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MATHEMATICAL LABORATORY,

I. THE BALANCE.

Experiment.—To use the balance in determining the

mass of a given object.

Apparatus.—A balance. Box of weights. Camel's hair

brush. A brass weight marked . . . grains.

Method /.—Level the case if necessary (probably it is

sufficiently level). Dust the pans with the brush. Bring

the pans to rest, turn the key gently and set the beam

swinging. The pointer would move backwards and for-

wards along the scale for a long time ; do not wait for it to

come to rest in order to determine the position of rest

;

find this by observing the extreme positions of the pointer

on the scale. Read the scale from left to right, counting

each whole division as lo. Take an even number of conse-

cutive readings on one side of the scale and an odd number

on the other (say 2 and 3, or 3 and 4) ; find the mean of

each set and then the mean of the two results ; this will

give the position of rest of the pointer. It is best that the

pointer should move over about half (the middle half) of

the scale.

Arrest the beam when the pointer is near the middle of

the scale in order to avoid jarring the beam. The beam

must always be at rest when any change is made in the

body to be weighed, or in the weights, or in the position of

the rider.
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Again, free the beam and repeat your work. Take as
the position of rest the mean of the several results.

Enter the results thus :—

Experiment No. i. I.

First trial.

Readings on left. Readings on right.

Mean . . . Mean . .

.

Mean ofboth ...

Second trial.

Readings on left Readings on right.

Mean . .

.

Mean ...

Mean of both . .

.

Mean of the two trials ...

//.—To find the sensitiveness.

Place a rider at the division i on the beam. The mass

of a rider is i centigramme. Hence, putting the rider at

the division i is equivalent to putting one milligramme

(.001 gramme) in the pan. Set the beam oscillating and

again find the position of rest. The difference between

this result and that of I. gives the sensitiveness of the bal-

ance for I milligramme when the pans are empty. At least

two or three determinations should be made.

The sensitiveness will probably not be quite the same

^hen the pans are loaded, but the result you have now
obtained will be of use in checking your subsequent

weighings.



THE BALANCE,

Enter results thus :

—

Experiment No. i. II,

Enter readings as in I.

Position of rest is now ...

" •' " was ...

.'. sensitiveness for i milligrarome s . .

.

Ill,—To weigh the given body (the . . . grain weight)

and hence to calculate the number of grains in a gramme.

Place the body in one of the pans (say the left) and the

gramme weights in the other. Always move the weights

with the forceps, never with the fingers. After putting a

weight in the pan turn the key until the pointer y«x/ begins

to move. The direction will show whether the weight is too

large or too small. Continue to adjust the weights until

you are within a few milligrammes of the true resuh. The
final weighing must be made with the rider, the case being

closed. Determine the position of rest with the rider in

one position, then shift the rider along the beam, and again

find the position of rest. One of these two positions should

be on one side and the other on the other side of the posi-

tion of rest when the pans are empty. From these results

find the number of milligrammes to be added to the weights

in the pan.

Enter results thus :

—

Experiment No. i. III.

Position of rest with rider at . . . is . . .

((

((

«

«

(( ((
t . . l9 • • .

pans empty is . . .
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I
.'. number of milHgrammes to add to weights in pan
Weights in pan . . .

Total weight . . .

Hence i gramme « —- *

. . . grains.

/^.—To weigh the given object (a piece of wood marked
i), the result to be corrected for the buoyancy of the air.

Find the apparent weight as in III. Each side is buoyed
up by the weight of the air displaced by the bodies in the

pans. Let the apparent weight be ff^ grammes. Then the

weight of the given body is very nearly IV grammes.

IV
Hence its volume is — c. c. nearly, s being the number of

grammes in a c. c. of tne wood. (This may be assumed

as .56). Hence for the air displaced by the body the cor-

W
rection is + (.0012)— , .0012 grammes being assumed as

the weight of i c. c. of air. Similarly the correction for the

IV
air displaced by the brass weights is —(.0012) — where Ji

is the number of grammes in i c. c. of the brass, which

may be taken as 8.4.

Enter results thus :

—

Experiment No. i. IV.

Apparent weight ...

Correction for air displaced by the body, + . .

.

"
. " " " weights "...

Total correction ...

Corrected,weight ...

(Results of parts I, II, III, IV of this Experiment to be

returned together. Each studem to sign his name.)



SPECIFIC GRAVITIES, 5

2. SPECIFIC GRAVITIES.

ExpiRiMENT.—To find the specific gravity (1) of a body

which sinks in water, (II) of a body which floats in water,

(III) of a liquid.

Apparatus.—An ordinary balance arranged to weigh a

body when immersed in water. Distilled water. Silk

thread. Copper or other wire,

Met,.jd I.—Place the body (brass weight marked 2) in

the balance pan, and weigh it in air. Call this weight W\,

Attach the body, by means of a light string or wire, to the

hook above the pan, and weigh it again. Let the weight

now be W^. Keeping the body still attached to the hook,

bring underneath the vessel of distilled water, having pre-

viously exhausted the air from the water. See that no air

bubbles remain attached to the body when thus immersed

in water. It may be found that the beam will not oscillate

freely when the body is in the water; if so, adjust the

weights so as to bring the pointer to the position of rest

when the pans are empty, without depending upon the

method of oscillations. Let the weight in the water be W^^
Then W%^ Wz is the weight of the displaced water.

Hence the specific gravity of the body is

m- ^3

All weighings must be corrected for displacement of air

whenever such correction is appreciable.

The IV2 differs from the JVi by the weight ot the string

or wire. IVs must be corrected for the weight of water

displaced by the string or wire. The specific gravity of silk

is about I, that of iron about 7^, that of copper about 9.
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The body and the water should be of the same temper-

ature as the surrounding air. Let this be t^ C. The above

value of the specific gravity is that of the body when
referred to water at the temperature /<^. To reduce it to

what it would be if referred to water at 4" C. we must

mult' ly by the specific gravity of water at t°. Let this be

calleu p. Then the specific gravity of the body at the

temperature t^ is

*

The water should be freed from air by boiling, or by

means of an air pump.

• Find the specific gravity of the given brass weight,

marked 2, by two determinations, {a) hanging it up by a

silk cord, and ib) by a copper wire.

Enter results as follows :

—

Experiment No. 2. I.

(a) With silk cord.

Observed. [ Corrections if any. Corrected values.

I

,

'

/ = . . .

Specific gravity =
'

J
'

x ... = ...

(Enter b in same way.)
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11.—When the body is lighter than water it must be

pulled down into the water by means of a sinker. Weigh

the body (marked 3) first in the scale pan (W^i). Attach

it and the sinker ( 2) to the balance hook, the sinker being

below the given body. Weigh the two ivith the sinker in

water
(
IV2)' Add more water so as to cover the given

body and weigh again ( W^s). Then the specific gravity of

the body at the observed temperature when referred to

water at 4^ is

IV^

IV2 - ^K3
X P

where p is the specific gravity of water at the temperature

of the experiment.
*

Find the specific gravity of the given body using silk

thread.

Enter results as under I.

///.—To find the specific gravity of a liquid, take a heavy

body (" sinker ") which will sink in the given liquid as

well as in water. Attacli the sinker to the hook of the

balance and weigh it in air (IVi), Next weigh it in water

(
IV2) . Dry the sinkei and weigh it in the given liquid

(IVi). Then IVi - IV3 and IVi - IV2 are the weights of

equal volumes of the given liquid and water. Hence, the

specific gravity of the given liquid at the temperature of

the experiment, referred to water at 4° is

IVi - ATa
^

where P is the specific gravity of water at the temperature
of the experiment.
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Find the specific gravity of the given liquid, using silk

thread to suspend the sinker.

Enter results as under I.

(Each student to sign his name.)

I

3. THE SPECIFIC GRAVITY BOTTLE.

Experiment.—To find, using a specific gravity bat-

tle, the specific gravity (I) of a liquid, (II) of a solid in

fragments.

Apparatus.—A balance. A specific gravity bottle.

Distilled water.

Method I.—To find the specific gravity of a liquid.

Weigh the bottle
( IV{). The specific gravity of the glass

may be assumed to be 3. Hence, find the correction to the

weighings for the air displaced by the glass. (It may not

be appreciable.) Fill the bottle with water; insert the

stopper, wipe the outside dry and weigh {W^). Empty
the water, fill with the given liquid and weigh (PK3). Then
the sp. gr. ^ is

The given liquid and the water are assumed to be of the

same temperature, and the above fraction represents the

specific gravity referred to water at the temperature of the

experiment. To reduce to water at 4° C. multiply by p
the specific gravity of the water at the temperature of the

experiment.

f



f

THE SPECIFIC GRAVITY BOTTLE.

Enter results thus :

—

Experiment No. 3. I.

Wx^ CO

ff^3 = . . .
,

Temperature = ...

p for this temperature = . .

.

Wz- Wx

rrected

u tt

lue =

//.—To find the specific gravity of small fragments ofa
solid. '

Weigh the fragments (IVx ). Fill the bottle with water,
wipe dry and weigh (IV2). Put the fragments in the
bottle, fill up with water if necessary, wipe dry and weigh
{ PV3 ).

Then

IVi
s =

Enter results thus :
—

EXIERIMENT No. 3. II,

lVi= ... , corrected value = . .

.

li'2 = . .

.

JV2 - J^3 corrected for air displaced by difference of
(brass weights «...
Temperature «...

p for this temperature =
. .

.

' s —

(Each student to sign his name.)
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4- JOLLY'S SPRING BALANCE.

Experiment.—To find (I) the weight of a small body,

(II) the specific gravity of a small body, (III) the specific

gravity of a liquid.

Apparatus.—A scale of millimetres is etched on a ver-

sical strip of mirror glass in front of which hangs a long

spiral spring carrying two pans. A white bead is strung

on the wire which connects the upper pan to the spring;

the top of the bead corresponds to the pointer of an ordin-

ary balance, and in reading its position on the scale the

line of sight must pass over the top of the bead and the

top of its image in the mirror. In this way any error of

parallax in reading the scale is avoided. The small plat-

form, adjustable as to height, is intended to carry a vessel

of distilled water, or of other liquid, in specific gravity de-

terminations. The spring is intended to support weights

up to 6 grammes, but a more delicate one carrying up lo

3 grammes, and a less delicate one carrying up to lo

grammes, are provided, as is also a small glass sinker,

which may be suspended in the place of the two pans.

Method /.—To find the weight of a given small object.

Place it in the upper pan. Give a little support to the pan

at first and let it down gently. Read the scale when the

spring comes to rest, or deduce the position of equilibrium

from the oscillations along the scale. Now remove the body

and in its place put weights from the box until the bead

comes to the same position as at first.

Enter results thus :

—

Experiment 4. I.

Scale reading in millimetres when body is in pan

Weight of body in grains
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\

II.—Within certain limits the extension of the spring is

nearly proportional to the force which produces it. To
verify this, read the scale when the pans are empty. Next

place in the upper pan any small weight from the box, say

10 grains, and again read the scale. Add another weight

and take the new reading.

Enter results thus :

—

Experiment No. 4. II.

First scale reading

for weight . . . grains.

(( (( <c ((

Second "

Third " ...

Ratio of weights ...

" '* extensions caused by weights ...

With this spring each millimetre of extension corres-

ponds to . . . grain.

///.—To find the specific gravity of a given solid. In

this experiment the lower pan must be immersed in dis-

tilled water throughout. Adjust the levelling screws so that

the pan will hang quite freely in the water, and adjust the

platform so as to bring the pan within about a quarter or

half an inch from the bottom of the water. The pans being

now empty, read the scale. Place the given solid in the

upper pan, move the platform until the lower pan is at

about the same depth in the water as before, and read the

scale. Move the body to the lower pan, again adjust the

platform and read the scale. Let the three readings

taken in the order indicated be called x^ y^ z. Then y-x
andy-z are proportional respectively to the^weight of the

body and the weight of the water displaced by the body^

and hence the specific gravity is

y - X

y - z

when referred to water at the temperature of the experiment.
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F^nter results thus :

—

Experiment No. 4. III.

First reading

Second "

Third " ^ •" • • •

Specific gravity =
'^-f^

= . .

.

/F.—To find the specific gravity of a liquid. Remove
the pans from the spring, hang them up carefully, and

attach the small glass sinker to the spring. Read the scale

(i) when the sinker is in air, (2) when immersed in the

given liquid, (3) when immersed at about the same depth

in distilled water. The three readings in the order men-

tioned being x. jy, z, the specific gravity of the liquid is

X ~ z

when referred to water at the temperature of the experi-

ment.

Enter results thus *.—

Experiment No. 4. IV.

First reading

Second "

Third "

J^ —" • • •

^ = . . .

* = , . •

.'. Specific gravity = ^-* =

(Each student to sign his name.)
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5. MOHR'S SPECIFIC GRAVITY BALANCE.

Experiment.—To find the specific gravity of a liquid

by means of Mohr's Balance.

Apparatus^ etc.—Mohr's Specific Giavily Balance. A
given liquid whose specific gravity is required.

Method.—Set up the balance by placing the beam on

the stand. Attach the float (a mercuiy thermometer) to the

hook of the beam, allowing it to hang freely in the jar. The

beam is now in equilibrium. Turn the levelling screw until

the horizontal pointer of the beam and that of the stand

are exactly opposite each other, or uiuil the former oscil-

lates equally on each side of the latter. Riders of different

masses are provided, each size ^ of the mass of the next

larger. The largest of these will, if placed on the hook,

balance the beam when the float is immersed in distilled

water at a temperature of 15° C. Hence, the weight of

the rider is equal to the weight of water at this temperature

which would be displaced by the float. Now immerse the

float in the given liquid (pour the liquid from the bottle

into the jar). Remove any air bubbles which are seen to

be attached to the float. Balance the beam by placing

riders at the graduations of the beam, one or both of the

heaviest being (if necessary) on the hook.

If the liquid be lighter than water, the first decimal figure

in the specific gravity will be the graduation occupied by

the largest rider, the second that occupied by the rider of

the next size, etc. If the liquid be heavier than water,

begin by putting the largest rider on the hook.

Enter results as follows (calling the riders of sizes I, II,

III, IV, I being the largest) :

—
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Experiment No. 5.

rider of size . . .

t • •

it (I ((

<(

At graduation i,

" "
2,

&c.

On hook " '* ...

Temperature of the liquid . .
.** C.

.'. specific gravity of the liquid at temperature . . .

referred to water at 15** C. is . . .

Specific gravity of water at 15° is . . . (refer to table).

.'. specific gravity of the given liquid at temperature

. . . referred to water at 4** C. = . . . x ...:=...

'(Each student to sign his name.)

6. NICHOLSON'S HYDROMETER. •

Experiment.—To find the specific gravity (i) of a solid,

(2) of a liquid, by means of Nicholson's Hydrometer.

Apparatus^ etc— Nicholson's Hydrometer. Distilled

water. Weights. A thermometer. A crystal and a liquid

whose specific gravities are required.

Method I,—To find the specific gravity of the solid.

By means of weights placed in the upper pan, sink the

hydrometer in the water until the mark on the stem is

brought to the surface of the water. Let the weights re-

quired for this be W\, The weights may be considered

correct when the hydrometer oscillates up and down equal

distances on each side of the mark. Remove some of the

weights, place the crystal in the upper pan and again balance.

Let the weights now be W'2, Then W\ - W2 is the weight

of the crystal. Put the crystal in the lower pan and again
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balance. Lei the weights now be W\\, Then W^ - W% is

the weight of the water displaced. Hence the specific

gravity is

IVa- IV2

This is the specific gravity referred to water at the temper-

ature of the water used in the experiment. Calling the

specific gravity of water at this temperature p we have

IVi- W'i

for the specific gravity of the given body, referred to water

at the temperature 4*^0.

Enter results as follows :

—

Temp.

Experiment No. 6. I.

^i = ...

W'a = . .

.

—-•••

p for this temp. = . .

.

:. specific gravity =
IV3 - IV2 ' ^

If.—^To find the specific gravity of the liquid.

Weigh the hydrometer in an ordinary balance. Call this

IV\ . Put weights in the upper pan until the instrument

sinks in the water to the mark. Let these weights be IV2 .

Then Wi + W^ is the weight of water displaced by the

hydrometer. Similarly sink it in the given liquid. If IVz

be required tc Jo this, W\ + W^ is the weight of the liquid
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displaced by the hydrometer. Hence, the specific gravity

required —

where p is the specific gravity of the water at the temper-

ature of the experiment.

Enter results as follows :

—

Experiment No. 6. II.

Temp.

for this temp^ =

.*. specific gravity for the observed temperatiire=

(Each student to sign his name.)

7. THE MICROMETER CALIPERS.

Experiment.—To find the diameters of the given sphere

and cylinder, and hence to find the number of centimetres

in a foot.

Apparatus. — Two screw micrometers (" Micrometer

Calipers").

Method*—The pitch (interval between threads) of one

of the screws is \ (=» .025) of an inch. Tenths of inches

are marked on the spindle, each additional division being

.025, .050, or .075 of an inch. Twenty-fifths of a turn of

the screw (corresponding to - ths of an inch) are marked
xooo
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on ihe ihimble. The pitch of the other screw is 5^ of a mil-

limetre ; the Ihimble is divided into 50 parts, hence each

division corresponds to * of a centimetre. In each

instrument tenths of the thimble divisions are to be estim-

ated. Each tenth thus corresponds to .0001 in. in one,

and to .0001 cm. in the other.

Turn the milled head of the screw until the end of the

screw is in contact with the end of the fixed cylinder.

Always turn the screw gently so as to avoid straining the

thread when contact takes place. The sense of touch will

inform you when the contact is complete ; do not turn any

further. The micrometer should, now read o exactly ;

probably it will not ; determine the error by taking the

mean of several settings, and afterwards apply this cor-

rection to your readings.

Now measure the diameters of the given objects with

each instrument, each result being the mean of at least five

settings and readings. From these results deduce the

number of centimetres in a foot.

Enter results as follows :

—

Experiment No. 7.

Diameter of cylinder ... in. (mean of . . . readings)

Index correction ... in. ("*'.. .
"

)
Corrected value ... in. -

Diameter of cylinder ... cm. (mean of . . . readings)

Index correction . . . cm. (****.,. **
)

Corrected value . , . cm.

Hence the number of centimetres in one foot «...
Enter results for the sphere in the same way.

(Each student to sign his name.)
B



|8 AJA 7 11EMA TICAL LA BORA TOR Y,

8. THE VERNIER CALIPER.

Experiment.—To measure ihe given cylinder.

Apparatus—A Vernier Caliper. One jaw is fixed to a

graduated bar about 15 inches long; the other slides along

the bar, but may be clamped in any position. The divi-

sions on one side of the bar are fortieths of an inch. The

Vernier has 25 divisions. These 25 divisions are of the

same length as 24 of the bar divisions. Hence, one divi-

of the Vernier » ' of ~ of an inch =» .024 in., while each
23 40

division on the bar = .025 in. The difference is .001 in.

Hence, the instrument will read to thousandths of an inch.

Every four divisions on the bar = ^ = .1 in. The division

between each tenth of an inch and the next are - >
—

> —

,

40 40 40

'

i. e., .025, .050, .075. Turning the bar over we find a

scale of centimetres. The Vernier reads to -^ih ofacen-
500

timetre. Hence the Vernier readings are to be doubled

;and called thousandths of a centimetre.

Method. — Loosen the clamping screw and slide the

movable jaw until it comes up to the fixed jaw. The Ver-

nier should now read ; if it does not, the error must be

inoted, and applied to subsequent readings as an index

correction. Now separate the jaws until the distance be-

tween them is a little more than the distance to be measured.

Clamp the sliding jaw, and turn the adjusting screw until

the jaws just include the given object. Read the scales

on one side. Turn the caliper over and read the other

scales. Repeat the work two or three times, and if the

readings differ take the mean.

To measure an internal diameter, close the jaws and with a

micrometer caliper, or otherwise, measure the breadth of the
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jaws, ([t is .3000 in. = .7620 cm.) This must be added

to the readings of the scales when the jaws are opened to

correspond to the internal diameter.

The given cylinder is in three parts. Measure the three

diameters in order, beginning with the smallest. Find also

the length of each part, and the internal diameter.

Enter results thus :

—

Experiment No. 8.

External diameter (i)

(3)

Length of (i)

<(

<(

(<

<(

<( ((

Inches.

" " (3)

Internal diameter . . .

(Each student to sign his name.)

Centimetres.

9. MICROMETRIC MEASUREMENT OF
DISTANCES. flfb .

Experiment—To find ihe distance (not exceeding one

metre) between two lines on a metal bar.

Apparatus— Two microscopes with micrometer eye-

pieces. A standard metre scale.

Method— The microscopes are placed so that the

centres of their fields are near the marks on the given bar,
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and are then securely clamped. During the remainder of

the experiment the microscope stands and tubes must not

be disturbed. The parallel crosshairs of each micro-

scope are then moved so as to be equally distant from

the corresponding line on the bar. Read the divided

circles, and repeat the operation several times, taking the

mean of the several settings. Remove the bar, and, without

disturbing the microscopes, replace it by the standard metre,

adjusting the latter until its divisions are in focus. Move
the metre scale until a millimetre division is near the cross-

hairs of one of the microscopes, while the crosshairs of the

other are at the same time near one of the fine divisions of

the scale. Now set the crosshairs on the nearest con-

venient divisions of the scale and take the readings, being

careful to note the whole number of turns (if any) of the

screw.

It is also necessary to determine the value of one divi-

sion of each of the screw heads by moving the crosshairs

over the divisions of the standard scale.

Enter results thus :

—

Experiment No. 9.

i

Given distance = ... cm.

Error of metre scale for this distance ^ , , . cm.

.*. corrected distance = . . . cm.

Each micrometer division = . . . cm. microscope A.

B.li <( <( ((

(Each student to sign his name.)
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THE PLANIMETER.

10. THE PLANIMETER.
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Experiment.—To measure a plane area.

Apparatus.—Amsler's Polar Planimeter. This instru-

ment consists of two metal bars jointed together. The

extremity of one bar is provided with a needle point which

remains fixed, while the tracing point at one end of the

other bar is carried all round the perimeter of the given area.

Near the end of the latter bar is a little celluloid wheel

whose circumference is divided into loo parts ; with a

vernier, tenths of ihese parts are read. Complete revol-

utions of the wheel are recorded on a metal circle which

is turned by a worm on the axis of the first wheel. It may

be proved that the given area is proportional to the dis-

tance recorded by the wheel.* The area is also propor-

tional to the distance of the tracing point from the joint.

This distance can be altered, and hence the wheel madv to

record in different units of area.

Method.—Let the sliding bar be set at the line marked
" 100 sq. cm". Read the recording circles after the

tracing point has been moved to a point on the curve.

Keep the needle point fixed and move the tracing point

round the curve from left to right, i.e., in the direction in

which the hand of a clock goes round the dial. When
the point has gone entirely round, read the circles again.

(The reading of the metal circle must be increased by lo if

it is less than it was at first.) The difference of the readings

multiplied by loowill give the area of the curve in square

centimetres.

For example, suppose that the metal circle read 5+ and

the celluloid circle 672; then the first reading recorded

* For the theory of the Planimeter see Appendix I.
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is 5.672. After the motion, let the metal circle read 7 +

and the celluloid circle 535 ; the second recorded reading

is 7-535-

Then 7.535 - 5.672 = 1.863.

.*. the area is 186.3 square centimetres.

In this case each unit of revolution recorded corres-

ponds to 100 sq. cm., but if the sliding bar be set at the

mark " 10 sq. in." each unit will correspond to 10 square

inches. If it be set at 200 sq.' %" = 1' , each unit will cor'

respond to 200 sq. feet on a diagram constructed on a scale

of ^ of an inch to the foot. The area should be traced

out several times and the mean taken for the final result.

Enter results thus :

—

Experiment No. 10.

I. Area of given circle.

First trial, area = 100 (...-...)

Second " " = 100 (..,-...)

&c.

Mean

. . . sq. cm.
<C U

• • *

(( <(

2. Area of the given irregular curve.

Enter as above.

(Each student to sign his name.)

i)

I

II, THE MECHANICAL INIKGRATOR.

Experiment.—To find (i) the area of a given closed

curve, (2) its centre of gravity, (3) its moment of inertia.

Apparatus.—One end of a sweeping bar traces the curve

while the other end is constrained to describe a straight

line parallel to the groove in a long metal bar. The sweep-
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ing bar carries a divided wheel Wi. The end of the bar

whiclf describes the straight line is also the centre of two

arcs, the smaller of which turns a circle carrying a wheel

W2 , the larger also turning a circle carrying a wheel f^3.

Method.—Having chosen in the diagram a line 0J<

with reference to which t he moment of inertia is to be

found, place the two brass arms in the groove of the steel

bar and move the bar until the sharp points of the arms

exactly meet OX. Then place the integrator in position,

and bring the tracing paint to some point in the circum-

ference of the given area. Read the three wheels. Now
trace round the given curve clockwise, and again read the

wheels. Let m, n^, //3, be the changes of reading of IVy
,

W2 , IVi , respectively. lu^.iA hi the area of the curve
;

M be the sum of the moments, with reference to OX^ of

the elements of the area ; and let / be the moment of

inertia of the area with reference to OX, Then * will

A = «i.

5

/ = ;/i— nz

The unit is one decimetre.

The height^ of the centre of gravity of the area above

0X= ^, the radius of gyration k = V._. , and the moment
A /I

of inertia with respect to an axis throjgh the centre of

gravity and parallel to OX = /- Ay' = /—

j

* For the theory of the Integrator see Appendix II.
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t

To change from decimetres to inches multiply y ox k by

«, /i by a2 ^ M by a^ , and / by a^ where a = 3«937, the

number of inches in a decimetre ; a^ = 15.500, a^ » 61.023,

<z* = 240.290.

Enter results thus :

—

Experiment No, ii.

«1 = . . . , «2 = • • • > W3 = . . .

(Each student to sign his name.)

liM

T2. MEASURES OF VOLUME.

Experiment.—To verify certain measures of capacity.

Apparatus.— A half-litre flask. A pint flask. A
burette with glass float. A thermometer. A balance,

water, etc.

A litre is the volume of i kilogram of water at 4° C,
the weighing being corrected for displaced air. It was

intended to be, and is very nearly indeed, equal to one

cubic decimetre.

A gallon is the volume of 10 pounds of water at 62^ Fah.,

the weighing being by means of brass weights, and not

corrected for displaced air. The pint is one-eighth of a

gallon, or the volume of 20 ounces of water. One twen-

tieth of a pint is called a fluid ounce; each fluid ounce is

divided into 8 fluid drams, and each fluid dram into 60

minims. Hence, 8 x 60 or 480 minims of water weigh one

ounce or 437.5 grains. Thus the graduations of measures

of capacity depend upon weighing.
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Method I.—Taking rather more than a pint of distilled

water, exhaust the air from it by means of the air pump.
See that the half-litre flask is quite dry, both inside and
outside, and weigh it in balance E or F. Fill it with water

up to the mark, wipe the outside if necessary, and weigh
again. The difference of the two weighings, corrected

for displaced air, is the weight of the water. Dividing by
the specific gravity of the water at the temperature of that

used in the experiment, we have the weight of the flaskful

of water at 4°. This should, of course, be 500 grammes.
Enter results thus :

—

Experiment No. 12. I.

Apparent weight of empty flask = . . . grammes.
" " " ' ,sk and water = . . . **

Diflerence = . . .

Correction for displaced air = . . .

Corrected difference = . .

.

Temperature of the water = . . .
° C.

Spec, gravity of water at this temp. = . . .

.'.weight of flaskful of water at 4^ = '

\

'

= .

.*. volume of flask =...... ccm.

grammes.

//.—Proceed similarly with the pint flask, using grain

weiglits. The weighings are not to be corrected for dis-

placed air; and, as the temperature will be about 62^, no
temperature correction will be required.

Enter results thus :

—

Experiment No. 12. II.

Weight of empty flask

" " filled "

.'. weight of water

= . . . ounces.

— • • •

grains.

u
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III.—To verify the graduations of the burette.

Nearly fill the tube with water. The mark on the float

will serve as an index in reading the scale. Draw off

water until the mark is below the top of the scale. Then

draw off about lo cc. of water in a vessel which has pre-

viously been weighed, and find the weight of the water. Read
the scale in cubic centimetres and tenths, and find the

weight in grammes and tenths. Continue to draw off

about 10 cc. at a time until the float reaches the bottom of

the scale, weighing each time.

As the results are approximate only, it will not be

necessary to correct for temperature or displaced air.

Enter results thus :

—

' Experiment No. 12. III.

1 i' I
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Enter results thus:

—

Experiment No. 12. IV.

Weight of . . . drops = . . . grains.

*. volume of . . . " = . . . minims.

(Each student to sign his name.)

37

13. ATWOOD'S MACHINE.

Experiment.—To verify the first and second laws of

motion.

Apparatus.—Atwood's Machine, electric attachments,

clock and chronograph.

The machine consists of a light aluminium pulley, whose

axis rests on friction wheels also of aluminium. Over ihe

pulley passes a silk thread carrying two weights ; the one

on the left we shall call Wi and the other ^,.. The

masses are each 100 grammes. On the weights may be

placed brass discs and bars of 5 and i o grammes mass.

Two rings are attached to the scale, the upper one serves the

purpose of stopping a bar placed on the top of the mass IVj,

while the mass itself moves onward through the ring ; the

lower one is arranged so that Wi in passing through it

breaks the electric circuit.

The chronograph is an instrument by which the exact

instant when any event occurs may be recorded on paper.

An electro-magnet attracts its armature whenever the elec-

tric circuit is closed; a little steel disc which revolves in ink

is by the movement of the armature pressed against a strip

ofpaper, which is moved along by a train of wheels actuated

by a spring. One electric circuit passes through the electro-
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magnet of the chronograph, and also through the clock

pendulum, and is completed each second when the end of

the pendulum passes through a drop of mercury. The
other circuit passes through the electro-magnet of the

chronograph and also through the electro-magnet and left

hand key of the machine. Hence, when the key is closed,

the platform supporting JV, is dropped by the move-

ment of the armature of the electro-magnet of the machine,

and at the same time a record is made on the paper. Thus

by comparing this record with that corresponding to the

seconds of the clock, the time at which the key is closed

can be read fom the paper.

A third circuit, completed by the right hand key, puts a

brake on the wheel of the machine, thus checking the

motion of the weights.

(The arrangement of the wires should be carefully studied

before commencing the experiment.)

Method /.—To verify the first law of motion.

Place the upper ring at any position near the top of the

scale (say 50 centimetres from the top) and the break*

circuit ring a little (say 20 centimetres) below it. Bring

up Wi above the upper ring and place on it a bar (say the

smaller one) and then pull W^ up carefully to the top of

the scale, adjust the platform and let \Vi come down

gently on it. At this point in the experiment and in all

similar cases bringW^ to rest. See that the contact points

of the lower ring are together. Start the chronograph.

Everything now being ready make the experiment as

follows :—Close the left hand key, keeping the key pressed

until Wi has passed through the lower ring. When this

occurs, immediately press the other key, thus checking the

i
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motion of the weights ; bring Wi up to the top, adjust the

platform as before, and stop the chronograph.

The continuous line on the paper was made during the

time that the weight was falling to the lower ring.

With a pair of dividers, compare this time w ith the scale

of seconds on the paper and expres ^ the time in seconds

and tenths. Let it be called t\. Now lower the lower

ring by any small amount (for convenience the same

distance, 20 centimetres, as was taken between the two

weights at the beginning) and proceed as before, getting

^2. Again lower by the same amount as before, getting tz ,

and continue to lower until Wi has been placed m at least

5 positions. Then find t^-t\^t\-h^tz- h , h - h. If

these are equal we shall have shown that a body will, when

acted on by no force or by forces in equilibrium, move over

equal distances in equal times.

Enter results thus :

—

Experiment No. 13. I.

Distance s of upper ring from o of scale

'* d by which other ring is lowered

each time

cm.

cm.

/l - . . .
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ii
I

I , .

//.—To show that the acceleration is constant, or in

other words, that the speed is proportional to the time

during which the force acts.

We have the speed v acquired in the time /. Place the

upper ring in some other position, and as in / find the speed

Kand the time J" of falling to the new position. (For this

purpose the lower ring need be placed in two or three

positions only.)

V T
Then ~ and — should be equal.

Enter results thus :

Experiment No. 13. II.

V = . . ,

/ = . . .

"~* ^ • • •

V

T

III.—Remove the bar. The weights are now balanced.

Place a 10 gramme disc on ^F^ and two 5 gramme discs

on Wj.

.

The masses are still balanced and their sum is 220

grammes. Now remove a 5 gramme disc from IVr to IVi.

The sum is the same as before but the diff>irence is 10

grammes. The 105 on IV,- balances 105 on IVi, but the

whole 220 will be set in motion by the attraction of the

earth on the 10 grammes.

Find /i the time of falling through any distance s. The

acceleration is
2S
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Now move the remaining 5 gramme disc to the left. The
sum of the masses is the same as before, but their difference

is twice as great. Find h the new time of falh'ng through

s. The acceleration is now
2S

If this is about twice as

2S
great as —^-^ we shall have shown that the acceleration is

proportional to the force when the mass remairs the same,

or that the rate of change of momentum is pro^ ortional to

the force which produces it.

Enter results thus

:

Experiment No. 13. III.

2S
s = . . . cm. —;

t\ = . . . sec.

• • •

2S

.*. first acceleration X 2 = . . .

second " = . .

.

JV.—The value of ^.

Let the acceleration produced by the weight of 10

grammes acting on 220 be called ai. Then^, the acceleration

produced by the weight of 220 grammes acting on 220

grammes will be 22^1.

Similarly g = i laz, where a^ is the acceleration produced

by the weight of 20 grammes acting on 220 grammes.

The resulting value of^ is too small, since the friction

retards the motion. The true value ofg is about 981.

081 - 22rtl . , ^ .

Hence, is the fraction of the weight of 10
981 **

grammes, which goes to overcome the inertia of the pulleys,

the friction, and resistance of the atmosphere.

This fraction may similarly be determined from 02.
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Enter results thus:

—

Experiment No. 13. IV.

981 - 22«i 98 [ - II'<2
"^^ Z ~- • • • ,,

981 981

(Each student to sign his name.)

14. ATVVOOD'S MACHINE.

Experiment.—To verify the first and second laws of

motion.

Apparatus.—Atwood's Machine (with wooden scale),

electric attachments and water clock.

The machine consists of a light aluminium pulley whose

axis rests on friction wheels also of aluminium. Over the

pulley passes a silk thread carrying two weights ; the one

on the left we shall call IVi and the other W^. The mass

of W} is 240 and that of VV,. 225 grammes. On the weights

may b2 placed brass discs and bars of 5 and 10 grammes

mass. Two rings are attached to the scale ; one of these

serves the purpose of stopping a bar placed on the top of

the miss Wi while the mass itself moves onward through

the ring ; the other (the " break-circuit " ring) is arranged

so that Wi in passing through it breaks the electric circuit.

The binding screws at the top of the switch-board are

connected by wires behind the board (as indicated by the

dotted lines) with the swinging arm S and thecantact pieces

B^ C, A>, to which S may be moved.
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A/ ' '

h When 6" is moved to B the circuit is completed, but the

machine is in no way affected. When it is moved to C the

current passes through the electro-magnet of the machine

and also that of the water clock ; hence the platform which

supports IVi drops at the same instant that the water clock

is opened. When S is moved to D the weights are arrested.

(The arrangement of the wires should be carefully studied

before commencing the ex])eriment.)

Method!.—Taking as the unit of time the time in which

10 c. c. of water falls into the graduated vessel, we must

first find the equivalent of this in seconds.

Balance the weights (unless they are already balanced),

and set the water running slowly into the cistern. Place

under the cistern a flask which will contain a considerable

quantity of water (say 500 c. c). Move S to B. Then

move to C, noting carefully the time. When the flask

is filled to the mark, move ^ quickly back to A, at

the same time noting the time. From this find the time in.

which 10 c. c. will fall.
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Enter results thus :

—

ExPERlMtNT No. 14. I.

Time of . , . c.c. . . . sec, first trial.

""..."
. . .

"
, second trial.

" **...*'
. . .

"
, third trial.

Mean of times «

.'. 10 c.c. is equivalent to . . , sec.

//.—To verify the first law of motion

.

Place the ordinary ring at any position near the top of

the scale (say 50 cm.) and the break-circuit ring a little

(say 20 cm.) below it. The weights being still balanced,

bring up Wi above the upper ring and place on it a bar

(say the larger one), and then pull Wi up carefully to the

top of the scale, adjust the platform and let IVi come down
gently on it. At this point in the experiment and in all

similar cases brifig W^to rest. See that the contact points

of the break-circuit ring are together. Move S to B and

then to C. Do not remove the hand from S; watch the

weight and as soon as it breaks the circuit by passing through

the lower ring^ immediately move S to D, This will stop

the motion. Take hold of the string on the right, move .S

back to A^ then pull IVi up again and arrange as before.

Now read the water clock and repeat the work. let the

mean of the two water limes be t\ , 10 q.c. beiii^ taken for unit

of time. Now lower the break-circuit ring any o - veil' ;?

amount, say 50 cm,, and proceed as before, getting t2.

Again lower by the same amount as before, getting tz ; and

continue to lower until Wi has been placed in say 5 posi-

tions. Then find h-t^^ ti- ts j /s - ^2 , t^-ti. If these

are equal we shall have shown that a body will, when acted

on by no force, move over equal distances in equal times.
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. Observe that all distances on the scale are to be con-

sidered with reference to the bottom of Wi.

Enter results thus :

—

Experiment No. 14. II.

Distance s of upper ring from o of scale . . . cm.

d by which lower ring is lowered each

time . . . cm.

/i = . .

.

t'i. — t\ —

n

/2 = .

t\ — .

/5 = .

h - i\ =

Sum of these =

Mean = .

d

sec.

Speed V after falling distance s = —r - - . .

.

* above mean

Time / of acquiring this speed = . . . sec.

///.—To show that the acceleration is constant, or ia

other words, that the speed is proportional to the time

during which the force acts.

We have the speed v acquired in the time /. Pla je the

upper ring in some otlier position, and as in II., find the

speed Kand tim^i 7" of falling to the new position. (For

this purpose the lower ring need be placed in two or three

V T
positions only.) Then— and— should be equal.

Enter results thus :

—

V =

/ =

V

ExpERiMENr No. 14. Iir.

T =

T
les.
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! il

IV.—In II. the whole mass attached to the two ends of

the string(the bar included) is set in motion by the attrac-

tion of the earth on the bar. To determine the effects of

different forces when acting on the same mass we might take

a five gramme disc from the right hand side and put it on

the left. Tne whole mass set in motion would remain as in

II, but the moving force would be twice as great. As in II.

we might find tbe acceleration which shduld be twice that of

II. It will be simpler, however, to proceed as follows :

—

Remove the bar. The weights are now balanced and

their sum is 480 grammes. Change a 5-gramme disc from

right to left. The sum is still 480 grammes, but the differ-

ence is 10. Put the break circuit ring at any convenient

reading j, say near the middle of the scale. Find /, the time

2S '

of falling through the distance s. The acceleration is —-

Return the 5-gramme disc to the right and move the 10-

gramme disc to the left. The sum of the masses is the

same as before, but their difference is twice as great. Find

/2, the new time of falling through s. The acceleration

If this is about twice as great asIS now we
/2=*

° h''
shall have shown that the acceleration is proportional to

the force when the mass remains unchanged, or that the

rate of change of momentum is proportional to the force

which produces It.

Enter results thus:

—

Experiment No. 14. IV.

J = . . . cm.

Z\ ^^. ..™-. . . sec.

2 S

2 S
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'. first acceleration x 2 = . .

.

second ** = . . .

ar

F.—The value of^.

Let the acceleration produced by the weight of 10 grammes
acting on 480 be called ai, Then^, the acceleration pro-

duced by the weight of480 grammes acting on 480 grammes,

will be 48^1. Similarly ^ = 24^2, where 02 is the accelera-

tion produced by the weight of 20 grammes acting on 480

grammes. The resulting value of g is too small since

the friction, etc., retards the motion. The true value of

g is about 981. Hence,
981 - 48^51 981 - 24<Z2

or is the
981

'"
981

fraction of the acting force which goes to overcome the

inertia of the pulleys, the friction and resistance of the

atmosphere.
t

Enter results thus :

—

. , :

^

:e

Experiment No. 14. V.

981 - 24a2981 - 48ai _
98^ 98?

(Each student to sign his name.)

15. THE INCLINED PL.\NE.

Experiment.—To investigate the motion of a sphere

rolling down an inclined plane. • • .
•

Apparatus An inclined plane about 3 metres in length,

with electric attachments. Ivory and other balls. A water

clock. A litre flask.
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The binding screws at the bottom of the switch-board

are connected by wires behind the board (as indicated by

the dotted lines) with the swinging arm 5 and the contact

pieces B^ C, Z?, to which S may be moved. When H is

moved to B the circuit is completed, but the machine is in

no way afifected. When it is moved to C the current

passes down one of the wires inside the groove of the

inclined plane to the bridge circuit-maker (previously

placed so as to connect the wires at any desired position

on the scale), thence back by the other wire in the groove,

through the electro-magnet of the inclined plane, and

through the electro-magnet of the water clock. Thus the

armatures of the two electro-magnets are simultaneously

moved, the water clock is opened at the instant that the

ball starts to roll down the plane, and continues open until

the ball displaces the circuit-maker connecting the wires in

the groove. In this way we obtain a measure of the time

required by the ball to roll through any distance on the

scale.
,

(The arrangement of the wires should be carefully studied

before commencing the experiment.)
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Method I.—Choosing as a unit of lime, the time during

which loc.c. of water falls from the cistern, to find the

equivalent of this time in seconds. Set the water running

slowly into the cistern. Open the valve of the cistern

with the electric current and note by means of the stop-

watch or otherwise, the number of seconds required for

looo c.c. of water to run out. One hundreth of this time

gives ill secon Is the equivalent of the water clock unit.

The operation should be repeated two or three times and

the mean taken.

Enter results thus :

—



4p MATHEMA TICAL LABORA TOR V.

.^i

1'

///.—Set the circuit-maker at various positions (at least

4), and show that the distance is proportional to the square

of the time.

Enter results thus :
—

' Experiment No. 15, III.

.*. mean value of the acceleration a for the inclination

. . ." is . . . cm. per second in each second.

IF.—Change the inclination, repeat the last experiment,

and show that the acceleration is proportional to the

sine of the angle of inclination of the plane.

Enter resulu thus :

—

Experiment No, 15. IV.

s
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.*. mean value of the acceleration a for the inclination . . .

is . . . cm. per second in each second.

Ratio to value in III. = -^-^ = . . .
• • •

Ratio of sines of angles of inclination = ~-* = . .

,

F.—Assuming the theoretical value of the acceleration

to be

-i ^ sin e,

find both from III. and IV. the value of §'.

Enter results thus :

—

From III.

From IV.

Mean,

Hence,

Experiment No. 15. V.

^ = . . . cm. per sec. in each second.
„ ^ i( (( (( (( ((

6 ~ • • •

^= • '

^= • . ft. "

(( (( ((

<( (< ((

((

((

(Results of the five parts to be returned together.)

(Each student to sign his name.)

16. CENTRIFUGAL FORCE.

Experiment.—To investigate the stress in uniform cir-

cular motion.

Apparatus^—At the centre of a horizontal rotatory table

is a chamber containing mercury communicating with a

vertical mercury column in a glass tube alongside a fixed

scale. One side of the mercury chamber is a thin steel

corrugaged diaphragm, to the centre of which is attached a

radial brass rod, the ot her end of which is attached to a
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Sil!

rocking arm fastened lo the re- -g table. When rota-

tion takes place the stress be . the revolving mass and

the steel diaphragm causes .ncrease in the capacity ol

the mercury box and a corresponding fall in the mercury

column. An overhead conical countershaft permits of

large variations in the rate of turning of the table. We
may thus investigate the connection between the mass,

velocity and radius in circular motion.

Method I.—The first thing to be done is the calibration

of the glass tube. By a spring balance find the reading of

the top of the mercury column for various forces applied

at the end of the radial bar. Plot these on section paper^

the readings of the column being taken as abscissas and

the corresponding forces as ordinates, and draw a curve

through the points.

//.—Keep the rale of turning unchanged. Also keep

the position of the sliding body unchanged, but change the

mass of this body by gradual addition or subtraction,

being careful to clamp it securely after each change. Plot

the mass thus added or subtracted, and also the corres-

ponding forces, and draw a line through the points.

///.—Keep the rate of turning unchanged, and also the

mass, but move the latter to various positions along the

rod, being careful to clamp it securely in each position.

Plot the various distances from the centre and the cor-

responding forces, and draw a line through the points.

IV.—Keep the mass and the distance from the centre

unchanged, but vary the rate of turning. The number of

revolutions per minute may be noted by means of a speed

indicator. Plot these and the corresponding forces^ and

draw a line through the points.

\,

t\
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From an inspection of the diagrams obtained in II, III

and IV. state the relation between the force and the mass,
radius and speed.

Enter results thus :

—

Experiment No. i6.

(The four diagrams.)

(Tlie general statement as to results.)

17. STATICAL FRICTION.

Experiment.—To find the relation between the normal
pressure and the corresponding statical friction.

Apparatus.—A spring balance. Weights. Surfaces

between which the friction is to be investigated.

Method.—Keep a record of the various pressures between
the rubbing surfaces and also of the force required to just

overcome the friction in each case. This force must be
applied very gradually and in a direction parallel to the

surfaces under consideration. Then plot on section paper
the corresponding pressures and frictions, the former being

taken as abscissas and the latter as ordinates. Draw a
straight line which will pass nearest to the various points

thus obtained.

Enter results thus :
—

Experiment No. 17.

(The diagram.)

(Each student to sign his name.)
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1 8. MECHANICAL EQUIVALENT OF HEAT.

Experiment.—To determine the mechanical equivalent

of heat.

Apparatus.—A steel cone containing mercury in which

the bulb ot a thermometer dips is caused to revolve in a

similar fixed cone. Means are provided for measuring the

amount of work done in heating the cones and the mer-

cury by a measurable amount. For correction for radia-

tion, and for other details of the experiment, see Pickering's

Physical Manipulation.

19. TORSION AND MOMENTS OF INERTIA.

Part I.

Experiment.—A metal bar is suspended by means of

a wire, the upper end of which is clamped. The direction

of the wire passes through the centre of gravity of the bar,

which makes horizontal oscillations under the torsional

reaction of the wire. It is required to find the moment of

inertia of the bar.

Let k be the couple which would twist the free end of the

wire through a unit angle (one radian). The couple which

twists it through the angle d is kd. When the wire is thus

twisted it exerts, as an opposite reaction, a couple kd.

Thus, when the bar is swinging horizontally and makes an

angle Q with its position of equilibrium, the moments of

the external force& about the axis of motion =-kd (minus

since the couple tends to diminish^). Let /= the mo-

ment of inertia of the oscillating body about the axis of
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rotation, and a = the angular acceleration. '1 hen

la^-kB (i)

45

or. a = -
/

e (a)

Let r - the distance of any point in the moving body from

the axis, and multiply both sides of (2) by r. Then

r a^-l. vB

In this equation r a is the tangential acceleration of the

point, and r 6 is the displacement. Hence the motion of

the point is a simple harmonic motion and the time of 4.

vibratio-P is tt ^ __. Calling this time / we have

s/ = TT /_

•./ =
TT*

(3)

Two bodies of equal mass m are arranged to slide along

the bar. Let /i = the moment of inertia of the bar alone

about the axis of rotation, /2 that of each sliding mass

about a vertical axis through its centre of gravity. Then

a being the distance of this axis from the axis of rotation,

the moment of inertia of each of the sliding masses with

reference to the axis of rotation is A + ma^ .

Method 1.—The experiment is to be conducted as fol-

lows :

—

I. The sliding masses are placed at distance a from

the axis of rotation, the time of vibration being 4.
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2, The sliding masses are next placed at a distance ^,

the lime being tt,

3 They are entirely removed, the time being now /a.

Then /j + 2/2 + awa^ - —i^

/i + 2/2 + 2W^2 = L

/l =
/6/32

TT^'

(4)

(5)

(6)

Subtracting (5) from (4),

2W (^2 - /^2 ) = --L
(/i2

_ /.^2
)

TT

.-. /6 = (7)

Then from (6)

/ /l2 - /22
(8)

/2 may be found by substituting in (4) or (5).

k will be in force-distance units, and h in mass-(dis-

tance)2 units.

If I2 were known at first, equation (5) would not be re-

quired.

k X length of wire is the couple required to twist unit

length -of the wire through one radian. This is the modu-

lus of torsion of the wire.

The radius of gyration of the bar about the axis '

motion = V/i / mass of bar.
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Enter results thus :

—

Experiment No. 19. I.

a = . . . cm., b = , , ' cm,, m - . . . grammes.

t\ = . . . sec, ti = . . ' sec, /^ = ... sec>

.". k - , . . and /i~...

The radius of gyration of bar = y fH = . • • cm.

Part II.

A table is similarly suspended. Let /i = the moment of

inertia of the table alone about the axis of suspension, the

time of vibration being ^1 . Let a body of known moment
of inertia be placed on the table, so that the centre of

gr^'ity is in the same axis of suspension, and let the time

of vibration now be ^2 . Let t^ be the time of vibration

when a body of unknown moment of inertia I3 is placed on

the table with its centre of gravity in the line of the wire.

Then

Ji =
T'2

/l./2= ^14^,

Ii+h =

Subtracting (i) from (2)

k

7r2

n-2

()

(3)

h =
)ra

(<2 2 - «l 2 ). (4)

and sublracling (i) from (3)

k/,= « (/32 -h') (5)
TT-
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I \

^'
"72 2 - /I

2

k may be found from (4) and A from (i).

(6) may be written

(6)

/.= /2

/2
2 -

/3
2 _

-__ -
2 and ^ ^ may be found once for all.

Then the moment of inertia of any body is of the form ,

where a and b are constants, and / is the time of vibration

when the body is placed on the table.

Find a and b for the given table and cylinder, and then

find the moment of inertia of the given pulley.

Enter results thus :—

I! I

i
'

l> i

Experiment No. 19. II.

Mass of cylinder = . . . grammes,

Diameter of cylinder = ... cm.

.*. moment of inertia /2 = . .

.

/i = . . . sec, <2 = . . . sec.

Hence a = .. , b = . .

,

Time of vibration, table and pulley, t = . . . sec.

.'. Moment of inertia of pulley - at'^ - b

(Each student to sign his name.)

IL
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20. MAXWELL'S VIBRATION NEEDLE.

ExPERiMENr.—The value of k (Exp. 19) may be found

with greater accuracy by using an apparatus specially de-

signed for this purpose by Maxwell. The time of vibra-

tion may be found with great accuracy by using a reading

telescope and a chronograph. For details of the experi-

ment see Glazebrooke and Shaw's Practical Physics.

\.

n

n

2\. BIFILAR SUSPENSION.

ExPERLMExr.—To find the moment of inertia of a rod.

Apparatus.^ A heavy brass cylindrical rod which is

hung up in a horizontal position by means of two equal

vertical strings, and is caused to make small horizontal

oscillations about its middle point. Apparatus is also

required to measure the lengths of the strings, etc., the

mass of the rod and the time of a vibration.

Method.—See that the rod is properly suspended, i.e.,

that it is horizontal and that the strings are vertical and

equal. Measure in centimetres the distance b between the

parallel strings, also h^ the distance from the axis of the

rod to the point of support of the string. The mass m of

the rod is 5343 grammes. Cause the rod to oscillate about

its middle point through a small angle and find in seconds

the time i of a vibration. Then the moment of inertia of

the rod about its axis of vibration is *

nig ^- /2

4 n^ k

where ^ = 981.

* See Wright's MechnHict
, p. 314.

D
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Enter results thus :

—

Experiment No. 21.

b = . . . cm., /; = ... cm., t = . . . sec.

/. moment of inertia = . .

.

(Each student to sign his name.)

22. REVERSION PENDULUM (KATER'S).

Experiment.—To find the value of ^.

Apparatus.—A metal bar carries a pair of cylinders and

parallel knife edges at or near its extremities. One of

the cylinders is hollow, the other solid ; hence, although

geometrically symmetrical, the centre of gravity is not

at the middle of the bar.

Let the distances of the knife-edges from the centre of

gravity be hi and //2 and the times of small vibrations about

these knife-edges be h and h , respectively. Also take k as

the radius of gyration of the pendulum about the axis

through the centre of gravity parallel to the knife-edges.

Then

/2 =

TT

TT

g^\

to eliminate k and solve for^.

Squaring,
7r2

g

(0

(2)

(



ir

subtracting,

A'Ji VERSION PENDUL UM,

tx 2 hi - h - /^2 = '^ {hx '^ - //2 2
)

S

51

(3)

which is identical with

27r2 _ h 2 + /. 2
/i

2 _ I, 2

^ ~
//I + //J h\ - hi

(4)

(3) will give the same value of g as (4) ; the latter, how-

ever, shows by what arrangement the greatest accuracy may
be secured. The times t\ and h may be found with great

accuracy, but the exact position of the centre of gravity is

not easily determined ; hence, /n and hi are uncertain. The
denominator h\ + 7^2 of the first fraction on the right of (4)

is the distance between the knife-edges, and hence may be

measured even if the centre of gravity were entirely un-

known. The denominator h\ - hi of the second fraction

cannot be determined with very great accuracy. On
account of the fact that one of the cylinders is much heavier

than the other, h\ - hi is not small. If then fi and fi are

very nearly equal, the second fraction will be very small,

and hence this second term will have only a very slight

effect on the value of ^. Thus the pendulum should be

arranged so that ^1 and ti are as nearly equal as possible.

The distance between the knife-edges may be found by

Exp. 9 (or more accurately by means of a dividing engine).

The approximate position of the centre of gravity may be

determined by balancing the pendulum on a horizontal

knife-edge . The time of vibration may be obtained by
means of coincidences of vibration of the pendulum and

that of the mean time clock, which beats seconds. Special
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II

arrangements are provided for the purpose of obtaining
these coincidences. If/ = the number of seconds between
coincidences, and if the pendulum gains as compared
with the clock, the time of vibration of the pendulum

=
p ^ ^

seconds. The value of/ adopted should be the

mean of a large number of determinations.

Find the value of ^, arranging the work as in the follow-

ing example :

—

Example.

y 26.97
ti - -—— = . 96425 sec.

h =

27.97

25.67
= .96250 sec.

26.67

A 2 = .929773, /2- = .9264i5'

/i
2 + ^.^ 2 = 1.856188, h 2 -

/.J
2 ^ .003358,

h\ + h^i = 92.681 cm.,

//I = 62.01 approx., 7/2 = 30.67 approx.,

/^i-/^2 = 31.34 approx.

27r2 1. 856188 .003358
•• 7~ ""

92.681 31-34 '

= .0200277 + .0001071,

.'. g = Q83.34,

Correction for arc* = .05

** *' buoyancyf = .15

.*. corrected
J? =980.54.

Note I.—When the knife-edges, etc., are arranged so that

t\ and h are equal, it is known that h\ Jh = k^ . Moreover,

the knife-edges should be at equal distances from the

\,

* See Note 2.

t See Note 3.
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i.

f

le

middle of the bar in order that the action of the atmos-

phere may be the same in both positions of the pendulum.

The required adjustment may be made as follows : The

knife-edges being near the ends of the bar, observe ^i in

(i) and measure /^i approximately, also assume an approx-

imate value of^ and calculate >i2 ^ which = —--^ h\ -
.

Let :x: = the required distance of each knife-edge from the

middle of the bar and let a ~ the distance of the centre of

gravity from the middle.

Then (x -a) {x + a) = Ii^

The shifting of the knife-edges will change k slightly, hence

the work should be repeated.

Note 2.—The correction to the time for the arc of vibra-

tion is approximately —
eV ^^

where Q is the radian measure of the kngle of vibration,

Now,

g = __(/;i + k2 ), nearly ; . . ^ = - — , .'. dg = -- *__>

the arc being the same in both positions ; or, — Q^ may be

subtracted from each time.

Note 3.—The correction for buoyancy is approximately

g -L where 5\ and ^2 are the specific gravity of the air and

metal respectively. Approximately, - =
'

= .00015 ;

.*. </^ = .15 approx. This correction is obtained thus :

—

wt. of displaced air s\ . r j- 1 j • '^i

, , ^
_ — .*. wt. of displaced air = m^ —

wt. of pendulum ^2 ^2
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where m = mass of peudulum. Hence, external force

moving pendulum = mg - mg ~ = mg(i 1

''»i=/ (^ " "7 ) =^^Y I + j-)i approximaiely.

23. SIMPLE PENDULUM (BORDA'S.)

Experiment.—To find the value of ^.

Apparatus.—The so-called simple pendulum is really a

compound pendulum made upof (i) the ball, (2) the knife-

edge and screw, etc., (3) the wire, (4) a cylinder above the

plane of suspension.

This cylinder is intended to neutralize the efifect of the

wire, knife-edge, etc., leaving the ball to move as if it were

attached to a mere point of suspension by a massless string.

That this may be the case the cylinder must be placed so

that the time of vibration of itself with the wire and knife-

edge may be the same as that of the complete pendulum.

This may be effected by calculation (see note 5).

2

The equivalent length / of the pendulum is — where
ft

r is the radius of the ball and h the distance from the plane

of support to the centre of the ball. These are obtained

by measurement with a cathetometer and a Vernier caliper.

The time is obtained by coincidences with the mean time

clock. The pendulum loses a little as compared with the

clock. If / be the number of seconds between coinci-

dences, the time of vibration of the pendulum is /-I
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Then from / - / ^
I - TT I— we have

V-

e =- = /[!L(^]:_7r2/

where / = 1>
^ ^ '^

h

Find the value of ^, arranging the results as in the following

example :

Example.

h = 104.316 cm., ?' = 2.99 cm., .'. /= 104.350 cm.

/ = 41.185 sec, from 200 coincidences.

.-. /[

Correction for arc *

" for buoyancy f

7r{p-

P
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Note 2.—Differentiating^ ^- 1 [^-- ^
~ ^

J , we liave

dg= 1.2 dp + 9.5 dl

for thi*! pendulum.

For arc, dg= .0031 a- , where a is the total arc of vibration

in centimetres.

Note 3.—From t =

dp

/-I
dp

we have

dt = - 7-—^~T- -—7— approximately.
(/ - 1)- 1600 -

^ ^

'I'hus an error of i sec. in/ would cause an error of about

sec. in the vaUie of t.

1600

Note 4.—To reduce the value of ^to what it would be at

the sea level, we have, since g is inversely proportional

to the square of the distance r from the earth's centre,

d^ dr

i r

The increase is .*. 2 - //, where h is the height of the

pendulum above sea level. This is equivalent to increasing

the metric value of ^'^ by .000093 for each foot above sea

level.

Note 5.—The adjustment of the cylinder was made as

follows :

The time of vibration of the whole pendulum is

t-~ il
^^^ ^^ ^ "^ ^'^'^ "^^ " "^ ^^^ ^'^ ^ "^ ^"^ ^'^

^

(1)
^Ig I mi hi + W2 /i2 -v mz hz - tn\ h\

m being mass, k radius of gyration about its line of sus-

pension, and /; the distance of this line from centre of
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gravity ; the four parts of the numr. and denr. referring to

(i) the ball, (2) the knife-edge, screw, etc., (3) the wire,

(4) the cylinder.

The ms are found in tlie ordinary way, also h\^ h^^ hz.

For the k's we have k\ - = h\ - + |r- , r being radius of

ball ; k-2, may be found experimentally by letting the knife-

edge and screw vibrate on the plane ofsuspension and noting

the time of a vibration ; kz'^'u approximately \ (length of

wire)2 ; ^^ 2 = //^ 2 +
^^

(length of cylinder)2 + \ (radius of

cylinder)'- . Thus everything is known except /'4 . This is

to be determined so that

m-2 ki - + ;//3 ^32 + m\ k\ - m\ 1i\
-

(^)m^ h2 + niz hz - ?n\ /i^ f?iv /n

and hence depends upon the solution of a quadratic

equation. The right hand side = /n + ^ 7— • This was found

by measurement to be 104.344; /^^ was taken as o, //3 =
50.5, mi - 3, mi = 1.57, ;;/4 -= 21.37, k-^ - - 2, /^a

2 = 3500,

h- = /^'^ +H+T = ^^^^ +'28. The above equation is

then (approximately)

;; 6 + 5500+ (2 1.37/^4" + 6) _
79.29 - 21.37 ^^^ ~ ^^^ ^'^'

which is very nearly satisfied by /i^ := 1.2.

The cylinder being thus placed we have

r
t =

^g

h\ +1 r-

IT

V980.6 /^^°4-344

= 1.0248
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If the cylinder were omitted we should have, substituting

in (i) and making pn = o,

t = 1.0247

This would make g about .2 too great.

This was verified by experiment.

li

m

24. SIMPLE MACHINES.

Experiment.—When work is done on a machine, a part

of the energy thus expended is always used up in over-

coming friction ; another part may be stored up in the ma-

chine, while a third part may be employed in doing work

upon some outside body or bodies. It is required to de-

termine these several parts in the case of certain simple

machines, also the mechanical advantage or purchase of

the machines, i.e., the ratio of the force overcome to the

force applied, and the efficiency of the machines, i.e., the

ratio of the useful work accomplished by the machines to

the energy expended on them.

Begin with the Differential Wneel and Axle. When by

pulling on the stwng the wheel is caused to turn, friction is

overcome, useful work is done in raising the weight attach-

ed to the pulley, and by raising the pulley itself energy is

stored up in the machine. The unit force employed in this

experiment is the weight of one-quarter ounce and the unit

distance may be taken as one centimetre. Note the heights

of the weight attached to the pulley and that attached to the

wheel ; take hold of the latter and pull it down through

any distance, and again take the two heights. The weight

I
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attached to the pulley multiplied by the distance raised is

the useful work done ; the weight of the pulley multiplied

by the same distance is the work stored up in the machine,

while the work done upon the machine is the distance

moved by the weight attached to the wheel multiplied by

the force required to pull the string, so as to cause the

motion. To determine this, attach the scale pan (weight

= 1.7 qr. oz.) and in it place weights until the motion be-

gins. Find the decimal which the energy stored up in the

machine is of the work done upon the machine ; let this

decimal be called D. Next the decimal which the useful

work is of the work done on the machine ; this is the effi-

ciency, call it E. Then i — (Z> + E) is the part of the

applied energy which is expended on friction ; call this F»

Also find the mechanical advantage A,

Similarly with the systems of pulleys, marked 11^., 11^.,

I.

Also with the differential pulley. In this case the weight

of the chain may be neglected, as the weights of the strings

are in the other machines. The pulley to which the 56-lb.

weight is attached weighs 3.3-lbs. The force required to

pull the chain so as to cause motion may be found by

means of a spring balance.

In the case of the screw, apply the moving force hori-

zontally, by means of a spring balance, to the end of the

lever and perpendicular to the lever. I^et it be understood

that the lever makes one complete revolution. The weight

of t' e lever must be included with that of the screw
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Enter results thus :
—

Experiment No. 24.

IJ.

Differential Wheel and Axle.

Pulleys Ha.

" I.

Differential Pulley.

Screw.

£. F.

(Each student to sign his name.)

25. THE MERCURY BAROMETER.

Experiment. —To find the pressure of the atmosphere.

Apparatus.—A Mercury Barometer with a scale of

millimetres and inches, and an attached Thermometer,

giving Centigrade and Fahrenheit readings.

Method.—Read first the attached thermometer. By
means of the screw at the bottom of the barometer raise

or lower the mercury in the cistern until the surface just

meets the ivory cone which forms the zero point of the

scale. Tap the upper part of the tube slightly so that the

mercury will take its proper position. The vernier and

the sliding piece at the back of the tube which moves with

the vernier must now be moved so that the plane joining

their bottoms exactly grazes the top of the column of mer-

cury.
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Read both the scale of miHImetres and the scale of

inches. To ensure as great accuracy as possible, the read-

ings finally adopted should be the means derived from

several settings of the cistern and vernier.

The observed height must now be corrected so as to

give the equivalent height at the freezing temperature of

water. It is known by experiment that the length of a

mercury column decreases by about .000181 of itself for

each degree (centigrade) in the fall of temperature, and a

brass tube (such as that to which the scale is attached) by

about .000019 of itself. The difference of these is .000162.

Hence the correction to reduce the observed height to

what it would be at 0° centigrade is

- (.000162) h millimetres

where h is the observed height in millimetres (corrected

for the index error mentioned below) and / the temperature

(centigrade) of the attached thermometer.

If the temperature be Fahrenheit we must take \ of

.000162 to find the change for each degree. Hence the

correction to reduce to 32" F. is

- (.00009) (^ ~ 32) h inches

where // is the observed height in inches (corrected for the

index error mentioned below) and t is the temperature

Fahrenheit.

There are several other corrections to be allowed for in

order that the true pressure of the atmosphere may be

found.
J

(i) There may be a little air at the top of the mer-

cury column and there is certainly some vapour of mer-

cury.

(2) The ivory point may not be correctly placed.
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(3) Owing to capillary action between the mercury

and the glass tube, the column is not so high as it would

otherwise be.

These errors are more or less uncertain, but are nearly

constant, and hence are best allowed for by combining

them into an "index error" determined by comparison

with a standard barometer. The index correction of the

laboratory barometer may be assumed to be 1.2 mm., or

.047 in/

Enter results as follows :
—

EXPERLMENT No. 25.

Attached thermometer
Correction to thermometer
Corrected temperature

Observed height of barometer
Index correction

Correction to reduce to freezing

temperature
Corrected height

. . . °F."
+ 2°

... in.

+ .047 "

The final result should not have more than four decimal

places in inches and two in millimetres.

(Each student to sign his name.)

26. THE ANEROID BAROMETER.

Experiment.—To read the aneroid barometer and by

it to determine a height.

Apparatus.—The aneroid barometer consists of a cylin-

drical box made of thin elastic metal, from which the air

'Read the thermometer to the nearest degree.
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has been exhausted. A change in the pressure of the at-

mosphere causes the top of the box to rise or fall through

a very small distance, this motion being magnified by

means of levers and communicated to a hand which moves

on a graduated dial. The dial has three double scales ;

the interior graduations corresponding to inches of a m ;•

cury baromster, and the outer to feet in a vertical height

through which the barometer may be carried. The in-

strument is compensated for changes in temperature.

Method.—Read the scale of inches. Also read the

mercury barometer and reduce to 32 F. From this sub-

tract the reading of the aneroid. This gives the correction

to apply to the aneroid readings for correct pressure at

Z^ F.

Carry the aneroid barometer to the highest floor of

this building. Read the scale of feet. Ntxt carry it to

the lowest floor and again read the scale. From this find

the distance between the floors.

Enter results as follows :

—

Experiment No. 26.

I.

Mercury barometer reduced to 32 F,

Aneroid reading

.*. index correction of aneroid

... m.

• • •

II.

Reading at highest floor

" lowest "

.
•

. distance between floors is

(Each student to sign his name.)

... ft.

• » •
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t

27. BOYLE'S LAW.
Experiment.— (i) To find the pressure of the atmos-

phere, and (2) to verify Boyle's Law.

Apparatus.—Two glass tubes connected by a flexible

tube containing mercury are mounted on each side of a

vertical scale. One tube is fixed in position, and is pro-

vided with a tap near the upper end ; the other, which is

open at the top, slides up and down the scale, and is

balanced by a counterpoise to which it is attached by

means of a string which passes over a pulley at the top of

the scale.

Method I.—The tap being open, slowly lower the coun-

terpoise until the mercury just rises above the tap. Close

the tap and raise the counterpoise. After raising it six or

seven decimetres it will be noticed that the mercury is

beginning to fall below the tap. Wait a short time for the

mercury to come to rest, read in decimetres and decimals

the heights of the tops of the columns on the two sides of

the scale and subtract. This will give the length of the

column of mercury which is supported by the pressure of

the atmosphere. The work should be repeated at least

two or three times.

Enter results thus :

—

Experiment No. 27. I.
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The average of these resuhs gives . . . decimetres of mer-

cury for ihe pressure of the atmosphere.

//. To investigate the relation between^the pressure and

volume of a given quantity of air.

The counterpoise having been lowered and the tap

opened, bring the mercury to about 6 on the scale, and

close the tap. There is now enclosed in the left-hand tube

a column of air about 4 decimetres in height and at a

pressure already determined in Part I. of this experiment,

and which we may call/>j . Read carefully the top of the

mercury and subtract from 10.00, which may be assumed

as the height of the top of the air column. Call this re-

sult Fj, This may be taken as the volume of the air

column, the volume of one decimetre of the tube being

assumed as unit volume.

Now lower the counterpoise about one decimetre and

read the mercury columns on the two sides. The reading

on the left, subtracted from 10, gives Fg , the new volume
j

the difference of the two readings, added to /j ,
gives p^ ,

the new pressure.

Again lower the counterpoise about another decimetre,

and proceed as before ; and continue until six or eight

values of the volume and the corresponding pressures

have been obtained. It will be found that the product of

any volume by the corresponding pressure is very nearly

constant, showing that the volume 's inversely proportional

to the pressure. This is Boyle's Law.

Having completed this, raise the counterpoise, open the

tap, and enclose as before a column of air about one deci-

metre in length and proceed as before, but in this case

allow the air to expand instead of compressing it.

E



66 MATHEMATICAL LABORATORY.

Enter results thus :

—

Experiment No. 27. II.
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III.—To express the results by means of a curve. On
a piece of section paper assume one centimetre to repre-

sent, when taken horizontally, a unit of pressure; and,

when taken vertically, a unit of volume. From any hori-

zontal line cut off a length to represent the pressure of the

air at any time in the experiment, and from the extremity

a perpendicular line to represent the corresponding volume,

thus obtaining a point A^ Represent in a similar way the

other pressures and volumes, and through the points thus

obtained draw a curve. In this way curves similar to AB
and CD will be obtained. These curves are parts of

hyperbolas, having the pressure and volume lines for

asymptotes.

Enter results thus :

—

Experiment No. 27. III.

(Plot the curves.)

(Each student to sign his name.)

28. THE WET-BULB HYGROMETER.

(Double Interpolation.)

Experiment.—To find the pressure of the aqueous

vapour in the atmosphere, also the relative humidity and

the dew point.

Apparatus.—Two thermometers ; the bulb of one is

dry, that of the other is covered with hnen which is kept

moist by water which soaks up a wick.
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Air at a given temperature will contain only a certain

quantity of the vapour of water ; the higher the temperature,

the greater the quantity it will contain. The rate at which

water evaporates depends upon the ratio of the quantity

of vapour actually present in the air to the total amount

which the air is capable of holding. The smaller this ratio,

the greater the relative dryness of the air and the more

rapid the evaporation. Again, evaporation is always

accompanied by a fall of temperature ; the more rapid

the evaporation, the greater the fall of temperature. Thus

the difference between the readings of the two thermo-

meters will indicate the rate at which evaporation is going

on from the wet bulb, and hence also the relative dryness

or moistness of the atmosphere. When this difference is

zero no evaporation is taking place, and the air is saturated

with moisture. When in this condition a slight fall ot

temperature will result in some of the moisture being con-

densed into cloud or dew.

Method.—Read the two thermometers, being careful to

estimate first and quickly the number of tenths in the

fraction of a degree on each scale. (If you remain near

the thermometer a short time, the mercury will lise—hence

the precaution just mentioned.) With the dry bulb tempe-

rature and the difference of the two, enter the following

table, which will give in millimetres of mercury the pressure

of the vapour actually present in the atmosphere.
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15

8

The reading of the dry bulb is of course the temperature

of the atmosphere, i.e., of the mixture of air and aqueous

vapour in contact with the thermometer. Opposite this

temperature and under the column headed o we find what

the pressure of vapour would be if the air were saturated

with moisture. For example, at 15° the saturation pres-

sure is 12.7 ; at 16°. 3 it is 13.5+ (.3 x .9) = 13.77-

The ratio of the pressure of vapour actually present to the

pressure at saturation gives the fraction which the vapour

present is of the quantity at saturation. When this frac-

tion is multiplied by 100 we have the percentage which the

vapour present is of saturation, i.e., of the possible amount

that might be present. This is called the relative humidity.

Thus in Example i, the relative humidity = 100 ^12^ = 58.3,

i.e... the vapour in the air is 58.3 per cent, of the possible

amount at the temperature 15*^.

The dew point is the temperature to which the air would

have to be cooled before the moisture actually present

would begin to condense. Look out in the column headed

o the pressure already found for the moisture now in the

air, and opposite if, in the first column, we find the dew
point.

In Example i, the dew point is C'^.S.

Enter results as follows :

—

Experiment No. 28.

Dry bulb

Wet bulb

Difference

Pressure of vapour

Saturation pressure at dry bulb temp.

Relative humidity

Dew point

(Each student to sign his name.)
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29. THE STEREOMETER.

Experiment.—To find the volume and specific gravity

of small quantities of sugar, powder, wool, etc., which

cannot be conveniently weighed in water.

An ordinary determination of specific gravity depends

upon finding the weight of water displaced by the given

body. By means of the stereometer the amount of air

displaced by the given body may be found, and hence the

the volume and specific gravity. For details see Stewart

QX\diGt6's Practical Physics.



APPENDIX I.

THEORY OF THE PLANIMETER.

w^

Fig. T,

Fig.
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Imagine a straiglit line AB (Fig. i) to be provided with

a wheel placed aiits midd'e point M so that its axis is in

the direction of AB^ and that suitable graduations will

record as in the case of the planimeter the number of

revolutions and parts of a revolution which the wheel makes.

Let ;/ stand for this number, i.e., for the change of reading

of the circle between the time of starling and any subse-

quent time. Let c = the length of the circumference of

the wheel. Then en is the distance rolled through by a

point in the circumference of the wheel.

• Take l^ for the length of AB.

Suppose ABf starting from the position in the diagram,

to be an instant later at A\ B\ . This infinitesimal dis-

placement may be considered as made up of a parallel

translation to Ai E, and a rotation from Ai E to A\ Bi .

In the first motion the wheel in moving from i)/ to ZT rolls

through the distance MF and slides through FII\ during

the second motion the wheel rolls through BMi ; hence

MF+ HM\ - cfiy where n is the change of reading of the

circle. The area which the line AB has swept out is made
up oiAE and Ai E Lh . The area of AE is AB, MF,
and that of AiEBi is AiE. lIMi (.'. HMi which may be

regarded as perpendicular to A^E is \ EBy), Hence
AB {MF + HM^) or ben is equal to the area ABB^Ay
swept out by AB. Similarly if the line move forward into

other positions the area which it sweeps out will continue

to be the length of AB multiplied by the distance through

which its middle point is displaced perpendicularly to the

moving line, i.e., the distance over which the wheel rolls.

In other words the area described up to any instant is bcn^

where n is the change of reading of the circle up to that

instant.
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1

In order that this result may hold for all possible move-

ments of the line, it is necessary to consider that the area,

or a certain portion of it, is in certain cases negative. Let

us agree to consider the area formed by all parts of the

moving line which, as we look from A towards B^ are

advancing towards the left as i-, and the area formed by those

parts which are advancing towards the right as — . Then,

whatever the motion of the line in the plane, the algebraic

sum of the + and — areas swept out is equal to lyctiy where

n is the final change of reading of the recording circle.

Suppose, for example, that AD (Fig. 3) moves into the

position A^ B^ by turning about C. Then in accordance

with the distinction just made DCB\ is -!- andACAi is—

,

The sum of these (i.e , the arithmetical difference) is equal

'g- 3.

to the product of AB by the perpendicular displacement

MMi of its middle point. For the triangles DMi Bi and

Ai Af\ E being equal, BCB^ ^ BE ^ ACAi orBCBi —
ACAi = BE = AB.MMx = bm.

Consider now the effect of putting the wheel at any

point jy m AB (Fig. i). When ^^^ mowzs {0 A\ Bi

the wheel will roll through IVR and GWi,. Hence,

€n being the distance rolled over by the wheel, to get the

area swept out by AB we must add b x IM\ to ben,

Wi I being parallel to A\ E or AB. Draw (Fig. 2) a circle

with IVM or IVi / as radius, and from its centre O draw

OF and OPi parallel to AB and^i B\. Then PFi = lAfx .
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Hence, the area swept out by AB = ben + b, PP\ ; and if

AB move into any jiew position Am Bi„ to which OPm is

l)arallel, the resultant area swept out hy AB = ben i-

b . arc FF,n . If AB move about, turn backward, and

finally return to the position AB or parallel to it ; the

area ben will require no correction, and the wheel will read

exactly as if it were at M. But if ^^ mike a complete

revolution and return to its first position, or parallel to ic^

we must correct ben by adding b x circumf. of the circle

Fig. 2, i.e., by adding 2-bk where k - lV.\f, the distance

of the wheel from the middle point of the moving line.

Let any straight line move so that its extremities des-

cribe any closed curves. Then in all cases the area swept

out by the line will be equal to the arithmetical difference

of the areas of the curves described by its extremities. •

Fig. ^.

When the areas are without one another, one will be

described on the whole positively and the other on the

whole negatively, while the area between the two which

is swept out at ail will be swept out both positively and

negatively. When they intersectj the common portion,

in so far as it is swept at all, ivill be swept both positively

and negatively ; the rest as before. When one curve lies
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entirely outside the other, the portion of the latter which
is swept at all will be swept both positively and negatively.

Hence if, as in the planimeter, one end A of AB is

constrained to move along a line (whether circular or
straight) without tracing out any area, the area of the curve
traced out by the othe. end ^ will be equal to ihe resultant
area swept out by the line AB^ and hence will be^^« \{AB
return to its starting place without making a complete
revolution. But if the fixed point of the planimetf.r lies

inside the area described by the tracer B, the bar AB
must make a complete revolution. Hence, the area des-
cribed by B

- ben + iirhk + circle described by A
= hen + 2TTbk + ira^

= bc\ n +
2'iThk -I- ira^

Tc ]

The second term in the brackets is a constant, and is en-
graved on the bar. This number is then to be looked upon
as a correction to n when the planimeter makes a complete
revolution. In certain cases n may be negative.

Let the distance of the wheel from the joint A be cal'ed

d. Then (Fig. i) /^ - ~ - d. Hence area described by B

= hcti + iirj I- - ii\ + 7r«2

= ben + TT {or + b'^ ~ ibd.)

Place the planimeter so that the perpendicular from the
fixed point to the sweeping bar passes through the wheel.
Then the square of the distance from the fixed point to
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i
I

h

the tracer B = a"- + I?- - ihd. .-. the area of the curve

which B traces =/^c/^ + are i of circle described by the tracer

when the planimeter is in the position just indicated.

This circle is called the datum circle. (In describing this

circle the wheel would slide and not revolve, and hence n

would be o

)

Let it be required to find If so that the area may be found

in square centimetres by multiplying;/ by loo.

We have l^cn = area = ioo«

.-. dc = 100

100
or, = — centunetres,

c

where c is the circumference of the wheel in cm.

-.s

d = —mch esSimilarly

if^ = the circumference in inches, and the area is to be

found in square inches by multiplying « by to.

In general, if the area = ;/, Ifc is the unit area.

pin
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APPENDIX II.

THEORY OF THE MECHANICAL INTEGRATOR.

As we proceed from B to C by way of A (see figure),

X changes from D to OE and \ ydx is the area DBA CE ;

but, if we proceed from C to i5 by way of Pi ,
each

element of area such as ydx is negative since dx is nega-

tive, and hence f ydx is the area CEDB, but is negative.

Hence, if we sum the elements such as ydx in the order

of proceeding clockwise round the curve, the result =

DBA CE-BDEC = B AFC, the area of the curve.

Let A = this area, M = sum of the moments of the elements

of the area with respect to OX, I = moment of inertia of

the area, also with respect to OK. Then

A - ydx,

M^\ydx,^-=- ydx,
J 2 2 J

I^'^ydx J-^ ' j/^^.

In the integrator one end of a sweeping bar traces a

closed curve while ^he other end is constrained to describe

a straight line OX. This part of the instrument is therefore

a planimeter, and the area of *.he curve = bc^ni, where b

is the length of the sweeping bai\ c^ the circumference of

the wheel W^ , which the bar carries, and // ^ the change of

reading of this wheel when the circuit vjj the curve has

been made. The end of the bar which describes the
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straight line OX is also the centre of two arcs of radii 2a

and 3^ which turn circles each of radius a, the circles

carrying wheels W,^ and \V,^. When the axis of W^

makes an angle B with OX the axes of the other wheels

make angles —-26 and 3^, respectively, with the same

line.

For jK substitute Z^ sin ^. Then

A = d sin ^ {/x,

I = 1/^^
J

sin' Q dx.

Now 2 sin ^ ^ = I - cos 2^ = I - sin ( ![

and sin 3 ^ = 3 sin ^ - 4 sin ' ^,

2^),

or sin ' ^ = ^ sin ^ - - sin 3 Q.

4 4

.•.^=:^^^|[i-sin(^-26')] dx,

= i^^[J^;c-fsin(--2(9) ^;c]

«_l^^Jsin(!:-2^)^:x:

since \dx^o for th.? complete circuit of the curve.

/= V.' [(^ sin ^-' sin 3^) dx
3 •' 4 4

Also
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= -<{»' sin dx _ -L sin 3 ^ dx.
4 J 12 J

But by the theory of the planimeler the area A = bc^n^.

.'
. \ ixYi 6 dx = c^n^,

/>., when the axis of a wheel makes an angle ^ with OXyiQ

have sin^ dx =c^nx* But the axes of the other wheels

make angles -^ - 26 and 2,6 with OX.
2

s\w( —26^ dx = €2^2,,

and sin 3^

.*. A = bc^n^y

(IOC •— ^ Q ' 3 •

4 12

The maker has constructed the machine so that b ^ 2

decimetres, c^ ~ ~ dec, c = c-^ ^ ^ dec.
2 5

.
•

. -4 = «i

,

/ « «1 - - «3 •

5






