The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur
\square Covers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculée

\square
Cover title missing/
Le titre de couverture manque

Coloured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

\square
Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion
along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutees lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible. ces pages nont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleurPages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculéesPages discoloured. stained or foxed/
Pages décolorées, tachatées ou piquéesPages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index

Title on header taken from:/
Le titre de l'en-téte provient:

Title page of issue/
Page de titre de la livraison

Caption of issue/
Titre de départ de la livraison

Masthead/
Générique (périodiques) de la livraison

\squareAdditional comments:/
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/ Ce document est filmé au zaux de réduction indiqué ci-dessous.

MONDMENT COMMEMORATIVE OF TME CAWNPORE MASSACRE.

PROTLCLION FOR INVEN I'IONS.

(Paper read before the Society of Arts.)
By F. J. Bbaywzle: C.E., F.R.S.
(Continued from page 6.)
But oven if there were no objections to secret manufacture ant it conld he carried on without the demoraiization and risks of discovery I hive shown to be attemiant upon the exerciee of it, such a manufacture is applicable only to those cases of invention, where the improvencent is in the means, or process, and not in the article produced. A t xtile fabric, similar in its structure and appearsace to those already known, may be better because it is cheaper, having been produced in an improved loom, and dyed by dyes, the use of which was hitherto unsusp' c ed. In such a case suclet manufacture is to a certain extent practicable, because the merc appearanc of the cloth does not reveal by what means it was so cheaply made. As regards the wisving, however, the difitulty of secrecy would be griat, but with respect to the dyeing, concealment might be more easy if the improvement consisted in the application of an ingredient which could be added by the inventor himself, or by some one or two persons whom he might trust.

But in the large class of inventions, where the product is an improved one, and the very inspection of it reveals the improvement, secrecy is obviously imposithle. Let me, as an illustration, refer you to the Giffard injector. This invention (to which I shall again have to allude) is one applicable to the supplyiog of steam boilers with their feed water, and replaces the stean donkey pumps formerly used for that purpuse. The very first mechanical engin er i. to whose hands one of thest inje tors came would take it to pieces, and at once ascertain the nature of its construction. In su h in instance as this there can be no reward by secret manutacture.
In the case I have assumed, where it may perhaps be pus. sible for an inventor to carry on a secret manufacture, I have taken (in favour of the advocated of such a system) the in. stance of a man having made an invention in his own trade, and being possessed of every facility for bringing that invention to a commercial result, but I believe it is not among inventors and inventions such as these that we must look for great improvements; the fact is, that the bulk, one might almost say the whole, of real substantive inventions have been made by persons not engagad in the particular pursuit to which those inventions relate.
'lake a few instances. Watt was not a maker of steam engines, the five-engines of his day, but he was a mathematical instrument maker, Irkwright, the inventor of the "water twist," was a barber, Cartwright, the inventor of the puwer loom, was a parson, Neilson, the inventor of the hot blast, was wholly unconnected with smelting operationf, he was the manager of a gas works, Wheatstone, who has done so much for clectric telegraphs, was engaged in the manufacture of musical instruments, and Ronalds, the very originator of the electric telegraph, had nothing to do with the visual telegraphs in use in his time; Bessemer, who has so enormously increased the manufacture of steel within the last quarter of a centurg, was in no way connected with that industry. The fish-juint for lailways, the greatert improvement in perma ent way that has been made since railways were introduced, was the invention of a carriage builder. I trust I have given instances enough to establish my position, that the great substantive inventions are madu by persons unconnected with the manufacture or art to which those inventions relate, and wo can readily see why this should be.
The person who has been brought up to pursue any particular manufacture has even before he had sufficient kuowledge to be able to appreciate the merits and the principles of the processes he was taught to follow, been trained in the belief that "certain ends are to be obtained by particular means."

Tnd r such circumstances, it is difficult for even a powerful mind to break through the trammels which have been imposed upon it, and to approach the consideration of the subject of the particular art with the same Lroadness of view, and power of detecting and grasping the true principles upon which that art is based, as would le possessed by a wiud devoting itself to the subject for the first time, and thus the man untaught and unprejudiced in the art is more likely to
make substantive invention than is one who lans been trained in it from his youth.

Improvements of detail such a perron may moke, but there, in all'probability, will be the limit of his 'iventions.

Une can understand that a man who had been taught from his boyhood to make steel by the process of cementation, that is by packi'ng bars of wrought iron into brick boxes containing charconl, and exposing the wholo for several days to cousiderable heat, and thus estrbonting the aron and producing blistered steel, might, not unnaturallv, devise some improvement by which this process coulat be expedited, though one can hardly imagine such a mau breaking with the tradithons of the industry, and casting away the whole process of cementation. But onu braginic a totally fresh miad to the considuration of steel mrnufacture woul 1 , 11 all probability, study the question from the very beginning, and would say, "What is steel? What is wrought iron? What is cant ron?" and when he discovered that stecl was somethag between cast ron and wrought, that is to say, it contained less carbon than the one, and more than the other, and when he fund that cast iron was a cheapararticlu than wrought iron (wrourht iron beiug commualy produced trom cast by pratically abstractang the whole of its carbon, would seck a means by whech he might abstract from cast ron, not the whole of the carlion, to leave wrought iron, but su muti ot the carbon as wuald leave steel.

I'v one brought up in the steel trade, the vary word "steel"' would be assuciated with the adhation of carbon, and it would be most unlikely that he should attempe the manufacture by a process which fad for ats olject the titiong away of carbun.

Once consede that the great urentions ate made by "outeiders," then it appears to me that to connanue thas, the highest class of mvention, protectiou is atl absulnte necessity. Aa aventor mast nearly in every wase make trals and experiments, and these, as a rule, can only becouventently done in places where the manutacture as beans exercesed; but now we are assuming that the inventor is not engaged in the manufacture, he has, therefore, either to incur great expense to make his experimente, an expease in many cases prohibitory, or to furego the experiments altogether, or else he must seed the ud, and trust to the honour of, some mauufacturer.

Imagine a country clergyman whu has a knuwledge of chemistry maliag an inventiod ot an improvement in smelting iron ore. If be were a man of real ability, as I have suppused, he would appreciate the great complexity, aud the many practical dificultics, of that process, and he would know that nothing short of a trial of this tusention in tho actual furnaco could assure him that his method would not be frustrated by some such difliculty.

What, without a patent law, is that iaventor to do? Forego the tralal? Devute $£ 5$, vou of the large property which usually belongs to a country clergyman, to the, crection of an experimental blast furnace, trust to the honour of a manufacturer, or give up the invention? I thinh the probability 15 , he would pursue the last coarsc, and that thas the iaverition would be lost to the community.

But even supposing the prelimanary difinulty of a practical trial not to exist. Assume for example that the invention be one sueh as that of the Gifiard injectur, alrealy mentioned, one of the must substantive of the present day. This might have been tried in private by its anventor without insuperable dificulty, even although he weru wholly unconaceted withany of the mechanical arts, and he might have perfected his invention in every detail. But whin he had done thes, what would have been his chanco of ceward, how would he have sel about reaping the pecumary benent whitis ho would destre, an! which would be his reasonable due Would be make up has mind to forego all his usua! habit. of life and to become a manufacturer?

Say that he did so, and that in spit. of the difinultes to which 1 shall have to revert, he succeceded is mathitg a wertana number of the iujecturs fur sale, aud that the.. be hucir enough of busiaess to obtan purchasers for them, what would be the inevitable result? As I have already siad, whea taking the instance of this mplement as une impossible to make the sutyect of a secret manutactur, the very first mechanical engineer (a steam pump-maker) antu whuse hauds one of these injecturs fell, would ay, "Hecc is ans mplement that appears likely to compete serivusly with the use of steam-pumps. Why should not I mavo st? At present I huow it tis being manufactured by the inventur only, a persun who was not
brought up to trade, and who is living in a purely an icultural district - it is a hard case if I cannot hold my own ngainst him."
'Thereupon the steam-pump maker goes to work, with all the advantages of an established factory. with its befitting plant, its staf of supurintendents, its foremen, and its bodv of workmen to produce injectors, and with a whole system of travellers and agents, and the advantage of a lurge connexion, to dispose of the injuctors when made

What chane womld the inventor have, in his capacity of manufarturar amy seller, against such an organiation as this? obvinusly none, therefore, as it seems to me (equally obviously), he (foresiering this) would not have bestuwed the thought urecesary to invent and even if he had, he would not have inrurrod the labnur and expense of experimenting upon his invention.

II ving shmwn (as I trust I have) that in those cases where the invention is one that could be exercised by the inventor, his chance of profit in the majority of instances would be but small, "ven if he could carry on a secret manufacture, it is almo t surplusage to show, as I am about to do, that there are numbrous instauces in which (whatever might be the position of the inventor, as regards comnand of capital, business habits, and residence in an appropriate locality) it would be im: possible from the very mature of things for him to teap an adequate reward.
'lake the case, again, of the fish-joint on railways. 'This wroat improvement requires for its carrying wut, at each joint only two bars of iron and four bolts and nu's These can be produced at every iron works in the world, without the exercise of any unsual skill or intelligence; they are mere commun urti-les of manufacture, yot, when applied to rails in the way derected by the inventor (a way which after years of study of the question of how to improve the admittedly defective milway joints no mengineer ever thmght of), it makes a joint which has added to the life of permanent way and of rolliug stork, and has routributed in a great degree to the comfort of the traveller.

Take an instance of another kind. one where in the invention dows not rousist in a timple "application" of a common article of commerere, hat in a "process," zay the Besse mer steel manufacture Notwithstanding the trammels if a patent law as the opponents if such laws would say, or rather aided by the provisions of such a law, as I fhould say) the Bessemer iuvention in 1873 produced, in Englaud alone, 400,000 tons of ste $\cdot \boldsymbol{l}$. while in 1851 the total production of cast rtecl was but 3n, ino tons It seems to me fiting that one who has so far bencfitted manufacture and commerce should lave a large reward

By the aid of a royalty it was possible for Bessemer to whtann, liv a small percentage no the price of all steel, a sulstantial ruwart but I do not see how this could have been sucured to bim by the protits derived from being himself the manufacturur of that whinh, aver on the largest development of his works, could only have been a small fraction of the whole. The very magnitude of the result: of his invention wulld be a har to an adequate reward, unless the rewart wele spreal mar the whole manufacture
There is one other clas: of inve tions, the natute of whith reuders it impossible tor the pertenter to be adequately rewarded wern mader the monst favourable circumotances) by manufacture I will iastance the regenerative furnace of D_{1}. Siremens This furnace of which there is a diagram on the wall, hase for itrolynet the saving of fuel and the attaining of hegh luat Laudable oljoerts thene Let us sec luw Dr. yיmens attains them We makes a large, hamlitr, called the "Producer," capalle of holding, say 3 or 4 tons of cual or cuke. He che hottom of this chamber there is a small fire-grate, immediately abnve which a portion of the full is udergoing combustion in the ordinary manner Th. heated alloms ard resulting. passer up through the fuel, takcs up carbon from it, hecomes converted intir carbonic ovide, and escapes awith any bydrocarbnn that may have beed driven of by the heat if the fuel be coal) thrmuth an aft "nding pipn, and is led awav lo maius to auy place where a regenorative funace is to he on ner.ration "The regeuerativ, furnace is to be in up crution. Ther regenerative furnare has below it two pator of stacho of crllular, or pigern-hole, brickwork. Through one division of oue pare the gas from the producer is ascending, through the other divisiou of th. came pair armospheric nir is aloo ascend. lug ; the air and gits meet in the chamber of the furnace, com.
bustion ensues, aud heat is duveiopad. In an ordina furnace the heated products of cumbustion escape mito the air by a chimney, and, as they muat leave the furnace at a higher temperature than that at which it is necessary to muntain the material under operation (or otherwise they would cool that material), the products of combustion of ordinary furnaces must in all cases where high temperatures are necessary, carry into the air, and wate a large amount of heat. lut in the Siemens' furnace these outgoing products are conspelled, on their way to the chimney, to pass dowuwards through the two divisions of the second parr of blocks of pegeon-hole brickwork, and in their passage they give up therr heat to this brickwork so effectually that, although they may have been issuing from a furuace above the temperature of molted eteel, they will, on reaching the chimney, not lave neat enough remaining in them to char a piece of wood. At the end of a certain time, say half or three-quarters of an hour, valver, which contrul the direction ot the currents of gas and air, and of the outguing products of combustion, aro shifted, and the gas and air are now caused to ascend through the pair of masses of cellular brich work which have just been heated 1.y the outroing prolacts of combustion, white those products are directed dowawards through the other parr of cellular structures, which have been cooled by the passage through thein of the sas and air. and thus are fit, leing cool, to take out from the irodacts of combustion the heat which is in them, and to store it to heat up the gas and arr, when they, on the next reversal of the valves, again pass through them.

The succes of this plan has been complete; the advantages in economy of fuel, and in the capacity to give hagh heat, have beed all that could be desired. Moreover, there are large contingent benefits, inte which I will not now enter. Nu one will dispute that this is a most meritorous invention; it saves our coal, and it renders possible certain processes, which, with the temperatures formerly attainable, could not be carried out. But how, in the absence of protection tor invention, cuald Dr. siemens have derived any adequate reward? Not by practising his invention, for that, from the very universality of its application, woudd have then an meposebbility. Has furnaces are used by the manatacturers of "rought iron, by the makers of steel, by the podat rs of plate aud that glass, by enamellers, by cupper smelterf, by nat makers, jutters, sad by those en;a;ed in numerous otber branclaes of iudustry requiniag furnace power.

I should lite to arh the advocates of the system of rewardita' inventore, by letting them carry out, as manufacturess, the oljects of their invennon, whether they would suggest that Dr. Siemens was to embark in all the businesses to which his invention is applicable. 'I'hey might fay, "No; we never intended anything so absurd. His invention is a furnace, and he should embark in the manufacture of furnaces, as the inventor if an improvid loom should embark in the manufacture of luoms." But the answer to this would be, a loom is a self-cuatained machine, capablo of beiug manufactured in one place and convered for sale to another, and is an ordiaary article of cummerce, but the siemens furnace is not self-contained- it is uut purtable. ihe furnace demands nothmg more ior its consticution than the cmployment of ordinary maternals sut in a purticular way, the way of the menention, and any intelligent fartatic buider, to whom a drawing of the invention to shown, or whe has seen une furnace, could ciary out the invention.

I will now cumeider anothet class of cases, those cases whero the iavesturs ate pow men, and where, therefore, it must be ddmitted that whatuver advantage they may have of locality, or eveu of busiucss hatits, they lach the greatent of all atds to prosperuyo manufacture- apital. How can these men, by becoming wanulacturers of that which is the subjece of their itacation, ultuin a tars reward for their ingenuity? It is sand Ly the uppuncats of a patent law, let ouch men go tu capitalists, exphain thenr asvasuan, and thus obtain the ald that wealthy suen cau sive. What would be the result? The capitaligt suald ssy, Why ohuuld I ambark my money in perfecting an investion, and putamg up suitable machnaery for ito manufacture, with thic certainty that if it turns out a success I shail have the whole trade in cumperition with me, and competing va better urus than those under whith I should be working, Lecause they would stand by to watch my resulte, and would wait until I mastered all dificultics? You are ashing me to rua a special rieh wo reap ceven il suceensful, no inore than the reward of ordinary manfactur. Moreover, I don't wish

to trammel myra lf hy ursociating with you in business, and I cannot $p \cdot y$ you a sum of money, becanse I have mu security that you will not go and resell your mention to others.

But ruppose the invention were one that allurded reasonable grounds for belleving that it might be carried on by secret manafacture, that the inventor were to point this out to the capitalist, and that. he were suelined to cmbark in that most unsatisfactory kind of business. What security lons the inventor that after ho has communicated his secret to the capitalist, the latter will not abuse thes conlidence that has been reposed in him, and either take the invention without any reward, or with only n very inade quate reward' A man can often contrive to net in such a manner without wounding his conscience He goes to his foreman, or he consults a fijend, and these tell him, "Oh, there is really nothins now in this; twonty years ago the sam" ider (I do not mean you know to every detail, but proctically the same iden) oceured to tar, and I should have curried it out, only the condition of the trade at that time did not warrant my going into fresh ex. penses; there really is nothing in this except the lare detail, be yon. i what we knew before," and so the anverator is nhown to the door, and the confidentinl communication is abused.

I may be asked why are you to suppose knavery of this kind; why not assume that the majority of mankind are not only honest in tho legal serse, but that they have a feeling of honour which would not permit them to act as you have suggested? What warrant have you for believing that inventors might rot trust othors with their secrets? Again, I refer you to thu life of Crompton After the trade had (as I have told you) laid siege to his honse, aud kept him there barricaded, and all but a 1 risoner, he was so wearied out that he proposed terms to his persecutors He w mid reveal his secret to them if they would undertake to pay him a certain sum of money on his doing so. Many "honourable men" agreed, in writing, to pay him the sum set against thoir reep ctive names, sums varying from one guinea to five shullings, and making the magnificent total of flof. Crompton kept his part of the bargain, he met lis honourable fellow townsmen, showed them the machinery, explained everything, and what happened? Out of the number who hat made this baryain wihthim, many never paid one farthing, but, furnished with the information, at once went to work in competition with Crompton, and (after having broken the eighth commandment by stenling his inventiou) procomed (as 1 have told you already) to break the tenth by coveting theit neyghbour's servante ; and as is usual they did not stop at coveting, but they enticad them away, and they made the ir temptation so strong that even Crompton's own sons deserted him aud went to his opporents.

How different is the condition of the pror (comparatively poor) inventor tho avails himself of our pateut law. For a few pounds hic canget provisional protection, and, the moment he has it, he has f -ossession of property which the law secuses to him, as effectually as it secures the enjoyment of bouse or land. Armed with this right, he can go to the capitalist, not only without fear that his confidence will bu auused, but with a strong inducement to the capitalist to advaner his and There is no longer a dread that when all the expense has been incurred to perfect the invention, and to bring it into actual use, the-benefit will be reaped by others withont special reward to those who between them have made the invention, and have risked tho money to work it, and thus it is that we find inventors aided, as Boulton aided Watt, and from such aid the happiest results flow.

I remember that a gentleman who had made a most meritorious chemical invention, by which a substance that had always been considered as nothing but a waste product of the most ofiensiv. kind became converted into a highly valuable article of commerce, stated before Section F of the British A-sociation at Exeter, that be had requirel an outlay of $\mathcal{E 1 0}$. onn in order to test by actual trial whether or not his inven. tion, successful as it was in the laboratory, would be equally so in actuat work. He added that he was as unable to find $f 10.000$ from his own resources as he was to pay off the National Debt, but he was able to find money enough to obtain the protection of the law for his invention, and haviug got this he submitted his plans to a capitalist. He adrised that capitalist to call in t1e highest chemical assistance, for thi. inventor, protected by his patent, no longer required secrecy, on the contrary he courted the fullest investigation. The chemists examined, they reported favourably, the money
was advanced; the whole thine was a suecess; and now, added tho speaher, I find myself a comparatively rich man. and have beside ther satisiaction of knowing that I have caused one of our manufactures to make a most important atep.
(To be continued)

We publish on page 68 an eagraving of a pair of pumpung engines crected the year before lust at the Chicago Water Works. As will be seen from our illustration the engines are of the beam type, and are coupled, the cranks beiner at tight angles. Thesteam cylinders, which are 70 in . In diameter with loft. stroke, are tixed upon the upper bedplate, which is supported by four gin. columns springing from the lownr bed. plate. The steram and exhaust valves are of the double-heat eduilibrlum type, and are actuated by the valve gear known as the "Sickles cut-off." The side nipes and all other parts of the "foonts are polished, and the cylinder lagering is cased with black walnut, with a heavy brass moulding at top and bottom. lietween the side pipes of the cylinders is fixed a cast-iron frame on which the stemm and racuum gauges, as well as a clock and revolutions counter, are neatly armoged.

The crossheads are guided by slides fixed to the cylinder covers, and attached at their upper ends to the entablature, there bing no parallel motion. The main columns which support the main centres are 24 ft . $7 \frac{1}{2} \mathrm{in}$. high from the base of the pedestal to the top of the cap, and weigh 17 tons each The pedestal is $6 \mathbf{f t} .4 \mathrm{~m}$. in diameter. The main shaft of amh of these columos serves as an air versel, being connected to the check-valve chamber ty a 30 in. main, while the lower sections of tha columns, bencath the edgme room floor, and between the upper and lower bedplates, form the condense s.
l'he upper bedplat of each engine is 36 ft .3 l in. long, 9 ft © in wide at the cylinder end, ift. $10 \frac{1}{2 n}$ wide at the crank end, and 3 in . thicle These plates are heavily bracketted, and each wetghs 10 tons. At the evlinder ends these plates rest, as we have sad, on cast-iron columns, while at the crank end the! bear directly on stome foundations. The lower bedplatus are each 29 ft . $-\frac{1}{2} \mathrm{in}$. long, $\overline{\mathrm{ft}} 6 \mathrm{in}$. wide at the pump end, and 7 ft . at other end. The weight of each is 18 tons. The plates are fitted to a stone loundation throughout thers length. The upper and lower plates are secured to the foundations by 62 bolts from 2 in . to 3 in . in diameter, and ranging from 6 ft .6 in . to 30 ft . in length.
The beams are of cast iron and are 28 ft . long between end centres, 6 ft . deep in the middle, and 2 ft deep at the ends. They have webs $3 \frac{1}{2}$ in. thick, with heavy top and bottom flan. ges, and wigh about 20 tons each. The connectinu rods, cranks, and crankshaft are of wrought iron and got up briuht. The hy wheel is 25 ft . in diameter, and has eight arms and a rim 20 in . deep and 12 in. wide on the face. The weight of the wheel is 33 tons, and the rim is turned and polshed.

The air pump of cach engine is worked from a point in the beam between the main centro and the point of attachment of the connecting rod. It is single actiog, 45 in. in diameter and 4 ft . 6 in. stroke. The valves are of mdiarubber worktos on brass seats. 'lbe condenser is as we have said formed by the lower section of the main column.

The main water jumps are situated directly beneath the st am y ylinders and are of a modificd bucket and plunger type Each pump is 57 in. in diameter, with, of course the same stroke as the stcam pistons, namely, 10 ft ., and each has a plunger 40 in . in diameter, this plunder leing connteted to the steam piston by a $\mathrm{i} s \mathrm{in}$. piston rod. Instead, however, of the discharge of the water taking place through the bucket and plunger pump, it takes place through an anuular chamber which surrounds the pump barrel, the delivery valves, twelve in number, being fitted in this chamber. The suction valves, filteen in number, are fitted to a diapinagu plate directly below the pump earrels. All the valves are of gun-metal, atad are of the double-beat type and 15 in. in dameter. The pumps are situated below the surface of the water in the well, and the annular chamber, which we have mentioned as formin: the delivery passage, is provided with a branch leading to a cbeck-valve chamber contanning a cast-iron double-beat chech valve 36 in. in diameter. To the check-valve chanbers the 36 in mains leading to the city are connected.
The engines are supplied with stean by three boilers ench 20 f . loner by 12 ft . in diameter, these bollers, notwithstand-
ing their large dinmeter, being mude of nuly 3 in and f in plate The boilers are triwersed by six fluce and siaty-five $5 \frac{1}{2}$ in. tubes. Wre hopr, hereafer, to he able to lay fill particulars of thesu boilers before our renders.
'l'he encines we have described are rim at an areage sueed of eight revolutions per minute, and they have, we beliove, given every entisfaction. Ilwey were erected und.r the direction of Mr Drwitt C Cregier, the me limical engineer to the Chicago Water Wrass; tho enginear to the city of Chicago, under whom the water works generally, and other pulilic works connected with Chicago, have berin ably earried out, being Mr. E. S. Chesborongh - Engineering.

POPE'S SECTIONAL BOILLRS.

Tus sectiounl boiler which wo illustrate at page 69 possesses peculiar interest, from the finct that it worked successfully for a period of thirteen years before it was worn out-a duty, never, so fur as wo know, performed by any other sectional boiler. When it ultimately failed, after a life of constant service. the ends of the superheating chambers were the defective members They were much iorroded, probably by being close to the brickwork, and the boiler was removed only because it was desirable that it should be replaced by one more powerful 'lite boiler was worked with London water, and was never cleaned out in thirteen years, nor was it dirty when it was finally cut up. It was blown ofit freely twice a day, nad every now and then Mr Pupe, the iuventor, pumped in about five flud ounces of hydrochloric acid with the feed-water. 'he boiler was employed at Mr. Yope's works in the Edgware-rond

Ihe construction of the boilur will be readily understood; stegm is generated in flat chambers of wrought iron, disposed as shown. These chambers are 4 in . wide, and from this the rimaining dimensions of the bonter may be gathered. 'To prevent the chambers from burstiag, flat pier. of oron were intorposed between them, and thu whole tied together by a strong frame and cross-bars of wrought iron. To use Mr. lopes own words, he designed the boiler to prome as mueh as possible, the water carned up with the steam rushing into the first recciver or superheater, and finally descending the back by a pipe ont of the r-rach of the fire The stemm passed bachwards and forwards through the superbenterd, and when the fire was hard pushed it was sometimes raised with 80 lb . presure to 600 deg . Fuls but the degree ef superheat was very ingeliously determined by making one of the stean.pipes dip more or less below the surface of the feed-water coming in at the top, by which the steam was cooled and inoistencel as required.

The lollowing description, extracted from Mr. l'ope's patent, will make the construction of this remarkable beiler clear:" $G G$ body of boiler, F, a series of cross chambers with flue spaces between each, having counections at each end with shell of boiler $G \mathbb{G} ; 11$, s series of inclined tulics over flue spaces between $F F$, L are circulating pipes from lower chamber of boiler to upper tubes H, K is the return circulating pipe tor surplus water convected into bottom of boiler $G ; \mathbf{M}$ is a deflecting nuzale iu mouth of pipe L, J, scries of small short pipes connecting tubes II with steam chamber $N ; O$ and P, two other steam chambers connected at opposite ends by pipes Q and R, V, outlet for stea in ; S, fire-brick top over pipes A, U, flue spaces, r, opening into chimuey, B_{1}, firc-door (', bars; D short tire-bars turnins on w. W, for removal of clinker from fire; E , bearer Lars for ficc-bars. The action of the botler is as follows - Fire being placed in fire-box A on bars C and D, and asceuding through fluo spac•• between $F E$, enveloping chambers F in thane, and flame impinging on tubes II and filling the whole of the chamber U, E, U, U, in which space are three steam chambers N, U, I, the neated gases proceeding from chamber to chanaey ' l , the action of the aine immediat.ly canses a very rapid circnlation in F and G. 'l'he stean and water are driven with great force through openings in front plate of G, which are situated below water level of boiler through pipo L, and deliveacd on to the highly heated inclined surface of tubes H, the water becoming rapidly vap"ris"rl, surplus water tlowing down the inclined tubeH through pipe K to hottom of boiler, thercby asaintaining the circulation, the steam gencrated in H passing away through the pipes J into steam chambers N, O, P, and in its passage travelling their whole length forward and backwards to the outlet V; the chambers being at a very elevated temperature, deliver the
steam at Vin a very superbeated state. The chamber P may be partly tilled with water, as shown, and the end of pipe 18 dipped below its surface, causing the superheated steam to pass throunth the water, taking up the quantity of water due to its temperature in its passage to V. The feed-water may be taken into this chamber with an overflow pipe conveying it to bottom of boiler."

There is good hope for the future of scetional boilers, with Mr l'ope's experience before uf, and the success which his attended his exertions in this path of cagineering is t'so best possiblo answer to the objections which may be urged against his systom of construction.-The Eingineer.

MORRIS' PA'ENT STOP-VALVE SCREW FERRULF.

This ingenious invention renders it perfectly casy and safe to make a conncetion to any gis or water main, while under pressute, with the certainty that no lenkage or waste will take place. One of its principal leatures is the introluction into tho ferrule of an internal screwed plug actuated from the top of same, the object of which is to close the communication between the inlei and outlet of the ferrule while it is being at tached to the maia, to do which the internal plaz is screwed down tight on to a seating in the lower part of the ferrule. When the ferrale is fixed to the mainand connections attacherd, tiac internal plug is screwed back, which draws it up into the head or top of the ferrule, whish it effectually closes, and at the same time opens up a free communication beiween the inlet and outlet of firrule, thus allowing the gas or water to pass into the servicu pipes.

The drilling and tapping apparatus-shown in the illustra-tion-to be used in connection with the patent ferrules is of the simplest kind. The saddle piece d is made 80 as to be usnd with different saddle packing piec^s h, made suitable for different diameters of main pipe, so that one saddlo piece can be used with various sizes of main pipe by changing the packing plece h at its unlerside.

The following description of the mode in which the apparatus is to be used will be readily understood--To rrill and tasp the hole in a main the parking piece h is first placed on the pipe over the point where the hole is required to be made, the joint between it and the pipe being kept sound by means of greased felt or other suitable material : the andde piece d is then fixed by means of the chain $/$; the rpindle ${ }^{\prime}$, with the drill and tap b at its lower end, is inserted in the top of the saddle piece, and the socket e having a leather washer at its lower end to prevent leakage, together with the horned nut c, are placed in position as shown. The holo is then, by means of a cross handle fitted on the spindle, drilled and tapped in the ordinary way, after which the drill and tap are drawn up and the slide g moved over the hole in packing piece h, thus preventing the escape of gas or water, when the spindle 1 and the drill and tap b are removed, which is next done. The lower part of patent ferrule , containing the internal screwed plug, is then inserted into the saddle piece immediately over the slide which covers the hole just made. Another spindle similar to a, but with a screw-driver point, is then introduced, and the horned nut e screwed up tight again, after which the slide g is withdrawn from covering the hole, and the lower part of the ferrule screwed into the orifice drilled and tapped for its reception by means of the spindle with a screw. driver point above referred to. When this is done, the whole of the apparatus 18 removed leaving only the lower part of the patent ferrule containing the internal screwed plug in the main pipe, the body piece k is then screwed on the ferrule, and the branch, or service pipe, is connected to same by an ordinary screwed union. or other joint, after which the internal plug is unscrewed by an ordinary screw-driver inserted into the top of the ferrule. As the plug is unscrewed from the lower part of the ferrule, its upper end enters and screws into the upper end of the body part k, thereby closing the same, and at the same time opening a free communication between the inlet and outlet of the ferrule. An ordinary iron socket l is then screw. ed on to the portion of the plug left projecting above the b sdy of the ferrule, and a permanent joint made with white lead. The plug may be screwet back again into the ferrule, and the gas or water supply thereby shut off at any time by an ordinary 8crew-driver.

PRINCIPLIS OF SHOP MANIPULATION FUR EN

 GINEBMNG APPRENTICES.My I. Kicusbos, Loninos.
(Continued from pagr 231, vol. I1.) mechanicas. drawing-(continueci)
Psschase is the first and the most important operation in drawing; it r'quires mure skill to produce neat pencil sork that to "ink in" the lines after the peneling is done. The beguner, unless be exercises the grentest care in penciling a drawing, will have the disappointment to fin!! the paper soon becoang dirty from plumbago, and the pencil lines crossing earh other at all angles, so as to give the whole a slovenly appearance. He will also, unless the stops to constder the nature of the operation in which he is engaged, make the mistake of regarding the pencil work as a preliminary vart instead of constituting, as it does, the man drawing, and will thereby neglect that accuracy which is so essential.

The pencil work is indeed the maiu operation, the inking being mercly to give distinctness and permanency to the lines. The man thing in penciling is accuracy of dimensions and stopping the lines wher, they should terminate, without crossing others 'the best pencils only are suitable for drawing: if the plumbago is not of the best quality, the points require to be contimually sharpened, and the peacil is worn away at a rate that more than makes up the difference in cost between fine and cheap pencils, to say nothong of the eniect upon the drawing. It is common to use a fat point for drawing pencile, but a round one will be fonnd quite as good if the pencils are fine, and quite a convenience ts gained by a round point for free hand use in making short rounds and fillets. A pencil by Faber that has detachable points, which can le set out as they are worn asway, is courenient for drawng. For compases the lead points should be cylindrical, and fit into a metal sheath without paper packing or other contrivance to hold them, and if au apprentice has instruments that are not arranged in this manner, he should have them changed at once, both for convenience aud economy.
The ink used in drawing should always be the best that can be procured; without goo:l ink the draughtsman is continually anooyed by the imperfect working of pens.and the washing of the lines if there is shading to be done. The quality of ink can only be determined by experiment, the perfume that it contains, or tin foil wrappers and chinese labels, are no indication of quality, not even the price, unless it be with some first-class honses. To prepare the ink, I can recoonmend no bett-r phan of learaing than to ask some one sho uaderstands the matter. It is better to waste a little time in grinding than to be at a continual trouble with pens, which will occur if tlec ink is ground too rapidly or on a rough surface.
'Tu test ink, draw lines on the margin of the sheet, note the colour, how the iuk flows from the pen; after the lines have dried, , rrss them with a wet brush. If they wash readily the ink is too soft; if they for a time resist the water and then wash tardily, the ink is goot. It cannot be expected that inks soluble in waser can permanently resist its action after drying; in fact, it is not desimble that drawing ink should do so, for in shading the outhones should bo blended into the tints where the hatter are deep, and this can only be effected by washina. Pens fil themselves by capillary attraction if they are irst made moist by being dipped into water; they should not be put into the mouth to wet them, as there is danger of poison from fancy inks, and the habit is not a neat one.

In draving lines keep the pen nearly vertical, leaniug just coough to prevent it from cathing on the paper. Beginners have a tendency to holds pens at an angle, and drag them on their side, but this will not produce clesn sharp lines, nor allow the lines to be made near enough to the square blades or sct squares.

In regand to the use of the \boldsymbol{T}-square and set squares, I can sive no rule except to observe others, and experiment until convenient customs are attained. A beginuer should be eareful of contracting unusual habits, aul, above all thiugs, of makiog important discoverice as to new plans of using instruments, or that common practice is all wrong, and that it is left for him to develop the true and proper way of drawing. This is a kind of discovery which is very apt to intrude teself at the bexnomide of an apprentice's course in many thinge besides drawing, and often leads him to do and say that which he wili afterwards wish to recall. It is genezally a safe rule to
assume that any custom long and tuniformly followed by in. relligent people, is very apt to be right ; and, in the absence of that experimental knowledge that alone enables us to judge, it is bafe to receive such customs, at leabt for a time, as being correct.
Without any wish to discourage the ambition of the apprentice, which always inspres him to laudable exertion, I never theless think it best to caution him against innovations The entimate forned of our abilities is very apt to bo invericly as our experience, and old engineers are not nearly on cor = lent in their deluctions and plans as beginners are.

A drawing being inked-in, we come next to dimension and centre lines. Thu centre lines should be ia red ink, and pass throughall points of the drasing that have an axial centre, or where the work is similar and balanced on cach side of the line. This rule is a little obscure, but whll be best understood if studied in connexion with a drawing, and perhaps as well remembered without further explanation.

Dimension lines should be in blue, but mat be in red. How and where to put them is a great point in drawing to know where to put dimensions musi involve a kuowledge of fitting and pattern making, and cannot be explained here; make faint lines, leaving a space in their centre for figures, when long enoush. Staly the distibution of centre lines and dimensions over the draving, for the donble purpose of giviag it a good appearance and to avoid confusion. Learn to make figures like printed numerals; they are much bitter understood by the workman, look more artistic, and when learned take but little if any more time than phain figures. It the scale is feet and incues, write dimensions to three feet in inches, and above this in feet and inches; this corresponds t, shop custom, and is more comprehensige to the workman, however wrong it may be according to other standar is

In sketches and drawing, made by the apprentice, such as aro not inteded for the shop, it is suggested that metrecal scales be used, becanse such scales will not interfere with feet and iuchus, and it will prepare the mind for the introductoon of this systum of lineal measurement, which is quate sure in time to be adopted in Euglaud and Ame rica, as it h s been in many other countries

Iu shading dravings, be caref il to put on little enough, and to put it in the righe place; many will cont nd, and not without good reasonk, that working drawngs need no shading; yet it will do no karm to learn how and where dhey can be shaded : it is better to omit the shading from choice than from necessity. Sections must, of course, be coloured-not with lines, although Ifear to attack so old a custom, yet it is certannly δ tedions and useless one; sectione with light ink shading of difterent colours, to indicate the bind of materrat, are easier to make and look much better. By the judicions arrangement of a drawing, a large share of it may be in section, which, in almost every case, is the best kiud of view to work by. The proper colouring of these secti nas gives a good appearance to the drawing, and couveys the idea of an organised machine, or, to use the shop, term, "it stands out from the paper." In colouring sections, leave a margin of white between the tines and the lues on the upper and left-hand sides of the section; it breaks the connexion and sameness, and the cffect is strikivg; it separates the parts, and adds greatly to the clearness and seneral appearance of the dr wing.
Cylindrical parts in the phane of sections, such as shafts aud bolts, should be drawn full and have a " round shade," wheh, with blue tint, relicees the sameness of appearance, a foimt to beavoided in sectioual vicws Conventioual custom hats assigned blue as the tint for wrought iron, neutral or pale pink for cast sron, aud purple for stecl. Wood is geucrally distiuguished by "graning", which is casily done, and looks well. the title of a drasing is a feature that has much to do with th appearance, and the impression corveyed to the mind ot au observer; and, while it can add nothing to the real value, it costs so little to make plain letter, that the apprentice is urged to learn this as soon as be begas to draw, not to make fancy letters, nor indeed any kiud except plain block letter, which can be rapidly lain out, and consequently used to a greater extent. By drawing six parallel lines, making fire spaces, and then crossiuk them with equidistant lia-s, the points and angles in block letters are determinct; ;ad after a little practice it becomes the work of but a few minutes to put down a title or other matter onadrawing so that it cau be seen at a distance, aud read at a glance in searching for shects or details.

In the manufacture of machines, there are usually so many sizes and modifications, that the drawinge must assist and determine, in a large degree, the completeness in matters of classification and record. 'laking the manufacture of machitue tools for example: we camot well say, each time we want to speak of them, a $310-\mathrm{in}$ lathe without serew and gearing, a 40 -in lathe triple wared or donble seared, with 20 ft . or 30 ft . bed, and so on. 'To avoid this it is necessary to assume sym ools for machines of different classes, consisting renerally of the letters of the alphabet qualified by a single number that designates capacity and different moditications. Assuming, in the case of ensine lathes, that λ is the symbol for lanhes of all sizes, those of diflurent capacity aud modilica. tion wisuld be represented in the drawings and records as A., If, A', As, and so on, the letter and numerals together requirnarg but a vo characters to indicate a lithe of any kind. These symbols should to marked, in large, plain letters, on the left-hand lower corner of the sheet, so that the manager or workman or any of e else can bee at a glance what the draving relates to 'llis symbol should run through the time-book, rost accour t, sales record, and be the technical name for the mathines, which should atwas's be spoten of in the works by the name of their symbol.
In making-up time a good plan is to suphly each workman with a small slate and pencil, on which he enters his time as so many hours charged to the respective symbols. Instead of interfermg with his tine, this will incraase the workman's interest in what he is doing, and naturally leas to a desire to diminish the time charged to the varions symbols.

When the symbols are added to a drawing. the next thing is the "pattern numbers" These should be marked in prominent, plain firures on each piece of casting, either in red ink or other colour that will contrast with the general face of the drawing 'lisese pattean numbers, to avoid the use of symbols in connexion with them, must include consecutively all patterns used in the business, these numbers can extend th usands without ine onvenience.

A book containiog the pattern record shonld be kept by the head draurhtsman, in which these numbets are set down, with a short description to identify parts to which the numbers lelong, so that various details can at any time be referred to. ISesides this description, there shonld be, opposite the catalogue or pattern numbers, ruled spaces, ia which to enter the weight of castings, the cost of the pattern, and, if needed, the amount of turned, planed, or bored surface on each piece when it is linished. In the same book the assembled parts of each inachine chould be set down, in a list, with its symbol and descriptive mane, so that orders for castines can be made from this list withont other references.

This system is the lest one known to the author, and is in substince the plan now adopted in some of the best engineering establishon-nts. It may be susceptible of improvement; he hopes it is ; but let the apprentice seize on the idea of some sgstem at tho beginning ; any plan is better than none, and the schooling of tho wind to be had in the obser"anes of systematic rules is the reat point in riew. De ; plans for promotiner system may at any time arise, but thev cannot be at any time understood and adopted except by those who haver cultivated a taste for order and regulnrity.
In regard to shaded elevations, it may b : sid that pho t esraphy has supersuded them for the purpose of illustrating machinery, and but few establishments care to incur the "xpense of ink-shated clevations. Iak shadiag canuot be done with varions degrees of care, and in a longer or shorter tume, th re is but one standard for it, and that is that such deawiogs should only be made with great care and skill. i shaded clevation, although it may surprist and please the noskilled, is execrable in the eyes of a draughtsman or an cogiucer, naless it is a good one; and, as the making of shaded elevations can be of but little assistance to an apprentice draightsman, it is better to sare the time that nanst he spent in order to make a good drawiug and apply the same stu 'y and time to other mattens of greater importance.

If is not assumed that shaderd elevations should not be insile, nor that ink shading shoald not be learned, bat to insist on the greater muportance of other kinds of drawing, which are too often neglected to wratify a taste for picture making that has but little to do with mechanies.
Isometrical perspective is often uscful in drawiog, especially in trood structures when the material is of rectangular sections and disposed at right naghes, as in machine frames. One
isometrical view, which can be made nearly as quekly as a true elevation, will show al' the parts, and can he figured for dimensions the same as plans views.

Prue perspertive. althouri never necesbary in mochanical draviug, may be studied with advantag: in connoxion with geometry, and often lead to the explanation of problems in sometrical drawins, and will also assist in free hand lines that have often to be made to show parts of machinery that are oblijue to the regular planes.
'lhus far the remarks on drawing have been e infined to manipulation mainly. Ualike most branches of engincoring work, drawing must as an art consist mainly in special knowledge, and is not capable of being learned or practised upon gener.l principles. It is therefore impossible to give the learnur much aid by searching after principles, and the few propositions that follow comprehend nearly all that can be explatned ith words.

Geometrical drawings consist in plans, elevations, and sections; plans being views on the top of the object in a horizontal plane; clevations, views o the sides of the object in vertical planes, and rections, views acn on bisecting planes, at any angle through the object. "rawings in truc elevation or in scetion are based upon flat plaues, and give dimensions parallel to the planes in which the views are taken. Two clevations taken at right angles to each other, fix all points, and give all dimensions of parts that have their axis parallel to the planes on which the vicws are taken; but when a machine is complex, or when several parts lie in the same plane, three and sometimes four views are rezuired to display all the parts in a compre'mensive manner.

Mechanicaldrawiogssiould be made with refercnce to all the processes that are required in the construction of the work, and the dravings should be responsible, not o.ly for dimensions, but for unnecessary expense in forging, fittiug, pattern makios, and moulding. Every "piece" that is laid down has something to govern it that we will term a "base," some condition or functions, or position that, if understood will suggest its size, shape, and relation to other perts. By searching after a "base' for each and everything, we procecd upon principles, avoid error, and continually maintain a test of what is done. Every wheel, shaft, sorew, or piece of framing should be made with a clear view of the functions it has to fill, and thereare always reasons why such parts should be of a certain size, have such a speed of movement, or a certain amonut of bearius surface. These reasons or conditions may be classed as erjedient, empurtant, or ereentant.

I now come to note a matter in connexion with drawios to which the attention of the apprentice is earnestly called, and which if he meglects, all else may be useless. I allude to indigestion, and its resultaut evils induced by drawing. All sedentary pursuits erve rise to this trouble, but none of them can compare with drawing, where every condition in the way of promoting this derangement exists.

In drawing, the muscles are at rest, circulation is slow, the mind is intensely occupied, robbin: the stomach of its blood and vitality, and worse than all, the mechanical action of the stomach is arrested by leaniug over the edge of the drawing board. I ro'bret my inability to give any fixed rule to svoid this danger, butam at the same time confident that any apjrentice who under-tands the langerean avert it by applying some of the loic which has been recommended in the study of mechanics. We can conculde that ifanything tends to indure indigetion, itso;posite tends the other way, and will arrest it; if stooping over the drawing board interferes with the action of the dises'ive organs, leaning back does the opposite ; therefore keep your board as high as possible, stand at your work, and cultivate a constant habit of straightening up and thr wiug your shoulders back ; if possible, talie brief intervals of vigorous exercise.

Like rating the horse power of a steam eagine, by muluplying the furce into the velocity, we tonst istimate the spacity of a man by multuplying his mental açuirements into his vitality. Latent power is of ni use, neither is latent knowledge nor skill.

Ihysical strength, bone and muscle, form some of the clements in successful eoginceriog experience, and a store of these things must be laid in at the same time with a mechan. ical education, or it will be found that when ready to enter upon a course of practice, that most important elcmeut, the p:opelling power, has been omitted.

To lie rominurd

Until the development of the large ore bodies in the Comstock lodo, Mexico was the largest silver producer in the world. It is impossible to say what mine or what lode yielded the largest quantity of bullion. The best authoritics on the subject have failed to determine, because the product of a group of mines operating on various veins in the enm neighborthood has generally been credited to the lading mine in the district. Such has been the case, in a measure, with mines of Guanajusto, situated on the muther vein or veta anadre of Central Mexico, and with the Potosi mincs of Peru, the San Luis Potosi mine being credited with the combined product of a multitude of mines in that district, representing as many separate and distinct veins. The veld madire, of Mexico, comes nearest boing a parallel case to the Comstock. It is a similar fissure intersecting a similar formation, only it is at least three times its length and its ore defosit bas been one continuous loninza. The mines on the veta ma.tre have been worked uninterruptedly for over three centuries, and the aggregato yield is estimated at $\$ 300,000,000$. The first discoveries on the Comstock were only made fifteren years ago, but the entire produce during that bricf period has aggresated in round numbers $\$ 175,000,000$, or over one half the three ectury product of the richest vein 14 Mexico, and about one eighth the entire product of the: numerous veins and min.s forming the Peruvian Potoni group for the came extended period. The yield of the Comstuck lode last year amounted to about $\$ 21,000,000$, and this year sbout $\$ 2,000,000$, or within three millious dollars of the maximum annual yield of all true silver mines of Mexico, and five times the average annual yield of the Peruvian mines.

The veta mailec has been more extensively worked than any other silver lode in Mesico, but it is very doubtful as to whether it is the richest vein existing in that country. The metallic silver Jodes in the state of Chibuahua are probsbly much richer. A single bonanzs of metallic silver ore, discovered in ode of these mines, is reprebented to have taken eighteen years to oxhaust, and is variously estimated to have yielded from $\$ 20,000,000$ to $\$ 50,000,000$. First class ore from the Chihnabod mincs yiold all the way from $\$ 15,000$ to $\$ 30,000$ per ton, and
second-class ore ranges from $\$ 2,000$ to $\$ 15,000$ per ton. The Comstock, of course, has nothing equal to this. Thero is no knowing what might havo been accomplished in the silver mines of Mexico and Pern had they been systematically worked. What if, instead of human backs, long, swinging poles and rickety winzes bringing the ore to the surface from the depibs below, and the primitive arastras separating the metal from the vein matter, the inproved machinery now employed on the Comstock had been in usel Uuder such a condition of thinge, what would bave been the showing in the returns? and into how brief a space would the three-century operations have been contracted? Instead of a bonanza taking eighteen years to exhaust, we 3hould probably have bad it all out within that many months. Asoy of the Central Mexico mines have for yeara been Forked by English capitalistr, with improved machinery, and there has been, in consequence, a marked increase in the silver product of the country; but the mechanical appliances are vastly inferior to those used on the Comstocl. The Comstock has unquestionsily fielded more silver in the same spact of time than any other mine, and is to-day the richest silver lode being worked, but its immenee yield is in a great measure owing to the soperionity of the machinery employed and the systematic manner in which it is beng mined.

Maceinlop Pasha, the ControllerGentral of ports and light-houses to the Egyptian Government, according to the Pall Mall Gazelle, arrived the other day at Suer from Ishmalia $H 0$ is, it is stated, about to examive the rich de-poit- of salt known to brin the vicinity of the Bitter Lakes. There are largo tracts of conntry in that neighbourhood covered with a crust of pure salt of from lin. to 2 in. in thichaess, and in some places it is even more. The Ehedive has some idea of working this valuable mine whicin bas been so long neglected, and of sending the produce to Sucz for shipment by way of the Sweet-water Canal. Thero is likely, howover, to be some dispute, it is said, with the Canal Company about this salt, owing to their claiza apon a certain amount of land on either side of the cansl, and one of tho richest deposits lies very close to their concession. Beside salt, there are largo beds of gypsum in the same neighbourhood, and ia one place the canal was actually cat through a deposit of that valuable substance, and large masses may be seen on either bank, apparently thrown carelessly aside. The Egyptian Qovermment has a guard stationed to proctect the salt, and there is no doubt that steps will rery shortly be takeu to bring it to markct.
Tan impericetions of the diamond, and in fact of all gems, are made visiblo log putting them into oil of cassia, when the slightest flaw will be sec⿻.

ENTRANGE

Mechanics' Magazine.

[^0]MONTRE.AI., MARCH, 1875

Pumplag Engines at Cht
\qquad
Pope's Sectlonal Joollersi... 71
Morrls's I'atent Stop-Valvo
Scrow Ferrule.
Puinciples of Shop Minl. pulation. \qquad
Mexican and Nevada Sillvor Mines Compared... 77
Is Alcnhol Food ?............. 76 Canada and the dmerlean

Centennial
Iropoced Niagara Isridge
at Lewiston.................. 89
Rallroad In Southern
France..........................
Lighting up the Ghost at the Polytechnic.............
Fire-Proof l'llars............ S2
Central Asla....................
lee Crop on the Hudson... 83
Ice and Snow in Relation
to Vegetation................
Rlbbon-W̌eaving at Coven-
try...
8
Suppressed Genlus.............. s
Ratlway Matters.................. 90
Sclentific News..................!
Miscellanea......................
The l'rimitlve plumping Mill

12

Punctatles.................... 9 i
Curlous incldent of a re.
trlever

91

Buy lug a Horse. \qquad
Shrinking of seasoned timber:..
Expertments on Fi.........
9

IS ALCOHOL FOOI?

This is one of the questions of the present day to which the voice of scientilic men returns various answers. The prevailing idea seemsto be that it is food in a very small degrec. The latest authoritative announcements on the subject have boen made in a very interesting series of lectures by Dr. liuchard. son. He comes to the conclusion that alcohol canuot by ans ingenuity of excuse for it be classified among the foods of man It neither supplics matter for construction nor heat. On the contrary, it injures construction and reduces temperature. This conclusion is the result of a long ecries of experiments, extending over three years, on warm.blooded animals of various kinds including birds; on the human sulject in health and on the same subject under alcoholic disease. Foods, as supplied to the human system, are of two kivds, tissuc-building foods and heat-supplying foods. Nitrogenous bodies perform labour of the first kind, tissue-building, and probably are, to a small extent, heat-producers too. Alcohol, however, contains no nitrogen and cannot therefore ravk as a tissue-building food. This conclusion will surprise many who have noticed how ale fattens people, but this fattening is chaimed to be a result not of the alcohoi but of the sugar or starchy matter which is taken along with it, and it would appear that drinkers of purespirit, i e. spirit unmixed with sugar do not fatten upon it There is some littlo difficulty however in coming to a correct conclusion as to the production of fat in tho system. It is a well-known fact that those who drink to excess are subject to a fatty degeneration of internal orgauic structures, but on
the other hand, all alcoholics aro not thus affected and many who do not use alcohol at all are thus afiected. On the whole the evidence as adduced seems to be conclusive that alcohol as a constructive agent in the human system is utterly powerless. The question then arises can it be a producer of energy or a developer of heat in the system. It is pretty generally understand now that focd is, as it were, burnt up in our bodes giving out as a result of the combustion energy and heat. Now alcohol contains two combustible clements, carbou and hydrogen and may it not be that by its combustion in the body, as in air, it may be ueed to produco power and beat? This question is not so easy to answer satisfactorily as the first. There is no doubt but that alcohol is used up in the body, that it is assimilated in some manner. Careful and long continued experiments have been made by many scientific men on this subject. The late Dr. Anstie, especially, made some exhaustive experiments in the matter, and carne to the colnclusion that of the alcohol administered but a very small fraction was yielded by all the secretions combined. He proved that an animal, a terrier dog, weighing 10 lbs., could take with comparative jupunity nearly 2,000 grains of absolute alcohol in ten days, and that on the last day of this regimen he only eliminated by all the channcls of elimination 1.13 grains of alcohol. This fact was of itself sufficiently remarkable, but another still more important remains to be told. In completion of his research after an animal had been treated with alcohol, as above described, Anstie killed it, instantIy and painlessly, two hours after it had received tho last quantity- 95 graius-of spirit. Then the whole body, including every fragment of tissue with all the thid and solid conto ats, was sulijected to analy. $i=$, with the result of discovering only 23.66 grains of spirit.

Alcohol it thus appears is decomposed in the animal body. By its decomposition in air heat and power may be obtained ard why may it not then in the othercase? The answer to this is that it is not. As a result of his researches Dr. Richardsou recognizes four progressive stages of change of animal function from alcohol which are shortly described as follows:

The first is a stage of excitement when there exists that relaration and injection of the blood vessels of the minute circulation with which we have become conversant. The second is the stage of excitement with some muscular inability and deficient automatic control The third is a stage of rambliug, incoherent, emotional escitement, with loss of voluntary mus. cular tower, and ending in helpless unconsciousness. The fourth and final atage is that in which the heart itself begins to fail, and in which death in extreme insiances of intoxication closes tivesune These stages are developed in all the warmbloole damimals, and the changes of temperature throughout the whole are celatively the same.
In the finst stage the external temperature of the hody is raised. In binds-pigeons-the rise may amount to a full de. "̈re', on Fahrenheit's seale, in mammals it rarely exceeds half a degrec. In man it may rise to half a degree, and in the con. firmed incbriate, in whom the cutancous vessels are seadily cugorged, I bave seen it run up to a degree and a half. In this stuge the efiect on the exthemities of the nerves is that of a warm glow, like what is experienced during the reaction from cold.
The heat felt in this stage might be considered as due to the combustion of the alcohol, it is not so; it is in truth it process of cooling. It is from the unfolding of the larger sheet of tho warm blood and from the quicker radiation of heat from that larger surface. During this stage, which is comparatively brief, the internal temperature is declining; the expired air from the lungs is indicating, not an ancrease, but the first period of reduction in the amount of carlonic acid, and the leddened surface of the body is so reduced in tonicity that cold applied to it increases the suffusion It is this most deceptive. stage that led the older observers into the error that alcohol wartas the loody.

In the second stage, the temperature first comes down to its matural standard, and then declines below what is natural. The fall is not considerable. In birds it reaches from one and a half to two degrees. In other animals, dogs and guines pige, it rarely exceeds ono degree; in man it is confined to threefourths of a degrec. In a room at the tomperature of 65° or 70° the decrease of temperaturo may not actually be detected, but it is quickly dotected if the perfon in whom it is present pass into a colder atmosphere, and it lasts, even when the further supply of alcohol is cut off, for a long period, vi\%, from two and a half to three hours. It is mnteh prolonged by absence of food.

During the third degree the fall of tomperature rapidly increases, and as the fourth stage is approached it reaches a decline that becomes actuallv dangerous. In birds tho reduction may be five degrees and Ω half, and in tho other animals three. In man it is often from two and a half to three degrees. 'There is always during this stage a profound sleep or coma, and while this lasts the temperature continues reduced.

Thuts it would appear that alcohol fails aleo as at heat producing food, that it is in fact a lowerer of the temperature. These facts are of great interest to those living in cold climates like ours when spirits are so frequently taken to "keep ono warm." That they really are uscless for this purpose might be argued forcibly from other data. It is well-known that men exposed to long continued cold cannot venture to use spirits. Our lumbermen never hardly see a drop of alcoholic liquor when at work, tea is their only drink and they leave the woods in spring after performing the severest kind of labour, stronger and heavier than when they entered them in the autumn. Another important result to be derived from these resegrches is the possibility of endbling our police oflicers to distinguish between a man in an intoxicated condition and one in an apoplectic fit The difference can easily be detected by taking the temperature of the individual and it would appear that great care should be taken not to allow those under the influence of alcohol to remain cold, a cold damp cell is almost a grave to the sufferer from alcoholic excess.

('ANADA AND THE AMERICAN CENTENANIAL.

Our preseat number contains a series of viows and plans descriptive of the buildiags for the International Exlibition to be held at l'hiladelphia in 1876 .

The subject is one of very great interest to all of us in Canada, and the Government has understood this by the early appointment of a Canadian Commission. The Exhibition will be held at Fairmount Park, Philadelphia. It will be opened on the 19th April, 1876, aud closed on the 19th October following. All Goveraments have been invited to appoin! Commis ions, for the purpose of organizing their departments of exhibition. 'The Director-Gederal should be notified of the appointment of such Eoreigu Commissions before January 4, 1875 Articles intended for the Exhibition must be bent in from the 1st January to the 31st Murch, 1375. Applications for space must be addressed to the Secretary of the Canadian Commission before the Ist May, 1875.

The Exhibition area comprises 1,200 acres, and, as will be seen from the view in our present number, it lies in romantic grounds. T' Industrial Building is 1,880 feet long by $\$ 04$ feet wide. Its height is 70 feet, and the altitude of its towers 120 feet. The distribution of the interior is superb. It is divided into parallel zones lengthwiec to the building, for productions of the eame class. It is divided into parallel sections crosswise to the building, for countries and States. Thus, going down tho lin. 8 in one direction, the observer sees the same jroducts of the whole world, as, for example, furniture, stoves, sewing machines, and the like. Going slong the cross lines, he follows the products of the same country.

The Art Gallery measures 305 feet by 210 . The height of its dome is 150 feet.

In our last volunce we grav an illustration of this building but we repeat it in the present number in order that our illustrations may form a sort of guide complote in one number.

There are also a Machinery Mall, and an Agricultural and Ilorticultural Building. The wholo buildings cover 50 acres of ground In September, agreat cattle show will be held, lasting from one to five weeks.

The Canadian Government has allotted $\$ 110,000$ to our Commission for this year, and will probably vote as much next year. It, is expected also that each Province will furnish a contingent. 'The Commission is very satisfactorily chosen. It consists of Mr F W Glev, of Oshawa, representing Ontario ; Hon E. G. Penay, of Montreal, representating Queboc ; and ex Lieut.-Governor Wilmot, of New l3runswick, representing the Maritime Provinces. The Minister of Agriculture, Hon. Letellier de St. Just is ex officio President of the Commission; and Mr Joseph Perrault, of Montreal, is the active and intelligent Secretary. In this connection, we have the pleasure of announcing a capital project designed by the Commission. It is proposed to hold a general Dominion dgricultaral and Industrial Fair at Montreal, in September of this year. 'The ground chosen is Logan's Farm, and it will be the largest ex. position of the kind ever held in Canada. We understand that the City Council will contribute $\$ \mathbf{\$ 0 , 0 0 0}$ towards it. At this Fair, all articles intended for the Philadelphia Interoational Exhibition will be presented. 'Huere they will be carefully solected, packed, and prepared for transmission to Philadelphia by February, 18it. 'The charges thither aud back will be paid by the Commission. Of course, those who do not chose to soud their articles to Montreal, are at liberty to act as they please, but if they wish to exhibit at Philadelphia, without passing tbrough inspection at Montreal, thoy will have to y.sy their own freightage to Pennsylvania. From all that we can learn, the dmerican Centennial will be a genuine success, and the preliminary fair at Montreal will be phoportionately great The one will help the other, and the result will doubtless be a decided impetus given to Canadian industry and Agriculture. Canada has been allotted a nearly rentral space in the main building at Philadelphia, along side of cireat Britain, but as that space, like all others; is necessarily limited, we should advise iutending exhibitors to confer at once with the Sucretary of the Canadian Cummission. We need scarcely add that articles intended for display at the International Exhibition will be allowed to go forward to the Exhibition buildings, under proper supervision of Customs officers, without examination at ports of entry, and at the close of the exhibition will be allowed to go forward to the port from which they are to be exported. No duties will be levied on such goode, unless eutered for consumytion in the Unted States.

PROPUSED NIAGARA BRIDGE A'L LEWIS'ION.
We learn from the Nicientelic Amerirnn that the practicability of constructing a permanent bridge at Lewiston across the Niagara is at present under consideration. The illustration on page 88 represent a plan of a practicable bridge sent to that journal by Messrs. Clarke, lieves and Co., the well-known bridge builders of the Phanixville bridge works.

Lewiston, issituated some soven miles below Niagara Falls; and at this point the river easerges from the narrow gorge, which varies from 200 to 400 feet in width, after making a last gradual descent of some 250 feet. Messr8. Clarko, Reoves

\& Co. state, with reference to their proposed bridge, that the span is 600 feet. The structure is designed for a double track milway, 120 feet above the level of the river, and for a carriage way, beneath this rond n distance of 75 feet. The estimated coist is $\$ 800,000$. The dillicnlty, therefore, vf erecting a single span, over swift apids and where the water is practically un. fathomable, the manufactirers claim to have overcomo, and they offer to contract for construction as soon as a company is rendy to supply the finals Instead of occupying twenty years in building, Hessrs. Clarke, Reoves \& Co., with their present facilities, believe that the work could be accomplished in as many months.

RAMAROAD IN SOUTHERN FRAN(E.

The viaduct whith we illustrate on page i.3 is constructed over the Allier, a tributary of the Loire, and forms part of a new line of railroad, over a hundred miles loug, between Alais and Brioude. In the coustruction of this line it was necessary to surmount natural dificulfies sreater than have presented themselves in the case of any other Eiuropean railway. Alais is situated about 90 miles North-west of Marstilles and Brionde to the north of Alaid, on the Allier. It will thus be seen that tine rond traverses the Cevenues mountains. Some idea of the difliculties of construction may be obtained from the fact that at one point in eleven kilometres of line there occur fourteen viaducts and eleven tunnels, and, at another point, in ten kilometres, twenty-one tunnels and eleven viaducts. Une of these over tho Allier at Villefort is the subject of our illustration 'The line will be very useful in relieving the direct road from Sarseilles to l'aris of some of its superabundant traffic and will ilso be of considerable strategic importance.

LIGHTING UP IUHE GHON'T A'T IHE ROYAL POLY'IECILNIC, LONIDON.

Many of our readers must have scen the "ghost," as it was exhibited often in Canada by its original inventor Professor lepper. The cxact method of its production is not, however, so generally well-known that it may not be made clearer by our illustration. *

As most of our readers are aware the "ghost" is the reflection of a living person thrown on to a large sheet of plate glass, so placed on the stage as to be invisible to the audience. In nearly all the representations on the stage of the large theatre of the Polytechnic this glass exists, lut, by the ingenuity of the scene painter, is not observed. 'To effect this, much care and trouble are required. First, the glass must be placed at such an angle and elevation that not only no part of the house or stage shall be reflected thereon, but that the whole of the audience shall distinctly see the "ghost." In the next place, the seene must be so arranged that the living representative of the "shost" shall be properly concealed, as well as the lime-lights which are to light it up. Many very beautiful effects have been produced by these means, and none more beautiful than the illusion of the White Lady of Avenel, which some year or so back delighted crovded audiences for weeks. A fhost illusion of some sort is usually to be seen at the Polytechnic. The effect iutroduced into the new Christmas entertainment called the "Mystic Scroll" is very striking. It consists of the vivification of the face of a stone statue, which, upon being addressed in certain mystic words, lives for a few moments, open its eges, and speaks 'The illusiou is very weird and effertive.

FIRE-PROOF IILLARS.

The introduction of iron columns is probably the leading characteristic of modern ordinary construction. Hardl: a shopfront is erected but we nee a few slendor pillars supporting an immense superstructure of stone or brick, and in our large factories iron pillars are about the only anpport of heavy machinery, raw material and numerotis operatives 'He columns are all that can be desired under ordinary circumstances. They are strong and they do not occupy much apace. 'Their great draw-back is in the case of fire. A column that will support a certain given weight when cold will, when heated far below the inclting point, give way under a fractional part of anat weight, or if when heated it is played unon by a stream of cold water it will fly to pieces and down comes the superstructure, crushing in its fall the coutents of the building and perhaps also, sundry luckless tiremen. We see, in an Ontario paper that a patent has been secured by the Rev. Geo. Bruce of Aurora for an iron column in which these defects are to a great extent removed. It is described as follows :-

The invention is a simple one, and consists in applying the principle of the fite-proof safe to an iron colninn. As in the case of the common iron billar, a solid cast-and colume sustains the whole weight of the superstrueture, but outside of this solid column is a thin cast-iron shell, and the space intervening between the outer shell and the inner column is filled with plaster of Paris, the non-conducting properties of which are well known. No weight is allowed to rest on the outer shell or the non-conductur that is used as filling, their only mission being to proteit from the effects of the heat the real support of ther building, the inner column. Ihese columns will be surmounted by an iron ' l ' girder, which is also enclosed in a fireproot casing of a similar nature, and the junction between the pillar and the girder is so formed thast only the protected portion of the one touches the protected portion of the other. while the casing form it tight joint, making the fire-proof armour complete. These columns are intended to take the place of iron columns in ormamental fronts of buildings, as well as in the interior of large warehouses where such supports are neoded.

(IINTHAI, ASI.S.

Geographical discovery now finds its field not in the discovery of new lands, but in the exploring of vast inland countrics. The interior of Asia is in many respects little better known than the interior of Africa, and any news from either as to new facts of gcography, natural history, meteorology, \&c., is hailed with delight by scientinic men of all countries. Uur know. ledge of the interior of Asia has been greatly added to lately and it will not probably be long cre we are modertely well informed as to this vast and interesting region. A correspondent of the llusirated london News who accompanied Sir J Douglas Forsyth's mission to Yarkund and Kasgar, writes to that journal as follows, concerning the Bactrian camel used in Eastern Turkestan :

During last year merchandise vas trinsported on camels for the first time from larkund across the elevated plateau of the Karakorum to Ladak or Middle Thibet. It is probable that the employment of these hardy creatures along what is known as the Changchunnoo route will \leftarrow reatly assist our traders, who are forced to undertake the difficult journey across the high. lands north of 'lhibet. The Changchnanoo route avoids the extremely difficult pass known as the sasser, and is throughout less precipitous than what is termed the summer 10 ute, across the Kaiakorum. But it has one great disalvantage, that its cxtremo elevation is as much as 18,500 ft., and that many days have to be spent, during the transit, at an elevation greater thais $16,000 \mathrm{ft}$., while the number of stages where neither grass nor wood is to bo met with are greater than along the less easy road by which the present mission crossed the mountains. The hardy camel which is in use in this country is, however, as ready to face the lofty deserts of the Eimalaya

Abstract

and the Pamir as the shifting cands of the Gobi desert. The home of the specier lsere refered to is doubtless in the Oxus valley; but, now that the existence of wild camols on the west. ern boders of China has been fanally ascertained by the Russian offcers who lately visited Kukonor and appooached the Lama city of Lhassa, in (hinese Thibet, it becomes a matter of interest to know which of the species used by man is most nearly allied to the wild camel, whose very existence lias so long been doubted."

The scheme of building a tunnel between Eggland and France is at last taking a practical shapc. Two companics have been formed, an Bnglish one and a French. Whey are at present at work making experiments and if these turn out successful and practical it is probable that the English Parliament will shortly be called upon to gise its sanction to the work. A bill in favour of the project is ulready before the t rench A sembly. It is estimated that if carried out at once, six years will see the completion of the undertaking. The time seems short for tunnelling thirty miles beaenth the sen; but the work would be carried on from both ends and became a source of rivalry to the tiso interested nations and companies.

Every now and again sinco the Indian mutiny a suppositious Nena sahib has turned up, been tried and found to be the wrong man. The trial of the last of these has just been concluded with the usual result. The circumstance scrves to show, however, what a deep and lasting impression was made on the mind of the Euglesh people by the atrocitits then com. mitted, an impression that many generations of peaceful lives will fail to efiate. 'The scene of the most horrible massacre, that at the memorable well at l'awapore is now occupied by a benutiful monument of circular form enclosing a large space covered with small tombs and momorial momuments on which are engraved inscriptions to t'se memory of the sufferers. The monumest was designed by Iharon Marochetti and is constructed of white marile.

The ice crop is said to be a good one everywhere in the northern hemisphere this winter and so it should be, judging from the reports of long continued frost from almost all directions. The business of storing it has assumed immense proportions in the Northern United States. There is a great and rapidly increasing demand for home consumption and it is exported to foreign parts in vast quantities. New York and its neighbourhood are supplied from vast storehouses on the Hudson similar to that in our sketch. The iee is issued daily from these, sent by train to the city and surrounding towns and there distaibuted. In spite of the unusually heavy crop consumers there are already grumbling in anticipation at the long price they will have to pay next summer for a scanty supply, as it secms that most of the business is in few hands and a sort of monopoly has steadily grown up. There would seem to bo room for Canada to do something in this trade, in the exporting at any rate. Our ice should be better in every respect than theirs. It is frozen and stored at a much lower temperature and thexefore contains less heat, and labour here in the winter months could certainly be obtained at a much lower figure than in New York state.

Is no case in neral practice should the pressure, on even the slowest mov:ug journals, be allowed to exceed 1,000 pounds per square inch of longitudinal section with steel journals, or about 600 on iron, in well worn boxes.

ICE AND SNOW IN RELATLON. TONEGETATION. !

By general consent the frost is regarded as one of the best of cultivators. Sthbborn clays, which almost dufy the efforts of the farmer or the gardoner with a steam-engine at thoir bacise, y ield to the cleaving influence of frost, or its other extreme, heat, with the docility of a child iu the hands of a strong man. A clod, which the human clod which walks on the soil may try for days and weeks or months to reduce to fine tilti without effect, is no sooner grasped by frost or sunshine, and pierced guite through than by the first change of weatherlet the first genial shower fall - it is disintegrated, and falls to pieces like so much lime or sand. Those who had hird their ground ridged up or roughly dug in tho autumn, will find their profit in the expenditure; those who have not done this will bo wise to deiay no longer, especially if the laud under cultivation is of a strong nature.

Generally, amateur-gardeners shirk the necessary garden work in the winter, to the disadvantage of tho garden. The crops being gathered, too frequently, the ground is left covered with veeds avd rubbish till the spring. This is not only an untidy practice, but it is ono positively injurious to the land, especially if we were to experience, as we did two years ago, a mild and very wet widter, when acres of what were left unsown, because it could not be worked for the purpose, and many a field of heavy garden soil was rendered useless the following summer. A winter's exposurt, especially with heavy land, to the ameliorating influences of a winter's frost, is generally considered as beiug equal to a cont of manure; therefore we must insist that every vacant space should be immediately trenched or ridged up, leaving the surface of the goil as rough as possible, so as to expose it to the weather; aud if during the continuance of frosty weather the ridges can be forked over so as to exposen fresh surface, it will not only be of bencfit to the soil, but will also aid very materially in the destruction of insects and their ova.
This sort of work should be commenced in the autumn, as the various compartments become vacaut. The ground always works best in fine weather, just after rain. If the top is wet and soddened, the workiag of the soil in that state does more harm than good, even to tread on it only; but as the weather at the fall of the year and in early winter is uncertain, every opportunity should be taken to ridge upevery yard of land not occupied, for if it lays for a week ouly for sun, frost, snow, rain, and air to get upon it, its fertilising powers are vastly increased.

Let us now look at the constituent parts of snow and ice, and then go on to show how in the economy of nature they discharge most important functions in relation to the soil. Snow is the condensed vapour of the earth precipitated to the earth in a frozen form. Snow, then, is the effect of frost acting on the vapour in the air. On the other hand, ice is frozen water, and when the temperature of the air is reduced to thirty-two degrees, water will no longer remain in a fluid state. When the frcst lays hold on newly-broken soil, for instance, the water that is absorbed by it during moist warm weather, expands by the action of the frost; the particles of the earth are therefore thrust apart from each other, leaving a vacuum between them. These openings in the soil let in air, dew, rain, and many gases favourablo to vegetation, and more or less of fertilising deposits being thus made, the soil becomes invigorated and curiched, and strength is imparted to the young crops subsequently. Nor is this all, for when a thaw sets in and the ice of the clods dissolves, the particles of the earth, thrust apart by the action of the frost, being left unsupported, tumble into minute parts as soon as tho binding cement of ice is dissolved. Thus a disintegating process is wrought, and the beneficial influence of this on heavy stiff soils cannot be over-estimated. The falling rain can more readily penetrate the soil, and the peculiar composition of water makes it a very important circumstance to vegetable life. It consists of oxygen and hydrogen, and all the solid parts of animals and plants contain these same elements in large proportion. In the dry wood of the tree, for example, and in tho dry flesh and bone of the animal, both are present. Now, as the plant and animal increase in size, oxygen and hydrogen are required for the formation of their growing parts, and water is every where at hand to supply these necessary ingredients. This is a chemical duty which no other liquid but water conld equnlly perform. Water, in discharging this duty, is not merely the drink, as we usually call it, but is really part of the food both

of animals and plants. Besides the oxygen and hydrogen in the water, other substances aro found in the air; among them is nitric acid, and it consists of nitrogen and oxygon only. Every tlarh of lightning which darts across the sky, and every electric spark, great or small, which in any other forse passes through the air, causes a minute proportion of thom two gases along the lino of its course to unite together, and produce nitric acid This acid is very favourable to vegetable growth, and is, indeed, ono of the substances which the falling mins and dews are appointed to wash out of the air, and in doiug so to bring down to the soil, and to plants, a valuable form of food, which is thus daily prepared for them amung the winds of heaven The disintegrating fo:ce of frost enables the substance also to readily penetrate the soil, where it remains stored up till required to build up vegetable tissue

What aro the uses of snow? for there is no waste of energy in the forces of rature. In the first place it may be said to keep the earth warm in times of severe frost; and in the second place, it nourishes the mother on whose bosom it lies white and clear in winter. It is in this way that the snow may be sald to keep the parth warm; it is a very bad conductor of heat, and the consequence is that where the surface of the ground is covered with snow, its temperature very rarely descends below freezing point, oven in cases where the superincumbent air is fiftern or twenty degrees colder In one of the Psalms of David, the writer states, u ing a beautiful tigure : "The Lord giveth snow like wool, he scattereth the hoarfrost like ashes"; at first sight it may appear strange to compare snow to wool, but wool is warm because air is entangled among the fibres of the wool, and air is a very bat conductor os heat; and also that air is entangled among the crystals of the snow; and air being a very bad conductor, there is a great appropriateness in the tigure. The protective quality of snow, as a means of preventing injury to plants, has been abundantly illustrated. Let us go back to the intense frost which prevailed in 1860, and which reached its greatest intensity on Christmas Day in that year, and the few following days. We were at that time in one of the coldest districts of England, and where the frost reached its maximum of intensity. Trees and shrubs were ruthlessly cut down by the terrible severity of that winter; but only to the snow-line.

Snow is a nourisher in the sense that it supplics moisture containing carbon e acid, which penetrates slowly into the soil, and insinuates itself through every clod, ridge, and furrow, when the snow melts Water is an absorbent of the gases ovygen and nitrogen, of which the atmosphere chiefly consiats, but not in the precise proportions in which they exist in the air. The air that we inhale into our lungs, when comparatively pure: contains about twenty-one per ceut. of oxygen, but in the air which we can extract from water, it exists to the amount of thitly-one to thirty-three per cont. This tendency of water to dissolve more osygen, in proportion to the nitrog.n than exists in common air, explains another curious circumstance which long puzzled philosophers as well as ordinary people. If a bottle filled quite full with snow, be well corked and then put into a warm roum, the snow will melt, and the bottle will be filled, perhaps, one-third with water and two-thirds with air. If this air be examined, it will be found to contain less oxygen than atmospheric airsometimes not more than twelve or fourteen per cent.while atmospheric air, as we have seen, coatains twenty one per cent. Hence it was long supposed that the air, always present in snow, naturally contanned this small proportion of oxygen, and that snow, therefore, possessed some peculiar property of absorbing the gases of the atmosphere in this new proportion. But the explanation is, that the snow, in melting into water, takes up a larger proportionate quantity of the oxygen than it does of the nitrogen of the air which was contained in its pores, and consequently leaves a smaller proportion behind. The inforence is that carbonic acid gas is formed, permeating the soil as we have already shown, and laying up a store of food for the plant it rears. As the microscopic apertures in the leaf suck in gaseous food from the air, so do the extremities of microscopic heirs on the roots suck a liquid food from the goil.
But in what form the nutritive carbou actually enters the root of the plant, is a question about which physiologists are divideci in opinion. It is proballe that the carbonic acid of the soil deposited by the snow enters the root of the plant in combination with some other substance, and is afterwards decomposed within the plant itself.-Land and Water.

RIBBON-WEAVING AT COVENTRY, ENGLAND.

(From tho Furniture Gazetle.)

As we enter the factory, preparatory processes are going forward at the top and the bottom of the building. In the yard is the boiler-fire, which suts the enginu to work, and from the same yard we enter worhehops where the machinery is made and repaired. The ponderous work of the men at the forge and anvils contrasts curiously with the delicacy of the fabric which is to be produced by tho agency of theso massco of fron and steel. Passing up a steep la jder, we find ourselves in a long room where turners are at work making tho wooden apparatus required, piercing the "compass-boards" fur the threads to pass through, and displaying to us many ingonious forms of polished wood. While the appratus is thus preparing below, the material of the manufacture is getting arranged four stories overhead, there, under a skrlight, women and gills are winding the silk from the hanks upon the spools for the shuttles. Here we see again the clouded silk which is to make plain ribbons, and the bright hues which delighted our eyes at the dycing-house This is easy work, many of the women sitting at their reels, and the air is pure and cool. The
ole edifice is crowned by an ubservatory, with windors all .ound, and no complete ceilings shat of the air between this chamber and tho rooms of two etorics below. Descending from the long room, where the winding sis going on, we find ourselver in an apartment which it dues one good to be in. It is furnished with long, narrow tables ahd benches, put there for the sake of the work-peuple who may lihe to bave their tea at the factory in peace and quict. They can have hot water, and make themselves comfortable here. Against the door hange a list pf books read, or to be read, by the people, and a verg good list it js. Prints from Kaffiaclle's Bible, pla....s framed, are on the walls. In the middle of the room, on ane beside a table, are four mon and boys preparing the "strapping' of a Jacquard loom for work. The cords so called are woven at Shrewsbury. We next enter a room wh-re a young man is engaged in the magical work of "reading in from the draught" The draught is the pattern of the intended ribbon, drawn and painted upon dice-paper. The young man sits as at a loom: before him havgs the ranss of cords he is to tie into a pattern, close befure his face, like the curtain of a cabinet piano. Up, reared before hiseyes is this pattern, supported by a slip of wood. He brings the hue he has to "read in" to the edge of bis wood, and then, with nimble findirs, separates the cords by threes, by sevens, ty fives, by twelves, according to the pattern, and threads through theon the string which is to tie them apart. The skill and speed with which he feels out his cords, while his eyes are fixed on his pattern, appear very remarkable; but when we come to consider, it is not so complicated a process as playing at sight on the piano. The reader has to deal thus with one chapter, or series, or movement of his pattern. A da capo ensues-in other words, the Jacquard cards are tied together to begin again; and there is a revolution of the cards and a repetition of the pattern till the piecs of ribbon is tinisited.
In the same apartment is the piss, in which there seems plonty for one person to do ; for there are thirteen broad nbbons, or a greater number of narrow ones, woven at once in a single loom, yet it may sometrmes be seen that one person can attend the fronts and another the backs of two looms. In the front we see the tharteen sabbons gettiag mude. Usually, they are of the same pattern, in different colors. The shuttles with their gav little spools fly to and fro, and the pattern grows as of its own will. Below is a barrel, on which the woven ribbon is wound. Slowly revolving, it winds oft the fabric as it is finished, leaving the shuttles above to ply therr work.
Some ribbous havean elegant and complicated pattern, and are woven with two shuttles (called the double-batten wearing, which come forward alternately, as the details of the rich flower or leat require the one or the s.ther. There were satin ribbons, in weaving which only one thread in eight is taken up, the gloss being given by the silk loop, which covers the other seven. The Jaquard cardsare prepared just in the way which may be seen wherever silk or carpot weaving with Jacquard looms goes forward. All the preparations having been seen-the making of the machinery, the filling of the spools, the cirawing anil "reading in "of the pattern, and the tying of the cords, end strapping-we have to seo the great
process of all, the actual weaving. We certainly had no idea how fine a spectaclo it might bo. Floor above floor is occupled with a long room in each, where the looms are set as close as they can work, on either hand, leaving a narrow passage batween. It may seem an odd thing to say, but there is a kind of architectural grandeur in these long, lofty rooms, where the transverse cords of the looms and their shafts and beams aruso uniform as to produce the impression that symmetry on a large scale always gives. Looking down upon the details, there 18 pleaty of beauty. The light glances upon the glossy colored silks, depunding like a vell, from backs of the looms, where women and girls are busy piecing the imperfoct thrend with nimble fingers.

On entering, we saw some narrow ecarlet satin ribbons, woven for the पueen. Wondering what her Majesty could want with ribbon of such a color and quality, we woro set at ease by finding that it was not for ladies, but for horses. It was to dress the heads of the royal horses. There were bridelike, white-figured ribbons aud narrow, flimsy black ones, fit for the wear of the poor widow who stiives to $⺊$ et together nome mourning for Suuday There were checked ribbons, of all colors and all sizes in the check. There wero stripes of all describtions. There wore diced ribbons, and speckled and frosted 3 here were edges which may introduce a beautiful harmony of coloring : as primroses with a lilac edge; rosecolored with a brown; puce and amber, and so on. The loops of pearl or shell edges are given by the silk being passed round horse-hairs, which are drawn out when the thing is done. There are belts - double ribbons - which have other material than silk in them. And there are a good many which are plain at one edge and ornamented at the other. These are for trimming dresses. One reason why there are few gauzes is that tat French beat tho English there. They grow the kind of silk that is the best for the fabric, and labor is cheap with them, so that any work in which labor bears a large proportion to the material is particularly suitable to them.

It is no uncommon thing to seo the father weaving, his wifo winding in another room, or perhaps standing belind 8 loom precing the whole day loug. I'he little girls fill the spouls, and the buys are weaving somewhere else The consequences of this devotion of whole households to one business are as bad here as among the Nartingham lace-makers of the Leicester hosiers. Not only is there the misery before them of whole families being adrift at once when bad times ecme, but they are doing their utmost to bring on those bad times Greatas is tho demand, tho production has thus far much exceeded it.

A Correspondent of e e St. Catharines leirs describes the parts of the skeleton of the unknown animal found on Mr Isaiab Wardell's farm in Canboro, uear Dunville. The horn is about eight feet long, and twenty-eight inches in circunferrance, was probably about twelve or fourteen inches longer and several inches larger in circunference in ite original perfret state; the large end of the horn has a tapering hollow of about four feet, and a rurve of about twenty inches, and weighs 185 pounds in its green state : has probably weighed not less than 250 llis . About half of the other horn is also exhilited, correspnnding in size and shape, but much more decayed. 'I'wo jaw hones, or rather parts of them, having two grinders each, measuring 17 inches from the angle of the jaw-bone to the first tooth. The treeth measured about 7 inches by 3 l . One loose tooth weighs $5 \nmid$ lbs. Several other bones, evidently belnoging to the same animal, and all of a collossal size, such as the bones of nue foot, joint of a leg, parts of the head, vertebrade, shoulder clade, and one rib, all of which attest that the animal must have been of an enormons size quite beyond any animal as yet known, or of which wo have any sheleton, and ludging from its size and weight of its teech and jaw bones, it must have been twice the size of the largest elephant. Sr Wardell intends searching for more of the skeleton as soou as the frost permits

Says the Fredericton Reporter:-The New Brunswrek Railway Company having concluded to push a branch line into Aroostook territory, great is the excitement among the various districts to secure the terminus, each declaring itself more consequential than the other. The line to Fort Fairneld will be adopted.

SUPPRESSED GENIOS.

Sib J. Nosl Patox, in addrossing the students of the Royal Scottish Academy on the lst inst., made the following happy remarks :-

It has beon said ihat there is no suppressed genius; that when the thing so called is within a man, it will assert and develop ltself in spite of adverso circumstances. But I fear sad experience goes to prove that the race of "mute, in. glorious Miltons" is not confined to the parish of Stoko Pogis, and that the amount of intellectual energy dissipated in overy gencration in unavailing conflict with igoorance, poverty, and disease is very great. The will and the wings may be given, yet both prove powerless for fight, through the weight of adverse destiny. Of this terrible law I had some years ago a touching illustration. Wishing to represent in a picture the chrssalis of a common white butterfly, and having too vivid a conception of the object to paint it from meinory with nuy sense of satisfaction, I had three specimens sent me from. the cuuntr). They were sent by a very intelli. gent gamekecper, packed in fine cotton, and enclosed in a small tin shut-box. I painted in my chrysalis, replaced it beside its sisters in the shot.box, and put it away on the shelf of a cabinet, I suspect with no thought of the creaturo beyond the instinctive impulse to preserve from injary a thing so fragile and so brautiful. This was in early winter. Spring came. Summer and autumn followed, with more than their wonted splendour. It was ayain winter, whon, in searching for something e!se, my eye fell on the little shot.box. 'Jaking it up, I removed the lid, almost mechanically, for my mind was preoccupied, and quite tinprapared for the sadiy suggestive sight that presented itself. There. immediately bercath the lid lay a dead butterfly,-one beautiful wing out. stretched against the polshed metal in white perfectiou; the other, paaally undeveloped, and still entangled among the cotton. Here surely was matter for thought. The chrysalis I had painted as teuantless was now indeed empty, the "ante. natal tomb" had been burst asunder by the living Pryche within. The divine voice had called to her, as the divine voice once called to the swathed sleeper in the rock-tomb at Bethany, "Come forth!" and forth she came. Impelled by the divine instinct of her being, she had battled bravely and strongly through the dense superincumbent impediments. She had all but slaken herself free from the close clinging fibres; but there was no one to roll away thu stone, to unloose the bands and let him go. Above her was the solid disk of iron, cold, dark, impenetrable. Against such an obstacle as this what could poor I'sycho do? And thus, while her winged kindred were abroad in the summer air, and

- The chatdren were cullux

In a thousand valloys far and wide. Fresh flowers,"
the fiery sparh within her had burnt litself out in unevailing conflict with the inevitable. Will and wings had indeed been hers, yet there she lay dead before me, her powero unde. veloped, her aspiration: unfulfilled,-the victim of circumstances. Lower down I found her sister. She, too, had heard the call, rad felt thr quickening impulse, and struggled to obey But for her circumstances had proved yet more adverse. She alno had burst her certments, but her wings had never been unfolded; and she, too, fas dead, I doubt not to the third sister also the voice of the Master had penetrated, but her grave-clothes were unrent, -"She died, and made no sign" Before such an audience as this, it may seem a mere waste of words to insist on the supreme importance to th. artist of thorough and early culture. Bat we have h-ard it maintained that an elaborate system of art-education which of neressity implies a more or less prolonged subjection of the recipient to the influence of other minds,-is unfavourable to that development of idiosyncracy which we call urisiuality. But worthy originality in any of the arts may be defined as a new and unexpected development of the beautiful; and it is inconceirable chat any originality which will bear this de finition can be the outcome of ignorance Furtber, I contend that the artists whom the world has recognised as the most original,--the men whose works form the land-marks in the history of art,-have invariably been the most perfectly edu cated, that is, the most perfectly acquainted with the princl. ! ples and practice of their predeceasors.

RALLWAY Martens.
T're first train which run through the Hoosac 'I'unnel was composed of three gravel cars and a bux car filled with 101 passengers, among them buing State Engineer Beajamin Frost, Consulting Engineer Thomas Loane, Chief Engincer, W. P. Granger, sc. The passage was made in thirty-five minutes. The track is not yet in a condition fit for the running of regular trains.

The Pennsylvania Railroad Comp ay have a car bult and used expressly for the purpose of testing the correctness of the track scales along the line. The body of the car is of iron, and it is furnished with weights, by which the scales can be proved. It is started out from Altoona once each month, and makes the round of the road and branches, adjusting all the scales.

Thas force of men required to work a railroad is illustrated by the Illinois commissionners' report, which has a column for "number of persons employed-entire line.' We usually apeak of the cmployes of a railroad company as an army, but some of the Illinois companies seem to get along with a corporal's guard. Two roads bave put fifteen employes each, one of these roads being eight and the other seventeen and a-half miles lung. The Sycamore and Cortland road, which is only four and a half miles long, hovever, employe but twelve men; but the smallest force is on the Louisville, New Albany, and St. Louis, twenty-ceven and a half miles long, which reports but nine men. The total length of the roads reporting is 6740 miles and the aggregate number of their caployes is 35, 769 , which is at the rate of $5 \cdot 3$ men per mile of road.

Rallaond Train 'Iner.-An ingenions invention has lately been suceessfully tested on the Vandalia Railroad, Iudiana, which records the motion of railway cars There is a locked iron bos, attached to one side of the car, and contaiving a clock. The mechanism of the latter causes a small drum, on which is wound a shect of paper, to travel at a constant rate. With the axle, by means of rods and gearing, a pencil touchng this paper is connected. As the pencil is moved slowly across the paper, by its mechanism governed by the acle, andas the paper is slowly moved foward, the pencil point inscribes a diagonal line back and forth The paper is ruled in very small sections, every fourth line being dotted and representing one mile; so that, supposing the car goes a miic in four minutes, the line will cross just four sections diagonally from one dotted line to the next one. If the car stops, the line crosses the paper directly, and shows the number of minutes that the train is at rest. The names of the stations are written at the proper places on the paper, and thus the exact rate of speed made at any point on the line can be subsequently noted. The apparatus thus affords an excellent check on the train ofticials, as; if the train wains or loses time, the fact is sure to be detected

Rannay Schemes.-Steps are being taken by the Americums interested in mailways terminating in Boston, to consolidate several lines into a through system with a terminus at some print on the St. Lavernce west of ngdenshurg, there to connect with feeders from the West and the lumber regions of Canada. As this plan necessitates the building of a bridge over the St Lawrence, we notice that the Kingston 11 hg is pointing out the advantage of erossing the nver from Cape Vincent to Wolfe Island, and thence to Kingston a far better plan would be to conuect the roads centreing at ogdensburg with the Morristown and Mlack River Railıoad, making Niorristown the smerican terminus, aud bridging the St. Lawrence from ishaud to island a short distance alove Brock ville, wher" the river is, comparatively speaking, both narrow and shalluw, and where the numerous islands could be utilized as piers, thus reducing the cost of construction to a tithe of what it mould be at Kingston at Brockiville a connection would be made with the Grand Trunk and with the Brock villeand Ottawh, (which will nodoubtedly be extended to Pembroke) and by this nueans the lumber trade of Canadn with the Eastern American markets would pass into the hands of the combination. Let the business men of Brockville make a push in the matter and immediately communicate with the principal mailroad men of Boston and the Eastern States in reference to tho sichense.

SCIENTIFIC NEWS

The British Admiralty have arranged for sending out a naturalist in each of the polar ships. The selection of uames has been left to tho Royal Society Permission has not been granted for special correrpondents to accompany the expedstion.

Among the items of extraordinary expenditure in the German Budget $26,000,060$ marks are devoted to railway works, and $25,000,000$ to the construction of canals, whercby the State wishes to help in reviving those branches of indestry which are at present depressed.

Destaction to Matcues.-The Paris currespondent of the Loudon Daily Nens writes.-I have just been shown a smple apparatus whic h will probably sweep away ere lucg the match trade. It is called the electrical tinder-box, and is small enough to be carried in a cigar case. On opening this box you see a platinum wir stretched across. Touching a spring, the wire reddens suficiently to light a cigar. At will you cau introduce into a tiny scouce a mesh of cotton steeped in spirits of wine or petroleum, which, taking fire, does service as a $1 \% z L$ leaxr, or nurse's lamp. The hidden agency which heats the wire is a very small electrical battery, set in action by the touching of the spring. The trade price of the "electracal tinder-box" will be half a franc, or fivepence. Its inventor promises that it will be anecullumical substitute tor the lucifer match. This apparatus may, perhaps, derauge the budret, which depends for a heavy sum upun the match-tax and monopoly.
M. Vielle considers that the emissive power of the sun at a given point on its surface will be the relation between the intensity of the radiation emitted at such point and the intensity of radiation which a body, having an emissive power equal to unity and carried to the temperature of the sun at the considered point, would possess. So that he defines the true tempe rature of the sun as the tempenature which a body of tise same apparent diameter as the sun should possess in order that this body having an emissive power eqnal to the average of the solar surface may eunit, in the same period, the same quantity of heat as the sun. From experiments made at different altitudes, M. Violle determines the intensity of the solar radiation, as weakened by passage through the atmosphere, and finds, for the efiective temperature of the sun, 2822 deg. Fah. Investigations conducted with an actinometer by the dynamic method lead the investigator to conclude that steel, as it emerges from a Siemens liartin furnace, has a temperature of 2732 deg. Fals. If it be admitted that the average emissive power of the sun is sensibly equal to that of stecl in a state of fusion, determined under like conditions, it appears that che mean truc temperature of the solar surface is about 3632 deg. Fah.

A rrocbss for producing a gaeen brohso on mon, devised by Hanl Weiskopf, is given by lhagle, x.furnnlas follows:-One part of sylvate of silver is dissolved in 30 parts of oil of lavender, formint a sort of varnish, which imparts a beautiful and permanent green bronze appearance to cast and wrought iron, sheet iron, and wire. The surface to be bronzed is cleansed and dried, but need not be polished. The varasth is thanly applied with a camelis hair brush, and the obyect heated quelily to 300 deg . Fah. The proper temperature is indicated when the article shows a bright green colour, which is even all over it. To produce a brunze dmwing, Venctian turpentine or colophoniam solution is substituted for part of the lavender oal. It is better to rub up the dry sylvate of shlver with resin in a mortar or on a palette, and then add cnough lavender oil to make it as thin as ordinary paint. Articles of iron bronzed in this way cau afterwards be electro-plated, the copper not bemg deposited on the portions bron\%ed. Copper aud brass coated with this bionzing, and heated to $\$ 50 \mathrm{deg}$. Fah., acquire a matt grey exterior, which is somewhat reddish, and not permanent until covered with a thin coat of varnish, when it ressembles the so-called oxidised metal. We may add that sylvic acid is one of the constituents of ordinary resin or colophonium, and differs from pinic acid in being soluble only in hot alcobol, from which it crystallises in colourless plates. To prepare sylric acid, the resid is first treated with cold alcohol to dissolve the yinic acid, the residue is dissolved in hot alcohol, and allowed to crystallise. Carbonate or acetate of silver dissolves in sylvie ncid, jormink sylvate of silver.

Manc experiments, says Vuture, have been tried in France to test the effects of cold on railway axles. Many engineers suppose that accidents to wheels do not result from any diminution of tewacity of the metal but merely from the road losiner all its elasticity owing to the frost hardening the surface of the earth A fact which can be adduced as a strong argument in favour of that theory was observed by the inhabitants of Montmartre during the last period of frost. 'Lhe passing of the trains which run so frequently through the liatignolles tunnel at a distance of half a mile was heard by them day and night, which is never the case in ordinary circumstances. is soon as the thaw set in the trains ceased to be heard; the carth having resumed its formes elasticity, the sounds were dissipated as before. It has been observed by French railway engineers that thaws are apt to luad to the breaking of axles and chains. The elasticity being only partially recovered, many shocks affect the tains when running at a fast rate, and are apt to lead to catastrophes.

Alumpius foh Enomeeming Instionents.- Mr. S. B Clevenger recommends the use of aluminium for engineers' instruments, its great recommendation being that an equal bulk weigh: but one-fifth as much as brass, an ordinary transit woighing but \quad lb. in aluminium, and within the limits of practicable weight such instruments could be made very much larger and more accurate than in any other metal. Aluminiam costs about half as much per pound as silver, aui does not rust or taraish so easily as brass It combines the ductility and malleability of copper with vastly more than the strength of steel (it is placed by some as thirteen times stronger), and the lightness of chalk.

Clttinc: Stesl Rails :old.-The cutting of a file in halves with soft iron was an old lecture experiment. Hhe soft irou formed a dise about ein. in diameter, mounted on a lathe spindle, and run at about 2000 revolutions per minute. A file held to the edge of the dise was cut in two in about ten or fiftern seconds, the dise being unhurmed. 'Tue shower of sparks rendered this a brillant experiment, very popular with a gencral audience. The principle involved is now being applied to a practical purpose. Ar. Charles White, manager, Hir J. Brown and Co's Works, Sheflield, bas found the cost of cutting of the ends of sted iails cold in the ordimary way so enormous that lue resolved to try another expedient. For experiment. he last weck had an ordimary rail saw put in the lathe and all the tecth cut off. The revolving dise was then mounted on a spinde and driven at nearly 300 revolutions a minute. The dise was 3 ft. in diameter, so that its circumferential velocity was about $27,000 f$, or over five miles as minute, or 300 miles an hour Steel rails forced against the edge of this disc were easily cut through in three or four minutes cach. The mils weighed 6atb. to the yard. Sparks teew in abundance, and the dise appeared to melt the rail hefore it; but after cutting tive rails the dise itself was not sensibly, warm. The experiment was such a complete success that the lira intend putting up a vory powerful saw for the purpose of cutting cold steel rails.

Tue Priladelphia Nurth .in .ica say . . The through ralroad sclum.' from Boston to Pittsburg and I'hladelphia, car Yough keepsic, and a new bridge acruss the Indson river, make steady progress in favour in business circles in Bostod, and appears now likily to go through. Ali that as asked of Bostod to insure the work is a subscription of about half a million of dollars, wbich ought to be obtained there with case. The mostattractive feature in the programme to the Ner England mind is the direct access to the coal and iron of Pennsylvana, whinch to the manufacturers of the Eastern States is a matter of very treat imporiance. Hut this is the first through hne of ranlrosd that has come directly to the door of Boston with proposals for a permanent connection. To Boston it means Western trade as well as Penngylvadia raw materials. It will certably throw - large amount of valuable business ia merchnadise and pass"ogers upon the whole of the railroads th the staste. The ranlway conuections in New England required for this through arraugement are all in existeace, and the missung link is uear the Hudson.

Cuxposition of Wool Ginsase -According to Schulze and (irich, the bulk of the untural wool grcase of sherp consists of compound ethers. A pait of alcohols and fatty acids aro in a frec conditiou.

MISCELLANEA

A nxcest number ot the Heatsche C'h.mache levellerhatl informs us that a certaith chemist has studted orthoamtor rexylna. rasulphuruax acid, and that by tho and ot hydrochloric acid and chlorate of potash he has transformed it into trichlororthotolaquanone. Further on the author discourses on meturthorresylol. parasulphurous acid, and finally some other chemist hurls at us the fearful jzw-paralyser-nitrate of ethenylientrophenhlint mone. There are plenty more examples o: this kind beforo us, but we spare the reader.

Accoumins to an uncontradicteu statement in the it. Petersburg journal Iis'oh, the Shah uf Persia has given one Iterr Falkenhagen, a kussian subject, a cuncession tu construct a railway from Tabris to the kussian frontier. If this line is carried out, it will be extended to Tiflis, and will become the first railway connecting Asia and Earupe.

A sovslty in connection with free passes on railways has just been started by the Pennsylvania Company. On the back of the pass is a photograph the "dead head," as people who are allowed to travel without payment are kindly nicknamed.
One reason why oatmeal is not more gencrally used as food is that, in the way in which it is :asually cooked, it requires constant stirring, which takes a good deal of time and attention. If, after the porridg: is mixed, that is, as soon as the oatmeal is stirred into the bohlug water, the cover is put on and the tin saucepan containing it placed in another pot of boiling water on the stove, and the water let boil, good oatmeal porridge will be made, without the least danger of its being scorched.

A New Spheme for the "Ghat Eastean-l'rivate letters from America announce that the proprictors of the Great Eastern are engaged in discussing a most extraordinary proposal. The great ship, it is said, is to be anchored in Philadelphia Ilarbour during the Centennial Exhibition, and to be made a great floating hotel, where 5000 persons can be comfortably accominodated.

Tae: Ostmich Ouruons-Formerly a case such as that recently recorded of the insano cobbler, who swallowed a pretty complete sample of the implements of his crait, would have lasted medical writers for half a centary. In such a way the ancient example of the Frenchman who bolted a knif was quoted, re-quoted, and quoted again, until the reading public were as sick of the example as the Frenchman might well te of the knife. But now-a-days therg is not the same necessity for repetition in the recital of any kind of eccentricity. The latest case is that of a lady in Xew York, who, in December iast, swallowed a silver dental plate with four teeth attached, and has been, in consequeace, living upon spoon meat until the other day, when the plate and teeth were removed by a species of Casarean operation. In this instance, however, it was not morbid appetite, but an accident which displaced the lady's teeth and palate. Inspired by the case of fort-swallowing in Paris, in April last, Dr. Mignon has collected the details of 163 similar instances of the wilful or accidental swallowing of metallic substances and others equally indigestible. Amoug these we tiad fiftern gold medale, hair riogs innumerable, 175 fr, a shoe buckle, nine inches of a sword Hade, viry sharp sciseors, eighty pius, a baby's bottic the caston of a night-stool, an entive set of dominoes (the size of which, however, is not stated,) 100 louts dor, a flute four inches long, a glass phial, thirty-five himes, a clay pipe; from 1400 to 1500 pins, a bar of lead wetghng a pound, a whetstone, and (in three instancess) a talle fork but the most extraordinary of all these cases occurred in tho mstance of a convict who died at Brest, and on whose body a necropsy was performed. The stomach was completely displaced, and occupied the left hypochondrinen, the lumbar and aliae regions of the one side cxtendiog into the pelvis nearly as far as the forameo ovale, it contaned hify two difierent objects, weighing altogether 11610 oz. Amung them was a part of the hoop of a barrel, 19 inches long and 1 in wide. it is remarkable that out of all these cases only twelve had a fatal termination, two of them probably in conseyuence of the operstion by which the foreign body was removed. Gastrotomy was employed in five instances, the object cxtracted in one being a bar of lesd 10 inches long and weighing in peund; the other a similar bar, 9 o\%. in veight and uearly a foot loug.

THE PLUNPING MILL.

THE PBIMITIVE PLUMPING MILL.
It is interesting often to look away from the bighly-finished products of modern mechanical science back to the rude implements not ouly of our forefathers but of those who now, far removed from centres of civilization, live much as our progenitoss of gencrations back lived. An instance of this is found in the primitive machine we illustrato above. We are indebted for the illustration to the Americun Agrirulturas, in whose ch lumns the machine is described as follows:
"The carly settlers in this country who had uo mulls, as as well as the pionecrs of the present day, who are at a great distance from t cm, were, and still are, obluged to recort to various expedients to bring Indian corn, their chaef and gencrally only grain, into an catable condition. l'erhaps the simplest method of preparing the grain, is to make what is known as hulled corn, the corn in boiled in lye from wood ashes, until the hull or shin oi the gran readily sepanates; it is then wasited aud stirred to remove the hulls, soaked in successive waters to remove all traces of the lye, and then boiled until tender. Even at the present day the Mexican peasantry prepare their cora in a similar manner; they remove the hull by the use of lye, and then instead of boiling the grain, they grind it to a paste on a stone called a metate, which is the chief article of furniture in every Mexican kitchen, (which usually includes patior and bed-room;) this is a slab of hard stone, about a foot wide, and two fect long, clevated at one end by legs. The soaked grain is placed upon this, and by the use of a sort of stone rolling-pin moved briskly up and down, it is ground to a paste; this is then patted out into a thin cake, and quickly baked upon an earthen or iron plate, bencath which are live coals. These cakes are called tortillas, and are the staple bread all over the country; they are some-
times made of prbeat, but geueraily of corn. This method of using corn is purely mexican, and no doubt derived by tho Spanish settlers from the aborigines. While hulled corn is pleasant as a variety, and is at the prescut day sold in New England towns as a lusury, it becomes :ery tiresome as a regular food, and a poor substitute for corn cahes or bread made from meal. To obtain meal when a grist mill could only be reached by long journeys through the woods, over roads that were little more than foot-paths, or by a long voyage 1 m a canoe or dug-out, the early settiers had recourse to the simple enntrivance shown in the engraving. This is called the plumping mill, (plamp to fall suddenly or with violence,") and is made ly burning and diggiag out a cavity in a hard wood stump, until a rude mortar is formed, then a long and heavy pestle, made also of hard wood, is attached to a long spring pole, and thus is formed a rude machine to be warked by one-man power a slow and tedious method of obtaining meal, but one whirh many hardy pioneers have been content to follow until a better way could be fonnd. It is a curious fact that the first patent granted in England, to the specifications of which drawings were attached, was for a kind of compound plumping mill, to be worked by horse or water-power, though somo might find still more curious the fact thint this invention was made by a soman. We have seen a copy of the orlginal drawing at the Patent Office in Washington, which shows a row of 5 to 12 mortars, according to the kind of power used, the pestley were worked by a revolving shaft, the tecth upon which lifted the pestles and let them fall The patent was granted in 1715, to "गhomas Masters, of Pensilvania, Planter, his Execrs, Admrs, and Assignces, of the Sole Use and Benefit of A Now Invencon, found out by Sybilla bis Wife, for the Clearing and Curing tho Indian Corn Growing in the Severall Colonies in Amcrica, etc."

MODERN GHOST-RAISING. A SEETCH BEHIND THE SCENES AT THE POLYTEUHNLG, LONDON, ENG.

PINCTUAIITY

(lolin Bul')

"La l'onctualite rest ", Politeere des Rois" is an old axiom, and oue which, it must be confessed the Kinge and Princes of the earth have laid well to heart. Her Majesty's exactitude as to time is proverbial; and her suns and daughters are little behind her in this respect. We wish the good example set them exercised a more marked effect on Her Minjesty's subjects, and that they would sometimes reflect on the extreme discourtesy which their disregard of it canses them to show to their friends and entertainers (iven any person, man os woman, in even moderately good health, no excuse which can be framed, no matter how ingeneously, can for one moment hold water in excusing chronic unpunctuality Every one, not aflicted by illness, can be panctual if they choose; it is the will that is wanting, not the power Λ proof of this is that people can always manage to be in time if they are quite cerzain thev cannot get what they want without being so; it is only when the convenience of others is in question that they give themselves a most irritating latitude Everyone knows the impossibility of inducing dinner guests to make their appearance within any reasonable period of the time named for their arrival Let them once be fully aware that, as is the case in one or two-alas! only in one or two-very great houses, no guest, whatever his or her rank (Royalty, of course, excopted), is allowed mors than ten minutes' "law," and the most illbred and insouciant dandy, the most feather-brained fine lady who thinks it gives her importance to make everyone else uncomfortable, at once finds it convenient to arrive punctually to the hour named. As a general rulo it may be assumed that it is ooly the utterly idle sho are ever late If a man apologises for his unpunctuatility by saying, "he was no busy," be sure he was leaning over the rails in the Park. People who have anything realiy to do are far too well aware of the value of time to waste either their own or that of those with whom they come in contact It is not thry who make an appointment with a busy man at eleven in the morming and saunter in, looking blissfully unaware of their unpunctuality, at halfpast twelve. No; the man who does this has generally been at his wits' end to kill time all the morning: but he priferred a cigar, or a visit to his stables, and his own pleasure was of far more consequerce than a busy man's time; or else he fancied being late made him of some importance. This latter feelis very frequently indeed at the bottom of feminine want of punctuality. "Oh! they must wait for a lady," we have heard suid, quite gravely, as the reason for a speaker coming in from her drive just at the hour when, fully dressed, she should have been stepping into her carriage to go out to dinner.

It may he thought frivolous to insist so much on this unpunctuality for ctnoner: but, apart from the annoyance and discomfort it creates, and its excessive bad taste and impertinence, it is only a sign of the genersl habit of life. Any one habitually and deliberately unpunctual for dinuer is tolerably sure to be irregular in all the other events of the day, and, brsides the terrible amount of time wasted, the household conducted on such principles can never be an orderly one. If servants find that masters and mistresses never keep to time, it can hardly be expected that they will be more particular, there is soun no settled time for anything, and every one does as eecms yood in their own eyes 'Io children also unpunctuality is most deleterimes, both physically and morally-physically, hecanse their jurenile constitutions require stated food at stated hours, and are sorely tried by prolonged waiting morally, because it requires intinitely more mental baliast than they can be expected in possess to keep steadily to work when they never know exactly when it will he called for Perhaps there is nothing so profoundly ierritating to an unpunctual person, who more frequently than not keeps up the facce of professiny to believe that he or she is the most puactual of mortals cxerept on the one ocrasion in question, as to come down in a storm of apologies, "Oh, dearl I hope Im not late," \&c., and to find the person kept waiting, dressed and ready, and employed calmly with bonk ir work, as one used to waiting. " You need hardly have settled yourself; you knew I should not be a minule;" says the delinquent, with a injured air, blithely iguoring the fart that the horses have been fretting at the door half an hour by the clock. 'This is a common phase, but uthers take a more plaintive line. "How I enyy you al. ways being in time! I couldn't be punctual if I tried. I never
had any itien of time." Now this is sheer and arrant nonsense, and as such should be instantly and uncompromisingly saubbed by any one to whom it is addressed. Every one can be in time it they choose, and even those unprovided with watehes might, if they gave therr minds to it, make such use of neighbouring clocks as to at least improve greatly on their present bad habits. But that would involve tronble and thought for others, and they are of all things the most repugnant to the soul of the unpunctual. Self-indulgence is their jdol, and not all the professions of penitence which they from timo to time think it erpedient to make simply the faintest intention of abandoning its worship. A very great deal may be done by parents in nipping the vice in the bud. When the offender discovers that he (or she) is never waited for, that everything gocs on as usual, that on appearing late at a meal no dish is over recalled, but that he must take his chance of what happens to be left, that parties of pleasure start at the appointed time, irrespective of his appearance or the reverse, bo will begin to discover that it is as well to form babits of punctuality. and, once formed, they are hard to break. We only wish we could venture to hope that the world would follow the same plan, and utterly disregard the cumfort of those whose vanty, impertinence, and bad taste lead them, to keep others waiting for no object but their own selfish gratification ; but we tear that so-called "good-nature " is too strong for our hopes to be realized. The world seems to forget that in being "good-natured" to the offenders it is thoughtless of the sufferers.

(URIOUS INCIIEN' OF A RETRIEVER.

A very curious incident lately occurred to a retriever of Mr. lliggs, of Southampton. It being a case of great interest to veterinary surgicons, as well as all owners of dogs, 1 venture to give it in eatensu. The dog, a great favourito and perfect in his business, was usually kept chained to a wooden kennel for safety, Mr. Higgs pasoing much of his time in the town. On his return home he always visited his dog. I'ur two or thro. days in succession he remarked that the animal had a sullen, sulky look, and instead of receiving him with his accuetome joy, neither liefl the his head nor affected to reconnose han. Un his entering his hutise shortly after this suspluous behaviour, his daushters informed him that the dug had all day snapped and howled in a most peculiar manner, and that he had bitten and torn his kennel uaccasingly, and would not be quieted. Upon inspection, Mr. Higgs found such to be the case, and that the countenance of the dog was anxious and alarning. Hydrophobia, and the best remedy for such a threatening malady, the gan, naturally preseuted itself as his surest safety. However, as from the arrangement of the premises and the locality of the kennel, it was impossibio under any circumstance, that harm to others could come of his beiug allowed to live, after due caution to all his household, he determined to "see it out." Day after day passed with no new feature in the case: the dog literally tore his kennel to pieces, to shreds, making matchwood of ity and from this time he chained him to the wall. Upon a closer examination of the poor beast, MIr. Higgs perceived that there was a considerable swelling of the right sids, commencing at the lower rib, and extendiag upwards towards the shoulder. He had now some hopes of reasonably accounting for the evident torture of his dog, yet strange to relatr, there was throughout no luss of appelite, and he well supplied him with water, of which he drank freely. His attention from hence was completely attracted to the supposed tum our, which he soon had the satisfaction of seeing daily increase, and that to an almost incredible extent. He did not venture to bandle him, the symptoms of restless, savage sulkiness still being expressed. To his great satisfaction, bowever, one morning the swelling had burst and disappeared, and he found his favourite licking awny at what appeared to be a great hole in his side, and sufficiently relieved to faintly welcome his master. The day after this, with the assistance of a friend a more minute inspection of the wound was made with the object of fomentation aud dressing it. Whilst thus engaged a foreign substance was discuvered in the centre of it, which presented a firm and pointed front, and which evidently proceeded from the iutestiucs of the deg. This, clearly, to their minds the cause of all the mischief and suffering they determined to attempt to remove. First well securing tho dog's head and then gettiog a firm hold of the obstacle, his triend, using considerable force, succeeded in drawiug out, when, to
their inoxpressive astonishment, behold, ho held in his hand a galvanised iron ekewer, such nono as is in orlinary use for trussing and roasting fowls, six inches long, with a loop at the top. It had, of course, been thrown to him amongst the seraps from the hithlien, and no duubt ho had "wolfed it." In three or four days after the above operation, the retriever was quite well and in his usual health aud spirits.

BITYING A HORSE.

The following hints on examining a horse appear in The Maryland Farmer. They contain much good advice to tho nonprofessional dealer, but fail to cover all the defects a horso mas possess. But the chancesare that the purchaser who gets a horse free from every difect herein enumerated will have a pretty sound ammal.

Examine the eyes in the stable, then in the light; if they are in any degreo defective, reject.

Examine the teeth to determine the age.
Examinc the poll or cruwn of the head, and the withers, or top of the sheulders, as the former is the seat of poll evil, and the latter that of fiscula.

Examine the front feet, and if the frog has fallen, or settled down between the heels of the shoes, and the heels are contracted, reject him, as he, it not already lame, 18 liable to become so at any moment.

Next observe the knees and ankles of the horse you desire to purchase, and, if cocked, you may be sure that it is the result of the displacement of the internal organs of the foot a consequence of neglect of the form of the foot, and injudicious shoeing.
lixamine for interfering, from the ankle to the knees, and if it proves that he cuts the knce. or the leg between the knee and the ankle, or the latter badly, reject.
"Spuedy cuts" of the linee and leg are most serious in their effects. Many trotting horses, which would be of great value were it not for this single defect, are by it rendered valucleas.

Carefully examine the hools tor cracks, as jockeys have acutured great skill in concealing cracks in the hoofs If cracks are observable in any degree, reject. Also both look and feel for ringbones, which are callosittes on the bones of the pastern near the foot; if ipparent, reject.

Examine the hind feet for the same defects of the foot and ankle that we have named in connection with the front foot. Then proceed to the hock, which is the seat of curb, and both bone and blood spavins.

Ihe former is a bony enlargement of the posterior and lower poition of the hock joint; the second a bony excrescence on the lower, inner, and rather anterior portion of the hock; and , the last is a sult enlargement of the synoval membrane on the inner and upper portion of the bach 'They are cither of them sufficient reason for rejecting.
hee that the horse stands with the front feet well under him, and observe both the heels of the feet and shoes to see If he "forges or overreaches; end in case he does, and the tues of the front feet ate low, the heels high, and the hecls of the front shoes a good thickness, and the toes of the hind feet are of no proper leagth, reject him ; for if he still overreaches with his feet in the condition described, he is incurable. If he props out both from fect, or points them siteraately, reject.

In testing the driving qualities, take the rems while on the ground, invite the owner to get in the vehicle inst, then drive yourself. Avoid the display or the use of the whip; and if he lats not sufficient spirit to exhibit hes best speed wathout it, riject. Should he drive satisfactorily without, it will then be puper to test his amability and the extent of his training in the use of the whip.

Thuroughly test has walking qualities arst, as that gait is wore important in the horse of all work than great trotting speed. The value of a horse, safe for all purposes without blinds, is greatly enhanced thereby.

Purchase of the breeder of the horse if practicable; the reasons are obvious.

The Philadelphia and Reading lailroad Company have commenced the use of petroleun gas on their cara.

SHRINKING OF SEASONED TIAIBER.

The various kinds of onk, and some other kinds of valuable timber, will shrink mure or liss overy time the surf.we is dressed oft esen asmall fraction of an inch. Wheelwrights, accustumed to work in oak, are well awart of this fact, and a correct appreciation of it often enables them to turn out work of a superior character, even of ordinary materinls, by first blocking out the pieces roughly, then allowiug the timber to season, and afterwards working the various parts by degrees, as the seasoning process becomes more and more complete. White oak spoks timber, for example, may be allowed to remain in rough state for half a score of years, under shelter, withuut becoming searsoned so thoroughly that the timber will not alirink after the spokes have been dressed out.
('arriage-wheels have often been made oithe choicest of oak timber after every spoke had been scasuned for several yeare, and, to the great surprise of tho wheclwright, every spoke would work in the joints before the vehicle lical run three months. I'he defect in such instane es could nut bo attributed to inferior timber, nor to perfunctory workmanship. but sim. ply to this one circumstance-that the parts of the wheols were put together before the timber had ceased to shrink.
'To prove that the best quality of oak will shrinh, after a spoke has been dressed out, let a tenon be made on uno end, and bodriven immediately into a mortise, after a few days' exposure in a warm workshop the spoke may be withdrawn with little difficulty. 'The same fact will hold good in the manufacture of woodwork of any kind where oak is employed for tenons. In order to make joints that will nover start, the piece on which the tenons are to be made should be dressed over several times, until the shrinking has ceased. Ihen let the tenons be made. After these have shrunh: while exposed to the drying influences of a warm wurhshop; the spokes, or other parts, may be driven into their respective places, with the assarance (especially if they are dipped in oil paint previous to driving; that the timber will shrink no more.

Many kinds of farming implements, in the manufacture of which oak and ash are employed, render vory unsatisfactory 6errice, simply because the seasoned timber was not allowed to shra,k before the tenons, were driven into the mortises. In like manner, oak chairs, and uther oak furniture, will frequently shrink to such an extent that the pommels, ruugs, duwelpins and banisters will all work loose, if the precaution we have described is not observed.-. 1 mericion /lulder.

EXPERIMEN'IS ON \longmapsto LUWERS.

The Journal de la Societe Centrale dMorticulture de France contains some interesting particulars on thu artaficial culouriag of natural fiuwers. Those that have a viulet hue will yradually change colour and turn to green under the inlluence of the smoke of a cigar. This is casily seen, for instance, on the petals of Thlaspz or shephurd's purse, IVeras umbellata or Mesperis matronalis. This change is owing to the ammonia contained in tobacco, starting from this circumstance, the ltalian professor, L. Gabba, has made a series of experiments of a varicty of plant, with that alknli in its natural state. His apparatus is a very simplo one, merely consisting in a plate into which he pours liquid ammonia, coverium it afterwards with a reversed glass funnel. The flower to be tested is inserted into the tube. In this way he has seen violet, blue, and purple turn to bright green, intense carmine red (of the pink) become black, white turn yellow, sc. The most extraordinary results were afforded by variegated flowers. Wheu the latter, immediately after this exposure, are dipped into pure water, they will retain their new colours fut several hours, after which they simply return to their former state. Another curious discovery of I'iofessor liabba's is, that the flower, of aster, or starwort, that are violet and bave no smell, acquire a delightful fragrance and turn red under the influence: of ammonis. We know that the Japanese, by means of njections which they keep secret, can colour or whiten flowers and obtain wonderful variegation The Chinese have also secrets , of their own, among which one for reducing large trees to a dwarf size. The Garden of Acclimatisation has at this moment an urange tree, a hundred years old, and imported from China, no bigger than a rose tree, its frust scarcely attans the stze iof a cherry.

[^0]: hidivitilations
 Monumpat rommemo. ratlve of the Cawnpore Mnssacre.................... lumpling Engines at the Chicago Water Works. is Pope's Sectional lioller... 69 Morrts's latent Stop. Valve Scrow lerrule... 72
 Vathet over the Allier, France.......................
 Centennal Exhibition, Maln Bullalng 70
 Centennial Fxhbitton. plan of Matn Bulding. 77 Centennal Exhbliton, Flue Arts Bullating...... so Gomtennat Exhibltion, plan of Fitio Arts Bullding.................... Centematial Fixhibition, Agricultural Bullifing.. $\$ 1$ Centeminal Fxhibition, plan of Agriculturas Ibultalng....................
 Iroposed \#riuge over tive Nagara.................... ss
 Securing the Ice Crop on the Hudenn...............
 The Primilive Plumpisg M111............................
 Modern Ghost-Radsingat the Polytechnic......... 93 Transporting Merchandise In B:astern Turkes. Lan...

 Conterts:
 Protection for Inventions (ib)

