

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

Canadian Institute for Historical Microreproductions / Institut canadien de microreproductions historiques

(C)

1

3

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographicaliy unique, whirh may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagée
Covers restored and/or laminated/
Couverture restaurée et/ou pelliculée
Cover title missing/
Le titre de couverture manque

Coloured maps/
Cartes yéographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur
Bound with other material/
Relié avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de le distortion le long de la marge intérieure

Biank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/ Il se peut que certaines pages blanches ajouttes lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

Additional comments:/
Commentaires supplémentaires:

L'Institut a microfilmé le meillour exemplaire qu'll lui e été possible de se procurer. Les détails de cet exemplaire qui sont peut-etre uniques du point de vue bibliograph!que, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la móthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur
Pages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed/
Pages décolorées, tachetbes ou piqubes

Pages detached/
Pages détachées
Showthrough/
Transparence
Quality of print varies/
Qualité inégale de l'impressionIncludes supplementary meterial/
Comprend du matériel supplémentaireOnly edition available/
Seule édition disponible
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible imaze/
Les pages totalement ou partielloment obscurcies par un feuillet d'errata, une pelure, etc., ont óté filmbes à nouveau de façon è obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here has been reproduced thanks to the generosity of:

The last recordad frame on each microfiche shail contein the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"), whichever applies.

Maps, piates, charts, otc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, loft to right and top to bottom, as many frames as required. The foliowing diagrams iliustrate the method:

L'oxempiaire filmé fut reproduit grace da gondéroalté do:

Library of Congress
Photoduplication Service
Les images suivantes ont otó reproduites avec lo plus grand soin, compte tonu de is condition et de le nettetó de l'oxemplaire filmb, et en conformitó avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture on papiar eat imprimbe sont filmes on commencant par ie promiar piat ot en terminant solt par la dernidre page qui comporte une empreinte d'Impression ou d'llustration, soit par ie second plat, selon lo cas. Tous les autres exemplaires origineux sont filmés en commencent par la premidre page qui comporte une empreinte d'impression ou d'illustration ot en terminant par le de:nisre page qui comporte une teile emprointe.

Un des symboles suivants apparaitra sur la dernildre image de chaque microfiche, selon ie cas: lo symbole \rightarrow signifie "A SUIVRE", lo symbole ∇ signifie "FIN".

Les cartes, planches, tableaux, otc., peuvent Átre filmbs à des taux do réduction différents. l.oreque le document est trop grand pour etre reprodult on un soul clichs, it est film' à partir de l'angle supfrieur gauche, de gauche à droite. ot de haut on bas, en prenent lo nombre d'images nfereseaire. Les diagrammes suivants illustrent le móthode.

4	2	3
4	5	6

INVARIANTS AND EQUATIONS

associatrd with the

General Linear Differential Equation

THESIS PRESENTED FOR THE DEGREE OF PH. $\dot{\text { D }}$.

By
GEORGE F. ${ }_{\eta}^{\text {META }}$ MELER.

JOHNS HOPKINS UNIVERSITY, BALTIMORE. 1891.

Introduction.

The formation of functions, associated with differential equations and analogous to the invariants of algebraic quantics, has occupied the attention of several mathematicians for some years, because of their great value in leading to practical as well as theoretical solutions of auch equations.
Starting with the work of M. Laguerre and of Professor Brioschi, M. Halphen, in two important memoirs,* indicated a method for the formation of invariants, but involving very difficult analysis. He derived the two simplest invariants for the cubic and quartic and such derivatives as may be deduced from them. For this purpose he, by means of the transformation $Y=y e^{-\int \frac{R_{1}}{R_{0}} \omega}$, brings the equation to a form having zero for the coefficient of the second term.
Meauwhile Mr. Forsyth, atarting with the letter of Professor Brioschi, prepared a very valuable memoir, \dagger in which, by means of the following transformations, he obtains a canonical form in which the coefficients of both the second and third terms vanish. This may be stated as follows:

When the linear differential equation

$$
\begin{aligned}
& \frac{d^{n} y}{d x^{n}}+\left(\frac{n}{2}\right) P_{3} \frac{d^{n-4} y}{d x^{-n}-2}+\left(\frac{n}{3}\right) P_{2} \frac{d^{n-5} y}{d x^{n-1}} \\
& \quad+\left(\frac{n}{4}\right) P_{4} \frac{d^{n-4} y}{d x^{-2}-4}+\ldots+P_{n}=0
\end{aligned}
$$

* "Mémoire sur la réduction des équations differentiellee linéaires aux formés integrables" (Miwoires des Savants Etrangers, Vol. 28, No. 1, 301 pp., 1880). Also, "Sur les invariente dee śquations differentielles Hinésires du quatrième ordre ". (Acta Mäł., Vol. 3, 1883, pp. 325-380).
f"Invariants, Covariants and Quotient Derivatives sasociated with Linear Difierential Equations."-Philosophical Transactioms of the Royal Socicty of Lomdon, Vol. 179 (1888), A, pp. 377-489.
has its dependent variable y transformed to u by the equation $y=u \lambda, \lambda$ being a function of x and its independent variable changed from x to z, where z and λ are determined by

$$
\begin{align*}
& \lambda=\varphi^{n-1}, \frac{d z}{d x} \tag{1}\\
&=\varphi^{-2} \tag{2}\\
& \frac{d^{2} \varphi}{d x^{3}}+\frac{3}{n+1} P_{1} \varphi=0
\end{align*}
$$

the transformed in u is in the canonical form

$$
\begin{aligned}
& \quad \frac{d^{n} u}{d \xi^{n}}+\left(\frac{n}{3}\right) Q_{0} \frac{d^{n-s} u}{d z^{n-1}}+\left(\frac{n}{4}\right) Q_{0} \frac{d^{n-4} u}{d z^{n-6}}+\ldots+Q_{n}=0, \\
& \left(\frac{n}{r}\right) \text { being the binomial coefficient } \frac{n!}{r!n-r!} .
\end{aligned}
$$

The coefficients P and Q of these equations are so connected that there exist $n-2$ algebraically independent functions $\theta(x)$ of the coefficients P and their derivatives which are such that, when the same function $\theta_{\sigma}(z)$ is formed of the coefficients Q and their derivatives, the equation

$$
\begin{equation*}
\theta_{\sigma}(x)=\left(z^{\prime}\right)^{\sigma} \theta_{\sigma}(z) \tag{3}
\end{equation*}
$$

is identically satisfied. For this form of the differential equation

$$
\theta_{\sigma}(z) \equiv Q_{\sigma}+\frac{\sigma}{2} \sum_{r=1}^{r=\sigma-8}(-1)^{r} a_{r, \sigma} \frac{d^{r} Q_{\sigma-r}}{d z^{r}},
$$

where

$$
a_{r, \sigma}=\frac{\sigma-1!\sigma-2!2 \sigma-r-2!}{r \mid 2 \sigma-3!\sigma-r!\sigma-r-1!} .
$$

Thus $\theta_{\sigma}(z)$ is independent of the order of the equation. In this z is completely determined by equations (1) and (2). But there may be difficulties in the way of solving (2), and thus it is desirable to form the invariants for the uncanonical form of the equation.
For this purpose Mr. Forsyth establishes relations between the coefficients P and Q for the case in which z, being arbitrary, is given the value $x+s \mu$, where ε is so small that the square.
by the equation pendent variable ined by
$\ldots+Q_{n}=0$,
are so connected nt functions θ (\boldsymbol{x}) nich are such that, coefficients Q and
differential equa-

```
\mp@subsup{r}{}{r}\mp@subsup{Q}{0}{\prime}-r
```

the equation. In 5 (1) and (2). But $\mathrm{g}(2)$, and thus it is nonical form of the
selations between $\mathrm{h} z$, being arbitrary, sall that the square
and bigher powers may be neglected, and μ is an arbitrary nonconstant function of x. These relations are expressed thus:

These relations are fully developed in Mr. Forsyth's memoir ; also in Dr. Craig's excellent work* they will be found, and such a general treatment of the whole subject of differential equations and differential quantics as makes the work an invaluable help and guide to any student of the subject.
Then we derive

$$
\begin{align*}
& \frac{d^{r} Q_{0}}{d z^{r}}=\frac{d^{r} P_{0}}{d x^{\prime}}\left\{1-(r+s) \varepsilon \mu^{\prime}\right\}-s \varepsilon P_{0} \frac{d^{r+1}}{d x^{r+1}} \\
& -\varepsilon{ }_{m=1}^{m=r-1}\left[\frac{r!}{m!r-m+1!}\{s(r+1)\right. \\
& \left.-m(s-1)\} \frac{d^{m} P}{d x^{m}} \frac{d^{r-m+1 \mu}}{d x^{r-m+1}}\right] \tag{6}\\
& -\frac{\varepsilon}{2}{ }_{0=0}^{\sum_{i=0}^{-1}}\left[\frac{s!}{\theta|s-\theta+1|}\{n(s-\theta-1)\right. \\
& \left.+s+\theta-1\} \frac{d^{r}}{d x^{r}}\left(P_{0} \frac{a^{1-\theta+1} \mu}{d x^{0-\theta+1}}\right)\right]
\end{align*}
$$

The only invariants that have been formed, so far as I know,
 of an equation of order n.
In Section I of this thesis the general invariant θ_{0} is considered, and it is there shown that in the non-linear part every term is of the form $A B C$. Where A is a number, B is a function of P_{2} and its derivatives, and C is invariant or the derivative of an invariant with suffix differing from s by an even number. When s is even C may be a number.

Section II deals with the coefficients of θ_{s}, giving some
*Treatise on Linear Differential Equations. By Thomas Craig, Ph.D. Vol. I.
general expressions by which they may be calculated for any value of s.

Section III treats of associate variables and associate equations, showing which are identical and which may not be.

Dr. Craig having discovered that the condition for the selfadjointness of the sextic and octic was that their invariants with odd suffix all vanish, suggested to me the general theorem announced in his treatise, pp. 293-295. The proof given at that time only applied to equations in Mr. Forsyth's canonical form. By aid of what is established in Section I, it is shown to apply also to equations in any form.

A fuller history of the subject will be found in the works to which reference has been made.
This paper was not only suggested by Dr. Craig, but has had his valuable criticism.

Section I.

The Form of the General Linear Prime Invariant θ_{0}.
Since $\theta_{\text {, }}$ has only a linear part when P, vanishes, its form must be as follows:

$$
\begin{aligned}
& {\left[A P_{0}+B P_{0-1}^{\prime}+C P_{0-3}^{\prime \prime}+\ldots+W P_{9}^{(-9)}\right.} \\
& +\left[P_{1}\left\{a_{3} H_{0},-a_{8} \theta_{0-1}+a_{0} \theta_{n-4}^{\prime \prime}+\ldots+a_{0-1} P_{0}^{(-1)}\right\}\right] \\
& \left.\left.+\left[P_{i}\right\} \quad b_{8} H_{0-1}+b_{1} \theta_{0,4}^{\prime}+\ldots+\quad b_{0-3} P_{9}^{(0-1)}\right\}\right] \\
& \left.+\left[P_{p}^{\prime \prime} \mid \quad c_{d} H_{0}-1+c_{0} \theta_{-1}^{\prime}+\ldots+c_{-1} P_{0}^{(0-0)}\right\}\right] \\
& \left.\left.+\left[P_{1}^{1}\right\} \quad d_{1} \theta_{0,1}+d_{1} \theta_{0-3}+\ldots+d_{1,3} P_{0,-1}^{0}\right\}\right] \\
& +\left[P^{\prime \prime \prime}\right\} \\
& \text { ••• } 1 \\
& +[\text { etc.] } \\
& \text { etc., etc. }
\end{aligned}
$$

In this (r) is the differential index, so that

$$
P_{g^{(r)}}^{(r)} \equiv \frac{d^{r} P_{s}}{d x^{r}}, \quad \theta_{0}^{(r)} \equiv \frac{d^{r} \theta_{0}-x}{d x^{r}} \cdots
$$

The sum of the suffixes and differential indices, it will be noticed, equals s for every term ; that is, θ, ponsesses a kind of homogeneity.* s is called the index or dimension number of θ_{0}; the dimension number of $P_{0}^{(p)^{\prime}} \theta_{t-k}^{n}$ being

$$
(p+2) r+\mu+s-x .
$$

Denoting the terms within the square parenthesis by L, μ, j, γ, δ, etc., then $\theta_{0} \equiv L+\alpha+\beta+\gamma+\delta+\ldots$

The notation used here will be nearly that used by Mr. Forsyth, but to simplify the work the μ 's and their derivatives arising from $z=x+s / \mu$ will be dropped, that is, they will be

[^0]treated as unity, when the result will not be changed by doing so. Also $P_{r}^{(0)} \equiv \frac{d^{\circ} P_{r}}{d x^{\circ}}$ will be considered \equiv with P_{r}.

The general form of the terms in L is

$$
\begin{equation*}
(-1)^{r} \frac{s!s-2!2 s-\tau-2!}{2 .-!s-+\mid s-\tau-1!2 s-3!} \quad P!-+1==0,1,2 \ldots s-2 \tag{a}
\end{equation*}
$$

I shall now show that when x is odd each of the numerical coefficients $a_{k}, b_{k}, c_{k}, d_{k}$, etc., of the non-linear part of $\theta_{\text {s }}$ equals zero.
From page 4 of the introduction we have

$$
H_{0}(x)=z^{\prime} \cdot H_{0}(z)=\left(1-s s \mu^{\prime}\right) H_{0}(z)
$$

identically satisfied. If in the right member of this identity the Q 's and their derivatives are replaced by their values in ternis of the $P^{\prime} s$ and their derivatives, as expressed by formulae (5) and (6) (page 5 , introduction), then the terms of dimension ' s ' in each member cancel, those of dimension 's-1' furnish the numerical coefficients in the linear part L, and there remain terms of dimension equal to and less than $s-2$ with which we may determine the coefficients of the non-linear part.

Remembering the convention $P_{r}^{(0)} \equiv P_{r}$, formulae (5) and
(6) are included in

$$
\begin{align*}
& \frac{d^{r} Q_{0}}{d z^{\prime}}=P_{!}^{(r)}\left\{\mathrm{I}-(r+s) s \mu^{\prime}\right\} \\
& -\varepsilon \sum_{m=0}^{m=\sum^{-1}}\left[\frac{r!}{m!r-m+1!}\{s(r-m+1)\right. \\
& \left.+m\} P(m)^{(r-m+1)}\right] \tag{7}\\
& -\frac{c}{2} \sum_{0=0}^{0=1}\left[\frac{s!}{0!s-\theta+1!}\{n(s-\theta-1)\right. \\
& \left.+s+\theta-1\}\left(P_{\theta \mu}^{(\theta-\theta+1)}\right)^{(r)}\right] \\
& r=0,1,2,3 \ldots s
\end{align*}
$$

Also, differentiating the invariants, we find
anged by doing h_{r}
$1,2 \ldots . . s-2$. (a)
f the numerical part of θ, equals

$$
\begin{align*}
& \frac{d^{\prime} \theta_{0}(x)}{d x^{\prime}}=\frac{d^{\prime}}{d z^{\prime}}\left[z^{\prime \prime} \theta_{0}(z)\right], \tag{8}
\end{align*}
$$

Then $Q_{3}=P_{3}\left(1-2 c \mu^{\prime}\right)-\frac{n+1}{6} c^{\prime \prime \prime \prime}$,

$$
\begin{aligned}
& Q_{2}=P_{3}\left(1-36 \mu^{\prime}\right)-3 c \mu^{\prime \prime} P_{3}-\frac{n+1}{4} \cdot \varepsilon \mu^{(\theta)}, \\
& \text {. } \\
& Q_{0}=P_{0}\left(1-6 \varepsilon \mu^{\prime}\right)-15 \kappa \mu^{\prime \prime} P_{1}-\frac{s}{2}\left(n^{\prime}+9\right) s \mu^{\prime \prime \prime} P_{1} \\
& -5(n+4) c \mu^{(0)} P_{3}-\frac{3}{1}\left(3^{n}+7\right) c \mu^{(n)} P_{1}-\frac{n+1}{14} 5 c \mu^{(n)} . \\
& \frac{d Q_{2}}{d z^{i}}=P_{2}^{\prime}\left(\mathrm{I}^{\circ}-3 \mathrm{c} \mu^{\prime}\right)-2 c \mu^{\prime \prime} P_{2}-\frac{n+1}{6} \operatorname{c\mu }^{\mathrm{Iv}}, \\
& \frac{d^{\prime} Q_{2}}{d \xi^{\prime}}=P_{2}^{\prime \prime}\left(1-4 c \mu^{\prime}\right)-5 c \mu^{\prime \prime} P_{;}^{\prime}-2 c \mu^{\prime \prime \prime} P_{1}-\frac{n+1}{6}{ }_{c \mu}{ }^{\mathrm{s}}, \\
& \frac{d^{2} Q_{4}}{d z^{2}}=P_{d^{\prime}}^{(1)}\left(\dot{x}-6 \mathrm{c} \mu^{\prime}\right)-9 c \mu^{\prime \prime} P_{t}^{\prime}-4 \mathrm{c} \mu^{\prime \prime \prime} P_{4} \\
& -8 \frac{d^{3}}{d x^{n}}\left\{6 \mu^{\prime \prime} P_{3}+(n+5) \mu^{\prime \prime \prime} P_{3}\right\}-\frac{3}{10}(n+1) c \mu^{\mathrm{v}}, \\
& \text { etc. } \\
& \text { etc. }
\end{aligned}
$$

From these follow

$$
\begin{aligned}
& Q_{i}=P_{i}\left\{1-2 r a \mu^{\prime}\right\}-r P_{3}^{r-1}{ }_{6}^{n+1}{ }_{s \mu^{(3)}},
\end{aligned}
$$

$$
\begin{aligned}
& \left.+26 \mu^{\prime \prime \prime} P_{1}+\frac{n+1}{6}_{\varepsilon \mu^{v}}^{v}\right\} \text {. }
\end{aligned}
$$

If $P_{9}^{\prime \prime \prime} \theta_{0}^{\left(\alpha-\kappa_{k}^{-5)}\right.}$ be a term in θ_{0}, then will the term $\frac{d^{x} Q_{0}}{d z^{2}} \frac{d^{k-b} \theta_{t-k}(z)}{d z^{-6}-6}$ be multiplied by $\left(z^{\prime}\right)^{\prime}$ or ($1-s \mu^{\prime} \varepsilon$), and

$$
\begin{aligned}
& P_{2}^{\prime \prime \prime} \theta_{--\kappa}^{(\kappa-5)}(x)=\left(1+s \varepsilon \mu^{\prime}\right) \frac{d^{2} Q_{2}}{d z^{2}} \frac{d^{\kappa-5} \theta_{d-k}(z)}{d z^{k-5}} \\
& =\left(1+\varepsilon s_{i}^{\prime} \prime^{\prime}\right)\left\{P_{9}^{\prime \prime \prime}\left(1-5 \varepsilon \mu^{\prime}\right)-9 \varepsilon \mu^{\prime \prime} P_{9}^{\prime \prime}\right. \\
& \left.-7 \varepsilon \mu_{2^{\prime \prime}}^{\prime \prime} P_{z}^{\prime}-2 \varepsilon \mu^{\text {IV }} P_{3}-\frac{n+1}{5} \varepsilon \mu^{\mathrm{VI}}\right\} \\
& \times\left(\theta_{x-k}^{(x-s)}(x)\left\{1-(s-5): n^{\prime}\right\}-\varepsilon \sum_{m=0}^{m=0}\left[\frac{x-5!}{m!x-4-m!}\right.\right. \\
& \left.\left.\{(x-4-m)(s-x)+m\} \theta_{-\infty}^{(m)} \mu^{(\kappa-t-m)}\right]\right) \\
& =P_{9}^{\prime \prime \prime} \theta_{0-\kappa}^{(\kappa-b)}-\theta_{--k}^{(x-b)}\left(9 \varepsilon / \mu^{\prime \prime} P_{s}^{\prime \prime}+7 c \mu^{\prime \prime \prime} P_{s}^{\prime}\right. \\
& \left.+2 \varepsilon \mu^{\mathrm{I} \prime} P_{2}+\frac{n+1}{6} \varepsilon \mu^{\mathrm{VI}}\right) \\
& -P_{3}^{\prime \prime \prime} \varepsilon \sum_{m=0}^{m=n}\left[\frac{x-5!}{m!x-4-m!}\right. \\
& \left.\{(s-x)(x-4-m)+m\} \theta_{-}^{(m)} \mu^{(\mu-t-m)}\right] .
\end{aligned}
$$

In this equation the terms of dimension ' s ' cancel and $-\varepsilon$ is a factor of the remaining terms, so that when every term in θ_{a} is treated in this way, all terms of dimension ' s ' cancel each other and the remainder is divisible by $-\varepsilon$. Denoting by $R L$ the remainder of the linear part L, by R_{a} the remainder of the terms in α, etc., and by $\left(\frac{n}{r}\right)$ the binomial coefficient $\frac{n!}{r!n-r!}$, also omitting the μ 's and dividing by $-\varepsilon$, we get

$$
\begin{aligned}
& R L \equiv A \frac{s . s-1}{2} P_{0-1} \\
&+\frac{s . s-1}{2 \cdot 3!}\left(n+1+2(s-2) P_{0-1}+\text { etc. }\right] \\
&+B\left[s-1 P_{0-1}+\ldots\right]+\ldots \\
&\left.=A \left\lvert\,\left\{\left(\frac{s}{x}\right) \frac{n+1}{2} \frac{x-1}{x+1}+\left(\frac{s}{x+1}\right)\right\} P_{0-k} \quad x=1\right.,2,3 \ldots s\right] \\
&+B \sum_{k=1}^{k=1}\left[\left(\frac{s-1}{x-1}\right) \frac{n+1}{2} \frac{x-2}{x}+\left(\frac{s-1}{x}\right)\left(\mu^{(k+1)} P_{0-k}\right) y\right]
\end{aligned}
$$

$$
\begin{array}{r}
(-1)^{r} \frac{1}{2}\left(\frac{s}{r}\right)\left(\frac{s-2}{r-1}\right)\left(\frac{2 s-r-2}{2 s-3}\right)\left(\frac{s-r}{x-r+1}\right)\left(\mu^{\kappa+1} P_{0-k}\right)^{(r)}, \\
r=v, v+1, \ldots x-1,
\end{array}
$$

and
$(-1)^{x}\left(\frac{s}{x}\right)\left(\frac{s-2}{x-1}\right)\left(\frac{2 s-x-2}{2 s-3}\right)\left[\left(\frac{x}{v}\right)(s-x)+\left(\frac{x}{v-1}\right)\right]$
will, when expanded, give $A_{1} ; B_{2}$ and C_{2} respectively. In these $\left(\frac{2 s-x-2}{2 s-3}\right)$ is the reciprocal of $\left(\frac{2 s-3}{2 s-x-2}\right)$.Thus \dot{A}_{1} is found to be

$$
\begin{aligned}
A_{1} & =(-1)\left(\frac{s}{x}\right)\left(\frac{s-2}{v-1}\right)\left(\frac{x}{2 s-3}\right) \frac{1}{4 v}\left[\frac{2 s-v-2 \ldots 2 s-x-2}{x-v+1!} x-v-1\right. \\
& -\frac{2 s-v-3 \ldots 2 s-x-2}{x-v!} x-v-2 \frac{s-v-1}{1} \\
& +\frac{2 s-v-4 \ldots 2 s-x-2}{x-v-1!} x-v-3 \frac{s-v-1, s-v-2}{1 \cdot 2} \\
& -+\ldots(-1)^{x-2 s-x \cdot 2 s-x-1 \ldots 2 s-x-2} \\
& \left.\times \frac{s-v-1 \ldots s-x+2}{x-v-2!} \pm \text { etc. }\right] \\
& =(-1)^{v}\left(\frac{s}{x}\right)\left(\frac{x}{2 s-3}\right)\left(\frac{s-2}{v-1}\right) \frac{1}{4 v}\left[2 s-x-2\left(\frac{s-x+v \ldots s-1}{x-v!}\right.\right. \\
& \left.\mp \frac{s-v-1 \ldots \ldots-x}{x-v!}\right)-2\left(\frac{s-x+v-1 \ldots s-1}{s-v+1!}\right. \\
& \left.\left.\mp \frac{s-v-1 \ldots s-x-1}{x-v-1}\right)\right] .
\end{aligned}
$$

Use the upper or lower signs according as $x-y$ is odd or even. To obtain this result expand

$$
\left.\begin{array}{l}
x^{2}(1-x)^{v-1}=x^{4}-(s-v-1) x^{s} \\
\quad+\frac{s-v-1 . s-v-2}{2} x^{4}-\ldots-(-1)^{x-v} \frac{s-v-1!}{x-v-2!} x^{x-v}
\end{array}\right\} \text { (a) }
$$

tively. In these Thus \dot{A}_{1} is found

$$
\frac{5-x-}{1!}
$$

$$
x-v-1
$$

$$
\frac{v-1}{I}
$$

$$
\frac{v-1 \cdot s-v-2}{1 \cdot 2}
$$

$$
-x-2
$$

$$
\frac{s-x+v \ldots s-1}{x-v!}
$$

$$
\frac{\ldots s-1}{-1!}
$$

$13 x-y$ is odd or
and

$$
\begin{aligned}
x^{-2}(1 & -x)^{-(v-x-2)}=\frac{1}{x^{2}}+(2 s-x-2) \frac{1}{x} \\
& +\frac{2 s-x-2 \cdot 2 s-x-1}{2}+\left(\frac{2 s-x}{3}\right) x+\ldots \\
& +\frac{2 s-v-2!}{x-v+1!2 s-x-3!} x^{*-p-1}
\end{aligned}
$$

Differentiating the last equation,

$$
\begin{align*}
-2 x^{-1}(1 & -x)^{-(2-x-2)} \\
& -(2 s-x-2) x^{-2}(1-x)^{-(2 x-k-1)} \\
& =\frac{-1}{x^{2}}-\frac{2 s-x-2}{x^{2}}+0+\frac{2 s-x!}{3!2 s-x-3!} \tag{b}\\
& +\ldots x-v-1 \frac{2 s-v-2!}{x-v+1!2 s-x-3!} x^{x-v-2} \\
& +\ldots
\end{align*}
$$

The coefficient of x^{x-1} in the product of the right members of (a) and (b) is the series of terms in square parenthesis in the expression of A_{1} above, and the coefficient of $x^{-}-$in the product of the left members is the quantity within square parenthesis in the final value given for A_{2}.
B_{1} is found by putting $(1-x)^{0,-1}$ and $(1-x)^{x-\kappa-9}$ equal to their expansions and taking the coefficients of x^{x-+1} from the product of the left members and also from the product of the right members. Then

$$
\begin{aligned}
& B_{1}=(-1)^{\cdot}\left(\frac{s}{x}\right)\left(\frac{s-2}{v-1}\right)\left(\frac{x}{2 s-3}\right) \frac{s-x}{2 v}\left[\frac{s-1 \ldots s-x+v-1}{x-v+1}\right. \\
&\left.\mp\left(\frac{s-v-1}{x-v+1}\right) \pm\left(\frac{s-v-1}{x-v}\right) 2 s-x-2\right] .
\end{aligned}
$$

If in these expressions for A_{1}, B_{1} and C_{1}, v is made equal to zero, then for all odd values of x

$$
\begin{equation*}
A_{1}=0=B_{1} \mp C_{1} \tag{II}
\end{equation*}
$$

while for even values of x

$$
\left.\begin{array}{rl}
A_{1}(n+1)+B_{1}+C_{1}=\left(\frac{s}{x}\right)\left(\frac{s-2}{x-1}\right)\left(\frac{x}{2 s-3}\right) \\
\quad & {\left[\frac{2 s-x-1}{2 \cdot x+1}(n+1)+\frac{s-x \cdot s-x-1}{x \cdot x+1}\right]} \tag{12}
\end{array}\right\}
$$

and x increased by unity, $A_{1}(n+1)+B_{1}+C_{1}$ becomes the same as in (12) multiplied by $-\frac{s-x}{2}$. Then in $R L$, if W be the coefficient of P_{--s} when x is even,

$$
\begin{equation*}
-W \cdot \frac{s-x}{2} \text { is the coefficient of } P_{t-k-1}^{\prime} \text {. } \tag{13}
\end{equation*}
$$

When $v=x-2$, let $A_{1}(n+1)+B_{1}+C_{1}$ be denoted by a_{15}. The following are the values of A_{2}, B_{1} and C_{2} when $v=x-2$:
$A_{1}=(-1)^{x}\left(\frac{s}{x}\right)\left(\frac{s-2}{x-1}\right)\left(\frac{x}{2 s-3}\right) \frac{x-1.2 s-x-2.2 s-x-1.2 s-x}{s-x+1 . s-x .4}$, $B_{1}=(-1)^{x}\left(\frac{s}{x}\right)\left(\frac{s-2}{x-1}\right)\left(\frac{x}{2 s-3}\right)$

$$
\frac{2 s-x-1 \cdot 2 s-x-2 \cdot 2 s-2 x+3 \cdot x-1}{2 \cdot 6}
$$

$C_{1}=(-1)^{x+1}\left(\frac{s}{x}\right)\left(\frac{s-2}{x-1}\right)\left(\frac{x}{2 s-3}\right) \frac{2 s-x-2 \cdot 3 s-2 x-2 . x-1}{2.6}$.
Now, when the whole remainder is considered, the coefficient of each of the ($P_{[-1}^{(0)}$)'s must be zero. Let us now consider those terms of dimension $s-2$. They will be found only in $R L$ and $R a$. The coefficient of P_{0-1} is $-a_{19}+\frac{n+1}{6} a_{3}$. This equals zero, and when $v=0$ and $x=2$

$$
a_{19}=\frac{1}{6}\left(\frac{s}{2}\right)\left(\frac{s-2}{1}\right)\left(\frac{2}{2 s-3}\right)\left\{(2 s-3)(n+1)+s^{2}-5 s+6\right\}
$$

therefore
$a_{s}=-\frac{1}{n+1}\left(\frac{s}{2}\right)\left(\frac{s-2}{1}\right)\left(\frac{2}{s-3}\right)\{(2 s-3)(n+1)+(s-2) \cdot(s-3)\}$.
The coefficient of $P t_{-}$, is, by (1_{3}),

$$
\frac{n+1}{6} a_{2}+\frac{n+1}{6} a_{1} \frac{s-2}{2}-\frac{s-2}{2} a_{13}=\frac{n+1}{6} a_{3}
$$

then
The coefficient of $P_{0,-}^{\prime \prime}$ is

$$
\frac{n+1}{6} a_{4}+\frac{n+1}{6} a_{2}\left(\frac{s-2}{2}\right) \frac{1}{4 \cdot 2 s-3}-a_{1 n} .
$$

C_{1} becomes the in $R L$, if W be
e denoted by $a_{1 k}$. when $v=x-2$: $\frac{.25-x-1.25-x}{.5-x .4}$
$25-2 x+3 \cdot x-1$
$\frac{-2 x-2 \cdot x-1}{6}$
ed, the coefficient us now consider be found only in $+\frac{n+1}{6} a_{1}$. This
$\left.+s^{2}-5 s+6\right\}$,
$+(s-2) \cdot(s-3)\}$.
$=\frac{n+1}{6} a_{3} ;$

Substituting for a_{3} and a_{14} their values,
$a_{4}=\frac{-4}{n+1}\left(\frac{s}{4}\right)\left(\frac{s-2}{2}\right) \frac{2 s-8!}{2 s-3!}\{2 \cdot(n+1)(2 s-5)+s-4 \cdot s-5\}$.
Calling the three terms whose sum gave the coefficient of $P_{l}^{\prime \prime}$. λ, μ, ν, then the coefficient of $P_{0}^{(g)}$, is
$\frac{n+1}{6} a_{2}+\frac{s-4}{2} \lambda+\frac{s-4 . s-5}{3 \cdot 2 s-8} \mu-a_{15} \equiv \sigma_{1}+\lambda_{2}+\mu_{1}+\nu_{1}$,
say. The last three terms reduce to zero; therefore

$$
a_{3}=0
$$

The coefficient of $P_{1}^{(1)}=\sigma_{3}+\lambda_{3}+\mu_{4}+\alpha_{10}$, say

$$
=\frac{n+1}{6} a_{1}+\frac{s-5 . s-6}{2.2 s-11} \lambda_{1}-\frac{s-5 . s-6}{4.2 s-9} \mu_{1}-a_{16}=0 .
$$

Reducing this,

$$
\begin{aligned}
a_{0}=\frac{-6}{n+1}\left(\frac{s!s-2!2 s-12!}{s-6!s-6!2 s-3!3!2}\right)\{3(n & +1)(2 s-7) \\
& +s-6 . s-7\} .
\end{aligned}
$$

Similarly a_{4} may be shown equal to zero and
$a_{5}=\frac{-6}{n+1} \frac{s!s-2!2 s-16!}{2 \cdot 3!s-8!s-8!2 s-3!}\{4(n+1)(2 s-9)$

$$
+s-8 . s-9\}
$$

Had the terms in the coefficient of $P_{[}^{[(1)}$, been denoted by $\frac{n+1}{6} a_{1}, \sigma_{2}, \lambda_{2}, \mu_{3}$ and a_{17}, then those giving a_{3} would be $\frac{n+1}{6} a_{s}+\frac{s-7 . s-8}{2 \cdot 2 s-15} \sigma_{1}+\frac{s-7 . s-8}{4 \cdot 2 s-13} \lambda_{2}+\frac{s-7 . s-8}{6.2 s-11} \mu_{1}-\alpha_{10}$.

It thus appears that $\lambda_{3}, \mu_{z}, \sigma_{3}$ have a relation between them similar to $\lambda_{3}, \mu_{3}, \sigma_{2}$ and $\lambda_{1}, \mu_{1}, \sigma_{1}$, etc., and if we follow the same lav the coefficient of $P_{0}^{x}=1 / 2$ becomes

$$
\begin{array}{r}
\frac{n+1}{6} a_{n}-a_{1 n}+(-1)^{x+2}\left[\frac{s!s-2 \mid 2 s-x-2 p-2!}{4!x-2 p|s-x| s-x+1 \mid 2 s-3!}\right. \\
\left.2 s-2 x .2 s-2 x-2 . \beta \theta_{p}\right]
\end{array}
$$

$$
\text { where } \begin{aligned}
\beta & =2 s-4 p-1 \text { and } \\
\theta_{p} & =\{p(n+1)(2 s-2 p-1)+(s-2 p)(s-2 p-1)\}, \\
2 p & =2,4,6 \ldots x-1 \text { or } \mathrm{x} .
\end{aligned}
$$

Also a_{k} would equal zero when x is odd, and when x is even

$$
\begin{aligned}
&\left.a_{\mathrm{x}}=\frac{-6}{n+1} \frac{s!s-2!2 s-2 x!}{2 \cdot 3!s-x!s-x!2 s-3!} \begin{array}{rl}
\left(\frac{x}{2}\right. & (n
\end{array}+1\right)(2 s-x-1) \\
&+(s-x)(s-x-1)) .
\end{aligned}
$$

To prove that this law holds, consider the series

$$
\begin{aligned}
& I \equiv(-1)^{x}\left[(n+1) \frac{s!s-2!2 s-x!}{4!s-x!s-x-1!x-2!2 s-3!}\right. \\
& -\frac{s!s-2!2 s-x-1!(2 s-2 x)(s-2 x+3)}{4!s-x!s-x-1!x-2!2 s-3!} \\
& +\frac{s!s-2!2 s-x-2!(3 s-2 x-2)(2 s-2 x)(s-x+1)}{4!s-x!s-x+1!x-2!2 s-3!} \\
& -\Sigma \frac{s!s-2!2 s-x-2 p-2!}{4!x-2 p!s-x!s-x+1!2 s-3!} 2 s-2 x \\
& \times 2 s-2 x+2.2 s-4 p-1.0 p, \\
& 2 p=2,4,6 \ldots x-1 \text { or } x .
\end{aligned}
$$

The first three terms are what A_{1}, B_{1} and C_{1} become when v is made equal to $x-2$. As the series is to be shown to be equal to zero, the common factor $(-1)^{x} \frac{s!s-2!2 s-2 x-2!}{4!s-x!s-x+1!2 s-3!}$ may be omitted. Then

$$
\left(\frac{2 s-x-g}{x-g+2}\right)=\frac{2 s-x-g \cdot 2 s-x-g-1 \cdot \ldots 2 s-2 x-1}{\cdot x-g+2!} \ldots x(g), \text { say, }
$$

and

$$
\begin{equation*}
\frac{2 s-x-g \cdot 2 s-x-g-1}{x-g+2 \cdot x-g+1} \chi(g+2)=\chi(g) \tag{14}
\end{equation*}
$$

The series to be considered now becomes

$$
\theta)(s-2 p-1)\},
$$

d when x is even

)(2s-x-1)
$-x)(s-x-1))$.
series

$$
2|2 s-3|
$$

$\frac{2 x)(s-x+1)}{-3!}$
$s-2 x$
$.2 s-4 p-1.0 p$,
become when v is shown to be equal $\frac{2!2 s-2 x-2!}{-x+1!2 s-3!}$
$\frac{. .2 s-2 x-1}{}$
$\equiv x(g)$, say,
$z=\chi(g)$.
$x(4) .2 s-x .2 s-x-1.2 s-x-2.2 s-x-3 \cdot(n+1)$
$-x(4) .2 s-x-1.2 s-x-2.2 s-x-3.2 s-2 x . s-2 x+3$ $+\chi(4) .2 s-x-2.2 s-x-3.2 s-2 x . s-x+1.3 s-2 x-2$ $-\chi(4) .2 s-2 x .2 s-2 x+2.2 s-5\left(n(2 s-3)+s^{2}-3 s+3\right)$
$-\chi(6) .2 s-2 x .2 s-2 x+2.2 s-9\left(2 n .(2 s-5)+s^{2}-5 s+10\right)$
$-x(8) .2 s-2 x .2 s-2 x+2.2 s-13\left(3 n \cdot(2 s-7)+s^{2}-7 s+21\right)$
$-\chi(2 p+2) \cdot 2 s-2 x \cdot 2 s-2 x+2 \cdot 2 s-4 p-1\{p n(2 s-2 p-1)$

$$
\left.+s^{2}-(2 \phi+1) s+p(2 \phi+1)\right\},
$$

$$
2 p=x-1 \text { or } x
$$

Consider the coefficient of n,
$x(4)[2 s-x .2 s-x-1,2 s-x-2.2 s-x-3$
$-2 s-2 x .2 s-2 x+2.2 s-5.2 s-3]$
$=\chi_{4}\left[8 s^{4}-4 s(2 x+3)+x(x+11)\right] x-2 \cdot x-3$

$$
=x-2 \cdot x-3 \cdot x(4) \Delta_{1}, \text { say }
$$

$=2 s-x-4.2 s-x-5 \Delta x(6)$ by (14).
Take from this

$$
\chi(6) .2 s-2 x .2 s-2 x+2.2 s-9.2 s-5.2
$$

and the second remainder is

$$
x(6) x-4 \cdot x-5 \cdot\left[12 s^{2}-6 s(2 x+5)+x(x+29)\right]
$$

This equals

$$
\equiv x-4 \cdot x-5 \cdot \chi(6) \Delta_{2}, \text { say }
$$

$$
2 s-x-6.2 s-x-7 \cdot \chi(8)-\Delta_{2} \text { by (14). }
$$

Take from this the next term of the series,

$$
\chi(8) .2 s-2 x .2 s-2 x+2.2 s-13.2 s-7.3 ;
$$

the remainder is

$$
\begin{aligned}
& x-6 . x-7 \chi(8)\left[16 s^{2}-8 s(2 x+7)+x(x+55)\right] \\
& =2 s-x-8.2 s-x-9 \cdot \chi(10) \Delta_{s}, \text { say. }
\end{aligned}
$$

Supposing this law to hold for all differences till the ($m-1$) th, it can be shown to hold for the mth. The $(m-1)$ th is

$$
\begin{gathered}
x+2-2 m \cdot x+1-2 m \cdot \chi(2 m)\left[4 m s^{1}-2 m s(2 x+2 m-1)\right. \\
\left.+x\left(x+4 m^{2}+2 m-1\right)\right]=\chi(2 m+2) \Delta_{m-1} \\
2 s-x-2 m \cdot 2 s-x-2 m-1 .
\end{gathered}
$$

Taking from this
$m x(2 m+2) 2 s-2 x .2 s-2 x+2.2 s-2 m-1.2 s-4 m-1$, there remains
$x-2 m \cdot x-2 m-1 \cdot \chi(2 m+2)\left[4(m+1) s^{2}\right.$

$$
\begin{aligned}
& -2 m-1 \cdot x(2 m+2)[4(m+1) \\
& \left.-2(m+1)(2 x+2 m+1)+x\left(x+4 m^{1}+6 m+1\right)\right]
\end{aligned}
$$

$$
=x-2 m \cdot x-2 m-1 \chi(2 m+2) \Delta_{m} ;
$$

that is, the m th difference is the same function of m as the (m - 1)th is of $m-1$.

When $2 m=2 p=x-1$ or x the subtrahend is the last term of the series and the difference vanishes. Thus we see the coefficient of n in the series vanishes.

The algebraic sum of the first four terms independent of \boldsymbol{n} is $x-2 \cdot x-3 \chi(4)\left[2 s^{4}-s^{4}(2 x+8)+\cos (x+1)\right.$

$$
-x(x+11)]=x-2 \cdot x-3 x_{0} \Delta_{1}, \text { say }
$$

then by (14) it equals

$$
\Delta_{1} 2 s-x-4 \cdot 2 s-x-5 \cdot \chi(6)
$$

Taking from this

$$
\chi(6) 2 s-2 x .2 s-2 x+2.2 s-9 . s^{2}-5 s+10
$$

there remains
$\chi(6) x-4 \cdot x-5\left[2 s^{6}-(2 x+12) s^{2}+\left(14^{x}+25\right) s-x(x+29)\right]$
If the ($m-1$)th difference be
$x-2 m+2 \cdot x-2 m+1 \cdot \chi(2 m)\left[2 s^{2}-(2 x+4 m) s^{2}+\{2 x(2 m+1)\right.$

$$
\left.+2(m-1)(2 m+1)\} s-x\left(x+4 m^{3}-2 m-1\right)\right]
$$

which we will denote by $\psi(m-1)$; then the m th is

$$
\psi(m-1)-\chi(2 m+2)[2 s-2 x .2 s-2 x+2.2 s-4 m-1
$$

$$
\begin{aligned}
& -1)-\chi(2 m+2)[2 s-2 x \cdot 2 s-2 x+2 \cdot 2 s-4 m-1 \\
& \left.\times\left\{m n(2 s-2 m-1)+s^{2}-(2 m+1) s+m(2 m+1)\right\}\right] \\
& m+2) \cdot x-2 m \cdot x-2 m-1\left[2 s^{2}-s^{2}(2 x+4(m+1)\right.
\end{aligned}
$$

$$
=x(2 m+2) \cdot x-2 m \cdot x-2 m-1\left[2 s^{2}-s^{2}(2 x+4(m+1)\right.
$$

$$
\begin{aligned}
& \left.m+2) \cdot x-2 m \cdot x-2 m-1\left[2 m+3 m+2 m+x+4 m^{2}+6 m+1\right)\right] \\
& +\{2 x(2 m+3)+2 m(2 m+3)\} s-x(x+2)
\end{aligned}
$$

$$
=\psi(m)
$$

$$
\begin{aligned}
& s(2 x+2 m-1) \\
& (2 m+2) \Delta_{m-1} \\
& 1 . \\
& -1.2 s-4 m-1, \\
& s^{2} \\
& \left.\left.+4 m^{2}+6 m+1\right)\right] \\
& \Delta_{m} ; \\
& \text { tion of } m \text { as the }
\end{aligned}
$$

nd is the last term Thus we see the ndependent of n is $+1)$
$2, x-3 x_{1} \Delta_{1}$, say,
(6).
$-5 s+10$
$+25) s-x(x+29)]$
$-4 . x-5 \Delta_{2}$, say.
(m) $s^{2}+\{2 x(2 m+1)$ $\left.\left.+4 m^{2}-2 m-1\right)\right]$. re m th is
$+2.2 s-4 m-1$ 1) $s+m(2 m+1)\}]$ $s^{2}(2 x+4(m+1)$ $\left.\left.+4 m^{2}+6 m+1\right)\right]$

This vanishes when $2 m=x$ or $x-1$, and also completes the series.
Thus the whole series has been shown to vanish whatever be the value of x.
Assuming that $a_{k}=0$ when x is odd, and

$$
\begin{aligned}
=\frac{-6}{n+1} \frac{s \mid s-2!2 s-2 x!}{2 \cdot 3!s-x|s-x| 2 s-3!}\left\{\begin{aligned}
& \frac{x}{2}(n+1)(2 s-x-1) \\
&+(s-x)(s-x-1)\}
\end{aligned}\right.
\end{aligned}
$$

for all even values of x less than $2 w+1$, then it may be shown to be true when $x=2 w+1$ and $2 w+2$. The coefficient of $\left.P \cdot{ }^{(20}=-1\right)^{11}-1$ in $R L$ is $a_{1,00+1}$, and if M_{k}^{\prime} represent the value of a_{k} when x is even, and $N_{!}^{\prime}$ represent the expression

$$
(-1)^{r} \frac{s|s-2| 2 s-\tau-2 \mid}{2!\tau|s-\tau| s-\tau-1 \mid 2 s-3!}
$$

i. e. the coefficient of $P_{0}^{(r)}$ in L, then the whole coefficient of

$$
\begin{aligned}
& \left.+\ldots+M m_{m} N!-x_{0}\right] \frac{n+1}{6} .
\end{aligned}
$$

Now $a_{1.00+1}$ is the sum of the first three terms of Γ, and the following terms are those of Γ also; for taking any one of them, as
it becomes, when written in full,

$$
\begin{aligned}
& \frac{6}{n+1} \frac{n+1}{6} \frac{s!s-2!2 s-4 z!}{2 \cdot 3!s-2 z!s-2 z!2 s-3!}\{z(n+1)(2 s-2 z-1) \\
& -+(s-2 z)(s-2 z-1)\} \\
& \times \frac{s-2 z!s-2 z-2!2 s-2 w-2 z-3}{2!2 w-2 z+1!s-2 w-1!s-2 w-2!2 s-4 z-3!} \\
& =\frac{s \mid s-2!2 s-2 w-2 s-3!\cdot \theta_{0}}{4!2 w-2 s+1!s .2 w-1|s-2 w| 2 s-3 \mid}{ }^{2 s-4 w} \\
& \times 2 s-4 w+2.2 s-4 z-1,
\end{aligned}
$$

which coincides with the last terms of I when $x=2 w+1$ and $z=p$. Thus the coefficient of $P\left(=-m_{1}^{11}-1\right.$ consists of $\frac{n+1}{6} a_{30}+1$ plus a series of terms which vanish by (15); then

$$
\begin{equation*}
a_{s o+1}=0 \tag{16}
\end{equation*}
$$

The coefficient of P (${ }^{(m)}$
$\frac{n+1}{6} a_{n+1}+a_{1,60+9}+\frac{n+1}{6}\left[M_{1} N_{n+1}^{2 m}+M_{i} N_{i-1}^{!-1}\right.$

$$
\left.+\ldots+M_{m} N_{1-\infty}^{i}\right]=0 .
$$

Γ gives all the terms in this expression when $x=2 w+2$, excepting the first or $\frac{n+1}{6} a_{50+1}$. But the last term $M_{m} N_{1-10}$ is the second last in r when $x=2 w+2,2 p=2,4 \ldots 2 w+2$. Taking Γ from the above coefficient, $\frac{n+1}{6} a_{1 m+1}-\frac{n+1}{6} M i+1$ is the coefficient, since $\Gamma=0$ always. And as this must vanish,

$$
\begin{equation*}
a_{w+1}=M! \tag{17}
\end{equation*}
$$

Thus (16) shows that if for any odd value of x and all lower odd values $a_{n}=0$, then $a_{k+1}=0$, and (17) shows that if for any even value and all lower even values $a_{k}=M_{k}^{\prime}$, then

$$
a_{n+1}=M k_{k+2}
$$

On pages 14 and 15 it is shown that $a_{x}=0$ for $x=3,5,7$ and $=M_{k}^{\prime}$ for $x=2,4,6,8$. Therefore it follows that (16) and (17) are true for all values of w.

It follows, then, that in $\theta_{\text {, }}$ the row of terms designated a, of which P_{1} is a factor, contains no invariant or derivative of the form

This is also the case for the terms entering in the row denig. nated β and of which P_{1}^{1} is a factor, for the term $P_{3} \theta_{1}^{\prime}$, is found only in $R a$ and $R \beta$. Its coefficient is
then

$$
2 b_{4}+(2 s-7) a_{4} ;
$$

$$
b_{1}=-\frac{2 s-7}{2} a_{4}
$$

$x=2 w+1$ and ts of $\frac{n+1}{6} a_{2 w+1}$ (16)
N_{i-4}^{2-2}
$M_{\mathrm{m}}^{\mathrm{m}} \boldsymbol{N}_{\mathrm{i}-\mathrm{qw}}^{\mathrm{s}} \mathrm{]}=0$.
hen $x=2 w+2$, st term $M_{50} N_{1-2 w}^{2}$ $=2,4 \ldots 2 w+2$. $+2-\frac{n+1}{6} M_{\mathrm{sw}}^{\mathrm{m}} \mathrm{i}$ 3 this must vanish,
(17)
of and all lower shows that if for Mi, then
for $x=3,5,7$ and ows that (16) and ns designated a, of - derivative of the
(18)
in the row desigrm $P_{2} O_{0,4}$ is found

Any term as $P_{i} \theta_{0}^{(n-z)}, x$ being odd, could appear only in $R a$ and $R \beta$, and as it does not appear in $R a$ it cannot in $R \beta$.
The coefficient of $P_{3} \theta_{1}^{\left.\left.\left(\frac{14}{(1)}\right)^{4}\right)^{4}\right)}$ is
$2 b_{1 u}+\left\{\left(\frac{2 u-2}{2 u-3}\right)(s-2 u)+\left(\frac{2 u-2}{2 u-4}\right)\right\} a_{2 u}=\dot{0}$,
or

$$
\begin{equation*}
2 b_{3 u}+(u-1)(2 s-2 u-3) a_{m}=0 \tag{19}
\end{equation*}
$$

The terms of dimension $s-1$ and of form $P_{2}^{\prime} \theta_{0}^{\prime-4}$ can appear only in $\boldsymbol{R} \boldsymbol{\rho}$ and $\boldsymbol{R}_{\boldsymbol{\gamma}}$, and when x is odd no such term appears in $\boldsymbol{R \beta}$; therefore it does not enter into $\boldsymbol{R r}$.

When x is even, the coefficient of $P\left(\theta_{0}^{\left.(1)-m^{8}\right)}\right.$ is

$$
5 c_{w}+\left\{\left(\frac{2 u-3}{2 u-4}\right)(s-2 u)+\left(\frac{2 u-3}{2 u-5}\right)\right\} b_{v}=0
$$

$$
\begin{equation*}
5 c_{2 u}+(2 u-3)(s-u-2) b_{m}=0 \tag{20}
\end{equation*}
$$

In this way it is easy to see, by taking one row after another, that the non-linear part of θ, contains no term having $\theta_{[0]}-k$ as a factor when x is odd.
(2I)
From this it follows that if all the invariants of a differential equation with even auffix vanish, the linear part of each vanishes. The same is true for those with odd suffix.

Section 11.

The Cozfficients of $\boldsymbol{\theta}_{0}$.

θ_{0} has, as we have seen, a linear part expressed by

$$
\sum_{i=0}^{T-1} N_{i}^{+} P_{(\eta)}^{(\eta)}
$$

or

$$
\sum_{T=0}^{T=0-1}(-1)^{r} \frac{s|s-2| 2 s-\tau-2!}{2.7|s-\tau| s-\tau-1|2 s-3|} P_{\cdot-T}^{(T)} \text { (23) }
$$

Then follow a series of terms

$$
P_{1}\left\{a_{3} \theta_{0}-1+a_{0} \theta_{0-c}^{\prime \prime}+a_{0} \theta_{0}^{10}+a_{0} \theta_{0}^{0} 0_{0}+\ldots\right\}
$$

expressed generally by
or

$$
\begin{equation*}
-\frac{6}{n+1} P_{1}^{n}=\left[\sum_{n=1}^{\left.n-\frac{1}{3}\right]} \frac{s|s-2| 2 s-4 \times 1}{2 \cdot 3|s-2 x| s-2 x \mid 2 s-3}\right\} \tag{24}
\end{equation*}
$$

$\left[\frac{s-\lambda}{2}\right]$ meaning the greateat integer in $\frac{s-\lambda}{2}$. Then follow

$$
\begin{aligned}
& P_{3}^{\prime}\left\{b_{0} \theta_{0-1}^{\prime}+b_{0} \theta_{0}^{\prime \prime \prime},+b_{0} \theta_{0-1}^{\prime}+\ldots\right\} \\
& +P_{8}^{\prime \prime}\left\{c_{0} \theta_{0-0}+c_{8} \theta_{0-1}^{\prime \prime \prime}+c_{0} \theta_{0-1}^{V}+\ldots\right\} \\
& +P_{8}^{\prime \prime \prime}\left\{e_{0} \theta_{0-0}^{\prime}+e_{1} \theta_{0}^{\prime \prime \prime}-8+e_{10} \theta_{0-10}^{v}+\ldots\right\} \\
& +P_{1}^{I V}\left\{g_{0} \theta_{0-1}+g_{5} \theta_{n-1}^{\prime \prime}+e_{10} \theta_{0-13}^{r v}+\ldots\right\} \\
& +P g^{\prime \prime}\left\{l_{5} \theta_{0-3}+l_{5} \theta_{0-10}^{\prime \prime \prime}+\ldots\right\}
\end{aligned}
$$

These are expressed generally by

If any two consecutive rows be considered, for which $(v=\mu)$, the remainder arising from them will contain a term

$$
\lambda \cdot P(\mu) \cdot \theta\left(\frac{9 n}{2 n}-\mu-8\right)
$$

found nowhere else, because all rows preceding these have $P^{(1)}$ as a factor where $v<\mu$, and rows following them have a remainder in which the index of $\theta_{1,-2}$ cannot be as great as $(2 x-\mu-3)$. This remainder is
 obtain

$$
\left.q_{m} \theta_{0}^{(m-\sqrt{x}}+1\right)
$$

$$
\left.\begin{array}{r}
\frac{\mu+1}{\mu!2!}(4+\mu) g_{3 x}=-\left\{\left(\frac{2 x-\mu-2}{2 x-\mu-3}\right)(s-2 x)\right. \\
\left.+\left(\frac{2 x-\mu-2}{2 x-\mu-4}\right)\right\} n_{2 x}
\end{array}\right\}
$$

$$
\nu=2,4,6 \ldots \text { etc. }
$$

$$
\begin{aligned}
& {\left[\frac{\mu!}{\mu-1|2|}(3+\mu) P P^{(\mu-1)}+A P^{(\mu-1)}\right.}
\end{aligned}
$$

$$
\begin{aligned}
& r=2 x-\mu-2] \\
& +\left[\frac{\mu+1!}{\mu!2!}(4+\mu) P g^{(\mu)}\right. \\
& +\ldots+\text { terms of lower dimension }]_{N=\frac{\mu+4}{2}}^{n=\left[\frac{-\eta}{2}\right]} q_{n} \theta_{0}\left(\bar{\mu}_{x}^{\mu-s}\right.
\end{aligned}
$$

$$
\begin{aligned}
& r=2 x-\mu-3] \text {. }
\end{aligned}
$$

24

In this x is any number and μ any of the values of ν, so that the coefficients $q_{3 x}$ of any row may be expressed in terms of those of the preceding row, viz. $n_{2 x}$.
(25) when simplified gives

$$
\frac{\mu+1}{2}(4+\mu) q_{2 x}=-\frac{(2 x-\mu-2)(2 s-2 x-\mu-3)}{2} n_{4 x} .
$$

Making $\mu=0,1,2,3 \ldots$ this gives

$$
\begin{aligned}
& 4 \cdot 1 \cdot b_{2 k}=-(2 x-2)(2 s-2 x-3) a_{2 x} \\
& 5 \cdot 2 \cdot c_{2 k}=-(2 x-3)(2 s-2 x-4) b_{2 x} \\
& 6 \cdot 3 \cdot c_{y x}=-(2 x-4)(2 s-2 x-5) c_{2 x}
\end{aligned}
$$

$$
(\mu+1)(4+\mu) q_{2 x}=-(2 x-\mu-2)(25-2 x-\mu-3) n_{2 x}
$$

Equating the product of the right members to the product of the left gives
$q_{2 x} \cdot \frac{\mu+1!\mu+4!}{3!}=(-1)^{\mu+1} \frac{2 x-2!2 s-2 x-3!}{2 x-\mu-3!2 s-2 x-\mu-4!} a_{3 x}$.
The q 's being coefficients in the row multiplied by $P_{(\mu+1)}^{(\mu)}$ it is seen that the coefficient of any term of the form $P_{3}^{(3)} \theta_{2}^{\left(2 \pi-2 x^{8}-3\right)}$ may be expressed in terms of the a 's. Writing this coefficient, for brevity, $(\delta)_{2 k}^{(2 k-8-9)}$, then

$$
\left.\begin{array}{l}
(\delta)_{\mathrm{Im}_{k}^{(2 n-\delta-8)}}=(-1)^{\delta+1} \\
\frac{2 x-2!2 s-2 x-3!s!s-2!2 s-4 x!. \theta_{(k)}}{\partial!\delta+3!2 x-\delta-2!2 s-2 x-\delta-3!2 s-3!s-2 x!s-2 x!2} \tag{27}\\
\frac{6}{n+1}
\end{array}\right\}
$$

There still remain terms of the form

Here a, b, c, d, etc., are indices expressing powers of the factors to which they are attached. $\left(a^{4} \beta^{3} r^{0} \delta^{4} c^{0}\right)\left({ }_{k}^{(1)}\right)$ is the coefficient of the term having such indices, powers and suffix $s-2 x^{\text {. }}$
values of v, so that ressed in terms of

$$
2 x-\mu-3) n_{x \mu}
$$

- 3) a_{3}

4) $b_{x x}$
-5) c_{20}
$\left.{ }^{2} 25-2 x-\mu-3\right) n_{2 x}$.
rs to the product of
$\frac{2 x-3!}{2 x-\mu-4!} a_{\text {x }}$.
tiplied by $P_{g^{(\mu+1)}}$ it e form $P_{1}^{(3)} \theta_{0}^{2\left(2 x-2 x^{3}-3\right)}$ ting this coefficient,

$$
\left.\begin{array}{r}
\frac{1 . \theta_{(n)}}{1 \cdot \mid s-2 x!2} \tag{27}\\
\frac{6}{n+1}
\end{array}\right\}
$$

) $\left(m^{m} \theta(\theta)=\right.$
sing powers of the
 rs and suffix $s-2 x$.

Throughout the whole invariant the order of the factors will be taken so that

$$
\begin{equation*}
u \overline{\overline{<} \beta} \overline{\overline{<}} \gamma \delta \overline{\overline{<}} \varepsilon, \text { etc. } \tag{28}
\end{equation*}
$$

$2 \mathrm{x}=m+a(\alpha+2)+b(\beta+2)+c(\gamma+2)$
The numerical value of $\left(a^{0} \beta^{3} \gamma^{0} \delta^{4} c^{0}\right)\left({ }_{m}\right)$ is found by equating
 to zero.
It is

$$
+\left(a^{\bullet-1} \beta^{r} r^{\circ} \varepsilon^{-1} \varepsilon+a+2\right) \text {)a } \frac{\varepsilon+a+2!}{a!\varepsilon+3!}(2 c+6+a)
$$

$$
+\left(a^{\alpha} \beta-1 \gamma^{2} \gamma^{\alpha} c^{-1} \varepsilon+\beta+2\right)_{n} \frac{(1)}{} \frac{\varepsilon+\beta+2!}{\beta!s+3!}(2 c+6+\beta)
$$

$$
\left.+\left(a^{\alpha} \beta^{\beta} \gamma^{-1}-1 \varepsilon^{c-2} \varepsilon+\gamma+2\right) \prod_{a}^{(1)} \frac{\epsilon+\gamma+2!}{\gamma!\varepsilon+3!}(2 \varepsilon+6+\gamma)\right\}=0 \text {. (30) }
$$

$$
+\left(a^{\circ} \beta^{\beta} \gamma^{\circ} \delta^{\delta-1} \varepsilon^{-1} \varepsilon+\delta+2\right)_{k_{k}^{(m)}}^{(m+\delta+2!} \frac{\varepsilon}{r!\varepsilon+3!}(2 \varepsilon+6+\delta)
$$

$$
\left.+\left(a^{\circ} \beta^{5} \gamma^{\circ} \delta^{c} c^{-9} \varepsilon+2\right)\right)_{k}^{(m)} \frac{2 c+2!}{!!c+3!}(3 c+6)
$$

$$
\left.+\left(a^{\alpha} \beta^{6} r^{0} \delta^{c} \varepsilon^{-1}\right)\right\}_{\varepsilon}^{(+\varepsilon+m)} \frac{m+\varepsilon+2!}{m!c+3!}
$$

$$
\{(c+3)(s-2 x)+m\}
$$

$$
\begin{align*}
\pi-c+2\left[\frac{s}{2}\right] & =0.2 \cdot 4 \cdot 6 \ldots 2 x \\
& -2(a+b+c+d+c)-2 c+2\left[\frac{c}{2}\right] \tag{31}
\end{align*}
$$

 $a_{1} b_{1} c_{1} d_{1} e_{1}$ take all values consistent with $e_{1}<e$, and
$a_{1}+b_{1}+c_{1}+d_{1}+e_{1}=$ the constant $(a+b+c+d+e-1)$.
($\alpha^{\alpha} \beta^{P} r^{2} \gamma^{0} c^{-1}$) ${ }^{(n)}$ stands for the numerical coefficient of

$$
\left(P!^{(1)}\right)^{4} P()^{()^{4}} P\left(y^{\left(y^{4}\right.} P()^{()^{4}} P\left(!^{(4)-1}\right)\right.
$$

in
$y=2 x-2\left(a_{1}+b_{1}+c_{1}+d_{1}+c_{1}+1\right)$

$$
r=y+\pi-m .
$$ $s-\varepsilon-\pi-2$. When $s-2 x=2$ the terms that must be added are easily recognized.

For an example, let us find the coefficient of $P_{9}^{2} \theta_{0}^{(2 \pi}=q_{8}^{(1)}$. In
this

$$
a=b=c=d=\varepsilon=0, \quad e=6,
$$

$$
\pi=0.2,4, \ldots 2 x-12, \quad r=0, \quad y=2 x-12-\pi
$$

Then
 $+\left(0^{\circ}\right)_{k}^{(4)} \frac{2 x-10.2 x-11}{6}(3 s-4 x-12)$
 $\left.+\ldots+(0)_{I_{k}^{(20}-10^{10}}^{(10)}\left(0^{\prime \prime}\right)_{10}\right]=0$.
This states that

$+\frac{2 x-10.2 x-11}{6}\left(3^{5}-4^{x-12}\right)$ times the coefficient of $\left.P ; \theta_{i}^{(12)}\right)_{1,}$
$+\frac{n+1}{6}$ times a number of terms $=0$.

 in the invariant $\theta_{0}^{(6)}$.
As another example, find the coefficient of $\left.P_{1}^{1} P_{!_{1}^{(1)}}{ }^{2} P\right\}^{\left(y^{2} \theta_{0}^{2}-\mathrm{m}_{k}\right.}$.
Here

$$
\begin{aligned}
2 x & =m+23, & & a=2, b=3, c=2, \\
a & =0, \beta=1, \varepsilon=3, & & \pi=1 \cdot 3 \cdot 5 \ldots 2 x-17 .
\end{aligned}
$$

refficient of

$0,1)^{1}$.
$r=y+\pi-m$.
$-d_{1} \delta-\left(e_{1}+1\right)$.
is to be changed to that must be added

$=6$
$y=2 x-12-\pi$.

100 $\frac{6}{3}$
-12)
$\left.\left.a^{20)}+(0)\right)^{(4)}\left(0^{0}\right)\right)_{k}^{(1)}=-0^{10)}$
coefficient of $P\left\{\theta_{j}^{(12)}\right)_{k}$
${ }^{(x-10)}$, is written in full

 $=3, c=2$, $5 \ldots 2 x-17$.

Then
$\left.\frac{n+1}{3}\left(0^{2} 1^{1} 3^{1}\right) n_{k}^{(m)}+\left(0^{2} 1^{2} 3 \cdot 5\right)\right)_{m_{k}^{\prime \prime}}^{\left(n^{\prime}\right.}(2.6+0)$ $+\frac{6!}{1.6!}(3.6+1)\left(0^{2} \mathrm{~s}^{2} 3.6\right)\left(x^{(m)}\right.$ $+\frac{8!}{3!6!}(2,6+3)\left(0^{1} 1^{2} 8\right)!\left(\frac{m}{n}\right)$ $\left.+\frac{m-5!}{m!6!}(6 s-10 x-23)\left(0^{\prime} 1^{\prime} 3\right)\right)_{k}^{+m+c}$ $+\frac{n+1}{6}\left[(3)^{(1)}\left\{\left(0^{2} 1^{1} 3\right)\left(m^{2}=\left(\frac{1}{r}\right) C_{r}\left(0^{1} 1^{2} 3\right){ }^{\left(n^{2}\right)}-1\right.\right.\right.$

$\left.+\left(\frac{3}{r}\right) C_{r}\left(0^{0} 12\right)\right)^{(n)}-1+\left(\frac{3}{r}\right) C_{r}\left(0^{2} 1^{r}\right)\left({ }^{(r)}-1\right\}$

$\left.+\left(\frac{5}{r}\right) C_{r}\left(0^{0} \mathrm{I}^{2}\right)=12=\left(\frac{5}{r}\right) C_{r}\left(0^{0} \mathrm{I}\right)=-10\right\}$
+.

In this r varies, being $=y+\pi-m$ always, and C_{r} also

 $\theta_{0}^{(9)}-10$ multiplied by $\left(\frac{9}{r}\right) C_{r} . \quad r=m-5+9-m=4$, and ${ }^{\prime} C_{r}$ is the numerical coefficient of $P P_{9}^{1} P_{9}^{(1)} P_{9}^{(2)}$ in

$$
\frac{d^{4}}{d x^{4}}\left(P^{!} P P_{1}^{(9)}\right) \text { and }\left(\frac{g}{r}\right)=\frac{9!}{4!5!} .
$$

Thus every term in the invariant θ, has been considered, and by (23), (24) and (27) every coefficient has been expressed by simple formulae in terms of s and n excepting those represented by (30), and they are expressed in terms of preceding coefficients.
ways, and C_{r} also the coefficient of ? 1 l in the invariant $-m=4$, and C_{r}

$\frac{1}{5} \cdot$

een considered, and been expressed by ig those represented eceding coefficients.

Section III.

Associate Equations and Associate Variables.

In the memoir previously referred to, Mr. Forsyth shows that in connection with any differential equation A_{1} of order n there are $n-2$ other equations, $A_{2}, A_{2}, A_{4}, \ldots A_{n-1}$, whose variables are formed as follows: Let $u_{1}, u_{3}, u_{1}, \ldots u_{n}$ be solutions of A_{1}, then if we take any two u_{λ}, u_{μ}, the determinant

$$
\left|\begin{array}{ll}
u_{\lambda} & u_{\mu}^{\prime} \\
u_{\lambda}^{\prime} & u_{\mu}^{\prime}
\end{array}\right|
$$

is a solution of A_{2}. Generally if we take any x of the u 's and form a determinant

where $a, \beta, \gamma \ldots \nu$ are any x of the numbers $1,2,3 \ldots n$, then a_{k} will be a solution of A_{k}. As there are $\left(\frac{n}{x}\right)$ combinations of n things x at a time, there will be $\left(\frac{n}{x}\right)$ variables a_{n} satisfying an equation A_{k} of order $\left(\frac{n}{x}\right)$. A_{k} will be called the $(x-1)$ th associate equation, and the variables a_{k} the $(x-1)$ th associate variables. These variables a_{k} are particular and linearly independent solutions of A_{k}. A_{n-1} is the Lagrangian adjoint equation. a_{k} may be written (af $\beta^{\prime \prime} \ldots \nu^{(k-1)}$), or, as we are not concerned with which suffixes are taken, $0123 \ldots(x-1)$, then

$$
a_{2} \equiv\left(a \beta^{\prime}\right) \equiv \overline{\mathrm{oI}_{1}}, \quad a_{4} \equiv\left(a \beta^{\prime} \gamma^{\prime \prime} \delta^{\prime \prime}\right) \equiv \overline{0_{123}} .
$$

The number of these is $\left(\frac{n}{4}\right)$.
$a_{n-1} \equiv\left(12^{\prime} 3^{\prime \prime} 4^{\prime \prime \prime} 5^{17} \ldots n-1^{(n-8)}\right)$ or $01234 \cdots(n-2)$,
while $\quad\left(12^{\prime} 3^{\prime \prime} 4^{\prime \prime \prime} \ldots n^{-1}\right)$ or $1234 \ldots(n-1)$
is the non-vanishing constant Δ. To illustrate what follows I shall first take a particular case, $n=5$. Then A_{1} will be

$$
\begin{equation*}
u^{(6)}+10 \varphi_{s} u^{\prime \prime}+5 \varphi_{s} u^{\prime}+\varphi_{s} u=0 . \tag{34a}
\end{equation*}
$$

$u_{1}, u_{3}, u_{4}, u_{4}, u_{5}$ are the five independent solutions; then $a_{3}=\overline{0 r}$. o and I being the differential indices of the diagonal of the determinant formed with any two of the u 's and their first derivatives, then

$$
\begin{aligned}
\frac{d a_{2}}{d x}=a_{1}^{\prime} & =\overline{02}, \\
a_{1 \prime}^{\prime \prime} & =\overline{03}+\overline{12}, \\
a_{1 \prime \prime} & =\overline{04}+2 \cdot \overline{13}, \\
a_{3}^{\prime \prime} & =3 \cdot \overline{14}+2 . \overline{23}+\overline{05} .
\end{aligned}
$$

Substituting for u^{v} in $\overline{05}$ its value from (35),

$$
a_{3}^{(4)}=3 \cdot \overline{14}+2 \cdot \overline{23}-10 \varphi_{5} \overline{02}-5 \varphi_{i} \overline{01},
$$

or

$$
a_{1}^{1 \mathrm{y}}+10 \varphi_{3} \overline{22}+5 \varphi_{5} \overline{81}=3 \cdot \overline{14}+2 \cdot \overline{23}=s_{4}, \text { say. }
$$

Differentiating,

$$
\text { ereniating, } \overline{15}=5 \cdot \overline{24}+3 \cdot \overline{14}-3 \cdot 10 \varphi_{,} \overline{12}+3 \varphi \cdot \overline{01},
$$

$\left.\begin{array}{rl}s_{4}-3 \varphi_{0} a_{3} \equiv s_{4} & =5 \cdot \overline{24}-30 \varphi_{0} \cdot \overline{12}, \\ s_{4} & =5 \cdot \overline{34}-30\left(\varphi_{1} \overline{12}\right.\end{array} \varphi_{1} \overline{13}\right)+5 \cdot \overline{25}$

$$
\begin{aligned}
& \left.=5 \cdot 34-30\left(\varphi_{1} 12+\varphi_{1} 13\right) 50^{2}\right) \\
& =5 \cdot 34-30\left(\varphi_{1} \overline{12}+\varphi_{1} \overline{1}\right)+5\left\{5 \varphi_{1} \overline{12}+\varphi_{0} \overline{02}\right\},
\end{aligned}
$$

$s_{6}-5 \varphi_{c} a_{1}^{\prime}=5 \cdot \overline{34}+\left(25 \varphi_{4}-30 \varphi_{1}^{\prime}\right) \overline{12}-30 \varphi_{t} \overline{13}=s_{6}$, say.
$s_{6}^{\prime}=\left(25 \varphi_{t}^{\prime}-30 \varphi_{\prime}^{\prime \prime}\right) \overline{12}+\left(25 \varphi_{t}-30 \varphi^{\prime}\right) \overline{13}$
$-30 \varphi_{6}\left(\overline{14}+\frac{13}{23}\right)+5 \cdot \overline{35}$
$=\left(25 \varphi_{4}^{\prime}-30 \varphi_{1}^{\prime \prime}\right) \overline{12}+\left(50 \varphi_{4}-60 \varphi_{1}^{\prime}\right) \frac{\overline{13}}{}{ }^{3}$
$-30 \varphi_{1}\left(\overline{14}+\frac{s_{4}-3 \cdot \overline{14}}{{ }_{2}^{2}}\right)+5 \varphi_{1}\left(a_{2}^{\prime \prime}-\overline{12}\right)$
$+25 \varphi_{6}\left(s_{4}-3 \cdot \overline{14}\right)$,
$s_{t}-10 \varphi_{s} s_{t}-5 \varphi_{t} a_{l}^{\prime \prime}=-\left(5 \varphi_{t}-25 \psi_{t}+30 \varphi_{t}^{\prime \prime}\right) \overline{12}$ $+\left(50 \varphi_{i}-60 \varphi_{i}^{\prime}\right) \overline{\overline{1}_{3}}-60 \varphi_{i} \overline{14 .}$.

Let

$X \equiv-\left(5 \varphi_{t}-25 \varphi_{6}^{\prime}+30 \varphi_{t}^{\prime \prime}\right), \quad Y \equiv\left(50 \varphi_{4}-60 \varphi_{t}^{\prime}\right), \quad Z \equiv-60 \varphi_{1}$.
and

$$
s_{t}-10 \varphi_{s_{t}}-5 \varphi_{t} a_{l}^{\prime \prime}=s_{t} .
$$

Then

```
\(s_{i}=X \overline{12}+Y \overline{13}+Z \overline{\overline{14}}\),
\(s_{7}^{\prime}=X^{\prime} \overline{12}+\left(X+Y^{\prime}\right)^{\frac{1}{13}}+\left(Y+Z^{\prime}\right) \overline{14}+Y_{\overline{23}}^{\overline{2}}+Z(\overline{24}+\overline{15})\) \(=\left(X^{\prime}+\frac{Z^{\prime}}{15}\right)^{\overline{12}}+\left(Z^{\prime}-\frac{Y}{2}\right)^{\overline{14}}+\left(X+Y^{\prime}\right) \overline{1_{3}}\) \(+\frac{Y}{2} s_{4}+\frac{Z}{5}\left(s_{6}+2 \varphi_{1} a_{3}\right)\),
\(s_{1}-\frac{Y}{2} s_{4}-\frac{Z}{5}\left(s_{4}+2 \varphi_{0} a_{4}\right)\)
\(\left.=s_{3}=\left(X^{\prime}+\frac{Z^{\prime}}{15}\right) \overline{12}+\left(X+Y^{\prime}\right) \overline{13}+\left(Z-\frac{Y}{2}\right) \overline{14}\right\},(36)\)
\(s_{s}^{\prime}=\left(X^{\prime \prime}+2 \frac{Z Z^{\prime}}{15}\right) \dot{\overline{12}}+\left(2 X^{\prime}+Y^{\prime \prime}+\frac{Z^{s}}{15}\right) \overline{13}\)
\(+\left(X+\frac{Y^{\prime}}{2}+Z^{\prime \prime}\right) \overline{14}+\left(X+Y^{\prime}\right) \overline{23}\)
\(+\left(Z^{\prime}-\frac{Y}{2}\right)(\overline{24}+\overline{15})\)
\(=\left(X^{\prime \prime}+3 \frac{Z Z^{\prime}}{15}-\frac{Y Z}{30}\right)^{12}+\left(Y^{\prime \prime}+2 X^{\prime}+\frac{Z^{\prime}}{15}\right) \overline{13}\)
\(+\left(Z^{\prime \prime}-\frac{2 Y^{\prime}+X}{2}\right)^{\overline{14}}+\frac{X+Y^{\prime}}{2} s_{4}\)
\(+\frac{\left(Z^{\prime}-\frac{Y}{2}\right)}{5}\left(s_{6}+2 \varphi_{9} a_{2}\right)\).
Let
\(s_{1}^{\prime}-\frac{X+Y^{\prime}}{2} s-\frac{1}{5}\left(Z^{\prime}-\frac{Y}{2}\right)\left(s_{6}^{\prime}+2 \varphi_{s} a_{3}\right)=s_{3}\)
\(s_{s}=\left(X^{\prime \prime}+3 \frac{Z Z^{\prime}}{15}-\frac{Y Z}{30}\right) \overline{\mathbf{I 2}_{2}}\)
\(\left.+\left(Y^{\prime \prime}+2 X^{\prime}+\frac{Z^{3}}{15}\right)^{\overline{13}}+\left(Z^{\prime \prime}-\frac{2 Y^{\prime}+X}{2}\right)_{\overline{14}}\right\}\), (37)
\[
\begin{align*}
& s_{1}^{\prime}=\left(X^{\prime \prime \prime}+\frac{\left.3^{\prime \prime 2}\right)^{\prime}+4 Z Z^{\prime \prime}}{15}-\frac{3^{\prime} Y^{\prime} Z+Y Z^{\prime}+Z X}{30}\right)^{\overline{12}} \\
& +\left(Y^{\prime \prime \prime}+{ }_{3} X^{\prime \prime}+\frac{Z Z^{\prime}}{3}-\frac{Y Z}{30}\right)^{13} \\
& +\left(Z^{\prime \prime \prime}-\frac{3}{2}\left(Y^{\prime \prime}+X^{\prime}\right)-\frac{Z^{\prime}}{30}\right) \overline{14}+\left(Y^{\prime \prime}+2 X^{\prime}\right. \\
& \left.+\frac{Z^{\prime}}{15}\right) s_{4}+\frac{1}{5}\left(Z^{\prime \prime}-\frac{2 Y^{\prime}+X}{2}\right)\left(s_{4}+2 \varphi_{4} a_{3}\right), \\
& s_{10} \equiv s_{9}-\left(Y^{\prime \prime}+2 X^{\prime}+\frac{Z^{\prime}}{15}\right) s_{4}-\frac{1}{5}\left(Z^{\prime \prime}-Y^{\prime}\right. \\
& \left.-\frac{X}{2}\right)\left(s_{4}+2 \varphi_{0} a_{0}\right) \\
& =\left\{X^{\prime \prime \prime}+\frac{Z^{\prime n^{\circ}}}{5}+\frac{4 Z Z^{\prime \prime}}{15}-\frac{1}{10} Y^{\prime} Z-\frac{1}{30} Y Z^{\prime}\right.  \tag{38}\\
& \left.-\frac{1}{30} Z X\right\}^{\overline{12}}+\left(Y^{\prime \prime \prime}+3 X^{\prime \prime}+\frac{Z Z^{\prime}}{3}\right. \\
& \left.-\frac{Z Y}{30}\right) \overline{13}+\left(Z^{\prime \prime}-\frac{3 Y^{\prime \prime}}{2}-\frac{3 X^{\prime}}{2}-\frac{Z^{\prime}}{30}\right) \overline{14}
\end{align*}
\]

Now we have four equations, (35), (36), (37), (38), by which (12), (13) and (14) can be eliminated, leaving

an equation in \(a_{3}\), its derivatives, and functions derived from the coefficients of (34a). It is of the tenth order and linear,
and is the first associate of (34a). To obtain the second associate, let \(w\) represent the second associate variables. Then
\[
\begin{aligned}
& w=\overline{012} \text {, } \\
& w^{\prime}=\overline{013} \text {, } \\
& w^{\prime \prime}=\overline{n 14}+\overline{023}, \\
& w^{\prime \prime}=2 . \overline{024}+\overline{123}-10 \varphi, \overline{012}, \\
& w^{\prime \prime \prime}+10 \varphi_{s} w=\tau_{\mathrm{s}}=2 . \overline{024}+\overline{123}, \\
& \tau_{3}^{\prime}=3 \cdot \overline{124}+2 . \overline{034}+2 \cdot 5 \varphi_{1} \overline{012}, \\
& \tau_{3}-10 \varphi_{s} w=3 \cdot \overline{124}+2 . \overline{034}=\tau_{4}, \text { say, } \\
& \tau_{4}^{\prime}=5 \cdot \overline{134}+3 \cdot \overline{125}+2 \cdot \overline{035}, \\
& \tau_{1}^{1}+3 \varphi_{c} w-10 \varphi_{1} w^{\prime}=5 \cdot \overline{1_{3}} \overline{34}+20 \varphi_{5} \overline{0_{2} 3}=\tau_{0}, \text { say, } \\
& \mathrm{T}_{t}^{\prime}=5 \cdot \overline{234}+60 \varphi_{1} \overline{123}+20 \varphi_{i}^{\prime} \overline{\overline{2} 3} \\
& -5 \varphi_{s} w^{\prime}+10 \varphi_{v_{4}} \tau_{1} \\
& \tau_{!}^{\prime}+5 \varphi_{s} z^{\prime}-10 \varphi_{s} \tau_{s}=5 \cdot \overline{234}+60 \varphi_{s} \overline{123}+20 \varphi_{s}^{\prime} \overline{023} \equiv \tau_{s} .
\end{aligned}
\]

Proceeding thus, four equations are obtained from which \(\overline{024}, \overline{023}\) and \(\overline{124}\) can be eliminated. The result is
\[
A_{1}=
\]
where \(X_{1}=5 \varphi_{5}-20 \varphi_{\prime \prime}^{\prime \prime}, Y_{1}=50 \varphi_{4}-140 \varphi_{\prime}^{\prime}, Z_{1}=60 \varphi_{4}\).
(40) is also of the tenth order and linear.

The third associate is the adjoint equation. It is
\(v^{\prime \prime}-10 \varphi_{2} v^{\prime \prime}+\left(5 \varphi_{1}-20 \varphi_{6}^{\prime}\right) v^{\prime}-\left(\varphi_{0}-5 y_{1}^{\prime}+10 \varphi_{3}^{\prime \prime}\right) v=0 \equiv A_{4}\). (41)

The first associate of this adjoint equation may be obtained from (39) by writing in it
\[
\begin{array}{r}
-\varphi_{2} \text { for } \varphi_{1}, \\
5 \varphi_{1}-20 \varphi_{1}^{\prime} \text { for } 5 \varphi_{1}, \\
-\left(\varphi_{1}-5 \varphi_{4}^{\prime}+10 \varphi_{3}^{\prime \prime}\right) \text { for } \varphi_{4} .
\end{array}
\]

A little examination will show that these transformations among the coefficients, which change \(A_{1}\) into \(A_{4}\) and \(A_{4}\) into \(A_{1}\), also transforms \(A_{3}\) into \(A_{3}\) and \(A_{2}\) into \(A_{3}\), and in particular,
into
\[
\begin{gathered}
s_{1}, s_{6}, s_{1}, s_{16}, X, Y \text { and } Z \\
\tau_{7}, \tau_{4}, \tau_{1}, \tau_{10}, X_{1}, Y_{1} \text { and } Z_{1}
\end{gathered}
\]
respectively and vice versa. Then for the quintic at least it follows that the \(r\) th associate of an equation is the oth associate of the adjoint equation when
\[
\begin{equation*}
r+p=3 . \tag{42}
\end{equation*}
\]

Preparatory to extending this theorem to the \(n\) thic, it will be well to consider it in a different way.
If \(a_{3} A_{4}\) represent the first associate variable of the third associate equation, and \(a_{r} A\), the \((r-1)\) st associate variable of the \((s-1)\) st associate equation, then
\(=\left(23^{\prime} 4^{\prime \prime}\right)\left(45^{\prime} 6^{\prime \prime \prime} 8^{\prime \prime \prime} 9^{\text {IV }}\right)-\left(13^{\prime} 4^{\prime \prime}\right)\left(25^{\prime} 6^{\prime \prime \prime} 8^{\prime \prime \prime} 9^{\text {iv }}\right)\)
\[
\begin{aligned}
& \left." 9^{\prime V}\right)-\left(13^{\prime} 4^{\prime \prime}\right)\left(25^{\prime \prime} 6^{\prime \prime \prime} 8^{\prime \prime \prime} 9^{9 v}\right. \\
& +\left(12^{\prime} 4^{\prime \prime}\right)\left(35^{\prime \prime} 5^{\prime \prime} 8^{\prime} 9^{\prime \prime \prime} 8^{\prime \prime \prime} 9^{\text {iv }}\right)
\end{aligned}
\]

If \(n=5\), then \(6,9,8\) will be \(2,4,3\), say, and the above becomes
\[
\left(23^{\prime} 4^{\prime \prime}\right)\left(15^{\prime} 2^{\prime \prime} 3^{\prime \prime \prime} 4^{1 V}\right)=-a_{b}\left(23^{\prime} 4^{\prime \prime}\right),
\]
where \(a_{5}\) is the non-vanishing constant. Then \(a_{3} A_{4}=C a_{3} A_{1}, C\) is a constant. Take \(n=6 . A_{1}\) is the adjoint. Then
\[
\begin{aligned}
& =a_{t}^{\prime}\left(12^{\prime} 3^{\prime \prime}\right) \text { or } a_{1} A_{1} \Delta^{\prime \prime} \text {, }
\end{aligned}
\]
then
\[
a_{3} A_{3}=C a_{3} A_{1},
\]
where \(C=\) the constant \(\Delta^{2}\). The general theorem is
\[
a_{n} A_{n-1}=J^{n-1} a_{\lambda} A_{1}
\]
for all values of \(x\) and \(\lambda\) for which \(x+\lambda=n\); that is, the \(x-1\) )st associate variable of the adjoint equation is a constant multiple of the \((\lambda-1)\) st associate variables of the original equation when \(\lambda+x=n\).
\(a_{n} A_{n-1}\) is


This is a determinant of order \(x\). In the third and lower rows each constituent equals the sum of a number of terms, all but one of which will contain \(u^{(n)}\), and substituting for this its value from the differential equation, the terms are seen to be multiples of preceding rows and may be omitted. Each constituent becomes then a first mirror of \(\Delta\), and the conjugate determinant is
\[
\left.\left\lvert\, \begin{array}{ccccc}
1^{(n-1)}, & 2^{(n-2)}, & 3^{(n-1)}, & 4^{(n-1)} & \ldots \\
1^{(n-2)}, & 2^{(n-2)}, & 3^{(n-2)}, & 4^{(n-2)} & \ldots \\
x^{(n-2)} \\
\vdots & \cdot & \cdot & \vdots & \cdot \\
\vdots & \vdots & \vdots & \\
1^{(n-n)}, & 2^{(n-n)}, & 3^{(n-n)}, & 4^{(n-n)} & \ldots
\end{array}\right.\right)
\]

Having found a proof showing that \(a_{n} A_{n-0}=a_{n-n} A_{,} J^{n-1}\) was not, in general, true, 1 used it for the case when \(v=1\), when it is true that \(a_{n} A_{n-1}=a_{n-a} A_{1} J^{n-1}\). But this follows immediately from Section 6, Chapter V, of Determinants, by R. F. Scott. Then we conclude that for all values of \(x\) the \((x-1)\) st associate variable of an equation is a constant multiple of the \((n-x-i)\) st associate variable of its adjoint equation.
(45)
\({ }^{W}\) When \(A_{1}\) is self-adjoint, \(A_{n-1}=A_{1}\), and then
\[
a_{n} A_{1}=a_{n-n} A_{1},
\]
or all equations of complementary rank associate to a self-adjoint equation are equal.
The associate equations \(A_{n}\) and \(A_{n-n}\) are said to be of complementary rank.

The question arises, does this hold for other associate equations of complementary rank, i. e. for any equation does
\[
a_{r} A_{n}=a_{n-}, A_{n} \ldots v^{p}
\]

Turning to equations (39) and (40), make
\[
\varphi_{1}=0 \quad \text { and } \varphi_{3}=5 \varphi_{1}^{\prime},
\]
then (39) reduces to an equation of the ninth order, there being a linear relation between the \(a\) 's. But \(A_{1}\) or (40) does not reduce.
\(a_{3} A_{3}\) is now a non-vanishing constant and cannot be a solution of \(A_{3}\). Therefore \(a_{3} A_{3}\) does not equal \(a_{1} A_{3}\).

Section IV.

\section*{Conditions for the Self-Adjointness of Differential} Equations.

Any equation is selfadjoint when its invariants with odd suffix vanish.
Let \(r\) be the order of the equation. The relations which exist between the coefficients are
\[
\left.\begin{array}{rl}
(-1)^{n} P_{0}= & P_{0}-n P_{n-1}^{\prime}+\left(\frac{n}{2}\right) P_{n-1}^{\prime \prime}-\left(\frac{n}{3}\right) P_{n-1}^{\prime \prime \prime} \\
& +\left(\frac{n}{4}\right) P_{n+1}^{\prime \prime}+\ldots \quad n=1,2,3, \ldots r
\end{array}\right\} \text { (47a) }
\]

These relations follow from those given by Dr. Craig in his treatise, pp. 490-493. For example, take the sextic \((\gamma)\), p. 491, and ( \(\gamma)^{\prime}\), p. 492. In order that it may be self-adjoint,
\[
\begin{aligned}
P_{1} & =P_{11} \\
-P_{0} & =P_{1}-4 P_{P_{1}^{\prime}} \\
P_{4} & =P_{1}-{ }_{3} P_{1}+6 P_{l}^{\prime \prime},
\end{aligned}
\]
or generally,
\[
(-1)^{*} P_{0-x}=\sum_{i=0}^{n}(-1)^{*}\left(\frac{v+x}{x}\right) P_{0}^{(0)}=
\]

If the equation had been written with binomial coefficients this would become
\[
(-1) \times\left(\frac{6}{x}\right) P_{6-x}=\sum_{i=0}^{n=-}(-1) \cdot\left(\frac{v+x}{x}\right)\left(\frac{6}{x+v}\right) P(v)=
\]

If we call \(6-x, m\) and divide \(\left(\frac{6}{x}\right)\) it becomes
\[
\begin{aligned}
(-1) \times P_{m} & =P_{m}-m P_{m-1}^{\prime}+- \text { etc. } \\
& =\sum_{v=0}^{m}(-1)^{v}\left(\frac{m}{v}\right) P_{m}^{(0)}
\end{aligned}
\]

It is not difficult to see that this will hold for any equation.

First, let \(n\) be odd, then
\[
\begin{aligned}
& 0=2 P_{n}-n P_{n-1}^{\prime}+\left(\frac{n}{2}\right) P_{n-1}^{\prime \prime}-\left(\frac{n}{3}\right) P_{n-1}^{\prime \prime \prime}+- \text {, etc. (48) } \\
& 2 \theta_{n}=2 P_{n}-n P_{n-1}+\frac{n-2}{2 n-3}\left(\frac{n}{2}\right) P_{n-2}^{\prime \prime} \\
& -\frac{n-2!2 n-5!}{n-4!2 n-3!}\left(\frac{n}{3}\right) P_{1}^{\prime \prime \prime}+\ldots \\
& \frac{n-1}{2 n-3}\left(\frac{n}{2}\right) \theta_{n-3}^{\prime \prime}=\frac{n-1}{2 n-3}\left(\frac{n}{2}\right)\left[P_{n-1}^{\prime \prime}\right. \\
& \left.-\frac{n-2}{2} P_{n-2}^{\prime \prime \prime}+\frac{1}{2}\left(\frac{n-2}{2}\right) P_{n-4}^{1 v}+\ldots\right] .
\end{aligned}
\]

Thus it is seen that (48)-2 \(\theta_{n}\) contains neither \(P_{n}\) nor \(P_{n-1}^{\prime}\), and that (48) \(-2 \theta_{n}-\left(\frac{n}{2}\right) \frac{n-1}{2 n-3} \theta_{n-8}^{\prime \prime}\) is without the first two pair of terins in \(P_{n}, P_{n-1}^{\prime}, P_{n-3}^{\prime \prime}, P_{n-1}^{\prime \prime \prime}\), and from
(48) \(-2 \theta_{n}-\left(\frac{n}{2}\right) \frac{n-1}{2 n-3} \theta_{n-2}^{\prime \prime}-\left(\frac{n}{4}\right)\left(\frac{n-1}{3}\right)\left(\frac{3}{2 n-5}\right) \theta_{n}^{(0)}\).
the first three pairs of terms disappear. By subtracting certain multiples of the invariants and their derivatives from (48) the terms continue to disappear in pairs. The multiplier of \(\theta_{n-90}^{(s g)}\) would be \(2\left(\frac{n}{2 \sigma}\right)\left(\frac{n-1}{2 \sigma}\right)\left(\frac{2 \sigma}{2 n-2 \sigma-1}\right) \equiv 2 M_{\sigma}\), say.

From what precedes, especially (22) and (23), we know
the coefficient of \(P_{(2 x)}^{(2 x)}\) in \((48)\) is \(\left(\frac{n}{2 x}\right)\),
the coefficient of \(P_{n-2 x}^{(2 x)}\) in \(2 M_{0} \theta_{n}\) is
\[
M_{0}\left(\frac{n}{2 x}\right)\left(\frac{n-2}{2 x-1}\right)\left(\frac{2 x-1}{2 n-3}\right)=M_{0} C_{0}, \text { say }
\]
the coefficient of \(\left.P_{n}^{(a))_{2}}\right)_{x}\) in \(2 M_{1} \theta_{n-2}^{\prime \prime}\) is
\[
M_{1}\left(\frac{n-2}{n-2 x}\right)\left(\frac{n-4}{2 x-3}\right)\left(\frac{2 x-3}{2 n-7}\right)=M_{1} C_{1}, \text { say }
\]
ting certain om (48) the ier of \(\left.\theta_{i n}^{(8)}\right)^{2 \sigma}\)

For \(n=x-1\),
\[
m_{0} \dot{c}_{0}=\alpha \frac{2 x!2 x-3}{2 x-3!3!}(-1)^{k}, \quad a=\frac{x-2!x+1!}{2 x!}
\]
\[
m_{1} c_{1}=a \frac{2 x!2 x-7 \cdot 2 x!}{2!2 x-2!2 x-5!5!}(-1)^{x}
\]
\[
m_{9} c_{2}=a \frac{2 x!2 x!2 x-11}{4!2 x-4!7!2 x-7!}(-1)^{k}
\]
\[
\begin{aligned}
m_{k-8} c_{k-1} & =a \frac{2 x!2 x!2 x-9}{6!2 x-6!3!2 x-3!}(-1)^{k-1} \\
m_{k-9} c_{k-2} & =a\left(\frac{2 x}{4}\right)\left(\frac{2 x}{1}\right) 2 x-5(-1)^{k-1} \\
m_{k-1} c_{k-1} & =m_{k} c_{k}=0
\end{aligned}
\]
\[
m_{0} c_{0}-m_{k-3} c_{k-1}+m_{1} c_{1}-m_{k-3} c_{k-5}+m_{5} c_{3}-+, \text { etc. }
\]
forms a series which is equal to unity. This is seen by taking the coefficient of \(y^{s \alpha+s}\) from each member of the equation in which \((1-y)^{2 x} \frac{d}{d y}(1+y)^{2 x}\) is written equal to its expansion
\[
\begin{aligned}
& (1-y)^{2 x}=1-2 x y+\left(\frac{2 x}{2}\right) y^{2}-\left(\frac{2 x}{3}\right) y^{2}-\left(\frac{2 x}{4}\right) y^{4}-\left(\frac{2 x}{5}\right) y^{4} \\
& \quad+\ldots+\left(\frac{2 x}{4}\right) y^{5 x-4}-\left(\frac{2 x}{3}\right) y^{2 x-3}+\left(\frac{2 x}{2}\right) y^{2 x-2}-2 x y^{2 x-1}+y^{2 x} \\
& 2 x(1+y)^{9 x-1}=2 x y^{2 x-1}+(2 x-1)\left(\frac{2 x}{1}\right) y^{2 x-9}+(2 x-2)\left(\frac{2 x}{3}\right) y^{2 x-2} \\
& \quad+\ldots+8\left(\frac{2 x}{8}\right) y^{4}+7\left(\frac{2 x}{7}\right) y^{4}+\ldots+4\left(\frac{2 x}{4}\right) y^{4}+\ldots
\end{aligned}
\]

The coefficient of \(y^{a x+1}\) in the product of the right members is
\[
\begin{aligned}
& \left\{4\left(\frac{2 x}{4}\right)-5\left(\frac{2 x}{5}\right)\left(\frac{2 x}{1}\right)+6\left(\frac{2 x}{6}\right)\left(\frac{2 x}{2}\right)-7\left(\frac{2 x}{7}\right)\left(\frac{2 x}{3}\right)+\cdots \ldots\right. \\
& \left.\quad+2 x\left(\frac{2 x}{4}\right)-(2 x-1)\left(\frac{2 x}{1}\right)\left(\frac{2 x}{5}\right)+(2 x-2)\left(\frac{2 x}{2}\right)\left(\frac{2 x}{6}\right)-+\ldots\right\}
\end{aligned}
\]
and adding the terms in the upper line to those below them this equals
\[
\begin{aligned}
\left(\frac{2 x}{3}\right)(2 x-3)-\left(\frac{2 x}{4}\right)\left(\frac{2 x}{1}\right)(2 x-5)+ & \left(\frac{2 x}{5}\right)\left(\frac{2 x}{2}\right)(2 x-7) \\
& -\left(\frac{2 x}{6}\right)\left(\frac{2 x}{3}\right)(2 x-9)+\text { etc. }
\end{aligned}
\]
which is the series \(\sum_{i=0}^{\infty=} \frac{m_{c} c_{0}}{c}(-1)^{x}\)." The coefficient of \(y^{m+2}\) in \(2 x(1-y)\left(1-y^{2}\right)^{\sigma x=1}\) is
\[
(-1)^{x} 2 x\left(\frac{2 x-1}{x+1}\right)=(-1)^{k} \frac{2 x!}{x+1!x-2!}=(-1)^{x} \frac{1}{a}
\]

Therefore
\[
\begin{equation*}
\sum_{0=0}^{\overline{\bar{n}}} m_{0} c_{\theta}=1 \tag{49}
\end{equation*}
\]

Then for all values of \(z\) in like manner the same result will follow, and thus the coefficient of \(\left.P_{n}^{(12)}\right)^{(2)}\) in (48)
\[
=2 M_{0} \theta_{n}+2 M_{1} \theta_{n-2}^{\prime}+2 M_{8} \theta_{n-4}^{v}+\ldots+2 M_{k} \theta_{n-2 k)}^{(2 k)}
\]
 of \(P_{n=1, k, k}^{(2, k}\), by giving \(\sigma\) the same values and changing \(2 x\) to \(2 x+1\), and therefore this also equals \(\left(\frac{n}{2 x+1}\right)\).

If in (47a) \(n\) be even, the general relation between the coefficients is expressed by
\[
\left.\begin{array}{r}
0=P_{n-1}^{\prime}-\frac{n-1}{2} P_{n-2}^{\prime \prime}+(-1)^{0-1} \frac{n-1!}{v!n-v!} P_{n-\cdots}^{(0)} . \\
v=3,4,5 \ldots n-2 \tag{5I}
\end{array}\right\} .
\]

In a way similar to the case when \(n\) is odd, it may be shown that ( 51 ) is equal to a linear function of the invariants and their derivatives, say
\[
(51)=\theta_{n-1}+N_{8} \theta_{n-1}^{\prime \prime}+N_{8} \theta_{n-b}^{v}+\ldots+N_{n-8} \theta_{1}^{n-4)} \cdot \text { (52) }
\]

Now, the invariants in (50) and (52) have odd suffixes. Then when the invariants with odd suffixes vanish (48) equals zero,
and also (5I) equals zero, and the conditions for self-adjointness are satisfied, and the proposition with which this section begins is established.

It is to be noticed, however, that an equation may be selfadjoint when its invariants with odd suffix do not vanish, but satisfy the linear relation expressed by equating the right members of (50) and (52) to zero, which is equivalent to saying that (47a) and (57) are satisfied.


\[
\nabla
\]```


[^0]:    * Philosophical Transactions, Vol. :79 (1888) A, pp. 391-92.

