Technical and Bibliographic Notes / Notes techniques et bibliographiques

Canadiana.org has attempted to obtain the best copy available for scanning. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of scanning are checked below.

Coloured covers / Couverture de couleur

Covers damaged /
Couverture endommagée
Covers restored and/or laminated /
Couverture restaurée et/ou pelliculée
Cover title missing /
Le titre de couverture manque
Coloured maps /
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black) /
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations /
Planches et/ou illustrations en couleur
Bound with other material /
Relié avec d'autres documents
Only edition available /
Seule édition disponible
Tight binding may cause shadows or distortion along interior margin / La reliure serree peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

Canadiana.org a numérisé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de numérisation sont indiqués ci-dessous.Coloured pages / Pages de couleur

Pages damaged / Pages endommagées
Pages restored and/or laminated /
Pages restaurées et/ou pelliculees
Pages discoloured, stained or foxed/
Pages decolorées, tachetées ou piquees
Pages detached / Pages détachées
Showthrough / Transparence
Quality of print varies /
Qualité inégale de l'impression

Includes supplementary materials /
Comprend du matériel supplémentaire

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from scanning / Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été numérisées.

Additional comments /
Commentaires supplementaires:

Continuous pagination. Some pages missing.

1H: LLLUS'TRATED
Journal of Agriculturo

Montreal, May 1, 1896.

Table of Contents

Practical farming, Dlckson on.
reeding milch-cows, Mclachlan on..... 339
Butter-making. H. Smith on.
Sted-time, G. Aloore on
339
Application of the X rays to agriculuy. 3 .
potato cultivalion, Long on.............. 341
The poultry-ya-d-By \AA G. Gilberi....... 341

CORRESPONDENCE

Woo 1 ashes, S. Peacock on................ 342
Bulter-packagas, A. A. Ayr r on 312
$31:$
3

Silage and roots, D fac, herson
Crowz damaging corn, G . Buchanan on. 34

NOTES BY THE WAY:

Eacaline.
.... 343
Food and nilik.fat.
A Jerssy-Bhorthora rei.......
Whole vs. cut polato-sets
A bold man.
Norman caitle.
Water for sheop
Fall in prices..
Af cultural.chemistry, Prof. Shull on
8be d-report...
Britith crops 94.95.
U. S. crop oi forats

Harvest, in '95, in Manitobe
Pig-fouding
Report of the Dom. Offi. analyst.
Bu.ter, cheese, \& \cdot, in London
Hreservation or fresh-tiutter
Spaying helers
A good old
The weathe
Multon
Price of wool ia Baglana $3!6$
Value of the rool-ciop.
Cheap-fattening of hogs
...... 3: 3

PARM-BUILDING :

Plons for piggeries, Prof. Roberts on oa. $3 i 7$ An essily bilit rindmill.................... 347
Food for millch-cows, Wilson on. 347
348
348

Hens and hen-menu

HOUSBHOLD MATTERS :

Spring greens... 349
mbs:-quarters
Goose foot....
Hlusirat ons.
How 10 try on shoes
Wnlising for beallh.

A selloe-table.. | 350 |
| :--- |
| 850 |

................. 350
bedino EXPERIMENTS.
Pormation of soils.
Compelition of A_{8} Herit 96. 353
Parmers' Syndicate of the P Q................
London prices-curreat
THE DAIAY
Advico to Inspectors of Syndicate, Chapals.......
How scad works
\#rof. Henry on rapo

practical fazming.

Grasee日-Wheat-Banner-oatsTurnips.

What simali we sow

In anticipation of spring seeding. 1 basten to refer to the conthmuous secdling with Tlmotis and red clover without admisture with other secds. I am not in ravour or sowing from $\$ 10$ to $\$ 12$ worth of secds on an acre, as some writers recum wend. but the usual method of sowin; only timothy and red clorer is a inis take. For 40 sears I have sown red iop with timothy and clovers, and in ang kind of land, and with erery kind
ci season, I and that the sis is a theicker heavier growth of hay. I was led to try it from a remark made bs a mower In the time of hand mowing. He said he "did'nt like red top because t was so hard to pull the scythe through." He was correct, and llike it for the sume reason that he dishlied it. I lind it makes a theld, heavy cut of hay. In an extra dry summer it is there, andina wet season it is there just the same. Ind in a good season for dimulhy and clover there is still a move abomame (rop. And on suft, spultg: had, wate timothy and red dover seeds would be thrown away, and wild grass have lull control, red top, and atsithe clover mak a heavy grewth of good cattle feed.
Some farmers object to sowins it giving as a reason that it will hate horses the heaves on account of the frowsy top. In my expertence 1 nate had two horses, tren . ${ }^{\text {led }}$ wh h the hea ves both however were caused by overdriving and subsequent neglect. It is not necessary however to feed hay with mixture in it to horses. A good manager mows his hay away in three different kinds, the thest hay and clovers for sheep, the thmothy for horses, and the futerme diate for eattle. I have experimented with several kinds of seeds, but for hay. there is no mixture so good as Red top with tlmothy, red, and asike clovers. Do not mixtake something else for red top: there are over 100 differen grasses.

wheat

It has been a difficult matter for some farmers to realise that Manitoba wheat with the new process of grind ing, makes a better bread than their own wheat llour, ground at the home country mill, with rarely two grists of the same quality, scriously trying the cemper of the baker, and the digestion of the eater. Times changed long ago loor 12 years I have not rafsed wheat. Jand that will raise a good crop of wheat, is certain of 50 bushels jer acre of oats and barley, or pease. I have raised over to bushels the entire crop. There is much more money in this than in wheat, and the straw, if properly saved. is of great value for feed. Whereas, notwithstauding the statements of scientists to the contrary; wheat straw is not worth manger room for any beist, aud in a short time on it the horns and bones become prominent fea tures of the animal. As it does not pay farmers to raise straw purposely for manure, it is a study to learn why some farmers continue to sow whent.

BaNNER OATS

Clear for horses, and mixed vitit barley or peas to grind for plog and cattie feed, will be round an excellent oat for land suitalle to grow wheat. The straw stands up well, of great quantity, and an excellent grain of great weight. There is no oat, however, that suits the general culture and soll in the lrovince, better than the Cinada ont, but don't forget to change the seed.

rtianils.

For many sears 1 have endeavouren (1) induce farmers to raise turmps Wath thuse atho do not understand the Mulus op:randr the difficulty of ras iff them at a pront is the serions ohes thin. I io not for a moment suphose
that any fanner with erperience in feedfite will admit the claim of sclentist. (s called, that were ls onls atout $5 \mathrm{p} . \mathrm{c}$.
oif food in tumps, and as evarythin ahout the erop can be done when the
 li Lour oi about 3 eents fur bunder it is one of the best payimg crops. Pu in property, they will do well on ally havd that is rifle enuagh, and dig chund to culthate properly, a well culthated any loma being the hest.The first neees bity is dean land, and clean matare ile want of this to commence wila is beneramy where the mistatie is matala it
 inglat to hatronced wet immedhats arer the ofrala is ofl, to start the growit of weed seeds. In a couple of weed plough sin deen, and in a few days harrow well. It the hand hato been anst in lays, it ought to be plowhed ats som as possible after the crop is oll harruil in at culple of weehs.anul abaih. equired to kill the weeds. (1) in spint collowing plough, and when dry: hat anv. In ale meantame the manare mus be turned over to allow of heating mit delent to kill the weed-seeds, care being taken of irefang. When realy to sow, Earron un at dry das, and manure smip lengthways of the field, put on more than sot think necessiry, turnips always repay the fed you give thent.. Unless very evenly spread, tun ove thith the horse-rake.
Now ats to makiug the dilis. (Oh sus, evoryone knows how to make dialls, but this is written for those who do not raise roots, luerpuce they do not know the simple way of doing it, and it there are those who know better, we hope to bift hand stule of the lield and draw bight score, ${ }^{3} \mathrm{oln}$ can commence work on the right hand side of the held 1 , etarting fiom the farther end. If sun furrow is not straight, drive hack and anend it. Now chame the whitterted clevis from the centre towards the ad of the plough clet is mearest the near horse to suit making a nite dial this will depend on the lengthe of the whifle-tree and clevis).
Drive the off-horse back cluse by the cise of the furrow, and don't seore too arep. There is now one drill mathe Now (having provided a long. lous clevis bolt) change the whiffle tree clev is o the end of the phongh clevis ne:nest the of horse. to allow the plough io follow the nenr horse in the score just made. Look away aliend between the horses and keep a straight score. With a common hand hay-rake take of the lumps and roughness from the drit ITse a stick about tive fect long to draw the seed line, sow the seed, and arain mke. roll lightly, (the best turnip lana does not permit of rolling). These oper ations ouglit to he performed about halr as fast as an casy walking pace. Sow wenings and mornings, when there 18 on wind, and immedintely after the al the are made. thes are then motst. As ach :, this way the "ork proceeds wign lath, the tarnips have an then sthrt with the weds, and the hocint onn be done without so much pressure. For erly it was necessary. on account of tile tls. to sow abont the midtle of Tume. In the late years however they do vell in May. We will suppose that turnip-seeder is not at hand. which just as well for a small tiedd.
If gou have tuenteringe in suming racasure the land, comint the numuer or drills per acre. alluw tho hls of seed guired for cacli dill, and after soning
(1) Cannot agree aith luams sull tyms

Il the winter In a harrowed ilith.-Ed. cata are finared com is well eared

a den daths in thas way, there will be

 it cully.It yill de ubs:aved hat 1 du nut jut the mamate in the drill and corer it 4y, fur the realsun that when the anahure is pushed antu the drill with the plough, it is ready for the lmmediate use of the phat. Lhe usuad method of placiug it in the dill makes more jabour, and it is sencral finches from the seed. A nelghtour says, but if the manture ss full of creed-seceds the deeper it is the better.' stop, reader! if your hanate is seredy. 'Dont bow roots'
Trenholmalle, april lost.
James Dicinsun.

(Continued neat issue.)

FEEDING MILE COWS

Firat prize, Piov. Ex, '95-Pease, hay, oats-caks-three feeds a daybran not too dear now-tares and oats-8 lbs. moal a day.

To feed milk cows so as to return a prott, it is necessary you should have hood ones, as the cost or feeding in ine same. A sood cow well ied will return you a sood prolit but a poor miker. makes no protlt, which ever way vou peed her. I kept a herd of about ferty head youns and old: hegistered Ayrshires and high grade Ayrshires. The pure breds are the best milkers for the year round though I have grades that will milk more for a tume but won't keep it up so long. I will give scu in detail how I fed my own coms last winter and 1 never fed a ration that give better results for the money may say that my corn ensilage was dita good hast year, being full of cears. As near as I could make it, each cow yot 20 lbs ensilage 4 lbs cut hay 4 lbs ground peas and oats, and 2 lhs ground il cakes, all mixed tosether and wrtiod a little. 1 mix in a large box that holds nough for a rull recd and mixing at wisht for morning feed and in the wening for next mo-ning's meals. This uanatity 1 gave in two reeds, at 5 a . us. and 5 p.m., and a feed of long hay at noon. This is not henvy reeding, but think enough for breeding cows. 1 o not now belleve in trying to make wilh and beef, at the same thene, as 1 round it dous not pay to do so. Always use thover as long as it lasts. 1 ind it better than timothy hay, but when imothy is cut on the green side, it makes good reed as well as clover. Dry cows and young stock I give two reeds of ensilage or roots and give !ham more ensilage tham I give the miking cattle with a midday reed of has. I varied the feed of the mill cows by occasionally substituting mangels for be eusilage, I fed the mangels by themrelves whole. I believe in heepides tons well curried and brushed they
should te gromed as regularly as horses) as well as feeding them right, and any who use the currs comb and brush "ell will ansily sare a pound or more of meal per das. I like bran well hat could not afford to feed it last year at $\$ 18.00$ to $\$ 20.00$ per ton and ground reas and oats and ofl meal $\$ 2 j .00$ or 3600 per ton.
When bran is $\$ 13.00$ or $\$ 14.00$ then it r.ays well to teed it. Pastures zenerally get short towards the end of July and farmers should have some green tood to give milich cons then, 1 alwars make chree sowings of tares and onts, the first as early as possible, so as to hare a couple of months feeiling when
pastures are hared. After the tarns atid cata are finlshed corn is well eared
and makes good feed. Prune the stalks through the cutter and mix with oll menl and cotton seed meal at the rate of 2 lbs per cow per day for one feed and gite as much corn as they will eat up clean, and never cit wen ilit it is cared, if I cun help it. I atwiys use cut stran for bedding and and the cows are caster bept clean and it absorbs the urine perfectly. I find no proflt in having more pasture than an a are per cow and in my own case 1 have less. When at dry the comes the grass burns ap and it makes but bittle diference it you even had three arres per cow. In winter l water twice a day using water that has been in the stable day and each cow watered separatels. It is very handy to have water thowing in front of cows all the time, but when we hear so much about tuberculosis it should maise farmats careful as by having the water flowing in front of all your stock, if you happen to get one diseased cow she mifelat very easily sive the disease to the whole herd. The stable should be well lighted, tightly bult, but masily rentilated. Never use bales to tie un with, use chains and two cows in a stanl. Stalls fleve and a half feet wide and seven fret long are about the proper size and 1 find it best to feed of the ground instead of reedlug boxes. lhowes or troughs are difficult to lieqep clean and sweet. Never leave ar door open in winter that might cause a draught and bs rerulating the ventlation you can beep the temperature at 60 to 6 dezrees which is about the right heat for mileh cows. Young stock don't need to be so warm. Though I mention the ration that I actually fed last winter, in another year I might change, if some other foods were cheaper thi:n in past, ciround barles or corn might be subs. tituted tor oats, and other foods such as surat-bect pulp produce milk cheapis when fed with ground srain. The most important point is to use food that rill produce the most good milk for the least money and 1 find it very easy to feed too mueh meal,to produce milk urofitabls.

For cows weighing from 900 to 1100 llis i to S lbs meal is enough. 25 to 90 !bs ensilage and 10 to 15 los hay; when sul give more meal, yon net more milk but not enough more to pay the extra reed. I suppose Shorthorns, Hols teins or other very heavy cows will cousume more food than Ayrshires, Guensols or Jerseys and in every herd there are cows that are higger caters than othess and they should get extra food (be thing 1 have notieed since 1 com-n- enewd ficding of meal is that 1 hare never had a cow with indlgestion or golns of her feed. Cotton seed meal has been blamed for produciag abortion but it has never had this effect in iny herd and when cheap enough is a bontable foed. There are a tew points ulowiur after milk cows which I will give. lieep your cows in good fresh coudition wheu milking and then sou notice a cow eetting too thin by beavg milking or otherwise, feed lor extra, it never pays summer or winter $t 0$ let cows get too thin. Quict handlin: and srooming, regular feeding time and regular milling time. Whaterer sort of meal you feed you will certainly get more pront out of it if you reed along with it well matured corn. iliage or mangels and I feed buth. I liasegute a larie entry of stock for the Exhibition and I would like if the gen
tlemen who are judging the Lissays wonld come and look at the
will speak for themselves.

DUNCAN Mel.iomilan.
Pelltc cote.

HARRY SMIME, SOUME DORHAM COUNTY, QUEBEC.

Socond prize Prop. Ex ${ }^{\prime}{ }^{\prime} 5^{\prime}$ - Battor making-Cloanliness-riponing-starters-churning-salting.

In maning hutter the firet great that= o be observed is the most sermplous demiless in all departments. This chould begin with the milkers and in the care of the milk, and ve contivaed and fully carried out in the factory: l'esides thoroughly washing and sealdis,g all utensils and carefully stratining the milk, it should be lepht in a pure air free from all objectionable ohtors. In the separating of the mill three joousses are in general use, deap setting, shallow pans and centrifugal forc" As the latter is undoubtedly the best in very way and the oue in most combion ise in factories it is the one 1 will deal with. The milk having been received in good order and free from taint it should next be warmed to $\$ 00$ or S50 1 ar. for selparnting; and should be run Lurough the machine at such a rate as to obtaiu cream of a high per cent of fat (not less that 25 per cent and as high as 30 or $3 \bar{y}$ per cent by babcock test will not be found too thick) The adrantages of rich cream are many and important as it enables us to chura at a much lower temperature which gites more exhaustive churning ; butter with less foreign elements in it and of letter keeplng quallies and that will require less washing which is of a great ativantage as the use of more water than recessary tend to spoil the delicate inator of the butter: After separating the cream from the milk the cram should be cooled down to a temparature of 450 Far., as this will give a better grain to be butter. After holding at this temperature for an hour or so, it shond be warmed to about 600 to GHo Far., to ary. The ripening temperature wil arry accordiug to the condition of the cream and the length of time in which deauced temp. should be used and if rery sweet bigher temp., and if necessary to ripen in the required time a little good arored starter may be added. For fall and winter the use of a starter will be found almost ladispensable if ohligiged to chum every day, but starters should never be used uniess of really inst class lavor. When the cream is ripe it will be of a bright glossy mirror ike appearance amd of the consistency of thick syrup. If allowed to get over
ripe it will loose this bright appearance and there will be danger of great loss in the butter-milis. When ripe, cool to it tem. of $\mathbf{5 0} 0$ to 540 and then strain into the churn in order to take out all curdy matter, butter that mag have been churned in senarating and any dirt in the cream. The temp., of the churning room should be about the same as that of the cream or the cream will warm very rapidly during churnlog which should trke from 30 to 45 mins. Ston the chum when the butter begins to "break" and add about 10 per cent or bery cold water as this will give a hutter-milik. Churn again untll gran ules are about haif the size of a grain
les are about half the slze of a grain
of wheat and then draw of the butter milk after allowlug the churn to shand a minnte or two for the butter to doat. Wiash with water at iso to 500 Farm. and if the water does not come away clear enough wash agalu and espectally for butter that is intended for keeping. For immediate consumption once washlug will be found sufflelent as a rule. s:llt, to sult the tade, with from $1 / 3$ to 1 oz. salt per 1 lb . of butter. Work until the salt is all thoroughly mixad and the butter hats a frm wasy appearance being very careful to avoid overworklug as this gives the butter a greasy, sally apparance. If color is found neressary to sult the customers it should be put in the cremm before starting the churn, and quantity should be from 1 to 4 drs. per 1000 lbs or milk accordin; to season.
As I hase advised the use of a starter when necessary, I give an oultine of the phan of maklag a starter that gives cood satisfaction. Get milli of the very best davor, and quanlity according to the amount of cream to be rlpened. Warm it un to about 900 Farl. and then set aside to sour. Wateh closely for it changing, and as soon as sour, add water of same temp. as milk and about whe gallon of water to three of milk. set aside again and avold disturbing it until manted for use. When wated, pour from one pail to another matil smooth and of the appearance of butter milk. Lese from 2 to 12 per cent of this according to the temp, and condition of cream and time required to ripen it.

SEED TIME.

Change of seed-proparation of landcovering sees-dibblors-drillssieops.
"Summer and winter, sed-time and harvest, shall not iall." When this reachs the readers of the "Joumal" the lime for sowing will be agaln unon us, and what an important season. How careful the farmer must be to see that all the conditions to secure a good har--est are observed as far as he is con-crned:-First as to the quality and kind of seed he seleets. It is highly innirrtant to deal with a scedsman of known rellability as to care in the crecution of orders, and selling pure and enuine seeds of the varieties stated ihen to study well what have proved the most suitable to the soll, climate and locality; and to plant only such. Occrsionally changing the seed, must claim our attention. Seed sown ycar aiter year in the same soil deteriorates as to rigour and productiveness in same such manner as animals ing inbreeding. It is advisable too, if ;ou have different qualities of land, to sow that on beary land which has been srowa on light and "vice-rersa." But it intervals the sced should be procured from a totally different soll and atmosphere. Seed grown in a warm, arly locality is in some measure constitutionally changed and will mature earller, for some years at least, when ransferred to a colder and later one and the gield will for some time be greatly lncreased. The new varieties of grain will not be so Whely to suffer from blight for the reason that they are more vigorous. As a proof of this it is n historical fact that the crops in great Britaln, just 100 years ago (1750) were badly blighted; but one enterprising farmer a Mr. Kuight had rais
phanting the rarious kinds together and hese escaped, even when sown in dirferent solls and localitics.
The preparation of the land next cinlms attention; it must be well dratned, well manured, and In "good heare", well ploughed, rolled, harrowed, and everything done to make the seed bed level and of uniform depth so that the seeds may come up all at the same time.
Agalu the proper condition must be ohserved as to dryness. It is an old axiom that seeds "love a dry bed" (1) that is to say, of the proper degree of aryness or molsture, not too wet. 'Jo sow during or immediately after rain especialls on retentive solls is a fatal mistake, for in such a case seeds falling hito deep places where water would slagnate would perishs or produce, at the best puny growths.
Again, how carefully should seed be covered : not pressed into the carth too firmly, but enough so to cmable it to rake hold when it begins to germinate.
'ro shows the necessity of doing all we an to favour germination and subseyuent growth, we will notice a few points connected witi: this delicate and wonderful process. When seeds are deposited in the earth under favorable conditions, germluation commences, or in other words the vital energies are set in action, and the life of the plant is leguu. This does not depenc upon any chemical change whichtakes pace in the soil, which is then merely a veluicle by means of which a due supply of air, molsture, and warmeth is steadlly hept up untl the growing plant is formed. The change takes place in we seed itself. The latent pinciple of iife, albumen. contained in the kernel or cotyledon when exposed to the necossary temperature and moisture becomes active, and the result is that, dirst the "radicle" is send down to form the rest and the "plumule" to form the stem is sent up. If either of these is damaged or decayed, the embryo plant must perish before life has farly begun xcept in the case of a few forest trees, the seeds of which are sufficiently charged with albumen to replace a lost adicle or plumule. Tlis shows the hecessity for the soll beirg in such a condition as to warmth and molsture as lo favour the healtly germluation of the grain planted therelu. Now, a seed ralling too near the surface will encounter too much alr and conseguent ack of moisture, while one planted too deep will have too much, for the want of air to cause eraporation, hence the ecessity to plant seed at such a depth that the medium between these two conditions will be sceured.
If the land is badly ploushed and the secd-bed of unequal thickness some spots will be molst while others are dry, and thus germination will be, at the best, Irregular, and in some cases imrossible; for, if those seeds in the deep soil are not decayed they will be longer in coming up than the others and the ron will neither grow nor rigen unlformly. The drill is therefore as a rule o be preferred to lroadcast sowing, because the seeds are more Hikely to te denosited at a uniform depth and egual distance apart. It is a curlous fict that the farmers of antlouits dibbled or drilled in thelr seed, but it was not untll the middie of the serenteenth century that ans attempt, was made-at drilling in Eurone. About that the a
(1) Except fall-wheat and horse-beans, gelther of which is particular about

Mir. Platte, made a diblilng machine of the rudest description; uext, a sowing machine called a "Sembrador" was invented, it followed the plough and aropped the seed finto the furrow, but was of no practical use. Now we have sowing machines for all sorts of seeds and graln and look upon them as necessaty:
The acederating germination of some sceds can be errected by applleations or leat and molsture before sowing, and in some enses it is worth whale to de thls Pease, Indian corn and the Hise will germinate much guldier after planting, if soaked previonsly in a litie tepld water but care must be talien that they we not left too long in it for if so the vitality of the seed will be destroycal instead of assisted.
Some seeds can be protected from the attach of fasects, surms, miletand withes dipmedators by steephing them in mphis with offensive odours wheh will not injure the seed. Diseases which are calused by fungl can be checked, as for lustance, the rust in whent, by steming in Bordeaux misture before sowing the seed, and the seab in potatees by steeplige the sets in diluted areid.. Wild sesertions have been made that seeds could be doctored by steeping in various ferillsing elements to render them more productive, but this is all monzence. A plant must derive its nourishasent from the food contained in the $=0$! while it is growing, fust as an amimats hiver upon the food taken finto the stomach.

It will be well for the farmer to beat: in mind that the words of Loly wint have a literal and prastical meataing as well as a metaphorical oue." Whatsoaver a min soweth that shall he also rean."

GEO. MOORE.
application of tee. z razs in Agriculivae.

What is probably the first application of liountgen's mays of the elucidation of an arricultural problem has been enfectcit at Muntel by Dr Gractr, who has not:dinet by the agency of the X riys the "photograph" of a pig one day old. The outline of the skeletal system is clearly shown, and an illustration of it is given in the "Journal d'sgriculture Iratique. M. Grandeat, in an article en the subject, alrects attention to the value of the process in adaing to our information on the development of esseous structures un to the time of birth-knowlenge such as could only jreviously be acgulred hy laborious and protracted dissection. The "loug" wones, in particular, show how ossifcation begins at several points simultaneously, aud gradually extends by the secumulation of mineral salts, notiably phosphate of hime, in the gelatinous framework. An cxamination of the inage of the skeleton of this young pig makes much more inteligible than would a long dissertation the necessity of a dict rich in phosphatic matter; and its effect unon the perfect developmeint of the osseous system. As Mr Grandeau points out, the young animal, of which the bony tissues are so im ierfectiy constituted at the thme of birth, finds in the maternal milk the nitrogenous and phosphatic ingredients essential to the formation of bonc.after It is weaned, such food as is afforded in cereal grains furnlshes it with the phosphoric acld, the 4 me , and the wagnesla reguired for the completion of
its osseous structures. In the soluHou of many problems whith still remann to be attacked in the domain of anmal mutrition the applitation of the uew method promises to be frutful In results, whilst its value in according a means of verlfylug conclustons, whelh are already regarded as established must be apmarent to all who have ensuged in the study of his bismeh of auimal physiology.

JAMES LOMG,

> (Author of "British Dairy Larming," \&\&c.)

ON
pOTATO CUITIVATION
Experimont crops - manures-dang ve. artifictals-spraying-potash.

The time has arrived when growers of potatoes are commenclug their work tor the current year, and ahthough prires have been, and stll are, so bad that the crop is hardly worth growing, it is, nevertheless, a maxim to stick to the crop and to take the good seasons with the bad. Last year, owing to the severity of the weather in a great measure, those who preservad their potatoes with care reaped large prices; this year cwing to the aboomally mild whater, we mices have been continurally low until this popular food of mam has been reduced to a peice which represents its value as rood for cattle. In the Wiltshire potato growing experiments :n the two past years crons of extremely
heavy welghts were obtained, in some leary welghts were obtained, in some
instances 20 tons to the acre. In the bast year the experts of the agricultural department of the Reading College caried out some potato growing experiments in lierkshire, Hampshire, and Oxfond, and it will be instructive, affording am excellent practical lesson to Erowers, if we refer briefly to the results which were obtinhed. In the hinst series of experiments on gravelly loam, whelh ertadually emerges into :a clay subsoil, notatoes were grown in the field in 1593, and catharges in 184. :11 1005 the crop was grown under six difrerent systems of manuring, in the lirst case 20 tons of farmyard manure belng used alone per acre. This quantity of dung was also used in every other case, but in addition, on No. 2 plot, 1 cwt. of sulplate of ammonia, 2 ewi. of superghosphate, and 2 ewt. of
sulphate of potash, were siren; on No. : plot, 1 crit. of sulphate of ammonia, and 2 cwt. of superphosplate; on No. + plot, 1 cwit. of sulphate of ammonial aud 2 ewt. of sulphate of patishis on No. 5 plot, 2 ewt. of superphosplate and 2 ewt. of sulphate of potash were used; winile No. G plot was manured the same as No. 2 , with the addition of 2 cw . of common salt. The best gield was obrained on No. 2 plot, viz., 13 tons, 19 cwt., or 2 tons, 9 ewt. more than where dung was used alone. In all other ca ses the crop weighcd between 12 and
i: tons. The extra two tons and a halr is tons. The extra two tons and a half
or thereabouts were obtained at the cost of 29 s . Gd. for the manure, but in 110 other case was the extra sield so considerable as might le expected, perinalps owing to the heavy dressing of farmyard manure given. On another fam, loam restug on a loamy subsoll overlying gravel, there were seven plots in the experiment, the first being without manure, thie second with 15 tons of dung, ind the third with is
tons of dung and a heavs dressing of
sulphate of ammonia, superphosphate and sulphate of potash, while the other Cour dresslags included these three mamures in comblantion, or partly la comLiuation. The result wis much more surprising than in the last experiment. Without manure, the

WIAGU'I OF SOUND TUBERS

on the portion which had been sprayed to prevent disease, was ouly four tons -we leave out the odd ewts. Dung allone stwe nine tons, while durs and three other artinciats gave nine tuns or half a ton less th::.al where the three arthictals were used alone. Agaln when two artuicials were used-potash belng omitted-the weight was increased to $10 \frac{1}{2}$ tous; (1) then chirionsly, where sulphate ot ammonla and potash were used without superphosphate, only 43/2 tons were obtamed; amittugs the sulphate of ammonia and adding superphosphate to potash the weight was increased to $S 1 / 2$ tons. This soll was clearly rich in nitrogen, hence the fact that it did not respond so 16 berally to the sulphate of ammona as to the superphosphate which appeatis to be the one manare which it requires. The experiment is therefore of double value, but additional value is miven to it because part of the crop was sprayed with the well-known mixture of sulphate of copper and lime, with the result that the actual weight of sound tubers obtained on the land which wat; bot sprayed was considerably smaller than the other. The plot without manare, for example, gave only one ton, if ewt. of good tubers, and the dunged plot ouly slx tons and a lialf, or four tons less than the spmayed lamd, but vhere the artilicials were used the dimi mution in the weight was conslderably lass, suggesting that dung assists or promotes the growth of the disease fungus which equally obtains the upper. : :and on land which has not been marured at all. On a good loam soil about two feet thick and resting on chalk, 9% tous of good tubers were obtained on sprayed land, and 4% tons where the growth was not sprayed without manure; these ylelds were increased 10 10 tons on sprayed land and $6 \not y$ not sprayed, Where the manure used wis i cwt. of sulphate of ammona, 2 cwt.
superphosphate, and 2 cwt. of sulphate of potash. The adaition of 1at tons of dung for the same artificials gave an additional 25 cwt of good 14 ters-where the crop was not sprayed -not a consinemble incrase. We not a considemble increase We make one more reference to the rotato experiment, and in this case to crops grown on a light gravelly soil with a sharp gravel subsoil. There were nine plots in all; whout manure the total weight of tubers was S tons, with 15 tons of dung it reached nearly 10 tons, with 15 tons of dung and 1 cwt. of sulphate of ammonia and 2 cwt. each of superphosphate aud sulphate of potash 10 tous were obtained; with the same articiciais without the dung Sle, tons: With the artilicials without poLasla \mathbf{G}^{2}, tons; (${ }^{2}$) with the sume without superphosphate $87 /$ tons; with the phos phates and notash alone 9 tons; with
phosphater alone $8 / 2$ tons; and with 11 phosphates alone $3 / / 2$ tons; and with 1 ni
trate of soda and phosphate $91 / 2$ tons; liere nitrate was much more success-
(1) Curious all this, and worth atteu-tion.-EU.
(2) Here, the light gravel was poor In available notash; in the henvier loam chere was, as there almust favariably If In decently farmed land, plenty o
ful than sulphate of ammonla, although this is accounted for by a gravelly veln of soll. The heavy manuring of previous years accounts for the good crop on the unmanured land, and perhaps also for the fact that the artincials and dung used did not give a more important lucrease. These experiments convey a most excellent lesson. It is clear that the heary manuring of sol! in high condition may not be attended with economical results; that the expensive manuitng with mixtures of artificials or of artifials and dung, may be equally costly, if the actual requirements of the soil are not understood; and that, consequently, no tirst-ciass result must be expected unless the grower obtains accurate knowledge by the systematic conduct of simple tests.

The Poultry-Yard.

Winter and Summor yrices-What are our farmers doing to aupply the homo wintor market-Niow laid egge with superior flavor wanted for miderumoris markots - The supprior artiolo ought to get a saperior price.

(A. G. Gilbert.)

In my last artigle I promised to say something about the markets for new l.itu eges and poultry open to our farmers. What do the farmers in the ueighborhoou of Moutreal think of 40 and 45 cents per dozen for new-ladu (\%ass during November, December, Jamatry and the gicater portion of Fe bruary ? and yet that price is recuially paid by first rate family srocers in Moutreal, during tise months named, to farmers who supply them with the strictls new-laid egs ! I have the letturs from the grocers in question to prove my statements. More, I read them ts the members of the Agricultural and Colonosation Committee of the House of Commons, when I appeared before them, on the 10th of March last, to gire ans evidence, as to the work accomplished during the past year in $20 y$ department.
ARE THE PRICES QUOTED IN-

DUCEMEEN'I ENOTGH?

I want to ask the farmers in the Province of Quebec the slmple question, - are the gigures quoted viz: 40 to 45 cents per dozen for new-lald eggs i:: winter. enough to ludnce them to attempt the getting of the eags wherewith to reap the reward?
Aud not only is there a good winter marbet for new-haid eges, but there is also a demand for new-laid eggs of sriverior flavor in the summer montus, as it is, there is no guarantee to the jurchaser, that the eges he buys in midsummer are not so stale, as to be imost uneatable. As a matter of ract the great majority of eggs sold after the arst summer month, by dealers or farners, are unreliable articles. How such a state of affairs is brought abour has been described at length in previous aumbers of the "Journal of Asticalture." Aud it will so continue to be :ntil the farmers make it a rule to keep the male bird separate from his layHeg stock; to coliect the egss laid once or twice per day; and to put them on the market is quickls is possible. If they have to be kept for a few days, care should be taken to have them kept meanwhile in a cool sweet saxiling ecilar, or store room. It has been berore stated to the readers of this jour-
wal that the thavor of the egg will bo affected, if phaced in unclean surroundmgs.
In winter, there is not so much danger of new-fath egess reaching the mar ket with a bad thavor as there is in the hot mid.summer months. The farmer whe will bring to his customer in summer, a superior articte in the shape of non-fertilised, new-hatd eggs of minin batired llavor, is worthy of a better prite than that of the ordinary market and he will no doubt recelve it. There are lew burchasers who wound woi ra ther pay a rew cents per dozen more for at reliable article, than bur the buedr tain article at the owlinar: prie.

MNELY FLAYORED EGGS WHIL,

 BRLNG A BEA"TLI PRICE.Now to prove what I say. Alter deli vering an address at lackemham, Ont, a car ago last March-lin which ad aress I dwelt on the polats mentioned nbove-, a farmer came to me and asked if 1 could get him a customer in Ot tawa, who would give a good price for non-fertilised, new-lat eges during the summer months? I said, "Certainly, and When you come to dtawat call on me ard I will introduce son to one." IHe came and I introduce him, by name Wim. Mearthur, to Mr. N. Bate, of the tirm of Messers 11. N. Bate and Coy. well known family grocers, and who had a suberior dass of customers. 1 made the introduction in the following mansier.

- Mr. Bate, you have a superior chass of customers, I betieve, whom you supply with a superior class of goods?"
"les" he said.
"Well," I continued, allow me to inrowluce to you Mr. Wm. Me.Arthur. of backenham, who can supply you with a superfor article in the shape of new laid, nou-fertilised egses for your summer trade."
- am alad to see you Mr. Meartur,' Said Mr. Bate "Now" said I. "I will leave you to make your own arangements but allow me to say Mr. bate, that if Mr. Mearthur has the superior article and so proves it to your satis. faction, I think he ought to recoive at better price than that you pay for what you cannot rely on."
So I left them and at the end of the summer season Mr. Mearthur wrote me, that he had recelved it cents per do\%en from Messrs bate © Coy., for the eggs be had semt them, being actually from 4 to 5 cents over the market price. And who will now say that reliable egss will not bring a better price than the uncertain article? and as with eggs, so will it be with poultry: the well dressed choice birds "will bring" better mrices that the miserable half starved carcases so orten put on the market.

DO THE PURCHASERS REQUHEE A LHTLE EDUCATIUA?

Perhaps they do. A farmer once said to me "If we produce the superior article in cggs and noultry, you will have to educate the people who buy from us, for they are always beating us down in price." In retallation, the farmer shotid try and plek out good customers for his cholee poultry. There are always such customers to be found. And if the production of the best costs more. it will not be in over abundant supply at any time, so that the chronic leaters down-in-price will have no cllolee but from the average at the best Jut I would like to see the best the rule and not the oppesite The a'm should be to so reduce the cost of pro-
duction that eggs in winter and cavice boultry in season, shall be within the reach of the great mass of tollers. But the subject is too large to be dlecussed at present.
Menawhile, the farmers who bring in thely thavored, new-laid summer-eggs to Montreal, or any other city, will lind caterprising grocers who will be glad to get a rellable article to illl the demand for such goods from their cus. tomers.

AN OMASSION SUPILIED

I see that I omitted in my last letter the word oatmeal after granulated, in my deseription of the proper fool for newly hatehed chickens. You kindy suppilied the missing llak with "Oats," which tilled the bill exactly. There is no better tood for young chicks than granulated oat-meal fed raw, or colled oats. The latter is apt to be expensive. The chicks, while young and tonder, require and care deserving of care. After 3 or $\overline{0}$ weeks their food camnot be too cheap and wholesome.

Ottawa, 13th April, 1590.

Lorrespondence.

Editor, " Journal of Agriculture:"-1 have recently noticed your comment on the value of wood ashes as a furtilizer; il my article on "Chmate and Fernli:ers" in your issue of Jamary 1 st. sou ask tor a credit for the small quath tite of phosphoric actid in wood ashes. This phosphorice acid is not in an avalat ble form, and though the experiment sta tions salue it at two ceuts per pound, the artilizer trade batace no value on at It would pussibly become userul in time, but modern manuring mechods would cousider it valueless. 16 depends merely cjon a mechamian distribution ian the: sufl, athe as an application of ten tons of ashers per atere (s:ly tiv0 pounds of phosphoric acids would mean at mechat uical distribution in alout 2 ero tons of ton soil-aboni bive ounces of phos. pboric actid per ton-it is readily per: coired that a dworogh interminture t practically imposstble. The efficiency of w:ater solubility is hargely due to the Horoush intermixture effered hy the nall waters.
In this comnection it will be well to fate that a very considerable propo: tien of the potash in wood ashes as we
recelve them in this country, is insoh he in water :and therefore of very little arricultural value. Another point or disadvantage ts the high content of carbonate of lime, which is very inju rious from ths tendency to increase tho seab disease of potatoes and beets.
l:a fact, the potash itself is hargely bit the form of carbonatte. In this country and no doubt in every other for that matter. the erude potash salts are really much the cheapest form of potash a inure trom several points of conslde ration.
S. PEACOCK,
lhiladelphia.
Box 20fS, sta. d.
Ihiladelphia, Pa.

We sent the above leiter to Professo Shutt. and his answer is as follows:

Ottawa, April, 0th., 1806.
Arthur 12. Jenarer Fust, Esq.
4, Lancoln Are..
Montreal.
Dar Sir:
I am in recelpt of your commenica\therefore n of the 31 st ult respecting wood aslies, and beg to renly as follows :
'Ihere can be no doubt as to the high vritue and great efliciency of wood ashes as a potassle munure. The testimony of all practical farmers and horthenthists who have thed wood ashes is in their favour and at this date it would be altogether unnecessary to bring forward evidence in support of the: "alespread beliep that the plant food chments thes contaln chiefly potash are readily assimilated by crops.
It is quite trat that a part of the poash and phosphoric acid in wood ashes is not lumediately soluble in water. such, however, is undoubtedly for the most part soluble in the atd exmatations of plamt rootlets, which secretion, as lately shown by Dr. Bermard Dyer; has a sulvent acton equal to a one per cent. solution of eitric acld. The fompt results that follow an applic:tion of word ashes abundant! corroberate thls assumption.
It should not be forgetten that though phtasl is the chief element of value in "ood aohes it is not the only one. They contain in notably quantities lime, phosphorle acid, magnesia and other mineral constitueats of plants. The siguiticance of this statement is apinaront when we remember that leacheel ashes contammar but a trace of potash have a marked efrect upon cropis. Again, for many soils the alkalinity of wood ashes fives thls fertilizer :an additional value.
It is interesting to note that arricultuan chembsts have lately assigned breater value to reverted phosphoric acin than has heen the mautice hitherto. Forms of phosphoric achl, potash ami -ther fertilizing constituents not imm.diately soluble in water, but soluble in a solution of an acidty eguivalent to that of root sap have heen shown by inactical experiments to be asallable for fant use with adnost the same rapidity as the water solulle forms.
bespecting the action of lime in its trmancy to increase the stab in pota ifse it is true that some experimental .ork done in the conted states a, bears to prove that such is the calse. Whether it be so or not the agricultural value of lime for all other cimps is unar forted We have sedentifle evidence to show that all fertlle soits contain riable quantities of lime, and also the I rictical testimony of experienced faraners as to the heneficial results from an application of lime in some form or other to soils deficient in this clement. It will not perhans, be neerssary for me on the present occasion to speak in detail or the well linown agricultural functions of line. I beg to send yon herewith a coly of our report for 1859 , in which on para 49 you will find a short articie writien hy me on the sulbect of wood arhes, together with severat amalyses or Camadian samples.

Yours faithfully:
FHANE T. SHCTT,
Chemist, Expl. Farms.

WOOD-ASEES.

(BY PROF. SHUTTY.)
Matrials of plant food-poiash-alkslinity of ashos-light soils-sale of $\mathrm{ash} \mathrm{he日}$.

Of the three materials indisnensable for plant growth-ultrogen, phosphoric neld and notash-Canada finds within her orn bounds ample sumples of the
two latter in the vast phosphatic derosits of Ontario and Quebec, and in
un of new country, while nitrogen is supplied by the swamp and marsh mucks already referred to.
Wood-ashes are the mineral or inorgance constltuents of phants whith they, during thele growth, have absorved from the exirth. If, therefore, we teturn to the soll such anhes, we are supplylag future erops will the mineral frod necessary for thelr develomment in the proportions that they regule for: the builuhig up of their tissues.
The essentian fertlisiag Ingredient of wood-ashes is potash-the secondary clements of value being lime and phosHodie acid. The erons spectally bewethed by an appleation of potash, are clover, pease and other leguminous plants, potatocs, cabbuges, beets and viluer leafy plants. Hence it is that wood-ashes are strongly recommended for these crops.
On account of the alkatinity of wootaries their use is also recommended for making composts with black muck and veli like substances, for by this treatment the nitrogen of the latter is set fee in a form readily assimilable by plants. Thus it is that woodnashes act both directly and indrectly as a fertiIser. Hy their use the tilth of sandy soils alay be much improved, for by virtue of their contained potash the particles of the soil become more closely, ecmented thus ensuring a greater retention of molsture.
As a potash fertillser, wood-ashes in Canada take a front rank, yet it seems tecessary to impress the value of their ase for home consumption unon our :rriculturists. Canadian astes are sold and eagerly bought in the New England States for three times the price they can be purchased for in the home market. Notwithstanding this fact, the sale of ashes for agricultural purposes in Canada is very limited. It is to the lighter solls, in the older sections of this country, where cultivation for many years has exhausted considerawly the original store of potash, that the Leneflt from a dressing of wood-ashes will be reaped.

BUTTER PaCKages.

Bozes vs. barrels-weokly ehipmentsLiverpel prices.

April, 10th, 'খ6.

Sir

My recent visit to England confirms we in the opinion that the square box is the favorite package, and that all our Greameries should adopt it it once. A cirtain quantity of lutter will be required in easks (or kets), but the 7) in.d 50 lb . tubs are not looked upon with, fivor in England. Great care should re used to thoroughly soak or steam the wood, and to carefully pack the Butter in parchment paper. It might le well to wet the purchument paper slightly and to sprinkle a little sait on it before packing the Butter, so as to produce al brine or pickle, and thus prevent mould grthering on the Butter. All Creaneries should ship the Butter weekly to Monttreal, where It can be kept frozen until realdy to ship. As far as possible all rutter should be sold and shippea fresh to Great Britain. Use less salt than in former seasons and keep tite sait away from fish or olls.
In a recent communication in rous: waper, I note that a gentleman who is seking for consignments to his firm, (1) ankes the assertion that Butter sells (i) This refers, probably, to "An inter :ew, etc," r. p. 321, Aprll No.'36.-Ed.
for 1 cent more in Liverpool than in to corn \&e., \&e. Each man must study other markets. How strange that the hils own convenience and skill and make Buiter merchants of Montreal have not finund this out, and that the bulk goes to other markets. If he had sald that as a rule our Gamadan butter sold at 1 to 5 cents less in liverpool, he would lime come nearer the mark.
It is to be hoped that diverpool will return to her former llking for Camadian Butter, and give us an opportunty of shijphag to that market on equal terms with others. It was foum last year, it did not pay the steamers to put on refigerator compartments for that port. Let us hope that the demand will be better thils year.
A. A. AYPR.
rancaster, Ont., Aprll 10th 1801. Editor of "Journal of Agrlculture,"
Value of silagg-ailoos-last aummer's
crops-roots-farming a profesaion,

DEAR SIR.

ram duly in receipt of your post-card, about Ensilage, and would say that I have not given up the use of Ensilage nor have I any reason to do so; but on the contrary my favourable opinion of the benefits recelved from lts growth and use are on the increase, so much so that I am now convinced that no farmer can afford to be without a large use of this very valuable cattle food.
For the sake of confirming the above conclusion by actual results, permit nie to relate to you some of the effects on my present home farm, which has heen cultivated mainly for the past six years to test the working of Ensllage as a cattle food.
Seven years ago this farm was much run out by overcropping and poor crops, and no proft was the result of working it. The farm consists of 120 acres of arable land, soll is light and sendy, with sandy bottom; it would only kecp, 20 milch cows and a few young cattle the year round, and the total crop ralue on the average of five years would not br over one thousand dollars and the cash sales therefrom about five to six hundred.
I Introduced the Ensilage system on a large seale having silo capacity of 500 to 900 tons and have blled them nearly every year for the past five years, and I was able the past two years to pasture 70 or 80 millk cows on 35 acres of pasture, unassisted, until grass after from meadows' and no supplemental feed given them until Octoher. I have also pastured 65 plgs , and grew enough of coarse feed such as oirn and hay bestdes, to feed 148 heads all winter: 70 milch cows, 72 fat steers and six horses The inventory of last summer's crop is as follows, 900 tons corn from 30 acres 110 tons hay from 35 acres, 800 bus. barley and oats 18 acres, $250,000 \mathrm{llis}$ of milk from 35 acres 13,000 lbs of pork, 2 acres (N.B. there was additional purchased food for pork produrtion $\$ 100,00$) real sold $\$ 180.00$ worth. The above crop value is fully over five thousand dollars, and there will be sold in eash sales from the above, about $\$ 3500.00$. This result of increase crop value is somewhat to be crediled to the Ensilage but not all.
As to the ralsing of roots for feeding. I have no prejudice against it, but all praise and approval. The one principle that should gulde all farmers in thosf matters is this: where n farmer has a good root house and good convenience and skill to raise roots then by all means-stick to roots; If a farner has a sllo and good skill in making and raisfog corn-crops, then bs all means stick
the most proflt from these. Varming is purely and simply a business profession, and the furmer who can expect to
make a profit must study business principles and be a goon, ithst class, bushoms man.
I should be please to lave you come up and visit my stables and farm this month and show you an object lesson of the facts hereln stated.

Yours very truly,
D. M. MACPHERSON.

Cote St. Milchel, April T, 1806. The Editor of the "Journal
of Agriculture."
IDPAR SIR,
Can you suggest anythug that would prevent crows from seratchilug up and enthing corn when newly phanted in spring? Would the following be injurlaus to the corn? To steep it a short tome in water in which tar is dissolved, then to spilukle it with land plaster and plant immediately.
Do you think It would prevent crows from eating it ? I have been asked thls question several times, both by French and Old-Countrymen. An answer in both the French and Engllsh paper will erintly oblige.

An Old Subscriber GEO. BUCHANAN.
ANSIVER.--The treatment Mr. Buchaman speaks of ts the one we have always seen used, and it seems to le zenerally efficaclous. As we bave never been pestered with crows on any land we farmed, we cannot speak from prac tical experlence.-Ed.

Notes by the Way.

SACALINE.-We shall have to rest satisfied with the good old romge plants. Sacaline is thoroughly. what our :nnestors would call "blown upon,' and must be relegated to the tomb of the No-goods. At the Nebraska Station, it seems to have had a fair trial, and the verdict is that it is useless for forage; a coarse weed; hardly more than three feet in helght, the stems half an inch thick and woolly. The botanist of the State sent out warnings, last season to the people not "to waste thelr money In the purchase of seeds and roots of lhis "praudulent forage-plant."

SOOD AND MLIK-FAT.-We do not know where "Oak-Blun" is, but Mr. Washte of that place finds that food does alter the quality of milk. "So lons as the cows range on the higher groun'l they do well on grass alone ; but,as that dries up, and they fall back on the swamps, "the milk becames poarer." ard he has to supplement what the cows plek urs there with richer food, for which purpose he grows an acre or two of swedes and mangels." The mangels are hardly likely to enrich the m!lk, though the swedes would. WhiteRelgian carrots are better than elther

A TERSEY-SHORTHORN RECORD -A pretty violent cross, to be sure; we should prefer a Guernsey-shorthorn but in this instance it seems to have alswered:

RECORD of a JERSET-SEORTHORN -MILE, BDTTER, FEED.

ED. HOARD'S DAIRYMAN :-I sec in Jan. 31 number a record of a four-yrar-old aucrnsey and Jersey helfer,
owned by C. L. l'eck, and I have just started on a test of a four-year-old Jersey and Shorthorn. I thought I would give jou the result. I have no separator or tester. The cream is ralsed the old style. Every thing was welgied and given in pounds. All feed was dry, not molstened, 'lest began Jan. $30 t h$. and the yletd was as follows:
Jamuary, 30 $15 \frac{1}{2}$ tus millis
I comuny

Number pounds per hour, 2.1. Amoun
Number pounds per hour, 2.1. Amoun
butter chutned, $18 / 4 / 4$ pounds. Ration during test, 7 pounds clover hay, 6 fumuds oat hay, 7 pounds bran, pounds corn and meal, 2 pounits of meal old process, 6 pounds corn stover

The ration given is thus tabulated by Hoard."

	$\begin{aligned} & \dot{\Xi} \\ & \text { 氠 } \\ & .0 . \\ & \stackrel{5}{5} \\ & \stackrel{0}{0} \end{aligned}$	diabstible notribnts.
7 lbs. clover hay.......	5.50 5.09	$.462 .44 \cdot 11$
6 lbs. corn stover........		- 124200.04
7 lbs. bran...............		. 883090
4 lbs. corn \& cob meal.		. 2612.59 .12
2 lbs. oil meal...........		. 57 . 66.14
Totals..............	24.79	2.5513 .56 .70

The observations, by the editor of the paper are worthy of attention :
But where did the more than rounds per day of pure fat come from when only $\mathbf{7}-10$ of a pound were eaten : There was no proteln in the food to S: are for this purpose. The casein aud albumen in the milk, with no allowance for waste in the transformation, called for 175 pounds of the protein in the food and maintenance for .7 of a pound. and this leaves only one-tenth of a pouni of protein to le accounted for. It seenis impossible therefore, to escane the conclusion that this cow must hare drawn upon the reserve fat in her body for the excess of fat which she denosited in her milk. It is altogether pro. bahle that the cow lost in welght from day to day, not so much, perinaps, as to be perceptible to the ere. but if she should keep on at this rate for a month or two. the loss would be easily discernible.

Poor thing! How she would have fal. ien off in her looks, it she took all that fat dally from her reserve! Perhaps she lad a secret reserve in one of her horns! any thing but the real thing. that she converted some of the carbo-hydrates into hutter-fat, as any practical farmer would say at once.
But the upshot of the matter, now. scems to be this : if a cow is "wrell fed." the percentage of butter-fat cannot be fucrensed by increasing the quallty of food; nobody, that we ever heard of, ever sald it could. What we, and all our friends, practical farmers in Britain, say, is this: that if a cow is red, never on plentifully, on poor food, such as mangels, brewers' grains, and wheat
straw, ten gallons of her mill will not
make so much butter as it she were ced on good meadow-hay, Belglan or other carrots, crushed llusecd, and peast-meal. If we only had a herd of cows how gladly would "we sublect" the point to a practical test.

WHOLE vs CUI'POTATO SEMS:We thought this polint was settled years ago, but a very sensible paragraph in The "Country Gentleman" shows that there are stlll some people who cut thelr seed. It is far better to plant whole sets, what we call "middalligs'" in England, that Is, potatoes about the size of a turkeys' egg. At Sorel, they used to keep the smullest of all-"clats"-but the consequence was that the crop became, less, year by year, and now they have larat their lesson. The reasons given by the correspondent of the "Country Gentlemen" for using whole sets are very good :
"Ihe reasous for using whole potatoes for plantlug are: The whole potato furnishes more nourishment to the young plant. The whole potato is less liable to rot lfcoid,.wet wheather occurs It will endure considerably harder freezing of the ground before its vitality is injured. It will produce the first marketable tubers. It generally produces the largest crop. One year, the variation with us between whole potatoes and those cut to one eye was 100 bushels per acre. The whole potatoes bushels per acre, while those cut to one eye produced 200 bushels."

A BOLD MAN:-Now, here is a bold man who is evidently strong enough to stand on his own feet. In a letter to the "Dublin Farmers Gazette" M. R. Gilbson, a well known cow-keeper in Ireland, speaks as follows:
"The truth Is, wherever the full facts with regard to reeding of milch cows have been published, they have elther proved most unmistakably that feeding and the manuer of feeding, have a very marked effect on the quantity and quality of the milk, or the rations l:ave lieen so absurdly wrong, from a milking point of view, that the results are worse than worthless; they are entirely misleading to those who have nelther time nor knowledge sufficient to enable them to analyse the work of the caperimenters.
If there are not men enough in England, Ireland and Scotland who are advocating this wild theory to accept iny challenge, perhans, now that "Hoard's Dairymau" is brought on the scene,some American may be foolluardy enough to take it up, so please permit me to say, I am still ready to pay all expenses of a public trial on sane buslness lines, under the management of any man, like Professor Carroll, of Glasnevin,or Mr. Smith, of the Munster Dairy School, if my statement is not fully proved correct; proplded any one or number of persons will pay expenses if I am clearly proved correct.
My statement is that correct feeding properly given, "does" increase Loth quantity and "quality" of milk.
I go even farther and say that a simrile ration of 2 poundis to 4 pounds decurticated cotton cake, given to each cow (according to her size) every day or the year, will increase both quantity and "quality" of any cow's milk to such in cxtent that it wil pay for itself at luast three tumes over.
Anyone can test this by dividing into two a field that is fairly even in quality, and keeping what cows it can car-
with equal rations of hay in the winter, nud giving to one set the decorticated cake ration.
If this experiment is carried ont for two or thre years, always keremg the cattle that get the decortleated calke to their own pasture, even the most conthmed sceptic will be unable to shim his eyes to the effect of reeding on mill: thoth in quantity and quality.'
R. GIBSON.

NORMAN OATMLE:-SOme one w:l asking the other day about Norman cows, where they were to be found on this side of the Atlantic. We see, by our exchanges, that Mr. Theodure A . Havemeyer, of mahwa, New-Jersey, bals both Norman and Simmenthal cattle, for sale, but the price seems to be too high for any moderate purse, B. G.. "- Simmenthal bulls, one montli old, $\$ 000$, and Normin bulls, the same age, the same price!

WATER FOR SHEDP.-As we have often said before in this periodical, sheep can do very well without water when on succulent food such as good grass, rape or roots ; in fact, except on the Downs, and other like arid pastures, we never saw a sheep drink in Englimu. Here, in winter, with nothing but hay and straw, water is an absolutiy necessary aliment. sul incldent that shows the wonderful power sheep have of hiving for a lung time without water, is reported from Inver-ness-shire. About seven weeks ago, three sheep were missing from the farm of Balsparren, Arderser. Every effort was made to find them, but without success. A few days ago, however, a barley-stack was taken down and carried to the threshing-machine, and the juor things were found imprisoned in the wooden frame-work in the centre. Ghey had lived for more than six weeks on barley aloue

The "frame-work" mentioned above is evidently the contrivance used in the damp climate of Scotland to admit :a current of alr into the interior of the late-harvested stacks of grain and pulse: indeed, North of the Clyde, especially on the West coast, pease are seldom stacked without one of these apparatus.

NALI, IN PRICES.-The fall in pricers during the last twenty years has heen something unprecedented. We have seen this or that sell at low rates, but this fall has been orer sub a multitude of artioles that one cammot aphse clate it whom-concrete ca:mples. The English Chamber of Agriculture has taken the task in hand of collecting stat tistics of the prices of one hundred diaforent leading commodities from 1sais to JSO., with the foltowing results: In 1873 the index number which represented the average price during ten years of 100 lealing articles of consumption, such as wheat and other grain, meat, clothes buots and shoes, tea, sugsar, coffee, etc., etc.. ete., was: 111. The index humber on Jaman: Est, 1SM, for the same things was 6 . This difference shows a fall of nearly Fil jo. c. in the price of a hamdred leadis' comanditics . Ao wonder the worhins min in England is so well off, and the pour-rates so low, only $2 / 4$ per cent of the population of England and Wales wolag in receijt of parish-relief.

AGRICULAORAL OEEMISTRY.

Professor Shutt's lectaro; Valuo of ohomistry to tho Farmer: Analy sis of soils; growth of legumes ; foddor-crops; Woll-wator; Ontario dairymen.

Professor Shutt delivered, in Mareh, the thind leeture of the "Somer ville Course," at the roums of the Nittur al History Sodets of Montreal. The ierture was most fateresting, and the altendance was falr. We give a wra condensed report of the chidef feathres of the address
"The factors or a soil's rertility mas, hu emmerated as : 1. The amomit and avallability of tis plant-food ; 2. it. mechamical condition; 3. the condition of climate, rainfall, temperature, ete. It is thus apparent that the knowledge offered by the chemical analysis is of great value in inducating the probable productiveness of a soll.
Speaking of "virgin solls", which hate been amalysed lay the governmemt chemists, Prof. Shutt said that in British Columbin, between the Fraser and litt rivers, were many thousands of acres equal in richness of composition and mechanical texture to any solls in the world.
Unfortunately, both in Ontario :aml Quebec, and, to some extent in one or wo other prorinces of the Dominion, the practice of burning when clearing land in bush, had been most disastrous over large districts, destroying vast arcumulations of humus and nitrogen, which could only be replaced by many decades of skilful fostering and carc. Many of the farms in the Quebec province were in a condition of practical exhaustion, owing to the constant repetition of grain-crops.
The examination of Canadian culth vated soils pointed to the fact that certain cconomical methods of improving them might be recommended: such as: 1. a more extensive growth oi legumes,-jease, beans, clorer, etc.. which assimilate the free nitrogen of the air; 2. the application of "woodashes" to supplement the farm-yard manure; 3. the judicious application of lime, marl, or gypsum.
As to grasses for fodder, "June-grass" is. in all respects, a most excellent pasturegrass, and should recelve more attention than heretofore: "red-ton", for low lands, and "orchard-grass," for shady pasture, were most valuable rasses."
Mr Shutt mentions among the grasses "Austrian brown-grass': is not this milsprint for "brome-grass"?
"Trell waters on farms were doubtinss a frequent cause of disease both is regards man and beast, on account of the infiltration of contaminating natters. The Ontario daireman are talking of compelling the patrons to ree their well-water from all delete:ous ingredients."
The well at the "Fosbronke-Farm." t Somel, when we went there, In 1881, was perfectly putrid: the stink of it was almost as strong as the slink of the celelirated Harrogate-water, of which Smollett said, in the middle of the last century. that it was doubtrul whether it was more redolent of rotten egas or of the washing of gun-harrels: V. Humplires Clinker, a book the great Dr Arnold of Rugby satil he had read ed by sulphuretted hydrogen.

SEED REPOR'T.-The "sped report" of the correspondents of the "Farmers" Advocate" we have just recelved, and note the following thems:
"Amertan Banner" seems to be the favonite oat. Very litle mpe grown, exerpt at leterboro, bight, and Whaterluo. Ont.

Sherbrooke, Que,

W. A. HALM

(1) "Oats". -The Amerlem Bumner is more grown than all the other known varietles, though there is still too iftle attention patd to the matter of named varleties. So far I find none as good ior all-round purnoses. "Banley". Two-rowed Chevaller (improved) is princlpally grown ; not for brewine or export,nearly all being ground for pigs' tred, and meal for dairy stock. "Pease." - Golden Vine and Prince Albert arr :till the fivorites, though others ate sald to yleld more ; they are sown with oats more than formerly. "Sprins Wheat."-White Russian (or Lost Nition), White liyfe and Red Fyfe are the orier of popularity, though the latter vields the most ; and, though flour is aad probably always will be, cheap, many farmers here prefer dour from neir owngrown wheat. "Buckwheat" --The lough-hulled is almost entirely rown, the Black or Smooth-hullen belag pecular to the Valley of the St. lawrence; this latter is supposed to foul the land less for after crons. Tit1:mese seems to have gone out of notice. " Beans."-White Marrowfat . Navy is priucipally grown for ficld cu: ture. The Burlingame Medium is recommended where a small white beun is desired; they are less liable to rust than the Boston pea bean. "Anilet"very little grown; not enough to give an opinion. Have ouly grown the common millet, and believe it as good as any ; seldom seen even at exhibitions. "Jotatoes".-3lore Early liose than amy other variety. Beauty of Hebron comes next, but rots badly. Lee's liavorite is looked to as a successur to the Early Hose, which has established a demand for a pink varlety. Stray Beauty, beine extra carly, usually escapes the early sugust rust and rot, but is little in conserfuence. Eanly lose, from the Lowe: St. Lawrence is stall vigorous, veis brolitic, and of large size and yield. "Iuraips".-(Swedes) Lang's Purqlelop leads for stock or market. Cham plou is rivaling it. Yellow and white turnips but little grown for stock. "Mangels".-Yellow Globe more grown lhan all the other varieties; suits the soll best, and is much more casily harrested than the Red Mammoth. "Car-rots."-(White) Mammoth White Intermediate has superseded the White leolgian, and for many reasons. Dim-
ars gives good results in elos. culture. (2) New varicties.-Hate tried in poatoes, "Pride of letin;" large, but "orthless.
(3) Corn--For cob, Early Camada dellow (large Yellow Fint). For silo, Thoroughbred White Flint and Everereen Red Cob lead. Either of these in alternate rows with Compton's Larly make a good mixture. Longfellow is prefered to IAvingstone. Stowell's :vergreen (sweet) is largely used as ficen fodder, and makes good siluge or dry fodder.
(4) Very litlle so far is done in providing extra fall feed for dairy stock; gieen corn fudder is principally used. The injurous custom (1) of pasturing aftermath is still frequently followed.
(1) Where timothy is the grass the custom
is injurious - ED.
(b) Fecdlug rape. - Except for thoroughbred sheep aud for exhibition purposes rape seareely pays with lambs at s: each.
(0) Clovers. Mammoth (long Ver mont) when mised with thothy; Jure when mixed with orelard grass, both rinen in proper there (2) Alstike is much used in all mixtures, as well as alone, is it does not injure the sale of hay, as red clovers do. Tume elover alone, or alslke alome, 1 prefer to Mammoth atome the latter "knering" down badly, and lis move dititell to cure. (3) Ttmo. thy In grasses still leads. Orchard grass does not seem to grow in favor. Tme grass is indigenous, and takes the lead in old meadows, but the fancy mixtures are more profitable to the siedmen thin to the farmers.
(7) Permanent pastures, wheh largely prevall, in many cases are neces. sary, and help to glve the good reputation that Eastern Townships cheese abd butter have carned. (4) Junc grass and white clover are the prevaling forage plants."
If our old friend, Mr. Wh. Hale, would try rape carnestly, and judge of its usefulness by the yleld of the succeeding crops, we feel sure he would (hange his mind about it.-Ed.

British crops (f 1899-9.
(Bushels per imp. acre.) Wheal.

	'91	'95	Average. ${ }^{\text {1885-1891 }}$
England	30.7	26.9	29.3
Walas......	25.1	21.6	93.3
Scotland	37.1	32.8	35.3
Barley.			
Rngian 1..........	31.6	31.6	33.1
Wales...........	30.0	26.8	28.0
Scotland	35.5	31.9	35.3
Oats.			
England,...	49.6	38.4	40.6
Waies............	35.9	31.6	32.6
Scotland	37.3	35.5	35. 6
Potaloes.			
	tons.	tons.	
England	5.8	6.7	5.9
Wa'es...........	5. ${ }^{\text {\% }}$	6.7	5.6
Scotland.... ...		6.3	5.6

Reduced to bushels of 60 lbs. each the average yield for 10 years of bin :sn arre of potatoes will stand thus:
England 20 Bushels
Wales 210
Scotlaua 210
Two things in these returns puzale is: the gield of potatoes and oats in Scotland. Allowing for the invariably heavier welght of the Scotelh oat over the Einglish-probably, in the propo:tion of 41 to 33 -we should certainy: lave expected Scotland to have beaten Frggland into fits in this grain.
is to potatoes, we should not have leen surprised if the yield of that esculemt had been 50 or 60 bushels an acre
(2, Noinjury inllicte in pasturing orch ir $1-$
(3) Try cutting it belore it "knees-down."
(4) See letter fron Wm. Macfariane; Γ. 143, Jan. 1881 No. of the Journal, SD.
over the yield in Eaghand, instead of leeng exactly the same as in Wates, where cullivation, on the whole, is very backward.
In Scotland, in 1855, only $1,104,000$ Lishels of whent was grown, on about :3,000 acres, in 1894, 45,000 arees pro. duced 1,665,000 bushels.
Faghands wheat crop in 1801 was 56i,0s8,000 bushels; in 1805, only 35 ; 120,000.

HEATHER-EATLNG HOWIS. - This is due to at mate parastic mite at the roots of the feathers, and not, as athsurdly supposed by many people, to a vitious babit. The mites can be easlly found among the white powdery mather at the base of the quill, the fowls pluck eut the feathers to destroy the Irritation ciased by the mites.
edis.-One part creosote to 30 ot saseline, rubbed into the affected area.
U. S. GROL OL POMATOES, in
 o: 2.40 lbs.; in 1595, 100.1 ; bushels$\{5$ tons. We constantly hear of the yery small quantity of potato-sets phatted to the acre in the States, t and S bestels being commonly mentioned. ' T he ordinary seeding in England is 22 to 24 busheis, or, in weight 12 cwt. 1344 lbs. One or the other quantity r ast lee wrong.
Again, supposhar potatoes are planted at $?$ feet $x 1$ foot, it will take, in round numbers, 20.000 sets to plant an acre; so, if each set turns out only a pound of rine tubers, the yifld should be ten tons to the acre!
harvest in mantroba in isos
According to the final official reports of the results of the harvest in lamitolna, the actual outturn of grain from the machine shows a general lucrease in the yleld per acre of wheat over the large estmates given in the August report. The following tables give a kummary of the sields of the princinal erons of the Province:-

PIG REEDING.

HIG FINDING. - The "Deutsene Landwirtschntthehe I'resse" has published an account of varlous experiinnts in feding swine carried out at the Datry lastitute of Proskan daming the summer of 1804. Four pairs ot ulgs, of about seven weeks old, were seiected. 'The objects of the experiments were to determine whether feeding whll whole gealn barly was deleterious, when given in large gumatiles: to compare the feeding propertes of barley and matize, both given in conjunction sith skim-milk; and to determine mose exactly the nourishing value of whey. During the earller portion of these trials (April $21-J u n e$ ed) the first pais "ere biven whole barley, the second crushed barley, the third crusted majze, and the fourth crushed maize win whey. Numbers 1, 2 , and 3 were also given equal quantities of potatoes ; and the wejght of whey given to the fourth palr was about three thmes the weight of potatoes given to the third pair, equal amounts of maze belng given. The sane quantity of slim-milk was throughout given to all four pairs.
Until the eqth June (nlue weeks) the process ran perfeetly smoothly with :all Hee plgs. After this date, several variations in the quantity and kitud of fool given were at different thes introduced, the welghts of the animals leing throughout carrefully noted. Iiy about the beginning of August, it had been established that the crushed barley had produced better results than whole grain ; also that up to this point the crushed barley had proved superior to the crushed malme.
The experiments were interfered with so far as concerned the pligs recelvint The maize, by these refusing their food at the same time as they were attacked with "bonestiffuess (Knochensteitheit). This may vers posslbly have been due to the feeding of surli voung pies with too much make. The effect of increasing the dally rations of whole grain barley on the first mair was also dacterious, for they also refused their food slmultancously with the advent of a severe attack of "bonestiffuess.

Crops.	Asreage.		Production.	
	1595	1834	1895	1894
	Acres.	Acres.	Bushels.	Bushels.
Wheat	1,140,276	1,010.186	31.775,038	17,172,883
Oats	18? 658	413.686	22,555,733	11,907,854
Brrley...........................	153,839	119,528	5,643.036	2,981,716
Potatoes	16,716	13,300	4,042,562	2,035,336

The wheat crop, which exceeds that ithe period during which the animals of the previous year by over 80 per were in ill-health has leen refected in cent., is said to have enabled farmers insiltuting comparisons of the different to sell suffl fent grait to jus off pre:s- ferding stuffe.
Ing liabilities, while still holding the rithe general result of the experiments greater part of the crop. The ont crop led to the conclusion that giviug barles is stated to have been fully matured and very henvy. in past years, it is obi: whole rough grains is harmful, no
oily dietetically, but also from th served, farmers hare invariably sold roint of riew of complete assimilation short of whent and even of coarse of the fool, and that it is not advisable, grains, not having enongh on hand dur-with soung pigs, up to about four ing the following summer to feed hoas inonths old, to give them a concen and poultry properly. The surplus of (anted feed of maize, but that later: - wheat and coarse grains this year will if it is merely a question of aiming soleb:aterially change conditions in the ly at the more rapid fattening of coming season, when the proceeds of the amimals at the same oullay, the the grain fichas will be marketed as milize shoull have the preference over food products in the form of eattle,hogs, loattry, and datry prodnce. Owing so the protracted harrest, caused by the heary work entalled, the amount of land yrepared for next years wheat crod is much below the average.

BEPORI OF THE OFFIOLAL ANALYST.

MILK.
protessor Mactartane, has kindy sent the a copy of his report on the millisnpmbs of the principal towns of the Doutinion, from wheh we gather the rollowing facts :
Out of 260 samples collected, 187 were genume, 11 were watered, 7 were partly shimmed, 20 were mader average in cotal solfts, 19 were under average in cream.
A genemal improvement has taken race in quality, particularly in Inalifan, N. S., Quebec, London, and SaintThomas, while Montreal and Toronto remain stationary; and ottawa has retrowaded.
How comes th that sorel, the soll of which is poor enough in all conscience. should yield about the richest of all the samples? It cannot be from the breed of the cows, for except some slight cross of the Guernsey from our bull "Refus," by "Presto" of "Prfel," out of "Rongette" of "St. Andrews," the stock at Sorel is a mongrel lot. However, the official analysts stands thus :
wess sharp taste than salt alone.
Again, it has been essayed to create In the vessel contalning the butter an artubinl atmosphere, perfectly free rrom oxygen, and for this purpose the aile is replaced by carbonte ach.
Such. for instance, is the case with butter encosed in soluered tin-boxes, with 3 grammes of tartatic acha and 1 Lumme of bi carbomate of soda to the nound. The box heing soldered down. the carbonle actd is produced slowly, finds no means of escape, and tmpres. mates the butter uniformely. As for He use of salicylic, boric acid, and other antisenties, their use should entirely be forbiden; for they are decidedly unwholesome, and, if their use is persisted in, the consumer must inevitably suffer. Besides, they impart a liavour of then own to the butter, which has spolled a great deal of the best product of Normandy.
Something, then, had to be discovered; something easy to use, and that would bive no special taste to the butter, or, which is hetter, camable of taking away. nuy bad taste already existing in it. This was the problem from the liygienic point of view. Viewed pactieally, it was necessary to avold the use

And a very creditable showing it $i=$ 'covers too must not need soldering, coronto, on the other hand, out of 16 lest the expense of the vessel should amples, has only balt returned as ge- cat up the profits. Mr. Villar, the intuine: Montreal, 1ti out of 20.

BUYIER, CHEESE, Sc., IN roN-DON:-The price of dalry produce in the London market, according to the "grocer," the organ of the trade, stood thus in Jumuary, 1896; we only quote the highest prices:

$$
\begin{aligned}
& \text { Butter................per } 112 \text { lbs } \\
& \text { Cork, 1st.... } \mathrm{d} \text {. } \\
& \text { French baskets...........122-0 } \\
& \text { Danish, \&e } \\
& \text { 116-6 } \\
& \text { Fresh roles (foreign) per doz. lbs...15.6 } \\
& \text { Cheese } \\
& \text { Mitshire....................605 }
\end{aligned}
$$

Ha! The Cheshire pastures are not casily beaten even now.

PRESERVATION OF FRESII BUT Fh.-The "Bulletin des Ealles", a paris organ of the market of that clts, has an article, in a recent number, on a novel way of preserving butter. which we condensed for the benefit os our seadere.
After expatiating on the difficulty of preserving fresh-butter from rancidity, the paper continues as follows:
In England 4 p. c. of finely pulverised
salt is generally used, lut in some places a mixture, consisting of

2 parts of salt
1 part of saltnetre
1 part of sugar
a preferred. Thls glves to the butter a
ventor of the new process, proposes to employ a recently discorered material called "crysolelue" colourless and soluhle, in small guautities, in water. The butter is worked in the usual machine, and, during the operation, some of the solution (1 to 200 of water) is added ly degrees. The lumps are then slimply packed in large but light cans, which are illed with the same solution. This done, each can is clased by a cover ?astened by a press-screw, and an "amianthus" joint insures its hermetical tightness.
When the butter is to be handed over to the customer, it is taken out of the con and worked over with water. The erysoleine is thus disengaged from the butter and leares no trace of its flavour or odour. The butter thus treated can be kent for months without injury. The cost of the agent emsloyed is a mere trifle.
We hear that the Dairy-school at St. Myacinthe will probably institute experiments to test the value of this iuvention

SPAYING IIEIFERS.-TMA opera tion was common cnough in England sixty-years ago, but since so much attention has been deroted to breeding good stock, it has been in great measure given up. The operation consists of cutting into the flamk of the cow and destroying the ovaries by the introduction of the hame. The meat of a spaycd helfer was always esteemed of very superior qualits, and, of course, the fattening of such was very rapid. It is a great pity the sow-pigs not want-
would pay well for the operation, as the constant recurrence of the amatory period berpls the opeu sows back a youd deal.

A GOOD OLD AGE.-May we be for blien if we tatusfer the following fin ailiy matter to the columns of this perludical?
"Hearts congratulations, from criched ers and Gloncestrians themerally, bu iorth to Mr Herbert Jemmer Fust, whe completed his goth lirthulas on Fis buary esta, be having leen born but Esor. Mr. Jemer Fust plajed for Etum r. Harrow in 1s: 2 , and for Cambridse in the first linversity miteh in 182: a. Jomids. What a revolution he has seen in the king of summer games!"
'The subject of the above notice, from the "Giloucester Chronicte," still goes out shooting two or three times is week during the soason. In 1SS0, at the ate af it, he phayed in a match, hill vs. lockhamoton, and made eleven runs. leeping wicket and bowling throughout the mateh with the result of $t=n$ wickets to his share, besldes "rmonins. Gut" two more. iwo of his brothers. of whom the Ex-Bishop of Dunedin is one, were also th the University eleven a^{i} Cambridge.

IUCIERNE.-As every sensible farmer is on the look-out nowadays for fodder-plants to supplement hls pas. tures in the hot months, we hope thos who are fortunate enough to possess land with a dry subsoll will give lucorne a fat: trial this spring. People will run away with the idea that "alfalfa," as the Spanlards call it, is pecmilar in its hablts and costly to grow This is a mistake. Treat it just as you viould clover. Sow as early as possible. 15 lbs. of clean, "sound" sced, with ally spring-grain; barley for choice; cover it a little deeper perhaps than other clovers, rollit down with a moderate roller, and leave it to the mercles of the season. Do not run stock, especially sheep or horses, on it in the fall, and, before winter, ;itur it a fair dresstn_{s} of rough manure. Broadeast work is far better for this plant than sowing it mows. Hoeing lucerne, when it has been tried has, in our experience, always been followed by the plece belng ploughed up. After the second year, it should be harrowed in early Detober till the land looks like a fallow: you cannot lurt it, as by that time, the roots will have got down. at the very least. two feet in to the subsoll. Of course, the rich light loams are the best soll for lucerne, as the are for most crops, but the main point is a dry sub. soll. The roots are persistent foragers, and have often been traced down 12 to 13 feet below the surface; some say, from 50 to 60 feet, but that is a rather rash statement, though nothing is impossible. Lucerne cannot be overmanured. It should be cut early, and often. as its only fault is that. when the stem becomes sticky, cattle do not care for it : just like Hungarian grass. Mind the seed is "presh," or make an allowance of an extra ponnd or two to the acre.

DESCRIPTION. - Iacerne is an upright, branching, smooth peremnial, one foot to three feet high. Its leares are three-parted, each plece being hroadest above the middle, rounded in ontline and slightly toothed towards the apex. The purple flowers are in long, loose clusters which ate scattered all over the pinnt. The tipe pode
$(1$, b) are twistel through two or three complete curves. The seeds (c) are

LUOERNE-a b, SEED POD; c, sebd.
arerage about one twelfth of an meh long by hatf as theck. It is a deep eeder, sending its taproots 10 or 12 ect down in loose and vermenble soil,

LUOEBNE - trbeE tearb OLD
and has beea recorded to have gone down to the depth of 50 and 66 feet. When the stems are cut or grazed off, the stalk dies down to the very base, and new buds spring un on the upper part or crown of the root and grow.

THE WEATHER-Well! Four fee ot snow fell, at Montreal in March ! and it is snowlag now. April 2nd.

MUTTON.-Why should there be such a tremendons difference in the price of sheep in the London market? At the great Chrismas market, while Downs weighing it lbs sold for slx shilings ($\$ 1.44$) a stone of 8 lbs , the offal of Cauadian sleep of the rame welght only fetrhed 06 cents a stone !It cleariy is not owing to the size, so it must be the quallty of the meat $4 s$ with our cheese, so with our Inutton ; we made the former good by dint of hammerine at the makers, and i we hammer hard enough at the sheep men, they will have to see that old rains and ewes will not pay for exportation, elther alive or dead. The model sheep for the best Iondon (Westend) trade is, as we have sald a dozen times, a shearling wether, weighing Prom 64 lis to at most 72 lbs., ripe but not over fat, and of elther Southdown, Ilamphire-down, or Shropshire breed; , (ixfordshires are perhaps a shade too
heavy, but stlll they fetel a good price and are wellilked; b't the darker faces are always preferred. Here is a comir.on pussage in the Salesmens' reports: "Rest quallty wethers made $2 d$ per 8 lus. more money, but heavy breeds were a turn in fasour of the buycr."

WASIING SHDEP - As the somen for washing sheep will be approaching when this number of the journal reach as the subsertbers. It will be well to prepare for that importunt operation in thme, that is, not to be taken mawares luy any sudden change of weather. For ot course you will wash your sheep refore slicarlng them, and it is a couve ulence to have the barn cleared out and ready to recelve them in case it rains on the day appointed for that operation If It were possible to wash the fleece to advantage after shenring, the advoca les of that plan might be fustified in their practice, but it has been found that any system of washing or cleaning wool when shorn, results in a serious loss of welght and quality. Mr: Whe lett, the well known proprictor of the well known woollen mills at Chambly, told us, in 1862, that he had never seen wool come into hits place in such con dition as the 45 fleeces we had just ar ranged for M. Amable Demers of Cum bly Bassin. The ewes with their lambs were drlven, on the 1st June, to a brook and conflned within hurdles: a large tub was placed on the margin of the stream Into which the sheep were plunged, and it only took 2 or 3 minutes to wash each of them. After about a week, or so, the yolk or excretion of the glands had risen into the flecee; the ewes were then shorn, with the results above noted as to the condition of the wool.

PRICE OF WOOL IN DNGLAND What a change! "Lustre" wool, as it s called, is now worth 16d to 101 ad a Iound for Ifincoln flecees, while South down teg-wool, I. e., the first clip, only iftches 10\%d !

The following is by Prof. Wrightenn, of the College, Downton, Salisbury, Enghad.

Valde of the root crop

The estimation in which the root crop s held has suffered from the foollsh dea that it is nine-tenths water. It loes not apparently enter into the minds of these people that the turuip s only like other luscious veretation n this respect. It is not water, but vice of highly nutritive property. The urnip is able to fatten sheep rapidy, nd is, in fact, a cheap and wholesome food. It requires a certain amount of dry food, but turnips and hay are surficlent to fatten well-bred sheep, as 1 know by long experience. I am obll ged for the testimony of Mr. W. T. lawrence ($p .476$) on thils polut-that turnips are worth od. per sheep per week to let, besides the proft to the feeder. Now, as a falr crop of turnips will maintain 250 sheep a week, it is worth on thils figure 554 s . 2d. per acre without the profts of the feeder. of the value of turnips as food for stock we have abundant evidence of the lighest authority, which could be guoted if space allowed. The great polnt in favour of them is their entire digestiblity, so that if they contain only a small proportion of dry matter it is all of value. As to the water, it is doubt-
ful if it is just to consitier it in thas sight. Beer is fattening and contalns more water than turnips. Water is consldered to be fattening by many, and certainly drinking conduces to fatness, and no wonder, as the animal body is largely composed of water. It Is the beautiful combluation of water with the cellular mass of the turnip which Nature has contrived whell is the secret of the value of turnips. If the tumbly were artinchally reduced to dryness it would lose much of its value. We little understand the alchemy of Nature, und it is folly io state that a turnip is a poor rood because it contains 90 per cent. of water. As well m!ght millis or soups be stigmatised as poor foods, or eggs or beefsteaks, all of which contaln a preponderatug welght of "water". The amount of water, according to analysis, in wine or in any other juice ls not held up as proving that they are not possessed of certain propertles. "If water in a turnip or peacli is to be classed with water from the pump, we lose slght of the cunning lacorporation of water in all our most esteemed foods." Even the human brala is largely composed of water. Without doubt it is a cardinal ror to conslder that the water which forms an integtal part of the mass, as though it could be dispensed with and made good through the use of the bucket. In support of this let us think of the 'fattenlng propertles of young grass," and contrast them with hav. and such reflection may convince them who stigmatise a ton of turnips as little better than a ton of pump water.

JOHM WRIGHTSON.

CHEAP WAI OF FATrENING EOGS.

Clover-pasture - By this system the land is onsiched, and the following orops are plentifal-What mineral

manures to ase,

While on their tour of inspection, the farm of Mr. Tabot, of Bellechasse, was visited by the Judges of the Compen. tion of Agticultural Merit. This farme: fattens his hogs very cheaply; in summer, he gives them whey and a rum in a clover-field. The seeding of this consisted of 1 lbs of white, 1 lb . of alsike, and 10 lbs. of red clover. By the full, hifs hogs are half-fat, and only need :a little grain to finish them, and the following year, a capital crop of corn follows the clover. For clover has the power of assimilating the free nitrogen ois the alr, which is iound again in the roots, etc., of the plant that remain in the land, as well as in the droppings of the hogs, to which may be added part of the ultrogen from the consumption of the whey. In order to perfect the manure, phosphoric ach and potash I ust be added. whith can be done hy stupplying to each arpent 300 lbs. of mineral superphosphate, costing about $\$ 1.60$, and $1 \bar{y}$ bushels of non-lixiviated ricod ashes, worth about \$1.50.
This pasturing of clover whi allow of the fattening of a vast number of logs, but the finishing off must be done with pease or barley, rather than with curn. A shelter of some sort agalnst the hot sun of our summer will bo uceesary,-(5irom the French.).

Farm-Buildings.

PLANS FOR PIGGERIRS.

By Prof. Robertson, Dominion DairyCommissicner, Oltawa.

Fig. 1 is the ground-floor phan of the Figgery. The detalls of the walls, the flools, and the drains are shown in f'g. 111.
IV. There should be an opeaing in the
 mide of Inch-boards of good hemlock; for the introduction of litter. 'They from the shed, hortzontal plecrs of the arms.-(From the French.)

DLAN OF PIGGERY

this is, here, more durable than phe. should be furnished with good trab-, wood."c,c,c,e," are used, which act as A wood-floor is more wholesome ior \mid doors to keep the cold out. \mid buttresses. The two uprights "a. a," bigs than a lloor of stone or cemene. The fall of three Inches from the back of each sty to the drain that rums alons the passage and the trough, is meant to preserve a place perfectly dry for the pigs to sleen in.
is a langer piggery is wanted, it vill sucfice to lengthen the oue in the blan in the direction of the passage. In that case, Ω fall of 1 in 10 must be given lengthways of the piggery; in the direction in which the gutters empty.
Fig. 11 is the plan of the ground. floor of a piggery built in the basenient of in any etbet part or a barit

Fig. IV shows the details of the, sumport a wooden shaft on which are troughs, of the door which is hung above, fired the six arms " d, d," intended to of the step (marche-pled) that can be support the salls. Each of these arms raised, of the gutter, and of the passage. The door is to be keep in its place
by a long transverse bar of wood ly a holt.-(From the French.)

AN EASILT BUILT WINDMILL.

Windmills are often very useful on
Windmills are often rery useful on

EOON FOR MHACE-COWS.

Mr. Wilson of the Experiment-farm at Ottawa, recommends the following system of feeding milch-cows, the result of his experiments :
When millch-cows have attained their development, and are in cull milk, their frood should contain plenty of nitrogenous matter and water. Routs and illage, with an abuudant supply of highly coucentrated rood, such as linseed-meal, sotton-cake, etc., as comcomplements of lots of the best hay. led in this way, cons will give a rull yicld of milli, withoint incriasing of
dimbulshing in welght. When cows are organs of "eattle" aro not umbely to Caives, too, demand great atten- etarvatlon, will prevent her from disto be fatencal for the butcher while be astonished if, all of a sudden, the dyr tion, paticularly in the regularity of firing mulk, the proportion of meal foad on which they have soldy fen

 cxeupt thet, perbups the quatity of baciles of the sllo: it has convertei sila;e or roots may be lissencol. (1).
In summer, the haty and sllage may be replaced by pasture or sreen-folder crops. the rest of the mation bing ronstant.
or cows with a lembenry to fatten.

Fig. 2 PIGGERY BUILT INSIDE A BARN

should be dimbinshed, ama the non fat-i fewer Where \quad binlk at once, when weaning calves, but pipped of the tender plant, the sumformers be increased. ine no silaze is on be fomm, there by degrises,ath take care that the water隹 cathe for the jasture. They should, some. If you like to glve them a bitue rous experiments conducted by Ero. only beallowed a few hours rumat itst; exira-food when at grase, the best is a fessor Danbers, of Oxford, England.

 If yon are wise, it will long ago have erearred to sout that the digesure (1) No nease ? El.
 set in.
vally- ; the pmase will make the nesh (1) No werse ? El.
$\left|\begin{array}{l}\text { surater, } \\ \text { to le } n \text { goad cow, no treatment, exeepr }\end{array}\right|$ firmer and welgh hearler.
'TIR FALI-PLOUGILED STUUBBLLES will now be ready for their springtreatment. If you eross-plough on henvy lamd, beware of golng more than at most an theh below the fall furrow: no use brimetig up raw soll thls the of year. Some shigit additlomal depth must be taken, we suppose, to ste:lyy the plough, but the less the better.
alec "land after hoedecrons," and the less, if plougl:ed in the fall, should never be turned under agaln. The gather and harrows ate all that new be ased, whether broadeast or drill is the implement used for seeding. pease, jut in deep, aats and wheat too, but barley will bear shallower work. If pou have no seeder, sow on at welllatirowed surtace, let the seed finto the geound with the grublier, harrow agath, atal then, when the grain is up, roll. If no grubler, the sowing must of course be on the undisturbed furrow. and then some of the seed will be
year-mixed. on purpose with the " Stack sold, \$70." Where did this earrot-sed to show the rows for the "stock" come from? It certainly could horse-hoe, - swede-sonving would be hol proceed from the hens, as "all the down euller than it is. "The guality is eggs were sold." wot guite so good for the table as if hater sown, but the roots are so enormons that the welyht more than makes uf for the slighty inferlor guallty.

The followiag, from the "Country (ientleman," is not bad. The argument as to the respective value of hen and 1 orse hamure tallies almoatenatly with wr statement of hast monih. Hut there s one polnt to be observed : the sollds and ligulds of the horse-excretions must hoth be preservel. as, in the case ot the hen they are indilsible.

EDS C COUNTRY GENTLEMAN. A short time since inotled in a copy of lhe $2 x^{2}$ Amual Report of the NenJersey Board of Asriculture a paper bj

Next, he has made no allowance what ver for small, caacked and defective misalatele eges. My losa from this sucure has for the last go years arernged 3 per cent.
Then also, he has made no provislon for the aumail loss of hens by death. aceldent, etc. My hen's lives average years, so that I have to ratse $2 \boldsymbol{t}$ pur cont. ammally just to sumply the loss. After a hen is two gears old she decreases mphuly in her laying ; that also as to be taken into account.
The most remarkable statement of all
 necessitates 1050 bushels. In my expeilence 1 have foumd that an average of slightly lass than it pounds per day is all that 100 hens can eat, which is
lens,cousequeutly what maure I have fiom the horses is fully equal to, if not more viluable than, that fromb the hens. I can get all the manure I can rart from the towns aear me for $\$ 1$ per herse per year : during the war I mald as high as sit per head. Where does the $\$ 270$ in manure come from?

TRIFOLIUK INOARNATUM.

CHMASON-CLOVER-Is a vers pe. culiar clover in its hatht of growif. We have grown plenty of it in England. and the more preparation the land recelves, the worse the crop. The only treatment it recelves with the Sonth or Eugland farmers, is a thorough harowing of the wheat-stubble, as soon after harvest as possible, and a good heavy rolling after the seed is som. lith there is not much use in describlag, its cultivation here, as, eveu In England

Fig. 3

Fig. 4

This desiga represents in detail the arra: jement or tho food-trough, the hanging step in front or the trough, the feeding door hanging abora tho troagb, \&e Tho
 part of each sty.
buried an incl, deep, some tro inches. s.nd some not burbed at all. The conse quence of this will be that the grain produced will be of three qualtles. whith, in the case or bartior will be iuln to it as a sample of malting sturf.

Mandar-heaps, intended for roots, should be looked to and turned abour ten days before ther are wanted, the ontsides thrown into the midde and all lusnps liroken up. It is much easler to siread well made dung in the drills, during the busy senson of sowing roots, than dube that has to be diviled and braken up then.

The sooncr the "mangel" -secd is in the ground now the better. "Swedes." tco. mus be stivn to advantage about the $20 \mathrm{th}_{\text {or }} \mathbf{2 5 t h}$ this month. If ang one were to sec the monstrous swedes grown amoug duo carrots nt Sarel orerg
 11. Wyckoff, Groton, N. li, to which I wish 10 cm

Hens. average number.... (in
Eigs cach, average....... 3 ISS
Prlee per dozen, average... $32 y$ e.
3:5gs, net....................
Stock sola................... 70
Manure at nue ner hu..... oro
Cost of rood...............
Cost of rood............... Shin
lalior, is months, at इ\% . 3G)
Interest, 5 per c. ou $\$ 1600$.. 50
Let pronis.
$\begin{array}{r}1070 \\ \hline\end{array}$

sels 0

This statment when anairyed gires Sico doz cans at gluc. enual to sisos. rablela is the "whote produce" of the cro
just double what my hens eat: this'it is futile to attempt growing it North
 of 56 lbecach. Where doess he get his sary to say that the erimate of Canada :300 lushels from? He eertainly does is far sererer than the climate of that not feed It. Ay hens' houses are cienned countr. Inoerne. on well drained weekly and the maume saved car- loam, would be a far more certain Thllly: and each house of 50 hens pro- crop here than the crimson-clorer, atu dnces "one peck" of manare, mixed last much longer, the c. c. belag in anwith road dust and plaster, making 193E 1 aunl, and onls giving one cut, which is lieshels enual to 150 lushels for COn not of much ralue, its carliness: mad huns. 315 heus feed is four-fifths whear, eren in that qually I fucerne beats it : oller riarictics of grain, cte.
Now as to the value of this manun: I keep four horses of 1200 lb . each, and fird meh 16 lb. of grain and from 12 to 15 llb . of hay-just as much as they can cat, and thes are almags fat. This has fed is equal to Slb . of हrain, mak: ins an equiralent of If ll . of grain to ens: In aduition to this we angs, is hens. The grain fed to mg horses

veing almost its onls useful polut.

Honsehold-Hatters.

Greon-salads-sham-spinach-fashions.

Mans people living in the country do
rot take adrantage of what nature pro-
winter every one longs for somelling to tempt the apmette, and how whatly one halls the thrst salad.
In town this is expensive at lirst, and in the comentry not easily got. beople who are not prejualleed ak:inst it will alwass find a gool substitute in the Atadelion, when hathered soung they are very gook, eaten with satbal sabre.
Few greens are much better dan damdellons when gathered younar: cut them free from the root just under the surface, and wash in many waters to prevent stithass, hitwe nothing to do with them in bloom as they then are aulte bitter.

Lambs orampens. These are found in the early spring time fin swat abundance, neary ererywhre, bint more often romal the buidinize or where mamare has been it has an oblon: lear, they last gulte a lon: timer only the leaf and the tip of the phamt are tender.

If people would only take what ma. ture craves for in the spritug, there would be less alments to contend with The anmats show us a lesson in this by ammost thghting for the titst biadel 01 grass.
startlug from the hat which wats green trimmed whin amother shade of the same hended with very lltle colour of any other shade jacket and dress of uf my other shade, Jacket amb dress of
two shathes: the whole formhing a most I have grown a pot of grass for my |monshar costume.
 only to watelh, to see how engery it ssat style of dressing the hatio; a parwas devoured, bat the cat fonnd ithting down the front and the halle ood, and would stral a marela on me bronglit gute over the ear, is only an and tansh up the whole. I had a fern old fashion revived, though I never tejust dolus nicely :mad lookitus so pretty member secela; the bittle poke or tip of With grass growing round it as an onter | hair hehind now necessary to fasten the decoration, but pussy foumal it a dianty hatat on.
dish, and 1 could not he angry with her for satisfying ler cravings at the loss o: my blant.

Can we not take :a lexson from this and cat what we crave amb is zonel forl us, and can be got for the trou'sle of sathering.

HOW TO TRT ON SEOES.

There are spectal times and seasuns for the thinis on of new shates. A
langer pair of shoes is needed in summer tham in winter. It is always best
Bi, irs them on in the latter part of the
walk right into heallh. of course. there is no virtue in a dawding walli The slow and langula draging of one foot after the other, which some people "all walling. would tire an athlete ; it utterly exhausts a week person, and that is the reason why many delleate people think they cannot walk. To de rive any beneft from the exercise it is hecessary to walk with a light, elastic step, which swings the welght of the body so emblly from one leg to the other that its weight is not felt, and which frombees a hemblay glow, showing that the slugglsh blood is stirred to action In the most remote veins. This sort of walking exhllarates the whole body, aines tune to the nerses, and produces fust that sort of heathrul fatigue wheh cheourakes sound. restrul sleep.-From "Havi you Nervous l'rostration ?" in

AN EASILY BJILT WINDMILI.

The quickest way is to pull up the who used to do illustrations'for me, mum size. Activity naturally enlarges whole plant, strip of the leaves and ton being home from school for Fister, and treat just as you would sjimach. |amade me at counte of sketeles shewwhich it resembles a little in appearance but is of a paler colour. it takes a good lot to make a disli. tut will 1 n . found rers good catlus: they last much longer than the dandelion, hut are rot good for salad.
The greatest care must be taken in mashing them as they catch the dust casily.

GOOSEFOOT. Is mulher mant of The same species, and will be found in, and alout the same place as lambs, quarters, they all like plenty of goorl nourishment, hence the beer phare to look for them is near or on rich sell. they grow ang where. hint are only io le foumd in their prime unier gaml surroundings.
The leaf insembles the root of a goost hence its name, Grose foot: (1) and resy good it is, eat onls the leares, and ton of the plant, and buil and trent; just rike the others.
(1 , Ch Dejodum:

hem or makes them swell. Much standing temils also to entarge the feet. New shaces shmuld also be tried on over monderatelg thick stockings. Then you ran put on a zhinner zinis to case your feet if the shoes seem to be tight. It is renarkiahle what a diference the stockinats make. If they are too large or too small, they will be nearly as unromfortable as a pair of slimes that are too tipht. Xew shoes can be worn with as much case as oll ones it they are -stufferl to the slanje of the root with cloth or paper and mitiently sponged with hot water. Ur if thes piecta in joome particular spot a cloth wet with bine water and hald actoss the place will cause immediate and lasting re|icr. Milk applied onee a week with fa sott cloth fresheas and presertes proots sud shoes.

WALEING FOR HEALMH.

A settere table of ank hans an adjustahle zon, which ean le turneal over by His: removal of two peas. makims a high hark to the benelh, whase deressent is ulilizarl as a lanuseloda linen chaset.

A sextee table as settee.

These tables are in sreat demand there
window seat. One in a pretty studio of a woman artist in New-York was most artistleally treated. It was painted a dull green. The back and the lid of the seat where upholstered in an effective gold colored tapestry drawn over a padding of hair and held down by ghmp and gilt malls, making a most artistic seat, or tathe, as it use for elther wats regule chl. Another one was staned green, and on the batek and lid of seat was used mat tural toned hurlap, with stenclled gric thes in dark brown as a decoration.
These tables may be treated fin vari ous w:yys to sult their suroundings. It is sumpested in the Decorator and Fur nisher that one stamed the maturat oat and uhlolstered in green rep, turcoman curdures, harlap or denim would be must allacthe, or for green substitute
lownin in the same materials and fout on with dull brass nails, making an ef foctive seat for a hail.
Another. painted white and chameled, nould be charming in a hlue and white dining rown.l.photster in dark blue de sim wiht white nails, and fill with: number of protty pillows in various de signs of blue and white, and one of vi vid searlet to give a warm touch, which is needed in these coluiy decorated rooms.
The lovely liberty chinges in dark blue amd white, sometimes yellow, rel and white on bhes, are good to use on these settere, which are first painted black.
w. Pioligiman.

Science.

THE ROIHAMSTED FEEDING EXPERIMENTS. (Continued.)

Nitrogen in oxen-mineral matter in boasts-fat in shoop, \&:.- compo sition cf increaso.
Calculation leads to the conclusion that about one-sixth of the whole of the nitrogenoms matter of the collective offal parts of oxen, will, on the ave rake, be cousumed, but that the whole of the aitrogenous matter reclained as food from the ofral parts will fall short of the amount contained in the bones of the carcass. So nearle, howerer, will these quantities balance one auother,
 rimber tartass loouts be consumed, that it may be assumed that, of the to-
tat nitrogenous substance of the bodes tal nitrogenous substance of the bodles as, or very litule more than, is represented by the total amount in the carcasses, will be consumed. In the case or jiss, howerer, a larger prophrituin of the total nitrozenous substance of the lody will be consumed that in that of other zmimals: but, as the table shows, the jercentage of total nitroze uous substance is less and that of the fat much greater in the plg than in the outher animals.
lipon the whole, therefore, it would seem that the proportion of the consumid nitrogenous substance rill, on the aremge, be greater than its proportion In the total carcasses of the fatened animals. Such is pretty certainly the mase in our own country, but the celations are admittedly far otherwise in the Enited states, and it is, to sas the lenst, vers questionable whether the difference is to the aurantare of the consumers in that country.
Lut us now turn to the lower divl sinn of Table cs showing the rompast finn of the antire bodies of the nimale, which of rourse, represents the gross
this, therefore, that is of most interest to the furmer to consider in connection with the compositlon of the food expended in its production.
As was the case fa the carcussers, there is also in the cutire bodles at marked diminution in the percentage of mineral mater as the amimal matures: Judging from the results of the amaly ses of the ashes of the unimal boilles, it anay be stated fa geatral terms that about, or rather more than, 40 ier cent of the total mineral mater of the ans. mads is phosphoric acla. In the case of oxen and sheep nearly th per cent, and in that of pigs about 40 per cent, will be lime, white of potash, the ash or oxen and sheep nearly 45 per cent, and from 5 to 6 per ceut and that or piass lu S per cent, or uure.
Or total nitrogenous cumpounds, as well as of total mineral matter, oxen seem to contilin, in parallel conditions, a rather higher percentage than shecep, and sheep, rathet have thath pigs. It is seen that the entire body of the fat cair contained about $151 / 4$, that of a moderately fat ox $1+12$, of at fat lamb $1: 1 \cdot 3$, of a fat sheep 12\%, of a very fat one about 11, and of a moderately fatened pis also about 11 per cent of nitrogenous substance. The store or lean aninalas contilined from 2 to 3 per cent more han moderately fat ones.
The Agures show, on the other hand, that fat coustitutes by far the largest item in the dry or solld matter of the animals, especially of those fit for slaughtering as human food. Even the hall fat ox contalued about 10 per cent of fat, or more than of nitrogenous substance. The entire body of the store sheep also contained nearly 19 per ceut of fat, that is several fer cent more than of nitrogenous substance ; that of
the halr-fat old sheen 23 per cent, or the halr-fat old sheed 23 per cent, or more than one and one-jans times as
much as of nitrogenous substance; and ilat of the store ple also more than 2 s per cent of fat, and about one and two thirds times as much as of nitrogenous substauce.
Of the fattened animals, the entire oody of the fat ox contained rather more, and that of the fat lamb rather ess, than 30 per cent of fat ; that of the fat sheep 35% jer cent, of the very at sheep firis per cent, and that of the fat calf, howerer, contained
ather less than 10 pir cent of fat.
Thus, the eatire budies, eren of sture or lean animals, may contain more fat han nitrogenous compounds, while those of fattened anlmals may contain sereral times as much. That of the fat ox contained more than twice as much, that of the moderately fat sheep nearly three times, of the rery fat sheep more tian four times, and of the moderately fattencd pig about four times as much fat as aitrogenous substance.
In conclusion on this point, all the experimental erilience concurs in showing that the so-called "fattening" or animal is properls so designated. During the fecding or fattening process, the jercentage of the total dry substanec of the bods is considembly increased. and the fatty matter aceumulates in much larser projortion than the nitrogenous substance. It is evidert thereTore that the lacrease of the fattening animal must contain a lower percentage of nitrogenous substance and a higher percentage of bolh fat and total dry substance, than the entire borly of the anlmal.
It is obrious, however. that the results of the analyses of the 10 animals do not suppls data directls applicable for the estimation of the cumpesition
tlons in which thes are dealt with in practice, or of their increase over any
glven period under varylag condiluons of feedlag. Accordingly, we have cous tructed tables founded on the analytica! results above referred to, showiug the probable average percentage composiHon of the different descriptions of amimal, cach at eight gradationary polats from the store to the very sat condition; and the factors thug obtaln. ed have been applied for the calculation of the composition of the fucrease in a number of cases of ordinary practice, or of direct experiment in which the weights of the anlmuls at the commencement and at the conclusion of a fixed perlod, the general character of the food they consumed, and their hinal condtion were nuore or less fully known. It is aduitted that these eight conditions do not cover all the varlations, of composition occuring in actual practice; but at the same ume there can be $n o$ doubt that by the and of such factore the feeder would be cuabled to calculate with sufficient approximation to the truth for all pactical purposes, the composition of the store animals he buys or sells, and of the fat ones he sells. At any rate I belleve that the knowledge enables us to provide.
it is impossible to go into any detail lure, either as th the composition of ti \cdot animals at the different stiges or to the estimated composition of theirincreatse, but the results may be briefly ummarised as follows :
In the case of oxen the figures repreinning the composition of the animals at diffenent stages of progress show ratat the percentage of mineral matter manged from $\overline{5.15 \%}$ in the store to only 0.43 in the very fat condition; that of al: ultrogenous substance from 18 in the store to only 13.1 in the very fat it:te; and that or the fat increased frem 11.7 In the store to 37.4 in the very at condition. Again, the percentage of iotal dry substance increases from only \approx. S in the store to \bar{f} in the rery fat crindition. lastly, the percentage of ariter decreases fr
The parallel results for sheep show bat the percentage of mineral matter ruiges from 3.e.5 in the store to only 2set in the very fat animad; the nitrothe sture to vills lu.b iver per ecat in rery fat cond:tion, and arainst these wdictions the fat increases from 14.5 fer cent in the store to $45 . S$ per cent in he rers fat condition; and the total dry substance from 33.2 per cent io 19.C. yer cent. There is, therefore, a ower jercentage of total dry substance in the store shecep than in the store ox. awing to the less amount of mincral sheep. There is, on the other hand, a higher percentage of dry substance in the rerg fat sheen than in the fect fat or, owing to the higher perceninge of fat in the sheep. Iastly, in the sheep time percentage of mater diminishes
from the carliest to the latest stace from COS to onls $3 \overline{5}$.n
The results relatine to the composition of pizs slowed a reduction in the rercuatare of mineml matter from 2.03 in the store to onls 1.14 In the rers fat condition, and a reduction in that of sitrogenous substance from lis. 4 in the tere to 0.5 in the rery fat state. But, instend of a redaction, there is an in. crease in the pereentage of fat from is. 6 in the store to 51.6 , or to more than hate the welght of the hody, in the rery fat
crididition. and there Is an tnerense in
fiom 33.0 in the very fat condition, and (\cdot (cluding contents of stomachs, etc.) a reduction: in the percentage of water ircim 5 es. ${ }^{2}$ to 34.4 .
It may be observed that In no case do the percentages of toma ary substance and of water make up 100; the cilfference belng represented by the contents of stomachs and intesthes, the amounts ot which found in the antmals actually amalysed are taken as the basis of the estimates for the at:mumts in the other conditions, just as in the case of the other constituents of the body.

I will next summarise very briefly the results of the apmitication of these cata :las to the composition of the ambunals in different condlions for the parpose of cotimating the composition or their increase, in yassing from one c.rulition to another.

First, referring to oxen, the composition of thelr increase during the feedinis process has been estimated in the case of the reconded results of actual practleal feeding, in some cases of large numbers of animals, and over conside:alle neriods of time. Other cases have leen those of results obtained at rothamsted or under liothamsted suremntendence, mostly in direct feeding cincrimeats, but sometimes in the feedins of animals in the ordinary practice ot the farm.
leviewing the whole of the results, the indication was that the composition oi the iucrease of moderately fattened oxsu during a final rattening period of several months will contain about, or a litul more than, $1 \neq \mathrm{p}$ per ceut of mineral nuater; sellom more than 7 to S per cest of nitrogenous substance; and scidom as little as 60 and generally near ci per cent or rat; whilst the total dry substance ot the increase will generally rumge from io to iv per cent. In the crase, however, of oxen fattened very cu:nis, and the reeding penod extending over a nuth longer time, similar calculations lead to the conclasion that 1l:c srowing aud fattening increase of such aninazls may contaln perhaps 24 per cent, or more, of mineral matter, paniust only about 13 per cent over a linuited ham period of mare purely rattening incrense: about 10 per cent of nitrogenous substance against only I to S per cent in the onls rattening inucasc, and perhaps onls from 50 to $\overline{0}$ ins cent of lat against from 60 to 60 per cent in the more exclusirely fattenEb: increase. In fict, white the grow. ratcening increase rould consist of about two-difrds dry substance and one-third water, that of the more of Doarly thmerourtise its setatate ared onls about one-fourth mater.
Similar results relating to sheep icad o the sonclusion that during a final rexiod of some months of reeding on now fattening food their increase will gererally contain not less iman 2 ge: ernt of mincral matier, and siequently wore, that is, distinctly more than in the case of oxen, the quantits largely drjending on the anount of mool. Of nitrogenous substance, the anal ratten. -no increase of sheep will probably seliom contain more than 7 per cent and reguently somerrhat less. In other nords, notwithstandias the large amount of nitrogen in the rool of shecp, their fattening increase will proknbls zenerally contaln less nitrogenous substance than that of oxen. Dn the other hand, the Increase of well fed and moderntely fatened sheep will Eencrally contain nearly and some Lines more than 70 per cent of fat
cout in the casc of osen ${ }^{\text {and }}$ in tho case of very fat shere) the precoutage of fat in the lacrease may even reareh $7:$ per cent
 Hatt the mercase of lilecratly fed amd taciratcls lathenal slicep wite meteral
 Sodslst of ahout : gles cedat of mational

 to st pur cent of total dry sutnstance bitite the merease ofer the pertobl of ceressive fathening maty contain from Tu to is pur cont or fat ami from $\$$ to sin ine cont of total iry substance.

FOBMATION OF SOILS, ENC.
What makes tho soil.-Effects of rain. -Of frost.-Mechanical division of soils.-Analysis of soils - Organio and inorganic.-Albaminoias.

As the farmer is a manofacturer, s) it is necessary that ho have a raw material to work apon. In his case the raw material is "the soil"; and ou of it, the farmer's daty is to call into life the various finishod prodacts which he carries to market in his carte, or which walk there on their feet.
The soil is the surface of the lard, and is of raried composition and of different depths. There are clays, loame, and eandy soils; in some places the parent rock is almost at the sarface, in others you may dig fur feot or yards, even, withont reaching it. Thae, on the soils of the South of England the plongh in many places brings up the "chaik" whereas, on the neighboaring "Opper green 6and" wo frequently find three feet of fine loam beforo the rock is reachod.

Bolow the soil, by which, in general, is meant tho dopth of the ploagh forrow, lies the subsoil, and it is apon the quality of this that the quality of the soil depends. Now, all soils are formed from tho breaking ap of rocks; not neceesarily of the subjacent rocks, for sometimes the matsrials have boen transported for miles by water and other agents, bat it may be takon as an axiom, that tho ' paroal of koil is rock" Bear in mind, plases, that "clay," when found, 28 in tho Lon. don and Paris beds, in "conches" of great dopth, is considerid by goolo giots as "rock"
From these rocks, of rarious degrees of hardness from the "Serpentine" of Cornwall to the "Bag " of Kent, so is aro formed by three aclive workers: one visible, rain ; the other two, carbonic acid and frost, invisible.
We all remember the old proverb: "Constant dropping of water will wear awry a stone." As the wator falle, in rain, upon a rock, it disolves parts of it, and carrying those parts afray, givee place to the action of foture rain after the same fashion.
Referring to the lecture on Metoorolony, in the number of this Juarnal for May, 1895, you will see that the air or atmosphere containe, beoides oxygon, and nitrogon, a small proportion of carbonic acid. Now rain, in fall. ing through tho air, catcheo, as in a not, some particles of air, and esrries them down in its conrse to the carth. Tho oxygen gas, finding itsolf in com. fortable quartors, immodiately makos aoquaintance with itenow ncighbours, and finding among them somo con. genial friends, sots itself to worls to
(chomiral) comb.nations with thom: which extremely intimate social intercouree onds in the old rerident's entire tranvformation. Carbonic aoid, too, being present in tho rain, dissolves matters which pure water woald havo left untouched. Thue, in process of time, holes are formed in the ruck, and these become larger and largor, oxposing freth sur facea to be acted apon by renewod sap. plies of rain.
And now the most mighty agent of the three sots to work. Frost, God's plough, as it has boon aptly tormed, finds a holo in the rock filled with wator : as this water expands by cold it increases in sizo, and the particles balk of wet rock are pushed apurt to make room for the water which is freezing. When the thaw saccoeds, the rigid bands relar, and parts, sometimes large sonetimes small, of the rock fall off, and the same agoncy continuing, are gradually broken qu and pulverised. Thus, water, with its associated gases, and frost, abrade our hardest rocks; the lowest forms of vogetation, finding food propared for then, seize upon the opportunity, and their rootlets, penetrating the nowly formed soil, immodiatoly proceed to perform their daty of offering this food to the digestive powerd of the plant. Dying, when its course hay been run, the which in their turn die, and rhas, by a species of gicen rnanuring, decayed vegetable matter is added to tho soil, which by degrees becomes fitted to supply the wants of the higher forme of vegetation.
But, though rocks are, almost in rariably, tho primary sourco of soils, we must not imagine that these bave besn allowed to remain where they were first formed. Wore that the case, there would be little difference betweuz the soil and the underlying rock, except that tho condition of the former would be finer, or mors broken. Many a wonderfal change has tuken place on the face of our globe: soils have been washod away from their parente rocks, and, mixed with the constituents of nther rocks, have boen deposited far from their original sito in somo distant valley. These are the "allavial" soils, and fortanate is tho man whose fasm is situated on one of thom.
"Peit "is aboat the onig exception to our general rale. It is formed al nost entiroly of vegetable matter which has grown and docayed in the place where it is found. Peat ofter contains 25 mach as 97% of rogoteblo matter, consisting of aguatic plauta and mossos and is generally foand in hollow places where the wator is dammed bsck Growth succoeds and dies away, its abundance dopending apon the supply of water; decaying mattor accamalates, and at last tho bod of pent beging to show its hesd abore the wator; then, tougher, woodior plants :atablish themselves on the iop of the peat, giving that decoptive bard-looking surface to the bog which bas led so many men to a suddeL death. (1)

Mechsnical division of soils."
Tho classification of soils is simplo enoagh ; sands, clays, and loams; with their subdivisions, as sundy loams, slay loams ; and the pocaliar oncs, as chalk soils, which neod not tronblo ns here, 35 wo havo none. I wish we
had, for they aro very jolly zolls to farm ; nerer too wot to ploagh, norer so dry 23 to parch tho crops, and they sait i hoop to a nicoty.
(i) In 1831, ithe writer had to bn dragged ou: of a peat-bog, in Sonth Wrles, on out cel-dishing.

If any ono thould with w mako a " meohanical" analyais of his soil, ho may prooeed as follows: With a вioro sopurate the coarser part, stones, \&o., and dry tho fiuer part carefully Tako, say, 200 grains of this and mix th.roaghly with a half-pint of wator, ehakine well for a fow minatos. Lot the mixtare repuse for a minate, or so, to give the हand a obanco to go to the buttom, and then poar off tho maddy wator into anothor vessel - poar quiokly, and if you think some clay romaine with the eand, wash again and procod as before. You have thas got the two sabstances in two vessele, and when the super-natant water, which will soon olear itself, is poured off, jou may ${ }^{2}: y$ and waigh both sund and clay.
The sabjoinod tables show in what proportion the two materials, sand and olay, aro generally foand in our soils :

Namo of Soil \qquad
\qquad of Sand 80 to 100 40 to 60
Clay.. 40 to 20 Agsin, $_{\text {Losms." }}$ for the discrimination of

I do not think that on this side of the Atlantio wo have any real clays, at least, I have never seen any tising stiffer than a clay losm, which, in.my opinion is the most valuable of all soils, as "with proper dunging and caltivation" it becomos tender and friable, very retentive of manure, and will grow anything you liko to ask it, if, only, you a:k in a prorer manner.
Our Oxford clay, in plo ighing which wa have yeen four powerful hordes "stuck," has no equal hero.
You see, then, that what we have been in tho habit of calling "l light land " is hegvier than we have thought it; clay being light takes longer to sab side in the experiment we have bien trying than the sand, which sinks im. mediately. Thas, when the coarse of a riser is suddonly intorraptod hy any barrier, wo find along its banks, at the highest part, gravel, lower down, sand. and lowest of all, olay, as you may seo any day at Chambly, tracing the Richolien from the Bassin up to

' Yulo's 13ridge."

"Chemical analysis of boils." -hisisa very different sort of thing, and wo do not inteni to troablo oar rexdars mooh with it. Oar own opinion is that its stady will, oventaally be of tho great ost possible ase to azricaltare, bat, si prosent, thore is clearly eongthing wanting which nobody soons able to sa,ply, viz. the differonce of plant food in an activo or passivo stato. For inetanco : We do not beliere any chemist can toll, from an analyois of a partica. lar soil, whether "potseh" will, or will not, benefit that soil. However, num bers of the best men aro working away at the various questions involred, and they will sooner or later, arrive at a oonclasion.
Wo all know that soils consist, of wo parts : oac part which can be Tho part that is burned does not go oat of existonce by may meane, it is only seat off in its gaseous form ; this is the "orgsnio" maiter, the remaindor is the "i: organio" and remains bo-

Inorganio Muttors in soils.
Silica. Phosphorio Acid. Lime. Car bonic Acid.
Sulphuric Acid. Chlorine. Alumina

Aminonia
 Potash.

Soda.
Magnegia.
Oxide of Irun.
Thure are other inorgaio mattore fond in tho suil, bat tho above are suffioiont for our present purpose.
"Silica" or "silioic acid" plas as vo ry important part in the soil. It forms a groat proportion of sandstone, and ontors largely into the composition of granito and other cryataline ro,iss. With soda and other alkalies, or with an alkaline earth, it forms "silicates." Clay is a silicate of "alumina," and the fertility of olay soils deponds very much upon the presence of a peculiar furm of silicate of aiumina whoh we will try to oxplain, thongh in the of the nambers of the journal of the absenco Royal Agricaltural Society in which Professor Way gave his dis covery to the worid, we fcar we shall make a messof it:
To the bost of our collection it was his : There exists a class of bodiee which way calli'donblosilicates." Thus a silicsto of ulumina may hava part of its alumina ropla;ed by sn equivalont quantity of lime, soda, polash. or am monia. So we have a silicate of alumina and lime, a:other of alamins and potash, and again one of alumina and mmonis. All these deablo silicates are of grest use to our orops, and the strangost thing eooms to bs, that alemina itsolf does not ontor into the composition of our plants, but contonts itself preparing their food, and handing it to them when it is resdy for their ase. When wis come to stady the " liming of land " we shall see more about the value of these doable silicates.
"Paosphoric Aoid" is, wa may bay, one of ho most important constituents of thesoil. It entero in !arge proportion in:o the formation of every one of our cultivatod plants, and forms a groat part of tho eloleton of every animal. This sabstance is prosont in no soil in vory great quantity; our most fertile lands sel lom contsining more than 2.5 per cont, i. e one part in two handred. The "organic", or "barnable parts of our soil are. as wo have seen, gassona in form. They consist of substances which have grown under the indeence of animal or vegatablo lifo, and haro thus become "organized" aspart of aome tiving plant or animal. Porishing, as choy do, tho inorganic mattors which had formod part of the animsl or plant aro addad to the mineral mattor of the eoil, while the orgazic matter forms a series of substances which prsctioally giold to the soil-Carbon, with Oxygon and Hydrogen, in varions forms of combination; and Am monia with othor nitrogenoas mattera.
The forms which theso mattors at same are varions, bat the chomist cad dotect them nulor all their diagni: e日, and the knowledge thus obtainol ouables us to oxtond our clasification of soils bayond the rosalta obtaiaed by our "moehanical" analysis. Thiodotermines whether a soil is a sand, a olay, or a loam, bat "chemical" analyais dotormines whother it is ca'carioous or pesty, that in, rich in lime or in veget. ablo remaio.
"How plants feed - Wo have only ono mouth; a plant hasa million, visiblo odly by means of a mio osospa. Piants, howovor, do not eat with those tiay moaths-they only broathe, and drink, like a little child, whose onig substance is taken in a liquid form: it is noceasary to tho aubotance of evory
plants than its food be diecolved iti
water. The firat meals are contained, in a solid form, in the seed itself. Take a for graing of harloy steoped in water and keep them warm and damp - you will soe in a few days that the roots will start from one end, and then tho 'plumule," or greos will sta' k, stait from the other. These cinld not come into life when dis ; but when the food in the grain was liquified and becamo capable of giving nourishmont, the plant immediately took advantage of it, and pat forth its infant roots, gra dually imbibing all the store, and thon, in our case, perishing for lack of further food.
Bat had the grain of barley been put into the ground, by the time the reserve of nourishment in the grain was exhaustod it wonld have grown sen smed to its onvironment, and conld have fonnd its way to obtain supiort from the carth itfelf, until its leaves bad surang forth from the plamale; then the myrisd little zonths on thy leaves would hare gone to work and added a third cource of food-the air-to the other two-the ceed and water. It is worth anybody's whilo to go intoa "malt-house" and watch the way in which the grain behaves from the first appearance of the root antil the "plumule"or"acrospire"' hasgrown half or three quarters of the way ap the back, when the "malster" puts it on the "kiln" to etop its growth, lest the green jeaf should escape and begin to feed upon the sugar formed in the procers.
"What crope are made of."-Wo have feen that every plant is mado ap of two sorts of materials : one sort dis tingnished as organic, the other ad inorganio; whereof, if any vegetablo matter be carefally bornt, the former vanishes, the latter remains, constituting tho sahes The ach left bohind consists of mineral matter ontirely, and on being sabmitted to cheminal analyeis, is found to be a mixture of serara' rinds of substances, the proportion varying in difforent sorts of plants. Some varielies of plants contain more of one material than others, and eome plants contain more asin than others. The seed and the straw of our grain crops, for instance, contain very different proportions of one of these inorganic matters, silica; but at all ovents, every ono of the substances in our list of inorganic matters is taken op by plants and worked ap into their etructure, except "alumina, which," as wesaw, seoms to be a soit of agent to presentiho food to the piants in an acceptable shape, and not plant food at all.

The "organic" matter, we savz, when the plant was bornt, flow off in a gaseous form; this cnnsists of "carluon" with the olemente of water, vamely oxygon and bydrogen "anid-makez" and " wator maker"; ard ammonia and other nitrogenous matters. These exist in plants in a great variety of forms, some easily recognised in one place, bat riterly difforent in appearance in another, and they have beon divided by ecientifio men into two classes; "nitrogenous" and "non-nit-ogenous." The compounds containing nitrogon Fou will alwaye know by their namie invariably onding in the letter "n." Thoy aro principally these: "Albzmen Pibrin" (glaten); "Cas6in" (legamin). They aked to be callod "Protain compounds," from their fro quent obange of form, bat "nitro genots" is a more onnveniont, be oanse lows fancifal, torm.
The "mon-nitrogonons aro Starch Gum; Sugar; Cellaloes" and "woojy "fibre; "and "Oil." The difference botween the groaps is simply this ; the non-nitrogenous bodics aro compos od of carbon; hydrogen, sud oxygon, the
nitrogenous group contains nitrogen in addition to tho carbon, hydrogen and oxygen.
" 8 tarch" is a white granular body, very abandant in grain and putatoes. If you cover a tumbler with a piece of fine maslin or cambrio, and wash a littlo wheat flour on it with a stream of wator gently falling an you wash, in a short time the water which reaches the tumbler will become milky, and on boing allowed to ropose for a short time will deposit a white grainy substanco : this is starch. On the maslin corer will be found a glutinous mass, liko soft strings of India-rubber; thisis the "glaten" of the wheat.
"Gun" youall know by sight-some of yon, donbtless, by tasto-it is generally in a liquid stato in plants, but, oxuding throngh a broken part of the bark of trees, becomes hard and translacid.
"Sugar," too, is found in great quantity in a liquid form in the cane, sorghum, sugar.beet, \&o., but it is also present in our caltivated crops, even when not in safficient abundance to be separated for use. Flowing through the plant wich the sap, it promotes growth in mauy important ways.
"Cellulose," or cellalar mattor, is so called because with it the plants are bailt up. When in the incipient state it is tender and fragile, bat when old it becomes hard and strong, and at last becomes "t woody fibre. This is the change whioh takes place in the passage of young grass into over-ripened hay. All these substanoes are very much alike in composition, and some. time pass from one form into another, bat it is worth romembering that, although the quantity of carbon varies slightly, the woight of oxygen is invariably eight times the weight of hydrogen, and this one of hydrogen to eight of oxygen is-water. Thus, any of these non-nitrogenous matters may be ropresented as made up, in different proportions of carbon and water, 28 :

Carbon. Wator.

50 lbs . with 50 lbs make 100 lbs of woody fibre.
50 lbs . with $37 \frac{1}{2} \mathrm{lbs}$. make $87 \frac{1}{2} \mathrm{lbs}$ of humio aciu.
50 lbs . with $72 \frac{1}{2}$ lbs. make $122 \frac{1}{2}$ cane sugar, starch or gam.
50 lbs . With 56 lbs make 106 lbs vinegar.
And, do you ask how woojy fibre for instance, can be formed from carbon and water ? πe answer, thas :

Wheress the root of the plant is ooniinually employed in sacking in liqnid food, the million months of the leaves are occapied in inhaling gaseous food. Carbonic acid is composed f carbon and oxygen: all day long the leares are abeorbing carbonic soid from the air ; the plant appropriates the carbon and rejects the oxygen Wator aboinds in the exp of the plant hence water and carbon are both abandantly present in the rores or veesels of the green leaf. Now as woody fibre consists only of carbon and water chemically oombined, it is casy to 800 how, when these mattors meet in the leaf, woody fibre may be prodaced by their mataal combina tion.
The three prinoipal nitrogenons bodios wo montioned above, Albumen, Fibrin, and Casein, are very like one another in componition. They are sometimes called "albaminoid"" from thoir loading repreeontative, albumen, whioh ocours in a nearly pare stato in the white of egg. Glaten oocurs as wo know, in wheat, and is lergoly composed of fibrin, an albuininoid mot
with in blood, from whish it oan be soparated by gently beating the blood with a fow tw.ga. Small threads, or fibros will adhere to the twige, and will consist of the fibrin of the blood. The value of foods depends greatly on the quantity of these albuminoids they conts.n. "Casein "occurs in the curd of milk, and in peaso and boans, whon it is termed " legamin," from these plants bolonging to the order " legamino: 0 ". The following tables will show how little these albuminoids differ in composition from ono another : Albumeu consists of :-
Carbon \qquad
Hydrogen
Oxygen with Phosphorus and
Sulphur
2224

Vegetablo fibrin consiats of :-
Carbon.....
Hydrogen
545 f
Nitrogen.
...................................
Oxygen wi
Sulphur.
1572

$$
2282
$$

10,000
Wo hops to resume this subject nezt month.

COMPETITION OF AGRICULTOBATJ MEBTT FOR 1896

NOTICE.

The Competition of Agrioultaral Merit will be held in 1896 in the conn ties of Bagot, Boauharnois, Brome, Chambly, Cbiteaugasy, Compton Drammond, Hantingdon, Iberville, Laprairie, Missis zuoi, Napierville, Ri chelien, Richmond, Ronville, Shefford Sherbrooke, Stanstead, St-Myacintho St-Jean, Vorcheres et Yımaska.
In accordance with the regulations of the Connoil of Agriculture, all those deoirous of entering into this competition must file their entry in the Dopartment of Agricaltare and Coloni sation on blank forms that will be sent to them on demand by that Depart ment

Daring the last year or two, certain persons asked the judges to inspect their farms after the competition had been opened, ander the pretert that they were not aware before that the competition was to be held in their district.

We are anxious that in fatnre, there should be no misanderstanding on this point, so no entry will be received aftor the lapse of the delays fixed by the regalations of the Coancil.

The "Laurtats" who obtained tho silver-medal and the diploma of The Highest Merit, in 1891, mast not furget that, this gear, they aro entitled to compete anew for the right of winning the gold-medal and the diploms of the Higheet Exceptional Merit. Those who, at the above epoch, only won suffioient marks to entitle them to the bronzo-medal with the diploma of Groat Merit or of Merit, may likewise compete again this year.

Prosident: His Grace Mgr. I. N. Begin.

Genoral Seoretary: Fend. Audet,N.P.
Troasurer: P. G. Iafrance, Cashior of the National Bant.
Farmera, Agricultural Clubs and

Societies oan be sapplied with every thing thoy want, viz:
Pigs ${ }^{\text {i }}$ Chestor, Borkshire, Yorkshire, \&b., \&o.
Cattle : Canadian, Ayrshire, Jersey, Durham, \&c., \&o.
Sheep: Sirropshire, Lincoln, Ox ford. Cotswold, South-down, \&o, \&c.
Fertilizers and agricaltural imp'o monts of overy kind. Send in your order at once for feod catters. Farm products of all kind sold for onr mem. bers Informations of all kind given to membors

Mabi lane: Prices current; April6th
Whisat, per 504 lbs. ; British s. s. White................................ 2729 Rod.................................. Barley, foreign 2628 Barley, foraign
Malting English 1644
Grinding................................ 1621 Oats, English per 8 bushels... 1529
White pease................... 3236 White pease...........
robmion.
Wheat-Manitobs............... 2728
Canadian white pease......... $27=$ Canadian White pease.......... 27
London Cattle market, Oct. 14th :

Milch cows, per head.. £15 to £23
BEAST.
s. d.
$\begin{array}{llll}\text { Scotch............................... } & 4 & 6 \\ \text { Herofords per stone of } 8 \text { lbsi.. } & 4 & 4\end{array}$
$\begin{array}{llllll}\text { Herofords per stone of } 8 \text { libs.. } & 4 & 4 \\ \text { Wolph (runts) } & \text { " } & \text { " } & \ldots & 4 & 2 \\ \text { Shorthorns } & \text { " } & " & \text { " } & \ldots & 4 \\ 2 \\ \text { Fat cows } & \text { " } & \text { " } & \text { " } & \ldots & 3 \\ 8\end{array}$
6KIEP.
Small Downs
Half breds and

Scotch	4	$"$	\ldots	5	6
Lambs	$"$	$"$	\ldots	7	10
Calves	$"$	$"$	\ldots	5	4
Pigs	$"$	$"$	\ldots	3	6

butitar.
Freeh, (Finest factory) per
doz. lbs....... 1114
English Dairy-butter, freeh.... 1012
Irish (croamory) 112
Danish 114

OEIESE.

Cheshire per 112 lbs............. 7276
Choddar, finest 8666

BAOOA.

American........................... 48
Irish, small........................... 100
Hax, per load of 2016 lbs.....
Prime mesdow..................... 84
clover...................... 90
Straw, per losd 1296 lbs....... 40
Best 40
Hops from 20s. to 70. per 112 lbe

Pricos of Figes at Calina

Present prices for prime pigs, in lots of not less than 10, on rail within 100 miles of Calne:-

Stores.	Thickness of fa any part of tho bach	Pi
Auy pigs oulside these limils of their value		
Halfotrack- 18 pig'. Whol track- 25 pigh Cuas \& Tros Haleis \& CO		
Inmited,	lino Wilte Ring	

(1) Mosers. Harris \& Co. do not soeap 10 Fant only fol an inch on the back as Mr. Laing does $1-\mathrm{BD}$.

The Dairy.

ADVIOE TO TEA INSPRCTORS OF

 SYNDICATES FOR 1898.
Ex. of syndioaton '95-drought of '95 bitror woeds-ohoese-swalling mi-arober-araozed chesse-atamping choeso-tomposature of provinos-butter-foddor-oheese.

We condeuse the following remarks of Aousteur J. C. Chapats, Aest. Dominiun Datry Commassioner, as con tafined in the dipril number of "Le Jouranl diagriculture," ou the duthes of the luspectors of Sy ndicates. Wo recedved the original tou late to hase thate to thathslate the whole.

- There are two sjeceial facts that were remarkable in the last season: 1 . The exhibition of damy-products at sontreal ta september; 11 . the great drought Hat prevailed thoughout the entire season orer the whale province.
At Chitago all checese that got 90 marks out of the 100 , won a prize, and at Montreal, hast fall, the average of marbs accorded to the cheeses of the syudicated factories was so. 6 , so that they were all very hearlyworthy of a prize, though they were by no means pithed specimens of the best fatetorios as were thoseat Chicago. If all were hot so good, in was due to a simgle bynulc:ate, whose cheese lost about 20 p. c. of poluts as regards "aroma." As it is supposable that the 13 syndicates, which did not exhibit, were induced to refram from showing because they felt they had no chance of winning, it is fair to conclude that onethird of our sactories have a great deal to do before their products can be called tirst-rate. And as it was in the aroma uat the chief defect lay, that is evidently the chlef point to te attended to. And whence does this defect aribe but from bad milk? Hence, it is chear that the "rirst advice" to be given to the Inspectors is that they should look carerully after the milk; make, them selves, a minute iaspection of it at every onfortunity; iustil into the minds of the makers under their ju risdiction the iden that the wat-hing orer the mill is one of their most inportant duties; as well as to press upon the patrons the necessity of producing only good willi and the best way of ensuring its gooduess.
SEASONS OF DHOUGHT, like the last, have a great tendency to cause cows to give bad milk. Pastures dried up, but little grass anywhere : these things lead the famished cows to pick up axything, and thus they are driven by hunger to devour many hinds of weeds that they aroid at other times, suchis as the "bitter ranunculus" (buttercup? the "wart-wort," and divers weeds of that bind, whence cone the injuries the milk sunfers, such as reducss, bltterness, viscosity, premature souring and curdling; most of which evils caused terrible complaints last season. A list of these weeds has tren drawn up and will be distribued to the syudicated factories early in the ensuing season.
EERR FEUDENREICH, a writer on "microbes," tells us that when cows are attacked is infammation of the udder, it develons in their milk a microbe that causes cheese to swell during its ripening.
Mrakers, then, should recelve lastrueUon from their inspectors to leeg the patroas who have cors aue to calve in May and June, to Fatch carefully orer
them, so that no milk be brought to the factory that has been glven by cow whth an Intlamed udder:
A remaris was made, by one or the jualges at the bxhiblllon, that there was a good deal of "cracked cheese," that is, where the top or bottom of the cheese was split or burst. Ilhes fault was not much attended to till hast season by the trade. But, in thas of depresslon, as the present, the buyers of dat-ry-goods try to plek out faults of any kind that they may have an excuse for low bids for cheese really of good guality in sonte of apparent defects.
And, now, for my "recond phece of abvice" to inspectors: how are "crackcd' cheese to be avolded:
THE Calses That provuce HHE FAULAT--Une of these is that the cheese is allowed to get too cool before belng put lato the mould. Another is, that the pressure is not increased in regular step by step degrees, particularly when horizontal presses are used, which always sequire more atteation than vertical presses. A third anuse is the negligence of some makers, who do not carefully wash-who some times do not wash at all-the cloths put on the checse, all the the they are in the drying roou : a very risky plece oi economy.
The will tor the marking or stamp uns: of cheese is now before the Honse at Ottawa, and will probably pass into law. One part of the duties of the inspector will then be to study it thoroughly and to see that it is carried wnt in every factory under his surveilfance. The date of the making is to be
stamped on each cheese, and this, it is latred, will injure some of the factories situated in the Northern part of the province, such as the counties of Ot tawa, Argenteuil, Terrebome, Montcalm, Joliette and St. Maurice, and in all the countles to the diorth and East or Quebec, where, even in July, the t..ights are mucla cooler than in other re fions of the province when compared with the day temperature; this of course enables their peuple to keep thelr milk in better condition than can those who rarm in the South and West of the province, and especially in untario. And the ggures below prove this:

TEMiERATHURE $1 N$

	Quehec	London,
	Ont.	
June	61.3	67.0
July	64.6	71.6
August	56.3	64.0

And the difference would be still more brtween the averages in favour of the alove named distriets of quebec.
Must we then renounce the guarantees eflered agaiust fratad by this system of stamping the month of faldication? I to not think so. Jet our inspectors this sear take the temperature of the: disticts I have mentioned ior the thre:months, which are reputed to be worst the society in the fall, and give their ojnnion at the same line on the guality of the cheese made in those three months which are reputed to be worst for making the best cheese. When this lias once been settled, it will ouly take one or twu seasons to couvince the Engllsh denlers that, in those regions,good cheese can be made in those months in whel climate compels the makers of
the West of the proviuce and Ontario to make cheese of silghtly inferior qualits.
One of the most important duties of the iuspectors is to impress upon the adnds of the farmers and of nll joung men who seem Inclined to take up
cheese enough, and that they should cevote more attention to butter.
Of the $\$ \$ 2 \pi, 006,000$ worth of cheese imforted by tho Eagilsh, we furnisp 70 p.c. hut of butter; only 2 p. c. of the sis, cc 0,000 . We should improve our checse making by fmproving the quality and not by lucreasing the quatity.

FUDDEIT-CHELSEL, In May, should no longer be made at all. It must be in forior in cuality, since it is made from cows fed purtly in the house, partly in the hadds, where at the strison the grass is but scanty and the cows can limerdy anything but rubbish, weeds, cte.; can a.ills from such food be good and produce cheese of tine aroma?
Lastly; we recommend our Inspectors to be careiul to send thele reports in to the Secretary of the Dairjmen's Asso. ciation, with the whole of the detalls mentloned in the blank forms, for these detalls are absolutely necessary to ena ble the society to make out the statistics ragardiug the state of dadrying in the different districts of the province. Un cortuately, too many inspectors ne riect this duty."
"From the French."
J. C. CHAPAIS.

HOW SCAB GETS IN ITS WORR
Last month "The Farmer" took occa sion to denounce the practice of buying ribelp stock with unknown antecedents, and too often parted with by the forme: uwners on account of having been in contact with disease. In this conuection the report for 1804 of the minister or dgriculture just to haud furnishes some rery instructive reading. Hobert Evans, V. S., Quarantine Inspector at Lethbridge, there reports the work he had in dealing with scabby sheep, and what he learned by tracing each case to the fountain head. Flock after hlock had to be dipped, some of them several times, and mercurial ointment had in some cases to be used before the mischice could be chected. The tracing process brought out the fact that a good many farmers had bought out of a lock brought in from ldaho about two yeans before. It took about a whole year betore. It took about a whole year of the inspecior's time, and of course a heavy expenditure of publle money besides the loss of far more sheep than the total original importation. The labor and exnense icurred by dozens of llock owners are also to be added to the bill of expenses. The process by which all this tronble matured is very easy to understand. The original lot was most probably sold because previously in contact with seab, or it may have picked up the dis. ease on its travels. Whether the flock was quarantined for 00 days before being permitted to cross the boundary ine is not shown, though it certaingy ought to hare been, so as to make the chain of history complete. Then a Regina frm of dealers gets them and divjles them up. They are next breid withont much notice being taken of their skins and the lambs set out on their trarels to spread the taint whleh ater all the labor and expense already expended is not get certalnly rooted out. Droves of sheep from across the line have after quarantine provel healthy, but too often the scab has been carried thousand milles from where it started, carrying loss and trouble all the way.
Dakota has suffered far more than the
Territorles and from exactly the same
aune.
The farmer " has been adrised that, cargo of sheep landed by the "Scotch-
man" at Liverpool has been found atrected by scab and condemned by tho veterluary authorities there to lim. medate slaughter. These shecp were from the Maple Creek and passed by the inspector at Montreal with clean bill of health. The crowding th the voyage had rushed the disense into acthe development, and this case is pretty certula to lead to an order forbldaling the landing of all sheep rom thls slde except for lwmediate shaughter. The home government whl huve to do thes to concillate the linglish rarmer, already hard pushed by forelgu importations. This case Illustrates more fully than any posslble arguments the tmmense dirnculty of stamping out scav ouce it has got a hold. l'be very vusues become a source or infection.
NoTE.-Siuce the above was in type, an order fincounell by the British goverment decides that no imported sheep shall be sold in Lugland after Jau. 1, except for slaughter within tel days after landiug. (Not so unfair, then, after all. Ed.) -"ILe N. W. Farmer.'

It is a curious fact that the Australasian colonies where merino sheep are counted by millions, are now buying in the English market, rams of the mutton breeds to cross with. Thls produces more wool and a mutton carcass of much better value than any merino can ever be.-"North West Farmer."

PROF. HENRE ON RAPE.

Farmers may well be suspicious or all agricultural plants which are pratsed so highly by many agricultural papers, which are very careless about what tuey say in these matters. The only plant of any real agricultural value, which has come out receutly, is the rape plant which is a spleudid forage plant for sheep. Last year our people were humbugged by the sacaline plant, which sold for twenty-five cents aplece, and for which the wildest claims were made. We at the Station urged the people to let the plant severely alone. No doubt more mones was spent for this one plant by foolish, gullble people than it costs to maintaln a state experiment station and the money would have been sared if people had written to their stations to find out.
We can grow in Wisconsla without any trouble, the two grandest agricultural plants in the world, indian cora and red clover. Corn is practically a sure crop and red clover will never fail If the seed is sown by itself lustead of being sown along with a grain crop the way it often is now. I urge our farmers to stand by these two plants, together with those others commonly grown on their farms and only to adopt new oaes when they have undergone trials at our experiment stations. As spoken of above, the rape plant is one which has done well with us.

NOTES

Just fancy! Rape a "plant that has come out recently": A hundred years, at least, ago it was a common plant in England. We ourselves recollect it being universally grown in the S. E . counties 60 years ago and it has never been more generally grown there than it is to-day. In 1872, Mr. Cochrane, Hillhurst, had 20 acres of it-a fine crop -,which he cut for his cows, instead of folding it with his Cotswolds. A trip through the English sheep-farms would do the Professors of the U. S. stitions no harm.

IMPORTED EAMPSEIEES FOB

 WYOMING.That Wyoming wool growerd have faith in the shoop buiness is attestod by the big importations of Shropahires and Hampshires this season. Last month we ohronicled the arrival of John Mahoney's largo importation of Shropahires from the most famous Engligh flocke and this month we are pleased to announce the importation of Hampshires selected by Managor Massey of ho Standard Meat and Live Stook Co. The lot comprises 194 ewes and a largo number of rame selected from such colebrated breodera as frobert Colos, F. B. Sattoo, James Flower, Chae. Waltere, Lord Ports. monsh, Geo. Read, Mark Wallis, and others. Among the rams is the 300 pound ram "Cambascan," the great 1895 Royal winnor. Boeides capturing this highly covetad oup this great ram has carried off five othor first prizee this season and has nevor known defeat. "Chitterne "and " Middloton " are two other noted rams that Mr. Massey purchased at long prices for his Wyoming stud. Wyoming now has two of the largost and finest Hampshire flocks in the United States, Robert Taylor having established the first flook by a choice importation in 1893. We congratalato the Standard Company and the wool growers of Wyoming upon this valuablo acquisi tion to the foccks of thoir state.-Ex.

MUTTON FOR THE TABLE.

It may bo that somo porsons can be foand who are not fond of mution, bat if so, their tastes are cortainly very strange indecd. Matton woll grown and well fattoned is certainly a delicious fond, and get it is not found on the table of many a farmer from the beginning to the ond of the year. That it thould be so is one of the unaccountable, nnexplainable things conneoted with farm life. The farmor has to raise his own meat in somo form. Wby shonld he not raise it in the form of matton? No kind of meat can bo more cheaply raised, and no kind of meat is more wholesome. A small flock of sheep in the summer season lives very largely on waste products on the farm, such as weede, grass growing in the lancs and fence corners, on the fallow fields, and amid the atabbles, and in the course of a year they put mgriads of woeds, and, consequenily, of weed eecds out of existence. The larder of the farmer should not be without half a dozen sheop in it during the gear, and even though a much largor number should be found there during the course of the season, it should not be looked upon as an ex-travagance.-"Farming:'

For the "Great Exhibition" was profitable to England. It ehowed her people that other nations had lessons to toich thet it would benefit her to learn; that the smoolher mannors of the continent engrafted on the homely manners of England mado men pleassater to live with, and that without necessarily vitiating thoir native habits of thooght.

THE GREAT "BBISTISH EMK PIBE EXHIBITION."-We are old onough, wo almoat regiot to eaj, to have perfoot recollect:on of the "Great Bxhibition of 1851. Then, as now, there whe onsiderable opposition to anything of tho mort. Ono heard all sorts of depreoiatory hinta, moch as: Oh ! it novor can bo ready in time; the whole thing will
turn out a failnre ; and even if it does prove sucoossful, only thivk what a terrible effeot the sudden invasion of a lot of foraigners, will have on the man nors and ideas of our pooplo 1
We remumber the member for Lincoln, Col. Sibthorpo, stating in the Houte that nothing would tempt him o enter the Cryotal Palace, and he buabled to us, the following antumn, hat he had never seen the inside of it. Δ_{u} if that made any difference! The Exhibition way, as every one now knows. succ essfol from trinmphant introit to the almost mournful song of farewell at the olose; and we heartily hope the Montreal © Britieh Empire Exhibition" will turn out as profitable to Canada as the original of allthese great shows was to England. (1)

$$
\text { (1) Postsponed to } 1897 .
$$

Notes and Notices.

As the namo indicates, Inall's Vegetable Sicilian Hair Renewer is a renewer of the Hair benuty: It will please you.
For dyspepsia or stomach derangements, no and effectioce as a yer's Cathartic Pills.

$W \underset{\text { alt }}{\text { sisor }}$

Purest and liest
Windsor Checse di Ibitter Salt.
Has durang the seasum of 1895 goten the best satisfaction on account of Purity, evenness of Crystal and SIPLENDID working qualities.
It is now used in all the largest Cheese ractories and Creameries in Canada.

Windsor Salt Works, - Windsor, Ont.
${ }^{6} 83-121$

GREEN CATR BONES-TO miko hens IES

POTIIIETV.

\section*{| B |
| :--- |
| Slo |
| Sour |
| 1 |} Siverwyandotes-Fromedebrated Mawkins

PIJMuath Rockn - Rarred and White and
FOl WHTEWYANDOTTES. 'Monitor' and Mrit

Plynonth Rocks-A. Birice, 120 St FranMivmonth Hocks. My Ustis arosure prize-winners. Bidede for salo; sloo, egse for setsing.
Thit Brahus Exaw for knie-From stock
 Canada, seting,
LiGEM, Montral.

Y No Ponitry Kikerperso-Oar 'SilleaGrit' is beat
 Sitrect, Montrenl. Tel. 2t6s.

 Teeswater, Cater, ontario, Canada ; tro miles from

 Corsterpondence invited. Visitora alwasa welcomo.
Telegraph offco, Tecswater.
1i $95-12$

Folbent Ters, Importer and Breeder of Cyiendaler, Songlish ard French carriago Morace,

CLITDESDALETHORSES A ATRSHTRE CATYM ats Niorth Georgetoin, P. Q.

GOSSELIN cuiter

This machine is the most perfect on the market A man can use it with one hand as easily and do with it more worh, than two men cumid do thany other machne.
Also :-CIIELSE BASINS, PRESSCS, MOULDS, CURIJ-KNIVES,

IMPROVED AERATORS,
WVEIGHING M!ILK CANS, Patented ISg6.
\&tc., \&tc., \&゙tc.
I.ow iPrice. Firntoclasy quality.
J. A. GOSSELIN, irummondville, P. 0.

دtanufacturer of Checus Dairy Supplies. Wirto for
circulart and prices.

Milk, Creamer,

Railroad

and Delivery Cans.
MILK CANS mado from tho Trimaning are tho Best and Strongest Muk Cauest ando.
Enamelled Ware,
Tinware of all kinds,
OilStoves, Cook Stoves.

MODEL COOK STOVE For Farmers.

93 8t. Peter Street.
8mamo
WHOLESALE ONLY.

- THE -

MANITOBA WASHER!

Best Machine
In the U. S. or Canaja.
EOAP
WATEER
LA13OIR

Id wavhes more clothes at one timo than ony other
machise Write for catalogue and teatimonials. mowswril. MROS. CO., IInmito Ont Manafacturers of Charbs, Wriogers,
Washers and Mangles, ctc.
11-93 12

Helderleigh Fruit Farm
-o and Minyseries.
Saleamwa wanted in Province of पuebecto sell n FULL LLNE OP MARDT FRGIT TREES AND Prices to salt tho times :Toras liberal as
grower and not a dealer.i Adresi, E. D. SMETMI, Prop.

WANTED-Canvamers in overy eity, town and crayn portraity iliro mon can make good orages. Sop Andras O. O. Arless \& CO, 191 Fortifuadion lane,
Montreal, Que.
an. Montreal, Que.

stock of both sexces, sired by tho noted bunl Artis

 The Charlemprac andi Lac Onasent $\frac{\text { mh.an.m. }}{\text { Berkshires. Firat priso herd. Some choico stant }}$ Berkshires. Firat priso herd. Some choico zlock
 3prigg litera,

Bee Keeping Advancing.

Ners process of making Oomb Foundation. You wait the Best. We take pay in nax for makiag Comb Foundation. Also dor BEE
SUPPLES. The best bives and other appliances willggive rou the best re-sults for tho least work. We have 15 jears experienco and can give what you want to help mako a success of Bee-keeping. Adrice, circular and price listand samplo cony of Canadian Bee Journal, freo.

Audress,
GOOLD, GIEAPIEE d MCRRCO. LId. Briniford, Camsdr.
DEDERICK'S Patent Steel Shell Hey Presses.

antion

Also all stgles of Relo Ties made fiom tho best;

Do you

Keep Cows?

Davis Gream Separators.

Sole Manufacturers for Canada:
THE JOFN ABELI
Engine and Machine Works Company, Limited, TORONTO. Ont., Can.
FOR SATAE.-Common Sense Roach,

Si.00. Mancy returnid if it docs not ciept your houz
$7.9:-18$

 Bnell snd $-3 y$ stock is from the prise herde of J. O

J. G. MAIHE, Brooder and Importer of IMPROVED 工ORKSHIRE HOGS

Feels His Oats

This will not be the case with an animal whose blood is out of order. When a horse is all run donin he needs a tonic the same as a man. Often he cannot have complete rest. Give him

Dick's Blood Purifier

For sate hy drupsista, at general stor
or seal poar pald on receipt of 50 cis.
and note how quickly he will pick up. His whole system will be invigorated. His digestion will be strengthened so that all the nourishment will he drawn from the food an less of it wiil be required. Dich's Blood Purifier drives out Bots, Worms and all parasites.
(1) Dick \& CO., P. O. Box 482. Montreal.

CENTRIFUGAL CREAM SEPARATORS
 4

\longrightarrow IMPOHTANT IMPHOVEMENTY.-MODEI, 1896.
1TOTNCSB——Dont harget that befori long your Factory will requiro TWO CREAM SEPAR-
 POK THE SAME. FACTORK.
harge Cream Separating Capacities. - Economy on the purchase and operating. LIST OF SILES.
OPEAM SEPARATORS FOR BUTTER PACTORIES.

THE DOMINIGN DAIETY SEPPIA COMPANY. Head Orsicx:-SCOTt JuNCTION, Qux.
Stllyacinthe Once: \quad Quebec Onco

SExFCTSFRAS!

WmeWIIGCOMentex

 We uarn Fanarea and Agracultural Circle t, an their inn intrret, ngainst bigume cheapiand ungeliable
 are worthless. If you do huy Amertan $\frac{1}{}$ mothy, buy
 Clowf:HS OF All, Valulititen and clitiN.
THOTHY SEEDS-Cl:oice Lower Canadian, our own special brand. CLOVER SEEDS and (GRASS SEEDS of the finest grades

 and Furan. Hiants Flathenco SHBUBS. RoErs, Frat Trees, \&c. \&ic. SPRAYING PCMPS, lnsecucdes and Fun ercides. FtRTILIZELSB-A full line of Cabelton and other Fertaizers.
FARMand GAMDFN Machamery and Tuuls. EWING's CALE MEAMol Catir and Poultry

Timothy amd Clover longit on Sample.
W50 Correspondence invited.
ap'3G-If
E. LEORARD \& SONS

Engines and Boieres for Butter and Cheess Factories,
THE, MOST ECONOMICAI, Fingines and loblers bulf PENFECT NN OPERATION.
Also:-Portrise Fogincs and liollers, on okids and wheels. Write
169 Common Street, - Montreal, Que.

QUEEN CORN PLANTER.
With or whitiont FERTIIITI:R DIBTESIBUTER.
For planting Freld and Knallage Corn, or irille. Erory MACHINE OUABANTKisD. Wo furnish this ycar EREE, Altachment for Planting Finest Secds.
SOLA: AGRNT FOR THE
WALTERA. WOOD MOWERS, Rakes, Bindors, Hay Tedders, elo.
Frito for Illuztrated Catalogno showIng our steel I lyowz, Gultivaturs,
Wiedora, land Hollers and Sted Scrayurs.
ap) ml g w. F. VILAS, Cowansville, Que.

$*$ POTATO DUSTER

MATTHEW MOODY \& SONS,
Montral Ontice
TLIRIBBBONNE, Que.
10,12 d 14 Le tulien SI.

FLAX-BREAKING MACHINE

MATTHEW MOODY \& SONS,

Have you sean Dari's

Spring Tooth Harrow

And Steel Frame fastened with strong iron clips and cross rods $1 / 2$ inch. Theso llarrows are mado in two sections, and are the strongest afered in this market. Ask for our prices, beforo purchasing elsewhere.
6 95-12
J. B. HOKE \& FIIS, Haprairie, Qué

Rad Stap $\mathrm{So}_{1} 1$

[^0] Blansiario.
 Will sapply you dext harreat with the beot Bideder Twine ever sold lo Canadh, ala afar mar
 realdent.

[^0]: The Farmera' Binder Twine Co. Limited, - Brantford
 petision.

