

> IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences
Corporation

CIHM
 Microfiche Series (Monographs)

ICMH
 Collection de microfiches (monographies)

Canadian Institute for Historical Microreproductions / Institut canadien de microreproductions historiques

(C)

The Institute has attempted to obtain the best original copy available for filming. Faatures of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are chacked below.

Coloured covers/

Couverture de coulsur

Covars damaged/

Couver tura andommagée

Covars restored and/or laminated/
Couvarture rastaurie et/ou pelliculée
Covar title missing/
Le titre de couverture manque
Coloured maps/
Cartes géographiques en coulaur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noira)

Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur
Bound with other material/
Reliá avec d'autres ducuments

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whanevar possible, these have been omitted from filming/
II sa peut que certaines pages blanchas ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible. ces pages n 'ont pas èté filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possibla de se procuret. Les détails de cet exemplaire qui sont peut-dtre uniques du point de vue bibliographique, qui peuvent modifier une image raproduite, ou qui peuvent exiger unc modification dans la móthode normale de filmage sont indiqués ci-dessous.

Pages damaged/
Pages endommagées
Pages restored and/or laminated/
Pages restaurées at/ou polliculóes
Pages discoloured, stained or foxed/
Pages décolories, tachetées ou piquées
Pages detached/
Pages détachées
Showthrough/
Transparence
Quality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index
Title on header taken from:/
Le titre de l'en-tîte provient:Title page of issua/
Page de titre de la livraison

Caption of issue/
Titre de dèpart de la livraison

Masthead/
Gènérique (périodiques) de la livraison

Additional comments:/
Coınmentaires supplémentaires:
This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here has been reproduced thanise to the generosity of:
D.B. Weldon Library

University of Western Ontario
The imagec appearing hare are the best quality posalble considering the condition and legibility of the original copy and in keeping with the filiming contract apecificationa.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or lllustrated impression, or the back cover when appropriate. All other criginal copies are filmed beginning on the first page with a printed or lilustrated impression, and ending on the last page with a printed or illustrated Impression.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"). whichever applies.

Maps, plates, charts, etc., may be filmed at diffurent reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand eorner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the mothod:

L'oxemplairs filmb fut roprodut grâce al ia genérositil de:
D.B. Weldon Librery

University of Western Ontario
l.es images suivantes ont tet reproduites ovec le plus grand soin, compte tenu do la condition ot de le nottoté de l'exemplaire filmé, ot en conformite avec les conditions du contrat ds filmage.

Lee exempiaires originaux dont la couverture en papier est imprimde sont filmés en commencant par le promier plat ot on terminant soit par la dernidre page qui comporte une empreinte d'impression ou d'llustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la premidre page qui comporte une emprainte d'impression ou d'illustration ot en terminant par la derni'tre page qui comporte une telle empraints.

Un des symboles suivants apparaitra sur la dernière image de chaque microfiche, selon le cas: le symbole signifie "A SUIVRE", le symbole ∇ signific "FIN".

Les cartes, planches, tableaux, etc.. peuvent âtre filmds al des taux de réduction différents. Lorsque le document est trop grand pour âtre reproduit on un seul cliché, il est filmé à partir de l'angle supd́rieur gauche. de gauche à droite. ot de haut en bas, en prenant le nombre d'Images nd́ceseaire. Les diagrammes suivants illustrent la móthode.

1	2	3
4	5	6

CAMPBELL'S
 CANADIAN ARITHMETIC

IN DECIMAL CURRENCY,

OR,
"THE FIRST BOOK OF ARITHMETIC" SUPERSEIED.

TORONTO:

JAMES CAMPBELL \& SON, TORONTO STREET.

In th prese Anth perie stigge interc

PREFACE.

read 16
ad $\cdot 4 \div 2$
the next he number 1 with the

In the preparat on of the Elementary Arithmetic now presented to h is fellow-teachers and the public, the Anthor has beell guided by a'somewhat lengthened experience in the work of the class-room, and by hints and suggestions reccived during a long period of familiar intercourse with teachers.

To teach the pupil how to perform certain aritlmeticul operations on the slate, is certninly the very least and lonecist of the many objects which in author, iuthis depurtment, might properly propose to aim at, in the preparation of a text book. Yet, this, unlappily, is all that is too frequently either proposed or attempted.

To aim so to construct the text book as to secure the utmost, rapidity and accuracy in performing the varions operations, would be rising a step higher to meet the wishes and assist the efforts of the earnest teacher ; but, even this would fall far short of comprehending all that such a teacher requires and demauds, to enable him to accomplish all that he proposes to effect.
To aim, in aidition to this, to fimiliarize the pupil with the principles which shall enable him, at once, to deternine, not merely how to perform thain operations in obedience to orders, but to determins, in every case. which of the various operations should be performed. would be rising still higher in the effort to relieve the teacher of an unnecessary tax upon his tine and ingenuity to supply the defects, or adjust the disproportions of the text book. (Sce p. 70, 7 ; dic.)
To aim, as far as possible, to lessen the peculiarly innpleasant enchantment which distance lends to the view of arithmetical rules and operations alreudy passed over. and avert the obscurity and confusion so likely to gather around the pupil if he does not fiequently retrace his steps, wonld indicate, still more clearly, a jnst appreciation of the work to be accomplishen.
But thig is not all, in milightented and comprehensive survey of the whole ground to be occupied should leard an author still further to anticipate the purposes and wants of the teacher. It should certainly determine him,
(though, so far as the author is aware, it has never before done so), to attempt to discover to the pupil to what an oxtent the same principle is involved in a variety of apparently distinct and different operations, placed at various distances from each other, and concealed under different names; or, in other words, to show how the various operations aro bound together and stand related to each other. (See pages $51,52,55,56,60,62,67,69$).

Such a survey of what is expected from the teacher, should determine an author to attempt yet something more. It should lead him to adopt means to render the pupil, as far as possible, independent of slate and pencil in making calculations; that is, it should lead him to combine mental exercises in nearly equal proportions with those for the slate, throughout the whole course.

Another object of chier concern to both author and teacher, should be, so to mingle the science with the ART, that the pupil cannot escape the necessity of investigating, understanding, and classifying the principies on which the rules are based. (See pages $85,86,87,88$, \&cc.) In the preparation of an Arithmetic for the use of schools, an author is bound to keep all these important ends in view, if, for no other purpose than meroly to enable the teacher to turn out good practical arithmeticians. This, however, is by no means the only, or even the chief object to be almed at. A book so constructed, will derive its highest value and imporlance from the consideraticn that a pupil cannot find his way through it without obtaining a comprehensive mental training of the very highest order, especially if he be required to explain principles and operations, and construct problems of all hinds, in the hearing of the class, to the extent recommended by the Author throughout this treatise. (See pages 46, 73, 74, $100,8 \mathrm{~s}$. .)
Such is the Author's theory of what constitutes a complete Elementary Arithmetic adapted to the wants of both teacher and pupil.

This theory the Author has attempted to embody and apply in the following pages, with what success he must now leave his iellow-teachers aud the public to judge.

[^0]
$\frac{\text { CONTEN }}{\text { SECTION I. }}$

Notation and Numeration,
Arablo Notation, 9
Numeration Table, 10
Signe used in Arilhmetic, Addilion Tablo, 12
Mental Exercises in Addition, 18
Slate Exercieen in Addition, 14
Second Serien Mental Exercises in Addition, 17
Subtraction, Mental Exercisen,
18
18
Mixed Questions in Addition and Subtraction, 19
Mixed Mental Exorcises, 22
Multiplication Table and Extended Multiplication Table, 24 24
Simple Multiplication, Mental Exerclees, 25 26 26
When the Multiplier is a Composite Number, with and without
When the Multiplier is a Composite Number, with and without Decimals,
28
28
When tho Multipiler contains several Agoren, with and witbout
20
20
When these in a Fraction in the Multiplier,
When these in a Fraction in the Multiplier,
81
81
When the Divisor does not excoed 12, 82
When the Divisor is a Composite Number, 8 3
When the Divisor is moro than 12, with and without Decimats,
When the Divisor is moro than 12, with and without Decimats, Division of Decimals-Rule for pointing off in every caso, 35
When there is a Fraction in the Divisor, 8 8
Miscellaneous Mental Exerciso, 38
39
SECTION II.
SECTION II.
Tables of Woighta and Monsures,
Tables of Woighta and Monsures, Reduotloz B Reduotloz B 45 45
Reduction Ancending,
Reduction Ancending, 45 45 4 4
1.
CONTENTE.
Roduction of the Old Currency to the New, \&c. 48
Simple and Compound
same in priuciple
61
Gencral Rulo Applicable to all Addition 61
Mental Exercise in Cophpopurl Addition, ,....... 52 52An Exercise-Six things of the utmost importance directed to be
Simple and Compound Subtraction compared and shown to be [5
the same it principle
56
56
General Rule for all Subtraction,
57
57
Mental Exercise in Componind Subtraction
50
50
Compound and Simple Multiplication comparod and sbown to
60
When the Multiplier exceeds 12, the mode of doing in Simple at ad Compound compared and illustrated
02
02
Hile for: Compound Multiplioation when the Multiplier exceeils 12
63
63
Mental Exerclse in Compound Multiplication, 65
Short, Long, Simple, Compound, und all kinas of Division, com-parel and shown to difere only in their being more contract.ed and expanded methods of doing the same operation,.,... 66These appareitly different operations placed side by side themore clearly to show this
97
Rule for Oompound Division;
68
68
The Uperations in Compound, Short, and Long Division, further T. compared 69
The real distiviction between problems in Division explainodínd85 Hlustrated-a distjnction of great importance, anddis70
All important Aental Exercise, founded on the precoding analy;
as sis,-0f inestimable value to the pupil who masters it,....... 71A. Miscellaneous Exercise on all that precedes the class to be

- Public Speaking, Grammar, Composition, and Jogic, and atest of the general ability of the pupil?
73
A Misceltaneons Mental Excreise
79

 SECTION III: *n
Greatest Common Heasure, Least Cunmón Multiple 81
Vulgar Fractions-the varipus Kindsgayz 82
The origln and nature of Fractions, what the Numerator and 84
Denominator shows, illustrated; 85
Au Introductory Exercise; olicay mental exhibiting ant ariply-
inje ail the principles connected with the operations' inlractions, one of the most important, and likely to prove one

CONTENTE.

vịiCONTMXTS,
Erercise to be done II st by Compound Proportion, and then by Analyis-reasoning before the class 120Simple Partnerghip,
123
Compound Partnership 126
SECTION \mathbf{V}.
Practice-Table of Aliquot Parts, \&o.,
127
127
Miscellaneous Problems to be done by Practice 129
SECTION VI.
Per-Centage-the terms per oent, and per unit explained, 130Commission, Brokerage, and Insurance,
131
Proft and Loss-Analysis of Rules
184
184
Analysis of tho Rules for doling the varjous operations in Proft and Loes
134
134
Barter,
Barter,
188
188
Interest-oxplanation of the terms employed
186
186
To find the Interest for one or more Years
To find the Interest for one or more Years
137
137
To find the Interest for Months, Days, \&cc.
To find the Interest for Months, Days, \&cc.
138
138
To find the Principal, whon the Rate, Iime, and Interest are 140
To find the Time, when the Principal, Interest, and Rate aro
 140 Compound Interest 140
A Shorter Mothod of doing Compound Interest, and an Anslysis 141 141of the Rule.
Discount-Bank and True Discount, 142 144

Involution and Evolution, the Terms, Powers, \& Roots explained, 146

Involution and Evolution, the Terms, Powers, \& Roots explained, 146

Involution and Evolution, the Terms, Powers, \& Roots explained, 146

Involution and Evolution, the Terms, Powers, \& Roots explained, 146

Involution and Evolution, the Terms, Powers, \& Roots explained, 146

Involution and Evolution, the Terms, Powers, \& Roots explained, 146 To Involvo a Number to a required power, 147 To Involvo a Number to a required power, 147 To Involvo a Number to a required power, 147 To Involvo a Number to a required power, 147 To Involvo a Number to a required power, 147 To Involvo a Number to a required power, 147 pxtraction of the Square Root pxtraction of the Square Root 147 147 147 147 147 147
SECTION VII.

Exctractipn of the Cube Root

Exctractipn of the Cube Root 148 148 148 148 148 148
A Sherter. Mothod of Ixtracting the Cube Root,
A Sherter. Mothod of Ixtracting the Cube Root, 149 149 149 149 149 149
Application of the Square ind Cube Root
Application of the Square ind Cube Root 150 150 150 150 150 150
A Finat Comprehensive Miscellancon̄ ntarcise
A Finat Comprehensive Miscellancon̄ ntarcise 152 152 152 152 152 152
A Final Miscellancous Mental Disercise
A Final Miscellancous Mental Disercise 153 153 153 153 153 153
Angwera to Naercimen
Angwera to Naercimen 169 169 169 169 169 169 189 189 189 189 189 189 189

ARITHMETIC.

SECTION 1.

NOTATION AND NUMERATION, SIMPLE ADDIDSs: TION, sUBTRACTION, MULTIPLIOATION AND DIVISION.

NOTATION AND NUMERATION.

Notation is the expressing of numbers by certain characters.

Numaration is the reading of these characters.
There are two systems of Notation in use among us, viz.: the Roman and the Arabic.

THE ROMAN NOTATION.

The Roman Notation is chiefly used in inscriptions, and to denote chapters and sections of books, \&c. Only seven numeral letters are used, viz. : tho capital letters $\mathbf{I}, \mathbf{V}, \mathbf{X}$, L, O, D, M.
When standing alone, the letter I. denotes one, V. denotes five, X. ten, L. fifty, C. one hundred, D. five hundred, Y. one thousand. All other numbers are expressed by combinations of these letters in the following manner,
∇ iz.: viz.:

1. Aक जfitel as auy letive is repeated, so many timee
Ste relue in repented Thas, I. is one, II, is two; X if

ARITHMETIC.

2. When a letter of less value is placed before a letter of greater value, it takes away its own value from the greater ; but when placed after it, it adds its own value to the greater. Thus V. is five. IV. is four, and VI. is six ; X. is ten, IX. is nine, and XI. is eleven, \&c.
3. A line or bar placed over any letter increases its value a thousand times. Thus, V. is five, \bar{V} is five thousand ; \mathbf{X}. is ten, $\overline{\mathbf{X}}$. is ten thousand.

waxerise 1.

Express the following numbers by letters: Eight,eliven, -fifteen, - nineteen, - twenty-nine. - thirty-tive,--ninety-nine,-one hundred and sixty,- four hundred and forty,-five huadred and sixty-nine, - one thousand one hundred and six,-two thousand and twenty-five,-six hundred and ninety-nine, - one thousand nine hundred and twenty-five,- two thousand six hundred and eighty, four thousand nine hundred end sixty-five,-t wo thousand nine hundred and sixty-one,-one thousand three hundred and forty.

THE ARABIC NOTATION.

The Arabic Notation is the method of expressing numbers by certain characters, called figures. 'I'he charaoters used are ten, viz. :

Ono. Two. Three. Four. Five. Sis. Seven. Eight. Nine. Naught
The first nine are called the simple units, the significant figures, and sometimes the nine digits. The last one (0) is called the cipher or zero. It is called naught because it has no value of itself, but is simply used to keep the significant figures in their proper places, by filling up any place or places for which there are no significant figures.

All numbers are expressed loy these ten simple characters, thus: The figures are written ofe After the otherio the right and left of a certain point called the decimal
point, thus, 124.325. The first figure to the left of this point is so many units-it is simply four units or four things.: The second figure to the left is 80 many tens, thus 20 is two tens, or twenty; hence 24 . is twenty-four. The third figure to the left of the point is so many hundreds, thus, 100 is one bundred; hence 124 . is one hunared and twenty-four. The fourth is thousands,-the fifth, ten thousands,- the sixth, hundred thousands, -the seventh is units of millions,-then after tens and hundreds of millions comes billions,--then after three places for billions comes trilliens, and so on.

The first figure to the right of the decimal point is tenths, thus, 3 is three tenths of a whole one. The second figure is bundredths, thus, .02 is two hundredths; hence, .32 is thirty-two hundredths. The third is thonsandths, the fourth is ten thousandths; hence, .3257 is three thousand two hundred and fifty-seven ten thouzandths, \&e.

From what has been raid, we learn that the value of any figure depends upon two things: First, what the figure itself expresses, as $2,6,8$; and second. its distance from the decimal point, (which, when not expressed, is always understood to the right of the units figure). The farther to the left from the point, the greater its:value; the farther to the right, the less its value; hence; placing ciphers to the left of whole numbers, or to the right of decimals, does not alter the value, the distance of the figures from the decimal point being unchanged. Moving from the decimal point to the left, any figure in the second place is of ten times as much value as the same figure would be in the first; and in the third it is of ten limes as much as in the second; in the fourth, ten times as much as in the third; and $s 0$ on, increasing in uten-fold degrec to the left. In the same way, proceeding from the decimal point to the right hand, the figures decrease - the second to the ripht of the point being one tenth of the first. and the thiid une-tenth of the second; that is, one of the tenths beingten of the hundredths, and one of the hanaleuthin being ten of the thpusandths, and 80 on.

ARITHMETYC.

Exbrctse 2.

Write down seventy-four, -one hundred and forty,nine hundred and ninety-nine, -seven hundred and fifty,four tenths,--twenty-seven hundredths,--fourteen thousandths, -seven bundred and sixty thousandths,-seventysix whole numbers and twenty-seven thousandths,-six huudred and seventy-five whole numbers and eight hundred and sixty-four thousandths,-six hundred and fifteen and six hundredths.

In reading figures, we group them into periods of three ugarcs; (one for units, one for tens, and one for bundreds), and we give each period or group of the for bun-
rate namel Thus--

WEOLE NUNBMRS. Increasing to the left. "EA

웅

henwo Decreasing to theright. 1st Period, 2nd Period, 3xd Portod, Thous'dths Milionths Bialonthe,

ExGRCISE 3.

Let the papil be required to read and write this exerclse in as many different ways as the figures can be read and fintter, 角e teacher illustrating on the black beard, expecially with reference to the decimals.

SIGNS USED IN ARITHMETIC.

+ named plus, signifles Addition, as $4+2$ equal 6.
- named minus, signifies Subtraction, as $5-2$ equal 3. \times maltiplied by, signifies Multiplication, as 4×2 equal 8.
+ divided by, signifies Division, as $10 \div-2$ equal 5 .
$=$ equal to, signifies Equality, as $2+4=6$.
$:$ is to signifies Proporlion, as $1: 2:: 3: 6$.
$:: s 0$ is \quad These figures are thus read
$:$ to
1 is to 2 as 3 is to 6 .

$\sqrt{2}^{\text {marks the Cubr root, as }} \boldsymbol{y}^{\overline{8}}=2$.

ADDITION TABLE.

2 and 1 are 3
$3-1-4$
$2-2-4$
$2-3-5$
$4-1-5$
$4-2-6$
$3-3-6$
$5-1=6$
$6-2=7$
$4-3-7$
$6-1-7$
$6-2-8$
$4-3-8$
$7-1-8$

2 are 9	and 3 are
4-9	$8-4-12$
9	$6-6-12$
$1-9$	$7-5-12$
-2-10	$7-6-13$
10	
10	$9-4-13$
- 3-10	$7-7-14$
10	$8-6-14$
$-2-11$	- $9-5-14$
$-5 \div 11$	\% $8-7-15$
1115	9-6-15
11	$9-7-16$
17	$8-8-16$

Nore. - This brief table embraces the iddition of all the simple numbers. By committing it to memory, any numbers may be added together with the utmost rapidity and accuracy ; for these are the only numbers that can come together in any addition. If, for instance, 9 and 4 are 13, then every $9+4$ must give 3 for the unit figure ; henoe, 29 and 44 aic 33 , and 89 and 4 are 93 , and so on. The nambers that give the fame amount being arranged together, will be found an advantage.

ARITHMETIC.

 ADDITION.

Addition is the method of finding the sum of two or more numbers.

MENTAL EXERCISES.

EXERCISE 4.

1. A boy paid 13 cents for marbles, 4 cents for apples, and had 5 cents remaining; how many had he at first?
2. How many are 6 dollars, 5 dollars, 4 dollars, 3 dollars, 2 dollars, and one dollar?
3. James had 4 marbles, John gave him 3, George gave him 4, William gave him 5 , and Thomas gave him 2; how many had he then?
4. A drover bought sheep as follows: of one man 15, of another 7, of another 4, of another 3, and of another 6 ; how many did he buy in all?
5. A boy bought a fishhook for 2 cents, a line for 4 cents, and a pole for 7 cents ; how many cents did he give for the whole?
6. Δ grocer sold to one man 15 pounds of sugar, to another 5 pounds, to another 8 pounds, to another 2 pounds, and to another 11 pounds, at 5 cents per pound: the men in payment handed him altogether 3 dollars; what change did he give?

EXERCISES FOR THE SLATE．

 Example．－Adad together 423，134， 267.Write the numbers under each other，so that units may stand under units，tens － under tens，hundreds under hundreds，\＆c． Draw a line under them．Add the figures in the right hand column together，thus， 7，11，14，＊－14 units make 1 ten and 4 units， the figure 2 of the 12 ，and add the ign， 10,12 ，putdown thus， $1,3,4,8$ ，putdown the 8 ．The number 824 in called the Shim or Amount．
＊In adding a column of figures，the pupil should not be allowed to repent each separate figure，but simply to name each amount once，and only once，as he proceeds．

e gave
m 2

3415
other
for 4
give
1，to
her 2 and： lars ；
dol－
nay

ARITHMETIC.

W $\$ 12.03 \mathrm{c}$.	245	\$623.29	
346.58 427.76	325	146.03	${ }_{236}^{354}$
427.76	678	579.42	875
11863	$\sqrt{248}$	1348.74	463

264.64
368.003
752.74
865.593

(9)
246.006
78.0423
604.178
40.0764
7.2135

(13)

$\$ 5120.23 \mathrm{c}$.
7142.45
9687.67
4312.54
8687.21

(17)	(18)
5126.246	2427
1472683	768
6826.002	9412
9687.426	893
2764.158	4026
4279,358	475

ADDITION.

(21)	(2)		
\$42674.27	24785	48763.473	
34126.19	65843	86270.102	54263
${ }_{2864214}$	26879	4687.643	43986
65768.29	${ }_{6}^{43653}$	578.170	5079
74387.36	56287	49060.492 18709876	81
96728.48	65423	70471.218	98076
411094.88	351	278540.97	

25. How many do $\$ 7$ and $\$ 4$ and $\$ 8$ und $\$ 24$ and $\$ 62$ make ?
26. How many are 42 c and 64 c . and 40 c and 68 c . and 79 c.?
27. How many do $\$ 67$ and $\$ 79$ and $\$ 93$ and $\$ 104$ and $\$ 65$ make?
28. How many do $\$ 426$ and $\$ 67$ and $\$ 240$ and $\$ 742$ make?
29. Add together $\$ 6479$ and $\$ 846$ and $\$ 70$ and $\$ 567$ and \$7426.
30. Add 742 c. +64 c. +8 c +341 c. +804 c. +60 c. + 643 c. +790 c. +806 c.
31. Add $\$ 7260+\$ 1404+\$ 8496+\$ 2413+\$ 46+\$ 1786$ $+\$ 3326$.
32. Add $\$ 4126+\$ 27304+\$ 2687+\$ 426+\$ 876846+$ $\$ 746897$
33. Add $\$ 76876+\$ 2046+\$ 896874+\$ 6876874+\$ 4268$ $+\$ 4276$. 2489 c +264 c.
34. What is the amount of four hundred and sixtys three,-five thousand and sixty-four, -seventy thousand and ninety-eight,-and fifty?
35. Add together seven hundred and ninety-six, five; thonsani four hundred and forty,-nine hundred and 2*
eight,-five thonsand four hundred and nine, -two hundred and two thou innd and fifty,-binety-six thousand and nine,-four hundred and one.
36. How muchido the following sums of money amount to, when added together : $\$ 79.66,-\$ 86.4,-\$ 4.6,-$ $\$ 20.18,-$ \$468.97.
37. I knw four large baskets full of apples; in one of the baekets there were four hundred and ninety-four apples, in another three hundred and sixty-eight, in another nine hundred and eighty,-and in another four hundred and four; how meny apples wero there in the fourDaskets?
38. I grve John 12 apples, James 15, Patrick 20, and I bad etill 25 remaining; how many apples had I at first?

MENTAL EXERCTSLS

exergise 6.

1. If half a pound of tea cost 18 cents, and one pound of coffee cost 9 cents more, what would be the cost of six pounds of coffee?
2. At a fruit stall I buy oranges worth i ecints, nuts 15 cents, and order a basket of apples at $\$ 1.16$; what change shall I get from a 2 dollar bill?
3. I bought 3 bags of salt for 18 dollars, and sold 2 of them for 7 dollaris more than I gare for them ; the third bag sold at the same rate; how much did I sell the whole for?
in 24 hours? many times does the hammer of a clock strike
4. A man being asked his age, answered that he had passed the 19 first scars of his life in America, and that he had afterwards sp-tit 7 years in Germany, 13 years in France, 3 years in H. m^{3}. and 24 years in England. Eow old was he?
5. In an orchard, is bear clarien, 28 bear peaches, 8 bear plumg, ft 1 \& bear apples How mon $\$ 5.24$ cach. What did he give in all.
\& Mary bought a comb for 10 cents, a spool of thread for 12 ceita, and a paper of needles for 8 cents. She handed the clerk 37 cents; how much change. oughit she to receive?
6. Two men start from the same place, and travel different ways; one at the rate of three miles an hour, and the other five miles an hour. How far apart will they be at the end of the 1st hour? How far at the end of 2nd hour, of 4th hour, of 5th hour, of 8th hour, of 9 th hour ${ }^{2}$
7. The hind quarters of a cow weighed one hundred and five pounds each; the fore quarters weighed ninetyfour pounds each ; the hide weighed sixty-three pounds; and the tallow seventy-six pounds. What was the whole weight of the cow?

Subtraction is the method of finding the differense between two numbers.

> MENTAL EXERCISAS.
> EXEROISE 7.

1. James bought 18 candies, and gave John 7 of them how many had he left?
2. A man bougbt some cloth for 12 dollars, and sold it for 18:dollars ; what was his gain?
5t A boy has 7 chestuuts in oue hand, and 4 in the other; how many more has he in one hand than in the other, and how many in both?
9.4. उHarry is 15 years old, and Henry 9 years old ; how many years older is Harry than Henry?
3. I gave 15 dollars for a cow, and 6 dollars for a sheep how much more was given for the cow than for the sheep What was given for both?
4. Sampson baving 9 apples, gave 4 to his mother and 3 to his sister :- for his generosity his father gave him 13 more ; how many had he then?
5. A man owing 48 dollars, paid 19 ; what had he to pay?
6. A man on being asked how old he was when he was married, answered that his present age was 64 years, and that he bad been married 37 years; what was his age when he was married?
7. A morchant bought a piece of cloth for 115 dollars, and sold it so as to lose 23 dollars; what did he sell

EXERCISES FOR THE SLATE.

 Examplet.-From 6237 take 4895.Place the less number under the greater, so that anits may stand under units, tens under tens, \&c. Draw a line under them. Begin at the units' place, that is as the 5 . Take 5 from 7 and 2 remains. Put down the 2 under the 5. Go on to the next figure, which is 9 . Take 9 from 3 ; this cannot be done. When the lower figure is in this way, greater than the figure above, add to the upper figure as many of the same as it takes to make one of the higher, that is here as many of the tens as it takes to make one of the hundreds, which is $10-10$ and 3 are 13 , Take 9 from 13 and 4 remains. Put down 4. Whenever the upper figure has thus been increased, 1 must be added to the next lower before subtracting. Thus, add 1 to 8 , which makes 9 . Take 9 from 2 , it cannot be done ; then as before, add 10 to the 2. Now take 9 from 12, and 3 remains. Pat down the 3. Add 1 to 4 , it will make 6 . Take 5 from 6, and 1 remains Put down the 1. The result 1342 is oalled the Nematinder, the Difference, or the Excess. The number from which the subtraction is made,
viz., 6237, is called the Ninuend. The number which is subtracted, viz. 4895 , is called the Subtruhend.

| (1) | (2) | $13)$ | (4) |
| :--- | :--- | :--- | :--- | :--- |
| 74603 | $\$ 91020.24 \mathrm{c}$ | $\$ 41021.72 \mathrm{c}$. | $\mathbf{4 0 0 0 0}$ |
| 37684 | 12647.58 | 768.31 | 1001 |

	(5)	(7)	(7)
$\$ 42681.52 \mathrm{c}$	42890	$\$ 81000.10$	
19697.43	27601	2641.07	20009

(9)
$\$ 741026831.06 \mathrm{c}$.
$\mathbf{2 7 8 9 0 4 8 0 6 . 6 0}$
(12) 861264981
248600989
(10)
$\$ 6141020.13 \mathrm{c}$
1789068.44
(13)
92100.2461 19800.7049
(11) 14812.0718 741 G .8648
(14)
$\$ 1812010.41 \mathrm{c}$ 898901.22
15. From seven hundred and nine thousand four hundred and twenty-seven, take two hundred and fifty-one thousand eight hundred and seventy:two.

ARITHMETIC.

16. From two millions two hundred and two thoneand and two hundredths, take nine hundred and ninety-six thousand seven tenths.
17. What is the difference between sixty-five hundred thousandth's and twenty-nine hundred thousandths?
18. How much does sixty-four thousand two hundred and four exceed six thousand two hundred and forty-nine?
19. John lent James $\$ 9071$, of this sum he has received back $\$ 999$; how much has James yet to pay?
20. On a cherry tree there were 2046 cherries, of these 1875 were gathered; how many remained?
21. Columbus discovered America in the year 1492 ; how many fears is it from that time to 1836 ?
22. In a certain sehool there are 436 boys, of these only 264 can write ; how many are unable to write?
23. In one of the National Schools there are 427 boys, in another there are 249 ; how many more are there in the one than in the other?
24. John had 202 nuts in his pocket, but there being a hole in it, he lost 96 nuts; how many had he remaining?
25. On an apple tree there were 165 apples, the wind blew off two dozen and a half; how many were left?
26. A draper bought 4786 yards of cloth, and sold 3987 yards ; how many yards has he unsold?
27. What sum added to sixty-five thousand seven hundred and ninety-six, will make one million four hundred and fifty-two thousand three hundred and thirteen?
28. I was born in the year 1828 ; how old was I in the year 1839?

MIXED QUESTIONS.

EXERCISE 9.

1. Tom had 264 marblee ; he gave 64 to James, 75 to William, and 42 to John ; how many had he left?
2. A merchant had 4268 yards of cloth, on Monday he sold 146 yards, on Tuesday 97 , on Wednesday 246, on Thursday 198, on Friday 364, on Saturday 497 ; how much cloth had he remaining?
3. Three regiments went to battle, in the first there were 968 soldiers, in the second 769, and in the third 847. There were 248 men killed in the first regiment, 368 in the second, and when the regiments returned there were only 436 men in the third; how many returned from the battle?
4. A man had a jouruey of 298 miles to make, the first day he walked 42 miles, the second 36 miles, the third 31 mlies, the fourth 27 miles; how much farther had he to go?
5. Three vessels sailed to America with emigrants, in the first vessel there were 126 men, 96 women, and 42 children; in the second vessel there were 93 men, 37 women, and 26 children; in the third vessel there were 43 men, 24 women, and 8 children. In the first vessel three. persons died ; in the second two were washed overbeard ; the third vessel was wrecked, and all on board perished; how many got safe to America?
6. A little boy went to the Zoological Gardens to see the animals ; he laid his hat on the ground, which contained 264 nuts; while his attention was engaged, the monkey stole 27 of his nuts; while he was pursuing the monkey, a squirrel made off with 16 more; how many had he remaining?
7. The population of Cork is about 108,000 ; of Belfast 55,000 ; of Liverpool 166,000 ; of Glasgow 203,000; by how much does the population of London exceed all three cities, the population of it being $1,776,556$ in the year.
1831 ?

> 8. Received on Monday $\$ 247$; paid aivay on Tuesday $\$ 196 ;$ received on Wednesday $\$ 349$; paid away on Thutsday $\$ 402$; received on Friday $\$ 687$; paid away on Saturday $\$ 398$; what mioney had I still remaining?

24

ARITHMETIC.

 MENTAL EXERCISES.

EXEIRCISE 10.

1. Dr. Franklin died A. D; 1790, and was 84 years old when he died ; in what year was he born? $\%$)?
2. John has 34 marbles, and Albert 25 ; how many have they both; and how many more has the one than the other?
3. Having 27 dollars in my purse, I lost 8 of them, and gave away 6 more, but afterwards a man paid me a debt of $\$ 4.50$; how many had I at last?
4. Stepben, at a game of marbles, won 4 and lost 6, and then had only 8 remaining; how many had he at first?
5. A farmer had 25 sheep in one field and 15 in another; he then bought enough to make his number 56 ; how many did he buy?
6. A man bought a yoke of oxen for 97 dollars; their services amounted to 40 dollars, and their keeping to 13 dollars; he then sold them for 80 dollars; did he gain or lose, and how much?
7. Matthew had 9 nuts, Mary gave him 10 more, and John gave him enough to make his number 39 ; how many did John give him?
8. A gentleman gave 853 dollars for a carriage and two horses ; the carriage alone was valued at 387 dollars; what was the value of the horses? How much more were the horses worth than the carriage?
9. A man sold a cow for 20 dollars; a calf for 4 dollars, and a sheep for 3 dollars $;$ and in payment received a waggon worth 17 dollars; - how much remains due?

MULTIPLICATION TABLE

Twice		3 times	times	times	6 times	7 times
1 are		1 are 3	1 are 4	1 are 5	lare 6	1 are
2 \%	4.2	$2 \therefore 6$	2×8	$2 . .10$		
3 4		$3 . .9$	$3 . .12$	$3 . .15$	$3 \ldots 18$	$3 . . .21$
$4 .$.		$4 \cdots 12$	16	4 .. 20	4 .. 24	
	10 5 12 6	$\begin{array}{llll}5 & . . & 15 \\ 6 & . . & 18\end{array}$	20	5 . 25	$5 \ldots 30$	
	147	$7 \ldots 21$			$\begin{array}{llll}6 & . . \\ 7\end{array}$	
8	168	$8 \ldots 24$	32		$8 . .48$	9
10	189	$9 \ldots 27$				
10	2010	0.30	1 .			$10 . .70$
15	211	1... 33				
12		$2 . . .36$	$2 . . .48$	2 $\because . .50$		$\begin{array}{lll} 11 & .77 \\ 12 & . & 84 \end{array}$

in an-

8 times	9 times	10 times	times	12 ti
1 are 8	1 are 9	1 are 10	1 are 11	$1 \text { are }$
$2 . .16$	2.18	2.. 20	2.. 22	
$\therefore 24$	$3 \quad \begin{array}{r} \\ \hline\end{array}$	3.. 30	33	
-. 32	$4 \begin{aligned} & 4 \\ & 5\end{aligned} \cdots 36$	$4 \ldots 40$	44	
$\cdots 40$	$\begin{aligned} & 5 \\ & 6\end{aligned} . .45$	$5 \cdots 50$	55	5
48 56 50	6 .. 54	6 .. 60	6 .. 66	$6 . .72$
56 64	$\begin{array}{llll}7 & . . & 63\end{array}$	$7 \ldots 70$	$7 . .77$	
74	$\begin{array}{lll}8 & . & 72 \\ 0\end{array}$	$8 . .80$	8 .. 88	$8 \therefore 96$
$\begin{array}{r}9 \\ 10 . . \\ \hline\end{array}$	$\begin{gathered}9 \\ 10\end{gathered} . \quad 81$	10. ${ }^{9}$ 90		$\begin{array}{rlr}9 & \cdots & 108\end{array}$
$11 \% 88$	$11 . . .99$	$11 . . .1110$		$\begin{array}{llll}10 & . & 120 \\ 11 & . & 132\end{array}$
$12 . . .96$	$12 . \therefore 108$	$12 \therefore 120$	$12 . .132$	$\begin{array}{llll}11 & . . \\ 12 & 132 \\ \end{array}$

EXTENDED MULTIPLICATION TABLE.

13 time		15 times	,	im		
2 are 26	2 are 28	2 are 30	2 are 32	2 are 34	2 are 36	2 are 38
39	$3 . .42$	$3 \therefore 45$	$3 . .48$	3 ... 51	3.. 54	
.. 52	$4 . . .56$	$4 \ldots 60$	$4 . . .64$	$\cdots 88$	4 $\quad .$.	57
65	$5 . .70$	5 .. 75	5 ¢ $\because .680$	88	9	76
78	6.84	$6 . . .90$		102		
01	98	$7 . .105$	$7 . .112$	119		
104	112	$8 . . .120$	3.. 128	$8 . . .136$		
117	126	9×135	144	$9 . .153$	$\ldots 162$	

SIMPLE MULTIPLICATION.

Multiplication teaches us to find what a number will amount to, when it is repeated a number of times.

MENTAL EXERCISES.
 Exercise 11.

1. At 7 cents a-piece, what will 9 pine-apples cost?
2. What cost 15 yards of cloth at 8 dollars a yard ?
3. When 2 dimes are paid for 1 duck, what will be the cost of 8 ducks? of 10 ducks? of 12 ducks?
4. James had 9 walputs, John twice as many lacking 8, and Joseph twice as many as both James and John +7 ; how many has each, and how muny bave they all? +7
5. What cost 794 barrels of flour at 9 dollars a barrel?
6. A manbought 8 pieces of cloth, each piece containing 38 yards, at 7 dollars a yard. How many yards were there, and what did he give for the whole?

CASE 1.-When the Multiplier dops not exceed 12.

 Example.-Maltiply 53 by 7 .Place the number by which you are to multiply
53 under the number to be multiplied; then eay-7
7 times 3 make 21. Pat down the 1 nuder the 7. 371 Put downes 5 make 35, and the 2 of 21 make 37. the 7 is called the The 53 is called the Mrultiplicand; the Pioduct. The maltiplicand a ; and the 371 is called together are called the factors ; and the multiplier taken

expraz xumpucararo.

(1)
$\$ 4276.16 \mathrm{c}$
ExErcise 12.

* The product must have as many decimals as thore are in both faciors. If, for instance, there are, in the multiplicand, and 3 in the multiplier, then the prodtict must invo 7 . If there should not beas masy figures in the product as are necessary to make the required number of decimals, as: many ciphers must be preftedras die pecessary to make up the required number. ilf, for inetance,

ARITIMETIC.

Case II. - When the Multiplier is a Compasite zumber.*

 Example.-Multiply 436 by 32.436 The multiplier, viz. 32, is formed by two 4 factors, 4 and 8 ; therefore instead of multiplying 1744 by 32, you may multiply by 4, and obtain the product of 1744. Multiply this product by the
8 13952 other factor, 8, and you obtain 13952, the product of the 435 inultiplied by 32 .

the number of decimals in both factors is 7, and there are only 5 figures in the product, then two ciphers must bo prefixed.

Here the product has only 4, but it requires 7; it should bo . 0002664 . F. A composite number is the product of two factors ; thens, 16 俉 $\bar{\alpha}$ eomipntio number, because formed of the factors 2 and 8 , or 4 and 4 ; 21 is formed of 3 and $7 ; 27$ of 3 and $9 ; 36$ of 4 and 9 , or 6 and 6, or 8 .
and 12 .

Cask III.-- When the Mulliplier contains several figures. Example.--Multiply 3426 by 342.
3426 Place the multiplier under the multiplicand, 342 units under units, \&c. Multiply by the unit
figure of the multiplier, viz. 2. Then mul13704 . 10278 that you are to place the 4 of the 24 directly 1171692 under that figure of the multiplier by which you 1171692 are multiplying. Proceed in the same manner with the figure 3 of the multiplier. Then add together the products obtained.

Multiply 6487 by 230. 230
194610
$\frac{14924}{149}$

Multiply $\$ 64.87 \mathrm{c}$. by $\mathbf{2 0 3}$.203

19461 12974
\$13.16861*

ExERCISE 14.

[^1]18. Multiply four bundred and fifty-eight thousand six hundred aud ninety-four, by eight thousand aid soventysix.
19. Multiply nine hundred and eighty-six thousand seven hundred and forty, by four hundred and uine.
20. There aro 8766 hours in the year ; how many hours are there in 20 years?
21. A grocer selfs goods to the amount of $\$ 56.57$ c. per week ; how much does he sell during the year?
22. In a flock of 648 sheep, how many feet were there?
23. Enppose the page of a hook to contain 49 lines, and each line 47 letters; how many letters dues the whole page contuin?
24. In 264 dozen of wine, how many bottles are there? 25. A gentleman dying gave olders in his will that his fortune should be equally divided among his fire children; each received $\$ 648.75 \mathrm{e}$. ; how much mouey did he leave?
26. Suppnse that there were in the parish 896 houses, and that each bouse in the parish contained five persons; what would be the pop slation of that parieh?
27. A falher bas five children, their food and clothing cost him five cents each d ly ; how much does the support of the children come to in the year?
28. There were in a garden eight trees, and apon each tree there were 268 apples; how many apples were there upon all the trees?
29. There were 4768 geese plucked, and 17 quills got from each goose; how mauy quills were got from all?
30. There were 27 d-sks to be made for the school, and each desk required 29 to be made for the school,
required for all the desks ? how many nails were
31. In a school, there were six windows in the boys' room, and furr in the girls' rorm; in each window there there in eigh pathes of glass; how many paues of glass were
532. I kuew two boys, one of them was lazy and lay in bed till nine, the other was an active little fellow. Who rose every morning at six ; how many hours did the active boy gain iu a year that the other lost?
733. How often does a clock strike in a year at the rate of 156 times a day?
34. How many pins may a boy point in 6 days who works 8 hours a day, and points 16,000 pins in an hour?

Case IV.-When there is a Fraction in the Mfultiplicr.
672 Example.-Multiply 672 by 27 .
$27 \frac{3}{4}$
4704
1344 $504=3$ by the $\frac{3}{4}$. (that is get $\&$ of 672 ,) and add 18648 this to the former product.
4) 672 We muitiply by $\frac{3}{2}$ or by any other fraction, by first dividing by the denomina168 tor, or lower figure, (thy 4 in this case.)

3 then multiply the quotient (168) by the
$504=$ numerator or upper figure ; or, which is the same thing, we may multiply by the numerator firal, and then diviste the product by the denominator. To divide by a fraction, do just the opposite. That is multiply by ihe denominator, and divide the product by the numerator.

$$
\begin{array}{r}
\text { Example: } 12 \times 4=9, \text { but } 12+\frac{3}{2}=16 \\
20 \times 4=9 \quad 20+\frac{5}{5}=?
\end{array}
$$

exercise 15.

ARITHMETIC.
 MENTAL EXERCTSEX.
 EXERCISE: 16.

1. Mary bought 35 quarts of milk, and on her way home spilled 4 times 2 quarte, lacking 3 quarts ; how many quarts had she remaining?
2. When beef is 5 cents a pound, and pork 9 cents; how much more will 9 pounds of pork cost than 9 pounds of beef?
3. Henry is 4 feet in height and John is 5 ; and 6 times the sum of their heights, considered as a number, is equal to their ther's age +15 yenrs ; what is the father's age?
4. If a barrel of flour will serve 12 men 8 days, how long will it serve 1 man?
5. A man failing in trade is able to pay only 680. on a dollar; how much can he pay on a debt of $\$ 5$? How much on a debt of $\$ 20$?
6. If an apple cost 2 cents, an orange three times as much lacking 4 cents, and a piae-apple three times as much as the apple and orange +5 cents; what will be the cost of all three?

DIVISION.

Diviaion is the method, first, of finding how often one number is contained in another; and second, of dividing any quantity into a certain number of eyual parts.

mental exerciens.
 ExERCTSE 17.

1. How many melons may be had for 18 cente, at 3
2. How many pine-apples at 8 cents each, can be obtained for 40 cents? for 56 cents?

1 her way larts ; how

3 cents ; 9 pounds

5 ; and 5 a number, bat is the
lays, how
ly 680. on ? ? How
times ns times as t"will be
3. What will 13 yards of silk cost, if 5 yards cost 45 dimes?
4. A man bought 4 barrels of flour for 20 clollars, and gave 3 of them for cider, at 3 dollars a barrel; how many barrels of cider did he get?
5. In how many days can 15 men earn as much as 3 men can in 25 days?
6. If 1 man can ride 1 mile for 4 cents, how far can 2 men ride for 80 cents?

Case I.-When the Divisor does not exceed 12.

SHORT DIVISION.

Exampa:--Divide 252 by 6.
Put the numbers down according to the an-
6) 252 nexed example. Find how often the figure by - which you are to divide, viz: 6 is contained

42 in the first, or first and second figures; thus, 6 into 2, no times, then 6 into 25,4 times and 1 over. Put down the 4 under the 5 . Suppose the 1 placed before the 2, which would make it 12. Say 6 into 12, twice. Put the 2 under the 2. The number 6 is called the Divisor; 252 the Dividend; and 42 the quotient.

$$
\frac{2) 4628}{2314} \quad \frac{2) 6824}{3412} \cdot \frac{3) 6039}{2013} \cdot \frac{4) 8408}{2102}
$$

\$ c.

2) 476.58

3)76389
4) 857.36
6)76590

* $\$ 238.29$
$\overline{25463}$
$\$ 214.34$
12765
*When there are decimals, point off from the right of the quotient as many for decimals as the decimals in the 3

ARITHMETIC.

dreidend exceed those in the divisor: That is, for instance, if the dividend has 3 and the divisor 1 , point off 2 , dec.

3

EXERCISE 18.
(1)
(2)
(3)

4)27645

(5)
$\$$. 8)764.26
(9)

12)76426872

(12)

$\$$.

9) 642687.62
도 (15)
6)76002041

10) 687.64
(6)
9)28676
\qquad
(10) $\$$ c.
11) $\mathbf{4 2 6 8 7 6 . 4 2}$
(13)
$\$ \mathrm{c}$.
12) 468768.76
(16)
13) +3026.01
(4)

7 (9640268
8) 46876400
7) 41260602

Case 1I. When the Divisor is a Composite number. Example.-Divide 6789 by $28 .{ }^{\circ}$

Two factors that produce 28, are 4 and 7 : divide, then, by 4 and by 7, as in the example. The quotient found is 242 , but with two remainders, viz: 3 and 1, Te obtaint the complete remainder,

LONG DIVISION.

Rone. - Mulliply each remainider, except the first, by the product of all the divisors previous to its own, and to these several products add the first remainder-this, $4 \times 3+1=13$, the re.ult, 13 , is the true remainder.

CASE III. - When the Divisor is more than 12. \qquad

LONG DIVISION.

The only difference between Long and Short Division is, that in Short Division part of the operation, (that is, the multiplying and substracting) is done mentally, while in Long Division it is all put on the slate. In order to see this. let us compare them, by doing the same question both, waysit

Exaxple.-Divide 43176 by $^{\prime}$.
Short Division. Here we say, mentally, 8 into 43,5 8) 43176 times (putting down the 5) then 5 times

5397

 8 is $40 ;{ }^{\prime} 40$ from 43 leaves 3 . Then we suppose the 3 that is over to be placed before the next figure 1, and again say, mentally, 8 into 31 will go three times, 3 times 8 are 24 , from 31 leaves 7. Then 8 into 77, and so on, doing the multiplying and substracting in the mind.Same Example by Here we do the very same, only pritLong Dinision ting down the product when, we mul8)43176(53. tiply, and putting down the remainder 40 when we substract.

We say 8 into 43 goes 5 times, putting the 5 in the quotient, then 5 times 8 is 40 , putting it down-then 40 from 43 leaves 3. putting it down, then bring the 3 , which is over, and the next figure (1) together, by bringing down the 1. Then repeating the same operation, 8 into 31 , goes 3 times. setting the 3 in the quotiont and multiply-

ARITHMETIC.

ing by it, setting down the product 24 , then substracting and setting down the remainder 7-then bringing down, \&c. thence the Rule for Long Division would be:

RULE FOR LONG DIVISION.

Beginning at the left of the Dividend find how many times the divisor is contained in the fewest figures that will contain it, and place the quotient figure on the right of the dividend aoith a line between them.

Multiply the divisor by this quotient figure and write the product under that part of the dividend taken.

Sybstract this product from the figures above it.

Bring dovon the next figure of the dividend to the right of the remainder.

Divide this as before, (placing a cipher in the quotient and bringing down the next figure if at any time the dividend will not contain the divisor,) and so on till all the figures are brought down and divided.

Example.-Divide 614326 by 427. OPERATION 427)614326(1498800

427
1873
1708

1652
1281
3716
3416
300

Compare this operation with the rule.

1.ONG DIVISION.

n substracting ringing down, uld be:
ul how many neres that will he right of the
and worite the
eit.
to the right of
n the quotient time the divim till all the

WHEN THERE ARK DECIMALS.
When there are Decimals in the divisor or dividend, or both, the dividend must either have the same number of decimals as the divisor, or it must have less, or it must have more.

1. If the dividend has the same number of decimals as the divisor, no decimals are to be pointed off.
2. If the dividend has less decimals than the divisor, add us many ciphers to the dividend as are necessary to make the number of its decimals equal to those in the divisor; it will then be like the previous case, and, of course no decimals are to be pointed off from the quotient.
Lastly : if the decimals in the dividend exceed those in the divisor, point off from the quotient as many as the decimals in the dividend exceed those in the divisor. That is, for instance, if the divisor has three and the dividend three from the quotient, point off nove. If the divisor has four and the dividend two, add two to the dividend to make them equal, and point off none. If the divisor has two and the dividend five, point off 'riree.

3. Divide six millions seven hundred and ninety-four thousanths, by four hundred and eighty thousand six hundred and nine millionths.

ARITHIMEIC.

22. What is the ninth of $\$ 6037.45$?
23. A ship sailed in four weeks 1262 miles; how much
24. If a vessel contains 648 gallons of water, how long will it take to discharge it all, at the rate of .18 of a gallon a minute? and there are abtion of Ireland is about cight millions, many persons to each mile? square miles of surface ; how
25. The earth is about 93 millions of miles distant from the sun; how many days would a horse take in reaching ihe alar, supposing he went at the rate of forty-five miles
per day?
26. The pays of light come from the sun to the earth in 81 minutes, or 495 seconds; at what rate does light move per recond, the distance from the sun to the earth move
95173000 miles ?
27. The circumference of the earth is about 25000 miles; of 27 miles per day?

Cast IV.-When there is a fraction in the divisor. Exampie.-Diyide 426 by 4?

orfreatiox

4告)426
3

14)1278(91 $\frac{1}{14}$

 1:018
14
4

Here we are to divide 246 by 4 ? We first bring both the divisor and dividend to the same name as the fraction-that is (in this instance) to thirds. In the four whole numbers of the divisor there are, of course, 12 thirds, and adding the twothirds annexed, makes it 14 thirds. Then multiplying the dividend by 3 to bring it to thirds, we have 1278 for the dividend. As the remainder is always of the same name as the dividend the remainder. 4 here, will, of conrse fe 4 㨁itis.
how much ; how long of .18 of a
millions, face ; how
stant from reaching five miles

3 earth in sht move th being 0 miles the rate
sor. ?. We vidend that is le four are, of e twoThen bring diviof the inder

MENTAL FXERCISES. EXERCISE 22.

1. If 5 oranges are worth 1 pine-apple, and 2 pine-apples are worth 1 melon; how many oranges may be bought for 4 melons?
2. When 9 bushels of rye were worth 45 dimes, 12 bushels were given for 15 yards of cloth; what did the cloth cost a yard?
3. Gave 15 pounds of sugar for 5 pounds of butter ; how much did the butt 2 cost a pound, providing 8 pounds of sugar were worth 56 cents?
4. How many oranges, at 3 cents each, must be given for 18 lemons worth 4 cents each?
5. If 4 oranges are worth 12 cents, how many orangea must be given for 6 pine-apples, worth 12 cents each?
6. How many men can in 10 days perform the same amount of work, that 8 men can in $\overline{5}$ days ?

SECTION II.
 TABLES, REDUCTION, AND COMPOUND RUIAS.

TABLES.

STERLING MONEY.
4 farthings $=1$ penny.
12 pence $=1$ shilling. 20 shillings $=1$ pound. 21 shillings $=1$ gulnea.
\boldsymbol{f} denotes pounds, s. shillings, and d. pence. 1 - one farthing, or one quarter of anything.

- a half-penny, or a half of anything.

4 three farthings, or three quarters of anything.
OLD CANADIAN CCRRENCY.

4 arthings	$=1$ penyy,
12 pence	marked.
5 shillings	$=1$ dollar
4 dollars	d.
	1 pound

new canadian or decimal money. The denominations are dollars and cents. The coins, at present, are cents, five cent pieces, ten cent pieces, and twenty ceat pieces.

1 perny of the old equals 13 cents of the new.
13. d. of the old equals 2 cents of the new.
ga of the old equals 1 cent of the new.
Hence $3 d$ of the old equals 5 cents of the new.
6 d . of the old equals 10 cents of the new.
7 fl . of the old equals $12 \frac{1}{2}$ cents of the new. marted $\$$.

TABLEF.
FEDERAL OR UNITED STATES MONEY.
The denominations are eagles, dollars, dimes, cents, and mills.

> TABIE:

10 mills (m)	$=1$ cent	marked
10 cents	$=1$ dime	ct.
10 dimes	$=1$ dollar	$\$$.
10 dollars	$=1$ eagle	E.

AVOIRDUPOIS WEIGHT.

Apothecaries use this weight in mixing thoir medicines; but they buy and sell by aroirdupois welght.

* 28 is still used by the Custom Houses. 3*

CLOTY MEASURE.

24 taches	= 1 nail	
4 nails	= 1 quartor	
3 quaiters	$=1$ Flomish oll	FL. eri.
4 quarters	$=1$ yard	
5 quarters	$=1$ English ell	E. ${ }^{\text {e. }}$
6 quarters	$=1$ Fronch ell	\vec{F}

square or land measure.

The square of any number is obtained by multiplying it by itself: 12 multiplied by $12=144$, the square of 1%.

LONG MEASURE.

12 lines	$=1$ inoh marked	
12 inches	$=1$ foot	
3 foet	$=1$ fard	
$5 \frac{1}{2}$ jards	$=1$ perch, pole	
40 perches		or or pod per.

$$
300 \text { degrees }=\text { the earth's circumforence }
$$

An inch is sapposed to be equal to three barley-corns in length 4 inches make one hand, used in meneurivg

1728 cubic inches
27 cubic feet
40 cubic feet of rough timber, or
50 cubic feet of hewn timber, or $\}=1$ ton or load
42 cubic feet
16 cubic feet
8 cord feet, or
128 cubic feet
$=1$ cubie foot
$=1$ cubic Jard
$=1$ ton of shipping
$=1 \mathrm{cord}$ foot
$\}=1$ cord of wood

A cube is a solid figure, similar to the dice, and has six equal sides. The cube of any number is obtained by multiplying it twice :by itself-thus, $12 \times 12 \times 12=1728$, the cube of 12.

```
MEASORI OF CAPACITY.
```


By this measure both liquids and dry goods are measured. The gill, pint, quart, gallon, are chiefly used for liquids. The peck, bushel, quarter, load, \&c., are used for dry articles. The gallon contains 277,274 cubic inches.

The measure formerly called heaped measure is now, by Act of Parliament, declared illegal.

Ale, wine, and beer were formerly measured by different measures. In some places a barrel of beer contains 32, in some 34, and in others 36 gallons. A hogshead of ale was computed to contain 54 gallons, a hogshead of wine 63 gallons.

> 2 hoggheads make 1 pipe or butt. 2 pipes or butts make 1 tun.

ARITAIMETIC.

тіме.

Every fouth year contains 366 days, and is called loap year.

DAYS IN EACH MONTH.

Thirty days hath September, April, June and November; All the rest have thirty-one; February twenty-eight alone, But in Leap-Year twenty-nine.

DIVISIONS OF THE CIRCLE.

60 seconds"'	$=1$ minute	marked
60 minutes	$=1$ degree	min or
30 degrees	$=1$ deg. or ${ }^{\circ}$	
12 signs or 360°	$=1$ circle of the zodiac	C.

QUANTITIES.

12 articles	$=1$ dozen	marked
20 articles	$=1$ score	doz.
144 articles	$=1$ gross	gr.
24 sheets paper	$=1$ quire	qr.
20 quires	$=1$ ream	rm.
200 pounds	$=1$ barrel of pork. or bee.	
196 pounds		$=1$ barrel of tlour.
14 pounds		$=1$ stone.

20 thus :

REDUCTION.

Reduction is the changing a higher denomination to a lower, or a lower to a higher, without altering the value.

REDUCTION DESCENDING.

CASE I.-A higher to a lower, as pounds to pence-iccelcs to days-quarts to pints. Reduction descending is aloays done by mulliplication.

Example--Reduct $£ 4$ 9s. 61 $\mathbf{6}$ d. to pence.

Here we first multiply the $\mathbf{E 4}$ by 20 to bring them to shillings, because it takes 20 s. to make 1 pound. We add in the 9 shillings io get all the shillings together : this will give 89s. Then we multiply the $89 s$. by 12 to bring them to pence, because it takes 12 pence to moke one shilling; adding in the Gd. pence by 4 , to bring them to farthings, because it takes 4 farthings to make 1 penny, adding in the farthings; we have now 4298 farthings. Putting this into the form of a Rule it would run

Rule for Reduction Descending.-Beginning voith the highest denomination, multiply it by as mairy of the lower, (whatever lower you wish first to bring it to) as it takes to make one of the same, adding in whatever number there may be of that lower; multiply this result as before, (by as many of the lower as it takes to make one of the same, adding in the loverr), and so continue till the required denomination be obtained.

Exanple,-Reduce 4 cwt. 3 qrs. 17 lbs. to ounces.
Eraivpie.-Reduce 16 cwt .1 qr. 19 lbs . to ounces.

Let the pupil be required to go through these, and the following exercises orally, in the following manner, before doing them. The mental discipline and the accuracy pay both teacher and pupil.

First read the question distinctly as it is in the book, then proceed, all the class attending: "Here I have hundredweights, quarters, and pounds, to be reduced to ounces,-reduction descending, done by multiplication."
"Rule.- Beginning at the highest denomination, multiply it by as many of the lover as it takes to make one of the same, 1. e., by as many quarters as it takes to make a hun-dred-weight, which is 4-then the quarters by as many pounds as it takes to make a quarter, which is 25 ,- then the pounds by as many ounces as it talces to make a pound, which is 16.",

EXercise 23.

1. Reduce $\mathbf{x} 264$ 9s. 10 d . to pence.
2. Reduce 3 qrs. 13 lbs .12 oz . to ounces.
3. Reduce 24 lbs to pennyweights.
4. Reduce 6 wks. 3 days 14 hours, to hours.
5. Reduce 76 miles 6 fur. to perches.
6. Reduce 9 sqr. mls. 1 n. 0 r. 9 yds to square inches.
7. Reduce 47 cords of wood to cubic feet.
8. Reduce 4 pipes 1 hhd. 1 brl. 19 gals. 2 qts. to quarts.
9. Reduce 71 lbs 11 oz .3 drs. to scruples.
10. Reduce 123 acres 17 perches to square yards.
11. Reduce 9 los 17 dwts. to grains.
 to drams.

REDUCTION ASCENDING.

II.-A lover to a higher, as, pence to pounds-days to woeks-inches to yards, de. Reduction ascending is alwoays done by Division.

Example.-Reduce 5760 farthinge to pounds.

Farthings.
4)5760
12)1440 cause it takes 4 farthings to make 1 penay, this gives 1440 d . Then we divide the
20)120 1440d by 12, to bring them to shillings, 20)120 because it takes 12 pence to make one £6. shilling-this gives 120 s. : Then we divide the 120 s . by 20 , to bring them to pounds, because there are 20 s. in a pound-this gives \&6. Hence the Rule would run thus:
Rule for Reduction Ascendina.-Divico the given denomination by as many of the same us it takes to make ono of the higher, (whatever higher yous wish first to bring it to.) Divide this as before, (by as many of the same as it talces to malce one of the higher") and so on, till it is reduced $u \rho$ to the denomination required.

ExEROISS 24.

Let the pupil be required to go through each of the following questions, first orally, in the same manner as suggestod for the questions in Reduction descending.

1. Roduce 1427 ounces to pounds.
2. Roduce 42768 farthings to pounds.
3. Reduce 2487 graing to ounoos.
4. Roduce 4786 nails to yards.
5. Reduco 4796 pecks to bushels.
6. Podnee 74697 tininutes to cuays
7. Reduoe 714986 inches to fathoms.
8. Reduce 61479867, square miles to acres, roods, se.
9. Reduce 667789 cubic inches to cubic yards. 10. Reduce 91666 Flemish ells to French ells.

11. Reduce 17498 cubic feet to cords.

-12. Reduce 2987149 mills to eagles, dollars, dimes, dc.

REDUCTION OF THE OLD CURRENCY TO THE NEW, AND THE NEW TO THE OLD.

In reducing pounds, shillings, and pence to dollars and cents, and dollars and cents to pounds, shillings, and pence, proceed in the same manner-that is, see whether the reduction is ascending or descending, then divide or multiply accordingly; as the Rule directs.
Exauple.-Reduce $£ 248$ 8. $6 \boldsymbol{d}$. to the decimal currency. OPRRATION.

$\$ 97.70$
these farthings to cents. pence to farthings, and reduce ings, this, therefore is Re but cents are higher than farthfore divide by 22 is Reduction ascending. Wo therethree results added, which is the same, by 12. These dividing by 100 aded together give 9770 cents. Then by pointing 100 , to bring them to dollars, which is done pointing off the two right-hand figures for cents, we have $\$ 97.70$ cents. The rule, then, would read thins:
To reduce pounds, shillings, pence and farthings to dollars and cents -

Pues.- Mrilltiph itue pourcis by 400, the shillings, by 20, and (changing the pence into farthings) divide the farthings
by 12. Add these three results together, and point off the two right-hand figures for cents, the figures to the left of the point will be dollars.

Or some may prefer this method: OPERATION.

$$
\boldsymbol{£}
$$ $\begin{aligned} 24 \times 4 & =96 \\ 8 \div 5 & =1.60 \\ 6 & =\frac{10}{}\end{aligned}$

Rude.-Multiply the pounds by 4, and divide the shillings by 5 , to get the dollars. Then to get the cents, multiply all the shillings under 5 by 20 , and call the pence and farthings so many cents, at sight, 5 c . being 3 d., $10 c .=6 d .15 \mathrm{c}$. $=$ $9 d .12 \frac{1}{2} c .=7 \frac{1}{2} d$., etc.
To reduce the dollars and cents back again to pounds, shillings, \&c., just reverse the operation. Divide the dollars by 4 , to get the pounds, and to get the shillings, multiply what is over from the dollars by 5 , and divide the cents by 20 , calling the remaining cents so many pence at sight.

Example.-Reduce $\$ 97.70$ c. to pounds, shillings, \&c. operation.
$\$$ £ s. Here we divide the dollars: $97 \div 4=24 \quad 5$ by 4 , to bring it to pounds; c. $70 \div 20=0 \quad 36$ the quotient is 24 and one dollar over,-this one dollar multiplied by 5 , to bring it to shillings, yives 5s. Then divide the 70c. by 20 , to bring then to shillings; the quotient is 3 and 10 cents over,- -this ten cents is 6 d . nxercise 25.

1. In $264 l .9 \mathrm{~s} .10 \mathrm{~d}$. how many dollars and cents?
2. Reduce 364l. 19s. $9 \frac{1}{2}$ d. to farthings.
3. In 247 l . 12 s . $8 \frac{1}{2}$ d. how many dollars and cents?
4. How many dollars and cents are there in 27% gaineas ?
5. In 298 crowns, how many dollars and cents?
6. Reduce 3648 sixpences to dollars and cents.
7. In 42768 farthings how many dollars and cents ?
8. How many pounds are there in 67890 shillings?
9. In 426876 farthings, how many dollars and centy !
10. How many guineas are there in 36789 shillings?
11. In 68794 pence, how many crowns?
12. How nany fourpences are there in 37689 shillings?
13. In 24700 . how many crowns?
14. How many dollars and cents in 39076 half-crowns ?
15. In 29685 twopences, how many dollars and cents?
16. In 43687 crowns, how many threepences?
17. How many fivepences are there in 4796 crowns?
18. In 76971 halfpence, how many fourpences?
19. In 798302 pounds, how many five cent pieces?
20. How many crowns are there in 7968 guineas?
21. In 79201 half guineas. how many seven shillings pieces?
pence. In $\$ 276.19$ how many pounds, shillings and
22. In 730 dollars 14 cents, how many pounds, shillings and pence?
23. How many half-sovereigns are there in 7642 guineas?
24. Reduce 3010\%. 11s. $8 \dot{d}$. to farthings.
25. In 7324 guineas, how many ten cent pieces?
26. In 7690 fourpences, how many ten cent pieces?
[^2]
COMPOUND RULES.

COMPOUND ADDITION.

The pupil will now be able to understand, and do the Compound Rules without almost any further explanation. The tre is is that the Compound and Simple Rules are pre the same. Let us compare them in order that we may see this.
smpie Amition.
thds. heds. tns units.

2	4	6	5
7	8	6	4
2	3	5	6
4	1	3	2
		8	

Units,
$\frac{10) 17}{1-7}\left\{\begin{array}{l}\text { The units } \\ \text { reduced } \\ \text { to tens }\end{array}\right.$

Tein.
$\frac{10) 21}{2-1}\left\{\begin{array}{c}\text { Tens } \\ \text { to } \\ \text { hundreds. }\end{array}\right.$

Hnndratis.

$\frac{10) 18}{}\left\{\begin{array}{l}\text { Hundreds } \\ \text { to } \\ \text { thousands }\end{array}\right.$
mls. fur. per.

| 4 | 6 | 20 |
| ---: | ---: | ---: | ---: |
| 6 | 5 | 13 |
| 7 | 4 | 9 |
| 6 | 7 | 12 |
| 25 | 7 | 14 |

Pirches.
$\frac{40) 54}{1-14}\left\{\begin{array}{l}\text { The perches } \\ \text { reduced } \\ \text { to furlongs. }\end{array}\right.$

Turringo.

$\frac{8) 23}{2-7}\left\{\begin{array}{l}\text { The furlongs } \\ \text { reduced } \\ \text { to miles. }\end{array}\right.$

Tlus:,
yrs. woks. days.

24	6	3
12	16	5
41	24	4
32	13	6
110	9	4

Daye.
$\frac{7) 18}{2-4}\left\{\begin{array}{l}\text { The days } \\ \text { reduced } \\ \text { to weeks }\end{array}\right.$ Wekes.
${ }^{52)} 61(1)\left\{\begin{array}{l}\text { The weeks } \\ \text { reduced } \\ \text { to years. }\end{array}\right.$

Here the first example (see preceding page) is what is called Simple Addition, the others Compound Addition. But they are all done by the very same rule, viz:

Rule for Addition.- Place the numbers to be added so that thinge of the same name may stand directly under each other.

Then begin at the right hand column or lowest denomination, add it up and divide* the amount by as many of the same as it takes to make one of the next higher.

Set down the remainder and add the quotienl to the next higher, and so on till all are added.

Exercise 26.

(1)

(2)

> (3)
(4)

£ 3 .	d.)	(3)	(4)
1216	4	. ft.	dys. hrs mi	coot. qrs. los
164	6	17	35166	4212
6417	2	14.4	241814	314
4312	$7 \frac{1}{2}$	$33 \quad 2$	6413	7

[^3]| (5) | (6) | (7) | (8) |
| :---: | :---: | :---: | :---: |
| lb. oz. dwot.grs | $y d s$ q? ${ }^{\text {a }}$. n | $a c ' s r d s . p$ | c.yds. c.ft. c.in. |
| $5{ }_{5} 9880$ | 27.2 | $35-37$ | 1926.567 |
| $\begin{array}{llll}3 & 21616\end{array}$ | 392 | 48. 239 | 24181468 |
| 4.170 | 3233 | 620315 | 3611246 |
| 181922 | 473 | 17120 | 39201294 |

9. A brewer bought five bags of hops ; No. 1 weighed 3 qrs. 21 方. ; No. 5 weighed 2 cwt. 2 qrs. 20 D. ; what was the weight of the whole?
10. A man rode 35 miles, 2 furlongs, 34 perches; walked 24 miles, 6 furlongs, 25 perches, 2 yards; then rode again 42 miles, 7 furlongs, 4 yards ; then walked again 15 miles, 4 furlongs, 38 perches, 3 yards; what was the length of his journey?
11. Sold to one man 27 qrs. 6 bushels, 3 pecks; to another 38 qrs. 4 bushels, 2 pecks ; to another 49 qrs. 6 buehels; and to another 58 qrs. 7 bushels, 3 pecks; how much did I sell in all?
12. I bought four fields; in the first there were 6 acres, 3 roods, 12 perches; in the second 7 acres 2 roods; in the third 9 acres and 13 perches; in the fourth 5 acres, 2 roods, 36 perches. How much in all?
13. The bricklayers were engaged about a house 23 weeks, 4 days, and 8 hours; the carpenters 14 weeks, 6 days, and 9 hours; the painters 12 weeks, 5 days, 7 hours, and 34 minutes ; the upholsterer 5 weeks, 10 hours and 42 minutes; how long were these different workmen engaged about the house?
14. A silversmith made three dozen spoons weighing 5 th. 9 oz .8 dwt ; a tea-pot, weighing 3ib. $2 \mathrm{oz} .16 \mathrm{dwt}$. grs. ; two pair silver candlesticks, weighing 4 B .6 oz .17 dwt. ; a dozen silver forks, weighing 1 lb .8 oz .19 dwt 22 grs. ; what was the weight of all the articles?
15. A tailor bought four pieces of cloth; in the fist

54

ARITHMEYIC.

there werc $27 \mathrm{yds}$.2 qrs. 3 nls ; in the second, 39 yds. 2 qre. 1 nl. ; in the third, 32 yds. 3 qrs. 3 nls. ; in the fourth, 47 yds. 3 qrs. 2 nls ; how much in all?
16. A man bought a coach for $£ 35$ 12s., a horse for $£ 27$ 89. 10d., and harness for $£ 3150 \mathrm{~s}$. ; what did the whole cost?
17. A boat took in fieight as follows: at one place 9576 los of butter, at another 11 tons of pork, at a third, 18 cwt. 27lbs. of coal ; what was tho entire freight in "short tons?" . ." wha entire freight in
18. A merchant bought 3 casks of oil, one held 2 hhd. 30 gals. 2 qts. ; another 3 hhds, 10 gall., another 1 hhd. 13 g. I qt.; how mucb did they all hold?
19. Find the sum of 45 m .21 fur. 17 p .5 yls. $2 \mathrm{ft}, 9 \mathrm{in}$. ; and $43 \mathrm{~m} .5 \frac{1}{2}$ fur. 4 yds. 1 ft .8 in .; and $89 \mathrm{~m} .16 \mathrm{p} . \mathrm{yd}$.
20. In one pile of wood are 37 cords 119 c . ft. $76 \mathrm{c} . \mathrm{in}$., in another, 9 cords 104 c cft., in a third, 48 cords 7 c. ft. 127 c. in., in a fourth, 61 cords 139 c . in. ; how much wood in

MENTAL EXERCLSE.

exercish. 27.

1. A mun bought one load of hay for e7 38 , and another for $£ 68 \mathrm{ss}$. 4d. ; how much did he give for both?
2. A man bought 3 bin .3 pks. of wheat at one time ; 48 bu. 3 pks. at another time; 9 hu. 1 pk . 5 qts, at a third; and 16 bu .0 pk. 7 qts. at a fourth. How many lushels did he buy in the whole?
3. A man bought 4 bales of cotton. The first contained 4 cwt .2 qrs. 16 lb . ; the second 3 ewt .1 qr . 14 dbs . ; the third 5 cwt. 0 qr. 23 Hs.; and the fourti 4 cwt. 3 qre. What was the weight of the whole?
4. A merchant bought 4 pieces of cloth. Thefirst coutained 18 yds. 3 qrs.; the second 23 yds. 1 qr. 3 nle; the third 25 yade.; and the fourti 16 yds. 2 qrs. 2 nls. How many yards in the whole? e fourth, efor $£ 27$ le whole

2 hhd. hhd. 13
t. 9 in.; p. yd.

6 e. in., ft. 127 vood in
5. A man bought a cask of raisins for $£ 718 \mathrm{~s}$. Ad. ; 1 10. of coffee for 1 s . $6 \mathrm{~d} . ; 1 \mathrm{cwt}$. of cocoa for $£ 3 \mathrm{lls} ; 1$ keg of molasses for 13s: 7d.; 1 box lemons for $£ 1$ 3s.; 1 bushel of corn for 4s. 3d. How much will the whole amount to?
6. A merchant bought four pieces of cloth, each plece containing 57 yards. F'or the first picce he gave 235 dollars; for the stcond, 384 dollars; for the third, 327 dollars; and for the fourth, 486 dollars. How many yards of cloth did he buy? How much did he give for the whole?

1. Compare Compound and Simple Addition, and show in what respect precisely they agree, and in what respect they differ.
2. Repeat the rile for Reducion Ascending and the rule ior Reduction Descending.
3. Repeat tho rule for Compound Addition, and give the reason for each part of it.
4. Point out distinctly the relation that exists between Addition and Multiplication.
5. Name the denominations in each of the tables, from the lowest to the highest and from the highest to the loroest, and say how many of the lower of each denomination it takes to make one of the higher:
6. Try by the watch, how quickly you can read up and down any column of fifty figures, simply touching each figure, naming only the amount as you procced. Continue this exercise till you can read any column of 50 figures up and dewn, (getting the same amount both ways) in one minute.

COMPOUND SUBTRACTION.

Here again, as in Addition, we shall see by comparing the operation in eac: , that Simple and Compound Subtraction are both done in precisely the same way-i.e., by the very same rule-so that if a person can do Simple Subtraction, and understands what he is doing, he can do Compound Subtraction.

Let us do a question in each, and compare each operition, that we may see this.

EXAMPLE 2. COMPOCND.

From
£. s. $\quad d$.
$14 \quad 13 \quad 7$
Take
$\begin{array}{lll}12 & 17 & 4\end{array}$
$\begin{array}{lll}1 & 16 & 3\end{array}$
example 3. SLMPLE. thds. hds. tns. units.

From
 Take

9	8	7	6
6	7	8	9

EXAMPLE 4. COMPOUND. cuot. qrs. lbs.
From
Take

Here in the first example, i. e., in the Simple Subtraction, as the lower figure 3 is less than the upper figure 6, we say 3 units from 6 un'ts and 3 units remain, setting down the 3 ; and in theo second example, 4 pence from seven pence and three pence remain, setting down the 3 . So far they are exactly alike.

Then proceeding with the first example, we say 9 tens from 1 ten, I can't. Here, the lower figure is greater than the figure above. Now, in such case, we "add to the upper figure as many of the same as it tales to make one of the higher," (and this we do alike, both in simple and Com-pound)-i.e., in our first example as many tens as it takes to make a hundred, which is 10 , and in the $2 d$ example as many shillings as it takes to make a pound, which is 20 . Proceeding with the first we say, 10 and 1 is $11 ; 9$
from 11 and 2 remains, setting down the 2 ; then-we add 1 .
to the next tigure in the subtrahend before subtractiag: 1 to 9 is 10 ; 10 from 8 I can't ; then do as before, and 80 on. Proceeding now with the second example we say, 17 shillings from 13 I can't, then "add to the upper figure as many of the samie as it takes to malce one of the higher," just as in the Simple-i.e., as many shillings as it takes to make a pound, which is $20 ; 20$ and 13 is $33 ; 17$ from 33 and 16 remains, \&c. Surely we need not proceed further in order to see that the Simple and Compound aro done in precisely the same way. Let the pupil himself do and compare the 3rd and 4th examples. A plain statement of what we have here been doing, such as the following, would be the rule for Bubtraction :

Rule for Subtraction.- Write down the numbers to be subtracted, the less under the greater, so that things of the same name may sland directly under each other.
Begin at the right-hand or lowest denominalion, take the lower figure from the figure above and write the romainder cirectly belowo.

If the lower figure is greater than the figure above, add to the upper figure as many of the same as it takes to make one of the next higher, then subtract the lower figure and set down the remainder." But wohen the minuend has been thus increased by adding to it, the next. figure in the sublrahend must be increased equally by adding one to it before subtracting.
hxarcise 28.
(1)
$\begin{array}{lll}\text { f. } & s . & d \\ 73 & 10 & 5 \frac{1}{2} \\ 48 & 18 & 94\end{array}$
(4)
rur. per. yds
$710 \quad 1$
$2 \quad 19 \quad 4$
-1
(2)
cool. qrs. Lbs. 17.10 $10 \quad 227$
(3)

(6)

ARITHMETIC.

7. St, Paul's bell in London weighs 5 tons 2 cwt. 1 . qr. 22 ths. ; by how much does the great bell of Moscow exceed it, which weighs 198 tons 2 cwt. 1 qr.?
8. Three dozen silver table spoons, weighed 5 th .9 oz . 8 dwt., while three dozen silver tea-spoons weighed only 1 Ib. 9.07 .16 dwt. 18 grs.; what was the difference in weight?
9. From 160 deg. 18 statute m. 210 r. 3 yds. 1 ft., take 63 deg. 25 m .305 r .4 yds. 2 ft .
10. A tailor, from a piece of cloth containing 37 yds. 3 qrs. 2 nls., cut off 18 yds. 3 qrs. 2 nls. ; how much remained?
11. A farmer has two meadows, one containing 9 a. 3 r. 37 p., the other contains 10 a. 2 r. 25 p. ; also three pastures, the first containing 12 a .1 r .1 p ., the second containing 13 a .3 r ., and the third 6 a .1 r .39 p . $;$ by how many acres does the pasture exceed the meadow land?
12. A farmer had 576 bu. 1 pk. 2 qt. of wheat ; he sold 139 bu. 2 pk. 3 qt. 1 pt. ; how much remained unsold ?
13. Two vessels sailed for England; one of them was 9 weeks, 6 days, and 14 hours on the voyage ; the other got to England in 7 weeks, 5 days, and 19 hours; how much less tinie did the one go in than the other?
14. Sold a merchant one quarter of beef for $£ 27 \mathrm{~s} .9 \mathrm{~d}$.; one cheese for 9s. 7d.; for which I received in return; 40 Dushels of wheat for 89 dollars 55 cte ; 20 bushels of corn for £4 10s. 11d. ; how much was there stlll to payexpressed in decimal currency?
15. A man hating 65 c .95 th 123 in . of wood in his shed, sold 16 c .117 ft .65 in . ; how much had he left?
16. A ship sailed on a whaling voyage, Aug. 25 th, 1840 , and returned April 15th, 1844 ; how long was she gone?
17. An apothecary had 9 it 8 oz .2 dr. 1 scr. 13 grs of jalap, but has used in various mistures 4 mb .7 oz .5 dr . 2 scr. 17 gza. ; what has he left?
18. A note bearing date Oct. 20, 1823, was paid April 25,1825 ; how many days was the note atinterest?
19. A bought of B a bushel of wheat for 7s. 6d. He gave him 1 bushel of corn worth 5 s . 3d. and paid the rest in money. How much money did he pay?
20. A man sold a box of butter for 17s. 4d., and in pay received 7 lb . of sugar, worth $9 \frac{1}{2}$ d. per th., and the rest in money. How much money did he receive?
21. A merchant bought a piece of eloth, containing 19 yds. 3 qres., and sold 4 yds. 1 qr. of it; how much had he left?
22. A grocer drew out of a hhd, of wine 17 gals. 3 qts. ; how much remained in the hogshead?
23. A smith bought 17 cwt. 3 qrs. of iron, and after having wrought a few days, wishing to know how much of it he had wrought, he weighed what he had left, and found he had 8 cwt. 1 qr. 13 lb. How much had he wrought?
24. C bought of B a bale of cotton for $£ 1848$., and B bought of $C 4$ barrels of flour for $£ 93 \mathrm{~s}$. C paid B the rest in money. How much money did he pay?
25. When the minuend and the subtrahend are given, how do you find the remainder?
26. When the minuend and remainder are given, how do you find the subtrahend?
27. When the subtrahend and the remainder are given, how do you find the minuend?
28. When you have the sum of two numbers, and one of them given, how do you find the other?

- 11. When you have the greater of two numbers, and their difference given, how do you find the less number?

12. When you have the less of two number3, and their difference given, how do you find the greater number?
13. When the gum and athorone of two numbers are given, how do you find the two numbers?
[^4]
COMPOUND MULTIPLIOATION.

Here again let us first do an oxample in Simple, and one in Compound Multiplication together, and compare the operation in each, in order to see that in Multiplication, also, as in Addition and Subtraction, Simple aud Compound are done in the same way-by the very same rule.

Case I. When the multiplier does not caceed 12.

The first example, you perceive, is Simple Multiplication, the second example is Compound. But in both alike, after multiplying, we reduce the product to the next higher, jost as we did in Addition, and by the. Fery bame ruie "Itide (the sum in Addition, the product in Multiplica-
tion) by as many of the sameas it takes to make one of the higher,"-setting down the remainder and carrying the quotient to the next product, and so on-multiplying each figure, and reducing each product till all are done. Let the pupil himself do and compare examples 3rd and 4 th.

> Exayple 3id-Multiply 98765×12.
> Exavile 4 TH. - Multiply 7 mls .5 fur. 2 t per. 12.

The rule then would be as follows :
Rulu.- When the multiplier does not excew, 12, beginning at the lovoest, mulliply each figure by the multiplier; and then reduce each product, as was directed to reduce each amount in Addition, setting down the remainder and carrying the quotient, us in Addition:

exerciae 30.

> (1)
coot. qrs. lbs.
(2)
$4 \quad 316$
Ros. oz, duets.
(3)

yds. qre. nls. तो 4

(4) | acs. pds. per. | qrs. bu. pks. |
| :---: | :---: |
| 3 | 27 |
| | 7 |

$$
16^{1} 32
$$

(6) hrs. min. sec. $9 \quad 25 \quad 30$
7. Multiply 74 a. 2 r. 7 per. 4 yds. $\times 9$.
8. Multiply $£ 169$ 17s. 113d. $\times 9$.
9. Multiply 111 cords $7 \mathrm{cu} . \mathrm{ft} .7 \mathrm{cu} . \mathrm{in} . \times 12$.
10. Multiply 278 mls. 6 fur. 11 per. $\times 7$.
11. Multiply 11 gal. 1 qt. 1 pt. $\times 11$.

Cask II.-When the multiplier exceeds 12.

$$
\text { ExAMPLE--Multiply } 4625 \times 36
$$

In this example we wish to get 36 times 4625 . Now we may do this in two ways. For 6 times added to 30 times, would make 36 times : or, 4 times multiplied by 9 times, would make 36 times. See case 2d of Simple ionultiplication.

$$
\begin{gathered}
\text { YIRST WAY. } \\
\frac{36}{36} \\
\frac{27750}{}=6 \text { times. } \\
13875=30 \text { times. } \\
166500=36 \text { times. }
\end{gathered}
$$

get 6 times, then w

Simple Multiplication is usually done in the first way, as in this first example, (that is, by separating the multiplier into its parts, then finding each part separately, and adding the results together,) though it may be done in either way. Here we first times, and add the results.

Compound Multiplication is usually done in the second way, as in this second ex-ample-that is, by resolving the multiplier into its factors, then multiplying by the first factor, and that product by the secomd, and so on; and when necessary,
thods combined The factors it is done by both these methods combined The factors
we take for 36 are 4×9. We first get 4 times, then multiplying 4 times by 9 we get 36 times.

The only new thing to be learned here, then, you observe, is what factors to take for any number. In every other respect the work is the same as when the multiplier does not exceed 12.
cuot. grs. lb.s. oz.
$14376 \times 2=2$ times: 10
$7801712 \times 3=30$ times. 10
$740 \quad 9 \quad 8$

296	6	1	10	$0=400$ times.	
22	4	1	25	$4=30$ times.	
1	9	2	14	$12=$	2 times.

tns. ceot. qr.lbs.oz.
320 . $1120=$ to 432 times.
for we have in the second lin therefore, we multiply the 30 time, we muitiply the second line by 3 and get 30 imes at once. We have now, yet, to get it, viz: the multiplicand (twice). This is got by multiplying the first line, (i. e., the multiplicand) by 2. Now we have the result of repeating the multiplicand-first, 400 times : second, 30 times; and third, 2 times. These several resnlts we add together, and get 432 times-the result we want.

- The Rule then would be as follows :-

Rule fee Compound Mulitplication.-W hen the multiplier exceeds 12 , resolve the mulliplier into its factors, then mulliply the multiplicand by one factor, and the resulting product by another factor, and so on, till all the factors have been uscel. The last product will be the product required.

If the multiplier cannot be direclly resolved into factors, get the factors that will produce the highest number of times in it, and having muitiplied by these, get the products of each of the remaining .parts of the multiplier (always geting the higheos first, and so proceeding to the lowest) in the most convenient manner possible, by using the products already obtained; then add the several resilts together.

$$
\begin{array}{r}
36=6 \times 6 ; 100=10 \times 10 ; 10000=10 \times 10 \\
10 \times 10, \text { \&cc. }
\end{array}
$$

First we find the highest number of timesthat is,' the 400 , for which the factors are $(10 \times 10 \times 4)=400$ times. We first multiply by these factors to get the 400 times. Then we get the next highest, viz: the 30 times, in the most convenient way we can. The factors for the 30 are $(10 \times 3)=30$, but we need not multiply by 10 to get the ten times, ately, togedone e first its.

64

Eximple. - Suppose the multiplier to be 78529:
1st part $7000,=10 \times 10 \times 10 \times 7=7000$ times. 135 $\frac{2 d}{}$ part $800,=100$ (which we have already 7852 = 3 - part $50,=10$ (which we have already in first product) $\times 5=50$ times.
4th part $2,=$ the multiplicand muluiplied $\times 2=2$ times.
5th part $\frac{3}{4},=$ the multiplicand multiplied X $\frac{3}{4}=\frac{3}{4}$ times.
These five results added together $=78523$ times.
Exercise 31.

1. In the same manner as in the above example, write out the factors for the following numbers, viz: 2876 䂞. 76527, 285876 $\frac{8}{7}, 6754 \frac{1}{2}$.
2. Multiply 17 lbs .7 oz .14 dwts. by 478 .
3. Multiply £476 15s. 8d by 647 .
4. Kultiply 4 mls. 6 fur. 20 per. by 7426 .
5. Maltiply 36 yds. 2 qris. 3 nls. by 8047 .
6. Multiply 42 acres 1 rd. 10 per. by $57 \mathrm{f} \frac{\mathrm{e}}{\mathrm{g}}$.
7. Multiply 27 qrs. 7 bush. 3 pks. by 807 s .
8. Multiply 32 yrs. 3 wks. 4 days by $236 \frac{1}{1}$.
9. Multiply 4 cir. 7 signs 14 deg by 723 .
10. Multiply 7 reams 15 qrs. 9 sheets by $36{ }^{7}$.
11. Multiply $\$ 476.17$ by $865 \frac{y}{z}$.
12. Multiply $\$ 750.25$ by 7364.
13. How much silver in 6 table spoons, each weighing
14. What is the weight of 36 hhds. of tobacco, each hhd. weighing 5 cwt .3 qre. 14 lbs .13 oz ?
 weigit of 120 spoons?
15. If a railroad car goes 21 m .2 fur. 10 r. per hour, how far will it go in 15 hours?
16. How much cloth will it take to make the clothes for a regiment of soldiers containing 1143 men, if each suit requires 7 , yds, 3 qrs. 2 nls. 1 in.?
17. If a steamship in going round the world travel 211 m .4 fur. 32 per. a day, how far will she go in 367 days?
18. In 27 barrels there was on an average in each, 29 gallons, 3 quarts, 1 pint ; how much in all?
19. I can go to a certain town by the railway in nine hours, 25 minutes, and 30 seconds, it would take me, at least, five times as long to go by the stage coach; how long would the coach take?
20. How much water will be contained in 96 hogsheads, each containing $62 \mathrm{gal} .1 \mathrm{qt} 1 \mathrm{pt} .1 \mathrm{gi} . ?$
21. I bought 375 bales of English goods for $£ 911 \mathrm{~s}$. 6d. per bale, and sold them for 16,000 dollars; what did I gain ?
22. How much molasses is contained in 25 hhd. each hhd. having 61 gal. $1 \mathrm{qt}, 1 \mathrm{pt}$?
23. How much wood in 12 piles, each containing 7 cords 5 cu. ft. 12 cu. 'in.?
24. A farmer has 18 lots, and each lot contains 41 a. 2 r. 11 p.; how many acres does he own?

mental nxercises.

EXERCTSE 32.

1. At 7s. 4d. per bush., what cost 18 bushs. of wheat?
2. What cost 32 lb . of coffee, at 1 s .8 d . per Do?
3. What is the weight of 5 casks of rasins, each cask weighing 2 cwt. 3 qrs. 25 lb .?
4. At 27 cents a nail, what is the price of 2 yds 1 gr . 3 nls. of cloth?
5. A market-woman bought 4 quarts of strawberries for 29 cents, and sold them at 5 cents a pint; what did she gain?

COMPOUND DIVISION.

In doing any question in Division, no matter of what kind, the various steps in the provess are 5 in number, which 5 stops or operations are repeated over and over again till the question is done. These steps are; 1 st. Get lhe quotient figure. 2nd. Multiply the divisor by this quotient figure. 3rd. Subtract the product from that part of the dividenu taken. 4th. Reduce the remainder to the next lower denomination; and, bth. Add the result to whatever number of that lower denomination there may be in the: dividendi Now these 5 steps must be taken in every question in division, whether Short, Long, Simple, or Compound. But it is in Compund Long Division alone that all the figures and work of each step are fully written down, ${ }^{1}$ In each of the others, either some of these cperations are done mentally, or two or more of them are contracted into one, and therefore do not appear on the slate.
In Simple Short Division, for instance, as the divisor is less than 12, the operations Nos, 2 and 3, are performed mentally, and the operations, Nos. 4 and 5 , are also per formed mentally, by supposing the remainder as so many tens; to be placed before the next figure of the dividend, (just what it would come to if Nos. 4 and 5 were performed. in full,) see: annexed examples.
In Simple Long Division, the divisor being more than 12, the operations Nos. 2 and 3, are put down in full, but being simple numbers, where 10 of the lower make one of the higher constantly, operations Nos. 4 and 5 are contracted into one, by bringing down the next figure of the dividend to the right of the remainder, thus reducing and adding at once.
In Compound Short Division, the divisor again hoing less than 12, the operations Nos. 2 and 3 are done mentally, and the operations Nos, 4 and 5 are either done mentally or aside from the question, to serve a temporary purpose, and be immediately rubbed off, and consequently as in Simple Short, the oporations ivom: 2,3 , i4, and 5 do not appear on the slate:

The following example, done first by putting the work of each step fully down, (as is done in Compound Iong Division,) and then by performing some of the operations mentally, or contracting tiwo or more into one, (as is done in Compound Short and in Simple Long and Short,) will best illustrate these remarks and this whole sabject of Division.

Example.-Divide 4893 by 9

9 No. 5. $\quad 3$ No. 5.
39 new diyd. 33 new div. 3

Same opemation n Simple Shout.
9) $\mathbf{4 8 9 3}$

5436

This example, as we see here, can be done in any way from the most expanded to the nost contracted, but if the divisor were more than 12 , the operations Nos. 2 and 3 could noc conveniently be done in the mind, and it could therefore only be done in the first and second ways; and if the dividend were of different denominations, so that the remainder could not be reduced by multiplying constantly by 10 , then we could not reduce and add by bringing dovn, or calling the remainder so many tens; we would consequently have to do it in the first way.

Rule for Compocnd Division.--Proceed as in Simple Division, but as the remainder cannot be reduced and added to the neat lower, by bringing dowin the nexit figure, multiply it by as many of the next lover as it takes to make one of the saime, adding in the given number of the next loveer. Divide the number thus obtained by the divisor, as before, and soon.

COMPOUND DIVIBION.

1.-example. Comrotnd Short. coot. qus. lbs. oz. 9)17 $3 \quad 14 \quad 3$
$\begin{array}{llll}1 & 3 & 23 & 12 \%\end{array}$
8 ewt . 1st rem. 4

> 32 red. to qrs. 3 given qrs. added.

35 new dividend. but if ? and sould and that con1 by ens ; way. mple Ided tiply ie of wer. ore,

8 q18. $2 \mathrm{~d} \mathrm{rem}$.
25
200 red. to lbs.
14 given lbs. added.
214 new dividend.
7 lbs. 3 a rem. 16

112 rea. to ozs.
3 given ozs. added.
115 new dividend.
2.-EXAMPIE.

Compound Lona.
£ \quad s. d. $\begin{array}{llllll}19) & 25 & 18 & 6(1 & 7 & 31\end{array} \frac{17}{18}$

6 1st rem. \mathcal{E}
20
138 red. to s. and s. ad'd. 133

5 2nd rem. s.
12
66 red.to d. and d. ad'd.
57
93 ril rem. d.
4

exercise 33.

1. Divide 19 cwt. 3 qrs. 8 मos. by 3 .
2. Divide 18 lbs. 6 oz. 14 dwte by 17.
3. Divide 16 per. 2 yds. $1 \mathrm{ft} . \mathrm{bg} 9$.
4. Divide 64 yds. 2 qus. 3 nls. by 42 .
5. Divide 36 acr. 3 rd. 27 per. by 31 .
6. Divide 9 qre 7 ,bush. 3 pks. by 9 .
7.127 cwt. 2 grs. $17 \mathrm{lbs},+11$.

70

ARITHMETIC.

8. $£ 96749$ 16s. $11 \frac{1}{4} \mathrm{~d} \div 117$.
9. 69 gals. 1 qt. 1 pt. $\div 12$.
10. 679 sq. per. $7 \mathrm{ft} .107 \mathrm{in} . \div 132$.
11. 290 sq. per. 7 yds. $8 \mathrm{ft} . \div 3$.
12. 1467 French ells 1 qr. 2 nls. 1 in. -267.
13. 172 days 16 h. $29 \mathrm{~m} . \div 7$.
14. 916 miles 6 fur. 4 yds. $\div 67$.

We have now seen that with respect to the operation, Simple and Compound Division, and Division of every other name, may be said to be alike, and so with the other rules. The real distinction between questions in Division is not in the mode of doing them, but in the nature of the question. 1 For instance,--if 1 barrel of flour cost $\$ 5,20$ barrels will cost $\$ 100$. Here are 3 things, 1st, P. O. (price of one) \$5. 2nd, P. W. (price of the whole) $\$ 100$,and 3rd, N. T. (number of things) 20 barrels.
Now, out of these 3 things we get 3 distinct kinds of questions:-
1st. If P. W. (price of the whole) be required, then, P. O. and N. T. must be given, and the question reads thus,-If 1 barrel of flour cost $\$ 5$, what will 20 barrels cost? To do this, of course, we repeat the price of one, once for every thing or barrel, $\$ 5 \times 20=\$ 100,-$ Mulirplication. The multiplier is always an abstract number, plicand.

2nd. If P. O. (price of one) be required, then P. W. and N. T. must be given; and the question now reads thus: If I pay $\$ 100$ for 20 barrels of flour, what is the price per barrel? To do this of course we divide the price of the whole into as many equal parts as there are things, i. e. $\$ 100 \div 20=\$ 5$. Here we are dividing a thing Into a certain number of equal parts ${ }^{2}$ the divisor is therefore an abstract number, and the quotient is of the saine name as the dividend. This is Division nnto equal parts:

3rd. If N. T. (number of things) be required, then P. O. If P. W. must be given, and the question now reads:

kxercise 34. (mentai.)

1. To find the price of one, what must be given in the question? Give an example, and state what is given, and what is to be found and how you would proceed in doing it, then do it.' Do the same with each of your following examples.
2. To find the number of things bought or sold, what must be given? Give an example, and do with it as before.
3. Give examples like the last in which the price of one and the price of the whole are of various denominations, and show why, in doing them, you have first it duce the divisor and the dividend to the lowest name mentioned in either, then do the examples.
4. To find the price of the whole what must be given? Give an example, and proceed with it as before.
5. Point out what three things are here, any two of which may be giren to the find the third.
6. Show that this gives rise to three distinct Kinds of questions, and give an example uf arich, stating of what kind each example is, and how if suald be done.
7. What is the name or teind, of the aivisor and of the quotient in each kind of division, and of the multiplier and produet in multiplication:
8. Give an example in which the price of 3 is given to find the price of 7. First state how you would proceed in doing it step by step, then do it aecordingly,
9. What could you substitute for the word prine's int three different kinds of questions you have been examining?
10. Give examples in which the price or weight, \&c., first of $\frac{1}{2}$; second, of $\frac{3}{4}$; and third, of $5 \frac{1}{2}$, is given, to find the price or weight, \&c., of 27 . First, state how you would proceed in doing each, wen do each accordingly.
11. Give an example in which the price of $3 \frac{1}{2}$, and the price of the whole are given to find the number of things. Proceed in explaining, and doing it as before.
12. Give examples of questions in which the reight of the wohole and the weight of $\frac{3}{5}$, and of $4 \frac{3}{4}$, and of $9 \frac{1}{2}$, are given to find the number of things. Go through your plan of doing each, first, orally, and then do each as before.
Nors.-Go through the sollowing and the miscellaneous exercises, in the same manner before doing them. First, stating what is given. and what required, and then, how you intend to proceed in doing it, giving each step in its proper ordor, then work it accordingly.

EXERCISE 35. (SIATE.)

1. If 36 bags of cotton weighed swh. 3 qrs. 14 lbs ., how much did one weigh ?
2. A gentleman sent a silver tankard th a silversmith, and ordered him to make it into spoons, each to weigh 2 nz. 12 dwt.; how many spoons did he make, the tankard weighing 4 Des 7 oz ?
3. From Dublin to Cork is about 130 miles ; voft n ? does a coach wheel turn round between the tw le $3,1 / \pi$ the circumference of the wheel being 12 feet?
4. How many hoggheads of sugar, each containing 13 cWt. 2 qrs. 14 Hbs . tay be put on board a ship of 324 tons burden?
5. A sityeremith receivea ge ma, 807.14 dwh. 10 grs. of silver to make 12 tankards ; what would the weight of
6. If in 30 days a man travels 746 ml . 5 fur., travelling the same distance each day, what is the length of each day's journey?
7. A piece of cloth at 7s. 6 a per yard, cost $\kappa 17$ 126. 6d. ; how many yards were in it?
8. Bought 96 acres, 3 roods, 17 perches of land, for

9. The area of a tract of bush country ic 18233 acres 25 p . of land; and it is to be divided into lots, containing each 76^{\prime} a. 2 r . 25 p., of how many lots will it consist?
10. Bought 65 yards of cloth. for which I paid $£ 72$ 14s. 41 d . : what did it cost per yard?
11. A rich man divided 168 bn .1 pk .6 qt . of corn among 36 pone men; liow much did each receive?
12. If a ste mboat go 224 miles in a day, how long will it take to b to China, the distance being about 12,000 miles?
13. At $\$ 302.40$ per tun, what will 1 hhd. 15 gal. 3 qts. of wine cost?
14. At $\$ 94.50$ for 1 hhu. 15 gals. 3 qts. of wine, what is that per tun?
15. At $\$ 302.40$ per tun, how nuch wine may be bought for $\$ 94.50$.
16. At $\$ 2.215$ per gals., what cost 31 qts ?
17. At $\$ 1.80$ for $3 \frac{1}{4} \mathrm{qts}$. of wine, what is that per gal ?
18. At $\$ 2.215$ per gal., how nuch wine may be bought for $\$ 1.80$.

EXERCISE 36. (ON PRECEDING RCLLES.)
It is here earnestly recommended that, when going over this, and subsequent exercises the first time, each pupil, in turn, be required to state distinctly, in general terma, in the leaning of the clabs, befure aitempting to do any question-1st. What is given and ithat is required in each problem, as it comes before the class. 2nd. How

AHITHMETLC.

it is proposed to do it, gliving each step neatly and briefly in its proper order.

If properly conducted, this will prove to be a most valnable training, not in Arilhmethic merely, but in Public Speaking, in Grammar, Composition, and Logic.
If a pupil be thoroughly subjected to this training, day after day, at the black board, clearing up every problem, howerer complex, before the teacher and class, his success in all his other studies and undertakings is in a great measure determined and certain.

The class should be taken over the exercises a second time to test the relative quickness and accuracy of the pupils in the various operations.

EXERCISE 36.

1. Multiply 7896.43 by 99.9998 , and divide the product by 786.597 .
2. Express the following numbers in Roman Notation : 592, 4709, 69534.
3. Read the following numbers: 59.10967910 , 113000 367189.104257, $89754621936,10000001000.0001000$.
4. Reduce $\$ 5694.25$ to old Canadian currency.
5. A dealer bought 10 oxen in Canada, for $£ 1357 \mathrm{~s}$., and sold them in New York for $\$ 567.40$; what did he gain by the transaction?
6. Multiply 749 lbs .10 oz . (avoirdupois) by 725.
7. Suppose a man had 98 .bss. 2 oz .19 dwt .5 gr . of silver; how much must he give to each of 723 men if he divide it equally among them?
8. A man, on being asked his age, said he had spent the first 19 years of his life in England, the next 9 in America; during 27 following, 6 yrs. 11 months, 4 days, 6 whs. were spent in France, 16 yrs. 4 m. 3 days in the United States, and the remainder in his native country ; how old was he, and in which land hid he lived the longest ?
9. 4 bags contain together $\$ 798.50$; in the first there are $\$ 356.25$, in the second $\$ 275.59$, and in the third and fourth an equal amount ; whas stim Gundiuin old our-
10. If I buy 12 boxes of oranges in New Orleans, at $\$ 5$ per box, and by shipping them to Quebec sell them at 67s. per box, what would be my gain (in decimal currency) the freight being 6 dollars, and the waste from decay $\frac{1}{3}$ of the prime cost?
11. Find the exact leugth of the lunar month, which contains 2551443 seconds.
12. A pint will contain 9000 barley corns, and 5 of these placed ono after another, would reach an inch, how far would they all reach?
13. Write down six hundred and twenty-nine billion, 97 million seven hundred and seven thousand four hundred and ninety-three, and six hundred and seventeen billionths.
14. Reduce 95679.367 inches to acres, roods, dec.
15. Take the number 67.95000000 , and (by removing the dec. pt.) ; (1) multiply it by $1,000,000$; (2) divide it by 10,000; (3) ; make it billionths ; (4) make it millionths; (5) make it thousandths ; (6) make it tenths.
16. If you buy 27 lbs sugar, at 7d. a pound; 36 drums of figs, at 4 s . 6 d . a drum ; 17 boxes of rasins, at 6 s .7 d . a box; what will be the amount of your bill, in decimal currency?
17. A merchant having purchased 12 cwt . of sugar, sold at one time 3 cwt. 2 qr. 11lbs, and at another time he sold 4 ewt. 1 qr. 15 lbs. ; what is the remainder worth at 15 cts per fb ?
18. The circumference of the earth contains one billion, five hundred and eighty-four millions of inches; express the same in miles.
19. In 19 fields there are 113 n .3 r .25 p . of land ; if the fields contain an equal amount, how minch is there in each fleld?

> 20 . How many yards of earpet, 25 inches wide, will it take to cover a room 19 ft .17 inches long, by 18 ft . 9 in . wide?
21. Divide $\$ 462$ among 5 men and 6 women, giving to each man thrice the share of a woman.
22. One hundred and seventy-six men consumed in a week 13 cwt. 3 qrs. 15 Bbs 6 oz . of bread; how much did each man consume? What was the cost of the whole at 48. 6d. a qr?
r23. If one man consumes in a week 7 fb .12 oz .3 drams of bread, how many men will consume 13 ewt. 2 qr. 15 lb .6 oz in the same time? How many. will consume it in one day at the same rate?
24. A farmer has a granary containing 232 bushels 3 pecks 7 quarts of wheat, and he wishes to put it in 105 bags, how much must each hag contain?
925. Divide $£ 4876$ 9s. 3d. by four factors, which produce 630, and from the successive remainders find the true remainder.
126 . If 5 oz . of silk can be spun into a thread $2 \frac{1}{2}$ fur. long, what weight of silk will supply a thread of 100
27. If 3 qrs. 16 Ass. of silk is sufficient for a thread of oz. spin?
17. 28. A coru factor buys 2 qrs. at 39s. per quarter, and 7 bushels at 6s. per bushel, at what price per bush. must the whole be sold, so as to gain $\$ 4.75$.
1/ 29. A side of Lincoln's Inn Square, London, is 770 ft , and of Russell Square 670 ft ., how many acres do they contain respectively? What is the land worth at $\$ 460$ per perch?
30. If 8 horses consume two-thirds of 889 bu, 2 pks. 6 qts. of oats in 365 days, what will one horse conerme in
31. If one herse consume in $\frac{8}{\text { e }}$ of a day 1 pk .1 qL 1 pt . 2 gill of oats ; in how many days would 8 horese consume 839 bu. 2 pks. 6 qis.
32. If 7 horses consume in 3 of a day; 1 pk. 1 qt. 1 pt. 2 gill of oats ; how much would 8 horses cnnsume in 365 daya?
33. A labourer dug a cellar 62 feet long, 25 feet wide, and $8 \frac{1}{2 l}$. deep, at $5 \frac{1}{2} d$. per cubic yard; what was the amont of his bill in decimal currency?
34. In one pile of wood are 37 cords $119 \mathrm{cu} . \mathrm{ft}, 1462$ cu. in. ; in another, 9 cords 104 cu . ft. ; in a third, 48 cords $7 \mathrm{cu} . \mathrm{ft} .127 \mathrm{cu} . \mathrm{in}$. ; in a fourth, 61 cords 139 cm. in.; how mnch wood in the four piles, and its value at $\$ 3.84$ a cord?
35. Bought 50 casks of molassea, each containing 58 gals. 3 qts., at 50 ets. per gal. ; afterwards 215 gals. 2 qts. leaked out, and the remainder was sold at 3s. 4d. per gal. ; what was the result of the operation?
36. Bought a piece of land 68 rods long, and $25 \frac{1}{2}$ rods wide, at $£ 6$. 4s. Gd. per acre; what did it amount to ?
37. A man lends his neighbour : $\mathrm{E135} 6 \mathrm{~s}$. 8d., and takes in part payment 4 cows at $\$ 22$ a piece, also a horse worth 250; how much remained due?
38. How many suits of clothes can be made from 3 pieces of cloth, ench containing 39 yds .2 qrs. 3 nls. every $4 \frac{1}{2}$ suits requiring 13 yds. 1 qr. 2 nls.
39. What weight of water may be contained in a canal whose depth is 8 ft ., width 25 ft . and length 25 miles, when a cubic foot of water weighs $1,000 \mathrm{oz}$.
40. To how many persons may $£ 60$ 15s. 6 d. bo distributed, giving e4.13s. 6d, to each?
41. Reduce 179 ths. 3 oz. 3 dr 1 scruple 14 grs. to grains.
42. Divide $£ 1694$ 168. 9d. by \&9 198, 113 d.
43. Multiply 6 weeks 4 days 3 lms 17 min. by 429.
44. How many timat woald a conch wheel turn in a distance of 52 miles, the circumference of the wheel be. iog 16 ft .6 in.
45. A plate of gold cost $\$ 643.50$ at $\$ 17.50$ per oz; what was its weight?
46. There is a certain number, to which if 4 be added, and from the sum 7 .be subtracted, and the difference be multiplied by 8 , aud the product divided by 3, the quotient will be 64 ; what is that number.
47. Reduce 54622.716 cub. in. of firewood to cords.
48. A printer uses one sheet of paper for every 16 pages of an octavo book ; how much paper will be necessary to print 500 copies of a book containing 336 pages, allowing 2 quires of waste paper in each ream?
49. If a ton of pot-ashes cost $£ 2710 \mathrm{~s}$., what will 14 cwt. cost? ?
50. If 14 cwt. of pot-ashes cost $£ 195 \mathrm{~s}$., what is that per ton?
51. At £27 10s. a ton for pot-ashes, what quantity may be bought for $£ 195$ s.?
52. If a bushel of wheat cost $\$ 1.92$, what will 1 pto 4 qts. cost ?

$$
t
$$

 53. If 1 pk .4 qts. of wheat cost 72 cts., what is that per
bushel ? 54. At $\$ 1.92$ per bushel, how much wheat may be bought for 72 cts ?

569597 481304 910567 814312 916727 \&c., \&c.

Let the pupil set down on the slate a column of 20 or 30 numbers, for addition, each number containing 5 or 6 figures; and let him read up their increasing sum to the top of the col-
umn, and then down, to see that he umn, and then down, to see that he Is correct, thus : beginning, (see first column), $7,9,16$, 20, 27, and so on, until he can do so with the utmost rapidity and correctness.
55. In a written exercise, classify the questions in this 36 th exercise into their different kinds oy placing the this. of fach question uncier its respective heading, and give
the rule accurately for doing each different kind of question. For example; thus,

Division, (Equal Parts) Nos. 7, 22, \&c. Division, (How Often) Nos. 20, 23, \&c. Reduórion, (Ascending) Nos. 11, 18, \&c. Reduction, Descending) 41, \&c.

EXERCISE 37. (mental.)

1. To 5 add 9 ; subtract 3 , add 1 , take half of it, multiplying by 9 , subtract 6 , divide by 8 , add $10 ;$ what is the result?
2. In £37 4s. how many shillings? How many dol-
rs and cents?
3. What is the weight of 2 pockets of hops, each pocket weighing 1 cwt . 2 qrs. 17 pbs.?
4. How many yards of cloth that is 1 qr. wide, are equal to 27 yards, that is 1 yd . wide?
5. If 80 dellars fwill pay for 4 dinners for 30 men, how many dinners would it buy for 1 man?
6. How many coats may be made of 7 yds. of broadcloth, allowing 1 yd .3 qrs. to a coat?
7. A farmer having 120 sheep, lost $\frac{1}{4}$ of them and sold $\frac{1}{2}$ of the remainder; he then bought 10 more; how many sheep did he then have?
8. What is the weight of 16 pigs of lead, each pig weighing 3 cwt. 2 qrs. 17 lbs.?
9. If an ounce of silver cost 6 s .9 d ., what is that per lb. Truy? What would 2 lb .7 oz. cost?
10. If flour cost $\$ 5$ a barrel, how many barrels can be bought with 6 barreis of pork, at $\$ 18$ a barrel?
11. A person eold 2 bushels and 1 peck of currants, at 2 cents a pint, and in payment reccived 1 bushel of goosoberries, at 4 cents a pint; how much remains due?
12. At 9 दohars a inurel, how many barrels of beef may be bought for 3,827 dollars?

13．From a piece of cloth，which contained 43 yds． 1 qr．，a tailor cut 3 suits，containing 6 yds． 2 qrs． 2 uls．each． How much cloth was there left？

14．At 17 cents per lb．，how many pounds of chocolate may be bought for $\$ 5021$ ？How many 16 ，for $\$ 24$ ？

15．A man bought a horse for 80 dollars，paid 2 dollars a．week for his keeping，and received 4 dollars a week for his work；－at the expiration of 10 weeks he sold him for 70 dollars ；how much did he gain by the operation＇？

16．A fox is 80 rods before a hound，and the hound gains 5 rods on the fox every 10 minutes；in how many minutes will the fox be caught？＂In how many hours？

17．Seven men bought a quantity of land for 84 dollars， and sold it for 14 dollars less than they gave for it；what did they sell it ior，and what was each man＇s share of the loss ？

18．A farmer sold 18 bushels of wheat at $\$ 2$ a bushel， and took in part payment a calf at $\$ 5$ ，and the balance in flour at $\$ 4$ a barrel ；how many barrels of flour did he， receive？

19．A man bought：a cow for $£ 13 \frac{1}{2}$ and sold her for \＄153；he laid，out what be gained in oats at 20 cents a bushel ；how many busbels did he buy？

20．A man sold some wood for $£ 288$ ．，and received in cost？

23．If 16 men can finish a piece of work in 12 days，in What time can 20 finish it？

24．If 5 persons spend $⿱ ⿱ ㇒ 木 日 夊 寸, ~ o f ~ a ~ h o w ~ m u c h ~ w i l l ~ B ~ p e r-~$ sons spend？ 3. each.
colate
lollars ek for im for

SECTION III.

GREATEST CCIMON MEASURE ; LEAST

 COMMON MULTIPLE; VULGAR FRACTIONS; AND DECIMAL FRACTIONS.
Greatest common measure,

A measure or factor of a number is any number which divides it without a remainder. Thus, 2, 3, 4, 6, and 12, are all measures of 12 . Any number that will divide each of two or more numbers without a remainder is called a common measure or factor, and the greatest number that will do this is called the greatest common measure, represented by the letters G. C. M. Thus 2 is a C. M. of 4 and 6 ; and 15 is the G. C if of 30 and 45 .

To find the G. C. M. of two numbers :--
RuLe. - Divide the greater by the less und the lust divisor by the last remainder, and so on, clividing the last divisor
 will be the G. C. M.

ARITHMETIC.

Example.-What is the G. C. M. of 132 and 312 ?
132)312(2

264
48)132(2 96 $36) 481$
$\frac{36}{12) 36(3}$
36

Here we divide the greater, 312 by the less, 132, and obtain the remainder 48. by which we now divide 132, the last divisor, and get the remainder, 36 ; and so on. The last divisor 12 , is therefore the G. C.M.
?
Exercise 38.
Find the G. C. M, of the following numbers:

1. 224 and 336.
2. 175 and 2040.
3. 2121 and 1313.
4. 377 and 1131.
5. 348 and 1024.
6. 1225 and 625.
7. 429 and 715.
8. 2431 and 770.
9. 1379 and 2401.

LEAST COMMON MULTIPLE.

A multiple of a number, is any number that will contain it without a remainder. Thus, 12 is a multiple of $1,2,3,4,6$, and 12.

A comnon multiple of two or more numbers is, any number that will contain each of them without a remainder; and the least number that will do this is called the least common multiple represented by the letters l. e. m. Thus, 16 is a c.m. of $1,2,4$, and 8 , but 8 is the l c. m. of these numbers.

To find the l. c. m. of two or more numbers :-
Rule.-Write the given numbers in a line, and strike out any that are contained in any of the others without a remainder. Set aside any one of the numbers not struck out, as a factor to be retained, and divide each of the remaining numbers of the line by the greatest number that will exactly. divide it and the number set aside, bringing down the quotients and any numbers that cannot be thus divided for the next line.

Proceed with this line as with the first line, and so on with each succeeding line until no number zoil exaclly divide any twoo numbers in the line.

Then, multiply all the factors set aside, andallthe numbers left in the last line together, and the product will be the l.c. m.

Example.-What is the l. c. m. of $4,6,8,10,12,16$, $20,24,25$, and 30 ?

OPERATION.

$$
16 \times 15 \times 5=1200, \text { l. c. m. }
$$

Here 4, 6, 8,10 , and 12 , are struck out at once as each of them is contained in some other of the given numbers. We then set aside 16 as a factor to be retained, and then divide 20 by 4, because 4 is tha greatest number that divides 16 and 20 withont a remainder, for the same reason we divide 24 by 8 and 30 by 2 , and as there is no factor common to 16 and 25 , we bring down the 25 Now we have in the new line 5, 3,25 , and 15 ; we strike out 5 and 3 , set aside 15 , and divide 25 by 5 . We then have 16, 15 , and 5 , as the factors iefit, winch give the product 1200 , the l. c.m.
lbers is, any out a remainis called the etters l. c. m. the l c. m of

Find the l. c. m. of :

1. $15,20$.
2. $8,4,16$,
3. $12,15,16$.
4. 9, 15, $18,20$.
5. $8,12,15,20$.
(6. 6, 12, 16, 18. 24.
6. 2, $4,8,16,10,48$.
7. $7,12,15,27,35,40,45$.
8. $4,9,10,15,18,20,21$. $10.8,910,12,25,32$. 75,80 !

VULGAR FRACTIONS.

When the denominator is followed by one or more 0 's, it is called a Decimal Fraction. For instance, $\frac{3}{10}, \frac{17}{100}$, All other fractions are called Vulgar or Common Fractions, and they are divided into Proper; Improper, Simple, Compound, Complex, and Mixed.
A Proper Fraction is one that has its numerator less than the denominator, as $\frac{3}{5}, \frac{5}{9}, \frac{11}{2}$.
An Improper Fraction is one that has its numerator equal to. or greater than the denominator. As, $\frac{3}{3}, \frac{13}{6}, \frac{2 x}{12}$.
A Simple Fraction is a single expression, either proper or improper, expressing one or more equal parts of unity. Thus, $\frac{3}{4}, \frac{9}{9}, \frac{16}{1}$. are simple fractions.
A Compound Fraction is a fraction of a fraction. or several fractions connected by the word of. As, $\frac{1}{3}$ of $\frac{5}{5}$, $\frac{3}{5}$ of 12 , $\frac{2}{5}$ of 3 of 16 .
1 A Complex Fraction is one which has one or more of any of the other kinds of fractions for its numerator, or for its denominator, or for both. As, $\frac{3}{25} \frac{48}{7} \frac{2}{7} \frac{2}{2}$ of $\frac{4}{5}$.

A Mixed Number is one comosed of and a fraction. As, $14 \frac{1}{2}, 13 \frac{7}{8}$, \&c.

If 15 apples were divided equally among 4 boys, how many would each boy receive?

If it were 12 instead of 15 apples, each boy would of course get exaetly 3 ; and if it were 16 apples, each boy would receive exactly 4 ; but as there are 15 apples to be divided equally among 4,3 is less than the exact share of each, and 4 is more, hence, each boy must get more than 3 and less than 4. After each of the 4 boys has recelved 3 apples there are still 3 remaining (not yet divided.) These remaining 3 must also ${ }^{\circ}$ be divided into 4 equal parts, and one of these parts given to each boy in addition to the 3 whole apples he has already received.That is, the exact share of each boy will be 3 apples and the $\frac{1}{4}$ part of " 3 , or (which is the same thing) 3 and the $\frac{3}{4}$ part of one. This $\frac{3}{4}$ is called a Vulgar or Common Fraction. The upper figure 3 is called the Numerator, and the lower figure 4 is called the Denominator.

* We learn from the examination of this question-

I. How fractions originate.

They arise from questions in Division, and are themselves questions in dicision, the numerator being the dividend and the denominator the divisor.

II. What a fraction is.

A fraction is an expression representing one or more of the equal parts into which any quantity may be divided.
III. What the Denominator represents.

The Denominator, (according to the manner in which it is viswen,) represents the divisor,- the name of the fraction, the number of equal parts into which the quantily is divided, -the number it talces to make an integer or whole thing, the size of the pieces.

IF. What the Numerator represents.
The Numerator represeruts the cilvidenco, also, the nume so of

ARITHMETIE.

EXERCIEE 40.

This Introductory exercise is intended to exhibit and apply the principles connected with the operations in fractions. The teacher is supposed to illustrate cach principle, and question under it, and then exercise the class on it before proceeding to the rest.

1. How do fractions arise?-Give an example.
2. What is a fraction?- Gire examples of each different kind. Write them out and read them.
3. What does the Denominator represent?
4. Show how the denominator represents the sizc of the pieces?
5. What does the Numerator represent?
I. Remember, then the Denominator represents the size the pieces. This being the case,
6. Compare ${ }^{3}$ and ${ }^{3}$, and show what effect it has had upon the value of the fraction $\frac{8}{4}$ to multiply the denominator by 4.
7. Compare $\frac{1}{3}^{3}$ and 3 , and show what effect it has had upon the value of the fraction $\frac{3}{17}$ to divide the denomina-
8. Compare $\frac{2}{8}$ and $\frac{8}{8}$, and show what effect it has had upon the value of the fraction 옹 to multiply the numerator by 4.
9. Compare $\frac{8}{16}$ and $\frac{3}{18}$, and show what effect it has had; upon the value of the fraction if to divide the nas merator by 2.

How, then, may the value of a fraction be increased or decreased by multiplying, and how may the valne be increased or decreased by aividing?
10. Compare o $\frac{1}{2}$ with $\frac{8}{\frac{8}{5}}$, and $\frac{19}{18}$ witit $\frac{1}{6}$, and show what effect it ins had upon the value of the fraction $\frac{8}{9}$ to multiply
to exhibit and e operations in illustrate cach il exercise the
ample.
f each different.
the size of the
esenls the size the number of
et it has had the denom-
et it has had e denomina-
it has had he numera-
flect it has ide the nulue be ino multiply
the numerator and denominator by the same number, and What effect upon the value of the fraction $\frac{10}{1}$ to divide the numerator and denominator by the same number.
II. Remember, that, the denominato represents the number of pieces it takes to make a vohole one, and numeralor the vohole mumber of pieces in the fraction. T boing the case,
11. How many whole ones are there in $\frac{1}{5}, \frac{10}{6}, \frac{1}{6}$?

This is reducing ar improper fraction to a ahole or mixed number. Write unt a rule for doing it.
12. How many 6 ths in $7,12,5$, whole numbers? How many 12 ths in $15,30,46$?

This is reducing a whole number to a fraction having a given denominctor: Write out a rule for doing it.
13. How many 6ths in 83 , in 125 , in 17 ? ? How many

This is reducing a mixed number to an improper fraction. Write out a rule for doing it
III. Remember that dividing the numerutor and denominator of a fraction by the same number does not alter its value. This being the case-
14. Give each of the following frections the least numerator and denominator it can have, without altering the value, viz. $\frac{3}{9}, \frac{6}{36}, \frac{70}{2}, \frac{18}{4}, \frac{1}{3}$, $\frac{1}{3} 9$, \&c.

This is reducing a fraction to its lowest terms. Write out a rule for doing it.
IV. Remember that multiplying the numerator and donominator of a fraction by the same number; does not alter ths vaiue. This being the case--
15. Show how, according to this principle, each four of the following fractions may all be made to have the game ànominató witūout altering their value, viz:

\bullet

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic
Sciences Corporation

This is reducing fractions to a common denominator, (which must be done before fractions having different denominators can be either added or subtracted). Write out a rule for doing it, and also for reducing them to the on the black-board.) (Teacher explain to the class V. Remember that either mittiplying the numerator or dividing the denominator, increases the value of the fraction, i, e., multiplies the fraction; and that multiplying the denomination or dividing the numerator, lessens the value of. number may (without aithe fraction; and that any whole fraction, by placing 1 undering its value,) be voritten as a 16. Multiply and This being the case $18 \mathrm{by}, 12 \mathrm{by} \frac{3}{4}, 40$ then divide, $\frac{8}{3}$ by $6, \frac{35}{25}$ by 3 , 12 by 4 ;楊 by $\frac{3}{3}, \frac{12}{2}$ by 4.

This is multiplying and dividing (I.) a fraction by a whole number, (II.) a whole number by a friction, (III.) a fraction by a fraction. Write out a separate rule for doing each, (that is, six rules), and then embrace the three for
VI. Remember that the numerator of a fruction is the dividend, and the denominator is the livisor, ind that the roond "of" betwoen fractions, is the same as (X into) the sign of multiplication. This heing the case- in 17. Do the multiplication and division required in the
 ${ }^{2 \frac{1}{2}}$ of 2 of $\frac{1 \frac{1}{3}}{2 \frac{1}{2}}$ of 6

This is reducing compotind fructions, and complex fractions, to simplefractions. "Write out a rule for doing each.
VII. Remember that the numerator 1 . Wrigs or pieces, and that the duerator is the number of the and that whinge ©f difie eitni names cantor shows their sume, nor sudtracied, the one from the other. This boing the 18. Ald the following firctions, $\frac{3}{4}+\frac{5}{8}+\frac{7}{8}, \frac{0}{8}+\frac{5}{2}$ +24, $\quad \frac{1}{15}+\frac{8}{18}+\frac{9}{5}, \quad \frac{15}{40}+\frac{7}{05}+\frac{9}{15}$.
19. Subtract $\frac{7}{8}-\frac{5}{8}-\frac{8}{12}-\frac{8}{32}, \frac{1}{6}-\frac{3}{3} \frac{8}{5} \frac{8}{12}-\frac{7}{36}$.

This is adding and subtracting fractions. Write out a rule for doing each.
VIII. Remember that reduction descending is done by multiplying the fraction, and that reduction ascending is done by dividing the fraction. This being the case-
20. Reduce $\frac{5}{8}$ of $a, i l$ to the fraction of a cwt. " $\frac{6}{7}$ of a year to months, weeks, \&c.
" $\frac{1}{3}$ of an hour to the fraction of a week.
" $\frac{8}{12}$ of a f to shillings, pence, \&c.
What part of θ, x is $\frac{8}{8}$ of a shilling?
What part of a month is $\frac{3}{4}$ of a day?
In the preceding Mental Exercise (40) the Cesign has been to exhibit and apply all the principles involved in the various operations in fractions, so as to exercise the mind of the learner, and call forth the illustrations of the teacher. If this has been done to the extent designed, nothing further is necessary, except to collect the rules carefully worded, and furnish sufficient exercises for practice. The pupil should compare the rules he has already written, as directed, with the rules here given, and notice particularly in what respects they agree, and in what respects they differ.

RULES WITH EXERCISES.

To reduce an improper fraction to a whole or mixed number-

Ruse - Divile the nimerator by the denominator, the guotient will be the volole or mixed number.

> 5*

Example. $\quad 18=29$.

90

Reduce to their equivaleat whole or mixed numbers :

To reduce a mired number to an improper fraction-Rown.-Multiply the whole number by the denominato. adding in the numerater, and under the result place the de-
nominato: nominator:

ExAMPLS. $69=83$.
Reduce to improper fractions :
(1)
12易.

$\begin{array}{ccccc}\text { (2) } & \text { (3) } & \text { (4) } & \text { (5), } & (0) \\ 1361 \frac{1}{2}, & 75 \frac{15}{15}, & 10 \frac{10}{10}, & 77 \frac{y}{17}, & 1233_{17}^{0} .\end{array}$
(4)

$$
\text { extraisk } 42 .
$$

To reduce a whole number to a fraction having a given denominater-
Rolic.-Multiply the whole number by ator, and under the result place the oy the given denomai
F-...

Example. 12 to 6 ths, $12=\mathrm{z}_{\mathrm{g}}$.

$$
\begin{aligned}
& \text { (1) (2) (3) (4) (5) (6) } \\
& 8,7,12 \text { 106 } 72 \text { (6RCisk }
\end{aligned}
$$ Reduce $8,7,12,106,72,908$, cach vie to 94 hs , 11 ths, 17 ths, 12 ths, 36 ths, 40 ths.

To reduce a fraction to its lowest terms-

RuLe.-Divide the mumerator and denominator by the G.
C. M.; or divide the numerator and denominator by any number that woil exactly divide them, and the reduced numcoccotly divide them, and so on, oy any numill that woill one woil again exactly divide them. no number greater than

$$
\text { EXAMILE. } \frac{1}{2}=\frac{1}{2} \text {, or } \frac{1}{4}=\frac{6}{12}=\frac{1}{8}=\frac{1}{2} \text {. }
$$

Observe. - ist. Any number that ends in 5 is divisible by 5.

2nd. Any number that ends in 0 is divisible by 10,5 , or 2.

3rd. Any number that ends in an even number is divisible by 2 .

4th. When the two right-hand figures are divisible by 4 , the whole is divisible by 4.

5th. When the three right-hand figures are divisible by 8 , the whole number is divisible by 8 .
oth. When the sum of the algits of a number is divisjble by 3 , the number itself is divisible loy 9 :

ExERCIge 44
(1)
(3) (4)
(5)
(6)
 their lowest terms.

To reduce a compound fraction to a simple fraction-
Rule. - Write the ohole numbers in the form of fractions, and r duce the mixed numbers t ininproper fractions, and the complex jractions to stimple ones; then muitiply all the numer. ators: together for a numerator, and all the denominators together for a denominator.
Complex fractions are reduced to simple fractions by dividing the numerator reduced to a simple fraction by the deriominator reduced to a simple fraction. (See rule for Division.)
Notm-Before multiplying the numerators and denominators to. gether, the work may be greatly shortened by cancelling all the factors that are common to any numerator and denominator.
Exauple. $\frac{3}{5}$ of 4 of $6 \frac{1}{2}$ of $\frac{11}{\frac{1}{4}}=\frac{3}{2} \times \frac{4}{2} \times 73 \times 12=$ 2 $\frac{8}{9} \times \frac{4}{1} \times \frac{73}{12} \times \frac{12}{2}=146=4=4 \frac{2}{8}$

92

Aritimetic.
Exenctse 44.
(1)
(2)
fof of of 10 of $\frac{7}{8}$,
(4)
(2)
(3)
(5)
$\frac{5 \frac{1}{2}}{3}$ of 1 of $2 \frac{1}{2}$ of $\frac{3}{2 \frac{3}{2}}$,
(6)
$\frac{3}{4}$ of $\frac{\frac{4}{3}}{3}$ of $1 \frac{8}{4}$,
To add and subtract fractions.
Rulus.-Reluce them to a commm denominotor, then, for addition, add the numerators, and for subtraction, subtract the numerator of the subtrahend from the numerator, of the minuend, and under the result place the commen denominator.
Nors.- At the close of every question in Addition, subteraction Or mixeci numier Division, always reduce improper fradions to whicle or mixed numbers, and proper fracticns to their toweet terms.

To reduce fractions to a common denominator.
Ruve.- Mulliply the numerator and dervminator of each fraction by all the denominators except its oron.

Exampie.-Reduce to a common denominator and add $\frac{3}{4}, \frac{5}{6}$, and $\frac{7}{8}$.

Or the following rule, which is generally a shorter method :-

To reduce fractions to their least common denominator.

RuLe. - Find the lexat emmont muitiple of all the denomisators, and talce it jor the common denominator. Then mul-
tiply the numerator of each fraction by the quotient obtained by dividing its denominator into this common denominator.

Example.-(With same fractions as above.)
$\mathrm{f} 2 \frac{1}{2}$ of $\frac{\frac{3}{4}}{2 \frac{1}{2}}$
then, for btract the the mininator. uberraction, to whele
of each
und add

exercise 45.

Reduce to a common denominator, then add and subtract the following tractions:

1. $\frac{2}{5}+\frac{3}{7}+\frac{4}{5}+\frac{2}{3}+\frac{2}{2}$.
2. $\left(\frac{7}{21}+\frac{12}{2}+\frac{8}{8}\right)-\left(\frac{7}{20}+\frac{13}{8}\right.$. $)$
3. $\left(\frac{37}{26}+\frac{8}{10}+\frac{4}{8}\right)-\left(\frac{98}{8}+\frac{8}{6}\right)$
4. $\left(\frac{7}{8}+\frac{9}{8}+\frac{9}{20}\right)-\left(\frac{1}{2}+\frac{3}{14}\right)$
b. $\left(\frac{15}{2}+\frac{14}{1}+\frac{18}{8}\right)-\frac{27}{8}$.
5. $\left(\frac{1}{2}+\frac{2}{10}+\frac{15}{2}\right)-\frac{2}{2}$.

6. $\left(\frac{2}{3}+\frac{1}{12}\right)-\left(\frac{3}{1}+\frac{1}{6}\right.$)

To add mixed numbers.
Rule. - First, add the fractions, and haviny obtalnel what they amount to, add it to the whole numbers.

To subtract mixed numbers.
Proceed in the same vay. first subtract the fractions, then the whole numbers.

GXAMPIE, ADDITION.

Exercise 46.

1. $\left(5 \frac{1}{3}+17 \frac{7}{4}\right)-\left(6 \frac{1}{8}+117 \frac{7}{8}\right)$.
2. $\left(25 \frac{2}{3}+169+10 \frac{1}{2}\right)-136$.

3. $\left(1287 \frac{1}{4} \frac{5}{6}+715 \frac{1}{7}\right.$ 궁 $\left.+8 \frac{1}{3}\right)-\left(10 \frac{1}{2}+6 \frac{7}{12}+5 \frac{1}{3}\right)$.

To multiply fractions, or a fraction, of any kind by fractions, or by a fraction, of any kind.

Rule.- Reduce compound and complex fractions to simple ones, and whole and mixed numbers to improper fractions, then, having cancelled the factors that are dutimon to any, numerator and denominutor
Multiply all the numerators topether for a youn mumerut; and all the fetomiotiation's logether for a nevo denominater.
vULGAR FRACTIONG.
Bravalze. $\quad \frac{8}{12} \times \frac{3}{4}=\frac{8}{32} \times \frac{8}{4}=\frac{1}{2}$
$\begin{array}{r}4 \\ -\quad 2 \\ \hline\end{array}$
Or, $\frac{5}{3} \times 3=\frac{5}{9} \times \frac{3}{1}=\frac{5}{9} \times \frac{8}{1}=\frac{5}{3}=1 \frac{2}{3}$
Or, $12 \times \frac{3}{4}=\frac{12}{1} \times \frac{3}{4}=\frac{8}{1} \times \frac{3}{4}=\frac{8}{1}=0$
Or, $2 \frac{3}{4} \times 2 \times \frac{6}{7}=\frac{11}{7} \times \frac{4}{1} \times \frac{4}{7}=4 \frac{5}{7}$
Excreise. $\frac{3}{4} \times$ what? $\frac{8}{8} \times 6=$ what? $36 \times \frac{6}{88}$
 What?
\qquad
To divide fractions, or a fraction, of any kind by tractions, or by a fraction, of any kind.

Ruse. - Reduce compound and complex fractions to simple ones, and whole and mixed numbers to improper fractions, as in Multiplication. Then, INVERT TRTE TERMS OF TH: Divisor, and proced as in multiplication.

ExAMPLE. $\frac{8}{12}+\frac{3}{4}=\frac{8}{12} \times \frac{4}{3}=\frac{8}{12} \times \frac{4}{3}=\frac{8}{3}$
Or, $\frac{5}{9} \div 3=\frac{5}{9} \times \frac{1}{3}=\frac{5}{27}$
Or, $12+\frac{3}{2}=\frac{12}{1} \times \frac{4}{5}=\frac{4}{1} \times \frac{4}{1}=\frac{16}{1}=16$

$$
\begin{aligned}
& \text { Or, } \left.28+\left(2 \div \frac{1}{7}\right)=14+(9) \frac{8}{4}\right)=14 \times 1= \\
& =18 .
\end{aligned}
$$

ARITHMETIC.

Exercise. $a+\frac{6}{8}=$ what $!+0=$ what? $36+8$
$=$ what? $7_{30}^{78}+7 \frac{78}{63}=$ what? $\frac{7 \frac{7}{4}}{\frac{8}{6}}+\left(8+\frac{8}{9 \frac{7}{3}}\right)$
= what?
exerctes 47.
Find the value of:

1. 관 $\times\left(2 \frac{1}{2} \times 3\right.$ in $)$.
2. if $\div(2+\div 3$.$) .$
3. $3 \times 7 \frac{1}{2} \times 13 \times 3{ }^{8} \mathrm{H}$.
4. $3 \div\left(7 \frac{1}{2} \div 3_{12}^{\text {R }}\right.$) $) . ~$
5. $\left(113+6 \frac{1}{8}\right) \times\left(9 \frac{9}{8}+7 \frac{1}{4}\right)$.
6. $\left(11 \frac{3}{4}+6 \frac{1}{6}\right) \div\left(9 \frac{3}{8}+7 \frac{1}{7}\right)$.
7. ${ }^{5} \frac{1}{2}$ of $\frac{4}{7 \frac{4}{8}}$ of $\frac{1}{97} \times \frac{88}{9} \times 11_{4}^{2}$.
8. $\left(\frac{1}{2}+\frac{1}{4}+\frac{4}{8}+\frac{9}{7}\right) \div \frac{2}{5}$ of $\frac{3}{2}$:
9. 97 of $\frac{8 \pi}{2} \div 6 \frac{48}{8}$ of $\frac{49}{84}$.
10. $\left(\frac{3}{3}+\frac{7}{6}+8\right) \div\left(\frac{3}{9}+4 \frac{3}{8}+\frac{19}{29}\right.$.
 $\div\left(\frac{1}{2}\right.$ of $\left.11 \frac{1}{2}+\frac{8}{8}\right)$.
11. $\left(\frac{2 \frac{1}{2}}{34 \frac{1}{2}}+\frac{6}{3 \frac{1}{2}}+17\right) \div\left(\frac{5 \frac{1}{3}}{34}+\frac{2 \frac{3}{3}+17+8 \frac{1}{9}}{2 \frac{1}{2}+8 \frac{1}{3}}\right)$
12. $\frac{9}{7}$ of $\frac{4}{3}$ of $\left(\frac{1}{2}+\frac{3}{4}\right) \times$ 표 of $\frac{7}{18}$:
13. $\frac{49}{7 \frac{3}{2}} \div\left(\frac{6 \pi}{4}+\frac{1}{4}\right.$ of $3 \frac{3}{7}$ of $\left.9 \frac{9}{3}\right)$.
14. $\frac{7}{9}$ of $\frac{8}{8}$ of $£ 110$ gi. 82 d .
15. $\frac{3}{3}$ of 暑 of $6 \frac{3}{4}$ of $5 \frac{3}{3}$ of $\frac{2}{6}$ of $6 \mathrm{lbs}$.4 oz Avoir.
16. 14 of 3 of s of $6 \pm$ acrea.

REDUCTION OF FRACTIONS.

No special rule for reducing fractions from one denomination to another is now really required, (though for the sake of convenience rules will be given,) for, reduction of denominate fractions is done by precisely the same rules, as reduction of denominate wholo numbers. In fractions, just as in whole numbers, reduction descending is done by multiplying the fraction, and reduction ascending is done by dividing the fraction, and the learner is of course supposed now to know how to perform nny operation in Multiplication or Division.

To reduce a denominate fraction from one denominaation to another.

RuLe. - If the reduction be from a lower to a higher denomination multiply the denominator, (i, e., divide the fraction,) but if from a higher to a lover denomination multiply the numerator, (i. e., multiply the iaction:)

Example 1.-Reduce $\frac{n}{10}$ of an hour to the fraction of a week:
operation.

$$
\frac{6}{10 \times 24} d .=\frac{1}{10 \times 4 \times 7} \text { wk. }=\frac{1}{280} \text { Ans. }
$$

Rxixple 2.-Reduce of of an acre to the fraction of a yard.
opreation.

$$
\begin{aligned}
& \frac{7}{5} \text { of an acre }=\frac{7 \times 4 \times 40 \times 304}{5} \text { of a yard. } \\
& =\frac{33880}{5} \text { of a yard }=6776 \text { yards. Ans. }
\end{aligned}
$$

ARITIIXETC.

Exhbcism 49.

1. Reduce Ir of a day to the fraction of a wrook.
2. Reduce sit of a cwt. to the fraction of a quarter.
3. Reduce $\frac{z}{\text { z }} \frac{1}{3}$ of 14 of a yard to the fraction of an ell Flemish.
4. Reduce $\frac{4}{4}$ of $\frac{5}{8}$ of $\frac{1}{6}$ of a mille to the fraction of a jard.
5. Redrice $\frac{1}{3}$ of $\frac{7}{8} 3 \frac{1}{2}$ inches to the fruction of a mile.
6. Reduce $\frac{6 \frac{2}{4}}{4 \frac{1}{4}} 6 \mathrm{oz}$. to the fraction of $\frac{1}{2}$ of $\frac{3}{}$ of $\frac{1}{4}$ of a scruple.
7. Redude $\frac{4}{2}$ or $\frac{1}{8}$ of $\frac{21}{2}$ of a pint to the praction of $\frac{2}{3}$ of $\frac{49}{7 \frac{1}{2}}$ of a peck.

To reduce one cienominate number to the fraotion of another.

Rows.- Reduce both quantities to the boioest denomination conlatined in cither:

Then place that quantily wolich is to be the fraction of the other as numerator, the other quantity being the denomisator:

Example 1.-Reduce 3 ibs .5 oz . to the fraction of 3 lbs. 6 0z. 10 dwt .

OPMRATTON.
$3 \mathrm{lbs} 5 \mathrm{oz} . \quad=820 \mathrm{dwt}$.
3 lbs .6 ox. $10 \mathrm{dwt}=850 \mathrm{dwt}$.
Therefore 3 lbs. 5 oz . is $\frac{820}{850}$ of 3 lbs. 6 oz .10 dwt .

freraise 50.

1. What fraction is 10 hours 7 mintites of 1 week 7 hours?
2. What fraction is 9 lbs. 7 oz .2 grs of 11 11. 6 on. 9
3. What fraction is 10 per. 6 yds .2 n .1 in . of 6 roods 4 perches?
4. What fraction is 2 qrs. 1 na. 11 in. of 2 Ung. e. 2. qr. 2na.
6.) Reduce 7 weeks 3 daye 1 honrs 5 min . to the fraction of a year.
5. Reduce 2 qts. 1 pt . to the fraction of 6 bush. 1 pk .
6. Reduce 11 lbs .1 ow. to the Araction of 3 qre. 17 lbg.

HxERORSM 51.

Find the value of the following fractions

1. of a week.
2. $\frac{1}{2}$ of 4 of peck.
3. $\frac{1}{3} \frac{1}{4}$ of $\frac{91}{31}$ of a nilo.
4. It of 8 f bhd.
5. $\frac{0}{}$ of x^{2} of $\frac{81}{17}$ of A f .
6. tof of of of 17 of a cwt.
7. $\frac{1}{2}$ of of an acre.
8. Add together $\frac{1}{5} \mathrm{cwt}, 88 \mathrm{lbs}, 3_{5} \mathrm{og}$.
9. 3 Eng. ells $+4 \frac{1}{2}$ yds. $+\frac{5}{7} \mathrm{nls}$.
10. $\frac{1}{3}$ wk. $+\frac{1}{1}$ day + hour.

11. From 82 zowt take 2 grs. 34 lus.
12. From 7 weeks take 97 7 days.
13. From 73 oz take $8 \% \mathrm{dwts}$.
14. 3 of $21 \mathrm{~s},+\frac{3}{4}$ of $8 \mathrm{~s}+\mathrm{c}_{\mathrm{s}}$ of 7 s .6 d . - of 2 d .

PROBLEMS In FRACTIONS

BY *ANALYSIS.

Analysis is the method of solving questions on general to be performed simply from the nature of the case. These genercl principles have already been explained and applied, (pages 70, 71, and ex. 34).

The questions in the following exercise should be thoroughly analysed by the class in the hearing of the teacher; before doing them. This oral analysis will not be dispensed with on any pretext, if due prominence be given to mental training. the question which be called upon in turn to analyse whole class might be callass is about to do ; or, the and a certain time allowed to the black board at once, out ; after which, the class being the questions given facing the board, each pupil being called to their seats in turn to go through the should be called to the bourd his work, the members explanation of his question and teacher observing the manne class listening, and the as well as the mechanical

The class should go over the questions a second and even a third time, before leaving them; one day explainfing and analysing without performing the operations ; another day working out the questions as quickly as possible, without any explanetion; the pupil who does the greatest number correctly in a given time, marking first, the next greatest, second, and so on. dollar, what will $\frac{34}{48}$ of a bushel cost. Statement by the pupil.-"Here I have the price of
 I.-Analysis by the Pupil.-"If $\frac{1}{1}$ of a bushel cost 10

1 bushel to find the price of $\frac{3}{6}$ of a bushel. I will first get the price of $\frac{1}{48}$ of a bushel by dividing the price of one bushel by 48 , i. e., $\$ \frac{130}{85} \div 48=\${ }^{1320} 9$. Now I have the price of $\frac{1}{68}$ to find the price of $\frac{34}{48}$. To do this I will multiply the price of $\frac{2}{48}$ by 34 , i. e., $\$ \frac{130}{900} \times 34=\$ 4499$, $=\$ \frac{29}{3} \frac{1}{6}$, the price of $\frac{4}{4}$ of a bushel, the thing required. Or, more briefly,
II. Analysis by the Pupil.-"To do this, I will first get the price of one bushel, by dividing the price of $\frac{17}{3}$ of a bushel by $\frac{17}{1 \frac{1}{3}}$. Now, I have the price of one bushel, to find the price of $\frac{34}{4}$ of a bushel ; to ? this, I will multiply the price of one bushel by $\frac{3 x}{8}$, and that will give the price of $\frac{34}{48}$ of a bushel.?

$$
\text { Operation. } \frac{1 Q}{14} \times \frac{13}{11} \times \frac{17}{48}=\$ \frac{221}{396}
$$

Example 2.-A post, standing in a stream, has is of its length in the earth, $\frac{2}{3}$ in the water, and 5 feet above the water ; what is the length of the post?

Statement by the Pupil. "Here I have the part of the post which is in the earth, and the part which is in the water, and the number of feet above the water, given; to find the length of the post."

Analysis.-"I will first find what part of the post is in both the land and the water by adding the part in each together, i.e., $\frac{1}{5}$ and $\frac{9}{3}=13$. . Then the 5 feet above the water must be the remaining is of the post. Then as 5 feet is $\frac{2}{15}, 2 \frac{1}{2}$ feet must be $\frac{15}{15}$ and $2 \frac{1}{2} \times 15$, i ie., $37 \frac{1}{2}$ feet must be the entire length.

$$
\begin{aligned}
& \text { OPERATIDN. - } \frac{1}{5}+\frac{2}{3}=\frac{13}{13} \text {, and } \frac{15}{5}-\frac{13}{18}=\frac{2}{5}, \frac{5 \times 15}{2} \\
& \frac{7}{8}=37 \frac{1}{2} \text { feet, the entire length. }
\end{aligned}
$$

EXimplis 3.-A man can do a certain piece of work in 3 days, and a boy can do it in 5 dajs. in what time can both together do the work? boy $\frac{1}{6}$ hence both together could do $\frac{1}{3}+\frac{1}{s}=\frac{1}{3}$ in one day, i.e., 15 in t of a day, and therefore the whole work, or $\frac{15}{8}$, in 15 times the $\frac{1}{8}$ of a day, i.e. y^{\prime} days $=17$ days.
Ghampie 4.--Allowing a person to perform a certain journey in $13 \frac{1}{2}$ days, by travelling 10 hours a day, in What time ought he to perform the journey by travelling 11+ hours a day?

Avalysis.-By travelling 1 hour a day, it would take 10 times as many days as it would by travelling 10 hours a day, i. e., $132 \times 10=135$ days. But if he travel 114 hours a day, it will take him 114 part as long as when he travelled 1 hour a day, i.e., $135 \div 45=448=12$ days. miles does he go per hour?
2. At $17 \frac{1}{\mathrm{~g}}$ dollars per acre, how many acres of land be bought for 52 s dollars?
4. How many yards of linen, $\frac{1}{2}$ yd. wide, will be equal $t 030$ yards of another kind, which is 3 yd. wide ?
5. If iron cost 38 dollars per ton, how much can be bought for 952 . dollars?
6. One rod contains $16 \frac{1}{2}$ feet, how many rods are thore
$158 \frac{1}{2}$ feet? In $158 \frac{1}{3}$ feet?
7. What number is that, to which if you add of of of itoelt the whole will be 20?
8. What number is that, of which 9 is the 1 part?
9. At of of a dollar per yard, what costs of a yarl of
10. A conld mow a meadow in 7 days, B in 9 days, and
ay; and the $=\frac{1}{5}$ in one hole work, $=17$ days. 1 a certain a day; in travelling
ould take 10 hours ravol 11 when the 12 days.
ow many
of land
oal can e equal canl be
re there of of rand of

artithmetic.

the amount of of of the whole cargo. What part of the
loss must this man snstain? cargo. What part of the

24. If 3^{3} of a ton is worth $£ 410$ s., what is the value
25. A er taking out of a purse $\frac{2}{2}$ of its contents, $\frac{2}{3}$ of the remainder was found to be 13 s . $5 \frac{1}{2}$ d. ; what sum did
26. The dimensions of a room are $29 \frac{1}{2} \mathrm{ft}$. by $11 \frac{1}{\mathrm{ft}}$. what length of carpet, $\frac{5}{8}$ yd. wide, will cover it? and what will be the expense of it, at 3 3s s. per yard?
27. A ship is worth $£ 16000$, and a person, possessed 28. Express 4 bus. 1 pk. 1. gal. 2 qts . as a ff. of a qr.; and reduce 5 cwt. to los. Troy.
29. If $\frac{1}{8}$ of a ship be worth $\in 3610 \mathrm{~s}$. $7 \frac{1}{2} \mathrm{~d}$., what share will cost $£ 1255$ s. ? $£ 3610$, $7 \frac{1}{2} \mathrm{~d}$., what share
30. Multiply $3 \frac{3}{20}$ by $15 \frac{5}{7}$, and divide $\frac{2}{34}$ by $\frac{23}{3}$; and add together the sam and difference of these results.

- a curace of these results.
suby

DECIMALS.

The pupil is supposed, from having mastered the explanations and rules, end done the exercises already introduced, to be able now to read and write, adreary instract, multiply, and divide decimala Write, add; subA few additional exeris troduced in connection exises on these rules are here inrufes are founded, before wom the principles on which the
I.- Remember, that, in reading and writing decimals, there are two things to be attended to.

1. The number, (which is read and written, just as in whole numbers, altogether independently of the decimal point.)
2. The name, (which is determined by the number of figures in the decimal, on the principle that one decimal figure has two (i.e. a unit and one cypher) for a denominator, tico has three, three has four; or, determined by the name of the figure farthest to the right from the decimal point.)
Examplis.-15, No is 15, name, is hundredths; read fifteen hundredths.
179, No. is 179, name, is thousandths; read one hundred and seventy-nine thousandths, dec.
Observe,- Whole numbers and decimals may be read either separately or together, giving the whole numbers the name of the lowest decimal; thus, 6.2 is mead 6 and 2 tenths, or 62 tenths, -76415 is read 764 and 15 hundredthe, or seventy-six thousand four hundred and fifteen hundredths.

EXDRCISE 52.

Read and write the following decimals in as many different ways as possible.

1. $7864,78 \cdot 6237$, and $8064 \cdot 2987.432$.
2. Seventy-nine milionths--seventy-nine million billionths.
3. Two thousand ten billionths-two billion ten

EXERCISE 53

II.-Remember, that, the greater the multiplicand and the multiplier, the greater the product; and the lessit the mulliplicand and multiplier, the less the product. This being the case-
> 1. Compare the products of $2 \times 4,2 \times 4$, and 2×4, and show, according to this principle, why these

106

ARLTEXENIC.

three prodicts differ as they do, especially with reference to the number of decimals to be pointed off.
2. Do the same with $3 \times 6,03 \times 6$, and $03 \times \cdot 06$.
3. Repeat the rule for multiplication of decimals, and prove its correctness by this principle, (sue note bottom pages 27 and 28.)
Find the products of
4. $002 \times 003 \times 64.23 \times 0007 \times 760.3$
5. $5 \times 006 \times 2 \cdot 7 \times 0053$ and $03 \times 4 \times 0067$.
III.- Remember, that, the less the divisor and the greater the dividend, the grealer the quotient, while, the greater the divisor and the less the dividend, the less the quotient. This being the case-

EXERCISE 54.

1. Oompare the quotients of $8 \div 2,8 \div 2,8 \div 2,8 \div$ 2, and show, according to this principle, why these four quotients differ or agree as they do, especially with reference to the number of decimals to be pointed off.
2. Do the same with $4 \div 2, \cdot 4+2,4 \div \cdot 2$, and $\cdot 4 \div \cdot 2$.
3. Repeat the rule for division of decimals, and prove its correctness by this principle, (see page 37.)
4. Find the quotient of $006 \div 27,6 \div 27, \cdot 0052 \div 27$.
5. $13 \div 7 \cdot 864,7 \cdot 862 \div 786 \cdot 2$, and $0020 \div 02$.
IV.-Remember, that, multiplying the dividend and then

> dividing the quotient by the same number, leaves the quotient the same in value as if neither had been dma.

$$
\text { ExAMPLe. } \frac{8}{4}=2 \text { and } \frac{8 \times 3}{4} \div 3=2
$$

extroise 55.

1. Show how this principle applies to prove the follow-ing:Rulw, for reducing a vulgar fraction to a decimal. Annex ciphers to the numerator, then ditude ty tue cienwonnator,

DECIMALS:
Fismples.-Reduce, $\frac{7}{4}$ to its decimal.

$$
\frac{1}{1}=\frac{3 \cdot 00}{4}=75
$$

Reduce to their equivalont decimals :
2. $\frac{1}{2}, 7, \frac{7}{8}$, $\frac{7}{6}$:

5. $8 \frac{2}{2}, 12$ a, $15 \frac{3}{3}$.
6. $27 \frac{1}{1} \frac{1}{3}, 96 \frac{1}{8}$, $112 \frac{17}{27}$.

In doing this reduction, sometimes the same figure or figures will constantly recur in thequotient, and the division would never terminate.

$$
\text { Example, } \frac{1}{3}=333 \text {, \&c. } \frac{4}{5}=\dot{5} 7142 \dot{8}, \& c \text {. }
$$

When one figure repeats, as in the first example, the decimal is called a single repetena, and it is expressed by writing a dot over the figure that repeats, thum, $\cdot 3$. When more than one figure repeats, the decimal is called a circulating decimal or compound repetend, and it is expressed by writing a dot over the first and last figures of the periot or circle (as the set of figures that repeats is called) thus, .571428 .

Sometimes, the first figure after the decimal point is the figure; or, the first of a set of figures that repeats ; this is called a pure ripetend if only one repeats, and a pure circulating decimal if more than one repeats. If the figures do not commence to reprat immediately after the decimal point, the decimal is ulaed a mixed repetend, or, mixed circulating decimal.

Example. -3 is a pure repetend ; $\cdot 15 \hat{6}$ is a pure circulating decimal; 572 is a a mixed repetend; 01236 is a mixed circulating decinal.

[^5]
ARITEMETIO.

Role.- Talce the decimal itself for the numerator, and as mamy 9 's as there are figures in the decimal for a denominator.

To reduce a mixed repetend to a vulgar fraction.
Rule.-Subtract the figures that do not repeat from the cohole decimal; to get the numerator; and for the denominator, write as many 9's as there are repeating figuifes, followed by as many 0 's as there are figures that do not repeat.
Reduce $3 \dot{4} \dot{5}$ and $12 \dot{8} \dot{4}$ to vulgar fractions. muint 7

exercise 56.
Redace to equivalent vulgar fractions.
, 1. $4 \mathbf{3}^{\circ} 153$
Kin $\quad 32 \mathbf{4},-16$.
2. $037 \cdot 138$

To add, subtract, maltiply, or divide pure or mixed repetends, or circulating decimals,
Rune.-- Firsl reduce them to their equivalent vulgar fractions, then proceed as with any other vilgar fractions.

$$
\text { SXRRCISE } 57 .
$$

\qquad

1. $27 \cdot 2 \dot{3}+2 \dot{6}+7.7 \dot{2}+297+3.973+475$.
2. $\dot{3}-090 \dot{0}-0076923 \dot{1}$.
3. $37.23 \times 26,7.74 \times 475$.
4. $61 \dot{1} \div 2.7 \dot{6} \mathbf{6}, 6.71 \div 036$.

To find the value of a given decimal in integere of the lower denominations-

RuLe.-Multiply the given decimal by as many of the lower denomination as it takes to make one of the saime, pointing off from the produet as in multiplication; then proceed as before with the decimal part, and so on till the lovoest denomination is reached.

Example.-Find the value of 23.43 of a day.
Days 23.43 and decimal of days.
ใหข 24
172
fict
86
Hours 10.32 and decimal of hours.
60
Minutes $19 \cdot 20$ and decimal of minutes.
60
Cos, wil al mix …
Seconds 12.00
Hence, $23 \cdot 43$ days $=23 \mathrm{~d} .10 \mathrm{~h} .19 \mathrm{~m} .12 \mathrm{~s}$.

EXUROISE 58.
Find the value of

1. $\cdot 625$ cwt.
2. $\cdot 726$ gals.
3. $337 \dot{5}$ tons.
4. 05 acres.
5. 1.85 of 3 s .4 d .
6. - 13125 of $\$ 5$.
7. 325 of $1 \frac{1}{2}$ ton.
8. 176 or 1 fur. 36 p . 2 yds 5 in.
To reduce a denominate number to the decimal of another given denominate number,

Rows. Beginning with the lowest denomination, reduce it to the decimal of the next higher, woriting it after the wighor, to which it ung refluced; then, rorluce this as before una annex it to the next higher, and so on, ascending to the required denomination.

ARITHMETIC,

Examples I. Reduce ©4 68. 9d in to the

 decimal of a $\&$Operation.
12) 9 d.
20) $\overline{6.75}$ s.

1 Reduce 3 pks. 1 gal. 2 qris. bushel. the decimal of a

Operation. 2) 1 pt .
4) 2.5 qts.
2) 1.625 gal .
4) 3.8125 pks .

- 953125 dec. of a bush. EXercise 59.

1. Reduce 9 oz .2 drs . to the decimal of a 1 lb .
2. " 3 fur. 33 yds. to the decimal of a mile.
3. " 1 cwt. 3 qrs. 7 lbs. to the decimal of $2 \frac{1}{2}$ tons.
4. " $4 \frac{1}{2}$ libs. to the decimal of 3 qrs. 12 lbs.
5. " $\quad 3 \mathrm{hrs}$.3 min .2 sec . to the decimal of a day.
6. " $3 \frac{1}{2}$ inches to the decimal of $\frac{1}{4}$ mile.
7. $\quad 22$ guineas to the decimal of $£ 25$.
8. " 17 yds. 1 ft . 6 in . to the dec. of a mile.
9. Paid 36 c . for 625 yard of cloth; what was that a yard?
10. Paid 5 dollar for . 125 bbl . of flour; how much was that per barrel?
11. If you walk 965625 mile per hour, how far can you
12. What cost $\mathbf{7 7 8 1 2 5}$ ton of butter, at 2 s . per pound? 13. 815625 lb . of silver was sold at 5s pond did it come to:

SECTION IV.

RATIO, PROPORTION, PARTNERSHIP.

RATIO.

The Ratio of one number to another is the relation expressed by the quotient obtained by dividing the former by the latter.

Thus, the Rallo of 6 to $12=\frac{1}{2}$, but the ratio of 12 to $6=2$.

The former term of the ratio is called the antecedent, the latter is called the consequent. The ratio betreen two numbers is usunlly expressed thins, $6: 12$, which signifies the same as $6+12$ or $\frac{8}{3 \%}$.

When the consequent is equal to the antecedent, the ratio is called a ratio of equality, as $6: 6$ when the consequent is greader than the antecedent, it is oalled a ratio of greater inequality or a rising ratio, as $0: 12$; when the consequent is less than the antecedent, the ratio is called a ratio of less inequality; or a falling ratio, as $12: 6$.

Ratios are componnded by multiplying all the antece- it dents' together for a new antecedent, and all the consequents together for a netw consequent.

The Ratios $2: 4,6: 8,3: 2$, when compounded $=36: 64$, which is called a compound ratio.

The value of a ratio is found by dividing the antecedent by the consequent.

EXercise 60.

1. What is the value of each of the ratios, $7: 6 \frac{1}{2}, 2: 15$ $13 \frac{1}{4}$: 6.
2. Whieh of the following ratios is the greatest and which is the least, $78: 5,10 \frac{1}{2}: 7,12: 9 \frac{3}{7}$.
Compound together the following ratios:
3. $2: 3,8: 7,1 \frac{1}{2}: 6$.
4. $2 \mathrm{lb} .3 \mathrm{oz} .: 1 \mathrm{dwt}$. 3 qis., 2 tons 1 cwt. 2 qus. 16 lbs.
5. 2 years 4 months : 3 weeks 4 days, 3 months 4 days: 13 hours 27 minutes.

PROPORTION.

A Proportion consists in the combination or union of two equal ratios by the sign ($::$) indicating their equality, thus, $6: 18: 8: 24$, resd, 6 is to 18 as 8 is to 24 , meaning that 6 divided by 18 , gives the same quotient as 8 divided by 24 , or, ${ }^{\frac{8}{8}}=\frac{8}{84}$.
In solving a problem in proportion, there are tion things to bo attended to, viz.,-1st. The arrangement of of the terms, or proper statement of the question; and 2nd. The working out of the question, or the operation by which the answer is obtained.

First, The proper statement of the question.
Example,-If 7 men can build a hotise in 28 days, in what time can 17 men build it?
Obsenve. In this example, and in every question in simple puoportion, there are three terms given to find a fourth. Two of the three are alike, viz، : (in this example,; the 7 men and the 17 men, forming a complete or perfect ratio; the other is the given term of the incomplet ratio, the mate, as it were, of the fourth, or required term. This odd, or unmated term, the term which is of the same name as the thing required, or answer, being the term of "hn incomplete ratio, must therefore always be the third term Sonce, of the three given numbers, alioays make that the u. m, shich is of the same name as the answer. Thex, rret 40 arrange the other two terms correctly, conitics slugher the crige the other is to be orentens less than the that tr, if if ireater, it is a rising ratio if less, $i t$ is a falling ratio.

Applying these remarks to the question before us, the learner will olsserve, not only the statement, but how every question should at fist be reasoned out before doing it on the slate.

The pupil alwer reading the question distinctly in the hearing of the class, as follows:-"If 7 men can build a house in 28 days, in what timo can 17 men build it?" proceeds, " Here I have the number of days," (or whatever may be required in the question, "in which 7 men can do a plece of woik, given, to flind the mumber of days in which 17 men can do the same work. As days are required, I will put days in the thlid term; and as I know that it will take less days for 17 men to do a piece of work than for 7 men to do the same work, therefore it is a falling ratio."
The question stands when stated,
4 Men. Mout Dass.
17:7::28: Ans: Read, 17 men if to 7 men, as 28 days is to the answer.
In the same manner reason out, and state the following
Exercise 61.

1. If I buy 7 lbs. of sugar for 75 cents, how many pounds can I buy for $\$ 6$.
2. If a family of 10 persons use 3 bushels of wheat in a month; how many bushels will serve them when there are 30 in thie family?
3. If a person, whose rent is $\$ 145$, pays $\$ 12.63$ taxes, bow mich should a person pay whose rent is $\$ 378$?
4. If I give $\$ 6$ for the nse of $\$ 100$ for 12 months, what must I give for the use of $\$ 357.82$ the same time.

Abstract

- Obsorve, although in this, and in some of the other questlong, the whole three terms have the same general name, stifl, it is only the two termas of the complete ratta that are preclsely alice. The term of the incomplete ratio is essantially different from; the other two. In this question, it is, taxes, while the other ture ope only deo is reati liongik, or length of 'substanco, the other two are lengthi of shadow:

ARITHMETIC.

5. If a staff 5 ft .8 in . in length, cast a shadow of 6 feet, how high is that steeple whose shadow measures 153 feet?

Now, with reference to the second thing to be attended to, viz., the working out of the question after it is stated,

Observe.-The first thing is to see whether the first and second terms are in the same denomination; if not, they must be reduced to the same name, for there could be no ratio between them, if, for instance, one was ounces and the other pounds, or one years and the other months. If the third term has several denominations, as cwts., qrs., lbs., it may or may not bé reduced to the lowest denomination, this being merely a matter of convenience.

In order to understand why we must multiply the second and third terms together, and divide the product by the firat term to get the answer, just consider that,
In every proportion, the product of the means (or middle terms, that is the second and third,) is equal to the product of the extremes, (that is the first and fourth terms) ; for instance, in the proportion, $6: 9:: 18: 27,6 \times 27=9 \times 18$ $=162$. This must necessarily be the case ; for, the two ratios are equal-that is, the two questions in division have equal quotients, and the product of the means is the product of the divisor of the one into the dividend of the other, while the product of the extremes is the prodact of the other divisor and dividend. For example, $6: 8:: 12: 16$-that is $\frac{8}{8}=\frac{12}{18}$, therefore $6 \times 16=12 \times 8$, reducing the fractions to a common denominator $\frac{18}{18}=\frac{12}{6}$, the means and the extremes are now seen to be actually the same when a common unit of comparison is adopted, the means, being 12×16, the extremes also being $12 \times$ 16. Hence:

When one of the two ratios of a proportion, and one term of the other ratio are given to find the other, or the unknown term, (which is the case in every problem solved by proportion,) this law of proportion-viz., "The prodict of the means is equal to the product of the extremes", ratios us to find the requirea term of the incomplete ratio. For, since we have one of the extremes, viz;, the
first term, and since, " the product of the means is equal to the product of the extremes," hence, when we get the product of the means we have a product and one of the factors, viz., the first term, given. to find the other, viz., the fourth term, of course, we have only to divide the product by the known factor or first term to find the unknown factor or fourth term. Hence, to do any question after it is stated and the first and second terms reduced to the same name, multiply the second and third terms together, and divide the product by the first term, - the quotient will be the fourth term, that is, the required term of the incomplete ratio, or the answer.

Example.-If I buy 7 lbs . of sugar for 75 cents, how many can I buy for $\$ 6$.
operation. Here, after reducing the second
75 c. : \$6 : : 7 lbs. 100600 term to the same name as the first,
tiply the product ler that, rmiddle product ; for in$=9 \times 18$ the two division is is the idend of he proxample, 12×8, $\frac{2}{8}$
cot
do
g
attended is stated, r the first 1 ; if not, ere could one was the other ations, as d to the of con-- Dibs. the means is equal to the product $60075) 4200(56$ of the extremes, we multiply 600 375 and 7, (the means) together to get 450 the product of the extremes. Then 450 We have the product of the ex450 tremes, viz., 4200 , and one of the extremes, viz., 75, (the first term) given to find the other, of course we divide the product 4200 by the known factor, 75 , and get the other, the unknown factor, or fourth term, 56 lbs. the Ans.

What has been said with reference to the statement and working out of questions in proportion, may now be expressed in the form of a rule.

Rule for Proportion.- Of the three given numbers, make that one the third term which is of the same name as the one required in the answer.

Then consider from the nature of the question whether the answeer will be greater or less than this term. If greater, arrainge the two remaining terms as a rising ratio; if less, arrange them as a falling ratio.
 and, either leave the third term as it is, or reduce it to its towest denomination, as may be thought most convenient.

Then muitiply the second and third terms together, and divide the product by the first term. The quotient will be the answer, in the same nome as the third term rocts reduced to, and may be reduced to any denomination required.

EXERCISE 62.

1. If 6 men can reap 20 acres in 1 day; how many men can reap 45 acres in the same time?
2. If 3 yayds of cloth cost $\$ 2.62$; how many yards can be bought for $\$ 7$?
3. In how many days can a man travel 75 miles, at the rate of 7300 miles per year?
4. If $\$ 114$ be paid for 52 cwt 1 qr. 4 lbs. of flour ; what would 122 cwt. cost?
5. If 57 cwt of sugar cost $\$ 216$; what would 95 tons 3 cwt. 2 qus. 17 lbs cost?
6. If 275 quires of paper cost $\$ 33.15$; what would 990
-7. If 96 men reap 40 acres of grain in a week; how many men would reap 65 acres, 3 rods, 16 per. 20 yds. in the same time? 8. There are two numbers in the ratio of 5 to 3. the larger is 85 ; what is the smaller?
7. There was a certain building raised in 8 months by 120 workinen; but the same being burned, it is required to be built in 2 months 17 days. How any men mist be employed about it?
8. There is a cistern having a pipe which will empty it in 10 hours ; how many pipes of the same capacity will empty it in 24 minutes?
9. A garrison of 1200 men has provisions for 9 months, at the rate of 14 oz . per day; how long will the provisions last, at the same allowance, if the garrison be reinforced by 400 men ?
10. If a piece of land, 40 rods in length and 4 in breadth, make an acre: how wice must it bo when it is but 25 rods long?
rether, and will be the reduced to,

ARITHMETIC.

23. Allowing a man to do certain work in 3 days, and a boy to do it in 5 days; in what time ought both together to do the work?
24. A can dig a ditch in 5 days, B in 6 days, and C in 8 days; in what time could the three together dig the
ditch?
25. Two masons together built a wall in 10 days; one of them could have built the wall himself in 15 days; in how many days could the other have done it ? 26. If 1 oz . of gold is worth $\$ 14.89$; what is the value $\frac{3}{8}$ of $\frac{5 \frac{1}{2}}{2}$ of $\frac{2}{5 \frac{1}{2}}$ of 3 lbs ?
26. If the rent of 20 ac. 3 rd. 2 per. be $\$ 50$; what will be the rent of $\frac{5}{9}$ of $\frac{2 \frac{1}{2}}{3}$ of 3 ac .3 r ?
27. If $9 \cdot 35$ lbs. of rice cost $\$ 0.62$; how many pounds can be bought for $\$ 9.73$?
28. If 3 ac . 2 r . of land is worth $\$ 265.35$; what is the value of 3.63 acres?
29. If $\cdot 3 \mathrm{ozs}$. of silver is worth $\$ 0 \cdot 236$; what is the value of $\frac{4}{3}$ of $\cdot 1298 \mathrm{lbs}$.?
30. If a grocer use instead of a gallon, a measure which contains $987^{\text {gal., what would be the true measure }}$ of 100 of these false gallons?
31. What is the value of 3 yds. 2 qrs. 2 nls. of cloth, if $\cdot 00001001$ yds. cost $\$ 00030107$?
32. A testator bequeathed $\frac{3}{2}$ of his estate to his only son, $\frac{4}{4}$ of the remainder to his only daughter, and the temainder, which was $\$ 5000$, to his widow ; what was the value of his estate?
33. If $\frac{3}{4}$ of $\frac{4}{5}$ of 345 ac. cost $\$ 18 \cdot 1875$; what cost 7 ac.
2 r. 13 per.?
34. 35. If 9 sheep cost $£ 3$ 13s. $4 \frac{1}{2} \mathrm{~d}$. ; what cost $\frac{3}{9}$ of $\frac{1}{4}$ of $\frac{5 \frac{1}{2}}{4 \frac{1}{2}}$
of a fock containing 1000? (Expressed in decimal
currency). ight both nd C in 8 rag the
1. If the freight on a ton of merchandise is $£ 13 \mathrm{~s}$. $2 \frac{1}{2} \mathrm{~d}$.; huw many tons can be paid for with $\frac{1}{2}$ of $\frac{7}{6}$ of $\frac{9}{2}$ of \$48.56?
2. If it takes 40 yds. of carpet to cover $\frac{3}{10}$ of the floor of a room when the carpet is 27 inches wide; how many yds. will cover the same, the width being $\frac{8}{8}$ of $\frac{8}{9}$ of 2 ft .9 in ?
3. What cost 90 tons of hay, at the rate of $\frac{2}{3}$ of a cwt. for $\$ 9.32 \dot{5}$?
4. A can build a well in 5 days, B in 0 days. A began and wrought for 3 days and then left. B commenced to finish it ; in what time can he do so ? (expressed in the decimal of a day and of a year.)

COMPOUND PROPORTION.

When the relation of the required quantity to the given quantity of the same name depends upon two or more conditions, we have a Compound Proportion; that is, an equality between a Compound and a Simple Ratio.

A question in Compound Proportion is stated just as a question in Simple Proportion; i. e., each simple ratio found in the question is made a rising or falling ratio, without any reference to its connection with the other simple ratios with which it is to be compounded when all are arranged.

Example.-If 264 men, in 5 days of 12 hours each, can dig a trench 240 yards long, 3 wide, and 2 deep; in how many days, of 9 hours long, will 24 men dig a trench, 420 yards long, 5 wide, and 3 deep?

In this example, the number of days required depends upon five conditions, viz.; the number of men, the length of the days, the length, the width, and the depth of the trench. As days are required, of course the 5 days go in the third term ; then, lst, will 24 men require more or less days than 264 ? More, of course, -hence, the men form a rising ratio. Then, 2 nd, will 9 hours long require more or less days than 12 hours long? More,-hence; the
hours form a rising ratio; and so on with the other three, vie., the length, the width; and depth. The question stands when stated,

Hence, we have the following rule for Compound Proportion:

Rule.- Of the given numbers, make that the third term which is of the same name as the answer; then, having reduced each pair of corresponding terms to the same denomination, arrange them as in simple proportion; then, having cancelled as much as : possible, multiply together the third term, and all the second terms, and divide the result by the product of the first terms.

EXERCISE 65.

1. If 5 bushels of wheat serve 9 persons for 22 days, how long will 20 bushels serve 6 persons?
2. If 12 horses in 5 days plough 11 acres, how many horses would plough 33 acres in 18 days ? an my y
3. If 8 men earn $\neq 9$ in 5 days, how much hould 32 men earn in 24 days, working at the same rate?

COMPOUND PROPORTION.

5. If 3000 copies of a book of 11 sheets require 66 reams of paper, how much paper will be required for 5000 copies of a book of $12 \frac{1}{2}$ sheets?
6. If 12 horses plough 11 acres in 5 days, how many will plough 33 acres in 18 days?
7. If a person earn 16 guineas in 108 days, how many sovereigns would he earn at the same rate in 270 days, 20 guineas being equal to 21 sovereigns?
8. If a garrison of 1800 men eat 100 barrels of flour in 35 days, how many men would eat 200 barrels in 45 days?
9. If 1000 men, besieged in a town, with provisions for 28 days, at the rate of 18 ounces a day for each man, be reinforced by 600 men ; how many ounces a day must each man have that the provisions may last them for 42 days?
10. If 7 men can mow 84 acres in 12 days of 81 hours each; how many can be mowed by 20 men in 11 days of 74 hours each?
11. If 8 men can dig a trench 100 ft . long, 3 ft . broad, and 4 ft. 6 in. deep in 9 days; how many will be required to dig a trench 80 ft: long, 5 ft . broad, and 2 ft deep, in $5 \frac{1}{3}$ days?
12. If 7 masons can erect a certain piece of wall in $20 \frac{5}{8}$ days of 93 hours each; how long would it take 3 masons to do 23 of the same work, reckoning 12 hours it the day?
13. If 6 iron bars, 4 ft . long, 3 in . broad, and 2 in. thick, weigh 288 lbs. ; how much will 15 weigh, each $6 \frac{1}{2}$ ft. long, 4 in. broad, and 3 in. thick?
14. How many pounds of thread will it require to make 60 yairds, of 3 quarters wide, if 7 pounds make 14 yards, 6 quarters wide?
15. How much hay will 32 horses eat in 120 days, if 96 borses eat $3 \frac{3}{4}$ tons in $7 \frac{1}{2}$ weeks?
16. If $\$ 2.45$ will pay for painting a surface 21 feet long and 13 f feet wide, what length of surface that is $10 \frac{\mathrm{~g}}{5}$ feet wide, can be painted for $\$ 31.72$?
17. If $\frac{3}{4}$ of a lb. of tea cost $\frac{1}{2}$ of a dollar, what would $\frac{f}{5}$ ths of a cwht, of sugar cost, toa being 60 times the price of sugar, weight for weight ?
18. If 36 oxen eat the grass of 9 acres in 15 weeks, and would eat the grass of 20 acres in 30 weeks, suppos19. If grass to grow uniformly?
can in 27 days working 6 hours in each day, wide, and 12 ft . deep; how, each 40 ft long, 36 ft . each 24 ft long, 27 ft , how many cellars that are men dig in 81 days, by working 8 ft. decp, can 240 20. If the 8 d. loaf weigh working 8 hours a day? per quarter ; whigs 5.5 oz. when wheat is at $\$ 13.50$ the 6d. loaf; What should be the price of wheat when 21. If 24 pionneers, in 212 oz .8 dwh . a trench 139.75 yds. long $12 \frac{1}{2}$ hours long, can dig deep; what length of trench will wo and $2 \frac{1}{2} \mathrm{yds}$. 43 days of $9 \frac{2}{}$ hours lonch will 90 pioneers dig in wide and $3 \frac{3}{3}$ yds. deep? ${ }^{2}$, the trench being $4 \frac{7}{8}$ yds.
19. A contractor engaged to pave 15 miles of road in 12 months, and for that purpose employed 100 men. Seven months have now elapsed, and but 6 miles of men must be employed to finish the work in the time
23\% If 3 men can cradle 97.534 acres in 35 days, of $7 \frac{9}{3}$ hours each; how many men will cradle the same in $17 \frac{7}{3}$ days, of 10.4 hours each? 24. A garrison of 500 men has provisions for 50 days, allowing each man 21.35 oz. per day, they are reinभु forced by 1,000 men at the end of 20 days; how much per day must be allowed to each in order that the provisions may last for the 50 days?
20. If 27 men can mow 20 acres of grass in $5 \frac{5}{6}$ days, working $3 \frac{3}{3}$ hours a day, how many acres can 10 men mow in $4 \frac{1}{2}$ days, by working $8 \frac{1}{2}$ hours a day?
21. If a footman travel 341 miles in 71 days, tripellitic $12 \frac{1}{2}$ houts each duy, in bow many days, travelling $10 \frac{1}{3}$ hours a day, will he travel 155 miles?
22. If a person gain $8 \frac{1}{\mathrm{~d}}$ per cent. by selling apples at the rate of 8 for $6 \frac{1}{2}$ cents; how much does he gain per cent. by selling them at the rate of 3 for $2 \frac{1}{2}$ cents?
23. If 3 men and 4 women can do 4 of a plece of work in 56 days ; in how many days will 1 man and 1 woman do 星 of it?

©SMPLE PARTNERSHIP.

Simple Partinersiup is the method of distributing the Profits or T.osses of a Firm, or Company, equitably among the partners, when the stocks or sums contributed by the several partners continue in trade for the same time.

The sum of the stocks or shares of all the partners is called the Stock or Capital of the busiLess.

The profit or loss of the company is distributed to each partner by the following

Ruce. - The whole capital is to each partner's share of the capital, as the whole gain or loss is to each partner's gain or loss.

Exampie. A, B, and C enter into partnership with a capital of $\$ 1000$ of which A gaye $\$ 400, \mathrm{~B}$ gave $\$ 350$, and C gave $\$ 250$. They gain $\$ 540$. What is each partner's share of the gain? By the rule,-
whole capital : A's share : : whole gain : A's gain, or, in this example, $\$ 1000: \$ 400:: \$ 540:$ A's gain.

$$
\text { or, } \frac{\$ 400 \times 540}{1000}=\$ 216=\text { A's gain. }
$$

Again, to find B's share, substitute his share of the capital ($\$ 350$) for A's in the aboye proportion.

$$
\$ 100: \$ 350:=\$ 540: \$ 189, B^{\prime} \text { s share of gain. }
$$ and $\$ 1000: \$ 250:: \$ 540: \$ 135$, C's share of gain. Nore-In this example, $\$ 1000$ galns $\$ 140,0$, what is the same thing each dollar of the capital gains 54 cents (the 1000 th part of

 must therefore bo $54 \mathrm{cts}, \times 490=\$ 216$ as above. By the. rule, we actually do what is done in this analysis-we divide by the whole capital and muitiply by each partner's share of it.

ExERƠTSE 64.

1. A and B enter into partnership; A pays $\$ 420$ and B $\$ 280$ of the capital ; they gain $\$ 66$; what is each man's'share of the gain?
2. A, B, and C build a vessel at a cost of $\$ 50,00 \mathrm{n}$, of which A pays $\$ 15,000, \mathrm{~B} \$ 25,000$, and C the re-mainder-they lose $\$ 1,800 ;$ how much of this does each pay:
3. A merchant owes A $\$ 30, \mathrm{~B} \$ 70, \mathrm{C} \$ 90$, and $\mathrm{D} \$ 120$; c.1 his whole assets amount to $\$ 96$; how much must he pay to each ?
4. A, B, and C make up a capital of $\$ 20,0<0 ; B$ and C each contribute twice as much as \mathbf{A}; but \mathbf{A} is to receive one-third of the profits for extra services; at the end of the year they have gained $\$ 4000$; what is each to receive?
5. A, B, and C agree to build a railroad, and contioute $\$ 18,000$ of capital, of which B pays 2 dollars, wud C 3 dollars, as often as A pays 1 dollar; they lose $\$ 2,400$ by the operation ; what is the loss of each?
6. Four partners, A, B, C, and D, shipped 640 sheep, of which A owned $120 ; B 80 ;$ C 200 ; and D the remainder. In a storm 160 of them wore thrown overboard ; how many sheep did D own, and how much was each partner's loss?
7. A, B, C, and D, hired a pasture for $\$ 120 ;$ A put in 120 sheep; B $160 ;$ C 180 ; and D 140 ; how much ought each to pay
8. A, B, and C, purchase a farm for $\$ 3500$; of which A furnished $\$ 1,500 ; B \$ 1,500$; and $\mathbf{C} \$ 500$. They receive $\$ 280$ rent for the farm ; how much of this rent should each recoive?
9. A captain, mate, and 12 sailors, took a prize of $\$ 2240$; of which the captain takes 14 shares; the mate 6 shares; and the remainder is equally divided among the sailors; how much did each receive ?
10. A, B, and C, form a joint stock of $\$ 30,000$ of which A pays $\$ 14,400 ; \mathrm{B}$ paye $\$ 12,000$, and \mathbf{C} pays the rest; the gain for the year is $\$ 6,716.80$; how much
of this must each receive, a clear salary of $\$ 2,047.50$ per annum being nilowed to C for his services as acting partner?

COMPOUND PARTNERSHIP.

When the stock of the several partners of a company is invested for different periods of time, we are able to distribute the gains or the losses equitably among them by the rule of Compound Partnership.

Questions in Compound Partnership are solved by the following

Rous. - Multiply the stock of ench partner by the time it is in trade, then as the sum of the producls is to each product, so is the whole gain or loss to the gain or loss of each partner.

Example 1.-Three partners, A, B, and C, put money into trade as follows:-A put in $\$ 100$ for 4 months; B $\$ 300$ for 2 months, and C $\$ 500$ for 3 months. They gained $\$ 250$; liow much is each man's share of the gain?

$$
\begin{aligned}
& \text { As } \$ 100 \times 4=\$ 400 \\
& \text { B's }^{\prime} \$ 300 \times 2=\$ 600 \\
& \text { C's }^{\prime} \$ 500 \times 3=\$ 1500
\end{aligned}
$$

$\$ 2500=$ sum of the products.
Then, $\$ 2500: \$ 400: \$ 250:$ A's share, or $\frac{\$ 400 \times 250}{2500}=$ $\$ 4000$ A's share.
$\$ 2500: \$ 600:: \$ 250:$ B's share, or $\frac{\$ 600 \times 250}{2500}=$ $\$ 60.00$, B's share.
$\$ 2500: \$ 1500:: \$ 250:$ C's share, or $\frac{\$ 1500 \times 250}{2500}=$
$\$ 150.00$, C's share.
It is evident that $\$ 100$ for 4 months is equal to 4 times $\$ 100$ for 1 month, and $\$ 300$ for 2 months equal to 2 times

ARITHMETIC.

$\$ 300$ for 1 month. In the above operation, therefore, we -imply reduce each partner's stock to its value for one month, and then proceed as in Simple Fellowship.

EXERCISE 65.

1. A and B enter into partnership; A puts in $\$ 840$ for $\$ 363$; what is each one's share?
2. A commenced business on January 1st, with a capital of $\$ 3400$; on April 1st, he took B into partnerthip, with a capital of $\$ 2600$; at the end of the year the gain was $\$ 750$; what is each one's share?
3. A; B, ana C, hire a pasture for $\$ 180$; A puts in 8 cows for 10 weeks; B 20 cows for 5 weeks ; and C 30 cows for 9 weeks; how much ought each to pay?
4. To a certain school A sends 2 scholars 25 days; B sends 8 scholars 15 days; C sends 5 scholars 14 days; and D sends 4 scholars 25 days. They have to pay a bill of $\$ 10.20$. How much is each man's bill? pa
5. A, with a capital of $\$ 500$, began trade Jan. 1, 1846, and, meeting with success, took in B as a partner, with a capital of $\$ 600$; on the first of March a following; four months after, they admit \mathbf{C} as a partner, who brought $\$ 800$ stock; at the close of the year they find the gain to be $\$ 700$; how must it be divided among
6. A and B enter into partnership; A puts in $\$ 1006$ months, and then puts in $\$ 50$ more; B puts in $\$ 200$ 4 months, and then takes out $\$ 80$; at the close of the year they find that they have gained $\$ 95$; what
is the profit of each?
7. The firm A, B, and C, lost $\$ 246$; \mathbf{A} had put in $\$ 85$ for 8 months, B $\$ 250$ for 6 mouths, and C $\$ 500$ for 4 months; what is each man's share of the loss?
8. A and B engaged in an adventure of $\$ 800$, A contiuued his siock for 6 months and received $\$ 54$ gain ;
$\$ 840$ for ey gained I a capital rtnership, jear the
puts in 8 and C 30
pay? days; B 14 days; o to pay ill?
1,1846, partner, lowing; er, who hey find among
$\$ 1006$ in $\$ 200$ lose of ; what
$\$ 85$ for for 4

A congain ; gain ;

ARITHMETIC.

Here the price of 78 cwt . at $£ 1$ is evidently $£ 78$, and at £3, three times that amount. Hence, when the price of each article is of one denomination,
Rule.-Multiply the price of each article by the number. of articles.

But if the price of each article is an aliquot part of a higher denomination, take the same part of the number of articles, and the resuit is the price in the higher denomination.

Example 2. What cost 60 lbs. of tea at 6 s 8 d per \mathbb{D} ?

As 60 lbs. at $£ 1$ cost $£ 60$, at 6 s . $8 d$. or $\frac{1}{8}$ of that rate, it must cosijust $\frac{1}{3}$ of that amount.

But in very many instances the price of each artide is not an aliquot part of any higher denomination, when it must be divided into parts, and the sum of the results, at the rate of each part separately, will te the price required.

Exampie 3.-What cost 796 cows at $£ 9128$. 6d. each ?

Sometimes the number of articles, (as well as the price of each), is expressed in different denominations ; in which case, we proceed as follows:

Example 4.-What cost 198 owt. 2 qrs. 21 lbs at £2 4s. 4d. per cwt?

	198 cwt 2 grs .21 lbs at £2. 4s. 4d. per cwt.
4 d . $=\frac{12}{2}$ of 4 s .	
$14 \mathrm{lbr} .=1 / 2$ of cWt .	1.20 value of $2 \mathrm{qrs.at} \mathrm{f} 24 \mathrm{~s}$, 4 d. p.c.
$7 \mathrm{lb} .=14$ of 2 qr .	
	4408 53/2- Price
dF\% ${ }^{\text {a }}$ (1)	

Or, it might have been solved more simply, thus :
$2 \mathrm{qrs}=1 / 2 \mathrm{cwt}$. $14 \mathrm{lbs}=1 / 4 \mathrm{of} 2 \mathrm{grs}$.
$7 \mathrm{lbs}=1 / 2$ of 14 lbs.

In working questions in Practice, much depends on the ingenuity of the pupil.

EXERCISE 64.

1. What cost 256 lbs . of tea at 5 s per lb.?
2. What cost 96 cwt. of sugar at $\$ 2.90$ per cwt.?
3. What cost 120 sheep at $£ 1$ 10s. each?
4. What is the price of 359 gallons of wine at 7 s .7 d . per gallon?
5. What is the duty on a cwt. of opium at 8s. 6 d . per lb .
6. What is the price of 290 yds. 3 qrs. of cloth at $£ 1$ 11s. 6 d . per yard?
7. What is the price of 179 cwt 2 qrs .12 lbs. of currants at £2. 3s. $6 \frac{1}{2}$ d. per cwt.?
8. What cost 3 lbs. 4 oz .5 dwt. of gold at $£ 312 \mathrm{~s} .6 \mathrm{~d}$. p. oz.
9. What is the rent of 5 ac. 3 roods 20 phs. at $£ 18 \mathrm{sm} .2 \mathrm{~d}$. per acre?
10. What cost 9 tons 13 civt. of steel at $£ 519 \mathrm{~s} .8 \mathrm{~d}$. p. ton?
11. What cost 1 yd. 3. qr. 2 nl . of linen at $\$ 1.37 \frac{1}{2} \mathrm{p}$. yd.?
12. What cost $218 \frac{8}{8} 1 \mathrm{lbs}$. of sugar at 13 cents per 1 lb . ?
13. What is the price of fencing 90 miles 3 fur. 20 phs. of railway, at £37 9s. 4d. per mile?
14. What is the price of 561 ac .2 r .20 p . at $£ 117 \mathrm{~s} .6 \mathrm{~d}$. per acre?
15. What is the price of 175 tons 18 cwt 1 qr . at $£ 3813 \mathrm{~s}$. per ton?
16. The Sun's apparent motion in the ecliptic is $59^{\prime} \cdot 8^{\prime \prime} \cdot 3$ per day-how much is it in 10 days 7 hs .20 min ?
17. What is the price of 69 है yds at 13 s . 10d. per yd.?
18. What is the price of 79 libs. at $£ 12 \mathrm{~s} .11 \mathrm{~d}$. per 1 b .?
 -how much in $10 \frac{1}{2}$ deys?
19. What cost 96 e. yds. $18 \mathrm{c} . \mathrm{ft}, 56 \mathrm{c}$ in. of stone at $12 \frac{2}{2}$ cents per c. yard?

SECTION VI.

PER-CENTAGE, COMMISSION, BROKERAGE, INSURANCE, PROFIT AND LOSS, INTEREST, DISCOUNT, AND BARTER.

PER-CENTAGE.

The Latin words per and centum, mean "by the hundred," when, therefore, we speak of so much "per cent." we mean so much in the hundred. If 3 persons out of every hundred died in Toronto during the year, the mortality would be expressed as 3 per cent.
The rate per cent. may be conveniently expressed in decimals, to show the rate per unit, for example, 5 per cent. is 5 per hundred, or 05 per unit, (the rate per unit boing of course the 100 th part of the rate per hundred), so

per cent. is 02 per unit.	33/4 per cent. is 0375 per un
$3{ }^{3}$ u is 03×14	$61 / 8$ a is 00125
21/ ur is 025 ol	$48 / 8$ in is 04625 ic
$41 / 4{ }^{1 / 4}$ is 0425	1\%/6 is 016, 6
is 0025	3/4" is 0075
is 005 "	\% 6 \% is

Example 1.-I bought a house for $\$ 800$ and pald 5 per cent. down, how much did I pay?
I paid 5 per cent. down ; that is $\$ 5$ on every $\$ 100$, that is the 100 th part of $\$ 5$ for every dollar $=\$_{25} 5=.05$. Then for $\$ 800$, it would be 800 times as much as for one dollar, that is $05 \times 800=\$ 40,00$. Hence the rule for finding the per-centage on any quantity is

Multholyy the givon quainiticu uy itu rato per unit expressed decimally, and the product roill be the per-centage required.:

ExAMPLE:-What is 6 per cent. of $\$ 618.25$.
$\$ 618.25$
06 rate per unit.
37.0950 per-centage, or answer.

EXERCISE 65.

1. What is 35 per cent. of $\$ 14720$?
2. What is 31 per cent. of $£ 24010 \mathrm{~s}$.?
3. What is $\frac{1}{2}$ per cent. of $\$ 94.48$?
4. What is $9 \frac{1}{2}$ per cent. of $£ 1011 \mathrm{~s} .2 \mathrm{~d}$?
5. What is 3 per cent. of 10 tons 5 cwt. 2 qrs. ?
6. What is $99 \frac{1}{2}$ per cent. of 60 acres 3 roods ?
7. What is $1 \frac{1}{2}$ per cent. of $\$ 1$?
8. In a school there are 340 boys and girls, 40 per cent. of the whole are girls; how many boys are there?
9. A merchant bought 1000 brls. of flour asd sold 10 per cent. of them, afterwards 10 per cent. of what remained, and again 20 per cent. of the remainder ; how many barrels had he remaining?
10. A gentleman's income is $\$ 5000$ per year; he spends 6 per cent. of it as personal expenses, 30 per cent. for household expenses, 38 per cent. for rent, \&c., \&c., and invests the balance ; how much does he invest?
11. The deaths in England are about 14 per cent. per annum of the population; if the population is $18,000,000$, what is the number of deaths annually?
12. The copper mines of Lake Superior produce ore containing 70 per cent. of pure copper; how much copper is there in 1260 tons of ore?

COMMISSION, BROKERAGE, AND INSURANCE.

Commission is the sum, at a certain rate per cent, which is charged by one persop for his services in buying or selling, \&c., for another.
Brokerane is of the same naitury, Deing a per-entage paid to a broker for negotiatiag notes', bills, buying and selling stock, \&c., \&c.

ARITHMETIC.

Insurance is a contract by which one party, (an Insurance Company), on being paid a certain premiun or per-centage by another, engages, in case of loss by fire, \&cc., to pay whatever amount of loss is covered by insurance.

The nature of all questions in Commission, \&c., then, it is obvious, is exactly the same as that of Per-centage already explained.

To compute the Commission, Brokerage, Insurance, or any other allowance, at so much per cent. on a given sum, Rule.-Multiply the given sum by the rate per unit expressed decimally.

Example 1. What is the commission on $\$ 6420$ at $5 \frac{1}{2}$ per cent.?

$$
5 \frac{1}{2} \text { per cent }=055 \text { per unit. }
$$

$\$ 6420$
$\cdot 055$
32100
32100
$\$ 353 \cdot 100$
Exaxple 2.-What is the amount of a broker's commisgion on $\$ 62530.20$ at $\frac{1}{8}$ per cent.?

$$
\begin{aligned}
& 8 \text { per cent. }=00125 \text { per unit. } \\
& \$ 62530.20 \times \cdot 00125=\$ 78.16275
\end{aligned}
$$

Sometimes, in order to secure freedom from all loss, property is insured so that in case of loss, both the value of the property and the premium paid for the "Policy," (as the written contract is called), shall be made good to the owner. A person insuring $\$ 100$ at 5 per cent., in case of loss, receives $\$ 100$, but he has evidently lost the \$5 paid as preminm. In order, therefore, to find how much must be insured on property worth a given sum, so. that in case of loss, both the value of the property and the premium may be repaid,

> Rown- Subtract the rate yon 1100 , is to the value remainder sured.

Exampic 3.-How much must be insiured at 6 per cent. on \$120, so that incase of loss, not only the value of the property, but also the premium may be repaid?

OPERATION.

$$
100-6=94
$$

Then $94: 120: 100$; Ans. \$127.6545 Ans.
$1 \rightarrow$ The premium on $\$ 127.65 \frac{4}{4}$, at 6 per cent. is $\$ 7.65 \frac{4}{4}$, so that in case of loss; the owner is paid the premium as well as the value of his property.

EXERTCISE 66.

1. What is the commission on $£ 9012 \mathrm{~s}$. 3 d. at 8 per cent?
2. What is the premium of insurance on $\$ 1000$ at $1 \frac{5}{8}$ per cent.?
3. What is the srokerage on $\$ 99,999.80$ at $\frac{3}{16}$ per cent. ?
4. What is the commission on $£ 94216 s .3$. at $4 \frac{1}{2}$ per ct. ?
5. What is the commission on £946 18s. 10d. at 11 per ct.?
6. What is the premium of insurance on $£ 148613 \mathrm{~s} .9 \mathrm{~d}$. at $2 \frac{5}{6}$ per cent. ?
7. What must be insured at $5 \frac{3}{4}$ per cent. on $£ 193812 \mathrm{~s}$. 6 d., so that in case of loss, both the value of goods and the premium may be repaid?
8. What is the commission on $\$ 90$ at $17 \frac{1}{8}$ per cent.?
9. A broker sells stock to the value of $\$ 87,634.75$, what is his commission at $\frac{3}{8}$ per cent.?
10. Add to $\$ 250$ the commission on itself at $8 \frac{1}{2}$ per cent., and find the insurance of the sum at 4 per cent?
11. What is the brokerage on $\$ 7450$ at $2 \frac{1}{2}$ per cent ?
12. A factor sells 75 bales of cotton at $\$ 450$ per bale, and is to receive 2 per cent. commission, how much His money must he pay to his principal ?
13. An agent bought goods amounting to $\$ 2465$; what is his commission at $2 \frac{1}{2}$ per cent ?
14. A gentleman paid a broker 1 per cent. to invest $\$ 8450$ in United States stocks; how much was the brokerage?
15. An attorney collected a debt of $\$ 3476.50$, and charged $7 \frac{1}{2}$ per cent. commission; how much did he receive?
16. A commission merchant sold goods to the amount of $\$ 4536$ at $2 \frac{2}{2}$ per cent.; what was his commission?
17. What is the commission for selling dry goods at 4 per cent. to the amount of $\$ 746$, and groceries at 3 per cent. to the amount of $\$ 542$?
18. A commission merchant sells $\$ 436$ worth of dry goods at 3 per cent., and $\$ 458$ worth of paper at $2 \frac{1}{2}$ per cent. ; what is his commission?

1 PROFIT AND LOSS.

Such questions in per-centage as the following, are usually placed under the head of Profit and Loss.

Example 1.-If I buy cloth at 60 cents per yard, and sell it at 75 cents; what do I gain per cent.?

Analysis.-If I gain 15 cents on 60 cents, (which I do by giving 60 cents and-receiving 75), then I gain $\frac{15}{8}$, i. e. 25 per cent. ; hence,

To find the gain or loss per cent., when the buying and selling price are given :-

Rowe.-Make the gain or loss the numerator, and the buying price the denominator, then reduce the fraction to the decimal of hundredthes.j

Frumples 2.-If I buy at 60 cents, and in selling, gain 25 per cent.; what is the selling price?

Asalisis.- I paid 60 cents, and gained 25 per cent. of 60 cents, i, e 15 cents; hence, $60+15=75$ cents selling price; hence;

When the buying price and gain or loss per cent. are given to find the selling price :-
Ruce. Find the percentage on the given cost, at the fripen rate per centin, and it gain, acia it op, or cost, at the
tract if from the cost.

Eximple 3.-If I sell at 75 cents, and gain 25 per cent. 5 what was the cost price?

Analitgrs.- 0125 cents of selling price is equal to 01 cent of buying price; hence, When the selling price and the gain or loss per cent. are given to find the buying price:-

Rule.-Divide the selling price by 1 plus the gain per unit, or, (if loss be given), by 1 minus the loss per unit, expressed decimally, and the quotient vill be the buying price. EXAMPLE. $-75 \div 125=60$.

exercise 71.

1. Bought iron for $\$ 980$; for how much must it be sold to gain 12 per cent.?
2. Bought 50 tons of steel, at $\$ 45$ per ton; how must it be sold per ton to gain 3 per cent. ?
3. By selling sugar at $\$ 8.75$ per cwt., I gain 22 per cent. ; what did it cost me?
4. By selling flour at $\$ 5.50$ per barrel, I lose $8 \frac{1}{3}$ per cent. ; what did it cost me?
5. If I sell 140 bushels of wheat for $\$ 350$, and thereby gain 24 per cent. ; for how much should I have sold It a bushel, to lose 20 per cent:?
6. If I sell 30 yards of broad-cloth for $\$ 132$, and thereby gain 10 per cent.; how ought I to sell it a yard to lose 25 per cent.?
7. Sold 15 boxes of damaged raisins for $\$ 34.50$, which was at a loss of 8 per cent. ; how should I have sold them a box to have gaineत 337 per cent. ?
8. A merchant sold two boxes of goods for $\$ 60$ a-piece ; on one he gained 20 per cent., and on the other he lost 20 per cent. ; did he gain or lose by the operation, and how much?

BARTER.

The method by which two partier can exchanme goode at certain prices without loss to either, is called Barter.
Thus, if I had 20 lbs. of tea worth $\$ 9$, and wished to exchange it for sugar, at the rate of $\$ 18$ per cwt. ; I
ascertain by the rule of Barter what quantity of sugar I should get in exchange, vla., half a cwt.
To solve questions in Barter, the following is the
Rule.- Find the value of the goods, the price and quantity of which are given, and divide this by the quantity of the other, and the quotient is the price; or divide by the pmice, and the quolient is the quantity.

Exanple 1. How much sugar at 12 cents per 1 lb . must I recelve for 20 yards of cloth at 15 cents per yard?
$15 \times 20=\$ 3.00$ price of onc, and $\$ 3.00 \div \cdot 12=25$ lbs., quantity of sugar.

ExERCISE 72.

1. A merchant exchanged 50 lbs of tea at 45 cents per lb., for wheat at 25 cents a bushel; how many bushels did he receive?
2. Agave $B 60$ volumes of books at 75 cents a volume, and received in return 15 lbs of buttor at 13 cents per 1 b ; 401 lbs . of sugar at 11 cents per 1 h ., 3nd the balance in tea at 4 cents per lb ; how many lbs. did ho receive?
3. A gentleman wishes to exchange a farm of 80 acres, worth $\$ 50$ an acre, for wild land, worth $\$ 5$ an äcre; how many acres did he receive?
4. A gave 13 sheep at $\$ 2,25$ each, and 11 cows at $\$ 13$ each; how many bushels of corn must he receive in return at 43 cents a bushel? 5. How many horses worth $\$ 65$ each, can I procure for a farm of 200 acres 2 roods, worth $\$ 17$ per acre?

INTEREST

Interest is the sum which a person pays for the use of money, and it is usually reckoned at so much per cent: per annum.
The money lent is called the Principal.
 wal is the rate per cent.

The Interesi, and the Principal added together is called: the Amount.

Thus, if I borcow $\$ 600$ dollars for a year, and agree to pay at the rate of $\$ 6$ per cent. for its use at the end of the year, I owe not only $\$ 600$, but also $\$ 36$ for interest. In this example we have,
$\begin{array}{cccc} & \$ 600 & \text { as the Principal. } \\ & \$ 6 & \text { " Rate per cent. } \\ & \$ 36 & \text { " Interest. } \\ & \$ 636 & \text { " Amount (Principal + Interest). }\end{array}$
W.Then Interest is charged on the original Principal only, it is termed Simple Interest.

But when, at the end of a stated period, the interemt then due is added to the principal, and this amount becomes the new principal, and so on, at the expiration of each period, instead of being paid, this is called Compound Interest. \qquad

SIMPILE INTEREST.

To find the Interest of a given sum for one year or and number of years,

Rune.-Multiply the principal by the rate per unit, and the product by the time.

Example.- Required the interest of $\$ 240$ for 3 years at 5 per cent. per annum?
$\$ 240=$ principal.
-05 =rate per unit. ab and को at:ar?
$\$ 12.00=$ interest for 1 year.
3
$\overline{\$ 6.00}=$ interest for 3 yearm
When the time is not an even number of years, but includes months and weeks, \&cc., it. will generally be found most convenient to get the interest for the monthe, Alay, ioc., Ey Fractice.

For example, if the question is, what is the interest of 7*
of $\$ 400$ for 2 years, 8 monthy, ond 2 weeks, at 1 per cefit. per annum?

$6 \text { months }=\frac{1}{2} \text { year. }$	\$ $8400=$ principal.		
	$\overline{\$ 16.00}=$ interest for 1 year.		
2 months $=\frac{1}{3} 6$ months.	\$32.00 $=$	*) 6	2 years.
	$8.00=$	"	$6 \mathrm{mos}$.
.	2.66	610	$2 \mathrm{mos}$.
	6		2 weeks
	\$43.331		

But when aliquot parts cannot be conveniently got for the required time, the following method may we adopted, especially as it is seldom that time time can conveniently be taken as aliquot parts of a year.

Rule.-Find the interest for one year; express the given parts of a year as days, and find by proportion the intercst for that time, and add it to the interest for the even number of years.

Example.- That is the interest of $\$ 300$ for, 2 years and 90 days at 6 per cent ?

$$
\$ 300
$$

2. 06
$\$ 18.00=$ interest for 1 year.
$\$ \overline{\mathbf{3 6 . 0 0}}=$ interest for 2 years.
Then to find the interest for 90 days,
365 : 90 : : $\$ 18.00$ 18.00
365) 1620.00 ($\$ 4.43=$ interest for 90 days.
$\frac{1460}{1600}$
$\frac{1460}{1400}$
$\frac{1095}{305}$
1. What is the intercst of $\$ 908.20$ for 1 year at 3 pr. ct. $?$
2. What is the interest of $\$ 624$ for 2 years at 8 pr. cent.?
3. What is the amount of $\$ 400$ for 4 years at 5 per ct.?
4. What is the interest of $\$ 643.70$ for 6 years at 8 per cent.?
5. What is the interest of $\$ 2124.84$ for 9 years at $4 \frac{1}{2}$ per
6. What is the interest of $\$ 5347.62$ for 5 years at 6 per cent.
7. What is the interest of $\$ 3217.68$ for 11 years at 5 per cent.?
8. What is the interest of $\$ 8922.50$ for 7 years at $3 \frac{1}{2}$ per cent.?
9. What is the interest of $\$ 4159.71$ for 13 years at 6 per cent.?
10. What is the interest of $\$ 9754.32$ for 8 years at 7 per cent.?
11. What is the interest of $\$ 9112.27$ for 12 years at 8 per cent. ?
12. What is the interest of $\$ 3 i 65.38$ for 10 years at $7 \frac{1}{2}$ per cent.?
13. What is the interest of $\$ 80$ for 12 years 3 months and 20 days at 10 per cent. ?
14. What is the interest of $\$ 1000$ frem March 1 to Jan. 9, at 94 per cent.
15. What is the interest of $£ 58418 \mathrm{~s}$. 8d. for 1 year and 9 months at $3 \frac{1}{8}$ per cent.?
16. What is the amount of $\$ 326$ for 2 years 5 months ai 43 per cent. ?
17. What is the interest of $\$ 162$ from Aug. 24 to Jan. 1, at 6 per cent?
18. What is the interest of $\$ 1$ for 80 years 6 months at 15 per cent.?
19. What is the amount of $\$ 2800$ for 89 days at 5 per ct.?

There are five things in Interest-the Principal, the Rate per cent., the Time, the Interest, and the Amount-any three of which being given, the other tive mū jov found. in most questions, the principal, rate per cent.; and time are given to find the interest, as in the last exercise ; but we
may sometimes require to find the principal, rate per cent, or time.

To find the principal when the rate per cent., time, and interest are given,
Row.- Divide the given interest by the interest on one dollar, at the given rate and time; the quotient will be the required principal.

Bunple. - What sum will produce $\$ 127.40$ in 4 years at $3 \frac{1}{2}$ per cent.?
$\$ 1$ at 31 per cent., for 4 years $-1 \cdot 14$, and 127.40 $\cdot 14$
To find the time, when the principal, interest, and rate are given,

Runs.-Divide the given interest by the interest on the given principal at the given rate for one year, and the quodent will be the required time in years.
Erumple.-In what time will $\$ 240$ give $\$ 72$ interest at 5 per cent. ?
The interest on $\$ 240$ at 5 per cent. for 1 year $=\$ 12$, and $\$ 72$ given interest. $-=6$ years.
$\$ 12$ interest on principal for 1 year.
To find the rate, the principal, time, and interest being given,

Role.- Divide the given interest by the interest on the given principal at 1 per cent. for the given time, and the quotient will be the required rate per cent.

Erample.-At what rate per cent. per annum will $\$ 248$ in 7 years give $\$ 86.80$ interest ?
The interest on the given principal at 1 per cent. for 7 cars $=\$ 17.36$.
$\$ 17.3 \overline{6}$ intorest on given principal at 1 per cent, for 7 years.

exercise 68.

1. What sum will give $\$ 25.98$ of interest in 7 months at 6 per cent. per annum ?
2. In what time will $\$ 893.56$ give $\$ 44.68$ interest at 6 per cent.?
3. At what rate will $\$ 856.84$ in 4 years 9 weeks and 12 days give $\$ 204.93$ interest ?
4. A gentleman lent $\$ 2000$ and received for interest $\$ 675$; how long had it been unpaid, computing interest at 7 per cent. per annum?
5. I lent money for 6 years at 5 per cent., and recoived as amount due at end of that time $\$ 1040$; how much did I lend at first?
6. Required the rate per cent. at which $\$ 100$ will amount to $\$ 200$ in 10 years?

COMPOUND IN ${ }^{-m}$ REST.

Money is lent at Compound Interest when interest is charged not only on the original principal, but also on the interest that remains unpaid.

For Example.-If I borrow $\$ 100$ at 5 per cent. per annum, at the end of a year I owe $\$ 105$-the $\$ 100$ burrowed and $\$ 5$ for interest; if I do not pay the $\$ 5$, at the end of the second year, I owe $\$ 105$, and interest on it for a year, or $\$ 5.25$, in all $\$ 110.25$-interest being charged not only on the principal, but also on the $\$ 5$ of unpaid interest.

To compute the Compound Interest of a given sum for any number of payments,

Ruce. - Find the interest of the given sum for the first period, and add it to the principal. Talce this sum as the principal for the next period and find the interest thereon, and add to it the principal used for that period; proceed in this manner with each period of the given time, and the last resuii wiil oe tire amount of the principal for the given time, from which, of course, if the principal be subtracted, the remainder is the interest for the proposed time.

Example.- What is the compound interest of $\$ 960$ for 3 years at 5 per cent. per annum?

Add $\quad \$ 1008=$ principal for second year.
$\$ \overline{058.40}=$ principal for third Jear.
Add $\quad 52.32=$ interest or third Jea
$\$ \overline{1111.32}=$ amount at end of third year. Subtract $\$ 960.00=$ $\$ 151.32$ Ans.
When the number of periods are not numerons, this method can be used without much labour; but, when the periods are numerous, the labour becomes very great. The following plan in such cases, will be found more convenient:$\begin{aligned} \text { Add } & \$ 960 \\ & =\text { principal for frst year. } \\ & =\text { interest of } \\ \$ 1008 & =\text { principal for second year }\end{aligned}$

> ar. Subtra

Find the amount of $\$ 1$ for one period at the given rate per cent. and multiply it by itself one time less than the number of periods, then multiply the product by the number of dollars in the given principal, and from the result sub-
tract the given princinal.

Eximple.-Required the Compound Interest of $\$ 600$ for 5 years at 5 per cent. per annum.
$1.05 \times 1.05=\$ 1.176$. \quad mount of $\$ 1$ pent $\$ 1.05 \times 1.05 \times 1.05 \times$

$\$ 765.600$
Subtract
600

$$
\$ 165.600 \text { Ans. }
$$

The reason of this appears from the following analysis :

Again, to find amount at the end of the third period, the principal being now $\$ 1.05 \times \$ 1.05$, we have
$\$ 1: \$ 1.05::(1.05 \times 1.05):$ amount of third period. or, $1.05 \times 1.05 \times 1.05$

1 , $=\$ 1.05 \times 1.05 \times 1.05=6$
By proceeding: in the same manner, we find that the amount of $\$ 1$ for any number of periods, is equal to the amount of the first period multiplied by itself one time less than the number of periods.

exercise 69.

Find the amounts of the following sums at the given rates per cent.

1. $\$ 500$ for 3 years at 7 per cent. per annum?
2. $\$ 840$ for 3 years at 5 per cent. per annum?
3. $\$ 880$ for 6 years at 2 per cent. per annum?
4. $\$ 3056$ for 2 years at 6 per cent half yearly?
5. $\$ 3$ for 10 years at $4 \frac{1}{2}$ per cent. per annum?
6. What is the interest of $\$ 2615.20$ for 6 years at $3 \frac{1}{2}$ per cent. per annum?
7. What is the interest of $\$ 900$ for $2 \frac{1}{2}$ years at 6 per cent. half yearly?
8. What is the interest of $\$ 100$ for 3 years at 6 per cent. quarterly?
9. What is the interest of $\$ 818$ for $7 \frac{1}{2}$ years at 4 per cent. half yearly?
10. What is the amount of $\$ 2329.50$ for 5 yeara at $5 \frac{1}{2}$ per cent per annum?
11. What is the compound interest on $\$ 200$ for 8 years at. 6 per cent, allowing interest to be due annually?
12. What is the compound interest on $\$ 1000$, for 2 years, at 8 per cent; allowing interest to be due half yearly?
13. What would $\$ 500$ amount to in 5 years, at 6 per cent. interest, if the interest be compounded annually ?

St

DISCOUNT.

Discount is an allowance made for the payment of money before it is due.

The money received as the payment of a Bill, Mortgage, \&c., due some time after, is called its present worth.

Thas, if I hold a note for $\$ 100$ due in 6 months; but wish to obtain its value at once, a banker, on being satisfied that the note is good; gives me $\$ 95$, its present worth at 10 per cent. per annum, retaining $\$ 5$ as discount. ${ }^{3}$ The true present worth of a note or other security is the sum which at so much per cent. would amount to the sum named in the note in the time which is to run before the note becomes due; thus, if interest is at 5 per cent., $\$ 100$ in one year would amount to $\$ 105$, so that the value of a note for $\$ 105$, due one year hence, is exactly $\$ 100$, and the true discount would be $\$ 5$.

But bankers in discounting, eharge the interest on the sum named in the note"; in the case above, they would charge as discount 5 per cent. on $\$ 105-\$ 5.25$, instead of $\$ \overline{5}$, the true discount.

To compute the true discount on a note, \&c., \&c.,
Rous.- Fivd the amount of $\$ 1$ at the given rate for the given time; divide the sumfor which the note, dec., is drazon by this amount, and subtract the quotient from the dividend.

Example.- What is the discount on a note due one year hence for $\$ 127.05$ at 5 per cent. ?

For one year at 5 per cent, the amount of $\$ 1$ is $\$ 1.05$, therefore, by the rule, $\$ 127.05 \div 1.05=\$ 121$, true present worth, and $\$ 127.05-\$ 121=\$ 6.05$ discount. The amount of $\$ 1$ for the time, being $\$ 1.05^{\prime}$; had the bill been drawn for $\$ 1.05$, of course its present worth would be $\$ 1$, but it is drawn for $\$ 127: 05$. Therefore;

$$
\$ 1.05: \$ 127.05:: \$ 1 \text { present worth, or }
$$

$$
\frac{\$ 127.05 \times 1}{1.05}=\frac{\$ 127.05}{1.05}=\$ 121, \text { present worth }
$$

The Bent atecoution any sum is just the interest on it for the time mentioned before it is due; but on all bills

3 days of grace are allowed, which bankers always add in computing discount. A bill dated 1st January, and drawn at 3 months, is due on 4th April, not on the first.
Example.- What is the bank discount on a note for $\$ 120$, due in 6 months at 5 per cent?
Interest of $\$ 120$ for 6 mo . at 5 p . ct. per annum is $\$ 3.00$ Add interest of " 3 days "" " " $\$ 049$

Bank discount is

$\$ 3.049$ exerciśe 70.

1. What is the bank discount on a bill for $\$ 2196$ for 32 days at 5 per $c^{\text {ct }}$ per annnm?
2. What is the tr. $\$ 370$ for 3 months at 7 per cent. per annum?
3. What is the true and the banle discount on $\$ 99.20$ for 1 year at $5 \frac{1}{2}$ per cent.?
4. What is the true present worth of $\$ 139.81$, due 10 years hence, at $5 \frac{1}{2}$ per cent.?
5. In the last example, reckoning bank manner of discount, what is the present worth? How much more than the true discount does the banker charge?
6. I discounted at the bank the following bills, at the rate of 8 per cent. per annum: one note for $\$ 1000$ due in 6 months, two notes for $\$ 500$ each, diee in 70 days, and one for $\$ 320$, due in 2 years ; how much did I receive in all ?
7. What is the discount on a note for $\$ 911.40$, drawn at 5 months, at 8 per cent.?
8. What is the dis punt on a note, dated March 26 th , and due June 23 rd , for $\$ 897.20$, at $3 \frac{3}{4}$ per cent.?
9. A note of $\$ 1651.50$ is due in 11 months, but the person to whom it is payable sells it with the discount off at 6 per cent. ; how much shall he receive? 10. C owes D $\$ 3456$, to be paid October 27th, 1842; C. wiahes to pay on the 24tif of Ausust, 13iss, to which D consents; how much ought D to receive, interest at 6 per cent.?

SECTIONV.

INVOLUTION AND EVOLUTION.

When we multiply any number by itself any number of times, the several products are called power's of the nuaber; thus if 4 is multiplied by itself once, the product is 16, a power of four, if multiplied twice, $(4 \times 4 \times$ $4=64$), the product 64 is another power of four.

The number which by multiplication produces the power, is called the root.

In the example taken above, 4 is the root of 16 and 64.
The powers are called first, second, third, de., according to the number of times the root is taken as factor; thus, first power of 4 is 4 , second power is 16, third power is 64, and so on.

The seconit power is also called the square, and the third power the cube. Powers are often indicated by writing after the number, and, a little higher the number which shows the number of times it is taken as a factor: thus, $4^{9}=$ second power of $4 ; 7^{6}=$ sixth power of 7 ; this small figure is called the index or exponent
The process of finding a power of a number is called Involution, and the procese of Anding wif root of a number is called Enolution.

INVOLUTION.

To involve a number to any required power,
Roue. - Take the number as a factor, as often as is indicated by the index of the power, the continued product of these factors is the required power.

Erample 1.-What is the 4 th power of 5 .

$$
5^{4}=5 \times 5 \times 5 \times 5=625 \text { Ans }
$$

Example 2.- What is the 3rd power of $3 \frac{1}{2}$.

$$
3 \frac{1}{2}=\frac{7}{2} \text { and } \frac{7}{2} \times \frac{7}{2} \times \frac{7}{2}={ }^{3} \frac{3}{8}{ }^{3}=42.875 \text { Ans. }
$$

To involve mixed numbers, we reduce them first to improper fractions.

Exerctse 74.

Involve,

1. 8 to the fourth power.
2. 23 to the fifth power.
3. 225 to the tenth power.
4. $9 \frac{1}{2}$ to the fourth power.
5. $\frac{8}{8}$ to the third power.

Involve,
6. 1.25 to the second power.
7. 901 to the third power.
8. $1 \cdot 1$ to the sixth power:
9. $3 \frac{21}{9}$ to the second power.

EVOLUTION.

EXTRACTION OF THE SQUARE ROOT.

To extract the square root of a number, is to find a number which if multiplied once by itself would produce the number.

The theory of the rules for the extraction of the Square and the Oube Root, can be best explained by the teacher, woith blocks: made fon the purpose, and this should be thoroughly done in the outset.
 "why" should be put and answered in referience to cank step in the rile.

RDLE.

(1.)-Point off the given number into periods of two figures each, (pointing from right to the left hand in whole numbers, and from lefi to right in decimals.)
(2.) Find the highest square contained in the teft hand period, and place its root as a quotient in division.
(3.) Subtract the square number from the left hand period, and to the remainder, if: any, bring down the neart period for
(4.) Double the root already found for a trical divisor.
(5.) Find how often the trial divisor is contained in the dividend, omitting the last figure, and place the figure thus obtained in the root, and also to the right of the trial divisor.
(6.) Multiply the divisor by the figure placed last ir the root; subtract the product from the dividend, and to the remainder, if any, bring down the next period for a new dividend.
(7.) Double the part of the root now found for a new trial divisor, and proceed as before, continuing the process until all the periods are brought down.
Nors. - In extracting the square root of fractions, if the numerator and denominator are both complote squares, extract the square root of them separately, otherwise reduce it to a decimal fraction and
proceed according to the rule

Exampje.-What is the square root of 2025 ?

20

2025 (45 the root. We first point off from the figures each, and find the root $\begin{array}{ll}85 & 425\end{array}$ must contain two digits; the left hand period is 20 ; the highest square in 20 is 16 , the square of 4; we place 4 in the root as the first figure, and subtract 16 , its square; from 20, and bring down the next period ; we then doubleithe 4 for a trial divisor, and find how often 8 is contained in 42 , \#hind is 5 timies i we put the $53 /-7$ the root, and also to the right of the trial divisior, and multiplying 5 , find the work completed.

What is the Equareroot of the following numbers ：－

1．1316， 222784.
2． $4922894,5499025$.
3． $67305616,5$.
4． 5 ，$\frac{8}{8}$ ．
5．$\frac{9}{16}$ ，允5．
6． $180,{ }^{82}$ ？

7． $201.1 \frac{8}{8}$ ．
8． 207 䎄伯， $338 \cdot 633604$.

10． 23784188,747863988 공․
11． $90374376,23473783$.

EXTRACTION OF THS CUBE ROOT．

To extract the cube root of a number，is to find a root which when multiplied twice by itself，produces the number；thus，the cube root of 27 is 3 ，for $3 \times 3 \times 3$ $=27$ ．

The teacher should explain the mule for the extraction of ． the cube root，by using the blocks，before the pupil is re－ quired to commit or use it $;$ and the pupil should be able to answer the question，＂why，＂in reference to each step in the rule，before he proceeds to the exercise．

RULE．

（1．）Point off the given number into periods of three figures each，pointing to the left in whole numbers，and to the right in decimals．
（2．）Find the highest cube coniained in the left hand persod and place its root as a quotient in division．
（3．）Subtrant the cube from the left hand period，and to the remainder，if any，bring dovon the next perion for a newo dividerd．
（4．）Miltiply the square of the part of the root found by 300，for a trial divisor．
（5．）Mind how often this trial divisor is contained in the dividend，and put the figure thus outained in the root．
(6.) Complete the trial divisor by adding to it the product of the root previously found, multiplied by the last digit of the root, and that prodiuct multiplied by 30 , and also the square of (i) last digit in the root.
(7.) Whiltiply the divisor thus completed, by the lasi digit in the root, and subtract the product from the dividend, and bring down the next period for a new divide: d.
(8.) Multiply the square of the part of the rool now found by 300, for a new trial divisor, and proceed as before until all the periods are brought down.

In fractions, when both the numerator and denominator are complete cubes, extract the cube root of each separately in all other cases reduce tl, fraction to a decimal, and proceed ás in whole numbers.

Exiaple. - What is the cabe root of 1953125 ?

1 1st trial div. 1st increase $1 \times 2 \times 300=300$ 2nd " $2 \times 30=\begin{array}{r}60 \\ 4\end{array}$

Complete divisor
$1953115(125$
1
$953=1$ st dividend.

728

$225125=2 n d$ divid.
2nd trial div. $122 \times 300=43200$
1st increase $12 \times 5 \times 30=1800$
2nd
$5 \times 5=525$
Complete divisor $=\overline{45025}$
ter col it is abo the in figu sub

F
sec firs cipl of t col figu and

Nors. - the following method of extracting the cub much less labour than the foregoling, and is founded on the same
principle.

Having pointed off the number inte periode of three fg ures each, as in the former method, place at hoderate in-
tervals before it two ciphers as the commencement of two columns; having found the first figure of the root, place it in the first column, and having added it to what stands above it, multiply the sum by the same figure, wilting the product in the second column; add in like manner in the second column, multiply the sum by the same figure, and place the product in the third column, and subtract it from what stands above it:

- Perform a process exactly similar in the first and second columns, add the figure fouid in the root to the first column, then add one cipher to the first, and two ciphers to the second column, and bring down a period of three figures to the third column; divide the third column by the second as a trial divisor to find the next figure in the root ; place this figure in the first column, and proceed as before.
Exixple.- (Same number as before.)

ARTMEMKIIC.

EXERCIBY 75.

Extract the cube root of the following numbers :-

1. 373248, 592704.
2. $12326391,15625$.
3. 29859 ᄃ, 704969.
4. $\frac{12}{2} \frac{5}{8}, 21024576$.
5. 84.604519, 000343.
6. 2, 997002999.
7. $389017,{ }^{3150}$.
8. $31 \frac{15}{3 / 5}$, $\frac{250}{85}$.

APPLICATION OF THE SQUARE AND CUBE ROOT.

1. If an acre of land be laid out in a square form, what will be the length of each side in rods?
2. What will be the length of the side of a square, in rods, that shall contain 100 acres ?
3. A cellar is 25 fcet long, 20 feet wide, and $8 \frac{1}{2}$ feet deep; what will be the dimensions of another cellar of equal capacity in the form of a cube?
4. What will be the length of one side of a cubical granary that shall contain 2500 bushels of grain?
5. What is the length, in rods, of one side of a square that shall contain 12 acres?
6. A company of speculators bought a tract of land for $\$ 6724$, each agreeing to pay as many dollars as there were partners; how many partners were there?
7. What must be the length, depth, and breadth of a box, when these dimensicns are all equal and the box contains 4913 cubic feet?
8. The solidity of a cubical block is 21952 cuble yards; what io the length of each side?. What is the area of the surface?
9. A general has an army of 7225 men; how many

FINAL COMPREHENSIVE MISCELLANEOUS EXERCISE.

1. Write down as one number, five thousand billion, four thousand and three, and ninety-two thousandths.
2. Add twenty thousand three hundred and twentyfive millionths to one hundred thousand and twentyfive ten-thoisand ths.
3. Multiply 9873 by $785 \cdot 18231$.
4. One gentleman meeting another, and inquiring the time past 12 o'clock, received for an answer, $f \frac{7}{9}$ of the time from now to midnight; what o'clock in the afternoon was : \ddagger ?
5. From one half of a piece of cloth containing 82 yds . 2 qrs., a tailor cut six suits of clothes; how much did each suit contain?
6. Multiply $23 \cdot 5 \dot{64}$ by $2 \cdot 6 \dot{5}$, and divide the result by $2 \cdot 1 \dot{2} \dot{3}+(\cdot \ddot{2}-006 \dot{2}$. $)$
7. What is the exact decimal value of $\frac{5}{28}$.
8. If $£ 100$ of bank stock is worth $£ 98 \frac{8}{3}$, what is $£ 3628 \mathrm{~s}$. $7 \frac{1}{2} \mathrm{~d}$. of stock worth?
9. If you pay $£ 8710 \mathrm{~s}$. per ton for iron, at what rate must you sell it to gain the price of 1 ton on 15 tons?
10. What will be the rent of 35 acres, 2 roods, 10 r. of land, if 46 acres, 3 roods, 14 r . are worth $£ 50$?
11. If a landlord dedacts $\frac{2}{3}$ on a shilling to his tenant, what will be the dednction on $£ 763 \mathrm{~s}$. $4 \frac{1}{3} \mathrm{~d}$. ?
12. If $\frac{1}{3}$ and $\frac{1}{10}$ of a pasture cost $£ 410 \mathrm{~s}$., what will the whole pasture cost?
13. Bought 840 apples, at the rale of 10 for a penny, and 240 more, at 8 for a penny; if I sell them at 36 for 4 ., shall I gain or lose by the operation, and how much per cent.?
14. A farmer having sold $\frac{1}{2}$ and $\frac{1}{8}$ of his sheep, had 95 left ; how many had he at first?
15. A man baving \$15750, spent $\frac{1}{2}$ for a house, $\frac{1}{2}$ the re mainder for a barn, and $\frac{1}{}$ of the balance for a carriage ; how much had he left?
16. Wh t is the difference between $\frac{18}{28}$ of 275 , and $\frac{3}{4}$ of 315 ?
17. What number is that, $\frac{1}{2}$ of which exceeds $\frac{1}{4}$ by 387 ?
18. What number is that, $\frac{2}{3}$ and $\frac{3}{5}$ of which make 255 ?
19. What number must be added to $1375 \frac{1}{3}$ to make 811931?
20. What must be taken from $1137 \frac{1}{5}$ that 7934 may be left?
21. What must be added to $217 \frac{1}{2}$ that the sum may bo 171 times 191 ?
22. What number multiplied by $45 \frac{1}{5}$, will produce $288 \frac{1}{4}$?
23. What number divided by $37 \frac{1}{2}$, will give $193 \frac{1}{4}$ for the quotient?
24. Bought $\frac{7}{8}$ of a ship, and sold $\frac{4}{3}$ of it ; how much was left?
25. A grocer used a false weight of 131 oz. for a pound; what was the amount of his fraud in weighing 500 lbs.?
26. If $\frac{y}{15}$ lbs. of lard cost $\frac{1}{1} \frac{4}{7} 3$. ; how much will $\frac{29}{3}$ ton cost?
27. What number is that, $\frac{1}{2}$ of which exceeds $\frac{1}{8}$ by 428 ?
28. What number is that, $\frac{3}{3}$ and $\frac{3}{4}$ of which is 510 ?
29. A father gave his eldest son twice as much as the second, the second three times as much as the third, who had $\$ 1573$; how much did he give to all?
30. A man having 4 children, gave twice as much to the 4th as to the 3rd; twice as much to the 2 nd as to the 4th; and to the 1st twice as much as to the 2nd, which was $\$ 7860$; what did he give to all?
31. A man gave $\frac{1}{8}$ of his estate to his eldest daughter ; $\frac{1}{2}$ the remainder to the 2 nd ; and $\frac{1}{4}$ of the remainder to the 3rd, who received $\$ 3560$; What was his estate?
32. A and B travelling, A has 5 loaves of bread, and B has 5. They are overtaken by C, who says. "Letme partake with you, and 1 will pay for what I eat." They all eat an equal quautity, and C pays $\$ 8$. How shall. the assistance of A they can do it in 11 days; in what time would A do it himselt?
33. If A can do a piece of work alone in 10 days, and A and B together in 7 days, in what time can B do it alone?
34. A, B, and C can complete a pioce of tork together in 12 days; C can do it alor.a jn 84 days, and A in 34 days ; in what time could b it it t, himself ?
35. A can do a piece of work in $3 \mathrm{wto,A8}, \mathrm{~B}$ can do thrice as much in 8 weeks, and C 5 times as much in 12 weeks; in what time can they finish it jointly?
36. Bought 120 oranges at 2 a penny, and 120 more at 3 a penny, and sold them all together at five for 2 d .; what did I gain or lose by the bargain?
37. A man left his two sons $\$ 1900$; their ages were 14 and 18 years respectively; if their shares wero put to interest at 6 per cent. per annum, they would be equal when each would be 21 years of age ; what was the share of each?
38. What is to pay for the rent of a honse, at $\$ 372 \cdot 203$ a year, for 5 years in arrears, at 6 per cent. (simple interest?)
39. The head of a fish is 4 feet long, the tail as long as the head and $\frac{1}{2}$ the length of the body, the body as long as the head and tail ; what is the length of the fish?
40. The sum of two numbers is $266 \frac{2}{3}$, the product of the greater multiplied by 3, equals the product of the less multiplied by 5 ; what are the numbers?
41. A military officer placed his men in a square; being reinforced by three times his number, he placed the whole again in a square; again being reinforced by three times his last number, he placed the whole a third time in a square, which harl 40 men on each side; how miniz inen hau he at first?
They shall.
42. Suppose that a man stands 80 feet from a steeple, that a line to him from the top of the steeple is 100
feet long, and that the spire is three times as high as the steeple ; what is the length of a line reaching from the top of the spire to the man?
43. Two ships sail from the same port; one sails directly east at the rate of 10 miles, the other directly south at the rate of $7 \frac{1}{2}$ miles an hour; how far are they apart at the end of 3 days?
44. If eggs be bought at the rate of 5 for 2 cents; how must they be sold to gain 40 per cent.?
45. Three gentlemen contribute towards the building of a church, $\$ 657$, the church is distant from the first 2 miles, from the second $2 \frac{7}{8}$ miles, and from the third $3 \frac{1}{2}$ miles ; they agree that their shares shall be reciprocally proportional to their distances from the church ; how much must each contribute ?
46. If a merchant each year increase his capital by a fifth part of itself, except an expenditure of $\$ 400$ per annum, and at the end of 15 years is worth $\$ 1200$; what was his original capital?
47. A's note of $\$ 7851.04$ was dated Sept. 5th, 1837, on which were endorsed the following payments, viz. : Nov. 13th, 1839, \$416.98; May 10th, 1840, $\$ 152$; what was due March 1st, 1841, the interest being 6 per cent.?
48. A person dying, worth $\$ 5460$, left a wife and 2 children, a son and a daughter, absent in a foreign country. He directed that if his son returned, the mother should have one-third of the estate, and the son the remainder; but if the daughter returned, she should have one-third, and the mother the remainder. Now it so happened that they both returned; how must the estate be divided to fulfil the father's intentions?
49. If 12 apples be worth as much as 17 pears, and 2 pears cost $1 \frac{1}{2} \mathrm{~d}$; what is the value of 99 apples?
50. Place the nine natu 1 numbers, $1,2,3,4,5,6,7,8,9$, in such a manner that the sum of the odd digits shall we equal to the sum of the even ones.
51. What part of 8 . is a third part of 2 d .?
52. How must the nine digits, $1,2,3,4,5,6,7,8,9$, be placed in the form of a square, so that the sum of each row of figures, reckoned upwards, downwards, horizontally, diagonally, shall just equal 15 .
53. I owe my friend a shilling; he has nothing but coing worth 17s. each, and I have nothing but guineas.

- How múst an exchange take place between ns, so that I may pay my debt, but no more?

55. How must a board that is 16 inches long, and 9 inches broad, be cut, so that when the two parts are joined together, they may form a square?
56. A has by him $1 \frac{1}{2}$ cwt. of tea, the prime cost of which was $£ 96$. Now, granting interest to be at 5 per cent., it is required to find how he must sell it per lib. to B, so that by taking his note; payable at 3 months, he may clear 20 guineas by the bargain.
57. The hour and minute hand of a clock are exactly together at 12 o'clock; when are they next together?
58. There is an island 73 miles in circumference, and 3 persons all start together to travel the same way about it ; A goes 5 miles a day, B 8, and C 10 ; when will they all come together again?
59. Sold goods for 60 guineas, and by so doing lost 17 per cent., whereas I ought, in dealing, to have cleared 20 per cent.; how much were they sold under their just value?
60. A hare starts 40 yards before a greyhound, and is not perceived by him till she has been running 40 seconds; away she goes at the rate of 10 miles an hour, and the dog, on view, makes after her at the rate of 18 ; how long will the course hold, and what ground will be run over, beginning with the outsefting of the dog?
61. A reservoir for water has two cocks to supply it ; by the first alone it may be filled in 40 minutes, and by the second in 50 minutes; it has likewise a diocharging cock, by which it may, then full, De empthed in 25 minutes. Now, if these three cocks are all left open, when the water comes in, in what time
would the cistern be filled, supposing the influx and "efllux of the water to be always alite?
62. A person left 40 s. to 4 poor widows, A, B, C, and D, in the following proportion ; to A he left $\frac{7}{2}$, to B , to $\mathrm{C} \frac{1}{3}$; to $\mathrm{D} \frac{\mathrm{b}}{\mathrm{b}}$, desiring the whole might be distributed accordingly ; what is the proper share of each?
63. How many oaken planks will floor a barn $60 \frac{1}{2}$ feet long, and $33 \frac{1}{2}$ wide ; when the planks are 15 feet long, and 15 linches wide?
64. The amount of a sum of money which has been put out to interest is $£ 100$, and the principal is just 7 times as much as the interest ; what is the principal?
65. A tradesman increased his estate annually 3 part, abating $£ 100$, which he usually spent in his tamily; and at the end of $3 \ddagger$ years, foind that his net estate amounted to £3179 11s. 8 d . ; what had he at his outsetting?
66.7 A person after spending $\frac{1}{3}$ of his yearly income plus £10, had then remaining $\frac{1}{2}$ plus $£ 15$; what was his
66. A cistern containing 60 gallons of water has 3 unequal cocks for discharging it ; the greatest cock will empty it in 1 hour ; the second in 2 hours; and the third in 3 ; in what time will it be empty if they all run together?
-68. In an orchard of fruit trees, $\frac{1}{2}$ of them bear apples, 1 pears, $\frac{1}{8}$ plums, and 50 of them cherries; how many trees are there in all ?
67. Suppose the sea allowance for sailors to be 5 ' lbs. of beef, and 3 lbs. of biscuit a day, for a mess of 4 people ; and that the price of the first is 2 t d. per lb., and of the second 12 d. ; now, if the ship's company be such that the meat they eat cost the government 12 guineas per day,, what must they pay for their bread per week?
68. A stationer sold quills at 11s. a thousand, by which he cleared s of the money; but he afterwards raised. feem to 13s. of. a thousand ; what did ha clear per cont. by the latter price?

FINAL MISCELLANEOUS MENTAL EXERCISE.

1. How many are 12 and 9 ? 11 and 17 ? 17 and 19 ?
2. How many are 28 and 43 ? 46 and 37 ? 126 and 514 ?
3. How many are $7+9+15+27+5+17$.
4. How many are $17-6$? 42-16? 523-54?
5. How many are $127-59 ? .615-173 ? 2986-175$?
6. How many are $1276-14-123+24-18+154$?
7. How many are $6 \times 2-5+8 ? 24 \times 17-15+8$ $\times 36$?
8. How many are $176 \times 17-23+8$? $54 \times 26+19$ $-23+9$?
9. How many are $28 \times 15-11+18 \div 14$? 163×17 $-19+126 \div 15$?
10. How many are $12 \times \frac{3}{4}$? $12 \div \frac{3}{4}$? $\frac{1}{8}$ of 20 ? $\frac{1}{2} \frac{3}{3}$ of 10 ?
11. 4 times 8 are how many times 5,6 , and 7 ?
12. $2 \frac{3}{4}$ of 12 are how many times $\frac{3}{4}$ of 18 ?
13. What is $\frac{2}{9}$ of that number of which 63 is $\frac{7}{9}$?
14. 15 is $\frac{3}{5}$ of how many times 27 ?
15. $\frac{2}{3}$ of 126 is $\frac{3}{4}$ of how many times $\frac{3}{4}$ of 617 ?
16. 17 books at $\$ 5.27$? 126 horses at $\$ 57,96$?
17. $\frac{3}{7}$ of 624 ? $\frac{1}{2} \frac{1}{2}$ of 826 ? $\frac{6}{7}$ of 483 ?
18. How much will $\frac{5}{6}$ of a barrel of apples cost, if $\frac{2}{21} \cos$ 75 cents?
19. How much will 6 cords of wood cost, if 5 of 4 cords cost $\$ 12$.
20. $123 \frac{3}{4}-59 \frac{5}{8}$? $\frac{3}{4} \times \frac{5}{8} \times \frac{17}{18}$? $\frac{8}{7} \times \frac{5}{4} \div \frac{2}{3}$ of $\frac{3}{4}$?
21. 18 is 4 times what number? 36 is $\frac{1}{8}$ of $\frac{1}{3}$ of winat number?
22. If 15 cords of wood cost $\$ 65$, what will $11 \frac{1}{2}$ cords cost?
23. If $\$ 126$ pay 17 men, how many will pay 150 men?
24. If 17 men can build a barn in 17 days, in how many days can 27 men build it $?^{\circ}$
25. A can do a piece of work in 8 days, B in 12 days; in what time can both working together do it?

ARITEMETIN.

26. I paid $\frac{2}{8}$ of a debt, and afterwards $\frac{1}{8}$ of the balance, and had $\$ 127$ left; what was the debt?
27. How much is 11 per cent. off $\$ 125$?
28. 654 lbs of cheese at $12 \frac{3}{4}$ cents per lb.?
29. Bought at 15 cents and sold at 19 cents ; what was the gain per cent?
30. Bought at 53 cents and sold at 15 per cent. profit ; what did I sell for?
31. What is the interest on $\$ 763$, at $9 \frac{3}{4}$ per cent. ?
32. Inierest on $\$ 826$ for 3 years, at $4 \frac{1}{2}$ per cent.?
33. Bought flour'at $\$ 5$ per barrel, and sold it at $\$ 4.35$; what was my loss per cent.?
34. What is the mount of $\$ 153$ for 9 months, at 4 per cent. per annum?
35. $87 \frac{1}{2}$ yds. of cloth, at $57 \frac{3}{4}$ cent. per $\frac{1}{4} \mathbf{y d} . ?^{1 / 2}+11$
36. The interest on $\$ 123$, at 8 per cent. per annum was $\$ 15$; what was the time?
37. The interest on $\$ 27$ for 3 years was $\$ 5.15$; what was the rate per cent.?
38. The interest at 4 per cent. Was $\$ 29$; what was the
39. What number is thet, io which if $\frac{1}{2}$ be added, the sum
will be 15 ?
40. What number is that which being increased by its $\frac{1}{2}$, its $\frac{1}{3}$, and 18 more, will be doubled?
41. Divide the number 36 into two paits, that shall be to each other as 5 to 4.
42. Divide the number 49 into two parts, that shall be to each other as 1 to $\frac{8}{5}$.
43. A fishing rod, the length of which is 24 feet, is in twe parts; $\frac{3}{3}$ of the longer part equals the length of the shorter; how long is each part?
44. $\frac{2}{3}$ of A's number of sheep +4 of B's number, equals 900 ; how many sheep has each, providing $\frac{4}{4}$ of B's number is twice $\frac{2}{3}$ of $\frac{1}{4}$ shumiver
45. Reduce 9 years and 8 months to the fraction of a year.
46. Reduce 2 years 4 months and 15 days to the fraction of a year.
47. Reduce 5 years 9 months and 18 days to the fraction of a year.
48. At 2 per cent., what part of the principal equals the interest? What part at $8,10,7,5,6,18,25$?
49. A man sold a quantity of goods, and thereby gained 75 per cent. on the cost ; what part of the cost equals the gain?
50. If $\frac{9}{50}$ of the principal equals the interest, what is the rate per cent?
51. A book was sold for $\frac{2}{3}$ of $\frac{6}{3}$ of what it cost; what was the loss per cent.?
52. How many pounds of coffee, at 8 cents a pound, must be given for $9 \frac{1}{2}$ pounds of sugar, at 10 cents 2 pound.
53. What is the sum of $15,5,3,2,8,3,7,2,9,6,7,8,5$, $6,11,3,5,14,1,9,4,8,3,5,7,9,8,6,4,2,10,12$, $4,9,7,11,6,10,8,9,16$.
54. What is the sum of $16,4,10,6,3,7,2,5,9,11,20,4$, $6,8,3,7,4,3$ times $5,3,8$ less $5,7,4,9,12,7,3,5$, $4,7,8,5,4,14,8,3,7,11,5,25,8,2,4,8,6,7,8$, $10,12,13$, and 4 times 5.
55. What is the sum of $11,5,8,3,12,4,5,20$ less 7,5 , $8,9,3,5,13$ less $5,7,16$ less $8 \frac{1}{2}, 4 \frac{1}{4}, 7,9 \frac{1}{4}$, and 11 times 4.
56. Benjamin Franklin died in 1790, and was 84 years of age at his death; in what year was he born?
Nore. -The earth turns on its axis from west to east, that is $360{ }^{*}$ once every 24 hours ; hence it revolves 15° in orie hour, that is 1° in 4 minutes, that is 1^{\prime} of distance in 4 scconds of time. As the earth turns from west to east, the farther the place is cast the earlintr it gets the sun, and hance, tho later it is in the day.
From this we may easily tell the difference in time between any two places, if we only know the difference in longitude. To find the difference in longitude, if the places are both east or both went longitude, subtract. If one is east and the other, west, add them.
 how much?
57. When it is 90^{\prime} clock, a.m., at Toronto, what time is it at Frederickton?

59 When it is 30 'clocl at Kingston, what time is it a Montreal, St. John's, Halifax, New York?
60. When it is 6 o'clock, p.m., in Toronto, af what places is it mid-night, and at what places is it mid-day?
61. Thours iess than 50^{\prime} clock, p.n., is what o'clock? 8 hours 15 minutes less than 3 o'clock 20 atinules, is What time?
62. Renuce $\frac{2}{8}$ to L8ths, ris $_{2}^{2}$ to 84 ths!' $\frac{3}{7}$ to 56 ths.
63. How many lis ol coffee in $\frac{1}{2}, \frac{6}{12}, \frac{5}{6}, \frac{5}{6}, \frac{3}{18}$, and $\frac{2}{3}$.
64. If I pay $37 \frac{1}{3}$ evats it 41 bs of sugar, how much must I pay for 8 pourids at the same rate?
65. 台 of 30 is $\frac{4}{3}$ of when nuinber?
66. It 6 men can do a piece of work in 13 days, in what time can 11 men do it?
67. If 7 men can dig a ditch in 13 days, in what time can 11 men dig one 3 times as long?
68. How many yards of carpeting that is $\frac{3}{4}$ of a yard wide, are equal to 17 yards, that is $\frac{7}{8}$ of a.yd. wide? 19. If $\frac{1}{6}$ of a pole stand in the water, $\frac{1}{4}$ in the mud, and 10 feet above the water, what is the length of the pole?
70. If 12 horses consume 720 bushels of oats in 3 montha, in what time will 18 horses consume 1200 bushiels?
7). The distance from A to B, which is 40 miles, is $\frac{5}{5}$ of $\frac{1}{2}$ the distance from C to D ; what is the distance
72. What is the annual insurance on a dwelling house, valued at $\$ 2000,1 \frac{1}{2}$ per cent.?
73. If I buy a house for $\$ 600$, and sell it again for 15 per cent. advance, how much will I sell it for?
74. What number is that, which, if it be increased by its fifth, and seventh, and 23 more, will be doubled?
75. What is the difference of time, the longitude haing given, between Londe England, and Washingir:
Boston, and Madrid.
18. When it is tweaty minutes past 3 at London, Wian o'clock is it at each of the other places mentioned ia
e is it at
tat piaces -day ?
clock? 8 intiles, is
ad $\frac{2}{3}$.
ach must
in what
ime can a yard wide?
ad, and 1:of the montha, shels? is $\frac{4}{3}$ of istance
house, for 15
by its ed?
hoing ngirns aed in

ANSWERS:
163

ANSWERS.

VIII, XI, XV, XIX, XXIXX, XXXV, XCIX, CLX, CCCXL, DLXIX, MCVI, MMXXV, DCXCIX, MDCCCCXXV, MMDCLXXX, MMMMDCCCCLXV, MMDCCCCLXI, MCCCXL.
nxerctse 2
74, 140, $999,750, \cdot 4, \cdot 27, \cdot 014, .760,76 \cdot 027,675 \cdot 864$, j15.06.

ExERCISL 3.

For instance, 1st, Four and six tenths; or forty-six tenths ; 4.6 or $4 \frac{8}{10}$ or $\frac{49}{18}$. 2nd, Sixty-three and seventytwo hundredths; or six thousand three hundred and seventy two hundredths ; or, six thousand hundredths and three hundred hundredths and seventy hundredthe and two hundredths; or sixty units and thirty tenths and seventy-two hundredths, \&c., \&c.

uxfrcise 4.

1. 22 cents.
2. 21 dollars.
3. 18 marbles.
4. 35 sheep.
5. 13 cents.
6. 95 cents.
7. 22 dollars.
8. 15 dollare.
uxericiser 5.
9. $\$ 34950.10$.
10. 21867.
1. $\$ 18068.93 \frac{1}{2}$.
2. 10913.
1. $30155 \cdot 740$.
2. 18001.
1. $20170 \cdot 12$.
2. 14372.
1. $\$ 105$,
2. $\$ 2.93$.
3. $\$ 408$.
4. $\$ 1475$.
5. $\$ 15388$.
6. 4258.
1. $\$ 24731$,
2. $\$ 1658286$.
3. $\$ 7861214$
4. $\$ 536146$.
5. 75675.
1. 911018.
1. $\$ 660.11$.
2. 2246 apple
3. 72 apples.

texicise 6.

1. 162 cents.
2. 62 cents.
3. $28 \frac{1}{2}$ dollars.
4. 156 times.
5. 66 years.
6. 109 trees.
7. $\$ 15.24$.
8. 7 cents.
9. $8,16,32,40$, 64, 72.
10. 537 pounds.
11. 11.
1. 6 dollars.
2. 3,11 in both.
exercise 7.
3. 6 years.
4. $\$ 9, \$ 21$ for both
5. 15 apples.
6. 29 dollars.
7. 27 years.
8. 92 dollars.
exercise 8.
9. 36919.
1. $\$ 78372.66$.
2. $\$ 40253.41$.
3. 38999.
1. $\$ 22984.09$.
C. 15289 .
2. $\$ 78359.03$.
3. $\$ 5292$.
4. $\$ 462121934.46$.

EXEROTSE 9.

1. 83
2. 2720.
1. 1557.
1. 162 .
2. 415 .
3. 1244556.
1. $\$ 287$.
2. 221.

exercisis 10.

1. 1706
2. 59 both, 9 more.
3. $\$ 17.50$.
4. 10 .
5. 63.

3. $16,20,24$.
5. 16.
6. $\$ 10 \mathrm{gain}$.
7. 20.

ExErcise 11.
4. John 10, Jos.

45, all 64.
5. 7146 dollars.
8. $\$ 466$
$\$ 79$.
9. $\$ 10$.
6. 304 varde, 2128 dollars.

EXERCTSE 12.

1. $\$ 17104.64$.
2. $\$ 134574.86$.
3. $\$ 432266.30$.
4. $\$ 225804.15$.
5. 66276 .
6. $\$ 672612$.
7. 389304.
1. $\$ 748731 \cdot 60$.
2. 502557.
1. $\$ 1162129.68$.
2. 574675 .
3. $\$ 568669.44$.
13.- $350 \cdot 184$.
4. $6128 \cdot 22$.
5. $7879 \cdot 14$.
6. $525 \cdot 276$.
7. 2626.38.
8. $4377 \cdot 30$.
9. $8754 \cdot 60$
10. $9630 \cdot 06$.
11. $105 \cdot 0552$.
12. $\$ 1966.54$.
13. $\$ 6882.89$.
14. $\$ 3933.08$.
15. $\$ 786 \cdot 616$.
16. $\$ 589 \cdot 962$.
17. $\$ 4916.35$.
18. $\$ 8849.43$.
19. $\$ 11799.24$.
20. $\$ 10815.97$.

EXERCISE 13.
31. $\$ 68236 \cdot 48$.
32. $\$ 133863.66$.
33. $\$ 232499,52$.
34. $\$ 182214.09$.
35. $\$ 231504.12$.
36. \$208963.44.
37. \$199122.30.
38. $\$ 138250.56$.
39. $\$ 565184.16$.
40. $\$ 220399.92$
41. $\$ 576676.32$.
42. $\$ 715501.44$.
exercise 14.

1. $\$ 63221 \cdot 592$.
2. $\$ 7464 \cdot 4808$.
3. $\$ 2905 \cdot 0420$.
4. $\$ 488 \cdot 44096$.
5. $\$ 84393 \cdot 932$.
6. $430 \cdot 143168$.
7. $\$ 777566 \cdot 496$.
8. $\$ 3598313.04$.
9. 63073762.
1. 41281053.
1. 24294591.
1. $\$ 28047414$.
2. 46350656.
1. 575630377.
1. 395494873.
1. 649435896
2. 64008924.
1. 3704412744.
2. 403576660.
1. 175320.
1. \$2941.64.
2. 2592.
1. 2303.

EXERCISN 15.

1. $1832219 \frac{2}{3}$.
2. 12879685
3. $2087595{ }^{5}$
4. $3179483 \frac{4}{11}$
J. $3569180 \frac{1}{8}$
5. $1949017 \frac{2}{15}$.
6. $705323 \frac{1}{2}$.
7. 3168.
1. $\$ 3243.75$.
2. 4480.
1. $\$ 18.25$.
2. 2144.
1. 81056. 30. 783.
1. 80 pages.
2. 1095.
1. 56940.
1. 768000 .

1． 30 quarts．
2． 36 cents．
3． 60 years．

EXLRCLSK 16.

4． 96 days．
5．$\$ 3.40$ and $\$ 13.60$ ．
6． 21 cents．

EXERCLSE 17.
1． 6.

2． 5 for 40 chs．,$~$	
3． 117 for 56 cts．	$\begin{array}{l}\text { 4．} 5 \text { bbls．} \\ \text { 5．} 5 \text { days．} \\ \text { 6．} 10 \text { miles．}\end{array}$

exercish 18.
1． 69114 ．
2． 137.524.
3． 13281 よ．
4．$\$ 115.17$ ．
5．$\$ 95.53 \frac{2}{9}$ ．
6． 31869 ．
7．$\$ 64.26{ }^{8} 0^{\circ}$
8． $4206{ }^{2}$ ．
9． 6368906 ．
10．$\$ 53359.55$

12．$\$ 71409.73$ ． 21.11294537 ，
13．$\$ 39064.06 \frac{4}{12}$ ．
14． 5859550 ．
15． 126670165.
16．$\$ 4780.66 \%^{6}$ ．
17． $5894371 \frac{5}{5}$ ．
18． $28236344 \frac{1}{2}$ ．
$2 \% .94121145^{\circ}$ ．
23．$\$ 97.171$ ．
24．$\$ 85.02 \frac{7}{8}$ ．
25．$\$ 75.58 \frac{1}{3}$ ．
26．$\$ 68.02 \frac{3}{10}$ ．
27．\＄61．8310．

1． $6828 \frac{33}{5}$ ．
ExErcise 19.
2． $4408 \frac{54}{8.8}$ ．
3． 10 ．${ }^{2} 3$.

5． $3309 \frac{88}{187}$ ，

6． 3450_{144}^{76} ．

ExERCTSK 20.

1． $1018 \frac{18}{85}$ 年 $\quad 11.8 .571713$.
2． $167 \frac{197}{6}$ ．
3． $2163{ }^{5} 5 \frac{5}{5}$ ．

5． $108 \cdot 05 \frac{74}{7}$
6． 10.326% ．
7． 95 ． 238.
8． 9902383.
9． 7234312.
10． 7003^{3749} ．

AWSWERS.

EXEROISE 21.

1. 31791
2. $160 \frac{9}{3}$ 量.
3. $261 \frac{10}{80}$

4. 28351 .
-7. $13 \frac{405}{9} \frac{3}{3}$ ㅎ․

EXERCISE 22.

1. 40 oranges.
2. 4 dimes.
3. 21 cents.
4. 24 oranges.
5. 24 oranges.
6. 4 mon.

EXERCISE 23.

1. 63.78.
2. 1420 .
3. 5760 .
4. 1094.
1. 24560.
1. 36136690704 .
2. 6016 .
3. 2472.
1. 8 ! $T^{13} \mathrm{s}$.3 oz .
2. £4 ? 1 s.
3. 5 oz. \because dwt. 15 gr .
4. 299 J न. 2 nls.
5. 1199 bush.
6. 81 days, 20
7. 7930 fathoms, $\angle \mathrm{ft} .2$ in.

EXERCISE 24.
8. 3934714880 ac. 157388459520 r. 6295538380800 per. 190440036019200 yds. 1713960324172800 ft . 246810286680883200 in.
9. 14 yds. 8 ft .781 in .
10. 183332.
11. 1093 cds .10 ft .
12. 298 ea. $\$ 7.1 \mathrm{dm} .4$ c. 9 m .

HXERCTYA: 25.
15. $\$ 989.50$.
16. 873740.
17. 57552.
18. $9621 \quad 1 \frac{1}{3}$ d.
19. 63864160 .
20. 33465 cr. 3 s .
21. 118801 1s. 6 d.
22. 669 112 ${ }^{2}$ d.
23. £182 10. 89 d .
24. 16048 ?
25. 2890160.
26. 307608.
27. \$5126 ce cts.

ANSWMRS.

kxeronge 26.

1. $£ 137$ 10s. 91 d .
2. 92 per. 4 yds. 2 ft.
3. 177 dys. 11 hrs .28 min .
4. 17 cwt. 2 qrs. 7 lbs.
5. 15 lbs .4 oz .1 dwt .14 gr .
6. 148 yds .0 qrs. 1 nl .
7. 722 ac .3 r. 21 per.
8. 120 yds. 23 ft. 119 in .
9. 9 cwt 2 qrs.
10. 118 m .5 f. 18 per. $3 \frac{1}{2} \mathrm{yds}$.
11. 175 qrs. 1 bus.
12. 29 a. 21 per.
13. 56 w. 2 d. 11 h. 16 min.
14. 15 lbs .4 oz .1 dwt. 14 gr .
15. 148 yds. 0 qrs. 2 nls.
16. $£ 96$ 10s. 10d.
17. 16 tons, 107 lbs .
18. 6 hhd. 53 g .3 qts.
19. 178 m .35 per. 3 yd. 10 in .
20.156 cds. 104 c.ft. 54 c.in.
exeroise 27.
20. $£ 1311 \mathrm{~s} .4 \mathrm{~d}$.
21. 78 bu. 1 gal.
22. 18 cwt .3 lbs.
23. 83 yds. 3 qrs. 1 nl .
24. $£ 13 \mathrm{17}$ s. 8 d .
25. 228 yds. gave $\$ 1432$.

EXERCISE 28.

1. $£ 2411 \mathrm{s} .7 \frac{3}{4} \mathrm{~d}$.
2. 6 cwt. 2 qrs. 11 lbs .
3. 3 lbs. 8 oz .19 dwt .
4. $4 \mathrm{ft} .30 \mathrm{p} .2 \frac{1}{2} \mathrm{yds}$.
5. 19 yds .
6. 25 a. 2 r. 25 p.
7. 192 t. 19 cwt. 3 qr. 6 lbs.
8. 3 lbs. 11 oz .11 dwt 6 gr .
9. 96 deg. $61 \frac{1}{2} \mathrm{~m} .224$ r. $3 \frac{1}{2}$ yd. 2 ft .
10. 19 yds .
11. 11 a. 3 r. 18 per.
12. 436 bu .2 pk. 2 qt. 1 pt.
13. 2 w. 19 days.
14. $\$ 96.27 \frac{1}{2}$.
15. 48 cds. 106 ft .58 in.
16. 3 yrs. 233 days.
17. 5 lbs. 4 dr. 1 scr. 16 gr .
18. 552 days.

Exercise 29.

1. 2s. 3d.
2. 11s. 9 d.
3. 15 yds .2 qrs.
4. 45 gal 1 qt .
5. 9 cwt 1 qr .15 lb .
6. £9 1 s .
7. Subtract sub. from min.
8. Subtract rem. from min.
9. Add sub. to rem.
10. Subtract one from sum.
11. Subtract diff. from the greater.
12. Add diff. to less.
13. Half the sum + the diff. = greater, an half the sum-the diff =the less.

ANSWERE.

exercise 30.

16 min . vt .14 gr . 2 nls.

1. 19 cwt .2 qrs. 8 lbs.
2. 194 lbs .4 oz .16 dwt .
3. 118 yds. 2 nls.
4. 25 ac .2 r. 29 per.
5. 70 qrs. 2 bu. 2 pks.
6. 56 hrs. 33 min.
7. 670 ล. 3 r. 24 per. 53 yd.
8. $£ 1529$ 1s. $9 \frac{3}{4} \mathrm{~d}$.
9. 1332 cds. 84 c. ft. 84 c. in.
10. 1951 ml .3 fur. 37 per.
11. 124 gal .1 pt .
12. 657 cwt .2 qrs. 16 lbs.

exergise 31.

2. 8432 lbs. 8 oz .12 dwt .
3. $£ 30847816 \mathrm{~s} .4 \mathrm{~d}$.
4. 35737 m .5 fur.
5. 295251 yd .3 qr. $1 \nmid$ nl.
6. 24409 ac. 2 r. $17 \frac{8}{g}$ per.
7. 22594 qr. $2 \frac{5}{6}$ pks.
8. 7597 yrs 31 w .3 fldays.
9. 3345 cir. 4 signs.
10. 283 r. 6 qrs. $\frac{1}{8}$ sheets.
11. $\$ 412164.811^{\circ}$.
12. $\$ 552612.71 \frac{1}{3}$.
13. 211 cwt .3 qr. 1 lb .4 oz. 15. 393 oz .15 dwt .
14. 319 m .1 fur. 30 per.
15. 9032 yds. 3 qrs. 2 nls.
16. 77612 m . 1 fur. 24 per.
17. 806 gal. 2 qt. 1 pt.
18. 47 hrs. 7 m .30 sec.
19. 5991 gal.
20. $\$ 1637.90$.
21. $1534 \mathrm{~g} \cdot 1 \mathrm{qt}$.1 pt. 24. 84 cds. 60 ft .144 in . 25. 748 ac. 38 per.
exercise 32.
22. $£ 612 \mathrm{~s}$.
23. $£ 213 \mathrm{~s} .4 \mathrm{~d}$.
24. 14 cwt. 3 qrs. 13.1 bs .
25. $\$ 10.53$.
26. 11 cents.

EXERCTSA 33.

1. 6 cwt .2 qrs. 12 lbs.
2. 1 lb .1 oz .2 dwt .
3. 1 per. 4 yds. $11 \frac{1}{6}$ in.
4. 1 yd. 2 qrs. $0 x^{2}$ nls.
5. 1 ac. 30 º per.
6. 1 qr. $3 \mathbf{y}_{\text {pks. }}$
7. 11 cwt. 2 qrs. $11 \mathrm{lb} .11 \frac{\mathrm{y}}{\mathrm{y}} \mathrm{oz}$.
8. $£ 826$ 18s. $\mathbf{b y I n}_{17}^{317} \mathrm{~d}$.
9. 6 gal. 3 qts. $\frac{3}{4}$ pt.
10. 5 per. 4 yd. 3 ft. 27 in.
11. 96 per. 22 yd. 7 ft .24 in.
12. 5 F. ells. 2 qrs. 3 nls. $2{ }^{2}{ }^{2} \mathrm{EE}$ in.

13. 13 m .5 fur. 18 per. $2 \frac{51}{6}$ pds.

exercise 35.

1. $1 \mathrm{cwt} 1 \mathrm{qr} .15 \frac{5}{36} \mathrm{lbs}$.
2. 21 and 8 dwt .
3. 57200 times.
4. $472 \frac{304}{1526}$ hhd.
5. 31 lb .14 dwt. $13 \frac{1}{3} \mathrm{gr}$.
6. 24 m .7 fur. 4 per.
7. 47 yds .
8. 2s. $5 \frac{4}{2} 27$
9. $237 \frac{2100}{243}$ lots.
10. $£ 1$ 2s. $4 \frac{1}{2} \mathrm{~d}$.
11. 4 bu. 2 pks. 1 gal. $1 \frac{11}{18} q \mathrm{qt}$
12. 53 dys. $13 \mathrm{hrs} .42 \frac{\mathrm{~g}}{\mathrm{z}} \mathrm{min}$.
13. $\$ 94.50$.
14. $\$ 302: 40$.
15. 1 hhd. 15 gal. 3 qts.
16. $\$ 1.80$.
17. $\$ 2 \cdot 215$.
18. $3 \frac{1}{4}$ qts.
19. 1003.87 .
20. DXCIL, MMMMDCCIX, $\overline{\text { LXIX, DXXXIV. }}$
21. Fifty-nine whole numbers, and ten million nine hundred and sixty-seven thousand, nine hundred and ten one hundred milliontbs; one hundred and thirteen billion, threo hundred and sixty-seven thousand one hundred and eighty-nine whole numbers, and one hundred and four thousand two hundred and fifty seven millionths; eighty-nine billion, seven hundred and fifty-four million six hundrea agd twenty-one thousand nine hundred and thirty-six; ten billion, one thousand whole numbers, and one thousand ten millionths.
22. $£ 1423 \mathrm{ll}$. 3 d .
23. $\$ 26$.
24. 543478 lbs. 2 oz.
25. 1 oz .12 dwt . $14 \frac{5}{5} \frac{1}{2} \frac{5}{3} \mathrm{gr}$.
8.55 ys . longest in England
26. $£ 89$ 1s. 3d. in 1 st. e68 17s. 112 d . in 2nd. £20 $16 \mathrm{~s} .7 \frac{1}{3}$ din 3ra\&4th. 10. $\$ 74.80$.
27. $29 \mathrm{~d} .12 \mathrm{~h}, 44 \mathrm{~m} .3$ sec.
28. 50 yds .
29. $629,097,707,498 \cdot 000000617$.
30. 11 per. 2 yds. 1.3995 ft .
31. (1.) $67950000 \cdot 00$.
(2.) $6795 \cdot 000000$.
(3.) 6.795000000 .
(4.) $6795 \cdot 000000$.
(5.) $6795000 \cdot 000$.
(6.) $679500000 \cdot 0$.
32. $\$ 58 \cdot 0 \dot{3}$.
33. $\$ 67.50$.
34. 25000 miles.
35. 5 ac. 3 r. $3{ }_{20} 4$ per.
36. $61 \frac{1}{4} \mathrm{yds}$
37. each woman $\$ 22.00$.
" man $\$ \mathbf{6 6 . 0 0}$.

ExERCISE 36-continued.

;al. $1 \frac{1}{2} \frac{3}{8}$ qt $42 \frac{0}{7} \mathrm{~min}$.

3 qts.
ion nine adred and and thirthousand bers, and dred and n , seven reà asd irty-six ; and one
exercise 37.

1. 16.
1. 744 s . or $\$ 148.80$.
2. 3 cwt 1 qr .6 lbs .
3. 108 yds .
4. 120 dinners.
5. 4 coats.
6. 55 sheep.
7. 58 cwt. 1 qr. 20 lbs.
8. £4 ls., £10 9q. 3d.
9. $21 \frac{13}{5}$ barrels.
10. 32 centr.
11. $\frac{425}{6}$ tarrels.
12. 23 yds. 1 qr. 2 nl.
13. 29535 年 17 and $141 \frac{3}{17}$.
14. $\$ 10$.
15. 160 min . or 2 h .40 min .
16. $\$ 70$. share of each, $\$ 2$.
17. $77 \frac{3}{4}$ barrels.
18. 117 bush.
19. 16s.
20. $\$ 35$.
21. $\$ 4 \cdot 444$.
22. 93 days.
23. $\frac{35}{5}$ of a dollar.

ANSWESE.

RXDROLSE 38.

1. 112.
1. None.
2. 101.
1. 37%
2. 18.
1. 348
2. 25.
1. 143.
1. 11.
1. 7.

EXERCISE 39.

$$
\begin{aligned}
& \text { 1. } 60 \\
& \text { 2. } 16 . \\
& \text { 3. } 240 . \\
& \text { 4. } 180 .
\end{aligned}
$$

5. 120
6. 144.
1. 240
2. 7560
3. 1260
4. 7200 .

EXBROLSH 41.

1. 321
2. $8 \frac{1}{9}$.
3. 9 .
4. $1 \frac{5}{14}$,
5. $9 \frac{3}{8} 5 \frac{4}{5} 2$.
6. 3.93.

EXEROTSE 42.

1. 120
2. 1643
3. $1 \frac{132}{13}$.
4. $\frac{108}{10}$.
5. 1330
6. ${ }^{20}{ }^{\circ}{ }^{\circ}$

EXERCISE 43.

1. $7_{5}, \frac{8}{1} \frac{136}{17}, \frac{97}{17}, \frac{988}{1}, \frac{320}{38}, 40$.
2. $\frac{68}{9}, \frac{77}{17}, \frac{11}{17}, \frac{9}{1} \frac{4}{2}, \frac{252}{3}, \frac{980}{40}$,
3. ${ }^{1} 88,733,204,144,439$, 480

 $2 \frac{592}{6}, 2 \frac{880}{6} 0$
4. $\frac{178}{8}$, $\frac{98}{218}, 45330,10876$
$3 \frac{2088}{3}, 360^{20}$.
(1) $1 \frac{597}{78}$.
(4) $\frac{1885}{285}$

1. 83
2. 85

3. 8.
1. $\operatorname{lig}_{68}^{68}$.

FXHROTSE 44.

$$
\square
$$

[^0]: Tonanye, 4 nㄴn, $184!$

[^1]: * Here tho .16, that is the hundreds, are cente, the remalning fgures, are parts of a cent.

[^2]: Nozin. -Tito pupil shoula de required to prove these exerelises by reducing them back again to their given denomination.

[^3]: - If we do not actually go through the work of the division in Simple Addition, it is oniy berause setting down the right hand Qgure, and carrying the others is the same as dividing by 10.

[^4]: Note. -The pupil may be required occasionally to give written answers to these mental exercises.

[^5]: To reinee a pure yopetend, ot a pure circulating decimal to a vulgar fraction:-

