The Institute has attempted to obtain the best original copy available for filming. Features of this cepy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleurCovers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculée

Cover title missing/
Le titre de couverture manqueColoured maps/
Car tes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Colenred plates and/or illustrations/
Planches et/ou illustrations en couleurBound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted fror filming/
Il se peut que certaines pages blanches ajoutėes lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas èté filmėes.

L'Institut a microfilmé le meillaur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagées

Pages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées

Pages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de limpressionContinuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index

Title on header taken from:/
Le titre de l'en-tête provient:

Title page of issue/
Page de titre de la livraisonCaption of issue/
Titre de départ de la livraison

Masthead/
Génėtique (périodiques) de la livraison

Additional comments:/
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

Eilctital equmexs.

Notes on the B. P. Solutions of Iodine, and other Pharmacopmoial Preparations."

Hx Whlliam malltivoile,
Dispeaser, ald Teacher of pharmacy to the larsersty
Collego hespital.
There are three solutions of iodine in the Pharmacopolia, - tho tincture. liquor, and liniment.

Tinctura Iodi. Tho formulit for this is the samo as that of 13. P. 1864, and the quantity of iodine is edpal to that in tincturib iodini compositi, P. L. 1851, but the iodido of potassium is only one-fourth. 'lhis quantity of iodide of potassium docs not seem to be of any practical utility that I can conceive,-in fact, for one purpose for which it is used, it is a decided objection. The guantity of the iodide in the London tincture, and it was much in excess for the purpose, rendered it miscible with water, but that in the present tincture does not, as on its addition to water, the bulk of the iodine is precipitated. \dagger

If it be necessary, and for internal administration it is necessany that it should mix with water, why not malse it with water in the first instance, more especially as it has been stated that a spirituous solution of iodine undergoes decomposition on being kept? I find practically that 23 grains of the iodide will dissolve 20 .grains of iodine in 1 ounce of water. A little excess of the iodide renders the iodine more readily soluble, as in liquor iodi, B3. P., 30 grains are employed to dissolve 20 of the iodine in the same quantity of water. This liquor is knowa as Lugol's solution, when dilluted, it is the best preparation for injecting in hydrocele, ctc.

I would suggest the use of two liquors, one to be called liquor iodi (in place of the tincture), and the other liquor iodi fortior.
The case in which the presence of the iodide in the tincturo is objectionable, is, when it is added to boiling water, to yield the vapour of iodine for inlialation; for this purpose tha iodine would be more completely vaporized if not held in solution by the water. The old Edinburgh simple tincture of iodine answers best for this purpose.

For external uso spirituous solutions have this disadvantage-they lave not "body" enough, as the spirit volatilizes too quickly, leaving the iodino in a free state upon the slin, in which condition little of it is cither absorbed, or produces any counter-irritation, as it, too, becomes vaporized.

Iodine and Sil of Tar.-A solution, or rather a mixture, as it is not a mere solution, of 1 part of iodine with 4 of light nil of wood tar, makes a useful application. In mixing the iodine and oil of tar great heat is erelved -part of the oil oxidized and becomes resinous. This resinous portion, being hack in solution in the cxcess of oil, on anplying the mixture to the affected part, acts like a varmish and prevents the vaporization of the io-

*From tho Pharmaceutical Jonmal, London.

In all proportions betrecen one part of the tancture anil from threc to forts of waiter, this precignation or ergstallizallon of the foline takes place, bat it is mast evitcne antentlon has parta frequently trawn to this fact when
 ture, the fres jodne canses dhe glass to have a greasy ajp
jucarance, in vhleh comblion it lias a repulston for vrater On zeddiag thio liniment of indino to water, a still more abuadint scparation of the forline occurs.
diue. 'This application is fund to bo very uscful in ringworm and sinilat shin aftections.

Linimontrat Iodi - When Iodine is intend ed to produce comnter-irritation, or promote the absorption of glandular strellings, this is is suitable application, but for the reasuns I have stated, it has not "body" enoughmuch of the iotlino is vap sized and protuces no effect; moreover, when this liniment is applied repeatedly, which is often desirable, the skin gets hardened, amd the iodine takes but littlo effece until this duad skin has peeled oft. Its application then causes great pain. Having had it applied to myself for a chest affection, I remember the agony it cansed me when painted on the newly formed skins, the deadened cuticle having peeled ofi. I think tho camphor in it might be replaced by an equal cuantity of glycerine with advantage. Experiments unon myseli and others tend to show that the quantity of glycerine should not be added in excess of thit which I have named, that is, we part in forty, especially when emplojed to produce counterimitation ; if more glycerine be used, its effect camot be localized, as the application gets rubbed by the clothing before it has sufficiently dried on the skin. The quantity I have suggested seems, likewise, to promote its absorption.

My experiments were not camied far enough to produce consticutional cthects, but as a counter-irritant, I did not perecive that an iodine limment containing ioslule of potassium had any advantage over one not comaining it.

The Ointments of Iodiate, and Iulide of Putcessium. -The application of these is generally aided by friction, and as, before its addition to the lard, the iodide of potissinm is directed to be dissolved, in the one case in prout spirit, and in the other in water, these solvents become evaporated, and the iodide crystallizes out. When, therefore, the ointments are applied, these shap crystals act like pieces of glass, and uritate the part in such a manner that their continued use, which in glandular affections is necessary, cannot be persisted in. Here again glycerme diluted with spirit for iodine ointment, and with water, for iodide oi potassium onatment would be a better solvent. This brings me again to the un-fortumate-

Linimentum Putassii Iodide c. staone.-This prenaration I consider is it step in the right direction, as, if iodude of potassium produces any effect, when applied externally, in the limiment, the objections I have raised about the ointment are avoided.
Some samples of olive-oil hard soap I have lately tried, cven mado by the same maker as that which I have found repeatedly to yicld good results, have nut proved so umform in this respect. The soap answers better recently prepared, and that bearing the lurand of F. Court Paycn. I find it makes a satisfactory preparation, if the sulutions of the salt and the soap be inixed by trituration at equal temperatures, but it will not keep much above a week without separating.
Iodide of potassium seems to have a similar effect, in a modified degree, on a solution of olive oil and soda sony that chloride of sodium has in its mannfacture ; it precinitates it in time, but in a hydrated state, so that if more of tho soap were used, there would be ro separation of water. I find what Mr. Squire states is correct, that if preparcd with powdered soap, which contains less rater, there is no separation.

Mr. Smith, of Chultenhath, in this nomth's Journal cunferses he hats led us into error. 'lhu hard suap, ho meatet to be cored suap, which is not ulficinal in the Phamamopoia. On tho 24th Jan. last, I made the samples exhihited bearing that date, :med this morning likewise prepared it litile, marked No. G, with strictly 13. 1'. quantitaes. It is what I consider the prearation onght to bo, but it will not keep in this condition.

1. 13. 1'. Made 2.1.1.70.-Scparated into two strata; the upper one is about one-thira of the whole, and coatains all the soin, as the lower one will not produce the lather which is characteristic of soap.
1. Made with powdered 13. P. suap 24.1.70 - A firm, solid semi-opiapue jelly: it has a leprous arpearance against the sides of the buttle, but has not separated.
2. Made with common yellow suip 24.1.70 - A. solid, white and opaque jelly.
3. Made with wh:to curd soap 24.1.70White and opaquo or semi-opauue, being more translucent than 3 .
4. Made with 13. l'. suft so:tp.-Clear, transparent, and semi-gelatinous.
5. Made with recent olive-oil hard soap bearing the brand of F. Cuant Payen. Semitransparent, more gelatinized than 5, and, when slightly agitated, it exhibits somo of the characters of the jelly of the pastry-conks.

Acctum Scille. - This preparation, which is one of the oldest galenical formula in the Pharmacoporia, its origin by Pereira being ascribed to l'ythacturas, has been the subject of some remarks by DI:. Bland. He objects to the addition of proof spirit. My experience of it is that, eather with or without the spirit, there is almays a deposit formed in it, but I think less when the spirit is added. In the London Pharmacopocia of 1721 spirit was not mentioned in the formula for its preparation, but in the next edition there is directed to be added to it "about one-twelftls its quantity of pronf spirit, that it may keep the longer from growing mothery."

The squill has always been directed to be dried before digestugg or macerating in the vinegar or diluted acetic acid. The volume Pytiagoras wrote on squill not being extant, I am not able to certify that it was not so ordered in the origimal formula; butit would be more rational to use the bulb in the fresh state, sceing that much of its activity is volatilized on drying the squama. The fresh bulbs are easily preserved m dry sand, being so cxccedingly tenacious of life that Dr . Christisonlsiys, "Aly large bulbs, while lying on my museum table, produced two stems two fect tall, and covered with flower buds, many of which beane fully expanded; and a smail one, after being kept in the same place for at least eight ycars without any signs of lifo, began also, without any change of circumstances, to push forth its stem."

As four-fifths of the weight of the fresh bulb consists of moisture, I thinh an expresscd juice mixed with acetic acid, and clarified by defacation or other means, would yicid the best preparation. IRectified spirit might likewise be added to the expressed juice in sufficient quantaty to separato the greater portion of tho probably inert mucilaginous matter, thas a preparation would be produced corresponding to succus tamxaci and other cxpressed juices. This might supplant the tincture of the present Pharmacopocia.

It is somewhat curious that up to 1851 tho fresh bulbs had alwaye been ofticinal in tho London lharmacopocias, but, as before frec-
trado princinles had come into voguc, tho duty on tio fresh lulb and dried squamu is equial, for the sake of economy squill was always inported in tho elried state. I think that medicine, especially if it las to makio a sacritice of some of its virtues, ought not thus to bow to commerce, and as I now beliove both inc admitted free of daty, wo could easily, by making oul request jnown, bo supplied with the fresh bulbs. I havo made frequent inguiries for thon, but havo always been informed that the fresh bulbs do not now come into tho London market. I took tho trouble, when in Paris three years ago, to get two procured for me. One of then 1 noticed put forth a shoot last year, and I think both lare jet possessed of life. I obtained them with the intention of trying to make the preparations I have 3uggested, but a fitting opportunity did not then occur. As
many of the outer scales have become dry, I fear they will not now yield much expressed juice, but I intend trying them.

Ocymel Neilla'- 'The directions fur making t!us premation are concise and definite, but not very practicable-"Mix and evaporate by a water-bath matil the product, when cold, shall have a specific gravity of $1 \cdot 32$." The plim generally adopted in making it is, to make the acetum with half the quantity of
diluted acetic acid, using it onc-lalf stronmer diluted acetic acid, using it onc-half stronger
than B. P. This thoroughly exhausts tho squill if the "mark" be well pressed. Onc pint of the acetum, where two of the other are ordered in the formula, added to the honey, requires little evaporation to bring the oxymel to a proper consistence. If it be t:ue that part of the medscinal property of squill is rolatale, will not this prejaration bo much impaired by the long-contmued application of heat? What advantage is thero in oraporating tho honcy and acetum mixed togetlier? In the London Pharmacopoia, 1851 the acetum wiss ordered to be concentrated by evaporation, and the lioney added afterwards. This is more reasonable, althongh, on account of the difference in consistency of honey
the oxymel produced would vary a little in the oxymel produced would vary a little in this respect.

If mado with a strong acetum, prepared from tho fresh bulbs as I have suggested, concentration would be unnecessary.

Tinctura Aurantii,-'lllis is directed to be mado by maceratines dried bitter orange-peel in proof spmrit. As it is a flavouring agent, and seeme that fresh peel is so much superior to the dried in this respect, it has been sug. gested that the tincture shoukd be prepared from it. No housewife thinks of preparing marmalade from dricd orange-peel, nor should pharmacists be directed to prepare a tincture from $1 t$, seemg that a certain season of the year Seville oranges can be had at nearly every village shop in the kingdom. The fresh peel yeids a tincture whelh, when diluted with water, stall remains elear, not like the present tincture, as it, on account of sumo of the aromaticpranciples havirg become resmous, and tharefore msoluble manueous fluids, on the addition of water forms a milky mixture. If made with the fresh peel rectitied spinit should be used; tite juice contained in the peel will bring the tincture down to about the same strength of spint is that of the present tineture.

Ungucntum Mydragyjo dmmoatiali.--This preparatoon containing one part of whito percupitate in cight of the onntiment, is ummecessamly strong, it is, in fact, dangerously so, when it has been freely used for any length
of time, such application being necessary in somo skin discases. If mado with onetwelfth the quantity of white porcipitate evon, the precaution being taken to levigate it carefully with a littlo oil provious to the adaddition of the lard, it is, necording to Dr: lillury Fox, of suflicient strength for nearly all cases where its application is desirable.

Ilasters. - This group of preparations aro raroly " home made," and as a rulo their appearance, yather than their utility, is the point most considered in the wholesale trade. Chove seems to be a great redundancy of them in the Phamacopain. The sam.e ingredients with tho proportions varied, aro contained in emplastrum sipponis. My experienco of these plasters leads me to believe that in any case where they are used, their application might be roplaced with adrantage by the simplo lead plaster, provided it bo pruperly made. Lead plaster has not then the mucla admired opaquo whiteness, which is preferred in the trade. The Pharmacopocia directions for its preparation are not sufliciently defnite; nothing is said about the glycerine that is formed in tio process, whether it is to be separated, or eviporated anay-the plaste: to be allowed to absorb as much of it as possible, or to be waslicd out by tho "puiling" operation under water, which it generally undergoes to givo it the saleablo appearance.

My experiments with this and othor proparations are not yet completed; on nome future occasion I lhope to be able to publish the results.
Among the other plasters two aro likowise very redundant in composition, -emplastrun picis and emplastrum calefacions. In tho latter formula, quantitics of simples will have to be meted out no less than nineteen times. The effect of this redundancy is that nostrums, much simpler in composition, meet with a much larger sale-Poor-Man's Plaster, for example. One likes to linow "the reason why" there should be such exuberance in their composition. I, in my teaching, am continually asked this question, and rightly so; if the formula are what they ought to be, they must be consistent with reason.

Posology.-Are the doses given meant for the guidance of the dispenser as well as tho prescribert If so, is a dispenser justificd in refusing to compound prescriptions ordering medicines in larger doses? It is desirable to givo tho smallest dose of medicine that will have the reguired effect, still the maximum doses stated are frequently much too small. For cxample, the dose of gallic acid is giren, at 2 to 10 grains. I have not dispensed a less dose than 10 grains for years, and at times as much as 60 -grain doses for albuminuria. Of extractum tilicis liquidum, the dose given is 15 to 30 minims; I more frequentls dispence 60 minims fora dose. Tinctura ferri perchloridi, 10 to 30 minims, it is given in $60-\mathrm{minim}$ doses. Potassii iodidum, 2 to 10 grains, often 30 -grain doses are administered.
The effect of thes is often mischicrous, as in the following instance. A few years ago, beforo tho presont Pharmacopoia vas published, and when bromide of potassium was coming into use as a remedy for cpilepsy, a physician wrote a prescription for a case ordering 20 grains in the mixture, to be taken three times a day. The patient took it to a chemist, who refuscd to dispenso it, and neglecting the tact lio ought to have shown, he sent tho patient back to the playsician to ask him if there was not some mistakc. It afterwards camo to an cstablishment
with which I was connected, and was dispensed without the least hesitation, as it had becomo with us an overy-day prescription.

If tho doses of the preparations must bo stated, there ought to bo threo given, - tho minimum, the minxinum, and the poisonous dnso, - to avoid tho possibility of cases of this lind occurring.
In conclusion, I think tho subject is so broad, that before another edition of the Pharmacopocia is published, tho formulso and preparations should bo discussed hero seriatim, like the clnuses of a bill before a Committeo of tho Houso of Commons: Thoso that are good would meet with our approval, those thit are capable of it would bo amended, and those that are bad and obsolete, would bo condemned, as they only cumber tho ground of the Phamacopoia, our pharmacies and the medical student's mental capacicy. From my point of view, it may bo that I am connected with a medical school of whoso professors the unjust remark has been made, "they liave no faith in medicine," but by the performance of my duties, I am able to tako a wide survey of this subject, and I am convinced that nuch of it has either becomo obsolete, or is fast becoming so. Who, in the medical profession, belieres in the cficacy per se of such medicines as, thus, castor, expressed oil of mace, hops, myIrh, saffron, red sandal-wood. etc.? They enter into the composition of different compound formula, with very questionable advantage,-often to complicate them unnecessarily, and to obscure the effect of their action. Some things are almost too sacred for discussion. Among these aro tho Pharmacopeia, and, I should have thought, that bulwark of English liberty, trial by jury; jet I attended a debato the other cvening at which youths in their toens, with all the assuranco of a prime minister, condemned oven this. Infallibility has been so much discussed of late, that to apply such a term to the Pharmacopœia would be moro presumptuous than to the Pope, or a British sovercign, who, according to our constitution, can do no wrong. As a register of the strength of preparations, tho Plarmacopocia is a necessity, and whatever deviation we may mako in manipulation, we should ever le loyal in this respect.

We must not use a microscopic cye to search for little imperfections in it, but wo may suggest improvements, which in the routine of our daily occupation experience has taught us aro necessary. The present Pharmacopocia I consider is a marvel of correctness for sucle a work, talien into account tho arduous task Dr. Redwood had in overcoming the prejudico cuch of the three kingdous had formed against tho previous edition. In this he has been eminently successful, which is somo reward for his labours. I heve to thank him for much information which I have always found him ready to give, and more especially for that containcd in his excellent courso of lectures delivercd here; these form a good groundwork on which to build a Pharmacopoia.

I have sometimes noticed the want of it, and as it is our guide, I beg to proposo that a cony of the Pharmacopocia be always placed on the table at these mectings.

University College U.osmial, March 2, 1870.
Nove.-After the reading of the above paper, a discussion was entered into by soveral members present; and as it relates to subjects in which all our readers aro intercsted, wo reprint it ontire.-ED. $\mathbf{P H}_{\text {. Jour. }}$

The Chairman felt sure that, after the way in which the members had from time to time recoived the observations of Mr. Martindale, ho had only to suggest to them that which they were anxious to give him, and that was a hearty vote of thanks for the important practical remarks which he had placed before them. He (the Chairman) did not think they would regret the adjourment of the discussion till that night, if only for the observations to which thof had just listened. Mr. Martindalo had suggested that every formula of the Pharmacopocia should be submitted to this Society in the same way that every clause of a liill was submitted to the House of Commons. It had boen shown that evening that great practical results did arise from bringing these formule before them and discussing them. At the last mecting it was suggested by Professor Attfield, that they would be glad to receive tho suggestions and experiences of tho younger members of the pharmaceutical body, those who are daily in practical contact with tho working of the Pharmacopocia; and he (the Chairman) hoped that some of those present were prepared to give some of their experiences, to state their difficulties, and to ask for an clucidation or explanation of them.

Mr. Gerrard (of Guy's Hospital) said he wished to make a few remarks with regari to compound ointment of mercury, which he had found a difficulty in preparing. The directions in the Pharmacopoeia were io add the oil to the melted wax. It did not say that the oil was to be hot, and from the directions given, he should infer that it was to be cold ; but when they added oil to tho wax it was immediately precipitated. When the mixture was nearly cold they were told to add camphor and ointment of mercury, and in doing so they got an unsatisfactory preparation, especially in making a large quantity. The Pharmacopeia instructions for making this ointment in suall quantities might be practicable, but they were not practicable for making the quantity ordered in the Pharmacopoeia. In denling with a large quantity of camphor,-say four or six ounces,-it was difficult to get it in a state of powder suffciently fino to make a smooth ointment; and the only way of getting aver it was to melt the wax and oil together, then put in the ointment of mercury, and stir well ; and when the mixture was getting cold, or towards a solid state, to put in the powdered camphor, and, by stirring it, they would get an ointmont perfectly smooth and consistent. Then, again, with reference to hemlock poultice. In the Pharnacoperia it was ordered to be made with dry powdered leaf; but would it not be better to use extract for this preparation? because they knew very well that in the experience of eminent men the dry leaf of henilock was found to contain scarcely nay active principle. He had heard the opinion of soveral eminent medical men upon this point, and in the honse where he was, they were in the habit of using the extract instead of tho pordered leaf, and found it answered better.
Mr. Dartwright remarked that Mr. Martindale had dismissed the subject of fresh tincture of orange-peel more briefly than he should have liked, because it so happened that he had made tincture of orange-peel from fresh Seville oranges and rectificd spirit, with all the assurance of certain eminent men at his back, that it was considered inmeasurably superior to the officinal form, that of the

British Plarmacopoia, but unfortunately, the Bratash public preferred the tincture made with the dized peel. Ho should, however, like to know what proportion of fresh peel Mr. Martindalo would substituto for the dried,

Mr. Martindalo thought about double the quantity, the peel being cut thin.

Mr. Sandfurd considered one and a half for one a fair proportion, the thinly cut fresh peel contained much less of the inert white interior thar the dried.
A member remarked that there was a deficiency of tests given 112 the Pharmanapoeia for some of the articles ordered. For instince there was no chemical test for glycerme.
The Chairman said it certanly appeared to lim to be a defect that in the Plarmacopecia that there was no test but that of specific gravity for glycerine, which was daly becoming more and movs important. It was a fact that some specimens of glycerine possessed all the physical characteristics required in the Pharmacopeeia which were not fit to be used in making tannic acid glycerine and the gallic acid glycerine.
Dr. Redwood said it was new to him to hear thot the Pharmacopecia was deficient in the number of tests ordered. A statement had, indeed, been made in quite the opmsite direction durng the discussion of the subject, namely, that the Pharmacopeela required too nuch in the use of chemical tests and in the requirements of purity in the substances employed. He was not prepared to say that then might not be individual cases-ho had no doubt there were, and the one referred to might be of that description -where the tests were not so complete as they might be, or as it was desirable that they should be. It was, however,- and he had adverted to the fact beforo-absolutely impossible to give such a complete system of tests of the substances ordered to be used in medicine, as would ensure the absence of all impuritios in them without greatly complicating the work, and enlarging it to an cartent which would be very undesirable. Whilst they give the leading tests for indicating the principal impuritics most likely to occur, and which it was most important to guard against they must leave much to the knowledge, still and judgment, of those who had to put the work into effect. sind, therefore, whilst they were educating their young men, and enabiing them to provide against the introduction of such impurities in medicincs as would interfere with their eflicasy, they must from time to time, in successive editions of the Pharmacopoia, increase the number of tests, as they had done in those which had recently appeared. But he could not say that he ever expected to see a Phamancopocia that would give tests for the detection of all impurities.
At the conclusion of the mecting, Dr. Redwood made some remarks on the preparation of the diluted nitro-hydrochloric acid of the Pharmacopocia. Ho said this had already been mado the subject of several communica. tions by gentlemen, who alluded to the fact that, when made as directed in the Phammcopocia, it was liable to considerable variation in strength, arising from the loss of some of the evolved gases. Mr. Porter had suggested a special appnratus for its preparation, by which the loss of gas was avoided ; but Mr. Porter's apparatus, although ingenious, was rather complicated and expensive. Mr. Porter, in his paper, alluded to the use of a nore simple arrangement, but did not recommend
it. Now, ho (Dr. Rechwod) found that by using two Winchester cuart bottles, putting the mused acids into one, and the water into the other, and comecting tho bottles by a tube, partly of glass nad partly of india-rubber, tho loss of gas may be almost entirely prevented, and a unifurm product obtained, which nearly answered to the tests given in the Pharmacopeeia.

Mr. Thden said he thought in one respect the product, in whatever way it might be made, would not answer to the Pharmacoprein test, amd that was in its nentralizing power. Ho found by calculation that the acids, in thoir ummixed state, had less nututralizing power than was assigned to then: when maxed. But he had alsushown that the acrds, if mixed at once with the water, yiehled a similar result to that obtained by the Plarmacoperia method it it be kejt exposed to the light for about a week.

Fluid Extracts.

b. d. gray bahtlett.

No topic commected with Pharmacy has, during the past year, occasioned more discussion than the subject of this article; and, indeed, its importance, espectally as the revision of the Pharmacopem is near at hand, justifies the amount of labor that has been bestuwed upon it. When the list of thes class of preparations was extended at the last revision, it was hoped and beheved that many, if not the majority of apothecames would undertake their manufacture, instead of relying upon the commercial articles. Thes anticipated advantage has never been realized; at the outset, the high tax upon aleohol, phacing its value above $\$ t$ per gallon, an:d the great loss of menstruum entaled by many formulas seri, usly militated against any attenpt at the preparation of fluid extracts on a scale suited to the wants of the dispensung clicmist. Tho large manufacturers, having facilities for the economical use of alcohol, not to mention a suspected conomical uso of the respective drugs, were enabled to offer their prodncts at figures so low, comparatively, as to securo their very general use from economical considerations. These manufacturing pharmacists were not slow in discoverng the immense demand that would arrse for their tluid extracts, could they once induce apothecarics to prepare the weaker preparations, such as tinctures, wines, syrups, and infusions from their "concentrated" products, and they were unsparing in their cflorts to secure such a harvest, and gratuitously furnished "books of formula," giving the requisite information, and enumerating the advantages of the extemporameous process. Self-interest makes conviction easy, and their arguments were not unheeded; mdeed, it may be safely said, that a large majorty of pothecaries, in city and comery, make their wines, tinctures, syrups, etc., from fluid extracts, purchased from manufacturers, and give, consequently, to the former preparations all the uncertainty that pertans to the latter. It will not be disputed that commercial fluid extracts are far below the officinal standard, for this is not only evidenced by the physical properties of the articles, and the experience of physicians, but by admissions of manufacturers, if published doses and formulas can be considered as indicative
of strength. The practice alluded to is most reprehensible; it has been attended by serious detriment to pharmacy in general, and las insidiously mulermined and weakened the respect due to the national Pharmacopesia. It is the duty of every college of phermatey to take a decided stand, and nositive action against this great and growing evil.
It is well to inquiro if the oflicinal processes may not be, to a certain extent, responsible for the indisposition of druggists to prepare fluid extracts; the difficultics in the way of their gencral employment are mumerous, and certainly defeat in some measure, the very object of their adoption. In criticism of the officinal processes for this class of preparations, the following defects and objections may be mentioned :
It is impracticable to prepare powders of the degree of fineness indicated as essential to the proper execution of many processes, and a resort to commereial powders does not always meet the oflicinal requirement of division, and a powder of mecrtain quality may be procured; while in many instances it is easy to decide the value of a crude drug by simple inspection, in a powdered state, this decision becomes usually utterly impossible. No less an authority than Dr. IV. R. Squibb, reporting on rhubarb, selected and powdered in his establishment, acknowledged his inability to distinguish the inferior from the superior varicties by simple examination of them when pulverized.
There is a wastein use of alcohol, unless recourso be had to distilation, which requires suitable apparatus, and the expenditure of time, and fuel.
The processes require much close attention during their various stages. The proper moistening of the powder and adjustment in the percolater ; the gradual addition of menstrumm, the watchfulness necessary to guard against the entire disappearance of the fluid from the surface of the powder, the reservation of a measured quantity of the percolate ; the eraporation of the reasainder at various preseribed temperatures to a definite measure ; the adminture of this with the reserved portion, and the subsuquent liltratration, all unite to render the preparation of fluid extracts laboriuus and difficult. It is a duty which even the accomplished apothecary, in the press of urgent business, is prone to neglect.
If there be any method by which the prucesses may be simplified, without depreciating the quality of the products, it is worthy of most serious consideration.
In this connection a brief review of the literature of this subject seems desirable, and the modifications suggested will be mentimed, with the more prominunt adrantages and defects pertaining to each.
N. Spencer Thomas patented a method consisting in moistening the powder with a fraction of its weight of a suitable menstrum, and, after an interval of maceration, capression of the liquid by a powerful hydrostatic wess, the residue to be repeatedly subjected to the same treatment, until the exprossed liquids, together, measure a pint for each sixtcen ounces of the drug employed. The utility of this process has never been practically demminstrated, as far as the knowledge of the writer extends, and there are certain theoretical objections which practice might or might not remove; aside from this consideration, however, the requirement of a
press of the most porfect and expensive pattern, in itself worth some hundreds of dollars, would condemn its general adoption.
Dr. E. R. Squibb demonstrated, beyoud reasonable doubt, that the process of percola: tion wonld yield, when carcfully and skillfully executed, from sixteen troy ounces of powdered drug, twolve fluid ounces of percolate, representing at least three-fourths of the medicinal properties of the drug employed. Without recommending it for adoption, he suggested it as one means of securing economy in the use of alcohol, and facility in the preparation of fluid extracts. This method, of course, dispenses with all application of heat and evaporation, is casy of execution, and when properly conducted, yields excollent results. The process requires the utmost attention to certain details; as the fineness of the powder, and proper adjustment in the percolator, and, indeed, actual skill and experience are needed to obtain miform :und satisfactory results. On this account the process cannot be recommended for adoption in the Pharmacopocia.
Subsequently Dr. Squibb presented an admirable paper in continuation of the same subject, and brought forward the process of repercolation. This affords excellent products, and avoids the use of heat, and waste of menstruum. A fatal objection to its general employment, in the opinion of the writer, is the complication of the process, the increased attention necessary to secure the several fractional percolates, and the time and labor required to make, with the attending details, three distinct percolations, where at present, but one is required. These considerations alone would discourage most apothecaries from attempting the preparation of fluid extracts, for, while this method would result in saving much alcohol, in comparison with the officinal processes, it would entail even-more labor, and at the present time the latter commodity is relatively more valuable than the former.
Mr. C. Lewis Diehl has also made some practical observations on the process of repercolation (Phamacist, March and June, 1859) ; his experience cuincided clusely with that of 1)r. Squibb, and his conclusions were favorable to the alaptibility of the method to general use. Mr. Diehl made a suggestion in this paper which will be again referred to, namely, to reduce the strength of flund extracts to one-half the present standard of ia fluid vance from a troy ounce of the drug. Mr. Campbell has brought forward a modified method of percolation, resembling, in certain particulars, that employed in the early days, of the displacement process. The writer's first acyuaintance with this pharmacal operation is assuciated with a tapierng perculator, terminated with a stup-cock. In thas mstrument the drug, reduced to powder by grinding, was placed, and the menstruum was gradually poured on the surface until $i \leq$ appeared at the open cock; the latter was then clused and after a maceration of several days perculation was allowed. Mr. Campbeli's modifications of this process, and its adaptation to the preparation of fluid extracts are valuable contributions to our stock of knowledge, and they will exert a considerable influence toward a revision of the oflicinal formulas. The method, in general terms, may be described as follows
Fist. The use of glycerin as a solvent, associated with alcohol or water, or both, is almost invarinble.

Secondly. - The drug, in moderately coarso powder, is moistened with a measured quantity of menstrum (usually four fluid ounces for sixteen troy wunces of tho powder), and properly adjusted in the percolator. Tho menstrum, which should measure, with the quantity used for moistening, a pint for sixteen troy ounces of the drug, is then poured on the powder; when the liquid begins to escape from the powder, the orifice of the instrument is closed, and maceration for three or four days allowed. Percolntion is then re-commenced, and continued by the addition of more menstrmum, until the porcolate measures a pint for every sixteen troy ounces of the drug employed. The advantages pertaining to this method will be hereafter roferred to.
Mr. A. B. Taylor has highly commended this process, whilo oftering a few suggestions for its improvement. In a paper prosented to thic American Pharmaceutica' Association he detailed experiments, with 2 esults highly favorable to the process of MIr. Campboll.

Mr. R. P. Reynolds, in his experiment with this method, failed to completely exhaust the drug with the prescribed quantity of menstrum.-American Toumul of Pharm. Nov. 1869.
Mr. James T. King has made similar observations: sixteen troy ounces of rhubarb requixing twenty-two ounces of percolate.Ibid., Jan. 1870.

Mr. Geo. Kemmedy reports very satisfactory results, obtained while operating upon large quantities of powder; 20 to 40 pounds. -Ibid.
In the opinion of the writer, such a process for fluid extracts should be made officinal as will secure, first, a thorough exhaustion of the drug, without excessive expenditure of time or the exercise of the highest degree of skill; secondly, an economical use of the menstruum with no necessity for special apparatus; thirdly, the use of such powders as can be prepared by the apothecary.
These objects being attained, it cannot be doubted that fluid extracts would be generally made hy a large class of druggists; who, with the reengnized processes of to-day, would regard such a course as impracticable or impossible. The present officinal requirements are like obsolete laws, existing but ignored-their very presence weakening the moral force of every other statute; theoretically useful, practically worse than useless, and better dropped from the pharmacopeia entirely than perpetuated in their present impracticable form.

A radical change is needed: Let processes le adopted, which, while securirg excelient products, will be simple of cacecution and invulve no pecuniary luss, then it may be reasonably hoped that apothecarics will regain their lost prerogative, and be inspired with new confidence in, and respect for, the mational pharmacopozia.
The means for securing these results are at hand. Mr. Diehl struck the key-note to reform, in his suggestion to reduce the strength of fluid extracts to onc-half the present standard, making, as a rule, a pint of fluid extract from eight troy ounces of the drug. Mr. Campbell has ably assisted in the work of reformation, and the combined ideas of these gentlemen will furmish a process fulfilling every requirement. With the proposed reduction of strength, there can be no doubt that the method of Mr. Campbell would
always furnish perfect products, even though performed by an unskilled hand.

It is proper to remark that reforenco is made to the manjpulations advised by Mr. Camplell, rather thai to his extensivo use of glycerin. Whilo glycerin is at valuable solvent, and, coubtless, highly usuful in many cases, the writer is by no means willing to admit its indiscriminato employment, as proper or desirable.

The opinion has beon expressed by several experimenters, and somo positive testimony las been given that Mr. Campbell's process will not exhaust the general:ty of drugs in the proportion of sixteen troy ounces to the pint of percolate. The evidence in favor of its being capablo of vielding fluid extructs of the strength proposed, is entircly satisfactory, inasmuch as no oxporiment has yot been published, whoro the proportionato amount of percolate requisite for complete exlaustion of the drug, exceeded twenty-two fluid ounces for sixteen troy ounces of the poudder.

To recapitulate, the advantages to be secured by the pr posed method aro as follows: complete exhaustion of the drug, independent of the greatest degree of skill on the part of the eperntor; the utmost facility of preparation, with but little expenditure of time and attention; economy in the use of the menstruum ; the use of powders properly prepared by the druggist himsolf; the absence of special or expensive apparatus; the avoidance of the deleterious effects of heat and evaporation, and cullectively the much desired result-the manufacture by apothecaries of their own fluidextracts, to the exclusion of the inferior commercial substitutes that nor flood the market.

On the Teohnical Analysis of Soap.*

bI M. gaston tissasintel.
The name of soap is given to true salts formed by combining fatty acids (oleic, margaric) with alkalies, such as soda or potash. phe quality of a soap is ascertained by determining the proportion of fatty acid and alkali which it contains, and also the foreign substances-such as chlorides, alkaline sulphates, moisture, \&c.- which always occur in varying proportions.

Fatty Acids.-Dissolve 5 grms. of the seap in question in $\frac{1}{2}$ a litre of distilled water heated in a porcelain capsule; when dissolved, add a slight excess of dilute sulphuric acid, and let it buil for some minutes, so that the fatty acids may become separated and float upon the liquid. To weigh the fatty acids, cool them, and they will form a cake of grease, which must then be fused, in order to dry them, in a small tared porcelain capaule; this capsule, when again weighed, will give the amount of fatty acids corresponding to $\overline{5}$ grans. of soap.

Wax may also be used to facilitate the weighing. After the first part of the operntion has been performed, and the fatty acids are floating, add 7 grins. of white wax, which will melt and ming!e with them ; cool the whole, tako out the cake of wax, and weigh it, previously drying it between doublo filtering papers. The oxcess of weight gives the proportion of fatty acids.

Ash,-Soda.-Calcine, at red heat, 5 grms. of soap in a platinum capsule. Weigh the ash thus obtained, and dissolve it in 200 c . c.
of distilled water ; determine the proportion of sodit in $100 \mathrm{c} . \mathrm{c}$. by means of nomat sulphuric acid (alkalimetric standiral), cvaporate to dryness, and notice the action of bichloride of platimum upon the residuo dissolved in water, to ascertain whether it consists of potash or sola. The estimation of tho soda may be verified by directly taking the alkalimetric standard of tine soap (5 grg)

Chloride of Solium.-Estimato the chlorine in 50 c . c. of the solution with the stindard silver solntion.

Sulphate of Sola.-The sulphuric acid is cstimated in the remaining 50 c. c. of the solution with chloride of barium.

Non-Suponified Jutty Bodies.-Theso also occur in soap, and maty be detected as follows :-Dry 5 grms. of soap at 110°, after which treat it with common ether. Agitate it with that liquid in a flask, filter it, wasla with ether, and evaporate tho solution at 100°; the residue will be the non-saponified fatty bodies. The ether may, perhaps, dissolve a little of the soap; it must, therefore, be ascertained that the residue is really fatmelt it, and try whother it will soil glazed pajer.

Non-Saponificd Carbonate of Soda.--Cut 5 grims. of soap into small fragments, and treat them with boiling alcohol, Which does
not dissolve carbonate of soda. Filter and treat the insoluble residue with alcoliolic acetic acid, which dissolves the carbonate of soda without acting on the sulphate of soda and chloride of sodium. The acetic solution, evaporated to dryness and calcined, lcaves, as a residue, carbonate of soda. Weigh it, and, if verification bo required, taie its alkslimetric standard.

Glycerine.-Dissolve 5 grms. of suap in boiling water, decompose it with dilute sulphuric acid, and separate the isolated fatty acids by decantation. The liquid, which is completely nentralised by the carbonave of suda, is now evaporated to dryness over a water-bath at $100^{\circ} \mathrm{C}$; the residue, composed of sulphate of scda and glycerine, 18 taken up by alcoliol, whel dissulves only the latter ; it is then filtered and evaporated to dryness, when tho residue will be glycerne. This is again taken up by alcohol, re-evaporated, and the residuc again weighed, after ascertaining that it possesses all the properties of glycerine.

Water.-Cut the soap into thin slices; weigh 5 grms., and dry them on stove nt $120^{\circ} \mathrm{C}$.

Composition of various kinds of Soay.				
Substances estimated.	I.	11.	III	w
Water	16.12	24.7\%	1755	1409
Soda.	4.98	7.30	8.48	9.01
Fatty Acsus	37.99	64.50	71.45	74.68
Chlonde of sodium.	6.30	3.12	2.12	2.00
Sulphate of Soda.	0.72	0.32	0.40	0.22
Fatty l3odics.......	1.05	-		-
Glycerine	2.59	--	-	-

Total
$100.00100 .00 \quad 100.00100 .00$
On Banme's Arcometer.
BX 35. BATDIN.
Sundry divergences occur in Baume's arcometer, according to different authors. Upon examining this instrument, I found the figure
giren fur 85 parts of distilled water and 10
parts of well-driced chloride of sodimm to bo $1 \cdot 111$ absolute clensity at 15°. Francocur found 1.109; Sunbenan, 1.116; Terlach, $1 \cdot 114$; and M. Conlier, Professor of Chemistry, gives 1,110 a 25 . The work of the latter may be considered as the most mportant of those upor tho subject.

Repeated experiments have convinced me that the figure of density $1 \cdot 111$ is most correct; I have therefore, employed it to reconstruct the actual scalo of Baume. Tho figure, 1-116, given by Soubeirith, does not correspond with Bamme's formula (85 parts of water and 15 of salt) and indicates that the instrument marks 60° in a sulphuric acid whose point of concentration is madefned; this arbitary scale is by no means that of Baume. Serious results arise from theso discrepancies-manufacturers aro uncertain as to which Baume-areometer they should trust, and endless disputes ensue. Brisson's densimeter should be the only one employed, as any one can manage it.
Comparison of Bettme's Scale (Acidimetric)

	102th the S	f Deus	
Paume.	Frmaceiar.		Soubeiram
$\mathrm{D}_{6} \mathrm{f}$ rues.	Density.	Ifersity.	Density.
	$100{ }^{\circ}$	1060.0	1000
	1034	1034.4	1036
10.	1070	10713	1075
15.	. 1109	11110	1116
20	11 j 1	1153.8	1161
25	. 1196	$1200 \cdot 0$	1210
30	. $124 \overline{5}$	$1249 \cdot 9$	1262
30\%..... 1299	$1304 \cdot 2$	1320
40	. 1257	1363.5	1383
45.	.. 1420	$1420 \cdot 4$	1453
50	. 1490	$1500 \cdot 0$	1530
$55 \ldots$ 1567	1578.9	1615
60.... 1652	$1666 \cdot 6$	1711
65.	... 1747	1764.6	1819
70	.. 1853	1875.0	1942
Self-Mutilation.			

It is stated that a youth named Jacob Harnish, seventeen years old, deliberately cut off his foot on Saturday last, in Lamputer, Pemn, and when asked why he did it, ruphed that we are told if our hand or fuot uffend us, we should cut it off. He had struck threo blows, and picking up the fout, hurled it some elistance from lim. The mutilation proved fatal.

Some years aro we knew of an instance in whicla a man castrated himself on the same principle. Suppose every one was as couscientious in thus giving the words of our Siviour a literal interpretation, how many "lame, halt and blind," and otherwise mutilated would be met in onr daily walks (ur limpings ') and what a harvest there would be for surgeons-if indeed, they were nut all in the same hnat ' - Med cond Suig. Mejurtcr.

Writing Prescriptions,

Dr. Monorl in the Bullitin de Therapeutique urges physicians to use no ablureviations or figures in writing prescriptions, but to write everything out in full. Instead of

Tinct. op. deod.,.................f亏iss, he mould have
Deodorized tincture of opium, one-and-n-half fluid drachms.

He adds: "I am certainly not the first to express the whsh that prescription be written so as to avoid errors; God grant that I be the last." To which if there were any lhopo of it, we would say; Amen !-Med. and Surg.
Reportcr:

CANAEDAN PHARMAOEUTRGAL SOCIETY.

President, - - - Was. Eldiot, Esq.
The regular meeting of the Suciety take placs on the Finst Fhiday erening of cach month, at the Mechanics' Institute, when, aftce the transection of busincss, there is a paper read, or discussion engaged in, upon subjects of intercst and value to the members.

The Suciety admits as munbers, Chemists and Druggistsof good standing, and their casistants and apprentices, if elected by a majority rote, and on paymenl of the following fecs:
Prinoipals,
$\$ 400$ per Annum
Assistants \& Approntices, 200
The Journali is furnished phes to all members.
Partics uteishing to join the Sociaty mat! send is eir names for proposal to any of the members of the Socict:y, A copy of the Constitution and By-laws of the Society will be furnished m application.

HENRY J. ROSE, Secretary.

THE CANADIAN

 E. b. SHUTtLEWORTH, editur.

TORONTO, ONT., MAY, 1870.
Correspondence and geneml commanications, of a claracter suited to the oljects of this Joursal, are invited, and will always be welcome. The writer's name should accompany his communication, but not necessarily forpublication.
Subscriptions will not be acknowledged by letter, ns our sending the paper may be taken as suflicient evidence of the receipt of the money
All communications comected with the paper to be aldressed, post-paid.
"Emion Canimas Phanmaceutical Joumsal Ton:osto."

DOOTOR AND DRUGGIST.

Pharmacy has truly been termed the handmaiden of medicine. The relations of the two professions are of the closest and most intimate character ; each has the same end in view, and withont one the other could not exist. But though mutually dependent, the physician and pharmacist pursue different yet parallel paths; the calling of each is clearly marked out and well defined, and the shortest way to success in either is to "keep the road." There was a time in carlier, and we might say barbarous days, when the two vocations were vested in the same individual, but in that age medicine and pharmacy made butlittle progress. Thetermsignorance, superstition, and quackery best describe the period when the calcination of a toad was the ultimatum of pharmaccutic art, and the administration of ita ashes one of the highest achievements of therapeutic skill. Wo do not mean to say that this miscrable state of
things was to bo attributed, solely, to the fact of the dispensing of medicines being in the hands of the physician, but we think, novertheless, that it had a retarding influence, and this is the moro plansiblo when wo consider that it was not until the severanco of the two callings thet pharmacoutical scienco could be said to exist.

There are times and circumstances when the physician may be perfectly justifiable in exercising this donble vocation. In regions where the services of a pharmacist camot readily bo procured, and whero drug stores aro innccessible, the doctor is compelled to dispense his own medicines. In a new comntry like our own this state of things frequently exists, but if a druggist is at hand wo hold that to him alone belongs the right of preparing medicines. We know that there are very many incompetent and careless druggists, but as far as our own observation goes the dispensing physician is, as a rule, the worst of the lot. It sometimes happens that doctors of this class pay more attention to their drugs than to their patients-this is generally tho case when drugs pay best-but it will nearly always be found that one or the other suffers. The profession of medicine or rather the practice of $i t$, demands all the skill, and the utmost concentration of effort which any single individual can bestow upon it. The qualifed pharmacist can relievo the physician of much responsibility and no inconsiderable share of labor by performing the part which legitimately belongs to him, and we know that in doing so he will have amplo scope for his energies also. The testing of drugs-the estimation of their streugth-the detection of adulteration-the manufacture and preparation of the various compounds, and the dispensing of medicine, are quite sufficient to engross the whole attention of one man.

But in order to perform, satisfactorily, these multifarious duties, a thorough qualification is necessary, and this can only be attained hy preparatory training. If the confidence of the medical profession and the public is to be gained, it can only come through the channel of education. On this point we cannot do better than quote a few paragraphs from the Michigan University Medical Journal. In alluding to the subject of pharmaceutical education in the United States a writer says :-

But a very small proportion of our druggists have had facilities of college education in pharmacy. Without more oxceptions than rules admit, they have received only the industrial opportunities of the drug-shop, and the tuition of its untaught masters, toward scientific preparation for life work. No profession fumishes occasion for more "selfmade men;" perhaps no other scientific pro-
fession includes a larger number of such; young men, who, from chance books, with poor advico and fragmentary tuition, have made their own paths through to the highways of science, where they are now marching among scholars, and leading in research.

Difficulties may strengthen individuals, but it has not been shown that cducational deprivation serves to cultivate classes of men. Supposo we had nu medical colleges. Here and there a "learned blacksmith" would raiso himself, with an acquired wealth of medical science. But those who have attempted the study of medicine in the precepter's oflice, and have thore tried the efliciency of instruction imparted by doctors full of business and rusty in learning; and then have foumd what lectures, and demonstrations, and cabinets, and social incitement can do to stimulate the learner, clucidate the subject, ar:d make thorough the philosophy, from experience may judge of the possibility of a scievtific prafession elucuted without colleges. It is no personal discredit to carnest young men, who havo served three or five years and become first clerks in our best drug stores, that, when with worthy purpuso they leave business and enter upon a college courso of pharmacentical chemistry, they are most often found deficient or destitute in the alphabet of the science befure them. A very small proportion of American pharmacists have been instructed in the colleges of pharmacy which are established in our larger cities, and which are the only distinctive schonls of pharmaceutical scienco in our country.
It is not alone because adulterations and dilutations abound in the drug trade, that the pharmacist (for the most restricted exercise of his dutics) should invariably be an amalytical chemist. No other training can equal that of chemical analysis, especially quantitative analysis, in giving that discipline of habitual accuracy and care, needed to make the pharmacist a safe dependance for the physician. There may be difference of opinion as to whether the first years in the shop preferably come before or after college instruction. Certainly the youth already schooled in science, disciplined in accuracy, informed of the materia medica and practiced in its preparations, will profit more richly by experience, will cause his employer less, annoyance, and will serve the public more securely dur' g briefer probation, than can be untal s.it.

While people and profession lament the imperfection of our teclinical and professional college syatems of education, the fact has been overlooked that pharmacy is practically destitute of any college education. When the time comes that over Sfty per cent. of the American pharmacists graduate at insti-
tutions which shall requirs yenrs of study and training, and employ the entiro timo and energy of students; then wo shall doubtloss hear moro criticism unon the quality of pharmacentical cducation than we do at presont. But wo should not await the arrival co that period, before we begin to consider to what oxtont studies of botany, physiology, and mineralogy, of libozal general culture, and of modern languages, ought to bo required fur university gradation in pharmacy.

In tho German Universitios pharmacy is as much of an orginized and provided courso as is medicine ; Franco has her thoroughly cstablishod schools of pharmace ; and Ibritain has numerous laboratories of phamat ceutical chemistry. In Ancrica, the young pharmacist who is self-impelled to qualify himself for his vocation, has been obliged to gather instruction at colleges devoted to other purposes, and to adapt the fragments to frame his own education. At the third International Pharmaceutic Congress, held in Bavaria last September, and in which our nation was represented, it was unamimously resolved that "high schools of pharmacy, as an integral part of the universitics, with graduated pharmacists as professurs, are essential to the interest of the public and the profession.

Pharmacy is a pursuit which must be scientific, not only for the safety of medicine and socioty, but for its own relief, Years of practice may give fucility in dispensing, deftness in wrapping and tact in sale ; qualities having a positive value in the labor market; but they do not relieve tho vocation from the drudgery of trade and the humiliation of ignorance. It is pitiful that a man with the name of pharmaccutist should plod through life ignorant of the material in his hands ang the changss under his eye, deaf to the chemical language by which all matter is defined, and blind to the scientific movements stirring the world.

THE ADVENTURES OF OINOHONINE.

Despite the exertions and assurances of mauufacturers of the cinchom alkaloids, it appears to be utterly impossiblo to find a market for cinchonine. It is vain to quoto Wood and Bache, or Dr. Turner, that sulphate of cinchonia is nearly equal in nntiperiodic power to sulphate of quinia; the druggists won't believe it, neither will the doctors, and a man shaking with ague doos not usually feel in the humor to become the subject of experiment. Cinchonine, as such, eqidently won'tsell ; another expedient must be adopted.

Try another name, says one, call it Swect Quinine. The experiment is tried and sweet quinine is launched upon the world with
overy outward prospect of success. Brought out under the fatherly hand of one whose namo was thought sulbicient guaranteo for the gonuineness of tho preparation, it flomished for a time, but, aliss for wivect quinine - the hand of the chemist was upon it-the deceit was mureiled-its doom was sealed, and its end was bitterness indeed.
Once mute thrown upen the world, thas adventuruns alhaluid finds its waty to the English metropolis, to reappear on this side of the Athutic in a dignity suited to its lato residence, "Light Sulphate of Quimitu; manufuctured bay Lard Bros., Lindyute Ilill, London." The titlo relishess much of the stability of a Lundun liouse, not a worthless proparation withont its maker's name, but "Lord l3ros.," and "Ludgate Hill " no less; surely none will question the genuineness of our alkaloid this time. But what says our Chicago friend, ?The Pharmucist:-"The 'quinine' was submitted to amalysis and found to bo hydruchlurato of cinchonine. The manufacturers have taken adrantage of this resemblance to perpetuate an extensivo and most reprehensible frand, and it is to be hoped that their tield of operations may be transferred frum Ludgate to 'Niewgate,' with the privilege of condactang buamess in the latter lucality for an unhmited poriod." Cruch Phermacist. thas as tou bad, but we will try again.

This time the public are to be approached with greater caution, they must be taught that quinine is not the antiperiodic, but that other cinchoma allanolods, of equal if not superior power exist; and that quinia only acquired the mank of superiority as a febrifuge by renson of priority of discovery. Having been satisfied on these points by a perusal of "The Chemistry of the Cinchona Barks," in the Boston Joumal of Chemistry; and also understanding thoroughly the whole matter from tho careful study of a gratuitous treatise "On some of the Chemical Constituents of Calisaya Bark, and the Methods usually cmployed in their Scparation," the coast is clear for the introduction of the latest novelty in medicine-"Cincho-Quinine;" the history of this valuable preparition is, briefly, as follows:-A manufacturing firm in Boston being convinced that a combination of all the alkaloidel principles of bark would be very desirable, instituted a series of experiments with a viow of obtaining such a preparation. To use their own words"this desirnblo end has been accomplished" and cincho-quinine is the result. According to their statement it contains: 1 , Quinine, 2, Cinchonia, 3, Quinidia, 4, Cinchonidia, 5 , other alkaloidal principles present in the bark.

Mr. Wenzell, a member of the California Pharmaceutical Society, has beon experi-
menting a littlo on this cincho-quinine, and has embodied the results in a paper published in the last numbor of the Pacific Medical and Suryical Juurnal. His conclusions aro as follows:-What cincho-quinine contains neither quinia, quinidia, or cinchonidia, but that it really consists of cinchonia containing about two per cent. of quinicia sud cinchomena, Mr. Wenzell further thmes that to purchaso cmehommo as cmelo-quame at four times its valuo is not by any means economical-a conclusion which our renders will readily endurse, and thank Mr. W. for the information.
Thus closes the third scene in this chapter of humbug, all of whech has been enactod during tho past year. What further attompt may bo made we camut tell, but think it is surely time to clange the programme. To use a vulgar but expressive phrase, cmehonine is "played unt." The opnum alkalods offerel a tempting field, but from tho timely nute on Scilmiu, by Prof. Croft, pubhshed in our last, we think the attempt will searecly be tried.

Cod Liver Cream.

A correspmedent of the Chemist and Ditggist, gives a furmula for the preparation of this delightful compound. The cream is said to accuit itself creditably in cumparison with an average custard. Why not call it Cod Liver Oil ,Custard $\}$ the title is irresis: tably tempting, if not decidedly epicurean. A quarter of an ounce of gum tragacanth, elect, is steeped in sixteen ounces of cold water for twenty-four hours, during which time it should be occasionally stirred; the resulting mucilage is shaken with one-sixth to one-lialf its bulk of the oil, adding to each ounce of the mixture one drachm of alcohol, containing a drop of essence of lemon, almond, and oil of cassia: a permanent emulsion is formed.

An Ancient Pharmaceutical Ensign.
An advertisement in one of our country papers closes with the following patriotic seminder: "Remember the Red Mortar and the Union Jack, that flag which has stood the battle and the breces for over a thousand years, God save the Queen." Not being familiar with the quartering of arms we hare consulted Burke, and other eminent heraldic authorities, but by a strange oversight, the "Red Murtar aud the Union Jack" although of such undoubted antiquity, receives no notice. We sloould like to have the flag for the Museum.

Members of the Society are reminded that the nomination of oficers takes place at the next meeting, which will be on Juno 2nd. Wo hope there will be a gond turn out of residont members.

Action of Caustic Soda on Alcohol.
At a recent meeting of the Chemical Snciety, Mr_{r}. (Ghapman announced the fact that canstic sula is nut mercly mable to dry : alcuhul, lut that it actually hydrates it. In. vestigation proved the sodium to havo taken the place of the hydrogen of the alculoul, whilst the displaced laydrugen takes the placel of the sulium in the caustic sodia, thus producing water.

The Canadian Literary Institute report a want of full success in-teaching chemistry from tho difficulty of obtaining a suitable text book. If any of our readers think they can eclipse Fownes, Rascac, Olling, Walliamson, or Irande amd Taylor, an excellent opportumity for authorship is presented, which, if successfully prosecuted, might relieve the antharities of the Institute from ; what must really bo a paiaful and perplexing dilemma.

BOOKS AND PAMPHLETS.

Archives of Ophthamology and $0_{\text {tology; }}$ Edited atd printed, simultanennsly, in Enghsh and German. lis Prof H Knapp, Mi. ., in Now York, and Prof. S. Moos, M.D., in Heidelberg. Vol. 1, No. 1. New York, Wm. Wond \& Co.
This jourmal is especially devoted to sulb-1 jects relating either to the pure anatomy and physiology, or to the pathology and therapeutics of the orgums of sight and hearing; and from the number befure us we think that the departments of ophthalmic and aural surgery have good reasm to be proud of the publication. The high standing of che; editors is in itself a suffictent guarantee of the character of the work, and amongst the contributions we notice the names of many of the monst eminent ophthalmolugists and otologists of the uld and new worlds. The present number comprises about 360 pages, and is illustrated by numerous woodents and ' lithographs, together with several very fine colored plates It is propused to pribhsh the "Archives" half yearly, in spring and autumn ; ench number to contain from 200 ! to 30 n pages, and two numbers to furm a vulume. The subscrigtion price is $\$ 7$ Ameri- 1 can currency, per annum, which may be sent to the publishers, Win. Wond \& Co, New York.

The Ants: Chicago, April. Vol. 1, No. 2. This is the tate of a new monthly, devoted to science and the industrial arts. It is cun ducted hy Mr. Juseph M. Hirsh, a gentleman whose name is dubutless famhar to many of onr renders. The joumal contains much that is interesting to druggists, and cannot fail to prove accerptable to the general reader. The suluscription price so 81 per aumum.

OANADIAN PHABMAOEDTIOAL SOOIETY.

The regular monthly mecting of the Society was hold in the Lecture Roum of the Mechanics' Institute, on Frudny evening, the 0th inst. In the absence of the President, the chair was taken by Mr. Dunspaugh.
After routine business had been disposed of, the fullowing new mombers were elected:

minciral.

J. V. Bugart, M.D., Trenten. assistanze.
C. A. Van Felson, Chatsworth.

Alfred White, Trenton.
The librarian acknowledged the receipt, from R. W. Elliott, Esq., of four volume ${ }_{s}$ of Thimson's Chemistry, as a dunation to the library.

The Coumattee on Text Books handed in the following hist of books, as best suited tn the use of students :

GENEKAL chemisthy.

Wilson's Chemistry, edited by Stevenson Macealam, M.D.
phaibaceltical chemistry.
Wittstein's Practucal Pharmacentical Chemistry, cdited by Darby.

botany.

Gray's Manual of Botany.

matemia mbilca.

Garrod's Easentials of Materia Medica. pharmact.
Parrish's Practical Pharmacy; British Pharmacujwia, latest edition.

datin.

The Pharmaceutical Latin Grammar.
The chairman, called attention to the fact.
that the next mecting of the Society, was that on whech the nommations of the officers of the Suciety and the Comeil were to be made, and hoped that there would be a full ! attendance on that occasion.
Meeting adjourned.
H. J. Ruse,

Recording Secretury.

An Anglo-American Tarkish Bath.

One of the editors of the Srientific American has been indulging in this Oriental luxury, and thas amusingly recounts his experience:
leader you have withrut doubt, heard something about Turkish baths. You have probably read inore or less about them; but did you ever take one? We have. The "gentle spring's etherial mildness" had given us a cold. The cold brought with it a daily headache Not one of thinse attacks which, though severe for a short time, yield to a cup of tea, and a nap on the sofa; bita a horking treacherous ache that came unannounced, always accompanied with a qualm at tho stomach, and then left, to return again when least wanted-if it be possible to suppose de1 grees of desire for that which is utterly undesireable.
"Tho Thurkish bath is tho thing for you," said a friend who has tried ac oxt msivoly, and who-laving probably never boan sick in his life-has been cured of over, thing by this universal remedy. Wo took his advico, and the ticket with which the nivico was necompanied, which in due time secured tho bath.

Presenting our ticket at a littlo ante-coom of the building in which the Anglo-American Turkish bath is administered, we wero presently shown into a little stall, in which privacy was secured by a thick curtain. This would hardly seem necessary, unless it is to carry out the general principle of graduation, which underlics the administration of a Turkish bath, as the subsequent operations and manipulations constituting the entiro process, gradually increase in vigor, until they arrive at a pitch where feelings of delicacy, having decrensed in precisely thio same ratio, nearly vanish.

We frund in our stall a long linen towel, which we were directed to wrap roumd our lnins, when we had completed our disrobing.
Thas towel is an embarrassing affair to a novice, who has not inventive talent to adjust such primitive costume in a permanent man-ner. Having wrapped it about us Ω well as we could manage it, we fell to wondering what would be the next atep in this new experience. Thrusting our head out at one side oi the curtain, we found a swarthy Mongolina standing sentinel at the door of corr cell. This indiviaual had a pleasant expression of countenance, but his clothing was as meager as our own; though so much more gracefully and securcly adjusted, as to make us hlush fnr nur own want of taste in matters of dress. We immediately put ourselves under instructions, and succeeded in getting the thing on, in a mamer that we fancied wnuld not wholly uisgrace a primitive barbarian.
Wo were then inducted by the man and brother who had us in special charge ai this stage of the proceedings, into-Whew !-a room heated to 120° Fahrenheit, where we felt as though we would at once expund and hurst npen, like a roasted oyater.

With what gratitude we looked upon our Mongolian friend, who at this instant relieved us of all our oppressed feclings by clapping upon our head a large sponge, filled wath tepid water, which ran down our beard, and o'er our scanty robe, now sadly in need of readjustment, but not so extensive in its enviromment as to absorb much time in the operation.

In this room we took a seat, and put our feet in a small tub of hot water, opposite a small boy, young in years, but much older than ourselves in experience of the AngloAmerican Turkish bath. This old boy infurmed me that he "took it offun." We inquired had ho rheumatism? "No." Had lie gout? No." Did he take the baths to relieve the system of former mercurial treatment? "No. Ho took them for pleasure." We looked at his feet. They resembled infant boiled lobsters. We looked at our own; they appeared like large boiled lubsters. Nevertheless, we experienced a sort of pleasure in inspecting them, analogous to that expelenced my youth, when reading of nartyrs compelled to walk over red hot ploughshares. We came to the conclusion that the sufferings of those martys had been mentally exaggerated. We now deemed it quite possible tu enculnter anythang in the way of heat without much pain.

At this instant appeared at the door an.
other barbarian, clad in a pair of calico pantaloons of the latest unt, only extromely short at both ends. Wo judgo the legs cound not havo been more than eight inches in length. Ho was a grim and gaunt barbarian with a mustache, and an cye that seemed to glow with eager anticipation. Lake the spider in the fable, thes attendant invited us inte lis parlor, and lihe the fly in the fable, wo accepted his invitation. We found the tesselated marile floor of this apartment so hot that wo cculd not rest our feet unon it, but tho harbarian placed under them a wet towel, which felt good and comfortable.

Glancing at a thermometer which lhung near, wo found it marked full $140 .^{\circ}$ The barbarian turned down an hour glass, of the extreme aecuracy of which we feel some denbts, and left us to watch it and the thermometer. Whether the labor of this watch. ing was sc sovere, or whether it was because the reom was so warm, we seon found ourselves clripping with perspiration from millions of pores. We tried to recall our physiolosy, and to speculate upon the source from which all this fluid was drawn, but foumd ourselves capable of nothing but watching the thermometer and the hour glass.
From this not unpleasant Inferno, barbarian No. 2 took us into a little room whero we saw the last of our primitive raiment. Here we wero placed prone and shampoved. That is, wo were rubbed and scrubbed by the barbarian ; wero pulled and hauled and tonseled and pumped upon by a hoso in the hands of the barbarian ; were soaped, brushed and kneaded; our limbs were stretched and twisted, and our head was rubbed until consecutive thought was an utterly inpracticable achievement.
Pop! went an explosion like " Kentucky rifle, at wheh we jumped up in alarn. We were reassured by the barbarian, who explained how the tiang was done. This he did experimentally on his own person. The hand is held so as to form a sort of cup, which is filteu with suds. Brought suddenly down upost the flesh it makes a lond crack, lut dues not hurt much. Doin we laid again, and the barbaman fired a successive volley, ending in general firmg, all along the line of wir spane. Then we were again drenched ly a discharge of hot water from the hose, and plunged into a large vat of pure waterat 70°. We found the power of consecutive thought at once fully restored by this plunge, and immediately analyzing our sensations, fuund them to be wholly Oriental.
We felt an intense longing for fleet horses, and tents in the desert; for flocks, and herds, and opuum pipes, and harems and sherbet. and coffec ; for loose trousers, and shues with pointed and turned up toes, and a turban. We trisd a worl or tro of Arabic, but whether it was from our ill pronunciation, or whether the barbavian was such only in the matter of his skin and dress, we could not make him comprehend us.
The free use of towels having removed the moisture from our cuticlo-that is, the rudimentary cuticle which the Anglo-American Turkish bath permits to remain-wo began to resume delicacy and dress in the form of a linen wrap, which we folded about our person, and wo were then led to the cooling and drying room, where we were placed in an casy chair whth a suppurt for our feet, and abandoned to rest and dreams. Opium and coffee are not served, which is considered an improvement upon the Oriental custom, but
a refreshing drink of hat lemonado is furnished in the first stage of the sweltering pro :ess.

From a peruil of Dlissful rest wo vere aroused to resume cur cucry day day cress and rovisit the earth, which wo were all the more ready to do from a feeling of intenso lunger experienced at the moment.

Issuing from the establishment, we heard tho bells strihing six 1. 1m., and could almust imagine the voice of the muewin calling to prayer from distant minerets, and perfuncs of "Araby the blest". blending with the less aromatic onlors of our metropulitan asmusphere.

The Philosophy of Cataplasms

The Juenmell dis Conmaisantas Malicales Imblishes an article, by Dr. Iterbert, on a subject which may not be uninteresting to families . viz., cat.rplasms, those especially which have mustard for their base. The seeds of tho blach Rind, which, in a pulverized state, are used for pulltices, awo their proprietics to a lipuid, acii, and volatilo substance, being nothing but essence of mustard. This, however, docs not exist ready furmed in the seed ; it is generated by a kind of fermentation, caused by the action of an albuminoid body, called myrosine, which plays the part of leaven, on a peenliarly fermentescible compound, mysumate of potash. This transfumation which has been called sinapisic, can only take place by the intervention of water at a temperature higher than freezing point, and luwer than severty-five deg. centigrade, those being the usnau conditions requisite for producing fermentation. This is a circumstance which is not commonly taken into account in practice. The generation of essence of mustard diminishes under temperature rancing between fifty leg. and seventy fivo deg. centigrade, and entircly ceases at the latter. Hence, bolling water, or even such that cannut be born by the hand, will spouil buth the punltico and the simapized fuct bath. Again, alculaul, acids, metallic salts, and any other agents having the power of stopping fermentation or retarding it, are detrimental. Besides, the the principles mentiune, d through whose joint action the essential oil of mustard is produced, the seeds of this plant contain various others, among which there is a fixed and inactive oil, having some of the properties of that of rapesech, and which may easily be extracted from mustardpowder, either by strong pressure, or, better still, by acting upon it by lixiviation in sulphuret of carbon. When this oil is estracted, what remains is much mure puwerful, and will, mureover, keep indefinitely. Many years ago, M. Robinet attempted to bring this mustard-flour, deprived of its fixed oil, into general use ; but prejudice and routine proved too strong for him, and it was not until this jowder was gummed to paper, then cut into squares, and sold in elegant tin boxe., that it came into fashion. But what every family should keep in mind is this, that mustard puoltices unght nut to be made with hot but lukcwarm water.-The Druy-gist-N. Y. Mcel. Joural.
Michael Faraday.

Tho fulluwing interesting shetch, taken from Dr. Benco Jones' "Life and Letters of Faralay," appears in the Scientific American:
"Toward the ond of the last century, in
ant obscuro part of London, over some stables in in yard, lived an honest blacksmith maned James Farndiy. Ho was the sun of a stunemasun anlu iiwer, and was one of a family of ten children, all of whom were laboring mon and women in the hunblest walks of life.
"James hat married the daughter of a farmer, and "as a member of a peculiar religiuns suct called Sandemanian, nfter its founder, and was a thoroughly religions man. He had four children, Elizabeth, Robert, Michact, and Margaret. Michaed was bom in 1501. ad whes a little boy used to tend his baby sister in the stable yard, and sometimes was able to earn Ω penny by holding a horse or rumning an errand. When he got to bo big enough to be tratal with parcels he was regularby installed as a nowspaper boy, nud on Sumbays han.ied through with his business so as to be at home in time 'to make himself neat and to go to chureh with his parents.' Robert cliuse the father's professiun and was nymenticed to a black smith. He appears to have been a generous man, as ho used uccasionally to give his brother Michnel money to go to chemical lectures or to buy apparatus for experiments; but we som lose all track of him, and his fame never went beyond the somd of his anvil.
"We are not toll why Michael was apprenticed to a bouk binder rather than to some ther mechanic, but can infer tiant he read the papers ho carried and showed an early fondness fur books, so that his father placed lim at a trade where he could earn something and yet have an opportunity to ruad. The bouk-binder and stationer with whom Faraday learned his trade was a kind master, and eridently plensed with the fidelity and industry of his apprentice.

Wi ind that Faraday, rhile binding books, took uccasion to look at their contents, and among other works that fell into his hands was one by Mrs. Mareet, on chemistry. He had it geat fancy fu: proving the accuracy of all the statements in the book by simple experiments, and spent all the pennies he could spare in procuring the necessary apparatus. An article on clectricity, in the 'Encyclupedia Britannica,' particularly attracted his nutice, and he set about to construct an electrical machine. His master was so much pleased with the success of this effort that he showed the apparatus to a member of the Royal Institution, who came to the shop to have some work done. This gentleman had some conversation with the apprentice, and finding him uncommonly bright and intelligent, invited lim to go to hear Sir Humphry Davy lecture at the Royal Institution. This was a treat of the utmost importance to the young man. He wrote out full notes of the lecture with such drawings and illustrations as he could make, and afterwards sent them with a letter to Sir H. Davy. "The reply was immediate, kind, and favorable;" and some time afterward a grand carriage, with a servant in livery, drove to his himble lodgings with a note, asking him to call to see Sir H. Dave, and uftering him the place of assistant, jusu vacant, at a salary of twenty-five shillings per week, with the use of two rooms at the top of the honse. On March 1, 1813, Faraday was regularly appointed oy the board of managers to be Davy's assistant. His days of boukbinding were thus brought to an end, and ho became himself the maler of bnoks for other people to bind and to prize most highly:
"Sir Mumphry Dary in a leter to the managers recommending him for the place, wrote that he 'had sulad a person who is desirons to occury the situation in the InstiIntion lately flled by William Payne. His name is Michael Faraday, a youth of twentytwo years of age. His habits seem good, his disposition active and checrful, amd his manner intelligent.'
"The youth of twenty-two years had made a marvolous use of his time previnus to the appointment under Day. He had read everything le could lay his hands upon, and in a mote lonk wrote down the names of the books and subjects that interested him. This he called "The Philosophical Miscellanybeing a collection of nutices, occurrences, events, ete, relating to the arts and sciences, collected from the public papers, reviews, magazincs, and other miscellaneous works, intended to promote both amusement and instruction, and also ty curroburate ur anvalidate those theories which are cuntinnally starting into the world of science. Collected by MI. Faraday, 1809-10.'
"Fortunately this book has been preserved and can serve as a mulel fou all young men of humble origin and slender menns. We are astonished at the catent and varicty of his reading at that early day; as gathered from that collection, and as displayed in a correcpondence with Mr. Abhott, i Quaker clerk. The letters to Abbott, commencing when Farday was twenty years of age, are often verbose, inflated, and ahounding in big wonds, but nevertheless display the early training, study, reflection, and maxiety to learn, of the book-hinder's apprentice. Abbott had been educated at a good school, and hence Faraday looked upon him as greatly his superior.
"'There is a great temptation to quote from these letters, as they cover a pes on of Faraday's life hitherto wholly unknown to the world. In his first letter lie gives an account of some galvanic experiments, and of a pile he hand constricted out of disks of malleable zine (a great curiosity in those days), copper conins, and pieces of paper soaked in a solntion of muriate of sodn.' He was surprised to find that with serem pairs of plates he could decompose the sulphate of magnesia. In another letter ho has a good deal to say in another letter ho hias a good deal to say ing as maintained by scientific men of the present day. 'Pure chlorine has no effect upon regetable colors; but when water is present it decumpuses it, and the oxygen causes t?e clange of color.' He writes to his friend some admimble ideas on the snbject of lectures, how they should be prepared and how delavered, whels show the foumdation upwn which lie afterwards bunt up his ame as the best lecturer in England. Here is athoice passage, written when Faraday rias twenty-one years of age:
"A lecturer falls deeply benenth the dignity of his character when he descends so low as to angle for claps and asks for commenilation. Yet havel seen a lecturer, cven at this point. i have heard him duellifor a length of time on the extreme care and niceness that the cxperiment he will make requires. I have heard him hope for indulgence trhen no indulgence was wanted, and I have heard him declare that the experiment now made cannot fail from its beanty, its correctaces, and its siplication, to gain the approhation of all. Xet surely such an error in the character of a lecturer cannot require
pointing out, even to those who resort to it; its impropriety must bo evident, and I should perhapls have done well to pass it.'
"In reference to the choice of a friend he writes: 'A companion camnot be a good one muless he is morally so; and however engaging may be his general habits, and whatever pectihar circumstances may be com.ected with him so as to make him desirable, reason and common sense point him out as an improper compmion or acquaintanco unless his nobler faculties, his intellectual powers, are, in proportion, as correct as his whtward belavior.'
"And in the same letter he adds: 'In every action of our lives, I conceive that referenco ought to be had to a Superior Being, and in nothing ought we to oppose or act enntrary to H is yrecepts.'
"We have thas a picture of Michael Faraday before he went to act as an assistant to Sir Humphry Davy. The son of religious parents, himself a thoroughly ennscientious man, endowed with gooll henlth and indomitable industry, his start in life was such as to inspire his friends with every confidence in his ultimate success. As som as he entered the Royal Institution le continued the rescarches he had begm with humble means while working as an apprentice, and, with sacha a teacher as Sir Humphry Davy, was soon able to overecome all defects of early training. Davy and Faraday were two widely diffierent characters. The former was also of hmmble lirth, and had heen aided by Mr. Gilbert, who heard that the "boy was fond of makin! chemical experiments," and had by his remarkable discovery of the metals of the alkalies, rendered his name fanous, and had won kinightly honors. Ite had become Sir Mumphry Davy, and it was not long before hekgave up further original investigation, and retired to Genera in Switzerland, where he died un 1829. He was always secking for honors and eternally pining for rank, and in lis carly treatment of Faraday displayed maworthy traits of character. For example, while traveling on the continent, he declined to accept an invitation to dine because Faraday, his Secrctary, was also invited. The host, De la Rive, of Geneva, sent back word, 'then I shall be obliged to give two dimers.' And Davy opposed Faraday's election to the Royal Society. Ihut Faradny utiered nó word of complnint, and never ceased to fecl and express gratitude to his early benefactor.
"It is probable tiatt no man of science ever lived whene whinle life could better serve as a model than Faraday's. Although born poor he never coveted riches, but on the contrary gave upall remunerative occupations in order that he might devote himself exclusively to scientific research of humble birth he never sought sncial distinctinus, lout declined the offer of knighthond, and uiterly refused to accept the ollice of President of the Royal Socidty which was pressed upon him. The humilite. simplisity; singleness of purpiose, and liveliness of disposition never deserted him even in the height of his prosperity; He was ever ready to help a begimen, and seemed never to forget how he had been aided at a critical preriod of his life. He mas andeed a perfect contrast to Sir Mumphry Davy.
"In 1521 Farnday was marricd, and haring been appointed superintendent of the house and hathomary, took his wife to reside in the IRnal Institution. Jie never was blest with children, but lived for forty-seven years of periect hajpiness with the choice of his
youth; the only change being, as he said, in the depth and strength of its character.'
"When Faraday árst went to the Royal
Institution, he took up the study of chemistry with great zeal, and among other important discoveries made by him was that of benzole, to which we virtually owe the whole aniline industry. His resaarches on the condensation of gases, in which he proved them to be the vapors of volatile liquids; also on regelation, on glass, on steel, on alloys, were among his carliest works; but the crowning glory of his life was the publication of his Experimental Researches on Electricity, whieh he commenced at the age of forty ano continued during a period of twenty-six ycars The value of these discoveries to tho worid cannot he easily overrated. We can trace them into practical life, in the electric light, in magncto-electric machinery, in elcetrometallurgy, in the applications of electricity to medicine, in telegraply, and in the success of the submarine cable, and yet the work was carricd on in penury; lie made himself poor that others might be rich, and ho has left a name without parallel in the annals of seience.
"'Hhe Queen of England, no doubt instigated by Prince Albert, assigned a house for Faraday's use in the royal park, at Hampton Court, and had it put in thorough repair for his occupancy. Here he spent the declining years of his life, surrounded by affectionato relatives and devoted frlends, and in the summer of 1867, while sitting in his arm chair at his study window, was suddenly summoned to his eternal rest.
"The same year of his marriage Faraday joined the Sandemanian church by profession of faith, and he afterriards became an elder and used to preach ; but in his sermons there was wanting that clearmess and precision, that faniliarity with the subject, that characterized his lectures on scientific topics. He never adopted the same courso of reasoning in religious matters that he did in scientific. In science he believed nothing without the facts or experimental demonstration; but in religion lie accepted everything with the humblo faith of a Christian."

Eatiscthatous; ir.

Aeflom or Shellac upon some Anflinc Colours. MI. Labourct. - When a salt of rosaniline is added to a solution of any resin, that solution is red coloured, if the salt of anulne is soluble in the solvent used to dissolvo the resin; the colour has, however, a tendency to turn violet as soon as the solution is heated or evaporated to dryncess. An alcoholic solution of shellac, to which fuchsunc has been added, turns, on craporation, to a most magnificent blue colour. This material is insoluble in cther, but soluble in alcohol and aretic acid, the solutions exhibuting a blue colour. The product is however, very unstable; and the only use this reaction could be turned to is, according to the author, the detection of shellac among other resins, since a very minute quantity of the lastnamed resin may by this means be detected. - Moniteur Scientific. in Chem. Neacs.

Detection nind Fatimation of arsente in the

Dr. Riecker. - This very lengthy paper is cssentially deroted to tho testing of the correctness of the methods for the quantitative cotimation of arsenic, and tho prossibility of
the quantitative estimation of arsenious and arsenic acid separately, when buth these substances are present. As regards the qualitativo detection of arsenic in fuchsine, the anthor states that the pigments of that name tested by him, and whtained from varivus, sources, all contain arsenic in some form or other. That this quantity is not small may be inferred from the results of tho author's quanamve amplysis, from which we gather that a sample of fuchsine oltained dreet from a manafacturer contained, on am averase, 2.073 per cent. of arsenous acid and $7 \% 03$ per cent. of arsenic acid. Another sample, obtamed from a wholesale drysaltery, contamed, on an average (several amalyses were nade), 1.008 per cent. of arseniuns acid and 4400^{-}of arsenic acid. This research wits undertaken with the express view of testing the question, whether the uso of fuchsum, as a colouring matter for sy ruys, swectanents, and the like, is or is not to be prohibited, as can be done in Prussia by a simplo police order. It is quite ovident that fuchsme should not be mdiscrminately used for such purposes. - Nenes Jahrbuch fiir $\mathrm{F}^{\prime} h a 1_{-}^{-}$ macic, ron Dr. W. Vorwerk.-Chem. News.
Gutta-1'ercha Vesscls for Chemical wises.
Erroncous views have been held and circulated concerning tho durability of guttapercha under tho action of the various reagents. We aro ordinarily told that it is absolutely unacted upon by cold minera! acids, with the single exception of the sulphuric at 1.6 sp . gr. and uprards. This is far from being the casc. Thero is, indeed, no immediate corrosion, or other rapid and striking change; but in the courso of time, the surface becomes overspread with a thin buff-coloured layer, which may easily be rubbed off. This change extends gradually deeper and deeper, till the whole mass loses its coherenco and splits in various directions. I have before me a number of jugs which have been used for niric, clorhydric, and and dilute sulphuric acids, 23 , also, for solutions of stannous, stannic, and ferric salts, and which in three years' service, have become quite rorthless; on being sent for repairs to a dealer in such articles, they were returned with the remarle that they "could not be mended, as they had been used for acids." I find that the disintegration in question can bu very much retarded if the vessels are always rinsed in cold water mamedately after being used.-J. W. Slater, in Chem Necrs.

Coniribusion to our Linowicuge of the Easca Conzaincel in ©piam.

M. Hesse.-After referring to the labutis of M. Merk, and his own former researches on this subject, the author describes meconidiac, lanthopine, and laudanine. Meconidane, $\mathrm{Ca}_{\mathrm{n}} \mathrm{H}_{3} \mathrm{iNO}_{4}$ is a rather readily decomposable compuand an the presence of atrong acids, and especially when heat is simultancously applied; this base yiclds salts with dificulty, and these compoudds are rery unstable. Laudauino is readily soluble in benzule and chloroform, alsu in builing alcohol, but elificultly soluble in cther and alcolol when cold ; this base, although iasteless by jitself, yielis, with acids, very bitter salts; fuses at 105°, formula, Callesivos; yields salts with acids; well-defined chemical componnds. Lanthopinc. $\mathrm{Ca}_{3} \mathrm{H}_{2} \mathrm{NO}^{2}$; this substance is best solable in chioroform, dillicultly 80 in alcohol, ether, and benzol; it yichds with acids, salts. Thebenine, $\mathrm{C}_{10} \mathrm{U}_{25} \mathrm{ClO}_{6}$
is mana of the hydruchlobite of this Latoc), is an amurphou:s substame, and rather irnine to decompusition. An mellu (hem. in r'iem. I Neus.

Arinctai Kirnchunsser.

M. Reinsch.-The gemine alcolnolic fluid of this name owes its thavom to the presence , of a small quantity of hydrocy:anic acid and cthereal wil of bitter alnonds (hydrurct of benzog l.) Ithe author susiowts dhat, what at
certain quantity of youns leaves of the peath tree (a handful is named) is beaten up in a porcelain mortar, next digested with 4 hitres of water during' two days, and this mixture adial to 2 literes of strung alculal (04 pry cent.), and submitted to distillation, and the distillate diluted witi water to is strength of 60 per cent alcohol, a fluid is olsiamed fully equal in taste and aroma to the best Swiss kirschwasser made frum cherries bruised ul with the stones and kernels they contain. The author cautions against the drinking of tuo large quantities of this liquar; and so he may, since cases of accidentali poisoniag with this and similar alceholic liguors (Persico among the number) aro by no means rare.Pharmaceutische Ziitschrift für Rutsknd, in Chein. News.

Bed Fitc.

The Phamaceist givesthe following formula for "Red Fire," which will not cvolve sulphurous acid durings combustion.

Nitrate of strontia, dry and in powder, 1 lb . Chlorate of potassa in powder, $\} 10$.
Shellac, in coarse powder, 4 ib.
These ingredients to be mixed by gentle stirring or sifting. On no account shonld they be rubbed together in a mortar, as an explosion wouid probably result.

Hedurlion of Angelic Acid to ascriante Acen.
M. Ascher. - When anyclie acid is heated to about 200°, along with hydriedic and amorphorus phosphorous, for about egght hours, it is entrely therelyy converted into valerasnic acid, as was fully proved by the elementary organic analysis of the silver and baryta salts of the last named acid. - Chem. Ners.

Menical Propertics of Eagns.

The white of an egs las proved of late the most ellicacious remedy fur burns. Seven or eight successire applications of this substance soother main, and effectually excludes the burn from the air. Extriordinary storics are told oi the healang pruperties of a new oil which is easily made from the julk wi hens' corss. The egess are first boiled hard, and the yolhs are then remored, crushed, and placed over a fire, where they are carcfully stirsed until the whole substance is just on the point of catel2ing fire, when the vil separates and may be poured off. One yolk will yield nearly two teaspoonsfull of oil. It is in zeneral use among the calonists of South Ma:ssia, as a means of curing cuts, bruises and scratches.

ghtots nui Qurxics.

S. V. In-Fissel, Oir, as obtaincal frum the distullers, alrays contains a small per centage of alcohol, which may legot rid of by washing mith mater and subsernent distillation, until a constant boiling point of
$270 \mathrm{~F} . \mathrm{is}$ whscusad. jilue spcifac brivity of thas pruduct :s slis; it consista, mainly, of anyhe alcuhol havoms the composition Us $\mathrm{H}_{12} \mathrm{O}$, but nearly always contains traces of the futty acids-as butyric, ceproic and enanthylic. A purer pruluct may bo olbtained by substituting milk of line for the water used ir "ashing. Amylic alcohol has, so for, received but limated use, it is an ingredient in certan: lourang flads, ame is cm. ployed as a sumre of valerianic acid; but there ars, demithoss mu:y usefal purporses to which its solucint puncts might le applied. Hest of the resins; hassulve in it, hat ats offensive and pungent sumell will always be a lindmaed t, its emplnyment. We have freyacutly lowe anhed if it is nut pussible to deodurize at ; thas is of course mpossible, but the ollor may be modified :and rendered luss disajoccoll: his the a.ti,n of curtain chemical agents.
Shol Counters may be cleaneal by the use of tine following mixture, which must be sparingly applied by means of a rubber of cotton :

Trade during the past month has been varable. The bad state of the roads, and the fact of famers being busy getting in their crops, served to make it mother dull.

The sprang flect are coming in rapidly, and stocks are filling uy, so that buyers may rely on their onders being fully execated, an undertaking which has been pretty diflicult of accomplishacnt during the past month or tro.

There has been a stron: demand for Quininc, which hoss resulted in clearing out all the wholesale houses; and unfortunately, Messrs. Howard \& Sons, the cminent manufacturcrs of this article, lave, owing to large government urdurs, been unable to attend to their customers an this country. The changes in price hare been few, as stucks on hand are light, and any alterations which may occur from this sirrimg's impurtations will unly be triniing.

Camphor has been in large demand at a much reduced price.
Dyestuffs are coming on at slightiy rciluced rates.
Paints and Oils are in brisk demand, and are all unhangel in price. In Machinery Oils thers 18 an upmard teadency, Olive and Lard being much firmer.

Spirits of Turpentine is verg high. Other Namal Stores are a little easier.

WIIOLESATE ERICES CTRREINT-MIAT, 1870.

