CIHM
 Microfiche
 Series (Monographs)

ICMH
 Collection de microfiches (monographies)

\square

Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming are checked below.

Coloured covers /
Couverture de couleur

Covers damaged /
Couverture endommagée
Covers restored and/or laminated /
Couverture restaurée et/ou pelliculée

Cover title missing / Le titre de couverture manque
Coloured maps / Cartes géographiques en couleur

Coloured ink (i.e. other than blue or black) /
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations /
Planches et/ou illustrations en couleur
Bound with other material /
Relié avec d'autres documents

Only edition available /
Seule édition disponibleTight binding may cause shadows or distortion along interior margin / La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from filming / II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

Additional comments /
Commentaires supplémentaires:

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peui-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages / Pages de couleur

Pages damaged / Pages endommagées
Pages restored and/or laminated /
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed /
Pages décolorées, tachetées ou piquées
Pages detached / Pages détachées

Showthrough / Transparence

Quality of print varies /
Qualité inégale de l'impressionIncludes supplementary material /
Comprend du matériel supplémentaire
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image / Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure, etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

Opposing pages with varying colouration or discolourations are filmed twice to ensure the best possible image / Les pages s'opposant ayant des colorations variables ou des décolorations sont filmées deux fois afin d'obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below /
Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here has been reproduced thanks to the generosity of:

Engineering Sciences Library,
Queen's University

The images appearing here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impres. sion. or the back cover when appropriate. All other original copies are filmed beginning on the first page with a printed or illustrated impres. sion, and ending on the last page with a printed or illustrated impression.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CON. TINUED"), or the symbol ∇ (meaning "END"). whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'exemplaire filmé fut reproduit gráce à la générosite de:

Engineering Sciences Library, Queen's University

Les images suivantes ont été reproduites avec le plus grand soin, compte tenu de la condition et de la nerteté de l'exemplaire filmé, et en conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papier est imprimée sont filmés en commencant par le premier plat et en terminant soit par la dernière page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la premiere page qui comporte une empreinte d'impression ou d'illustration et en terminant par la derniere page qui comporte une telle empreinte.

Un des symboles suivants apparaitra sur la dernidre image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE', le symbole ∇ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent ètre filmés à des taux de réduction différents. Lorsque le document est trop grand pour ètre reproduit on un seul cliché, il est filmé à partir de l'angle supérieur gauche. de gauche à droite. et de haut en bas, en prenant le nombre d'images nécessaire. Les diagrammes suivants illustrent la méthode.

1	2	3
4	5	6

MICROCOPY RESOLUTION TEST CHART

(AN3I and ISO TEST CHART No. 2)

CHEMICAL LAWS:

A SUPPLEMENT

TO
GOODWIN'S

TEXT B00K OF CHEMISTRY

TORONTO:
THE COPP, CLARK CO, LIMITEI, PRINTERS, COLBORNE STREET. 1893.

Entered according to Act of the Parhament of Camada, in the year one thousand eight humbed and ninety-three, by Tor: Corp, Clatk ('ompasy (Lameran), Toronto, Ontario, in the Uttice of the Minister of Agriculture.

PREFACE.

In the following pages the principal chemical laws are developed independently of theories. Doubtless the mental bias consequent upon the habitual use of theory will appear here and there. In the writer's teaching experience he has fonnd that when chemieal laws are presented in the manal way along with chemical theories, there commonly results a wrong idea of their relations. The principal object of this short treatise is to emphasise the tronth that chemical laws are generalisations from facts, and can be considered apart from theory.
W. L. (GOODWIN.

Queen's University, Kingston, Ont., March 29th, 1893.

CONTENTS.

1. Chemical Change.
2. Tue Law of Combines: Weather.
3. The law of bias Density.
4. Tue Law of sideofic Heat.
5. The Law of Lamopriosm.
(6. 'Tue Permute Law.
6. Reversal, of ('medical, Changer.
s. Rights's Law.
!. Van profs Law.
7.

stale water, species the in cither such a species has ta kinds:chlorine takes pound, This kit
(5) I

CHFMIC'AI, LAIIS.

1. A Chemical species includes all portions of the same kind of homogeneons smbstance. Pure satt, sugar, water, gold, iron, and oxygen are exmmples of chemical species. When a substance crystallises, the erystals are the individuals of the species. Chemical speciess are either elements or compounds. When substances mulergo such a change that they disappear and become other species of substance, a "ieinicul chenge, or chemical action, has taken phace. Chemical changes are of several kinds:-
(1) Combination.-Two or more suhstamces (chemical species) combine to form one.
(2) Simple decomposition.-One substance (species) gives rise to two or more different substances (species).
(3) Double decomposition or Metathesis. - Two smbstances exchange one or more of their elements, so as to form two new substances.
(4) Replacement of Substiturion.-One species replaces one or more constituents of another. This replace. ment may be accompanied by the union of another portion of the replacing species with the replacet, as when chlorine replaces hydrogen in hydrucathons. It not ouly takes the place of the hydrogen, bint also forms a compound, hydrochloric acid, with the rephated hydrogen. This kind of change has been calle :metulepsis.
(5) Isomertc chaxaf*.- One speies beomes changed

[^0]into one othere of the sime composition bat different proprotios. Thus muldre cortain comlitions recetylene (cartom, 92.3 ; heihogen, $7.7 / 2$) become; changed into benzene (satue domposition), a substance different in its propretties. Atmmonireme cymate, (nitrogen, $+6.67 \%$; hydro-
 urea, a substance of exactly the same composition, but quite diflerent in properties. This phenomenon, at tirst sight very hard to explain, almits of easy explanation by the modern chemical theory:
(Hanges in colour, smell, taste, physical state, crystalline form, density, solubility, molting point, boiling point, and other froprotios are acempmanments of chemical change; but the most constant chametristic is the appearance or disappeamane of semsible heat.

2 . The Law of Combining Proportions-A

 study of muss-relations in chemical change brings out certain laws, which can be incluiled in a general statement, as follows :-In evry chemical rhange involving two or more substances, the masses* of the suthitances changed are always in the ratio of the combining nmmbers of the substances, or of simple multiples of them.

These combining numbers, or combininy weights, are fomm by stmlying by means of the balance the proportions in which clements unite to form compounds and the proportions in which compounds react on each other. Thus, lead and oxygen combine in the proportion of 100 to $7 \cdot 7$ and form lithurge ; lead and sulphur in the proportion of 100 to $15 \cdot t$ to form leat sulphite; and sulphur and

[^1]orygen form sill ing 1111 and 15 pounids are 15 loats to the col creases other e It is 11 number ant oxy two col peroxid ing Hul when combin ethylene (1 of choice 1 tury, tl differen employ the con by difft were al and oxy that th mere st

[^2]orygen in the propurtion of $15 \cdot+$ th 23.1 (or $3 \times 7 \cdot i$) (1) form sulphe triovi .e. If 100 but elosenn as the combin. itg sumber for leat, thon $7 \cdot 7$ horemmes that uf oxtergen, and $15 \cdot 4$ that of sulphas. Bint land forms other romb pounds with oxygen, in one of which, lead peroride, there are $15+1$ parts of oxygen for every 100 of leat. 'This lrads to a doubt as to which nmmber should be chosen for the combining number of oxygen ; and the dithentty increases as elements we examined which combine with other elrments in a large mmoner of different proportions. It is now the miversal practice to refer the combining numbers of the rements to I part by weight of hiyltrofen ; atml oxygen must he fitst examined. But hydrogen forms two emmpounds with oxyeren, water (l:s'), and hylrogen peroxide ($1: 16$). Shall 8 or 16 be taken as the combin. ing number for oxygen f The samo difficulty ajears when compoumds are studied. For example, hydrogen combines with acetylene in two proportions forming ethylere (1 of hydrogen to 13 of acetylene) and ethane (1 of hydrogen to $6 \frac{1}{2}$ of acetyleme) ; there is thus a cheice between 13 and $6 \frac{1}{2}$. Up to the middle of this century, this difficulty existed and lei to great confinsion, as different chemists used different combining mombers and iemployed the same symbols* to represent them ; so that the composition of the same componnd was represented by different formulas. Thus, $\mathrm{Ag}_{\mathrm{g}} \mathrm{O}, \mathrm{AgO}$, and AgO$)_{2}$ were all used to indicate at eompound composed of silver and oxygen in the proportion of 108 to 8 . It is evident that this difficulty could not have been summounted by mere stndy of the proportions in which smbstances rate

[^3]3. The Law of Gas Density*.-It is clear, too, that if some systematic way call he fome for choosing the combining weights of compomuls, the problem will at the sime time be solved for ctoments. For, let there he taken as the combining weight of any element the smallest weight of it fouml in the combining weight of any of its compounds. Now, it has been fomm that a very simple law comects the physical and chemical properties of gaseons substances. The following table will make clear the nature of this law :-

	$\begin{aligned} & \text { Suecitiv Weicrlis. } \\ & (\text { Air }=1 .) \end{aligned}$	11.	111. Combining Weights.
11ydruchlorie Acid (ras)	1.26is	386	$36 \cdot 5$
Water (ill the gaserotes state)	11.13	15	9 or 18
Ammmonia	10.59	17	5, 111 or 17
Carbou liosiale	1.52	4	3
Ciarbou Slomovider	1197	115	14 or 28
Methane	1155%	115	15 or 30
Ethane	1.04	30	14 or 28
Eihylene	$11 \cdot 9$	0	14 or 28 13 or 26
Anetrlene.	$1 \cdot 90$	2	

In order to bing ont the relation between these mumbers, calculate the specitic weights to the same scale as the combining weights. This can be done by taking 36.5 as the specific weight of hydrochoric acid and multiplying all the other nmmbers in the colmm by ${ }_{1-265}^{965}$. This, of conse, preserves the ratio hetween the specific weights, but refers them to 36% of hymochloric acin instead of 1 of air. These numbers have been phaced in column II. of the table. Small fractions are nerglected. It is at once evident that, if the right choice is mate, the specific

[^4]weight weight: tional metho Let th the spe This co select a others. hydrog of hyd as the $35 \cdot 5$, w hydroge is thus tie gen to deriv (C') of weight
and for Substit and

Whe mit, a weights of air r Dividin eights, ead of min II. t is at specific
weights on the new sale are the same as the combining weights; and therefore with any standand they are proportional to the combining weights. This snggests a mifurm method for choosing the combining weights of componnds. Let them be always so chosen as to be proportionai to the specific weights of the substances in the gaseons state. This convention has been adopted. It only remains to select a standard combining weight to which to refer all others. Hydrochlorie acid has been chosen, becanse hydrogen forms only this componnd with chlorine (1 part of hydrogen to $35 \cdot 5$ of chlorine) ; so that if 1 be taken as the combining weight of hydrogen, that of chlorine is $35 \cdot 5$, without any alternative, so far as it is referred to hydrogen. The combining weight of hydrochloric acid is thms 36.5 . As specific weights of gases aml vapours are generally referred to air as mity, it will be conveniont to derive an equation for calculating the combining weight (C^{\prime}) of any compound gas or vapo'.. from its specific weight (yta density) S^{\prime}. A ceording .. the convention-.

$$
\text { C: © } \mathbf{C}^{\prime}:: \mathrm{S}: \mathrm{S}^{\prime} ;
$$

and for hydrochloric acid gas $\mathrm{C}=365$, and $\mathrm{S}=1 \cdot 265$. Substituting these values-

$$
\begin{gathered}
36 \cdot 5: C^{\prime \prime}: 1 \cdot 265: S^{\prime} \\
C^{\prime \prime}=S^{\prime \prime} \times \frac{36 \cdot 5}{\frac{1265}{265}}=S^{\prime} \times 2 N \cdot 87
\end{gathered}
$$

and

When the specific weights are referred to hydrogen as unit, a very simple relation appea's between specific weights and combining weights. The specitic weight of air referred to hydrogen as stadadis $14 \cdot 435$ nearly. Dividing the former value for $C^{\prime \prime}$ by this number,
its value referred to hydrogen as stambard is obtatined: -.

$$
\mathrm{C}^{\prime}=S^{\prime \prime} \times \frac{2+48}{1+435}=25^{\prime \prime} .
$$

That is, the combinin! weight of a !!aseons componell is twice its specific pright roferped to hylrogen ces standurd. Combining weights determined in this way are only approximate, being atfected by ervors dae to the difticulty of obtaining accurately the weight and volume of a gas or vapour. As will be seen immediately, they can be corrected by alding together the combining weights of the elements in the componnd, these combining weights haviner all the accuracy which can be attained by exact weighings of liguids amd solids in anatytical operations.

A few examples will make clear the manner in which the methor of gas densit!! is applied to the selection of combining nmmbers for the elements. A vast amomut of lahour hats been expended in determining acurately the composition of water. For 1 part by weight of hydrogen water has 7.9 s parts of oxygen. It remains to diseover what maltiple of the latter number is to be taken as the combining weight of oxygen. In the following table there are griven, nerfecting small fractions, the specific weights (air=1) (I.), combining weights (II.), percentage of oxygen (III), and the quantities of oxygen in the combining weights (IV.), of a nmmber of gratseous or gasitiable oxygen com;ommds. The numbers in the last columm are calenlated as follows:-

Specific weight of gaseous water, $0 \cdot 623$, multiphied by 28.87 gives its combining weight-

$$
0.623 \times 28.87=17.98601, \text { say } 18
$$

Analysis of water shows that 88.89% of this (or 15.95 , saty 16) is oxygen :-

The smatlest quantity of oxygen found in the combining weight of any of the oxygen eompounds is thus seen to be 16 . In all the large number of oxygen compromits submitted to this test no smaller quantity hats been foumd. Therefore, 16 is the approximate combining weight of oxygen. The necurate combining weight is $7 \cdot 98 \times 2=$ $15 \cdot 9(\%$.

The nmmbers determined by the method of gris density and corrected by a reference to the composition of compouruls as determined hy analysis, depend for their accuracy on the malytical methonts employed. The greatest perfection in these has been reached by J. S. Stas, and the following example of his work is adfled (without explanation) to show the degree of accuracy attaned. This is manked by the close agrecment of the numbers in the thind coltumn:-

Potassium Chloridek tatiks.
7.450 g
$7 \cdot 550 \mathrm{~g}$
7.450 g
$7 \cdot 4.0 \mathrm{~g}$
- 450 g
$2 \cdot 094{ }^{2}$
$2: 300 \mathrm{~m}$

Shoer to Decomiosk it.
10.7807
10.7510
$10 \cdot 78094$
$10 \cdot 7509$
10.811
3.030S6;
$32 \cdot 3428$

Commining
Weight of Silier.
$107 \cdot 9399$
1079404
107.9395
$107 \cdot 9394$
$107 \cdot 9380$
107 9361
$107 \cdot 9398$
4. The Law of Specific Heat. -The method of gas density has been applied particnlarly to the nonmetals, as they generatly form many gasifiable compomeds. Many of the metals have not so far yichled compounds gasiliahle at temperatares which permit a determination of gas deusity. But another method of determining combining weights is at hand which can be nsed with particular facility in the case of metals. The following table indicates the nature of this law :-

Element.	Commining Wt. (hy ras (lensity).	Sirkifie Ifrat.	Combinina Wt. xipecific lipat.
Phosphorus	31	$0 \cdot 2020$	$10 \cdot 2$ $6 \cdot 3$
\%inc	95	0.6986 0.0834 0.6	6:3
Arsenic	75	$0 \cdot 0.564$	65
Tin	118	0 oras	$6 \cdot 1$
Antimony	$\underline{120}$	$0 \cdot 0319$	6.4
Mercury		0.0314	10.5

The specific heats are for the solal elements. A glance at this table shows that the larger the combining weight the smaller the specific heat of the ehments; and, further, the product of the combining weight and the specific heat is approximately the same for all the elements incladed in this table. The same has heen fomed to hold true for nearly all the elements the specitic heats of which have been determined for the solid state, and the combining weights of which have been foms by the method of gats density. The exceptions are herylhim, boron, carbon, and silicon, the specific heat of which increases rapidly with rise of temperature ; so that the product of speeitic heat and combining weight which is much less than 6.3 at low temperatures approximates to that number at high temperatures. It may be assumed then that
we hav The pr heat of heat of then, specific earths have b mined upon b sium st nesium purts o aprox From $12 \cdot 19 x$ have fi: heat therefo justify bining

It his compon give m For ex 0.053 . lead ad these is the num

[^5]$621 \times 0.0616=42 \cdot 196=7 \times 6 \cdot 0$ nearly.

[^6]From these examples it seems that the elements cary with them into their compounds their capacity for heat. It can also be dedaced that the specific heat of solid oxygen is such that when multiplied by its combining weight the product is not far removed from 6. But in the case of many solid oxygen componnds the number must be consideatably less. 'To solid compourids of those elements which in the free state come moder the law of specific heat, the following law applies: The product of the specific heat of a solid compouna and its combininy weight is approximately equal to $\mathrm{n} \times 6 \cdot 3, \mathrm{n}$ indicating the number of times the combiniuy weights of the elements are taken to make the combining weight of the compoumed.

5. The Law of Isomorphism.-Crystrts are the

 more or less regular geometrical forms assumed by most substances when they pass from the lignid or grasentis to the solid state. Every crystal when carefinlly stmbed is seen to be bomoded by surfaces which are aranged with more or less symmetry aromd certain (imaninary) arial lines. Lu actual crystals, however, it is more a symmetry of direction than of position, as the conditions of growth usmatly prevent equally rapid growth on the different faces. Thas one face trecomes further removed from the centre of the figure than mother, and distortion results. By imagining all the like surfaces of any crystal to be equally developed, one gets an ideal form, in which the suffaces rumuing in similar directions with regard to the axes of reference are all of the same size and shape. Simple forms are boumded by like surfaces; two or more simple forms may be combined in the same crystal. In general, there are certain planes which can divide a crystal form into two halves such that one is the minror image of the other.These the num perpend symmet

It hat in Six their pl
(1) angles t
(2) 'I angles thired 10
(3) 1 equal, i other, t and at symmet
(4) I right at
(5) 'I two bei angles t
(6) T clined a

The their the axe all subs

These planes are plunes of symmetry; and forms differ in the number of their phanes of symmetry. A central line perpendicular to a phane of symmetry is an axis of symmetry.

It has been found that all crystal forms can be grouped in Six Systems, defined by their axes of reference and their planes of symmetry. They are as follows:-
(1) The Cubic System.-Three axes, equal and at right angles to each other. Nine planes of symmetry.
(2) The Tefragonal System.-Three axes at right angles to each olher, two of them heing equal and the third longer or shorter. Five planes of symmetry.
(3) Tue Hexagonal System.-Fomraxes; three being equal, in the silne phane, and at angles of 60° to each other, the fourth bing longer or shorter than the three and at right augles to their plane. Seven planes of symmetry.
(4) The Rhombic System.-Three unequal axes at right angles to each other. Three planes of symmetry.
(5) Tue Monoclinic System.-Three unequal axes, two being inclined to each other and the third at right angles to their plane. One phane of symmetry.
(6) The Thiclinic System.-Three unequal and inclined axes. No plane of symmetry.

The crystal forms of substances are vahable aids to their recognition. Except in the cubic system where the axes are all equal, the axial ratios are different for all substances crystallising in forms of the same system.

There are, however, exceptions to this rule. There are groups of similar sulstances which crystallise in the same forms, und which are so like in their properties that a crystal of one will grow in a saturated solntion of another of the gronp, preserving the same form. Such substances are said to be isomorphous (Greek isos, equal, and morphe, form). It is found that the chemical formulas of isomorphous substances are similar. Thus, the isomorphous sulphates crystallising with water:-

$$
\begin{aligned}
& \text { Green vitriol......... } \mathrm{Fe} \mathrm{SO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O} \\
& \text { White vitriol. } / \mathrm{Mn} \mathrm{SO} \mathrm{~S}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O} \\
& \text { Cobalt sulphate } \mathrm{C} \cdot \mathrm{SO} \mathrm{~S}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O} \\
& \text { Nickel sulphate } \\
& \mathrm{Ni} \mathrm{SO} \cdot 7 \mathrm{H}_{2}{ }^{\mathrm{O}}
\end{aligned}
$$

These formulas differ only in the symbols for the metals, and in each formula the symbol for the metal is single. The resembince would be imperfect if that for green vitriol were $\mathrm{Fe}_{2} \mathrm{SO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ (Fe being 28 instead of 56). It is reasonable to suppose that, if another sulphate is foumd isomorphons with these, the combining weights should be so chosen ats to give a formmla similar to those of green vitriol, white vitriol, etc. Manganous sulphate is isomorphous with green vitriol. By analysis of the sulphate, the equivalent weight of manganese has been fomd to be 27.51 . If this be taken as the combining weight, the formular for the sulphate will be $\mathrm{Mn}_{2} \mathrm{SO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$. As this would be different from that of the other members of this isomorphous group, it is reasonable to take 2×27.51 as the combining weight, when the formula becontes $\mathrm{Mn} \mathrm{SO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$, symmetrical with the others. The elements which play the same part in isomorphous componnds are commonly spoken of as isomorphous elements.

The Late ci' 'vomorphism is as follows:-lsomorphous elements raphuce euch other in istomophones components in the proportion of the combininug revights of the elements:

The following are the common gromps of isemorphous eiements:-
I.-Fluorine, chlorine, bromine, iodine; manganese (perchlorates and permanganates are isomorphous).
II.--lithium, sodimn potassimm, rubidium, cessium, [ammonium]; silver and thallinn form alums in which they take the place of potassinm in common ahm.

1H.-Calcimm, strontimm, barinu, leal (in smphates.
 nesse (in cartonatres. sulphates, rete.) ; nickel, cobalt, cop!ux (in sulphates).
IV.-Sulphnr, seleninm, tellurium, chrominm.
V.-Arsenie, antimony, hismmh, vanadim, nitrogen, phosphoms.
VI.-Aluminm, iron, chromimm, manganese (in alımis).
VII... Platinum, iridinm, pallidinm, rhodinm, rithenium, osmium.

V1II.-Carbon, silicon, titanium, zirconium, thorium, tin.
IX.-Comper, silver, gold (in their chlorides, sulphides, and double cyanides).

The law of isomerphism has been of assistance in deciding doubtfill casos, where the methods of gas density and of specitie heats have rither been lithent of application or have yidheal conflicting results. In such cases, those maltiples of the equivalent weights lave been taken which give similar formmlas for isomorphons componnds of the elements.
6. The Periodic Law iNewhands, 186t; MenWeleoff, 1860 ; L. Mryer, 1870).-Firom the preceding sections it ean be seen that the properties of the elements are closely comeeted with those mumbers which express the proportions in which they enter into combination; and the finther investigation is carried, the closer is this comnection fonmd to be. The relation between the combining weights and the other properties of the elements hats its mast geneal expression in the Periodic Law. When the: elements are armuge in the order of their eombining weights beginning with lithimm (hydrogen is omitted becalnse it does not fall naturally into any gronp of elements) and following with heyllimm, boron, eabon, nitrogen, oxygen, ant thorine, the sth element, sodirm, is like the Ist, the 9 th like the secoml, and so on to the loth, potassinm, which is :grain like the lst. This suggests the inlea that all the elements may in the same way be found to fall into families or groups of like elements when arranged in this way. The following table shows this to be the case, allowance being made for un-
decidmsity plicat cases, taken ounds

Menceding ments xpress ation ; sser is en the he cleriodic der of hyileoto any boron, ement, 1 so on This e same ke eleg table for unom the o series

The retations to each other of the elements ns artanged in il fulk in lie stmided in two whys, Ist in horizontal

 serve as a gronl example for stuly ; fratiom is well known as . It alkenli metal, chatacterised hy decomposing water at omblinty tomperathas athl forming a fiedy solnhle hydro
 metal, with the chamacteristic metallic listre. Its oxides
 is also : well-marked metal; but it does not decomposs Water at ordinary tomperatures, shat only slowly at 100°. Its lỵhoxile, My(OH) is phatically insolnhle in water
 many of ths salts are decomposed in whote or in prate When their apleoms solntions are exapmated to dyyess. 'Ilus:--

$$
\mathrm{MeCl}_{2}+\mathrm{H}_{2}()=\mathrm{Mg}_{5}(\mathrm{O}+2 \mathrm{HCl}
$$

Solimm chloride (N: (y) is not decomposed by water. In fact mandesium is decidedly less powerfin in its basic Phameter than sorlimm, hat it shows no achdic properties. -Alumimm is a metal in lustre and other properties. It dues not, however, decompose water at any temperaunce. Its only hydroxide, $\mathrm{Al}(\mathrm{OH})_{3}$, is insoluble in water. The liydroxide forms solable compounds both with stiong acids and with strong bases; but it does not combine with weak acids or weak hases. Almmimm has therefore a dual chameter, possessing both basic and acid properties, but neither in a very marked degree. This dual chanacter is manifested in an ordinary test for aluminnm in salt solntions. If to a solution of alnminmar
chloride a gelatinu down:-

Here the is shown. is adderl, then fotm ahmoninu! in its aci not meta acid. In brhind tha chement of element it decidedly hypophorin being well sixth men even more with oxyen of which, powerful o phorins, or saline com a feeble nei gen sulphi componnds perties ; an respect its In chlorine, foroud at it:
chloride：（ $\mathrm{A} / \mathrm{Cl}_{3}$ ），solution of sontinm liydroxide is added， a gelatinoms precipitate of almmimm herproxile is thown down：－

$$
\mathrm{ACl}_{3}+3 \mathrm{Nu}() \mathrm{H}=.110 H_{3}+: \dot{\mathrm{N}} \mathrm{a}(\mathrm{Cl} .
$$

Here the inferior masie chatactor of alnmimm hemoxida： is shown．Whan a finther gnamtity of sudimm hydmade is added，the precipitate medissolves and the solntion is then fomm to contatin sordimm nhminnere，a sitt in which ahmatmm is the acidic element．－Silicon is well known in its acidie oxide silica，SiO．．The element its．lf is not metallie in itprentance．Silicic atell is it werak acid．In passing from nlmminmm to silicon w．hatwe l．ft helime the basie chatmeter，but hatw not get manderel an eloment of more than weakly andic pronertins－The next ofement in the sories，phusphores，has the characters of a decidedty acidic doment．This is shown in its ：weids． hypophosphorons，phospheroms，amb phosphorie，the latere being well marked in its acid！！roperties．－．Sulphur，the sixth member of the serios，shaws the acidic character even more strongly thath phophomens．In combination with oxygen and hadrogen it forms mumemes anils，one of which，snlphuric acent，is in miany respects the most powerful of ateids．Nome of the oxides of silicom，phos－ phorns，or sulphur show ally tembency to anter imto saline combination with true acols，Suphur exen forms a feeble acid by combining with hydrogell atome．Hydro－ gen sulphide，Hys，redlens bhe litans．The hydrogen （1）．In Bmsic rerties． rrties． mpera－ water． stiong ombine there－ id pro－ This est for 1．x！ix！ $1311!$ compounds of silicon and phosphorns have no atial prob perties；and smphur may be considered to show in this respect its greater power as an acid－forming element．－－ In chlorine，the hasi member of the series，this power is fowd at its maximm．Chlorine not only forms several
 oxymen, but it combines with hyfrogen alone to form a
 begins with sodinet, inn chenent of strongly basie chatacter, and, passing though elements of tecrasing basic and of increasing aridic charaters, ands with chlorine, a powerfal acid-foming element. In the ond series the fame progession from hasic to acidic chameter cath be thated ; and, indeed, with certain morlifentions, in all the mories. 'The modifications can be seen in the the and万h series. The the series hegins with potessium, a molal of the alkali fimily. The seventh element from this is mon!!umpor, at basie elmment, as sien in the mathgan-
 tha momganutes anl promamganutes. Then follows a trio of vory simila remonts, irom, colmet, and reikel, whieh,
 atditionat group-V'II. The next element, copper, has at few peints of likemess to the alkali metals amd bergins the eth series, hat no strungly acilie element is reached before orvemic, selemimm, and bromere, at the eme of this serins; and at the beginning of the fith we find rebilium, ath atkati metal. The fith and 7 th series show the same features ats the fth and oth; athl, so for the fraguentary chatator of the rematinis series allows us to julge, they, tow, fall into pais. Thas, lithim, beryllintm, borm, catbon, hitrogen, oxyeren, and flamine constitute the timst periof, i.e. the emments from the first. lithium, to the next of the same kind, sodinn. ('The periodic remornce of like chments in this selacme has given to the law here revealed its natme, the periodic law of the elements.) The ond period also consists of seven elements, vi\%: thons of the thirl series. But the 3rd includes wo
\qquad
*The elemen inectine they another.
series, for iron, cols berrimings next alkia 3rl series not fonm always sin same grol of their e fom lone fragment passing al the aleidie regular m of the Where ne
\qquad
$\mathrm{R}_{2} \mathrm{O} \quad \mathrm{R}$
$\mathrm{Li}_{2} \mathrm{O}$
Na, 1
$\mathrm{K}_{2} \mathrm{O}$

- $\mathrm{Cu}_{2} \mathrm{OH}^{+}$
$\mathrm{RH}_{2} \mathrm{O}$
$\mathrm{Al}_{2} \mathrm{O}$
$\mathrm{Cs}_{2}{ }^{\circ}$
$\mathrm{Au}_{2} \mathrm{O}$
.....
-
+ Copper has : A higher ar
series，for the sth mement from potassinm is（omitting iron，cobalt，and nickel）（oppore，and it is only at the bergming of the 6th series that we find rubidimm，the next alkali metal．simianly form woment after the 3rd series ；：mother aloment with strong likemess to it is not fomed mutil the lath is reached，although the sth is always sufficiently like it to justify its buing placed in the same gronp．Thas the eldments armaged in the order of their combining weights form two short periohs and fonr lony periors，with thorimn and mamium ats a fragment of a seventla＊．－The gratation in propertios in passing along the series appeas in properties other than the acidic and basic．＇The types of compmans vary in a regular mamer．In the following tathe are the fomman of the higherst basic or wid oxide of wach eldment． Where necessary for mifomity the formulas ane dombleal．

$\mathrm{R}_{2} \mathrm{O}$	$\mathrm{R}_{2} \mathrm{O}_{2}$	$R_{29}{ }_{3}$	$\mathrm{R}_{2} \mathrm{O}_{4}$	$\mathrm{R}_{2} \mathrm{O}$,	$\mathrm{K}_{2}{ }^{\text {a }}$	$\mathrm{If}_{2} \mathrm{O}_{7}$	$\mathrm{Ra}_{2} \mathrm{O}_{4}$
$\mathrm{Li}_{2} \mathrm{O}$	$\mathrm{Br}_{2} \mathrm{O}_{4}$	$1 \mathrm{~B}_{3}{ }^{\text {a }}$	10^{11}	N．00，			
Nas：	Mど口＂	$\left.\mathrm{Al}_{3}\right)_{3}$	$\mathrm{Si}_{2} \mathrm{O}$,	1．4．，	$\mathrm{Si}_{3} 0_{10}$	$\mid C 12)^{\prime} \mid$	
K_{2}（ ${ }^{\text {a }}$	$\mathrm{Ca}_{2} \mathrm{O}_{2}$	$\mathrm{Sc} \mathrm{ZOO}_{3}$	$\mathrm{Ti}_{2} \mathrm{O}_{4}$	CaO_{3}	（ras）	$\mathrm{MnH.}_{2} \mathrm{O}^{\text {，}}$	
$\mathrm{Cu}_{2} \mathrm{O}^{+}$	曲2 \square_{2}	（ $\left.\mathrm{aran}_{2}\right)_{3}$	（cea）	$\mathrm{A}_{2} \mathrm{O}_{3}$	Se：${ }^{0}$		
$\mathrm{RH}_{2} \mathrm{O}$	Srat：	YaO_{3}	$\mathrm{Ti}_{2} \mathrm{O}^{\text {a }}$	Slo ${ }_{\text {a }}$	$\mathrm{HO}_{2} \mathrm{O}_{6}$	$\left.\left[10_{2}\right)_{7}\right]$	
$\mathrm{Ag}_{2} \mathrm{O}$	Cdyan_{2}	$\mathrm{IH}_{2} \mathrm{O}_{3}$	$7 \mathrm{arg}_{4}$	$\mathrm{Sb}_{2} \mathrm{O} \mathrm{O}_{3}$	Te： 0_{0}		
$\mathrm{Cs}_{2} \mathrm{O}$	$\mathrm{Ba}_{2} \mathrm{O}_{2}$	$\left.L_{a_{i}}\right)_{: 3}$	（ $\mathrm{CH}_{2} \mathrm{O}_{4}$	$\mathrm{Ta}_{2} \mathrm{O}_{3}$ ：	$W_{3} 0^{\prime}$		
$\mathrm{Aln}_{2} \mathrm{O}$	$\mathrm{HS}_{\mathrm{n}_{3} \mathrm{O}_{2}}$	Vbug_{3}	$\mathrm{Pb}_{2} \mathrm{O}_{4}$	$\mathrm{Bi} \mathrm{ZO}_{3}$	$\mathrm{C}_{2} \mathrm{O}_{6}$		
		$\mathrm{Tl} \mathrm{SO}_{3}$	That				

Nork．－K is a general symbol to indicate the type of compomel．

[^7]In all these formmas the symbols of the elements comhined with oxygen are taken the same number of times. In each case twice the combining weight is represented. The mumber of oxygen combining werghts may then be considered to represent the relative combiaing capacitios or values of the clements for oxyren (that of hydrogen, lithium, ete., being taken as one) ; and this is seen to increase from one to right. The seventh and eighth columns are ahost hank, but the blanks may be tilled to some extent by componnds other than the oxides. Chlorine heptoxide, Cla O_{7}, is not known, but the comesponding acil. perchloric acirl, II 'lO $)_{1}$, may be taken to indicate that chlorine has a combining matacity (value) of seven. Simitarly for iodine. The recent discovery of wickel carbonyl, $\mathrm{Ni}\left(\left(^{\prime}()\right)_{1}\right.$, shows nickel to have a maximum combining capacity of eight. For the comhining capacity of carbonyl is two, as shown by its combination with oxygen in cathon dioxide, "O, ". In their combining capacities for hydrogen the elements are somewhat different, but they show in this casce also that their properties are of a periodic chamater. As companavely tew of the elements form distinct compmods with hydrogen, the demonstration camot be matle so complete as with the oxides. Compomeds of the metals of the first three groups with mivalent radieles are inserted in the table, where hydrogen compomads are not known. The radicle CH_{3} is efrivalent to one part of hydrogen, as can be seen in the formula $\mathrm{CH}_{3} \mathrm{Cl}$.

[^8]semtimes. sented. hen be waities hrogen, to incighth illed to Chloonding ndicate seven. cel car11 colincity of oxygen pacities nt, Int ure of a he ele2il, the ith the three : table, radicle be seen

R 11	RH:	RH_{3}	RH.	RH_{3}	KH_{2}	R 11
$\mathrm{Li}\left(\mathrm{CH}_{3}\right)$	$\mathrm{Be}\left(\mathrm{CH}_{3}\right)_{2}$	BH_{3}	CH.	NH_{3}	${ }^{\text {OH2, }}$	F11
$\mathrm{Na}\left(\mathrm{CH}_{3}\right)$		$\mathrm{Al}\left(\mathrm{CH}_{3}\right)_{3}$	SiH_{4}	PH_{3}	SH_{2}	('IH

The maximm combining capacity for helrogen (four) is reathed in the middle of the series, from which there is a decrease to one. The point to he noted in these tables is that euch series shows with more or less completeness the sume regnlar variation in the combining capacity of its elements. Simila tables can be made for the hydroxides, chommes, hromides, iodides, ete.

The periodie recmrence of like propertios is fouml, too, in those physical properties which cath be exactly m:asured and expressed mathematically. Such are specific woight. comductivity for heat and electricity, melting point, lwiling point, ete. If the combining weights of the elpments be divided by their specific weights for the solid state. the numbers ohtained are the relative volumes of the combining weights of the elements. They are the comebining rolumes of the solid elem+nts. Most of the rlements have been obtained in the solid state, so that the table of combining vohmes is pretty completr. The relation of the combining weights to the combining volunes of the (solid) eloments can best be shown be measuring off from two lines meeting at right angles distances proportional to the combining weight and combining volume of each element, and commeting the points thas ohtained by a continuous line. Thas is obtained the curce of combining weights and combining volumes. This is catled at periodic curve, consisting, as it does, of a series of wat:

Like descen

along
aseend
two :
rest al period demons

As : after ti series likenes ing ele divides group family distinct the ditf? stronge corper, physica alkali n mang:n V., and evenly prevail.

No

- first tw dently chlorine

Like elements occupy like positions. on the asceudins and desecminis parts of the curves. 'Thns, the alkali metals occurg the smmits, the other metals ate generally foumd along the desernding parts, aut the nou-metals along the ascending parts of the curve of the waves, the iirst two are short, concepoming to the short pertions: the rest are long, corresponding to the hong priots. The periodic recurrence of like rements is thus graphically demonstrated.

As a consequence of the double length of the periods after the first two, the comerpombing cloments of the two series constitutins a long feriod do not have the same likeness to cach wher which is fonnd between corresponding elements in the short periods. Thas each group sub). divides atter the first two elements into two families. In grou, I, potassimm, mbinhum, and cessura form one family ; and copper, silver, and grold, the other. The distinction between the familiss is more or less marked in the ditionent gromps. In groms I. and VII. the family are stronger than the $\mathbf{w l o m p}$ resemblances; for, certainly, copper, silver and wiod are more like each other both physically and chemically than they are like any of the alkali metals. Aso, there are few resemblanees betweon manganese and the halogen family. In groups IL., III, V., and VI. the gronp and family resemblances are petty evenly halanced ; while in IV. the group characteristics prevail.

No genemal statement can be made with regard to the

- finst two clements of each group. In group I, they exidently both belong to the alkali family. So, flnorine and chlorine of gron, VII. both belong to. the halogen fanily.

In the other gromps they seem to combine more or less the chameteristies of both families.
'The first gronp will serve to illustrate the nathore of the classification. It inchales the metals of the alk alis, lithium, sotium, potassinm, mbithm, mml cusimm, towether with the three heary metats, copper, silver, and sohl. Between the two fanilirs the resemblance is not very strong, so that the gromp charmeristics are reshluced to a fenemal resemblance in the type of compounds, e.g., $\mathrm{MCl}, \mathrm{M} O$, ete., where M stands for any metal of the gronp. However, silver forms an alnm in which it plays the: part of all alkali metal. The family cheraterterstics on the other hamd are well derined. 'These of the atkati fanily are given at 1 . 36 - of the Trext book 'To the statement wiven there may be wheal the formation of isomompors allums (1 , :336 of 'lext li wok), of other double shlphates. ath of chlopoplatimates (p. 31f. These series of componmats show the gratetion in fropertes wernerally well marked in the naturat fimilios of the mements. This is woll shown in the solnbilities of the athme and chlorophatinates, which deerease form lithinm to corsimm. The same feature is seen in the physial properties of the metals:

	Conbintati Wrioht.		$\begin{aligned} & \text { lumata } \\ & \text { Ponst. } \end{aligned}$	siperific Writher	F゙LIMK ('OLOHK.
Lithinul	7	141	Ahove lamo	6%	Red
Snelinm	23	19.5	Above (\%)	119	Yellow
lotassimm	3:1	Sn	720	$0 \cdot 3$	V Volet
Ruhidimu	8.5	39		1.52	Violet
Carsillu	133	20°		$1 \cdot \mathrm{~s}$	thlue

[^9]Copler, silver, and gold are not so closely related to each other as we the metals of the alkalis. Still they have many points of resomblance. They are heary, durabie metals diffiente to oxidise, and therefore valuable in the ants and mamafactures. Vach of them forms a white chloride of the type $\mathrm{HCl}\left(\mathrm{CnCl}_{\mathrm{C}}, \mathrm{A}(\mathrm{g} I, \mathrm{AnCl})\right.$, ittsoluble in water but soluble in ammonia solntion. 'They also form basic oxides of the same type, viz. Chto, Ango, amd An, But copler toms compomads of amother type, ('ul), etc. These empric compommls are in some cases isomorphous with the comesponding compounts of iton amd rinc. 'Thas copler forms a comecting link betwern the first and seemul series of this long promed. Gohl forms an acid oxide, Anso Areric aciel, H AuO, is a work acid, but fomms crsatialisable salts of the alkali metals. These with chlorauric acid, H. InCl 1_{1}, and its salts recall similat compomeds of boron and almminmm. These compommes of copler and gohl are eximuples of many similar cases in which elements of one gronp hatrea distinet resemblaner to those of another. In fact, it follows fiom the gradation in properties both in the series and in the eroups, that each clement must bear a rescmbance more or lass close to the four elements next it in the fanily and the series to which it belongs. But apant from this there are apparently irregnlar likenosises, as that of thallium to the alkali metals, of chronimm to alumimm, and of titanimm to iron. Indeed, the periodie law places mangatiese in the same group with the hatogens with which it has very few atfinities, and separates it from iron, nickel, and eobalt which it resembles much more; so that for practical pmopes (for chemical analysis, etc.) this classification needs to be considerably modi-
fied. But a careful sturly of the whole system will show that to a huge extent the properties in common which fustify the matural classification of the mements are the propertios upon which the analyst depends for the practical separation of the elements into groups and families.

The use of the periorlic law in settling donbts with regand to the choice of combining weights is obvious. The equivalent weight of bergllime was fonnd to be $4 \cdot 5$. In its chrmical properties it was fomm to resemble boron amd almuinum, its oxide would thus lave the formula $\mathrm{Br}_{0} \mathrm{O}_{3}$ wiah $\mathrm{Be}=3 \times 4 \%$. But the element showed closer relationship to magnesinm. In opter to be classed with this mement its oxile must he Beo (like MgC' with $\mathrm{Be}=$ $\because \times 4 \%$. A determination of the specific heat of the element (1).12) fivoured the first valne ; for $\frac{6 \cdot 3}{0.2}=15$. The classification by the periorlic law settles the dithenty. An element with combining weight $1: 3.5$ would cones bretween carbon and nitrogen where there is nu phace for 1 . With the combining weight 9 it comes between lithinm and boron, and here there is a vacant phace for it. . The priodic law has also been used in predicting the properties of moliseovered elements anl their compounds. Gallimm, seamdimm, and germanimm have been discovered since Mondeleetf puhlished his I'eriodic Lam, of the Elements with its aceompanying description of the properties of eloments which wonld fit in hetween calcium and titanimm, and hetween zine and arsenic. The follow. ing parallel deseription (from-Richter's Jnorganic Chemistry) shows the remarkable agremment in the case of germinimm between the predicted * ant the discovered elements:-

[^10]Combinit
Density,
Combinin Form of Sp. gr., 4 Easily ol with ca
Dirty gri ditlicult when h
Will for which probable
Its sulphi in wate ble in a
Will be : acids.
7. Re change i temperate under ce ditions : are perature. point in and form raised, the When bat in a curre

[^11]Eкa-Shaton, Fs.
Combining wt. abont 72. Density, $\mathbf{5} \%$.
Combining vol., +13 nearly.
Form of oxide, EsSO_{2}.
Sp. gr., 4•7.
Easily obtained by reduction with carbon or sodiam.

Dirty gray metal, fuses with ditliculty, forming the oxide when heated in the air.
Will form a chloride, EsCl_{4}, which will boil near 100°, probably lower.
Its sulphide will he insoluble in water, bat probably soluble in ammoninm sulphite.
Will he seareely acted on by acids.
(Ebrmanich, Gfo.
Combining wt. 72.32 and $7=28$.
Density, 56 69.
(ombining vol, l:3\%\%.
Forms an oxide, CeO.
sp. gr., 4.703.
Easily obtained by reduction with carbon or hydrogen.
A gray-white metal, fusing at $900{ }^{\circ} \mathrm{C}$. and forming the oxide when heated in air.
Forms the chloride, (ieCl ${ }_{4}$, boiling at $86^{\circ} \mathrm{C}$.

The sulphite is molerately sohble in water, more read. ily in ammonimm sulphide.
Noit acted on by acids.

7. Reversal of Chemical Changes. -Chemical

change is influenced by varions conditions, such as temperathre, pressure, etc.; and chinges which gn on under certain conditions may be reeorsed when the conditions are changed. Snch reversals of chemical change are quite commonty bronght abont by change of fomperature. If moremy be heatel to near its boiling point in air or oxygen it slowly combines with oxygen and forms the red oxile. If now the temperature be raised, the oxide is decomposed again into its elements. When hatimm monoxide (BaO) is heated to about 300° in a current of air, it combines with the oxygen of the

[^12]- air and fumms the dioside (BaO a). But, wher the temperathere is mased, this rhange is remosed, the dioxide
 has luran taken of this reversal in Prin's method of manufacturing oxyeron from the airs. Vaphations reprasenting such revershbe actions are, like alophtaic equations, true when reall either way, as:-.

$$
\begin{aligned}
& {\left[B _ { 1 } \left(1+\left(1=1 B_{i}()_{2}\right.\right.\right.} \\
& 1 B_{i 1}()_{2}-1 b_{i}(1+1)
\end{aligned}
$$

/ issociation hy heat into graseons froluets which reeombine when the tomproture is lowered emes under the heral of resersible chateres. The deroropesithon of hatiom
 reomblanes when the trmprotate is lewerel. But a wpical example of dissordition is seth in the cease of cmmmonium rhluride, the gres density of whets was fommt
 that is, a given weight ermpined twice the erolenhated volmme: This surserested the ideat that the donble volmme is dare (1) the decomposition of the ammonimm chloride into two sases. 'This ean be proved to be the case by a simple experiment. Ihat a little ammonimm chloride in a conerol platiman emeble motil it is volatilistat. Remove the condr and insert guickly it strip of moistened hhe litmos piaper. It is turned red. The ammonimm chboride was dissuciated into ammonia and hyilrochloric acid. The formar, being the lighters ins, litinsed ont more rapiolly, so that the remamber was acid in reaction. By a more complicated apparatas the separation by diffusion ean be effiected in such it way as to show the presence of wach of the gases. Phowhorus protachorian, PCl_{5}, is atr example of a volatile substance which dissociates
partly but mir theoret The spe by expx

The $\mathrm{s} x$ phospho it may pentach the disso by the: chlorine. stronger. reversal

Chemi condition decompos carbonate goes on 1 to abont

[^13]partly into the trichloride and ehlorine when volatilised, but more mat more as the temperatmre is wased. Its
 The specific weights at difforent tomperatmes as found by expriment wre given in the following table :-

Trmivatithe.	Spretaie 11.
150 ${ }^{\circ}$	$50-5$
190°.	+9185
$200{ }^{\circ}$	4.55
$230{ }^{\prime \prime}$. $4.30 \cdot 3$
250	. 3.3011
$\therefore 76$. 3-3.t
288	367
$25!$	
$300{ }^{\circ}$.	. 3 (6i)

The specitic weight of a mixture of eqpal volmmest of phosphorus trichloride and chlorine is $\mathbf{3} \mathbf{6} \mathrm{fl}$; fiom which it may be conchuded that the dissociation of phomphorus pentachloride is almost complete at 288°. In this ease the dissociation is evilfat to the eye, as it is accompaniont by the alpearance of the sreenish yellow colone of free chlorine. As the temperatme rises the colon becomes stronger, ahl as it falls it becomes weaker ngin owing to reversal of the chemical change.

Chemical changes may also be limited and reversed by conditions of gaseons pressure. This is seen in the decomposition of calcinn canbonate by heat. If calcinm carbonate be heated to 930° in a vacumm, decompesition goes on until the carbon dioxide exerts a pressure eqnal to about 520 mm . of mereury. Then the decomposition

[^14]| emates mbless the pressure of the carthon dioxide is lowered. On the other hand if the pressure is increased, recombination takes phace until the pressure is ugain equal to 50.2 mm . In "burning" limestone it is necessary to rmove the carbon dioxide as it is sut free, otherwise the Acomposition would cease as soon as the pressure of the gas reached a certain limit. This removal is effected by the free draught of hot gases through the kiln.

Another important condition influencing chemical change is the relative quantities of substancen present, i.e. the action of mass. When a solution of bismath srichloride in water is diluted with water, a white ;recipitate appears, which increases with the quantity of water added. It is an oxychloride of hismuth formed by the action of the water:-

$$
\mathrm{BiCl}_{3}+\mathrm{HI}_{2} \mathrm{O}=\mathrm{BiOCl}^{2}+2 \mathrm{HCl}
$$

If mongh hydroch!oric acid be added the precipitate is molissolvel ; i.e., the change represented by the equation is reversed. The addition of more water canses the precipitate to veapmear, and so on. Here, then, is a case in which the direction which a chemical change is to take is Wetomined by the relative masses of the reacting substances. If in a solution of bismuth trichloritie the proportion of water to that of hydrochloric acid exceeds a certain limit, the water is able to decompose some of the bismuth trichloride; but, by then : asing the proportion of hydrochloric acid the action is reversed and the trichloride is formed again. Another good example of mass-action is seen in the oxidation of iron by heating it in a cmrent of steam, When iron is heated to redness in an atmosphere of stean the iron is oxidised
nad hydrogen is set free. But, if max oxice of iron is heated in andermosphere of hydresen, iron is rembend and water is formed. This goces on until the atmesphere enthtains certain proportions of hydrogen on! Water, and then no further reluction takes place. 'I'he samm limit is reached when iron is heated in an atmosphere of water vipour. It is therefore possible to make a mixture of hydrogen und water vapour which will urither oxidise iron nor reduce oxides of iron. If in such a mixture the proportion of water vapour is increased, the mixture becomes capable of oxidising iron at ared heat; but if the proportion of hydrogen is increased, the reverse action, viz., the rednction of iron oxides, is bronght about.

The influence of mass on chemical change is much more extensive than was at one time thought. Chemien! changes can be brought about which were formerly thought to be impossible. Chlorine easily disphaces bromine from its compomels with metals, and at first sight it would seem impossible to reverse this smbstitution; but if sodium chloride be heated in a rlosed tulo with bromine, a certain propretion of the chlorine is displaced by the bromine, and this proportiom is increased by increasing the quantity of bromine in the tube. Hare the action of mass is very plain.
8. Raoult's Law.--. It is a well-known firct that salt water requires a lower temperature to frecze it than pure water does. The freazing point of solvents is in gerneal lowered by the presence in them of dissolved substances; and the mount by which the freezing point is lowered is, for the same substance, aproximately proportional to the percentage of the dissolved substance*. Thus the freez

[^15]insempints of aquents solntions of somimm ehloride con－ taining 1 ． 5 ，amb 10 gams of the salt to 100 of water are

 of dimarent compmonds are comparal，a remarkable law appears．Fow very tilate solations，the freczin！pmint of an！y solvent is lomerod to the same ertent by weights of the dissolved componmels proportional to the combining weights． The following table＊shows tha ： 1 品roximation to exact－ uess of this law when water is the solvent nsed．Lee begins to form in apreons sohations at the temperatures given in column III，when 1000 gramas of water contain the combinins weight（in grams）of the dissolver sub－ stallese（eolhman｜l．）

1．		$\begin{aligned} & \text { Il1. } \\ & \text { Furz:/inu } \\ & \text { fous. } \end{aligned}$
Methes I Meohol，（ H_{4} ，	22	$-1 \cdot 73$
Glycerine．（\％ H_{4} ）$_{\text {\％}}$	（1）	－1＊71
	34.	－1．85
	9	－1㐌 ${ }^{\circ}$
Acetid Meid， $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{C}^{\prime}$ ．	$(61$	-1.90
	911	$2.23{ }^{\prime \prime}$
1：	71	－1 $6 i^{\prime}$
Hydrocyanie Acid，HCN	$\because 7$	-1.94^{\prime}

By means of this law the combining weights of com pounds can he：determined．Thas，analysis of lactic acid leads to the formala（ ${ }^{\prime} \mathrm{H}_{2}$ O，as expressing its composition． But，it hats bern found that three times the weight（in stams）inticated by this fommata lissolved in 1000 grams

[^16] er are mbers aflects la law cint of of the eights. exact-

Ice
of water lowers the freezing print of water to - $1: 92^{2}$. The combining weight of latetic acid is then indiented by the fummulat ${ }_{3}^{1} \mathrm{H}_{6} \mathrm{O}_{3}$.
9. Van t'Hoffs Law. - W' hen at volatile sulstanter is passeal up into the vacnum of a harometres, the vapent which escapes into the vitumm exerts a pressure upon the mercury and pashes it down a certatin distance. It the temperatmre is rased, more vapour is formed mat the vapour is expanded hy the heat, hoth effeets combining to depress the mercury still further. When the temperature is raised to the boiling point of the substance, the meremy sinks to the same level ats that in the trongh, showing that the pressure inside the thbe equals that of the atmosphere*. For any given temperature, the vapons of a volatile smbstane exerts in this way a certain persine known as its roporer teusion and nsually measured in millimetres of mercury. For example, the vitpone tension of water at $1^{\circ} \mathrm{C}$ is 4569 ; i.e. if water be passed up into a batometer thbe kept at $0^{2} U$, the vapour from it will depress the merenry +569 mm. The vapour tonsion of Water at $100^{\prime} C^{\prime}$ is 760 , i.r. eqpal to the normal pressure of the atmospliere. The presence of dissolved sulistances decreases the vipour tension of the solvent, and aceording to a law precisely like that of Raonlt just mentimed. If ureights proportiomel to the combining weights of compoumds are dissolied in equal quantities of a solvent, the vapour tension of the solcent is lowered by approximutely the same cmornt. As in the case of Ratoult's law, this applies only to dilnte solutions. It is plain that it can be used for determining combining weights.

[^17]

[^0]: *isos, equal : meros, part.

[^1]: * Or, practically, the weights.

[^2]: * Symbo ments. F as to repr

[^3]: *Symbols are letters chosen to represent the combining weights of ther elements. Formulas of compounds are obtained by combining these symbols so as to represent correctly the composition of conpounds.

[^4]: " (Fas IVensity is used as a cremerat term for I he spocitle weight of a substance in the gaseous state. It is consensent, if unt quite correct.

[^5]: - The a elements

[^6]: *The approximation is not very close for many compounts of gascons elements like oxysell and hydrogen.

[^7]: ＂The elements of groul I III．are commonly spoken of as trinsilion oldoment－ becalise they form a bink between the end of one serves and the beximing of another．
 ＇Copper has a higher basir oxirle，Cur）．
 ：A higher acid ovide Lios is known．

[^8]: *The combining capacity of overen is two, as shown by the formula for water, $\mathrm{H}_{\mathrm{O}} \mathrm{O}$.

[^9]: see p. 25.

[^10]: - Called eka-silion by Mentelieff.

[^11]: * Discovere \dagger See p. 20.

[^12]: * Discovered in 1886 by Dr. Clemens Winkler of Freiberg. t See p. 25.

[^13]: "See p. 9.
 I Phowphor pentachloride

[^14]: *Seep. 9.
 \dagger Phosphorus trichloride and chlorine combine in equal volmmes to form the pentachloride.

[^15]: ${ }^{2}$ This applies only to dilute solutions.

[^16]: ＂Gatwald＇s Lehchuch der Allremeine Chemie，Vol．I．，If 415.

[^17]: *This is true only when some of the substance remains unvolatilised up to this print.

