Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtain the best original copy available for scanning. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of scanning are checked below.

Coloured covers /

Couverture de couleur
Covers damaged/
Couverture endommagée
Covers restored and/or laminated /
Couverture restauree et/ou pelliculee
Cover title missing /
Le titre de couverture manque
Coloured maps /
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations /
Planches et/ou illustrations en couleur
Bound with other material /
Relié avec d'autres documents
Only edition available /
Seule édition disponible
Tight binding may cause shadows or distortion along interior margin / La reliure serree peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

L'Institut a numérisé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de numérisation sont indiqués ci-dessous.

Coloured pages / Pages de couleur

Pages damaged / Pages endommagées
Pages restored and/or laminated /
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed/
Pages décolorees, tachetées ou piquees
Pages detached / Pages détachées
Showthrough / Transparence
Quality of print varies /
Qualité inégale de l'impression

Includes supplementary materials / Comprend du matériel supplémentaire

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from scanning / Il se peut que certaines pages blanches ajoutees lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas eté numérisées.

BRITISH AMERICAN JOURNAL.

ORIGINAL COMMUNICATIONS:

ART. XXVII.-The Correlation of the Vital and Physical Forces. A Prize Thesis for the Degree of M.D., C.M. By R. Maurica Bucke.
"The one spirit's plastic stress Sweeps through the dull, dense worlid, compelling there All new successions to the forms they wear Torturing the unwilling dross that clecks its fight To its own likeness as each mass may bear; And bursting in its beauty and its might' From trees, and beasts, and men, into the heaven's light."

Although the subject upon which I have undertaken to write is not-strictly s medical one, I shall make no apology for having selected it; for in the first place; it is not to be expected that a man so little read in medical science as a student must necessarily be, and who, at the same time, has had no experience at all, could advance new views of any value, or relate any facts (except in rare cases) not known before; for this reason, I say, it can make but little difference upon what he writes:

But secondly, and on the other hand, if he could write anything of any value, if he could add anything to the stock of positive facts or opinions fosseased by the medical world, then certainly there is no subject upon which information should be more acceptable, and on which it is more wanted; than the natire of life; a phenomenon which has so often been considered to be an ultimate fact; and philosophic inquiry into the nature of which, has consequently until lately been almosst entirely neglected;

Furthermore, the subject I have chosen though not strictly a medical one, yet must be acknowledged to lie at the basis on all branches of medicine; to be in fact the trunk of the great medical tree; for as it has to do with the nature of life, so it is the very ground work of Physiology and Pathology, and as sucli underlies the whole subject of the practice of medicine; and I think it is not too much to say, that until we have some clearer understanding of life than we atpresent possess, the great blank which lies between the knowledge of the nature of medicines on the one hand, and their obvious actions on the other, will never
be much encroached upon; and until our knowledge covers this, the practice of medicine can never be truly a science.

The theories of life have been constantly changing from the earliest times until the present day. This was to have been expected from the fact that thinking men are not apt to rest satisfied with the knowledge of any truth, but seek to explain it by a reference to other truths; to endeavour to establish, in short, some relation between all things that seem in the least degree analogous to one another.

Thus in the middle of the seventeenth century, we see a sect of medical philosophers, headed by Sylvius, holding the iatro-chemical doctrines;* which were supposed to be justified by the discovery of the fact that many of the chemical actions going on within the body were analogous to others observed in the inorganic world.

At the same time and later flourished the iatro-mathematical school, founded in the first place by Borelli, \dagger and afterwards extended by Bellini. \ddagger The doctrine of these philosophers was based on the observation that many of the vital actions are governed by mathematical laws.§

The insufficiency of these hypotheses gave rise in turn to that of the Archeus of Van Helmont, the Anima of Stahl, and the Vis Medicatrix Naturce of Callen.

Still later than this a belief became somewhat prevalent of so monstrous a nature, that, did we not know by daily experience the almost unlimited extent of human belief, we could never suppose it to have been entertained. It was that all the vital force required to build up any organism was stored up in the cell from which the plant or animal originally proceeded, so that all the force by which an oak, a whale, or an elephant was built up, was capable of being confined within the compass of a microscopic cell, of which thousands, or perhaps millions would lie upon the point of a penknife blade.

Still later, when it was believed that the vital forces existed in a dormant state in all matter capable of undergoing organisation, light and heat were regarded as vital stimuli or forces which possessed the power of calling these forth from the latent condition. This theory cannot be said to be absurd, it involves no contradiction, and could not be logically denied while it was held that a dormant magnetic power was possessed by iron, that latent lieat existed in steam, and the like; but when with Grove we deny the existence of such a property in iron, of such heat in steam, and the presence of latent force in every other case where it is said to exist; we have also a right to deny to carbon, hydrogen, oxygen, \&c., the dormant power that is by this theory attributed to them.

[^0]Until the time that Fowler * wrote, I do not know that any steps were taken attempting to prove any closer relationship between the vital and physical forcees than is expressed in the term vital stimuli: Since then, however, the belief in the mutual convertibility of these two sets of forces-the sital and physicalhas been steadily gaining ground, and is at present held by some of the most distinguished physiologists.

Now it has never been doubted, so far as I am aware, that however unlike in almost every way they may be, the matter which enters into the composition of any organised structure is the same as that met with in the mineral kingdom, but with its elements. combined together in different relative proportions; \dagger the forces that bind them in any one whole, whether chemically or physically, are also known to be the same as those we see in the world of dead matter, namely, chemical affinity and attraction of cohesion. But what is generally supposed to separate, by a well marked line, the living from the dead, is, that in the former is perceived the operation of certain forces which do not exist in the latter; which forces, under the name of functions, are most of them exhibited in common by the members of both the animal and vegetable kingdoms, while in the vegetable kingdom, and peculiar to it, we see displayed a power of organizing mineral matter; and in the animal kingdom, and peculiar to $i t$, two distinct forces, the nervous and muscular, with special structures provided for their evolution; while at the same time in the inorganic world, are certain dynamical agents such as light, heat, electricity, \&c., which specially belong to it, and which although they have always been allowed to have very similar actions upon living beings, and to be of vital importance to them, yet are not considered as belonging to them in the same sense as they do to the mineral kingdom: Now the question which I am about to consider may be thus stated-Is this line of demarcation;' which I have attempted to point out, real or only apparent? Are these forces, or rather these two groups of forces, distinct and separate the one from the other, or are the forces which we see manifested by organized beings another and modified form of the forces existing in the inorganic world, borrowed from it, and when used again returned to it; just as the matter of which living beings are composed is taken from that by which they are surrounded, and when used, again returned to the dead world from which it was taken? It is the object of this paper to shew that, abstractedly considered, no such line can be urawn ; \ddagger that in fact there is no difference between these two groups of

[^1]forces except in the mode of their manifestation, and that this is due to the difference in the material substratum through which they in each case manifest themselves. That in short, the vital and physical forces are correlated the one to the other.
And before proceeding further it may be well to state clearly what is meant to be implied in the following pages by the term "correlation." It may be thus defined,--one force, A, operates upon a certain form of matter and disappears, but in its place a second force, B, is developed; again, B is made to act upon some other form of matter, and in its turn disappears, and now A is reproduced, or perhaps not A, but some other form of force, C, D, or E .
Now this conversion of one force into another, if such we like to consider it, necessarily implies a definite quantitative relation existing between the forces thas capable of being chauged the one into the other; that is, a certain amount of force A is equal to, and will produce a certain amount of force B, which in its turn shall be capable of reproducing the same amount of force A as originally existed. Thus a cortain quantity of zinc is oxidated in the cells of a galvanic battery and a certain quantity of electricity, the result of the oxidation passes along the wires connected with the battery; but as as a second consequence of the chemical action heat is evolved, so that we cannot have all the ehemical force continued as electricity; nevertheless a remarkable relation has been shown to exist between these two, for if the electricity be employed in the decomposition of water, it will be found that for every equivalent of zinc that has undergone oxidation in each cell of the battery, an equivalent of water is. decomposed; * so that the oxygen that disappears in one place reappears in the other, and the force that is set free in the union of the oxygen with the zinc is again taken up in the act of decomposing the water.
It is rarely, if ever, that we can reproduce so as to measure in another form all the force which has in any case thus merged itself; still in the case of someof the physical forces it has bein determined, at least approximately, how much of one is required to produce, or be equal to, a certsin quantity of another. Thus the experiments of Mr. Joule, \dagger which Prof. Grove considers the most reliable that have been made upon the subject, show that the heat necessary to raise one pound of water through one degree Fabr., is equivalent to the motor force required to raise 772 pounds one foot.

This theory of the correlation of forces, followed to its consequences, naturally leads to the idea of the conservation of force, which supposcs that as with matter so with force, there is a certain quantity in the universe, of which none is ever annihilated, and to which none is ever added, that in every case where one form of force disappears, another takes its place; and in like manner every force, which is in any case evolved, is so from an antecedent force which has been converted into it; and as this is true of every form of force so no one of these stands first more than another, and so no one can be said abstractly to be the eause of

[^2]the rest, for though it may produce any of the rest, yet any of the others may also produce it.*

As for the abstract nature of matter and force, and their relation to one another, it matters little what view we take, and whether following Boscovich, \dagger we conceive matter to be made up of mathematical points without form or size, acting on each other by attractions and repulsions; whether with Grove \ddagger we consider all forces as properties of mattor, and therefore inseparable from it; or taking the more generally received opinion, we suppose matter to be one distinct entity, and force another acting upon it, the question before us remains the same and unaffected.

Now the whole subject of the correlation of forces naturally divides itself into thiree parts, as follows: 1. The correlation of the physical forces; 2. The correlation of the vital forces; and 3 . The correlation of the vital and physical forces:

The first is often considered as proved, $\|$ and there can be no harm in taking it as a postulate, and as such using it in the argument before us. Of course it would be impossible to enter into the proofs of it in this place, and after Prof. Grove's treatise on the subject, anything that I could say would be probably something worse than superfluous.

Though the second division, the correlation of the vital forces, does not properly form part of my thesis, yet for the sake of making the latter more complete than it would otherwise be, I shall say a very few words upon it before proceeding to the main object of inquiry.

The growth of all organized beings, from the simplest vegetable to the most complex animal, essentially consists in the multiplieation of cells; all organized beings originating in this, the most simple structure endowed with life: All the forces of every kind which are manifested by organized beings are evolved through the instrumentality of cells, or by tissues which have originated in theese, and retain, more or less completely, their cellular character; and fürther, all the most active vital operations are performed by tissues which retain, with little or no change, the perfect cell as their chief constituentis This has given

[^3]rise to the term " Cell force," which term expresses every form of force put forth by organized beings; according to this, therefore, the relation the cells bear to each other, will be also the relation which the different forms of cell force (vital forces) bear to each other.

Now this much being granted, it will be seen by the following considerations what an exceedingly close relationship this must be; for. firstly, in the simplest forms of life there is no division of either structure or function, we have but one form of cell by which all the functions of the plant or animal are performed, that is by, or through which, all the forms of cell force put forth ky such plant or animal are evolved; so that here the same cell liberates several forms of vital force. Secondly, in the highest organisms, although a particular form of cell is provided for the evolution of each force, yet they are all lineally descended from the single primordial cell in which the animal originated. Thirdly, although when a form of cell is once set apart for the evolution of any particular kind of force, it generally continues to evolve that and no other, yet it is a curious circumstance, and one that is hardly explicable upon any other view than that here taken, that under special conditions a form of cell may cease to liberate the form of force for which it was designed, and give off another quite different from it. Thus mucous membrane and skin are convertible into one another by a change in their external condition; and either (in the case of the conversion of skin into macous membrane) the epidermic cells are altered in their function so that they secrete mucous, or else there is an earlier change in the direction of the force, By which means true mucous epithelium is grown upon the basement membrane which was the cutis vera. Just the same may be said of the change of mucous membrane into skin, and, in fact, of all such cases of conversion.

Innumerable other instances of this kind could easily be given. Thus the little hydra, or fresh'water polype, may be turned inside out, and that which was the external surface will perform the office of digestion as well, or nearly so, as the membrane originally provided for that purpose; the gastric juice being poured out by its cells and absorption taking place through it, in a manner apparently quite normal.* Again in the case of the gemmæ of Marchantia polymorpha, to be noticed again in another connection, the external influences determine entirely the respective sides that shall furnish the stomata and the roots. It is needless further to multiply instances, and I shall only remark that all cases of vicarious secretions \dagger must be looked upon in the same way, and proceed to the fourth consideration, which is, that cell action in one place can, in virtue of its correlation with all other forms of this same force, control cell action elsewhere; and on this view, we can most readily explain the influence of the nervous system over all the other portions of the body; for as electricity, developed by chemical

[^4]action in one place, controls chemical change in another to which it has been conducted, so cell force in the form of nervous agency being conducted by its proper medium, nerve fibre, can accelerate, check, or alter cell action in other parts of the body $\ddagger \ddagger$ and in this way we can understand how any sufficient cause acting through nervous agency, may, as in the case of shock, altogether stop some action essential to life, and so cause the death of the individual;* or if not stop the cell action, so pervert it that it shall be incompatible with a continuance of vitality.

Now of course it will not be supposed that when I speak of cell force I mean to express that the cells have the power of originating that force; further on it will appear whence I consider it to be derived. Myidea of the agency of cells, as such, is simply this, that whereas any force in its origin, as that force must be produced by the conversion of some other into it, and that for this parpose some particular material substratum must exist in the passage through which the change takes place; so I believe the cell is the form of matter througin which the physical forces, in the ordinary course of nature, pass in their conversion to those which we call vital.

The subject which I have, perhaps rashly, undertaken to treat of,-" The Correlation of the Vital and Physical Forces,"-I shall examine in three parts, Which division is of course arbitrary, the subject itself being properly one and indivisible; but for convenience of writing and thinking upon it, such partition will be found to be of great consequence.

The three parts are, (I) firstly, where the conversion takes place in the ordinary processes of life, through the chemical force; (2) secondly, where the physical forces pass into the vital, and conversely the vital into the physical, by direct contact with living or recently dead tissue; and (3) thirdly, the influence of the physical forces, principally light and heat, upon the living plant or animal in the ordinary state of nature.

To be continued.

ART. XXVIII.-Acute Articular Rheumatism, treated by the Tincture of the Botetus Laricis Canadensis. By D. McGinurvbay, M.D., Fellow of the Botanical Society of Canada.
January 9, 1862, I was requested to visit Mrs. H——, aged 30, of spare habit of body and delicate constitution, suffering from an attack of acute articular rheumatism. Two months previously she gave birth to her first child; shortly after her confinement, inflammation of the left breast set in and ressited in suppuration. On seeing my patient at this time, she was confined to bed in a helpless condition, suffering from severe pain in her arms, elbow and wrist joints, in the articulations of the fingers, and in the corresponding parts of the lower extremities. On examining the parts affected, I found them considerably swollen,
\ddagger Carpenters "Human Physiology" pp. 739-743.

- Carpenter "On the matual relation of the vital and physical forces phi Tran. 1850.
hot, red and painful; the joints, though affected with constant and excruciating. pain, could bear gently rubbing them without causing: much uneasiness; but on the contrary, it seemed to alleviate the patient's sufferings, giving temporary ease. Tongue white and coated; profuse perspiration at night; thirst; a hard full pulse at 98 ; bowels costive; urine high coloured. The following mixture.was given:

$$
\begin{aligned}
& \text { R. Potasse Nitrat,............ } 3 \text { ij. } \\
& \text { Potass. Iod.,.......... grs. } \operatorname{xxxvj} . \\
& \text { Tinct. Hyoseyami,....... } 3 \text { iij. } \\
& \text { Aquæ, } \quad \text { § viij. }
\end{aligned}
$$

Fiat mistura. Capiat cochleare amplum ter in die. Dover's powder at night, and a full dose of Castor oil the following morning.

Third day.-Bowels relieved; pulse 92; pain in joints still severe. Ordered hot fomentations to be applied to painful joints. This treatment was pursued for several days without producing any apparent benefit in either alleviating the patient's sufferings, or arresting the progress of the disease, as now the hip and shoulder joints had become affected, and the other joints more painful and swollen.

January 16.-Discontinuing the above mixture, I gave the Tinct. Boleti Laricis Canadensis as :prescribed by Dr: Grant:

$$
\begin{aligned}
& \text { R. Tinct. Bolet. Laricis Canad., } \begin{array}{l}
\text { ₹ jss. } \\
\text { Aquæ puræ, } \\
\frac{3}{3} \text { vij. }
\end{array}
\end{aligned}
$$

Fiat mistura. Capiat cochleare amplum quaque tertia hora: B. Morphiæ muriat. gr. $\frac{1}{2}$ at bed time.

January 18.-She says she feels a good-deal better; lies with more ease and coinfort for a longer time in one position; pain in joints only on moving her limbs; pulse 79.
January 20.-Pain and swelling in the affected parts decreased; perspired profusely throug'd the night, sleeps. little, and wakes up in fright; pulse 80 ; bowels regular. Ordered hot fomentations to painful joints.

January 21.-Is troubled with a flying pain in her chest, but no symptom of the heart being affected ; pain only in knee and ankle joints; less distension in those parts; pulse 80; urine more copious and pale.

January 23.-Finds herself considerably better; perspired freely during last night; feels stronger and free from pain; can; walk: about. without the least discomfort;or uneasiness; pulse 70; skin of natural heat; bowels regular; declares herself quite well and able to resume her household labour.

Nory.-This case is interesting chiefly from its containing a contrast between the results of the eliminative treatment and: that iby; the Boletus : Laricie: Canadensis;- The: patient deriving.little benefit from the former, while the latter rendored her quite convalescent in the same period of time. Should this remedy be found as satisfactory in the treatment of Rheumatism in other cases as in this, it will no doubt prove an invsluable acquisition io the Materis Medica.

Chëlsea, C. W., May 1st, 1862:

ART. XXIX.-A case of recovery after symptoms of severe injury of the brain. 'By A. D. Stevens, A. M., M.D.; Dunham, C.E.
I place' this case before the readears of this jourrial, not because of any apprehensions of adducing novelties; either of a pathological or therapentical character, ibut:simply for the reason that I consider the recovery remarkable, and consequently not without interest. I might also remark, that the report is not at full length, on account of my desire to oecupy as itttle room as possible.
On the 14th of January last, a messenger came for me to visit one David S. B-_, who, I was told, had reeeived several blows upon the thead in'a quarrel the afternoon previous, which caused him to fall backwards, forcibly striking. his head and body upon the ice or frozen ground, the immediate effects of which were slight symptoms of concussion of the brain, which soon passed away, and he travelled a distance of about five files, talking, \&c., as usual. On arriving at the hoose, I found him to be a man of about thirty-five years of age, tall and thin, and of previous good health; his pulse hard, irregular and accele'rated; jaws closed; great frothing and blowing at the mouth; strong convulsive movements at short intervals; unconscious; no control over sphincter of bladder; imperfect paralysis of left limbs and side of body, (though more perceptible after fortyeight hours) eyelids closed, and pupils somewhat dilated. After searching for a fractured or depressed portion of skull, and failing to discover any such injury, I proceeded to take as much blood from his arm as I deemed admissible. I should here observe, however, that I found the parts lying over the right temple swollen and slightly contused. The bleeding haring been finished, several vain attempts were made to introduce a few drops of "Croton oil into his mouth, but as often were rejected on account of the frothing and blowing at the mouth. Next, 'a large blister was placed on the back of his neck, and retained as well as his convulsions would admit, sinapisms to the feet, the hair cut closely, the head elevated, and cold applied to it. This constituted the principal treatment for about forty-aight hours, when the foaming and blowing had so much subsided as to allow the introduction of five drops of Croton oil into his mouth; buit this proving insufficient to act upon his bowels, four more were given, which produçed a free alvine evacuation. Shortly afterwards, a little improvement was discernible in his powers of deglutition, \&e., so mach so that I succeeded in giving him, during the subsequent twentydour hours, four doses of calomel, containing five grains each.

On the next day, consceiousness began to dawn upon him, but his limbs (nóre particularly the right) were hardly controllable, from their almost incessant motions (quasi convulsive).

During the next week, the following were among the symptoms noticea, though of course they did not all appear' at the same time, or on the same day: ideliriam, though generally extremely drowsy and hard to arouse; dropping of right eyelid and suffused conjunctiva; hearing morbidly acute; pulse soft and at times feeble; intense burning thirst with great diffeculty of swallowing, constipation ; typhoid tendency; dry tongue; flushed countenance, still no authority over bladder; restlessenss and prostration of strength; can talk a little,
and says he has pain in front and sides of head. Treatment expectant or nearly so, paying attention to his bowels, with small doses of chlorate of potash, alternated with the nitrate of potash.

On Thursday of third week he fell back into a comatose state; with its usual accompanying symptoms. These were a second time relieved by a sharp purgative of Croton oil, a blister to the upper part of the spine, and back of neck; cold to the head, sinapisms and hot bricks to feet. After this, recovery gradually supervened, during which time there were observed troublesome pain in the head, thirst; silliness; constipation; dropping of right eyelid; perverted temper; double vision; nervous excitability, \&c., \&c., \&c. He is now, April 7th, able to attend to his ordinary duties.

Dunham, C. E., April 20th, 1862.

ART. XXX.-Case of Resection of the Ankle Joint. By W. Canniff, M.D., M.R.C.S., England, Professor of Surgery and Pathology, University of Victoria College. Formerly.House Surgeon to the Scamen's Retreat, N.Y.; and late acting Assistant Surgeon to Her Majesty's Forces; Physician to the City Dispensary, Toronto.
The following case of resection of the ankle joint will probably be interesting to the profession in Canada, and it may be to the profession at large, while it will add one more to those cases in which conservative surgery has proved a sucoess.

Resection of the knee joint, the hip joint, and also of the elbow joint, has frequently been performed, but I believe that of the ankle joint has been practised but a few times, indeed I can find only five such cases, all of which were by Mr. Hancock of Charing Cross Hospital. Not having access to the American surgical reports I cannot say whether or not this has been practised in America, but believe at least it is the first such operation in Canada.

For the history of the case prior to my acquaintance with the patient, I am indebted to his brother-in-law, Mr. B-_, who is a student of medicine.

Mr. G—_, æt. 21, of the County of Elgin, on the 4th July, 1861, was thrown from a carriage and received ${ }_{r}$ an injury in the left ankle. On examination, which took place soon after the occurrence, the foot was found dislocated outwards; the "fibula" broken about two inches above the " malleolus," and a large prominence presented itself on the inner side of the os calcis. Reduction was attempted by extension and counter-extension; which was continued for some time with partial success.

A prominence was now found just at the posterior and inner angle of the Scaphoid, which was the anterior part of the astragalus. This was not replaced. Short splints were used. The limb was placed in a fracture boz, and cold water applied. In about three weeks nearly the whole of the dorsum of the foot began to slough, as well as the part around and in front of the internal malleolus. Cold was then discontinued, and poultices used instead, and in a few days the foot bones were bare. The protruding fragment of the astragalus was now adjusted, and strong hopes were entertained of a speedy recovery. And from this
time externally there was an improvement; cicatrization commenced and went or rapidly; repairing in a short time nearly the entire breach. A small spot; however, at the upper and inner part of the os calcis remained open, and through this, abont the tenth week, was thrown of the "lesser process" of this bone. Soon after pus was detected immediately in front of the external malleolus. A deep incision was made reaching the inner space between the os calcis and astragalus, forming a free communication with the opening on the 'opposite side. This remained; a constant discharge was kept up, and a second piece of bone was thrown out. By this time the patient by the help of crutches began to get around. But the part.being still poulticed and allowed to hang, the swelling. became great, and the pain increased. Things continuing thus for some months, the patient's spirits sank, and hopes of recovery were quite abandoned, He resolved however on making another trial and seeking aid elsewhere. 'Consequently, on the 19th February, 1862, he came to Toronto and placed himself under my care. Upon examination I found the foot and lower extremity of the leg very much swollen and evidently ædematous, which condition I concluded was due to long continued passive congestion. There were two sinuses, one on the inner side just anterior to the internal malleolus, the other on the outer side below the external malleolus. In front of the inner sinus was a long cicatrix, presenting a very unhealthy appearance. By passing a probe into the inner opening, I found the anterior part of the astragalus in a necrosed condition. Directing the instrument downwards upon the os calcis, the superior surface of this was found to be in a softened and disorganized state. The probe could also readily pass to the lower extremity of the tibia, which was evidently dead, and the lower end of the fibula on examination through the external opening was also found affected. I ordered the limb to be kept in an elevated position, and a bandage to be applied to the foot, the skin of which was in a state of great irritation.

This treatment was continued for a few days with marked benefit; the patient in the mean time becoming more cheerful, and the pain' somewhat subsiding.

A consultation was held, at which the question of amputation or resection was considered. It was finally determined to adopt the latter procedure. Consequently, on the fifth of March last, assisted by Dr. Lawlor of this city, I performed the operation as recommended by Hancock, which I give you in his words.
"Commence the incision about two inches above and behind the external malleolus, and carry it across the instep to about two inches above and behind the internal malleolus: Take care that this incision merely divides the skin and does not penetrate beyond the fascia. Reflect the flap so made and next cut down upon the external malleolus, carrying your knife close to the edge of the bone; both behind and below the process; dislodge the peronei tendons and divide the external lateral ligaments of the joint. Having done this with the bone nippers, cut through the fibula about an inch above the malleolus; remove this piece of bone dividing the inferior tibio-fibular ligament and then turn the leg and foot on the outside. Now carefully dissect the tendons of the tibialis
posticus and flexor communis digitorsm from behind the internal malleolus; carry your knife close around the edge of this process, and detach the internal lateral ligament; then grasping the heel with one hand, and the front of the foot with the other, forcibly turn the sole of the foot downwards, by which the lower end of the tibia is dislocated and protruded through the wound. This done, remove the diseased end of the tibia with the common amputating saw, and afteryards with a small metacarpal-saw placed upon the back of the upper articulating process of the astragalus, between the process and the tendo achillis; remove the former by cutting from behind forwards; replace the parts "in sifu;" close the wound carefully on the inner side and front of the anke, but leave the outside open, that there may be a free exit for discharge; apply water dressing; place the limb on its outer side on a splint and the operation is completed."

I found the lower extremity of the fibula very much enlarged and somowhat softened, while bony material had been deposited on the outer surface of the periosteum, consequently I experienced some difficulty in dislodging the tendons of the peronei moscles. The fibula was easily divided by the bone pliers, but the piece was not easily removed, beaause of the new osseous material already mentioned. Turning the foot on the outer side, I proceeded to dislodge the tendons from the groove on the posterior surface of the tibia, and here also the ostroid growths proved exceedingly troublesome. Having divided the' internal lateral ligament, I removed the anterior portion of the astragalus which was in a state of necrosis, and had evidently been broken from the other portion. I then seized the foot.in the manner recommended by Hancook, and with.very little, force turned out the end of the tibia. Next I removed the remaining portion of the astragalus, which was in a state of disorganization. I then, with the ordinary amputating saw, removed about three quarters of an inoh of the tibia. That portion removed was found softened and carious. The tibia proved to be more seriously involved than had been anticipated. After a hasty consultation, it was resolved to remove, another portion of the bone; so extending the section in the integument about an inch and dissecting the soft part from the bone, I removed nearly an inch and a half more both of the tibia and fibula; I then gouged away a portion of the os calcis until the diseased structure was all removed. The operation was now completed; but it must be confessed the prospect of saving the foot did not appear very bright. There was an hiatus of more than three inches; but as a source of hope there was the fact, that neither the anterior nos the posterior tibial artery had been divided. The blood consequently circulated as freely in the foot as before.

The limb was placed in a fracture box, the flap having been secured by a few sutures and adhesive straps. Proper support was given to the foot, and cold water dressing applied. The loss of blood had been very slight. The patient had remained under the influence of chloroform during the whole of the operation, which was necessarily long, upward of an hour, quickness in operating having been no consideration. The patient passed a restless night, suffering, constantly from nausea and vomiting caused probably by the quantity and inferior quality of the chloroform used. The part was also somewhat painful.

Very little inflammation followed, but that portion of the flap where the cies. trix was, sloughed away, leaving a. very large opening; but cicatrization: quickly. commenced and progressed rapidly. The discharge was at no time very great. The patient was'able to get around on his cratches within one month.

At the end of nine weeks, the limb presents the following appearance: A. healthy looking and limited cicatrix, marking the incision through the integument; a very small opening internally; where the most sloughing was; thie foot reduced to almost its natural size, and in a natural position. There is by admeasurement not more than an inch and a half shortening. The bones of the foot have not yet joined with those of the leg. The foot can be moved passively in any direction; yet there is a comfortable degree of firmness, which has been constantly increasing. The patient can move the foot and toes in a natural manner. In a word there is every prospect of an excellent joint. His health bas improved, and as a matter of course he is yery thankful that his foot has been saved.
At the expiration of a year I shall take occasion to inform the profession of the final result.

Toronto, May 16th, 1862.

HOSPITAL REPORT DEPARTMENT.

Edited by Francis W. Campberi, M.D., L.R.C.P., London.
Excision of part of the Inferior Maxillary Bone. Under the care of Dr. Hingston. Reported by Mr. Kenneth Reid.
Patrick Carey, a robust, healthy-looking man, 00 years of age, was admitted for epithelial cancer of the lower jaw, into the St. Patrick's Ward of the Hotel Dieu Hospital, on the 17th of January, 1862.

The patient about 18 months before entering the Hospital, had submitted to an operation for the removal of the diseased part from the lower lip. The disease was then confined to the soft parts, but since its return had involved the bone, and was about the size of a full blown rose. The patient up to this time had held a good situation on the Grand Trunk Railway, but owing to the spread of the disease, and the pain and fetor accompanying it, was obliged to leave off work. On this account he was urgent for its removal, although only promised temporary relief.

Accordingly on the 23rd the operation was performed by Dr. Hingston in the following manner:-The patient being under the influence of chloroform; a thick ligature was passed through the, tongue, to prevent it from falling back upon division of the sub-lingual mascles, and entrusted to an assistant; the left bicuspid and right first molar were then extracted; and the soft parts divided by two incisions forming an isosceles triangle: The bone on either side was afterwards sawn through by means of the chain and Hey's saw; when by dividing the attachments of the genio-glossi, and genio-hyo-glossi, the whole was removed. The two sides of the maxilla were then brouglt within half an inch
of each other, and the edges of the incisions were drawn together, and united by means of three twisted sutures supported by plaster.
. The patient made a very rapid recovery, union taking place almost ontirely by the first intention. He was at first forbidden to speak, and his diet confined to soups. On the 3rd of March he was discharged from the Hospital, and resumed his situation.

1st May. The deformity scarcely perceptible; speech not affected, and the slight retraction of the chin is concealed by a large imperiel.
Excision of Phalanges and Metacarpo-phalangeal Articulations. Under the care of Dr. Hingston. Reported by Mr. F. Paré, (translated).
William Riley, æt. 19, suffering from frightful laceration of the right band, was admitted into the St. Patrick's Ward of the Hotel Dieu, on the 15th of November, 1861. The hand was greatly swollen; the injured parts suppurating and exhaling an extremely disagreeable odour; the bones of the thumb and little finger had been severed; the first and second phalanx of all the remaining fingers had been cut through and splintered by three successive revolutions of a circular saw, four days before. The skin, extensor, and flexor tendons were severed at the corresponding parts, and the fingers were hanging by narrow necks of skin on the palmar surface. Immediately after the octurrence of the accident, a medical practitioner had been called in and had advised amputation of all the fingers and part of the band, but the patient would not consent to the operation.

Dr. Hingston formed a flap for the thumb and small finger at their metacarpophalangeal articulations. He then made a resection of the second articulation of the index, middle, and ring fingers, and afterwards removed the first phalanx of the middle and ring fingers. Seventeen pieces of bone were taken away, varying in size from a whole phalanx to a mere spiculum, and the torn tendons. having been shortened were all restored to their places.

The hand was then loosely bound to a large piece of paste-board, and under the usual treatment the parts healed rapidly. On the 21 st of December the patient was able to extend his index finger, and on the 24th there was extensory movement of the ring finger with flexion of the index. Since that time the mobility of the fingers, which are much shortened, increased every day up to his discharge on the 27 th of January.

May 1st. Motion in index and ring fingers entirely restored, and flexion in middle one. The patient being a labouring man, the hand is in every respect a serviceable one.
Excision of the Elbow Joint.* Under the care of Dr. Hingston. Reported by Mr. Kenneth Reid.
Catherine Lynch, a strong, healthy-looking girl, $\mathfrak{x t}$. 23 , suffering from extensive caries of the right elbow, was admitted into the Hotel Dieu Hospital, on the 14th November, 1860, and in the following March on its removal to the new building at Mont St. Famille, she was admitted into St. Bridget's Ward, under the care of Dr. Hingston. On her admission the joint was very much enlarged and painfui ; the skin red and shining; and two sinuses communicated with
the interior of the joint. Through these a probe conld be passed with ease. The limb was anchylosed in a straight position.

On the 23rd April, resection was performed in the following uanner:-An H shaped incision 5 inches in length was made along the back of the joint, the flaps were dissected back, and the olecranon process having been freed with the knife was removed with the bone pliers. The joint was then opened-the radius removed down to the tubercle for the attachment of the bicepa, and the corresponding part of the ulna together with the condyles, and all the shaft of the humerus below the condyloid ridges. The bæmorrhage was inconsiderable. Union took place by ihe first intention, except at the sites of former fistulous openings; through these a moderate discharge was kept up for three or four weeks. There was no pain or febrile disturbance. The arm was placed in a straight position, and in this way remained for ten days. Passive flexion was then begun ; an inch a day till a right angle was reached; again gradually retorned to a straight position, and as gradually flexed until the hand was made to rest against the cheek. Two months after the operation active motion was partially restored.

15th January, 1862. Patient was discharged to day fit for service. All the usual motions of flexion, extension, supination, and pronation are entirely restored; the patient can knit, scrub, sew, and do all sorts of house-work.

1st May. Patient called to say that she experiences no inconvenience whatever in using her arm, and is earning her living at a sewing machine.

PARIS CORRESPONDENCE.

The following remarkable case of the cure of lockjaw is related by the Italian Medical Gazette of Milan. A hair-dresser of that city accidentally received a cut with a seythe on the palm of his left hand, near the wrist. This occurred about the beginning of March 1861. The wound healed in six days, and it was not until the 30th following that, in rising from his bed, he felt some difficulty in opening his mouth, besides contractions in his left hand, which he could not stretch out, and pain in the right hip and thigh. During these first days, the phenomena disappeared on going to bed, but commenced as soon as he rose and exposed himself to the open air. On the 10th of April the symptoms becoming more intense, he was taken to the hospital. On the following day a spasmodic contraction of the muscles of the lower jaw and rigidity in those of the neck were observed ; the left hand experienced a contraction every time it was taken from under the bed-clothes, and the pain on the right side continued-the pulse was very slightly agitated. Sisteen grains of Muriate of barytes, dissolved in a pound of distilled water, were prescribed, to be taken in the course of 24 hours. This treatment was continued until the 21 st, when the symptoms of lockjaw having nearly entirely disappeared, the dose was reduced to eight grains a day, and the remedy entirely left off on the 26 th. Two days later, the patient left the hospi-

[^5]tal in perfect health. I must add, however, that Dr. Gherini of Milan affirms: that he tried this remedy without success in the case of a wounded soldier during the war :in Italy-on the other hand he admits that Dr. Gnecchi of the same: city, has several-times successfully administered it in cases of traumatic lockjaw, and that Dr. Tussani, also of Milan, counis one cure by this salt. Another case is related as having occurred at Venice, where a young girl of 16 received a slight wound in the wrist, which appearing very insignifieant, was neglected. Symptoms of lockjaw appeared on the following day, which were successfully treated by 24 grains of aconite in strong laurel-water, a table-spoonful being administered every hour. The dose of the aconite was afterwards raised to 36 grains, and in the course of two days the patient was cured.

At a recent sitting of the Academie des Sciences, Dr. Velpeau related the case of a.woman who had died suddenly at the Hospital of La Charite of a clot-of blood which had been formed in the pulmonary artery.' She was under treatment. for a fracture of the right leg. Dr. Velpeau entered somewhat minutely into the question of the origin of blood clots causing death by the obstruction of the vessels. Some of these are formed during the period of the agony which precedes death; at other, times they have their origin in some morbid state or inflammatory process, in which case the blood is coagulated in the large arteries, while ${ }_{\text {a }}$ plastic. exudation contributes to the obstruction of the vessel. In such a case death ensues more or less rapidly, but not suddenly. It is particularly in the veins of the abdominal regions, the head or the neck, that the cause of these coagulations must be sought. As soon as the blood, a living fluid, seases to circu-late, and coagulates in a vessel, it is dead blood, a dead body in a living one, a most dangerous inmate. If in a dilated vein clots of blood are formed, they may cause but slight perturbation ; for one vein thus stopped up, a dozen will be developed in the vicinity and the circulation will not suffer any interruption. ${ }^{2}$ But let a fragment of this clot be detached from the principal mass, it will be carried away by the current into other vessels. From the femoral vein it will enter the vena iliaca, and thence the vena cava and the heart. Its effects will necessarily depend upon its shape and size-if it is small enough to stop in one of the secondary divisions of the pulmonary artery, the lungs will suffer, but death will not ensue. But if it be voluminous enough to stop up both branches of the great artery, filling its trunk, it will extinguizh life by stopping both sanguinification and respiration. The veins are not alone subject to such coagulations-they may take place in the arteries-in which case, however, other foreign bodies circulating with the blood such as a fragment of a tubercle, of pus, etc., must be taken into account. Dr. Velpeau concluded with expressing his conviction that such substances, circulating with the blood, must be considered as the cause of various diseases in the human frame.
Gen. Morin has also addressed an interesting paper to the Academy of Sciences on the subject of ventilation in hospitals and other establishments where many persons are congregated together. After various theoretical considerations, our author remarks that the system of ventilation at present in use may be reduced to two kinds, viz: that which determines a draught in an upward direction by a fire lighted at the top of the edifice-and that which places the fire in the cellars.
to produce a draught in the opposite:direction. Gen.Morin recommends athird sygtem between the two, which consists in keeping up: ifire on:adevel with the floor of the room to be ventilated. Experiments prove that an upward draught is the most unfavourable of the three, the quantity of air thas evacuated being inferior to that carried off under the other systems. The lattor are much on a par as regards the effect produced, but the third deserves: the preference on accaunt of its cheapness and simplicity. The author, in examining the question of the introduction: of pure warm air into a room, finds that the aupply under the ordinary system ; is inferior to the quantity evacuated; a defect which :he proposes to obviate: aby enlarging the orifices of the stoves destined to furnish it. The Hôpital Lariboissière has a peculiar system which produces good effects. Itconsists of eight pavilions, of three storeys each, every story containing ia siok-ward with 22 , beds, and a small room with two beds. "T The ritiated airis carried off on each floor by zineteen evacuation flues, which unite into one in the garrets, where a draught is obtained by a large vessel containinghot water: The quantity of foul air thus evacuated in a second is about one: oubic metre and one fifth-ibut a greater result might be attained were the circulation less complicated, since the unerenness of the surface of the fiues, a circumstance, the effects of which can hardly be attenuated except by a diminution of length, causes a loss of velocity of more than one-seventh.

Mr. Renault, member of the Academy of Sciences, has presented to that:learned association, a bighly interesting :communication on the subject of ihydrophobia. He; shows that:the precautionary measures taken by the police are far more cifficacious in preventing hydrophobia; than the tax on dogs. This tax: had been introduced more with a view to diminish the number of dogs than'to derive a revenue from that soarce, and yetstrange to say, the cases of hydrophobia have been rather on theincrease since that time thas otherwise. Thus, it is proved that at Paris, where the average number of dogs: was about 60,000 , the tax has only reduced it by 6,000 . It is true that the number of vagrant dogs has greatly diminished, but this is rather owing to greater strictness on the part of the police, than to the operation of the tax. However that may be, certain :it is that the number of human beinge carried off by hydrophobia has never been so considerable as it has been during the last three years. The precautions which appear to be most effectual are: 1. The muzzling of dogs, when not shut up or otherwise secured; and 2: The immediate destruction of those which present the slightest symptoms of approachingihydrophobia, or have been bitten by mad or unknown dogs: Mr. Renault does not subscribe to the opinion that permanent muzzling may of itself cause hydrophobia on account of the constant irritation it produces; he declares,; on the contrary that he has been unable to discover a single well-authenticated ease of madness from that cause. As for the tax, it has existed in Prussiaisince 1829, but although its amount is 12 fr . (\$2.40cts:) a year, the: number: of cases has not:diminished; on the coitury, they in 1852 and 1853 increased to such an extent that the police of Berlin; in their anxiety; ordered that all dogs, not.secured should be permanently muzzled. Since then, this rule has been strictly observed sthere, and with the best resalts. The following table
shows the number of cases of hydrophobia per year from 1845 to 1853 at the veterinary establishments of Berlin:-

1845........... 32	1848........... 17	1851........... 10
1846........... 18	1849............ 30	1852........... 68
1847........... 3	1850........... 19	1853........... 82

or 278 cases in all, giving an average of 28 cases a year, for the veterinary school only, exclusively, therefore, of those which must have occurred in the city, and were not registered. But from 1854 a total change is perceptible. In that year only four cases occurred, and that because the order to muzzle the dogs permanently was not promulgated until the lapse of the firmi few months; in 1855 and 1856 the number of cases both in town and at the school did not exceed one a year and from 1857 to 1861 inclusively, there has not been one single case of hydrophobia at Berlin. Hence Mr. Renault concludes-1. That spontaneous hydrophobia is exceedingly rare; 2. That muzzling dogs permanently and universally is an efficacious measure for the prevention of the disease or its propagation; and 3. That it is a mistake to believe that the constraint caused by the muzzle may tend to develop madness in dogs.

Dr. Goyon related a case of a family in the West Indies, the eldest son of which had died of tuberculous leprosy, while the second and the daughter already bore symptoms of the commencement of that dangerous malady. Dr. Goyon being consulted, advised the parents to arrest the progress of the disease by a change of climate, which they accordingly did, and in 1826 settled in France. Since then, the leprosy had remained perfectly stationary, the points where it had manifested itself in the shape of red spots with an apparent modification of the tissues, had not spread although they continued to be perfectly insensible. The two young people having grown up, married in course of time in France, aüd their issue of both sexes is remarkable for their bealthy state and good constitution. The leprosy had been accidental in the family, and not hereditary. From all this Dr.Goyon concludes that leprosy which isstill very common under the tropics, as well as in Portugal and in the Islands of Greece, may, although incurble, be arrested in its progress by a change of climate.

Dr. Langier has brought to light a new mode of treating gangrene. It having been ascertained by Dr. Réviel that gangrene is occasioned by the diminution or total elimination of the oxygen necessary to maintain tho vitality of the part attacked, Dr. Lagier conceived the idea of keeping the gangrenous part in an atmosphere of oxygen constantly renewed. The two cases treated by him in this manner have both ended in a complete cure, although the patients were both of the age of 75 or upwards.

Dr. Despres has presented a communication on the nature of erysipelas, which he considers to be a disorder which has its seat exclusively in the superficial capillary lymphatic net-work. Spontaneous erysipelas, in his opinion, is the same as traumatic erysipelas, although the latter is occasioned by wounds.: The former, it is true, generally selects the face for its seat, but in that case, Dr. Despress contends there is a local irritation which plays the same part as a wound; nay, , there are cases in which a real wound exists, although so slight that the patient has not remarked it. Out of 68 cases of spontaneoug erysipelas treated at La

Charite in 1861, 60 had attacked the face ; out of: 62 cases of traumatic erysipelas," ten occurred around sores which it had been attempted to close immediately; 22 resulted from wounds not regularly dressed; and even in cases in which there were two wounds, the erysipelas selected that which had been neglected. In the other cases the disease was owing either to intemperance or constitutionsl weakness, chronic inflammatory diseases, etc. Dr. Desprès concluded by declaring that erysipelas is not contagious.

Dr. Guirette had sent to the Academy of Sciences an inhaling apparatus of his invention by means of which a larger proportion of air may be introduced into the lungs than would be inhaled by the patient, under certain pathological circumstances. The methodical use of this apparatus has, according to the inventor, produced excellent-results in certain cases of consumption; in the hands of various physicians of Paris, Pau, and Brussels.

The amphitheatre of the Hôpital de la Charite; was lately filled with medical practitioners and students in expectation that-the Japarese doctors attached to the embassy would attend, to witness. Dr. Velpean perform the operation of amputating the leg of a patient. Their expectations were however disappoinied for those foreign disciples of Esculapius did zot attend, and the doctor effected the operation in an incredibly short time.

Paris, May 20 th 1862.

W. N. Соте.

REVIEW DEPARTMENT.

ART. XXXI.-A Treatise on Diseases of the Joints. By R. Burwell, T.R.C.S.
 Concluding note.

We recommend Mr. Barwell's remarks on Ganglia and their treatinent to our readers. We can quote only his views on the treatment of those affections, with which we fully coincide.
"Ganglia may occasionally be cured by counter-irritation, iodine, or other such applications, but in by far the greater number of instances, they will not yield to such treatment, and something more decided must be done. There is generally, in these cases, an amount of vague fear as to the effects of any treatment, which arises I believe, from the evil result produced in a few cases in which the sac of the ganglion communicated with a joint, and as this condition has not generally been understood, it is evident that certain cases would, erergetically treated, end disastrously. It is highly important to ascertain the true condition of the eyst, because, we may use, upon one independent one, treatment that we dare not employ with one still in connection with a joint cavity. The mode of making this distinction is by pressing on the cyst, and observing whether it becomes slowly reduced, and whether when this pressure is removed, it will as slowly reappear, if so, the reduction is of course due too the passage of fliid into the normal synovial cavity: if as, sometimes happens, the tumour vanish suddenly, and return as quickly on the application and suspension of pressure.
this reduction is en masse; the whole, cyst has elipped under a ligament or some other fibrous structure in the neighbourhood; the greater number of these swellings are not in any way altered by pressure.

If by these means the entire independence of the cyst have been established; some mode may be adopted to produce its evacuation, and the subsequent absorption of its walls. The old plan of striking it foroibly with the back of a book, or other hard object is barbarous in the extreme, and I have known it productive of evil consequences; the same may be said of rupturing the oysts by pressure with the thumbs. I have frequently emptied the : oysts by a sub outaneous section with a small tenotomy knife, dividing the walls freely from side to side, (occasionally I believe.I have cut them quite in half) and then applying a splint with considerable pressure over the part. The following is a good mode of using a pad or splint; so as to obtain the greatest amount of pressure. A strap is fastened by brackets to the splint, allowing a certain amount of movement up and down; the-strap carries a-metal plate with screw holes, and a sorew presses upon a pad placed over the ganglion. Undue pressure upon the rest of the wrist is prevented, by the breadth of the splint and thickness of the pad, which does not allow the strap to touch the skin anywhere; being. lifted away by the screw. Sometimes even this is not sufficient, and then such a cyst may be injected without fear. Tincture of iodine and water, one part of the former to three of the latter, appears to me the very best possible injection: in using it, we should endeavcur to empty again through the canal the same quantity, as nearly as possible, as was injected, but such (much?) manipulation and pressure are to be avoided," p. 359.

Having expressed ourselves in such favourable terms of the general character of Mr: Burwell's work, we should not, however, feel justified in omitting to pointout some of its defects. In the first place, we object strongly to the size and consequently to the price of the work, and more especially because the great bulk of the book is made up with the details of numerous cases; which have occurred, not always, in the practice of the author, but in that of his colleagues and teachers, and however laudable it might have been in a young surgeon to record in his case-book the details of these cases (which are noted with the accuracy of a clinical clerk) it arsas a little to much to expect his readers: to wade through their tedious particulars; as well as unfair to make them pay for them. The daily prescriptions are also given with a painful accuracy-no anodyne is perscribed without its ingredients being:entered with a degree of care and minuteness that must be delightful to the true pharmacien. In addition to the above objections, we have to remark upon the frequent oscasions Mr. Burwell refers to his previous writings, every now and then advising the reader to consult: his "Memoir" on the subject. We confess, that" with the exception of one or two papers, by no means important or original, published by Mr. Burwell in the "Lancet", and a paper by him in the,"Medico Chirurgieal Review" on the Cartilages of Joints, we are ignorant of what he has done for this braich of surgery to entitle him to refer so complacently to his previous writings: A Brodie, a Bright, a Stokes, a Graves, or a Fergusson, may' be permitted (and justly'so) to refer to doctrines previously published, and now sanctioned by the profession, but it is a
little too early in the day for a Burwell to imitate their ezample. In addition to the above we have to charge Mr. Burwell withomitting very frequently thenotice of writers on the same subject. We happen to know that Mx. Burwell's attention Fas drawn to these points, in a manner too palpable to admit of his apparentignorance, and therefore we complain of his unjustly ignoring the researches of those who have preceded him in some of the paths of investigation he is now entared upon.

In a smaller form and at a cheaper price, we shall ber glad to hail a second'edition of the above work, notwithstanding:the faults we have pointed out.

PHYSICAL DEPARMENT.

ART: XXXII:-Mean Meteorological Results at Toronto, for the year 1861. By G: T. Kinaston, M.A., Director of the Magnetical Observatory, Toronte. From the Canadian Journal for March, 1862.
The year 1861, with respect to its temperature, exhibited, as a whole, nothing extruordinary, the mean of the ${ }^{-3} y$ ear differing from the average of twenty-two years to the extent of only $0^{\circ} .10 \mathrm{in}$ excess. The monthly means, moreover, did not differ in a marked degree from the means proper to the several months derived from twenty-two years, the average deviation, without regard to sign, being $2^{\circ} .24$; while the average deviation in the whole periodiof twenty-two yearss and referred to the same standard; was $2^{\circ}: 44$. If, however, the signs of the deviation be taken into account, it will be seen that the compensations by which the annual: mean was maintained, were of the kind that may berstyled unseasonable, being such as tended to weaken rather than to intensify the distinctive characters of the different parts of the year. Thus from May to August-comprising the greater part of the year in which the temperature is above the yearly mean-the monthly means were relatively low; while in February and December, the monthly were relatively high. The depression ($3^{\circ} .9$) in the temperature of May, was never exceeded in any May of former years, and was nearly approached only in 1849 and 1851, when in both cases the cold of May was succeeded by unusual warmth in June and. July. The abnormal warmth of April served only to aggravate the evil, by hastening the vegetation that was thrown back by the frosts that followed.in May.: The bad effects of agenerally low.summer temperature may perhaps: be modified; as regards some plants, by occasional bursts of heat, though they be necessarily balanced by unusually low temperatures at other parts of the season: No such mitigating circumstances occurred in 1861, as the warmest day and the absolutely highest temperature of the year were both considerably below' the twentytwo years average of these quantities.
The hygrometric condition of the summer was not favourable; the mean relative humidity of May, June, and Jaly being 70 , against 74 the twenty-one years' average for these months. But as the temperatures were low the foregoing num-:
bers do not present so strong a contrast as do the tensions of vapour, which for the same three months were 359 in 1861, and $\cdot 393$ on the average of twenty-one years. The contrast in this respect between 1860 and 1861, was very conspicnous in May, the tension of vapour for this month being more than 41 per cent. greater in 1860 than in 1861.

May and June were 8 per cent. and 16 per cent. less cloudy than is usual in those months; while later in the season, when a bright sun is more in request, clouds were more than 20 per cent. in excess.

The depth of rain, which on the whole year was three inches in defect, was deficient in June and July to the extent of more than an inch and a half. In May, when rain is a hinderance to gardening and agricultural operations, it was rather in excess; while, as before stated, there was a want of that moisture in the air whose presence is favourable to the development of young leaves.

In the following summary, the chief meteorological elements relative to the year 1861, are compared with the average results derived from a series of years, as well as with the extreme values that have occurred during the same series:

TEMPERATURE.

	1861.	$\begin{gathered} \text { Average. } \\ \text { of } \\ 22 \text { years. } \end{gathered}$		
Mean temperature of the year	$44^{\circ} .22$	$44^{\circ} .12$	$46^{\circ} .36$	$42^{\circ} .16$
			(in 1846) July 1854	$(\operatorname{in} 1856)$
Warmest month when the mean temp. of the month was.	Angust. $65^{\circ} .48$	$\underset{66^{\circ} .85}{\text { July }}$	$\left\|\begin{array}{c} \text { July1854 } \\ 72^{\circ} .47 \end{array}\right\|$	$\begin{aligned} & \text { lug. } 1860 \\ & 64^{2} .46 \end{aligned}$
Coldest month..................................	January.	. February	Jan. 1857	eb. 1848
When the mean temp. of the m	199.86	$22^{\circ} .98$	12. ${ }^{\circ} 75$	$26^{\circ} .60$
Difference between the warmest and coldest $\}$ months..	$45^{\circ} .62$	$43^{\circ} .87$		
Mean of deviations of monthly means, from their respective averages of 22 years, signs of deviation being disregarded.	$2^{2} .24$	$2^{\text {2 }} .44$ \{	$\left\lvert\, \begin{gathered} 3^{\circ} .55 \\ \text { (in } 1843 \\ \text { and } 1857 \text {) } \end{gathered}\right.$	$\left\{\begin{array}{l} 1^{\circ} .35 \\ (\mathrm{in} \\ 1853) \end{array}\right.$
Month of greatest deviation without regard to $\}$	Decem'r	January	נัan. 1857	
when the monthly mean differed from the ? 22 years' average of the same month by...	$5{ }^{\circ} .0$	$3{ }^{\circ} .9$	$10^{\circ} .7$	
Warmest day...................................	Aug. 3	July 20	July 12	July 31*
			(1845)	(1844)
When the mean of the day w	$74{ }^{\circ} .20$	$77^{\circ} .28$	$82^{\circ} .32$	$72^{\circ} .75$
Coldest day:	Feb. 7	Jan. 24	Feb.6, ${ }^{\text {a }} 5$	Dec. 22
	$-7^{0.7}$	$-0^{\circ} .87$	Jan22.57	$\begin{aligned} & (1842) \\ & +9^{\circ} .57 \end{aligned}$
Highest temperature	$87^{\circ} .8$	$90^{\circ} .4$	$99^{\circ} .2$	$82^{\circ} .4$
which occurred	June 9	July 22	Aug. 24	Aug. 19
${ }^{\text {. }}$ - ${ }^{\text {- }}$ - ${ }^{\text {a }}$			(1854	(1840.)
Lowest temperature	$-20{ }^{\circ} .8$	$-12^{\circ} .3$	$-26^{\circ} .5$	$\times 1^{\circ} .9$
which occarred on	Feb. 8	Jan. 25	Jan. 26.	Jan. 2
			(1859.)	(1842)
Range of the year.	$108^{\circ} .6$	$102^{\circ} .7$	$118^{\circ} .2$ (in1855)	$\begin{gathered} 87^{\circ} .0 \\ \text { (in } 1847) \end{gathered}$

[^6]There were twenty－seven days when the mean temperature of the day differed 12° and upwards from the normal mean of the day．Their distribution among the several months may be seen in the following table：

There were one hundred and three days when the mean pressure of the day dif－ fered 0.200 of an inch and upwards，from the adopted normal mean of the day． Their distribution through the year may be seen from the following table．

MONTHS．	¢ّ®	$\stackrel{\stackrel{\circ}{0}}{\substack{\text { ¢ }}}$	砢	若	梏	最	官	㤟	涼	$\stackrel{+}{8}$	－	ه́ه口	安		
In excess．	5	4	5	4	5	1	0	3	2	5	3	9	46		
In defect．	6	9	7	6	5	1	3	0	4	6	7	3	57		
Total．	11	13	12	10	10	2	3	3	6	11	10	12	103		
HUMIDITY．															
					1861.		Average of 20 years．			Extremes in 20 years．					
Mean humidity of the year．．．．．．．．．．．． Month of greatest humidity．．．．．．．．．．． When the mean humidity of the $\}$					$\begin{gathered} 78 \\ \text { January } \end{gathered}$					82，in 1851		$\begin{aligned} & 73, \text { in. } 1858 \\ & \text { Dec. } 1858 \end{aligned}$			
					Jan．1857，										
					88	January									
Month of least humidity ．．．．．．．．．．．．．．．．							\therefore May		May ${ }^{\text {a }}$					April， 1849	
－when the was．					69		72		58			76			

CLOUDS.

	1861.	$\begin{gathered} \text { Average of } \\ 9 \text { years. } \\ \hline \end{gathered}$	Extremes in 9 years.	
Mean cloudiness of the year.......... .	62	60	62, in 1861.	57,in'53'56
-Most cloudy month.....................	Febraary	December	, $\left\{\begin{array}{l}\text { Dec' }{ }^{\text {Dec }} \\ \text { Feb'61 }\end{array}\right\}$	Dec. 1857
when the mean of the month was.	83	75	${ }^{83}$	73
Least cloudy month..................... when the mean of the month was....	${ }_{45}^{\text {June }}$	$\underset{45^{*}}{\text { July }}$	$\left\|\begin{array}{c} \text { Júly, } 1853 \\ 34 \end{array}\right\|$	${\underset{4}{3}}^{\text {June, }} 1861$

WIND.

	1861.	Result of 14 years.	Extremes in 14 years.	
Resultant direction.	, N. $56{ }^{\circ} \mathrm{W}$.	N. $60^{\circ} \mathrm{W}$.		
Mean resultant velocity in miles.	2.11	1.82		
Mean velocity withontregard to direction	7.47	6.78	\{ ${ }_{\text {in } 1860}^{8.55}$	$\left\{\begin{array}{l}5.10 \\ \text { in } 1853\end{array}\right.$
Month of greatest mean velocity........ when the mean velocity was.	$\begin{gathered} \text { February } \\ 10.58 \end{gathered}$	$\begin{gathered} \text { March } \\ 8.60 \end{gathered}$	$\begin{gathered} \text { March,1860 } \\ 12.41 \end{gathered}$	$\begin{gathered} \text { Jan. } 1848 \\ 5.82 \end{gathered}$
Month of least mean velocity........... when the mean velocity was.........	$\underset{4.21}{\text { August }}$	July 4.91	$\left\lvert\, \begin{gathered} \text { Aug. } 1852 \\ 3.30 \end{gathered}\right.$	Sept. 1860

RAIN.

	1861.	Average of 21 years.	Extremes in 21 years.	
Total depth in the year in inches......	26.995	30.324	$\left\{\begin{array}{l}43.555 \\ \text { in } 1843\end{array}\right\}$	$\left\{\begin{array}{l} 21.505 \\ \text { in } 1856 \end{array}\right\}$
No. of days on which rain fell.........	136	106	136 in 1861	80 in 1841
Greatest depth in one month fell in.... when it amounted to. \qquad	$\begin{gathered} \text { November } \\ 4.294 \end{gathered}$	$\underset{3.973}{\text { September }}$	$\left\|\begin{array}{cc} \text { Sept., } \\ 9.760 \end{array}\right\|$	$\underset{3.115}{\text { Sept. }} 1848$
Rainy days were most frequent in...... when their number was.	September 17	$\begin{gathered} \text { June } \\ 12 \end{gathered}$	$\begin{gathered} \text { June, } 1857 \\ 21 \end{gathered}$	$\begin{gathered} \text { May, } 1841 \\ 11 \end{gathered}$
Greatest depth of rain on one day which fell on.	3.132 Nov. 2nd	2.138	$\left\|\begin{array}{c} 3.360 \\ \text { Oct. } 6,1849 \end{array}\right\|$...
Greatest depth in one hour..............	0.41	-	Oct.6, 184	
which fell between	$\begin{aligned} & 1 \& 2 \mathrm{~A} . \mathrm{m} . \\ & \text { Aug. 21st } \end{aligned}$.	.	

The distribution of rain through the day, both as regards depth and frequency, is given in the following Table derived from an hourly rain gauge in operation from April to November inclusive:

PERIODS	$\left\lvert\, \begin{gathered} 6 \mathrm{a} . \mathrm{m} . \\ \text { to } \\ 10 \mathrm{a} . \mathrm{m} . \end{gathered}\right.$	$\left\|\begin{array}{c} 10 \mathrm{a} . \mathrm{m} \\ \text { to } \\ 2 \mathrm{p} . \mathrm{m} \end{array}\right\|$	$\left\lvert\, \begin{gathered} 2 \text { p.m. } \\ \text { to } \\ 6 \text { p.m. } \end{gathered}\right.$	$\begin{gathered} 6 \text { p.m. } \\ \text { to } \\ 10 \text { p.m. } \end{gathered}$	$\begin{aligned} & 10 \mathrm{p} . \mathrm{m} . \\ & \text { to. } \\ & 2 \text { a.m. } \end{aligned}$	$\left\{\begin{array}{l} 2 \text { a.m. } \\ \text { to } \\ 6 \text { a.m. } \end{array}\right.$	Total.
Per centag	9:2	12	22.8	23.5	17.	13	100
" "6 freque	14.0	14:0	17.0	17.7	18.0	19.3	100

SNOW.

	1861.	$\begin{gathered} \text { Average of } \\ 19 \text { years \& } \\ 22 \text { years. } \end{gathered}$	Extremes in 19 years and 22 years.	
Total depth in the year............ $\}$	74.8	61.6	$\left\{\begin{array}{c}\text { in } 99.0 \\ \text { in55 }\end{array}\right\}$	$\left\{\begin{array}{c}38.4 \\ \text { in } 1851\end{array}\right\}$
No. of days on which snow fell........	76.	57	87 in 1859	33 in 1848
Greatest depth in one month fell in.... when it amounted to.	$\begin{gathered} \text { February } \\ 29.7 \end{gathered}$	$\begin{gathered} \text { February } \\ 18.0 \end{gathered}$	$\text { Feb. } 1846$ 46.1	$\begin{gathered} \text { Dec. } 1851 \\ 10.7 \end{gathered}$
Days of snow were most frequent in....	January	December	$\left\lvert\,\left\{\left.\begin{array}{l} \text { Dec. } 1859 \\ \text { Jan: 1861 } \end{array} \right\rvert\,\right.\right.$	Feb. 1858
when their number was.............	23	13.0	23.0	8
Greatest depth in one day which fell on.	8 inches Feb. 7th	\ldots	\cdots	\ldots

RAIN AND SNOW (Combined).
Where 10 inches of snow are considered as equivaleni to 1 inch of rain.

On February 7th, a heavy snow-storm occurred; accompanied by a strong gale and intense cold. At one part of the day, when the temperature was $14^{\circ}: 3$ below zero, the wind was blowing more than 33 miles an hour, with heavy falling and drifting snow. The temperature afterwards fell to $20^{\circ} .8$ below zero, but at that time the gale had subsided.

Toronto, Januarg, 1862.

[^7]
BEEF TEA ECONOMICALLY PREPARED:

Six quarts of a most nutritious beef tea may thus be made at a very:moderate expence:
"Let all the meat be scraped from the head of an ox, commonly; called ox. -cheek; roughly braise the bones, and set them to boil in a-slow fire for six hours with two gallons of soft water: At the end of that time throw in the above mentioned meat, and let the whole boil for two:hours longere. Supply the place: of the evaporated water so as to make in all six quarts. Strain, and the product: will, be six quarts of rich beef tea costing not more than half accrown:"-Dr. -Cook in Medical Times and Gazette.

THE

MONTREAL, JUNE, 1862.

THE MARINE AND EMIGRANT HOSPITAL: QUEBEC.

An incident of a disagreeable nature has recently occurred in this institution, between two students and one of the attending physicians, Dr. Landry; and we observe with regret that an attempt has been made to give it a partizan character, as for example, Laval University vs. McGill University, for which we cannot see the shadow of a reason, because the two gentlemen alluded to had been students at McGill College during the last session, having we believe pursued a previous course of winter study at the University Laval. If Dr. Landry, the attending physician, is right on principle, we apprehend the same treatment would have been meted out to any student under like circumstances, no matter what school of medicine he attended. The affair has originated a good deal of newspaper controversy; and as far as we can glean the information, the case stands thus: Messrs. Bender and Bligh, the two gentlemen alluded to, both residents of Quebec, having returned to their homes after the closing of the winter session at McGill University, desirous of availing themselves of the extensive surgical practice at the Marine Hospital during the summer months, took out their hospital tickets for that purpose, tickets which according to one of the rules of the Hospital entitle their holders" to witness any operation or dissection, or to attend the clinical lectures." Their privileges are thus ample enough, but what those clinical lectures are is not defined; whether they consist in bed-side remarks, in a lecture on the case or cases in a separate room, or in both, we are not informed. The practice of the Montreal General Hospital consists in both, to the former of which every student who has feed the Hospital, let him come from whence he may, has full and free unquestioned access, and can pat any question on the case that he pleases to the physician; to the latter, on the contrary, none are admitted who have not taken out the clinical class tieket, this lecture being delivered in the class room at the hospital. In this respect the practice at the Montreal General Hospital has been assimilated to that of Edinburgh, and we believe to that of all British Hospitals. "It appears that Dr. Landry, the attending physician, after the previous conveyal of aundry bints, took recently personal exception to the presence
of these gentlemen, at, we believe, his bed-side observations, to which they demurred, and when ordered to leave the ward refused. They were accordingly reported for insubordination, and at a meeting of Directors, which seems, as far as we can judge, to have been very irregularly conducted, inasmuch as the accused were not permitted to hear the witnesses against them, nor even put in possession of the nature of the offence with which they were charged, they were forthwith condemned to apologise to the attending physician by a given day, or forfeit their tickets. Such then, as far as we can learn, is the nature of the case .which has caused considerable excitement in the medical world of Quebec, and upon it we propose to make a few comments.
In the first place, when the attending physician ordered these gentlemen to leave the ward, even although in their own estimation, as in ours, they had an undoubted right to be present, it was their clear duty to have obeyed, however arbitrary the order may have been, inasmuch as their refusal tended to destroy the legitimate influence of the physician in a sphere in which when on duty he should be supreme. Obedience to the order, even if they were right, did not abolish their recourse against him for the tyrannical abuse of his power. And in the second place, as we believe that the affair occurred in the open ward of the Hospital while around the bed of the patient, remarks on whose case they had by virtue of their ticket an undoubted right to listen to, we think the attending physician was wrong, as a salaried Professor of Laval University, Dr. Landry has a perfectright to avail himself of his advantages at the Hospital which he is attending, for the benefit of the students of that University, but in going round the wards of the Hospital, as a paid physician of it too, we consider it but his duty to render that institution; so heavily subsidized as it is through government agency, as extensively useful as possible, and every student attending it, no matter whence he comes, is entitled to every particle of instruction from it which it is capable of affording. It must be observed that Dr. Landry was acting in no professorial capacity while discharging his duties to the patients in the Hospital, inasmuch as the Hospital is not a part and parcel of the University. He only exercises his functions as such when delivering his clinical lecture to his class, in a separate room in the Hospital or in some other building, from which he has a perfect right to exclude every one who has not conformed to his University rules as regards his clinical teaching in the form of lectures.

Mr. LINTON AND Dr. SHAVER OF STRATFORD.

This most restless and would-be notorious gentleman, whose name has oo often figured in these pages, has at last got himself into a mess, and we hope that the Jesson which he is likely to receive at the ensuing criminal assizes at Stratford, will prove a sedative. Dr. Shaver was lately called upon to sign a certificate of lunacy preparatory to the removal of an unfortunate man: to the Asylum, which :said certificate when duly laid before this august and deeply-learned clerk of the peace, was rejected by him on the ground that Dr . Shaver was not a licensed practitioner. We understand that this clerk of the peace has, in opposition to his title, been industriously circulating throughont his neighbourhood that Dr.

Shaver was unlicensed, very much to this gentleman's injury. An action of damages undoubtedly lies against him, but we learn that criminal proceedings are entered in an indictment for slander. We think that a party whose whole tenor of conduct against a neighbour seems to be so much tinctured with "malice, hatred, and all uncharitableness," is a very improper person to be a "Clerk of the Peace."

The whole proceeding is a cool and refreshing piece of impertinence on the part of a Clerk of the Peace in this warm weather. But we do not regret it, as it will test the validity of the Licenses of the College of Physicians and Surgeons of Lower Canada for practice in Upper Canada, of which we do not entertain the faintest shadow of a doubt.

COLLEGE OF PHYSICIANS AND SURGEONS OF LOWER CANADA.

The members of the College are especially reminded that the Triennial meeting will be held at Melbourne on the 2nd Tuesday of July next. As business of great moment will be submitted, a full attendance is particularly requested. At this meeting the election of the Board of Governors for the ensuing three years, to succeed those at present in office, will take place. Those gentlemen who find it impossible to attend should hand their proxies to a friend.

BRITISH AND FOREIGN MEDICO-CHIRURGICAL REVIEW.

We regret extremely to learn from a circular issued by the publisher, Mr. William Wood, successor to Messrs S. S. \& W. Wood, that the republication of this important serial is to be discontinued, in consequence of the loss of many subscribers "by the deranged state of the country, and the want of punctuality in payment on the part of others." This is extremely to be regretted, as every reader of that serial must be convinced that the tone of every article in it was of the highest degree of medico-literary talent. We trast that by a spontaneous act on the part of the profession in the States and Canada, where we believe it had a large circulation, the issue of this most important republication will be forthwith resumed.

DEATH FROM HYDROPHOBIA.

We copy the following from the Galt Reporter of March 8th, 1862.-We have this week the painful duty to perform of announcing a death that occurred inWoolwich on Monday, March 3rd from thatmost dreadful of all diseases, hydrophobia. It appears that some rine weeks ago, as a man of the name of James Cain, a laborer, living on the farm of W. W. Bowman, Elmira, Woolwich towniship, was approaching his house in the evening, a strange dog that, during his absence had lain down on the door step, sprang at him and bit him in the cheek, quite close to his mouth. Mr. Cainimmediately grasped the animal by the throat, and held him until his wifestunned him by a blow from a stick, when he took the aze and killed him. The wound from the bite healed rapidly, and all went on well until Saturday last, when poor Cain felta tingling sensation in the old wound. Heimmediately sent for
medical advice, and on Saturday Dr. Bowlby, of Berlin, visited the unfortunate man. On the doctor's offering him a cup of tea, Cain sprang back in horror from the fluid, and the worst symptoms of hydrophobia developed themselves. The paroxysms beeame gradually more frequent and more violent, until on Monday death relieved the unfortunate man from his sufferings.

Death from Glanders.-Another case of death from this frightful disease, caused by tending a horse affected by it, has occurred in the village.of Clonkeen, Ireland. Human skill proved unavailing, but a severe reflection is cast upon the Irish constabulary force, who instead of killing horses so affected, endeavour to cure them at the imminent hazard of the unfortunates obliged to look after them while yet alive.

Two Presidents Married.-The Lancet observes, that the year just closed has been remarkable for a unique ciroumstance in the annals of the profession, and therefore tenders its congratulation to the happy gentlemen. Towards the close of the last year the Presidents of the Royal College of Surgeons, and of the Royal College of Physicians, have each contracted and fulfilled matrimonial engagements. The happy members of our profession are Dr. Mayo and Mr. Cæsar Häwkins.

> BOOKS, \&0, RECEIVED.

On Bampaging and otheb Oprrations in Munor Subgery, by F. W. Sargent, M.D, 音c A new edition with an additional chapter on Military Surgery, by W. F. Atlee, M.D., and one hundred and eighty-seven illustrations. Philadelphia : Blanchard \& Lea. Montreal : Dawson \& Son, Price, \$1.50.
Axatomy pescriptife and Surgioal, by Henry Gray, F. B. S., \&c. The drewings by H. V. Carter, M.D., \&c. Second American from the revised and enlarged London edition, with three hundred and ninety-llve engravings on wood. Philadelphia: Blanchard \& Lea. Montreal : Dawson \& Son, 1862. Royal 8vo. pp. 816.

On the Diseases and Injuries of the Hyom or Tongue bone, by George D. Gibb, M.D., A.M., F. G. S., \&c., illustrated with engravings on wood. London: Wm. Churchill, 1862. Pplt. pp. 48.

BIRTHS, MARRLAGES, DEATHS. mistrs.

At 117 Church street, Toronto, on the 5th instant, the wife of J. Lizers, Esq., surgeon, of a daughter.
marriages.
On the 27th ultimo, at Toronto, at the residence of the bride's uncle, Geo. Price, Esq., by the Rev. Alexander Topp, M.A., Wm. Winslow Ogden, M.D., to Miss Elizabeth Price McEown.

On the 2nd instant, at Buffalo, by the Rev. William Shelton; Rector of St. Paul's Church, Joseph Henry Nelles, Esq., of Woodstock, to Fannie Sophia, eldest daughter of John J. Mason, M.V. of Brantford.

At St. George's Oharch, Toronto, on the 10th instant, by the Rev. George-Whitaker, Provost of Trinity Gollege, John Cunningham Stewart, Esq., to Geraldine Mary Laurg, second daughter of E. M. Hodder, M.D.

DHATHSS.
In Ayr, on Friday, the $16 t \mathrm{~b}$ instant, Dr. Chas. MeGeorge; agea 44.
In Paris, on the 3rd instant, Robert McOosh, MiD., agedi:55.

STATISTICS OF MORTALITY IN THE CITY OF MONTREAL.
 Compiled by G. E. Fenwion, M. D.
 From Returns of Interments in the Mount Royal Cemetery, March and April, 1861.
 March.

STATISTICS OF MORTALITY IN THE CITY OF MONTREAL.
 From Returns of Interments in the Roman Catholic Cemetery, March and April; 1881.

March.

APRIL.

ABSTRACT OF METEOROLOGICAL OBSERVATIONS AT MONTREAL IN MAY, 1862. By Archibald Hall, M.D.

ABSTRACT OF METEOROLOGICAL OBSERVATIONS AT TORONTO IN MAY, 1862.
Compiled from the Records of the Magnetic Observatory:

[^0]: - Bostock's "History of Medicine", pp: 157-8. Francis Delabac Sylvius, a Dutch physiologist and chemist, was born 1614, and died 1672. "Cyclopædia of Biography," p. 917.
 \dagger J. A. Borelli, an Italian philosopher, was born 1603. and died 1679. "Cyclopædia of Biography," p. 111.
 \ddagger L. Bellini, a celebrated anatomist, was born 1643 and died 1702. "Cyclopædia of Biography," p. 89.
 § Bostock's "History of Medicine," pp. 164-5.

[^1]: * I refer to the notice of a paper by R. Fowler in the Report of the British Association for 1849, called "If vitality be a force having correlations with the forces, chemical affiuities, motion, heat, light, electricity, magnetism, so ably shown by Prof. Grove to be modifications of one and the same force."
 \dagger "The elemenis of organic bodies are the same as thuse that constitute the inorganic world, save that the relative proportions are different." Encyclopædia Britannica; eighth edition, Vol. VI, p. 501.
 \dagger Compare Buckle's "History of Civilization in England." He aays, "What we call the divisions of nature into 'organic and inorganic ' bave no existence except in our own minds." Vol. II, p."402: 'He is speaking of Sir John Leslie,' who as early as the end of last centinry, seems to have had the same idea. He says, "All forces are radically of the same kind, and the division of them into living and dead is not groundea upon just principles." Leslie on heat, p. 133.

[^2]: * Eargday "On definite olectrolysis." Phil. Tran. 1834, p. 77.
 f Joule "On the mechanical equivalent of heat": Phil. Tran. 1850, p. 61, and quoted by Grove. "Oofrolation of physical forcess," p. 130; .

[^3]: - "It," the conservation of force, "must be considered"s. a necéssary" truth, and ă such is a sound basis of deductive reasoning. Prof Joseph Leconte: "On'the correlation of vital and physical forces." Amer. Jour: of Science and Art, Vol. XXXVIII, p. 305. Though in this instance I quote from Prof. Leconte's paper, it. will be readily seen by consulting it that on the most important points I differ from him very materially. On the conservation theory see also Dr. Wood, Phil. Mag., Vol. III. p. 46, 1852. Buckie's "History of civilization in England," Vol. II, p. 384, where he also quotes from Faraday's "Discourse on the conservation of force." "Faraday," says he, "agrees with those who admit the conservation of force to be a principle in physics as large and sure as that of the indestructibility of matter."
 \dagger Boscovich's theory of the universe. Ency. Brit. Seventh edition, Fol, I, p. $60 \mathrm{c}^{\circ}$.
 \ddagger Grove "Correlation of the physical forces." Third edition.
 $\| \mathrm{As}$ by Faraday in his "Discourse on the conservation of sorce, "Buckle, " Hist. of civilization in England Vol. In p. 384 . Wood, phit Mage. Vol. In p, $64,1862{ }^{2}$ Zeconte, Amer Jour: of Science and Art, Vol. XXXVIII, p. 30 , \&c., \&c.
 § Carpenter's "Elements of Physiology, "p." 49 .

[^4]: * Carpenter's "Elements of Physiology,".,p. 253.
 \dagger On the subject of vicarious secretion, which my space does not permit me to dilato upon, see Carpenter's "Human Physiology," pp. 303-3, nlso p. 823. „Toded and Bowman's "Physiologicai Anstomy," p. 700. Draper's "Human Physiology," p. 190. That instances of vicarious action should be rare in the higher animals, as man, shonld excite no surprise, for in them the cells buve (so to speak) grown a long way apart from one another, but in some of the lower animals it seems to cost scarcely any effort .

[^5]: *This case was mentioned in a short foot note to "Return of casos treated in St. Patrick's Hospital in Junie last."

[^6]: * The mean temperature of the warmest day, in the foregoing table, refers to the twenty-two years, average of the warmest days in each year; irrespective of their dates, ihe average date being simply the arithmetic mean of the several dates measured from any fixed epoch. The same remark applies to the coldest day, and to the maxima of the year. As regards the low temperatures, the averages are derived from the coldest days and lowest temperatures in successive vinters.-December being considered to belong to the following year.

[^7]: * The average minimam of cloudiness in the second column is the minimum of the twelve monthly means of nine ycars, and does not always include the lowest months of each year, as these fall' differently in different years. This explains. why the highest minimum in the fourth column should be numerically equal to the minimum on the average. of nine years,
 \dagger These nambers inciude the cases in which both rain and snow have fallen in the same day, and'which have been reckoned both in the rain and in the snow tables.

