IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences Corporation

CIHM
 Microfiche Series (Monographs)

ICMH
Collection de microfiches (monographies)

回

Canadian Institute for Historical Microreproductions / Institut canadien de microreproductions historiques
(C)

Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculée
Cover title missing/
Le titre de couverture manque
Coloured maps/
Cartes géographiques en couleur

Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
La reliure seréée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas èté filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-etre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Colvured pages/
Pages de couleur
\square Pages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquéesPages detached/
Pages détachées

Showthrough/
TransparenceQuality of print varies/
Qualité inégale de l'impressionContinuous pagination/
Pagination continue

Includes index(es)/
Comprend un (des) index

Title on header taken from:/
Le titre de l'en-tête provient:

Title page of issue/
Page de titre de la livraisonCaption of issue/
Titre de départ de la livraisonMasthead/
Générique (périodiques) de la livraison

Additional comments:/
Coınmentaires supplémentaires:

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here hes been reproduced thanks to the generosity of:

National Library of Canada

The images appearing here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impression, or the back cover when appropriate. All other original copies are filmed beginning on the first page with a printed or illustrated impression, and ending on the last page with a printed or illustrated impression.

The last recorded frame on each microfiche shall contain the symbol \rightarrow Imeaning "CON. TINUED"), or the symbol ∇ (meaning "END"). whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure ere filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'exemplaire filmé fut reproduit grâce à la générosité de:

Bibliothèque nationale du Canada

Les images suivantes ont été reproduites avec le plus grand soin, compte tenu de la condition et de le netteté de l'exemplaire filmé, et en conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papier est imprimée sont filmés en commençant par le premier plat et en terminant soit par la dernière page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la première page qui comporte une empreinte d'impression ou d'illustration et en terminant par la dernière page qui comporte une telle empreinte.

Un des symboles suivents apparaîtra sur la dernière image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole ∇ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction différents. Lorsque le document est trop grand pour être reproduit en un seul cliché, il est filmé à partir de l'angle supérieur gauche, de gauche à droite, et de haut en bas, en prenant le nombre d'images nécessaire. Les diagrammes suivants illustrent la méthode.

PRESS OF
FD BROS., 54 YONGE ST.
TORONTO, CANADA

FOR BY THE

Mir
"What is there in it?"

Hidden Mines;

AND

How to Find Them

CONTAINS

THE INFORMATION CALLED
FOR BY THE ORDINARY BUSINESS MAN, WHO IS INTERESTED
FOR BUSINESS REASONS ONLY,
IN

Mines, Metals and Ores

BY
W. Thos. Newman

Toronto:
The M. Rogers Publishing Co.

Entered according to Act of the Parliament Canada, in the year one thousand eight hundred an ninety-five, by M. Rogers Newman, Toronto, Ontario in the Office of the Minister of Agriculture.

My provide ct, of ε r no kn nd who unity, tc nderstar scientific print. I hov nguage g bus Ines, c f purely those aged in om com The us here po ken to In she f the b he settle little ki e induce count.

PREFACE

My object in attempting this work, is to rovide a little practical information, on a subect, of great interest to many who have little r no knowledge of the matters treated herein; nd who have neither the time, nor the opporunity, to undertake the study, necessary to an nderstanding of the great number of more cientific and more comprehensive books, now print.

I have endeavored to give, in as simple nguage as possible, an insight into the enticg business of searching for and exploiting lines, carefully avoiding such matters as are f purely scientific value, and confining myself those likely to influence people who are enaged in prospecting, or interested in Minerals, om commercial motives only.

The use of scientific terms has been avoided here possible, and when used, care has been aken to explain their meaning and application.

In short this work is intended for the benefit f the business man, the investor, the ranger, he settler, and those generally, who, if given little knowledge of Mines and Mining, might e induced to turn that knowledge to practical ccount.

The first part proper, deals with rocks, gi ing a general idea of how they are forme and altered, and how mineral deposits of valu to commerce occur in them, with the name and characters of rocks commonly met with mining sections.

The third part sketches the means en ployed to determine, or identify, the different or and minerals, with a list of all known elemen and their symbols.

Part four contains a description of ead of the ores of the metals, of use as such in the art with a knowledge of how they are tested simple means, and the methods employed their treatment on a commercial scale.

The fifth section describes non-metallic mi erals; or those used for purposes other than th extraction of their metals; as at present utilize and contains also, a concise description of $t h$ various gems and precious stones, and ho they may be identified.

The last section is a medley of facts, an hints, on various matters likely to interest an one engaged in mining, or desirous of becomin so, and there follows a very complete glossa confined to mining terms and phraseology.

W. THOS. NEWMAN

Toronto, December 3ist, 1894

NTRODI Im per hid
with rocks, gi rey are forme eposits of valu vith the name ly met with
te means en he different or known elemen
ption of ead such in the art are tested h s employed scale. n-metallic mi other than t h resent utilize cription of th nes, and ho
of facts, an , interest an is of becomin iplete glossa raseology.

NEWMAN

CONTENTS.

PART I.

Importance of exploring for Metals. Prospectors as a Class. How Mines grow. Where hidden wealth lies.

$$
9-12
$$

PART II.

tock formations and ore deposits.

Necessity of a knowledge of rocks, not necessarily a scientific knowledge. How rocks are made. Stratified rocks. Metamorphic rocks. Eruptive rocks. Likely formations to contain Metal. How ores are deposited. Veins and other ore bodies. The vein that pays. fronbearing rocks. Names and descriptions of rocks, usually found in metal mining sections.

PART III.

ow to Distinguish ores.

Trials of Hardness; Streak; Tenacity; Magnetism; Specific Gravity; Crystallization; Simple uses of the Blowpipe. Explanatory notes. List of Elements, with symbols, and atomic weights

PART IV.

DESCRIPTIONS OF NATIVE METALS AND ORES
Gold; how found and extracted. Antimony ores; how to test them. Silver ores; and their treatment. Jead ores; with their commercial value. Platinum; its chief characteristics.

- Mercury; where found. Copper ores; their value and treatment. Zinc ores; and associations. Nickel and Cobalt ores. Tin ores; and formations found in. Bismuth. Cadmium. Iron Ores, with their various uses. Manganese ores, and how useful. Molybdenite; how distinguished. Graphite (Blacklead). Tellurium. Rare Metals.

PART V.
OTHER MINERALS OF COMMERCIAL VALUE
Aluminium. Bauxite. Alum Shale. Cryolite. Orthoclase. Kaolin, or China Clay. Fire Clay. Potter's Clay. Marl. Meerschaum. Asbestos. Actinolite. Manganese Spar. Fluorspar. Apatite. Gypsum. Marble. Lithographic Limestone. Hydraulic Limestone. Heavy Spar. Rock Salt. Soapstone. Monazite. Common Mica. Lithia Mica. Sulphur. Phosphorus. Arsenic. Natural Gas. Coal. Peat. Petroleum. Asphaltum. "Mineral Wool." Pitchblende. Natural Paints. Infusorial Earth. Amber.. 74

Precious stones

Diamond. Sapphire. Emerald. Opal. Garnet. Zircon. Quartz Gems. Rutile.

CONTENTS.
PART VI.

phactical pointers

Error in rejecting samples. How to select samples for assay. The Chemist's information not sufficient. Prospector's "Kit." Samples for comparison. Describing a prospect. Cost of Railway. How to obtain capital. Choosing a route. What to do on making a discovery. When Mining should begin. The proper way to develop. The diamond drill. Selling small lots of ore. Essentials to successful mining. Risks of the business. The investor in stocks. Measures of ores, earth, etc.; how they are

ALUE

e. Cryolite. Fire Clay. 1. Asbestos. rspar. Apaaphic LimeIeavy Spar. computed. Relative weights of metals. Weights and volumes of ordinary metals. Water required for quartzmilling. To calculate the water-power of a stream. To temper steel. To solder, or weld. To case-harden. Table of melting points of metals. Weight and value of wood as fuel. Common alloys. Cement for cast-iron. Approximate cost of mining and treating ores, and of machinery...............100-128

$$
\begin{aligned}
& \text { A complete glossary of mining terms................129-138 } \\
& \text { General Index.. . . . 139-145 }
\end{aligned}
$$

ILLUSTRATIONS.

PAGE
" What is there in it ?"
Frontispiece
Section of Rock Formation 23
Cuts of Pans 36
"Dolly"
39
39
A Banded Vein 99
Hidden Placer. 103
Galena Veins 104
Shafts, Adits and Levels of Beaver Silver Mine, 106
"Hard Luck" Mine 108
The Diamond Drill Core-Bit 113
Drilling
nd spure, erted) f enjo abor 1 trengt t sixt he ord

In n an for ecessa me, al ealized ss to

Whe ble mi e find conv hange pssibly r what ith a c

PART I.

PROSPECTING AND PROSPECTORS.

To one who has any taste for the freedom nd sport of the untrodden wilderness, al the ure, ever-changing delights of "Nature un- efiled" (and who has not, then is his taste pererted); every day of exploring brings its quota f enjoyment, hope springs eternal, the hardest abor brings with it such added health and trength as make it a pleasure, and the explorer t sixty, is as young in heart and feeling, as he ordinary business man at forty.

In no other way, and in no other business, an fortunes be made, which in the making ecessarily enrich the community at the same me, and in no other calling can fortune be ealized in a day, without causing misery and pss to others.

When the successful prospector finds a valuble mine, he at once adds the present value of he find, to the wealth of the nation. When e converts that mine into the medium of ex. hange which supplies his wants, and receives ossibly a large sum therefore, he gives value r what he receives, and may enjoy his gains ith a clear conscience. The opening of mines
in any locality, means a direct and lasting bene fit to all the dwellers therein; to the laborerwork, and good wages; to the farmer-an adde market; therefore, the business of searching fo and developing mines, is an honorable one, an the prospector takes rank as a public benefactor

Prospectors are, as a rule, unusually activ men, both mentally and physically, and har workers when in the field. The greatest troubl with the majority of them is this:-they ar attacked by a disease commonly called "swelled head." The symptoms are the same in eac case, the victim all at once, seems to be in pressed with the mistaken idea, that each an every vein or deposit, found by himself, mus necessarily be of immense value, and that fortune is due the finder forthwith, nay; in man cases the discoverer seems to become firm and honestly imbued with the idea, that he already in indisputable possession of million and no amount of argument, or reasoning his friends, can dispossess him of this hall cination, while ofttimes, his friends seem al to share his delusion. Nothing, apparently, ca cure this disease, save only, the remedy used the mad canine-cutting off his tail close his ears-and this, financially interpreted, is wh cures the majority. They continue in their co ceit until, weary experience and a growing sca
ad lasting bene o the laborer-rmer-an adde f searching fo orable one, an ablic benefactor nusually activ :ally, and har greatest troubl this:-they ar called "swelled
same in eac eems to be in that each an y himself, mus $1 e$, and that h, nay; in man become firml dea, that he ion of million or reasoning of this hall ends seem al apparently, ca remedy used o is tail close erpreted, is wh nue in their co a growing sca
city of cash, teaches them that their wealth, (which may in a sense be genuine enough) is not in the shape of legal tender.

The truth is, not one find in one hundred is vorth more than it cost, until hundreds, and pften thousands, of dollars be spent on its exbloitation.

The prospector who understands his business, will never refuse a cash offer for his prospect, received before proper development) if the same pe sufficient to reward him for his time and abor.

Everyone who has had any experience of prospecting, and handling mining prospects, will ecognize the truth of the saying, "that anyone nay find a mine, but it takes a clever man to ell it," and as the business of mining becomes ach year more universally understood, it will pecome more and more essential, that prospects pe developed into mines before they can be lisposed of to the satisfaction of the prospector, vhose expectations are always in advance of ny possible realization. In searching for gold r other mines, it is well to remember, that the irst requisite is quantity. New processes and mproved machinery, tend to closer saving and hore economical work, and what is desired tolay is large bodies of low grade ore. Many a hine is paying dividends at the present time,
that a few years ago could not be worked a all, because the ore was of too low grade to be profitably treated by the methods and appliance then in use. Every year is liable to see the tendency in this direction grow, and therefore The deposits of low grade ore should be carefully looked after.

The chemist, and the scientific mechanic ar constantly finding new uses for different mate rials. That which is worthless to-day, may commercially, be very valuable to-morrow, and as all these materials must come from the earth each new appliance, or new application, become a matter of interest to all who deal with minerals

Unlike most deposits of wealth, a mine grow larger the more it is used, and more valuable as the value is taken from it, and in this con nection there is a hint to prospectors. Most in dividuals of this class develop the roaming habits of gypsies, and with this a propensity fo seeing riches a long distance away, much bette than in the immediate neighborhood. There i no better prospecting field anywhere, than it the immediate surroundings of proved mines where there is untried ground. Right under the feet of those who follow beaten paths, which have been walked over for years; lies "hidden wealth."
be worked a w grade to be and appliances ble to see the and therefore d be carefully
\because mechanic are different mate s to-day, may o-morrow, and from the earth ation, becomes l with minerals , a mine grows nore valuable 1 in this con ors. Most in the roaming propensity fo y , much bette ood. There is here, than ir oroved mines ight under the paths, which lies "hidden

PART II.

ROCK FORMATION AND ORE DEPOSITS.
The first requisite to success, in searching or mineral deposits of commercial value, is a nowledge of what rocks are likely to have in hem; mines containing certain ores, and under vhat conditions the ore occurs, in these rocks.

It does not follow, that a scientific knowedge of the names, or chemical constituents, of vich rocks are formed, is necessary; although uch an education is very desirable and valuble. To be able to recognize the rocks and hinerals on sight, and a general knowledge of the hanner in which they occur, is of greater value. here are between two-hundred and fifty and hree hundred distinct kinds of rocks; reognized and named by petrologists, and divided to three classes, as explained below; according their origin.

Rocks are seldom definite compounds, but he various minerals are distributed in them in arying proportions, and in endless combinations ach change making more or less difference in heir appearance; and one rock often changes gradually into another kind, that no hard ad fast lines can be drawn between them. hus, Granite will in a few yards become Gneiss,
and the Gneiss in turn give way to Mica Schist or some other rock, and so on.

The formation of rocks is going on continu ously. The action of rain, frost, and many othe agents of destruction, is slowly, but constantl wearing away the existing Rocks; the erode material, (sand, clay, and vegetable matte picked up en route), being carried down by water and ice, ground finer and finer as i goes, until it reaches still water, and is depos ited, in more or less irregular shapes.

The water of a river flowing into the Ocean for instance, is constantly bringing down with it, particles of all kinds of matter, some floating with the currents, others in actual chemica solution. On arriving at the Ocean, and al along the route, these atoms are deposited endless combinations, those of highest specifi gravity, being generally the first to drop, the lighter being carried further on. The Mineral in solution, mingling with others in the sal water, are some of them precipitated and help to bind the rest.

The currents of the Ocean, are also carry ing their share, perhaps, lime from the Cora Islands. Again the Ocean is continually en croaching on its shores, whole sections of th shore line disappearing in a few years, or eve months, the loosened material being carried of
to Mica Schist
ng on continu and many othe but constantly ks ; the eroded yetable matte: rried down by nd finer as and is depos apes.
into the Ocean ng down with r , some floating ctual chemica)cean, and al e deposited tighest specifi to drop, the The Mineral :s in the sal ed and help t
re also carry rom the Cora continually en ections of th years, or eve ing carried of
o be deposited, in varying forms elsewhere. his process going on without intermission, day fter day, year after year, results in layers of remendous thickness being formed, great pressure developed, and in course of time, the whole solidified into a series of massive beds.
These beds, or layers, form what are called he Sedimentary Rocks. They consist of Limetones, Sandstones, Conglomerates, etc., as they re formed from shells and corals; sand; or oulders and gravel. These lie in alternate ayers called Strata.

Other Rocks have been ejected from great epths in a fused state, and in most cases have ooled very slowly. These are called Igneous, r Eruptive Rocks. They are probably formed rom original Rocks, which have been melted y subterraneous heat, and have been forced up y gases under enormous pressure, through fisures, formed by the expansion of the gases ending the crust.

Trap Dykes, and Granites, are of this origin. In many cases, over large areas, the whole f the Sedimentary Rocks have undergone great hanges, and have been perfectly or partially rystallized. These are called Metamorphic locks. The change is due to heat, which was ot great enough to cause fusion, but which, as probably continued for ages.

These rocks are generally much contorte and fractured, and the fissures have been fille by the action of heated vapors, or heated springs holding metals in solution, and by condensatio and evaporation, and perhaps electrolytic action dropping their contents; or by ejection of molte matter from below. Thus these rocks mor often contain deposits of the metals of Commerce than rocks of another origin. This brings u naturally to sections of rocky country likely to contain mines.

Where a section shows the rocks to hav been much disturbed, and tilted at all angles where Trap Dykes, and Quartz, and Spar Veins are frequently met with; there, the prospecto may hope to succeed. The soft, schistose char acter, of the rock in places is favorable. A discoloration, or burnt appearance, is generally caused by the decomposition of mineral in th rock, and most deposits of metal, are more o less softened and rotted on the surface, the de composed matter being known as Gossan; (iro oxide).

Ore deposits, may be divided into four kinds according to their modes of occurrence. Thes are called veins or lodes; pockets, placers, an beds, and veins occur also of four kinds.

Veins are most frequently met with, and ar known as: Fissure Veins; (often called true veins.

The ontrac urstin hey c ngle, near e stri amely sually ed on equent
some lled a found en kno

Pock few to ually ten on cted by Place metal; Somet ample

S.

nuch contorte ave been fille heated springs y condensation ctrolytic action ection of molter e rocks mor s of Commerce This brings u. untry likely to rocks to hav at all angles nd Spar Veins the prospecto schistose char favorable. A , is generall nineral in th
are more o irface, the de Gossan; (irot nto four kinds rence. Thes placers, an inds.
with, and ar led true veins.

POCKETS; PLACERS.
These are cracks or fissures, caused by the ontraction of the Earth's surface, or by the ursting of the crust from internal pressure. hey cut right through different strata at any ngle, frequently at right angles to the strike, nearly so. Contact Veins; these run with e strike but between two distinct formations amely at the "contact." Gash Veins; are veins sually of small extent, surrounded and terminfed on all sides by the same formation, and equently are filled with galena.
A Vein also, sometimes consists, of a number small veins or stringers, running parallel to ad at all angles with one another, with rock etween which holds pockets of ore, and which sometimes impregnated with ore. This is lled a Stockwerke. Occasionally a vein will found lying in a horizontal position and is en known as a "blanket" vein.
Pockets; are masses of ore of any size, from few tons upward, more or less as may happen, ually unconnected with each other, though ten on the same strike, and sometimes concted by small seams, and indications of ore.
Placers; are deposits of gravel carrying re, metal; generally applied to gold diggings. Sometimes secondary deposits occur, as for ample Bog ores; these are spread out a foot
or two deep, over larger or smaller areas, an may be called Beds.

A vein is considered by miners, more likel to be permanent, and productive, if the walls and especially the footwall, be separated frot the vein matter, distinctly, by a soft talcos casing or gossan, or by clay, (called the selvage and a contact vein also, is likely to be permanent Deep mining shows, that veins continue prett much the same beiow, as they appear on the sur face, where the surface can be studied for som distance, although the metal contents or th gangue, may vary considerably. Often a vein, in proves in richness as it is followed down, and pat ticularly is this the case on first working, an down to the point of saturation, viz.:-the distand to which surface water has been able to penetrat which may be five or ten fathoms. Veins, at often enriched at the point of cortact where ty veins meet, or where the vein is cut by a $\operatorname{Tr} \mathrm{T}^{2}$ Dyke. Also a vein that is poor or barren whi cutting one formation will sometimes pro productive where it intersects another kind Rock. Many veins contain their value in wh is known as a "paystreak," the ore being band in the vein, sometimes in the centre, som times on one side.

While rich ores are much sought after, lar quantities of low grade pay best.

Iron bearing rocks are, preferably, the oldest geological formations, the ore beds being thicker, and larger, in these rocks. Mica, or hornblende nneiss, or schists, sometimes with a crystaline limestone band on one side, is the most ikely formation for iron ore, for manufacture Into the metal, and the beds are usually conformable to the strike and dip. The cleavable varieties and Ironstones, are found however, in both the Crystalline and Stratified Rocks.

The distance from the centre of the Earth to the surface is equal to 3,956 miles. In comparison our highest mountains are merely insignificant ant-hills; our grandest canons but plough furrows. The temperature is constant the year round, at about one hundred feet in depth, and at lower levels invariably increases about 1^{c} Fah. for each 60 feet of descent, to he limited depth reached in ordinary mining.

VARIOUS ROCKS OF ORDINARY OCCURRENCE

ARGILLITES:

Clayslates, breaking into thin even slabs.

FONGLOMERATES:

Any rock composed of coarse fragments, or pebbles, cemented together. When these are angular it is called; a breccia. When the fragments are rounded; a PUDDINGSTONE.

CEATAK:

Soft, white limestone. Red "chalk" sc called; is clayey oxide of Iron. Frencl "chalk" is a soapstone.

CHERT:

Flint or Hornstone, occurring as nodules in Limestone.

DOLOMITE:

Carbonate of lime, containing carbonate of magnesia; strictly speaking, in equa proportions. Effervesces in acid on heatir.g DIORITE:

Triclinic feldspar, and hornblende, witl or without quartz. A tough rock, ligh gray, to blackish green in color.-Eruptive DOLERITE:
(Basalt, Trap.) Coarse grained. Color dark green to brownish black.-Eruptive. GRANITTE:

Quartz, Feldspar and Mica, with no ap pearance of layers or cleavage, used fo monuments, etc., taking a fine polish. Eruptive.

GNEISS:

Like Granite, but in layers, used for build ing flagstones, etc.-Metamorphic. GACrix: ":

[^0]ning carbonat king, in equa acid on heatir:g
rnblende, with igh rock, ligh lor.-Eruptive
rained. Color sk.-Eruptive.
a, with no ap ivage, used fo fine polish,
spar) and Pyroxene. Color, dull red, gray to black; of Igneous origin.

YDROMICA SCHIST:

Green to white in color; sometimes .dark gray; and soft. Hydrous Mica often with quartz. Foliated, splitting into thin wedge shapes. Smooth greasy surface, and pearly lustre.

TACOLOMYTE:

Flexible Sandstone-a schistose granulai quartz with mica or talc. (Diamond bearing in Brazil.)

ASPER:

A flinty quartz of dull red, yellow, or green color, and breaking smooth like flint.

TMESTONE:

Carbonate of Lime, or Calcite; generally contains some clay or sand. Color, cream or nearly white; blue, brown, and black. Usually contains fossils. Crystalline limestone forms the various marbles. Effervesces with a drop of hydrochloric acid. Sedimentary; or if crystalline; metamorphic.

ICA SCHIST:

Mostly Mica, with much quartz and some Feldspar. Divides easily into wedgeshaped slabs. Color, from silvery to black. Crumbles readily. Metamorphic.

PORPRYRY:

A massive rock, showing crystals distinc from the matrix.
QUARTEITE:
Indurated Sandstone; that is, compose of quartz, but not showing grains.

SANDSTONE:

Merely a solidified bed of sand, generall quartz sand, sometimes contains mica clay or fossils. Used for grindstones; build ing, etc.

SERPENTINE:

Massive, easily cut with a knife, an greasy to the touch. Dark green, yellowish, and mottled. Composed silicate of magnesia, and a little iron. Take a high polish, and is called "marble."
STEATITE-SOAPSTONE:
Consists of Talc. Massive. Feels soapy Gray to green and white.

SYENITE:

A rock composed of Hornblende, an - Feldspar without quartz. Flesh colore or grayish white.

TALCOSE SCHIST: for Talcose Schist, but does not contai 'Talc.

TRAP:
The common term for, basic Igneous rock

CKS.

crystals distinc
tat is, compose , grains.
f sand, generall contains mica indstones; build
a a knife, ant Dark green, Composed little iron. Take 1 "marble."
e. Feels soapy

Cornblende, an Flesh colore
s often mistake loes not contai
c Igneous roclis

Igneous rocks frequently overflow, on the surace, but sometimes the fluid matter does not each the open, until by the erosion, or planing way of the overlying strata, it is exposed, appearing often as a chimney. Faults, veins, tilting nd all such phenomena are purely accidents on

Scale, 1,000 feet $=1$ inch.
a.-Crystalline limestone. c.-limestone. e.-Trap overflow. t.-Slates. F.-Quartzite. o.-Granite (Eruptive). m.Gneisses (Metamorphic). N.-Tilterl Slates. R.- Contact Vein. P. - 2nd Vein. L.--ist Vein. V.-Newest Vein. x.-Stringer
large scale. An idea of their occurrence may e had by supposing a confined heap, composed f alternate layers of sand, gravel and clay, to ave a body of quicklime in the centre and the me to become mixed with water. The effect vould be to fissure the heap in all directions, and ause portions to be lifted bodily, while other arts would naturally fall in, and the slaked liquid me would fill all crevices.

Qualitative Analysis:-is the determination of the elements contained in an ore or mineral and shows what the different ingredients are but does not show the amount of each.

Quantitative Analysis:-shows not only the nature of a compound, but also the amount, o percentage, of each constituent.

The ores of the metals are distinguished and recognized, by their hardness; color; streak lustre; malleability; specific gravity; crystalliz ation; and chemical reactions; minerals having a definite chemical composition. The first five tests, are those which are of most practical us to the prospector, and most easily made in the fields.

Hardness:-This quality is particularly use ful, in distinguishing many ores, (such as Coppe Pyrites from Iron) and in deciding the possibl value, of pebbles as gems, and many non-metalli minerals. This is the quality of resisting abra sion, not resistance to blows. The scale run from I (represented by Talc); to io (represented by the Diamond).

SCALE OF HARDNESS.
I. Foliated Talc.
2. Selenite.
3. Calcite.
4. Fluorite.
5. Apatite.
6. Feldspar.
7. Quartz.
8. Topaz.
9. Corundum.
o. Diamond.

Color:-This is readily seen by daylight, and he terms used to designate it are metallic: as ad-gray; iron-black; etc., non-metallic: as blue, luish; gray, grayish; etc., etc. All ores showing right red, blue or green colors externally, should examined carefully.
Streak:-Both the external color, and a surce that has been scratched, should be ex-.
amined. The latter is called the streak, and frequently shows a marked difference from the outside color. This is best examined by draw ing a small three cornered file across the sample and then across the thumb, or on a streak-plate

Malleability:-This is the quality of bein flattened out under the hammer without break ing. As a rule, any ore that is soft, and easil cut, is likely to be of value, and if it will stand being hammered out, it is valuable. Also mineral is said to be brittle, when easily broken or sectile, when it can be sliced with a knife

Lustre:-The property of reflecting light, o shining. The kinds of lustre are:-vitreous o stoney; metallic; pearly; silky; resinous (or lik gum) ; adamantine.

Many ores tarnish on exposure, and thi serves, in some cases as a guide, in determinin the ore.

Diaphaniety :-The property of allowing ligh to pass through, as; transparent, when an objed is distinctly seen through the substance; trans lucent, when light is transmitted but objects ar not seen.

Specific Gravity:-Is the weight of a pied of mineral compared with an equal bulk of pur water, which is taken as a standard. This difficult to ascertain in the woods, requiring
lelicat n the hair, ubtrac livide G. U cuide Ma nagnet idered ion, b o mag ass. fter hange Cry
re of hineral n itsel his wo $f \min$ Tanual essor New S nd E.

The nost of pr con xcepti
ne streak, and ence from the ined by draw oss the sample a streak-plate uality of beins without break soft, and easil if it will stand able. Also a easily broken with a knife lecting light, o e:-vitreous o esinous (or lik
sure, and thi in determinin
of allowing ligh when an objed bstance ; trans but objects ar
eight of a pied al bulk of pur dard. This ds, requiring
lelicate balance. Weigh a small piece of mineral n the ordinary manner, and then suspend it by hair, in distilled water at 60° and weigh again, ubtract the second weight from the first, and fivide the first by the difference-result is Sp . G. Usually the weight of a substance is a good suide to the amount of metal contained in it.

Magnetism:-Many ores are more or less nagnetic. Black Iron ore (Lodestone) is conidered to be the only one having decided attracion, but Nickeliferous Pyrrhotite is sometimes 0 magnetic as to form a perfect natural comass. Some minerals will only attract the needle fter being heated, the iron in these being hanged to the magnetic oxide by ignition.

Crystallization:-While Form and Structure re of great service in the determination of hinerals, crystallography is a complete study n itself, and does not fall within the scope of his work. Those who desire to pursue the study f mineralogy, should procure a copy, of the Tanual of Mineralogy and Lithology, by Proessor James D. Dana, or the larger work: A New System of Mineralogy by Messrs. J. D. nd E. S. Dana.

The list in the following chapter, comprises host of the ores, from which metals are obtained pr commercial purposes, at present, with the xception of those used in small quantities, or
for other reasons, not of much interest to the ordinary prospector or business man.

Although the amount of metal in pure ore, given, practically ores are never found sufficiently free from impurities, to come up to the prope standards and due allowance should be made The specific gravity varies accordingly.

Note, that very few ores, look in the leas like the metal they contain, even the native metals in a natural condition being tarnished and often alloyed.

A drop of Hydrochloric Acid serves to dis tinguish a carbonate, by causing an effervescence but not always, without heating the substance during the test.

The Blowpipe:-This is a most useful aid in determining the different minerals. A. brie description only, need be attempted here. Those who desire to follow up the hints given, ar referred to Professor Chapman's "Blowpips Practice" a standard work on the Blowpipe.

The essentials are; a blowpipe, (which i merely a tapered tube ending in a very smal orifice, by which the flame of a spirit lamp, of candle, may be concentrated on a minute quan tity of the substance to be examined, in powder pieces of charcoal; grease lamp; spirit lamp alcohol; borax• carbonate of soda; platinum and
ron wi about ointed teady

In and lai soda, it The su ieldin and ag: glob s ting this
round
The minera cools. smootl the che To minera at one be fout
nterest to the nan.

I in pure ore, und sufficiently to the prope ould be made ngly.
k in the leas en the native eing tarnished
serves to dis 1 effervescence the substance

1ost useful aid rals. A. brie d here. Those nts given, are 's "Blowpip e Blowpipe. ipe, (which is a very smal spirit lamp, of
minute quan ed, in powder ; spirit lamp platinum and
ron wire; bone-ash, a few pieces of glass tube about $\frac{1}{4}$ inch in diameter,) and a pair of small pointed forceps.

The Blowpipe may be had from any jeweler. A little practice, is necessary to maintain a steady stream of air from the mouth.

In making most tests the mineral is powdered and laid, either with, or without, an excess of soda, in a hollow in a piece of firm charcoal. The substance proves infusible, or fuses without yielding metal, sometimes vaporizes entirely, and again, leaves a coating on the charcoal, or a globule of metal. The flame, in some cases s tinged various colors, by different minerals, (this should be noted against a dark background.)

The coating or deposit left varies for different minerals and the colors change as the support cools. These deposits are best examined on a smooth piece of plaster of paris, used in place of the charcoal.

To test for water, place a little powdered mineral in the lower end of a test tube, (closed at one end) and heat; the moisture if any, will be found condensed at the upper part.

A piece of mineral the size of a pin head, is held in the forceps to try the fusibility.

Sulphur, Arsenic, and Selenium compounds,
give off their peculiar odors. Arsenic smells like garlic. Selenium, like decaying horseradish,

To detect Sulphur, moisten a little mineral and soda into a paste; fuse and place on a silver coin. The sulphur, if present, will stain the coin black.

Gold, Silver, Copper, 'Tin, and Lead; yield malleable beads, either with or without soda.

Platinum, Iron, Nickel, and Cobalt, give infusible metallic grains. Bismuth and Antimony, brittle beads, with deposit. Mercury, Cadmium and Zinc, are volatilized, the two latter leaving heavy sublimates.

Manganese colors a bead of borax, (formed on platinum wire (No. 27); by making a small loop on one end and fusing the borax into it, and then taking up a very small particle of ore;) a violet color. Chromium, a green color.

Strontia, and Lithia, color the flame, deep carmine red.

The Microscope.-By an examination of very thin slices of rock under the microscope, the presence, or absence, of many minerals is ascertained. The word Macroscopic is used to signify an examination, made without the use of the microscope, or with only a pocket lens.

The following abbreviations are used through. out this work: BB . = Before the Blowpipe. H. $=$ Hardness. G. =Specific Gravity.

Th t pre ound he p ally. n stat

LIs
Alumin Antimo Arsenic Barium Berylli Bismut Boron. Bromir Cadmi Cæsiun Calciur Carbon Cerium Chlorir Chrom Cobalt Colum Copper Didym Erbiun Fluori Galliur Germa Glucin Gold .

Arsenic smells ing horseradish. a little mineral ad place on a sent, will stain
d Lead; yield thout soda.
Cobalt, give and Antimony sury, Cadmium latter leaving
ax, (formed on g a small loop x into it, and icle of ore;) a olor.
e flame, deep
xamination of
e microscope, $1 y$ minerals is pic is used to thout the use ocket lens. used through. 3lowpipe. H.

The following table contains all the elements t present known to the chemist, and all are ound in minerals. The atomic weights indicate he proportions in which they combine chemically. The symbols are the abbreviations, used n stating the composition in all text-books.

LIST OF ELEMENTS, WITH THEIR SYMBOLS,
AND ATOMIC WEIGHTS.
Aluminium
Al. 27.
Hydrogen H . .

Antimony........ . Sb. $120 . \quad$ Indium In. II3.4
Arsenic As. 74.9
Iodine
I. 126.5

Barium. Ba. 137.
Iridium Ir. I92.5
Beryllium Be. 9.1
Bismuth Bi. 207.5
Boron. B. 10.9
Bromine. Br. 79.8
CadmiumCd. III. 7
Cæsium Cs. 58.7
Calcium Ca. 39.9
Carbon.............. C. 12.
Cerium Ce. 14 I.
Chlorine Cl. $35 \cdot 4$
Chromium....... . Cr. 52.5
Cobalt Co. 58.7
Columbium (see Niobium.)
Copper Cu. 63.2
Didymium Di. 142.
Erbium. Er. 166.
Fluorine. F. 19.1
Gallium. Ga. 69.9
Germanium. Ge. 73.3
Glucinum (see Beryllium.)
Gold Au. An. 196.7

Iron.................Fe. 55.9
Lanthanum La. 138.
Lead............. . . Pb. 206.4
Lithium Li. 7 .
MagnesiumMg. 24.
Manganese Mn. 54.8
Mercury Hg. 199.8
Molybdenum Mo. 96.
Nickel.............Ni. 58.6
NiobiumNb. 93.7
Nitrogen N. 14.
Osmium Os. 191.
Oxygen.............. 16.
PalladiumPd. 106.2
Phosphorus........P. 31.
PlatinumPt. $194 \cdot 3$
Potassium K. 39.
Rhodium.........Rh. IO4.I
RubidiumRb. 85.2
RutheniumRu. 103.5
Scandium.........Sc. 44 .

The chemist groups the various ores, accord ing to their chemical characters, as: Sulphides Arsenides; Borates; Carbonates; etc. As this work is intended, primarily, for the use of miners and business men, who are only inter ested, in the commercially valuable substances the ores contain, and care nothing aiout other constituents, save as they may affect those values; I have grouped each under the head of the metal, or other valuable ingredient, and have considered it better, also, to leave out any special mention of the undesired contents of the ore, except where the same affects the commercial value.

Acid rocks, or slags; are those which contain a ligh percentage of free silica; (60 to 80 per cent.) Basic; those slags, or rocks, which contain little (not more than 45 or 50 per cent.) or no silica, in a free state. In smelting, those ores which contain a very large percentage of
lica, lkali

Mi
ature alue, Balen le m res a called ore onsist er ce ass gain nay b f cop he fo - Pyı is n n ore he sul

Mir rom th he ore itanic reven netal rsenic

Sn. 117
Ti. 48.
W. 183
U. 240. .V. 51
mYt. ${ }^{172 .}$Y. 89. $\begin{array}{ll}\ldots Z_{n} & 6_{5} \\ m \ldots . . . Z_{r} . & 90 .\end{array}$

m
us ores, accori as : Sulphides ; etc. As this or the use of are only inter. ble substances ag aiout other ct those values;
head of the ent, and have eave out any d contents of ffects the com.
se which con. ca; (60 to 80 rocks, which r 50 per cent.) melting, those percentage of
lica, require to be neutralized, by mixing an Ikali (such as limestone) in the furnace, while with asic ores, the opposite course, is pursued.

Miners call any mineral substance found in ature, which yields anything of commercial alue, an ore. While, speaking mineralogically, Galena is always a lead ore, when rich in silver, He miner calls it a silver ore. More properly gres are a combination of one or more metals, called in this connection bases) with one, or fore acids, or mineralizing agents;-thus: Galena onsists of 86.6 per cent. of lead, with 13.4 er cent. of the acid sulphur. Very often, this associated with some silver-sulphide, and gain may contain zinc sulphide, or the ore hay be a mixture of the above, with sulphides f copper, and iron. Again, we have iron in he form of a sulphide, (Magnetic Pyrites, Pyrrhotite) and also as a bisulphide, when is non-magnetic. In this latter case we have n ore, of which the valuable constituent, is he sulphur.

Minerals are often rendered difficult to treat, rom the presence of some substance foreign to he ore, as for instance; a very small amount of Vitanic acid, in iron oxides; which will effectually prevent their being utilized as a source of the netal by present processes. The presence of rsenic, replacing sulphur, in gold ores which
carry considerable quantities of iron; renders the treatment much more difficult, and often, unpro fitable. Antimony and Zinc are frequently ver troublesome. The presence of these mineral causes the quicksilver to "flour," or "sicken, in which condition a coating forms over it, an
prevents the gold from amalgamating, thu causing a loss of more or less metal in th tailings.

In testing any ore by the means here out lined, make the trials in the order mentioned and allow a margin for slight variations, which will be found to exist almost invariably, ever in samples from the same vein, blown out together With the description of the ores will be found the simplest test or tests known, to distinguish or identify each, but they will only serve the portion of common sense.
on; renders the and often, unpro frequently ver these mineral r," or "sicken, ms over it, an gamating, thu is metal in th
neans here out rder mentioned ariations, which nvariably, even vn out together s will be found to distinguish only serve the ith a sufficient

PART IV.

 NATIVE METALS AND ORES.GOLD.
One cubic foot of Gold is worth, $\$ 363,56 \mathrm{r} .96$. tandard gold or silver, equals 900 parts of pure hetal, and roo of alloy, in r,000 parts of coin.

The largest nugget of gold ever found was
Ballarat, Australia, in June, i858. It was ox 9 inches; weighed 2,166 ounces, and conained $\$ 41,883$ value of gold.

Pure Gold is estimated at 24 carats fine. Thus gold having one twenty-fourth part copper, r silver, would be 23 carat gold. Equal parts old and another metal, would be 12 carat old. All native gold, contains more or less ilver, and sometimes other metals. Average f Canadian: between 85 and 90: Californian, 87 and 89: Australian, 90 and 96 per cent. gold.

Crystallizes in the isometric system, but rystals are seldom found.

Color:-Is the only, yellow, malleable, mineral found in a natural state. Many minerals, such as Pyrites, are mistaken for gold, but gold heed never be mistaken for anything else. H.= e.5-3. G. $=19 \cdot 3 \cdot$; varying with amount of alloy. B.B. gives malleable bead. Is not touched by
simple acids, but dissolves in Aqua Regia, whic consists of one-fourth nitric to three-fourths hydro chloric acid.

Gold also occurs as a Telluride (combine with Tellurium); sometimes of a bronze-yello color, and again of a lead-gray color.

In searching for gold, examine first the grave bars, and the holes in the rocks, forming th beds of streams. Never waste time in lookin in the upper part, of the gravel bed,-get dow to the bottom. If the gold is there at all, tha is where it will be found, along with platinum iridosmine, magnetite, pyrite, copper ores, blende zircon, heavy spar, monazite, and various crystals

Carry with you a bottle of quicksilver. After picking out the coarse pebbles (carefully examining some of them by breaking them), place a shove of the finer stuff, in a shallow circular pan;

> FOR GRAVEL.

Fig. 1.

FOR QUARTZ.

Fig. 2.

Scale, 1 inch=1 foot.
The best size and shape for a "pan" is shown in the cuts. Fig. 1 is the ordinary miner's pan for gravel washing. Fig. 2 is made of wood, or iron enameled white, and is better for quartz.
(a frying pan, free from grease, will do very well, on a pinch) and with a circular swing, wash it with water. A little practice will enable anyone to retain the finer, heavier, sand, and allow the
ua Regia, whic e-fourths hydro ride (combine a bronze-yello solor.
first the grave ks , forming th time in looking bed,-get dow, re at all, tha with platinum er ores, blende arious crystals cksilver. After fully examining place a shove rcular pan;
R QUARTZ.

Fig. 2.
a in the cuts. Fig. ig. Fig. 2 is made or quartz.
will do very ir swing, wash enable anyone and allow the
ghter coarse stuff, to slip over the edge of the an into the stream. When nothing remains, ut a little black sand, examine with pocket ens for colors of gold, then put in another shovel f gravel, and repeat the process. Finally, after number of shovels of gravel, taken from as hany places as possible, have been so treated, ut in some quicksilver, and thoroughly shake nd rub the fines together, then pour the quickilver into a piece of buckskin, and squeeze it hrough the buckskin back into a clean dish, to e returned to its bottle. Place the remainder n a shovel, and heat to redness. If you have nything malleable left it is gold, together with ome silver, and any lead in the ore.

Next exarnine all quartz veins. The softer he quartz in appearance, the better the chance ff its carrying gold. Though the writer has seen pecimens of quartz, as clear and hard looking as glass, containing gold, it is a reasonable heory that when gold is present, it usually nterferes with the perfect crystallization of the quartz. Quartz is called the " mother of gold," and all gold, so far as known, is derived from quartz veins. Those veins cutting talcose schists, or clay slates, are the most favorable, rather than mica schist, or gneiss. The gold is frequently so fine, as to be invisible except to a powerful microscope.

A small pestle, and mortar, are necessary, crush the quartz to fine sand, which may treated as above.

Another and better method of trying quar is, to fill a piece of glass tubing, an inch diameter, one-third full of the powdered roc and shake it well with quicksilver. This is ver convenient, and by marking the space occupie by a known weight of ore, a very close estimat may, after some practice, be made, of the quar tity of free milling gold, the quartz in a give vein carries. Or the ore may be dissolved Aqua Regia, and a solution of copperas added when the gold will be precipitated as a brow powder, which, on being rubbed, will show th metal.

Mica, and sulphide of iron, (Pyrite), are mos often mistaken for gold, but these are brittl minerals.

In known gold bearing territory, it is advisabl to have an assay, of the quartz of all well-defined persistent veins, as gold is frequently so fine, a to be invisible, even to a strong pocket lens.
"Gold is where you find it," is an old saying amongst miners, and no man may say it wil not be found in a given locality; where the geological formations; subcrystalline slates, and schists; occur.

Very few veins carry visible gold, and they
e seld artz, senic, d am iry, pld, w sily nd eas

A p ravel, ale. F , if h evelop The heap uartz nown evice, very
are necessary, which may of trying quar ing, an inch powdered roc er. This is ver space occupie y close estimat de, of the quan tartz in a give be dissolved it opperas added ed as a brow will show th 'yrite), are mos lese are brittl y, it is advisable all well-defined ently so fine, a pocket lens. is an old saying aay say it wil ity; where the ine slates, and gold, and they
e seldom the most valuable. A free milling lartz, (by which is meant, an ore free from senic, or any other refractory substance, ad amalgamating by simple contact with merury,) carrying as low as $\$ 5.00$ per ton, in old, will pay handsomely if the vein is large, asily accessible, the metal evenly distributed, nd easily milled.

A prospector should work a find of auriferous \cdot ravel, to some extent, before offering it for ale. He should sell a quartz lode, before working , if he can find a purchaser, after sufficient evelopment to show it as a fair prospect.

The following sketch shows a simple and heap means of working in a small way, a rich uartz lode, carrying coarse gold freely. It is nown as a "Dolly," and two men with this levice, will crush enough ore each week, to give very satisfactory "clean up" by Sunday.

A -Cushion bars. B. -Hollowed block. C.-Sluices. D.-Chain-
hook. E.-Spring pole. F.-Dolly. G.-Iron shoe.

To make a "Dolly," cut a square hole, (ir ff at ir a hollow basin in the top of a solid block, o section of a log firmly planted on the bank of stream), six inches wide; fit in wrought iror bars, six inches long, one-half inch thick, three inches deep, and firmly secured. Cut away portion of one side, to which attach a spout leading over the higher end of a sluice-box The sluices may be covered on the bottom, by strips of blankets, and should have cross bars called riffles, nailed across the bottom sufficiently tight to hold fine sand. After having all as solid as may be, dump in some quartz, broken com. paratively small, "swing your Dolly," and turn in more water at intervals, as you get "choked."

Placer mining is carried on by hand, washing with a pan, or with a "cradle," (a small trough on rockers); or by the use of streams of water under pressure, washing down the gravel, through sluices. This latter is called hydraulic mining.

Gold ores are treated in different ways, in all cases being first reduced, by stamping or grinding, to a fine pulp.

First.-In Freemilling; the ore is simply crushed under stamps, wet, and the pulp is passed over copper plates, with surfaces covered with mercury. The gold attaches itself to the quicksilvered surface, in the form of amalgam, that is combined with quicksilver, and is scraped
nd the
In t
res ce uccess lly fav f gold uarrie By ample malga nay ju

Secc arry o ron an imes t hearlye cases tl matter phurets For th chiefly machin of five

The machin wide, rı on the
quare hole, (iv solid block, the bank of wrought iror h thick, thre
Cut away ttach a spout a sluice-box. he bottom, by ave cross-bars om sufficiently ing all as solid broken com. ly," and turn yet "choked.' and, washing rall trough on f water under rough sluices. y.
ent ways, in stamping or
e is simply the pulp is aces covered itself to the of amalgam,
is scráajed
ff at intervals, retorted to get rid of the mercury, nd the residue melted into bars.

In the Black Hills, with well arranged mills, res carrying but $\$ 4.00$ per ton are worked uccessfully, and in California, under exceptionlly favorable conditions, ores having but \$1.00 f gold contents. The ore in this case being uarried rather than mined.

By panning, or horning down, a pulverized ample the free gold may be seen, and by malgamating, by rubbing with quicksilver, you may judge if the ore be freemilling.

Secondly.-By concentration ; most gold ores farry other minerals, such as the sulphurets of ron and copper, or lead, also zinc, and somecimes tellurides, selenides, or antimonites, with in hearly every instance more or less silver. In these cases the ore is concentrated, that is, the rock matter is got rid of by washing, and the sulphurets obtained in a more or less "clean" state. For this purpose Frue vanner machines are chiefly used, two old style, or one improved machine, being usually allowed to each battery of five heavy stamps.

The principle of the Frue vanner concentrating machine is, an endless rubber belt, four feet wide, running up an inclined table, and dipping on the under side into a tank of water, where
the mineral is washed off. At the head of the table jets of water, playing on the belt, wast back the lighter sand, and the water flowing down the incline washes it away. In additio there is a steady shaking motion from side to side, or, at right angles, which materially assist in the separation of the mineral from the gangue

The concentrates can be sold to refining companies, (the most profitable way, in many cases), or may be further treated, and the gold obtained by chlorination or smelfing.

In chlorination, the concentrates are placed after roasting, to expel sulphur, arsenic, etc.; is gas-tight tubs, or barrels, holding two or thre tons each, and chlorine gas is generated (by the introduction of chemicals; sulphuric acid, man ganese oxide, and salt,) which is allowed to permeate the ore, and forms chlorides of gold and silver. The metals are afterwards precipi tated separately, the solutions run off, the meta collected, dried, melted, and cast into bars.

Or, the sulphide ores may be reduced by roasting, and amalgamating in pans, or by smelting direct. We have last year, to record another new process, which appears to be suc cessful in treating mispickel ores; namely, those carrying a great deal of arsenic. This is known as the Carter-Walker process, by which the
he head of the the belt, was water flowing y. In addition on from side to aterially assist om the gangue. old to refinind way, in many , and the gold Ig.
tes are placed. rsenic, etc.; in ? two or thred erated (by the ric acid, man. is allowed to orides of gold wards precipi. off, the meta ito bars.
e reduced by pans, or by ear, to record ars to be suc. namely, those This is known by which the
re is roasted in closed chambers, the acids aved, and the gold obtained by vaporizing nercury.

Colonel Harvey Beckwith, the widely known xpert on gold mining and milling, makes a avorable report on this process, which may possibly solve the difficult problem, of how to reat mispickel ores, carrying gold.

ANTIMONY.

This metal is used, chiefly, as an alloy. It s a brittle silver-white metal obtained from its pres, which occur in the primary rocks, frequently with silver, lead, zinc, and iron ores. $G=6.7$.

The ore from which most of the metal of commerce is obtained, is the sulphide;

Stibnite. GREY ANTIMONY.

Trimetric, commonly with fibrous appearance. Color and streak, lead-gray. Lustre, shining. Tarnishes. Brittle. H. $=2$. $\mathrm{G} .=4.5-4.62$. Contains 71.8 per cent. of antimony; with 28.2 per cent. of sulphur. B.B. Is volatilized, with dense white fumes. 7.1 cubic fect=one ton. This ore is soft, and will melt in the flame of a candle.
native.-Generally massive, occasionally in rhombohedral crystals. Color and streak, tinwhite. H. $=3-3.5 . \quad \mathrm{G} .=6.6-6.75$. Pure Antimony; often with silver. B.B. volatilizes, tinging
the flame green, and leaving a heavy white deposit on charcoal. 4.8 cubic feet in one ton.

Compounds of Antimony and Silver, are ofter met with, and when rich in silver make a valu able ore.

SILVER.

Is a pure white metal, very ductile, harder than gold, but softer than copper. $G=10.53$.

The ores of silver are found in rocks of all geological ages, in any kind of vein below the coal measures. The ores are of many dif. ferent kinds, and silver is found abundantly in many other ores, sucli as lead, antimony, zinc, and copper ores.
native silver-only, is white in color, among ores of silver, though dark and dull on the surface, and has streak, silver-white and shining. Often tarnished brownish-black. Malleable; cuts with knife. Occurs in octahedrons, arborescent shapes, or massive. H. $=2-3$. G. $=10.1-11.1$. Generally contains some copper, and sometimes gold. B.B. gives malleable bead.

ARGENTITE. SILVER GLANCE.

In dodecahedrons, and modifications, or massive. Color and streak, blackish lead-gray. Cuts with knife, slightly malleable. $\mathrm{H} .=2-2.5 . \quad \mathrm{G}=7-$ 7.4. Contains 87. 1 per cent. of silver, with 12.9 ?ray, gr per cent. of sulphur. A valuable silver ore.
3.B. g eet ma
heavy white in one ton. ilver, are often make a valu.
luctile, harder $\mathrm{G} .=10.53$. 1 in rocks of of vein below of many dif. abundantly in timony, zinc,
color, among dull on the e and shining, alleable;- cuts ;, arborescent $=10.1-1 \mathrm{I} .1$. ad sometimes

1s, or massive.
Cuts with
5. G. $=7-$ er, with 12.9 e silver ore.
B.B. gives malleable bead of silver. 4.4 cubic cet make one ton.

YRARGYRITE. DALK RED SILVER ORE.

Rhombohedral. Usually in crystals, someimes massive. Color, black to bright red. Streak, bright red. Lustre, brilliant. H. $=2$ 3.5. G. $=5.7-5.9$. Contains 59.8 per cent. ilver; with 17.7 sulphur; and 22.5 per cent. of ntimony. Usually in crystals. B.B. gives bead with soda. 5.5 cubic feet weigh one ton.

PRoUstite. hight red silver ore.

Like Pyrargyrite. G. $=5.4-5.56$. Contains 55.5 per cent. of silver; with the antimony replaced in part, or wholly, by arsenic. 5.8 cubic eet weigh one ton.

STEPHANITE. BRITTLE BLACK SILVER.

Trimetric; often in compound crystals, or massive. Color and streak, iron-black. H. $=2.5$. G. $=6.27$. Contains 68.5 per cent. of silver; 6.2 of sulphur; and $15-3$ of antimony. B.B. gives bead with soda. 5 cubic ft . weigh one ton.

Dissolved in weak nitric acid, will silver a piece of clean copper.

CERARGYRITE. HORN SILVER.

Isometric. In cubes, or massive. Color, fray, green, or blue. Lustre, resinous. Streak, shining. Cuts like horn or wax, and on an
outcrop looks like dirty cement. Melts in candla
flame. Contains 75.3 per cent. of silver; and 24.7 per cent. of chlorine. A valuable ore. B.B gives bead easily.

BROMYRITE, OR BROMIC SILVER.-Silver and bromine. Bromine, 42.6 per cent. Silver, 57 per cent. A common ore.

There are many other ores of silver, but the above list comprises all the ores commonly worked.

Silver ores are treated by freemilling, of direct amalgamation in pans, each charge being worked for several hours, through a series of pans. 'This method is applicable to Native Silver, Horn Silver, and certain forms of sulphides The presence of such base metals as Iron, Copper Lead, Zinc, or Antimony, interferes with the process when concentration, and sometimes roasting-milling, or roasting the ore with salt, must be resorted to.

Silver mining requires expensive plant, and large capital, with expert management.

The simplest test for the presence of silver is: to dissolve the ore in nitric acid, and pour in strong salt water. This throws down white flakes, and on exposing these to the sun, they will turn black if the ore contain silver.

Have any ore suspected to contain silver

NATIV a mar and v Of rar

GALEN Iso fibrous Easily tains 8 cent. thousa with y yields bone-a fine $b c$ treated obtaine ton.
miniul
Col B.B. y arts.
cerus Cole

Melts in candld of silver ; and able ore. B.B.

7.-Silver and

 Silver, 57silver, but the res commonly
freemilling, or h charge being h a series Native Silver: of sulphides. Iron, Copper, eres with the ad sometimes re with salt,
ve plant, and ent.
ence of silver cid, and pour down white the sun, they ilver.
ontain silver

SILVER IN LEAD ORES. 47
assayed. On an average, at least $\$ 10$ per ton as rined, is necessary to constitute a paying ore.

One cubic foot of silver is worth \$13,008.67.

LEAD.

native.-Is a soft, bluish gray metal. Leaves a mark on paper. Malleable. B.B. fuses easily, and volatilizes, leaving a yellow ring on charcoal. Of zare occurrence. G. $=11.85$.

GALENA.

LEAD SULPHIDE.

Isometric. In cubes, also granular, or rarely fibrous. Color and streik, lead-gray. Shining. Easily broken. H. $=2.5$. G. $=7.25-7.7$. Contains 86.6 per cent. of lead (when pure); 13.4 per cent. of sulphur; and from one or two to several thousand ounces of silver. B.B. covers charcoal with yellow deposit. If carefully treated, finally yields bead of lead. If bead be placed on a bone-ash cup, or a cavity in charcoal, filled with fine bone-ash, smoothly pressed in; and further treated, the lead will be absorbed, and the silver obtained nearly pure. $4 \cdot 3$ cubic feet weigh one ton. Galena is the chief source of lead.

MINIUM.

LEAD OXIDE.

Color, red to yellow. Pulverulent. G. $=4.6$. B.B. yields bead of lead. Manufactured for the arts.

CERUSSITE. WHITE LEAD ORE.

Color, white to gray. $\mathrm{H}=3 .-3 \cdot 5 . \quad \mathrm{G}=6.48$.

Contains 75 per cent. lead, with oxygen, carbonic acid and impurities. Artificially made.

There are many other ores of lead, containing various amounts of silver, almost all of which, are found in association with galena, some abundant in certain localities, others of rare occurrence. All are distinguished at once, by specific gravity, and by yielding lead before the blowpipe.

Lead ores are valuable, in the proportion of their silver contents, but when worked for lead alone, should average not less than 40 per cent. of metal.

Lead ores carrying silver, are treated by concentration and smelting, or smelting alone. Like nickel, and copper, the first product or matte is frequently sold to refiners. The plant is necessarily costly, and all furnace operations depend for success, on skilful management by experts. Also, it is almost an essential, that a mixture of ores from different mines be made, and these must be carefully selected, and taken in certain proportions, which continually vary, for different ores. Fragments of lead ore, or heavy spar in crumbling magnesian limestone, depressions in a straight line, or the red color of the soil on the surface indicate lead veins, which are found in rocks of all ages up to the carboniferous, the largest being usually found in Silurian limestones overlying slates.

Is a
native metalli Can b $\mathrm{G}=16$ solves gold; u copper B. B.
qualitie one tor

SPERR $\mathrm{H} .=\mathrm{ab}$ of Plat in the compos conditi ferrugis

The was fo weighe

Has silver,

PLATINUM.

Is a bright, white metal, heavier than gold. It is used chiefly for chemical and electrical apparatus. G. $=21.15$ when pure.
native.-Color and streak, steel-gray. Lustre, metallic, bright. Isometric, but seldom in crystals. Can be drawn out. Malleable. $\mathrm{H},=4-4.5$. G. $=16-19$. Not touched by simple acids. Dissolves in Aqua Regia. Found in gravel, with gold; usually alloyed with other rare metals, and copper or iron. Derived from crystalline rocks. B. B. Infusible, and wholly unaltered; these qualities identify it at once. 2 cubic feet weigh one ton.
sperrybite.-Color, tin-white. Lustre, bright. H. =about 7. G. $=$ ro.6. Contains 50.7 per cent. of Platinum. Crystals very minute. Found only in the Sudbury section of Ontario; in detritus composed of gossan, and rock in a decomposed condition, apparently derived from seams of ferruginous mica schist, with some copper pyrites.

The largest nugget of native platinum known was found in 1827 , in the Ural mountains, and weighed 21 pounds. It measures 4×7 inches.

MERCURY.

Has a strong affinity for other metals, gold, silver, lead, etc., forming an amalgam. It is

Used to extract gold and silver; for mirrors barometers, etc., and largely in medicine. Com monly called quicksilver.
native.-Bright, white, and liquid, at norma temperature, melting at 39°. G. $=13.6$ at 32° Occurs in globules scattered through the gangue derived from the sulphide; CINNABAR.--In rhombohedral crystals, or massive Color, bright red, blackish or brownish. Lustre unmetallic. Streak, scarlet-red. Crystals ar nearly transparent. LIVER ORE;-Is dull, of same color and streak. $\mathrm{H}=2-2.5 . \quad \mathrm{G}=8.5-9$. I is identical with the brilliant red pigment, ver million. B.B. vaporizes. 3.6 cubic feet weigl one ton. Can be cut with a knife. Contains 86.2 per cent. of mercury; and i 3.8 per cent. of sulphur Found in schists and slates, both the olde rocks, and those of later age. Never found in quantity, in the more crystallized rocks, such as Gneiss. The mercury of commerce is obtained by distillation, although, it is sometimes dipped up in buckets, from fissures in the rocks con taining the ores.

COPPER.

Is a very tough, ductile metal, of a fine red color, taking a bright polish, but quickly tarnishing. Used largely in the arts, both alone, and in brass and other alloys, also in plating. Large quan. tities are now used in electric railway plant.

NATIV coppe 2.5-3 veins where panies out in shines on co in nit one p

CHAL
Tr sive. often $\mathrm{G} .=5$ and 2 of cop BORN

Isor red t Streal $\mathrm{H},=3$ iron, but v globul
r; for mirrors edicine. Com
uid, at norma $=13.6$ at 32^{4} gh the gangue
tals, or massive vnish. Lustre

Crystals are Is dull, of same $3 .=8.5-9$.
pigment, ver bic feet weigl Contains 86.2 ent. of sulphur. oth the older Jever found in d rocks, such ree is obtained retimes dipped he rocks con-
of a fine red kly tarnishing. , and in brass Large quanty plant.
native.-Isometric, and tree-like forms. Color, copper-red. Malleable. Can be drawn out. H.= 2.5-3. G. $=8.84$. Pure copper occurring in veins; in grains, and masses: usually enriched where crossed by dykes. Sometimes accompanied by native silver, and occasionally spread out in floors. B.B. yields bead of copper, which shines brightly while hot, but becomes covered, on cooling, with black oxide. Dissolves easily in nitric acid. It is mined when yielding but one per cent. of copper.
CHALCOCITE. COPPER GLANCE.
Trimetric. In compound crystals, also massive. Color and streak, blackish to lead-gray, often tarnished blue, and green. H. $=2.5-3$. $\mathrm{G} .=5.5-5.8$. Contains 79.8 per cent. copper; and 20.2 per cent. of sulphur. B.B. gives bead of copper. 5.7 cubic feet weigh one ton.
BORNITE. VARIEGATED PYRITES.
Isometric. Generally massive. Color, copperred to pinchbeck-brown. Tarnishes rapidly. Streak, grayish-black, slightly shining. Brittle. $\mathrm{H} .=3$. G. $=5$. Contains copper 55.5^{8} per cent.; iron, 16.36 per cent.; with sulphur, 28.6 per cent.; but varies greatly. B. B. fuses to magnetic globule. Also called erubiscite.
CHALCOPYRITE. PYRITES.
Dimetric. Generally in octohedral crystals,
or massive. Color, brass-yellow. Streak, greenish. black, dull. H. $=3.5-4$. G. $=4.15-4.3$. Contains 34.6 per cent. of copper; 34.9 per cent. of sulphur; and 30.5 per cent. of iron. Will not scratch glass. B.B. gives brittle bead. 7.6 cubic feet weigh one ton. Should carry not less than six per cent. of metal, as mined, to make a profitable ore.
TETRAHEDRITE, GRAY COPPER ORE.
Isometric. In tetrahedral forms. Color, steel. gray, to iron-black, with streak inclined to red. H. $=3-4.5 . \quad$ G. $=4.5-5.12$. Contains 91.9 per cent. of copper, but varies greatly, sometimes containing 10 per cent. to 30 per cent. of silver, with usually iron, zinc, and antimony. A valuable ore, and easily worked. B.B. gives bead of copper, or copper and silver. 6.6. cubic feet weigh one ton. Sometimes contains platinum.
CUPRITE.
RED COPPER ORE.
Isometric. In octahedrons, or massive, sometimes earthy. Color, red, of various dark shades. Streak, brownish-red. Lustre, adamantine. Brittle. $\mathrm{H} .=3.5-4$. G. $=5.85-6.6$. Contains 88.8 per cent. of copper, with II. 2 per cent. of oxygen. B.B. gives bead of copper. 5 cubic feet weigh one ton.

CHRYSOCOLLA. THE SILICATE.

Color, bright green. Lustre, shining or earthy, $\mathrm{G} .=2 \mathbf{2 - 2 . 4}$. Contains 30 per cent. to 35 per
cent. o but sol a bead MALAC Thi and ev varying paler. 5^{6} per 22 per of wat B.B. c metalli

AZURIT
Col Streak, 3.j-3.

Cop date, a those d the mi

Nat ores a and nc and B. find of The n and al
eak, greenish. $4 \cdot 3$. Contains 1t. of sulphur; scratch glass. eet weigh one x per cent. of e ore.

JRE.

Color, steel. lined to red. ins 9 I .9 per , sometimes ent. of silver, ny. A valuives bead of . cubic feet platinum.
assive, somedark shades. tine. Brittle. ins 88.8 per \therefore of oxygen. c feet weigh ng or earthy. to 35 per
cent. of copper, with silica. A secondary deposit, but sometimes valuable. B.B. with soda, gives a bead of copper.
MALACHITE. GREEN CARBONATE.
This ore is polished, and used for inlaid work, and even jewellery. Colors, blue or green, of varying shades (deep blue to light green). Streak, paler. Soft ore, dull in appearance. Contains 56 per cent. of copper; I4 per cent. of oxygen; 22 per cent. of carbonic acid; and 8 per cent. of water. Not important as a source of metal. B.B. colors the flame n, and quickly yields metallic copper. 8.2 cuoic feet weigh one ton.

AZURITE. BLUE CARBONATE.
Color, deep blue. Sometimes transparent. Streak, bluish. Brittle. H. $=3.5-4.5$. G. $=$ $3.5-3.85$. Used only for ornamental purposes.

Copper occurs, as arsenate, phosphate, vanadate, and in very many combinations, other than those described, which are the important ores to the miner.

Native copper is recognized at once. The ores are distinguished mainly by lively colors, and nearly all turn bright green on exposure, and B.B. tinge the flame green. The value of a find of any ore of copper depends on the quantity. The native metal veins are the paying mines, and always act on the compass. When the
prospect of he deposit being large is satisfactory get an assay. The ores of copper may some. times be shipped to advantage, after simple concentration, and are readily purchased by refiners. There are several other ores, of little interest commercially.

Copper ores are reduced, by smelting, after concentration by hand or machines, and in the zase of sulphide ores, a preliminary process of calcination, or roasting, is resorted to.

NICKEL, AND COBALT.

nickel.-Is a brilliant, white metal, which does not tarnish, and is very ductile. It is used chiefly as an alloy, and in plating. COBALT,-Is a lustrous, reddish-gray metal, very brittle, and sometimes granular-sometimes fibrous. Is not used as a metal, except in plating, but mainly for the production of smalt, the blue coloring matter. Neither are found native.
NICKELIFEROUS PYRRHOTITE.-From this ore is obtained much of the nickel of commerce. It is identical with ordinary magnetic pyrites, save that it carries the nickel. The nickel at Sudbury, Ontario, is derived almost entirely, from this ore, which is intimately mixed with copper pyrites,' and often contains besides the nickel; cobait; occasionally a little galena; silver, or gold; and in at least one case, tin. Although
the av than 2 cent., Anythi to min tongh, rock); a at Sudi coveres which while nickel-1

Oth in the LINNAE

Ison steel-gr gray. pure, 5 in part B.B. y deep bl millef

Rho tals. C gray tas 4.6-5.6 of nick yields n
satisfactory, r may some. after simple urchased by ores, of little
nelting, after and in the y process of to.

r.

, which does It is used r metal, very ometimes fit in plating, alt, the b!ue ative.
n this ore is mmerce. It pyrites, save at Sudbury, from this ith copper the nickel; silver, or Although
the average nickel contents of the ore, is less than $2 \frac{1}{2}$ per cent., it runs as high as 30 per cent., and even 40 per cent., in certain samples. Anything over two per cent. in nickel will pay to mine, if in large quantities. diorite- (a tough, hard, greenish to black colored, eruptive rock); appears to be the true nickel-bearing rock at Sudbury, and the deposits of ore already discovered will supply all demands for the metal which are likely to be made for many years, while but a comparatively small section of the nickel-bearing area has been properly prospected.

Other ores of nickel, of which some are found in the Canada range, are:-
LINNAEITE, SULPHIDE GF COBALTR AND NICKEL.
Isometric. Generally massive. Color, pale steel-gray, tarnishing copper-red. Streak, dark gray. H. $=5.5$. G. $=4.8-5$. Contains when pure, 5^{8} per cent. of Cobalt, generally replaced in part by nickel, with 42 per cent. of sulphur. B.B. yields no metal, but colors borax bead deep blue. 6.5 cubic feet weigh one ton.

millefite. CApillary pyriteg.

Rhombohedral. Usually in needle-like crystals. Color, brass-yellow, to bronze-yellow, with gray tarnish. Streak, bright. H. $=3-3 \cdot 5$. G. $=$ 4.6-5.65. Contains when pure; 64.4 per cent. of nickel, and 35.6 per cent. of sulphur. E.B. yields no metal. 6.2 cubic feet weigh one ton.

COBALTITE.
Isometric. Color, silver-white, with a reddish tinge. Streak, grayish-black. Brittle. H. $=5 \cdot 5$. G. $=6.63$. Contains 45.2 per cent. of arsenic; 19.3 per cent. of sulphur; and 35.5 per cent. of cobalt; often with iron and copper. B.B. gives sulfitur and arsenic fumes, with magnetic globule; with borax, a cobalt-blue bead. smaltite. cobalt glance.

Isometric. Occurs in many forms, often massive. Color, tin-white. Streak, dark gray. $\mathrm{H} .=5.5-6$. G. $=6.4-7.2$. Contains from 22 per cent. each of nickel, and cobalt, to 44 per cent. of nickel alone, with 50 per cent. of arsenic, and some iron. B.B. yields no metal. 4.7 cubic feet weigh one ton.

NICCOLITE. COPPER NICKEL.
Hexagonal. Generally massive. Color, cop-per-red. Streak, brownish-red. Lustre, metallic. H. $=5-5 \cdot 5 . \quad$ G. $=7 \cdot 3-7.7$. Contains 44 per cent. nickel, and 56 per cent. of arsenic. B.B. yields no metal. 4.2 cubic feet weigh one ton.

GERSDORFFITE.

Color, steel-gray. Streak, blackish-gray. Lus. tre, bright. H. $=5.5$. G. $=5.6-6.9$. Contains 35 per cent. of nickel, (sometimes more); 45 per cent. of arsenic; and 20 per cent. of sulphur. culic feet weigh one ton.

GARN Cc 8 per Caled Tl by Dr

M yellow $\mathrm{H} .=3$ 32.87

WHAR
Co
Lustr
$\mathrm{H} .=\mathrm{a}$
per ce
bluel
Co Streak magne Name Ontari

ASBOL
Col
20 per ore wit Th
with a reddish ittle. H. $=5 \cdot 5$ at. of arsenic; . 5 per cent. of r. B.B. gives gnetic globule;
forms, often k, dark gray. ains from 22 alt, to 44 per ent. of arsenic, tal. 4.7 cubic

Color, copstre, metallic. is 44 per cent. B.B. yields ton.
h-gray. Lus -9. Contains more); 45 per of sulphur.

GARNIERITE. NICKEL SILICATE.
Color, green. Streak, uncolored. Yields 6 to 8 per cent. of nickel. Chiefly mined in New Caledonia; also found in Oregon, U.S.A.

The following new ores of nickel are reported by Dr. Emmens, from Sudbury, Canada.

FOLGERITE.

Massive, with platy structure. Color, bronzeyellow. Streak, greyish-black. Lustre, metallic. $\mathrm{H} .=3.5 . \quad \mathrm{G} .=($ approximately $) 4.73$. Contains 32.87 per cent. of nickel.

WHARTONITE.

Color, pale bronze-yellow. Streak, black. Lustre, metallic. Tarnishes rapidly on exposure. H. =about 4. G. =about 3.73. Contains 6.ro per cent. of nickel. 8 cubic feet weigh one ton.

blueite.

JACK'S TIN.

Color, olive-gray to bronze. Lustre, metallic. Streak, black. $\mathrm{H}=3-3.5 . \mathrm{G}=4.2$. Nonmagnetic. Contains 3.5 per cent. of nickel. Named after Mr. Archibald Blue, Director of Ontario Bureau of Mines.

ASBOLITE. EARTHY COBALT.
Color, black or blue-black. Contains over 20 per cent. of cobalt oxide. Occurs as a bog ore with manganese, iron and copper, and nickel.

There are many other ores of nickel and
cobalt, occurring rarely, or as products of other and more abundant ores. All occur in the lower formations, and cobalt ores, invariably, are found in connection with nickel.

Compounds of nickel before the blowpipe yield no metal, but leave a bead of borax, gray with specks of reduced nickel.

Cobalt and nickel ores are first smelted into a rich concentrate or matte, and then refined by the use of acids; in most cases. The ore as in copper, is when a sulphide, first roasted to expel the greater portion of the sulphur. The refining, when done with acids is a slow and costly process, but new methods are being successfully adopted, and it is probable that this will, in the near future, be done by electrolysis.

The mining and treating of these ores, requires large capital, and great skill is necessary to obtain economical results.

Smelting furnaces were formerly, built of common brick, and lined with fire-brick, whether blast furnaces, or reverberatory furnaces; but the American water jacket furnace, is to-day the ideal blast furnace, being built of cast iron, wrought iron, or mild steel, protected by an outer wall, or jacket, of the same material, through which a stream of water constantly circulates, thus protecting the furnace, so that, except for an accident, nothing compels a stop-
page, plant, slag, i a wat moved thence is tapl slag fl is rem granul

By hot or and a nace 1 the sul making

Is : malleal a coati

The occur also ol Stream and mi copper worth
ucts of other r in the lower oly, are found
the blowpipe f borax, gray
smelted into en refined by he ore as in t roasted to nlphur. The a slow and e being sucble that this lectrolysis. ese ores, reis necessary
ly, built of ick, whether rnaces; but 2 , is to day of cast iron, cted by an ne material, constantly ce, so that, upels a stop-
page, unless for a general overhauling of the plant, at long intervals. The molten metal, and slag, is allowed to run constantly, as fused, into a water protected well, (on wheels, easily removed without stopping the operation), and thence, the metal, sinking by its greater gravity, is tapped into moulds or pots, while the lighter slag flows steadily from a spout at the top, and is removed in iron pots on wheels, or sometimes granulated by allowing it to drop into water.

By the introduction of a powerful blast, of hot or cold air, a great saving of fuel is effected, and a much greater capacity obtained. A furnace has lately been introduced which utilizes the sulphur contained in pyritic ores as fuel, thus making the ore smelt itself.

TIN.

Is a silvery white metal, of high lustre, and malleable, but not ductile, used in alloys, or as a coating for other metals.

There are but two ores of tin, and these occur usually in small veins of quartz. Tin is also obtained from gravel, and is then called Stream Tin. The veins occur in granite, gneiss, and mica slate, and the associated minerals are copper and iron pyrites. They are considered worth working, when but a few inches wide.

STANNITE. BELL METAL ORE.

Massive, or in grains. Color, steel-gray to iron-black. Streak, blackish. Brittle. H.=4. G. $=4.3-4.6$. Contains 27 per cent. of tin; 30 per cent. of sulphur; 30 per cent. of copper, and 13 per cent. of iron. Found sparingly, hardly to be called an ore of tin, and oftener worked for copper. 7.2 cubic feet make one ton of ore.
CASSITERITE. TIN ORE.
Dimetric. Crystals often compounded. Also massive, and in grains. Color, brown to black. Streak, gray to brownish. Lustre, shining. H. $=6 .-7 . \quad$ G. $=6.4-7.1$. Its high specific gravity is characteristic. Contains 78.67 per cent. of tin, and 2 I .33 per cent. of oxygen. B.B. with soda gives bead of tin.

Looks like blende, or a dark garnet. Very hard, will strike sparks with steel. 4.7 cubic feet weigh one ton. Mined chiefly in Cornwall. The Cornish mines were worked in Roman times, and are' now very deep. The tin veins in Dakota, U.S., are gold-bearing, and the formation is quartzite, sandstone, and slate, overlying granite. Phosphate minerals also, occur abundantly.

BISMUTH.

native.-Rhombohedral. Generally massive. Color and streak, silver white, with slight red tinge. Tarnishes. May be hammered out a little
when
2.5. G izes, ar which 3.2 cul of silve ingredi as a p ores. curring

Thi
leaves tin) for

GREEN prisms. nearly B.B. f of plas brown Cac very 1 with and as B.B.
while l ingly, hardly ner worked ton of ore.
nded. Also vn to black. shining. H. cific gravity jer cent. of
B.B. with
irnet. Very - 4.7 cubic
in Cornwall. oman times, eins in Da. e formation ying granite. lantly.
massive. slight red d out a little
when heated, but is brittle when cold. H. $=2$ 2.5. G. $=9.7-9.8$. B.B. fuses very easily, vaporizes, and leaves a dark yellow coating on charcoal, which becomes paler on cooling. Pure Bismuth, 3.2 cubic feet weigh one ton. Found with ores of silver, cobalt, and gold. Used chiefly as an ingredient in fusible metal, also in medicine, and as a pigment. Bismuth occurs in several other ores. Found in same formations as copper. Occurring in gneiss and other crystalline rocks.

CADMIUM.

This metal is white like tin, but so soft it leaves a mark on paper. Used as a solder (with tin) for aluminum. There is but one ore:

GREENOCKITE; THE SULPHIDE.-In hexagonal prisms. Color, light yellow. Lustre, brilliant; nearly transparent. $\mathrm{H} .=3-3.5 . \quad \mathrm{G} .=4.8-5$. B.B. fuses easily, and leaves, if fused on a piece of plaster of paris, a dark brown, or reddish brown deposit. 6.5 cubic feet weigh one ton.

Cadmium is often associated with zinc ores.

ZINC.

A brittle, bluish-white metal, crystalline, and very lustrous on fresh broken surface. Used with copper, to make brass; as roofing sheets; and as paint; also to coat iron (galvanized.) B.B. covers charcoal with zinc.oxide, yellow while hot, white when cold.

SPHALERITE.
Isometric. Generally massive; rarely fibrous. Various colors. Streak, white to reddish brown. Cleavage perfect. Waxy. Brittle. H. $=3.5$-4. G. $=3.9-4.2$. Contains 67 per cent. of zinc; 33 per cent. of sulphur. B.B. nearly infusible. Looks like pieces of resin or dirty gum. 8 cubic feet weigh one ton. Known as black jack.

ZINCITE.

RED ZINC ORE.

Hexagonal. Usually in separate grains. Color, bright red. Streak, orange. Lustre, brilliant; translucent. Foliated like Mica. H. $=4-4.5$. G. $=5.4-5.7$. Contains 80.3 per cent. of zinc; and 19.7 per cent. of oxygen. B.B. gives no bead, but fuses with borax, and leaves a coating on coal. 5.8 cubic feet weigh one ton. A valuable zinc ore.

SMITHSONITE. CARBONATE OF ZINC.

Rhombohedral. Usually massive. Color, im. pure white, green or brown. Streak, uncolored. Lustre, stony. Translucent. Brittle. H. $=5$. $\mathrm{G}=4.3-4.45$. Contains about 52 per cent. of zinc, with often some Cadmium. B.B. infusible alone, but with soda leaves a deposit on charcoal, which moistened with nitrate of cobalt, turns green.

CALAMINE.

DRYBONE.

Trimetric. Usually massive. Color, white, bluish, grayish, or brownish. Streak, uncolored,

Lustre $\mathrm{H} .=4$ cent. 7.5 pe Yields 10 cub

Zir rally coppes ores the m in gol to tre in ret access skilled

NATIV ites, a but n except Swede PYRIT Isc Color, Lustr 6.5 . magn

Lustre, vitreous. Nearly transparent. Brittle. $\mathrm{H} .=4.5-5 . \quad \mathrm{G} .=3.16-3.9 . \quad$ Contains 67.5 per cent. of zinc oxide; 25 per cent. of silica; and 7.5 per cent. of water. B.B. almost infusible. Yields no metal, but acts same as Smithsonite. ro cubic feet weigh one ton.

Zinc ores occur in rocks of all aces, generally associated with lead ores, and of 1 n with copper, iron, tin and silver. There are various ores of zinc not of much value, as a source of the metal. It is often a detrimental substance in gold and silver mines, making the ore difficult to treat. The metal is obtained by distillation in retorts of various forms. The furnaces, and accessories, require considerable capital, and skilled management.

IRON.

native.-Found in the metalic state in meteorites, and occasionally, in grains in some rocks, but never in commercial quantity, unless we except, some masses of a ton weight found in Sweden.

PYRITE. NON-MAGNETIC ORE.

Isometric. Usually in cubes, or massive. Color, brass-yellow. Streak, brownish-black. Lustre, of crystals, brilliant. Brittle. H. $=6$ 6.5. G. $=4.8-5 . \mathrm{I}$. B.B. yields no metal, but a magnetic globule. Contains 46.7 per cent. of
iron; and 53.3 per cent. of sulphur, which latter
constitutes the valuable part of this ore, being used to obtain the sulphuric acid of commerce. Will scratch glass. 6.5 cubic feet equal one ton.

PYRRHOTITE. MAGNETIC PYRITES.

Hexagonal. Generally massive. Color, between bronze-yellow and copper-red. Streak, grayish-black. Often with dark tarnish. H. $=3.5$
perfer most shoul None of iro

HEMA
U1 -4.5. G. $=4.4-4.65$. B.B. yields no metal, but changes to the red oxide. Contains 60.5 per cent. of iron; 39.5 per cent. of sulphur. Tarnishes easily. Valuable as an ore of nickel. (See under head of Nickel.) Also used to make green vitrol. 7.I cubic feet equal one ton.

ARSENOPYRITE. MISPICKEL.

Trimetric. Also occurs massive. Color, silverwhite. Streak, grayish-black. Lustre, shining. Brittle. $\mathrm{H} .=5.5-6$. G. $=6.3$. B.B. yields no metal, but fumes of arsenic, which have the odor of garlic, and may be perceived on striking the ore smartly with a hammer. 5 cubic feet equal one ton. Contains 46 per cent. of arsenic (which is its valuable constituent); ig. 6 per cent. of sulphur; and 34.4 per cent. of iron. Sometimes it is rich in gold, but until recently this could not be profitably extracted, owing to the difficulty of getting rid of the arsenic, which prevented its successful treatment. Now, however, with lately
most are m tite, r massi earthy cherry from cent. cent. identi the 0 before cubic

A suitab Besse be pra and e the p the or grade.
, which latter is ore, being of commerce. equal one ton.
s.

Color, beed. Streak, ish. H. $=3 \cdot 5$ s no metal, ains 60.5 per rr. Tarnish. nickel. (See make green 1.

Color, silver. tre, shining. yields no ave the odor striking the c feet equal enic (which cent. of sulretimes it is :ould not be difficulty of evented its with lately
perfected processes, it is possible to treat the most arsenical ores economically, and prospectors should have mispickel ores examined for gold. None of the above ores are used for the making of iron and steel.

HEMATITE. SPECULAR IRON ORE.

Under this and following heads are included most of the ores from which pig iron and steel are made. Varieties are: micaceous, red hematite, red chalk, clay iron stone. Rhombohedral, massive, granular, sometimes micaceous, also earthy. Color, red, steel-grayoriron-black. Streak, cherry-red, or reddish brown. Hardness varies; from 6.5 down to earthy ores. Contains 70 per cent. of metallic iron; (when pure); and 30 per cent. of oxygen. B.B. infusible. The streak will identify this ore under all its forms. The darker the ore the redder the streak. Not magnetic before heating unless it contains magnetite. 6.6 cubic feet equal one ton.

A Bessemer ore, (by which is meant, an ore suitable for the manufacture of steel by the Bessemer process, now chiefly employed) should be practically free from sulphur, and phosphorus, and entirely free from titanic acid. The higher the percentage of metallic iron the more valuable the ore, anything over 60 per cent. being high grade.

MAGNETITE, MAGNETIC IRON ORE.

Isometric. Massive; also granular. Color, iron-black. Streak, black. $\mathrm{H} .=5.5-6.5$. G. $=$ 5-5.1. Contains (when pure) 72.4 per cent. of metallic iron; and 27.6 per cent. of oxygen. B.B. infrisible. 6.4. cubic feet equal one ton. Strongly magnetic, so much so that deposits are frequently discovered by the variation of the compass. If your compass wavers, and inclines to point very much east or west, look for iron along the nearest contact. By means of a dip-

LODE

 nets. floatir north
FRAN

Is Streal G. $=4$ magn part B.B. needle (a magnetic needle suspended to swing freely up and down between two pivots, instead of round, on one, like the compass;) the ore deposit may be found when no exposure exists, but a very magnetic ore will cause the needle to turn completely over when in small quantities, and in some cases it is very misleading. An expert in the use of the needle can get surprisingly accurate knowledge of a deposit, even when covered by many feet of barren rock. An attraction confined to a few feet, is apt to be caused by a boulder. If it continues along the strike it indicates a lode. A continuous attraction is better evidence of value than a strong one. Some. times found, as a black sand. Often in quartz veins, distributed in small pieces through the vein, but not in commercially valuable quantity, and such veins seldom contain any ore of value.
ular. Color, -6.5. G. $=$ per cent. of of oxygen. al one ton. deposits are tion of the and inclines rok for iron ns of a dip. d to swing s, instead of ore deposit rists, but a edle to turn ntities, and
An expert surprisingly even when An attracbe caused the strike it traction is ne. Some. in quartz sh the vein, intity, and alue.

LODESTONE.-Some specimens are natural magnets. Place a piece on a light chip of wood floating in a basin of water, and it will turn north and south, being a natural compass.

FRANKLINITE.

Isometric; also massive. Color, iron-black. Streak, reddish-brown. Brittle. H. $=5.5-6.5$. G. $=4.5-5 . \mathrm{I}$. Usually magnetic, but less so than magnetite. Formula, like magnetite, but with part of iron replaced by zinc and manganese. B.B. with soda on charcoal, gives zinc coating. Occurs in large deposits.

LIMONITE. BROWN HEMATITE.

Massive; with smooth surface, or spongy. Color, dark brown to ochre-yellow. Streak, light brown to dull yellow. $\mathrm{H} .=5-5.5$. G. $=3.6-4$. Various forms; from a hard clay ironstone, to yellow and brown ochre. Same as hematite, but contains 14 per cent. of water. 8.4 cubic feet equal one ton of ore.

BOG ORE.

This occurs in low ground, and is of considerable value; furnishing large quantities of iron, though chiefly used, by local furnaces, and for fluxing more difficult ores. Contains, when pure, about two-thirds its weight of iron. Occurs in beds a few feet. deep, spread over larger or smaller areas.

Rhombohedral. Usually massive, and foliated. Color, light grayish to brownish-red. Streak, uncolored. H. $=3.4$.5. G. $=3.7-3.9$. Contains 62.I per cent. of iron protoxide. Often with manganese. B.B. infusible, but becomes mag. netic. 8.4 cubic feet equal one ton. Used largely for the manufacture of iron and ste $:$, and found in many rocks, gneiss, mica schist, and clayslate. CHROMITE.

CHROMIC IRON.

Isometric. Usually massive, with rough surface. Color, iron-black to brownish-black. Streak, dark brown. Lustre, submetallic or dull. H.= 5.5. G. $=4.3-4.6$. Slightly magnetic. B.B. fusible with borax. Nearly the same as magnetite, but contains Chro.n m. 7 cubic feet equal one ton. Used largely as paint.

Iron occurs in nature in endless combinations, but the above ores include all of interest (as iron) to commerce. B.B. all iron ores become magnetic, and some contain manganese and zinc, as mentioned above.

The metal iron is obtained from its oxide ores, by smelting in blast furnaces, with limestone as a flux, the plants being of large capacity, and requiring very large capital for their : cessful operation. Steel, is made chiefly by Bessemer process of forcing air upward throtion the molten metal, in open crucibles, no further
fuel b
in sn made iron s case
is pro withir mine the b Rocks

Is

 but is is lar glass, found no mePYROI
Tr or, iro 4.8.
per c ton.
for ill
PSILO
Oc
black.
fuel being required. Coke is the usual fuel used in smelting, but large quantities of iron are made with charcoal, and for some purposes, the iron so made, is superior to any other. In any case a mixture of ores is required.

The value of a depcsit depends, after quality is proved, on its being of great extent, and within easy reach of shipping facilities. An iron mine filling all the above conditions, is possibly, the best investment to be got. (See also, Iron Rocks page 19.)

MANGANESE.

Is never used as a metal in the pure state, but is used chiefly as a source of oxygen. It is largely used in the arts for bleaching, clearing glass, and many other purposes. It is never found in the metallic state. B.B. the ores yield no metal, but color a borax bead violet.

PYROLUSITE.

Trimetric. Massive, sometimes fibrous. Color, iron-black. Streak, black. H. $=2-2.5$ G. $=$ 4.8. Contains 63.2 per cent. of manganese; 36.8 per cent. of oxygen. 6.6 cubic feet equal one ton. This ore is now used as a source of oxygen, for illuminating purposes.

PSILOMELANE.

Occurs massive. Color, black or greenishblack. Streak, reddish-black and sinining. H. =

5-6. G. $=4-4.4$. Contains nearly same amount of manganese as pyrolusite, but varies, and contains some baryta or potassa. 7.6 cubic feet equal one ton.

WAD.

BOG ORE.

Massive, or earthy. Color, and streak, black or brownish-black. H. $=\mathrm{I}-6 . \mathrm{G} .=3-4$. Earthy, soils the fingeis. 9.1 cubic feet equal one ton. Used as a paint, and sometimes consists of irregular globules in beds, a foot or more in depth, mixed with soil.

RHODOGHROSITE. MANGANESE CARBONATE.

Rhombohedral. Color, rose-red. Cleaves like Calcite. H. $=3.5$-4.5. G. $=3.4-3.7$. Contains 6 I .4 per cent. of manganes protoxide ; and 38.6 per cent. of carbonic acid, with part of manganese often replaced by calcium, magnesium, or iron.

The ores are found in same formations, and under same conditions as iron, and also containing silver, which makes a very valuable ore, and one easily worked.

MOLYBDENUM.

molybdenite; the sulphide.-Hexagonal, in plates, or masses foliated in thin plates lik tinfoil. Color and streak, lead-gray, the strea with green tinge. Lis're, bright on fresh loa age. H. $=1$-I.5. G $-4.5-4.8$. B.B. infus,
but g pure

Tl prepa mista sembl as gre molyb is bes or oth sparin tains cent.

PLUMI
He Color, lead p $2.25-$ Contai infusib of pur in the polish, in elec Cor in crys schist, age of
ame amoun varies, and 6 cubic feet
reak, black -4. Earthy, one ton. sists of ir. e in depth,

BONATE.

leaves like
Contains
; and 38.6 manganese or iron.
tions, and só containle ore, and lates lik he streal esh lea infus bit
but gives fumes of sulphur. 6.9 cubic feet of pure molybdenite equal one ton.

This ore is used but little, chiefly in the preparation of a blue color, and is sometimes mistaken for graphite (blacklead), which it resembles, but from which it is easily distinguished, as graphite leaves a black mark on paper, while molybdenite has a greenish-black streak, which is best seen by drawing a piece across a china or other plate. Occurs in crystalline rocks, but sparingly; also with lead and copper ores. Contains 59 per cent. of molybdenum; and 41 per cent. of sulphur.

GRAPHITE.

PLUMBAGO.
 BLACKLEAD.

Hexagonal. Usually foliated, also massive. Color, black to steel-gray. Streak, as a common lead pencil. Lustre, metallic. $\mathrm{H}=\mathrm{I}-2 . \quad \mathrm{G} .=$ 2.25-2.27. Soils the fingers, and feels greasy. Contains 95 to 99 per cent. of carbon. B.B. infusible. Not touched by acids. 13.9 cubic feet of pure graphite equal one ton. Largely used in the manufacture of pencils, crucibles, stove polish, and lubricants for heavy machinery. Also in electric lighting, plating, etc.

Commonly called blacklead. Found chiefly in crystalline limestone, also in gneiss, and mica schist, and generally forms only a small percentage of the ore, distributed evenly throughout the
gangue in specks; or in masses of all sizes. A valuable mineral when pure. Such impurities as lime, and iron, destroy its value. Test for lime with hydrochloric acid.

TELLURIUM.

native.-Hexagonal. Commonlymassive. Color, and streak, tin-white. Brittle. H.=2-2.5. G. $=6.1-6.3$ B.B. fuses, tinges the flame green, and volatilizes. 5.4 cubic feet equal one ton. Also obtained in combination with silver, and lead ores, which is the chief source of supply.

RARE METALS.

Certain rare metals mentioned below, are quoted at high prices in price lists of chemicals, and people are led to believe that they exist as mines. Some are found native, but the cause of their being seldom used, and high-priced is in most cases the great expense attending their extraction, and reduction, to the metallic state, or their scarcity. Those usually mentioned are not of much interest, except to chemists. There is but a very limited market for any metal so priced, even if a quantity should be found. BARIUM exists in nature as baryta (or heavy spar) a sulphate, (described in part V.) MAGNESIUM is a very light, tough, white metal, never found native. PALLADIUM is a rnalleable, steel-gray metal, inclining to white, found native, with some
sizes. A impurities Test for
ive. Color, -2.5. G. me green, one ton. silver, and f supply.
oelow, are chemicals, ey exist as the cause h -priced is Iding their allic state, tioned are ts. There metal so be found. eavy spar) aGNESIUM ever found steel-gray with some
platinum, and iridium, generally in small grains, in gold diggings, and occasionally native gold is alloyed with palladium. RHODIUM is found as an alloy with gold. iridosmine is a compound of IRIDIUM and OSMIUM, occurring usually in smali flat grains. H. $=6.7 . \mathrm{G} .=19.5-2 \mathrm{I}$. Slightly malleable, and used for points to gold pens. sodium is the metallic base of common salt, (Chloride of Sodium). URANIUM is the metallic base of pitchblende; never found native. (See under Pitchblende.)

There, are many other metals known only to chemists, or rarely used, whether native or artificially extracted. None are of interest to commercial mining.

PART V.

OTHER MINERALS OF COMMERCIAL VALUE.

We have now, briefly described, the chief ores from which metals of commerce are extracted, and as such, of greatest interest to the general public.

ALUMINIUM.

Is a metal of great promise, being only onethird as heavy as iron, of great tensile strength (26,000 pounds against 16,500 pounds* for cast iron, per inch) and hardness, a beautiful white color, with no taste or odor, not liable to tarnish or corrode, and taking a polish which is not excelled by any other metal, yet it is not of special interest to prospectors, being the base of clays, and therefore, the most abundant of all metals. Its price depends purely on the discovery of cheaper methods of extraction. A cubic foot weighs but 163 pounds, while iron weighs 487 , and gold 1206 pounds per cubic foot.

The most valuable source of aluminium, at present (and likely, to remain n nst valuable until new processes of extractic are developed) is an ore called:
eauxite; This mineral is a soft granular, compact, iron-stained clay, and the color is white to
browi 2.55 . and value

CORU
Oc
9 , or
of alu W
called are ca

Fc
limest
T
colors
as a
Distin
ALUM
ed fro
or oth rock

This i
concer to the tallize

COMM
Mī
massiv
brown or reddish, or sometimes bluish. G. $=$ 2.55. It is a hydrated sesqui-oxide of aluminium and iron, soluble in sulphuric acid. A find of value.
the chief re extract. he general
only onee strength s^{*} for cast tiful white to tarnish is not exof special 2 of clays, all metals. covery of subic foot eighs 487 ,
inium, at t valuable leveloped)
ilar, coms white to

CORUNDUM.

EMERY.

Occurs of many colors, blue, red, etc. H. $=$ 9, or next the diamond. G. $=3.9-4 . \mathrm{I}$. in oxide of aluminium.

When in clear blue crystals forms the gem called Sapphire. When crystals are red they are called Rubies. (See under Precious Stones.)

Found chiefly in mica schist, and granular limestone.

The variety having bluish-gray and blackish colors, is called marry. Used very extensively, as a polishing material in the shape of powder. Distinguished at once its hardness.
alum shale. - The alum of commerce is obtained from shale, or some rock containing alunogen or other alum bearing mineral, by heating the rock in lumps to produce aluminium sulphate. This is then lixiviated in stone cisterns, the lye concentrated by evaporation, and potassium added to the last solution. On cooling the alum crystallizes out.

COMMON FELDSPAR. ORTHOCLASE.
inonocinic. ©isually in thick prisms, and massive, gran llar, or fine grained. Not striated.

Color, white or flesh-red, sometimes greenish. white. Translucent to opaque. B.B. fuses with difficulty. Not touched by acids. Moonstone and Sunstone are varieties. Contains 64.7 per cent. of silica; 18.4 per cent. of aluminium; and 16.9 per cent. of potash. Largely used in the manufacture of chinaware.

CRYOLITE.-This is a peculiar, translucent, snowwhite compound. H. $=2.5$. G. $=2.95-3$. Con. tains 12.8 per cent. of aluminium; 32.8 per cent. of sodium; and 54.4 per cent. of fluorine. Used as a source of aluminium, and its salts; soda; and an opaque white glass. Melts easily in the flame of a candle.

KAOLIN.

CHINA CLAY.

This is a clay derived from the decomposition of feldspar, and used in the manufacture of fine chinaware. A good deposit of this clay, easily accessible, and free of grit or iron, is a find of value. Soapy to the touch. Insoluble in acids. It is one of the essentials in a good clay for any purpose, but is rarely met with in a pure condition fit for the above use.

To try the quality of the clay, wet a little in a white dish and observe that in a good article, it does not turn darker. Also observe that it is not "gritty," but an analysis is needed to test it, and even that will not fully prove its
value. contai

FIREto 60 from genera POTtE iron, a

MARL. from many fertiliz SHALE is ofter tile, et is requ of incip up the absorpt lutely r

meers

Colo green.
a smoo Contain of magn infusible
s greenish fuses with Moonstone as 64.7 per inium; and sed in the
cent, snow--3. Con. 8 per cent. ine. Used alts; soda; asily in the
omposition ure of fine lay, easily s a find of le in acids. d clay for in a pure
ret a little n a good ;o observe s is needed y prove its
value. B.B. will turn from white to brown if it contains iron.
fire-clay.-Pure, unctuous clay, with about 45 to 60 per cent. of silica, and free, or almost free from soda, potash, or alkaline earth. Found generally, underlying coal seams.
potters clay.-Must be plastic, and free from iron, and usually contains some free silica.

MARL.-Clay containing much carbonate of lime; from 40 to 50 per cent. Sometimes contains many shells, or fragments of shẹlls. Used as a fertilizer.

ShaLE.-Is an indurated compressed clay, and is often ground and extensively used for bricks, tile, etc. For vitrified bricks, a clay, or shale is required with a high fusion point, but capable of incipient fusion, to an extent which will close up the pores, so as to completely prevent the absorption of water, before the material absolutely melts.

meERSCHAUM. SEPIOLITE.

Color, white or creamy, sometimes bluishgreen. Compact, of a fine earthy texture, with a smooth feel. H. $=2-2.5$. Floats on water. Contains 60.8 per cent. of silica; 27.1 per cent. of magnesia; and 12.1 per cent. of water. B.B. infusible, gives much water, and a pink color, with
cobalt solution. Occurs in masses in stratified earth deposits. Used for pipe-bowls.

MANGANESE SPAR. FOWLERITE.
Color, reddish (usually deep flesh-red), also brown, greenish, or yellowish, sometimes black on surface. Streak, uncolored. Lustre, stony; transparent to opaque. H. $=5.5-6.5 . \quad$ G. $=3.4$ -3.7. Contains 45.9 per cent. of silica; and 54.1 per cent. of manganese protoxide. B.B. becomes dark brown, and with borax, bead is deep violet when hot, and reddish brown when cold. Looks like feldspar, but is heavier. Used in making a violet colored glass, and a colored glaze on stoneware. Takes a high polish, and makes a handsome ornamental stone.

FLUORSPAR.
FLUORITE.
Occurs commonly in crystals, or compact. In bright colors, resembles some gems, but is distinguished by its easy cleavage and softness. Colors are white, or light green, purple or clear yellow, also rarely rose-red or sky-blue. Trans. parent or translucent. H. $=4$. G. $=3-3.25$. Brittle. Censists of 48.7 per cent. of Fluorine; and 5 I .3 per cent. of calcium. B.B. decrepitates and fuses to an enamel.

When massive receives a high polish, and is made into vases, candlesticks, etc., and sold under the name of Derbyshire Spar. Hydro-
fluoric tained copper

APATI

He Color, blue, a white. times Lustre B.B. flame yellow. stone ; Us ed fron

GYPSU
Thi on land for wall white pure w parent burned in thicl MARBL Cry: of a fir
n stratified
h-red), also :imes black stre, stony; 5. G. $=3.4$ a ; and 54.1 B. becomes deep violet old. Looks in making d glaze on d makes a
r compact. ems, but is id softness. ole or clear ae. Trans. . $=3-3.25$. f Fluorine; lecrepitates
polish, and ", and sold R. Hydro.
fluoric acid, with which glass is etched, is obtained from fluorspar; also used as a flux for copper and other ores, hence the name fluor.

CALCIUM.

APATITE. PHOSPHATE OF LIME.

Hexagonal. Commonly in six-sided prisms. Color, green of various shades, sometimes yellow, blue, and reddish or brownish. Streak, always white. Generally occurs in crystals, but sometimes massive. $\mathrm{H} .=5 . \mathrm{G} .=3-3.25$. Brittle. Lustre, stony. ro cubic feet weigh one ton. B.B. moistened with sulphuric acid tinges the flame bluish-green, without the acid, reddishyellow. Occurs in pyroxene; crystalline limestone; hornblende gneiss; and mica schist.

Used extensively as a fertilizer. Distinguished from feldspar by trial of hardness.
GYPSUM.

LaNi Plaster.

This is a hydrous sulphate of Lime. It is used on land, for agricultural purposes, and as a plaster for walls. H. $=:=1.5-2$. G. $=2.33$. B.B. becomes white at once and exfoliates, then fuses. When pure white it is called-alabaster; when transparent -selenite; when fibrous--satin spar; when burned and ground it is plaster of paris. Found in thick seams in limestone and clay beds.

marble.

Crystalline limestone, or dolomite, susceptible of a fine polish, is marble. Colors are: white,
pink, red, mottled, yellow, bronze, and black. Massive. Serpentine is sometimes called marble.

LITHOGRAPHIC LIMESTONE.

Is a compact, fine grained limestone. If free from grit, and other impurities, makes a valuable quarry.

HYDRAULIC LIMESTONE.

An impure limestone, containing silica and alumina, which on being burned affords a cement which will set under roater. Contains 15 to 25 per cent. of clay.

BARITE.

BARIUM.

Color, white, and yellowish, or reddish. Transparent or translucent. Lustre, vitreous or pearly. $H_{1}=2.5-3.5 . \quad G .=4.3-4.7$. B.B. fuses, and imparts a green tinge to flame. After fusion with soda, stains silver coin black. When.ground, is used to adulterate white lead. Found in veins, generally with lead, as part of the gangue. 7.I cubic feet weigh one ton.

CELESTITE. STRONTIUM SULPHATE.
Trimetric. In rhombic crystals, with distinct cleavage. Color, clear white, tinged with blue, or reddish. Lustre, vitreous. Brittle. Nearly transparent. $\mathrm{H} .=3-3.5 . \quad \mathrm{G} .=3.9-4$. B. B. decrepitates, tinging flame bright red, and fuses.

With per red limes

воск
Co such green. Taste of soc most magne a bea obtain is pur minins

MONA
Th lantha which gasligh transp to resis in cry gold, flame
and black. ed marble.

1e. If free a valuable silica and s a cement 15 to 25
h. Trans or pearly. es, and im. usion with ground, is 1 in veins, ngue. 7.I
th distinct with blue, e. Nearly 4. B. B. and fuses.

With soda blackens silver coin. Contains 56.4 per cent. of strontia which is used to obtain the red color in fireworks. Found in sandstone and limestone rocks. Is sometimes fibrous.

SODIUM.

ROCK SALT. CHLORIDE OF SODIUM.

Colorless, or colored (by accidental impurities, such as iron,) red, brown, pale blue, yellow, or green. Streak, white. $H=2-2.5 . G .=2-2.25 \cdot$ Tastes strongly saline. Contains 39.30 per cent. of sodium; and 60.66 per cent. of chlorine, but most samples contain clay, and a little lime and magnesia. B.B. flies to pieces, and melts into a bead which colors the flame yellow. It is obtained by sinking wells, from which the brine is pumped and evaporated in large pans, or by mining, the same as for any other ore.

MONAZITE.

THORIUM.

This mineral is a phosphate containing cerium, lanthanum, yttrium, didymium and thorium, which latter is now used in making an improved gaslight. Color, brown to brownish-red. Subtransparent to nearly opaque. Lustre, vitreous to resinous. Brittle. H. $=5$. G. $=4.8-5.1$. Occurs in crystals. It is mined, the same as placer gold, from sand or gravel beds. B.B. colors the flame green when moistened with sulphuric acid.

TALC.

STEATITE.
SOAPSTONE.
Trimetric. Foliated or massive. Color, light green or shining white. Sometimes dark green.
an in half paral each

ACTI Used tar,
mus
M sheet to bl 2-2. used for st lating is use al an sheet. the a poses. B.B. edges vite ;

LITHI
Co plates to 5
an incombustible material. Occurs in seams from half an inch to several inches in width, running parallel, or crossing one another, the width of each seam making the length of the fibre.

ACTINOLITE.-The long-bladed greenish variety. Used for fireproof material, chiefly roofing, with tar, or asphalt.

MICA.

MUSCOVITE. COMMON MICA.

Monoclinic. In crystals, splitting easily into sheets, or in scales. Color, white, green, brown to black. Transparent, tough and elastic. H.= 2-2.5. G. $=2.7 .-3$. This mineral is extensively used in sheets, and ground. In sheets it is used for stoves, standing a great heat ; and for insulating purposes in electrical plants. Ground ; it is used as a lubricant, and in making ornamental and fire-proof paint. The pure white in large sheets (3×3 and upward) is most valuable, but the amber is as good value for electrical purposes. When spotted it is of little or no value. B.B. whitens, but does not fuse except on thin edges. Light colored micas are mostly Muscovite; black, Biotite.

LITHIA MICA. LEPIDOLITE.

Color, rose-red, and lilac to white. In small plates, and aggregations of scales. Contains 2 to 5 per cent. of the metal Lithium.
lark color
s a milk-
ch. B.B.
white, or
turned in -jets, and ate soap; act

LITHIUM.--Is a soft, whitish, metal, of very light specific gravity, and considerable tenacity. It is very fusible. Used in an alloy with tin, and lead, as a solder. Lithia is also found as a phosphate, in:
TRIPHYLITE.-A mineral having H. $=5$. G. $=$ 3.50. Streak, grayish-white, and lustre, sul)resinous. B.B. any mineral containing lithia colors the flame a beautiful deep crimson.

SULPHUR.

This acid is found as the mineralizing agent of many metallic ores, and is chiefly obtained for commercial purposes from:

NATIVE SULPHUR.-Color and streak, sulphuryellow, or sometimes orange-yellow. Lustre, resinous. Transparent to translucent. Brittle. H. = I. 5 to 2.5. G. $=2.07$. Burns with a blue flame and sulphurous odor. Pure sulphur, or contaminated with clay, or pitch. Found in beds of gypsum, or the vicinity of volcanoes, active or extinct. Purified, it is the sulphur of commerce, which is also obtained largely from copper and iron pyrites, from which ores SULPHURIC ACID.-is also manufactured (the nonmagnetic ores being preferred for this purpose), making veins of these ores valuable. It is known as Oil of Vitrioi. The uses of sulphur for gunpowder, blacking, and medicine are well known.
bin
APA injı mo the sub Us oth
ores
NAT stre H. = fore pale phu REA 3.6

ORP G. $=$ rite)
silve
very
very light 1acity. It h tin, and und as a
$=5$. $\mathrm{G} .=$ stre, sub)ing lithia ison.
sing agent obtained
sulphurustre, restle. H. $=$ lue flame : contamibeds of active or ommerce, pper and
(the nonpurpose), is known - for gunll known.

PHOSPHOROUS.

This is also an acid, frequently found combined with lime, forming the valuable mineral apatite; also with copper, lead, etc., and is very injurious in iron ores. 13.B. may be detected by moistening the assay with sulphuric acid, when the flame is tinged green. It is a white, waxy substance, when refined, and very poisonous. Used in the arts; for making matches, and various other purposes.

ARSENIC.

This is a common acid in connection with. ores of economic value, and occurs:
native. - with silver, and lead ores. Color, and streak, tin-white, usually tarnished gray. Brittle. H. $=3.5 . \quad G .=5.65-5.95$. B.B. volatilizes before fusing, with the odor of garlic. and burns with pale blue flame. Also occurs combined with sulphur, as:
REALGAR.-of red color. $\mathrm{H} .=\mathrm{I} .5-2$. $\mathrm{G} .=3.4-$ 3.6 containing 29.9% of sulphur.

ORPIMENT.- Bright golden-yellow. H. =r.5-2. $G .=3 \cdot 4^{--3.5}$. having 39% of sulphur.

Obtained chiefly from mispickel, (Arsenopyrite) for commercial purposes.-Very poisonous.

It is an unwelcome ingredient in many gold, silver, and other ores, making their treatment very difficult, and often unprofitable.

COAL.

ANTHRACITE. STONE COAL.
Color, black with high lustre. Opaque. Brittle and sectile. H. $=0.5-2.5$. G. $=1.2-\mathrm{I} .80$. Carbon, with some oxygen, and hydrogen, and often more or less clay or slate. The seams run from an inch to forty feet in thickness. Believed to be of vegetable origin. Never found commercially in crystalline rocks, but is mostly confined to the upper rocks, known as Carboniferous.

BITUMINOUS. SOFT COAL.
Color, black. G. $=$ not more than 1.5. Softer than anthracite. Used to make coke and gas, and varies much in the amount of tar, gas, or oil it yields.

BROWN COAL. LIGNITE.
Color, brownish-black. Like bituminous coal in appearance but, contains 15 to 20 per cent. of oxygen. Sometimes shows the structure of the wood from which it was formed. It will not make coke.

JET.-is a variety of coal, but is hard, of a dead black color, taking a fine polish, and much used in jewelry.

Large quantities of different colored dyes are obtained from coal. It is said, that dye from one pound of coal will color 5,000 yards of cotton cloth.
gent and thic othe exte ant, ually indic indic not MIN in th morl comı duct ing ward (or 1 resid OZO a na ASPr stree H. $=$ and

NATURAL GAS.

Gas can be found only in stratified rocks,

Softer nd gas, gas, or generally in what is called Trenton Limestone, and the gas rock must be covered by considerable thickness of a close impermeable capping, of some other rock, or clay, or no body of gas of any extent will be met with, while however abundant, the supply is but temporary and will eventually be exhausted in each locality. No surface indications are found, except small gasflows which indicate that the gas, escaping as formed, does not exist in the locality in commercial quantity.

PETROLEUM.

MINERAL OIL.

The crude oil is found like natural gas; only in the higher rocks. It cannot be found in metamorphic rocks or any crystalline formation. The common coal oil of commerce, is the volatile product of the distillation of Petroleum, the lubricating oils, are the heavy oils left behind, and afterwards more or less purified, and perhaps 10% (or I lb. to the gallon) of Paraffin wax,-is the residue of value. This wax is the ozokerite-of commerce; originally found in a natural state.
asphalt.-is mineral Pitch, used for roofing and street paving. Color, black to blackish-brown. $\mathrm{H} .=($ when solid $) \mathrm{I}-2 . \mathrm{G} .=\mathrm{I}-2$. melts at $90^{\circ} \mathrm{F}$. and is very inflammable.

PEAT.

This substance is not a mineral, but simply vegetable matter in a state of decomposition.

Color brown to black. Spongy. G. $=0.5-\mathrm{I}$. When dried contains 15% to 25% of water. It is found in beds, or in bogs. It forms a valuable fuel when dried and strongly compressed, fit for locomotives, or to smelt iron ores.

SILICATE COTTON.

MINERAL WOOL-so called is not a natural, but an artificial product. It is made by converting scoria and certain slags, while in a melted condition into a fibrous state, and is really glass in its nature, but fibrous, solt and inelastic. Used as a preventive of fire $: n$ fost, and to deaden sound; in buildings.

URANIUM.

The oxides are used in painting porcelain, giving a fine orange color in the enameling fire, and a black color when baked. The chief ore is:

URANINITE. PITCHBLENDE.

Color, grayish to brownish or velvet-black. Lustre, submetallic or dull. Streak, black. Opaque. $\mathrm{H} .=5.5$. G. $=6.47$. Contains 75 to 87 per cent. of uranium oxides, with silica, lead, iron, and other impurities. B.B. infusible alone. Dissolves slowly in nitric acid when powdered.

Red

Verm
Slati

Grapl

NATURAL PAINTS.

simply sition.
$=0.5-1$. iter. It valuable , fit for
ral, but iverting melted glass in Used deaden rcelain, ng fire, f ore is:
t-black. : Opa87 per on, and . Dised.

Natural paints, are those minerals which when powdered and mixed with oil, will adhere to a smooth surface, and in drying form an impermeable skin, or covering.
Red Iron paint; is powdered hematite iron ore mixed with oil.
Yellow Iron paint; is made from the brown iron ore.
Black Iron paint; is made from magnetite. Umber; by mixing the iron paints, with powdered oxide of manganese.
Red Copper paint; is powdered red oxide of copper.
Green Copper paint; is powdered silicate of copper.
Zinc White; is oxide of zinc, artificially made, by large costly plants.
White Lead; is carbonate of lead, also artificially prepared, the natural ores not being pure enough. This also is a costly process. Red Lead; is oxide of lead, and has to be carefully made by experts.
Vermillion ; is the natural ore of mercury. Slate colored paints, are made from powdered, fine-grained slates, ground in oil.
Graphite makes a fine shiny, fireproof paint.

> IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences Corporation

23 WEST MAIN STREET WEBSTER, N.Y. 14580 (716) 872-4503

The Ochres; are fine clays, with brown or red iron in them, which have been naturally washed, and ground, and sifted, to an extent that cannot be profitably imitated by art.

TRIPOLITE.

INFUSORIAL EARTH.-This polishing earth is formed from very minute siliceous shells, and besides its use for polishing metals, is mixed with nitro-glycerine to make Dynamite, the powerful explosive used extensively in all heavy rock cutting.

AMBER.

mineral resin. -Is yellow in color to whitish. lucent. H. $=2-2.5$. G. $=$ I.18. Becomes electric when rubbed. Is a resin, but mainly one that resists all solvents called Succinite. It is supposed to be a vegetable resin, which has been altered by sulphur while imbedded. Generally found along sea-coasts, in masses from pea size to as large as a man's head. It is used to make ornamental necklaces of beads, mouthpieces for pipes, cigar holders, etc.
h brown or n naturally) an extent y art.
earth is shells, and ;, is mixed te, the powheavy rock to whitish. nt to trans. $=1.18$. Beubbed. Is that resists inite. It is able resin, by sulphur rally found asses from as a man's to make es of beads, hpieces for , cigar holetc.

PRECIOUS STONES.

Stones of the most valuable kinds-Emeralds, Sapphires, Rubies, Garnets, Opals, and perhaps Diamonds, will yet be found in many sections in America, where they have not hitherto been discovered, or their existence even suspected. The fact is, that very few prospectors know anything at all about precious stones or crystals, and in most cases are not aware that Crystals or handsome specimens of minerals, have a value entirely apart from that due them as the source of the metals.

Very few people have any idea of the beauty brought out, by polishing even very common stones or pebbles.

In an idle hour on the bank of stream or fake, amuse yourself by trying the hardness, of any clear pebbles, or crystals you may find there. When you come across one that is not scratched by the corundum in your case, which represents number nine in the scale of hardness, or one which being scratched by number nine, will also scratch it in turn, put it in your pocket, and send it by mail to a Lapidary or dealer in mineral specimens.

This costs almost nothing and you may one day, be surprised by the result, and find yourself well paid for your trouble. Again, when you
run across a handsome cluster of Quartz, or other Crystals, do likewise. Gems are discovered by carefully examining the various stones found in panning, or washing gold gravel.

Sometimes the expenses of a long trip, may be recovered by the collecting of a few good crystals or unusual specimens of minerals, not of commercial value other than as Cabinet Specimens. Precious stones are sold at so much a carat, which is a conventional weight, divided into four grains, which are a little lighter than Troy grains. The term is derived from a dried bean used as a weight in Africa, for weighing gold.

An approximate idea of the size of the various gems, may be had by reference to their varying specific gravity in comparison with this table of the approximate size of Diamonds, which is as follows, a stone weighing

Diamonds are worth from $\$ 30$ to $\$ 150$ per carat. Emeralds " ، " \$10 " \$75 " " Rubies " " " \$8 " \$90
uartz, or liscovered s found in commerpecimens. a carat, ided into han Troy fied bean gold.
e various : varying table of ich is as

Precions stones when polished are worth from loc. to \$1o.oo.

They occur in the drift where the country rocks are eruptive. Transparency and hardness tell their value.

DIAMONDS.

Isometric. Faces of crystals often curved. Color, pure, colorless, or white (the most valuable) also yellow, orange, green, blue, brown and black. Lustre, adamantine. Transparent, unless dark colored. $\mathrm{H} .=10$. G. $=3.5$ Pure Carbon. The hardest substance known.

The Diamond does not sparkle in the rough, as found, or until polished. The best test is the hardness, and its becoming electric, when rubbed before polishing, this stone always showing positive electricity. Other gems are negative unless polished. B.B. burns.

Look for dull grayish white pebbles, having a worn octohedral form pointed at opposite ends. Generally found in gravel diggings, but the Diamond bearing rock, in Brazil appears to be, a species of mica schist filled with quartz in grains, called Itacolumyte, while at the Kim. berly mines, in South Africa, it is a magnesian conglomerate with silica as a base. The matrix; known to the miners as the "blue," consists for the first ioo feet of soft friable yellow shale, al-
tered from a slate-blue colored crystalline rock, which pulverizes on exposure to the air. The encasing rocks of the "chimney" are first a reddish sand from 2 inches to 2 feet, then a few feet of calcareous Tufa, of recent date and still forming. Then a yellow to pinkish shale for 35 to 50 feet, succeeded by a black carbonaceous shale which extends to $260-285$ feet from the surface when it gives way, to an unstratified basalt trapdepth unknown-which encircles the whole mine or mines. It is an amygdaloidal Dolerite with much agate. The "blue" contains many thin veins of calcspar, and mica, pyrite, and hornblende occur throughout, The total area is eleven acres. The "blue" is allowed to lie in the open air until pulverulent, when it is carefully washed and the stones picked out. The less valuable are used as drills, and in powder as polishing material. The Diamond is cut by abrasion with its own powder. A cutter has succeeded lately in cuting a finger ring out of one perfect stone, $\frac{5}{8}$ of an inch in diameter.

SAPPHIRES.

Rhombohedral. Usually in six-sided prisms but very irregular. Blue is the true color, but the stone occurs; red; yellow; green violet and hairbrown. Transparent or translucent. $\mathrm{H} .=9$ or next the Diamond. $\mathrm{G} .=4-4.16$. B.B. remains unaltered. Pure Alumina. Dark colors
al

$$
\mathbf{a}
$$

TURQUOISE.-EMERALD.
are called emery, (which occurs, granular in appearance,) and is used as a polishing powder. Test for hardness. It scratches quartz very easily. Commonly found in gravel washings, and in mica schist, and gneiss, with crystalline limestone, as the usual matrix.

A very valuable gem, the red colored being most highly prized. One specimen weighs $18 \frac{1}{4}$ pounds Troy, and is transparent, without a flaw.

TURQUOISE.

In opaque masses, without cleavage. Color, bluish-green. Lustre, waxy. $\mathrm{H} .=6$. G. $=2.6$ 2.8. B.B. becomes brown, and tinges the flame green, but does not fuse. Soluble in hydrochloric acid, and moistened with the acid tinges the flame green for a mornent, owing to the copper present. Is highly valued, but closely imitated by art, though the artificial gems are much softer. Occurs in veins.

EMERALD.

BERYL.

Color, green, sometimes bluish or yellowish. Streak, uncolored. Transparent, or translucent. Brittle. $\mathrm{H}=7.5-8$. G. $=2.7$. The rich green is the true emerald. The bluish-green are called aquamarine. Colored by chromium when pure green. Not touched by acids. B.B. infusible, but becomes clouded. One specimen weighs
nearly seventeen pounds. Occurs in granite, and gneiss, but the finest crystals are found in dolomite.

TOPAZ.

Trimetric. In rhombic prisms, with perfect cleavage. Color, pale yellow, white, reddish or greenish blue. Transparent to translucent. H. $=8$. G. $=3 \cdot 5$. Consists of alumina and silica. B.B. infusible. Not affected by acids. Found both in loose crystals or pebbles, and in veins in metamorphic rocks.

When used in jewelry the color is often altered by heat. Becomes electric on heating. The quartz crystals are known as False Topaz. (See also under Quartz.)

OPAL.

Precious Opal.-Compact or earthy. Opaque white or bluish-white, with beautiful play of colors. H. =about 6. G=about 2-. Fire Opal; has yellow, and bright fire-red reflections. Easily scratched by quartz. B.B. infusible. Composition like quartz, but usually contains two to ten per cent. of water. Some stones are good natural barometers, becoming clouded on the approach of stormy weather, and clearing, and showing brighter reflections, as the weather becomes settled.

GARNET.

Isometric. Also occurs massive, or granular. Color, deep red to cinnamon, also brown, black, green, and white. Transparent to opaque. Lustre, vitreous. $\mathrm{H} .=6.5-7.5$. G. $=3 . \mathrm{I}-4.3$. B. B. fuses easily. When transparent, precious; if opaque, common. Of frequent occurence in mica schist and gneiss, but fine clear crystals are not common, and are highly valued. There are many varieties. Its crystalline form and fusibility distinguish it.

ZIRCON.

Dimetric. Usually in crystals, but also granular. Color, red to brown or gray, yellow, and white. Streak, uncolored. Lustre, adamantine. H. $=7.5$. G. $=4-4.8$. Transparent red specimens are called hyacinth, Sometimes heated in a crucible, with lime, when it loses its color, and is then sold as diamond. Occurs in granite, gneiss, and some other igneous rocks. Distinguished by its square prismatic form, and great specific gravity.

QUARTZ GEMS.

Quartz is rhombohedral in crystallization, occurring usually in six-sided prisms more or less modified, also compact or granular.

Crystals are colorless or yellow, amethystine, rose, smoky, and other tints. Transparent to
opaque, and sometimes the colors are banded red, green, blue, and brown to black. $\mathrm{H}=7$. $\mathrm{G} .=2.5$ to 2.8 . Contains nominally; 53.33 per cent. of oxygen; and 46.67 per cent. of silicon, but often contains iron, clay, and other minerals. B.B. infusible alone, but fusible with soda. The following are all varieties of quartz.
Rock Crystal.-Pure pellucid quartz. The "whitestone" of jewellers, often used for spectacles and optical instruments.
Amethyst.-Purple, or bluish violet; of great beauty.
Rose Quartz.-Pink or rose-colored. Seldom in crystals.
False Topaz.-Light yellow, clear crystals. Often cut and sold for Topaz.
Cairngorm Stone.-Simply smoky Quartz.
Prase.-Leek green, massive quartz.
Aventurine.-Common quartz, spangled with yellow mica.
Chalcedony.-Translucent, massive, with waxy lustre.
Chrysoprase.-Apple-green chalcedony.
Carnelian.-Bright red chalcedony, of rich tint. Much used for seals.
Sard.-Deep brownish-red chalcedony, blood-red by transmitted light.
Agate.-Variegated chalcedony. Beautiful when polished.

Moss Agate.-Contains moss-like delineations, caused by iron oxide.
Onyx.-Agate having the colors in flat horizontal layers. Usually light brown and opaque white. It is the material used for Cameos. Cat's Eye.-Greenish-gray, translucent chalcedony, with a peculiar opalescence when polished with spheroidal surface, owing to inclusions of asbestos.
Bloodstone; or Heliotrope.-Deep green, with spots of red. Λ variety of Jasper. Silicified Wood.-Petrified wood, quartz having replaced the wood.
Fleches d'amour.-(Love's Arrows). Quartz with rutile (or oxide of titanium) penetrating in every direction like fine hairs.

Section showing Banded Vein; displaced by a fault. This cut shows a vein with pay-streak which has been thrown to one side, in such a manner that if worked by a slope it would be lost altogether. A study of the formation will enable the miner to decide in which direction to go, without any lost labor.

PART VI.

PRACTICAL POINTERS.

rejecting That there are more valuable desamples. posits of mineral passed over unrecognized, in each and every season, than are discovered, I believe to be a fact, at least as regards new mining territory. To old mining districts, where the geology, and mineralogy, have been thoroughly worked out, and where the community in general, is familiar with the only ores existing in the territory, this of course does not apply. The very first requisite to success in prospecting, is to become familiar with all the various ores and rocks by sight. Study each ore until you can recognize it at once.
agood The average prospector is familiar rule. with at most, the ores of but two or three metals, and will often pass by, the very thing which would yield the best return. This comes from going to work on a wrong principle. A prospector should never reject samples of veins, simply because he does not recognize the ore, as valuable. On the contrary, he should procure samples of every lode, or deposit, which he does not know positively, to be of no value, and submit them to a competent mineralogist for examination. This will at any rate serve
one the inva will five and assa "lzon
one good purpose-the prospector will learn what the substance is, and thus add to his knowledge.

How to In selecting samples for assay, break
sample. small pieces from as many different parts of the deposit as possible. One sample however large, is of little value, as it will almost invariably be either too rich or too poor, and will therefore be misleading. Collect three to five pounds of iron, galena, gold, or silver ore, and all quartz or vein matter, thus giving the assayer some chance to properly sample, and always retain a portion.
collecting In taking samples, paint a number
samples. on each and every sample on the spot, and at the time, and enter exact particulars of each in the blank columns ruled for the purpose, at the end of this volume; where sample was got, part of vein taken from, depth, date, with other items thought of, so that if necessary, an affidavit may be made regarding any given sample, at any time in the future; and keep duplicate samples, which in time make a collection of value.
the When sending samples for assay to
chemist. a chemist, many people expect an opinion of the ore, or some further information. As a rule no chemist will do more, than simply test for the metal or other ingredient, asked for
by the sender. The chemist has no knowledge of the purpose for which the information, or analysis, is wanted, and is seldom competent to give an opinion, as to the value of the property as a mine. That is not his business, and even when a competent business man, and minerhe will not commit himself; as he is simply paid as a chemist for the assays made, and not for an opinion as an expert metallurgist or miner.

Every mining expert must have a knowledge of assaying-no chemist need have any knowledge of mining.
object in The owner, or anyone, interested assaying. in a mine requires, not only to know the amount of metal in the ore, but more especially the amount necessary to make the mine pay-that is the vital point-and that depends on the amount of metal which can be taken out of the ore, when treated on a commercial scale; on the cost of mining, and of treatment (which varies in almost every case); the cost of shipment; and many other things. A working test of a few tons of ore, taken as mined, should follow the assays, which in their proper place are valuable in proportion to the skill of the sampler.
where to In choosing a route for a prospectprospect. ing trip, be guided to a considerable extent by the strike of the country rock. Follow
alor cou and Lin any by chal of t bars dry
n
along a granite ridge; if such runs through the country; in a zig-zag fashion, continually crossing and re-crossing any contact of two formations. Linger to carefully search along either side of any fault, or disturbance, especially if caused by an eruptive dyke, and notice any sudden change in the strike of the rock, or appearance of the timber. Try all the streams and gravel bars for gold, stream tin, etc., not forgetting that dry placers (or old river beds) contain as much
interested aly to know more espee the mine at depends taken out rcial scale; ent (which st of ship. orking test ed, should oper place sill of the
prospectnsiderable r. Follow

This section shows an old river bed covered by a trap overflow, which forced the river to take a new course, along the line of a "fault." A A-Earth. $E-$ New Channel. $O O_{-}$- covered gold-bearing gravel. $N N$-The formation. $F-$ Fault. $S S$-Trap overflow.
metal as the present streams, and that old gravel beds, are sometimes covered by a thick capping of rock, caused by an overflow of trap or lava; and if found, follow up the course until you reach the source of the gravel, and the veins.

Use the pan at every opportunity, and study all material obtained by washing, carefully saving any unknown substance.

Many ores are found, such as lead veins, or nickeliferous pyrrhotite, by observing a peculiar red stain throughout the earth or drift, and ore is often got, where no exposure or other indication exists, save stains, and discolorations on the bare rock, or other slight results of oxidation. Lead veins, sometimes cause a series of hollows, or "sinks," running in a straight line.

The above section shows a common occurrence of Galena Veins.
Surface Clay. NN -Limestone. oo-Surface Clay. NN-Limestone. m--main bodies of ore. c-a
Pocket. s-the Lode.

How to After coming across a vein, first foloper. low the outcrop, on the strike, as far as possible, and where it can be traced for a
favorable places for opening; where the outcropping appears widest, and the ore most abundant. Begin by making shallow cuts across the vein, at these places, and after selecting the points which look the most likely, and where the vein seems to carry the greatest quantity of metal, sink small shafts to the depth of about eight or ten feet. Then have assays made; and if satisfactory, continue the shafts until a sufficient depth is reached to admit of cross-cutting. This being done; and the results being favorable, and further sinking and stripping showing ore to exist in quantity; the property will be ready for examination as a prospect, by experts on behalf of capitalists; or on behalf of the owners; to obtain an authoritative report, to place the property on the market in good form; or lay out the mine, to the best advantage.

Do not consider the money spent in preparing the prospect for the market, as an expense to be avoided. It is necessary to show capital the best possible evidence of value, as an inducement to inspect the goods offered, and then the sale will depend on the property being shown to advantage, by developing as much ore as possible, stripping the vein on the surface, etc., in strict conformity with the report and plans shown to the investor, and on which the expense of the examination was undertaken.

beaver silver mine, port arthur, canada. Scale: 400 feet $=1$ inch.
This cut shows ${ }_{\}}$a successful Silver Mine, and also how a mine should be laid out. o-Trap. D-Slates. c-Earth.

PROSPECTING WORK.

In sinking prospect shafts, or in doing any other work of a prospecting character, do not put any money into plant, machinery, or buildings, until absolutely necessary. Do the work as long as possible by hand labor. Ordinarily a shaft may be put down the first forty or fifty feet, with the aid of a common windlass, (which should be provided with a good brake) and the second fifty feet a horse-whim, will do all the hoisting, unless the shaft be very wet-in which case a light steam hoist, with pump attached; is the most economical. Steam or air drills should not be purchased, until the mine is a proved producer, unless deep working and extensive exploring underground is for other reasons decided upon.
even
steac
Nev
a clo ores posit happ that shee while same any when to th oppo made be r is need shoul but tools, be bc force, More judgr condi fully

The main essential to success in prospecting, even more than in other lines of business, is steady perseverance, backed by common sense. Nevertheless success does not often come, without a close study of how rocks are formed, how the ores were deposited, and how they came in the positions we now find them. It has occasionally happened, and doubtless will occasionally happen, that a man born under a lucky star, will by sheer good fortune, stumble on a rich mine, while it may be considered certain, that the same steady application, as would be shown in any other calling, will ensure much larger rewards when devoted to mining; and this applies equally to those, who, engaged in different business, have opportunities to secure interests in discoveries made by others; nevertheless, it should always be remembered, that one find in several only, is valuable, and one or two disappointments need not discourage further attempts. Economy should be the watchword in all prospecting work, but there is no economy in working with poor tools, or men, no matter how cheaply they may be bought. This applies, perhaps with greater force, to the development of new enterprises. More experience, more general knowledge, sound judgment and foresight, are requisite before the conditions and difficulties to be overcome, are fully known, than afterwards; when good man-
agement alone is needed. It is very easy to make errors in laying out a mine, which it often costs large sums to rectify.

"HARD LUCK" MINE. Moraf.: Use a Core Drill.
the prospector's A good pocket lens, - \$ 2.00
"KIT." A dipneedle,
10.00

A good compass, (one showing dip is the best) 2.50
A set of $\frac{3}{4} \mathrm{in}$. steel, one of 12 in ., two of 18 in . and one of 36 in .,
A 6 lb . striking hammer, - - $\quad \begin{aligned} & 3.00 \\ & \text { I. } 50\end{aligned}$
A good light shovel and pick, - - 2.50
A light axe, - - - $\quad-\quad-\quad 1.25$
rock in b ling

A miner's pan, of wood or iron, - - 2.00
A few pounds of dynamite, (Eclipse) with fuse, etc.,
$\begin{array}{ll}\text { A jack-knife, with one blade magnetized, } & 3.00 \\ \text { 1.00 }\end{array}$
ery easy to hich it often

Cnre Drill.
as, - \$ 2.00 10.00
e best) 2.50 vo of
le di-

$$
1.50
$$

2.00
with

ized, I.Oo

A case of small samples of ores for comparison,
A scale for trying hardness, 10.00

A vial of mercury, and small steel pestle and mortar,
A tube of vermillion, for numbering samples, and brush,
A small bottle of nitric, and one of hydrochloric acid,
A number of small cotton or other bags to carry samples of crystals, etc., in, to keep them from abrasion,
And last, but not least, a simple blowpipe outfit,
Archibald Geikie says: "A knowledge of rocks can never be gained from instructions given in books, but must be acquired from actual handling of the rocks themselves."
prospectors' I would advise every prospector samples. samples, a set of the minerals comprising the scale of hardness, also a prospector's case of samples of ores for comparison, most of which may be very small pieces. Nothing else can take the place of a known sample of the mineral, which can also be compared with samples of the vein on the spot, while the cost of a representative case of ores, is but trifling, being from ten to fifteen dollars for case of about one hundred
specimens, covering both ores and rocks pretty fully, and this should be made the nucleus of a private collection, which in time may be valuable, if the record of each specimen be faithfully kept.
$\begin{array}{ll}\text { means of } & \text { Every mile between a railway, or } \\ \text { access. } & \text { point accessible to large vessels, and }\end{array}$ a discovery of mineral means a reduction in the value of the property, and an added difficulty in finding a purchaser, and effecting a sale. This is too frequently lost sight of in selecting a field. It costs from $\$ 5,000$ to $\$$ Io,000 per mile in the aqverage mining country, to build a railroad, therefore, unless there be strong reasons to the contrary, try and make your "search" or venture, as near one means of access or the other as possible, and you will save much vexa. tious delay, and disappointment, while the chances of success will not be lessened.
selling a Mining properties are usually sold prospect. outright, or leased on royalty. In the former case it is usual to give an option at a fixed price, for a certain definite period, during which time the purchaser is allowed to make the fullest investigation, and if on a prospect, to develop the property at his own expense, and to remove such an amount of ore as to allow a thorough test to be made. In the case of a lease, the lessor agrees to mine a minimum
rocks pretty e nucleus of may be valube faithfully
railway, or vessels, and eduction in led difficulty ting a sale. in selectıng $\$ 10,000$ per , to build a ong reasons ur "search" cess or the much vexathe chances
sually sold oyalty. In option at a iod, during d to make prospect, pense, and s to allow case of a minimum
amount of ore during each year, and to pay a certain sum, or royalty, for each ton mined. An option to purchase for a fixed sum, is sometimes made a condition in the lease. Occasionally an owner will arrange to allow a plant to be erected and the mine worked, under proper conditions, on receiving a fixed percentage of the gross output.
how to In describing a find to possible purdescribe. chasers, be careful to have any margin between the description and the facts, in favor of the property; never say the show is "about half an acre wide," or "a rifle shot long." It depends on who loads the rifle. It is just as easy to measure the outcrop, if only by pacing it, and to describe it as so many feet, or so many paces. The description should state: the title; the kind of country; the supply of timber and water; the geology, as well as possible; the trail, and means of approach; and the surface show; giving the dip; and strike; the facilities for working; and sites for buildings; the assays; and should be accompanied by average samples. Where possible the amount of ore "in sight" should be stated. The term "in sight". being used when an ore body is developed, by shafts, undercuttings, etc., to allow of measurement. Never cause a customer disappointment by describing a prospect as a mine.
securing In these days of concentration, when CAPITAL. all mines are carried on, with the use of expensive machinery, and costly plant, on a large scale, necessitating the employment of large capital, a connection with some one in touch with monied men, is absolutely necessary, to enable a prospector or owner of a prospect, to realize on the property.

There is only one way to obtain such a connection, and be assured of fair treatment, that is: by convincing the capitalist, or his representative, that the vendor is a man of his word, and not in the habit of exaggerating or misstating plain facts, that when he say a foot, he means twelve inches, and not six inches. The aim of a prospector or vendor of a prospect, should be to place it before buyers in the best possible shape to induce investigation. An authoritative report by a well known unbiassed outsider, is the quickest way to reach this end.
core Sometimes, in exploiting a vein, or drilus. other deposit of mineral, the Core Drill offers certain advantages over shafts, or tunnels, and drifts.

In exploring small, or irregular veins the work of the Core Drill is not reliable. When the conditions allow it fair play, it is the most economical method of testing an ore body, saving
boring smooth, straight holes, in any direction, from vertical to horizontal. Drills are made of varying capacity, being driven by hand, steam, or horse power, and drilling from 500 to 4,000 feet in depth.

This Drill consists of, a hollow circular bit, set both on inside and outside edge, with inferior diamonds, which do the cutting, as the drill revolves. A continuous core remains in the tube, which is broken off and drawn up, a section at a time; thus giving an actual sample of the strata passed through, at any and every depth.

A new core drill is being successfully used in California, which does not require diamonds. It consists of different lengths of iron pipe (like
vein, or the Core shafts, or
veins the e. When the most ly, saving ork, and gas pipe) screwed together, and revolved at great speed under pressure, small chilled steel shot being fed into the hole at the top. These become imbedded in the soft iron of the pipe, forming a rough rasp, which wears the hardest rock. It will bore either a perpendicular hole, or one on the incline, following the dip of the ore and is said to be a very economical prospecting tool.

The safest, and generally speaking, the most

111
satisfactory, way, is to contract with an experienced driller, for the work required, at a certain price per foot.

selling In many cases, when capital is not ORES. conveniently obtained, and where it is necessary that a property be developed, before being offered for sale; it is a matter of moment to sell any ore which may be mined, in the course of such development. It sometimes happens that sufficient ore can be obtained, to pay for the necessary expense incurred. This is a matter requiring considerable judgment and discretion, to decide, before entering on the work,

WHEN TO MINF:

depending on a return from the ore. Ore can be sold by the single carload, or by the ton, but at the minimum price. A hint as to the data required, by purchasers of ore, may not be out of place. Ores, and mattes, are usually sold at a price per unit, a minimum percentage of metal being usually fixed, below which grading the ore must not run. Send samples which will fairly represent the ore pile, taking care that the average will not be too high, and a complete analysis of the ore. State as nearly as possible, how much ore you will be able to ship, confining the amount to what you have availahle at the time, and a purchaser may be found, who will advance a part of the value on the bills of lading (often a consideration to the shipper) for gold, silver, copper, lead and some other ores.
beanning tifter sufficient work has been done, to mine. to absolutely prove that a paying deposit exists, and not till then, should mining begin. The exploration should expose sufficient ore, to pay for all plant and development work, and a profit, which usually means a couple of years supply, for the necessary reduction works. Further development should be pushed so as to keep this reserve, constantly ahead. The cre should be thoroughly tested, to guarantee the above value, by working tests, at the nearest refining works, before deciding on a process of
treatment.. A mining enterprise conducted in this way, involves no further risk, than the loss of the expenses of preliminary investigation, provided it receives the same careful management, and honest supervision, as all business ventures demand.

selecting the TREATMENT.

 one of the greatest causes of failure, in starting a new mining enterprise. This is an art in itself. Take for example gold ores. One ore is suited best by free-milling; another requires freemilling and concentration; the next concentration only, followed by smelting, or perhaps chlorination; a fourth works best by smelting direct. Some ores need fine grinding; and on others, coarse grinding is more economical, while occasionally it pays best, to lose as much as one-third of the gold in the tailings. The cost of mining gold varies from twentv-five cents to eighty cents for each dollar obtained, in large mills, working under different local conditions.This point can be decided at little cost by one having the special knowledge and ability in this direction, and no company should decide on the purchase of plant or the use of a process, until the best advice in the market is had on this point. Not a dollar should be spent on experimenting with new ideas or costly plant,
conducted in than the loss stigation, promanagement, ness ventures
ng process for e, is possibly, e , in starting an art in
One ore is requires freeoncentration aps chlorinaelting direct. on others, while occaas one-third st of mining eighty cents ills, working
tle cost by ad ability in ld decide on a process, t is had on e spent on ostly plant,
which although thoroughly tested at some other mine, may not suit the ores under consideration. If a company be formed and money invested in a mining venture, it should be used for mining only, and the diverting of funds to any other purpose should be strictly tabooed.
mining The risk should be confined to the risks. natural, legitimate, and unavoidable hazard, incidental to mining, as to every other business. The popular idea, that mining is in itself, more risky, and speculative, than other lines of enterprise, is a fallacy. The farmer takes greater chances on every crop he plants. If the season be too dry or too wet, or the grasshoppers too numerous; he gets no return. If the weather be propitious, it is equally so all round, and the extra crops make low prices, and thus his profit goes. The legitimate miner takes one risk onlythat of proving his mine. He takes no heed of the weather, and his crop is metal, and metal is money. What has brought mining into disrepute, is incompetence, and dishonesty. Mining requires special skill, adaptability and experience, on the part of those actually operating, and that the general public is not familiar with the business gives unusual opportunity to the unscrupulous, but the day of "salted" mines is passing. The profession of Mining Engineering is occupied by men of knowledge, ability, and probity, and
the "crook," and the man who used a pretended familiarity with "Science" to foist his bogus claims to a knowledge of mining, on an innocent public, are rapidly being "frozen out," as the ignorance of the business public regarding mining is dispelled.
\therefore Neither should a man undertake to mine himself, or under his own supervision, unless he is competent and experienced, and so in selecting a manager. The manager should have a record as being skilful and economical, and must in addition be an all round business man. Such a man gets a good price for his services, and in mining the owner or owners can afford to pay it, and cannot afford to employ "cheap" men, or machines.
ntining There is one peculiar feature, connect-
srocks. ed with the business of mining investment. Go to a business man and show him any other enterprise in which, with a medium amount of risk, he is assured of a profit of twenty or thirty per cent., and he will immediately give it his most serious consideration. Ask the same man to invest in a mining venture, and show him a profit of fifty per cent. per annum. In almost every case, he will look for more, and also expect the return of his entire capital, in addition, within a very short time, and further; that same man, even though he be known as one of
sed a pretended ist his bogus on an innocent out," as the yarding mining
rtake to mine sion, unless he so in selecting have a record and must in s man. Such services, and can afford to ploy "cheap"
ture, connectnining investad show him h a medium ofit of twenty lediately give Ask the same re, and show annum. In or more, and e capital, in and further; own as one of
the most cautious, and conservative, of investors, will buy stock in a mine he knows nothing about, at ten or twenty cents on the dollar, without even asking what amount the mine is capitalized at: after investing possibly thousands of dollars, he will not go a day's journey to inspect the property and see where his money is being put, or send anyone else to examine into the matter on his private account. As often as not, he has no personal acquaintance with the men he entrusts with his money, and does not even look up their record or standing. Apply the same methods, figuratively, to another business; and it will be seen at once, why so many mines, which might be worked to pay handsome dividends, on a capital of say one hundred thousand dollars-are "stocked" for millions, and not worked at all. An unscrupulous company buys a good mine, and expends perhaps, !ifty thousand dollars, on purchase, development, and "floating" same. They capitalize the thing, at perhaps three million dollars, and offer stock, at say, twenty cents a dollar share. They need only sell half a million shares, to make 100 per cent. profit, and still own five sixth's interest in the mine. No other business, but railroad manipulation, or "sugar" trusts, can show such profits. No legitimate business can be expected of such a company, and apparently the business public
is to blame, because, they will treat mining investments, in a manner directly the opposite, of that accorded to any other offered.

On the other hand, it is not intended to depreciate, the popular method of obtaining capital for opening and developing mines. On the contrary, the advantages of joint stock companies over individual efforts, are many. Operations can be carried on, on a much larger scale, and thus, better economic results may be obtained, while the benefits are distributed amongst the many, instead of going to a few, to the advantage of the community at large. When failure is incurred, the loss also, is borne better when each member has but a small individual interest. Given the same cautious investigation and careful scrutiny before investing, mining stocks are shown, by statistics extending over long periods, to pay better and more constant dividends, than those of any other class, and investments in development mining stock, in honest and legitimate mining concerns, are likely to prove more profitable than shares in companies organized to operate in any other direction.
at mining ine opposite, of
tended to deining capital es. On the ck companies Operations er scale, and be obtained, amongst the the advanVhen failure better when ual interest. in and care-
stocks are ong periods, dends, than stments in and legitiprove more rganized to

USEFUL TABLES.

measures of ores, rarthe, etc.

13 cubic feet of ordinary gold, or silver ore in mine, equal.
20 cubic feet of broken quartz, equal...I "، " i 8 cubic feet of gravel in bank, " ...I " " 27 cubic feet of gravel, when dry, "...I "، " 25 cubic feet of sand, equal............... ، "، I4 cubic feet of chalk, equal.............. ، "، 18 cubic feet of marl, equal............... " "، 18 cubic feet of earth, in bank, equal...I "، 27 cubic feet of earth, when dry, " ...I "، " 17 cubic feet of clay, equal................ ، "،
44.8 cubic feet of bituminous coal, bro-
ken, equal.
42.3 cubic feet of anthracite............ I long ton equal..........
123 cubic feet of 70.9 cubic " 70.9 cubic feet of coke, equal..............I ، ،

The number of cubic feet of ore in a ton, is got by ascertaining the specific gravity; water being taken as the standard. One cubic foot of water weighs $62 \frac{1}{2} \mathrm{lbs}$. therefore, 32 cubic feet weigh one ton ($2,000 \mathrm{lbs}$.) The specific gravity of iron ore is, say 4-therefore; 8 cubic fect equal one ton, or in other words, one fourth of 32 , the bulk of water.

RELATIVE WHIGRT OF METALS. Cast Iron being the Unit.

Cast Iron
Wrought Iron 1,000
Copper Rolled 1,072
Tin I,226
Zinc I,OI 5
Brass. 947
Steel. I, I70
Lead I,086
Gold I,574
Silver. 2,702
Mercury I,448
Whigets and volumes of ordinary metals.
Metals
Brass
" in sheets 488.75
" in wire 512.6
Copper, cast 524.16
" plates 543.625
Iron, cast 547.25
" plates 450.437
" wrought bars 486.75
Lead, cast 481.5
" rolled $709 \cdot 5$
Mercury (6o degrees) 711.75Steel-plates.848.7487
" soft 487.75

Tin

EY METALS.

-. 547.25 450.437
$\cdots .486 .75$
...48I. 5
$\cdots 709 \cdot 5$
...711.75
. .848 .7487
. .487 .75
. .489 .562

For boiler; $7 \frac{1}{4}$ gallons per H.P. per hour. For each stamp; 72 gallons per hour. For each pan; 120 gallons per hour. For each settler; 6o gallons per hour. If the water be run into settling tanks it may be used again, less considerable loss; say about twenty-five per cent.

A MINER'S Inch
will discharge 2.250 cubic feet of water; equal to about 17,000 gallons in 24 hours. A gallon of water weighs (U.S. standard) $8 \frac{1}{3}$ pounds, and contains 231 cubic inches.

to CalCulate the water power to be GOT FROM A STREAM:

multiply the depth by the width, and this by the rate per minute, (which can be found by floating chips, a measured distance, and timing them.) This gives the number of cubic feet, or volume per minute, Multiply the volume by $62 \frac{1}{2}$ (the weight of one cubic foot), and multiply this by the height of fall. Divide the total result by 33,000 (pounds) and the result, is the horse power of a turbine wheel. In practise only 80 per cent. of this power may be relied on. A
horse power, is a power which will raise 33,000 pounds, one foot, in one minute.

TO THMPIRR METAL.

To temper drill steel-cool down to 430 degrees to 450 degrees, which is respectively; a faint yellow; and a pale straw color.

To temper knives for wood, soft metals, etc.cool down to 5 Io degrees to 537 degrees. A brown, with purple spots-a purple.

To temper axes, cold chisels, etc.-cool down to 550 to 560 degrees. Dark blue to bright blue. To temper saws, springs, etc.-cool down to 600. Grayish blue, nearly black.

In steel heated higher than this, the effect of the hardening process is lost. A handful of salt in the water vessel, will aid in obtaining a hard temper.

TO SOLDER OR WHID, USE:
For iron or steel; borax or sal-ammoniac. For tinned iron; resin, or chloride of zinc. For copper and brass; sal-ammoniac, or chloride of zinc. For zinc; chloride of zinc. For lead; tallow or resin. For lead and tin pipes; resin and sweet oil.

TO CASE HARDEN.

Heat the article, after polishing, to a bright red, rub with prussiate of potash, allow to cool to dull red, and immerse in water.
n to 430 depectively; a netals, etc.degrees. A
-cool down bright blue. ool down to
the effect handful of obtaining a
ammoniac. zinc. For chloride of For lead; pes; resin
a bright w to cool

CEMENT FOR CAST IRON.

Two ounces sal-ammoniac, one ounce Sulphur, and 16 ounces cast-iron filings. Mix well in a mortar, and keep dry. When using, take one part of this powder to 20 parts clear iron filings,' make into stiff paste with water, and it is ready for use.

CEMENT FOR FACE JOINTS.

Equal parts red and white lead, with linseed

TABLI OF Mifling POINT OF METALS. Water boils at 212 degrees F.

 Ice becomes fluid at 32 degrees F.Mercury

Sulphur.

38.2 degrees F.

Tin
230 " ،
Bismuth ... ،
Lead... 480 " "
Zinc.......................................6i2 " ،
Zinc...68o " ،
Antimony.................................. 842 ، ،
Bronze
Silver...
Copper... 8986 ، " ،
Gold.. 1996 2-2282 "، "
Cast Iron.....................................2012-.2886 "، "،
Steel.....................................2372-2552 ، ،
Bar Iron........................2732-2552 3012
Platinum..................

2377 ، "

ALLOYS IN COMMON USE.

Babbit Metal-Tin, 89; Copper, 3.7; Antimony, 7.3. Yellow Brass--Copper, 66; Zinc, 34. Gun Metal, Valves, etc.-Copper, 90; Tin, ro. White Brass-Copper, io; Zinr. 8o; Tin, ro. German Silver-Copper, 33.3; Zinc, 33.4 ;

Nickel, 33.3. Lead, 4.3.
Gongs-Copper, 8 I.6; Tin, 18.4 .
Lathe Bushes-Copper 80; Tin, 20. Bearings-Copper, 87.5; Tin, 12.5 . Muntz Metal-Copper, 6o; Zinc, 40. Sheathing Plates-Copper, 56 ; Zinc, 44.

weight and value of wood as fuel.

Cord air-dried Hickory, or Hard Maple; weighs $4,500 \mathrm{lbs}$., and is equal to $2,000 \mathrm{lbs}$. coal.

Cord air dried White Oak, weighs 3850 lbs ., and is equal to 1715 lbs . of coal.

Cord air-dried Beech, Red or Black Oak, weighs 3250 lbs , and is equal to 1450 lbs . of coal. Cord air-dried Poplar, Chestnut, or Elm, weighs 2350 lbs ., and is equal to 1050 lbs , of coal.

Cord air-dried average Pine, weighs about $2,000 \mathrm{lbs}$., and is equal to 925 lbs . of coal. We may assume from the above; that $2 \frac{1}{4}$ lbs. of dry wood, is about equal to one $2 \frac{1}{4}$ of soft coal, no matter whether the wood be pine
or maple, so long as it is dry. A good boiler should evaporate 7 to 10 lbs . of water per lb. of good coal. In practice, only 75 per cent. of this is attained.

approximate cost of mining ant treating DIFFERENT ORES. Varying with Looal Conditions.

Gold and Silver ore, to mine, from $\$ \mathrm{I} .00$ to $\$ 5.00$
Freemilling
Freemilling.
Concentration 1.00 " 2.00
Treatment of concentrates, " 40 " 30.00
Roasting-milling
3.00 " 15.00

Chlorination..................... " 8.00 " 15.00
Smelting to matte ، 3.00 " 12.00
Copper ore costs to mine..... ، 5.00 " 30.00
$\begin{array}{llrrr}\text { Smelting to matte............ } & \text { " } & .50 & \text { " } & 2.50 \\ \text { Smelting to black copper... } & \text { " } & 3.00 & 7 & 6.00 \\ \text { ickel-copper ores : } & & & 10.00\end{array}$
Nickel-copper ores:
$\begin{array}{llll}\text { Smelting to matte........... } & \text { " } & 2.50 & \text { " } 5.00 \\ \text { Refining matte............... } & \text { " } 100.00 \text { " } 200.00\end{array}$
Silver-lead ores:
Smelting to base bullion.... " 5.00 " 10.00 Iron ores cost to mine......... " 5.25 " 10.00 Smelting to pig, perton ofiron, " 10.00 " 14.00
A breaker with capacity of say 20 tons per diem, (crushing to nut size) costs about $\$ 250$, and requires about 4 H.P.

A mill or pulverizer, crushing 20 tons per day, costs about $\$ \mathrm{I}, 500$, and requires about $8 \mathrm{H} . \mathrm{P}$.

A concentrating plant, treating about 20 tons per day, costs about \$2,000, and uses about 2 H.P.

An amalgamator, treating about 20 tons per day, will cost about $\$ 1,500$.

A small prospecting plant, complete for free. milling gold ore, will cost about $\$ 500$.

Three men drilling ten hours by hand, will make 15 to 16 feet on an average.

A steam drill will make an average of about 45 feet; an air drill, 50 to 55 feet per day.
about 20 tons s about 2 H.P. it 20 tons per
plete for free. 500.
by hand, will
rage of about per day.

GLOSSARY OF MINING TERMS.

Adit.-A tunnel into a hill.
Aerolites.-Masses of metallic, or stony matter which have fallen on the earth from other planets.
Albite.-Soda Feldspar. Triclinic.
Alkaline.-Containing an alkali; as soda, or potash.
Alliaceous.-The odor of garlic; given off by mispickel.
Alluvium.-Gravel diggings. Drift. Alloy.-A compound of metals.
Amalgam.-Mercury combined with gold or other metals.
Amorphous.-Without form.
Anorthite.-Lime Feldspar.
Arastra.-A Mexican mill for grinding ore, by dragging large stones around in a circular pit, stone lined, and having quicksilver in the bottom with the ore. Arenaceous.-Sandy; applied to rocks. Argentiferous.-Silver-bearing. Argillaceous.-Containing clay. The odor of wet clay.
Artesian Wells.-Are holes bored through solid strata, and often overflow. Assaying.-Smelting samples to test the ore.

Auriferous.-Gold-bearing.
Azoic.-Without life.
Back.-The ground between a drift and the surface.
Battery.-A set of stamps.
Bed.-A layer of rock.
Bedrock.-The solid rock under a clay or gravel bed.
Belt.-A range of metal-bearing rocks. Bituminous.-Carrying mineral pitch. Bitter Spar.-Crystal Dolomite. Black-Fack.-Dark zinc blende.
Blacksand.-The last dirt left in panning gold. Magnetic iron sand. Boulder.-Any rounded loose rock.
Brace.-The collar at the mouth of a shaft.
Breast.-The face, or front, at which a miner works.
Buddle. -The tub used to wash slimes.
Bunch.-A rich pocket of ore.
Cage.-The lift in a mine.
Cam.-The curved pin which raises the stamp. in a mill.
Calcareous.-Containing Carbonate of Lime. Calcining.-Burning, or roasting ores. Canon.-A deep ravine or gorge, with precipitous sides.
Caprock.-Any rock which covers an ore bed.

Carbonate.-Applied to oxides, when carbonic acid is united.
and the sur-
lay or gravel
ks.
ming gold.
haft.
h a miner
s.
the stamp.
cime.
ecipitous
re bed.

Casing.-The sheathing, or parting between the wall, and vein.
Chlorides.-Combinations of chlorine with metals. Choke-damp.-Carbonic acid gas.
Chute.-An incline having depth without horizon. tal length.
Coke.-The residue after the bitumen is driven out of coal.
Clastic.-Fragmental. When a rock is composed of pieces.
Cleavage.-The property of splitting in one direction.
Color.-Any show, or speck of gold in the pan. Contact Veins.-Veins running between two formations.
Crädle.-A wooden trough on rockers, for washing gold.
Creep.-The sinking of rock from stoping ore.
Cross Course.-Any vein crossing the one worked. Cross Cut.-A level run across the vein. Cupriferous.-Copper-bearing.
Dead Work.-Removing dead ground, viz.; barren rock; to get at the ore.
Dip.-The angle at which a vein lies from the horizon.
Divide.-Any continuous range of mountains from which the streams flow in opposite directions.

132 Glossary of mining terms.

The Rocky Mountains are called The Great Divide.

Drift.-Loose Rock. A level run on the strike underground. Druse.-A cavity lined with crystals. Dump.-The waste pile.
Dunes.-Heaps of sand blown up by the wind. Dyke.-Any igneous rock which has filled a fissure in a straight line, and stands above the level.
Erosion.-The act of being gradually worn away. Thus valleys are made by running water. Face.-The end of a drift or level. Fault.-Where the strata has been shoved to one side, or up, or down. Feeder.-A small vein leading to a larger one. Feldspar.-A constituent of many rocks. There are many kinds composed of silicates of aluminum, and of alkalies, and lime.-Hardness $=6$.
Ferruginous.-Relating to iron.
Fire Dainp.-Carburetted hydrogen gas.
Fissure Veins.-Veins filling a rent in solid rock.
Float.-Loose ore or rock that has been misplaced. Floor.-The bottom.

Flume.-A sluice-way for water. Flux.-Anything mixed with ore, Footwall. - The lower wall ore, to produce slags.

RMS.
lled The Great on the strike

Is.
the wind.
illed a fissure ove the level.
' worn away. ing water.
roved to one
arger one.
ks. There silicates of ne.-Hard-
s.
solid rock. nisplaced.
division.
uce slags.

GLOSSARY OF MINING TERMS.
Formation.-The form, or structure of the country rock.

Freestone.-Sandstone easily dressed.
Fusion.-The state of melting.
Gad.-A pointed iron wedge, used for splitting rock. (Cornish.)
Galena.-A lead ore, the sulphide.
Gallery.-A level from which the ore has been stoped.
Gangue.-The vein matter, or matrix, holding
the ore.
Geodes.-Rounded hollow nodules of rock, generally containing crystals. Glance.-A term formerly used to specify bright shining ores. Gossan.-The decomposed matter on or in an ore deposit, composed of iron oxide. Grassiroots.-The surface above a mine.
Hackly.-Having a surface of rough points when broken.
Hade. -The slope of a vein, usually applied to Hanging Wall.-The wall on the upper side of a vein.
Horse.-A mass of rock in a vein.
Hydraulic Cement.-Sets under water. Made from limestone containing alumina, magnesia, and silica.

I 34
Hydraulic Mining.-Mining placer gold with a stream of water under pressure.

Igneous.-Applied to all rocks cooled from a state of fusion.
In situ.-In fixed place.
Famb.-Any thick rock which cuts off the vein. Figging.-A method of sorting ore, by shaking
in a sieve in water.
Kies.-The sulphides separated from the rock matter.
Kibble.-An ore bucket.
Lapidary.-One who works in gems; also applied to dealers.
Lead.-A dry river bed yielding ore. Lean.-Poor in metal.
Litharge.-An oxide of lead, used in assaying.
Lithology.-The study of rocks. Geology applies
to formations of the Earth.
Lode.-A regular vein carrying metal. Loam.-A mixture of sand and clay. Long Tom.-A wooden trough for washing gravel.
Magma.-The liquid matter within the earth, the source of igneous rocks.
Massive.-Not stratified. Without cleavage. Matrix. -The body or "paste" of any rock enclosing fragments. Metamorphic.-Changed in form and structure.

ERMS.
or gold with a ure.
led from a state
off the vein.
re, by shaking
rom the rock
ms; also ap-
re.
assaying.
ology applies
tal.
y.
shing gravel.
he earth, the
lea vage.
ny rock en.
structure.

GLOSSARY OF MINING TERMS.
Mine.--A deposit of ore, which has been worked sufficiently to prove its commercial value.
Mineral.-Any substance taken from the earth. In mining, any ore containing metal in commercial quantities.
Muffle.-An oxidizing furnace.
Native.-As applied in mineralogy, means metal found pure, or refined by nature.
Nugget.-Any lump of native metal.
Open Cast.-Any working not underground.
Ore.-Applied to any mineral of commercial value, when mined.
Outcrop.-The exposure of rock on the surface. Outlier.-Any portion of a group of rocks, lying in a detached position, or out from the main body.
Oxide.-A compound of oxygen with other elements.

Parting.-A thin stratum, or layer, which separates two formations; also called a selvage. Peat.-Solid vegetable matter in a bog. Petrify.-To become stone.
Phosphates.-Phosphoric acid combinations. Pinched.-When a vein is contracted. Placers.-Gravel diggings on bed rock. Prill.-A good sized piece of pure ore. Prospect.-A vein or other deposit not yet proved to be a mine.

Pulverize."-To reduce to powder or dust. Pumice.-A light, porous lava.
Quartz.-Silica. Forming rock, and a common mineral in most rocks.

Range.-A mineral-bearing belt of rocks. Reef.-A ridge; in mining a vein which outcrops along a range of hills. Riffles.-Bars laid across the bottom of a sluicebox, to catch the heavy sands and coarse Rock. -The stony portion of the earth's crust. Rocker.-A cradle for washing gravel. Royalty.-A duty on the product of a mine. Sampling Works. -Small plants for testing ores on a working scale.
Selvage. -The sheathing between wall and vein. Silica.-Silex or Quartz.
Siliceous.-Quartz-bearing.
Shaft. -The vertical opening to any underground workings.
Shale.-Fissile argillaceous rock. Generally soft. Shift. -The time one set of men work. Slag. -The scoria or waste from a furnace.
Slickensides.-Smoothed surfaces on the walls of a vein.
Slope.-An inclined opening to a mine.
Stockwerke.-A number of veins running together

Ta
$T a$
Tr o
$T u$
Tun
Un

TERMS.
r or dust.
and a common
of rocks. which outcrops
tom of a sluice1ds and coarse
earth's crust. avel. of a mine.
or testing ores
vall and vein.
underground
ienerally soft.
'ork.
rnace.
the walls of
e.
ing together ed.

GLOSSARY OF MINING TERMS.
Stope. - To remove the ore.
Stoping Ground.-The ore blocked out ready to remove.

Stratified.-Showing more or less distinct and separate layer or strata. Streak.-The color of a mineral when scratched. Streak Powder. - The powder obtained by filing a piece of mineral.
Strike.-The horizontal course of vein or formation.

Stringer.-A small vein leading to the main vein. Stripping.-Uncovering an ore-bodyon the surface. Stull.-The platform used in overhead stoping. Sulphureous.-The odor of burning sulphur. Sulphurets.-Metals combined with sulphur. Sump.-A well in a mine to collect the water. Swab.-The stick used to clean out blast holes. ore, when found in low, wet ground. Synclinical.-The trough formed bun.
ward inclination by the down-
The Anticlinal of the strata from each side. the strata lips being the ridge formed when Tallings Tallings.-The waste material from a mill. Tamp.-To hammer loose earth into a blast hole. Trap.-Any volcanic rock. Tufa.-Any open porous rock.
Tunnel.-A level into a hill.
Unctuous.-Having a greasy feel, like soapstone.

Underlie.-The angle of a vein from the perpendicular.
Upthrow.-An upward displacement of the side of a fault.

Veinstone.-The mineral in a vein which holds the ore.
Vitreous.-The lustre of broken glass. Vug.-A cavity in a vein.

Weathered.-Changed by exposure to the weather. Whim.-A large drum for hoisting by horse-power. Whin.-The Scotch name for hornstone. Winze.-An opening from one level to another underground.

Zone.-Used to specify a certain geological position, of a strata or layer of rock.

m the perpen.

nt of the side

which holds

S.

the weather.
horse-power.
one.
1 to another
ological posi-

INDEX.

75

Aluminum.........6ı, 74, 94
Alloys-Common. .. 125, 126
Amalgamation40-43
Amber90 9
Amethyst 98
Amphibole................. 82
Analysis
Anthracite 86
Antimony34, 43
Apatite................79, 85
Aquamarine. 95
Aqua Regia................. 38,49
Argillites
19
Argentite 44

" Native
Arsenopyrite.........64, 85
Assay-Samples for...... ior " Value of..... ro3, 109
Asbestos................... 82
Asbolite 57
Asphaltum........................ 57
Atomic Weights
A venturine 98
Azurite 52
Barometer.-Natural 92
Barium 72, 80
Barite 69,80
Basalt 20
Bauxite 74, 75
Beaver Mine.-Cut of. 06
Bell Metal Ore
Bell Metal Ore 60
Beryl 95
Bessemer Steel 65
Biotite 83
Bismuth
Bismuth 60,61
Bituminous Coal 86
Black Cobalt
57
57
Black Hills.
41
41
Black Jack 62
Blacklead 41, 72
Blanket Veins 17
Blende 36, 6o, 62
Bloodstone
99
99
Blowpipe, The 28, 109
"Blowpipe Practice" 28
Blueite 57
Bog Ore 17, 67, 69, 70
Bornite 51
Breccia
19
19
Bromyrite
45
45
Bromic Silver 45
Brown Coal 86
Brown Iron Ore 67, 89
C admium .30, 61, 62
Cairngorm Stone
Cairngorm Stone 98 98
Calamine 62
Calcite 21
Calcium
79
79
California Gold
35
35
Cameos
99
99
Capital 112
Capillary Pyrites
55
55
Carbon 71, 72, 93
Carbonates-Copper 53
Manganese 70
of Soda 29
Zinc 62
Carnelian 98
Carter-Walker process, 42,43 Case-hardening 43 124
Cash Offer, A II
Casing 18
Cassiterite 60
Catseye 99
Celestite 80
Cements 80, i26
Cerargyrite 45
Cerium 8I
Cerussite 47
Chalcedony 98
Chalcocite 5I
Chalcopyrite 5I
Chalk 20
" French 20, 82
Chapman, Prof. E. J 30

Chemical Reactions. ..24-30
Chemists 32, ror
Chert 20
Chloride ot Sodium........ 83 , 81
Chlorination 42
Chlorine:......................422 42
Chromite 64
Chromium 30 , 95
Chrysocolla................. 52
Chrysoprase 98
Cinnabar50, 89
Clay-China..........76, 77
Coal 86,87
Cobaltite 56
Cobalt (See Nickel.)
Glance
Color. 54,25
Cont.
Cont nts
-5, 6, 7
Copper24, 30, 36, 50, 89
" Ores......5r, 52, 53
Nickel 56
Combining Weights......3r
Conglomerates 15, 19
Contact Veins.........17, 93
Concentration. . . . 4 I , 42, 128
Coral Islands............. 14
Core Drills.... 108, 112, 113
Cornish Tin Mines. 60
Corundum.................65, 9 1
Crooks-Frozen out.....II8
Cryolite76
Crystals91, 92
Crystalline Limestone, 2I, 23, 79.
Crystallization24, 27

Reactions. . .24-30 32, 101 20
t Sodium.. . 73, 8I

se
98
kel
Weights 31

INDEX.
Cuprite

Dakota Tin Mines, 6o, 103 Dana, Prof. J. D... 27 Deposits-Ore16, 17 Derbyshire Spar........... 78 Describing Mines...112, 115 Diamonds.....24, 91, 92,93 Diamond Drill, The......113
Diamond Rock21, 93
Diaphaniety $.21,93$
Didymium
Didymium
Diorite
. 20, 55
Dipneedle .66, 108
Dolerite20, 108
Dolomite 94
Dolomite
"Dolly" 20, 77
Drills -39, 40
Drybone...............113, 114
Dykes-Trap..............62, 22, 93
Dynamite............90, 108
$\mathrm{E}_{\text {Ele, Thickness of the, } 19}$ Elements, List of, 31, 32
Emeralds. 91, 92, 95
Emery
-75, 95
Erubiscite
Eruptive Rocks............ 15
Explanatory Notes, $28,30-34$ Exploring 9, 103-110
Farming-Risks of....iri7 Feldspar-Common, 75
Finds, Value of.............

Fissure-Veins
. 16

I4I

82 Fleches d'amour. 99

Flexible Sandstone......... 99
Flint 93
Fluorite................... 20

Fluorite
78
78

Fluorspar. 78

Footwall
18
18
Foliated Talc
82
82
Folgerite
57
57
Fowlerite
Fowlerite
78
78
Franklinite
67
67
Freemilling
Freemilling 41 20, 82
French Chalk
French Chalk
Frue Vanners 41, 42
Fuel, Wood as
126
126
Furnaces 48, 58, 59
Fusibility of Metals. 125
G ${ }^{\text {аввко }}$ 20
Galena.
Galena.
17. 33, 104
17. 33, 104
Garnets 91, 97
Garnierite
57
57
Gash-Veins
17
17
Gems
Gems 9r-96
Gersdorffite
56
56
Glance
44
44
Glossary
Glossary 139-148
Gneiss
13, 20
13, 20
Gold
Gold" Ores35, 36, 116
" Native
35
35
" To test for.. 37,38 , ro3
" "Dolly"'........39, 40
، Freemilling Ore $40-42,116$
Freemilling Ore 4136, 39

$$
142
$$

Gossan 16
Granite 13, 20
Graphite 71, 72, 89
Gravel-Auriferous, 36, 103.104.
Gravity, Specific 24, 121
Gray Copper
52
52
Greenockite 6I
Gypsum 79
H ardness-Scale of, 24, 30, 109.
Hardness-Chapman's Scale, 30.Heavy Spar36, 80
Heliotrope 99
Hematite 65,89
Brown 67
Horneblende 19, 82
Horning 41
Hornstone 20
Hyacinth 97
Hydraulic Limestone 80
Hydromica Schist 21
Hydrous Copper Silicate 52
I GNEOUS ROCKS. . 15, 23, 103 Illustrations8
Indurated Sandstone 22
Infusorial Earth 90
Investor in Stocks. 19, 120Iridium
73
Iridosmine 36, 73
Iron-Ores of. 30, 63
" Bearing, Rocks .19, 3
Ironstone
67
67
Itacolumite 93
TACk's tin 57
Jasper 2I, 99
Jet 86
Joint Stock Companies 120
K aolin 76
Kimberly Mines, 93,9 94
"Kit," Prospector's, 108, 109
L abra dorite 20
Land Plaster. 79
Lanthanum 8I
Lead
Lead 30, 37

" Ores | 30,47 | 104 |
| :--- | ---: |
| | |

Lepidolite 83 86
Lignite
Lignite
Lime, Phosphate of. 79, 85
Limestone
Limestone . . 15, 21, 23, 79 , 80
Limonite 67
Linnæite
55
55
Lithia $30,83,8$ 84
Lithium
Lithium
Lithographic Stone 8o
Liver Ore 50
Lodes 16, 99
Lodestone 27, 67
Love's Arrows 99
Lustre. 26
M ACROSCOPIC 30
Magnesium
72
Magnetic Iron Ore 66

INDEX.

erly Mines, 93, 94
spector's, 108, 109
PITE 20
Plaster. 79
8I
30, 37
in 30, 47104 in 33
phate of. 79,85
15, 21, 23, 79, 8o

55

84
Stone 8o
ium
ium 72 72
n Ore
n Ore 66 66
PIC
PIC
\qquad85

67 6755

30, 83, 84
o.27, 67
wS

Magnetic Pyrites. . 33, 54, 64 Magnetism................. 27
Magnetite Malachite 36, 66, 67, 89

Malleability
53
Malle............. 26
Manganese, Ores of, 30, 69, 89 Spar 78
Marl

$$
78
$$

Marble 77
Matte21, 22, 79
Measuring Water- \cdot. 58 , 115
Measures of Ore. 121
Mercury....34, 36, 40, 49, 50
Metals-Weights and Measures
Metals-Fusible point of. . 125
To Temper...... 124
Metallic Ores
Metamorphic rocks........... 36
Mica
.15
" Schist19, 38, 83 Schist
Microscope, The 14, 21, 22
Millerite 37
Millerite
Mineralogy, Study of 55 100, 107, 109.
Mineral Oil
" Pitch 87
" Resin

$$
\begin{equation*}
.90 \tag{87}
\end{equation*}
$$

Wool 88
Mines_"Salted"88
. How to Develo... 117
Miner's Inch 123
Mining Dividends II9
" Profits of120
" Risks of....117, 118

Mining. When to begin, 115 ,
116.
" Stocks..118, 119, 120
Mispicliel. 43, 64, 65, 85
Mohs' Scale of Hardness, 25
Molybdenite 70, 7 I
Monazite
36, 8 r
Moonstone
Moss Agate 76
Muscovite 99
(\cdot. 83
Natural Barometers, 96
Natural Compass. 67
Natural Gas 87
" Paints 87
Niccolite. 89
Nickel. 56
Nickel. 30, 54,64, . 56
". and Cobalt Ores.... 54
Nickeliferous Pyrrhotite, 54 ,

Noll-Magnetic Ore
 Nuggets
 36, 49

Ochres 67,89 Oil-Mineral Oil of Vitriol. 87 Onyx . 84
Operations-Scale of Mining II 2.
Opals
Ore Deposits $16, \ldots .91,96$
Ores-How to Distinguish 4
Ores-How to Distinguish,
24-30, 32.
Ores-Metallic
Non-Metallic 36
Ores, Cubic feet of 121
" Measures of 121
" Selling 114, 1×5
" Selecting treatment, 116
Orpiment 85
Orthoclase 75
Osmium 73
Ozokerite-Ozocerite 87
P Paints, Natural .. 89, 90 Palladium 72
Panning 36, 104
Paraffine 87
Paystreak 18
Peat 88
Petroleum 86
Phosphate of Lime 79
Phoshates 60,82
Phosphorous 31, 85
Pitchblende 73, 88
Placers $16,36,39,103$
Plant, Cost of. 127, 128
Plaster of Paris 29, 79
Platinum .28, 30, 49
Plumbago 71, 72
Pockets-Ore 17
Porphyry 22
Potstone 82
Power, Horse 124
Water 123
Practical Pointers 106
Prase 98
Precious Stones 75, 91Preface.
Prospects .9,3, 4
Prospecting , 102 105
Prospector, The 9, III
Prospector's "Kit" 108
Proustite 45
Psilomelane 69
Puddingstone 19
Pyrargyrite 45
Pyrite-Iron 59, 63
Pyrites-Copper 24, 5 I
Magnetic 33, 64
Tin 60
Pyrolusite 69, 70
Pyrrhotite 33, 64
Q UARTZ 16, 91
Quartz Gems -97, 98
Quartz, Gold.. 37, 38, 39, 40" Veins37
" Milling 39, 40
" Water re-
quired
Quartzite 22, 23
Quicksilver, $34,36,40,49$, , 50
R ailway 110
Rare Metals 72, 73
Reagents 28, 29
Realgar 85
Red Copper Ore 52
Red Zinc Ore 62
Refiners 45
Refining Ores 58, 128
Retorts 63
Rhodium 73
Rhodochrosite 70

9, 102, 105

The The.......9, III " Kit " 108
netic. . . . 33, 64 60
69, 70
33, 64
16, 91
Gems....97, 98
. . $37,38,39,40$ 37
ng....... 39, 40
Water re-
. .123
22, 23
4, 36, 40, 49.. 50
110
72, 73
28, 29
85
Ore. 52
62
45
58, 288
.63
73
70
Rhodonite
Rocks, Iron-bearing 78 19
Smaltite 56
Smelting
Smelting 58, 127 58, 127
Names of 19-22
How formed, 13, 14, 15
Rock Crystals 98
Rock Salt 8I
Rose Quartz 98
Route, How to choose a, Io2,103.
Rubies 91, 92
Rutile 99
S ale, How to make a, io5, ifo, ifi.
Salt, Rock 81
Samples, Dealer in 109" Numbering..... ror
" Selecting.. roi, io9Quantity to sendfor Assay.
Furnaces 58, 59
Smithsonite 62, 63
Soapstone 22, 82
Sodium 73
Chloride of 73
Soft Coal 86
Spar 16
Spathic Iron 67
Specific Gravity, 24, 28, 121 Specular Iron Ore 65
Sperrylite 49
Sphalerite 62
Stannite 60
Steatite 22, 82
Steel, To temper or weld, 124 45
Stibnite 43
Stockwerke 17
Stone Coal. 86
Stones, Precious 91
Stratified Rocks 15
Streak 24, 25, 26
Stream Tin 59, 103
Strontia 30, 80, 8 I
Succinite 90
Sudbury 49
Nickel Ores 54
Platinum Ores. 49
Sulphur 29. 33, 84
Native 84
Sulphuric Acid 63, 84
Sunstone
Sunstone
76
76
Syenite 22

146

INDEX.

Synonyms 31, 32
Tac Talcose Schist $22,24,82$22

rium

Tellurium
36, 72

Temperature 19
Tempering Steel........... . . 124
Tetrahedrite 5^{2}
Thorium52
Tin Ores
30, 59, 60, 103

Titanic Acid
33
Topaz 96, 98
False
98
Trap Triphylite 15, 20, 22, 103
Tripolite 84
Tufa 90
Turquoise 94 95
Umber U
Uranium 89
Useful Tables 73. 88
Value of GoldI2I 35 35
Value of Silver
Value of Silver
Value of a Prospect 47 47
Vermillion 50, 89

Veins
......16, 18
" Fissure 17" How to open, 37, 104,Io5.
" Paying 18
$W^{\text {ad }}$70Water for quartz mil-lingWater Power, Calculating,123.
Weights of Ores 121
of Metals. . 122,123Relative, of Metals,122.
" of Water.
123
123
" of Wood as fuel, 126
Whartonite 57, 81
Y ttrium 8I
Z inc.......30, 34, 46, 6I, 67
Zincite
62
Zircon 36, 67

$$
\begin{aligned}
& \text { act } 17 \\
& \text { to open, 37, 104, }
\end{aligned}
$$

\qquad
\qquad er for quartz miler, Calculating,

Ores..... . . . 121
Metals..122, 123

Water. 123
Vood as fuel, 126
...........55, 81
................ 8 r

30, 34, 46, 6r, 67
\qquad
.36, 67

Any Beok sent postpaid on recelpt of price. The M. Rogers Publishing Co., Toronto, Canada.

Qualitative Chemioal Analysis. Companion to above

A unique work of great value in research.
250
Hidden Mines; and how to find them. By W. Thos. Newman. 148 pages. Illustrated. Cloth, $\$ 150$ Leather, A practical book on Mining, Metals, and Ores. Confined to Minerals of commercial value.
Mineral Indicator, The. By Prof. Chapman New edition.
Assay Notes. By Prof. Chapman Cloth. 100 Complete instructions for assaying Gold and Silver. 100
Quartz Operators Handhools. By P. M. Randall. Cloth. 200
The Metallurgy of Gold. By M. Eissler. 12mo. 524 pages. 187 illustrations. Cloth. By M. Eissler. 12mo. 524 pages. One of the best works on Gold.
Eydraulic Gold Miner's Manual. By'T. S. G. Kirkpatrick. 12mo. 3 ro pages. 4 illustrated plates. Cloth.
The Metallurgy of Silver. By M. Eissler. 12mo. 362 pages. 150 illustrated plates. Cloth. $\quad 362$ Highly recommended. Every process.
Lead, Argentiferous, The Metallurgy of. By Eissler. (1892). 12 mo . 396 pages. 183 ill, 1 strations. Cloth.
Covers the whole field.

Copper Smelting, Modorn American Methods of. By

 E. D. Peters. 3 vo. 308 pages. Mlustrated plates. Cloth. Nickel.Tin Mining. By A. G. Charleton. 8 yo. 14 plates. Cloth.
Sulphuric Acid. By G. Lunge. 8vo. 3 vols. Cloth. Including Alkali with collateral branches. ${ }^{3}$
Sulphuric Acid, The Manufacture of. By A. G. and
C. G. Lockc. 8vo. 77 constrictive plàtes. Cloth.
Alkali Trade, The. By C. 'T. Kingzett. $8 \mathrm{vo} . \quad 247$ pages 23 illustrations. Cloth. History, Products and Processes. Treatment of wastes.
Metallurgy of Iron, The. By H. Bauerman 12mo. 523 pages. 49 illustrations. Cloth. 12. Bauerman 12 mo .523 Methods of analyses and manufacture of Iron and Steel.

Quarryman and Contractors Guide. By A. Kirk. 4to. | I47 pages. 160 illustrations. Cloth |
| :--- |
| Gives prices and estimates. By A. Kirk. 4to. |
| 00 |

Stoneworking Machinery. By M. P. Bale. $12 m \mathrm{~m} .177$

The M. Rogers Publishing Co. toronto, camada buffalo, U.s.

Publishers and Importers of

Sceientific, Inoustrial and Practical Books

Any Book sent to any address in the world free on receipt of price.

MINERAL SPECIMENS.

We have arranged to supply specimens of any of the Ores described in "Hidden Mines" as follows (in three collections to suit our customers), free of carriage on receipt of price.

Less than ten cents each.
Petrology. By H. F. Hatch. 12 mo . 43 illustrations. Cioth. 125
Blowpipe Practice. By Prof E. J. Chapman. 250A complete guide to the determination of all minerals by theblowpipe.

Quantitative Analysis, A System of. By C. R. Fresenius.
New nomenclature. roth edition. 8vo. yoo pages. Cloth.

Any Boois sent postpaid on recejpt of price. The M. Rogers Publishing Co., Toronto, Canada.

Gems and Precious Stones of the United States. By G. K. Kunz, expert for Tiffany \& Co. 4to. Illustrated. Contains 8 plates in the finest color work executed. Plates alone. 1000 500 ing. 24 mo . 262 pages. Cloth.
Lumberman's Directory. A large 4 to. volume of 685 pages. Cloth.
Very valualle to all engaged in the lumber business.
Mineralogy, Text Book of. By J D. Dana. 537 pages.
837 illustrations. Cloth.
837 illustrations. Cloth.
Recommended to the student of Crystallography.
Mineralogy, Dana's New System of. By J. D. and E. S.
Dana. Very large 8 vo . 1197 pages. 1425 cuts.
The most important treatise ever published in the English language on the subject.
Limestones and Marbles, uses of. By S. M. Burnham. 8vo. 398 pages. 48 fine chromo lithos. Cloth M. Burnham.
Earthy and other Minerals and Mining. By D. C. Davies. 12 mo . 336 pages. 76 illustraticns. Cloth. Dy D. C. 500
Minerals and Mining, Metalliferous. By D. C. Davies. :2mo. 43^{8} pages. 148 illustrations. Cloth: A good book on Mining.
Asbestos, its properties, cucurrence and uses. By $\begin{array}{lll}\text { R. H. Jones. } & \text { ramo. Illustrated plates. Cloth. } \\ \text { The anthority on this subject. } & & 500\end{array}$
Assaying, a Mantal of Practicel. By John Mitchell. 6th edition, by Wm. Crookes. 8vo. rooo pages. zor illustrations. Cloth.
No practical assayer should be without it. 1000
Assayer's Manual. By Bruno Kerl. 8vo. 354 pages. 130
illustrations. Cloth.

Among the latest and best books on assaying.
Assaying, Notes on and Assay Schemes. By P. de P. Ricketts. 13 th edition. 208 pages. Cloth. An excellent work.
Blasting Rock, Explosive Comporinds, Machine Drilis and Blasting. By H. S. Drinker. 4to. Cloth. Mining Machinery. By G. G. Andre. 2 vols 500 plates drawn to scale. Cloth. 2 vols. 4to. 182 Prospecting, hauling, mining, hoisting and Metallurgical Ma-
chinery.
Accidents in Mines. By A. R. Sawyer. 8vo. 300 illustrations, many colored. Excellent for mine captains. Cloth.
Comstock Lode, its formation and Eistory. By J. A. Church. 4to. 6 plates. I 3 illustrations. Cloth. By J.

Cloth. 125
250

Is by the

W. Thos. Newman

Expert in Mines

Prospects or Mines examined promptly, no matter where looated.

to place Mining Properties properly on the market, prepared on short notice and accuracy guaranteed.

Working Tests on all Ores arranged for.

Surface and underground prospecting and development work supervised ; also working plans, and estimates, for opening and operating mines, including complete Plants for winning and reducing ore carefully prepared.

Diamond Drill Work Contracted for.
If you have Mining Property send me samples, and full description, and obtain a business opinion as to probable value. Do not waste money on worthless property, nor lose an oppurtunity that is valuable.

Address:
\title{ W. Thos. Newman, Toronto, Ontario, } Canada.

[^1]aptly, no
ssays, $\mathfrak{p t r}$.
market, ranteed.
ent work supervis. d operating mines, carefully prepared.
d full description, o not waste money uable.

N ,
जTARIO,
Canada.
elating to Ontario

[^0]: T. Eovable L Loradorite; (Lime-soda Feld

[^1]: Correspondence desired.-Any information relating to Ontario Mines furnished promptly.

