Canadian Architect and Builder.

VOL. V.-No. Ill.	TORONTO AND MONTREAL, CANADA, MARCH, 1892.	$\left\{\begin{array}{l} \text { PRICE } 200 \text { CENTS } \\ \left\{2.00 \text { PRR }^{\text {YEAR. }}\right. \end{array}\right.$

-TEIE-
 Canadian Architect and Builder, A Monthly Journal of Modern Construetive Methods, (With a Weekly Intermediate Edition-The Canadian Contract Record),

 HUDLISHRD ON THE THIRD SATURDAY IN EACH MONTH IN THE INTEREST OH ARCHITECTS, CIVIL AND SANITARY ENGINEERS, PLUMBERS, DECORATORS, BUILDERS, CONTRACTORS, AND MANU. FACTURERS OF AND DEALERS IN BUILDING MATERIALS AND APPLIANCES.C. H. MORTIMER, Publisher, 14 King Street West, - TORONTO, CANADA.

σ_{4} TEMPLE BUILDING, MON'TREAL.

Abstract

 or the United States for $\$ 2.00$ per year. The price to sulscribers in foreign countries, is $\$ 2.50$. Subscriptions are payable in advance. The paper will Le disenoninsed at expiration of tevan paid for, it so stipulated by the splscriber; but where no sach tunderstanding existr, will

ADVEFTYREM RNTE. Prices for advertising sent, prompaly on applicalion. Orders for advertising shonld reach the office of pubtication not later than the tath day or the month, and changes of advertisements not later than the sth day of the month.

RDITON'S ANNOONCEMENTA. Contributious of technical value to the persons in whose intersests this joumal is published, are cordially invited. Subscribers are also requested to forward news. paper clippings or writien items of interest from their respective localities. The "Canadtan Architect and Buitdor" th the ofiolat paper of" ho Archilsctural Assoointions of రntario and Queboc.

The puolisher desires to ensure the regular and prompt detivery of this lournal to every swbscriber, and reguests that anty cause of complaini in this particular be reported at once to the offec of publication. Subscribert who may change their address should also give orompl molice of same, and in doing so, shonff give doth the old and new address.

ONTARIO ASSOCIATION OF ARCHITECTS.

OFFICERS FOR 1892.

President
ist Vice-Presinent
and Vice-President
Treasumer
S. G. Curry, Toronto. King abnolid, Ollawa. F. J. Rastrick, Hanulton. D. B. Dick, Toronto.
council.:

registrak and limrartan :
W. A. Langton Merchants Bank Building, Toronto.

PROVINCL OF QUEBEC ASSOCIATION OF ARCHITECTS.

OFFICERS FOR 1892.

council:
A. 'T. TAYLOK, F.R.I.B.A., R.C.A.

Montrenl.
A. C. Hutchison, R.C.A.
m. perrault
A. F. Dunlor, R.C.A.

Alpit. Raza
Montreal.
Montreil
Montreal
J. F. Peachy

Several of the largest manufacturers of lime in Toronto, Milton and Guelph have consolidated their interests, and wil] hereafter be known as the Ontario Lime Association. Toronto will be the beadquarters of the Association. An effort will no doubt be made to stiffen prices.

The Association of Provincial Land Surveyors of Ontario are applying to the Legislature for incorporation. For some reason or other the Bill which has been introduced with this object has thet with considerable opposition. The influence of this opposition scems likely to also stand in the way of the required amendments to the Ontario Architects' Act.

A CORRESPONDENT writes: "Allow me to congralulate you on the editorial article on cement testing in February issue of Canadian Architect and Builder. Ifor one would be very glad to sec your ideas regarding the establishong of a Government laboratory for testing cements carried out. Should occasion require it, yout are at liberty to use iny natne as liaving been one of the sufierers. I can fully' corroborate the statements contained in your article."

Col. Tracy, City Engineer of Vancouver, B. C., advises us that it is the purpose of the council of that city during the approaching summer to commence the use of bituminous rock pavement. This material, which will be imported from Southern California, is described as being a good deal like asphalt, with the exception of being elastic, giving a good foothold to horses. Our informant regards it as being almost an ideal pavement. The success of this material will be watched with interest by other cities.
A. CORRLSPONDENT writes from British Columbia concerning Christ Church Cathedral competition, Victoria, B.C., is follows: "All designs received at this end are being forwarded unopened to the Church House, Westminster, Eng, where those prepared by English architects will be received. They will then be enamined by Canon lecaulands and Mr. B. Ferry, architect, and the ten most suitable designs will be submitted to Sir A. W. Blomfield, whose decision as to the merit and award of prizes will be accepted by the plans committee. Some local arclitects have competed, but we believe many others have held aloof, not altogether liking the conditions of competition."

ISuilding operations in Montreal promise to be somewhat extensive during the approaching summer. Strong efforts have been made for a year past by certain real estate speculators to boom suburban properties, and in spite of the experience of Toronto, the older and more conservative city has slown itself to be susceptible to the boomster's art. It is unlikely, however, that speculation in land or building will be carried to anything like the pitch attained in Toronto during the recent period of infation. While anything bearing the least resemblance to wild-cat speculation ought to be severely discouraged, every possible encouragement should be afforded to legitimate building enterprises.

THE Ontario Association of Architects will holl the first examinations under the Act of Incorporation at the School of Prictical Science, Toronto, on the $5(\mathrm{~h}, 6 \mathrm{th}$, 7 th and 8 th of next month. Three cxaminations will be held at the same time, the first and second intemeriates and the final, and there are some sixty candidates coming forward to undergo the tests of their proficiency in the various stages. The Board of Examiners consists of seven members: Prof, Galbraith, chairmain, ind Messrs. C. H. C. Wright, E. Burke, R. W. Gambier-Bousfield, S. G. Curry, F. Darling and S. H. Townsend. This is the firs! of a long series of examinations, let us hope the result of which will be that the danger the public are now in, of falling into the hands of unskilled practitioners, will in time be done away with. Now a youth must perforce go ilnough a regular course of training, passing examinations at certain stages to test his progress and show him in what particulars he is weak, until having passed the final examination, he may practise his profession with honor to himself and for the gond of the public.

The architectural students of Ontario are at present on the anxious seat in view of the approaching April examinations. Many architects now in practice regret that such examinations were not cquired of thein during their studentship. Students of the present day should, therefore, appreciate the facilities which, under the Ontario Atchitects' Act, lave been placed at their disposal for acquiring a proper knowledge of architecture. With the object of assisting students who shatl present themselves as candidates for examination, we publish a paper on "Heating and Ventilation," by the President of the O.A.A., Mr. S. G. Curry, and also a paper on "Elements of Building Construction" and "Structural Iron Work," by Mr. E. Burke, recentlv read before the members of the Tolonto Architecturial Sketch Club. The authors have been appointed examiners in the suljects treated of in their respective papers.

It is every day becoming more apparent that the activity which was expected to mark the coming season in Toronto in consequence of the changing of the street railway system and the construction of permanent pavements on the leading streets, will not be witnessed. The Council are in a lair way to spend the balance of the year in discussing the merits of the trolley versus the storage battery system of street car propulsion, notwithstanding that their experts reported in favor of the trolley, and in the face of the fact that the experimenting which bas been done by Americin cities points to the trolley s) stem as being at present the only one which can be depended on to do the work satisfactorily, especially where heavy grades and heavily laden cars are among the difficulties to be encountered. It is right enough that the Council should endeavor to make provision for the adoption of a system more perfect than the irolley, should such be made available before the period of the present company's franchise shall have expired, but they are not justified in throwing over the carrying out of this great insprovement for another yeitr when the evidence all tends to show that no corresponding advantage is likely to be gained. The outlook for the building trades is none too encouraging. There is consequently the greater ieason why the City should endeavor to afford cimploynent oll as extended a scale as possible to artisans and latborels.

This is not the first time that we have taken occasion to speak of the Mechanics' Lien Lav and its many disadvantiges. The act remains in force, and as long as this is the case there will be leard from atl sides complaints of its cumbersomeness, expense in procedure, and its incomprelensiveness. We bave more thon once heard it said by "persons in authority" when asked to explain some part of the Lien Laiv, "It's not surprising you don't understand it, for noboty ever did." This issertion is, of course, an exaggeration, but it has a great deal of truth in it. Surcly then it is time to amend a law that has such obvious fatws in it. Many people, and among them lawyers of eminence, contend that it would be better to abolish it at once. The fact is, the system on which the law is bised is wrong. It encourages fraud, as it attempts to leyislate for credit, giving considerable opportunity for dishonesty. It fosters speculative biilding, and dishonest builders have not failed to take advantage of i, causing an amount of distress, annoyance and embarassment that it would fill volumes to dilate upon. Were there no Lien Law, there would not be much credit. But under the existing state of things the material man prefers to sell his goods on credit and run the chances of being able to protect hinnself by a lien, to not selling anything, the man who gives credit being the one who secures the orders. The material man can come down on the innocent owner, and so can the workinan, and force him to pay again that which he has already paid the builder who lias absconded, for the percentage retained in making advances to the builder rarely are sufficient to cover the whole costs. The system of credit is bad, but this plen of safeguarding the man who gives credit in order to sell his material is worse.

Much has been heard of the danger attendant upon the system of stringing electric wires overhead, and reiterated demands have been made that all wites be placed underground. It is questionable, nowever, whether the carrying out of this demand would not tend to entance rather than diminish the danger. An example of the peril which is likely to attend the underground system occurred in Toronto a few days ago. Hlluminating gas from the street mains found its way in sufficient quantity into one of the man-holes in the public streets through which passes a telephone cable, to require but the faintest induction spark from the covering. of the cable, or a spark of atmospheric electricity to cause an explosion. The spark appears to have been forthcoming, for suddenly the heavy iron man-hole covering which liad been firmly bolted down, was torn from its seat and carried into the air. A horse which was being driven past the spot at the moment fell into the man-hole, and before it could be extricated there occurred a second explosion, burning the animal severely. The driver of the horse and another person who happened to be near the man-hole when the explosion occurred escaped with slight injuries. It is a wellknown fact that ibout 10 per cent. of the total supply of illuminating gais which goes into the street mains leaks out at the joints and saturates the carth. This gas must find its way into the
man-holes, and when the right admixture of gas and air is reached, the miterial is rendy for an explosion. There is always danger with underground wires that the inductive current set up in the lead covering of the cable may become sufficiently strong $t 0$ generate a spark which would he the meins of igniting the combustible materials. Had the explosion to which we have referred taken place in the man-hoie at the intersection of King and Yonge streets, where the traffic is always great during husiness hours, there would in all probability have been many persons killed. The daily press which has so often held up to view the horrors of the overhead system, should now have something to say on the other side of the question.

A very singular case bas been before the courts for some time, and it will be probably many months before we hear the end of it. As it contains points of considerable interest, we give the story as far as it has gone at present. Three prominent men of Waterford, Ontario, built a block of business premises on the main street of that town. The boundaries of the street had not been definitely decided, but when they were, it was. found that the new block encroached some six fect upon the street. The owners of the building were proceeded against for allowing a nuisance and were fined. They appealed, but the resula was an order to remove the "nuisance" within three months. This they failed to do, and the County judge allowed n writ of dic noctumento amovendo to issue, which enjoined the sheriff to pull down the projecting part of the block at the owners' cost. The barrister in charge of the owners' interests held that the County judge had not the power to issue this curious writ, but that it was a matter for the High Court. He succeeded in obtaining a writ of cerfiorari during the recent term, so that proceedings were stayed on account of the irregularity, and will proceed during the ensuing term to apply for a rule misi whereby the present proceedings will be quasied. The case gains interest from the fact that the writ of de nocumento amovendo is said to be the first that has been issued for a hundred years. The matter may still be brought before the High Court, and if so, the owners are liable to a fine of almost any amount, and repeated fines until the "nuisance" complained of is removed. There seems to be a difference as to the term which may be applied to an encroachment upon adjoining property, for there is a cise recorted in which, by a mistake, a house was erected with one side wall, just its thickness, nine inches, on the adjoining lot. In this case the owner was proceeded against, not for a "nuisance," but simply for encroachment, and when the sheriff was ordered to tear down the wall he found he could not do so without injury to that part of the house touching the wall on the other side, and cleany within the lot of the house ouncer. He had no right to enter upon the lot or touch anything therein, and so far as we lave been able to discover, the matter had to be left in this state.

OUR ILLUSTRATIONS.

HOUSE FOR A. R. REID, ESQ., MONTREAI_-AL.EX. C. HUTCHISON, ARCHITECT.
This building was creeted in Upper Drummond street some eighteen months ago. The fronts are of red Scotch and red New Brunswick sand stone. It is at present without the library shown on the plan, but it is proposed to make this addition during this year.
ChURCH OF THE MLSSSIAH, AVENUE ROAD, TORONTO.-GOIRDON \& HELLIWELL, ARCHITECIS, TORONTO.
SKETCH OF SUMMER RESIDENCE ON TORONTO ISLAND-DANGLEY \& UURKE, ARCHITECTS, TORONTO.
INTERIOR OF HALL, F. D. MONK'S RESIDENCE, MONTREA,-J. W. \& E. C. HOPKINS, ARCHITECTS, MONTREAL.

OBITUARY.

It becomes our painful duty to chronicle the death of Mr. John Webb, one of the oldest, most prominent, and most highly estcemed contractors of the Clyy of Hamilion. Death was the resull of n severe athack of rheumatism, empminating in severe spasms of the hearr niter an ilimess of seven weeks. The subject of this notice was born near Hythe, im Kent County, Enghnd. He came in this country in a871, and immedinaly entered into businuss in Hamilton is a contractor and buikder. Among the buildings erected by him may be inentioner the 7 imes buikling, Ryerson setwol. West Avenue school. Canada screw works, James McPherson a Co's building, the buildings oceupied by Messre. F. W. Fearman \& Son, Thos. Litwry \& Son, W. H. Gillard \& Co.. St. John's Chureh, the Tucketl 1obacco factory, and others which were both a credit to him and to the city. Hut heives a widow ind nine children. four sons and five daughters. Deceased wis a member of Doric Lodye. A, F. \& A. M., and a charter member of Gore Lodge. A. O. U. W. For a number of years he was an active mem. ber of the Charitabte Commitior of SL. George's Society He was noted for his uprightness of chameter and kindliness of disposition.

PUBLICATIONS.

Messry. H. R. Ives \& Co., have irsued an aumetively printed litte book. convellished with a number of humorons illustrations, calling allemion to embeanvantuges of their Butfalo hot water boiler, corrugated soil pipe, etc.

Elizabeth Bisland opens the March number of the Cosmopolitan with an articie on the Cologne Caibelral. benutifully iflusirated from photographs. M. H. de Young. Commssioner of the World Fair frons California, has a mosi interesaine aricte on expositions. Fenn and adequately display to the
this articke nee from the pen of Harty renders the architectural glories of the Fair buildings.

CANADIAN CITY ENGINEERS.

 v.Hurd Peters; City Engineer of Saint John, New Brunswick, was born at Fredericton, N. B., being one of the younger sons of Hon. Charles Jeffrey Peters, Attorney-Gencral of that Province.
After passing through the Collegiate school (silver inedal) Mr. Peters took his dlegree of A.B. and A.M. at King's College, from the University of N. B. (gold medal). He also took his diploma at the special course in engineering at that time instituted under Mr. Cregan, C.E.
After having been employed on the European and North American R. R. between St. John and Vanceboro and on what is now the Intercolonial, between St . John and Moncton, as leveller, he spent some time working in the United States.

In 1854 , in partnership with I. Edvard Boyd, M.I.C.E., who recently died while in chatge of the harbor works, Quebec, he opened an office under the title of Peters \& Boyd for private practice in St. John. When Mr. Boyd subsequently took a position on the government railways, Mr. Peters continued in private practice until April, 1861, when he was appointed City Surveyor. Two years later, July, I863, he was appointed City Engineer-that office being then for the first time establishedand has so continued to the present time. He was one of the first Council of the Canadian Society of Civil Engineers, and his name appears in the Act of Incorporation.

The record of Mr. Peters' work is to be found in the present state of the city, for which he has been engincer for some 30 years.
Mr. Peters has also taken an active part in militia affairs, having retired with the rank of Lieut.-Col. 2nd Battalion St. Jolan County Militia. He has likewise filled positions of trust in connection with the Episcopal Churcli.
Mr. Peters had his residence and office with all his plans and memoranda, destroyed in the conflagration which overtook St. John in 1877.

QUERIES AND ANSWERS.

"J. B. R." writes as follows from the Northwest Territory: "It was the intention of the company with which I am cmployed as superintendent of construction to build concrete, but for different reasons the company changed to frame and rough-cast. This left a large quantity of Selkirk lime on hand. Last fall I dug a large pit $14^{\prime} x$ $12^{\prime} \times 2^{\prime}$, and ran it full. After covering it with a good layer of sifted sand, I placed a rough floor over this, then another layer of sand and protected this again with manure. Will I meet witl as good results when I require it as if I had left it to air slake? I was never placed in this position before, but was once told by a stone mason that the longer the lime lay in this state the better."
[ANs.-Storing lime in the manner mentioned by our corres* pondent is calculated to improve rather than to injure the quality. In England lime is frequently stored in cellars for the purpose of improving it. When thus trented it is called "putty lime," and is chiefly used for finishing. Unless the lime has suffered from the severe frosts, it will no doubt be found all right, and we would advise our correspondent if possible to keep it for finishing purposes. It will be found to be cool and will not crack.-ED. C. A. \& B.]

PROVINCIAL LAND SURVEYORS.

THE seventh annual meeting of the Association of Provincial Land Surveyor of Ontario, was held in the Canadian Institute, Toronto, on Fed. 23rd, 24th and 25 th. In addition to the transaction of much important business, papers were read as follows: "Cement and Cement Mortars," Mr. J. Butler, P.L.S., C.E., Napanee, Ont; "Does the Passing of an Act of larliament Alway do Justice ?" A. Niven, P. L.S., Haliburton; "Hints to a Surveyor About to Survey a Township for the Ontario Government," W. R. Burke, P.L.S., Ingersoll, Ont.; "Compass Lines," John McAree, D.T.S., Toronto; "The Value of Old Records in Relation to Municipal Surveys," Geo. B. Kirkpatrick, P.L.S., Crown Lands Dept., Toronto ; "Sewerage for 'Cowns and Villages," H. J. Bowman, P.L.S., C.E., Berlin, Ont.; "Georgetown Water Works," James Warren, P. L.S., C.E., Kincardine, Ont:; "Hamilton and Barton Incline Railway,"J. W. Tyrrell, P.L.S., C.E., Hamilton, Ont.; "Storage of Water on the Trent

System," R. B. Rogers, P.L.S., C.E., Peterboro", Ont.; "Exploring for Nicikel," C. E. Fitton, P.L.S., Orillia; "Railway Surveys," H. K. Wicksteed. P.L.S., C.E., Cobourg, Ont.; "Rock Blasting of Trenches for Water Works and Sewerage Purposes," A. L. McCulloch, P.L.S., C.E., Galt, Ont.
On the evening of the 24th inst., a pleasant time was spent by the members at the annual dinner of the Association, which took place nt the Arlington.

AMATEUR DECORATING.
 By W. H. Elliort.

I Nomiced a paragraph a short time since in a daily newspaper in which the writer bewailed the slavery into which suffering humanity had fallen to the autocratic decorator. "People," said he, "no longer embody in their rooms their own taste, and are denied the opportunity for displaying to admiring friends their admirable traits of character; on the contrary, a woman of simple tastes is put into a georgeous boudoir of extreme French design and so on." The perpetual hunting for a grievance in writing on esthetic matters is at times very wearisome, especially in view of the fact that in most cases the faultfinding with existing conditions is not bonne out by actual experience. The cry for something different continually goes up, though Heaven only knows what different is wanted. If French ideas are introduced the good old English simplicity has gone for ever. If solid English design is used the asthetic grumbler sighs for the lightness and greater artistic beauty of the French. And now we are told that the helpless public has fallen hopelessly into the hands of the professional decorator, and what an unfortunate thing it is that one cannot choose one's surroundings for one's self, as if we do not all know that for a decade past the decorating amateur has revelled in a reign of terra cotta and muddy green to his heart's content, producing the most thrilling effects for those who responsively thrill. And it is only that we have emerged at last from this periorl of indefiniteness and taken up something requiring knowledge, skill and caution in its handling -I say it is only for this reason that our asthetic lsraelites are lamenting their captivity and the end of their muddy period. Now it is not true that the decorator usually serves all people alike without regard to their charncters, tastes and positions. In a great many cases he has a clearer idea of what will suit his clicnt than the client can possibly have because of his inexperience and lack of knowledge of many possible variations in the treatment of his rooms. In how many cases does the ambitious householder see an effect in somebody else's house or at an hotel or in a pullman car which if not modified or tabooed entirely by the decorator, would be appropriated for the house and lay the householder open to the ridicule of every one of good taste. We feel a tender pity for the man who commits himself to the "every man his own architect" sort of influence, but the results consequent upon every man becoming his own decorator are quite as sorry and frequently more palpable because of the lack of examples to follow, such as every builder of houses has in the houses already built.
The refined and classical styles at present in vogue calling for decorative taste of the highest order, cannot be successfully played with by ambitious amateurs, and yet may be safely used in some one or other of their variations to suit almost anybody's taste and pocket book. What more can we ask than that, after providing a suitable background, he leave to our individual tastes the many little accessories, that more than the walls and ceiling may be made to exhibit an individuality and preference. Prettier rooms by far will be made for the next few years than have been made in the preceding ones, and the effect will rarely be marred for the lack of interference on the part of the amateur decorator.

Messrs. Evans, Cotenan \& Evans have been appoinked agents at Vancouver for the British Columbia Term Colta Co., of Victoria, B. C. The company have produced some fine samples.
A patent Spanish tile made of copper and tim is being manufactured by Merchant \& Co., of Philadelphia. Among the advantages claimed for them is that they are much lighter nad more durable than tiles unade from clay.
The Manitoba Stone and Asphath Paving Co. have started business in Winnipeg. It is their intention to engage in the manufacture of tiles, to construct asphalt pavements, and act as ngents for American manufacturers of pressed brick, over-mantels, etc.

" ELEMENTS OF BUILDING CONSTRUCTION-STRUCTURAL IRON WORK."

The following lecture to first and second intermediate students on the "Elements of Building Construction," and to second intermediate students on "Structural Iron Work," was deltvered at the Totonto Architectural Sketch Club by Mr. E. Burke, examiner in the above subjects:-
In presenting a paper on the elements of building construc tion before the first year students, the brief lime at my disposal will permit of but a rapid and cursory presentation of the subject. In fact, the most of your work is so admirably covered in Mitchell's "Elements of Building Construction" that I will avoid a repetition of the points there covered, and endeavor to touch some not mentioned-especially where Canadian methods differ from those in vogue in England.
Prof. Aitchison in one of his recent lectures said: "Building consists in putting the materials we have at command in certain positions, and giving them certain forms. The size and shape of these forms depend on certain statical considerations. Arithmetic, mathematics and geometery can alone enable us to solve the necessary statical problems ; so these elements must first be mastered to enable us to solve the statical problems that present themselves. Next comes the knowledge of the strengths and capabilities of the materials we have to use." Fortunately we now live in times when these sirengths and capabilities are being determined with more accuracy than in the past, although we have to admit that most of our data is so indefinite that we are compelled when we build to employ what is called "factor of safety," which in reality is a "factor of ignorance." For instance, a benm of a certain scantling is supposed to break under a strain of a certain number of pnunds. As a matter of fact it may break at half that amount, as was demonstrated at the School of Science during our late convention. Hence it is usual in our constructions to allow from 5 to 10 limes the supposed breaking strength of a material for a so called " factor of sufety."
The first point in commencing a building is the question of the mature of the soil or bed upon which the walls are to rest. If this be of rock or of some compact dry substance which is comparatively unyielding, it is called a natural foundation and may be built upon directly. But if the ground is too soft to bear the weight of the structure reguired, it vill need an artificial foundation. This may be obtained in a variety of ways: First, by planks in two or more thicknesses laid reversely and of sufficient breadth to sustain the weight above without undue settiement ; second, by a bed of concrete of sufficient depth and widtl! ; third, by piles driven to a solid bottom, cut off evenly at tops to receive plank, concrete or stone fooings; and fourth, by a gridiron of steel rails as developed by the necessitics of Chicago building operations, where great spread is required in proportion to the height available for the footing courses. Where planks or piles are used, it is imperative that they be constantly submerged in water to prevent decay and the eventual collapse of the foundation of the structure. Footings should oot project more than two-thirds of their thickness beyond the work above, and at leas! two-thirds of their width should be covered by the work above. Good rubble walling should be composed of stones thin in proportion to their length and breadth. The centre of gravity should be observed in placing the valls upon the footings and base of the building, allowance being also made for the weight of floors and partifions. In placing columns carrying weight it is of the utmost importance that they should be centrally placed. The non-observance of this rule was one of the causes of the accident to the Montreal Y.M.C.A.
The various bonds of brickwork used in England are clearly explained in "Mitchell." American bond, called "Stretching" or "Chimney Bond," is only recommended for $1 / 2$ brick walls; while t makes a weak wall it certainly produces a much better appearance in a 9^{7} wall than any other method of laying. A wall of this thickness having headers cannot be built smooth and even on both sides, as all bricks vary more or less in length. The diagonal bonders every 5 th course give a wall built with this bond as much stiffness as is necessary for a wall of the limited height to which one this thickness slould be carried. This bond also lends itself to the construction of hollow walls where one shell is but a half brick thick and can be bonded into the rest of the wall with hoop iron ties which should have a dip to prevent the water of condensation being carried to the inner thickness of the wall.

Mitchell speaks of built up wooden beams, that is, beams made up of several thicknesses of stuff, in connection with temporary structures chiefly, and that they are economical. In our practice this method of construction is considered superior to solid beams. Among others are the following reasons:-The material being of thin stuff, defects can be more readily detected and a superior quality secured. With several thicknesses the change or reversal of the grain thus obtained helps the stiffness of the construction, and by a system of splicing or breaking joint, no two joints coming opposite, long spans may be covered uch as the tie beams of roof principals. And lastly, the wood may be obtained better seasoned.

Much of the splicing, cogring, jointing and morticing dealt with in Mitchell is practically obsolete in this country, much better results being obtainable by the use of wro't iron bolts,
straps and stirrups, the use of which avoids the inevitable weak ening of parts which should be the strongest. The high rate of wages is also prohibitive, as the making of the joints illustrated would consume an immense amount of time, which in these days is, indeed, money. At the same time a great deal of the common class of work of 10 -day is to be deprecated,-there is too much tendency to "knock things together," superinduced by the craze for cheapness and inordinate haste, after the example set by our restless cousins to the South who use the almighty nail and trust it implicitly. With us deep joists are so rendily obtainable that we do not need, as a rule, to resort to the English method of beams at comparatively short spacing and light joists with a counter ceiling to conceal the beams: a method wasteful as to height and creating in the large hollow spaces a very paradise for vermin. The practice of bevelling the ends of joists to prevent injury to the walls in case of fire is not mentioned, but is a very necessary precaution, perhaps more in regard to the prevention of loss of life and spread of fire than in the mere saving of the walls themselves. None of the methods of jointing flooring equal ours for adaptability, simplicity and ease of laying. Much of the ordinary work in England is with out jointing, permitting dirt and moisture to drop to the ceiling or floor below.

In regard to roofs, the student must be warned against the examples in "Mitchell" where gutters are formed behind parapet valls. The only successful roof in our climate is that which permits the snow and ice to bave free escape to the ground. To this end valleys should have ample space at the foot, enlarging as they approach the eaves, and gutters should invariably be set low enough to pernit snow to slide off without obstruction. A bell-cast at the foot of the rafter will accomplish the same object. Facias should also project sufficiently to have a drip clear of the walls beneath.

Slates or tikes must, with us, be laid upon a solid substance. The English method of setting upon bhttens would permit our Gine dry snow to blow in, and the extreme cold outside and the heat inside would cause condensation on the under-side resulting in wet ceilings. The roof principals illustrated, are entirely of the low pitch type, but a mastery of the principles of their construction will enable the student to soon grapple the points of other forms. The method of constructing principals with wooden king and queen posts is now practically obsolete. The greal number of joints results in considerable shrinkage unless constantly tightened up, resulting in sagged roofs and strained walls. Roofs of composite construction are now in general use, where at least the king or queen bolt succeed the posts of the same name.

The practice of battening walls for the sake of warmth and dryness is not mentioned and does not seem to be usual in English practice. It seems strange that in such a humid climate some more successful method than that of the hollow wall has not been introduced. The hollow wall does not thoroughly meet the necessities of the case, inasmuch as a certain proportion of the wall, as at piers, openings, \&c., must be solid. The hollow wall has the advantage of permiting a more solid job of plastering and should be used in work likely to meet rough usage, but it cannot compare in dryness and comfort with the battened wall. The disadvantages of the latter are, however:-Ist, the danger of conveying fire through several stories; and and, the opportunity for the free passage of vermin. Both these contingencies however can be avoided by proper breaks or stops a all floors and ceilings, either by sailing courses of brick, or by horizontal battens at the ceiling and floor line.

Mitchell's chaptet on joinery conveys practically all the information necessary in the ordinary experience of an architect's office, and a careful perusal is recommended.

The following is an outline of the work' with which the ist and 2nd intermediate students should be familiar in connection with the coming examinations on "The Elements of Building Cunstru:tion:*
1: The various bonds in brickwork in ordinary use, offsets in footings, gauged arches of various forms and inverted arches, trimmer arches for fire-places, corbelling.

Sketches of mason work showing uncoursed and coursed rub. ble; ashlar and the proper bonding of the same; window sills, stone heads, strings, copings and quoins ; methods of connecting stone by cramps, dowels and joggles.

Show how to scarf, mortice, tenon and build up timbers as applied to plates, roof timbers, beams and partitions.

Draw simple roof truss, king or queen post or rods, with details of framing and iron work.

Draw floor beams, joists, trimmers and coverings, or floors single and double : a framed partition with a door opening in it.

Drav a section of door and window frames, the latter boxed, cascment or lead glazed; section and elevation of plain, panel. led, moulded, raised panel and bolection moulded doors.

Show how to flash on a felt and gravel mof, and also the flaslsings of a sloping roof at parapet walls; also construction of gutters suitable for this climate.
In the Second Intermediate the student should also be able to draw sections of various forms of cast and wro't iron columns to draw sections of various forms of cast and wro't iron columns,
the latter built with Z bars or, angle iron; section of head and foot of superimposed columns showing method of connecting.

Explain the various strains to which iron is subjected in buildings.

ct and ßuilder.
[No. 3 .

Vol. v.]. Jthe Qanadian \nrightarrow rchitect and 『uilder.

Show section of wro't iron girders and connections of cross beams ; proper method of anchoring beams to walls.
Show simple composite andiron ro of and other trusses, with details of connections.

"structural iron work."

A Flitch girder is composed of two or more sticks of timber with a wot iron plate inserted between the wood and bolted.
 This form is now practically obsolete as the rolled iron or steel beans cost little if any more. Cast iron girders are also practically obsolete, being limited to very short spans in the form of lintels over door or window openings, and are unreliable owing to the possibility of hidden defects in castings, resulting in collapse in case of a sudden shock, or in case of fire, when they will erack on the first applicacation of a stream of water. They should never therefore be trusted without a relieving arch above.
The sectional form of a cast inon girder should be different from that of one of rolled iron. The lower or tensional flange should be 4 to 6 times the

fig 2

A column which may appear perfect on the surface may be little stronger than cardboard. One side may be I $1 / 2^{\prime \prime}$ thick and the other only $1 / 6 t h$, or what may appear to be only a slight ridge or depression may be a serious defect, called "cold shot" leaving the column praclically open on one side.

No column may be pronounced safe unless it is drilled in sev-
 angles or transition in form. Catstings should also vary in thickness very gradually. Cast iron should not bear upon cast iron when carrying any important weight without the bearings being turned or faced in order to remove any lumps or inequalities from their surface to give them an even bearing. Plates or caps should liave a raised rim so that when the bearing is turned, the unfaced surfaces will still be removed from contact. Iron ronf trusses are now composed entirely of wro't iron, except the foot, which is usually of cast iron. The following forms are nutlines of typical trusses.

7i9 12
The joints are made with flat plates rivetted to the webs of

members in compression and drilled for fins receiving ends of tension rods.

Trussed beans in ordinary proctice are generally composite

in structure, the ironwork being confined to cast iron shoes and wrot iron tension rods and the necessary bolts.

PERSONAL.

Messrs. I'ripp \& Wills, architects, have opened an office at New Westminster, B. C.
Mr. O. A. Griydon, city engineer of London, Ont., hass been etected a member of the Canadian Sociely of Civil Enginecrs.

Messrs. R. C. J. Dunn and J. C. I. McKein, nrehitects, St. John, N.B., bave recenily formed a partnership under the name of Dunn \& Mckican.
Mr. Joseph Hobson, ehief engineer of the southern division of the G.T. R., has been nppointed a member of the council of the Canadian siociety of Civil Enginecrs.
Mr. John Miller. of the Pease Furnace Conpany, Toronto. formerly of London, lnas acerpled a position withatarge furnace firm in Chicago, ankl leaves for that city shortly.
The name of Mr. Geo. Gouinlock, of Toronto, was inarlvertently omitted from the list puldished in our last issue of architects present at the annual eonvention of tice O. A. A.
Mr. M. B. Aylesworth, Architect, Toronto, has just returmed from al four montis tour in Great Britain, the continent nud the United Stakes. Hedeseribes his trip as a most enjoyable one.
Mr. Geo. Theodore Bertheron, the oldest portrait painter in Canada, died in Toronto recently. He was borm in Vienna, in 1806 . He was the oldes member of the Ontario Society of Artists and was also an associnte of the Royal Canadian Acadeny. He painted the portraits of mamy eminemt Cranadian jurists and parliamentarians.

MR. JOHN KENNEDY, M. I.C. E., M. C.S.C. E.

John Kennedy, Chief Engineer of the Harbour Commissioners of Montreal, elected in January last as President of the Canadian Society of Civil Engineers, is a native Canadian, laving been born at Spencerville, Ontario. He has for ninny years been a member of the Institution of Civil Engineers, England, and also of the American Society of Civil Engineers, as well as a clbarter meinber of the Canadian society.
Mr. Kennedy, in his long and active career in engineering, has had a yariety and compass of experience that fall to the lot of but few in the profession-in fact, that can fall to the lot of those only who are gifted with rare powers.
A very brief and imperfect sumnsary of the steps by which be has risen from a pupil in the office of Mr. Thos. C. Keefer, Past President of the Can. Soc. C. E., at the age of 15 , to a foremost place in the highest mank of the profession, may be mentioned. His experience in municipal engineering was gained in the city of Montreal, where at an early age lie was deputy city suiveyor; in mining engineering, as manager of the Hull Iron Works; in railway engineering, when in four years he rose from being division engineer on the Wellington, Grey and Bruce Railway, to be chief engineer of the Great Western Railway, when at the summit of its activity and expinsion; in the specinlty of water works, in which he has been more or less intimately conneced with nearly all the larger water works in the Dominion; in consultation or designing outright, as in the case of the pumping machinery of the Ottawa water works which, as an example of design would alone establish a reputation; in meclanical engineeing in general, in which le is a recognized authority, having been widely consulted in various kinds of mill machinery, and in dredging machinery, his designs being found on the Pacinc and the Atlantic, on he waters of Oregon, Charleston, New York and the St. Lawrence. In peneral hydraulic engimeering he is also an authority, his advice having been souglit by the Dominion and Provinical Governments and a wide range of municipal corporations and private companies. He has managed the deepening of the St. Lawrence ship channel, and still conducts the Montreal harbour works with marked ability. On arbitrations and commissions his experience and counsel are constantly in demand, asj on the Trent Valley Canal Commission, the Lachine Camal Commission, the Commission on remeasurement of construction work on the Canadian J'acific Ritway, the Montreal Flood Commission, and many others. and is an expert he has been frequently called before the comunittees of the Privy Council.
Mr. Kennedy's assistance has ever been freely and fully given to any professional brethren who have asked his advice. His ability ats an engineer, his integrity as a man, and the extent of his reputation at home and abroad, hive the assurance that in electing him President of their Sociely, the civil engineers of Canada not only honour themselves and him, but advance as well their own interests and standing as a professional body.

ORNAMENT IN ARCHITECTURE.

ORNAMENT is extrenely usefil in conferring on buildings a degree of elegance and richness which, without it, would be difficult to obtain; and it also may be made to convey an impression of wealth and magnificence wl ich, in its absence, could only be attained by increased dimensions or massiveness, which would be as expensive and, in some instances, at least, less effective. Ornament is also extremely usefut in altering the apparent proportion of buildings. Thus, by the employment ot strongly marked hoizontal lines, a building which is too tall may be reduced to proportion; one that is too low made to look nearly as high again by employing only vertical features. Buildings that from the inherent necessities of their construction look weak may be made to appear of any desired degree of strengeth, and sparkling bayety ol effect be given to those that otherivise would be too inassive and heavy. Internally the architect very often cannot control the dimensions-of his apartments, but by a judicious application of ornament he may always make low rooms look higher, narrow rooms broader, and reduce long rooms to a better proportion. More than even this, ornament enables an architect to give to every part of his design exactly that degrec of prominence and dignity, ind that class of expression, which suits its position or purposes. These are all legitimate uses for the employment of ornament, and when used lor these purposes it is never offensive. It always becomes so
when it is employed to conceal either use or construction, or to make a building try and look like what it is not or cannot be-Scientific American.

HEATING AND VENTILATION.

Mr. S G. Curry, who has been appointed examiner in the above subjects in connection with the O. A. A examinations, recently addressed the members of the Torohto Architectural Sketch Club substantially as follows :
I propose to treat my subject in a very general way and not to go into detail to any extent ; my object is to discuss beating, but is ventilation is largely bound up with heating it is impossible to treat of the one without the other.
The ordinary fire-place was the first method of heating adopted in our houses, and while it might not bave been the most satisfaclory method of warming a room, it answered most satisfactorily the purposes of ventilation. A fire-place warms a room by madiation, the heat rays passing through the air and warming the walls, floors, ceilings and any other articles which may be in the room and within range of the fire.
The next method was that of stoves, which warmed the rooms to a slight extent by radiation, but principally by convection or the heating of the arr by passing over the heated surface of the stove.
Sloves gave place to furnaces placel in the basement, which heated large quantities of air to a high temperature, the air thus beated being conducted by means of pipes to the different rooms to be warmed.
The ordinary lot air furnace has developed, until we have different forms of hot air, steam and hot water combination furnaces, the object of the combination fumaces being to heat the central poition of the house near the furnace with hot air and the more distant parts with steam or hor water radiation.
Hot water heating is a favorite method. In this system water is heated in it boiler, placed in the basement and conveyed by means of pipes to radintors placed in the rooms to be lieated. The heat which has been absorbed by the water is given off through the radiators placed in the rooms. Indirect lieating by hot water is used to some extent; the air being brought in from the outside, warmed by passing through a heater placed in the basement and conveyed through the pipes to the rooms above.
Steam heating in its general principle is very similar to the hot water method, there being a boiler in the basement with radiators placed in the rooms to be heated, the steam being conducted from the boiler to the radiators and the water resulling from condensation being returned to the boiler through pipes. With steam, indirect heating can be used most satisfactorily.

It may be well to consider the advantages and disadvantages of the various means of heating our buildings. The fire-place is only of service in small rooms, and in this climate is altogether inadequate except in mild weather. The fire-place has these advantages: It heats entirely by radiation, and consequently does not raise the temperature of the room above a reasonable and healthful degree; it is also an effective means of ventilation, as all air required for the combustion of the fuel is withdrawn from the room, thus causing an inflow of fresh, pure air. Its principal disidvantage is, that owing to the fact that the fireplace warms a room by radiation a person sitting near the fire may have the portion of the body exposed to the fire extremely warm, while the rest of the body is proportionately cold. This effect is caused by the heat's rays striking the portion of the body exposed to the fire, while at the same time the temperature of the air in the room may be very low owing to the walls being cold. The air in the room can only be warmed by coming in contact with the surfaces of walls and furniture which have become warm through being within range of the fire and thus receiving heat by convection.

Some manufacturers and dealers have been selling low down frates, claiming that they warm a room better than a grate set high up. Such is a mistake, because when the fire is set low down near the floor, the heat rays cannot strike the flont except at an angle so obtuse that the floor derives very little heat from the fire. A high fire will throw the heal rays at a less obtuse angle, and will consequently warm the floor better. The heat rays from a low fire will pass over the floor in almost parillel
lines. In countries whore the fire-place las been depended upon for heat, many very ingenious grates have been invented with the object of warming the air in the rooms by passing it around the fire and discharging it back into the room, or for taking fresh air from the outside of the house and discharging it into the room after passing it around the back of the fire-place. Grates of this description liave not come into use in this climate as they would not be able to warm the rooms properly, and consequently some other means of heating must be adopted which is generally sufficient without the assistance of the fireplace. We thus lose the benefits of the ventilation which always results from the use of a fire-place, even though it has no special arrangements for supplying fresh, warm air.

Very little can be said in favour of the method of heating by stoves, except that it is capable of economically heating rooms to a very high temperature. A stove heats a room slightly by radiation, but principally by convection, as already stated. The walls and flours remain comparatively cold as they receive no radiated bent, and the contact of the warm air does not warm them in any degree equal to that radiated from a fire. The reverse is the case-the walls through being colder chill the air of the room. There is a slight amount of ventilation caused by the willodrawal of the necessary anount of air to support combustion in the stove. Fresh air, as in the case of a fire-place, comes in through cracks and crevices in the windows, doors, etc. A great number of arrangements have been made whereby ventiation may be secured with the use of stoves. The stove pipe has been placed within a sccond pipe so that the heat from it would induce an outward current between the two pipes, thus ventilating the room. Casings bave been constructed around stoves, so that the atr to be warmed was made to pass up between the stove and the liuing. This was first done with the object of drawing the cold air from the floor and warming it. After a time the casing was carried down to the floor with at number of holes near the base, through which the cold air might be drawn, and at the same time a pipe was put in which connected with the outside air. The fresh cold air entered through this pipe, and was discharged under or at one side of the stove in such manner that it was warmed between the stove and the casing. With slides covering the openings into the room at the bottom of casing and with the dampers in the pipe supplying fresh air, it was possible to regulate the temperature of the room to a nicety, for it the room grot too warm, by closing the slicles at the bottom of casing and opening the dimper in the fresh air pipe the temperature could be lowered very rapidly, or if the room got too cold, by closing the dampers and opening the slides the temperature could be raised very quickly. Many modifications of the above arrangements were brought into use, and in the majority of cases were found to be satisfactory. Having adopted the casing around a stove, placed in the room to be warmed, it was but a short step to place a stove with this casing in the space adjoining the room to be warmed or below it. Thus by degrees the hot air furnace became a reality. An ordinary stove with casing was placed in the basement, and as it was found to be satis. factory for the heating of one room, it gradually came into use for the purpose of heating a number of rooms. As a result, the small stove gave place to it larger one and the large stove to the furnace, which is really nothing more than a stove specially designed for the work which it has to do.
The principal benefits to be derived from the use of a bot air furnace are the doing away with a number of fires placed in stoves for one large fire, with a consequem reduction in attendance, and the bringing of fresh air into the house, which provision is always made in the erection of a furnace. If the furnace is of aumple size and the fresh air opening left open, it house warmed by the means of a hot air furnace will be reasonably well ventilated. The air in a house heated by a hot air furnuce may be very impure, liot because the house is so heated, but because the apparatus is imp:operly managed or is defective. If the occupant objects to burning the necessary fuel, closes the fresh air inlets and draws the furnace supply of air from the house, lie cannot expect very pure air. He is simply making his heating system correspond to a stove in his room without a supply of fresh arr. The air of the house is carried through the furnace over and over again. When it becomes cold it drops to the floor and from the floor is carried through the furnace, where it is watmed and again disclatyed to the different rooms to be warmed.
The principal point to be observed in setting up a hot iir furnace in a house is to put in a furnace of large size-the larger the better. A large furnace will be more economical than a small one; even an excessively large furnace will not burn any more fuel than a small one. If a small fornace is put in it will be possible to keep the house warm in mikd weather by ordinary fires, but in cold weather the furnace will have to be driven beyond its capacity. This criving of the furnace means that it becomes over-heated and possibly red hot, and the air passing over it is heated to a temperature far 100 high . If air is heated much beyond $140^{\circ} \mathrm{F}$., it is positively not in A proper condition for brealling. All its vitality has been abstracted, and it is so dry as to absorb moisture from any and every substance in the house, thus causing the woodwork to shrink 10 an extent which one would not think possible, besides abstracting moisture from the occupants of the house to their serious injury.

Having arranged to put in a large furnace, in what portion of the housc should it be placed to give the grealest satisfaction? In this climate where the prevailing winds are from the nothwest, the furnace should be placed towards that side of the house. If it is not so placed it will be found very difficult to get any warm air into the rooms which lie north-west of the furnace, the warm air going alinost entirely to the rooms on the opposite side. The furnace should not be placed too far from the centre of the rooms to be warmed, as it is possible to go to the opposite extreme and find that the roons to the south-ivest of the fumace cannot be heated, because the air has to be carried through too gieat a length of horizontal pipe. At times we have very cold east winds, which makes it difficult to warm rooms with in ensterly exposure, and if the furnace is placed too far from these rooms it will be impossible to heat them under such conditions. A hot air furnace requires for its satisfactory working that there should be some means of wilhdrawing air from the house. In the ordinary house a very large amount of air escapes by means of cracks and crevices around windows and doors, about the base boards, and also to some extent through the walls. The best way to arrange for the discharge of impure air is by the means of a fire-place which will withdraw the cold air from the floor, which is the proper point at which ventilation should be sought in a furnace heated house. Those fire-places which have flues in inside walls will nearly always be found to be willadrawing air from the room in which they are placed. A firc-place with a flue in the outside wall cannot be depended upon to withdraw air except a fire is burning therein. For a compactly built house of ordinary size, a hot air furnace is a very salisfactory means of warming, provided it is of ample size and there is a proper number of fire-places in the house Of course it is to be understood that the furnace, hot air pipes, ducts, etc. have been put in by a man who thoroughly understands hot air heating.

The hot air furnace has been modified to some extent by the addition of hot water or steam heating in combination. This was first brought about by hot air furmaces being placed in bouses having rooms so situated that it was impossible to heat them from the furnace. It occurred to some one that if a coil of pipe werc placed within the fire pot of the furnace and connected to several radiators placed in those rooms which could not be heited by hot air; the elifficulty would be solved. This arrangement was adopted in its crude form, but was not considered satisfictory by those who understond its drawbacks. The principal and most serious objection was that wo openings had to be cut in the fumace which could not be closed tightly and which consequently allowed the gases of combustion to cscape fronn the fire pot into the space surrounding the furnace and from that space into the house. It was also necessary to put on considerable amount of radiating surface, for if such was not done and the furnace was fired latrd, trouble was almost sure to arise through the over-heating of the water in the coil and pipes. The iden was taken up, but instearl of having a hot air furnace with combination hot water heating, a liot air and steam combination furnace resulted. This furnace was made of wrought iron with a steam gencrating chamber at the top of furnace. The air was warmed in the usual way by being passerl over the oulside surfaces of the furnace, and the steam was generated in the chamber above the furnace by passing the bot gases through vertical tubes as in a vertical steam boiler before allowing them to escape into the main fue. The central rooms were hented by hot air, and the rooms at a distance on the exposed sides of the house by radintars, whieh were supplied with steam fiom the chamber at the top of the furnace. This style of furnace is very satisfactory, provided it is properly put in and ton much work is not expected of it. Lately a hot air and hot water combination boiler has been invented. It is really a hot water boiler, as it does nearly all the beating by means of hol water, the warm air being auxiliary to the hot water. The fresh air is made to pass around and over the boiler and is then allowed to escape into those portions of the house which are deemed to require plenty of fresh air. This form of boiler is not able to bent more air than is absolutely necessary to keep a house supplied with sufficient fresh air to maintain a reasonably healthy condition.

The next method of heating with which we will deal, is that of hot water as it lias been practised for several years past. The boiler is placed in the basement, and flow and return pipes are run to radiators placed in the different rooms to be heated. The pressure on the system is that due to the bead of water given by the beight at which the expansion tank may be placed. The pressire at the tank, of course, will be that of the atmosphere. The pressure at the boiler may be 15 or 20 lbs ., or even higher, in the case of a very high building. With this system it is practically impossible in get the water at any time much above 212 degices, for if it should be heated higher than that it will change into steam at the expansion tank and blow off to the almosphere, baving its-place taken by fresh cold water which will lower the atmosplere of that in the boiler and pipes very quickly. Some years ago nearly every radiator had its independent supply and return mains, or at the most there were not more than two or three radiators fed from the same main, and thes were invariably placed at the same level, so that they would feed equally weli. Of late years the tendency has been to place more radiators on
the same feed pipe and use great care in secing that the connections were so made that each radiator would get an ample supply of heat. At the present time the tendency is to run mains for hot water heating very much on the same principle as steam mains are run. This method has been found satisfactory if the hot water engineer is thoroughly acquainted with his work :und understands the principles governing bot water regulation. In the bands of an ignorant meclanic the results would be most disastrous. In very good and elaborate work the mains are valved so that it is possible to cut the heat of in any portion of the building withour the least interference with the working of the balance. With hot water heating a steady uniform temperature can be maintained at all times with very little trouble. There is very little improvement in hot water heating over that derived from stoves, except that due to the fact that the air in the house is heated on a very large surface at lower temperature. It is the same air which is urarmed over and over again, except whatever may come in through cracks and crevices owing to the difference in pressure between the cold outside air and the warm air in the house. As a rule nearly all the hot water heating bas been done without any attempt at introducing fresh air.
Indirect hot water lienting has been tried in this climate but with little success. The risk from frost is very great, and if the beater should become frozen the damage done is by no means light. It is possible cluring the day to lave the benefit of indirect wanning, when the fire can be kept burning brightly and there is some one to watch the heaters, dampers and fresh air supply, but to allow indirect heating to be continued during the night is exceedingly dancerous, because the outside temperature may drop very low and the fire under the boiler may become burnt out, in which case the heaters would frecze very quickly and cause a large amount of damage. I am aware that indlirect hot water heating has been tried, and that according to the statement of those who bave put it in, it has been found satisfactory. A careful examination of every so-called indirect hot water system will show that in nearly every case the air is supplied to the heater from the basement, and not from the outside, as soon as the weather becomes at all cold. In fact there are indirect hot water systems where the air is never taken from outside the house, but is brought from the basement at all times. It is possible by a very carefully arranged system with a very large boiler surface and great care on the part of the attendant, to pass a plentiful supply of fresh air over hot water pipes in the ordinary way, but the safest, most economical and satisfactory method is to build a brick enclosed space of such size as may be necessary, similar to that surrounding a hot arr furnace. By placing a large quantity of pipe in deep coils, cold air may be warmed with a reasonable degree of safety. Fresh air should be brought in at the bottom of the space, with the opening so arranged that the incoming air cannot blow on to the hot water coils. Tin pipes are then taken from the sides of the enclosed space to the different rooms to be warmed. By arranging several of these warming chambers, according to the size of the house, a house may be fairly well warmed by the indirect system without much danger of damage from frost. There will have to be less or more direct heating surface in every room to be used in cold veather, as it will be found impossible to keep a house warm by the indirect hot air plan, as it is impossible to pass a large volume of very cold air through the heating coils. Hot water heating in an ordinary sized building will be found very satisfactory, but when the building is very large, steam henting will give better satisfinction.
The steam heating system is very similar to the hot water system in general outline. There is the boiler in the basement with supply and returm mains to radiators placed where heat is recןuired. A steam boiler may be of any size from a small portable one to a very large boiler similar to those used for generating steam for power purposes. In steam heating on the gravity principle there is but one large supply main and corresponding relurn back to the boiler. The steam is taken to the different radiators by means of branches from the main supply, and the water of condensation returned in like manner to the main return.

With a steam plant it is possible to have a first-class indirect heating job. The indirect heaters are genernilly placed in the the basement below the rooms which are to be warmed with a hot air flue running up to the rooms to be warmed. The fresti air may be supplied to the different indirect heaters by means of one or more common fresh air ducts, or an independent supply may be brought to ench heater. The latter method, if it is possible, is the better to adopt, as each heater having its own supply will always have the necessary quantity of fresh air. Will one common duct, if the system is not very carefully armaged, the heaters which supply air to the rooms on the upper floors will draw such large quantities of air as to practicilly rob the heaters to the ground finor. In bringing fresh air into the heaters it is necessary to arrange checks in such a way that cold currents of air can not be driven upon the radiators. The fresh air should rise slowly to the bottoin of the heaters through an ample opening. Where the air is brought from the outside separately to each heater, it will be well to take it low down towards the floor and then allow it to ascend to the heating chamber. The supply and return pipe to radiator should be so rum that they will be outside of the heating chamber and cold
air supply. If the return main is dropped down within the cold air supply or near it, there is a possibility, of it freezing. There is little to fear from frost with the indirect steam radiators placed in the manner described above, even though the cold air opening should be fully open and the steam in the boiler run down, as there is nothing to freeze beyond a small amount of vapol. It is seldom satisfactory to attempt to heat two rooms from one radiator. It is always better to have the radiator proportioned to the size of the room to be warmed and take from it one hot air pipe. The action is then positive, there being no possibility of one pipe drawing all the air and leaving the other pipe inactive, or with a possible down current in it to the radiator.

Steam heating is generally done on the gravity system where the plant is put in for heating purposes only. Where there is a boiler used for power purposes, steam may be taken from it and reduced down so that it can be used with perfect safety and with, good results in the ordinary gravity system of piping by returning the condensed water to the boiler by means of a pump. In such cases it is usual to make arrangements to use the exhaust steam from the cylinder of the engine with the back pressure valve set so as to keep a small pressure in the steam mains.
In large buildings where it is possible to have the steam plant thoroughly designed and with a surplus boiler power, very satisfactory heating may be had with steam, but where the boiler is not of large size and bas a small amount of heating surface, it is very difficult to maintain the heat at anything like an average temperature.

HOW TO ESTIMATE.*

By W. H. Hodson.
FOLLOWING; is the remaining portion of the specification and bills of quantities accompanying the drawings of Public School on Gladstone Avenue, Toronto, published in the Canadian Architect and builder for February :
CI.ACKNOARDS.

Provide and fix ground work of blackboard on sliding door composed of six sheels of $1 / 4$ thick teather board 30 in. $x 36$ in. joinied and glued on 20 large door panel 36 in, $\times 15 \mathrm{fl}$. long, and keft in readiness to receive compo-
stion paste so be put on by the School Board. (This leather board can be stion paste to be put on by the Sctiool Board. (This leather board can be procured from the establishment of P. Jarobi, 5 Wellington St. enst, city, at If cents per pound.) At the platform end of seven class rooms there will be slate hlackboards 4 ft . high nnd 16 ft . long, composed of four slales 3 h of an inch thick, jointed and packed and fitted to an even and true surface, and to be of Rockland slate of hest quality, and to be approved by the architect and the inspector of city Public schools. Thest! slates to be secured in position by wooden stop serews or with round hend screws. Provide and fix moulded ensing around all blackboards. both slate and plaster composition, in all cliss rooms, also 3 3 $\times 3 \mathrm{in}$, ground at back of slate board. The casing around blackboard to be $4 \times 1 \geqslant \%$ in., and to cope into side of architrave and to be noukded in same manner. For amount of composition blackboards see plasterer's specifications. The blackboards will extend along both sides and ends of each class room. The carpenter's tenders are to state the deduction of the slate if not required.

brickwork.

All brick used in the works are to be of the bost quality of Carlion brick. and (exoept othorwize specifird) to be of a deep rest color and to be hard and well burut and free from lime and other defects. All outer waills and chimney stacks are to be faced up with "pieked" hard and deep red eotored "f fice brick." No solt brick will lee allowed in the work, and are not to be brought upon the ground, but if any should be brought, there, they arc to brought upon the ground, but if any shouh be brought tocre, bey are to of immedtatey removrd. The mortar is to be composed of me best quality of coarse, clean sharp grit sami, and fresh burnt lime, in the proportion of $21 / 2$ of sand to one of lime, mixed with ar proper quantity of clean water and thoroughly incorporaled and tempered together. Bulild all brick walls is shown 11 pon drawings and in actordance with the dimensions figured on
panns and sections. The trickwork is to be laid up so is to gluate four phans and scetions. ine erickwork is to be hard up so as 20 guage four courses to every II $/ 8$ in. in heright, and to be carried up uniformy throughout the vuilding. Every course of brick is io be inid in a full bed or mortar, nid to be thoroughly fushed in with moriar nt all cross and other joints. The walls nre to be built in English bond for nil partition walls, and for the inner portion of nil external walls, but the outer lace of all extermal walis is to be buitt "Americin" or "Stretcher" bond, the face brick being elipped to receive diagonal binders conunnously on every sth course. The walls and ehimney stacks are to be carred up plumb, square and truc, brilt to a line on both sides. particularly the face of all onter walls whieh are to be boints. joinso both thees of all inner or partition walls in same manner All the outer of foundation walls of hasement ofe to he lined up with brickwork one-lialf or foundition wails of hasement are to he lined up with brickwork one-lail brick or 43 in, in thickness. lied into the stone work with ad double heading course at the floor line, midway up, and at eciling line of basement, and midwny bewwen these couble heading courses to have a singte heading course, making three double and two single heading conrses for the whole heiglity of picked hard gey brick laid with twil be composed of the bes quality of pieked hard grey brick, Injid with ievel and air close joints wel beided in mortar am tion walls in mesement, also the chimncy hreasts, are to be faced up "prey
brick, as above described, and pointed in tie same manner, as there will be brick, as abowe describec, and poll. The brikheyer will provide for und no phastering on bascment walk. The bricktayer tyill provide for and execute nil brichwork in connection with the Smead-Dowd henting and ventilaling apparatus as indienved by the drawings and in accordance with the plans and speeitications of such henting and rentilatiog apparatu hereto nppended. The bricks used in connection wilh the above mentioner tenting and ventilathg apparatus are to be. of the very best quality of picked hard and well shaperl. red and grey brick in such propartion as may be required, to be builion shapely and worklls for mair ch, whers and joints, neally struck with the trowel. The wnils for the nir chambers and furmaces will be fron, 9 in. $1013 / 3$ in. in thiekness, and extending fromi floo to ceiling, and nill huit spuare, ruc and plub. Biliad he large ventiating and snioke slarks as slrivul per pians, elcvation and sections, and in accordance With the diniensions ugured on same. These stacks ate to be buit
with pickell bard brick, and the inside of same carcfully and thoroughly with picked with morinr, and so as 10 render the same even and smooit inside.
-This serics of articler commeneed in November, tiga.

The upper portion of these stacks is to be parged with Portland cement, say the upper 6 ft . of same, and atl the sailing and howe courses, capping say the upper belfy arelway, \&c., all to be haid in Portland cement, and all the joints and weatherings made and poimed in the most careful and thorough nialmer. Provde nimd build incs inest bisement, wire nimmed on the outside (141 itr) diameter in smoke hacs ing wist $\%$ brick arch. Provide and build in a cast iron plate division between the smoke and venilituting flues in each stack as shown per drawings, extending from tlic basement floor level to stack as stack above roof. These plutes will be yitin, to z_{4} in. thick, 2 fi. 6 in . wikle, and from 2 f . 102 K ft. in lieiglt. eneh made with a groove akeng tike upper edge of ench plate. Provide and build in cast iron soot doors and rrames to same in boltom of eacls smoke flue, 4 in. square or larger, and provide and build manhole doorway in botion or each ventik. tillg bue, sidy $2 \mathrm{ft} .6 \mathrm{in}, \mathrm{x} 4 \mathrm{ff}$, arched over and provided with a fine boled or rubbed stone hrad, 6 in. x i. i in. $x ~$
an air duet under the bascment floor in each closet room (two of them) an air duet under ta $f t$. ench inside, and the lenghth required as indicated on drawings. These ducte will be nbout 3 ft. in depth by + in. Wiote, buile wath picked hard brick and laid at one side (the walls of building forming the other skefe) and to have a brick
bottom laid on the fat and prouted widh cement. Conneet these ducts botton laid on the fat and grouted with cement, Conneet these ducts
with the ventiating five nt the bottom of same with an opening 3 ft. $x+$ f., with the venithaith a tooled stone cap $12 \mathrm{in} . \times 14 \mathrm{in}$.x 5 h . 6 in. in lenght. The foundation of the walls of building forning one side of these air duels, and through which the same has to pass to reach the botlona of ventilating stack, are to have the extra depth required for that purpose, viz., 3 ft .
Build all hot air flues leading froin the bisement up to the ground and fist Build all hot air flues leading froin the basemment up to the ground and first
dioors as indicated by the drawings ; to be built in the most cancul manner tloors as indicated by the drawings; io be buit withe mortor. Build in all
and thoroughly and smoothly parged inside with register frames and coltars, dec., furnished by the contractors for heating apparatus and as indicated by the plans of heating. Provide and build in z_{1} in. round by 8 in, long, climbing irons in the brickwork of ventilating
flues, every 6 th course in height, alternately on tach side of fues and placed about 9 in . from one end of same. Also provide and build manhole opening into cach ventilating fluc inmediately above the nttic joists, sity a ft. 3 in . x 4 ft . high, with two nimured arches over sime on $2 \times 4 \times 4 \mathrm{f}$. yon bar. and seif frames to same pointed by carpenter. The rear bascanent wall will on
any future exicusion of the buiding oecome an inside partition wall, and will thesefore be buit entirely of orick instend of stone, and will be of pieked hard burnt brick carefully sclected and the face brieks laid in Porthand cement. This wall will be 18 in . in thickness, as figured on drawings. Build area walls of picked hard brick to rear entrance and rear basement entrance steps, as shovn per driwings; also brick parapet
walls at side of steps, and provide ind build in $4 / 4 \mathrm{in} . \times 18$ in. iron anchor bolts (27 of them) with $1 /=4$ in. cross pieat at bottont to secure
 side of fromt contrance steps, as shown per drawings, and provide and build in $\nless 1 \mathrm{in}$. balts (t2 in number). 6 to each set of steps to anchor down the coping to same and ns described for coping to rear steps. Buikd all bels, string and sitiling courses, pilasiers, \&e., to cuter walls, as shown per eleviastring and siniting courses, pilasers, ace,
tions; also nill aprons to underside of window sills, the latter cut and rubbed tons; also nil aprons to underside of window sills, the latier cutand rubbed
to shape indicated and as per details to be furnished as required. Suilkd water table plinth to base of brickwork, its shown per elevations, with the top course of noulded splayed brick with the lop bed of same laid in Portland cement. Arches to window and door openings, also relisving arches in ruar wall of building, to be $\mathbf{5 3 / 2}$ in. and 9 in. in telghe respectively. as indicilled by drawing; to becut andi guaged ansl with softits rubbed and finishet in best manner. liurn relleving arches two 12 brick rims in beight to inside of all window and door openings to have a camber of not less than 6 in., formed on brick cores on 10 p of straight lintels. Turn brick arches across the corridors on bolh stories as indicnted by dotted lines on drawings, segmental in form and $131 / \mathrm{in}$. in height. The inside of front purches are to be faced up with picked. cletan and even cotored white brick laid strcteher bond in putty joints and lead jointed, and the inside arctiss shooving in same porchus to be fimished in sanse manmer; also that portion
of oulce main wall showing on the inside of porctics. The outer fatce of all external walls (except the face of rear wall) will bedry tuek pointed in the very best manner, the joints being maked oul full $\frac{1}{2}$ in. deep as the work propresses, and when ready for the poining to be stoppeed in with putly aroriar spectially prepared and colored an dark Indian reti or other color to be setected and approved by the architect. The stopping for tuck pointing is to be cotored with best "Venetian" red, and a sainple piece of the work is to be done and approved by the architects before lloe regegar work is begun. It is to be distinetly understood that a first class job it every respect is required, and that none other will be acecpted by the architects.
The face of rear wall is to be laid up with swen colored brick wihh close and rue joints and struck with the trowel in n neat and workmanlike manner. Beam filling is to be carried to top of joists and to roor hoarding in all coses, nind as to tatter to be pointed with mortar so as to render the same air tight. Carefolly and thoroughly flush into all window and door framies as the brickwork progresses, and carefully preserce the staying of all frames. Build in all bond strips. joissts, plates, lintels, wood blocks, \&.c. reguired by carpenter, and build chases for water and waste pipes required and Portland cement, and as follows, viz: Firs ctean of the carth noors removing all wood cullings and other rubbish, and carefully hevel the removing ail wood cullings and other rubbish, and eareully hevel thee ground, grading the spme towards the weeping drains; then provide and
hy over the whole surfice of foors a bed of fine broken brick and coirse gravel well mixed together, to a deptlo or at least four inches, nll well rammed down : then over this hay a bed of fine gravel (screened) one inel to thres of graved, and over this forat on a cait of Portiand cencme one inch to three of gravel, ath over this fhoat on a catt of Portiand cenomt one inch The top cont of eement is to be floated to sand and trowelled down to a. smooth and level surface throughout, and to be protected until thoroughly set. The cement floor in rach room is to be graded to the centre and provided with a 6 in, cast iron grating connected with the drains underneath ocment of wars are to be executed with the very best of portiand cement and centent foors are to be executed with the very best of Portiand cement nnd
odiser materints, and in the inosi workutanlike nad therough manner. The contractor or contractors are to provide good and sulficient scalfotding, to be appxoved by the architects, and be leff up for the other trades. He or they will conforme o dhe requirements and provisions of the building by laws
of the city. The chimney sacks are to be uick potnted ns describelt for of the city. The chimney suacks are to be tuck polnted as describet for
walls, in the most careful manner, and the store base and cap set ankl Walls, in the most careful manner, and the stone base nnd cap set ankl
pointed in Portland cement. As soon as the tuck pounting is done, or pointed in Portland cement. As soon as the tuck ponnting is done, or sooner if rupuired by the arebitect, the contractor will reniove all bricklayers
surplus materials, and all rubbish and plant from the premises, and will clean up the lot and such portions of the street fronts used by him, and will also clean out the basement and other flats of the building, reluoving
from same all bricklayers' rubbish, surplus materials and pland, se. The from same all bricklayers' rubbish, surplus materials and planu, se. 'The
whole of the bricklaycrs' work is to be execnted in the most thorough and workmantike manner and coniplete in every respect, the contmetor furnish-
ing all necessary sud proper materials, seaffoldinge, 1001 and labour, and executing atl the works called for by the plans and specifications, compre-
hending what might reasonably be implied though not particularly nienlioned in the specitications of shown on the drnutings.

CUT STONEWOKK.

Provide and set all ent stonework required througlout the building complete in ill respects, and as follows, viz. All window sills to lwe of Credit Valley brown stouce, $6 \mathrm{in} . x 10 \mathrm{in}$., finc tooled and weathered on top and throated under, but to be rock face on the face and to project 2 in. from face of lrickwork. All windows above the basentent and all entrance oolsal ou the soais or under sicte, heads of Credit Valley brown slone, hre face on the back side to fit to frimes and lintels, bint to be left rock laced on the front. The two basenient rear entrance doors to have to in. $x 6$ in. on the front.
touled or rubbed Berea beads. The chimaney and ventilating siacks will towed or rubued Berea heads. The chimmey and ventilating stacks will have 6 in. thick base and eap sione, as shown per etevitions and sections; to be fine tooled and weathered on lire top sive and ihroated under. Cut left rock face on the edges. These cap and bases will be formed in the
number of stones cach as shown per details, to tre cramped ruxd leacked number of stones cash as shown per details, to lee cramped nund Eeacked together and the joints set and peinted with Portland cencill. The base stone will form he filler of beifry between the wo vent stacks, and will have I 2 to 3 in. hole drilled through same and a picce of 2 in., 8 ib . Learl pipe inserted in sime and neally linessed Jown and fingigd to the stombwork. and $t 0$ pass down about three or lour feet betow for bell rope to pass
through. Provide and set two Beren stone corbets $14 \mathrm{in}, \mathrm{x} 2 \mathrm{in}$ in. x 12 ml . to cirry the point of main rifters at side of ventiating stacks; to be tooled work. Provide and set fine tooled Berea stone sills to basentent entrance doors, 6 in. $x 4 \mathrm{ft} .6 \mathrm{in} . x \mathrm{x} 8$ in. The sills to rear windours are to loe of fine tooled Berea, weathered and throated. Provide and fix inscription stone to front of building 21 in . $x 6 \mathrm{in}$. and 44 ft . 9 ith . in lengeth, whth the inscription "City Public Sctoot" cut in sanme in ketlers 9 in. high, inch wide and x_{4} in. deep, and capitals it in. high, ik int. wide and inch de-p. This stone will be of Credit Valley brown stone, rock faced on the margin and fine tooled in the centre to recejve the lettering. Provide and lix cap stones of rubled
Berca stone 3 in . thick, to cover the top of hot nir fue projections on the Beren stone 3 in. thick, to cover the top of hot nir flue projections on the them $14 \mathrm{in}. \times 3^{6} \mathrm{jn}$. and two of them 14 in. $\mathrm{x} 4^{8}$ in., to be weathered on top.

galvantzeis ikonworh

Provide best quality of "Iron" bannd or Gospe! Oak No. 26 B.W.C. galvinized iron, and form and execute and complute in the most substantial and workmanlike manntr all the galvanized ironwork hereinafter dewribed. joints nade on 2 in. rolls with caps to sume nailed and soldered, and with joints nade on 2 in. rolls with caps to same nailed and soldered, and with fulse or expansion rolls beween same. Cross joints io be lock jointed and
soldered in best manner. Turn the iron down 4 in, over slate and formi soldered in best manner. Turn the iron down 4 in. over shate and llat well
 senpen, Line all vallics vieh gallvanizect iron, 20 in. in widdh, intd under simis lay one ply of turred fell 30 in . wifle propurly nailed down. Lany apron of galvanized iron to all caves 10 in . wide, turned up under slating and mailed to roof boanding and drcssed down into cave troughs. Eave troughs itroughou to be oval and fillet shipeet, with tack to sime 4 in. above kevet of trough, atl well secured to facin of cornice with tong spikes
through galvanized iron trales. Eave troughs to be well soldered itt all cross joints. Down pipes to be Douglas Bros. patent octigon shanped, secured with patent hold fast spikes to briek willds, and to hee carried down 2 f . below grack of around and hanged and ceneented into drain pipes. There will be six sticks of 5 in . oclugon down pipes as alore theseribed. and two small sacks of samie from the front porch roof: also four stacks of 4 in. round down pipe from play-shed roofs, the later to have shows to sitme to waste onto the plamking. The main roof gutters to be 6 im . mou dex, the porch s in. do. and the sheds 5 in. all complete. Provide and fix 10 in . aprows where refuired around the bise of the ventilating stacks and belfry. the iron to be tucked one inch moto joints of brickwork and wedjed with trout welges, and cemented with Portland ceruens, anl dressed down and filted neat ind elose to brickwork, and where practicuble to be stepped with the brick courses. Provide and fix galvanized iron cresung (moulded) to belfry ridge in accordance with details, and llash same to brickwork; also inoulded cave nooulding to sinic as per flrawings. All the galvamized ironwork is to be execuled us expeditiously as the progress of the build admit of, and in the most substantind aud worknanalike manmer, complete in all respects. Provide and cover the mandiole opening in deck roof both sieles anct top; sides 12 in. high and top about 3 ft. square with galsanized iron, all flled anel filished in best manumer.

SIATING.

Provide and shace the roof (excepting inose of the ploy shecls) with the best destription of Canadinn sinte from the Mebbourne Quatrics. Slates to be $10 \mathrm{in} x .20 \mathrm{in.}$, hid on single ply of tarred felt with double lap kenving
to in. to tive weather. Each shie to be nitiled with two galvanized iron nails, and to be laid with double row at enves. Trim the sfate to a line on both sides of all vallies, and cut and hy all hips with cut close clamfer and poont same with slate colored plastic cement. Provide and lay to in. wide step lanshings of galvanized iron 10 all stating nbuthing ngainst brickwotk, and in most careful manner. Carefully lay and close nail the larred felting so ns 10 cotyer the fool boarding nt all points, ind Execule all other work nese ofsary to render the slationg completa in every respect. Eximine the slating on the completion of the work of all other trades, and make good any broken or displaced slate, and clean out and remove all brokeu slate nnd cuttings of sume from eave trouglos atnd clown pipes and vallies. Remove all surplus slate nnd euttings. \&c., front the prenises on esmpletion of the stating. The belfry soof is to lec lived with round taiked red tikes taind in cement and all well cenmented at joints and agnimst brickwork.
pl.uminng work.
Provide and lay in from street minin, clear of frost and with stop and waste cock boxed in and prackel, \&c., $/ 4$ in. 6 lb . lend water service: 10
 floor corridors, and in all cases to be carried on neat dressed and moulloed boards fastemed to wall and ceilings. and where required to be cased in the woodivork provided by carpenter. The service pipes aust be arrnnged so
that the salle cinl be cmpied with proper stop and wiste cocks. provide tlant the sallte canl be empied with proper stop and waste cocks. drovide
and fix in cach lunch room or bascment ome of atolts palterns of cast jron enamilled drinking stands. No. 93 pattern, page 42 of Mott's cnaloguce, c881 edition. Also provide and fit up in the recess next to veatilating stacks on ground and first floor corridors, Aioli's patiern of cast iron sectional urimals (8 ft . long caefh) to be used as drinking stands, to be: supported on proper dressed boards secured to wainscotting; see diott's
catalogue No. 257-8 pattern, pare 127, edition of $\mathbf{8 8 6 1}$; these drinking catalogue No. $257-8$ patcern. page 127 . edition of 188 I : these drinking
stands to have 5 best pattera selfactung spring cocks, nickel phated, two to each stand in busencent and six 10 cachs stand on cround and first floors. (i6 in ull). Each stand to have $1 \frac{1}{2}$ in, 6 ll . kend waste and trap and screst
to sanue complete, and connected to drain under brsement floor. The above described plumbing work to be of the most substantial character and finished in best manner, and to include sixieen heavy meinl drinking cups with strong clain aturchaments to the drinking stands complete.

> HIASTERING WOHK.

Provide and render the inside of all outer walls before the same are lathed (bascment walls excepted) with one good heavy coat of brown hair mortar. provide and lay in "pugging" between ceound foor und first floor joists and so as to be te composed of in the centre and three inches at the sides as shown per uarginal section. Provich and lath all outer walls (basencent walls exceptell) and all ceilings and soffis of stoirs with best quality of sawn pline lath I in. wide for ceilings and $I I$ wide for walls, to be laid on with at least $5-16$ of an inch keep joint and breaking joints every sixth lath; lath to be well stasoned and free from sap and other defects. Render, flant and set, in best "" threce cant" work, all walls and ceilings and soffit of stairs throughout the buikling ibasencent execpted), and finish the sanve in best "hard white finish." all thoroughly trowedled. The basement ceiling throughout is to be plastered in two good coats of plaster. floated and set in hard sand finish, all well trewelled. The morlar for plastering is to be composed of the best quality of lime and clean sharp sand, mixed with an ample quantity of long animal bitir. all thoroughly incorponted together. The h.rrd white finish or putty cont is to consist of best plaster of Paris, with sufficient quantity of zoashed tohifc sand nixed with same. The lathing on outer walls will not be carried below the top of wainscotting, but the plasterer wilt lloat on a secould coul of brown mortare over the face of the first rough coat, and will carefully point and flush in around frame and ;ill points where neecssary. All the foregoing described plastering is to be of the very bust and mosi substantinl derscription and quatity, and complete in every respect. The plastertr will provide for and remove all plaster every respect. The plasterar will provint for and remove alt piasier
droppings and other plasterers' rubbish and thoroughly elean out dhe building on completion of the plastering work, doing euch room and corridor as the sitne are completed.

COAIDOSITION BI.ACKBOARDS

All the chass rooms, eight of them, will have the last description and quality of composition blackboards, made under the directions and supervision of the Inspector of Public Scliools of the city of Toronto. These composition blackboards will extend around the four walls of each class room, excepting 15 f . in lengil of the platform end of each class room, which will be composed of slate. The width or height of the composition blackbonrds will be 9 ff .6 in., excepting the 10 ft . in length at the platform end of ench class room, which will be +ft . in height. The slate blackboards will be provided and set up by the carpenter, but the plasterer will foat the walls at back of same and will finish the compnsition bards up to and fair and true with the face of the shate. The sunt of $\$ 150$ of the contract anoount for plastering will be retained by the School Board until the composition blackboards have been properly tested and approved by the Inspector of Public Schoots of the city of Toronto, upon whose certificate of the efficiency of the blackboards the atbove mentioned sunt of $\$ 150$ will be paid to the contractor.

All dressed woodwork is to be well primed, slopped with oil putty and knoted with best spirit knoting preparatory to the regutar painting. For particulars of woodwork exanaine the drawings and read carpenter und painers specification. Alt frames and other finished woodwork is to be primed as soon as prepared by the carpenter. All sash are to be primed primed as soon as prepared by the carpenter. All sash are to be primed
and glized ns soon as fitied by the carpenter, and carefully stored awny and glized ins soon ns fited thy the carpenter, and catciully stored awny building, jucluding all the wondwork of stairs and entrance steps, also all buiding, including all the wondwork of stairs and entrance steps, also all painted in the very best manner and style with the best brand of white painted in the very best manner and style with the best brand of white cend and linsect oil paind colored to choicy lints, to be apprownd by the archiects, and as foltows, viz.: Tire wooriwork both inside and outsude of ofilding (excepting the inside of the basenent) is to have (3) three good coats of paint in addition to the prining coat. The woodwork in basement trill be painted (2) (wo good coats of paim ill addition to the priming. All ind the deck of roof, is to be paimed dires: good coats of raint, including and the deck of roof, is to be paimed dires: good coats of print, including he priming coat, which is to be of red lend. The woodwork of play sheds, iz., the cornice posts and braces to stame, also the siding und batten to same, is 10 be painted two good conts of pant in addition to the priming coitt, which is to be the saitie as deseribed for the school building. The fence along the street frontage of schiool lot, 200 ft . in length and 4 ft . in posts, all dressed :lun. This fence will be primed and piansed in (a) three posts, all dressed :tuf. This fence will be primed and painted in (3) three good costs of paint, counting the prithing as one coat, and as described for
the building. The division tence dividing the play yards will be of dressed the building. The division tence dividing the play yards will be of dressed stuf, close board, 7 ft . high. This fence will be primed and painted sime as described for the pickel fence. The two front entrance doors to have our coats of paint and well rubbud down with pumice stone, and finished smooth and ciean. Paint the mouldings arotud the blatkbaards extending along both sides aud two ends of eacli class room same as described for other wood work. The entmnce door sills, and the treids of entrance steps and of stairs will be of onk, and the fivors to ground and first floor stories will be of harthood. These door silts, reade of stepe and staits and the hitrdwood floors to the eight class rooms, and the two main corridors and entrance porches, will be twice coated with linseed oil laid on hot, say at a iemperature of at least 130 degrees Fahrenheit, and thoroughly well rubbed in with woolen cloths until the same is hard and dry. 17k stair mils wil Le wed rubbed dowin and conted with oil as above described, but with three coats of oil. Paint all exposed plumbing pipes and ironwork. Paint the directed. Provide for and give the walls of basement throwehout inchudine the briciswork of the henting and ventitating apmatus, but excepting the inside of two coal rooms, two good heavy coats of fresh whice lime white inside of two coal rooms, two good heavy coats of fresh white lime whitehave become spotterl or sained, \&e., during the operation of painting or have become
white-washing.

GLASS AND GLAZING.

The glass used throughout the building is to be of the very best descrip. tion and quality of selected 16 oz . Diamond Star brand of glass. all whil cut in, putlied and back pullied, and finished in very best manner complete. Tine transom lights over nll class room doors, thed the glass to ghass purtito basument borrowed lights, will be glazed as nbjve described. The sash to basument borrowed lights, will be glazed as nujve described. The sash are to be glazed as soon as fitced, and leit to harden until ready for hanging. of mancrials and in the most thorough and workniantike mianner, and to the entire satisfaction of the architects in charge of the works. The tenders for painting and glazing of the school buildiag, sheds and fencing are to provide for and include all the painting and glazing ns specified, allowing for vide for and include all the painting and glazing ns specified, allowing for
the work already executed, providimg, however, for making sood any defects in same so that the whole work shall be a good and woikmanlike jols and complete in all respects.

BILL OF QUANTITIES.
CARPENTER AND JOINER WORK.
39857 fi . of pine timber (bonrd measurc) in joists, rafiers, plates.
 maple, complete
 (drese deams are hatd on cement fioor) to privy elosets, cont phete
67\% squares of $1 / 4 \mathrm{inl}$. F \& T roor boarding, 6 in . wide to main beliry, from and rear porches, cic., complete
91 squares of 3 in . rough flooring, 10 in . wide
7 squires of $7 / 6 \mathrm{in}$. maple raised teacler's platform, on $6 \mathrm{in} . x$ a in. bearers, complete
91 squares of $2 \mathrm{it} . x 3 \mathrm{in}$. and $2 \mathrm{in} . x_{2} \mathrm{in}$. strapping. basement and ground ceilings, complets
26/4 squares of $2 \mathrm{im} . \times 2 / 2 \mathrm{in}$. strapping, ground and first floor walls, complute
4 Squates of sheeting at bisement entrance and upper steps, roof complete
275 running fi. of curnice to main roof, complete
5^{8} running ft. of moutding to gablets of main roof, complete
308 running ft. of chained joists, it in. $x 2$ in., $13 / 1$ in, packing pieces spiked together and i in. iron straining rod, 6 in. x $8 \mathrm{in}, x 1 / \mathrm{in}$. end plates, nuts and washers, 14 in . iron bolts, 72 in nuntber, compleic
1300 running ft. of $3 / 6 \mathrm{in}$ G \& T^{\prime} narrow wainscosting mould etup and plinth, 3 ft. 6 in. in height, complete
424 running ft . of ridge rolls and tilting pieces to valleys and enves, complete
70 runniug f. of $x, \%$ in, iron gas piping, for hand-rail to main stairs, includes bracket and socket flanges to newel, complete
20 running fi. of pine linth, $14 \mathrm{in} . x$ soin., dressed, trussed on top and with incil iron rods, nuts, washers, uc., complete
$27 \mathrm{I} \% \mathrm{in}$, stair steps, wat tread and 1 rest landing, striags, balus trading, V jointed wainscotting, cupping, oak landerail, in 6 in ., Spindrnil, 8 in , $x 8$ in. turned oak newel, etc., complete
15 basement stair steps, ojk trend, strings, balusimding, V jointed wainscotting, capping, hand-rail, includes the bilustrading of well. etc.. chamfered posts, 6 in . x 6 in ., spandrail, $8 \mathrm{in} . \times 8$ in. turned oak newels, etc., complete
17 rear basement stups, 2×2 ank plank platform and supports, top, uprights, and diagonal rails, $1 / \mathrm{in}$, bolts to coping. strings, etc. complete as athove
18 rear entrance steps descending to basement, narrower, 14 in. x 3 in . pine chamfered coping bolted to wall and round oak roll planted on top, complete
18 frome porch entmance steps. 2 in. $\times 2$ in. statted treads, $1 / 1 / 2$ in, oat risers, strings. a platforms, oak parapets, and moulded oat risers, strings. a
coping, cic., complere
$\approx 234 \mathrm{in}$. front entrance doors, $12 \mathrm{in} . x 3 \mathrm{in}$. frumes, lock and other hardware, etc. , complete
2 2\% inside poreh doors, frames, locks and other bardware, cic. , complete
I 775 in , rear entrance loor, frame, lock and other hardware, etc. complete
2 2 $1 / 0$ in. basement entrance sash cloors, frames, locks and other hardwarc. etc., complete
81% in, elass roont doors, frames and fanlight. steel spring latches and otber hardware, etc. . eomplete
$12 \% \mathrm{in}$ slidiang door, fimbs, boxing. lardrood stop, $/ 4 \mathrm{in}$. half round sliding rail, whects, etc., complete:
$6 \mathrm{~s} / 4 \mathrm{in}$. basement doors, frames, locks and other lardware, cic., complete
41% in. foul nir chamber and rent shaft doors. frames, hinges and bolts, etc., complete
17 I $1 / 2$ in, bisement windows, fraines, hinges, pulleys, cords, plumb bob balance, bolts, itc., complete
4 borrowed yghts, franies, and will vertical iron bars to corridors in basemush, cic., complete
1 Y in, large half circle window, frame, mullion bars, etc., commall cir
3 tmall circular sashes to porch and rear gable, etc. complete bin. Unglish sashes, ground and firsi floor, boxed frames, double hung, sish lines, weights, tifts, sash fasteners, etc.,
8 brass pull down hooks and poles, ete, complete
ar porehes to basement enlmince steps, includes $6 \times 6 \mathrm{in}$. Uressed sind chamfured posts, plates, and eross bearers, dotible shecting, cressed raiters, facia and crown moulding. etc., complete
wrought iron an
4^{8} wrought iron anchors, $3^{6} \mathrm{in} . x 2$ in, $x 1 / 2$ in, one end turtued up 6 in., two $3 / 4 \mathrm{in}$. bolts olher end, etc., complete
50
48

8
venluiating openings in base of wainscoting, wood frames and
wirc eloin screens, complete wire cloil screens. complete
29 privy closets-fit up with risers, seat 3 , hinged covers, it/1 G \& 1 divisions and screems 36 ft . lang, 6 It. 6 in . high capped $3 \mathrm{in} . x{ }_{3} \mathrm{in}$. chatmfered posts from foor to ceiling, sec., contplete
42 suall cupboards in class roons, flock panel doors in two boxes. hocks, fistemers, etc., shelving. nould cornice, etc., complete soo chothes hooks, nind screws, etc, complete
I back board, drussed, to urinal, 6 ft .3 ins. $\times 15 \mathrm{in}, \times 1 \% \mathrm{in}$, etc. complete
Trimmings to stairs, ventilating sincks, flues, etc., doubte tusk frames, joisss spiked logellucr. $2 \mathrm{in}, \times$ iz in. stirrup pins 10 stair well, etc., complete
Trimuing for manthole, frumed roor, linged on top, finstencrs and hooks. includes step Indder to simes, etc., complete
Brackeling for galvamized fron cornice at belfry, ete, complete
Provide and set ail centres for luricklayers, stay franus, case cul stone work as directed, etc., conplete
Carpenter to box in plumber's piping, do all cutting, etc., as required, and attend on other trades, ele., complete
Temporary doors and finstemers and general care of buikling night and Sundays
Dressing basement window lintels a faces and basement door 3 faces, complete
Dressing wall fice of bond timburs in basement
lackbonid on sliding door panal. 6 sheets of $\mathbf{3 / 1 h} \mathrm{in}$. thick leather $30 \mathrm{in}, \mathrm{x} 16 \mathrm{in} .$. jounted and glued ready to receive connposition

Vol. v.] Jthe Ganadian Architect and ®uilder.
[No. 3.

CHURCH OF THE MESSIAF, AVENUE ROAD, TORONTO.
Gordon \& Hellivill, Architects, Toronto.

