The Institute has attempted to obtain the best original copy available for filming. Fearures of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleurCovers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manqueColoured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloursd plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres decumants

Tight binding may cause shadows or distortion along interior margin/ La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, tirese have been omitted from filming/ Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible. ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-êtr uniques du point de vue bibliographique, qui peuvent modifier une image reproduite. ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

\square
Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagées

\square
Pages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachztées ou piquéesPages detached/
Paqes détachées

Showthrough/
TransparenceQuality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index

Title on header taken from:/
Le titre de l'en-tête provient:

Title page of issue/
Page de tirre de la livraisonCaption of issue/
Titre de départ de la livraison

\square
Masthead/
Générique (périodiques) de la livraison

Additional comments:/
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/ Ce document est filmṕ au taux de réduction indiqué ci-dessous.

CANADIAN RAND DRILL CO．Sherbrooke，Que．

16 Victoria socare，montreal．halifax hotel，hadifax．g3g cordova street，vancouver．

ATM IEIINDS QI
 RUBBER GOODS for MINING PURPOSES

 ＊＊THE CUTTA PERCHA AND RUBBER MFG．CO．OF TORONTO，LTo office 6lz 63 FRONTST．WEST TORONTO．FACTORIES AT PARKDALE． Steam \＆Air Hose，Rubber Bumpers and Springs．Fire Hose．Pulley Covering．Rubber Clothing \＆Boots
INGERSOLL RCOK DRILL CO．

\section*{ROCK DRILLS | for iewnels． |
| :---: |
| mnes \＆oungris |}

STRAIGHT LINE，DUPLEX \＆COMPOUND

AIR

 OM P R
 R：

 Stone Channelling Machines，Coal Mining Machines，and Complete Plants of Mining Tunnelling and Quarrying Machinery．164：ST：JAMHS STRE円T，MON土R円A工

[^0]

LIFE and PROPERTY are ENDANGERED

...THE PENBERTHY ${ }^{\text {Srefean iirs }}$

 Are SAFE, because . . .WELI MADE and THOROUGHLT TESTED PENBERTHY = =umw

minsem PENBERTHY INUECTOR CO.

Branch Factory at Windsor, Ontario.
DETROIT, MICEIGANT.

NOVA SGOTIA STEEL COMPANY, LIMITED. MANUFAGTURERS OF HAMMERED AND ROLLED STEEL FOR MINING PURPOSES.

Pit Rails, Tee Rails, Edge Rails, Fish Plates, Bevelled Steel Screen Bars, Forged Steel Stamper Shoes and Dies Blued Machinery Steel $3 / 8^{\prime \prime}$ to $31 / 4^{\prime \prime}$ Diameter, Steel Tub Axles Cut to Length, Crow Bar Steel, Wedge Steel, Hammer Steel, Pick Steel, Draw Bar Steel, Forgings of all kinds, Bright Compressed Shafting $5 / 8^{\prime}$ to $5^{\prime \prime}$ true to rood 2 part of One Inch.

A FULL STOCK OF MILD FLAT, RIVET-ROUND apd ANGLE STEELS ALWAYS ON HAND SPECIAL ATTENTION PAID TO MINERS' REQUIREMENTS. CORRESPONDENCE SOLICITED.

WORKS \& OFFICE: NEW GLASGOW, N.S.

AUSTEN BROTHERS.
RAILWAY, COLLIERY AND GOLD MINERS' SUPPLIES.
No. 124 HOLLIS STREET, HALIFAX, N.S.
rEALL GOODS AT MANUFACTURERS PRICES.

MACDONALD \& CO., LIMITED.

 PUMPING MACHINERY, IRON PIPES, FITTINGS, \&c., \&c., EOR MINERRE USE.Call or Write us for Prices. HAIIEAX, N.S.

"M" Drill-Hand Power. Capacity-300 ft. depth.
Removes x_{1}^{2} ºt inches solid core.

DIAMOND DRILLS
 파쥭 PROSPECTING MMINERAL LANDS.

The Sullivan Diamond Drill is the simplest, most accurate, and most economical prospecting drill for any kind of formation, hard or soft, in deep or shallow holes.

The Diamond Drill brings to the surface a solid core of rock and mineral to any depth, showing with perfect accuracy the nature, quality and extent of the ore-bearing strata, and with great saving in time and expense over any other method.

Complete stock of all sizes, driven by hand or horse power, steam, compressed air or electricity. For sale by

SULLIVAN MACHINERY COMPANY,
Successors to DIAMOND PROSPECTING C0., 54 \& 60 N. Clinton St., CHICAGO, ILL., U.S.A.
manufacturers and dealers in
Sullivan Diamond Prospecting Drills, Channel ling Machines, Rock Drills, Hoists and other Quarrying Machinery.
Hoisting and Hauling Engines, Cages, Iifples, and other Coal Mining Machinery. Contractors for Prospecting Mineral Lands with the Diamond Drill.

"N" Drill-
Capacity-2,000 ft. depth.
Removes if inches solid cers.

SEND FOR CATALOGUE.

ELECTRIC BLASTING

Superior to all othurs for explocing any make of dynamite or blasting powder. Each fuse folded separately and packed in neat paper boxes of 50 each. All tested and warranted. Single and double strength; with any length of wires.

The strongest and most powerful machine ever made for Electric Blasting. No. 3 fires 30 holes. No. 4 fires 50 hules. No. 5 fires 100 holes. They are especially adapted for submarine blasting, large railroad quarrying, and mining works.

No. I fires 5 to 8 holes; weighs only 15 lbs . Adapted for prospecting, stump blasting, well sinking, etc.
8tandard Electric Fuce and Blaet Tester, Wire Reels, new dealgn. Leading and Connecting Wires.
unanuacurnad ouns by JAMES MACBETH \& CO.
128 MAIDEN LANE, NEW YORK CITY.

Manufacturers of Sporting, Military and Blasting
GUNPOWDER, DUALIN, DYNAMITE and ECLIPSE
Dominion Agents for Safety Fuse, Electric Blasting Apparatus, Etc.
OFFICE: 103 ST. FRANCOIS XAVIER STREET, MON'NREAL.

REDDEXZ Y^{9} S PRTMNT

Specially adapted for Heavy Drives in Damp or Fryposed Places, in Mines, Saw Mills, Paper and Pulp Milis; otc.

CHEAPER, LICHTER, MORE PLIABLE \& MORE dURABLE THAN DOABLE LEATHER.
W.A. FLEMING, di.inoer roo

57 St. Francois Xavier.St., MONTREAL. - Victoria Chambers, OTTAWA.

Beal's Patent Core Drill

dOES THE WORK WITHOUT THE USE OF DIAMONDS.

HIS DRILL does the work without the use of Diamonds, using as a substitute Chilled Steel Globules, or as they are commonly called, shot. These are inexpensive, costing in actual work about ten cents per day; whereas, diamonds are very expensive, a single one often costing from $\$ 80$ tn $\$ 100$, thus showing the difference in cost in case fof loss of twols. It is THE BEST, CHEAPEST, and MOST EFFECTIVE CORE DRILL made for Prospecting Quarries, Coal Lands, Sinking Wells and the like.
Owners of undeveloped Mineral and Quarry Lands can, with one of these machines, at a small outlay, bring them into a marketable condition. This Drill has been thoroughly tested in California Quartz Rock, Granite, Marble, Lime, Flint, Iron Ore, Sand Rock and everything in that formation, cutting the hardest as well as the softest material with great rapidity. It has also been very successfully used in Hard and Soft Coal, Shales, Slate, Clay, etc., taking out a core from 2 in . to 6 in . in diameter. It is an excellent machine for sinking air holes for Mines, Sounding Foundations for large Buildings, Bridges, etc,

This Machine has been in practical use in the United states for several years, and was awareled the gold medal at the Worid's Columbian Exposition at Chicago, in 1893, in preference to all other core drills.

Length of machine, eleven feet; weight, mounted on truck as shown in cut, $5,0001 \mathrm{bs}$. It can be easily loaded in a box car.
The Patentee, MOSES BEAL, ELYRIA, OHIO, U.S.A., would like to correspond with responsible parties with reference to the formation of a stock company for its manufacture in Canada, or would prefer to sell entire Canadian Patent.

The Patentee gives for reference any bank or business house in Elyria. Address him for full particulars. All lettera will receive prompt attention.

For Full Information Apply to the PATENTEE and BOLE MANUFAGTURER,

MINING AND MILL MACHINERY．

Steam Engines，Rock Crushers，Boilers，Derricks，Steam Pumps， Water Wheels，Brass and Iron Castings of every description．
ALEX．FLECK，VULCAN IRON WORKS，OTTAWA．
CARRIER，LAINE \＆CO．， FOUNDERS，MACHINISTS AND BOILER MAKERS，工円VIS，QU円．
Engines，Boilers，Steam Pumps，Hoisting Gear and all Machinery for Miners，Contractors and Quarrymen．Also Builders＇Castings， Stoves．Stove Fittings，Hollowware，Flour and Saw Mill Machinery，Marine Engines and Boilers，etc，etc．

WRITE EOR OUR PEICES．

JEFFREY STEEL CABLE CONVEYORS，\＆wisfult ioi

For Handliny Coal，Ores，Chemicals，Refuse，Etc．

The JEFFREY MFG．COMPANY，Columbus， 0 ． AIsO， 183 WASHINGTON BTREET，MEW YORK．
Chemical and Assay Apparatus

AGENTS FOR THE DOMINION FOR THE norcan crucible co．battersea，enc．

> AND FOR THE
aNalytic l and assay balances and weichts
OF BECKERS SONS，ROTTERDAM．

Baker \＆Adamson＇s C．P．Acids and Chemicals，Brown＇s Portable Assay Furnace，Hoskin＇s Gasoline Blowpipes and Furnaces，Dangler Laboratory Lamp，Microscopes of E．Leitz，Wetzlar，

Kavaher＇s Bohemian Glassware ；Royal
Berlin and Meissen Porcelain
Platinum Wire，Foil，
Crucibles and Dishes，Swedish and Rhenish Filter Paper．

LYMAN，SONS \＆COMPANY，

380，382，384，and 386 8t．Paul 8treet，MONTREAL

CANADIAN GEMS， PRECIOUS STONES， ORES \＆MINERALS．

The attention of Students and Collectors is directed to the Review＇s 1 Cabinets of Canadian Gems，Precious Stones and Minerals．

No
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

No．of Specimens．

$$
30 \text { Canadian Minerals in Box...................... . } \$ 100
$$

$$
\text { O Canadian Minerals in Box, larger } 250
$$

－ 30 Apatite and Associated Minerals in Box．．．．．．．．．． 100 30 Apatite and Associated Minerals in Box，larger ．． 250
30 Canadian Minerals in Box．．．．．．．．．．．．．．．．．．．．．．． 250

$$
60 \text { do do do } \ldots \ldots \ldots \ldots \ldots \ldots . \quad 300
$$

$$
60 \text { do do do larger................. } 550
$$

$$
100 \text { Canadian Minerals in Box................................. } 700
$$

$$
\text { do do do larger. } 1200
$$

$$
100 \text { Canadian Minerals in Cahinet...... } \ldots \ldots \ldots . .
$$

$$
120 \text { do do do do larger...... } 5000
$$

$$
210 \text { Canadian Minerals, including Foreign Minerals, }
$$

in Cabinet. .

$$
30 \text { Ores (Canadian) in Box }
$$

$$
10000
$$

$$
\begin{array}{llll}
4 & 6 c & \text { Ores (Canadian) and Foreign) in Box. } 500 \\
50 & \text { Economic. Minerals (Canadian) in Box }
\end{array}
$$

$$
\begin{array}{lrrr}
15 & 60 & \text { Economic Minerals (Canadian) in Box } & 400 \\
16, & 100 & \text { Economic Minerals (Janad'n and Foreign) in Box } & 10 \infty
\end{array}
$$

$$
\begin{array}{lrl}
10, & 100 & \text { Economic Minerals (anaad n and Forengn) in Box } \\
17 & 1000 \\
17 & \text { Precious and Ornamental Stones (Canadian) do } & 350
\end{array}
$$

1860 Precious and Ornamental Stones（Foreign and Canadian）in Box ．．．．．．．．．．．．．．．．．．．．．．．．． 10 oo 30 Cut Precious and Ornamental Stones（Canadian） in Box，$\$$ ro to．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 5000 60 Cut Precious and Ornamental Stones（Canadian \＆ Foreign）in Calinet，$\$ 30$ to．．．．．．．．．．．．．．．．．． 10000

In addition to the above，we will make up sets of Minerals to conform with ＂Dana＇s Manual，＂or the work of any uther author．

CABINET AND MUSEUM MINERALS．

We can supply single specimens of a great number of Canadian and Foreign Minerals．If you want something especially good let us know，and if we have not got it we will book your order．

MINING LAWS OF ONTARIO.

A NY person may explore Crown Iands for minerals. A Mining lands may be taken up as surveyed loca tions or staked claims.

Locations range from 40 to 320 acres.
Claims range from io to 20 acres on vein or lode.
Locations may be acquired in fee or under leasehold.
Price of locations north of French River, $\$ 2$ to $\$ 3$ per acre, and south of it, $\$ 2$ to $\$ 1.50$, according to distance from railway.
Rent of locations first year 600 . to $\$ 1$ per acre, and subsequent years 15 c . to 25 c . per acre.

Rent of claims, \$I per acre each year.
Claims must be worked continuously.
Royalty on ores specified in the Act, 2 per cent. of value at pit's mouth less cost of labor and explosives.

Royalty not charged until seven years from date of patent or lease, nor (as provided in s. 4 (3) of the Mines' Act, 1892), until fifteen years in the case of an original discovery of ore or mineral.
Original discoverer of ore or mineral on claim entitled
to stake out a second claim.
Crown Lands, sold under provisions of mining laws in force prior to $4^{\text {th }}$ May, 1891, exenipt from royalty.
Copies of the Mines Act, 1892, Amendment Act, 1894, may be had on application to

ARCHIBALD BLUE,
Director Bureau of Mines
Toronto, May 25th, 1894.

of
Obtaining Covernment Drill to Explore Mines or Mineral Lands.

Owners or lessees of mines or mineral lands in Ontario may procure the use of a Government Diamond Drill, subject to the provisions of the Rules and Regulations relating thereto, upon giving a bond for payment to the Treasurer of the Province, of costs and charges for (1) freight to location, (2) working expenses of drill, including labor, fuel and water, (3) loss or breakage of bits, core lifters and core shells, (4) wear or loss of diamonds, (5) other repairs of breakages and wear and tear of machinery at a rate per month to be estimated, and (6) an additional charge of $\$ 50$ per month after the mine or land has been shown, through use of the drill, to be a valuable mineral property.

Of the aggregate of costs and charges above enumerated, excepting the sixth item, forty per cent. will be borne by the Bureau of Mines in 1894, thirty-five per cent. in 1895 , thirty per cent. in 1896, and twenty-five per cent. in each year thereafter until the end of 1900. All accounts payable monthly.

For Rules and Regulations in extenso governing the use by companies and mine owners of Diamond Drills, or other information referring to their employment, application may be made to Archibald Blue, Director of the Bureau of Mines, Toronto.
A. S. HARDY, Commissioner of Crown Lands. Toronto, October 17, 1894.

 8ucceseore to Doty Engine Worke Co., and

 John Doty Engine Oon, Ltal.MINING MACHINERY

Marine and Stationary Engines an Boilers.

Hoisting and Vertical Engines. Ore Crushers. Stamp Mills and General Machinery.

We Guarantee First-Class Work and Prompt Shipment.

Prices and Estimates on Applicatio

> BERTRAM ENGINE WORKS CO., Bathurst and Nlagara sts., TORONTO, CANADA.

BLTTERFIELD \& CO.

ROCK ISIAND, PQ.

MANUFAOTURERS OF \qquad
Pipe Stocks, Pipe Tops, Pipe Dies,
Pipe Cutters, Pipe Vises, and all.
Tools for Pipe Fitters' use

CANADIAN GFMS, PRECIOUS STONFS,

AND OOITMPOTIONS OF OREs and

COMPLFTE CABINFTS FROM $\$ 1.00$ UP TO $\$ 10.00$

Canadian (ITining Review

Write for our Oatalogue.

If you want

BAGS

FOR PACKING

ASBESTOS, PHOSPHATES, ORES, \&c., Send to us for Samples and Prices.

Every Quality and size in stock.

 Epeclally strong sewing for heavy materials. Lowest prices compatible with good work. We now supply most of the Mining Companies, and those who have not bought from us would find it to their advantage to do so.
THE CANADA JUTE COMPANY (Ltd.)

17, 19 \& 21 8T. MARTIN STREET, MONTREAL.

THE HICHEST TYPE OF ROCK BREAKING MACHINERY I
The Gates Gyratory Breaker is used on every Continent, having been adopted by the largest Mining Companies in the world. It has supplanted all other forms of breakers.
We menufacture aleo, STAMP MILLE, CORNISH ROLLS, CONOENTRATORS and all clacees of MINING MACHINERY.
canadian Agente: CATIES TRONM WORES, INRER8OLL ROHK DRILL BO. OF CANADA,

50 ;South Clinton St., CHICAGO, U.8.A.
164 sto James ston MJNTREA
INGERSOLL ROCK DRILL CO. OF CANADA,
8t. James 8treet West, Montreal
Oanadian Manufacturing Agente for Gatee' Rock and Cre Breakere.

BALBACH

SMELTING \& REFINING COMPANY,

EDYARD BALBACH, JR.. - PRES'T.
J. LANCELOTH, - - VICE-PRES'T.

Newark, New Jersey.

Smelters and Refiners of Gold, Silver, Lead, and Copper Ores.

Bullion and Argentiferous Copper Matte Received on Consignment or Pupehase.

Smelting and Refining Works:
Electrolytic Copper Works
NEWARK, N. J
Buena Fs Sampling Works:
Agency, SABINAS COAHULLA,

STAMPS !

PRITCHARD \& ANDRMWS, 173 \& 175 SPARKS STREET.

GENERAL ENGRAVER8,
Rubber Stamp Manufacturere.
8CALE MAKER8 AND BRA8S WORKERS.
Brands, Steel Stamps, Time Checirs and Tags
Stencils and Ink, Scales and Weights.

RUBBER STAMPS FOR OFFICE WORK.
GANADA ATLANTIC RAILWAY.
the short favorite route between
Ottawa and Montreal

*

TRAINS DAILY
EXCEPT 8 UNDAY.
裉
PULLMAN BUFFET PARLOR OARS.

Close Oonnections at MONTREAL with Trains for
QUEBEC, - HALIFAX, - PORTLAND
And all Pointe EAsT and BOUTH.
fast through service between
OTTAWA, NEW YORK and BOSTON, And all NEW ENQLAND POINT:

Baggage checked to all points and passed by customs in transit. ${ }^{-1}$ For tickets time tables and infornation, apply to nearest ticket agent of this company or connecting lines.
E. J. OHAMBERLIN, C. J. BMITH, Gaperal Manages Gien. Passenger Agt

John E．Hardman，S．B． MINING ENGINEER，
Olcilamian，MTOTE EOOtly，
Can be consulted on all matters pertaining to the profession Can be consulted on all matters pertnining to the profession
The development and management of Gold Properties a specialty．

J．T．DONALD，
Assayer and Mining Geologist，
166 8t．James 8treet，Montreal．

Analyses and Assays of Ores，Fuels，Furnace Products， Waters，etc．Mines and Mining Properties Examined and Valued．

SPECIALISTS in MICA， MINTERS＇AGENTE，

RICHARD BAKER SON \＆CO．
rg St．Duustan＇s Hill，LONDON，ENG．
R．C．GAMPBELL－JOHNSTON （ of Swansea，Inclia，and the United States．）
METALLURGIST，ASSAYER， AND MINING ENGINEER．
Properties reported on．All assays undertaken．Fur－ naces and concentrating plants planned and erected． Treatment for ores given．Ores bought and sold．Box 40，Vancouver，B．C．

T．D．LEDYARD，

DEALER IN MINES，\＆c． 57 COLBORNE STREET，TORONTO．

Specialtios＝
BESSEMER IRON ORES PARTICULARLYLOW IN PHOSPHORUS

戸－CIRK円工，
MINING：ENGINEER．
（Graduate，Academy of Mines，Axchen，Germany．）
Reports on Mica Deposits，Asbestos，Phosphate
78 QUEEN STREET， otrpawn．

E．E．BURLINGAME＇S DCNY IFFIRF A CHEMICAL AOUA UFFGE ND LABORATORY Establighed in Colorado，1866．Samples by mall or express will recelve prompt and careful attention． Gold \＆Silver Bullion Refined，Mrelted mud A． Addrens， 7736 a 1738 Lamronee St．，Dearver，colo．

J．LAINSON WILLS，F．C．S． member institution mining and meualltrgy london，england．

12 Old Slip，New York．
INVESTIGATION OF MINING：PRORETIES ANALYSES，ASSAYS，\＆c．

C．V．M．TEMPLE

（Formerly President Megantic Mining Co．，P．Q．）
MINES AND MINING LOCATIONS FOR SALE． CORRESPONDENCE SOLICITED．

Office and Residence ：

47 8T．GEORGE ST．，TÓRONTO，ONT．

canadian representative ：

Henry De Q．Sewell，Dominion and Ontario Land Surveyor
Mining Engineer，etc．，Port Arthur，Ont．，A．M．Inst．C．E． Mining Engineer，etc．，Port Arthur，Ont．，A，
london representatives：
Lane Gagge \＆Andrews，Solicitors，Arundel St．Strand，London． R．C．CAMpBELL－Johnston，（of Swansea，India and the

Crabb＇s Patent Clip FOR
 Endless Rope Haulage

The latest and most efficient Clip in the market ；does not damage the rope；cheap，simple and substantial in construction，and certain in action on rising and fallins gradients ；autoniatically attaching and detaching itself at Crosses，Junctions and Terminals；drags the tub or wagon on the centre line；requires no adjusting，it being always in position to receive the rope；can be adapted either to the top．bottom or side of the tub．A sample one forwarded for one month＇s trial，purchase or return to any Colliery in the United Kingdom，carriage paid． Further particulars and testimonials may be had on application to

G．H．CRABB，
Bunker Hill，Fence Houses，
DURHAM，ENG

LEDOUX \＆COMPANY，

 9 Cliff St．，New York． Engineers，Metallurgists \＆ Assayers．Public Ore Sampling and Storage Works
All the principal buyers of furnace materials in the world purchase and pay cash against our certif－ cates of assay，through New York banks．
By specinal permission of the Secretary of the Treasury of the United States，cars of ore or
Copper matte passing through in bond can be opened Copper matte passing throu
and sampled at our works．
Consignments received and sold to highes． bidder．Send for circular giving full particularst
Mines examined and sampled．Assays and Analyses of all kinds．

WYATT \＆SAARBACH，

Consulting，Analytical and Technical Chemists

12 OLD SLIP，NEW YORK．
（Near Hanover Square．）

EBENE．OLCOTT， Consulting Mining Engineer \＆Metallurgist． 18 Broadway，New York City．
Cable Address ：－－＂Kramolenu．＂
Mines examined and reported oth．Will act as perman nt or解
ESpecial facilities for making working tests on ores）

WM．HAMILTON MERRITT，F．C．S．
Associate Royal School of Mines，\＆c．，
MININGENGINEER and METALLURGIST，
Wiil report on Mines and Mineral Properties ADDRESS：
15 Toronto St．，Toronto，Ont．

F．H．MASON，F．C．S．

Member of the American Institute of Mining Engineers Member of the Society of Arts，Crafts and Industries，London Member of the Mining Society of Nova Scotia．

PONSULTING METALLURGIBT， HEMIST AND ASSAYER．

Mines and Mineral Lands Sampled，and Assays made．The treatment of Refractory Gold Ores and Con－ centrates，a specialty．

QUEEN＇S BUILDING，

HOLLIS STREET，－－HALIFAX，N．8．

R．T．Hopper \＆Co．，

MINERS AND SHIPPERS OF MINERALS．

BOARD OF TRADE BUILDING， mHONTHEREATE，OANT．

Asbestos，crude and manufactured．Phosphate，Mica， l＇lumbago，Soapstone，Sic．

MICHIGAN MINING SCHOOL

A State School of Mining Engineering，located in the heart of the Lake superior mining region，giving practucal instruction in Draw－ ing，Blue－printing，Mechanics，Mecnauism，Properties of Materials， Graphical Statics，Mechanical and Electrical Engineering，Shop－ practice，Analytical and Techuical Chemistry，Assaying，Ore Dress－ ming，Metallurgy，Plane，Railroau aid Gine Surveying，Hydraulics， Geology，etc．Has summer schsols in surveying，shop－practice， and Field Geology．Laboratories，Shops and Stamp Mill well equipped．Tuition free．For Catalogues apply to the Director
Houghton，Mich． Houghton，wich

W．PELLEW－HARVEY，F．C．S．

Mining，${ }^{\text {＇nalytical \＆Assay Work undertaken }}$

Information concerning the Mining Industry and Mines of British Columbia given．
assay and ：ining offices：vancouver，b．c．

ORFORD COPPER CO．， Copper Smelters

Wurks at Constable＇s Hook，N．J．，opposite New Brighton，Staten Island．Copper Ore，Mattes，or Bul－ lion purchased．Advances made on consignments for refining and sale．Specialty made of Silver－bearing Ores and Mattes．
—

INOOT AND CAKE CÖPPER．
President，ROBERT M．THOMPSON，
Treasurer G．A．LAND．
Office 37 to 39 Wall Street，New Yoik．

H. H. FULLER

4I-45 UPPER WATER STREET, HALIFAX, N.S.

WHOLESALE AND RETAIL DEALERS IN
BUILDERS', BLACKSMITHS' and GENERAL HABDWARE. MINING

AND MINE SUPPLIES a specialty.

SOLE AGENTS FOR NOVA SCOTIAこFOR
BOSTON BELTING CO'S RUBBER GOODS, reeves wood split pulleys.

CORRESPONDENCE SOLICITED.
P. O. Box 178. arshipments promptly and carefully attended to.
M. BEATHY \& SONS,

 AND OTHER CONTRACTORS PLANT.
J. G. STEWART, • MONTREAL.

OTTAWA POWDFR CO., IIMMTED.
ESTABLISHED 1891.
MANTFACTURERS OF DYNAMITE AND TRIOLINE. Dealers in Safety Fuse, Platinum Fuses, Detonators, and all Blasting Supplies. PRINCIPAL OFFICE: BUCKINGHAM, QUEBEC.
ALL ORDERS PROMPTLY ATTENDED TO UNDER GUARANTEE OF EXCELLENCE.

STOCK SIZES ALWAYS ON HAND
DRAWINGS AND ESTIMATES
PROMPTLY FURNISHED . .

Official Organ of The Mining Society of Nova Scotia; The Gencral Mining Association of the Province of Quebec; The Asbestos Club; and the Representative Exponent of the Mineral Industries of Canada.

B. T. A. BELL, Editor.

Published Monthly.
OFFICES: Sclater Building, Ottawa.

VOL. Nill.. No. 5
MAY, 895.
VOL. XIV,, No. 5

ONTARIO MINING INSTITUTE.

The Rui:y Riv:r Gold Fields, Ontario.

 general, it ran along the line, that he had himelf fund to tre corsect last summer.
 of those present. It signibed a variely of granite in which the mica or fornhlemde had been changed into a talcowe or chonatic mineral. Tine granites of which the writer had spoken, eopecially under the head of "protogene were very interesting, because ther form the commry roct of the richest and most commumbis vems that hat been found in the divtrict. They wete trae tissure veins. The fact that they radiate from targe manses of rock erencally called gabioro, but which is in reality anorbiosite adis to the encluvion that they are the result of volcanic diviuriance at the time when
 hese rach

 poses that ithe gathoo wav the carlier of the two, and the pranite a later cruption. while the two gentlemen uated bave taken the vew that the granite was the earlier and the gabliso a later erupbion The evidence, so fas as he (1)r. Coleman) had examined it, went so show that the later obereces were correct. The gabbro does not shaw signs of having been subijected to any woient forec, whereas the grante undonht edly has. Vou find no veins in the gahbro, but you do tind very well narked veins, and on a iarge scale, in the granite. In eruption of the gabho barst the previously consolidated granites, and gave rise to the fissures that were afternards filled by segre gation or in sonte other way. The ore is somewhat refractory in its character. Mr. Tille has mentioned the chief sulphides that occur in it, and there is no doubt that in most easer the gold is carried very larcely by the pyrites, and alio in some cxient by the other minerals. However, be cond not agece wuth Mr. Milles surgecsizon tha some other mill than the stamp mill woald lre more suitalite for treating the ore. I was his conviction that the great hunder in Oatario has usually been in celtine some was his ermer will other mill than the simplim. Hisines was that you ought roget a mill that reall will work: but hitherto the ancthot seems to have been to the seen in the neighlore
known about. The results of this tind of management can be known about. The results of this hind of management can lee seen in the neighlor hood of Kat lortage. Ite did not mean to syj that those other nalls would not whit well in other regions or under special conditions in our own districts, lust up to the present thes have not worked well. 1le said: "Take the mill that has treen proved to work.:" The first thing, however, that should lee done in any mine was to prove that you have gold. He hal ctrong objections to taking in a mill of any kind until a depth of a couple of hundreil feet hand been reached, and it had been proven that there was enough gold learing quartz to pay for the milt. Up to the present only stamp mille had tren introduced into the Scine river district. This, he thought, was wise Dost of them are simall. Dae is a to stamp mill in the thual late region, and iwo others are 5 stamp mills.

Nk. F. F. L.ATINEK inquired if the ores of the Rainy Lake region carruel much sulphite

Mк. L.aTtil E! ! -iny arsenic
 back. I inay say that there is no divisict evecpi that near Shoal take, where grame is the country roct : onherwise, the geological conditions are pretty unform.

IK. COI, EMAN-They are rather, I believe, in gnciss. I'he diad mine, for instance, is between iwo lajers that are prohalily lmoth genciss.

Gunpowder and Nitroglycerine.

13: W. Bombsar El, bis. Turanto.
An explosive is a loxdy which can. ly a chemical reaction, sudilenly develop a guantity of cas, larye compared with if. :olume of the londy lefore the reaction.

There are two ideas contained in this definition.
1st. in inctease in volume due in chemical reaction. 2nd. The inely, but in foos pounds per second.
To illustrate, concider an analogous case. A cubic foot of water will yield about 1,700 culic fect of steam. If this change takes place slowly as in a sicam boiler ander ordinary conditions, the expansion can be made tu wowt, which can be regulated at pleasure-to grind flour, for instanec.

If the change takes phace instantancously the loviler is shatered. This is an expiosion, although water is not an explesive aceurdurg to our detintion; for the steam is formed from the water, not by a chemical action, but by a physical change merely.

Nuw, one explonive differs from another not only as to the nature of the rhemica action which brings about the explosion. but also as to the rate at which this change takes place; and in studying the effects of a given explovive we have to allend to two thinge: -(1) The whane of gas which a given volume of the explosive gields; and (2) the rate at which this gas is developed.

Thirty years ago there was practically only one explosise-gunpowder (though many explosive subutances were known). Today we have a tresh one patented every week, and it appears to be worth while considering to what causes the elifferences in the properties and efficiency of these loodies is due, and how far a knowledge of their chemical constitution can dhrow herth on their behavior, and upon their suitability for different purposes.

There are two kinds of explosives

1. Mixtures of two or more loxlies which can ire made to comhine together, forming compounds which, under the condations of the exproment, wecupy a greater volume than the nixture.
2. Comproundis which can be decomposed, yielding products which occupy more space than the compound.

As an example of the first class we will take a mivture of ougen and hydzogen. As an example of the second class we w!l take chlorine monoxide, $\mathrm{Cl}_{2} \mathrm{O}$. let us consider the secoml case turst

The egtation representing the reaction is

$2 \mathrm{Cl}, \mathrm{O}=2 \mathrm{Cl}_{:+} \mathrm{O}_{2}$.

From this equation it follows that two volumes of chlorine monoxide yield two tolumes of chlorine and one of ovegen, measured under the same combisions of sentperature and pressure ; that ts, two volumes become three volumes, temperatite and pressure remaining constant. But temperature dues not remain constam. The decomposition of chlorine monoxide is at:ended by a disengagement of heat, and the heat on evolved is sufficient to ratse the products of decomprostion (supposing their specitic heat to remain constant) from 0^{-}to $1709^{\circ} \mathrm{C}$. At this temperature $;$ volumes of gas will become 22 volumes. This is therefore the space which two volume of the micinal compound would occupy if it uere free to exisand. Hence 1 volum would begial compound would occupy if it uere free to expand. Hence 1 colume would become ti volames, or the gases produced by the decomposition would necupy sitimes the
original volume of the compound. If now the reaction takes phace in \boldsymbol{z} closed space original volume of the compound. If now the reaction takes place in a closed space which prevents the gas from $^{\text {womanding at all, then the pressure increases in proportion }}$ to the colume the gas would occupy if free. So that in this case the pressure will be 11 almospheres.

Let us now consiller the first case. The reaction

$$
21_{2}+O_{2}=\cdot H_{2}=0
$$

is exactly the reverse of the one we have just been cousidering, and in it 3 volumes become 2 volumes-l.c.o if the temperature remained constant ant the cicam remained uncondensed, there wonid tre a dimmation in volume instead of an increase lbut the emperature does not reman constant. In this reaction also heat is evolved and the quantity of heat is enough to ratse the steam nearly $9,000^{\circ} \mathrm{C}$. (if its specific ineat remained the same). At this teaperature 2 volumes would h inme 66 . Hence the original 3 volumes would lecome 65 , and one volume 22 slumes. That is, if the reaction tonk place in a closed space the pressure would be 22 atmospheres, or just duable the former.

The importance of the part played by the heat disengaged in an explosite reaction is well brought out ly these iwn examples

To the first of the two classes that we have been considering belongs gunpowder. To the second nitro-glyecrine.

It has lreen shown by the analyses of lunsen, Karolyi and Abel and Noble, that the reactions whish eccur when gunpowiler is firchl vary with the comporition of the powder and the sonditions of the experiment and that the equation representing the explosion of military or sporting powder is a very complex one. In the case of blast ing powder, however, of the compostion of that examined by Sir E. Abel and Capham Noble, in their chasiteal rescatches on inc composition of fired gumpowder, we nia deduce from their results the following equation :
$4 \mathrm{KNO}_{3}+2 \mathrm{~S}+7 \mathrm{C}=\mathrm{K}_{2} \mathrm{~S}_{2}+\mathrm{K}_{2} \mathrm{CO}+3 \mathrm{CO}_{2}+3 \mathrm{CO}+2 \mathrm{~N}_{2}$.
From this equation it follows that 552 grammes of gunpowder will yield
 will yield $\mathbf{j z j c c}$. lhut since the heat coolveli ly the explosion of one gramme of gunpowder is about 500 caluries, and since the specitic heat of the products of the explosion may be roughly put at ahous 14 , the calculated iemperatare of exphosion will plesion may ine roughty put at abour it itrecalculated emperaure of exphosion will pies atout tec. The sulphite and carbonate of potassium are liguid at this temper
 ature and occupy abou: 1 scc. Hence the prescurc will he over 5.000 atmospheres
or 40 tons to the square inch. Abel and Noble have found experimentally $q 2$ cons to or 40 tons to the
the square inch.

Saltpetre contains as much oxygen as 3,000 times its hulk of air, and genpowiter is mercly a contrivance for burning carimn by means of this enormously compressed oxygen and forming carlon dovide and carbon monoxide gases, while the nitroged of the salipetre is liberated at the same time.

The explosion of nitro-glyecrine may be represented by the equation $4_{2} \mathrm{C}_{3} \mathrm{I}_{3} \mathrm{~N}_{2} \mathrm{O}_{8}$ $=1 Q_{2}+10_{2}+6 \mathrm{~N}_{2}+\mathrm{O}_{2}$, from which it follows that 1 gramme giver 71 jec, and icc ($=1.6$ granmes) gives 1141 cc. which is cxpanded by the heat evolved at leas cight times, (Berthelot) prolably more than this.

But the nature of this reaction is totally dinerent from that which takes place in the explosion of gunpowder. That is a combuntion propagated from particle to par ticle at a comparatively slow rate. The eyplosion of nitropgljecrine on the other land is a detonation, a breaking up of the molecules propagated with a velocity comparable to that of somad-execeding $\mathbf{3 . 0 0 0}$ feet per secona.

Six cubic inches of nitro-glycerine gives about a cubic yard of gas, requiring about sodno of a secomi for is bonation, (lewis.) A spuare yath of surface carries an atmovpheric prevoure of 9 tons, and this has to le lifted in the asboo of a secondi.r. more than one million foot tons per second. ligguts such as these amply atcount for the well known shattering effect of nitro.glye ine, and for its destructive effects when tamped only by the superincumbent atmo..pheric air-effects which are commonly alluded to an the lendency of nitro-gljecrine to "strike down."

It is a most important property of nitro-glyecrine that this enonmously energetic fandion is not the only way in which deconmosition takes place. On being heated it tirst volatiliee dowly Mithout decomposition. If the lempetature is raised to its boiling poim, wheh is somewhere near $150 \mathrm{C}\left(350^{\circ}\right.$ faldreuheit) it is converted into yapour with mach tapidity and the vaporization is attended by partial decomposition Is may be set on tive and will bum puetly away because the heat is carried awny hy the gaseous preduct before it has time to tee commanicated to the rest of the nitro glycerine. lint if the tenperature of any of the nitrog glyeerine be raised to a lithe alove the temperature ($150(-350 \%$) the deconaposition takes on the character of detomation andi is propagated as such through the whole mass and even to neightoring: mases.

The impurtance of the facts on the practical employment of nitro-glycerine, and apecially upon the thawing of dyamite cartridges need only be alluded to.

Underground Photography.

By Mackie \& livats, Mining lingineers, Sudhury.
Underground photography is a subject which has received a considerable amount of allention during the last few years. Ar. Burtow, of Comwall, deserves especial credit for the gatience he has exescised in his efforts wo take good photos underground, and he ha been rewarded by obsaining sume excellemt photographs. For obtaining sufficient light, le found after a great number of experinemts, that it was necessary to use two line lights in addition to thash lights, but even with all these appliances for giving light, ohly a small number of his trials were successfal (about f).

Wie will show some slides obtained from photographs which we touk in some of the nickel mines near sudhury. In taking these photos we used magnesium powder only, as the use of limelights would be so troublesome and expensive as to be out of the question for most people. We made altogether about 70 trials, using different plates and lights, and olvained 7 or S good photos, and about the same number of passable ones, the rest were total failures. The clief difficulty nppeared to be to ob. tasin enough lighe to illuminate the large spaces, in addition to this the air was saturated with mointure aud foggy, and gencrally smoky, either from the niners' lamps or blasting yowder. We soon found that it was useless to attempt taking any photos where the miners had been working for any time, the only time at which anything could tee done was early on Monday moming before the men went to work. Even then the are was too fog's some days to get good results. It wiss, moreover, possible to take only one phote in the same stope on the same day, (unless the ventilation is very gond), as the smoke from the large quanity of magnesium powler used soon obscured everything. In all our trials the same camera was used, viz: $25^{* *} \times 7^{*}$ llawkeje fold. ing canera. Wie got good results with Stanle) plates sent, No. jo, and Cramer Crown.

We tried smal liash lamps and magnesium ribkon, but found they were altogether inadecquate, and it was not till we used two continuous blast fash lamps holding 120 prains of magnesium powder each, that we got any satisfaction at all ; the prowder in the hamp is tlown through a fiame of burning alcohol, and the blast hasts almout half a minute. One lamp, was qeenerally held behind the camera and another off to one side, hut of course nit direc:ly in vier of the camera, by this means we were able to show a man in one case 150 fi. from the camera, one light was let off near the man but sheltered from the cimera lehind a roch. As the sesult of our experiments so far, it appears to be neceswry in order as secure good restihs, to select a day on which the air is nc: fobsy or smoky in the mine, to use only the most sensitive plates, to have some lackiground which will retiect the light mote or Jess, and not to face the camera owards very larce stopes, if the stopes are mote than alout 50 ft. wide it does not ap. pear to be possible to show the opposite wall clearly, ant if there are any miners in the picture, they should not have their lamps in their bats as the fame only makes a blur and spoils their faces.

When these condiaions are observed very fair results can be ohtained by use of nagnesium powder only:
licinrich boarner (a photographer in Freikerg) has alk, published some excellent photos taten in the mines near Fireiberg, by magnesium tish light.

Does the Vibration of Stamp-Stems Change Their Molecular Structure: *

E. E. Ol.COTT. New York City-I am sorry that I have not folloned carefully the various contaibutions that have been mate on this sabject. I have been much surprised io hear the statements of Dr. Raymond, and regres to le obliged to quote
my own eapericace in opposition to them; but in my own expericace in opposition to them; but 1 am wety stiongly of the opinion, from numerrus olecrvations, that some change occers in iron io a consequence of frequent vibration. The phace where I have seen examples of it so often is in the breaking off of the stamp.stems that has been alluded to. It is no uncommon thing to sec around samp-mith, ceen now, a number of short ends of the stems, broken off just alove the leess or stanyp-head, the crystalline faces on which are as distinct as in a troken pig of cast-iron. I have also seen these stems, after having leen used, first at one end and then at the other, cut in two in the blacksmith's shop, at places away from the hoss, where they show a perfectly fibrens structurc. Now, I think that the stamp-mill mortar is an ideal apparatus for causing greal vibration at onc. particular point; and I shoukd say thas the numerous occurrences of the iron breaking in that way and the frequent olservation of crystallization furnish, perhaps, a stronger argument in favor of the phenomenon than the experiments made loy imitating for a short ime the strains that the stamp-stems sustain. It is a subject that I will try and investigate a litule further. As I say, I have no wish to oppose my olservation, per-

[^1]haps prejudiced by the practical mill-men, to the eminent authorities that have been quoted. ${ }^{+}$

WILLLAN KLNY, l'assaic, N.J.-I have been reading up on this subject for nearl) wemty years. i saw the porter-bar mentioned by Dr. Liaymond in 1875 , shortly after it was broken, and everybody who saw it then thought it was an unmis. inkable evidence of crystallization. In carlier times the belief in crystallization was almost unisersal. Aferwards people began to differ on the sulyect, and there were ppinions expressed on loolh sides. In 1S79, in a , paper "On an Apparatus for Testing the Resistance of Metals to Repeated Shocks" (Zrans., viii., 76), I think 1 was a little on the fence, though rather a little over on the side of the crystailization theory. Now, I have read whatever I have come across on that subject in the last fifteen years, including Dr. Raymond's paper, which I received the other day, and 1 anm still not satisfied and am strongly inclined to believe with the gentleman (ilr. Olcolt) who has jatisted spoken. There is no ligher authority than lhatischinger, who has recently died; just spoken. There is no bigher authority than lhanschinger, who has recently died; and l'tof. A. Ledebur quetes him as saying: "Strains of iron

That statcment seems to me most astonishing when it is well known that you can ake a bar of iron or stece and, after it has leeen suljeected for years to shock and vibration, to all appearance there is no change in the piece of netal; jet, if you lest it, you will tind that it is more britule; and some day that piece breaks. Jou may not tind the cridence of cubical crystallization, but it always breaks with that appearance which we call crystallization. Now, can we say that that piece has been stading. all this shock and vil)ration and has finally broken without molecular disintegration having taken place until just before it broke? Canwe say that that piece has experienced no change of structure? I remember that at one of our meetings we were shown some pig-iron that was very hard to loreak; it took about four hundred blows of a sledge to prgiron that was very hard tid break; ithook alout four hundred blows of a sledge to hrcik it, and yet imaly tidn break with a single blow. The same way with wrought iton and steel. It resists shock a long time, then breaks. Something has happened
to it. It may not be crystallization. I do not hold that iron onee fitrous becones to it. It may not be crystalization. I do not hold that iron once fitrous beconnes
crystallized; but to say that there is no nolecular change is, 1 think, going tno far. The statements made ahout Wohler's experiments proving anything about crystallizathon do not, in my opinion, prove anything at all; because in his experiments there were repeated steady loads placed on gently, and they were not shocks at all. In the paper that I presented fifteen years ago, and to which I have referred, I pointed out that no sciemitic experiments on the resistance of steel to shock had been carried on, and gave a design for a machine to test this point. I am very sorry that it has not as yet been built. If it were built, 1 think it would sette this matter of crystallization. The statements made during the last ten to fifteen years about what has been proved, or alleged to be proved, amount to nothing; and I claim that the statements that no crystallization happens are all theories and not deductions from actual experiments. If we can get a translation of bauschinger's experineents, it would le very inpportant; bu: I do not think he would go so far as to say there was no molecular change. He says that no change of structure took place; but the expression "no change of structure " is commonly broadened so as to coter every possible kind of molecular change. It may be all right to say that crystallization does not happen, or to say that there is no crystallization which has beer determined ly the naked ege or hy the microscope, or that nothing happens so far as wee can sec; but as long as pieces of iron, after long service, do break with ordinary loads when they are apparently just as when they were new, we must believe that during this long service something happened to the iron which weakens it, which something is equally dangerous whether we call it crystaliization, change of structure, molecular change of molecular disintegration.

JOIN WIIKES, Charlotte, N.C.-As a builder and user of stamp-nills for the last twenty-five years, I have :o differ in regard to the effect stated here. I do not go into any theories at all. because I have none; but my experience has been that a change certainly takes place in a stamp.rod near the thoss or head. Some time ago the custom was to upset or cut in two after the ends broke off, and weld together in the middle. Those stamp-rods we found broke again in the middle, away from the weld, where the iron had leen worked in the forge-fire. Now, stamp.users in my section of the country only change the ends. The ends break clearly. When millers were nut careful in regard to their work. the stamp-rods broke in a very short time, sometimes in six months; but with grener care, now, the life of the stem is alout two years and a half.

Yice-pereside:it J. F. HOLLOWAI', Now Yoik City (in the chair)-By changing the ends you mean reversing the rods and putting the head on the other end?

Mk. WILKES-Ves, sir. Without an exception, all broken ends show a gramelar crystallized appearance: Some of them I have seen show a granular structure as large and as perfect as in Scotch pig. That they did present a granular effect is with. out do.ubt, and it continued almee the break, as these rods, when upset, dia not break in the weld, but within a foot, more or less, of the portion of he iron which had been again worked in the forge. During this discussion, and since the paper was read in
Chicago, I have taken pains to examine rods which have heen sent to ws to be surned Chicago, I have taken pains to examine rods which have heen sent to us to be turned
over. Within the last three weeks, rods have been sent to us that had been in use over. Within the last three weeks, rods have been sent to us that had been in use
three years. One of them had quite large crystals, such as you would see in Scotch pig-iron. It was my intention to tave brough one of those stamp-ends here, as it would have shown the members of the Institute that the fact remains, whatever the theory may lic. If there is any place where this question of vibration can be broaght up ant lomed into, it is in a stamp-mill. Think of a reight of sonte 750 :" $\$ 00$ poundi dropping cighty times a minute for days and months. If granulation or crystalmyself. I accept the explosion of the crystallization theory. At the same time, in a stamprod, the fact of granulation or esystallization does exist without any doubt. siampetol, the fact of granulation or casstalization does exiss without any doubt.
Within the last year we have begun to sulstitute steel instead of iron, but with what effect 1 an not as yct able to sayg. Wee find that in mills that are properly taken care of, su that the vibration is reluced as much as possible, rods have a longer term of life. l'aching tiac enil of the roul with cloth lefore it is driven into the leass-head will increave the life of the rod. Scientific men, to uhom I listen with a very great deal of interest, many be able to tell whether steel will stand this vihration better than iron or not. We have found that the usc of steel in other parts of the stamp-mill where the vibration comes has proved advanmageous.

Mr. MOILLOWAl-I would like to ask Mr. Wilkes whether it has ever been the practice of people using stamps to take these stamp-rods out at intervals and reheat them in a wood-fire?

Mk. WILKES-I do nol know of anything of the kind having been done. As a user of stamp-rods, as well as a maker, 1 question whether a wood-fire would do away with this granulation, which certainly does exist after some years' use.

Dr. RAlMOND-Is there any notable tendency on the part of stamps in the south-with which section of the country M1r. Wilkes is more particularly acquainted -to lireak just under the tappets?

Alk. WILKES-I do not know of any breakage of that kind. The breakage is just in the edge of the box of the head.

WIl.LIAM R. WELSSTER, Ihiladelphia, I'a.-I would like to ask Mr. Wilkes. if the looss on the roil is put on by upsetting?

Mr. WILKES-No; it is only where a rod is broken that we upset it. We use
\dagger See Mr. Oleotis later sommurication to the Secretary on a subsequent page.

the late w. h. Jeffrey, RIChmond, que.,
(Of the Jeffrey Asbestos Mine).
the lowidemed we b. The ads ane tumed up, and then tapered in the lathe to the taper of the lead, the end of the red being made a lintle amalle: than the rest of it.

 have newu obowat we that catended wht of the lese
 chains ard then them on a log the and heat them up at segular menteals; and as has been lound from evpencace that the lite of a lag chan is sets much prolonged by dong th.t.

Mik. Wll.hls - I humb thah that might be a goed thang to do. At tho same

 mill that on not tahern care of propuly.

 Where the cranh ame maned the hom. It was forged on. L'nder the Admmaty haw, the case hasme comse up wh the Lated shates Comat, th was held that it that shate ascertaned that the thai was there, set he was hatie for the loss of the carge-wheh ascertaned that the than was there, set he "as hable for the lows of the cargo-w wach
happened to te thats hum the West Indies. Ih, on the other hand, the break was

 phaced in evadence hathald's worh, and called attention to the fact that there mught hase been a sudden asan upen the shatt, and, if so, accordme to harhaldy, it might
 the Rogers lucumotac worho and aked them to gue me one of thers best wroughtiron carades. Thaste we brohe on an ansal by means of a steam-hammer, bending it back and forth until it was brohen wath fibres as long as your fanger. It was a new aste. We then las une half of the ave, whth the fibrous end on the ambl, and tapped it gemts unta we had traghtened at. Then the precr was paced between two rather nartow supporte, atid the fill force of the hammer was alluwed to strince th with a blow of many tons. it wadenly brohe, and I had a prece sis incles long, one end of wheh was beautully thiman and the other end showed coasse crystals. That piece we took into cours and cobribinhed uur case.
K. P. KicuTill l.1.L, New lort City-I think there can be no queston anomg those who hane wed wen and seel under such condtions as hase been described that there is a molecular change under certain circumsianees. Whether that change is due altogether to hanh or not s, perhaps, an ofen guestion. At least, the same effect
 wire rope. it win ion oft for ordinary use. We were using it on a slope, and the lower encior it womh lecenme haghy cistalline. Periodically we would hate to cut off sto of eght fect of as. The wire bedure thersstallizatuon (and I call it crystallization for censenie fices was extremely tough. Fou could twist it round and round many times withous becahsarg it: and when it did timally lureak it showed the muest silky exture. But whese at brohe at the end of the rope in uece, it appeared under a magnifying glawa if the cation of the neel had collucted mot hahes of graphate ruanimg acros the structure it the siecl, and it had broten through these graphle structures. Wee attrituted tha eftet to the acad waiers of the mane- It was a coal-mine, and the rope would get wet at the toot of the slope Now, a stamposem is sprinkled constanth whe "atce, and that water we very litely to be more or leos acud. It may be admated frohis, oft whatmon alwass in contact wht prites in the ore. I merely sughes wh ther there may
obsersed wha the vect wite rope?

Mk. HOLL. Wil. 11 -Is it mot true that at the lantom of the slope there would be a bate lach at the end of the rope, and that in taking up the slack the tenston would come suddents on that end of the rope?

Mk. JUTHMLI!. Io, to a certann eatent. It would nut be sudden, however. With a wue rope $\mathbf{j 0 0}$ or coolice: in lenght there is so much spring that you would get bee siaticn are nothing that you could tarly look to as a ciuse for crystall. zation in the wire.
 an effect in the was Wr kinhuell dexcrited In the south, hometer, muners do nut use mane "uates in ithes vany mill, if it is possible to get surface water, on account of its etfect on amalyamation. Therefore, the water we use cobld not have much effect on the iron.

JOSEIM C. IL.ATT, Waterford, N. I:-This disecssion bring up some remi-
 an inch in diances, with a hanimer weighing not ocer fout jounds, when striking the
 have probalby drisen a ten-penny nail half an inch into a glank, and yet it broke the
 hay in a manner that would indicate that something was wrong with the irun. These
handes $: x \cdot$,e wed polathy for 25 years. The cnd that was put ino the furnace handes in we wed trolably for 25 years. The end that "as put ino the furnace
was, of cource, ra wed trequenty. When a tool becance hot it was pelled wut and another phi m, ant st wats simply sabjected to the jar of the puddele-bar on the fromephate under the wath. It was a sery common occurence cor the handle to lreak off under a thow such as. I have stated. It seemed to me a very strange thang that iron which had laved firy ycars would suddenly break it. that minter.

A MEMIBEn it was at blue heat, probally.
Mr. יIATTH-SV; tiat end of the tool did not get very hot. That was the culd end.
 May 11 , $1 S 57$, as inraquils, Md., incfore the United States Naval Institute (See Trans., U. S. Nasal Instime, vol. xill, No 3 pages 369.376), I discussed this question at considerable length, and the following statement, condensed from that lecture, ex-
 in thas alinifgemen were in the nature of exphanatory repetitions and illustrations, adapted to a propular audtence, hut not necessary here

Wrough irnn :- realy a mrchanical mixture cunsisting, at its best, of clusters of crystals (wheh may with propricty be regarded as compound crystals) of iron, separated from ench wher hy thms or threatis of cinder, as the unavoidable result of the process of maneforiure When the puldier's halls are squeezed or hanmered, for the purpose of expriling the rynder and welding the granules or crystals of iron into a homogencous maw, the allempt is never wholly successful; for the cinder, as the metal comk. quirkty hernmes pasty and firws with difficulty, so that portions of it, inclosed in the internor cavities of the ball, are sinuly flatened out or elongated, but not removed lienre the blomm is a complete mass of granules or erystals of iron,
separated from each other by thins or stsings of cinder of very irregular dimensions.
lby crystals of iron I mean ultimate units of that metal lounded hy well-defined planes whose mersectuons always form salient angles. A number of such crystals naj cohere nad form an agbecration, and such agrecations, or ce nipeund ers stals vary in size, and are often spobien of as single cry stals, jusi as we speak ol ctystals of gatena or calc-spar, when as a matier of fact, the ultimnte crysul of each of these substances

In forging a lar it is the nstal practice to turn 14 about its axis through en angle of 90 betneen the blows (or series of blows) of the hamener and in rolling a bar it is conmmaly turned through the same angle letween passes through the rolls. Conseguendy, when a bloom is rolled or forged into a bar the metal is acted upon in two directions, at right-augles to ench other, and its compound crystals will be conpressed in directuons nombal to the catenor surace of the har and at the same time extended in the direction of its lengh. Thus the ends of adjacem eijstals are forced toward each olher, and the intervening comder, endeasongg to escaje is conpelled to move at right angles to the axis of the bar and to unite with the films or theeads of cinder whech have become estathished in parallel linte of I sot restance along the tlanks of the compomed crystabsand at right angles to the direction of the torce ufon the har.

The direct consequence of the elongation of the compround crystals and the effort of the tutervening cender to escape in the direction of hest restatance is the establish. ment of that structural peculianty in the resulting bar known as " thler," which is a conspicuous feature of wroughtiton not found in any other sancty of ferrugituous material. When any of the tilms or threads of cinder in a bar of wrought-iron are so large as to be distinctly vishble on its surface to the unasersted eye they are called "sand-scams" or "cinder crack:."

If its compound crystals are merely pure iron, the bar can lie reatily beat cold whout fracture, and, if pulled asunder by a gradually angmented urec. its fibrous texture is at once evident ; but in case the compound crystals contain in chemucal combinatian sume substances, such as phosphorus or silicun, which tend to dimmimsh both the cuhespe attraction between erystals and the mutual attractun of the compound crystals, then the bar cannot be casily bent cold whome rupture, and exhbits, when broken, a socalled "crystalline fracture." Notwithstanding this appearance, however. the mechanian structure of the bar is the same as before, that is to say, the cinder and the elongated compound crystals are still arranged in lines parallel with the anis of the har, although it is quite probable that the average length of the compound erystals may not be much less than in the case of a bar of purer iron.

Whenever a bloom is subjected 10 a force of comperssion always actmg perpendicularly to the same plane, as is the case when $1 t$ is rolled intu a a sheet or plate, both its compound crystals and the accompanying cinder are fattened and extended parallel with that plane, and the resulting sheti or phate has more of a laminated than a fibrous structure, being built up of a number of leaves or strata of aron, separated from each other ly films of cinder, which, when unduly duck at any pront, cause defects in the plate that are called "illisters.

Can a bar of wrought-iron of a pronounce exhibit a crystalline fracture? I answer, to cation of a force of extension commonly calle
rous structure lex ruptured so as to wo ways: hrst, by a sutden appli. wo ways: hrs, by a sumden apph.
irk ": second, hy a prolonged re-
i a jar." etetion of a force of comyression, sometim Ja"jar."
The first method of rupuare may De sa.at to consist of a mansverse separation of the compound crystals of the bar, as distingushed from a slidiug of their interlocking flanks upon each other, as is the case when the rupture presemts a fibrous appearance. I have often seen crystalline tractures produced in truly tibrows iron. In the manafacture of iron rails (now nearly an extmet industry), it was always considered desirable that they should be of a hard and crystallane cexture as to their heads, but soft and fibrous in their llanges; but, however perfectly this distrabution of metal was made, it was always possible to break a nail so as to show a crystalline fracture in ats thange. This was accomplished by making a shghe nick across the tiange (to determine the point of fracture), and placing the rail (thange down), in the strathening press, on supports phaced a shon distance on either side of the mack and then putting in the gag "heavy" jut over it : the resull was alnust always a crystalline fracture m the dange; in short, the elongated compound crystals, were jethed asunder. But it the points stupporting the rat were placed farther apart, and the rail cht en an opprortunity to supporting the rat were phaced cornher, apart, and the rait chen an opprortunity to times in suecession, the fracture of the thange would be sure to tahilitia fibrous texture, due to the fact that sufficient tune had been given to break up the tilms of cinder along due to the fact that sufficient tume thad been given to break up the bilms of cincler along
the tho. of the con.pound crystals and destroy their transverse cohesion, thus perthe time of the con.pound crystals and destrey their transterse cohesion,
mating them to slide apart and exhbit the appearance of disrupted fibres.
lie are indebted to a not uncommon accidett, to wheh the hanmer bars of a peculiar type of steam hammer ate liahte, for an excelleme thustration of the second method of producing a crystalline fracture in ibruws ison, the result of the repated action of a percussice force of conspresion. In Fig. t the bar of such a steans hammer

is represented. As has been stated, there exist, in a lare of fibrous non, films of cinder between the ends of its clongated compound crystals. These, from the nature of their formative process, cannot possibly be of uniform thickness. This, consudered in connection with the fact that the greatest force of the percussive action per unt of area of any cross section of the hammer bar is exerted upon a section made by a plane cutung the bar at right angles inmednately alove its head, justifies the belief hat at or near action of the hammer would have more destructive effect upon the thick than upon thin films of cinder; while, at the same time, the force of cohesion between the ends thin films or cinder; while, at the same time, the force of conesion between the ends
of adjacent compound crystals will be diminished in some inverse proportion to the thickness of the films of cinder between them. It therefore seems exceedingly prothickness of the films of cinder between them. It therefore seems exceedingly pro-
bable that the fraeture due to continued pereussion will take place, ff not in the plane-
nlove named, , at in one very near to it, in which the cituler films chance to be of preater thektess than those on that plane, aut, as a matlor of fact, fractures in such fare are usurlly whma few inches of the pome where th: har emers is head, as at C. 11 , lig. 1.

The particular pome in the circumference of such a bammer bar where the immi

 ngint handed will be lhely to we the ryht wate of the anval more than the left. In
the later cace, the worh B, Fug. 1 , will iend (whenever it in the pontion shown), the latier calc, the wort IB, Fig. I, will iend (wheneerer 1 is in the postion shown), or occasou:ally to the bell sole of the amsh, hecomer a compressove tran. We Nhuld, theretore, capect (os sis, mfact, the case), that the minal mamestuthon of the fracture
 cond te found at that poms, and thit at would gredually extemd towards 1 , whthe the

The bethef in the soc.alled cry vallization of wrougha won, as the resule of pro
 cissalhzanom ot sered in the case of any partecular fracture exsted, just as we see it, at the ume the metal was green the vape in whah n nas ruphured. Atter a borr of distuctily fibrous wrought iron has brea wubjerted to mulutudes of sudden je:he of ea. tenton or jars of percusove compresomon, the conder in some caoms sectuon of it (in which thas mpurate so slaghty thicher than elsewhere), gets broheon up, cohesum is devtue) ed, and the war breaks with a cry vallme fracture.

I have had a specimen prepared hor the purpose of mating the foregong explanation of the appareme crystalization of thbous iron mure endecte. It is a share prece of

It in a well h hown fact that wrough won in mphened in wrengh by repeated woiking. Ths may te accounted for thas: In the matal heaung and shaptag of the metal, its crystah, were leff whth a comparatach thich; tha of cmiter tetween them;
 some of the imervemug ender is expelled, and what remams is very much reduced in
thichness, so that the che hesive attractoon (whatever that may be) between these crystals, having less space oo act through, acts with augmemted ittensity. It is "ell to remember when ne speak of "less space" ma mater of this hind, that we are dealing whi a very small quantity mieded-one that is a near neghthour to the infontesimal.
II. 11. Sulfockl.EY, San Francisco, Cal.- With regat to the ust of mane water an the batlet, the custom on the Pacme const is the same an Mr. Witkes vates it to ie in Xorth Carolina. Mine water is not used ill the battery when it can be avorded.
do not thank the water causes the stamps to beak, as suggested by Mr. Kothwell: for they last longer in a wet-crushong mill than they do in a dry crusting one, where no water at all is used.

 caused hy pheces of roch ulting the stamp when struck lis the curcumference of the
shoe. Thin gnew a suran, nearly all the effect of wheh w concentrated at the phace whete the ven entern the lwos; and it 'suatly breah at the 1 thece. I have numeed on shatt- that hase been brohen thatened phaces on the fraciured surface, how ming that the benthing caused caught monon to wear the sumfaces month.

The preces of metal memtioned by Dr. Ledoma and Mr. Durfee prove comelanely that the appearance of the fracture does not how what the metnal efructure of the metal "as lefore n was broken.

If the vilsatum causes stamprotems to cry nallize and breah, it certanly repures a very long tume to produce that efiect; for 1 have havn thap, to te in wee tor four years, drappling 95 unes per minute throughout that pernoi, wheh would give some-
thing over $200,000,00$ ibuws. thing ower $200,000,000$ lows.
orker, of rou with whon, I howe talked believe that rop will crysallize under hoch.
Mr. WEBSIEER-SOMe years ago, an mspector of bridge material, after manaths thorough tests of double-refined ron hars for cye-!ars, was so, well samsfied with the tensum-, benchug- and meking-tests that he made a special repert to the rollner mull, sa) ang that it was the le:st materal he had ever inspected. After these tiars had bein manulactured and shipped to the mill-ate, ztevt of the full-nzed lars was recenced, which showed very poor results, the bars having been broten through the head and in the neck with had crystathe fractures and low ultumate strength. The bars were all condemned and taken ont of the structure. A thurough investigatoon was made of
 teld ; and in all cases geod resuls were olnaned foom the korly of the bat, and crystal-
line fractures in the neck. Bending-lests without nuck In many cases the bars did not lend to degrees in the neck, inat evenat the first trohe or two of the small hysmaulic jack that we were usine, the sharp, snapping sounds were beard and the matecial gave nay all at once. The ressath were very large. Addhtonal tension-tests of the full-sized bars were made, and some of them brohe in the neck with as low an ultimate strength as 42,000 pounh per square inch, the fractures
being all crystalline. Had these hars been in we several years, when the troulle was being all crystalline. Had hese hars been in we several years, when that trouble was
discovered, it ro doubr would have been caced as another montance of crystaltzatoon of diseovered, it ro duabt would have be

1 cite this to show the importance of knowing the heat-treatment to whech iron has teen subjectel before we attenpt to theorize on the change of structure due to vilration.

In ESS_{4}, Mr. Peck, superintendent of bridges for the Missourı Pactic Railtraad Company, calied my attention to the fracture of some eye-bars, taken from the wreck of one of theis bridges, which had treen knocked down by a derailed tmin. These Lers, he claimed, were made from good material thy one of the leading bridge companics of the country, and set they brohe off short hke pot-metal. Upon thoroughly
investigating, we found that the bars had broken through the neck, with a coarse, investigating, we found that the bars had broken through the neck, with a coarse,
crystalline fracture. I called his attentuon to the trouble often caused in thal portion crystalline fracture. I called his attention to the trouble often caused in that portion
of the lar in the course of manufacture; and he cmbodied in his new specifications a of the bar in the course of manufacture; and helled for eye-bars to withstand bending to a curve of 90 degrees in the neck.: This test was carried out by subjecung to a welding beat a piece of the bar about 16 mehes long, allowing 4 to cool slowly without putting work uponit, and then leending 4 under a press. Several lots of maternal were condemnel as not meeting this test.

In $18 s_{1}$, while we were making bending-lests of double.refined bar-iron under a small hydraulic press, the work: was interrupted after several pieces had been bent
put on end under the hydraulic press and we attempted to cluse them down further. Much to our surprise, they boke off shurt, the fracture teing 100 per ceat. granular. At firs it was huught that the cold mught have had somethng to do with thas, as it was in the winter season and the pieces had been left out over night ; but upon repeating the eaperiment and keeping the pieces indoors all might, at a temperature of
 when broken in the ordinary war, that is, whow any mertuption of the ter, ase fibrous fractures and were salufactory in every reppect. Thas eyperment wav repe ented un different sizes and makes of iron; and somennes the fracture was changed and
nometimes not. (I refer to the fiactures as pranular, as they were caurely dificent frum the crystalline fracture coted above as being produced by the heating of the bars.) It would be mineresting to follow tup a set of eaperiments on thas line and carefully note all the conditions, including chemical composituon, in urder to get at the cantere of this appareon change of structure.

I levere I hasestill a piece of one of these bars, ateout four inches long, one cand of which is entirely granular and the other end fibrous.
1)K. RAVIUNND-Un page 12 of the pauphtet dixcussiun of thas subject alrealy soued, in the last paragraph but ene, allusion so made to the photegrap h of the broken comucturg. lar of the Washangon nasy-yard, as showing " the haminated structure due to rollang." As the bar was made under the hammer, I should have written "forging." This cirfor will be corrected in the Tramsa, fens.

Thus discmssion illustrates forctbly he importance of attaching definite meaning to the terms employed in deserbing olperved fact. "Molecular change " and similar
phrases-even "change of strucure "-nay bee (and, I fancy, have been, in this dis. phrases-even "chauge of structure "-may lee (and. I fancy, have been, in this disseparation of the units of structure in the line of stress, or the gradual diminution of tensile strength under repeated stresses. Strictly speahing, not one of these phenomena necesmrily involves mole ular change, such as is involved in the re-arrangement of the molecules, to form crystals. That they do indicate, ia a certain sense, a structural change, is not denied. But this change may tee the same in hind as that produced by change, is not wenied. But this change may te the same in kind as that produced by
any had of fracture. When any two continuous elements of structure are pulled apprt, whether gentl) or violently, gradually or suddenty, there is a change of struclurc, if we chowse to call it so. Bur is is uselen to cuafound that change with sae that is supposed to tahe phace prior to any rupture between the elements. When Mr. Kent speaks of "molecular dosintegration," I understant him to me:an a loosening of the evosting structure, not the formation of a new one ; and, in that sense, I conceive that he is stating exachly the position assumed by mudern investigators, who fail to find any proof of a radical change of structure preceding fracture.

Mr. Kent does "not hold that iron once fibrous trecomes crystallized," yet declares that "the statenents that no crystalization happens are all theories." I must repeat my protest on the later point. The alsozates of the cryithlhention theory have no right to call simple distrelief in this propesition a "theory." It is incumbent on then to prove therr position : they cannot demand that doubters should prove a negative. As to the only theory hite under hacuasion, it is perhap! nut harly represented theory, then it suffers under a double lack of proof; fur there is no evidence that any theory, then it suffers under a double lack of proof; for there is no evidence that any
iron is fibtous phior to rupture. We produce a fibrous or a non-fibrous fracture at will, according to the methoup of breaking.

Mr. Darfee's explanation of the process of fracture in wrought-iron seems to me to satisfy the observed facts, although I do not think that the presence of films of cinder between the elemems of structure is alsulutely necessary to an explanation. Planes of stuall cohesiou might suffice. What Mr. Durfee has pointed out concerting the breaking of stean-hammers is, to my mind, pertinent and cunclunve; and I deen "t highly signiticant that he has directly choerved, in stech cases, incipient fracture.

It seems to me aloo signiticamt that Mr. Wilkess stamp-stems break only just above the head ard not under the capper, whike Mr, Ausin repart, that in western arrangement of tappets and cums is supertor: and I may go further and say that posstbly some better connection between stem and head might reduce the amount of breakage in boh types of mills. I venture to beheve that if a stamp were composed, for instance, of one olid cylinder of iron, of equal diameter throughout, there would be no sign of of one ollid cylinder of iron, of equal diameter throughout, there would te no sign of
"crystallization" in it if it zan fifty years. In other words, I think there is no proof "crystallization" in it if it ran fifty years. In other words, I think there is no proof of an inevitable destruction of the material, by the operation of a universal haw, which
cannot be largely prevented by streaghening the parts now expuosed, without special protection to aicking. and bending otrains.

In this connection I would call attention to tho very able and thorough attecles by Mr. Paul Kreuzpointner, of Altonaa, l'a., enamed, "Do Iron and Steel Crystallize
 tory of the Penusylvania Ratroad Co. Ilis discussionof thes subject ought to convince any one who still inclines to the "crystallization theory" of the baseless and untenable character of that therry. I will quote but one sentence from his second atticle, which gives a new reason for dispu:ing the tradithmal error. He says:
"It would hardly be worth whle to take the old superstition about the crystallization of iron under shock seriously at this late day, if it were not for the fact that this superstition is being transferred to steel. This is reaily a misfortune to the constructing engeneer who may happen to believe in it, and to the consumer of steel in general."

Mr. WILKES-Referring to what Dr. Raymond has said concerning hreakage und dor the tappet, I have no doutet that the beot shapes for cams and tappets should be used, so that, when the liff lepins, the how may tee as light as possible, and the frection tretween cam and tappet darng the whole lift to be as small as possible. This hape we have secured in our pracuce by alophag true cutves at tirst, and modifymg them as obecreation of their behavior in actual wirk suggested. White we were using iron, we succeeded in this way in relucing sibration, wear and tear to a miamum. Since we have adopted steel for the parts refersed to, a great further reduction in wear and lireakage h.as leen recured, as the revult, in my opmon, of the retention of the ondibin form of the cans and inppets, and conseghentiy, the more certan kee;ing of the stem in its proper place during the liff. Thes permits a farrer blow, and more taken care of by anybody. But it needs, like any other machine, to be kept in order, if it is to do good work. Suitable care bestowed upon it will effect improved results as important as those to be got from any other kind of machinery used alout a mune. A properly constructed and properiy handled stamp mill is, by reason of its simplicty A properiy constructed and properiy handled stamp mill is, by reason of its simplicity
and its coconomy in metal consumed per ton crushed, still the favorite appliance for reand its economy in metal consunced per ton crush
ducing ores for amalgamation and concentration.

Mr. OLCOTT (later communication to the Secretary)-The result of a hatte study on the subject shows the weight of scientific argument to be against the crystallization of iron from shock or vibration at ordinary temperature. I have read the two able articles on the subject by Mr. Kreuzpointrer, to which Dr. Raymond has called attention. The salient points of these papers, as affecting the stamp stem discussion, seem to be :-

1. That the crystalline appearance on the fracture is caused by the manucr of
and
line faces, but where pulled apare to ugitudinally, the same iron shows a fibrous serueture. In wher woud, the stamp yem may hase been weakenel and fimally broken of liy vilecente thock, and shom kink or beud, operating transeersely, as the result of striking une cen hurlaces in the trortar, etc.
2. The rron in a bar may te crywallang at one poim, but tibrow at another.
3. lron may have been cryenilme at the poim teved, hut ansumed a fibrous apperrance at the tenste tracture, due to the flow of metals.
4. Mr. Kreup pontner not only gives has own opmions, but guotes eminent (ierman authontues in oupport of the silea that changes in the component elements of tron are necewary for changes in ths crytalization, and that these changes cannot accur at low temperatures.
5. The revils of Dr. Weddeng's researehes are given to show, aloo, that repeated streses canmot produce crystallization.

While, therefore, thete is a strong weight of argumem agninst the crystallization of tron in eersice, Wohler and spangenberg agree thit alternate and intermittent stre-ses lend tudeteromate and fatigue metals; and Mr. Kreurpointuer says:-

If we consuder how, whin institient dimensions and bimpared colheston, sudden shock will produre sudiden fracture, then we have all the elements necessary to produce che well-kuown crystallane appearance of the fractured surfigces.
"The fractutes will thus appear cryatiline, even if the iron were ever so fibrous, becaure of the sudidemess of rupture which dad not allow the metal time enough to thow, giving. consequently, a clear transverse break of the nbers, which, as already explained, are noblang. but elongated crystals, the transverse sectuons of which are the meantre of their sizes.

Wioher declave, as the result of his experments, that "the members of wrue-
 twisting, ought to lee made larger in the proporton of 9 to 5 .
 ence of the cryballane condatans exanting before the aron was ever subjected to any strain."

The foregoing seems to evtabhah that, though there may tee the weahenng of stamp otem ly repeated shochs, which tinally may caure them to break sudidenly, thereby howng the crystathe faces of the tron to great atwamage, there has been no enlargentent in cervee of such cestalline face ot the tron.
II. M. HOWE, Bonton, Mass, (communcation to the Ser retary)-Will Dt Raymond let mee modify the statement, whech he gives, fians, wail, 560 of my poition in regard to the erystallization theory of ruplure under cepeated sreas and vibratuon? Aly argument on page 196, at sey, of my Metallurgy of Stecl, was that, though it was quite concewable on a perers grounds that vibratuon mught mahe iron crgatilize, jet there was no evedence that it ever dises. My summatrim was that we have "every reason to beleve that the granulation and crywtallization of ron unter vibsation and shock is a myth."

We seem so be at croas purposes with Mr. Argatl. He seems to think that people have demed that iron under certatesets of conditions, some of wheh inclute hiok and vibration, breaks with a crystalline fracture : whereas, so far an I know, noblody has ever denied this. It is not the occurrence or a crsialline fracture but its epplanation that is in dispute. I suppose that he must have fallen in to this confusion: for I see noother way of accounting for his setting forth the unchaputed crystaltine fracture of stamp-stems in such a way as to imply that it answers the question at isve.

Let me ty to sum up briefly the condition of our knowledge. Repetitions of stress, wholly unaccompanied by vibnation and shock. are well known to induce some

 neter, so far as know, ween known to break it. This ponts to repetition of catrev, as the real cause of uch breakigge.

Examanaon of the fragnenes of pieces thus broken by repeated stress, even when accompanied by vitration and shock, has indicated that the injury was local ;" and careful meroocopac evamanation of the fragments cluse to the fraciture has detected nu crystaltine change, bat at most a shatterng and incupient seprattoon of the freexistugg partucles, grams or crystals whichever yon call them. All the evelence ha, been thus against the theory that vibration caused even a locai crevtalization.

The crasallazano theory thus was a discredited one. Fresh evilence magh indeed rehablatate 11 . But If fal to see that Mr. Argall has given ts the faiaent ray of evdidence or of reasoning in favor of that theory:

We know that ron, if macked on one side and bent backward, yield, a sibroufracture, hut that the same har, if nicked $: 11$ around and brohen with a sharp hin, yiekls a crystalline one. The wo differnt modes of cansing ruphure moluce it to foilow ditierent paths, and sietd different fractures; for the fracture is nothang more than the path of rupture. In this case nolowly supposed diat niching all arann! and breaking with a single sharp blow has crystallied the iron : it has simply dereluped
a new path for rupture. Thus a crystaline fracture is shown to be no pronf, hat at a new path for rupture. Thus a crystallane fracture is shown to be no pronf, but at
mont only a vaggestion, of crystalization. The planes along which the rupture of the mont only a uitgestom, of crysialization. The planed ahong which the rupture of the feldopar crystal exins ivefore I cleave the crysal with my kiate, and as the mage exasts in the exposed lota undeveloped photographic plate.

Mr. Argall vainly atempts to escape from the fact that "iron when fractured suddenly presents manably a crystalline appearance. when fractured slouly as aphearance is intarnaty totorous, thy his unqualtited assertan that ${ }^{\circ}$ In the tirsicase the fibers are not given tume to stretch, but are brohen of at right angle) to theas longer nixs, whence the apparant fine crysiallizatuon ; whate, th the latter case, actual crystats are developed in the imn, some reaching as muce as 0.25 methes on dameter."

Let us pee how trne this theory is. first sa far as our present evidence goes, there prothaty are no thers in ron such as Mr. Argall supposes, priur to ruptate. Its particles apparently ate nearly equiaxed.
Den, when a crystallme tracture forms in sudenly lieahing tron, its faces are not as Mr. Argall asserts, at right angles to the maginary titers, of to the avis of the there which would actually have formed durng fiter favoring ruphure. They are in finally, it is noi the suddenness of lireahioge axs.
trmaily, 12 is not the suddenness of lireahing, as such, that gives us a crystalime instead of a theserous fracture ; for in certatr, extremely rapul breakages, as for instance when a bar is torn apart longitudinally by an exploston of gun-cotion, we get antariably a silky fibrous fracture.

The stmple truth is that each new mote of causing rupture seems to direct at along a spectal peculiar path, and causes a specand fracture. The fracture thus depends jointly on the properties of the material liroken, and the condatons under which breakage occurs. Why rupture follows this or that special path under spectal conduons, is for the elastician and mathematician to determane whith great cate.
liven for then the questuon is no easy one : and at certanly cannot be browhed asde on-hand or answerel at random lyg those who run.

With these facts before us, shall we wonder if the special set of conditions under which lireakage occurs 1 n stamp.steme directs ruphure along still a new special path, and thus gields a special kind of fracture? Is imp special kind of fracture seally any stronger evidence of erystallization than the other kind of crystalline fracture which we had long known that we could couse by r, ing all round?

The defenders of any discarded theors, of this one as of the corpuscular theory of light, need not trouble themselves to show that their theory is conceivable ; that it does not violate "any law of modern physics or of the molecular theory of matter." What we need is evidence which this theory explams, and which other theories cannot explain. We have no room for theories which are simply bue evidence like possite. fracture of stant stems, which accords equally well with either theory, really helps the accredited theory' but does not hutp the discredited one.

If Mr. Argall or Mr. Wilkes will send me a plece of broken stamp stem containing the fracture, 1 will glady try to procure son: ewidence which will count, whether it be for or against the erystallization-theory-

It seems to me that the chief teaching of this discussion is care in the use of Words. Ind Mr. Argall contented himself with saying (Trans., xxiii., p. 557), not "vibration under all conditions will crystallize iron," all assertion certainly whelly un-
justified and probably very far from the truth, hut "severe shock will eventually justified and probably very far from the truth, but "severe shock will eventually wraken or destroy iron," he would have asserted all that was necessary for his purpose. By) gaing leyond this, and needlessly assertheg that all wibrations injure iron, and by sprecifying that the particular way in which they injure it is by causing a crystalline change within it, he gave criticim a most pressing invitation.

His calling thone whose upinioms he alt.ack, "dugmatic theorists" seems unfortunate. If hy theorive be atcan those who halimatly stady the cauces of the phenomena, or "theores," he simply saj, that their hathits sthould gualify them to form trustuorthy opinion as to the caues of thi pheaomenom. If he means that they are ignorant of the condaun under whech metats fat in practice, he is simply mistaken. And as to degmatum, thone whom he attach, have not dented, hut gutestioned and deutised crystillizatuon loy sibunton; while he positively asserted at first that vibmetrote under all combitions will ery c allice iron; and hi, later modification merely limits the propesition to lertain conditom, without changing its character as positive assertion. It is bad enough for the acepte to be evcommuncated, but to be called degmatie to It is had enough for the oceptic to be excommumeated, but to

Dr. RAliMoND since the forenomg discussion took phace, I have received from Mr. Argall, in a private letter, the following statement, which seems to me worthy of preservation in the record as a pertinent observation. He writes that on the 24th of July last, he was telayed for some tme near Hill City, South Dakota, by reavon of the fracture of an ave under the tender of Burlington engine No. 256: "The arle hroke off cloce to the whecl; an old and rusty crack, varying in depth from three quarters to one inch, ran completely round the journal; next cane coarsely crystalline iron, while in the centre the iron was beautifully fibrous, and showed the lors from which the axte had treen forged. These, by the way, as indicated by heavy lines in the drawing, were not properly welded.

The accompaiging tigure made from a pencil sketch in Mr. Argall's leter, illustrated his statement. I will only observe as to the concluvions to be drawn from this
cave, that the facti seem to me cunsinent with the theory of progressive fracture, and with the well-known relation belween the nature of the stress causing fracture and the appearance of the fracture-sarface.

The indiceniun of inupeffat welling ubserved by Mr. Argall may fairly be caken as evidence of improper heat-treatment for the process of forging; and this, as has treen emphasized in the present disewsion, is a source of crystalline structure (or, more
 stanees in which a filuvas fracture nowld wherwio be expected) The caistence of the old crach round the ouavide secas to sodicate that this part of the nasis was in such a comblution as to lireah withour such elon;aninn as might have held the whole axle impruper heat treatment may have wer heted the out eflected. In other words, centre of the furging, su that the former becume "crytalline," while the latter, not hot enough to weld perfectly, ret., ined the c.apicay ., felongation befure fracturc, which is called " fibrous structure."

On this hyprithesis, the axle, if luroten at any time after manufacture, would have shown on the surfaces of fracture a difference of quality between the oustide and the moside. But it shuald not lie forgotten that such a fracture would not faitly represent the process of repeated shoch and stress undergone by the axie in practice. Even if the material were unifurm thruughouth, the peculiar nature of the stresses on whi:i, in was subjected might well develop differcines in tiue successive fractures of different concentric parts. Recent experments have pruved the sumewhat surprising fact that locomotice wheels advance nut in constant contact with the rails, but by a series of jumps. If I remember correctiy, these experiments were confined to driving wheels; bus it secms to me that the same proposition must be true in some degree of all railway wheel, especially those which are nearest to the drivers, and thus receive most directly the effect of the successive jumps of the latter. We have to consider, in that case, the effect of trasverse blows, repeated at the rate of 1,000 to 2,000 umes per minute. Considering this rate of rapility, and the weight supported by a rail waywhecl, I think I am justifed in saying that the test is more severe than that to which stamp-mill, ractice subjects the stem of a stamp. But the effect of this series of blows is doubtless somewhat different. Each shuch exerts a tensile strain upon the lower, obsious a corresponding stran of cumpression upan the upper half, of the axte. It is experiences these strains in rapid alternation, and that every part of the interior exper-
iences then in degree dependent upon diatance from the neutral axis. On the assump bon of the complete homugeniety of the asle av to structure, comdition and interma strains due to heat-teatment, is wouk still be matural to expect that the suter portom (under strewes not sufticient to rupture the whole mas practically at once) would break not only first, but with the smatlest amount of elongation, and that the central pontion, hreaking last, would show the greatest elongation before fracture, because it would have beetl exposed to gradually intreanimg atrenes, as the progrestive fracture of the outer concentric portions increned the intensity of stress unon those remammg Another point deserves consderation, namely, that up to a certain stage in such pra gressive fracture, both bending and elongation of the outer lajer are rensted by the cest of the mas, a comdition which dmminiver with the decreasing dianeter of the inbroken central pontion

If it lee supposed that the axle, ly reanon wit heat-treatment in manufacture, or for any other reawon (woh as differemt quality of it wiginal pats), was not homogen cou- in the revects mentinned abone, the ditforences in it- fractured surfaces moght be increased. The instance cited by Mr. Aegall, therefore, while it may be consintent with the notion that the ralsay ave th queviom was once wholly tibrous, as at and had leecome, in use, crytalline at B, before its tracture, dues not require or prose that theors.
R. A. 11,11 IPIELD, Sheffeld, England (commonication to the secretary)-1 bave long entertained the blea that many of the so-called fractures hy vibration wer really dite to previous, and often careless heat-treatment. I can say, after personally fanding a very large number of specamens, that 1 have newer yet found a cane whoch comd not be -athfactorily eyplained when the presiows heat-treatment coukd be traced

1. OSMONi), Paris, Prance (Iranslation of a communication to the Secretary) Iaving read the discussion of this suliject as printed thus far," I take vecaston to -a that I am fully in accord with Dr. Raymuml's view. I know of no fact what demonstrates the crystallization of gron by vilination; and all that I do ktow sopumed demonstrates the crystalization of iron by vimation; and all that do ktiow is oppred
to that opinion. The aspect of the fracture depends upon the original qualuy of the to that opinion. The aspect of
iron and the mode of rupure.

As to the formation of beda-iron by situch, and sibrations, that is another question As Dr. laymond has cortectly pointed out, it is only in the case of permanent defor mations that the production of liofa-ion can be setiously argued. It appears to be however, not impossble that the elastic limit mas be exceeded zunfiouf atharent deformafiens under the action of vibratory forces which operate at each point for an extemely short time only. Ibut this is a mere hypuitheris. If it is well-founded, i could he veritied by determining the coercive forces of the iron before service and after rupture. The production of heta iron would be indicated by an increase an permanent magnetism. The truth is, we know at presemt almest nothing as to the transmesion of nechanical waves.

Not includus the present pumphict.-R. W. R.

Mining Reports and Mine Salting.*

Br Walter MeDermort

There is such a great variety of badness in mining reports that a little grouping of the cardinal sins will be useful. In speaking of mining reports generally, for the pur pose of illatration, 1 intend to coser, not only those made by mining engineers, bu all those used in husiness, and so fairly subject to criticism, -from that of the learned professor of other sciences who is dragged from ths seclusion of his study and put underground to le made miserable with candle grease, down to the practical miner, who, having beaten a drill for a certain number of sears, is prepared to dogmatize also on facts, figures, theories and conclusions.

Amongst the old friends we meet in numberless repurts, and which seem do need a little protection against excessive wear and tear, the following will be considered (1) the true fissure wein ; (2) increasing width in depth; (3) increasing richness as epthis attanced; (4) junction of veins: (5) ore in sight; (6) proximity to a rich mine 7) failure from mismanagement. Now, Hexven lorhmit that ithould be held as speaking disrespectfully of any one of these things, each estimable in itself. My re-
marks are pointed only against their indiscriminate use, and particularly against their marks are pointed only against their indiscriminate use, and particularly against the
public use as catch-penny phrases in a way to imply more than they actually mean.

There has teen more joj over the term "true fissure vein "than over anythan
 exulxirance of its descriptiveness. The practical miner has grasped its effectiveness, and the tirst ring of his piek on an outcrop satisfies him that he has got the the genu ine article with tap rools in the antipoites. What is a true fissure vein? It is sup posed to be a fissure in the cosuntry rock filled with veinstune, which may ise expected to ge down to a considerable depth. The reinstonc itself sumetames carnes pay ure This does not seem much to base any claburate calculatuons on; and not unly is $1 t$ insufficient, hut experience all over the world has shuwn that sone of the most valuatle ore devosits are not found in fissure veins at all. Eicn as far as mere depth is con cerned, it is by no means yet estodished that irue fisure veins go any deeper anto the earth's crust than hediled deposits, contact, or pipe wins; and it would tie of no con sequence if they did co decper, since they cannot te folluwed. Properly used, the erm" "true fissure" is usually descriptive, but where used as an incanation to call up isions of weald to unlimited depth, it needs suppressing.

It is maturally gratifying to the owner of a minc to see hovein increasing in widh as he gnes down. It also looks well as described in a repunt, and must naturally be anentioned when it occurs; but in sulac reperto the aiplicultura arises that it is a vital mentioned when it occurs; but in sumb reperts the whilimuth arises that it is a vital
point and to be calculated on as continuing. If a win went on increasing in wsith, point and to be calculated on as continuing. If a wein went on increasing in wadth,
it would very sonn attain enormous dimensiuns, ath, if it itticherped ith a country
 blessed with the law of the apex, its lucky anner would have a guod clam to a very
large proportion of the earth when he gui duma a few miles. li may pretity safely the large proportion of the earth when he got duwn a few miles. It may pretty safedy te
assumed that the increase in widh will not continue, and, when it stops, it is very assumed that the increase in widh will not continue, and, when it stops, it is very
likely to be succeded by a corresponding decrcasc, su as to heep upt he usual average likely to be succeeded by a corresponding decruasc, su as to heep upt he usual average
of things. When, say, a 50 fi. shaft sunk un a bein shows an increase in thackness of things. When, say, a 50 ft . shaft sunh un a tein shows an increase in theckness
from ift. at surface to 6 ft. at the lotiom, there is nothiog to show that, in conunuing o \sinh, the vein may not gradually wr rapills, piathagain to its size at surface, or even much less. If any calculations were justifialle at all in such a case, general expers ence would certainly lead one to expect such decrease. The unly positice conclusion would be that the vein is irregular in width. It looks nicer and more definite to say simply, "the vein is stadily increesing in width as sunk on," than to state that "the widh of vein is variabi -.....ang trom 1 ft . to 6 ft ., and therefore, until further open ed in length ar, 1 depth, its average canmot be arely calculated on." The one state ment is as true as the other, but the effect of the two a reading is not the same.
-Abstract of a paper read before the British Institute of Mining Engineers.

There is a touching confedence in the belief of many practical miners that veins get richer as they go down. Experience and disappoinment ofen hail to shake this comfortable belief. Most practical men are able to cite a great many more examples of rich mines beconing poorer with depth than the reverse. I remember being struck with tle incons'ste acs and persistency of the belief in depth in varions canps of the liock; Mountan's. Up in the highest ranges, say 12,000 ft. alonve sea level, there
 in the foot hith, are mines equally needing depth. Irobatily the thought at the initom of this belief rests, like some of the attractiveness of the true fissure seens, in the old dea of a central secthing mass of precious metals, and in the forcing up of a molten vein falling. This faith in the saving grace of deph and of tme tisure veinn in the face of acts can be explained only by the delinition of faith as given by the litule git - "be leving what you know is not rue." "The hankering for depth has its justificati on of course, in the necessity for sinking usually to get any developments, but, whete ac cess is ohtainable to the foot of a mountain through which a vein runs, the same men who chain a spectal ciffeacy for depth in other cases will point to the vast advantage of having the ground above one to be opened by adits. The facts of eaperience show hat, when a vein is rich at the surlace, a hopee that it may continue is a more proper attitutde than a belief that it will get richer in deph ; and, when it is poor on surface any change in sinking would le for the better

Striking cases of enrichment of veins at their junctions occur; but, as many xamples of junctions without richness also exist, it does not do to attach too much importance to the results to lee expected. In some reports the future junction of two cins is often itself assumed on inuliticient data, and the consequences are calculated w with a certanty which is still less to be justified.

Under the liead of "ore in sight" is included matter which is of the very greatest importance, and which requires the very best work of an engineer. The estimation of ore in sight in an opened mine often involves the consideration of so many points, and s so largely a matter of good juldment, that one may expect some diserepancy in the reports of different engineers. There is nothing in which such vast discrepancies do exist, in fact, as in regrard to thes. Two good engineers will vary in their estimate and, when it comes to inevperienced men, or to so-called practical nien who have no and, when it comes to inexperienced men, or to so-called practical men who have no
reverence for the written word, the term "tore in sight. becomes a theme for the reverence for the written word, the term "ore in sight" becomes a theme for the
exercice of the highest flights of the imgination and the airing of a litle rudimentary exercise of th

In the common mining report we are all aequainted with, it is not unustal to see the length of the chain muluphied by a cheerfully assumed average width of vein, then by 500 or $1,000 \mathrm{fl}$. for depth, and a tonnage deduced which reminds one of the figures used for astronomical parposes. Sometimes, to inspire extra confidence, the exper generously knocks off 25 or 50 per cent., and feels he has then done his duty, whatever fiappens. The character and alility of a man can sometimes be closely cstimated from the way he figures up ore in sight after giving the dimensions bearing on it ; and often suffices to look at this calculation in order to determine a report to be, no only guite unreliable as to conclusions, lut equally irresponsible as to data.

In connection with estimation of ore in sight, the system of sampling employed is worth mentioning here. In some reports the expert writes of taking samples "at ot purposely select it from its appentance. What his statement actually me did that on an important matter he was willing to trust to luck as to whether he hit poor or rich ore, or whether he was getting just what had been previously placed for hitn to get. Luck is a very necessary thing in mining, hut it should not enter into sampling. get. Luck is a very necessary thing in mining, but it should not enter into sampling.
If the sample is a random one, its value proves nothing. Some people seem to think If the sample is a random one, its value proves nothing. Some people seem to think
this method of sampling is inportant evidence of an impartial mind, and that shuting he eyes is the best sccurity against the frailty of human nature, which would other wise lead a poor creature to pick out the richest looking ore he can find.

Another little weakness to be remarked in some reports is the wallingness to make a liberal discoumt off the expert's own figures. The writer concludes, for i...siance, from his samples-pethaps taken at random-that a go!d vein will average 2 ounces of gold to the ton, but, to be on the safe side, generously offers to take it ni 1 ounce, and then with a light heart gots into calculations of profits by day, and month, and ycar. If a man knocks off 50 per cent. from his supposed reliable figures to be safe, it always occurs to the that the one who reads his report may feel tempted to lop of another equal percentage to be still safer.

The : have been plenty of illustrations lately published in prospectuses of the great value the public places on a property which is near a well-known mine; yet everyone who knows anything of mining must be aware that mere proximity to a paying mine gives no assurance of similar success. Some of these reports are absolutely nothing but a statement tha: the claim examined is on the same reef as, or near to another property which is popularly supposed to be exceedingly valuable, and that another property which is popularly
rich ore has been found on the claim.

In quartz mining it sometimes happens that a senes of paying mines are found at intervals along a single vein. Occasionally the intervals between pay shoots are long, so that a goorl mine may be immediately surrounded by poor ores. In other districts ore single good mine on a vein is all that is ever developed. The only actual advantage of the proximity of a good mine is the evidence 11 affords of there being payable ore in the district, or on a certain recf. Lake other indications, it is of service only when used with discretion, but as an unqualified argument of the value of a neighboring claim it is most dangerous.

That bad management may spoil a good mine is so selfeevident a proposition that no one will nisunderstand a few remarks against the improper or thoughtless use of this excuse in a report as an explanation of prevous fathre in a poor mine. A wellknown Californian mining man, when asked to take charge of a mine which had failed to pay -as it was explained-from mismanagement, answered that he did not want anything to du with a mine which would not stand bad management. This is a semark which contains much matter for reflection, and embodes the opmon of must practical men in remorts the statement is sometines loosely made that milling resulis in the mast cannot lie relied on, owing to primitive machary or processes hitherto employed This arguarent bis often been advanced on Mextean mines by experts who hive not had time to find out that native methods of working olten give better results than the rapid working by the most modern machinery.

After all these remarks as to what mining reports ought not to be, it is perhaps permissible to say a rew words on what they ought to be. A report need not be long winted to justify the fec paid for it, but should be so full in actual description as to enable a reader expericnced in mining to draw his own conclusion from the facts given,
without having to trust entirely to ihe deductions of the writer. Where a fee is paid without having to trust entirely to the deductions of the writer. Where a fee is paid
for a simple expression of opinion or spectic advise, there is no need of a report, in for a simple expression of opinion or spectic advise, there is no need of a report, in
the sense of the word as we are. on sonsidering it. The important details to be set fortheclearly are those relating to position, and facility or access to the property ; local conditions as in fuel, water, and timber supply; extent and torm of openings; variations in thickness of deposit; character and value, ard form of occurrence, of ore. It is important in giving a clear idea of the property that the distributio. of the pay-
able ore in the deposit should be described. It makes a great difference sometimes in able ore in the deposit should be described. It makes a great difference sometimes in
the conclusions tu be drawn whether the value consists in rich ore occurring in a barren vein mass, or in high-grade ore scattered through a low-grade deposit, or in a

 chanclet and value of the pronerts.

 of the earh fom se palpy hate right down throgh its various nages to oxidation of

Ensumat ins ntun .ns ditter greatly m the nature or the calle they mathe on the epert. In a hetret wall wisish he is well actpunted there are often certain simple facte which eathe him rapishy abd wely toarrive at his own conclusions; in other Ches it in whena mater of hard and concentions work, however elever or eyperienced the engourer masy le, and ang vanpmg of thi worh will iuply unreliablenes. In capertenced man in making a report will have an open mind for posible new form, of
 work againy the mont carefui nal cuperenced man by maforeceen increares or de-

There are all degreev of "faing a mine" : Irom the legitimate howing of it,
 degree of shulfuegery, up to palpable valing of wines, dumps, and ceperts samples. In the lesillepomate sapes much can be done, and very freguenty is done, in the Way of a judiciou sopping of faces in pooxd ore, and by the observing of a dincteet ilence an 10 pat weaknewes and irregularities of the ore deponits. In such cases $1 t$ is smply the odenary commercial poition of "let the buyer benare, and the eapert
ha, to how by his report of he has evperience, obervation, and sense enough to form has to how by his report if he
a sound judgnent os to value.

In a mine which is thus carefully prepared for selling, it is not at all uncoumon fro the wher to goleyond the legtimate hatit already indicated, and to mistepresent facts h_{1} tilling up or concealing old workings which would, if examined, produce an unfavonate mprewon. The nevt sep in the downward path wheh leats to a hoter 1 :ace (hat in the meantime alo sometimes to athluence) is the ecooping-out of the inwe of appuenty solid blocks of good ground by openings afterwards tilled up or timbered wer. bome of the mond experienced mining mer and engineers hase fallen tictime to this and the pretionsly deecribed course of conduet; while sone have Jut excaped hemes caugh ha a metc accidentabiadeation of the frami, or hy "peaching" of some mures who helped in the work and had not been squared. Naturally the danger from the shatees mentioned is much less in new mines of limited extent than in old mines extensisly developed. In a mine which has been worked for some time the visting enginery is at a great disadsantape as compared with the men who have worked in it fur gears, and perhaps devoted heir greatest skill to making, not only Worked in it fur gear, and perhaps devoted their greatest skill to making, not only a good record, but to cuncealing the exhaustiun which $i, ~ a y p r o a c h i n g . ~ I t ~ h a p p e n s ~$
oceasinall) aho that the oun ner complete their work by "picking the ejes out of the mime" in the intersal intween the experts report and the turning over of the property to the parchavers. The richer the nature of the pay ore in the mine, the greater the danger from this rascality, which needs ypecially providing against in the terms of purchaee, and by other precautions.

The alxwe-mentioned very real and not uncommon dangers, against which the engincer has to piand, are not, however, "salting" in its proper and echnical sense, arricing at a true ctumate of the valuc of ore. The saltimg may be done on the ore before the experts arranal, or durng his sampling, or on his samples when taken, or while panning or asaying.

Alhough canes are well hnown of faces in a mine being salted with such success as to catch the unwary, tbs form of salung is usually too dificult to carry out, and too superficiat in character to offen much chance of catchng an ohid bird. With ure dumps and alluwial depouts it can be done with better chances of stacess, but is naturally of an expensive nature if carried out on a really systematic plan. Cases are on record of succesful salung of alluwial ground with precius stones as well as with gold, and the expert must clearly be on the watch aganst thos, when cricumstances allow of the possibilhy of us excurrence. With ore dump, it is often sery easy to arrange a venecring of good ore over a rers large pile of poor or barren rock, and then, when he ingenjous genteman who takes samples "at random "comes along, he will be sure to othain a gratifying result.

The salting of samples si, howeter, much more common than any wher furm of getung ahead of the eypert. In sis less expensive than salung in adaance, more deailly, and can be nieely adjusted to circumsanices and to the individual weakness of the vicum. When the oun ner of the mane, or anyone connected with hint, is allowed to assist in the campang mell, there is ne, hach of opportumty with sone ores for the artanac salung whe in the nunc: but, as a rule, engineers (1., not have the requinte faith in human nature to accept such assiotance, unles the character of the ore and kind of samples reyured mathe salung impoosibile at the time. In a strange district, where assistance of wome wort has ow be vilamed in hreahing and transpurting large samples, and the character of such assotance as not absolutely certain, the engineer musi ganrd bumelf ing dupltaung enurely alone centain tent samples. Asoumiag that samplen thate been secured whenut aty chance of vutside interference, the be iness is by no mean ended, for the enterprimg salker will follow those samples until actually panned or a anaed, or taken out of his reach.

To the wecestul cultuatson of the art of salting no great hnowledge or experience of mang wnecerary, any mure than a stubly of archatecture as enentiat to the practice of burghars. True atalaty will assert aso fon this as ath uther compluyment by the inventon of new means to meet special case, and by a proper discretion in regulating the dose of salt administered to the temperament of the patient. Sometimes the honest miner wall freely relate stories of methords by wheh experts had been salted, implying delicately that nos such scheme nould tre successful with his hearer, but rescrving one, undescribed, for purposes of personal illustration later.

The microscope or a very strong glass is often of very great service. In silver ores the silver-beating minerals can often be washed out and identutied; and with gold ores the color and form of the metallic particies are sometimes suggestive. Once, in Dakota, I was tahen to see a vein sitid to be rich in silver, but the appearance of the vein-mater raised an immediate doult as to what form the silver could be concealed in. By panning I obatained some native silver; but when examined under a glass some of the pieces howed sraces of native copper attacheci. The only place I know where native silver and copper eccur actually welded together is the copper region of Lake Superor ; and, on questiuning a little the honest miner who was my guide, and who had kindly asioled in crushing some samples, -1 found he had formerly worked on Lake supprior. No great intellectual effort was then necessary to account for the occurrence o. the silver in the very unpromising looking vein-matter.

In the cave of paming testo on frold ore or gravel, or for precions stones, it is of comre comparatively ewh lor angone who $\begin{gathered}\text { allh, ied to be within a dhort distance of }\end{gathered}$ the evper to set in hiv olloms wath, an! whthe is the only protection. The valter may we a dull towh-pic! wa weapon for long range honoting, or have geld dutt in his natis for hort range: "re charge hiv pipe or cisar, and not watch where hiv a hes fall. Cawe hase been kaown of told pane prepared in alvance by a saluable varnibl which gradually rulhed off in une. Ithoph it is not powhle to mention all the device, there maj) be come utility in puting on record for others the lexterdnown ones; for it i, certain that many yount ebgineers start out with contidence of much learning, ready to undertake reppomible en,umination, and without any clear idea of the dangers they are courtitg. A man may açuire a fair amount of - actical experience, and contidence begotten of the same, without happening to get into surtomadings tence, and contatence herotten of the same, without happening to get into sursomnangs
of any real danger, and so, when leat evpecting it, may yet be nipped. All men of of any real thager, and wh, when leate expecting in, may yet be nipled. shat men of hansledpe of dhe whi trich non to personal watchuthess is guite innufficent if any person in imnediately around.

General Mining Association, Ltd.

A Dividend of 123 Per Cent.

The Ordinary Half yearly General Meeting of the shareholders of His Company was held at the oftices, Fondon, Enghad, on 19 hh whe., when the report and accounts for the jear ended 31 it December, $5 \mathbf{S 9 4}$, were submitted as follows:
"The sales of coal were as follows:-

Sylney Mines
384.
1542.

Increase.
Tons.
\qquad $236,125 \quad 200,185$
anoumts to. ...
Brought forward from 1 Sg 3
\qquad
619,002 1211
65.414
$619,6 S 7 \quad 7 \quad 0$
Out of which the Directors propose a dividend of 1 qs. per share,
free of income lax, viz.....
19,2:8 60
Leaving balance to carry forward.
1-rom the commencement of the shapping season there was a good demand for coal, and the total shipmemts execeded those of any pret tous year.

The financial crisis in Newfoundland, with which colons
lway's been important, will, it is feared, eventually result in a loss to the Anctions have It is as yet difficult to fom a reliable estimate of this : the Buard have, however, provided for what it is believed should fully cover it, and, after so doing, are able to recomatend the dwidend above referred to, whech they believe will be considered very satufactory, espectall; when t is remembered that a return of 62 tos. per share on capital account was made on 24 th September last.

The Board are contunuing to sanction such improvements as will tend to facilitate the shipping and delivery of the coal.'

Report of the Mine Manager.

Ibeg to submit the following annual report on this colliery for the year 1 Sof 4 We employed an average number of aSS colliers during the season; the pit worked 272ta days drawing coal; and the total quantity of 256,512 tons of coal was raised. But little shipping was done early in the year; only if cargoes were shipped in January, 1 in March, and 0 mall cargoes in April. From the tst of May, however, until the clove of the year, the demand fur coal was steady and continuous.' The total shijpments for the year were $218,02 S$ tons, and the local sales $18,0061 / 2$ tons of large, oun of mine and slach coal. Early in the season our western shipping pier at North Sydney wis repaired, abom 50 feet were added to its length; the trestle work or superstructure which carries the soadray, was entirely renewed, and the roadway rased to a height of 6 feet abrove its previous level. The bridge, wherelyy the roadway to this per croses the public road, was also renewed and raised in height. A new and powerful locomotive, built to specitication, by the Baldwin Locomotive Works at Philadnlpha, has been purchased; and 21 coal cars, to carry 6 tons of coal each. have been provided.

A Farbank's truck weeghing scale, to a capacity of 20 tons, was inported and set upon our nalway. A new ventilating fan of to feet diameter was purchased and set up, to be used when necessary to assist or replace the old Guibal fan. Hadfield Cast Steel Whecls were, duning the season, supplied and fitted to 210 of our pit coal
tutis or toases, to replace the cast iron whecls hithet to in use. A toiler feed heater was, prichased, and set up in connection with the exhaust steam from our harge winding engine, to warm the feed water for the use of our lowilers. 1,251 yards of the tin. iron phes, which conduct the boiler feed water from the main reservoir to the pits, have, during the seasun, been replaced ly pipes of 5 inches diameter; and a loore hole 283 feet 4 mehes deep ly 5 inches diameter, has been bored to a small feeder of pure water in the vanity of the reservoir. This feeder is available during dry weather, ether to supplement the supply from the reservoir, or to provide some of our workmen's houses with good water. A pair of new cylinders have been imported for the locomotive 'Stephenson,' and will be put in this winter, as soon as the locomotive - John lredge, which is having a new fire lion fittel at New Glasgow, shall be completed. Kepars, as usual, have been made on a number of our stationary boilers, on our coal tuls, wageons, railroad and plant gencrally, and everything is in good working order. Progress has been made with the erection at bank of the 'Lingan' engine, o be applied to work the nortin side underground haulage ; and some new slidings, spears, or guides, of pitch pine, have been placed in the winding shaft. One breakage only occurred during the year to our main pumps. In June the clack door piece
in the Staple set, which had lieen cracked for some time, gave out and bad to be within the Staple set, which had been eracked for some time, gave out and had to be withdrawn and replaced by a new one.
(Signed) R. II. Brown.
Accounts for the Year Ended 3ist December, 1894.
balance sheft.
Liahititics.
\approx s. d.
\mathcal{L} s. d.
To Shart Capital, viz., 27,469 shares of $\mathcal{L S}$ cach... 219,752 00
Less $£ 2$ 10s. per share repaid to sharcholders. . 6S,672 to 0

piceers of float wood which were found all the way down to the solil rock. The surlace of the latter was evidenily scoured by the great glacier and is level, is not slightly bas' - like in furm, as indicated ly the prospect deill holes. The surface drains slowly ill I reaches the bluffs of the Illinois river, which is distant, as the water flows, about eight miles from the shafts.

The result of this slow drainage above open sandy strata, and a slighly basin-
ike rock bottom, is to make the drift water-soaked and full of pockets of quicksand The cual seam worked at present is lhe third from the top, feologically, No. 2 and in the Ladd shafts is 460 feet from the surface, but alter the 160 leet ut dift is piereed, sinking prerents no especial difficulties.

The ufficials of the Whitebreast Fuel Co, were made aware by their prospect holes hat water was to be encountered, but did not expect the enormulus guantity nor the reaclerous grouml, consequently, the heginning of the work was marked by severa unsuccesslul attempts. The ordir-ry methods of cribbing and spiling were first tried, and the an ordinary timber drop shaft. But, in addition to large quancities of water, much dificulty was experienced on account of the variable nature of the ground, alter nating har 1 and soft strata, the presence of loulders, etc. This made a drop shaft. mpractice sle, since it would sctile unevenly and could not be controlled.

Succe is was tinally attained by introducing a heavy steel shoe, which was forced alicad of the lining by jackscrews, additions being made in sections to the lower edge of the lining. In principle this is similar to the method of tunneling in soft ground with the use of an advance shield, and is almost identical with the olt Guibal system first employed for shaft sinking alout 1856, with this difference: that in the Ladd shafts, the shoe was rectangular instead of round.

Four shatts were begun, one after another, the fourth having actually reached solid rock, and lacking but little of completion, when the curbing near the bottons gave way, and a strong inrush of sand and water destroyed six months' work

The firs: shaft was started June 1,1888 , by experienced sinkels. The customary method of sinking through drifi was employed, that is, excavation was followed ciosel by timberia:; with 2 in. by 12 inch planks laid' flat. The water was handled first with barsels. At a depth of 50 fect water and sand burst up from the bottom, and the cribling became so swung and twisted that the shaft hat to be abandoned.

The second shaft was started in the latter part of June, to feet west from the first, whici, was to be useri as a sort of sump until the second shaft had gone below it. When the second siaft did get below the first, great trouble was again experienced from water anca sand. Spiling was tried, driven in advance of the timbering around he edges, but the rushes of sand and water threw them out. Neantime a pump was put in; but at a depth of about 70 feet the rushes were so strong it was found that ordinary methods would not do. A heavy wooden shoe was proposed, to be sunk from this point, building the curbing on top of it, in other words, making a drop-shaft through the very soft ground from the point where the ordinary method had stopped. The ground back of the gap where the successive rounds of timbers were added on, as the drop-shaft sank, was to be kept back by a stationary shield of plank outside the curb. ing. The shoe was made and started; it could not be made to sink evenly, and almost at once beame distorted and stuck, and the rushes became so bad that the stationary curbing above was pulled apart and the shaft was so racked that it was abandoned.

Mr. lhillips now designed the steel plate sinking shoe and the plan of suspend ing the curbing on which he received latents No. 424,819 and No. 424,820 . The first experimental shoe mas; be briefly described as a steel plate box, open top and rottom, the upper part inclosing the bottom of the curbing, the lower part divided by plate braces into six compartments. The shoe to be hung when it was so needed, by chains to lines of iron rods running from trusses across the shaft at the surface. These rods were in the corners of the shaft and also helped support the curbing by neans of cross timbers every to feet, through which they ran. The timbers were set ino the curbing, and later when the curbing rested on the solid rock were to be cut out. While the shoe was building, the shaft in which it was to be placed, No. 3 , was start. ed about August 1,1888 . The cribbing was again of 2 inch by 12 inch planks laid flat, with twi) tenyorary lines of buntons of 6 inch hy 8 inch timbers with 10 inch intervals. The outside dineensions of the shaft were 12 by 16 feet. It was planned when the shaft reached the solid rock to timber up with an inner cribbing 8 inches hick, puddlug leetween the two criti, leaving a shaft way 6 feet 3 inches by io fee ition 6 inche thick. The shaft was carried down 50 fee ordiaary methods before the shoe was reacly.

The latter was taken down piece by piece, put in place and bolted together which proved a hard job in' the mud and water, but which was successfully accom. plished. The shoe and the method of hanging the curbing proved a deciried success and sinking steadily proceeded to a depth of 125 feet. at this point, however, such and sinking steadily proceeded to a depth of 125 feet. fit this point, however, such
a burst of sand and water came up from the bottom that it drove the men from their a burst of sand and water came up from the bottom that it drove the men from their
work. While the shoe had worked well, it had proved to be too light for the condiwork. While the shoe had worked well, it had proved to be too light for the condi-
tions ard the compartments too large; so it was decided to let the shaft stand for the tions ard the compartments too large ; so it was decided to let the shaft stand for the
time being and put down another shaft, which might lessen the water and thus permit time being and put down anothe
the work on this to be resumed.

Accordingly an improved and heavier shoe, with 15 compartments, instead of 6 , was built, and cal lanuary 8, i889, the fourth shaft was started, lacated about 50 feet east of the tirst. This shaft made good progress considering the severe winter weather, till a depth of 138 feet was reached, which was on Miarch 8th, just two months from the start. But here there was a tremendous burst of water and sand, the water amounting to over 640 gallons per minute, which soon drowned out a large Deane pump with a 6 inch discharge, and a blake with a 4 inch discharge. Before another pump could be brought into action, the water was so feet up the shaft.

Then followed long delays, while certain pistonless pumps were tried and found wanting. Very litle sinking was done till May gth, when it progressed slowly, meeting great difficulties. lsoulders were encountered, which got under the edge of the shoe and had to be hasted, and bal rushes of sand and water. The sand added immensely to the difficulties of pumping. At times a man had to be kept constantly at work cleaning the suction strainers so they would draw. It also cut the valves and linings of the pumps, so that the pmaps had to be changed and completely repaired at least once a week. The removal of the enomous holies of sand and water from around the shaft was felt clear to the suriace, which sank a foot or more in places over around the shaft was felt clear to the suriace, which sank a foot or more in places over
a large area, sometimes on one side, sometimes on another. This caused the shaft to a large area, sometimes on one side, sometimes on another. This caused the shaft to
swing and throw great strains on the supporting trusses and on the curbing. This was further aggravated by the uneven pulls of the shoe, due to its being hard perhaps only under onc corner or side. These strains sometimes forced the cribbing planks from the level, aind it would. be necessary to level up again so that the shoe might descend vertically and the next courses would be tapered, that is, the planks would be adied so as to be thinner at one end than at the other. This necessarily weakened the plank, and together with the strains from the general distortion of the curbing was uhdoubt edly the cause of its giving away later. However, the shaft progressed io a depth of 158 feet, which was reacher Aray 20 th, and brought the crib within 4 ect a depth of At this juncture the pumps on hand completely played out, and another delay ensucd till June 26 th, four days after which the rock was reached.

Thed down was then secured, the compartments were cut out, and the timbering carried down to the rock. The rock at this point proved to be 3 fect thick, and this

was also penetrated to the shate immediately lelow．From this point the inside lining and puddling and permanent partition was begun，working upward from the bottom and removing the temporary buntons and cross－timbers as the work advanced．The inner linings had been louile up about S feet，when suddenly the curbing gave way just above it，at the east end，flowling the shaft with sand and water．Fortunately this happened at lunch time，when all were on top but two men who were looking after the pumps；these bately got out，for in a fer minutes the shafe had filled half wa；up．

This happened fuly 14，18Sg．Siot discouraget．the company soon arranged for nother attempt．The shoe having proved successful，a duplicate one was orlered， another attempt． At one time she experiment was tried of allernating $2 \cdot$ inch lig 12 inch and $2 \cdot$ inch by 14 －inch plank，made fush inside，but presenting a rough exterior：the illea being to cive the shaft a lecter hold on the grombl，aloo to nake it le：s easy fur the sand and water to wash down outside the cribling．Ilwwever．in practice it did not prove of any partirelar advantage in these respects．On the other hand it uccupied as much space as a sulid 14 －inch wall and was nut so strmy；ilescafter， 2 －inch by 14 －inch tim－ ler was uned exclusisely．Another improvernent was in the use of hangers ar iron luf，spiked to the cribling，instead of the oald cross－phece，which had teen set intu the cribing，thereby weakening at，and which were often broken unde！the pull，and alvo wete th the way in handling the pumps．The shaft was locat a 100 feat east of the fourth attempt．As a daily juurnal nes kept ly Mr．James．Andersun，then empineer of the company，of all attempts after the third，and as this sinking was typical of the ditticulties，the diary will lee given unchanged and uncobored bj the views of the writer，eacept for such slight additional words as are necessary for clearness：

August 9－Sibove arrived from Chicago：unloated and put it tosether in place．
 4 feet ditough grade filling．1）eph， 4 feet．

August 18 －Gut tower up and started sinking， 3 pam．：sunh f fect through grade filling：and soil．Dephth，S fect．

Auguv：12－1＇ut in hanpers and rods，and started lumens incari end；sumk \boldsymbol{i} feet through yellow ciay：I hepth， 15 fect．

Augunt 13 －Huntons now in buth ents and foing on regular fashion ；sunk 7 feet， throught fect yellaw clag， 3 feet blue clay：1）ejnh， 22 fect．

Augus 14－sime water ：handicd ly tarrels：amonai nif water， 3 gallows per minute：sunk 6 tee：through blue clay．Depiht， 2 Sfeet．

August $15-$ No trouhle：water 3 gallons ger minute；sunk 5 fect thenugh blue clay and gravel．1）epth， 35 feet．
August 16 －Na irouhle：kater 3 gallons per minute；sunh if fee：lirough meddy clay：Jejph， 37 fect．
Aupust $17 \rightarrow$ No trouble ：water 3 gallonc per minute ：sunk 5 feet through the clay．Depth， $4=$ fect．

August iS－Water came in fast at 9.3 C p．in．；put in a Nir． 9 blake pump；vater 0：galluns per minute after tonping sank 5 fect thrusgh blue clay atul mant．Depth， 47 fect．

August $19-2$ in trouble；wates 104 gallons per minutc；sunk $;$ feet though blue and yellow clay，sand and gravel．Depith ji fect．

August 20－Siand all around south side and onae half of east enit；hard clay and gravel under the iest，causine rushes．We dos not lifg wit belou p，resi phates：water areraged go gallons per minute；sunk 5 fect through clay，sard and gravel．i）cph， 56 fect．
 Did nus domench foud ；drovespiles hat rushes threw them out again ：water areraged 104 gallons per minute：sunk 3 feet through clay，and and giavel．Wepth． 59 fecs．

August 22－Caved cleas to the surface at the cast cad ：a crack in the curing： ras caused by 5 shes telow the last clamp；shaft swuncs 6 inches sat of plumb，inclin－
 nna gravel．Depth， $60^{\prime \prime}$ fect．
 shore sets mpare，and wealso foi the timbering levelied ：water $1: 90$ gallons per minute： sunk 1 ：＇feet through clay，sand and gravel．Depth，G2 fees．

Augus：$=4-1$ Ifal to siop on aecount of shortage of sucjeruling rods；jus in a
 gallors juer minuie：sunk none．Depth， 62 foct．

 clay and sami．Depth，Ga！ffees．
ivgust 20 －Kushes of sand and watcr occurte！all day：water 180 gallons per minuic：sunk 2 ：feet through clay and sand．1）cjヶh，ef fect．
 almosi lucoke down ；water averaged 1 qo gadons per minute：sunk none．Vepth， 07 fect．
－tugust ZS－Cleancil nat the rush anil bheked with wool leaween limber anil shoe in flace of jack－serews：withdice the pumak：statted in icar down tusuct： shaft tilled with water．

Alugisl 29－Finished searing drown ：fol levelled sifinew trusser．

lugust it－Finished them and started pamping vel water in shaft．
dugust $3 t$－Finisher them and siarted jumging neis water in shaft． ing：water sisll coming in at rate of tio falless．

Septemiver $=-$ Kushes of and with the water all olay；stavtel a Nife pump in the cavel－in shaft of the previous altempt，lonated alxous jo feet away，in isy tor relieve the
 saml．lucph，Gi fect．

Septemiet 3－Same as yestcrazay ：sand ranoing up from a bole in the rortheant cormer ：lowrict the water in the neightoring shaft io S5 fect from the surface，so it is 17 fect lelinw lmisom of piesent shaft，luat withous any effeet in reliering from
 sand．Derih，eq！e feet．

Septernler 4 －Got through with the sarit pocker at nothenst curner，hut as a evin． sequence of the rushex of the past few days，a hole cance to the surface，causing the upper part of the shaft to swing $=\frac{15}{2}$ fect cast：ahtew in tales of hay till it stopfad running；the：filled up with clay ：water 140 gallons per minute；sunk 2 feet through running；thes filled up with clay：water
sandy ciay anl sand．Depih， 72,15 fect．

Sepsmber 5－Got all the water cat of from below：what there is comes in through she timicting ；wates iso gallons per minate：sank $2,1 /$ feet through saidy claj with gravel pockels．Depth， 74 fees．

Sepiemher 6－No froublic；water toS galloas per minute；sonk 3 fect through bue clay：Depth， 77 fect．

Septomer 7－No troable；mater Sj gallons per mingte；sunk 3 fect through Wae claj：Depih，So feet．

Sepiember S－No srooble ；lowered pumps and water in neighboring shaft 20 feet， making water 105 feet from sutface；walet jo gallons fer minate；sunk a fect through hlue clay：Depih，S2 feet．

Scplember 9－No trouble：waics 70 galloas per minate；sunk 3 feet through live clay．Depih，Sj fect．

Septemper 10－No rouble；water 70 gallons per minute；sunk 3 feet through Hue clay．Depth，is feet．

September 11 －No trouble ：svater ${ }^{\circ} 3$ gallons per minute ；sunk $3!2$ fect thruagh blue clay and samdy sile．Depth， 91 ，is feet．

September $12-$ No irouble ；water 83 gallons per minute：sunk 3 feet through sinily silt．1）epth， $94{ }^{1}$（fect．

September 13 －Verg fine sand ranning in with the witer：water jot \because ：llons per minute ；sunk $2 \frac{1}{2}$ feet through sand，very line．Dephh， 97 feet．

 Depth， 99 feet．

Sephember 15 －Small rushes again on east side，and one on moth eiele：frud to sphat a looulder in the southwest corner：water 10 ；gallons per minute；sunk $2^{\prime} 2$ fect through sind，gravel，and clay．Depth toi $1 / 2$ fect．
－ippember $16-$ No mure sushes，hut still preity soft on cast end，wo we canme liy lelow shee ；hard jaching：water S_{3} gallons per minute：sunk $2^{2}=$ feet throdgh cemented clay and gravel．＇Depth， 104 fect．
 atrove is sovery tine that it washes down through the smallest erack：water S ；gallons per minute；sunk 2 i，feet through cemented clags－Mi gravel．Vepth，to6 feet．

FIG． 3
PLAIT OF．FINISEED＂B＂SHAFT．

FIG． 4
GROLND PLAN OF SEOE．

 5 per minute ；sunk 2 （cet through andy hae ciay with lxoklers Dejh．zal feet． quite tough，and it secms prolalide that on jacking the nhore thround it．the ru－hes will lx cul off：water 70 gallons per minute：sunk 2 feet through sandy lise ciza；with houlders Deput， 110 fecs．

Septembet so－Ints of linle twoulders，bat sowi jacking：water all cuit off from
 looulders．Itepult，1i4 fect．

Sepember 2i－Same condition as yesterday；naicr 5^{6} gallons per minuie；nunz 4 feet throogh sandy lilue clay with loulders Dejuh issfeet．

Sepiember ニニーNo dificultics：water 42 gallons per minute：sonk 3 ！\geq fcc：thsuligh mucky clay：Depith， $121!1$

Scpiember 23－Changed Blake promp from cast end to the cenize and hung a Deane pomp in cast end；water 4^{2} gallons per minuic；sunk 3 feet through mucky Deane pomp in cass end；
clay．Depth， $124, \frac{1}{2}$ fet．

Sepiemict 24 －io dificultics；the mucky clay s！afted to swell or heace up in botion of shoe；water 42 gallors per mineste；sunik 4 ：$=$ feci thiuagh mucky clay； Depih， 129 fect．

Scptember $25-$ No trouble；for some reason the neighboring forih attempt shaft is making far more water than this shaft；water 4^{2} gallons per minuic；sunk $5_{i}^{\prime}:$ feet through mucly clay．Depih， $134 ; 1 / 2$ fcci．
Scpiember 26 －ipui in another Blake

September 26－1 ius in another Blake pamp in place of one－emoved for repaits；

Sephemher 27- Xo trouble; lowered Deane pumps; water 42 gallons per minute: sunk $4^{1}:$ feet through 3 feet mucky clay and $15 / 2$ hard pan. Deph, 14412 feet.
september $2 S$-lanered blake punp: broke levers struck the harge streall at 1.30 p.m. : raming 500 gallone per minute; first tuah hought alwout 10 barrels of sand: started the Drane prumps and hept the water down; water after rush 500 gallons per minuse; sumk $2^{1}=$ feet throngh sandy clay. Depht, 147 feet.

September 29-1. wanered the west Deane; water now coming very clear; water 420 gallons per minute: sunk $=$ feet through greenish clay. Depth, 149 feet.

September 3o-l.wwered lxhhli leane punps: the water all coning up as yet in the suuthwest corner and clear; water 350 gallons per minute: sunk 3 feet through clay with puechets of gravel. Depht, 15: leet.

Uctober :-Lameted cast Deane and the blake pamps: are now alout the level of the water ked. water 350 galloneper minute; sunh \& lect strough sandy clay. Depth, 156 feet.

Octoler 2 - The di-chage huse blew off the east Deane pump thece times; at the same time the blahe puap played ont. causing six houts delay: water clear and gravel
 ${ }^{15} 9^{2}=$ feet.

Octoler 3-The west Deane puap refuses to work, so we put in one more Blake pump: the water is coming in fom all over: gravel has cememt bands, sometimes running nearly acrosis the whole bottom; water 350 gallons per minute; sunk $2!=$ fect

Uctoler i--The fravel heimg comented toncther in cakes, it is wery touph digging and jaching: the shat is in gowh shape, no pulling; water 350 gallone per minute: sunk 3 feez ihruagh gravel. Dephi 165 icet.

Octoler 5 - iettin: inso the thae shale overlying the limestone: water 350 gallons per minute: sunh 3 fect through 2 feet of gratel and 1 lout of shate and gravel.
Deph, 16 feel.

DETAIS OF EOD COUPNTE
Octoker 6-Gnt thex on to sock: water cut off from under shoc: water 350 gallons jer minute; sumk $=$ feet thronugh shate. Dephitiofers.

October \bar{f}-le:ting into rock, and mane of cumparments of the removed: punim zothering: "aler 3 to ;anllone jer manme.

Octoler S-Geiting navre oump rowin in rock, and timberen! down through shoe on to th: rock: water jio gallons fer minate.
 310 gallos s jer minise.

 pars of the hat:. limbih. igs :ert.

Oc:dere =5-Triec down ribl wip ungks and started permanem bouct.

 to fill waide lethind the hatick lining: laty here the condations wete such that it failed; the streams of wate: wete im sirnog fur the cement to set, and it wathed out again.

 if the shat: hanl leen mate warer ught The water has sn maserally lescened soice
 tike an under; found hate. and that this has now Ieren drainel, wo that what is coming now is the serparac from she surface water-sherl. The total quantity from the presens

over, had the shafts been made tight, there would be the constant menace of a large lody of water liable to be let down on any rupture of the shafi, a thing unlikely and yet always feared. As it is, there is no pressure whatever from the water, the shafts yet always feared. sis it is, there is no press
draining frely the nalural fow of the strata.
liefore the shaft last descrilbed, now known as " A " shaft, had reached the coal the sialh attempt or " B " shaft, was startel on Noveniber 14, 1889, 50 feet west of the third attempt, now known as the air shatt, but which was tenyporarily alandoned at 125 feet. The latter shaft was now kept pumped out, materially helping in the sinking of " A " shaft, which made much less water than the previous shafts. Even when " 13 " shaft got txelow the third attempt these was not nearly so much water, for the ground seemed already largely drained after a year and a half of steady puraping. Accordingly " 13 " shaft was sunk much more rapiclly than its predecessors. This was not entitely due to less water but party to the experience gained ly the sinkers in meeting the preculiar dificulties of the fied and parily to the improvements made in the appliances. Among the latter was the plan of suspending the curbing from solid wooken triangles instend of the open Howe truss, which could not be designed to meet immensely varying strains, and so on several occasions hat leen crushed. Another improvement was in the shoe in mating the plate braces so they could be easily renowed on reaching the solid. They were made heavier but fewer in number, forming 12 compartments, instead of 15 , as in " λ " shaft. This shoe was highly satisfactory in all respects (see Figs. 3 and 4).

The only serious difficulty that " 33 " shaft encountered was when, at a depth of 50 feet, a hole came to the surface along side of the shaft at the east end, causing it to swing 6 inches out of plumb. The hole was prompty filled up with clay, which stopped the running, and no further trouble ensued. On Decembler 3t, 1SS9, the shoe was down on the solid rock.

The spred of sinking the fourth, fifth and sixth shafts is as follows:-
Fouth Shaft,-Started January S, ${ }^{2 S S 9}$. Reached rock June $30,18 S 9$, a period of 174 days. Of these, 96 days were lost in delays, 75 days only being spent in sinking. Depth of shaft to roch, 162 feet. Average proteresp per working day, composed of three S.hour shifts, 2.1 fect. Maximum rase of punping. 640 gallons per minute
 $5 S$ ciass total, of which 7 were lost in delays and 51 spent in sinking. Depth of shaft to rack, 270 feet. Average progress per working day, 3.3 feet. Maximum rate of panping, 500 gallons pre minute.
S:xik Shaft " $/ 4$." Started Novemiker 15, 13S9. Reached rock December 31, 1SSig. Total, 47 days, of which but two were lost in delays $: 45$ were spent in sinking. Depth of shaft to rock, 360 feel. Average progeses per working day, $\mathbf{3} .6$ feet. Maximum rate of pumping, 350 gallons per minute.

There was no detailed record kept of the thind or air shaft, but after getting " 3 "" shaft down, sinking was resumed from where it had steppled over a year before on account of the lightness of the shoc, and now that " 13 " shaft was dramang the water thete was no trouble in gecting the air shaft down. Thus three ot the origenal stx attenpis were finally successful; and all the shafts in wheh the shave was used succeedeli in seaching rock.

I will nuw give a description of the deeails of the shoe, methot of hangug the curbing, ctc, as finally developed and used in sinking ${ }^{-4}$ is" shaft.
lieginning at the sup, there is first in order a phenform of $z \rightarrow$ toch plank tadd on the surface alout the shaft, and covering an area 30 by 46 feet: on top of these, running across them and jarallel to the sides of the shati are 60 - pwund stecl rails. These form the foundation of the four solial wooken riangles which carsy the weight of the curbing no sustained by the friction of the ground. Each triangle is made of $\$$ pieces of 12 inch by 12 -inch simber, the lootom one aS feet long, the next 4 feet shorter, and so on to the top one, which is zo fect long. The triangles run across on top of the rails and the narrow way of the shaft. On them and acrose them rest two 16 .inch by 16 .inch limiers $=0$ feet long. These are nearly over the site walls of the shait : through them juas the S rode which sustain the curbing, four to each side or timber, huge washers to the triangles. The whole fermesan almost gigid structure, sto that when subsidence to the irianfles,
comes, everyhing goes down at the same time. The hanging rods are steel, and nade in tofont lengths, the eals upiet or thickence. so that serew couplings are made without ueakening. The upper lengths are $2 \geqslant \ldots$ inches in diameicr, every three lengths down she size decreases 'f of an inch, so that the lottom lengiths ate 14 inches in diameter. The support to the curling is, as finally adopted, an iron lug placed under the sereve-coupling picee at each joint and spiked zo the cribbing.

The shoe as finall; designed and used in " 13 " shaft was i2 feet S inches iny 17 feet 6 inchex insile measure, bruil: of 1, inch steel plate, the sides 4 feet olecp. of which the upper 16 inches was the shichla embracing the bomon of the curbing. The lower pars of the shoe was dividet into 12 compastments hr threc transvere braecs of 3 - inch piate. doultiled, 22 anches deep, and iwo longintulinal lines of braces, of 3 -incta plate. so inches deep. Around the inside of the shoe $1=$ inches from the trotom suns a shelf 9 inches wile of $\frac{3}{4}$-inch plate, braced below with brackets, anil with a 2 -inch leige on front. This forms the preseptate on which are plared the jack-screwis to force down the shoc: directly alowe is the shaft-csithing against which the jach-screx; thear. Alihough the shoce itelf weighs $\$$ tons, the jackinz was ofirn very hand. The mode of oprerating is so apply the jach serens till the shoe has been forced dawn from $=$ to 10 inches, depeading on the झround, never more than 20 inches, whech leaves hat 6
 inches of shield lapping the crahding. Then the shoe is levelled earef:ily, the jack-
serews remuved, the - inch criluing

 further sicengthencil by :riangular corner-sifige

Tworinch planks are ued furs the crilhing instead of thicker timber, irecause moze casily handied in the crampred apace as the lintont of the shaft, and they are litule lexs strung for the sme thicliness of wail. Alter as many cousses of cribhing aze in 25 the space allows fors, frequently in lad ground only one, the jack:ecrews asc seplaced and the operalion repeated. Separate plate-cuvers were provided for the compartments of the shaft " 13 " shoce, but it was found that the susties of sand could te kept down if the exeavation were not carricel leliuw the press-plates: and as the covers woald hamper the wotk they were not used. They were kept at hand, huwerer, the ifica lking, that when dangerous ground was expected, all the compatments except one or two woull le closed.

Meantime the excaration and pumping goes on according to circumstancer, and with the customary appliances

To provide for supporang the shoes when a very soft spot is reached, chains, one in each corner, pas around the braces and hook to the hanging rode An amproved fastened by ic the incertion of a long turn-luckile at the tower trat of each chain, fasened bye clecsis a brace. At lacid inll weight was never thrown or, the chans, rushes, excavation was never and paneed telow the bothons of the shoc. There were usually thece permis hancing in the shaft, one in cach compartmen:. The eertical theane plunger jump wifh a 4 -inch delivery was the favored ifpe. The punps were hung lng henap calies from capstans as the inp, 20 as to ice readily raveed and luwered, the steam and water cunnections to the pipe lines zeing made with flexille hose.

In conclusion, $\frac{1}{}$ will say that I think this system of sinking shafts well fills the gay in deep shafe sinkiag, between the salid ground systems and tive true dropz shaft system. I -or instance, here at Lald, the firsi fiiled in two hasd.pushed allempts, the second also faited after a shorter thial, hut the lmuklets and hard ground met deeper, fully showed how impracticable it woutd have been. Of other Enuwn systems, the pheunatic is uut of the question for nuer 70 or 8 , feet of water pressure, and while the loetsch freezing system alone seems applicable in nearly all circumstances, its presen great cost makes it prohihitive except in extraurdinary cases. On this account, leav ing the freezing system out of consideration, where there is a ground filled with water and over 80 feet in thickness to be pierced, tou soft for solid ground systems and yet containing bxulders, cemented material, or some hard ground which would prevent any kind of a drop shaft, the method described in this paper is sigulady well adapted.

Dominion Railway Subsidies

To Canadian Coal Companies, 1893.

Boston and Nova Scotia Con! Company_-By the Dominion Subsidy Act 57.5 S lic., ch. 4 , 1 S94, a sulsidy to this company limited to $\$ 113,600$ (in lieu of one previouslygranted in 1892) was authorized for the construction of $35 \% / 2$ miles of railway fron a point on the Cape Breton Railway at or near Orangedate to broad Cove, on the western side of the Island, and under date the 16 th of Novemier, 1 S94, a contract was entered into with the company for the work subsidized, the date for completion being fixed as the ist August, 1896.

Nio payments have been made up to the 3tst December, iS94.
Dominion Coal Company.-13y the Sulsidy, Act, $55 \cdot 56$ Vic., ch. 5 (1S92), 2 subsidy, limited to $\$ \$ 9,600$, was authorized for $2 \$$ miles of a railwny to complete connection between Sydney and Louiburg. Cape liseton.

On the aGhin of January, 1594, a contract was entered into with the above company for the wosk from bridgeport to Lounstarg liarbor. The first 10 miles section from bridgeport has ixeen completed, but nu payment un sulsidy account has been made up to the 3 1st of iecember, 1594 .

Not a Scotia Steel Company, Ltd. By the Sulxidy Act, 55-36 Mic., ch. 5, the grar of assistance to the abowe compray for $1=1=$ miles of railway from Eurek: Juacti, n on the Intercolonial Railway to a point at or near Sunnybre, including a brane a line to the charecal iron furnace at Bridgecrille, was authorized, the limit of aid cin: $\$ \$ 40,000$.

Under date of the 2grd of November, 1Soz, the company were admitted to conract for this work.

Duaing the fiseal year there was piad $\$ 5.454 .16$, bashing the total payments up to the 31st of December, $1 \mathrm{~S} 94, \$ 3 \mathrm{~S}, 400$. For the previous yea. $\$ 3 \mathbf{5}, 400$ was paid.

Medicine Hat Railway and Coal Company. - lhy the Act 50-5! Vic., ch. $2 j$ (1SS7), authority was given for the grant to the alume company of Dominion lands to the extent of 6,400 acres per mile, for a gailway from a point at or near Medicine IJat, on the line of the Canadian Pacitic Railway; :o the coal fields in or near Townships Nos 12 and 13 , Kinge 6 , west of the 4 th l'rincipal Meridian, 2 distance of about S miles.

13y an Order in Council of the 6:h July, iSS;, the gramt was made to the company accordingly, it leing provided that the road should lec completed and in operation by accordingly, it xeing providt
the 3 Ist of Deceminer, ISSS.

13y an Order in Council of the 24th of January, tSS9, approval was given to a dmft of a fommal contact with the company; and an extension of time to the and of draft of a omalal contact with the company, and an extension of time io the and of
Junc, 1 Sgo, was granted for completion of the road. A contract was signed on the June, 2500 , was granted for completion
tath of teliruary; $1 S 00$, for this work.

By the special Act 53.55 Vic., ch. 79 (1S91). the chanter of the company was sevivel and is powers were extendel, andi in the special Act $57 . j \mathrm{~S}$ Vic., ch. So, the time limit for complecion was further extended to the tst of January, iSgs.

Alberta Railway and Coal Co., Ltd. (property purchased from the Northwestern Coal and Navigation Con., Lad.)-Dominion lands to an extent not excecding 3,500 actes for cach mile of the company's railway, from Medicine Ilat to the cual lanks on the lelly River, alout 1 to milex; also lands toan extent not exceeding 3.540 aetes for each milc of the company's railway from I.ethbridge to the Crow's Nest I'ass, a distance of alout 100 miles A grant not exceeding 2,600 acres for each naile of the company"s railway from Dunmore station, on the C.1.K., ;o L.cthbridge, a distance of $109{ }^{3} \leq$ miles, on conduran of a sandard gauge ; and also 6.400 acres for each mile from lethiridge to the International loundary, a disiance of 50 miles.

Red Deer Valley Railway and Coal Co. - $\$ 0.4 \infty 0$ for each mile from Chealle Station on the C. I. K., to the terminus of the proposed sailway at a point in or near Tounship 29, kange 23, west of the sth meridian.

Dominion Lime Co.-Fins seven miles of their railway from a puint uri the Quebee Central kailwary, in the Township of Dublwell, tu the Duabivelf line quarsies, a subxidy not cxceeding $\$ 3,200$ per nille, or $\$ 2,2, \$ 00$

Cumberland Railway and Coal Co.-For foarteen miles of their railway front a point on the Springhill and larestmro' railway, near Springhill, to a point on the rathay hetween Oxford and New Glaspow, near Oxfond Yillage, a subsidy not excecding $\$ 3,200$ per mile, not execeding in the whole $\$$ ti, 500 .

Londonderry Iron Co. Ltd.-(Grant io Sicel Co. of Canada)-A grant as sub. sidy (road to be first land with new steel 56 lm . sals and aftes an Order in. Cnuncil has teen passed authorizang their transfer to ahe companyl of 597 tons of used iron rails and fastenings loaned to the company; which rats and fasteaings stand in the lublic Accounts as an asset for $\$ 21,964.66$.

Causda Coal and Railway Co. - (Grant to Joggins Kaitwaj) -For one and a quapter miles of their railway entling from the couthern ent of the portion sulssidized by the Act 49 Vic., chap. 10, to the wharfs, not exceecting $\$ 3,200$ per mile, not eacecding $\$ 8,00$.

Railway Earnings 1893-4.

(Fixal Mear ended joth June.)

Company:	Gross 1:arnings.	$\xrightarrow{\text { Net }}$	Miteage.	Earn. par train Mile.
Alberta Railway and Coal Co. .	27,348 53	\$49,685 35	64.62	\$1073S
Cumberland Railway and Coal Co.	123.413 31	64,794 95	32.00	1962
Canada Coals and Kail Co.	20,350 90	6,400 77	12.00	20350
New Glasgow Iron Coal \& Ry. Co	2S,6js So	14.66378	12.50	17733

Ontario Iron and Steel Co. Ltd. -This company is secking incorporation under Ontario statutes, to manulaciure pig iron, refined iron, stect and manganesc, and nickel steel or other alloy of stell hy any process; and the casting and manufacturing of such products into ingots, billets, structural forms, rails, plates and hars, rolling stock castings and forgings, corrufated and galvanized plate; to manufacture wire and wite cables; to construct iron and steel ships and vessels, bridges and buildings; and to manufacture coke or any form of prepared fuel; to buy or sell all necessary materials manufacture coke or any form of prepared fuel; to buy or sell ail necessary matesials
and patent rights for any of the said manufactures. cte. Authorized capmal $\$ 600.000$. and patent rights for any of the said manufactures. ctc. Authorized capphal \$600.000, Foungston, Ohio: and H. (i. Hanilton, Younacton, Ohy. The chief place of business is in the at Kingston. Ons. The daily canarity of the hlast furnace is to be 285 , ness is in le at Kingston. Ont. The daily caparity of the hast furnace is so be 285 ,-
000 pounds of pis iron, that of the stecl plan So,000 pounds of stecl thooms, that of ooo pounds of pis iron, that of the stecl plaut So,coo pounds of steel thooms, that of the hlooming or billet mill So. 000 prunds of steci billet, and that of the rolling mill 80,00 pounds of sted or iron hars. This ars.unt of product is expected to require the laloour of from 300 to 500 hands at ti:- works. Kingston is to provide funds to the extent of $\$ 250,000$, secured hy a first morigrge on plant and stock, and none of the money is to be paid until all the material is on the ground for the erection oi the furnace, and then only one-fifit. Until its loan is repaid the mumetpalaty 1. to take atl government bounties earned on pig iron, steel hitlets, and bars, which are expected to amount to $\$ 100,000$ a year. A joint committec of the Kingsion City Council and Hoard of Trade made a report in favor of the proposal, and recommendel that the company be required to furnish information satisfactary to enginecting and financial experts appointed by the city, a report which the City Council adopted.

Finch Mining Co., Ltd., has been recistered under the British Columbia (foreign) Companies Act, with an authorized capital of $\$ 6,000$, in shares of $\$ 50$ each. Ifead office, lititsisug, l'a.

Beimont Bessemer Ore Co.-The annual general meeting of shareholders was held at Toronto on 2 jid imstant.

Cariboo Hydraulic Mining Co. Ltd.-Advices from Cariboo, B.C., up to May 10th, state that the Catioo IIviraulic Mining Co. has now cererthing in readiness to start hydraulic operations, working continuously with three shifts of inen. Cold weather since the th instant hard redued the supply nf water and cansed some interruption in operations, bat since the mail lefa the weather has been warmer and the supply of w:ier shnula tre ample.
B. C. Terra Cotta Company, Ltd.-Notice is, piven that by an oriter made by the Supreme Court of litish Columanio, diated the gth day of Apral, 1895 , $1 t$ was ordeted that this company shond lie wound up, unilet the provisions of the "Winding Up Act," and ing a further order of the saill court, dated the toth day of April, ISO5. it was ordered ithat A. F. larham be provisional liquidator of the affairs of the said company. A meeting of creditors will le held with a view tu carryang on the works of the company:

Tilbary Peninsular Oil and Gas Company is secking incorporation uncier Ontario Statures to search for oil, natural gas, cic. The operations of the conpana Are : 0 !:e enaried on in the countice of Kent and Essex, in Ontarin, and the chief place of husiness is to be at the village of Tillary Genire, in the cnuntyof Kent. Aluthorized capital, $\$=0.000$, in shares of $\$ 50.00$. The tirecinrsare: W. C. Crawford, C. C. Kippen, F. M. Scarf, I'. E. Gurd, and Nathaniel Mills, all of the villase of Tithury Centre, Ont.

Le Roi Mining and Smelting Company. - This company has ordered a new hoisting plant of a capacity of tos tons, and the lxuilers will he 100 h. p. The present hoist was put in before the le koi hat developed iss large ore lxalice and has lecome inadequate to the demands of the mine. The company has now more than $\mathbf{2 , 0 0 0}$ tons of ore on the dump, says the Spokane kic ifes Superinienatent George llent says the present ore accunnulations, wgether with the ore shipped during the winier and sprang. were taken out in development wotk on the 350 -ft. lesel on the cast and west drifts, one of which is in about 110 ft . and the other $1=0 \mathrm{ft}$. The company is also equipping its property with electric lighis.

The Lillooet, Fraser River and Cariboo Gold Fields, Ltd. -Thefollowing report has leen isuud from the Ionndon office of this enmany: " The following cable
 has heen receivel from Mr. Frank S. Marnard, M. P., chairman of the lillooct, Fraser
Kiver and Cariboo Gold Ficids, Ldi.:- Iughes reports greatly impresed with what

He terms marvellous gold deposit in gravel. Is sinking shafts and prospecting vigor-
ounly and pushong forward development. The secretary adds: Mr. Ilughes has
 the most suceesoful and experienced mining engneers known in California.

Northern Gold Company. - l'ursuans to a juhkmemt of the High Court of fustice, Common l'lew Divinion, made in a came of Phillip sit. Lawrence against the Northern Ciohd Company and others, the credtors of the Northern Cold Company are, on or before the end day of IUly, \$95, to send hy post, prepand, to A. C. Buyce, Kat Hortage. Ontarte, sehector for the phantaf, therr Chnstan and surnames, addresses and desengtions, the fall farticulars of their chaim, the statement of their accounts, the nature of the occurty held by them, if any, tuncther with an aftidawt venfyng the chain, or in detalt thereof they will be peremptorily excluded from the benelit of the said juthment.

General Phosphate Corporation. An ad, wanel fulthe mymars with reference 6. the promothin "f thi conplan and the conduct of ats basmess was held last

 what werm he of thaneat, nur tid here anarm them of at.

Mr. Kiand sant lu was again called. asol viated that in lanuary, 1 Sgo, he catered
 frump of phonphate 1 roperties. The luthase price was originally fis 54,000 , hut it Was uthmately reduced to di0.000. Witnews informed Ifr. Stewart that if the price was reduced to $\& s 0,000$ he wubld be prepared to vabmit the property to the leard fur thetr convederatson. He learned that Mr. Stewart nould lo satsited the recerved
 dusunt paid to Mr. Stwart alme the um mentioned. The property leeing purchased
 connectuon with the \cdots lion, Mountain ;roup," witness received a letter frem an agent promising ham $\frac{b}{5}$ Soon it he was innomaental in selling the property. The corporation ceratually purchased is fur $\{55.000$, and he received his commassion on the sale. The sum of $\mathcal{L} 1,000$, which he paif to Vir Davidon, was in revpect of private services sumbered in cannia He demed that he had promied any remuneration to an expert who had furnibhed sequat upon the properaties to the corporation.

Mr. 11. Mallaly.-1 cedey, a drector of the compan;; was next called, and in reply tu the oftictal receiver vated that the matter was introduced to his nutice in December, iSSo. Ir. sanhu ceat him a cummision note promining him fi,00 and tuenty
 that The wrginal ilea wav to fom 2 company waciurce cerain phophate proper ties at the price of alwist 600000 , hat ugon mentioning the matier to several gentlemen, witnens buans that he could not obtain directors of suticient standing and Impostance to carsy wat a seheme of such magnatule, oning to the fact that they would
 wav ultmately altered was ioleave the directors entirely unfetieren in their selection of propertien. The cammanon note referiel to was then desooyed by wanes.

 thing for the wotk be was denng. Wunens said that he hat no arrarerements with reqard bu the curpmation, but that Sando hat agrect to qualify him as a directur, and that he hal agreed in qualify any diectur whom witnew oblainel. Sir Jome White-
 lieal exprecievi hivenafforal of thas Course, and menione the matier at the nex:

 fus, as a maticr of face. the witnes had only received fisjo.

Mr. II. Mailal.y Deeley wan again examined hy the (Uticial Receiter. Hesiated

 with lir. Stewart for the purchase of the "digh Fall," getup, situated in the town-

 that vim. In the alwement for purchase at was directed tha: ". Mr. Aitwoot, or

 it verthets that she itraluctive power of the Xisth Siar mane tial preath, fallen off.

 carsy out the wheme. The disectur: of the two companien were not satistical with the

 UFan the trabsaction. Wibness was paesent when 117 founders shares were allumed Mr. Sanilo.

The (Miseal liecenter: 1 think ginu will agrec tha: Mr. Sando was taking upon

 were reccivel. Ile was uhimately relieved of tifty nine shares.

The (inticial lieceiver That leaves a reyponitility for $\mathcal{L} 29,000$
llitnes aid that woild le wif all the calls upon the shares were matic. The directurs were nut aware at she time that Mr. Sando was almost without means, but on the contrary, they knew that he had paid the segistration iecs, although witness did nut know that the moncy had lreen lorrowed for that purprise. The dircctors had no knouledge as in Mr Sando's means, and madic no inquiry upon the sulject. Towaristhe eni! of sisgothe Cumpany was in rery low wates so far as tinances werc concerned .I circular was insuct is Ilecemler of that year inviting further subseriptions for shases. Tine aijeal ficict, and no further atiempt was made to oblain merey by
means of shares. The directors then turned to other quarters, and began seriously to think about a debenture issue. Eventually a debenture issue was arranged for $\mathcal{C} 100$, 000. at 6 per cent. interest, and a commission of 15 per cent.

The Ollicial Receiver: How much did the Company receive out of the $\{100,000$?
Witness said that $\mathcal{K} 5,400$ in cash was recejved, and there was a right to call for a further $\int 14,000$, and the mongages on the properties were paid off. The Company was in need of money, and it was necessary to pay off the mortgages lefore money could lee raised.

The Ufficial Receiver: I put it to yuu that if you had not spent 295,000 in the purchase of propertics, with a paid-up capital of $\mathcal{L 4 5 , 0 0 0}$ only, you need not have raised this money?

Witness said that he could not accept this view of the matter. If the shares had been fully pard up, there would have leen sulficient to carry on the mines without saising money on debentures.

Mr. Butcher next examined the witness, who stated that he was aware that Mr. Sando had entered into "options" with the original verdors of properties. He did not call the cumanissians whach lir. Simu was recervang "secret profits.

As. Butcher. Are yon awar. that promotuts are not allowed by law to ubtann secret protils ont of a company ?

Witnes. I thought that a promoter could get as much as he jrosolily could out of a company. (laughter.)

Mr. Butcher. I amafraid that it is a prit. iphe they sumetimes act upon. (Laughter.)

Examined ly Mr. Coch, (H. C., the witness stated that Sir James Whitehead resigned his seat on the board liefore any agreement had loen entered into for the purchase of prepertues, and previundy to the cappal of the Company hemg dralt wath
in any way. At the tume the directurs alluted the founders thares to dr

 Whithead resigned his poxition on the board onacconnt of ill-health.

1ty Mr. Kidley: The properties purchased by the board were chosen out of a great number submatied to them, and he was not aware of any further precautions that could have treen taken by the board to matisfy themselves as to the value of the properties.

Thie inquiry terminated shortly afterwards.

Gueloh Norway Iron and Steel Company is applying for Ontario charter to manufacture iron and steel from ores and from scrap iron and steel, and to manufacture iron and steel into any products of iron and steel, etc. Head office: Guelph, Ont Authorized cap al, $\$ 50.000$, in shares of $\$ 100.00$. Directors: James Walt Christian
Llocpler, Frank Dowler, A. \&. Woodyat, at. 1 J . E. MeElderty. Kloepler, Frank Dowler, A. R. Woodyat, at.i J. E. MeEldery.

North American Graphite and Mining Co., Ltd. -Thic company is repxoted to have accuired the Dickson graphite property in the lhuchinitham divisat and work is to pronced forthwith. Mir. II. I'. H. Bramell, for a number of years assistant in the mining division of the licalogical Survey of Canada, has sesigned and will assume the management of the company's uperations.

Kootenay Gold, Silver and Copper Mining Company, Ltd. - Kegistered at Victoria, B.C., 22nd April. $1 \$ 95$. Authorized captal, $\$ 100,000$, in shares of $\$ 25.0$ cach. Directors: Charles J. Mitchell, Thos K. Morrow, and Gierge D. Scott. llead ofice Vancouver, B.C. Mining to be carried on in the kockenay district, I'rovince of British Columbia.

Kootenai Hydraulic Mining Co., Itd., is applying for charter of incorpora tuon to aegure and operate mineral claims in the Penil dorielle River district, British Columbia. liead office: Kochester, N. ξ^{\prime}. Authorized capital, $\$ 500,000$.

Vancouver Gold aud Silver Explorauun and Concessions Company, Ltd. - Authurzed capual, $\$ 500,00$, in shares of $\$ 100$. Directors: Johann Wulfithom K. U. Tatlow, A. Williams, Chas. Stirson, Robert Ilamilton, J. W. Campion. Bead ufice : Vancuycr, B. C Formed to operate in British Columbia.

Horsefly Iydranlic Mining Co. Itd.-At the works of the company on the Horseffy liver, Catiboo, B. C., the mosi interesting event since our hast report has been the successful blasting operations which have lreen carsied ous to loosen up the cement gravel defosits. Ca the sis nlt., a blast was fired in the bank at the new pit, ico kers of powder being used. The ground was well broken up for a distance of so feet, and the result was all that could le wished. On the Sth ult., the larger blast was fited in the old lank A drift had been sun in the hank, at a depth of between 200 and 300 feet from the top of the lank, to a distance of $1, S 00$ feet, where drifts were nade right and left in the shaje of a T. In the the enortavan quantaty of 90.000
 operation was completely succestul. The surface of the imnense mans was rased alnous ofect and then fell lack into its former position and nothang was dasurbed. su nicely had the calculatuon leen mate as to the requate stength of the lilast that nut a sune thew too feet away. Ihydaulie operationn on the gravel will be greatly faciliated by the loocenirg up of the lank lig this blast. The water was to lee turned on on the si:it ult, and ly this time it is prolable that work is being carricid on in full trice. It is expected ihat the first clean uy for this seasun at lxoth the Carrbooand Horselly chams wall iake place frefore the end of June ard it is anticipated shat the reauls will le very ratisfactory to the sha -holders. Should the watet supply continue tole sufficient tor fuls coicravons, the seas n's work on these two proprotics should give such returns as will show the immense possibilities for successful hydraulic mining ihat are still to loe found in the Cariboo district.

Ottawa Hydraulic Mining and Milling Co. Ltd., applics for B.C. chanter to acquire by purchase the lease of the ground stuate a: Boston Bars, on the cast sude of the Frascr Kiver, containing 64 acres, more or less, which said lease was made by Mr. G. C. Tunsiall, Gold Commissioner, 10 Edmund Alexander Watson on the sth day of Junc, IS93, fur she sum of one thousand dollars in cash, and for the purpose of acquiring by purchase of otherwise of any mines or mining property in Briush Columbia, whether alluvial or mineral, and for the purpose of working any such mines or claims in the most approved and workmanlike manner, and for the purpose of erecting quartz mills and smelters and saw mills, and any othes known appliance for the purpose of worhing any mines or ures obtained thercfom, and for the purpose of acquing water and water rights for the purpose of worhing any claims or property that may be acquired by the company. Authorized capital, $\$ 250,000$, in shares of $\$ 5$. Diteciors,
I.1. Col. Joshun Wright, North Bend, Yale District, B.C.; Capt. M. N. Garland, North Bend, B.C.: F. W. Va.' su, Nurth Bend. Mines office, North Bend, dale District, 13.C.

Danville Slate and Asbestos Co. Ltd.-This enmpany has purchased the Jeffey isbleans Mine at Danville, (Lue., at a price, so it is repurtel, of $\$ 150,000$.

Dominion Coal Co. Letd. In his repont to the Local Government, Dr. Matan Murphy, Irovincial Engineer, has the following to say of this company's railway from Britgeport to louishurg. "The road has been constructed, so far, in a more permanent and serviceable manner than the contract calls for. The gradients and curvature have been reduced at considerable expense, so as to lessen the cost of transport. The cuntings are taken out to a width of 22 feet at formation level; the embankments are 16 feet wide. The permanent way is much heavier; rails are so lhs. per lineal are $\begin{aligned} & \text { ard, the wontract being for rails } 56 \mathrm{lbs} \text {. per yard. Servis tie phates of steel, weight. }\end{aligned}$ yard, the contract being for rails 56 lbs. per yard. Servis tie phates of stect, weigh.
ing with fastenings, too lis., connect the joints. The dramage a very umportant ing with isatenings, 100 los., connect the joints. The dramage a very umprant fature, is well provided for, by sideor wiftake datehes thus daverting the sterace
wat rirom the stopes of cutings and cmbankments and conveying it to the streams passing through the culverts and badge openangs. The culveris and bindge superstructure, speaking generally, are of a superior class of masonty. The bridge and trestle superstructure are of steel and are in strength and construcuon, bult according to the progress of the time, heavier and stronger than the class of such work gener. ally erected to carry lighter ling stock. They are built accordng to the require. ments of the Federal Governmeni specitications. The class and character of the work throughout the ten miles now opened for traffic, is superror to any I have inspected in this country. The station lailding a bridgeport and the statuon house, engine house, repair sho; and freisht shed, at (ilace liay are built on concrete foundaton walls and are unusua?. large and commodious."

Nova Sicotia Steel Co., Ltd. - Respecting the con: :ruction of this company's sailuay, Dr. Murphy, in his annual report, says:-" Eureka to Sunny Brae, $121 / 2$ miles, leaves the lictou branch of the antercolonial kailiray at ferrona lunction, crosses the west branch of the Eass River to Ferrma, where the smelting works of the company are located, and runs up the valley of the East Branch to Sunny lirae. The first $101 \leqslant$ miles was opened for traffic to the public on the Ist of July, iS92, and the remainder is in operation since Noventer following. The company applied for pay* ment of sulsidy according to the contract with the P'rovinctal Government-(see Ap). pendix 17. p. 15, Journals of the liouse of Assembly, 1S91), the condutans leang :-
(a.) "They shall have completed, equipped and put in operation the said line of sailway."
(i.) "They shall have pain, n. cause to be paid, the wages due to the workmen emplojed, and all charges for materiats supplied for the construction of the said
(6.) "They shall have constructed, comp!eted and put in operation at some place within the County of P:ctou, a blast furnace for the smetting of iron ores."
(d.) "They shall have established to the satisfaction of the Governor-i,.-Councit, that they have foras fide expended in cash in the construction of said railway ard blast rnace a sum o! $\$ 400,000$."

All these conditions the company have fultilled, and have carried them into effect before the time stipulated for completion, viz, the 31 st day of December, 1 S92, and further they have constructed the line of railway in accordance with the specification 2nd all other condisons of contract.

Afer receiving formal insiructions to examine the contract, $t o$ inspect the works, and to report accordingly, I made an inspection of the line on the 22nd May, I893, reported the work satisfactory, lut not çuite finished, and recommended a payment of shirty-five thousand dollary on account. The subvention account stands thus:-

Twelve and a-half miles of railway, at $\$ 3,200$ per mile.... $\$ 40,000$
Payment recommended on account........................... 35,000
Balance of subsidy remaining due on September 30th, 1S93. $\$ 5,000$
The foregeing conditions have been complied whth, the ratway has been completed and the balanee of subsidy paid on a coruticate to that effect given on the 10 th day of December, iS93."

The Mica Market.

During the past two months the demand for amber ...ica has quielly increased, and prices for large lots have advanced, owing to increased cost of mining. The principal demand has been for thumb-trimmed and rough opplit, while some tots of trimmed have been sold. One dealer to keep up the supply of crimined has been cul. ling dumps of several Templeton mines and trimming all ihat would cus 1×3 inches. Thr-e mines are at present in operation, the outpu: of two being steady, the work beinz on veins, while in one the mica is in packets 1 ith an inclination 10 phocphate shority: All the mica mined finds a ready sale, principaity to the United States, the consumption in Canada being small hut increasing. Several sample iots have leen sent to, England, reportio on which are favorable. There is a strong hope that the demand from England is on the increase.

The Care of Mine Pumps.

By: J. Clarence Stine, Ocerila Milh, l'a.
Acilulated mine warer is probably as great a vurce of troable and erpense at mines drained by steam pumps as any other natura ${ }^{2}$ feature of a mine.

The best way to ceuntemet its destractive cffect on pamps is to use gun metal or some other similar composition for the water ends of the pampe Owng to its first
 to al"ack it and sinilar compositions nearly as nivarefy as ithey de giont hard aren. The writer has seen gun metal rendered soft and sprygy in less than a nonnth's ume, has known one inch irna lwats to be eaten to the thatione of a lead pencil in three days, and has seen 3 inch iron pipe caten so thin that a full length of it could easily be carried in one hand.

I was recenlly shoun the water end of a pump, whech owng to a sudden change in the waner from "sweet" to tand, i.ad treen utterly rumed in less than a month's time. Every mine superintendent shouln keeti on hand dupheate parts, lathe to wear or ccrrosion of all pumps, as a breakduwn of a few hours duration may, at umes, eause irteparable damage. Avide from the parts suigected to wear by riction, the
piece in double acting pumps likely to wear out first is the wall or partition bezween the bottom valves. This is c.used hy the water being discharged, from the valves nearest to in, against both sides, and, as the valves are usuall; liceated nearer the partition than the outside shell, the cursent must strike it with considerable force. Aside from this, it is attacked on both sides, and must, therefore wear twice as fast as the shell. When this wall is eaten through, the pump wilt do to work, as the water is forced from one side of the plunger to the other side. A methud sometimes used in repairing this, is to melt and run sufficient Babbitt metal, or similar composition, into and around the wall to close the part eaten. This is only a makeshift at best, and a poor one. When hot the Babbiti metal lies close to the wall, and when cold it shrink from it, allowing space enough for small quantities of water to pass through. This water gradually enlarges the passage way, and in a short time the pump is in a worse condition than leefore.

A method by which I have repaired several prumps, and which is original, as far as I know, is as follows: Drill down the top and bottom of the partition its full length. Then with a chisel chip out the enti-e partition, and chip both sides until sutficient breadth is obtaned for a good joint. When the pump is a solid casting allow about a breadth is obtaned for a good toint. When the pump is a solid casting allow about a
quarter of an meh taper so as to more easily fit the new partition. Then with a cape quarter of ant inch taper so as to more easily fit the new partition. Then with a cape
chisel about $1 / \mathrm{s}$ of an inch wide cut a grove in each side of the same depth. These grovyes should be carefully filed, and be made as nearly parallel with each other as growes shouhd be carefully filed, and be made as nearly parallel with each other as
posible. The success of the entire job depends on the titing. Next is the new parution, which should be made of gun metal or a similar conposition. Make a pattern, allowing enough for filling and shrinkage. (Brass shrinks alrout $2 / 8$ of an inch in ten.) After the piece is cast it should be titted into the grooves so as to make a periect joint on all sides. Unfess thas is done the work will tee a failure. When finished the learing parts should be gwen a good coating of white lead and oil, and the piece be driven tighty into as place. If all the directuons are carefnlly; carried out, the new piece will outwear any other part of the pump. Of course it is better to get the casting at a foundry, but if there is no foundry handy the whole job can be done at the mine by any person having some knowledge of machinery. In this case it is better to make the casting first. The metal can be melted in an ordinary graphite crucille in the blacksmith's fire. With the exception of the costing, the worli requires only such tools as are to be found at every well managed mine. All the tools necessary are a ratchet, chisets, has.mer, drill and a few files. I nave been called on to repair pumps in this mann 'r several times and have never failed, and all pumps so repaired are at work, and, as far as can be seen, they are as gond as new. One of them, a Cameron pump, has been running about two years, and to all appearances is good for many mine. Another, a Blake pump, had been "doctored" in every conceivable way, but without Another, aflake pump, had been doctored in every conceivable way, but without success. Alter repaiting it, as athece described, it has run or several months and is
giving excellent sntisfaction. The liore of the cylinders of the punps repaired, was, giving excelient sntisiaction. The bort of the cylinders of the pumples
as nearly as I can rerember, from S to 12 inches. Colliery Eusineer.

Rope Driving.-One of the most eminent anineers Mr. Nasmyth, favors the driving of machinery with cotton ropes in place of eesther bands. As a result of many years' expericnce and close observation, he states tha: for heavy main drives it is both more economical and effective to use a series of ropes working in separate grooves, and in regard to the objection made to this system-that of the ropes extending un. evenly and becoming variable in size, causing a portion of them to be more deeply in the grooves than others-he states that ropes are now made with such nicety and are fitted into grooves with such exactness, that little trouble from this source is experienced. In giving his reasons for thus favoring cotion as the materral of which the ropes should lee made, Mr. Nasmyth argues that strength alone should not be considered, but dexibility and elasticity, which properties pertain to ropres of cotton more than to those of any other material yet employed.

GANADIAN MINING INSTITUTE.

A MEETING of Delegates from the various Canadian Mining Organizations wil be held in the Carteuv Frovirenac, Queuec, on Friday evening, 2 Sth june at eigh oclock, for the purpose of making arrangements for carrying on the work o the Institule duting the ensuing year.

JOHN BLUE,
l'residen: General Mining Association of Quebec,
k. II. BROWRE,

Iresident Nining Society of Nova Scotia,
JAS. CONMEE,
I'resident Omario Mining Institute.

Thillicully materisher

Central Shaft with Crusiner-head supported from Tof instead of at lower end.

GUARANTEED to do more work with one-half less power than any other Crusher now known.
Receis ed two awards at the Viorld's Columban Expositor at Chicugo, medal and diplomas. The only awards given for this type c.f Crusher. Also received an award and medal at tie "Midd.Winter Fatr." San Franciscu, Cal.
Send for catalogue or further informalion to

WATEROUS

BRANTEORD
Parcitito in
CANADA AND
Unitid States.

UINITED INEFMINGG

CANADIAN MINING ASSOCIATIONS

in the chatenu frontenac，quebec，
Thursday and Friday，June 27th and 28th， 1895.
 there will lie held a l＇nited Mecting of
Tho Mining Socioty of Nova Scotia．Tho Asbostos Clab．Tho Ontario Mining Institutc，and Tho Gonoral Mining Association of Quoboo

Meetings－Thursday Evening at 8 o＇clock．

Ores siession al S． 30.
The Ilon．E．J．Flynn，Commissioner of Crown Lands，in the Chair．
TuE Devebrimesir of ouk p＂iosphate anil Fgrtilizer Lndustrifs． Wilv thev should nf encourageid．
（1）I＇hnephoric itid in Agriculture．
13）Frank T．Shuty，Chief Chemist，Dominion Experimental Farm，Uttawn．
（i）Camada－A Natural Manufacturing Centre for Fertitizers． 13：Mr，HENR：Wighleswokth，New York．
（1）I＇houphate＇s Future．
ly Cart．lohr．C．Adams，Montreal．
 Mactu＂lky ro MiniNt（Illustrated）．
lisy Mk．W．F．Dras，Montreal．

Excursions－Frlday，June 28th．

On Friday morning，leaving the Chateau Frontenac at 10.30 a．m．，there will be an excurs，${ }^{\text {n }}$ by Caleche to the principal points of interest in and around historic Cuelec．

In the afternown，at three o＇clock，the memiers and their triends are in－ vited ly Mests．Carrier，Lame \＆Co．，of Levis，to an excursion by special steamer，wisting the Chaudiere Falls，the Falls of Montmorenci，the Dry Dock， and the large engineering works of their firm．

Any buvine or papers left over from the meetings on Thursday will be finished at an evening session in Chateau Frontenac at eight o＇clock．
Saturday Morning－Excursion to Lake St．John and the Saguenay．
It is proposed，provided a sufficient iumber of m－mbers and their friends are available，to have an excursion to lake St．John and the far famed Sague－ nay，leaving via Quelece and Lake St．John Railway，St．Andrew Street Depot， on Saturday zoh fune，at $\$.30 \mathrm{a} . \mathrm{m}_{4}$ ，There is firse－class hotel accommodation at Koberval，delightful seenery and famous fishing．Sunday and Monday （Dominion Day）will le spent here，and on Tuestay the loat will be taken at Chicoutimi for the excursion down the Saguenay，arriving at Quebec the same cerening．

Clubs．
By courtecy of the I＇resident and Members，members of the visiting asuctiations have been extended the priviliges of the Union and Garrison Clubs during their atay in guelec．

Hotels．
iny quecial arrangement reduced rates for members have been secured as follow：

Intekcolonial liallway of Casada－Members from Ilalifax and points on this line will，it is hoped，be carried to l．cvis and return for a single farc．
Queneg Centkat．Ramwiv－Members from Sherbrooke and points on his lincendilic catied to lecis and return fur a single fare on presentation of oficicial Circular
Canabian J＂mifice，Grand Thunk and Canada ditanzic Kambays 13．siectal arrangement，members and their friends will le carried the round stip wer these lines at a greatly reduced rate on obtaining Conven－ ion Certificate from Ticket Agent and on same being signed at Quebec by the Sccietary．Do Not Fail to ask for it and only buy a Singife Ttoket．
Richeliev ANi ONTARio Navigation Co．（Bont service）－13y special arrangements reduced fares $2 s$ follows（exelusive of meals and berihs）：

ONE WAY．RETURN．

From Turonto to（luebec		＊	\＄700	\＄1300
From Kingston to Quebec			500	825
From Montreal to（uachee			250	400
Irom Chicoutima to Quclec			275	

A corthal munation to the present is extended to all interested in the mineral development of the Dominon．
JOHN BLUE，
B．T．A．BELL，
I＇resident． Scerclary．

THE CANADIAN

FIFTY FULL－PAGE HALF TONE ENGRAVINGS

Of the Collieries，Blast Furnaces，Gold Mills，Metal Mines and Metallurgical Works of the Dominion．
※エ

The Finest Commercial Werk of References to the Mineral． and Iron and Steel Companies ever published in Canada．

GTO PAGEES．FROTRAL BWO．
PRICE，POST PAID，FOUR DOLLARS．

PARTI
Coal Mining and Trade．
Gold Mining in Cauada．
The Asbestos Industry．
Copper，Nickel and Pyrites．
Oil and Natural Gas．
Phosphate and Gypsum．
Chromic Iron．
Mica．
Structural and Building Materials．

Miscellancous Industries．

Full particulars of the Capital Invested，Dividends Paid，Statistic，of Output， Expurt and Lalaut，descnuniun of Properties，Method of Wiorking aad Equipment， together with a mass of useful information not given in any other publication．

PART II．

The Iron and Steel Industries of the Dominion of Canada．

An authentic statistical summary of the Production，Imports，and Exports of Iron and Stecl，and the Bounties paid to producers of Canadian Pig Iron up to the $4^{\text {th }}$ April， 1895 ；together with information respecting the organization，equipment and operations of the Iron Mines，Blast Furnaces，Rollins，Mills，Locomotive and Engine Shops，Bridge Building，Pipe，Stove and Agicultural Implement Foundries，Car Wheel Works，Tools，Cars and Carriage Builders，Mining and Electrical Machinery and other prominent Canadian Manufacturers and Consumers of Iron and Steel．

J. BURLEY SMITH, CIVIL \& MINING ENCINEER.
 (30 Years' Experience.)

Undertakes the
Prospecting of Mines and
Mineral Lands . .

Diamond Drill Borings made by Contract for all Minerals (Earthy and Metalliferous), Artesian Wells and Oil Springs, also Deep

Soundings for Harbours, Rivers, Canals, Tunnels \& Bridge Foundations.

QUARRY SITES AND CLAY FIELDS TESTED

Plans and Sections made Showing Result of Borings-Gold Drifts Tested to Ledge by the New Pneumatic and Hydraulic Tube System and the Yield Ascertained-Flumes, Ditches, Monitors and Placer Mining Plant Generally Designed and Constructed.

PROPERTIES EXAMINED and REPORTED ON and ASSAYS MADE.

THE GASSEL COLD EXTRAGTING CO., LTD.

of crabctow.
The MACARTHUR-FORREST PROCESS (CYANIDE)

MINE OWNERS and others, having Gold Ores and Tailings hitherto untreatable at a profit, should send samples, prepaid, for experimental purposes, to the Company's Agent, W. PELLEW-HARVEV, F.C.S., when Cost of Treatment, Amount Extracted, and other particulars will be sent.

We want to contract for the purchase of Tailings, in parcels of 10,000 tons and upwards, or will treat on commission.

Adoress: EXPERIMENTAL WORKS, Pender Street,
Vancouver, B.C.
\section*{W. PELLEW-HARVEY, F.C.8., Buperintendent.}

. . THE WEBSTER ..
 VACUUM FEED WATER HEATER \& PURIFIER.

Aggregate Sales 400,000 HORSE POWER Guaranteed.
We guarantee this Heater to give better results than any heate ${ }_{r}$ in the market, and will furnish the same subject to 30 days' trial.

IN STOCK-Heaters from 10 h. p. to $400 \mathrm{~h} . \mathrm{p}$. inclusive, in stock for prompt shipment.

Eg SEND FOR illustratfo catalogue. B
WEBSTER OIL EXTRACTOR AND LIVE STEAM SEPARATOR manufactured by
Steam Packings, Round, Square, Sheet-Asbestos, Fire-Proof Cemenis, Fabrics, Tubes, Blocks, Btc.
H. W. JOHNS MANUFACTURING CO.
87 Malden Lane, N.Y.
87 Malden Lane, N.Y.

NEW YORK, PHILADELPRIA,	JERSEY CITY, BOSTON,	CHICAGO, LONDON.
JOHN B. HOBSON,	L. F. WARNER, Jr.	
Mining Engineer and Metallargist.	Hydraulic and Mining Engireer.	

HOBSON \& WARNER
 MINING ENGINEERS

Quesnelle Forlse, - - - British Columbia
The Equipment and Opening of Deep Gravel Drift, Hydraulic and Gold Quartz Mines a specialty.
Agents for the Joshua Hendy Machine Works, Hydraulic and Mining Machinery, and the Well's Lights, for use in Hydraulic Mines.
represented at vancouver by
J_ M. BROWINIING
Corner Granille and George streete, Vancouver, British Columbia.

FRASER \& CHALMERS,
Chicago, III., U.S.A., and 43 Threadneedle St., E.C., London, Eng.
Power Mining, Milling, Smelting, Concentration and Leaching Machinery ; Return Tubular and Water Tube Boilers, Corliss Engines, Jones' Mechanical Stokers, Hoisting Engines, Kiedler Air and Gas Compressors, Riedler Pumping and Blowing Engines, Cornish Pumps, Roots Blowers, Copper Converters, Pyritic Smelters, Horseshoe Roasting Furnaces, Comet Crushers, Crushing Rolls, Stamp Mills, Shoes, Dies, Perforated Metals, Sectional Machinery, Huntington Mills, Frue Vanners, Bridgman Samplers, Concrete Mixer, Heavy Machinery and Mine Supplies.
${ }_{2}$ er Write for Catalogues.
Works at Chicago, Ill., U.S.A. and Erith, Kent, Eng.
BRANCH OFFICES:
2 Wall street, Now York City of Mexico, Mex. 527 17th st., Denver, ColoHolena, Montana. Salt Lake City, Utah

COPPER ORE!!! Wanted at Good Shipping Points

Write with copy of analysis and state what quantities you can deliver this season.

ALFRED BOYD, WELLINGTON ST. EAST, TORONTO

J. H. CHEWETT, B.A.Sc.

Mon. Graduate in Applied science Toronto University,
Aseoc. Mem. Can. soc. C.E.
MININGENGINEER.
Roports on Hineral Lands. Treatment of Ores, Motalluryical'Procemes, and Makes Asmays amd Amalyses.
33 YORK ETREET, ROBSIN BLOOK, TORONTO.

 . . . ploneer manufacturers in canada 0 F . . .
ELECTRIC MINING APPARATUS.

ELECTRIC PERCUSSION and ROTARY DRILLS

In Operation at the Wentworth Gypsum Quarries, Windsor, Nova Scotia.

Self-Starting Motors, absolutely without Sparls
 Self-Oiling! No Brushes! No Commutator!
 Safety Ehlectric Cables

When Water? Power is available we can furnish apparatus to Generate and Transmit Electric Power with Economical Results, up to a Distance of Twenty Miles and upwards.

BRANCH OFFICES and Warerooms:

1802 Notre Dame St., Montreal	138 Hollis Street, Halifax
Main Street, Winnipeg	Granville Street, Vancouver.

Head Oficee: 65-71 Froont Street West, Toronto, Ont.

School Of Mining, KINGETON ONTERIO.

\#facultp:
WM. L. GOODWIN, B.Sc. (Lond.) D.Sc. (Edin.) F.R.S.C.
${ }_{2}$ Director and Professor of Chemistry.
WILLIAM NICOL, M.A.
Professor of Mineralogy, Metallurgy and Assaying.
R. CARR HARRIS C.E.,
Professor of Engineering.
WILLET G. MILLER, B.A., Lecturer on Geology and Petrography. WM. HAMILTON MERRITT, M.E., F.G.S., Associate Royal School of Mines, England, Lecturer on Mining Engineering, The Economic Geology of Ontario, and The Discovery and Winning of Minerals. WILLIAM MASON, Lecturer on Freehand, Mechanical and Office Drawing, Topography and Surveying. JOSEPH BAWDEN, Barrister at Law, Lecturer on Mining Law.
T L. WALKER, M.A., DR. ISAAC WOOD, M.A., Laboratory Demonstrators.

THE SCHOOL PROVIDES THE FOLLOWING COURSES OF STUDY:

1. A Course of four years leading to the Degree of MINING ENGINEER, (M.E.)
2. A Course of three years, for which a Certificate in ANALYTICAL CHEMISTRY and ASSAYING is given.
3. A COURSE OF EIGHT WEEKS, (January and February), for Prospectors, Mine Foremen and others interested in Mines and Minerals.

Lecturers are sent to any mining centre where a sufficient number of students is guaranteed, to conduct SHORT COURSES in Blowpipe Analysis, Chemistry, Mineralogy, Geology, Prospecting and Mining.

The different courses are made thoroughly practical by work in the well-equipped Chemical, Assay, Mineralogical and Petrographical Laboratories. A Mining Laboratory furnished with Mills, Separators, Concentrators, etc., is in course of construction. It will be open for work in Session 1894-5. Surveying is practised in the field during the warmer months of the Session.

for calendar of the school and further information apply to

WM. MASON, Bursar,

PROVINCE OF NOVA SCOTIA.

Leasses Sop Mines of Gold, Silvé, Coal, Iron, Coppere, Lead, Tin

- AIND——

PRECIOUS STONES.

S GIVEN DIRECT FROM THE CROWN, ROYALTIES AND RENTALS MODEBATE.

GOLD AND SILVER.

Abstract

Onder the provisions of chap. 1, Acts of 1802, of Mines and Minerals, Licenses ere issued for prospecting Gold and Silver for a term of twelve months. Mines of Gold and Silver are laid off in areas of 150 by 250 feet, any number of which up to one hundred can be included in one License, provided that the length of the block does mot exceed twice its width. The cost is 50 cents per area. Leases of any number of areas are granted for a term of 40 years at $\$ 2.00$ per area. These leases are forfeitable if not worked, tiut advantage can be taken of a recent Act by which on payment of 50 cents annually firi each area contained in the lease it becomes non-forfeitable if the labor the not performed.

Licenses are issued to owners of quartz crushing mills who are required to pay

Royalty on all the Gold they extract at the rate of two per cent. oa ameited Gold valued at \$19 an ounce, and on smelted gold valued at \$18 an ounce.

Applications for Licenses or Leases are receivable at the office of the Commissionst of Public Works and Mines each week day from 10 a.m. to 4 p.m., except Saturday, when the hours are from to to 1. Licenses are issued in the order of application according to priority. If a person discovers Gold in any part of the Province, he may stake out the boundaries of the areas he desires to obtain, and this gives him one week and twenty-four hours for every 15 miles from Halifax in which to make application at: the Department for his ground.

MINES OTHER THAN GOLD AND SILVER.

Licenses to search for eighteen months are issued, at a cos: of thirty dollars, for minerals other than Gold and Silver, out of which areas can lie selected for mining under lease. These leases are for four renewable terms of tu enty years each. The cost for the first year is fifty dollars, and an annual rental of thirty dollars secures each lease from liability to forfeiture for non-working.

All rentals are refunded if afterwards the areas are worked and pay royalties. All titles, transfers, etc., of minerals' are registered by the Mines Department for a nominal fee, and provision is made for lessees and licensees whereby they can acquire promptly either by arrangement with the owner or by arbitration all land required for their mining works.

The Government as atecurity for the payment of royalties, makes the royalties Erat lien on the plant and fixtures of the mine.

The unusually generous conditions under which the Government of Nova Seotio grants its minerals have introduced many outside capitalists, who have always stated that the Mining laws of the Province were the best they had had experience of.

The royalties on the remaining minerals are : Copper, four cents on every unit; Lead, two cents upon every unit; Iron, five cents on every ton; Tin and Precious Stones ; five per cent.; Coal, 10 cents on every ton sold.

The Gold district, of the Province extends along its entire Atlantic coast, and varies in width from 10 to 40 miles, and embraces an area of over three thousand miles, and is traversed by good roads and accessible at all points by water. Coal is known in the Counties of Cumberland, Colchester, Pictou and Antigonish, and at numerous points in the Island of Cape Breton. The ores of Iron, Copper, etc., are met at numerous points, and are being rapidly secured by miners and investors.

Copies of the Mining Law and any information can be had on application to

The Hon. C. E. CHURCH,

Commissioner Public Works and Mines,

DRUMMOND，McCALL \＆COMPANY．

IRON，STEBL \＆CFNERAL MFIAL MERCIANTS：

Offige ：New York Lifé Building，－MONTREAL，QUE，

CANADA IRON FURNACE COMPANY，Limited，

Offices：NEW YORK LIFE BUILDING，MONTR雷AL，QUE． GEORGE E．DRUMMOND，\therefore Managing Director．

MONUNREXIS GELT WHETEM GOMPENX
 RAI工ROAD CAR WHH円円IS
 STREET CAR \＆LUMBER TRUCK WHEELS A SPECIALTY

Works：LACHINE，QUE．Offices：AEW YORX LIFE BUILDING，MONTREAL．

THOMAS J．DRUMMOND，－－GENERAL MANAGER．

DRUMMOND，McCAL工 PIPE FQUNDRY CO．Ltd．

 mañacturubres of

WORKS＝工ACHINH QUEBEC
OFFICES：NEW YORK LIFE BUILDING MONTREAL． LUDLOW HYDRANTS，VALVES．\＆C．，ALWAYS ON HAND

THE DOMINION WIRE ROPE COMPANY, LTo.

TRANSMISSION AND COLLIERY PURPOSES.
 Also Ropes for Hoisting, Mining, Elevators, Ship's Rigging and Cuys, Etc., Etct.

ROBB ENGINEERING COMPANY, LTD. \quad. AMHERST, NOVA SCOTIA.

Dominion Coal Company, Limited.

Owners of the Victoria, International, Caledonia Reserve, Gowrie, Little .
Glace Bay, Bridgeport and Gardner Collieries.

STEAII, GAS and DOMESTIC COLLS of HIGHEST QUALITY

Carefully prepared for Market by improved appliances, either F.G.B. or Delivered.
It is also prepared to enter into Contracts with Consumers covering a term of years Its facilities for supplying Bunker Coals with promptness is unequalled.
M. R. MORROW,
${ }^{\circ} \cdot 50$ Bedford Row. Halifax. KINGMAN BROWN .\& CO., Cistom House Square, Montreal. HARVEY \& OUTERBRIDCE, Produce Exchange Building, New York, Sole Agents for New York and for Export.

[^0]: 136 LIBERTY St：FRISBEE LUCOP MILLSS：NEW YORK
 MAKERS OFWETORDRYPULTERISERS GNMDING TOANY DEGREE Of FINENE：SS OI GRRWLATINNas decired SUTRBLE For GOLD，STLYER，COPPER or OTHER ORES

[^1]:

