IMAGE EVALUATION
 TEST TARGET (MT-3)

Photographic Sciences Corporation

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

The institute has atsempted to obtoln the beat original copy avallable for fliming. Features of thia copy which may be bibliographicaliy unique. which may alter any of the images in the reproduction, or which may significently change the usual method of filming, are checked below.

Coloured covers/
Couverture de coulour
Covers damaged/
Couverture endommageCovers restored and/or laminated/
Couverture resteurde et/ou pelliculte

Cover title missing/
Le titre de couverture manque
Coioured mapa/
Cartes geographiques on couiour
Coloured ink (I.e. other than blue or black)/
Encre de couluur (i.e. eutre que bleue ou noirelColoured plates and/or liluatrations/
Pisnches ot/ou liluatratione en couleur
Bound with other material/
Relit avec d'autres documentsTight binding may cause shadows or diatortion aiong interior margin/
La reilure serrde peut causer de l'ombre ou de le distorsion lo long do le marge interioure

Blank leaves added during restoration may
appear within the text. Whenever posalble. these have been omitted from filming/
Il se peut que certainee pages blanches ajoutbes lors d'une restauration apparalasent dans io texte. mais, lorsque cole dtait posalble. ces pages n'ont pas úte filmús.

Additional comments:/
Commentaires suppiementaires:

L'Inatitut a microfilme le melilour exemplaire qu'll lui e dtel poarible de se procurer. Les dérails de eet exemplaire qui sont pout-Atre uniques du point ós vue blbllographique. qui peuvent modifier une imege reproduite, ou qui peuvent exiger une modification dans la máthode normoie de filmage sont indiquts ci-dessous.

Coloured pages/
Pages de coulour

Pages demaged/
Pages endommagtesPages restored and/or laminated/
Pages restaurtee ot/ou peiliculdes
Pages discoloured, stained or foxed/
Pages dícolortes, techettes ou piqudes
Pages darached/
Pages datachdes
Showthrough/
TranaparenceQuality of print varies/
Qualite indgale de limpression
Includes suppiementery material/
Comprend du matériel aupplómentaireOnly edition avaliable/
Seule edition disponibie
Pages wholly or partially obseured by arrata
slipe, tlesues, atc., have been refilmad to encure the best possibio image/ Les pages totaiement ou partiolloment obscurcies par un feulliet d'errata, une pelure. otc., ont úté filmies do nouveau de façon d obtenir la mellieure image possible.

This item is filmed at the reduction ratio checked below/
Ce document ast filmb au taux de rdeduction indiqud ci-dessous.

The copy filmed here hee been reproduced thenks to the generosity of:

Metropolitan Toronto Libray
Literature Depertment
The Images appearing here are the beat quallty poaslble conaidering the condition and leglbility of the original copy and in keeping with the filiming contrect specificetions.

Original coples in printed paper covere are fillmed beginning with the front cover and ending on the laat page with a printed or illuatrated impresslon, or the back cover when appropriate. All other original coplee are fllmed beginning on the firat page with a printed or illustrated impresslon, and ending on the last page with a printed or Illustrated impreceion.

The lest recorded frame on ench microfiche thall contain the aymbol \rightarrow Imeaning "CONTINUED"), or the aymbol ∇ (meaning "END"). whichever applies.

Maps, plates, charts, etc., moy be filmed at difforent reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper loft hand corner, left to right and top to bottom, as many frames as required. The following diagrame liluatrate the method:

L'oxemplaire fillme fut reprodult grace ito gendroalt' de:

Motropolitan Toronto Library Literature Depertment

Lee images suivantes ont tite reproduites avec le plus grand soin, compte tenu do la condition ot de le nettete de l'exemplaire filimb, ot en conformite avec lee conditions du contrat de filmage.

Lee exemplaires originaux dont le couverture en pepler cet imprimbe sont filmbe en commençant par le promier plat et en terminant soit par lo darnidre page qui comporte une empreinte d'impression ou d'illustretion, solt par is second plat, selon lo cas. Tous les autres oxemplaires origineux sont filmbe on commongant par la promidre page qui comporte une emprainte d'impreation ou d'llustration ot on terminant par la dernildre page qui comporte une telle omprointo.

Un dee aymboles auivante appareltra aur la dernidre image de chaque microfiche, selon le cas: le aymbole \rightarrow signifie "A SUIVRE", le aymbole ∇ signific "FIN".

Les cartes, planches, tableaux, etc., peuvent Atre filmés à des taux de reduction diffórents. Lorsque le document eat trop grand pour etre reprodult on un acul cliché, il eat filmb a partir de l'angle supérieur gauche, de gauche droite, ot do haut on bas, en prenant io nombre d'images nécessaire. Les diagrammee suivants liluatrent la múthode.

THE

FIFTHB00K

or

READINGLESSONS.

FOR THE USE OF SOHOOLS IN THE BRITIBH-AMERIOAN PROVINOES.

JAMES CAMPBELL•AND MONTREALANDTORONTO.

63462

Entered according to Act of the Provincial Legislature in the Year One Thousand Eight Hundred and Sixty-six, by James Campbell, in the Office of the Registrar of the Province of Canada.

- vaitail exite amon teachere a condiderable divernity of opinlon a - two place which a ReNalny Book ought to cocapy in the educeition
 to bo an epfiome of univerial knowledge, atia that the vifuty fich Wompurinonit he entinatod by the mount of information'il odintiflas, Ho matior whatherinterenting to the reader or not ; it in ripow retis mincipla, that the more adranced volames of the "c Iriftr: Matloat
 the sole and aimple aim of a book of this character should be, to theol the art of reading ; and. many of the most modern School Readers have been prepared in accordance with this view. In the premprt book, and throughout the whole of the Seriet, the plan adopted fo, to combine the advantages of both systems without their disadrantagen, or in other words, to convey information in an interenting manner, to encearour to excite and stimulate the curionity of the echolar to farther researches by extracts which shall not merely convey initruction, but will at once attract hily attention and will convert a atris into a plemeure.

The lemons in this, as weil as in the other adranced books of the Serien, have been selected from the works of authore, recpeotable not only for their merit but also for their elegance of etyle; thus ptediving the true character of the Serien, as intended to teach the Att of Reailing. The names of such men as Brougham, Manrys Hंagh Miller, Darwin, Dickens, Livingstone, Gowee, Kane, Smilen, Mecaulay; Gibbon, Buiwer, Robertson, Warburton, do., are a sumbient guarantee for the literary character of the work.

One important feature in thim and its companion book, the 6th, to which the attention of teachers is directed, is the ayatematic arrangoment of the aubjects, by which it is hoped that the pupil may be led to that most important step towards sound soholarship-the accurate clamification of all knowledge acquired.

No attempt has been made to give an epitome of any coience whatever. Under the headings of the Physical and Historical Sciencen, the scholar is systematically and progresively introduced
to the broad field of knowledge in thene departmente, of which, the objectin are clearly stated, and the boundaries oarefully defned in the introductory chapters. Instead of that uninterenting detail which serven but to prejudice the minde of the young againat nome of the most delightril and elérating studien, the setencos are illustrated by incidents or by examples, and the legitimate curionlty of the scbolar is thereby exclted and atlmulated to obtain a deeper Insight into these wonders which are hore presented to his fancy. The whole in thlekly interruperied with, readings in vorse from the works of our beat poets ; and a national tone has been given to the book, by the Iatroduction of aketches of the Provinoen, to. an ont ol
While the lessons ard unineumbered with those explanations of commonly oecurring words, explanations whloh retect upon the teacher; and deprive him at once of pleasure and authorty; ; the etymologies of all soientifc terms employed are folly given in the toxt.

ntate，of which，the refully deanod in interenting dotall ung againat nome cotencos are illur－ Imate curiosity of obtain a deeper ated to his fisaoy． in verse from the been given to the oen，do．nu not al －explanations of refiect upon the id authority ；the tally given in the ateria hate ofo mil
 \therefore 14 con is cotsel
 afler val asidersen S⿵⿰丿⿺⿻⿻一㇂㇒丶𠃌⿴囗十 fis of thotonling

 n！Erecas ！odT （i）acoul co itren oill Tishit xul ？？（no Jon
 naticnast lo th d．tl ．Tollik dam ondii）．ratuennle almamoy Jnvivinare trabtancquei one ollmolle gits duifoty orifise adll io traste romui feomf dsaft ot In to noitnoitieralo all Juncogn of Gbats sovgitar＂ （10）： 4 \pm

OONTHITTS

07 THI

fifth \％ook of zealug tessons．

NATURAL BCIENCEB．

The Natural Solences．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．Ed．
Grocoar：－Geology．
Puge．

Twhat Owh．f．．．Charles Mackay．
Onpiter thes of Lake Bupertor，．．．．．．．．．．．．．．．．Dr．D：Whlton：

Geacral difiton of Phantis i．．i ．．．．．．．．．．．．．．．．Baliour．

Vegotable Coithing－Max；Hemp and Cotton．．Dr．Altin．

Tim Linkinwater＇s Window．$: \quad . \quad . \quad \therefore \quad, \quad . \quad, \quad . \quad, \quad . \quad$ Charlán Dicizons．

0 Prios:-Luchat Oplesel trenmmeatas, Tolesocpa. Miorescopp. : . . Typatilt. Tis inva . .fi . Edint A. Pon. 8 nis. 1
OTHER PHYBIOAB BCIENOEP. -illal
The Ohhor Phywloal ElvamenEa I, we.an
HEAT: 一 Hical, Condmotion and Radration. Tymiall:
Heal-Sapanalon; the Thermometor Townen
The Bocion Mro 8coy.
Marvole of Human Calorio Dr. coorse Willeon.
The Volcano and the Earthquake. Rold.
Rhactaicry: - Eloctrielty Rov. J. M. Tilmot.
The Atlantlo Ocoan and the Telegraph Maury and Tilicon.
story of Proopero Shakeppere.
Magmitime:-The Londatone and the Magnot. Ooodrleb.
Prymoloar:-The Clroulation of the Blood Mrn Black.
The Complaint of a Blomaoh. Chambera
Lines on a stecoleom. Anon.
Dr. Jonner, and the diccorory of Vicolnation. Timber
Foot-ball Hugher
On a didtant prospect of Eton College Oray.
HISTORICAL SCIENCEB.
The Ritexorical Solences Ed.
Mytuoroar:-Indian Mythology. soboolernts.
Linces writlon on paeaing Doad Man's Ioland Moore.
Tho Lotus Eaters Cox.
The Lotuc Eatero. Tennycon.
Hiserone:- Batlie of Marathon Bulwor.
The deffece of the bridge agained the Trucan Army. Macmulay
Fall of the Roman Emplro Collior.
Boadtoca. Cowpor.
The Normimen in America. Goodrich.
The Oritin of the Brititeh Nallon. Macealay.
The Batte of Astincourt Micheloh.
Fall of Coamantinoplo. albbon.
Song of the Groke Bard. Byron.
Dimcovery of America Robertson.
Edinburgh after Flodden Aytona.
The Batle of Nemoby. Thorne.
On the downtall of Foland Campbell.
Patle of Baisolava. W. H. Rumell.
Charge of the Eloht Brigada Tennycon.
Himpozy of tite bertuer Paovincia:-
Diecovery of Nowfoundland. Warburton.
Nova Scotla
Prom Enangelime. Loagtellow.
Now Bruiswick. MoGregor.

chartion
an m m

$$
=3
$$

111
（1） 18 $=10$ or 101
01
\qquad

0 以 VM＂
｜｜ 117
－．：AT
3 11 An．15

－ 1×1
1．wi／h कe 1
$11^{\circ} 111=$
：1：$: 1$ T
\therefore＇ $1 ? 3.14$
1 ，
－pror 1
1！woit cuk，

＂7e $1 /$ and 10
f．1 3 1 （1，
an）in＊ 4,1
f1～2T： $1:!$ 3

м
サンat 1 リン。
848 929：1

OUR LAND; OR, THE SONG OF THE FINNISH PATRIOTS.
(Translated from the Swerlish of Runeberg.)
Otr land, our land, our Fatherland! Thou glorious word, ring forth !
No mountain rises, proud and grand,
Nor slopes a vale, nor sweeps a strand, More dear than thou, land of the NorthOur fathers' native earth.

Our land is poor, as all can tell; No gold our rivers hold;
A stranger scorns its heath and fell,
And yet this land we love full well;
For us-with monntain, wood, and wold'Tis still a land of gold.

We love our rivers' thundering tide, Our streamlets sparkling bright;
The murmuring of our forests wide;
Our starry nights, our summer's pride; All, all that e'er, with sound or sight, Has fill'd us with delight.
'Twas here our fathers fought the fight, With thought, and sword, and plough;
Here-here in moments dark or bright,
'Mid Fortane's smile, or Fortune's spite,
The Finnish people's heart would glow, 'Twould bear both weal and wue.

And who could count the struggles dire Which that brave people stood, When battle raged with sword and fire, And frost and famine spent their ire?

And who could mete their outpour'd bloodTheir patient, dauntless mood?

It was for us their life-blood flow'd, Here, here upon this shore ;
'Twas here with joy their bosoms glow'd,
'Twas here in sorrow they abode; Long ere we lived, in days of yore Our burdens here they bore.

How bleat, how precious, is this spot, All that we love is here;
Howe'er hard fate may cast one lot,
A land-a fatherland-we've got;
Oh, what on earth can ever
Be to our hearts more dear?
And here, yes here, we see the land0 sight, how full of bliss !
We need but stretch our good right hand, And joyous point to sea and strand, And say, "Behold this country-thisOur fatherland it is."

And were we called to dwell in light, 'Midst golden clouds of morn,
Where thousand stars are glittering bright,
Where tears ne'er flow, nor sorrows blight ;
Still, for this land so poor, so stern, Our longing hearts would yearn.

0 land! thou land of thousand lakes, Of song and constancy;
Against whose strand life's ocean breaks,
Where dreams the past, the future wakes ;
Oh, blush not for thy poverty-
Be hopeful, bold, and free.
s dire fire, re? ur'd blood-
low'd,

Thy blossom, in the bud that lies, Shall burst its fetters strong; So, from our tender love shall rise Thy light, thy fame, thy hopes, thy joys; And prouder far shall sonnd ere long Our Finland's Patriot Song.

-Illustrated London News.

ON THE PLEASURES OF SCIENCE.

To pass our time in the study of the sciences has, in all ages, been reckoned one of the most dignified and happy of human occupations, and the name of philosopher, or lover of wisdom, is given to those who lead such a life. But it is by no means necessary that a man should do nothing else than stady known truths, and explore new, in order to earn this high title. Some of the greatest philosophers, in all ages, have been engaged in the pursuits of active life; and he who, in whatever station his lot may be cast, prefers the refined and elevating pleasures of knowledge to the low gratification of the senses, richly deserves the name of a philosopher.

It is easy to show that there is a positive gratification resulting from the study of the sclences. If it be a pleasure to gratify curio-sity-to know what we were ignorant of-to have our feelings of wonder called forth, how pure a delight of this very kind does natural science hold out to its stadents ! Recollect some of the extraordinary discoveries of mechanical philosophy. Is there anything in all the idle books of tales and horrors, with which yoathfal readers are so mueh delighted, more truly astonishing, than the fact, that a few pounds of water may, without any machinery, produce an irresistible force? What can be more strange, than that an onnce weight should balance handreds of pounds, by the intervention of a few bars of thin iron?-Observe the extriordinary truths which optical science discloses ! Can anything surprise us more, than to find that the colour of white is a mixture of all others; that red, and blue, and green, and all the rest, merely by being blended in certain proportions, form what we had fancied rather to be no colour at all than all colours together?-Chemistry is not behind in its wonders. That the diamond should be made of the same material with coal; that water should be chiefly composed of an inflammable substance;
that acids should be almost all formed of different kinds of air ; and that one of those acids, whose strength can dissolve almost any of the metals, should be made of the seif-same ingredients with the common air we breathe; these surely are things to excite the wonder of any reflecting mind-nay, of any one but little accustomed to reflect. And yet these are trifling when compared to the prodigies which astronomy opens to our view : the enormous masses of the heavenly bodies ; their immense distances; their countless numbers, and their motions, whose swiftness mocks the uttermost effiorts of the imagination.

Akin to this pleasure of contemplating new and extraordinary truths, is the gratification of a more learned curiosity, by tracing resemblances and relations between things which, to common apprehension, seem widely different. It is surely a satisfaction, for instance, to know that the same thing which canses the sensation of leat causes also fluidity; that eiectricity, the light which is seen on the back of a cat when slightly rubbed on a frosty evening, is the very same matter with the lightning of the clouds; that plants breathe like ourselves, bat differently, by day and by night ; that the air which burns in our lamps enables a balloon to mount. Nothing can at first sight appear less like, or less likely to be caused by the same thing, than the processes of burning and of breathing, the rast on metals and barning,-the influence of a plant on the air it grows in by night, and of an animal on the same air at any time, nay, and of a body burning in that air ; and yet all these operations, so unlike to common eyes, when examined by the light of science, are the same. Nothing can be less like than the working of a vast steam-engine and the crawling of a fly upon the window; yet we find that these two operations are performed by the same meansthe weight of the atmosphere; and that a sea-horse climbs the icehills by no other power. Can anything be more strange to contemplate? Is there, in all the fairy tales that ever were fancied, anything more calculated to arrest the attention, and to occupy and gratify the mind, than this most unexpected resemblance between things so anlike to the eyes of ordinary beholders? Then, if we raise our views to the structure of the heavens, we are again gratified with tracing accurate but most unexpected resemblances. Is it not in the highest degree interesting to find, that the power which keeps the earth in its shape and in its path, wheeling round the sun, extends over all the other worlds that compose the universe, and gives to each its proper place and motion; that the same power kecps the moon in her path round the earth; that the same power any of th the wontomed e prosses of numefforts or intion of een on is the plants ; that Nocansed ing, 一 the air time, ations, ience, a vast et we e ice-conncied, 5 and tween if we gratiIs which e sun, e, and power power
causes the tides apon our earth, and the pecaliar form of the earth itself; and that, after all, it is the same power which makes a stone fall to the gronnd? To learn these things, and to reflect upon them, fills the mind, and produces certain as well as pare gratification.

The highest of all our gratifications in the study of science remains. We are raised by science to an understanding of the infinite wisdom and goodness which the Creator has displayed in all His works. Not a step can we take in any direction without perceiving the most extraordinary traces of design ; and the skill everywhere conspicuous is calculated in so vast a proportion of instances to promote the happiness of living creatures, and especially of ourselves, that we can feel no hesitation in concluding, that if we knew the whole scheme of Providence, every part would appear to be in harmony with a plan of absolute benevolence. Independently, however, of this most consoling inference, the delight is inexpressible, of being able to follow, as it were, with our eyes, the marvellous works of the great Architect of Nature, and to trace the unbounded power and exquisite skill which are exhibited in the most minute as well as in the mightiest parts of His system.
-Broughay.

THE SEA.

"The sea is His, and He made it," cries the Psalmist of Israel in one of those bursts of enthusiasn in which he so often expresses the whole of a vast subject by a few simple words. Whose else, indeed, could it be, and by whom else could it have been made? Who else can heave its tides and appoint its bounds? Who else can urge its mighty waves to madness with the breath and wings of the tempest, and then speak to it again in a master's accents, and bid it be still? Who else could have peopled it with countless inhabitants, and filled it from its deepest bed to its expanded sarface, filled it from its centre to its remotest shores, filled it to the brim with beauty and mystery and power? Majestic ocean! Glorious sea! No created being rules thee or made thee.

There is mystery in the sea. There is mystery in its depths. It is nufathomed, and perhaps unfathomable. What glittering
riches, what heaps of gold, what stores of gems, there must be scattered in lavigh profusion in the ocean's lowest bed! What spoils from all climates, what works of art from all lands, have been ingulfed by the insatiable and reckless waves! Who shall go down to examine and reclaim this uncounted and idie wealth? Who bears the keys of the deep? Who but He to whom the wildest waves listen reverently, and to whom all nature bows; He who shall one day speak, and be heard in the ocean's profoundest caves; to whom the deep, even the lowest deep, shall give up its dead, when the suu shail sicken, and the earth and the isles shall languish, and the heavens be rolied together like a scroll, and there shall be no mone sea!

In early times, in the scriptural and classio periods, the great oceans wero unknown. Mankind-at least that portion-whose history has descended to us-dwelt apon the borders of an inland, mediterranean sea. They had never heard of such an expanse of water as the Atlantic, and certainly had never seen it. The landlocked sheet which lay spread out at their feet was at all times full of mystery, and often even of dread and secret misgiving. Those who ventured forth upon its boson came home and told marvellous tales of the sights they had seen, and the perils they had endured. Homer's heroes returned to Ithaca with the music of the sirens in their ears, and the cruelties of the giants upon their lips. The Argonauts saw whirling rocks implanted in the sea, to warn and repel the approaching navigator; and, as if the mystery of the waters had tinged with fable even the dry land beyond it, they filled the Caucasus with wild stories of enchantresses, of bulls that breathed fire, and of a race of men that sprang, like a ripened harvest, from the prolific soil. If the ancients were ignorant of the shape of the earth, it was for the very reason that they were ignorant of the ocean. Their geographers and philosophers, whose observations were confined to fragments of Europe, Asia, and Africa, alternat ly made the world a cylinder, a flat surface begirt by water, a drum, a boat, a disk. The legends that sprang from these confused and contradictory notions made the land a scene of marvels, and the water an abode of terrors.

At a later period, when, with the progress of time, the love of adventure or the needs of commerce had drawn the navigator from the Mediterrnnean through the Pillars of Hercules into the Atlantic, and when some conception of the immensity of the waters had forced itself upon minds dwarfed by the contracted limits of the inlaud sea, then the ocean became in good earnest a receptacle of
gfoomy and appalling horrors, and the marvels narrated by those fortunate enough to return, told how deeply the imagination had been stirred by the new scenes opened to their vision. Pytheas, who coasted from Marseilles to the Shetland Isles, and who there obtained a glance at the bleak and wintry desolation of the North Sea, declared, on reaching home, that his further progress was barred by an Immense black molluse, which hang suspended in the air, and in which a ship would be Inextricably involved, and where 110 man could breathe. The menaces of the South were even more appalling than the perils of the north; for he who should venture, it was said, across the equator into the regions of the sun, would be changed into a negro for his rashness; besides, in the popular belief, the waters there were not navigable. Upon the quaint charts of the Middle Ages, a giant located upon the Canary Islunds forbade all farther ventine westward, by brandishing his formidable clab in the path of all vessels coming from the cast. Upon these singular maps, the concealed and treacherous horrors of the deep were displayed in the grotesque shapes of sea-monsters and distorted water-unicorns, which were represented as careering through space and waylaying the navigators. Even in the time of Columbas, and when the introduction of the compass into European ships should have somewhat diminished the fantastic terrors of the sea, we find that the Arabians, the best geographers of the time, represented the bony and guarled hand of Satan as rising from the waves of the sea of darkness-as the Atlantic was then called-ready to seize and ingalf the presumptuous mariner. The sailors of Columbus, on reaching the Sargasso Sea, where the collected weeds offered an impediment to their progress, thought they had arrived at the limit of navigation, and the end of the world. Five years later the crew of Da Gama, on doubling the Cape of Good Hope, innagined they saw, in the threatening clouds that gathered about Table Rock, the form of a spectre waving off their vessel, and crying woe to all who should thus invade his dread dominion. The Neptne of the classics, in short, who disported himself in the narrow waters of the Mediterranean, and of whose wrath we have read the famons mythologic accounts, was a deity altogether bland and debonnaire compared to the gloomy and revengeful monopolist of the seas, such as the historians and geographers of the Middle Ages painted him.

And now Columbus had discovered the Western Continent, Da Gama had found an ocean route to the Indies, and Magellan, sailing round the world, had proved its sphericity and approached the Spice Islands from the east. For centuries now, the two great oceans
were the scenes of grand and useful maritime expeditions. The tropical islands of the Pacific arose, one by one, from the bosom ofthe sea, to reward the navigator, or relieve the outcast. For years property was not safe upon the sea, and trading ships went armed, while the armed vessels of nations turned buccancers. Comunerce was by and by spread over the world, and civilisation and Christianity were introduced into the desert and the wilderness. Two cellturies more, and steam made the Atlantic Occan a ferry-transit.

The ocean, then, has a history ; it has a past worth narrating, adventures worth telling, and it has played a part in the advancement of science, in the extension of geographical knowledge, in the spread of civilisation and the progress of discovery, which it is eminently worth our whilo to ponder and digest.
-Goodnicn's "The Sea."

THE FORGING OF THE ANCHOR.

Come, see the Dolphin's anchor forged ; 'tis at a white heat now ;
The bellows ceased, the flames decreased; though on the forge's brow
The little flames stlll fitfully play through the sable mound; And fitfully you still may see the grim smiths ranking round, All clad In leathern panoply, their broad hands only bare:
Some rest upon their slenges here, some work the windlass there.
The windlass strains the tackle chains, the black monnd heaves below,
And red and deep, a hundred veins burst out at every throe; It rises, roars, rends all cutright-0 Vulcan, what a glow ! 'Tis blinding white, 'tis blasting bright ; the high sun shines not so!
The high sun sees not, on the earth, such fiery, fearful show,
The roof-ribs swarth, the candent hearth, the ruddy lurid row
Of smiths that stand, an ardent band, like men before the foe.
As quivering through his fleece of flame, the sailing monster, slow
Sinks on the anvil-all about the faces fiery grow-
"Hurrah!" they shout, "leap out-leap out;" bang, bang the sledges go;
Hurrah ; the jetted lightnings are hissing high and low;

The rom of years rmed, merce liristio cenit. ating, rancein the it is

A hailing fount of fire is atruck at every squashing blow;
The leathern mail rebounds the hail ; the rattling cinders atrow 'The ground around; at every bound the sweltering fountains flow ; And thick and loud the swinking crowd, at every atroke, pant "Ho!"

Leap out, leap out, my masters; leap out and lay on load I
Let's forge a goodly anchor, a bower, thick and broad;
For a heart of oak is hanging on every blow, I bode, And I see the good ship riding, all In a perilons road; The low reef roaring on her lee, the roll of ocean poar'd From stem to stern, sea after sea, the malnmast by the board; The bulwarks down, the rudder gone, the boats stove at the chains, But courage still, brave mariners, the bower yet remains, And not an inch to flinch he deigns save when ye pltch sky-high, Then moves his head, as though he said, "Fear nothing, here am I!"
Swing in your strokes in order, let foot and hand keep time!
Your blows make music sweeter far than any steeple's chime;
Bat, while ye swing your sledges, sing; and let the burden be, "The anchor is the anvil king, and royal craftemen we."
Strike in, strike in, the sparks begin to dull thelr rustling red I
Our hammers ring with sharper din, our work will soon be sped.
Our anchor soon must change his bed of fiery rich array,
For a hammock at the roaring bows, or an oozy coach of clay;
Our anchor soon must change the lay of merry crafismen here,
For the "Yeo-heave-0," and the "Heave-away," and the sighing seaman's cheer ;
When weighing slow, at eve they go, far, far from love and home, And sobbing sweethearts, in a row, wail o'er the ocean foam.

In livid and obdarate gloom, he darkens down at last, A shapely one he is and strong, as e'er from cat was cast. 0 trasted and trastworthy guard, if thou hadst life like me, What pleasures would thy toils reward beneath the deep green sea! 0 deep sea-diver, who might then behold such sights as thou? The hoary monster's palaces! methinks what joy 'twere now To go plump plunging down amid the assembly of the whales, And feel the churn'd sea round me boil beneath their scourging tails !
Then deep in tangle-woods to fight the fierce sea-nnicorn, And seud him foild and bellowing back, for all his ivory horn;

To leave the subtle aworder-fish, of bony blade, forlorn, And for the ghastly grinuing shark, to laugh his jaws in scorn ; To leap down on the kraken's back, where, 'mid Norwegian Isles He lies, a lubber anchorage for sudden shallow'd miles ; Till snorting, like an under-sea volcano, off he rolld, Meanwhile to swing, a-buffeting the far nstonish'd shonis Of his back-browsing ocean-calves; or haply in a cove, Shell-strown, and consecrate of old to some Undine's love; To flind the long-hai'd mermaidens; or, hard by icy lands, To wrestle with the sea-serpent, upon cerulcan sands.

0 broad-armed fisher of the deep, whose aports can equal thine? The Dolphin weighs a thousand tons, that tugs thy cable line; And night by uight, 'tis thy delight, thy glory day by day, Through sable sea and breaker white, the giant game to play. Bur, shamer of our little sports I forgive the name I gave, A fisher's joy is to destroy-thine office is to save.

0 lodger in the sea-king's halls, couldst thou but anderstand Whose be the white bones by thy side, or who that dripping band, Slow swaying in the heaving wave, that round about thee bend, With sounds like broakers in a dream, blessing their ancient frlendOh, couldst thou know what heroes glide with larger steps round thee,
Thine iron side would swell with pride, thon 'dst leap within the sea !
Give honour to their memories who left the pleasant strand, To shed their blood so freely for the love of fatherlandWho left their chance of quiet age and grassy churchyard grave So freely, for a restless bed amid the tossing waveOh, though our anchor may not be all I have fondly sung, Honour him for their memory, whose bones he goes amoug!
—Blackwood's Magazine.

EAIILY NAVIGATORS.

We have taken the birth of Christ as a point of departure in the history of navigation, merely because of the prominence of that event in the annals of the world, not on account of any connexion that it has with the chronicles of the sea. So far from that, the first five centuries of the Christian era aro an absolute blank in all matters which pertain to our subject. The Roman Empire rose and fell; and its rise and fill concerned the Mediterranean only. Not even Julius Cesar, the greatest man in Roman history, has a place in maritime records; unless, when crossing the Adriatic in a fishilugboat during a storm, his memorable words of encouragement to the fisherman, "Fear nothing! you carry Cwesar nnd his fortunes!" are sufficient to connect him with the sea. Neither Pompey, nor Sylla, nor Augustas, nor Nero, nor Titus, nor Constantine, nor Theodosius, nor Attila, can clalm purt or lot in the dominion of man over the ocenn. And so we glide rapidly over five centuries.

Upon the invasion of Italy by the barbarians, A.D. 476, the Veneti, n tribe dwelling upon the north-eastern shores of the Adriatic, escaped from their ravages by fleeing to the marshes and sandy inlets formed by the deposits of the rivers which there fall into the guif. Here they were secure; for the water around them was too deep to allow of an attack from the land, and too shallow to admit the approach of ships from the sea. Their only resource was the water and the employments it afforded. At first they caught fish; then they mado salt, and finally engaged in maritime traffic. Early in the seventh century their traders were known at Constantinople, in the Levant, and at Alexandria. Their city soon covered ninety isiands, connected together by bridges. They established mercantile factories at Rome, and extended their authority into Istria and Dalmatia. In the eighth century they chased the piratos, and in the ninth they fought the Saracens. At this period Genoa, too, rose into notice, and the Genoese and the Venetinus at once became connmercial rivals, and the monopolists of the Mediterranean.

And now Peter the Hermit, barefooted and penniless, inveighing against the atrocities of the Turks towards Christians at Jorusalem, exhorted the warriors of the Cross to take ap arnis aguinst the infidels. He inspired all Europe with an enthusiasm like his own, and enlisted a million followers in the canse. The passion of the age was for war, peril, and adventure ; and fighting for the Sepulchre was a more agreeable method of doing penance than wearing
anckeloth or mortifying the flesh. The Arst Crusade, a motley array of knights, spendelirita, barons, beggars, womien, and children, set out upon their wild career. Then came the second, the third, and the forrth. Crusading was the amusement and occupation of two centuries. Two millions of Europeans perished in the cause before it was abandoned. A few words concerning its effect upon the civilisation of Europe are necossary here, in direct pursuance of our subject.

During their stay In Palestine the Crusaders learned, and In a measure acquired, the labits of Eastern life. They brought back with them a tasto for the pecullar products of that region-jewels, silks, cutlery, perfume, spices. A brisk commerce through the length and breadth of the Mediterrancan was the speedy consequence. Genoa, Pisa, Florence, Venice, covered the waters of their inland sea with sails, trafficking from the ports of Italy to those of Syria and Egypt. In every maritime city conquered by the Crusaders, tradlug stations and bazaars were eatablished. Marselles obtained from the kings of Jeruanam privileges and monopolies of trade upon their territory. Venice surpassed all her rivals in the splendour and extent of hor commerce, and it was for this that the Pope, Alexander III., sent the Doge the famous nuptial ring with which, in assertion of his naval supremacy, "to wed the Adriatic." The ceremony was performed from the deck of the Bucentaur, or state galley, with every possible accompaniment of pomp and parade. The vessel was crowned with flowers like a bride, and amid the harmonies of music, and the acclamations of the spectators, the ring was dropped into the sea. The Republic and the Adriatic, long betrothed, wero now indissolably wedded. This ceremony was repeated from year to year.

The Normans, the Danes, the Dutch, imitated the example of the Itailans, or, as they were then calied, the Lombards. bat were rather occupied in conveying provisions to the armies than in trading for their own account.

It was during the Crnsades that the French navy was created. Philip Angustus, who, on his way to Syria, and thence home again, could not have remained insensible to the advantages of possessing a strong force upon the ocean, formed, upon his return, the noclens of a national fleet, for the purpose of dofending his coasts either against pirates or foreign invasion.

While the necessity of transporting articles from the East to supply the demand thus created in the West, gave a stimulus to commerce and navigation, manufactures were eucouraged and developed , and amid ptators, the - Adriatic, emony was
mple of the bat were an in trad-
as created. ome again, possessing the nuclens pasts either
by the operation of the anme cause. The Italians learned from the Greeks the art of weaving silk, which soon resuited in the weaving of cloth of gold and ailver. From the manufactories of Syria, where stuffis were made of camels' hair, improvements were introdaced Into the manufinctories of Europe, where they were woven of no other material than lamba' wool. Paleatino also suggented to crusnders rethriuling home the advantages of windmilis for grinding flour. Arabla farnished the art of tempering arms and polishlug steel, of chasing gold and silver, of mounting stones in rich and massive settings. Constantinople furnished the Christians with many splendid specimens of ancient art.

Nearly all the Gothio monuments of Earope which stlll excite the admiration of the tourist, owe their existence to this communication with the Greeks by means of the Crusades, and to the wonder which seized the Franks and Lombards at the aight of the churches and palaces of Byzantium. Painting npon ginsa was also bronght from Constantinople; and the early painters of Cliristendom were speedily employed in tracing in colours, upon the windows of abbeys and cathedrals, the exploits of the Crusaders, and the trinmphs of the Cross.

From the Arabs and the Greeks, too, the Europeans recelved their first lessons in the natural and exact sciences. Imperfect and incomplete as were the astronomy, the botany, the mathematics, and the geography of the Arabians, they were far in advance of the same professions as understood and practised in Europe. The languages were improved and enriched by the association and exchange of Ideas into which English, Germans, Italians, and French were forced.

It is obvious, therefore, that the effect of the Crusades was to give the people of Europe a new motive for maintaining an Intercourse with the people of Asia. They had seen their superior civilisation, and sought to introduce it among themselves. They had learned to appreciate their skill in the arts, and resolved to accllmate those arts at home. They had accustomed themselves to many articles of luxury, which had become articles of necessity, and which it was now essential, therefore, to transport from the Levant, from the Red Sea, and the Persian Gulf, to the Bay of Venice and the Gulf of Genoa.' There was a demand, in short, in the West, for the products, the manufactures, the arts, of the East. Here was the origin of the immense Eastern commerce which now fell into the bands of the Genoese and Venetians, and which resalting from the Crasades, compelled ns to the digression we have made

A map, published just anterior to the first Crusade, fally displays the ignorance which then prevalied in geographical science. The sea, as in the age of Homer, is made to surround the world as a river, the land being divided into three parts, Europe, Asia, and Africa. Africa and Asia are joined together in the south, and the Indian Ocean is an inland sea. Asia is as large as the other two continents combined. On the east there is a small spot indicated as the position of the Garden of Eden by the words, Hic est Paradisus. Europe and Africa are separated from Asia by a long canal, which may be either the Nile or the Hellespont. Africa is still considered the land of mystery and fable; its northern part only is considered inhabitable, the south being even unapproachable, on account of the torrents of flame poured on it by the sun. The Frozen Ocean, the Baltic, the ${ }^{\circ}$ White Sea, and the Caspian, are all united. The northern regions are represented as forming one single island ; and Scandinavia is made the birthplace and residence of the Amazons, the famous women-warriors to whom antiquity had given a home in the Caucasus.
-Goonricn's "The Sea."

TAE WORLD .IS KNOWN TO THE ANCIENTS 200 B.C.
lly displays ence. The world as a Asia, and h, and the other two t indicated c est Paralong canal, ica is still part only is ichable, on sun. The ian, are all g one single lence of the y had given The Sea."

THE CHESAPEAKE AND THE SHANNON.

> "And as the war they did provoke, We 'll pay them with our cannon; The first to do it will be Broke, In the gallant ship the Shannon."-old Song.

The 1st of June has long been a glorious day in the annals of the British navy. It was then, in the year 1665, that the Duke of York and Sir William Pemn defeated the Dutch Fleet at Solebay; and on the same day, in 1794, Lord Howe gained his, famons. victory over the Freach. But the 1st of June upon which our story opens was that of 1813, the second year of the Amprican war. Great Britain had, for many years, been engaged in an unlequal contest with the giant power of the first Napoleon; victorious upon her native element, she was also driving his armies from the soil of Spain, and was tasking all her powers in men and money to the utmost, in order to bring a long and exhaustive struggle to a happy conclusion. Taking advantage of her embarrassed situation, the new republic of the United States availed itself of a supposed insult which Great Britain had offered in searching its ships for naval deserters, and declared war on the 18th of June 1812,
exactly three years before the battle of Waterloo. Then commenced a sad and nujust war; sad, because it was between people of the same blood and language; and unjust, because the Americans had no real ground of provocation. The United States carried on the war both by land and by sea, invading Canada with their armies, and attacking British frigates and merchant vessels upon the ocean. No large men-of war could be spared from their duty upon the European coast to oppose the ships of the enemy, which, on account of their superior size and armament, had already succeeded in capturing several of the amaller British craft. "England had so long regarded her naval sapremacy as indisputable, and had been rendered so confident by a long series of ocean victories, that, at first, she treated the American war with nndisguised contempt. On the other hand, the Americans introduced into their military operations the same 'smartness' which characterised their commercial dealings, and, aware of the importance of damaging the world's belief in Eugland's invincibility, they quickly pat to sea several powerful men-of-war, heavily armed and fully manned, which they, nevertheless, designated 'frigates' and 'sloops.' It was then with a burst of indignation, wrath, and wonder, that England heard of disgrace after disgrace, disaster apon disaster,- of English frigates captured by American frigates, aind English sloops by American sloops-until it seemed as if the boasted prowess of our sailors had suddenly disappeared, and the knell of England's power was to be rung by her youthful and aggressive offspring. The war spirit, which had hitherto slumbered in the Saxon heart, shot ap into a sudden flame, aud from north to south, and east to west, went forth the cry that the honour of England must be avenged. It was while public feeling was thus unnaturally excited, that a single ship restored the old and just belief in our maritime renown. That ship was the frigate Shannon, whose gallant encounter with the Chesapeake is one of the most stirring episodes in all onr naral history."
"On the 21st of March 1813,Captain Broke sailed from Halifax, in company with a frigate of the same size as the Shannon, the Tenedos, commanded by an equally zealons officer, Captain Hyde Parker. Looking into Boston harbour, the two British captains saw, to their great delight, two heavily-armed United States frigates, the President and the Congress, ready for sea. Notwithstanding the disparity of force, they resolved, if possible, to engage the Americans, and took up a station off the harbour to intercept their escape. Meanwhile, by another channel, the American 36 -gun-frigate Chesapeake had ran into port. During a thick fog on the 1st of May, the two

Am
put find bra and
vell of Ten unti

Americans contrived to elude the vigilance of their sentinels, and put out to sea; and the English captains had the mortification of finding only the Chesapeake left in the harbour. They were too brave to think of opposing their united strength to a single frigate, and, moreover, it was evident that the Chesapeake would hardly venture from her place of shelter to encounter two British ships of war. Captain Broke, therefore; as senior officer, ordered the Tenedos to proceed on a cruise, with instructions not to rejoin him until the 14th of June."

During the long month of May the Shannon blockaded Boston harbour, waiting for the Chesapeahe to come out and figltt a fair battle upon the open sea. The two ships were well matched, but the advantage was on the side of the American; for, although it had no more guns than the British ship, they were of heavier calibre, and threw not only the legitimate shot and ball, but star and chain shot, with otherequally dangerous and barbarous missiles. Its crew, also, was stronger than that of the Shannon by seventy men, and the vessel was about seventy tons larger, so that one would have thouglit Captain Lawrence had little to fear in the event of an encounter. In spite, however, of the many ehallenges which Captain Broke gent to him during the montlr of May, he obstinately refused to emerge from his secure position in Boston harbour. About noon, however, on the 1st day of Jane, just as Captain Broke had sent off a discharged prisoner with a formal challenge to the cominander of the Chesapeake, that vessel set sail from the harbour, accompanied by a large fleet of pleasure-boats, in which the good people of Boston expected to witness a great naval victory; and so they did, but, unfortunately for them, the victory was on the wrong side. Five long anxions hours were spent by both vessels in getting out into the open sea, so that they might there fight a fair battle upon neutral waters. When about six leagnes' distance from the harbour, the Shannon lay to and waited for the Chesapeake to come within range. On she came with a fair wind, the stars and stripes flying gaily from the mizzen royal topmasthead, the peak, and the main rigging; contrasting strangely with the Shannon's plain union-jack at the fore, aud her "old rusty blue ensign at the mizzen peak." Bat old and rusty as the British colours were, they were worth all the bran new bunting in the world, for the flag was there "that has braved a thousand years the battle and the breeze." In addition to the ensigns above-mentioned, the Chesapeake lung ont at the fore a large white flag, inscribed with the motto, "Sailors' Right and Free Trade," which the Americans foolishly thought would make
the British tars turn traitors to their country. About a quarter to six o'clock the Chesapeake came up within fifty yards of the Shannon.
> " As they drifted on their path, There was silenee deep as death, And the boldest held his breath For a time."

Then a cheer arose from the American ship, followed by a shot from the British frigate. Thirteen such single shots passed from vessel to vessel, followed by crashing timbers, and the groans of wounded and dying men. Then the Chesapeake poured in a broadside; the Shannon replied, and, for a few minutes, the decks of the opposing frigates were swept by the iron hail, driving the men from their quarters in which no human being could live. Now a well-aimed shot, for the Shannon's crew are splendid gunners, brings down the steersman of the Chesapeake; she falls sharp to the wind, and exposes herself to the full sweep of the British fire. Already Captain Lawrence has fallen mortally wounded, exclaiming, with his last breath, "Don't give up the ship;" for he was a brave man and a good officer. A terrible volley is poured into the sternports of the Chesapeake, and the second officer in command wishes to get the vessel away from her gallant British enemy ; but Broke will not let him, and so the two ships fall aboard one another. "Lash them together," cries the captain of the Shannon, and brave men strive to bind the frigates fast, while the enemy is raining musketry upon them, and Stevens, the veteran boatswain, has his left arm literally hacked off with repeated swordcuts. The rest of the Shannon's crew are boarders; the Americans are expecting them, and a large barrel of unslacked lime is at hand to throw in the faces of the British seamen ; but, by a just retribution, a shot strikes the barrel, and its contents are dashed into the eyes of those who contrived the cowardly stratagem. In less time than it requires to tell the story, the boarders are ready, seamen with pike, pistol, and cutlass, and marines with musket and bayonet. Over the enemy's taffrail they go, led into action by Captain Broke and Lientenant Watt, and form upon the deck of the Chesapeake. Then follows a scene of confusion and horror, in which shots and cuts and thrusts are succeeded by ghastly wounds and dying groans. The enemy is beaten forward ; some escape down the fore hatchway, cthers over the bow, and others throw themselves into the sea; several surrender as prisoners of war. But the fight is not over. A large number of men are in the hold; they fire throngh the hatchways and kill a marine. The men who have surrendered take up arms again and
quarter to e Shannon. ot let him, 1 them tostrive to ketry upon m literally Shannon's nd a large ices of the the barrel, ntrived the 1 the story, utlass, and affrail they Watt, and a scene of ts are sucy is beaten er the bow, urrender as number of and kill a again and
attack Captain Broke, one wounding him in the face with a pike, another laying bare his skull with the butt-end of a musket, and a third aiming a blow at him with a cutlass ; but his brave seamen cut down the treacherous Americans. Lientenant Watt now hauls down the stars and stripes, and on the halliards bends a British ensign above them. The halliards are twisted, the stars and stripes rise uppermost, and the Shannon's gunners, supposing the act to be performed by the enemy, aim at the lieutenant, who falls, with five seamen, the victims of a melancholy blunder. The marines fire a volley into the hold, where the Americans still keep up a dropping fire upon the victorious enemy. Then follows a summons to surrender from Captain Broke, who, with bandaged head, is sitting upon a gun-carriage. Sullenly they comply, the British flag floats above the American colours, and the Chesapeake becomes the prize of her gallant enemy. In thls fight the loss of the United States was one hundred and seventy men, that of the British vessel elghtythree.

It was some little time before the shattered frigates wore in a fit state to set sail; sson, however, they were repaired and made their way to Halifax. Into that splendid harbour the Shannon entered with flying colours and her weli-won prize on the 6th of June, amid the booming of artillery and the cheers of loyal British subjects.
"The moral effect of this memorable action, both in England and America, was immense; it restored confidence to the public mind of Great Britain, while it proved to the Americans that they were by no means able to contend with English sailors, when the terms were at all equal. We do not doubt that if a parricidal war should again-which God forbid !-break out between the mother country and the commonwealth, nurtured of her strength and bred from her loins, our seamen would still maintain the honour of the Red Cross, and repeat, if necessary, that gallant encounter between the Shannon and the Chesapeake, which, in the stirring times of the great war, fired with patriotic ardour the hearts of our forefathers, and reasserted our sovereignty of the seas!"
-Adapted from Adams's "Famous Ships of the British Navy."

THE CONVIOT SHIP.

Mors on the waters I and purple and bright, Bursts on the billows the flashing of light; O'er the glad waves, like a child of the sua, See the tall vessel goes gailantly on; Full to the breeze she anbosoms her sail, And her pennon streams onward, like hope, in the gale ; The winds come around her, in murmur and song, And the sarges rejoice as they bear her along. See ! she looks up to the golden-edged clonds, And the sailor sings gally aloft in lier shrouds : Onwards she glides amid ripple and spray, Over the waters, away and away!
Bright as the visions of youth ere they part, Passing away, llke a dream of the heart ; Who, as the beantiful pageant sweeps by, Music around her, and sunshine on high,
Panses to think, amid glitter and show, Oh! there be hearts that are breaking below?

Night on the waves! and the moon is on high, Hung like a gem on the brow of the sky, Treading its depths in the power of her might, And turning the chouds, as they pass her, to light. Look to the waters! asleep on their breast, Seems not the ship like an island of rest, Bright and alone on the shadowy main, Like a heart-cherish'd home on some desolate plain? Who, as she smiles in the silvery light, Spreading her wings on the bosom of night, Alone on the deep, as the moon in the sky, A phantom of beanty, could deem with a sigh, That so lovely a thing is the mansion of sin, And souls that are smitten, lie bursting within? Who, as he watches her silently gliding, Remembers that wave after wave is dividing Bosoms that sorrow and guilt could not sever, Hearts that are parted and broken for ever? Or dreams that he watches, afioat on the wave, The death-bed of hope, or the young spirit's grave?
'Tis thus with our life: while it passes along, Like a vessel at sea, amid sunshine ani song, Gaily we gllue in the gaze of the world, With streamers afloat, and with canvis unfurl'd; All gladness and glory to wandering eyes, Yet charter'd by sorrow and freighted with sighs : Fading and false is the aspect it wears, As the smiles we pat on, just to cover our tears ;
And the withering thoughts that the world cannot know, Like heart-broken exiles, lie burning below;
Whilst the vessel drives on to that desolate shore,
Where the dreams of our childhood are vanish'd and o'er. -T. K. Hervey.

THE GULF STREAM.
There is a river in the ocean. In the severest droughts it never fails, and in the mightiest floods it never overflows. Its banks and its bottom are of cold water, while its current is of warm. The Gulf of Mexico is its fountain, and its month is in the Arctic Seas. It is the Gulf Stream. There is in the world no other such majestic flow of waters. Its current is more rapid than the Mississippi or the Amazon, and its volume more than a thonsand times greater.

The currents of the occan are among the most important of its movements. They carry on a constant interchange between the waters of the poles and those of the equator, and thus diminish the extremes of heat and cold in every zone.

The sea has its climates as well as the land. They both change with the latitude; but one varies with the elevation above, the other with the depression below the sea level. The climates in each are regulated by circulation; but the regulators are, on the one hand, winds; on the other, currents.

The inhabitants of the ocean are as much the creatures of climate as are those of the dry land; for the same Almighty hand whlch decked the lily and cares for the sparrow, fashioned also the pearl, and feeds the great whale, and adapted each to the physical conditions by which His providence has surrounded it. Whether of the land or the sea, the inhabitants are all His creatures, subjects of His laws, and agents in His economy. The sea, therefore, we may safely infer, has its offices and dutles to perform ; so, may we infer, have its currents; and so, too, its inhabitants : consequently, he who undertakes to study its phenomena must cease to regard it as a waste of waters. He must look npon it as a part of that exquisite machinery by which the harmonies of nature are priserved, and then he will begin to perceive the developments of order and the evidences of design.

From the Arctic Seas a cold current flows along the coasts of America, to replace the warm water sent throngh the Gulf Stream, to moderate the cold of western and northern Europe. Perhaps the best indication as to these cold currents may be derived from the fishes of the sea. The whales first pointed out the existence of the Gulf Stream by avoiding its warm waters. Along the coasts of the United States all those delicate animals and marine prodactions which delight in warmer waters are wanting ; thus indicating, by their absence, the cold current from the north now known to exist there. In the genial warmth of the sea about the Bermudas on the one hand, and Africa on the other, we find in great abundance those delicate shell-fish and coral formations which are altogether wanting in the same latitudes along the shores of Sonth Carolina.

No part of the world affords a more difficult or dangerous navigation than the approaches of the northern coasts of the United States in winter. Before the warmth of the Gulf Stream was known, a voyage at this season from Europe to New England, New York, and even to the Capes of the Delaware or Chesapeake, was many times more trying, difficult, and daugerous than it now is. In
portant of its between the diminish the
both change ove, the other es in each are he one hand, res of climate hand which lso the pearl, physical conhether of the ibjects of His ore, we may may we infer, ently, he who gard it as a hat exquisite rrserved, and rder and the Gulf Stream, pe. Perhaps derived from existence of the coasts of e productions ndicating, by own to exist nudas on the ndance those gether wantolina.
rous navigaJnited States ;as known, a New York, e, was many now is. In
making this part of the const, vessels were frequently met by snowstorms and gales which mock the seaman's strength, and set at naught his skill. In a little while his bark becomes a mass of ice; with her crew frosted and helpless, she remains obedient only to her helm, and is kept away for the Guif Stream. After a fow hours' run she reaches its edge, and almost at the next bound passes from the midst of winter into a sea at summer heat. Now the lee disappears from her apparel, and the sailor bathes his stiffened limbs in tepid waters. Feeling himseif invigorated and refreshed with the genial warmth about him, he realises out there at sea the fable of Antrous and his mother Eurth. He rises up and attempts to make his port again, and is again, perhaps, as rudely met and beat back from the north-west; but each time that he is driven off from the contest he comes forth from this stream, like the ancient son of Neptme, stronger and stronger, until, after many days, his freshened strength prevails, and he at last triumphs, and enters his haven in safety, though in this contest he sometimes falis to rise 110 more.

The ocean currents are partly the result of the immense evaporation which takes place in the tropical regions, where the sea grently exceeds the land in extent. The enormous quantity of water there carried off by evaporation disturbs the equilibrinu of the seas; but this is restored by a perpetual flow of water from the poles. When these streams of cold water lenve the poles, they flow directly towards the equator; but, before proceeding far, their motion is deflected by the diurnal motion of the earth. "At the poles they have no rotatory motion; and although they gain it more and more in their progress to the equator, which revolves at the rate of a thousand miles an hour, they arrive at the tropics before they have gained the same velocity of rotation with the intertropical ocean. On that account they are left belind, and, consequently, flow in a direction contrary to the diurnal rotation of the earth. Hence the whole surface of the ocean for thirty degrees on each side of the equator flows in a stream or current three thousand miles broad from east to west. The trade winds, which constantly blow in one direction, combine to give this great Equatorial Current a mean velocity of ten or eleven miles in twenty-four hours."

Were it not for the land, such would be the uniform and constant flow of the waters of the ocean. The presence of the land interrupts the regularity of this great western movement of the waters, sending them to the north or south, according to its conformation.

The principal branch of the Equaterial Current of the Atiantic takes a north-westerly direction from off Cape St Roplue, In Sonth America. It rushes along the const of Brazil; and, after passing through the Caribbean Sen, mid sweeping round the Gulf of Mexico, it flows between Florida and Cubn, and enters the North Atlantic under the name of the Gulf stream, the most benutiful of all the oceanic currentw.

In the Straits of Florida the Gulf Stream is thirty-two miles w!de, two thousand two hundred feet deep, and flows at the rate of four miles an hour. Its waters are of the purest ultra-marine blue as far as the coasts of Carolina; and so completely are they separated from the sea through which they flow, that a ship may be seen at times lialf in the ono and half in the other.

As a rule, the hottest water of the Gulf Stream is nt or near the surface; and as the deep-sea thermometer is sent down, it shows that these waters, though still much warmer than the water on either side at corresponding depths, gradually become less and lees warm until the bottom of the current is reached. There is reason to believe that the warm waters of the Gulf Stream are nowhere permitted, in the oceanic eeonomy, to tonch the bottom of the sea. There is everywhere a cushion of cold water between them and the solid parts of the earth's crust. This arrangement is suggestive, and strikingly beautlful. One of the benign offices of the Gulf Stream is to convey heat froin the Gulf of Mexico,-where otherwise it would become excessive, -and to dispense it in regions beyond the Atlantic, for the amelioration of the climates of the British Islands, and of all Western Europe. Now, cold water 13 one of the best non-conductors of heat ; but if the warm water of the Gulf Stream were sent across the Atlantic in contact with the solid crust of the earth, comparatively a good conductor of heat, instead of being sent across, as it is, in contact with a nonconducting cushion of cold water to fend it from the bottom, all its heat would be lost in the first part of the way, and the soft climates of both France and England would be as that of Labrador: severe in the extreme, and ice-bound.

It has been estimated that the quantity of heat discharged over the Atlantic from the waters of the Gulf Stream in a winter's day would be sufficient to raise the whole column of atmosphere that rests upon France and the Brtish Islands from the freezing point to summer heat.

Every west wind that blows crosses the stream on its way to Europe, and carries with it a portion of this heat to temper there
of the Atlantic oque, in Sonth , nfter passilig iulf of Mexico, North Atlantic fiul of all the
wo miles w!de, 10 rate of four narine biue as they separated nay be seen at
ut or near the own, it shows the water on less and leas here is reason are nowhere om of the sea. them and the is suggestive, of the Gulf -where otherit in regions imates of the cold water is varm water of tact with the uctor of heat, with a nonbottom, all its e soft climates brador: severe
scharged over a winter's day nosphere that freezing point
on its way to temper there
the northern winds of winter. It is the influence of this ntream that makes Erin the "Emerald Iale of the Sea," and that clothes the shores of Albion in evergreell robes; while, in the same latitude, the coasts of Labrador are fast bound in fetters of ice.

As the Gulf Stream proceeds on Its course, it gradually increases in width. It flows along the coast of North America to NewfoundInnd, where it turns to the east, one branch setting towards tho British Islands, and awny to the consts of Norway and the Arctic Ocenn. Another branch reaches the Azores, from which it bends round to the south, and, after running along the African coast, it rejoins the great equatorial flow, leaving a vast apace of nearly motionless water between the Azores, the Canaries, and Cape de Verd Islands. This great area is the Grassy or Sargasso Sea, covering a space many times larger than the British Islands. It is so thickly matted over with gulf weeds that the speed of vesseis passing through it is often much retarded. When the companions of Columbus saw it, they thought it marked the limits of navigation, and became nlarmed. To the eye, at a little distance, it scems substantial enongh to walk upon. Patches of the weed are always to be seen floating along the outer edge of the Gulf Stream. Now, if bits of cork or chaff, or any floating substance, be put into a basin, and a circular motion be given to the water, all the light substances will be found crowding together near the centre of tho pool, where there is the least motion. Just such a basin is the Atlantic Ocean to the Gulf Stream; and the Sargasso Sea is the centre of the whirl. Columbus tirst found this weedy sea in his vojage of discovery: there it has remained to this day, moving up and down, and changing lts position like the calms of Cancer, according to the seasons, the storms, and the winds. Exact observations as to its limits and their range, extending back for fifty years, assure ns that its mean position has not been altered since that time.
-Maury.

CHARACTERISTICS OF THE NEW WORLD.

Three centuries and a half ago, in October of the year 1492, Christopher Columbus, while sailing from the extreme west of the ancient continents in hopes of finding a direct route to their extreme east, made the wonderful discovery of a new quarter of the globe.

These three centuries and a half have not divested America of its newness ; for the novelty which it possesses consists in something more than the lateness of its discovery. Necessarlly the physical features of the Old World are reprodinced in the New; bit their reiative proportions and their arrangement are extremely different.

One characteristic of the New World is the uniformity of its two continental manses. Fiach of the three continents composing the Old World has an individuality of its own-Europe being remarkable for peninsulas, Asia for table-lands, nud Afrien for deserta; but North and Sonth America are remarkable chiefly as being the counterparts of each other. They occupy, indeed, different zones, and the Rocky Mountains of North Ainerica lie much farther from the coast than the Andes of South America, but all else is correspondence. Both are pear-shaped, and the narrow end of the peur points southwards in each; in both, the principal mountains run north and sonth, and not far from the western shore; the St Lawrence and Misslssippi in North America, correspond in direction to the Amazon and La Plata in South America; the Brazilian group of mountains, which separate these in the lower part of their conrse, is represented by the Alleghanies, which separate those; and towards the sources of the rivers their basins are separated in North America and in South America alike, only by a gentle unduJation, so that, as the Ibland region of North America, from the Arctic Ocean to the Guif of Mexico, is but one conthuous plain, so also is the inland region of South America, from the Caribbean Sea to Patagonia. The scenery of these plains, calied prairies and savannalis in North America, llanos and pampas in South America, is characterised by the same uniformity which pervades the physical conformation of the whole continent. Whether they are clothed with grass, as on the right bank of the Mississippi, or covered with primeval forests, as on the left bank of that river, and throughout the A mazonian plain, day after day the travellers who explores them has but one unvarying landscape all around him. The deep solitude of these plains, wherever it remains unbroken by advancing civilisation, adds power to the depressing aniformity of the scenc. In the following paseage, Humboldt, the most learned of travellers, while acknowledging the tendency of American scenery to depress, declares the mind capable of recovering itself, so that, though yielding at tirst, it conquers at last:-"An uninhabited region appears to the European as a land forsaken by its inhabitants. But he who has lived for years in America, iu the forests of the flat conntry, or on the ridge of the
merica of its in something the phynicat IV ; but their ely different. ty of lts two omposing the eling remark for deeerts; fly as being ced, dilfierent much farther but all else is ow end of the pal mountains shore; the St id in direction the Brazillan part of their parate those; separated In gentle undaica, from the uous plain, so Jaribbean Sea malis In North tracterised by onformation of grass, as on eval forests, as azonian plain, t one unvarythese plains, n , adds power wing passage, owledging the mind capable it conquers at ean as a land for years in e ridge of the

Cordilleras, and has seen districts equal In extent to France, occupied by ouly a few seattered huts, finds that even solitudes so wide as thene lose their power to depress and to alarm. His fancy becomex fimilliar with the aspect of a world which nourishes only the plant and the beast of the field, and in which the sonnds of human joy or woe are never heard."

Eiverywhere in the New World, size and simplicity characterise its natural featnres. Their simplicity results from their aize; thins, the river-basins depend on the monntinin systems; and both are exceedingly simple, hecanse both are enormonsly large. The only mountains in the Old World which rival the monntain backbone of Americe In lieight are the Himalaya, and none of them can nt all compare with it in lengit ; for the American range stretches, with the single interruption of Pamamn, for 10,000 miles, from Tierra del Fuego to the Aretic Ocean, which is about as far as from Gibraitar to Kantschatka. The Mississippi and the Amazon, including their longest respective afluents, viz., the Missourl and the Ucayall, are the longest rivers in the world, each of them measuring about 4000 miles, which is nenrly a thonsand more than the Yang-tsekiang, the largest river in the Old World. The plains, as has been mentioned, extend, like the principal mountains, throughout the whole length of both Americas. The lakes of Canada are inland sens. Lake Superior, the largest of them, though not the largest inland sea, for it yields in extent to the Caspian and the Sea of Aral, is yet the largest collection of fresh water; and the five great Canadian lakes together are believed to contain more than half of nll the fresh water on the globe. The American waterfalls also take precedence of all others. The roar of Niagara can be heard at a great distance, and the clond formed by its spray can be seen at a distance of ninety miles. Scarcely less remarkable are the cataracts of the Madelra, in South America, near the Peruvian frontier. There are nincteen of them, and at the elghteenth the whole river, about half a mile wide, is poured over a rock one hundred feet high. For volume of water this fall is believed to be the largest in the world, not excepting Niagara. The American forests, too, are on a magnificent scale. The largest covers the whole basin of the Amazon and its tributaries. Humboldt calculates its area as being twelve times that of all Germany.

The aboriginal inhabitants of the New World present, like the regions they inhabit, a remarkable uniformity of type. The Esquimaux, who occupy the extreme north, being excepted, a single native race is spread over North and South America; and the
nations composing this race have scarcely any distinctive national character. The aboriginal population of America offers no such contrasts as those between Caucasian and Negro; between AngloSuxon and Chinese; perhaps not even a difference so great as that between the Northern and Southern European. The mode of life in Mexico and Peru, the only two countries which had risen above barbarism prior to the discovery of America by Columbus, was of course very different from that of the other Indians, who lived chiefly by hunting; for the Mexicans and Peruvians practised most of the useful arts, had constructed good roads, and had built for themselves cities and temples. But they both stopped short at the same level of attainment, and, which is unexampled in the history of the Old World, they had both arrived at the agricultural atage without passing through the pastoral. The Mexicans had no domestic quadrupeds at all ; the Peruvians had only the llama, a poor creature, though called the camel of the Andes, which has since been superseded by the mule as a beast of burden, and is now reared only for its wool, called alpaca. Such being the case, the value of milk was unknown, and the pastoral stage of civilisation impossible in America.

The native civilisation of America was not strong enough to effect even a compromise with that of Europe. The Spaniards, overtearing right by might, made their discovery of Mexico and Pern the occasion of an attack, which resulted in the complete destruction of every institution native to the soil. Throughout the rest of America barbarism prevailed. Accordingly, the present civilisation of the New World simply repeats that of Europe, or rather of those European conntries which have at any time obtained an extensive footing in America, viz., of Spain, Portugal, Great Britain, and France. Though less uniform than that which preceded it, this civilisation is yet less varied, not only than that of the old World, bat than that of Europe. Domestic slavery, that great blot in the aspect of the United States, and the Brazilian empire, is the only American feature which does not find its counterpait in Europe. Europeans were certainly not guiltless of this wrong at its commencement, but for a long time now all Europe, excepting only Spain, which cannot protest against a system maintuiued in her own islands of Caba and Porto Rico, has protested by word and deed against its continnance. The American slave-holders, however, not only retain negio slavery as a lucrative inheritance, but defend it as an institution sanctioned by reason and revelation.*

[^0]nctive national offers no such ,etween Anglo-- great as that mode of life in isen above bar, was of course ived chiefly by nost of the usefor themselves the same level ory of the Old e without passlomestic quadpoor creature, ce been superreared only for value of milk impossible in
nough to effect ards, overtearand Pern the destruction of est of America ilisation of the of those Eurotensive footing n, and France. s civilisation is , bat than that aspect of the only American e. Europeans rencement, but , which cannot ds of Caba and its continuance. negro slavery tion sanctioned

Neither Spain nor Portugal now retains a single foot of ground on the American maiuland. It is worth noting that the former Portuguese possessions have been kept together, whereas the former Spanish possessions have fallen asuuder into numerous republics, which are in a state of chronic revolution. A portion of Guiana is all that France now possesses on the American maiuland, but a French element still prevails in Lower Canada, and in several of the southern states oi the Union. British America is nearly as extensive as the territory of the United States; and a British element, in respect of race, language, literature, religion, education, and manners, prevails, not only throughout what still are, but also throaghout what formerly were, British possessious, viz., the greater part of the United States.

As the British element is the most widely distribated in America, so it is also inherently the most powerful. The Spaniards and Portuguese have freely mingled their blood, the former with that of the Indians, the l.itter with that of the negroes. The majority of the inhabitants in some of the Spanish republics are of Indian descent; and in Brazil six-sevenths of the population consists of negroes and mulattoes, the whites amounting to little more than a million. The French have mingled their blood more sparingly than the Spaniards and Portuguese with the non-European races in America, and the British more sparingly still. The British race alone has been able, not only to maintain but rapidly to multiply, its numbers in the New World. It is also the only race there which, instead of merely following in the wake of European civilisation, keeps pace with it, and even contributes to its development.

- Dr Clide.

WHERE IS THE BRITON'S HOME?

Where is the Briton's home?
Where the free step can roam,
Where the free sun can glow,
Where a free air can blow,
Where a free ship can bear
Hope and strength : every where
Wave upon wave can roll-
East and west-pole to pole-

Where a free step can roamThere is the Briton's home!

Where is the Briton's home? Where the brave heart can come, Where labour wins a soil, Where a stout heart can toilAny fair seed is sownWhere gold or fame is won, Where never sets the sun, Where a brave heart can comeThere is the Briton's home!

Where is the Briton's home? Where the mind's light can come, Where our God's holy word Breaks on the savage herdWhere a new tlock is won To the bright Shepherd-one, Where the church-bell can toll, Where soul can comfort soul, Where holy faith can comeThere is the Briton's home!

Where is the Briton's home? Where man's great law can come, Where the great truth can speak, Where the slave's chain can break, Where the white's scourge can ceast, Where the black dwells in peace, Where, from His angel-hall, God sees us brothers allWhere light and freedom come, There is the Briton's home!

The youngest reader of this book will easily understand the difference that there is between natural and artificial objects. The great Creator of all things has placed mankind in a world of earth and air and sea, of rocks and plants and living creatures; this is the natural world. But man could never supply all his wants or provide for his comfort without making some alteration in the form and character of these objects in the natural world; this he accordingly does, and the materials, thus clanged and fitted for the conveniences of human life by the labour of his hands, are called artificial. The piue-tree in the forest, the clay which lies under the soil, and the limestone in the quarry, are the works of Nature; but the house, whether built of timber;' bricks, or stone, is a work of Art. Fverything, then, in the wide world, belongs to one or other of these two great classes of natural and artificial ohjects.

Let as, for the time, strive to forget the existence of all that is artificial; this will not be a very difficult task for those who live in the country. : Away with shops and houses, bridges and boats, roads, fences, and everything that bears the impress of man's hand upon it. Look around now, and see what still remains with ns. Above is the blue sky, partly hidden by fleecy clouds, lit up during the day by the brilliant beams of the sun, at night by the palefaced moon and all the stars of heaven. Around ns is the air we breathe, and without which we and all other living beings would soon cease to exist. Sometimes it is silent and almost motionless, while at others it moves gently along as a summer breeze, or rushes
ficreely on its path, a tempestuous whirlwind; through its invisible body the clouds roll their thunders, flash their lightnings, and send down hail, snow, and rain, to protect and water the earth. Tall forests of pine and oak, of birch and maple trees, ralse their green summits over the slirubs and wild flowers, ferns and mosses, that cover the ground; through their tangled mazes, four-footed animals, birds, reptiles, and insects, run and fly aud crawl; and in the mighty ocean which beats upon the shore, in the lakes and rivers which divide the empire with the land, other plants and aulmals, with all the finny tribes, find a snitable habitation. But this is not all. Beneath our feet is the great carth's crust, consisting of broad layers of sand and clay, rock, slate, and gravel, traversed by rich metallic veins ; and, firmly imbedded in their surface, lie the record of many thousand years, in the shape of fossil plants and animals, that once peopled with life the face of our old mother Earth.

Such are the works of Nature, some of which, at least, we meet with in their natural state every day that we live, and which afford the materials for those artificial objects upon which the ingenuity and activity of mankind are exercised.

From a very early period in the history of the world, men have examined these objects, have studied their nature and properties, have classed them accurding to their resemblance to one another, and, collecting all the information they could concerning them, have formed sciences or systems of knowledge.

The total number of the sciences and their subdivisions is very large, as you will hereafter kearn; but we shall at present turn onr attention only to five of them, commonly called the Natural Sciences. Remember, now, all those objects which we found to remain with us after carefully excluding the works of man. They were the heavens above us, the earth with its minerals and rock masses beneath our feet, and around us plants and animals and the invisible atmosphere. The first of these-namely, the heavens-we shall not consider at present, because Astronomy, the science that treats of them, belongs to what you will afterwards become acquainted with as the Mathematical sciences. Let us, therefore, keep our eyes from wandering out of the world we live in, and endeavour to understand how it is, that the many natural objects which meet our view are all comprised within the small compass of five sciences.

One of the earliest objects that would naturally strike a man of observant mind is the ground he walks upon, in its diversified forms of mountain, plain, and valley, with the seas, lakes, and rivers that flow over many parts of its surface. Digging far down below the
soi
an
lai
pie
col
an
eal
the
fal
gri
ble
the
wt
his
h its invisible ings, and send 3 earth. Tall ise their green d mosses, that ooted animals, in the mighty 1 rivers which aulmals, with at this is not isting of broad versed by rich lie the record s and animals, Earth. least, we meet d which afford a the ingenulty
orld, men have and properties, :o one another, ing them, have
is is very large, urn our attentural Sciences. o remain with They were the d rock masses ad the invisible ens-we shall nce that treats me acquainted keep our eyes endeavour to vhich meet our ve sciences.
trike a man of versified forms and rivers that own below the
soil, he would find regular beds of black earth and clay, of sand and rock, lying evenly upon one another, as if a master mason had laid their great foundations with scrupulous care. He picks up a piece of stone, finds in it curions potrified figares of shells and corals, and strange creatures that do not now exist in the world, and wonders how they came there, so far below the surface of the earth. At other times he stumbles upon a great vein or fissure in the solid rock, containing lead or tin, iron orcopper ore; or, perbiaps, falls in with vast beds of coal, and scee, rising erect through the grimy mass, ferns and cones and trunks of trees, all of the same black material. Then he asks himself the questions- What are ali these things? Where did they come from? At what time, and for what purpose, were they created? As soon as he sets his mind and his eyes to work to answer these interesting questions, he has become a student of the science of Geology.

The term Geology, like mest names of sciences, consists of two Greek words, and means a discourse about the earth. Just as one cordial friend cheerfully communicates information to another, so will onr good friend Geology, if we are really desirous to learn, discourse pleasantly to us abont the earth, and tell ns all that man has hitherto discovered as to its character and history. It is a mistake to suppose that this science has to do only with the rock masses that occur within the earth; everything apon our globe that is unorganised or without life, whether land or water, earth or rock, metals or fossils, coal or amber, volcanoes or mineral springs, all belong to the science of Geology. You will afterwards learn more fally what are the special objects of this youngest of the natural sciences in its subdivisions of Physical Geography, Mineralogy, and Geology proper.

Although we natarally imagine that man would early turn his attention to the study of Geology, this is not the case. Long before men thought of examining the crust of the earth, they had made themselves familiar with the several objects composing the beantiful mantle of verdure that nature has thrown over its otherwise bare and nuinviting surface. Far away, in the Eastern birthplace of our race, they saw

> "The feathery palm-tree rise, And the date grow ripe under sunny skies;"
or the great banian, the fig-tree of India, sending down roots from his giant branches, and, like a broad, living tent, spreading his cool shade over a circumference of 1500 feet. In more western lands a different sight awaited them; there they beheld the orange groves of

Italy, the chestnut forests of Spain, the vine-clad hills of Portugal, the apple orchards of France, and the linden avenues of Germany, with the English oaks, the Scotch firs, and the Norway pines, that adorn the landscapes of these northern countries. Crossing the ocean to the shores of this great Western continent, covered with thick forests of maple and birch, tamarack and balsam trees, what new objects of interest in the plent world must have grected them. Then, when other distant lands had been explored, and the productions of other climes had been pressed into the service of men for the supply of their luxuries, how interested must they have been in the tea and coffee plants of China and Arabia, the cotton shrub of the Eust, the scarlet geraniums of the Cape of Good Hope, the variogated fuchsia of Mexico, and the vast variety of shrubs and flowers that please the eye and minister to the wants and enjoyments of man. What a mine of wealth appeared to them in the great family of the grasses, from the gigantic bamboo, sixty feet bigh, to the delicate meadow grass, six inches in length; and what objects of wonder and admiration in the graceful fern, the velvety moss, the Jry lichen, the fleshy mushroom, and the floating seaweed! But the number of these objects of the vegetable world was too vast, too overpowering, for the memory of man. No sooner had he acquired the knowledge of some new plant than the old ones vanished away; aud he put to himself the question, "How can I remember all these objects, and distinguish them from one another ?" You have; no doubt, already guessed his answer to this self-put question. It was-"by carefully examining the form and structure of every plant; by comparing them with each other; and, finally, by arranging them in groups or classes according to their points of resemblance." And thus the science of Botany was commenced.

Botany is a Greek word, and, in that langaage, simply means a plant; so that the science of Botany is the system of knowledge about plants. What more simple, beantiful, and interesting study could there be than that of Botany? The materials for it are all around us, in fields, and on the road-sides, in woods and gardens; even a vacant town-lot, overgrown with rank weeds, contains sufficient variety to occupy and interest a botanist for whole weeks and months. No country affords greater opportunities for the study of this science than the one we live in ; and, among civilised regions, there are very few in which the labours of the botanist will be better rewarded by the discovery of nnknown plants, or of interesting particulars regarding those already known.

Plants, however, were not the only, nor, perhaps, the first
natural objects that attracted the attention of man. If he were an Egyptian, a worshipper of animals, his were the wary crocodile and the sacred ibis of the muddy Nile. If a Greek, he had no doubt heard the fierce laugh of the hyena in Asia Minor; or fished at Crete for the bee-enter, as the boys do at the present day, with a locust flying from the end of his line; or quarrelled with a friend over the changing hues of the chameleon in Greece or Sicily. If a Roman, he had seen, in the cruel gnmes of the amphitheatre, elephants, lions, and panthers slanglitered for the amusement of the people. Whatever his country may have been, at whatever time he lived, whether an ancient patriarch or a modern farmer, he was perfectly at home among the domestic nnimals, and had, no doubt, also marked the deer in the forest, the fish in the river, the croaking frog in the swamp, and the busy insect flitting through the air or creeping on the ground. If he were a man of inquiring mind, he would be anxious to learn what forms of animal life other lands bad to exhibit, to compare them witi those of his own country, and thus to find, little by little, all the links in that wondrous chain which leads from the minute animalcule, of which the point of a needle will crush a thousand, to man himself, the noblest work of the Oreator.

The man who thus observed the habits and peculiarities of the animal kingdom, who sought to accumulate information regarding ite different members, and who classed them together in accordance with their manifest points of resemblance, would be called a student of Natural History; but he would, at the same time, be a builder up of the science of Zoology. As ge in Geology means the earth, so the word zoon is the Greek for an animal, and Zoology is thns a discourse about animals. This study, above all others, is that in which young people take especial delight, and it is also one to which have been devoted the life labours of some of the greatest minds that the world has produced.

We have now surveyed three of the Natural Sciences, embracing the mineral, vegetable, and animal kingdoms. You will be ready to say, "Surely we have exhausted the world of Nature; what is there that is not included in those three sciences of Geology, Botany, and Zoology?" Not so fast, dear reader. Have we not an atmosphere around as, invisible it :may be, yet in which we live and breathe? Are there no clonds in the heavens, no dew on the grass? Are there no long rainy days and months of ice and snow? Do not the cold March winds chill us with their keen blast, and the sammer breezes fan our flushed cheeks with their cool and gentle
motion? Then, have we not watched the coming of the fierce tempest, heard the rumbling of the thunder, and seen the vivid lightuing flash across the sky? Wo have seen, too, the beautiful arch of the rainbow by day, and the fiery meteor at night ; and, in books, we have read about the great ico mountains of the North; the waterspouts that, uniting the clouds above to the sea beneath, break with fatal violence in tho Southern Ocean ; with many other strange sights and sounds that take place in the unseen body around us. All these are well worthy, not only of observation, but of diligent and accurate luvestigation ; therefore they have a science to themselves, and that scienco is called Moteorology.

Meteorology is a Greek word, made up of meleora, meaning things in the air, and logos, a discourse-a discourse about things in the air. Learned men, masters of this science, are employed by many governments to observe the state of the atmosphere, and to keep a record of all that occurs in it from year to year; for this purpose, they are furnished with a suitable building, generally situated on a rising ground, and baving a tower of some height upon it, whence they may be able to detect the appearance of anything in the air, whether it be watery like snow and rain, airy like wind, or fiery as falling stars. Such a bailding is called an observatory, and is also sometimes used for muking astronomical observations; the most celebrated one is that of Greenwich, near London in England.

So far then, we have four sciences brought before us ; discourses about plants and animals, about the earth and things in the air. Is there any natural object upon this earth which is not included in the four sciences that treat of these several departments of Nature? No, there is nothing more, but yet there is another soience. We examine a piece of rock, the leaf of a tree, the leg of a frog, and a bandful of snow, and we put the question-What are all these things made of? Now, this seems a very strange question ; if you were asked, you would, perhaps, answer, that the rock was made of some kind of stone, and the leaf of delicate fibres and cells, the frog's leg of flesh and bones, and the snow of frozen water; and yon would expect the person who put the question to smile approvingly and say-" Your reply is quite correct." But I very much fear that such an answer would not satisfy a chemist; he would desire to go deeper into the matter, and would, probably, ask you, what stone and fibres, flesh and bones and water are composed of. To say that rock is stone is as much an explanation as to say that a house is a domicile, and that a leaf is made up of
g of the fierce seen the vivid b, the beautiful at night ; and, s of the North, to sea beneath, ith many other o unseen body bservation, but have a science
leora, meaning discourse about cience, are em-- of the atmoit from year to suitable buildaving a tower to detect the atery like snow Such a building sed for muking one is that of
us ; discourses ngs in the air. is not included departments of tere is another tree, the leg of tion-What are y strange quesr, that the rock f delicate fibres snow of frozen the question to sorrect." But I tisfy a chemist ; vould, probably, water are comexplanation as is made up of
fibres and cells, as that a house is made up of rooms. Bat if you were asked what a house were made of, you would reply, "of brick or stone, and mortar," or "of wood," as the case might be. Now, just such an answer as this is what the chemist requires to his question. He would tell you that the stone, suppose it were limestone, was composed of a certain number of parts of lime and carbonic acid, and so on with the rest. Again, he would inform you that lime is made up of so many atoms or sunall particles of a metal called calcium, and a gas called oxygen; and carbonic acid, of similur atoms of oxygen, and another substance, denominated carbon. But calcium, oxygen, and carton cannot be reduced to anything lower; they are the bricks and mortar that make the house, and all that went before them were only the rooms. These three bodies, or substances, are named elements or elementary substances, because they are not composed of nuything more simple. The elementary bodies are about sixty-three in number, and of these sixty-three elements everything in the world is made up, whether it belong to the mineral or vegetable, the animal or the aerial kingdom. It is with these simple bodies that the chemist works, building op or taking to pieces, room by room, and brick by brick, the materials of which the earth and everything in it is composed; and the science which teaches the one and explains the other is called Chemistry.

The term Chemistry is very like one of the simple bodies which the science investigates, for its origin is very obscure, and the Greek word chemeia, from which it is thonght to be derived, has no simpler meaning. However, it is supposed by some that it comes from the Greek chymicos, equivalent to what is said concerning a thing extracted; so that, with this explanation; chemistry would be the system of knowledge about things extracted. Since to extract has the meaning of to draw out, yon will easily perceive that it is applicable to the science which draws forth the sinple elements that make up a compound body. Of all the sciences, none is so practically useful as that of chemistry, the laws of which are found to govern niost of the simplest as well as the most important operations of man upon natural objects.

We have now found out what are the five natural sciences, under which everything in the world, whether simple or compound, may be ranked. If you would be well-informed men and women, you should gain some knowledge of each of these. To all rightminded persons they will prove an endless source of amnsement, as well as of profit, stimulating legitimate curiosity, encouraging
habits of observation, and lucreasing reverence for Him who in wisdom has made all the objects of which they treat.

The Natural Sciences are-

1. Geology.
2. Zoology.
3. Botany.
4. Meteorology.
5. Chemistry.

GEOLOGY.

RAILWAY CUTTING SHOWING ETRATA.
Gronogy, from two Greek words-ge, the earth, and logos, \& discourse or reasoning-ombraces, in its widest sense, all that can be known of the constitution and history of our globe. Its object is to examine the varions materials of which our planet is composed, to describe their appearance and relative positions, to investigate their nature and mode of formation, and generally to discover the laws which seem to regulate their arrangement.

As a department of natural science, Geology confines itself more especially to a consideration of the mineral or rocky constituents of

Him who in

d logos, a dis. Il that can be Its object is to composed, to vestigate their over the laws

1es itself more sonstituents of
the earth, and leaves its aurface configuration to Geography, its vegetable life to Botany, ite animal IIfe to Zoology, and the elementary consticution of bodies to the science of Chemistry. Being unable to penetrate beyond a few thousand feet into the solld substance of the globe, the labours of geologista are necessarily confined to itz e:terior shell or crast ; henco we spenk of the "crust of the globe," meaning thereby that portion of the rocky structure accessible to human inveatigation.

The materials composing this crust aro rocks or minerals of various kinds-as granite, basalt, roofing-slate, sandstone, marble, coal, chalk, clay, and sand-some hard and compact, others soft and iucohering. These substances do not occur indiscriminately in every part of the world, nor, when found, do they always appear in the same position. Granite, for example, may exist in one district of a country, marble in auother, coal in a third, and chalk in a fourth. Some of theso rocks occur in regular layers or courses, termed strata, from the Latin word atratum, strewn or spread out, while others rise up in irregnlar mountain-masses. It is evident that substances differing so widely in composition and structure must have been formed under different circumstances and by different causes; and it becomes the task of the geologist to discover those causes, and thus infer the general conditions of the regions in which, and of the periods when, such rock substances were produced.

When we sink a well, for example, and dig through certain clays, sands, and gravels, and find them sncceeding each other in layers, we are instantly reminded of the operations of water, seeing it is only by such agency that accumulations of clay, sand, and gravel are formed at the present day. We are thus led to inquire as to the origin of the materials through which we dig, and to discover whether they wore originally deposited in river-conrses, in lakes, in estuaries, or along the sea-shore. In our investigation we may also detect shells, bones, and fragments of plauts imbedded in the clays and sands; and thus we have a further clue to the history of the strata through which we pass, according as the shells and bones are the remains of animals that lived in fresh-water lakes and rivers, or inhabited the waters of the ocean. Again, in making a railwaycatting, excavating a tunnel, or sinking a coal-pit, we may pass through many successions of strata-such as clay, sandstone, coal, ironstone, limestone, and tho like; and each succession of strata may contain the remains or impressions of different plants and animals. Such differences can only be accounted for by supposing each stratum or set of strata to have been formed by differeut agencies,
and under different conditions of ellmate, as woll as under different arrangements of sea and land, Just as at the present day the rivers, eatuaries, and seas of different countries are characterised by their own special accumalations, nud by the Imbedded remains of the plants and animals peculiar to these reglons.

In making these investigntions, the geologist is guided by his knowledge of what is now taking place on the surface of the globe -ascribing similar results to similiar or aualogous causes. Thus, in the present day, we seo rivers carrying down sand and mud and gravel, and depositing them in layers either in lakes, in estuaries, or along the bottom of the ocean. By this process many lakes and estuaries have, within a comparatively recent period, been filled up and eonverted into dry land. Wo see also the tides and waves wasting away the sea-clifis in one district, and necumulating expanses of sand and salt-marsh in some sheltered locality. By this agency thousands of acres of land have been washed away and covered by the sea, even within the memory of man; while, by the same means, new tracts have been formed in districts formerly covered by the tides and waves. Further, we learn that, during earthquake convulsions, large districts of conntry have sunk beneath the waters of the ocean; while in other regions the sea bottom has been elevated into dry land. Volcanic action is also sensibly affecting the surface of the globe-converting level tracta into mountainridges, throwing up new islands from the sea, and casting forth molten lava nad other materials, which in time become hard and consolidated rock-masses.

As these and other agents are at present modifying the surface of the glooe, and changing the relative positions of sea and land, so in all time past have they exerted a similar influence, and have necessarily been the main agents employed in the formation of the rocky crust which it is the province of Geology to Investigate. Not a foot of the land we now Inhabit but has been repeatedly under the ocean, and the bed of the ocean has formed as repeatedly the habitable dry land. No matter how far inland, or at what elevation above the sea, we now find accumnlations of sand and gravel,no matter at what depth we now discover strata of sandstone or limestone,-we know, from their composition and arrangement, that they must have been formed under water, and brought together by the operation of water, just as layers of sand and gravel and mud are accumulated or deposited at the present day. And as earthquakes and volcanoes break up, elevate, and derange the present dry land, so must the fractures, derangements, and upheavals
am sin
his
by
va
bu
do
ander different day the rivers, erised by their remains of the
gnided by his ce of the globe canses. Thus, 1 and mud and in estuaries, or bany lakes and been filled up les and waves fumulating exality. By this hed away and whille, by the tricts formerly on that, during c sauk beneath ea bottom has sensibly affectinto mountain1 casting forth ome hard and
the surface of und land, so in id have necesin of the rocky igate. Not a leatedly under repeatedly the what elevation and gravel,sandstone or arrangement, ought together id gravel and lay. And as derange the and upheavals
among the strata of the rocky crust be ascribed to the operation of similar agents in remote and distant epochs.

By the study of existing operntions, we thus get a clue to the history of the globe; and the task is rendered much more certain by an examination of the plants and animuls found imbedided in the various strata. At present, shells, fishes, and other animals are buried in the mud or silt of lakes and estuaries ; rivers also carry down the remains of land-animals, the tranks of trees, and other vegetable drift ; and earthquakes submerge plains and islands, with all their vegetable and animal inhabitants. These remains become enveloped in the layers of mud and sand and gravel formed by the waters, and in process of time are petrified, (petra, a stone, and fio, I become;) that la, are converted linto stony matter like the sheils and bones found in the deepest strata. Now, as at present, so in all former time must the remains of plants and animals have been similarly preserved; and as one tribe of plants is peculiar to the dry plain, and another to the swampy morass,-as one family belongs to a temperate, and another to a tropical region, -so, from the character of the inbedded plants, aro wo enabled to arrive at some knowledge of the conditions under which they flourished. In the saine manner with animals: each tribe has its locality assigned it by peculiarities of food, climate, and the like; and by comparing fossil remains (fossil, from fossus, dug up, appilied to all remains of plants and animals imbedded in the rocky crust) with existing races, we are enabled to determine many of the past conditions of the world with considerable certainty.

By examining, noting, and comparing, as indicated in the preceding paragraphs, the geologist finds that the strata composing the earth's crust can be arranged in series; that one set or series always underlies, and is succeeded by another set; and that each scrics contains the remains of plants and animals not to be found in any other series. Having ascertained the existence of such a sequence among the rocky strata, his next task is to determine that sequence in point of time-that is, to determine the older from the newer series of strata; to ascertain, if possible, the nature of the plants and animals whose remains are imbedded in each set; and, lastly, to discover the geographical range or extent of the successive series. These series he calls formations, as having been formed during different arrangements of sea and land, and under the varying influences of climate and other external conditions; and it is by a knowledge of these that the geologist is enabled to arrive at something like a history of the globe-imperfect, it may be, but still
sufficient to show the numerous changes its surface has undergone, and the varied and wonderful races of plants and animals by which it has been successively inhabited. To map out the varions mutations of sea and land, from the present moment to the sarliest time of which we have any traces in the rocky strata : to restore the forms of extinct plants and animals ; to indicate their habits, the climate nad conditions ander which they grew and lived,- to do all this, and trace their connexion up to existing races, would be the triumph, as it is now the aim, of all true geology.
-Page.

Rocks as to their origin are-

1. Sedimentary or Aqueous, formed by the agency (Inorganic, as Sandstone. of water and deposited in regular strata; these Organic, as Coal, Shellrocks are either.. (marl, \&cc.
2. Metamorphic or Changed Rocks; originally Sedimentary, but beoome crystallised by the aetion of heat; suoh ure gneiss, marble, \&c.
3. Eruptive ; never occur in strata but in irregular masses; when appearing on the surface are called Volcanic ; such are granite, lava, pumice, \&c.

FIRST STUDIES OF A YOUNG GEOLOC IST.

Ir was twenty years last February since I set out a little before sunrise to make my first acquaintance with a life of labour and restraint, and I have rarely had a heavier heart than on that morning. I was bat a slim loose-jointed boy at the time-fond of the pretty intangibilities of romance, and of dreaming when broad awake; and, woeful change! I was now going to work at what Burns has instanced, in his "Twa Dogs," as one of the most disagreeable of all employments, to work in a quarry. Bating the passing uneasiness occasioned by a few gloomy anticipations, the portion of my life which had already gone by had been bappy beyoud the common lot. I had been a wanderer among rocks and woods,-a reader of carious books when I could get them,-a gleaner of old traditionary stories; and now I was going to exchange all my day-dreams, and all my amusements, for the kind of life in which men toil every day that they may be enabled to eat, and eat every day that they may be enabled to toil!

The quarry in which I wrought lay on the sonthern shore of a noble inland bay, or frith rather, with a little clear stream on the
pas undergone, mals by which various mutabarliest tlme of pre the forms of The climate and o all this, and the triumph,
-Page.
$i c$, as Sandstone. as Conl, Shellse.
but become crysc.
when appearing a, pumice, dc.

CIST.
a little before of labour and on that morn--fond of the 3 when broad work at what the most disr. Bating the icipations, the d been happy 10ng rocks and get them,-a going to exfor the kind of nabled to eat,
ern shore of a stream on the
one side, and a thick fir wood on the other. It had been opened in the old red sandstone of the district, and was overtopped by a huge bank of diluvial clay, which rose over it in some places to the height of nearly thirty feet, and which at this time was rent and shivered, wherever it presented an open front to the weather, by a recent frost. A heap of loose fragments, whlch had fallen from above, blocked up the face of the quarry, and my first employment was to clear them away. The friction of the shovel soon blistered my hands, but the pain was by no means very severe, and I wrought hard and willingly that I might see how the hage strata below, which presented so firm and unbroken a froatage, were to be torn up and removed. Picks and wedges and levers were applied by my brother workmen ; and simple and rude as I had been accustomed to regard these implements, I found I had much to learn in the way of asing them. They all proved inefflcient, however, and the workmen had to bore into one of the inferior strata, and employ ganpowder. The process was new to me, and I deemed it a highly amusing one: it had the merit, too, of being attended with some such degree of danger as a boating or rock excarsion, and had thus an interest independent of its novelty. We had a few capital shots; the fragments flew in every direction, and an Immense mass of the diluviam came toppling down, bearing with it two dead birds, that in a recent storm had crept into one of the deeper fissures, to die in the shelter. I felt a new interest in examining them. The one was a pretty cock goldfinch, with its hood of vermilion, and its wings inlaid with the gold to which it owes its name, as nnsoiled and smooth as if it had been preserved for a moseam. The other, a somewhat rarer bird, of the woodpecker tribe, was variegated with light blee and a grayish yellow. I was engaged in admiring the poor little things, more disposed to be sentimental, perhaps, than if I had been ten years older, and thinking of the contrast between the warmth and jollity of their green summer haunts, and the cold and darkness of their last retreat, when I heard our employer bidding the workmen lay by their tools. I looked up and saw the sun sinking behind the thick fir wood beside us, and the long, dark shadows of the trees stretching downwards towards the shore.

This was no very formidable beginning of the course of life I had so much dreaded. To be sure, my hands were a little sore, and I felt nearly as much fatigued as if I had been climbing among the rocks; but I had wrought and been usefal, and had yet enjoyed the day fully as much as usual. It was no small matter, too, that the
evening, converted, by a rare transmutation, into the delicious "blink of rest" which Burns so truthfully describes, was all my own. I was as light of heart next morning as any of my brotherworkmen. There had been a smart frost during the night, and the rime lay white on the grass as we passed onwards through the fields; but the sun rose in a clear atmosphere, and the day mellowed as it advanced, into one of those delightful days of early spring, which give so pleasing an earnest of whatever is mild and genial in the better half of the year. All the workmen rested at midday, and I went to enjoy my half-hour alone on a mossy knoll in the neighbouring wood, which commands through the trees a wide prospect of the bay and the opposite shore. There was not a wrinkle on the water, not a cloud in the sky, and the branches were as motionless in the calm as if they had been traced on canvas. From a wooded promontory that stretched half-way across the frith, there ascended a thin column of smoke. It rose straight as the line of a plammet for more than a thousand yards, and then, on reaching a thinner stratum of air, spread out equally on every side, like the foliage of a stately tree. Ben Wyvis rose to the west, white with the yet unwasted snows of winter, and as sharply defined in the clear atmosphere, as if all its sunny slopes and blue retiring hollows had been chiselled in marble. A line of snow ran along the upposite hills; all above was white, and all below was purple. They reminded oue of the pretty French story, in which an old artist is described as tasking the ingenuity of his future son-in-law, by giving him, as a subject for his pencil, a flower-piece composed of only white flowers, of which the one half were to bear their proper colour, the other half a deap purple hue, and yet all be perfectly natural ; and how the young man resolved the riddle, and gained his mistress, by introducing a transparent purple vase into the picture, and making the light pass throngh it on the flowers that were drooping over the edge. I returned to the quarry, convinced that a very exquisite pleasure may be a very cheap one, and that the busiest employments may afford leisure enough to enjoy it.

The gnnpowder had loosened a large mass in one of the inferior strata, and our first employment, on resuming our labours, was to raise it from its bed. I assisted the other workmen in placing it on edge, and was much struck by the appearance of the platform on which it rested. The entire surface was ridged and furrowed like a bank of sand that had been left by the tide an hour before. I could trace every bend and curvature, every cross hollow and

COt

\mathbf{W}

ser

$$
\mathrm{scl}
$$

of

ele

Ro
the
wo
an
be
th
in
the delicious s , was all my of my brothernight, and the ugh the fields; mellowed as it spring, which genial in the midday, and I in the neighwide prospect ta wrinkle on ere as motionzvas. From a he frith, there s the line of a on reaching a side, like the est, white with defined in the atiring hollows long the uppopurple. They n old artist is law, by giving posed of only - their proper t all be perhe riddle, and rple vase into on the flowers o quarry, conry cheap one, are enough to
of the inferior ibours, was to in placing it the platform and furrowed a hour before. s bollow and
counter ridge of the corresponding phenomena; for the resemblance was no half resemblance-it was the thing itself; and I had observed it a hundred and a hundred times, when sailing my little sclooner in the slallows left by the ebb. But what had become of the waves that had thus fretted the solld rock, or of what element liad they been composed? I felt as completely at fault as Robinson Crusoe did on discovering the print of the man's foot on the sand. The evening furnished me with still further cause of wonder. We raised another block in a different part of the quarry, and found that the area of a circular depression in the stratum below was broken and flawed in every direction, as if it had been the bottom of a rocl recently dried up, which had shrunk and split in the hardenin Several large stones came rolling down from the dilluvium it an :ourse of the afternoon. They were of differeut qualities from the sandstone below, and from one another; and, what was more wonderful still, they were all rounded and waterworn, as if they had been tossed about in the sea, or on the bed of a river for hundreds of years. There could not, surely, be a more conclusive proof that the bank which had euclosed them so long could not have been created on the rock on which it rested. No workman ever manufactures a half-worn article, and the stones were all half-worn! And if not the bank, why then the sandstone underneath? I was lost in conjecture, and found I had food enough for thought that evening, without once thinking of the unhappiness of a life of labour.

The immense masses of diluvium which we had to clear away rendered the working of the quarry laborions and expensive, and all the party quitted it in a few days, to make trial of another that seemed to promise better. The one we left is situated, as I lave said, on the southern shore of an inland bay-the Bay of Cromarty; the one to which we removed has been opened in a lofty wall of cliffs that overhangs the northern shore of the Moray Frith. I soon found I was to be no loser by the change. Not the united labours of a thonsand men for more than a thousand years could have furnished a better section of the geology of the district than this range of cliffs. It may be regarded as a sort of chance dissection on the earth's crast. We see in oue place the primary rock, with its veins of quartz and granite, its dizzy precipices of gneiss, and its hage masses of hornblende; we find the secondary rock in another, with its beds of sandstone and shale, its spars, its clays, and its nodular limestones. We discover the still little known but highly interesting fossils of the Old Red Sandstone in one deposi-

tion; we find the beautifally preserved shells and lignites of the Lias in another. There are the remains of two several creations at once before us. The shore, too, is heaped with rolled fragments of atmost every variety of rock,-basalts, ironstones, hypersthenes, porphyries, bituminous shales, and micaceous schists. In short, the young geologist, bad he all Earope before him, could hardly. choose for himself a better field. I bad, however, no one to tell me so at the time, for geology had not yet travelled so far north; and so, without guide or vocabulary, I had to grope my way as I best might, and find out all its wonders for myself. Bat so slow was the process, and so much was I a seeker in the dark, that the facts contained in these few sentences were the patient gatherings of years.

- Hyoh Mileer.

Rocks as to age and order of succession are classified as--
Epoch
of
Modern Life. $\begin{cases}\text { 1. Modern deposits, } & \text { changes now going on. } \\ \text { 2. Drift formation, } & \text { to this belong the scattered } \\ \text { 3. Tertiary system, } & \text { boulders. } \\ \text { recent fossil remains. }\end{cases}$

lignites of the al creations at d fragments of hypersthenes, ts. In short, could hardly. no one to tell so far north; my way as I Bat so slow dark, that the ont gatherings
oh Milerer.
(1. Cretrceous ayatem,
2. Oolitio
"
Epoch of
Middle Life.

Epoch of Ancient Life.
3. Triassic ",

1. Permian system,
2. Carboniferous
3. Devonian "
4. Silurian
from the Latin creta, chalk, which accompanies it in Europe.
from two Greek words meaning eqg and stone, because composed of limeatone eonsisting of eggshaped grains.
so oulled from the number three, because in Europe it consists of three strata-marl, limestone and sandstone.
from Perm in Russia; in England it is called New Red Sandstune. or coal-bearing; to this belong the coal-fields.
from Devonshire in England; also ealled Old Red Sandstone.
from the ancient kingdom of the Silures in Britain, where it was first observed.

Epoch
of
Doubtful Life.
"changed form."
Huronian, from Lake Huron, and Laurentian, from the river St Lawrence, near which they are found.

Eruptive rocks being of all agos have no order of succession.

MINERALOGY.

Natural History is a science which consists of many branches; one, which treats of animals, is called Zoology ; another, Botany, teaches the structure and properties of plants; the third, which makes es acquainted with the inorganic portions of our planet, namely, stones or minerals, is called Mineralogy ; and if, at first sight, it should appear less attractive or less nseful than the other two branches, a very little consideration will prove that it is of equal importance to mankind, and contributes materially to their comfort, wealth, and luxury. From materials foand in the interior of the earth we erect our dwellings, we supply ourselves with fuel, we construct numterless tools and machines; and, finally, we obtain our most brilliant ornaments.

Some knowledge of many of these substances must have been possessed at a very remote period. The most ancient nations of whom we have any record manufactured arms, and ornaments of gold and silver. The Romans, who made great improvements in
the arts of civilisation, greatly enlarged this knowledge; bringing to light many substances previously unknown, and employing them for useful or ornamental purposes; they were acquainted with several of the precious stones, and, with the exception of the diamond, succeeded in cutting and engraving on them.

The elder Pliny, a man of inquiring mind and unwearied dilligence in the pursuit of knowledgo, collected, from every source within his reach, accounts of all the natural productions that were then known, or of which any description existed in his time; and he added to these his own observation on such as he had actually examined. It is much to be regretted that the latter were not more numerous; for he too often copied, without inquiry, the descriptions he met with; and has transmitted to us a vast number of inaccuracies and absurdities, such as accounts of the magical properties of certain stones, plants, and animals, and charms, by which particular diseases might be cured.

As civilisation extended, and the arts of life advanced, a greater number of useful minerals became known; improvements in machinery and practical science led to greater facility in the working of mines, metals were more sought after, new ones were discovered, and new and rich ores of those already known were found to exist, which had formerly been thrown aside as valueless, from ignorance of their nature. Mineralogy now became a subject of importance, and much attention was paid to it; but it still retained somewhat of a vague and unsatisfactory character, from want of knowledge of the principles on which it ought to be based. Chemistry, indeed, lent its aid in the analysis of minerals; bat it was before chemistry itself had been raised to the state of an exact science by the wonderful and beautiful law of definite proportions, a law which pervades all chemical combinations, whether natural compounds or the result of operations in our laboratories. This law assists us in ascertaining with precision the composition of mineral substances, and consequently in identifying mineral species, and giving them their true place in a scientific classification.

The want of some knowledge of the real nature of stones, which even a slight acquaintance with mineralogy would furnish, has occasioned to many persons, within a comparatively recent period, very ruinous loss; whilst others have rapidly acquired a fortnne from profiting, under similar circumstances, by opportanities that had been unseen or totally neglected. It is not above fifty years since a man found in Shropshire a considerable vein of sulphate of baryta, which, in consequence of its weight, he mistook for white
edge ; bringing mploying them cquainted with of the diamond,
anwearied dilliry source within that were then time; and he te bad actually - were not more the descriptions mber of inaccucal properties of ohich particalar
unced, a greater ements in mathe working of ere discovered, found to exist, from ignorance of importance, ined somewhat of knowledge of mistry, indeed, efore chemistry by the wonderwhich pervades ds or the result us in ascertainances, and conthem their true
f stones, which d furnish, bas recent period, iired a fortune portanities that love fifty years of sulphate of stook for white

Read ore, and he crected a smelting-house and farnaces for the parpose of reducing it to a metallic state. Another person in the same county, having met with some mica in the form of small silvery scales or spangles, was persuaded that he had found a silver mine, and ruined himself in attempts to obtain the silver.

Among many other unfortunate adventures which have arisen from ignorance of mineralogy, may be mentioned that of a poor man, who was persuaded to lay out a hundred pounds, nearly the whole of some years' economy, in the purchase of a few pieces of white topaz, under the idea that they were diamonds. But independently of the utility of this rience, any one who studies natural history for his amusemunt, will be richly rewarded by the wonders and the beauties displayed in the mineral kingdom. The bodies which are the objects of stady to the mineralogist, comprise the earthy, metallic, saline, and other substances which compose our earth-that is to say, the unorganised part of the creation.

To understand clearly what is meant by the term unorganised, let us remember that an animal and a plant are said to be organised, because they consist of several different parts, all varying in their form, their position, and their functions, yet all equally necessary to form a perfect animal, or a perfect plant ; so that to remove any one of them would be to destroy, or at least to render imperfect, the body to which it belongs. These parts are called organs ; in animals we find a stomach to digest the food they convey to it, and by means of which they are nourished and have life; nerves and muscles for sensation and motion; in plants we observe a root to fix them to the ground, and absorb nourishment from it, and vessels for the circulation of the sap.

But in a mineral, in its most perfect atate, all the parts exactly resemble each other, so that, by breaking it, we diminish it in size without destroying its existence or its completeness. Take, for example, a flat pebble, or a fragment of limestone from a quarry, and break it; we shall find that each substance is of the same texture and composition throughout. It is true that we may also take up a stone, or break off a piece of rock, which has not this homogeneous structure, as, for instance, a granite paving stone; but granite is an aggregate rock, which consists essentially of three simple minerals, each of which may plainly be distinguished on inspection ; and mineralogy teaches us to recognise in it,-1st, quartz, which usually appears in grayish semi-transparent grains, of a somewhat glassy appearance ; 2d, felspar, of a reddish or yellowish white,
and opaque ; 3d, mica, in small scales, which have a shining and somewhat metalic lastre.

It is true that the essential difference of minerals consists in their composition; but it is not therefore necessary to subject every mineral to chemical analysis in order to know something of its nature. The difference of composition is manifested in difference of form, structure, colour, weight, hardness, transparency, \&c. ; and an acquaintance with these and some other properties or characters will, in most cases, enable us to recognise a mineral species, and to know of what elementary substances it principaliy consists. These are calied physical characters. But it sometimes happens that wo meet with a specimen in which these characters are not clearly marked, or some of them may have a great resembiance to those of another species; in such cases we may derive great assistance from an examination of some of the chemical characters, by means of acids and the action of the blowpipe, which have a very different effect on different species.
-Weare.

Dana's Classification of Minerals-

Class I. Gases ; consiating of, or containing nitrogen or hydrogen, air, \&c.
Class II. Water ; crystallises as ico.
Class III. Carbon and compounds of carbon; the diamond, coal, plumbago, amber, \&c.
Class IV. Sulphur and its acids.
Class V. Haloid or salt-like minerals; salt, nitre, borax, alum, gypsum, \&o.
Class VI. Earthy minerals ; quartz, opal, felspar, mion, ruby, emerald, \&io.
Class VII. Metals and metallio ores ; gold, silver, mercury, iron, lead, copper, \&c.

TUBAL CAIN.

Old Tabal Cain was a man of might, In the days when earth was young; By the fierce red light of his furnace bright,

The strokes of his hammer rung: And he lifted high his brawny hand On the iron glowing clear, Till the sparks rush'd out in scarlet showers, As he fashion'd the sword and spear.
a shining and onsists in their t every mineral s nature. The of form, strncd an aoquaintaoters will, in , and to know ts. These are s that wo meet learly marked, hose of another ce from an exins of acids and erent effect on
-Weare. ydrogen, air, \&c. , coal, plumbago,
rax, alum, gyp-
by, emerald, \&c. y, iron, lead, cop-

And be sang, 一" Hurrah for my handiwork ! Hurrah for the spear and sword I
Hurrah for the hand that shall wield them well, For he shall be king and lord!"

To Tubal Cain came many a one, As he wrought hy his roaring fire, And each one pray'd for a strong stecl blade, As the crown of his desire:
And he made them weapons sharp and strong, Till they shoated loud for glee;
And they gave him gifts of pearis and gold, And spoils of the forest free.
And they sang,-"Hurrah for Tubal Cain, Who hath given us strength anew !
Hurrah for the smith, harrah for the fire, And harrab for the motal true!"

But a sudden change came o'er his heart, Ere the setting of the sun;
And Tubal Cain was fill'd with pain For the evil he had done:
He saw that men, with rage and hate, Made war upon their kind,
That the land was red with the blood they shed, In their lust for carnage blind.
And he said, "Alas I that I ever made, Or that skiil of mine should plan,
The spear and the sword, for men whose joy Is to slay their fellow-man!"

And for many a day old Tubal Cain Sat brooding o'er his woe;
And his hand forbore to smite the ore, And his furnace smonlder'd low.
But he rose at last with a cheerful face, And a bright courageons eye,
And bared his strong right arm for work, While the quick flames monnted high.
And he sang,-" Hurrah for my handiwork!" And the red sparks lit the air ;
"Not alone for the blade was the bright steel made," And he fashion'd the first plougbshare.

And men, taught wisdom from the past,
In friendship joln'd their hands ;
Hung the sword in the hall, the spear on the wall,
And plough'd the willing lands:
And sang,-" Hurrah for Tubal Cain!
Our staunch good friend is ho;
And for the ploughshare and the plough;
To him our praise shall be.
But while oppression lifts its head,
Or a tyrant would be lord;
Though we may thank him for the plough, We'll not forget the sword!"
-Cuarles Mackay.

COPPER MINES OF LAKE SUPERIOR.

To untatored man, provided only with implements of stone, the facilities presented by the great copper regions of Lake Superior, for the first step in the knowledge of metallargy, were peculiarly available. The forests that flung their shadows along the shores of that great lake were the baunts of the deer, the beaver, the bear, and other favourite objects of the chase; the rivers and the lake abounded with fish; and the rade hanter had to manufacture weapons and implements out of such materials as nature placed within his reach. The water-worn stone from the beach, patiently ground to an edge, mado his axe and tomahawk; by means of which, with the help of fire, he could level the giants of the forest, or detach from them the materials for his canoe and paddle, his lance, club, or bow and arrows. The bones of the deer pointed his spear, or were wrought into fish-hooks; and the shale or flint was chipped and ground into his arrow-head, after a pattern repeated with little variation, in all countries, and in every primitive age. Bat besides sach materials of uuiversal occurrence, the primeval occupant of the shores of Lake Superior found there a stone possessed of some very peculiar virtues. It could not only be wronght to an edge withont liability to fracture, but it was malleable, and could be hammered out into many new and convenient shapes. This was the copper, found in connexion with the trappean rocks of that region, in inexhanstible quantities, in a pure metallic state. In other rich mineral regions, as in those
of Cornwall and Devon, the principal sonrise of this metal is from ores, which require both labour and akill so fit them for economic parposes. But in the veins of the copper-region of Lake Superior the native metal occurs in enormous masses, weighing handreds of tous; and loose blocks of various sizes have been found on the lake shore, or lying detached on the anrface, in sufficient quantities to supply all the wants of the nomad hunter. These, accordingly, he wrought into chisels and axes, armlots, and personal ornaments of various kinds, without the uns of the crucible; and, Indeed, without recognising any precise distinction between the copper which he mechanically separated from the mass, and the unmalleable atone or flint out of which he had been accustomed to fashion his spear and arrow-heads.

It was in the year 1847 that attention was first directed to such traces of ancient mining operations by the agent of the Minnesota Mining Company. Following np the indications of a continnous depression in the soil, he came at length to a cavern where he found several porcupines had fixed their quarters for hybernation; but detecting evidences of artificial excavation, he procceded to clear out the accumalated soil, and not only exposed to view a voin of copper, but found iu the rubbish numerons stone manis and hammers of the ancient workmen. Subsequent observation brought to light ancient excavations of great extent, frequently from twentyfive to thirty feet deep, and scattered over an area of several miles. The rabbish taken from these is piled np in mounds alongside, while the trenches have been gradually refilied with the soil and decaying vegetable matter gathered through the long centaries since their desertion; and over all the glants of the forest have grown, withered, and fallen to decay.

Whatever be the dates of their commencement or desertion, the condition in which some of the ancient works on Lake Superior have been found, when reopened in later tlmes, is suggestive of peculiar circumstances attending their abandonment. It is inconceivable that the huge mass of copper discovered in the Minnesota mine, resting on its oaken cradle, beneath the accumnlations of centaries, was abandoned merely becanse the workmen, who had overcome the greatest diffliculties in its removal, were baffled in the subsequent stages of their operations, and contented themselves by chipping off any accessible projecting point. Well-hammered copper chisels, such as lay alongside of it, and have been repeatedly found in the works, were abundantly sufficient, with the help of stone hammers, to enable them to cat it into portable pieces. If,
indeed, the ancient miners were incapable of doing more with their mass of copper in the mine than breaking off a few projections, to what further use could they have turned it when tranaported to the surface? It woighed apwards of six tons, and measured ten foot long and three feet wide. The trench, at lis greatest depth, was twenty-alx feet; while the mass was only eighteen feet from the murface; and in the estimation of the skilled engineer by whom it was first seen, it had been olovated upwards of ave foet since it was placed on its oaken frame. The excavations to a depth of twenty-six feot, the dislodged copper block, and the framework prepared for elevating the solid mass to the surface, all consiatently point to the same workmen, But the mero detachment of a few accessiblo projecting fragments is too lame and impotent a conclasion of proceedings carried thus far on so different a scale. It indicates rather such results as wouid follow at the present day, were the barbarlan tribes of the North-west to displace the present Minnesota miners, and possess themselves of mineral treasares thoy are as little capable as ever of turning to any but the most simple uses.

Such ovidences, accordingly, while they serve to prove the existence, at some remote period, of a mining population in the copper regions of Lake Superior, scem also to Indicato that their labours had come to an abrupt termination. Whether by some terrible devastating pestilence, like that which nearly extermiuated the native population of New England immediately before the landing of the Pilgrim Fathers, or by the breaking out of war, or, as seems not less probable, by the invasion of the mineral reglon by a barbarian race, ignorant of all the arts of the ancient mound-builders of the Mississippi, and of the miners of Lake Superior : certain it is that the works have been abandoned, leaving the quarried metal, the laborlously wrought hammers, and the ingenions copper tools, just as they may have been left when the shadows of the evening told their long-forgotten owners that the labours of the day were at an end, but for which they never returned. Nor daring the centaries which have elapsed since the forest reciaimed the deserted trenches for its own, does any trace seem to indicate that a native population again songht to avail itself of their mineral treasures, beyond the manufacture of such scattered fragments as lay upon the surface.
pore with their projectiona, to raported to the coured ten feet oat deptb, was feet from the or by whom It b feot slince It to a depth of ramowork preIII consintently hent of a few potent a conat a scale. It present day, co the present treasures thoy to most simple
rove the exiatin the copper their laboars some terriblo luated the na. the landing of as seems not y a barbarian tallders of the tain it is that ad metal, tho per toole, Just 9 evening told ay were at an the centnfies erted trenches ve popalation s, beyond the he surface. toric Man.

BOTANY.

Wre seo plants growing from the seed in spring-time, and gradually developing their parts: at length they blossom, bear frut and produce seeds like those from which they grow. Shall wo commencen the study of the plant with the full-grown herb or tree, ado:ned with flowers or laden with fruit? Or shall wo commence with the seedling juse rising from the ground? On the whole, we may get a clearer liea of the whole life and atructure of plants if we begin at the beginning, -that la, with the plantlet springing from the sped. and follow it throughout its conrse of growth. This niso agrees best with the seanon in which the study of botany is gercrally commenced,-namely, in the spring of the year, when the growth of plants from the seed can bardly fail to attract attention. Indeed, It is this springing forth of vegetation from sceds and buds, after the rigours of our long winter, clothing the earth's surface almost at once with a mnntle of freshest verdure, which gives to apring its greatest charm. Even the dullest beholder, the least obscrvant of nature at other seasons, can then hardly fail to ask, What are plants? How do they live and grow? What do they live apon? What is the object and use of vegetation in genval, aud of its particular and wonderfully various forms?

A reflecting as well as obsorving person, noticing the resemblances between one plant and another, might go on to inquire whether plants, with all their manifold divarsities of form and appearance, are not all constructed on one and the same general plan. It will become appazent, as wo proceed, that this is the case; that one common plan may be discerned, which each particnlar plant, whether herb, shrub, or tree, has followed much more clowns than wonld at first viow be supposed. The differences, wide as they are, are merely incidental. What is true in a general way of any ordinary vegetable will be found true of all, only with great variation in the details. In the same language, though in varied phrase, the hundred thousand kinds of plants repeat the same story,-are the living witnesses and illustrations of one and the same plan of Oreative Wisdom in the vegetable world. So that the study of any one plant, traced from the seed it springs from round to the seeds it produces, would illuastrate the whole subject of vegetable life and growth. It matters little, therefore, what particular plant we begin with.

Take, for example, a seedling maple. Sugar maples may be

TIE MAPLE.
found in abondance in many places, starting from the seed or germinating in early spring, and red maples at the beginning of summer, shortly after the fruits of the seasou have ripened and fallen to the ground. A pair of narrow green leaves raised on a tiny stem make up the whole plant at its first appearance. Soon a root appears at the lower end of the stemlet; then a little bud at its upper end, between the pair of leaves, which soon grows into a second joint or stem bearing another pair of leaves, resembling the ordinary leaves of the red maple, which the first did not.

Was this plantlet formed in the seed at the time of germination, something as the chick is formed in the egg daring the process of incubation? Or did it exist before in the seed, ready formed? To decide this question, we have only to inspect a sound seed, which in this instance requires no microscope, nor any other instrument than a sharp knife, by which the coats of the seed (previously soaked in water, if dry) may be laid open. We find within the seed, in this case, the little plantlet ready formed, and nothing else; namely, a pair of leaves like those of the earliest seedlings, only smaller, borne on a stemlet just like that of the seedling, only much
shorter, and all snugly coiled up within the protecting seed-coat. The plant then exists beforehand in the sced in minlature. It was not formed, but only developed in germination; when It had merely to anfold and grow, -to elongate its rudimentary stem, which takes at the same time an upright position, so as to bring the leaf-bearing end into the light and air, where the two leaves expand; while from the opposite end, now pushed farther downwards into the soil, the root begins to grow. All this is true in the main of all plants that spring from real seeds, although with great diversity in the particulars. At least, there is hardly an exception to the fact, that the plantlet exists ready formed in the seed in some shape or other.

The rndimentary plantlet contained in the seed is called an embryo. Its little stem is named the radicle, because it was supposed to be the root, when the difference between the root and stem was not so well known as now. It were better to name it the caulicle, (little stem;) but it is not expedient to change old names. The seed-leaves it bears on its summit (here two in number) are technically called cotyledons. The little bnd of nudeveloped leaves which is to be found between the cotyledons before germination in many cases (as in the pea, bean, \&c.) has been named the plumule.
In the maple, as also in the morning glory and the like, this bud or plumule is not seen for some days after the seed-leaves are expanded. But soon it appears in the maple as a pair of minute leaves, ere long raised in a stalk which carries them up to some distance above the cotyledons. The plantlet now consists, above ground, of two pairs of leaves-viz., 1. The cotyledons or seedleaves, borne on the summit of the original stemlet, (the radicle); and 2. A pair of ordinary leaves, raised on a second joint of stem which has grown from the top of the first. Later, a third pair of leaves is formed, and raised on a third joint of stem, proceeding from the summit of the second, just as that did from the first, and so on, until the germinating plantlet becomes a tree.

So the youngest seedling, and even the embryo in the seed, is already an epitome of the herb or tree. It has a stem, from the lower end of which it strikes root; and it has leaves. The tree itself in its whole vegetation has nothing more in kind. To become a tree, the plantlet has only to repeat itself upwardly by producing more similar parts,-that is, new portions of stem, with new and larger leaves, in succession,-while beneath, it pushes its root deeper and deeper into the soil.

THE TLOWER.

The Flower.-The object of the flower is the prodaction of seed. The flower consists of all those parts or organs which are subservient to this end. Some of these parts are necessary to the production of seed. Others serve merely to protect or support the more essential parts. The organs of the flower are, therefore, of two kinds; namely, first, the protecting organs, or leaves of the flower,also called the floral envelopes,-and, second, the essential organs. The latter are situated within or a little above the former, and are enclosed by them in the bud. The floral envelopes in a complete flower are donble; that is, they consist of two whorls, or circles of leaves, one above or within the other. The outer set forms the calyx; this more commonly consists of green or greenish leaves, but not always. The inner set, usually of a delicate texture, and of some other colour than green, and in most cases forming the most showy part of the blossom, is the corolla. Each leaf or separate piece of the corolla is called a petal; each leaf of the calyx is called a sepal. The sepals and the petals-or, in other words, the leaves of the blossom-serve to protect, support, or nourish the parts within. They do not themselves make a perfect flower.

Some plants, however, naturally produce, besides their perfect flowers, others which consist only of calyx and corolla, (one or both,)-that is, of leaves. These, destitute as they are of the esseatial organs, and incapable of producing seed, are called neutral flowers. We have an example in tie flowers rounit the margin of the cyme of the hydrangea, and of the erauberry-tree, or snowball,

an

$$
\mathrm{Ta}
$$

the

are
in their wild state. By long cultivation in gardens, the whole claster has been changed into showy, but useless, neatral flowers, in these and some other cases. What are called double flowers, such as full roses, battercups, and camellias, are blossoms which, under the gardencr's care, have developed with all their essential organs changed into petals. But such flowers are always in an nnnatural or monstrons condition, and are incapable of maturing seed for want of the essential organs.

The essential organs are likewise of two kinds, placed one above or within the other,-namely, first, the stamens, or fertllising organs; and, second, the pistils, which are to be fertillsed and bear the seeds. Taking them in successiou, therefore, beginning from below, or at the outside, we have, first, the calyx, or outer circle of leaves, which are individually termed sepals; secondly, the corolla, or inner circle of delicate leaves called petals; then a set of stamens; and in the centre, one or more pistils. The end of the flower-stalk, or the short axis, upon which all these parts stand, is called the torus, or receptacle.

A stamen consists of two parts,-namely, the filament, or stalk, and the anther. The latter is the only essential part. It is a case, commonly with two lobes or cells, each opening lengthwise by a slit, at the proper time, and discharging a powder or dust-like sabstance, asually of a yellow coloar. This powder is the pollen, or fertilising matter, to produce which is the sole office of the stamen.
A pistil is distinguished into three parts; namely,-beginning from below,-the ovary, the style, and the stigma. The ovary is the hollow case or young pod, containing radimentary seeds called ovules. The style is the tapering part above, sometimes long and slender, sometimes short, and not rarely altogether wanting, for it is not an essential part, like the two others. The stigma is the tip or some other portion of the siyle, (or of the top of the ovary when there is no distinct style, consisting of loose tissue, n n c covered, like the rest of the plant, by a skin or epidermis. It is upon the stigma that the pollen falls; and the result is, that the ovales contained in the ovary are fertilised and become seeds, by having an embryo formed in them. To the pistil, therefore, all the other organs of the blossom are in some way or other subservient: the stamens furnish pollen to fertilise its ovules; the corolla and the calyx form coverings which protect the whole.

These are all the parts which belong to any flower. But these parts appear under a variety of forms and combinations, some of them greatly disgnising their natural appearance. To understand
the flower, therefore, under whatever guise it may assume, we must stady its pian.
-Grar.

general division of plants.

A plant consists of certain paris which are called organs. The root, stem, and leaves are concerned in the nourishment of the plant, and are called nutritive orgaus; while the flowers are connected with the production if seeds, and are denominated reproductive organs. Some plants produce flowers and secds, and are called flowering or phanerogamous, (Greek, visible reproduction;) while others do not produce flowers, but have peculiar organs which give origin to germs, equivalent to seeds, and they are hence called flowerless or cryptogamous, (Greek, hidden reproduction.) To the former division belong our ordinary trees, slirubs, and herbaceous flowering plants; to the latter belong ferns, mosses, lichens, sea-weeds, and mushrooms.

In flowering plants the seed contains the young or embryo plant, either alone, as in the bean, pea, and wall-flower, or associated with a separate store of nourishment, as in the cocoa-nut, the cereal grasses, and the pansy. When the skin of a bean or pea is removed, the young plant is found within, consisting of the rudimentary root and stem, with two large lobes called cotyledons; these cotyledons in the pea are thick and fleshy, and constitute the great balk of the seed. In the case of the cocoa-nat, the seed, which is contained within the hard shell, consists principally of a mass of nourishing matter, (the white part used for food), in a cavity of
ssume, we must
-Gray.
d organs. The ent of the plant, 8 connected with oductive organs. lled flowering or 0 others do not
give origin to led flowerless or 3 former divlsion lowering plants; eds, and mush-

or embryo plant, r associated with -nut, the cereal an or pea is reof the radimen. otyledons ; these istitute the great ie seed, which is lly of a mass of , in a cavity of
which, at the end where the hole in the shell exists, the little embryo plant lies. The embryo ls a smail snd somewhat club-shaped body; its parts are the rudimentary root, and the stem with a single cotyledon, which is wrapped round it.

In flowerless plants, in place of seeds litule germs are formed, called sporrs, (Gr. seed,) which do not exhibit any separate parts, and have no cotyledons. Thus all the plants in the world are divided into three great classes, founded on the nature of their embryo-viz., 1, Dicotyledunous plants, having two cotyledons, or seed-lobes, or seed-leaves ; 2, Monocotyledonous plants, in which there is one cotyledon ; and, 3, Acotyledonous plants, in which there is no cotyledon. The first two divisions embrace flowering or planerogamous plants, the last flowerless or cryptogamous. Here we see a natural division of the vegetable prodactions of the globe, and we observe to some extent the plan on which they were formed by the Creator.
-Balfour.

THE FERN AND THE MOSS.

There was a fern on the mountain, and moss on the moor; And the farns were the rich, and the mosses the poor. And the glad breeze blew gayly; from heaven it came, And the fragrance it shed over each was the same; And the warm sun shone brightly, and gilded the fern, And smiled on the lowly-born moss in its turn; And the cool dews of night on the mountain fern fell, And they glisten'd upon the green mosses as well. And the fern loved the mountain, the moss loved the moor, For the ferns were the rich, and the mosses the poor.

Bnt the keen blast blew bleakly, the sun waxed high, And the ferns they were broken, and wither'd and dry; And the moss on the moorland grew faded and pale; And the fern and the moss shrank alike from the gale. So the fern on the mountain, the moss on the moor, Were wither'd and black where they flourish'd before.

Then the fern and the moss, they grew wiser in grief, And each turned to the other for rest and relief; And they plann'd that wherever the fern-roots should grow, There surely the moss should be sparkling below.

And the keen blasts blew bleakly, the sun waxed ficree; But no wind and no sun to their cool roots conld pierce; For the fern threw her shadow the green moss upon, Where the dow ever sparkled undried by the sun; When the graceful fern trembled before the keen blast, The moss guarded her roots till the storm-wind had pass'd; So no longer the wind parch'd the roots of the one, And the other was safe from the rays of the sun.

And thas, and for ever, where'er the ferns grow, There surely the mosses lie sparkllng below; And thus they both flourish, where naught grew before, And they both deck the woodland and mountain and moor.
-Eliza Cook.

A DISH OF VEGETABLES.

From the moss to the palm-tree the number of contributions made by the vegetable world towards the sustenance of man would make a bulky list of benefactors. We have not room to advert to thein all, still less to talk about them all. It may be well, however, and only grateful in us, as human beings and recipients of vegetable bounty, to do a little trampeting in honour of the great families of plants which have contributed with more especial liberality towards the colonisation of the world by man.

For example, there is, in the first place, the Potato family, famous for its liberal principles, and the wide sphere over which its influence is spread. The members of this family, with equal generosity, are prompt to place a luxury upon the rich man's gravy, or a heap of food beside the poor man's salt. The potato family has been for many years one of the noblest benefactors to the human colony; and when it was prevented lately, by ill-health, from the fulfilment of its good intentions, great was the anxiety of men, and many were the bulletins of health sought for and issued.

The family seat of the potatoes is well known to be in America. They are a comparatively new race in our own country, (England,) since they did not come over until some time aftor the Conqueror. The genealogists have nearly settled, after much discussion, that all members of this family spread over the world, are descended from the potatoes of Chili. Their town-seat is in the neighbourhood of Valparaiso, upon hills facing the sea. The potatoes were carly spread over many portions of America, on missions for the benefit of man, who had not been long in discovering that they were friends worth cultivating properly. It is said that the first potato who visited Europe came over with Sir Francis Drake in 1573; it is said, also, that some of the family had accompanied Sir John Hawkins in 1563 ; it is certain that a body of potatocs quitted Virginia in 1586, and came to England with Sir Walter Raleigh. M. Duval, who has written an elaborate history of the potato family, shows it to he extremely probable that, before the time of Raleigh, a settlement of potatoes had been found in Spain. Reaching England in 1586, the benevolent potato family was welcomed into Belgium in 1590. In 1610, the first potatoes went to Ireland, where they eventually multiplied and grew to form one of the most important branches of this worthy race. The Scotch potatoes date their origin, as a distinct branch, from 1728. It was at dates not very different from this that other branches of the family settled in Germany. The potatoes of Switzerland first settled in 1780, in the Canton of Berne. In 1738, the thriving family extended its benevolent assistance to the Prussians ; bot it was not until 1767 that its aid was solicited in Tuscany. In France, the kindly efforts of this family were not appreciated until in the middle of the last century, there arose a man, Parmentier, who backed the introduction of potatoes into France with recommendations so emphatic, that it was designed to impute to him the interest of near relationship, not indeed by calling him potato, but by calling potatoes by his name, Parmentiers. The benevolent exertions made by the potato family on belialf of France, daring the famine of 1793, completely established it in favear with the grateful people.

Potatoes, though so widely spread, are nnable to maintain their health under too warm a climate. On the Andes, they fix their abode at a height of ten to thirteen thousand feet; in the Swiss Alps, they are comfortable on the mountain-sides, and spread in Berne to the height of five thousand feet, or not very much less. Over the north of Europe the potato family extends its laboars further on into the cold than even barley, which is famous as the
hardiest of grain. There are potatoes settled in Iceland, though that is a place in which barley declines to live. The potato is so nutritious, and oan be cuitivated with so little skill and labour, that it tempts some nations to depend solely on it for sustenance. The recent blight, especially in Ireland, consequently occasioned the most disastrous effects.

The Barley branch of the grass family has, however, a large establishment in Scotland, even to the extreme north, in the Orkneys, Shetland, and, in fact, even in the Faroe Islands. They who are in the secrets of the barleys, hint that they would be very glad to settle in the southern districts of Ioeland-say about Reikiavik-If it were not for the annoyance of anseasonable rains. In Western Lapland there may be found heads of the house of barley as far north as Cape North, which is the most northern point of the continent of Europo. It has a settlement in Russia, on the shores of the White Sea, beyond Archangel. Over a great mats of Northern Siberia no barley will undertake to live; and as the potatoes have found their way into such barren districts only here and there, the country that is too far north for barley, is too far north for agriculture. There the people live a nomad life, and owe obligation in the world of plants, to lichens for their food, or to such families as offer them the contribution of roots, bark, or a few scraps of fruit.

It is not mnch that barley asks as a condition of its gifts to any member of the human colony. It wants a summer heat, averaging about forty-six degrees; and it docs not want to be perpetually moistened. If it is to do anything at all in moist places, like islands, it must have three degrees added to the average allowance of summer heat, with which it wonld otherwise be content. As for your broiling hot weather, no barley will stand it. Other grasses may tolerate the tropics if they please; barley refuses to be baked while it is growing. The barleys are known to be settled as an old native family in Tartary and Sicily, two places very far apart. Their pedigree, however, and, indeed, the pedigrees of all the branches of the great grass family must remain a subject wrapped in uncertainty, buried in darkness, and lost in a great fog of conjecture.

We find 04 ts spread over Scotland to the extreme north point, and settled in Norway and Sweden to the latitudes sixty-three and sixty-five. Both oats and rye extend in Russia to about the same latitude of sixty-three degrees. The bencvolent exertion of oats is put forth on behalf not only of men, but also of their horses. In
reland, though e potato is so nd labour, that tenance. The occasloned the
wever, a large north, in the Islands. They would be very hd-say about easonable rains. f the house of most northern at in Russia, on er a great mats θ; and as the tricts only here arley, is too far ad life, and owe food, or to such bark, or a few
its gifts to any heat, averaging be perpetually olst places, like erage allowance ontent. As for
Other grasses es to be baked ettled as an old very far apart. rees of all the subject wrapped eat fog of con-
ne north point, sixty-three and about the same rtion of oats is eir horses. In

Scotland and Lancashire, in some countries of Germany, especiaily south of Westphaila, the people look to oats for sustenance. Scotcil bone and muscie are chiefly indebted to oatmeal; for porridge (which consiats of oatmeal and water, and is eateu with milik) is the staple-almost the only-food of the stardy Scotch peasantry. South of the paraliel of Paris, however, the friendship of oats is little caltivated. In Spain and Portugal nobody knows anything about oats, except as a point of curiosity.
The RyE branch of the grass family travels more to the north than oats In Scandinavia. In our own country we decline to receive gifts from rye. We succeed so well in the cultivation of more wealthy benefactors that we consider the rye poor friends, and, like good Britons, hold them at arms' length accordingly. In countries where the land is poor, poor rye is welcome to a settlement upon it. Rye is in great request in Russia, Germany, and parts of France, and one-third of the population of Europe look to its help for daily bread.

The most numerous and respectable nuembers of the great grass family are those which bear the name of Wheat. There are an infmense number of different wheats: as many wheats among the grasses as there are in this country Smiths among men. We know them best as summer and winter wheats. The family seat of the wheats most probably will never be discovered. There is reason to believe that Tartary and Persia are the native conntries of wheat, oats, and rye. Strabo says that wheat is native on the bauks of the Indus. Probably, wherever the old seats may be, all trace of them was destroyed in very ancient times, when, even a thousand years ago and more, the plough passed over them. The settlements of wheat in Scotland extend to the north of Inverness ; in Norway, to Drontheim ; in Russia, to St Petersburg. How far north the wheats would consent to extend the sphere of their influence in America it is not possible to tell, because enough attempt at cultivation has not yet been made there in the northern regions. Winter cold does not concern the wheats: the spring-sown wheat escapes it, and that sown in antumn is protected by a covering of snow. Wheat keeps a respectful distance of twenty degrees from the equator; indeed, in the warm latitudes, new combinations of heat and moisture, grateful to new and very beantiful members of the vegetable world, who suit their gifts more accurately to the wishes of the people whom they feed, would cause the kind offices of wheat to be rejected, even if they could be offered there. . On the mountains in warm climates, settlements of wheat of course exist. On
the north side of the Himaiaya mountains, wheat and bariey flourish at a height of thirteen thousand feet.

The well-known name of Rice carries our thoughts to Asia. The family seat is somewhere in Asia, donbtless ; but all trace of it is lost. The family has always lived in Southern Asia, where it supplies food, probably, to more men than any other race of plants has ever had occasion to support. No rice can enjoy good health without much heat and much noistare. If these could be fooud everywhere, everybody would cultivate a valuable friend, that is sapposed to scatter over a given surface of ground more than a common share of nourishment.

Most liberal of all vegetables, however, in this respect, are the Bananas. Humboldt tella ns that they spread over the same given extent of ground forty-four times more nutritive matter than the potatoes, and a bandred and thirty-three times more than any wheat.

Where the benevolent among our grasses cease to grow, becanse it is too far south, there it is jast far enough north for the CocosNurs, who, within their llmited sphere, supply a vast contribution towards the maintenance of man, that very wise and very independent creature. Very nearly three millions of cocoa-nuts have been exported in one year from the Island of Ceylon.

Then there is in Brazil that excellent vegetable friend, Manioc, a shrub whose roots yield almost the only kind of meal there used. An acre of manioc is sald to yield as much food as six acres of wheat.

And, to come nearer home, there is a large-hearted plant bearing the name of Matze, and the nickname of Indian corn. Its native seat has not been fixed yet by the genealogist. It grows at a good height above the sea in tropical America, and it occurs in eastern Europe on the banke of the Dniester, in latitude forty-nine. Maize does not care aboat the winter; it wants nothing but summer heat in a country which it is to choose as a congenial habitation. It will do also with less heat than the vine; for it has been grown in the lower Pyrences, at three thousand two hundred and eighty feet above the level of the sea, the vine stopping at two thousand six hundred and twenty.

We bave here spoken only of a few of the great liberal families belonging to the world of plants; families to which the human colony looks for support; apon whose aid we, in fact, depend for our existence. The whole list of our vegetable patrons would be
oarley flourisb
ghts to Asia. all trace of it Asia, where it race of plants y good health ould be fonud friend, that is more than a
apect, are the he same given patter than the ore than any
grow, because for the Cocosst contribution und very inde-coo-nuts have
riend, Manioc, eal there used.
as six acres of
1 plant bearing n. Its native rows at a good curs in eastern y-nine. Maize t summer heat habitation. It been grown in and eighty feet 0 thousand six
liberal familles ich the haman act, depend for rons would be
very long. Respectable namee mast crowd down upon overy memory, and take us off to

"Citron groven; To where the lemon and the plereing lime, With the doep orange glowing through the green, Their lighter glorien blend. Lay us reclined Beneath the aprending tamarind" -

in fact, take us a long dance among roots, and fruits, and vegetubles. It must be enough, therefore, that we have here briefly expressed a general sense of obligation to our vegetable friends, and hinted at a fact which, in our high philosophy, we now and then forget, that the outer world may be a shadow, or a reflex of our own minds, or anything gou please to call it; but that we, poor fellows, should be rather at a lose for dinner if the earth did not send up for us, out of a kitchen that we did not build, our corn, and wine, and oil.
-Household Words.

30Tanical gleanings.

Is entering a Botanic Garden it is all very well to see the fine plants, whether trees, shrubs, or flowers, assembled from every clime, and labelled with scientific nomenclatare, at the public expense. Bat were it generally known of what much loved names and truiy interesting histories many of the most strange in aspect and unpronounceable in title are possessed, we are convinced that a great and popular thirst for a more famillar acquaintance with botany would be naiversally excited.
It is not for the purpose of denying the advantage of acientific nomenclature, well settled and of universal acceptance, that we hazard these remarks; but it is becaase the scientific botanists have manifestly conspired to shat the avenues which admit the diffusion of a vast amount of nseful knowledge, out of the arcana of their science, that we complain of their stadions care to prevent its taking a popalar form. There is only one way, indeed, in which this could be done with safety; and it is by combining the soientific with the popular explanation in so intimate a degree, that the illnatured adage of Pope may as little hold good as his relative in-junction-

[^1]The plea for a definte nomenciataro and clamification in Botany is founded upon the existence of upwards of 100,000 known apecies of plants; for species are held to includo all the individuals separately formed at the creation of the world, and perpotuated ever since. Varieties, exhibiling only minor differences, not incompatiblo with a common origin, and arising from soil, exposure, and other causes, evince a constant tendency to return to the specific type. But cultivation has prodnced permanent varietion or races, varying much from the original type; as in the cases of the cereal grains-wheat, barley, oats, \&cc., and culinary vegetabies, such as cabbage, caullfower, turnips, radishes, peas. These permanent varietios were not established all at onco, but only after a series of years, and by the art and akill of the gardener or cuitivator; and even yet, on a poor soil, and in a neglected condition, there is atili a tendency in their seeds to produce the original wild form. Many species, however, vary in a manner so remarkable, that external influences fail to account for it. This is the case with that beautifal and favourite plant the fuchsia. It has produced in successive years flowers differing so much in form and shape that, if they had not been known to be produced by the same plant, they would have beon considered as belonging to distinct species. Some, indeed, have of late years advanced the doctrine of transmatation of species, or the conversion of one species into another. They have sald that oats may be changed into rye, by being constantly cut down for a series of years before flowering; but there is no foundation for such an opinion. All the species, more nearly allied than others, are grouped together as a distinct kind or genus. Roses, for instance, compose a genus distingaished by marked characters. And it was amongst the highest titles Linnæus earned to fame, that he invented the device of giving, in the name of a plant, the genus as well as the species. Rosa spinosisaima is a particular species of rose-Rosa being the generic ; spinosissima, the specific, or, as Linnæus called it, the "trivial" name of the plant.

But, after all, it is in the multitude of minate and individual facte, rather than in the classification of names and the conflict of systems, that the value of knowledge in general, and of the knowledge of plants in particular, consists; and often, when the jargon of modern science has grated on our ear, have we longed to live back in the history of human intelligence, that we might, with Shakespeare, be "culling of simples" under the moon, instead of botanising with a microscope.

Let us descend, then, to particulars, and begin with the Croufoot
a in Botany to known apecied dividuals separpotuated over not incompatexposure, and to the apeclic letios or races, of the cereal tables, such as eso permanent after a series of cultivator; and n , there is still d form. Many hat external inth that beautifal successive years If they had not ley would have Some, Indeed, ransmatation of ler. They have : constantly cat re is no foundasarly allied than genus. Roses, rked characters. ed to fame, that plant, the genus icular species of specific, or, as
individual facts, fflct of systems, te knowledge of argon of modern live back in the Shakespeare, be otanising with a
ith the Croufoot
firmily - name famillar to the lover of feld flowers. These plants are found in cold, damp climatee, and in the elevated regions of warm countries. Europe containn one-fifh of them, and North Americe about a seventh. The clematis, anemone, ranunculus, or battercup, hellebore, hepatica, columbine, \&c., belong to them. They have narcotio and acrid properties, and are, usually, more or less polsonous. One of them, monkshood, contalns a narcotic used as an anodyne, (a medicine which by lte soothlag qualitien assuages pain,) and is chiefly employed where the nerves are affected. The May-apple of America la employed as a pargative; and many of the crow-flowers are marked by bitter tonle propertics.
The Magnolia family, clilefly found in North America, (certain opecios also occurring in Souch America, China, Japan, New Holland, and New Zealand,) may perhaps be familliar in name, if not In appearance. The properties of the order are bitter, tonic, and often aromatic. Captain Winter brought from the Stralts of Magellan, in 1579, the magnolia, which yields winter's-bark, employed medicinally as an aromatic stimulant. The bark of swamp.suasafras, or beaver-tree, is, in fact, used as a substitute for Peruvian bark; and the tullip-tree has similar properties.
The Water-lily family, to which botaniste, with rare felicity, have given the lively name of Nymphacea, have very showy flowers. They adorn the ponds and rivers of North America, and are, generally, widely distribated throughout the northern hemisphore; yet it is in the waters of South America that the Victoria regia, one of the largest known aquatics, expands its great flowers, a foot in diameter, with Its still larger leaves, which are in diameter from four to six and a half feet, and dispenses its delicious odour.

Of this plant there is a delightfal reminiscence wafted from the poetry of L. E. L.:-
> "There flouts the water-lily like a sovereign Whose lovely empire in a fairy world; The purple dragon-ly above it hovering, As when its fragile ivory unourl'd, A long time ago."

The Lotus, figured on Egyptian and Indian monuments, is sald to belong to the Water-bean family of aquatic plants, with showy flowers and floating leaves, found in the temperate as well as the tropical regions of the Old and New World.

The Sidesaddle flower family appear in North America and Gniana. T'o them belongs the remarkable pitcher-plant of our swamps,
furnished with a leafy receptacle for water, in which are generally to be found the remains of unwary fles and other insects. It has been very extensively used in Nova Scotia, Canada, and Newfoandland, as a remedy for that most loathsome of diseases, the smallpox.

With the Poppy family we are, however, more familiar; though few will be prepared to learn that they are chiefly European. This, notwithstanding their extension over tropical America, Asia, China, New Holland, the Cape of Good Hope, \&c., is, however, the case. They are distinguished by their milky or coloured juice, and the well-marked narcotic properties of their order. The concrete, milky juice from the unripe capsules of the somniferous poppy is, in fact, opium-the particular plant from which it is procured being a native of Western Asia, and not improbably of Southern Europe also, but now distribated over various other countries besides.

The Cabbage or Cresswort family are a very extensive order, chiefly European. Everything connected with them goes by fours, generally in the form of a cross. None of them are poisonous, bnt most of them are antiscorbatic and stimulant. In fact, they are cabbages, cauliflowers, turnips, radishes, cresses, horseradishes, and other garden stuffs most familiar to our readers. Sulphur and nitrogen are contained in them to such an extent, that their decaying odours are anything but agreeable. Not only the garden vegetables, but the more ordinary garden flowers, such as wallflowers, stocks, reciets, honesty, \&c., belong to the order. One of the tribe, the rose of Jericho, is remarkable as a hygrometer-literally, a measure of the moisture in the surronnding atmosphere; its old withered, annual stems, which are rolled up like a ball in dry weather, and drifted about by the wisds in the deserts of Syria and Egypt, resuming when rain falls their original form and direction, and continuing for many years thus to curl up and expand according to the state of the atmosphere. Woad, the plant yielding the well-known woad-blue colour when treated like indigo, and with which the ancient Britons used to dye their bodies, belongs to this order.

The Caper family is probably familiar to those who affect a boiled leg of mutton. Capers are the flower-bads of a plant of this order. Their properties are stimulant. The plant is a native of the sonth of Earope, and is considered by Royle to be the hyssop of Scriptare.

Our sweet and pretty favourites, the Mignonette family, inhabit Europe and the adjoining parts of Asia. "The uses of the order,"
are generally nsects. It has and Newfoandses, the smail-
niliar ; though ropean. This, a, Asia, China, ever, the case. juice, and the The concrete, as poppy is, in procured being athern Europe 3 besides.
tensive order, goes by fours, poisonons, but fact, they are ceradishes, and Sulphur and t their decaygarden vegets wallflowers, Ie of the tribe, -literally, a ohere ; its old ball in dry 3 of Syria and and direction, spand accordt yielding the igo, and with elongs to this affect a boiled of this order. of the south sop of Scripmily, inhabit of the order,"
says the hard-hearted man of science, "are unimportant." And yet one kind, weld, yields a yellow dye; another is the fragrant mignopette. Ah! how many hearts has not that gentle fragrance soiaced ! In the lone garret it has bleuded with the inmates' sighs, and mingled with the quick, warm breathings of emotion on the lordly parterre. The mignonette is in France an object of such favourite culture that, by preventing the development of its biossoms, it is common to render it shrubby or woodj, when it is known as the tree-mignonette. We shall conclude this short excursion into botany with a notice of the Violet fanily. They are matives of Europe, Asia, and America. They posseis many valuable medicinal properties. The roots of the sweet-scented European violet have been employed as an emetic. Other species are used in South America as substitutes for ipecacuanha. The rich odour of the Eastern vioiets is almost entirely absent in those of the western hemisphere. The only North American species possessing any degree of fragrance is the tall Viola Canadensis, which flowers twice a year-in the spring and fall. The Viola tricolor (heart'sease) is the origin of all the cultivated varieties of pansy.
-Adapted from W. W. Fyre.

LINNEUS NAMING THE FLOWERS.

It is pleasant to trace the steps of a genins like Linnæus going over completely new ground in the wide field of natural history; classing and naming birds, insects, and flowers, oftentimes according to a system which his own ingennity and penetration had devised to supply the deficiencies of former naturalists. An active examination of the minuter parts of the object under his consideration, frequentiy enabled hlm to arrive at a juster conclusion as to the order or genus to which it belonged, than others who had preceded him; and sometimes, after having with indefatigabie industry ascertained these points, he indulged himself in combining with his new discovery associations of friendship, or of historical or classical allasion. After this fashion he honoured several of his patrons and pupils. Thus the Celsia was so named after Celsui, one of his earliest benefactors; and the Kalmia, now so well known in our gardens, commemorated his friendship for Professor Kalm, his pupii and fellow-
labourer. In his "Critica Botanica" he observes, concerning this habit of the appropriation of celebrated names to the genera of plants, that "a proper connexion should be observed between the habits and appearance of the plant and the name from which it has its derivation;" and as an emblim of himself he chose the Linnea

borealis,* which he described as "a little northern plant flowering early, depressed, abject, and long overlooked." It was gathered by him at Lycksele, May 29, 1732. It is common in West Bothnia, and in almost all the great northern forests; but it may be easily overlooked, because it grows only where the woods are thickest, and its delicate twin-blossoms are almost hid among the moss, and interwoven with ivy. Their smell resembles that of the meadow-sweet, and is ao strong during the night as to discover the plant at a considerable distance.

When he received his patent of nobility, Linnæns adopted this

[^2]flower arms those of his factur its on in his næa b flower for th
erning this genera of etween the hich it has the Linnaa
floweret as a part of his crest-the helmet which surmounts the arms of his family being adorned with a sprig of Linnæa. One of those pupils who visited distant countries to add to the collections of his great master, sent from China a service of porcelain, manufactured purposely for him, having'a representation of this plant as its only decoration ; and the Cardinal de Noailles erected a cenotaph in his garden to the memory of the naturalist, and planted the Lirnes by its side as its most appropriate oruament. What lover of flowers but will regard with interest this little flower of the north, for the sake of him whose name it bears !
-C. L. Briaitwell.

TO TH: ${ }^{\circ}$ FRINGED GENTIAN.
Thou blossom, bright with antumn dew, And colour'd with the heaven's own blue, That openest when the quiet light Succeeds the keen and frosty uight;

Thon comest not when violets lean
O'er wandering brooks and springs unseen, Or columbines, in crimson drest, Nod o'er the ground-bird's bidden nest.

Thon waitest late and com'st alone, When woods are bare and birds are flown, And frosts and shortening days portend The aged year is near its end.

Then doth thy sweet and quiet eye Look through its fringes to the sky, Blue,-blue-as if that sky let fall A flower from its cerulean wall.

I wonld that thus when I shall see The hour of death draw near to me, Hope, blossoming within my heart, May look to heaven as I depart.

TROPICAL SCENERY.

On leaving Ascension we sailed for Bahia, on the coast of Brazil, in order to complete the chronometrical measurement of the world. We arrived there on August 1st, and stayed four days, during which I took several long walks. I was glad to find my enjoyment in tropical scenery had not decreased from the want of novelty, even in the slightest degree. The elements of the scenery are so simple, that they are worth mentioning, as a proof on what trifling circumstances exquisite natural beauty depends.

The country may be described as a level plain of about three hundred feet in elevation, which in all parts has been worn into flat-bottomed valleys. This structure is remarkable in a granitic land, but is nearly universal in all those softer formations of which plains are usually composed. The whole surface is covered by various kinds of stately trees, interspersed with patches of cultivated gronnd, out of which houses, convents, and chapels arise. It must be remembered that within the tropics, the wild luxuriance of nature is not lost even in the vicinity of large cities; for the natural vegetation of the hedges and hill-sides overpowers in picturesque effect the artificial labour of man. Hence, there are only a few spots
where sal clo views shores salls. followi woode and es fantas when the pa than r

Suc to pair of the charac may c plant its nat magni into al the en associ latter, the sti attain the de darkes fusion the ca and h bright Wh each Epith have 1 which house recur made has st would
where the bright red soil affords a strong contrast with the universal clothing of green. From the edges of the plain there are distant views elther of the ocean, or of the great Bay with its low-wooded shores, and on which numerons boats and canoes show their white 3ails. Excepting from these points, the scene is extremely limited; following the level pathways on each hand, only glimpses into the wooded valleys below can be obtained. The houses, I may add, and especially the sacred edifices, are built in a peculiar and rather fantastic style of architecture. They are all whitewashed; so that when illumined by the brilliant sun of mid-day, and as scen against the pale blue sky of the horizon, they stand out more like shadows than real buildings.

Such are the elements of the scenery, but it is a hopeless attempt to paint the general effect. Learned naturalists describe these scenes of the tropics by naming a multitude of objects and mentioning some charac eristic feature of each. To a learned traveller this possibly may communicate some definite ideas : but who else, from seeing a plant in an herbarium, can imagine its appearance when growing on its native soil? Who, from seeing choice plants in a hothouse, can magnify some into the dimensions of forest trees, and crowd others into an entangled jungle? Who, when examining in the cabinet of the entomologist the gay exotic butterflies, and singular cicadas, will associate with these lifeless objects, the ceaseless harsh music of the latter, and the lazy flight of the former,-the sure accompaniments of the still, glowing nonnday of the tropics? It is when the sun has attained its greatest height that such scenes should be viewed: then the dense splendid foliage of the mango hides tho ground with its darkest shade, whilst the upper branches are rendered, from the profusion of light, of the most brilliant green. In the temperate zones the case is different-the vegetation there is not so dark or so rich, and hence the rays of the declining sun, tinged of a red, parple or bright yellow colour, add most to the beauties of those climes.

When quietly walking along the shady pathways, and admiring each successive view, I wished to find language to express my ideas. Epithet after epithet was found too weak to convey to those who have not visited the intertropical regions, the sensation of delight which the mind experiences. I have said that the plants in a hothouse fail to commanicate a jast idea of the vegetation, yet I must recur to it.". The land is one great, wild, untidy, luxuriant hothouse, made by Nature for herself, but taken possession of by man, who has studded it with gay honses and formal gardens. How great would be the desire in every admirer of nature to behold, if such
were possible, the scenery of another planet 1 yet to every person in Earope, it may be truly said, that, at the distance of only a few degrees from his native soil, the glories of another world are opened to him. In my last walk I stopped again and again to gaze on these beauties, and endeavoured to fix in my mind for ever an impression which, at the time, I knew sooner or later mast fail. The form of the orauge-tree, the cocoa-nut, the palin, the mango, the teparern, the banana, will remain clear and separate; but the thouanad beavtics which nite these into one perfect scene most fado away, yo t...ey will leave, like a tale heard in childhood, a picture intl of fuitsisicu, but most beautiful figures.
-Darwin's Journal.

VEGETABLE CLOTHING-FLAX, HEMP, AND COTTON.

The vegetable matters employed for clothing are chiefly of two kinds: the fibres of plants, and the downy substance in which the seeds are sometimes embedded. The fibrous or stringy texture is very prevalent in vegetables. We see it in the bark and wood of trees, in the stalks of green or herbaceons plants, and in the leaves of all. The longer parallel fibres are ield together by shorter cross ones, forming a network, cemenied by a glutinous matter. The ingenions, though but half-civilised people of Otaheite have discovered a method of making tolerable cloth of the inner bark of certain trees, by steeping it in water, and then beating it with a wooden mallet. But the more artful way of employing vegetable fibres consists in an entire separation of them from the matter that held them together, reducing them to clean loose bundles, then twisting them into threads, and lastly interweaving them.

The plants selected in Europe for the purpose of making thread and cloth from their fibres are chiefly flax and hemp. Flax (in Latin linum, whence the word linen) is an annual plant, rising on a single stalk to a moderate height, and crowned with handsome blue flowers, succeeded by globular seed-vessels. It is suffered to grow till the seeds are ripe, and is then placked up by the hand, laid in little bundles to dry, deprived of its seed-vessels, and then put into pits of water to rot. The purpose of this part of the process is to diasolve a mucilaginous matter, which holds the fibres together; and
ery person in fonly a few d are opened to gaze on ever an impast fall. The e mungo, the but the thoue must fade pod, a picture

's Journal.

COTTON.

iefly of two in which the gy texture is and wood of in the leaves shorter cross matter. The ite have disnner bark of ing it with a ing vegetable θ matter that oundles, then m.
raking thread p. Flax (in t , rising on a andsome blue fered to grow haud, laid in then put into process is to ogether ; and

it is the most disagreeable part of the management of flax, as the smell arising from it while rotting is extremely offenslve, and prejudicial to the health. When the flax has lain long enough, it is taken ont, washed, dried, then beaten with mallets, combed, and by various other operations so prepared, that the long fibres are got by themselves, clean and loose, in which state they are called flax; the shorter and coarser fibres, separated by the comb, are called tow. The operation of spinning, which it next undergoes, consists in drawing out, with the fingers, several of the fibres together, and twisting them. The product of spinning is thread, which is more or less fine according to the dexterity of the spinrer and the nature of the material. Some thread closer twisted than the rest is kept for needlework, but the greater part is made up in bundles, called linen-yarn, and committed to the weaver.

Weaving may be regarded as a finer kind of matting. To perform it, the threads, which form the length of a piece of cloth, are first disposed in order, and strained by weights to a proper tightness; this is called the warp. These threads are divided by an instrument called a reed, into two sets, each composed of every other thread; and while, by the working of a treadle, each set is thrown aiternately up and down, the cross-threads, called the woof' or weft, are inserted between them, by means of a little instrument,
sharp at both ends, called a shattle, which is briskly shot from one of the weaver's hands to the other, placed on the opposite sides of the work, and carries the thread with it. This is the simplest kind of weaving; but numberiess are the additioual contrivances made for all the carions works wrought in the loom which have been the objects of haman ingennity for many ages.

The linen fabrics are of all degrees of fineness, from coarse sheeting to cambric, almost emalating a spider's web. They are brought to that extreme whiteness, which we so much admire, by the process of bleaching. This consists in their exposure to the action of the sun and air, with frequent watering, and often with the heip of some acid liquor, which quickens the operation. The value that can be given to a raw material by manufacturing, is in few instances more strikingly exemplified than in the conversion of flax into Brussels lace, some of which sells for several guineas a yard. Indeed, if you look at a plant of flax growing, and then at the frill of your shirt, you cannot fail to be struck with admiration of human skill and Industry.

Hemp is a much taller and stronger plant than flax. It has a square rough stalk, rising to the height of five or six feet, and sending off branches. Its fibrous part consists in the bark sarrounding the main stalk. Hemp undergoes the same general preparation as flax before it is consigned to the weaver; but, being of a stronger and coarser textare, it requires more labour to get the fine fibres separate from the rest. Hence it is commonly employed in the more homely manufactures ; it is the principal material of sailcloth, a fabric, the strength of which is required to be proportional to the violence it has to undergo from storms and tempests ; and it is equally important to navigation, from its use in making cordage; for which parpose it is taken nearly in a raw state, and twisted into coarse twine, which is afterwards united to make rope.

Whilst the inhabitant of the northern and temperate regions is obliged to exercise much labour and contrivance in procaring his vegetable clothing from the stalks of plants, the native of the fruitful south enjoys the benefit of a material presented in greater abundance, and in a state requiring much less preparation before it is fitted for the manufacturer. This is cotton, a white woolly substance contained in the seed-pod of a family of plants, some of which are annual and herbaceons, others perennial and shrubby. The pods, when ripe, open of themselves, and the cotton is plucked
from one sides of plest kind ces made been the
rse sheet-- brought the proaction of be help of alue that few inon of flax s a yard. the frili of buman

It has a feet, and bark sarneral prejut, being ur to get 1only em1 material be proand temts use in in 2 raw united to egions is aring his the fruit1 greater on before e woolly some of shrabby. plucked

The figure representa a epeoies of cotton plant found in India, and show, the manner in whith the ootton escapen from the caywule.
out of them by the fingers, with the seeds sticking to it ; these are separated by means of mills, which pull out and loosen the down. It is then in a state fit to be sent from the planter to the manufacturer. The farther operations it undergoes are picking, carding, and roving, which last brings off the fibres longitndinally in a continued loose line; these are next twisted and drawn out, so as to make thread or yarn, and the material is then consigned to the weaver. The vast extension of the cotton mannfacture in this country has caused these preparatory operations to be performed by a system of complex machinery, the invention of the late Sir Richard Arkwright.

The fabrics made from cotton are probably more varions and numerous than from any other maierial. They comprehend stuffis of all degrees of fineness, from the transparent muslin of a robe, or
a turban, to the thick pluah and warm bed-quilt. The commerce. of Great Britain has, of late years, been pecullarly ludebted to the cotton manufacture, which produces clothing for people of all ranks, from Russia to Gulnea, and unites elegance with cheapness in ant unusual degree. Great quantities of the native fabrics of the East are also Imported Into Europe. Some of these, from excellence in the material and incomparable manual dexterity and patience in the workmen, though made with very slmple machinery, equal in fineness and beauty anything of Europenn manufacture. The natives are said to perform their finest work in molat cool places under ground, which makes the cotton hold together so as to draw out to the thinnest threads; and the soft and delicate flingers of the Jndian women give them the sense of feeling to a degree of wicety much beyond that of Europeans.

It is probabia that cotton at present clothes more people in the world than any other substance. Its peculiar advantage, besides cheapuess, is the union of warmth with lightness, whence it is fitted for a great variety of climates. To the hot it is better adapted than linen, on account of its absorbing quality, which keeps the skin dry and comfortable. The woolliness of cotton gives a kind of nap to the cloth made of $i t$, which renders it soft to the touch, but apt to attract dust. In the fine muslins this is burned off, by passing them between heated cylinders with zuch velocity as not to take fire, which, considering the combastibility of cotton, must be a very nice operation.
-Dr Aikin.

LUMBERING.

The lumber trade is carried on to a greater or less extent on almost all the American rivers; but on the Mississippi and the St Lawrence it affords employment to a vast number of persons. The chief raftsmen, under whose directions the timber expeditions are conducted, are generaily persons of very great intelligence, and often of considerable wealth. Sometimes these men, for the purpose of obtaining wood, purchase a piece of land, which they sell after it has been cleared, but more frequently they purchase only the timber from the
proprie bis dets Novem in fellin of oxen the cou formed tricts 0 are arrs are hall their ec the sms the mol that hi lannche which where 1 boom c of the stone p

The all ranks, pess in an the Euat ellence in atience in , equal in re. The ool places s to draw fingers of degree of
ple in the e, besides ence it is is better ey, which tion gives soft to the urned off, elocity as of cotton,

proprietors of the land on which it grows. The chief raftsman, and his detachment of workmen, repair to the forest about the month of November, and are occupied during the whole of the winter months in felling trees, dressing them into logs, and dragging them by teams of oxen to the nearest stream, over the hardened snow, with which the country is then covered. They live during this period in hats formed of logs. Throughout the whole of the newly cleared districts of America indeed, the houses are bnilt of rough loge, which are arranged so as to form the four sidey of the hat, and their ends are half-checked into each other in such a manner as to allow of their coming into contact nearly throughont their whole length, and the small interstices which remain are filled up with clay. About the month of May, when the ice leaves the rivers, the logs of timber: that have been prepared, and hauled down daring winter, are launched into the numerons small streams in the neighboarhood of which they have been cat, and are floated down to the larger rivers, where their progress is stopped by what is called a "boom." The boom consists of a line of loge, extending across the whole breadth of the river. These are connected by iron links, and attached to stone piers builit at suitable distances in the bed of the stream.
The boom is erected for the purpose of stopping the downward

IMAGE EVALUATION
 TEST TARGET (MT-3)

Photographic Sciences

progress of the wood, which must remain within it till all the timber has left the forest. After this every rafteman searches out his own
ported
elm, an timber, which he recognises by the mark he pots on it, and, having formed it into a raft, floats it down the river to its destination. The boom is generally owned by private individuals, who levy a toll on all the wood collected by it. The toll on the Penobscot River is at the rate of three per cent. on the value of the timber.

The rafts into which the timber is formed, previons to being floated down the large rivers, are atrongly put together. They are furnished with masts and sails, and are steered by means of long oars, which project in front as well as behind them. Wooden honses are built on them for the accommodation of the crew and their families. I have counted upwards of thirty persons working the steering oars of a raft on the St Lawrence; from this some idea may be formed of the number of their inhabitants.

The most hazardous part of the lumberer's business is that of bringing the rafts of wood down the large rivers. If not managed with great akill, they are apt to go to pieces in descending the rapids; and it not unfrequently happens that the whole labour of one, and sometimes of two years, is in this way lost in a moment. An old rafteman with whom I had some conversation on board of one of the steamers on the St Lawrence, informed me that each of the rafts brought down that river contains from $\mathbf{1 5 , 0 0 0}$ to $\mathbf{2 5 , 0 0 0}$ dollars' worth of timber, and that he, on one occasion, lost 12,500 dollars by one raft, which grounded in descending a rapid, and broke ap. The safest size for a raft, he said, was from 40,000 to 50,000 square feet of surface; and when of that size they require aboat five men to manage them. Some are made, however, which have an ares of no less than 300,000 square feet. These unwieldy craft are brought to Quebec in great numbers from distances varying from one to twelva handred miles; and it often happens that six months are occupied in making the passage. They are broken ap at Qnebec, where the timber is cat ap for exportation into planks, deals, or battens, at the numerons saw-mills with which the banks of the St Lawrence are studded for many miles, in the neighbourhood of the town. Sometimes the timber is shipped in the form of logs, The timber-rafts of the Rhine are, perhaps, the only ones in Europe that can be compared to those of the American rivers; but none of those which I have seen on the Rhine were nearly so large as those on the St Lawrence, althongh some of them were worked by a greater number of pands, 2 precantion rendered necessary, perhaps, by the more intricate navigation of the river. The principal woods ex-
timber his own having b. The toll on er is at
being bey are of long honses d their ing the me idea bringed with rapids; ne, and An old it of the he rafts dollars' dollars oke np. 50,000 out five aave an raft are g from months Qnebec, leals, or of the hood of of $\log \mathrm{g}$. Earope none of as those greater by the ods ex.
ported from the St Lawrence are white oak, white pine, red pine, elm, and white ash.
-Steverson.

THE LINDEN TREE.

Here's a song for thee-of the linden tree!
A song of the silken lime!
There is no other tree so pleaseth me, No other so fit for rhyme.

When I was a boy, it was all my joy To rest in its scented shade,
When the son was high, and the river nigh A masical marmar made.

When floating along, like a winged song, The traveller-bee wonld stop,
And choose for his bower the lime-tree flower, And drink-to the last sweet drop.

When the evening star stole forth, afar, And the gnats flew round and round,
I sought for a rhyme beneath the lime, Or dream'd on the grassy ground.

Ab! years have fled; and the linden dead, Is a brand on the cottier's floor, And the river oreeps through its slimy deeps, And youth-is a thought of yore!

Yet-they live again, in the dreamer's brain, As deeds of love and wrong,
Which pass with a sigh, and seem to die, Survive in the poet's song.
-Barry Cornwalan

TIM LINKINWATER'S WINDOW.

(From "Nicholas Nichleby.")

"There is a double walliflower at No. 6 in the court, is there?" sald Nicholas.
"Yes, there is," rèplied Tim, " and pianted in a cracked jug withont a spout. There were hyacinths there this last spring, blossoming in-but you 'll langh at that, of course."
"At what?"
"At their blossoming in old blacking-bottles," said Tim.
" Not I, indeed," retarned Nicholas.
Tim looked wistfally at him for a moment, as if he were encouraged by the tone of this reply to be more communicative on the subject; and sticking behind his ear a pen that he had been making, and shutting up his knife with a sharp click, said, "They belong to a sickly, bed-ridden, humpbacked boy, and seem to be the only pleasures, Mr Nickleby, of his sad existence. How many years is it," said Tim, pondering, "since I first noticed him, quite a little child, dragging himself about on a pair of tiny crutches? Well! well! not many; but though they wonld appear nothing, if I thought of other things, they seem a long, long time, when I think of him. It is a sad thing," said Tim, breaking off, "to see a little deformed child sittling apart from other children, who are active and merry, watching the games he is denied the power to share in. He made my heart ache very often.'
"It is a good heart," said Nicholas, " that disentangles itself from the close avocations of every day, to heed such things. You were saying' \qquad
"That the flowers belonged to this poor boy," said Tim, "that's all. When it is fine weather, and he can crawl out of bed, he draws a chair close to the window, and sits there looking at them, and arranging them all day long. We nsed to nod at first, and then.we came to speak. Formerly, when I called to him of a morning, and asked him how he was, he would smile and say, 'Better,' but now he shakes his head, and only bends more closely over his old plants. It must be dull to watch the dark honee-tops and the flying clonds for so many monthe ;-but be is very patient."
"Is there nobody in the house to cheer and help him ?" asked Nicholas.
"His father lives there, I believe," replied Tim, " and other people, too; but no one seems to care much for the poor sickly cripple. I
have a is alwa. but I 0 now, sc lies all he still nlght, it so I am tit he may to look whethe
"Th
sleep a shaken friend. these, handre est Lat of the swept ous em under 1

Witl absorb cyes,

In earl land, produc But as attemp efforts vated, herbag angurı ceive What.
have asked him very offen if I can do nothing for him ; his anower is always the same-'Nothing.' His volce has grown weak of late, but I can see that he makes the old reply. He can't leave his bed now, so they have moved it close beside the window; and there he lies all day, now looking at the sky, and now at bis flowers, which he still makes shift to trim and water with his own thin hands. At night, when he sees my candle, he draws back his curtain, and leaves it so till I am in bed. It seems such company to him to know that I am there, that I often sit at my window for an hour or more, that he may see I am still awake; and sometimes I get up in the night to look at the dull, melancholy light in his little room, and wonder whether he is awake or sleeping."
"The night will not be long coming," said Tim, "when he wil! sleep and never wake again on earth. We have never so muctr"ás shaken hands in all our lives, and yet I shall miss him like an old friend. Are there any country flowers that conld interest me like these, do you think? Or do you suppose that the withering of a handred kinds of the choicest flowers that blow, called by the hardest Latin names that were ever invented, wonld give me one fraction of the pain that I shall feel when these old jugs and bottles are swept away as lumber? Country 1 " cried Tim, with a contemptnons emphasis; "don't yon know that I conldn't have such a court under my bedroom-window anywhere bat in London ?"
With which inquiry Tim tarned his back, and, pretending to bo absorbed in his acconnts, took an opportunity of hastily wiping his eyes, wheu he supposed Nicholas was looking another way.
-Charles Dickens.

ANCIENT AND MODERN FARMING.

In early times, when the popnlation was scattered widely over the land, and their wants were few and easily satisfied, the spontaneous products of the earth, scanty as thej were, would amply suffice. But as the people increased in numbers, and civilisation progressed, attempts would be made to extend the products of the land by the efforts of industry and skill. The cereal crops wonld then be cultivated, and farinaceons food nsed to supplement the spontaneous herbage of the soil. But the system of culture this discovery inaugurated was conflned solely to the preparing of the land to receive the seed, not to any attempts to stimulate its productiveness. What the land paturally yielded would be considered as the extent
of its capability. The nature of all agricultaral processes for ages was simple in the extreme, progress being retarded by the devaatating wars and civil discords which for many ages afflicted all the nations of Europe. The husbandman reaped his tiny crop beneath the shade of the fendal castle, and was ready at the shout of the warder, or the trumpet call, to throw down the sickle and seize the sword; and it was long ere he left this sheltering shade, and cultivated the valleys, and crept up the hill-side; dotting the smiling landscape with bis flocks of sheep and cattle, and adding to the beauty of the scene by the glistening glories of the summer corn. But long after intestine wars had ceased, when the rusty firelock or the notched sabre were the only relics of the troublous times we bave aliaded to, agriculture still presented the same torpid symptoms, and little evidence was shown of the desire to increase the natural productiveness of the soil by improved metbods of treatment. It was very early discovered that the cereal crops were exhanstive onesthat is, if crop after crop of the same grain was raised from the same patch of soil, it was observed soon to be incapable of further production, at least to any amount. This proved that the crop withdrew certain properties of the soil. In districts where land was plentiful and easily obtained, this difflcalty would be got rid of by cultivating new patches of soil, jast in the same way now followed by the careless farmer in America, who crops until he exhausts his land, when he moves off to another "location," where virgin land, abounding in all the elements of fertility, is to be had, which in its turn undergoes the same process of exhaustion. In process of time, the ?ands which were discarded as exhansted and incapable of producing crops would be returned to, or taken into cultivation by other hands, the result being that crops would he raised as before. This necessarily attracting attention, and the fact becoming registered, that exhausted land would again become prodnctive if allowed to remain uncultivated-that is, at rest-for a certain period, the "fallow" system was inaugurated. The old Roman system consisted in raising a crop of grain one year, allowing the land to remain at rest the next. In this conntry *a variety of circamstances tended to introduce a peculiar system of agricalture ; the exigencies of a population concentrated in a much greater degree than in any other of the Europeun states; the length of the winter, and the uncertainty even of the favourable months ; the comparative scarcity and dearness of land, and the existence of a

[^3]higher degree of exhaustive property in the cereals than in the southern countries ; the natural richness of the herbage of the fielde -all induced a compargtively peculiar syatem. Ae daily experience regiatered facts, the truth would soon become apparent that it was not necessary to walt for the land becoming agaln productive by allowing it to lie a comparatively long period idle; that the fertilising properties conid be restored to it by the addition of manare, this being obtained from the stock of the farm-the cattle, sheep, horses, cows, \&cc. The increase, therefore, of the cereal productiveness of the land evidentiy depended apon the amount of manure piaced at the dispousl of the farmer; hence the efforts to increase the number of stock kept. At first the aystem was much aided by the spontaneous growth of large crops of grass-one of the peculiarities of our climate. The pian adopted, therefore, was to have half the farm devoted to pasture lands, and haif to the cultivation of cereals, a portion of this latter haif being kept in fallow. But the exigencies of our climate placed a limit to the number of cattle kept, and, in consequence, the amount of manure produced. For a large portion of the year the herbage is liable to be frozen or covered with snow ; the animals are, in consequence, unable to partake of it. It became necessary, therefore, if the stock was to be increased on our farms, to provide a supply of food by which to maintain the animale daring the severe weather of winter, these being housed, instead of starving in the open fields, as in the old aystem. The want being thus felt, it was in time supplied by the introduction of what are known as the green crops-artificial grasses, and roots, as tarnips, exclusively raised for the maintenance of the stock. As this system was adopted, the breadth of land under fallow, and latteriy that under the cereal crops, was diminished. In process of time the grand principie which completely revolutionised agriculture was introduced; we refer to the "Rotation of Crops," or the "Four Year Course System." This was founded upon the theory that forage piants derive the principal elements of their growth from the atmosphere giving to the soil more than they take from it, and afford in addition a large amonnt of manure when consumed by stock ; thus they contribute in two ways to the refertilisation of the soil exhanated by the cereal crops, which derived their nutriment, to a great extent, from the inorganic or mineral constituents of the soil. This system once fairly estabiished, all the other improvements of modern agricultare, such as drainage, subsoiling, irrigation, and steam cultivation, followed in comparatively quick anccession.
-Bubs's Outlines of Modern Farming.

THE TOY OF THE GIANTS OHILD.

(From the German of Chamisso.)

Burg Niedeck is a mountain in Alsace, high and atrong, Where once a noble castle stood-the giants held it long ; Ite very ruins now are lost, its site is waste and lone, And if you soek for giante there, they are all dead and gone. The giant's daughter once came forth the castle-gate before, And played with all a chlld's delight, beside her father's door; Then sauntering down the precipice, the girl did gladly go, To see, perchance, how matters went in the little world below. With few and easy steps she passed the mountain and the wood;
At length near Haolach, at the place where mankind dwelt, she atood;
And many a town and village fair, and many a field so green, Before her wondering eyes appeared, a strange and curions acene.
And as she gazed, in wonder lost, on all the scene around, She saw a peasant at her feet, a tilling of the ground;
The little creature crawled about so slowly here and there, And, lighted by the morning sun, his plongh shone bright and fair. "O pretty plaything!" cried the child, "I'll take thee home with me;"
Then with her infant hands she spread her kerchief on her knee, And cradling horse, and man, and plough, all gentiy on her arm, She bore them home with cantions steps, afraid to do them harm: She hastes with joyous steps and quick, (we know what children are,
And apying soon her father out, she shoated from afar"O father, dearest father, such a plaything I have found, I never saw so fair a one on all our moumtain ground:"
Her father sat at table then, and drank his wine so mild, And amiling with a parent's smile, he asks the happy child-
"What struggling creature hast thou brought so carefully to me? Thou leap'st for very joy, my girl ; come, open, let us see.", She opes her kerchief carefally, and gladly, you may deem; And showe her eager sire the plough, the peasant; and his team; And when she'd placed before his sight the new-found pretty toy, She clasped her hands, and screamed alond, and cried for very joy.
But-her father looked quite serionaly, and shaking slow his head,
"What hast thou brought me home, my child ? This is no toy," ho said;
" Go,
The pe
So go,
" For
Tis fro
The pe

Zooloc
science
or fou:
applied
Betwer
tlons 0
resemb
a fami
arrang classes introdt called,

The kingdo interns compo one 20 all the to the the sa appear pair ol represe of the also, monsly ontwal stance, appear
"Go, take it quickly back again, and put it down below;
The peasant is no plaything, girl-how couldst thon think him so? So go, without a sigh or mob, and do my will," he said ; "For know, without the peacant, girl, we none of us had bread ;
'Tis from the peacant's bardy stock the race of giante are;
The peasant is no plaything, child-u0, God forbid he were."
-Richardgos.

ZOOLOGY.

Zooloci, as you have already learned, is that branch of natural science which treats of animals, inciading not only the quadrupeds or four-footed beasts to which the name "animal" is generally applied, but all living creatnres as distinguished from plants. Between the many different animals which inhabit the various portions of land and water that constitute our earth, there are points of resemblance more or less striking, mrining, what we may term, a family likeness; and the zoologist, whing advantage of these, arranges all the members of the animal kingdom under certain classes, divisions, and families. My object, in this lesson, is to introduce to your notice the five great divisions, or, as they are called, sub-kingdoms of the animal world.

The first and most Important of these great divisions is the subkingdom Vertebrata. It comprises all those animals which possess an internal okeleton, of which the principal feature is a spine or backbone, composed of numerous smaller bones, called "vertebra," fitting into one another with the greatest nicety. To this spine or main colnmn all the otber bones are attached by joints of different kinds, suited to the functions which the animal bas to perform. While preserving the same general character, these bones or limbs differ greatly in appearance in different classes of animals ; thus, if we take the fore pair of limbs which nearly all the vertebrates possess, we find them represented by the arms of man, the legs of the horeo, the flappers of the whale, the wings of birds, and the fins of fishes. The tail also, which is almost or entirely wanting in some groups, is enore mously developed in others. We mnst be carefal not to mistake ontward resemblance for real relationship; a humming-bird, for instance, is not unlike a dragon-fy, and a turtle has something the appearance of a crab; yet, while the humming-bird and the turtle
aro both members of the vertebrate sub-kingdom, the dragon-fis and the crab beiong to one totalily diatiuct from it. This important division of the animal kingdom has five subdivisions or cleases, well known to you as mammals, birds, reptiles, amphibiano, and foches.

The second of the great provinces of zoology is occupied by the sub-kingdom Articulata. Under it are comprohended the numerous tribes of animals that, possessing no internal skeleton, wear their bones outside, in the shape of a hard or horny covering. Their bodies appear half-divided into segments, generally three in number; the name of the sab-kingdom, indeed, mcane jointed, and, like the word vertebrate, comes from the Latin. Each of these segments, as a rnie, bears two pairs of members, snch as wings, lege, and feelers, or antennz. No individual of this great sub-kingdom possesses less than six legs, while in some of them these neeful members may be coanted by the hundred. Crabs, spiders, insecte, and worms are some of the classes into which the Articulata are divided.

The third place on our list is reserved for the molluscs. The Mollasca are soft-bodied animals, having no skeleton either exterior or interior, bat, to protect their pulpy bodies from injary, they are generally provided with a shell. This sheil may either be all in one piece, like that of the common snail, or it may consist of two vaives opening by a hinge, as in the case of the clam or oyster. Some moliasco-the slugs, for instance-have no shell, or, at any rate, so very small a one that it serves no useful purpose, being a mere ornament upon the tip of the poor animal's 'tail. To this interesting sub-kingdom belong the voracions cuttle-fish and the beantiful nautilas, snails, and barnacles, and all those fresh and salt water animals which we designate chell-fish.

Keeping stlll to the water, we are introduced to the fourth great division, which bears the name of Radiata. The radiates are so called because, their months being in the centre of the body, all the other parts radiate from it like spokes from the nave of a wheel. None of the animals of this sub-kingdom attain a great size, yet, strange to say, islands of considerable magnitude owe their origin to nne of the smaller classes into which it is divided. This class you will at once recognise as the coral insecte, although they are not insects at all, but marine animals, possessing a name of their own, polypes, which is a Greek work, signifying "many-footed." Besides the polypes, we find in this division horny star-fishes, prickly seaurchins, transparent jelly-fish; that melt away when taken out of the water, and many other curions tribes.

Finally, we arrive at the very outskirts of the animal kingdom,
ragon-fly mportant Bes, well Rohes. 1 by the namerous ear their 6. Their number; like the pita, 2 ab 1 feelers, possesses bers may orms are
cs. The - exterior they are all in one t of two r oyster. r, at any , being a To this and the and salt
th great 8 are 80 y, all the a wheel. size, yet, origin to clase you are not heir own, Besides ckly seaut of the
kingdom,
where the minute protosoa call for a farewell notice. The name Protoson is improperiy given to an animal sub-kingdom, being Greek, while all the othern-Vertebrata, Articnlate, Mollasca, and Radiatieare Latin; it means "first animals," since the creatures comprehended under it are the loweat in the scale of animal life, and show the point at which it may be said to commence. The protozon are very amall, by far the larger number of them being microscopical; they 200 m to have no organs, and to be mere masses of floating jelly. Sponges, and animalcules linhabiting water of all kinds, are the principal members of the last of the animal sab-kingdomn.

Typical forms of the five animal sub. hingdome-

The animal kingdom is divided into

VERTEBRATE ANIMALS.

Tua Vertebratod anb-kingdom, including the claseses of mammala, (animale which suckle their young,) blrde, reptliea, batrachlans, (or amphlblans, the frog familly,) and fishes, is charactericed by the prosence, in all lta membere, of an internal akeloton componed of bone or cartliage, and forming an envelope to the nervous centrea. In the Articulased classes, there in no vestige of any such atructure; and the only mollusce (some of the catte-fish tribe) in which there is the least approach to it are sufficiently distingulshed by other characters. It is true that among many of the Radiata-such as a few of the jelly. fish tribe and a large proportion of the polyprethere is an Internal skeleton, sometimes composed of a horny or cartilaginous tisene, and sometimes possessing even a stony hardness ; but this gives equal support to the whole fabrio, and to not arranged in such a manner as to give the least degree of pecnliar protection to the nervous centres ; so that, although it may be fancifully regarded as a kind of sketch or shadowing forth in this lowest group of the plan of structure which is characteristic of the higheat, it cannot be said to have any real correspondence with it.

The animals of the Vertebinted series are, of all sentlent beinga, those whose facuilles are the most varied and the most perfect. The principle of the division of labour is carried out in them to lts highent degree; every function to be performed having its own separate organ whose operations are limited to it alone; consequently, the Vertebrata are, of all animals, those in which the diatinct organe are the mosi numerous and the most complicated. We may encounter many among the lower tribes in which the number of parts is as great or even greater; but where this is the case, most of thene parts are but repetitions of one another. It is by the variety existing In the form and structure of their several organs, and in the perfection with which each is adapted to perform ite allotted function, that the Vertebrata are chiefly characterised. It is manifest that the structure of such animals must be regarded as more elaborate than that of belngs in which the number of dissimilar parts is amall, and every one of them capable of discharging a variety of offices; and that their fanctions must be performed with more energy and compieteness, when carried into effect by instruments pecnliarly adapted to each, than when several are the result of the actions of one organ. Hence we are justified in ranking the Vertebrata as the highest group in the animal scale, independently of its being the one which
contal compe in the ono, compl be lea, ture o tion, and 0 sions
contains Mad. But we are not justifed in apenking of the saimals compooing it as mure perfectly conatructed than any others; since, in the aye of the Creator, thay muat be all equally perfect. In every romed of centres. ructure ; oh there y other sach as lyppstorny or is hard1 is not pecnilar be fan-- lowest higheet, t. The highent reparate tily, the zans are counter ts is as of thene exlating perfecion, that that the ate than lall, and es ; and d comadapted e organ. highest e which one, the adaptation botween the actions of lis several parts must bo complote ; or it could not malintain lite existence. And it should not be less wonderfal to us to meet in the zoophyte with a aimple strueture capable of performing all the fanctions of abeorption, acoimilation, respiration, and secretion, than to contemplate the nameroas and elaborately constructed organs by which these several operttions are respectively performed in the Vertebrated animal.
-Carpaytaz.

Sub-Ningdom Vertebrata.

1. Mammale ase : a. Two-handed-Man; b. Pour-handed-Monkeys; c. Wing-hundod-Hate; d Inceet-ating-Molos, de.; e. Meeb-enting-beanta of prey; f. Finh-like-Whales, \&o. ; η. Onawing-Squirrel, Hat, do.; h. Toothlona-Sloth, \&e. ; 6. Ruminating-Ox, Sheop, deo.j k. Thick-okinned -Elophant, Horie, Pig, de ; l. Pouched-Oponum, Kangarco, do.
2. Birds are: a. Biris of proy-Eagle, Owl, de. ; b. Perchors-song-birds, to.; c. Climbers-Woolpeoker, Purrot, 太0.; d. Scratchern-Fowle; e. Waders -Bittern, do ; f. Swimmern-Geone, do. ; g. Runnen-Ontrich, de.
3. Reptilee are: ar Turtlew, de. ; b. Orocodilee ; C. Lisarda ; d. Serpents.
4. Batrmohians are: a. Proge, do. $;$ b. Salamanders, \&o. $; c$. Slirons ; d. and e. Footless and Fiohlike Batraohiann.
5. Finhee are : a. Enamellod-Eturgeona, de.; b. Oartilaginown-Sharky, de.; e. Bpiay-Peroh, ka. ; d. Soft-inned-Salmor, \&e.

NATURE IN MOTION.

Mamolalia.

The Mammalia do not roam and rove so much as the lighter birds and favoured fishes; they are generally boand to certain localictes, and, at all evente, chained to the soil. Suill we find among them also traveliers, now driven forth by hanger, and now by an overwhelming number of beaste of prey, to seek new pantures and new dwelling-places. Others, agaln, follow man in his migrations over the globe, and thus apread from country to coantry. To the former belong the horses which now romm wild on the plains of Sonth America, and trayel at times thonannds of milea. The wild asses, also, in the wilderness, "which atand up in the high places and sunf the wind like dragons," travel in bands of two or three hundred, and leave, in winter, the troples for a atill warmer region in the sonth of Arrica. They are called "the Bughman's harvest," for
the wild Bushman hants and consumes what has been left by the royal lion and the hungry valtare, who follow them in their march, and feast upon them for a season. Gazelles and antelopes migrat9 in like manner; and even hage elephants are seen wandering in large herds over the boundless plains of Africa. The shaggy baffalo roams in vast numbers over the prairies of the Δ merican continent, and migrates at regalar intervals from the north to the sonth, and from the plain to the mountain. Salt springs are with them the great centre of attraction; but generally their movements seem to be regulated by the state of their pastures. As soon as the fire has spread over a prairle, and is succeeded by a fine growth of tender grass, immense herds are sure to appear. How they discover that their table is spread we know not ; it has been surmised that stragglers from the main body, who have wandered away when food becume scarce, may first notice the new growth, and by some mysterious means communicate the good news to their hangry brethren. Monkeys also wander from land to land, when driven by hanger or fierce enemies; they have even been saspected of passing through a tunnel under the Straits of Gibraltar, from Africa to Europe. Their mode of crossing rivers is a beantifal evidence of their ingenuity and instinct. A powerfal male seizes a branch that projects over the banks of the stream, and suspends himself by his prehensile tail; another takes hold of him, and so on until they have a row as long as the river is wide. Then they begin to swing the living chain, and continue until the impetus is powerful enough to enable the last one to take hold of a tree on the opposite shore. Over this strange bridge the whole host passes safely; as soon as they are across, the first monkey lets go his hold, the chain owings again, and so they all safely get over large rivers.

The so-called domestic animals travel exclusively by the agency of man and in his company. It is thus that the horse, a native of the rude steppes of Central Asia, which was not known in America before the arrival of the Spaniards, now roams over it in vast herds from Hudson Bay to Cape Horn. To man we owe it that the goat climbs our rocky mountains, and white, woolly sheep graze on scanty monntain-sides, whilst the heavier, slower cattle fatten on rich low gronnds, and remind us, in the far backwoods, by the aweet harmonies of their bells, of the neighbourhood of men. But here, also, the weeds have come with the good plants." Thas the domestic rat, a native of the Old World, was carried in ships te the Cape, to Mauritins and Boarbon, to the Antilles and Bermuda. An Antwerp ship brought them in 1544 first to America, where they astonished
by the march, migrats ering in buffalo intinent, ath, and hem the seem to fire has f tender ver that tt stragon food ae mysrethren. anger or rough a Their aity and ver the tie tail ; as long 3 chain, the last strange ross, the so they ative of America st herds the goat 1 scanty rich low set harre, also, stic rat, Jape, to Intwerp conished
the good Peruvians so much that they obtained with them the name of "things that came out of the sea." Now they are rarer in Europe than in America.

The importance of the useful domestic animals cannot be overrated. The very existence of man is bound up with the horse, the ox, and the sheep. Brazil lives almost exclusively by means of her horses and her cattle; and Anstralia has developed her resources and progressed in civilisatiou only since sheep have been iatroduced. It is strange, surely, that like all the best gifts in the vegetable world, (the cerealla,) so these domestic animals also are presents which the East has sent to the West, and for which no return has been made. Here, aiso, an invisible but insurmountable barrier seems to prevent such an exchange.
-Putnam's Magazine.

FROM "WINDSOR FOREST."

See from the brake the whirring pheasant springs, And monnts exnlting on trinmphant wings: Short is his joy, he feels the flery wonnd, Flatters in blood, and, panting, beats the ground. Ah! what avail his glossy, varying dyes, His parple crest, and scarlet-circled eyes, The vivid green his shining plames anfold, His painted wings, and breast that flames with gold?

Nor yet, when moist Arcturus clouds the sky, The woods and fields their pleasing toils deny.
To plains with well-breathed beagles we repair And trace the mazes of the circling hare: (Beasts, urged by us, their fellow beasts pursue, And learn of man each other to undo,
With slaughtering gans the unwearied fowler roves,
When frosts have whitened all the naked groves;
Where doves in flocks the leafless trees o'ershade,
And lonely woodcocks hannt the watery glade,
He lifts the tabe and levele with his eye;
Straight a short thander breaks the frozen sky:
Oft, as in airy rings they skim the heath,
The clamorous lapwings feel the leaden death :

Oft as the mounting larks their notes prepare, They fall and leave their little lives in air.

In genial spring beneath the quivering shade, Where cooling vapours breathe along the mead, The patient fisher takes his silent stand, Intent, his angle trembling in his hand;
With looks unmoved he hopes the scaly breed And eyes the dancing cork and bending reed. Our plenteons streams a varions race supply, The bright-eyed perch with fins of Tyrian dye, The silver eel in shining volumes roll'd, The yellow carp in scales bedropp'd with gold, Swift tronts diversified with crimson stains, And pikes, the tyrants of the watery plains.

Now Cancer glows with Phoebus' fiery car:
The youth rash eager to the silvan war,
Swarm o'er the lawns, the forest walks surround,
Rouse the fleet hart and cheer the opening hound.
The impatient courser pants in every vein,
And, pawing, seems to beat the distant plain :
Hills, vaies, and floods appear already crossed, .
And ere he starts, a thousand stops are lost.
See the bold youth strain up the threatening steep, Rush through the thickets, down the valleys sweep, Hang o'er their coursers' heads with eager speed, And earth rolls back beneath the flying steed. Let old Arcadia boast her ample plain, The immortal huntress and her virgin train; Nor envy, Windsor, since thy shades have seen As bright a goddess and as chaste a queen; Whose care, like hers, protecte the silvan reign, The earth's fair light, and empress of the main.

AN ELEPHANT KUNT.

We entered a most beantiful valley, abounding in large game. Finding a buffalo lying down, I went to secure him for our food. Three balls did not kill him, and; as he turned round as if for a
charge them strange turned that th be enti and, to men patche an abn

On
phant, were 0 trees, noise when about dam w at the appear me thi what s the val ing. enemy about and 8 abont in ele her tal of her into t attrac to kill The g ears a them. the m dange and a to the ing ;
charge, we ran for the shelter of some rocks. Before we gained them we found that three elephants, probably attracted by the strange noise, had cut off our retreat on that side ; they, however, turned short off, and allowed us to gain the rocks. We then saw that the buffalo was moving off quite briskly, and, in order not to be entirely baulked, I tried a long shot at the last of the elephants, and, to the great joy of my people, broke his fore leg. The young men soon brought him to a stand, and one shot in the brain despatched him. I was rigit glad to see the joy manifested at auch an abundant supply of meat.

On the following day, while my men were outting ap the elephant, great numbers of the villagers came to enjoy the feast. We were on the side of a fine green valiey, studded here and there with trees, and traversed by numerous rivalets. I had retired from the noise to take an observation among some rocks of laminated grit, when I beheld an elephant and her calf at the end of the valley, aboat two miles distant. The calf was rolling in the mad, and the dam was standing fanning herself with her great ears. As I looked at them through my glass, I saw a long string of my own men appearing on the other side of them, and Sekwebu came and told me that these had gone off saying, "Oar father will see to day what sort of men he has got." I then went higher ap the side of the valley, in order to have a distinct view of their mode of hunting. The goodly beast, totally unconscious of the approach of an enemy, stood for some time suckling her young one, which seemed about two years old ; they then went into a pit containing mad, and smeared themselves all over with it, the little one frisking about his dam, flapping his ears and tossing his trunk incessantly, in elephantine fashion. She kept flapping her ears and wagging her tail as if in the height of enjoyment. Then began the piping of her enemies, which was performed by blowing into a tube, or into the closed hands, as boys do into a key. They called out to attract the animal's attention. "O chief! chief! we have come to kill you. O chief! chief! many more will die besides you. The gods have said it," \&c., \&c. Both animals expanded their ears and listened, then left their bath as the crowd rushed toward them. The little one ran toward the end of the valley, but, seeing the men there, retarned to his dam. She placed herself on the danger side of her calf, and passed her proboscis over it again and again, as if to assure it of safety. She frequently looked back to the men, who kept up an incessant shouting, singing, and piping; then looked at her young one and ran after it sometimes
sideways, as If her foelinge were divided between anaxiety to protret her offopring, and desire to panish the temerity of her perscoutors. The men kept about a hundred yards in her rear, and some distance from her flanks, and continued thus until she was obliged to cross a rivulet. The time spent in descending and getting up the opposite bank allowed of their coming up to the edge, and discharging their apears at about twenty yarde' distance. After the first discharge she appeared with her sides red with blood, and, beginning to flee for ber own life, seemed to think no more of her young.

I had previously sent off Sekwebu with orders to spare the call. It ran very fast, but neither young nor old ever enter into a gallop ; their quickest pace is only a sharp waik. Before Sekwebu could reach them, the calf had taken refuge in the water, and was killed. The pece of the dam gradually became slower. She turned with a shriek of rage, and made a farious charge back among the men. They vaniehed at right angles to her course, or sideways; and as she ran straight on, she went through the whole party without coming near any one, except a man who wore a piece of cloth on bie shoulders. Bright clothing is always dangerous in these cases. She charged three or four times, and, except in the first instance, never went farther than a hundred yards. She often stood after she had crossed a rivulet, and faced the men only to receive more spears. It was by this process of apearing and loss of blood that the was killed; for at last, making a short charge, she ataggered round, and sank down dead in a kneeling postare. I turued from the spectacle of the destruction of noble animals, which might be made so usefol in Δ frica, with a feeling of sickness; and it was not relieved by the recolieotion that the ivory was mine, though such was the case. I regretted to see them killed, and more especially the young one, the meat not being at all necessary at that time; but it is right to add that I did not feel sick when my own blood was up the day before.
-Dr Livingstone.

In the things The h smalle coveri est per countr which esteem ten, tl skin, ployod posed, hair fr in a a presse to coh is chie beaver

Wo and m unctuo The w The fif the dir cleana ness. of irob them, ner. less to signed

The
varion of bet
factur
canno
a fipe
to proper perear, and she was ing and b to the distance. red with think no

CLOTHING FROX ANIMALS-FUR, WOOL, SILK, LEATHER.

Is the hide of an animal, the hair and skin are two entirely distinct things, and mast be considered separately as materials for clothing. The hair of quadrupeds differs mach in fineness. It is chiefly the smaller species which are provided with those soft, thick, glossy coverings that bear the name of fur, and they are found in the greatest perfection where they are most wanted, that is, in the coldest countries. Thoy form indeed the riches of those dreary waistes which produce nothing else for human use. The animals most esteemed for their far are of the weasel kind: the giatton, the marten, the sable, and the ermine. For is nsed either growing to the skin, or separated from it. In its detached state, it is usuaily employod in making a stuff called fell. The scales of hair are so disposed, that they make no resistance to the finger drawn along the hair from the root to the point, but cause a roughness and resistance in a contrary direction. From this property, hairs, when beaten or pressed together, are disposed to twist round each other, and thns to cohere into a mass. It is in the maunfacture of hats that felting is chiefiy practised; and the far used for this parpose is that of the beaver, the rabbit, and the hare.

Wool differs from common hair in being more soft and aupple, and more disposed to curl. These properties it owes to a degree of nnctuosity, or greasiness, which is with diffleclty separated from it. The whole wool, as taken from the animal's body, is called a fleece. The first operation this andergoes is that of picking and sorting Into the different kinds of wool of which it is composed. These are next cieansed from marks and stains, and freed from their offensive greasiness. The wool is then delivered to the wool-comber, who, by means of iron-spiked combs, draws out the fibres, smooths and straightens them, separates the refuse, and brings it into a state fit for the spinner. The spinner forms the wool into threads, which are more or less twisted, according to the manufacture for which they are designed; the more twisted forming worsted, the looser yarn.

The kinds of stuffis made wholly or partly of wool are extremely various; and Great Britain produces more of them, and in general of better quality, than any other country. A more perfect manu-' facture than our broad cloths, with respect to beauty and ntility, cannot oasily be conceived. The threads in it are so concealed by a fime nap or down raised on the surface, and curionsly mooothed
and glossed, that it looke more like a rich textare of naturo's forming, than the work of the weaver. Wool, in common with other animal substances, takes a dye better than any vegetabie matters. Our cloths are therefore made of every bue that can be desired; but, in order to fit them for the dyer, they are first freed from all greasiness and fouiness by the operation of fulling, in which the cloths are beaten by heuvy mallets as they lie in water, with which a quantity of faller's earth has been mixed. This earth unites with the greasy matter, and renders it solyble in water; so that, by continually supplying fresh atreams while the beating is going on, all the foulness is at length carried off. The operation of fulling has the farther effect of thickening the cloth, and rendering it more firm and compact, by mixing the threads with each other, something in the manner of a felt. The cloths of inferior fineness are mostly called narrow cloths. Some of those used for greatconty, by their substance and shagginess, resemble the original feece, or rather the fur of a bear, and render unnecessary the use of furred garments. Indeed, with the single material of wool, art has been able much better to suit the different wants of man in his clothing, than can be done by all the productions of nature. What could be so comfortable for our beds as blankets? What so warm and at the same time so light, for pained and palsied limbs, as flannel? The several kinds of the worsted manufacture are excelient for that elasticity which makes them sit close to a part without impeding its motions. This quality is particularly observable in stockings made of worsted. Even the thinnest of the woollen fabrics possess a considerable degree of warmth, as appears in shawls. The real shawls are made of the fine wool of Thibet, in the eastern part of Asia; but they have been well imitated by the product of some of our English looms. A very different article made of wool, yet equally appropriated to luxary; is carpeting. Upon the whole, Dyer's praise of wool seems to have a just fonndation :-
" Still shall o'er all prevail the shepherd's stores.
For numerous unes known : none yield such warmth,
Such beauteous huen receive, so long endure :
So pliant to the loom, so varions,- -none."

Men must have been far advanced in the observation of nature before they found out a material for clothing in the labours of a caterpillar. China appeare to have been the first country to make use of the web span by the silhworm. This creature, which, in its perfect atate, is a kind of moth, is hatched from the egg, in the form
of a cate a chrysal voracioùs different but is en the parp hardening matarity it is to helpless

The varying singie th impenetr ravelled, the com makes it a golden and othe the coco Bat, in the weat the rear warm b larly fed

mOGS-COCOON-CHRYBALIS-CATERPILLAR.
of a caterpillar, and passes from that state successively to those of a chrysalis, and of a wiuged insect. While a caterpillar, it eats voracioùly, its proper and favourite food being the leaves of the different species of mulberry. By this diet it is not only nourished, but is enabled to lay ap, in receptacles within its body formed for the purpose, a kind of transparent glae, which has the property of hardening as soon as it comes into the air. When arrived at full maturity, it spins itself a web ont of this gluey matter, within which it is to lie safe and concealed daring its transformation into the helpless and motionless state of a chrysalis.

The silkworm's web is an oval ball, called a cocoon, of a hue varying from light straw colour to full yellow, and consisting of a single thread wound round and round, so as to make a close and impenetrable covering. The thread is so very fine, that, when unravelled, it has been measured to 700 or 1000 feet, all rolled within the compass of a pigeon's egg. In a state of nature, the silkworm makes its cocoon upon the malberry tree itself, where it shines like a golden fruit among the leaves; and in the sonthern parts of China, and other warm conntries of the East, it is still suffered to do so, the cocoons being gathered from the trees without farther tronble. But, in even the warmest climates of Europe, the inclemencies of the weather in spring, when the worms are hatched, will not permit the rearing them in the open air. They are kept, therefore, in warm but airy rooms, constructed for the parpose; and are regularly fed with mulberry-leaves till the period of their full growth.

As thls tree is one of the latest in leafing, silkworms cannot advantageousily be reared in cold climates. Daring their growth, they several times shed their akins, and many die onder this operation. At length they become so full of the sillky matter, that it gives them a yellowioh tinge, and they cease to eat. Twigs are then presented to them apon littie atnges of wicker-work, on which they Immediately begin to form their webs. When the cocoons are finished, a small number, reserved for breeding, are suffered to eat their way out in their butterfly state; the rest are killed in the chrysalis state, by exposing the cocoons to the heat of an oven.

The next business is to wind off the silk. Ater separating a downy matter from the outside of the cocoons, called floss, they are thrown into warm water; and the euds of the threads being found, several are joined together, and wound in a single one, apon a reel. This is the silk in its natural state, called raw silk. It next undergoes some operations to cleanse and render it more sapple; after which it is made into what is called organzine, or thrown silh, being twisted into thread of such different degrees of finegess as are wanted in the different manufactures. This is done in the large way by mills of carions construction, which turn at once a vast number of spindles, and perform at the same time the processes of unwinding, twisting, reeling, \&c. The largest and most complicated machine for this parpose, in Englaud, is at Derby, the model of which was clandestinely brought from Italy, where all the branches of the ailk manafacture have long flourished.

The excellence of allk, as a material for clothing, consists in its strength, lightness, lustre, and readiness in taking dyes. When little known in Europe, it was highly prized for its rarity ; it is uaw esteemed for its real beanty and other valuable qualities. As it can never be produced in great abundance, it must always be a dear article of clothing. The fabrics of sillk are very numerons, and almost all devoted to the parposes of show and laxnry. In thickness they vary from the finest gauze to velvet, the pile of which renders it as close and warm as a far. Some of the most beantifal of the silk manufactures are the glossy satin ; the elegant damask, of which the flowers are of the same hne with the piece, and only show themselves from the difference of shade; the rich brocade, in which flowers of natural colours, or of gold and silver thread, are interwoven ; and the infinitely varied ribands. It is also a common material for stockings, gloves, buttons, strings, \&c., in which its durability almost compensates for its dearness. Much is used for .the parpose of sewing, no other thread approaching it in strength.
silk, in : that gold wherever of silt is down abo raw allk serviceabl is reckone

Whilat material however, nate it wl at the sai When th highest \mathbf{a} The prin tanning.

The hi into a pil lying a d called a l is then p which it and thick upon the the masi (pigeons' that thic is again ning liqu dered oal other pal the thord decay or bibed en hang apo wood wi and kept a covere it is the process

From

Silik, in short, bears the same superiority among clothing materiale that gold does among metalo; it gives an appearance of riohnese wherever it is employed, and confers a real value. Even the reface of ailk is carefully collected, and serves for meeful parpoces. The down about the cocoons, and the waste separated in the operations raw silk nndergoes, are span into a conrser thread, of which vory serviceable atockinge are made; and the interlor part of the cocoon is reckoned to be the best material for making artificial flowers.

Whises the covering of the skins of animala thus affords a valuabie material for clothing, the skin itwelf is not leas nseful. It requires, however, greater previous preparation. It is necessary to impregnate it with a matter capable of preserving it from putrefaction, and at the same time to keep it in a state of fexibility and sappleness. When this is effected, skin becomes leather,--a substance of the highest utility, as well in olothing as for numerous other purposen. The principal operation in the preparation of leather is called tanning.

The hide, taken off with due care by the akinner, is firat throwa into a pit with water alone, in order to free it from dirt. After lying a day or two, it is placed upon a solid half-oylinder of stone, called a beam, where it is cleared of any adhering fat or flesh. It is then put into a pit containing a mixture of lime and water, in which it is kept about a fortnight. The intent of this is to swell and thicken the hide, and to loosen the hair. Being now replaced upon the beam, the hair is scaped off, and it is next committed to the mastering-pit. The contents of this are some animal dung (pigeons' is preferred) and water; and its operation is to redace that thickening which the lime had given. After this is effected, it is again cleansed on the beam, and is then put into the proper tanning liquor, called the ooze, which is an infusion of coarsely-powdered oak-bark in water. The bark of the oak, as woll as every other part of it, abounds in a atrongly astringent matter ; and it is the thorongh impregnation with this which preserves the hide from decay or putrefaction. When at length it is thought to have imbibed enough of the astringent matter, the hide is taken ont and hang upon a pole to drain, after which it is put upon a piece of wood with a convex surface, called a horse, on which it is stretched and kept smooth and even. Finally, it is taken to the drying-house, a covered building with apertures for the free admission of air ; and it is there hang ap till it becomes completely dry; and thus the process of tanning is finished.

From the tanner the hide or skin is consigned to the currier,
whose art is farther necossary in order to make it perfect leather. Ho arat coaks it thoroughly in water, and then places it upon a boam, made of hard wood, with one side sioping and polished. He lays it with the grain-side, or that on which the hair grew, in wards, and the flesh-side outwards. He then, with a broad two-edged knife, having a handie at each end, shaves or pares the hide on the latter alde, till all its inequalities are removed, and it is redaced to the degree of thinness required for nse. After this operation it is again pat into water, then scoured and rubbed with a polished stone. It is next besmeared with a kind of oil procured from sheep or deer-skin, or made by boiling train-oll and tallow together, with a view to soften or suppie it. A great part of its moisture is then ovaporated by hanging it up In a dryiug house for some days; and it is farther dried by exposure to the sun, or to the heat of a atove. It is then differently treated, according as it is meant to be blacked or stained, or not. Without entering into minute particnlars, it is enough to observe, that the astringent principle with which the leathor has been impregnated in the tanning renders nothing necossary except the application of a solution of vitriol of iron, at once to atrike a good black. This is laid on with a brush, generally on the grain-side of the leather; and it afterwards undergoen the operation of giving it that roughness which is called the grain. This is performed by rubbing it in all directions with a fluted board. When leather is blackened on the flesh-side, the colour is given by a mixture of lamplack and oil.

It is in the manner above described that leather is prepared for the making of shoes and boots, which is one of the principal ases of this material; and certainly no other sabstance conld so well unite strength and suppleness with the property of keeping out water. The hides principally used in the shoe-manufacture are those of neatcattle; or the ox-kind. For the more delicate work, the skins of the goat, dog, seal, and some other animals, are employed.

ther. on He ards, dged n the ed to it is ished from ther, tre is lay ; of a to be ticnvich thing n, at raliy I the rain. oard. in by 1 for es of anite ater. zeatf the

THE PIED PIPER OF HAMELIN.

1.

Haxelin town's in Brunawick, By famons Hanover city ; The river Weser, deep and wide, Washes its wall on the sonthern side, A pleasanter spot yon never spled; Bat when begins my ditty, Almost five hundred years ago, To see the townsfolk suffer so, From vermin, was a plty. Rata!
11.

They fought the doge, and killed the cats, And bit the babies in the cradles, And ate the cheeses out of the vats, And licked the soup from the cook's own ladies, Split open the kegs of salted sprats, Made nests inside men's Sunday liats, And even spoiled the women's chats, By drowning their speaking With shrieking and squeaking, In fifty different sharps and flats.

ili.

At last the people, in a body, To the Town Hall came flocking :
"'Tis clear," cried they, "our Mayor's a noddy; And as for our corporation, -shocking
To think we bay gowns lined with ermine For dolts that don't or won't determine
What's best to rid us of our vermin!
You hope, because you're old and obese,
To find in the farry civic robe ease 1
Ronse up, sirs I give your brains a racking,
To find the remedy we're lacking ;
Or, sure as fate, we'll send you packing!"
At this the Mayor and Corporation
Quaked with a mighty consternation.

IV.

An hour they ant in council.
As length the Mayor broke ailonce:
"For a gullder I'd my ermine gown soll; I wish I were a mile hencel
It's easy to bld one rack ono's brain.
I'm sure my poor head aches again, I've scratched it so, and all in vais. Oh for a trap, a trap, a trapl" Just as he maid thla, what should hap, At the chamber-door, but a gentle tap?
"Bless us," cried the Mayor, "what's that?"
(With the Corporation as be sat,
Looking littie, though wondrons fat;
Nor brighter was hls eye, nor moister Thau a too-long-opened oyater,
Save when at noon his paanch grew mutinous, For a plate of turtio green and gintinous,) "Only a acraping of shoes on the mat?
Anything like the sound of a rat
Makes my heart go plt-m-pat l"

∇.

"Come In I" the Mayor cried, looking Digger :
And in did come the strangest figure.
His queer long coat from heel to head, Was haif of yellow, and half of red; And he himself was tall and thin, With sharp blue eyes, each ilke a pin ; And light loose hair, yet swarthy akin; No tuft on cheek, nor beard on chin, But lips where smiles went out and in. There was no guessing his kith and hin! And nobody could enough admire The tall man and his quaint attire. Quoth one: "It's as my great-grandaire, Starting up at the trump of doom'y tone, Had walked this way from his painted tombetone." :
VI.

He advanced to the council table: And, "Please your honoura," said he, "I'm able,

By meane of a meeret charm, to draw All creatures living benenth the oun, That croep, or awlm, of fly, or run,
Aftor mo, so an you never maw!
And I chlefy use my charm
On creatures that do people harm :
The molo, and toad, and newt, and viper;
And people call me the Pied Piper."
(And here they noticed round his neok
A scarf of red and yellow stripe,
To match with his cont of the seif-same check;
And at the scarf's end hung a plpe.
And his fingers, they noticed, were over atraying,
As if impatient to be playlog
Upon this pipe, as low it dangled
Over his vesture so old-fangled.)
"Yet," sald be, "poor piper as I am, In Tartary I freed the Cham,
Last Jane, from his huge swarms of gnats ;
I eased in Asia the Nizam
Of a monstrous brood of vamplire bats;
And as for what your braln bewildera,
If I can rid your town of rats,
Will yoú give me a thonsand gullders?"
"One? fity thousandl"-was the exclamation
Of the antoniohed Mayor and Corporation.
vir.
Into the street the Piper stept,
Smiling first a little amile,
As if he knew what magic slept
In his quiet pipe the while ;

- Then, like a musical adept,

To blow the pipe his lips he wrinkled,
And green and blue his sharp eyes twinkled,
Like a candle-ffame where salt is aprinkled;
And ere three shrill notes the pipe attered,
You heard as if an army muttered;
And the mattering grew to grumbling;
And the grumbling grew to a mighty rumbling ;
And out of the houses the rats came tumbling.

Great rats, small rats, lean rats, brawny rats, Brown rats, black rats, gray rats, tawny rats, Grave old plodders, gay young friskers, Fathers, mothers, uncies, cousins, Cocking tails and pricking whiskers;

Families by tens and dozens, Brothers, sisters, husbands, wives, Followed the Piper for their lives. From street to street he piped advancing, And step for step they followed dancing, Until they came to the river Weser,

Wherein all plunged and perished;
Save one, who, stont as Julius Oæsar,
Swam across, and lived to carry (As he the manuscript he cherished)

To Rat-land home his commentary, Which was, "At the first shrill notes of the pipe, I heard a sound as of scraping tripe, And patting apples, wondrous ripe, Into a cider-press's gripe:
And a moving away of pickle-tab-boards, And a leaving ajar of conserve cupboards, And a drawing the corks of train-oil flasks, And a breaking the hoops of butter casks; And it seemed as if a voice
(Sweeter far than by harp or by psaltery Is breathed) called out, 0 rats, rejoice!

The world is grown to one vast drysaltery!
So manch on, cranch on, take your nancion, Breakfast, sapper, dinner, lancheon!
And just as a bulky sugar puncheon, All ready staved, like a great sun shone Glorious, scarce an inch before me, Just as, methought, it said, ' Come, bore me!' I found the Weser rolling o'er me."
vir.
You should have heard the Hamelin people Ringing the bells till they rock'd the steeple:
"Go," cried the Mayor, " and get long poles!
Poke out the nests, and block up the holes!

Consult with carpenters and bullders, And leave in our town not even a trace Of the rats!" When suddenly ap the face Of the Piper.perked in the market-place, With a "First, if you please, my thousand guilders !"

Ix.

A thousand guilders! The Mayor looked blue;
So did the Corporation, too.
For Council dinners made rare havoc
With claret, moselle, vin-de-grave, hock ;
And half the money would replenish
Their cellar's biggest butt with Rhenish. To pay this sum to a wandering fellow With a gipsy coat of red and yellow !
"Beside," quoth the Mayor, with a knowing wink,
"Our business was done at the river's brink;
We saw with our eyes the vermin sink, And what's dead can't come to life, I think. So, friend, we 're not the folks to shrink From the duty of giving you something to drink, And a matter of money to put in your poke;
But as for the guilders, what we spoke Of them, as you very well know, was in joke. Besides our losses have made us thrifty: A thousand guilders! Come, take fifty!"

x.

The Piper's face fell, and he cried, "No trifling! I can't wait, beside! I've promised to visit by dinner-time Bagdad; and accept the prime Of the head-cook's pottage, all he's rich in, For having left, in the Caliph's kitchen, Of a nest of scorpions no survivor. With him I proved no bargain driverWith you, don't think I 'll bate a stiver! And folks who put me in a passion May find me pipe to another fashion."
XI.
"How !" cried the Mayor, "d'ye thilok I'll brook Being worse treated than a cook? Insalted by a lazy ribald, With idle pipe and vesture piebald? You threaten us, fellow? Do your worstBlow your pipe there till you barst!"

xII.

Once more he stepped into the street; And to his lips again
Laid his long pipe of smooth straight cane; And ere he blew three notes (such sweet, Soft notes as yet masician's cunning Never gave the enraptured air)
There was a rastling, that seemed like a bustling Of merry crowds justling, at pitching and hastling ; Small feet were pattering, wooden shoes clattering, Little hands clapping, and little tongues chattering, And like fowls in a farm-yard when barley is scattering, Out came the children ranning. All the little boys and girls, With rosy cheeks and flaxen curls, And sparkling eyes and teeth like'pearls, Tripping and skipping, ran merrily after The wonderfal masic, with shouting and langhter.

xIII.

The Mayor was dumb, and the Council stood As if they were changed into biocks of wood, Unable to move a step, or cry To the children merrily skipping by; And conld only follow with the eye That joyous crowd at the Piper's back. But how the Mayor was on the rack, And the wretched Council's bosoms beat, As the Piper turned from the High Street To where the Weser rolled its waters Right in the way of their sons and daughters! However he turned from south to west, And to Koppelberg hill his steps addrensed,

And after him the children pressed: Great was the joy in every breast.
"He never can cross that mighty top!
He's forced to let the piping drop, And we shall see our children stop!"
When, lo! as they reached the mountain's side, A wondrous portal opened wide, As if a cavern was suddenly hollowed! And the Piper advanced, and the children followed. And when all were in to the very last, The door in the mountain-side shat fast. Did I say all? Nol one was lame, And could not dance the whole of the way; And in after years, if you would blame His sadness, be was used to say:
"It's dull in our town since my playmates left;
I can't forget that I'm bereft
Of all the pieasant sights they see,
Which the Piper also promised me;
For he led us, he said, to a joyous land, Joining the town, and just at hand, Where waters gushed and fruit-trees grew, And flowers put forth a fairer hue, And everything was strange and new: The sparrows were brighter than peacocks here, And their dogs outran our fallow-deer, And honey-bees had lost their stings, And horses were born with eagles' wings; And just as I became assured My lame foot would be speedily cured, The music stopped, and 1 stood still, And fonnd myself ontside the hill, Left alone against my will,

- To go on limping as before, And never hear of that country more!"
XIV.

Alas, alas! for Hamelin!
There came into many a burgher's pate A. text which says that heaven's gate Opes to the rich at as easy rate

As the needle's eye takes a camel in I The Mayor sent east, west, north, and south, To offer the Piper by word or month,

Wherever it was men's lot to find him,
Silver and gold to his heart's content,
If he'd only return the way he went,
And bring the children behind him.
But when they saw 'twas a lost endeavour, And piper and dancers were gone for ever, They made a decree that lawyers never

Should think their records dated duly,
If, after the day of the month and year,
These words did not as well appear:
" And so long after what happened here
On the twenty-second of July,
Thirteen bundred and seventy-six:"
And the better in memory to fix
The place of the children's last retreat, They called it the Pied Piper's Street-
Where any one playing on pipe or tabor
Was sure for the future to lose his labour.
Nor suffered they hostelry or tavern
To shock with mirth a street so solemn;
But opposite the place of the cavern
They wrote the story on a column;
Aud on the great charch window painted The same to make the world acquainted
How their children were stolen away;
And there it stands to this very day.
And I mast not omit to say
That in. Transylvania there's a tribe
Of alien people, that ascribe
The outlandish ways and dress, On which their neighbours lay such stress,
To their fathers and mothers having risen
Out of some subterraneons prison,
Into which they were trepanned
Long time ago, in a mighty band,
Out of Hamelin town in Brunswick land, But how or why they don't understand.

One of tit
River in 1
case, a po
and wher
of forty m three mile to the per nearly twi

Few pit with hors lished enc of Russels wards of were to b placking sitting in feet in di from the tallest had Everythin part of t period of receive th phar-oth the rest pigeon ha gazing on tall trees.

Sudden
xv.

So, Willy, let you and me be wipers
Of scores out with all men-especialiy pipers ;
And whether they pipe us free from rats or from mice, If we 've promised them aught, let us kcep our promise.
-Robert Browndra.

THE PASSENGER PIGEON.

One of their curions roosting places on the banks of the Green River in Kentucky I repeatedly visited. It was, as is always the case, a portion of the forest where the trees are of great magnitude, and where there was little anderwood. I rode through it apwards of forty miles, and found its average breadth to be rather more than three miles. My first view of it was about a fortnight sabsequent to the period when they had made choice of it, and I arrived there nearly two hours before sunset.

Few pigeons were then to be seen, bat a great number of persons with horses and waggons, guns and ammunition, had aiready established encampments on the borders. Two farmers from the vicinity of Russelsillle, distant more than a handred miles, had driven upwards of three hundred hogs to be fattened on the pigeons that were to be slaughtered. Here and there the people employed in placking and salting what had already been procured, were seen sitting in the midst of large piles of these birds. Many trees, two feet in diameter I observed, were broken off at no great distance from the ground; and the branches of many of the largest and tallest had given was, as if the forest bad been swept by a tornado. Everything proved to me that the number of birds resorting to this part of the forest must be immense beyond conception. As the period of their arrival approached, their foes anxiously prepared to receive them; some were furnished with iron pots containing sul-phur-others with torches of pine-knots,-many with poles, and the rest with guns. The sun was lost to our view, yet not a pigeon had arrived. Everything was ready, and all eyes were gazing on the clear sky which appeared in glimpses amidst the tall trees.

Suddenly there burst forth a general cry, "Here they come."

The nolse which they made, though yet distant, reminded me of a hard galo at sea, passing through the rigging of a close reefed vessel. As the birds arrived and passed over me, I felt a carrent of air that surprised me. Thousands were soon knocked down by the pole-men ; the birds continued to pour in; the fires were lighted, and a most magnificent as well as wonderful and almost terrifying sight presented itself. The pigeons, arriving by thousanda, allghted everywhere, one above another, until solid masses as large as hogsheads were formed on the branches all round. Here and there the perches gave way with a crash, and, falling on the ground, destroyed hundreds of the birds beneath, forcing down the dense groups with which every stick was loaded.

It was a scene of uproar and confusion; no one dared venture within the line of devastation ; the hogs had been penned np in due time, the picking np of the dead and wounded being lef for next morning's employment. The plgeons were constantly coming, and it was past midnight before I perceived a decrease in the number of those that arrived. Toward the approach of day, the noise in some measure subsided; long before objects were distinguishable, the pigeons began to move off in a direction quite different from that in which they had arrived the evening before, and at sunrise all that were able to fly had disappeared. The howlings of the wolves now reached our ears, and the foxes, lynxes, congars, bears, racoons, and opossums were seen sneaking off, whilst eagles and hawks of different species, accompanied by a crowd of valtares, came to supplant them, and e.joy their share of the spoill.
-Audubon.

TO A WATERFOWL.

Whither, midst falling dew, While glow the heavens with the last steps of day, Far through their rosy depths dost thou pursue

Thy solitary way?
Vainly the fowler's eye
Might mark thy distant flight to do thee wrong, As, darkly painted on the crimson aky,

Thy figure floats along.

Seek'at thou the plashy brink Of weedy lake, or marye of river wide, Or where the rocking biliows rise and sink

On the chafed ocean-aide?
There is a power whose care Teaches thy way along that pathiess coast,The desert and llilimitable alir, -

Lone wandering, but not lost.
All day thy wings have fanned, At that far height, the coid, thin atmosphere: Yet stoop not, weary, to the welcome land,

Though the dark night is near.
And soon that toil shall end; So shalt thou find a summer home, and rest, And scream among thy fellows; reeds shall bend

Soon o'er thy sheltered nest.
Thou 'rt gone ;-the abyss of heaven Hath swallowed up thy form: yet on my heart Deeply hath sunk the lesson thou hast given,

And shall not soon depart.
He, who from zone to zone, Guides through the boundless sky thy certain flight, In the long way that I must tread alone, Will lead my steps aright.
-Bryant.

Charles. There is a snake crossing the road. Are there many species of snakes found in this country?

Father. I have never seen any but this species, the common chequered snake, but it is possible thero may be more.*
C. Is it venomous?
F. No, perfectly harmless; as I have proved by examining the month : all venomous serpents have two or more large curved fangs in the upper jaw, which are wanting in harmless ones. "In general it may be said that innocent serpents have four rows of teeth in the upper jaw ; two on the palate, and one on each side; but that poisonous serpents have no other outward or side-teeth but the fangs." When attacked, this snake, like many other harmless kinds, rears : itself ap in a threatening attitude, dilates its body, brightens its colours, and darts in and ont and vibrates its red, forked tongue : this organ, called by the vulgar, "its sting," and supposed to be the weapon of offence, is considered an undoubted token of its venomous nature. But in reality, all these motions are hut menaces; there is no power to do hurt, though they no doubt often serve as a protection. In common with the whole serpent race, it is the object of nniversal enmity: every person seems to consider it a sort of duty to kill snakes whenever they can be met with, perhaps in consequence of the curse entailed on the serpent that beguiled Eve.
C. The suake becomes torpid daring winter, I believe.

[^4]F. Yes; it concoals itself in the fall, in some convenient spot, such as under logs, often in heaps of stones, and sometimes, I have reason to think, in the earth; for in ploughing late in the nutumin, I once tarned up a chequered snake; it was inert aud dull, but nut torpid.
C. At what period of the year docs it cast Its skin?
F. I believe that is the first operation performed, after its revivifcation in spring, and before it leaves its winter concealment. An intelligent neighbour informed me that once in turuing over heap of stones early in spring, before the snuw had all diseared, he discovered a suake in the very act of sloughing lis sunt; the skin was stripped off from the head to about the middle of the body; the displaced part lay around it in close folds or wrinkles ; even the eyes were skiuned. If I recollect aright, in Bingley's "Animal Biography," it is intimated that the snake crawls among the stalks of plants, in order that the skin may be rabbed off by friction, and that it is turned inside oat, as we draw off a stocking. My neighbour's account appears far more probable; besides, it is supported by analogy, for it is exactly the mode in which all caterpillars slough their skins, as I have many times wituessed. The food of the snake is froge, toads, lizards, and probably insects. I once killed a snake which I found in the field, (supposing then that it was poisonous,) by dashing it agaiust the ground; and something protruded which I supposed was its bowels, but oit examination, I fonnd it to be the pretty olive-spotted frog, with ant orange-coloured belly; it, too, was torn, but whether this was done by the snake, or by the shock against the ground, I don't know ; I suspeot the latter, and that it had been swallowed whole, and probably alive. A friend of mine informed me that he once saw a snake of unusually large size, and determined to kill and open it, which he accordingly did, and found a very large green frog, which was dead of course, but unbroken. It seems impossible that so slender an animal as a snake can swallow or contain so large a creature as a frog, but the jaws, throat, and body, are capable of prodigious distension.
C. I have read that the slonghs of snakes are an object of superstition with some Indian tribes, and are used in their pre tended magical rites.
F. They are also an indispensable article in the nests of some birds; perhaps from their softness, as they are extremely thin and smooth.

TRE TAIL OT A TADPOLE

THE TAIL OF A TADPOLE.

A blade of grass is a world of mystery, "would men observingly distil it out." When my erudite friend, Dr Syntax, glancing round my workroom, arrested hls contemptnons eye on a vase abounding in tadpoles, and asked me with a snifing superiority: "Do you really mean to say you find any interest in these little beasts?" I energetically answered, "As much as you find in books." "Hem," grunted Syntax.
"Very absurd, ien't it? But we have all our hobbles. I can pass a bookstall, on which I perceive that the Ignorance of the bookseller permits him to exhibit an edition of Persius among the rubbish at 'one shilling each.' The sight gives me no thrill-it does not even slacken my rapid pace. But I can't so easily pass a pond in which I see a shoal of tadpoles swimming about, as ignorant of their own value as the bookseller is of Persias. I may walk on, but the sight has sent a slight electric shock through me. Why, sir, there is more to me in the tail of one of those tadpoles than in all the poems of that obscure and dreary Persias. Bat I won't thrash your Jew nnless you thrash ming."
"Why, what on earth can you do with the tail?"
"Do with it f Study it-experiment on it-put it under the microscope, and day by day watch the growth of its varions parts. At first it is little but a mass of cells. Then I observe some of
these ce blood-ve cells. grow, a ccunme
" Ver
"Yor
vase :mere ats
"Wu
" Per gradaall reaches
Nature
"Yo. region crab, y reckless
"Wo
" Arn
" Not
" All
" He
were ca scope.
but deve of fibre
"Oor
"I
was ma stantly I have over, th lity, for irritatec a physi of the t he dail conld t bods?
"Qu
these cells acouming a woll-known ohape, and forming radimentary blood-vensela. I also obeerve some other cella changing Into bloodcells. Then the trace of mascles becomes visible. These grow and grow, and the pigment-celle, which give thoir colour to the tall, scurume fantactic stapese."
" Very Intereating, I dare say."
"You don't seem to think so by yoar tone. But look in this vase :--Here are several tadpoles with the most apologetic of tails; mere stumps, in fact. I cnt them ofl nine days ago."
"Will they grow again?"
"Perfectly; becanse, although the frog diapenses with a tail, and gradualiy loses it by resorption, (drawing In by suction,) as he reaches the frog form, the tadpole needs his tall to swim with; and Nature kindly supplies any accident that may deprive him of it."
"Yos, yes," added Syntax, glad to foel himself once more in the region of things familiarly known; " juat like the lobater or the crab, yon know. They tear off their lege and arms in the most reckless manner, yet always grow them again."
"Would you like to know what has become of these taile?"
"Arn't they dead?"
"Not at all. Alive and kicking."
"Alive after nine days? Oh! oh!"
"Here they are in this glass. It is exactly nine days since they were cut off, and I have been watching them daily undor the microscope. I assure you that I have seen them grow, not larger, indeed, but develop more and more, mascle-fibres appearing where no trace of fibre existed."
"Come, now, you are trying my gullibility!"
"I am perfectiy serlous. The discovery is none of mine. It was made by M. Vulpian in Paris. He says that the taile constantly live many dayb-as many as $\begin{aligned} & \text { bighteen on one occasion; but }\end{aligned}$ I have never kept mine alive more than eleven. He says, moreover, that they not only grow, as I have sald, but manifest cenalbility, for they twist abont with a rapid swimming movement when irritated. I have not seen this, but M. Vulpian is too experienced a physiologist to have been mistaken; and with regard to the growth of the taila, his observations are all the more trustworthy, because he daily made drawings of the aspect presented by the talis, and could thas compare the progress made."
"Well, bat I say, how could thes live when separated from the body? Onr arms or legs don't live; the lobster's legs don't live."
"Quite true; but in these cases we have limbe of a complex
organiaation, which require a complez apparatus for their maintenance; they muat have blood, the blood muat circulate, the blood muat be oxygenated."
"Stop, stop; I don't want to understand why oar arms can't livo apart from our bodies. They don'f. The fact is enough for me. I want to know why the tall of a tadpole can Ilvo apart from the body."
"It can. Is not the fact enough for you in that case also? Well, I was going to tell you the reason. The tail will only live apart from the body so long as it retains its carly Immature form; that is to say, so long as it has not become highly organised. If you cut it off from a tadpolo which is old enough to havo lost its external gills a week or more, the tall will not live more than three or four days. And overy tail will die as soon as it reaches the point In lis development, which requires the circulation of the blood as a nocessary condition."
"Bat where does it get food?"
"That is more than I can say. I don't know that it wants food. The power of abstinence of reptlies is amazing."
"Really I begin to think there is more in these littlo beaste than I suspected. But you see it requires a deal of study to get at these thinge."
"Not more than to get at any of the other open secrets of nature. But since you are Interested, look at these talls as the tadpoles came bobbing against the side of the glass. Do you see how they are covered with little white spots?"
"No."
"Look closer. All over the tail there are tiny cotton-like spots. Take a lens, If your unaccustomed eye isn't sharp enough. There, now you see them."
"Yes; I ree a sort of fluff scattered abont."
"That fluff is an immense colony of parasites. Let us place the tadpole under the microscope, and you will see each spot turn out to be a multitude of elegant and active animals, having bodies not unlike a cryatal goblet supported on an extremely long and flexible stem, and having round their rim, or mouth, a range of long dellcate hairs, the lucessant motion of which gives a wheel-like aspect, and makes an eddy in the water which brings food to the animal."
"Upon my word, this is really interesting! How active they ara! How they shrink up, and then, unwinding their twisted stems, expand again! What's the name of this thing?"
" Vorticella. It. may be found growing on water-fleas, planta,
seir min. the blood rms can't nough for upart from ase aluo? only live ure form; organised. vo lost its Chan three the point lood as a unts food. lasts than t at these
of natare. oles came they are
ke spots. There,
place the turn out dies not I tlexible delicate rect, and al." Ive they d stems, planta,
decayed wood, or thees tadpolea. People who study the animalcules are very fond of this vorticelin."
" Well, I never could havn belleved anch a patch of Anff could turn out a alght like this; I conld watch it for an hour. But what are those small yellowish things sticking on the side of theme parasites?"
"Those, my dear Syntax, are also parasiten."
"What I parasites living on parastes?"
"Why not? Natare is economical. Don't yon live on beef, and mutton and fish? Don't theso beefa, muttons, and fish, live on vegetables and animals? Don't these vegetables and animals live on other organic matters? Eat and be eaten is one law : live and let live is another."
The learned doctor remalned thoughtfal; then be acrowed np one side of his face into frightful contortions, as with the eye of the other he resumed his obvervations of the vorticella.

-G. H. Lewes.

THE NEWFOUNDLAND FISHERIES.

The banks of Newfoundland, the most extensive sabmarine elevation on the globe, in their full extent occupy 16 degrees of longitude, and nearly 10 degrees of latitude; they are between $\mathbf{6 0 0}$ and $\mathbf{7 0 0}$ milles in length; the depth of water on them varies from 4 to 160 fathoms. The temperature of the water on the Great Bank is 10 or 12 degrees lower than in the surrounding ocean.

The outer bank, also called the False Bank, extends from $44^{\circ} 10^{\prime}$ to $47^{\circ} 30^{\prime} \mathrm{N}$. lat., and from $44^{\circ} 15^{\prime}$ to $45^{\circ} 25^{\prime} \mathrm{W}$. long. The Great Bank, which lies $2 \frac{1}{}^{\circ}$ west of the False Bank, occupies more than 9° of latitude and b° of longitude. Whale Bank, Green Bank, and St Peter's. Bank, to the south of the island, are of much smaller dimensions.

Cod-fish is found on the Great Bank in the greatest abandance; bat there are so many disadvantages attending the fishing-gronnd, as compared with the harbours and shores of the island, that bankfishing has of late years been much neglected by the English, althongh it is atill prosecuted by the Δ merican and French fishermen. The bank is covered by continual fogs ; rain and sleet are also freqnent, and in the early part of the season mach inconvenience is experieuced
from ice. Besides avoiding these inconveniences, the fishermen who remain near to the shore bave better opportunities for curing and drging their fish, the quality of which is therefore preferred.

fishing on the banks.
The following description is by Lientenant Chappell, R.N. :"There are a number of boats fitted with masts and sails belonging to each fishery, two or four men being stationed to a boat. At the earliest dawn of day the whole of these vessels proceed to that part of the coast where the cod are most plentiful, for they move in shoals, and frequently alter their position, according to the changes of the wind. When the resort of the fish has been ascertained, the boats let fall their anchors, and the men cast-over their lines. Each man has two lines to attend, and every line has two hooks affixed to it, which are baited either with caplin (a small fish swarming upon the banks) or herrings. The men stand npon a flat flooring, and are divided from each other by bins, like shop-counters, placed athwart the centre of the boat. Having drawn up the line, they lay the cod upon the bin, and strike it apon the back part of the head with a piece of wood in the shape of a rolling-pin; this blow stuns the fish, and canses it-to yawn its jaws widely asunder, by
which me Into the 1 instantly that one instant. they proc are pitche taken to might pre the fish. fresh qua water, wh reach the The ca ,., "Each which ar throats, the boats and place the bowe he passes whose ba from thes The head the liver sounds, if gone this splitter, twinkling barrows top of ea In this 8 taken in pended f knees in The fish and the ing day in the su tarned d at night. ward, so
which means the hook is easily extracted. Then the fish is dropped into the bin and the line again thrown over, whilst the fisherman, instantly turning round, proceeds to pall up the opposite line, so that one line is running out and the other polling in at the same instant. Thus the boatmen continue until their vessel is filled, when they proceed to discharge their cargo at the fishing-stage. The cod are pitched from the boat upon the stage with a pike, care being taken to stick the pike into their heads, as a wound in the body might prevent the salt from having its due effect, and thereby spoil the fish. When the boats are emptied, the fishermen procure a fresh quantity of bait, and retarn again to their employment on the water, whence, in the conrse of an hour or two, perhaps, they again reach the stage with another cargo."

The caring is managed as follows :-
"Each salting-house is provided with one or more tables, around which are placed wooden chairs and leathern aprons for the cutthroats, headers, and splitters. The fish baving been thrown from the boats, a boy is generally empioyed to bring them on the stage, and place them on the table before the cut-throat, who rips open the bowels ; and having also nearly severed the head from the body, he passes it along the table to his right-hand neighbour, the header, whose business it is to pall off the head and tear ont the entrails; from these he selects the liver, and in some instances the sound. The head and entrails being precipitated through a bunk into the sea, the liver is thrown into a cask, where it distils in oil ; and the sounds, if intended for preservation, are salted. After having undergone this operation, the cod is next passed across the table to the spiiter, who cuts ont the backbone, as low as the navel, in the twinkling of an eye. From hence the cod are carried in handbarrows to the salter, by whom they are spread in layers apon the top of each other, with a proper quantity of salt between each layer. In this state the fish continue for a few days, when they are again taken in barrows to a stont wooden box foll of holes, which is suspended from the stage in the sea. The washer stands np to his knees in this box and scrubs the salt off the cod with a soft mop. The fish are then taken to a convenient spot and piled up to drain, and the heap thus formed is called a 'water-horse.' On the following day the cod are removed to the fish-flakes, where they are spread in the sun to dry ; and from thenceforward they are kept constantly turned during the day, and piled up in small heaps, called 'flackets,' at night. The upper fish are always laid with their bellies downward, so that the skins of their backs answer the parpose of thatch
to keep the lower fish dry. By degrees the size of these flackets is increased, until at length, instead of small parcels, they assume the form of large circular stacks, and in this state the cod are left for a fow days, as the fishermen say, 'to sweat.' The process of curing is now complete, and the fish are afterwards stored up in warehouses, lying ready for exportation.
"With such amazing celerity is the operation of heading, spliting, and salting performed, that it is not an unusual thing to see ten codfish decapitated, their entrails thrown into the sea, and their backbones torn out, in the short space of oue minute and a half. The splitter receives the highest wages, and holds a rank next to the master of a fishery; but the salter is also a person of great consideration, apon whose skill the chief preservation of the cod depends.
"There are three qualities of cared cod-fish in Newfoundland. They are distinguished by the different titles of merchantable fish, those of the largest size, best colour, and altogether finest quality; Madeira fish, which are nearly as valuable as the former; this sort is chiefly exported to supply the Spanish and Portuguese markets; West India fish, the refuse of the whole. These last are invariably sent for sale to feed the negroes of the Caribbee Islands."

The cod-fishery does not commence until the 10th of June; previons to which the hardy Newfoundland fishermen occupy themselves in the seal-fishery. The 17th of March is the day fixed for the departure of the vessels employed in this basiness. At this time the harbours are frozen, and it is necessary for the crews to cut a channel through the ice snfficiently wide for the passage of the vessels, which are usually schooners of from 40 to 70 tons, or decked boats of from 25 to 35 tons' barthen, very strongly built, and fortified against the pressure of the ice by strong poles suspended over their sides. The crews of the larger vessels usually consist of from thirteen to eighteen men, who are all partners in the expedition, receiving a certain proportion of the vessel's earnings at the conclusion of the fishing. When a channel has been cut to the sea, the vessels make their way to the field-ice, pushing through the opening which it presents until they meet with a herd of seals, or what is whimsically called a seal-meadow. The hunters contrive, if possible, to surprise the seals while sleeping in the sun. When thas enabled to approsch their prey, the men strike them on the nose with a bladgeon, which speedily kills them. The practice of shooting seals is not willingly resorted to, as the skiu is thas likely to be injured. The skins are stripped off; together with the fat, and conveyed to the vessels;

gRAL-TISHING IN NEWTOUNDLAND.
where they are packed away in the hold. When the vessels are thas loaded, they return to port and dispose of their cargoes to the merchants. If they are snccessful, the vessels are generally able to make a second trip before the melting of the ice.

The merchant separates the fat or blubber from the skin. This fat is cut into small pieces and thrown into vats, which are exposed to the heat of the sun. In three or fonr weeks the oil will have separated itself. A small quantity of inferior oil is then procured by boiling the blubber. The oil which separates without the aid of fire is of a pale colonr, and is freqnently used for the adulteration of sperm-oil, its price being much lower. The boiled oil, being partially burnt, is of a dark colour, and cannot well be used for this parpose. Whan the fat has been removed, the skins are carefully stretched and laid up in piles with layers of salt between. They are shipped in bundles of five skins each for the convenience of stowage.
-Geography of America.

SUMMER LONGINGS.

Ah! my heart is weary waitiog, Waiting for the May -
Waiting for the pleasant rambles, Where the fragrant hawthorn brambles, With the woodbine alternating, Scent the dewy way.
Ah ! my heart is weary wailing, Waiting for the May.

Ah!my heart is sick with longing, Longing for the May-
Longing to escape from study, To the young face fair and raddy, And the thonsand charms belonging To the summer's day.
Ah!my heart is sick with longing, Longing for the May.

Ah!my heart is sore with sighing, Sighing for the May -
Sighing for their sure retarning,
When the summer beams are burning, Hopes and flowers that dead or dying, All the winter lay.
Ah! my heart is sore with sighing, Sighing for the May.

Ah!my heart is pained with throbbing, Throbbing for the May-
Throbbing for the sea-side billows,
Or the watter-wooing willows;
Where in laughing and in sobbing, Glide the streams away.
Ah! my heart, my heart is throbbing, Throbbing for the May.
Waiting sad, dejected, weary, Waiting for the May.
Spring goes by with wasted warnings-
Moon-lit evenings, san-bright mornings-

There are cing sound of innume yrasshopp the greate sonthern $]$ sant ; and the effect yet more 1 of the Rol for minat ment.

Bat wh fills the a Transatla are, never The latte laborions traveller 1 called the fill the ea my notice

When mer of 1 domestic, of civilis " locust

The of Pennsylv visited bJ Septende

Summer comes, yet dark and dreary Life still ebbe away ;
Man is ever weary, weary,
Waiting for the May 1
-Anon.

AMERICAN INSECTS.

There are few among the insect tribes of Ecrope capable of producing sounds of any volume. The ham of bees and wasps, the buzzing of innumerable small Hies, the piplig of the gaat, the chirp of the grasshopper, the cry of the cricket, the tick of the death-watch-are the greater number of those an Englishman would enumerate. In southern Europe sounds are added sharper, londer, and more incessaut ; and I remember having been both amused and astonished, by the effect produced by the mole-crickets of France and the Jura, and yet more by the cicada of Italy, as, sitting among the thick foliage of the Roman pine, they would till the ear of the panting traveller for minates before he reached the place of their laxarious enjoyment.

But what are these scattered and solitary sounds, to the din which fills the ear at certain times and seasons from the insect tribes in the Transatiantic forest or swamp? The main agents in its productiou are, nevertheless, members of the same families of Gryllus and Cicada. The latter consists of many species, and affords some of the most laborions and successful musicians among the insect tribes. Every traveller has dilated upon the singuiar effect produced by one of them called the Catydid, as, sitting in little coteries among the trees, they fill the ear of night with their sharp and incesaunt wrangling; and my notice regards at present one of the same family.

When we returned from Mexico to the United States, in the snmmer of last year, 1834, among many points of interest, political, domestic, and foreign, which our re-entrance into the high-road of civilisation brought to our ears, was the fact that this was the " locust year."

The observation of a past century had shown the inhabitants of Pennsylvania and Maryland, that every seventeenth year they were visited by a countless horde of insects of the Cicada tribe, hence called Septendecim, diatinct in aspect and habits from those whose annual
appearance and mode of life were understood. Though of a different tribe, and with perfectly different habite from the locust of the East, the fact of its occasional appearatice, as though by magic, in such vast swarms, had cansed it to be familiarly alluded to by that name. Its last appearance had been in 1817, and its re-appearance was thus confldently predicted for the third or fourth week in May this year. (1834.)

Nature, true to her impulses, and the laws by which she is so mysterionsly governed, did not fail to fulfil the prediction. On the 24th of May, and following day, the whole surface of the conntry in and about the city of Philadelphia, suddenly teemed with this singnlar insect: The sabject interested me, and as a ring these days I had every opportunity of being daily. I may say hourly, attentive to the plienomena conuected with it, both here and in Maryland, I send you the result of my observations.

The first day of their appearance, their numbers were comparatively few,-the second, they came by myriads; and yet a day or two might pass before they reached their fall uumber. I happened to be abroad the bright sunny morning which might be called the day of their birth. At early morning, the insect, in the papa atate, may be observed issning from the earth in every direction, by the help of a set of strongly barbed claws on the forelegs. Its colour is then of a uniform dall brown, and it strongly resembles the perfect insect in form, excepting the absence of wings, ornament, and antenna. The tirst impalse of the imperfect insect, on detaching itself from its grave, is to ascend a few inches, or even feet, ap the trunke of trees, at the foot of which their holes appear in the greatest number; or upon the rail-fences, which are soon thickly sprinkled with them. In these positions they straightway fix themselves firmly by their barbed claws. Half-an-hours observation will then show you the next change which is to be undergone. A split takes place upon the shell, down from the back of the head to the commencement of the rings of the abdomen, and the labour of self-extrication follows. With many a throe and many a strain, you see the tail and hindlegs appear through the rent, then the wings extricate themselves painfuliy from a little case in the onter shell, in whicn they lie exquisitely folded ap, but do not yet unfarl themselves; and, lastly, the head, with its antennæ, disengages itself, and you behold before yon the new-born insect freed from its prison. The slough is not disengaged, bat remains firmly fixed in the fibres of the wood; and the insect, languidly crawling a few inches, remains as it were in a dose of wonder and astonistmment... It in rather ander, an inch in
length, an glazed, th opened, ap sun has ga of the inse and the bo tivity and

Betweel instrumen wide, diffe A low disi compared impercepti -thousan whole con insects art few hours activity, a

Well m joice at th many day this is the fatten on cover the

The pre and its gl a little wc sunrise to six days' scribe, the Like all t strong vit muscles network, often witr do not kn means of

Though insect is times-br ousy, or scribed by
length, and appears humid and tender; the colours are dall, the eye glazed, the legs feeble, and the wings for a while atter they are opened, appear crumpled and nuelastic. All this passes before the sun has gained his full strength. As the day adrances, the colours of the insect become more lively: the wings attain their fall stretch, and the body dries and lis braced up for lits fatare little life of activity and enjoyment.

Between ten and eleven, the newly-risen tribes begin to tune their instruments ; you become conscious of a sound, filling the alr far and wide, different from the ordinary ones which may meet your ear. A low diatinct hum salates yon, turn where you will. It may be compared to the simmering of an enormous cauldron,-it awells, imperceptlbly changes its character, and becomes fuller and sharpor -thousands seem to join in, and by an hour after mid-day, the whole country far and wide riugo with the unwonted sound. The insects are now seen lodged in or flying about the foliage above: a few hours having been thus sufficient to giva them full strength and activity, and bring them into full volce.

Well may the school-boy and the young ac.og-headed negro rejoice at the sound, for their hands will never want a plaything for many days to come. Well may the birds of the forest rejoice, for this is the season of plenty for them-the pigs and poultry too; they fatten on the innnmerable swarms which, before many days, will cover the ground in the decline of their atrength.

The pretty insect, for it is truly such, with its dark body, red eyes, and its glasey wings interlaced by bright yellow fibres-enjoys but a little week; and that merry barping which pervades creation from suarise to sundown, for the time of its continuance, is but of some six days' duration. Its character would be almost imposeible to describe, though it rings in my ears every time I think of the insect. Like all those of its tribe, the sound produced is not a voice, but a strong vibration of musical chords prodaced by the action of internal muscles npon a species of lyre, or elastic membrane, covered with network, and situated nuder the wings, the action of which I have often witnessed. The female insect may ntter a faint sound, but I do not know how-it is the male who is endowed with the powerful means of instrumentation which 1 have described.

Though the sound is generally even and continnous as long as the insect is uninterrapted, yet there is a droll variety observable at times-but what it expresses, whether peculiar satisfaction or jeals onsy, or what other passion, I cannot divine. It has been well described by the word Pha_ro! the first syllable being long and.
anstained, and connected with the second, which is pitched nearly an octave lower, by a drawling descent.

- During the whole period of their existence, the closest attention does not dotect their eating anything ; and with the exception of the trifing injury received by the trees conseqnent apon the process observed by the female in laying her eggs-which I will describe imme-diately-they aro perfectly innoxious. The end to which they seem to be sent to the upper day is purely confined to the propagation of their species. A few days after their first nppearance the female begins to lay her eggs. She is furnished with an ovipositor, situated in a sheath on the abdomen, composed of two serrated, hard parallel spines, which she has the power of working with an alternate perpendicular motion. When her time comes, she selects of the outermost twigs of the forest trees or shrobs, and sets to work and makes a series of longitudinal jagged incisions in the tender bark and wood. In each of these she lays a row of tiny egge, and then goes to work again. Having deposited to her heart's content, she crawis up the twig a few inches yet further from the termination, and placing herself in a fitting position, makes two or three perpendicular cats into the very pith. Her duty is now terminated. Both male and female become weak ;-the former ceases to be taneful; the charms of their existence is at an end; they pine away, become blind, fall to the ground by myriads, and in ten or fifteen days after their first appearance, they all perish. Not so, however, their seed. The perforated twigs die, the first wind breaks them from the tree, and scatters them upon the ground. The eggs give birth to a nnmber. of snall grubs, which are thas enabied to attain the monld withont injury; and in it they disappear, digging their way down into the bosom of the earth. Year goes after year-summer after summer, the ann shines in vain to them-they "bide their timel". The recollection of their existence begins to fade : a generation passes away; the surface of the country is altered-lands are reciaimed from the forest-streets are laid out and trampled on for years-houses are built, and pavements hide the soil.

Still, thongh man may almost forget their existence, God does not. What their life is in the long interval none can divine. Traces of, thens have been found in digging wells and foundations, eight and: ten feet below the surface. When seventeen years have gone by, the memory of them retarns, and they are expected. A cold, wet spring may retard their appearance, but never since the attention of: man has been directed to them, have they failed-hut at the appointed time, by one common impulse, they rise from the earth, piercing:
their way of the pa and paver decessors and enjos scape; lii thelr my small me the phenc

We will always ac snails bef of the pal world all somewher the rivert some of 1 same her monster. snails we lhad the ! from con that the been kno dainty m now stan as the di the way, that if th connexio family.

It ma: presental fields an pearance

SNAILS.

We will open the case by claiming for the snalls the respect that is always accorded to old and long-established families. There were snalls before the Flood-before Adam even-in those far remote eras of the past, when the lower orders of the animal creation had the world all to themselves. The family seems to have "come in" somewhere aboat the time when the hage Dinotherium wallowed in the rivers of central Europe; and it is not at all improbable that some of the earliest members of it may have banqueted on the selfsame herbage which sustained the enormous balk of that unwieldy monster. Later down, in the classic days of Greece and Rome, the snails were not only known, bat held in great repate, and regalarly had the honour of appearing at the tables of wealthy epicures, fresh from contact with a silver gridiron. It was in those days, indeed, that the tribe derived the family name by which it has ever since been known-Helix, a spiral, being the name that was given to the dainty morsel; while the same term, metamorphosed into Helicidx, now stands, all the world over where the science of zoology obtains, as the distinctive appellation of the wide-spread lamily. All that by the way, however: what we want to impress upon our readers is, that if there be any honour attached to long descent and distingaished connexions, then that honour can fairly be claimed by the snail family.

It may be as well, too, to observe at once, that thongh the representatives of the family which make themselves at home in our fields and hedges have nothing particnlarly attractive in their appearance, that is not by any means the case with those brauches of
the faunily that reside abroad. In ! foreign parts " there are onails to be found as far exceeding our own in delicacy and beanty of colouring, as there are blods and insects that excel in billliaucy the winged tribes of our woods and fields.

Bat these gaily-coloured individuals belong, of course, to the rich pastures and the sanny skies of tropic regions; and we do not mean to call in their aid just yet, in order to make good our position as to the claims of the family. Let us come back, therefore, to the little fellow with the dusky spotted shell, that crawls across onr garden path, and to his somewhat prettier companions of the hedgerow. And, now observe, that they make their way in the world by means of an expanded diac or foot, which, as it is in close contact with the ventral region of the body, has procured for the tribe a place amongst the great class of Gasteropods, or belly.fouted molluscs. The foot itself is a very curlons organ, and consists of a nearly uniform mass of muscular fibres, interwoven much in the same way as those of the human tongue. The regular gilding motion with which the common snalls crawl along, is due to a pair of muscles extending along the centre of the foot; but in some of the species the surface of the foot is divided by a longitudinal line along the centre, the muscles on the two sides of which act in rotation, and so cause the animala to progress in a perpetual zigzag. The glistening slimy tracks which they leave behind-" the silver silmy traile," as poor Clare calls themare prodnced by a discharge of macus, designed to protect their tender bodies, and smooth the asperities of their way. It must be a very comfortable thing for the snails to be able to carpet their path in this easy, off-hand manner, and we confess we like to tee the sllvery llne on posts and pailings, or gravelly walks; but when, as happens sometimes, the littie fellows pay us a visit in our parlour, where the place is carpeted beforehand, they might be considerate enongh to wipe their feet before coming in.

A good deal of discussion has taken plece amongat naturalists, as to whether snails have any eyes or not. The popalar notion, of conrse, is that the little knobs at the extremity of their long feelers or horns are eyes; and though several writers have questioned or boldly denied the truth of this opinion, it seems to be now pretty generally conceded, that the little clab-shaped projections are true visual organs. Swammerdam, indeed, long ago demonstrated the matter to his own satisfaction, and pointed ont the five distinct parts of which the eye consiats.

It would be a difficult matter, probably, to find a person anywhere who had never seen a anail draw in its horns on their being touched;
but how the snall schoolbos snail in words of The secr withdraw tight glo always t perhaps, truded; nut by b itself; or рияra, 8. the wisde riffectual We speal eye, but derful.
but how many, we ahould like to know, have ever closely watched the snali's manner of doing it? The thing is easily seen, and any schoolboy may ascertain how it is done, the next lime he stops a suall in bis travels acrosn the footpath, and admonimies hits in the words of the old doggerel, "to shut up his house and go away home." The secret is, that the tentacle or horn is c hollow tube, and in being withdrawn, it is simply Inverted and retracted like the finger of a tight glove; only that the extremity, with the eye-spot upon It, in always the first part to disappear. The manner of it is liere seen, perhaps, when affer the tentacle has been withirawn, it is again protruded; as you can then readily discern that the organ is lengthened, wot by belng pushed out from Ite base, but by gradually nnfolding liself; or being everted at the extremity till the clublied point apprara, add the tentacle in fully extended. One cannot but admire the wisdom which thns gives the litite molluse such a ready and effectual means of dufending lis rather oddly hocated visual organs. We speak of the wonderful contrivances connected with the human ejo, but surely there is something here that is not much less wonderful.
-Keamley.

THE CORAL INSECT.
Torl on ! toil on! ye ephemeral train, Who build in the tossing and treacherous main, Toil on-for the wisdom of man ye mock, With your sand-based structures and domes of rock ;
Your columns the fathomless fountains lave, And your arches spring ap to the crested wave;

Yo 're a puny race, thus boldly to rear A fabric so vast in a realm so drear.

Yo blnd the deep with your secret zone, The ocean is soul'd, and the surge a stone ; Fresh wreaths from the coral paverent spring, Like the terraced pride of Arryria'n king ;
The turf looks green where the breakers roll'd; O'es the whirlpool ripens the rind of gold; The sea-snatch'd lisle is the home of men, And mountalus exult where the wave hath been.

But why do you plant, 'neath the blllows dark The wreckIng reof for the gallant bark? There are annres enough on the tented field, 'Mid the blossom'd sweets that the valleys yjelil; There are serpents to coll, ere the flowers are up;
There's a polson-drop in man's pureat cup, There are foes that watch for his cradle-hreath, And why need ye sow the floods with death?

Ye build-ye build-but ye enter not in; Like the tribes whom the denert devour'd in their sin ;
From the land of promise ye fade and die, Ere its verdare gleame forth on your weary eje;
As the kinge of the cloud crown'd pyramid Their noteless bones in oblivion hid,
Ye slumber numark'd 'mid the desolate maln, While the wonder and pride of your works remain.
-Sigourney.

The sun are calle We adm ocean, fr tribe. $]$ of the de selves a drop.

Cloar to diseo that wh the brea raye of place th

1. Anguiliula Auviatilis.
2. Cyclope quadricornis. 8. Actinophrys 8ol. 4. Oolepi hirtus.
3. Vorpicella
4. Amabi princepa.
5. Acineta myatacina.
6. Oxytrychs.
7. Triophthalamue dorselio.
8. Polyarthra.

LIFE IN A WATER-DROP.

The sun is reflected in the occan as in the water-drop, and in both are called into existence beings the most varied in size and form. We admire the myriads of creatures which Inhabit the depths of the ocean, from the monstrous whale to the tinlest specimen of the finny tribo. But if the size, the power, and the variety of the denizens of the deep excite our admiration, how much more do we find ourselves carried away by that feeiling while looking into the waterdrop.

Clear and trausparent it lies before ns: vainly our eye endeavonrs to diccover the least evidence of life, or the smallest creature, in that which seems in itself too small to contain any living object; the breath of our mouth is strong enough to agitate it, and a few rays of the sun are sufficient to convert it into vapour. But we place this drop of water between two clean squares of glass, beneatp
the microscope, and 101 what life anddenly presents itself: we scarcely trust our senses. The littie drop has expanded into a large plain, wonderful shapes rush backwards and forwards, drawing towards and repulsing each other, or resting placidly and rocking themselves, as if they were cradied on the waves of an extensive sea. These are no delusions; they are real, living creatures, for they play with each other, they rush violently apon one another, they whirl round each other, they free and propel them. selves, and run from one place in order to renew the same game with some other little creature; or madiy they precipitate themselves upon one another, combat and struggle nutil the one conquers and the other is subdued; or carelessly they swim side by side, untll playfulness or rapacity is awakened anew. One sees that these little creatures, which the sharpest eye caunot detect withoat the aid of the microscope, are susceptible of enjcyment and paln; in them lives an instinct which induces them to seek, and enables them to find, sustenance, which points out and leads them to avoid and to escape the enemy stronger than themselves. Here one tumbles about in mad career and drunken lust, it stretches out its feclers, beats about its tail, tears its fellows, and is as frollcsome as if perfectly happy. It is gay, cheerful, hops and dances, rocks and bends about upon the little wares of the water-drop. There is another creature; it does not swim about-remains upon the same spot-but it contracts itself convalsively, and then stretches itself palpitatingly out again. Who conld not detect in these motions the throes of agony ; and so it is; for only just now it has freed itself from the jaws of a stronger enemy. The ntmost power has it exerted in order to get away ; but he must have had a tight hold, severely wounded it, for only a few more throes, each becoming weaker and more faint, it draws itself together, stretches out its whole length once more, and sinks slowly to the bottom. It was a death struggle. It has expired.

On one spot a great creature lies, apparently quiet and indifierent. A smaller one passes carelessly by, and, like a flash of lightning, the first dashes opon it. Vainly does the weaker seek to escape its more powerful enemy; he has already canght it, embraces it; the throes of the vanquished cease-it has become a prey.
,This is only a general glance at the life in a water-drop, bnt how great does even this: already show the small; how wondronsly does everything shape itself within that, of which we had formerly not the least conception. These are creatures which Nature nowhere presenta to the eye upon an enlarged scale, so marvellous, odd, and
also again movements one step possessed a descriptio in all its v some few single drop

Slowly water com turniug an ably, and or prey ma likeness to fully-arche wide open The entire that any s throat, for tube; but cells.) wh could mov approach i through th in the littl is itself a animalcule yet penetr tor has hi creating \mathbf{p} small.

Whirlin cule, the 1 kingdom, blossom of which pase able; it c again-th little knot a blade of like a shir itself, and
also again so beantiful, so merry, happy in their whole life and movements ; and although defective, and, in some respects, only one step removed from vegetable life, they are yet animated and possessed of wiil and power. It would be impossible here to give a description of all, or even of a great part of the ephemerous world in all its varied aspects, but we propose to take a nearer survey of some few at least, in order to display the life which exists in a single drop of water taken from a pond.

Slowly and gracefully through the flonds of this small drop of water comes glidingly, swimming along, the little swan animalcule, turaiug and twisting its long, pliant neck, swaying itself comfortably, and moving in every direction, sucking whatever nourishment or prey may present itself. This animalcule has its name from its likeness to the swan ; it carries its neck just as proudly and grace-fully-arched, only the head is wanting, for at the end there is a wide opening mouth, surrounded by innumerable beam-like lasbes. The entire little creature is transparent, and it seems impossible that any species of nutriment could possibly pass through the thin throat, for even water seems too coarse a material for this small tube; but scarcely does one of the varionsly formed monads, (single cells.) which exist in all waters, and of which many thousands could move and tumble freely about in the hollow of a poppy seed, approach its month, ere it gulps them down, we see them gliding through the throat, and see the green, gray, or white monad lying in the little, but for this animalcule, great stomach. This monad is itself an animalcule, a living atom; and possibly a still small r animalcule serves for its nourishment; but the human eye has not yet penetrated thus.far, possibly it may never do so, for the Creator has hidden from the material vision of man the limits of His creating power, alike in the infinitely great as in the infinitesimally small.

Whirling along comes swimming by the side of the swan animalcule, the Bell. Here Nature has retained a form out of the vegetable kingdom, for the body of this animalcule is similar to the bell-shaped blossom of a Mayflower, fastened to a long stem ; this stem, through which passes a spiral-formed vein, a fine dark tabe, is easily movable; it closes itself, screw-like, together and stretches itself ont again-this is the tail of the bell animalcule ; at the end there is a little knot, and soon this knot becomed attached tothe bottom, or to a blade of grass, or to a piece of wood, and the little animalcule is like a ship at anchor in a bay or harbour ; its tail extends and turns itself, and the body of the animalcule, the little bell, whose opening
is at the top, begins to whirl itself round and round, and this move. ment is so quick and powerfal that it creates, even in the billows of the water-drop, a whirlpool, which keeps ever going round wilder and more violently; it grows to a Charybdis, which none of the little monads who are caught within it can escape; the whirlpool is too fierce, they get drawn into it and find a grave in the jaws of the bell animalcule. The bell closes, the tail rolls together, but soon it stretches itself out again ; the bell whirls, the whirlpooi goes round, and in it many a quiet and thoughtless passing monad is drawn down. But the bell animaicule is also about meeting its punishment; again it whirls its bell violentiy, the tail breaks from the body, and the bell floats without control hither and thither ov tlie waves of the water-drop; but it knows how to help itself; Nature has provided for such a catastrophe in its creation. The bell sinks to the bottom, and soon the missing tail grows again, and if death even comes, Nature has been so liberal in the creation of this little world-new life and new creatures arise so quickly out of those which have passed away, and so great is their number-that the death of one is less than a drop in the ocean, or a grain of sand in the desert of Sabara.

The lives of inuumerable animalcules pass away as a breath, but they rise into existence in equally infinite numbers. The animalcules multiply in every variety of way, but the most curions is that of dividing, and out of the severed parts new animalcules are formed, which, in a few hours, again divide themselves into parts, forming new creatures; and this process of increase proceeds to infinity. Numbers alone are able in some measure to give an idea of this infinite increasing power. An animalcule requires for its parting process about five hours, after which time the new creatures stand then perfect, and these again require the same time for their increase. At this rate of increase, one single animalcule would, by the process of separation, be increased to half a million in four days, and after a month it would be inconceivable where this innumerable quantity of animalcules, which are, singly, imperceptible to the naked eye, can possibly be placed.- But Nature has limited even this vast increasing power, and she freely sacrifices milions in order to preserve their species always in their proper quantities. What are, compared with these numbers, the quantities of herrings, sprats, and other fish which crowd the sea in such mighty masses? They vanish into nothingness.

[^5]Envelopis other univ down into above it al isisuds ; an one transp fishes witl other wing fish, man aerial sea,

The airand nour majestic fol in its n and gloom. perfect ex animal wo light woulc Without it -neither

The atm of between

A philo oriental, th see it not square inc tons on us than the s leaves the that feeds on its win stances w level the to raise t dash the by turns draws up itself, or again as

METEOROLOGY-THE AIR-OCEAN.

Enveloping this solid globe of ours are two oceans, one partial, the other universal. There is the ocean of water, which has settled down into all the depressions of the earth's surface, leaving dry above it all the high lands, as monntain ranges, continents, and isiands ; and there is an ocean of air, which enwraps the whole in one transparent mantle. Through the bosom of that ocean, like fishes with their fins, and whales with their flippers, birds and other winged creatnres swim ; whilst, like crabs and many sheilfish, man and other mammalia creep about at the bottom of this serial sea.

The air-ocean, which everywhere surrounds the earth, and feeds and nourishes it, is even more simple, more grand, and more majestic than the "world of waters;" more varied and changefal in its moods of storm and calm, of ebb and flow, of brightness and gloom. The atmosphere is, indeed, a wonderful thing, a most perfect example of the economy of nature. Deprived of air no animal would live, no plant would grow, no flame would buru, no light would be diffused. The air, too, is the sole mediam of sonnd. Without it mountains might fall, but it would be in perfect silence -neither whispers nor thunders would ever be heard.

The atmosphere is supposed to extend from the earth to a height of between forty and fifty miles.

A philosopher of the East, with a richness of imagery truly oriental, thas describes it:-" It surrounds as on all sides, yet we see it not; it presses on ns with a load of fifteen pounds on every square inch of surface of our bodies, or from seventy to one bundred tons on us in all, yet we do not so mach as feel its weight. Softer than the softest down, more impalpable than the finest gossamer, it leaves the cobweb undisturbed, aud scarcely stirs the lightest flower that feeds on the dew it supplies; yet it bears the fleets of nations on its wings round the world, and crushes the most refractory substances with its weight. When in motion, its force is sufficient to level the most stately forests and stable buildings with the earthto raise the waters of the ocean into ridges like moantains, and dash the strongest ships to pieces like toys. It warms and cools by turns the earth and the living creatures that inhabit it. It draws up vapours from the sea and land, retains them dissolved in itself, or snspended in cisterna of clonds, and throws them down again as rain or dew when they are required. It bends the rays of
the sun from their path, to give the twilight of evening and of dawn; It disperses and refracts their various tints to beantify the approach and the retreat of the orb of day. But for the atmos. phere sunshine woald burst on us and fail us at once, and at once remove us from midnight darkness to the blaze of noon. We should have no twilight to soften and beautify the landscape; no clouds to shade us from the scorching heat, but the buld earth, as it revolved on its axis, would turn its tanned and withered front to the fuil and unmitigated rays of the lord of day. It affords the gas which vivifies and warms our framen, and receives into itself that which has been polluted by use, and is thrown off as noxious. It feeds the flame of life exactly as it does that of fire; it is in both cases consumed, and affords the food of consumption; in both cases it becomes combined with charcoal, which requires it for combustion, and is remaved by it when this is over."
"It is ouly the girdling, encircling air," says ancther philosopher, "that flows above and around all, that makes the whole world kin. The carbonic acid with which to day our breathing fills the air, to-morrow seeks its way round the world. The date-trees that grow around the falls of the Nile will drink it in by their leaves; the cedars of Lebanon will take of it to add to their stature; the cocoa-nats of Tahiti will grow rapidly upon it; and the palms and bauanas of Japan will change it into flowers. The oxygen we are breathing was distilled for as some short time ago by the magnolias of the Susquehanna, and the great trees that skirt the Orinoco and the Amazon; the giant rhododendrons of the Himalayas contributed to it, and the roses and myrtles of Cashmere, the cinnamon tree of Ceylon, and the forest older than the flood, baried deep in the heart of Africa. The rain we see descending was thawed for us out of the icebergs. which have watched the polar star for ages, and the lotus lilies have soaked up from the Nile, and exhaled as vaponr snows that rested on the summits of the Alps."
"The atmosphere which forms the outer surface of the habitabie world is a vast reservoir, into which the sapply of food designed for living creatures is thrown; or, in one word, it is itself the food, in its simple form, of all living creatures. The animal grinds down the fibre and tissue of the plant, and the natritions store that has been laid up between its celis, and converts these into the substance of which its own organs are composed. The plant acquires the organs and natritious store; thus yielded up as food to the animal, from the air surrounding it."
"B But animals are furnished with the means of locomotion and of
seizure-tb
it ; plants particles fir rushes pat oxygen, th is constant them food alone it cal

There is than to tr which are studies the is somethit he creeps of light an which, wit animel ms matter is healthful from the ocean to magazine,

Moisture-
.Plants de growth m Evaporati of water, through t has of ho greater ra the capac hence wh perature
seizure-they can approach their food, anid lay hold of and swallow it ; plants mast wait till their food comes to them. No, solid particles find access to their frames ; the restless ambient air, which rushes past them loaded with the carbon, the hydrogen, the oxygen, the water, everything they need in the shape of supplies; is constantly at hand to minister to their wants, uot only to afford them food in due season, but in the shape and fashion in which aione it can avail them."

There is no employment more ennobling to man and his intellect than to trace the evidences of design and purpose in the Creator, which are visible in all parts of the creation. Hence, to him who studies the physical relations of earth, sea, and air, the atmosphere is something more than a shoreless ocean, at the bottom of which he creeps along. It is an envelope or covering for the dispersion of light and heat over the surface of the earth; it is a sewer into which, with every breath we draw, we cast vast quantities of dead animal matter; it is a laboratory for purification, in which that mattar is recomponnded and wroaght again into wholesome and healthful shapes; it is a machine for pamping up all the rivers from the sea, and conveying the waters from their fonntains is the ocean to their sources in the monntains; it is an inexbaustible magazine, marvellously adapted for benign and beneficient purposes.
-Mauby.

ATMOSPHERIC PHENCMENA.

Moisture-Evaporation-Dew-Mists and Clouds-Rain, Snow, and Hail.
.Plants derive the moisture which is necessary for their support and growth mainly from the moisture held in the atmosphere as vapour. Evaporation is well illustrated by the gradual disappearance of a pool of water, and by the drying of wet bodies. Thas water is diffased through the air as an invisible vapour. The capacity which the air has of holding vapour increases with its temperature; bence the greater rapidity of evaporation in warm than in cold air. Beyond the capacity of the surroanding air, evaporation will not go on; and hence when the air is as highly saturated with vapour as its temperature admits of, it is said to be fully charged; if it holds fifty.
per cent., it is sald to be half charged; if twenty-ive per cent., one quarter charged, and so on. The degree of charge. therefore, chows only the amonnt of molsture in the air as compared with tis capacity at its then temperature, so that the air is generaily moister in winter than in summer, thongh less saturated with vapour.

If the air is by any cause conled down helow the temperatare at which the moisture which it holds will be its full charge, a part of ity vapour will necessarily separate from it in the form of water. Thus we see that cold bodies plaved lat the open air became studded with drops of water-dew-drups-because they cool down the surrounding air below its point of full charge. The same phenomenon is daily witnessed in the windows of inhabited rooms. The cold panes cool down the warm moist air of the room, lessen the amount of moisture which it is capable of containing, and cause it to part with its superabundance in the form of water.

Dew, after sunset, is caused by the temperature of moist, solid bodies falling below that of the air, the extent to which the cooling is carried depending on the power which the substanoes have of radiating or parting with the heat which they have absorbed daring the day. Plants radiate better than stones or soil, and these again better than metals. Dow is deposited most plentifally in cloadless, starry nights, because, in these circumstances, radiation goes on: more quickly than when the sky is clouded. Under the clear skies of the tropics the effect of the fall of dew is like that of a smart shower of rain. When the dew is frozen it is called hoar-frost.

Mists and Clouds.-The dew-deposits of which we have been speaking are bronght on by means, and on the surface, of bodies surrounded by the air; but if a large mass of the air is cooled down thronghout below dew-point, (that is, below the point at which it is overcharged with moisture, and consequently begins to deposit dew-drops,) the water that separates from it does not run together into drops, but forms little vapour-vesicles, or clondbubbles, which float in the air, contsining within these thin bulbs air fully charged with moisture. This state of the atmosphers canses mists. Clouds are only masses of mist in the apper air, cansed by the cooling of the higher layers of the atmosphere.

Rain, Snow, Hail.-If, being on a mountain while it rains, you enter the region of clouds, yon will find yourself suddenly surrounded with thick masses of fog, and will perceive the fine droplets of the falling mists. But these little drops become larger as they. fall; for, just as happens when any other cold body is plunged into moist air, water is thrown down apon the surfaces of these.

Hille drops vapour-cha which com Hoating in but also fro whole of w difference : which falls and that w Thas the y is elghteen Pulace-Plac

When th the freezin down as sn lands while was withdr was melted This thawir or the snom as sleet, wl Sleet is mel able that h formed in t the clear c surrounds

On the c -single el less. Thes from which haps, snow again as so however, g as a fall of together, s every day, the consta moment. the waters Thus they chief point the main f

Hittle drops on their way down through the lower, warmer, and vapour-charged layera of the atmosphere. The raln, therefore, which comes down to the earth is derived not only from the clonds Hoating in the higher atmosphere, which are only its first sources, but also from the lower regions between them and the earth, the whole of which contribute to its increase as it descends. A great difference may, therefore, be found between the amount of rain which falls on the top of a monntain, or even of a high tower, and that which is caught during the same time at the foot of either. Thus the yearlv rain-fall on the roof of the Royal Palace at Berlin is eighteen inunes in depth, while that on the pavement of the Pulace-Place amounts to twenty inches.

When the moist air in the upper regions is cooied down below the freezing-point, the water that it lets fall solldifies and comes down as snow. It is often remarked that it rains on the low-lying lands while it is snowing on the mountains. In such case the rain was withdrawn from the mnist, cold air, in the form of snow, but was melted during its fall through the lower and warmer regions. This thawing is often imperfect ; it then rains and snows at once, or the snow-flakes, only softening. cling together, and come down as sleet, which falls so often when winter is passing into spring. Sleet is met with in summer only on high mountalns. It is probable that hail consists of flakes of snow or sleet, which have been formed in the apper regions, and round which, on their way down, the clear crust of ice was formed, which in almost all hail-stones, sarrounds a core of white within.

On the crests of very high mountains-for instance, on the Alps -single clonds are often seen to hang for days apparently motionless. They are, however, in ceaseless motion, just as is the moist air from which they are formed, as it sweeps over the cold and perhaps, suow-capped peaks. With this air they travel on, and vanish again as soon as they are out of reach of the cooling influence; not, however, generally without leaving behind a part of their moisture as a fall of rain or snow. Thus the Alps are often, for many days together, shrouded in dense clon 3 , from which rain poars beavily every day, while over the warm vaiiey of the Po, notwithstanding the constant south-wind, the sky has never been clouded for a moment. In the same manner all high monntains are withdrawing the waters from the air, even when it does not rain on the plains. Thus they are, in all parts of the world, the spots which form the chief points for the settiement of the moisture of the air, and are the main feeders of the rivers.

The wide plains of Northern India are, as you know, burning
Over
Tb Lare In Over Or Whe Tb And W passed the mountaln-range, is almost completely dry before it reaches Inland Asia. Thus the steppes of arid Asia form, for the most part, dry, barren wastea, with very hot summers and severe winters.
-Constable's Sixth Reader.

THE CLOUD.

I brivg fresh showers for the thirsting flowers, From the sens and the streams;
I bear light shade for the leaves when laid In their noonday dreams ;
From my wings are shaken the dews that waken The sweet birds every one,
When rocked to rest on their mother's breast, As she dances about the sun.
I wield the flail of the lashing hail, And whiten the green plains ander;
And then again I dissolve it in raln, And langh as I pass in thunder.

I sift the snow on the mountains below, And their great pines groan aghset;
And all the night 'tis my pillow white, While I sleep in the arms of the blast.
Sablime on the towers of my skiey bowers, Lightning, my pilot, sits;
In a cavern under is fettered the thunderIt struggles and howls by.fits:

Ovor earth and ocean, with gentle motion, This pilot is guiding me,
Lared by the love of the genil that move In the depths of the purple sea;
Over the rilis, and the crags, and the hills, Over the lakes and the plains,
Wherever he dream, onder mountain or stream, The spirit he loves remains ;
And I all the while bask in heaven's blue smile, While he is dissolving in rains.

The sangnine sunrise, with his meteor eyes,
And his burning plumes outspread,
Leaps on the back of my salling rack,
When the morning star shines dead;
As on the jag of a mountain crag,
Which an earthquake rocks and swings,
An eagie, alit, one moment may sit,
In the light of its golden wings.
And when sunset may breathe, from the lit sea beneath,
It ardours of rest and love,
And the crimson pall of eve may fall
From the depth of heaven above;
With wings folded I rest, on mine airy nestr As still as a brooding dove.

That orbed maiden, with white fire laden, Whom mortais call the moon,
Glides glimmering o'er my fleece-like floor;
By the midnight breezes strewn;
And wherever the beat of her unseen feet,
Which only the angels hear,
May have broken the woof of my tent's thin roof;
The stars peep behind her aud peer;
And I laugh to see them whirl and flee,
Like a swarm of golden bees,
When I widen the rent in my wind-built tent,
Till the calm rivers, lakes and seas,
Like strips of the sky fallen through me on high, Are each paved with the moon and these.

I bind the sun's throne with a burning zone, And the moon's with a girdle of pearl;
The volcanoes are dim, and the stars reel and swim,
When the whiriwinds my banners unfurl.
From cape to cape, with a bridge-like shape,
Over a torrent sea,
Sunbeam proof I hang like a roof,
The mountains its columns be.
The triumphal arch through which I march, With hurricane, fire, and snow,
When the powers of the air are chained to my chair, Is the million-colonred bow ;
The sphere-fire above lis soft colonrs wove, While the molst earth was langhing below.

I am the daughter of earth and water,
And the nursling of the aky ;
I pass through the pores of the oceun and shores; I change, but I cannot die.
For, after the rain, when, with never a staln, The pavillon of heaven is bare,
And the winds and sunbeama, with their convex gleams, Bulld up the blue dome of air,
I silently laugh at my own cenotaph,
And out of the caverus of raln,
Like a child from the womb, like a ghost from the tomb, I arise and unbuild it again.
-Sielley.

A STORM AMONG THE ALTAI MOUNTAINS.

Tas ascent of the Cholsoun from the north side is not abrupt, though the last half verst is steep and rocky: nevertheless, wo rode our horses to the summit, or rather to the foot of the large rocky peaks that shoot far above the rounded mountain top. These are bare granite, without a blade of grass upon them, and do not form a continnous ridge or crest on the mountain, but stand up in isolated masses, often at a considerable distance from each other. Having ascended with some difficulty to the top of one of these peaks, I
oaw our by anoth they wot atraighe south, w night.

The v side, Nat shapes rl the other until the: was imp ing to to sketch fir lighted n fal effect work in occupatio we had th and my supposed, south sid he return been at occurred to speak cation. thander : my sketc the cause toward n In a terri men ran ing mater mounted ing. Se clonds we to be eig To be car ful, and on the so pass, and
saw our littio caravan, composed of the men I bad lef to proceed by another route, Midring the mountain lower down. 1 knew that they would cross ite summit seven or eight verats to the east, go straighe to the Cholsoun pass, and descend into a valley on the south, which I had arranged should be our place of rest for the night.

The views from this part of the chaln are very grand. On one side, Nature exbibits her most ragged forms, peaks and cragn of all shapes rising up far Into the clear bles vault of heaven; while on the other, mountain rises above mountain, vauishing into distance, until they molt into forme like thin gray clouds on the horizon. It was impossible to spare much time going from piace to place, lookIng to the north, south, or west, to decide which view I ahould sketch first. The chains to the north happened to be beautifully lighted up, some in sanshine, others in shade, producing a wonderfal effect of distance and space. This induced me to sit down to work in right good earnest, and I was soon so absorbed in my occupation, that I thought neither of time, distance, nor the country we had to ride over. Our horsos had been secured and left to feed, and my men were much interested in my work, antil at last, as I supposed, they grew weary. First one would leave, and go to the south side of the rocks under which I was sketching. Soon after he returned the other went; yet they said nothing. I had now been at work more than two hours, and this going to and fro had occurred several times. At length I was certain that they wiohed to speak to me . I looked at them, and walted for the communication. Then one of them said in his native language, "It will thunder soon," and made a sign for me to go with him. I put down my sketch, and harried to the other side of the peak, when I beheld the canse of their alarm: evidentiy a frightful storm was coming toward ns, for thw high peaks to the west were just being wrapped in a terrible black mantle. There was not a moment to lose; the men ran to bring the horses, and I hastened to pack up my sketclising materials. This was but the work of a few minutes. We then monnted and rode past the rocks to see if the storm was approaching. Several of the peaks were already obscured, and now the clouds were wheeling round a very high summit, which I supposed to be eight, or, at most, ten versts distant, across a deep valley. To be caught on this summit in such a storm was something fearful, and the men were really alarmed. There was only one place on the south side by which we conld descend: it was the Cholsoun pass, and that was, perhaps, more than eight versts distant. Hav-

Ing watclied the atorm two or threo minutes, wo beard the dib. tant thunder, and then know that the confliot of the elements had begnn.

Without apeaking a word, we turned our horses, and stitrted off at a galiop. It was a race for the pass, as it was only in thls ravine that we could hope fir shelter. Every fow minuten the thander rolled nearer and nearer, and on we galloped; the horsees, with an inatinctive dread of what was following, putting forth their fall powers without either whip or spur. Road or track there was none; only some high rocky peaks pointed out to iny companions the head of the pass. Our course was sitraight toward these; sometimes over fine mossy turf, then over ground rough and stony, which would, under any other circumstances, have caused both horse and rider to heoitate before dashing onward at the speed at which we were going. The atorm was still behind us, for as yet we had only seen the flash, but not the streams of Hightning that were descending every two or three minutes in our rear, followed by claps of thonder, which resonnded among the mountains until the distant echo was lost in another loud roar. At a short distanco in front of us I beheld huge pillars of rock rising ap fifty or sixty feet, which reminded me of Stonehenge, but on a most gigantic scale. My men turned a little to the left to avold this labyrinth of rocks. I looked at the place with Intense interest, determined to visit it, if possible, on the morrow. We were within a couple of versts of the head of the pass when we heard a great rushing sound behind us. Instantly our heads were turnet to see what was coming, when we beheld branches of cedar torn up from the valley, carried over the rocky peaks, and whirled bigh into the alr: this was the blast before the storm, which now awept on with terrific force. Fortunately for us, the rocky pillars broke the fary of the gast, or we should have been hurled down to a certainty; for, at a short distance to each side of ns, the dwarf cedars which creep over the rocks were torn ap, and carried along by the hurricane. We fonnd it difficalt to sit our horses, as they swerved and hounded on when the fearful squall rushed past.

The storm was now near, but for the last few minutes there had not been a flash. This was even more appalling than the lond thunder. I turned my head, and saw a thick red stream strike among the rocks we had just passed; at the same instant there were three reports like the firing of a heavily-loaded musket over our heads, and then came a crash which made our horses shudder,
althoug momen cession,

We delight into a under with fer up my with te under listened pleasure thick eo been rolled 0 the dist out in a black n compan but in : on foot, precipic feet, ov before drew m peared

It w somew had mi storm. said w correct camp-f torrent the thn bat no around the ris Lappen

Afte
although in a gollop. Now enme hailetones so thick, that for a moment they almost bliuded us; the lightning fashed la quick succession, and the thunder was inciasant.

We reached the pass, and wreed Into lta ragged Jawn with a delight known only to a mariner when lio runs his ainkling cran into a safe haven. In abont ten mituites we were quietly standing under the shelter of some friendly rocks, sur tiree tiorses trembling with fear. The men croased themselves; nor d Iforget to offer up my thanks for our preservation. The storm sill ragad above us with terrille fury and awful grandeur ; bu: the overban ylig masses under which we crouched afforded us co. lote protection, and I listened to the dreadful tempest with mingled feolings of awo am! pleasure. In a very few minates the ground was covered with a thick coating of hail, giving a wintry aepect to the acene which had been so calin and beautiful two short hours before. The storn rolled on: in about an hour we conld onily hear lts murmarioge is the distance. Presently the clouds were diapersed; the sun shono out in all his splendour, rendered still more brilliant by the intensely black masses of vapour which enveloped the divtant crage. My companione now discovered that we were not in the Cholsoun pasy, but in a small ravine down witish it was imposalblo to proceed even on foot, for at a very short diatance below our shelterlog place the precipices were perpendicular to the depith of at least three hundred feet, over which a little stream was leaping, to be dispersed in vapour before reaching the bistom. It was the dashing of the water which drew my attention to it; from below, no doubt, it must have appeared exceedingly pretty.

It was now quite time to descend, as our people were encamped somewhere in the valiey beneath. One of my men found that we Lad missed the pass, and gone considerably beyond it during the storm. We therefore rode back and turned iato a ravine, which be sald would lead us to the right track lower down. This proved correct; and in about two hours we were quietly seated by our camp-fire, under some magnificent cedars, on the bank of a roaring torrent greatly awollen by the atorm. Oar companions had heard the thunder in the distance, and there had been a few drope of rain, but not even enough to wet the ground. The forest was so thick around our camp that they could not see the munntains ; it was ouly the rising and thundering of the torrent that told them what had happened there.

After taking sufficient refreshment, and wriling up my journal by
the light of a blazing fire, I turned down at the root of a magnificent cedar, wrapped myself in my cloak, and slept soundly until morning. -Atrinson.

AMONG THE ICE.

Br Saturday morning it blew a perfect harricane. We had seen it coming, and were ready with three good hawsers ont a-head, and all things snag on board. Still it came on heavier and heavier, and the ice began to drive more wildly than I thought I had ever seen it. I had just turned in to warm and dry myself daring a momentary lall, and was stretching myself out in a bank, when I heard the sharp twanging snap of a cord. Our six-inch hawser had parted, and we were swinging by the two others; the gale roaring like a lion to the southward.

Half a minute more, and "twang, twang !" came a second report. J knew it was the whale line by the shrillness of the ring. Our noble ten-inch manilla still held on. I was harrying my last sock into its sealskin boot, when M'Garry came waddling down the com-panion-ladders :-"Captain Kane, she wont hold much longer: it's blowing tremendoasly, and I am afraid to sarge."

The D deck; al praises. the rattl the deat gan; an out by t

We st bed in to to beat driving, It cost 0 but at th the greal further t and the shore-cli one thin helm, by allowed the enen

At se We drop the brig ns. W let her s

Down lee of ic line as only on mass ro siting h brig bo charmed

Now just bey sliding avoid t dashed some pr them, w edge, ar

The manilla cable was proving its excelience when I reached the deck; and the crew, as they gathered round me, were loud in its praises. We conld hear its deep Eolian chant, swelling through all the rattle of the running gear and moaning of the shrouds. It was the death song! The strands gave way with the noise of a shotted gan; and, in the smoke that followed their recoil, we were dragged out by the wild ice, at its mercy.

We steadied, and did some petty warping, and got the brig a good bed in the rushing drift; but it all came to nothing. We then tried to beat back through the narrow ice-clogged water-way, that was driving, a quarter of a mile wide, between the shore and the pack. It cost us two hours of hard laboar, skilfully bestowed I thought; but at the end of that time, we were at least four miles off, opposite the great valley in the centre of Bedevilled Reach. Ahead of us, further to the north, we could see the strait growing still narrower, and the heavy ice-tables grinding up, and clogging it between the shore-cliffs on one side, and the ledge on the other. There was bat one thing left for us;-to keep in some sort the command of the helm, by going freely where we must otherwise be driven. We allowed her to scud under a reefed foretopsail; all hands watching the enemy, as we closed in silence.

At seven in the morning, we were close upon the piling masses. We dropped our heaviest anchor with the desperate hope of winding the brig; but there was no withstanding the ice-torrent that followed ns. We had only time to fasten a spar as a buoy to the cliain, and let her slip. So went our best bower!

Down we went apon the gale again, helplessly scraping along a lee of ice seldom less than thirty feet thick; one floe, measured by a line as we tried to fasten to it more than forty. I had seen such ice only once before, and never in such rapid motion. One aptarned mass rose above our gunwale, smashing in our bulwarks, and depositing half a ton of ice in a lump upon our decks. Our stannch little brig bore herself through all this wild adventure as if she had a charmed life.

Now a new enemy came in sight ahead. Directly in our way; just beyond the line of floe-ice against which we were alternately sliding and themping, was a group of bergs. We had no power to avoid them; and the only question was, whether we were to be dashed in pieces against them, or whether they might not offer us some providential nook of refuge from the storm. But, as we neared them, we perceived that they were at some distance from the floe edge, and separated from it by an interval of open water. Our hopes
rose as the gale drove us toward this passage, and into it ; and we were ready to exult, when, from some nnexplained cause,-probably an eddy of the wind against the lofty ice-walls,-we lost our headway. Almost at the same moment we saw that the bergs were not at rest ; that with a momentum of their own they were bearing down upon the other ice, and that it must be our fate to be crushed between the two.

Just then, a broad sconce-piece, or low water-washed berg, came driving up from the southward. The thought flashed upon me of one of our escapes in Melville Bay; and as the sconce moved rapidly close alongside us, M•Garry managed to plant an anchor on its slope, and hold on to it by a whale line. It was an anxions moment. Our noble tow-horse, whiter than the pale horse that seemed to be pursuing us, hauled us bravely on; the spray dashing over his windward flanks, and his forehead ploughing ap the lesser lce, as if in acorn. The bergs encroached apon us as we advanced : our channel narrowed to a width of perhaps forty feet: we braced the yards to clear the impending ice-walls.

We passed clear, but it was a close shave ;-so close that our quarter-boat would have been crushed if we bad not taken it in from the davits;-and we found ourselves under the lee of a berg, in a comparatively open lead. Never did heart-tried men acknowledge with more gratitude their merciful deliverance from a wretched death.

The day had already its full share of trials; but there were more to come. A flaw drove us from our shelter, and the gale soon carried us beyond the end of the lead. We were again in the ice, sometimes escaping its onset by warping ; sometimes forced to rely on the strength and buoyancy of the brig to stand its pressure; sometimes scadding wildly through the half-open drift. Oar jibboom was snapped off in the cap; we carried away our barricade stanchions, and were forced to leave our little Eric, with three brave fello and their warps, ont upon the floes behind ns.

A little pool of open water received ns at last. It was juast beyond a lofty cape that rose up like a wall, and under an iceberg that anchored itself between us and the gale. And here, close nnder the frowning shore of Greenlaad, ten miles nearer the Pole than our holding ground of the morning, the men turned in to rest.

I was afraid to jois them, for the gale was nnbroken, and the floes kept pressing heavily zpoa our berg,-at one time so heavily as to sway it on its vertical axis toward the shore, and mele its pinnacle ovechang our vemel. IIt poor fellowe had bat a preerione sleep.

A SONG FOR ST CEOILIA'S DAY, 1687.

From harmony, from heavenly harmony, This universal frame began:
When nature noderueath a heap Of jarring atoms lay,
And conld not heave her head, The tuneful voice was heard from high, Arise, ye more than dead.
Then cold and hot and moist and dry, In order to their stations leap, And Music's power obey.
From harmony, from heavenly harmony, This universal frame began: From harmony to harmony,
Through all the compass of the notes it ran, The diapason closing full in Man.

What passion cannot Music raise and quell?
When Jubal struck the chorded shell, His listening brethren stood around, And, wondering, on their faces fell

T'o worship that celestial sonnd. Less than a God, they thought, there could not dwell

Within the hollow of that shell,
That spoke so sweetly and so well.
What ir ssion cannot Music raise and quell?
The trumpet's loud clangour
Excites us to arms, With shrill notes of anger And mortal alarms.
The double double double beat
Of the thundering drum
Cries, Hark! the foes come;
Charge, charge, 'tis too late to retreat.
The soft complaining flute
In dying notes discovers
The woes of hopeless lovers,
Whose dirge is whispered by the warbling lute.
Sharp violins proclaim
Their jealous pangs and desperation, Fury, frantic indignation, Depth of pains, and height of passion, For the fair, disdainful dame.

But oh! what art can teach, What human voice can reach,
The sacred organ's praise?
Notes inspiring holy love,
Notes that wing their heavenly ways
To join the choirs above.
Orphens could lead the savage race,
And trees nprooted left their place,
Sequacions of the lyre :
But bright Cecilia raised the wonder higher: When to her organ vocal breath was given,
An angel heard and straight appeared,
Mistaking earth for heaven.

The scien properties the air, a composed. heaven ac covering compound already various a dyeing, medical n ally in di much alil a knowlec is a scien highest a of new al Almos mical st which co materials are made together separable

Grand Chores.

> As from the power of sacred lays
> The spheres began to move, And sung the great Creator's praise

> To all the blessed above; So, when the last and dreadful hour This crumbling pageant shall devour, The trumpet shall be heard on high, The dead shall live, the living die, And Music sliall untune the sky.

-Dryden.

CHEMISTRY.

The science of Chemistry has for its object the stady of the nature and properties of the different substances of which the earth, the waters, the air, and their inhabitants, (namely, plants and animals,) are composed. In a word, it embraces the study of everything under heaven accessible to man. In its highest branches it aims at discovering the laws or rules which regulate the formation of chemical compounds generally, and in its usefal applications it has been already exceedingly serviceable in directing and improving the various arts of common life, as agriculture, the working of metals, dyeing, and many other parsuits. It serves also to guide the medical man in the preparation of his remedies, and also occasionally in distinguishing between diseases which are in other respects much alike. There is, indeed, scarcely a situation in life in which a knowledge of chemistry may not prove directly useful. Lastly, it is a science, the stady of which, from its simplest beginnings to its highest attempts, is rendered delightful by the constant succession of new and interesting things brought before the eye and the mind.

Almost all the substances just spoken of as the objects of chemical study, namely, the various rocks, clays, sands, and soils which compose the solid earth; the water of seas and rivers; the materials of plants and animals, are of a compound nature, that is, are made up of two or more other substances anited or combined together in a manner so close and intimate as not to be generally separable by any common means; and the componnd so produced
is almost always different in properties and appearance from the substances of which it is really composed. These latter may themselves be of a compound nature, and each formed in like manner by the union of two or more other sabstances very atrongly joined together, but still capable of separation by proper chemical means. Such an act of separation is called by the name of chemical decomposition, and the original compound sabstance is in such a case said to be chemically decomposed into its components or constituents.

As an example:-A piece of limestone, coral-rock, or chalk, heated red-hot for half an hour, loses nearly half its weight, and becomes quicklime. The loss is caused by the separation from the limestone of another substance (called carbonic acid) which is carried off by the vaponrs of the fire, but which could be easily caught and coliected by proper means. The limestone is therefore decomposed by the action of heat into its components, lime and carbonic acid, which, by their union, formed the limestone, or, as it is called in chemical speech, carbonate of lime.

Both the carbonic acid, however, and the lime, are themselves of a compound nature; the first may be decomposed into two other substances, carbon and oxygen, and the second into a metalic matter, calcium and oxygen. Mere heat, indeed, will not produce this effect, which can only be brought about by very powerfal means of decomposition.

In this manner a limit or boundary is sooner or later reached, and substances obtained which completely defy the efforts of the chemist to decompose them further; the carbon, oxygen, and calcium of the limestone arrived at by two successive steps of decomposition are found to resist all further attempts at decomposition; snch substances are called simple or elementary, or sometimes, chemical elements.

The number of these elementary sabstances known to exist, alters with the progress of chemical science; substances which at one period resisted decomposition gave way when new and more powerfal means for that purpose were applied ; besides which, minerals and waters containing new elements are met with from time to time. At present they amount to over sixty. Very many of them, however, are exceedingly rare, the compounds containing them being found in very small quantities.

Elementary substances are always divided by chemists into two classes, namely, metals and non-metallic substances. The wellknown and abandant metals, gold, silver, copper, iron, tin, and lead,
together will stand oxygen al others, bel ever, pose class to pl

It is vel sical state trasted wi fluid or lit assame, pi out the sil cominonly the solid bufficient! gaseous becomes 1 this witho The meta when stil vapour, In fact, \mathbf{v} same ma and a stil or the liq

Althon very freq ter as a can be much eas ever, are course, e

The p relations lesson.
together with a great number of rarer and less familiar substances, will stand In the first class. The components of the atmosphere, oxygen and nitrogen, hydrogen, sulphur, phosphorus, and several others, belong to the second class. Several of the elements, however, possess properties which render it difficult to decide in which class to place them.

It is very important to understand what in scienco is called a physical state or condition of a substance, simple or compound, as contrasted with its chemical nature. There are three such states, the solid, fluid or liquid, and gaseous, which one and the same substance may assume, passing from one to the other, back wards and forwards, without the slightest change of chemical nature. For example, water, as cominonly met with, is liquid, bat when cooled safficiently it takes the solid form, and becomes ice; and, on the other hand, when bufficiently heated, boils and becomes steam or vapour, which is the gaseous condition of water. By cooling this vapour, it again becomes liquid, and, by still further cooling, it freezes to ice, and all this withont the least chemical change or decomposition of any kind. The metal zinc melts easily when heated to a moderate extent, and, when still further heated, vaporises, or becomes converted into vapoar, which, by cooling again, becomes liqnid; and lastly, solld. In fact, very many substances, simple and compound, behave in the same manner, and have the power of existing in all three states, and a still greater number in two of them, the solid and the liquid, or the liquid and the gaseons.

Although a gas or vapour (which is the same thing in reality) is very frequently invisible to the eye, it is as much sabstance or matter as a solid or a fluid; it fills vessels, and possesses weight, and can be handled and experimented with, by proper means, with as much ease and certainty as a solid or a liquid. Some gases, however, are coloured yellow, violet, or red, and then they become, of course, evident to the eye.

The physical state of a substance is, in fact, dependent npon its relations to heat; a subject which must be considered in a future lesson.
-Fownes.

THE CHEMISTRY OF A CANDLE.

The Wilkinsons were having a amall party-it consisted of themselves and Uncle Bagges-at which the younger members of the family, home for the holidays, had been just admitted after dinner. Uncle Bagges was a gentleman from whom his affectionate relatives cherished expectations of a testamentary nature. Hence the greatest attention was pald by them to the wishes of Mr Bagges, as well as to every observation which he might be pleased to make
"Eh! what? you sir," sald Mr Bagges, facetiously addressing himself to his eldest nephew, Harry-"ehl what? I am glad to hear, sir, that you are doing well at school. Now-eh? now, are you clever enongh to tell me where was Moses when he pat the candle out ?"
"That dependa, uncle," answered the young gentleman, "on whether he had lighted the candle to see with at night, or by daylight to seal a letter."
"Eh ? very good, now! 'Pon my word, very good," exclaimed Uncle Baggee. "You mast be Lord Chancellor, sir-Lord Ohancellor, one of these days."
"And now, uncle," asked Harry, who was a favourite with the old gentleman, "can you tell me what you do when you put a candle out?"
"Clap an extingnisher on it, you young rogne, to be sure."
"Oh, bat I mean, you cut off its supply of oxygen," said Master Harry.
"Cat off its 0 x'p-eh? what?"
"He means something he heard at the Royal Institution," observed Mre Wilkinson. "He reads a great deal about chemistry, and he attended Professor Faraday's lectures there on the chemical history of a candle, and has been full of it ever since."
"Now, you sir," said Uncle Bagges, "come you here to me, and tell me what you have to say about this chemical, eh ?-or comical ; which ?-this-comical chemical history of a candle."
"Harry, don't be troublesome to your uncle," said Mr Wilkinson.
"Tronblesome? Oh, not at all. I like to hear him. Let him teach his old uncle the comicality and chemicality of a farthing rushlight."
" A wax candle will be nicer and cleaner, ancle, and answer the same parpose. There's one on the mantle-shelf. Let me light it."
"Take sald Mrs
"Now side of M you see?
"Let
"Lool is a little the wax hard, so cup goes wick of a
"Why
" Not the cotto pores, ha they do
"Capi
"Yes, lump-sig cap. N but to se I 'll hold the wick. shows th into vap keeps on flame, an all used is the la flame int and isn't look so
"Hor
"I d looks fla to shelte sideway air ; you is taken of the f
"Take care you don't burn your fiugers, o: set anything on Are," said Mrs Wllkinson.
"Now, uncle," commenced Harry, having drawn his chair to the side of Mr Baggea, "we have got our candie burning. What do you see?"
"Let me put on my spectacles," answered the uncle.
"Look down on the top of the candle around the wick. See, it is a little cup full of melted wax. The heat of the flame has melted the wax just round the wick. The cold air keeps the outside of it hard, so as to make the rim of it. The melted wax in the little cup goes up through the wick to be burned, just as oil does in the wick of a lamp. What do you think makes it go up, uncle?"
"Why-why, the flame draws it up, doesn't it?"
"Not exactly, uncle. It goes up throagh little tiny passages in the cotton wick, because very, very small channels, or pipes, or pores, have the power in themselves of sucking up Hquids. What they do it by is called cap-something."
"Capillary attraction, Harry," suggested Mr Wikinson.
"Yes, that's it; just as a sponge sucks up water, or a bit of lump-sugar the little drop of tea or coffee left in the bottom of a cup. Now I'll blow the candle out ; not to be in the dark, though, but to see into what it is. Look at the smoke rising from the wick. I 'll hold a piece of lighted paper in the smoke, so as not to touch the wick. But see, for all that, the candle lights again. So this shows that the melted wax sucked up through the wick is turned into vapour, and the vapour burns. The heat of the burning vapour keeps on melting more wax, and that is sucked up too within the flame, and turned into vapour and burned, and so on till the wax is all used up, and the candle is gone. So the flume, uncle, you see, is the last of the candle, and the candie seems to go throngh the flame into nothing, although it doesn't, but goes into several thlngs; and isn't it curious, as Professor Faraday said, that the candie shouldlook so splendid and glorious in going away ?"
"How well he remembers, doesn't he ?" observed Mrs Wilkinson.
"I daresay," proceeded Harry, "that the flame of the candle looks flat to you; but if we were to put a lamp-glass over it, so as to shelter it from the dranght, you would see it is round-ronnd sideways, and running up to a peak. It is drawn up by the hot air; you know that hot air always rises, and that is the way smoke is taken up the chimney. What should you think was in the middle of the flame?"
"I should say fire," replied Uncle Bagges.
"Oh, no. The flame is hollow. The bright fame wo see is something no thicker than a thin peel or akin, and it does not touch the wick. Inside of it is the vapour I told you of just now. If you put one end of a bent pipe into the middie of the flame, and let the other end of the pipe dip Into a bottle, the vapour or gas from the candie will mix with the alr there; and if you set fire to the mixture of gas from the candie and air in the bottle, it would go ofr with a bang."
"I wish you 'd do that, Harry," said Master Tom, the younger brother of the juvenile lecturer.
"I want the proper things," answered Harry. "Well, uncle, the flame of the candie is a little shining case, with gas in the inside of it and air on the outside, so that the case of flame is between the air and the gas. The gas keeps going into the flame to burn, and when the candie burns properiy none of the gas ever passes out through the flame, and none of the air ever gets in through the flame to the gas. The greatest heat of the candlo is in this skin, or peel, or case of flame."
"Case of flame!" repeated Mr Bagges. "Livo and learn. I should have thought a candie-flame was thick as my poor old nociule."
"I can show you the contrary," said Harry. "I take this pleco of white paper, look, and hold it a second or two dnwn upon the candle flame, keeping the flrme very steady. Now I 'll rub off the black of the smoke, and-there-yon find that the paper is scorched in the shape of a ring, but inside the ring it is only dirtied, and not singed at all."
"Seeing is believing," remarked the ancle.
"But," proceeded Harry, "there is more in the candle flame than the gas that comes out of the candle. You know a candle will not burn without air. There must be always air aronnd the gas, and touching it like, to make it burn. If a candle bas not got enongh air it goes out, or burms badly, so that some of the vapour inside of the flame comes out through it in the form of smoke, and this is the reason of a candle smoking. So now you know why a great clumsy dip smokes more than a neat wax condle: it is because the thick wick of the dip makes too mach fuel in proportion to the air that can get to it."
"Dear me! Well, I suppose there is a reason for everything," exclaimed the young philosopher's mamma.
"What should you say, now," continued Harry, "if I told you that the smoke that comes out of a candle is the very thing that
makes a by consu small du carbon, made, an where th the gas touch the
"Can brightnes
"Becs make a f liquid-
"Vers ness,"
" Som a flame put into words, n blown th light. B so bright tine pass brightnes
"I wo a bright
" Taki put my the brigh so of con "So Giving li Mr Bagg
"Bat away?
" Now nothing.'
"Oh
somewhe
"Eh?
ised.
" You
makes a candle burn with a bright light? Yes; a candie shines by consuming its own smoke. The smoke of a candie is a cloud of small dust; and the little grains of the dust are bits of charcoal, or carbon, as chemists call it. They are burned the moment they are made, and the place they are made in is the case of flame itseif, where the strongest heat is. The great heat separates them from the gas which comes from the melted wax, and, as soon as they touch the air on the outside of the thin case of flame, they burn."
"Can you tell how it is that the little bits of carbon cause the brightness of the flame?" asked Mr Wilkinson.
"Because they are pieces of solid matter," answered Harry. "To make a fiame shine, there must be always some solid-or at least liquid-matter in it."
"Very good," sald Mr Bagges ; " solid stuff necessary to brightness."
"Some gases and other things," resumed Harry, "that burn with a flame you can hardly see, burn splendidly when something solid is put into them. Oxygen and hydrogen-tell me if I use too hard words, uncle-oxygen and hydrogen gases, if mixed together and blown through a pipe, burn with plenty of heat, but with very little light. But if their flame is blown upon a piece of quicklime, it gets so bright as to be quite dazaling. Make the smoke of oll of turpentine pass through the same flame, and it gives the flame a beautiful brightness directly."
"I wonder," observed Uncle Bagges, " what has made you such a bright youth."
"Taking after my uncle, perhaps," retorted his nephew. "Don't put my candle and.me out. Well, carbon or charcoal is what causes the brightness of all lamps, and candles, and other common lights, so of course there is carbon in what they are all made of."
"So carbon is smoke, eh! and light is owing to your carbon. Giving light out of smoke, eh ! as they say in the classics," observed Mr Bagges.
"But what becomes of the candle," pursued Harry, "as it burns away? where does it go?"
"Nowhere,' said his mamma, "I should think. It barns to nothing."
"Oh dear, no !" said Harry; "every thing-everybody goes somewhere."
"Eh? rather an important consideration that," Mr Bagges moralised.
"You can see it goes into smoke, which makes soot for one thing,"
said Harry. "There are other things it goes Into, not to be seen by only looking, but you can get to see them by taking the right means: just put your hand over the candle, ancle."
"Thank you, young gentleman, I would rather be excused."
"Not close enough down to burn you, uncle ; higher up. . There; you feel a stream of hot air, so something seems to rise from the candle. Suppose you were to put a very long, slender gas-barner over the flame, and let the flame burn just within the end of it, as If it were a chimney, some of the hot atcam would go up and come out at the top, but a sort of dew would be left behind in the glass chimney, if the chimney was cold enough when you put it on. There are ways of collecting this sort of dew, and when it is collected it turns out to be really water. I am not joking, ancle. Water lis one of the thinge which the candle turne into in burning-water coming out of fire. In some lighthouses, Professor Faraday says, they burn up two gallons of oil in a night; and if the windows are cold, the steam from the oil clouds the inside of the windows, and in frosty weather freezes into icc."
"Water ont of a candle, eh !" exclaimed Mr Bagges. "As hard to get, I should have thought, as blood out of a post. Where does it come from?"
"Part from the wax, and part from the air; and yot not a drop of it comes either from the air or the wax. What do you make of that, uncle?"
"Eh? oh! I'm no hand at riddles. Give it up."
"No riddle at all, uncle. That which comes from the wax is a gas called hydrogen. We can obtain it from water by passing the steam of boiling water through a red-hot gun-barrel which contains a quantity of fron wire or turnings, and change them to rust ; and the other part, which comes out of the end of the berrel, will be hydrogen gas, and this part of the water we can set on fire."
"Eh?" cried Mr Bagges. "Upon my wordl One of these days we shall have you setting the river on fire."
"Nothing more easy," said Harry. "When pure hydrogen burns, we get nothing but water. I would like to show you how light thls hydrogen is; and I wish I had a small balioon to fill with it and make it go up to the celiing, or a bagpipe full of it to blow soapbubbles with, and show how mach faster they rise than common ones blown with the breath."
"So do I," interposed Master Tom.
" And so," resumed Harry, " hydrogen, you know, uncle, is part of water, and just ome ninth part."
" ch ? ${ }^{\prime \prime}$
" W water,
"Th
"Go
called o all It 3 n making put int you cat beantif look at first, is alr. T works."
" Ho
" No and oxy is burne that, wh water.
oxygen
" Fro
" Jus bat if t a minut
" W Wilking
"' If
' every and the coverin the com " Th Mr Bag
"Bu is mixe barning
"Eh under c
"I
"As hydrogen is to water, so is a tailor to an ordinary individual, ch ?" Mr Bagges remarked.
"Well, now, then, uncle, If hydrogen is the tallor's part of the water, what are the other parts?"
"There mast be elght of them, to be sure."
"Good again, uncle; and these elght parts are a gas also, that is called oxygen. This is a very curious gas. It won't burn in air at all ltsalf, like gas from a lamp, but it has a wonderful power of making things burn that are lighted and put Into lt. A lighted candlo pat into a jar of oxygen blazes up directly, and is consumed before you can say Jack Robinsen. Charcoal burns away In lt as fact, with beantiful bright sparks; phosphorus with a light that dazzles you to look at; and a plece of fron or steel, just made red-hot at the end first, is burned In oxygen quicker than a stick would be in common air. The experiment of burning things in oxygen beats any fireworks."
"How funny that must bel" exclaimed Tom.
"Now we see, uncie," Harry continued, "that water is hydrogen and oxygen united together; that water is got wherever hydrogen is burned in common air; that a candle won't burn without air; and that, when a candie burns, there is hydrogen in it burning and forming water. Now, then, where does the hydrogen of the candle get the oxygen from to turn into water with it?"
"From the air, ch?"
"Juat so. It is the oxygen in the air that makes things burn; but if the alr were nothing but oxygen, a candle would not last above a minute."
"What a tallow-chandler's bill we should have!" remarked Mrs Wilkinson.
"' If a house were on fire In oxygen,' as Profeasor Faraday aaid, 'every iron bar, or, rather, every plilar, every nail aid fron tool, and the fireplace itself; all the zinc and copper roofs, and leaden coverings, and gutters, and pipes, would consume and barm, increasing the combustion.' "
"That would be, indeed, burning 'like a house on fire,' "observed Mr Bagges.
"But there ls another gas, called nitrogen," said Harry, " which is mixed with the air, and it is this which prevents a candle from burning out too fast."
"Eh?" said Mr Bagges. "Well, I will say I do think we are under considerable obligations to nitrogen."
"I have explained to you, uncle," pursued Harry, "how a candle,
in burning, turns into water. But it turns into something else besides that. The little bits of carbon that I told you about, which are burned in the flame of a candle, and which make the fame b:ight, mingle with the oxygen in burning, and form still another gas, called carbonic acid gas, which ls so destructive of life when we breath it. So you see that a candle flame is vapour burning, and that the vapour, in burning, turns into water and carbonic acid gas."
"Haven't you pretty nearly come to your candle's end?" sald Mr Wilkinson.
" Nearly. I only want to tell uncle that the burning of a candle is almost exactly like our breathing. Breathing is consuming oxygen, only not so fast as burning. In breathing we throw out water in vapour and carbonic acid from our longs, and take oxygen in. Oxygen is as necessary to support the life of the body as it is to keep up the flame of a candle."
"So," said Mr Bagges, " man is a candle, eh? and Shakespeare knew that, I suppose, (as he did most things,) when he wrote,
'Out, out, brief candle!'
Well, well ; we old ones are moulds, and you young squires are dips and rush-lights, eh?, Any more to tell us about the candle?"
"I could tell you a great deal more about oxygen, and hydrogen, and carbon, and water, and breathing, that Professor Faraday said, if I had time; but you should go and hear him yourst' ©, uncle."
"Eh? well, I think I will. Some of us seniors may learn something from a javenile lecture, at any rate, if given by a Faraday. And now, my boy, I will tell you what," added Mr Bagges, "I am very glad to find you so fond of study and science; and you deserve to be encouraged ; and so I'll give you a-what-d'ye-call-it? a galvanic battery on your next birthday; and so much for your teaching your old uncle the chemistry of a candle."

Adapted from Household Words.

COMPOSITION OF SOILS.

Sorss adapted to the growth of plants consist of two principal por-tions-the organic and the inorganic. The organic portion or humus, as it is sometimes called, from a Latin word meaning moist earth, consists of the decayed remains of animal and vegetable mat-
ter, and it forms long cul but in grow or will flo from 4 lhave be Now as it is form of injuriov brown cultiva ciency bonic the roo not ex exclud the air

The soluble saline portion than 9

This
Silica, sand, stone, these 100 g form would to 85 tiles clay o arable 35 pe cent. cent., soils,
$T h$
ter, and varies greatly in quantity in different soils. In peaty soils it forms from 50 to 70 per cent. of the whole weight. In rich and long cultivated soils, it has been known to amount to 25 per cent. ; but in general the proportion is much smaller. Oats and rye will grow on a soil which contalas only $1 \frac{1}{2}$ per cent. of humas; bariey will flourish with only 2 to 3 per cent; good wheat soils require from 4 to 8 per cent. In stiff clayey soils, from 10 to 12 per cent. lhave been found.

Now it mast not be supposed that a soil is fertile in proportion as it is rich in humus. Humas supplies plants with food in the form of carbonic acid ty the roots; dissolved in water, humus acts injuriously; a very small quantity imparts to water a yellow or brown colour, a state in which manares cease to be beneficial to cultivated plants, because thils colouring matter indicates a deficiency of oxygen to complete the conversion of the humus into carbonic acid. In a soil impregnated with this matter in solation, the roots of plants are deprived of oxygen, without which they cannot exist; for a similar reason, the stagnant water of a marshy soil excludes air ; but if the marsh be thoroughly drained, so as to admit the air freely, a fruitful meadow takes its place.

The inorganic portion of the soil consists of two subdivisions, the soluble saline portion, from which the plant obtains nearly all the saline ingredients contained in the ash, and the insoluble earthy portion, which forms th9 great bulk of most soils, being rarely less than 95 lbs . in a bundred of their whole weight.

This earthy constituent consists of three main ingredients:-1, Silica, in the form of sand; 2, Alumina, mixed or combined with sand, as clay; and 3, Lime, in the form of carbonate, as chalk, limestone, \&c. Soils are named according to the proportions in which these three ingredients are mingled together. According to Johnston, 100 grains of dry ordinary soil, containing only 10 of clay, would form a sandy soil; if it contained from 10 to 40 grains of clay, it would make a sandiy loam; from 40 to 70 , a loamy soil; from 70 to 85 , a clay loam; from 85 to 95 , a strong clay fit for making tiles and bricks; if it contain no sand, it would be pure agricaltural clay or pipe-clay. Witi respect to alumina, it rarely happens that arable land (land fit for the plongh,) contains more than from 30 to 35 per cent. of that substance. If a soil contain more than 5 per cent. of carbonate of lime, it is called a marl; if more than 20 per cent., a calcareous soil. Oxide of iron forms 2 or 3 per cent. of sand soils, and in red soils much more.

The sand, lime, clay, oxide of iron, and organic matters mingled
in various proportions, give rise to soils of varions colours. In chalk districts the soil is white; in the coal fields the land is black; in the central part of England dark-red soil prevails; in other districts, the prevailing character of the soil is derived from yellow, white, and brown sands and clays.

The subsoil is of variable character; in some places consisting of porons sand or gravel; in others a light loam; in a third a stiff clay. On removing the soil we get to the solid rock, such as sandstone, limestone, slate-clay, \&c. All kinds of rock by their disintegration will furnish either sandstone, limestone, or clays of different degrees of hardness, or a mixture of two or more of these in different proportions. By the action of winds, rain, and frost, rocks become disintegrated at the surface, seeds get deposited by means of winds, waters, and sometimes animals, and a soil slowly accumulates, partaking necessarily of the chemical character of the rock on which it rests. Thus, on a sandstone rock the soil is sandy; on a claystone, it is more or less a stiff clay; on limestone, it is more or less calcareous; and if the rock be a mixture of these, a similar mixture will be observed in the soil formed by its crumbling. Geology has furnished the important observation, that if the soil be bad on each of two contiguous rocks, it is generally of better quality at the place where the two rocks meet. Thus, where the plastic clay comes in contact with the top of the chalk, there is much better soil than either on the clay or on the chalk; so also where the chalk and the upper green sand mingle, there are fertile patches celebrated for their wheat crops, in the production of which the phosphates in the marls are supposed to have an influence.

MEN OF SCIENCE.

Sir Humphrey Davy, when an apothecary's apprentice, performed his first experiments with instruments of the radest description. He extemporised the greatest part of them himself, out of the motley materials which chance threw in his way. The pots and pans of the kitchen, and the phials and vessels of his master's surgery, were remorselessly put in requisition. It happened that a French vessel was wrecked off the Land's End, and the surgeon escaped, bearing with him his case of instruments, among which was an old-fashioned
glyster a had bee with gre pneumat form the nature a

In lik tific suc of an 0 is a cul chemist subject ber, call binding an Enc having and gav he atten took nc acknow informe express cal stuc suade h into th of the the equ

The twenty Bristol riches I shall had be capabi to the bearin and p Coleri mind ing th mind like
glyster apparatus; this article he presented to Davy, with whom he had become acquainted. The apothecary's apprentice received it with great exultation, and forthwith employed it as a part of a pneumatic apparatus which he contrived, afterward using it to perform the duties of an air-pump in one of his experiments on the nature and sources of heat.

In like manner, Professor Faraday, Sir Humphrey Davy's scientific successor, made his first experiments in electricity by means of an old bottle, while he was still a working bookbinder. And it is a curious fact that Faraday was first attracted to the study of chemistry by hearing one of Sir Humphrey Davy's lestures on the subject at the Royal Institution. A gentleman, who was a member, calling one day at the shop where Faraday was employed in binding books, found him poring over the article "Electricity" in an Encyclopedia placed in his hands to bind. The gentleman having made inquiries, found he was curious about such subjects, and gave him an order of admission to the Royal Institution, where he attended a course of four lectures delivered by Sir Humphrey. He took notes of the lectures, which he showed to the lecturer, who acknowledged their scientific accuracy, and was surprised when informed of the humble position of the reporter. Faraday then expressed his desire to devote himself to the prosecution of chemical stadies, from which Sir Humphrey at first endeavoured to dissuade him; but the young man persisting, he was at length taken into the Royal Institution as an assistant; and eventually the mantle of the brilliant apothecary's boy fell upon the worthy shoulders of the equally brilliant bookbinder's apprentice.

The words which Davy entered in his note-book, when about twenty years of age, working away in Dr Beddoes' laboratory at Bristol, were eminently characteristic of him :-"I have neither riches nor power, nor birth to recommend me, yet, if I live, I trust I shall not be of less service to mankind and my friends than if I had been born with all these advantages." Davy possessed the capability, as Faraday does, of devoting all the powers of his mind to the practical and experimental investigation of a subject in all its bearings ; and such a mind will rarely fail, by dint of mere industry and patient thinking, in producing results of the highest order. Coleridge said of Davy, "There is an energy and elasticity in his mind which enables him to seize on and analyse all questions, pushing them to their legitimate consequences. Every subject in Davy's mind has the principle of vitality. Living thoughts spring up like turf under his feet." Davy, on his part, said of Coleridge,
whose abilities he greatly admired, "With the most exalted genius, enlarged views, sensitive heart, and onlightened mind, he will be the victim of a want of order, precision, and regularity,"

Cuvier, when a youth, was onc day strolling along the sands near Fiquamville, in Normandy, when he observed a cuttle-fish lying stranded on the beach. He was attracted by the curious object, took it home to dissect, and began the study of the mollusca, which ended in his becoming one of the greatest among natural bistorians. In like manuer, Hugh Miller's curiosity was excited by the remarkable traces of extinct sea animals in the old red sandstone on which he worked as a quarryman. He inquired, observed, studied, and became a geologist. "It was the necessity," said he, "which made me a quarrier, that taught me to be a geologist."

FROM "THE DESERTED VILLAGE."

Is all my wanderings round this world of care,
In all my griefs-and God has given me shave-
I still had hopes my latest years to crown,
Amidst these humble bowers to lay me down;
To husband ont life's taper at the close, And keep the flame from wasting by repose.
I still had hopes, (for pride attends us still,)
Amidst the swaius to show my book-learned skill ;
Around my fire an evening group to draw, And tell of all I felt and all 1 saw.

And, as a hare whom hounds and horns pursue, Pants to the place from whence at first he flew, I still had hopes, my long vexations past, Here to return-and dic at home at last !
0 blest retirement ! friend to life's decline !
Retreat from care, that never must be mine! How blest is he who crowns, in shades like these, A yonth of labour with an age of ease;
Who quits a world where strong temptations try, And since 'tis hard to combat, learns to fly.

For him no wretch is born to work and weep, Explore the mine or tempt the dangerous deep:
"What bustling "Knowle peated lie than I di
"They jects. T body kno that knov
"Why pends en either a power, al is what I can powe
"I wi on: "W usefal in but when dashes b see!" sai
"Whe it render banks, it the field.
"Whs her the s she carri see !" sai

No surly porter stands in gullty state, Tu spurn implorlag Famine from the gate. But on he moves to meet his latter end, Angels around befriending virtue's friend; Sinks to the grave with unperceived decay, While resignation gently slopes the way; And all his prospects brightening to the last, His heaven commences ere the world be past!
-Goldsmiti.

KNOWLEDGE.

"What an excellent thing is knowledge!" said a sharp-looking, bustling little man to one who was much older than himself. "Kuowledge is an excellent thing! Knowledge is power!" repeated he; "my boys know more at six and seven years of age than I did at twelve."
"They can read all sorts of books, and talk on all sorts of subjects. The world is a great deal wiser than it used to be. Everybody knows something of everything now. Do you not think, sir, that knowledge is an excellent thing?"
"Why, sir," replied the old man, looking gravely, "that depends entirely upon the use to which it is applied. It may be either a blessing or a curse. Knowledge is only an increase of power, and power may be a bad as well as a good thing." "That is what I cannot understand," said the bustling little man. "How can power be a bad thing?"
"I will tell you," meekly replied the old man; and thus he went on: "When the power of a horse is under restraint, the animal is useful in bearing burdens, drawing loads, and carrying his master ; but when that power is unrestrained, the horse breaks his bridle, dashes his carriage to pieces, or throws his rider." "I see: I see!" said the little man.
"When the water of a pond is properly conducted by trenches, it renders the fields around fertile; but when it bursts through its banks, it sweeps everything before it, and destroys the produce of the field." "I see! I see!" seid the little man; "I see!"

- Whon a ship is steered aright, the sail that she hoists enables her the sooner to get into port; bat if steered wrong, the more sail she carries, the further she will.go out of her coursc." "I sea! I see!" said the little man; "I see clea:ly!".

We have seen in a former lesson, that the immense variety of objects, with which a bountiful Creator has enriched and beautified the world, can be reduced to systems of knowledge under five great heads, commonly called the Natural Sciences. It is true that there exists upon our earth no substance which is not incladed ander two of these sciences, being classed as belonging either to Geology, Botany, Zoology, or Meteorology, and also to Chemistry. But although sabstance or matter is thus, as it were, exhausted, we must always remember that it alonc does not make a world. As man would be nothing without mind, so would matter be actually nothing without power. It is power or force, call it what you will, that first brought together the atoms of which our earth is composed, and that still continues to hold them bound in one; it is power which makes this globe circie throagh the heavens on its course around the revolving sun, and that sends down to us the light and heat which that great luminary bestows: it is power, mysterious power, that excites in the atmosphere the whirlwind and the zephyr, that causes the great sea waves to toss and foam, and that brings to our ears the wonderful thing we call sound. Power, then, is not to be despised. Try to imagine a world without it. Yon cannot; for if there were no power added to matter, the atoms-which you will remember reading about in the paragraph on chemistry-the particles, I say, of which everything in the world crasists, would have nothing to hold them together. You think, perhaps, that the millions of atoms composing the world would fly about in space. Not at all ; for there wonid be no force to make them fly. Then they wonld stand still in the place where they wero created. Not even that; for there
woulc force no 8 In ot force, bnt, mome motio and live perfo of th the e: If to de cally be sa dry, chara which half t unequ much other in the comp a Gr
would be no power to separate them from surrounding space, no force to hinder them from falling away into nothlagness. There is no such thing, therefore, in this world, whatever may be the case in others, as matter unaccompanied by force. Nobody ever saw force, or felt it ; it is invisible and intangible like the human mind; bnt, like that mind also, we can see and feel its effects daily, hourly, momentarily, at all times and in all places. It is visible in the motion of the heavenly bodies, in the shlp sailing before the wind, and in the river dashing over its rocky bed. Every day that we live we feel that it dwells within us by the actions it enables us to perform; and the resistance of the solid earth, the upward growth of the flower, the many motions of the animal creation, all attest the existence of that wonderfal agent,--force.

If power or force can neither be handled nor seen, how are we to describe it and its operations? How can we stady it systematically as we would the objects of the Natural Sciences? What can be said about it? We cannot speak of a red or a blue, a wet or a dry, a hard or a soft force; but there is one way by which we can characterise it, and that is by quantity. We can say of a stone which is thrown only half as far as another, that it is projected with half the force of the other, or, if we are speaking of two walls of unequal strength, we may remark that it would require twice as much force to knock down the one as it would to demolish the other. Thus, we make use, in the first place, of the fraction $\frac{1}{2}$, and, in the second, of the whole number 2 , in describing one force as compared with another. Theso belong to the science of Arithmetic, a Greek word meaning pertaining to numbers.

At other times it is convenient to make a different kind of calculation. Suppose that two boys kick a football at the same moment, and in the same direction. We wish to know how mach force each boy exerted in kicking the ball. But it might happen that we would often require to make such a calculation ; and, therefore, we find a convenient form that will apply to all boys, forces, and footballs, at all times and places. We call the force of one boy's kick a, that of the other boy's b, and the distance the ball was kicked altogether c. Now we can make ever so many forms or formula (the plural of formula, a form or model) out of these three lettera, which cannot fail to be correct, whatever the numbers may be that they stand for. Thus we can say, the force a added to, or plus (a Latin word meaning more) the force b is equal to c, the distance the ball travelled. So, if we take away the force a from c, we will know what the force b is; or if we take b from c_{2}, we will
find the value of the force a. This we express by saying, c minus (a Latin word meaning less) the force a, or with a subtracted from it, is equal to b, and c minus b is equal to a. Instead of nsing the words plus and minus, however, we put between the letters the signs + (plas) and - (minus.) These letters and signs belong to the science of Algebra. Algebra is an Arablo word of uncertain meaning; the Arablans being the first to introduce into Europe the knowledge, which they acquired from the Hindoos, of the science that reasons about quantitios by means of letters, signs, and symbols.

There is still another method of calculation which can be employed to describe a force, both as to lts quantity and its direction. Suppose that our two boys were to strike the football with equal force, but in different directions; the one forward, and the other sideways. The ball would naturally go neither forward nor sideways, but exactly half. way between the two directions, making with each of them what is called an angle, thus (Fig. 1.)-

If, instead of striking with equal force, one of the boys were to hit harder than the other, the ball would go more in his direction, (Fig. 2,) thus making a smaller angle between the course in which he wishes to send it and that which it really takes, while, of course, the angle between the ball's direction and that in while the other boy wished it to go wonld be greater. If, therefore, we could learn the proportions of angles to one another, we could find how much greater the force of the one stroke would be than that of the other. But all this depends apon the science which deals with the measurement of lines, angles, and all figures made up of them; this science is Geometry. The word Geometry, like other names of sciences, is from the Greek, and signifies land-measuring,-the science of Geo-
metry bel now calle

We hav bra, and science ca from the C because upon Matl work of quantlty are of tw called pur that is, n only speal 3 , and 4 , themselve stand for angle, a si angle, line ties are ay sure fields how to fil sciences, t There are sciences t jects whic descriptio in the wo weighing suring the become A knowledg following of a math in earnes respects,

The sis ranked ur signifying Natural 1 of Nature templatio
metry being, in carly times, first applied to that purpose, which is now called the Art of Mensuration, or measuring.

We have thus seen that forces are described by Arithmetic, Algobra, and Geometry ; but these are all Included under one great science called Mathematics. The word Mathematics comes to us from the Greek, and may be fairly translated as the Science, so called, because the ancients, who were devoted to the study of it, looked upon Mathematics as the only true science and the basis or groundwork of all others. Everything belonging to form and position, quantity and number, is embraced by this science. Mathematics are of two kinds: pare, and mixed or applied. When they are called pure, it is in the same seuse as we speak of water being pare, that is, without any mixture of other lugredients. Now we not only speak of 2 books, 3 lessons, 4 scholars, but of the numbers 2 , 3, and 4, without referring to anything apart from the numbers themselves. In Algebra, you know that the letters $a, b, c, \& c$., stand for anything at all; and in Geometry we can speak of an angle, a straight line, or a circle without alluding to any particular angle, line, or circle. Such are Pure Mathematics. But Mathematics are applied to numberless uses; to keep accounts and to measure fields, to direct the sailor in his course, and to teach the soldler how to fire a rifle or point a cannon. These, however, are not sciences, they are arts; for an art is a science put into practice. There are applications of the sclence of Mathematics which are sciences themselves : namely, the application of it to the many objects which nature exhibits to our gaze, and, more especially, to the description of force, that force which lives and moves in everything in the world. Thas mixed up with solids and liquids and gases, weighing the earth, sounding the sea, numbering the stars, and measuring the speed of light and sound, they are no more Pure, but become Applied Mathematics, and give birth to several systems of knowledge which may be called the Mathematical Sciences. In the following short sketch of these you will meet with little or nothing of a mathematical nature; not till you begin to study these sciences in earnest will you have to do with that system which, in many respects, deserves the title of The Science.

The six sciences to which Mathematics are applied are generally ranked under the one great head of Physics, from a Greek word signifying things pertaining to nature, or, as it is oftener called, Natural Philosophy. Natural Philosophy has to deal with the whole of Nature's wide domain, viewing it, not as a passive field for contemplation, but as a scene of restless activity, and attempting to
explain the causes to which that activity is due. Endearour, now, to grasp with your mind this wide domain; strive to include in your thoughts the earth we live upon; the sky above us, with the sun, moon, and stars shining in It ; land and water ; plauts and animais, and the atmosphere with all that it contains. These are all composed of matter that may be seen and felt, whether it be solid matter, as stone and wood ; llquid, as oll and water; or gaseous, as air and coal gas. If we regard mutter as one thing, we find that the Natural World, which is to be carefully distinguished from the Spiritual World, contains but two great elemeuts-matter and force. I have alroady said that we cannot see furce; we can, however, see its effects. When force is applied to a body at rest, the body begins to move, and when a similar force is applied to it in an opposite direction it stops; we thus see the effects of force not only in motion but also in rest. Force is frequently called by the name of one of its effects, and in many books we see the first laws of Physics treated of under the title of Matter and Motion.

Let us enter now upon the consideration of the Mathematical Sciences, and, in order to do so aright, let us first reffect upon the two great subjects of thought, matter and motion. We look up into the heavens, and see the planets moving through space in their paths around the sun; we know, also, that our own carth revolves along with them, while the moon, wheeling round the earth, accompanies it on tts course. Wo ask ourselves the question: what is the reason that the heavenly bodies thas move in regular order through the sky, without anything visible to support or keep them in their places? Upon this globe, the round ball which we inhabit, there are continents, seas, and islands, that constantly revolve with it in all directions, now up and now down, so that we speak of those who live npon the other side of the world as being at our antipodes, or oppo* site onr feet. Why do not these people fall off? What hinders the earth from flying to pieces with so much whirling about? How is it that the water of oceans, lakes, and rivers, does not flow out of the world, when the parts of the earth in which these are situated are turned upside down? There are many other questions suggested by our daily experience. When we throw a stone up in the air, why does it return to the ground and not remain aloft, like the stars? How is it that a ball will not continue to roll along the ground in the same way as the stars perpetually circle round in the sky? These questions are all very important, notwithstanding that they appear so simple, and have engaged the attention of some of the greatest men that ever lived. The science which answers these and similar ques-
tious, plaine Mechan signific because man ox other n the con to the upon b three k flesh; elaztic, \&c. E chanics namely, elastic 1 have al sent an portion which r move a bat the a chair, expect Bat if force re The rea on ever That di of solid is calle Bat 80 throug slides d greater There motion one an and sig

Whe other 1
lions, which describes the properties or qualities of matter, and expiains the laws that govern the force which acts upon it, is called Mechanics. Mechanics is a Greek word, and its primary, or first, signification was, that which pertains to machines or contrivances, because it first denoted the explanation of that power or force which man exerts upon natural objects by means of his arms, hands, and other natural or artificial machines. Now, however, it embraces all the contrivances of nature as well, and, as we have seen, is applied to the science wlich investigates forces and powers, and their action upon bodies, or the laws which govern matter and force. There are three kinds of matter; solld matter, such as earth, stone, wood, and flesh; fluid, as water, quicksilver, sap, and blood; and gaseous or claztic, because it contracts and expands, such as air, gas, vapour, \&c. Each of these kinds of matter has a separate division of mechanics allotted to it. Thus we have three sciences instead of one; namely, mechanics of solids, mechanics of fiuids, and mechanics of elastic bodies. Let us first examine the mechanics of solids. We have already learned that wherever there is matter, force is also present and acting upon it. Now, veo observe that by far the greater portions of this earth, such as its monutains and rocks, the buildings which men have erected apon it, and many similar things, do not move at all. The earth certainly moves and they go along with it, but they do not alter their positions on the earth. If we set down a chair, a book, or other inanimate object, in any place, we naturally expect to find it in the same spot, unless moved by some person. But if force is constantly acting upon objects, (and wo have seen that force revealis its existence by motion,) why do not these objects move? The reason simply is, that they are beset, as it were, by equal forces on every side, and are thus prevented from shifting their position. That division of the science of the mechanics of solids, which treats of solid bodies in a state of rest, and of the forces that keep them so, is culled Statics, a Greek word which means bringing to a standstill. But solid bodies do not always sitand still. The world revolves through space, snow and hail fall from the clouds, a hand-sleigh slides down a hill, and if we strike a ball it will fly forward with greater or less velocity, according to the force with which it is struck. There must, therefore, be a division of the science treating of the motions of solid bodies, and of the infiuenco of moving bodies upon one another. This division is called Dynamics, also from the Greek, and signifying that which pertains to power or force.

When we turn our attention to fluids, we find that water or any other liquid, whether in seas, lakes, and rivers, or in an open vessel,

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences Corporation

such as a basin, tub, or pail, is always level on the surface, whatever inequalities may exist in the bottom or sides of that which contains it. If we take away the sides of the vessel which uphold the liquid, it will immediately give way and flow evenly over the surface of the ground, or, as it is scientifically expressed, will seek its own level. This case is very different from that of solid bodies, which are of ail shapes, square and round, rough and smooth, and can stand alone, even if they are as high as the pyramids of Egypt. There must be some good reason for this, and every one who wishes to know what that reason is, will study the science of Hydrostatics, which is another Greek word equivalent to bringing fluids to a standstill. But this is not all we have to learn concerning fluids. We have seen already, that water moves to find its own level, whether, in order to do so, it has to spread equally over the ground, or to rise through a pipe to the distance of many feet. It can also be made to move upwards, far beyond its own level, in pumps and similar machines. Naturally, however, it moves downwards, and seeks the lowest ground. What causes these varieties of motion? To answer this question satiofactorily, you mast consult some work upon the science of Hydrodynamics, or water-power.

There still remains another department of mechanics; namely, that which deals with gaseous or elastic bodies. This department has a name of its own, Pneumatics, which in the Greek signifies things pertaining to air or wind. Like the mechanics of solids and fluids, it has two divisions. The first of these treats of the properties of air at rest ; such as its pressure, which is about fourteen tons' weight to a man of average size; its weight, which is from eight to nine hundred times less than that of water, and which decreases the higher we ascend in the atmosphere; its elastic nature, so plainly shown by an ordinary pop-gun; and its power of supporting other substances, as in the case of a column of quicksilver in a barometer. This division is called Aerostatics, being applied, not to air alone, but to all gaseous bodies, and bearing in Greek a meaning similar to that of Hydrostatics, merely altering the word fluids to gases. The second division deals with the motions of gases, particularly with air and its mechanical effects, such as the action of wind, exhibited in the turning of windmills, the sailing of ships, blowing down trees, dispersing clouds, and other natural and artificial employments. It sometimes encroaches upon the Science of Meteorology, which was described among the natural sciences. This part of Pneumatics is denominated Aerodynamics, or air-power.
$\therefore \mathrm{Th}$ chant that C science those apple dealing of the In pal ion

WI san, the 81 we nc how what sand are o even posse beyond of wo is th Astr c Jaws, of th

T
cart
the c
$\min x$
men
take
less
to th
boo l
be t
the
omb
copt
sub t
exp

Thus far we have briefly examined the three departments of mochanics with their subdivisions, in all of which the prevaling idea is that of force, a something that can only be described by the one great science of Mathematics. There remain no other natural objects than those included under these three departments, to which force can be applied. Whence, then, do we got our other sciences? One we find dealing with those bodies which lie beyond our atmosphere, outside of the earth ; another treats of that light which all of them, but one In particuiar, send down to our eyes ; and the third, of that application of force to our ears which we call sound.

Who has not, many a time, gased upon the majestic, light-giving sun, the pale moon, and the countiess host of stars that spangle the aky, with feelings of wonder and admiration? How often have we not asked ourselves what all these bright specks in heaven were, how far it was to them, how large they were, how they moved, and what kept them from falling out of their places? These and a thonsand other questions are answered already, while the discoveries that are constantly being made by means of the telescope are satisfying even more curious inquirers than ourselves. The science which possesees so vast a domain, extending millions and millions of miles beyond this little earth, and including immense worlds and systems of worlds with which our small pianet would hardly bear comparison, is that already well known to you as Astronomy. The Greek word Astronomy signifies the lawo of the stars, a law, or rather a series of laws, which could never have been discovered but for the existence of the science of Mathematics.

The sun is the great source of light to the syatem of which our earth forms a part. How great must that force be which sends down the cheering sanbeam through ninety-ive millions of miles, in eight minutes of time, to illumine our earth! You wonder, perhaps, how men could calculate the time that such a very snbtle body as light takes to travel." It is not, however, my intention to tell you in this lesson, which is only designed to stimulate your cariosity with regard to the Mathematical Sciences. All such information you will ind in books written upon the science of Optics, or, as the Greek term may be translated, of things pertaining to sight or vision, for our eyes are the instruments with which we see and study light. This science ombraces everything connected both with light in itself and our perception of it. It tells us what light is, how it moves, through what substances it will pass, and from what bodies it is reflected. It also explains the nature of all optical instrumente, natural and artificial ;
the eje, the telescope, the microscope, spectacies and looking-glasses. Under it also is included the wonderful phenomens or appearances which we know as colours; for a sligie white ray of light is composed of seven-smaller rays, red, orange, yellow, green, blue, indigo, and violet, such as you have seen separated by a glass prism. This science consists of three divisions: Dioptrics, the science of light passing throngh any medium, as air, water, and glass ; Oatoptrics, the science of reflected light, as from a mirror; and Chromatics, or the science of colour. All these are Greek names appropriate to the objects of the optical sciences.

We have now arrived at the last of the Mathematical Sciences ; that, namely, which Investigates the nature and properties of sound. If, by means of a machine called the air-pump, we empty a glass vessel of the air which you know pervades everything, and ring a bell in the empty jar, no sound will be heard. From this it is plain that the presence of air, or some other medium, is necessary in order to constitute sound. The science of Aconstics, a Greek word meaning things pertaining to the sense of hearing, teaches that sound is produced in consequence of the waves excited in the atmosphere or other medium (for water will carry sound) by the moving body, such as a bell, a falling tree, or a gunshot, striking upon the ear in rapid succession. To this science belongs the whole theory of music, vocal and instrumental, with many other interesting sabjects of a similar neture. Aconstics are of two kinds : Diacoustics, or the science which treats of sound conveyed through a medium, as air, water, \&\&c.; and Oatacoustics, dealing with reflected sounds, such as an echo. These words are derived, like most of those with which we have become acquainted in this lesson, from the language of the ancient Greeks, who first studied the subjects to which they are applied; and, as yon will at once perceive, are analogous to those denoting two of the divisions of the science of Optics.

We have now completed our view of the Mathematical Sciences. They are not so easily understood, nor so evident to our senses, as the five Natural Sciences, but the objects with which they have to do are those we meet with every day in our lives, and which, if we be true searchers after knowledge, we will not neglect to look into. Before doing so, however, we must apply ourselves diligently to the study of Pure Mathematics, and, when we have fairly mastered their varions branches, we will find their application to matter and force one of the most ennobling of pursuits and agreeable of all recreations.

The Mathematical Sciences.
I. Pure Mathematicu.

MATTER AND MOTION.

Als things, of the existence of which we are informed by our sensee, bear the general appeilation of matter. The earth which we inhabit, the air which we breathe, the distant planets and suns, and probably the whole of that space in which the heavenly bodies move, are matter, thongh some are mach more solid or dense than others. A stone, for instance, is denser than water; water again is denser than cork; yet all are alike matter. The earth is more solid than the planet Jupiter, whieh has been ascertained to be as light as water ; but still both are allike material.

Matter, in all its forms, is subject to various fixed rules or laws, which have been established by the Creator for very important ends. By one of these it is ordered that every particle or mass of matter possesses a power of attracting other particles or masses. The attractive power of masses of matter is in proportion to their respective sizes, when their densities and distances are the same. Thus, one of those globules of ink which sometimes start from our pen, and settle lightly npon a hair of the paper, will be found to be drawn up towards a larger drop which we carefally bring near to it. Thus, also, we often observe that a little stalk of tea, floating in our cap, no sooner approaches the side than it is suddenly drawn towards it, and settles as closely as it can alongside. All pieces of matter would be observed to exercise the same attractive influence over each other, if in circumstances equally favourable to allow of a movement.

The attraction of a body is greatest in its own immediate nelghbourhood. The attraction has also a reference, not to the surface of the body, bat to its whole mass, the centre being the point where the infuence is strongest. At a point twice as far from the centre as the surface is, the attraction is diminished to a fourth of what it is at the surface; at three times the distance it is oonly a tenth; at four times a sixteenth; at five times a twenty-filth; and so on, the diminution being always as the squares of the distances; that is, the distances multiplied by themselves. The distance from the centre of any mass of matter to its surface is called its semi-diametor; that is, the half of its diameter or thickness. When we wish, therefore, to ascertain the relative amount of the attraction which any mass of matter exercises over another, we have to inquire how many semi-diameters of the larger the smaller is distant from it, and to multiply that number by itself. The result shows how many times the attraction at this distance is less than at the surface. The moon, for instance, is distant 240,000 miles from the earth, or as much as sixty semi-diameters of the earth; 60 multiplied by 60 gives $\mathbf{8 6 0 0}$; consequently, the attraction exercised by the earth upon the moon is a 8600 th part of what it would exercise upon the same mass at its own surface.

When the particles of a body can be suspended in the air in a fluid state, they will, if not under the attractive infuence of some other body, arrange themselves, by virtue of the same law, around a centre, and take a spherical form. Thus a small quantity of dew suspended on the point of a thorn or leaf becomes a globule, because, in that case, the aitraction of the particies towards their own centre is greater than the attraction of any neigbbouring body. In consequence of this law of nature, it is considered probable that the globes of space, including our own earth, were originally in a fluid state-that, in that state, they unavoidably assumed a spherical shape, and were then hardened into their present consistency.

Attraction also bears the name of gravitation, from a word signifying weight, for weight is entirely a result of the laws of attraction.' The attractive influence of the earth pulis down and holds bodies to it. Thus the falling of a body to the earth is only an effect of attraction, and the weight of a body is only a pressure downwards, in obedience to the same law of gravitation. As gravitation acts upon all the particles or atoms of matter in a body, and not upon the mere surface or superficial bulk, those bodies in which matter is most dense, or bave the greatest number of particles, are the heaviest. All falling bodies tend in a direct line to the centre of
the earth, which is the centre of the earth's attractive power; and therefore, whenever we let fall a body from our hand, it proceeds in a straight line down to the surface, where it is arreated. This is well exemplified by the act of dropping a ball from our hands as we stand upon a slope or monutain side. The ball does not fall towards the centre of the mountain, but in the direction of the earth's centre. What we call down and up are merely relative terms. That which is down to us is up in respect to those who live on the opposite side of the giobe, and that which is up to us is down to them.

Attraction, as already stated, is strongest when the bodies ars near each other. As we proceed upwards from the earth, it becomes weaker. For this reason it has not so mnch strength at the top of high mountains as at the level of the sem Weight, consequently, differs in different situations. A ball of iron, weighing a thousand pounds at the level of the sea, if weighed in a spring balance on the top of a mountain four miles high, will be found to have lost two pounds of its weight, in consequence of the attractive power of the earth being diminished to that extent at that greater remoteness from the centre. In consequence of its having begnn to revolve when in a state of fluidity, the earth at its equator has a diameter exceeding that of its poles by twenty-six miles; consequently the surface at the poles is thirteen miles nearer the centre than the surface at the equator, a proportion being observed in all intermediate places. Objects are therefore found to weigh more heavily in a spring balance as we advance from the equator to the poles. From the same cause objects fall more rapidly at the poles than at the equator. Pendulums, being similarly affected, swing. more actively at the poles than at the equator. For this reason pendulums for reguiating the motion of clocks require to be adjusted in length according to the distance of the place where they are used from the equator; because the longer the rod of the pendulum is, it vibrates the slower. A penduiam in Edinburgh would require to be a little longer than one in London, in order to vibrate exactly sixty times in a minnte.

Gravitation, as already mentioned, does not act on the mere surface of bodies, or according to their bulk, but is exerted in reference to all the particles or atoms. individually which compose the mass of a body. In the case of liquids, in which the atoms slightly cohere, the atoms have liberty to spread themselves over the earth, and to seek the lowest situation for repose. In the case of solide a different operation is observabie. In them the particles of matter
rtick so closely together that they are not at liberty to obey the laws of gravitation individually, but rally, as it were, round a common centre, upon which the force of attraction may be considered to act for the general behoof. This common centre, or point, is scientifcaliy calied the centre of gravity. This point in bodies always sceks the lowest level, in the aame manner that water seeks the lowest levol.

The centre of gravity in round, square, or other regular shaped bodies, of uniform density in all their parts, is the centre of these bodies. When a body is shaped Irregularly, or when there are two or more bodies connected, the centre of gravity is the point about which they will balance each other. The disposition which the centre of gravity in bodies has to seek the lowest level is the cause of the tumbling or overturning of bodies. Unless the base be made sufficiently broad to prop ap the bodies, their heaviest part will fall over. Heavily and highiy-loaded coaches and carts frequently orerturn from the raising of their centre of gravity too high, and from the base or wheels of the vehicle not being wide enough to support them when any jar occurs. In the various natural structures dispiayed in the animal and vegetable kingdoms, the centre of gravity is always so situated as to produce a just balance and harmony of parts.

Another of the laws of matter relates to its movements. Rest and motion are equally natural to matter, and both alike result from certain circumstances. Thus, for instance, if a cricket-ball be aliowed to lie upon the ground, it naturally remains at rest. If it be put into motion, it is nataral for it to continue in that motion; in a straight line, until stopped by some resisting force. In the case of a cricket-ball driven by a bat, the air, which is another, though rarer kind of matter, presents a certain amount of resisting force. It encounters another obstruction in the friction or rubbing of its body on the ground; this obstruction being the greater in proportion to the roughness or nnevenness of the ground. When at length as much force has been exerted in stopping it as was exerted in setting it in motion, it comes to a panse. Being ourselves placed in circumstances where the forces just described are constantly operating, we cannot well conceive that it is equally natural for a piece of matter to remain in motion as to remain at rest, for, on account of those forces, we always see motion sooner or later brought to a stop. But. when we conceive a mass of solid matter set in montion through a apace entirely free of all resisting forces, we readily. perceive how natural it is for it to continue in motion, ceeing that,
in such circumatances, an amount of obatruction equal to the impuise is not to be found.

When a body revolves on a centre, the outer parts of course ecquire motion. The tendency of the motion of these parts is, in reailty, to go in a straight line. They are only kept within the circle of revolution because they are fixed. If any picce of the revoiving body were suddenly detached or let loose, it would be seen to fly off in a atraight line, being forced or impelied to do so by the motive power or force already exerted upon it. We may observe this law operating when we whirl a stone round in a sling. The stone is then felt to have an inclination to start away, and if we suddenly let slip the string, it does start away with great apeed. For the tame reason, when a mop is twiried, we see each of the threads flying straight out, and they only cease to do so when the twirling is stopped. Motion thus produced is calied centrifugal (that is, centre-flying) force, in distinction from the power of attraction, which is sometimes called centripetal (centre-seeking) force.

In consequence of centrifugal force, the planets, in wheelling round the ann, have a tendency to dy away into space; and they wonld fly away if they were not retained in a particuiar path or orbit by the attractive power. I: rown outwards by one power, and drawn inwards by another, they have settied into paths whero the two forces balance each other, so that they can neither go farther from the sun nor come nearer to him than they do. In cach case the size of the pianet, the rate of its speed, and its distance from the sun are circumstances exactly suiting each other; and were there the least change in one, the rest would need to be changed to preserve the economy of the planet. Were the earth, for instance, made a little larger, and its attraction to the sun thas increased; it would require either to move quicker or to remove to a greater distance, in order to keep from falling into the sun. Or were the distance of the earth from the sun to be lessened, the earth would equally require to move quicker in order to keep itself away from the sun. In fact, the earth is, at one time of the year, a little nearer the sun than at another time, and, when nearer; it does move more quickly, and thus maintains itself in its appointed course.

There are many other equally nice arrangements in the planetary aystem, which show that it must have originated in accordauce with fixed laws in nature, and that by these laws it is still sustained. It is supposed that the planets and the san were originally one soft. mass; and that the planets were portions disengaged from the mass,

Which, by the law of attraction, necensarily assumed a globular shape, and, by the laws of attraction and motion together, began a circular revolution in certain orbits. The laws by which these resuite are supposed to have been brought abont appear very simple, for wo see them operating in many familiar things on earth; but this apparont simplicity only serves the more expresolvely to show the greatness of that power which created both matter and its laws.

All objecte connected with moving bodies possess a motion in commion with these bodies. Thus, all thinge on the earth, inclading the atmosphere, bave a motion in common with the earth; a person driving in a chaise has a motion in common with the chaise; a person in a moving ressel at sea has a motion in common with the vessel. In all cases, the motion which is given to any large body passes also into the amaller bodies about or connected with it. This participation of motion in all bodies moving in connected masses forms one of the most remarkable phenomeua in nature. In consequence of it, ail objecte whatever'keep their proper places in or about the large moving bodies with which they are in contact, and hence no confusion arises in the relative oltuation of objects on the earth from lite motion.

For example, when we leap atraight upwards from the ground, the earth does not sllip away from below us; we fall on the spot whence wo arose. Sitting in the cabin of a moving vessel, if we let a amall object drop from our hand to the floor, it falis on a point in the floor immediately below; the floor dnes not leave it behind. The reason in, that the amall objects poesess an onward motion which is derivod from the larger, and which is retained daring their descent. This onward motion remains in the disengaged bodies till they moet some new Impression of force-sometbing to stop them. If we attempt to leap from a moving body, such as a coach or boat, we continue to possess the motion which we previously had until we reach the earth, when we receive a shock by the destruction of the motion we possessed. If the motion of the vehlcie be very quick at the time, it is scarcely possible, in making such a leap, to avoid being pitched forward, by the apper part of our bodies retaining the motion which our feet lose on resting on the ground. The motion we possess in common with the earth, and the perfect smoothness of the earth's motion, render us incapable of feeling our own motion, or of seeing the earth move along with us. Also, in driving in a coach, and looking at the road-side, we feel as if it were not the coach which was ranning but the road, which seems to be moving past us.

By the application of a motive or moving force to solid objecta, anch as lustruments, tools, or machines, very wonderfal resulte are effected; at, for oxample, when we see a man ualing a bar or beam to ralse a block of wood or stone, which he could not lift by bis hande alone. The bar which is used for purposes of this nature is called a lever, from a French word signifying to raise. The object which sapports the lever where it presses against the ground is called the prop or fulcrum. By lengthening the lever betwixt the prop and the handie, wo can Increase the efiect, or the power of lining to any extent; but the longer or more powerfal we make the lever, the longer time is occupied in working it. In this manner power is galned by a sacrifice of time, or a loss of quickness ; and if we wioh quicknese, we mast exert the greater force in proportion. Practlcally, the loss of time is of no importance, becaase it would often be quite imposesible to raise heavy weights by the united efforts of men's hands, without the ald of some kind of instruments or machines. The parpose of machinery, therefore, is to lesson and aid human labour. At an inconsiderable expense, and with a small degree of trouble in attending to it, a machine may be made to do the work of ten, fifty, or perhaps as many as five hundred men; and the work $s 0$ simply effected by inanimate mechanism serves to cheapen and extend the comforts and luxiries of life to the great body of the people.

The operations of motive forces in connexion with solid bodies form the subject of the sclence of Mechaxics.
-Introduction to Sciences.

THE INVENTIONS OF ARCHIMEDES.

Ir is scarcely possible to view the vast steam-ships of our day without reflecting that to a great master of mechanics, upwards of 2000 years since, we in part owe the invention of the machine by which these mighty vessels are propelied apon the wide world of waters. This power is an application of "the Screw of Archimedes," the most ceiebrated of the Greek geometricians. He was born In Sicily, in the Corinthian colony of Syracuse, in the year 287 b.c., and, when a very young man, was fortunate enough to enjoy the patronage of his relative Hiero, the reigning prince of Syracuse.

The anclents attribute to Archimedes more than forty mechanical inventions-among which are the endiens screw; the comblation of pulleys; an hydranlic organ, according to Tertullian; a machiao called the heliz, or serew, for lannching abipa; and a machine called loculus, which appears to have consisted of forty piecea, by the patting together of which various objects could be framed, and which was usod by boys as a sort of artificial memory.

Archimedes is aald to have obtained the friendohip and confidence of Hiero by the following incident. The king had delivered a cortain weight of gold to a workman to bo made into a crown. When the crown was made and sent to the king, a surpicion arose in the royal mind that the gold had been adalterated by the alloy of a basor metal, and he applied to Archimedes for bis assiatance in detecting the Impostare: the difficulty was to measare the bulk of the crown without meiling it into a regular figare; for silver being, weight for weight, of greater bulk than gold, any alloy of the former in place of an equal weight of the latter would necessarily increaso the bulk of the crown; and at that time there was no known means of testing the parity of metal. Archimeden, after many unsuccessful attempts, was about to abandon the object altogether, when the following circumatance anggested to his discerning and prepared mind a train of thonght which led to the solation of the difieulty. Stepping into his bath one day, as was his enstom, his mind doubtlesa fixed on the object of his research, he chanced to observe that, the bath being fall, a quantity of water of the same bulk as bis body must fiow over before he cuald immerse himself. He probably perceived that any other body of the same bulk would have raised the water equally; but that another body of the same weight, but leas bulky, would not have produced so great an effect. In the words of Vitruvius, 'as soon as he had hit upon this method of detection, he did not walt a moment, bat jumped joyfally out of the bath, and running forthwith towards his own house, called out with a loud voice that he had found what he sought. For as be ran he called out, in Greek, Eurekal Eureka! 'I have found it out I I have found it out!' When his emotion had sobered down, he proceeded to investigate the subject calmly. He procured two masses of metal, each of equal weight with the crown-one of gold, and the other of silver; and having filied a vessel very accurately with water, he planged into it the silver, and marked the oxact quantity of water that overflowed. He then treated the gold in the same manner, and observed that a less quantity of water overflowed than before. IIe next planged the crown into the same vescel full of water, and observed that it

disp

 the 1 gold ged nevewat as Inga whil
wat
held
mas imn luti milt
displaced more of the fuld than the gold had done, and lease than the allver ; by which he inferred that the crown was neither pure gold nor pure ailver, but a mixture of both. Hieru was so gratided with this result, as to declare that from that moment he could never refuse to believe anything Archimedes told him.

Travelling into Egypt, and observing the necensity of raising the water of the Nile to points which the river did not reach, as well as the diffleulty of clearing the land from the periodical overflowIngs of the Nile, Archimedes invented for this purpose the screw which bears his name. It was likewise ased as a pamp to clear water from the holds of vessels; and the name of Arcbimedes was beld in great veneration by seamen on this acconat. The screw may be briefly described as a long apiral with its lower extremity immersed in the water, which, risiog along the channels by the revolution of the machine on Its axis, is discharged at the upper extremity. When applied to the propulsion of steam-vessels, the screw in horizontal; and, being pat in motion by a steam engine, drives the water backwards, when lis reaction, or retarn, propels the vessel.

The mechanical ingenuity of Archimedes was next displayed in the various machinee which he constracted for the defence of Syracuse during a three years' slege by the Romang. Among these inventions were catapnits for throwing arrows, and balistio for throwing masses of stone; and Jron hands or hooks attuched to chains, thrown to catch the prows of the enemy's vessela, and then overturn them. He is likewise stated to have set their vessels on fire by burning-glasses ; this, however, rests upon modern authority, and Archimedes is rather belleved to have set the ships on fire by machines for throwing lighted materials.

After the storming of Syracnse, Archimedes was killed by a Roman soldier, who did not know who he was. The soldier inquired; but the philosopher, being intent apon a problem, begged that his diagram might not be disturbed; upon which the soldier pat him to death.

To Archimedes is attributed the apothegm: "Give me a lever long enongh, and a prop strong enough, and with my own weight I will move the world." This arose from his knowledge of the pnssible effects of machinery; but however it might astonish a Greek of his day, it would now be admitted to be as theoretically possible $2 s$ it is practically impossible. Archimedes would hare required to move. with the velocity of a cannon-ball for millions of ages to alter the position of the earth by the amallest part of an incl. In mathematical truth, however, the feat is performed by every man who
leaps from the ground; for he kicks the world away when he risea, and attracts it again when he falis back.

Under the superintendence of Archimedes was built the renowned Galley for Hiero. It was constructed to half its height, by $\mathbf{3 0 0}$ master workmen and their servants, in six months. Hiero then directed that the vessel should be perfected afloat; but how to get the vast pile into the water the builders knew not, till Archimedes invented his engine called the Helix, by which, with the assistance of very few hands, he drew the ship into the sea, where it was completed in six months. The ship consumed wood enough to baild sixty lerge galleys; it bad twenty tiers of oars, and three decks ; the middle deck had on each side fifteen dining apartments, besides other chamivers, laxnrionsly farnished, and floors paved with mosaics of the story of the Iliad. On the upper deck were gardens with arbours of ivy and vines; and bere was a tempie of Venus, paved with agates, and roofed with Cyprus wood; it was richly adorned with pictures and statues, and farnished with conches and drinking vessels. Adjoining was an apartment of box-wood, with a clock in the ceiling, in imitation of the great dial at Syracuse; and here was a hage bath set with gems called Tauromenites. There were also, on each side of this deck, cabins for the marine soldiers, and twenty stables for horses; in the forecastle was a fresh-water cistern, which held 253 hogsheads; and near it was a large tank of sea-water, in which fish were kept. From the ship's sides projected ovens, kitchens, mills, and other offlices, built apon beams, each supported by a carved image nine feet high. Around the deck were eight wooden towers, from each of which was raised a breastwork full of loopholes, whence an enemy might be annoyed with stones; each tower being guarded by four armed soldiers and two archers. On this upper deck was also placed the machine invented by Archimedes to fling stones of 300 pounds' weight, and darts eighteen feet long, to the distance of 120 paces; while each of the three masts had two engines for throwing stones. The ship was furnished with four anchors of wood, and eight of iron; and "the Water-Screw" of Archimedes, already mentioned, was used instead of a pump for the vast ship; by the help of which one man might easily and speedily drain out the water, though it were very deep. The whole ship's company consisted of an immense maltitude, there being in the forecastle alone 600 seamen. There were placed on board her 60,000 bushels of corn, 10,000 barrels of salt fish, and 20,000 barrels of flesh, besides the provisions for her company. She was at first called the Syracuse, bat afterwards the

Alexandria. The builder was Archias, the Corinthian shipwright. The vessel appears to have been armed for war, and sumptaqusly fitted for a pleasure-yacht, yet was ultimately used to carry corn. The timber for the mainmast, after being in vain sought for in Italy, was brought from England. The dimensions are not recorded ; but they must have exceeded those of any ship of the present day: indeed, Hiero, finding that none of the surrounding harbours sufficed to receive his vast ship, loaded it with corn, and presented the vessel with its cargo to Ptolemy, king of Egypt; and on arriving at Alexandria, it was hanled ashore, and nothing more is recorded respecting it. A most elaborate description of this vast ship has been preserved to us by Athenæus, and translated into English by Burchett, in his "Naval Transactions."

Archimedes has been styled the Homer of Geometry; yet it mast not be concealed that he fell into the prevailing error of the ancient philosophers-that geometry was degraded by being employed to produce anything nseful. "It was with difficulty," says Lord Macaulay, "that he was induced to stoop from speculation to practice. He was half ashamed of those irventions which were the fronder of hostile nations, and always spoke of them slightingly, as mere amusements, as trifles in which a mathematician might be suffered to relax his mind after an intense application to the higher parts of this science."
-Tmbs.

FAME.

AH ! who can tell how hard it is to climb
The steep where Fame's prond temple shines afar; Ah! who can tell how many a soul sublime Has felt the influence of malignant star, And waged with Fortnne an eternal war; Checked by the scoff of Pride, by Envy's frown, And Poverty's nnconquerable bar, In life's low vale remote has pined alone, Then dropped into the grave, unpitied and unknown !

And yet the languor of inglorions days Not equally oppressive is to all; Him, who ne'er listened to the voice of Praise, The silence of neglect can ne'er appal.

There are, who, deaf to mad Ambition's call,

 Would shrink to hear the obstreperous trump of Fame; Supremely biest, if to their portion fall Health, competence, and peace. Nor higher aim Had he, whose simple tale these artlees linen proclaim.
SPRINGS AND FOUNTAINS.

The quantity of water evaporated by the agency of heat from the broad surface of seas, lakes, and rivers, is thought to be sufficient to account for the existence of our multitudinous springs. It first hungs suspended in mid-air as invisible vapour : then, by the operation of other wonderful forces of nature, electricity, a lowering of the temperature, \&c., this floating vapour becomes condensed into the perceptible forms of cloud, mist, fog, or into the sterner shapes of snow, hail, and rain. This constant precipitation is undoubtediy proportioned to the general amonnt of evaporation; and thus the beantifully adjusted balance between demand and supply is perfect. In order to account for the force with which natural fountains break forth and claim the name of springs, it must be remembered that if the water condensed on the surface of lofty regions find its way through a porons soil, it may filter downward to a great depth, until it meets with some opposing barrier of impenetrable hardness. The pressure from above now becomes irresistibly great; and the water at length forces for itself a way of escape, bounding out to the surface as a sparkling and living spring.

There is one beautiful phenomenon which may here be alluded to-the "Fountain Tree" of Ferro, the most westerly of the Canary Islands. This particniar island is entirely destitute of springs, and, therefore, Nature is tanght by the kind Creator to supply the fatal deficiency by means of a remarkable tree which grows in a fissure of the rocks. A moisture-laden cloud is often seen hovering above the branches; these attract the vapours; they are distilled into drops, and a little series of sparkling runlets falis off from the points of the long, straight, evergreen leaves. The natives of the island constantly resort to this gracefal natural fountain, just as the inhabitants of other lands flock to the springs with their empty urns, pitchers, and pails.
hal
ter
ant
pat
im
for
sio
gla
the
has
rea
pri
heics
anc
the
ove
eng
mos
hyd
cost
ing
hill
ben
ing
bat
leap
con
of t
of 1
four
fond
the
a h
of 1
bur
fro
hig
and of

And now for man's share in the work. A hidden force of water has been pressing downward from a great height. It has encountered an opposition of more than common sternness. Man comes and bores a way down into the naturul reservoir, and the emancipated stream quickly rises to the surface as a sober, steady well, or, impelled by the intense pressure from the heights, gushes eagerly forth as a leaping and glistening fountain. It is with this last division of our subject that we have now to deal. Men are only too giad to receive this bountiful gift from the heart of the hills, whether the fountain be one of Nature's own forming, or whether artificial aid has intervened; and varions have been the contrivances both for its reception and for its gaidance into the right channel. The acting principle is the same in all, that water, flowing from a superior height through a confined channel, always seeks its own level. The ancient Romans were not ignorant of this universal principle, which they applied to the sapply of their cities with water; but they overlaid it with a cumbrous machinery, which shows that any engineer of our numerous water companies might have given the most skilful of these masters of the world an instructive lesson in hydrostatics. He would have told them that the magnificent and costly aqueduct which they were laboriously leading from the barsting urn of some fabled Naiad in the distant ravine of the purple hills was wholly unneeded, and that he could lay down such arteries beneath the "scarf-skin" of their plains as would make an abounding stream overflow the long ranges of their mosaic-paved public baths, fill every private bath in their thousand marble homes, and leap out in the sculptared fountains which often adorned the central court in their houses. That the Romans had some small foretaste of the system of conveying water by pipes is proved amid the rains of Pompeii, where a considerable number of leaden pipes has been found, while the almost perfect remains of some of their public fountains, and even the frescoed designs upon the walls, show that the principle of the ascending tendency of water, when flowing from a higher source, was not wholly unknown to these luxurious citizens of Magna Grecia. Bronze figures have been disinterred from the buried city, which had evidently taken their part in spoating water from the ornamental fountains. In Rome there was an officer of high rank who was appointed to superintend the supply of water; and the citizens appear to have paid a high price for the privilege of having it conveyed into their houses. Agrippa is recorded to have presented to his city 105 fountains in a single year, besides 70 ponds of water, and 130 reservoirs. Even the provinces, which
were remote from the capital, were endowed with splendid aquedacts and their attendant luxaries of baths and foantains; for it was the wise policy of Rome to Insure the willing sabmission of her prostrate conquests by making the people sharers in the benefits of her own more advanced civilisation. Many of the beantifal cities of Greece were sparkling with fountuins. At Corinth, a statne of Pegasus was perpetnally bathing its light feet in a flow of water; and a bronze Neptune, seated on the scaly back of a dolphin, superintended a gushing fountain which spouted from the creature's month.

This paper may be closed by a reference to a brilliant illustration of the universal law by which water struggles to attain its own level. A great aqueduct has been made to convey a whole river of water into the city of New York. This river, the Croton, called by the Indians "The Ciear Water," is dammed ap at its source, forty miles from the city, and forms there a vast reservoir amid its native hills and woods. A great water-conrse, built of squared stones, and mounted on piers of stone-work, traverses these forty intervening miles, now striding boidly across a valley, now penetrating a hiil, and again stepping bravely over a river. The channel is covered over throughout its adventurous course, and it pours "a mile and a half of fine water" into New York every hotr. This is truly a Roman-like work; but now for the impromptu fountain. Just where the aqueduct steps across a valley, the engineer perforated the water-conrse by making an opening of about seven inches in diameter; and instantly there leaped up toward the sky a magnificent column of water, 115 feet high, forming, perhaps, the very grandest jet deau (water-spout) which has ever been beheld. The pillar of water spread itself out like a tree waved by the winds, and shivered itself into a thousand leaflets of diamond spray, shaking its glittering boughs amonget the quiet woods and the sleeping hills.
-Leisure Hour.

[^0]: *Slavery is now abolished in the United States.

[^1]: " A little learning is a dangerous thing -
 Drink deep, or taste not the Pierian spring."

[^2]: * This little plant is to be found abundantly in the temperate regions of the North American continent.

[^3]: * Britain ; but applicable to Britinh Amerion in mady particulars.

[^4]: - More than possible; over twelve apecien are found in many parta of Canada.

[^5]: -Sharpe's Magazine.

