunity with which they
 whaneser way he emplon ed medianial force to propluce heat, he foma, approsimaty, the same quantity of heat pronluced by the same amount of force; the force being estimated in footpounds according to the usual mode in practical mednaniesi, x, ly the motive power emphoned in mising a weight of 1 h , through the spate of 1 foot. The conclusion adopted ly. Mr. Junle is, that 10 Fillr. is equinalent to 772 joot-pounds.

These resuts are manestionably anong the most curions and interentime of thase which anpesimenal research has recenty bronght betore us. When first :mannaced mane ten or twelvo yean ayn, they did not attrat the attention which they deserved; hat move recenty their inmortance has lnem fully secomized by all thase who cultivate the department of seicnce to which they Iedonis: Of this Mr. donle received last year one of the most gratifinge proofs, in the anard made to lim by the Council of the Royal Soxiety of one of the medials phaced ammally at their dispucid. It may le hnown to many of you that we liave in Mr. Joule a pupal, a froud, and felluw-townsman of Dalton.

This theory is in perfect hamnony with the opinions now very generally caterained re-pecting rodiant heat. Formerly light and heat were regardel as con-i-ting of matenial purticles continually rudiating from luminous and liented bodies reppectively; hut it may now be considered as entalished berond controversy that light is propug.ted through siace by the vilumtions of an excedingly relined chlocreal medium, in a mamer exactly analogous to that in wheh somil is propragated by the vibrations of the air,-and it is now suppoced that radiant heat is fropagated in a similar mamer. This theory of radiant hent, in accordance with the dynamical theory of which I bave been speaking involves the hypothesis that the partieles of a heatal forly; or a
particular set of them, are maintained in a state of vibration, similar to that in which a luminous body is believed to be. At the same time, there are remarkable differences between light and heat. We know that light is propagated with great rapidity whether in free space or through tramsparent media; sound also, is propagated with great rapidity, and more rapidly through most media than air. Heat, on the contrary, whatever may bo the velocity with which it may radiate through free space, is usually transmitted with extreme slowness through terrestial media. There appears to be nothing in light analagous to the slow conduction of heat. Again, the vibrations which render a body sonorous seem to have no tendency to expard its dimeusions, nor is there reason to suppose that luminous vibrations have any such tendency on luminous bodies; whereas, with the exception of particular cases, heat does produce expansion. It is principally from this property of heat that it becomes available for the production of motive power, as for instance, in the expansion of steam. These phenomena of the slow conduction of heat and the expansion of heated bodies, are proofs of differences between light and heat not less curious than the anzlogies above indicated. They must, of course, be accounted for by any perfect theory of heat. Mr. Rankine has written an ingenious paper on a molecular theory of heat; but before any such theory can be pronounced upon, it will be necessary, I conceive, to see its bearing on other molecular phenomena, with which those of heat are in all probability intimately connected. Prof. W. Thompson has also given a clar and compendious mathematical exposition of the new dynamical theory of heat, fonnded on Mr. Joule's mechanical effect. This is not like Mr. Rankine's, a molecular theory, but one which must henceforth take the place of Carnot's theory.

Before leaving this subject, I may add that Prof. Thompson and Mr. Joule are now engagad in further experiments which will serve to elucidate the ner theory of heat. Some account of the commencoment of these experiments has already been brought before the Royal Society-

Many years ago Gay-Lussac made an ascent in a balloon for the purpose of making observations on the air in the upper regions of the atmosphere; but it is only very recently that systematic observations of this kind have been attempted. Last autumn four balloon ascents were made by Mr. Walsh, under the guidance of the distinguished aeronaut, Mr. Green. Attention was chiefly directed to the determination of the pressure, temperature and the moisture of the air at different altitudes. The decrease of temperature in ascending was very irregular,-being changed even in some cases to an increase; but the mean result gives a decrease of 1 Fahr. for every 348 feet of ascent,-agreeing within 5 or 6 feet with the result obtained by Gay-Lussac. The latter gentlemen ascended 23,000 feet; the greatest height attained by Mr. Welsh was 22,940. A rencetition of similar observations in ascents made from different points of tiec earth's surface could scarcely fail to lead to valuable information for the science of Meteorology.

An immense contribution, of which mention was made by my predecessor, has been made within the last few years to this science, by the publication of Professor. Dove's Isothermal Maps, giving us the temperature of the lowest portion of the atmosphere (that which determines the climate of every region) for nearly all accessible points of the earth's surface. An immense nuinber of thermometric observations had been made at fixed stations, or by travellers in almost every part of the globe, but were lying comparatively useless for want of arlequate discussion. This task was undertaken some years ago by M. Dove. It was not merely a task of enormous labour, but one requiring great
critical acuteness and sound philosophical judgment, and these qualifications M. Dove brought to his work, which has resulted in the excellent maps alluded to, accompanied by a considerable amount of letter press, full of interesting generalizations, and written in the genuine spirit of inductive philosophy.

His maps present a great number of isothermal lines-i. e., lines passing through all those places which, at an assigned perisd of the year, have the same temperature, each line indicating a particular temperature differing a few degrees from those of the adjoining lines. Besides a large map giving these lines for January and July, the months of extreme winter and summer temperature, there are smaller ones giving similar lines for all the different mouths. An English edition of these maps has just been published.

We may easily conceive how a great ocean current of warm water ftom the tropics may affect the temperature of the atmosphere in the colder regions into which it may penetrate; but it is only since the publication of these maps that we have had any adequate idea of the extent of t is influence, or been able to appreciate the blessings conferred on the shores of north-western Europe, and especially on our own islands, by the Gulf-stream. This great current, though not always under the same name, appears, as you are probably aware, to traverse the Atlantic in a north-westerly direction till it reaches the West India Islands and the Gulf of Mexico. It is then reflected by the American coast, and takes a north-easterly direction to our own shores, extending beyond Iceland into the North Sea. It is to the enormous mass of heated water thus poured into the colder seas of our own latitudes that we owe the temperate character of our climate; and the maps of M. Dove enable us not only to assert distinctly this general fact, but also to make an approximate calculation of the amount to which the temperature of these regions is thus affected. If a change were to take place in the configuration of the surface of the globe, so as to admit the passage-of this current directly into the Pacific across the existing Isthmus of Panama, or along the base of the Rocky Mountains of North America into the North Sea-a change indefinitely small in comparison with those which have heretofore taken place-our mountaine, which now present us to the ever-varying beauties of successive seasons, would become the unvarying abodes of the glacier and regions of the snow-storm; the beautiful cultivation of our soil would be no longer maintained, and civilization itself must retreat before the invasion of such physical barbarism. It is the genial influence of the Gulf-stream which preserves us from these evils. Among its effects on our climate, I may mention one which may not be without its local interest along this coast, especially for those who may wish to visit during the winter for health as well as for pleasure. The temperature of the atmosphere to the north of this island is so ameliorated by the Gulf-stream in the depth of winter, that the isothermal lines for the month of January along the whole eastern coast of Great Britain and the opposite western coast of the Continent, run north and south instead of following their normal east and west direction, thus showing that Scarborough, or any watering-place on the same coast much further to the north, enjoys as temperaate a climate in the depth of winter as the coast of Kent. In the early spring, however, it becomes considerably colder than on the latter coast.

My predecessor, in his address, informed us of an application made to our Government by that of the United States, to adopt a general and systematic mode of observing phenomena of various kinds at sea, such as winds, tides, currents, dic., which may not ouly be of general scientific interest, but may also have an important bearing on navigation. The plan proposed by Lieut.

Maury, and udopted hy the Americon Government, is, to have
 vesels sent out to seat. 1 am hatily th be able lo state to sor that our dehmahy have gasen orden for simalar ohseavatinns to be mate by thence who hane command of bitughol vesels; and we trul also that persoms will be appointed whhont deday for tho veduetion of the mans of vbertations whith will thas soon be accumatated.

The seinene of Geolury may be regarded as comprining two
 The former maty le subiluided into it chemiend and dyamical branches. The chemical dejantanent hats newar made :any great progress, thonghaboumding in problems of tinat rate interentsuch for instame, as the formation of coal, the sergregation of maneral matter constituting mineral reins of all dexerphans, the proeeseses of sitidification athl erystalization of rocke, of the production of their jointed and laminated structure, ami matty others. lateranting experinents are not alioge iher wanting on points such as these; but not sullicient to constutue, as far as 1 am aware, a positive foumbiation and deeided progreses in this branch of tho science. The problemis, doubthess, involve great ditficultien; both as rearards the action of the chemical arencies themedres and the varied conditions under which they may have arted. The accomplished chemist alone can rombitt the dilliculties of the former find, and the geolarist those of the batter. Both these chatacfers mut be united in amy one who may hope to arrwe at the true solution of thene problens. We cemiot too earne-tly imite attention to this branch af gedogy on the past of those lest qualified to contend with its dilliculties.

The dynamical, or more stric:ly, the mechanieal department of the seience, has received a much larger shate of attention. In fach, almorit all theories and speculations of genloginta, indepencently oi organic remains belong to it, and a large portion of the work of gevongits in the field has been devoted to the observation of phenomena on which it treats. lhenomena of elevation, those which have immediat:'y resulted from the action of the subterrmana fores which hase so wonderinlly scarred and furrowel the face of our gloke, lasve been made the oljects of careful research. It is to this probally violeat and desolating action that we owe the accessibility of the mineral murees of our mining districtio as well as all thome expuisite beauties of enternal nature which the mountain and the valley prexent to us. The absence of all order and arrumement would secta on a superficial view, to be the especial characterstic of momotainous distriets; and yot the nice obervations of the geolegist has deterted, in such districis, distinet appoximations to genceral laws in the great dislocations and upheavals in which the monntains and valleys have originated. The more usual haw in there phenomenas consints in the approximate parallelism of those great lines of dislocation and clains of monntains the furmation of which can be traced back to the sane geological eproch. That this law is distinctly recomizalle throughout districts, sometimes of many hundred miles in exient, is clearly established; but some geologists contend that it may alio be recognized as prevaiting over much larger feographical areas tham any single grenlogivil district presents to us. M. Elie de Beamont was the originator, and has locen the great adrocate, of this extension of the theory of parallellism. He extends it, in fart, to the whole surface of the earth:-using the term parallelism in a certain modified sense, to render it applicable to lines drawn on a spherical instead of a phain surface. His theory aseerts, that all great lines of dislocation, and, therefore, all monntain chains oryginating in them, Wherever situatel, may be groaped into perallel systems, and that all the lines or mouniain chains belonging to any one system were produced simultancously by one great convulsion
of the carth's crust. This thent. has heen shonated hy him many yeus; hat he has recemb publi-had his latom sieve resperting it, and has made an ingantamt ahdition, which may, in
 tels abmaly mentianed wh hase its cheirnctesistic elirection to which all the line of than -astem ate parality. This mew theory
 as were, by .ecident or chante-hat that they hane centain selattons to exelh other, so that the mopertace syiems to which

 theory, i cam omly retir to the author's work, or the anatyais which 1 gate of it lant leebruary in nis allheses tothe (ecologgiaal Sucioty: I feed it bight, fowerer, to atid, that ather an atteitive examination of the suijiject, the coshence addured by M. de Beanmont in support of the lant mentioned thent han fanded to comey convection to my own mind. With referner to the paralleding
 deny the umh of M. do Bemmanat's theory an its aplacation to many geological districto ol limited casem: but it will probathy be the opisions of munt Englinh fadegist that, in :rtempling to extend it todistricts fire rembse from eadh other, he has overstepped the loumels of legritimate inductios trons tiatis with which
 de beamants work, in whatever degree he maty he despisal to adypt or rejert the thenretial vanus of that di-tingumsisel geolo gist, will admit the alility and knowledge whed he has boonght to hear onz the suligect, and the adhantages which must result tiom the ample dixcussion which he hats given it.

One favaurite suljeet of apeculation in the flasiceal branch of geology has been, at all times since the origin of secience, the state ot the interior of our phanet, and the sonree of the hight teraperatute charmed at all comsidetable depshos bether ho its surfine. The terrestial tenperature at a certain depth in each lo ality (about so feet in our own region) remains contant during the whole year, being sensibly unallieted by the changing temperature of the se conds. The stume, of comre; holds the at gheater depths; but the lower we desiend the greater is this invariable temperature, the increswe being proportional th the depth, and at the rate of 1 Fahr. for alkint every 60 or 70 feet. Assuming this rate of increas to continte to the deptin of 50 milus, we athould arrive at a te uperature about twice as great as that anecsary to fuse iron, and snilicient, it is supmosin, to reduce nearly the whole mass of the carth's solid crust tre a state of fusion. Hence the opinion alopted loy many gendgrits is, that our glube dues really consist of a solids eill, not excerdine 40 or 50 milh in thickiess, and :at interior flum melow, maintained in a state of fusion by the existing remains of the heat to which the whole terreatial mass was originally sulijected. It might, at finst sight, appear that this emormous mass of molten matter, incloced in so thin a sliell, coubl searcely he consistent with the general external condition and temperature of our globe; but it is guite cortain that the real exterwal temperature and this supposed internal temperature of the earth ane not jnembintent with each other, and that no valin argument of this kind can be urged against the above hypoiheris.

The above estimate, however, of the thickness of the carth's solid crust, entirely neglects the possible effects of the enomnous prosure to which the terresial mass at any considerable depth is subiected. Now, this pressure may produce effects of two kinds, luaring directly on the question before us In the above calculation, terrestrial natter, piacel at the depth of 40 or 50 miles, with a prensure of more than 200,000 fromads on the square inch, is assumed to be fusible at the same temperature as if it were subjected mercly to the ordinary atmospheric pressure;
whereas the temperature of the fusion may possibly be very much increased y sach immense presure as that which I have mentioned. In su h case, the terrestrial matter may be reiained in a solde state at much greater depths than it otherwise would be:-i.e., the solid crust may be much thicker than the above estimate of 40 or 50 miles. Again, in this estimate, it is assumed that heat will pass as early through the most superticial portion of the earth's mass as through the compressed portions at considerable depths. Now in tinis assumption, there is, I think, a great à prıori improbability, and especially with reference to those superficial rucks in which observations on the increase of terrestrial temperature in descending have generally been made, for these rocks are, for the must pa:t, sedmentary strata, which are in general, independently of the effect of pressure, doubtless, worse conductors than the older, more compact, and more crystalline rocks. But if heat passes through the lower portions of this terrestial mass with more rapidity than through its up ermost portion- i e, if the conductive power be greater at greater depth:-the temperature at considerable depths must increase more slowly as we descend than it is observed to increase at the smaller depths to which we can penetrate,-and consequently it would be necessary in such case, to descend to a greater depth before we should reach the temperature necessary to produce fusion. On this account also, as well as from the increased temperature of fusion, the thickness of the earth's crust may be much greater than the previous estimate would make it.

It has been for the purpose of ascertaining the effects of great pressure that Mr. Fairbairn, Mr. Joule, and myself, have undertaken the experiments in which we have for some time been engaged at Manchester. The first object in these experiments is, the determination of the effect of pressure on the temperature of fusion of as many substances as we may be enabled to experiment upon. We expected to meet with many difficulties in the use of the enormous pressures which we contemplated, and these expectations have certainly been fully verified; but we were also satisfied that those difficulties might be overcome by perseverance and patience, and in this also we have not been disappointedfor I may now venture to assert that our ultimate success, with respect to a number of substances, is beyond doubt. Without the engineering resources, however, at Mr. Fairbairn's command, success would have been hopeless.

At present our experiments have been restricted to a few substances, and those of easy fusibility; but 1 believe our apparatus to be now so complete for a considerable range of temperature, that we shall have no difficulty in obtaining further results. Those already obtained indicate an increase in the temperature of fusion proportional to the pressure to which the fused mass is subjected. In employing a pressure of about $13,000 \mathrm{lbs}$. to the square inch on bleached wax, the increase in the temperature of fusion was not less than 30° Fahr., -about one-fifth of the whole temperature at which it melts under the pressure of the atmosphere. We have not yet ascertained the degree in which the conductive power of any substance may be increased when solidified under great pressure. This point we hope to investigate with due care; and also to determine the effects on substances thus solidified, with respect to their density, strength, crystalline forms, and general molecular structure. We thus hope to obtain results of general interest and value, as well as those which may bear more directly on the questions which first suggested the experiments.

Among researches for determining the nature of the earth's crust at greater depths than those to which we can penetrate, I must not omit to mention Mr Mallet's very elaborate report on Eart quakes, contained in the last two volumes of the Reports of the Association. This Earthquake Catalogue is preceded by
an account of some very interesting and carefully conducted experiments on the transmission of vibrations through solid m dia. These results will be found of great value, whenever the subject of earhquakes shall receive that careful attention which it so well deserves. Insulated observations, and those casual observations, and those casual notices which are now frequently given of earthyuake phenomena, are utterly useless for scientific purposes. There are no observations which require more to be regul ted by system and combiuation than those of the phenomena in question; and I should rejoice to see the influence of the association exeried for this purpose when some efficient mode of proceeding shall have been devised.

Some of the most interesting of recent discoveries in organic remains are those which prove the existence of reptilian life during the deposition of some of our oldest fossiliferous strata. An almost perfect skeleton of a reptile belonging to the Batrachians or Lacertians was lately found in the Old Red Sandstone of Norayshire. The remains of a repthle were also discovered last year by Sir Charles Lyell and Mr. Dawson in the coal measures of Nova Scotia; and a batrachoid fussil has also been recognized in British coal shale. But the most curious evidence of the early existence of animals above the lower orders of organization on the face of our globe, is that afforded by the footprints discovered a short time ago in Canada by Mr. Logan on large slabs of the oldest fossiliferous rocks,-those of the Silurian epoch. It was inferred from the more imperfect specimens first brought over, that these footmarks were the marks of some reptile; but more perfect examples, afterwards supplied by Mr. Logan, satisfied Prof. Owen that they were the impressions of some animal belonging to the Articulata, probably a crustacean. Thus the existence of animals of the reptile type of organization during the carboniferous and Devonian periods is clearly established; but no evidence has yet been obtained of the existence of those animals during the Silurian period. After the discoveries which I have mentioned, however, few geologists will perbaps be surprised should we hereafter find that higher forms of animal life were introduced upon the earth during this early period than have yet been detected in its sedimentary beds.

Many of you will be aware that there are two theories in geology, which may be styled the theories of progression and of non-progression respectively. The former asserts that the matter which constitutes the earth has passed through continuous and progressive changes from the earliest state in which it existed to its actual condition at the present time. The earliest state here contemplated may have been a fluid, or even a gaseous state, due to the enormous primitive heat of the mass, and it is to the gradual loss of that heat that the progressive change recognized by tnis theory is chiefly attributed. The theory of non-progression, on the contrary, recognizes no primitive state of our planet differing essentially from its existing state. The only changes which it does recognize being those which are strictly periodical, and therefore produce no permanent alteration in the state of our globe. With reference to organic remains, the difference between these theories is exactly analogous to that now stated with reference to inorganic matter. The theory of proyression asserts that there has been a general advance in the forms of organic life from the earliest to the more recent geological periods. This advance must not be confounded, it should be ohserved, with that progressive developement according to which animals of a higher organic structure are but the improved lineal descendants of those of the lowest grade, thus abolishing all distinction of species. It is merely meant to assert that the higher types of organic being are far more generally diffused at the present time, and far more numerous and varied than they were at the earlier geological periods; and that, moreover, at the earliest of those periods which
the geologist has been able to recognize, some of these higher types had propably no existence at all.

Each successive discovery, like those which I have mentioned, of the remains of animals of the higher types in the older rocks, is regarded by some geologists as an addition to the cumulative evidence by which they conceive that the theory of non-progression will be ultima'ely established; while others consider the deficiency in the evidence required to establish that theory as far too great to admit the probability of its being supplied by future discovery. Nor can the theory derive present support, it is contended, by an appeal to any properties of inorganic matter, or physical laws, with which we are acquainted. Prof. W. Thomson has recently entered into some very interesting speculations bearing on this subject, and suggested by the new theory of heat of which I have spoken. The heat of a heavenly body placed under the same conditions as the sun, must, it has been said, be ultimately exhausted by its rapid emission. This assertion assumes the matter composing the sun to have certain properties like those of terrestrial matter with respect to the generation and emission of heat; but Prof. Thomson's argument places the subject on better grounds, admitting, always, the truth of the new theory of heat. That theory asserts, in the sense which I have already stated, the exact equivalence of heat and motive power; and that a body, in sending forth heat must lose a portion of that internal motion of its constituent particles on which its thermal state depends. Now we know that no mutual action of these constituent particles can continue to generate motion which might compensate for the loss of motion thus sustained. This is a simple deduction from dynamical laws and principles, independent of any property of terrestrial matter which may possibly distinguish it from that of the sun. Hence, then, it is on these dynamical principles that we may rest the assertion that the sun cannot continue for an indefinite time to emit the same quantity of heat as at present, unless his thermal energy be renovated from some extraneous source. The same conclusion may be applied to all other bodies in the universe which, like our sun, may be centres of intense heat; and, hence, recognizing no adequate external supplies of heat to renovate these existing centres of heat, Prof. Thomson concludes that the dispersion of heat, and consequently of physical energy, from the sun and stars into surrounding space without any recugnizable means of reconcentration, is the existing order of nature. In such cave the heat of the sun must ultimately be diminished, and the physical condition of the earth therefore altered, in a degree altogether incousistent with the theory of non-progression.

Mr. Rankine, however, has ingeniously suggested an hypothesis according to which the reconcentration of heat is conceivable. Assuming the physical universe to be of finite extent and surrounded by an absolute varuum, radiant heat (supposing it to be propagated in the same way as light) would be incapable of passing into the vacuum, and would be reflected back to foci corresponding to the points from which it emanated. A reconcentration of heat would thus be effecied; and any of the heavenly bodies which had previously lost their heat, might, on passing through these foci, be rekindled into bright centres of radiant heat. I have alluded more particularly to this very ingenious, though, perhajs, fanciful hypothesis, berause some persous have, I believe, regarded this view of the subject as affording a sanction to the theory of non-progression; but even if we should admit its truth to the fullest extent, it may be deemed, I think, entirely inco:sistent with that uniformity and permanence of physical condition in any of the heavenly bodies which the theory just mentioned requires in our own planet. The author of this bypothesis did not possibly contemplate any such application of it; nor am I aware how far he would advocate it as really
applicable to the actual constitution of the material universe, or would regard it as suggesting a possible and conceivable, rather than a probable, mode of counteracting the constant dispersion of heat from its existing centres. He has not, I think, attempted to work out the consequences of the hypothesis as applied to loght,to which it must, I conceive, be necessarily considered applicable if it be so to heat. In such case the foci of the reflected heat would be coincident with those of the reflected light, proceeding or ginally from the same luminous bodies. These foci would thus become visible as the images of stars; so that the apparent number of stars would be constantly increasing with the increasing number of images of each star produced by successive reflexions. This will scarcely be considered the actual order of nature. It would be easy to trace other consequences of the application of this hypothesis to light; but I would at present merely state that my own convictions entirely coincide with those of Prof. Thomson! If we are to found our therries upon our knowledge, and not upon our ignorance of physical causes and phenomena, I can only recognize in the existing state of things a passing phase of the material universe. It may be calculated in all, and is demonstrably so in some respects, to endure under the action of known causes, for an inconceivable period of time; but it has not, I think, received the impress of eternal duration in characters which man is able to decipher. The external temperature any physical conditions of our own globe may not, and probably cannot, have changed in any considerable degree since the first introduction of organic beiugs on its surface ; but I can still only recognize in its physical state during all geological periods, a state of actual though exceedingly slow progression, from an antecedent to some ultimate strte, on the nature of which our limited powers will not enable us to offer any conjecture founded on physical research. The theories, even, of which I have been speaking, may probably appear to some persons as not devoid of presumption; but for many men they will ever be fraught with deep speculative interest:-and, let me add, no charge of presumption can justly lie aganst them if entered upon with that caution and modesty which ought to guide our inquiries in these remote regions of physical science.

I feel how imperfect a view I have now submitted to you of recent scientific proceedings. I have given no account of the progress of Chemistry, of Practical Mechanics, or of the sciences connected with Natural History; nor have I spoken of Ethnology, a science which, though of such recent date, is become of great interest, and one which is occupying the minds of men of great learning and profound research. I can only hope that the chair which I have now the honor to occupy, will be henceforth filled by men qualified to do full justice to these important branches of science. I trust that what I have said, however, will convey to you some idea of the activity which pervades almost every departinent of science.

I must not conclude this Address without some mention of what appear to me to be the legitimate oljects of our Association -nor without some allusion to circumstance: calculated, I think, to give increased importance to its general working and influence.

There are probably few amongst us of whom the inquiry has not been made-atter any one of our meetings-whether any striking discovery had been brought forward ?-and most of us will also probably have remarked that an answer in the negative has frequently produced something like a feeling of disappointment in the inquirer. But such a feeling can arise only from a misapprehension of what I conceive to be the real and legitimate objects of the British Association. Great discovenes do not require associations to proclaim them to the world. They pruclaim themselves. We do not meet to receive their announcement, or
to make a display of our scientific labours in the eyes of the world, or to compliment each other on the success that we may have met with. Outwa d display belongs not to the proceedings, and the expression of mutual compliment belongs not to the language, of earnest-minded men. We meet, gentlemen, if I comprehend our purpose rightly, to assist and encourage each other in the performance of the laborious daily tasks of detailed scientific investigation. A great thought may possibly arise almost instantaneously in the mind,-and the intuition of genius may almost as immediately recognize its importance, and partly forsee its consequences. Individual labor may also do much in establishing the truth of a new principle or theory; but what an amount of labour may its multifarious applications involve! Nearly two centuries have not sufficed to work out all the consequences of the principle of gravitation. Every theory as it becomes more and more perfectly worked out embraces a greater number of phenomena, and requires a greater number of labourers for its complete developement. Thus it is that when science bas arrived at a certain stage, combination and co-operation become so essential for its further progress. Each scientific society effects this olject to a greater or less degree,-but much of its influence may be of a local character, and it is usually restricted by a limited range of its objects. Up to a certain point no means are probably so effective for the promotion of science as those particular Societies which devote themselves to one particular branch of science; but as each science expands, it comes into nearer relations with other sciences, and a period must arrive in this general and progressive advance which must render the co-operation of the cultivators of different branches of science rlmost as essential to our general progress as the combination of those who cultivate the same branch was essential to the progress of each particular science in its earlier stages. It is the fesling of the necessity of combination and of facility of intercourse among men of science that has given rise to a strong wish that the scientific Memoirs of different Socicties should be rendered, by some general plan, more easily and generally accessible than they are at present;-a subject which I would press on your consideration. It is by promoting this combination that the British Association has been able to exert so beneficial an influence,-by bringing scientific men together, and thus placing, as it were, in juxtaposition every Society in the country. But how has this influence been exercised? Not assuredly in the promotion of vague theories and speculative novelties; but in the encouragement of the hard daily toil of scientific research, and by the work which it has caused to be done, whether by its influence over its individual members or on the Government of the country. Regarding our Association, gentlemen, in this point of view, I can only see an increased demand for its labours, and not a termination of them, in the future progress of science. The wider the spread of science, the wider will be the sphere of its usefulness.

We should do little justice to the great Industrial Fxhibition, which, two years ago, may be literally said to have delighted millions of visitors, or to the views of the illustrious Prince with whom it originated, if we should merely recollect it as a spectacle of surpassing beauty. It appears desiined to exercise a lasting influence on the mental culture, and therefore, we may hope, on the moral condition of the great mass of our population, by the impulse which it has given to measures for the promotion of general education. We may hope that those whose duty it will be to give effect to this impulse, will feel the importance of education in Science as united with education in Art. An attempt to cultivate the taste alone, independently of the more general cultivation of the mind, would protably fail, as it would deserve to do. I trust that the better education which is n)w so universally recognized as essential to preserve our futue pre-eminence
as a manufacturing nation, will have its fuundations laid, not in the superficial teaching which aims only at communicating a few curious results, but in the sound teaching of the fundamental aud elementary principles of science. Arc ought assuredly to rest on the foundation of Science. Will it, in the present day, be contended that the study of science is unfavourable to the cultivation of taste? Such an opinion could be based only on an imperfect conception of the oljects of Science, and an ignorance of all its rightful influences? Does the great sculptor or the historical painter despise anatomy? On the contrary, he knows that a knowledge of that science must constitute one of the most valuable elements of his art if he would produce the most vigorous and characteristic expression of the human figure. And so the artist should understand the structure of the leaf, the tendril, or the flower, if he would make their delicate and characteristic beauties subservient either to the objects of decorative art, or to those of the higher branches of sculpture and painting. Again, will the artist appreciate less the sublimity of the mountain, or represent its characteristic features with less truthfulness, because he is sufficient of a geologist to trace the essential relations between its external form and its internal constitution? Will the beauty of the lake be less perfectly imitated by him if he possess a complete knowledge of the laws of reflection of light? Or will he not seize with nicer discrimination all those varied and delicate beauties which depend on the varying atmosphere of our own region, if he have some accurate knowledge of the theory of colours, and of the causes which govern the changeful aspects of mist and cloud? It is true, that the genius and acute powers of observation of the more distinguished artists may compensate, in a great degree, for the want of scientific knowledge; but it is certain that a great part of the defects in the works of artists of every description may be traced to the defect of scientific knowle lge of the objects represented. And hence it is that I express the hope that the directors of the important educational movement which is now commencing with reference to industrial objects will feel the necessity of laying a foundation, not in the complicated details of science, but in the simple and elementary principles which may place the student in a position to cultivate afterwards, by his own exertions, a more mature acquaintance with those particular branches of science which may be more immediately related to his especial avocations. If this lee done, abstract science will become of increased estimation in every rank of society, and its value, with reference, at least to its practical applications will be far better understood than it is generally amongst us at the present time.

Under such circumstances the British Association could not fail to become of increased importance, and the sphere of its usefulness to be enlarged. One great duty which we owe to the public is, to encourage the application of abstract science to the practical purposes of life-to bring, as it were, the study and the laboratory into juxta-position with the workshop. And, doubtless, it is one great object of science, to bring more easily within reach of every part of the community the rational enjoyments, as well as the necessaries of life; and thus not merely to contribute to the luxuries of the rich, but to minister to the comforts of the poor, and to promote that general enlightenment so essential to our moral progress, and to the real advancement of civilization, But still, we should not be taking that higher view of science which 1 would wish to inculcate, if we merely regarded it as the means of supplying more adequately the physical wants of man. If we would view science under its noblest aspects, we must regard it with reference to mar, not merely as a creature of phrsical wants, but as a being of intellectual and moral endowments, fitting him to discover and comprehend some part at least of the laws which govern the material universe, to admire the harmony which
pervades it, and to love and worship its Creator. It is for scieuce, as it leals to this contemplation of nature, and to a stronger sense of the beanties which God has spread around us, that I would claim your deeper reverence. Let us cultivate science for its own sake, as well as for the practical advantages which flow from it. Nor let it be feared lest this cultivation of what I may term contemplative science, if prosecuted in a really philosophic spirit, should inspire us with vain and presumptuous thoaghts, or disqualify us for the due appreciation of moral evidence on the most sacred and important subjects which can occupy our minds. There is far more vanity and presumption in ignorance than in sound knowledge; and the spirit of true philosophy, be it ever remembered, is a patient, modest, and a humble spirit.

The Narcotits we indulge in.*

II. The Hop which may now be called the English narcotic, was brought from the Low Countries, and is not known to have been used in malt liqnor in this country till after the year 1524, in the Reign of Henry VIII. In 1850 the quantity of hops grown in England was 21,668 tons, paying a duty of $\ddagger 270,000$. This is supposed to be a larger quantity than is grown in all the world besides. Only 98 tons were exported in that year; while, on the other hand, 320 tons were imported, so that the home consumption announted to 21,886 tons, or 49 millions of pounds; being two thirds more than the weight of the tobaceo which we yearly consume. It is the narcotic substance, therefore, of which England not only grows more and consumes more than all the world besides, but of which Englishmen consume more than they do of any other substance of the same clas.

And who that has visited the hop grounds of Kent and Sarrey in the flowering season, will ever forget the baauty and grace of this charming plant? Climbing the tall poles and circling them with the clasping tenlrils, it hides the formality and stiffuess of the tree that supports it among the exuberant profusion of its clustering flowers. Waving and drooping in easy motion with every tiny breath that stirs them, and hanging in curved wreaths from pole to pole, the hoprines dance and glitter beneath the bright English vineyard, which neither the Rhme nor the Rhone can equal, and only Italy, where her vines climb the freest, can surpass.

The hop "joyeth in a fat and fruitful ground," as old Gerard hath it (1596). "It prospereth the better by manuring." And few spots surpass, either in natural fertility or in artificial richness, the hop lands of Surrey, which lie along the oat-crop of the green sand measures in the neighbourhood of Farnhan.Naturally rich to an extraordinary degree in the miseral food of plants, the soils in this locality have been famed for centu:ies for the growth of hops; and with a view to this culture alone, at the present day, the best portions sell as high as i50 an acre. And the lighest Scotch farmer-the most liberal of manure-will find himself outdone by the hop-growers of Kent and Surrey. An average of ten pounds an acre for manure over a hundred acres of hops, make this branch of farming the most liberal, the most remarkable, and the most expensive of any in England.

This mode of managing the hop, and the peculiar value and rarity of hop land, were known very early. They form parts of its history which were probably imported with the plant itself. Tusser, who live 1 in Henry VIII's tme, and in the reign of his three children, in his Points of Husbandry thus speaks of the hop:-

[^0]" Choose soil for the hop of the rottenest mould,
Well doonged aid wr ught as a garden-plot should:
Not far from the water (but not overfloune,)
This lessou well uoted, is meet to be knowne.
The sun in the south, or else southle and west,
Is joy to the hop as welcommed ghes';
But wind in the north, or e.se northerly eas,
To hop is as ill as fray in a feast.
Meet plot for a hop-yard, once found as is told,
Make thereof account, as of jewel of gold;
Now dig it and leave it, the sun for to burne, And afterwards fense it, to serve for that turne.

The hop for his profit, I th.us do exalt;
It strengtheneth driuk, and favoureth walt;
And being well brewed, long kep it will last,
And drawng abide, if ye draw nut too last."
The hops of commerce consist of the female flowers and seeds of the humulus lupulus, or common hop phant. Their principal consumption is in the manufacture of beer, to which they give a pleasamt, bitter, aromatic flavour, and tonic properties. l'art of the soporific quality of beer also is ascribed to the hops, and they are supposed by their chemical properties to check the ten dency to become sour. The active principles in the hop consist of a volatile oil, and a peculiar bitter principle to which the name of lupulin is given.

When the hop flowers are distilled with water, they yield as much as eight per cent of their weight of volatile oil, which has a brownish yellow colour, a strong smell of hops, and a slightly bitter taste. In this "oil of hops" it has hitherto been supposed that a portion of the narcotic influence of the flowers resided, but receut experiments render this opinion doubtful. It is probable that in the case both of tobacco and of the hop, a volatile substance distils over in small quantity along with the oil, which has not hitherto been examined separately, and in which the narcotic virtue resides. This is rendered probable by the fact that the rectified hop oil is not possessed of narcotic properties.

The hop has long been celebrated for its sleep giving qualities. To the weary and wakeful, the hop-pillow has often given refreshing rest, when every other sleep-producer had failed. It is to the escape, in minute quantites, of the volatile narcotic sub stances we have spoken of, that this soporific effect of the flowers is most probilhy to be ascribed.

Besides the oil and other volatile matter which distil from them, the hop flowers, and especially the fine powdery grains or dust, which by rubbing, can be separated from them, yield to alcohol a bitter principle (lupulin) and a resinous substance, both in considerable proportions. In a common tincture of hops these substances are contained. They are aromatic and tonic, and impart their own qnalities to our beer. They are also soothing, tranquilising, and in a slight degree sedative and soporific, in which properties we l-hopped beer also resembles them. It is certain that hops possess narcotic virtue which beer derives from them;* but in what part of the female flower, or in what peculiar chemical compouud this narcotic property chiefly resides, is still a matter of doubt.

- Five Ilundred Points of Good Husbandry. London edntion of 1312, p. 167.

- Alc was the name given to unaopped male-liquor before the use of hops was iniruduced. Whea hups were added, it was called beer, by way of distinction, 1 suppose, because we imported the custom tion the Low Cunntives, where the word beer was, and is still, in common use. Ground ivy (Glechoma hederacca.) called also alehoul and thuhow', was gerieall employed tor preserving ale belore the use of hips was known. "Th manifuld virtues in hops,"" says Gerard, in 1596, "do manilestly argue th holeso neness of beere above ale, lor the bops rather make it physicull dia to keep the budy in health, than an ordinary drink for the queacbing of o thirst."
T_{ρ} the general reader it may appear remarkable, that the chemistry of a vegetabie production, in such extensive use as the hop, should still be so imperfect-our knowledge of its nature and composition so unsatisfactory. But the well-read chemist, who knows how wide the field of chemical research is, and how rapidly our knowledge of it, as a whole, is progressing, will feel no surprise, He may wish to see all such obscurities and difficulties cleared away, but he will feel inclined rather to thank and praise the many ardent and devoted men, now labouring in this department, for what they are doing, than to blame them for being obliged to leave a part of the extensive field for the present uncultivated.

Among largely used nareotics, therefore, especially in England, the hop is to be placed. It difters, however, from all others we have mentioned, in being rarely employed alone, escept medicinally. It is added to infusions like that of malt, to impart flavour, taste, and nareotic virtues. Used in this way, it is unquestionably one of the sources of pleasing excitement and healthy tonic action, which well-hopped beer is known to produce upon those who drink it. Oiher common vegetable productions will give the bitter flavour to malt liquor. Horehound, wormwool, and gentian, and quassia, and strichnia, and the grans of paradise, and chicory, and various other plants, have been been used to replace or supplant the hop. But none are known to approach it in imparting those peculiar qualities which have given the bitter beer of the present day so well merited a reputation.

Among car working classes, it is true, in the porters and humbler beers, they consume and prefer, the Cocculus indicus finds a degree of favour which has caused it, to a considerable degree, to take the place of the hop. This singular berry porsesses an intoxicating property, and not only replaces the hop by its bitterness, but to a certain extent also supplies the deficiency of malt. To weak extracts of malt it gives a richness and fulness in the mouth, which usually imply the presence of much malt, with a bitterness which enables the brewer to withhotd one-third of his hops, and a colour which aids him in the darkesing of lis porter. The middle-classes in England prefer the thin wine-like bitter beer. The skilled labourers in the manufacturing districts prefer what is rich, full, and sulstantial in the mouth. With a view to their taste, it is too often drugged with the Cocculus indicus by disreputable brewers; and much of the very beastly intsxication which the consumption of malt liquor in England proluces, is protally due to this pernicious almixture. So powerful is the effect of this berry on the apparent richness of beer, that a single pound produces an equal effect with a bag of malt. The temptation to use it, therefore, is very strong. The quantity imported in 1850 was 2359 cwt ., cqual to a hundred and twelve times as many lags of malt; and although we camot strictly class it among the narcotics we voluntarily indulge in, it may certainly be described as one in which thousands of the humbler classes are compelled to indulge.

It is interesting to observe how men carry with them their early tastes to whatever new climate or region they go. The love of beer and hops has been planted ly Englislomen in America. It has accompanied them to their new empires in Australia, New Zealand and the Cape. In the hot East thei: home taste remains unquenched, and the pale ale of England follows them to remotest India. Who can tell to what extent the use of the hop may become naturalised, through their means, in these far-off reg on:? Who can predict that, inoculated into its milder influence, the devotees of opium and the intoxicating hemp may not hereafter be induced to abandon their hereditary drugs, and to substitute the foreign how in thoir nonon? F...in such a
change in one article of consumption, how great a change in the character of the people might we not anticipate?

This leads us to remark, that we cannot as yet very well explain in what way and to what extent the use of prevailing narcotics is connected, as cause or effect, with peculiarities in national character. But there can no longer be any doubt that the soothers and exciters we indulge in, in some measure as the luxuries of life, though sought for at first merely to gratify a natural craving, do afterwards gradually but sensibly modify the individual character. And where the use is general and extended, the influonce of course affects in time the whole people. It is a problem of interest to the legislator, not less than to the physiologist and 1 sychologist, to ascertain how far and in what direction such a reaction can go-how much of the actual tastes, habits, and character of existing nations has been created by the prolonged consumption of the fashionable and prevailing forms of narcotics in use among them respectively, and how far tastes and habits have been modified by the changes in these furms which have been introduced and adopted within historic times. The reader will readily perceive that this inquiry has in it a valid importance, quite distinct from that which attaches itself to the supposed influence of the different varieties of intoxicating fermented drinks in use in- different countries. The latter, as we have said, all contain the same intoxicating principle, and so far, therefore, exercise a common influence upon all who consume them. But the nareotics now in use owe their effects to substances which in each, so far as is known, are chemically different from those which are containel in every one of the others. They must exercise, therefore, each a different physiological effect upon the system, and if their influence, as we suppose, extends so far, must each in a special way modify also the constitution, the labits, and the character.

Our space does not permit us, in the present number, to speak of the use of opium and hemp; we shall return to these extensively consumed drugs on a future occasion.

Notes of a Short Tour from Montical to Portland and the White Mountains.

Although we perceive by a paragraph in the International Journal, that the White Mountain Tour is over, water having, on the night of the 15 th ultimo, frozen an inch thick at the Glen House, at the foot of Mount Washington, we have much pleasure in laying before our readers the following Notes of a visit to that quarter by a Member of the Institute, in the hope of its being instrumental in inducing many a Canadian tourist to direct his st. p s to the same interesting region next season.

Having a short time ago paid a hasty visit, per rail, to the finely situated and beautiful city of Portlangd, and had the gratification of snuffing the exhilirating sea-breeze at Cape Elizabeth, and having also, on my way back, made a detour from Gorham to the lofty summit of the noted Mount Washington, the monarch of the New Hampshire mountains, I would fain recommend to a few of your readers to follow my example, while the season is favourable, as sure to lead to much enjoyment; so accept, if you please, the following rambling memorandum of my tour.

For particulars respecting the different places passed en route to Portland, it would be as well to refer to one of the Guide Books.* But lest our tounist should not be provided with so

[^1]usefui a companion, I would recommend to his particular attention in succession, the interesting scenery in the vicinity of Boucherville mountain, 10 miles from Montreal; and 9 miles further, beyond the river Richelieu, the pretty little village of St. Hilaire, and the fine estate and attractive residence of Major Campbell, the Seigneur of Rouville, to the left, with the wood-clad isolated mountain of Beloil to the right; and, 13 miles furthers the cheerful looking thriving town of St. Hyacirthe, sittiated on the river Yamaska, and noted for its Catholic College. About five miles beyond this, you exchange the cultivated prairie land of the St. Lawrence valley, for a gradually ascending forest tract of country which continues more or less until about 42 miles further you cross the fine river St. Francis, where the line of Rilway to Quebec turns off to the left, while that to Portland makes a curve to the South, with the village of Richmond on one bank of the river, and that of Melbourne on the other.

From thence you follow the interesting valley of the St. Fran-cis,-not unfrequently close along the banks, for about 24 miles, when you cross it before arriving at the finely "located" and important rising town of Sherbrooke, the highly promising capital of the Eastern 'lownships, most eligibly situated, at the confluence of the river Magog with the St. Francis,-and at which it would be well worth while to halt a day, to inspect its various manufactures, and take a ramble among the attractive scenery along the noisy but useful Margog, until it plunges down a succession of rocky declivities, to meet the more placid and broader St. Francis.

Renewing yonr rapid journey, about 3 miles on you pass the pretty village of Lennoxville, chiefly noted for its Episcopal College, and immediately afterwards cross the little river Coatticooke, at its junction with the St. Francis, and follow up the course of the latter, past Compton, to near its source, in a pretty lakelet called Norton Pond,-crossing in the meantime the boundary line between Cazada and Vermont, about 127 miles from Montreal; and about 16 farther, you reach the picturesque and prospectively important station and village of Island Pond, so called from the small island on the pretty little lake on which it is situated, 143 miles from Montreal. Soon after passing Island Pond you cross the ridge of the Green Mountains, here 1176 feet above the sea, and forming the boundary between the States of Vermont and New Hanpshire.

From this interesting point, you proceed through a highly picturesque Highland tract ol' country, bounded on either hand by the towering peaks of the White Mountains, (two of which, on the left, are particularly remarkable for their bare, hoary fronts,) via Stratford, 15 miles, Northumberiand, 12 miles, Milan, 18 miles, and Birlin Falls, 7 miles, to what is indiscriminately called the Alpine and Gorham House, when you have attainel an elevation of 802 feet above the level of the sea, and are 201 miles from Montreal, and 91 from Portland.
This being a very cominodious and agrecably situated hotel it might be well to remain a day or two here, if you can afford it, to enjoy a ramble among the surrounding Alpine scenery; but that not being at present our intention, let us hasten on to Portland, merely noting by the way that among the most attractive points on this still romantic route are Gilead station, 11 milesa mile or two before arriving at which the railroad crosses the boundary between New Hampshire and Maine, and from whence, it is worthy of remark, the grade is said to have a descent of 60 feet in the mile;-Mechanics' Falls, 19 miles, Danville Junction, 16 miles, the pretty seaports of Yarmouth, 11 miles, and Falmouth, 6 ,-and, last of all, Portland, 5 miles, crossing half-way a bridge over a creek or inlet of the sea of about 300 feetmaking altogether a journey of 291 miles, accomplished in the short space of 12 hours!

Having enjoyed a day or two in rambling about, and admiring the prosperous interior, as well as the interesting and picturesque environs of "the Forest City," a distinctive appellation deservedly acquired by Portland from the numerous shady trees which embellish its tine, broad streets, let us prepare to return homewards, with the intention of devoting at least one day to a detour from Gorham, to scale the lofty summit of Mount Washington.

No sooner did the cars reach Gorham, than we learnt that a covered four-liorse waggon was about to start immediately with a load of tourists for the Glen House, about seven miles distatth, near the foot of Mount Washington ; and therefore no time was to be lost; so, transferring our cloak and carpet bag from the train to this vehicle, we, (consisting of myself and a worthy friend bent on the same expedition, joined a merry party of some ten or twelve more, and were soon jolting on our sluggish way, "through wools and wilde," up the rather romantic vale of the stony-bedded little river Peabody, to Glen House,--to find in this sequestered spot a very commodious and comfortable hotel situated on a cheerful, open, rising ground, considered 830 feet above the level of Gorham, and hemmed in on every side by an imposing circle of towering mountains, among the most prominent of which rise Mounts Adams and Jefferson, overlooked by their loftier superior, Mount Washington.

Those only who have visited this singularly situated mansion, can well imagine the imposing grandeur of the surrounding Alpine prospect;-and I will theretore not attempt to delineate it. Suffice it to note, that after a comfortable night's rest and a hearty breakfast next morning, we set out with a party of six or seven others, to encounter the toil of a five mile scramble to the top of Mount Washington, on foot; while a few others, and among these several ladies, preferred doing so on horseback-which, steep and rugged as the path was described to be, we could not help thinking would prove the most toilsome and dangerous mode of travel.

Shortly after leaving the Glen House, you descend into the stony bed of the Peabody, and after crossing it dry-shod, by means of stepping stones and a friendly plank, the path enters dense forest, composed of every variety of trees, such as beech, birch, maple, oak, hemlock, mountain ash, spruce and other kinds of firs, with a tangled undergrowth of various shrubs and plants, so as to shut out the view on every side. We had not advanced above a mile or two up our steep and rugged path, amid rocks and roots, and mud and mire, and begun congratulating ourselves on having wisely preferred journeying on foot; when lo! we were startled by the sound of voices in our rear; and soon after approached and passed us the expected party on horseback, threading their way up the craggy defile at a wonderful rate, at the discretion of their singularly sure-footed little nags. "Chacun a son gout," notwithstanding, thought I, as I perceived the riders hurried forward, as it were involuntarily, with their eyes anxiously fixed between the cars of their steeds, while we were left at liberty to halt and take breath, or turn to snatch an occasional glimpse at the imposing scenery above and below us. Even this however, could not be enjoyed until nearly half-way up, after having exchanged the dense forest for a higher zone or belt of stunted vegetation, consisting chiefly of dwarf spruce and cedars, to be succeeded, about two-thirds from the top, by a dreary tract of utterly shrubless, lichen-clad fragments of rock, scattered in wild confusion, all the rest of the way to the summit.

On at last nearing the anxious object of our pilgrimage, the delighted eye meets in the distance a long, low, rough-built shed, snugly nestled among the shapeless masses of rock, and dignified with the imposing name of the "Summit House," or "Hotel,"-
with a lofty wooden platform behind it, surmounted by the "starspangled banner." To this welcome though lowly mansion, we gladly directed our weary steps, assured, from report, that we should find in it every reasonable comfort and accommodation, whether for day or night ; and we were not disappointed; finding the interior to consist of one long dining apartment, with the table ready spread,-with a sort of sitting or reading room at one end, and the kitchen department at the other; while along the whole of one side extended a range of small bed-closets or staterooms, with upper and lower berths, steamboat fashion,--sufficient to accommodate 30 or 40 tourists-if wanted, to double upon emergency, in st.ch out-of-the-way quarters, and who, as we can vouch from experience, will, if not too fastidious, find themselves in all other respects very comfortably fed and cared for, at a very reasonable rate, during their sojourn on so very extraordinary a spot.

- After a short rest, to recruit our weary limbs,-for though the distance from the Glen House to the summit is not more than five and a half miles, we found we had taken five hours to ascend, including an hour's rest at different intervals, after quitting the viewless forest region, to enjoy the contemplation of the surrounding singularly imposing panorama, and pick up a few geological specimens, we sallied forth to take a more leisurely survey of the utterly bleak and desolate scene immediately before us, compared with the more cheering diversified distant prospect, with the aid of the large telescope on the top of the neighbouring platform; when lo! what should we observe close by, but a rival hotel, of lesser dimensions, dignified with the name of "The TipTop House,"-of which more hereafter-my business at present being to attempt to give something of a description of the wild Alpine region around us. Well, I have endearoured to summon all my deecriptive powers; but I find myself unable to do justice to the sulject ; so must be content to confess myself incompetent to the task, and to beg iny readers to go and judge for themselves, and they will possibly fund themelves in the same embarassing predicament. Suflice it then to request the tourist to fancy limself occupying the solitary central point of a vast circle of at least 200 miles in diameter, and looking round on every hand on a retiring succession of five or six ranges of lofty mountains, rising behind each other like gigantic waves in a tempestuous acean, and he will have some slight idea of the extraordinary scene then before us. Let him then take a glance at the few far-stretching intervening valleys within view, and he will be able to count ten or twelve lakes or lakelets sprinkled about in different directions. And, aftel again contemplating the towering summits immediately round him, let him gradually take a wider range, and among the varions particularly noticeable objects, the Green Mountains of Vermont will be pointed out to him in the westem distance, on the one ham, while if the day be favourable, a flitting bright speck may sometimes be sedn, on the verge of the south-castern horizon, near 100 miles distant, which he will be told is a white sail on the Atlantic, near Potland.

The morning on which we ascended Mount Wachington had been particularly farourable for a distant prospect ; but ly the time we reached the summit, a thin purple haze had so veiled the remote landscare, that it was all that we could do to recognize the ocean ; and such continued to be the case till towards evening, wben the wind rapidly increasing, the wild sunset scene became particularly imposing, from being contrasted with a calm, white bed of fleecy clouds that had gradually enveloped and settled round the neighbouring mountain tols and sides, while a second higher stratum of clouds kept rushing wildly past, and down into the intermediate valleys, without at all disturbing the placid surface of the formsr, until at last the setting sun became obscured, and darkness gradually veiling the solemn scene, the
whole mountain region became enveloped in a winding-sheet of cold, dense mist :-but not before an extra interesting object had been added to the awfully sublime landscape, by the opportunity of, for the first time, gazing at the long-tailed stranger-the Comet,-wending his mysterious way down the western horizon.

Not being quite satisfied with one imperfect evening prospect, we determined to enjoy next morning, if possible, the beauties and splendours of dawn and sunrise; but in this we were doomed to be wofully disappointed;-for the angry spirit of the mountain had, during the night, sent forth from the N. W. a perfect gale, accompanied by a driving, drizzling mist of such density, that in the morning we were obliged to console ouselves with a hearty breakfast, and to make the best of our dirappointed way to the lower regions before the storm, by the old rugged path, at the occasional risk of being blown down "at one fell swoop" all the way to Glen House, where, however, we fortunately arrived without accilent in somew hat more than three hours, just as the clouds began to pour forth a hearty shower.* A renovated toilet and a hearty dinner soon set all right, and in about an hour afterwards we were en route, in spite of wind and rain, back to Gorham House, to be soon after whirled comfortably along by rail as far as Sherbrooke-to halt for a day -where I propose bidding my reader adieu, after putting him in possession of a few more hints regarding the wild mountain region which we have left behind us.

To the mere summer tourist, whose only aim is locomotive novelty as a lover of the romantic, a visit to the White Mountains will ever prove sufficiently attractive; but to those of a philosophic turn, and more especially to the botanical and geological student, it will be still more so, from the opportunity it affords of witnessing, during the ascent, the rapid transition from the warm region of stately forests round their base, to the middle zone of dwarfish evergreens higher up, and the bleak, dark hued and utterly shrubless chaos of scattered rocks, extending at least onethirl of the distance to the summit; and he will not be the less surpised to find that, insteal of any portion of these rocks being in situ, the whole consists of dislocated fragments of every size and form, and in every position, as if the upper portion of the momtain had been upheared, or rather exploded into the air by some internal force, and the shattered materials had been again deposited in utter confusion, where they now lie. \dagger

The general structure of these fragments is a kind of stratified granite, in many instances passing into micaceons schist, of a very brilliant appearance in the fresh fiacture, but where weather-beaten, generally vested with crisp short lichens, imparting a dark gloomy character to the whole scenc. To this, however, there are some marked exeptions as in is two rencialle spurs of the mountain about half way up, the bare rough suiface of which has an imposing hoary aspect, distinct from all the rest, arising perhaps from some extia material producing a more rapid decomposition or disintegration of the superabundant Felspar. But to enable me to know more on this point hereafter, I have brought away a few interesting specimens, to be submitted to the inspection of more scientific friends. Being at the time disposed to attribute the convulsive force alluded to to volcanic action, I looked narrowly round in every direction for some indications of traps, but without success. \ddagger

* One solitery tourist had ventured to attempt the ascent of the Mountain this moming, lint was obliged to retreat, after liaving accomplished two-thirds of his weary pilgrimage, tor tear of being blown away.
\dagger For the mere tourist, Summer is, of course, the best season. For the more philosophic adinirers of nature, the many-tinted Autumn is to be preterred.
\ddagger Note.--Since the above was in type. the writr hat very uncxpecterlly an oppritunity of sulmining these specraces to the scientific instection of Mr. Logan, whose reatarks upon them are as follows :--" The specimens fom Mount $W_{\text {ashing }}$ ton are all gratitic, heing composed of quartz, feldspar and mica. The consutuent ton are all gratitir, heing and as to give the rocks from which they come a gneissoid

To complete this rambling retrospective memorandum, it is proper to add that the patriotism of our American neighbours has progressively given distiuctive names to the principal peaks or summits of this Alpine region, derived from successive Presidents and other celebrated statesmen, as will be further mentioned; but that the appropriate appellation usually assigned to them by the Indians is said to be Wrambecthet Methua, signifying "the mountiins of the snowy foreheads," and that the whole range is by them regarded as the abode of (ienii, or Guardian Spirits, having the controul of the angry mountain tempests, whom it is advisable to propitiate by sacrifices. The name is in all probability derived from their summits being generally clothed with snow about nine months in the year; but it is also possible that both that and the appellation bestowed by Europeans may be derived from certain remarkable mountains of the group, noticed by all passing travellers as retaining a naked, hoary aspect throughout the whole year, similar to the two lower spurs of Mount Washington above described.

The height of the principal summits of the White Mountains above the sea has been determined by the scientific observations of W. A. Goodwin, Esq., to be as folluws :-

and Mount Clinton.-................................ 4200 "
besides Mount Pleasant, 4715 feet, and several other peaks exceeding 3000 feet, such as Mounts Moriab, Webster, Crawford, \&c.
The climate of this elevated region of course differs materially from the plains below. The greatest heat indicated on even the bare, rocky summit of Mount Washington, is said to be seldom above 60°. The greatest cold has not, I believe, been yet ascertained. At times during the summer the thermometer descends below the freczing point. As for instance, a week ago it was, at sunrise, as low as 31°; and on the morning of our visit it was said to have been the same, whereas at sunset it stood at 42 , and continued so till next morning, when we commenced our descent; and I afterwards learnt that it only rose seven degrees higher during the day. By a memorandum which 1 found taken of the range of the thermometer from the 21st to the 27th Aug., inclusive, it would appear that it was as follows:-

Date.	Sunrise.	Noon.	Sunset.	REMARKS.
August 21	36	46	45	To give correct
" 22	39	41	35	mean, the middle observation ought
23	33	43	42	to have been tia-
24	37	46	45	ken at 2 P. M., in-
" 25	44	42	36	stead of at Noon,
" 26	31	47	42	and the evening observation at 10
" 27	42	47	49	P. M.

It may be added that the whole is perhaps rated a little too
high, the thermometer being placed within a few inches of the outside of the glazed window of a warm kitchen, and therefore liable to be more or less influenced thereby. Our landlord, however, insisted that it had been proved that such was not the case.

It only remains to observe that, to enjoy as much as possible of the grand and imposing scenery of the White Mountains, it is advisable not to take any luggage to the Glen-House, but either to leave it at the Gorhain Hotel, or send it on to Slerbrooke, and thereby leave the tourist at liberty to descend Mount Washington by some new route, such as by the Great Notch, a stupendous narrow rocky portal or chasm between the steep sides of Mount Wetster and Mount Willard, near which there is a convenient Hotel kept by Mr. Gibbs; or, by taking pains to enquire beforehand, he can select some other equally inviting and interesting route, taking care, if time be an object, to arrive at the Gorham station in proper season to rejoin the passing cars.
For the benefit of those who study economy in their movements, it may be proper to note, that the usual expense at the Gorham House is $\$ 1 \frac{1}{2}$ a day, and at the more secluded and less frequented (ilen Honse, $\$ 2$; and that at the Summit House it is $\$ 3$; and that, too, is a reasonable charge, considering that every article of consumption, including even wood and coal for a constant fire, is obliged to be brought up on horseback, from below; but it is at the same time necessary to be "pretty much" on one's guard against extras, as "they contrive to stick it on at an awful rate," whenever an opportunity offers. The usual coach fare from the Gorham to the Glen House is 75 cents; and that of a horse per day for ascending Mount Washington is $\$ 3$.

It may also be here added, that the existence of two hotels on the bleak, solitary summit of Mount Washington, though perhaps beneficial to the public, furnishes an opportune illustration of the reckless go-ahead competition common among our American neighbours; it having no sooner been understood that the original enterprising proprietor of the "Summit House" establishment had made a tolerably good speculation out of it, than up starts another competitor this year, in our neighbour of the "TipTop House,"-who, not content with taking the hard-earned morsel out of his rival's mouth, was resolved to usurp his very name and title also, which, it appears, last year rejoiced in the double cognomen of "The Tip-Top, or Summit House." This, however, was too much; and was likely to have produced a sorious "blow up;" but it was at last amicably settled, by its being agreed that the elder occupant should retain an undisputed right to the title of the Summit House, and that his junior might assume that of the Tip-Top, or any other higher rank that he pleased. And "Tip-Top House," is therefore, now, proudly blazoned on his inviting sign-board. It would appear, however, that a discerning public, respecting the rights of primogeniture, or primo "entemps," are determined to continue their patronage to the original enterprizing caterer for their comforts,-for a personal inspection of their respective guest-books, exhibits a flood of no less than 2200 visitors to the Summit House during the season, of whom 16 only were from Canada, while at the other, though
intended to be the tip-top of the fashion, as well as of the mountain, the number was as yet not more than 300 . So much for unnecessary rivalship.

VALE.

Variations in the Level cf the Lakes.*

The year 1819 was one of low water on all the lakes, the low-

[^2]est, indeed, in memory, and was taken by Dr. Houghtonf as his zero of comparison; tefeated to this zero, the highest level of Lake Michigith Wiss,

Thus, it was 19 years in attaining its maximum, but only $2 \frac{1}{2}$ in reducing it to one-half. The following variations in the level of Lake Eric, in 1852, were recorded by C. Whitlesey; Esq, of Cleveland+ ${ }^{+}$-

	mostilly	mean Iv.
Jamuary		0
Feloriary-	3	4.2
March	2	11.6
April	1	11.3
May	1	4.0
June	1	1.2
July	1	2.5
August	1	5.1
Suplesmber	1	9.4
Octoler	2	0.6
November	2	3.3
December	2	4.1

Capt. H. T. Spencer, recorded the variations in the level of Lake Ontario, at the mouth of the Genesee, during the years $1846-1502$, luth inclusive; they are as follow:

	1846. 1547.	1848.	1849.	1850. 1851.	1852.
Feloruary 1.	$\begin{array}{llll}3 & 6 & 2 & 5\end{array}$	110	$\begin{array}{ll}3 & 2\end{array}$	$2 \begin{array}{llll}2 & 4 & 3\end{array}$	3
March 1	020	27	$3 \quad 4$	2430	30
April 1	0 2 0	2	210	24211	28
M:ly 1	0 (15	22	20	$\begin{array}{lllll}1 & 8 & 2 & 8\end{array}$	12
June 1	$\begin{array}{llll}2 & 3 & 1 & 1\end{array}$	21	19	$\begin{array}{lllll}1 & 5 & 2 & 2\end{array}$	12
July 1	3111	22	28	110111	010
August 1	$6{ }_{6} 11$	23	23	21012	10
Septemixar	$9-0$	28	29	$211 \mid 26$	16
Octoler	293	31	2	3141211	
November 1	0×27	36	22	735	2
December 1	9.10	35	25	2783	110
	$0{ }^{1} 5$		29	2 8 3 8	111
Averige	$0: 111$			01203	111

The meatures, ware taken from the top of the dock, and reducel to one point of olservation. Of course the less the meanure, the higher the level of the water of the lake. The highent was in July, 1852, atad the lowest in November, 1850; the difference being tho feci nine inches.

In continuation of the table of olservations by Mr. Stewart, given on paige 27 of the lant number of this journal, we append

[^3]those for September and part of October. The present gradual fall of the water is very evident; but if we may rason from the very crude and innerfect observations which we have been ablo to procure, it will soon lecome stationary and remain so until it begins agrain to rise in the spring. The greatest height recendy attained by Lake Ontario above the low water mark of October 28, 1849, is four fect five inche, aceorling to measurements made at 'loronto. Since June lst of the present year, it has fallen in four months and fifteen days only twenty-one inches; wherens in 1849, the water fell in three months and twenty days, twenty six inches.
Observations made at Gorrie's Wharf by Mr. G. A. Stewart, 1853:

SEPTEMAER.				Octouser.			
Day.	Hunr.	Height of Watter.	Wind	Day.	Hour.	Height of Wiater.	Wind.
7	10 A.m.	3.28		1	$3 \mathrm{P} . \mathrm{x}$.	3.37	S.W.
8	12 Noxn	3.35	W	3	$11 \mathrm{~A}, \mathrm{x}$.	3.17	N.W.
10	12 Nuon	3.28	W	6	3 P. N,	3.06	N.W.
16	11 A.m.	3.40	W	7	5 p. M.	3.20	S.W.
20	12 Noou	3.50		8	$3 \mathrm{~F} . \mathrm{x}$.	3.20	S.W.
24	$11 \frac{1}{2}$ A.M	3.32	W	15	$3 \mathrm{r} . \mathrm{m}$.	2.98	
26	4 P. M.	3.42	E				
27	12 Noon	3.32	E				
29	11 Noon	3.40	S.E.				

Among the most interesting phenomena which may be clased under rariations in the level of the lakes, are the sudden clevations and depressions which have been recorded from time to time as occurring chiefly on the shores of Canada and the State of New York. It is much to be regretted that accurate observations of these fluctuations do not appear to have been made. The data at our conmand are exceedingly meagre, and scaredy do justice to the very interesting phenomena to which they refer.

In a communication to the Coboury Star, dated Grafton, Jan. 9, 1847, the writer, Mr. Thomas Thompion, states that "A most singular phenomenon occurred at this place (Grafon) yesterday afternoon, alout three oclock. The lake was calin, and the wind in the north, when suddenly the lake receded from the shore in one immense wave upwards of 350 fert, leaving the the heach perfectly dry for that distance; it secmed to gather itedf into a vast cone, and immediately returned in one umbroken ware, four fect ligher than it usually i.s burying the wharf completcly, and overflowing its usual boundaries upwards of a hundred yards, swecping everything before it, accompanied by a drea!fan noise This happened eight or nine different times, gradually decreasing in violence, until the lake isssumed its natural appearance." The effects of this disturbance were felt as far as Port IIope uniwcompanied by any noise.

The same pajer recorde another disturhauce as laving taken place in Rice Late, twelve miles north of the town of Cobourg. "List Thursuay; (Jamary 14, 1847,) the lake was seen to be in great commotion, the ice (81 inches thick,) undulating in every direction. Presently it bunst with a noise like thunder, and a
large piece from the centre of the lake was for a few minutes thrown up in a pilo to the height of ten feet, in which position it now lies."
On September 20th, 1845, a very sudden rise occurred at Cobourg. An eye-withess describes the seene in the following words :-"I ucasured the rise of water at the time, and found it to be two fext seven iuches; the lake was quite calm; a strong current, like a tide, ran in and out of the harbour every ten minutes; when the water approached the shore it ran no less than 300 feet up the eloping beach above our usual ligh water mark. About the same time a similar phenomenon was observed at Grafton, seven miles below Cobourg, but with this difference, the water a few hundred fect from the shore was boiling as you see it in tho lesser rapids of the St. Lawrence. Wheu stationed at Whithy Harbour, some years ago, I olmerved a regular tide rising and falling every ten minutes in a pretty strong current. I have been a gouk deal on the back lakes, but never observed anything of the kind there."

The 5th July, 1850, witnessed a similar occurrence on the northern shore of Lake Ontario, near the scene of the other convulsious mentioned above.

Robert Etephemeom, I. P.0

The Britimuin Bridge has usually been considered as the greatest triumph of Enginecring skill in existence, and as eclipwing all other of Stephenson's works; in originality and bolluess of concention, this is doubless the case, but we doubt whether, in womderful results, and in their effects on the progress of the world, it can at all be compared with the "Rocker;" the resuit of the determination recorded in our last paragraph, and of which so little is popularly known that our American neighbours lave claimed the honours of the Livenrool and Manchester competition in 1829, for Ericson, while many of his own countrymen are ignorant as to whether the success was due to Robert Steqhenson or to his Father.

In the Locomotive, as in other nachines which have reccived improvenentss frum various persons, it is difficult-often impossible -to determise the exact amount of merit due to each individual improver, but of this there can be no doubt: to Robert Stephenzon belongs the merit of combining and arranging principlesmany of which were, without doubt, pretiously known-into such a form that no essential clange in the machine has since been made. As Watt prefiected all that is unchangeable in the Stationary Conderving Eugine, so did Robert Stephenson combine in the loocket all the fixed principles which othtin in the construction of the mest finished and most powerful Locomotive of the present day. Ochers have contrbbuted to that suceess, and we believe noonc is more rady to acknowledge their merits than is the inventor of the "Rockel""

We have airendy seen that Trevithick had used the blist pipe, and that Harkworth had fuserquently applied it, but its value was of liule importance with boilens as constricted by them. Another improvement, however, patented by a French Engineer in 1828, although vital to the suceess of the urachine, was of no valuo withnu it.

[^4]The imperfect Locomotives of that date had been introduced inte France; the first two were made by George Stephenson, and arrived there in 1829, for the Lyons mid St. Etieme Rambay, of which N. Siguin was Enginer. Their mem velocity did not exceed 4 miless per hour; to increase this, M. Siguin felt the necessity of increasing the evaqumating power of lis Loiler, and to effect that object resolved tw ayply the improvement atove alluded to, of whied he was the putente, to an Eugine he was about constructing (on the model of Stephenson's). His plan cousisted in dividing the current of heited air passithg through the boiler from the furnace to the chimmey; into a number of streamlets, flowing through a series of tubes immensed in the water of the boiler. The amount of heating sumace was thun greatly increased. But another ditticulty presented itself: the evaporating surface to which we are indebted for our present increased speed was there, but the fiction of the air passing through so many small tubes so much impeded the drian that the leight of the climney being unavoidably limited, it becanc necessary to apply a fan to stimulate it; by this expelient the experiment was renderel partially successful. It is chaimed by a French Author that M. Pedletin suggested the ayplieation of the steanjet in the chimmer; be that is it may; it had loug been used in England, though for the reasou above named, only partially so, as might be inferred ly its absence in the Engines scut to France.

As the success of the Rocket has been considered the commencement of the era of successiful steam Loconotion, a description of that Engine, of the others which entered into competition with it, and of the result of the several triak, will not the out of plise, we therefore trausfer the following particulan of them to our pages:-
Three Locomotives were put in for compctition, viz:
Enyine.

3Fake.

Rocket, -...................... St. Stephenson, Newcastle.
Sanspariel...... byTimothy Hackiworth, of Thildon. Novelty;,by Braithwaite \& Ericcson, London.*

The Rocket was the first locomotive male in England with multitubular boilers. They were adopted by Rokert Stephenson, at the suggestion of Mr. Beoth, then Seeretary of the Liverpool and Mancherter line, to whom their invention has commonly been ascribed. The boiler was sylindrisal with tiat ends, \mathbf{G} feet long, and 3 feet 4 inches in diamcter; the fireluxi, at the rear of the engine, was 2 feet liy 3 fect broad, and 3 feet decp, inside measure, and was surrounded on the two sides, the frout :and the top by an external case, affording a three-mech water space. The hue consisted of 25 tuber, 3 inches diameter; the cylinders, two in number, phacel obliquely next the fire-box, and working the forewheels, were 8 inch by $16 \frac{1}{2}$ inch stroke; driving-wheels 4 feet $8 \frac{1}{2}$ meles in diameter; the exhaust pijps were originally arranged to deliver the steam direetly into the atmosphere, under the impression, no doubt, that the almmance of heating surface unaided would have commanded an abualame of steam.

After some preliminary trials, however, previous to the competition, during which the superior evaporating powers of the Sansjareih, with a shary blast from the exhaust dirceted upwards into the chimney, became apparent, it was resolved to dicharge the exhmust steam of the Rocket into the chimmey, and on the eve of the first day of the trial the echaust-pipes were diverted into the chimueg, with an upwand termination. The fire-grate surface was 6 feet, fire-box suffice 20 feet, tube surfice $17 \% .75$ feet.

[^5]The Sumpareil had a cylindrieal boiler 4 feet 2 inclues diameter, and 0 sed home. The arate and chimuey were situated at one enad of the hwiler, and comerted be a single the tube, with one bend, 04 inelhes in diancter at the grate, and 15 inches at the chinmey. The wate nats five feet bugs loy tive feet homat, and
 chambers. The :10im was thrown into the himmey to stimulate the drath bey means of the baterpipe as atrealy :pypiest to the Koyal gieorge. The ridence of the dratt so produced hecane very erident daring the expmiments, The twoce limens 7 inches by 18 indess sank, wele phaced vertieally over ane pair of wheels, and the fimur whects were $4 \frac{t}{2}$ feet diameter, compled. The grate surfice n is 10 fiet ; the ches surtiace 15.7 fiet, and tube surfate 74.0 fiet.
The Novely was peculiarly constructed. The fire-box was like that of the Rexket, placell at one cond, inveloped in the water of the builer; it was 18 inehos dimeter, chose at the buthom, and fed through an air tight hopprer. The the was a single tule 4 inches dianeter at the lire lux, 3 indhes at the chamey, and 30 feet long, traverning the huiler three tines. The fine was urged by bellows situated nar the hamey. The cugine had but one eylinder, 6 inches by 12 inches stroke; phacel vertieally, and driving one pair of wheds, $4 \frac{1}{2}$ feet in dameter, by means of bell cranks. The stemm wis exhasted direety into the atmo-phere. Grate surfice 1 S feet; fire lex surface $9 . \dot{0}$ feet; tube surfice 95 fiet.

The reppective woights of these Engines and their loals in working order, were at follows:-

TENS. CWT. qRS. lins.
Rocket Engine weight..................... 4 i 0 TOAS. CWT. QRS. LBS.

Sramn weight..... 121500
Total weight of Train.................17 000

toss. CWT. qus. Lins.
Novely Engine, weight, exclusive, of Tank.. 3 i 0 toNs. cwt. Qus. Liss.

The Drawn Weight, attached to the Rocket and the Sanspareil, were the regulation loads-three times the weight of the engines,-as the Novelty had no Tender, the same carrying weight was assignel to it in proportion the exelusive weight of the engine that existed in the experiment with the Rocket.
The Rocket was the only engine that accomplisthed the distance of $\mathbf{~} 0$ miles $1 t$ ancrige sikeed was 13.8 mile per Jour the greatest volocity in any one trip was 29 miles per hour. The consumption of Cuke per mile per ton of total load of Train was 0.91 ths, and per cubic foot of water eraiporated 11.9 ths., the eraporation, 18.24 cubic fee: of water per hour."
"The Smapareil ran a distance of 27.5 miles, averago speed, 14 mile; ; Freatent speed, 22.5 miles; Consmmption of Coke per ton per mide of total load, 2.41 hbs, and per fout of water eraporated, 28.5 ths.; ©ipuritum, 24 , fiet of water per hour."
"The Novelty, by a serics of unfortunate acecident, failed twie in the midot of eaperiments. The engine with its load, traversed the stage at 10 miles jer l.our.

* At a subsequent trial on the experimental stage, after some alterations, the cugine conveged a wtal ancrago Jund its own weight ineluded, of 28.5 tons, att an average niped un the stary of 8 miles per hour; the Coke consumed per hour, was 84 Hhs, during of hours, the bellows being at work duriug the whole of that time. 'ihe consumption was therefores equivalent to 0.36 thes, per ton per mile."
These trials extablished the advantages of an extended flue surface, which the arraugement adopted hy Mr. Stephensom, had brought into netial opetaion; he now set himsedf to make further improvements, amb these he cmberied in tho other cagines constructed on the sathe primeine as the hocket.

EECOND REPOIIT of the Special Committer of the Lit:rary

Your Committee, having undertaken to make this experiment with all the care pxasible, have much pleasure in submuting the folluwing ecport on the roblets obtinned by them:-
A carcfully turned spherical ball of lead 5.2 indies in diameter, aud wejghing 17 lbis w: wis procured for the weight, and surpembed in the pasege of hise "Quelee Mhasic hath," where a height of 60 feet wis obtainced. This weight was suipended by a line steel wire 0.15 inches in dianteter, ont oue end ot this wire a line screw was turned, ty mems of which the wire was fiartened to the plate from which the pendulum was susperaded.

The method of suspending the pendulum was similar to that adoptel by your Committce in their former experiment. A smaill spherisal ball of briss was ground into a hemisplete in a plate of the sume metal; a hole wass drilled through the ceutre of the hemisphere for the wire, and suticicently large to allow the pendulum to vibrate in the required are without coming into cunt cet with the phate; the wire was secured into the ball of suspreniou.

This arrangement being completed, the weight was attached to the loner extremity of the wire, so is to hang within one inch of the thoor.

In order to start the pendulum for the experiments, a cotton thread was passed round the ball and tied over two pins on a leeavy moveable bluck. When the weight secured in this mamer Latl been brought to a state of rost, the threid was firel with a tager, and the pendulum cemmencul vibrating, the thread falling to the ground. A circle 10 fiet in diameter was deservived on the flow from a centre under the point of saspension, and graduated into degrees, by which the progress of the pendulum was measured.

The fint expriments gave a deviation from the calculated augle of about $1^{\circ} 40^{\prime}$ an hour. This wis sulvequenty accounted for :ad corrected, the wire being observed to touch che under surfare of the brass plate at the extrenity of ead vibration. Your Commitue consider this worthy of iemark, asshowing how slight in irregularity at the point of suspension was sufficient to produce an error that would have vitiated the whole of the experiment.

The first obscrvations were made on the night of the 13th May, 1853, but wero rejected from the cause mentioned above. The olservations reconled were made on the $141 \mathrm{~h}, 15 \mathrm{~h}, 16 \mathrm{th}$, 19th and 20 th of the same month. The results are given in detail in the tables.

The first serics of obecrvations gives the angle actually moved through in 47 h .18 m . (after applying the correction for the progression of the apso due to elliptic motion) only 1056^{\prime} less than that calculated. The second series gives an error of 202^{\prime} in 23 h .10 m . These errors may bo represented in time by about 9 and 12 minutos, and your committee consider that these experiments agree so nearly with the calculation as to be very strong corroborative evidence of the currectnees of theory that the time taken by the plane of vibration to perform a complete revolution, varios as the line of the latitude

It may not here be out of place to give a short explanation of the accompanying tables: columns (1)\& (2) refer to the times of observation: (3) denotes the nature of the ellipee showing if there be no elliptic motion, or if elligtic motion, whether it is
progressing or retarding. Column (4) shows the angle observed (5) the angle moved thinough, (0) the time between the observations and (6) the apparent error, (8) shows the angle corrected for elliptic motion, (0) the anglo culculated, and (10) the differeace + or-between the calculated angle and the corrected angle.

Your committee lave great satisfaction in submitting the results of the differeut experiments. In some instances they have varied considerably from the calculated augles, but in all these, the fact that the pendulum hud acquired a corresponding elliptic motion would seem to indicate some local cause of disturbance, While in all the experinents in which there was no elliptic mction, the angles as nearly as could be measured wero equal to those calculated by theory.

The whole respectfully submitted.

A. NOBLE,
Lr. H. A \& V. P.
W. DARLING CAMPBELL.

Querace, July $185 s$.

Thronag th－Lhemality of A．II．Armonr，bemp of Toronto，the Library of the（＇mandian Institate has just receised a very valu－ able allition to its collection of 13 obt an 1 Maps．The columes presented consis：of the masuitieent Repori of Danill 1ate Owen， L．S．（inolaxi－1，on the＂（ie ologinal Surver of Winomin，lima， and Mimn－atio and incidentally of a potion of Numatara limi－
 illustative of the work．Aloo．of the ammal hevort of the Superintendent of the Coast Sumver，and a quartio volume of shetches arcompanging the leport．We underatand that Nr．
 scoml Comptroller of the l^{\prime} ．S．Treanary，for there valuable： decuments．The innortane of perariat worh of thi－characier for the Library cannot be too highly eatimated．and we artally arail ourselves of the earliest opportunity of acknowledgine the mifum zeal which Mr．Amone has manitested in promoting the interests of the Cimadian lusitute．

Twenty－Thirl Mretiang of the British A－sociation far the Ausancement of Science．

 Cicural Committer：－
Inworiong Girants of .If.mey.

That the at：m of ti302 he plated at the di－pasal of the Conncil for the maintename of the entabh－hment of the Ohacratory at k（fw．

 Vle．with \mathcal{L} ：i at their di－fueal fur the prerpuere，

 be prad．

That Mr．Ramkime．1）：．Joblamon，Prot．Monderkinson，a•al Mr．Ward，

 the purpasie．
That Mr．Mallo：be reque－ied to contimue hivexperiments on Earth－ quake Wase，with fith at his dispomal for the jun fure．
 draw up fiables for the lewintration of leriudical lhe：amenat，wath $\mathcal{E} 10$ at their dispasal fur the jurpose．
That Dr．Iamberater，l＇rof．I：Furbes，and I＇rof．Bull，he reguented to
 with $£ 10$ at their di－jmesal for the purpose．

That Mr．IIyndman，Mr．Waitersom，Mr．Dickic，amd Mr．Grainuer，be requented to cary on at wstem of Dredging outhe Nurth aud b：ast Cuasts of Irelami，£ $£ 10$ ．
That Mr．W．F．Strickland．Dr．Daulony．I＇rof．Jindley，and Irof．

That the Cummitue for providure a large ousline Map of the World，
 the Secretaries of the Roval Geeorraphical and Eitinohigical Sucheties，
 Lathan，with $£ 15$ at their disposal for the purpusc．
Not incoleing Grants of IJoney or Apy＇ication to Gorernment or Jublec Auhoritics．
That Licut－Col．Porthock，Prof．James Forlues，Mr．Mailet，Mr．Phil－ lips，Dr．Robiuson，CuL Sabiuc，and Professor Stulies，be requested to
comsider and report upon the leat form of apparatus for regintering the disertion athel anotnot of Earthynate．

Thit D：．（atatstome lue repuested to comtinue his itngirics on the fotherwe of liselit on the Vinality of llats．
Th：u Mr．Hohner Ilumt her rigur－ated to continue lis investigation of the C＇lurnia：al Action wh the Sular Rats．

I hat the fullowing Lemtlemen be a Committec to report on the lient

That M：．Sbime hate be reguented tu give at report on the present

That Mr．Fairnairn a moonnt of Fxprimental llesoarches to deter－
 to explomion，he printed，entire，anamer the lleponts．

That the lion Commities lice requanted to furnish a Report to the
 alophed in this constry，for the Thernometric Scale：and that the Cinmeil he reyue－aded to conmmanioate with the I＇resment and Council of the liog al Socicty；should athy change in that respect be deemed desirathe：

That l＇rof．dohmom lin reguested to furnish a Report on the rela－ tions of themistry tu（exuhug！．
That the following papers with the conernt of the anthors，be printed
 －I．tute oldhan，E－nl．，On the l＇hysieal leatures of the Mumber；

 laymat a：the State of our lamowledge on the Supyly of fiater to ＇丁口uル。

That the thanks ai the Brition Asenciation le given to the Parlia－ im utans Committer for the meceasing athention they hase prid to the juteren of scance，buth in combunamations to Government，and in procechans in the lionses of l＇asliament．

The Members of the le－itivh ．asociation fatre learned with satisface

 Vith ：he pian adijued by the Gorcrument of the United States，on the suag te time of Lacut．Ilaurs，and．take such further steps，in re－ ference to the Me：cantile darine of（ireat lititan，as may be best suited to stimulate and ancontage the Masters of British Merchant thipes to take uturest in insestigations by whel the times of pasage latwoun difercot ports have ilrualy，in many instances，beca ma－ terially hortencel，：bid wl．seh may leaid to other results of the greateat importame to practical mavigation．

The litioh I woriation entirely concurs in the opmion that to make
 thev are dexigued，it wilt lae ureesary to matie provision for their cos oalanaion，a：ud fur dorivang from lhem the inntruction which they mav hu capable of vichling．prima－ily for the adrantage of uavigation and sceondarty，for the benctit of Sifence．

In this iew the Gencral Commintec requests that the Council will con bunicate on the sthiect wish the l＇arliamentary Committec，and will take such siepr．aither hy deputatuan to Governiment or olderwise， as may apruar lo them desirable．

Ihat Cul．Sibiuc he requested tu draw up a Report on the priucipal magretic sevits obtained at the Magnetic Ulwervatories．

Incolving Aydicalion to Gutermment．

That as ereat inconsemence is freguently aceasinned by the injury or destruction af instrument－ind spreitucus，arriving from fi eigu parts
 to the Conacil to consider of the liest muple of representiog this to the Government，and of remedying the evil．

S：crio A．－MATHENATICAL AND IHYSICAL SCIENCE．

Cul．Sabine opened the Scetion by apologizing for the absence of the l＇revident．
－Cuntruation of licfort on Inrminoun Mrkcors，＇by the Rev．Meoramon I＇owric．－The Iliport contained tabulated records of obeerved meteort

[^6]classified under three general heads:-I. Older observations reco:ded of Luminous Metcors. II. Continuation of Catalogue of Luminous Meteors from the Report of 1851-2. III. An Appendix, containing letters and drawings, giving a more detailed account of some more Reinarkable Meteors. The number of meteors tabulated unter the second head was very large. The records were preserved under the following heads:-1. Date; 2. Hour and minute when seen; 3. Appearance or magnitude; 4. Brightuess and Colour; 5 . Train, or sparks; 6. Velocity, or duration; 7. Direction, or altitude; 8. General Remarks; 9. Place; 10. Observer; 11. Reference. This report gave rise to a very animated and long sustained conversation.

Mr. Grove explained the three opinions advanced as to the possible origin of these interesting objects. At one time it had been maintained that they were bodies projected upon the earth from the moon; next, it had been supposed that they had a chemical oirgin in our own at-mosphere;-and lastly, it was held that they were probably planetary bodies whose orbits t'aversing that of the earth when they met it a node, the planetary mass falling into our atmosphere ignited and put on one of the varied ph ses of a metcor. Mr Grove stated, that the first opinion, was now universally abandoned;--that the second though still claiming supporters, was not considered the most probable;-and that the third opnion was all but universally now received among scientific men as the most probable account of their origin. He fortified each of these statements, giving ithe leading reasons which led to the rejection or adoptio nof each.
' On the Composition and Fignring of the Specula for Reffecting Telescopes,' by Mr. Sollitr. - The writer commenced by stating that he bad given his attention to this sulject for years, and that he was more than ever convinced of its importauce by the decided conclusion to which facts had led him that refectors, when once well and carefully made, were far less apt to deteriorate than refractors. In order to be intelligible to the Section. it was necessary for him to go over some ground familiar to the public since the researches of Lord Rosse, Mr. Lassell and Mr. Nasmith. He stated that he considered it to be a matter of prime importance that the copper and tin should be used in exact atomic proportions He, following the numbers given by Berzelius, used the following proportions-copper, 3.; tin, 17.4 . Lord Rosse's are, copper, 32; tin, 149 . As the metal when thus composed was very hard, brittle, and difficult to work, he found that he could render it capable of reflectung white light equally well, if not better; and at the same time of takngg a very uniform and beautiful polish, by introducing a little nickel in place of the tin.-and the following proportions he found on trial best:-copper 32; tin, 155 ; nickel, 2. He also found the introduction of a very shall quantity of arsence uscful in preventing the oxidation of the tin when melting. Silver, as used by Mr. Lassell. he also found excellent; but he was against the use of fluxes, as most injurious. The anthor passed over the casting aud grinding with very slight notice; but dwelt on the composition and figuring of the polisher as of great importance. The composition as used by him was pitch resin, and a small admixture of thou: was found useful. The surface he grooved with concentric equidi-tant circular grooves,-and not in parallel and cross groovrs, as used by Lord Rosse and Mr. Lassel.These concentric grooves he crossed by radial grooves, wideuing as they receded from the centre, so as to be bounded by curved outlines. By giving proper form and dimensions to these curves the parabolic forn could be most accurately given to the speculum in the process of polishing. The form of the curred outlines of these radial grooves he found should be parabolic. He concluded by stating the importance of not haring the speculum too thin, and of using proper precautions in mounting and supportung it, to avoid any chance of the form being altered.
Dr. Scoresby regretted that having been in another Section he had not heard the early part of the communication of Mr. Sollitt; but he rather thought Lord Ruse used concentric grooves in his polisher as well as parallel and cross grooves. Prof. Stevelly confirmed the accuracy of this statement: and added that his memory was quite clear that Lord Rosse considered it very important to use the copper and tin in atomic proportions, and said in his papers on it that uniformity of composition could not otherwise be hoped for. He also recognized the importance of using thick specula; the last which he had cast being not less than five inches thick. He also had used and recommended resin to be used to harden the pitch and flour for a purpose by which experience he had learit to be important. Lord Rosse had also by the several motious and adjustments which he had conrived for the speculum and the polisher reduced the figuring of the speculum to an almost certain function of time; so that after the speculum had been a certain number of hours under the action of the polisher, he Was well assured that the proper tigure had been attained. Professor Stevelly briefly described these moticns and adjustments; and stated
that the actual result was, an enormous circular disc of six-feet aperture. without crack or flaw, and of a splendid uniform polish, and reflecting light from objects of a perfectly natural tint.

- On the Surface Temperature, and Great Currents of the North Atlantic and Northern Occan,' by the Rev. Dr. Scoresby.-I he author commenced by pointing out the great importance to Physical Geography of the subjects he proposed to discues, particularly as they tended in the economy of Nature, to furnish a compensating instrumentality agaiust the extremes of condition to which the fervid action of the vertical sun in the tropical regions, and its inferior and more oblique action in the polar regions, were calculated to reduce the surface of the earth. Our knowledge of all the currents of the ocean, with perhaps, one exception; the Gulf-stream, which had been, in its inore important features, carefully examined and survesed, and more cspecially in the American Coast Survey, -was derived from the comparison by navigators of the actual position of the ship as determined from time to time with its position as calculated from what sailors technically called the "dead reckoning," or the course steered, and the distance run as determined by the leg, an instrument by no mealis perfect. The determiation, however, of occanic currents, to which the present communication referred, deperds simply on induction from observation of temperature, on that mainly of the surface. Such observatious, indeed, only become a a ailable under considerable differences betwixt the mean atmospheric and oceanic temperatures; and where they may scem to indicate the region from which peculiar qualities of the sea are derived, they can afford little, if any, iufornation as to the precise direction or strenglh of the current so indicated, yet still the general resulis are found important and useful. 'the researches of the author embrace those in the Greculaud Sea, the North, Sea, and a considerable belt across the North Atlartic. To those in the North Atlantic he wished at present to direct attentien; and to a belt of it embraced within the limits of a series of passages chiefly by sailing vessels betwcen Eugland, or some European port, and New York. Of these passages, sixteen in number, four were performed by the author himself, and twelve supplied by an American navigator, Captain J. C. Delano, an accurate scientific obseryer. The observatious on surface temperature discussed amount to 1153, gathered from a total number of about 1400 . Usually Captain Delano recorded six observations each day during the voyage, at intervals of four hours. Seren of the passages were made in the spriug of the year,-two in the summer,-one in autumn,-and three in winter. Taking the mid dle day of each passage the mean day at sea was found to be May18th or 191h,-a day fortunately eoincident in singular nearness with the probable time of the mean annual oceanic temperature. The author had laid down the tracks of the ship in each of the voyages on a chart if Mercator's projection, and the principal obeervations on Surface Temperature were marked in their respective places. The cbee:vations were then tabulated for meridians of \mathscr{e}° in breadih, from Cape Clear, longitude $10^{\circ} \mathrm{W}$; to the eastern point of Long Island. longitide $72^{\circ} \mathrm{W}$.,-embracing a belt of the average breadth of $2 \% 0$ mile; on a stretch of about $2,6 C 0$ miles across the Athantic. The results were the following:-1. Highest Surface Temperature northward of latitude $40^{\circ}, 7 t^{\circ}$; lowest 33°; range 39° - Mean Surface Temperature, as derived from the means of each meridional section 50°, whilst the mean atmospheric temperature for the corresponding pelicd was $510.2-8$. lange of Surface Temperature within each meridional section if 2°, 81° at the lowest, being in lengitude $20-22^{\circ} \mathrm{W}$., and at the greatest 36°, being within the meridian of $6264^{\circ} \mathrm{W} . \mathrm{-}^{-}{ }^{\circ}$ Up to longitude 46° the 'Surface Temperature never descended below 50°;-the average lowest of the sixteen meredional sections being $51^{\circ} \% 8$, and the avelage range being $11^{\circ} \cdot 3$. 5 . In the succeeding fifteen sections, where the lowest temperature was 32°, the average lowest was $37^{\circ} 1$, aud the average range $29^{\circ} \cdot 7$. This remarkable difference in the Temperature of the eastern and western halves of the Atlantic passage, the author said was conclusively indicative of great ocean currents yielding a mean depression of the lowest meridional temperature from $51^{\circ} \cdot \varepsilon_{8}^{8}$ to $37^{\circ} \cdot 1$, or $14^{\circ} 8$ and producing a mean range of the extreme of temperature on the western side of almost thrice the amount of the extremes on the easteru side,-or, more strictly, in the proportion of $29^{\circ} .7$ to $11^{\circ} 3$. The author drew attention to a diagram which he had laid down along the entire belt curves showing the whole range of the lowest depressions of temperature and highest elevation, with the means at each longitude distinguished by different shading, and pointed out how the inspection of this as well as of the tabulated results afforded striking indication of the two great curnents, one descending from the Polar, the other ascending from the Tropical regions, with their characteristic changes of cold and heat. In classifying the results, the author considered the entire belt of the Atlantic track of the passages as divided into six divisions of 10°. of longitude efch, and these iuto meridional stripes of ε° each, omitting the two firt t degrees next the European end, or about 83 mi'es westward if I: iland
to $72^{\circ} \mathrm{W}$., or about the same distance West of New York. To each of these six divisions he directed attention, pointing out the conclusions to be derived from each. The curves approaching each other and running nearly parallel through the western half with great regularity, showing the variations and range to be much less, while throughout the eastern half the widening of the distance, and the irregular form of the extreme curves showed the influences of the two currents very remarkably. The author then proceeded to draw conclusions, fhowing that sometimes the cold current from the north plunged beneath the warmer current from the south. Sometimes they divided,the colder keepring in shore along the A merican coast, the other keeping out and forming the main (iult-stream. Sometimes where they met they interlaced in alternating stripes of hot and cold water; sometimes their meeting caused a defiexion,-as, where one branch of the Gulf-stream was sent dowu to the south-east of Europe and north of Africa and another branch sent up past the British Islands to Norway and Scandinavia by the the Polar current setting down to the cast of Newfoundland. The author next proceeded to consider the uses in the economy of nature of these great oceanic currents. The first that he noticed was the equalizing and ameliorating influence which they exercised on the temperature of many countries. Of this he gave several examples. Thus, our own country, though usually spoken of as a very variable climate, was subject to far less variations of range of temperature than many others in similar latitudes, which was chietly from the general influence of the northern branch of the Gulf-stream setting up past these islands. He had himself on one occasion in the month of November known the temperatire to rise no less than $52^{\circ} \mathrm{in}$ forty-eight hours,-have previously descended in a very few days through a still greater range; while in these countries the extensive range between mean summer and winter temperature scarcely in any instance exceeds 27°, and in many places does not amount to nearly as much. Anothor advantage derived from these currents was, a reciprocation of the waters of high and low latitndes,-thus, tending to preserve a useful equallizing of the salncss of the waters, which otherwise by evaporation in low latitudes would soon become too salt to perform its iutended function. Next he pointed out their use iu forming sand-banks, which became highly beneficial as extensive fields for the maintenance of various species of the finny tribes, as in the great banks of Newfoundland. Next. this commingling of the waters of several regions tended to change and renew from time to time the soil of these banks,-which, like manuring and working our fields, was found to be necessary for preserving these extensive pastures for the fish. Lastly, by bringing down from Polar r gions the enormous masses of ice, which under the nane of icebergs, were at times found to be setting down towards Tropical regions, they tend at the same time to ameliorate the great heats of those regions, and to prevent the Polar regious from becoming blocked up with accumulating mountains of ice which, but for this provision, would soon be oushed down as extensive glaciers, rendering whole tracts of our temperate zones uninhabitable wilds. Dr. Scoresby concluded by point ng out several meteorological influences of these currents, by causing extensive fogs or winds more or less violent.
- On Dynamical Saquences in Kissmos, by W. J. M. WatrasonThe.Dy namic thenry of Heat, if accepted as being inductively demonstrated, seems to supply us with a raluable standard of physical causation that in the course of time must have an important influence on tise progress of science. That some such standard has hitherto been wanting, seems to be proved by the barren results of the most eminent mathematicians, when directed to molecular physics, offering as they do so great a contrast to the success achieved in the ficlds of Astronomy. In these reunions of the British Association, it may not perhaps be considered out of place, or as an illegitimate course of inquiry, to assume the theory as proven, and endeavour to realize, as far as our lights at present extend, the conditions and the sequence of action, implied by its existence as a gencral principle throughout nature. The evidence that supports the theory equally supports many views of natural phenomena that are obriously depeudant upon it as corollaries, and which ought therefore to be always assuciated with it. Among these I would beg attention to a few that seem specially to demand notice at the present stage of our progress. I-Eyuilibrium and Sequence of 'lemperature in relation to a centripetal force. - The dynamic theory of hoat requires that the law of vertical cquitibrixm of temperature should be different from the law of horizontal equilibrium. In whatever way cooduction may be effected, eguilibrium of tomperature is by the theory equilibrium of force : maintained by a constant interchange of equal action or impulse between adjacent molecules, ia a state of activity. The interchange may take place by direct contact or through an intermedium affected by and capable of affecting the active state of the molecules. In either case, the verically resolred portion of this ective state must be influenced $b y$ the centripetal force of the planet
which tends to increase a downward impulse and diminish an upward impulse. Thus, the condition of motion once admitted, involves a greater intensity at the lower aspect of a molecular orbit than at its upper, caused by the force of gravitation acting in the interval, which must thus establish a gradient of increasing temperature towards the centre, as the nataral condition of a vertical equilibrium. An increasing temperature below the surface of the earth beng a recornized fact, it is possible that the condition of permauent equilibrium in our planet is already attained; and if in any mathematical speculations on the interior condition of our globe, we assume that conduction takes place the same in all directions, vertical as well as horizontal, we shall cer ${ }^{2}$ tainly be procecding on a false assumption of the theory is correct. A vertical gradient of temperature in the atmosphere is another recogd nized fact impossible to reconchle with any previous theory, but so completely in accordance with these dynamic views, that if tre merely assume the molecules of air to be frce elastic projectiles, we may deduce its actual numerical value from the specitic gravity of the component gases. From this hy pothesis, too, all the physical properties of gases may be mathematically deduced: The relation that must sub-ist between heat and gravitation is extremely interesting, and deserves to be enlarged upon. It is in perfect conformity with the views generally entertained of the progressive formation of the solar system -the nebular hypothesis of La Place. The dynamical sequence may be illustrated as follows. Suppose a 39lb cannon ball to descend through the earth's radius under the influence of the same force of gravity as exists on the surface, the velocity acquired is 36,700 feet per second, or about seven miles. This is the same velocity as the ball would acquire in descending from an infinite height to the surface of the earth. Considering the ball as an erolite encountering the atmosphere or earth's surface with this relocity, we are now enabled to compute the amount of heat generated by the concussion. 32lb of water falling through a height of about 673 feet obtains an increase of 1° by the concussion, 321 lb . of iron about 9°. The concussion due to the velocity of seren miles per second would generate heat enough to raise the temperature of the ball 280,000 degrees. In the same way, it may be computed that if the ball descended to the surface of the sun, it would acquire a relucity of 545 miles per second, and the heat equivalent of the concussion is 1,800 million degrees. We may thus obtain an idea of the vast evolution of heat that might be caused by the process of central aggregation of matter under the influence of its gravitating energy ; nor does it seem necessary to look further tor the origin or continuance either of the solar heat or for that of the interior of our planet. While gravitation thus generates heat centripetally, radiation may be viewed as the escape of vis viva centrifugally. The modes of central collocation and of dispersion are equally mysterious: further than that, they appear as parts of a dynamical cycle. While a body is falling towards the sun, vis viva is generated in certain points of space, and conreyed to the centre by the body whose molecules move together in the passage downwards. The shock at the centre puts an end to this species of motion, but generates another apparently of a vibratory kind in the molecular elements, which has the effect of awakening a radiating power through space; or what may be viewed as a centrifugal transference of vis vina into the regions of space. While this vis viva generated in space is mevitably carried to a centre before it is thus re-issued, we have the residual phenomenon of a central body augmented in mass ty the process. The physical circle would be complete if this central body had a motion through space which brought it in contact with another; both, it may be, exhausted of their central vis viva, the shock might he supposed capable of dispersing and projecting the component part so far from the common centre of gravity as to renew the original nebulous form. In M. Ponillet's researches (Taylor's 'Scient. Mem.' vol. iv.) we have a striking view of the extreme slowness of the process of radiation from the sun. Making use of the same data, and converting the equivalent of solar radiation into quantity of mater of the density of water falling to the sun from remote regions, we may see by a little calculation that the qantity required in one year would cover its whole surface to the depth of 14.6 feet. Thus, the sun may be supplied with heat by the mere descent of matter as acrolites to its surface. When such bodies encounter our atmosphere, we have experience of the dazzling appearances of ignition or combustion manifested, and may judge of the effects of a continued shower of such bodies sufficient to cover the surface to a sensible depth. Each meteor siguals an accession to the carth's mass, and brings also an accession of lieat. If the united mass of all such meteors that impinge on our planet throughout one year rere made visitle to us as one acrolite desceuding at regular yearly intervals, there is little doubt it would suggest to the mind of the most careless observer the probability of the ererth growing in size by such periodical contributions. IThe geologist, accustomed to the consideration of vast periods of time, might speculate on the possibility of it having thus materially increased in dimensions while the abode of organic life, without in the
least disturbing it. From what is already known, we can predicate that a ball of iron enteriug the atmosphere with a velocity af six or seven miles a second wouid instantly be melted, burnt, und converted into a red powder, and that before reachng the earth it would probably be seattered by the aerial currents intocomparatively su vast an area as never to be alterwards noticed. If we suppose the mechanical force produced by the condensation of the nebulous mass from which a plavet is forming to be slower than the equivalent of radiation from the same, it would seem as if there could be no great internal heat; but it is to be remembered that the vertical law of conduction requires an increase of temperature downwards, so that it a planetary mass were exposed perfectly cold to the sun's rays, it must continue to absorb heat until that vertical equilibrium of temperature had been attained :-the centripetal energy euabling it to imbibe a quantity of heat vastly greater than the surface temperature would seem to indicate. In respect to extra-terrestial bodies such subterranean heat is latent. With regard to the sun, on the other hand, the mechanical furce generated centripetally must originally have far exceeded the equivalent of radiation. If its present condition is stationary in respect to temperature, its mass must be increasing. It its mass is not increasing, its temperature must be dimmishing, the annual loss being represented by about $1-54$ millionth of its mass lowered 1,800 million of degrees. per annum, supposing it to have the specified heat of iron: supposing, also that it does not contract or become further condensed, because this would of itself engender vis viva. It may be shown that so small an increase of deusity as would diminish the sun's diameter 860 feet represents the equivalent of the annual radiation. In the bodies that surround us, we remark that cooling and contraction are generally simultaneous. If such is the case in the sm, 33 degrees must be too high an estimate of the yearly loss of temperature. The ratio between the diminution of bulk and of temperature, were it known in the case of the sun, would enable us to compare their mechanical equivalents. The vis viva produced by the diminution of bulk would be classed with the phenomena of what is called latent heat in liquids, solids and gases. It would seem from these coraputations, which rest upon M. Pouillet's tata, that the probable annual loss of temperature in the sun is by no meaus inconsiderable in absolute amount, but its relative value in respect to the temperature of the smm may be, and probably is quite insignificant. Is there any way of arriving at an estimate of the temperature of the sun's radiating surface? Let us consider what meaning is to be given to the expression "temperature of space," occasionally to be met with in the writings of physicists. If heat is the motion of the elemeutary parts of bodies, and not a subtle species of matter, as certain phenomena of latent heat seem to have suggested the idea, it is hardly correct to speak of vacaut space as having a temperature, althongh the heat force may in various directions and with various intensities be radiating through it. In the sane way, space is not considered as luminous, although traversed hy most intense light. A thermometer placed in a perfect rachum although it shows the same temperatnre as the substance that incloses the vactun, actually exhibits the effect of the intensity of the heat radiations that are passing through it. If we suppose a thermometer situated at he opposite pint of the earth's orbit, and subject to the influence of the sun's rays omls, it would no doubt rise until the radiation from its surface ameinted to What was radiated into its surface; but the temperature indicated by it cannot be accepted either as constant, for it depends on the specific radiating and absorbing qualities of the thermometer; or as affording the means of deducing the sun's temperature, for we are ignorant of the relation between temperature and the rate of emission, also of the absolute value of any given temperature unless we deduce it from the dynamic theory of gases which represents the zero of gascous tension (-4610 Fahr.) as the absolute zero of heat. If the thermometer thes isolated, is supposed to be surrounded, on all sides but the one expesed to the sun, by matter that is kept artificially heated up, to within a few degrees of the temperature shown by the thermometer, it is impossible that it could receive an accession of heat from any other source but the sun; and it seems obvious that when at last it became stationary, the temperature is one that must be independent of any specific quality of the thermometer or its artificially heated envelope, but dependent entirely on the distance and temperature of the sum. Some years ago I made an attempt to imitate the conditions of this hypothetical experiment by inclosing a thermometer within three conceutric boxes well protected from external infucuces, and capable of being equally heated all round to any temperature below 400° Fahr. by means of flues ascending from an Argand lamp. The rays of the sum when near the meridian, (within the Tropi s) were admitted to fall When required on the bulb of a thermoneter through a tiple glass partition. Before applying the lamp, the temperature of the interior of the box being t, a rise of about 50° took place by exposing the bulb to the sun; when the thermometer had become stationary at $t+50^{\circ}$ the son's rays were excluded and the lamp applied to heat the box to $t+$
50°. When the temperature was again stationary at this point, the sun was re-admitted upon the thermoneter, which again rose 50° or until the temp eratue was $t+100^{\circ}$. The same operations were repeated up to 250°, but without any diminution of the step 50° which seemed to be made with the s. me alacrity at the higher as at the lower temperature. I had hoped to lave detected some very obvious difference, and from its amount to inier the value of the limiting temperature that expresed the sun's power at the earth's distance. I should then have added 46° t 1 this temperature ts: obtain its absolute value, then increase this in the inserse ratio of the square of the distance from the sun's centre, ubtain an approximate value of the sun's temperature. It seemed po me at the time that this experiment, though not made with sufficieut neans, or perhaps, care to insure much accuracy, proved that the intrinsic firce of the sun's rays of heat was much, greater than might be inferred from the temperature of the atmosphere. I purpose at a future opportunity to consider the Dynamical Sequence of Latent Heat and Molecular Force.

Mr. Hopkins addressed the Section, pointing out the important hints and valuable line- of inquiry which the paper suggested; but also showing with what caution it was to be be received in many parts as statements of determined scientific truth.

Section B.-CHEMICAL SCJENCE.

'On the Chemical Action of the Solar Radiations,' by Mr. R. Hovr -This was a report to the section of the continuation of an examination of the chemical action of the prismatic spectrum, after it had been subjected to the absorp,tive influcnces of different coloured media. The mode of examination has bech to obtain well defined spectra of a beam of light passiug through a fine vertical slit in a steel plate by prisms of flint and crown glass and of quariz. The spectrum, being concentiated by a lens, was received upen a white tablet and submitted to careful admeasurement ; the coloured screen (sometimes coloured glass and sometimes coloured fluid) was then interposed, and the alterations in the chromatic image were carctully noted; the chemical preparation was hen placed upon the tablet, and the chemical impression obtained. The relation which this image bore to the luminous image was a true representation of the comexion between the colour of a ray, and its power to produce chemical clange. In the report made to the Belfast mecting of the British Association, the results of experiments made upon glass plates prepared by the so-called collodion process were alone given. In the present report the examination has been extended to the photographic preparation known as the calotype, and to iodide and bromide of silver in their pure state and when excited by gallic acid. M. Edmond Becquerel, in a paper commuticated to the Academy of Sciences, of which an abstract appears in the Comptes Rendus, tom xvii. p. 883 , states "that when any part of the luminous spectrum is absorbed or destroyed by any subsetance whatever, the part of the chemical rays of the same refrangibility is also destroyed." The author's experiments, as reco-ded in the former report and those now detailed, Irove that his conclusin has been formed too hastily. Although there are many absorptive media which, at the same time as they obliterate a particular coloured ray, destroy the chemical action of that portion of the spectrum, yet there are still more extensive series which prevent the parsage of a ray of given refrangibility, and do not, at the same time, obstruct those rays which are chemically active of the same degree of refraugibility. This is particularly exemplified in the case of glass turned yellow by different preparations. With some of these the blue rays are obliterated, the chemical action of this patt of the spectrum not being interrupted, whereas in some other examples, those rays permeate the glase, but are almost entirely deprived of chemical power. A still more curious fact is noticed in this report, for the first time, of some media which have the power, as it were, of developing chemical action in a particular part of the spectrum where the rays did not appear previously to possess this power. Several glasses exhiibited this phenomenos to a certain extent, particularly such as were stained rellow by the oxide of silver; but one glass showed this in a remarkable manner. This glass was yellow when viewed by transmitted light, but it reflected pale blue light from one of its surfaces; it obliterated the more refrangible rays down to the green, and rendered the yellow rays far less lummous than usual. In nearly every case the yellow rays are found to be not merely iuactive, chemically, but to actively prevent chemical action. After the spectrum has been submitted to the actiou of this glass, all chemical pozer is confinced to this yellow ray. The author has hitherto supported the view that photogryhic phenomena and the illuminating power of the
sumbeam were distinct principies, united only in their modes of sunbeam were distinct principles, mited only in their modes of motion. He was led to this from obserring that where there was the most light there was the Jeast power of producing chemical change ;
of the solar rays increased. The results, however, which he has obtained during the brief sunshine of the present summer, leads him to hold that opinion in suspensi in. In many of the spectra obtained (copies of which will be appended to the printed report) there appears to be evidence of the conversion of one form of force into another-the change indeed of light into action or chemical p:wer ; and, again, as in Mr . Stokes' experiments. the exhibition of the ordinarily invisible chemical rays in the form of light.
Prof. Stokes offred some remarks upon the different effects produced by the spectrum, dividing them into luminous effect, chemical action,calorific power, phosphorescence, and fluorescence. These were different effects resulting from the same cause, and he did not consider that sufficient evidence had yet been given to warrant the idea that there existed any dissimilar ageucies in the solar rays.
Prof. Johnston, the Rev. V. Harcourt, Dr. Daubeny, Mr. Claudet, and others, took part in the conversation which fullowed.

- On the Employment of the higher sulplides of Calcium as a means of Preventing and Destroying the Uudium Tuckeri, or Grape Disease,' by Dr. Astley P. Price-Of the many substances which have been employe to arrest the devastating efficts of this disease, none appear to have been so preëminently successful as sulphur, whether employed in the state of powder or flowers of sulphur, or by sublimation in houses so affected. Notwithstanding the several methods described for its application to the vines, I am not aware that any had been offered in 1851, when these experiments were instituted, by which sulphur might be uniformly distributed over the branches, and be there deposited in such a manner as to be to some extent firmly attached to the vine. Three houses at Margate, in the vicinity of the one in which the disease first made its appearance in England, having been for the space of five years infected with the disease, and notwithstanding the employment of sulphur as powdered and ilowers of sulphur, no abatement in its ravages could be discovered,-I was induced to employ a solution of pentasulphide of calcium, a solution of which having been found to act in no way injurionsly to the young and delicate shoots of plants, was applied to the juices in a dilute condition: the object in view being that the compound should be decomposed by carbonic acid, and that the excess of sulphur should be deposited with the carbonate of lime in a uniform and durable covering on the stems and branches of vines. This was adopted, and alth ,ugh but few applications were made, the stems became coated with a deposit of sulphur, and the disease gradually but effectually diminished, in so much that the houses are now entirely free from any trace of disease or symptoms of infection. The young shoots are in no way injured by its appheation, and the older wood covered with this deposit of sulphur contunues exceedingly healthy. This was, we helieve, the first employment of the higher sulphides of calcium as a vehicle tor the application of sulphur to the stems and foliage of the diseased vines. Specimens were exhibited from vines which in 1851 were covered with disease, and which have since the autum of that year received no futher treatment. The vines in the immediate neighbourhood, and adjuining one of the houses, are covered with diseace, but, notwithstanding their chose proximity, no indication of the disease has at present been detected in either of the three houses.
'On the effect of Sulphate of Lime upm Irystalle Sulatances,' by Cuevalier Clatssex.-About six weks since 'I was engaged in making various experiments on the effect of Suiphate of lime upon vegetable substances. A portion of the sulstances then used by me was thrown carelessly aside, and upon returning to my experiments about a fortnight afterwards, I was surprised that the decomposition had not taken place in those portions of the vergtables which had been subjected to the action of the sulphate, while those which had not been so treated were completely decayed Among the articles experimented upon were a number of potatoes, each of which was affected by the prevalent discase; some of these rema in sound to the present day the others have some time since completely rotted away. Subsequently I procured some more potatoes, and also some beet-roots, the former being. as far as I could judge, all discased. I divided the potatoes into three portions. One lot I placed in a vessel with a weak solution of sulphuric acid, and from thence I placed them in a solution of weak lime-water. In the second lot the process was reversed, that is to say the potatoes were first placed in the lime-water, and then in the acid. The third lot was left untouched. Ten days afterwards I examined the potatoes, those whichhad not been treated with the sulphate were rapidly decaying,-those which had been first placed in the solution of lime and then in the acid were more nearly decomposed,-while those which had been treated in the mode first described remained as sound as when first taken in hand. Upon being cut open the diseased part of the potatoes was found to have spread internally, and the flavour of root was in no degree affected by the application of the process
nor do I think that its germinating power was injured by the effect of the sulphate. The effects upon the beet roots was similar to that produced upon the potato, and which would seem to be somewhat analagous to that of galanizing metals, riz: protecting the substances from the effect of atmospheric agencies. I may add, that muriatic and other acids have been employed by me on other occasions with equal success, the only agents required appearing to be tho e which will most readily produce a sulphate in contact with the sutstances required to be preserved. As at present it does not appear that any means can be successfully adopted to prevent the potato from becoming diseased while in the ground and arriving at maturity, it would certainly be of immense advantage if anything could be discovered by the use of which the roots when taken up could be prevented from that absolute decay and irreparable loss to which potatoes affected by the disease are liable. The results which I have described seem to me to point to the possibility of arresting this loss. How far the plan suggested may be practicable or applicable upon a large scale, my present very pressing and numerous engagements have hitherto prevented me from ascertaining. I do not think that any msuperable difficulty exists with respect to the application of the process. The acid employed by me was very weak, about one part to two hundred of water; the lime water was about the consistency of milk. The materials are not, therefure, expensive; and when the value of the crop to be saved is takeninto consideration, it would be a matter well worthy of being tested by some of those extensive growers of potatoes in the county in which the British Association is now holding its sittings. For my own part, I should be most happy if any suggestion of mine had merely beeu the instrument of directing the attention of scientific men to the subject of the possibility of preserving from total destruction a vegetable so valuable and so indispensable as the potato.
'The renults of the Census of Grent Britain in 1851, with a description of the machincry and processes employed to obtain the Returns,' by E. Cershine.-The author commenced by reciting the onerous duties of Registrar General. The objects of the census were expla ined, and the machinery employed to take it. Great Britain was apportioned into 38,740 enumeration districts, and to each of them a duly qualified enumerator was appointed. The author illustrated the extent of this army of enumerators, and the labour of engaging their services on the eame day, by stating that it would take $131 / 2$ hours to count them, at the rate of une a second, and that the arny recently emeamped at Chobham would not have suffered to enumerate a fourth of the pupulation of Great Brita n . The boundaries of the councration districte, and the duties of the enumerators, werr difined. The number of householde:s schedules forwarded from the Cersus Office was 7000 000 , Teighing 40 tons. Ti.e processes emphed to el umerate persons sleeping in barts, tents and the opmair, and in vessels, were severally explained; also the means bJ which the members of British subjects in foreign states were obsaned. Tle perautinis taken to ecure accurate returas were recited; they insolved the final process of a ninute exaniuation and totalling, at the Cersus Office, of 20 millions of entries, combaned un upwats of $11 / 4$ millions of pages of the enumerat re' buoks. The later were upwards of 38,000 in number. The bnundaries of the founteen registration divisions were traced, and the plan of pullication of the census was explained. The number of persons absent from Great Britain on the nigbt of the 30;h of Varch, was nearly 200.000:-viz army, nary, and merchant service, 16?.490; and British sul jects resident and traveling in foreign countrite, 33,7\%5. The various cauts of displacements of the population were reciled; and the geteral movement of the population on the occasion of the Great Exhibition was alluded to. \dagger The number of visits to the Crystal Palice were 6,039.19 ; and the number of people who visited it was $2,000,000$, nevertheless the landing of only 65,233 aliens were repurted in the year. The population of Great Britain in1851 is subjomed.

	Males.	Females.	Total
England	8,281,734	8,640.154	16,921,888
Scotland.	1,375,479	1,513.263	2,888,742
Wales	499,491	506,230	1,005,721
Islands................	66,854	76,272	143,126
$\left.\begin{array}{c}\text { Army, Navy and Mer- } \\ \text { chant Service. }\end{array}\right\}$	162,490	162,490
Total.............	10386.048	10.735.919	21,121.967

T'he census illusirated ihis $21,000,000$ ut people by an allusion to the Great Exhibition. On one or two occasions 100,000 visited the Crystal Palace in a single day, consequently 211 days of such a living stieam would represent ile number of the Bitish population Another way of realizing $21,000.000$ of people was arrived at by con. sidering their numbers in relation to spaec; allowing a square yard
to each person they would cover 7 square miles. The author supplied a further illustration, by stating that if all the people of Great Britain had to pass through London in procession 4 a!reast, and every fapility was aff irded for their free and uninterrupted passage 12 bours daily, Sundays excepted, it would take nearly 3 ruoniths for the whole population of Great Britain to file through at quick march, four deep. 'The excess of f males in Gieat Britain was 512,361, or as many as would have filled the Crystal Palac 5 times over. The proportion between the sexus was 100 males to 105 females, a remarkable fact when it was considered that the births during the last 13 years had given the revarsed proportion of 105 boys to 100 girls The annexed statement exhibits the population of Great Britain at each celsus from 1801 to 1851 inclusive:-

Years.	Males.	Females.	Total.
1801	5368.703	5.548,730	10.917.433
1811	6,111.261	6,312. $\times 59$	12421.120
1821	7.0960 .53	7.306,590	14,402,643
1831	8133.446	8.43:1,69:	16,564 138
1841	9.23:2,418	9,581.368	18.と13,786
1851	10.386,048	10.735.919	21,121,96i

The increase of population in the last half century was upwards o $10.000,000$, and nearly equalled the increase in all preceding ages, notwithstanding that millions had emigrated in the interval. The increase still continued, but the rate of increase had declined, chiefly from accelerated emigration. At the rate of increase prevailing from 1801 to 1851 , the population would double it-elf i, $521 / 2$ years. The relation of population to mean lifetime anl to interval betoreen generations was then discusse 1. The effects of fertile marriages and of early marriages, respectively, were stated; als" the result of a change in the social conditinn of unmarried women; likewive, the effect of migration and emisration, respectively, on pupulation; the effect of an abundance of tho necessaries of life was indicated, and, on the contrary, the result of famines, pestilences, and calamities. The terms "family" and "occupier" were defi"ed, and some remarks by Dr. Carus, on Enylish dwellings, were cited. The English (says the Doctor) divide their edifices perperdicularly in houses, while on the Contisent and in many parts of Scotland the edifices are divided horizontaliy into floors. The definition of a "house," adopted for the purposes of the census, was "isolated dwelling or dwellings, separated by party walls." The tollowing table gives the number of houses in Great Britain in 1851:

	Inhabited.	Uninbabited.	Building.
England.	3,076,620	144,499	25,192
Scotland.	371,308	12,146	2,420
Wales.	201,419	8.995	1,379
Islands.	21.845	1,095	203
Total	3,670.192	166,735	29,194

Ahout 4 per cent of the houses in Great Britain were unoccupied, in 1851, and to every 131 houses inhabited or uninhabited, there was one in course of erection. In England and Wales the number of persons to a house was 5.5; in Scotland 78, or about the same as in Lon-don- in Edinhurgh and Ulasgow the numbers were respectively 20.6 and 27.5. Suhjoined is a statement of the number of inhabited houses and families in Great Britain at each census, from 1801 to 1851,-also of persons to a house, excluding the Islands in the British Seas:-

Years.	Inhabited Houses.	Families.	Persons to a House.
1801	$1,870,476$	$2,260,892$	56
1811	2.101 .597	2544,215	$5 \cdot 7$
1821	$2,423,630$	$2,941,383$	$5 \cdot 8$
1831	$2.851, .937$	$3,414,175$	$5 \cdot 7$
1841	3.446 .797	(No returns.)	$5 \cdot 4$
1851	$3,648,347$	4.312 .388	$5 \cdot 7$

The number of inhabited houses had nearly doubled in the last half century, and upwards of two million new families had been founded. 67,609 families, taken at hazard, were analyzed into their constituent part, and they gave some curious results. About 5 per cent. only of the families in Great Britain consisted of husbands. wife, children, and servants, generally considered the requisites of domestic felicity; While 893 families had each ten children at home, 317 had each eleven and 64 had each twelve. The number of each class of ingtitution, and the number of pernons inbabiting them, are annexed:-

Class of Iustitutiod,	Number of Insti. tutions.	Number of Persons inhabiting them.		
		Males.	Females.	Total.
Buracks.	174	44,8.34	9.100	53,933
Wo khouses	746	65,786	65,796	131.582
Prisons...	257	24,593	6.369	30,959
Lunatic A	149	9,753	11,251	21,004
Hospitals.	118	5.893	5,754	11,647
Asylums, ide	573	27,183	19,548.	46,731
Total.	2.017	178041	117,^15	295,856

Ut wese 295,806 in rsali, 200.340 wete mantes, and 35,516 otficers and servants. The excess of males in the prisons arose from the fact that crime was four times as prevalent among males as mong females. The number of fhe houseless classes, i. e., of persons sleeping in barns, tents, and the open air, on the night uf the consus, was 18,249 The following table gives the number of these classes, tugether with those sleeping in barges and vessels:-

Persois sleephig in	Males.	Femalcs.	Total
Barges.	10395	2.529	12,924
Barns. -	7,251	2.721	9,972
Tents or Open Air.	4,614	3.663	8,277
Veesels	48,895	2,853	51,748
Total..........	71,155	11.766	82921

It was mentioned as a conous hat ot gypsy fecling that a whole tribe struck their tents, aud fassed into another parish in order to escape enumeration. The composition of a town was next described; also, the laws of operating upon the location of families. The number of cities and towns of varions magnitudes in Great Britain, was 815:-viz. 580 in England and Wales, 225 in Scotland, and 10 in the Channel Islands. The town and country population was equally ba-lanced:-10 $1 / 2$ millions against $101 / 2$ millions. The density in the towns was 3,337 persons to the square mile; in the country only 120. The arerage population of each town in England and Wales was 15,500; of each town in Scotland 6,654. The average ground area of the English town was 4 3-5 miles. The manner in which the gronnd area in Great Britain was occupied by the population was illustrated by a series of squares The adventitious character of certain towns was alluded to; many had risen rapidly from villages to cities, and had almost acquired a metropolitan character. In 1851, Great Britain contained 70 towns, of 20,000 inhabitants and upwards. There was an increasing tendency of the people to concentrate themselves in masses. London extended over an area of 78,029 acres, or 112 square miles, and the number of its inhabitants, rapidly increasing, was 2,362,236 on the day of the last census. The anthor illustrated this number by a curious calculation:-a conception of this vast mass of people might be formed by the fact, that if the metropolis was surrounded by a wall, having a north gate, a south gate, an east gate, and a west gate, and each of the four gates was of sufficient width to allow a column of persons to pass out freely four abreast, and a peremptory necessity required the immediate evacuation of the city, it could not be accomplished under four-and-twenty hours, by the expiration of which time the head of each of the four colums would have advanced a no less distance than seveniy-flve miles from their respective gates, all the people in close file, four deep. In respect to the density or proximity of the population, a French writer had suggested the term "specific population," after the analogy of "specific gravity" in lieu of the terms in common use, "thinly populated" and popalous. The statement annexed exhibits the area of Great Britain in acres and square miles, the square in miles, the number of acres to a person, or persons to a square mile, and the mean proximity of the population on the hynothesis of an equal distrihutinn:-

	Area.					
	In acres.	In sq. Miles.				
England.	32.590. 129	50,922	226	1.9	332	104
Scotland.	20.047,462	31.3 .4	177	6.9	92	197
Wales..	4,734.486	7,398	86	$4 \cdot 7$	135	168
Islands.	252,000	394	20	1.8	363	99
Great Britain..	57.624.377	90,038	229	2.7	233	124

The 624 districts of England and Wales ciassed in an order of density ranged from 18 persons to the square mile in Northumberland, to
185,751 in the east London diatrict. In all Lnodon there were 19,375
persons to the square mile. In 1801, tha penple of England were on an

 Jards. In London the mean proximioy in $1=01$ was 21 yar:s, m 18.31 only 14 yaris. The number of i-lands in the Bithel gronp were stated ut 500 , but mbabitants were wily fumd on 175 om the tay of the census. The early history of the more celehrated of tie inamis was given. The population of the chiof of the or-ung, (ireat Batain, had veen given. Ireland contained 6,5.33 3.57 inimahitants; Ansinsoy,
 the Isle of Man, 52,314; the Isle o Wheht. 50. 24: Gurnsey : $: 9757$; eight inlands rangei from 23.918 to $5.857,17$ 'r, 4006 to $1,061,52$ from 947 to 105 , and the remainmg 92 , low and ands to an intat d immbitod by one solitary man. The shires, hundreds, and tythings, were traced to Alfred the Great; the circuits to beny the Second. The terms "hundreds" and "tythings" had their orgin in a system of numeration. 't he number of reformed boroughs in England and Wales were 196, and contained a population of 4.345 .269 inhatitants. Scotland contained 83 royal and municipal burghs, having a pupulatinn of 752,777 inhabitants. The diffi ulty of tracing the brundaries of the ecclesiastical districte, and consequently of ascertaining correctly their population, was shown. The changes in the anrient boundaries of counties and other divi-ions were alluded to, and the papre concluded with a general summary of the results of the census. An appendix contained tables, showing the population and numbur of houses, distinguishing whether inhabited, uninhabited, or buidang, in England, Scotland. Wales, and the Islands, respectively, at each census from 1801 to 1851 ; the same in 1851 , for each of the 14 registration divisions; for each of the 36 disticts of London; and for each county in England and Wales, and in Scotland; als: the population of earb county in England and Wales, aud in Scotland, at each census from 1801 to 1851, and the increase of population in the last half centurg; the area in acres anci square miles, the number of pers ns to a square mile, of acres to a person, of inhabited honses to a square mile, and of persons to a house, for each comnty in England and Wales, and in Scotland; the population and number of inhabited !eruses in the countios, and parliamentary divisions of counties, in England and Wales, and in the counties of Scotland, including and excluding represented cities and boroughs or burghs, als, the number of members returned: the population of each island containing above 100 persons; the population and number of inhabited houses in each of the 815 cities, boroughs, and principal towns in England and Wales and in Scotland, distinguishing the municipal and Iarliamentary limits; the number of each class of public institutions in England and Wales, Scotland, and the Islands, and the number of persons inhabiting them; the number of births and deaths, and the excess of biths over deths, in England and Wales, for each of the ten years of 1841-50; and finally, the number of persons who had emigrated from Great Britain and Ireland in eash year from 1843 to 1852 inclusive and the destination of the emigrants. The author concluded by stating that the paper would be immediately printed.

SECTION G.-MECHANICAL SCIENCE

'Introductory Address on General Improvements in Mechanical Science During the Past Year,' by W. Fambamn:-The first subject noticed by Mr. Fairbairn was Ericsson's Calo.ic Ensine, from which so much had been expected. It was constructed, he said, on the same principle as the air engine of Dr. Stirling, invented tea years ago:the engine is passed through wire gauze to take up the heat, inctead of through plates of iron. The great objection to the engine appeared to be that two-thirds of the power was wasted in passing the air through the gauze; and though it may be premature to pronounce an opinion before the result of the improvements lately effected were known, yet if so much of the power was required for taking up the heat, Mr. Fairbairn could not but think it must prove a wasteful expenditure of fuel. The improvements that during the last year had been made in the application of the screw propeller were opening a new era in the history of sur war and mercantile nary, of which the recent review at Spithead might be considered an indication. We were now in a state of transition between the paddle and the screw, and he had no doubt that in progress of time great improvements would be made in the construction of the engines, and their applicability to the work, which wnuld materially economize space and power in our stean vessels. Mr. Fairbairn next alluded to the construction of an immense steam vessel, which had been undertaken by Mr. Brunel and Mr. Scott Russell, of such vast dimensious that it would stretch over two of the largest waves of the Atlantic, and would thas obtain a steadiness of motion, which would be a preventive against sea sickuess. This mammoth steamer is to be 680 feet long, with a breadth of beam of 83 feet and a depth of 58 feet. The combined power of the engines would be that of 2,600 horses. Theship is to be built of iron with a double bottom of cellular construction, reaching six feet above
the water line, and with a double deck, the upper and the lower parts being combected together on the principle of the Britannia tubular bilis., su that the ship will be a complete beans It would thus posss, the strongth of ilat form of comstraction, and not be liable to "hug: " or heak its back as had be :n th. case with other ships of gratat leng h. The donble boitom would be a means of increased sifety in other ways, fur if hy any eccident the outer shell were broken, the inner one would prove effectual to ki ep out the water.As an additional security, however, it was diviled int, ten rater-tight compartments. 'he ship would be prop lled ly paddles and by a screw, which would he worked by separate sets uf enci es, so that if aty accident occurred to the machinery of one. the other would be in reserve. He said he had no doubt that if properly constructed, this ship would a!swer the expectations contertaned of its capabilati s and strugth, and that it would form, when completed, the most extensive work of naval architecture that had ever heen constructed. The next subject to which Mr. Fairbairn adverted, was the improvements making in the locomotive department of railways, particinarly to an engine constructed fir the southern division of the Nurib-Western Railway, from the designs of Mr. MeCommell, which was the most powerfal locomotive that had yet been made for the narrow gauge. The peculiarity of censtruction consisted in the great length given to the fire-box, in which the greatest amount of stean always generased, and in the comparative shortness of the tubes, which were only half the usual leugth. The steam generated by this boiler was sufficient for any engine of 700 horse power. The engine was intended for an exprees train that would complete the distance from London to Birmingham in two bours. In manufacturing machinery there had also been great activity and progress during the past year; and it was gratifying, Mr, Fairbairn nbserved, to find accompanying this improvement in machinery a most prosperous condition in the working classes engaged in those manufactures-a prosperity which had never been equalled within his experience. He attributed this prosperous state of things to the combined operations of improvements in machinery and the removal of commercial restrictions. The improvement which he more especially noticed was that of a new combing machine of French invention applicable alike to cotton, 10 flax, and to wool. It combe the fibre instead of carding it, a namber of small combs being applied in succession to the cotton or flax, by which means a much finer yarn can be produced from the same material than is possible by the former processes. As evidence of the present activity and enterprise in manufacturing industry, Mr. Fairbairn mentioned the erection of a mammoth alpaca woollen matufactory, hy Mr. Salt, of Saltaire, near Bradford, which was 550 feet long, 50 feet wide, and six stories high, besides offices, warehouses, and various other tuildings connected with it. Their steam engines 10 drive the machinery would be equal to 1,200 horse power, and the factory would employ upwards of 3,000 hands The cost ot the whole would te upwards of $£ 300,000$, and the enterprise was that of a single individual. Mr Fairbairn concludod his resume of manufacturing progress by noticing the improvements introduced by Prof. Crace, Calvert, of Manchester, in process of melting iron by previously removing the sulphureous vapour from coal and smoke. The results had prored most satisfactory, the strength of the iron produced by this process being about 40 per cent. greater than that made in the ordinare way.
'Report of the Committce appointed in 1852 to prepare a Memorial to the Honourable East India Company, on the Means of Cooling Air in 'I'ropical Climates,' by W.J. Macquorn Rankine.-In the absence of Mr. Rankine, one of the Secretaries read the Reprr, which was founded on experiments with apparatus invented by Prof. Smyth, described by him at a previous meeting of the Association. The principle of the iuvention consists in cooling the air by expansion. The air at the temperature of the atmosphere is finst compressed in a bell receiver, and the heat generated by this compression is lowered by passing the air through a number of tubes immersed in water, ty which means it acquires in its compressed state the normal temperature of the atmos-phere-say 90° of Fahrenhpit. The air then passes into another inverted bell receiver, where it is expanded to the ordinary pressure of the atmosphere, and during this expansion, it absorbs so much heat that the temperature is seduced to 60°. It is then admitted into the room te be ventilated. Tie compression of the air during the experiments in the first cylinder was equal to $3 \mathbf{2}-10$ inches of mercury per square inch above the pressure of the atmosphere, and the refrigerator exposed a cooling surface of 1,100 square te- $\cdot t$, which was considered sufficient to reduce the temperature of the air in passing through the tubes to that of the atmosphere. viz. 90°. The Report stated that by means of this apparatus, 66,000 cuvic feet of air per hour might be cooled from 90° to 60°, by a steam-engine of one-horse power which is required to raise and det ress the bell receiver. The advantage of cooling the air by mechanical means instead of by evaporation was stated to be, the avoidance of aqueous vapour with which the air is injuriously charged by the evaporating process.

SUPPLEMENT TO THE CANADIAN JOURNAL, FOR OCTOBER.

sum of the Atmosyheric Cursent, in milcs, resoleed irso fhe four Curdinal dircctiona.
North, 1013.11; West, SO\& 3i; South, $55.32 ;$ Exs, Sis3S. Niean difection of the wind, Noth.
Alcan telecity of the wind - $-\$ 30$ nites per hour.

Mluri windy day - - - - Ithi: Mcan viciucity, Jiso mile per huur.
least vindibday

 Obserssiurg.

1んu:

 prasio.c su: sece Aurora on II nights.

 The classitication is, tosume exicnt, arinirary, and may nyourc tutare zols-

METEDROEDRICME OBERRYMTENME.

Slagartic Oliservalory, Toronto.

(c) Marked shaurfance-whelier sheme by frequency or amount of deviation from the sorama earre-hut ot mo ereat importance.

(f) Consickrahe distubance-tastin! t:iore or hess ine whole tay.
(1) A Minguctical ainurinance ofthe tirst class.

The dat is reckioned irata nown to nown. It iwo leiters are piaced, ithe fist apphies to the earlecr, ilve datter to tive laiet part of ste trace. Althousta tho Weelination as parisulaty reicrred to, at sareiy hapinens that the sisue terus are aut applicable tu the chanses of ine llortanatal liurce a!su.

Comparaise Table for september.

 miks, or at the rate of $10 \pm$ smics iner hour ; ta the precious taxif hour its rate was 13.7 miles per linsr.
At 10 h . 20 m . Barumect 2916 , from 10 h . 10 m . to 10 h . $\mathbf{2 0} \mathrm{n}$., the wind had traversed 7.5 miles, treine at the mie of 15.5 mites per livus. A suibea tull anat tonk place the learomaicet heriname in rice.

 10.6 mikes per hone, at ilia. IIm. rata ceaseh, and the s:ur.u was urer, the

 surface-
 зарии!

 dtoll dod sollu ficil least do. do. N. Jlusi l'tevalemt wind-N. E., by 5.

 I 4 O \quad -

 Yellow matter was ubserved to have fallen on the 2 feh das.

 Jowest pmint of Terrestial hadiation 26.9\%, - - пinter . $"$ -

 K1p

S 411	
1948	

[^7]

Direction of Wind.
\qquad Velocity in Miles Inain
 Aq

Winter Phenomera in the St. Lawrence.*
The island of Montreal stands at the confluence of the rivers Ottama and St. Lawrence, and is the largest of ecveral islat ds splitiong up these mighty streams, which cannot be said to be thoroughly mingled until they have descended some miles tolow the whole cluster. The rivers first come in contact in a considerable sleet of water called Lake St. Louis, which separates the upper part of the Island of Montreal from the southern main. But though the streams here touch, they do not mingle. The waters of the St. Lawrence, which are beautifully clear and transparent, keep along the southern shore, while those of the Ottawa, of a darker aspect, thoush by no means turbid, wash the banks of the island; and the contrast of colour they present strongly marks their line of contact for many miles.

Lake St. Louis is at the widest part about six miles broad with a length of twelve miles. It gradually narrows towards the lower end, and the river as it issues from it, becoming compressed into the space of half a mile, rushes with great violence down the rapids of Lachine, and although the stream is known to be upwards of eight feet deep, it is thrown into huge surges of nearly as many feet high as it passes over its rocky bottom, which at this spot is composed of layers of trap extending into floors that lie in successive steps.
At the termination of this cascade tle river expands to a breadth of four miles, and fiows gently on, until it again becomes crampod up by islands and shallows opposite the city of Montreal. From Windmill Point and Point St. Charles above the town, several ledges of rock, composed of trap lying in floors, which in seasons of low water are not mach below the surface, shoot out into the stream about 1000 yards : and similar layers pointing to these come out from Longueuil on the opposite shore. In the narrow channel between them, the water, rusbing with much force, produces the Sault Normand, and cooped up, a little lower down by the island of St. Helen and several projectirg patches of trap, it forms St. Mary's current.
The interval between St. Helen and the south shore is greater than hat between it and Montreal ; but the former is so floored and crossed by hard trap rocks that the St . Lawrence has as yet produced but little effect in wearing then down, while in the latter it has cut out a channel between thirty and forty feet deep, through which the chief part of its waters rush with a velocity equal to six milcs rer hour. It is computed that by this channel alone upwards of a million of tons flow past the town every minute.
Between this point and Lake St. Peter, about fifty miles down, the river has an average breadth of two miles, and proceeding in its course with a molerate current, accelerated or retarded a little, according to the presence or absence of shoals-it enters the lake by a mulitude of channels cut through its delta, and forming a group of low flat alluvial inlands.

The frosts commence about the end of November, and a margin of ice of some strength soon forms along the shores of the river and around every island and projecting rock in it: and wherever there is still water it is immediately cased over. The wind, acting on.this glacial fringe, breaks off portions in various parts, and these proceeding down the stream consitute a moving border on the outside of the atationary one which, as the intensity of the cold increases, is continually augmented by the adherence of the ice sheets which have been coasting along it: and as the stationary border thus robs the moving one this still further outflanks the other, until in some part the margins from the opposite shores nearly meeting, the floating ice becomes jammed up between them, and a nigat of serere frost forms a bridge across the river. The first, ice bridge below Montreal is usually formed at the entrance of the river into Lake St . Peter, where the many channels into which the stream is split up greatly assist the procesa.

Ae soon as the winter barrier is thrown across, (generally towards Ohistmas,) it of course rapidly increases by stopping the progress of the downward floating ice, which has by this time assumed a charactor of considerable grandeur, nearly the whole surface of the stream being coverod with it, and the quantity is so great, that to account for the supply many, unsatisfied with the supposition of a marginal origin, have recourse to the hypothesis that a very large portion is formed on and derived from the bottom of the river where rapid currents exist.

But whatever its origin, it now moves in solid and extensive fields, and wherever it meets with a a obstacle in its course the ronementum of the mase breaks up the striking part into huge fragments that pile over one another : or if the obstacle be stationary ice, the fragments

- Contributed to the Geological Socioly of London, June 15ib, 1842, by W. E. Loony, Esq., Provincial Geologish.
are driven under it, and there closely packed. Beneath the constantly widening ice barrier mentioned, an enormous quantity is thus driven, particularly hen the barrier geins any position where the current is stronger than usual. The augmented force with which the masses then move, pushes and packs so much below that the space left for the river to flow in is greatly diminished, and the consequence is a perceptible rise of the waters above, which indeed from the very first taking of the "bridge" gradually and slowly increases for a considerable way up.

There is no place on the St. Lawrence where all the phenomena of the taking, packing and shoving of the ice are so grandly displayed as in the neighbourhood of Montreal. The violence of the currenth is here so great, and the river in some places expands to such a width, that whether we consider the prodigious extent of the masses moved or the force with which they aie propilled, nothing can afford a more majestic spectacle or impress the mind more thoroughly with a senee of irresistible power. Standing for hours together upon the bank overlooking St. Mary's current, I have seen league after league of ice crushed and broken against the barrier lower down, and there submerged and crammed beneath. And when we reflect that an operation similar to this occurs in several parts from Lake St. Peter upwards, it will not surprise us that the river should gradually swell.
By the time the ice has become stationary at the foot of St. Mary's current, the waters of the St. Lawrence have usually risen meveral feet in the harbour of Montreal, and as the space through which this current flows affords a deep and narrow passage for nearly the whole body of the river, it may well be imagined that when the packing here begins the inundation rapidly increases. The confined nature of this part of the channel affurds a more ready resistance to the progress of the ice while the violence of the current brings such an abundant supply and packs it with so much force that the river dammed up by the bartier which in many places reaches to the bottom, attains in the harbour a height usually twenty, and sometianes twenty-five feet above its summer level; and it is not uncommon between this point and the foot of the current, within the distance of a mile, to see a difference in elevation of several feet which undergoes many rapid changes, the waters ebbing or flowing according to the amount of impediment they meet with in their progress from submerged ice.

It is at this period that the grandest movements of the ice occcr. From the effect of packing and piling, and the accumulation of the snows of the season, the saturation of these with water and the freezing of the whole isto a solid body, it attains the thickncsu of ten to twenty feet and even more: and after it has become fixed as far as the eyo can reach, a sudden rise in the water (occasioned, no doubt, in the manner mentioned) lifting up a wide expanse of the whole covering of the river so high as to free and start it from the many points of reat and resistance offered by the bottom, where it had been packed deep enough to touch it, the vast nass is set in motion by the whole hydraulic power of this gigantic stream. Proceeding onward with a truly terrific majesty it piles up over every obstacle it encounters; and when forced inis a narrow part of the channel, the lateral pressure it there exerts drives the bordage up the banks where it sometimes accumulates to the height of forty or fifty feet. In front of the town of Montreal there has lately been built a magnificent revetment wall of cut limestone to the height of twenty.three feet above the summer level of the river. This wall is now a great protection against the effects of the ice. Broken by it, the ice piles on the street or terrace surmounting it, and there stops; but before the wall was built, the sloping bank guided the moving mass up to those (f gardens and houses in a very dangerous manner, and many accidents used to occur. It has been known to rile up against the aide of a house distant more than 200 feet from the margin of the river, and there break in at the windows of the second floor. I have seen it mount a terrace garden twenty feet above the bauk, and crossing the garden enter one of the principal streets of the town. A few years before the erection of the reyetment wall, a friend of mine, tempted by the commercial advantages of the position, ventured to build a large cut stone warehouse. The ground floor was not more than eight feet above the summer level of the river. At the taking of the ice, the usual rise of the water of c urse inundated the lower story and the whole building becoming surrounded by a frezen sheet, a general expectation was entertained that it would be prostiated by the first movement. But the proprietor had taken a very simple and cffectual precaution to prevent this. Juat before the rise of the waters he securely laid against the sides of the building at an angle of less than 45°, a number of stout oak logs a $f(w$ feet asunder. When the movement came the sheet of ice was troken, and purhed up the wooden inclined plane thus formed, at the top of which, meeting the wall of the building, it was refected into a vertical position, and falling back in this manner, such an crormeus rampart of ice was in a few minutes placed in front of the warehouse as completely shielded it from all pessille danger. In scme jcars lle
ice lias giiod up nearly an hieh as the roof of this builuing. Another gentluman, ercourageit ty the seculity nhich his watchouse appa-
 thantext witer lut, but lo eniticd to protcrt it in the same way. Tho renult taght have bcon antuifated. A thwernent of the ice oceursing, the great sheet sirteck the walls at biaht angles and fushed orer tho buildug an if it had hech : house of cards. Both fositions ere nuw
 juat mentotied accur before the fimat settit gof the ice, and cech is immediately preccded ly a zudden siae of the fisar. Sometizes eoreral days, and accari, dially but a few hous winl interveno between them, and it is funtumate hat lhoto is a chitetion ty which the inhabio-
 seamon; and when it haf, lierufore, licu unc arfe fur thento cul their winter robils getoss its re tigh amd pimuarled sulface. d'his is never the case until a lungitudimin rpening of sotne considerable extent appoars in mine part of St. Hary's current. It has embarrossed many to give a fatiafactory leafun why this rule durived from the experience of tho peasantry, slivald le depended on. Iut the ernlanation is extreanely simple. The opening ie merely in indication s!at a free suleglacial yasfago has lecu mate for jisclf by the water through this continued influence of erosion and icmperatite, the effert of which whero the current is strongest has bectu sullicsent to wear thiough to the strfarc. The fort? ation of this 1 assuge thows the rcseation of a *uplly of stibnerged ice, and a cus se gues tsecurity ogainst atay further dise vi the iver to lrosentis coveling tor any funher movement. The 'prening is thus a true mank of safety. It hasis the whi le wintir, never fierzang oser, ven wlitil lie icmpesature ot the air teaches 20° e helow zero of Varentieit; atid from its first appearance the waters of the inumbat on giadualiy sulb-sic, escaying i! rugh the channei of which it is the index. Ihe virteis seldom or hever, however, fall so low as to allain then: sumincr level; but the subsidence is stificiently great to demoustrate cleatly the puodiginus axtett to which the ice has been packec, ant to show that over yreat occesional areas it has reached to the very botion of the ra:er. Fut at will immedately orcur to every one that vice: ilue mass iests on the bottom its height will not be dininished by ihe subsidence of the water, and that as this pucepds, the ireaceurdug to the thackness which it has in various parts altained, will present various elerutions after it has found a resting place weneath until just so much is left supported by the stream as is sufficient to permut its fiee escape. When the sutsidence has attained its maximum, the trough of the St. Lawretice, thereforp, exhibits a glacial Iandecape undulating inso tille and valleys that gunin variout directuons, and while some of the principral mounds stand upon a bate of 500 yards in lesgith by a hundied or two in breadih, they prespat a hejght in ten to iffeen feet above the level of those points still supported in the water.

Mr. Good's Locomotive Bugine "Toronto."

We have much ples.sure in preseating our readers with a draxing of the first Locomotive Engino constructed in Canada, and, indeed, we believe, in any British Colony. The 'Toronto' is certainly no beauty, nor is sle distinguished by any peculiarity iñ her construction, but she affords a very etriking illustration of our progress in the mechanical arts, and of the growing wants of the country. 'Ilte 'Teronto' was built at the 'Toronto Locometive Worls, which were establisbed ly Mr. Good in Oct. 1S52, The order for the "Toronto" was received in February, 1553, for the Ontaric, Simeve and Haron Mailroad: the Engine was completed on the sixtecnth of April, and put on the track the 20th of the same month. Her dimensions are as follow: Cylinder, 16 inches diameter; stroke, 22 in.; Drining wheel, 5 fi. 6 in. diameter; length of internal fire-box, $1 \mathrm{ft} . \mathrm{G}$ int.; widhh of do, 3 ft : in .; height of do, 5 ft 0 itu ; weight of Engine, 25 tons; number of tubes, 150 ; diancter of tuber, 2 inches.

Naturalists Ca!endar for August, September and October. -Toronto $18: 33 .-$ By Wm, Couper.

Mrscrimarzots-Passcnger Pigeon, Coiemba .Jigratoria, (in Mockn)

Aug. 5. J.avtr, of the large Whisi licetes, i(érini) coustrurt cocoons of samd under loge de., on the n:argin of ponds on the

 onthe leaves uf the lersian I.ilac, chtered the earth, Augunt E.chatured into at chry :alis. Atag. 10. Caterpillar of a Spiar, (llawkmoth) funnd feeding on the leaves of a Widd Grape vine, changed into a Chryatis be twant tro leares, on the susace of most carth, Aug. 11. Wiaspes constut the fint foundation of their wert, Aties 11 Caterpillar of a larife IIymenopicrous fiy (Uenthrcilo) fommal feeliur on the leates of the Willusi, cntered the cath mad formed a cocomi, Aut. 15. Caterpillar of the moth Siturniar Pobphenus insum 5 from the cirg, Aug. 16-formed its cocoon Aug. It.-This Gatespillar fects on the leares of the Suift Maple. A panaite of a lead-grev colour (iphis Lanata) (?) and covered with flamants of white dowi, chusters roumd the branches of the Aher, A:g. 27. Scedle Ichncemmen- Iy (1'dceinus J'olycerator, first scen, Aug. 27. Cateriillar of a Sphinx, (Moth) fommd teeding on the leaves of the lumiree, formod its cocoon tetwecu leaves, on the sunface of moict carth, 1 ug, 97. Caterpillar of
 the (iriscols Noth (Cernera Mastulifern) found fecdmes on the deaves of the Willow, constrteted its cocoon on a sinall twic, Aug. 31.-This caterpillar is of a briclit gecun colcur, marked with bron n lines, and has tro tails. Swallots divapuar, Sept. 10. The Ëpper surface of the leares of the conmon Hazel sepamted by sociable Catorpians of a whitish colour, Scpt. 10. Walking-stick insect (Pharma) attains its full growith Aug. 14: liemale deposits its ora on the surface of the carth, Scptember 19. The leares of the soung Sugar Maples change their colour, Sept. 19.-One species is quite an onnanent io the furcot during the months of Scj), ayd Oct- its leaves changes into a hrallinut
 the Pine. Supt. 19.-This insect is vety destructire to the younc pines -the larea from the cgers of two females will strip a tree of its froliafe in four days. Aphides of the Pinus Strobus, Sept. 19. The Tead (Bufo Cognatus) liykernate in the earth, Sept. 20.
Frogs liybenate
October
Migration of the Blue Bird. Saricola Sialis,
ctocer
11
" " American Goldfuch, Iringilla Tritif, "
$1: 3$

Many species of Birds of Passage which remain with us haram the summer months, apparently take advautage of the Indian Sumatier to depart from the comitry. The alore mentioncd birds migrate in focke. The fight of the Bluc-birds wias in a south-west directon-the Fiuches appeared to be flying directly sot:th.
Two Lizards, measuring about $\%$ incles in length, and corered nith round crange-coloured sjots, were tahen from under the hark of a decaved tree on the banks of the River Don - October 15
The Musk Hat, Jilcr Zikthicus, constructs its hut
The fur of this animal constitutes an important ifem in our manke. One nan trapped cne hundred and tn enty-fire last week.

Mailway Mridge over the St. Lawreace at Monisend.*

Tlie rite selected for comph cing the sanncction tetares, the cistem and western ections of hie Canadu Grand Trumb Hailcoy by a Bridie st Montreal is uron the "ledges of rock compoest of the tian, lying in floors," described ly Mit. Legan as cxicending from luin. St. Chatien diagonaliy ald duwnuial across the general cautse of the strean to Boffath's Island and the csstenn sh.cre at St. Jamzeti.

The gereaning point of the lication is the narrow chatenel, (the noly navigable or e) abitast of hioffit's Inlatd, which is heteonly one hundied yatis wide between the lirics of ten feet nt low water.

The distance of this aingle ravigable chsnrel from the [ATand of liontreal, meascred on the jugrasell line of the bidge, is finl 0 foet. and frem the southern msin stou faet. The beight of the banks on efther nibore in ahout histy fett. liy elerating the centre arech of the bridge (which spans the ravigatle chasnel) 3 (0 feet over curr mer lerol of water, and by embanhin i abucet ten feet on the s:atural lorel at each shore, the gradient to be orcroome is sixty-ibrec fott, and as the distance in boih casea is nearly a nile, it is one common on zai'ways Oa account of lhis gradient, it is important that tho bridge should be atraight : asd starting from tho griverning poini-the narigable channol alluded to, - a sitraipht line which will aroid deep water, the canal, and buildings of the city, raust cross the siver anmewhat diagooally and strike I'oint St. Cliarles. This line, althongh obliquce wilh roference to the gencral trend of tho shorea, is in reality at righs anglea to the channel. The bridge location follows the aloal water ard the line of the "trap floor" through which the river Kas cu: a pafeage at the navigaile cbannel (an usual at right anglon)-tin courte

- Extract from the Repon of T. C. Keeler, Eaq., C. E.
of which is across the general direction of the stream, and strikes toward the quays at Montreal.

Considering the " channel" as that portion of the stream having a greater depth than nine feet at extreme low water, the width of it on the bridge line as stated is about 360 feet, or about 300 feet between the lines of ten feat water. If the centie span be executed in wood, the piers would eucroach upon the "chan, 1" as above defined. It would be better to have tho centre span vion any location 400 feet wide, which will involre a tubular beam of iron, at an additional expense of about $\mathbf{£ 4 3 , 0 0 0}$. This additional expenditure I would recommend, as ihis arch will be exposed o the chimneys of passing steamers; moreover, by making it of iron it cuts off the communication in the event of fire-expusing only half the structure.

While the selection of the site has been governed by the accidental conditions of the liver, it possesses a rariety of advantages, which under such circumstances could hardly have been anticipated.

1 st. The location is on the most direct line of connection for the Grand Trunt Railway. This road, without reference to the bridge, would on approaching the city cross the canal at the only convenient point (which is near Gregory's and above all the basiun) alid procoeded down to Point S. Charles for its freight terminus and for a connection with the harbour independent of the canal. The bidge line is a continuation of the main track coming down to Point St. Charles.

2nd. The line in the river runs upon a rock bottom and in more shallow water than can be found upon any other direct line crossing the St. Lawrence. It is a remarkable fact that the shoalest water to be found in the St. Lawrence below Lake Ontario is on the last rapid -the Sault Normand opposite Montreal.

The width of the river and consequent length of the bridge is not only counteracted by this shoal water (fully half of the whole distunce being less than five feet doep, but this width involves little disadvantage, because the distance between the only navigable channel and the shores admits of a gradient, which passing over the limits required for the navig tion, yet descends at once so as to strike the tusineas level at both of these shores.

3rd. The ice seldom lodges above the line of the bridge, although it alwaye does to a greater or less degree immediately below it. Nun's Island gives a direction to the current, which throws the jce against Moffatt's Island where it piles with great force. Tha shoal, which 18 suspended from the lower end of Nuns' lsland to the centre channel will act as a breskwater to the western hinlf of the bridge against the effect of "bergs" of ice. The average depth of water on this shoal not exceeding sevan feet, detached ice-breakers can be constructed upon it at a moderate $c_{\text {s }}$ st, which will break the momentum of large descending fields, - While accumulations of ice having too great a draught of water to pass under the arches will be "picked up" by this shoal before reaching the piers of the bridge. On the eastern half of the bridge, the greater portion of the work will derive much protec tion against the effects of descending ice, by the works of the Champlain and St. Lawrence Railway, and by the natural breastwork of Moffat's Island.

4th. The site, while it possesses all the advantages of a line in the rapids where there is but one navigable channel, not only has that channel narrower than any available one in the rapids above, but the rapid is so moderate as not to offer any great impediment to the work of erection, and construction, and for three months in the year is frozen over and accessible at every point upon strong ice.

5th. Terminating at Point Charles in immediate contiguity with the canal basins, the water level of which aided if necessary by an additional supply from the head of the Lachine rapids can be couducted over hundreds of acres both on land and in the river, - the bridge will lead all the railroads from the southern shore to the only point where they can be placed in immediate connection with the navigation and receive supplies "ex-warehouse," or direct from inland or sea craft for distribution to every part of New England or the Lower Provinces. In connection with this subject I have projected a scheme of docks around Point St. Charles, which shews the capabilities of the place in point of extent to be at least equal to that of Liverpool, Glasgow, or London, and which may be taken up in sections aud extended as required for the increasing wants of commerce.

The importance of this point, its fitness for a general railway terminus in connection with the sea and inlaud navigation, is explained at large in the appendix in an extract from my uupublished Report on the Montreal and Kingston Railway, and also an extract from a lecture before the Mechanics Institute of this city.

It will be at once seen on reference to a map, that the whole of the channel between Nuns' and Montreal Islands may be filled with water and made available for the navigation. Also by obtaining (upon top
of the embankment) permanent access to Nuns' Islaud, the outer coast of that island presents an extensive frontage and deep water where barges and lake and river craft not drawing over nine feet water may load for ports below.

It is only by an artificial harbor accommodation like this that Montreal can ever hope to share with Quebec any portion of the export trade in deals. Bright deals brought by railway to Point St. Charles and Nuns' Island, could afford this transportation on account of the hiner price these command over those which have been floated. This \because e by attracting a larger marine to this port could not fail to give aii important impulse to our commerce,

Lastly. The excellence of this site,-opposing only a single navigable channel which is trumpet-mouthed and therefore affords safe and easy access to the passage of the bridge,--is strikingly shown in the features of practicability, of economical arrangement. and the minimum of gradient which are here attainable.

If the navigable channel were a quarter of a mile or more in width, as it is both above and below the proposed line of the bridge, it would be necessary to elerate all that portion of the bridge which spanned this channel. one hundred feet. This would shorten the distance in which the ascent from the shore to the highest point of the bridge must be made, so as either to increase the gradient to an impracticable figure or augment the cost and length of the bridge. The nereased cost might make it commercially impracticable, and the increased length might throw the terminus on shore at a point which would greatly damage if not dostroy its commercial usefulness. Again, if there were several navigable bays under the bridge these would be separated by piers splitting the current, so as to make the navigation dangerous.

The economical arrangement consists in the fact that it will only be necessary to elerate the two pers embracing the channel to the height of one hundred feet above the water; over these a rectangular tubular beam (30 feet deep, and assisted by arches, if of wood, but without arches and of less depth if of iron) will be laid-through which the trains will run The piers immediately on either side of these central ones will only be raised seventy fect above the water, and from these toward either shore the height of the piers will gradually dimmosh, in proportion to the gradient of the bridge* The trains will run opon the top of the bridge in ascending from either shore to the centre arch, and the depth of the tubes (thirty feet) will, without additional cost, make upso much of the reqnired elevation of the track, and thus be a substitute for a corresponding amount of masonry in the piers. This dropping, of the bridge immediately on either side of the centre span is here admissable-because no masted craft will pass under the side arches-but would obviously be inadmissable if the navigable channel extended over a greater portion of the river.

The combarative lightness of the gradient is due to the existence of of the single narrow channcl and its position nearly in the centre of the bridge line, from the combincd effects of which the greatest possible distance is obtained for surmounting the level between the shores and summit of the bridge.

prinotples of construction.

In the foregoing part of this report, the plan of the proposed bridge has been partly developed, but in consequence of its relalion to the action of the ice, its peculiar position and arrangement, it will be necessary to allude to it more fully.

The importance of retaining the "bordage" ice in situ has been explained, and for this purpose, that part of the bridge extending from the shores over the shoals, to the depth of fire feet water, being a distance of 450 yards on one side, aud 570 on the other, is designed to be a solid causeway or embankment carried above the level of the highest winter flood; from which point to the level of the rails it may be carried up by a viaduct of arches-an embankment or trestle work for the present. If the scheme of docks which I have propesed at Point St. Charles, be carried out. this causeway would become one of the dock walls, and the arches erected on it to give the proposed ascent to the bidge might be couverted into warehouses. If the chamnel between Nun's Island and Point St. Charles be dammed, an immence amount of ice which now goes down to aid in flooding the water back on Montreal, would be retained harmless until it melted in the sprin.g

On the south-eastern shore the great width and dead shoal water around the Laprairie basin, form square miles of ice, which, so soon as freed from its attachment to the shore, is carried by the throw of the current directly down through the now important chansel lotween Moffatt's Island and the St. Iembert side. The works of the Champlain and St. Lawrence Railroad Company, althongh incomplete and not high enough, relained this bordage in situ during last winter, (1851 -1852) and this in connection with the fact that the winter set in
with great severity, was one cause why the inundation at Montreal was less than usual, -was unaccompanied either on the formation or departure of the ice with any "shoves"-and that the surface of the river, opposite Montreal, presented the evenness of a mill pond instead of the ragged quarry aspect of broken ice usually seen.

The St. Lambert Approach to the bridge, in conjunction with the work of the Champlain Railroad Company, will have the effect of retaining in its place the ice formed between Moffatt's Island and the south shore, and thus prevent the descent of a bordage of equal width as high up, at least, as a point abreast of Nun's Island. The retamed bordage aliove Moffatt's Island, with that resting on Nun's Island and the south-western abutment of the bridge, will increase in width so as gradually to narrow the passage between the Nun's Island and the eastern shore, and will thus aid in arresting the descending fiel.l of the upper bordage and close the Laprairie basin at the earliest date. A few ice breakers judiciously distributed over the shoals, while they would break the shock of fields descending against the bridge, would aid in retaining the bordage and thus expedite the freezing over of this basin.
The solid approaches will be cheaper and more substantial than any other portion of the bridge of equal langth; and in fact no substitute which will brfng the rails down to the level of Point St. Charles can be devised for them, except that of extending the piers and bays to the shore and carrying the masonry up to the level of the rails. A system of masoury arches giving free rassage to the water, would be exposed to the risk of being blocked up and overthrown by the "shoves" of the ice.

To carry out the arrangement of descending from the central arch to each shore on the top of the tubes; it is evident (since the depth of these are 30 feet under the rails) that as the shore is approached the lower side of the tubes would be brought within the reach of the winter flood. Before this point is reached, therefore, the arrangement and character of the structure must be changed, and as it would destroy the effect of the bridge again to elevate the tubes and run through them-the solid causeway is necessary. It is true that by abandoning the proposed arrangement of runuing on top of the tubes, raising the masonry of all the piers to the level of the rails, and continuing the piers and tubes to the shores-the solid approaches can be dispensed with; but I consider that there are objections to such an arrangement exclusive of economical considerations and the loss of the effect of the solid approach in retaining the bordage. If the spans are such that tubes whether of iron or wood are required,-passengers would be confined in a tunnel two miles in length with all its disagreeable connections, and if the spans are so narrow as to admit of an iron bridge open at the top-the side trusses would yet be necessarily so high that it would become a long trough which unless open at the bottom would fill with snow, while it would effectually di prive the passengers in summer of that view from tho windows of the train which will constitute one of the great attractions of the bridge. Un the other hand by the arrangement proposed, the appearance of the bridge with passing trains is improved-the snow is avoided-the monotomy of the outline is broken by the single elevated tube in the centre, and the channel is thereby clearly displayed to the navigation. The pleasure and comfort of the passengers enhanced-economy and safety to the structure are secured-and, if built of wood, the risk of fire is greatly diminished.

The Piers. The most important question in connection with the structure is that of the piers. The superstructure and approaches are simple matters, and so would the piers be were it not for the ice phenomena. Many persons (astounded by the commotion when a "shove" takes place) entertain the belief that piers cannot be made to stand in the river below the Lachine rapids, or at least below Nun's Island; but the simple contrivance described by Mr. Logan shows how easy it is to elude the effects of the ice however difficult it may be to oppose them. That the ice is not, as is often remarked, "irresistible," may be proved from the fact that the islands, rocks, wooden wharres and stone quays have not been removed by it. Probably there is no point where the ice strikes with greater force than against the long wharf at the Bonsecour Market-but this cribwork has resisted the shock, and forced into the air a broken heap of fragments. The power required to crush a cubic inch or foot of ice is very much less than that required 10 crush stone, iron or wood. If therefore there is mass enough or support enough, as is annually proved by the stone quajs of Montreal, the ice is broken into fragments or ground into powder; but the simpler, more cconomical and effective method is that universally employed where ice is to be encountered of turning the ice back upor itself and leaving the first arrivals to take the shock of all that following aftor. By sloping the up. stream faco of a pier or icc-breaker so that the ice will ride up upon it, the stability of the pier is increased by the additional weight piled upon it and a heavy rampart of ice reccivè all future assaults.

But it is to be expected that the violence of the ice shocks will be diminished rather than increased by erection of a bridge. At present when the dam slips and the ice begins to move it is caried on with increasing momemtum until it strikes the shore. But if sustained at intervals of 100 yards or less across the stream by piers, the initial velocity would be checked and the ice would rise and fall in situ with the variations of the water level.

The plan I have proposed contemplates the planting of very large "cribs" or wooden "shoes," covering an area of about one-fourth of an acre each, and leaving a clear passage between them of about 240 feet -a width which will allow ordinary rafts to float broadside between them. These islands of timber and stone will have a rectangular welb left open in the middle of their width toward their lower ends, out of which will rise the sulid masonry to wards supporting the weight of the superstructure, and resting on the rocky bed of the river- The enclosure of solid crib work all round the masonry yet detatched from it, will receive the shock, pressure, and "grinding of the ice, and yield to a certain extentby its elasticity without communicating the shock to the masonry piers. These cribs, if damaged, can be repaired with facility; and from their cohesive powers will resist the action of ice better than ordinary masonry. During construction they serve as coffer dams, and being formed of the cheapest materials-their value as service ground or platforms for the use of machinery, the mooring of scows, dc., during the erection of the works will be at once appreciated. Their application to the sides of the piers is with particular reference to preventing the ice from reaching the spring of the arches which will be the lowest and most exposed part of the superstructure if wood be used.

The class of superstructure proposed for these wide spans, if of wood, would be a strong rectangular open built hollow beam, assisted by a deep open built arch. The two systems of are and truss, however ol jectionalle in iron bridges, have been proved to be susceptible of advantageous combination in the numerous and excellent bridges built on what is known as the "Burr" or Pennsylvanian principledecidedly the best class of wooden bridges in existence. The elasticity of timber permits both systems to come into play without injury to either when a strain is upon them, (which is not the case with iron) while the two great elasticity of the wooden arch is counteracted by the rigidity of the truss to waich it is attached,
Experiment at Menai proved the superiority of the rectangular form for hollow beams in iron. It is somewhat singular, that the best form of wooden bridge in America for wide spans was, long previous to the Menai experiment, a type in wood of the celebrated tube. The strength of both bridges is collected near the four angles; the sides top and bottom, in the iron wonder, serve chiefly to maintain the relative position of the vital parts. The strength of the wooden tube must be wholly in the top and bottom chords-the inferior capacity of wood for the connection of its parts being in some measure compensated for by the practibility of employing the auxiliary arch.

The wooden railway bridges of America are progressive improvements upon the ordinary road bridges of Pennsylvania and New England, in which there was apparently an excess of strength:- the are carrying the load and the truss (with plates instead of chords for the top being a mere frame work to preserve its shape. In adapting these structures to the passage of railway trains every part has been from time to time increased in weight and size as experience dictated, but it is questionable whether as a class they are not generally too light, and wanting in that inertia which attempts at stiffness cannot compensate for, and which is requisite to absorb a portion of the momentum communicated to the structure by the sudden impact of locomotives weighing twenty-five to thirty tons, and moving at a speed of thirty miles the hour. These wooden bridges with arcs included, are not more than one-third or one-half the weight of tubular iron ones for the same span.

I have proposed a class of superstructure more weighty than usual, and while recognising the objections to the extra weight to be sustained, I conceived it practicable to build a truss of the long span proposed which shall sustain at least its own weight, and to apply an auxilliary arc to that truss which can at least resist the effect of the load.
While instances are numerous of the failure of wooden bridges not supported by arches, by their in time sinking below the horizontal line, I am not aware of any well built "Burr," bridge having failed from this cause, although many have spans of 200 feet.

Mechanics Institute Ne w Hall.

We understand that contracts have been entered into by the Committee of the Irstitute, for the erection of their New Hall, according to plans furnished gratuitously by F. W. Cumberlard, Eeq., and which we have no doul t will be highly creditable to that gentleman, and also
to the Institute, both as to the external appearance and the internal arrangements; the last of which we are assured will be very complete.

The site purchased for the purpose, and on which the excavation for tho basement is already completed, is situated on the north-east corner of Church and Adelaide Streets, in the immediate vicinity of St. James's Cathedral and Parochial Schnol House, and St. Andrew's Church. The principal front of the building will be on Church Street, 80 feet by 94 feet front on Adelaide Sireet, leaving a lane 10 feet in width around the north and east sides of the building.

The ground flonr will contain, besides offees for renting, the Library, Reading Room, Committee and Apparatus Room, and the Lecture Theatre, the seats of which will be in circular form, and regularly descending from the level of this floor to that of the basement, thus affording an unobstructed view of the Platform to every person in the room. The basement will also contain the Hall Keeper's apartments, and a number of excellent Class Rooms, the ceilings being high and well ventilated.
On the second floor is the Music Hall, approached by a broad stairway, nine feet in width, in a grand Entrance Hall twenty-five feet in width, and two stories in height. The Music Hall is $761 / 2$ feet long by 36 feet broad, with a fine lofty ceiling. Connected with this room, and on the same level, are two ante-rooms, about twenty-five feet square each. Above these rooms, and extending acrous the building, is a Supper Room, 67 feet long by 35 feet wide, with two small rooms attached.
On the east side of the Building it is intended to erect an extra stairway to the Music Hall, both for the security of the andience in case of alarm, and also for convenience of performers, who will thus have access to a retiring room immediately back of the platform. On the side of the room opposite the platform, will be erected a small gallery for an orchestra.
We believe it is intended to carry on the work as far as the groundfloor this season, prepare as much material as possible during the winter, and proceed in the erection of the building as early in the spring as the weather will permit, the contractors being bound to have the building enclosed and the Lecture, Theatre, Library, Reading-Room and Committee and Apparatus Room completed b; the 1st of October, 1854.Colonist.

Noticcs of Bcoks

Report of a Geological Survey of Wisconsin, Iova, and Minnesota; and incidentally of a portion of Nebraska Territory, by David Dale Owen, United States Geologist. Philadelphia, Quarto, pp. 623, together with a Quarto Volume of Plans and Maps.
The contents of this magnificent Report embrace a very extensive range of science. Besides the results of the observations of Dr. Owen. they comprehend the reports of Dr. Norwood, Col- Whittlesey, and Dr. Shumard on particular portions of the wide region referred to. Also a Memoir by Dr. J. Leidy, on the fossil mammalia and chelonia collected during the survey. The appendix embraces paloontological descriptions, Chemical examinations, Botanical and Onithological Catalogues. The whole work is admirably illustrated by well executed wood cuts, and the supplementary volume of plates contains some very beautiful engravings on steel, executed by the medal-ruling process, together with engravings on copper and on stone. A description of the Mauvaises Terres taken from Dr. Owen's report, is given in the September number of this Journal. We propose to avail ourselves of the present opportunity for making additional extracts from this valuable and interesting work. The introduction to the Report contains a general view of the results of the survey, which are thus recorded by Dr. Owen :-

The country which, during the conduct of this survey, has been more or less carefully examined, and of which the geological features have been determined, and are, on the general map, exhibited by colouring separately each formation, is the most extensive ever reported by any geologist or geological corps in this country; including, as it does, more than four times as much territory as the State of New York, and being about twice and a half as large as the Island of Great Britain.
Wisconsin, except its eastern portion on Lake Michigan, Minnesota, and Iowa, were embraced in my instructions. The maps, it will be seen, extend somewhat beyond these bounda, including a portion of Northern Illinois, and also of Northarn Missouri. These additions Were necessary to a proper understanding of the formations of the diatricte exprenely required to be explored; and they place before the
eye, at once, as well the size and shape of the Iowa and Missouicoal fields, as its relation to that larger coal-basin, heretofore (to wit, in my Report of 1839) laid down by me as the Illinois coal-field.

With these additions, the maps reaches from latitude 31° to latitude 49°; and from longitude $89^{\circ} 30^{\prime}$ to longitude $96^{\circ} 30^{\prime}$. In other worda, it has a length from north to south of upwards of seven hundred and fifty miles: from St. Louis to the British lines, and an extreme breadth of about three hundred and fifty miles: embracing the Mississippi and all its tributaries, from its source to its junction with the Missouri ; the Missouri, as high as Council Bluffs; the Red River of the North, from its source to the northern boundary of the United States; together with the Northern and Southern shores of Lake Superior, from Fond du Lac, North to the British Dominions, and east to the Michigan line.*

The average width of the territory thus laid down being about two hundred and seventy miles; its area extends over two hundred thousand square miles.

Throughout this vast district, all the principal streams which water it have been explored, to the number of ninety-one, and more than a fourth of these have been navigated from their mouth almost to their source; in bark canoes.

An inspection of the maps will give a better idea of the relative size and position of the various formations throughout the district, than could any description by metes and bounds. The Lower Sandstones (lowest protozoic strata) will be seen coming to the surface on the East side of the Upper Mississippi, north of the Wisconsin River. They doubtless underlie, also, the extensive drift and the Red Marls and Clays, of the Lako Superior Country : there assuming a red tint and ferruginous, argillaceous character.

To these succeeds the Lower Magnesian Limestone, which appears on both sides of the Upper Mississippi, south-west of the Lower Sandstones, and partially intersected by narrow belts of the same, where they cross out beneath it in the deep culs of the streams, or rise to the surface along the bearings of partial axes of upheaval.
Next supervenes the Upper Magnesian Limestone, with its underlying shell-beds, its lead-bearing strata, and its coralline and pentamerus subdivisions, all lying south of the two preceding.
South-west again, we come upon the Cedar Limestones, cotemporary with the Devonian formation of English geologists; separating the Magnesian Limestones of the north from the Carboniferous Limestones and the great conl-fields of Iowa and Missouri.
The interrening country, lying chiefly towards the head waters of the Mississippi and its tributaries and on Red River, is overspread with drift. The latter occupies, in this district, not only a much greator area than any one of the above described formations, but nearly as much as all of them put together.
Underlying the whole of these formations, but showing themselves only over limited tracts, either in cuts of the streams, or where they protrude in dikes or ridges upheaved by igncous action, are the crystalline and metamorphic rocks.
The geological formations of the district proper range, theretore, from the granite to the top of the coal-measures; above which latier, except superficial deposits, no geological group has been detectedno New Red, whether Permian or Triasic-no Cretaceous system-no Tertiary Basin. \dagger
Over this entire region of country, (with the exception of that part of North-western Minnesota which lies between the British line of the north shore or Lake Superior,) \ddagger it will be wholly unnecessary hereafter to institute further examinations having reference to mineral reservations. The fact has been reliably ascertained, that it contains no lands which, following the usual rules adopted by the Land Office, ought to be reserved from sale for mincral purposes. Coal and iron, in abundance, and also other vaiuable minerals have, indeed, been found, and their localities carefally determined; but it has not been customary to make mineral reservations on behalf of the United States

[^8]except of tracts promising profitable reins of lead, of copper, or one of the preciuns metals."
The conl-measures of Iowa aro shallow, much more so than those of the Illinois cond-tield. They seem attenuated, as towards the marbin of an ancient carboniferons sea, not averaging mote than tifty fathoms in thickuess. Of these the productive coal-measures are less than a hundred feet thick. The thickest rein of conl detected in lowa does not esceed from four to tive fect; while, in Missouri, some reach the thickness of twenty-five feet and upwards.
In quality, the coal is on the whole inferior to the seams of the Ohio Valley. 'To this, however, some very far beds form execptions.
On the Mankato and its branches, several pieces of hguite were picked up from the beds and banks of the streams, Some of this lignite approaches in character to camel coal ; but most of it has a brown colour, and exhbits divtinctly the ligneous tibre, and other structure of the wood from which it has been derived. Diligent search was made to endenvour to trace this mineralized wood to its sonree, and dincover the valuable coal-fichd. At one pont a fragment was found seveuty feet above the level of the river, projecting from the dritt, but no regular bed could be detected any where, even in places where sections of the drift were exposed down to the maguesia: limestoneThe conclusion at which thase gentlemen who were appointed to investigate this matter arrived wis, that the pieces oceasionally foumd throughout the Minnesotia comutry are oaly isolated framents disseminated in the drift, but that noacgular bed exists within the limits of the district.
The occurrence of strata of brown coal, earthy coal, and bituminous coalrand slate, on the west side of Great Jear Lake, as apported by Dr: Richardson, overlying a vast region of magnesian limestone, liko those of Iowa and Wisconsin, rendered it possible that this lignite might be found in partial beds alsio ou the Mankato; nevertheless, the observations of the subcrops on that stream do not leave any hope of the existence of even such local carbonaceous deposits. Un the contrary, it appears most probable that the pieces found hare been transported from the north along with the drift, perhaps from their very beds on the Great Bear Lake; or from the cretareons or supereretaceous liguite formations which were observed hy Nicolet, and others, off towards the Missonri and Rocky Mountains.
In further support of this view of the origin of the lignite of the Minnesota country, I may add that, every piece and fragment which the members of the sub-corps conld tind was collected and brought away, all of which when put together and weighed, did not exceed tea pounds.

From the confluence of the Waroju, to the mouth of the Red Wood niver, which is as far up as the comatry was explored, different varieties of crystalline rocks, allone. make their appearance, varying in height from a fer feet to a handred and twenty-tive feet. After passing Iittle Rock, twelve prineppal exposures are seen immediately on the bank of the river, in the distance of cighty miles, the intervals beigg corered by alluvium and dritt, which tides them from vier:The principal rarieties are granites and homblendic rock:, with occasional syenite. No traces of metallic veins worthy of note were observed triversius these formations. In the gramite, cieht miles below the Red Wood Hiver, some specular iron was found, but only in thin crusts in the joints of the rocks

The only mineral that promies to be of much value in this region of country is a bed of uodular iron stone, found at af umber of localities both on the Jiankato and Lesuenr Rivers, at the biase of the drift, resting either on the magnesian limestone or sandstone. This argillaceous hed of carbonate and hydrate 1 broma oside of iron, varies from one to three feet in thickness.

The middle dirision of the Iowa coal field affords, at many localities, iron stone of various qualities, associnted freguently with hydraulic calcareous cement, and which occurs, either in the form of disconnected segtaria, or regular beds. In the same geolorical position, at many localities, crystalized selenite has been observed, Which accumulates in quautity high up on the Des Moine3; and finally, ifew miles below its Lizard Fork, that mineral cexpands itself into heavy beds of gypsum, or plaster of paris, which show themselves on hoth sides of the river, for the distance of about three miles, exposed in horizontal beds with a thickness of from twenty to thity fect.

The iron stone occurs sometimes in the form concretionary nodules, sometimes in continnous hands of several inches in thickness, interstratificd in the shales. In the chapter embracing the detailed description of the carboniferous rocks of lora, will be found the analysis of some of this iron ore, together with other more precise iuformation regarding it.

On Soapereek and its brauches, in Davis county. where the middle

[^9]divison of the coal series prevaila, there are several salt springs which were tested qualitatively on the spot, and found to contain a portion of common silt (chloritle of sodinum). The ammant of the precipitated chloride of silver, as well as the taste of the water, indic:ated, however. only a weak brine. $13 y$ boring, a stronger water might possibly he obtained; nevertheless, the shathowness of thesn coill measures, the frequent rupture of the stratia and consequent local reversion of the dif. together with the tat of the lowest dheision being composed chiety of limestone instead of simbstome, are untivourable indications of tho existence of deep-seated brine, or of neats of salt, whenee t!e perentating waters might become satuated and carry the saline matier to the surface.

Though deficient in productive minerals, stath ns are reserved hir the Land Onice, a large propontion of this distitet consists of rich fertile soil, well adapted to all arsicultural purposes Of such is at largo portion of the lowa coal field : and the revion lying noth bath of that and the llimois coal fiedd, as far as the fallo of the eastern tributary of the Slississippi. Some of the Jamds of the Des Joives and Celar Rirers can be scatcely excelled for fertility, perhajp, in the world.
On the other hand there are portions of the district, chiefly ia the vicinity of the sources of the mack and Chippersa Rivess, and of the streams fowing north into Laike Superior, wheh are, ia patt: so hopedessly arid that, in ont geneation, they will assurciiy never be purclased or occupied; in part so covered witia crratic boulders that the traveller can step from nae to the othe: for miles, withont setting font on the drift soil on which they lodse, and thiat a bivitle path for a parels horse cannot be pieched oat over the country thev cover; in pant, wain so intersected by ponds and swamps, that tish, frofs and water, fowl must, in our day at leani, be their only inhabitauts.

In conformity with my instuctions, I have herciofore, from time to time reported to the Department what portion of these hames are so wholly worthless as not to justify, in my judgnent, the expense of sectionixing or surveying at all, exeept so far as may be necessary to counect the surromading surveys. Shese refise limds amount to fifteen thousand miles. If, in consequence of the recommendation thas mado they are excepted from the linear surveys which are ustally extended by the Goverument over all its Indian purchases, without examiuation or inquiry, the saving to the Liand Oftice will much over-pay the entire cost of the survey, the sesults of which I am now sepo:ting.

A circunstance which to some may seem trivial, will delay, to a considerable extent, the settlement of it portion of the District. It is the prevalence, especially on the Upper Wisconsin, Chippewa, St. Croix and Black River conntries, and thence noth to Lake Superior and to the British line, of venomous insects, in such insufferable quantities, that, at certain scasous, they destruy all comfort or quiet by day or by night. Among the pineries of Northem Wisconsin, and more or dess throughout the whate of the above desigatated region, the bufato gmat, the Crulot and the smathy, to say nothing of myriads of gigantic musquitocs, carry on incessant war against the equain: ity of the unfortunate traveller. I and other members of the conps, when unprovided with the necessary defenee, have had our ears swelled to two or three times their maturial size, fud the line of our hats marked all round by the trickling bhod. It was often necessary to rise many times, in the course of the night, to allay the fever of the head, by repeated cold bathings; and, at some of the wost spots, we could scarcely lave discharged our ordınary profenional duties at all without the constant protection of masquito-tuetting worn over our head and fare.

The health, eren of the mose marshy porrions of the Distriet, seems better than, from its appearanee, one minht expect. The long, braciug winters of these northern latitudes excli:de many of the disenes whinh, uuder the prolonged heat of a mose sonthern climate, the miasm of the swamp ongenders. perhaps the heallhicst portion of the whole District is alung its northern limit, where it is cominan mis the British dommions. At the Pembina settlement, owned by the Mudzon's Bay Company, to a population of five thousamd the: was but a singlo physician ; and he told me that, withont an addational salary allowed fiim by the Company, the discases of the settlement would wot aford hima living.

Before starting on the expedition, I hat obsained from Mr. John F. Cratipton, of the British Legation as Washington, a letter commending me to the good ofices of the oflicers of the IIndson's Bay Company, and which procured for usa nis: hospitable reception at the settement.
On our arrizal at the mo:tha © the Assibiboin, Governor Christic, then acting as S:prerintendent of anaimot the Ifudson's Bay Company, and Gorernor of the Colony, invited us to make his house our home during our stay on Red niver, and cutcriained us in the kindest manxer. I have to ackmoledge the attentims paid to our party by the officers stationed both at th:c Upper and Lower Vorts.

> (To lne Continucd.)

- So called by the vojageurs bruler, to butn; the aing producing a burning sensation.

[^0]: Continued from page 22

[^1]: *The Porland, White M Munaian, and Montreal Railroad Guide, published at Portland, and to be had at Mr. Armour's, in Great St. James Street, is recominended, as having been or considerable use to ourselves, in noting down distances, nud directing our attention to many interesting oljects and facts.

[^2]: * Continued trom page 2j.

[^3]: \dagger Heport ut ithe Sidate Geulugist, Michigan, 1851, p. 162.
 \ddagger Exiracied from she Regens's Hepon for 1853.

[^4]: - Cuntuaved from page 40.

[^5]: - Engravings of there Engines will apicar in the next number of the Jturnal.

[^6]: －Ath enakm．

[^7]:

[^8]: *The recently set off reserve, on the Mississippi, South of Crow Wing, and now ceded to the Winnebagoes, must be here excepted. Covered to a great extent with drift, without promise for the geologist, and likely to remain Indian property, its examination would have been little valuable to Science, and useless to the department.
 \dagger The cretaceous and tertiary formation, incidentally noticed in this Report, lie beyond the limits of the district West of the Missouri River. It is not improbable, however, that cretaceous strata may underlie the drift in the extreme north-western corner of Iowa, sweeping around the confines of the carboniferous limestone, east and west of Sioux River.
 \ddagger This region of ccuniry may, on closer examination, be found to contain valuable minerals, suitable for reservation. But as it is still thy property of the Chippewas, no mineral reservations cond, with propriety, be made; nor, as it is still undivided, even by merdian lines, were any euch reservations, hy metes and bounds, practicable within it.

[^9]: - A rich vein of lead ore, traversing the, Lower Magnesian Limentone, was discorened en the "Half-breed Tract"" sonth of Lake Pepin; bint lis being an Indian ceasion, it was not reported to lhe Department for reservation.

