CIHM Microfiche Series (Monographs)

ICMH
 Collection de microfiches (monographies)

Technical and Bibliographic Notes

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming are checked below.

Coloured covers /
Couverture de couleur

Covers damaged /
Couverture endommagée
Covers restored and/or laminated /
Couverture restaurée etou pelliculée
Cover title missing / Le titre de couverture manque
Coloured maps / Cartes géographiques en couleur

Coloured ink (i.e. other than blue or black) /
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations /
Planches evou illustrations en couleurBound with other material /
Relié avec d'autres documents
Only edition available /
Seule édition disponible
Tight binding may cause shadows or distortion along interior margin / La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from filming / II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

Additional comments /
Commentaires supplémentaires:

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.Coloured pages / Pages de couleur
Pages damaged / Pages endommagéesPages restored and/or laminated /
Pages restaurées eVou pelliculées
Pages discoloured, stained or foxed /
Pages décolorées, tachetées ou piquées
Pages detached / Pages détachées
Showthrough / Transparence
Quality of print varies /
Qualité inégale de l'impression
Includes supplementary material /
Comprend du matériel supplémentairePages wholly or pantially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image / Les pages totalement ou partiellement obscurcies par uri feuillet d'errata, une pelure, etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible

Opposing pages with varying colouration or discolourations are filmed twice to ensure the best possible image / Les pages s'opposant ayant des colorations variables ou des décolorations sont filmées deux fois afin d'obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

Tha copy filmed hare hes bean raproducad thanks so the genarosity of:

National Library of Canada

The imeges eppearing here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

Original copies in printed paper covers are fllmed beginning with the front cover and anding on the last page with a printed of illustratad impression, or the back cover whan eppropriate. All other originel copies are filmed beginning on the first page with e printed or lllustrated impression, and ending on the last page with a printed or illustrated impression.

The last racorded frame on eech microfiche shall contein the symbol \rightarrow Imeaning "CONTINUED"). or the symbol ∇ (meaning "END"). whichovar applies.

Maps, plates. charts, etc.. may be filmed ot different reduction retios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner. left to right and top to bottom, as many fremes es required. The following diagrams illustrate the method:

L'exemplaire filmd fut reprodidit gráce a la gúnórosité de:

Bibliothèque nationale du Canada

Les images suivantes ont dte reproduites avec le plus grand soin. compte tenu de la condition et de le netieté de l'exemplaire filme. ot en coniormitt avec las conditions du contrat de filmaga.

Les exemplaires originaux dont le couverture en papier est imprimbe sont filmes on commencant par le pramier plet ot en terminent soit par la dernidre page qui comporte une empreinte d'imprassion ou d'illustration. soit par le second plat, selon le cas. Tous les autres exemplaires origineux sont filmds on commençant par la premidre page qui comporte une empreinte d'impression ou dillustration at en torminant par la darnidre paga qui comporte une telle ampreinta.

Un des symbolas suivants appareitra sur la dernidre imaje de chiaque microfiche. selon le cas: le symjole signifie "A SUIVRE". le symbole ∇ signifie "FIN".

Les certes, planches, tableeux, etc., peuvent otre filmbs à des raux de réduction différents. Lorsque le document est trop grand pour ètre reproduit en un seul cliché. il est filmé à partir de l'angle supérieur gauche, de gauche à droite. et de haut en bas, on prenant le nombre d'images nécessaire. Les diagrammes suivants illustrant la methode.

1	2	3
4	5	6

MICROCOPY RESOLUTION 「EST CHART

(ANSI and ISO TEST CHART No. 2)

The Evolution

aF

Planetary Motion

A New SyNthesis of
Fambiar Facts anis Assumptions

Embracing an Analysis of
Some Current Views on Tides

By
KENNETH McINTOSH
(Copyright Canada 1gok', by Kenneth Mcintosh.)

PREV:VCE

 within the stered predite where wome but those be:trites atter their natme the hath-mation of tereotyerd divtimetion

 trabl, mote dear to the hamath rate lhath the perpetnation
 sime, hat been to give conntentare to the most grotergle abumrdition.

Had at nameless writer stated that redneing bere speed of the eartis rotation would hate the effert ot shortening our day ; had the mont atcolle athd profound re:tholise, if Intilled, shown his ignorinnce of the hinory of erents by stating that we do t know what Jat llace wonld hate said to the movemellt of the Sittelliten of l'ramb, allegring that these Sittellites were not diacorered when the eminent Frenchman wrote. 1 late mo doult that both world natlorally be read, if att all, with considerathe dintrubt.

These remarkable statenmons, howevor, the firat of Which may be found repeated on page $3.3+$ ol sir Rober Ball's "'The Earth's Reginning," and the seeond on page 341 of the same book, hatre, sof fat ats 1 ath atware, been read with supponed edification by it momerous altos, to Whom, apparently, the math consideration wat not whether a statement is palpably true or palpably false, but how many meaningless capital letters mity be strung along after the name of the man writing it

With reference to the mattern upon which 1 am at issue with the current doctrines, I would only hat that I alwat the decision arrived at iby a ripe and enlightened judgment untrammelled by spurious " atuthority."

Kenneth Mclntosh.
St. Peter's, C. B., June 11th, syo8.

THE BVOLDTION OF PLANDTARY MOTITON

Intronection.

When at boy first watehes the edrying water as it passos through a small rircular opening in the bottom of a stallow ves ol and wonders why it invariably assumes a cireular ar spiral motion before passing through. he attle dreams that the primeiple maderlying the artion of the water in the rase he is noserving. is, with important morlifications, the same that has through the acoms of time developed the movements of the planets.

The vortex above roferred to, which seems so fascinating to his pouthful mind, is so sample and so inevitable withal, that its absence under the riremmstaners stated. would indeed be " passing strange". For in order that it should be absent, we should have to conceive of a condition in which the fores advancing from all points to meet at the rentre of the orifice. should mect so truly as ungive no lateral eesultant-a thing sarrely inaginable under the coulitions.

But simple as is the principle that compels vortex motion, yet to sillly all the dyamical manifestations incident to it, might perhaps require eternity to accomplish.

 lialth alll| tha Mown.

Whitting -rmar partirular whirh aro imbmatroial on far as olar pr 1 pllapose is rombormod: the lianth and the \cdot 'ann maty both
 and if hours. 'The Monn in the meantime revolses $1: 3$ timmes about the liarth.

If we romld be privilegeed for watch from ther depthe of spare. the juint motion of the liarth and Morm, while following their mornifieront rlliptiral path about the sun. we shomld wituses a phemomenon which I wombld
 lanailed rer a i mborve womld appear to hater amiforma sered of motion alomg its whital path. 'Ther prowers of the Mown would, howeror. he notiorably fitfal. It wombl pass be the liarth on the side furthest from the sim. outstrippine the Farth's sperd. Sows it womld be eeen to be in line dieerely in front of the Earth. 'Then it would eramlually gret shwor in its motion than the karth, and dropping betwern the biarth and the Sun. would be fommd to be dieectly hehind the Earth, just about a fortnight later than the time when it was seen directly in front.

 gnoterl is mate intelligihle ha imaginime lhat
 lats at string ronllorting it with tho rentr:al looly abollt whirls it revolres. allel whose attraretion is the ratase of its revolutions. If
 of the partiole aloust the reatro af lexoblation

 is at the centre ahoult whirde the paltiole is moving. The base of the triancele in the dia.. tante wrer whirll the partirde hover ial a given time: and the altiturle of the triangle
is the distance between the particle and the rentre about which it is moving.

Kepler discovered that if we decrease either one of the factors-base or altitudethe other increases proportionately, and vice versa, i. e., if we make the particle come nearer to the central body whose attraction caluses it to move forward, then the motion of the particle becomes greater in a given time, and its increase of motion in a given time is in the exact proportion in which we decreased its distance from the central body. A little knowledge of Geometry will enable us to see that the conditions stated above determine that our inaginary string must sweep "equal areas in equal times.'

Reference to the description of the Moon's movements about the Sun given above, will show that Kepler's Law is therein clearly violated. For the Moon moves slowest when nearest to the Sun, and fastest when furthest away.

It will at once be seen that if the Moon revolved about the Earth in the opposite direction, then Kepler's Law would be much more nearly conformed with.

This violation of Kepler's Law, so clear in the case of the Moon, is also true with regard to the particles that make up the mass of the Earth while it continues to rotate as at present.

Chapter 1.

THE RE('EIMIGG MOON.

We now approach a subject concerning which much has been written: I refer to the statement that the Moon is receding from the Earth.

A fundamental axion of all reasoning in comection with the movements of the hearenly bodies is that " the moment of momentum of any planetary system must forever remain unaltered." I will endeavor to explain the meaning of the expression.

It is assumed by the most eminent students of our Solar System, that the Earth and the Moon at one time formed one orb, and that the Moon by centrifugal action of the then rapidly rotating Earth, was thrown out. and that it has all along since that time been increasing its distance from the Farth. Now. the Earth at the time it gave birth to the Moon, is assumed to have had a fised and unalterable moment of momentum, that is to say: the mass of the Earth multiplied by the radius of gyration of that mass, and this product multiplied by the speed of gyration of the mass; gives a result that must eternally remain constant.

Tpon the birth of the Moon, however, the factors that went to make this constant be-
came more numerous and their inter-relation became more complex. We now have as the elements in the case, the following: A motion of the Moon about some central point; a motion of the Earth about the same point, and the dinmal motion of the Earth about its own axis; the last named being the poor remnant of the fierce gyratory motion postulated in the premises. The reader will observe that this proposition (supported by the most eminent authority), ignores any action or interference by the Sun. This treatise is in a measure devoted to the work of showing that no "system" of primary and satellite, can have any exclusive commerce in which the central Sun does not take part, and that the rotating motion of the planet, in its integrity as well as in its fragmented condition, must be vitally influenced by the direction and velocity of its revolution about the central propelling agent.

It can be seen at once that velocity (one of the factors in the constant above referred to), having waned in one quarter, we must increase some other factor proportionately, in order that the constant may be maintained: the popular way of accomplishing this result is by increasing the distance of the Moon from the Earth.

7

In order to bring about this result, some remarkable devices have been employed. I will refer to one of them: About the latter part of the article on "Tides," in Young's Astronomy, may be seen a diagram in which the Earth, as an ellipse of revolution, has its longer axis so disposed that it forms an angle of about 60 degrees with the line joining the centre of the Earth with the Moon. The direct tide occupies one end of the longer axis of the ellipse, and the antipodal tide the other, and the forward end lies nearest to the Moon.

This peculiar disposition of the mass of the Earth is represented as being capable of driving the Moon away from it, at the same time increasing the Moon's velocity. The statement is so striking that I fear some fundamental misunderstanding as to the axiomatic basis of our respective attitudes on the point, is likely to cause the author and myself to differ eternally, and so I pass it over.

We are constrained, however, to ask why the direct and antipodal tides can remain in this peculiarly convenient relation to the attracting and attracted Moon? Newton assumed the Earth (as aeffcted by tides), to be an ellipse of revolution with its longer axis directed towards the Moon and Sun. The
coincidence of both (moon-produced ellipse and sun-produced ellipse), caused spring tides, their quadrature produced neap tides. The more modern investigator (probably in deference to observed facts, which are to be reckoned with after all), has postulated that the friction of the Earth in its daily motion carries both the direct tide and the antipodal tide around to about quadrature from their positions of origin, but the expositor cited by Young, contented himself with about 60 degrees. Now, it is plain that if we postulate friction as being a factor in the case, the direct tide was carried around until the Moon's attraction upon the protuberant water, just balanced the drag of friction: there the tide stopped. The antipodal tide was also carried around by friction, but friction in the case of the antipodal tide not leing opposed by the attraction of the Moon, it should advance around by a much greaterangle than the direct tide, but, startling to relate, it remains as per diagram, diametrically in opposition to the direct i, despite the fact that the Moon's attracti is now vigorously assisting the drag of friction to carry the antipodal tide around under the Moon: In short, the Moon's attraction, valiant in combatting the frictional drag, seems utterly powerless to assist it.

The quaint absurdity so modestly obtrusive in the scheme of tides above reviewed, is inherent and ineradicable in every current theory on this much-elaborated subject, when it grapples with the stubborn fact that tides are always about at quadrature with the direction of the forces which are supposed to produce them.

The belief that the Moon is receding from our earth however seems to have something to support it, and we shall therefore point to some apparently plain reasors why it should do so.

It must be assumed that so far as the mutual attraction of Earth and Moon is concerned, there is no greater tendency on the part of the Moon to be draw towards the Earth at one time than at another. It is otherwise, however. with regard to the mutual relations existing between the Sun and the Moon.

It has already been demonstrated that the Moon is considerably nearer the Sun at some times than at others. It has also been demonstrated that when nearest to the Sun, it moves slowest, and that when furthest away, it moves fastest. It is a well-established principle, that for a given amount of attraction towards the central orb, a certain rate
of orbital speed is required, otherwise the revolving body must he drawn towards the central attracting body. Any slowing-down. therefore, in the part of the revolving body, to a less speed than is guaranteed by its dislance from the attracting central orb, must result in causing it to move nearer the central body. The Moon, therefore, while in conjunction with the Sun, is drawn towards the Sun and therefore away from the Earth.

Again, any impulse that increases the speed of a planet in its orbit beyond what is guaranteed by its distance from the attracting body, tends to drive the planet along a tangent, and therefore further away from the attracting body, consequently the moon when in opposition is driven away from the Sun and therefore from the Barth.
OUR SOLAR SYSTEM.

In the Introduction to this treatise, there is set forth, how, according to Kepler's Law -"equal areas in equal times,"-there is an inherent antagonism in the concurrence of rotation and revolution in the case of any planet of appreciable diameter.

This is hut another way of saying that the most economical condition as to the conservetim of energy in any planetary system, is not arrived at, until the movement of rotation i_{s} in a direction contrary to that of revoludion, and the rate of rotation is (as nearly as rio be obtained in a rigid body), that which enables all the particles at all points in the diameter of the rotating planet, to obey Krplei's Law above cited.

To better illustrate the principle I am here presenting, let us suppose that three particles are made to "toe the mark" on a radial line drawn from the centre of some celestial body, about which the three partickles are destined to revolve. Pursuant to Kepler's law above cited, the particles nearest to the central orb will leave the other two behind, and the outermost will be the hindmost.

The particles, however, are assumed to have mutual attraction, and as a result, the way in which they will arrange themselves, will be a resultant of the forre that impels them along their orbits and the force that keepps them tugether.

As the result, the inner particle will tend to move arross the path and partially in front of the particle next outside, and the outermost particle will tend to pass inwards lohind the middle particle.

We will now introdure two other particles, and we will place them in the same relation to the middle particle that was orcupied by its two companions in the first instance, namely, radially, one outside and the other inside the middle particles. Now, before the introduction of the two latter particles. our system of three particles was assumed to we in equilibrium, but immediately upon the two latter being placed as stated. a rotary motion of the whole mass of five particles is set up, and in a direction contrar!/ to the general morement of the whole mass, this rotation being due to the lagging behind of the outer particle and the forging ahead of the inner one.

This antagonism of mevement must begin t: : assert itself as soon as any mebulous mass
attains ronsistency, and the friction or allhesion of its particles prevents rateh one of them from following its individual desting ass declared hy Kepler's Law above rited, and "the whole hearens deelare it ${ }^{\prime \prime}$ in the fact that planets are slower and slower in their whits as their distance from the fim increases.

If we grant the persistence of Kepler.s Latw of "equal areas in equal times." this antagonism is always present in onr Sohar System, and the concurreuce of rotation and revolntion is omly another instance of the procligal waste of energy, which, to om way of thinking is so apparent in the whole eosmic machinfry.

We shall now proceed to investigate the so-rialled anomalies of our Solar System in the light of the above simple hot manifest demonstration.

On the frontier of our Solar System. there revolves a planet-Neptune-about which revolves a solitary satellite. The phane of revolution of this satellite is :nclined at angle of thirts-five degrees to the plane of the orbit of Neptume. but the fact that startles the advocate of the Nebalar Theory, as at present propounded, is, that i's motion is opposed to that of nearly all the other orbs of the Solar System.

I have said nearly all, for revolving in the path next inside that of Neptune, is another planet-Itanus-about which revalve four satellites, whose planes of revoluton bee an inclination of righty-threre degrees to the plane of revolution of 1 ramos. bur, (in so far as these planes differ from being at right angles to the plane of revoluton of their primary), they also revolve contrarily.

This has been a stumbling block to all advocate; of the Nebular Hypothesis. who, for some reason, not at all clear to me, have assumed concurrence in direction of all the planetary movements as being the more advanced condition in the evolutionary process. through which our Solar System, is. according to the most convincing rireumstantial evidence, now proceeding.

To quote Sir Robert Ball: " If the orbits of these satellites had all lain chose to the plane of the erliptir. and if the direction in which the satellites revolve had also conspired with that of the revolution of Uranus around the Sun, and with all the hundreds of movements which are in the same direction, there can be no doubt that we should in this place be appealing to the Satellites of Uranus as confirmatory evidence of the Nebular Theory.

The wet that they move in a manner so totally! at variance with what might have been exported, ramos therefore be overlooked. (Ball in "The barth's Brgimang." page :33!).)
'The eminent astronomer then proceeds to postulate that the plane of revolution of the \because tellite, f Neptune has already made a start
thin live depresses towards the desired al, and tat those of Uranus have already sad aron ad, eighty-three degrees.
The \therefore central objector might well ask: That ember bad fortune had overtaken the satellite of beptumb to be thus "turned woe "and why, being the oldest in the errol timon dry process, it did not adjust itself to ate..rer extent than thirty-five degrees, slow H bad the advantage of being a concrete orb hen the other planets were still hut a "! f light ".

Whf he might add still more fore to the (in) ah by asking: Why the Satellites of 1 f . had made so much more progress, althmizh oo much more recent in the order of P_{v} union.

The antagonism of rotation and revoluton in the same direction in any planet being for the present granted, and the movement of a secondary planet about its primary, being regarded ats a case of rotation of a jar-
ticulan !article of the whole mass of the primary about the centre of the latter, let us sere of the so-ralled anomalous motions of the Satellites of lianas and Neptune are not just what we must conclude to be in the nature of things, eventual's inevitable.

When any two forces antagonize mach other their antagonism is either partial or absolute, i. e.: the resultant force cither lies absolutely in the direction of one of the forces, or it does not so lie.

It is almost infinitely improbable that the resultant can lie absolutely in the direction of either force, and it is to the same degree probable that the resultant must form an angle with both forces.

The terms of Kepler"s Law of "equal areas in equal times " makes the antagonism above referred to, persistent through the whole cycle of the 'Loon's revolution about the earth excepting at the points of quadrattore, i. e., when crossing the earth's orbital path. For, outside this orbital path, the moon moves more rapidly, as is plain from the fact that its inward motion, (towards the Sun), is in front of the Earth. And inside of the Earth's orbital path, the Moon moves more slowly, as is plain from the fact that its outward motion, (away from the Sun), is behind the Earth.

17

In that undulatiag paiti which the Moon is now describing about the sum, the fandiamental laws of motion are therefore in a measure constantly violated. But Kopler's Law is slowly working its revenge The antagonism is perpetaal, and victory will ultimately be for the stronger.

The obliquity shown to be all but inevitable in all antagonistio forces, is slowly pulling the plante of revolution of the Moon around, and eventualle. like the riper Satellites of Neptume and i ramms, these prodigals of rosmic energy must eronomize. until all the motions approarlh as nearly as possible to the condition that leares earh individual atom to work out its own particular desting in aroordance with the las of " equal areas in equal times."

Chapter III.

TLDES_THEIR IROBABLE CAUSE.

To the student of Nature who instead of accepting passively the dicta of mere authority, does some thinking on his own account, the theory of tides as at present propounded, must surely appear unsatisfactory. This theory so clearly traverses some well-observed facts, as to suggest grotesqueness rather than profundity. The theory of tides, which asserts that the Moon produces them by raising a lump of water under itself by its own attraction, seems to have been propounded in apparent obliviousness to the fact that the mutual cttraction of celestial orbs, is not devoted to the wor kof raising lumps, but to developing velocities, many or all of which are mutual.

And still the tides observe their times of rising, not under the Moon, not even at a little distance behind the Moon's apparent progress across our meridians, but possibly at about a full quadrant ahead of the Moon's position.

While the capacity of the Moon for raising protuberances on the Earth's surface. presumably by reason of its greater attraction, is extolled all around, that of the sun is only touched upon as a minor affair.

This breezy way of disposing of the matter is taken in defiance of the fact that the attraction of the Sun is so great as to compel the Earth to pierce the ether to a greater distance in one day than the Moon travels in one month, as the result of its attraction for the Earth.

I submit the following considerations in comnertion with this subject, feeling confident that whether or not they may explain tides on a new hasis, they should at least repay the trouble of investigation, owing to the inferences they compel on the basis of our present accepted astronomical and physical axioms:
"Kepler"s Law," familiar to every student of astronomy, is, that: a secondary planet in its path always " sweeps out'" equal areas about its primary, in equal times.

This law, if obeyed, determines that any celestial body must move more slowly in its path of revolution whenever it goes further away from the other celestial body about which it revolves, and whose attraction is the cause of its revolving motion:

Starting with this axiom, we are met both in the Earth-Moon system, and in the EarthSun system, by the following propositions: Points on the surface, both of the Earth and of the Moon, are constantly changing their
radii of revolution, so that according to Kepler's Law, the orbital speed of such points should be constantly changing. Been at the enormous distance that the Earth lies from the Sun, the dieffrence of speed demanded by Kepler's Saw due to the whole diameter of the Earth, should be quite appreciable, and its reaction upon a plastic body such as the waters of our globe, must to my mind, produce results which can scarcely be negligible, although, so far as I know, no investigation has hitherto taken this factor into account.

I would also submit whether or not this principle would compel the cessation, in time, of axial rotation in planets, and even demand a slow rotation in the opposite direction as the eventual result. The water upon the opposite side of the Earth to that upon which the Sun may be at any given time. should, acrording to Kepler's Law, move more slowly along its orbita lpath than does the water in quadrature, but the concurrence of the Eartlis rotation and revolution demands that this side should move more rapidly.

On the other hand the waters on the side of the Earth nearest to the Sun are required by the same law to move more rapidly than the waters at quadrature, while the conditions of concurrent revolution above referred to.
compel this near side to have a less orbital speed than the point of quadrature.

If Kepler"s Law be obeyed, then, practically a "brake" is applied to two opposite sides of the Earth, compelling a slowingdown of the Earth? diurnal motion and giving the plastic ocean a tendency te "pile up," at the points of quadrature.

We will now ronsider the case of the Earth-Moon system in which the problem is more irmplex. It is assumed that the Earth and the Moon both move about a point situated somewhere between the Earth's centre and its equatorial zone; called the centre of gravity of the system.

The period of revolution of the sristem about this point is the well-known Lamar month of the almanac. The complex motion thus developed, may perhaps, best be illustrated, by imagining that the Earth's pole of rotation is the wrist-pin of a crank-shaft about which the Earth rotates once in 2.4 hours. The length of the crank is supposed to be less than the Earth's radius, and the crankchaft revolves , ice in a lunar montth. The centre of the Earth's diurnal motion is thus, as stated represented by the wrist-pin, while the centre of monthly revolution of the EarthMoon system is represented by the crank-shaft of our illustration.

A-imming that the rentre of motion of the banth-Moon system is situated at a depth of 1.000 miles below the surface of the ergatarial zone of the Earth: the peripheral sperd of the Earth on the equatorial zone at the point furthest from the Moon (on opposition) is about (ia) $1-3$ miles per hour. Jhe to DiathMoon revolution.

The peripheral speed of the kiath on the equatorial zone at the perint mearest to the Moon (ronjunction) due to Earth-Moon mero lution, is about ! 1-3 miles per homr.

A particle on the Earth's surface. Hareefore, while being warried around from the first-named point to the latter by the \quad 'is daily rotation, is empelled to " slow dow." 5ti mikes in 12 hours or about $42-3$ miles per hour: an amount which, in my fuldement should eause a murh more violent tide than we hare.

Haring established the fant lhat the changes of peripheral speed above referred 10. are inevitable. due to the revolution of the Farth-Moon system, we have now (o) determine at what priat or points there oremes the greatest change of speed in a given time: this must he the point of greatest "heaping up", of the water of the arean.

The greatest rhange of speed must occur in a given time at the point whose radius of
revolution about the rentre of the Earth-Moon system makes the least anglo with a tangent to the earth's surfare at that pooint. It wan easily he prowed geometrically that this point is either extremity of the shortest chomel within the larth - riremmference pasinger through the rentre of gravity of the EarthMoon system, and lyine in the plane of revohation of the srotem. Su the maximmon "hange (at the points abowe indieated) is probably not far from domble of the arerage rhange it shgerest that the renter of the Earth-Moon sratem should be mearer the rentre of the Earth than is rommonly assumed. Ia fart. if the greatest and the least radia be ascumed to have omly a difference of 1.000 miles, an obervation of the comburt of water would suggest that it womld warrant al! the tide we now have. This would atso mate the high tides about at quadrature with the moon, which seems to be about the artaral comdition.

In order to meet the homest dounts of earnest searehers after truth, as well as the self-sufficient prejutlier of those who are satisfied with the eurrent views. I subjoin the following illustrations:--

Let us suppose that a flat-bottomed pan. rontaining water to the dopttle of one inch is
gently laid upon the bosom of a stream whose eurrent has varying velorities at different points. As soon as the rurrent catches the bottem of the pan, the water in it is liable to gather more or less towards its upstream end.

Owing to the hold of the pan upon the contained water the latter soon becomes reconciled to its newly-arquired velocity and becomes placid. Soon the pan reaches a point on the stream where the current is less rapid than where it was at first placed. At once the water in the pinin tends to gather towards its down stream end. This well-known sensitiveness of water to changes of velocity and of direction of motion in the rehicle that carries it, furnishes a theory of tifles that must appeal to all observant men. The lowest tides will oceur at the points where change of velocity in a given time is least.

Let us now imagine a huge horizontal rircular dise revolving eccentrically. . . Let us imagine a man walking from its edge towards its centre. he will tend to fall on his side, with his head in the direction towards which the dise is revolving.

If he should walk from centre to circumference he will tend to fall in the opposite direction. Lat us now suppose that a small tramway is fitted to the circumference of the
eccentric rircular dise upon which a carriage travels, performing the circuit in the same dirertion as that in which the dise revolves and in (say) one-tenth of the time in which the eccentric dise performs one revolution on its own eccentric axis. A person sitting upon the fast moving carriage above referred to, is virtually travelling from the centre of the dise towards its cireumference and vice versa, and as a result reactions will be set up that will disturb the equilibrium of his body to an extent depending upon the amount of errentricity of the revolving disc and the speeds of dise and of travelling carriage.

Exactly such reartions are set up in particles on the Farth's surface, whilst moving with the daily rotation of the larth, and with its monthly motion about the centre of gravity of the Larth-Moon system.

