IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences
Corporation

23 WEST MAIN STREET WEESTER, N.Y. 14580 (716) 872-4503

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique. which may alter any of the images in the reproduction, or which may significantly change the usual mothod of filming, are checked below.

Coloured covers/
Couverture de coulour
Covers damaged/
Couverture endommagde
Covers restored and/or laminated/
Couverture restaurie et/ou pelliculce
Cover title missing/
Le titre de couverture manque

Coloured maps/
Cartes géographiques en coulour

Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrationa/
Planches et/ou illustrations en couleur
Bound with other material/
Relid avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
La re liure serrée peut causer de l'ombre ou de ta distorsion le long de le marge intbrieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutces lors d'une restauration apparaissent dans io texte, mais, lorsque cela dtait possible, ces pages n'ont pas óté filmbes.

L'Inatitut a microfilmd to meilleur exemplaire qu'll lui a dte possible de se procurar. Les details de cot oxemplaire qui sont peut-Atre uniques du polist de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans le méthode normale de filmage sont indiquós ci-dessous.

Coloured pages/
Pages de couleur
Pages damagad/
Pages endommagdes

Pages restored and/or laminated/
Pages restaureses et/ou pelliculdes

Pages discoloured, atained or foxed/
Pages décolordes, tachetées ou piqubesPages detached/
Pages dótachées

Showthrough/
Transparence
Quality of print varies/
Qualite indgale de l'impression

Includes supplementary material/
Comprend du matériel supplémentaire
Only edition available/
Seule édition disponible
Pages wholly or pertially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image/
Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure. etc.. ont d́t́ filmbes à nouveau de façon à obtenir le meilleure image possible.

This item is filmed at the reduction ratio checked below/
Ce document est filmé au teux de reduction indiqué ci-dessous.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the aymbol ∇ (meaning "END"). whichever appliee.

Maps, plates, charts, otc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrama illustrate the method:

L'oxemplaire filme fut reprodut grace dio génóroaité de:

> D. B. Weldon Library
> University of Wertern Ontario
> (Reglond History Room)

Les images suivantes ont fté reprodultes avec is pius grand soin, compte tenu de le condition ot de le nettet' de l'exempiaire films, ot en conformité avec les conditiona du contrat de filmage.

Lee exemplaires originaux dont is couverture on papier est imprimée sont filmdis en commençant par lo premior plat ot en terminant soit par ia dernidre page qui comporte une empreinte d'impression ou d'illustration, solt par ie second plat, selon le cas. Tous les autres exempiaires originaux sont filimés on commençant par ia premidre page qui comporte une emprointe d'impression ou d'illustration ot on torminant par la dernidre page qui comporto une telle emprointe.

Un des symboies sulvants apparaitra sur ia dernidre image de chaque microfiche, selon ie cas: io symbole \rightarrow signific "A SUIVRE", le symbole ∇ signifie "FIN".

Les cartes, planches, tabioaux, otc., peuvent atre filméol des taux de réduction diffórents. Lorsque te document est trop grand pour itre reprodult on un soul clichs, il oat flime a partir de l'angle supdrieur gauche, de gauche à droite. at de haut on bas, on pronant io nombre d'images nd́cessaire. Les diagrammes suivants illuatrent is mothode.

LOVELL'S BERIEE OF SOHOOL BOOKS.

ELEMENTS

07

AL G E BRA;

DESIOAED FOR TER TED OF

canadian gramar and coimon sceoois.

BY JOHN HERBERT SANGSTER,M.A., IATHENEATIOAL MABTER AND LEOTUREH IN OHIFISTRT AND NATURAL PEILOSOREY IN THE NORMAL GOHOOL FOR UPPZR OANADA.

解 outrexal:
PRINTED AND PUBLISHED BY JOHN LOVELL, : AND SOLD BY R. MLLEER.

Traxunta:
ADAM MILLER, 62 KING STREET EAST.
1864.

Tntered, acoording to the Act of the Provincial Parliament, in the yete one thousend dight hundred and olxty-foar, by Joan Lovili, in the Office of the Registrar of the Province of Oanada.

Errata.
Page 68 last line for $x+3 x-4$ read $x^{2}+3 x-4$.
" 106 Quest. 18 " 0
$"=0$.

- 123 " 1^{11490}
(1) $49 \mathrm{c}^{2}$
" 153 " 1 " $x+2$
" $x+1$
4165
" $12 "+2 x^{*}$
" $-2 x^{2}$
- 170
"
36 " (4x)
" $\left(4 x^{2}+3\right)^{=a}$
" 107 " 1 " $x \boldsymbol{x}$
" 251 " 21 " 3
$11.201^{\prime \prime} 84^{\prime \prime}$ pail with
" 286 " 684 finth
$6 x \propto \sqrt{y}$
U 9
* paid with 100 pieces in 6. fourth

T of that auth
othe suit \mathbf{T} fitab and be fo requ the 1 tinue

PREFACE.

The following Treatise is respectfully submitted by the author to the towchers of Canada, in the confident belicf that it will materially lighten the labor of the instructor, and, at the same time, facilitate the pupil's progress and his thorough comprehension of the principles of the science of algebra. It is the earnest hope of the anther that it may meet with the same flattering reception, and very general introduction into the schools of the country, that his fellow-teachers have so kindly accorded to his previous productions.

The order of succession of the different chapters depends of course mainly on their importance and difficulty, and that here adopted is the one that appears preferable to the author; but, as every chapter is nearly independent of the others, the teacher can easily modify the arrangement to suit himself.

The aim of the work is to embrace all that can be profitably discussed in the time usually allotted to a common and grammar school course; and; indeed, this volume will be found to contain at least as much of the subject, as is required to be read for the ordinàry degree of \mathbf{B}. A. in the British and Canadian Universities. Chapters on continued fractions, logarithmic series, probabilities, and
the general theory of equations were prepared, bat, in accordance with the advice of some of the leading educators of the province, they were omitted as unsuited to the design of the work, and to the requirements of common or grammar schools.

The author has approached the subject with the conviction, founded on many years' experience as a teacher of mathematios, that the science of algebra tries, beyond all others, the powers and patience of the learner. The pupil is commonly introduced to it while his mind is yet in an undevaloped state; its language is new to him, and he is unprepared by previous training to comprehend its abstractions. The difficulties which thus beset his path are, of course, for the most part, only to be overcome by his own perseverrice, aided by the knowledge and ingenuity of his instructor, yet it appears to the author that very much also depends upon the style and thoroughness and adaptation of the text-book employed. Accordingly in the preparation of this polume no pains have been spared in rendering the statement of principles, and the demonstration of theorems as clear and concise as possible, or in fully illustrating each rule by numerous examples carefully worked out and explained, or in selecting and arranging the examples of an exercise'so as to begin with the simple, and gradually pass on to the more difficult.

The author hopes that while he has insisted upon great thoroughness by numerous and appropriate problems, he has, at the same time, rendered the pupil's advancement easy and certain by the many explanations and illustrations introduced.

The great majority of the problems and exercises are new,-being now published for the first time, but there are
but, in ducators e design or gramthe coneacher of yond all The pupil et in an nd he is end its his path come by d ingenhor that oughness cordingly n spared monstrale, or in carefully ging the simple,
d upon roblems, acement illustra-
ises are here are
also a number already familiar to the teacher. In aeleoting these the author has, he believes, in every case rigidly adhered to the rule, adopted by Todhunter, Colenso, and others, of not inserting a problem unless it had already appeared in at least two British authors-in which case it is to be regarded as common property.

Recognizing the fact that very many of the pupils of our common and grammar schools study with the view of completing their education at some one of our excellent Canadian universities, the author has, at the end of the book, introduced a oollection of problems and theorems, embracing among others all or nearly all of the pass and honor work in algebra which has been given on the examination papers of the university of Toronto during the last eight or ten years. These will serve to shew the pupil the style of questions he is expected to answer at our universities, and will, at the same time, in a measure prepare him for his examinations.

As no teacher would think of introducing his pupils to arithmetic without, to some extent at least, first drilling them in notation and numeration, so no intelligent teacher will neglect to drill his pupils in algebraic notation and numeration before introducing them to the ordinary rules. The teacher is respectfully referred to exercises ii, iii, and iv, and is recommended to extend and continue these until his pupil is thoroughly and practically acquainted with the definitions."
Well knowing the great inconvenience to both teacher and pupils of inaccuracies and mistakes in a work on algebra, the author has subjected this treatise to a searching revision; and he believes that the few correstions marked on the back of the title page are the only errors in the
better-preas of the exeroises and answers of the work The teacher is respeotfully recommended to cause his pupils to make the six or eight trifing alterations there indicated in the body of the work with pen and ink.

A key, containing full solutions to all the more difficult problems, is in press and will be issued almost immediately.

Toronto, January, 1864.

Def Axi Bxe Add Subt Use Milt Divi Divia Synt Theo Fact Grea Least Fract Redu Addi Multi Divis Redu Misce Simpl
Probl
Simul
Mlimil
Wlimir

CONTENTS.

Pagl
Definitions 10
Axioms 16
Szercises on Definitions, \&c 17
Addition 22
Subtraction 25
Use of Brackets 27
Miltiplication 33
Division 37
Division and Multiplication by detached coeflicients 42
Synthetic Division 44
Theorems in Division and Multiplication 46
Factoring 61
Greatest Common Measure 57
Least Common Multiple. 64
Fractions 66
Reduction of Fractions 68
Addition and Subtraction of Fractions 72
Multipiication of Fractions 78
Division of Fractions, 76
Reduction of Complex Fractions 76
Miscellaneous Theorems in Fractions 78
Simple Equations 81
Problems in Simple. Equations 89
Simultaneous Equations of two unknown quantities 100
Elimination by. Addition or Sabtraction. $10 i$
Ilimination by Substitution 108
Plan
Elimination by Comparison 104
Simultaneons Equations of more than two unknowns. 106
Problems producing Simultaneous Equations 109
Involution 114
Involution of Monomials 116
Involution of Binomials 116
Involution of Polynomials. 117
Evolution of Monomials 118
Evolution of Polynomials 120
Extraction of roots in general 129
Theory of Indices 130
Surds. 137
Reduction of Surds 189
Addition and Subtraction of Surds 140
Multiplication and Division of Surds 141
Rationalization of Surds. 141
Theorems in Surds 144
Square root of Binomial Surds 147
Imaginary Quantities 148
Quadratic Equations. 150
Theory of Quadratic Equations 161
Equations which may be solved like Quadratics. 165
Simultaneous Equations of the Second degree 171
Problems producing Quadratic Equations 178
Ratio 185
Proportion 188
Variation 192
Arithmetical Progression 198
Geometrical Progression 204
Harmonical Progression 209
Permutations 213
Combinations 217
Binomial Theorem 221
Notation and Properties of Numbers. 235
Inequalities 240
Vanishing Fractions 243
Indeterminate Equations 244
Miscellaneous Exercises 252
Answers to Exercises 270

Paen

ALGEBRA.

SECTION I.

dexinitions and axions.

1. Algebra is Arithmetio generalized; or, in other words, it is a kind of Arithmetic in which the numbersior. quantitices under consideration are reprecented by latters, and the operations to be performed on these indicated by signs.
2. The symbols employed in Algebra are of five kinds vis. :-

> 1st. Symbols of Quantity.
> 2nd. Symbols of Operation. 3rd. Symbols of Relation. 4th. Symbols of Aggregation. Bth. Symbols of Deduction.

sYMBOLS OF QUANTITY.

8. The symbols of quantity are the Arabic numorals and the letters of the alphabet.
9. Algebraic quantities are of two kinds, viz. :1st. Known or determined quantities, or those which may be assumed to be of any value whatever.
2nd. Unknovon or undeternvined quantities, or those whose value oan be determined only by actually performing the operations involved in the solution of the problem, \&c.
10. The first letters of the alphabet, a, b, c, d, \&e., are used to represent known quantities, and the last letters of the alphabet, x, y, z, w, v, \&co., are employed to ropresent unlnowon quantities.
11. The symbol 0 is called zero, and indicates the absence of quantity, or it represents a quantity infinitely mall, i.e. less than any assignable quantity.
12. The symbol \propto is called infinity, and denotes a quantity infinitely great, i.e: greater than any assignable quantity.

Nors.-The aymbol \propto is also employed to indicate that one quantity varies as another. [See the mection on Variation.]

GYMBOLS OF OPERATION.

8. The symbols of oparation are $+,-, \sim, x, \div, 2,4,4$, to. i, $, \frac{1,20}{}, \boldsymbol{V}, V, V, V$, , \&o.
9. The sign + is called plus or the sign of addition, and indioates that the quantities between which it is written are to be added together.
Thus, $7+0$, read 7 plus 9 , means that 7 and 9 are to be added together.
$a+b$, read a plus b, denotes that a and b are to be added together.
th
b,
pl
m
m
[S30T. I.
or those any value
ntities, or ined only operations problem,
l, \&co., are letters of represent
es the abinfinitely
es a quanquantity. ne quantity
$\div, 2,4,400.0$
iticn, and is written
be added
be added
10. The sign - is called minus or the sign of subtraction, and indicates the subtraction of the quantity following it from the quantity preceding it.

Thus, $11-6$, read 11 minus 6, means that 6 is to be taken from 11.
$a-b$, read a minus b, implies that the quantity a has to be decreased by the quantity b.
11. The multiplication of one algebraic quantity by another may be indicated-

> 1st. By writing the sign \times between them. 2nd. By writing a dot . between them. 3rd. By writing them in juxtaposition.

Thus, $a \times b$ and a, b and $a b$ each indicate the multiplication of the quantity a by the quantity b, and are read a multiplied into b, or simply a into b. The last is the method commonly employed to indicate multiplication in algebra. Arithmatical multiplication is expressed only by the sign x, the other methods being obviously inapplicable to numbers.

Nota.-Quantities connected by the sign + or \times may be read in any order. Thus $6+3$ is the same in value as $8+6$, for each is equal to 9 ; so 6×5 is the same in vaiue as 5×6, for each is equal to 80 .
12. There are three modes of representing the division of one quantity by another, namely, by ${ }^{\circ}$ writing between them the common arithmetical-sign of division \div or by writing between them either the sign : or the sign -

Thas, $a \div b$, and $a: b$, and \div each represent the division of the quantity a by the quantity b. The last method, i.e. writing the quantities in a fractional form is that usually made use of in algebra.

Norrs.-Quantitien conneeted by the sign - or \div must be read just as they are written. Thus 8-8 is very different in value from 8-8; 60 $12 \div 4$ is quite distinct from $4-12$.
18. The symbol \sim written between two quantities indicates that the less is to be subtracted from the greater.

Thus, $7 \sim 3$ or $3 \sim 7$, read the difference between 3 and 7, denotes that 3 is to be taken from 7. So $a \sim b$ or $b \sim a$ indicates that a is to be taken from b or b from a, according as a is less or greater than b.

Nors.-The symbol ~ is employed only when it is not known which of the two quantities is the greater.
14. An exponent is a small figure or letter placed to the right of a quantity to show how often it is taken as a factor.

Thns, $a^{3}=a a a$, the 3 indicating that a is to be taken three times as factor.
$m^{7}=m m m m m m m$, the 7 showing that m is to be taken seven times as factor.
$(a+b)^{n}=(a+b)(a+b)(a+b)$, \&c., to n terms, the n denoting that the quantity $(a+b)$ is to be taken as factor as many times as there are units in n.
Nors.-When the exponent is unity, it is not commonly expressed.
15. The extraction of a root is indicated either by writing it with a fractional index or by placing it under the ra.lical sign $\sqrt{ }$.

Thus, $\sqrt{ } 7$ or $7^{\frac{1}{2}}$ denotes the square root of 7.
$\sqrt[8]{a}$ or a^{\ddagger} denotes the cube root of a.
$\forall a$ or $a^{\frac{1}{4}}$ denotes the $n^{\text {th }}$ root of a, \&c.
16. The number 3 , or 4 , or 5 , \&ce, placed in the radical sign or as denominator in the fractional exponent, is called the index of the root. The index 2 is never used in connection with the radical sign; thus, $\sqrt{ } a$ is the same as $\sqrt[2]{ } a$.
17. When a fractional exponent is employed the numerator denotes the power and the denominator the root to be taken.

Thus, a^{7} denotes the $4^{\text {th }}$ power of the $7^{\text {th }}$ root of a or the $7^{\text {th }}$ root of the $4^{\text {th }}$ power of a.
$x^{\frac{m}{n}}$ indicates the $n^{\text {th }}$ root of the $m^{\text {th }}$ power of x, or the $m^{\text {th }}$ power of the $n^{\text {th }}$ root of x.

SYMBOLS OF RELATION.
18. The symbols of relation are $:,=,::,>$, and $<$.
19. The symbol : denotes ratio.

Thus, $a: b$ denotes the ratio of a to b.
20. The symbol $=$ is the sign of equality.

Thus, $7+4=5+6$ denotes that the sum of 7 and 4 is equal to the sum of 5 and 6. $a=b$ denotes that a is equal in value to b.
21. The symbol $::$ is also a sign of equality, but is used only to denote the equality of ratios.

Thus $9: 27:: 5: 15$ denotes that the ratio of 9 to 27 is equal to that of 5 to 16.
$a: b:: c: d$ denotec that the ratio of a to b is equal to that of c to d.
22. The symbol $>$ greater than, and the symbol < less than, are signs of inequality.

Thus $7>5$ denotes that 7 is greater than 5 .
$a>b$ denotes that a is greater than b.
$5<7$ denotes that 5 is less than 7 .
$a<b$ denotes that a is less than b.
Note.-The opening of the angle is always towarde the greater quantity.
SYMBOLS OF AGGREGATION.
28. The symbols of aggregation are $-, \mid,(),\{ \}$, and [].
24. The symbol - is called a vincuTum, and indicates that the quantities over which it is placed are to be regarded as constituting but one quantity.

Thus, $\overline{a+b-c} \times d$ means that the quantity formed by the subtraction of c from the sum of a and b is to be multiplied by d.
$\sqrt{m+x+y}$ denotes that the square root of the sum of m, x, and y is to be taken.
25. The symbol \mid is called $a b a r$, and indicates that the quantities in the column directly preceding it are to be considered as forming but one quantity.

26. The parentheses (), braces \{ \}, and brackets [], denote that the quantities contained within them are to be regarded as constituting one quantity.

Thus $(a+b) x$ denotes that the sum of a and b is to be multiplied by x.
$\{a-(b+c)\}^{3}$ indicates that the sum of b and c is to be taken from a and the remainder cubed.
$[a-\{m-(b+c) x\}] y$ denotes that $(b+c) x$ is to be taken from m and the remainder subtracted from a, and that this final remainder is to be multiplied by y.

SYMBOLS OF DEDUCTION.
27. The symbols of deduction are \therefore and \because
28. The symbol \therefore is equivalent to therefore, whence, thence, consequently, from which we infer, \&cc.

Thus, $a=b$ and $c=b \therefore a=c$.
29. The symbol \because signifies since or because.

Thus, $a=c \because a=b$ and $c=b$.
30. The parts of an algebraic expression separated from each other by the sign of addition or subtraction, expressed or understood, are called terms.
Thus, a is an algebraic expression of one term and is called a monomial.
$a+b$ is an algebraic expression of two terms, and is called a binomial.
$a+b-c$ is an algebraic expression of tiree terms, and is called a trinomial.
$2 a+3 b-4 c+x-y$ is an algebraic expression of five terms, and is called a multinomial or polynomial.
31. The parts of an algebraic expression connected by the sign of multiplication, expressed or understood, are called factors.

Thus, the factors of the expression $a b$ are a and b.
The factors of the expression $a^{2} b c^{3}$ are a, a, b, c, c, and c.
The factors of the expression $(x-y)^{2}(a-m y)^{3}$ are $(x-y)$, $(x-y),(a-m y),(a-m y)$, and $(a-m y)$.
32. The terms of an algebraic expression which are preceded by the sign + are called additive or positive terms; those preceded by the sign - are called subtractive or negative terms.
Thus, in the expression $7 a-3 c-4 d+5 m+7 x+8 y-m x-a b$, the terms $7 a, 5 m, 7 x$, and $8 y$ are additive or positive, and the terms $3 c, 4 d, m x$, and $a b$ are subtractive or negative.
FTors.-When no sign is expressed before a quantity it is nuderatood to be additive. Thus, in the above expression, $7 a$ is written for $+7 a$.
33. A coeficient is a number or letter written to the left ot a quantity to show how often it is to be taken as addend.
Thas, Ta indicates that the sum of seven a 's is to be taken in an additire sense.
$-b x$ denotes that the sum of five $-x^{\prime} \mathrm{B}$ is to be taken in an adidtive rense.

Here $\boldsymbol{7}$ is called the coofficiont of a, σ the cooficiont of x, te.
, 34. Like algelraic quantities are those that consist of the same letters affected by the same exponents.

$$
\begin{aligned}
& \text { Thus, }-3 a,-2 a, 4 a,-5 a \text { are like quantities. } \\
& a^{2} b c, 7 a^{2} b c,-3 a^{2} b c \text { are like quantities. } \\
& 5\left(a^{2}-b+c^{3}\right), 7\left(a^{2}-b+c^{3}\right) \text { and } \frac{1}{1^{6}}\left(a^{2}-b+c^{2}\right) \text { are like quan- }
\end{aligned}
$$ tities.

But $a^{2} b c$, and $a b^{2} c$ are unlike quantities, because the same letter is not affected by the exponent 2.
So also $a^{2} b^{3} c^{4}, a^{3} b^{3} c^{4}$, and $a^{4} b^{3} c^{3}$ are unlike quantities.
35. Homogeneous terms are those in which the sum of the exponents of the literal factors in each are equal.

Thus $2 a^{4} y$ and $7 a^{8} y^{3}$ are homogeneous, and the sum of the exponents of the literal factors in each being 5 , they are called homogeneous terms of five dimensions.
$3 a x^{3} y^{3}, 4 a^{2} x^{2} y^{3}, 9 a^{6} y, 7 a x y^{5}$, and y^{7} are homogeneous, the sum of the exponents of the literal factors in each term being 7, and they are callod homogeneous terms of seven dimensions.
86. The reciprocal of a quantity is unity divided by that quantity.
Thus, the reciprocal of 3 is $\frac{1}{\frac{1}{2}}$, of a is $\frac{1}{\alpha}$, of $\frac{b}{6}$ is $\frac{\pi}{6}$, of $\frac{7}{4}$ is $\frac{7}{4}$, \&c.

AXIOMS.

37. An axiom is a theorem which cannot be reduced to a simpler theorem.

The following are the principal axioms made use offin algebra:-
I. The whole is equal to the sum of all its parts.
II. If equal quantities or the same quantity be added to equal quantitiec', the sums will be equal.
III. If equal quantities or the same quantity be subtradted from equal quantities, the remainders will. be dequal.
IV. If equals be multiplied by equals or by the same, the products will be equat.
V. If equals be divided by equuls or by the same, the quotients will be equal.
VI. If the same quantity be both added to and subtracted from another, the latter will not be altered in value.
VII. If equals or the sume be added to or subtracted from unequal quantities, the sums or remainders will be unequal.
VIII. If unequals be multiplied or divided by equals or by the same, the prorlucts or the quotients will be urequal.
IX. Equimultiples of the amme quantities or of equal quantities are equal to one another.
X. Equal powers or equal roots of the same or of equal quantities are equal to one another.
X1. Things which are equal to the same thing are equal to one another.

Exiroige 1.

1. What is algebra? (1)
2. Classify algebraic symbols. (2)
3. What are the symbols of quantity? (3)
4. What are the symbols of operation ? (8)
5. Write down the symbols of relation. (18)
6. Express the symbols of aggregation. (23)
7. What are the symbols of deduction? (27)
8. What letters are employed to denote known quantities ? Unknown quantities?
9. What is the meaning of the symbol 0 ? Of the symbol \propto ? (6 and 7)
10. What is an exponent? (14)
11. What is a coefficient? (33)
12. What are the terms of an algebraic expression? (30)
13. What are the factors of an algebraic expression? (31)
14. What is a monomial? A binomial? A multinomial? (30)
15. What are like quantities? (34)
16. What are homogeneous terms? (35)
17. What are additive terms? (32)
18. What are subtractive terms ? (32)
19. What are positive and negative torms? (32)
20. When no sign is expreased before a term how is it regarded ?
21. How many ways have we of indicating the extraction of a root? (15)
22. What is the index of the root? (16)
23. What does the denominator of a fractional inder denote? What the numerator? (17)
24. How are quantities connected by the sign + or x to be read ? How those connected by the sign - or \div ? ($11 \& 12$, Notes)
25. What are axioms ? (37)
26. Give the principal axioms employed in algebra. (37) e

Exercisa II.
Read the following expressions and explain what each indi-cates:-

1. $a, 5 a, 9 c^{3}, 4 a^{\frac{1}{2}}, x^{6}, 3(a+b), 5 x(y+z-c),-\left.\begin{array}{r}+c \\ 3 m \\ 4 x\end{array}\right|^{a}$
2. $3 a+4-7 c,(x-y-z)^{2}, a b c, \frac{m y}{x z}, \sqrt[k]{a b\left(m+x y^{4}\right)}$
3. $(m+x) \sim(x+y), a^{\frac{m}{n}}, a^{2}-b^{2}=(a+b)(a-b) \frac{a^{2}+2 a b-x^{2}}{3 a-4 c^{2}+\sqrt[8]{m}}$
4. $7+a>a-3, a^{\frac{1}{3}}<a^{\frac{1}{3}},\{a-(b+c)\}^{\frac{1}{8}}=\sqrt[b]{(a-b-c)^{\frac{1}{2}}}$
5. $\because a>b$ and $b>c \therefore c<a$.
6. $a-3 a b+4 a^{2} c^{2}-7 a b x+3 y^{2}-7 \sqrt{4 y}+(a-b+c) \frac{2}{3}-\sqrt[4]{x y}+$ $(a \sim m)$.

Of the above algebraic expressions :-
7. Which are monomials ?
8. Which are binomials?
9. Which are multinomials ?
10. Which are coefficients?
11. Which are exponents ?
12. Which are terms ?
13. Which are factors?
14. Which are additive or positive terms ?
16. Which are subtractive or negative terms?
[3nor. I.
is it reraction of denote ?
x to be .2, Notes)
ach indi-

DEALILIIONG, ELC.

Extarisi III.

1. Write down a added to b.
2. Write down a subtracted from b.
3. Write down the difference between a and b.
4. Express in three different. ways the product of a and b.
5. Express in three different ways the divigion of a by b.
6. Fxprese the fourth power of $a+b$.
7. Indicate in two difforent ways the extraction of the fifth root of a.
8. Indicate in two different ways the fourth power of the fifth root of $a b$.
9. Indicate that the sum of $a m$ and $x y^{2}$ is greater or less than the difference of a^{3} and c.
10. Express the equality of the ratios a to m and $x y$ to $c f$.
11. Write down the reciprocals of $\frac{a^{2}}{x}, \frac{1}{2}, \frac{x}{y^{2}}, a+b-c$, $(x+y)^{\frac{4}{4}}$.
12. What is the difference in meaning between $a+b^{2}$ and $a^{2}+b^{2}$ and $(a+b)^{2}$?
13. What is the difference in meaning between $a x^{2} y, a x y^{2}$, and $a^{9} x y$?
14. What is the difference in meaning between $m x^{\frac{3}{4}}, m^{\frac{3}{3}} x$, and $(m x)^{\frac{1}{2}}$.
15. What is the difference in meaning between $a-(x-y)$ and $(a-x)-y$?
16. What is the difference in meaning between $a m-c$ and am~c?
17. Write down four homogeneous terms of 7 dimensions each.
18. Write down three homogeneous terms of 13 dimensions each.
19. Write any six like algebraic quantities.
20. Write down in an abbreviated form the product of a, a, a, $a, m, m, m,(x+y),(x+y)$ and $a m(x+y)$.
21. Resolve the expressions $7 a^{2}, 4 a^{3} y^{2}, a^{3} m^{2} y(a+b)^{2}, a^{4} x^{2}$ $(a-m)^{3}$ into their simple factors.
22. Fxpress the division of the sum of $m x^{2}$ and y^{3} by the square of the sum of a and b.
23. What is the coefficient and what the exponents of a and x in the expression ax?
24. To find the numerical value of an algebraic expression, when the value of each letter entering into it is given :-

Rom.-Substitute for each lotter its numerical value, and per'form upon the resulting numbere the operations indicated by the signs connecting them.
Thus, in the following exercise, wherever a occurs in an expression, we write its assumed value, 1 ; for b we write 2 ; for c we write 3 ; for d we write 4 ; and for m we write 0 : then we multiply, divide, add or subtract these quantities as directed by the connecting signs. For example, taking $a=1, b=2, c=3$, and $\boldsymbol{m}=\boldsymbol{7}$, we thus find the value of the expression :-

$$
\begin{aligned}
& \sqrt{m\left(3 a-4 c+2 b^{5}\right)}-\frac{b c+a}{m} \\
&= \sqrt{7\left(3 \times 1-4 \times 3+2 \times 2^{3}\right.}-\frac{2 \times 3+1}{7}=\sqrt{7(3-12+16)}-\frac{6+1}{7} \\
&=\sqrt{7 \times 7}-7=\sqrt{49-1=7-1=6} \text { Ans. }
\end{aligned}
$$

39. We are said to show that one algebraic quantity is numerically equal to another,

When by substituting the values for the individual letter' in each we show that the numerical value of the first expression is the same as that of the other.

For example, if $a=4, b=3, d=7$, and $f=0$

$$
a^{2} b d f+a b-d=2 d-(a+2 b)+1
$$

Here we at once throw out the quantity $a^{2} b d f$, because f being $=0$, the whole quantity into which it enters as a factor must $=0$, and, therefore, as an addend, it disappears; then substituting their values for the others,

$$
\begin{aligned}
4 \times 3-7 & =2 \times 7-(4+2 \times 3)+1 \\
12-7 & =14-(4+6)+1 \\
12-7 & =15-10 \\
5 & =5
\end{aligned}
$$

ginox. 1.
y^{2} by the fa and x - expresgiven :and pered. by the
rs in an write 2 ; 0 : then directed $=2, c=3$,
$-\frac{6+1}{7}$
ntity is
in each the same
being ust = 0 , tuting

Exizoise IV.

If $a-1, b=2, c=3, d=4$, and $m=0$, find the value of :-

1. $a^{2}-1$.
2. $c^{3} \sim 3 c$.
3. $a b+c d$.
4. $a^{2} b^{2}-(c-a)$.
5. $\sqrt{b+c+d}$.
6. $a^{2} m^{2} x d^{2}$
7. $6\left(a \sim c^{2}\right)$.
8. $\left(b^{2} d^{2}-\mathrm{cm}^{2}\right)^{2}$.
9. $(a+b)(d-m)^{2}$.
10. $4\{a-(d-c)\}^{2}$.
11. $\left(b^{8} c^{8} d^{8}\right)^{t}$.
12. $\left(d^{2}-b c\right)^{2}\left(c^{2}-b c d\right)^{2}$.
13. Show that $\frac{a+1}{\frac{a}{d}+1}=a, \frac{b+1}{\frac{b+1}{t}}=b, \frac{c+1}{\frac{1}{t+1}}=c$, \&c.
14. Show that $14 a-(3 b+c)<d^{2}-b(b+c)$.
15. Show that $\left(a^{2} b-c^{2} d+a b c\right) m=a^{2} b^{2} d^{2} m$.
16. Show that $\sqrt{a b^{2} c^{3}}-4(b+\bar{d}) c>\left\{(b+c)\left(d^{2}+c^{2}\right)\right\} \cdot$
17. Show that $\frac{a b^{2} c^{3}-b d}{a+b+c+d}=b(b+c)+a b^{2} c^{2} m$.
18. Show that $\frac{a^{2} c^{2}+2 a b c d m-(d-c)^{2}}{\sqrt[2]{2\left(d^{2}+c^{2}\right)+b}}=\{d c-(d+c+b+a)\}$

Find the numeral value of the following expressions:-
19. $(2-b)(3 a+4 b-c)+\{a b+(3 d-2 c)\}-4 a(2 c-3 b)$ $-\left\{a b c^{2}-(3 c+a)\right\}+\{a b d-(c+d) a\} b$.
20. $\left(c^{2}-a^{2}\right)\left(b^{2}-m^{2}\right)+m\left\{b c d\left(a-b^{2}\right) d\right\}+3 a\{a+c(d-3 a)\}$.
21. $\{(a-b)+(c+d)\}^{2}+\{(c+m)-(b-a)\}^{3}-\{(m+d)+(2 b-c)\}^{2}$.
22. $\sqrt{(a+c) d}+\sqrt[2]{c^{2}(a+b)}+\left\{2(d+b c)^{3}+\left(7 d-b^{2} c\right)\right\}^{\}}-$ (b cd $+a$).
23. $\frac{7(a m) \frac{1}{3}+3 \sqrt{d}-(b d+4 c)}{y^{\frac{1}{3}} a b c+(c d m)^{7}}+\frac{a^{2} b^{2} c^{2}-7 d}{\left\{(b-a)+a^{2}\right\}\left\{d^{3}(a+c)\right\}^{\frac{1}{2}}}-$ $\sqrt[3]{a b c d-d^{7}}$.
24. $\{a b(a+b)\}-\frac{1}{2}\{b c(c+a)\}+\frac{1}{b}\left\{(c a-b)\left(a^{2} b+3\right)\right\}+$
$\downarrow\left\{(d+c)(1+3 b-2 c+d)^{2}\right\}$
25. $\frac{c(a+b-c)^{3}+11\{(3 a+2 c)(2 a-b+1 d)\}}{\{(3 c+b)-\sqrt{d}\}\left(d+c+b^{2}-m\right)}+$
$\frac{\left\{(a+3 d)^{2}-\left(c^{3}+5 b\right)-(c+d)\right\}^{3}}{a b m+\sqrt{d c^{2}-a}}+\frac{(2 a b+c d-b d)(d+c)}{7\left(d+a b^{2}\right)}$

SECTION II.

ADDITION, SUBTRAOTION, USE OF BRAOKETS, MULTIPLIOATION, AND DIVISION.

ADDITION.

40. When the quantities are similar and have the same sign:-

Rows.-Add the coefficients, annex the literal part, and prefix the proper sign.

(1)	(2)	(3)	(4)	(b)
$7 a$	-2cd	$6(x+y)$	-8($\left(c d-a^{2}\right)$	$2 a-3 m+y-6 \sqrt[6]{a+b}$
$3{ }^{\text {a }}$	-3cd	$2(x+y)$	$-4\left(c d-a^{2}\right)$	$3 a-6 m+6 y-3 \sqrt[3]{a+b}$
ba	cd	$5(x+y)$	-3 (cd-a ${ }^{2}$)	$8 a-7 m+3 y-5 \sqrt{a+b}$
$11 a$	-5cd	$8(x+y)$	- (cd-a ${ }^{\text {a }}$	$5 a-3 m+2 y-\sqrt[8]{a+b}$
$3{ }^{3}$	cd	$(x+y)$	$-7\left(c d-a^{2}\right)$	$3 a-2 \dot{m}+y$
$2 a$	-8cd	$11(x+y)$	-2 (cd-a ${ }^{2}$)	7 m
$1 a$	20cd	$33(x+y)$	-25 (cd-a ${ }^{2}$)	$22 a m 27 m+13 y-$

Exirciar V.

Find the sum of:-

1. $3 a, 2 a, 9 a, 11 a, a$ and $17 a$.
2. $-4 a b^{2},-7 a b^{2},-11 a b^{2},-a b^{2}$, and $-3 a b^{2}$.
3. $3\left(a+b-c^{2}\right), 6\left(a+b-c^{2}\right), 2\left(a+b-c^{2}\right),\left(a+b-c^{2}\right)$, and $7\left(a+b-c^{2}\right)$.
4. $4 a\left(x-y^{2}\right)^{\frac{1}{3}}, 9 a\left(x-y^{2}\right)^{\frac{1}{3}}, 3 a\left(x-y^{2}\right)^{\frac{1}{3}}$, and $11 a\left(x-y^{2}\right)^{\frac{1}{3}}$.
5. $3 a-4 y+7,6 a-3 y+3,5 a-3 y+3,7 a-y+2$, and $6 a-2 y+8$.
6. $3(x+y)+7 a-a b c, 5(x+y)+5 a-3 a b c, 2(x+y)+11 a-7 a b c$, $(x+y)+2 a-a b c, 2(x+y)+a \& b a b c$, and $3(x+y)+2 a-3 a b c$.
7. $(a+b) x-(c+d) y-(d+f) z, b(a+b) x-6(c+d) y-7(d+f) z$, $2(a+b) x-3(c+d) y-4(d+f) z, 4(a+b) x-6(c+d) y-$ $B(d+f) z$, and $3(a+b) x-4(c+d) y-5(d+f) z$.
8. $a^{2} b^{9} x^{3}+a^{3} b^{2} x^{3}-a^{2} b^{3} x^{3}-a^{3} b_{3}^{3} x^{2}, 3 a^{2} b^{5} x^{3}+7 a^{2} b^{2} x^{2}-5 a^{2} b \frac{3}{3} x^{3}$ $-6 a^{3} b^{\frac{3}{3}} x^{2}, 7 a^{2} b^{3} x^{\frac{2}{3}}+3 a^{2} b^{2} x^{\frac{2}{3}}-5 a^{2} b^{3} x^{3}-2 a^{3} b^{3} x^{2}$, and $4 a^{2} b^{3} x^{\frac{2}{2}}$ $+a^{2} b^{2} x^{8}-2 a^{2} b^{3} x^{3}-8 a^{3} b^{2} x^{2}$.
9. When the quantities are similar, but all have not the same sign :-

Rowi.-Arrange the quantities so that similar terms shall be in the same vertical column. Add separately the positive and negative coefficients; to the difference of these two sums prefle the sign of the greater and affix the cominon literal part.
(1)
(2)
(3)
(4)

$4 a$	$6 a-3 c$	$5 a b+6 c y-3$	$5(a+x)-3 a^{2} x y+7 \sqrt{a+b}$
$-7 a$	$2 a+4 c$	$-8 a b-3 c y+11$	$9(a+x)-6 a^{2} x y-8(a+b)^{\frac{1}{2}}$
$-3 a$	$-3 a+9 c$	$-7 a b+4 c y-6$	$-7(a+x)+6 a^{2} x y-6(a+b)^{\frac{1}{2}}$
$-2 a$	$6 a-6 c$	$11 a b-8 c y+7$	$3(a+x)-3 a^{2} x y-5(a+b)^{\frac{1}{2}}$
$6 a$	$4 a+3 c$	$3 a b-4 c y+6$	$11(a+x)-6 a^{2} x y+3(a+b)^{\frac{1}{2}}$
$6 a$	$-7 a-12 c$	$-7 a b+c y-1$	$-13(a+x)+6 a^{2} x y-8 \sqrt{a+b}$
$3 a$	$7 a-4 c$	$-3 a b-4 c y+14$	$8(a+x)-6 a^{2} x y-17(a+b)^{\frac{1}{2}}$

Explamatiox.-In (1) the sum of the ponitive coefficients $6,6,4=16$, eum of the negative coef. 2, 8, $7=12$; then $15 \sim 12=8$, which in poritive, because 15, the greater, is the sum of the positive coefficient.
In (2), left hand column, the sum of pos. coef. 4, 6, 2, $5=17$, and of neg. coef. $7,8=10$; then $10 \sim 17=7$, which is pos. because 17 is pos. In right hand oolumn sum of pos. coef. 8,9 , and $4=16$, and of neg. coef. 12, 6 , and $8=20$; then $20 \sim 16=4$, which is neg., because 20 , the sum of the neg., is the greater.

Exrroisz VI.

Find the sum of:-

1. $a+b$ and $a-b ; 2 a+b-c$ and $a-b+4 c ; 4 a-3 b+c$ and $7 b-$ 8 c.
2. $2 a b+3 a y-c d, 6 a b-2 a y+5 c d, 3 a b-6 a y+2 c d$ and $-3 a b-2 a y+7 c d$.
3. $5 a^{2} x^{2}-3(a+b)-7 x^{3} y+7, a^{2} x^{2}-7(a+b)-8 x^{3} y-11$, and $-7 a^{2} x^{2}+3(a+b)+3 x^{2} y-16$.
4. $a+b-c-d, a-b-c+d, a-b+c-d,-a-b+c+d,-a+b-c+d$ and $a-b+c-d$.
5. $3 x y+7 a b-3,5 x y+3 a b+7,4 x y-7 a b+11$, and $-7 x y+11 a b+2$.
6. $3+7 a-6 b+c, 7 a+3-4 b-2 c, 7 b-3 a-7+3 c$, and $6 c-2 b+$ 6-3a.
7. $a b-x y+c d-m+c, 6 c-3 x y+4 m-c d-3 a b, 6 c d-6 m+5 c+$ $8 a b-3 x y, b m+6 c-3 c d+2 x y-3 a b$ and $11 x y-3 m-2 c+3 a b-7 c d$.
8. $5 m^{2} x+3 x y-7,7 x y+3-8 m^{2} x+y z, 17-y z+7 x y-11 m^{2} x$ and $-1 \ln ^{2} x+3 x y+4$.
9. $6 m^{\frac{1}{2}} n^{3}-9 a^{2} d^{\frac{1}{2}}+10 m^{\frac{1}{3}} x^{\frac{3}{2}}, 6 a^{2} d^{\frac{1}{2}}-6 m^{\frac{1}{3}} x^{\frac{3}{4}}-m^{\frac{1}{2}} n^{3}, 2 a^{2} d^{\frac{1}{2}}:-$ $3 m^{\frac{1}{3}} x^{\frac{1}{4}}-3 m^{\frac{1}{2}} n^{3}$ and $-m^{\frac{1}{2}} n^{2}-m^{\frac{1}{2}} x^{\frac{3}{2}}+a^{\frac{3}{3}} d^{\frac{1}{2}}$.
10. $\sqrt{2}+\sqrt[8]{3}+\sqrt[4]{4}-\sqrt[8]{a}+c^{\frac{1}{6}}, 11 \sqrt{2}-9 \sqrt[8]{3}+7 \sqrt[8]{a}-6 \sqrt[1]{4}+\sqrt[V]{c},-3 \sqrt[8]{3}+$ $7 \sqrt{2}+\sqrt[4]{4}-7 a^{b^{2}}+8 \sqrt[k]{c}, 11 a^{b^{2}}-\sqrt{2}+3 \sqrt[3]{3}+7 / \sqrt{4}$, and $9 c^{6^{2}}-4 a^{5}+11 \sqrt{4}$.
11. $3 x y-7 a y+2 c x-x^{\frac{1}{2}}+3 \sqrt[8]{y}, 2 x y+11 \sqrt{x}-7 a y, 13 y^{\frac{1}{2}}-11 c x+$

<12. $(a x+b y-c z) t-\sqrt{m+n}-(x-y), 7 \sqrt{m+n}+3(x-y)-\sqrt[4]{a x+b y-c z}$, $7(x-y)+8 \sqrt[4]{a x+b y-c z}-11(m+n) \frac{1}{1}, 6 \sqrt{m+n}+17(a x+b y-c z)^{\frac{1}{4}}-$ $(x-y),-12(a x+b y-c x)^{\frac{1}{2}}-3(x-y)+4(m+n)^{\frac{1}{2}}$ and $7 \sqrt{m+n}-$ $9\{\sqrt{a x+b y-c z}+11(x-y)$.
12. When tine quantities are unlike:-

Rowe.-Connect them together by their proper signs.
(1)
$3 a$
$-4 c$
$7 d$
$-5 m$
Sum $=3 a-4 c+7 d-5 m$
(2)

$$
\begin{aligned}
& 5 a+3 c-6 \sqrt{a+b} \\
& 2 m-4 a^{2} b+3 a b^{2} \\
& -6 x y+3 a^{\frac{1}{2}} b^{\frac{1}{3}}
\end{aligned}
$$

$$
\text { Sum }=5 a+3 c-6 \sqrt{a+b}+2 m-4 a^{2} b+3 a b^{2}-6 x y+3 a \frac{1}{2} \frac{1}{2}
$$

43. Wheithe quantities are partially similar:-

Rown.-Add the similar quantities by Art. 38, 39; and to the partial sum, thus formed, affix the unlike quantities by their proper signe.

Exercise VII.

Find the sum of:-

1. $a^{\prime}+b, m+c, x+y$, and $3 p$.
2. $2 a p-3 x y+4 m n, 5 m n-3 x z+7 x y, 3 m n-5 c^{3}+2 a p$, and $-4 a p-4 x y-12 m n$.
3. $3(a+b)+7(x \sim y), 7 c+8(a+b), 11(x \sim y)+4 x^{2}$, and $-16(x-y)-11(a+b)$.
4. $5 x^{2} y-3 y^{2} z+4, \quad 7 y^{2} z-7 m-3, \quad 5 x^{2} y+3 y^{2} z-a^{2} b$, and $6+7 m$ $-7 y^{2} z$.
5. $a+b+c, 3 b-x+y, 5(a+b)+3 x, 7 c-3 m^{2} n, 5 a b+6 b-3 y$, and $3(x+y)-8 c$.
6. $7 a x^{2}-3 a b y+7 x^{2} y^{2}-3 \sqrt{x}+5,7 \sqrt{x}-3-7 a b y-6 a x^{2}, 3 m-5 \sqrt{a+y}$ $+10 a b y, 11-a x^{2}+5 \sqrt{x}-9 x^{2} y^{2}-7 m$, and $2 x^{2} y^{2}+4 m-3 \sqrt{x}+\delta$.
7. $x^{3}-3 x^{2} y^{2}-y^{2}-2 y+y^{2}, 2 y^{3}+7 x^{2} y^{2}+3 y^{2}-9,4 y z+3+3 x^{3}-6 y^{2}$ $+3 x^{2} y^{2}, 2 y^{3}-6 x^{2} y^{2}+2 y,-3 y z-x^{2} y^{2}+4 y^{2}$, and $6-5 y^{2}$.
8. $\delta(x y+x z-y z)^{\frac{1}{2}}+3(a+y) c-7 a^{2} y, 8(x y+x z-y z)^{\frac{1}{2}}-7(a+y) c$ $+3 m, 8 \sqrt[8]{x z+x y-y z}-4 a m, 7(a+y) c-17 \sqrt[7]{x z-y z+x y}$; $6 a m-3 m$ $-3(a+y) c-(x z-y z+x y)^{\frac{1}{2}}$ and $x^{2} y-m^{2}$.

SUBTRACTION.

44. Theorex. -The subtraction of any positive quantity is equivalent to the addition of the sime quantity taken negatively; and the subtraction of any negative quantity is equivalent to the addition of the sume quantity taken positively.

Demonstration I. $a=a+b-b$ (AX. VI) ; subtract $+b$ from each.
Then (AX. III) $a-(+b)=a-b=a+(-b)$
"
II. $a=a+b-b$ ($\Delta x . \mathrm{VI}$) ; subtract $-b$ from each.

Then (AX. III) $a-(-b)=a+b=a+(+b)$
45. To subtract one algebraic quantity from another .-

RoLs.-Change all the signs of the subtrahend or imagine them to be changed, and then proceed as in addition.

Norre.-Once the signs of the subtrahend are changed, the question is no longor one in subtraction, but is converted into an equivalent problem in addition.

Equivalant quention.

To $\begin{array}{r}7 a-13 x y+27 \\ \text { Add }-5 a+11 x y-19 \\ \text { Sum } 2 a-2 x y+8\end{array}, ~=~$
(2)

From $3 x^{2} y-7 x y^{2}+3 z^{3}-4$
Take $5 x^{2} y+4 x y^{2}-5 z^{3}+m$
Rém. $-6 x^{2} y-11 x y^{2}+8 z^{3}-4-m$
(3)
$\begin{array}{ll}\text { From } & 2(x-y)+z^{3}(a-b) \\ \text { Take } & -7(x-y)-a^{2} m+17 \\ \text { Rem. } & 9(x-y)+z^{3}(a-b)+a^{2} m-17\end{array}$

Exaraise VIII.

1. From $4 a^{2} y^{2} z-7 x y^{3}+5 u z^{2}-7 x y+13 m-11$

Take $3 a^{2} y^{2} z+4 x y^{3}-6 a z^{2}-11 x y-7 m-11$
2. From $3 a-7 c+4 x y^{2}-7 \sqrt{a-b^{2}}$

Take-11a+7c- $m^{2}+6 \sqrt{a-b^{2}}$
3. From $(a+b) \sqrt[3]{x^{2}-y}+7 a m^{2}-c d$

Take $7 a m^{2}-3 c d+4(a+b)\left(x^{2}-y\right)^{\frac{1}{2}}$
4. From $9\left(x y+y^{2}-z^{3}\right)^{\frac{1}{b}}+3 \sqrt{x^{2}-y^{2}}+7 a^{\frac{1}{2}} x^{\frac{1}{2}}-11 \sqrt[3]{m}+17 x \sqrt{a+b}$

Take $5\left(x y-z^{3}+y^{2}\right)^{\frac{1}{t}}+17 x(b+a)^{\frac{1}{2}}+3 m^{\frac{1}{3}}-7 a^{\frac{1}{2}} x^{\frac{1}{t}}+3\left(x^{2}-y^{2}\right)^{\frac{1}{2}}$
5. From $3+\sqrt{2}-5 x+\sqrt[3]{4-7 y+8 t}-6 \sqrt{a-b}$

Take $\sqrt{2}-13+4^{\frac{1}{3}}-6 \sqrt[4]{8-5 x+16 y+3(a-b) \frac{1}{2}}$
6. From $5 a-6 b-7 c+4 d-11 e+7 m-16 x+y-7 z$

Take $4 d-7 z+5 a-6 b+m-5 c+9 x-11 y+a b c d$

Aำ4. 45, 46.]
BRAOKTYS.

USE OF BRACKETS.

46. Much difficulty is commonly experienced by a beginner in the management of brackets. His attention is therefore particularly directed to the following rules, remarks and ezercise.
, Roly 1.-If any number of quantities, enclosed within brackets, be preceded by the sign + , the brackets may be struck out as of no value.

This arises from the fact that when a quantity is added the signs of its terms are not changed.
/ RoLs 2.-If any number of quantities, inclosed within brackets, be preceded by the sign-, the brackets may be removed if all the included signs be first changed, i.e. + into - and - into +.

The necessity of thus changing the signs is manifest from the following illustration:-
$a-(b+c)$ means that we are to subtract the whole quantity $b+c$ from a. If we subtract b alone the remainder $a-b$ is too great by c, for we were to subtract the sum of b and c. Hence to obtain the correct remainder we must take c from $a-b$, but this gives $a-b-c$. Therefore $a-(b+c)=a-b-c$.
Again $a-(b-c)$ means that b is to be decreased by c, and the remainder taken from a. If now we take b from a, the remainder $a-b$ is too small by c, because we have subtracted a quantity too great by c. Hence to make the remainder $a-b$ what it ought to be we must add c, but this gives us $a-b+c$. Therefore $a-(b-c)=a-b+c$.

Remark 1.-The learner must carefully note that in every case in which he moets with [or \{ or (he must look for the counter part) or \} or] and that the above rules apply only to the signs of the quantities, simple or compound, included within the complete or outer bracket.

Remari 2.-In removing the brackets from a quantity it is to be carefully remembered that the first sign within the bracket, when + , is always underntood, and that the rules above given apply to it as well as to the other signs.

Ex. 1. Simplify $a+(b-c+d)$
operation.

$$
a+(b-c+d)=a+b-c+d
$$

Ifx. 2. Simplify $3 a-(4 c-d+3 a-m)$
operation.

$$
3 a-(4 c-d+3 a-m)=3 a-4 c+d-3 a+m=-4 c+d+m
$$

Ex. 3. Simplify $3 m-\{a+(c-m)\}$
OPERATION.

$$
\begin{aligned}
3 m-\{a+(c-m)\} & =3 m-a-(c-m) \\
& -3 m-a-c+m=4 m-a-c
\end{aligned}
$$

Ex. 4. Simplify $1-\{1-(1-\{1-x\})\}$
operation.

$$
\begin{aligned}
1-\{1-(1-\{1-x\})\} & =1-1+(1-\{1-x\}) \\
& =1-1+1-\{1-x\} \\
& -1-1+1-1+x \\
& =x
\end{aligned}
$$

Ex. 5. Simplify $(a-b)-\{-a-(b-a)\}\{-(-\{-(-a+b)-c\}-b)-c\}$
OPERATION.*

$$
\begin{aligned}
& (a-b)-\{-a-(b-a)\}-\{-(-\{-(-a+b)-c\}-b)-c\} \\
= & a-b+a+(b-a)+(-\{-(-a+b)-c\}-b)+c \\
= & a-b+a+b-a-\{-(-a+b)-c\}-b+c \\
= & a-b+a+b-a+(-a+b)+c-b+c \\
= & a-b+a+b-a-a+b+c-b+c \\
= & 2 c
\end{aligned}
$$

* Although, for the sake of illustrating each step, the process is here made to consist of several lines, the student is recommended to remove all the brackets at one operation, and thus to make only two distinet steps in the simplification.

Exercise IX.

Simplify the following expressions:-

1. $(a+m)-(c-6)+(5-m)-(a+e)+(c+3)-(5 c+m)$
2. $(a-b-c)-(b-c-a)-(c-b-a)-(a+b+c)$
3. $(3 a-4)-(6 y-x)-(5 a-4-6 y)-(3 a-4+\{-6\})$
4. $6-\{-(-\{-(-\{-(m)\})\})\}$
5. $(2 a-3 c+4 d)-\{b d-(m+3 a)\}+\{5 a-(-4-d)\}-\{3 a-$ ($4 a-5 d-4$) \}
6. $m^{2}-\left(c^{2}-a^{4}\right)-\left\{-m^{2}-\left(-2 a^{2}\right)\right\}-\left\{-\left(-5 m^{2}-\left\{-\left(a^{2}-c^{2}+3 m^{2}\right)\right.\right.\right.$ $\left.\left.\left.-c^{2}\right\}-m^{2}\right)-2 a^{2}\right\}$
7. $1-(-1)-\{-(-1)\}-\{-(-\{-(-1)-1\})-1\}$
8. $a^{2}+2 x-\left\{a^{2}-\left(2 x^{2}-\left\{-m^{2}-\left(a^{2}+2 x-\left\{-m^{2}-\left(3 a^{2}+3 x+3 m^{2}\right)\right\}\right)\right\}\right.\right.$ $\left.\left.-2 m^{2}\right)-a^{2}\right\}$
9. $\left(a^{2} \dot{c} c+3 c^{2}\right)+3 a^{2} b c-(m+c)-\left\{-\left(4 a^{2} b c+c\right)-\left(-3 c^{2}-m\right)\right\}$
10. $3 a-(2 a+1)+\{a-(2-a)\}-\{-1-(-a-\{-2-a+(-1)\}-2 a)\}$
11. $(-a-b-c)+(a-c)-(c-a)-\{-(+\{+(+\{+(+\{-a\}-b-c)$ $-a\}-3 b)\}-3 b-2 c)-2 a\}$
12. $\{(a m+c)-7\}+\{(5-7 a m+c)\}-\{-3 a-(-4 a m-\{-c-(-9$ $-3 a-4 a)\}-6)-5 a m\}$
13. It is frequently found necessary in the performance of algebraic operations to inclose two or more simple terms within brackets so as to deal with them as constituting one quantity. In placing any given terms within a bracket, attention must be paid to the following rules:-

Ruwe I.-Any term whatever may be selected as the first term within the bracket, remembering that the sign of that term must be placed before the bracket.
RoLs II.-If the sign thus placed before the bracket be + , the other terms may be at once placed within the bracket, each preceded by its proper sign; but if the sign thus placed before the bracket be -, then in placing the other terms within the bracket we must change the sign of each, i.e., + into - and - into t $_{\text {; }}$
Notr.-The sigus are thus changed when the terms are put into a bracket preceded by the sign -, in view of the fact that when the brackets are struck out this - sign has the effect of changing the included signs baok again to their original form.
Ex. 1. Inclose $a-b-c+d$ in a pair of brackete. OPERATION. 1

$$
\begin{aligned}
+a-b-c+d & =+(a-b-c+d) \\
\text { or } & =-(b-a+c-d) \\
\text { or } & =-(c-a+b-d) \\
\text { or } & =+(d+a-b-c)
\end{aligned}
$$

Ex．2．－Inclose $a-b+c-d-m+f$ ，in alphabetical order，in brackets，nsing an onter bracket inclosing two pair of inner brackets．

$$
\begin{aligned}
& \text { OPERATION. } \\
& a-b+c-d-m+f=\{(a-b+c)-(d+m-f)\} \\
& \text { or }=\{(a-b)+(c-d-m+f)\} \\
& \text { or }=\{(a)-(b-c+d+m-f)\} \\
& \text { or }=\{(a-b+c-d)-(m-f)\} \\
& \text { or }=\{(a-b+c-d-m)+(f)\}
\end{aligned}
$$

Exiroism X.

Bxprens $a-b+c-d-e+m-f-r-s+v+w+x$ in brackets．
1．Taking the terms two together．
2．Taking the terms thrie together．
3．Taking the terms four together．
4．Taking the terms six together．
6．Three together，asing an inner bracket after the model， $\{* \pm(* \pm *)\}$

6．Three together，asing an inner bracket after the model， $+\{(* \pm *) \pm *\}$

7．Four together，asing an inner bracket after the model， $\{* \pm(* \pm * \pm)\}$

8．Four together，asing an inner bracket after the model， \｛（＊土＊土＊）土＊\}

9．Four together，using an inner bracket after the model， \｛＊土（＊土＊）\pm＊

10．Six together，using an inner bracket after the model， $\{* \pm * \pm * \pm(* \pm * *)\}$

11．Six together，using an inner bracket after the model， $\{(\pm * \pm * \pm * \pm *) \pm * \pm *\}$

12．Six together，using two inner brackets after the model， $\{* \pm(* \pm *) \pm *(* \pm *)\}$

Norrs．－The asterisk is used merely to denste the position to be oconpled by the given letters with reference to the brackets，the sign \pm ，read plus or minus，implies here that the stadent is to ietermine which one of these暗品s is to be employed．

[SEOT. II.

order, in - of inner
48. A number or a letter written directly before or after a bracket, inclosing one or more quantities, implios that each of the included terms is to be multiplied by that number or letter. So the line that separates the numerator and denominator of an algebraie fraction acts as a vinculum in uniting the terms of the numerator into one quantity, and hence when the several terms of the numerator are written separately the denominator must be placed ander each.

Ex. 1. Remove the bracket from $6\left(a-a m+b y^{2}-c\right)$.

$$
\begin{gathered}
\text { OPERATION. } \\
6\left(a-a m+b y^{2}-c\right)=6 a-6 a m+6 b y^{2}-6 c
\end{gathered}
$$

Ex. 2. Remove the bracket from $4\left\{a-b-\left(c x+d y-b^{3}\right) a\right\} m$ operation.

$$
\begin{aligned}
4\left\{a-b-\left(c x+d y-b^{3}\right) a\right\} m & =4 m\left\{a-b-\left(c x+d y-b^{3}\right) a\right\} \\
& =4 a m-4 b m-4 m\left(c x+d y-b^{3}\right) a \\
& =4 a m-4 b m-4 a m\left(c x+d y-b^{3}\right) \\
& =4 a m-4 b m-4 a c m x-4 a d m y+4 a b^{3} m
\end{aligned}
$$

Ex. 3. Remove the vinculum from $\frac{3 a-m-\left(c^{2}-m^{2}+x\right) y}{2 b^{3} \sqrt{c}}$

$$
\begin{aligned}
& \frac{3 a-m-\left(c^{2}-m^{2}+x\right) y}{2 b^{3} \sqrt{c}}=\frac{3 a}{2 b^{3} \sqrt{c}}-\frac{m}{2 b^{3} \sqrt{c}}-\frac{c^{2} y-m^{2} y+x y}{2 b^{3} \sqrt{c}} \\
&=-3 a \\
& 2 b^{3} \sqrt{c}-\frac{m}{2 b^{3} \sqrt{c}}-\frac{c^{2} y}{2 b^{3} \sqrt{c}}+\frac{m^{2} y}{.2 b^{3} \sqrt{c}}-\overline{2 b^{2} \sqrt{c}} x y
\end{aligned}
$$

Notr.-In the first step of this operation, when the bracket inolosing the last three terms is struck out, the included signs are not changed, because the vinculum written under these terms still binds thom into one, but when in the next step this vinculum is removed, the minus sign preceding it has the effect of changing the signs of the terms as exhibited in the operation.

Exarciby XI.*

Remove the brackets and vincula from the following expres-sions:-

$$
\begin{aligned}
& \text { 1. } 3(a-b) ; 4 x\left(a+b^{2}-x^{3}\right) ; 3 p^{2} x\left(1-b-c^{2}\right) \\
& \text { 2. } m\left(a-b^{2}+m p\right)+x^{2}(1-3 a-b)-m^{2} x^{2}\left(3-b-m^{2} x\right)
\end{aligned}
$$

[^0]3. $3\{1-(x-y) a\}+\{1+(a-b+y) x\}-c^{c}\{a-(-3-m) y\}$
4. $a\{a(m-n)-c(p-q)\}+c\{c(-m+n)+a(-p+q)\}$
5. $a-b-x+y-(c-d-m)$
$+$
6. $m+\frac{a-(b-c-d)}{x y z}$
7. $a\{(m-y) x-c(a+b)\}+a y-\frac{6 a-(m-3 p)}{2 a-c}$
8. $3 b\{-(a-c) d+(m-n) f\}-\frac{1-\{2(1-c)+3(1-m)-4(1-p)\}}{5 x^{2}}$
49. Two or more terms of an algebraic expression that have a common factor are often written in an abbreviated form by the aid of brackets, placing the factor common to the several terms directly before or after the bracket, and the remaining part of each term with its proper sign within.

Ex. 1:- Oollect the coefficients of $x^{2} y z$ in the following ex-- pression into one quantity: $5 a x^{2} y z-3 x^{3} y z+5 a^{2} m^{2} x^{2} y z+3 a b c^{2} x^{2} y z$ $-x^{2} y z$.
opzration.

$$
\begin{aligned}
& 5 a x^{2} y z-3 x^{3} y z+5 a^{2} m^{2} x^{2} y z+3 a b c^{2} x^{2} y z-x^{2} y z \\
& =\left(5 a-3 x+5 a^{2} m^{2}+3 a b c^{2}-1\right) x^{2} y z
\end{aligned}
$$

50. Any factor of an algebraic term may be regarded as the coefficient of the remaining factor. This is at once evident from the meaning of the expression coëficient $=$ con " together with," and efficiens " making" or " operating," i.e., the part which cö̈perates with the remainder to make the complete term.

Thus, in the term $3 a b x y, 3$ is the coef. of $a b x y ; 3 a$ is the coef. of $b x y$; $3 a b$ is the coef. of $x y$; $3 a b x$ is the coef. of y; $3 a b y$ is the çef. of $x ; a b x y$ is the coef. of $3 ; 3 x y$ is the coef. of $a b$, \&c., \&e,
[8ser. II.
51. When terms involving brackets are to be added or subtracted it is commonly best first to strike out the brackets by Art. 46, and then after performing the addition or subtraction re-bracket the terms, if necessary.

Ex. 1. Add $2 a(x-y+3), 5\left(n-c^{2}-a x\right)$, and $2(a+a y-4 m)$ opraltion.

$$
\begin{aligned}
2 a(x-y+3) & =2 a x-2 a y+6 a \\
5\left(m-c^{2}-a x\right) & =-5 a x+5 m-5 c^{2} \\
2(a+a y-4 m) & =\frac{2 a y+2 a-8 m}{} \\
\text { Sum } & =-3 a x+8 a-3 m-5 c^{2} \\
& =-3(a x+m)+8 a-5 c^{2} .
\end{aligned}
$$

Ex. 2. From $p(x-y)+q(y-z)$ take $a(x-z)-b(y+z)$ operation.

$$
\begin{aligned}
p(x-y)+q(y-z) & =p x-p y+q y-q z \\
a(x-z)-b(y+z) & =a x-a z-b y-b z \\
\text { Diff. } & =p x-p y+q y-q z-a x+a z+b y+b z \\
& =p x-a x-p y+q y+b y-q z+a z+b z \\
& =(p-a) x-(p-q-b) y-(q-a-b) z
\end{aligned}
$$

Exeroism XII.*

Find the value of:-

1. $3(a m-x+y)+5 a(x+3 y)+2(a-y) m+4 x(a+1)$.
2. $(a-x+y) m+3(m+a) x+4(a-y)+3(a+x) y$.
3. $7(a+b-c)-5(b+x-b c)-3(m-a-c)$.
4. $(a+m) x-3(a m+c) x y+2(a-c m) y^{2}$ added to $\left(x+y^{2}\right) a+$ $(c+a) x y-(b+f) y^{2}$. $3(a-b+c) y-(2 m-c) x-3 m(a x+a y-a z)$.
5. $2 a(p+x y) c-3\left(m-2 x y+y^{2}\right) c-3 a(y+c)$ subtracted from $11(a+b) m y-3 x y(a-b+c)$.

MULTIPLICATION.

52. Throren.-Quantities having like signs, give, when multiplied together, a product which is positive; and quantities having wnlike signs, give, when multiplied together, a product which is negative.

Or, as it is sometimes expressed for the salke of brevity,-
In Multiplication, like signs give plos, and unlike signs, unves.

[^1]Dimozicraftos 1. $+a \times+b$ means that $+a$ is to bo taken in an additive sense, i .0. , is to bo added as ofton as there are unite in b. But $+a$ added once gives $+a ;+a$ added two times gives $+2 a ;+a$ added three times gives $+3 a$, and so on. Hence $+a$ added b times gives $+a b$, that $1 \mathrm{~s},+a \times+b=+a b$.
II. $-a \times+b$ means that $-a$ is to be taken in an additive sense as often as there are units in b, but $-a$ added once gives $-a$; $-a$ added two times gives $-2 a ;-a$ added three times gives $-3 a$, and so on. Hence $-a$ added b times gifin $-a b$ that is $-a x+b=$ $-a b$.
Otherwise, $-a+a=0$; multiply each of these equals by $+b$.
Then $-a \times+b+a b=0$; subtract $+a b$ from each of these equals. Then $-a x+b=-a b$, which was to be proved.
III. $+a \times-b$ is equivalent to $-b \times+a$ since quantities connected by the sign of multiplication can be read in any order whatever.

Bat $-b x+a=-a b$ by last case. Therefore also $+a \times-b=-a b$. IV. $-a+a=0$; multiply each of these equals by $-b$.

Then $-a \times-b-a b=0$; add $+a b$ to each of these equals.
Then $-a x-b=+a b$, which was to be proved.
53. Theongy II.-Different powers of the same quanity are multiplied together by adding their exponents.

Dimonstration. $-a^{4} \times a^{3}=a a a \times a a a=\operatorname{aaaa} a a=a^{7}=a^{4+3}$, and the same is true in all other cases, hence generally $a^{m} \times a^{n}=a^{m+n}$.

Cabr I.

54. When multiplicand and multiplier are both simple algebraic quantities,

Role.-Multiply together the numerical coefficients and write the letters in juxtaposition after this product.

Thus $3 a b \times 5 c y=3 \times 5 \times a b c y=15 a b c y ;-2 a b \times 3 c=-6 a b c$; $2 x y \times-11 m=-22 m x y ;-4 x y \times-7 a m=28 a m x y$.

Case II.

55. When the multiplier is a simple quantity and the multiplicand is a polynomial,

Role.-Multiply each term of the multiplicand by the multiplier, and connect the seperal partial products by their proper signs.
[850x. 11.
taken in an are unite in times gives Hence + a
ditive sense gives $-a$; gives - 3a, $s-a x+b=$
ls by $+b$ tese equals.
connected Whatóver. $c-b=-a b$.
uals.
anity are
a^{4+3}, and $a^{n}=a^{n+n}$.
ple algo-
write the
$=-6 a b c ;$
me multi-
ultiplier,

Ex. 1. Multiplicand, 4ax-2ay+8 $x^{2} y^{2}$ Multiplier, $2 a x y$
Product, $\quad 8 a^{2} x^{2} y-4 a^{2} x y^{2}+8 x^{2} y^{6}$
Ex. 2. Multiplicand, am$^{2}-3 a c x-4 x y+7$
-
$\begin{array}{ll}\text { Multiplier, } & \frac{-3 a y^{2}}{-12 a^{2} m^{2} y^{2}+9 a^{2} c x y^{2}+12 a x y^{3}-21 a y^{2}}\end{array}$

- Cabr III.

56. When both multiplier and multiplicand are polynomials,

Ruln.-Multiply each term of the multiplicand by each term of the multiplier, and add the several partial products together.

Ex. 3. $a^{2}-a b-b^{2}$

$$
\begin{aligned}
& \frac{a-b}{a^{3}-a^{2} b-a b^{2}} \\
& \frac{-a^{2} b+a b^{2}+b^{2}}{a^{3}-2 a^{2} b+b^{3}}
\end{aligned}
$$

Ex. 4. $3 a x^{3}-3 a^{2} x+2 a^{2} x^{2}$

$$
\begin{aligned}
& \frac{5 a-2 x}{15 a^{2} x^{3}-15 a^{3} x+10 a^{3} x^{2}} \\
& \quad-6 a x^{3}+6 a^{3} x^{2}-4 a^{2} x^{3} \\
& 21 a^{2} x^{2}-4 a^{3} x^{3}-6 a x^{3}-15 a^{8} x+10 a^{3} x^{2}
\end{aligned}
$$

Ex. 5. $2 a b^{2}-a^{2} b^{2}+a^{3} b^{3}$

$$
3 a b-2 a b^{2}-3 a^{2} b
$$

$$
\overline{6 a^{2} b^{3}-3 a^{3} b^{3}+3 a^{4} b^{4}}
$$

$$
-4 a^{2} b^{4}+2 a^{3} b^{4}-2 a^{4} b^{5}
$$

$$
\frac{-6 a^{3} b^{3}+3 a^{4} b^{3}-3 a^{6} b^{4}}{6 a^{2} b^{3}-9 a^{3} b^{3}-4 a^{2} b^{4}+3 a^{4} b^{4}+3 a^{4} b^{3}-2 a^{4} b^{6}-3 a^{6} b^{4}}
$$

Ex. 6.

$$
\begin{aligned}
& \frac{a^{2}+2 a t+b^{2}}{a^{4}-2 a^{3} b+a^{2} b^{2}} \\
& 2 a^{3} b-4 a^{2} b^{2}+2 a b^{2} \\
& a^{2} b^{2}-2 a b^{3}+b^{4}
\end{aligned}
$$

5x. 7. $x^{2}-(a-b) x+a b$

$$
\begin{aligned}
& x-m \\
& x^{3}-(a-b) x^{2}+a b x \\
& \frac{-m x^{3}+(m a-m b) x-a b m}{x^{2}-(a-b+m) x^{2}+(m a-m b+a b) x-a b m}
\end{aligned}
$$

Ex. 8. $x^{2}-a x^{2}-b x+c$

$$
\begin{aligned}
& \frac{x-m}{x^{4}-a x^{3}-b x^{2}+c x} \\
& \frac{-m x^{3}+a m x^{2}+b m x-c m}{x^{4}-(a+m) x^{2}-(b-a m) x^{2}+(c+b m) x-c m}
\end{aligned}
$$

Exercisi XIII.

1. Multiply $a^{2}-2 a y+y^{2}$ by $a^{2}-2 a y+2 y^{4}$; and $a^{3}-3 a^{2} b+3 a b^{2}-b^{3}$ by $a^{2}+2 a b+b^{2}$.
2. Multiply $2 a^{2} m^{2}+12 a m x y+9 x^{2} y^{2}$ by $a m-x y$; and $3 a^{2} x-3 a x^{2}$ by $3 a^{2} x^{3}-x^{2}-1$.
3. Multiply $a^{4}-a^{3} m+a^{2} m^{2}-a n^{3}+m^{4}$ by $a+m ;$ and $2 a^{2}-2 a x y+2 y^{2}$ by $a^{2}-a x+y^{2}$.
4. Multiply $x^{2}-3 x-7$ by $x-4$ and $a^{2}+a^{4}+a^{6}$ by $a^{2}-1$.
5. Multiply $a^{3}+2 a^{2} b+3 a b^{2}+4 b^{3}$ by $a^{2}-2 a b-3 b^{2}$.
6. Maltiply $a b-a c+b c$ by $a b+a c-b c$.
7. Multiply $a^{4}-2 a^{3} b-3 a^{2} b^{2}-2 a b^{3}+b^{4}$ by $a^{2}+2 a b+b^{2}$.
8. Multiply $3 x^{2}-2 a b x-2 a^{2} b^{2}$ by $x+2 a b$; and $x^{2}+2 x-3$ by $x^{2}-x+1$.
9. Multiply $x^{4}+2 x^{3}+3 x^{2}+2 x+1$ by $x^{4}-2 x^{3}+3 x^{2}-2 x+1$
10. Multiply $3 y^{3}+2 x^{2} y^{2}+3 x^{2}$ by $2 y^{3}-3 x^{2} y^{2}+5 x^{3}$; and $a^{m}+b^{m}$ by $a^{n}+b^{n}$.
11. Multiply $2 a+3,3 a+4,5 a^{2}-2$, and $a-3$ together.
12. Multiply $a x+b y$ by $a x+c y$; and $a^{m}-b^{\circ}+c^{p}$ by $a^{m+1}-b^{n-p}$.
13. Multiply $a^{m}-c^{p}+q^{r}$ by $a_{0}^{2}-m^{3}+x^{a}$.
14. Multiply $a^{2}-a x+x^{2}$ by $a^{3}-a^{2} x+a x^{2}-x^{3}$.
15. Multiply $2 a-b, 3 b+c, 2 c-m$, and $3 m-x$ together.

DIVISION.

87. Division is the process of resolving a given quantity into two factors when one of the latter is given. As in Arithmetic, the given quantity to be resolved or divided is called the dividend, the given factor is called the divisor, and the factor to be obtained, the quotient.

Since the divisor \times quotiont $=$ dividend, the sign of the quotient must be such that the sign of its product by the divisor shall be the sign of the dividend.
Thus, $\frac{+a b}{+b}=+a \because+a \times+b=+a b ; \frac{+a b}{-b}=-a \because-a \times-b=+a b$;
$\frac{-a b}{-b}=+a \because-b \times+a=-a b ; \frac{-a b}{+b}=-a \because-a \times+b=-a b$.
Hence, the rule of signs for division is the same as for multiplication; that is, like signs in divisor and dividend give plus in the quotient, unlike signs in divisor and dividend give mands in the quotient.
58. Since $a^{4} \times a^{3}=a^{4+3}=a^{7}$, it follows that $a^{7} \div a^{4}=a^{3}$, that is, $a^{7} \div a^{4}=a^{7-4}=a^{3}$; or generally, since $a^{m} \times a^{n}=a^{m+n}$, it follows that $a^{m+n} \div a^{m}=a^{n}$ or $a^{m+n} \div a^{n}=a^{m}$.

- $2 x-3$ by
$-2 x+1$
nd $a^{m}+b^{m}$
r.
$m^{m+1}-b^{n-p}$
er.

Hence, one power of any quantity is divided by another power of the same quantity, by subtracting the exponent of the divisor from the exponent of the dividend.

Thas, $a^{6} b^{5} \div a^{2} b^{2}=a^{4} b^{3} ; x^{3} z^{6} \div x z^{5}=x^{2} ; a b^{2} c^{3} m^{4} \div b m^{3}=$ $a b c^{3} m$, \&cc.

Cabe I.

59. When both dividend and divisor are simple quantities or monomials,

Ruls.-Divide separutely the coefficient of the ciividend by the coef. of the divisor, and the literal part of the dividend by the literal part of the divisor ; write the partial quotients thus obtained in juxtaposition, and prefix the proper sign.

Thus, $14 a^{7} b^{2} c^{8} \div-7 a^{3} b c^{4}, 14 \div 7=2$, and $a^{7} b^{2} c^{8} \div a^{3} b c^{4}=a^{4} b c^{4}$, and the quotient is $-2 a^{4} b c^{4}$, because the signs of divisor and dividend are unlike.

Similaris $-21 a^{2} b x \div 3 a^{2} b=-7 x ;-18 x y^{2} z^{3} \div-2 x z^{2}=9 y^{2} z$, \&c.
Notre.-If both coef. and literal part of the divisor are not contained as factors in the dividend, we can only indicate the division by writing the tivo quantities in the form of a fraction.
For example, $7 a b^{2} c x^{3} \div 11 m y$ can only be expressed thus, $\frac{7 a b^{2} c x^{3}}{11 m y}$
But when we have thus expressed the quotient we can cancel any factors that are common to both numerator and denominator.

Thus, $24 a^{2} x y^{2} \div 15 a x z^{2}=\frac{24 a^{2} x y y^{2}}{15 a x z^{2}}=\frac{8 a x \times \frac{8 a y^{2}}{3 a x} \times \frac{8 a y^{2}}{5 z^{2}}=\frac{5 z^{2}}{5},{ }^{2}=1}{}$
Exfroise XIV.
Find the quotients of :

1. $15 a b c^{2} \div 5 a c ; 42 a x^{3} y^{5} \div 7 a x y^{4} ; 24 a^{2} x y \div 8 a x y ;-20 x^{2} y^{4} z^{10}$ $\div 20 x y^{3} z^{7}$.
2. $-14 a b^{2} \mathrm{~cm}^{4} \div 7 a b m^{3} ;-14 a b x^{3} \div 14 b x ;-27 m x^{3} y \div-3 x^{2}$; $-12 x^{7} y \div-4 x^{3} y$.
3. $12 a b^{2} c \div 20 a x y ;-17 a b x^{2} \div 11 a m x ;-21 a b x^{3} y \div-35 b x^{2} z^{4}$; $a b^{3} c f \div-16 a c f x^{2}$.

Case II.

60. When the divisor is a simple quantity but the dividend a compound quantity, i. e., a polynomial,

Rows.-Divide each term of the polynomial by the divisor, as directed in Case I, and connect the several partial quotients thus obtained by their proper signs.

Example.-Divide $4 a^{2} b^{2} c-3 a b c^{2}+12 a b^{2} c x-8 a b y^{2}$ by $-4 a b$.
Here $\frac{4 a^{2} b^{2} c-3 a b c^{2}+12 a b^{3} c x-8 a b y^{2}}{-4 a b}=\frac{+4 a^{2} b^{2} c}{-4 a b}$, and $\frac{-3 a b c^{2}}{-4 a b}$, and $\frac{+12 a b^{3} c x}{-4 a b}$, and $\frac{-8 a b y^{2}}{-4 a b}=-a b c$, and $+\frac{3 c^{2}}{4}$, and $-3 b^{2} c x$, and $+2 y^{2}=$ $-a b c+\frac{3 c^{2}}{4}-3 b^{2} c x+2 y^{2}$.
$b c^{4}=a^{4} b c^{4}$, divisor and
$=9 y^{2} z, \& c$.
contained as
7 writing the
$a b^{2} c x^{3}$
$11 m y$
1 any factors
$20 x^{2} y^{4} z^{10}$
$y \div-3 x^{2}$ $-35 b x^{2} z^{4} ;$
but the

Rivisor, as ients thus
$-4 a b$.
abc
$\overline{a b}$, and
$+2 y^{2}=$

Extroige XV:

Find the quotients of :-

1. $12 a x y^{2}-27 a b c^{2}+12 a x^{2} y-8 a c m \div 4 a c x$.
2. $21 x y^{2}-11 a+14 x^{2} y-49 y^{2} \div 35 a x y$.
3. $-64 a^{4} m-16 a^{2} m^{2}+24 a^{3} m-40 m^{2} x y \div-16 a^{2} m$.
4. $3 a b c+4 a^{2} c^{2}-16 a x y^{2}-30 a^{2} m \div-12 m x y$.

Cabs III.

61. When both divisor and dividend are polynomials,

Role I.-Arrange the terms of both divisor and dividend, so that the different powers of some one letter (which is common to both of them) may succeed each other in the order of their ivdices, and place the divisor thus arranged to the left of the arranged dividend, as in arithmetical division.
II.-Divide by Case I. the Fires Tram of the dividend by the First Tarm of the divisor, and place the result with its proper sign in the quotient,
III.-Multiply the whole divisor by the term placed in the quotient, set the product beiceath the dividend, and subtract.
IV.-To the remainder bring down as many terms from the dividend as the case may require; again divide the first term of this partial dividend by the first term of the divisor, and place the result with its proper sign as second term of the quotient; multiply and subtract as before, and proceed thus till all the terme are brought down.

$$
\text { ExגypLa 1. } a+b) a^{2}+2 a b+b^{2}(a+b
$$

$$
a^{2}+a b
$$

$$
\overline{a b+b^{2}}
$$

$$
a b+b^{2}
$$

Explanation.-The terms are already properly arranged in both divisor and dividend, eince the powers of a follow one another in regular descending order. Then a^{2} (first term of dividend) $\div a$ (first term of divisor) gives $+a$ as result, and we place this in the quotient. Next $(a+b) \times a=a^{2}+a b$ which we subtract from the dividend, and to the remainder $+a b$ we bring down b^{2}, the other term of the dividend. Next $+a b$ (first term of partial dividend) $\div a$ (first term of divisor) gives b for second term of quotient. Lastly $(a+b) \times b=a b+b^{2}$ which we subtract and find that there is no remainder.

Ex. 2. $\left.3 a b+4 b^{2}\right)-a b^{3}+6 a^{2} b^{2}-12 b^{4}$

$$
\begin{gathered}
\left.3 a b+4 b^{2}\right) 6 a^{2} b^{2}-a b^{3}-12 b^{4}\left(2 a b-3 b^{2}\right. \\
\frac{6 a^{2} b^{2}+8 a b^{3}}{-9 a b^{3}-12 b^{4}} \\
-9 a b^{3}-12 b^{4}
\end{gathered}
$$

Explanation.-Here we see that the terms as given are not properly arranged, since in the'divisor the exponents of a are arranged in descending order, while in the dividend they are not ; moreover the exponents of b in the divisor follow one another in ascending order, but in the dividend they follow one another irregularly. We first then arrange them properly, and then proceed to divide as follows: $6 a^{2} b^{2} \div 3 a b=+2 a b$, which we place in the quotient, $\left(3 a b+4 b^{2}\right) \times 2 a b=6 a^{2} b^{2}+8 a b^{3}$, which subtracted from the dividend gives a remainder $-9 a b^{3}-12 b^{4}$. Next $-9 a b^{3} \div 3 a b=-3 b^{2} ;\left(3 a b+4 b^{2}\right) \times-3 b^{2}=-9 a b^{8}-12 b^{4}$, which subtracted leaves no remainder.

Ex. 3. $3 a-6) 6 a^{4}-96\left(2 a^{3}+4 a^{2}+8 a+16\right.$

$$
\begin{aligned}
& \frac{6 a^{4}-12 a^{3}}{12 a^{3}-96} \\
& \frac{12 a^{3}-24 a^{2}}{24 a^{2}-96} \\
& \frac{24 a^{2}-48 a}{48 a-96} \\
& 48 a-96
\end{aligned}
$$

Ex. 4. $\left.x^{2}-x y+y^{2}\right) x^{2} y^{2}+x^{4}+y^{4}$

$$
\begin{aligned}
& \left.x^{2}-x y+y^{2}\right) x^{4}+x^{2} y^{2}+y^{4}\left(x^{2}+x y+y^{2}\right. \\
& \frac{x^{4}-x^{3} y+x^{2} y^{2}}{x^{3} y+y^{4}} \\
& \frac{x^{3} y-x^{2} y^{2}+x y^{3}}{x^{2} y^{2}-x y^{3}+y^{4}} \\
& x^{2} y^{2}-x y^{4}+y^{4}
\end{aligned}
$$

Not words, the rel Inator hat th rule, f btain emem coord of the any rraing

the

Fin
1.
ided
2.
3.
iven are not n ts of a are nd they are low one anf follow one roperly, and $a b$, which we , which suib-$-12 b^{4}$. Next ${ }^{4}$, which sub-

Ex. 8.
$\left.a^{2}-2 a x+x^{2}\right) a^{4}-4 a^{3} x+6 a^{2} x^{2}-4 a x^{2}+4 x^{4}\left(a^{3}-2 a x+x^{2}+\frac{3 x^{4}}{a^{2}-2 a x+x^{2}}\right.$
$a^{4}-2 a^{8} x+a^{2} x^{3}$
$-2 a^{3} x+5 a^{3} x^{2}-4 a x^{2}$
$-2 a^{2} x+4 a^{2} x^{3}-2 a x^{3}$
$a^{2} x^{2}-2 a x^{2}+4 x^{4}$
$a^{3} x^{2}-2 a x^{3}+x^{4}$

$$
3 x^{4}=\text { rem }
$$

Ex. 6. $1+a) a^{2}+2 a+1\left(u^{2}-a^{3}+a^{4}-a^{6}+\frac{a^{6}+2 a+}{1+a}\right.$

$$
\begin{aligned}
& \frac{a^{8}+a^{2}}{-d^{6}+2 a} \\
& \frac{-a^{8}-a^{4}}{a^{4}+2 a} \\
& \frac{a^{4}+a^{6}}{-a^{6}+2 a} \\
& \quad \frac{-a^{6}-a^{6}}{4}=a^{6}+2 d+2
\end{aligned}
$$

Note.-In Raxamples 5 and 6 the division doss not terminate, or in other words, the dividend is not exacity dimible by the divicor, and we write the remainder as the numerator of a fraction having the divicor for denomInator. In Example 6 ; liowevor, thit incolivensionde dishé fiom the fact hat the terms of both divieor and dividend are not arranged according to cule, for if ine hid arrangett the dividetrat thuif $\left(1+20^{2}+a^{2}\right)$ we should have pbtuined $1+a$.for tive quotiont. The atudint then mant be ourephl to emember that the divisor and dividend inust be arranged ettior both ccording to the ascending or both bocoraing to the adwending poweris of the principal letter, or hotter of reference, as it is called; and that not ply at atarting, but throughout the whole procene he must take care to rrange the partial dividende widorting to the mitue phat at that odiopted in the divisor.

Extroinn XVI.

Find the quotiente of:-

1. $x^{2}-2 x^{y}+y^{2}$ diviatd by $x-y$; and $a^{3}+3 a^{2} b+3 a b^{2}+b^{2}$ diided by $a+b$.
2. $m^{4}+4 m^{3} x+6 m^{2} x^{2}+4 m x^{3}+x^{4}$ divided by $m^{2}+2 m x+x^{2}$
3. $9 x^{6}-46 x^{5}+95 x^{2}+150 x$ divided by $x^{2}-4 x-5$.
4. $a^{2}+5 a^{2} b+b^{3}+5 a b^{2}$ divided by $a+b$; and $-1+x^{2} y^{3}$ divided by $-1+x y$.
5. $x^{6}+10 x-33$ divided by $3+x^{2}-2 x$.
6. $a^{8}+2 a^{6} m^{3}-2 a^{4} m^{4}-2 a^{7} m+m^{8}-2 a m^{7}+2 a^{4} m^{8}$ divided by $a^{3}+m^{3}-a^{2} m-a m^{2}$.
7. 1 divided by $1+a ; a$ divided by $1-a ; 1-m$ divided by $m+1$; and $1-2 x+3 x^{2} \div 1+x-x^{2}$.
8. $6 a^{4}-10 a^{3} m-22 a^{2} m^{2}+46 a m^{3}-20 m^{4}$ divided by $4 a m+? ?^{3}$ $-5 \mathrm{~m}^{3}$.
9. $4 a^{5}-16 a^{3} b^{2}+10 a^{2} b^{3}+15 a b^{4}-25 b^{5}$ divided by $2 a^{2}-5 b^{2}$.
10. $a^{8}+b^{3}+c^{2}-3 a b c$ divided by $a^{2}+b^{2}+c^{2}-b c-a c-a b$.
11. $144 x^{4}-145 x^{2} y^{2}+36 y^{4}$ divided by $4 x+3 y$.
12. $2 a^{8 n}+2 a^{m} b^{n}-4 a^{m} c^{n}-3 a^{m} b-3 b^{n+1}+6 b c^{n}$ divided by $a^{m}+b^{n}-2 c^{n}$.

Nons.- If the temoher is desirous of giving his pupils a greater number of quentioni in division he can find material for such in Exerciec XIII, in which the product may be regarded as the dividend, and either the multiplier or multiplicand as the divicor. Similarly, the questions in Threreice ZVI, may be made to furnish additional material for practice in multiplication.

DIVIAION BY DELAOERD COFPFIOIRNTS.

62. It is sometimes convenient in division, as also in multiplication, to employ only the coefficients. The mode of proceeding is shown in the following rule and illustra-tion:-

Rous.-Having arranged the divisor and dividend as in ordinary division, omit the letters, and set dpron the coefficients, each preceded by its proper sign, and place zero for every term of either divicior or dividend that may chance to be absent.

Proreed with these coefficients as in ordinary division; and the result will be the coefficients of the quotient with their proper signs; the literal part to attach to each of these is easily determined by inspretion.

A15. 68.]
DIVISION.
Ex. 1. Divide $9 x^{4}-144$ by $3 x-6$:
OPERATIOX.

$$
\begin{aligned}
& \frac{3-6) 9+0+0+0-144(3+6+12+24}{9-18} \\
& \frac{18+0}{18-36} \\
& \frac{36-72}{76} \\
& 72-144 \\
& 72-144
\end{aligned}
$$

Hence the quotiont $=3 x^{3}+6 x^{2}+12 x+24$.
Explamation.-We place three ciphers in the dividend to ocoupy the plaogs of the abwent terms x^{3}, x^{2}, and x. We aicertain the literal parts te attach, by obeorving that $x^{4} \div x=x^{2}$, which we pided aftior the anst coemiont, and the others of courve follow in regul

Ex. 2. Divide $x^{6}+4 x^{5}-8 x^{4}-25 x^{3}+35 x^{2}+21 x-28$ by $x^{2}+5 x+4$.

OPIRATION.

$$
\begin{aligned}
&1+5+4) 1+4-8-25+35+21-28(1-1-7+14-7 \\
& \frac{1+5+4}{-1-12-25} \\
& \frac{-1-5-4}{-7-21+35} \\
& \frac{-7-35-28}{14+63+21} \\
& \frac{14+70+56}{-7-35-28} \\
&-7-35-28
\end{aligned}
$$

Hence quotient $=x^{4}-x^{3}-7 x^{2}+14 x-7$.
The wedent is recommended to apply this method to the examples in Exercion XVI.

EYMTHETIO DIVISION.

68. The following is a still shorter method of division, and is pecuiliarly applicable when the first coefficient of the divisor is unity. It is frequently called "Horner's Method;" after the name of its inventor.*
RuLi.-After properly arranging divisor and dividend, 'if the first coefficient of the divisor be not unity, divide both dividend and divisor by the first coefficient of the latter. Then set down the first term of the dividend for first term of the quotient.

- Arrange the divicor in a vertical column to the left of the divi-- dend, and change the sign of every term in it except the first.

Multiply all the terms of the divisor, so changed, by the first term of the quotient, and arrange the products diagonally under the secint dind following vertical columns of the dividend.
dide the terms in the second column and the sith woill be the second term of the quotient. Multiply the changed terms of the divisor by the second term of the quotient, and arrange the products winder the thitrd and following vertical columins of the dividend.

Continue this process until the remaining vertical columns added give zero for sum, or until, in other cases, the division is carried as far as devired.
Noms.-It is unal in synthetio division to perform the work by detached coem cionts, romemboring to place on for the absent terines in both divisor and dividend.
12x. 1. Divide $a^{6}-3 a^{4} x^{2}+3 a^{2} x^{4}-x^{6}$ by $a^{3}-3 a^{2} x+3 a x^{2}-x^{3}$. operation.

$$
\begin{array}{r|c}
1 & 1+0-3+0+3+0-1 \\
+3 & 3+9+9+3 \\
-3 & -3-9-9-3 \\
+1 & +1+3+3+1
\end{array}
$$

[^2]Explazations.-Uding only the coefficients wo write a 0 for each abment term, i. e., for the torme involving $a^{5} x, a^{3} x^{3}$, and $a x$.
The first coef, of the divisor belng unity, the fint atep of the rule is not required.
We set down the divisor vertically on the right of the dividend, and change sll its signg except fhe firnt.
We place the first term of the dividr ad for first term of quotient.
We multiply the changed terms of the divisor by the fret termitiof the quotiont, and arrange the products, $8,-8$, and 1 , diagonally as represented, so that the first is under the seoond term of the dividend, and so that each is horizontally opposite that torm of the divisor from which it was obtained.

We add the second column, and got +8 for the second term of the quotient:
We multiply the changed terms of divisor by this +8 , and arrange the products $+9,-9$, and +8 , diagonally, as represented.

We add the third column, and thus get +8 for the third torm of the quotient, and so on.

Lastly we attach the proper literai part to eaoh term.
Ex. 2. Divide $6 a^{4}-u^{8}+2 a^{2}+13 a+4 b y^{2} 2 a^{3}-3 a+4$.

$$
\begin{aligned}
& \text { opmbation. } \\
& 2-7+4) 6-1+2+13+4 \\
& \begin{array}{c|c}
1 & \begin{array}{c}
3-1+1+6 \frac{1}{2}+2 \\
+1 \frac{1}{2} \\
+4 \\
-2
\end{array} \\
\text { Quot. }=\frac{-6+8-2}{3+4+1+0+0}
\end{array}
\end{aligned}
$$

Explanation,-Here, as the first coefficient of the divisor is not unity, we divide both divisor. and dividend by 2, the frst coef. of the formor. The rest of the process is similar to that in lant example.
Ex. 3. Divide $a^{5}-5 a^{4} x+10 a^{4} x^{2}-10 a^{2} x^{5}+7 a x^{4}-5 x^{5}$ by a^{2} $-2 a x+x^{2}$.

$$
\begin{aligned}
& \begin{array}{r|r|r}
1-5+10-10 & +7-5 \\
+2 & +2-6+6 & -2 \\
-1 & -1+3 & -3+1
\end{array} \\
& \text { Quot. }=1-3+3-1 \left\lvert\,+2-4=a^{3}-3 a^{2} x+3 a x^{2}-x^{3}+\frac{2 a x^{4}-4 x^{5}}{9^{2}-2 a x+x^{3}}\right.
\end{aligned}
$$

firinamaxpar.-The yextigal line is dravin in ondor to ohen where the remitpaler commences, pad it will be opegrred that shin is ono the than as many columaif from the extreme right as there are terms in thy dryjor.
Thi atudostis recommended to apply this method to tho eximpleis in Inrorion IVI.

SEOTION III.

THEOREMS* AND FAOTORING.

64. The following theorems should be thoroughly mastered by the pupil :-
/ 65. Triongy 1.-Zero divided by any given quantity gives zero for quotient.

Damonatration.-The divisor \times quotient must $=$ dividend, and coasequently the smaller the dividend becomen, the divisor remaining unchanged, the amaller must the quotient be. Hence when the dividend becomes less than any assignable quantity, i. $e_{1}=0$, the quotient also becomes $=0$, that is $0 \div a=0$.
68. Tmonim II. - finite quantity divided by zero gives an innambly large quantity for quotient.

Dmorspration.-A finite quantity divided by itself gives unity for quotient, and as the divisor is decroased in magnitude (the dividend remaining unaltered); the quotient increases. Hence when the divisor becomes infinitely small, i. e. $=0$, the quotient becomes infinitoly large, i. $e=\infty$. Therefore $a \div 0=\propto$. - 67. Troozax III.- A finite quantity divided by a quantity infinitdly large, gives a quotient infinitcly small, or in other words sives zero for quotient.

Dimomerrition.-Since the divisor \times quotient $=$ dividend, it is ovident that (the dividend remaining unchanged); the larger the divisor the amaller must be the other factor or quotient. When then the divisor becomes infinitely great the quotient must become infinitely small. Hence $a \div \propto=0$.
68. Thionay IV.-Zero divided by zero gives any quantity whatever for quotient.

Dimonstration.-Since the divisor \times quotiont $=$ dividend, and the dividend and divisor are both zero, it follows that the quiotient may be any quantity whatever, or in other words, $9+0$ $=a$, because $0 \times a=0$.

[^3]69. Thmornx V.-The zero power of any quantity is equal to unily.
Damonbtration.-Since one power of a quantity is divided by another power of the same quantity by subtracting the exponent of the divisor from that of the dividend, it follows that $a \div a=a^{1-1}$ $=a^{0}$; but any quantity divided by itself equals unity, hence $a \div a$ - 1. Since then $a \div a=a^{0}$ and also $=1$, it is evident that $a^{0}=1$.

Cor. Similarly it may be shown that $\frac{1}{a}$ and a^{-1} are equivalent expreasions: - for $\frac{1}{a}=\frac{a^{0}}{a}=a^{0-1}=a^{-1}$.

Nors.-It follows from the foregoing theorems that α being any finite quantity whatever,
$0, \frac{0}{a}$ and $\frac{a}{c}$ are equivalent symbols, ench representing no quantity, or the absence of quantity, or a quantity loss than any aseignable quanitty.
$\frac{a}{0}$ and \propto are equivalent aymbols, ench reprosenting a quanntity arontor than any aeaignable quantity. Hence aloo, zero and infnity are the reolp. rooals of eneh other.
a^{0}, and $\frac{a}{a}$ and 1 are cquivalont symbols, each reprenonting unity.
$\frac{0}{0}$ is a symbol of indetermination, i. e. is omploged to dedgnate a quantity which admits of an infinite number of values, or, an we fhall see hereafter, a quantits whose value dopende upon its origin.
70. Thmorim VI.-The square of the sum of any two quantities is equal to the sum of the squares of the two quantities together with twice their product.
Dumorstration.-Let a and b be the two quantities; then $a+b=$ their sum, and $(a+b)^{2}=$ the square of their sum,

$$
\text { Now }(a+b)^{2}=(a+b)(a+b)=a^{8}+2 a b+b^{2} \text {. }
$$

1 7. Thiokne VII. - The square of the difference of any two quantitis it equal to the sum of the squares of the two quantitice dinmioned by twoiee their product.
St $d-b-t h o i r ~ d i f f e r e n c e, ~ a n d ~(a-b)^{2}=$ the square of thot difforence.

How $(a-b)^{2}=(a-b)(a-b)_{1}=a^{2}-2 a b+b^{2}$.

- 79. Trasogam VIIL.-The product of the sum of any two quantities by the difference of the same two quantities is equal to the difference of the squares of the two quantities.

Dmomarmation.- Let a and b be the two quantities, a boing the greator; then $(a+b)=$ the sum, and $(a-b)=$ the diference of the quantities, and

$$
(a+b)(a-b)=a^{2}-b^{2}=\text { difx. of their squares. }
$$

1.73. Tamorne IX.-The product of two binomiuls having the same quantity for firot term but their second terms unlike, is equal to the square of the first tern together with the product of the two scoond terms and also the product of the first term by the sum of the two second terms.

Daxomeraytion.-Let $(x+a)$ and $(x-b)$ be the two binomials, then by actual multiplication $(x+a)(x-b)=x^{2}+(a-b) x-a b$.
stinderiy $4(x-a)$ and $(x-b)$ are the two binomials, thoir proditat whits $x^{2}+(-a-b) x+a b=x^{2}-(a+b) x+a b$.

V4. Tupare X.-The difference of the $n^{\text {th }}$ powers of tho gmane tities is culwaye divioible by the difference of the simple powers of the same two guantities whethor the exponent n be an odd number or an.cecu number.

Duromination. Wo are to show that the two quantities being a and x, and the difiprence of their $n^{\text {th }}$ powers being $\alpha^{n}-x^{n}$, then an $-x^{2}$ is divisible by $a-x$ whether n be an odd number or an oren number.

$$
\frac{a^{n}-x^{n}}{a-x}=a^{n-1}+\frac{a^{n-1} x-x^{n}}{a-a^{n}}=a^{n-1}+\frac{x\left(a^{n-1}-x^{n-1}\right)}{a-x}
$$

Now it is evident that when $a^{n-1}-x^{n-1}$ in divisible by $a-x$ then $a^{n}-x^{n}$, must also be divisible by $a-x$.
But when $n=2, n-1=1$, and it is manifest that $a-x$ is divisibie by $a-x$, therefore $a^{2}-x^{2}$ is divisiblo by $a-x$.

Again if $n=3, n-1=2$, and sincę $a^{2}-x^{2}$ is divisible by $a-x$, then also $a^{3}-x^{3}$ is divisible by $a-x$, and hence alito $a^{4}-x^{6}$ is divinible by $a-x$, and honce also $a^{5}-y^{5}$ and so on. Thomme an $=x^{n}$ is exnetly dirisibie by $a-x$, whether n be sn padi ox an ovon number
75. Thiorax XI.-The sum of the $\mathrm{n}^{\text {th }}$ powors of any two guanlities is not divisible by the difference of the quantitiees rihether a be an odd or an even number.

$$
\text { Diyomgtrapiox. } \frac{a^{n}+x^{n}}{a-x}=a^{n} 1+\frac{x\left(a^{n-1}+x^{n-1}\right)}{a-x}
$$

Now $a^{n}+x^{n}$ is div. by $a-x$ only when $a^{-1}+x^{n-1}$ is div. by $a-x$.
Taking $n=2, n-1=1$, and $a^{n-1}+x^{n-1}=a+x$, which is evidently not div. hy $a-x$, and therefore $a^{2}+x^{2}$ isp not div. by $\boldsymbol{u}-\boldsymbol{x}$.

But when $n=3, n-1=2$, and since $a^{2}+x^{8}$ is not div. by $a-x$, therefore $a^{3}+x^{2}$ is not div. by $a-x$.

But when $n=4,-1=3$, and since $a^{3}+x^{3}$ is not div. by $a-x$, thereforp $a^{4}+x^{4}$ is not div. by $a-x$.

And therefore $a^{5}+x^{5}$ is not div. by $a-x$, and therofoge $a^{9}+x^{6}$ is not dir. by $a-x$, and so on.

Therefore whether n be even or odd, $a^{4}+x^{n}$ is not diry by $-e^{-7}$
76. Taiorix XII.-The diffirence of the $\mathrm{n}^{\text {th }}$ polowr of any tho quantities is not divisible by the sum of the quantities whon m it on add number.

Dhmonstration. $\frac{a^{n}-x^{n}}{a+x}=a^{n-1}-a^{n-9} x+\frac{x^{2}\left(a^{n}-x^{2}-x^{n}-9\right.}{a+x}$
Now an - x^{n} is div. hy $a+x$ only whon $a^{n-y}-x^{n-8}$ is dir. br $a+x$.
Taking $n=3, n-2=1 ;$ and $a^{2}=x^{2 n-3}=a-x$, which is oirs. dently not div. by $a+x$, and therofore $a^{2}-x^{3}$ is not div. of $a+x$.

But then $n=5, n-2=3$, and since $a^{3}-x^{3}$ is not div. by $a+\infty$, therefore also $a^{5}-x^{5}$ is not div. by $a+x$.
But when $n=7, n-2 \equiv 5$, and since $a^{5}-x^{5}$ is not div. by $a+x$, therefore also $a^{7}-x^{7}$ is not div. by $a+x$, and so on.
Thenefore when n is an odd number, $a^{n}-x^{n}$ is not div. by $a^{+}+x$.
77. Whoner XIII.-The sum of the $\mathrm{n}^{\text {th }}$ powers of any two quan or fon of divisible by the sum of the quantities won n it an eveñ

Damosaration. $\frac{a^{n}+x^{n}}{a+x}=a^{n-1}-\frac{x\left(a^{n-1}-x^{n-1}\right)}{a+x}$

Now in order that $a^{n}+x^{n}$ shall be div. by $a+x, a^{n-1}-x^{n-1}$ must be div. by $a+x$.
Whon $n=a n$ oven number, $n-1$ must $=$ an odd number; and wo havi shown (Theor. ral.) that the difterence of the odd powers of tro quantities is not div. by the sum of the quantitios. Thorefore whon n is an oven number, $a^{n-1}-x^{n-1}$ is not div. by $a+x$, and therefore $a^{n}+x^{n}$ is not div. by $a+x$ when n is an oron numbor.
78. Thnonar XIV.-The difference of the $\mathrm{n}^{\text {din }}$ powers of any two quandities is exactly divisible by the sum of the quantities when n is an socen number.

Dixomarzatiox. $\frac{a^{n}-x^{n}}{a+x}=a^{n-1}-\frac{x\left(a^{n}-1+x^{n-1}\right)}{a+x}$
How whon $a^{n} 0^{-1}+x^{n-1}$ is div. by $a+x$, then also $a^{n}-x^{n}$ is div. by a $+x$.

But whon $n=2, n-1=1$, and $a+x$ is evidentiy div. by $a+x$, therofore af $-x^{3}$ fi div. by $a+x$.

And by first stop of next theorem $a^{2}+x^{2}$ is dir. by $a+x$, and thorefore alco $a^{4}-x^{4}$ in divi. by $a+x$, and so on.

Therofore $a^{n}+x^{n}$ is divisible by $a+x$, when n is an oven number.

Trown.-The covoral atope of thit and of the following demonatration mitmilly dopend upon ono anothor. Thuc, the lat atop of the following doponds on the lot ettop of thios; and ulop of this on lat stop of following; end anp of following on 2nd ettep of thin; 8rd atop of thic on End atop of sollowing; and so on.
70. Thangy XV.-The sum of the $n^{\text {th }}$ powers of any two quantities is divisible by the sum of the quantities when n is an odd number.

Dinomerzation. $\frac{a^{n}+x^{n}}{a+x}=a^{n-1}+\frac{x\left(a^{n-1}-x^{n-1}\right)}{a+x}$
Now $a^{n}+x^{n}$ is exactly div. by $a+x$ when $a^{n-1}-x^{n} .1$ is dit. by $a+x$.
But when $n=a n$ odd number, $n-1$ must $=a n$ even numbent, and $\mathrm{c}^{n-1}-x^{n-1}$ expresses the difference of two evon poworn, and since (1st step of Theorem xiv.) $a^{2}-x^{2}$ is divisible by $a+x$, therefore also $a^{3}+x^{2}$ is divisible by $a+x$.
yor. III.
THEOREMS. 51

And aince (2nd step of Theorem xiv.) $a^{4}-x^{4}$ is divisible by $a+x$, therefore also $a^{b}+x^{5}$ is divisible by $a+x$; and so on.

Therefore $a^{n}+x^{n}$ is div. by $a+x$ wben $n=$ an odd number.
80. The following is a recapitulation of the latter of these theorems:-
$a^{n}-x^{n}$ is div. by $a-x$ when n is odd.
$a^{n}-x^{n}$ is div. by $a-x$ when n is even.
$a^{n}+x^{n}$ is div. by $a+x$ when n is odd.
$a^{n}-x^{n}$ is div. by $a+x$ when n is even.
All other nth powers are indivisible by either $a+x$ or $a-x$.

Illustrativa Reamplef.

Thzorim VI.

$\left(2 x+3 y^{2}\right)^{2}=(2 x)^{2}+2(2 x)\left(3 y^{2}\right)+\left(3 y^{2}\right)^{2}=4 x^{3}+12 x y^{8}+9 y^{4}$. $(2 a x+5 y z)^{2}=(2 a x)^{2}+2(2 a x)(5 y z)+(5 y z)^{2}=4 a^{2} x^{2}+20 a x y z+25 y^{2} z^{2}$. Conversely $x^{2}+2 x y+y^{2}=(x+y)(x+y) ; a^{2}+4 a x+4 x^{2}=(a+2 x)(a+2 x) ;$ $9 a^{2}+6 a x y+x^{2} y^{2}=(3 a+x y)(3 a+x y) ; 4 x^{4}+12 x^{5} y+$ $9 y^{2}=\left(2 x^{2}+3 y\right)\left(2 x^{2}+3 y\right)$.

Thmorix VII.

$(m-2 x)^{2}=m^{2}-2(m)(2 x)+(2 x)^{2}=m^{2}-4 m x+4 x^{3}$ $\left(4 a b-3 x^{2} y\right)^{2}=(4 a b)^{2}-2(4 a b)\left(3 x^{2} y\right)+\left(3 x^{2} y\right)^{2}=16 a^{2} b^{2}-24 a b x^{2} y+9 x^{4} y^{8}$.

Oonverely $m^{2}-2 m y+y^{2}=(m-y)(m-y) ; \sin ^{2} y^{2}-s a c x y+\omega^{j} c^{2}=$ $(2 x y-a c)(2 x y-a c)$.

Thioriy VIII.

$$
(m-x y)(m+x y)=m^{2}-(x y)^{8}=m^{8}-x^{2} y^{2}
$$

$(3 a+7 y)(3 a-7 y)=(3 a)^{2}-(7 y)^{2}=9 a^{3}-49 y^{2}$. $\left(4 a^{2} x y-3 a^{3} b\right)\left(4 a^{2} x y+3 a^{3} b\right)=\left(4 a^{2} x y\right)^{2}-\left(3 a^{2} b\right)^{2}=16 a^{4} x^{2} y^{2}-9 a^{6} b 7$.

Converioly $x^{5}-4 y^{2}=x^{3}-(2 y)^{2}=(x+2 y)(x-2 y) ; x^{4} y^{4}-m^{4} b^{2}=$ $\left(x^{2} y^{2}\right)^{2}=\left(m^{2} b\right)^{2}=\left(x^{2} y^{2}+m^{2} b\right)\left(x^{2} y^{3}-m^{2} b\right)$.
$x^{2}-a^{6}=\left(x^{2}+a^{2}\right)\left(x^{3}-a^{2}\right)=\left(x^{2}+a^{8}\right)(x+a)(x-a)$.
$m^{18}-a^{18} b^{2 b}=\left(m^{8}+a^{8} b^{8}\right)\left(a^{8}-a^{8} b^{8}\right)=\left(m^{8}+a^{8} b^{8}\right)\left(m^{16}+a^{4} b^{6}\right)$ $\left(m^{4}-m^{4} b^{4}\right)=\left(m^{4}+a^{2} b^{4}\right)\left(m^{4}+a^{4} b^{4}\right)\left(m^{8}+a^{2} b^{4}\right)\left(m^{8}-a^{-b^{4}}\right)$ $=\left(m^{8}+a^{8} b^{8}\right)\left(m^{4}+a^{4} b^{4}\right)\left(m^{2}+a^{2} b^{8}\right)(m+a b)(m-a b)$.

Thmory IX.

$$
\begin{aligned}
& (x-7)(x+9)=x^{2}+(9-7) x-63=x^{2}+2 x-63 . \\
& (x-3)(x-7)=x^{2}-(3+7) x+21=x^{2}-10 x+21 .
\end{aligned}
$$

Conversoly. Find the factors of $x^{2}+14 x+33$. Here since 14 is the sum and 33 the product of the two last terms; we ceek to find by inspection what numbers added will make 14 and multiplied togother will make 33. Evidently 11 and 3.

$$
\begin{aligned}
& \text { Thorefore } x^{2}+14 x+33=(x+11)(x+3) \\
& { }^{2}+x-42=(x+7)(x-6) \because 7+(-6)=1 \text { and } 7 \times-6=-42 \\
& x^{2}-9 x+20=(x-6)(x-4) \because-5+(-4)=-9 \text { and }-5 \times-4=+20 \\
& x^{2}-x-156=(x-13)(x+12) \because-13+12=-1 \text { and }-13 \times 12=-166 .
\end{aligned}
$$

- Tmoraya X., XIV., and XV.-By actual division,
$\frac{a^{4}-x^{4}}{a-5}=a^{3}+a^{2} x+a x^{2}+x^{3} ; \frac{a^{4}-x^{4}}{a+x}=a^{3}-a^{2} x+a x^{2}-x^{3}$
$\frac{a^{5}-x^{6}}{a^{-}}=a^{4}+a^{3} x+a^{2} x^{8}+a x^{3}+x^{4} ; \frac{a^{5}+x^{5}}{a+x}=a^{4}-a^{3} x+a^{2} x^{4}-a x^{3}+x^{4}$.

82. In order to be enabled to write these and similar quiotients without actually dividing, observe the following points:-
83. The number of terms in the quotient always = the exponont of a in the dividend \div exponent of a in the divisor.
II. The soef. of each term of the quotient is unity.
III. The exponent of a decreases and that of x increases in the several terms of the quotient, by unity, or more generally by the exponent of the corresponding term of the divisor.
IV. When the connecting sign of the divisor is minus, all the signs of the quotient are + , but when the connecting sign of the divisor is plus, the signs of the quotient are + ond - alter natoly.
V. The sum of the exponente of each term = the difierence botween the exponent of a in the dividend and that of a in tho divisor.

Isser: tur.

- since 14 deek to ind multi-
t2.
$-4=+20$.
$1=-106$.
$a x^{3}+x^{4}$.
iotients
expo
ses in $\mathrm{Hly}_{\mathrm{y}}^{\mathrm{b}}$

11 the gn 0 altor
reace thos

Srinora XVII.

 Find by inspection the raltie of :-1. $(a-3 y)^{2} ;(3 a+2 x)^{3} ;(3 x y-7)^{2} ;\left(2 a x^{2}-3 x\right)^{2} ;(2 a+3 a x y)^{2}$.
2. $(a-3 x)(a+2 y) ;(2 a+3 y)(2 a-3 y) ;(3 a b-x y)(3 y+3 a b) ;$ $\left(2 m^{4}-3 x y^{3}\right)\left(2 m^{3}+3 x y^{3}\right)$.
3. $(3 a-2 x y)(2 x y+3 a) ;(2 a-7)(7+2 a) ;(x+3)(3-x) ;$ $(2+5 a y)^{2} ;\left(3 a-4 \alpha^{2} y^{2}\right)^{2}$.
4. $(x-6)(x+11) ;(3 a-2)(3 a+6) ;(x-4)(x-9) ;(x+3)$ $(x-7) ;(x-2)(x-1)$.
5. $\left(a^{7}-x^{7}\right) \div(a-x) ;\left(a^{6}-x^{6}\right) \div(a+x) ;\left(m^{6}+a^{6}\right) \div(m+a)$; $\left(c^{4}+x^{4}\right) \div(c+x)$.
6. $\left(a^{11}+x^{11} y^{11}\right) \div(a+x y) ;\left(a^{9} m^{9}-r^{9}\right) \div(a m-r) ;\left(a^{9}+m^{8} s^{0}\right)$ $\div(a-m s) ;\left(a^{4}-y^{4} z^{4}\right)+(a-y z)$.
7. $\left(x^{3}+9 x+20\right) \div(x+5) ;\left(x^{7}+7 x-8\right) \div(x-1) ;\left(8 x^{4}+5 x-4\right)$ $\div(3 x+4) ;\left(c a^{4} x^{2}+a^{3} x-a^{2}\right)+(2 d x+1)$.
8. Theorem VIII. may sometimes enable us to find fithont actual multiplication the product of two trinomials or quadrinomials, i. e., whion we can write one of thein af the gum of two quantities and the other as the difference of the mame tive quartities.

Ifx. 1. $(a-x+y)(a-x-y)=\{(a-x)+y\}\{(a-x)-y\}=$ $(a-x)^{2}-y^{2}=a^{2}-2 a x+x^{2}-y^{2}$.
Rx. 2. $(2 x-3 y-2 z)(2 x+3 y-2 z)=\{(2 x-2 z)-3 y\}\{(2 x$ $=(2 x-2 z)^{2}-(3 y)^{2}=4 x^{2}-8 x z+4 z^{2}-9 y^{2}$.

Ex. 3. $(a-2 b+3 c)(a+2 b-3 c)=\{a-(2 b-3 c)\} a+(2 b-3 c)\}$ $=a^{2}-(2 b-3 c)^{2}-a^{2}-\left(4 b^{2}-12 b c+9 c\right)=a^{2}-2 b^{2}+12 b c-9 c^{c}$.

Ex. 4. $(a+3 b+3 c-d)(a-2 b+3 c+d)$
$=\{(a+3 c)+(2 b+d)\}\{(a+3 c)-(2 b-d)\}=(a+3 c)^{2}-(2 b-d)^{2}$
$=a^{2}+6 a c+9 c^{2}-\left(4 b^{2}-4 b d+d^{2}\right)=a^{2}+6 a c+9 c^{2}-4 b^{2}+4 b d-d^{2}$.

() that the value of:-
$-\frac{1}{}(a-b+c)(a-b-c) ;(a-b+c)(a+b-c) ;(a+b+c)(a-b-c)$.
$25)(3 a-2 c+4)(4-3 a+2 c) ;\left(2 a-x+3 m^{2}\right)\left(2 a+x-3 m^{2}\right)$; $(2 a-3 y+2 x y)(3 y-2 a+2 x y)$.
8. $(2 x-8 c+2 x-3 y)(3 y-2 x-3 c+2 a) ;(a+2 c+4 m+3 d)$ $(a+82-2 c-4 m)$.
4. $\left(3 x-m^{4}-2+x y\right)\left(2-m^{2}+3 a-x y\right) ;\left(1+2 a^{2}-3 x^{2}+y^{2}\right)$ $\left.(2)^{2}-1-y^{2}-3 x^{2}\right)$
(eifyiug (the following exprestions, i. e. perform the operetion findiechod and reduce the reunlt to its atimplent folm: -
b. $(d a-2 b)(2 a+3 b)-(2 a-4 b)^{2}-4(3-a)(a+3)-(2 a-b)^{2}$.
6. $(4-3 x y)(3 x y-4 a)+3(2 a+x y)^{2}-7(3 a+x y)(2 y-3 a)+$ $4(2 a-3+2 y)^{2}$.
7. $(1-x)(1+x)\left(1+x^{2}\right)\left(1+x^{4}\right)\left(1+x^{8}\right)\left(1+\dot{x}^{16}\right): 1.8$ terms.
8. $(a-x y)(a+x y)\left(a^{2}+x^{2} y^{2}\right)\left(a^{4}+x^{4} \dot{y}^{4}\right) \ldots$ to n termas

Q8. Although wo have seon (Theor. $x 1$ and $\mathbf{x I}$) that the snm of the evon poprors of any two quantities is not divilible eifther by tho cum or the differonce of the quantities, it sometimes happone that wo can resolve the sum of two even powers into its comiph neat fectore. This occurs whenever the exponent n conthlt an ode fuctor, we for example when it is 6 , or 10 , or 12 , or 14,0 Of F 1 - Resolve $a^{2}-x^{3} y^{3}$ into its slementary factors.

Theor $x_{0} a^{2}-x^{3} y^{2}=a^{3}-(x y)^{2}=(a-x y)\left(a^{2}+a x y+x^{2} y^{3}\right)$.
Ex. 2. - Renolvo $a^{5}-m^{6}$ into its elementary factors.
(α^{s} - m s divinible by $e^{-}-m$, and therefore its factors an $(--m)\left(a^{4}+a^{4} m+a^{2} m^{2}+a m^{3}+m^{4}\right)$.

1. 3. - What are the factors of $x^{7}+y^{14}$?
$x^{7}+y^{24}=x^{7}+\left(y^{8}\right)^{7} \equiv\left(x+y^{4}\right)\left(x^{6}-x^{6} y^{2}+x^{4} y^{4}-x^{3} y^{6}+x^{2} y^{8}-x y^{10}+y^{18}\right)$.
Oberve herp the expononts of x in the seoond frotor decrenco by the enbarection or that of x in the first frotor, while the exponents of y in the cocond sator inereme by the medition of that of y in the Ant fiotor.
1. 4. What are the factors of $a^{16}-m^{26} c^{16}$?

By Theor. VIII. $a^{16}-(m c)^{26}=\left\{a^{8}+(m c)^{8}\right\}\left\{a^{8}-(m c)^{8}\right\}$ and $w^{0}-(m c)^{1}=\left\{a^{4}+(m c)^{4}\right\}\left\{a^{4}-(m c)^{4}\right\}$; and so on. Therafore $a^{16}-m^{28} c^{16}=\left(a^{8}+m^{8} c^{8}\right)\left(a^{4}+m^{4} c^{4}\right)\left(a^{3}+m^{3} c^{5}\right)(a+m c)(a-m c)$.

[^4]$4 i+24)$
$3+4 y$
id operts. m" $(2 a-b)^{2}$. $y-8 a)+$ 8 terme. Bu.

IIX. 5. - What aro the factorit of $32 x^{6}+243 y^{4}$?

$32 x^{6}+218 y^{6}=(2 x)^{3}+(3 y)^{\prime}=(2 x+3 y)\left\{(2 x)^{4}-(2 x)^{2}(3 y)+\right.$ $\left.(2 x)^{2}(3 y)^{2}-(2 x)(3 y)^{3}+(3 y)^{\prime}\right\}=(2 x+3 y)\left(16 x^{4}-21 x^{3} y+36 x^{2} y^{4}-\right.$ $\left.64 x y^{3}+81 y^{4}\right)$.

Ex. 6 . Resolve $d^{18}+m^{12}$ into its two olementary fictorio.
$a^{18}+m^{18}=\left(a^{4}\right)^{3}+\left(m^{4}\right)^{3}$, and since the sum of the ouber of two quantities is divisible by the sum of the quartitios, $\left(a^{4}\right)^{3}+\left(m^{4}\right)^{3}=\left(a^{6}+m^{4}\right)\left(a^{4}-a^{4} m^{4}+m^{6}\right)$.

Ex. 7.-Revolve $a^{20}-x^{20}$ into ink elomentary factors.

$$
\begin{aligned}
& a^{30}-x^{20}=\left(a^{10}+x^{10}\right)\left(a^{5}+x^{6}\right)\left(a^{6}-x^{5}\right) \text {. } \\
& a^{10}+x^{10}=\left(a^{2}\right)^{5}+\left(x^{2}\right)^{5}=\left(a^{4}+x^{2}\right)\left(a^{4}-a^{6} x^{2}+a^{4} x^{4}-a^{2} x^{4}+x^{4}\right) \text {, } \\
& \text { and retolving (} a^{5}+x^{5} \text {) and } a^{b}-x^{4} \text { into thoir thetort, wo find, ihat } \\
& a^{30}-x^{30}=\left(a^{3}+x^{2}\right)\left(a^{5}-a^{4} x^{2}+a^{4} x^{4}-a^{2} 5^{6}+x^{2}\right)(a+x)\left(a^{4}-a^{3} x\right. \\
& \left.+a^{2} x^{2}-a x^{2}+x^{4}\right)(a-x)\left(a^{4}+m^{2} x+a^{4} x^{4}+c^{2}+x^{4}\right) \text {. } \\
& \text { Ex. } 8 \text { - Hoolva } 4 \text { a } 0 \text { intionghtomontary fcotorn } \\
& m^{5}-x^{4}=\left(m^{27} \quad 5^{21}-x^{21}\right) \\
& \left.m^{27}+x^{97-}=\left(m^{9}\right)^{8}+\left(x^{9}\right)^{3}=\left(m^{9}+x^{2}\right)\left(m^{2}-m^{2}\right)^{2}+x^{10}\right) h^{2} \\
& m^{0}+z^{2}=\left(x^{3}\right)^{3}+\left(x^{3}\right)^{3}=\left(m^{0}+x^{0}\right)\left(-x^{2} x^{2}+x^{0}\right){ }^{4} \\
& m^{3}+x^{3}=(m+z)\left(m^{2}-m+2\right) \text {. }
\end{aligned}
$$

Theroforn wiy $+z^{97}=\left(m^{10}-m^{0} z^{9}+z^{10}\right)\left(m^{6}-m^{3} z^{3}+\alpha^{2}\right)\left(m^{3}-\right.$ $\left.m z+z^{2}\right)(m+z)$.
And amididy $m^{27}-z^{27}=\left(m^{10}+m^{9} z^{9}+z^{10}\right)\left(m^{0}+\ldots 0 x^{0}+x^{6}\right)$ $(m+m z+z)(m-z)$

Therefonimb $-x^{64}=$ the above eight fractorn.

FTinoise XIX.

Revolvo into elementary factors:-
($1+x^{3}-m^{8} ;$
2. $a^{b}+c^{b}$;
3. $a^{4}+x^{4}$;
4. $a^{6}-16 j$
(4x+6 x^{20};
6. $a^{11}-b^{11}$;
7. $a^{4}-m^{4} x^{4}$;
8. 32 m $4 x+\frac{1}{2}$;
4 $21+16 c^{4}$;
10. $243 m^{6}-32 c^{6} ; 11$. $x^{2}+x^{2}$;
12. $1^{0}+2^{8} 0$
 x yofolicios;
18. $m^{2 M}+24 ; 19 . a^{21}+m^{24} ; 20$ ($\left.\left(m^{3}\right)\right)^{2} R^{21}$

Mxnoum x.

1. Bimplif $a-x-\{-(-a)-x\}-\{-(-\{-a-(-\{-(-x-a)$ $-a\}-x)-(6\}-a)$
20.0impiry $3(a-x)(a+x)-2(a-2 x)^{2}-(3 a-2 x)(2 x-3 a)-$ $4(3 x,-a)(a+8 x)$ sit 1o
2. Add together $\sqrt{ } 3+2 \sqrt{ } 6+3 \sqrt{5}-\sqrt{x} ; 2 \sqrt{ } 3-3 \sqrt{ } 6-4 a x^{2}-\sqrt{ } x$, $2 \sqrt{5}-3 \sqrt{x}+a^{2}-\sqrt{2} ;$ and $4 \sqrt{6}-3 a^{2} x-3 \sqrt{ } x$.
3. Mútiply $a^{2}+x^{6}+1$ by d $-t^{-1}$.
4. Divide $a^{n}-x^{n}$ bj $a+x$ to 5 terma.
5. What idd the fiotort of $x^{2}-14 x-61$?
6. SDivito; tiby $i+1$, and diprosis the velue of the quetiont.

7. Divide ctying $-\tan ^{2} n^{2} x^{2} y+4 p^{2} m^{2} x^{2}$ into its fastorn.
8. Ifa $a, b=3, c=4, d=1$, and $m=0$, find the value of $\sqrt{c(c+2 d)}+\sqrt{a^{2} b^{2} c d m}-\frac{(\{a(b+c)-d\}+a b)-\{b c(b+c)+1\}}{c d^{2}+\sqrt{c(b c+d)-b}-(a+b+d)}$
 Sax 1, $\operatorname{sad} 160 a^{2}-2 a b-3 b^{2} b y a^{2}+2 a^{2} b+3 a b^{2}+4 b^{2}$.
9. Datho aynthotically $x^{4}-d^{2} x^{2}+b x^{2}-c x^{2}+a b x+a c x+b c c^{3} y$ $-1+2-6$
10. Repolve $a^{64}-m^{64}$ into its elementary factors.
11. That by ingpection the value of $\left(a^{2}+c^{3}\right)(a+c)(a-1$

$\left.-c^{10}+c^{20}\right)\left(a^{20}+a^{0} c+a^{8} c^{2}+a^{7} c^{3}+a^{6} c^{4}+a^{8} c^{6}+a^{8} c^{8}+a^{4}{ }^{2}\right.$
$\left.+a^{2} c^{3}+a c^{9}+c^{10}\right)\left(w^{20}-\leq d^{9} c+\alpha^{6} c^{2}-a^{7} c^{3}+a^{6} c^{4}-a^{6} c^{6}+a^{4} c^{8}\right.$
$\left.-\alpha^{3} c^{7}+a^{2} c^{0}-a c^{0}+c^{20}\right)$.
12. If $a=1$, and $a+b+b=a+b=0$, find the value of

$$
\left(b^{2}-c^{2}\right)\left\{b^{2}+c^{3}-b(a-c)\right\}
$$

16. Eimplify $a^{3}-b^{3}-\operatorname{sab}(a-b)+\operatorname{sab}(a+b)+a^{3}+b^{3}$.

1\%. 8impliy $a^{2}-m^{2}+3(a-m)^{2}-2(2 \dot{a}-3 m)(3 m+2 a)$
$\left(5 m f(\sigma)+6 f^{2} m-m^{6}\right)+2 m(6 a-2 m)$.
18. If $n=a+b+c$, prove that
$m(m-2 a)(m-2 b)+m(m-2 b)(m-2 c)+m(n i-2 c)(m-2$
$=8 d b c+\left(\begin{array}{c}m-2 a) \\ m\end{array} n-2 b\right)(n-2 c)$.

88. The G. C. M. of two or more quantities can often be found by inspeotion or by the following:-

Run.-Recolve each of the guantities inso its component factors: then the product of those factors common to all the given quantities will be their G.C.M.

FII. 1. What is the G. C. M. of $49 a^{2} b^{3} c^{4}$ and $68 a^{5} b^{8} c^{d}$?
$49 a^{2} b^{2} c^{4}=7 a^{2} b^{4} c^{3} \times 7 c$ and $63 a^{5} b^{4} c^{3}=7 a^{4} b^{2} c^{3} \times 9 a^{3} b$, whence it is ovident that the G. O. M. required is $7 a^{3} b^{2} c^{3}$.

Kx. 2. Thẹ G. O. M. of $m^{2}\left(a^{2}-m^{2}\right)^{2}$ and $\left(a^{2} m+a m^{2}\right)^{3}$;
that if, of $m^{3}\left(a^{3}-m^{2}\right)\left(a^{8}-m^{2}\right)$ and $\{a m(a+m)\}$
that is, of $m^{2}(a+m)(a-m)(a+m)(a-m)$ and $a^{2} m^{8}(a+m)(a+m)$ $(a+m)$;
that fs, of $m^{2}(a+m)^{2}(a-m)^{2}$ and $m^{2}(a+m)^{2}(a+m)$ d m is $m^{3}(a+m)^{x}$.
Mx. 8. The G. O. M. of $15\left(x^{2}-2 a x-8 a^{2}\right)$ and $35\left(x^{3}+a^{3}\right)$.
that lis, of $5 \times 3(x+a)(x-3 a)$ and $5 \times 7(x+a)\left(x^{2}-a x+a^{2}\right)$;
that is, of $B(x+a) \times 3(x-3 a)$ and $B(x+a) \times \eta\left(x^{2}-a x+a\right)$ is $\delta(x+a)$.

Exarcim XXI.

算
Find by factoring the G. O. M. of

1. 1800 m and $24^{2} b^{2} m^{3}$.
2. $21 \mathrm{~d}^{4} \mathrm{ma}^{3}, 18 \mathrm{am}^{8}$ and $15 a^{2} \mathrm{mos}^{4}$.
3. $8 a^{2} x^{2} y+17 a m x y-3 a^{2} m^{3} x^{2} y$ and $5 x y+3 a x y-14 a^{2} x^{2} y$.
F.4. $2 x^{2}+2 x-m x^{2}-2 m x$ and $x^{2}+4 x+4+a x+2 a, \quad\left(x+x^{2}-x^{2}\right)$ and $4 a^{2} x^{3}(a-x)^{2}$.
-. $3 m^{3}\left(a^{6}-m^{2}\right)(a+m), 4 m\left(a^{2} m-m^{2}\right)^{2}$ and $4 m^{2}\left(a^{2}-m^{2}\right)(a-m)$.
4. $x^{3}-4 x-21, x^{2}-12 x+35$ and $x^{2}+5 x-84$.
5. $(a x-a)^{2}$ and $a^{2}\left(x^{2}-3 x+2\right)$.
6. $x^{2}+3 x-4, x^{2}-2 x+1$ and $x^{2}-1$.
7. To find the G. C. M. of two polynomials:-

Rule.

1. Strike out the greatest monomial factor (if there be any) which to comimon to all the terme of both polynomiale, and resarve it.
II. Reject from each of the polynomials any remaining monomial factor that inay be common to all ite terms.
III. Arrange the trsulting polynomials as for division, i.e., according. to the powers of the same letter of reference, and make that one the divisor whose first term is of lower, or of not higher dimensiona, as to the letter of reference, thain the firsl term of the other.
IV. Multiply (if necessary) the dividend by the least monomial that will render its first term exactly divisible by the first term of the divisor.
V. Divide the dividend by the divisor and continue the division until the higheot exponent of the letter of reference in the remainder is less than the exponent of the letter of referince in the first term of the divisor, observing that if the coef. of the first term of any partial rem. should happen not to be divisible by the coef. of the first term of the divisor, in opder to avoid fractions, the rem. is to be multiplied by swek a. number as will render the coef. of its firat term exactly divisible by the coef. of the first term of the divisor.
VI. Reject from the remainder its greatest monomial factor, and if its first term is negative, change all uti sigiss : conoidor the result as constituiting a new divisor and the former divisor a neio dividend : proceed as before, and continue the operation until there is no remainder.
VII. Arultiply the last divioor by the reserved monomial, if $\mathrm{miny}_{\text {, }}$ ts and the product will be the G. C. M. of the given polynomsals.
, mognor, PuLs.-The G, C.M. of two quantitio is evidently the product of 4 otorn common to both. Henoe if we refoot any monondty itet
 nein the thetor as entering into the G.C. M., and therefote wo mivio ti.
II.--Since the G. C. M. of two quantition is tho product of all the fioloss Whioh ato cummon to both quandtiles, it 4 , evident that a shofor wriboh belonge oinly to one of the two cannot form a part of their C.C. In., and thesedose we may, for the sake of abbreviating the work, siefoot as direoted in 11.
IV:-riavies by II atruols out overy monomial that in a factor of cliber of the quanticio, it in ovident that if wo mulidply the devidead by any momominl in oxier to make tion ante oxnotly divialble by the Lujt term of the divicor, this monomial not being a fictor of each of tho terme of the divicor (ithoughtits of the firat term) cannot be a shetor common to botin dividend and divisor, find therefore cannot form part of thole G.C. M. .
III, V, VII.-Iit the given polymomitio whow G. C.M. is required be m^{8} no and $m \mathrm{~m}^{2} \mathrm{f}_{3}$, where m^{2}, n and f are monomiale. After b) a (p atrilding out and reverving the common fhotor ms, and
$\frac{b p}{c) b(q}$
$\frac{a q}{d) c(r}$
ar rejecting from the remainderi na and $f b$, the thetore n andf whioh are not common to both; them the reduced polynomiale whove G.C.M. is sought are a and b. Rupppose thewe boling properily arranged, the leading letter of is is of lower or not higher dimonions than that of a. Then divide and muppose $a \div b$ gives a quotiont p what rem. c; alco $b \div 0$ give quotiont q and rem. a; alco $c+d$ cireo guotient r and no rem. Then $\&$ in the G.C. M. of a netit b. Wo shall funt show that α is a common moicure of a and b.
Eecamce a memprey o, alnce it goes into it without a romainder, theresore (Theor, I) it memures ge a multiple of c.
Beoamoe d menmures d and alco qc, therafore (Theor. II) it meamren thiotr aing, which it of.
Eocanco a mongures b it alco measures $p b$, a multiple of b.
Benitio a mespures pb and also c it meagureo their sum which is a.
Thoredore a measures both b and a, and in a common moneure of them.
Kost wo mall show that α being a oommon mensuse is the greatest common rempure of a and b.

For if i be not the $0^{\circ} G$. C. M. of a and b let there de a greator as a\%.
Then becaveo de mespures of it moncures pb, a maltiple of b.
 once, whiloh in 0 .

Became of menares of also mensures qci, a multiple of c .

Thoratore al momenres a, that is, a sceator quantity moperises a low, whioh is sbmard.
 It ang bo alown that no quiantits gevetar than α is common moneto of a ain B. Therestore ais the G, O.M. OI a and b,

11 the tritors potor wheoh - O. 12., and say direoted

cos of wither

 lead by any term of the rethe itivioor the dividendrequired be mials. After or $m \mathrm{~m}$, and to thotore n the reduced b. Buppose or or bis of If a. Then ith rem. ${ }^{\circ}$ $0 \div \alpha$ cires of a nitit b.
r, therefore
It menoures
lisa.
of thom.
se greatest
is.
heir dilior.

Whiohils d_{1} lem, whioh

AET. 89.]
GRTATEST OOMMON MRASURE.
V.-Wo may multiply any romainder by any number in order to make its Ant 000f. axnotly diviablo by the fint coetic of the divicor, begane the G. C.M. of a and b it the mano aid tho G.O. M. of any divieor b and rom.c. If ciow wo zulitply, thio rome o by any monomial maf, the divioor 6 haring no monomin tholor, can have se shotor in common whth f, mor sharifore any in commolit with ρ o bat what it may have in common with c. That in, the G.O.IT. of b and fo will be the amme an the $G \quad S$, of b and c, and therefore the mani as the G. O. M. of a and b.
VI.-We rejeot the monomial fiotor of the remainder betore maling it a divieor, becamec the tormor divicor, which has now become a difidends contains no monompal stetor, and tharefore can contain no frotor in como. mon with the monciminal rafected from what now beoomes the divicos, and thoreviere the G.O. 3i. of the dividend (lant divicor) and the monredmeod divisor (i. o. inst rem.) is the same as the G. C. M. of the dividend and divioor redroed as difreotod.
Wo can change all the nigne of the divipor beoause this is equivalont meroly to dividing it by -I.

Ex. 1. What is the G. O. M. of $x^{2}-10 x+21$ and $x^{2}-2 x-36$?

$$
\begin{aligned}
& \text { opibation. } \\
& \left.x^{2}-10 x+21\right) x^{8}-2 x-35(1 \\
& x^{2}-10 x+21 \\
& 8 x-66=8(x-7) \\
& x-7) x^{2}-10 x+21(x-3 \\
& x^{2}-7 x \\
& -8 x+21 \\
& -3 x+21 \\
& \therefore \text { G. C. M. }=x-7 \text {. }
\end{aligned}
$$

Explamation. -There is no monomial fhotor common to both, nor is there any monomial factor common to all the terms of elther. Therefore we at onoe proceed to divide, x boing takem as letter of reference; the ifrat terms of the given quantities are of the same dimonaions, and consequently it makes no difitrence which is taken as divieor.

- After the firat step of the division we obtain a remainder $8 x-68$, and before uaing this for divisor we atrike out its monomial factor 8. This gives us $x-7$ for 2nd divisor. We make the lact ditieor the new dividend, and finding that we pow obtain no rom., we oomblede that the G.C. M. is $x-7$.
$\left.2 a^{3}+8 a x-9 x^{2}\right) 6 a^{3}-17 a^{2} x+14 a x^{2}-3 x^{2}(3 a-13 x$
$6 a^{2}+9 a^{2} x-27 a x^{2}$
$-26 a^{4} x+410 x^{3}-3 x^{2}$
$-26 a^{2} x-39 a x^{2}+117 x^{2}$
$80 a x^{2}-120 x^{3}=40 x^{3}(2 a-3 x)$

$$
\begin{gathered}
2 a-3 x) \frac{2 a^{2}+3 a x-9 x^{2}(a+3 x}{2 a^{4}-3 a x} \\
6 a x-9 x^{2} \\
6 a x-9 x^{2}
\end{gathered}
$$

G. O. M. of the reduced polynomials $=2 a-3 x$ and reserved common factor $=\alpha$.
Therofore G. O. M. of giren quantities $=a(2 a-3 x)$.
Heprusamiona.-Hore we atrikeout and reverve the monomial riotor a, whioh lo common to both quantition, and etrike out and rejoot the monomial thotor x of the second quantity and remanining monomial fetor a of the anst.
We ealoot the divicor as ahown in the margin, beoinuee as, ite first term, ne of lower dimonelone than as, the frit torm of the other. Our firt rem. $480 m x^{2}-100 x^{3}$ from which wo rejoot itte greateat monomina fnotor same, axid thing gives us $2 a-8 x$ for a new divieor, the last divisor beooming the now divldend.

$$
-8 x^{2} y+8 x^{2} y^{2}-3 x y^{3}+y^{4}
$$

FR. 8. - Find the G. O. M. of $6 x^{4}-x^{2} y-8 x^{2} y^{4}+8 x y^{2}-y^{4}$ and $9 x^{4}-8 x^{2} y-2 x^{2} y^{2}+8 x y^{2}-y^{4}$.

opzaltion.

$\left.6 x^{4}-x^{2} y-8 x^{2} y^{2}+8 x y^{2}-y^{4}\right) 9 x^{4}-8 x^{2} y-2 x^{2} y^{2}+8 x y^{2}-y^{4}(3$ 2
$18 x^{4}-6 x^{2} y-4 x^{2} y^{3}+6 x y^{2}-2 y^{4}$
$18 x^{4}-3 x^{2} y-9 x^{2} y^{3}+9 x y^{2}-3 y^{4}$

$$
=-y\left(8 x^{2}-6 x^{2} y+8 x y^{2}-y^{2}\right)
$$

$\left.3 x^{4}-5 x^{2} y+3 x y^{2}-y^{2}\right) 6 x^{4}-x^{2} y-3 x^{2} y^{2}+3 x y^{2}-y^{4}(2 x+3 y$
$6 x^{4}-10 x^{2} y+6 x^{2} y^{2}-2 x y^{3}$
$9 x^{2} y .-9 x^{2} y^{4}+6 x y^{2}-y^{4}$
$\frac{9 x^{2} y-15 x^{2} y^{2}+9 x y^{3}-8 y^{4}}{6 x^{2} y^{4}-4 x y^{3}+2 y^{4}}$
$=2 y^{2}\left(3 x^{2}-8 x y+y^{2}\right)$
$\left.3 x^{3}-2 x y+y^{2}\right) 3 x^{3}-6 x^{2} y+3 x y^{3}-y^{2}(x-y$
$3 x^{2}-2 x^{2} y+x y^{2}$
$-2 x^{2} y+2 x y^{2}-y^{8}$
$-3 x^{2} y+2 x y^{3}-y^{3}$
Thorefore G. C. M. $=3 x^{2}-2 x y+y^{3}$
 and that there is no monopinial fretor to rejoot, we multipis the dividond by 8 in ordior to make ite int forme excetly dividile by the fint torm of the divisor.
Before malding the rem, a div. We cast out its monomial factory and change all Itic aigne, or, what arionnta to the same thing, we cant out the monomial fuctor $-y$.

Bufore, making the next rem. a new divisor wo cant out ite mamomial fuetor $2 y^{2}$.

Demroise XXII.
Find the G. C. M. of

1. $x^{2}-6 x-14$ and $x^{2}-x-6$.
2. $x^{4}-8 x^{3}+21 x^{2}-20 x+4$ and $2 x^{3}-12 x^{2}+21 x-10$
3. $a^{4}-a x-7 a+7 x$ and $a_{1}^{3}-3 a+3 x-a^{2} x$
4. $x^{4}+x^{2}-12 x$ and $x^{4}+4 x^{0}+B x+20$.
b. $a^{2}-3 a b+2 b^{2}$ and $a^{8}-a b-2 b^{2}$.
5. $a^{2}-a^{2} b+3 a b^{2}-8 b^{4}$ and $a^{6}-b a b+4 b^{2}$.
6. $30 x^{4}-18 x^{8}+94 x^{2}-42 x+56$ and $60 x^{6}-36 x^{5}+48 x^{6}$ $-45 x^{2}+420^{3}-46 x+12$:
7. $6 a^{4} 4-6 a^{2} b y-2 b y^{2}+2 a b y^{2}$ and $12 a^{3} b+8 b y^{2}-16 a b y$.
8. $a^{2}+9 a^{2}+27 a-98$ and $a^{2}+12 a-28$.
9. $8 a^{88}-24 a^{8} b^{2}+24 a b^{4}-8 b^{6}$ and $12 a^{4}-24 a^{2} b+12 a^{28} b^{2}$.

1 11. $6 a^{8}+20 a^{4}-12 a^{4}-48 a^{8}+22 a+12$ and $a^{6}+4 a^{6}-3 a^{4}$ $-18 a^{3}+11 a^{3}+12 a-9$.
12. $2 a^{4}-2 a^{2} b-16 a b^{2}+12 b^{3}$ and $3 a^{4} c-9 a^{3} b c-24 a^{3} b^{3} c+54 a b^{8} c$ $-24 b^{4} c$.
00. To find the G. O. M. of three quantities :- Find the G.O. M. of two of them, and then of this G. O.M. and the third quantity. To find the G. O. M. of four quantitien :- Find the G. O. M. of any two of them, and then the G.O. M. of the other two, and lastly the G.O.M. of the two greatent common measures thus found.

LEAST OOMMON MULTIPLT.

1. The Least Common Multiple (l. c. m.) of two or more algebraio quantities is the quantity of loweat dimensions, as to the letter or letters of reference, which eractly containe emoh of the given quantities.
Nory--Of course there in the same objection to the uee of the wosd "loces" here as to the word "greatest" in regard to common mousirser. it would be more correct to use the term lowest common multifite.
2. To find the l. c. m. of two or more algebraic quantities :-

Rows.-Divide their product by their G. C. M.:
Or, Divide one of the given quantities by:thöim ©. C. M, and multiply the quotient and remaining quantity or quantities togethor for their l.c. m.
 quartites a and B, and lot in bo tho G.O. Y. of theo quantition.
 of courve that p and q have so commpa thotor. Then $g q$ z Ienctquantify that contaline both p and q, and mpq $=$ tho lenet quanetity that contaline p,
 $=\frac{p m \times g m}{m}=\frac{a \times b}{m}$ or $=\frac{a}{m} \times b o r=a \times \frac{b}{m}$.

Ex. 1. Find the 1. C. m. of $18 a^{2} x^{2} y$ and $18 a^{2} y^{2} x$.

opzantion.

G. O. M. of $18 a^{2} x^{2} y$ and $16 a x^{2} y^{2} z=3 a x^{2} y$.

Then $\frac{18 a^{2} x^{2} y}{3 a x^{2} y} \times 16 a x^{2} y^{2}=6 a \times 16 a x^{2} y=90 a^{2} x^{2} y^{3}=1.0 \mathrm{~m}$.
Fx. 2. Find the 1. c. m. of $a^{2}+8 a^{2}+5 a+8$ and $\alpha^{2}+a^{2}+\alpha-8$.

ORTBATROT.

G. O. M. of $a^{3}+3 a^{2}+6 a+8$ and $a^{2}+a^{2}+a-3=a^{2}+2 a+8$
$\frac{a^{2}+3 a^{2}+5 a+3}{a^{5}+2 a+3}=a+1$ and $\left(a^{3}+a^{2}+a-3\right) \times(a+1)=a^{t}+2 a^{2}$ $+2 a^{2}-2 a-3=1$. c. m .
98. Very friquently the l. c. m. can be most casily obtained by resolving all the given quanstitios into their prime fectors, and multiplying together the higheat powors of all the factors that occur in order to form the l. c. in.
Ex. 1. The l.c.m. of $x^{3}-x, x^{8}-1$ and $x^{3}+1$; thatis, of $x\left(x^{2}-1\right)$. $x^{3}-1$, and $x^{3}+1$; that is $x(x-1)(x+1),(x-1)\left(x^{2}+x+1\right)$ and $(x+1)\left(x^{2}-x+1\right)=x(x-1)\left(x^{3}+x+1\right)(x+1)\left(x^{8}-x+1\right)$ $=x\left(x^{5}-1\right)\left(x^{3}+1\right)=x\left(x^{5}-1\right)=x^{7}-x$.
Nors- - Or compo the caime fictor to only to be taken onoe in the $1.0 . \mathrm{m}$. althonghit may ocour in ouch of the siron quantitice.
D. 2 - The 1. c. m. of $4\left(x_{5}^{-}-x^{2}\right), 20\left(x^{3}+x^{2} y-x y^{2}-x^{3}\right)$, $12\left(x^{3}+y^{2}\right), 12\left(x^{2}+x y\right)^{2}$ and $8\left(x^{3}-x^{2} y\right)$;
that in, of $4 x\left(x^{2}-y^{2}\right) ; 20\left\{\left(x^{3}+x^{2} y\right)-\left(x y^{2}+y^{3}\right)\right\} ; 12 y^{2}(x+y)$; $12 x^{2}(x+y)^{2}$ and $8 x^{2}(x-y)$;

```
    that in, of 4x(x+y)(x-y);20{\mp@subsup{x}{}{2}(x+y)-\mp@subsup{y}{}{2}(x+y)};12\mp@subsup{y}{}{2}
(x+y); 12x
    that if, of 4x(x+y)(x-y);20(x+y) (\mp@subsup{x}{}{2}-\mp@subsup{y}{}{2});12\mp@subsup{y}{}{2}(x+y);
12x'(x+y), and 8x"(x-y);
that in, of 4x(x+y)(x-y);20(x+y\mp@subsup{)}{}{2}(x-y); 12\mp@subsup{y}{}{2}(x+y);
12x(x+y), and 8x (x-y) is equal to 120\mp@subsup{x}{}{4}\mp@subsup{y}{}{2}(x+y\mp@subsup{)}{}{2}(x-y)=
120\mp@subsup{x}{}{2}\mp@subsup{y}{}{2}(\mp@subsup{x}{}{3}+\mp@subsup{x}{}{2}\mp@subsup{y}{}{2}-x\mp@subsup{y}{}{2}-\mp@subsup{y}{}{3})
```


Exaroinz XXIII.

Find the 1. c. m. of-

1. $2 a^{2} x, 3 x y, 4 a b^{2} y$, and $-3 x^{2} y^{2}$.
2. $2 a x^{3}, 3 x y^{2}, 4 y z^{2},-2 a^{2} x$, and $-2 x^{2} y$.
3. $(x-y),\left(x^{2}-y\right)^{2}$, and $(x-y)^{2}$.
4. $x^{2}-y^{3}, x^{3}-y^{3}$, and $x^{4}-y^{4}$.
b. $\left(x-x^{2}\right)^{2},\left(x^{3}-1\right)$, and $4(1+x) x$.
5. $4(a-b)^{8}, 6\left(a^{8}-b^{6}\right), 6\left(a^{3}+b^{6}\right)$, and $9\left(a^{6}-b^{6}\right)$.

ท. $\left(x^{2}-8 x\right),\left(x^{3}-10 x+21\right)$, and $x^{3}-7 x$.
8. $\left(\mu^{3}-x^{3}\right)$, and $\left(a^{3}+x-a x-\infty\right)$.
2. $a^{3}-9 x^{5}+26 a-24$; and $a^{2}-2 n^{2}+19 a-12$.
10. $3\left(a-b^{2}\right) ; 4(a-b)^{3}, b(a t-b 4), 6(a-b)^{2}$, and $\left(a^{2}-b^{2}\right)^{2}$.

SEOTION V.

FRAOTIONS.

94. Algebraic fractions are in all essential respects similar to arithmelical fractions, and the rules for operating upon thom are the same as those for common arithmetic, and are deduced in the same manner.

O5. Since the value of a fraction is the quotient, which is obtinined ky dividing the numerator by the denominator, we infer the following principles, upon which the principal rules are founded:-
I. That multiplying the numerator, or dividang the denominator of a fraction by any quantity, multiplies the fraction by that quartity.
II. That dividing the numerator, or multiplying the donominator, of any fraction by a quantity, divides the fraction by that quantity.
III. That multiplying or dividing both numerator and denominator of a fraction by the same quantity does not change its value.
96. These principles are, however, susceptible of general proof, as follows :-

1. Let $\frac{a}{b}$ be any fraction and m any integer, then $\frac{a m}{b}=\frac{a}{b} \times m$. For in erch of the freotions $\frac{a}{b}$ and $\frac{a m}{b}$ the unit in divided into b equen marta; and m times as many of these parta aro indioatod by the lattor framion aco by the former. Convernely $\frac{a}{b}=\frac{a m}{a} \div m$.
 For in each of the areotiong $\frac{a}{b m}$ and $\frac{a}{b}$ the anme number of pryas is taken; but eaoh part of the former $: \frac{1}{m}$ th of owch part of the lafoor, therefore each part of the latter fraotion is m timeo inrger than each part of the former; and aince the same number of paite is titron of emota, ;t follows that the letter fraction $\frac{a}{b}$, is m timon grentor than the formor araco tion $\frac{a}{b m}$.
II. The proof of this is simply the oonverve of the-gbove.

$$
\begin{aligned}
& \text { That in, unoe } \frac{a m}{b}=\frac{a}{b} \times m ; \text { conversoly } \frac{a}{b}=\frac{a m}{b} \div m . \\
& \text { And aince } \frac{a}{b}=\frac{a}{b m} \times m \text {, convervely } \frac{a}{b m}=\frac{a}{b} \div m .
\end{aligned}
$$

III. since both multiplying and dividing any quantity by the mane nymber doci not ohange its value, if we both multiply and divide $\frac{a}{b}$ by m, It Nite will remanin unaltered. But (I) $\frac{a}{b} \times m=\frac{a m}{b}$, and (II) $\frac{a m}{b}$ $+m=\frac{a}{6}$, , o., , although the parte in the formor triotion aro

$$
\frac{a \div m}{b \div m}=\frac{a n^{-1}}{b m^{-1}}=\frac{a m-1}{b}=\frac{a m 0}{b}=\frac{a}{b} \text { because } m 0=1 .
$$

97. The following facts should be borne in mind by the student:-
I. Any integer may be expressed as a fraction having 1 for denominater. Thus, $a=\frac{a}{1}$.
II. Any quantity divided by itself equals unity. Thus, $\frac{b}{b}=1$.
III. Any integral expresssion may be expressed as a fraction having a given denominator, the numerator being obtained by multiplying the given expression by the proposed denominator.
Than, lot it be required to exprees a as a frioution with denominator b.
(Art. $97, \mathrm{I}$) $a=\frac{a}{1}$, multiply both numerator and denominator by b, we got $a=\frac{a}{2}=\frac{a b}{b}$.
IV. The signs of all the terms of both numerator and denominator may be changed without allering the value of the expression, this being equivalent to merely multiplying both numerator and denominator by - 1 .

$$
\text { Thus, } \frac{2 a-3 b+4 c m-x^{2}}{3+2 m-y^{2}-3 c}=\frac{3 b-2 a-4 c m+x^{2}}{3 c-3-2 m+y^{2}} .
$$

V. sll the rules and formule in fractions hold whether the letters amployed represent integeral or fractional, positive or negative quantitifes.
98. To reduce a fraction to its lowest terms:

Rus.- Divide both nwmerator and denominator by their G.C. M. Norn.-The stadent should always ondoavour to fuotor the numorator and donominator so as to find by ingpection the G.C. M. whenit cin be so found. Otherwise he must find the G.C. M, of the two torme by Art. 89,
[850x. $\mathbf{\nabla}$.
$m^{0}=1$.

1. Therefore $0=1$. aind by the
reing 1 for $\frac{b}{b}=1$ a fraction red by minl-
H.
mentator 0. unator by b,
denominaexpresetion, ratior and

The lettors

 negativeE1. 1. $\frac{a^{2} m x y}{a m x^{2}}=\frac{a m x \times a y}{a m x \times x}=\frac{a y}{x}$.
Hx. 2. $\frac{a^{2}+3 a^{2} x}{2 a^{3}-3 a^{2} m+a^{2} y^{2}}=\frac{a^{2}(1+3 x)}{a^{2}\left(2-3 m+y^{2}\right)}=\frac{1+3 x}{2-3 m+y^{2}}$.
Ex. 3. $\frac{a^{4}-x^{6}}{a^{2}-2 a x+x^{2}}=\frac{\left(a^{2}+x^{2}\right)(a+x)(a-x)}{(a-x)(a-x)}=\frac{\left(a^{2}+x^{2}\right)(a+x)}{a-x}$ $=\frac{a^{4}+a^{2} x+a x^{2}+x^{3}}{a-x}$.
Ex. 4. $\frac{a^{2}-6 a-27}{a^{2}+8 a+15}=\frac{(a+3)(a-9)}{(a+3)(a+5)}=\frac{a-9}{a+5}$.
Ex. B. $\frac{x^{2}-x y+m x-m y}{x^{3}+x y+m x+m y}=\frac{x(x-y)+m(x-y)}{x(x+y)+m(x+y)}$
$=\frac{(x-y)(x+m)}{(x+y)(x+m)}=\frac{x-y}{x+y}$.
Ex. 6: $\frac{x^{3}-8 x+3}{x^{6}+3 x^{5}+x+3}$. Here (Art. 89) the G. C. M. of the numerator and denominator is $x+3$, and dividing both terms by $x+3$ we get $\frac{\left(x^{3}-8 x+3\right) \div(x+3)}{\left(x^{6}+3 x^{5}+x+3\right) \div(x+3)}=\frac{x^{2}-3 x+1}{x^{5}+1}$.

Eximots XXIV.

Reduce the following fractions to their lowest terms :-

1. $\frac{a^{2}-a b}{a x+a y}$.
2. $\frac{2 a m+m^{2} x-m^{3}}{3 a^{2} m+m^{2}}$.
3. $\frac{c+a c}{n+a n}$.
4. $\frac{a^{2} b+a^{2} b^{2}+a^{2} b m}{m x+b x+x}$.
5. $\frac{a b c^{2}}{a b+b c}+$
6. $\frac{a x^{2} y^{3}}{a^{2} x^{2} m+a x y+x^{2} y^{2} x^{3}}$
7. $\frac{21 x^{2} y^{2}-35 x^{2} y^{2}}{14 x^{2} y^{2}}$ 8. $\frac{a-m}{a^{2}-m^{2}}$. 9. $\frac{a^{b}+b^{3}}{a^{2}-b^{2}} \cdot 10 \cdot \frac{a^{2}-2 a b+b^{2}}{a^{b}-b^{6}}$ 11. $\frac{a^{5}+b^{3}}{a^{5}-b^{3}} . \quad$ 12. $\frac{a^{6}-m^{6}}{(a+m)(a-m)} . \quad$ 13. $\frac{a^{4}-m^{4}}{a^{6}-a^{5} m^{2}} \cdot X$
8. $\frac{7 x^{3}-21 x+35}{11 x^{2}-33 x+65} \cdot \times 15 \cdot \frac{x^{2}-11 x+28}{x^{2}-4 x-21}$. $16 \cdot \frac{4 x^{2}+12 x+9}{2 x^{2}-8 x-12} \times$
9.

$\frac{x^{2}+2 x^{2} y+3 x^{2} y^{2}}{2 x^{4}-8 x^{2} y-6 x^{5} y^{2}} \lambda$
18. $\frac{a^{5}-2 a^{2} b^{3}+2 a b^{2}-b^{6}}{a^{4}+a^{2} b^{2}+b^{4}} \times$
19. $\frac{a^{4}-m^{4}}{a^{3}-a^{3} m-a m^{2}+m^{3}}$ 20. $\frac{a c+b d+a d+b c}{a m+2 b p+2 a p+b m} \cdot A$
21. $\frac{x^{2}+(a+b) x+a b}{x^{2}+(b+c) x+b c} \quad 22 . \frac{2 x^{3}+x^{2}-8 x+5}{7 x^{2}-12 x+5}$
23. $\frac{(a+m)(a+m+x)(a+m-x)}{2 a^{2} m^{2}+2 a^{3} x^{4}+27 n^{2} x^{2}-a^{4}-m^{4}-x^{4}}$.
24. $\frac{a^{12}+x^{12}}{a^{20}+x^{20}}$
90. To reduce a mixed quantity to a fractional form :-

Rown. - Multtply the entire part of the quantity by the denominator of the fraction, and to the product connect the numerator of the fractional part by its proper sign. Beneath the whole expression thus formed, write the denominator.
Ex. 1. $a-b+\frac{x+y}{a m}=\frac{a^{2} m-a b m+(x+y)}{a m}=\frac{a^{2} m-a b m+x+y}{a m}$.
Ex. 2. $a^{2}-2 a y-\frac{3 x-2 a m}{4 y^{2}}=\frac{4 a^{2} y^{2}-8 a y^{3}-(3 x-2 a m)}{4 y^{2}}$
$=\frac{4 a^{2} y^{2}-8 a y^{3}-3 x+2 a m}{4 y^{2}}$.
Exeroisy XXV.
Reduce the following mixed quantities, to their equivalont fractions:-

1. $2 a x-y+\frac{3-2 a}{a x}$. 2. $a^{2}+a+1+\frac{2}{a-1}$. 3. $3 a-y-\frac{3 a^{2}-30}{x+3}$.
2. $3 a+y-\frac{2 a+x y}{x-y}$. \quad. $3 a x-y^{2}+m-\frac{3 a x^{2}+x y^{2}}{a+x}$.
3. $x y+m z+\frac{x y z-z^{2} m-2 m^{2} z}{z+2 m}$.
4. $(a+b)^{2}-\frac{(a-b)^{3}}{a+b} \cdot X$
5. $1-\frac{a^{2}-m^{2}}{a^{2}+m^{2}} \cdot X$
6. $\mathrm{r}-\frac{a^{2}-2 a x+x^{2}}{a^{2}+x^{2}}, \times$
7. To reduce a fraction to a mized quantity:-

Rosn.-Divide the numerator by the denominator, and place the romainder, if any, over the denominator for the fractional part. Connect the fraction thus obtained to the entire part of the quotiont by the sign plus.
rator of the expression

The l. c. mi of $1-a, 1-a^{2}$, and $1=a^{8}=(1+a)\left(1-a^{8}\right)=(1+a)$ $(1-a)\left(1+a+a^{2}\right)$.

$$
\begin{aligned}
& \text { 18t multiplier }=1 . \text { c. m. } \div(1-a)=(1+a)\left(1+a+a^{2}\right) ; \\
& \text { 2nd }=\text { u } \div\left(1-a^{2}\right)=1+a+a^{2} ; \text { and } \\
& \text { 3rd }(u)=\left(1-a^{3}\right)=(1+a) .
\end{aligned}
$$

Uning thene multipliers the three given fractions become $\frac{(1+a) \cdot(1+a)\left(1+a+a^{2}\right)}{(1-a) \cdot(1+a)\left(1+a+a^{2}\right)} ; \frac{\left(1+a^{2}\right)}{\left(1-a^{2}\right)} \frac{\left(1+a+a^{2}\right)}{\left(1+a+a^{2}\right)} ; \operatorname{and} \frac{\left(1+a^{2}\right)(1+a)}{\left(1-a^{5}\right)(1+a)}$.
$=\frac{(1+a)^{3}\left(1+a+a^{2}\right)}{1+a-a^{3}-a^{4}} ; \frac{\left(1+a^{2}\right)\left(1+a+a^{4}\right)}{1+a-a^{3}-a^{4}} ;$ and $\frac{\left(1+a^{5}\right)\left(1-a^{3}\right)}{1+a-a^{5}-a^{4}}$.

Trancwi EXVII.

Arrs
Roduce the following fractions to others having a common denominator:-

1. $\frac{a}{b^{2}} \frac{b}{c^{\prime}} \frac{c}{d^{\prime}}$, and $\frac{x}{m} . \quad$ 2. $\frac{1}{m}, \frac{a}{x y^{3}}$ and $\frac{b}{m x}$. $3 . \frac{2}{3 a^{\prime}}, \frac{a}{4 b^{\prime}}$, and $\frac{m}{2 x y^{\circ}}$
2. $\frac{1+m}{1-m}$ and $\frac{1-m}{1+m}$
3. $\frac{x^{2}-y^{2}}{x^{3}+y^{2}}$ and $\frac{x+y}{x^{3}+x y^{2}}$.
4. $\frac{3 x}{x-y^{2}} \frac{1 x+y}{x^{3}-y^{2}}$ and $\frac{2 x-3 y}{2(x+y)} \quad$ 7. $\frac{3 a}{2+x^{3}}, \frac{4-2 x}{3 m}$, and $\frac{1}{2 a^{2}}$,,
5. $a,\left(\frac{4 x}{3}\right),\left(\frac{x^{2}+1}{x^{2}-1}\right)$, and $\left(x+\frac{2}{3}\right)$ - 0
6. $\frac{1}{a(a+b)}, \frac{1}{3 \sigma^{2}\left(a^{3}-b^{3}\right)}$, and $\frac{1}{6 a^{2}(a+b)}$

102. To add or subtract algebraic fractions :-

RoLs.-Reduce them to a common denominator, then add or oubtract the numerators, and bencatk the swn or difference place the common denominator.

$$
\begin{aligned}
& \text { 22. 1. } \frac{1-a}{1+a}+\frac{1}{1-a}+\frac{a^{2}}{1-a^{2}}=\frac{(1-a)^{2}}{1-a^{2}}+\frac{1+a}{1-a^{2}}+\frac{a^{2}}{1-a^{2}} \\
& =\frac{1-3 a+a^{2}+1+a+a^{2}}{1-a^{3}}=\frac{2-a+2 a^{2}}{1-a^{2}} . \\
& \text { 1月. 2. } \frac{1+x^{3}}{1-x^{2}}-\frac{1-x^{2}}{1+x^{3}}=\frac{\left(1+x^{2}\right)^{2}}{1-x^{4}}-\frac{\left(1-x^{3}\right)^{2}}{1-x^{4}}=\frac{1+2 x^{2}+x^{4}}{1-x^{4}} \\
& -\frac{1-2 x^{2}+x^{4}}{1-x^{4}}=\frac{1+2 x+x^{4}-1+2 x-x^{4}}{1-x^{4}}=\frac{4 x}{1-x^{4}} . \\
& \text { Fx. 8. } \frac{a}{1-a}-\frac{a^{2}}{(1-a)^{2}}+\frac{a^{3}}{(1-a)^{8}}=\frac{a(1-a)^{2}}{(1-a)^{8}}-\frac{a^{2}(1-a)}{(1-a)^{2}} \\
& +\frac{a^{8}}{(1-a)^{3}}=\frac{a(1-a)^{2}-a^{3}(1-a)+a^{8}}{(1-a)^{3}}=\frac{a\left(1-2 a+a^{2}\right)-\left(a^{3}-a^{3}\right)+a^{8}}{(1-a)^{8}} \\
& =\frac{a-2 a^{2}+a^{3}-a^{2}+a^{3}+a^{3}}{(1-a)^{2}}=\frac{a-3 a^{3}+3 a^{4}}{(1-a)^{2}}
\end{aligned}
$$

a common

$\frac{5}{6}$ and $\frac{m}{2 x y}$
nd $\frac{1}{2 a^{2}}$,
add or ec place the
$+2 x^{9}+x^{4}$ $1-x^{4}$

Find the value of:-

1. $\frac{2 a}{b}+\frac{3}{2 b}-\frac{c}{m} . \quad$ 2. $\frac{x}{y}+\frac{2(a-b)}{y^{2}(x+3)} . \quad$ 3. $\frac{a-b}{a+b}-\frac{a+0}{a-b}$.
2. $5 x-\frac{2 x}{7}+\frac{5 x}{9}+x^{2}$. \quad. $\frac{x^{3}}{(x+y)^{3}}+\frac{y}{x+y}-\frac{x y}{(x+y)^{2}}$.
3. $\frac{a-b}{a b}+\frac{b-c}{b c}-\frac{a-c}{a c} \quad$ 7. $\frac{m}{m+p}-\frac{p}{m-p}$.
4. $\frac{3}{1+2 a}-\frac{4(1-5 a)}{4 a^{3}-1}-\frac{7}{2 a-1}$. \quad. $\frac{x(16-x)}{x^{2}-4}+\frac{2 x+3}{2-x}-\frac{2-3 x}{x+2}$.
5. $\frac{1}{a}(x+y)+\frac{1}{b}(x+y)-\left(\frac{x+y}{a}-\frac{x-y}{b}\right)$.
6. $\frac{m+p}{(p-x)(x-m)}+\frac{p+x}{(x-m)(m-p)}+\frac{m+x}{(m-p)(p-x)}$.
7. $\frac{a-b}{a+b}+\frac{b-c}{b+c}-\frac{2 a b-2 a c}{b(a+c)+c(a+b)-b(c-b)}$.
8. $\frac{1}{1-x}-\frac{1}{1+x}+\frac{3}{1-2 x}-\frac{3}{1+2 x}$.
9. $\frac{m}{a(a-b)(a-c)}+\frac{m}{b(b-a)(b-c)}+\frac{m}{c(c-a)(c-b)}$.
10. To multiply fractions together :-

Rome- Multiply all the numerators together for a new numeraz tor, and all the denominators together for a new denominator.

Nore 1.-If any of the given quantities are mixed fractions, they must be reduced to the fractional form before multiplying.

Note 2.-Bofore multiplying the student must, by attention to the prinoiplos given in (Arts. 70, 80;) strike out all the thetors common to $\boldsymbol{2}$ numerator and a denominator.
Proor on Ruly.-Lot it'be required to multiply $\frac{a}{b}$ by $\frac{c}{d}$.
Let $\frac{a}{b}=x$ and $\frac{c}{d}=y$, then $\frac{a}{b} \times \frac{c}{d}=x y$. Also $a=b x$ and $c=d y$.
Lence $a c=b d x y$; and dividing each of these by $b d$ we got $\frac{a c}{b d i}=x y$.
But $\frac{a}{b} \times \frac{c}{d}=x y$. Therefore $\frac{a}{b} \times \frac{c}{d}=\frac{a c}{b d}=\frac{\text { product of }}{\text { product of } \frac{1}{d e n o m i n a t o r s . ~}}$
Ex. 1. $\frac{1-a}{x+y} \times \frac{a}{b}=\frac{(1-a) a}{(x+y) b}=\frac{a-a^{2}}{b x+b y}$.
Ex. 2. $\frac{x^{5}-b^{2} x^{3}}{x^{3}+b^{8}} \times \frac{x^{2}+b x}{x-b} \times \frac{x^{2}-b x+b^{2}}{x^{2}}$
$=\frac{x^{3}\left(x^{2}-b^{2}\right) \times x(x+b) \times\left(x^{2}-b x+b^{2}\right)}{\left(x^{3}+b^{3}\right)(x-b) x^{2}}$
$=\frac{x^{3}(x-b)(x+b) \times x(x+b) \times\left(x^{2}-b x+b^{2}\right)}{(x+b)\left(x^{2}-b x+b^{2}\right) \times(x-b) \times x^{2}}$
$=\frac{x^{2}(x+b)}{1}=x^{8}+b x^{2}$.
Ex. 3. $\left(a-\frac{1}{a}\right) \times\left(1-\frac{1}{a}\right)^{2}:=\frac{a^{2}-1}{a} \times\left(\frac{a-1}{a}\right)^{2}=\frac{a^{2}-1}{a}$
$\times \frac{a-1}{a} \times \frac{a-1}{a}=\frac{(a-1)^{2}\left(a^{2}-1\right)}{a^{3}}=\frac{a^{4}-2 a^{3}+2 a-1}{a^{3}}$.
Exercise XXIX.
Find the value of :-

1. $\frac{2 x}{5} \times \frac{3 x}{2 a} . \quad$ 2. $\frac{2 m}{x y} \times \frac{x^{2}}{m y} \times \frac{y^{2}}{x} . \quad$ 3. $\frac{2(a+b)}{x y} \times \frac{x(a-b)}{3 b+3 a}$.
2. $3 a \times \frac{x+1}{2 a} \times \frac{x-1}{a+b} . \quad$ 5. $\frac{a^{2}-x^{4}}{a+b} \times \frac{a^{2}-b^{2}}{a+x} \times \frac{a}{x(a-x)}$.
B. $\frac{a^{2}-m^{2}}{m y} \times \frac{a^{2}+m^{2}}{m-a}$
3. $\frac{a^{2}-x^{2}}{3 a x} \times \frac{4 a x^{2}}{a+x}$.
[880t, V.
ART. 104.]
4. $\frac{x^{2}-13 x+13}{x^{2}-5 x} \times \frac{x^{2}-9 x+20}{x^{2}-6 x}$ 9. $\frac{a}{b y} \times \frac{b}{c y^{2}} \times \frac{c}{d y^{3}} \times \frac{d}{f y^{4}} \times \frac{m}{f y^{5}}$.
5. $\frac{a^{2}-4}{a^{2}-1} \times \frac{a^{2}-1}{2 a} \times \frac{a-2}{2+a}$.
6. $\frac{x^{2}-a^{2}}{x^{2}+b x-a x-a b} \times \frac{x^{2}+b x+c x+b c}{x^{2}+c x+d x+c d}$.
7. $\frac{x^{2}+x-12}{x^{2}-13 x+40} \times \frac{x^{2}+2 x-35}{x^{2}-7 x-44}$.
8. $\left(1-a+a^{2}\right) \times\left(1+\frac{1}{a}+\frac{1}{a^{2}}\right) \cdot \times$
9. $\frac{4 a^{2}-16 m^{2}}{a-2 m} \times \frac{5 a}{20 a^{2}+80 a m+80 m^{2}} \times \frac{a+2 m}{a} \cdot \chi$
10. To divide one algebraic fraction by another :-

Rule.-Invert the divisor and proceed as in multiplication.
Nore 1.-If elther of the given quantities be a mixed fraction it must be reduced to a fractional form before applying the rule.
Note 2.-After having inverted the terms of the divisor, be careful to cancel as far as possible before multiplying.
Proor of Rule for Divibion.-Let it be required to divide $\frac{a}{b}$ by $\frac{c}{d}$.
Put $\frac{a}{b} \div \frac{c}{d}=x$; multiplying each of those by $\frac{c^{\circ}}{d}$ wo get $\frac{a}{b}=x \times \frac{c}{d}$ $=\frac{c x}{d}$. Again multiplying each of these by d we get $\frac{a d}{b}=c x$, therefore $x=\frac{a d}{b c} \quad$ But $x=\frac{a}{b} \div \frac{c}{d} ;$ therefore $\frac{a}{b} \div \frac{c}{d}=\frac{a d}{b c}=\frac{a}{b} \times \frac{d}{c}$ $=$ dividend \times divisor with terms inverted.

Ex. 1. $\frac{a^{2}-b^{2}}{a^{2}+b^{2}} \div \frac{a^{2}-2 a \dot{b}+b^{2}}{a^{4}-b^{4}}=\frac{a^{2}-b^{2}}{a^{2}+b^{2}} \times \frac{a^{4}-b^{4}}{a^{2}-2 a b+b^{2}}$
$=\frac{(a-b)(a+b) \times\left(a^{2}+b^{2}\right)(a-b)(a+b)}{\left(a^{2}+b^{2}\right)(a-b)(a-b)}=(a+b)^{2}$.
Ex. 2. $\frac{a^{3}+y^{3}}{a^{2}-y^{2}} \div \frac{a^{2}-a y+y^{2}}{(a-y)^{2}}=\frac{a^{3}+y^{3}}{a^{2}-y^{2}} \times \cdot \frac{(a-y)^{2}}{a^{2}-a y+y^{2}}$.
$=\frac{(a+y)\left(a^{2}-a y+y^{2}\right)(a-y)(a-y)}{(a-y)(a+y)\left(a^{2}-a y+y^{2}\right)}=a-y$.

Exaroism XXX.

Find the value of :-
2. $\frac{1}{x} \div \frac{x}{y}$.
2. $\frac{a+x}{a} \div\left(1-\frac{x}{a}\right)$.
3. $\frac{a+b}{a-b} \div \frac{a^{2}+2 a b+b^{2}}{a^{2}-} \frac{2 a b+b^{2}}{2}$.
4. $\left(\frac{a^{4}-x^{4}}{2+y} \times \frac{y^{2}-4}{a-x}\right) \div \frac{a^{2}+x^{2}}{3 a}$.
6. $\frac{x-3}{x-9} \div \frac{x^{2}-15 x+56}{x^{2}-17 x+72}$.
6. $\left(\frac{a}{a+b}+\frac{b}{a-b}\right) \div\left(\frac{a}{a-b}-\frac{b}{a+b}\right)$.
7. $\left(\frac{a^{6}-x^{6}}{a^{2}-2 a x+x^{2}} \times \frac{1}{a+x}\right) \div\left(\frac{q^{2}+a x+x^{2}}{a-x} \times \frac{a^{2}-a x+x^{2}}{1}\right)$.
8. $\frac{3 a^{2}-3}{2(a+b)} \div \frac{x^{2}-1}{2 a^{2}+2 a b}$. 9. $\left(1+\frac{y}{x+y}+\frac{x}{y}\right) \div\left(2+\frac{x}{y}-\frac{x}{x+y}\right) \cdot \chi$
10. $\left(\frac{a^{2}+b^{2}}{a^{2}-b^{2}}-\frac{a^{2}-b^{2}}{a^{2}+b^{2}}\right) \div\left(\frac{a+b}{a-b}-\frac{a-b}{a+b}\right) \cdot+$
105. To reduce complex algebraic fractions to simple fractions:-

Role.-Reduce both numerator and denominator to simple fractions, if they be not simple already; then having thus reduced the whole expression to the form of $\frac{\text { fraction }}{\text { fraction }}$, multiply the extremes together for a numerator, and the means together for a denominator.

Ex. 1. $\frac{1-\frac{1}{3} x}{4 y-a}=\frac{\frac{3-x}{3}}{\frac{y-4 a}{4}}=\frac{4(3-x)}{3(y-4 a)}=\frac{12-4 x}{3 y-12 a}$.
Ex. 2. $\frac{\frac{1}{1+a}}{1+\frac{1}{1-a}}=\frac{\frac{1}{1+a}}{\frac{2-a}{1-a}}=\frac{1-a}{(1+a)(2-a)}=\frac{1-a}{2+a-a^{2}}$

Ex. 3. $\frac{\frac{a}{1+\frac{1}{a-1}}}{1+\frac{a}{a^{2}-\frac{1}{1-\frac{a-1}{a}}}}=\frac{\frac{\frac{a}{1}}{\frac{a}{a-1}}}{1+\frac{a}{a^{2}-\frac{\square}{\frac{1}{a}}}}=\frac{\frac{a-1}{1}}{1+\frac{a}{a^{2}-a}}$
$=\frac{\frac{a-1}{1}}{\frac{a^{2}}{a^{2}-a}}=\frac{(a-1)^{2}}{a}=\frac{a^{2}-2 a+1}{a}$.

Exrborsm XXXI.

Simplify the following complex fractions :-

1. $\frac{\frac{1}{8}(a-b)}{\frac{2}{3} a+\frac{3}{b} b}$.
2. $\frac{a-\frac{7}{3} x}{3}$.
3. $\frac{x}{1+\frac{2 x}{a}}$.
4. $\frac{2 \frac{1}{4}-\frac{3}{6}(x+2)}{1 \frac{1}{2}+\frac{1}{2}(x-3)}$.
simple
le frac-
ced the
tremes
inator.
5. $\frac{\frac{1+2 a}{1-2 a}-\frac{1-2 a}{1+2 a}}{\frac{1-2 a}{1+2 a}+\frac{1+2 a}{1-2 a}}$
6. $\frac{\frac{1}{1+a}-\frac{1}{1-a}}{\frac{1}{1-a}+\frac{1}{1+a}}$
7. $\frac{\frac{a^{2}+b^{2}}{b}-a}{\frac{1}{b}-\frac{1}{a}} \div \frac{a^{3}+b^{3}}{a^{2}-b^{2}}$
8. $\frac{x y-\frac{1+x^{2} y^{2}}{x y}}{1-\frac{1}{1-\frac{1}{1-\frac{1}{x y}}}} \times$
$\frac{\frac{a}{b+\frac{c}{d+\frac{e}{f}}}}{\frac{a d f-a c}{b d f+b e+c f}}$
9. $\frac{\frac{(1-2 m)^{2}+(2 m+1)^{2}}{\left(1-4 m^{2}\right)-(1-2 m)^{2}}}{\frac{(1+2 m)^{2}-\left(1-4 m^{2}\right)}{(1-2 m)^{2}-(2 m+1)^{2}}}$.
10. Thmorax.-If any two fractions are equal to one anothor, we may combine, in any manner whatever, by addifion and subtractton, the numerator and denominator of the one, provided we at the same time similarly combine the numerator and denominator of the other, and the resulting fractions will be equal.

That is, if $\frac{a}{b}=\frac{c}{d}$, then
$\times \frac{a+b}{b}=\frac{c+d}{d}$ (I); $\times \frac{a-b}{b}=\frac{c-d}{d}$ (II) $; \times \frac{b}{a}=\frac{d}{c}$ (III);
$\times \frac{a}{c}=\frac{b}{d}(\mathrm{~V}) ; \quad \times \frac{a+b}{a}=\frac{c+d}{c}(\nabla) ; \times \frac{a-b}{a}=\frac{c-d}{c}$ (VI);
$\frac{a+b}{a-b}=\frac{c+d}{c-d}(\mathrm{VI}) ; \frac{a}{a+b}=\frac{c}{c+d}(\mathrm{VIII}) ; \frac{a}{a-b}=\frac{c}{c-d}(\mathrm{IX}) ;$ $\times \frac{a}{c}=\frac{a \pm b}{c \pm d}(x) ; \times \frac{a+b}{c+d}=\frac{a-b}{c-d}(\mathrm{xI})$, \&c., \&c.

YAlso, $\frac{m a}{n b}=\frac{m c}{n d}$ (xII); $\frac{m a \pm n b}{n b}=\frac{m c . \pm n d}{n d}$ (XIII);
$\frac{m a \pm n b}{b}=\frac{m c \pm n d}{d}(x i v) ; \quad \frac{m a \pm n b}{p a \pm q b}=\frac{m c \pm n d}{p c \pm q d}(x v)$, \&c.
Or, The above propositions hold with any multiples whatever of the two numerators, and also any multiples whatever of the two denominators.
X Also, $\frac{a^{n}}{b^{n}}=\frac{c^{n}}{d^{n}}$ (xvi). That is, the above theorem is true of any similar combinations of the same powers of the numerator and denominator.

dEMOMSTRATION.

(1). Since $\frac{a}{b}=\frac{c}{d} \therefore \frac{a}{b}+1=\frac{c}{d}+1$ or $\frac{a+b}{b}=\frac{c+d}{d}$.

Dinco $\frac{a}{b}=\frac{c}{d} \therefore \frac{a}{b}-1=\frac{c}{d}-1$ or $\frac{a-b}{b}=\frac{c-d}{d}$.
(2) Since $\frac{a}{b}=\frac{c}{d} \therefore 1 \div \frac{a}{b}=1 \div \frac{c}{d}$ or $1 \times \frac{b}{a}=1 \times \frac{d}{c}$ that is, $\frac{b}{a}=\frac{d}{c}$
another, subtracwe at the or of the
(iv). Since $\frac{u}{b}=\frac{c}{d} \therefore \frac{a}{b} \times \frac{b}{c}=\frac{c}{d} \times \frac{b}{c}$ or $\frac{a}{c}=\frac{b}{d}$.
(v). Since (1) $\frac{a+b}{b}=\frac{c+d}{d}$ and (III) $\frac{b}{a}=\frac{d}{c} \therefore \frac{a+b}{b} \times$ $\frac{b}{a}=\frac{c+d}{d} \times \frac{d}{c}$ or $\frac{a+b}{a}=\frac{c+d}{c}$.
(vi). Since (II) $\frac{a-b}{b}=\frac{c-d}{d}$ and (III) $\frac{b}{a}=\frac{d}{c} \therefore \frac{a-b}{b}$ $\times \frac{b}{a}=\frac{c-d}{d} \times \frac{d}{c}$ or $\frac{a-b}{a}=\frac{c-d}{c}$.
(VII). Since (II) $\frac{a-b}{b}=\frac{c-d}{d} \therefore$ inverting by (III) $\frac{b}{a-b}$ $=\frac{d}{c-d}$ and also (1) $\frac{a+b}{b}=\frac{c+d}{d} \therefore \frac{a+b}{b} \times \frac{b}{a-b}=\frac{c+d}{d}$ $\times \frac{d}{c-d}$ or $\frac{a+b}{a-b}=\frac{c+d}{c-d}$.
(viII). Sincé (v) $\frac{a+b}{a}=\frac{c+d}{c} \therefore$ (III) $\frac{a}{a+b}=\frac{c}{c+d}$.
(Ix). Since (VI) $\frac{a-b}{a}=\frac{c-d}{c} \therefore$ (III) $\frac{a}{a-b}=\frac{c}{c-d}$.
(x). Since (viI) and (ix) $\frac{a}{a \pm b}=\frac{c}{c \pm d} \therefore$ alternately by (iv) $\frac{a}{c}=\frac{a \pm b}{c \pm d}$.
(xI). Since (x) $\frac{a+b}{c+d}=\frac{a}{c}$ and also $\frac{a-b}{c-d}=\frac{a}{c} \therefore$ (Ax. xI) $\frac{a+b}{c+d}=\frac{a-b}{c-d}$ or $\mathrm{xI}=$ vir taken alternately.
(xII). Since $\frac{a}{b}=\frac{c}{d} \therefore \frac{a}{b} \times \frac{m}{n}=\frac{c}{d} \times \frac{m}{n}$ or $\frac{m a}{n b}=\frac{m c}{n d}$.
(xIII, \&c.) Since $\frac{m a}{n b}=\frac{m c}{n d} \therefore$ all the above changes may be made on these fractions.
(XV1). Since $\frac{a}{b}=\frac{c}{d} \therefore \frac{a}{b} \times \frac{a}{b}=\frac{c}{d} \times \frac{c}{d}$ or $\frac{a^{2}}{b^{2}}=\frac{d}{d^{2}}$ Similarly $\frac{a^{3}}{b^{3}}=\frac{c^{3}}{d^{3}}$ and $\frac{a^{n}}{b^{n}}=\frac{c^{n}}{d^{n}}$. And all the above change may be made on the equal fractions $\frac{a^{n}}{b^{n}}=\frac{c^{n}}{d^{n}}$.

- 107. Throrex.-If there be any number of equal fractions, then we may combine in any manner whatever by addition or subtraction the numerators, or any multiples of the numerators, provided we similarly combine the denominators, or the same multiples of the denominators, and the resulting fractions will be equal to any one of the given fractions and to one another.

That is, if $\frac{a}{b}=\frac{c}{d}=\frac{e}{f}$,
Then $\frac{a}{b}=\frac{a \pm c \pm e}{b \cdot \pm d \pm f}=\frac{m a \pm n c \pm p e}{m b \pm n d \pm p f}$.
Demonstration. Let $\frac{a}{b}=\frac{c}{d}=\frac{e}{f}=x . \quad \therefore a=b x, c=d x$, and $e=f x, \therefore a \pm c \pm e=b x \pm d x \pm f x=(b \pm d \pm f) x$.

Dividing each of these equals by $(b+d \pm f)$ we get $x=\frac{a \pm c \pm e}{b \pm d \pm f}$, but $x=\frac{a}{b} \therefore \frac{a}{b}=\frac{a \pm c \pm e}{b \pm d \pm f}$.

Again, since $a=b x, c=d x$, and $e=f x$,
$\therefore m a=m b x, n c=n d x$, and $p e=p f x$.
And $m a \pm \imath c \pm p e=m b x \pm n d x \pm p f x=(m b \pm n d \pm p f)$
$\therefore x=\frac{m a \pm n c \pm p e}{m b \pm n d \pm p f}$ but $x=\frac{a}{b} \therefore \frac{a}{b}=\frac{m a \pm n c \pm p e}{m b \pm n d \pm p f}$.
It follows that if $\frac{a}{b}=\frac{c}{d}=\frac{e}{f^{\prime}}$, then $\frac{a^{n}}{b^{n}}=\frac{c^{n}}{d^{n}}=\frac{e^{n}}{f^{n}}$, and therefore $\frac{a^{n}}{b^{n}}=\frac{a^{n} \pm c^{n} \pm e^{n}}{b^{n} \pm d^{n} \pm f^{n}}$, and therefore also $\frac{a^{n}}{b^{n}}=\frac{m a^{n} \pm n c^{n} \pm p e^{n}}{m b^{n} \pm n d^{n} \pm p f^{n}}$.
[SLex. V.
Arte. 107-112.]
SIMLLE EQUATIONS.

SECTION VI.
 SIMPLE EQUATIONS.

108. An equation consists of two algebraic expressions connected by the sign of equality.
Thus, $3 a+x=b-m^{2} ; x^{3}-x^{2}+3= \pm \sqrt{a b-m} ; a x-b=0$ are equations.

Note.-The part that precedes the sign of equality is called the first member or left hand side of the equation; the part that follows the sign of equality is called the second member, or right hand side of the equation.

- 109. An identical equation, or an identity as it is termed, is an equation such that any values whatever may be substituted for the letters it involves without destroying the equality of the two members.

$$
\begin{aligned}
& \text { Thus, } \left.a^{2}-x^{2}=(a-x)(a+x) ~ 子 \begin{array}{l}
4(a+b)(a+b)=4 a^{2}+8 a b+4 b^{2} \\
\frac{1}{4}(a+x)+\frac{1}{2}(a-x)=a
\end{array}\right\} \\
& \text { are identities, becauso no } \\
& \text { matterwhat numerical value } \\
& \text { may be assigned to } a \text { and } x \\
& \text { or to } a \text { and } b \text {, the members } \\
& \text { are equal to one another. }
\end{aligned}
$$

\subset 110. All other equations are called equations of condition, and the equality existing between the members holds only when particular values are assigned to some particular letter or letters involved.
111. The letter or letters for which such particular values must be found, are called the unknown quantities, and are generally represented by the last letters of the alphabet, x, y, z, w, \&cc.

1-112. An equation is said to be satisfied by any value which may be substituted for the unknown quantity without destroying the equality of the two members of the equation.
113. The solution of the equation is the process of finding such values for the unknown quantity or quantities as shall satisfy the equation.
$\times{ }^{114}$. A root of an equation is any value of the unknown quantity by which the equation is satisfied.
Thus, 4 is the root of the equation $x-3=1$.
$1 \frac{1}{5}$ and $-\frac{?}{8}$ are the roots of the equation $25 x^{2}-20 x-12=0$.
2, 5 , and -7 , are the roots of the equation $x^{3}-89 x=-70$.
1 115. An equation which involves only one unknown quantity is said to be of as many dimensions ass is indicated by the exponent of the highest power of the unknown quantity that occurs in it.

$$
\left.\begin{array}{l}
\text { Thus, } 4 x-3=11 \\
\left.\begin{array}{l}
2 a(x-m)+x=b^{2}-m
\end{array}\right\} \begin{array}{l}
\text { are equations of one dimension or simple } \\
\text { equations, or equations of the first } \\
\text { degree. }
\end{array} \\
\left.\begin{array}{c}
c x^{2}-x+80=0 \\
4 x^{2}-112 x^{2}+109 x-27=0
\end{array}\right\} \begin{array}{l}
\text { are equations of two dimensions, or quadratic } \\
\text { equations, or equations of the second degrec. }
\end{array} \\
\left.\begin{array}{l}
x^{3}-15 x^{2}+74 x-120=0
\end{array}\right\} \begin{array}{l}
\text { are equations of three dimensions, }
\end{array} \\
\begin{array}{l}
x^{4}-74 x^{2}+1225=0 \\
\text { the thic equations, or equations of }
\end{array} \\
x^{4}-4 x^{3}+6 x^{2}-4 x-5=0
\end{array}\right\} \begin{aligned}
& \text { are equations of four dinvensions, or } \\
& \text { biquadratic equations, or equations } \\
& \text { of the fourth degree. }
\end{aligned}
$$

116. It will be shown hereafter that an equation involving only one unknown, has as many roots as it has dimensions, and only as many.
Thus, a eimple equation has only one root.
a quadratic equation has only two toots.
a cublo equation has only:three roots, \&c.
2.117. The solution of simple equations involves the following principles:-
I. Any term may be carried from one side of the equation to the other, or transposmd, as it is termed, by changing its sign.
Thus, if $4 x-a=7+m$, then $4 x=7+m+a$, this being equivalont to adding $+a$ to eaoh side of the equation (Ax. n).
So if $2 x-a=4 b+x$, then $2 x-x=4 b+a$, this being equivalent to adding $+a$ and $-x$ to eaoh side (AX. II).
II.
witho
Tha The

Nor both equals < III cleare involv all the

Thus
by 80 ,
$+5 x=$
Nots
sanve q
IV.
quanti
equati
have
Thus
$+118$
degree
Dex
hand y
simplo
If it
The
that is
not $=$
The
11
a sim
process of quantities
unknown
$=0$.
70.
unknown indicated unknown
ion or simple of the first
or quadratic nd degrec. dimensions, quations of
nensions, or r equations
n involvis dimen-
ves the
II. The signs of all the terms of both members may be changed without altering the equality of the two mambers.
Thus, if $8 a-4 x+b=-m+a x-c$,
Then aloo, $-8 a+4 x-b=m-a x+c$.
Nors.-This is equivalent to transposing every term, or to multiplying both eidem of the equation by -1 , which of course does not affect the equality.
< III. An equarion, any of whose terms involve fractions, may be cleared of these fractions, i. e., converted into another equation not involving fractions, by multiplying each member by the l. c.m. of all the denominators of the fractions.

Thus, if $\frac{x}{2}+\frac{x}{8}+\frac{x}{5}+\frac{x}{6}=20$, and we multiply each side by 80 , which is t $\Delta \mathrm{e}$ l. c. m. of the denominators, we get $15 x+10 x+6 x$ $+5 x=600$.

Note.-This is merely multiplying both members of the equation by the same quantity, and, of course (Ax. IV), does not destroy the equality.
, IV. Both members of an equation may be divided by the same quantity without destroying the equality. Hence, having reduced an equation by the foregoing principles, should the unknown quantity have a coefficient, we may divide each member by that coefficient.

Thus, if $11 x=44$, then dividing each member by 11 we get $x=4$.
\times 118. Thuorem.-A simple equation, or equation of the first degree, involving only one unknown, can have only one root.

Demonstrations.-By transposing all the known quantities to the right hand member, and the unknown quaritities to the left hand comber, every simple equation can be reduced to the form $a x=b$.

If it be possible let $a x=b$, have two d'ssimilar roots β and γ.
Then $a \beta=b$ and also $a \gamma=b$ pand by subtraction $a \beta-a \gamma=b-b=0$, that is, $a(\beta-\gamma)=0$, which is absurd, because, by supposition, $\beta-\gamma$ does not $=0$, nor does $a=0$.
Therefore $a x=b$ cannot have two roots.
119. From Art. 117 we get the following rule for solving a simple equation involving only one unknown quantity.
I. Clear the equation of fractions, and, if necessary, of brackets also.
II. Transpose all the terms involving the unknown quantity to the left hand member of the equation, and the remaining terms to the right hand member.
III. Collect, by addition and subtraction, as far as possible, the several terms of each member into one term, i. e., reduce each member to its simplest form.
IV. Divide cach member by the coefficient of the unknown quantiiy.

Ex. 1. Given $8 x+7=2 x+43$, to find the value of x.

solution.

$$
\begin{aligned}
8 x+7 & =2 x+43 \\
8 x-2 x & =43-7 \\
6 x & =36 \\
x & =6
\end{aligned} \because\left|\begin{array}{r}
\text { (II) } \\
\text { (II) } \\
\text { (III) } \\
\text { (IV) }
\end{array}\right|=\text { (I) transposed. } \begin{aligned}
& =\text { (II) collected. } \div 6 .
\end{aligned}
$$

Ex. 2. Given $\frac{x}{2}+\frac{x}{3}=\frac{x}{4}+14$ to find the value of x.
soldicion.

$$
\begin{array}{c|c|c}
\frac{x}{2}+\frac{x}{3}=\frac{x}{4}+14 & \text { (I) } & \\
6 x+4 x=3 x+168 & \text { (II) } & =\text { (I) } \times 12, \text { the l.c.m. of } 2,3,4 . \\
6 x+4 x-3 x=168 & \text { (III) } & =\text { (II) transposed. } \\
7 x=168 & \text { (IV) } & =\text { (III) collected. } \\
x=24 & \text { (v) } & =\text { (IV) } \div 7 .
\end{array}
$$

Ex. 3. Given $3 x+\frac{2 x+6}{5}=5+\frac{11 x-37}{2}$ to find the value of x.

sOLUTION.

$$
\begin{array}{rl|l}
3 x+\frac{2 x+6}{5}=5+\frac{11 x-37}{2} & \text { (I) } & \\
30 x+4 x+12=50+55 x-185 & \text { (II) } & =\text { (I) } \times 10 \text { (l.c.m. of } 2 \text { and } 5 \text {) } . \\
30 x+4 x+55 x=50-185-12 & \text { (III) } & =\text { (II) transposed. } \\
-21 x & =-147 & \text { (Iv) } \\
\text { (III) collected. } \\
x=7 & \text { (v) } & =\text { (IV) } \div-21 .
\end{array}
$$

Ex to fin

Ex

 of x,[SECT. VI.
ξ, of brackets
uantity to the maining terms
possible, the 2., reduce each
non quantity, f x
sposed. ected.
5.
e of x.
m. of $2,3,4$
d the value
of 2 and 5). ed.

ART. 119.]
SIMPLE EQUATIONS.
85

Ex. 4. Given $x+\frac{27-9 x}{4}-\frac{5 x+2}{6}=5 \frac{1}{2}-\frac{2 x+5}{3}-\frac{29+4 x}{12}$ to find the value of x.

SOLUTION.

$$
\left.\begin{aligned}
& x+\frac{27-9 x}{4}-\frac{5 x+2}{6}=5 \frac{1}{12}-\frac{2 x+5}{3}-\frac{29+4 x}{12}(\mathrm{I}) . \\
& 12 x+81-27 x-10 x-4=61-8 x-20-29-4 x \\
& 12 x-27 x-10 x+8 x+4 x=61-20-29+4-81 \\
&-13 x=-65 \\
& x=5
\end{aligned} \right\rvert\, \begin{array}{ll}
\text { (II) } & =(\mathrm{III}) \times 12 . \\
\text { (IV) } & =\text { (II)transposed. } \\
\text { (III) collected. } \\
\text { (v) } & =\text { (IV) } \div-13 .
\end{array}
$$

* Noxe.-The student must remember that the separating line of a fraction acts as a vinculnm to the numerator, and that in clearing of fractions a minus sign before the fraction has the effect of changing all the signs of the numerator.

Ex. 5. Given $\frac{6 x+1}{15}-\frac{2 x-1}{.5}=\frac{2 x-4}{7 x-16}$.
SOLUTION.

$$
\begin{aligned}
& \frac{6 x+1}{15}-\frac{2 x-1}{5}=\frac{2 x-4}{7 x-16} \\
& 6 x+1-6 x+3= \text { (I) } \\
& 4 x-\frac{30 x-60}{7 x-16} \text { (II)*} \\
& 4 x-16 \text { (III) } \\
& 28 x-64=30 x-60 \text { (IV) } \\
& 28 x-30 x=-60+64=\text { (II) collected. } \\
&-2 x=4 \text { (V) } \\
& \text { (II) } \times(7 x-16) \\
& x=-2 \\
& \text { (VI) }=\text { (V) collected. } \\
& \text { (VII) }=\text { (VI) } \div-2 .
\end{aligned}
$$

* Note.-When one of the denominators is a binomial or trinomial, it is commonly best to first multiply each member by the l. c. m, of the other denominators, and reduce the resulting equation as much ae possibie before multiplying by this compound denominator. This is especially the case when one of the remaining denominators contains tra others, as in tisis example.

Ex. 6. Given $\frac{1}{4}\left(x-\frac{n}{6}\right)=\frac{1}{3}\left(x-\frac{n}{4}\right)-\frac{1}{2}\left(x-\frac{n}{3}\right)$ to find the value of x,

SOLUTLON.

$$
\begin{array}{c|c|l}
\frac{1}{4}\left(x-\frac{n}{5}\right)=\frac{1}{3}\left(x-\frac{n}{4}\right)-\frac{1}{2}\left(x-\frac{n}{3}\right) & \text { (I) } & \\
3\left(x-\frac{n}{6}\right)=4\left(x-\frac{n}{4}\right)-6\left(x-\frac{n}{3}\right) & \text { (II) } & =\text { (I) } \times 12 . \\
3 x-\frac{n n}{5}=4 x-n-6 x+2 n & \text { (III) } & =\text { (II) cleared of brackets. } \\
3 x-4 x+6 x=-n+2 n+\frac{2 n}{5} & \text { (IV) } & =\text { (III) transposed. } \\
5 x=n+\frac{\operatorname{mn}}{3} & \text { (V) } & =\text { (iv) collected. } \\
25 x=5 n+3 n & \text { (VI) } & =\text { (V) } \times 5 . \\
25 x=8 n & \text { (VII) } & =\text { (VI) collected. } \\
x=\frac{8}{8 n} n & \text { (VIII) } & =\text { (VII) } \div 25
\end{array}
$$

Ex. 7. Given $\frac{a}{b x}+\frac{b}{c x}+\frac{c}{d x}+\frac{d}{f x}=g$, to find the valuc of x. SORUTION.

$$
\begin{array}{r|l}
\frac{a}{b x}+\frac{b}{c x}+\frac{c}{d x}+\frac{d}{f x}=g & \text { (1) } \\
\text { acdij }+b^{3} d f+b c^{2} f+b c d^{2}=b c d f g x \\
\ldots x=\frac{a c d f+b^{2} d f+b c^{2} f+b c d^{2}}{b c d f g} & \text { (II) } \\
(\mathrm{II}) & =\text { (1) } \times b c d f x \\
\text { (II) } \div b c d f g
\end{array}
$$

Ex. 8. Given $\frac{(a+b) x}{a-b}+\frac{x}{a^{2}-b^{2}}=\frac{x+1}{a+b}$ to find the value of x.
SOLUTION.

$$
\begin{array}{r|l|l}
\frac{(a+b) x}{a-b}+\frac{x}{a^{2}-b^{2}}=\frac{x+1}{a+b} \\
(a+b)^{2} x+x=(i-b)(x+1) & \text { (I) } \\
a^{2} x+2 a b x+b^{2} x+x=a x-b x+a-b \\
a^{2} x+2 a b x+b^{2} x+x-a x+b x=a-b \\
\left(a^{2}+2 a b+b^{2}+1-a+b\right) x=a-b & \text { (III) } & \text { (VV) } \\
\left.x=\frac{a-b}{a^{2}+2 a b+b^{2}+1-a+b} \right\rvert\,=\text { (I) } \times\left(a^{2}-b^{2}\right) \\
=\text { (II) expandod. transposed. } \\
=\text { (IV) factored. } \\
\text { (VI) } & =\text { (V) } \div \text { coef. of } x .
\end{array}
$$

Exaroise XXXII.
Solve the following equations:-

1. $x+\frac{x}{3}=7-\frac{x}{4}$.
2. $2 x-\frac{x}{5}=x+4$.
3. $2 x-\frac{x}{3}+\frac{x}{7}-=\frac{3 x-11}{4}+x+9$.
4. $2 x-7+\frac{3 x-1}{5}=\frac{x+8}{3}-2 x$.
5. $2-\frac{x-5}{7}=3-\frac{x-7}{4}$.
6. $4 x-\frac{2 x}{3 \frac{1}{2}}=\frac{3 x+1}{2}+x+6$.
7. $2 x-16 \frac{1}{4}=\frac{35}{4}+\frac{1}{2} x$.
8. $\frac{x+3}{4}-\frac{x+4}{5}-16=-\frac{x+1}{3}$.
9. $4 x-\frac{2 x+19}{5}=15-\frac{7 x+11}{4}$.
10. $\frac{7 x}{9}+3 \frac{1}{3}=21-\frac{31 x-7}{12}$.
11. $\frac{8 x-17}{11}+\frac{14 x+17}{13}=3 x-\frac{31-x}{2}$.
12. $\frac{4 x+4}{3}-x=2+\frac{14-3 x}{3}$.
13. $3 x-\frac{4 x-5}{3}+3 x=17+\frac{2-6 x}{4}+\frac{3 x+1}{8}$.
14. $\frac{x}{12}+\frac{3 \frac{1}{3} x-5}{7}-\frac{2 \frac{5}{6} x-9}{5}=1-\frac{7 \frac{1}{2} x-x+2}{8}-\frac{9-5 \frac{3}{4} x}{6}$.
15. $x+\frac{x}{2}+\frac{x}{4}-\frac{3(x-7)}{5}=2 x-2 \frac{3}{5}$.
16. $21-\frac{5(x-1)}{8}-\frac{97-7 x}{2}=x-\frac{1}{16}(3 x-11)-9$.
17. $\frac{x}{2}+\frac{x}{3}+\frac{x}{4}+\frac{x}{5}+\frac{x}{6}=x+\frac{5 x}{12}+4$.
18. $2 x-\frac{20-x}{6}+10=3 x$
19. $\frac{36+20 x}{25}-\frac{4}{6} x=3 \frac{1}{2} \frac{5}{6}-\frac{5 x+20}{9 x-16}$.
20. $331 \frac{1}{5}-3 x-\frac{12+7 x}{9}+\frac{9+6 x}{10}=\frac{3 x-13}{16}-\frac{11 x-17}{8}$.
21. $\frac{9 x+20}{36}=\frac{4 x-12}{5 x-4}+\frac{x}{4}$.
22. $\frac{1}{1} x+\frac{1}{3}(x+3)-\frac{1}{4}(x-4)=\frac{1}{8}(x+5)+31 \frac{?}{3}$.
23. $6 x-\frac{7(x+2)}{3}=5+\frac{2(2 x+1)}{3}-\frac{17-3 x}{5}$.
24. $5 x-\frac{2\left(6 x^{2}-9\right)}{3+2 x}=9-\frac{6 x+9}{3+4 x}$.
25. $\frac{2(x+2)}{3}-\frac{7 x-13}{3(1+2 x)}=\frac{6 x+7}{9}$.
26. $a x+b=c$.
27. $3 a x-b^{2}=b c-\frac{7}{3} a x$.
28. $4 b x-3 x=\frac{1}{2}\left(a-b^{2}+3 a x\right)$.
29. $2 a^{2} x-\frac{3 a-x}{b}=x-\frac{(a-b) x}{2 a}$.
30. $3 a-\frac{2 x+a}{b}=\frac{4 a-3 x}{c}-\frac{a x-b}{5}$.
31. $x+\frac{a x}{b}+\frac{c x}{d}=f$.
32. $\frac{b x+4 a}{4}-\frac{a^{2}-3 b x}{a}-b x=a b^{2}-\frac{5 a^{2}-6 b x}{2 a}+a x$.
33. $a x-b c=\frac{b^{2} x}{b-a}$.
34. $\frac{11 a-3 x}{a+b}-\frac{6 a-5 x}{a-b}=\frac{a+b}{a-b}+\frac{2 x}{a^{2}-b^{2}}$.
35. $\frac{(a+x)^{2}}{4}-a b x=\frac{1}{4} x^{2}$.
36. $\frac{a b c}{\frac{3}{3}(a+b)}-\frac{b x}{a}+\frac{a^{2} b^{2}}{(a+b)^{3}}=3 c x-\frac{b^{2} x}{a} \cdot \frac{2 a+b}{(a+b)^{2}}$.
37. $3+1 \cdot 72 x-2 \cdot 21 x=-203 x$.
38. $\cdot \dot{3} x+x(6-a)=3 a-\dot{2} \dot{3} x$.
39. $\frac{2}{6}\left(x-\frac{1}{3}\right)+\frac{1}{3}\left\{1-\left(x+\frac{2}{8}\right)\right\}-\frac{2}{7}\left\{x-\left(1+\frac{1}{3} x\right)\right\}=x+\frac{3}{7} x$.
40. $\frac{8 a x-b}{5}-\frac{5 b}{3}=4-b-\frac{7 c}{9}$.
41. $\left(a^{2}-x\right)\left(b^{2}+x\right)-3 \dot{a} b(1-x)=(x-a)(c-x)$,
I. Read over the problem carefully, until its conditions are clearly apprehended, and it is distinctly understood what is given and what is required.
II, Represent the unknown quantity by x, and set down in algebraic language the relations existing between if and the given quantities, as described in the problem, or in other words, indicate upon x, by means of signs, the same operation that would be necessary tc verifyits value in the equation if that value were already determined.

Nork.-Before commenolng the exeroise the begtnner is partioularly directed to study carafully the solution of the proliminary problems, in order to observe the modes of proceeding to make the statement.

Ex. 1. What number is that from the double of which if 10 be subtracted the remainder is 44 ?
solution.
Here we have given that a certain number is such that when its double is diminished by 10 the remainder is 44.

Let $x=$ the number.
Then $2 x=$ its double, and $2 x-10=$ its double diminished by 10 .
Then, by the problem, $2 x-10=44$, which is the required statement.
$2 x=54$, by transposition.
$x=27$, by division.

Therefore 27 is the number required.
Verification. $(27 \times 2)-10=44$

$$
\begin{array}{r}
54-10=44 \\
44=44
\end{array}
$$

Ex. 2. Find a number such that one-half, one-third, and onefourth of it added together shall exceed the number itself by $4 \frac{1}{2}$. solttion.
Here we have given that $1+\frac{1}{2}+\frac{1}{4}$ of a certain number $>$ the number itself by $4 \frac{1}{2}$, or what amounts to the same thing, that $\frac{1}{2}+\frac{1}{2}+\frac{1}{4}$ of a certain number $=$ the number itself $+4 \frac{1}{1}$.

Let $x=$ the number ; then $\frac{x}{2}=\frac{1}{3}$ of it $; \frac{x}{3}=\frac{1}{3}$ of it; and $\frac{x}{4}=$ \ddagger of it .

And $\frac{x}{2}+\frac{x}{3}+\frac{x}{4}=x+4 \frac{1}{2}$, which is the statement required.

$$
\begin{aligned}
6 x+4 x+3 x=12 x+54 & \text { (II) }=\text { (I) } \times 12 \\
6 x+4 x+3 x-12 x=54 . & \text { (III) }=\text { (II) transposed. } \\
x=54 & \text { (IV) }=\text { (III) collected. }
\end{aligned}
$$

Therefore 54 is the required number.

$$
\text { Verification: } \quad \begin{aligned}
\frac{54}{2}+\frac{54}{3}+\frac{54}{4} & =54+4 \frac{1}{2} \\
27+18+13 \frac{1}{2} & =58 \frac{1}{2} \\
58 \frac{1}{2} & =58
\end{aligned}
$$

is partioularly cy problems, in ment.
which if 10
ch that when
inished by 10 . the required osition.
n.
ird, and oneor itself by $4 \frac{1}{2}$.
umber $>$ the ne thing, that 42.
it ; and $\frac{x}{4}=$
ent required.
sposed.
ected.

Rx. 3. Divide the nnmber 112 into two such parts that if 21 be added to the less the sum shall be less than one-third of the greater by the third part of unity.
solution.
Here 112 is to be divided into two parts such that the less +21 shall be equal to ($\frac{1}{3}$ of the greater) $-\frac{1}{3}$.

Let $x=$ the greater part ; then since 112 is the sum of the two parts, $112-x=$ the less.
$(112-x)+21$ is 21 added to the less, and $\frac{x}{3}-\frac{1}{3}$ is $\frac{1}{3}$ of unity less than $\frac{1}{3}$ of greater.

Then $(112-x)+21=\frac{x}{3}-\frac{1}{3}$, which is the statement.

$$
\begin{aligned}
& 336-3 x+63=x-1 \text { (II) }=\text { (I) } \times 3 \\
&-3 x-x=-1-63-336 \text { (III) }=\text { (II) transposed. } \\
&-4 x=-400 \text { (Iv) }=\text { (III) collected. } \\
& x=100=\text { greater. } \\
& 112-x=112-100=12=\text { less. }
\end{aligned}
$$

Verification. $(112-100)+21=100-\frac{1}{3}$
$112-100+21=100-\frac{1}{3}$
$133-100=33 \frac{1}{3}-\frac{1}{3}$ $33=33$
Ex. 4. What sum of money is that from which if $\$ 46.20$ be, subtracted, one-half the remainder shall exceed one-third of the remainder by $\$ 50$.

solution.

Here the sum of money is such that
$\frac{1}{2}($ Sum $-\$ 46 \cdot 20)$ is $>$ by $\$ 50$ than $\frac{1}{2}$ (Sum - $\$ 46 \cdot 20$).
Let $x=$ the sum of money.
Then $x-\$ 46.20$ is $\$ 46.20$ subtracted from the sum.
$x-\$ 46.20$ is half the rem., and $\frac{x-\$ 46.20}{3}$ is one-third of rem.

$$
\begin{aligned}
& \text { Then } \frac{x-\$ 46 \cdot 20}{2}-\$ 50=\frac{x-\$ 46 \cdot 20}{3} \\
& \left.\begin{array}{rl}
3 x-\$ 138 \cdot 60-\$ 300 & =2 x-\$ 92 \cdot 40 \\
3 x-2 x=-\$ 92 \cdot 40+138 \cdot 60+\$ 300 . \\
x & =\$ 346 \cdot 20
\end{array}\right) \text { (II) sum required. }
\end{aligned}
$$

Nork.-The student should verify the result in every case, as is done in the three preceding problems.

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences Corporation

Ex. 6. A certain number consists of two digits, such that the right hand digit excoeds the left hand digit by 2 ; and if the sum of the digits be increased by $\frac{9}{7}$ of the number, the digits will be inverted. Required the number.

SOLUTIOM.

Let $x=$ the left hand digit.
Then $x+2=$ the right haind digit.
$10 x+(x+2)=$ the number.*
$x+x+2=$ the sum of the digits.
$2 x+2+\frac{9}{7}(10 x+x+2)=$ the sum of the digits increased by 욕 of the number.
$10(x+2)+x=$ number with its digits inverted.
Then $2 x+2+\frac{9}{7}(10 x+x+2)=10(x+2)+x$.
$14 x+14+9(11 x+2)=70(x+2)+7 x$.
$14 x+14+99 x+18=70 x+140+7 x$.
$99 x+14 x-70 x-7 x=14 \theta-14-18$.
$36 x=108$.
$x=3=$ left hand digit. $x+2=5=$ right hand digit.
Therefore the number is 35.
Ex. 6. A can do a piece of work in 10 days, which \mathcal{A} and B can together finish, in 6 days. In what time can B working alone do the work?

SOLUTIOX.

Let $x=$ number of days B would require to do the work.
Since \mathcal{A} does whole work in 10 days, in 1 day he would do $\frac{1}{10}$ of $\mathbf{i t}$.

Since B does whole work in x days, in 1 day he would do $\frac{1}{4}$ of it.

[^5]Since \mathcal{A} and B do the work in 6 days, in 1 day they would do t of it.
Then $A^{\prime} \mathrm{s}$ work for 1 day $+\boldsymbol{B}^{\prime} \mathrm{s}$ work for 1 day $=$ work of both A and B for 1 day.
That is, $\frac{1}{10}+\frac{1}{x}=\frac{1}{6} \quad$ (I).

$$
\begin{array}{rlrl}
3 x+30 & =5 x & & \text { (II) }=(1) \times 30 x \text { to clear of fractions. } \\
3 x-5 x & =-30 & \text { (III) })=(\text { II) transposed. } \\
-2 x & =-30 & \text { (IV) }=\text { (III) collected. } \\
x & =15=\text { days } B \text { would require. }
\end{array}
$$

Ex. 7. A person being asked how many ducks and geese he had, replied that if he had 8 more of each he would have 7 geese for 8 ducks, but that if he had 8 less of each he would only have 6 geese for 7 ducks. How many had he of each?

solution.

Let $x=$ the number of ducks te had.
Then $x+8=$ number of ducks increased by 8.

$$
\begin{aligned}
& \frac{x+8}{8}=\text { number of times he had } 7 \text { geese. } \\
& \frac{x+8}{8} \times 7=\text { number of geese he had when increased by } 8 .
\end{aligned}
$$

Hence number of geese $=8$ less than $\frac{x+8}{8} \times 7=\{(x+8)-8$.
Also $x-8=$ number of ducks diminished by 8 .
${ }_{8}^{7}(x+8)-16=$ number of geese diminished by 8 ; and by the question, $\frac{x-8}{7}=\frac{7(x+8)-16}{6}$.

$$
\begin{aligned}
& 6(x-8)=7\{7(x+8)-16\} . \\
& 6 x-48=\frac{49}{8}(x+8)-112 . \\
& 6 x+64=\frac{49 x+392}{8} . \\
& 48 x+512=49 x+392 . \\
& x=120=\text { number of ducks. } \\
& 7(120+8)-8=\left(\frac{7}{8} \text { of } 128\right)-8=(7 \times 16)-8=112-8 \\
&=104=\text { number of geese. }
\end{aligned}
$$

Fx. 8. A merchant has tea worth 4s. 3d. and 5s. 2d. per lb. How many lbs. of each must there be in a chest of 126 lbs., which shall be worth £30?

SOLUTION.
Let $x=$ number of lbs. at 4 s . 3d. or 17 threepences per. 1 lb . Then $120-x=$ number of lbs. at 5s. 9 d . or 23 threepences per lb. $17 x=$ worth in threepences of x lbs. at 4 s .3 d . per 1 lb . $23(120-x)=$ worth in threepences of $120-x$ lbs. at 5 s .9 d . per lb.
$2400=$ number of threepences in $\mathbf{£ 3 0}$.
Then $1^{7}(x+23(120-x)=2400$.

$$
\begin{aligned}
17 x+2760-23 x & =2400 . \\
17 x-23 x & =2400-2760 . \\
-6 x & =-360 . \\
x & =60=1 \text { lbs. at } 4 \mathrm{s.} \text {. 3d. per } \mathrm{lb} . \\
120-60 & =60=\text { lbs. at } 5 \mathrm{~s} .9 \mathrm{~d} . \text { per } \mathrm{Yb} .
\end{aligned}
$$

Ex. 9. Divide the number 90 into four parts such that the first increased by 2 , the second diminished by 2 , the \cdot third divided by 2 , and the fourth multiplied by 2 , shall all be equal to the same quantity.

SOLUTION.

Let $x=$ the quantity to which the 1st part is equal when increased by 2.

Then $x-2=1$ st part $; x+2=2 n d$ part ;
$x \times 2=3$ rd part ; $x \div 2=4$ th part.
Then $(x-2)+(x+2)+2 x+\frac{\pi}{2}=90$.

$$
x-2+x+2+2 x+\frac{\pi}{2}=90
$$

$$
9 x=180
$$

$$
x=20 .
$$

$x-2=20-2=18=1$ st part $; x+2=20+2=22=2$ nd part.
$2 x=20 \times 2=40=3$ rd part $; \frac{x}{2}=\frac{20}{8}=10=4$ th part.
oth wh

$$
4 x+\frac{\pi}{2}=90
$$

$$
8 x+x=180
$$

d. per lb. 126 lbs., er. lb. ces per lb. lb. at 5 s .9 d .
that the the \cdot third be equal
8. A farmer has two flocks of sheep, emoh containing the same number; but when the had, sold 12 sheop from one flock and 91 from the other; the former not contained twice as many as the latter. Required the number originally in each flock.
9. Find a number whose fourth part exceeds ite sevonth part by 6.
10. What number is that the double of which exceeds of its half by. 25.
11. Find a number such that increased by one-half of itself the sum shall be 39.
12. What number is that which exceeds the sum of its half and its third parts by 17?
13. Find a number such that when 15 is taken from its double, and to half the remainder 7 is added, the sum is greater by 3 than $\frac{3}{4}$ of the original number.
14. What number is that to which if 11 be added, two and -half times the sum shall be 85.
16. Find a number such that one-half, two-thirds, and threefourths of it added together, shall exceed $1 \frac{8}{8}$ times the original number by 21 .
16. A farmer sold a load containing a certain number of barrels of apples for $\$ 36$, and he afterwards sold a second load at the same rate, but as it contained 5 barrels less than the former, he only received \$21. What was the price per barrel, and what was thé number of barrels in each load?
17. A person starts to walk from Toronto to Brampton at the rate of 34 miles per hour; precisely 283 minutes : afterwirds another person starts from Brampton to walk to Thronto at the rate of 4 miles per hoir, and they meet one another exactly. Halfway between the two places. Required the distance from Torento to Brainipton.
$\chi^{18 .}$ In a certain grist-mill there are three rans of stoses; tha first of which can empty the granary in 72 hours, the eicoond tip 84 hopury, and the third in 90 hours. Two teams aroiengatid drawing wheat and storing it in the granary, and of theter tha first cath fill it in: 60 hours, and the second in 78 shournh Arot if the granary be full, and both teams and all three fuas al stoliex bo set in operation, in what time will it be emptionl?
sing the ne flook as many flock. nth part

3 of its of itself its half double, er by 3
two and
d threeoriginal
mber of nd load han the - barrel,
a at the brwards bit the dy. half Porento In, the ond in Mgative
ver the $\mathrm{NO}=$ if stoher
19. If from the number of the year in which all the alaves in Oanade recolved their freedom, the number 1780 be taken; three times the remainder increased by 1620, will give the jear of the α celebrated Indian massacre of Lachine, and if the two dates be added together; one-half their sum increased by 116 will give the year 1882. Required the date of the abolition of slavery in Canada, and alco that of the marsacte of Lachine?
20. Divide $\$ 7400$ among A, B, and O, so that A shall have $\$ 120$ more than $B ;$ and 0 © $\$ 106$ less than A.
21. A papil recoives 24 music lessons and 32 drawing lemsons in the quarter, and the former cost her $\$ 3$ more than the latter; if, however, she had received 32 music lessons and only 24 drawing lessons, the latter would have cosit her, at the same rate, $\$ 10$ lese than the former. Required the price per lenson for music and drawing?
22. A library contains twice as many volumes on General Literature as on History, 11 times as many yolumes on Históry. X as on Biography, as many, volumes on Biography al on Trayela; and three times as many volumes on Travilis as on the Scioticen, and the number of rolumes on the Sciences is vo: Required the number, of volumen in the library?
23. The Ridean Canal is six miles less than four times as long as the Niagare River, and their combined length doubled and
X decreased by 100 miles; exceeds the length of the Great. Weation Railway by one mile. The G.W. R. being 229 milos long required the lengeth of the Rideau Oanal, and also that of the Niagarte River?
24. 1 © en do 3 piege of work in 12 days, which B cap finfeh in 16 dey ahidi Qin 18 days. Now A and B work togetherit it for 1 didg Piandio work together at it for two days: in what time sthe theo finish the work remaining to be done?
2., oxdo f 1 ther by $(\alpha-c)$.
1960 the firat hour after 150 ofock at which tho two
 (1. $\}$, at athele to bne another?
27. Fin owns two fields and a horse, the latter being thyt

giore thian he auks for the second field alone，but for the second Sold with the horse in it he asks double as minoh as for the first Ald alone．Roquired the price of each felle？

28．A, B ，and O can do a piece of work in 20 dayis，which A ean do alone in 50 ，and B alone in 65 daya．O worke at it for 11 dayn，then B and O together for \mathbf{B} dayis Ir what time can Δ and O finish the remainder？
29．Diride $\$ 7189$ among A, B, O ，and D, so as to give to A as much as the other three，to B $\$ 40$ more thair two－fifths of the shares of \mathbf{O} and D ；and to $\mathbf{D} \mathbf{\$ 2 5} \mathbf{4 0}$ less thain three－wevenths of O＇s share：
30．A piece of work can be firished by 4 men in 9 dayd，or by 10 women in 7 days，or by ls children in 8 dayg．In what time can 1 man； 3 women，and 4 childran finimh the work？
31．There is a number consisting of tiwo digitj，whoes sum is 14 （the right hand digit being the greater），and threo－sedentoenths of the number is equal to three haives of the right hand digit． Required the number？
32．A farmer sold his farm for $\$ 8800$ ，and cor ${ }^{20}$ dered that he had cleared a certain amoint by the transhetion．AT A note，how－ over，for $\$ 640$ ，which he had accepted in part pájmént，turned． out to be worthless，and he found that，in consiequence，he lost uponithe whole transaction two－fifths ás muchic te wodid thave gained had the note been good．What wies the rat－of the pooperty ？
183．There is a fish whose tail weighi 9 ，Ibghinhin！hedtavoighs as much as his tail and half his body，and his body＇smititis as much as his head and tail together．What is tho woiglit of the fish ？

以下禾
34．Amorchant yearly increases his capifallajy opetivithe of itself，but takes away $\$ 1000$ for carrent exqion．It il tht send of the third year after taking away the $\$ 1000$ Kef fing thtithe orisinat capital was doubled．What was hie opindic Atherg？
36．Tho idro－wheol of a waggon is a fet；andilut－hnol

 more than the hindintreel？

36．The hour and minute－hands of a watel ausemoter
the saili

40
elde
to t
the ？
and
simo
Was
41
is 7.
is dil
remas
noon. When amd how often will they be together during the next twelve hours ?
37. Divide the number 96 into two suioh parts that when the greater is divided by 7 and the less multiplied by 3 ; the sum of the quotient and prodnct shall be 80.
38. Divide $\$ 2680$, among A, B_{j} and O, so that A whall have half as much again as B; and that O ohall have half much again as A_{i}
39. A steamer makes the doven trip from the head of Lake Ontario to Montreal in 28 hours, the current being in its favor. When returuing it is found that in asconding the St. Lawrence (three-serenths of the entire trip) the rate of sailing is δ miles per hour lean then the avorege rate in its downward journey, but upon entering the lake it is enabled to inorease its apped 2 miles per hour, and: again reaches Hamilton; at the head of the Lake, in ti of the time it would have required had the rate been uniforply the anme as. When ascending the river. Required the distance betwpen Yontreal, and Hamilton; and the sates of sailing?
40. A goutlogeng bequenthe his proparty as follows :-TO his eldest child hmpearea $\$ 1800$ and $\frac{1}{}$ of the reat of his property; to the second thice $s \alpha^{8 j o}$ and t of the part now remaining i to the third threp thmen $\$ 1800$ and to of the part now; remalining and so ph t Axt thi acrangement his property is divided equally amone fit ohthtren, How many children were there, and y cat was thor critusi of each?
41. A ourth rumber consists of two digits, whose diference is 7 -hth f fy thend, one being the creatar: dWhen the number
 remuff

 f: orchard to plant with herw cur mind He find atiat whon he has as manyrow
 SHew, and inctemath number of row bj G ho th cech of treen remaining. What was the numbrof tuood?
44. Divide the number a into two such parts that the one chall be $\frac{n}{m}$ the of the other?
i.s 45. What are the two parts of 60 such that their product \& equal to thrise timen the square of the lewe?
48. Twelve ozen are tarned into a field of grase containing If acren, and by the ond of 4 weeky have not only eation all the grame on it when thoy were turned in, but alco all that grew during the 4 weeks. Similarly in 9 woeks 21 oxen eat all the grave that growe on 10 actes during that time, tofedtior with what was on the field when they were turned in. Now ${ }^{\text {Elobuming }}$ In all eates that the origianal quanitity and quality per coce, and the growith per acro, is. the bame, hot many oxori chin' in this Way gratse for 18 weeks on 24 acres?
14. Divide the number a into thireo parts such that etherecond may bo n timos and the third m timed as great an the fitot.
40. Divide the number a finto thíse partes such thitit the focond Whalibe on timen the nit part of theffirst, and that the third thall be the gth part of p times the first.
49. From the firet of two mortars in a bettery 86 aholle ave thrown before the second is ready for firing. Sholis ond then thrown from both in the proportion of 8 from the firt to t ftome twit tocond; the second mortar requiring an mich potiditior 3
 heortar throw in order that both may have comunita the fmume guantity of powder?

streltaneous mquations of thi first pridict,

122. For the solution of equations invaing dub or more unknown quantities, as many inderniy focintious are required as there are unknown quaritem whistit:
Thus, tho equation $x+y=8$ is callod an indetopinan whin

 ind $y=73,7,7,6,6,4,8,2,1,0,8$, mo., and the eqp by eny partr of theso velues.
But if tre take the equation $x+y=8$, and lintt to tron
ponding but tedopondent equation, an for cranpplo, $2 c-8 y=1$, wo olvil and that the two ciquations aro anily intitiod by, the value $p=6$ and $y=8$. An equation of the rind is collod x chemematit oquation.
123. A cot of two or mare equations thus mutyally limiting tho values of tho mulnown quantities involved, form what is valled oy timilearncouv equation.
124. As stated in Art. 122 , in order that the equation may be determinate, there must be as many indep nudent equations as there are unknown quantities involved. Now. equations are said to be independent when they express different relations between the unlonown quantities.

Abstract

2Vorm,- That in, the two or three equation edyear and not be dertved from one another by mere muldipliontion, or ditition; or subtruotion, or addition. Thye tr $x, y=8$ be one of the equations, it wotild be wevem to accoilate with it $2 x+2 y=16$, or $+x 4+y=1$ 为 $x+2 y=8+y$, $y-8 x=8-2 x$, \&ic., becance theme equations, though true in thecmearev, exprem no new relation betweon tho unknom quanttile, and ape all. reducible to the formiof $x+y=8$, having obviomaly bopen derived from It by more addition, subtraction, multapitantion, or dividion.

195. Simultineous equations are solved by elimingtion, as it is termed; i. e., by so combining the given equatiom as to get ridiofone of the unknown quantities, and this to obtain fix them a new equation involving only one unlnown.
196. There are three methods of eliminatiag one of the unknowin quantities, and thus of solving simaltancous equas. tions.

 Th y yothe the coefficientr of that ounatity similar.

 Wepoctritotwor the signe in quetion pre hife.

3x. 1. Given $4 x-8 y=6$ $4 x+7 y=26\}$
to find the values of x and y. n0sutyon.

$$
4 x-8 y=6
$$

$$
4 x+7 y=26
$$

$10 y=20$
$y=2$
Thop $4 x-8 y=4 x-6=6$
$4 x=12$
$x=3$
Therefore values are $x=8$ and $y=2$.
Mx. 2. Given $4 x+8 y=43\}$ to find the values of x and y. $8 x-2 y=11\}$ to
soldtion.

$4 x+3 y=43$
$3 x-2 y=11$
$8 x+6 y=86$
$9 x-6 y=33$
$17 x=119$
$x=7$
$x y=28+3 y=43$
$3 y=16$
$y=6$

(1) Hoje as the coef. of x in the came
(I) in both equations there is no (ii) necescity of multiplying, and wo accordingly subtract at once.
(iII) \equiv (II) - (I)
(iv) $=$ (III) +10 .
$(v)=(x)$ by substituting 2 for y.

Therefore values are $x=7$ and $y=6$.
INown.-We can always prepare the equations for adilition of cubtraction by multijlying each by that coef. of the unknown to be oliminatiod, which is given in the other equations. Sometimes, however, it is not necowary to muitiply both fequatione, but we can ind by inqpection a mulitiplier for one only, which will at once prepare the equation for olimination.

This, if $\left.4 x-8 y=8 \quad \begin{array}{r}2 x+9 y=46\end{array}\right\}$ be the equation as given and we whito oliminate x, we may multiply the lower equation by 4 and the apper vy 2 , and then anbtruet, but we may obvioualy attain the came oide, in the cifinina. tion of x, by aimply multiplying the lower equation by 2 , and thon eribtrioting. Similarly if we wish to eliminate the yi inctead of militplying the upper equation by 9 , and the lower by 8 , we may prepare thio two ogustions for addition by amply multaplyting the upper os 8.

- same unknown quantity, and there will result an equation containing only one unkwown quantity.
Ex. 3. Given $\left.\begin{array}{r}a x+y=m \\ b x-a y=n\end{array}\right\}$ to find the values of x and y. $b x-a y=n\}$ to ind

$$
\begin{align*}
& a x+y=m \tag{1}\\
& \begin{array}{l}
b x-a y=n \\
a^{2} x+a y=a m
\end{array} \\
& a^{2} x+b x=a m+n \\
& \left(a^{2}+b\right) x=a m+n \\
& x=\frac{a m+n}{a^{2}+b} \\
& \text { (I) } \\
& \text { (im) }=(\mathrm{I}) \times a \text {. } \\
& \text { (iv) }=(\mathrm{II})+(\mathrm{in}) \text {. } \\
& \text { (v) }=\text { (vi) factored. } \\
& \text { (vi) }=(v)+a^{2}+b \text {. } \\
& a x+y=\frac{a m+n}{a^{2}+b} \times a+y=m \\
& \text { (viI) }=(\mathrm{x}) \text { with value of } x \text { substi- } \\
& y=m-\frac{a^{2} m+a n}{a^{2}+b} . \\
& y=\frac{a^{2} m+b m-a^{2} m-a n}{a^{2}+b}=\frac{b m-a n}{a^{2}+b} .
\end{align*}
$$

hLDMNATION BY BUBETITOTION.

Rus.

128. I. And from one of the given equations the value of the unknowon to be eliminated in terme of the other wnlonoven quantity.

> Ex. 4. Given $\left.\begin{array}{r}2 x-y=1 \\ 7 x+9 y=16\end{array}\right\}$ to find the values of x and y.
> moctition.
> $7 x+9(2 x-1)=16$
> $7 x+18 x-9=16$ $25 x=25$
> $x=1$
> $y=2 x-1=2-1=1|(\mathbf{v i n})|=$ (III) with value of x substituted.

Ex. 5. Given $5 x-\frac{4 y-7 x}{6}=8$

$$
\left.\begin{array}{l}
5 x-\frac{4 y}{6}=8 \\
7 x+\frac{7 x-2 y}{6}=3 y-8
\end{array}\right\} \begin{aligned}
& \text { to find the values } \\
& \text { of } x \text { and } y .
\end{aligned}
$$

sometios.

$\begin{gathered} 5 x-\frac{4 y+7 x}{6}=8 \\ 7 x-\frac{4 y}{11}+\frac{7 x-2 y}{6}=3 y-8 \end{gathered}$	(1) (II)	
23x-4y $=48$	(HI)	= (i) reduced.
$539 x-244 y=-628$	(iv)	= (II) reduced.
$x=\frac{48+4 y}{23}$	(v)	$=$ (III) transp. and $\div 23$.
$539\left(\frac{48+4 y}{23}\right)-244 y=-528$	(vi)	$=$ (Iv) with $\frac{48+4 y}{23}$ sub. for x.
$\frac{25872+2156 y}{23}-244 y=-528$	(viI)	= (VI) expanded.
$3456 y=38016$	(vii)	= (vul) reduced.
$y=11$	(IX)	$=(\mathrm{VIII})+3456$.
$\frac{48+4 y}{23}=\frac{48+44}{23}=4$	(x)	$=(v)$ with 11 substitut. for y.

Therefore the required values are $x=4$ and $y=11$.
mLimination by comparison.
Ruls.
129. I. Find from the first equation the value of the quantily to be eliminated, in terms of the other unknovon quantily; and similarly find another valuse for the same quantity from the second equation.
II. Place these values equal to one another, i. e, form an equation by placing the sign of equality between them.

$$
\text { Ex. 6. Given } \left.\begin{array}{rl}
x+64 y & =1552 \\
64 x+y & =1048
\end{array}\right\} \text { to find the values of } x \text { and } y .
$$

No the a upon

Fir
1.
2.
3.
4.
5.
6.

ท.
$y-x$
8.
9.

$$
\begin{equation*}
10 . \tag{11.}
\end{equation*}
$$

A.st. 129.]

BOLUTION.

$\begin{aligned} & x+64 y=1552 \\ & 64 x+y=1048 \end{aligned}$	$\begin{aligned} & (\mathrm{I}) \\ & \text { (II) } \end{aligned}$	
$x=1552-64 y$	(III)	((1) transposed
$x=\frac{1048-y}{64}$	(IV)	= (iI) transp. and $\div 64$.
$\therefore \frac{1048-y}{64}=1552-64 y$	(v)	\because first members of (ini) and (IV) are $=\therefore$ also the second members aro $=(A x . X I)$.
1048-y $=99328-4096 y$	(vi)	$=($ II $) \times 64$ to clear of - fractions.
$4095 y=98280$	(VII)	$\begin{aligned} & =\text { (vI) transposed and } \\ & \text { collected. } \end{aligned}$
- $y=24$	(VIII)	$=(\mathrm{VII}) \div 4095$.
$x=1558-64 y=1652-1536=16$	(Ix)	$=$ (ui) with 24 substituted for y.

Norm.-Although either of these three methods may be employed, the student is recommended, as a rule, to muse the first, that being upon the whole the most convenient.

Eximoian XXXIV.

Find the values of x and y in the following equations :-

1. $7 x-3 y=5$; and $4 x+y=11$.
2. $x+3 y=23$; and $6 x-y=24$.
3. $3 x-11 y=1$; and $5 x-7 y=64$.
4. $5 x+6 y=80$; and $9 x-5 y=-14$.
5. $\frac{1}{} x+y=4$; and $4 x-\frac{1}{3} y=27$.
6. $\frac{3}{8} x-\frac{8}{3} y=-11$; and $\frac{9}{3} x+\frac{7}{1} 9 y=37$.
7. $11 x+y+11=59-\frac{2 y+9 x}{2}+\frac{3 x}{2}$; and $11-\frac{7 x+13 y}{3}=$ $y-x-\frac{8 x-3 y}{4}-\left(x+y+\frac{1}{2}\right)$.

8. $19 x+18 y=147$; and $17(x+y)-16(x-y)=168$.
9. $2 x+3 y=a$; and $6 x-2 y=b$.
10. $3 x+a y=m$; and $4 x+b y=n$.
11. $a x-2 a y=b$; and $2 b x-b y=c$.
12. $x-y=a$; and $x^{2}-y^{2}=b$.
13. $\frac{x}{a}-\frac{y}{c}=m$; and $\frac{x+y}{c}-\frac{x-y}{m}=a$.
14. $\frac{m}{x}+\frac{n}{y}=a$; and $\frac{b}{x}-\frac{q}{y}=b$.
15. $x+y=11$; and $x^{2}-y^{2}=55$.
16. $\frac{\frac{1}{3}(45 x+4 y)}{33}+2=y+1-\frac{1}{8}(3 y+x-3)$; and $\frac{3 x+2 y}{6}-\frac{y-5}{4}$ $=\frac{11 x+152}{12}-\frac{3 y+1}{2}$.
17. $\frac{x}{a}-\frac{y}{c}=p$; and $\frac{c}{a-x}+\frac{a}{c+y}-0$.
18. $\frac{x-6}{7 y}+\frac{4 x+7}{24}-\frac{\frac{1}{2}(7 x-y)}{6}=\frac{19+y}{42}-\frac{\frac{1}{3}(11 x+18)}{56 y}$; and $\frac{12 x-15 y+14}{10 y-8 x+\frac{86}{3}}=\frac{93-9 x}{6 x-j_{6}^{i}}$.
19. $3 x+5 y=\frac{(8 a-2 b) a b}{a^{2}-b^{2}}$; and $a^{2} x-\frac{a b^{2} c}{a+b}+(a+b+c) b y$ $=b^{2} x+(a+2 b) a b$.

gIMULTANEOUS EQUATIONS OF THE FIRST DEGREE,

 Involving mori than Two Unenown Quantitims.130. If we have three equations involving three unknown quantities, we may obtain their values by the following : -

RoLy. Combine by Arts. 127, 128, 129, the first and second of the given equutions, so ds to eliminate one of the unknown quantities. Also combine the first and third, or the second and third, so ds to eliminate the same unknown quantity. There will restult from this process two equations involving but two unknown quantities the valuce of which may be obtained by the previous rules.

Ax. Given $2 x+4 y-3 z=22$; and $4 x-2 y+b z=18$, and $6 x+7 y-z=63$, to find the values of x, y, and 4.
solution.

$2 x+4 y-3 z=22$)	(1)	
$4 x-2 y+5 z=18\}$	(II)	
$6 x+7 y-z=63$	(III)	
$4 x+8 y-6 z=44$	(iv)	$=(1) \times 2$.
$10 y-11 z=26$	(v)	$=$ (IV) - (II).
$6 x+12 y-9 z=66$	(VI)	$=(1) \times 3$.
$6 y-8 z=3$	(VII)	= (VI) - (III$)$
$\left.\begin{array}{r}10 y-11 z=26 \\ 5 y-8 z=3\end{array}\right\}$	(v)	2.
$5 y-8 z=3\}$	(vil)	
$10 y-16 z=6$	(VIII)	$=(\mathrm{VII}) \times 2$.
$5 z=20$	(IX)	$=(\mathrm{v})-(\mathrm{VIII})$:
$z=4$	(x)	$=(\mathrm{Ix}) \div 5$.
$5 y-8 z=5 y-32=3$	(xI)	= (vil) with 4 for \approx.
- $5 y=35$	(xII)	= (XI) transposed.
- $y=7$	(xIII)	$=(\mathrm{xII}) \div 5$.
-4y-3z $2 x+28-12=22$	(xIv)	=(xuII). with 4 snbstituted for z and 7 for y.
$2 x=6$	(xv)	= (xIv) transposed.
$x=3$	(xv1)	$=(x v) \div 2$.

181. When there are more than three unknown quantities, and consequently more than three equations, we proceed in a similar manner, so that for solving a set of n equations involving n unknown quantities, we use the following:-

Role.

1. Combine one of the given n equations with each of the others separalely, eliminating the same unknown quantity.; there will result $\mathbf{n - 1}$ equations, involving $\mathbf{n - 1}$ unknown quantities.
II. Combine one of these equations with each of the others separately, eliminating a second unknown quantity; there will result $\mathrm{n}-2$ equations involving only $\mathrm{n}-2$ unknown quantitics.
III. Continue thus combining and eliminating until an equation is obtained involving only one unknovon quantity.
IV. Having solved this equation and thus found the value of one unknown quantity, substitute this value in one of two preceding equations, and thus obtain the value of a second unknown quantity; then substitute the values of these two unknown quantities in one of the three equaitions which involve only three unknowns, and thus determine the value of another, and so on, until all the values are found.
Ex. Given $v+x+y+z=14$

$$
\begin{aligned}
& \left.\begin{array}{l}
3 v-2 x+4 y-3 z=5 \\
2 v-5 x+2 y+4 z=24 \\
4 v+3 x-3 y-2 z=3
\end{array}\right\} \text { to find the values of } v, ~ \\
& x, y, \text { and } z .
\end{aligned}
$$

solution.

$\begin{array}{r} v+x+y+z=14 \\ 3 v-2 x+4 y-3 z=6 \end{array}$	(I) (II)	
$2 v-5 x+2 y+4 z=24$	(III)	
$4 v+3 x-3 y-2 z=3$	(iv)	
$3 v+3 x+3 y+3 z=42$	(v)	$=(1) \times 3$.
$2 v+2 x+2 y+2 z=28$	(vi)	$=(1) \times 2$.
$4 v+4 x+4 y+4 z=56$	(VII)	$=(1) \times 4$.
$5 x-y+6 z=37$	(VIII)	$=(\mathrm{V})-(\mathrm{I})$.
$7 x-2 z=4$	(Ix)	$=$ (VI) - (III) .
$x+7 y+6 z=63$	(x)	$=$ (VII) - (IV).
$35 x-7 y+42 z=259$	(xI)	$=($ VIII $) \times 7$.
$36 x+48 z=312$	(xII)	$=(\mathrm{x})+(\mathrm{xI})$.
$3 x+4 z=26$	(xIII)	$=(\mathrm{XII}) \div 12$.
$14 x-4 z=8$	(xIV)	$=(1 \mathrm{x}) \times 2$.
$17 x=34$	(xv)	$=(\mathrm{IIII})+(\mathrm{xIV})$.
$x=2$	(xvi)	= (xv) $\div 2$.
$3 x+4 z=6+4 z=26$	(xvir)	= (xIII) with 2 for x.
$z=5$	(XVIII)	((XVII) transp. and $\div 4$.
$5 x-y+6 \approx=10-y+30=37$	(XIX)	= (viil) with 2 substituted for x and 5 for \approx
7: $\quad y=3$	(xx)	= (xIx) transposed.
$+x+y+z=v+2+3+5=14$	(xXI)	$=(1)$ with values of x, y,
		and z substituted.

Therefore the required values are $v=4, x=2, y=3$, and $z=6$.

Ars

Abt. 181.]

SIMPLE EQUATIONS.

Exnrozs: X:XXV.

Find the values of the unknown quantities in the following equations:-

$$
\begin{aligned}
& \text { 1. } \left.\begin{array}{r}
2 x-3 y+4 z=28 \\
3 x+4 y-5 z=26 \\
4 x-5 y-6 z=16
\end{array}\right\} \\
& \text { 3. } x+y+z=0 \\
& 2 x+3 y+4 z=-4\} \\
& 3 x+6 y+7 z=-6\} \\
& \text { 5. } x+y+z+v=0 \\
& 2 x-3 y-z-2 v=11 \\
& x+2 y-3 z+6 v=-17 \\
& 3 x+2 y-4 z-v=-6 \\
& \text { 2. } x+y+z=5 \\
& \left.\begin{array}{rl}
2 x-y-3 z & =-5 \\
x+2 y-z & =-1
\end{array}\right\} \\
& \text { 4. } \left.\begin{array}{rl}
3 x-2 y-z=12 \\
4 x-3 y-2 z=17 \\
5 x-5 y-3 z=21
\end{array}\right\} \\
& \text { 6. } \left.\begin{array}{r}
\frac{1}{x}+\frac{1}{y}=\frac{5}{6} \\
\frac{1}{x}+\frac{1}{z}=\frac{3}{4} \\
\frac{1}{y}+\frac{1}{z}=1^{7}
\end{array}\right\} \\
& \text { 7. } \left.\begin{array}{rl}
x+y & =x y \\
x+z & =2 x z \\
2(y+z) & =3 y z
\end{array}\right\} \\
& \text { 8. } \left.\begin{array}{rl}
x+3 y+2 z=b \\
3 x+5 y-2 z & =m \\
4 x--y+z=n
\end{array}\right\} \\
& \text { 9. } \left.\begin{array}{rl}
a x+b y=c \\
b x+c z=a \\
c y+a z=b
\end{array}\right\} \\
& \text { 10. } v+x+y=13 \\
& v+x+z=17 \\
& v+y+z=18 \\
& x+y+z=21 \\
& \text { 11. } x+y+z=a+b+c \\
& \left.b x+c y+a z=c x+a y+b z=a^{2}+b^{2}+c^{2}\right\} \\
& \text { 12. } x+a(y+z)=m \\
& \left.\begin{array}{l}
y+a(x+z)=n \\
z+a(x+y)=p
\end{array}\right\}
\end{aligned}
$$

PROBLEMS

Producing Simultanious Equations of the First Degree.
Ex. 1. What fraction is that whose numerator being doubled and denominator decreased by unity, the value becomes ? 3 , but the denominator being doubled, and numerator increased by. 5 , the value becomes !?

SOLOTION.

Let $\frac{x}{y}=$ the fraction $;$ then $x=$ numerator and $y=$ denominator.

$$
\left.\begin{aligned}
&\left.\begin{array}{rl}
\frac{2 x}{y-1} & =\frac{2}{3} \\
\frac{x+5}{2 y} & =\frac{1}{2}
\end{array}\right\} \left\lvert\, \begin{array}{l}
(\text { II }) \\
6 x-2 y
\end{array}\right. \\
& 2 x-2 y=-2 \\
& 4 x=8 \\
& x=2 \\
& \text { (III) } \\
&(\text { IV })
\end{aligned} \right\rvert\,=\begin{aligned}
& \text { (I) redaced. } \\
& =(\text { ni) reduced }
\end{aligned}
$$

Therefore the fraction is \%.
Nx. 2. A certain field is rectangular in form, and its dimensions are such that if it were 4 chains longer and 3 chains wider its area would be 103 chains greater than at present, but if it were 2 chains shorter and 7 chains wider, its area. would be 119 chains greater than at present. Required its area.

SOLUTION.

Let $x=$ its length and $y=$ its breadth; hence $x y=$ its present area.

Then $x+4=\mathrm{its}$ length when increased by 4 chains.
$y+3=$ its breadth when increased by 3 chains.
$(x+4)(y+3)=$ its area, which is greater than $x y$ by 103 chains.

Also $x-2=$ length when decreased by 2 chains.
$y+7=$ breadth when increased by 7 chains.
Then $(x-2)(y+7)=$ its area, which is greater than $x y$ by 119 chaing. Hence the two required equations are

$\left.\begin{array}{l} (x+4)(y+3)=x y+103 \\ (x-2)(y+7)=x y+119 \end{array}\right\}$	(I)	
$x y+3 x+4 y+12=x y+103$	(iiI)	((l) expanded.
xy $+7 x-2 y-14=x y+119$	(IV)	= (II) expanded.
$8 x+4 y=91$	(v)	$=$ (III) transposed and col lected.
$7 x-2 y=133$	(VI)	$=\text { (iv) transposed and col- }$ lected.
$14 x-4 y=266$	(viI)	$=(\mathrm{VI}) \times 2$.
$17 x=357$	(viII)	$=(\mathrm{v})+(\mathrm{VII})$.
$x=21$	(Ix)	$=($ viin $) \div 17$.
$3 x+4 y=63+4 y=91$	(x)	(${ }^{\text {(v) with } 21}$ subatitute
$4 y=28$		for x.

Hence the area $=x y=21 \times 7=147$ chains.
Ex. 3. Two plugs are opened in the bottom of, a cistern containing 664 gallons of water; after 6 hours one of them becomes stopped, and the cistern is emptied by the other in 20 honrs ; but had 8 hours elapsed before the stoppage occurred, it wonld only have required 16 h .36 m . more to empty it. Assuming the discharge to be uniform, how many gallons did each plug hole discharge per hour?

> SOLUTION.

Let x and $y=$ rates of discharge per hour of the two plug holes. Then $6 x+6 y=$ No. of gals. discharged in 6 hours.
And $20 y=$ No. of gals. discharged by second in 20 hours.
Then $6 x+26 y=664$ (I).

Also $8 x+8 y=$ No. of gals, discharged in 8 hours by both. And $153 y=\frac{78 y}{5}=$ No. of gals. discharged by 2 nd in 15 h .36 m .

$$
\begin{array}{r|l|l}
\text { Then } 8 x+8 y+\frac{78 y}{5}=664 & \text { (II) } & \tag{II}\\
40 x+118 y=3320 & \text { (III) } & =\text { (II) reduced. } \\
120 x+520 y=13280 & \text { (IV) } & =\text { (I) } \times 20 \\
120 x+354 y=9960 & \text { (v) } & =\text { (III) } \times 3
\end{array}
$$

Therefore rates of discharge are 24 and 20 gals. per hour.

Exirime XXXVI.

1. Find two numbers such that seven times their sum increased by four times the less is equal to 50 , and twice their difference increased by three times the greater, is equal to 16.
2. Find two numbers whose sum is equal to a, and such'that b times the greater is equal to c times the smaller.
3. Two tons of hay and 35 bushels of oats cost $\$ 44$, but if oats were to fall in price 20 per cent. and hay were to rise in price 33 f per pent.. they would cost $\$ 61 \%$. Required the price of hay and oats.
4. A rectangular garden is of such dimensions that were it 20 yarde longer and 24 yards wider it would contain 4180 square yards more than its present area, but if it were 24 yards longer and 20 yarde wider, its present area would be increased by only 3860 square yards. Required its present area.
5. Find two numbers such that the sum of one-half of the first and one-third of the second shall be 11 ; and one-third of the first shall be greater by unity than one-fifth of the second.
6. Divide the number 144 into two parts such that 4 of the greater shall exceed $\frac{8}{6}$ of the less by $1 \frac{1}{\frac{1}{2}}$.
7. Divide the number 48 into two parts such that the greater se contain 4 as divisor for times as often as it contains the "7 as divisor.
8. Find three numbers such that the first is equal to of the other two, the second exceeds half the sum of the other two by 6, while the third is less by 3 than $\frac{1}{2}$ of the sum of the first and second.
9. In 4000 lbs . of gunpowder there are 3240 lbs . less of sulphur than of charcoal and saltpetre, and 2760 lhs, Jess of sharenal
than
each
10. first, each d
than of sulphur and saltpotre. How many lbs. are there of each?
11. Divide the number 72 into three such parts that 1 of the first, $\{$ of the necond, and \ddagger of the third shall all be equal to each other?
12. A purse holds 16 shillinga and 27 ten cent pieces. Now. 11 shillings and 13 ton cẹnt pieces only fill pof of it. How many will.it hold of each ?
13. A work is printed so that each page contains a certain number of lines, and each line a certain number of letters. If the page had contained 3 lines more, and each line 4 letters more, then the page wonld have contained 224 letters more than it now contains, but if there had been 2 lines less on a page and 3 letters less in each line, the page would have contained fewes? letters by 146. How many lines are there in a page, and how many letters in a line?
14. A certain number of two digits is such that when divided by 4 legs than twice the sum of its digits the quotiont is 3 , but when divided by 5 more than the difference of its digits the quotient is 13. Required the number, the right hand digit being the greater.
15. A sum of $\$ 81 \cdot 60$ is to be paid in ten cent and twenty-five cent pieces, afid 21 times the number of tiventy-five cent pieces exceeds 6 times the number of ten cent pieces by 4. Required the number of each coin.
16. A railway train running from Toronto to Kingston moets with an accident which diminishes its speed by $\frac{1}{2}$ th of what it was before, and in consequence of this the train is b honrghehind time. If, however, the accident had happened c miles nearer to Kingston, the train would only have been d hours behind time. Required the rate of the train before the accident.
17. A stage set out from Oollingwood to Goderich with s certain mumber of passengers, 4 more being outside than insid The ter oftoven outside passengers is half-a-dollar less the fof that of thito passengers, and the whole fare received amounted to $\$ 15,2 y d e$ end of half the journey it took up three moro outetit Oite more inside passenger, in consequence of which the whote fare received was $1_{17}{ }^{2}$ times what it was before. Whint Was the number of passengers and the fare of each?
18. What number of two digits is that which is equal to twice the product of its digits, or to four times their sum ?
19. There is a number of three digites suoh that the middie difgit in the arithmotical mean between the others. If the number be divided by the sum of its digits, the quotiont is 48 , and if 198 be taken from it, the digits are invertod. Requised the number.
20. A given piece of metal which weighs p on., loses a 08. in wator. It is, however, composed of two other metalh, \mathcal{A} and B_{1} and we know. that p oz. of A loye $b \mathrm{oz}$. in water, and p os. of B lowe cos. in water. How many os. of eaoh metal are there in the piece ?
21. Fivd gamblers, A, B, C, D, E, throw dice upon condition that he who has the loweat throw shall. give all the otherm the num which they already have. Fach loses in turn, commenoing with \mathcal{A}, and at the end of the fifth game each has the same sum, \$32. How much had each at first?

ABy. 11
Note: nnd that they aro
NOTE lows tha Honco their prc

185 follows require plying require

188 divided binomi
187. multipli by multit the reque. form on
188. If the quantity to be involved have a negative sign, then the signs of all the even powers will be positive, and the signs of all the odd powers, negative.

$$
\begin{aligned}
\text { Thus, }(-a)^{2} & =-a \times-a=+a^{2} \\
(-a)^{3} & =(-a)^{2} \times-a=+a^{2} \times-a=-a^{s} \\
(-a)^{4} & =(-a)^{2} \times(-a)^{2}=+a^{2} \times+a^{2}=+a^{4} \\
(-a)^{5} & =(-a)^{4} \times-a=+a^{4} \times-a=-a^{5},
\end{aligned}
$$

184. If the quantity to be involved have a positive siga then all its powers, both even and odd, will have the positive sign,

Nome. and deno the equiv

Ex. 1
Ex. 2

Write

1. (2c
2. $(-$
$3 .\left(a^{2}\right.$
to twice
middie the num8, and if ined the
a 08. in A and B, 08. of B there in
sondition thers the monoing ame sum,

Nory 1.-It follow that no ovon pomer of any quantity can be nogativo, and that all odd powess will have the came elgm as the quantity from whioh they are dortved.
HOCN 2.-8ince $(a-b)^{2}=a^{2}-2 a b+b^{2}$ in a poditive quantity, it solo jows that $a^{2}+b^{8}>8 a b$, wherwhe $a^{2}+b 8-2 a b$ would be megative. Homee the sum of the squarw of any two grantilien, if creater than twice their product.
185. Since $\left(a^{m}\right)^{n}=a^{m} \times a^{m} \times a^{m}$..........to n factors, it follows (Art. 53) that $\left(a^{m}\right)^{m}=a^{m m}$, and hence we find a required power of the given power of a quantity by multiplying the exponent of the given power by that of the required power.
186. The Involution of algebraic quantities may be divided into three cases-the involution of monomials, of binomials, and of polynomials.

Oabm I.

INVOLUTLON OF MONOMLALS.

187. Rous. - Raise the coefficient to the required power by actual multiplication; also raise the different letters to the required power by multiplying the exponents they already have by the exponent of: the required power, and connect the two parts thus obtained so as to form one quantity.

Nors:- A fraction is raised to any power by involving both numerafor and dopomintar ceperately to that power;-s mixed number by ipvolvites. the equivalent improper fraction.

Ex. 1. $\left(2 a^{2} x y^{3}\right)^{4}=2^{4} \times\left(a^{2} x y^{3}\right)^{4}=16 \times a^{8} x^{4} y^{12}=16 a^{8} x^{4} y^{12}$.
Ex. 2. $\left(-3 a x^{2}\right)^{8}=(-3)^{3} \times\left(a x^{2}\right)^{8}=-27 \times a^{3} x^{6}=-27 a^{8} x^{6}$.

Exaroirs XXXVII.

Write down the values of-

1. $\left(2 a^{3}\right)^{4} ;\left(3 a b^{3}\right)^{2} ;\left(4 m^{2}\right)^{2} ;\left(3 a b^{2} c^{3}\right)^{\frac{1}{2}} ; 1^{7} ;\left(2 a^{2} y\right)^{0}$; $\left(3 a^{2} x y^{3}\right)$
2. $\left(-a^{5}\right)^{4} ;\left(-2 a^{2} c^{2} c^{7} ;\left(-\frac{1}{2} a b c^{3}\right)^{4} ;\left(-\frac{1}{3} x y^{2}\right)^{2} ;\left(-2 m x^{2} y^{2}\right)^{5}\right.$.
${ }_{4}\left(a^{2} x\right)^{0} ;\left(-a x^{2} y^{3} z^{4}\right)^{8} ;\left(3 a y^{3}\right)^{8} ;\left(-3 a y^{3}\right)^{8} ;\left(3 a y^{3}\right) ;\left(-8 a y^{8}\right)$:

Cabs II.

INVOLUTION OF BINOMIALS.

188. By aotual multiplication we find that-
$(a+c)^{7}=a^{7}+7 a^{6} c+21 a^{6} c^{2}+35 a^{4} c^{8}+35 a^{3} c^{4}+21 a^{8} c^{5}+7 a c^{6}+c^{7}$. $(a-c)^{8}=a^{8}-8 a^{7} c+28 a^{6} c^{2}-56 a^{5} c^{3}+70 a^{4} c^{4}-56 a^{8} c^{5}+28 a^{2} c^{6}$ $-8 n c^{7}+c^{8}$.

We here observe the following facts :-

-I. The firat term of the expansion is found by rairing the first term of the binomial to the required power.
II. The literal part of the second term of the expansion is obtained ${ }^{\prime}$ by prefixing the first term of the expansion with exponent decreased by unity to the simple power of the second term of the binomial.
III. In the succeeding terms of the expansion the exponent of the Arst term of the binomial constantly decreases, while that of the second term of the binomial constantly increases by unity.
IV. If we take the coeficient of any term and multiply it by the exponent of the first letter of the same term and divide by the number of the term, the quotient is the coefficient of the next succeeding term.
V. When the sign of the binomial is + all the signe of the expansion are + , but when the sign of the binomial is - the signs of the expansion are + and - alternately.

Ex. 1. $(x-y)^{6}=x^{5}-5 x^{4} y+10 x^{8} y^{2}-10 x^{2} y^{8}+5 x y^{4}-y^{5}$.
Here $\frac{1 \times 5}{1}=5=$ coef. of 2 nd term; $\frac{5 \times 4}{2}=10=$ coef. of 3 rd term: $\frac{10 \times 3}{3}=10=$ coel. of 4th term, \&c.

Nore.-It wili be remarked by the student that in these expansions-

1. The number of terms $=$ one more than the exponent of the required power.
II. The sum of the exponents of each torm $=$ the exponent of the required power.
III. When the power is even there is only one middle term, but when the power is odd there are two terms in the middle of the expansion having the same coefficient.
IV. The terms following the middle term have the same coefficients as thpse preceding it but are reversed in order.

SEOT. VII.
$7 \mathrm{Tac}^{6}+\mathrm{c}^{7}$. $+28 a^{2} c^{6}$

5 the first
is obtained h exponent econd term
rent of the while that ucreases by
y it by the divide by efficient of
the expan-- the signs
$-y^{8}$.
3rd term:
naionghe required ont of the , but when ion having

Ex. 2. $(2 a-3 b)^{6}=(2 a)^{6}-6(2 a)^{6}(3 b)+16(2 a)^{4}(3 b)^{2}-$ $20(2 a)^{4}(3 b)^{8}+16(2 a)^{2}(3 b)^{4}-6(2 a)(3 b)^{6}+(3 b)^{6}$
$=64 a^{6}-6\left(32 a^{8}\right)(3 b)+16\left(16 a^{4}\right)\left(9 b^{2}\right)-20\left(8 a^{8}\right)\left(27 b^{b}\right)+$ $15\left(4 a^{4}\right)\left(81 b^{4}\right)-6(2 a)\left(243 b^{6}\right)+729 b^{6}$
$=64 a^{6}-576 a^{6} b+2160 a^{4} b^{2}-4320 a^{3} b^{5}+4860 a^{2} b^{4}-2916 a b^{5}$ $+7296{ }^{6}$.

Trinomiale may be involved by writing thom as binomials and proceeding after a manner similar to the above.

Ex. 3. $(a-b-2 c)^{4}=\{(a-b)-2 c\}^{4}=(a-b)^{4}-4(a-b)^{2}(2 c)$ $+6(a-b)^{y}(2 c)^{y}-4(a-b)(2 c)^{8}+(2 c)^{4}$
$\therefore=\left(a^{4}-4 a^{3} b+6 a^{2} b^{2}-4 a b^{8}+b^{4}-4(2 c)\left(a^{3}-3 a^{2} b+3 a b^{4}-b^{4}\right)+\right.$ $6\left(4 c^{2}\right)\left(a^{2}-2 a b+b^{4}\right)-4\left(8 c^{4}\right)(a-b)+16 c^{4}$
$=a^{4}-4 a^{3} b+6 a^{2} b^{4}-4 a b^{3}+b^{4}+\left(8 a^{3} c-24 a^{2} b c+24 a b^{2} c-8 b^{4} c\right)$
$+\left(24 a^{2} c^{2}-48 a b c^{2}+24 b^{2} c^{2}\right)-\left(32 a c^{3}-32 b c^{3}\right)+16 c^{4}$
$=a^{4}-4 a^{3} b+6 a^{2} b^{2}-4 a b^{3}+b^{4}-8 a^{3} c+24 a^{2} b c-24 a b^{2} c+8 b^{3} c+24 a^{2} c^{4}$
$-48 a b c^{2}+24 b^{2} c^{2}-32 a c^{3}+32 b c^{3}+16 c^{4}$.

Exarcism XXXVIIT.

Write down the expansions of
0. $(2 b-5 c)^{3}$

1. $(a-b)^{9}$.
2. $(c+x)^{4}$.
3. $(x-y)^{10}$.
4. $(a+m)^{11}$.
5. $(2-u)^{4}$.
6. $(x-3)^{5}$.
7. $(2 a+3)^{6}$.
8. $(3-2 m)^{6}$.
9. $(3 a-2 y)^{6}$
10. $(3 x-4 y)^{4}$.
11. $(a b+3 c)^{5}$.
12. $(2 a c-x y z)^{3}$.
13. $(a+b-c)^{3}$.
14. $(2 a-b-c)^{4}$.
15. $(2 a+2 b-3 c)^{5}$.
16. $\left(1+x-x^{2}\right)^{4}$.
17. $(a-b+2 c)^{5}$.

OABE III.

INVOLUTION OF POLYNOMIALS.

139. No general method can be given for involving polynomials to a given power except by actual multiplication. The second power of polynomials, however, may be expeditiously obtained by the following:-

Rowi.-Write down the square of the first term and twice the product of the frst term by each succeeding term of the polynomial.

Under this set down the square of the second term and twice the product of the second term by each succeeding term.

Similarly set down the square of the third term and twice the product of the third term by each succeeding term. And proceed thus through all the terms of the polynomial.

Lastly, add the several results together for the complete square.
Ex. 1. $(a-c-d-f+g-h)^{2}=a^{2}-2 a c-2 a d-2 a f+2 a g-2 a h$

$$
\begin{array}{r}
+c^{2}+2 c d+2 c f-2 c g+2 c h \\
+d^{2}+2 d f-2 d g+2 d h \\
+f^{2}-2 f g+2 f h \\
+g^{2}-2 g h \\
+h^{2}
\end{array}
$$

$$
+c^{2}+2 c d+2 c f-2 c g+2 c h
$$

Here we cannot add the quantities together since they are all unlike.

$$
\begin{aligned}
& \text { Ex. 2. }\left(1-x+x^{2}-\frac{1}{2} x^{8}+2 x^{4}-\frac{1}{8} x^{6}\right)^{2} \\
& \text { - } 1-2 x+2 x^{2}-x^{3}+4 x^{4}-x^{5} \\
& +x^{2}-2 x^{8}+x^{4}-4 x^{5}+x^{6} \\
& +x^{4}-x^{5}+4 x^{6}-x^{7} \\
& +\frac{4}{4} x^{6}-2 x^{7}-\frac{1}{2} x^{8} \\
& +4 x^{8}-2 x^{9}
\end{aligned}
$$

Exbroism XXXIX.

1. $\left(2+\frac{1}{1} x-3 x^{2}\right)^{2}$.
2. $\left(2-3 x+4 x^{2}-\frac{1}{2} x^{3}+\frac{1}{3} x^{4}\right)^{2}$.
3. $\left(x+x^{2}-x^{y}\right)^{2}$.
4. $\left(1-a+b^{2} x^{2}-c^{3} x^{3}+d^{4} x^{4}\right)^{2}$.
5. $\left(2 x-3 x^{2}-\frac{1}{2} x^{4}\right)^{2}$
6. $\left(1-\frac{1}{2} a+2 a^{2}-a^{8}\right)^{2}$.
7. $\left(1+x-\frac{1}{2} x^{2}-\frac{1}{1} x^{8}+x^{4}\right)^{2}$.
8. $\left(2 a-a x+2 a x^{2}\right)^{2}$.
9. $\left(1+b x-c x^{2}\right)^{8}$
10. $\left(a-b x-c x^{2}+d x^{3}\right)^{2}$.
11. $(a+b)^{6}$.
12. $(a-c)^{8}$.
13. $(a x-2)^{4}$.
14. $\left(1-2 x-x^{2}+2 x^{4}-x^{4}\right)^{3}$

Rus then e each l
Nor the nu the roc

Ex.
Noyis by the oonseq
d twice the polynomial. d twice the
d twice the Ind proceed
ete square.
$2 a g-2 a h$ $2 \mathrm{cg}+2 \mathrm{ch}$ $2 d g+2 d h$ $2 f g+2 f h$ $+g^{2}-2 g h$ $+h^{2}$
they are all

EVOLUTION.

140. Evolution is the process of finding any required root of a quantity.
141. Since $(+a)^{2}=+a^{2}$ and $(-a)^{2}$ also $=+a^{2}$, the square root of a^{2} may be either $+a$ or $-a$, and hence we always attach the double sign \pm to the even roots of a quantity.
Thus, $\sqrt{x^{2} y^{2}}= \pm x y ; \sqrt[4]{x^{8} y^{12}}= \pm x^{2} y^{3} ;$ \&c.
142. Since all even powers are positive, whether the root be negative or positive, it follows that a negative quantity can have no even root.
Notr- Expressions indicating an even root of a negative quantity, such as $\sqrt{-a^{2}}, \sqrt{-16 m^{4}}, \sqrt[4]{-16 a^{8}}, \sqrt[8]{-a^{9} m^{12} \xi^{18}}$, de., are called imaginary or impossible quantities.
143. The root of a complete odd power has the same sign as the power.
Thus, $\sqrt[3]{-a^{8}}=-a ; \sqrt{-32 a^{10} b^{85}}=-2 a^{4} b^{5} ; \sqrt[3]{27 a^{6} m^{8}}=3 a^{2} n$.
Cabe I.

EVOLUTION OF MONOMIALS.

144. To extract any root of a monomial :-

RuLu.- Extract the required root of the numerical coefficient, and then extract the root of the literal part by dividing the exponent of each letter by the inder of the root to be extracted.
Nors 1. -We extract a required root of a fraction by taling the root of the numerator and denominator separately-of a mixed number by taking the root of the equivalent improper fraction.

Noys 2. - When the exponent of the literal part is not expotily divisibib by the index of the root to be takon, we cannot obtain the root, atid oonsequently we merely indicate its extraction by using the rifdicil sigu
and proper index, or by using a fractional exponent. Thus, we cannot find the cube root of a^{4} because 4 , the exponent of a, is not exactiy divisible by 3, the index of the cube root; we therefore represent the root required by the expresaion $\sqrt[8]{a^{4}}$ or $a^{\frac{4}{3}}$. Such quantities are callod surds or irrational quantities.

Exerdisy XL.

1. Find the square roots of $a^{4} ; x^{2} y^{2} ; 4 a^{2} m^{4} ; 64 a^{2} ; 121 a^{6} y^{8}$.
2. Find the cube roots of $-27 a^{8} ; 64 a^{6} y^{9} ; 125 a^{8} x^{15} ;-8 a^{6} y^{12} z^{8}$.
3. Find the square roots of $\frac{16 a^{8}}{25 b^{4}} ;-\frac{16 a^{2}}{4 m^{4}} ; \frac{144 x^{4} y^{18}}{81 a^{4} b^{2}} ; \frac{64 a^{8}}{625 m^{2} x^{2}}$.
4. Find the cube roots of $\frac{64 a^{12} y^{6}}{27 m^{3}} ; \frac{8 a^{24} x^{18} y^{12}}{216 b^{3} c^{6}} ;-\frac{343 a^{3} b^{9}}{64 m^{6} y^{21}}$.
5. Find $\sqrt[{\sqrt{\frac{16 a^{4}}{b^{18}}} ; \sqrt[6]{\frac{32 a^{10} x^{20}}{243 y^{5}}} ; \sqrt[6]{\frac{729 m^{12} x^{12}}{64 a^{12}}} ;-\sqrt{\frac{a^{14} m^{21}}{x^{88} y^{4!}}} ~ . ~ .} ~]{\text {. }}$.

Case II.

EVOLUTION OF POLYNOMIALS.

SQUARE ROOT.

145. In order to investigate a method for extracting the square root of a polynomial, we take the quantity $a+b$ and square it; this gives us $a 8+2 a b+b^{8}$. Next we seek to find or to devise some process by which we can evolve from this latter quantity its square root, $a+b$. Arranging the square according to the powers of the
letter of reference, we readily see that we can get a, the first term of the root, by taking the square root of the first term of the arranged square. Subtracting a^{2} we have a remainder $2 a b+b^{8}$. Now we endeavour to find some procese by which we may use a, the first term of the root, as a divisor for finding the second term, and knowing that this second term is b, wo see at once that we must use $2 a$ for a trial divisor, because $2 a b \div 2 a$ gives b, the second term. Finally, as the divisor muitiplied by the last term put in the root, must cancel the remaining part of the dividend, $i_{2} e, 2 a \dot{b}+b 2$, we observe that we must add b to the trial divisor in order to complete it.
146. The several steps of the above process give us the
following:-
147. The several steps of the above process give us the
following:-

148. in al poly give reve
annot find livisible by equired by irrational
$1 a^{6} y^{8}$ $8 a^{6} y^{12} z^{3}$.
$64 a^{8}$ $\overline{625 m^{2} x^{24}}$ $343 a^{3} b^{9}$ $64 m^{6} y^{21}$.
$\overline{y^{4!}}$.
uare root of his gives us 88 by which Arranging wers of the see that we ot, by taking orm of the 2 we have a ndeavour to may use a, d term, and st use $2 a$ for aally, as the the remainust add b to

Roun.

I. Having properly arranged the given square, we take the square root of its first term for the first term of the root, and sub. tract its square from the given square.
II. We double the part of the root already found for a trial divisor.
III. We usk how often this trial divisor is contained in the first term of the remainder. This gives us the second term of the raot.
IV. We place the second term both in the root and also in the trial divisor to complete it.
V. We multiply the complete divisor thus obtuined by the second term of the root, and subtract.
VI. If there be a remainder we again double the part of the root already found, for a new trial divisor; again ask how often the first term of the trial divisor is contained in the first term of the remainder; place the quantity answering this both in the root and in the divisor; multiply the divisor thus completed by the last term put in the root; and so on.
147. We are led to infer that the above rule will answer in all cases, from observing carefully the law by which any polynomial is raised to the second power, and that the given method for extracting the square root is just the reversal of this process.

$$
\begin{aligned}
& \text { Thus, } \begin{array}{l}
(a+b)^{2}=a^{2}+2 a b+b^{2} \\
\begin{array}{r}
(a+b+c)^{2}=a^{2}+2 a b+b^{2}+2(a+b) c+c^{2} \\
(a+b+c+d)^{2}=a^{2}+2 a b+b^{2}+2(a+b) c+c^{2}+ \\
2(a+b+c) d+d^{2}
\end{array} \\
(a+b+c+d+e)^{2}=a^{2}+2 a b+b^{2}+2(a+b) c+c^{2}+ \\
2(a+b+c) d+d^{2}+2(a+b+c+d) e+e^{2}
\end{array}
\end{aligned}
$$

That is to say :-
The square of any polynomial is equal to the square of the first term, plus twice the product of the first term by the second, plus the
square of the second, plus twice the sum of the first two terms into the third, plus the square of the third term; plus twice the sum of the first three terms into the fourth, plus the square of the foumth term, -and so on.
148. Then also, finding upon trial that the rule holds in every case in which it is tested, we conclude that it is a general rule, and use it as such; and moreover, we derive the arithmetical rule from it.*

Ex. 1. What is the square root of $25 a^{4}-30 a b+9 b^{2}$?
opriation.

$$
\begin{aligned}
& \text { 25a2}-30 a b+9 b^{2}(5 i c-3 b=\text { sq. root. } \\
& 10 a-3 b) \frac{25 a^{2}}{-30 a b+9 b^{2}} \\
& -30 a b+9 b^{2}
\end{aligned}
$$

Ex. 2. What is the square root of $x^{4}-4 x^{3}+8 x+4$?

$$
\begin{aligned}
& \text { oplration. } \\
& \left.2 x^{4}-2 x\right) \frac{x^{4}-4 x^{3}+8 x+4\left(x^{2}-2 x-2=\right.\text { sq. root. }}{\substack{-4 x^{3}+8 x+4}} \begin{array}{l}
\frac{-4 x^{3}+4 x^{2}}{-4 x^{2}+8 x+4} \\
-4 x-2 x+4
\end{array}
\end{aligned}
$$

Ex. 3. What is the square root of $4 x^{6}+12 x^{6}+5 x^{4}-2 x^{4}+7 x^{4}$,
$-2 x+1$?

[^6]Nors 1.-If the given quantity is not an exsot square, it is an irrational quantity, and of course its oxect eqnare root cannot be extractod.

Norim 2-In the above axamples, and in all others where an even root is antruoted, all the torms of the root may have their signs changed, and tha reaplting axpremion will atill be the root required. (See. Art. 1s1).

Exirgise XLI.

Extract the square roat of :-

1. $4 a^{2}+12 a b+9 b^{2} ;{ }^{8}-4 a x+4 x^{2} ; 4 a^{2} x^{2}-28 a c x+49 c$
2. $9 a^{2} m^{2}+30 a n x y+25 x^{2} y^{2} ; 16 a^{3} x^{4}-8 a b^{2} c^{3} x^{2}+b^{4} c^{6}$.
3. $5 x^{2}+1-6 x+12 x^{3}+4 x^{4}$.
4. $x^{4}-2 x^{2} y^{2}-2 x^{3}+y^{4}+2 y^{2}+1$.
5. $a^{2}+2 a b-2 a c+b^{2}-2 b c+c^{2}$.
6. $12 a^{3}+9 a^{4}+34 a^{2}+20 a+25$.
7. $a^{2}+2 a b+b^{2}+2 a c+2 b c+c^{2}+2 a d+2 b d+2 c d+d^{2}$.
8. $x^{6}-6 x^{6} y+15 x^{4} y^{2}-20 x^{2} y^{8}+16 x^{2} y^{4}-6 x y^{5}+y^{6}$.
9. $a^{4}-8 a^{5} c+24 a^{2} c^{2}-32 a c^{3}+16 c^{4}$.
10. $1-2 y+7 y^{2}-2 y^{8}+5 y^{4}+12 y^{6}+4 y^{6}$.
11. $4 a^{4}+12 a^{3} x+13 a^{8} x^{2}+6 a x^{8}+x^{4}$.
12. $(x-y)^{4}-2\left(x^{2}+y^{2}\right)(x-y)^{2}+2\left(x^{4}+y^{4}\right)$.
13. $a^{4}+b^{4}+c^{4}+d^{4}-2 a^{2}\left(b^{2}+d^{2}\right)-2 b^{2}\left(c^{2}-d^{2}\right)-2 c^{2}\left(d^{2}-a^{2}\right)$.
14. $1+2 \frac{1}{8} x^{2}-\frac{1}{2} x^{5}+\frac{1}{1} x^{6}-\frac{9}{3} x-\frac{7}{8} x^{3}+\frac{7}{6} x^{4}$.
15. $\left(\frac{x}{y}\right)^{2}-y x+4 x^{4}-2+\frac{x^{3}}{y}+\frac{y^{2}}{x^{2}}$.
16. Thioray.-In the arithmetical extraction of the square root, after $\mathrm{n}+1$ figuree of the root have been obtained by the rule, n more may be obtained by dividing the last remainder by the last trial divisor.

Demonemration.-Let N represent the number whose square root is to be extracted; let a represent the part of the root already found, and let x reprement the part of the reot yet to be found.
Then $\sqrt{N}=a+x \therefore N=a^{2}+2 a x+x^{2}$.
$N-a^{2}=$ the remainder after $n+1$ figures have been found, and $2 a$ is the trial divieor.

$$
\text { Then } \frac{N-a^{2}}{2 a}=\frac{2 a x+x^{2}}{2 a}=x+\frac{x^{z}}{2 a} \text {. If now we can how }
$$ that $\frac{x^{8}}{2 a}$ - is a proper fraction, we shall show that the integral part of the quotient of the remainder \div the trial divisor, under the given conditions, constitutes the remaining part of the root. By supposition x contains only n digits, therefore x^{2} cannot contain more than $2 n$ digits, but a by hyyothesis consists of the $n+1$ left hand digits of the root, and must therefore, affixing the n ciphers which are understood, contain $2 m+1$ digits. Hence in the fraction $\frac{x^{2}}{2 a}$ the denominator contains $2 n+1$ digits, while the numerator cannot consist of more than $2 n$ digits, and therefore $\frac{x^{2}}{2 a}-$ is a proper frection, and rejecting it, we get $\frac{N-a^{2}}{2 a}=\dot{x}=$ the remaining digits of the root.

Ex. Find the square root of 12 to 11 places of decimals.
Here we must obtain the first 6 digits by the ordinary rule; this gives us 3.46410 and a rem. 111900, the last trial divisor being 692820 . Then 111800 $\div 692820=16151=$ the remaining five digits of the required roet, which. is therefore $=3 \cdot 4641016151$.

Nors.-If the given quantity be not a complete square, then the approximate square root thus found may possibly differ by a unit of the lowent denomination, from the squaro root carried out to same number of places by the ordinary rule.
CUBE ROOT.
150. In investigating a method for extracting the cube root of a polynomial, we proceed as follows :-
Taking $a+b$ and cubing it, we set $a^{3}+8 a^{2} b+3 a b^{2}+b^{3}$, and we ondeavour to devise some process by which we can evolve from this latter
quantify its known cube root, $a+b$. Having arranged the given oube according to the powers of fith the root, and subtract the product from the part of the given cube remaining.
VIII. Aguin find a triul divisor, as in (iv); divide the lat term of last remainder by the 1st term of this trial divisor, and place the quotient an 3 rd term of the root. Again complete the trial divivor as in vi, by making the two additions there described; multiply the complete divisor by the last tefm put in the root, subtract,-and so on.
152. We may be led to infer this rule for extracting the cube root of a polynomial by reversing the process by which a polynomial is raised to the third power, as may be seen by an attentive examination of the following:-

$$
\begin{aligned}
& (a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{8} . \\
& (a+b+c)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}+3(a+b)^{2} c+3(a+b) c^{2}+c^{3} \\
& (a+b+c+d)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}+3(a+b)^{2} c+3(a+b) c^{2}+c^{3} . \\
& \quad+3(a+b+c)^{2} d+3(a+b+c) d^{3}+d^{3}
\end{aligned}
$$

Whence it appears that :-
The cube of any polynomial is equal to the cube of the first term, plus three times the square of the first term multiplied by the second, plus three times the first term multiplied by the square of the second, plus the cube of the second term, plus three times the square of the sum of the first two terms multiplied by the third, plus three times the sum of the first two terms multiplied by the square of the third, plus the cube of the third term, plus three times the square of the sum of the first three terms multiplied by the fourth, plus three times the sum of the first three terms multiplied by the square of the fourth, plus the cube of the fourth term; and so on.

Ex. 1. Find the cube root of $8 a^{3}-84 a^{2} x+294 a x^{2}-343 x^{3}$.
opiration.

$$
\begin{aligned}
& 8 a^{3}-84 a^{2} x+294 a x^{2}-343 x^{2}(2 a-7 x \\
& 8 a^{3}
\end{aligned}
$$

$3(2 a)^{2}=$	$12 a^{2}$			
$3(2 a)(-7 x)=$	$-42 a x$			
$(-7 x)^{2}=$	$\cdot+49 x^{2}$			
$12 a^{2}-42 a x+49 x^{2}$		$	$	$-84 a^{2} x+294 a x^{2}-348 x^{2}$
:---				
$-84 a^{2} x+294 a x^{2}-343 x^{2}$				

72. 2. What is the cube root of $27 a^{6}-54 a^{6}+63 a^{4}-44 a^{8}$ $+21 a^{2}-6 a+1$?
OP最BATIOE.
$27 a^{6}-54 a^{5}+63 a^{4}-44 a^{3}+21 a^{2}-6 a+1\left(3 a^{3}-2 a+1=500 t\right.$. $27 a^{6}$ $-54 a^{5}+63 a^{4}-44 a^{3}=$ 1st Dividend.

$$
\begin{aligned}
& +63 a^{4}-44 a^{3}+21 a^{2}-6 a+1 \\
& +63 a^{4}-44 a^{3} \\
& +36 a^{4}-8 a^{3} \\
& 27 a^{4}-36 a^{5}+21 a^{2}-6 a+1 \\
& 27 a^{4}-36 a^{8}+21 a^{3}-6 a+1
\end{aligned}
$$

Second Column. $\quad 27 a^{6}-54 a^{5}+63 a^{4}-44 a^{3}+21 a^{2}-6 a+1\left(3 a^{2}-2 a+1\right.$ $\frac{9 a^{4}}{18 a^{4}}$
$\frac{27 a^{4}}{}-18 a^{8}+4 a^{2}$
$\frac{-18 a^{3}+4 a^{2}}{27 a^{4}-1}$
$\frac{-18 a^{3}+8 a^{2}}{27 a^{4}-36 a^{5}+12 a^{8}}$
$\frac{17 a^{2}-6 a+1}{27}-36 a^{3}+21 a^{3}-6 a+1$
$-18 a^{3}+1 a^{2}$
$27 a^{4}$
" II II
$=27 a^{4}-18 a^{3}+4 a^{2}-54 a^{5}+36 a^{4}-8 a^{3}=$ Product of 1st comp. Div. by $-2 a$. $27 a^{4}-36 a^{3}+21 a^{2}-6 a+1=2 n d$ Dividend.

- $271+09 \varepsilon-01 \%=$ $\begin{aligned} \text { 1st trial Divisor } & =3\left(3 a^{2}\right)^{2} \\ \text { 1st Increment } & =3\left(3 a^{2}\right) \times(-2 a) \\ \text { 2nd Increment } & =(-2 a)^{2}\end{aligned}$
1st complete Divisor
2ad complete Divisor
2nd Increment $=\mathbf{1}^{2}$
2en $=27 a^{4}-36 a^{3}+21 a^{2}-6 a+1 \mid 27 a^{4}-36 a^{3}+21 a^{2}-6 a+1=2 d$ comp. Divix+1 $-63 a^{4}-44 a^{3}$
$36 a^{4}-8 a^{3}$
$27 a^{4}-36 a^{3}+21 a^{2}-6 a+1$

Explaxation.-The foregoing is a second method of extricting the cube root, known as Horner's mothed. Upon caroful examination it will be ceon that the same trial divieors and complote divicors are usod as in the other method, but that they are obtained comowhat difibrently. The eaveral atope are as follown:-
lat, Thke the oube root of the firat torm and placa it as firat torm of the root, alco place it to the left of the arranged oube, under the head FYrat Column.
9nd, Multiply the firat term of the firat column by the firet term of the root, and place the product as firat torm of the sooond column; also multiply the first term of the socond oolumn by the firat torm of the root, and place it in the third oolumn, i.e., under the given oube, and subtriot.
Ird, To the firit term of the first column add the first term of the rcot; multiply the sum by the fret term of the root, and place the p:c. duct as the second term of the second column.
4th, Again add to the fret columin the arst term of the root.
6th, Add the first and seoond terms of the cecond column together for a trial divisor. Ascertain how often this goes in the first term of the dividend, and place the quotient ($-2 a$) in the root, and alpo attach it to the $9 a^{8}$ in the first column.
6th, Multiply the $8 a^{2}-2 a$ in the first column by $-2 a$, the Jast term put in the root, and place the product $-18 a^{2}+4 a^{2}$ under the $87 a^{4}$ in the second column and add; this gives $27 a 4-18 x^{3}+4 a^{8}$ for complete divisor.
7th, Multiply the eomplete divisor by -2a, the torm last put in the root, and place the product in the third column.
sth, Subtract and go again through the whole process as before.
Exeroise XLII.
Extract the cube root of each of the following quantities :-

1. $8 x^{3}+36 x^{2}+54 x+27$.
2. $a^{6}-40 a^{3}+6 a^{5}+96 a-64$.
3. $1-6 a+12 a^{2}-8 a^{3}$.
4. $a^{6}-6 a^{5}+15 a^{4}-20 a^{3}+15 a^{2}-6 a+1$.
5. $8 a^{3} x^{3}-84 a^{2} b x^{4}+294 a b^{2} x^{5}-343 b^{4} x^{6}$.
6. $8 x^{6}-36 a x^{5}+102 a^{2} x^{4}-171 a^{3} x^{3}+204 a^{4} x^{2}-144 a^{5} x+64 a^{6}$.
7. $x^{6}-3 x^{5}+6 x^{4}-7 x^{3}+6 x^{2}-3 x+1$.
8. $a^{3}+3 a^{2} b+3 a b^{2}+b^{3}+3(a+b)^{2} c+3(a+b) c^{2}+c^{3}+3(a+b+c)^{2} d$ $43(a+b+c) d^{2}+d^{3}+3(a+b+c+d)^{2} e+3(a+b+c+d) e^{2}+e^{3}$.

Nope. - In Ex. 8 endeavour to keop the quantitien in bracketa, and the labor of extracting the cube coot will be materially lightened.

15 when more diviso

Dan requir sent th
Then
$\boldsymbol{N}-$ and $8 a$
$\frac{N-}{8 a i}$
Now
have p
may ob
By hyp
$n+1$ d
left ham
with rel
therefol
$<\frac{1}{10}$.
Henc

Ex.
Herie
we proc digite th and atr
$=2$
222029292
188. Trmonew. - In the extraction of the cube root of a number when $n+2$ fsures have been found by the ordinary rule, n figures more may be found by dividing the remainder by the last trial divisor.

Dmenerialtiox.-Lot N represent the number whoee oube root is required; let a ropresent the $n+2$ figuree already found, and let x, ropresent the m romaining fisures.

$$
\text { Then } N N=a+x, \therefore N=a^{3}+8 a^{2} x+8 a x^{2}+x^{3}
$$

$N-a^{8}=$ the remainder after $n+2$ figures of the root have beem found, and $8 a^{2}=$ the trial divisor.

$$
\frac{N-a^{2}}{8 a^{2}}=\frac{8 a^{8} x+8 a x^{8}+x^{3}}{8 a^{2}}=x+\frac{x^{8}}{a}+\frac{x^{2}}{8 a^{2}}
$$

Now if we can show that $\frac{x^{2}}{a}+\frac{x^{3}}{2 a^{8}}$ is a proper fraction, we shall have proved that, neglecting the remainder ariong from the divialon, wo may obtain the next n figures of the root by dividing by the trial divisor. By hypothenis x contains only n digite, while it is manifent that 10^{n} contalins $n+1$ digite; hence $x<10^{n}$ and $\therefore x^{8}<10^{2 m}$. And aince a comtelns the lett hand $n+2$ digits of the root, taking into sccount the ponition of these wih reference to the decimal point, a must contain $2 m+2$ fagures. And therefore a is not loes than $10^{2 n+1}$. Hence $\frac{x^{2}}{a}<\frac{10^{2 n}}{\sin +1}$ that b, $\frac{x^{2}}{a}$ $<\frac{1}{10}$. Similariy $\frac{x^{3}}{3 a^{8}}<\frac{10^{8 n}}{8 \times 10^{4 n+2}}$, that is $<\frac{1}{8 \times 10^{n+2}}$ Hence $\frac{x^{2}}{a}+\frac{x^{3}}{8 a^{2}}<1^{1} s+\frac{1}{3 \times 10^{n+2}}$ and $\therefore<$ unity.

Ex. Required the cube root of $\cdot 10973936866941015122085048$.
Here aince there are 28^{\prime} figures in the cube there are 9 in the root. and we proceed to obtain the first 5 of these by the ordinary rule. The tive digits thus obtained are 22822, with a remainder 829181895015122005048 , and a trial divisor 148145185200. Then $329181898015122085048 \div 148145185200$ $=2{ }_{2} 2 \boldsymbol{z}+$ remaining four digits of the root, which is theretore $=$ 222223292.

AXTRAOTION OF ROOTS IN GENERAL.

154. By observing the mode of writing the square, cube, tro of polynomials, we can deduce the following general We for the extraction of any root of a polynomial:

RoLs.

I. Arrange the given polynomial according to a letter of reference.
II. Extract the required root of the frat term, this will be the first term of the root.
III. Subtract the powor of this firat term of the root from the - given polynomial.
IV. Divide the first term of the remainder by twice the first term of the root for the square root, three times its square for the cube root, four times its cube for the fourth root, five times its fourth power for the fifth root, and so on ; the quotient will be the second term of the root.
V. Involve the whole of the root now found to the specified power, and subtract it from the given polynomial.
VI. Divide the lat. term of the remainder by the same divioor as bafore, and the quotient will be the third term of the root. Again involve the whole of the root now found to the speci'fled power: subtract, and so on.
Norm, -It in mailifent that the rule verifor ittolf.
Ex. What is the fourth root of $16 x^{8}-32 x^{7}+88 x^{6}-104 x^{n}$ $+145 x^{4}-104 x^{2}+88 x^{2}-32 x+16$?

OPIRATIOK.

$$
\begin{aligned}
& \left(\operatorname{root}=2 x^{2}-x+2\right) \\
& 16 x^{8}-38 x^{7}+88 x^{6}-104 x^{6}+145 x^{4}-104 x^{8}+88 x^{2}-32 x+16 \\
& \left(2 x^{2}\right)^{4}=16 x^{8} \\
& \left.32 x^{6}\right) \quad-32 x^{7}=1 \text { st term. of rem. } \\
& \left(2 x^{8}-x\right)^{4}=16 x^{8}-32 x^{7}+24 x^{6}-8 x^{6}+x^{4} \text {. } \\
& \text { 32x }{ }^{6} \text {) } 64 x^{6}=1 \text { st term. of rem. } \\
& \left(2 x^{2}-x+2\right)^{4}=16 x^{8}-32 x^{7}+88 x^{6}-104 x^{5}+145 x^{4}-104 x^{3}+88 x^{5}-32 x+16 \\
& \text { Rem. }=0 \text {. Hence } 2 x^{2}-x+2 \text { is the fourth root required. }
\end{aligned}
$$

165. It has been stated (Art. 17) that when a fraotional index is employed, the numerator of the fractext
denote cates 1 a nega of der expone

Thus,
158.
then \mathbf{a}^{mm}
Dexo
$\times a \times a$
Ther
to $n \mathrm{fac}$
$=\boldsymbol{a} \times$
157. then (${ }^{1}$

Dimo
a^{m+m+n}
$\left(a^{n}\right)^{m}$
$=a^{n m}$.
But m $=a^{m n} \therefore$
158. mith root root of a
denotes the power to be taken, and the denominator indicates the root to be oxtracted. We have now to add that a negative exponent is sometimes employed for the purpose of denoting the reciprocal of a quantity with the same exponent taken positively.
Thus, a^{-m} is uneod to denote $\frac{1}{a^{m}}$ whether m be fraotional or integral.
156. Thsorim I. If m and n be any positive inlfgral qaamtitiea, then $\mathbf{a}^{\mathrm{mI}} \times \mathrm{a}^{\mathrm{n}}=\mathrm{a}^{\mathrm{II} \mathrm{\prime}}+\mathrm{n}$.

Demonatratiou. $a^{m}=a \times a \times a \ldots$ to m factors, and $a^{n}=a$ $\times a \times a \ldots$ to n factors.

Therefore $a^{m} \times \boldsymbol{a}^{m}=a \times a \times a \ldots$ to m factors $\times a \times a \times a \ldots$ to n factors.
$=a \times a \ldots$ to $m+n$ factors $-a^{m+n}$, which was to be proved.
157. Triormy II. If m and n be any positive integral quantities, then $\left(a^{m}\right)^{n}=a^{m n}=\left(a^{n}\right)^{m}$.

Dixomatration. $\left(a^{m}\right)^{n}=a^{m} \times a^{m} \times a^{m} \ldots .$. to u factors $=$ $a^{m+m+m} \ldots \ldots$ is n^{n} worms $=a^{m n}$.
$\left(a^{n}\right)^{m}=a^{n} \times a^{n} \times a^{n} \ldots$ to m factors $=a^{n+n+n} \ldots$. to m verad $=a^{m m}$.

But $m n=n m \therefore a^{m n}=a^{n m}$, and since $\left(a^{n}\right)^{m}$ and $\left(a^{m}\right)^{n}$ are each $=a^{m n} \therefore\left(a^{m}\right)^{n}=a^{m n}=\left(a^{n}\right)^{m}$ which was to be proved.
158. Trioamx III. If m and n be any positive integere, then the mth root of the nth power of a is equal to the nth power of the m th root of a. That $i s, V\left(a^{n}\right)=(V a)^{n}$.

Panomaraction. Let $\nabla^{\left(a^{n}\right)}=x^{n}$; raising both to the m th power $n\left(x^{1}\right)^{n}=\left(x^{n}\right)^{m}=\left(x^{m}\right)^{n}$ by the preceding iheorem.
Astrinating the nth root of each of these we get $a=x^{m}$; and extrecting the m th root of each of these we get $\forall a=x$; and tintitimity each of these to the nth power wo have (va $)^{n}=x^{n}$. But $\left(\underset{\sim}{ }=x^{n} \therefore \eta\left(a^{n}\right)=\left(V^{n}\right)^{n}\right.$, which was to be proved.
159. Theorse IV. Both numerator and denominutor of a fractional exponent may be multiplied by the same quantity without altering the value of the whole expression, of which it forms part.

Demonstration. Let $a^{\frac{m}{n}}=x$. Then $a^{m}=x^{n}$; also $a^{m r}=x^{n r}$.
Therefore extracting the $n r$ th root of each, $a^{\frac{m r}{n r}}=x$; but $a^{\frac{\pi}{n}}$ $=x$.
Therefore $a^{\frac{m}{m}}=a^{\frac{m r}{r}}$, which was to be proved.
160. Theorem V. If $\frac{\pi}{4}$ and $\frac{\text { are any positive fractional quan- }}{}$ tities, then $a^{\frac{m}{2}} \times a^{\frac{\pi}{2}}=a^{\frac{m}{a}+\frac{\pi}{1}}$.

Demonstration. By last theorem $a^{\frac{a m}{n}}=a^{\frac{m t}{n r}}$ and $\cdot \dot{a}^{\frac{r}{t}}=a^{\frac{n r}{n}}$.
Therefore $a^{\frac{m}{n}} \times a^{\frac{r}{r}}=a^{\frac{m i t}{n t}} \times a^{\frac{n r}{n t}}$
$a^{\frac{m}{n+1}}=\left(a^{m r}\right)^{\frac{1}{n-}}$ and also $a^{\frac{n r}{n+}}=\left(a^{n r}\right)^{\frac{1}{n+1}}$.
Therefore $a^{\frac{m}{n}} \times a^{\frac{r}{s}}=a^{\frac{m r}{n+1}} \times a^{\frac{n r}{n+}}=\left(a^{n v}\right)^{\frac{1}{n}} \times\left(a^{n r}\right)^{\frac{1}{n-1}}=\left(a^{n-r} \times a^{n r}\right)^{\frac{1}{n_{n}}}$ $=\left(a^{\left.m_{0}+n r\right)^{n_{s}}}=a^{\frac{m+n r}{n_{s}}}=a^{\frac{m s}{\bar{s}}+\frac{n_{r}}{n_{s}}}=a^{\frac{m}{n}}+{ }^{r}\right.$, which was to be proved. 164. T

Corollary. Similarly it may be proved that $a^{\frac{m}{n}} \div a^{\frac{r}{i}}=a^{\frac{m}{n}}-\frac{\square}{4}$. 101. Thmoram VI. $\left(a^{\frac{m}{n}}\right)=a^{\frac{m r}{n_{e}}}$.

Deyonstration. Let $\left(a^{\bar{n}} \cdot\right)^{r}=x$, then $\left(a^{\frac{m}{n}}\right)^{r}=x^{r}$, that is (Art. 157), $a^{n r}=x^{s}$. Therefore $a^{m r}=x^{n r}$, and therefore extracting the nsth root of each, $a^{\frac{m r}{n+}}=x$, but $\left(a^{\frac{m}{n}}\right)^{n}=x \therefore\left(a^{\frac{m}{n}}\right)^{r}=$ $a^{-\frac{m r}{n n}}$, which was to be proved.
102. Thiorin VII. $a^{m} \times a^{n}=a^{m+n}$ When m or n, or both m and n are negative quantities.
f a fracy without rms part.
mal quan.

$$
=a^{\frac{n r}{n}} .
$$

pe proved. $=a^{\frac{m}{n}}$
, that is wextract$\left(\frac{m}{a^{n}}\right)^{\frac{r}{2}}=$
r both m

Dmonstration. First, let either one of the exponenis, as for instance n, be a negative quantity.
Then $a^{m} \times a^{n}=a^{m} \times a^{-n}=a^{m} \times \frac{1}{a^{n}}=\frac{a^{m}}{a^{n}}=a^{m-n}=a^{m+(-n)}$.
Next let both m and n be negative quantities.
Then $a^{m} \times a^{n}=a^{-m} \times a^{-n}=\frac{1}{a^{m}} \times \frac{1}{a^{n}}=\frac{1}{a^{m}+n}=a^{-m-n}$ $=a^{-m+}(-n)$, which was to be proved.
163. Thiorge VIII. $\left(a^{m}\right)^{n}=a^{m n}$ when m or n or both m and n are negative quantities.
Dexonstration. First, let n be negative, then $\left(a^{m}\right)^{n}=\left(a^{m}\right)^{-n}$ $=\frac{1}{\left(a^{m}\right)^{n}}=\frac{1}{a^{m n}}=a^{-m n}=a^{m \times(-n)}$.
Second, let m be negative.
Then $\left(a^{m}\right)^{n}=\left(a^{-m}\right)^{n}=\left(\frac{1}{a^{m}}\right)^{n}=\frac{1}{a^{m n}}=a^{-m n}=a^{-m \times n}$.
Third, let both m and n be negative.
Then $\left(a^{m}\right)^{n}=\left(a^{-m}\right)^{-n}=\frac{1}{\left(a^{-m}\right)^{n}}=\frac{1}{a^{-m n}}$ (by second part of demonstration $)=a^{m n}=a-m \times\{-n)$, which was to be proved.
184. Thiorna IX. $a^{n} \times b^{n}=(a b)^{n}$.

Dinonstaltion. Let $a^{n} \times b^{n}=x$, then $\left(a^{n} \times b^{n}\right)^{\frac{1}{n}}=x^{\frac{1}{n}}$.
that is, $a \times b^{-}=x^{h}$ or $a b=x^{\frac{1}{n}} \therefore(a b)^{n}=x$.
But $a^{n} \times b^{n}=x$. Therefore also $a^{n} \times b^{n}=(a b)^{n}$.
 conversely $(a b)^{\frac{1}{n}}=a^{\frac{1}{n}} \times b^{\frac{1}{n}}$.
165. Thzoray X. Any factor may be transferred from one têrm of a fraction to the other by changing the sign of its exponient.
Denometrition. $\frac{a^{m}}{b^{n}}=\frac{a^{m}}{b^{n}} \times \frac{b^{-n}}{b^{-n}}=\frac{a^{m} \times b^{-n}}{b^{m} \times b^{-n}}=\frac{a^{m} b^{-n}}{b^{n}-n}$ $=\frac{a^{m} b-n}{a^{b}}=\frac{a^{m} b^{-n}}{1}$.
$2 \min _{1} \frac{a^{m}}{b^{n}}=\frac{a^{m}}{b^{n}} \times \frac{a^{-m}}{a^{-m}}=\frac{a^{m} \times a^{-m}}{b^{n} \times a^{-m}}=\frac{a^{m-m}}{b^{n} a^{-m}}=\frac{a^{0}}{b^{n} a^{-m}}$
$=\frac{1}{b^{n} n-m^{2}}$ which was to be proved.
166. By these Theorems it has been proved that whether m. and n are positive or negative, integral or fractional,

$$
\begin{aligned}
& a^{m} \times a^{n}=a^{m+n} ; a^{m} \div a^{n}=\frac{a^{m}}{a^{n}}=a^{m} \times \frac{1}{a^{n}}=a^{m} \times a^{-n}=a^{m-n} \\
& \left(a^{m}\right)^{n}=a^{m n}=\left(a^{n}\right)^{m} ; a^{\frac{m}{n}}=a^{\frac{m a}{n e}} ; a^{n} \times b^{n}=(a b)^{n} ; a^{\frac{1}{n}} \times b^{\frac{1}{n}}=(a b)^{\frac{1}{n}} \\
& (a b)^{n}=a^{n} \times b^{n} ;(a b)^{\frac{1}{n}}=a^{\frac{1}{n}} \times b^{\frac{1}{n}} ; \frac{a^{m}}{b^{n}}=\frac{1}{a^{-m} b^{n}}=\frac{b^{-n}}{a^{-m}}=a^{m} b^{-n}
\end{aligned}
$$

That is :-
(I) Powers of the same quantity are multiplied together by adding their indices.
(II) One power of a quantity is divided by another power of the same by subtracting the index of the divisor from that of the dividend.
(III)' A power of a given power, or a root of a root, is obtained by multiplying together the two indices.
(IV) Powers having unlike fractional indices may be reduced to equivalent exprecsions having fractional indices with a common denominator.
(V) A factor may be removed from one term of a fraction to the other by changing the sign of its exponent.
(VI) The product of the same root or power of twoo or more dissimilar quantities is equivalent to the same root or power of their product, and vice vered:

Illogtrativa Examplas.

Eix. 1. $\frac{4 m}{6 \sqrt{a}}=\frac{4 m}{6 a^{\frac{1}{2}}}=8 m a^{-\frac{1}{2}}$, or $\frac{4 m}{6 \sqrt{a}}=\frac{4}{6 m^{-1} \sqrt{a}}$.
18. 2. $\frac{\left.3 \sqrt[3]{\left(a b^{2}\right.} c^{4}\right)}{5 \sqrt{\left(m n^{5}\right)}}=\frac{3\left(a b^{2} c^{4}\right)^{\frac{1}{3}}}{5\left(m n^{8}\right)^{\frac{1}{2}}}=\frac{3 a^{\frac{1}{3}} b^{\frac{3}{3}} c^{\frac{4}{3}}}{6 m^{\frac{1}{2}} n^{\frac{3}{3}}}=\frac{3}{5} a^{\frac{1}{4}} b^{\frac{8}{4}} c^{\frac{1}{3}} n^{-\frac{1}{8}}$

$$
=\frac{3}{8 a^{-\frac{1}{3}} b^{-3} c^{-\frac{1}{3}} m^{\frac{1}{2}} n^{\frac{2}{2}}}
$$

Ex. 3. $\frac{a^{-\frac{3}{4}} b^{-\frac{5}{4}}}{m^{\frac{1}{\frac{1}{2}} c^{-1}}}=\frac{m^{\frac{1}{4}} c^{\frac{2}{2}}}{a^{\frac{3}{3} b^{\frac{5}{2}}}}=\frac{\left(m c^{2}\right)^{\frac{1}{2}}}{\left(a^{3} b^{5}\right)^{\frac{1}{4}}}=\frac{\sqrt{ }\left(m c^{2}\right)}{\sqrt[3]{\left(a^{8} b^{5}\right)}}$.
Ex. 4. $a^{-8} \times a^{-3}=a^{-5} ; a^{-3} \times a^{4}=a ; a^{-7} \times a^{3}=a^{-4} ; \dot{a}^{8} \times a^{-4}$. $=a^{4}$.
Ex. 5. $a^{\frac{1}{3}} \times a^{\frac{3}{7}}=a^{\frac{2}{4}+\frac{7}{4}}=a^{\frac{8}{18}}+\frac{1^{2} 8}{}=a^{\frac{17}{2}} ; a^{\frac{2}{2}} \times a^{-\frac{2}{8}}=a^{\frac{2}{2}}+\left(-\frac{1}{8}\right)$ $=a^{\frac{9}{5}-\frac{8}{8}}=a^{\frac{19}{5}-\frac{6}{15}}=a^{\frac{1}{6}}$.
Ex. 6. $a^{4}+a^{-2}=a^{4-(-2)}=a^{4+2}=a^{6} ; a^{-3} \div a^{-7}=a^{-8-(-7)}$ $=a^{-3+7}=a^{4}$.
Ex. 7. $a^{\frac{4}{3}} \div a^{\frac{1}{2}}=a^{\frac{4}{2}-\frac{1}{2}}=a^{8-\frac{8}{8}}=a^{\frac{5}{6}} ; a^{\frac{3}{7}} \div a^{-\frac{7}{4}}=a^{7-\left(-\frac{3}{4}\right)}$ $=a^{\frac{3}{7}+\frac{3}{4}}=a^{\frac{33}{8}}$.
Ex. $8\left(a^{2}\right)^{3}=a^{2 \times 3}=a^{6} ;\left(a^{-2}\right)^{2}=a^{-2 \times 2}=a^{-4} ;\left(a^{-3}\right)^{-2}=a^{-8 \times-2}$ $=a^{6} ;\left(a^{\frac{1}{2}}\right)^{-3}=a^{-\frac{1}{3} \times 3}=a^{-1} ;\left(a^{-\frac{1}{4}}\right)^{-7}=a$.
Ex. 9. $\left\{\left(a^{\frac{2}{3}}\right)^{-\frac{1}{2}}\right\}^{-6}=\left(a^{\frac{2}{3} x-\frac{1}{2}}\right)^{-6}=\left(a^{-\frac{1}{3}}\right)^{-6}=a^{-\frac{1}{2} x-6}=a^{\frac{8}{8}}$ $=a^{2}$.
Ex. 10. $1^{1 / 2}\left(a^{8} b^{2} \mathbb{V}\left\{a b c^{4} \sqrt{ }\left(\bar{a} b^{2} c^{3}\right)\right\}\right)^{12}=1^{18}\left(a^{3} b^{2}\left\{a b c^{4}\left(a^{-1} b^{-2} c^{-}\right)^{\left.\frac{1}{2}\right\}}\right\}^{2}\right)^{22}$ $\left.=\left[a^{3} b^{3}\left\{a b c^{4} a^{-\frac{1}{4}} b^{-\frac{2}{4}} c^{-\frac{3}{4}}\right\}^{\frac{1}{3}}\right]\right]^{\frac{2}{3}}-\left(a^{8} b^{2} a^{\frac{1}{2}} b^{\frac{1}{3}} c^{\frac{1}{2}} a^{-\frac{2}{12}} b^{-2^{2}} c^{-1 \frac{1}{1}}\right)+\frac{2}{3}$
 $=\left(a^{39} b^{\frac{98}{8}} c^{\frac{3}{2}}\right)^{+\frac{7}{3}}=\left(a^{39} b^{26} c^{18}\right)^{13}=a^{8} b^{2} c$.
Ex. 11. Divide $a^{3}-a^{\frac{4}{3}}+2 a^{\frac{1}{3}}-2-a^{-\frac{2}{3}}+a^{-8}$ by $a^{\frac{1}{2}}+a^{\frac{4}{3}}-a^{-\frac{1}{3}}$ $-a^{-\frac{3}{2}}$.
operation.
$\left.a^{\frac{1}{4}}+a^{\frac{3}{3}}-a^{-\frac{1}{3}}-a^{-\frac{8}{8}}\right) a^{3}-a^{\frac{4}{2}}+2 a^{\frac{1}{3}}-2-a^{-\frac{2}{3}}+a^{-3}\left(a^{\frac{3}{3}}-a^{\frac{3}{3}}+a^{-\frac{1}{2}}-a^{-\frac{3}{3}}\right.$

$$
\frac{a^{8}+a^{\frac{13}{b^{3}}}-a^{\frac{7}{8}}-1}{-a^{1^{8}}-a^{4}+a^{\frac{7}{4}}}+2 a^{\frac{1}{8}}-1-a^{-\frac{3}{3}}+e^{-8}
$$

$$
-a^{12}-a^{\frac{1}{1}}+a^{\frac{1}{3}}+a^{-\frac{8}{8}}
$$

$$
a^{\frac{7}{6}}-a^{-\frac{8}{8}}+a^{\frac{1}{5}}-1-a^{-\frac{8}{8}}+a^{-8}
$$

$$
\frac{a^{\frac{7}{6}}+a^{\frac{7}{7}}-a^{-\frac{2}{3}}-a^{-7}}{-a^{-\frac{6}{6}}-1+a^{-\frac{17}{7}}+a^{-3}}
$$

$$
-1-a^{-8}+a^{-4}+a
$$

Exiroige XLIII.

1. Express $\sqrt{a} ; \sqrt[V]{ } a^{2} ; \sqrt{ } a^{5} ; \sqrt{ }\left(a b^{3} c^{2}\right) ; \sqrt[V]{ }(a b c)^{4} ; \sqrt[V]{ }\left(a^{2} b c^{10}\right)^{8}$ and $V\left(a^{m} b^{\dagger} c^{c}\right)^{x}$. With fractional indices.
2. Express $a^{\frac{1}{5}} ; b^{\frac{8}{6}} ; c^{\frac{3}{3}} ; a^{\frac{1}{2}} b^{\frac{3}{2}} ;(a b c)^{\frac{1}{6}} ; a^{\frac{3}{3}} b^{\frac{3}{7}} ;\left(a^{6} b^{3} c\right)^{\frac{3}{4}}$; $\left(a^{2} b^{4} c^{6} m^{7}\right)^{\frac{2}{2}}$, and $\left(a^{\frac{1}{r}} b^{\frac{n}{n}} c^{\frac{m}{m}}\right)^{\frac{r}{m}}$ with the radical sign.
3. Express $\frac{2 a}{b m} ; \frac{2}{a} ; \frac{3 a}{m} ; \frac{m^{2}}{a c^{2}} ; \frac{3 a b m}{4 m^{2} c^{3}} ; \frac{2 a^{\frac{3}{3}} m^{\frac{1}{2}}}{6 c \sqrt{m}}$; $\frac{3 a^{\frac{1}{2}} b V\left(c m^{3}\right)}{a^{2} b^{2} \sqrt[2 m]{m}} ; \frac{1}{\sqrt[v\left(a b^{2} c m^{\frac{1}{2}}\right)]{4}}$ and $\frac{a^{\frac{1}{2}} b^{\frac{1}{3}} c^{\frac{1}{4}}}{m^{\frac{1}{2}} b^{\frac{1}{\frac{1}{2}} c^{\frac{1}{4}}}}$ with negative indices, so as to remove all the literal factors into the numerators.
4. Express $2 a ; \frac{b^{2}}{c} ; \frac{3 a m}{\sqrt{ } c} ; \frac{2 a}{3 x^{2} y} ; a b^{2} c^{\frac{1}{3}} ; \frac{3 a x y^{2}}{2 a^{3} \sqrt{m}} ; \frac{4 a c}{3 m x}$ and $\frac{5 \sqrt[V]{ }\left(m n^{2} x^{4}\right)}{\left.3 \sqrt[2]{\left(a b x^{3}\right)}\right)}$ with negative indices so as to remove all the literal fictors into the denominators.
5. Express $a^{-1} ; 2 a^{2} b^{-8} ; \frac{3 a^{3} b^{-3}}{m^{-\frac{2}{3} c^{-7}}} ; \frac{b^{-8}}{m^{-8}} ; \frac{2^{-1} a^{-2} b^{-8}}{3^{-1} c^{-3} m^{-\frac{1}{2}}}$; $\frac{1}{a^{2} b^{-\frac{1}{2}} c^{-\frac{1}{3}} m^{-\frac{3}{4}}} ;\left(\frac{a}{b}\right)^{-\frac{1}{4}} ;\left(\frac{a^{-1}}{b^{-2}}\right)^{-8} ;\left(\frac{1}{a^{-2} b^{-\frac{1}{2}} c}\right)^{-\frac{1}{3}} ;$ and $\left\{\left(\frac{a^{-1}}{b^{-2}}\right)^{-n}\right\}^{-m}$ with positivo indices.
6. Simplify $\left(a^{-8} \times a^{-\frac{2}{2}}\right)^{-8}$ and $\left(a^{\frac{1}{2}} \times a^{-\frac{3}{3}} \times a^{3}\right)^{-\frac{7}{3}}$ and $\left(a^{-8} \times \sqrt{a} \times \sqrt{a} \times \sqrt{a}\right)^{\frac{8}{85}}$.
7. Simplify $\left(\sqrt[y]{ }\left\{\sqrt{ }\left(a^{-y} \times \frac{1}{\sqrt{c}}\right) a c\right\}\right)^{1 y}$ and $\left.\{\sqrt{ }(\sqrt{ } \mid \sqrt{a}\}) \times a d\right\}^{-2}$.
8. Simplify the following expression:
$\left\{\frac{\sqrt[4]{\left(a^{3} \sqrt{ } b^{3}\right)}}{\left\{\left(a^{3}\right)^{\frac{1}{8}} b^{8} c^{4}\right\}^{-1}} \times \frac{a^{3} b^{8} c^{3}}{\left(\left\{(a)^{\frac{3}{4}} b^{6}\right\}^{\frac{1}{4}} c^{6}\right)^{-\frac{1}{2}}} \times\left\{a^{-1} \sqrt[4]{\left.\left.(b)^{-2} \sqrt{\left(c^{-2}\right)}\right)\right\}}\right\}^{\frac{18}{3}}\right.$

$16 x$
18
20
$+63$
whic
expo
Th
surds
10
saril
expor
Tho quant row sorpe os

9. Multuply $a^{\frac{1}{2}}-3 a b^{t}+8 a^{\frac{t}{2}} b-b^{\frac{1}{2}}$ by $a^{t}-8^{\frac{1}{4}}$.
10. Wultiply $a^{2}-a^{\frac{1}{2}} x^{\frac{1}{4}}+x^{\frac{1}{1}}$ by $a^{\frac{2}{4}}+a^{\frac{1}{4}} x^{\frac{1}{4}}+x^{\frac{1}{2}}$.

11. Divide $9 x^{-9} y-4 x^{-7} y^{-1}$ by $-3 x-4 y-2 x-8$.
 $+a^{t} b^{-4}+a^{t} b^{-1}+b^{-4}$.
12. Divide $x^{-2}+x^{-\frac{1}{4}}-1+x^{\frac{5}{5}}+x$ by $x^{-\frac{1}{2}}+x^{\frac{3}{4}}+1$.
13. Square $a^{\frac{7}{2}}-a+a^{\frac{1}{2}}+1-a^{-\frac{1}{2}}-a^{-1}+a^{-1}$.
14. Extract the square root of $a^{\frac{3}{3}}+2 a^{\frac{1}{2}}-1-2 a^{-\frac{1}{3}}+a^{-\frac{1}{2}}$.
15. Extract the equare root of $x^{4}-4 x+10 x^{\frac{3}{2}}-18 x^{3}+19-$ $16 x^{-\frac{1}{1}}+10 x^{-\frac{3}{3}}-4 x^{-1}+x^{-1}$.
16. Extract the cabe root of $x^{-1} y^{2}-3 x^{-\frac{1}{1}} y+3 x^{\frac{1}{3}} y^{-1}-x y^{-1}$.
17. Extract the cube root of $x^{3}-6 x^{\frac{1}{4}} y^{4}+21 x^{\frac{1}{4}} y^{4}-44 x y^{\frac{1}{4}}$ $+63 x^{8} y^{\frac{7}{4}}-54 x^{\frac{7}{4} y^{\frac{8}{6}}+27 y \text {. } . ~ . ~ . ~}$

SURDS.

187. A surd or an irrational quantity, is a quantity which cannot be represented without the aid of a fractionat exponent or the radioal sign.
Thus, $\sqrt{3}, \sqrt{ } a, \sqrt{2}$, Var or $a^{\frac{7}{2}}, \sqrt{ }(a+b)$ or $(a+b)^{\frac{1}{2}}$, dc., aro surds or irrational quantitios.
188. A rational quantity is one which does not necessarily involve the use of a radical sign or a fractional exponent.
That, $a, a_{a}^{b}, 3 a m_{y}\left(a^{3}\right)^{\frac{1}{2}},\left(8 a^{\prime}\right)^{\frac{1}{t}},\left(32 m^{6} x^{10}\right)^{\frac{t}{y}}, \& 0$, are rational quaptities.
LTone 1. The last three of the quantitiee gation above are writton in the sorm of curde, but, the power being anch that the rootindicated in opach

Nors 2. The termer fational and irrational are unod ampiy to oxprese the frot that the quantity has or has not some determinable ratio to unity. Thus, $\sqrt{2}$ is irrational, becouse, since it is equal to $1+$ a decimal, whioh peither repents nor terminates, wo cannot compare it with unity so as to mant it contains unity, or that unity contains it any defnite number of timen.
169. Surds are either entire or mixced. An entive surd is one in which the whole expression is affected by the radical sign or fractional index. A mixed surd is one composed of two or more factors, one of 'which is not affected by the radical sign or fractional index.

Thus, $\sqrt{a b} ; \sqrt{7} ;(a+b-7 c)^{\frac{t}{7}} ;\left(a b^{2} c^{d}\right)^{\frac{7}{7}}$ are entire surds.
$2 b^{\frac{1}{2}} ; 4 \sqrt{5} ; 3(a b)^{\frac{1}{2}} ; 4 \sqrt{27} ; a b\left(a c^{2} x^{s}\right)^{\frac{1}{2}}$ are mixed sards
170. In mixed surds the part not affected by the radical sign or fractional index is called the coefficient of the surd, and the part affected by the radioal 'sign or fractional index is called the surd factor.
171. Surds are either similar or dissimilar. Similar' nurds are such as have, or may be made to have, the same surd factor: all others are dissimilar surds.

Thus, $\sqrt{2}, 7 \sqrt{2},(a+b) \sqrt{2}, \sqrt{8}$, which is equal to $2 \sqrt{2}$, \&c., ard nimilar surds. So also $\sqrt[3]{a b} ; m \sqrt[2]{a b} ;(a+m)(a b)^{\frac{1}{2}}, 17 x(a b)^{\frac{1}{j}}$ and patbt are similar surdis.
172. A surd is said to bo reduced to its simplest form when the surd factor is made as small as possible without putting it in the form of a fraction.
Notr-A quadratio surd is one in whioh the fractional index i is ema ployed; a capio surd is one in which the index $\frac{1}{}$ is employed, to.
178. To express a rational quantity in the form of a murd :-

Rons.-Raise it to the power wotose root the surd expresses; ath place it beneath the radical sign,

Ex. 1. $2 a=(2 a)^{\frac{2}{2}}=\left\{(2 a)^{2}\right\}^{\frac{1}{2}}=\left(4 a^{2}\right)^{\frac{1}{2}}=\dot{V}\left(4 a^{2}\right)$.
E.E. 2. $a^{2} m=\left(a^{2} m\right)^{\frac{1}{3}}=\left(a^{6} m^{3}\right)^{\frac{1}{2}}=\sqrt[V]{ }\left(a^{6} m^{4}\right)$.

- 174. To reduce, mized surd to an entire surd:-

Rous.-Raise the coefficient to the power indicated by the denom' inator of the surdiindex, and place beneath the radical sign the product of this power and the given surd factors.

Ex. 4. $2 \sqrt[17]{7}=\sqrt[3]{8} \times \sqrt[3]{7}=\sqrt[2]{(8 \times 7})=\sqrt[3]{56} ; c^{a^{\frac{1}{3}} m^{\frac{4}{2}}=\sqrt[3]{ } c^{8} \times \sqrt[1]{ }(a m)}$ $=\sqrt[Z]{ }\left(a c^{6} m\right)$.

Ex. 5. $6 a \mathfrak{V}\left(\frac{m}{3 a}\right)=\sqrt[Z]{ }\left(216 a^{j}\right) \times \mathbb{V}\left(\frac{m}{3 a}\right)=\sqrt[Z]{ }\left(216 a^{3} \times \frac{m}{3 a}\right)=$ $\sqrt[V]{ }\left(72 a^{2} m\right)$.
175. To reduce an entire surd to a mised surd :-

Rols.-Resolve the quantity under the radical sign into two factors, one of which is the greatest possible perfect power of the root indicated. Extract the root of this. factor, and place it as coefficient of the remaining surd factor.

Ex. 6. $\sqrt{72}=\sqrt{36 \times \overline{2}}=\sqrt{36} \times \sqrt{2}=6 \sqrt{2} ; \sqrt{20 a^{3}}=\sqrt{4 a^{2} \times 6 a}=$ $2 a \sqrt{5 a}$.

Ex. 7. $\sqrt[3]{135}=\sqrt[3]{27} \times \sqrt[3]{27} \times \sqrt[2]{5}=3 \sqrt[8]{5} ; \sqrt[8]{a^{3} x^{9}-a^{6} x^{5}}=$ $\sqrt[3]{a^{3} x^{3}\left(x^{6}-a^{3}\right)}=a x \sqrt[3]{x^{6}-a^{3}}$.
176. To reduce surds to their simplest form :-

Bolus.-Reduce the entire surd to a mixed surd by last rule, and if the remaining surd factor be fractional, multiply both its numer:rator and denominator by such a quantity as will enable us to emove the latter from under the radical sign.

Ex. 8. $\sqrt[8]{432}=\sqrt[8]{216 \times 2}=\sqrt[3]{216} \times \sqrt[3]{2}=6 \sqrt[3]{2}$.
Ex. 9. $\sqrt{ } \frac{3}{6}=\sqrt{\frac{3 \times 5}{5 \times 5}}=\sqrt{\frac{1}{25}}=\sqrt{\frac{1}{85} \times 16}=\sqrt{\frac{1}{25}} \times \sqrt{25}=\frac{1}{16}$.
 $\cdots \sqrt[8]{\frac{8}{125}} \times \sqrt[3]{150}=\frac{8}{8} \times \frac{8}{8} \times \sqrt[3]{150}=\sqrt[3]{150}$
177. To compare dissimilar surds so as to determine which is the greater:-

RoLs,- If mixed surde, redwce them to entire surds, then reduce their indices to a common denominator, and raise each surd to the power. indicated by the numerator of its surd-index when thus reduced.
Ex. 11. Compare $3 \sqrt[3]{3}, 4 \sqrt{5}$, and $\sqrt[{\sqrt[8]{325}}]{ }$ with one another, that is, $\sqrt[8]{81} ; \sqrt{80}$ and $\sqrt[{\sqrt{325}}]{ }$; that is, $(81)^{\frac{1}{3}},(80)^{\frac{1}{2}}$ and $(325)^{\frac{1}{t}}$, that is, $(81)^{\frac{f}{f}},(80)^{\frac{t}{6}}$ and $(325)^{\frac{d}{d}}$; that is $\left(81^{2}\right)^{\frac{1}{f}} ;\left(80^{0}\right)^{\frac{1}{f}}$ and (325)
that is, $(6561)^{\frac{1}{6}},(512000)^{\frac{1}{6}}$ and $(325)^{\frac{1}{6}}$, whence it is evident that $\mathcal{F} / 5$ is the greatest. and $\sqrt[{\sqrt[2]{325}}]{ }$ is the least.
178. To and or subtract surds :-

RuLs.-Reduce them to the same surd factor, when similar, and then add or subtract their coefficients. Dissimilar surds are unlike guantities, and we can only indicate their addition or subtraction by connecting them by their proper signs.

$$
\text { Fx. 12. } 4 \sqrt{24}+2 \sqrt{54}-\sqrt{6}+3 \sqrt{96}-5 \sqrt{150}
$$

$=8 \sqrt{6}+6 \sqrt{ } 6-\sqrt{6}+12 \sqrt{ } 6-25 \sqrt{ } 6$
$=(8+6+12) \sqrt{ } 6-(1+25) \sqrt{6}=26 \sqrt{ } 6-26 \sqrt{ } 6=0 \sqrt{ } 6=0$.
Fx. $13.3 \sqrt{6}-2 \sqrt{\frac{1}{10}}+\sqrt{5}=3 \sqrt{28}-2 \sqrt{180}+\sqrt{\frac{10}{4}}$
$=\frac{3}{8} \sqrt{10}-\frac{1}{2} \sqrt{10}+\frac{1}{2} \sqrt{10}=\frac{2}{6} \sqrt{10}+\frac{1}{10} \sqrt{10}=\frac{2}{10} \sqrt{10}$.
179. To multiply two or more simple surds:-

Rour.-Reduce them to the same surd index, then multipity the coefficients together for anewo coefficient and the surd factorn together for a new surd factor.

$$
\text { Ex. 14. } 4 \sqrt{7} \times 3 \sqrt{14}=8 \times 4 \times \sqrt{7 \times 14}=12 \sqrt{49 \times 2}=84 \sqrt{2} .
$$

Hx. 15. $2 \sqrt{5} \times 3 \sqrt[3]{2}=2(5)^{\frac{1}{2}} \times 3(2)^{\frac{1}{2}}=2(0)^{\frac{8}{6}} \times 3(2)^{\frac{8}{6}}=2 \sqrt[8]{126}$ $x-38 / 4=6 \sqrt[6]{500}$

180. To divide one simple surd by another :-

Rolen.-Reduce both to the same surd index. Then divide coeffe

Ex. 16. $2 \sqrt{11}+2 \sqrt{5}=1 \sqrt{\sqrt{5}}=2 \sqrt{\frac{51}{85}}=\frac{7}{85}$.
Ex. 17. $(2 \sqrt{2}-3 \sqrt{ } 3+7 \sqrt{5})+5 \sqrt{2}=\frac{2 \sqrt[V]{2}}{8 \sqrt{2}}-\frac{3 \sqrt{3}}{5 \sqrt{2}}+\frac{7 \sqrt{5}}{6 \sqrt{2}}$

181. To find a multiplier whioh shall rationalise a binomial quadratic surd, and hence to rationalize the denominator of a fraction when it oonsists of a binomial quadratio surd.
Rous - Change the connecting sign of the given binomial quado ratic surd, and the resulting expression will be the multiplier roquired.

Eiz. 18. What multiplier will rationalize $2 \sqrt{2}-3 \sqrt{3}$?

$$
\text { Ans. } 2 \sqrt{2}+3 \sqrt{3}
$$

Proor. $(2 \sqrt{2}-8 \sqrt{3}) \times(2 \sqrt{ } 2+3 \sqrt{ } 3)=8-6 \sqrt{ } 6+6 \sqrt{6}-27=$ $8-27=-19$.
Ex. 10. Rationalise the denominator of the fraction $\frac{5 \sqrt{2}-\sqrt{7}}{3 \sqrt{ } 5+\sqrt{ } 6^{\circ}}$ Here the multiplior is $3 \sqrt{5}-\sqrt{6}$.

$$
\text { Then } \begin{aligned}
\frac{6 \sqrt{2}-\sqrt{7}}{3 \sqrt{5}+\sqrt{6}} & =\frac{(6 \sqrt{2}-\sqrt{7})(3 \sqrt{5}-\sqrt{6})}{(3 \sqrt{5}+\sqrt{6})(3 \sqrt{5}-\sqrt{6})} \\
& =\frac{15 \sqrt{10}-3 \sqrt{35}-10 \sqrt{3}+\sqrt{42}}{45-6} .
\end{aligned}
$$

182. To find a multiplier which shall rationalize a trinomial quadratio surd:-
RoLn.- First use as multiplier the given trinomial quadratic surd with one of its connecting signs changed, the result will be a binomial surd which can be rationalized by the last rule.
FI. 20. Rationalize the denominator of $\frac{1}{\sqrt{5-\sqrt{2}+3 \sqrt{3}}}$.

Hore the firat multiplier $=\sqrt{5}-\sqrt{2}-3 \sqrt{3}$ or $\sqrt{5}+\sqrt{2}+3 \sqrt{3}$. Use either, say the former.
Then $\frac{1}{\sqrt{5-\sqrt{2}+3 \sqrt{3}}}=\frac{\sqrt{5}-\sqrt{2}-3 \sqrt{3}}{\{(\sqrt{5}-\sqrt{2})+3 \sqrt{3}\}(\sqrt{5}-\sqrt{2})-3 \sqrt{3}\}}$ $=\frac{\sqrt{5}-\sqrt{2}-3 \sqrt{3}}{(\sqrt{5}-\sqrt{2})^{2}-27}=\frac{\sqrt{6}-\sqrt{2}-3 \sqrt{3}}{(5-2 \sqrt{10}+2)-27}=\frac{\sqrt{5}-\sqrt{2}-3 \sqrt{3}}{-20-2 \sqrt{10}}$
$=\frac{\sqrt{2}-\sqrt{ } 5+3 \sqrt{3}}{20+2 \sqrt{10}}$.
Next multiply both terms of this by $20-2 \sqrt{10}$.

$$
\begin{aligned}
& \text { Then } \frac{\sqrt{2}-\sqrt{6}+3 \sqrt{3}}{20}+2 \sqrt{10}=\frac{(\sqrt{2}-\sqrt{ } 5+3 \sqrt{3})(20-2 \sqrt{10})}{(20+2 \sqrt{10)(20-2 \sqrt{10})}} \\
& \frac{30 \sqrt{2}-24 \sqrt{ } 5+60 \sqrt{3}-6 \sqrt{30}}{400-40}=\frac{6 \sqrt{2}-4 \sqrt{6}+10 \sqrt{3}-\sqrt{30}}{60}
\end{aligned}
$$

Exaroism XLIV.

1. Express $2^{\frac{2}{3}} ; 7^{\frac{3}{2}} ; 2^{\frac{6}{2}} ;(11)^{\frac{7}{3}} ;(3 t)^{-\frac{7}{8}} ; 3^{\frac{2}{2}} ;\left(\sqrt{ } a^{6}\right)^{-\frac{1}{3}}$ as equivalent surds with indices whose numerator is in each cinse $+1$.
2. Reduce $a ; 3 ; 4 \frac{1}{2} ; 2 a ; 3 a^{2} b ; 4 x^{2} y^{3}$, to equivalent surds having indices $\frac{1}{3},-\frac{1}{3}$, and $\frac{1}{2}$.
3. Reduce $\left.a^{2} ; \sqrt{3} ; 2 a^{2} b^{3} ; a c^{3} ; 4\right)^{3} ; 3^{-2} ;\left(1 \frac{1}{4}\right)^{-8}$ and $\left(x^{-1} y^{-2} z^{y}\right)^{-1}$ taequivalent surds. with indices $-\frac{1}{1}$ and $\frac{1}{3}$.
4. Reduce $4 \sqrt{ } 3 ; 5 \sqrt{ } ; 2 \sqrt{31} ; 4 \sqrt{ } a ;\left\{(3)^{\frac{1}{2}} ;\right.$ and $\frac{1}{2}\left(\frac{a^{2}}{b}\right)^{-\frac{2}{3}}$ to entire surds.
b. Reduce $\frac{2}{8}\left(\frac{a b}{3}\right)^{\frac{1}{2}} ; \frac{a}{6}\left(\frac{3}{4}\right)^{\frac{1}{3}} ; \frac{9}{3}(31)^{\frac{1}{3}} ; f\left(\frac{8}{6}\right)^{\frac{2}{3}}$, and a(tb) ${ }^{-\frac{3}{3}}$ to their simplest form.
5. Reduce $3 \sqrt[3]{4} ; 2 \sqrt[2]{a} ; 3\left(\frac{2}{3}\right)^{\frac{1}{3}} ; a(c)^{\frac{1}{4}} ; 2 a\left(\frac{3}{} a^{2}\right)^{-\frac{3}{3}} ; q\left(\frac{3 m}{}\right)^{\frac{2}{b}}$ and $(a m+p q)\left(\frac{a m+p q}{a m-p q}\right)^{-1}$ to entire surds.
6. Reduce $\sqrt[{\sqrt{135}}]{i} \sqrt{162} ; \sqrt{80} ; 7 \sqrt[3]{324} ; 1 \sqrt{7} ; \frac{1}{2}\left(\frac{11 a}{704 \mathrm{~m}^{8}}\right)^{-\frac{1}{6}}$ and $\left(a^{4} m^{6}-a^{6} m^{8}+a^{6} m^{6}\right)^{\frac{1}{2}}$ to their simplest form:
7. Reduce $\sqrt{ }\left(\frac{a b^{2}}{6(a+x)}\right) ; \frac{a}{b} \sqrt{ }\left(\frac{c^{2} m^{2}}{a^{2} n}\right)$ iv $\left(a^{m}+n x\right)$ and $\mathscr{d}\left\{\frac{\left(a^{2} z-\varepsilon^{2}\right)^{2}(b+2)}{c+z}\right\}$ to their almplest forms.
8. Oompare as to thois magnitude $3 \sqrt{2}$ and $3 \sqrt[3]{3} ; 8 \sqrt{2 t}, 2 \sqrt{11}$ and 3 f ?
9. Simplify $w \sqrt{18}+3 \sqrt{32}-\sqrt{2}-1 \sqrt{8}+5 \sqrt{98} ;$ alno $8 \sqrt{2}+\sqrt{60}$ $-\frac{14}{8} \sqrt{15}+\sqrt{8}$.
10. Simplify $\sqrt{28}+\sqrt[1]{81}+2 \sqrt{63}-2 \sqrt[2]{24} ;$ also $9 b^{2}(a t c)^{\frac{1}{2}}+$ $\frac{2}{c}\left(a^{b} c^{2}\right)^{\frac{3}{2}}-c^{4}\left(\frac{a c}{b^{2}}\right)^{\frac{1}{2}}$.

11. Multiply. $6 \sqrt{6}$ by $3 \sqrt{7}$; $3 \sqrt{40}$ by $2 \sqrt{5} ; 7 \sqrt{6}$ by $6 \sqrt{10}$; and $3 \sqrt{6}$ by $4 \sqrt[4]{60}$.
12. Kultipi $\sqrt[16]{16}$ by $\sqrt{8}$; $4 a^{\frac{1}{2}}$ by $7 a^{\frac{1}{2}} ; 2 \sqrt{3}$ by $\sqrt[8]{2}$; and ($\sqrt[2]{ } \times 7 \sqrt{2} / 6$) by $1 \sqrt[1]{ } 6$.
13. Maltiply together $\frac{a x}{b c}$ vax; $\frac{b y}{c d}$ 有by and $\frac{c^{d} d}{a} \sqrt[y]{ } / c z$ also $x-\sqrt{x y}+y$ by $\sqrt{x}+\sqrt{ } y$.
14. Multiply $4 \sqrt{ } 3+3 \sqrt{7}$ by $2 \sqrt{2}-4 \sqrt{5}$; and $2 \sqrt{3}+3 \sqrt{ }$ by $3 \sqrt{2 \overline{1}}-4 \sqrt{3}$.
15. Divide $3 \sqrt{2}$ by $4 \sqrt{3} ; 5 \sqrt{7}$ oy $3 \sqrt{ } ; 2 \sqrt{ }$ b by $\sqrt{8} ;$ and $2 \sqrt{27}$ by $3 \sqrt{3 x}$.
16. Divide $6 \sqrt{12}$ by $3 \sqrt{7} ; 3 \sqrt[1]{4}$ by $2 \sqrt{5} ; 4 \sqrt{1}$ by $3 \sqrt{1}$ and $4 \sqrt{a n}$ by अंब्र.
17. Divido $\sqrt{2}+3 \sqrt{1}$ by $1 \sqrt{1} ; 4 \sqrt{ } 3-6 \sqrt{4}+6 \sqrt{ }$ by $2 \sqrt{3}$; and $\sqrt[5]{b^{6-1} c^{4}}$ by $\sqrt[{\sqrt[a^{3} d^{-1}]{c^{-1} b^{-2}}}]{ }$
18. Rationalize $\sqrt{ } 7+6 ; \sqrt{ } 3-\sqrt{2} ; 4 \sqrt{3}-6 \sqrt{21} ; 3 \sqrt{1}+5 \sqrt{2}$ and of $\sqrt{t}-1 \sqrt{6}$.
19. Rationalize the denominators of $\frac{2}{\sqrt{3}+2 \sqrt{5}} \frac{\sqrt{2}+\sqrt{3}}{2 \sqrt{5}-i 3 \sqrt{6}}$ And $\frac{2 \sqrt{3}+\sqrt{11}}{\sqrt{8}-8 \sqrt{7}}$
20. Retionalise the denominators of $\frac{8}{\sqrt{3-\sqrt{x}}} ; \frac{a \sqrt{m}-m a}{a \sqrt{m}+m \sqrt{a}}$ and $\frac{3+3 \sqrt{3}}{\sqrt{1}-\frac{1}{1} \sqrt{8}}$.
21. Rationalize the denominator of $\frac{\sqrt{x^{3}+x+1}-\sqrt{x^{r}-x-1}}{\sqrt{x^{3}+x+1}+\sqrt{x^{2}-x-1}}$.
22. Rationalize the denominators of $\frac{1}{\sqrt{3}-\sqrt{2}+\sqrt{5}} ; \frac{1-3 \sqrt{2}}{1+3 \sqrt{2}-\sqrt{3}}$ and $\frac{2+3 \sqrt{3}}{1+2 \sqrt{3}-\sqrt{2}}$. THYOREMS.
23. Thmorny I.-The product of two dissimilar quadratic surds cannot be a rational quantity.
Damomarratiox. Let $\sqrt{ } a$ and \sqrt{b} be any two dissimilar aurds. Then $\sqrt{ } a \ddot{\times} \sqrt{ }$ b cannot be equal to r, a rational quantity. For if it be ponsible lot $\sqrt{a} \times \sqrt{b}=\circ$. Then, squaring, we get $a b=r^{2}$ $\therefore \dot{b}=\frac{r^{2}}{a}=\frac{r^{2} a^{2}}{a^{2}}=\frac{r^{2}}{a^{2}} a$. Hence extracting the square root we get $\sqrt{ } b=\frac{r}{a} \sqrt{a}$; that in, \sqrt{b} may be made to have the same surd factor as $\sqrt{ } a$, apd therefore $\sqrt{ } a$ and \sqrt{b} are similar surds (Art. 171), but by hypothesis they are dissimilar, therefore they are both similar and disaimilar, which is impossibie. Hence $\sqrt{a} \times \sqrt{b}$ cannot be equal to a rational quantity.
24. Thiorny II.-A quadratic surd cannot be equal to the sum or difference of a rational quantity and a quadratic surd.
Dmoxspaamion. For if it be possible let $\sqrt{ } a$, a quadratic surd, be equal to the sum or difference of r, a rational quantity, and \sqrt{b}, another quadratic surd, i.e., let $\sqrt{ } a=r \pm \sqrt{ } b$. Then $a=\gamma^{2} \pm 2 r \sqrt{ } b$ $+b \therefore \pm 2 r \sqrt{b}=a-r^{2}-b$ or $\pm \sqrt{b}=\frac{a-r^{b}-b}{2 r}$, that is, a quad-: ratio surd equals a rational quantity, which is impossible from the definition of a surd.
25. Thionax III. $-A$ quadratic surd cannot be equal to the sum or difference of two dissimilar quadratic surds:

Demomistraviox. For if it be possible let $\sqrt{ } a=\sqrt{ } b \pm \sqrt{ } m$ wbsje $\sqrt{ } a, \sqrt{b}$ and $\sqrt{ } m$ ase dissimilar quadratic surds.

Then $a=b \pm 2 \sqrt{b} \times \sqrt{m}+m \therefore \mp 2 \sqrt{b} \times \sqrt{m}=b+m-a$ or $\sqrt{b} \times \sqrt{m}=\frac{b+m-a}{ \pm 2}$.

That is, the product of two dissimilar surde equale a rational quantity, which is impossible by Theor. I.
186. Theorex IV.-In any equation consigting of rational quantities and quadratic surds the rational parts on each side are equal, and 80 also are the quadratic surds.

Demonstration. Let $a+\sqrt{b}=x+\sqrt{y}$, then $a=x$ and $\sqrt{b}=\sqrt{y}$.
For since $a+\sqrt{b}=x+\sqrt{y}$, then $\sqrt{b}=(x-a)+\sqrt{y}$, hence if $x-a$ does not $=0$, that is, if x does not $=a$ then we have $\sqrt{b}=$ the sum of a rational quantity and a surd, which (Theor. II) is impossible. Therefore $x=a$ and consequently $\sqrt{b}=\sqrt{y}$.

Cor. 1. Hence if $a+\sqrt{b}=x+\sqrt{y}$ then also $a-\sqrt{b}=x-\sqrt{y}$.
Cor. 2. Hence also if $a+\sqrt{b}=0$, then $a=0$ and alco $\sqrt{b}=0$, as otherwise we should have $\sqrt{b}=-a, 1 . e$, a anrd $=a$ rational quantity, whioh is impossible,
187. Thorsu ∇. -If the square root of $a+\sqrt{b}=x+\sqrt{y}$, then the square root of $\mathrm{a}-\sqrt{ } \mathrm{b}=x-\sqrt{7} .$. .

Damomstration. Since by hypothesis $\sqrt{ }(a+\sqrt{b})=x+\sqrt{y}$, squaring these equals we get $a+\sqrt{b}=x^{2}+2 x \sqrt{y}+y$, and \therefore. (Theor. IV) $a=x^{2}+y$ and $\sqrt{b}=2 x \sqrt{y}$. Then, subtracting equals from equals, we have $a-\sqrt{b}=x^{2}-2 x \sqrt{ } y+y^{3}$, whence $\sqrt{ }(a-\sqrt{b})$ $=x-\sqrt{y}$.

Cor. Hence if $\sqrt{ }(\sqrt{a}+\sqrt{b})=\sqrt{x}+\sqrt{ } y$, then also $\sqrt{ }(\sqrt{a}-\sqrt{b})$ $=\sqrt{x}-\sqrt{y}$.
188. Suppose it is required to extract the square root of a binomial; one of whose terms is rational and the other a quadratio surd, we may proceed as follows:-
Let the given binomial whose square root is to be extracted be $9+4 \sqrt{b}$, and let $\sqrt{x}+\sqrt{y}=$ the required square root.
Then $\sqrt{ }(9+4 \sqrt{5})=\sqrt{x}+\sqrt{y} \therefore 2+4 \sqrt{5}=x+2 \sqrt{x y}+y$.
Hence (Theor. Iv) $x+y^{\prime}=9$, and $2 \sqrt{x y}=4 / 6$ or $4 x y=80$.
Then $(x+y)^{2}=x^{2}+2 x y+y^{2}=81$, Subtracting the equals
$4 x y$ and 80 from these equals, we get $x^{2}-2 x y+y^{2}=1$, whence $x-y=1$, bat $x+y=9 \therefore 2 x=10$ and $x=6$. 4lvo $2 y=8$ and $y=4$. Honce $\sqrt{x}+\sqrt{y}=\sqrt{5}+\sqrt{4}=\sqrt{5}+\sqrt{8}=$ square root required.
189. Instead. however, of working out the quention thus in full, we can easily deduce a general rule for ex. tracting the square root of certain binomials of the kind alluded to.
Thus, let $a+\sqrt{ } b$ represent the given binomial, and let $\sqrt{ } x+\sqrt{ } y$ F the required square root. Thus we have $\sqrt{ }(a+\sqrt{b})=\sqrt{ } x+\sqrt{y}$; then by Cor. Theor. v_{1} $\sqrt{ }(a-\sqrt{ } b)=\sqrt{ } x-\sqrt{ } y ;$ multiplying equals by equale we get $\sqrt{ }\left(a^{2}-b\right)=x-y$; but by squaring the first equation we get $a+\sqrt{b}=x+2 \sqrt{x y}+y$; therefore by Theor. iv, $x+y=a$, and we have shown that $x-y=\sqrt{ }\left(a^{2}-b\right)$, Hence by addition $2 x=a+\sqrt{ }\left(a^{3}-b\right) \therefore x=1\left\{a+\sqrt{ }\left(a^{2}-b\right)\right\}$, By subtraction $2 y=a-\sqrt{ }\left(a^{2}-b\right) \therefore y=1\left\{a-\sqrt{ }\left(a^{2}-b\right)\right\}$, And sabstitating these values for x and y in the first equation wo got the square root required.

Pix. 1. Find the square robt of $11+6 \sqrt{ } 2$,

operation.

	(
Then $\sqrt{11-6 \sqrt{2}}=\sqrt{x}-\sqrt{y}$	(I)	Theor. V Cor.
$\sqrt{121-72}=x-y$	(III)	= (I) \times (II) ,
$\sqrt{49}=x-y$.	(Iv)	= (III) reduced.
$\therefore x-y=7$	(v)	
$11+6 \sqrt{2}=x+2 \sqrt{x y}+y$	(VI)	= (1) squared.
$\therefore x+y=11$	(viI)	from (vi) by Theor. Iv
But $x-y=7$	(v)	
$\therefore 2 x=18$ and $x=9$	(VIII)	$=(\mathrm{VII})+(\mathrm{V})$.
Also 2y $=4$ and $y=2$	(Ix)	$=(V I I)-(v)$.

Hence $\sqrt{11+6 \sqrt{2}}=\sqrt{ } x+\sqrt{ } y=\sqrt{ } 9+\sqrt{2}=3+\sqrt{2}$.

The

Exanotar XLy.

Find the square roots of :-

1. $6+\sqrt{20}$
2. $12-\sqrt{140}$
3. $32+\sqrt{68}$.
4. $23-2 \sqrt{29}$.
5. $10-\sqrt{96}$.
6. $42+3 \sqrt{1 / 42}$,
7. $2+\sqrt{8}$.
8. $43-15 \sqrt{8}$.
9. $a-2 \sqrt{a-1}$.
10. $2 a+2 \sqrt{a^{2}-b^{2}}$.
$11.8+\sqrt{39}$
11. $\frac{a^{3}}{4}+\frac{1}{1} b \sqrt{a^{3}-b^{3}}$
12. It appears from Art. 189 that when $a^{2}-b$ is not a perfeot square, $\sqrt{ } x$ and \sqrt{y} will be complex surds, and the expression $\sqrt{ } x+\sqrt{ } y$ will be more complex than the given expression $\sqrt{ }(a+\sqrt{ } b)$. Sometimes, however, the square root may be similarly found of a binomial consisting of the sum or differenoe of two quadratic surds, i.e., a binominal both of whose terms are quadratic surds. This is evident from the fact that $\sqrt{a^{2} c} \pm \sqrt{b}$ may, be written $\sqrt{c}\left(a \pm \sqrt{\frac{b}{e}}\right)$, and then, as above, if $a^{2}-\frac{b}{c}$. be a perfeet square, the square root of $a \pm \sqrt{6}$ may be represented by $\sqrt{ } x \pm \sqrt{y}$.

Fx. Brtract the square root of $\sqrt{27}+2 \sqrt{6}$.

OPERATION.

$\sqrt{27}+2 \sqrt{6}=\sqrt{9} \sqrt{3}+2 \sqrt{2} \sqrt{3}=\sqrt{3}(\sqrt{9}+2 \sqrt{2})=\sqrt{3}(3+\sqrt{2})$.
Hence $\sqrt{ }(\sqrt{27}+2 \sqrt{6})=\sqrt{ }\{\sqrt{ } 3(3+2 \sqrt{2})\}=\sqrt[l]{ } 3 \sqrt{3+2 \sqrt{2}}$.
Lot: $\sqrt{3+2 \sqrt{2}}=\sqrt{x}+\sqrt{y}$, then $\sqrt{3-2 \sqrt{2}}=\sqrt{x}-\sqrt{y}$.
And $\sqrt{9-!}=x-y \therefore x-y=1$.
But $3+2 \sqrt{2}=x+2 \sqrt{x y}+y \therefore x+y=3$.
Honce $2 x=4$ and $x=2 ; 2 y=2$ and $y=1$.
Thorefore $\sqrt{3+2 \sqrt{2}}=\sqrt{2}+1$, and $\sqrt[13]{ }(\sqrt{2}+1)=\sqrt[1]{3}(\sqrt{4}+\sqrt{1})$
$=\sqrt{12}+\sqrt{3}$.

Hxazoran XIVI.

Tind tho square roots of:-

$$
1 \sqrt{32}-\sqrt{24} \quad \quad 2 \cdot 3 \sqrt{5}+\sqrt{40}, \quad 3,3 \sqrt{6}+2 \sqrt{12} . \quad \sqrt{10}-4
$$

IMAGINARI QUANTITIES.

191. An imaginary quantity is an expreaion which represents an even root of a negative quantity. (See Art. 142).

Thus, $\sqrt{-1} ; \sqrt{-a} ; \sqrt[y]{-1} ; \sqrt[d]{-a} ; \sqrt[f]{-a}$, do. are imaginary quantities. We can approximate to the value of surd quantities, but we cannot even indicate an approximation to the value of an imaginary quantity, whioh muat therefore be regarded as a purely ajmbolionl expression. Such expreasions, however; often ocour in pratioe, and so far from being useless have lent their aid in the solation of questions requiring the most skillful and delicate analyisie.
102. Imaginary quantities may be added, subtract3d, multiplied, divided, do, like ordinary surds, attention being paid to the few simple prinoiples given in next paragraph.
198. I. Any imaginary quantity may be redaced so as to - involve only the imaginary expression $\sqrt{-1}$; bocause $\sqrt{-a^{2}}$ $=\sqrt{a^{2} x-1}=\sqrt{a^{2}} \sqrt{-1}= \pm a \sqrt{-1}$. So also $\sqrt{-a}=\sqrt{a} \sqrt{-1}$;
II. $(\sqrt{-a})^{8}=-a$, that is $\sqrt{-a} \times \sqrt{-a}=-a$. For though it is true that $\sqrt{-a} \times \sqrt{-a}=\sqrt{-a \times-a}=\sqrt{a^{3}}= \pm a$, we say here that $\sqrt{a^{2}}=-a$ because we know that the a^{2} has arisen from squaring - a. We only use the double sign \pm where we wish to indicate that a^{2} might have arisen from squaring either $+a$ or $-a$.
III. $(\sqrt{-1})^{2}=\sqrt{-1} ;(\sqrt{-1})^{2}=-1 ;(\sqrt{-1})^{2}=(\sqrt{-1})^{2}$ $x \sqrt{-1}=-1 \times \sqrt{-1}=-\sqrt{-1} ;(\sqrt{-1})^{4}=\left\{(\sqrt{-1})^{2}\right\}^{2}=$ $(-1)^{2}=+1$, and, since every whole number may be oxpressed by one of the four expressions $4 n, 4 n+1,4 n+2$, in +3 , according as when divided by 4 it leaves a remainder of $0,1,2$, or 3, and $(\sqrt{-1})^{n+1}=\sqrt{-1} ;(\sqrt{-1})^{m+1}$

$=-1 ;(\sqrt{-1})^{\text {an }^{+8}}=-\sqrt{-1}$ and $(\sqrt{-1})^{\text {an }}=+1$, it fol. lows that the formules $\sqrt{-1},-1,-\sqrt{-1}$, and +1 express all the powers of $\sqrt{-1}$.
IV. $\sqrt{-a} \times \sqrt{-b}=\sqrt{a} \sqrt{-1} \times \sqrt{b} \sqrt{-1}=\sqrt{a b}(\sqrt{-1})^{2}$ $=\sqrt{a b} \times-1=-\sqrt{a b}$.
Ex. 1. The sum of $\sqrt{-8}+\sqrt{-18}=\sqrt{4} \sqrt{-2}+\sqrt{9} \sqrt{-2}=2 \sqrt{-2}$ $+3 \sqrt{-2}=6 \sqrt{-2}$.
Ex. 2. The sum of $3-\sqrt{-61}-(2+\sqrt{-1})=3-\sqrt{6} 4 \sqrt{-1}-2$ $-\sqrt{-1}=3-8 \sqrt{-1}-2-\sqrt{-1}=1-9 \sqrt{-1}$.
Ex. 3. $(2 \sqrt{-2})(3 \sqrt{-3})=(2 \sqrt{2} \sqrt{-1})(3 \sqrt{3} \sqrt{-1})=0 \sqrt{6}(\sqrt{-1})^{3}$ $=(6 \sqrt{ } 6) \times-1=-6 \sqrt{ } 6$.
Rx. 4. $(1+\sqrt{-1})^{2}=1+2 \sqrt{-1}+(\sqrt{-1})^{2}=1+2 \sqrt{-1}-1=2 \sqrt{-1}$
Bx. 6. $(5 \quad \sqrt{-7})(5-\sqrt{-7})=(5)^{2}-(\sqrt{-7})^{2}=25-(-7)=$ $25+7=32$.
IX. $6.2 \sqrt{8}-\sqrt{-10}+-\sqrt{-2}=\frac{2 \sqrt{ } 8}{-\sqrt{-3}}-\frac{\sqrt{-10}}{-\sqrt{-2}}=\frac{2 \sqrt{ }+\sqrt{2}}{-\sqrt{-2}}$
$-\frac{\sqrt{6} \sqrt{-2}}{-\sqrt{-2}}=\frac{\sqrt{ } 2}{-\sqrt{-2}}-\frac{\sqrt{5} \sqrt{-2}}{-\sqrt{-2}}=\frac{-\sqrt{5} \sqrt{-2}}{-\sqrt{-2}}+\frac{4 \sqrt{-2} \sqrt{-1}}{-\sqrt{-2}}$ $=\frac{\sqrt{b}(-\sqrt{-2})}{-\sqrt{-2}}+(4 \sqrt{-1}) \frac{\sqrt{-2}}{-\sqrt{-2}}=\sqrt{5}+4 \sqrt{-1}(-1)=\sqrt{b}-\sqrt{-1}$.
Bx. 7. Find the square root $2+4 \sqrt{-42}$.
Let $\sqrt{2+\sqrt{-42}}=\sqrt{ } x+\sqrt{y}$.
$\sqrt{2-4 \sqrt{-42}}=\sqrt{x}-\sqrt{y}$.
$\sqrt{4-16 x-42}=\sqrt{4+672}=\sqrt{678}=26=x+y$.
Also $2+4 \sqrt{-42}=x+y+2 \sqrt{x y} \quad \therefore 2 \doteq x+y$.
Henco $x=14$ and $y=-13$ and $\sqrt{x}+\sqrt{y}=\sqrt{14}+\sqrt{-12}=$ $\sqrt{14}+2 \sqrt{-3}$.

Exisorse XLVII.

Tind tho value of :-

1. $(\sqrt{-27})-(2 \sqrt{-12})$ and alto of $(a+\sqrt{-b})+(a+\sqrt{-a})$.
1) The rum of $\sqrt{-B_{1}} \sqrt{-7}$ and $\sqrt{-11}$
3. The square root of $7+6 \sqrt{-2 .}$
4. $(4 \sqrt{-3}+7 \sqrt{-2}) \times(4 \sqrt{-3}-7 \sqrt{-2})$.
5. The square of $(\sqrt{-2}-3 \sqrt{-3})$:
B. $\frac{1}{\sqrt{2}+\sqrt{-5}}$ with denominator rationalized.
6. $(a \sqrt{-1})^{128} ;(\sqrt{-1})^{72} ;(\sqrt{-1})^{77}$, and $(\sqrt{-1})^{26}$ 。
7. The square of $(a-\sqrt{-a})$.
\times 9. The cube of $\sqrt{2}-\sqrt{-4}$.
8. The square root of $-2-2 \sqrt{-15}$.

- 11. The iquare root of $\sqrt{-1}$ and of $-\sqrt{-1}$.

12. The square root of $31+42 \sqrt{-2}$.
13. $(4+\sqrt{-2})$ divided by $(2-\sqrt{-2})$.
14. $14-\sqrt{15}-(7 \sqrt{3}+2 \sqrt{5}) \sqrt{-1}$ divided by $7-\sqrt{-5 i}$
15. $(a+b \sqrt{-1})$ multiplied by $(a-b \sqrt{-1})$.

SECTION IX.

QUADRATIO EQUATIONS.

104. A quadratic equation is one which involves the second poiver of the unknown quantity, but no higher power than the second.

Roms-Quadrutio equations, like oquations of the first degree, may in. valive only one unknown quantity, or they may involve two or more tuknown quantities. In the latter came thoy are called cimultaneous quadi ratic equations.
195. Quadratic equations are of two kinds:-
I. Pure Quadratic Equations; and
II. Adfected Quadratic Equations.
108. A. Pure Quadratic Equation is one which involves, when reduced, only the mecond power lof the unknown quantity.

[^7]
Thus, $x^{2}=a ; x^{4}=9 ; x^{\frac{9}{3}}=\left(x^{\frac{1}{y}}\right)^{2}=16 ; x^{\frac{18}{28}}=x^{\frac{8}{b}}=\left(x^{b}\right)^{2}=4 ;$ $u x^{2}+b=c x^{2}-m$, \&c., are pare quadratios.
197. An Adfected Quadratic Equation is one which involves the first powar as well as the second power of the unknown quantity.

Thus, $x^{2}+6 x=24 ; a x^{2}-b x=c, 4 x^{2}+3 x=2 x-x^{3}+a$, \&cig are adfected quadratic equations.
198. Any equation may be solved as a quadratic if, When reduced by transposition, \&o., the unknown quantity appears in but two terms and its exponent in one, is double that in the other. Thus $x^{\frac{1}{8}}+x^{\frac{1}{16}}=3, x-5 \sqrt{x}=50$; $\sqrt{x}+3 \sqrt[4]{x}=9, x^{4}-2 x^{2}=8$, \&co., may be solved as quadratics, but they are not properly speaking quadratio equations.
199. Equations involving surds are generally capable of being solved only by the methods employed for quadratic equations, but they are frequently reducible to simple equations by the following:-

Row. - Arrange the surd terms on one or both sides of the equas tion, as appears most convenient ; square both sides of the equation; transpose and reduce; again square if necessary, and so on.
Ex. 1. Given $\sqrt{7+\sqrt{6+\sqrt{x}}}=3$ to find the value of x.

> opiration.

$$
\begin{align*}
& \begin{array}{ll|l}
\sqrt{7+\sqrt{6+\sqrt{x}}}=3 & \text { (I) } & \\
7+\sqrt{6+\sqrt{x}}=9 & \text { (II) } & \text { (I) squared. }
\end{array} \\
& \sqrt{6+\sqrt{x}}=2 \tag{III}\\
& \text { (IV) }=\text { (III) squared. } \\
& \text { (r) = (Iv) transposed and redtucedi } \\
& \sqrt{x}=-2 \\
& \text { ((} \mathbf{V} \text {) squared. }
\end{align*}
$$

Fx. 2. Given $\sqrt{ }\left\{x+2 \sqrt{ }\left(a x+a^{2}\right)\right\}-\sqrt{x}=\sqrt{a}$ to find the valuo of x.

OREBA年0M.

$\sqrt{ }\left\{x+2 \sqrt{ }\left(a x+a^{2}\right)\right\}-\sqrt{x}=\sqrt{ } a$.	
$\sqrt{ }\left\{x+2 \sqrt{\left(a x+a^{2}\right)}\right\}=\sqrt{a}+\sqrt{x}$	(II)	= (1) transposed.
$x+2 \sqrt{ }\left(a x+a^{5}\right)=a+2 \sqrt{a x}+x$	(III)	= (II) squared.
$2 \sqrt{ }\left(a x+a^{2}\right)=a+2 \sqrt{a x}$	(iv)	= (III) trangposed.
$4 a x+4 a^{3}=a^{3}+4 a \sqrt{a x}+4 a x$	(v)	= (Iv) squared.
$4 \sqrt{a x}=3 a$	(VI)	$=(v)$ transp. and then $\div a$.
(1) $16 a x=9 a^{2}$	(VII)	= (vi) squared.
	(viis)	= (va) $\div a$ and then $\div 16$.

Bx. 3. Given $\sqrt[w]{a+x_{1}}=\sqrt[2]{x^{2}+b a x+b^{2}}$ to find the value of x.
opyration.

Mx. 4. Given $\frac{\sqrt{9 x}-4}{\sqrt{x+2}}=\frac{15+\sqrt{0 x}}{\sqrt{x+40}}$ to find the value of x.
$a^{4}+2 a c+x^{3}=x^{2}+5 a x+b^{2}$ $3 a x=a^{3}-b^{2}$
$x=\frac{a^{2}-b^{2}}{8 a}$
(V) $=$ (IV) $\div 3 a_{0}$

Nors.-The young atrudent in Algebra is cometimes at a lom to know Why the double sign i is not alco prefized to the letthand member, aince oxtreoting the equare root of cmol alde doen rollly give $\pm x= \pm a$ instead of x $= \pm a$. The former of thewe expreadonis it, however, emily sducible to the latter. Thus, if $\pm x= \pm a$, then $+z=+\cdots$ or $+x=-a$, or $-x=$ $+a$, or $-x=-a$, but the lant two of these expreobions are equivalent to the first two transpoced. So that on the whole $x=a$ or $x=-a$, thint is, $x= \pm a$. It appears from this that whon we extract the equare root of the two members of an equatton it is sufficient to put the double sign before the root of one of the members.

TEx. 2. Given $4 x^{2}+11=x^{2}+14$, to find the values of x.
OPHRATIOM.

$$
\begin{array}{c|l}
4 x^{3}+11=x^{2}+14 & \text { (I) } \tag{I}\\
3 x^{2}=3 & \text { (I) } \\
x^{2}=1 & =\text { (I) transposed and collected. } \\
x= \pm 1 & \text { (iiv) } \\
\text { (iv) } & =\text { (II) } \div 3 . \\
=\text { (II) with } \sqrt{ } \text { of each member taken. }
\end{array}
$$

Bx. 3. Given $3 x^{2}-4=\frac{x^{4}+2}{6 x^{0}}$ to find the values of x.
oparation.

$$
\left.\begin{aligned}
x^{4}-4=\frac{x^{4}+2}{5 x^{0}} \\
15 x^{2}-20=x^{2}+2
\end{aligned}\left|\begin{array}{l}
\text { (I) } \\
14 x^{2}=22 \\
x^{2}=4
\end{array}\right| \begin{aligned}
& \text { (III) } \\
& \text { (IV) }
\end{aligned} \right\rvert\,=\begin{aligned}
& \text { (i) } \times 8 x^{0}, \text { i. e. } \times 5 \text { since } x^{0}=1 \\
& \text { (II) transposed. } \div 14
\end{aligned}
$$

5x. 4. Given $x+\sqrt{a^{2}+x^{2}}=\frac{2 a^{2}}{\sqrt{a^{2}+x^{2}}}$ to find the values of x. OPERATION.

$$
\begin{aligned}
& x+\sqrt{a^{3}+x^{2}}=\frac{2 a^{2}}{\sqrt{a^{2}+x^{2}}} \text { (1) } \\
& x \sqrt{a^{3}+x^{2}}+a^{2}+x^{2}=2 a^{2} \\
& x \sqrt{a^{3}+x^{2}}=a^{2}-x^{2} \\
& a^{2} x^{2}+x^{4}=a^{4}-2 a^{2} x^{2}+x^{4} \\
& 3 a^{2} x^{3}=a^{4} \\
& x^{2}=\frac{a^{2}}{3} \\
& x= \pm a \sqrt{t}= \pm a \sqrt{8}= \pm t a \sqrt{2} .
\end{aligned}
$$

EX. 5. Given $\frac{\sqrt{a^{2}-x^{2}}-\sqrt{c^{3}+x^{2}}}{\sqrt{a^{2}-x^{2}}-\sqrt{c^{3}+x^{2}}}=\frac{b}{d}$ to find the value of x. opizatiox.

$$
\begin{aligned}
& \frac{\sqrt{a^{2}-x^{2}}-\sqrt{c^{2}+x^{2}}}{\sqrt{a^{2}-x^{2}}-\sqrt{c^{2}+x^{2}}}=\frac{b}{d} \\
& \frac{2 \sqrt{a^{2}-x^{2}}}{-2 \sqrt{c^{2}+x^{2}}}=\frac{b+d}{b-d}
\end{aligned}
$$

(1)
(II) $=$ (1) taken as in Art. 106 (vu).

$$
(\mathrm{II})=(\mathrm{I}) \text { taken as in Art. } 106 \text { (vu). }
$$

$$
\frac{a^{2}-x^{2}}{c^{3}+x^{2}}=\frac{(b+d)^{2}}{(b-d)^{2}}
$$

$$
(\mathrm{II}) \mid=(\mathrm{II}) \text { cancelled and then squared. }
$$

(iin) $=($ (il cancelled and then squared.

$$
\frac{a^{3^{2}}-x^{2}}{a^{2}+c^{2}}=\frac{(b+d)^{2}}{2\left(b^{2}+d^{2}\right)}
$$

$$
\text { (IV) }=\text { (III) taken as in Art. } 106 \text { (VIII). }
$$

$$
a^{2}-x^{2}=\frac{(b+d)^{2}}{2\left(b^{2}+d^{2}\right)^{2}}\left(a^{2}+c^{2}\right)
$$

$$
|(v)|=(\mathrm{Iv}) \times\left(a^{2}+c^{2}\right)
$$

$$
x^{2}=a^{2}-\frac{(b+d)^{2}}{2\left(b^{2}+d^{2}\right)}\left(a^{2}+c^{2}\right)=\frac{2 a^{2}\left(b^{2}+d^{2}\right)-(b+d)^{2} a^{2}-(b+d)^{2} c^{2}}{2\left(b^{2}+d^{2}\right)}
$$

$$
=\frac{a^{2}\left(2 b^{2}+2 d^{2}-b^{2}+2 b d-d^{2}\right)-c^{2}(b+d)^{2}}{2\left(b^{2}+d^{2}\right)}=\frac{a^{2}\left(b^{2}-2 b d+d^{2}\right)-c^{2}(b+d)^{2}}{2\left(b^{2}+d^{2}\right)}
$$

$$
=\frac{a^{2}(b-d)^{2}-c^{3}(b+d)^{2}}{2\left(b^{2}+d^{2}\right)}
$$

$=\frac{a^{2}(b-d)^{2}-c^{2}(b+d)^{2}}{2\left(b^{2}+d^{2}\right)}$
Nores.- In equations of the form of Ex . 5 , in which the unknown quantity doee not enter into both sides, the prindiples deduced in A ts 106 may be used with much advantage, as is here illustrated.

Exemaism XLIX.

Find the values of x in the following equations:-

1. $2 x^{2}-6=x^{2}+3$.
2. $\frac{9}{2+2 x}+\frac{9}{2-2 x}=25$.
3. $\frac{2 x}{3}=\frac{x^{2}+3}{2 x}$
4. $4 x^{2}-8 x^{0}=1$.
5. $3(x+6)^{2}-7 x=23 x$.
6. $\frac{10 x^{2}+17}{18}-\frac{5 x^{2}-4}{9}=\frac{12 x^{2}+2}{11 x^{2}-8}$.
7. $(x-3)^{2}=13-6 x$.
8. $24-\sqrt{9+2 x^{2}}=16$.
9. $a+\sqrt{(x-3)(x+3)}=4 a$
10. $\frac{a}{x}+\frac{\sqrt{a^{2}-x^{2}}}{x}=\frac{x}{b}$.
11. $\sqrt{a^{2} x^{-2}+b^{2}}-\sqrt{a^{2}-2-b^{2}}=6$.
12. $2 a x^{2}+b-4=c x^{2}-5+d-a x^{2}$.

156

13. $\sqrt{a^{-2}-x}+x \sqrt{a^{2}-1}=a^{2} \sqrt{1-x^{2}}$.
14. $x+\sqrt{b^{2}+x^{2}}=\frac{b^{2}}{\sqrt{b^{3}+x^{2}}}$:

15. By transposition and reduction, and ohange of signs, if necessary, every adfected quadratic equation may be reduced to the form

$$
x^{2}+p x+q=0
$$

where p and q are either positive or negative, integral or fractional.
202. To investigate a rule for solving adfeoted quadratio equations, we proceed as follows :-

If we take any binomial, as $x+a$, and square it, we obtain $x^{3}+2 a x+a^{3}$. Now we observe that $\left(a^{4}\right)$ the last torm of this square is the square of half the coefficient of x in the second term, and we hence conclude that when we have reduced a given quadratio equation to the form $x^{y}+p x=-p$, we nay regard the let-hand member as being composed of the first two terme of the square of a binomial, and that we may make the lst momber a complete equare by adding to it the aquare of haif the coefficient of ite second term, and of course adding this to one side we must also add it to the other, in order to preserve the equality of the members. Thus we get

$$
x^{2}+p x+\frac{p^{2}}{4}=-q+\frac{p^{2}}{4}
$$

The first member of this equation is now a complete equare, and we observe that by extracting the square root of einch side we shall get rid of the second power of the unknown quantity, and thus reduce the quadratic to a simple oquation. Thus,

$$
x+\frac{p}{2}= \pm \sqrt{\frac{p^{2}}{4}-q}
$$

Bt

Whence by transposition $x=-\frac{1}{2} \pm \pm \sqrt{p_{4}^{4}-q}$
That $i, x=\left(\pm \sqrt{p^{2}-4}-p\right)$
208. Henoe for the solution of quadratic equations wo have the following

RuLe.-By traneposition and reduction arrange the equation in such a manner that the twoo terms involoing the unknown quantitice shall be alone on the left-hand side, and the coeficient of x^{3} thall be +1 .
II. Add.s cach side of the equation the equare of half the cosplocient of x.
III. Extract the square root of both sides of the equation, and thence by traneposition find the values of x.
Mx. 1. Given $x^{2}+10 x=-24$ to find the values of x.

$$
\begin{aligned}
& x^{2}+10 x=-24 \\
& x^{2}+10 x+25=1
\end{aligned}
$$

$$
x+b= \pm 1 \quad|(\mathrm{~m})|=(\mathrm{n}) \text { with equare root taken. }
$$

$$
x= \pm 1-5=-4 \text { or }-6 \mid(\text { IV }) \mid=\text { (III) transponed. }
$$

Nors. - When we colved the general equation $x^{s}+p x+q=0$, we ebtathed $z=j\left(\pm \sqrt{p^{3}-4}-p\right)$. Now we may ueo thin as a formula for Anding the value of x in a quadratio equation. Thus, in the lest examplo $p=10$ and $q=2$; then

$$
\begin{aligned}
& x= \pm\left(\pm \sqrt{p^{2}}-4 q-p\right)=(\pm \sqrt{100-96}-10)=3(\pm \sqrt{4}-10) \\
& =\frac{1}{}(\pm 2-10)=\frac{-8}{2} \text { or } \frac{-12}{2}=-4.0 r-6 .
\end{aligned}
$$

But although quadratio equations may thus be eolved by formula, this method ahould be resorted to only by the adrancod ettident, ase the Junior student requires all the practioe he can get in the solution of quadraHos by completing the square, to.

$$
\begin{align*}
& \text { Ix. 2. Given } \frac{x}{x+1}+\frac{x+1}{x}=\frac{13}{6} \text { to find the values of } x \text {. } \\
& \text { optization. } \\
& \frac{x}{x+1}+\frac{x+1}{x}=\frac{13}{6} \\
& 6 x^{2}+6(x+1)^{2}=13 x(x+1) \\
& 6 x^{2}+6 x^{2}+12 x+6=13 x^{2}+13 x \\
& x^{2}+x=6 \\
& x^{2}+x+t=6+\frac{1}{2}=8 \\
& x+1= \pm \frac{1}{4} \\
& x= \pm \text { 直 }-\frac{1}{1}=2 \text { or }-3 \\
& \text { (i) }=\text { (} \text {) cleared of fractions. } \\
& \text { (III) }=(\mathrm{II}) \text { expanded. } \\
& \text { (IV) }=\text { (III) transp. and red. } \\
& \text { (v) }=\text { (iv) with } t=\left(\frac{1}{2}\right)^{2} \text { added. } \\
& \text { (vi) }=(v) \text { with sqi foot taken. } \\
& \text { (vir) }=\text { (VI) trannposed and red. }
\end{align*}
$$

Ex. 8. Given $\frac{2 x+9}{9}+\frac{4 x-3}{4 x+8}=3+\frac{3 x-16}{18}$ to find the values of x.
opization.

$$
\begin{aligned}
& \frac{2 x+9}{9}+\frac{4 x-3}{4 x+3}=3+\frac{8 x-16}{18} \\
& 4 x+18+\frac{72 x-54}{4 x+3}=54+3 x-16 \\
& \text { (I) }{ }^{\prime} \text { (I) } \mid=(1) \times 18 . \\
& \frac{72 x-64}{4 x+8}=20-x \text {. } \\
& 72 x-54=80 x+60-4 x^{2}-3 x \\
& 4 x^{2}-5 x=114 \\
& x^{2}-\frac{4}{4} x=14 \frac{1}{4} \\
& x^{2}-\frac{4}{2} x+\frac{81}{2}=44+\frac{94}{64}=184^{9} \\
& x-\frac{4}{3}=\sqrt{{ }^{1-j^{2}}}= \pm \frac{48}{8} \\
& x= \pm 42+5=6 \text { or }-42 \\
& \text { (iii) }=\text { (ii) transp, and red. } \\
& \text { (iv) }=(\text { III }) \times(4 x+3) \text {. } \\
& \text { (v) }=(\text { (v) transp. and red. } \\
& \text { (vi) }=(v)+4 \text {. } \\
& \text { (viI) }=(\mathrm{vi}) \text { with (i) })^{2} \text { added. } \\
& \text { (viI) }=\text { (vil) with square root of } \\
& \text { each side taken. } \\
& x= \pm \frac{4}{3}+\frac{5}{8}=6 \text { or }-42 \\
& \text { (Ix) }=(\mathrm{vm}) \text { transp. and red. }
\end{aligned}
$$

Dx. 4. Given $\frac{a^{2} x^{4}}{m^{2}}-\frac{2 a x}{c}=\frac{-m^{2}}{c^{3}}$ to find the value of x. OPERATIOX.
$\cos ^{4} x^{2}-2 \operatorname{acm}^{2} x=-m^{4}$
$x^{3}-\frac{2 m^{2}}{a c} \cdot x=-\frac{m^{4}}{a^{2} c^{2}}$
(i) $\mid=1 \div a^{2} c^{2}$.
$x^{2}-\frac{2 m^{2}}{a c} x+\frac{m^{4}}{a^{4} c^{2}}=0$
$x-\frac{m^{2}}{a c}=0$
$x=\frac{m^{2}}{a c}$
(III) $=$ II with $\left(\frac{m^{2}}{a c}\right)^{2}$ added.
(Iv) = III with sq. root not taken.
(v) $\mid=$ Iv transposed.
assu. c ma redu
$x^{2}+$ of d To,
Ta by 4 and ber is each

Nors,-In this exmmple we may conolude that the two roote of the equation anp equal.

Exaroisn L.

Find the values of x in the following equations :-

1. $2 x^{2}+8 x-20=70$.
2. $x^{2}-19=8 x-10$.
3. $x^{2}-8 x=20$.
4. $x^{2}-29=16-12 x$.

RuI multij memb of the The and t
-6. $2 x^{2}+x-15=70-x-x^{2}$.
6. $x^{2}-4 x+16=10 x-2 x^{3}$
T. $118 x-\left\{x^{4}=x^{4}+23\right\}$.
8. $4 x^{2}-3 x-20=6 x+300$.
9. $\frac{x}{a}+\frac{a}{x}=\frac{2}{a}$.
10. $x^{3}+3 x-72=201-x-4 x^{2} .^{\prime}$
11. $\frac{8 x}{x+2}-\frac{x-1}{6}=x-21$
12. $\frac{x^{2}+12}{2}-4 x+1 x=0$.
13: $x^{5}-x=3 x-2$.
14. $a c x^{2}+b c x=a d x+b d$.
15. $\frac{x+\sqrt{ } x}{x-\sqrt{x}}=\frac{x^{3}-x}{4}$.
16. $x^{2}-x-40=170$.
17. $\frac{x}{3}+\frac{3}{x}=\frac{x}{4}+\frac{4}{x}-\frac{11}{12}$ 18. $\frac{x-2}{x+2}-\frac{x-3}{x+3}=\frac{x+4}{x-4}-\frac{x+2}{x-2}$.
19. $(7 x+3)(3+7 x)=10\{2(x-1)(3+x)-(3+2 x)(x-3)\}$.
30. $a x^{2}+b x+c=f x^{2}+c x-b$.
21. $(a-m+x)^{-1}=a^{-1}-m^{-2}+x^{-1}$.
12. $a b x^{3}-2 x(a+b) \sqrt{a b}=(a-b)^{2}$.
204. Many of the foregoing equations when reduco assume the general form $a x^{2}+b x+c=0$, whare a, b and c may be any quantities whatever; now when we further reduce this to bring it under the tule (Art. 203) we get $x^{3}+\frac{b}{a} x=\frac{c}{a}$, and consequently we have the inconvenience of dealing with fractions throughout the entire procens. To, obviate this diffioulty we may proceed as follows:-
Taking the equation $a x^{2}+b x=c$, let us multiply every torm by $4 a$, and then add b^{2} to each side of the reanaltiag espation, and we get $4 a^{2} x^{2}+4 a b x+b^{3}=-4 a c+b^{2}$. The left haud momber is now a complete square, and extracting the square root of oach nember wo got $2 a x+b= \pm \sqrt{b^{2}-4 a c}$

$$
\text { whence } x=\frac{-b \pm \sqrt{b^{2}-4 a}}{2 a}
$$

205. This operation translated gives us the following :-

Rows.-Having reduced the equation to the form $a x^{8}+b x=c_{1}$ multiply every term by four times the coefficient of \dot{x}^{3}, and to each member of the resulting equation add the equare of the cospltiont of the scoond term.

Then extract the square root of both terms, transpose and reduce and thus obtain the values of t :

Fin. 1. Given $3 x^{2}-2 x=65$, to find the values of x.

opmathom.

$$
\begin{align*}
& 3 x^{4}-2 x=65 \tag{1}\\
& 86 x^{2}-24 x=780 \\
& 36 x^{2}-24 x+4=784 \\
& 6 x-2= \pm 28 \\
& 6 x=2 \pm 28 \\
& 6 x=30 \text { or- } 26 \\
& x=5 \text { or-4\} } \\
& \text { (ii) }=\text { (i) } \times 12 \text { i. e. } 4 \text { timen 3; the coef. of } x^{5} \text {. } \\
& \text { (III) }=\text { (II) } \text { vith }^{(2)^{2}}=4 \text { added to each side. } \\
& \text { (IV) }=\text { (III) with square root extracted. } \\
& \text { (V) }=\text { (IV) transposed: } \\
& \text { (vi) }=\text { (v) reduced. } \\
& (v i v)=(v)+6 .
\end{align*}
$$

Fix. 2. Given $\frac{8 x-7}{x}+\frac{4 x-10}{x+5}=81$ to find the values of ix. OPRRATIOM,

$\frac{8 x-7}{x}+\frac{4 x-10}{x+5}=81$	(1)	- ${ }^{\text {c }}$
$7 x^{2}-89 x=70^{\circ}$	(II)	$=(1) \times 2 x(x+6)$ and red.
$108 x^{2}-1092 x=1960$	(III)	$=(\mathrm{I}) \times 28$ i, 0.4 times $\%$.
$106 x^{2}-1092 x+(39)^{2}=1960+1521$	(IV)	$=($ III $)+(39)^{2}$
$125-39=\sqrt{3481}= \pm 59$	(v)	$=\sqrt{1 \mathbf{V}}$
$14 x=39 \pm 50=98$ or -20	(vi)	$=(\mathrm{v})$ transposed.
$\therefore x=7$ or - 18		(V) $\div 14$

Hx. 3. Given $\left(3 a^{2}+b^{2}\right)\left(x^{2}-x+1\right)=\left(3 b^{2}+a^{4}\right)\left(x^{2}+x+1\right)$ to find the values of x.

ORDEATEON

$\left(3 a^{3}+b^{2}\right)\left(x^{2}-x+1\right)$

$$
=\left(3 b^{2}+a^{2}\right)\left(x^{2}+x+1\right)
$$

$\frac{x^{3}+x+1}{x^{3}+x+1}=\frac{3 b^{2}+a^{2}}{3 a^{2} s+b^{5}}$
$\frac{2 x^{2}+2}{-2 x}=\frac{4 b^{2}+4 a^{4}}{2 b^{2}-2 a^{8}}$
$\frac{x^{2}+1}{-5}=\frac{2 b^{2}+2 a^{2}}{b^{2}-a^{2}}$
$\left(b^{2}-a^{2}\right) x^{2}+b^{2}-a^{2}=-2\left(b^{2}+a^{3}\right) x$
$\left(b^{2}-a^{2}\right) x^{2}+2\left(b^{2}+a^{2}\right) x=a^{2}-b^{2}$
$4\left(b^{2}-a^{2}\right)^{2} x^{2}+8\left(b^{4}-a^{4}\right) x+4\left(b^{2}+a^{2}\right)^{2}=4\left(a^{2}-b^{2}\right)\left(b^{2}-a^{2}\right)+4\left(b^{2}+a^{2}\right)^{2}(V x)$ $4\left(b^{4}-a^{3}\right)^{2} x^{3}+8\left(b^{4}-a^{4}\right) x+4\left(b^{8}+a^{3}\right)^{2}=1 b^{2} b^{4}\left(b^{2}\right)$
(vii) side

Now from this it appears that

1. The two roots are real and different in value if $b^{2}>4 a c$.
II. The two roots are real and equal in value if $b^{2}=4 a c$. III. The two roots are impossibleor imaginary if $b^{2}<4 a c$.

Hence if any equation be expressed in the form of $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$, its roots are rial and differmit, beat and modi, or ixadimart, according as $\mathrm{b}^{2}>_{1}=$ or < 4ac; and similarly if the equation be of the form $\mathrm{x}^{2}+\mathrm{px}+\mathrm{q}=0$, its roots are aEAL and difinatisi, aidil and mqual, or maghart, according as $\mathrm{p}^{2}>$, $=$ or $<4 \mathrm{q}$.
207. Thmorne 1.-A quadratic equation cannot have more than two roots.

Damonstration. For if it be possible let the quadratic equation $a x^{2}+b x+c$ have three roots as β, γ and δ. Then

$\alpha \beta^{2}+b \boldsymbol{\beta}+c=0$	(I)	
$a \gamma^{2}+b \gamma+c=0$	(II)	:
$4 \delta^{2}+b \delta+c=0$	(III)	
$a\left(\beta^{2}-\gamma^{2}\right)+b(\beta-\gamma)=0$	(iv)	
$a\left(\beta^{2}-8^{2}\right)+b(\beta-8)=0$	(v)	$=(\mathrm{I})-$ (III).
$a(\beta-\gamma)+b=0$	(vi)	$=(\mathrm{IV}) \div(\beta-\gamma)$ which is not $=0$, \because by hypothesis β is not $=\gamma$.
$a(\beta-8)+b=0$	vil)	$=(v) \div(\beta-8)$ which is not $=0$,
$a(\gamma-8)=0$	(VIII)	$=(\mathbf{v a})-\mathbf{(v)}$.

Now a is not $=0$, otherwise $a x^{2}+b x+c=0$ would become $b x+c=0$, which is not a quadratic equation; therefore $(\gamma-\delta)$ must $=0$, and therefore $\boldsymbol{\gamma}=\boldsymbol{\delta}$; but by hypothesis γ is not $=\boldsymbol{\delta}$, which is absurd. Hence a quadratic equation cannot have three roots.
208. Thionim II.-In any quadratic equation reduced to the form of $x^{2}+p x+q=0$, the coefficient of the $2 n d$ term is equal, when its sign to changed, to the sum of the roots, and the 3rd term se equal to the product of the roots.

A
Dn
$+q=$

By
Tha
Cor
then
209
px +q
Duw
But
$\therefore 1$
Cor.
that

Cor.
roots bc

- Ex. 1

Sin
Th
Ex. 2
x
$(x-2)($
Ex. 3
$\pm \sqrt{7}$.
$x-1$
t-2
Then
that
that
[swot, ty.
value if
$b^{2}=4 a c$.
$b^{2}<4 a c$.
$b x+c=0$, Madimaby, ation be af uivir, bidit q.
more than
atic equa-
is not $=0$, n not $=\gamma$. is not $=0$, 8.

1 become re $(\gamma-\delta)$ not $=\delta$, ave three
sed to the is equal, ard term
 166

Damorergatiox. Let the two roots of the equation $x^{3}+p x$ $+q=0$ be β and γ. Then $-1 p+\sqrt{ }\left(\frac{1}{2}-q\right)=\beta$

$$
\text { And }-1 p-\sqrt{\left(k p^{2}-q\right)}=\gamma
$$

By addition $-\boldsymbol{p}=\beta+\gamma=$ sum of the roots.
By multiplication $\left\{-\frac{1}{4} p+\sqrt{ }\left(t p^{2}-q\right)\right\}\left\{-\frac{1}{2} p-\sqrt{2}\left(\frac{1}{2}-q\right)\right\}=\beta \gamma$.
That is, $\ddagger p^{4}-\left(\lambda p^{2}-q\right)$ which is $=q=\beta y=$ produot of roots.
Cor. If β. and γ are the roots of the equation $a x^{2}+b x+c=0$,
then

$$
\beta+\gamma=-\frac{b}{a} \text { and } \beta_{\gamma}=\frac{c}{\alpha}
$$

209. Thnonns III.-If β and y are the roots of the equation $x^{2}+$ $p x+q=0$, then $(x-\beta)(x-\gamma)=x^{2}+p x+q$.

Demonstration. $(x-\beta)(x-\gamma)=x^{2}-(\beta+\gamma) x+\beta \gamma$.
$\operatorname{But}(\beta+\gamma)=-p$ and $\beta_{\gamma}=q$. (By Art. 208.)
$\therefore(x-\beta)(x-\gamma)=x^{2}-(-p) x+q=x^{2}+p x+q$.
Cor. If β, γ are the roots of the equation $a x^{2}+b x+c=0$, that is, of the equation $a\left(x^{2}+\frac{b}{a} x+\frac{c}{a}\right)=0$. Then we have

$$
a x^{2}+b x+c=0^{\prime}=a(x-\beta)(x-\gamma) .
$$

Cor. 2. If $a x^{3}+b x^{2}+c x+d=0$ be a cubic equation, and if its roots be β, γ, δ; then $(x-\beta)(x-\gamma)(x-\delta)=a x^{s}+b x^{2}+c x+d$.

Illobtrative Examplis.

- Ex. 1. Form the equation whose roots are -3 and 4.
optratton.
Since $x=-3, x+3=0$, and since $x=4, x-4=0$.
Then $(x+3)(x-4)=0$, that is $x^{2}-x-12=0$.
Ex. 2. Form the equation whose roots are 2, -2, 3 and 0.

operation.

$x-2=0, x+2=0, x-3=0, x=0$. Then we have $(x-2)(x+2)(x-3) x=\left(x^{2}-4\right)\left(x^{4}-3 x\right)=x^{4}-3 x^{3}-4 x^{4}+12 x=0$.
Fx. 3. Form the equation whose roots are $1,-1,3,-2$, and $2 \pm \sqrt{7}$.

opreation.

$x-1=0, x+1=0, x-3=0, x+2=0, x-2-\sqrt{7}=0$, and $x-2+\sqrt{7}=0$.
Then $(x-1)(x+1)(x-3)(x+2)(x-2-\sqrt{7})(x-2+\sqrt{7})=0$,
that is, $\left(x^{2}-1\right)\left(x^{2}-x-6\right)\left(x^{2}-4 x+4-v\right)=0$,
that is, $x^{6}-6 x^{6}-6 x^{4}+32 x^{5}+28 x^{2}-27 x-18=0$.

Mz. 4. Find, withont solving the equation, the sum, difference, and product of the roots of $x^{2}-42 x+11 \%=0$:

opizarion.

Let β and γ be the roots, then Axt. $208 \beta+\gamma=42$ and $\theta y=117$.
Then by inapection find two numbers whose sum $=42$ and prodeot $=117$, and they are evidentiy 3 and 39 , and honce the diference of the roots $=36$.

EIx. 6. For what value of $c^{2} m$ will the equation $3 x^{2}+7 x+c^{2} m$ $=0$ have equal roots ?

OPirdtion.

From Art. 206 it appeare that in the equation $a x^{3}+b x+c=0$ the roote will be real and equal when $b^{2}=4 a c$, that $i s$, in this equation when $r^{2}=4 \times 3 \times c^{2} m$, or when $12 c^{2} m=49$, or $c^{2} m=41 \frac{1}{s}$.

Fix. 6. If β and γ be the roots of the equation $x^{3}-p x+q=0$, find the value in terms of p and q of $\frac{6}{\gamma}+\frac{\gamma}{\beta}$, and of $\beta^{3}+\gamma^{\prime}$.

> OPERATIOX.

Art. 208. $\beta+\gamma=p$ and $\beta_{\gamma}=q$.
Thon $\frac{\beta}{\gamma}+\frac{\gamma}{\beta}=\frac{\beta^{2}+\gamma^{2}}{\beta \gamma}=\frac{\beta^{2}+\gamma^{2}}{\beta \gamma}+2-2=\frac{\beta^{3}+2 \beta \gamma+\gamma^{2}}{\beta \gamma}-2$
$=\frac{(\beta+\gamma)^{2}}{\beta y}-2=\frac{p^{2}}{q}-2=\frac{p^{2}-2 q}{2}$.
And $\beta^{3}+\gamma^{2}=\beta^{3}+3 \beta^{2} \gamma+3 \beta \gamma^{2}+\gamma^{3}-\left(3 \beta^{2} \gamma+3 \beta \gamma^{2}\right)=(\beta+\gamma)^{2}$
$-38 \gamma(\beta+\gamma)=p^{2}-3 q p=p\left(p^{3}-3 q\right)$.

Hxizoitas LII.

1. Form the equation whose roots are -2, and -7 .
2. Torm the equation whove roots are $4,-2,1$, and 0 .
3. Form the equation whose roots are $2,-2 ; 3,-8$, and 0 .
4. Form the equation whose roots are $\overline{5},-5,2,-2$, and $8 \pm \sqrt{2}$.
5. Form the equation whose roots are $1,2,3,4$, and $6 \pm \sqrt{ } 6$.
6. Form the equation whose roots are $\delta, 4,1,0$, arid $2 \pm \sqrt{-3}$.
7. Given 6 and -2 , two roots of the equation $x^{4}+6 x^{3}+6 x^{2}$ $+12 x=60$, to find the other roots.
8. Given $1 \pm \sqrt{-6}$, two roots of the equation $x^{4}-4 x^{3}+8 x^{2}$ $-8 x=21$, to find the other roots.

Asx. 21
9. find the 10. to find
11.
$+26 x^{2}$
12. C
$-4 x=$
13.
equal :
14. I
form th
15. 1
the val
$\beta^{3}-\gamma^{3}$.
H
210
ratics i
Such,
or othe
$+c=0$ positiv

Ex: 1
$x+6 x^{\frac{1}{2}}$
$x+6 x^{\frac{1}{2}}$
$x^{\frac{1}{2}+3}$
$\mathrm{L}_{1}= \pm$
$x^{1}=-$?
$F=40$
difference,
ad $\mathrm{Ar}=117$. $1=42$ and hence the
$+7 x+c^{2} m$
$b x+c=0$ is, in this $c^{3} m=41 \frac{1}{2}$. $p x+q=0$, $+\gamma^{3}$
9. Given 14, one root of the equation $x^{3}+a x^{2}-3920=0$, to find the other roots.
10. Girep 2 , one soot of the equation $x^{4}-6 x^{2}+13 x^{2}-10 x=0$ to find the dother roots.
11. Given 8 and -4 , two rootu of the equation $x^{6}-2 x^{4}-28 x^{4}$ $+26 x^{2}+120 x=0$, to find the other rooth.
12. Given $\pm \sqrt{-2}$, two roots of the equation $x^{6}-x^{4} \mp x^{3}$ $-4 x=0$, to finc $=$ other roots.
13. For what val of c will the equation $2 x^{2}+4 x+c=0$ have equal roots.
14. If β and γ be the roots of the equation $a x^{2}+b x+c=0$, form the equation whose roots ase the reciprocals of these.
15. If β and γ be the roots of the equation $x^{2}+p x+q=0$, find the value of $\beta^{2}+\gamma^{2}$, of $(\beta-\gamma)^{2} ;$ of $\beta^{2}-\gamma^{2} ;$ of $\frac{1}{\beta}+\frac{1}{\gamma}$ and of $\boldsymbol{\beta}_{1}^{3}-\boldsymbol{\gamma}^{3}$.

HQUATIONS WHOH MAY BE SOLVED LIKE QUADRATIOS.

210. There are many equations which though not quadratics in reality may be solved by the rules for quadratios. Such, among others, are equations which come under one or other of the general forms $a x^{2}+b x^{n}+c=0$ or $a x x^{2}+b x^{2}$ $+c=0$, in whioh n is any intogral number, and a, b, c, positive or negative, integral or fractional.
Ex. 1. Cliven $x+6 x^{2}=-8$ to find the values of x.
opabation.

$x+6 x^{\frac{1}{2}}=-8$	(${ }^{\text {a }}$	
$x+6 x^{\frac{2}{2}}+9=1$	(I)	$=(1)$ with square completed by adding θ to each side.
$x^{\frac{1}{2}}+3= \pm 1$	(ix)	= (n) with equare root aistrepted,
$x^{1}= \pm>-3$	(iv)	= (mi) travipponda.
3t $=-2$ or -4	(v)	= (Iv) redugod.
P 54 or 16 :	(vi)	I (V) pquared.

Fix. 2. Given $\sqrt[f]{x^{2}}+22 \sqrt[1]{x}=23$ to find the values of x. opization.

$x^{\frac{2}{3}}+22 x^{\frac{1}{3}}=23$	(${ }^{\text {d }}$	
$x^{\frac{3}{3}}+22 x^{\frac{3}{3}}+121=144$	(ii)	$=(1)$ with (11) ${ }^{2}$ added to each side.
$x^{\frac{3}{3}}+11= \pm 12$	(iII)	$=(u)$ with square root extracted.
$x^{\frac{1}{2}}=1$ or - 23	(Iv)	= (III) transposed and reduced.
$x=1$ or - 1216t	(v)	= (iv) oubed.

Ex. 3. Given $\sqrt{x+12}+\sqrt[4]{x+12}=6$ to find the values of x. opmbation.
$(x+12)^{\frac{2}{3}}+(x+12)^{\frac{1}{4}}=6$ $(x+12)^{\frac{2}{4}}+(x+12)^{\frac{t}{t}}+\frac{4}{4}=2$
$(x+12)^{\frac{2}{4}}+\frac{1}{2}= \pm \frac{5}{8}$
$(x+12)^{\frac{1}{2}}=2$ or -3
$x+12=16$ or 81
$x=1$ or 69

(I)	
(II)	$=(\mathrm{I})$ with \ddagger added to each side

(III) $=$ (II) with sq. root taken.
(r) $=$ (II) transposed and reduced.
(V) $=$ (IV) raised to 4th power.
(vi) $=(\nabla)$ transposed and reduced.

Ifx. 4. Given $x^{6}-35 x^{3}=-216$ to find the values of x.
opmbation.
$x^{6}-35 x^{8}=-216$
$4 x^{6}-140 x^{8}+1225=361$
$2 x^{8}-35= \pm 19$
$2 x^{3}=54$ or 16
$x^{8}=27$ or 8
(I)
(II) $=$ (I) $\times 4$ and (35$)^{2}$ added.
(III) $=$ (II) with sq. root taken.
(IV) = (III) transposed and reduced.
$x=3$ or 2
(v) $=$ (Iv) $\div 2$.
$(v i)=(v)$ with $\sqrt[v]{ }$ taken.
Fx. 6. Given $5 \sqrt{ }\left(x^{2}+5 x+28\right)=x^{2}+5 x+4$ to find the values of x.

OPDRATION.

$$
\begin{align*}
& x^{2}+6 x+4-5 V\left(x^{2}+6 x+28\right)=0 \tag{1}\\
& \left(x^{2}+5 x+28\right)-5\left(x^{2}+5 x+28\right)^{\frac{1}{2}}=24 \\
& \left(x^{2}+6 x+28\right)-5\left(x^{2}+5 x+28\right)^{\frac{1}{2}+2 \beta}=121 \\
& \left(x^{8}+5 x+28\right)^{\frac{1}{2}}-\frac{6}{2}= \pm \frac{11}{2}
\end{align*}
$$

(II) $=$ (i) with 24 added to each side.
(ii) $=(\mathrm{n})$ with $\left(\frac{k}{\mathrm{~K}}\right)^{2}$ added.
(IV) $\mid=$ (III) with $\sqrt{ }$ taken.

$\left(x^{2}+5 x+28\right)^{\frac{1}{2}}=8$ or -3	(v)	= (IV) tranap. and red.
$x^{2}+5 x+28=64$ or 9	(vi)	$=(\nabla)$ squared.
$x^{4}+6 x=360 \%-19$	(viI)	$=(V)$ transp. and red.
$x^{3}+5 x+85=19900-51$	(viI)	$=\left(\right.$ (VI) with (\%) ${ }^{\frac{1}{2}}{ }^{2}$ added to
$x+\frac{5}{8}= \pm \frac{12}{2}$ or $\pm \frac{1}{-51}$	(ix)	= (vmi) with sq. root taken
$x=4$ or -9 ; or $\ddagger(-5 \pm \sqrt{-51})$	(x)	= (ix) transp, and red.

Norse,-In this example we ehould find by trinal that only the firot two roots, i. e. 4 and -9 are roots of the proposed equation, the other two being roots of the equation $x^{2}+5 x+4+5 V\left(x^{2}+5 x+28\right)=0$.
Ex. 6. Given $\frac{\left(5 x^{4}+10 x^{2}+1\right)\left(5 a^{4}+10 a^{2}+1\right)}{\left(x^{4}+10 x^{2}+5\right)\left(a^{4}+10 a^{2}+5\right.}=a x$ to find the values of x.
operation.
each side taken.
ad reduced.
power.
ad reduced.
of x.
ed.
reduced.
d the values

4 added to ide.
$\left.\xi^{5}\right)^{2}$ added. \checkmark taken,

Ex. 7. Given $x^{6}-1=0$ to find the values of x.
oprration.

Nore. -Nos. (VII) and (IX) sive ne by tranoposition $x=-1$ and $\equiv=1$, and colving the quadritio equations (VII) and (x) we get the other four roots $x=1(1 \pm \sqrt{-8})$ and $x=\ddagger(-1 \pm \sqrt{-8})$.

The above is of couree equivalent to finding the dix, sixth roots of units.
Ex. 8. G2 on $x^{4}+x^{2}-4 x^{2}+x+1=0$ to find the values of x.
opmaltion.

$$
\left.\begin{array}{l|l}
x^{4}+x^{3}-4 x^{2}+x+1=0 & \text { (1) } \\
x^{3}+x-4+\frac{1}{x}+\frac{1}{x^{2}}=0 & \text { (II) } \\
x^{2}+\frac{1}{x^{2}}+x+\frac{1}{x}=4 & \text { (III) }
\end{array} \right\rvert\,=\text { (I) }+x^{4} .
$$

$$
\left(x+\frac{1}{x}\right)^{2}+\left(x+\frac{1}{x}\right)=6
$$

(II)	$=(1) \div x^{3}$
(II)	= (II) transposed and arranged.
(IV)	(III) with 2 added to each side.
(v)	= (Iv) differently expressed.
, \% ${ }^{\text {c }}$	
(vi)	$=(v)$ with aq. completed by adding t to each side.
(VII)	(V) with $\sqrt{ }$ taken.
(vin)	= (VII) transposed and reducod.

$$
\left.\left(x^{2}+2+\frac{1}{x^{3}}\right)+\left(x+\frac{1}{x}\right)=6 \right\rvert\,(\text { (v) })=(\text { mil }) \text { with } 2 \text { added to each side }
$$

$$
\left(x+\frac{1}{x}\right)^{2}+\left(x+\frac{1}{x}\right)+x=28
$$

$$
\left(x+\frac{1}{x}\right)+1= \pm \frac{1}{2}
$$

$$
x+\frac{1}{x}=2 \text { or }-3
$$

This we get two distinct quadratio equations :-
I. $x+\frac{1}{x}=2$ or $x^{3}-2 x=-1$ whence $x=1$;
II. $x+\frac{1}{x}=-3$ or $x^{3}+3 x=-1$ whence $x=1(-3 \pm \sqrt{5})$,

F3x. 9. Givgh $x^{3}+3 x=14$ to find the. values of x :

$$
\begin{aligned}
& (x+1)\left(x^{3}-x+1\right)=0|(v)|=\text { (iII) factored. } \\
& (x-1)\left(x^{2}+x+1\right)=0 \\
& x+1=0 \\
& x^{2}-x+1=0 \text { (vim) }=\text { other thetor of (v). } \\
& x-1=0 \text { (Ix) = one factor of (v). } \\
& \begin{array}{ll}
x+1=0 & (x)=0 t h e r ~ f a c t o r ~ o f ~(v 2) . ~
\end{array} \\
& \therefore x=1, x=-1, x=1(1 \pm \sqrt{-3}) \text { and } x=1(-1 \pm \sqrt{-3}) \text {. }
\end{aligned}
$$

[8sor. IX.
AET. 210.]

QUADRATIC RQUATIONS.

OPIEATIOM.

$x^{2}+3 x=14$
 (1)

$x^{4}+3 x^{4}=14 x$
$x^{4}+7 x^{2}=4 x^{3}+14 x$
$x^{4}+7 x^{2}+\frac{19}{4}=4 x^{2}+14 x+\frac{12}{4}$
(II) $=(1) \times x$.
(III) $=$ (II), $4 x^{2}$ added to each side.
(Iv) $=$ (III) with sq. completad by adding $\frac{4 y}{4}$ to each side.

$$
x^{2}+\frac{7}{z}= \pm\left(2 x+\frac{7}{y}\right)
$$

(v) $=(\underline{1} v)$ with $\sqrt{ }$ taken.

This gives us two separate quadratic equations :-
I. $x^{2}+\frac{7}{8}=2 x+\frac{7}{2}$ or $x^{2}-2 x=0$ whence $x=2$ or 0 ; and
II. $x^{2}+\frac{7}{8}=-2 x-\frac{1}{2}$ or $x^{2}+2 x=-7$ whence $x=-1 \pm \sqrt{-6}$

Ex. 10. Given $\frac{49 x^{2}}{4}+\frac{48}{x^{2}}-49=9+\frac{6}{x}$ to find the values of x.
oprration.

$$
\begin{align*}
& \left.\frac{49 x^{2}}{4}+\frac{48}{x^{2}}-49=9+\frac{6}{x} \right\rvert\, \text { (I) } \tag{I}\\
& \left.\frac{49 x^{2}}{4}-49+\frac{48}{x^{2}}=\frac{6}{x}+9 \right\rvert\, \text { (II) } \mid=\text { (I) arrangnd. } \\
& \left.\frac{49 x^{2}}{4}-49+\frac{49}{x^{2}}-\frac{1}{x^{2}}+\frac{6}{x}+9 \right\rvert\, \text { (III) } \mid=\text { (II) with } \frac{1}{x^{2}} \text { added. } \\
& \frac{7 x}{2}-\frac{7}{x}= \pm\left(\frac{1}{x}+3\right) \\
& \text { (Iv) } \mid=\text { (II) with } \sqrt{ } \text { taken. }
\end{align*}
$$

This also gives us two distinct quadratic equations:-
I. $\frac{7 x}{2}-\frac{7}{x}=\frac{1}{x}+3$ or $7 x^{2}-6 x=16$ whence $x=2$ or $-1 \frac{1}{}$; and.
II. $\frac{7 x}{2}-\frac{7}{x}=-\frac{1}{x}-3$ or $7 x^{2}+6 x=12$ whence $x=4(-3 \pm \sqrt{83})$.

Exrbaig LIII

Find the values of x in the following equations:-

1. $x-6 \sqrt{ } x=16$.
2. $x^{\frac{1}{2}}-4 x^{\frac{1}{4}}=-3$
3. $x^{4}+20=14 x^{2}-20$.
4. $x^{3}+7 \sqrt{x^{3}}=1107-7 x^{\frac{3}{2}}$
5. $x-3 \sqrt{x+6}=2-\sqrt{x+6}$.
6. $2 x^{4}-x^{2}=406$.
7. $x^{6}-8 x^{3}=513$.

9. $\sqrt{x^{3}}+\sqrt{x^{4}}=6 \sqrt{x} \quad$ 10. $\frac{\sqrt{4 x}+2}{4+\sqrt{x}}=\frac{1-\sqrt{x}}{\sqrt{x}}$
 11. $\sqrt[7]{x+21}=12-\sqrt{x+21}$.
 12. $\sqrt{x^{3}}-2 \sqrt{x}-x=0$.
 13. $\frac{x^{8}+x^{4}+2}{x^{6}-x^{4}}=\frac{x^{3}+x^{2}-2}{x^{3}-x^{2}}$.

14. $\frac{64-9 \sqrt{x}}{x+2 \sqrt{x}}=\frac{7 x^{3}-3 x+4}{(6+\sqrt{x})(x+2 \sqrt{x})}+\frac{23 x-46 \sqrt{x}}{6+\sqrt{x}}$
15. $x^{3}-3 x^{2}+3 x=9$.
16. $\sqrt{(x-1)(x-2)}+\sqrt{(x-3)(x-4)}=\sqrt{ }$.
17. $z^{3}-3 x+2=0$.

X-18. $\sqrt{x^{2}+a x+b}+\sqrt{x^{2}-a x+b}=c$.
19. $\frac{x}{\sqrt{x}+\sqrt{a-x}}+\frac{x}{\sqrt{x-\sqrt{a-x}}}=\frac{b}{\sqrt{x}}$.
20. $\sqrt{x+60}+\sqrt{x^{2}+9}=\frac{2 \sqrt{x^{8}+60 x^{2}+9 x+540}+89}{\sqrt{x+60}+\sqrt{x^{2}+9}}$.
21. $x^{12}=1$.
22. $x^{3}-6 x^{2}+11 t=6$.
23. $x^{3}-4 x^{2}+x+6=6$.
24. $x^{3}-8 x^{2}+11 x=-20$.
25. $\frac{x+a}{x+b}=\left(\frac{2 x+a+c}{2 x+b+c}\right)^{2}$.
28. $3 x^{3}-142^{2}+21 x=10$. $\times 9 \times$ वwC $x^{2}-5 y$ 27. $x+a+3 \sqrt{a b x}=6$.
30. $9 x-4 x^{2}+\left(4 x^{2}-9 x+11\right)^{1}-0$.
29. $(x+6)^{2}+2 x^{\frac{1}{3}}(x+6)=138+\sqrt{x}$.
30. $x^{4}-4 x^{3}+6 x^{2}-4 x=5$.
+31. $2 x \sqrt{1-x^{4}}=a\left(1+x^{4}\right)$.
32. $\left\{(x-2)^{2}-x\right\}^{2}-(x-2)^{2}=88-(x-2)$.
93. $a x^{2}+b x^{3}+c x^{3}+b x+a=0$.
34. $V\left(x^{2}-\frac{a^{4}}{x^{3}}\right)+V\left(a^{2}-\frac{a^{4}}{x^{2}}\right)=\frac{x^{2}}{a}$.

37.
38.
$=\left(x^{3}\right.$.
39.
40.
41.8
42. a
43. 8
44. 3.
45. ${ }^{x}$
$=x^{2}-$
simi
211
quadra
quanti
must b
by atte
suggest found. employ with m
Ex. 1.
37. $(x-1)(x-2)(x-3)(x-4)(8$.
38. $(x-1)(x-2)(x-3)(x-4)(7-6)(x-6)(x-7)(x-8)$ $=\left(x^{2}-9 x\right)\left(17 x^{3}-153 x+230\right)+101$.
39. $(x-1)(x-2)(x-3)=(x+1)(x+2)(x+3)$.
40. $(\sqrt{x+1}-2)(\sqrt{x+1}-3)+5 \sqrt{ } \sqrt{x+1}(\sqrt{x+1}-6)+\sqrt{x+1}-1\}=0$.
41. $8 x^{4}-16 x^{2}+4 x^{2}-x-2\left(2 x^{2}-2 x+1\right) \sqrt{4 x^{4}-8 x^{3}-4 x^{2}+3 x-1}=0$?
42. $a b x^{-2}+\frac{2(a+x)\left(a^{2} c^{-1} x^{2}-b\right)}{a x}=c^{-1}\left(x^{2}-\frac{b c x}{a^{2}}+a^{3}\right)$.
43. $8 x^{3}+22 x^{2}+24 x+9=0$.
44. $3 x^{4}-4 x^{3}+17 x^{2}-6 x=-5$.
45. $\frac{x^{2}+2 x(\sqrt{3}-\sqrt{ } 5)-3 \sqrt{135}+8}{x-\sqrt{3}+\sqrt{5}}-\frac{x^{2}-2 x(\sqrt{3}-\sqrt{5})-\sqrt{ } 2(\sqrt{30}-\sqrt{32})}{x+\sqrt{3}-\sqrt{5}}$
$=x^{2}-8-\sqrt{15}$.
SIMULTANEOUS EQUATIONS OF THE GECOND DEGREE.
211: No general rule can be given for the solution of quadratic equations involving more than ono unknown quantity. In dealing with these therefore the student must be left very much to iis own ingenuity. Very often by attentively considering the question an artifice will. suggest iteelf, by means of which the roots may be easily found. The following solutions afford illustrations of tho employment of artifices which are very froquently used with much advantage:

Ex. 1. Given $x^{2}-y^{2}=617$ to find the values of x and y.

Ex.2. Given $\left.\begin{array}{rl}x^{2}+y^{2} & =74 \\ x+y & =12\end{array}\right\}$ to find the values of x and y. opzaation.

$\begin{array}{r} x^{2}+y^{2}=74 \\ x+y=12 \end{array}$	(I) (I)	
$x^{2}+2 x y+y^{2}=144$	(iII)	= (II) squared.
$-2 x y=70$	(iv)	= (III) $-(\mathrm{l})$.
$x^{2}-2 x y+y^{2}=4$	(v)	$=(\mathrm{I})-(\mathrm{Iv})$.
$x-y=2$	(vi)	$=(\nabla)$ with $\sqrt{ }$ taken.
$2 x=14 \therefore x=7$	(vil)	$=(\mathrm{II})+(\mathrm{V})$.
$2 y=10 \therefore y=5$	(vii)	((II) $-(\mathrm{VI})$.

Or thus:-

$$
\begin{align*}
& x^{2}+y^{4}=74 \tag{I}\\
& x+y=12 \\
& x=12-y \\
& x^{2}=(12-y)^{2} \\
& 2 y^{2}-24 y=-70 \\
& y^{2}-12 y=-35 \\
& y^{3}-12 y+36=1 \\
& y-6= \pm 1 \\
& y=7 \text { or } 6 \\
& \text { (iI) } \\
& \text { (III) }=\text { (II) transposed. } \\
& \text { (IV) }=\text { (III) squared. } \\
& \text { (v) }=\text { (i) with }(12-y)^{2} \text { subs. for } x^{2} \text {. } \\
& \text { (vi) }=\text { (v) expanded. } \\
& \text { (vu) }=\text { (vi) transposed. } \\
& \text { (viii) }]=\text { (vis) } \div 2 \text {. } \\
& \text { (Ix) }=\text { (viII) With sq. completed by } \\
& \text { sdding } 36 \text { to each side. } \\
& \text { (x) }=(\mathrm{Ix}) \text { with } \sqrt{ } \text { taken. } \\
& \text { (xI) }=(x) \text { transposed. }
\end{align*}
$$

Then $x=12-y=12-7$ or $12-5=5$ or 7 .
Ex. 3. Given $x+y=33$ $\left.\begin{array}{rl}+y & =33 \\ x y & =266\end{array}\right\}$ to find the values of x and y. oprrition.

$\begin{aligned} x+y & =33 \\ x y & =266 \end{aligned}$	(I) (II)	
$x^{2}+2 x y+y^{2}=1089$	(III)	= (1) squared.
$4 x y=.1064$	(IV)	$=$ (II) $\times 4$.
$\overline{x^{2}-2 x y+y^{2}}=25$	(v)	$=$ (III) - (IV)
$x-y= \pm 5$	(vi)	$=(v)$ with $\sqrt{ }$. taken.
or $28 \cdot \therefore x=19$ or 14	(vil)	$=(\mathrm{l})+(\mathrm{V})$.
or $38 . \therefore y=14$ or 19		$=(\mathrm{l})-(\mathrm{v}$) .

In equ are home tities, pu will be n

$$
2
$$

$$
5
$$

$$
2 v^{2} y
$$

$$
\bullet
$$

$$
(2 v
$$

$$
y^{2}
$$

$$
y^{2}
$$

$$
\frac{2}{2 v^{2}+3}
$$

$6 v^{2}$

$$
y^{2}=\frac{41}{5 v^{2}+1}
$$

$$
\sqrt{8 \mathrm{I}}=\frac{8}{8} \mathrm{I}
$$

Or thus:

$$
\begin{align*}
& x+y=33 \tag{1}\\
& x y=266 \tag{il}\\
& x=33-y \\
& y(33-y)=266 \\
& y^{3}-33 y=-266 \\
& 4 y^{2}-132 y+(33)^{2}=25 \\
& 2 y-33= \pm \boxed{ } \\
& 2 y=38 \text { or } 28 \\
& y=19 \text { or } 14 \\
& \text { (iil) = (I) transposed. } \\
& \text { (iv) }=(\mathrm{n}) \text { with } 33-y \text { sub. for } x \text {. } \\
& \text { (v) }=\text { (Iv) expanded and } x-1 \text {. } \\
& \text { (vi) }=(v) \times 4 \text { and with } 1089 \\
& \text { added to each side. } \\
& 2 y-33= \pm 5 \\
& \text { (viI) }=(\mathrm{vI}) \text { with } \sqrt{ } \text { taken. } \\
& \text { (vil) }=\text { (vi) transposed. } \\
& \text { (ix) } m \text { (viI) }+2 .
\end{align*}
$$

Ex. 4. Given $\left.\begin{array}{rl}2 x^{2}+3 x y+y^{2} & =20 \\ 5 x^{2}+4 y^{2} & =41\end{array}\right\}$ to find the values of x.

opration.

In equations like this, in which either or both of the equations are homogeneous in all those terms which involve these quantities, put $x=v y$, then $x^{2}=v^{2} y^{2}$, and $x y=v y^{2}$, and the solution will be much facilitated.
$\left.\begin{array}{rl}2 x^{2}+3 x y+y^{2} & =20 \\ 5 x^{2}+4 y^{2} & =41\end{array}\right\}$
$2 v^{2} y^{2}+3 v y^{2}+y^{2}=20$

- $\quad 6 v^{2} y^{2}+4 y^{2}=41$
$\left(2 v^{2}+3 v+1\right) y^{2}=20$
$\left(5 v^{2}+4\right) y^{2}=41$
$y^{2}=\frac{20}{2 v^{2}+3 v+1}$
$y^{2}=\frac{41}{5 v^{2}+4} \quad(\mathrm{VIII})=(\mathrm{VI}) \div\left(5 v^{2}+4\right)$.
$\frac{20}{2 v^{2}+3 v+1}=\frac{41}{6 v^{2}+4}$
$6 v^{2}-41 v=-13$
$v=\frac{1}{3}$ or $\frac{18}{8}$
(iII) $=($ ($)$ with $v y$ written for x.
(Iv) $=$ (II) with vy subs. for x.
(v) = (iil) factored.
(vi) $=$ (iv) factored.
(vii) $=(v) \div\left(2 \psi^{2}+3 v+1\right)$.
(viII) $=($ vI $) \div\left(5 v^{2}+4\right)$.
(Ix) = right hand members of
(viI) and (vili) equated
to one another (Ax. xI).
(x) $=$ (x) reduced.
(xI) = (x)solved by ordinary rule
$y^{3}=\frac{41}{6 v^{2}+4}=\frac{41}{6\left(\frac{1}{2}+4\right.}$ or $\frac{41}{5\left(3^{3}\right)^{2}+4}=9$ or $3^{4} r$. Hence $y=3$ or
$\sqrt{81}=\frac{8}{81} \sqrt{21}$.
$\dot{x}=v y=\frac{3}{3} \times 3$ or $\frac{13}{2} \times 8_{8}^{9} \sqrt{21}=1$ or $\frac{1}{3} \sqrt{2} \sqrt{21}$.

Ex. 5. Given $\left.\begin{array}{rl}x^{3}+y^{3} & =189 \\ x^{2} y+x y^{2} & =180\end{array}\right\}$ to find the values of x and y. operation.
In order to show that several different plans may generally be adopted in dealing with simultaneous quadratics, so as to evolve the values of x and y, we shall give two or three different solu. tions of this problem.

1 st Method.

| $x^{3}+y^{3}=189$ | (I) | |
| ---: | :--- | :--- | :--- |
| $x^{2} y+x y^{2}=180$ | (II) | |
| $3 x^{2} y+3 x y^{2}=540$ | (III) | $=$ (II) $\times 3$. |
| $x^{y}+3 x^{2} y+3 x y^{2}+y^{3}=729$ | (Iv) | $=$ (I) + (inI). |
| $x+y=9$ | (v) | $=$ (Iv) with $\sqrt[5]{ }$ taken. |
| $x y(x+y)=180$ | (VI) | $=$ (II) factored. |
| $x y=20$ | (vII) | $=$ (vi) \div (v). |

Hence $x=9-y ; x y=y(9-y)=20$ or $y^{2}-9 y=-20$, whence $y=5$ or 4 and $x=4$ or 5 .

2nd Method.

$\begin{aligned} x^{3}+y^{3} & =189 \\ x^{2} y+x y^{2} & =180 \end{aligned}$	(I)	
$x y(x+y)=180$	(III)	= (ii) factored.
$x+y=\frac{180}{x y}$	(iv)	$=(\mathrm{III}) \div x y$.
$x^{3}+3 \dot{x}^{2} y+3 x y^{2}+y^{3}=\frac{180^{3}}{x^{3} y^{3}}$	(v)	= (iv) raised to 3rd power.
$3 x^{2} y+3 x y^{2}=\frac{180^{3}}{x^{3} y^{3}}-189$	(vi)	$=(\mathrm{v})-(\mathrm{l})$.
$3 x y(x+y)=\frac{5832000-189 x^{3} y^{8}}{x^{3} y^{3}}$	(vil)	= (vi) simplified.
$x y(x+y)=\frac{1944000-63 x^{3} y^{3}}{x^{3} y^{3}}$	(viII)	$=(\mathrm{VII}) \div 3$.
$180=\frac{1944000-63 x^{3} y^{3}}{x^{3} y^{3}}$	(Ix)	$\begin{aligned} & =(\text { vini) with } 180 \text { substifntedi } \\ & \text { for } x y(x+y) . \end{aligned}$
$180 x^{3} y^{3}=1944000-63 x^{3} y^{3}$	(x)	$=(\mathrm{Ix})$ cleared of fractions.
$243 x^{8} y^{3}=1944000$	(XI)	$=(x)$ transposed.
$x^{3} y^{3}=8000$	(XII)	$=(\mathrm{xl}) \div 243$.
$x y=20$	(XIII)	$=$ (xII) with $\sqrt[8]{\text { taken }}$

ART. 21

Then and $x=$ $y=5$ or
$(v+$
$8 v^{y}-729$
$8 v z^{2}=9$
Henc
$180 v^{x} y^{2}-$
$v^{2} y^{3}+v y$

Hence
and $x=$

ART. 211.] SIMULTANEOUS QUADRATICS.
Then, as before, since $x y(x+y)=180$ and $x y=20 \therefore x+y=9$ and $x \neq 9-y$, whence $y(9-y)=20$ or $y^{2}-9 y=-20$, wherefore $y=5$ or 4 and $x=4$ or 5.

(I)	
(II)	
(III)	$=(n)$ with $(v+z)$ written

$$
2 v\left(v^{2}-\approx^{2}\right)=180
$$

$$
\text { (IV) }=\text { (III) written thus, } x y(x+y)
$$

$$
\text { and then }(v+z) \text { and } v-z
$$

$$
\text { substituted for } x \text { and } y \text {. }
$$

$$
2 v^{3}+6 v z^{2}=189
$$

$$
\text { (v) }=\text { (III) expanded and red. }
$$

$$
2 v^{3}-2 v z^{2}=180
$$

$$
\text { (vi) }=\text { (Iv) expanded. }
$$

$$
6 v^{3}-6 v z^{2}=540
$$

$$
\text { (vil) }=\text { (vi) } \times 3
$$

$$
8 v^{3}-729 \text { or } 2 v=9 \text { or } v=\frac{9}{2} \quad \text { (VIII) }=\text { (V) }+ \text { (VII). }
$$

$$
8 v z^{2}=9 \text { or } 8 z^{2} \times \frac{9}{2}=9 \text { or } \left.z= \pm \frac{1}{2} \right\rvert\, \text { (IX) } \mid=(\mathrm{V})-(\mathrm{VI})
$$

Hence $x=v+z=\frac{9}{2} \pm \frac{1}{2}=5$ or 4.

$$
y=v-z=\frac{y}{2}-\left(\pm \cdot \frac{1}{2}\right)=\frac{9}{2} \mp \frac{1}{2}=4 \text { or } 5 .
$$

4th Method.

- $x^{3}+y^{3}=189$	(I)	
$x^{2} y+x y^{2}=180$	(II)	
$x y(x+y)=180$	(III)	= (II) factored.
$x+y=\frac{180}{x y}$	(iv)	$=(111) \div x y$
$x^{2}-x y+y^{2}=\frac{189 x y}{180}$	(v)	$=(\mathrm{I}) \div$ (IV).
$v^{2} y^{2}-v y^{2}+y^{2}=\frac{189 v y^{2}}{180}$	(vi)	$=(\mathrm{v})$ with $v y_{y}$ subs. for x.
$180 v^{2} y^{2}-180 v y^{2}+180 y^{2}=189 v y^{2}$	(viI)	$=(\mathrm{Iv}) \times 180$.
$20 v^{2}-41 v+20=0$	(viII)	$=$ (viI) trans. and $\div 9 y^{2}$.
$20 v^{2}-41 v=-20$	which	is a quadratic equation,
$v^{2} y^{3}+v y^{s}=180 \text { or } y^{s}=\frac{180}{n^{2}+y^{2}}$	(IX)	Whence $v=\frac{5}{4}$ or ${ }^{\frac{4}{5}}$. $=$ (II) with $v y$ subs. for x.

Hence $y^{3}=\frac{180}{\frac{35}{8}+\frac{5}{4}}$ or $\frac{180}{\frac{18}{8}+\frac{4}{6}}=64$ or 125 whence $y=4$ or 5 and $x=5$ or 4 .

In order to save figures, the second method is better applied by letting $x+y=s$ and $x y=p$, then

Hence $p=x y=20$, and $s=x+y=9$, \&c.

Exercise LIV.

Find the values of x and y in the following equations :-

1. $\left.x^{2}-y^{2}=45\right\}$
$x-y=5\}$
2. $\left.x^{2}-y^{2}=105\right\}$
$x+y=21\}$
3. $x^{2}+y^{2}=41^{1}$ $x+y=9\}$
4. $x^{2}+y^{2}=113$
5. $\left.x^{2}+y^{2}=89\right\}$
6. $x^{2}-y^{2}=55$
$x y=-40$
7. $3 x^{2}-2 y^{2}=175$
$2 x-3 y=$
$x y=40$
8. $3 x^{2}-2 y^{2}=15$
$2 x-3 y=$

$$
x-y=-15\}
$$

6. $\left.\begin{array}{r}-y x y=72\end{array}\right\}$

$$
\left.\begin{array}{r}
4 x^{2}+3 y^{2}=511 \\
3 x+2 y=27
\end{array}\right\}
$$

11. $x+y=4$

$$
x-y=2\}
$$

$\left.x^{3}+y^{3}=(x+y)^{2}\right\}$
12. $\left.\begin{array}{rl}\sqrt[8]{x}+\sqrt[2 y]{y} & =3 \\ \sqrt[2]{x y} & =2\end{array}\right\}$
13. $x+4 y=14$

$$
\left.\begin{array}{l}
x+4 y=14 \\
y^{2}+4 x=2 y+11
\end{array}\right\}
$$

14. $\left.2 x^{5}+x y-5 y^{2}=20\right\rangle$

$$
2 x-3 y=1\}
$$

$$
\text { 15. } \left.\begin{array}{r}
\frac{9 x+5 y}{4}=x y \\
x-y=2
\end{array}\right\}
$$

17. $\left.\begin{array}{rl}\frac{x^{2}}{y^{2}}+\frac{4 x}{y} & =\frac{85}{9} \\ x-y & =2\end{array}\right\}$
18. $\left.x^{2}+x y=66\right\}$
$\left.x^{2}-y^{2}=11\right\}$
19. $x^{5}+y^{5}=3368$ \}

$$
x+y=8
$$

23. $x^{4}+y^{4}=97$ \}

$$
x-y=9\}
$$

25. $\left.\begin{array}{l}\frac{x+y}{x y}=\frac{3}{4} \\ x+y-13=13-x^{2}-y^{2}\end{array}\right\}$
26. $x+y=x^{2}$

$$
7 y-2 x=36\}
$$

29. $x^{2}+2 y^{2}=74-x y$

$$
\left.2 x y+y^{2}=73-2 x^{2}\right\}
$$

31. $3 x^{2}+2 x y-4 y^{2}=108$)
< $\left.\quad x^{2}-3 x y-7 y^{2}=-81\right\}$
32. $\left.\begin{array}{l}x^{2}+x y=77 \\ x y-y^{2}=12\end{array}\right\}$
33. $\left.\frac{x^{2}}{y}+\frac{y^{2}}{x}=18\right\}$
34. $x^{3}+y^{3}=133$
$x+y=7\}$
35. $\left.x^{3}+y^{8}=91\right\}$
$\left.x^{2} y+x y^{2}=84\right\}$
36. $\left.\begin{array}{rl}\frac{x+y}{x-y}+\frac{x-y}{x+y}=26 \\ x^{2}+y^{2}=52\end{array}\right\}$
37. $\left.\begin{array}{rl}x^{4}+y^{4} & =14 x^{2} y^{2} \\ x+y & =m\end{array}\right\}$
38. $x^{4}-x^{2}+y^{4}-y^{2}=84$ \}

$$
\left.x^{2}+2 x^{2} y^{2}+y^{2}=85\right\}
$$

32. $y^{2}-x^{2}-y-x=12$

$$
\left.(y-x)^{2}(y+x)=48\right\}
$$

33. $\left.\begin{array}{c}\frac{x^{2}}{y^{2}}+\frac{2 x+y}{\sqrt{y}}=20-\frac{y^{2}+x}{y} \\ x+8=4 y\end{array}\right\}$
34. $\left.\begin{array}{rl}x^{3}+y^{3} & =35 \\ x^{2}+y^{2} & =13\end{array}\right\}$
35. $\left.\begin{array}{rl}x^{4}+y^{4} & =x \\ x^{3}+y^{3} & =1\end{array}\right\}$
36. $\left.\begin{array}{l}\frac{\sqrt{ }\left(y^{2}+1\right)+1}{\sqrt{\left(y^{2}+1\right)-1}}=\frac{\sqrt{ }(x+9)+3}{\sqrt{(x+9)-3}} \\ x(y+1)^{2}=36\left(y^{3}+1 \frac{7}{4}\right)\end{array}\right\}$
37. $\left.\left(x^{6}+1\right) y=\left(y^{2}+1\right) x^{3}\right\}$ $\left.\left(y^{6}+1\right) x=9\left(x^{2}+1\right) y^{3}\right)$
38. $\left.\frac{x^{2}}{y^{2}}+\frac{y}{x}+\frac{x}{y}=\frac{27}{4}-\frac{y^{2}}{x^{2}}\right\}$
39. $\sqrt{ }(5 \sqrt{ } x+5 \sqrt{ } y)+\sqrt{ } y=10-\sqrt{ } x$ $\left.\sqrt{x^{5}}+\sqrt{ } y^{5}=275\right\}$
40. $\left.\begin{array}{l}x^{3}+y^{3}=x-y \\ x^{2}+y^{2}=a x y\end{array}\right\}$
41. $x y+a(x-y)=a^{2}$

$$
\left.x+y^{2}+a^{3}=0\right\}
$$

42. $x^{2}+y^{2}+a^{2}=0$
$\left.x^{4}+y^{4}+a^{4}+x^{2}\left(3 y^{2}+a^{2}\right)=0\right\}$
43. $x^{2}+3 y+a^{3}=0$
$\left.x^{6}-3 y^{3}+a^{6}+x^{2} y\left(3 x^{2}-y\right)=a^{3} x^{2}\left(x^{2}+2\right)\right\}$
44. $x-y=a$
$\left.x^{4}+y^{4}=b^{4}\right\}$
45. $x^{2}-x y+y^{2}=a^{2}$
$\left.x^{4}-x^{2} y^{2}+y^{4}=b^{4}\right\}$
46. $3 x^{6}-12 x^{4}+18 x^{2}=2 y^{6}-11 y^{4}+52 y^{2}+27$ to fnd x and y $\left.x^{4}-y^{4}-3+2 x^{2}(a-1)=2 a\left(y^{2}-1\right)+2 y^{2}\left(x^{2}-1\right)\right\}$ independent of a
47. $\left.\left.\left(y^{2}-x^{2}\right)\left(y^{2}-x^{2}+4\right)+5=2 \sqrt{4\left(y^{6}-x^{6}\right)-\left(5 x^{2}+12 x^{2} y^{2}-5 y^{2}\right)\left(y^{2}-x^{2}\right.}\right)\right\}$ $y^{4}-3 y^{2}-1=5 x^{2}-8 x\left(1-\sqrt{x^{2} \cdots 2 x+5}\right)+4$
48. $\left.\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}-4\right)=4\left(x^{2}-3\right)\right)$
$\left.x^{2} y^{2}+7\left(x^{2}-y^{2}\right)=6 x y \sqrt{y^{2}-x^{2}}\right)$

PROBLEMS PRODUCING QUADRATIC EQUATIONS.

1. What two numbers are those whose difference is 5 and the product of whose sum by the greater is 228 ?

SOLUTION.
Let $x=$ the greater, then $x-5=$ the less.
$x+x-5=2 x-5=$ their sum.
Then $x(2 x-5)=228$

$$
\begin{equation*}
2 x^{2}-5 x=228 \tag{I}
\end{equation*}
$$

$16 x^{2}-40 x+25=1849$ (III) $=$ (II) $\times 9$, then sq. completed.
$4 x-5= \pm 43$
\mid (IV) $\mid=$ (III) with $\sqrt{ }$ taken.
$4 x=48$ or -38
$\therefore x=12$ or $-9 \frac{1}{2}=$ the greater.
$x-5=7$ or $-14 \frac{1}{2}=$ the less.
2. A poulterer bought 15 ducks and 12 turkeys for 105 shillings, at the rate of 2 ducks more for 18 shillings than of turkeys for 20 shillings. What was the price of each?

Art. 2

Let
The

Note. into acc $2 y^{2}+2$ conditio
3. Fi shall be

Let also x

The

Verif

SOLUTION.

Let $x=$ price of a duck in shillings and $y=$ price of a turkey.

$$
\begin{align*}
& \text { Then } 15 x+12 y=105 \tag{1}\\
& \frac{18}{x}=\frac{20}{y}+2 \tag{II}\\
& 5 x+4 y=35 \\
& 9 y-10 x=x y \\
& 10 x+8 y=70 \\
& 17 y=x y+70 \\
& x=\frac{35-4 y}{5} \\
& \begin{array}{c}
17 y-y\left(\frac{35-4 y}{5}\right)=70 \\
2 y^{2}+25 y=175
\end{array} \\
& 16 y^{2}+200 y+625=2025 \\
& \text { (iII) }=\text { (I) reduced. } \\
& \text { (iv) }=\text { (iI) reduced. } \\
& \text { (v) }=\text { (III) } \times 2 \text {. } \\
& \text { (vi) }=(\mathrm{IV})+(\mathrm{v}) \text {. } \\
& \text { (viI) }=\text { (III) transposed and reduced. } \\
& \text { (viII) }=\text { (vi) with } \frac{35-4 y}{5} \text { subs. for } x \text {. } \\
& \text { (ix) }=\text { (viII) reduced. } \\
& \text { (x) }=(\mathrm{Ix}) \times 8 \text { and sq. complete. } \\
& 4 y+25= \pm 45 . \\
& 4 y=20 \text { or }-70 \text { whence } y=5 \mathrm{~s} \text {. } \\
& x=\frac{35-4 y}{5}=\frac{35-20}{5}=3 \mathrm{~s} \text {. }
\end{align*}
$$

Note.-The negative value - 17s. 6 d . tor the price of a turkey is not taken into account here, as although $-17 \frac{1}{2}$ is undoubtedly a root of the equation $2 y^{2}+25 y=175$, yet -17 s . 6 d . as the price of a turkey does not satisfy the conditions of the problem as given and must therefore he neglected.
3. Find a number such that the sum of its square and its cube shall be nine times the next higher number.

SOLUTION.

Let $x=$ the number, then $x^{2}=$ its square, and $x^{3}=$ its cube ; also $x+1=$ the next higher number.

$$
\begin{array}{rl|l}
\text { Then } x^{3}+x^{2}=9(\dot{x}+1) \\
x^{2}(x+1) & =9(x+1) & \quad \begin{array}{l}
\text { (I) } \\
\text { (II) }
\end{array} \\
x^{2}=9 & =\text { (I) factored. } \\
x= \pm 3 & \text { (II) } & =\text { (II) } \div x+1 . \\
\text { (IV) } & =\text { (III) with } \sqrt{ } \text { taken. }
\end{array}
$$

Verification. Take +3 ; then $27+9=36=9(3+1)$.
Take -3 ; then $-27+9=-18=9(-3+1)=9 x-2$.
4. A person at play won, at the first game, as much money as he had in his pocket; at the second game he won 5 shillings more than the squara root of what he then had; at the third game he won the square of all that he then had, and he found that he then possessed $\mathcal{E} 112$ 16s. What had he at first?

SOLUTION.

Let $x=$ the shillings he had at first.
Then $2 x=$ the shillings he had at the end of the 1st game.
$\sqrt{2 x}+5=$ sum won at the 2nd game.
$2 x+\sqrt{2 x}+5=$ sum at end of 2 nd game.
$(2 x+\sqrt{2 x}+5)^{2}=$ sum won at 3rd game.
$\left.(2 x+\sqrt{2 x}+5)^{2}+2 x+\sqrt{2 x}+5\right)=$ sum at the end of the 3rd game. Then

$$
\begin{gather*}
(2 x+\sqrt{2 x}+5)^{2}+(2 x+\sqrt{2 x}+5)=2256 \tag{1}\\
(2 x+\sqrt{2 x}+5)^{2}+(2 x+\sqrt{2 x}+5)+1=\frac{2025}{4} \\
(2 x+\sqrt{2 x}+5)+\frac{1}{2}= \pm \frac{95}{2} \\
2 x+\sqrt{2 x}=42 \text { or }-.53
\end{gather*}
$$

Rejecting the negative result we
(ii) $=$ (I) with $\frac{1}{4}$ added.
(iii) $=$ (II) with $\sqrt{ }$ taken.
(IV) = (III) transposed.

$$
\begin{aligned}
& (2 x)+\sqrt{2 x}=42 \\
& (2 x)+\sqrt{2 x}+\frac{1}{4}=169 \\
& \sqrt{2 x}+\frac{1}{2}= \pm \frac{13}{2} \\
& \sqrt{2 x}=6 \text { or }-7 \\
& 2 x=36 \text { or } 49 \\
& x=18 \mathrm{~s} .
\end{aligned}
$$

have
(vi) $=$ (v) with sq. comp.
(vil) $=(\mathrm{vi})$ with $\sqrt{ }$ taken (vili) $=$ (viI) transposed.
(ix) $=$ (viII) squared.
(x) $-(\mathrm{Ix}) \div 2$.

Note. The $24 \frac{1}{2}$ which ve get here as one value of x is not admissible as an answer to the probiem, simply becal se it does not answer the conditions of the problem as given, and it obviously arises from the fact that the $\sqrt{2 x}$ may be either \pm. It becomes an answer ef the problem if we understand that at the 2 nd game he lost a sum which was 5 shillings less than the square root of what he then had.
5. What number is that which being divided by the product of its digits, the quotient is 2 , and if 27 be added to the number, the digits will be inverted?

SOLUTION.

A and B travel in the same direction, at the same rate, and on the same road, and consequently the distance between them is always the same.

Let $x=$ rate per hour of travelling.
The places where A and B overtook the geese are 5 miles apart, and as the geese travel at the rate of $\frac{3}{2}$ of a mile per hour, to travel over 5 miles they would require $5 \div \frac{3}{3}=\frac{10}{3}$ hours. But in ${ }_{3}^{10}$ hours A has moved on $\frac{10 x}{3}$ miles, while the geese have moved on only 5 miles.

Therefore distance in miles between A and $B=\frac{10 x}{3}-5$.

Again, A met the waggon $50-2 x$ miles from London, while B met it $31+\frac{2 x}{3}$ miles from London, consequently as the waggon was travelling from London, the distance in miles. travelled by the waggon between the two meeting was $\left(31+\frac{2 x}{3}\right)$
$8 x-57$ $-(50-2 x)=\frac{8 x-57}{3}$ miles. And since the waggon travelled at. the rate of $\frac{9}{4}$ miles per hour, $\frac{8 x-57}{3} \div \frac{9}{4}=\frac{32 x-228}{27}=$ time in hours which elapsed between the meeting.

But in $\frac{32 x-228}{27}$ hours A has moved toward London $\left(\frac{32 x-228}{27}\right) x$ miles while the waggon has gone in the opposite direction $\left(\frac{8 x-57}{3}\right)$ miles.

Therefore distance in miles between A and $B=\frac{32 x^{2}-228 x}{27}$ $+\frac{8 x-57}{3}$.

And since distance between \mathcal{A} and B is always the same,

$$
\begin{align*}
& \frac{32 x^{2}-228 x}{27}+\frac{8 x-57}{3}=\frac{10 x}{3}-5 \tag{1}\\
& 16 x^{2}-123 x=189
\end{aligned} \left\lvert\, \begin{gathered}
\text { (1) } \\
1024 x^{2}-7872 x+(123)^{2}=27225
\end{gathered} \begin{aligned}
& \text { (II) } \\
& 32 x-123=165 \\
& \text { (III) } \\
& \text { (I) reduced. } \\
& =\begin{array}{l}
\text { (II) } \because 64 \text { and with sq. } \\
\text { then completed. } \\
\text { (iiI) with } \sqrt{ } \text { taken. }
\end{array} \\
& x=\frac{165+123}{32}=9=\text { rate per hour of travelling. }
\end{align*}\right.
$$

Distance of B from $A=\frac{10 x}{3}-5=\frac{40}{3}-5=25$ miles = distance of B from London when A arrives there.

Exercise LV.

1. Divide the number 19 into two palts such that their product shall be 84 .
2. What two uumbers are those whose sum $=17$, and the product of whose difference by the greater is 30 .
3. its le sions 4. the st

ذ. to the
6. and g was t 7. that if each 8.
the sur positio the prc from t numbe
9.
which 40 cent and wh 10. sum of 11. 35 time 12. F the difif 13. T than the of each made on same dis
14. T reciproc

15 A his child
3. There is a rectangular field whose area is 2080 rods, and its length exceeds its breadth by 12 rods. Required its dimensions.
4. What two numbers are those whose difference is 9 , and the sum of whose squares is 353 ?
j. Divide the 16 finto two parts such that their product added to the sum of their squares shall be 208.
6. A commission merchant sold a quantity of wheat for \$171, and gained as much per cent. as the wheat cost him. What was the price of the wheat?
7. A person bought a number of sheep for $\$ 80$, and found that if he had bought 4 more for the same sum they would have each cost $\$ 1$ less. How many did he buy?
8. A certain number consisting of three digits is such that the sum of the squares of the digits, without considering their position, is 104, and the square of the middle digit exceeds twice the product of the other two by 4 ; also if 594 be subtracted from the number its-digits will be inverted. Required the number.
9. A farmer paid $\$ 240$ for a certain number of sheep, out of which he reserved 15, and sold the remainder for $\$ 216$, gaining 40 cents a-head on those he sold. How many sheep did he buy, and what was the price of each?
10. What two numbers are those whose sum is 10 , and the sum of whose cubes is 280 ?
11. What are the two parts of 24 whose product is equal to 35 times their difference.
12. Find two numbers such that their sum, their product, and the difference of their squares are all equal to one another.
13. The fore-wheel of a carriage makes 6 revolutions more than the hind-wheel in going 120 yards, but if the circumference of each had been increased one yard, the fore-wheel would have made only 4 revolutions more than the hind-wheel in going the same distance. What is the circumference of each wheel?
with sq. ed. ken.
14. The sum of two fractions is $1+\frac{6}{6}$ and the sum of their reciprocels is $23^{5} \varepsilon$. What are the two fractions?

15 A person dies leaving $\$ 46800$ to be divided equally among his children. It chances, however, that immediately after the
death of the father two of his children also die, and in consequence of this each remaining child recelves $\$ 1950$ more than it was entitled to by the fathers will. How many children were there?
16. During the time that the shadow of a sun-dial which shows true time, moves from one o'clook to five, a clock which is too fast by a certain number of hours and minutes, strikes a number of strokes, which is equal to that number of hours and minutes, and it is observed that the number of minutes is less by 41 than the square of the number which the clock strikes att the last time of striking. The clock does not strike 12 during the time. How much is it too fast?
17. Two locomotives commence running at the same time from the two extremities of a railroad 324 miles in length; one travelling 3 miles an hour faster than the other, and they meet after having travelled as many hours as the slower travelled miles per hour. Required the distance travelled by each.
18. A person ordered $\$ 144$ to be distributed among some poor people; but, before the money was divided there came in two claimants more by which means the share of each was $\$ 1$ below what it would otherwise have been. What was the number at first?
19. Find a number such that, being divided by the product of its two digits the quotient is $2 ;$ and 27 boing added to the number its digits are inverted.
20., A grocer sold 60. lbs. of coffee and 80.1 bs , of reygar for $\$ 25$, but he sold 24 lbs. more of sugar for $\$ 8$, than he did of coffee for $\$ 10$. What was the price of a lb . of each ?
21. A and B engage to crade a field of grain for $\$ 36$; and as A: alone could cradle it in 18 days, they promise to complete it in 10 days. They found however that they were obliged to call in C, an inferior workman, to assist them for the laet fomr days, in consequence of which B received $\$ 1 \cdot 50$ less than he would otherwise have done. In what time could B or C separately reap the field?
22. A reotangular vat 5 feet deep holds, when fillea to the depth of 4 feet, less than when completely filled by a number of cubic feet equal to 80, together with half the numbers of, feet in
the p a pole oppos numb bottor
23. from 1 they n and t 4 hou and 0 24. to the equal 25. and sel 3 of t whole left. two ho what b empty
in reg consid second

Nom lent to
in consere than it iren were ial which ck which strikes a tours and is less by kes at the uring the lame time agth ; one they meet : travelled ch.
some poor
me in two \$1 below number at product of ed to the sugar for he did of

86; and as omplete it ed to call fomr days, ho would separately
lea to the number of of feet in

SECTION X.

R'ATIO, PROPORTION, AND VARIATION.

RATIO.

212. Ratio is the relation one quantity bears to another in regard to magnitude, the comparison being made by considering what multiple or fraction the first is of the second.

Nomp - It will be seep from this definition that the term ratio is equivalent to the cominion arithmetical term quotient.

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences

218. The ratio of one quantity to another is expressed by placing a colon between them or loy writing them in the form of a fraction.
Thus, the ratio of a to b is written $a: b$ or more commonily $\frac{a}{b}$
214. Ratio can exist, of course, only between quantities of the same kind, because it is only between such quantities that any comparison as to magnitude can be instituted
215. Quantities are of the same kind when one can be multiplied so as to exceed the other.

Abstract

Thus, a ratio can exdst between a cent and $£ 100$, or between a squary nch and an acre, or betweon 2 grain troy and a cwt., because in each cas the one can be multiplied so as to excced the other, or, in other words thy quantities entering into the ratio are of the same kind; but no ratio car exist between a linear inch and an acre, because the former cannot be multiplied so as to excoed the latter.

216. The term of the ratio which precedes the sign or which is written as numerator of the fraction is called the antecedent of the ratio, the remaining term, the consequent
217. A ratio is said to be a ratio of greater inequality a ratio of equality, or a ratio of less inequality, accordind as the antecedent is $>,=$, or $<$ the consequent.
218. If the antecedents of any ratios be multipled to gether and also the consequents, there is formed a ne ratio which is said to be compounded of the former ration

Thus, the ratio ace: $b d f$ is said to be compounded of the ratios $a: b, c:<$ and e : f.
219. A ratio compounded of two ratios is called th sum of these ratios, thus, when the ratio $a: b$ is com pounded with itself the resulting ratio $a^{2}: b^{2}$ is called th - double of the ratio $a:^{`} b$ or more commonly the duplical ratio of $a: b$; also the ratio $a^{3}: b^{s}$ is called the tripled

ARTs. 21
the rati $a: b$.

Notr. $\sqrt[3]{ } a: \sqrt[f]{b}$,
220. ratios as nary rule magnituc fractions numerato
221. T and a rati to both its

Demonest to ench term Then ${ }^{*} \frac{a}{b}$ is if $a>b$
$a<b$ then
*Road $\frac{a}{b}$
222. THI and a ratio quantity frc

Dexomestr tractod from

Than $\frac{a}{b} \geq$
*The quan
[8mor. X s expressed Shem in the

$\frac{a}{6}$

1 quantities uch quantio instituted. one can be
stween a squar use in each case other words the out no ratio cm rmer cannot to
les the sign ion is called e consequent. r inequaliy, y, according rit.
multipled to rmed a ner prmer ratios
ratios $a: b, c: d$
is called the : b is com is called th he duplicau the triple
the ratio $a: b$ or more commonly the triplicate ratio of $a: b$.

Norz.-Similarly the ratio $\sqrt{a}: \sqrt{b}$ is called the subduplicate, the ratio $\sqrt[3]{a}: \sqrt[3]{b}$, the subtriplicate; $a^{\frac{2}{2}}: b^{\frac{3}{2}}$, the sesquiplicate of the ratio $a: b$, \& c.
220. Problems upon ratios are solved by writing the ratios as fractions and treating these ${ }^{\text {ffactions }}$ by the ordinary rules. Ratios are compared with one another as to magnitude by writing them as fractions, reducing these fractions to a common denominator and comparing the numerators.
221. Throrem I. - A ratio of greater inequality is diminished, and a ratio of less inequality increased by adding the same quantity to both its terms.

Demonstration.-Lot $a: b$ be a ratio of inequality, and let x be added to each term.

Then* $\frac{a}{b} \geqslant \frac{a+x}{b+x}$ as $a b+a x \geqslant a b+b x$, or as $a x \geqslant b x$ or as $a \geqslant b$. That is if $a>b$ then $a x>b x$ and $a b+a x>a b+b x$ and $\frac{a}{b}>\frac{a+x}{b+x}$; but if $a<b$ then $a x<b x$ and $a b+a x<a b+b x$ and $\frac{a}{b}<\frac{a+x}{b+x}$
*Read $\frac{a}{b}$ is greater than or less than $\frac{a+x}{b+x}$ according as, so.
222. Theorem II. \rightarrow A ratio of greater inequality is increased, and a ratio of less inequality diminiṣhed by subtracting the same quantity from both its terms.*

Damonstration.-Let $\boldsymbol{a}: \boldsymbol{b}$ be a ratio of inequality, and let \boldsymbol{x} be sub. trioted from each term.

Then $\frac{a}{b} \geqslant \frac{a-x}{b-x}$, as $a b-a x \geqslant a b-b x$; or $a s, b x \geqslant a x$ or $\alpha s b \geqslant a$.

[^8]223. A ratio is increased or diminished by being compoundel with another ratio according as the latter is a ratio of greater a less inequality.

Demonstration.-Let the ratio $a: b$ be compounded with the ratio $\boldsymbol{m}: n$, the latter being a ratio of inequality.

Then $\frac{a}{b} \lesseqgtr \frac{a m}{b n}$, according as $a b n \leqq a b m$, or as $n \leqq m$, or as $m: n$ is ratio of greater or less inequality.

Exarcise LVI.

1. Find the ratio compounded of $a: b ; c: a^{2}$; and $a b:$ of
2. Compound together the ratios $a^{2}-b^{2}: a^{3}+b^{3} ;(a-b)^{2}$: and $a^{2}-a b+b^{2}:(a-b)^{3}$.
3. Compound together the ratios $x^{2}-2 x-15: x^{2}-3 x-10$ $x^{2}+x-2: x^{2}+8 x+15$ and $x^{2}+12 x+35: x^{2}-1$.
4. Which is the greater ratio that of $a^{3}+b^{3}: a^{2}+b^{2}$ $a^{2}+b^{2}: a+b$.
5. Which is the greater ratio that of $x^{2}+y^{2}: x^{2}-y^{2}$ $(x+y)^{4}: x^{4}-x^{3} y+x^{2} y^{2}-x y^{3}+y^{4} ; x \sqrt[3]{5}$ being $>y \sqrt[3]{7}$.
6. What quantity must be subtracted from each term of ratio $a: b$ in order to make it equal to the ratio $c: d$.
7. What quautity must be added to each term of the rsi $m: n$ in order to convert it into a ratio of equality.
8. If $a: b$ be a ratio of greater inequality; what is the rad compounded of the ratio of $a+b: a-b$, the difference of duplicate ratios of $a: a$ and $a: b$, and the triplicate ratio $b: a+b$.
9. Prove that the ratio $a: b$ is the duplicate of the ratio $a+c$ to $b+c$, if c be a mean proportional between a and b.
10. Prove that $a^{2}-b^{2}: a^{2}+b^{2}$ is greater or less than the of $a-b: a+b$ according as $a: b$ is a ratio of greater or inequality.

PROPORTION.

224. Proportion consists in in equality between ratios, the two equal ratios being connected by the siga. or by the ordinary sign of equality.

For exan portion ox $a: b::^{\prime} c$

Nore 1. the extreme

Note 2. $a: b:: b$ betweon the to the other
225. TH of the extre

Demonst
For $\frac{a}{b}=$
Cor Hen
roadily foun
228. TH rqual to the -the factor factors of t
Demonstr ave $\frac{a}{b}=\frac{c}{d}$
227: Sinc rritten as t ained in A n other wo ver by add proportion, ermis. So Pr the firat: ne foryth oots of the he sapue m lemonstrati
hat is the rat fference of plicate ratio
of the ratio n a and b. s than the r greater or

For example, if a, b, c, and d be four proportional quantitien, the proportion oxisting between them is expressed by writing them thus, $a: b:: c: d$.

Nors 1.-The first and fourth of such proportional quantities are callod the extremes ; and the second and third, the means.
Note 2. -When three quantities a, b and c, are proportionals, so that $a: b:: b: c$; the second term, b is said to be a mean proportional between the other two, and the third term c is called a third proportional to the other two.
225. Theorex I.-If four quantitics be proportionals, the product of the extremes is equal to the product of the means.

Demonstration.-Let $a: b:: c: a$, then $a d=b c$.
For $\frac{a}{b}=\frac{c}{d}$ and multiplying each of these by $b d$ we havo $a d=b c$.
Cor. Hence if three terms of a proportion are given, the fourth may be roadily found. Thuc, $a=\frac{b c}{d} ; b=\frac{a d}{c} ; c=\frac{a d}{b} ; d=\frac{b c}{a}$
226. Thmorex II.-If the product of any two quantities be equal to the product of any two others, the four are proportionale -the factors 'of either product being made the extremes, and the factors of the other product the means.

Demonstration.-Lot $\alpha d=b c$, then dividing each of these by $b d$ and wo have $\frac{a}{b}=\frac{c}{d}$ that is $a: b:: c: d$.
227. Since the two ratios composing a proportion may be vritten as two equal fractions, it follows that all the results obained in Art. 106 may be applied to proportional quantities, or n other words, we may combine together in any manner whatver by addition or subtraction the first and second terms of a proportion, provided we similarly combine the third and fourth ermis. So also we may proceed with andsunultiples whatever ff the fixat and third, and any multiples whateter of the second inl fourth terms. Similarly we may combine any powers or oots of the first and second terms, provided we also combine he natue powers of roots of the third and fourth. (See (emonstrations in Art. 106 (I-xvi).
228. In solving problems in proportion the student must carefully bear the last proposition (227) in mind, and also ṭhat:-
I. Any proportion may be converted into an equation by taking the product of the extremes equal to the product of the means.
II. Any proportion may be converted into an equation, by writing the figst term divided by the second $=$ the third term divided by the fourth.
Ex. 1. If $a: b:: c: d$ prove that $(a+b)(c+d)=\frac{b}{d}(c+d)^{2}$ $=\frac{b}{d}(a+b)^{2}$.
Here $\frac{a}{b}=\frac{c}{d} \therefore a=\frac{b c}{d}$ and $c=\frac{a d}{b}$,
In the expression $(a+b)(c+d)$ substitute $\frac{c}{d}$ for a, and we
have $(a+b)(c+d)=\left(\frac{b c}{d}+b\right)(c+d)=\left(\frac{b c+b d}{d}\right)(c+d)=$ $\frac{b}{d}(c+d)(c+d)=\frac{b}{d}(c+d)^{2}$
Similarly in the expression $(a+b)(c+d)$ substitute $\frac{a d}{b}$ for c. This gives us $(a+b)(c+d)=(a+b)\left(\frac{a d}{b}+\dot{d}\right)^{b}=(a+b)$ $\left(\frac{a d+b d}{b}\right)=(a+b)(a+b) \frac{d}{b}=\frac{d}{b}(a+b)^{2}$.

Ex. 2.-Given $x^{3}+y^{3}: x^{3}-y^{3}:: 559: 127$ and $x^{2} y=294$ to find the values of x and y.

OPERATION.

$127 x^{3}+127 y^{3}=559 x^{3}-559 y^{3}$ or $686 y^{3}=432 x^{3}$ or $343 y^{3}=210$ r or $7 y^{\prime}=6 x \therefore y={ }_{8}^{6} x$. Substitute this value of, y in the secon? equation and we have
(1) ${ }^{2} y=294$ or $x^{2} \times \frac{8}{7} x=294$ or $\frac{6 x^{3}}{7}=294$, or $\frac{x^{3}}{7}=49$;
$=343$; or $x=7$, whence $y=6$.

ARt. 228 :
Ex. 3.-
Prove
Since
$\frac{n}{n}=\frac{p}{q}$.
$=\frac{c}{d} \times \frac{p}{q}$.
that is $m a$

1. If a, quantity
2. If f number wl numbers
3. If a $p c^{2}-2 q d^{2}$
4. The ference of 1. What
5. The each other proportion,
6. If \boldsymbol{x} $d x=c y$.
7. If (a prove that
8. Wha product are
9. 4 pes

SECT. \mathbf{x}.
udent must 3, and also equation by I to the pro-
equation, by $1=$ the third

$$
=\frac{b}{d}(c+d)^{2}
$$

a, and we

$$
(c+d)=
$$

te $\frac{a d}{b}$ for c.
$d)=(a+b)$
$x^{2} y=294$ to
$343 y^{3}=216 x^{4}$ 1 the second

Ex. 3.-If $a: b:: c: d$ and also $m: n:: p: q$.
Prove that mad $n b::^{\prime} m a-n b:: p c+q d: p c-q d$. .
Since $a: b: c: d$ and $m: n:: p: q$, then $\frac{a}{b}=\frac{c}{d}$ and $\frac{n}{n}=\frac{p}{q} \quad$ Multiplying these equals together, we have $a^{a} \times \frac{m}{n}$ $=\frac{c}{d} \times \frac{p}{q}$ or $\frac{m a}{n b}=\frac{p c}{q d}$. Then, Art. 106 (vii), $\frac{m a+n b}{m a-n b}=\frac{p c+q d}{p c-q d}$ that is $m a+n b: m a-n b:: p c+q d: p c-q d$.

Exrrcise LVII.

1. If a, b, c, d be any four quantities whatever, find what quantity added to each will make them proportionals.
2. If four numbers be proportionals show that there is no number which, being, added to each will leave the resulting four numbers proportionals.
3. If $a: b: j: c: d$ and $m: n:: p: q$ prove that $m a^{2}-2 n b^{2}:$ $p c^{2}-2 q d^{2}:: m a^{2}+2 n b^{2}: p c^{2}+2 q d^{2}$
4. There are two numbers whose product is 24 , and the dif ference of their cubes is to the cube of their difference, as 19 to 1. What are the numbers?
5. The number 20 is divided into two parts, which are to each other in the duplicate ratio of 3 to 1 . What is the mean proportional between these parts?
6. If $x: y:: a^{3}: b^{3}$ and $a: b:: \sqrt[3]{c+x}: \sqrt[3]{d+y}$ prove that $d x=c y$.
7. If $(a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+b-c-d)$ prove that $a: b:: c: d$.
8. What two numbers are those whose sum, difference and product are as the numbers s, d and p respectively.
9. A persion in a railway carriage observes that another train What on a parallel line in the opposite direction occupies $\{$ frends in passing him; but, if the two trains had been NW in the same direction, it would have required 30 papass him ; compare the rates of the two tringe. The , wa Bpecnlate in trade. with different sums of mpney. Af Wha $\$ 150$ and B loses $\$ 50$, and now A's stock is to B'g as

Arts.

Thus (1) var De cha

Naxy
always
23
when the rea portion

Thus,
must be
For ex as the all equal tri
$\propto \frac{1}{B}$
233
229. Variation is an abridged method of indicating proportion, and is conveniently used in investigating the relation which varying but dependent quantities bear to one another.

The two terms of a variation are the two antecedents of the correspouding proportion-the consequents not being expressed. 'Thus, when we say the intereet. varies as the prineipal, we mean that if P and p be any two principals and I and i, the corresponding interests at a given rate and time, then
$I: f:=P: p$ or briefly, omitting the consequente, $l \propto P$:
230. The sign \propto is called the sign of variation and is rend varies, as.

Thut, $I \in P$ is read, I varies as P.
281. One quantity is said to vary directly as when the two quantities depend upon each other, co if one be changed in any manner the other manit a changed in the same proportion?

3iot. $\mathbf{x .}$
k would
$?$ $-b+c$:
c) $(b-c)$. everally d sum is ns, and a compare
$11 \geqslant d$ $-b d$ ess $(a+b)$ $b: \sqrt[3]{d} d$.
ndioating pating the 3 bear to
corresponds, when we i p be any ren rate and
on and is

Thus, leaving time and rate per cent. out of consideration, the intereat (I) varies directly as the principal (P), for if I is changed to i, P muat alco Do changed to p in moh i mannor that $I: i:: P: p$.

Natm. - When we amply cay that one quantity varles as another, wo are always uiderntood to mean that the one varies divectly as the other.
232. One quantity is said to vary inversely as another when the first cannot be changed in any manner, but the reciprocal of the second is changed in the same proportion.
Thus, $A \propto \frac{Y}{B}$ (A varies inversely as B), if, when A is changed to a, B must be ohanged to b, so that $A: a:: \frac{1}{B}: \frac{1}{b}:: b: B$.
For example, if the area of a triangle be given the base varies invervely as the altitude, for if \mathcal{A} and a be the altitudes and B and b the bases of two equal triangles, then $A B=a b: A: a:: b: B$ or $A: a: \frac{1}{B}: \frac{1}{b}$ or A $\propto \frac{1}{B}$
233. One quantity is said to vary as two others jointly, if when the first is changed in any manner the product of the other two is changed in the same proportion.

That is $A \propto B C$ (A varies as B and C jointly) when if A be chaingud to a the product $B C$ must be changed to bc in such a way that $A: a:: B C: b c$.

Thus, the area of a triangie varies as the bape and altitude jointly; foritr A, B and P represent the area, base and altitude of any triangle, and a, b, p the area; base and altitude of any other triangle, then $A=1 B P$ and $a=\frac{1}{2} b p . \therefore \frac{A}{a}=\frac{B P}{b p} \therefore A: a:: B P: b p \therefore A \propto B P$.
234. One quantity is said to vary directly as a second and inversely as a third, when the first cannot be changed in ghy manner, but the quotient of the second by the Is changed in the same proportion.

$$
\begin{aligned}
& \text { is, } A \propto \frac{B}{C}(A \text { varics directly as } B \text { and inversely as } C, \text { when, if } A \text { vo } \\
& \text { ed to } a, \frac{B}{C} \text { must be changed to } \frac{b}{\text { so that } A: a: \frac{B}{C}}: \frac{b}{C}
\end{aligned}
$$

Thus, the bese of a trianglo varies dirootly as the ares and inversoly as the altitude; for taking $A, B, P ; a, b$ and p as in lant artiole $\frac{B P}{b p}=\frac{A}{a}$, multiplying both $\frac{p}{P}$ wo got $\frac{B}{b}=\frac{A p}{a P}=\frac{A}{P} \div \frac{a}{p} \therefore B: b$ $: \frac{A}{P}: \frac{Q}{p}$ or $B \propto \frac{A}{P}$

THEOREMS.

235. Tamorny 1.-If one quantity vary us another, it is equal to some constant multiple of that other. That is, if $\mathbf{A} \propto \mathbf{B}$ then $\mathrm{A}=\mathrm{mB}$ where m is a constant quantity.

Demonstration, For if $A \propto B$ then $A: a:: B: b$, alternately $A: B:: a: b \therefore \frac{A}{B}=\frac{a}{b}$, let $\frac{a}{b}=m$, then $\frac{A}{B}=m \therefore A=m B$. where m is a constant quantity.

Note 1.-This principle enables us to convert a variation into an equation and is therefore made use of in almost every problem and theorem in variation.

Notre 2.-Hence if m is a constant quantity and $A=m B$ then $A \propto B$, i.e Δ varies as $B ;$ also if $A=\frac{m}{B}$ then $A \propto \frac{1}{B}$ i.e. A varies inversely as $B ;$ also if $A=\frac{m B}{C}$ then $A \propto \frac{B}{C}$ i. e. vạres directly as B and invorsely as C. Also, if $A=m B C$, then $A \propto B C$ i.e. A varies as B and C jointly,
238. Theorem III. - If $A \propto B$ and $B \propto C$, then $A \propto C$.

Demonstration.-By Theorem I, $A=m B$ and $B=n C$ where m and n are constants, then $A=m n C$, that is $A \propto C$. becanse both m and n being constant, $m n$ their product is also constant:
Noter-Also if $A \propto B$ and $B \propto \frac{1}{C}$ then $A \propto \frac{1}{C}$.
237. Theony III.-If $\mathcal{A} \propto C$ anl $B \propto C$ then $A \pm B \propto C$ and $\sqrt{ }(A B) \propto C$.

Demonstration.-By Theprem $I, A=m C$ and $B=n C$ where m and n are constants. Then $A \pm B=m C \pm n C=(m \pm n) C \therefore A \pm B \propto C$, because $m \pm n$ is a constant quantity.
Also $V(A B)=V(m C \times n C)=V(m n C 2)=V(m n) C \therefore \sqrt{A B} \propto C$.
238. Theorem. IV.-If $A \propto B C$, then $B \propto \frac{A}{C}$ and $C \propto \frac{A}{B}$

Dexonstration. $-B y$ Theorem 1, $A=m B C$, then $\dot{B}=\frac{A}{m U}=\frac{1}{A}$ $\therefore B \propto \frac{A}{C}$ and $C=\frac{A}{m}=\frac{1}{m} \cdot \frac{A}{B} \therefore C \propto \frac{A}{B}$
239. Theobax V. $-I f: \mathcal{A} \propto B$ and $C \propto D$, then $A C \propto B D$.

Demonetration.-By Theorem $\mathrm{I}, A=m B$ and $C=n D$, then $A C=$ $m n B D$ and.$\therefore A C \propto B D$.

2\&0. Thzorm VI.-If $\boldsymbol{A} \propto B$ then $A^{n} \propto B^{n}$.
Denconetration.-By Theorem $\mathrm{I}, A=m B$, thon $A^{n}=m^{n} B^{n}$, but m is a constant quantity $\therefore A^{n}$ de B^{n}.

Note. - So also if $A \propto B$ thon $\mathbb{N} A \propto \sqrt[N]{B}$.
241. Thorey VII-If $\mathcal{A} \propto B$ and P be any other quantity then $A P \propto \cdot B P$ and $\frac{A}{P} \propto \frac{B}{P}$

Dimonstration.-By Theorom $I, A=m B$ hence. $P A=m P B$ $\therefore P A \propto P B$.
Also $A=m B \therefore \frac{A}{P}=\frac{m B}{P}=m \frac{B}{P} \therefore \frac{A}{P} \propto \frac{B}{P}$,
Nore. -Hence $\frac{A}{B}$ is constant, for if $A \propto B$ dividing beth by B, we have $\frac{A}{B} \propto \frac{B}{B} \propto 1$.
242. Tarorem VIII.-When three quantities are so related that. the increase or decrease of one depends upon the increase or derrease of the other two, in such a way that if either. of these latter be invariable the first varies as the other, then when both vary the first varies as their product. That is, if $A \propto B$ when C is constant and $A \propto C$ when B is constant, then $A \propto B C$ when both B and C are variable.

Demonstration.-The variations of A depends upon the variations of two other quantities B and C; let the variations of these take place separately, and when B is changed to b let A be changed to a, and when C is changed to c lot a be changed to a. Thon
$A: a: B: b$; and
$a: a^{\prime}:: C: c$ and by compounding these we have
$A: a^{\prime}:: B C: b c \therefore(A r t .229) A \propto B C$.
Nore.-In a similar way it may be shown that when there is any number of quantities, A, B, C, D gc., such that A varies as each of the others whon ther zut are constant-then, when they are all changed, 4 paries 8 their: poditat

Ex. 1. If $x \propto y z^{3}$ and 2,3 and 5 be contemporaneous values of x, y and z, express x in terms of $y z$.

OPERATION.

Since $x \propto y z^{2} \therefore x=m y z^{2}$ and when $x=2, y=3$ and $z=B$, then subutituting, these values we have $2=m \times 3 \times b^{2}=75 m \therefore m=$ 2r. Then $x=m y z^{2}$ or $x=y^{2} y z^{2}$.
Ex. 2. Given that $a \propto b$ and that when $a=2, b=1$, find the value of a when $b=5$.

OPIRATIOY.

Since $a \propto b \therefore a=m b$ or $2=m$. because $a=2$ and $b=1$.
Then when $b=5$ we have $a=m b=2 \times 5=10$.
Ex. 3. Given that $x \propto y z$, and that $x=2$ when $y=z=2$, find the value of x when $y=z=3$.
oparation.
Since $x \propto y z \therefore x=m y z$, that is $2=m \times 2 \times 2=4 m \therefore m=\frac{1}{4}$ Then $x=m y z=\frac{1}{2} \times 3 \times 3=\frac{9}{2}=4 \frac{1}{2}$ when $y=z=3$.
Ex. 4. If $4 y+3 z \propto \delta y+4 z$, shew that $y \propto z$, opiration.
$4 y+3 z \propto 5 y+4 z$ or $4 y+3 z=m(5 y+4 z)=5 m y+4 m z$
$\therefore 4 y-6 m y=4 m z-3 z$ or $(4-5 m) y=(4 m-3) z$ or $y=\left(\frac{4 m-3}{4-5 m}\right) z$ $\varphi y=z$ multiplied by the constant quantity $\frac{4 m-3}{4-5 m} \therefore y \propto z$.
Ex. . If $y=$ the sum of three quantities af which the first $\propto x^{2}$, the second $\propto x$, and the third is constant, and when $x=1,2,3, y=6,11,18$ respectively, express y in terms of x.
oprration.
The first quantity $\propto x^{2}$ and is $\therefore=m x^{2}$, similarly the second quantity $\propto x$ and is therefore $=n x$, and the third quantity is constant, and is $\therefore=p$, say; Then y being $=$ the sum of these we have $y=m x^{2}+n x+p$, and taking $x=1,2,3$ and $y=6,11$, 18; we get the three equations:-

$$
\left.\begin{array}{rl}
6 & =m+n+p \\
11 & =4 m+2 n+p \\
18 & =9 m+3 n+p
\end{array}\right\}
$$

which when solved give $m=1 ; n=2$, and $p=3$, and subutituting these in the equation $y=m x^{2}+n x+p$ we have $y=x^{2}+2 x+8$.

Exzroime LVIII.

1. If $m x^{2}+y \propto c x^{2}-d y$ show that $x \propto y$.
2. Given that $x \propto y$ and that when $x=7, y=3$ find the equation between x and y.
3. Given that $x=$ the sum of two quantities whereof one is constant and the other varies inversely es y, and when $y=3$, $x=1$ when $y=1, x=2$, find the value of x when $y=16$.
4. Given that $x^{3} \propto y^{3}$ and $x=2$ when $y=4$ find the equaton between x and y.
5. If $x=$ the sum of two quantities whereof one is, constant and the other $\propto x y$; and when $x=2, y=3$, when $x=3, y=-3$, express x in terms of y.
6. If $y=$ the sum of three quantities, of which the first is: constant, the second $\propto c x$, and the third $\alpha^{\prime} x^{2}$; and when $x=3_{r}$ B, 7, $y=0,-12-32$ respectively ; find the equation between x and y.
7. Given that $y=$ the sum of two quantities one of which varies as the square of x, while the other varies as x inversely. and that when $x=5, y=7$ and when $x=9, y=5$ find the equaion between x and y.
8. Given that $y \propto\left(b^{2}+x^{2}\right)$, and when $x=V\left(a^{2}-b^{2}\right)$, $y=\frac{a^{2}}{b}$ find the equation between x and y.
9. If x, y, z be all variable quantities such that $z-x-y$ is constant, and $(x+y+z)(x-y-z) \propto y z$, prove that $x-y+z$ $\propto y z$.
10. A locomotive engine without a train, can go 24 miles per hour, and its speed is diminished by a quantity which varies ae: the square root of the number of cars attached. With 4 cars its speed is 20 miles per hour. Find the greatest number of care the engine can move.

SECTION XI.

progressions, permutations, and combinations.

ARITHMETICAL PROGRESSION.

243. Quantities are said to be in Arithmetical Progression when they increase or decrease by u common difference.

Thus, 4, 6, 8, 10, 12, \&c., are in arithmetical progression, the common difference being 2.
$21 a, 18 a, 15 a, 12 a, 9 a, 6 a, \& c$. , are in arithmetical progres., the common difference being $-.3 a$.
$8 a+5 a+7 a+9 a, 8 c c$, are in arith, progress., the common difference being $2 a$.
244. In every progression the first and last terms are called the extremes, and the intermediate terms the means.
245. In arithmetical progression there are five things to be considered :

1. The first term.
2. The !ast term.
3. The common difference.
4. The number of terms.
5. The sum of the series.

These quantities are so related to one another that any three of them being given, the other two can be found, and hence there are 20 distinct cases arising from these combinations.
246. If we represent these five quantities by letters, thus,
$a=$ the first term, $l=$ the last term, $d=$ the common difference, $n=$ the number of terms, $s=$ the sum of the series,
the general expression for an arithmetical scries will become

$$
a+(a+d)+(a+2 d)+(\dot{a}+3 d)+(a+4 d)+(a+5 d)+, \& c .
$$

Where the coofficient of d is always one less than the number of the term. Thas, in the third term the coefficient of d is 2 , which is 1 less than the number of the term; in the fifth term the coefflcient of d is 4 , which is 1 less than the number of the term, ic.

Hence $l=a+(n-1) d$; that is, the last term of an arithmetical series is equal to the first term added to the product of the common difference by one less than the number of terms.
247. Since the sum of the series is equal to the sum of all the terms taken in any order whatever, we have

$$
\begin{aligned}
s & =a+|a+d+|a+2 d+|a+3 d+|\ldots l-3 d+|l-2 d+|l-d+| l \\
\text { Also } s & =l+|l-d+|l-2 d+|l-3 d+|\ldots a+3 d+|a+2 d+|a+d+| a
\end{aligned}
$$

Hence $2 s=(a+l)+(a+l)+(a+l)+(a+l)+\ldots$ to n terms. But $(a+l)+(a+l) \ldots$ to n terms $=(a+l) n$.

Therefore $2 \Omega=(a+l) n$, and dividing these equals by 2 , we have $:=(a+l) \frac{n}{2}$. That is, the sum of the series is found by adding together the first and last terms, and multiplying themr sum by half the number of terms.
248. From the formula obtained in Art. 247, we find by transposing the terms

$$
\begin{array}{ll}
l=a+(n-1) d & d=\frac{l-a}{n-1} \\
a=l-(n-1) & d n=\frac{l-a}{d}+1
\end{array}
$$

and substituting these values of $\boldsymbol{l}, \boldsymbol{a}, \boldsymbol{d}$, and n in the formula obtained in Art. 247, we find

ABr.
Ex.

Sinc 7 term metica
We thus obtain the five fundamental formulas from which the other fifteen are derived, by transposing the terms, \&c. Thus,

$$
\begin{aligned}
& l=a+(n-1) d \text { gives formulas for } l, a, n ; d=4 \\
& s=(a+l)_{2}^{-} \quad u \quad \| \quad s, a, l, n=4 \\
& s=\{2 a+(n-1) d\} \frac{n}{2} \quad \text { い } \quad s, a, n, d=4 \\
& s=\{2 l-(n-1) d\} \frac{n}{2} \quad \| \quad s, l, n, d=4 \\
& s=\frac{(l+a)(l-a)}{2 d}+\frac{l+a}{2} \| \quad s, a, l, d=\underline{4} \\
& \text { Total } 20
\end{aligned}
$$

249. By means of these equations when any three of the quantities a, d, l, n, s, are given, we may find a fourth, and may moreover proceed to the solution of many problems which without their aid would be difficult or even impossible. The student is recommended to carefully study the following examples :-

Ex. 1. Find the,sum of the first 50 terms of the series $4 a+6 a$ $+8 a+10 a+8 c$.

OPERATION:

$$
\begin{aligned}
& s=\{2 a+(n-1) d\} \frac{n}{2}=\{8 a+(50-1) 2 a\} \frac{40}{8}=(8 a+49 \times 2 a) 25 \\
&=(8 a+98 a) 25=106 a \times 25=2650 a .
\end{aligned}
$$

Ex. 2. Given 3, the first term, and 55, the last term, of a series consisting of 27 terms, to find the common difference.

$$
\begin{aligned}
& \text { opration. } \\
& l=a+(n-1) d \text { or }(n-1) d=l-a \therefore d=\frac{l-a}{n-1} \\
& d=\frac{55-3}{27-1}=\frac{52}{26}=2 .
\end{aligned}
$$

Ex.
up 3795

87
$7590=1$
$n^{2}+$

Notx, question,

Ex. 5.
is 32 , anc

Let $x=$
Then x
$\therefore x-y$
Also (
$=276$ or 2
And $y=$
That is,
That is,
$x-8=$
$y=16$
Hence t
taking $x=$
vhich the Thus,

ART. 219.J ARITHMETICAL PROGRESSION. 201

Ex. 3. Insert 5 arithmetical means between 1 and 23.

OPMRATIOS.

Since there are five means and two extremes, there are in all 7 terms, and we must find the common, difference of an arithmetical series of 7 terms whose first term is 1 and last term 23.

$$
d=\frac{l-a}{n-1}=\frac{23-1}{7-1}=\frac{22}{6}=33 .
$$

Hence the series is $\left.\left.1,43,8 \frac{1}{3}, 12,15\right\}, 19\right\}, 23$.
Ex. 4. How many terms of the series $6+8 \frac{1}{y}+103$, dc., make up 3795 ?
operation,
$\left.\varepsilon=\{2 a+(n-1) d\} \frac{n}{2} ; 3795=\{12+(n-1) 2\}\right\} \frac{n}{2}$
$7590=12 n+\left(n^{2}-n\right) 2 \frac{1}{2} ; 22770=36 n+7 n^{2}-7 n ; 7 n^{2}+29 n=22770$

$$
n^{2}+29 n+\left(\frac{29}{7}\right)^{2}=22 \not 770+\frac{89}{196}=638401 ; n+7 \frac{79}{4}= \pm 3{ }^{2} 92
$$

$$
n=\frac{ \pm 799-29}{14}=\frac{779}{74}=55
$$

Notr,-TThe negative value $-57 \frac{\beta}{\gamma}$ does not satisfy the conditions, of the question, and is therefore inadmissible.

Ex. 6. The sum of four numbers in arilhmetical progression is 32 , and the sum of their squares is 276 . Required the numbers.

operation.

Let $x=$ the second number and $y=$ the com. diff.
Then $x-y, x, x+y$, and $x+2 y$ is the series.
$\therefore x-y+x+x+y+x+2 y=4 x+2 y=32$ or $2 x+y=16$.
Also $(x-y)^{2}+x^{2}+(x+y)^{2}+(x+2 y)^{2}=4 x y+4 x^{2}+6 y^{2}$ $=276$ or $2 x^{2}+2 x y+3 y^{2}=138$.
And $y=16-2 x \therefore 2 x^{2}+2 x(16-2 x)+3(16-2 x)^{2}=138$.
That.is, $2 x^{2}+32 x-4 x^{2}+768-192 x+12 x^{2}=138$.
That is, $10 x^{2}-160 x=-630 ; x^{2}-16 x=-63 ; x^{2}-16 x+64=1$. $x-8= \pm 1$ or $x=9$ or 7 .
$\dot{y}=16-2 x=16-18=-2$, or $16-14=2$.
Hence taking $x=9$ and $y=-2$ we have the series $11 ; 9,7,5$; taking $x=7$ and $y=2$ wo have $5,7,0,11$.

Otherwise, let $x-3 y, x-y, 2+y$, and $x+3 y$ represent the number, where $2 y=$ the common diference.

Then $x-3 y+x-y+x+y+x+3 y=4 x=32 \therefore x=8$.
$(x-3 y)^{2}+(x-y)^{2}+(x+y)^{2}+(x+3 y)^{2}=4 x^{2}+20 y^{2}=276$ or $20 y^{3}=276-256=20$.
$y^{2}=1, y= \pm 1$. Hence $x-3 y=8 \mp 3=5$ or 11 , dc.

Ex日roism LIX.

Sum the following series:

1. $68,65,67$, ic., to 31 terms and also to n terms.
2. $-200,-188,-176,-164,-\& \mathrm{c}$., to 22 terms and to n terms.
3. $\mathcal{F}, 3 \frac{1}{3}, 5, \& c$, to 17 terms and also to $2 m+p$ terms.
4. $3,0,-3,-1 \frac{1}{3}$, \&c., to 11 terms.

Find the 17 th and 28th and nth terms of the series:
S. $2,5,8$, \&c.
6. $3,-2,-7$, de.
7. $2 \frac{1}{2}, 37^{3}, 3+\frac{3}{4}$, \&c.
8. Ingert 3° arithmetical means between 3 and 33.
9. Imsert 4 arithmetical means between 9 and -66 .
10. Insert 7 arithmetical mesing between - 1 and 100.
11. Find the gum of 73 terms of the series $1,2,3,4$; \&c.
12. What is the nth torm of the series, $1,3,5,7$, \&c.
13. Prove that the sum of n terms of the series $1,3,5,7$, te., is equal to n^{2}.
14. If a body falling to the earth descends a feet the first second, $3 a$ feet the second, $5 a$ feet the third, and so on; how far will it fall in t seconds ?
15. How far will the body (Question 14) fall during the 20th second and diuring the t th second.
16. There are four numbers in arithmetical progression, of which the sum of the squares of the extremes is 200 , and the unn of the equares Q the means is 136. . Find the numbers.
17. There are four numbers in arithmetical progreasion whosi continued product is 1680 and common difference 4. What sp the numbibers?
18. There are five numbers in arithmetical procreasign whoee rim is 25 and continued product 945 . What are the nembers?

$\mathbf{A R}_{\mathbf{R}}$

19. A man borrowed $\$ 60$ at 6 per cent. simple interest, per year of 360 days. How much must he pay daily to cancel the debt, principal, and interest; in 60 days?
20. Prove that the sum of n terms of the natural numbers 1,2 , 3 , \&ce, is $\frac{n(n+1)}{2}$.
21. Prove that the sum of the squares of the first n natural numbers is $\frac{n(n+1)(2 n+1)}{6}$.
22. How many terms of the series $2,11,20$, \&c., are required to inake up 517?
23. Find the arithmetical series the last three terms of which amount to 96 , and the preceding four terms of which added together make up 86.
24. Find the arithmetical series of which the 5th and 7th terms are respectively 7 and 5 .
25. Given s the sum of an arithmetical series $=b n+c n^{2}$ for all values of n, find the t th term of the series.
26. Prove that the sam of the $(m-n)$ th and $(n+n)$ th terms of an arithmetical series is double the m th term.
27. In an arithmetical progression if the $(p+q)$ th term $=m$, and the $(p-q)$ th term $=n$, prove that the q th term of the series is $=n_{l}-(m-n) \frac{p}{2 q}$.
28. Sum to n terms the arithmetical progression whose p th term is $7-\frac{p}{2}$.
29. There are three numbers in arithmetical progression, such that the square of the first added to the product of the other two is 16 ; the square of the second added to the product of the other two is 14. What are the numbers? -
30. The gum of four whole numbers in arithmetical progression TR and the sum of their reciprocals is $\frac{3}{2}$. Reqnired tite ambers.

GEOMETRIOAL PROGRESSION.

250. Quantities are said to be in geometrical progression when they increase or decrease by a common multiplier.

Thus, 2, 4, 8, 16, 82, \&o., are in geometrieal progression, the common multiplier being 2 .
$5 a^{\prime},-15 a^{2}, 45 a^{8},-185 a^{4}$, \&c., are in geometrical progresaion the common multiplier being -8a.
251. In geometrical progression there are five things to be considered:

1. The first term.
2. The last term.
3. The common ratio.
4. The number of terms.
5. The sum of the series.

As in arithmetical progression, these five quantities are so related that any three of them being given the other two can be found, and hence there are 20 distinot cases arising from their combination.
252. Representing these five quantities by letters, thus,
where the index of r is always one less than the number of the term.

Thus, in the third term the index of r is 2 , which is one less than the number of the term; in the fifth term the index of r is 4, which is one less than the number of the term, \&c.

Hence $l=a r^{n-1}$; that is, the last term is equal to the first term multiplied by the common ratio raised to that power which is indicated by one less than the number of terms.
253. Since the sum of the series is equal to the sum of all the terms,
rogrestiplier. common common ings to lated that ence there rrs, thus, ratio,
er of the
s one less ex of r is
the first ver which

```
    \(s=a+a r^{2}+a r^{2}+\ldots+a r^{n-y}+a r^{m-1}\), multiplying by \(r\), we get
    \(s r=a r+a r^{2}+\ldots+a r^{n-2}+a r^{n-1}+a r^{n}\).
    Hence \(s r-s=a r^{n}-a\); or \(s(r-1)=a\left(r^{n}-1\right)\), and therefore
\(s=\frac{a\left(r^{m}-1\right)}{r-1}\).
```

254. From the formula obtained in Art. 252 we get by transposing the terms, \&co.

$$
\begin{array}{ll}
l=a r^{n-1} & r=\left(\frac{l}{a}\right)^{\frac{1}{n-1}} \\
a=\frac{l}{r^{n-1}} & n=\frac{\log \cdot l-\log \cdot a}{\log \cdot r}+1
\end{array}
$$

And substituting these values of l, a, r, n, in the formula obtained in Art. 254, we find

$$
\begin{aligned}
& s=\frac{r l-a}{r-1} \\
& s=\frac{l\left(r^{n}-1\right)}{(r-1) r^{n-1}}
\end{aligned}
$$

$$
s=\frac{l^{\frac{n}{n-1}}-a^{\frac{n}{n-1}}}{l^{\frac{1}{n-1}}-a^{\frac{1}{n-1}}}
$$

and these together with the two formulas obtained in Arts. 252 and 253,

$$
\begin{aligned}
& s=\frac{a\left(r^{n}-1\right)}{r-1} \\
& l=a r^{n-1}
\end{aligned}
$$

are the fundamental formulas of geometrical progression from which the other fifteen are derived by reduction. Thus,

$$
\begin{aligned}
& s=\frac{r l-a}{r-1} \text { gives formulas for } s, r, l, \text { and } a,=4 \\
& s=\frac{l\left(r^{n}-1\right)}{(r-1) r^{n-1}} \\
& s=\frac{l^{\frac{n}{n-1}}-a^{\frac{n}{n-1}}}{\frac{1}{l^{n-1}}-a^{\frac{1}{n-1}}} \\
& s=\frac{a\left(r^{n}-1\right)}{r-1} \\
& l=a, r, l, \text { and } n,=4 \\
& l=a r^{n-1}
\end{aligned}
$$

255. When the common ratio of a geometrical series is a proper fraction, the series is a descending one, and if the number of terms is infinitely great, r^{n} becomes infinitely small; i. e., 2^{n} becomes $=0$; hence $\left.a\right)^{n}$ in formula $\frac{a r^{n}-a}{r-1}$ becomes equal to zero, and the formula for finding the sum becomes $\frac{-a}{r-1}=\frac{a}{1-r}$. The expression $\frac{a}{1-r}$ properly speaking, however, represents the limit of the sum of the infinite series rather than the sum itself.
256. By means of these formulas many problems in geometrical progression may be solved, but as a rule questions in which the value of n is sought are incapable of solution except by the h her analysis;

Fx. 1. Find the last term and the sum of the series $3,6,12$, \&c., to 11 terms.

OPERATION.

$$
\begin{aligned}
& l=a r^{n}-1=3 \times 2^{10}=3 \times 1024=3072 \\
& s=\frac{a\left(r^{n}-1\right)}{r-1}=\frac{3\left(2^{11}-1\right)}{2-1}=3(2048-1)=3 \times 2047=6141 .
\end{aligned}
$$

Ex. 2. Find the limit to the sum of the series $8+4+2+1+$ \&c., ad infinitum. OPRRATION.

$$
s=\frac{a}{1-r}=\frac{8}{1-\frac{1}{2}}=\frac{8}{\frac{1}{2}}=16
$$

Ex. 3. Find the 7th term and the sum of 8 terms of the series 5. $\frac{5}{9}$, $\frac{10}{27}$.
OPRRATION.

The common ratio is always $=2$ nd term $\div 1$ st term.
Hence in this question $r=\frac{5}{9} \div \frac{5}{6}=\frac{6}{9}=\frac{3}{5}$
$l=a r^{n-1}=\binom{5}{6}\left(\frac{2}{3}\right)^{6}=\frac{5}{6} \times \frac{64}{729}=\frac{160}{27} 87$
$s=\frac{a\left(r^{n}-1\right)}{r-1}=\frac{6\left(\left(\frac{2}{3}\right)^{7}-1\right)}{3-1}=\frac{5\left(\frac{5188}{2}-1\right)}{-\frac{1}{3}}=\frac{5\left(\frac{2187-128}{2187}\right)}{3}$ $=\frac{5}{2}\left(20 \frac{5}{8} 9\right)=10295=2 \frac{1}{25} \frac{47}{87}$.
eries is d if the finitely formula finding $\frac{a}{1-r}$ the sum
lems in le quespable of

3, 6, 12,

he series

Ex. 4. Insert three geomotrical means betweeh 4 and 324:
opmeation.
$l=a r^{n-1} \therefore r^{n-1}=\frac{l}{a}$.
And since there are here 3 means and 2 extremes there are in all 5 terms, then $r^{b-1}=394, r^{4}=81$, whence r is evidently $=3$, and the series is $4,12,36,108,324$.
Ex. . Find six numbers in geometrical progression such that the sum of the extromes is 99 , and the sum of the other four terms, 90. opization.
The sum of the six terms is evidently $99+90=189$.
Let $x=$ the first term and $y=$ the common ratio.
Then $x, x y, x y^{3}, x y^{3}, x y^{4}, x y^{3}$, represent the terms
$s=189=\frac{l r-a}{r-1}=\frac{x y^{6}-x}{y-1}=\frac{x\left(y^{6}-1\right)}{y-2}$
$\therefore x=\frac{189(y-1)}{y^{6}-1}$. Bat $x y^{6}+x=x\left(y^{6}+1\right)=99 \therefore x=\frac{99}{y^{6}+1}$
$\therefore \frac{189(y-1)}{y^{6}-1}=\frac{99}{y^{6}+1} ; \frac{21\left(y^{2}-1\right)}{y^{6}-1}=\frac{11}{y^{4}-y^{3}+y^{8}-y+1}$
$\therefore \frac{21}{y^{4}+y^{2}+1}=\frac{11}{y^{4}-y^{3}+y^{2}-y+1}$
$\therefore 21 y^{4}-21 y^{2}+21 y^{2}-21 y+21=11 y^{4}+11 y^{2}+11$
$10 y^{4}+10 y^{2}+10=21 y^{3}+21 y$
$10\left(y^{4}+y^{2}+1\right)=21 y\left(y^{2}+1\right)$
$10\left(y^{4}+2 y^{2}+1-y^{2}\right)=21 y\left(y^{2}+1\right)$
$10\left(y^{2}+1\right)^{2}-10 y^{2}=21 y\left(y^{2}+1\right)$

$$
10\left(y^{2}+1\right)^{2}-21 y\left(y^{2}+1\right)=10 y^{2}
$$

$$
\left(y^{2}+1\right)^{2}-\frac{21 y}{10}\left(y^{2}+1\right)+\left(\frac{21 y}{20}\right)^{2}=\frac{441 y^{2}}{400}+\frac{400 y^{2}}{400}=\frac{841 y^{2}}{400}
$$

$$
y^{2}+1-\frac{21 y}{20}= \pm \frac{29 y}{20}
$$

$$
y^{2}+1=\frac{21 y \pm 29 y}{20}=\frac{50 y}{20}=\frac{5 y^{\prime}}{2}
$$

$$
2 y^{2}-5 y=-2 ; 16 y^{2}-40 y+25=-16+25=9
$$

$$
4 y-5= \pm 3 ; 4 y=5+3=8 \therefore y=2
$$

$$
x=\frac{99}{y^{5}+1}=\frac{9}{3}=3
$$

Therefore the series is $3,6,12,24,48,96$.

Ex. 6. The sum of four numbers in geometrical progrension is equal to the common ratio +1 , and the first term in 1 tr. Required the numbers.

OPIRATYOK.

Let $r=$ the common ratio.
Then the numbers are $\frac{1}{17}, \frac{r}{17}, \frac{r^{3}}{17}$, and $\frac{r^{3}}{17}$.
Then $1+r=\frac{1+r+r^{2}+r^{2}}{17}=\frac{1+r+r^{2}(1+r)}{17}=\frac{(1+r)\left(1+r^{2}\right)}{17}$
$\therefore 1=\frac{1+r^{2}}{17}$ or $r^{4}+1=17 ; r^{2}=16, \therefore r= \pm 4$,
and the numbers are $1^{1}, i^{4}, 19$, 估,

madiss LX.

Find the last term and the sum of:

1. $3+9+27+\& c$. to 6 terms.
2. $1+2+4+$ \&c, to 9 terms.
3. $7+4+\frac{9}{3}+$ \&c. to 7 terms.
4. 3-6+12-\&c. to 12 terms.
5. $4-6+6 t-\& c$. to 6 terms.
6. $30-15+7 \frac{1}{2}-$ dc. to 8 terms.

Find the limit to the sum of the infinite series:
7. $-1 \frac{1}{3}+\frac{9}{9}-\frac{18}{2}+\& c$.
8. $8+\frac{18}{8}+\frac{8}{88}+8 c$.

0: 7 7-31 +17-4c. 10. $64-32+16-8 c$.
11. 623 .
12. $\cdot 7$.
13. $97 \dot{6}$.
14. 86232 .

Sum the following series :
15. $1+3+9+\& c$. to n terms.
16. $2-\frac{1}{8}+{ }_{26}^{8}-8 c$. to n terms.
17. $2+\sqrt{ } 8+4+\& c$. to 10 tarms.
18. $a^{p}+a^{p+q}+a^{p+2 q}+\& c$. to n terms.
19. Insert three geometrical means batween 1 and $\frac{18}{81}$.
20. Insert seven geometrical means between 2 and 13122.
21. Insert three geometrical means between 9 and 9.
22. The sum of the first and third of four numbers in G. P. is 148, and the sum of the second and fourth is 888. What are the numbers?

AET. 287.] . HARMONTOAL PROGRHESION.
23. The sum of the first and second of four numbers in G.P. is 15 , and the sum of the third and fourth is 60 . Required the number:
24. The sum of $\$ 315$ was divided among three persons in such \& way that the first received $\$ 135$ more than the last. The three shares being in G. P., required what they were. Interpret the negative result obtained in the solution.
25. There are five whole numbers, the first three of which are in G.P.; the last three in'A. P.; the second number being the common difference of these three terms. The sum of the last four is 40 , and the product of the second and last is 64. Required the numbers.
26. Prove that the sum of n terms of the series $a+(a+b) r$ $+(a+2 b) r^{2}+(a+3 b) r^{3}+\& c$.

$$
=\frac{a-\{a+(n-1) b\} r^{n}}{1-r}+\frac{\left.b r(1-r)^{1}\right)}{(1-r)^{2}}
$$

27. If a, b, c, d, are four quantities in G. P., prove that $a^{3}+b^{y}$ $+c^{2}>(a-b+c)^{2}$, and that $(a+b+c+d)^{2}=(a+b)^{2}+(c+d)^{4}$. $+2(b+c)^{2}$.
28. In a G. P. if the $(p+q)$ th term $=m$, and the $(p-q)$ th term $=n$, show that the p th term $=\sqrt{m n}$, and also that the q th term $=m\left(\frac{n}{m}\right)^{\frac{n}{2 n}}$.
29. The sum of three numbers in G.P. is 35 , and the mean term is ta the difference of the extremes as $2: 3$. Required the numbers.
30. There is a number consisting of three digits, the first of which is. to the second as the second is to the third; the number. itself is to the sum of its digits as 124 : 7 , and if 594 be added to it, its digits will be inverted. Required the number.

HARMONICAL PROGRESSION.

Quantities are said to be in harmonical progression eir reciprocals are in arithmetical progression, or by three consecutive terms the first is to the third
as the difference between the first and second is to the difference between the second and third.
Thus. a, b, and c are saild to be in H. P. When $a: 0:: a-b: b-0$. Aleo, mince $8,7,11$, to., are A. P., their reolprocale $\frac{f}{1}, t, i t$, to., are in H. P.
258. It may be easily proved that the reciprocals of a series of quantities in H. P. are in A. P., as follows :-

Let a, b, c be in H. P. Then $a: c:: a-b: b-c$ or $a(b-c)$ $=c(a-b)$, or $a b-a c=a c-b c$, and dividing each of these $b y$ $a b c$ we have $\frac{1}{c}-\frac{1}{b}=\frac{1}{b}-\frac{1}{a}$. But when the difference between the first and second is the same as the difference between the second and third, the three quantities are said to be in A. P.
259. No general rule can, be given for finding the sum of a series of terms i-H. P., but, by inverting the given terms so as to form a series in A. P., many useful problems may be solved.
Ex. 1. Oontinue the H. series $\left.2 \frac{1}{2}, 1 \frac{1}{3}, 1\right\}$, three terms each way.

opibation.

Since $\frac{f}{f}, \frac{f}{3}, \frac{f}{f}$, are in H. P., their reciprocale, $\frac{f}{6}, \frac{3}{3}, \frac{f}{6}$, are in A. P., and their common difference $=\frac{\delta}{6}$. Hence $-\frac{t}{\delta}, \frac{8, ~}{2}, \frac{8}{2}, \frac{3}{6}, \frac{5}{5}, \frac{5}{8}$, $\left.{ }^{5},\right\}$, is the continued A. series, and these terms inverted give us for the required H. series $-5, \propto, 5,2 \frac{1}{2}, 1 \frac{1}{2}, 1, \frac{5}{6}, \frac{4}{4}$.
Nove-The second term of the A. P. is 8 , which inverted gives us 8 which $=\propto$. ((8ee Art. 66.)
Ex. 2. Insert four H. means between 2 and 6. oparation.
Ingert four A. means botween $\frac{1}{i}$ and $\frac{1}{6}$. Here $d=\frac{\frac{t}{6}-\frac{1}{2}}{6-1}$
 \therefore H. series is $2,22^{4}, 2 \frac{8}{1 i} ; 3 \frac{1}{\xi}, 47,6$.
Ex. 3. Insert three H. means between 10 and 30.

oprration.

Insert 3 A. means between $\frac{1}{10}$ and $\frac{1}{30}$. Here $d=\frac{\frac{1}{0}-\frac{1}{5}-10}{5-1}=\frac{2 a b}{+16}=B$
 series $=10,12,15,20,30$.
is to the
: b- - c. Aloo, ure in $\mathbf{H} . \mathbf{P}$.
rocals of a llows: or $a(b-c)$ of these by ace between between the in A. P.
ing the sum g the given ful problems
e terms each
t, are in A. $, \frac{1}{5}, 8, \frac{3}{6}, \frac{5}{5}, \frac{5}{8}$, zerted give us , 4
rted gives us 8
$=\frac{\frac{1}{6}-\frac{1}{2}}{6-1}$

Ex. 4. Find the nth term of the H. serien $1 \frac{1}{1}, 1,2$, \&c. oparatioy.
The nth term of the A. serien $\}, 1, \frac{z}{1}, \& 0 .,=a+(n-1) d=\{+(n-1)\}$ $=\frac{2}{3}+\frac{n}{3}-\frac{1}{3}=\frac{1}{3}+\frac{n}{3}=\frac{n+1}{3} \therefore$ the nth term of the given H series is $\frac{3}{n+1}$.
260. Let a and b be any two quantities, and let A be their arithmetical mean, G their geometrical mean, and \boldsymbol{H} their harmonical mean. Then,

1. $A-a=b-A$ or $2 A=a+b \therefore A=1(a+b)$. Art. 243.
II. $a: G:: G: b$ or $G^{2}=a b \therefore G=\sqrt{a b}$. Arts. 224 and 250 . III. $a: b:: a-H: H-b$ or $a H+b H=2 a b \therefore H=\frac{2 a b}{a+b}$ Art. 257 . 201. Hence the A. mean between two quantities is equal to half their sum, the G. mean between two quantities is equal to the equare root of their product, and the H. mean between two quantities is equal to twice their product divided by their sum.
2. Thaorax 1.-Taking A, G, and H, as in last article, G is the geometrical mean between A and H .
Dimonetration. Since $A=1(a+b)$ and $H=\frac{2 a b}{a+b} \therefore A H$ $\frac{a+b}{2} \times \frac{2 a b}{a+b}=a b$, but $G^{2}=a b . \therefore G^{2}=A H$. Extracting the square root of both, we have $G=\sqrt{A H}$, that is, G is the geometrical mean between A and H.
3. Throrsm II.-Taking A, G, and H as in Art. 260, then of the three A is the greatest and H the least in magnitude.
Dhiongtramion. Because, (Art. 134) $a^{2}+b^{2}>2 a b, a^{2}+2 a b+b^{2}$ $4 a b$, and $a+b=\frac{4 a b}{a+b}$, and $\frac{a+b}{2}>\frac{2 a b}{a+b}$, but $\frac{a+b}{2}=A$, and $\frac{20 b}{a+b}=H, \therefore A>H$. And G being the geometrical mean betweon \boldsymbol{A} and H is of intermediate magnitude, $i . e$. , is greater than \boldsymbol{H} and less than $\boldsymbol{A}, \therefore \boldsymbol{A}>\boldsymbol{G}>\boldsymbol{H}$.
4. Thmonns III.-Three quanitities, a, b, c, are in A. P. or H. P., or G. P., according $\frac{a-b}{b-c}=\frac{a}{a}$ or $\frac{a}{b}$ or $\frac{a}{c}$.

Dimonstration I. $\frac{a-b}{b-c}=\frac{a}{a}=1 \therefore a-b=b-c$ or $b=\frac{1}{2}(a+c)$.
II. $\frac{a-b}{b-c}=\frac{a}{b} \therefore a b-b^{2}=a b-a c$ or $b^{2}=a c \therefore b=\sqrt{a c}$.
III. $\frac{a-b}{b-c}=\frac{a}{c} \therefore a: c:: a-b: b-c$.

Ex. 5. Find the A. G. and H. means between $1 \frac{1}{6}$ and 10.

opleation.

$$
\begin{aligned}
& A=\frac{1}{2}(a+b)=\frac{1}{2}\left(1 \frac{1}{6}+10\right)=\frac{1}{2} \times 11 \frac{1}{6}=\frac{1}{2} \times \frac{67}{6}=\frac{17}{1 z}=5.7 . \\
& G=\sqrt{a b b}=\sqrt{1 \frac{1}{6} \times 10}=\sqrt{16}=4 . \\
& H=\frac{2 a b}{a+b}=\frac{2 \times 1 \frac{1}{6} \times 10}{1 \frac{1}{6}+10}=\frac{32}{11 \frac{1}{6}}=2 \frac{58}{6} .
\end{aligned}
$$

Ex. 6. The difference of the A. and H. means between two numbers is 15 ; find the numbers, one being four times as great as the other.
opiration.

$$
\begin{aligned}
& A=\frac{1}{(}(a+b) \text { and } H=\frac{2 a b}{a+b} \therefore A-H=\frac{a+b}{2}-\frac{2 a b}{a+b} \\
& =\frac{a^{2}+2 a b+b^{2}-4 a b}{2(a+b)}=\frac{(a-b)^{2}}{2(a+b)}=9 \therefore \text { since } a=4 b \text { we have } \\
& \frac{(4 b-b)^{2}}{2(4 b+b)}=\frac{(3 b)^{2}}{2 \times 5 b}=\frac{9 b^{2}}{10 b}=\frac{9 b}{10}=\frac{9}{5} \therefore \frac{b}{10}=6 \text { or } b=2 \text { and } \\
& a=4 b=8 .
\end{aligned}
$$

Exeroism LXI.

1. Continue three terms each way the H. series, (1) $t, b, \frac{1}{t}$
 (vi) $-\frac{1}{2}, \propto, \frac{1}{1}$.
2. Insert three H. means between 2 and 3 ; between 5 and 7 between 11 and 3 ; between 24 and 34 ; between 6 and -8 .

3. 6.

s 4 and
7. first t
8.
9.
10.
11.
$2 b^{2}$,
12.
$a, m^{2 b}$,
13.
be take
be in C
14. two qu
15. 1
and on
16.
17.
betwee

PF
288
of qua or var

Thus $a b c, a c b$ cs, ca,
Some niflution which al
(Smot. XI.
$b=\frac{1}{2}(a+c)$
$=\sqrt{a c}$.
and 10.
$=5_{7}^{7}{ }^{7}$.
between two imes as great
$\frac{2 a b}{a+b}$
4b. we have
$\mathrm{r} b=2 \mathrm{and}$
(i) $\frac{1}{7}, \frac{1}{5}, \frac{1}{3}$ ir, 11, -13
en 5 and 7 and $-\frac{8}{6}$.
0. $21,1, f$
4. Find the 6th, 10 th, and last term of the H. series 4$\}, 6\}, 13$.
6. Find the 4 th and 8 th terms of the H. series $\frac{1}{1 \pi} 1^{1} \varepsilon, 1 \frac{1}{4}$.
8. Wind the unknown terms of a H. series whose first term is 4 and fourth term 1.
7. Find the 8 th term and the nth terms of a H. series whose first term is a and second term b.
8. Find the H. mean between $\frac{1}{m+n}$ and $\frac{1}{m-n}$.
9. Find the A. G. and H. means between 4 and 9.
10. Find the A. G. and H. means between 6 and $4 \frac{1}{6}$.
11. If a, b, c, be three quantities in H. P., prove that $a^{2}+c^{2}$ $>2 b^{2}$, if a and c are both positive or both negative.
12. If a, b, c, are in A. P., and $a, m b, c$, in G. P., prove that $a, m^{2} b, c$, are in H. P.
13. From each of three quantities in H. P. what quantity must be taken away in order that the three resulting quantities may be in G. P.?
14. The sum and difference of the A. and G. means between two quantities are 16 and 4 respectively. Required the numbers,
15. The A. mean between two numbers is 2% of the H. mean, and one of the numbers is 2 . Required the other.
16. Find two numbers whose sum is 30 and H. mean $13 \frac{1}{3}$.
17. Find two numbers whose difference is $16 \frac{4}{4}$ and the G. mean between the H. and A. means of which is 9 .

PERMUTATIONS, VARIATIONS, COMBINATIONS:

265. The different orders in which any given number of quantities can be arranged are called their permutations or variations.

Thus, the permutations of a, b, c, taken three together, are $a b c, a c b, b a c, b c a, c a b, c b a ;$ taken two together, they are, $a b, b a$, ic, $c a, b c, c b$.
Croms.-Some writers make a distinction between permutations and natudions--limiting the application of the former term to those oases in which all the quantities are taken together, and calling others variations.
268. The combinations of any given number of things are the different collections that oan be formed out of them without taking into consideration the order in which the quantities are placed.

Thus, the combinations that can be formed out of three things, a, b, c, are three in number, viz., $a b, a c$, and $b c$.
267. Theoram 1 . -The number of variations of n things taken p together is $\mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2) \ldots(\mathrm{n}-\mathrm{p}+1)$.
Demonstrition. Let there be n different things a, b, c, d, \&o.
Then the number of variations which can be formed out of these n different things taken one at a time is manifestly $=n$.
From the n things a, b, c, d, \&c., let us remove a, then there will remain $n-1$ things b, c, d, and the number of variations of these $n-1$ things taken singly will of course be $=n-1$. Now if we place a before each of these $n-1$ variations there will $n-1$ variations of a, b, c, d, \&c., taken two and two together, in which a stands first. Similarly there will be $n-1$ such variations in which b stands first, and so of the rest. Therefore there are upon the whole $n(n-1)$ variations of n things taken two and two together.

Hence of $(n-1)$ things b, c, d, \&c., taken two and two together, there are $(n-1)(n-2)$ variations, and placing a before each of these it appears there are $(n-1)(n-2)$ variations of n things a, b, c, tc., taken three and three together, in which a stands first, and as the same may be said of b, c, d, \&c., there are upon the whole $n(n-1)(n-2)$ variations of n things taken three and three together.

Similarly the number of variations of n things taken four and four together, may be shown to be $n(n-1)(n-2)(n-3)$, and five and five together, $n(n-1)(n-2)(n-3)(n-4)$, and so on. Now it has been shown that variations of n things taken 2 together $=n(n-1)$ or $n(n-2+1)$ 3. " $=n(n-1)(n-2) \quad$ or $n(n-1)\left(n^{2}-3+1\right)$ 4 ". $=n(n-1)(n-2)(n-3)$ or $n(n-1)(n-2)(n-4+1)$ and so on. Hence the variations of n things taken p together $=n(n-1)(n-2) \ldots(n-p+1)$.
of things ut of them which the
hree things,
hings taken
$b, c, d, \& c$. med out of stly $=n$. then there riations of - 1. Now there will ogether, in such varia. refore there cen two and
nd two to $\mathrm{gg} a$ before ations of n in which a , there are aken three
on four and $2-3$), and and so on. ken
+1)
$(n-4+1)$
p together

Cor. 1. If $\boldsymbol{p}=\boldsymbol{n}$, that is, if the quantities are taken all together, the variations or permatations of n things is $n(n-1)$ $(n-2) \ldots(n-n+1)=n(n-1)(n-2) \ldots . .3 .2 .1$, or, reversing the order of these terms we have permutations of n things = 1.2.3.4.... n.

Cor. 2. Hence denoting the variations of n things taken $1,2,3,4$, \&c., p together by $V_{1}, V_{3}, V_{3}, V_{1}$, \&c., V_{p} we have $V_{1}=n ; V_{8}=n(n-1) ; V_{3}=n(n-1)(n-2) ; V_{4}=n(n-1)$ $(n-2)(n-3) ; \& v_{0} ; V_{p}=n(n-1)(n-2)(n-3) \ldots(n-p+1)$.

NoTr.-For the sale of brevity $n(n-1)(n-2) \ldots .3 .2 .1$ is frequently indioated by $1 \boldsymbol{n}$ (read factorial n.) acoordingly, $i n$ denotes the continued product of the natural numbers from 1 to n inclusive.
268. Thigorex II. - The number of permutations of n things taken all together, whereof p are $\mathrm{m}^{\prime} \mathrm{s}$, q are $\mathrm{b}^{\prime} \mathrm{s}$, and r are $\mathrm{c}^{\prime} \mathrm{s}$, is

Dexombiration.-Let \boldsymbol{N} denote the number of permutations under the given conditions. Then if we suppose that in any one of these N permutations we cltange the $p a^{\prime}$ s into letters differing from all of the rest, we could from this single permutation produce $\lfloor\underline{p}$ different permutations, and as the same would be trie for each of the N permutations, it appears that if the $p a^{\prime}$ s are changed to letters differing from all the others, there will be $N \mid p$ permutations of n letters, whereof there are still q b's and. $r c^{\prime} \mathrm{s}$.

If now the q 's were changed to letters differing from all the rest, it may be shown by similar reasoning that we should have $N\lfloor p\lfloor q$ variations of n things, whereof there still remain $r c$'s.

Similarly, if the r c's are changed to letters differing from all the rest, we shall find that the number of permutations of n differont things $=N|\underline{p}| \underline{q} \mid \underline{r}$. But the permutations of n different things is n.

Hence $N|\underline{p}| \underline{q}|\underline{r}=| \underline{n_{2}}$ and dividing both sides of the equation

Ex. 1. How many variations can be made of 10 things taken $3,5,8$, and 10 at a time?
oprantios.
$V_{3}=n(n-1)(n-2)=10.9 .8=720$
$V_{6}=n(n-1)(n-2)(n-3)(n-4)=10.9 \cdot 8 \cdot 7 \cdot 6=30240$
$\boldsymbol{V}_{8}=n(n-1)(n-2)(n-3)(n-4)(n-5)(n-6)(n-7)$

$$
=10 \cdot 9.8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3=1814400
$$

$$
V_{1 Q}=1.2 \cdot 3.4 . \ldots, n=1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10=3628800 .
$$

Ex. 2. How many different words can be made with all the letters in the expression $a^{4} b c^{3} d e^{5}$. OPERATION.
We are to find the permutation of 13 letters, of which 4 are a 's, 3 are c 's, and 5 are e's.

$$
\begin{aligned}
N & =\frac{\underline{n}}{\underline{p}|\underline{q}| r}=\frac{1.2 .3 .4 .5 .6 .7 .8 .9 .10 .11 .12 .13}{1.2 .3 .4 \times 1.2 \times 1.2 .3 .4 .5} \\
& =7 \times 9 \times 10 \times 11 \times 12 \times 13=1081080
\end{aligned}
$$

Ex. 3. The number of variations of $n-2$ things 3 together : number of variations of n things 3 together :: $5: 12$. Find the value of n.

OPERATION.

$$
\begin{aligned}
& (n-2)(n-3)(n-4): n(n-1)(n-2): 5: 12 \\
& 12(n-2)(n-3)(n-4)=5 n(n-1)(n-2) \\
& 12(n-3)(n-4)=5 n(n-1) \\
& 12\left(n^{2}-7 n+12\right)=5 n^{2}-5 n \\
& 12 n^{2}-84 n+144=5 n^{2}-5 n \text { or } 7 n^{2}-79 n=-144 \\
& 196 n^{2}-2212 n+6241=-4032+6241=2209 \\
& 14 n-79= \pm 47 \therefore 14 n=126, \text { or } n=9 .
\end{aligned}
$$

Ex. 4. The variations of a certain number of things taken 3 - together is 20 times as great as the number of variations of half as many things taken 3 together. Find the number of things. OPERATION.

$$
\begin{aligned}
& n(n-1)(n-3)=20 \times \frac{1}{2} n\left(\frac{1}{2} n-1\right)\left(\frac{1}{2} n-2\right) \\
& n(n-1)(n-2)=10 n\left(\frac{n-2}{2}\right)\left(\frac{n-4}{2}\right) \\
& n(n-1)(n-2)=5 n(n-2)(n-4)
\end{aligned}
$$

and dividing both by $n(n-2)$ we have $n-1=\frac{5}{2}(n-4)$ thence $n=6$.
taken 3 is of half things.
thence

NXIROIS LXII.

1. In how many different ${ }^{\text {whem }}$ can six different counters be \mid arranged ?
2. How many: variations an be formed out $\phi \rho, 8$ things taken (I) 4 togother, (in) 6 together, and (iii) all together.
3. How many different worde can be formed out of the expression $a^{5} b^{4} c^{8} d$?
4. Assuming that sixteen changes can be rung per minute, and that the bells are rung 10 hours each day, how lops would it require to ring all the changes that can be rung on 12 belle?
5. If the number of permntations of n things $\overline{5}$ together is aix times as, great as the number 3 , together, find n.
6. A landlord agrees to board a company of 10 persons as many days as they can sit in different positions at table, for $\$ 5000$. Assuming that the board of each is worth $\$ 5$ per week, how much does he lose by the transaction? What is his logs if the $\$ 5000$ is paid at once and placed at simple interest at 6 per cent. per ancum till the close of the term of agreement?
7. The number of variations of 15 things,taken n together is ton times ar great as the number taken ($n-i$) togother. Find the value of n.
8 . How many different words may be made of all the letters In the words Constantinople, divisibility, octoroon, commemoration.
8. How many different permutations can be formed with the letters in the words algebra, demonstration, Toronto.
9. The variations of $\frac{5}{2} n$ things taken 3 together : variations of $3 n$ things taken 3 together $:: 145: 2$. Find n
10. Trmosy III-T The number of combinations of n things taken p together is $\frac{(n-1)(n-2)(n-3) \cdots \operatorname{n}(n-p+1)}{1.2 \cdot 3.4 \ldots p}$

Dhyosistration. The number of combinations of n things two and tho together is evidently only half as great as the number of variations of n things two together. Nince each combination Whegiren two variations, $a b, b a$, bence the combingtions of n thing two together is $\frac{n(n-1)}{2}$.

Again, since there are $n(n-1)(n-2)$ variations of n things taken three togother ${ }_{4}$ and each combination of three things admits of 1.2 .3 variations, it is evident that there are 1.2 .3 times as many variations of n things taken three together as of combinations taken three together, and consequently the number of combinations is $\frac{n(n-1)(n-2)}{1.2 .3}$.

Similarly, the variations of n things taken p together is $n(n-1)(n-2) \ldots(n-p+1)$, and every combination of p things will make 1.2.3....p variations. Hence there are 1.2.3....p times as many variations as combinations of n things taken p together, and consequently the number of combinations is $\frac{n(n-1)(n-2) \ldots(n-p+1)}{1.2 .3 \ldots p}$.
270. Theorem IV:-The number of combinations of n things taken $n-p$ at a time is equal to the number of them taken p at a time.

Demonstration, It has been shown by last theorem that the number of combinations of n things taken p together is $\frac{n(n-1)(n-2) \ldots(n-p+1)}{1.2 .3 \ldots p}$, and multiplying both numerstor and denominator of this expression by 1.2.3....(n-p) wo find that it $=\frac{n(n-1)(n-2) \ldots \ldots(n-p+1) \times(n-p) \ldots \ldots 3.2 .1}{1.2 .3 \ldots \ldots p \times 1.2 .3 \ldots \ldots(n-p)}$ $=\frac{n(n-1)(n-2) \ldots \ldots .3 .2 .1}{\underline{p} \underline{n-p}}=\frac{\mid n}{\underline{\underline{n}-p}}$

Now putting $n-p$ for p in this result, as may evidently be done, since the expression holds for all values of p which are less then n, we have $n-p=n-n+p=p$ and consequently :

$$
C_{p}=\frac{\mid n}{\mid p\lfloor n-p}=\frac{\mid n}{\underline{n-p}\lfloor p}=C_{n-p}
$$

that is, the C_{p} of n things $=C_{n-p}$ of the same n things.
Hence if $p>\frac{1}{n} n$, the number of combinations is more easily found by the supplemental formula, i. e., taken \boldsymbol{C}_{n-p} instead of \boldsymbol{C}_{p}.

Axt. 8
Nots.
n thinge difforent $n-p$ the of the la

Cor.
de., p

$$
C_{1}
$$

Cor. 2 made of follows:
It will
\&c., are so that

Now

Hence
combinat
n togethe
Ex. 1.
5 togethe
Here n
$C_{5}=\frac{n(1)}{}$
$=22.21 .1$
Ex. 2. takon 19

Here n
$c_{p}=C_{n}$.
in things ee things are' 1.2 .3 ogether as ently the
ogether is of p things L.2.3....p ings taken inations is
of n things talcen p at a
m that the is
th numera-$(n-p) w o$
......3.2.1 -p)
vidently be which are quently :
ngs.
easily found read of \boldsymbol{C}_{p}.

Nois.-The truth of this principle is also evident from the fhet that if, from n thinge p be taken, $(n-p$) thinge will always remain, and honce for every different set containing p things there will be a different set left containing $n-p$ things, and coneequently the number of the former equala the number of the latter.

Cor. 1. Hence representing combinations of n things, $1 ; 2,3 ;$ \&c., p together, by $\dot{C}_{1} ; C_{2}, C_{3}$, \&c., C_{p} we have

$$
C_{1}=\frac{n}{1}, C_{2}=\frac{n(n-1)}{1.2}, \dot{C}_{3} \doteq \frac{n(n-1)(n-2)}{1.2 .3}, \& \dot{c} .
$$

Cor. 2. To find the sum of all the combinations that can be made of n things taken $1,2,3, \& c ., n$ together, we proceed as follows :-
It will be shown hereafter that $\frac{n}{1}, \frac{n(n-1)}{1.2}, \frac{n(n-1)(n-2)}{1.2 .3}$ de., are the coefficients in the expansion of the binomial $(1+x)^{n}$, so that $(1+x)^{n}=1+C_{1} x+C_{2} x^{2}+C_{3} x^{3}+\& c_{0}+C_{n} x^{n}$.

Now writing 1 for x we have

$$
(1+1)^{n}=2^{n}=1+C_{1}+C_{2}+C_{3}+d c_{.}+C_{n}
$$

Hence $2^{n}-1=C_{1}+C_{2}+C_{3}+\& c .+C_{n}$, or the sum of all the combinations which can be made of n things taken $1,2,3$, \&ci., n together $=2^{n}-1$.

Ex. 1. Required the number of combinations of 22 things taken 5 together.

OPERATION.

Here $n=22$ and $p=5$
$C_{5}=\frac{n(n-1)(n-2)(n-3)(n-4)}{1 \cdot 2.3 .4 .5}=\frac{22.21 .20 \cdot 19.18}{1.2 .3 .4 .5}$ $=22.21 .19 .3=26334$.

Ex. 2. How many combinations can be made out of 23 things taken 19 together?

OPRRATION6
Here $n=23$ and $p=19$, and consequently $n-p=4$
$C_{p}=C_{n-p}$ or $C_{19}=C_{4}=\frac{23 \cdot 22 \cdot 21 \cdot 20}{1 \cdot 2 \cdot 3 \cdot 4}=8855$.

Ex. 3. What is the sum of all the combinations which can be made out of 10 things taken $1,2,3$, tre., 10 at a time.

optration.

$$
C_{1}+\grave{C}_{2}+C_{3}+C_{1}+\& c .+C_{10}=2^{10}-1=1024-1=1023 .
$$

Ex. 4. Out of 10 consonants and 3 vowels how many words each containing two vowels and four consonants can be found?

OPRRATION.

10 consonants combined together 4 and 4 will give $\frac{10.9 .8 .7}{1.2 .3 .4}$ - 210 combinations; and similarly the combination of three vowels two together $=\frac{3.2}{1.2}=3$. Hence the combinations of the 10 consonants and 3 vowels $=210 \times 3=630$.
But each of these combinations of 6 letters will furnish 1.2.3.4.5.6 $=\mathbf{7 2 0}$ permutations each, forming a different word. Hence the entire number of words formed will be 630×720 $=453600$.

Ex. 5. How often may a different guard of 4 men be posted out of 50 ? . On how many occasions would a given man be selected?

> OPERATION.

$$
C_{4}=\frac{50.49 .48 .47}{1.2 \cdot 3.4}=230300
$$

Taking away one man there remains 49, and the question nor becomes, how many combinations may be formed of 49 men taken three together.

$$
C_{3}=\frac{49.48 .47}{1 \cdot 2.3}=18424, \text { to each of which the reserved man }
$$ may be attached.

Exercise LXIII.

1. How many combinations may be made of 10 things taken 3 together? How many 5 together? How many 8 together?
2. How many combinations can be formed out of 15 things 5 together? How many 7 together? How many 12 together?
3. How many different classes of 5 chiidren car he formed out of a school containing 12 children?
ich can be
$=1023$.
any words be found?
$\frac{10.9 \cdot 8.7}{1.2 .3 .4}$ n of three inations of
ill furnish rent word. 630×720
be posted on man be
estion now of 49 men
ings taken ogether? 5 things 5 Dgether? he formed

Amт. '2n.] COMBEAYAIONG. 221
4. The whole number of combinations of $2 n$ things is 813 times the whole number of combinations of n things $;$ find n.
6. From a company of 36 policemen 6 are taken every night for special duty: On how many different nights may an different selection be made ; and in how many of these will any particular man be engaged?
6. How many words of 7 letters can be made out of the 26 . letters of the alphabet, with three out of the five vowels in every word?
7. In how many ways can 10 persons be reated at a round table so that all shall not have the same neighbours in any two arrangements?
8. If the permatations of n things 3 together: combinations of n things 4 together $:: 6: 1$. Find n.
9. The number of permutations of n things p together is 10 times as great as their number taken $p=1$ together, and the nomber of combinations p together : number $p-1$ together $:: 5: 3$. Find n and p.
10. In how many ways may n persons be arranged in a circle?
11. With ten flags representing the 10 numerals, how many signals can be formed, each representing a number, and not consisting of more than five flags?
12. How many different sums can be formed with a guinea, a half guinea, a crown, a half-crown, a shilling, a sixpence, a penny, a halfpenny, and a farthing?

SECTION XII.

BINOMIAL THEOREM.

271. The Binomial Theorem is a general formula invented by Sir Isaac Newton, for the purpose of expedi-: fiovily involving any binomial to any power. The formula is eqpressed as follows:
$(a 4 a)^{n}=a^{n}+\frac{n}{1} a^{n-1} x+\frac{n(n-1)}{1: 2} a^{n-2} x^{2}+\frac{n(n-1)(n-2)}{1.2 .3} a^{n} \cdot x^{n}$ + do., the $^{\text {t }}(r+1)^{\prime} t h$ term being $\frac{n(n-1)(n-2) \ldots(n-r+1)}{1.2 .3 \ldots r} a^{n-r} m^{r}$?

Where $(a+x)$ is the given binomial, n, the exponent of the required power may be any quaptity positive or negative, integral or fractional, and r any positive integer whatever.
Nox: 1. The $(\boldsymbol{r}+1)$ th term as above is commonly oalled the general term of the expanalion,

- Notr 2.-The coemplents of x, x^{2}, x^{8} \&o., x^{r} in the above expansion are, when n is a poadtive integer, merely the general expresadons for the number of combinations of n things taken $1,2,8, \& 0 ., r$ together (See Art. 289), and we shall therefore use the expressions C_{1}, C_{8}, C_{3} \&o., C_{2} to represent these coemolents, so that the formula given above may be written $(a+x)^{n}=a^{n}+C_{1} \dot{a}^{n-1} x+C_{2} a^{n-2} x^{2}+\& c_{0},+C_{r} a^{n-r} x^{p}+\& 0$.

272. Since in the formula $(a+x)^{n}=a^{n}+C^{1} a^{n-1} x+C^{8} a^{n-1} x^{2}$ $+\& c ., a$ and x represent any quantities whatever, we may writg $-x$ in place of x and we thas oblain:-

$$
\begin{aligned}
(a-x)^{n} & =a^{n}+C_{1} a^{n-1}(-x)+C_{2} a^{n-2}(-x)^{2}+\& c . \\
& =a^{n}-C_{1} a^{n-2} x+C_{8} a^{n-2} x^{2}-d c .
\end{aligned}
$$

.

The terms being alternately plus and minus.
Cor. If $a=1,(a \pm x)^{n}=(1 \pm x)^{n}=1 \pm C_{1} x+C_{2} x^{2} \pm C_{3} x^{8}$ $+C_{4}^{\prime} x^{4} \pm$ \&c.

- 273. Thmorax I. -The Binomial Theorem is trwe in all cases when n is positive and integral.

Demonstration.-By actual multiplication it appears that:$(x+a)(x+b)=x^{3}+(a+b) x+a b$.
$(x+a)(x+b)(x+c)=x^{s}+(a+b+c) x^{2}+(a b+a c+b c) x+a b c$. $(x+a)(x+b)(x+c)(x+d)=x^{4}+(a+b+c+d) x^{3}+(a b+a c$ $+b c+a d+b d+t d) x^{2}+(a b c+a c d+b c d+a b d) x+a b c d$.
Now it is evident that in these results the following laws hold :-
I. The number of terms in the right hand side, is one more than the number of binomial factors which are multiplied together.
II. The exponent of x in the 1st term = the number of binomial factors, and it decreases by unity in each succeeding term. III. The coefs. of 1st terms = unity; coefs. of 2 nd terms $=$ sum of 2nd terms of all the binomial factors; coefs. of 3 rd terms $=$ the sum of all the prociucts of the $2 n d$ terms of the binomial factors taken two at a time; coefs. of 4th terms 7
sum of all the products of same second terme taken three at a time and so on; the last term is the product of all the second terms of the binomial factors taken all together.
Let us assume then that these laws of formation in the product hold for $n-1$ binomial factors $(x+a),(x+b),(x+c), d c$.

So that $(x+a)(x+b)(x+c)$ \&c...... $(x+k)$
$=x^{n-1}+A x^{n-2}+B x^{n-2}+C x^{n-4}+d c \ldots . . K$.
where $A=a+b+c+\ldots \ldots k ; B=a b+a c+b c+d c$.

$$
C=a b c+a c d+d c .
$$

\& $\mathrm{c} .=\& \mathrm{c}$.
$K=a b c d \ldots k$.
Then introducing a new factor $x+l$ we have:
$(x+a)(x+b) \& c . \cdots \cdots(x+k)(x+l)=x^{n}+(A+l) x^{n-1}+$ $(B+l A) x^{n-2}+d c . \cdots \cdots+K l$.
Wherefore $\mathcal{A}+l=a+b+c \ldots \ldots+k+l$
$B+l A=a b+a c+b c+\ldots \ldots+a l+b l+\ldots \ldots k l$. dc. $=\& c$. $K l=a b c d \ldots \ldots k l$.
That is $A+l=$ sum of all the second terms of the binomial factors.
$B+L A=$ sum of all the products of the second terms a_{1} $b, c, \ldots \ldots . l$ taken two at a time. And so. on, and
$K l=$ product of the second terms when taken all toge ther.
Hence if the laws indicated hold good when $n-1$ factors are muitiplied together, they hold good also when n factors are multiplied together. But we have shown that they hold good when 4 factors are multiplied together, therefore they hold when 5 factors are multiplied together, and therefore also for 6 and so on, and hence generally for any number whatever.
Now let $a=b=c=d=\& c$.
Then $A=a+a+a+\ldots \ldots$ to n terms $=n a$.
$B=a^{2}+a^{2}+\ldots \ldots \& c$. , to a number of terms $=$ to the No. of combinations of n things taken two together $=\frac{n(n-1)}{1,2} a^{2}$.
$C=a^{3}+a^{3}+d o$., to a number of terms $=$ to the No. of combinations of n thinge taken three together

$$
=\frac{n(n-1)(n-2)}{1.2 .8} a^{d} . \quad \text { And so on. }
$$

$\boldsymbol{K}=$ a.a.a.a to n factorn $=a a^{n}$.
Also, $(x+a)(x+b)(x+c) \ldots \ldots$ de., becomes $(x+a)(x+a)$ $\ldots \ldots . . n$ terms $=(x+a)^{n}$.
$\therefore(x+a)^{n}=x^{n}+\frac{n}{1} a x^{n-1}+\frac{n(n-1)}{1.2} a^{n} x^{n-2}+\frac{n(n-1)(n-2)}{1.2 .3}$ $a^{2} x^{n-8}+\cdots \cdots+a^{n}$.
274. Thmornu II. - The Binomial Theorem holds for all values of n either positive or negative; integral or fractional.

Daxomarraziox. (Eoluris.) It has been already shewn that when n and m are positive integers,
(1.) $(1+x)^{m}=f(m)=1+\frac{m}{1} x+\frac{m(m-1)}{1.2} x^{2}+\frac{m(m-1)(m-2)}{1.2 .3} x^{n}$ + \&o.
(1u.) $(1+x)^{n}=f(n)=1+\frac{n}{1} x+\frac{n(n-1)}{1.2} x^{3}+\frac{n(n-1)(n-2)}{1.2 .3} x^{3}$ where $f(m)$ and $f(n)$ are symbols used to denote the series $1+\frac{m}{1} x+\frac{m(m-1)}{1.2} x^{2}+\& 0$, and $1+\frac{n}{1} x+\frac{n(n-1)}{1.2} x^{2}+\& c$.

Hence whatever may be the values of m and n,

$$
\left\{1+\frac{m}{1} x+\frac{m(m-1)}{1.2} x^{2}+\& c .\right\}\left\{1+\frac{n}{1} x+\frac{n(n-1)}{1.2} x^{2}+\& c\right\}
$$

$$
=f(m) \times f(n)
$$

But the product of these two series will evidently be a series of the form of $1+a x+b x^{2}+c x^{3}+t c$., ascending regularly by the integral powers of x, the letters $a, b, c, \& c$., being used to represent the coefficients, found by addition, of $x_{1} x^{2}, x^{3}, \& c$.
be int by rem . 5

0 the No. - together

Now it is evident that the product of these two series must be of the same form whether m and n are positive or negative, integral or fractional. Whatever therefore be the forms assumed by $a, b, c, d c .$, when m and n are positive integers, they will remain the same when m and n become fractional or negative.

But when m and n are positive and integral we have seen that ry multiplying I and II together we get .
$f(m) \times f(n)=(1+x)^{m} \times(1+x)^{n}=(1+x)^{m+n}=1+a x+b x^{2}$ $+c x^{8}+\& c$.
$=1+\frac{m+n}{1} x+\frac{(m+n)(m+n-1)}{1.2} x^{2}+\frac{(m+n)(m+n-1)(m+n-2)}{1.2 .3} x^{3}$ $+80$.
$=f(n+n)$ by the notation adopted.
(III). \therefore Generally $f(n) \times f(n)=f(m+n)$ for all values of m and n.

And since this is true for all values of m and n, for n we may write $n+r$, then $f(m+n+r)=f(n+r) \times f(n)=f(m) \times f(n)$ $\times f(r)$.

Similarly $f(m+n+r+s+\ldots \ldots)=f(m) \times f(n) \times f(r)$ $x f(0) \times$........i. e. the product of $t w o$ or more such series as that denoted by $f(m)$ produces another series of precisely the same form.
Now let $m=n=r=s=\& c_{,}=\frac{p}{q}$ where p and q are positive integers, and suppose the number of terms to be q.
Then $f\left(\frac{p}{q}+\frac{p}{q}+\frac{p}{q}+\right.$ \&c., to q terms $\left.)\right)=f\left(\frac{p}{q}\right) \times f\left(\frac{p}{q}\right) \times$ $f\left(\frac{p}{q}\right) \times \ldots \ldots$ to q factors.

[^9]$\therefore f(p)=\left\{\bar{f}\left(\frac{p}{q}\right)\right\}^{q}$. But since p is a positive integer,
$f(p)=(1+x)^{p} \therefore(1+x)^{p}=\left\{f\left(\frac{p}{q}\right)\right\}^{q} \therefore(1+x)^{\frac{p}{q}}=f\left(\frac{p}{q}\right)$ or $(1+x)^{\frac{p}{q}}=1+\frac{\frac{p}{q}}{1} x+\frac{\frac{p}{q}\left(\frac{p}{q}-1\right)}{1.2} x^{2}+\frac{\frac{p}{q}\left(\frac{p}{q}-1\right)\left(\frac{p}{q}-2\right)}{1.2 .3} x^{3}+$ \&c. dby the notation adopted.

Thus the Theorem is proved for a fractional index.
Δ gain in (iII) put $m=-n$.
Then $f(n) \times f(-n)=f(n-n)=f(0)=1 \therefore$ the assumed series ibecomes 1 when $m=0$.

$$
\begin{aligned}
& \text { And since } f(n) \times f(-n)=1 \text { dividing each by } f(n) \\
& f(-n)=\frac{1}{f^{(n)}}=\frac{1}{(1+x)^{n}} \text { since } n \text { is positive, } \\
& \text { And } \frac{1}{(1+x)^{n}}=(1+x)^{-n} \text { by Art. } 165 \therefore(1+x)^{-n} \\
& =f(-n)=1+\left(\frac{-n}{1}\right) x+\frac{(-n)(-n-1)}{1.2} x^{2}+\frac{-n(-n-1)(-n-2)}{1.2 \cdot 3} \\
& x^{2}+\& c .
\end{aligned}
$$

Thus the theorem is also proved when n is any negative quaptity.
275. From this theorem then it appears that:-

1. $(1 \pm x)^{n}=1 \pm \frac{n}{1} x+\frac{n(n-1)}{1.2} x^{2} \pm \frac{n(n-1)(n-2)}{1.2 .3} x^{3}+\& c$. II. $(1 \pm x)^{-n}=1 \pm \frac{-n}{1} x+\frac{-n(-n-1)}{1.2} x^{2} \pm \frac{-n(-n-1)(-n-2)}{1.2 .3} x^{3}$ + \& c .

$$
=1 \mp \frac{n}{1} x+\frac{n(n+1)}{1.2} x^{2} \mp \frac{n(n+1)(n+2)}{1.2 .3} x^{3}+d c .
$$

III. $(1 \pm x)^{\frac{p}{q}}=1 \pm \frac{\frac{p}{q}}{1} x+\frac{\frac{p}{q}\left(\frac{p}{q}-1\right)}{1.2} x^{2} \pm \frac{\frac{p}{q}\left(\frac{p}{q}-1\right)\left(\frac{p}{9}-2\right)}{7.2 .3} x^{3}$. + +0.

E:
$x^{4}+$
E_{2}

Ex

+ \&c
Nor of the like, plus, nately

Ex
$3(3-$

er,
 $f\left(\frac{p}{q}\right)$ $-x^{3}+\& c$.

$=1+\frac{3}{5}-\frac{3}{25} x^{2}+\frac{7}{125} x^{3}-\frac{21}{625} x^{4}+\& c$.
Ex. 5. $(1-x)^{-\frac{8}{2}}=1+\frac{3}{2} x+\frac{3(3+2)}{1.2 .4} x^{2}+\frac{3(3+2)(3+4)}{1.2 .3 .8} x^{8}$ $+\frac{3(3+2)(3+4)(3+6)}{1.2 \cdot 3 \cdot 4 \cdot 16} x^{4}+80$.
$=1+\frac{3}{2} x+\frac{3.5}{1.2 .4} x^{2}+\frac{3.6 .7}{1.2 \cdot 3.8} x^{3}+\frac{3 \cdot 5 \cdot 7 \cdot 9}{1.2 .3 .4 \cdot 16} x^{4}+$ \&c.
$=1+\frac{3}{2} x+\frac{15}{8} x^{2}+\frac{35}{16} x^{3}+\frac{315}{128} x^{4}+\& c$.
Ex. 6. $(a+2 x)^{-2}=\left\{a\left(1+\frac{2 x}{a}\right)\right\}^{-2}=a^{-2}\left(1+2 a^{-1} x\right)^{-2}$ $=a^{-2}\left(1 a^{-1} x\right)^{4} \frac{2}{1}\left(2 a^{-1} x\right)+\frac{2.3}{1.2}\left(2 a^{-1} x\right)^{2}-\frac{2.3 .4}{1.2 .3}\left(2 a^{-1} x\right)^{8}+\frac{2 \cdot 3 \cdot 4.5}{1 \cdot 2 \cdot 3 \cdot 4}$
$=a^{-2}\left\{1-4 a^{-1} x+12 a^{-2} x^{4}-32 a^{-8} x^{8}+80 a^{-4} x^{4}-8 \dot{c}.\right\}$
$=a^{-2}-4 a^{-8} x+12 a^{-4} x^{2}-32 a^{-6} x^{8}+80 a^{-8} x^{4}-8 c$.
Ex. 7. $\left(a^{2}+x^{2}\right)^{-\frac{3}{4}}=\left\{a^{2}\left(1+a^{-2} x^{2}\right)\right\}^{-\frac{3}{4}}=a^{-\frac{3}{2}}\left(1+a^{-2} x^{2}\right)^{-\frac{3}{4}}$
$=a^{-\frac{3}{2}}\left\{1-\frac{3}{4}\left(a^{-2} x^{2}\right)+\frac{3.7}{1.2 .16}\left(a^{-2} x^{2}\right)^{2}-\frac{3.7 .11}{1.2 .3 .64}\left(a^{-2} x^{2}\right)^{4}\right.$
$+\frac{3.7 \cdot 11.15}{1.2 .3 \cdot 4 \cdot 256}\left(a^{-2} x^{2}\right)^{4}$
$=a^{-\frac{3}{3}}\left\{1-\frac{3}{4} a^{-2} x^{2}+\frac{21}{3} \frac{1}{2} a^{-4} x^{4}-\frac{77}{128} a^{-6} x^{6}+\frac{1}{2} \frac{155}{8} a^{-8} x^{8}+\right.$ \& 0.$\}$
$=a^{-\frac{3}{2}}-\frac{3}{2} a^{-\frac{7}{2}} x^{2}+\frac{21}{38} a^{-\frac{11}{2}} x^{4}-\frac{727}{78} a^{-\frac{15}{2}} x^{6}+\frac{1}{2} 1 \frac{5}{48} a^{-\frac{19}{2}} x^{8}$

- \&c.

Excroism LXIV.

Expand to five terms each of the following expressions :-

1. $(1+x)^{-8}$
2. $(1+x)^{-2}$
3. $(1-2 x)^{-1}$
4. $\left(1-\frac{1}{2} x\right)^{-5}$
5. $(1+3 x)^{-2}$
6. $\frac{1}{(1-2 x)^{6}}$
7. $\frac{1}{(1-x)}$
8. $(1-4 x)^{\frac{1}{2}}$
9. $(1+x)^{-\frac{3}{3}}$
10. $\left(1-\frac{3}{4} x\right)^{\frac{1}{6}}$.
11. $\left(1+\frac{2}{3}\right)^{\frac{1}{3}}$
12. $\frac{1}{(1-x)^{\frac{4}{6}}}$
13. $\left(a-x^{2}\right)^{-8}$
14. $\left(a^{2}+x^{3}\right)^{-1}$
15. $\left(a^{\frac{3}{2}}-x^{\frac{1}{3}}\right)^{-2}$
16. $\left(n^{4}-x^{3}\right)^{\frac{3}{3}}$
17. $\left(a^{3}+x^{-2}\right)^{-4}$
18. $\left(a^{\frac{1}{6}}-x^{-\frac{1}{6}}\right)^{-\frac{1}{3}}$
19. $\left(a^{2} m-x^{\frac{1}{2}}\right)^{-\frac{2}{3}}$
20. $\frac{1}{\left(a+x^{-8}\right)^{-8}}$
21. $\frac{1}{\sqrt{a w b x}}$
tęrn beg begi is C be

B
$C_{r}=$
that
(r +
27
In the

Xn- 276. Thisorin III.--In the expansion of $(1+x)^{n}$ there are only $\mathrm{n}+1$ terms, when the exponent is positive and integral.

Dmmonstration.-The coefficient of the $(r+1)$ th term is $C_{r}=$ $\frac{n(n-1)(n-2)(n-3) \ldots(n-r+1)}{\mid r}$. Now if r be such that $n-r+1=0$, then the $(r+1)$ th and all following terms vanish, and the series will terminate with the r th term. But if $n-r+1$ $=0, r=n+1$ and the $(n+1)$ th term is the last term of the series.

Note.-If n is negative or fractional, the series never ends, but may be continued to an infinite number of terms, since as r is necessarily integral and positive, we can then find no value for r which will render $n-r+1$ $=0$.

- 277. Thmoryn IV.-In the expansion of $(1+x)^{n}$ when n is positive and integral, the coefficients of terms equally distant from beginning and end are the same.

Demonstration.-The $(r+1)$ th term from the end having r terms after it is the same as the $\{(n+1)-r\}$ th term from the beginning, i. e., is the same as the $(n-r+1)$ th term from the beginning. And since, Art. 271, the coef. of the $(r+1)$ th term is C_{r} writing $n-r$ for r the coef. of the $(n-r+1)$ th term will be C_{n-r}.

But it has slready been shown (Art. 270) that
$C_{r}=\frac{n(n-1)(n-2) \ldots \ldots(n-r+1)}{1.2 .3 \ldots \ldots r}=\frac{\mid n}{\underline{n-r}}=\frac{\mid n}{n-r \mid r}=C_{n-r}$
that is the coef. of the $(r+1)$ from the beginining $=$ coef. of $(r+1)$ term from the end.
278. To find the general term of the expansion of $(\dot{a}+x)^{a}+x$

In writing down any term of the expansion of $(1+x)^{n}$, say the 5 th term, so as to exhibit the factors of the coefficient thus,
$\frac{n}{1} \cdot \frac{n-1}{2} \cdot \frac{n-2}{3} \cdot \frac{n-3}{4} a^{n-4} x^{4}$, we observe
I. The numerator added to denominator of each factor $=n+1$.
II. The number of such factors is one less than the number of the term.
III. The exponent of x is equal to the denom. of last factor.
IV. The exponent of $a=n$ - (the exponent of x).

Hence the $(r+1)$ th or the general term of the expansion $=$ $\frac{n(n-1)(n-2) \ldots(n-r+1)}{1.2 .3 \ldots . . r} a^{n-r} x^{r}$.
279. The student mast note the following points with respect to this general term :-
I. The gen. term of $(1+x)^{n}$ when n is a positive integer, is as above.
II. When n is positive, the gen. term of $(1-x)^{n}=C_{r}(-x)^{r}$ $=C_{r}(-1)^{r} x^{r}=(-1)^{r} C_{r} x^{r}=(-1)^{r}\left(\frac{n(n-1)(n-2) \ldots(n-r+1)}{\underline{\mid r}} x^{r}\right)$ where $(-1)^{r}$ will of course be positive or negative according as r is eyen or odd, that is, according as $r+1$, the number of the term, is odd or even.
III. If n be negative, the general term of $(1+x)^{-n}=$ $\frac{-n(-n-1) \ldots-\{n-(r+1\}}{\frac{\mid r}{n}}=(-1)^{r}\left(\frac{n(n+1) \ldots(n+r-1)}{\underline{\mid r}} x^{r}\right)$
IV. If n is negative, the general term of $(1-x)^{-n}=(-1)^{r} \times$ $C_{r}(-x)^{r}=(-1)^{r}(-1)^{r}\left(\frac{n(n+1)(n+2) \ldots(n+r-1)}{\underline{r}}\right) x^{r}$ $=\frac{n(n+1)(n+2) \ldots(n+r-1)}{\underline{r}} x^{r}$. Since $(-1)^{r} \times(-1)^{r}$ $=(-1)^{2 r}=+1$.
When the exponent is fractional, the sign of the general term is subject to the same laws, and \boldsymbol{C}_{r} may be written as in III and IV on pages 226, 227. Thus the general term of
V. $(1+x)^{\frac{p}{r}}=\frac{p(p-q)(p-2 q) \ldots\{p-(r-1) q\}}{\underline{r \times q^{r}}} x^{r}$
VI. $(1-x)^{-\frac{p}{q}}=(-1)^{r}\left(\frac{p(p+q)(p+2 q) \ldots \cdot\{p+(r-1) q\}}{\underline{r} \times q^{r}} x^{r}\right)$
VII. $(1+x)^{-\frac{p}{q}}=\frac{p(p+q)(p+2 q) \ldots \ldots\{p+(r-1) q\}}{L r \times q^{r}} x^{r}$

$$
\begin{gathered}
A R_{R}^{2} \\
\text { R }
\end{gathered}
$$

VIII. $(1-x)^{\frac{p}{q}}=(-1)^{\prime}\left(\frac{p(p-q)(p-2 q) \cdots\{p-(r-1) q\}}{\left\lfloor r \times q^{r}\right.} x^{r}\right)$

Ex. 1. Find the general terms in the expansions of $(1+x)^{8}$ y
$\left(1-x^{2}\right)^{-\frac{1}{2}} ;\left(a^{2}-x^{2}\right)^{-\frac{3}{4}},(1+3 x)^{-2}$.
G.T. of $(1+x)^{8}=+\frac{8.7 .6 \ldots(8-r+1)}{1.2 .3 \ldots . r} x^{r}=+\frac{8.7 \ldots(9-r)}{\mid r} x^{r}$
G. T. of $\left(1-x^{2}\right)-\frac{1}{2}=+\frac{1.3 .5 \ldots\{1+(r-1) 2\}}{L r \times 2^{r}}\left(x^{2}\right)^{r}$
$=+\frac{1.3 .5 \ldots(2 r-1)}{L^{r} \times} x^{2 r}$
G. T. of $\left(a^{2}-x^{2}\right)^{-\frac{3}{4}}=a^{-\frac{3}{2}}\left(1-a^{-2} x^{2}\right)^{-\frac{3}{4}}=$
$+a^{-\frac{3}{2}}\left\{\frac{3.7 .11 \ldots\{3+(r-1) 4\}}{\operatorname{Ir} \times 4^{r}}\left(a^{-2} x^{2}\right)^{r}=\right.$
$+a^{\frac{3}{2}} \frac{3.7 .11 \ldots .(4 r-1)}{L^{r} \times 4^{r}} a^{2 r} x^{2 \pi}$.
G. T. of $(1+3 x)^{-2}=(-1)^{r}\left(\frac{2.3 .4 \ldots(2+r-1)}{L^{r}}\right)(3 x)^{r}=(-1)^{r}$ $\left(\frac{2.3 .4 \ldots(r+1)}{\underline{\mid r}}\right) 3^{r} x^{r}=(-1)^{r}(r+1) 3^{r} x^{r}$. . Since L^{r} in den. cancels 1.2.3.... $r=\underline{L}$ in the numerator.

Ex. 2. Find the general term in the explansion of $(1+x)^{\frac{5}{3}}$
G. T.of $(1+x)^{\frac{5}{3}}=\frac{5.2 \cdot-1 \cdot-4 \ldots \cdot\{5-(r-1) 3\}}{\mid r \times 3^{r}} x^{r}$
$=(-1)^{r} \frac{\{5.2 .1 .4 \cdots(3 r-8)\}}{L^{r} \times 3^{r}} x^{r}$
Nors.-In the above expression for the general term it will be'observed that we change all the negative signs in the numerator, and then prefix a power of (-1). Now if all the factors in the numerator are negative, $(-1)^{r}$ is the prefix, and if any: even numbers of negative factors are changed to positive, $(-1)^{r}$ is still the prefix, but if any odd number of them is changed, the sign of the product of the whole, i. e. of the general term, is altered, and becomes $(-1)^{r+1}$. In the expansion of $(1+x)^{\frac{p}{q}}$ therefore the sign of the general term is $(-1)^{r}$ or $(-1)^{r+1}$, according as the number of positive factors is evon or odd.

In the expansion of $(1-x)^{\frac{p}{2}}$ the general term will of itself involve $(-1)^{r}$, and this taken in connection with the above renders the sign of the general term $(-1)^{2 r}=1$ or $(-1)^{2 t+1}=-1$ according as tho number of positive factors is even or odd.
Rearark.-In the above paragraph the general term merely expresses any term after negative factors begin to appear in the numorator.

Ex. 3. Find the general torm of $(1-x)^{\frac{3}{8}}$
G. T. of $(1-x)^{\frac{5}{6}}=\frac{3 \cdot-2 \cdot-7 \ldots\{3-(r-1) 5\}}{L \times 5^{r}} x^{r}$

$$
=\frac{3 \cdot 2 \cdot 7 \ldots \ldots(5 r-8)}{L r \times 5^{r}} x^{r}
$$

Ex. 4. Find the 8 th term of the expansion of $(1+x)^{-t}$,
Since the general term $=(r+1)$ th term $=8$ th term, $r=7$
Formula II. 8 th term $=(-1)^{7}\left(\frac{4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10.11}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7}\right) x^{8}$ $=-1320 x^{8}$.

Ex. 5. Find the 5 th term of the expansion of $(1-x)^{-\frac{1}{2}}$
Formula VII. 6th term $=\frac{1.3 .5 \ldots .\{1+(4-1) 2\}}{\underline{\mid 4 \times 2^{4}}} x^{4}$

$$
=\frac{1.3 .6 .7}{1.2 .8 .4 \times 16} x^{4}=\frac{35}{128} x^{4}
$$

Ex. 6. Find the 7th term of the expansion of $(1-1 x)^{11}$
Formula II. 7th term $=(-1)^{6} \frac{11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6}\left(\frac{1}{3} x\right)^{6}$

$$
=+462 \times \frac{x^{6}}{729}=\frac{462}{729} x^{6}=\frac{154}{243} x^{6}
$$

Ex. 7. Find the 6th term of the expansion of $(1-x)^{\frac{7}{5}}$ Formula VIII. $\frac{7.2 .-3 \ldots\{7-(5-1) 5\}}{L^{5} \times 6^{6}} x^{6}=\frac{7.2 .3 \ldots\{(4 \times 5)-7\}}{\left[5 \times 5^{5}\right.} x^{6}$

$$
=+\frac{7.2 \cdot 3.8 .13}{1 \cdot 2 \cdot 3 \cdot 4.5 \times 6125} x^{5}=+\frac{182}{30625} x^{5}
$$

Since there are two positive factors in the first expression,

Then

$$
\begin{aligned}
& =a \\
& =a \\
& =a \\
& =a
\end{aligned}
$$

280
The
for all
Thel
$\therefore 2$
$\Gamma 281$.
in the
of the
DEMC
Then (
Sum
$\therefore \mathrm{St}$
even te
Cor.
of 2^{n},
282.

The

Ex. 8. Find the 11 th term of the expansion of $\left(a^{-\frac{1}{2}}+x^{2}\right)^{\frac{1}{4}}$

$$
\left(a^{-\frac{1}{2}}+x^{2}\right)^{\frac{12}{4}}=\left\{a^{-\frac{1}{2}}\left(1+a^{\frac{1}{2}} x^{2}\right)\right\}^{\frac{4}{4}}=a^{-\frac{14}{8}}\left(1+a^{\frac{1}{2}} x^{2}\right)^{\frac{11}{4}}
$$

Then by formula v the 11 th term.

$$
\begin{aligned}
& =a^{-41}\left\{\frac{11,7.3 \cdot-1 .-5 \ldots \ldots\{11-(10-1) 4\}}{\frac{\mid 10 \times 4^{0}}{0}}\right\}\left(a^{\frac{1}{3}} x^{2}\right)^{10}
\end{aligned}
$$

$$
\begin{aligned}
& =a^{-\frac{12}{8}} \times-\frac{11 \cdot 7 \cdot 3 \cdot 1 \cdot 5 \cdot 9 \cdot 13 \cdot 17 \cdot 21.25}{1.2 \cdot 3 \cdot 4 \cdot 6 \cdot 6: 7 \cdot 8 \cdot 9 \cdot 10 \cdot 1048576} a^{5} x^{80} \\
& =a^{-\frac{\gamma^{2}}{8}} \times-\frac{85085}{268435456} a^{5} x^{20}=-\frac{85085}{268435456} a^{29} x^{20}
\end{aligned}
$$

280. To find the sum of all the coefficients of $(1+x)^{\mathrm{n}}$,

The Theorem $(1+x)^{n}=1+\frac{n}{1} x+\frac{n(n-1)}{1.2} x^{2}+\& c$., is true for all values of x. Let $x=1$.

Then $(1+1)^{n}=2^{n}=1+\frac{n}{1}+\frac{n(n-1)}{1.2}+\frac{n(n-1)(n-2)}{1.2 .3}+\& c$. $\therefore 2^{n}=$ sum of all the coefficient of $(1+x)^{n}$.
Γ 281. Theorem V. -The sum of the coefficients of the odd terms in the expansion of $(1+x)^{n}$ is equal to the sum of the coefficients of the even terms.

Demonstration. -Put $x=-1$ in the expansion of $(1+x)^{n}$. Then $(1-1)^{n}=0^{n}=0=1-n+\frac{n(n-1)}{1.2}-\frac{n(n-1)(n-2)}{1.2 .3}+\& c$.

Sum of coefficients of odd terms - sum of coed. of even terms $=0$,
\therefore Sum of coefficient of odd terms $=$ sum of coefficients of
pression,
282. To find the greatest term in the expansion of $(a+x) \mathrm{e}$.

The $(r+1)$ th term $=\frac{n(n-1)(n-2) \ldots(n-r+1)}{\underline{r}} a^{n-r} x^{r}$

The rth term $=\frac{n(n-1)(n-2) \ldots(n-r+2)}{\frac{\mid r-1}{n}} a^{n-r+1} x^{r-1}$.
Hence the $(r+1)$ th term is obtained from the r th by múltiplying the latter by $\frac{n-r+1}{r} \cdot \frac{x}{a}$. Consequently the r th term will be the greatest as soon as $\frac{n-r+1}{r} \cdot \frac{x}{a}$ becomes <1.

That is as soon as $(n-r+1) x<a r$ or $r(a+x)>(n+1) x$.
That is as soon as $r>(n+1) \frac{\dot{x}}{a+x}$.
r therefore must be the first whole number $>(n+1) \frac{x}{a+x}$.
If $(n+1) \frac{x}{a+x}$ is a whole number, then two terms are equal, and each is greater than any other term.
If n is negative, r is the first whole number equal to or next greater than $(n-1) \frac{x}{a-x}$.

Ex. 9. What is the sum of all the coefficients of $(1+x)^{9}$. Here Art. 280, $2^{n}=2^{9}=512$.
Ex. 10. What is the sum of all the odd coef. of $(1+x)^{15}$. Here Art. 281, $2^{n-1}=2^{15-1}=2^{14}=16384$.
Ex. 11. Which is the greatest term in the expansion of $(1+x)^{13}$ when $x=-3$.
Here r is the whole number equal to or first greater than $(13+1) \frac{.3}{1 \cdot 3}$ or $14 \times \frac{3}{13}$ or $\frac{42}{13}$ which is 4 , therefore the 4 th term if the greatest.

Exercise LXV.

Find the general term and the 6th term of:-

1. $(1-x)^{-3}$
2. $(1+x)^{-4}$
3. $(1-x)^{-\frac{8}{3}}$
4. $(1-x)^{\frac{5}{5}}$
B. $(1+x)^{-\frac{\pi}{2}}$
c. $(1+x)^{-\frac{8}{3}}$
5. $(a-x)^{-1}$
6. $\left(a+\frac{1}{2} x\right)^{\frac{6}{6}}$

Find the general term and the 5th term of:-
2. $(1-2 x)^{-2}$
10. $\left(1+\frac{8}{8} x^{2}\right)^{-\frac{5}{2}}$
11 $\left(a^{2}+x-\frac{g}{)}\right)$ 형
12. $\left(a^{\left.-\frac{1}{2}-x-\frac{1}{2}\right)^{2}}\right.$
$d_{n-1} r^{n}$ integer, tegers a
For tains, as the rem
Simil tains, an $N_{1}=d_{n}$
Simila the proc
$N=d_{n}$
Where may van! other wo have àny say scale Arithmet

Find the sum of all the coefficients of :-
13. $(1+x)^{10}$ 14. $(1+x)^{7} \quad$ 15. $(1-x)^{13}$, 16. $(1+x)^{12}$.
17. Find the greatest term in the expansion of $(1+x)^{4}$ when $x=2$.
18. Find the greatest term in the expansion of $(1+x)^{-6}$ when $x=1$.
19. Find the greatest term in the expansion of $(2 a+x)^{20}$ when $a=\frac{1}{3} x=1$.
20. Find the greatest term in the expansion of $(1+x)^{-7}$. when $x=\frac{3}{8}$.

SECTION XIII.

NOTATION AND PROPERTIES OF NUMBERS:

283. Any number N may be expressed in the form of $\mathrm{d}_{\mathrm{n}} \mathrm{r}^{\mathrm{n}}+$ $d_{n-1} r^{n-1}+d 0_{9}+d_{3} r^{3}+d_{9} r^{2}+d_{1} r^{1}+d^{0}$ where r is a positive integer, and the coefficients $\mathrm{d}^{0}, \mathrm{~d}_{1}, \& 0 ., \mathrm{d}_{\mathrm{n}-1}, \mathrm{~d}_{\mathrm{n}}$, are also integers all less than r , the radix of the scale.
For let N be divided by the greatest power of r it contains, and let the quotient be d_{n}, less of course than \dot{r}, and let the remainder be N_{1}. Then $N=d_{n} r^{n}+N_{1}$.
Similarly let N_{1} be divided by the greatest power of r it contains, and let the quotient be d^{n-1} with remainder $N_{\mathbf{2}}$. Then $N_{1}=d_{n-1} r^{n-1}+N_{2}$.

Similarly $N_{2}=d_{n-2} r^{n-2}+N_{3}$, and so on, and continuing the process until the remainder becomes $<r=$ say d_{0} we have
$N=d_{n} r^{n}+d_{n-1} r^{n-1}+\ldots . \& c .+d_{2} r^{2}+d_{1} r^{1}+d_{0}$.
Where any of the coefficients $d_{n}, d_{n-1}, \& c ., d_{3}, d_{2}, d_{1}, d_{0}$, other words, these coefficients, or digits as they are called, may have any value from 0 to $r-1$ inclusive, and consequently in say scale r there occur r digits, including zero. (Nee National Arithmetic.)
284. To express any number in any proposed scale :-

Let N be the number and let r the radix of the proposed scale. Then by last Art., the given number may be written as $=$

$$
d_{n} r^{n}+d_{n-1} r^{n-1}+\& c .+d_{2} r^{2}+d_{1} r^{1}+d_{0} .
$$

Dividing this by r we get a complete quotient with remainder d^{0}, the right digit of the number in the proposed scale.

Dividing this complete quotient by r, we get another complete quotient with rem. d_{1}, which is the second digit of the number.

And proceeding thus as long as we get a quotient divisible by r, we obtain as remainders the su ccessive digits of the number. (See Arithmetic.)
x
285. To prove the rule for reducing a pure repetend to its equivalent vulgar fraction.

Let $R=$ the given repetend, and let it contain r digits, and let $V=$ 'its value.

Then $V=\cdot R R$ sce. (1). Multiplying each by 10° we have $10^{r} V=R \cdot R R \& c$. (ii). Subtracting (I) from (iI)

$$
10^{r} V-V=R \therefore V\left(10^{r}-1\right)=R \therefore V=\frac{R}{10^{r}-1} .
$$

But since $r=$ the number of digits in the repetend, $10^{r}-1$ will be as many 9 's as there are digits in the repetend.

$$
\therefore V=\frac{\text { Repetend }}{\text { As many } 9^{\prime} \mathrm{s} \text { as there are }} \text { digits in repetend } .
$$

288. To prove the rule for reducing a mixed repetend to its equivalent vulgar fraction.

Let $V=$ the value of a mised repetend in which F represents the finite part and R the repetend, and let F and R contain respectively f and r digits.
Then $V=\cdot F R R \& c$. Multiplying these by 10^{f+r} we have $10^{s+r} V=F R \cdot R R \& c$. (1). Also multiplying them by $10 f$,
$10^{\prime} V=\boldsymbol{F} \cdot \boldsymbol{R} \boldsymbol{R}$ \&c. (II). Subtracting it from I ,
$\left(10^{f+r}-10^{\prime}\right) V=F R-F$. That is, $V=\frac{F R-F}{10^{\prime}\left(10^{r}-1\right)}$
But 10^{\prime} is unity followed by as many oiphers as there are units in f_{1} i, e., as many ciphers as there are digits in F_{1} the
т. XIII.
d scale.

ART. 294-289.] PROPERTIES OF NUMBERS.
finite part, and $10^{r}-1$ is as many $9 ' s$ as there are units in r, i.e., as many 9 's as there are digits in R, the repetend.
$\therefore V=\frac{\text { Whole repetend minus the finite part. }}{\quad .}$
$\therefore V=\overline{\text { As many } 9 \text { 's as figures in repetend followed by as many } 0^{\prime} \text { 's }}$ as figures in finite part.
287. Theorex I.-If from any number the sum of its digits be subtracted, the remainder is divisible by the radix of the scale decreased by unity.

Damonstration.-Let r be the radix of the scale, and
let $a+b r+c r^{2}+d r^{3}+\& c$. be the number.
Subtract $a+b+c+d+d c$. the sum of the digits.
Then the rem. $=b r-b+c r^{2}-c+d r^{3}-d+d c .=b(r-1)+c\left(r^{2}-1\right)$ $+d\left(r^{3}-1\right)+\& c .$, which (Art. 80) is evidentiy divisible by $r-1$ i.e., by the radir decreased by unity.
288. Theorex II.-If the sum of the digits of any number is divisible ($\mathrm{r}-1$), that is by the radix decreased by unity, then the number itself is divisibi, by one less than the radix.
Demonstration.-For let $N=$ the number and $S=$ the sum of its digits, and since S is by hypothesis divisible by $(r-1)$ let S $=m(r-1)$. Then Theorem I, $N-S$ is also divisible by $r-1$, \therefore let $N-S=p(r-1)$.
Then by substitution we have $N-m(r-1)=p(r-1)$
$\therefore N=p(r-1)+m(r-1)=(r-1)(p+m)$, and since the right-hand member is evidently divisible by $r-1 \therefore$ also the lefthand member N is divisible by $r-1$.

Cor. In any scale such that $r-1$ is divisible by 3, if the sum of the digits of any number be divisible by 3 , the number itself is divisible by 3 . For let N and S represent the number and the sum of its digits, and let $S=3 m$ and $r-1=3 q$.
Then $N-S=p(r-1)=3 p q \therefore N-3 m=3 p q \therefore N=3(p q+m)$,
That is, \boldsymbol{N} is divisible by 3.
Hence in the common scale a number is divisible by 3 or by 9 , according as the sum of its digits is divisible by 3 or by 9.
289. Thmorex III.-If from any number the sum of the digits standing in the odd places be subtracted, and to it the sum of the
digits standing in the even places be added, then the resull is divisible by the radix increased by unity.

Dimonarastiox.-Let r be the radix and let the number be

$$
\begin{gathered}
a+b r+c r^{2}+d r^{2}+e r^{4}+d c \\
\text { Add }-a+b-c+d-e+\& c
\end{gathered}
$$

The result is $b r+b+c r^{2}-c+d r^{3}+d+e r^{4}-e+d c$., which is equal to $b(r+1)+c\left(r^{2}-1\right)+d\left(r^{3}+1\right)+e\left(r^{4}-1\right)+d c$.

But $r+1, r^{2}-1, r^{3}+1, r^{4}-1$, \&c., are all (Art. 80) divisible by $r+1, \therefore b(r+1)+c\left(r^{2}+1\right)+d\left(r^{3}+1\right)+\& c$. is divisible by $r+1$.

Cor. Hence in the common scale any number answering the conditions given above is divisible by 11.
290. Thiorey IV.-If in any number the sum of the digits standing in the even places be equal to the sum of the digits standing in the odd places, then the number is divisible by the radix increased by umity.

Let $N=$ the number, $S=$ the sum of digits in the even places, and S_{1} the sum of the digits in the odd places.
Then Theorem III, $\boldsymbol{N}+\boldsymbol{S}-\boldsymbol{S}$, is divisible by $r+1$. But since by hypothesis $S=S_{1}$, it follows that $S-S_{1}=0 \therefore N$ is divisible by $r+1$.
291. To prove the common rule for testing the accuracy of multiplication by casting out the 9 's.

Demonstration.-It follows from Theorem II. that any number in the common scale will leave the same remainder when divided by 9 that the sum of its digits will leave when divided by 9. Let then $9 a+c$ be the multiplicand and $9 b+d$ be the multiplier. Then $81 a b+9 b c+9 a d+c d$ will be the product. Now if the sum of the digits inthe multiplicand be divided by 9 , the rem. is c, if the sum of the digits in the multiplier is divided by 9 the rem. is d, and if the sum of the digits in the product be divided by 9 , the rem. is evidently the same as the rem. obtained by dividing $c d$ by 9.
202. Thmorgy V.-The product of any three consecutive numbers in the scale of 10 is divisible by 1.2.3, i.e., by. 6 .

Inos. xItI.
478. 200-998.] PROPMRIIES OT ATUMBERS.

Damonstration.- Fvery number munt be of the form of $3 m$ or $3 m+1$, or $3 m+2$, becanse every number when divided by 3 must leave 0 or 1 or 2 as remainder.
\therefore The product of any three consecutive numbers may bo represented by $3 m(3 m+1)(3 m+2)$. But $3 m$ is a multiple of 3 and of the other factors $3 m+1$ or $3 m+2$ one must be even, and must therefore be divisible by $2, \therefore 3 m(3 m+i)(3 m+2)$ must be divisible by 1.2 .3 , i.e., by 6 .
293. Thaopax VI.-The product of any r consecutive numbers is divisible by $1.2 .3 . \ldots$.
Dumonstration.-Let n be the least of the numbers, and let $n(n+1)(n+2) \ldots(n+r-1)$ be represented by ${ }^{n} P_{r}$ for all values of n and r.
Then ${ }_{n} P_{r}=\frac{n(n+1) \ldots(n+r-2)}{1 \cdot 2 \cdot 3 \ldots(r-1)} \cdot \frac{n+r-1}{r}={ }_{n} P_{r \cdot 1}\left(\frac{n-1}{r}+1\right)$ $={ }_{n} P_{r-1} \times \frac{n-1}{r}+{ }_{n} P_{r-1}=\frac{(n-1) n(n+1)(n+2) \ldots(n+r-2)}{1.2 .3 \ldots \ldots r}+$ $P_{r-1}={ }_{n-1} P_{r}+{ }_{n} P_{r-1}$.
Now if we assume that ${ }_{n} P_{r-1}$ is an integer, or in other words that the product of any $(r-1)$ consecutive integers is divisible by $1.2 .3 \ldots .$.
Then since as above shown ${ }_{n} P_{r}={ }_{n-1} P_{r}+{ }_{n} P_{r-1}$ we have ${ }_{.} P_{r}={ }_{n-1} P_{r}+$ int., an integer for all values of n and r, and writing in succession $n-1, n-2 \ldots .3$. 2 for n we obtain ${ }_{n-1} P_{r}={ }_{n-2} P_{r}+$ int.,
${ }_{n-2} P_{r}={ }_{n-2} P_{r}+$ int.
$\& \mathrm{c}=\boldsymbol{=} \mathrm{tc}$.
${ }_{{ }_{P}} P_{r}={ }_{2} P_{r}+$ int.
${ }_{3} P_{r}={ }_{1} P_{r}+$ int. Adding these equals and cancelling, we have ${ }_{\mu} P_{r}={ }_{1} P_{r}+$ sum of integers, but ${ }_{1} P_{r}=\frac{1.2 \cdot 3 \cdot 4 \ldots \ldots r}{1.2 .3 .4 \ldots \ldots r}=1$.
$\therefore{ }_{n} P_{r}=1+$ sum of integers $=a n$ integer.
Hence if P_{r-s} is an integer, then also ${ }_{n} P_{r}$ is an integer. But it has been shown Theorem V that ${ }_{n} P_{s}$ is an integer therefore also ${ }_{n} P_{4}$ is an integer, and therefore also ${ }_{n} P_{s}$ and so on, $\therefore{ }_{n} P_{r}$ is an integer, that is $n(n+1)(n+2) \ldots(n+r-1)$ is divisible by 1.2.3.....

SECTION XIV.

INEQUALITIES, VANISHING FRAOTIONS, INDETERMINATE EQUATIONS.

INEQUALITIES.

294. In addition to the axioms given on pages 16,17 , the student will find it advantageous to remember the following propositions:
I. If the same quantity be added to or subtracted from two unequals, the sums or differences are unequal.
Thus if $a>b$ then $a \pm c>b \pm c$.
II. If two unequals be both multiplied, or both divided by the same positive quantity, the products are unequal, as also are the quotients.

Thus, if $a>b, a-b$ is positive, and if m be positive then also $m(a-b)$ is positive, and $\therefore m a>m b$; similarly $\frac{1}{m}(a-b)$ is positive, $\therefore \frac{a}{m}>\frac{b}{m}$
III. If the terms of an inequality be multiplied or divided by any negative quantity, or if the signs of all the terms be changed, the sign of inequality must be reversed.
Thus, if $a>b$ then $a-b>0$ or $-b>-a$, or $-a<-b$; so also if $a>b$ and $-m$ be any negative quantity, $a-b$ is positive $\therefore m(a-b)$ is negative, $\therefore m(b-a)$ is positive $\therefore m b>m a$ or $m a<m b$. Similarly $\frac{1}{m}(b-a)$ is pos. $\therefore \frac{b}{m}>\frac{a}{m}$ that is $\frac{a}{m}<\frac{b}{m}$
IV. If any number of inequalities, all having the same sign of inequality, i.e. all $>$ or all $<$, be all multiplifd together, left-hand members by left-hand members, and right by right, then the resuliing products will form an inequality with the same sign.

Thus, if $a>b, c>d, e>f$, then $a c e>b d f$.
V. If a, b and n be positive quantities, and $\mathrm{a}>\mathrm{b}$, then $\mathrm{a}^{\mathrm{n}}>\mathrm{b}^{\mathrm{n}}$ and $\forall a>\otimes b$.

Thus, $a>b, \therefore$ last article, $a^{2}>b^{2}, \therefore a^{3}>b^{8}$, and $\varepsilon 0$ on:
$\therefore a^{n}>b^{n}$; similarly $\mathbb{N a}>\sqrt[V]{b}$
VI. If any number of inequalities having the same sign be added together, the sum is an inequality of the same kind.

Thus, if $a>b, c>d$ and $e>f$; then $a+c+e>b+d+f$.
Note.-It does not, however, follow that if one inequality be subtracted from another, the difference is an inequality of the same kind. Thas, if $a>b$ and $c>d$ it does not always follow that $a-c>b-d$, since a may be nearer in magnitude to c than b to d; for example, although $7>5$ and $6>2,7-6$, is not greater than $5-2$, i. e. 1 is not greater than 8 . VII. If the same quantity or two equal quantities be divided by each side of an inequality; the sign of inequality will be reversed.
Thus $5>3$ but $\frac{15}{5}<\frac{15}{3}$, i.e. $3<\dot{5}$; so also if $a>b$ then by dividing m by each we have $\frac{m}{a}<\frac{m}{b}$.

Ex. 1. Shew that if a be pos. and $b>a$ then $\frac{a-b}{a+b}>\frac{a^{2}-b^{2}}{a^{2}+b^{2}}$
Since $2>0$ multiplying by $a b$ we have $2 a b>0 \therefore$ also $a^{2}+2 a b$ $+b^{2}>a^{2}+b^{2}$ and dividing each by $\left(a^{2}+b^{2}\right)(a+b)$ which is positive since a and b are both positive, we have $\frac{1}{a+b}<\frac{a+b}{a^{2}+b^{2}}$ and multiplying each of these by $a-b$ which is negative, because $b>a$ we have, proposition III, $\frac{a-b}{a+b}>\frac{a^{2}-b^{2}}{a^{2}+b^{2}}$.

Ex. 2. Shew that $x^{2}+y^{2}<\overline{x^{4}-x^{3} y+x^{2} y^{2}-x y^{3}+y^{4}}$.
Because (Art. 134) $2 x y<x^{2}+y^{2}$, multiplying each each by $x y$ we have $2 x^{2} y^{2}<x^{3} y+x y^{3}$,
sign of together, byight; with the

And adding $x^{4}-x^{3} y-x^{2} y^{2}-x y^{3}+y^{4}$ to each we have $x^{4}-x^{8} y$ $+x^{2} y^{2}-x y^{3}+y^{4}<x^{4}-x^{2} y^{2}+y^{4} \therefore 1<\frac{x^{4}-x^{2} y^{2}+y^{4}}{x^{4}-x^{2} y+x^{2} y^{2}-x y^{3}+y^{4}}$ and multiplying each of these unequals by $x^{2}+y^{2}$ we have

$$
x^{2}+y^{2}<\frac{x^{6}+y^{6}}{x^{4}-x^{2} y+x^{2} y^{2}-x y^{3}+y^{4}}
$$

$\left.\begin{array}{l}\text { Ex. 3. Given } 3 x-4<x+6 \\ 5 x+7>3 x+13\end{array}\right\}$ to find x in whole numbers.
From 1st inequality, $2 x<10 \therefore x<5$. From 2nd inequality, $2 x>6$ $\therefore x>3 \therefore x$ is >3 and <5, i.e. is any whole number between 3 and 5. Hence $x=4$.

Exkraige LXVI.

Find the limit to the value of x in the following inequations:

1. $7 x-13<22$.
2. $\frac{x}{2}+\frac{x}{3}+\frac{x}{4}+\frac{x}{6}+\frac{x}{12}-7>9$.
3. $7 x-1<3 x+11$.
$4.2 x+5>\frac{1}{2} x-10$.
4. Given $\frac{a x}{5}+b x-a b>\frac{a^{2}}{5}$ and $\frac{b x}{7}-a x+a b<\frac{b^{2}}{7}$ to find the limits of x.
5. Prove that $a^{3}+1$ is equal to or greater than $a^{2}+a$ according as $a=1$ or $a>1$.
6. Prove that $a^{3}+1>a^{2}+a$ when a is negative and numerically <1.
7. Prove that $\frac{a}{b}+\frac{b}{a}>2$ when a and b are both positive or both negative.
8. Given $\frac{1}{4}(x+2)+\frac{1}{3} x<\frac{1}{2}(x-4)+3$ and $\frac{1}{4}(x+2)+\frac{1}{2} x$ $>\frac{1}{1}(x+1)+\frac{1}{3}$ to find the value of x in whole numbers.
9. Shew that $a^{2}+b^{2}+c^{2}>a b+a c+b c$ unless $a=b=c$.
10. Shew that $a b c>(a+b-c)(a+c-b)(b+c-a)$ assuming
amp both whi the strik the

2 or m find resu
12. Shew that $\left(1+a+a^{2}\right)^{2}<3\left(1+a^{2}+a^{4}\right)$ unless $a=1$.
13. Shew that $a b(a+b)+b c(b+c)+c a(c+a)>6 a b c$ and $2\left(a^{8}+b^{3}+c^{3}\right)$ when a, b and c are positive quantities.
14. If $x^{2}=a^{2}+b^{2}$ and $y^{2}=c^{2}+d^{2}$ shew that $x y>a c+b d$.
15. If $a>b$ shew that $\sqrt{(a+b)(a-b)}+\sqrt{b(2 a-b)}>a$.
16. Shew that $(a+b+c)^{8}>27 a b c$ and $<9\left(a^{8}+b^{8}+c^{3}\right)$.
117. Prove that $(a+b)(b+c)(c+a)>8 a b c$.
18. If x be real prove that $\frac{x^{2}+34 x-71}{x^{2}+2 x-7}$ can have no value betwen 5 and 9.
19. Shew that $\frac{n^{2}-n+1}{n^{2}+n+1}$ lies betwen 3 and $\frac{1}{5}$ for all real values
n. of n.

Smon XIY.
ambers.
lity, $2 x>6$ between 3
[uations: $\frac{x}{12}-7>9$.
find the $+a$ accordad numeripositive or $+2)+\frac{3}{} x^{2}$ s. $b=c$.
assuming
$k=1$.
6abc and s.
$+b d$.
$>a$.
$\left.+c^{3}\right)$.
no value
eal values

Arrs. 296-297.] VANISHING FRAOTITONS.

VANISHING FRACTIONS.

295. A vanishing fraction is one which assumes the form of $\frac{0}{0}$ when some particular value is given to some particular letter in both numerator and denominator.

Thus, $\frac{a^{2}-b^{2}}{a-b}$ is a vanishing fraction when $b=a$, because then it becomes $=\frac{0}{0}$.
296. Now it will be readily seen that in the above example, and indeed in all others, the peculiarity arises from both numerator and denominator having a common factor, which factor $=0$ under the assumed conditions. Thus, in the example z^{i} above we have $\frac{(a+b)(a-b)}{a-b}$, and striking out the common factor $a-b$ which $=0$ when $b=a$ the expression becomes $a+b$ or $2 a$ since $b=a$.
297. In order therefore to find the value of the fraction or more properly the limit to its value, we endeavour to find out the common factor involved, and casting it out, the result required is obtained by a simple reduction.

Ex. 1. Find the valne of $\frac{x^{4}-a^{4}}{x-a}$ when $x=a$.
opreation.
Here $\frac{x^{4}-a^{4}}{x-a}=\frac{(x-a)(x+a)\left(x^{2}+a^{2}\right)}{x-a}=(x+a)\left(x^{2}+a^{2}.\right)$
Now making $x=a$ we have thus $=2 a \times 2 a^{2}=4 a^{3}$.
Ex. 2. Find the value of $\frac{x^{m}-a^{m}}{x-a}$ when $x=a$.
operation.
Here $\frac{x^{m}-a^{m}}{x-a}=x^{m-1}+a x^{m-2}+a^{2} x^{m-8}+a^{3} x^{m-4}+\& c$, to m
terms and when $x=a$ this expression becomes $=a^{m-1}+a^{m-1}+$ $a^{m-1}+a^{m-1}+\& c . . .$. to m terms $=m a^{m-1}$.

Ex. 3. Find the value of $\frac{x-a+\sqrt{2 a x-2 a^{2}}}{\sqrt{x^{2}-a^{2}}}$ when $x=a$. operation.
Here $\frac{x-a+\sqrt{2 a(x-a)}}{\sqrt{(x-a)(x+a)}}=\frac{\sqrt{x-a}\{\sqrt{x-a+} \sqrt{2 a}\}}{\sqrt{x-a} \sqrt{x+a}}$ $=\frac{\sqrt[5]{x-a}+\sqrt{2 a}}{\sqrt{x+a}}=\frac{\sqrt{a-a}+\sqrt{2 a}}{\sqrt{a+a}}=\frac{\sqrt{2 a}}{\sqrt{2 a}}=1$.

Exeacism LXVII.

Evaluate the following vanishing fractions:

1. $\frac{1-x^{n}}{1-x}$ when $x=1$.
2. $\frac{x^{3}-a^{3}}{x^{2}-a^{2}}$ when $x=a$.
3. $\frac{x-a^{\frac{1}{2}} x^{\frac{1}{2}}}{x-a}$ when $x=a$.
4. $\frac{x^{2}+2 x-35}{x^{2}-2 x}=15$ when $x=5$,
5. $\frac{x^{2}+\frac{5}{2} x-\frac{3}{2}}{x^{2}-\frac{5}{2} x+1}$ when $x=\frac{1}{2}$.
6. $\frac{x^{3}+b x-a x^{2}-a b}{x^{2}-a x+b^{2} x-a b^{2}}$ when $x=a$.
7. $\frac{a x^{2}+a c^{2}-2 a c x}{b x^{2}-2 b c x+b c^{2}}$ when $x=c$.
8. $\frac{a x-x^{2}}{a^{4}-2 a^{3} x+2 a x^{3}-x^{4}}$ when $x=a$.
9. $\frac{x^{3}+2 a x^{2}-a^{2} x-2 a^{8}}{x^{8}-13 a^{2} x+12 a^{3}}$ when $x=a$.

INDETERMINATE EQUATIONS.

298. It has been already stated, Art. 122, that when' there are two or more unknown quantities involved in a single equation, the number of solutions is unlimited, and the equation is indeterminate.

Thu of Val may, by rel squar

29
$a d m i$
Dre
succe
the eg two the q fore $b\left(v^{\prime}\right.$ divisi prime v and $v=v^{\prime}$ differ than numb integ

Ex.
equat

He
for y
Th
30
in $p o$ divid
tain 1

ABT. 298-80C.] INDETRRMINATE EQUATIONS.
Thus, $8 x+2 y=11$ is an indeterminate equation because the number of values which may be assigned to x and y is indefinite. This number may; however, be decreased : 1st by rejecting all fractional values; 2nd, by rejocting all negative values; 3rd, by rejecting all numbers that are squares or cubes, \&c.
299. Thmorey I.-The indeterminate equation $a x \pm b y=0$ admits of at least one solution when a is prime to b .
Demonstration. -ax $\pm b y=c \therefore x=\frac{c \mp b y}{a}$; and substituting in succession $0,1,2,3 \ldots(a-1)$ for y, a being prime to b, the several remainders must necessarily be different. For if any two values of y as v and v^{\prime} give the same remainder r, q and q^{\prime} being the quotients, then $c \pm b v=a q+r$ and $c \pm b v^{\prime}=a q^{\prime}+r$. Therefore $\pm b v \mp b v^{\prime}=a\left(q-q^{\prime}\right)$, that is $b\left(v-v^{\prime}\right)=a\left(q-q^{\prime}\right)$ or $b\left(v^{\prime}-v\right)=a\left(q-q^{\prime}\right)$; that is $b\left(v-v^{\prime}\right)$ and $b\left(v^{\prime}-v\right)$ are divisible by a without a remainder. But by hypothesis b is prime to $a \therefore v-v^{\prime}$ is divisible by a which is impossible, since v and v^{\prime} are both by hypothesis less than a, and consequently $v-v^{\prime}$ and $v i-v$ are less than a. Hence the remainders are all different and their number $=a$ and each is a positive integer less than a, consequently one of them must $=0, \therefore x$ is an integral number for a certain integral value of y less than a, and these integral values of x and y satisfy the equation $a x \pm b y=c$.

Ex. 1. Find integral values of x and y which satisfy the equation $5 x+23 y=170$.

SOLUTION.

Here $x=\frac{170-23 y}{5}$ and substituting in succession $1,2,3, \& c_{?}$? for y and we find that 5 will do.

$$
\text { Thus, } \frac{170-115}{5}=\frac{55}{5}=11=x, \therefore x=11 \text { and } y=5
$$

300. Theorem II.-The equations $\mathrm{ax} \pm \mathrm{by}=\mathrm{c}$ cannot be solued in positive integers if a and b have a divisor which does not also divide c.

Dmmonstration.-For if it be possible let a and b have a common measure m which is not also a measure of c, and let a contain m, p times, and let b contain m, q times. Then $a x \pm b y=c$ ig
equivalent to $p m x \pm q m y=c$, or $p x \pm q y=\frac{c}{m}$. And since both p and q are integers, and $\frac{c}{m}$ is a fraction, it follows that x and y cannot both be integral.
Notri-If a, b and o have a common measure the equation may be divided through by this, and thus a may be made prime to b. In the following articles this is always assumed to be done.
301. Given one solution of the, equation $\mathrm{ax} \pm \mathrm{by}=\mathrm{c}$ in positive integers to find the general solution.

Let $x=\beta$ and $y=\gamma$ be one solution of the equation $a x+b y=c$.
Then $a \beta+b \gamma=c=a x+b y \therefore a(\dot{\beta}-x)=b(y-\gamma) \therefore \frac{a}{b}=\frac{y-\gamma}{\beta-x}$.
Now since $\frac{a}{b}$ is in its lowest terms, a being prime to b;
\therefore whatever multiple $y-\gamma$ is' of a the same multiple is $\beta-x$ of
b. Let $y-\ddot{\gamma}=a t$, then $\beta-x=b t$ where t is an integer, since we are only to obtain integral values.

Therefore $y=\gamma+a t$ and $x=\beta-b t$ is the general solution.
Similarly writing $-b$ for b we obtain for the general solution of $a x-b y=c, x=\beta+b t$ and $y=\gamma+a t$.

Hence if one integral solution of the equation $a x \pm b y=c$ can be detected, the others can be readily found by giving different integral values to t in the equations $x=\beta \mp b t ; y=\gamma+a t$.

Ex. 2. Given $3 x+4 y=39$ to find the positive integral values of x and y.

solution.

Here $x=1$ and $y=9$ is evidently one solution.
Then $x=1-4 t$ and $y=9+3 t$. Now let $t=-1$, then $x=5$, $y=6$, let $t=-2$ then $x=9, y=3$.

Norm.-Since the values of x and y may be fonnd by substituting for t in the general solution $x=\beta \mp b t, y=\gamma+a t$, successively the values 0 , $\pm 1, \pm 2, \pm 8$, \&o., it follows that the values of x and y taken in order constitute two arithmetical series, and consequently that as soon as two contiguous values of each are determined, the rest may be uritten at once.
802. Thnormy. -The number of positive integral solutions is limited for $a x+b y=c$, but unlimited for $a x-b y=c$.

DE
gener $y=\gamma$ Now mani than $\frac{\beta}{b}$.
$=c$ is
II.
$x=\beta$
is any and y since negat positi integr

30
301, \mathbf{f} indet studie

Ex.

Divi
$x+3 y$
$x+3 y$
$x+3 y$
Let
Sub
13 (3-
Hen
Tal
Tab

ECT. XIV.
ce both p
$t x$ and y
on may be In the fol-
positive $c+b y=c$. $\frac{a}{b}=\frac{y-y}{s-x}$ b
$\beta-x$ of since we
solution. solution
$y=c \operatorname{can}$ different

1 values
i $x=5$,

Demonsraation.-I. By Art. 301 it appears for $a x+b y c=$ the general solution is $x=\beta-b t$ and $y=\gamma+a t$ where $x=\beta$ and $y=\boldsymbol{\gamma}$ is one solution and t is any integer positive or negative. Now since by hypothesis x and y are both to be positive, it is manifest that $\beta-b t$ must be positive, that is $b t$ mast be less than β, that is t is limited to integral values which are less than $\frac{\beta}{b}$. Hence the number of positive integral solutions of $\alpha x+b y$ $=c$ is restricted.
II. Similarly in the general solution of $a x-b y=c$ we have $x=\beta+$ bt and $y=\gamma+a t$ where $x=\beta, y=\gamma$ is one solution and t is any integer positive or negative. Now since by hypothesis x and y are to be positive, $\beta+b t$ and $\gamma+a t$ must be positive and since β, b and γ are positive it is manifest that t may be any negative integer such that $b t<\beta$ and at $<\gamma$ and that t may be any positive integer whatever. Therefore the number of positive integral solutions of $a x-b y=c$ is unlimited.
303. In addition to the methodindicated in Arts. 299, 301, for finding the values of the unknown quantities in an indeterminate equation, the following method may be studied with advantage.

Ex. 3. Solve $4 x+13 y=123$ in positive integers. solution.
Divide by the least coefficient, which in this case is 4 , then $x+3 y+\frac{y}{4}=30+\frac{3}{4}$. And since x and y are to be integral $x+3 y-30$ is integral and.$\therefore \frac{3-y}{4}$ which is the equal of $x+3 y-30$ is integral.
Let $\frac{3-y}{4}=t$, an integer, then $3-y=4 t \therefore y=3-4 t$.
Substitute this in the given equation for y, and $4 x=123$ -$13(3-4 t) \therefore x=\frac{123-39+52 t}{4}=\frac{84+52 t}{4}=21+13 t$.
Hence $x=21+13 t$

$$
y=3-4 t\}
$$

Take $t=0$; then $x=21+0=21, y=3-0=3$.
Take $t=-1$; then $x=21-13=8, y=3+4=7$.

Nors.-These are the only positive integral solutions, because as y is to be a positive integer, $8-4 t$ must be 2 pos. int. $\therefore 4 t<8 \therefore t<\frac{1}{1}$ that is t may be any positive integer which is less than 3 , but 0 is the only positive integer less than $\frac{1}{2} \therefore t$ cannot be a positive integer greator than 0 . Similarily since x must be a poaitive integer $21+18 t$ muat be a pos, integ., i.e. t may be any negative integer which will not make $21+18 t$ negatir i, i.e. $18 t$ $<^{21}$ or $\left.t<f\right\}$, i.e. t when taken negatively musi he cninteger less than fis or in other words can only be -1 .

Ex. 4. Soive $3 x-17 y=20$ in positive integers.
sOLUTON.
Divide by the lcast coefficient, 3. Then $x-5 y-\frac{2 y}{3}=6+\frac{2}{3}$, $\therefore \frac{2+2 y}{3}$ is integral, \therefore multiplying by $2, \frac{4+4 y}{3}$ is integral, or $1+y+\frac{1+y}{3}$ is integral, $\therefore \frac{1+y}{3}$ is integral $=t$, say,

Then $1+y=3 t$ and $y=3 t-1$. Substitute thisin the given equation and $3 x=20+17(3 t-1) \therefore x=\frac{20-17+51 t}{3}=17 t+1$.

Hence $x=17 t+1$. $x=18,35,52,69,86$, \&c. $y=3 t-1\} \therefore y=2,5,8,11,14$, \&c.
According as $t=1,2,3,4,5$, \&c.
Note.-We multiply here by 2 in order to render the coefficient of y divisible by the denominator with a remainder 1 , and this we seek to do in all cases.

Ex. 5. Solve in positive integers $5 x+19 y=207$. solution.
Here dividing by 5 we have $x+3 y+\frac{4 y}{5}=41+\frac{8}{3} \therefore \frac{4 y-2}{5}$ is integral, \therefore multiplying by 4 we have $\frac{16 y-8}{5}$ integ., $\therefore 3 y-1$ $+\frac{y-3}{5}$ is integ., $\therefore \frac{y-3}{5}$ is integ. Let $\frac{y-3}{5}=t$ then $y-3=5 t$ and $y=5 t+3$. Substitute this value of y in the given equation and we get $5 x=20^{\circ} 7-19(\beta t+3)=207-57-19 \times 5 t$,

$$
\left.\begin{array}{rl}
\therefore x & =30-19 t \\
y & =5 t+3
\end{array}\right\}
$$

Now when $t=0$ we have $x=30, y=3$,
When $t=1$ we have $x=11, y=8$,
Ex. 6

Muiti together
$17 x-$
$\therefore \frac{8 y+}{17}$
So als
$\therefore \frac{y-}{1}$
Then
$\boldsymbol{x}=\mathbf{3 0}$
not. XIV.

θ as y is to

 $-\frac{7}{2}$ that is t ly positive . Similarly i.e. t may 1. i, i.e. $18 t$ or less than$=6+\frac{2}{3}$, tegral,
the given $t=17 t+1$.
fficient of y bek to da in
$\frac{4 y-2}{5}$ is
$\therefore 3 y-1$
$y-3=5 t$ ation and

Axy. 808.] INDEIERMINATE EQUATIONS.
\therefore The pos. int. solutions are $x=30$ or 11 and $y=3$ or 8 .
Ex. 6. Solve in positive integers $41 x+68 y=2789$.

sOLUTION.

Dividing by 41 we have $x+y+\frac{27 y}{41}=68+\frac{1}{4}, \therefore \frac{27 y-1}{41}$ is int. ; multiplying by 3 we have $\frac{81 y-3}{41}$ ii. .. $\therefore 2 y-\frac{81 y-3}{41}$ is int. $\therefore \frac{82 y-81 y+3}{41}$, that is $\frac{y+3}{41}$ is int. Let $\frac{y+3}{41}=t$ then $y=41 t-3$.

Substitute this value of y in the given equation and

$$
\begin{aligned}
& 41 x=2789-68(41 t-3)=2789+204-68 \times 41 t . \\
& \therefore x=\frac{2993-68 \times 41 t}{41}=73-68 t .
\end{aligned}
$$

Hence $x=73-68 t$) $x=5$

$$
\left.\begin{array}{c}
x=73-68 t \\
y=41 t-3
\end{array}\right\} \therefore \begin{gathered}
x=5 \\
y=38
\end{gathered} .\{\text { when } t=1
$$

It is evident that this is the only, int. poss solntion, for $73-68 t$ must be pos. int., so also must $41 t-3 \therefore 68 t<73$ or $t<\frac{78}{6} ;$ also $41 t>3$ or $t>\frac{3}{4}$ and the only positive integer between $\frac{78}{68}$, and 3^{3} is 1 .
Notr.-The student will not fail to observe the artifice made use of, in the 2nd line of the solution, to avoid using a large multiplier, and the trouble of searching for it, since it must be such as to render the coefilcient of y divisible by 41 with a remainder 1:

Ex. 6. Given $\left.\begin{array}{rl}3 x-7 y+z & =16 \\ 5 x+3 y-4 z & =-4\end{array}\right\}$ to find the positive integral $5 x+3 y-4 z=-4\}$ values of x, y, and z. solution.
Maltiplying the upper equation oy 4 and adding the two together we have
$17 x-25 y=60$, and dividing by 17 we get $x-y-\frac{8 y}{17}=3+\frac{9}{17}$ $\therefore \frac{8 y+9}{17}$ is integral.
So also is $\frac{16 y+18}{17}$, and so also is $y-\frac{16 y+18}{17}$ integral.
$\therefore \frac{y-18}{17}$ is integral $=t$, say, then $y=17 t+18$.
Then $17 x=60+25 y=60+25 \times 17 t+450=510+25 \times 17 t$ $x=30+25 t$ and $y=17 t+18$.

Hence $x=5,30,55$, \&c., and $y=1,18,35$; \&c.
But z also has to be positive and integral, and therefore the only values of x and y which are admissible are $x=6$ and $y=1$; and consequently $z=8$.

Ex. 7. What is the least number which when divided by 4,6 . and 7 shall leave remainders 1,3 and 6 ?

sOZUTION.

Let the number $=4 x+1=6 y+3=7 z+6$. Then $4 x-6 y=2$:
\therefore (1) $2 x-3 y=1 \therefore x-y-\frac{y}{2}=\frac{1}{2} \therefore \frac{y+1}{2}$ is int. $=m$, say Then $y=2 m-1$.

Also (II) $6 y-7 z=2$, that is $12 m-6-7 z=2 \therefore 12 m-7 z=8^{\prime}$
$\therefore m=z+{ }_{7}^{5 m}=1+\frac{1}{7} \therefore \frac{5 m-1}{7}$ is int. $\therefore \frac{15 m-3}{7}$ is int.
$\therefore \frac{m-3}{7}$ is int. $=t$, say, then $m=7 t+3$.
Hence $y=2 m-1=14 t+6-1=14 t+6$.

$$
x=\frac{6 y+2}{4}=\frac{3}{2} y+\frac{1}{2}=\frac{42 t+15}{2}+\frac{1}{2}=21 t+8
$$

And $z=\frac{6 y-2}{7}=\frac{84 t+30-2}{7}=12 t+4$.
Consequently $x=8, y=5$, and $z=4$.
And the required number $=4 x+1=33$.
Ex. 8. In how many ways can $\mathbf{f 8 0}$ be paid in sovereigns and: guineas?

SOLDTION.

Let $x=$ number of sovereigns and $y=$ number of guineas.
Theni n shillings $20 x+2 \bar{I} y=1600 \therefore x+y+\frac{y}{20}=80$.
$\therefore y=20 t$. And $20 x=1600-21 y=1600-21 \times 20 t$.
$\therefore x=80-21 t$.
Then! ince $80-21 t$ must be pos. and int. $\therefore 80$ must be

$$
23 .
$$

pears, the pe there
greater han $21 t$, and since $21 t<80, t<\frac{80}{21}$ and \therefore cannot exceed 3, and consequently there are only three ways of payment.
and 0 26. by $\%$

Exiroibe LXVIII.

Solve in positive integers.

1. $4 x+3 y=11$
2. $5 x-13 y=11$
3. $2 x+7 y=59$
4. $5 x+11 y=26$
b. $9 x-17 y=2$
5. $13 x+21 y=89$
6. $12 x-41 y=-17$
7. $37 x+43 y=357$
8. $22 x-43 y=6$
9. $7 x+25 y=177$
10. $99 x-160 y=335$
11. $17 x-4 y=22$.

Find a positive integral solution of the following :

$$
\text { 13. } \left.\left.\begin{array}{lr}
2 x+3 y-4 z=29 \\
3 x+5 y-3 z=9
\end{array}\right\} \text { 14. } \begin{array}{l}
4 x-5 y-6 z=17 \\
2 x+y+11 z=47
\end{array}\right\}
$$

16. In how many ways can the sum of $\$ 697$ be made up by bank notes of the respective value of $\$ 3$ and $\$ 5$?
17. In how many ways can $\$ 27.30$ be paid in twenty-five cent and ten cent pieces?
18. What is the simplest way for a person who has only guineas to pay $£ 710 \mathrm{~s}$. 6d. to another who has only half crowns ?
19. Find two integral square numbers whose sum is a square.
20. Find two integral square numbers whose difference is a square.
21. A basket of apples is known to contain between 90 and 100, and it is found that when they are counted four at a time, there are two over, and when counted six at a time there are also two over. How many are there in the basket?
22. Find the least integer which when divided by 6,8 and 10 respectively shall leave remainders 1,5 and
23. How many fractions are there with denominators:10 and 15, whose sum is $\frac{89}{5 \%}$? $\frac{38}{68}$
24. A person bough 50 barrels of fruit, consisting of apples, pears, and cranberries, for $\$ 250$; the apples cost $\$ 2$ per barrel, the pears $\$ 5$ and the cranberries $\$ 4$, how many barrels were there of each ?
loovains of
25. How can a debt of $£ 100$ be paid with $£ 5$ notes, $£ 1$ note and crown pieces?
26. Divide 25 into two parts, one of which may be divisible. by $\%$ and the other by 3.-
ment.
27. Divide 24 into three such parts that if the first be multi-
plied by 36 , the second by 24 , and the third by 8 , the sum of the three products may be 816.
28. Find a perfect number, i.e. one which is exactly equal to the sum of all its divisors.
29. What is the least odd integer which divided $10,12,14$ shall leare remainders 7,9 and 11 respectively ?
30. A person buys 100 head of cattlg of three different kinds for $\$ 500$. For the first he gives $\$ 50$ a head, for the second $\$ 30$, and for the third \$2, how many were there of each kind ?

MISOELLANEOUS EXERCISES.

1. Simplify $\ddagger\{(1-a)\}-\frac{1}{5}(\}\{\{(\theta a-6)\})$.
2. Prove that $\left(x^{4}+1-x^{-2}\right)^{2}-\left(x^{2}-1-x-2\right)^{2}=4\left(x^{2}-x^{-2}\right)$.
3. Find the G. C. M. of $a^{2}+2 a b+b^{2}, a^{8}+b^{8}, a^{4}-b^{2}$ and $a^{8}+2 a^{2} b+2 a b^{2}+b^{3}$.
-4. Find the value of $\frac{x-b}{a}-\frac{x-a}{b}$ where $x=\frac{b^{2}}{b-a}$.
4. B. Given $x+y+z=3(x+z-y)=6(z-x-y)=15$ to find the values of x, y and z.
5. Find the value of $\sqrt[8]{135}-3 \sqrt[3]{40}+2 \sqrt[8]{625}-4 \sqrt[8]{320}$.
6. Given $x^{4}+1=0$ to find the values of x.
7. If $a: b:: b: c$, and $b: c:: c: d$, show that

$$
a+b: b+c:: b+c: c+d .
$$

9. Shew that if $a: c:: 2 a-b: 2 b-c$, then will $a, 3 b$ and $\frac{1}{} c$ be in harmonic progression.
10. In the series $a+a\left(1-\frac{1}{p}\right)^{\frac{1}{n}}+a\left(1-\frac{1}{p}\right)^{\frac{2}{n}}$.
$+a\left(1-\frac{1}{p}\right)^{\frac{8}{n}}+\& c$. , the sum to infinity is p times, the sum of the first n terms.
then
11.

which Find 1
21.

$$
\text { 11. Readuce } \frac{x^{\frac{2 n}{2}}-x^{-\frac{3 n}{2}}}{\frac{x^{\frac{2}{2}}-x^{-\frac{n}{2}}}{\text { and }} \frac{x^{\frac{3}{3}}+a^{\frac{3}{3}} x^{\frac{3}{3}}+a^{\frac{4}{1}}}{x^{\frac{3}{3}}+a^{\frac{1}{3}} x^{\frac{1}{3}}+a^{\frac{3}{3}}} \text { to their simplest }} \text { form. }
$$

12. Find the cube root of $343 x^{6}-441 x^{5} y+777 x^{4} y^{2}-631 x^{3} y^{3}$ $+44 x^{2} y^{4}-144 x y^{5}+64 y^{6}$.
13. Find the value of

$$
\frac{1}{2 x+\frac{1}{3 x+\frac{1}{4 x}}}
$$

17. Find the value of

$$
\frac{1}{4(2 x-1)}-\frac{1}{4(2 x+1)}+\frac{1}{2} \cdot \frac{2 x+1}{(2 x-1)\left(4 x^{2}+1\right)}
$$

18. Find the values of x in the equations

$$
\begin{aligned}
& \text { (I) } \frac{a}{x+a}-\frac{c}{x+c}=\frac{a-c}{x+a-c} \\
& \text { (II) } \sqrt{(x-1)(x-2)}+\sqrt{(x-3)(x-4)}=2 \\
& \rightarrow \text { (III) } \frac{1}{x^{2}-2 x-15}+\frac{1}{x^{2}+2 x-36}-\frac{1}{x^{2}-13 x-48}=0
\end{aligned}
$$

+ 19. If $n=\frac{b+c}{b-c}$; and b be the G. mean between a and c, then $\frac{a^{2}+b^{2}}{a^{2}+b^{2}}$ will be the H. mean between n and $\frac{1}{n}$.

20. A and B can together perform a piece of work in u diays, which A and C can finish in b days, and B and C in C days. Find the time in which each can perform it separately.
21. Find the values of

$$
\frac{a^{2}}{(a-b)(a-c)}-\frac{b^{2}}{(c-b)(b-a)}-\frac{c^{2}}{(b-c)(c-a)}
$$

22. Shew that $a^{2}-\left(\frac{\mathfrak{a}^{2}+4 b^{2}-9 c^{2}}{4 b}\right)^{2}=$

$$
\frac{(a+2 b+3 c)(a+2 b-3 c)(a-2 b+3 c)(2 b-a+3 c)}{16 b^{2}}
$$

23. Find the two factors of $a^{4}+b^{4}$, and the two factors of: $a^{4}-a^{2} b^{2}+b^{4}$.
24. Simplify $\frac{x+y+\frac{x^{2}}{y}}{x+y+\frac{y^{2}}{x}}$.
25. Find the l.c.m. and also the G. C. M. of $x^{2}+3 x y-28 y^{2}$, $x^{2}-2 x y-8 y^{2}$ and $x^{2}-5 x y+4 y^{2}$.
26. Find the general expression for the sum of a geometrical series when $r= \pm 1$.
27. If by the notation a_{t} we represent the t th term of a series;
then in an \mathcal{A}. series $(p-q)\left(a_{m}-a_{n}\right)=(m-n)\left(a_{p}-a_{q}\right)$ and in a G. series $\left(\frac{a_{m}}{a_{n}}\right)^{p-q}=\left(\frac{a_{p}}{a_{q}}\right)^{m-n}$. Required proof.
28. In comparing the rates of a watch and a clock, it was observed that one morning when it was 12 h . by the clock, it was 11 h .59 m .49 s . by the watch, and two mornings after when it was 9 h . by the clock it was 8 h .59 m .58 s . by the watch. The clock is known to gain one tenth of a second in 24 hours. Find the gaining rate of the watch.
29. Sum to 12 terms the series $8+12+18+\& c$., and find the series both \mathcal{A} and G; whose 3 rd term is 4 , and 6 th term ${ }_{8}^{3} \frac{3}{9}$.
30. The receiving reservoir at Yorkville is a rectangle 60 rds longer than it is broad, and its area is 5500 square gds.
What are its dimensions?
31. 31. Divide (I) $x^{6}-2 x^{3} y^{3}+y^{6}$ by $x^{2}-2 x y+y^{2}$ by the method of factoring.
(II) $7 x^{8}+5 x^{4}-4 x^{5}+3 x+9$ by $x^{3}+2 x-1$ by Horner's method.
(iii) $x^{m}-x^{-m}$ by $x-x^{-1}$ to five terms. Also find the r th term, and if m be an even integer, prove that the complete quotient can be separated into two parts of which one is x^{m} times the other.
1. Find the square root of $37+20 \sqrt{3}$, and of $4 x+2 \sqrt{4 x^{2}-1}$.
2. Find the fifth term of the expansion of $\left(a^{4}-x^{-4}\right)^{-8}$.
3. In how many ways can a party of seven men be formed out a company of 28 ?) and in
it was clock, it er when h. The s. Find and find term ${ }_{2}^{3}$? ngle 60 are yds. ethod of
-1 by
lso find integer, can be e is x^{m}
formad
4. Find the square root of $x^{4}-4 x^{2}+9 x^{-4}-12 x^{-2} \quad 10$ by inspection.
5. Find the three cube roots of unity, and show that their sum is equal to the sum of their squares.
6. Find the values of x and y in the equations:

$$
\left.\begin{array}{l}
\text { (I) } \frac{x}{a}+\frac{y}{b}=1=\frac{x-a}{b}+\frac{y-b}{a} \text {. } \\
\text { (II) } x^{2}=6 x+4 y \\
y^{2}=4 x+6 y
\end{array}\right\}
$$

38. \mathcal{A} and B sold 130 yards of calico, (of which 40 yards were \boldsymbol{A}^{\prime} 's and 90 yards B^{\prime} s) for $\$ 42$. Now \boldsymbol{A} sold for $\$ 1$, onethird of a yard more than B sold for the same sum. How many yards did each sell for $\$ 1$?
39. Insert five H. means between $\frac{1}{\frac{1}{3}}$ and \ddagger.
40. What is the difference between an identity and an equan tion, and to which of the two does

$$
\frac{a+c}{(a-b)(x-a)}-\frac{b+c}{(a-b)(x-b)}=\frac{x+c}{(x-a)(x-b)} \text { belong? }
$$

41. Solve the equation $\sqrt[6]{x^{2}+1}+\sqrt{x}=1$.
42. Simplify $a b-[(a+c) \cdot b-3 a c-\{a b-2 c(a-b)\}]$.
43. Simplify

44. Reduce $\frac{\left(x^{2}-2 x-48\right)\left(x^{2}+3 x-28\right)}{\left(x^{2}+2 x-24\right)\left(x^{2}-3 x-40\right)}$ to its lowest torms.
45. Find the value of x in the equations
(1) $\frac{x}{(x-a)(x-b)}+\frac{a}{(a-b)(a-x)}+\frac{b}{(b-a)(b-x)}=\frac{1}{a-b}$.
(I.) $亠\left(4+\frac{3 x}{2}\right)-\frac{1}{7}\left(2 x-\frac{5}{5}\right)=\frac{3}{2} \frac{1}{8}$.
46. Find the value of x, y and z iu the equations

$$
x^{2}+x y+y^{2}=37 ; y^{2}+y z+z^{2}=28, \text { and } z^{2}+z x+x^{2}=19 .
$$

47. Find the least possible value of $2 a^{2}+2 a^{2} b+a^{2} b^{2}-2 a b x$ $+b^{2} x^{2}$ for all real values of x.
48. Find the square root of $x^{6 p}+9 x^{-6 p}-4 x^{4 p}+4\left(x^{2 p}-3 x^{-2 p}\right)+6$ by inspection.
49. Sum to 8 terms each of the series $\left.3_{7}^{3}+69_{7}^{2}+9\right\}+$ \&c.; and $81 x^{12}-64 x^{10} y+36 x^{8} y^{2}-\& c$. Also find the sum of the latter neries to infinity when $x=2 y=1$,
50. Find a geometrical series such that the sum of any three consecutive terms may be $\frac{1}{2}$ that of the succeeding six terms.
51. Simplify $x^{m(n-p)} \cdot x^{n(p-m)}, x^{p(m-n)}$.
52. Reduce $\frac{x^{4}+x^{3}+2 x^{2}+x+1}{x^{4}-x^{3}+2 x^{2}-x+1}$ to its lowest terms.
53. Solve with respect to x the equation $x^{2}-2 a x-2 b x-3 a^{2}$ $+10 a b-3 b^{2}=0$.
54. Given $\sqrt{y}-\sqrt{y-x}=\sqrt{20-x}$, and also $\sqrt{y-x}: \sqrt{20-x}$ $:: 2: 2$ to find the value of x and y.
55. Find by inspection the product of $\left(x^{2}-2 x+3\right)$ by $\left(x^{2}+2 x+1\right)$, and $\left(x^{4}+2 x^{2} y^{\frac{3}{2}}+3 y^{3}\right)$ by $\left(x^{4}-2 x^{2} y^{3}+y^{3}\right)$.
56. Solve the equation $x^{3}+y^{8}=a^{8}$, and $x^{4} y+x y^{2}=b^{8}$.
57. A company at a tavern had $\$ 35$ to pay; but before the bill was paid, two of them left, and in consequence of this the remainder had each $\$ 2$ more to pay. How many were there in the company at first?
58. Find the ninth term in the expansion of $\left(a^{\frac{1}{2}}+b^{\frac{1}{2}}\right)^{4}$.
59. Find by inspection the coefficients of x^{8} and x^{11} in the expansion of $\left(1+a x-\frac{1}{2} a x^{2}-2 a^{2} x^{4}-x^{5}+\frac{1}{3} a x^{6}-3 a x^{7}\right)^{2}$?
60. Find two numbers'such that the greater shall be to the less as their sum to a, and their difference to b.
61. Reduce $2+\frac{1}{3+\frac{1}{4+\frac{1}{x-1}} \text { and also }\left(\frac{x^{2}+1}{x^{2}-1}\right)\left(\frac{x^{2}+x^{-2}+2}{x^{8}+x^{-8}}\right)}$
to simple quantities.
62. Find the value of the expression

$$
\frac{x+6}{x^{2}+2 x-35}+\frac{x-4}{x^{2}+10 x+21}-\frac{x+2}{x^{2}-2 x-15} .
$$

63. Find the square root of $\frac{x^{2}}{y^{2}}+\frac{y^{2}}{x^{2}}-\left(\frac{x}{y}+\frac{y}{x}\right)+2 \ddagger$ by inspection, and also of $x^{4}-2 x^{8}+\frac{3}{2} x^{2}-\frac{1}{2} x+\frac{1}{26}$.
64. Multiply $\left(x^{m}-2 y^{n}\right)$ by $\left(x^{m}-y^{n}\right)$, and also $\left(x^{m^{2}}+a x^{m}-b\right)$ by $\left(x^{m^{2}}-a x^{m}+b\right)$.
65. Divide $\left(12 x^{4}-192\right)$ by $(3 x-6)$, and $\left(20 a^{4} b^{6}-22 a^{8} b ?\right.$ $\left.+11 a^{2} b^{8}-3 a b^{9}\right) ;$ by $\left(4 a^{2} b^{3}-2 a b^{4}+b^{5}\right)$. The former by fectof: ing, and the latter by the method of detached coefficient

66 has

67 $x^{2}<1$

68
69.
rocal
70.
numb
71.
ticall tion.
72. $\left\{x^{\left(\frac{1}{2}\right)}\right.$
73.
74.
and
quant
75. the $v a$
76.
to any times
77.
and th
78.
79.
and w $t=0$
ny three terms.
$2 b x-3 a^{2}$
+3) by this the there in
in the
66. If four quantities are in ontinued proportion, the first has to the fourth the triplicate ratio which it has to the second
67. Find the integral values of x which satisfy the inequality $x^{2}<10 x-16$.
68. Given $\frac{13-2 \sqrt{x-5}}{13+2 \sqrt{x-5}}=8^{3} 3$ to find the value of x.
69. If $\frac{a}{b}$ be any fraction whatever the sum of it and its reciprocal is greater than 2.
70. Shew that the sum of the cubes of any three consecutive numbers is divisible by three times the middle number.
71. Divide $\left(a^{6}-4 a^{4}+7 a^{8}-5 a+6\right)$ by $a^{2}+5 a-4$ synthetically. Also divide $\left(x^{5}+x^{-6}-2\right)$ by $\left(x^{2}+x^{-2}-2\right)$ by inspection.
72. Find the continued product of
$\left\{x^{\left(\frac{1}{)^{n-1}}-a^{\left(\frac{1}{3}\right.}\right)^{n-1}}\right\}\left(x^{\frac{1}{2}}+a^{\frac{1}{2}}\right)\left(x^{\frac{1}{4}}+a^{\frac{1}{2}}\right) \ldots$. de.; to n factors.
73. Simplify $\frac{13}{12(2 x-3)}-\frac{7}{12(2 x+3)}-\frac{x-4}{4 x^{2}+9}$.
74. Find the product of $\left(\frac{1}{2} x^{2}+\frac{1}{2} x y+\frac{23}{3} y^{3}\right)$ into $\left(\frac{1}{2} x^{2}-\frac{3}{3} x y+\frac{g}{9} y^{2}\right)$, and of $\left(2 x^{\frac{1}{2}}+3 y^{\frac{1}{2}}\right)\left(2 x^{\frac{1}{4}}-3 y^{\frac{1}{4}}\right)\left(4 x^{\frac{1}{2}}+6 x^{\frac{1}{2}} y^{\frac{1}{4}}+9 y^{\frac{1}{3}}\right)$ into the quantity ($4 x^{\frac{1}{2}}-6 x^{\frac{1}{4}} y^{\frac{1}{4}}+9 y^{\frac{1}{2}}$).
75. Given $2 x \sqrt{ } 3-3 y \sqrt{ } 2=6$ and $3 x \sqrt{2}-2 y \sqrt{ } 3=5 \sqrt{6}$ to find the values of x and y.
76. Prove that if the series $1+3+5+7+\& c$., be continued to any even number of terms, the sum of the latter half is three times the sum of the former half.
77. If the \mathcal{A}. mean between two quantities be $\frac{a}{b}+\frac{b}{a}+2$; and the H. mean be $\frac{a}{b}+\frac{b}{a}-2$, then the G. mean will be $\frac{a}{b}-\frac{b}{a}$.
78. If a, b, c, be in H. progression, then will

$$
\frac{1}{a}+\frac{1}{c}=\frac{1}{b-a}+\frac{1}{b-c} .
$$

79. If $r+s+t=v$, where r is constantand $s \propto \frac{x}{y}$ and $t \propto x y^{2}$, and when $x=y=1, v=0$, and when $x=y=3, v=8$, and whon $x=0, v=1$, find v in terms of x and y.
80. Solve with respect to x the equations
(1) $\{(a+b) x+a-b\}\{(a+b) x+b-a\}=4 a b$.
(II) $\frac{a x}{b}-\frac{b}{a}=x+\frac{b}{a x}$.
81. Find the continued product of $\left(a^{\circ}-b\right)(a+b)\left(a^{2}+b^{2}\right)+\& c$, to $n+1$ factors.
82. Divide $x^{4}-(a+b+p) x^{s}+(a p+b p-c+q) x^{2}-(a q+b q-/$ $c p) x-q c$ by $x^{2}-p x+q$ synthetically.
83. Find the square root of $a^{2} x^{6}+2 a b x^{4}+\left(b^{2}+2 a c\right) x^{2}+c^{2} x^{-8}$ $+2 b c$.
84. Simplify
$\left\{\frac{1}{(x+a)(x-b)}+\frac{1}{(x-a)(x+b)}\right\} \div\left\{\frac{1}{(x+a)(x+b)}+\frac{1}{(x-a)(x-b)}\right\}$
1/ 85. Find the G. C. M. of $x^{4}+p^{2} x^{2}+p^{4}$ and $x^{4}+2 p x^{3}+p^{2} x^{2}-p^{4}$.
85. Find the l. c. m. of $2 \frac{1}{2}\left(x^{2}+x-20\right), 3 \frac{1}{3}\left(x^{2}-x-30\right)$ and $4 \frac{1}{6}\left(x^{2}-10 x+24\right)$.
86. Solve with respect to x the equation

$$
\left(a^{2}-1\right) x^{2}-2(a b+1) x+b^{2}-1=0
$$

88. Simplify the following expression

$$
\frac{x^{3}+x^{-3}+2\left(x+x^{-1}\right)}{x^{5}-x^{-8}-2\left(x-x^{-1}\right)} \cdot\left(\frac{x^{2}-1}{x^{2}+1}\right)^{2}
$$

89. Prove that if to any square number there be added the square of half the number immediately preceding it, the sum will be a complete square; viz., the square of half the number immediately following it.
90. A cistern is furnished with two supply pipes A and B,
91.
92.
93.
94. betwe
95. hand 99. units and tb the si have b examis
96. exhibi of the
97.

4 and x^{2} the re 103. C, separately.
91. Find the G. C. M. of $2 x^{5}+2 x^{4}-5 x^{3}+4 x^{2}-9$, and $3 x^{4}$ 104 $+3 x^{3}-10 x^{2}-x+3$
92. Find the l. c. m. of

$$
a p x^{2}+(a q+b p) x+b q, \text { and } a q x^{2}-(a p-b q) x-b p
$$

$$
\text { Also of }\left(x^{2}-x y\right) ;\left(x^{\frac{2}{4}}-y^{2}\right) \text { and }\left(x y+y^{2}\right)
$$

93. Solve the equations

$$
\begin{aligned}
& \left.b^{2}\right)+d c, \\
& a q+b q-/ \\
& c^{2}+c^{2} x-2
\end{aligned}
$$

$$
\left.\frac{1}{a)(x-b)}\right\}
$$ $p^{2} x^{2}-p^{4}$. 30) and

ided the sum will er imme-
and B, ether for lled in $\frac{1}{2}$ ours and s more; 1 hour. B, and and $3 x 4$
(1) $\frac{x-2 a}{3}=\frac{2 x+6 a}{7}-\frac{x+2 a}{13}$
(II) $\frac{x-1}{2}-\frac{x+1}{3}=\frac{3}{x+1}-\frac{2}{x-1}$
(iii) $\sqrt{x+4}+\sqrt{2 x+6}=\sqrt{3 x+34}$
(iv) $x^{2}(v-1)+3 y\left(x^{2}-1\right)=\sqrt{x^{2}+3 y}$ and $x^{2} y=5$
94. Form the equatic whose roots are 2,3 and $-2 \pm \sqrt{-3} a$
95. Simplify $a-(a-n)-.\{-(-\{-a-(-m-\{-(m-a)\})\})\}$
96. Resolve $a^{8}+b^{8}$ into its component factors.
97. If \mathcal{A}., G. and H. be the arith., geom, and harm. means between two quantities a and b, then will

$$
\frac{H}{A}=1+\frac{(H-a)(H-b)}{G^{2}} .
$$

98. Find the time between two successive transits of the minute. hand over the hour-hand of a common clock.
99. The opposite sides of a rectangle are each increased by a units in length, and the other two sides decreased by b units, and the area is found to be unaltered; but if these changes in the sides had been respectively c and d units, the area would have been diminished by e square units. Find the sides and examine the nature of the problem when $a d=b c$, and $b c+e=c d$
100. Given $\left(\frac{x-a}{x-b}\right)^{3}=\frac{x-2 a+b}{x-2 b+a}$, to find x.
101. Divide $5 x^{5}-3 x^{2}+1$ by $x^{2}-2 x+3$ by Horner's method, exhibiting both the complete remainder, and the continuation of the quotient 17 descending powers of x.
102. Find the G. O. M. of $x^{2} y+x y^{2}-3 x^{2}+3 y^{2}-9 x+9 y-2 y^{3}$, $<$ and $x^{2} y+2 x y^{2}+x^{2}+4 x y-5 y^{2}+2 x-2 y-3 y^{3}$, and examine what the result becomes when $y=1$.
103. If $a \propto c \sqrt{b}$ and $c^{2} \propto b^{3}$ shew that $a c \propto b^{2}$.
104. Resolve $a^{12}+m^{12}$ into four elementary factors.
105. Reduce $\frac{m^{2}-(p-q)^{2}}{(m+q)^{2}-p^{2}}+\frac{p^{2}-(q-m)^{2}}{(m+p)^{2}-q^{2}}+\frac{q^{2}-(m-p)^{2}}{(p+q)^{2}-m^{2}}$ to its simplest form.
106. Given $2^{x+1}+4^{x}=80$ to find x.
107. If x be real, prove that $x^{2}-8 x+22$ can never be less 'than 6.
108. If $a \propto d^{2}, b^{8} \propto d^{4}$ and $c^{3} \propto$ inversely as d, shew that the product abc varies as if each of the three varied directly as d.
109. Shew that the sum of n consecutive odd numbers beginning with $2 m+1$ exceeds the sum of the first n odd numbers beginning with unity by twice the product of m and n.
110. If the roots of the equation $a x^{2}+b x+c=0$ are in the ratio $m: n$, shew that $\frac{b^{2}}{a c}=\frac{(m+n)^{2}}{m n}$.
111. Prove that $\frac{a^{4}\left(b^{2}-c^{2}\right)+b^{4}\left(c^{2}-a^{2}\right)+c^{4}\left(a^{2}-b^{2}\right)}{a^{2}(b-c)+b^{2}(c-a)+c^{2} \frac{(a-b)}{(a-b}}=$ $(a+b)(b+c)(a+c)$
112. Every square number is either divisible by 3 or becomes so by the addition of 2 , and the product of any three consecutive integers, the middle one of which is odd, is divisible by 24.
113. Prove that $\{n(n+1)\}^{2}-\{(n-1) n\}^{2}=4:^{3}$ a
114. Find the value of $\frac{(a b+1)\left(x^{2}+\right)}{(x y+1)\left(a^{2}+1\right)}-\frac{x+1}{y+1}$ when $x=\frac{1+a}{1-a}$ and $y=\frac{1+b}{1-b}$
115. Divide synthetically $7 x^{5}+21 x^{4} y+35 x^{8} y^{2}+35 x^{2} y^{3}$ $+21 x y^{4}+7 y^{5}$ by $x+y$, and the result by $x^{2}+x y+y^{2}$.
116. Employ the method of detached coefficients to find the G. C. M. of $18 x^{4}+9 x^{3}-17 x^{2}-4 x+4$, and $8 x^{4}+4 x^{3}-6 x^{2}-$ $x+1$.
117. Resolve the quanties given in the last question into their elementary factors.
118. Reduce to a single fraction

$$
\frac{3}{4(1-x)^{2}}+\frac{3}{8(1-x)}+\frac{1}{8(1+x)}-\frac{1-x}{4\left(1+x^{2}\right)}
$$

119. Is the following expression an identity or an equation

$$
\left(x+\frac{5 a}{2}\right)\left(x-\frac{3 a}{2}\right)+a x=(x+5 a)(x-3 a)+11 \neq ?
$$

If $a=1$, how then ?
and $\frac{\square}{b}$ will be
121.
122.
radii made i a circl
123.
of the
series.
124.
125.
and su
126.
one-thi
127.
and S,
$3+7+$
128.
expans
129.
$3 \pm \sqrt{-}$
130.
$x^{5}+23$
131.
ratio a
132.
133.
when
135.

What
er be less w that the y as d.
ers begininumbers $r e$ in the
hto their
quation
120. If a, b and c be in H. progression then will $\frac{a b}{a+b}, \frac{a c}{a+c}$ and $\frac{b c}{b+c}$ also be in H. progression and $\frac{b+c}{a}, \frac{c+a}{b}$ and $\frac{a+b}{c}$ will be in A. progression.
121. If $a \propto b$ and $c \propto d$ then will $a d \propto b c$.
122. If the two circles each of radius 3 , and four others of radii 4,5 , nd 7 respectiveiy, shew that they can all be made into a s.igle circle of radius 12 , assuming that the area of a circle varies as the square of its radius.
123. Given the first term of an \mathcal{A}. series $=11$, and that the sum of the first 3 terms = the sum of the first 9 terms, to find the series.
124. Given any two terms of a G. series to construct it.
125. Find the G. series whose 1 st term $=3$, 5 th term $=\frac{1}{8} \frac{6}{7}$, and sum of first five terms $=2 \frac{1}{2}$.
126. Prove that the latter half of $2 n$ terms of an \mathcal{A}. series is one-third of the sum of $8 n$ terms of the same series.
127. If S^{1} denote the sum of n terms of the series $1+5+9+\& c$. and S_{2} denote the sum to $(n-1)$ or to n terms of the series $3+7+11+\& c$., prove that $S_{1}+S_{2}=\left(S_{1}-S_{2}\right)^{2}$.
128. Find the 7 th, the 10 th and the general term in the expansion of $\left(1+x^{-2}\right)^{-\frac{3}{3}}$.
129. Form the equation whose roots are $1,-1,2,-2$ and $3 \pm \sqrt{-2}$.
130. Assuming that $-1,1$ and 1 are three roots of the equation $x^{5}+2 x^{4}-3 x^{3}-3 x^{2}+2 x+1=0$ to find the other two roots.
131. Find what quantity must be added to each term of the ratio $a: b$ in order to make it four times as great as the ratio $c: d$.
132. Shew that $\left(\frac{2-\sqrt{3}}{2+\sqrt{3}}\right)^{\frac{1}{4}}=\frac{\sqrt{2}}{1+\sqrt{3}}$
133. Given $\left.\begin{array}{c}2 x+3 y+4 z=29 \\ x-2 y+3 z=8\end{array}\right\}$ to find x, y, z in positive integers.
134. Find the value of the vanishing fraction $\frac{x^{n+1}-y^{n+1}}{x^{n} y^{n}(x-y)}$ when $x=y$.
135. The sum of two ncmbers is 45, and their l. c. m. is 168, What are the numbers?
136. Given $\frac{1}{5}\left\{\frac{(x+1)(x-3)}{(x+2)(x-4)}\right\}+\frac{1}{9} \cdot \frac{(x+3)(x-6)}{(x+4)(x-6)}-$ $\frac{2}{13} \cdot \frac{(x+5)(x-7)}{(x+6)}(x-8)=\frac{92}{685}$ to find x.
137. Given $\left.\begin{array}{c}2 x y-4 y^{2}+x^{2}=4 \\ x^{2}-y^{2}=36\end{array}\right\}$ to find the values of x and y.
138. Prove that the fraction of on belng conyerted into a decimal will continually produce, successively order, the digits $0,1,2 \ldots 9$ inclusive with the exception of 8.
139. Prove that the roots of $a x^{2}-b x=a^{2} x-a b$ are rational.
140. Solve the equation $(a+x)(b+x)=n a b$.
141. Find the value of x in the equation $1+\sqrt{x}=6 x$.
142. Given $\sqrt{x}+\sqrt{x-1}=\sqrt{x+1}$ to find x.
143. Solve with respect to x, y and z the equations

$$
x+y+z=\frac{a^{2}}{x}=\frac{b^{y}}{y}=\frac{c^{2}}{z}
$$

144. If a number be multiplied by 4 , and the same number reversed be multiplied by 5 , the sam of the products is exaetly divisible by 9 .

Prove this, and infer the general proposition of which it is a particular case.
145. Simplify $(a+b)(b+c)-(a+1)(c+1)-(a+c)(b-1)$.
146. Find, without actually multiplying, the product of

$$
\left(\frac{x^{2} y^{2}}{9}-x y+9\right) \text { into }\left(\frac{x y}{3}+3\right)
$$

147. Find, without actually dividing, the quotient of $(a x+b y)^{2}$ $+(c x+d y)^{2}+(a y-b x)^{2}+(c y-d x)^{2}$ by $x^{2}+y^{2}$.
148. Extract the square root of $a^{2}\left(x^{2}+4\right)-2 a(x+2)+4 a^{2} x+1$ by inspection.
149. Find the G. C. M. of $a^{2}+b^{2}-c^{2}+3 a b$, and $a^{2}-b^{2}-c^{2}+$ $2 b c$ by factoring.
150. Divide synthetically $4 x^{4}+5 x^{2}+1$ by $x^{3}+2 \dot{x}-1$ obtaining the exact remaindor, and also four terms of the remainder
and hand expressed in descending powers of x.
151. Expand $\frac{1}{1-x+x^{2}}$ in ascending powers of x.
152. Sim. lify $\left(\frac{a}{a+b}+\frac{b}{a-b}\right) \times\left(\frac{a}{a-b}-\frac{b}{a+b}\right)$
153. Divide $\left(\frac{a}{a+c}-\frac{b}{b+c}\right)$ by $\left(\frac{c}{b+c}-\frac{c}{a+c}\right)$
154. Reduce to a single fraction in its lowest terms

$$
\frac{3(x-2)}{(x-1)(x-3)}-\frac{1}{x-1}-\frac{1}{(x-2)}-\frac{1}{x-3}
$$

155. Prove that

$$
\frac{(x y+1+2 x)(x y+1+2 y)+(x-y)^{2}}{x^{2} y^{2}+1-x^{2}-y^{2}}=\frac{(x+1)(y+1)}{(x-1)(y-1)}
$$

i56. Find the conditions necessary in order that the equations $a x^{2}+b x+c=0$ and $a^{1} x^{2}+b_{1} x+c_{1}=0$ may have
(I) One root common.
(ii) Roots equal in magnitude, but of contrary signs.
167. Solve the equation $\frac{x+1}{2}-\frac{2 x-1}{3}=\frac{3 x+4}{4}-\frac{5 x-6}{3}$
158. Given $\frac{(x-1)(x+4)}{(x+3)}=\frac{(3+x)(2-x)}{1-x}$ to find the value of x.
159. Find the value of x in the equation

$$
\frac{1+2 x}{1-2 x}=\frac{1+x+\sqrt{1+2 x}}{1-x-\sqrt{1-2 x}}
$$

160. Find x in the equation

$$
\frac{(x-1)^{2}(n-1)^{2}+4 n}{(x+1)^{2}(n-1)^{2}+4 n}=P .
$$

and shew that if n be positive and x real, the value of the left hand members always lies between n and $\frac{1}{n}$
161. Find the A., G. and \boldsymbol{F}. means between $\frac{3}{4}$ and f.
162. If H. be the harmonic mean between a and b, prove that it is also the H. mean between ($H-a$) and ($H-b$)
163. Find the 37 th term of the series $6+\frac{36}{6}+\frac{17}{3}+8 c$., and also the sum of the sums of the first 31 terms and 42 terms.
164. Find the sum of n terms of the series 3$\}+2+1 \xi+\& c$.
165. Find the sum of n terms of the series $1-0 \cdot 4+0 \cdot 16-$ $6.64+\& c$., and also the difference between the sum to infinity and the sum to n terms.
166. There are p arithmetical series, each continued to n terms ; their first terms are the natural numbers $1,2,3, d c$., and their common differences are the successive odd numbers $1,3,5$, \&c. Prove that the sum of all of them is the same as if there were n such series each continued to p terms.
167. Find the continued product of $x-\sqrt{x y}+y, x+\sqrt{x y}+y$ and $x^{2}-x y+y^{2}$.
168. Find the value of $y\left(x^{2}-3 y\right)^{\frac{1}{2}}+x\left(x^{2}+3 y\right)^{\frac{3}{2}}$ when $x=5$ and $y=8$.
169. Extract the 4th root of $16 a^{4}-96 a^{3} b+216 a^{2} b^{2}-216 a b^{3}+$ $81 b^{4}$.
170. If $a: b:: c: d$ shew that

$$
\frac{1}{a}-\frac{1}{2 b}-\frac{1}{3 c}+\frac{1}{4 d}=\frac{1}{a d}\left(\frac{a}{4}-\frac{b}{3}-\frac{c}{2}+d\right)
$$

171. Solve the equation $\frac{2 x+3}{x+1}-\frac{4 x+5}{4 x+4}+\frac{3 x+3}{3 x+1}$ giving the rule and reason for each step of the operation.
172. Solve with respect to x the equation

$$
\frac{1}{x}+\frac{1}{x+b}=\frac{1}{a}+\frac{1}{a+b}
$$

173. When $x=\frac{a+1}{a b+1}$ and $y=\frac{a b+a}{a b+1}$ reduce $\frac{x+y-1}{x+y+1}$ to its

- lowest terms.

174. Shew that $2(x-y)(x-z)+2(y-z)(y-x)+2(z-x)$

18
18
the di by th the di: 186 long. secon per ho ratos 187. duot c two is the" $s q$ 188. $(z-y)$ can be resolved into the sum of three squares.
175. Divide $a^{4}+b^{4}-c^{4}-2 a^{2} b^{2}+4 a b c^{2}$ by $(a+b)^{2}-c^{2}$.
176. Find the G. C. M. of $x^{8}-1$-and $x^{10}+x^{9}+x^{8}+2 x^{7}+$ $2 x^{4}+2 x^{3}+x^{2}+x+1$.
177. Reduce $\frac{2 x+3}{(x+5)(x+1)}-\frac{x+2}{x^{2}+1}-\frac{x-7}{(x+5)(x-1)}$ to a simple quantity.
178. Reduce $\frac{a+b \sqrt{-1}}{a-b \sqrt{-1}}+\frac{a-b \sqrt{-1}}{a+b \sqrt{-1}}$ to a simple quantity.
179. If four positive quantities be in A. Progression, the sum of the extremes is equal to the sum of the means; but if in G. or H. Progression the former sum is the greater. Required. proof.

180: Show that In an asconding s. serloy if the loant torm be the oommon diterence, the sum of $(2 n+1)$ torma is n times the greanteat term.
181. Solve with respect to x the equation $\frac{a}{x}+\frac{\sqrt{a^{3}-x^{3}}}{x}=\frac{2}{b}$. 182. Given $3 x^{\frac{5}{3}}+x^{\frac{5}{8}}=3104$ to find the values of x.

183: Find the value of x in the equation

$$
\frac{x+a}{x-a}-\frac{x-a}{x+a}=\frac{b+x}{b-x}-\frac{b-x}{b+x}
$$

184. Given $x+\sqrt{ }\left\{x^{3}+\sqrt{x^{2}+96}\right\}=11$ to find the valuen of x.
185. Find a number of two digits, such that when divided by the difforence of the digits, the quotient is 21 ; and when divided by the sum of the digits and the quotient increased by 17 , the digits are inverted.
186. Two horses A and B, trot twice round a course two miles long. B passes the post the first time 2^{\prime} before $\mathcal{A}_{\text {, }}$ but in the second round A increases and B slackens his pace by 2 miles per hour, and A does the round in 2^{\prime} less than B. Find their rates and whioh horse wins.
187. With any five oonsecutive integers, the continued product of the first, middle, and last, added to the cubes of the other two is equal to the product of the middie number by the sum of the squares of the middle three. Required proof.
188. Prove that $x^{4}+y^{4}+(x+y)^{4}=2\left(x^{2}+x y+y^{2}\right)^{2}$.
189. Multiply $x^{3}+y^{4}+x^{2} y+x y^{2}$ by $x^{3}-y^{3}-x^{2} y+x y^{2}$.
190. Find the value of $a x^{2}-\frac{1}{4} x^{4}$ when $x=(a+b)^{\frac{1}{2}} \pm(a-b)^{\frac{1}{2}}$.
191. Divide $a x^{8}+2 c x y z+b y^{8}+a x^{2}(y+z)+b y^{2}(x+z)+1$ $2 c x y(x+y)$ by $x+y+z$, synthetically.
192. What is the quotient of $x^{n^{2}}-1$ divided by $x^{n}-1$.
193. Simplify $1-\{1-(1-x)\}+2 x-(3-b x)+2-(-4+5 x)$.
194. Expreas $a(b+c)^{2}+b(c+a)^{2}+c(a+b)^{2}-\{(a-b)(a-c)$ $(b+c)+(b-c)(b-a)(c+a)+(c-a)(c-b)(a+b)\}$ in its simpleat form.
195. Fixpress in the simplest form the gum of

$$
\begin{aligned}
& (b+c-a) x+(c+a-b) y+(a+b-c) z \\
& (c+a-b) x+(a+b-c) y+(b+c-a) s \\
& (a+b-c) x+(b+c-a) y+(c+a-b) z
\end{aligned}
$$

106. Find the product of $\left(x^{2}+6 x^{2} y+12 x y^{3}+8 y^{2}\right)$ by
$\left(-6 x^{2} y+12 x y^{2}-8 y^{2}\right)$ also of $(a+b \sqrt{-1})(a-b \sqrt{-1})$.
107. Find the value of $(a+b+c)(b+c-a)(c+a-b)(a+b-c)$ Also the product of $\left(x^{2}+1+x^{-3}\right)$ by $\left(x^{2}-1+x^{-2}\right)$.
108. Divide $\left(2 x^{4}-3 x^{2} y+4 x^{2} y^{2}-6 x y^{4}+6 y^{4}\right)$ by $6 x^{4} y^{2}$; and also $\left(x^{4}+4 x+3\right)$ by $\left(x^{2}+2 x+1\right)$.
109. Find by inupection the quotient of $\left(8 x-y^{\prime}\right)+\left(x^{\frac{1}{2}}-\frac{1}{y}\right)$ and of $\left(x^{4}-a p x^{3}+a^{2} p x-a^{2}\right) \div(x-a)$.
110. Find by factoring the G. O. Y. of
g
(1) $x^{2}-3 x-4, x^{2}-2 x-8$ and $x^{2}+x-20$. vil
(II) $3 x^{5}+4 x^{2}-3 x-4$ and $2 x^{4}-7 x^{3}+6$
(iII) $\left(x^{m m}+a^{n}\right)\left(x^{n}-a^{n}\right)$ and $\left(x^{n}+a^{n}\right)\left(x^{m}-a^{n}\right)$.
111. Find the l. c. m. of
(I) $x^{2}-a x-2 a^{2}, x^{3}+a x^{3}$ and $a x^{8}-a^{4}$
(ii) $x^{2}-x^{2} y-a^{2} x+a^{2} y$ and $x^{3}+a x^{2}-x y^{2}-a y^{2}$
112. Find the value of
$\frac{(a+b-c)^{2}-d^{2}}{(a+b)^{2}-(c+d)^{2}}+\frac{(b+c-a)^{2}-d^{2}}{(b+c)^{2}-(a+d)^{2}}+\frac{(c+a-b)^{2}-d^{2}}{(c+a)^{2}-(b+d)^{2}}$
113. Reduce $\frac{x^{3}+y^{3}-z^{2}+2 x y}{x^{2}-y^{3}-z^{3}+2 y z}$ to its lowest terms.
114. Simplify the expression $\frac{a^{4}+a^{4} b}{a^{2} b-b^{2}}-\frac{a(a-b)}{(a+b) b}-\frac{2 a b}{a^{2}-b^{2}}$
115. Reduce $\left(a+\frac{a x}{a-x}\right)\left(a-\frac{a x}{a+x}\right) \div\left(\frac{a+x}{a-x}+\frac{a-x}{a+x}\right)$ to a simple quantity.
116. Find the value of $\frac{x+2 a}{x-2 a}+\frac{x+2 b}{x-2 b}$ when $x=\frac{s a b}{a+b}$
117. Find by inspection the square roots of
(I) $x^{4}-4 x^{2}+8 x+4$
(II) $4 x^{6 n}-\frac{1}{3} x^{6 n}+\frac{1}{9} x^{6 n}$
(피) $\frac{a^{2}}{b^{2}}+\frac{b^{2}}{c^{3}}+\frac{a^{a}}{a^{2}}-2 \frac{a}{c}-2 \frac{c}{b}+2 \frac{b}{a}$
118. If $a^{4} x^{8}+b x+b c+b^{2}$ be a perfect square, shew that $\frac{1}{4}=\frac{c}{b} \cdot 1$
119. Solve with reapeot to x the equations
(1) $m \wedge x+a m n=n^{2} x+a m^{2}$
(11) $\frac{8-x}{2}-\frac{2 x-11}{x-3}=\frac{x-2}{6}$
120. Find the values of x in the equations
(1) $\frac{7 x+1}{61-3 x}=\frac{80}{3}\left(\frac{x-1}{x-3}\right)$
(II) $x^{4}-2 a x-2 b x-3 a^{2}+10 a b-3 b^{2}=0$
121. Find the values of x, y and z which satisfy the equations
(1) $\frac{x-a y}{b}=1=\frac{a x+y}{c}$
(1) $x^{2}+x y+y^{2}=37$ and $x+y=7$.
122. Solve the simultaneous equation

$$
z(x+y)=a^{2}+b^{2} ; x(y+z)=b^{2}+c^{2} ; y(z+x)=c^{2}+a^{2}
$$

213. The difference between the ages of A and B is twice as great as the difference between the ages of B and C, and the sam of the ages of \mathcal{A} and B is half as much again as the age of C; sir years ago it was only one-third more. Find their ages.
214. Sum the following series:
(1) 1$\}+3+4\}$ to 12 terms.
(ii) $1 \frac{z}{2}+2 f+3$ in $^{8} y$ to n terms.
(iii) $\sqrt{2}+3 \sqrt{3}+3 \sqrt{2}$ to infinity.
215. If $a_{1}, a_{2} \cdot a_{3} \ldots . . a_{4}=a_{1}{ }^{2}$ then will

$$
a_{1}+a_{2}+a_{3}+\ldots a_{n}=a_{1} \cdot \frac{a_{1}^{2 n}-1}{a_{1}^{2}-1} . \text { Required proof. }
$$

216. Given $(x+5)(x+1)=4 \sqrt{2 x+1}(x-1)$ to find x.
217. Find the value of x in the equation

$$
(3 x-4)(5 x-1)\left(1-2 x^{2}\right)=4,
$$

218. Find to $4 n, 4 n+1,4 n+2$ and $4 n+3$ terms the sum of the following series

$$
1+1+2-2+3+4+4-8+5+16+\& c
$$

219. The number of matches in the side of a certain rectangular banch is >10 but <20, while the number in the end is <10. When the digit expressing the number in the end is written to the left of the expression for the number in the side, the number

misoluthaneous hexidithes:

so formed is to the whole number of matches in the banch as a certain number a is to 2 ; but if this diglt is written to the right of the expression for the number in the side, the number thus formed is the whole number of matoher as $a-10: 4$. Also a seconid bunoh similar in form to the first, and containing as many matches in its perimeter as there are matches in the first bunch, contains four times as many matches as the the first bunch. Find the whole number of matches in the bunch.
220. Shew that, in the preceding problem, if the last condition had not been given, the solution found above would have been the only integral solution of the problem.
221. A person travels by railway from Stratford to Toron to and back. In coming down he finds that when he travels by express he is as many hours on the way as his fare is cents per mile, but when he travels by the accommodation train he is half as many hours on the way as there are units in the square of the number of cents in his fare per mile, the fare being the same by both trains. In returning, the express by which he travels goes slower than the express by which he came down by an average (incluading stoppages in both cases) of as many miles per hour as there are cents in his fare per mile, the fare being the same as in coming down. He now calculates that if the fare had varied as the speed of the trains, he would have gained a cent a mile by taking the accommodation train to Toronto-the fare on the express to Toronto remaining the same-and in returning he would have gained as many cents as thera were miles in the average apeed (including stoppages) of the train. Find the distance from Toronto to Stratford, and the fare between them.
222. Given $\sqrt{x^{2}+25}\left\{x^{2}\left(x^{2}+9\right)\left(\sqrt{x^{3}+25}-1\right)-45\right\}=5 x^{2}+225$ to find the values of x.
223. Two persons engage to dig a trench 100 yds. long for $\$ 100$, but one end being more difficult to dig than the other it is agreed that the one digging the harder end shall receive $\$ 1 \cdot 25$ per yard, while the other receives but $\$ 0.75$ per yard. At the termination of the job it is found that they each receive \$50. How many yds. did.each dig?
Sthew algebraichlly that this problent is impossible.
banck as a tten to the the number $x-10: 4$. t, and conare matches ches as the ches in the
last condiwould bave

Toronto and y express he le, but when many hours number of both trains. lower than (including as there are in coming ried as the lo by taking 3 express to would have rage apeed tance from
$=5 x^{2}+225$
s. long for the other all receive per yard. ch receive
224. A iquare and a rectangle are (t) equal in area, (ti) equal in perimeter. The number of square inches in the area of the square is \boldsymbol{m} times the number of linear units in its perimeter, and the number of square units in the area of the rectangle is n times the number of linear units in its perimeter. Find the length of the sides of the rectangle.
g: 225. Two boys find upon trial that the distances to which they can respectively throw a atone are in proportion to their ages, and that the throw of the elder is 24 feet longer than that of the younger. After the lapse of a year they try again with the same stone and find that the elder can throw it but 22 feet farther than the younger, and that the gain of each is in the same ratio to the age of the other. Also the \boldsymbol{H}. mean between their ages at the latter trial is equal to the quotient obtained by dividing the length of the longest throw made by the diference between the \mathcal{A}. mean of the 1st throws and that of the 2 nd throws; and if the antecedent of the ratio compounded of the ratio of the throw of one to bis age in the first instiance and the ratio of his gain to the age of the other on the second trial, be multiplied by $\&$ of the product of their ages on the secoud trial the ratio of which the resulting ratio is the duplicate, will be the the same as the ratio compounded of the ratio of the throw of one to bis age at the first trial, and the reciprocal of the ratio of his gain to the age of the otber at the second trial. Find their ages and the distance to which they throw the sione.

ANSWERS TO EXERCISES.

Exiroism IV.

1. 0
2. 18
3. 14
4. 2
5. 3
6. 0
7. 48
8. 16
9. 48
10. 0
11. 24
12. 2700
13. $5 .<6$
14. each $=0$
15. $6>5$
16. each $=10$
17. each $=2$
18. 2
19. 44
20. 19
21. - 112
22. - 3
23. 22
24. 8
25.
26.
27.
28.
29.
30.
31.
32.
33.

Exercism V.

1. $43 a$.
2. $-26 a b^{2}$.
3. $19\left(a+b-c^{2}\right)$.
4. $27 a\left(x-y^{2}\right)^{\frac{1}{3}}$.
5. $27 a-13 y+23$.
6. $16(x+y)+28 a-20 a b c$.
7. $6(a+b) x-19(c+d) y-23(d+f) z$.
8. $15 a^{2} b^{8} x^{\frac{2}{3}}+12 a^{3} b^{2} x^{\frac{9}{3}}-13 a^{2} b^{\frac{3}{3}} x^{3}-17 a^{3} b^{\frac{2}{3}} x^{2}$.

Exercisy VI.

1. $3 a+3 c ; a+3 c ; 4 a+4 b-7 c$. 2. $8 a b-7 a y+13 c d$.
2. $-a^{2} x^{\frac{2}{3}}-7(a+b)-12 x^{\frac{2}{3}} y-20$. 4. $2 a-2 b$.
3. $5 x y+14 a b+17$.
4. $5+8 a-5 b+8 c$.
5. $6 a b+6 x y-5 c d-m+16 c$.
6. $17-25 m^{2} x+20 x y$.
7. $m^{\frac{1}{3}} n^{\frac{2}{3}}$.
8. $18 \sqrt{ } a-8 \sqrt[3]{3}+14 \sqrt[4]{4}+6 \sqrt[5]{a}+19 \sqrt[6]{c}$.
9. $20 x y \leftrightarrow 10 a y+2 \sqrt{ } x+25 \sqrt[3]{y}$.
10. $4(a x+b y-c z)^{\frac{1}{4}}+12 \sqrt{m+n}+16(x-y)$.

Exeroise VII.

1. $a+b+c+m+3 p+x+y$.
2. $-3 x z-5 c^{3}$
3. $7 c+4 x^{2}+2(x \sim y)$.
4. $10 x^{2} y-a^{2} b+7$
5. $6 a+15 b+5 a b-3 m^{2} n+5 x+y$.
6. $6 \sqrt{x}-5 \sqrt{a+y}+18$
7. $4 x^{3}-2 y^{3}+3 y^{2}+2 y$.
8. $3 \sqrt[3]{x z+x y-y z}+a m-7 a^{4} y+x^{2} y-m^{3}$

ANSWLARE TO EXEROISES.

Eximoism VIII.

1. $a^{2} y^{2} z-11 x y^{3}+11 a z^{2}+4 x y+20 m$.
2. $14 a-14 c-13 \sqrt{a-b^{2}}+4 x y^{2}+m^{2}$.
3. $2 c d-3(a+b) \sqrt[8]{x^{2}-y}$.
4. $4\left(x y+y^{2}-x^{2}\right)^{\frac{1}{3}}+14 a^{\frac{1}{3}} x^{\frac{1}{4}}-14 \sqrt[3]{m}$.
5. $16+7 \sqrt{8}-23 y-9 \sqrt{a-b}$.
6. $6 m-2 c-11 e-25 x+12 y+a b c d$.

Exeroise IX.

1. $14-m-5 c-c$.
2. $2 a-2 b-2 c$.
3. $x-5 a-2$
4. $6+m$.
5. $11 a-3 c-5 d+m$.
6. $2 a^{2}-c^{2}-m^{2}$.
T. 2
7. $5 a^{2}+7 x+3 m^{2}+2 x^{2}$
8. $8 a^{2} b c-2 m$.
$10 a+1$
9. $a-8 b-6 c$.
10. $-a-5 a m-2 c-17$

Expraism X.

1. $(a-b)+(c-d)-(e-m)-(f+r)-(s-v)+(w+x)$
2. $(a-b+c)-(d+e-m)-(f+r+s)+(v+w+x)$
3. $(a-b+c-d)-(e-m+f+r)-(s-v-w-x)$
4. $(a-b+c-d-e+m)-(f+r+s-v-w-x)$
5. $\{a-(b-c)\}-\{d+(e-m)\}-\{f+(r+s)\}+\{v+(w+x)\}$
6. $\{(a-b)+c\}-\{(d+e)-m\}-\{(f+r)+s\}+\{(v+w)+c\}$
7. $\{a-(b-c+d)\}-\{e-(m-f-r)\}-\{s-(v+w+x)\}$
8. $\{(a-b+c)-d\}-\{(e-m+f)+r\}-\{(s-v-w)-x\}$
9. $\{a-(b-c)-d\}-\{e-(m-f)+r\}-\{s-(v+w) \cdots w\}$
10. $\{a-b+c-(d+e-m)\}-\{f+r+s-(v+w+z)\}$
11. $\{(a-b+c-d)-e+m\}-\{(f+r+s-v)-v-x\}$
12. $\{a-(b-c)-d-(e-m)\}-\{f+(r+s)-v-(w+x)\}$.

Exeroism XI.

1. $3 a-3 b ; 4 a x+4 b^{2} x-4 x^{3} ; 3 p^{2} x-3 b p^{2} x-3 c^{2} p^{2} x$.
2. $a m-b^{2} m+m^{2} p+x^{2}-3 a x^{2}-b x^{2}-3 m^{2} x^{2}+b m^{2} x^{2}+m^{4} x^{2}$.
3. $7+a x+3 a y-4 b x+4 x y-a c^{2}-3 c^{2} y-m^{2} y$.
4. $a^{2} m-a^{2} n-2 a c p+2 a c q-c^{2} m+c^{2} n$.

6. $m+\frac{a}{x y z}-\frac{b}{x y z}+\frac{c}{x y z}+\frac{d}{x y z}$
7. $a m x-a x y-a^{3} c-a b c+a y-\frac{6 a}{2 a-c}+\frac{m}{2 a-c}-\frac{3 p}{2 a-c}$.
8. $3 b c d-3 a b d+3 b f m \sim 3 b f n-\frac{2 c}{5 x^{2}}-\frac{3 m}{5 x^{2}}+\frac{4 p}{5 x^{2}}$.

Exericisi XII.

1. $5 a \dot{m}+(1+9 a) x+(3+15 a-2 m) y$.
2. $(4+m) a+(2 m+3 a) x+(3 x-4+m+3 a) y$.
3. $5(2 a-x+b c)+2(b-2 c)-3 m$.
4. $(2 a+m) x-(3 a m-2 c+a) x y+(3 a-2 c m-b-f) y^{2}$.
5. $\{3(a \backsim b+c)-(6 m f e) a\} y-\{c+2(1+3 a) m\} x-c(2-a) z$.
6. $\{11(\bar{a}+b) m+3(c y+c ; y-\{3(a-b+c)+2(a+3) c\} x y+$ $3(m+a) c-2 a c p$.

Exarcism XIII.

1. $a^{4}-4 a^{3} y+7 a^{2} y^{2}-6 a y^{8}+2 y^{4} ; a^{5}-a^{4} b-2 a^{8} b^{2}+2 a^{2} b^{3}+2 a b^{4}-b^{6}$.
2. $2 a^{3} m^{8}+10 a^{2} m^{2} x y-3 a m x^{2} y^{2}-9 x^{8} y^{3} ; 9 a^{4} x^{4}-3 a^{2} x^{3}-3 a^{2} x$ $-9 a^{8} x^{5}+3 a x^{4}+3 a x^{2}$.
3. $a^{5}+m^{5} ; 2 a^{4}-2 a^{3} x y-2 a^{3} x+4 a^{2} y^{2}+2 a^{2} x^{8} y-2 a x y^{2}-2 a x^{2} y^{8}$ $+2 y^{4}$.
4. $x^{3}-7 x^{2}+5 x+28 \quad a^{8}-a^{2}$.
5. $a^{5}-4 a^{8} b^{2}+4 a^{2} b^{3}-17 a b^{4}-12 b^{5}$.
6. $a^{2} b^{2}-a^{2} c^{2}+2 a b c^{2}-b^{2} c^{2}$.
7. $a^{6}-6 a^{4} b^{2}-10 a^{8} b^{8}-6 a^{2} b^{4}+b^{6}$.
8. $3 x^{3}+4 a b x^{2}-6 a^{2} b^{2} x-4 a^{3} b^{3} ; x^{4}+x^{3}-4 x^{2}+5 x-3$.
9. $x^{8}+2 x^{6}+3 x^{4}+2 x^{2}+1$.
10. $6 y^{6}-5 x^{2} y^{5}-6 x^{4} y^{4}+21 x^{2} y^{3}+x^{4} y^{2}+15 x^{4} ; a^{m+n}+a^{n} b^{n}$ $+a^{m} b^{n}+b^{m+n}$.
11. $30 a^{8}-5 a^{4}-207 a^{3}-178 a^{2}+78 a+72$.
12. $a^{2} x^{2}+a(b+c) x y+b c y^{2} ; a^{2 m+1}-a_{-}^{m+1} b^{n}-a^{m} b^{n}-p+a^{m}+1_{6} p$ $+b^{2 n-p}-b^{n-p} c^{p}$.
13. $a^{m+2}-a^{2} c^{p}+a^{2} q^{7}-a^{m} m^{8}+c^{p} m^{8}-m^{8} q^{\dagger}+a^{m} x^{a}-c^{p} x^{a}+q^{r} x^{4}$
14. $a^{5}-2 a^{4} x+3 a^{3} x^{2}-3 a^{9} x^{3}+2 a x^{4}-x^{5}$.
15. $\{6 a c(2 c-m)-3 b c(2 c-12 a+3 b-m)-9 b(2 a-m)\} m$ $+\{2 a m(c+3 b)+4 a c(c-3 b)+2 b c(c+3 b)-b m(c+3 b)\} x$.
1.2
16.
17.
18.
19.
20.
21. 1
$+\& c$.
22.
23.
24.
25.
26.
27.

$\sim 12 a$

Exurciny XIV.

1. Bbc $; 6 x^{2} y ; 8 a ;-x y z^{8}$
2. $-2 b c m ;-a x^{2} ; 9 m x y ; 3 x^{4}$
3. $\frac{3 b^{2} c}{5 x y} ;-\frac{1.7 b x}{11 m} ; \frac{3 a x y}{5 z^{4}} ;-\frac{b^{8}}{16 x^{2}}$

Exrroise XV.

1. $\frac{3 y^{2}}{c}=\frac{27 b c}{4 x}+\frac{3 x y}{c}-\frac{2 m}{x}$
2. $\frac{3 y}{5 a}-\frac{11}{35 x y}+\frac{2 x}{6 a}-\frac{7 y}{5 a x}$
3. $4 a^{2}+m-\frac{3 a}{2}+\frac{5 m x y}{2 a^{2}}$
4. $-\frac{a b c}{4 m x y}-\frac{a^{2} c^{2}}{3 m x y}+\frac{4 a y}{3 m}+\frac{5 a^{2}}{2 x y}$

Exerdise XVI.

1. $x-y ; a^{2}+2 a b+b^{2}$
2. $m^{2}+2 m x+x^{2}$
3. $9 x^{4}-10 x^{3}+5 x^{2}-30 x$
4. $a^{2}+4 a b+b^{2} ; x^{2} y^{2}+x y+1$
5. $x^{4}+2 x^{3}+x^{2}-4 x-11$
6. $a^{5}-a^{4} m-a m^{4}+m^{3}$
7. $1-a+a^{2}-a^{3}+\& \mathrm{c} . ; a+a^{2}+a^{8}+\& \mathrm{c} . ; 1-2 m+2 m^{4}-2 m^{8}$ $+\& c$. ; and $1-3 x+7 x^{2}-10 x^{3}+17 x^{4}-$ \&c
8. $2 a^{2}-6 a m+4 m^{2}$
9. $2 a^{3}-3 a b^{2}+5 b^{3}$
10. $a+b+c$
11. $36 x^{3}-27 x^{2} y-16 x y^{8}+12 y^{4}$
12. $2 a^{m}-3 b$

Exproisy XVIL.

1. $a^{8}-6 a y+9 y^{2} ; 9 a^{2}+12 a x+4 x^{2} ; 9 x^{2} y^{2}-42 x y+49 ; 4 a^{9} x^{4}$ $-12 a x^{3}+9 x^{2} ; 4 a^{2}+12 a^{2} x y^{2}+9 a^{2} x^{2} y^{4}$
2. $a^{2}-9 x^{2} ; 4 a^{2}-9 y^{2} ; 9 a^{2} b^{2}-x^{2} y^{2} ; 4 m^{4}-9 x^{2} y^{6}$.
3. $9 a^{2}-4 x^{2} y^{2} ; 4 a^{2}-49 ; 9-x^{2} ; 4+20 a y+28 a^{2} y^{2} ; 9 a^{2}$ $-24 a x^{2} y^{3}+16 x^{4} y^{8}$.
4. $x^{2}+5 x-66 ; 9 a^{2}+9 a-10 ; x^{2}-13 x+36 ; x^{2}-4 x-21$; $x^{2}-3 x+2$.
5. $a^{6}+a^{5} x+a^{4} x^{2}+a^{3} x^{8}+a^{2} x^{4}+a x^{5}+x^{6} ; a^{5}-a^{4} x+a^{8} x^{2}-a^{2} x^{2}$ $+a x^{4}-x^{5} ; m^{4}-m^{3} a+m^{2} a^{2}-m a^{6}+a^{4} ; c^{4}+x^{4}$ is not div. by $c+x$. (See Theorem xilit)
6. $a^{10}-a^{9} x y+a^{8} x^{2} y^{2}-a^{7} x^{8} y^{3}+a^{6} x^{4} y^{4}-a^{5} x^{5} y^{5}+a^{4} x^{6} y^{6}-a^{5} x^{7} y^{7}$ $+a^{2} x^{8} y^{8}-a x^{9} y^{9}+x^{10} y^{10} ; a^{8} m^{8}+a^{7} m^{7} r+a^{6} m^{6} r^{2}+a^{5} m^{5} r^{8}+$ $a^{9} m^{4} r^{4}+a^{8} m^{3} r^{5}+a^{2} m^{2} r^{6}+a m r^{7}+r^{8} ; a^{8}+m^{8} s^{8}$ is not div. by $n \rightarrow n s$ (see Theorem xI) ; $a^{3}+a^{2} y z+a y^{2} z^{2}+y^{3} z^{3}$.
7. $x+4 ; x+8 ; 2 x-1 ; 3 n^{3} x-a^{2}$.

Exercism XVIII.

1. $a^{2}-2 a b+b^{2}-c^{2} ; a^{2}-b^{2}+2 i c-c^{2} ; a^{2}-b^{2}-2 b c-c^{2}$.
2. $16-9 a^{2}+12 a c-4 c^{2} ; 4 a^{2}-c^{2}+6 m^{2} x-9 m^{4} ; 4 x^{2} y^{2}-4 a^{2}$ $+12 a y-9 y^{2}$.
3. $4 a^{2}-12 a c+9 c^{2}-4 x^{2}+12 x y-9 y^{2} ; a^{2}+6 a d+9 d-4 c^{2}$ $-16 \mathrm{~cm}-16 \mathrm{~m}^{2}$.
4. $9 a^{3}-6 a m^{2}+m^{4}-4+4 x y-x^{2} y^{2} ; 4 a^{4}-12 a^{2} x^{2}+9 x^{-1} 1$ $-2 y^{2}-y^{4}$.
5. $37 a b-10 a^{2}-26 b^{2}-36$
6. $75 a^{2}-12 a x y+23 x y^{8} y^{2}$
7. $1-x^{128}$
8. $2^{n-1}-x^{n-1} y^{n-1}-1$

Frerorgs XIX.

1. $(a-m)\left(a^{2}+a m+n^{2}\right)$
2. $(a+c)\left(a^{4}-a^{8} c+a^{2} c^{2} \cdots a c^{5}+c^{4}\right)$
3. Not resolvable. $=t i v \operatorname{tection} a^{2}+b^{2}$
4. $=\left(a^{3}+b^{8}\right)\left(a^{3}-b^{3}\right)=(a+b)(a-b)\left(a^{2}-a b+b^{2}\right)\left(a^{2}+a b+b^{2}\right)$
B. $(a-x)\left(a^{2}+a x+x^{2}\right)\left(a^{6}+a^{3} x^{3}+x^{6}\right)$
5. $(a-b)\left(a^{10}+a^{9} b+a^{8} b^{2}+a^{7} b^{3}+a^{8} b^{4}+a^{5} b^{5}+a^{4} b^{5}+a^{8} b^{7}+a^{8} b^{8}\right.$ $+a b^{9}+b^{10}$
6. $\left(a^{2}+m^{2} x^{2}\right)(a+m x)(a-m x)$
7. $(2 a+x)\left(16 a^{4}-8 a^{3} x+4 a^{2} x^{2}-2 a x^{6}+x^{4}\right)$
8. $\left(9+4 c^{2}\right)(3+2 c)(3-2 c)$
9. $(3 m-2 c)\left(81 m^{4}+54 m^{3} c+36 m^{2} c^{2}+24 m c^{8}+16 c^{4}\right)$
10. $(a+x)\left(a^{6}-a^{5} x+a^{4} x^{2}-a^{8} x^{8}+a^{2} x^{4}-a x^{6}+x^{6}\right)\left(a^{14}-a^{7} x^{7}+x^{14}\right)$
11. $\left(a^{4}+m^{4}\right)\left(a^{16}-a^{12} m^{4}+a^{8} m^{8}-a^{4} m^{12}+m^{16}\right)$
12. $\left(c^{8}+x^{8}\right)\left(c^{16}-c^{8} x^{8}+x^{16}\right)$
13. $\left(x^{2}+m^{2}\right)\left(x^{8}-x^{6} m^{2}+x^{4} m^{4}-x^{2} m^{6}+m^{8}\right)\left(x^{80}-x^{10} m^{10}+m^{20}\right)$
14. $(a-c)(a+c)\left(a^{2}+c^{2}\right)\left(a^{4}+c^{4}\right)\left(a^{8}+c^{8}\right)\left(a^{2}+a c+c^{2}\right)\left(a^{2}-a c\right.$ $\left.+c^{2}\right)\left(a^{4}-a^{2} c^{2}+c^{4}\right)\left(a^{8}-a^{4} c^{4}+c^{8}\right)\left(a^{16}-a^{8} c^{8}+c^{16}\right)$
15. $\left(a^{82}+m^{82}\right)\left(a^{64}-a^{82} m^{82}+m^{64}\right)$
16. $(a+c)(a-c)\left(a^{2}+c^{2}\right)\left(a^{2}-a c+c^{2}\right)\left(a^{2}+a c+c^{2}\right)\left(a^{4}-a^{2} c^{3}+c^{4}\right)$
$\left(a^{6}-a^{3} c^{3}+c^{8}\right)\left(a^{6}+a^{3} c^{3}+c^{6}\right)\left(a^{12}-a^{6} c^{6}+c^{12}\right)\left(a^{18}-a^{9} c^{9}+c^{18}\right)$
$\left(a^{18}+a^{9} c^{9}+c^{18}\right)\left(a^{36}-a^{18} c^{18}+c^{36}\right)$
17. $\left(m^{16}+c^{16}\right)\left(m^{82}-m^{16} c^{16}+c^{32}\right)\left(m^{96}-m^{48} c^{48}+c^{96}\right)$
18. $\left(a^{2}+m^{2}\right)\left(a^{13}-a^{10} m^{2}+a^{8} m^{4}-a^{6} m^{6}+a^{4} m^{8}-a^{2} m^{10}+m^{12}\right)$
19. $(a m \sim p)\left(a^{2} m^{2}+a m p+p^{2}\right)\left(a^{6} m^{6}+a^{3} m^{8} p^{8}+p^{6}\right)\left(a^{18} m^{18}+\right.$ $\left.a^{9} m^{9} p^{9}+p^{28}\right)\left(a^{54} m^{54}+a^{27} m^{27} p^{27}+p^{54}\right)$

Exiroism XX.

1. $a-2 x$
2. $14 a^{2}-43 x^{2}-4 a x$
3. $3 \sqrt{ } 3+6 \sqrt{6}+2 \sqrt{ } 5-8 \sqrt{ } x-\sqrt{2}-4 a x^{2}+a^{2} x^{2}-3 a^{2} x$
4. $a^{c+m}+a^{c} x^{2+q}-a^{m} x^{m-p}-x^{m+q}$
5. $a^{n-1}-a^{n-2} x+a^{n-3} x^{2}-a^{5-4} x^{3}+e^{n-5} x^{4}-\frac{a^{n-8} x^{8}+x^{n}}{a+x}$
6. $(x-17)(x+3)$
7. $1+1+1+1+1+\& c$., to infinity, $=\infty$
8. $(a-x)(a+x)\left(a^{2}+a x+x^{2}\right)\left(a^{2}-a x+x^{2}\right)\left(a^{6}+a^{3} x^{3}+x^{6}\right)$ $\left(a^{6}-a^{3} x^{8}+x^{6}\right)$
9. $x^{2} m^{2}\left(a^{2} x-2 p\right)^{2}$
10. $-89 \frac{1}{2}$
11. $x^{6}-2 x^{8}+1$ and $a^{5}-4 a^{3} b^{2}-8 a^{2} b^{8}-17 a b^{4}-19 b^{6}$
12. $x^{2}-a x+b$
13. $\left(a^{82}+m^{32}\right)\left(a^{16}+m^{16}\right)\left(a^{8}+m^{8}\right)\left(a^{4}+m^{4}\right)\left(a^{2}+m^{2}\right)(a+m)(a-m)$
14. $a^{44}-c^{44} \quad$ 15. $1 \quad$ 16. $2 a\left(a^{2}+3 b^{2}\right) \quad$ 17. $2 a(a-m)$

Frinava $\mathbf{X X I}$.

1. $6 a b^{2} \mathrm{~m}$
2. $3 a^{3} m^{8}$
3. $x+2$
4. $a^{2}(a-x)$
5. $m^{2}\left(a^{2}-m^{2}\right)$
6. $x-1$
7. $a^{2}(x-1)$
8. $x y$
O. $x-1$

Exaroisi XXII.

1. $x+2$
B. $a-2 b$
2. $x-2$
3. $a-x$
4. $x+4$
5. $a-b$
6. $6 x^{3}-3 x+4$
7. $a b-b y$
8. $a-2$
9. $4(a-b)^{2}$
10. $a^{3}+a^{2}-b d+3$
11. $a^{2}+2 a b=2 b^{8}$

Exiroise XXIII.

1. $12 a^{2} b^{2} x^{2} y^{2}$
2. $12 a^{2} x^{2} y^{2} z^{2}$
3. $36 a^{7}-36 a^{6} b-36 a b^{6}+36 b^{7}$
4. $\left(x^{3}-x^{2} y-x y+y^{2}\right)^{2}$
5. $x^{3}-10 x^{2}+21 x$
6. $x^{6}+x^{6} y+x^{4} y^{2}-x^{2} y^{4}-x y^{5}-y^{8}$
7. $a^{4}-a^{3}-a x^{3}+x^{8}$
b. $4 x^{4}-4 x^{4}-4 x^{8}+4 x^{2}$
8. $a^{4}-10 a^{8}+85 a^{3}-50 a+24$
9. $60\left(a^{10}+a^{9} b-a^{8} b^{2}-2 a^{7} b^{8}-\right.$ $2 a^{6} b^{4}+2 a^{4} b^{6}+2 a^{8} b^{7}+a^{8} b^{8}$ $\left.-a b^{9}-b^{19}\right)$

Exaroise XXIV.

1. $\frac{a-b}{x-y}$
2. $\frac{2 a+m-m^{2}}{3 a^{2}+m}$
3. $\frac{c}{n}$
4. $\frac{a^{2} b}{x}$
5. $\frac{a c^{3}}{a+c}$
6. $\frac{a x y^{3}}{a^{2} x m+a y+x^{2} y^{2} z^{3}}$
7. $\frac{3-5 x}{x}$
8. $\frac{1}{a+m}$
9. $\frac{a^{2}-a b+b^{2}}{a-b}$
10. $\frac{a-b^{2}}{a^{2}+a b+b^{2}}$
11. $\frac{a^{8}+b^{8}}{a^{3}-b^{8}}$
12. $\frac{a^{4}+a^{2} m^{2}+m^{4}}{1}$
13. $\frac{a^{2}+m^{8}}{a^{3}}$
14. $\frac{7}{11}$
15. $\frac{x-4}{x+3}$
16. $\frac{2 x+3}{x-4}$
17. $\frac{x+2 y+3 y^{2}}{2 x^{2}-3 x y-6 y^{2}}$
18. $\frac{a-b}{a^{2}+a b+b^{2}}$
19. $\frac{a^{2}+m^{2}}{a-m}$
20. $\frac{c+d}{m+2 p}$
21. $\frac{x+a}{x+c}$
22. $\frac{2 x^{2}+3 x-5}{7 x-5}$
23. $\frac{a+m}{x^{2}-a^{2}+2 a m-m^{2}}$
24. $\frac{a^{8}-a^{4} x^{4}+x^{8}}{a^{10}-a^{15} x^{4}+a^{8} x^{8}-a^{4} x^{19}+x^{16}}$

Exazorm XXV.

1. $\frac{2 a^{2} x^{2}-a x y+3-2 a}{u x}$
2. $\frac{2 x y(z+m)}{z+2 m}$
3. $\frac{a^{3}+1}{a-1}$
4. $\frac{2 b\left(3 a^{2}+b^{2}\right)}{a+b}$
5. $\frac{3 u x+9 a-y x-3 y-8 a^{3}+30}{x+3}$
6. $\frac{2 m^{2}}{a^{2}+m^{2}}$
4: $\frac{3 a x-3 a y-2 a-y^{3}}{x-y}$
7. $\frac{2 a x}{u^{4}+x^{3}}$
8. $\frac{3 a^{2} x-a y^{2}-2 x y^{2}+a m+m x}{a+x}$

Exeroise XXVI.

1. $4 m-4+\frac{1}{6 m}$
2. $5 m^{2}+5 m p+5 p^{2}+\frac{3}{m-p}$
3. $a+x+\frac{2 x^{2}}{a-x}$
4. $a-\frac{1}{b}$
5. $x+y+x^{2}-x y+y^{2}-\frac{y^{3}(1+y)}{x+y}$
6. $1+5 a-\frac{b(4 a+1)}{m+b}$

Exeroise XXVII.

1. $\frac{a c d m}{b c d m} ; \frac{b^{2} d m}{b c d m} ; \frac{b c^{2} m}{b c d m} ; \frac{b c d x}{b c d m}$
2. $\frac{x y}{m x y}, \frac{a m}{m x y}, \frac{b y}{m x y}$
3. $\frac{8 b x y}{12 a b x y}, \frac{3 a^{2} x y}{12 a b x y}, \frac{6 a b m}{12 a b x y}$
4. $\frac{(1+m)^{2}}{1-m^{2}}, \frac{(1-m)^{2}}{1-m^{2}}$
5. $\frac{x\left(x^{2}-y^{2}\right)}{x\left(x^{2}+y^{2}\right)}, \frac{x+y}{x\left(x^{2}+y^{2}\right)}$
6. $\frac{6 x^{2}+6 x y}{2\left(x^{2}-y^{2}\right)}, \frac{8 x+2 y}{2\left(x^{2}-y^{2}\right)}, \frac{2 x^{2}-5 x y+3 y^{2}}{2\left(x^{2}-y^{2}\right)}$
7. $\frac{18 a^{3} n}{6 a^{2} m(2+x)}, \frac{16 a^{2}-4 a^{2} x^{2}}{6 a^{4} m(2+x)}, \frac{6 m+3 m x}{6 a^{2} m(2+x)}$
8. $\frac{3 a x^{2}-3 a}{3\left(x^{2}-1\right)}, \frac{4 x^{3}-4 x}{3\left(x^{2}-1\right)}, \frac{3 x^{2}+3}{3\left(x^{3}-1\right)}$ and $\frac{3 x^{3}+2 x^{2}-3 x-2}{3\left(x^{2}-1\right)}$
9. $\frac{6 a^{3}-6 a^{2} b}{6 a^{3}\left(a^{2}-b^{2}\right)}, \frac{2 a}{6 a^{3}\left(a^{2}-b^{2}\right)}$, and $\frac{a-b}{8 a^{3}\left(a^{2}-b^{2}\right)}$

Exeroisn XXVIII.

1. $\frac{4 a m+3 m-2 b c}{2 b m}$
2. $\frac{x^{2} y+3 x y+2 a-2 b}{x y^{2}+3 y^{2}}$
3. $\frac{4 a b}{b^{2}-a^{8}}$
4. $\frac{332 x+63 x^{2}}{63}$
5. 0
6. $\frac{x^{8}+x y^{2}+y^{8}}{(x+y)^{8}}$
7. $\frac{m^{2}-2 m p-p^{2}}{m^{2}-p^{2}}$
8. $\frac{14-12 a}{1} \frac{4 a^{2}}{}$
9. $\frac{1}{2+x}$
10. $\frac{2 x}{b}$
11. 0
12. $\frac{2 a c-2 b c}{a b+b c+a c+b^{2}}$
13. $\frac{14 x-20 x^{8}}{1-5 x^{2}+4 x^{4}}$
14. $\frac{m}{a b c}$

Exercise XXIX.

1. $\frac{3 x^{8}}{5 a}$
2. $\frac{a^{3}+a^{2} m+\frac{a m^{2}+m^{3}}{m y}}{m}$
3. $\frac{x+a}{x+d}$
4. 2
5. $\frac{4 a x-4 x^{2}}{3}$.
6. $\frac{x^{2}+4 x-21}{x^{2}-19 x+88}$
7. $\frac{2 a-2 b}{3 y}$
8. $\frac{x^{2}-11 x+28}{x^{2}}$
9. $\frac{3 x^{2}-3}{2 a+2 b}$
10. $\frac{a m}{f^{2} y^{16}}$
11. 1
12. $\frac{a(a-b)}{x}$ 10. $\frac{(a-2)^{2}}{2 a}$

Exiroisi XXX.

1. $y_{x^{3}}$
2. $\frac{a+x}{a-x}$
3. $\frac{a-b}{a+b}$
4. $3 a^{2} y-6 a^{2}+3 a x y-6 a x$
5. $\frac{x-3}{x-7}$
6. 1

ANSWERS TO EXRROIBES.

$$
\text { 8. } \frac{3 a^{2}-8 a}{x^{2}-1}
$$

9. 1
10. $\frac{a b}{a^{2}+b^{2}}$

Exfroisn XXXI.

1. $\frac{26 a-5 b}{10 a+19 b}$
2. $\frac{15-18 x+18 a}{20 a+20 x-12}$
3. $-\frac{1}{x^{2} y^{4}}$
4. $\frac{7 a-2 x}{21}$.
5. $\frac{4 a}{1+4 a^{2}}$
6. $\frac{d f+c}{d f-c}$
7. $\frac{a x}{a+2 x}$
8. $-a$
9. $\frac{1+}{4 m^{3}}-\frac{8}{m}$
10. $\frac{63-36 x}{30 x-10}$
11. a

Exeroisz XXXII.

1. 418
2. 5
3. 105
4. $2 \mathrm{P} \mathrm{B}_{6}$
B. 19
5. 7
6. 5,
7. 8
8. 80
9. 41
10. 9
11. 120
12. -10
13. 3
14. 4
15. 15
16. 169
17. 12
18. 8
19. $\frac{6 a^{2}}{4 a^{3} b+2 a-a b-b^{2}}$
20. $\frac{20 a b+b^{2} c+5 a c-15 a b c}{15 \bar{b}+a b c-10 c}$
21. $\frac{b d f}{b d+a d+b c}$
22. $\frac{10 a-4 a b^{2}}{3 b+4 a}$
23. $\frac{b c(b-a)}{a b-a^{2}-b^{2}}$
24. $\frac{b^{2}+19 a b-4 a^{2}}{2 a+8 b-2}$
25. $\frac{a}{2(2 b-1)}$
26. $\frac{a b}{a+b}$
b. $\frac{x-3}{x-7}$
27. 1

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences
Corporation

Eximara XXXIII.

1. $30 ; 17$
2. 21 ; 42
3. $\$ 52 \cdot 50$
4. 64
5. $12 ; 18 ; 24$
6. $\$ 560$
7. 30
8. 163
9. 56
10. 14
11. 26
12. 102
13. 14
14. 23
15. $381 \frac{9}{3}$
16. $\$ 3 ; 12,7$
17. $26 \frac{8}{8}$ miles
18. 13429 hours
19. 1803; 1689
20. $\mathrm{A}=\$ 2542 ; \mathrm{B}=\$ 2422 ; \mathrm{C}=\$ 2436$
21. Music $\$ 0.55 \mathrm{P}_{4}^{\mathrm{B}}$; drawing $\$ 0.32 t$
22. 70 vol. Science; 210 vol. Travels; 210 vol. Biography; 316 vol. History ; 630 vol. General Literature.
23. Niagara river, 345 miles ; Rideau canal, $130 \frac{5}{f}$ millés.
24. 2_{3}^{38} days.
25. $\frac{n+a-c}{2}$ and $\frac{n-a+c}{2}$
26. (I) $1 \mathrm{~h} .5{ }_{\mathrm{f}}^{\mathrm{f}} \mathrm{m}$. ; (il) $12 \mathrm{~h} .32_{1}{ }^{8} \mathrm{~m}$ m. ; (III) $12 \mathrm{~h} .16{ }_{2}{ }^{4} \mathrm{~m}$ m.
27. $\$ 155$ and $\$ 220$
28. 19 ft days.
29. A, $\$ 3594 \cdot 50$; B, $\$ 1055 \cdot 574$; O, $\$ 1795 \cdot 03$; D, $\$ 743 \cdot 89$ 舄
30. $9_{7}^{81} \frac{1}{3 T}$ duys.
31. 68
32. $\$ 8142 \cdot 855$
33. 72 lbs.
34. $\$ 11100$
35. $\frac{a b n}{b-a}$ feet:
 37. $90{ }_{7}{ }^{2} 6$ and $577^{7} \sigma$
36. $A^{\prime} \mathrm{s}=\$ 808 \cdot 42$. y ; $\mathrm{B}^{\prime} \mathrm{s}=\$ 538 \cdot 94 \mathrm{fy} ; C_{s}=\$ 1212.63{ }_{1}{ }^{3}{ }_{\mathrm{s}}$ 39. 40 miles ; 15 m . per h. down ; 10 m . and 12 m . per h. up. 40. 5 ; $\$ 9000$ 41. 18
37. $\mathrm{A}^{\prime} \mathrm{B}=\$ 657 \cdot 147$; $\mathrm{B}^{\prime} \mathrm{s} \$ 731 \cdot 424 ; \mathrm{C}^{\prime} \mathrm{s}=\$ 711 \cdot 429$
38. 2575
39. $\frac{n a}{m+n}$ and $\frac{m a}{m+n}$ 45. 15 and 45
40. 36 weeke.
41. $\frac{a}{1+m+n} ; \frac{n a}{1+m+n} ;$ and $\frac{m a}{1+m+n}$

$$
0.9 .30-10
$$

48. $\frac{a n q}{n q+m q+n p} ; \frac{a m q}{n q+m q+n p}$ and $\frac{a n p}{n q+m q+n p}$ 49. 189

Exinolas XXXIV.

1. $x=2 ; y=3$
2. $x=5 ; y=6$
3. $x=301 ; y=$ 淔
4. $x=4 ; y=10$
b. $x=7 ; y=3$
5. $x=24 ; y=30$
6. $x=2+$ 特 $^{2} \boldsymbol{y}=3{ }^{3}{ }^{3}{ }^{3} ; 8 . x=12 ; y=0 \quad$ 2. $x=3 ; y=5$
7. $x=\frac{2 a+3 b}{19} ; y=\frac{b a-2 b}{19} \quad$ 11. $x=\frac{a n-b m}{4 a-3 b} ; y=\frac{4 m-3 n}{4 a-3 b}$
8. $x=\frac{2 a c-b^{2}}{3 a b} ; y=\frac{a c-2 b^{2}}{3 a b} \quad$ 13. $x=\frac{a^{2}+b}{2 a} ; y=\frac{b-a^{2}}{2 a}$
9. $x=\frac{a m c(a+c+m)}{m c+m a-a c+c^{2}} ; y=\frac{a c m(2 c-m)}{c m+a m-a c+c^{2}}$
10. $x=\frac{m q+b n}{a q+b n} ; y=\frac{b n+m q}{a b-b m}$
11. $x=8$; $y=3$
12. $x=8 ; y=9$
13. $x=\frac{a\left(c^{2} p-a^{2}-c^{2}\right)}{c^{2}-a^{2}} ; y=\frac{c\left(a^{2} p-c^{2}-a^{2}\right)}{c^{2}-a^{2}}$
14. $x=9 ; y=1$
15. $x=\frac{a b}{a-b} ; y=\frac{a b}{a+b}$

Eximolia XXXV.

1. $x=11 ; y=2 ; z=3$
2. $x=2 ; y=0 ; z=8$
3. $x=1 ; y=2 ; z=-3$
4. $x=4 ; y=1 ; z=-2$
5. $x=1 t ; y=-2 ; z=2 ; v=-1$ it
6. $x=2 ; y-8 ; x=4$
7. $x=1 \frac{1}{\frac{1}{2}} ; y=4 ; z=6$
8. $x-\frac{6 m+16 n-3 b}{76} ; y=\frac{116+7 m-8 n}{76} ; z=\frac{236+4 n-13 m}{78}$
9. $x=\frac{c^{3}-b^{2} c+a^{2} b}{a b^{2}+a c^{2}} ; y=\frac{2 b c-a^{2}}{b^{2}+c^{2}} ; z=\frac{b^{2}-b c^{2}+a^{2} c}{a b^{2}+a c^{2}}$
10. $v=2 ; x=5 ; y=6 ; z=10$
11. $x=b+c-a ; y=a+c-b ; z=a+b-c$
12. $x=\frac{a p-a m+a n-m}{2 a^{2}-a-1} ; y=\frac{a m-n+a p-a n}{2 a^{2}-a-1} ; z=\frac{a m-a p+a n-p}{2 a^{2}-a-1}$

Eximoinn XXXVI.

1. 4 and 2
2. $\$ 15$ and $\$ 0.40$
3. $125{ }_{5}{ }^{h}$ yds. long and 40 h yds. wide.
b. 12 and 15
4. 84 and 60
5. 32 and 16
6. -7 ; $-\frac{1}{8}$ and -5 ?
7. 380 sulphur; 620 charcoal ; and 3000 saltpetre.
8. 16; 24 ; and 32
9. $403 t$ shillings, or $44 \frac{1}{1}$ ten cent pieces.
10. 29 lines and 32 letters.
11. 78
12. 116 ten and 280 twenty-fire cent pieces.
13. $\frac{c}{(a-1)(b-d)}$
14. 5 inside and 9 outside passengers ;. $\$ 4 \downarrow$ and $\$ 21$
15. 36
16. 432
17. $\frac{(c-a) p}{c-b}$ and $\frac{(a-b) p}{c-b}$
18. $\$ 81, \$ 41, \$ 11, \$ 21, \$ 11$ and $\$ 6$

Exercisy XXXVII.

1. $8 a^{6} ; 9 a^{2} b^{8} ; 16 m^{4} ; 3 a b^{2} c^{3} ; 1 ; 1 ; 3 a^{2} x y^{8}$
2. $a^{12} ;-128 a^{14} b^{7} c^{14} ;-\frac{7 a^{3} b^{8} c^{9} ;}{}$; $x^{2} y^{6} ;-32 m^{8} x^{10} y^{18}$
3. $1 ; a^{8} x^{16} y^{24} z^{32} ; 27 a^{5} y^{9} ;-27 a^{3} y^{9} ; 81 a^{4} y^{12} ; 81 a^{4} y^{12}$

Exeroiss XXXVIII.

1. $a^{9}-9 a^{8} b+36 a^{7} b^{2}-84 a^{6} b^{3}+126 a^{5} b^{4}-126 a^{4} b^{5}+84 a^{3} b^{8}$ $-36 a^{2} b^{7}+9 a b^{8}-b^{9}$
2. $c^{4}+4 c^{3} x+6 c^{2} x^{2}+4 c x^{8}+x^{4}$
3. $x^{10}-10 x^{9} y+45 x^{8} y^{2}-120 x^{7} y^{3}+210 x^{6} y^{4}-252 x^{5} y^{5}+210 x^{4} y^{6}$
$-120 x^{1} y^{7}+45 x^{2} y^{8}-10 x y^{9}+y^{10}$
4. $a^{11}+11 a^{10} m+55 a^{9} m^{2}+165 a^{8} m^{8}+330 a^{7} m^{4}+462 a^{6} m^{5}+$ $162 a^{7} m^{6}+330 a^{4} m^{7}+165 a^{3} m^{8}+55 a^{2} m^{9}+11 a m^{10}+m^{11}$
b. $16-32 a+24 a^{2}-8 a^{3}+a^{4}$
5. $x^{8}-15 x^{4}+90 x^{8}-270 x^{2}+405 x=243$
6. $64 a^{6}+576 a^{5}+2160 a^{4}+4320 a^{3}+4860 a^{2}+2916 a+729$
7. $243-810 m+1080 m^{2}-720 m^{8}+240 m^{4}-32 m^{5}$

ANSWERS TO EXERCISEAS.

9. $243 a^{5}-810 a^{4} y+1080 a^{3} y^{2}-720 a^{2} y^{3}+240 a y^{4}-32 y^{5}$
10. $8 b^{8}-60 b^{2} c+150 b c^{2}-125 c^{3}$
11. $81 x^{4}-432 x^{3} y+864 x^{2} y^{2}-768 x y^{3}+256 y^{4}$
12. $a^{\kappa} b^{5}+15 a^{4} b^{4} c+90 a^{8} b^{8} c^{2}+270 a^{2} b^{2} c^{3}+405 a b c^{4}+243 c^{6}$
13. $8 a^{3} c^{3}-12 a^{2} c^{2} x y z+6 a c x^{2} y^{2} z^{2}-x^{8} y^{3} z^{3}$
14. $a^{3}+3 a^{2} b+3 a b^{2}+b^{3}-3 a^{2} c-6 a b c-3 b^{2} c+3 a c^{2}+3 b c^{2}-c^{3}$
15. $16 a^{4}-32 a^{2} b-32 a^{3} c+24 a^{2} b^{2}+48 a^{2} b c+24 a^{3} c^{2}-8 a b^{8}-24 a b^{2} c$ $-24 a b c^{2}-8 a c^{3}+b^{4}+4 b^{8} c+6 b^{2} c^{2}+4 b c^{3}+c^{4}$
16. $32 a^{5}+160 a^{4} b+320 a^{8} b^{2}+320 a^{2} b^{8}+160 a b^{4}+32 b^{5}-240 a^{4} c$
$-960 a^{8} b c-1440 a^{2} b^{2} c-960 a b^{3} c-240 b^{4} c+720 a^{8} c^{4}+2160 a^{2} b c^{2}$
$+2160 a b^{2} c^{2}+720 b^{8} c^{2}-1080 a^{2} c^{3}-2160 \dot{a} b c^{3}-1080 b^{2} c^{3}+810 a c^{4}$
$+810 b c^{4}-243 c^{5}$
17. $1+4 x+2 x^{2}-8 x^{3}-5 x^{4}+8 x^{5}+2 x^{6}-4 x^{7}+x^{8}$
18. $a^{5}-5 a^{4} b+10 a^{3} b^{2}-10 a^{2} b^{8}+5 a b^{4}-b^{5}+10 a^{4} c-40 a^{8} b c$
$+60 a^{2} b^{2} c-40 a b^{8} c+10 b^{4} c+40 a^{8} c^{2}-120 a^{2} b c^{2}+120 a b^{2} c^{2}-40 b^{8} c^{2}$
$+80 a^{2} c^{3}-160 a b c^{3}+80 b^{2} c^{8}+80 a c^{4}-80 b c^{4}+32 c^{5}$

Exrrcibr XXXIX.

1. $4+2 x-113 x^{2}-3 x^{8}+9 x^{4}$
2. $x^{2}+2 x^{8}-x^{4}-2 x^{5}+x^{6}$
3. $4 x^{2}-12 x^{3}+7 x^{4}+3 x^{5}+\frac{1}{4} x^{6}$
4. $1-a+44 a^{2}-4 a^{3}+5 a^{4}-4 a^{6}+a^{6}$
5. $1+2 x-2 x^{3}+\frac{4}{4} x^{4}+\frac{5}{4} x^{5}-\frac{3}{4} x^{6}-x^{7}+x^{8}$
6. $4 a^{2}-4 a^{2} x+9 a^{2} x^{2}-4 a^{2} x^{3}+4 a^{2} x^{4}$
7. $1+2 b x+\left(b^{2}-2 c\right) x^{2}-2 b c x^{3}+c^{2} x^{4}$
8. $a^{2}-2 a b x-\left(2 a c-b^{2}\right) x^{2}+(2 a d+2 b c) x^{3}-\left(2 b d-c^{2}\right) x^{4}-2 c d x^{5}$ $+d^{2} x^{6}$
9. $1-2 a+a^{2}+2 b^{2} x^{2}(1-a)-2 c^{3} x^{3}(1-a)+\left(2 d^{4}-2 a d^{4}+b^{4}\right) x^{4}$ $-2 b^{2} c^{3} x^{5}+\left(2 b^{2} d^{4}+c^{6}\right) x^{6}-2 c^{3} d^{4} x^{7}+d^{8} x^{8}$
10. $a^{6}+6 a^{5} b+15 a^{4} b^{2}+20 a^{8} b^{3}+15 a^{2} b^{4}+6 a b^{5}+b^{6}$
11. $a^{8}-8 a^{7} c+28 a^{6} c^{2}-56 a^{5} c^{8}+70 a^{4} c^{4}-56 a^{3} c^{5}+28 a^{2} c^{6}-8 a c^{7}$ $+c^{8}$
12. $a^{4} x^{4}-8 a^{3} x^{3}+24 a^{2} x^{2}-32 a x+16$
13. $4-12 x+25 x^{2}-26 x^{3}+\frac{41}{3} x^{4}-6 x^{5}+\frac{75}{2} x^{6}-\frac{1}{3} x^{7}+\frac{1}{y} x^{8}$
14. $1-4 x+2 x^{2}+8 x^{3}-9 x^{4}+6 x^{6}-4 x^{7}+x^{8}$

Exeroish Xİ.

1. $\pm a^{2} ; \pm x y ; \pm 2 a^{2} ; \pm 8 a ; \pm \mathrm{i} 1 a^{d} y^{4}$
2. $-3 a ; 4 a^{2} y^{8} ; 5 u x^{8} ;-2 a^{2} y^{4} z$.
3. $\pm \frac{4 a}{5 b^{2}} ; ~ ; \quad \pm \frac{12 x^{2} y^{9}}{8 a^{2} b} ; \pm \frac{8 a^{4}}{25 m x}$
4. $\frac{4 a^{4} y^{8}}{3 m} ; \frac{2 a^{4} x^{6} y^{4}}{6 b c^{3}} ;-\frac{7 a b^{8}}{4 m^{2} y^{7}}$
5. $\pm \frac{2 a}{b^{2}} ; \frac{2 a^{2} x^{4}}{3 y} ; \pm \frac{3 m^{2} x^{2}}{2 a^{2}} ;=\frac{a^{2} m^{3}}{x^{4} y^{6}}$

Exaroisy XLI.

1. $2 a+3 b ; a-2 x ; 2 a x-7 c$
2. $3 a m+5 x y ; 4 a x^{2}-b^{2} c^{4}$
3. $2 x^{2}+3 x-1$
4. $x^{y}-y^{3}-1$
b. $a+b-c$
5. $3 a^{8}+2 a+5$
6. $a+b+c+d$
7. $x^{8}-3 x^{2} y+3 x y^{2}-y^{4}$
8. $a^{2}-4 a c+4 c^{3}$
9. $1-y+3 y^{2}+2 y^{2}$
10. $2 a^{2}+3 a x+x^{2}$
11. $x^{2}+y^{2}$
12. $a^{2}-b^{2}+c^{2}-d^{2}$
13. $1-\frac{3}{x}+x^{2}-\frac{1}{2} x^{2}$
14. $1 x^{2}+\frac{x}{y}-\frac{y}{x}$

Exiraise XLII.

1. $2 x+3$
2. $a^{2}+2 a-4$
3. $1-2 a$
4. $a^{2}-2 a+1$
5. $x^{2}-x+1$
B. $2 a x-7 b x^{8}$
6. $2 x^{2}-3 a x+4 a^{3}$
7. $a+b+c+d+e$

Exeroige XLIII.

1. $a^{\frac{1}{4}} ; a^{\frac{1}{3}} ; a^{\frac{4}{4}} ; a^{\frac{1}{2}} b^{\frac{3}{2}} c ; a^{\frac{4}{3}} b^{\frac{3}{3}} c^{\frac{3}{3}} ; a^{\frac{6}{5}} b^{\frac{8}{6}} c^{6} ; a^{\frac{m}{n}} b^{\frac{1}{n}} c^{\frac{a}{4}}$
 $\nabla\left\{\sqrt{a} \sqrt[N]{b^{2}} \cdot \sqrt[c^{7}]{c^{7}}\right)^{r}$
2. $2 a b^{-1} m^{-1} ; 2 a^{-1} ; 3 a m^{-1} ; m^{2} c^{-1} c^{-2} ; z a b m^{-1} c^{-3} ; \xi^{\frac{1}{2}} c^{1}$; $3 a^{-\frac{1}{3}} c^{\frac{1}{2}} m^{\frac{8}{8}} ; a^{-\frac{1}{3}} b^{-\frac{1}{3}} c^{-\frac{1}{2}} m^{-\frac{1}{1}}$ or $\left(a b^{2} c m^{\frac{1}{4}}\right)^{-\frac{1}{3}} ; a^{\frac{1}{2}} m^{-\frac{1}{2}}$ or $(a m-2)^{\frac{1}{2}}$

- Eoe Art. 142.

4. $\frac{2}{a^{2}} ; \frac{1}{c b^{-2}} ; \frac{3}{a^{-2} m^{-2} c^{\frac{1}{2}}} ; \frac{2}{3 a^{-2} x^{2} y} ; \frac{1}{a^{-2} b^{-2} c^{-\frac{1}{2}}} ; \frac{3}{2 a^{3} m^{\frac{3}{3}} x^{-2} y^{-2}} ;$
$\frac{4}{8 a^{-2} c^{2} m x} ; \frac{5}{2(a b)^{\frac{1}{2}}\left(m n^{2}\right)^{\frac{3}{3}} x^{\frac{1}{6}}}$
5. $\frac{1}{a} ; \frac{2 a^{2}}{b^{4}} ; \frac{3(a c m)^{\frac{3}{2}}}{b^{3}} ;\left(\frac{m}{b}\right)^{3} ; \frac{3 c^{2} m^{\frac{1}{2}}}{2 a^{2} b^{\frac{2}{2}}} ; a b^{\frac{1}{2}} c^{\frac{1}{2}} m^{\frac{2}{2}} ;\left(\frac{b}{a}\right)^{\frac{1}{2}} ; \frac{a^{4}}{b^{6}} ;$ $\frac{c^{\frac{1}{2}}}{a^{\frac{1}{2} b^{d}}} ;\left(\frac{b^{7}}{a}\right)^{m n}$
6. $\sqrt[8 a^{19}]{ } a^{-18} ; \frac{1}{\sqrt{a}}=$
7. $\frac{a^{8}}{a^{3}} ; a^{-z}$
8. $a^{17} b^{96} c^{8}$

9. $a^{\frac{3}{2}}-4 a^{\frac{1}{2}} b^{\frac{3}{2}}+6 a b-4 a^{\frac{3}{3}} b^{\frac{3}{3}}+b^{2}$
10. $a^{\frac{1}{2}}+a^{\frac{1}{x}} x^{\frac{3}{2}}+x^{\frac{1}{3}}$
11. $8 x^{\frac{3}{2}}-4 x^{\frac{1}{2}} y^{-1}+6 x^{\frac{1}{3}} y^{-\frac{1}{2}} z^{\frac{3}{2}}+2 y^{-1} z^{\frac{1}{2}}-y^{-\frac{3}{2}}-2 x^{\frac{1}{2}} z^{\frac{2}{2}}-y^{-\frac{1}{3}} z^{\frac{3}{2}}$
12. $2 x^{-4} y^{-2}-3 x^{-5}$
13. $a^{\frac{1}{2}}-a^{\frac{1}{2}} b^{-\frac{1}{2}}+a^{\frac{1}{2}} b^{-\frac{1}{t}}-b^{-\frac{1}{1}}$
14. $x^{-\frac{7}{3}}-x^{-\frac{1}{3}}+1-x^{\frac{1}{2}}+x^{\frac{3}{3}}$
15. $a^{3}-2 a^{\frac{5}{2}}+3 a^{3}-3 a+2 a^{\frac{1}{2}}+3-6 a^{-\frac{3}{2}}+a^{-2}+4 a^{-\frac{3}{2}}-a^{-2}-2 a^{-\frac{1}{2}}+a^{-4}$
16. $a^{\frac{1}{4}}+1-a^{-\frac{1}{y}}$
17. $x^{\frac{3}{3}}-2 x^{\frac{1}{5}}+3-2 x^{-\frac{1}{4}}+x^{-\frac{3}{3}}$
18. $x^{-\frac{1}{y}} y-x^{\frac{1}{3}} y^{1}$
19. $x^{\frac{3}{3}}-2 x^{\frac{1}{5}} y^{6}+3 y^{\frac{1}{3}}$

Fixaroise XLIV.

1. $4^{\frac{1}{3}} ; 343^{\frac{1}{2}} ; 16^{t} ;\left(\frac{9}{4}\right)^{\frac{1}{2}} ;\left(\frac{16}{169}\right)^{\frac{t}{t}} ; 9^{\frac{1}{1}} ;\left(\frac{1}{6^{6}}\right)^{\frac{1}{3}}$

$\left(\frac{1}{27}\right)^{-\frac{1}{2}} ;\left(\frac{8}{729}\right)^{-\frac{1}{2}} ;\left(\frac{1}{8 a^{3}}\right)^{-\frac{1}{3}} ;\left(\frac{1}{27 a^{6} b^{3}}\right)^{-\frac{1}{2}} ;\left(\frac{1}{64 a^{6} y^{\circ}}\right)^{-\frac{1}{2}}$; $\left(a^{4}\right)^{\frac{1}{2}} ;(81)^{\frac{1}{2}} ;\left(\frac{6561}{16}\right)^{\frac{1}{t}} ;\left(18 a^{4}\right)^{\frac{1}{4}} ;\left(81 a^{6} b\right)^{\frac{1}{4}}$ and $\left(266 x^{8} y^{19}\right)^{\frac{1}{4}}$
2. $\left(\frac{1}{a^{4}}\right)^{-1} ;\left(\frac{1}{3}\right)^{-1} ;\left(\frac{1}{4 a^{4} b^{6}}\right)^{-1} ;\left(\frac{1}{a^{2} c^{4}}\right)^{-1} ;\left(\frac{25}{884}\right)^{-1} ;$
$(81)^{-\frac{1}{2}} ;\left(\frac{117649}{4096}\right)^{-\frac{1}{2}} ;\left(\frac{z^{8}}{x^{2} y^{4}}\right)^{-\frac{1}{2}} ;\left(a^{6}\right)^{\frac{1}{3}} ;(\sqrt{27})^{\frac{1}{3}} ;\left(8 a^{6} b^{9}\right)^{\frac{7}{3}} ;$
$\left(4^{8} c^{6}\right)^{\frac{1}{3}} ;\left(\frac{10648}{125}\right)^{\frac{1}{3}} ;\left(\frac{1}{729}\right)^{\frac{1}{3}} ;\left(\frac{262144}{40953607}\right)^{\frac{1}{3}} ;\left(\frac{x^{8} y^{6}}{2^{9}}\right)^{\frac{1}{2}}$
3. $\sqrt{48} ; \sqrt{125} ; \sqrt{124} ; \sqrt{16 a},\left(\frac{3}{8}\right)^{\frac{1}{2}} ;\left(\frac{b^{3}}{8 a^{4}}\right)^{\frac{1}{3}}$
4. $\frac{2}{9} \sqrt{3 a b} ; \frac{a}{2 b} \sqrt{6} ; \frac{1}{3} \sqrt{14} ; \frac{4}{25} \sqrt{20} ; \frac{3 a}{4 b} \sqrt[3]{4 b}$
5. $\left.\sqrt\left[{\sqrt[1208]{108} ; \sqrt[{\sqrt{8 a}}]{ } ; \sqrt[3]{18} ; \sqrt[4]{a^{4} c} ;\left(\frac{200}{9 a}\right)^{\frac{1}{3}} ;\left(\frac{18 m^{2}}{3125}\right)^{b} ;\left(a^{2} m^{2}-p^{2} q^{9}\right)^{\frac{1}{2}}}\right)\right]{ }$
6. $3 \sqrt[2]{5} ; 9 \sqrt{2} ; 2 \sqrt{5} ; 21 \sqrt[1]{12} ; 1^{1} \sqrt{21} ; \frac{1}{a}\left(a^{5} m^{8}\right)^{\frac{6}{6}}$
$a m^{2}\left(m^{2}-a^{4}+a^{2} m^{4}\right)^{\frac{1}{3}}$
7. $\frac{a}{6(a+x)} \sqrt{ }\{6 a(a+x)\} ; \frac{c m}{b n} \sqrt{ } n ; a v\left(a^{n} x\right)$
$\frac{z^{2}(a-z)^{2}}{c+z}\left\{\left\{(b+z)(c+z)^{q-4}\right\}\right.$
Q. $3 \sqrt[3]{3}$ is the greater $; 2 \sqrt{11}$ is the greatest, and $3 \sqrt[3]{2 \mathrm{sb}}$ the Jenst.
8. $80 \sqrt{2} ; 4 \sqrt{3}+2 \sqrt{15}$.
9. $8 \sqrt{ } 7 \geqslant \sqrt{3} ;\left(3 a b^{2}+2 a^{2}-\frac{c^{4}}{b}\right) \sqrt{a c}$
10. $\left(a^{2} b^{5}+3 a^{2}-7 b-c^{2}\right) \sqrt{a^{\bar{b}} b^{5}}$
11. $18 \sqrt{42} ; 60 \sqrt{2} ; 70 \sqrt{15} ; 24 \sqrt[2]{12150}$
12. $4 \sqrt{32}$ 2safur $2 \sqrt{1944} ; \sqrt[2]{15}$

Exrrcibe XLV.

1. $1+\sqrt{5}$
B. $\sqrt{6-2}$
2. $\sqrt{7}-\sqrt{ } 5$
3. $1 \sqrt{126}+\frac{1}{2} \sqrt{2} 7 \cdot \frac{1}{2}(\sqrt{6}+\sqrt{2})$
4. $\sqrt{22}-1$
5. $2 \sqrt{7}+\sqrt{14}$
6. $5-3 \sqrt{ } 2$
7. $\sqrt{a-1}-1$
8. $\sqrt{a+b}+\sqrt{a-b}$
9. $\frac{1}{2}(\sqrt{26}+\sqrt{3})$
10. $f\left(b^{2}+\sqrt{a^{2}-b^{2}}\right)$

Exaroish XLVI.
f. $\sqrt[6]{18}-\sqrt[7]{2} \quad 2 \cdot \sqrt[4]{20}+\sqrt[4]{5}$
3. $\sqrt[6]{24}+\sqrt[4]{6}$
4. $\sqrt[8]{8-\sqrt[y y]{2}}$

Exanoin XLVII.

1. $2 \sqrt{-8} ; 2 a+(\sqrt{b}+\sqrt{c}) \sqrt{7-1} \quad 9 .-4 \sqrt{-1}-10 \sqrt{2}$
2. $(\sqrt{5}+\sqrt{7}+\sqrt{11}) \sqrt{-1}$
3. $\sqrt{8}-\sqrt{-5}$
4. $8+\sqrt{-2}$.
5. 60
6. $-29-6 \sqrt{6}$
7. $1 \sqrt{ } 2+1 \sqrt{-2} ; 1 \sqrt{2}-1 \sqrt{-2}$
C. $f(\sqrt{2}-\sqrt{-6})$
8. $7+3 \sqrt{-2}$
9. $1+\sqrt{-2}$
10. $-a^{2} \sqrt{-1} ;+1 ; \sqrt{-1} ;-1$
11. $2-\sqrt{-3}$
12. $a^{2}-2 a \sqrt{-a-a}$
13. $a^{2}+b^{2}$

Exrecias XLVIII.

1. 4
2. 6
3. 49
4. $\frac{\sqrt{a}}{2+\sqrt{a}}$
B. 81
C. $\frac{a}{(\sqrt{a}-1)^{2}}$
5. $\pm \frac{1}{-3}$
©. 4
6. $\frac{3}{3}$
7. $-\frac{1 a^{2}}{a^{2}}+i$
8. $\frac{b^{2}-4 a}{4 a}$
9. $\frac{a^{2}-2 a b}{3 a-2 b}$
10. $\frac{a^{2} b^{2}}{(a-b)^{2}}$
11. $\frac{(a-1)^{2}}{2 a-1}$
12. 81
13. $\frac{a(b+c)}{b-c}$
14. 34
15. $\left(\frac{c^{2}+b-a}{2 c}\right)^{2}-6$
16. $2 a$
17. $\frac{a\left(m^{2}+1\right)}{2 m}$

Eximoise XLIX.

1. ± 3
2. $4 t$
3. ± 1
4. $\pm 5 \sqrt{-1}$
5. ± 2
6. ± 2
7. \pm^{8}
8. ± 6
9. $\pm \sqrt{2 a b-b^{3}}$
10. $\pm \frac{2 a}{5 b} \sqrt{3}$
11. $\pm\left(\frac{d-b-1}{3 a-c}\right)^{1}$
12. $\pm\left(\frac{a^{3}-1}{3+a^{2}}\right)^{\frac{1}{2}}$

- $\pm 3 \sqrt{a^{3}+1}$

14. $\pm \frac{(c-1) b}{\sqrt{2 c-1}}$
15. $\pm 9 \sqrt{2}$
16. $\pm \sqrt{a^{2}-\left(\frac{b^{3}-2 a}{3 b}\right)^{2}}$

Fixizician L.

1. 6 or -9
2. 9 or -1
3. 10 or -2
4. 3 or -15
5. 10 or -8
6. $1 \pm \sqrt{1-a^{2}}$
7. 7 or -78
8. 4 or - 1 \&
9. 16 or - 14
10. 1 or -12
11. 0 or $\pm 2 \sqrt{15}-8$
12. 1 or -1
13. 5 or -5 : 12. 4 or 3 20. $\pm \sqrt{\frac{b+c}{f-a}+\left(\frac{b+c}{2 f-2 a}\right)^{2}}-\frac{b+c}{2 f-2 a}$
14. 3 or $1 \frac{1}{8}$
15. 3 or $\}$
16. 47 or t
17. $\frac{d}{c}$ or $-\frac{b}{a}$
18. m or $-a$
$\sqrt{a b}$

Exrroism LI.

1. 6 or $-5 \frac{8}{7}$
2. 11 or -31
3. $\pm \sqrt{9 a^{2}+b^{2}}-3 a$
4. 15 or -14
5. 1 or $-\mathrm{r}_{\mathrm{t}}$
12.3 or -8 \% $^{\%}$
6. 6 or -41
7. $\frac{c}{a}$ or $-\frac{b}{a}$
8. $\left(6 \pm \sqrt{25-4 m^{2}}\right)$
9. 25 or 1
10. $\frac{1}{8}(4 \pm \sqrt{61})$
11. $\frac{\sqrt{m n}}{\sqrt{m-\sqrt{n}}}$ or $\frac{\sqrt{m n}}{\sqrt{m}+\sqrt{n}}$

57 or-75

$$
\text { 10. } \frac{1}{2-\sqrt{3}} \text { or } \frac{2}{\sqrt{3}-2}
$$

16. $1\left(a \pm \sqrt{a^{3}-4}\right)$
17. 2 or -27^{7}

Exiroisi LII.

1. $x^{4}+9 x+14=0$
2. $x^{4}-3 x^{4}-6 x^{2}+8 x=0$
3. $x^{5}-13 x^{5}+36 x=0$
4. $x^{8}-6 x^{5}-22 x^{4}+174 x^{4}-103 x^{2}-600 x+700=0$
b. $x^{5}-20 x^{5}+154 x^{4}-690 x^{3}+1189 x^{2}-1190 x+456=0$
5. $x^{4}-14 x^{8}+76 x^{4}-206 x^{8}+283 x^{3}-140 x=0$.
6. $\frac{1}{2}(3 \pm \sqrt{-15})$
7. 0 or $2 \pm \sqrt{-1}$
8. 3 or -1
9. Oor 5 or-2

0, $-10 \pm 6 \sqrt{-5}$
12. 0 or 2 of -7
18. $c=2$. 14. $c x^{4}+b x+a-0$
16. $p^{2}-2 q ; p^{2}-4 q ; \mp p\left(\sqrt{p^{2}-4 q}\right) ;-\frac{p}{q} ;\left(p^{2}-q\right) \sqrt{p^{2}-4 q}$

Stinnoisa LIII.

1. 64 or 4
2. 81 or 1
3. ± 2 or $\pm \sqrt{10}$
b. 10 or - 2
4. 3 or $\sqrt[8]{-19}$
5. $20 \mathrm{or}-3$
6. 60 or 235
7. 1,0 or $\pm \sqrt{-1}$
8. 3 or $\pm \sqrt{-3}$
9. 1,1 or -8
10. $\frac{1}{\frac{1}{2}}\left(b \pm \sqrt{b^{2}-2 a b}\right)$
11. $\pm \sqrt{-1} ;-1 ; \pm \sqrt{\frac{1}{2}(1 \pm \sqrt{-3})} ; 1 ; \frac{1}{1}(1 \pm \sqrt{-3}) ; \frac{1}{8}(-1 \pm \sqrt{-3})$
12. 3,2, or 1
13. 0 or $2 \pm \sqrt{ } 3$
14. 4,5 or -1
15. $\frac{c^{x}-a b}{a+b-2 c}$
16. $1 \frac{8}{3}, 1$, or 2
17. $2, \frac{1}{t}$ or $\frac{1}{8}(9 \pm \sqrt{-31})$
18. $1 \pm \sqrt{ \pm \sqrt{6}}$
19. $(\sqrt[18]{6}-\sqrt[3]{a})^{8}$
20. 4,9, os $\frac{1}{1}(-33 \mp \sqrt{-67})$
21. $\pm \frac{1}{a}\left\{\left(\sqrt{1+a^{2}}-1\right)\left(\sqrt{1-a^{2}}+1\right)\right\}^{\frac{1}{2}}$
22. $6,-1$, or $\frac{1}{2}(5 \pm 3 \sqrt{-3})$
23. $\pm \sqrt{8 a^{2}+b^{2}-4 a c}-b \pm \sqrt{-8 a^{2}+2 b^{2}-4 a c \mp 2 b \sqrt{8 a^{2}+b^{3}-4 a 0}}$
24. $\pm a \sqrt{\frac{1}{2}(1 \pm \sqrt{ } 5)}$
25. $\frac{8}{3}+\frac{1}{8} \sqrt{2}$ or $-8 \pm 9 \sqrt{-14}$
26. $\pm \frac{3 a-1}{\sqrt{(1-a)(9 a-7)}}$
27. $\left.\frac{1}{(5} \ddagger \sqrt{17}\right)$ or $t(5 \pm \sqrt{-7})$
28. $!\left(9 \pm \sqrt{27 \pm 2} \sqrt{-35)}\right.$ or $\frac{1}{2}((\theta \pm \sqrt{15 \pm 2 \sqrt{26} \overline{3}}))$
29. $\pm \sqrt{-1}$
30. $18 \pm\{\sqrt{-3}+\sqrt{61 \pm 10 \sqrt{-3}\}}$
31. $\frac{1}{81}(7 \pm \sqrt{-47})$
32. $\pm a-\sqrt{b c},-a$, or $\frac{a}{2}(3 \pm \sqrt{5}) 43,-2$ or $\frac{-2 \pm \sqrt{-2}}{2}$
33. $\frac{1}{\frac{1}{2}}(1 \pm \sqrt{-19})$ or $\frac{1}{3}(1 \pm \sqrt{-11})$
34. $\pm \sqrt{3 a \pm a \sqrt{a^{2}+2 a+9}}$ where $a=\sqrt{3}-\sqrt{ } 5$

Eximoian LIV.

1. $x=7 ; y=2$
$2, x=13 ; y=3$
2. $x=5$ or $4 ; y=4$ or 5
3. $x=8$ or $7 ; y=-7$ or -8
4. $x= \pm 5$ or $\pm 8 ; y= \pm 8$ or ± 5
5. $x= \pm 8$ or $\mp 3 \sqrt{-1} ; y= \pm 3$ or $\pm 8 \sqrt{-1}$
6. $x=12 \mathrm{r}^{2}$ or 10 ; $y=-1^{4} \mathrm{~s}$ or 4
7. $x=3$ or $-719 ; y=4$ or -647
8. $x=11$ or $\frac{13}{43} ; y=133_{4}^{2}$ or -3
9. $x=3$ or $-1 ; y=1$ or -3
10. $x=2$; $y=2$
11. $x=256$ or 1; $y=1$ or 256
12. $x=2$ or $-46 ; y=3$ or 15
13. ${ }^{\circ} x=5$ or $-91 ; y=3$ or $-6 \frac{1}{1}$
14. $x=6$ or $1 ; y=3$ or - 3
15. $x=2,4$, or $3 \mp \sqrt{21} ; y=4,2$, or $3 \pm \sqrt{21}$
16. $x=5$ or $1_{1}{ }^{7} \sigma ; y=3$ or $-i^{3} \sigma$
17. $x= \pm 7$ or $\mp \frac{4}{2} \sqrt{2} ; y= \pm 4$ or $\pm \frac{3}{2} \sqrt{2}$
18. $x= \pm 6 ; y= \pm 0$

20, $x=4$ or $8 ; y=8$ or 4
21. $x=3$ or 1 or $2 \pm \sqrt{-33} ; y=1$ or 3 or $2 \mp \sqrt{-33}$
22. $x=2$ or $5 ; y=5$ or 2 .
41.
23. $x=3$ or -2 or $(1 \pm \sqrt{-31}) ; y=2$ or -3 or $1(-1 \pm \sqrt{-31})$
24. $x=3$ or $4 ; y=4$ or 3 .
25. $x=2$ or 4 or $\frac{1}{6}(-13 \mp \sqrt{377}) ; y=4$ or 2 or $\frac{1}{8}(-13 \pm \sqrt{377})$
26. $x= \pm 6 ; y= \pm 4$.
27. $x=3$ or $-14 ; y=6$ or $43 \frac{3}{4}$
28. $x=\frac{m}{2}(1 \pm \sqrt{ } 3)$ or $\frac{m}{2}(1 \pm \ddagger \sqrt{ } 3) ; y=\frac{m}{2}(1 \mp \sqrt{ } 3)$
or $\frac{m}{2}\left(1 \mp \frac{1}{3} 3\right)$
29. $x= \pm 3$ or $78 ; y= \pm 5$

30, $x= \pm 2$ or $\pm 3 ; y= \pm 3$ or ± 2
91. $x= \pm 6 ; \mp 4{ }^{3}{ }^{3} ; \pm 78 \sqrt{ } 3 ;$ or $\mp 60 \sqrt{3} ; y= \pm 3$ or $\pm 39 \sqrt{3}$.
92. $x=5$; $y=7$.
93. $x=8$ or $152 \mp 64 \sqrt{ } 6 ; y=4$ or $40 \mp 16 \sqrt{ }{ }^{a}$
94. $x= \pm 3$ or $\left.\pm \frac{1}{(7}+\sqrt{23}\right)$ or $\pm \pm(2+\sqrt{22)} ; y= \pm 2$ or $\pm \pm(7-\sqrt{23})$ or $\pm \pm(\sqrt{22}-2)$
96. $x=\frac{3}{2}(19 \pm \sqrt{105})$ or $(-13 \pm \sqrt{-87}) ; y=\frac{1}{\delta}(3 \pm \sqrt{105})$ or $\frac{1}{8}(3 \pm \sqrt{-87}$.
36. $x=1$ or $\frac{8}{8} 4 ; y=0$ or $\frac{18}{2} 4$
37. $x= \pm \sqrt{-1}$ or $\pm i\{\sqrt{3+\sqrt[3]{3}}+\sqrt{\sqrt[3]{3-1}\}} ; y= \pm \sqrt{-1}$ or $\pm 1\{\sqrt{3+3 \sqrt[3]{1}} 9+\sqrt{3 \sqrt[8]{9}-1}\}$
38. $x=4,-2$, or $1 \pm \mathrm{r}_{1} \sqrt{33} ; y=2,-4$ or $-1 \pm$ h $\sqrt{33}$.
39. $x=9,4$, or $\frac{-13 \pm \sqrt{-51}}{2} ; y=4,9$, or $\frac{-13 \mp \sqrt{-51}}{2}$
40. $x= \pm \ddagger \sqrt{b}(\sqrt{a+2} \pm \sqrt{a-2}) ; y- \pm 2 \sqrt{b}(\sqrt{a+2}+\sqrt{a-2})$, where

1. 1
2. 1
3. 1
10.6
4.
5.
6.
7.
8.
9.
10.

$b=\frac{\sqrt{\frac{a-2}{a+2}}}{a-7}$
1.
b.
41. $x=a$ or $-a^{2}(a+1), y=-a$ or $\pm a^{\frac{1}{3}} \sqrt{-\left(a^{2}+1\right)}$
42. $x= \pm a \sqrt[4]{ \pm 2} ; y= \pm a \sqrt{ }(-1 \pm \sqrt{2})$
43. $x= \pm \frac{1}{17} \sqrt{ }\left\{17\left(a^{8}-9 \pm 3 \sqrt{9-16 a^{8}+2} \overline{a^{6}}\right\} ;\right.$
$y=-\frac{1}{17}\left\{6 a^{3}-3 \pm \sqrt{9-15 a^{8}+2 a^{6}}\right\}$
44. $x=\frac{m+a}{2}-; y=\frac{m-a}{2}$, where $m= \pm \sqrt{ }\left(\pm 2 \sqrt{2 a^{4}+2 b^{4}}-3 a^{4}\right)$
45. $\left.x= \pm \frac{1}{\left(\sqrt{a^{2}}-c^{2}\right.} \pm \sqrt{a^{2}+3 c^{2}}\right) ; y= \pm \frac{1}{2}\left(\sqrt{a^{2}-c^{2}} \mp \sqrt{a^{3}+3 c^{2}}\right)$
where $c^{8}=\frac{a^{2} \pm \sqrt{3 a^{4}-2 b^{4}}}{2}$
46. $x= \pm \sqrt{14}$ or $\pm \sqrt{\frac{1(-1 \pm \sqrt{-19})}{1}}$;
$y= \pm \sqrt{15}$ or $\pm \sqrt{\frac{1(1}{2} \pm \sqrt{-19)}}$
47. $x=1$ or $1 \pm \sqrt{-4} ; y= \pm \sqrt{6}$ or $\pm \sqrt{2 \pm 4 \sqrt{-1}}$
48. $x^{2}=1 \pm \sqrt{-97}, 1 \pm \sqrt{-1}, 62 \pm \sqrt{2410}$ or $4 \pm \sqrt{10}$
$y^{2}=-1 \pm \sqrt{-97},-1 \pm \sqrt{-1},-46 \mp \sqrt{2410}$ or $2 \mp \sqrt{10}$

Exergism LV.

$\begin{array}{lll}\text { 1. } 12 \text { and } 7 & \text { 2. } 10 \text { and } 7 & \text { 3. } 52 \text { and } 40 \text { rods }\end{array}$
4. 17 and 8 or -8 and -17
5. 12 and 4
6. $\$ 90$
7. 16
8. 862
9. $75 ; \mathbf{\$ 3} \cdot \mathbf{2 0}$
10. 6 and 4
11. 10 and 14 , or 84 and -60
12. $1(1 \pm \sqrt{ } 5)$ and $\ddagger(3 \pm \sqrt{ } 5) \quad$ 13. 4 yds. and 5 yds
14. $\frac{1}{3}$ and $\frac{8}{8}$
15. 8
16. 3h. 23m
17. 144 miles and 180 miles
18. 16
19. 36
20. Coffee 12 3c., Sugar 250
21. B. 30 days, $C .36$ days $22.10 \times 10 \times 5$
23. $75 \mathrm{~m} . ;$,, 15 m . per hour ; $B, 10 \mathrm{~m}$. per hour
24. $1 \sqrt{5}$ and $1(1 \pm \sqrt{5}) \quad$ 25. Bacchus 6 h . and Silenus 3h

Exisitise LVI.

1. 1: d
2. 1:a
3. $x+7: x+1$
4. The former
B. The latter 6. $\frac{b c-a d}{c-d}$
5. \propto
6. $b: a+b$

ANSWERS TO EXERCISEAS.

Exircibs LVII.

1. $\frac{b c-a d}{a-b-c+d}$
2. ± 6 and ± 4
3. 6
4. $\frac{2 p}{s-d}$ and $\frac{2 p}{s+d}$
5. $8: 7$
6. $\$ 300$ and $\$ 350$
7. 34
8. $20 n^{2} q: m^{2} p$
9. $c^{2}(a-c)$

Exrroism LVIII.
2. $x=\frac{7}{3} y$
3. $\frac{3}{6}$
4. $x=\frac{1}{2} y \sqrt{ } y$
b. $x=\frac{36}{15+y}$
6. $y=3+2 x-x^{2}$
.7. $y=\frac{5 x^{2}}{302}+\frac{9945}{302 x}$.
8. $y=b+\frac{x^{2}}{b}$
10. 143

Exercism LIX.

1. 2883 ; $n(n+62)$
2. - 1628 ; $n(6 n-206)$
3. $238 ; 4(2 m+p)+\frac{1}{4}(2 m+p)^{2}$
4. -29$\}$

万. $60 ; 83 ; 3 n-1$
6. $-77 ;-132 ; 8-5 n$
7. $133^{3} ;{ }^{3} ; 21 \frac{1}{4} ;{ }^{5}(5+2 n)$
8. $3+10 \frac{1}{2}+18+25 \frac{1}{2}+33$
9. 9-6-21-36-51-66
10. $-1+11 \frac{4}{6}+24 \frac{1}{2}+36 \frac{7}{6}+49 \frac{1}{2}+62 \frac{1}{8}+74 \frac{2}{2}+87 \frac{3}{8}+100$
11. 2701
12. $2 n-1$
14. $a t^{2}$
15. $39 a ; a(2 t-1)$
16. $\pm 14, \pm 10, \pm 6, \pm 2$
17. $\pm 14, \pm 10, \pm 6, \pm 2$
18. $1,3,5,7,9$, or $9,7,5,3,1$
19. $\$ 1 \cdot 00{ }_{1}^{6}{ }_{8}^{6}$
22. 11
23. $2,5,8,11,14,17,20,23,26,29,32,35$
24. 11, 10, 9, 8, 7, 6, 5
25. $b-c+2 c t$
28. $\frac{n}{4}(2 T-n)$.
$29, \pm 1, \pm 3, \pm 5$
30. $2,4,6$ and 8 , or $8,6,4$ and 2

Exeroige LX.

1. $729 ; 1092$
2. 256 ; 511
3. 187 ; $36 \frac{2}{7}$

4. 43 10. 428 11. $\frac{8898}{98}$
5. 8.337
6. $\left(3^{n}-1\right)$
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.

the
at i
7.
8.

00 and $\$ 350$
$(a-c)$
$+\frac{9945}{302 x}$.
n - 206)
; $8-5 n$
$+25 i+33$

1)

$6, \pm 2$
22. 11 , 6, 5
16. $19\left\{1-(-\xi)^{n}\right.$
17. $62(1+\sqrt{2})$
18. $\frac{a^{q n+p}-a^{p}}{a^{q}-1}$
19. $1+\frac{2}{3}+\frac{4}{9}+\frac{8}{87}+\frac{18}{81}$
20. $2+6+18+54+162+486+1458+4374+13122$
21. $9+3+1+\frac{1}{2}+\frac{1}{9} \quad$ 22. 4, 24, 144 and 864
23. $5,10,20$ and 40 or $-15,30,-60$ and 120
24. $\$ 180, \$ 90$ and $\$ 45$, or $\$ 375,-\$ 300$ and $\$ 240$
25. $2,4,8,12$ and 16 29. 5,10 , and 20 , or $46 \frac{2}{5},-23 \frac{1}{3}$ and 113
30. 248

Exercise LXI.

1.

(1) $\frac{1}{1} \frac{1}{3}, \frac{1}{1}, \frac{1}{9}, \frac{1}{6}, \frac{1}{0}, \frac{1}{3}, 1,-1,-\frac{1}{3}$
(ii) $\frac{1}{3}, \frac{1}{26}, \frac{1}{28}, \frac{1}{8}, \frac{1}{14}, \frac{1}{10}, \frac{1}{6}, \frac{1}{2},-\frac{1}{2}$
(III) $-\frac{1}{4},-\frac{1}{2}, \infty \frac{1}{2}, \frac{1}{2}, \frac{1}{6}, \frac{1}{8}, \frac{1}{15}, \frac{1}{12}$
(iv) $-\frac{1}{2} \frac{1}{3},-\frac{14}{4},-2,14,1 \frac{1}{3}, 14, \frac{1}{2}, \frac{14}{3}$, and $\frac{14}{4}$

(vi) $-\frac{1}{8},-\frac{1}{6},-\frac{1}{4},-\frac{1}{2}, \infty, \frac{1}{3}, \frac{1}{4}, \frac{1}{6}$ and $\frac{1}{8}$
2.
(I) $2+2 \mathrm{H}_{\mathrm{i}}^{2}+2 \frac{2}{6}+2 \frac{2}{2}+3$
(ii) $5+5 \frac{5}{13}+5 \frac{5}{8}+61_{1}^{4}+7$
(III) $11+6 \frac{3}{g}+4 \frac{5}{7}+3 \frac{2}{y}+3$

(v) $6-2-\frac{1}{9}-\frac{y_{1}}{15}-8$
3. $\mathrm{r}_{6} ;{ }^{5}{ }^{5} \varepsilon$, and $\frac{5}{3 n-1} \quad$ 4. $1 \frac{5}{8} ; 1 \frac{1}{1 \varepsilon}$ and $\frac{13}{n+2}$
5. $\frac{1}{16}$ and $\frac{1}{24}$
6. 2 and $1 \frac{1}{3}$
7. $\frac{a b}{7 a-6 b} ; \frac{a b}{b(2-n)+a(n-1)}$
8. $\frac{1}{m}$
9. el $_{1} ; 6 ; 5_{1}{ }^{2}$ s
10. $5 \frac{1}{2} ; 5$; 48 $\frac{8}{6}$
13. Half of the middle term
14. 18 and 2
15. 14 or?
16. 20 and 10
17. 201 and 4

Exeroiss LXII.

1. 720
2. (1) 1680 ; (II) 20160 ; (III) 40320
3. 360360
4. 136 yrs .222 days
b. $n=6$.
5. Loss $=\$ 25456000$ when the money is not paid till the end of the period.

Loss $=\$ 22536215$ When the $\$ 5000$ is paid down and placed

7. $n=6$
8. 3634108800 ; 39916800 ; 1680; 1729728
9. 2520 ; 778377600; 420
10. $n=12$

Exiroigr LXIII.

1. 120,$252 ; 45 \quad$ 2. $3003 ; 6435 ; 435$
2. 792.
1. $n=9$

3 76992 6. 430824; 62360
6. 30164400
7. 362880 or 181440 according as B, A, C and C, A, B are regarded as giving A different or the the same neighbours
8. $n=7$
9. 16 and 6
10. $(\underline{n-1}$ or $(\underline{n-1}$ (See Ans. 7)
11. 637
12. 511

Exmboise LXIV.

1. $1-3 x+6 x^{2}-10 x^{8}+15 x^{4}-\& c$
2. $1-2 x+3 x^{2}-4 x^{3}+5 x^{4}-$ \&c
3. $1+2 x+4 x^{2}+8 x^{8}+16 x^{4}+$ dc
4. $1+\frac{6}{2} x+\frac{16}{4} x^{2}+\frac{35}{8} x^{3}+\frac{35}{8} x^{4}+$ dc
5. $1-6 x+27 x^{2}-108 x^{3}+405 x^{4}-$ \&c
6. $1+10 x+60 x^{2}+280 x^{2}+1120 x^{4}+8 c$
7. $1+4 x+10 x^{2}+20 x^{8}+35 a^{4}+$ \&c
8. $1-2 x-2 x^{2}-4 x^{8}-10 x^{4}-$ \&c
9. $\left.1-\frac{2}{3} x+\frac{5}{8} x^{2}-\frac{4}{8}\right\}^{2} x^{3}+\frac{1}{2} \frac{1}{3} x^{4}-8 \mathrm{c}$

10. $1+\frac{8}{9} x-8_{8}^{4} x^{2}+\frac{1}{2} \frac{1}{87} x^{5}-$ T $\frac{1}{68} \frac{9}{3} x^{4}+$ \&c
11. $1+\frac{1}{5} x+\frac{1}{28} x^{2}+\frac{84}{125} x^{3}+\frac{39}{6} \frac{9}{6} x^{4}+\& c$
12. $a^{-2}+3 a^{-8} x^{2}+6 a^{-4} x^{4}+10 a^{-8} x^{6}+15 a^{-6} x^{8}+\& c$
13. $a^{2}-a^{-4} x^{2}+a^{-6} x^{6}-a^{-8} x^{9}+a^{-10} x^{12}-$ \&c
14. $a^{-2}+2 a^{-\frac{8}{2}} x^{\frac{3}{3}}+3 a^{-2} x^{\frac{2}{3}}+4 a^{-\frac{5}{2}} x+5 a^{-8} x^{\frac{4}{3}}+\& c$
15. $a^{\frac{8}{3}}-\frac{9}{3} a^{-\frac{4}{5} x^{8}}-\frac{1}{8} a^{-\frac{26}{3}} x^{6}-8^{4} a^{-\frac{28}{3}} x^{9}-\frac{7}{243} a^{-\frac{10}{3}} x^{12}-$ \&c

12
17. $a^{-\frac{1}{2}}-4 a^{-1 / 6} x^{-2}+10 a^{-\frac{22}{3}} x^{4}-20 a^{-3 / 3} x^{6}+35 a^{-40} x^{-8}-$ \&c
18. $a^{-\frac{1}{16}}+\frac{1}{3} a^{-\frac{4}{3}} x^{-\frac{1}{6}}+\frac{8}{8} a^{-1}{ }^{7} x^{-\frac{2}{B}}+\frac{1}{8} a^{-\frac{2}{2}} x^{\frac{3}{6}}+{ }_{486}^{77} a^{-t_{5}^{3}} x^{-\frac{4}{6}}+$ \&c 13
19. $a^{-1} m^{-\frac{1}{2}}+\frac{2}{} a^{-19} m^{-\frac{6}{3}} x+\frac{5}{4} a^{-16} m^{-\frac{8}{3}} x+\frac{40}{8} a^{-\frac{82}{3}} m^{-\frac{1}{3}} x^{\frac{3}{2}}+$ $\frac{4}{2} \frac{0^{2} a^{-7} \frac{1}{n}-1 \frac{4}{3} x^{2}}{}$
20. $a^{8}+\frac{2}{8} a^{-6} x^{-5}-3^{\frac{3}{6}} a^{-8} x^{6}+x^{8} 5 a^{-13} x^{9}-\frac{28}{68} \cdot a^{\frac{28}{3}} x^{12}+$ \&c
21. $a^{-\frac{1}{2}}+\frac{1}{2} a^{-1} b x+\frac{1}{4} a^{\frac{1}{2}} b^{2} x^{2}+\frac{8}{16} a^{-7} b^{3} x^{2}+\frac{35}{15} a^{-\frac{1}{2}} b^{4} x^{4}+d c$

Exaroisy LXY.

4. $n=9$

A, B are jurs
12. 511

- \&c
- - \&c
$x^{-\frac{4}{6}}+$ de $3+$
$+8 c$ $4+\& c$

1. $\frac{3,4.5 \ldots(2+r)}{C} x^{r}$ and $21 x^{6}$
2. $(-1)^{r}\left(\frac{4 \cdot 5 \cdot 6 \ldots(3+\varphi)}{[}\right) x^{r}$ and $-86 x^{5}$
3. $(-1)^{r}\left(\frac{2.5 .8 \ldots(3 r-1)}{E \times 3^{r}}\right) x^{r}$ and $-\frac{308}{729} x^{8}$.
4. $(-1)^{r}\left(\frac{4.1 .-2 \ldots(7-3 r)}{1 x^{r} \times 3^{r}}\right)$ and 8 and $\frac{8}{729} x^{4}$
5. $(-1)^{r}\left(\frac{7.9 .11 \ldots(5+2 r)}{4 x^{2}}\right) x^{r}$ and $-\frac{9009}{256} x^{8}$
6. $(-1)^{r}\left(\frac{8.11 \ldots . \ldots(5+3 r)}{L \times 3^{r}}\right) x^{r}$ and $-\frac{10472}{729}{ }^{5}$
7. $a^{-(r+1)} x^{r}$ and $a^{-\beta} x^{\beta}$

8. $(r+1) 2^{r} x^{r}$ and $160 x^{5}$
9. $(-1)^{r}\left(\frac{5.7 \ldots(3+2 r)}{4 \times 8^{r^{r}}}\right)$) and $\frac{385}{216}$ Br 8

10. $(r+1) a^{\frac{r+1}{2}} x^{-\frac{1}{2}}$; and $5 a^{3} x^{-2}$.
11. 1024
12. 128
13. 0
14. 4096
15. The 4 th term $=32$ 18. The 4 th $=$ the 5 th $=4$.
16. 13th term 20. 9 th $=10 \mathrm{th}=\frac{19702683}{390625}$

Sxasery Livi.

1. $x<8$
2. $x>18$
3. $x>-10$
4. $x>a$ and $<b$
5. $x<8$ D

Linswise to maboisio.

Ermionis LXVII.

1. n
2. $\frac{8 a}{2}$
8.1
3. it
B. $-2 t$
4. $\frac{x^{3}+b}{x+b^{2}}$
5. $\frac{a}{b}$
6. \propto
7. $\frac{3 a}{a-8}$

Exindiaz LXVIII.

1. $x=2, y=1$
2. $\left\{\begin{array}{l}x=10,23,36,49, \text { \&c } \\ y=3,8,13,18, ~ \& c\end{array}\right.$
3. $\left\{\begin{array}{l}x=26,19,12 \text { or } 5 \\ y=1,3,6 \text { or } 7\end{array}\right.$
4. $x=3$ and $y=1$
b. $\left\{\begin{array}{l}x=4,21,38,55, \text { \&c } \\ y=2,11,20,29, \text { \&c }\end{array}\right.$
5. $x=2$ and $y=3$
6. $\left\{\begin{array}{l}x=2,43,84,125, \text { \&c } \\ y=1,13,25,37, ~ \& c\end{array}\right.$
7. $x=5 \operatorname{mad} y=4$
8. $\left\{\begin{array}{l}x=12,65,98, \& \subset \\ y=6,28,60, \& \mathrm{c}\end{array}\right.$
9. $x=11$ and $y=4$
10. $\left\{\begin{array}{l}x=5,165,325, \text { \&c } \\ y=1,100,199, \& c\end{array}\right.$
11. $\left\{\begin{array}{l}x=2 ; 6,10,14, \text { \&c } \\ y=3,20,37,54, \text { \&c }\end{array}\right.$
12. $x=2, y=3, z=4$
13. $x=11, y=3, z=2$
14. 45
15. 64
16. He pays 8 gaineas and receives back 7 half-crowns
17. $x=2 n$ and $y=n^{2}-1$ where n may be assumed at pleasure $=$ is \& equare

18. $x=\frac{n^{2}+1}{2^{n}} \cdot y$ where n and y may be assumed at pleasure and it will be found that $x^{2}-y^{2}$ is a square
19. 88.21 .109.
20. No two fractions with denominators 10 and 15 added ton gether will make 89 . Prove this:
21. The problem is impossible Prove this.
22. $3,6,9,12$ or 15 f5 notes ; 81, 62, 43, 24 or 5 £1 notes; $16,32,48,64$ or 80 crown-pieces.
23. 22 and $3 ; 16$ and $9 ; 10$ and $15 ;$ or 4 and 21
24. 8,16 and $6 ; 7,8$ and 9 ; or 11,1 and 12
25. $2^{n} \times\left(2^{n+1}-1\right)$ where n may bo assumed $=$ to any intogral number.
26. 417
27. I at $850 ; 9$ at 880 ; and 90 at $\$ 2$.
an 0
-21
(iII)
$+3$
28.

2

AMSWBRS TO EXHROLSE.

298

1. $\frac{17-21 a}{36}$
2. $a+b \quad$ 4. $\frac{a}{6}$
B. $x=1, y=5, z=9$

Misomitiaynode Exnzongus.

6. $3 \sqrt[1]{3}$
7. $\pm 1 \pm \frac{\sqrt{-1}}{\sqrt{2}}$
8. $x^{n}+1+x^{-n} ; x^{\frac{1}{3}}-a^{\frac{1}{2}} x^{\frac{1}{2}}+a^{\frac{1}{2}}$

$$
\text { 12. } 7 x^{3}-3 x y+4 y^{2} \quad \text { 13. } x^{m+n+p} \text {; } a b c
$$

14. $4 x^{4}+y^{2}+1 x x^{-4} y^{4} ; x^{4}+b^{4}+2 b^{2} x^{2}-a^{2} x^{2} ; x^{m+n}+x^{m} y^{4}+x^{n} y^{p}$ $+y^{p+q}$
15. $\frac{1}{33}(69-17 \sqrt{15})$
16. $\frac{12 x^{2}+1}{12 x^{3}+6 x} \quad$ 17. $\frac{4 x^{2}+2 x+1}{16 x^{4}-1} \quad$ 18. $x=-1 a$; (11) x has no possible roots (iii) $x=12 \pm \sqrt{269}$.
17. $x=\frac{2 a b c}{a c+b c-a b} ; y=\frac{2 a b c}{b c-a c+a b} ; 2=\frac{2 a b c}{a b+a c-b c}$
18. 19. 23. $\left(a^{2}+a b \sqrt{2}+b^{2}\right)\left(a^{2}-a b \sqrt{2}+b^{2}\right) ;\left(a^{2}+a b \sqrt{3}+b^{2}\right)$ $\left(a^{2}-a b \sqrt{3}+b^{2}\right)$
1. $\frac{x}{y}$ 25. G. C. $M .=x-4 y$; i. c. m. $=x^{4}+4 x^{2} y-27 x^{2} y^{2}$ $-34 x y^{3}+56 y^{4}$
2. $S_{n}=n a$ or $S_{n}=0$ or a according as $r=+1$ or -1 , and n an even or odd number
3. 4.95 per day
4. (1) $2059 \frac{2}{8} \frac{1}{6}$;
(II) 5 zt +4 fif $+4+8$ c (iii) $9,6,4,23,4 c$
5. $110 \times 50 \quad$ 31. (1) $x^{4}+2 x^{3} y+3 x^{2} y^{2}+2 x y^{3}+y^{4}$;
(I) $7 x^{6}-14 x^{3}+7 x^{2}+33 x-32-\frac{59 x^{2}-100 x+23}{x^{3}+2 x-1}$ (III) $x^{m-1}+x^{m-s}+x^{m-5}+x^{m-7}+\& \mathrm{c}$., rth term $=x^{m-2 r}+$
6. (I) $5+2 \sqrt{3}$; (II) $\sqrt{2 x+1}+\sqrt{2 x-1}$ 33. $15 a^{-28-16}$
7. $1184040 \quad$ 35. $x^{2}-2+3 x-2 \quad$ 36. 1 or $\ddagger(-1 \pm \sqrt{-3)}$
8. (1) $x=\frac{a^{2}}{a-b} ; y=\frac{b^{2}}{b-a}$;
(in) $x=0,10,4$ or $-2 ; y=0,10-2$ or 4
9. 3 and $3 \frac{1}{8} 39.1+\frac{6}{17}+3^{3} 5+\frac{9}{9}+\frac{3}{16}+\frac{8}{87}+1$
10. An identity
11. 0 ort $(1 \pm 3 \sqrt{-7}) \quad 42 . a b+b c+a c$.
12. $1 \frac{1}{2} x^{2}+\frac{1}{8} x y-\frac{1}{3} y^{7} y^{2}+(p-m) x+(n-q) y$, or $\left.\frac{1}{1} x^{2}-\frac{5}{3} x y-\frac{1}{3}\right)^{2} y^{2}-(m+p) x+(n+q) y$

800

44. $\frac{x+7}{x-5}$ 45. (1) $x=a$ or $b ;$ (II) $x=\frac{16 .}{} x= \pm 3$ or $\pm \frac{1}{3} \sqrt{3} ; y= \pm 4$ or $\pm \frac{12}{3} \sqrt{3} ; z= \pm 2$ or $\mp \sqrt{3} \sqrt{3}$ 47. $a^{3}(b+1)^{2}$
45. $x^{3 p}-2 x^{p}+3 x^{-3 p} \quad$ 49. $1077 ; \frac{6861 x^{14}-256 x^{-2} y^{8}}{81 x^{2}+54 y} ; 602$
46. Any series having $r=2 \quad$ 51. 1 52. $\frac{x^{2}+x+1}{x^{2}-x+1}$
47. $x=3 a-b$ or $3 b-a \quad 54 . x=15 ; y=20$
48. $x^{4}+4 x+3 ; x^{3}-4 x y^{2}+3 y^{5}$
49. $\left.x=\frac{1}{\left(a^{3}+3 b^{8}\right.}\right)^{\frac{1}{3}}\left(1 \pm \sqrt{\sqrt{a^{3}-b^{8}}}\right)$ $y=\left(a^{b}+3 b^{8}\right)^{\frac{1}{2}}\left(1 \mp \sqrt{\frac{a^{3}-b^{8}}{a^{8}+3 b^{8}}}\right)$
50. 7 58. $4 a^{\frac{1}{2}} b^{\frac{3}{2}} \quad$ 59. $\left(4 a^{4}-1,2^{3} a^{2}\right) ;\left(12 a^{8}-a\right)$
51. $x=\frac{(a+b)^{2}}{2(a-b)} ; y=1(a+b) \quad$ 61. $\frac{30 x-23}{13 x-10} ; \frac{x\left(x^{2}+1\right)^{2}}{x^{6}-2 x^{4}+2 x^{2}-1}$
52. $\frac{x^{2}-9 x+24}{x^{3}+5 x^{2}-29 x-105}$ 63. $\frac{x}{y}-\frac{1}{2}+\frac{y}{x} ; x^{2}-x+\frac{1}{2}$
53. (I) $x^{2 m}-3 x^{m} y^{n}+2 y^{2 n}$ (II) $x^{2 m^{2}}-a^{2} x^{2 m}+2 a b x^{m}+b^{2}$
54. $4 x^{8}+8 x^{2}+16 x+32 ; 5 a^{4} b^{8}-3 a b^{4} \quad 67.3,4,5,6$, or 7
55. 30 41. (1) $a^{4}-5 a^{3}+25 a^{2}-138 a+790-\frac{4507 a-3166}{a^{2}+5 a-4}$

$$
\text { (II) } x^{4}+2 x^{2}+3+2 x^{-7}+x^{-4} \text {. }
$$

72. $x-a$ 73. $\frac{36 x^{2}+18 x+29}{16 x^{4}-81}$
73. $1_{16}^{1} x^{4}+\frac{4}{81} y^{4} ; 64 x^{\frac{3}{2}}-16 x y^{\frac{1}{4}}+36 x^{\frac{1}{3}} y-729 y^{\frac{3}{2}}$
74. $x=3 \sqrt{ } 3 ; y=2 \sqrt{ } 2$
75. $v=1-\frac{17 x}{13 y}+\frac{4}{13} x y^{2} \quad 80 . x= \pm 1 ; x=\frac{b\left(b \pm \sqrt{b^{2}+4 a^{2}}-4 a b\right)}{2 a(a-b)}$
76. $a^{2^{n}}-b^{2^{n}} \quad$ 82. $x^{2}-(a+b) x-c \quad$ 83. $a x^{3}+b x+c x^{-1}$
77. $\frac{x^{2}-a b}{x^{2}+a b} \quad 85 . x^{2}+p x+p^{2} \quad$ 86. $25\left(x^{3}-5 x^{2}-26 x+120\right)$
78. $\frac{b-1}{a+1}$ 88. $\frac{x^{6}-1}{x^{6}+1} \quad$ 90. By A in $2, B$ in 3, and C in 4 hours 91. $x^{2}+x-3$
79. $\alpha p q x^{2}+\left(a q^{2}+b p q-a p^{2}\right) x^{2}-\left(a p q+b p^{2}-b q^{2}\right) x-b p q$
1) $x x^{2} y-x y^{3}$

AHSWIRS TO EXMHOIGES.

93. (1) $11 a$; (u) $\pm \sqrt{7}$; (III) 5 or -12 ; (IV) $m=1$ or $\pm \sqrt{16}$; $y=5$ or $\frac{1}{3}$
94. $x^{4}-x^{8}-7 x^{2}-11 x+42=0$ 95. m 96. $\left(a^{4}+a b \sqrt{2}+b^{4}\right)$ $\left(a^{4}-a^{2} \cdot b^{2} \sqrt{2}+b^{4}\right)$
95. 1h 5 frm 99. $x=\frac{a(c d-e-b c)}{b c-u d} ; y-\frac{b(c d-e-a d)}{b c-a d .}$;

Problem indeterminate.
100. $\frac{1}{2}(a+b)$ 101. $6 x^{8}+10 x^{2}+5 x-23-\frac{61 x-70}{x^{2}-2 x+3}$
or $5 x^{8}+10 x^{2}+5 x-23-61 x^{-1}-62 x^{-2}+79 x^{-3}+$ de
102. $x-y$; if $y=1$ the G. C. M. is $x^{2}+4 x-5$
104. $\left(a^{2}+a m \sqrt{2}+m^{2}\right)\left(a^{2}-a m \sqrt{2}+m^{2}\right)\left(a^{4}+a^{2} m^{2} \sqrt{3}+m^{4}\right)$ ($m^{4}-u^{2} m^{2} \sqrt{3}+m^{4}$)
105. 1 106. 3
114. $0 \quad$ 116. $7 x^{2}+7 x y+7 y^{2} \quad$ 116. $2 x^{2}+x-1$
117. $(2 x-1)(x+1)(3 x+2)(3 x-2)$ and $(2 x-1)(x+1)$ $(2 x+1)(2 x-1)$
118. $\frac{1+x+x^{2}}{1-x-x^{4}+x^{5}} \quad$ 119. An indeterminate equation; an identity
123. $11,9,7,5$, \&c \quad 125. $3-2+\frac{1}{3}-\frac{8}{8}+\frac{1}{6} 9-$ \&e
128. $\frac{2618}{6561} x^{-12} ;-\frac{391391}{1594323} x^{-18} ;(-1)^{r} \times \frac{2.6 .8 \ldots(3 r-1)}{r \times 8^{7}} x^{-8}$
129. $x^{6}-6 x^{5}+6 x^{4}+30 x^{2}-51 x^{2}-24 x+44=0$
130. $\frac{1}{2}(-3 \pm \sqrt{ } 5) \quad$ 131. $\frac{4 b c-a d}{d-4 c}$
133. $x=2, y=3, z=4 \quad$ 134. $\frac{n+1}{x^{n}}$
135. 21 and $24 \quad$ 136. $1 \pm \sqrt{19} \quad$ 137. $x=20, y=8$
140. $\frac{1}{2}\left\{ \pm \sqrt{4 n a b+(a-b)^{2}}-(a+b)\right\}$ 141. $\frac{1}{4}$ or $\frac{1}{9}$ 142. $\frac{1}{3} \sqrt{3}$
143. $x= \pm \frac{a^{2}}{\sqrt{a^{2}+b^{2}+c^{2}}} ; y= \pm \frac{b^{2}}{\sqrt{a^{2}+b^{2}+c^{2}}} ; z= \pm \frac{c^{2}}{\sqrt{a^{2}+b^{2}+c^{2}}}$
145. $b^{2}-1$. 146. $\frac{x^{3} y^{8}}{27}+27$. 147. $a^{2}+b^{2}+c^{2}+d^{2}$.
148. $\pm\{a(x+2)-1\}$ 149. $a+b-c$.
160. $4 x-\frac{3 x^{2}-4 x-1}{x^{5}+2 x-1} ; 4 x-3 x^{-2}+4 x^{-2}+7 x^{-3}-11 x^{-4}-16$

802

151. $1+x-x^{4}-x^{4}+x^{6}+x^{7}-x^{9}-x^{10}+d c$
152. $\frac{a^{4}+2 a^{2} b^{2}+b^{4}}{a^{4}-2 a^{2} b^{4}+b^{4}} \quad 153.1 \quad$ 154. $\frac{1}{(x-1)(x-2)(x-3)}$
153. 154. They must have a common measure; ' in. The coefficients of x must be but of opposite signs,and the coefficients of x^{2} must be $=$, and also those of x° must be $=$
1. 23 158. $1 \pm 2 \sqrt{3} \quad 159 . \pm \frac{\sqrt{3} 3 \text {, or } 0}{} 0^{\circ}$
2. $x=\frac{1+P}{1-P} \pm \frac{2}{(n-1)(1-P)} \sqrt{(P n-1)(n-P)}$
3. A. $M_{1}=1 \frac{1}{1} ;$ G. $M_{1}=1$; H. M. $=\frac{\text { 路 }}{}$ 163. $0 ; 217$
4. $\frac{25}{3}-\frac{3^{n-1}}{5^{n-3}} \quad 165 . \frac{4}{4}\left\{1-\left(-\frac{2}{8}\right)^{n}\right\} ; \frac{5}{?}\left(-\frac{\}}{)^{n}}\right.$.
5. $x^{4}+x^{2} y^{2}+y^{4} \quad$ 168. $43 \quad$ 169. $2 a-3 b$. 171. 5.
6. a or $-\frac{b(a+b)}{2 a+b} \quad$ 173. $\frac{a}{a+a b+1} \quad$ 175. $(a-b)^{2}+c^{2}$
7. $x+1 \quad$ 177. $\frac{14 x-4 x^{2}+14}{(x+5)} \frac{\left(x^{4}-1\right)}{(178 .} \frac{2\left(a^{2}-b^{2}\right)}{a^{2}+b^{2}}$
$\begin{array}{lll}\text { 181. } \pm \sqrt{b(2 a-b)} & 182.64 \text { or } \frac{97}{9} \sqrt[6]{7857} & \text { 183. } \pm \sqrt{a b}\end{array}$
8. 5 or $6 d^{1 / 3} 185.42$
9. A's rate 1st round is 10 miles per hour, 2 nd round 12 miles per hour ; B's rate, 12 miles per hour first round, and 10 miles per hour second. Neither wins
10. $x^{6}+x^{4} y^{2}-x^{2} y^{4}-y^{6} \quad$ 190. $b^{2} \quad$ 191. $a x^{2}+2 c y x+b y^{2}$
$\begin{array}{lll}\text { 192. } x^{n}+1 & \text { 193. } x+4 & \text { 194. 12abc }\end{array}$
11. $(a+b+c)(x+y+2) \quad$ 196. $x^{6}-12 x^{4} y^{2}+48 x^{2} y^{4}-64 y^{6}$;
$a^{2}+b^{2} \quad$ 197. $2 a^{2} b^{2}+2 a^{2} c^{2}+2 b^{2} c^{2}-a^{4}-b^{4}-c^{4} ; x^{2}+1+x^{-2}$
12. $: x^{2} y^{-2}-\frac{1}{2} x y^{-1}+\frac{2}{3}-\frac{6}{6} x^{-1} y+x^{-2} y^{2} ; x^{2}-2 x+3$
13. $8 x^{2}$? $+4 x^{\frac{1}{3}} y+2 y^{2} ; x^{2}+(1-p) a x+a^{2}$
14. $x-4 ; \dot{x}^{2}-1 ; x^{2 p}-u^{2 p}$ where p is the G. C. M. of m and n.
15. $a x^{5}-2 a^{2} x^{4}-a^{3} x^{8}+2 a^{4} x^{2} ; x^{4}-x^{2} y^{2}-a^{2} x^{2}+a^{2} y^{2}$
16. $1+\frac{2 d}{a+b+c+d} \quad$ 203. $\frac{x+y+z}{x-y+z} \quad$ 204. $\frac{3 a}{a+b}$
17. $\frac{a^{4}}{2\left(a^{3}+x^{2}\right)} \quad$ 206. $2 \quad$ 207. $x^{2}-2 x-2 ; 2 x^{2 n}-\frac{1}{x^{3 n}}$ $\frac{a}{b}-\frac{b}{c}-\frac{c}{a}$
18. $\frac{a m}{n} ; 6$ or
19. 2.14 or -0.49 ; $8 a-b$ or $3 b-a$
20. $x=\frac{a c+b}{1+a^{2}} \quad y=\frac{c-a b}{1+a^{3}} ; x=4$ or $3, y=3$ or 4
21. $x= \pm \frac{b c}{a} ; y= \pm \frac{a c}{b}, 2= \pm \frac{a b}{c} \quad$ 213. $A, 15 ; B, 21 ; C, 24$ 214. 117; $1\left\{n(n+1)+4-\left(\frac{8}{y}\right)^{n}\right\} ; 3 \sqrt{2}+2 \sqrt{3} \quad 216$. $5 \pm 2 \sqrt{7}$ 217. 0,1, 文 $\left(4 \pm \frac{1}{754)}\right.$.
22. $2 n(4 n+1)+\frac{1}{3}\left(1-16^{n}\right) ;(2 n+1)(4 n+1)+\frac{1}{3}\left\{1-(-2)^{4 n+1}\right\} ;$ $(4 n+3)(2 n+1)+\frac{1}{3}\left(1-4^{2 n+2}\right) ; 2(n+1)(4 n+3)+$ $\frac{1}{3}\left\{1-(-2)^{4 n+8}\right\}$
23. $72 \quad 221.90$ miles; $\$ 2.70$ 222. $x=0$, or $\frac{1}{2}(\sqrt{10 \sqrt{5}-70})$ or $\frac{1}{2}(\sqrt{10 \sqrt{29}-46})$ or $\pm 3 \sqrt{-1}$
24. $1 \frac{4 m}{n}\left(m \pm \sqrt{m^{2}-n^{2}}\right)$ and $\frac{4 m}{n}\left(m \mp \sqrt{m^{2}-n^{2}}\right)$

II $4\left(m \pm \sqrt{m^{2}-m n}\right)$ and $4\left(m \mp \sqrt{m^{2}-m n}\right)$
225. Ages at first trial $=11$ and 15

Throws at first trial $=66$ and 90 feet, And at second trial = 74 and 96 feet.

TEE END.

[^0]: * See Arts. 52, 58, and 57.

[^1]: * Ṣee Arts. 52 and 58.

[^2]: * Bynthetio diviaion demanda the attention of the atudent not orily on account of itu brevity and elogance, but also for its great value in many of Sio hif her dopirtinomatio of recieireh, such ab in obtatning faction preparatory to the intogration of finite diferonces, in conetructint a recmiring corien, in the treatmant of reciprocal equations, \&c.

[^3]: * An algebraic theorem is an algebraic property required to be demoto itrated.

[^4]: * Accorrin by ingpeotion what power of 2 exprecese the exponevt of enoh tore of the product of the frat, two of these fictors, then of t nall hence of n foctorn.

[^5]: *Nors.-If we take any number, as 6542, and represent its digits respectively by the letters d, c, b, and a, then $d+c+b+a$ will express, not the number, but merely the sum of its digits. In order to express the number we must take into account the local as well as the absolute values of the:digits, i.e., we must remember that the first digit being 80 many units, the second is so many tens, the third so many hundreds, 80.
 Hence $d+c+b+a=6+5+4+2=17=$ sum of digits.
 And $1000 d+100 c+10 b+a=6000+500+40+2=6512=$ the number.
 And of course $1000 a+1006+10 c+d=2000+400+50+6=2456=$ number with its digits inverted.

[^6]: - Seo Anthor's National Arithmetic for the inventigation of the aquare root eo appliod to numbore.

[^7]: Thit emamplo indicato a mode of revolving as $+0^{s}$ into rivitdri

[^8]: *The quantity subtracted must however be leas than cither of the terms.

[^9]: * The product of two algebraic factors is not altered inform by any variatimon in the value or nature of the factors: Thus $(x+a)(x+b)=x^{2}+(a+b) x$ $t a b$ for all values of x, a and b. So in the above, although by changing the values of m and n we alter the values of b, c, see.; yet their forms, ie. the manner in which m and n enter the series, remain the same.

