The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manqueColoured maps/
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela ètait possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagées

Pages restored and/or lammated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, chetées ou piquées

Pages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression
Continuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index
Title on header taken from:/
Le titre de l'en-tête provient:
Title page of issue/
Page de titre de la livraisonCaption of issue/
Titre de départ de la livraisonMasthead/
Générique (périodiques) de la livraison

Additional comments:/
Commentaires supplémentaires:
This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

©lye

VOLUME XXIX.

No. 7.

EDITED BY
REV. C. J. S. BETHUNE,
head master of thinity college school, PORT HOPE, ONTARIO.

JULY, 1897.

LONDON:
London printing and hrthographing company.

RNXCEATVGR.

Swbstribers arc invited to make litiont use of this column. Notices ouer thre lines are liable to be shoriched if neiessary. All insertions /ree to subserilers.

Cynipide and Typhlocyline wanted, named or unnamed, from all quarters. Will offer, in exchange, Colo. insects in any oricr. C. P. Gillette, Fort Collins, Cul.

Whared.- First An. Keport on Nox. Insects of tllinois, by M. D. Walhh. 1868. I have for sale or exchange a complete set of Dr. Fitch's fourteen Rept. on the Insects of New Tork, Address, M. V. Slinemblani, Ithaca, N. Y.

Lepmoptera, -I desire long serics of Piusias from all parts of bureal North America. Will purchase or give liberal exchanges. Correspondence invited. k . Ottoleneev, 115 Madison Ave., New York.
N. A. Lepidoptera,-Exchange desircd. Also a lot of exotic Coleopteta, named
 Ave., Taronto.

Kermes.-Desired from North America. Will return identified materia!. E. E. Bogue, Agr. Expt. Sta., Stillwater, Oklahoma.

Lepidoptera desired from all parts of N. America. Will collect in other orders in exchange. C. H. Tyers, 227 Front Street East, Toronto.

Lepidortera.-Exotic and native cocoons and pupe. Preserved larva. Evpecially Rhopolocera. Correspondence invited. W. S. Kearfott, 24 South Water it., Cleveland, Ohio.

Win. Collect in many orders of Entomology and Herpetology of Arizona, Address Dr. R. E. Kunze, Phenix, Arizona.

I Offer perfect specimens of named diurnals from Central America and Northern South America, in papers, for diurnals from Northwest, Western and Southwestern States. Levi W, Mengel, Reading, Pa.

Will Collect any Aguatic insects to exchange for Odonata and Plecoptera, nymphs or imagoes ; nymphs preferred. Will determine nymphs or imagoes in these orders for duplicates. James G, Needham, Cornell University, Ithaca, N. Y.

Collectors of Aquatic Colroptera should save all the Aquatic Hemipter: taken with the beetles, dreaging or at light. I will give exchange for all such Hemipter in any order, or purchase. Cari, F. Baker, Auburn, Alabama.

Colroptrra.-Exchange desired; only perfect specimens given and received. Willalso collect in other orders in exchange for Coleoptera of N. A. R. J. Ce.ew, 105 Oak St., Turonto, Ont.
N. A. Lepidoptera not in my collection wanted ; offer Manitoba Lepidoptera and Coleoptera. Send lists to A. W. Hanham, Bank of B. N. A., Winnipeg, Man., Can.

Lepidoptera from Minnesota.-To exchange for the same from other localities. Send lists to H. W. Eustis, 31 Elivert St., Augusta, Ga.

Coleoptera.-Will exchange for species not represented in my cabinet. Coccinellidre and Cicindellidze especially desired. Good returns. Frederic Ormonde, 59 Eustis Street, Boston, Mass.

Canadian Ichneumonide.-Will be glad to purchase undetermined moterialin this family, particularly from the vicinity of Quebec. Will determine or exchange specimens if parties prefer. G. C. Davis, Agricultural College P. O, Mičigan.

Coleoptera.- Vanted, Haliplide, Gyrinidx, and Rhynchitide, named or unnamed; also Attelabus genalis. Good returns of named N. American Coleontera. Ralph Hopping, Redstone Park, Kaweah, California.

Correspondents desired in any part of the world who will collect Hesperidæe (either named or unnamed) in exchange for N. H. Lepidoptera. W. F. Fiske, Mast lard, N. H., U. S. A.

Wanted. - Diptera of the families Sarcophagide and Muscide (sensu stricto) from all ocalities. Will purchase or exchange for insects of any order. Garry iden. Hough, M. D., $542^{\text {• County (}}$., New Bedford, Mass.

Hymenoprera. - Fossores and Bees wanted from West and South (named or unnamed). Offer in return good American and Europ an Col., Lep. or Hym. S. N. Duninng, 43 Niles St., Hartford, Cl., U. S. A.

Vancouver IsLand.-Lepidoptera for sale or exchange-C. gigas, M. Taylori, d. thodope; New nociuide. W. H. Danby, P. O. Box 314, Victoria, British Columbia,

European Coleortera.-I have a large quantity of European Coleoptera which I wish to exchange for American. Lists furnished. Paul J. Roelors, go Rue van Straelen, Antwerp, Belgium.

- HE CCLUMBHE BORER, HYDROECIA

FLGOURF:SCIA, G. \& R.

 Von.. XXIX.
 I.ONDON. IUIM, ISg7. No.

In thigt, Mrs. J. J. (ilessner, Littleton, N. IL., called my attention to a "worm" which was feeding in the roots and stems of her columbines. It was not until July, 1895 , hrowever, that she suceeeded in getting specimens of the "worm" for me. The "worm" proved to be a caterpillar which was unfamiliar to me, and in accordance with my usual practice in such cases, it was described and photorraphed. The photographs, giving dorsal and iateral views of the caterpillat, iwice natural size, are reproduced on the plate.

The full-grown larva measured one and three-eighths inches in length. Its general colour is mars brown, much lighter on the venter of the tirst two thoracic and last four or five abdominal segments. The head is of a light russet colour, black about the eye-spots. Mandibles dark brown, black-tipped. Thoracic shield concolorous with the head on the dorsum, but merging into black on the sides and sometimes into at nuraw black cephalic border: the shield is divided by a narow whitish mesial line. Anal shield large, black, merging into brown mesially. The true legs are brownish-black, and the bases of the pro-legs are marked with blackish areas. Short light brown hairs arise from conspicuous, condaratively large blackish spots; the piliferous spots on the dors:am of the 'ast two abdominal segments are considerably larger than the others. ithe spiracles are black. There is a continnous narrow white mesial stripe extending along the dorsum. A similar white stripe extends along the subdorsum on each side, but it is not continuous, being entirely obsolete on the first four abdominal segments, and sometimes on the last thoracic segment also. The discontinuance of these two white side stripes gives the larva a rather curious appearance, as the figures show.

One of the caterpillars, which was received in the latter part of July, 1845, pupated on or about August S, and the adult insect (the beautiful moth shown twice natural size on the plate) emerged september 3, isy 5.

The moth proved to the the onc dereribed hy (irote and Kobinson in tan as purfurifindia. Imogine the light yust in the figure to be of a
 purple, and rusot hrown, when will have a faint romeption of the rather uncommon but hamifitl combination of whors prevented on the wing of this insect.

I can find no reference in the literature to the early stages or habit, of this insect. On acomat of the destructive work in Mrs. Glessmer, columbines, it may be apropritedy called "the Columbine borer." The moth has been recorded as recurring in Maine and Massachusetts m September and ()etober, and in New York in Lurtust ; it is also known to occur in Illinois and Cohmade. Mrs, (ilesuner writes that she has found that rich soil, cultivation, and Fowler's solution of arienic (diluted one half with water) poured amound afeeted plants seemed to check and control the pest.

(Phorma rubuora, Conematetr).
by m. v. shingerinnd, connebi unidersty, ithaca, n. y.

This new raspberry pest has been discussed in detail in Bulletin 126 , issued in February, iS97, from the Cornell . Agricultural Experiment Station. The life-history and habits of this Anthomyiian are fully illustrated in the Bulletin. At the time the Bulletin was written, however, the name of the insect had not been determined. In $\mathrm{H}_{\text {pril, }} \mathrm{tS97}$, I reared several more of the fles and sent some to Mr. I. W. Coquillett at Washington. Ife soon reported that the insert wats a new species of Phorbin, and sent me the following techmical description of the tly. which he had drawn up, from the specimens I sent him.

Phorbia rabizora, Copuillett, n. ©p.-is. (iround colour black. sides of from and of face white prilmose, eyes sub-contiguons, more approximated to each other than are the two posterior ocelli, frontal vitt. at the narrowest part linear ; third antemal joint less than twice as long as broad, slighty over twice in loms as the second, arista thickened on the basal third, the pemultimate joint slightly Ionger than broad. Thome grayish pollinose, marked with three back vitte: three postsutural and three sternopleural macrochetie. Abdumen quite thickly covered with suberect bristly hairs ; natuw, subcylindrical, greenish-gray pollinowe,

 holow the middle hevides those at the tip, 'and tibise cach bearing a single bristle on the innes side moar the "e. thirl. thee wh the fromt sule and two on the whter sifle in whlition to these at the tip : mader whe of each ham femme hearing a tow if brithe thane at the hase the dortest. Wiag hyalme, timged with aroy at her base and hew distinctly so in the marginal cell, "osta strongly urnate , dheng the rontal cell, costal spine shorter than the small rows vein, the hater begond the midhe of the discal cell, hind eross vein mearly straight and sulperpendicular, last vections of the third and fourth veins distinetly diversing ; calypteres whitish, halteres gellow, the extreme hase of the pedmale briwn.
?. Front threc-fiorth as wide se either eve, fromtal vitta destitute of a pair of macrochatce, sides of irme yellowinh gray pollinose ; abdomen wate, poimed at the apex, almme hare, dentitut: of a hack dorsal vita ; costal spine slighty longer than the smatl erme vein: otherwise as in the male.

Length, 4 to 5.5 mm . Two male and two female, bred by Mr. M. V. Slingerland, from larse buring in the stems of the cultivated raspberry at Ithacia, N. Y.

The male will be casily recognized by the narrow abdomen and the arrangement of the bristles on the legs : the female, by the absence of the usual pair of macrochetar on the upper part of the frontal vitta.
1). IV. Cowumbet.

Mr. K. H. Meade, of England, sends me the following report upon some of the tlies which were sent to him at the same time: "I have examined the flies carefully, and they seem to be an undescribed species of Phorbia. I camnot identify them with any European species that I know, and I think you may describe them as new. You might call them Prubi or P. ruburum."

I shall be glad to send a copy of Bulletin 126 to anyone who may be further interested in this raspberry-cane maggot.

The amual meeting of the Association of Economic Entomologists will be held at Detroit, Mich., on 'Mhursday and liriday, August 12 th and 13 th.

fixamples of the emphavized improtane of harval life better thath that furmished be the sulfmily Gomphine of Odnnato are few even nature inores The nyouh live mader the wedment (mostly organir delaris) whish fills to the lothom of ponds and streams. They are mutac hurwwen whin live at surh slight depth that their and respiratury oribee w never begond the reach of clean water. This tho stratum, which furm, their home and which they only leave to tranform, is one of preat hologis richness. In it they have found rom for development in enormons numbers and necessity for extreme sperialization. They are, at least when well growa, among the more pmerfiul members of its teeming hidden population. The imagoes emerge, flit about moder cover for a few days, lay their eggs and die. They emerge largely by daylight and are sulject to great decimation of numbers at this time, and are sought later by numerous powerful enemies. The fematers which live to oviposte lay a very large number of eggs. . I female of Gomphus frotorous laid for me in a wateh gha: of water over 5.002 .t one time. The imagoes of the ancient genus Gomphus are regarded as a race of weaklings. Their nymphs, on the contrary, are splendidly equipped for the battle of life. And it is to the perfection of their adaptation that the prevalence of Gomphines with us is duc.

These conditions have developed a large and very uniform series of imagoes, with one colour pattern, one plan of venation, one hutitus, consisting of many very closely related species difficult to study. Specific characters, though slight, are yot constant. The slight specific variations of an ancient colour pattern long retained are unusually reliable. Secondary sexual characters reach here their maximum of importance and of specitic individuality. This is as one would expect, recalling the vicissitudes of adult life and that its chief concern is with reproduction.

The real competition of life, however, is carried on by the nymphs, and the outcome of it is that they have become specialized. Chey have developed along several lines and have become segregated into well-marked natural groups which are not so obvious among the imagoes

De selys separated from the great genus (iompha** as he fomm it threc
 In, omegomphas, and divided the remainder into gromps of species. My breedings of the nymphs during the past three searons in the main com firm these groups and show that three of them at least are worthy to rank: aigenela.

One of the gemine surprises of this seavon was the tinding here, at fhaca, of nymphs like those described by Hagen from Rowky ('reck, Ky.. (Trans. Amer. Ent. Soc., XIL., 2St, 835) and dombtully referred by him to Titchaptry. Thorcy:, and the rearing from them of Gomphus paritutus, Selys. "This extraordinary nymph sombines head and antenne of Hagenius with legs and abdomen of (ramphas," :wrote Hagen in the beginuing of his very carciul description. The length of the wing pads showed the nymphas not to be young, as Hagen sumposed, and made it impossible to eonsider them as belonging to Tachaptopx, bit that they should yield this dainty little Gomphine was still a surprise.

In June and July, is g^{f}, I bred Gomphus fraternus, siay, in numbers at Havana, Ill. The njmphs are exare y described by Hagen (loc. cit., p. 262) as No. 13, G. adelphus (supposition). In May, is95. 1 bred Gomphus srastincthus, Waish, at Galesburg, *ll. These, espectatly the former, are very near to the typical G. andratissimus of butope.

[^0]In the pallidus group I find another type of nymph very distinct in the two species I have reared (palludus, Ramb., at Galesburg, Ill., May 1895; zillossipes, Sel., Ithaca, N. Y., May 1897).

The playiat $:$: and notatus groups of De Selys together present another type of aymph, already pointed out by Hagen (loc. cit., p. 269) as perhaps of more than subgeneric value. The bred nymphs of this group are of plagiatus, Sel., notatus, Ramb., spiniceps, Walsh, and segregrans, n. sp. (vid. sub finem.)

Believing that the immature stages throw much light on the relation. ship of the imagoes, and that the study of this large and homogeneous group will be facilitated by the setting apart of distinguishable sub-groups, I propose three new genera which need here have no further characterization than that of the following tables: Lanthus ($\lambda u r \cdot{ }^{\prime}$ uri η contracted), type G. parvulus, Selys, Orcus (nomen proprium), type pallidus, Ramb., and Stylurus (artides and oripu), type plasiatus, Selys. With these apart Gomplus is still somewhat polymorphic. The dilatatus group, characterized by extreme dilatation of the apex of the abdomen in the imago and correspondingly greater width to the 9 th ahdominal segment in the nymph, may yet, with advantage, be set apart. A clear line of demarcation, however, is not yet apparent.
I. now hazard a table for separating these subdivisions of the Legion Gomphus, Selys. It is to be regarded as preliminary and tentative, the more so as I have endeavored to base it on char. acters common to both sexes. This legion is distinguished from others of Gomphine by the absence (normally) of cross veins from all the triangles and supra-triangular spaces.

'Table for Imagoes of the Legion Gomphus, Selys.

r. Outer side of triangle of fore wing distinctly angulated at the origin of the cross vein between the two upper discoidal areolets. 2.

Outer side of triangle of fore wing straight or nearly so......3.
2. Inferior abdominal appendages of ot recurved upward in their apical half; vulvar lamina of $\%$ shorter than half the $9 \ddagger$ abduminal segment . Herpetogomphucs, Selys.
Inferior abdominal appendages of δ recurved upward only at their extreme apices; vulvar lamina of q almost equalling the oth segment. ...,.............................. . . Ophiiosomphins, Selys.
3. Upper sector of the arculus arising from its upper end: i.e., the part of the arculus above the sectors shorter than the part below them

Lanthus, gen. nov.
Upper sector of arculus arising from its middle; i. e., the part of the arculus above the sectors longer than the part below them $+$.
4. Hind femora with 5 to 7 long spines intermixed with smaller
 Hind femora with numerous shorter spines. .5
5. Ninth abdominal segment a little longer than Sth. Segments 7 , S and 9 very little enlarged........... 6
Ninth abdominal segment not longer, generally shorter, than the Sth; segments 7-9 more or less enlarged.... Gomphus, Leach.
6. Dorsum of thorax pale with darker stripes; Sth abdominal segment cut obliquely at apex, longer on the dorsum than at the sides. abdominal appendages of $\%$ hardly longer than the roth segment... . Orcus, gen. nov.
Dorsum of thorax dark with paler stripes; Sth abdominal segment not longer on the dorsum than at the sides; abdominal appendages of the $\$$ at least one half longer than the roth segment . Stylurus, gen. nov.

Nymphs of four of our N. American Gomphine genera remain to be discovered. Tachaptryx and Dromogomphus of the eastern U . S., Gomphoides of Texas and Octogomplus of California. I venture now a preliminary table for our known nymphs. Doubtless many modifications of it will be necessary as the unknown nymphs still largely in the majority are discovered.

Table for Gomphine Nymphs

1. Wing-cases strongly divergent...................................... ${ }_{2}$.

Wing-cases laid parallel along the back 4.

[^1]2. (ne third or more of the length of the abdomen, formed by the roth abdominal segment(supposition). Aphylia. Tenth ahdominal segments not longer than the other segments...i.
3. Middle legs less distant at base than fore legs...... Progomphus.

Middle legs not less distant at base than fore legs.....(These apparently not separable) Herpetogo phus and Ophiogomphus.
4. Third joint of antemner flat, circular Third joint of antennac cylindric, at least twice as long as wide...6.
5. Abdomen tlat, subcircular . Hagrenius. . Dbdomen ovate, twice as long as wide Lanthus.
6. Abdominal appendages longer than the 1 oth segment, front border of median lobe of labium straight (or in Gomphus occa. sionally very slightly rounded), with the usual fringe of flat scales, but without teeth. Abdomen not abruptly narrowed before 9 th segment
7.

Abdominal appendages shorter than the roth segment; fromt border of median labial lobe produced into a prominent rounded lobe which is generally armed with a conic apical tooth. Abdomen rather abruptly narrowed to the base of its $9^{\text {th }}$ segment, more slowly tapering to the apex Orius.
Body spindle-shaped, little flattened; fore and middle tibiee with small external apical hooks or with noneStylurus.

Ninth abdominal segment one half longer than the 8th, its lateral margins nearly parallel. A minute middorsal apical spine on the $9^{\text {th }}$ segment only. Lateral lobe of the labium with a strongly incurved end hook and teeth on the inner margin increasing $1: 1$ size posteriorly.
Body flat, lanceolate; fore and middle tibiee with strong extermal apical burrowing hooks. Ninth abdominai segment hardly longer than the Sth, much narrowed posteriorly. Rudimentary dorsal hooks on some of the segments before the gth. Gomphius. (To be continucd.)

THE COIEOPTLRA OF (ANADA.

bY H, F. WICKHAM, IOWA ClIY, IOWA.

itmia, Hald.
Represented by A. confust, Say, the only Canadian species of the group Atimioides. Aside from the structural peculiarities given in the table of genera, it may be characterized by the blackish colour and the punctate surface clothed with rather long yellowish pubescence, which is irregularly disposed so as to leave abraded smooth spots. The elytra are broader than prothoras, truncate at tip. Length, .33-.40 inch.

Necybalis, Lim.
This genus, by the short elytra, bears some resemblance to Molorchus. The third and fourth antennal joints together are distinctly longer than the fifth. (Hur species is N. mellitus, Say, unknown to me, but described by Mr. Leng as being of variable colour, "usually rufo-testaceous, head, antenne (base and tip tinged with rufous), thorax, scutellum and abdomen above black ; elytra punctate, more coarsely toward the margin ; reddishbrown, with paler spot at tip or entirely rufo-testaceous." The elytra are marked by an oblique impression which is not deep and does not reach the tip. Length, $60-.84$ inch.

I)esmocerus, Serv.

D. palliatus, lorst., is found on the elder (Sambucus) in July. It is a very showy beetle, with narrow head, deeply impressed above, bellshaped prothorax, and faintly costate elytra. Colour blue except the base of the elytra, which is broadly orange or yellow. Length, .70-.90 inch. This insect can be mistaken for no other Longhorn.
'Toxotus, Serv.
"This genus is sharply defined by the spurs of the hind tibia, which are inserted at the base of a deep excavation instead of at the extreme end."-(leng.) This character is of easy verification, and is in itself sulficient for the separation of Toxotus from other l.epturoides. A modulication of Mr. Leng's table may be used for the Canadian forms.
A. Elytra striped, black with marginal and discal yellowish vitta. . $60-$. 68 in .trivittatus, Say.
A.A. Elytra unicolorous or nearly so.
b. Third joint of antema much tonger than the fourth.

Larger species, legs bicoloured. .76-1.00 in. . Schatumii, Lec.
Smaller species, legs unicolored. . $40-.60$ in. . irestitus, Hald.
bb. Third joint of antenne but slightly longer than the fourth.
Tips of elytra obliquely truncate, sub.bidentate. . 87. .yo
in. iglindricollis, Say
The name triviltatus replaces that of aittiser in accordance with the synonymy proposed by Mr. Leng.

Rhagium, Fabr.
R. lincatum, Olis., is often common under pine bark or in lumber piles. It has scarcely the appearance of being a Longhorn at all, the antenne being so short as to usually fail of attaining the base of the elytra. The prothorax is much narrower than the elytra, armed on each side with a strong spine or acute tubercle. The elytra are narrowed behind, sharply costate. In colour the insect is black or nearly so, the prothorax appearing gray from the pabescence which clothes it, excepting a smooth stripe on each side (including the spine) and one on the median line. The elytra are marked by a few reddish or yellowish spots, and the pubescence is irregular, giving a mottled appearance. Length, $.54-.80$ inch. Aly small specimens are from the Lake Superior region, while the large ones came from the forests of the mountains of Arizona.

Centronera, lec.

A large species, decolorata, Harr. (lig. 26), is our only representative The head, prothorax, under surface and appendages are reddish-brown, the elytra lighter. The eyes are more prominent than usual, the prothorax shining, nearly smooth at middle, closely punctate and somewhat opaque at sides, lateral tubercle large and acute. Elytral punctuation coarse at base, becoming finer to tip, sides nearly parallel. Mr, Leng describes the antenne as "about as long as the body," but they may fall one-third or more shorte. I ength,

Fll, 2t. 1.20 to 1.25 inch. Rather rare. lound on beech by Mr. Harrington. Pachyta, Serv.
A. Elytra reticulate with raised smooth lines, the intermediate spaces coarsely punctured. Black, subaneous, antemnæ, femora and base

1.A. Flytra simply punctured.

Punctuation finer, surface of elyta finely pubescent, opaque or nearly so. Black, legs and antenne often reddish, elytra yellow, four spots on each and tip black. $\cdot 35-.38$ in. monticola, Rand.
Punctuation coarse, surface of elytra glabrous, shining, colour black, elytra sometimes testaceous, or more or less distinctly maculate with black. .60-.72 in
.liturata, Kirby.
I am unarquanted with l. rusipemis, and the description is taken from Mr. Leng's synopsis. I. monticola is to be found on blossoms of wild rose, while I have taken liturata in numbers on piles of sawed pine lumber.

Anthophlax, Lec.
Three Camadian species are recorded, only one of which, A attenutus, Hald., is known to me. The others, A. viridis, Lec., and A. malachitus, Hald., are suspected by Dr. Horn to be respectively the O and of of one species. following his table they separate thus: all belonging to that section of the genus in which the antemar are slender, the third joint much longer than the fourth.
"Elytra coarsely punctate scabrous, more or less metallic.
Elytra greenish-blue, legs black. 70 in.............. viridis, O $_{\ddagger}$. Elytra cupreo-aneous to blue, legs pale. 52 in malachitus, o . Elytra testaceous, irregularly maculate with piceous spots. Surface coarsely sparsely punctate and with small spaces which are distinctly pubescent; median line of thorax distinctly impressed. .56 in
Mr. W. H. Harriagton has taken the last mentioned insect at Ottawa on beech.

> Acmpops, Lec.

Only two species, pratensis and proteus, are recorded in the Society's lists and additions. I have, however, seen bivittata with the label "Quebec," and recently Mr. Chagnon sent a specimen of subpilosa as coming from Montreal : lonsicornis is known from the far north of Canada, and is included in the subjoined table, which is in the main equivalent to those prepared by Ir. Leconte and Mr. Leng.
A. Front and mouth much prolonged, body moderately robust, prothorax bell-shaped, sides sinuate but not tuberculate. Black, elytra variable, either blackish, reddish or clouded, occasionally indistinctly vittate. $\quad .24-.34 \mathrm{in}$.pratensis, Laich.

AA. Front not greatly prolonged.

b. Body short and stout, antenne thicker, hind tarsi stout, the joints t-3 equally pubescent beneath. Prothoracic tubercle distinct, elytra closely punctured. Colour varying from entirely black to almost entirely testaceous; or the thorax may be yellowish while the elytra are black. Typical form has yellowish elytra, each with two black stripes. . $24-.36$ in..birithata, Say. bb. Body more slender, antemme more delicate, hind tarsi slender, pubescence wholly or in part lacking beneath on second and sometimes on first joint.
c. Disk of prothorax convex, slightly channeled, densely punctured.
Prothorax longer than wide, elytra rather sparsely punctured, pubescence short and scant. Colour extremely variable, black to testaceous, elytra ofien vittate. . $36-.44$ in............... . . Ionsicornis, Kby.
Prothorax broader than long; blackish, pubescence very long. . $3^{6-.44}$ in. subpilosa, I.ec.
cc. Disk of prothorax flattened behind and prolonged into two dorso-lateral tubercles. Colour variable, blackish to testaceous, legs variable, but apparently with the base of the femora at least always rufous. . 2.4^{-} .36 in. proteus, Kirby.
While definite information is lacking, it is probable that A. protius and A. pratensis breed in pine, since they are so frequently found on piles of pine lumber. A. bizittata (Fig. 27) is to be collected on flowers of Anemone pennsylyanica. Mr. Leng calls the punctuation "sparse," but it is rather close and coarse.

Gaurotes, Lec.

G. cyanipennis, Say, is readily known by its brilliant colour. The body is black, shining often with a purplish tinge, the clytra bright green, polished, the antenne, legs and mouth-parts yellowish. The head is distinctly but sparsely punctured, the prothorax almost smooth except at sides, the elytral punctuation very distinct but widely separated. Length, $.36-.40 \mathrm{in}$.

Fic. ${ }^{27}$. In Wisconsin I found this insect almost confined to Sumac blossoms, It is said to have been found ovipositing on butternut.

Livoloops, Newm.

E. idruleas, Say, belongs here. It is smaller than most of the lepturoides, and of slender parallel form, the elytra scarcely tapering to tip. The head is broad, squarish, the constriction far behind the eyes. lateral thoracic tubercle distinct. Colour usually blue, varying to greenish, legs testaccous, antenne with the bases of the joints (especially the distal ones) more or less testaceous. f'unctuation strong, rugose. .2Si-. 32 . inch.

Fool) PhiNTS of THE SAN JosE sCABE (Aspmotes per-

HY F. M. WEBSTER, WOOSTER, OHIO.
The following list includes forest and ornamental trees and shrubs; upon which the San fose scale has been found breeding in Ohio*. Nearly all of these have been found either by myself or my assistant, Mr. C. II. Mally, in sulficient numbers to indicate that the insect might thrive on any of them. The Cotoneaster was sent for mspection, it having been recently received from a Long Island nursery firm, and when received was literally covered with the scale :
Grape, Vitis labrusica.
Linden, Tilia Americana.
European Linden, Tillia Europrea. Sumac, Rhus grabria.
Japan (buince, Pyrus japonica. Cotoneaster, C. frisidum. Flowering Peach, Prumes, sp. Flowering Cherry, Prututus, sp. American Elm, Ulmas Americana. Snowball, Viburnum opulus. Black Walnut, Juskuns nisra.
'To these must be added the several varieties of roses, currants, gooseberries and raspberries. The Early Richmond cherry l believe to be exempt from attack, as I have found trees whose branches interlocked with those of a pear that had been killed by the scale, yet the cherry was uninfested; and in two cases that came under my observation, where this variety of cherry had been grafted upon mahaleb stock, and shoots had sprung up from below the graft, the shoots were badly infested with scale, while none at all could be found on the trees themselves.

[^2]
THE, HJND WINGS OF THE NAY BUTTERFLIES.

 Hy A. RADCDIFEE GROTE, A. M., HIthF:GEDM, GERMANE.I wish to offer here a few remarks on the structure of the hind wins; of the diarmals especially, in extension of $m y$ recent paper on the Butterthies of Hildesheim.*

The first point relates to the fect that the hind wings are more specialized as compared with the primaries. The probable explanation I offer is, that the hind wings bear more of the weight of the body (abdomen), and that they regulate the downward stroke of the fore wins. A parallel suggests itself with the vertebrates in which the hind legs are more specialized ; and the cause is then, in both cases, a mechanical one. This specialization in the hind wings of the day butterflies manifests itself primarily in the inequality of the wings, of which the secondaries have the Radius 1 branched, the primaries 3 to 5 branched. In the second place by an advance over the front wings in the process of the absorption of the median veins, so that the radius or cubitus of the secondaries dr.ws the branches nearer to itself than the corresponding vein of the primaries. Vein IV., in the case where its condition is not permanently generalized (Lycucilida, Riodinidee, Hesperiidee), is thus usually more drawn out of its original central position on the secondaries : it submits also first to degeneration (Hesperiade) on the hind wings, showing that here the cross vein has degenerated for a longer period than in the primaries, isolating the vein and depriving it of nourishment over a longer ancestral line. The cross vein itself vanishes first on the secondaries. Here the cell may be open, all trace of the scar vanished (Araschina, Mclitica), while on the fore wings the degenerate vein is present, closing the cell.

The progress in the evolution of the neuration is evidently taking place in identical directions on both wings. The generalized condition of the radius (it being 5 -veined) of the primaries in Papilio gives way 10 a specialized condition (4-veined) in Parnassius, with an intermediate 5 -veined state in Thais, in which latter the upper branch of the median series, vein $I V_{s}$, which has left the cross vein to emerge from the radius in Paruassius, leaves the cross vein near the upper angle of the cell.

The absorption of the veins is everywhere attended by the same indications of a physiological process which, in its external manifestations, it is easy to trace. It is the same with veins II, and III. of the hind

[^3]wings. The greater the extent of ahsorption of II. by III. (the radius), from the base of the secondaries outwardly, the more specialized is the form. In the Limentitini (Nymphalime) the absorption is carried forward to the print of issue of the rudiment of I., so that the subfamily $N{ }^{\prime}$ ymphatinue may apparently be separated from the Arymnince by this character. While I have in various places in my paper correctly stated the change in the position of II. and LII., owing to this basai fusion of the two veins. I have in others written of a withdrawal of I. towards the point of junction of II. and III., which, in fact, is the reverse of what takes place, although the effect seems the same. I. probably remains constant, or nearly so ; in the cases where it is reduced to a mere scar it seems still to occupy the same relative position on vein II. It is extinguished by absorption. At the same time the fusion of II. and III. constantly changes in extent. In low forms, such as Leptidia, the two veins seem wholly separate at the base of the wing. In Argynnis, which is the lowest Nymphalid I have examined, the fusion at base is very limited, whereas in the highest Nymphalids the fusion is carried up to the point of issuance of I . In the l'ierids the fusion is generally limited, and here, as I have pointed out in my essay, thes lag behind the Nymphalids. The extent of the absorption is everywhere the measure of the specialization.

The la : point to which I would here draw attention is the junction of the cross vein on hind wings with IV_{3}, or rather V_{1}. Here the Pierids have again lagged behind, the cross vein reaching IV_{3}, although the portion of the base of IV_{3}, between the junction of the cross vein and V_{1}, must be held to belong to the cross vein. In the Parargince and Nymphalide the cross vein is withdrawn to the point of issuance of V_{1}. The lower Meadow Browns agree with the Limnadidue and Picrida in the position of the cross vein of secondaries. In the Riodinida (I have only examined the type) the cross vein is specialized as in the Nymphalids, while it is slightly removed outwards in the Thecline and Lycenince. Where the cross vein fails to meet the point of issuance of vein Y_{1}, lying outside of it, we must describe $1 V_{3}$ as issuing from the cross vein, to which the base of IV_{3} morphologically belongs.

A study of both fore and hind wings shows that on both the same processes are repeated, but the initial impetus for the changes seems to be always givea by the hind wings. It is as if a wave passed over the wings, coming from the hind pair and breaking over the primaries, carrying these frail creatures further along their airy paths into their unknown future.

since my note on the Mexican bees of the genus Ausodhe, was published I have heen infomed by l'rol. Cockerell that he womd not reply in this jurnal, but pobably chewhere. This conchusion seem to me to be remarkable, but I shall take this measion to say what tane I have to say on the subject amd then leave it.

When I suggented two sections of . Lusothlara, in Trans. Am. Pint. Soc. XX., ${ }^{4}+7$, I did not base my conclusion on the hind spurs alone, lan because the two sets of species alow agreed in wher characters. I was too well acquanted with the chatacters of Marictus th suppose that a valid section of dugrotiora could be maintained unless the spurs of a certain form were associated with other characters which indiated alfinity. For example, Intliths coriacius and M. Forlusii form a natural group of the genus and have finely serrate hind spurs. If I remember correctly H. fuscipennis belongs to the same group, but H. farallilus. whicit also has finely serrate spurs, does mot. The sections of Ausochlora, as I formed an idea of them at the time I mentioned them, might be defined as follows:
t. Slender species, having the sides of truncation of metathoras rounded above ; hind spur of $\$$ finely serrate; ventral segments of $\%$ not metallic, or more or less metallic medially.
2. More robust species, having sides of truncation sharp; hind spurs of 9 with $4-5$ long teeth; basal ventral segments of δ metallic.

These characters belong to the species I indicated as coming in these sections, but it does not necessarily follow that other species with the same spar forms belong to either of them. 'Thus A. splindida, with basal fascix on second and third abdominal segments, may not belong to my second section.

That Prof. Cockerell did not know that the peculiar spur forms were secondary sexual characters of the females is shown by his failure to indicate the fact in the table; by his insisting that A. viridulat and.I. forzida could not belong to the second group on account of their spurs, by the use of the terms "caliate or simple," which I think were taken from the males; and by his comparison of types throtigh Col. Bingham. Smith's male type; were refered to the first group without regard to ans except their spur characters, which were of no value. If the types of A. aspasia, A. aurora and A. splembida had been males these species would have been referred to the first so-called subgenus: in other word, the author conld not tell to which one of his own subgenera an Ausochlora belonged. He failed to indicate valid characters of any natural group of Ausochlora, and, in fact, showed that he had no ide: of them.

I herewith give a full list of the Lepidnptera new the society's collection, taken hy Mr. J. W. Bice at electric light during the season of : Sing.

Mr. . Indersin and I picked out from amongst Mr. Bice's captures of ahout 2,000 mounted specimens of good material what seemed to be new to us; and after comparison with named specimens, or illustrations, having failed to recognize them, they were laid aside for others more competent th. n we to decide upon them.

I am grer.tly indebted to Dr. J. 3. Smith for the patient endurance, amidst his mulitude of professional duties, with which he attended to and promptly returned a number of omall lots sent to him by mail-the unreasonable demands of the V .S. customs officer at the boundary line prohibuting their being sent in bulk by express, and thus increasing the lahour connected with it. And not only for the names of the specimens, but aiso for interesting and instructive remarks upon many of the species; Dt. Hulst also assisting me with the Geometers. Most of those new the rollection were in single specimens of their kind, and Mr. Bice has nenerously donated them to the Society.

The names and their sequence are in accordance with Dr. Smith's list of $\mathrm{tSg}_{\mathrm{g}}$.

Protoparce carolina, Linn.
Cisthene unifascia, G. © R.
lithosia bicolor, (Grote.
Parorgyia parallela, G. N゙R.
Ocdemasia badia, Pack.
. Icronycta dactylina, Grote.
Acronycta impressa, Walk.
Cerma cora, Hub. Upon this species, Dr. Smith remarks: "Distinctiy rare."

Semiophora tenebrifera, Walk.
Agrotis catherina, Grote.
Pachnobia salicarum, Walk.
Dicopis muralis, Grote.
Dicopis Thaxterianus, Grote. Dr. Smith says: "Very good indeed, not in my collection."

Eutnlype homhyciforms, Smith.
Jintolype Rolandi, (;rote.
Mamestra assimilis, Morr.
Hadena passer, Guen.
Hadema indirecta, (irote. D)r. Smith remarks: "guite a new Incality for this species. I have it from British Columbia and the Rowly Mountain region, but have never had it from anywhere near you."

Hadena diversicolor, Morr.
Taeniorampa vegeta, Morr.
Homoglara hircina, Miorr.
Cucullia Iorea, (iuen.
urelonthis (Chloridea) rhevia, S. A. A.
Galgula hepara, Grote. I took my first specimen of this insect in J Ind. 1896, and sent it th Prof. Fernald, under the impression that it was a Tortricid, who kindly named it for me; Mr. Bice's specimen was so diw. smilar that I did not recognize it.

Homoptera Woodii, Grote.
Palthis asopialis, Guen.
Brotis vulneraria, Hub.
Semiothisa dislocaria, Pack.
Boarmia pampinaria, (Guen.
Eubyia cupidaria, Grote.
Besides those altogether new, there were many interesting and unexpected varieties of common things brought to view by Mr. Bice's collection: which when disclosed were quite surprising to one not familiar with the extent and direction variation may go in some species, emphasizing with special force what Dr. Skinner gives in the subjoined extract as his experience with the butterlies:
"When I commenced my collection I was satisfied t" have " single pair to represent the species, but now I cannot get curough individuals to represent all manner and kinds of variation brought about by natural causes. In the past I, therefore, knew this specieor that, but now in many of our genera I nearly get brain fever in trying to determine where a species begins or ends."

BOOK NOTICLS.

The: Paramio: Diseasfa on Pomiry: hy fred V. Theohald, A. M.,
 London, Sg . .
It is encouraging to see a growing interest in applied entomology in Bugland, and Mr. Thenhald has given. in this haudy little volume. a popuhar account of not moly insect parasites but all other parasitio troubles likely to confront the poultry breeder. Not only is the little manual enpecially fitted for the wants of such, but it will donhtless find its way to the library of many other gentlemen who rely upon their estates to furnish fowls for their tables. The book is divided into several parts, relatiug to protozoan yarasites, insect parasites, mite parasites, worm parasites, and regetable parasites. Besides containing twenty-hree illustrations, appendix I. gives a list of the parasites of Gallus dumestious, with the part of the fowl attacked by them; appendix II. a quite full bibliography of the literature of the subject, which, with a very complete index, renders the volume of scientific as well as practical value, and . Imericans will find it of interest to them as well as Englishmen. We wish Mr. Theobald suceces in his efforts to add to the practical entomological literature of his people.
F. M. W.

Ciber die Palpen der Rhopaloceren. Ein Beitrag zur Erkenntnis der Verwandtschaftlichen Beziehungen unter den Tagfaltern: mit 6 Tafeln: von Dr. Enzio Reuter. Acta Societatis Scientiarum Fennacie. Tom. XXII., No. 1. Helsingfors, 1896.
Entomologists in general, and lepidopterists in particular, will be interested in this work of Dr. Reuter's, occupying as it does a folio volume of 577 pages, the investigations, upon which the facts are chnetly based, requiring the examination of 3.557 palpi, belonging to 670 species. contained in 302 genera of the Rhopalocera. The work is divided into two parts: the first dealing with the direct microscopical examinations in descriptive form, while in the second is given the conclusions based on the same, as well as a discussion of other taxonomic characters allied to those brought out by himself, and their values. The plates are very tine, and the sixth of especial interest generally, as it presents, in the form of an cvolutional tree, the relations of the various groups and genera to each cther.

Dr. Reuter calls attention to the fact that at the base of the basa: joint on the inner side of the palpi of butterflies is found a clearly dis tinguishable, naked spot, which he proposes to term the basal spot, of: the surface of which are fine grooves and ridges as well as sparsels placed fove.e, and great numbers of peculiar, subconical, hairy rugosities These last, though occurring normally in the Diurnals, and especially in the Nymphalide, and being clearly distinguishable with a luw power lens; have formerly remained unknown, or if known have not been mentioned in entomological literature.

These ridges were by Landois considered as stridulating organs, and the two last structures in analogy with those observed by Kreplin, Forel, Hauser, and others, on the antenne of various insects and looked upon as being sense organs; but whether the peculiar structures in question served to convey the sense of smell, or, perhaps, some other and nearly related sense, is still an open question.

The Rhopalocera especially, of all the lepidoptera, have a special interest, because in theqm these cones present the greatest variations in form and are here the most highly developed.

Through further research, Dr. Reuter was convinced that a thorough study of the palpi, and especially of the basal spot, would afford a not inconsiderable basis for a knowledge of the family affinities of the individual genera and groups contained in the Rhopalocera, and he therefure determined to direct his especial attention to them, extending his studies over all of the families, and where possible over the smaller groups, as also to study the material at his disposal from a direct and thoroughly morphological point of view.
F. M. W.

Oviposition of Dorytumus Squamosus (Lec.).

This is a very common beetle upon cottonwoods in Colorado, but I have never known anything of its injuries until recently, when I had the good fortune to come upon a female preparing a burrow for her egys in a terminal flower bud. When first observed she had her beak in the side of the bud up to her eyes. The twig was broken from the tree and carried in the hand without in the least disturbing the work of the beetle. After about ten minutes she removed her beak, turned quickly about and applied the tip of her abdomen to the hole she had made. After remaining in this position for about two minutes she ejected a small amount of a dark biown, thick liquid, which completely covered and hid the opening in the bud. This done she walked away.

The bud contained the catkin of a staminate flower which was neatiy ready to burst forth, and immediately beneath the puncture in the bud scales, on the axis of influrescence, were found three eggs lying cluse together.

The eggs were light yellow in colour, with a very thin, flexible shell, and although sumewhat irregular in shape, measured about .85 mm . in length by .5 mm . in breadih.
C. P. Gillette.

[^0]: *Nomentatural. In the case of Anhmia. tomphar. I have evamined the evidence and tind it is as follow: Linare incluled all dragonties known to him in one gents.

 pecies, l. sramdi, l., and /. for, ifota, l. It iv worthy of mote that he left 1.

 the first to designate types. He yrecifies (iNo2. Hist. Nat, lint., Ms. IIt, 2 Ste)

 tains in itself the evidence which condemos the vulbtitution it prepmese for if
 been. ithdid by fabriciu, when he founded the gemm, camon be it igpe. leach (IS15. E:linburgh Encycl. VIII, part 2, p. 720, of . Imer. reprint founded the
 Fabr., the sole opecies 1.0 samdi, L. Ilowever, Cuvier hat previously (agos)
 p. Cl. Cl .) and described under it the sole species stmots, $1 .$. This wage hav wince been universally followed until 1890 , and one in ghad to find thete i, tus no reavon for change.

 I follow De Selys in using the name (bhiosomptas tiel., which seem. to have been quite properly given.

[^1]: *Thi will not apply to gaping exua'ie in which originally parallel wingcases have been forced apart

[^2]: *The determinations bave heen kindly veritied by Dr. L. U. Howard, of the Divisin of Entomology, Department of Agriculture, Washington, and his assistants,

[^3]: *Mitheilungen a. d. Rnemer Mnsemm, No. S, Feh., 1897.

