IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences
Corporation

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

Canadian Institute for Historical Microreproductions / Institut canadien de microreproductions historiques
(C)
 3

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique. which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur
Covers damaged/
Couverture endommagée

Covers restored and/or laminated/
Couverture restaurbe et/ou pelliculbe
Cover title missing/
Le titre de couvertura manque
Coloured maps/
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.o. autre que bleue ou noire)
Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur
Bound with other material/
Relié avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distortion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certainas pages blanches ajoutces lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'll lul a été possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de coulaur

Pages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculéesPages discoloured, stained or foxed/
Pages déculorées, tachetées ou piquées
Pages detached/
Pages détachéesShowthrough/
TransparenceQuality of print varies/
Qualité inégale de l'impressionIncludes supplementary material/
Comprend ciil matériel supplémentaire
Only edition available/
Seule édition disponible
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image/ Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure. etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué cl-dessous.

The copy filmed here has been reproduced thanks to the generosity of:

Metropolitan Toronto Library History Department

The images appearing here are the beat quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

Original coples in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impression, or the back cover when appropriate. All other original copies are filmed beginning on the first pagis with a printed or illustrated impression, and ending on the last page with a printed or Illustrated impression.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"), whichever applies.

Maps, plates, charts, otc., may be filmed at different reduction ratios. Those too large to be ontirely Included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'oxemplaire filmd fut reprodult grace ile genérosit'd de:

> Matropolitan Toronto Library History Department

Les images suivantes ont ótó reprodultes avec le plus grand soin, compte tenu de le condition ot de la netteté de l'exemplalre filmb, ot en conformite avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papler est Inyprimbo sont filmb́s on commençant par lo premier plat ot en torminant soit par la dernibre page qui comporte une emprelnte d'Impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres oxemplaires originaux sont filmés en commençant par la premiàre page qui comporte une empreinte d'impression ou d'illustration ot on terminant par la dernì̀re page qui comporte une telle empreinte.

Un des symboles sulvants apparaitra sur la derniàre image de chaque microfiche, selon ie cas: le symbole \rightarrow signifie "A SUIVRE", le symbole ∇ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction diffórents. Lorsque lo document est trop grand pour étre reproduit en un soul cliché, il est filmé à partir de l'angle supórieur gauche, de gauche à droite. et de haut en bas, on prenant le nombre d'images nécessaire. Les dlagrammes suivants illustrent la méthode.

Triumpis and Wonders

OF THE

19TH Century
 THE

TRUE MIRROR OF A PHENOMENAL ERA

A VOLUME OF ORIGINAI, ENTERTAINING AND INSTRUCTIVE HISTORIC AND DESCRIPTIVE WRITINGS, SHOWING THE MANY AND MARVELLOUS ACIIIEVEMENTS WHICH DISTINGUISH

AN HUNDRED YEARS

Material, Intellectual, Social and Moral Progresps

EMBRACING AS SUBJECTS ALL THOSE WHICH BEST TYPE THE GENIUS, SPIRIT AND ENERGY OF THE AGE, AND SERVE TO BRING INTO BRIGHTEST RELIEI THE GRANI MARCH OF IMPROVEMENT IN THE VARIOUS DOMAINS OF HUMAN ACTIVITY.

BY
JAMES P. BOYD, A.M., L.B., Assisted by a Corps of Thirty.Troo Eminent and Specially Qualified Aulhors.

Copionsly and magnificently illustrated.

C. R. PARISH \& CO., 28 \& 30 TORONTO ST., TORONTO, ONT.

COPYRIGHT, I899, by W. H. Isbister.
All Rights Reserved.
103392

INTRODUCTORY

Measuring epochs, or cras, by spaces of a hundred years each, that which embraces the nineteenth century stands out in sublime and encouraging contrast with any that has preceded it. As the legatee of all prior cellturies, it has enlarged and ennobled its bequest to an extent unparalleled in' history; while it has at the same time, through a genius and energy peculiar to itself, created an original endowment for its own enjoyment and for the future richer by far than any heretofore recorded. Indeed, without permitting existing and pardonable pride to endanger rigid truth, it may be said that along many of the lines of invention and progress which have most intimately affected the life and civilization of the world, the nineteenth century has achieved triumphs and accomplished wonders equal, if not superior, to all other centuries combined.
Therefore, what more fitting time than at its close to pass in pleasing and instructive review the numerous material and intellectual achievements that have so distinguished it, and have contributed in so many and such marvelous ways to the great advance and genuine comfort of the human race! Or, what could prove a greater source of pride and profit than to compare its glorious works with those of the past, the better to understand and measure the actual steps and real extent of the progress of mankind! Or, what more delightful and inspiring than to realize that the sum of those wonderful activities, of which each reader is, or has been, a part, has gone to increase the grandeur of a world era whose rays will penetrate and brighten the coming centuries !

Amid so many and such strong reasons this volume finds excellent cause for its being. Its aims are to mirror a wonderful century from the vantage ground of its closing year; to faithfully trace the lines which mark its almost magical advance; to give it that high and true historic place whence its contrasts with the past can be best noted, and its light upon the future most directly thrown.
This task would be elearly beyond the power of a single mind. So rapid has progress been during some parts of the century, so amazing have been results along the lines of discovery and invention, so various have been the fields of action, that only those of special knowledge and training could be expected to do full justice to the many subjects to be treated.

Hence, the work has been planned so as to give it a value far beyond what could be imparted by a single mind. Each of the themes chosen to type the century's grand march has been treated by an author of special
fitness, and high up in his or her profession or calling, with a view to securing for readers the best thoughts and facts relating to the remarkahle events of an hundred yeurs. In this respeet the volume is unigue and original. Its authorship, is not of one mind, but of a corps of minds, whose mion assures what the ocension demands.
The seope, character, and value of the volume further appear in its very large number and practical feature of subjects selected to show the active forces, the upward and onward movements, and the grand results that have operated within, and trimuphantly crowned, un era without parallel. These subjeets embrace the sciences of the century in their numerous divisions and conquests; its arts and literature; industrial, eommercial, and financial progress ; land and sca prowess ; edueational, social, moral, and religions growth; in fact, every field of enterprise and achievement within the space of time covered by the work.
Λ volume of such variety of subject and great extent affords fine opportunity for illustration. The publishers have taken full advantage of this, and have beantified it in a manner which commends itself to every eye and taste. Rarely has a volume been so highly and elegantly embellished. Each subject is illuminated so as to inerease the pleasure of reading and make an impression which will prove lasting.

As to its aim and scope, its number of specially qualified authors, its vigor and variety of style and thought, its historie comprehensiveness and exaetness, its great wealth of ilhstration, its superb mechanism, its various other striking features, the volume may readily rank as one of the century's triumphs, a wonder of industrious preparation, and acceptable to all. At any rate, no such volume has ever mirrored any previous century, and none will come to reflect the nineteenth century with truer line and color.

Not only is the work a rare and costly picture, filled in with inspiring details by master hands, but it is equally a monument, whose solid base, grand proportions, and elegant finish are in keeping with the spirit of the era it marks and the results it honors. Its every inseription is a glowing tribute to human achievement of whatever kind and wherever the field of action may lie, and therefore a happy means of eonveying to twentieth century actors the story of a time whose glories they will find it hard to excel. May this picture and monument be viewed, studied, and admired by all, so that the momentous ehapters which round the history of a elosing century shall avail in shaping the beginnings of a succeeding one.
a view to remarkable ue and orinds, whose in its very the active t that have lel. These ivisions and ancial proous growth; ace of time ine opportuof this, and e and taste. Each subad make an
ors, its vigor ss and exactarious other cntury's triall. At any nd none will
ith inspiring e solid base, spirit of the is a glowing the field of wentieth cenhard to excel. red by all, so osing century

AUTHORS AND SUBJECTS

James l. boyd, A. M., l. Il.,
Wanden of Electucity.
REAK-ADMIBAL, GEORGE WALLACE MELVILLE,
Chiry of Burean of Stam Engineering, Nary Departurnt, Washington, D. C.
The: Century'a Naval l'uogheas.
SELIDEN I. COFFIN, A. M.,
Prefessor of Astronomy, Lafayette College, Enston, Pa,
Asthinomy dumino the Centuif.
THOMAS MEEILAN,
Vicr-President Acculemy of N̄utural Sciences, Philadelphia.
Stois of Ilant and Floner.
MARY ELCHAETH LEASE,
First I'oman D'rexident of Kinnsas State Boorvl of Charities.
Ibogibes of Women within the Centuif.
hobert l. IlALNS,

- Principal Examiner of 'Teatilex, V'uited States I'atent Office, Washington, D.C.

The 'entehy'n Texthee Phogheas.
GRORGE EDWARD REED, S. T. D., LL. D., Prexident of Itickinson College, Carlisle, Pa.
The Century's Rehaious Proghess.
JAMES 1. BOYI), A. M., L. B.,
Gieat Gmowtil of Lamenies.
WILLIAM MABTIN AIKEN, F. A. I. A.,
Former United Stutes Superrixing Arrhitect, Treasury Department, Washington, D. C.
Phogiens of the Century in Arehtrecture.
hativey w. Whley, M. b., PII. D., LL. D.,
Chief' Chemist of Dirision of Chemistry, Algricultural Department, Washington, D. C. Tieg Centuny's Phoghess in Chemisthy.

RITER FITZGERALI), A. M.,
Dramatic Critic "City Item," Philadelphia.
The Century's Music and Drama.
JaMES P. BOYD, A. M., L. B.,
The Century's Literature.
MORRIS JASTROW, IR., PII. D.,
Professor of Semitic Languages, U'miversity of Pennsylennia. Tine Reconds of the Past.
MAJOR HENRY E. ALYORD, C. F., LLL. D.,
Chief uf Dairy Division, United States Department of Alyriculture, Washington, D. C.
Proghess in Dahy Farming.
SARA Y. STEVENSON, Sc. D.,
Secretory of Department of Archoology and Poleontology, University of Pennsylvania.
Tine Centuly's Moral. Progress.
Cllarles melntire, A. M., M. D.,
Lecturer on Sanitary Science, Loffayette College, Eastor. Pa.
Progress of Sanitairy Science.
LIEUTENANT-COLONEL ARTHUR L. WAGNER, Assistant Adjutant General United States Arny.

The Centuiy's Armies and Arms.

AUTHORS AND SUBJECTS

WALIOO F. BROWN,
Agricultural Editor" "ímcinnuti Gazelfe."

Asaistant Prufessur of Ciril E'ngineeriny, L'niperaity af' P'ennaldania. I'behbeme in Civis, Eneinemhina.
D. I. S.ALMON, M. I),

Chieft sf' Burean af Animal Industry, Iyricultural Drpartment, I'axhngtan, D. C.
The: Century' l'moheng in the: Animai, Wome,io.

L'nited states Arum, uml Jember a' C'ongress from Bi,yhth dlaboman District. leameg Walis of the Centiou.

GEORGE: J, IIAGAR,

HON. HRADFOHI RHODFS,
Bditor uf "Banker's Muguzine."

II. E. VAN meman,

balify h. Jollnson, A. M.,

fliANKIIN s. Eimonds, A. M.,
Assistant Profesmur af Political Srience, Central Ityh School, Philndelphin.
Tile Centery's Ampanten in Eibeation.
THOMAS , J. LINUSLEP;
Editorial Naff Philmel phin " Eireming Bumletin."
"The Aut l'uesemvative."
(EBOLGE A. PACKARL,
Metallurgiat and Mining Eingineer.
P'mobiess in Mines anir Miningi.
JOIN V. SBARS,
Art Critic Philadelphin "Ereniny Telegraph."
Aht Phogess of the Gentury.
J. MADISON TAYLOR, M. D., Asb

JOHN II. GIBBON, M. ID,
Surgeons Out-Pntients Departments af P'ennaylmania awd Children's ILognitala.
The: Centuris Abyance in Sphakir.
FRANK C. HAMMOND, M. D.,
Inatruetar in Gynuccoloyg, Jefferson Mediernl College.
Proghens of Mrimeing.
E E. BUSSELL THATMAN, C. F., Issistnnt Editmr "f "Enginerring News," Chicago, Ill.

Evioftion of tife lialioab.
LUTIIER E. HEWITT, L. B.,
Librarian of Philndelphia Lnw Assncintion.
Adpance in Law and Justice.
MCIIAEL J. BRO'WN,
Secrelary of Building Alsociation Lengue of Pennaylrania.
Proghess of Bethding and Loan Associatuns.
REV. A. LEFFINGWELL,
Rectur Trinity Church, Toled, 0 .
Efoci Makers of the Centioy.

ANALYSIS OF CONTENTS

WONDERS DF ELAETHACITY

1. At the Dawn of the Cention: - Barliext Ohewruations on Electrielty - Stady of Amber -

 Lamps - I'rinelples of Each - Vahue of Electrie Light. VII. Eisectuc Locomotion: - Dossing of the Itorse and Tracthon ©'ar - Introbluction of the Tiolley - Fentures of the Electrle Railway
 X Bay is - Photogriphing hy Means of the X hay. IX. Otheil Electucil Wondehe:-

TIIE CENTULI'S NAVAL PHOGBESS

1. Infidence of Sea Powein:-Sen Powers throughout the Worli - Enumeration of Great Saval Wars, II. The Century's Ghowti in Nagal Sthenciti:-Ameriean Navien at Different Eras - Dinrupean Fleets - South Ameriean and Chinese Navies, III. Tik. Batriesulib

 -The 14,50) Silles Stenming of the Oregron - Revolution In Mechanlsm and Material - Types of tireat Battleships - Introduction and Advantages of Stean - Insention of the Serew Propeller Improvement in Hollers and Eagizes - The Revolving Turret - Cruiser and Torpedo Craft I'henomenal Speed. V. Tite Gibiwtif of Ordnasce: - Deseription of Varieus Guns and Prie jeetiles - I'ower of Modern Explowlees. VI. Tine levelopsest of Anmon: - Its Necensity
 Evolution of the Ram - Introduction of the Toppedu - Various Kinds of Torpedees. VIII. Tine Uniteid States Fleet: - Whence it sprang and how It has grown - Its Ships, Othicers, and Men-Otticial Naval Rankn - The Naval dealemy - l'nssage of the United States to a Worh Iower . 55-88

ASTRONOMY DURING THE CENTURY

1. Asthonomy a Century ago: - Discovery of L'ramas, II. How "Bude's Law" promoted Reseancu:-Further Diseovery of Planets-Celestial Photography. IIL. How Neptune was roenn:-Le Verrier, "First Astronomer of the Age." IV. Meteorites:- Meteoric Showers - Varlous Large Meteorites. V. Do Meteons often atrike the Eabti": The "Fire-ball" of 1860. VI. Asthonovical. Oaservatories:- Their Equipmert and Work - Number of Observatorjes. Vil. Impuved Inothumpnta: - Their Effect un the Sciebce. Vili. The Specthoscore: - Its Trlumphs - Elements discovered. IX. Wonk in a Laroe Oaservatory: Discovery of Comets and Nebuhe. X. Washington National Obsenvatory: - Its Iestruments. XI. Stall Maps ind Catalooles: - Number of Stars - The Planisphere. XII. Astmonomical, Books and Wimters; - Number of Stulents of Astronomy. XIII. Puactical Ubes of Asthonomy: - Its Help in Navigation-Uses in Geedesy. Xiv. Notahle AstroNomical Epochs:-Clock Regulation - Invention of Chrenograph and Spectroscope - Great Telescepes. XV. Discsuden Theohes:- Are Plancts inhabited?- The Orrery. XVI. Fvture Asthoxomical. Phonlems: - How long will the Sun endure? 87-104

STORY OF PLANT AND FLOWER

Early History of Botany - The Father of Modern Botany - Hotany at the leginning of the Nineteenth Century - Natural System of Classitication - Advance in Study of Plant Behavior -- Illustrations from the l'eanat and Grape-vine - Plant Motions as regards Forms - Origin and Development of Plant Life - The Doetrine of Livolution - Nutrition of Plants - Fertilization of Flowers - Insectivorous and Cruel Plants - Vegetable llosiolagy - Advance in Relation to Cryptogamic llants - Geographical Botany - Ilerhariums and Botanical Gardens . . . 105-114

PROGRESS OF WOMEN WITIIN TII: CENTLRY

Woman's Miseoneeption of her Rights - Former Oppression - Cosmic and Moral Processes - What Christianity has done for Women - Iardship of the Panline Crpp - The True Mission of Woman - Improvement in her Edncation - Femule Decupations - Competition with Men- Woman in the Literary Fieh - In Philanthropy and Morals - Women's Chbs - Woman in I'olities - The constantly Broadening Fied of Woman's Intluence
. 115-124

THE CENTURY'S TEXTLLE PROGRESS

Antiquity of Textile Industry - The Distafi, Spindle, and Loom among Chinese, Egyptians, and Greeks - Introduction of the Sipinning-wheel - Loom of the Eighteenth Century - The Flyshattle - Textiles at the Beriming of the Nineteath Contury - Invention of the Spinning Semy - Arkwright's brawing-rollers - Whitney's Catenn-gin - Its Intuence - Invention of the Spin-ning-mule - The Spiming-frame - Rapid Improvements in Spinuing Machinery - Evolution of the Spindle - Inerease of Speed-Introdhetion of the Cardingr-machine - Carding-combs - Alvent of Pow looms - Description of their Machinery and Iroducts - The Jnctuard Loom Of Pile Fubries - The Bigelow Loom - How Tufted IPile Vabries are made - Weaving of Fincy Cloths - Various Forms of Looms - Ilair-cloth Looms - Wearing of Tubular Vabrics - Intinitude of Uses to which the Loom can be put - The Coming Automatic Loom-Awent of the Knittingmachine - Its Wonderful P'erfection and Products - The Century's P'atents of Textile Machinery - Beauty of Textile Art - Its Intluenec on Taste and Comfort

125-146

TIIE CENTULI'S RELIGIOUS PROGRLSS

Religious Status in Eighteenth Century, in Eugland, France, and on the Continent - Condition in the United States - The Reign of skepticism - Doetrimal Divisions in the Churehes - The Nineteenth Century Revival - Variety and Growth of Religions in the United States - Fipedom of the Church - Kinship of Denominations - Increase in Mnterinl and Spiritunl Forees - Chureh Edifices and Capacities - Religious I'opulation - Number of Communicmats - Distribution of Communieants - Ministers and Organizations - Missionary Enterprises - Service of Religion in Education, Philanthropy, and Reform - Gifts to Elucational Institutions - Growth of Charitable Institutions - Religion and Republican Iustitutions 14i-158

GREAT GROWTH OF LIHRARIES

Antiquity of Libraries - Evidences of Civilized Progress - Character of Ancient Writings - Books of Clay - Mesopotamian Literature - Egyptian Ilieroglyphies - Papyrus Manascripts - Sacred Books of Thoth - Greek Libruries - Their Number and Extont - Roman Libraries - Imperial Library of Constantiapple - Effects of Christianity upon Literature - Chureh Book-making and Collecting - All Books written or copied by Priests - Finte of Dlonastic Libraries - Early Libraries in France - Royal Libraries in Earope - The Freneh National Library - Intraduction of Copy--Ght - Growth and Extent of European Libraries - Their Leeation nuil Management - The British Museum - Libraries of Grent Britain - Cmadian Libraries - English Colonial Libraries Libraries of the Latin Republics - Phenomenal Growth of Libraries in the United States - Wide Ramification of the System - The Oldest United States Library - Colonial Libraries - Llbraries of 1800 - Number foumded during the Century - State Libraries - Sehool-district Libraries Library Systems - The Library of Congress - Its Vast Extent and New Repository - Copyright System-Cnited States Free Libraries - Noted Libraries of the Country - Libraries of over 100,000 Volumes - Munificence of Library Founders - Noted Givers to Libraries - Progress in Library Management

159-170

PROGRESS OF TIIE CENTURY IN ARCHITECTURE

ng of the Nineant Behavior -ns- Origin and - Fertilization of in Relation to 105-114
rocesses - W lint ission of Woman Ten - Woman in in L'olities - The
. 115-124

Fguptians, and Itury - The Flye Spiming Jeniny ation of the Silley - Evolintion of ling-combs - Aelaçuard Loom Caving of Fancy bries - Intinitule t of the KnittingCextite Machinery

125-146
int - Condition in rehes - Tho Nine-- F ${ }_{1}$ sedon of the ces - Chureh Editribution of Come of Religion $\mathfrak{j} 1$ Growth of Chari-

147-158 nuseripts - Saered ibraries - Imperiul Book-making and s - Enrty Libraries roduction of Copygement - The Britflonial Libraries ited States - Wide ibraries - Libraries listrict Libraries ository - Copyright - Libraries of over aries - Progress in . 159-170

Status of Chemical Science - Begimning of the Century - The Century's Main Lines of Progress: I. Inohganic anis Physical Cifemistuy: - Lavoisier's Cardinal Propositions - Rapid Advance of Chemical Science - Sir Hmophrey Davy's Achievements - Elementury Bodies of Eighteenth Century - Same in Nineteenth Century. II. Paysicin. Ciemistix: - i'roperties of Elements -Of Matter and Energy - Rates of Renction - Conditions of Equilibrium. III. Organic Chemstra: - Of Carbon Compomds - Theory of Subatitution - Atoms in the Molecale - Space Rehations - The Carbon Atom - The Organie Boly. IV. Analytical, Ciemastay: - Development of the Blow-pipe - lias Analysis - Electricity ns a Factor - Diseovery of Spectram Analysis. V. Syatuetical Chemistux: - Building up of (omplex Forms - Synthesis of Coloring Matters and Sugars - Future Food of Mim. VI. Metallurgical Chemisthy: - Oldest Branch of Chemical Science - Reduction of Ores - Alvantage to Agrienture. VII, Agmeditural Cumanstix: - Utilization of Fertilizers - Nitrogen as a Plant Food - Advanages to Practical Agricnlture. VIII. Gnaphic Cnemistix: - Fundamenţal Principles - vagnerreotype and Photograph. 1X. Dinactic Cuemistur: - The Student and the Laboratory - Advantages of Laboratory Training. X. Chemistry of Fensentarion: - Bacterial Action-Pl cess of Digestion - Deeay of Ments and Vegetables - Steritization - Fermentation, XI. Eler qo-Chem1stiry: - Combination ef Carbon with Metals - Uses of Electricity in Chemistry. Cunclusion.

191-206

TIIE CENTURY'S MUSIC AND DRAMA

I. Eigifeentif Century Music: - Leading Composers - Nineteenth Century Music - The Great Composers and their Works - Different Sehools and Styles of Composition - Aлalysis of Operas Musical Characteristies of the Nations - Verdi and Wagner compared - The American Opern. II. Tie Drasia: - The Theatre of the Past - Great Modern Imprevement - Seenery and Appointments - Actors and Aetresses - 'Ihe Century's Illustrious Role - Theatres in the United States - Character of Acters - P'ıblic Estimation of the Drama

- 207-214

THE CENTURY'S LITERATURE

Contrast with Eighteentlı Century Literature -- Tone of Modern Literature - How it types Progress - English Literature - Literature of Other Nations - Various Authors - English Criticism of Ameriean Literature - Newspaper Literature - Evolntion of the Newspaper - Newspapers of the Nations - Nineteenth Century Journalism - Beginning of Newspaper Enterprise in the United States - Colonial Papers - Papers of the Revolution - Appearance of the Daily - The Penny Press - Newspaper Grewth up to 1861 - War Journalism - The Sunday Newspaper - Illustrated Jeurnalism - Reaction in Newspaper Prices - Cost of running a Newspaper - Number of World's Newspapers - The Comic Paper - Evolution of the Magazine - Growth of Magazine in the United States - Charucter of Magazine Literature - Adveht of the Cheap Magazine - Features of Iublication
. 215-230

THE RECORDS OF THE PAST

Extension of Knowledge into the Past - Spade of the Archrologist - General View of the Revelations - Decuments of Stone, Clay, and Papyrus - Assyrian Revelations - Egyptian Explorations - Eloquence of Obelisk, Tomb, and Pyramid - Cuneiform Seripts of Babylon-Diseovery of the

ANALYSIS OF CONTENTS

Rosetta Stone - Char pollion's Key - Stary ot the Ruins in Grecee and Rome - Revelation of Temples and Statues - Phemician Remans- The Monhite Stone - Ruins in loulestine - Revelations in derusalem - Hittite Remuins - Contiming Interest in Areheological Discovery - Vast Importance from an Ilistoric Point of View .

231-244

progress in dairy farming

Requisites for Successful Dairying - Enterprise of Dairying Distriets - Advantages of Dairying Dairying Areas - Dai-ying at the Begiming of the Century - Early Methods - The Great Change midway of the Century - Improvement in Milelı Cows - Growth of Cheese-Naking - Institution of t'reaneries - Appligation of Mechanies to Dairying - Dairy Associations - Best Dairy Breeds - hiventen of the Sepurator - lis Operation and Advantages - The Fat-test for Milk - Grewth in Buttrr-making Illustrated - Labor in Dairying - Dairy and Foed Commissions - Dairying 1'ublications - City Milk Supplies - Ammal Production of Cheese - Character of Cheeses Ammal Butter Product - Butter and Cheese-producing States - Number and Value of Cows Dairy Values as compared with Value of Other l'roducts - Necessity for gurding Dairy Interests.

245-260

THE CENTLRY'S MORAL PROGRESS

Morals among the Ancients - Moral Precepts common to all Communities - Evolution of Ethies Early Clisistian Morals - Spirit of the Refermation - Low Moral Condition of the Bighteenth Century - Birth of a New Moral Epoch - A National Conscienee - Abolition of Slavery - Larger Application of the Principles of hight and Justice - How Women are affected - Effect of livention mad Education on Sorial and Moral Conditime - Broadeniug of Woman's Sphere - Inerease of Self-respeet - lathence of Women on Moral Status - Legishation and Morals - low to meet Ethical Prohlems - Business Success and the Moral State - Rights and Duties of Capital and Labor - Cruelties of War and Blessings of Peace - The Century's Moral Gain - Changed Treatment of Viee and Poverty - The Prineiple of Well-doing - Growth of Tolerance and Altruism A lligher !ndividual and l'ublic Conseienee .

261-270

progress of sanitary science

Hygienic Code of Moses - Hippocrates and Disense - Sanitatien and Sanitary Science - Foundation Rules - Spirit, of Seientitic Invertigation - Effect of Act of Parliment of 1857 - Valne of Offieial Figures - The Riddle of Samson - Ltealth Reports in United States - Duty of Separate States - Martality in London of Filth Disuases - Progress of Sanitation - Diminution of Scourges - Vfiect of Sanitation upon the Weak and Helphess - Value of Culture Tubes - Diseovery of Disence Causes - Of Trichime in Pork - Cemmunicable Diseases 'caused ly Living CrganismsInfectious and Contagious Diseasas - Vses of Biology in Sanitary Science-Puritication of Waters - Of Consumption and Cholera - Eficets of Filtration - What Bacteria are - Of Isolation and Disinfection - Modern Quarantines - Fumigation of Shijs - Lowering of Death Rates - Influence of the Sanitarium - Improved Construetion of Wwellings - Care for Paving and Sewage - Disposal of Refuse - Of Food luspecionn - State Beards of Ilealth - Care of Employes -Of Play and Athletic Gromals - P'ublae Breathing Spmes - Duty of Caring for l'ersonal Health - Bearing of l'ublic Health on Community and Nation
. 271-282

THE CENTURY'S ARMIES ANi) ARNS

Armies and Arms of the Eighteenth Century - Alteration in War Metheds - European Army Systems - Changes made by Napoleon - Battle Wenpons and Tactical Movements - Growing Use of Cannon - The Congreve Roeket - Infantry Formations - The Introduction of the Ritle - The Crimean War and Riffed Sirge Guns - The ltalian War and Ritled Camon - Advent of the Breeh-leader - Introduction of Heavy tions - Arms and Tacties in the Civil War - Use of Steam and Dlectricity in War - Advantage of Railroad an: Telegraph - Introduction of Arnored Vessels - Sifge Artillery - Advent of the Machine Gun - New System of Entrenchment - Germ: © Military System - Coming of the Needle Cimn - Frumeh Military System - Comparison of Russian and Turkish Methods - Strength of the World's Armies - United States Army Organiza-tion-Steel Guns and Smokeless l'owder - Impravement in Mortars - The Dynamite Gun Modern Shrapnel-Sea-Const Guns - Perfection of Modern Ritles - Their Great Range and Power-The Gutling (iun - The Maxin Antomatic - Introduction of the Torpedo-General Review of the Increase in Military Efficiency 283-306

THE CENTURY'S PROGRESS is AGRICLLTLRE

I. Vicissitudes of Eaily Fabming: - First Natiomal Rual - Camal Building - Coming of Railroads - Farming Conditions before the 50's-Madships of Marketing. II. laprovenents in Fabm lmbements and Macmener: - Farmers' Draft upon Nature - The Siekle, Flail, and Crade - Coming of Harvesters - Improvement in Threshers - lortable and Traction Enginer separators and Stackers-Improvements in Other Inplements. III. Imphovement in Stock: - Varions Brecds of C'nttle - Breeding of Ilorses, Sheel, and Swine - Best Breeds. IV. Imphovement in Fanmine Methobs: - In Drainage - Care of Animals - Barns and Stabling Proper Fooll Rations - liencing. V. Home Impovevents: - Home Architecture - The Yard und tiarten - Maintaining Soil Fertility - Proper Mannes - Soil Aualysis - Use of Modern Fertilizers. VI. Imphovement in Agimevitursi Knowimbie:-Agricultural Literature Farmers' Clubs and Institutes - Liranges - Agricultural Colleges - Experimental Stations - The Department of Agriculture - Burenu of Aninual Industry - Agrieultural Newspapers and leriodicals - Sammary of Agrieultural l'rogress.

307-338

progress in civil enginerring

I. An Intmonectony View: - Antiquity of Enginecring-Aneient Roads and Bridges-Nineteenth Century ANances. II. Bumpes: - Primitive Iridges - Iron and Steel Bridges - The Brouklyn Bridge - Niagara Suspension Brilge - Pecos River Viaduct - The Forth Bridge--Remarknile Arches - Stone Bridges. IiI. Canssoss: - Invention of the Caisson - Its Irinciple and Cse - Caisson Adventures. IV. Canals: - The First Suez Cami - Nicaragua and lamama Camals - Modern Suez Canal - The Manchester Canal - Chicago Drainage Canal - What it is for. V. Genoms: - Anciont Methods of Larth Mensuremenis - The Century's Alvance in Methods of Mensurement. VI. Lanaonds:-Their Invention and Develophent-Immense Value. Vil. Tusmas: - Inciont Origin of -. Tumels of Egypt, Babylonia, and India-Roman Tumels - Of the Modern Tamel - Adrance in Machinery and Constructive Proeesses - Mount Cenis 'Tumel - Tumel Survering and Excavating - The Itoosae Tumel - St. Gothard Tumel -St. Clair Tumed - Its Construction and Commercial Effects.

- 339-360

TILE 'GNTCRY'S PROGRESS in THE ANDMAL WURLD

I. Or Animal Diseases: - Effect of Napoleonic Wars - Various Animal Diseases - How eontrolled. II. Incheane is Nember of Animals: - Showing in Europe, Linited States, amd Other Countries. III. In Phovement of Bhebos: - Shurtening the Tine of Growth-Development of Dairy and Beef Breeds - Improvement in Wool Growing - Poultry Breeds - Thoronghbred Horses - The Amerien Trutter - Animal Exports - Fereign Animal Imports - Displacement of Norses by Mechanical Motors - Irices of Animal Products - American Command of World's Animal Markets.

361-374

L.EADNA: WARS OF THE CENTURY

1. Wars of the: Unitel States: - First War with Bariary States - Indian Wars - War of 1812-13atles by Land and Sen - Exploits on the Lakes - Vietory of New Orleans - Second War with Barbary States - The Mcxican War - General Taylor's Vietories - Siege of Vera Cruz - General Scot's March and Battles - Capture of Mexieo - Results of the War - The Civil War, 1861-65-Secession of Stutes - Calling out the Armies - Building of the Navies - The First Battles - Operations in 3862 - Battles of 1863 - The Enaweipation Proclamation - The Turning Point at Gettysburg - Ojening of the Mississippi - Chickamauga and Missionary Ridge - Battles of $\mathbf{1 8 6 4}$ - Aphomattox and Su:render - The Spanish-American War-Its Canses Destruction of Spanish Fleet in Manila Lhay - Destruetimn of Cervera's Fleet - Capitulation of Santiago - Invasion of Porto Rico. II. Fonkige Wans: - Wars of Napoleon- Battle of Marengo - Treaty or Amiens - Third Coalition against France - Battle of Austerlitz - Nelson's Vietory at Trafalgar - Wars of the Fourth Coalition - Wars of the Fifth Coalition - Wars of the Sixth Coalition - Battle of Waterloo - Final Iefeat of Napoleon - Greek Wars for Independence Battle of Navarino - Greek Indebendence - Freneh Revolution of 1830 - Polish Insarreetion Eagland's Wars in Indin - French Republic of 1848-Inngarian Wars for Iodependence - Italian Wars - The Crimean War - Schastopol and Balaklava - l'eace of Paris - The Indian Mutiny Wars of the Alliance against Anstrin - Buttle of Solferino - Danish Wars - Wars for German Unity-Verdict of Sadowa - The Franeo-Irrussian War - Siege and Capture of Paris - The French Republic - The Tureo-Russian War - Chino-Japanese War - Greco-Turkish War - Interference of the Powers - Wars in the Soudan - Review of the Century's Martial Results . . . 375-420

THE CENTURY'S FAIRS AND EXPOSITIONS

The Prinitive Fair - Growth and Intuence of Fairs - Their llistory in Different Countries - Of Agricultural Fairs, Societies, and Institutes - Their Origin and Purpose - National and State Agricultuad Departments - Sanitary Fairs - Special Exhibitions - Evolution of Luternational Expositions - The First Word's Exposition at London - Expositions at Dublin, Paris, New York - Continental Expositions - Second and Third Expositions at London and laris - The Vienua Expmsition - The Centemial at Philadelphan - Description of Subsequent Expositions at Athata, Louisville, New Orleans, Chicagr, Nashvitle, and Omaha - The American Commerrial Mnseuns

421-442

THE CENTURY'S PROGRESS IN CONATE, CCHBENCY, AND BANKING

I. Banks and banking liesochees: - banks an Ganger of Wenth - Civilization reflected in Monctary Machinery - Features of United States Finmeinl Poliey - Gold Store of Various Countries - Banking Resources - Number and hesources of hamks. If. Consace ixn Pronucthos of l'beciocs Metals: - Why told is a Standarl-Itimitive Meanures of Vahe - Jhstory of Coinge - First United States Mint - Coin Ratios - Gold and Silver l'roduction and Mintage - Exports and Luports of Precions Metals-Cireulation per Capita-Coinage Aet of 1873. III. Eally Bankingin the Unitei States: - First Banking Associations - First Einted States Bank and its Branches - Varly State Banks - Scomed United Stutes Bank - llow it felt State banks and Independent Treasury. IN. Histony of Labia. Texiber Notes:- The Treasury Reserve - Treasury Notes - Mamer of Issue and Redemption. V. The Nathenat Baxking Systeat: - Formation of National lhank-laws and Regalations - Number and Cireulation. VI. Formes Basking and Fisance: - lanks of Eaghand and the Continent of
 -Gross heceipts and Expenditures - Interest Charges. Vili. Postal Savinges Banks:-Why they are not adopted in the Linited States, IX. Savings Banks in time Limtio States:Their Number and Strength. X. The Cleaming Hotsi: - How conducted - Its Eronomic Uses. Xi. Panies of the Centeliy and Their Caleses 443-470

TIIE CEATULY'S PROGRESS in FuUIT CULTURE

Early Cultivation of Fruits - Beanty and Uses of Fruits - Fruits brought to the New World Culture at the Begriming of the Century - Early Fruit Distriets - The Experimental Stage Pionsers i: Culture - The Age of I'rogress - First Commercial Orcharils - The Age of Triumph - Spread of Culture in Various States and Arens - Kevolution in Science of Fruit Growing Success and Finhure of Ihifierent Species - Vine Culture - Improved Culture with Implements - liome Consmption and Lxport of Fruits - Our Fruits a Favorite in Euroje - Apple Culture - Uses of Apples - Typical Orchards - Notable Varicties - Lixtent of Apple Orchards - Apple Exports - Progress in the Culture of Other Fruits - Varieties and Best Soils - History and Progress of Berry Culture - The Citrons Fruits - Where and how grown - Their Great Value to Man - General Review of Fruit Culture and Fruits 471-490

THE CEETURY'S COMMERCIAL PROGRESS

I. Wome's Commeuce at End of Eifinterntin Centimy: Methods of Traffic - Volume of Trade. 1I. Revoletion in Commeree: - Change from Sails to Steam - First Ocean Steamers - Steamship Lines - Change from Wood to Iron - The Compound Engine - Advent of Steel Vessels-The Twin Screw-Immense Size of Ships - Their Great Velocity - Appointment and Service. III. Imphovement in Commehchal Aexilinhes: - Hetterment of Waterways - Ship Canals - Harbor Improvements - Cable and Hanking Facilities. IV. Expansion of international Trade: - Europeaa Commercial Growth-lood lmportations. V. Trade of the Unitid States: - Exteat of Domestic and Foreign - Vast Extension - Imports and Exports Character of. VI. Tue Amenican Makine: - Former Carrying Trade - Modern Carrying Trade - Deeline of United States Maritime Importanee. Vif. Amebican Sumpuldina. Vili. Causes Foh the, Century's Commenchat Progness:-Vonomie, Political, and Social Cuuses. IX. The Twentietil Century Phosiect

491-514
untries - Of al and State liternational Paris, New D'aris - The xpositions at Commercial
$421-442$
rellerted in of Varions xis lemeucalue - Hisduction and inage Aet of lizst lonited low it fellates: - 'The N Nationat Number and Comtinent of sunce 1857: Nks: - Why , St.tes:ts Benomic

443-470
ew World atal Stage of Triumph Growing Implements pple Culture tris - Apple ory and l'roeat Value to 171-490

EDUCATION DLHING THE CENTLRY

Education a Hundrul Years ago - Iestalozi's Intluence - Froelrel's Kinlergarten System - Its Introdnction into the United States - Eaglish and German Schook - Great Einropean Teachers - Foundation uf I'uhbic School Systems in the United States - The Battles for Public Sehools Immensity of 'rommon School Systems - Number of schools and l'upils - lixpenditure for Sthools - l'rimitive schoolhouses - Old-time Teachers and Methoils - The Modern Sehoulhouse - Improvemouts in Trachers and Methols - Of the ligin Schoul - Cullege and University -

 School Furnishiurx - Text-1)ooks - Cuiversity Courses of Lectures - Sehools of Mannal Training and Busin... Diducation of the Xegro hace-bisperiment of booker T. Wushington-Sehool Funds - Compulary biducation

"THE AUT PIEsbRVATIVE"

1. The Pmannal leess: - Printing Art in the Bighteenth Century - Franklin's Intuence - The
 in Printing l'rusron-Impetus to l'rinting in the luited states - Wonderful Improvement in Presses - Iluw a swift-motioneml lress unurates- Quadruple I'resses - Printing, Folding, and Pasting - Comuting and Delivering - The Sextuph Press - Its Wonderful Aehievements - Color
 of Mechanical Coumbition-First Typosetting Machines - The Linotype - How it sets Type. III. Othei. Benents is time Pmeting Lase: - Old Methods of spreading News - Dodern Electric Morthel- Cobles and Overland Wires - Vast Extent of Newspapers - Code Systems.
 duction of the Type Fombay - The Stereotyping irocess - Llow it preserves Type - Introduction of Electrotyping - Its. Alvantages in Printing - Disapmearance of Wood Engraving - The Art of Illustration - Triumph of Mechanien lrocesses in Printing - Tendency of the Future . 543-570

ploggress in mines and mining

Search for American Mmes - l'rogress of Mining prior to 1800 - Mechods at Beginning of the Century - Coal Mining Methods - Hoisting and Yentilation - Introduction of Steam - European and South Amerimi Mines - Mining in the Linited States-Opening of Mines - Various WorkIng Applinuces - luvention of Dary's Sufety Lamp-The Safety Fuse - Mine Elevators Mining at the Middle of the Century - Gold and Copper Mines of United States - Uses of Man Engine- Hnisting Marchinex - Pumping Engines - Introduction of Machine and Dynamite Uses of tompresed Lir - Mine Ventilation - Improved Fans - Coal-cutting Maehines - Placer and Hydratlic Muing for Gohl - The Timbering of Mines - Lake Superior Iron Mining - Room Mining - Lise of Mining Schools and Sinieties - Mining Laws in England and United States Unwise Action of Congress - Mining, Claims and Rights - Miners' Qualifieations . . . 571-586

ART PROGRESS OF THE CENTURY

1. Panstivis:- lifiert of the Freuch Revolution on Fine Art - Rapid Advanee of French Art Artists and therr Works - Revolution of 1830 - English Art and Artists - Landseape Art - Millet's "Augelus" - The Landseer Fumily - Ruskin's Influence on English Art - Edwin Abbey as a Colorist - Works of Rosa Bonheur - Later English Masters - Continental Artists - American Masters - lise of American Art Sehools - Their Influence on Art - Some Distinguished Schools - Era of Excessive Coloring - American Landscapes - Women Artists of America - Their Style and Intuence - Scundinavian Artists - Modern Art In Seotland - Masterpieces in European Galleries - Masters of Current Art in America - Some of their Great Works. It. Sculprune: Old World Senlptors at Beginuing of Century - Centres of the Art - Advance in Different Countries - Masterpieces - American Sculpture - Notable Artists and their Works - Characteristics of Seulptors - Effect of the Columbian Exposition - Names and Works of Modern Senlptors.

58i-614

TIIE CENTURY'S ADVANCE IN SURGERY

Surgery at the Dawn of the Century - Methods in Early Purt of the Century - Discovery of Anmsthesia - Its Great Advantages - Antiseptic Surgery - Healing by First Intent - Setting of Frac-
tures - Medern Treatment of Bone Diseases - Of Amputatlons - Control of Hemerrhages - Advance in Wound Trentment - Surgery of the Alimentary Canal - Stomach Surgery - Kidney and Bladder Surgery - IIernia or Rupture - Of Diseases of lemale Organs - Modern Brain Surgery -Its Wonderfuil Advance - Astounding Operations - The Röntgen or X Rnys - Their Value In Surgery - General Revicw of Surgical I'rogress .

615-630

PROGRESS OF MEDICINE

Early Medical Sclence - Progress to Begiming of Nincteenth Century - Fannons Ancient Plysi-cians-Noted Sehools of Dedicine - Medical Charhatms - Evolution of Medical Remedies Importmit Changes in Treatment - First Anericmin Schools of Medicine - Advance in Materia Medien - Growth of Medical Associations - Medical Liternture - IIigh Standarl of Modern Mentical Education - Students and Colleges - Tendency to Special Practice - Great Importmuce of Modern Medienl Diseoveries - Cse of Anasthetics in Medieine - Advance in Physiology and Anatomy - Importance of Truined Nurses - Review of Medical Progress. 831-642

EVOLUTION OF TIIE RAILWAY

FIrst Railways - Vast Development - V'ses of Railways - Importance to Farmers and Jroducers Varinus Rnilway Systems-Government Ownership and Operation - Nileage of hailways - The Word's Great Railways - Methouls of building and operating Railways in bifferent Countries Bridge Structures- Ése of Steel Rails - Railway Siguals - The Block System - Single and Double Tracks - First Stenm Locomotives - Weight and Power of Modern Locomotivex - Tho Old-fashioned Passenger Car - Loxury of the Modern Palace Car - Improvement in Freight Curs - The Modern Air-brake - Advance in Truin Equipment and Service - Rates of Speed - Railway Muil Service-Passenger and Freight Lates - Railway as compared with Water Transportation - Railway Labor - Relief Associations and Insurance - Monntain Railways - Rapid Transit Military Railways - lortable and Slip Railways 643-6itt

AlNANCE IN LAW AND JUSTICE

Progress in International Law - Its Subdivisions - Law-mmking Budies - Powers and Duties of Legislators - Courts of Dustice - Duties of Judges- Of Iurors - Of Civil Procedure - Coditiention of Laws - Criminal Iurisprudence - Putixhments for Crimes - Capital Plunishment - I'olice Powers - Rights of Married Women mader Law - Laws regarding l'arents and Chidren Transfer of Keal Estate - Copyright laws - Their Effeet on I'ublicatiou - Admiralty Laws - Of Seamen and Shipping - Advance in Corporation Laws - Laws relating to Religion - Of Religious Freedom-General Review of Legal Progress 665-6i6

EVOLUTION OF BUILDING AND LOAN ASSOCLATIONS

I. General Princhims: - Objects and Uses of Building Associations - Explanation of the System - The Varions Ilans of Operation - Loan Series - Maturity and Payment of Shares - Cost of Sharea and Loans - liarly History of These Asseciations - Their Churacter abroad - History of American Associations - The First Founded - Eulogies of Building Societies - Vast Membership and Capital - Management in Respertive States - Amonnts returned to Members - Teachers of Practical Thrift - Ynlue of One's Own Home - Comfort for Those of Modest Means - Makers of Better Citizens - Duties of Ollicers and Members - Responsibility of Members - Size and Cost of Heuses usually built -. Typical Houses - The Social Features of Building Secietles . 677-690

EPOCII-MAKERS OF THE CENTURY

Statesmen, Orators, and Jurists - Great tienerals - Naval Itcrues - Noted Preachers and Teachers - Eminent Historians - Distinguished Editors - Noted Scientists - Leading Philanthropiats Famous Inveotors - Popular Novelists - Greatest Poets - Best Actora and Lyric bramatists.
morrhagea - Ad. ery - Kidney and rn Irrain Surgery - Their Value In 615-630
is Ancient Physilieal Remedle's vance in Materia 4 of Modern Melat Importance of Ploysiology and

631-642
and 1'roducers Jailways - The rent Cointries III - Single nusd reomotives - 'Ihe at In Freight t'ars Speed - Railway er Transportation Rapid Transit -643-664
rs and Duties of dure - Codilicaanishment - Poand Children ralty Laws - Of "-OI Religions 665-676
n of the System hares - Cost of road - History 'ast Membership 8 - Teachers of leans - Makers - Size and Cost ties . 677-690

rs and Teachers

 ilanthropists ric bramatists. 691-720
LIST OF ILLUSTRATIONS

page
An Ocean (ireylnmal -Steamaip St. Jouis Frontiapiec
19.
19.
Old Pranklin lilectrical Machine 20
Jeyden Jar 22
Franklin Jnstitut", lhiladelphia 23
Indaction Coil 25
Magnetie Fields of Finwe 26
Haniell's C'ells 27
Norse Telegraph and Battery 27
Sanmel Finley Brea-e Norse 28
Cyrus W. Fielt 28
Cenan Cable 29
Great Jinstern laying an Ocean Cable 31
A String Telephone 32
Thomas Alva Bidisoh. Full page 32
A Graphuphene 35
A. Dynamo 37
The Golden Cuudlestick 39
An Ancient Lamb 39
A Tallow I H_{p} 40
Modern Lamp 40
Electric Are Light 43
Flectric locomotive. From Electrical Age 45
Electric Railway - Thiril lail System 47
Geissler's Tubes 49
Sciagraph or Shadow Pieture 50
An Angust Morning with Farragut 56
British Jattleship Majestic 57
French Battleship Mag•uta 57
German Battleshij, Woerth 58
Italian Batt]eship Sardegna 59
Nelson's Flagshij, Victor: ' 60
Constitution (1812) under Sail. Iermission of the artist. F'ull page 61
Side View of Constitution. Full page 63
The U. S. Steamship Oregon. Copyright by W. H. Rau. Iull page 65
Action between Monitor and Merrimac 66
The Turbinia - Fastest Craft afloat. Permission of S. S. McClure Co. 67
Fiagine of U. S. Steanship Pówhatan, A. 13. 1849. Full page 68
Engine of U. S. Steaner Ericeson 69
Battle of Trafalgar. F'all page 71
The Growilı of Ordnance. Four cuts. Full page 73
Tho Distribution of Armor. Twelve cuts, Full page 78-79
The Growth of Armor. Eight euts. Full page 81
The Movement of Uranus and Neptune 89
Professor James 11. Coffin. 91
The Liek Olsservatory, Mount Hamilton, Cal. Full page 93
The Spectroscope 94
Yerkes Teleseope, Vniversity of Chicago. Full page 95
Professor Williann Harkness 97
Zenith Telescope, made for University of Pennsylvania 100

- Three-inch Transit. By Warner \& Swasey 103
Carolus Linneus of Sweden 105
The Green Rose 106
Head of White Clover, witl Branch from Centre 107
The Peanut-Pod Magnitied 108
Outline of White bugwoud Flawer $10!$
Yellow Toal-Flax in Pedoria stute 110
Gralned Corn-Tassel 111
Banana Flowers 112
The Cruel Plant 113
Old Potato penetrated by Rootlet 113
Fungus growing from liead of C'uterpillar 114
Mary Elizubeth Lense $11 i$
Emma Willard 119
George Eliot 121
Frances Willari 12:1
Distaff and Spindle 120
Spinning Wherel 126
Primitive lland loom 127
Early Spimbing denny 128
Ginning Cotom. Olil way priur t" 1800 129
Ginning Cotton, New way 129
The Modern Mule 130
Hand Comb of the Eighterntl, C'atury 131
Nolle Comb of $18 \mathbf{y} 0$ 132
Plain lower Loom, 1840 133
Weaving. The (lld Way 135
Weaving, The New Way 185
Loom of 1890 136
Jacquard Machine 137
Smith and Skinmer lomin for Moquette l'arpets $13!$
Circular Loom $1+1$
The First Knitting Machine, Lee 14.1
Knitting In the Old Way 145
Kuitting In the New Way 146
Ancient Jirmingham Meeting-house 148
P. E. (lathedral of St. Johat the livine 150
Father Damien, Missionary to Lejer t'olony 151
Salisbury Cathedral, lingland. Fiull page 152
Young Men's Christian Association, Jhiludelphia 153
Baptist Mission School, Jupan 155
Methodist Episcopal Ilospital 157
The New Jibrary of Congress, Whshington, 1. C. Full page 161
Ridgway IJrancli of I'hilalelphia lihonry. finll paye $16: 3$
Publie Library of the City of Iloston. Jy primission of librarian. Full prage 164
John Russell Young 166
Carnegie Free Library, Pittsiurgh. Full page 169
Are de l'Etoile, Paris 17:
Natural History Museum, Kensington, London. F’ull page 175
The White House, Washington, D. C. Full page 176
Glass Covered Areade, Milan 177
United States Capitol, Washington, 1. C. Full page 179
Library Building, University of Virginia 181
Trinity Chareh, New York. Full page 183
St. George's Hall, Philadelphia 185
Trinity Chureh, Doston .-* 187
American Surety Company's Building, New York 188
Sir Humphrey Davy 1112
Michael Faraday 1117
William Crooke., F. IR. S. 900
Sir Henry Bessemer 202
Louis Jaeques Daguerre 2013
Lonis Pasteur 2115
Beethoven in His Study. Full page 2118
Giuseppe Verdi 208
Grand Opers House, Paris 20111
Metropolitan Opera House, New York 214
William Richard Wagner 211
Edwin Forrest 211

Charlotte
Scches fro George Is Jolun (i. I
Alfred 'Te
Heury w
Henjamin
Hornce (
John W.
Joseph M
Recoral 131
The "Illa
The Monh
Kuins of
Socalled
Cunciform
Arelt of T
llittite Ins
A Typiral
Moderis (:
A Typical Centrifuga
Milk Text
llutter-mun
Hutter-ma
The Ithiry
Czar Alex
Sir Ridwar
Captailı A!
Mortality
Map Show
Laborator: Sund Filte A Quarant old style Congreve Minid Hall United Sta Armstrong Rerlman ti Gencral 1 Old Smoot Spencer C Metallie (Prismatic, Mortar on Modern S Krag-Jore J'enetratin Gatling (Nordenfel Suil P'ulve Columbia Improved Automatit Uise IIarr Acme llar Ionble Ct Modern C Hereford Group of
Jersey Cu
l'oland-C
Merino S
Double C

212
212
Sectes from
George 213 216
Jolum
Jolum Johin 1i. Wis 217
Alfrul Tena 218
Henry Wi. I.. 219
Benjamin lo 223
Horace tirerle 224
Jolin W. Fine 225
Josephivelial 823
Recorl Build \quad Mordphia. Fuil page 227
The " llatack " "f shalmunever II. 232
The Moabit.:- inll paye 232
Ruins of Phila. - F'nli juge 235
So-called samenthe of Alexamber the Grent 239
 241
Arch of Titus, li mot 242
llittite Inseriphion mam derabis. Full page 243
A Typical latiry tam, fiull page 247 247
Modern Cremmely ath Cheren Pactory 249 249
 251
Centrifugad crram sumpator ia Operation. Fall page 253 253
 254
Butter-making on Farm - The Oli Way. Full page 2 5 5
Butter-making Thy New Way 257 257
The thary Maitd. F'nll patye 239 239
Czar Alexamher II., of Ru*iat 265
Sir Balward Bulwer 260
Captain Alfred Itevifus 269
Mortality Chart 273
Map Showing "Rogistration States" 275 275
Laboratory of the Luiversity of Pemnsylvania. Full page 277
Sand Filter Red 279
A Quarantine station 281
Oh style shrapurel 284
Congreve Rocket 285
Minied Iall 286
United States Ritle Munkrt, 18:5 286
Armatrong Field (iun 287
Rodman tilln 288
General Wintield scott. Full page 288
Old smooth-lare Mortar 289
Spencer Carbine 291
Metallic Catridge of 186t-65 242
I'rismatic, l'owder 298
Mortar on Revolving lloist. Full page 299°
Modern Shrapmel 301 301
Krag-lorgenseli Ritle 302
J'enctrating Power of Guns and Bullets. Fall page 303
Gatling Gun 31)4
Nordenfeldt Rapid Fire Gun 305
Soil Pulverizer. Furnished hy author 309
Columbin Harvester and Binder. Furnished by author 311
Improved Thresher, with Blower and Self-feeder. Furnished by author 312
Autmantic Stacker with Folding Attachment. Furnished by author 313
Dise Harrow. II. P. Denocher \& Co., Hamilton, Ont. 314
Aeme Lharrow. Furnished by author 315
Thouhle Corn Cultivator, Loug-Alstatten Co., Hamilton, Ont. 317
Modern Clover lliller. Gaar, Scoot \& Co., Richmond, Ind. 319
Itereford Cow, "Lady Laurel." Furnished by author 320
Group of Aherdeen-Aingus Cattle. Courtesy of D. Bradford \& Son, Aberdeen, O. 321
Jersey Cow,"Ida," of St. Lambert. Miller \& Sibley, Franklin, Pa. 322
l'oland-China Ilog. Furnished by author 323
Merino Sheep. John Pow \& Son, Salem, 0. 325
Double Corn Planter. H. P. Denocher \& Co., Hamilton, Ont. 326
Hand Garden Plow. H. P. Denocher \& Co., Hamiltem, Gut. 327
 331 331
Asplinwall Potace l'lanter. F'irminhed by nuthor 3315
Brooklyn Suxpension bridge. f'ull page 341 341
The Niagara Rallway Arch. Courtexy of ('ruat 'Truak 11. It. Fiull page 34:3
The Firth of Forth Bridge, General Viaw. C'vedtt "Bridges," Chicugo. Fiull page 344
Pueon IRlver Vladinet 345)
Formal Openlug of Suc\% Canal 347
Manchester ship C'aual 341
Complete Rork Cut Chleago Drainnge C'manal. Courtesy of Dhigerwood Man. ('o. Full page 351
An "Athas" Powder Blant under Cableway. Copyright by Charles Stadler, Clikng", Full puge (6)
American Portal of St. Clair Thmel. t'onrtexy of (irand Trunk R. K. 354
Interlor of St. Clair Tumed, Courtexy of Graid Truak R. It. :15:1
Thoroughtibed. F'all jage $313:$ $313:$
Watering the Cows 3135
A Temperance Society. (Ilerring) 311 311
Art Crities. (Gehler) 148
French Coach-Ilorsa "(ilainintor" 361
Paeling Ilorxe "Star l'ointer." Tine lm. 69 1.4" 371
Automohile or Horseless Carriag. Courteny of Electric Automobile Co. 373
Commodore Stephen Decitin 374
Commodore Perry at Hatife of Lake Eirie 377
Schoolship Saratoga. Cuartesy of J'hlarlalphin bourse Book 379
Robert E. Lae at liattle of ('hapmitepere. r'ull mage 2H1
Castle Willimu. Military I'riv(m, New York Harbor :143
Generalx Roburt LS. Lee and Stonewall Jack son :185
General Ulysees S. Grant. Full paye 387
Sherman's Murch to the Sea. F'all page $: 189$
Lee's Surrenler at Appomattox 191
Morro Castle, Santiago Harbor 3192
Admiral George Dewey. Full page 3193
Main leck of Cruixer Chleago 314
Dewey's Guns at Manila. F'ull pmye
Gencral Joseph Wheeler 347
The Truce before Suntiago 3418
Aguinalido, the 'Tagal leetiler 399
Napoleon, 1814. (Melssonier.) F'rll page 411
Admiral lloratio Nelson (1):
Najoleon's lietreat from Waterloo. Fiall page $+05$
Capture of the Malakoff. F'ull page 41:
Battle of Mngenta. F'ull paye 411
Louis Adolphe Thiers 415
Cavalry Charge at Gravelotte. Frull page 111
Battle of Yalu River. Full page 417
Munleh Exposition, 1854 42.3
New Orleans Expmsition, 1884. Full page 425
Elffel Tower, T’aris Exposition, 1888. 427
Court of Honor, Chirago Eaposition, 1893 429
Women's Building, Chicago Exposition, 1893 431
Agricultural Building, Atlanta Exposition, 1895 4.3
Machinery IIall, Atlanta Exposition, 1805 4.4
Women's Buiddiug, Nashville Exposition, 189% 435
Art Building, Nashville Expposition, 1897 437
Grand Court, Omaha Exposition, 1898. Photograph by II. C. Hersey 439
Nrational Export Exposition, Pluladelphia, Sept. 14 to Nov, 30, 1890. Electro supplled by Commercial Museum. Fiull page 441
Old United States Mint, Philadelphia 47
Ner United States Mint, Philadelphia. Courtesy of Philadelphia Bourse Blook. Frall paye 451
Carponter's Hall, Philadelphia, First Site of First United Statea Bank. Full page 453
Girard Bank, Philadelphia, Second Site of First United States Bank 45%
Second L'nited States Bank, I'hilatelphia, now Custom House 457
Bank of England, London 463
German Bank, Bremen 464
The Bourse, Paris. F'ull page 464
New York Clearing IIonse 468

Packing Aphlen tor Export, St. Catherines, Gut. F'all page 477
Lady if Coverly firupes, Mary ville, t'al. Ihotogruph liy nuthor. Full page t8:
Orange Orehned, Suaford, tha, Photograjli ly suthor t8:
Olive Orehard, San Jomi, Cat. I'hotographin byathor 488
I'henpple Fieli, l'aion leachi, Fia, l'hotograph by anthor 48!
A Clipper Ship. Jormission of Whittaker © Co. 493
thorert Fintom 4114
Tho C'lerumont, Fiulton's l'irst Steumboat 405
S. Cunaril, Founder of Firat Ocean I'acket Idno. Courtesy of C'unard s. S. Co. . . . 497

Crumis' Shipard on the Iblaware. foull puge 512
l'eatalozai, of Yverdian $\$ 17$
Frowlel, Fombler of Kindergartens bly
Itr. 'I'homas Aruohd, Iugloy, England D20)
An thd lag schoolhoume 52 I
Schoolhonace at Sleepy Ilollow 524
Interior of Slaply Iloliow Schoollouse bus
Chilil's liuhlo. full page 527
Dr. Charles W. Litiot, I'resident of IIarvard l'niversity 5ill
Willinn T. Ilarris Bi3it
Itenl Seloolhouse ant lírounds. 534
Suggestions for plunting a Schoglgronind 535
New High Schoal, Ploliadelphia, Full puge 5
Ir. Willinn II. Maxwell, Superintendent "Greater New York" Sehools 538
Booker T. Wanhlogton, I'rimeljal Tunkegee Institute 543
IDr. B. Benj. Andrewn, Superintendent of Schools, Chilango, Ill. 541
Darly Iland frinting lress B43
The i'ulnmbian l'ress. 545
Washington IInal I'ress 541
Ohl Wroolen Frame Alans Press 547
Loulde Cyinder l’ress 540
First I'erfecting l'ress 551
Fontrallur Two-Revolition I'ress 55:l
Litlographic l'ress 505
Numbering Carl P’ress. 557
Linotype (Typersetting) Machhe - Front View 550
Oetuple Stereotype I'erferting I'ress and Folder. Full page 560
tutline of Typesetting Machine
Sinking, Drifting, and Stoping in Mining 77.
dir Compressor. 5it
The "Sergeant" Rock Drill 575
Steam-Driven Air Compressor 576
Driving a lailwny Tannel. F'ull page 577
Straight Line Air Compressor 578
Ibuplex Alr Compresar 57\%
Flectrie Coal-Mining Machine, Full page 581
Gold lbredging on Swan'liver, Colorado. Full page 583
Power L'lant at Serome Park 585
The Holy Women at the Tomb 58!
Whisjers of Love. (Bougnerean.) Full page 501
Christmas Chimes. (Blashlield.) Full page $5: 12$
Greck Girls playing at 13all. (Leighton) 593
Lambsecr and his Favorites. (By himself.) Full page 505
The llorse Fair. (Resa Bonheur.) Full page 597
At the Sbrine of Venus. (Alma Tadema) 601
Najoleon I. (Canora) 603
Statue of Ilenjamin Franklin. (Iloyle) 605
The Washington Monument, Fairmount Park 607
Photographic View of New York City $\$ 11$
Surgieal Operating Room, Howard Mospital, Philadelphia 617
Clinical Amphitheatre, Pennsylvania Hospital, Full page 621
Pennsylvania llospital, Philadelphia. Frem its "Histors"," Full page (i24
X-Ray Photograph of a Compound Fracture of Forearm 638
X-Rny lidure of a Dindorated Ellow, f'ull mage (122)
Ir. Iliver Wemaldil linhmex $10: 17$
1)r. Nathan Nmith bavim, of Chimgo. Comrteny of Dr. Davim $6: 19$
 Cilemn. r'ull jmage 840
I, Marion Sims, A, IB., M. D., New York. Comerexy of Win. Woul \& d'o. 141
The Olid Stage Coach 144
Firmt Truin of Stenm Cars 1145
A lialiway 'Train in liflgimm 467
Laenp in the Selkirkn, showing Four Trackn. F'ull proge 644
Eantrince to St, Gollaral Tumbel, Switzerland 46
Rullway Siguals 1152
An Ameriem Lixprems locomotive 1153
An American Freight Locomotive 685
Exterior of Latest Sleeping C'ar 013:
Interior of Pulman Sleeping Car 187
Railway Suppanion IIrigge, Niagara Falls, From American Sowiety of !ivil Dinginerers, Fiall mage 069
Itagerman Jass on Colorado Midland It.15. Bilil
View inear Verrugas, on line of Oroya liallway, I'eru 1163
Indepumicnce Hall and Square - Whater Scelie Hins
Hun. Mwiville Fulher, Chief Juxtice U. S. Supreme Cours 61010
State, War, mad Navy Buildhg, Washington, I. C. 673
Iortian and Banmain. Trial Scene from "Merchant of Venice." F'ull page 145
Paying thelr Dars. F'ull page 670
First Bullding mad lann Axareintion Alvertionment lis]
Huw of $\$ 1400$ Houses lixß
Plun of siti00 Honsex 1887
Bublding Aswociation Bunquet. Fiull page 6! ! !
Dirulumas lineoln 84
Jeflersom Davis H: 12
Willime E. (iladstone
Thoman deffersom bills
Otto Li. L. Von Bismarek $10: 3$
Willian McKintey bibs
(irunt'^ Tomb, Hiverxide Drive, New York City H:9
Duke of Wellington 701
Count Von Noltke 701
General Giuseppe Gnribalui 718
Charlew II. Spurgeon 705
Whiam Wiiberforce 7116
Thoman 1. Mactulay 76
Florence Nightingale 312
Claru Barton 713
Sir Waiter Scott 715
Charles Dickens 716
Loril Byron 717
l'I'K.

WONDERS OF ELECTRICITY

1. AT THE DAWN GF THE CENTUNY.

Wuen, in his "Midsummer Night's Dream," shakespeare placed in the month of P'uek, prince of furies, the playful speceh, -

> "I'll put a pirille ronnd about the earth In forty minutes,"
he had no thought that the undertaking of a boastful and prankish sprite could ever be outdone by human agency. Could the immortal bard have lived to witness the time when the girdling of the earth by means of the electric current became easier and swifter than elfin pronaise or possibility, he must have speedily remoleled his splendid comedy and denied to the world its telightful, fairy-like features.

An old and charming story rims, that Aladdin, son of a widow of Bagdad, became owner of a magic lanp, by means of whose remarkable powers he, could bring to his instant aid the services of an all-helpful genie. When Aladdin wished for aid of any kind, he had but to rub the lamp. At once the genie appeared to gratify his desires. By means of the lamp Aladdin could hear the faintest whisper thousands of miles away. He could annihilate both time and space, and in a twinkling could transter himself to the tops of the highest mountains. How the charm of this ancient story is lost in the presence of that marvelous realism which marks the achievements of modern electrical science!

The earliest known observations on that subtle mystery which pervades all mature, that silent energy whose phenomena and possibilities are limitless, and before which even the wisest must stand in awe, are attributed to Thales, a scholar of Miletus, in Greece, some 600 years b. c. On rubbing a piece of amber against his clothing, he observed that it gained the strange property of at first attracting and then repelling light objects brought near to it. His observations led to nothing practical, and no historic mention of
electrical phenomena is fome till the time of Theophrastus (u.c. 341), who wrote that amber, when rubbed, attracted "straws, small sticks, and even thin pieces of copper and iron." Both Aristotle and Pliny speak of the electric cel as having power to benumb ammals with which it comes in contact.

Thus far these simple phenomena only had been mentioned. There was no study of electric force, no recognition of it as such, or as we know it and turn

OLD FRANKLIN ELECTRICAL MACIIINE. (By permission of Franklin Institute.) it to practical account to-day. This seems quite strange when we consider the culture and power to investigate of the Egyptians, Phonicians, Greeks, and Romans. True, a few fairy-like stories of how certain persons emitted sparks from their bodies, or were cured of diseases by shocks from electric eels, are found seatered throngh their literatures, but they failed to follow the way to electrical science pointed out to them by Thales. Even in the Middle Ages, when a few scientists and writers saw fit to speak of electrical phenomena as observed by the ancients, and even ventured to speculate upon them in their crude way, there were no practical additions made to the science, and the ground laid as fallow as it had done since the ereation.

After a lapse of more than two thousand years from the experiment of Thales, Dr. Gilbert, physician to Queen Elizabeth (A. d. $153: 3-1603$), took up the study of amber and various other substances which, when subjected to friction, acquired the property of first attracting and then repelling light bodies brought near them. He published his observations in a little book called "De Magnete," in the year A. d. 1600 , and thus became the first author of a work upon electricity. In this mique and initial work upon simple electrical effects, the author added greatly to the number of substances that could be electrified ly friction, and succeeded in establishing the different degrees of force with which they could be made to attract or repel light bodies brought near them.

Fortunately for electrical science, and for that matter all sciences, about
(1.c. c 341), who ;ticks, and even reak of the elecnes in contact.

There was no now it and turn ccount to-day. 3 strange when e culture and ate of the Egyps , Greeks, and a few fairy-like ertain persons rom their boilof diseases by ctric eels, are urough their lity failed to folectrical science em by Thales. lle Ages, when nd writers saw trical phenomy the ancients, l to speculate sir crude way, tical additions ence, and the llow as it had tion.

more thán two

 om the experi\therefore Gilbert, phylizabeth (A. D. p the study of is other sub1 subjected to le property of then repelling it near them. sservations in d " De Magor of a work electrical èfhat could be nt degrees of dies broughtthas time the influence of Lord Bacon's Inductive Philosophy began to be felt by investigators and scientitic men. Before that, the causes of natural phenomena had not been backed up by repeated experinents amounting to practical proofs, but had been accounted for, if at all, by sheer guesses or whimsical reasons. lacon's method introduced hard, cold, constant experiment as the only sure meaus of finding out exactly the causes of natural phenomena; and not only this, but the necessity of series upon series of experiments, each based noon the results of the formar, and so continuing, link by link, till, from a comparison of the whole, some general principle or truth eould be drawn that applied to all. This inductive method of seientific researeh gave great impetus to the study of every branch of science, and especially to the unfolding of infallible and practical laws governing the $p^{\text {henemena of nature. }}$

For very many years electrical experiments followed the lines laid down by Dr. Gilbert; that is, the finding of substanees that could be exeited or electritied by frietion. By and by such substances came to be called electrics, and it became a part of the crude electrical seience of the time to compute the force with which these electrics, when excitell, attracted or repelled other substances near them. Among the ablest of these investigators were Robert Boyle, anthor of "Experiments on the Origin of Electricity," Sir Isaac Newton, Otto von Guericke, and Francis Hawksbee, the last of whom communieated his experiments to the English Royal Society in 1705. Otto von Guericke used a hard roll of sulphur as an electric. He caused it to revolve rapilly while he rubbed or excited it with his hand. Newton and Hawksbee used a revolving glass globe in the same way, and thus became the parents of the modern and better equipped electrical machine used for school purposes.

The next step in electrical discovery, and one which marks an epoch in the history of the science, was made by Stephen Gray, of England, in 1729. To him is due the credit of finding out that electricity from an excited glass cylinder could be conducted away from it to objects at a remote distance. Though he used only a packthread as a conductor, he thus carried electricity to a distance of several hundred feet, and his novel discovery opened up what, for the time, was a brilliant series of experiments in England and throughout France and Germany. Out of these experiments came the knowledge that some substances were natural conductors of clectricity, while others were nou-conductors; and that the non-conductors were the very substances glass, resin, sulphur, ete- which were then in popular use as electrics. Here was laid the foundation of those after-discoveries which led to the selection of copper, iron, and other metals as the natural and therefore best comluctors of electricity, and glass, etc., as the best insulators or nonconductors.

Up to this time an excited electric, such as a glass cylinder or wheel, had furnished the only source whence electrieity had been drawn for purposes of experiment. But now another great step forward was taken by the momentous diseovery that electricity, as furnished by the excited but quickly exhausted electric, could, be bottled up, as it were, aind so accumulated and preserved in large quantities, to be drawn upon when needed for experiment. It is not known who made this important discovery; but by common consent the storage apparatus, which was to play so conspicuous a part in after-investiga-
tions, was named the Leyden Jtr or P'hial, from the city of Leyden in Holland. It consisted of a simple glass jar lined inside and out with tinfoil to within an inch or two of the top, the tinfoil of the inside being connected ' y a conductor passing up throngh the stopper of the jar to a metallic kno on top. This jar eould be charged or filled with electricity from a common electric, and it had the power of retaining the charge till the knob on top was touched by the knuckle, or some unelectrified substance, when a spark ensued, and the jar was said to be diseharged. liy conductors attached to the knol, guns were fired off at a distatace by means of the spark, and it is saiel that Dr. Benjamin Franklin ignited a glass of brandy at the honse oía friend by means of a wire attahed to a Leyden jar and stretched the full wilth of the Schuylkill River at Philadelphia.

At this stage in the history of eighteenth century clectricity there enters a chanater whose experiments in electricity, and whose writings upon the subject, not only brought him great renown at home and abroud, but perhaps did more to systematize the seience :mul turn it to practical account than those of any contemporary. This. was the celebrated Dr. lenjamin Franklin, of Philadelphia, l'a. Ite showed to the world that electricity was not created by friction upon an clectrie, but that it was merely gathered there, when friction wats applied, from surrounding nature; and in proof of his theory he invaded the clouds with a kite during it thunder-storm, and brought down electricity therefrom by moans of the kite-string as a conductor. The key he hang on the string became charged with the electric fluid, and on being touched by an unelectrified body, emitted sparks and produced all the effects commonly witnessed in the diseharge ol the Leyden jar:

Franklin further established the difference between positive and negative electricity, and showet that the spark phenomenon on the discharge of the Leyden jar was due to the fact that the inside tinfoil was positively electrified and the outside tinfoil negatively. When the inside tinfoil was suddenly drawn upon by a conductor, the spark was simply the result of an effort upon the part of the two kinds of electricity to maintain an equilibrimm. By similar reasoning he accounted for the phenomenon of lightning in the clouds, and by easy steps invented the lightning-rod, as a means of breaking the force of the descending bolt, and carrying the dangerous fluid safely to the ground. Here we have not oniy a practical result growing out of electrical experiments, but we witness the dawn of an era when electricity was to be turned to profitable commercial aceonnt. The lightning-rod man has been abroad in the world ever since the days of Franklin.

Thus far, then, electrical science, if science it conld yet ie called, had gotten on at the dawn of the nineteenth century. No clectricity was really known but that produced by friction upon glass, or some other convenient electric. Hence it was called frictional electricity by some, and static electricity by others, because it was regarded as electricity in a state of rest. Though a thing fitted for curions experiment, and a constant invitation to scientific research, it had no use whatever in the arts. An excited electric conld furnish but a trivial and temporary supply of electricity. It exhausted itself in the exhibition of a single spark.
den in Holland. infoil to within ected ' y a conc kno on topl. rom a common se till the knob, ified substance, iseharged. By If at a distaice ijamin Franklin by means of a ull width of the
electricity there and whose writrenown at hone e e :mil turn it to is the celebratecl o the world that lat it was merely ; mature ; :mal in a thunder-storm, e-string as a conwith the electrie itted sparks and ge of the Leyden
ive and negative discharge of the s positively elecaside tinfoil was - the result of an intain an equilibno of lightning in a means of breakerons fluid safely wing out of elecen electricity was hing-rod man has
called, had gotten was really known menient electric. atic electricity by f rest. Though a ation to scientitic electric could furexhausted itself in

II. The New Nineteentil centuly blectiricity.

By a happy accident in 1790, Galvani, of Bolcgna, Italy, while experimenting upon it frog, discovered that he could produce alternate motion between its nerves and muscles through the agency of a fluid generated by certain dissimilar metals when brought close together. Though this mysterious fluid came to be known as the galvanic fluid, and though galvanism was made to perpetuate his name, it was not mutil 1800 that Volta, another Italian, showed to the scientific world that really a new electricity had been found.

Volta constructed what became known as the galvanic pile, but more

FRANKLIN INSTITUTE, PIIILADELPIIIA.
(From photo furnished by Institute.)
largely since as the voltaic pile, which he found would generate electricity strongly and continuonsly. He used in its construction the dissimilar metals silver and zinc, cut into disks, and piled alternately one upon the other, but separated by pieces of cloth moistened with salt water. This simple generator of electricity was the forerunner of the more powerful batteries of the present day, and which are still popularly known as voltaic cells or batteries.
But the importance of Volta's discovery did not lay more in the construction of his eleetrical generator than in the great scientific fact that chemistry now became linked indissolubly with eleetricity and electrical effects. The two novel and charming sciences, hitherto scparate, were henceforth to cooperate in those majestic revelations and magnificent possibilities which so signally distinguish the nineteenth century. By means of greatly improved
voltaic cells or batteries, that is, by jars containing acid in which were suspended dissimilar metals, eleetricity conld be produced readily and in somewhat continuous current. By increasing the number of these cells or jars or batteries, and connecting them with conductors, the current conld be made stronger and more effective. In contradistinction to the old frietional or static electricity, the new heeame known as chemical or current electricity.

As was to have been expected, Volta's invention and discovery excited the whole domain of electrical science to new investigation, and brought in their train a host of wonderful results, growing moze aud more practical each year, and pointing the way more and more clearly to the commereial value of electricity as a familiar, inexhanstible, and irresistible power. Thus, in 1801, Nicholson slowed that an cleetric current from a voltaic pile would, when passed through salt water, decompose the water and resolve it into its two original gases, oxygen and hydrogen. In 1807, Sir Humphrey Davy, carrying electricity further into the domain of chemistry, showed, by means of the electric current, that various metallic substances embraced in the earth's erust, and before his time supposed to be elementary, were really dissoluble and easily resolved into their component parts, whether solids, or gases, or both. Two years later, in 1809, lie made the equally momentous discovery of something which was to prove a veritable sit lux, "Let there be light," for the nineteenth century, and illuminate it beyond all others. Though it had been known almost from the date of the first voltaic pile that, when the ends of its two conducting wires were brought close together, a spark was seen to leap in a curved or are line from one wire to the other, which phenomenon was known as the voltaic are, it remainel for Davy to exhilit this are in all the beanty of a brilliant light by using two charcoal (carbon) sticks or electrodes, instead of the wires, at the point of close approach. Here was the first prineiple of the after-evolved are light to be found by the end of the century in every large city, and to prove such a source of comfort and sofety for their millions of inhabitants. This principle was simply that a stream of electricity pouring along a conducting wire will, when interrupted by a substance such as carbon (chareoal), which is a slow conductor, throw off a bright light at the point of interruption. The phenomenon has heen very aptly likened to a romming stream of water in whose bed a stone has heen placed. The stone obstruets the flow of water. The water remonstrates by an angry ripple and excited roar. In Davy's experiment with the pieces of charcoal, both became intensely hot while the electricity was making its brilliant are leap from one to the other, and would, of course, soon be consumed. He , therefore, in showing the principle of a permanent luminant, failed to demonstrate its practical possibilities. These last were not to be attained till the nincteenth century was well along, and only after very mumerous and very baffling attempts.

Between 1810 and 1830, many important laws governing electrical phenomena were discovered, which tended greatly to render the science more exact, and to give it commercial direction. Oersted, of Denmark, discovered a means of measuring the strength and direction of an electrie current. Ampère, of Frame, discovered the identity of electricity and what had before been called galvanism. Ritchie, of England, made the first machine by which a continuous motion was produced by means of the attractions and

TURY

repulsions between fixed magnets and eleetro-magnets. This machine was an early suggestion of the dyamo and motor of the eoming years of the century. It meant that electricity was a source of power, as well as of other phenomenal things.

In speaking of the electro-magnet in connection with Ritehie's maehine, it is proper to say that the electro-magnet was probably discovered between is:3: and 18:30, but precisely by whom is not known. It differs from the natural magnet, or the permanent steel horseshoe magnet, and consists sim. ply of a round piece of soft iron, called a core, aromed which are wrapped several coils of tine wire. When an electrie eurrent is made to pass through this wrapping of wire ealled the helix, the iron core beeones magnetized, and has all the power of a permanent magnet. But as soon as the electric current ceases, the magnetic power of the core is lost. Hence it is called an clectro-magnet, or a temporary magnet, to distinguish it from a permanent magnet.

While the discovery of the electromagnet was very important in the respect that it afforded great magnetic power by the use of a limited or eeonomie galvanic force, or, in ofher words, by the use of smaller and fewer Yoltaic batteries, it was not until Faraday began his sulendid series of electrical diseoveries, in 1831, that a new and exhaustless wellspring of electrieity wiss found to lay at the dcor of science. Faraday's prime discovery was that of the induction of electric currents, or, in other words, of manufacturing eleetricity directly fism magnetism. He began lis experiments with what became known as an induction coil, whieh, though then crude in his hands, is the same in principle to-day. It cont this are in all
sticks or elecHere was the the end of the fort and sofety y that a stream terrupted by a tor, throw off a has heen very stone has been monstrates by h the pieces of naking its brila be consumed. nant, failed to to be attained - numerons and
electrical phee seience more ark, diseovered eetric enrrent. hat had before st maeline by attractions and
nich were susand in somecells or jars or ould be made frictional or t eleetricity. ry excited the rought in their ical each year, 1 value of eleerlus, in 1801, e would, when it into its two y Davy, carryy means of the in the earth's ally dissoluble ls, or gases, or tous discovery e be light," for Though it had when the ends ark was seen to h phenomenon t this are in all

sists of an iron core wrapped with two coils of insulated wire. One coil is of very lengthy, thin wire, and is called the secondary coil. The other is of short, thick wire, and is ealled the primary. When a magnetie current is passed throngh the primary coil, with frequent makes and breaks, it induees an alternating enrent of very high tension in the secondary coil, thus powerfully increasing its effeets. In Fanalay's further stmely of electrie induction, he showed that when a conducter

MAgNETIC FIELDS OF FORCE. carrying a current was bronght near to a second conduetor it induced or set un a current in this seeond. No magnets were found to have a similar effect upon one another.

The secret of these phenomenia was foumd to lie in the faet that a magnet, or a ronductor earrying a current, was the centre of a tield of fore of very considerable extent. Such a tield ol force can be familiarly shown by placing a piece of glass or white paper sprinkled with tine iron filings upon the poles of a magnet. The filings will be dawn into eoncentric circles. whose extent measures the magnet's field of force. so also the extent of the fichl of foree surromuding a conductor earrying a current may be familiarly shown. In these instances the filings brought within the fields of foree are magnetized. So woukd any other conducting substance be, and would become capable of earrying away as an independent current that which had been induced in it. Here we have the essential prineiple of the modern dynamo-electrie machine, commonly called simply dyamo. Faraday aetually constructed a dynamo, which answered very well for his experiments, but failed in commereial results becanse the only somree of energy he conld draw upon in his time was that supplied by the rather costly voltaic eells.

During Faraday's time and subsequently, electricians in Europe and the United States were active in formulating further laws relative to the nature, strength, and control of electrical eurrents, and each year was one of preparation for the coming leap of electrical seience into the vast realm of commercial convenience and profit.

111. THE TELEGRAPII.

From the date of the diseovery that electricity could be conducted to a distance, dreams were indul ged that it could be made a means of communi-

The coil is of other is o! ic current is is, it induces , thus powerrie indurtion, a eomitucter brought near it inchued or s secound. So , have a simother.
phenomenat fact that a r carring a zof a field of rable extent. an be familgr a piece of rinkled with n the poles filings will utric circles. es the magso also the of force surcarrying a iarly shown. the filings lds of force would any ance be, and of carrying lent current inrluced in amo-electric onstructed a iled in comupon in his
ope and the the nature, of preparaof cominer-
lucted to a f communi-
fating intelligence: In the eighteenth century, many attempts were made to carry intelligent sigmals over electrie wires. Some of these were quite ingenious, but in the end fialnes, because the old-fashioned frictional electricity was the only kind then known and employed. Fiven after the iliscovery of the voltaie cell or battery, which afforded an ample supply of chemical plectricity to operate a telegraphic apparatus, the time was not ripe for sucuesslul telegraphy, for up till $18: 36$ no battery had been produced that was sufficiently constant in its operation to supply the kind of enrent required. For feasible enegraphy, two imbortant steps were yet necessary. One

DANIELI'S CELLAS. was the iliscovery of the electro-magnet. 18:.0-:30. 'The other was the discovery os the Daniell's battery or cell, in 1siaf, by means of which a constant electric current conld be sustained for a long time.

Bat even before these two indispensable requisites had been supplied by lmman genins, much hal been doue to develop the mechanical methods of ronveying intelligenee. In 1slif, Ronalds, of England, construeted a telegraph by meatus of which he operated a system of pith-ball signals which rould be umberstoor. In $1 \mathbf{s} \mathbf{x} 0$, Ampire suggested that the deflection of the magnetic nerdle by an electric current might be tmond to account in imparting intelligence at a distance. In 1828 , lyar, of New York, perfected a telegraph by mems of whicin he mate tracings and spaces npon a piece of moving litmus paper, which tracings and spaees could be intelligently interpreted through a prearmaged rade. A little later, 18:30, Baron Schilling constructed a telegraph whieh impurted motion to a set of needles at either end.

From this time up to 1837 , which last year was a memorable one in the history of telegraphy, the genins of such distinguished men as Morse in America, Wheatstone and Cooke in Englanl, and Steinhill in Munich, was brought to bear on the further evolution of the telegraph. While all these names have been associated with the invention of

MOILSE TELEGRAPIL AND BATTEITY. the first practical telegraph, it is impossible, with justice, to rob that of Morse of the distinguished honor. Morse conceived his invention on board the ship; Surry, while on a voyage from Havre to New York, in October, 1832. It consisted, as conceived, of a single circuit of conductors fed by some generator of electricity, He devised a system of signs, which was afterwards improved into the Morse alphabet, consisting of dots or points, and spaces, to represent numerals. These were impressed upon a strip of ribbon or paper by a lever which lield at one end a pen or pencil. The paper or ribbon was made to move along mider the pencil or bel at a regular rate by means of clockwork. In accordance with these con"eptions, Morse completed his instrument and j . iblicly exhibited it in 183 5 .

He gave it further puhlieity, in much improved form, in 1837. In this form it was entirely original in the important respects that the ribbon or paper was made to move by clockwork, while a

samuel finley mieesic moise. pen or pencil gave the impressions, thus preserving a permasent record of the message conveyed.

Though muler systems less original and effective than that of Morse, a first actual telegraph hat been operaterl between Paddington and Drayton, langland, a distance of $1: 3$ miles, it 1833, and one at Caleutta, Imlia, for a distance of 21 miles, it was not matil 18.4 that the worlh's era of practieal telegraphy actually set in umber the Morse system, which speedily superseder all others. In that year, amid the jeers of congressmen and the alverse predietions of the press, Morse erected the first American telograph line in America, between Baltimore and Washington, a distince of 40 miles, ami, to the confusion of all detractors, sent the first message over it on May 27 of that year. From that clate the fame of Morse was established at home; aml soon beeane world-wide. His system of telegraphy, with slight modilications, hecume that of all civilized comerties.

As was to be expeeted in a century so full of enterprise as the mineteenth, a science so attraetive, so useful to eivilization, so commercially valuable, so full of possibilities, as telegraphy, condd not remain at rest. Everywhere it stimulated to improvement and new invention and discovery; and as the century progressed, it witnessed in steady succession the wonders of what became known as duplex telegraphy, that is, the sending of different messages over the same wire at the same time. Again, the century witnessel the invention of quadruplex telegraphy, that is, the sending of four separate messages over the same wire, two in one direction and two in another. This was followed by

cyrus w. field. the invention of Gray's harmonic sy/stem, by means of which a number of messages greater than four are transmitted at the same time over the same wire; and this again by Delaney's synchronous multiplex system, by means of which as many as 72 separate messages have been sent over the same wire at the same time, either all in one direction, or some in ore direction and the rest in an opposite.
a this form r paper was k , while a ssions, thus ord of the
ss original orse, a first operated eyton, Eng. s, is $18: 39$, for a disuntil 18.44 cical telethe Morse rseded all he jeers of redictions the first America, hington, a o the conthat year. on beeame ecame that

For a the sueressfal trlegraphy was limited to overland spaces, the conductors or wires, consisting of iron or copper, being insulated where they passed the supporting poles. In the cities, supporting poles proved to be unsightly and dangerous, and they were suceeded by undergromal conduits carrying iasulatel wires. In 1s;3), we read of what may be reckoned the first suceessful experiment in telegrapling under water by means of an insulated wire, or cable, as a eouductor. 'The experiment was tried at Calentat, and under the river Hugli. In $1 \mathrm{SH} \mathrm{H}^{2}$, Morse experimented at Now York with an under-water eable, and showed that a suceessful submarine telegraphy was practical. In 18.48, a eable, insulated with gutta-pereha, was laid under water between New Fork and Jersey City, and sucessfully operated. In 1851, a submarine cable was laid and successfully operated under the English Chamel. An enterprising American, Cyms W. Field, of New York, now took up the subjeet of submarime telagraplyy, amd suggested a cable moler the ocean between Ireland and New fommlland. One was laid in 185π, but it unfortunately parted at a distance of three lundred miles from land. A second was laid mader Mr. Field's anspices in 18:8, but the insulation proved fanlty, and after working imperfectly for a° month, it gave out entirely.

These disasters, though furmishing much valuable experibnce, elarked the enterprise of snbmarine telegraply for a number of years. Not until 1861, when a deep-sea cable was successfully laid and operated between Malta and Alexandria, and in $186 t$, when one was laid aeross the lersian Gulf, din enterprise gain sufficient comrage to dare another attempt to cable the Atlantic. In 1sion, that attempt was made. Again the cable broke, but this did not dissuade from another and snecessful attempt in 1866. This signal trimph was the foremmer of others, equally important to intermational commerce and the world's diplomaey. Countries far apart, and isolated by oceans, have, by means of deep-sea cables, been lrought into intimate relation, and made sherers of one another's intelligence, enterprise, and civilizing instinets. What the overland telegraph has done toward bringing local states and communities into contact, the submarine cable has done for the remote nations.

In form, an ocean cable differs much

OCEAN CABLE. from the simple wire which constitutes the conductor of an overland or even undergronnd telegraph. It is made in many ways, but mostly with a centrai core of numerons copper wires, which are more flexible than a single wire. Ti se are thickly covered with
an insulating material, such as gutta-pereha, after first being heavily wrapped in tarred canvas or like material. The oentral eores may be one, two, three, or even more in mumber. Where a cable is likely to be subjected to the nbrasion of ship-bottoms, rocks, or anchors, it has an outer covering or guard eomposed of elosely united steel wires. In submarine telegraplay, the instruments used in sending and receiving the message are very much more ingenious, deliente, and eostly than in overhund telegraphy.

Whereas at the begiming of the nineteenth century electric tolegraphy was an unknown science, and even up to the middle of the century was of limited use and doubtful eommercial valne, nevertheless the end of the century witnesses in ita growth and application one of its most stupendous marvels. From the few miles of overland wires in 1844, the total mileage of the ceutitry has expanded to approximately $5,000,000$, and the sulmarine to 170,ow, A single company (the Western Union) in the United States operates s 00,000 miles of wire, conveying $\mathbf{6 0 , 0 0 0 , 0 0 0}$ messages per year, while throughout the world more than $200,000,000$ messages per year serve the purposes of eulightened intercourse. The eapital employed reaches many lundreds of millions of dollars.

The close of the nineteenth century opened possibilities in telegraphy that may be elassed as startling in eomparison with its previous attaimments. It would seem that the intervention of the familiar condneting wire is not absolutely neeessary to the transmission of intelligence. The old and well-established prineiple of induced currents has lately heen turned to account in what is termed "telegraphy withont wires." As an instance, a telegraph wire, when placed elose alongside of a railroad track, will take nj and convey to and from the stations the induced pulsations of a magneto-telephone placed within a passing ear, and comeeted to the metallie roof of the car. This system has been put to practical use on at least one railway, and pronomeed feasible.

But a greater marvel than this springs from the diseovery of 'Jertz, about 1890, that every eleetrieal discharge is the eentre of oseillations radiating indefinitely through space. The phenomenon is likened to th: dropping of a stone in a plaeid lake. Coneentric umlulations of the water are set up; little waves, - whieh gralnally enlarge in diameter, and affeet in greater or less degree the entire surface. Could an apparatus be invented to deteet and direet the oscillations made in space by an electric generator, - to pereeive, as it were, the ether undulations, just as the eye notes those on the lake's surface?

In 1891, Professor Branley fcund that the electric vibrations in ether could be deteeted by means of fine metallie filings. No matter how good a eonductor of electricity the metal in mass might be, when redueed to fine filings or powder it offered powerful resistance to a passing eurvent; in other words, becane a verv noor conductri. An electrie diseharge or spark near the filings greatly decreased their resistance. If the filings were jarred, their original resistance was restored. Branley plaeed his filings in a tube, into either end of whieh wires were passed. These were connected with a galvanometer. Orvinarily, the resistance of the filings was such as to prevent a eurrent passing through them, and the galvanometer remained unaffeeted. But when an electrie spark ras emitted near the tube, the resistance was so
much decreased that the current passed readily through the filings, and was detected by the gulvanometer. This is simply equivalent to saying that the discharge of the electric spark made the tilings to cohere and become a better combetor than when lying loosely in the tube. Here, then, was opportmity for an instrmment which had but to regulate the number of sparks and indimate the presence of the electric waves in order to produce dots and dashes similar to those used in the common telegraph. Such an instrument was brought nearest to perfection by Signor Marconi, a young Italian, in 1896. With it he succeeded in sending electric waves through ether or space, and withont the use of wires, a distance of four miles, upon Salisbury Plain, Englend. Later, he transmitted messages by means of space (wireless) tele-

THE GREAT EASTEIIX J.AYIXG AN OCEAN CCABLE.
graphy across Bristol Chamnel, a distance of 8.7 miles, and subsequently across the English Chamel, a distance of 18 miles. Mr. W. J. Clarke, of America, has improved upon Mareoni's methods of space telegraphy, and shown some remarkable results. Whether space telegraphy will eventually supersede that by wires is one of the problems that time only can solve. But such are the possibilities of electrical science that we may well be prepared for more wonderful revelations than any yet made.

IV. HELLO! IHELLO!

Telegraph (Gr. tele, far, and araphein, to write) implies the production of writing at a distance by means of an electrie current upon a conduetor. Telephone (Gr. tele, far, and phone, sound) implies the production of sound at a distance by the same means, though the word telephone was in early use to describe the transmission of sound by means of a rod or tightly stretehed string connectirg two diaphragms of wood, membrane, or other substance. This last plan of transmitting sound came to be known as the string telephone, and it retained this name until the invention of the electric telephone.

Like the eleetric telegraph, the eleetrie telephone was an evolution. The string telephone, in the hands of Wheatstone, showed, as carly as 1819, that the vibrations of the nir produced by a musieal instrument were very minute, and could be transmitted humdreds of yards by means of a string armed with delicate aliaphagms. But while the string telephone served to contirm the fuct that soumds ure vibations of the ntmosphere whieh affect the tympmum of the ear, it remainel but a toy or experimental deviee till nfter electric telegraphy became an aceepted science, that is, in the year 1833 mad subsp-

A NTRINO TELLEPIGONE.
quently. One of the earliest steps toward the evolution of the electric telephone was taken ly Mr. Page, of Salem, Mass., in 1837, who discovered that a magnetic har could emit somuls when rapidly magnetized and demagnetized; and that those sommls corresponded with the number of eurrents which prodnced them. This sed to the discovery, between 1847 and 1852 , of several kinds of eleetrie vibrators adaptel to the production of musieal sounds and their trans-
 mission to a distance. All this was wonderful and momentous, but a little while had still to elapse before one arose bold enough to admit the possibility of transmitting human speech by electricity. He eane in 1854, in the person of Charles Boursenl, of Paris, who, though as if writing out a fanciful dream, said, "We know that sounds are produced by vibrations, and are adapted to the car by the same vibrations which are reproduced by the intervening medium. But the intensity of the vibrations diminishes very rapidly with the distance, so that it is, even with the aid of speaking-tubes and trumpets, impossible to exceed somewhat narrow limits. Suppose that a man speaks near a movable disk, sufficiently Hexible to lose none of the vibrations of the voice, that this disk alternately makes and breaks the current from a battery, you may have at a distance another disk, which will at the same time exeente the same vibrations."
Bonrsenl further showed that the sounds of the voice thus reproduced would have the same pitch, but admitted that, in the then present state of acoustic science, it could not be affirmed that the syllables uttered by the human voice could be so reproducel, since nothing was known of them, except that some were uttered by the teeth, others by the lips, and so on. The status of the telephone then, according to Bourseul, was that voice could be reproduced at a distance at the pitch of the speaker, but that something more was needed to transmit the lelicate and varied intonations of human speech when it was broken into syllables and utterances. To transmit sim-
tion. The 1819, that ry minute, rmed with ontirm the tympanun er electrie und subse-

efore onc speech by , of Paris, at sounds ane vibratensity of it is, even somewhat ufficiently Iternately 1 distance pus."
eproduced It state of ed by the of them, nd so on. oice could momething of human smit sim-

THOMAS ALVA EDISON.
ply voice was one thing; to transmit the timbre or quality of speech was another.

Boursenl made plain the problem that was still before the investigator. And now comes one of the most remarkable episodes in the history of elecfrieity, - a chapter of mingled shame and glory. In the village of Eberly's Mills, Cumberland County, Pa., lived a genius by the name of Daniel Drawbaugh, who had made a study of telephony up to the very point Bourseul hal left it. He had transmitted musical sound, sound of the voice, and other somuls in the same pitch. He had said that this was all that could be done fill some means was discovered of holding up the constant onward flow of the electric current along a conducting wire by introducing into such flow a variable resistance such as would impart to simple pitch of voice the quality or timbre of human specch. Drawbaugh achieved this in his simple workhop as early as 1859-60, aceording to evidence furnished to the United States sipreme Court at the celebrated trial of the cases which robbed him of the right to his prior invention. He did it by introducing into the circuit small quantity of poovdered chareoal confined in a tumbler, through which the current was passing. The ehareoal, being a poor conductor and in sinall grains, offered just that kind of variable resistance to the current necessary reproduce the tones and syllables of speech. He transmitted speech between his shop and house, and proved the suceess he had met with before udiences in New York and Philadelphia. But he neglected to care for the gommercial side of his discovery, though many of his patents antedated hose which contributed to deprive him of deserved honor and profit.
In 1861, Reis, of Germany, came into notice as the inventor of a telephone hich transmitted sonnd very clearly, but failed to reproduce syllabified peech. However, the principle and shape of his transmitter and receiver fere accepted by those who followed him. Two men now came upon the cene who had reached the conclusion already arrived at by Drawbangh, and ho became rivals over his head for the honor and profit of an invention by beans of which the quality of the voice in speaking could be transmitted. These two were Elisha Gray, of Chicago, and Alexander Graham Bell, of 3oston. Their respective devices seem to have been akin, and to have been resented to the patent office almost simultaneously; so nearly so, at least, s to make them a part of that long, costly, and acrimonious legal contention ver priority of invention which did not end till 1887.
Both bell and Gray reached the conclusion that the transmission of articuate speeeh was impossible unless they could produce electrical undulations orresponding exactly with the vibrations of the air or sound waves. They prought this similanity about by introdncing a variable resistance into the leetric current by means of an interposing liquid, just as Drawbaugh had one years before with his tumbler of powlered charcoal. Bell exhibited fis instrument with comparative suceess at the Centennial Exhibition in $\mathbf{1 8 7 6}$ In Philadelphia; but much had yet to be done to perfect a telephone of real ommercial value.
The years 1877-i8 were years of great activity among electricians, whose rime olject was to perfect a telephone transmitter and receiver, by means of hose mutual operations at opposite ends of a circuit all the modulations of peech could be preserved and passed. To this end Berliner introduced into
a transmitter or sender the then well-known prineiple of the microphone (Gr. mikros, small, phone, somud), which magnified the faint sounds by the variation in electrical resistance, cansed by variation of pressure at loose contact between two metal points or electrodes. Edison quiekly followed witl: a similar transmitter or sender, in whieh one of the electrodes was of suft carbon, the other of metal. Then came (1sis) Hughes and Hake with senders, in which both of the electrodes were of hard carlm. Subsequently came other and rapid moditications of the seuder, both in the United States and Europe, till the form of telephone now in popular use was arrived at, and which, strange to say, is, in its method of semuing the necessary variable resistance in the eirenit, guite like that employed by Mr. Drawbangh; to wit, the introduction of fine carbon gramules into a small metal cu_{i}) just behind the vibrating diaphrago or disk of the sender. The cirenit goes into the diaphragm in front, passing through the earbon granules and out through the back of the inctrment. The action of talking into the sender eanses the g'anules to be ag.ated, thus opening and closing the eirenit and producing che ronditions necessary to the transmission of articulate speceh. The diaphragm or disk is the very thin rovering of the cup eontaining the granules. It is sometimes made of earbon, lat gruerally of hard metal, as steel. On being strnek by the somd waves of the roiec, it vibuates to correspond. The same vibations are reprolucel in the receiver at the opposite end of the eirenit, and thus one listens to the phenomenon of transmittel human speech. The current for telephonie purposes is furnished by one or more batteries or cells, whose effect is heightened by the presence of an induction coil. The tendeney now is to make "bipolars" - two contacts at the diaphragm - in place of a single eontact. This style is becoming more in vogue in order to meet the demands of long-distanee work. To each telephone is attaehed a generator or device for ringing a little bell as a signal that some one wishes to commmieate. To such perfection have telephones been brought that it is quite possible to converse intelligibly at the distance of a thousand miles, with a less satisfactory service at twiee or thrice that distance. The possibilities of clear spech-transmission at indefinite distance are without measure. Like the telegraph, the telephone has opened an immense and profitable industry, involving humdreds of millions of dollars. At the end of the century it is, unfortunately, monopolistic; but the time is near when a reasonable charge for service will enable every business house to communieate with its customers, and when even the remote corners of counties will be brought into tonch with their eapitals and with one another. Along the lines of eivilizing contact the telephone fairly divides the wonders of the eentury with the telegraph, while for intimate intelleetual commmieation it is a trimph of genius withone parallel. It is the dispenser of speeeh in eity, town, and village; in factory and mine, in army and navy ; thronghout govermment departments; and in Budapest, Hungary, it is a purveyor of general news, like the newspaper, for the "Telephone Gazette" of that eity has a list of regular subseribers. to whom it transmits, at private houses, elubs, cafés, restanrants, and publie buildings, its editorials, telegrams, loeal news, and advertiscments.

A very natural ontgrowth of the telephone was that curious invention known as the phonograph (Gr. phone, sound, and graphein, to write). It is
of the microphone int sounds by the pressure at loose d guickly followed c electrodes was of ues and blake with w. Su. Sisequently the United States se was arrived at, the necessary variM Mr. Drawhangh; all metal cu_{i}) just he circuit goes into es and out through e sender causes the cuit and producing late speech. The ontaining the grannind metal, as steel. rates to correspond. opposite end of the tted human speech. or more batteries or uluction coil. The the diaphragin-in in vogue in order to hone is attached a nat some one wishes on brought that it is a thousand miles, istance. The possice are without meaimmense and profit-
At the end of the is near when a reause to communicate of counties will be nother. Along the the wonders of the al communication it er of speech in city, y ; throughout gorpurveyor of general of that city has a rivate houses, cluls, legrams, local news,
t curious invention cin, to write). It is
not only an instrment for writing or preserving somad, but for reprodncing it. As a simple recorder of somul, it was an instrument dating as far back as 1807. when Dr. Young showed how a tuning-fork might be made to trace a record of its own vibrations. But Young's thought had to go through more than half a century of slow evolution before the modern phonograph was reached; for in the phonautograph of scott, the logographs of Barlow ani blake, and the varions other attempts up to 1876 to make and preserve tracings of speech, there were no suceessful means of reproducing speech from those tracings lit apon.

In that year (187i), Edison, in striving to make a self-recording telephone by comect-

A GIRAPHOPHONE. ing with its diaphragm or disk a stylus or metal point which would record its vibrations upon a strip of tinfoil, accidentally reversed the motion of the tinfoil so that the tracings upon it affected the stylus or tracing-point in an opposite direction. To his surprise, he found that this reverse motion of the tinfoil, tickling; as it were, the stylus oppositely, reproluced the somots which had at first agitated the diaphragm. It was but a step now to the production of his matured phonograph in 1878. He made a eylinder with a grooved surface, over which he spread tinfoil. A stylus or tine metal point was made to rest upon the tinfoil, so as to produce a trabing in it. following the grooves in the eylinder when the latter was made to revolve. This stylus was comected with the diaphragm of an ordinary telephone tramsmitter. When one spoke into the transmitter, that is, set the diaphagm to vibrating, the stylus impressed the vibratory motions of the diaphatin, or, in cther words, the waves of the exciting sound, in light indentations upon the tinfoil. In order to reproduce the somads thus registered in the tinfoil of the eylinder, it was made to revolve in an opposite direction unter the point of the stylus, and as the stylus was now affected by precisely the same indentations it had first made in the tinfoil, it carried the identic. 1 viluations it had recorded back to the diaphragm of the telephone. and tuns reproduced in audible form the speech that had at first set the diaphragm to vibrating. The speeeh thus reproduced was that of the crigiral speaker in pitch and quality. Ingenious and womderful as Edison's machine was, it was susceptible of improvement, and soon Bell and others came forward with a phonograph in whieh the recording cylinder was covered with a hardened wax. This was called the graphophone. Again, Berliner improved upon the phonograph by using for his tracing surface a horizontal disk of zinc covered with wax. By chemical treatment, the tracings made in the wax were etched into the zinc, and thus made permanent. Edison nade further and ingenious improvements upon his phonograph by attaching bearing tubes for the ear to the sound receiver, and by the employment of an electric motor to revolve the wax cylinder. By the attachment of enlarged trumpets and other devices, every form of modern phonograph has been rendered capable of reproducing in great perfection the various sounds of speech, song, and instrument, and has become a most interesting source of entertainment.

F. LYNAMO AND MOTUR.

1)ynamo is from the Greek dmamis, meaning power. Motor is from the Latin motus, or mover, to move. Dynamo is the every-lay term applied to the dynamo-electric mathine. Motor is the every-day term applied to the electric notor. The dynamo and motor are quite alike in prineiple of constrnction, yet direct opposites in objeet and effect. l'erhaps it might be well to designate both as dyuano-electric machines, and to say that, when such manhe is used for the conversion of meehanical energy or power of any kind into electrical energy or power, it is a dynamo. When a reverse result is sought, that is, when electrical energy or power is to be converted into mechanieal energy or power, the machime that is used is a motor. In praetieal use for most purposes they are brought into coün㨁ion, the dynamo being at one end of an electric system, making and sending forth electricity, the motor being at the other ent, taking up surh electrieity and runing machinery with it. Both machines were epoeh-making in the midst of a wondrons century, and both were results of those marvelons evolntions in electrical science which characterized the earlier years of the century.

We have seen how the simple glass cylimer or sulphur roll hecame, when rubbed, a genemator of electricity. In a later elapter of electrical history, we saw a new and more powerful generator of electricity in the voltaic cell, by means of opposing metals ated upon chemically ly acids. The greatest, grandest, most jowerful, and most economie of all generators of electricity was yet to come in the shape of the dynamo. We see its begimings in those investigations of Faraday which led to the discovery of the induction coil and the principles of magncto-electric induction. In 1831, he invented a simple yet, for that date, wonderful machine, which was none the less the first dynamo in principle, becanse he modestly ealled it " A New Electrical Machine." Ite monuted a thin disk of eopper, about twelve inehes in diameter, upon a central axis, so that it would revolve between the opposite poles of a permanent maguet. As the disk revolved, its lower half cut the field of force of the magnet, and a enrrent was induced which was carried away by means of two collecting brushes, fastened respeetively to the axis and circmuference of the disk. This was the first electrie current ever produced by a permanent nagnet. The Fanday machina and others that derived the mechanieal energy which was converted into electric current from a permanent magnet were classed as magneto-generators. Soon the electro-magnet took the place of the permanent magnet, beeause it produced a much stronger field of foref. But then the eleetromagnet had to have a current to excite it, This current was supplied by a magneto-generator, placed somewhere on the dynamo. Now came the thought, suggested by Brett in 1848 , that the induced cliarents of the dynano con ol themselves be turned to account for increasing the strength of the electro-magnets used in inducing thera. This was a most progressive step in the history of the dynamo. It led to rapid inventions, whose principle was based on the fact that every dynamo carried within the cores of its magnets enough of mused or residual magnetism to render the magnets self-exciting the moment the machine started. So the outside means of magnetizing the fields of force of the dyumo passed away.

The dynamo speedily grew in size and importance. The electro-magnets

Motor is from the term applied to the aplied to the elecinciple of construeit might be well to y that, when such y or power of any ten a reverse result , be converted into motor. In practical , the dynamo being orth clectricity, the mit ruming machinidest of a wondrons utions in electrical ry.
r roll becane, when ff electrical history, y in the voltaic cell, cins. The greatest, encrators of electrice its begimings in ery of the induction a 1831, he invented as none the less the " A New Electrical lve inches in diam. n the opposite poles half cut the field of was carried away ly the axis and circmuever produced by a s that derived the rent from a permaI the electro-magnet ceed a much stronger 1 current to excite it. d somewhere on the j48, that the induced count for increasing 1. This was a most to rapid inventions, to earried within the hetism to render the to the outside means away.
The electro-maguets
or fields of force were greatly increased in number, size, and power. There were grat improvements in the construction and efficiency of the wire coils or amatures which cut the fields of force, and a corresponding increase in their mumber. Commutators and brushes underwent like improvement. So, at last. the well-nigh perfect and all-powerful dyamo of the end of the ecutury was evolved, with a capaeity for delivering, in the form of electricity, ninety per cent of the mechanical energy which set it in motion. In the application of stean to machinery, eighty per cent, and sometimes more, of the energy supplied ly a ton of coal is lost.

With the perfection of the dynamo, its uses multiplied. It became a prime factor in electric lighting. Trolley systems sprang up in city, town, and village, taking the place of horse and traction cars. In certain places, as in the Balt ${ }^{\text {nore }}$ tunnel, the dynamo superseded the engine for hauling freight and Cassenger cars. The mighty dynamos which convert the inexhanstible energy of Niagara Falls into eleetricity send it many miles away to Buffalo, to be applied to lighting and to every form of machinery. The end of the century sees a power plant in operation in New York city capalle of furnishing one hundred thousand horse-power, or enough to supply the lighting, rapid trausit, and thousand and one mechanieal needs of the entire municipality. The essential parts of an ordinary dynamo are : (1.) The clectro-magnets, which,
however numerrins, are arranged in eireular form upon part of the framework of the machine. (2.) The iron eoils or armatures, momed in a circle upon at wheel. When the wheel revolves, the armatures pass close in front of the electro-magnets, entting throngh their ficlds of force, and thereby inducing electric current. (3.) The commitator, which eonsists nsually of a series of copper blocks arranged around the axle of the amatures, and insulated from the axle and from each other. The curent passes from the amatures to the commatator. If the current be an alternating one, the commatator ehanges it into a continuons one, and the reverse may also be accomplished. (4.) The brushes, which are thin strips of copper or earhom, are brought to bear at proper points upon the eommntator, making comnection with cach eoil or sets of coils. They cary the correeted current to the outside line or lines. (o.) The outside line or lines, to carry the emrent away to the motor. (6.) The pulley for strap-belting, by means of which the water or stean power used is made to turn the dyamo machine.

Bint we must not forget the motor as a companion of the dynamo, as it, indispensable brother, in turning to practical aceount the electricity sent to it. As we have seen, the motor is the reverse of the dyamo, at least in its effects. It is fed by the dynamo, and it imparts its power to the machinery which it is to set in motion. It is to the dynamo what the water-wheel is to the water. In one sense it is an even older invention than the dynamo, but its extended commercial application was not possible mutil the dynamo had reached certain stages of profection. It is genemally agreed that the first motor of importance was that constructed by Professor Jacobi, through the liberality of the Czar Nicholas, of liussia. dacobi used two sets of electromagnets, by means of whose mutnal attraction and repulsion he rotated a wheel on a boat with a power equal to that of eight oarsmen. But as Jaeobi's electro-magnets required an eleetric current to magnetize them, and as there were then no means of producing such current except by the costly use of the voltaie battery. his invention was umripe as to time.

In 18:0, Professor Page, of the Smithsoniam Institution. constructed a motor which worked ingenicusly, but was still open to the objection of eost in supplying the necessary electric current for the eleetro-magnets. Though varions inventions came abont having for their object a commereially suceessful motor, snch a thing was impossible till (amme produced his improved and effeetive dynamo in 1871. This dynamo was found to work equally well as a motor, and hence it became neeessary for electricians to greatly enlarge their understanding of the nature of electro-magnetic induction. They soon discovered many eurious things respecting the behavior of induced currents, with the result that rapid and simultaneons improvements were made in both dynamos and motors. One of the most curions of these diseoveries was that a motor antomatically regulates the amount of current that passes through its circuit in proportion to the work it is called upon to do; that is, if the work the machine has to do is decreased, the motor attains a higher speed, which higher speed induces a counter electro-motive foree sufficient to check up the amount of current passing through the motor. So when the motor is required to do inereasel work, the machine slows up; but with this slowing up, the counter electro-motive force decreases, and consequently the current passing through the motor increases.
; of the framework in at circle upon a se ill front of the I thereby indueing tally of a series of and insulated from e armatures to the mutator changes it nplished. (4.) The monght to bear at h caeh coil or sets ide line or lines. he motor. (6.) The cam power used is
the dynamo, as its leetricity sent to it. mo, at least in its e to the machinery water-wheel is to an the dyammo, but til the dyuamo lay reed that the first Jacobi, throngh the wo sets of electroIsion he ritated a n. But as Jiteobi's them, and as there he costly use of the
onstructed a motor m of eost in supply-

Though varions ereially suceessful d his improved and k equally well as a eatly enlarge their n. They soon disinduced currents, were made in both liseoveries was thitt hat passes throngh do; that is, if the is a higher speed, suffieient to cheek when the motor is with this slowing uently the current

As with the dyname, one of the marvels of the motor is its effieiency, In perfeet machines, ninety to ninety-tive per cent of the electrical energy supphied can be converted into mechanical energy. For this reason it has beeome a competitor with, and even suceessor of, stean in comutless cases, and espeeially where water-power can be commanded. A prime motor, in the shape of a water-wheel, may be made to drive seores of seeondary motors in places hundreds of miles away. The power developed by the waterfall at Lauffen, Germany, is tramsmitted one hundred miles to Fiunktort, with a loss of only twenty-tive per cent of the original horse-power.
ln its adaptation for preetical use, the motor, like the ly yamo, assumes all sizes and enbraces a host of ingenions levices, yet its pwer and usefulnass always centre around, or are coutained in. its two efticient parts, its armatures and fields of foree. We have

TIE GOLDEN CANDLESTICK. seen how in the dynamo the armatures becime the senree of indnced emrents by being mate to eut the fields of furce of clectro-magnets. Now, a dynamo ean be male to work in an opposite way; that is, by making the magnetie fields of foree rotate in front of the eoils or armatures. In the motor, the field of foree is mostly established by the current directly from the dyamo. 'This eurrent passes also through the immature, whieh hegins to rotate, owing to the foree of the field upon it. 'ilhis rotation of the armature through the fieh of force produees in the armature confuctors an electro-motive foree, which is the measure of the power of the motor, be the same great or small.

V1. "AND TIEERE WAS LIGHT."

Mention of the "eandlestiek of pure gold" (Ex. xxv. 31) may lead to the inferenee that the primitive artifieial light was that of the candle. But "caudlestick" in comeetion with the lighting of the temple is elearly a mis-

ANCIENT LAMP. nomer. The lamp was the original artitieial light-giver, unless we choose to exeept the torch; and if less indispensable than in patriarehal times, it is still a favorite dispenser of nightly eheer. Prior to the middle of the eighteenth century, the lamp had practieally no evolution. It was the same in prineiple at that date as when it illuminated the desert tabernacle. Even the splendid enameled glass or decorated Persian pottery lanps of Damaseus and Cairo, and the magnifieent brass or bronze lamps of Greece, Rome, and the European eathedrals, gave forth their dull, unstealy flame and noisome smoke by means of a erude wiek lying in a saueer or similar receptacle of melted lard, tallow, oil, or some such combustible
lignid. A prime improvement was made in lamp-lighting in 17s:3, by Leger, n^{*} l'aris, who devised the flat, metallie burner, throngh which he passed at matly prepared wiek. A further improvement was made in 1684 by Argand, of l'aris, who introduced a hurner consisting
 of two cirenar tubes, between which passed a circular wick. The imner tube was perforated so as to admit of a demught of air to feed the flame on the inside of the wick. In order to similanly feed the flame on the outside of the wick, he invented the limp chimney, which was at lirst a erude thing of metal. It, however, som gave way to the ghass chamey, which has up to the prosent taken on many improved forms, designed to serenre more perfect combustion and a brighter, steadier glow.

Improvement in lamp-lighting thring the ninetenth century has consisted of an incestinte number of inventions, all aming at economy, brillianey, steadiness, convenienee, beanty, and so on, But in no respect has this impormont been more mpid and radieal than in the adaptation of lamps to the sarions combustible fluids that have bid for favor. White the various oils, amimal and vagetable, were almost solely in vogne as ilhminants at the begiming of the century, they were largely superseded at a later prevod by the burning-fluid known as canphene. 'This was a purified oil of turpentine, which found great favor on account of its economy, eonvenience, cleanliness, aud hrillimey of light. But it was very volatile, and its vifors formed with air a dangeronsly explosive mixture. Yet with all this it might have held its own for a long time, had not Gesner, in 1846, liseovered that a superior minema oil, which he ealled "kerosene," could be readily and protitably distilled from the coal found on Prince Edward Island. This kerosene or lydrocarton oil speedily displaced eamphene as an illuminant. Its mannfacture rapilly developed into an important industry in the United states, and large distilling establishments arose, both on the Atiantic coast, where foreign coal was used, and throughont the country, wherever cannel or other convertible coal was found. With the discovery of petrolem in paying quantities on Oil Creek, la., in 1859, there eame

MODERN LAMP. about a great ehange in kerosene lamp-lighting. It was fonnd, upon analysis, that crude petroleum eontained about fifty-five per eent of kerosene, whieh constituted its most in.portant produet. The manufactories of kerosene from cannel or other coal, therefore, went out of existence, and new ones, larger in size and greater in number, sprung up for the manufacture of kercsene or, popularly speaking, coal oil, from petroleum.
in 17s:3, by Leger. which he passed at in 1784 by Argand. a huruer consisting ween which jassed rer tube was perfodranght of air (1) lo of the wick. In llame on the outted the lamp chima erude thing of gave vay to the ul to the present d forms. desigued combustion and a
ighting during the - of inventions, all lowiuty, and so on. mil radical than in that have bid fin

MODERN LAMP.
ed about fifty-five ant product. The cfore, went out of er, sprung up for il, from petroleum.

This illuminant rame into almost universal favor for lamp use, owing to its clempuess and brilliancy. It is not free from danger when improperly distilled, but moder the operation of stringent laws gy aning its preparation fund testing, dinger from its use has been reduced to a minimmm. In rural districts, in sualler towns and villages, wherever economy and convenience are pessentials, and when besuty in lamp effects is desirable, the kerosene illaminant has becone indispensable.

The diseovery of petrolemu helped further to light the world and distinguish the eentury. It gave us gasolene, niphthat, gas oil, astral oil, and the very effective "mineral sperm," which is almost universally used in lighthonses and as headlights for loemotives. With the addition of kerosene, a favorite light of the begiming of the eentury - the tallow dip of our grandmothers - began to fall into disuse. The homelike pictures of housewives at their ammal eandle-dippings, or in the manipulation of their moulds, became vonerable antigues. Candle-light paled in the presence of the higher illuminamts. Thongh still a convenient light under certain eiremmstances, it phays a gradually diminishing part anid its superiors.

Onc of the signal trimmplis of the century has been the introluction of gaslighting. Though illuminating gas made from coal was known as early as 1691, it did not cone into use, except for experiments or in a very special way, mutil the beginning of the nineteenth century. In 1809 , a few street lamps were lit with gas in London. An unsuceessful attempt was made to introduce gas into Baltimore in 182t. Between $18: 2$ and 1827 , the gas-light began to have a feeble foothold in Boston and New York. Other eities began to introduce it as an illuminant in streets and, eventually, in houses. liut the process was very slow, owing to intense opposition on the part of both sa, ants and common people, who saw in it a sure means of destruction by poison, explosion, or fire. It was not much before the middle of the ecntury that prejudice against illuminating gas was sufficiently allayed to almit of its general use. But meanwhile many valuable experiments as to its production and adaptation were going on. The most productive source of illuminating gas was fomed tr, ke bitmminous coal. Thongli gas could be produced ly distillation from other substances, such as shale, lignite, petroleum, water, turf, resins. oils, and fats, none could compete in quality, quantity, and ceonomy with what is known as ordinary coal gas, at least, not until the time came, quite late in the century, when it was found that non-luminous gases, such as water gas, conld be rendered luminous by impregnating them with hydrocarbon vapor. This became known commercially as water gas, and it is now largely used in place of coal gas, because it is cheaper and, for the most part, equally effective as a luminant.
Gas-lighting has, of course, its limitations. It is not adapted for use beyond the range of cities or towns whose populations are sufticient to warrant the large expenditures necessary for gas plants. It is a special rather than general light. Yet within its limited domain of use it has, proved of wonderful utility, - a souree of cheer for millions, a clean, safe, and eeonomic light, a convenience far beyond the candle, the lamp, or any previous lighting appliance. In the street, it is a source of safety against thieves and waylayers. In the slums, it is both policeman and missionary, baffling the wrongdoer, exposing the secrecy that conduces to crime, laying bare the hotbeds of
shame. It is as well a source of heat as light, and comsequently convertilh. into power for light meehanical purposes. In the kitehen, it is more amb more beeoming a boon to the honsewife, who by means of the gas magesenpes, in cooking, much of the dust, smoke, wory, and even expense of tho coal eook stove and range. In the parlor, library, or sick-room, it is a cheerfal and effective substitute for the eoal grate, and may be made to assmme the eosy gualities and fintastic shapes of the old-fashomed wood tire. Coincident with the diseovery of petrolem, its inseprable compmion, matural gas, camu into prominence as a somree of both light and heat, or this beeame true, at least, after it was ascertained that natural gats regions existed which could bu tapped by wells, and made to give forth their gasems product independent of the oil that may have at one time existed near or in comection with it. This matural semree of light and heat became as interesting to the geologist, explorer, and empitalist as the sourer of petrolemm itself, ind som every likely section was prospected, with the hope of timing and tapping those mysterioms eaverns of earth in which the pent-up hminant abomaded in paying guantities. It was fomed that workabla matural gats regions were numeroms in the United States, especially in proximity to protrolemon bituminoms coal deposits, and little time was losi in their development. As if by magie, a new and profitable industry sprang into existence, The natural gas well became almost as common as the oil well, and at times far more awe-inspiring as it shot into space its volemic blasts which, whon ignited through carelessuess, as sometimes hapuened, carried to the vicinage all the dangers and terrors of Vesurius or stromboli. l'owerfal as wis the foree with which natural gas sought its freedom, womberful as was the phenomenon of its eseape from the subterranem alembic in which it was distilled, human genins quickly harnessed it by appliances for conservation and earriage to places where it could he utilized. Rometimes great industries sprang up contiguons to the wells; at others, it was earied throngh pipes to eities many mil's distant, where it beeame a light for street, home, and store, and a prodigious energy in factory, furnace, forge, and rolling-mill. In fact, no marvel of the century has been at once so weird and inscrutable in its origin as natural gas, or more potential as an ageney within the areas to which its use is limited. The question is ever uppermost in conncetion with natural gas, will it last? 'The gas springs of the Cancasus Mominains have been burning for centuries. But that is where nature's internal forees have their eorrelations and compensations. Where it is quite otherwise, that is, where the vents of natural gas reservoirs are abnormally numerous, or where those reservoirs are drained to the extreme for commercial purposes, not to say through sheer wastefulness, the geologist is ready to surmise that the natural gas supply camot be a perpetual one.
But one of the most magnificent triumphs of the century in the matter of light came abont throngh the agency of electricity. We have already seen the beginnings of electric lighting in the discovery of Sir Mumphrey Dave, in 1809, that when the ends of two conducting wires, monnted with charcoal pieces, were brought close together, a brilliant light, in the shape of an are or curve, leaped from one piece of chareoal to the other. Davy's chareoal pieces or carbons were consumed by the fierce heat evolved; but the prineiple was established that an electric eurrent, so interrapted, was a vivid light.
ently convertible , it is more anil oif the gils rather :H expense of the m, it is a cleerfin bissume the cosy tire Coincident aatural gas, cana s beeame irue, al -d which could tre -t indepumbent of (10n with it. 'this to the geologist, sontlevery likely those mysterions in paying quanere mumerons in r bitmmiturts coal As if by magic, a natural gas woll (1)re : twe-inspiring ed throngh eatrethe dangers and foree with which henomenon ol its distilled, inuman a and earriage t 4 istries sprang 1 ין h pipes to cities ae, and store, and mill. In fact, no able in its origin e areas to which conncetion with Mountains have ernal forces havo otherwise, that is, merous, or where 1 purposes, not to surmise that the
in the matter of rave already secu Humphrey Davy, ted with charcoal shape of an arc Disy's charcoal ; but the prineiwas a vivid light.
prodncer, and might be male permanently so if a substance capable of resisting the hrat ronbl be substituted for his charcoal tips, and a gencrator of clectricity of sullicient jowrer and economy in use could be substituted lor his voltaie batteries or cells.
Upon these fwo essantials linng the finture of the electric light. The first essential, that of a substance at tho embs of the wires or in the midst of the electrice cireuit which would mesist the heat, was soon mot by the use of speodally prepared and hard graphite carbon tips, in the shape of candles. But the second essumtial, a gencrator of electricity cheaper and mowe jowerlin than the voltaine (rell, was not met with till the dyanow marehine robeleed an advanced stage of perteretion ; that is, about $186 \mathrm{sin}^{\circ}$.

The two grand essentials mow being at command, invention of clectrie light appliances went on rapinlly unon two lines, wentating in two systems, which hecame known as are lighting and incambescent lighting. liv 1s.a-so, the are light was sufticiently arlvancel to moret with favor as an illuminut for streets, railway stations, mankets, amd any large spaces, in whieh places it beewne a sulstitute for gas and other lights. The essential features of the are light are: (1.) The dymamo machine, situated in some central place, for the generation of electricity, (3.) Conducting wires to carry the elertrieity thronghout the areas or to the places to be lightel. (3.) The arc lamp, whieh may be suspented upon poles in the streets, or upon wires in stores and other covered places. Its meehanism consists of two pencils or canilles of graphite carbon, very hard and incombustible, adjusted above and below each other so that their tips or ends are very close together, b. not in contast. liy means of a clockwork or simple gravity device these earbon tips are brought into contact at the moment the electric current is turned on, and then are slightly separated

ELECTRIC AHC hGHT. as soon as the cmrrent has heated them. The air betwren the heated tips, having also reaehed a high temperature, becomes a romluctor, and the electricity leaps in the form of an are or curve throngh it, remlering it brilliantly incantescent. Should the current be diminished in strength for any reason, the above-mentioned clockwork or gravity device brings the earbons a little closer together; and should the current be increased, the carbons are separated a little wider; thas the steadiness of the light is regulated. There are also varions automatic tevices for thms regulating the proximity of the carbons and maintaining the evenness of the glow. The power of an arc light is measured by candles. An ordinary arc light under two amperes of current gives a light equal to twenty-five candles, while under fifty amperes of current it gives a light equal to twenty thousand candles. In searchlights on board vessels, and where very large areas are to be lightel, both heavier currents and larger carbons are used than in the are
lamps for ordinary street purposes. No light surpasses the are light in brilliancy, excepting the magnesimm light. There are few "ities in this combery and burope that do not employ the are lamp as a mems of strent. station, and large-area lighting, owing to its superiority as an illminant and the wonderful policing effect it has upen the slum sections.

The incasasesent lamp, or electric lighting by ineandeseenee, underwent: a somerwat longer evolution at the hands of inventors than the are lanp, owing to the diflenty of finding it substance suitable for the produetion of the uncessary glow. The diseovery of surh substance maty be aberedited to Edison more fully than to any other. 'The incmudesent or glow lamp is a ghass bulb from which the air is exhansted. There passes into the bulh a filament of carlon, which, after a turn or two inside the bulb, passes out at the end through which it entered. When a current from a voltaie battery is sent throngh this earbon tilament, it brings it, in the absence of oxygen within the bulb, to a high white heat withent combinstion. The pertion of this high white hat which is rallated is the light-giving energy of the inumberent lamp. Metal tilaments were at first tried in the bulb, but they guickly hurned out. Carhon filaments were at length fonad to loe the only ones capable of resisting the leat. 'They moreover had the advantage of chempess, mul of greater madiating energy than metals. Many substances, suoh is silk, eotton. hair, etc., were used in the preparation of the carbon filaments, but it was fomul that strips cut from the inside bank of the bamboo gave, when brought to a white heat by an electric eurrent and then jroperly treated, the most tenalcions and best conducting carbon filament.

The quality of light produced by an incandescent lamp is a gentler glow than that produced by the are lamp, and in color more nearly resembles the light of gas or the oil lamp. The incandescent light speedily hecame for the home, hotel, hall, and limited coverel area what the are light becime for the street and railway station, and, if anything, the former outstripped the latter in the extent and value of the industry it gave rise to.

In the are lamp, the carbon pencils have to be renewed daily. In the incandescent lamp, the carbon filament, though very delicate, may last for quite a time, becanse incandeseence takes place in the absence of oxygen. If the favor in which the electrie light is held, and the great extent of its use, rested solely on the question of cheapness of production, such question would give rise to interesting debate. And, indeed, the debate would continue, if the: question were the superiur fitness of electrie lighting for lighthouses and like service, where e: treme brilliancy does not seem to penetrate a thick atmosphere as effectively as the more subdued glow of the oil lamp. But the debate ceases when the question is as to the beauty and efficiency of the electric light in the home. street, station, mine, on shipboarl, and the thonsand and one other places in which it has come to be deemed an essential equipment. In all such plaees the question of economy of production and use is subordinate to the higher question of utility and indispensability.
VII. ELECTRIC LOCOMOTION.

The dawn of the nineteenth century saw, as vehicles of locomotion, the saddled hackney, the clumsy wagon, the ostentatious stage-coach, the primitive dearborn, the lumbering carriage, the poetic "one-hoss shay." The
the nee light in cow rities ill this t meams of street. an illuminant and
seenee, umberwent. han the are lamp, the production of y be areredited tw or glow haup is a nto the bulb a tilia passes out at tho taic battery is sunt oxygen within the ution of this high the incamlescent ey quickly hurned Ily ones capable ot cheotpmess, und of ach as silk, cotton, ments, but it was ave, when brought ted, the most tenil-
o is a gentler glow arly resembles the redily hecame for - are light became former outstripped ise to.
iily. In the incanmay last for quite of oxygen. If the it of its use, restell mestion would give lil continue, if the ghthouses and like rate a thick atmoi) lamp. But the id efficiency of the pari, and the thonvemed an essential of production aul dispensability.
of locomotion, the ge-coach, the prim--hoss shay." The
miversal energy was the home. A new puergy came with the application of st"mu, and witl: it new vehienher locomotion, - casier, swifter, stronger, fur the bust part chailner, rendering possible what was hitherto impossible as to tilue and distanue.

This signal trimug of the rentury may not have been erlipsed by the introndurtion of subserpurnt loemotive changes, hat it was to be supplementend by what, at the beginning, would have passed for the idte dran of a vistonars. 'The homserear cane, had its brief day, and went out with all its incon-
 the rapmilly revolutionizing energy of electricity.

miecthic rocomotive.
The first conception of a railway to be operated lo: electricity dates from ahout 1sin, when Thomas Davenport, of Branton, Vt.i contrived amd moved a suall ear by means of a current from voltaie cells placed within it. In 18:5, Prolessor Page, of the Smithsonian Institution, ram a ear propelled by elertricity unon the steam railway between Washington and Baltimore, but though he obtained a high rate of speed. the eost of supplying the enrent by means of batteries - the only means then known-prohibited the commercial use of his method.

With the invention of the dynamo as an economic and powerful generator of electricits, and also the invention of the motor as a means of turning electrical energy to mechanical account. the way was open, both in the Uuited States and Europe, for more aetive investigation of the question of electrie-ear propulsion. Between 1872 and 1887, different inventors, at home
and abroad, placed in operation several experimental electric railways. Few of them proved practieal, though eath firnished a fund of valuable experience. An underground electric street railway was operated in benver as parly as 1885; but the one upon the trolley plan, which proved sutficiently suc. cessful to wirrant its being ealle.i the first operated in the United Nitates, was built in Richmond, Via, in 1888. It gave such impetus to electric railway eonstruction that, in five years' time, enormons capital was emburkel, and the aew means of propmsion was generally accepted as converient, sath. and profitable.
The essential features of the electric railway are: (1.) The track of two rails, similar to the steam malway. (2.) The cars, lightly yat strongly built. (3.) The power-house, eontaining the dyn: ros which generate the electricity. (4.) The feed-wire, usually of stout ecpper, ruming the length of the track of the system, and supported on poles or haid in conduits. (5.) The trolle ;wire over the centre of the track, supported by insulated cross-wires passing from poles on opposite sides of the tatacks, and comeeted at proper intervals with the feed-wire. (6.) The trolley-pole of metal jointed to the top of the car, and fitted with a spring which presses the wheel on the ead of the pole up against the trolley-wire with a foree of alont fifteen peunds, aml which also serves to conduct the electricity down through the ear to the motor. (7.) The motor, whieh is suspended from the car truck, and passes its power to the ear axle by means of a spmr gearing. The power requisite for an ordinary trolley-car is about fifteen horse-jower. 'The speed of trolley-ars is regulated in cities to from five to seven miles per hour, but they may he run, under favorable conditions, at a speed equal to, or in excess of, that of the stean-ear.
As a means of eity transit, and of rapid, eorvenient, and ceonomic intercourse between suburban localities and rurab towns and villages, the eleetrie traetion system ranks as one of the greatest wonders of the eentury. The speed with which it fomd favor, the cuormous eapital it provoked to aetivity, the stimulus it gave to further study and invention, the surprising number of passengers carried, go to make one of the most interesting ehapters in eleetrio amals. The end of the century sees thousands of these electric roads in existence; a comparatively new industry involving over $\$ 100,000,000$; a passenger trattic ruming into the billions of people; a prospeet that the trolley will stieceed the steam-car for all ntilizable purposes within the gradually extending influence of cities and towns upon their rumal surroundings.

In speaking of the passing of the horse-car and its substitution by the trolley, a distiaguished writer has well said: "Humanity in an electric-cir differs widely from that in the horse-car, propelled at the expense of animal life. It is more cheerful, more confident, more awake to the energy at command, more imbned with the subtlety and majesty of the propelling foree. The motor contims the ethical fact that each introduction of a higher material force into the daily uses of lmmanity lifts it in a broader, brighter plane, gives its capabilities freer and more wholesoms play, and opens fresh vistas for all possibilities. We applaud Franklin for seizing the lightning in the heavens, dragging it down to earth, and subjugating it to man. Les this pass as part of the poetry of physies. But when ethies comes to poetize, let it be said that electricity ps an applied foree lifts man up toward heaven,
tric railways. Few of valuable experirated in Denser as oved sufticiently sucI the United States, tus to electric milpital was embarked, as conveaient, saft?
L.) The track of two y yet strougly built. erate the electricity. length of the track ts. (5.) The trolle: 1 cross-wires passing ted at proper interointed to the top of heel on the e:rll of ; fiftern ${ }^{\text {reunds, aul }}$ ough the car to the truck, and passes its power requisite for speed of trolley-car's ur, but they may be n excess of, that of
and economic inter. villages, the electric f the century. The prowoked to activity, surprising number of g chapters in electrie ese electric roads in $\$ 100,000,000$; a paspeet that the trolley within the gradually surroundings.
substitution by the ty in an electric-ar expense of animal the energy at comthe propelling force. uction of a higher on a broader, brighter lay, and opens fresh aing the lightning in it to mam. Lee this comes to poetize, let up toward heaven,
quiekens all his appreciations of divine energy, draws him irresistilly toward the centre and somre of nature's forees. There is no dragging down and suljugation of a physical force. There is only a going out, or up, of genius to mect and to grisp it. Its miversal application means the raising of mankind to its phane. If electricity be the principle of life, as some suppose, what wonder that we all feel better in an electrie-ear than any other? The motor hewomes is sublime motive. (ion himself is tugging at the wheels, and we are ridiug with the lutinite."

Euthusiasts say the trolley is only the begiming of electric locomotion, and

elegotric hainway. thimd hall system.
that there is already in rapid evolution an electric system which will supersede steam even for tronk-line purposes. In vision, it presumes a speed of une humdred and twenty-five miles an homr instead of forty; greater safety, cleanliness, and comfort; and what is most momentous and startling, an economy in construction and operation which will warrant the sacrifice of the billions of dollars now invested in steam-railway properties. The proposition is not to sacrifice the steam-railway track, but to add to it a third rail, which is to carry the electric current. Then, by means of feed-conduits alongside of the track, and speeially constructed electric locomotives and cars, the system is supposed to reach the practical perfection elaimed for it. Experiments with such an electrical system, mate ujon branch lines of some of our trunk-line rail-
ways, as the Pennsylvania, New York Central, and New Haven \& Hartford, give much eneonragement to the hypothesis that it maty hecome the next great step in the evolution of eleetrical seienee.

Another means of electrie propmlsion was provided by the investigations of Planté, which resulted in his invention of the "aceumulator" or "storage battery," in 1859. His hattery eonsists of plates of lead inmersed in dilute sulphurie acid. By the passage of an eleetric curreut through the aeid, it is electrolytically decomposed. By contiming the current for a time, first in one direetion and then in another, the lead phates beeome changed, the one at the point where the current leaves the cell taking on a deposit of spongy lead, and the one at the point where the current anters the cell taking on a eosating of oxide of lead. When in this eondition, the battery is said to be stored, and is eapable of sending ont an electric current in any circuit with which it may be comected. After exhansting itself, it can be re-stored or reeharged in the same way as at first. Faure greatly improved on Planters stomage lattery in 1 sso , by spreating the oxide of lead over the phates, thus greatly redueing the time in forming the plates. Sinbsednently, further improvements were made, till batteries came into existence capable of supply. ing a current of many hundred amperes for several homrs. the of the first practieal uses to which the storage hattery was put was in the propulsion of street-cars; but its weight proved a drawbaek. It was fomed better adapted for the rmming of boats on rivers, and, in the business; of water-freightage for short distances, has in many instaners beome a rival of stem, It foumd one of its most interesting applications in leplping to solve the problem of the "utomolil", or "horseless carriage," either for phesume purposes or for strect trattie. In this prohlem it has, at the end of the century, an aetive rival in eompressed air; but as the "horseless cartuge" is rapidly coming into demand, means may soon be fomed to utilize the strong and persistent energy of the storage battery, without the ilrawbek fomm in its great weight.

Vlll, THE X RAY.

An astomang eleetrical revelation came during the last years of the century throngh the diseovery of the $\boldsymbol{\lambda}$, or mannown, or Roentgen may. A hint of this discovery was given by Faralay during his investigation of the effeet of electrie diseharges within rarefied gases. He also invented the terms anode and cuthonte, both of whieh are in universal use in comection with instruments for producing the \mathbf{X} rays; the anole being the positive pole or electrode of a galvamic battery, or. in general, the terminal of the comductor by which a current enters an electrolytie cell; and the eathode being the negative pole or electrode by which a eurrent leaves said cell.

Geissler followed Garaday with an improved system of tubbes for eontaining rarefied gases for experimentation. He partially exhansted his tubes of air, introdnced into them permanent and sealed phatimun electrodes, and produeed those wonderful effeets by the discharge oltainsa by eonnecting the eleetrodes with the terminals of an eleetrie maehine or imbuetion eoil, which from their novelty and beanty herame known as (ieissler effeets, just as his tules became known as Geisslor tubes. In the attennared atmosplere of the Geissler tuhe, the current does not pass direetly from one platimum point or electrode to the other, but. instead, illuminates the entire atmosplecric space.

Haven \& Hartforl, ay become the next
y the investigations nlator" or "storage immersel in dilute rough the acin, it is ; for a time, first in changed, the one at a leposit of spongy he cell taking on a attery is said to be in any circuit with m be re-stored or retproved on Plantés ver the phates, thins ibsequently, further c capable of supply. s. One of the first if the propulsion of foum leetter adapted of water-freightage of ste:un. It found solve the problem of are purposes or for e century, an active " is rapidly coming trong and persistent din its great weight.
ist years of the cenrentgen ray. A hint nvestigation of the e also invented the al use in comection eing the positive pole terminal of the conid the cathode being said cell.
of tulbes for containhausted his tubes of a electrodes, and proad by connecting the induction coil, which ler effects, just as his ed atmosphere of the ue platimum point or re atmosplicric space.

When other gases are introduced in rarefied form, they are similarly illuminated, but in colors corresponding to their compsition. In his further experiments, Geissler noted that the gases in the tube behaved differently at the anode, or positive terminal, and the cathonle, or negative termimal. A beautiful bluish light appeared at the cathode, while the anode assumed the same color as the illuminated space in the tube. It was also noted that alter the electric discharge within the tube, there remained upm the inmer surface of the glass a fluorescent or phosplumeseent glow, which was attributed to the elfect of the eathorle.

This brought the study of the cuthord rays into promineneer and through the investigations of Professor WilLian Crookes, in 1879 and afterwarts, a conclusion was

OEISRLEN'S TCBES. reached that a "Fourth State of Matter" really existed.
He perfected tubes of very high vacmum, by means of which he showed that molecules of gas projected from the eathode movel freely and with great velocity anong one another, and so bombarded the inner walls of the tube as to remiler it Huoreseent.

Subsequently, Mertz showed that the eathodic rays would penetrate thin Bhects of metal placed within the tube or bulb; and soon after, P'aul Lenard (1894) demonstrated that the catholic ray conld be investigated as well outside of the tube or bulb as within it. He set an aluminum plate in the glass wall of the bulb opposite the cathode. Though ordinary light could not penetrate the almminum plate, it was raulily piereel by the cathodic rays, to distance of three inches beyond its ontside surface. With these rays, thus freed from their inclosure, he prodnech the same floorescent effects as had been motel within the bulh, and even secured some photographic effects. These cathoolic rays produred no effeet on the eye. which proved their dissimflarity to light. Lenard showed further that the eathodic rays ontside of the tube could be deflected from their straight course by a magnet, that they might pass throngh substances oparue to light, and that in so passing they might east a shadow of objects less oparue, which shadow conld be photogriphuch. Now lrofessor Roentgen came upon the seene. He had been conducting his experiments in Germany, along the same lines as Leuard, and hall reachen practically the same results as to the penetrative, Huorescent, and plotographic effects of the cathorlic mas. But he hat gone still further, and, in 1s:m; fairly set the scientific world atlame with the amouncement that all the effeets produed by Lenard in the limited space of a few fiehes could also be produced at long distances from the tube, and with sufficient intensity to depiet solid sulstances within or behind other substances sufficiently solid to he impermeable by light. Irofessor Roentgen chams that his X ray is different from the eathodic ray of Lenard and others, heeause it camot be defleeted by a maguet. This claim has given rise to much controversy respecting the real nature of the \mathbf{X} ray, a controversy not likely to end soon, yet one full of inspiration to further investhation.
The essential features of the hest approved apparatus designed to produce the X ray anl to secure a photograph of an invisible object, are : (1.) A bat4
tery or light dynamo as a generator of the electric current, accompanied, of conse, hy the necessary induction coil, which should be so wound as to give a spark of at least two inches in length in the tube where a picture of a simple object, as a coin in a purse, is desired; a spark of four inches in length where pictures of the bones of the hands, feet, or arms are desired; and a spark of from cight to ten inches in length where inside views of the chest, thighs, or ablomen are desired. (e.) The scoond essential is the glass tube.

The one in common use is the Crookes

stharapit or stadow pictice. By X Ray process. tube, usually pear-shaped, and resting Mum in stand. Into it is inserted two allummm electrodes or disks, the one throngh the smaller end of the tube bemg used as the cathode, and the one from below and near the large end being used as the anole. (3.) A fluoroscope with which to olserve the conditions iuside the tulne necessary to the production of the X ray, to ilecide upon its proper intensity, and to establish the proper degree of flumescence. The favorite Huoroseope for this purpose is the one incented by Edison. It is in the form of a stereopticon, in which is a dark clamber after the mamer of a camera. In front are two openings. almitting of a view within of hoth eyes. At the opposite, and greatly a marget, end is a sereen winich is rendered thomeseent by means of a new substance (tungstate of calcium) diseovered by Mr. Edison after some eighteen hundred expriments. Sullo is the power of this fluoroscope that it may be used as an independent instrmment in cases of minor surgery to loeate hullets or other oljpects buried in the thesh, even before a photograph has been taken. (t.) The photugraphie phate, which is prepared with a sensitized film and momed in a frame as in ortinary photograplys. Upon this film the object to he photographed is laid, say, for instance. the human inand, eare being taken to have the film or plate at a proper distance from the Crookes tube. Current is now turned into the tube, the X ray is developed, the film is exposed to its effects, and the result is a negative showing the interior structure of the hand, - the bemes or any foreign object therein. This negative is developed as in ordinary photographes.

The diseovery and application of the X ray has proved of inmense value in molicine and surgery. Liy its means the physician is enabled to carry on far-reaching diagoses, and to ascertain with certainty the whole internal strueture of the human budy. Fraetures, dislocations, deformities, and diseases of the hones may be lorated and their character and treatment decided upon. In dentistry, the teeth mar be photographed by means of the X ray, even hefore they come to the surfine, and hroken fangs and hidden fillings may be loeated. Foreign objeets in the boly; as bullets, needles, calculi in
companied, of (ind as to give cture of a simches in length lesired ; and a s of the chest, the glass tube. is the Crookes eal, and resting is inserted two disks, the one of the tule bele, and the one he large end le3.) A thoroscope the eonditions y to the producdecile upon its to establish the scence. The fitthis purpose is Elison. It is in sticon, in which er the manner of re two openings. within of looth ite, and graatly en which is renans of a new suber some eighteen e that it may be ry to locate bullets. ph has been taken. nsitized film and is film the object hand, care being the Crookes tube. loperl, the film is the interior struc-

This negative is
of immense value nabled to carry on he whole internal eformities, and distreatment decided cans of the X ray, and hidden fillings needles, calculi in
the hadker, etc., may be localized, and the surgery necessary for their safe removal greatly simplitied. The beating of the heart, movement of the ribs in raspiration, and ontline of the liver may be exhihited to the eye. It has bren buldly suggested that in the X ray will be fomm an agent capable of destroying the varions bacilli which infest the hman system, and become germs of such destructive diseases as cholera, yellow fever, typhoid fever, diphtheria, and consumption. Even if this be speculative as yet, there is still wom for marvel at the actual results of the discovery of the X ray, and its future study oqeus a field full of the gramlest possibilities.

IX. WTHFR ELECTRICAI. WONDERS.

Thr movel ideat of keping time by means of electricity originated quite faly in the centney, and culminated in two kinds of electric clocks, one nuwad ciarert! by the electric enrent, the other moven by weights or springs, but regulated by elertrieity. The former have the alvantage of ruming a viry loug time without attention, but as it is impossible to knep up an marying eloctris current, they are not so accurate as the latter in keeping time. 'Hough the latter are jepularly called electric clocks, they are really ouly clows rogulated ly electricity, amd in such rogulation the electris current romes to be a most important agent, as is proved at all dentres of astronomi(ad and other ohservations, as at Greenwich and Washington. At such centresthe intromomical time-keeper is set upo as to run an infallibly as possible. This ecntal time-kerper, say at Wishington, is electrically comected with other elocks, at olservatories, signal-service stations, malway stations, elockstores, city halls, etc., thronghout the comitry. Sinould any of these clocks lase or gain the mimatest fraction of time as compared with that of the central time-keepor, the electrie current corrects such loss or gain, and so keeps all the clorks at a time uniform with one another and with the central one. lilectrical devices are also often attached to individual clocks, as those upon rity hall towers and in exposed places, for the purpose of meeting and correrting inequalities of time orcasioned by weather exposure, expansion and contraction by heat and cold, ete.

The latherhood of the very usefnl and elegant arts of electrotyping and flectroplating is in dispute. Inmiell, while perfecting his battery, noticed that at curmat of electrieity would canse a deposit of eopper. In 18:3, Jacobi, of St. Petershurg, called attention to the fact that the copper reposited on his plates of eopper by galvanic ation could be sumoved in a perfect slieet, Whirh prescuted in relief, and most accurately, every accidental indentation on the origimal plates. Following this up, he employed for his battery an "nsrawd ropper plate, cansed the deposit to be formed upon it, removed the depmit. and fomal that the engraving was impressed on it in relief, and with sufticient firmmess and sharpuess to emable him to print from it. Jacobi falled his diseovery galvanoplasty in the pmblieation of his olservations in 1s:\%. It was but a step from this discovery to the application of the electroWhug proses to the art of printing. A monld of wax, plaster, or other suitahlo sulntance is made of an engraving or of a page of type. This mould is "overed with powdered graphite (black lead) so as to make it a combetor of "hectri-ity. It is then inserted in a lath containing a solution of sulphate of eopper. An electric current is passed through the bath, and the copper is
deposited ou the monle! in sutficient quantity to give it a hard surface capabla of oftering greater resistance in printing than the types themselves, and alsn of produring a charer impresiom. In clectroplating, practically the samu prineiple is employed. The bath is male to contain a solution of water, eyanide of potassim, and whatever metal-gold, silver, platimum, ete.it is designed to perempitate on the article to be electroplated. The current is then passed through the bath, and the artiele - spoom, knife, fork, ete. to b_{e} electrophated receives its coating of gold, silver, (inman silver, phatimum, or whatever has been made the third agent in the bath.

The varions modern sumarine devices for the destruction of ships. known as torpedors, submarine mines, ate., depend uron electrieity for their efficiency. It is the lighting or firing agent, and is carried to the torperd or mine by means of stont wites or cables frem some safe shore-point of observation.

In reilroading, electricity has hecome an indispensable agent for the opration of sigual systems, opening and elosing of switehes, and limitation of safety seetions. It moves the drill in the mine, sets off the blast, and supplies the light. It enables the dentist to manipulate his most delieate tools and to his cleamest and boist painful work. In medieine it is a healing. soothing agent, bomdless in variety of application and wombrons in results. It is a stimulus to the growth of certain phants, and hats given rise to a mew seience called Electro-hortienlture. It may be mate a prolitic sontee of heat for warming ears, and even for the welding of irom and sted. The eleetrie fan eools our parlors and ottices in simmer, and the eldetrie bell simplitios honsehold serviec. In faet. it would appar that, in eontrasting the eiectrical beginnings with the electrical endings of the ninetenth eentury, the spare of a thonsand rather than a humdred rears had intervened, and that in measuring the agents whieh conduee to human comfort and convenience, electrieity is easily the most jotential.

Out of the various diseoveries and appliations of electricity almost a new languge has sprong. This is asperially so of terms expressive of the mensurements of electric morgy, and of the laws governing the application of electric power. For a thme, varions nations measured and applied by means of terms chosen by themselves. This led to a jargon very coufusing to writers and investigators. It became needful to have a language more in emmmon, as in pharmaey, so that all nations combld understand one amother, conid] compute alike, and especially impart their meaning to those whose daty it became to apply diseovered laws and aetual caleulations to practical electrir operations. This was a ditficolt mulertaking, owing to the tenacity with which nations clang to their own nomenelatures and terminologies. But the drift. though slow, finally ended at the Eloetrical Congress in Paris in 1881, in the adontion of a miform system of measmrements of electric force, and :an agrepment upon terms for laws and their application, which all conld understand.

Three fumlamental mits of measmrement were first agreed upon, - thre Centimptre (. 304 in .) as a muit of length; the Gramme (10.43 troy grains) :as a mit of mass; the serond (\boldsymbol{g}^{1}, of a mimute) as a unit of time. These thre
rel surface capablu emselves, and alsu "utically the sam" solution of water, , platimum, etc. ted. The current kuife, fork. ete. Minan silver, platith.
truetion of ships, electrieity for their ried to the torpudo safe shore-point of
ble agent for thu hes, and limitation s off the blast, and e his most ilelicat" cine it is a healin!. romidrous in results. riven rise to a new olifie soarce of heat steel. The eleetrio ctrie bell simplifirs asting the eiectrical century, the space rened, aud that in at and convenience,
ricity alnost a new pressive of the wicithe application of a applied by means 1 very comfusing to ugarge more in conan one another, couill those whose duty it to practical electric tenacity with which gies. But the drift. laris in 1881, in the cetric force, and :m hich all could under.
agreed upon, - the" 15.43 troy grains) :(s time. These thow
mits herame, when wermed to tugether by their initial letters, the basis of llie (. G. S. systrom of mits. Now by these units of measmement something must be meanured, as, for instance, the electric foree; and when so :atins? med, all absolute mint of forre mast be the result.

Wese: - This is hat a contraction of dymam, foree. It was alopted as the hann of the ". . Whsolute C'nit of Porre," or the C. (G. S. unit of force, and is that fore which. if it act for a secoul on one gramme of matter, gives to it a whendy of one comblatere per secomal.

Ampara: - Electrial fone produecs electrical arrent. Current mast he measured and an ahsolute mit of et rent strength agreed unon. The - Ansolnte Conit of Current" was settled as one of sum strength as that Whon one centimetre length of its cirenit is bent into an are of one centimetre malins. the current in it exerts a fare of one dye on a mit maguetpuhe pharel at the centre. But the absolute mit of current as thens obtained was derded to be ten times too great for pratical promenes. So a practical mit of "urrut was fixel mum, which is just one tenth part of the above absolume mit of curront. This practical mit of entrent was called the ampere in
 in other wass, as when a chent is of sullicient strengtlo to deposit in a
 surl current is said to be of ane ampere strengtin; or a diment of one anure strugth is such a one as wombld be given by an electromotive force of whe wolt throngh a wire offering one ohm of resistames.

Vons:-This was maned from Volta, the erelehnated Italian electrician, and was anved uman an the mit of elentromotive forre. It is that electhenutive forer which wombl be gemerated by a eombetor entting across
 motive fore which would carry one ampere of eurrent against one ohm of Itsistallor.

Onn:-So callot from Ohm, a German electrician, It is the mint of misistane offered ly a conductor to the passage of an electrical current. As an : wholute unit of resistance, it is equal to $1,000,000,000$ C. G. S. units of resistimer. As a practical unit, and as agreed apon at the International Congress of bilectricims (Chiengo, 1893), it represents the resistance offered to :an eloet ric cinrent at the temperature of melting ice by a column of mercury 14.4 .1 grammes in mass, of a constant eross-sectional area, and 106.3 continutres in lengtl. This is calleal the international ohm. The resistance offered hy fow fent of ordinary telegraph wire is abont an ohm.

Thess three units - :annere, volt, and ohm - are the factors in Ohn's fanans law that the cmrent is directly proportional to the eleetromotive fore exerterl in a cirenit, and inversely proportional to the resistance of the cirmit ; that is, -

$$
\text { Current }=\frac{\text { Electro-motive forre }}{\text { Resistance }}
$$

Electro-motive foree $=$ Curront \times Resistance

$$
\text { Resistance }=\frac{\text { Eleetro-motive force }}{\text { Current. }}
$$

ENTURY

required to move 13, atht ergs. ng the amount of water one degree

It is the practieal tomveyed by one
of electrie eapaonlomb of charge
i. S. mit of Hluxelds are measured.
ee, being produced
titution, Washing. in a cirenit when while the inducing
equiv: 'ont to the annere against a mal.
paratical unit for
orking in a eirroit, y of curvent is our e-power per secoml.

Hus. Nimed from
James l'. Boym.

'rHE CENTURY'S NAVAL PROGRESS

1. INFIUCRENE OF NEA 1゚OWER,

Tue shave of navies in the great movements which have moulded human destiny and shaped the world's arogress, althongh long obsenre and undervalued, has met in our time full recognition. Within a deeade the influenere of seat power upon history has hecome the frequent theme of historians and essayists who, in elear and striking form, have shown the cardinal importance, huth in war and commerce, of the tleet - the nation's right arm on the sea. It is fitting, therefore, that in the retrospect of a hundred years navies should have their place; that, in looking hatekward with history's molouded visim, we shonhd mark, not only their growth and change, but, as well, their achievement in some of the most memorable contlicts of our race.
The contury had but begun when, at Copenhagen, Nelson, with one titanic blow, shattered the naval strength of demmark and the coalition of the Nurthern powers. His signal there, ever for "eloser hattle," toll in few words the life story of the Great Admiral, and foreshadowed his emi. Four vairs later, at Trafalgar, the desire of his eager heart was satisfied, when he mat in framk fight the fleets of Franee and spain. Amid the thondering rammande of that last victory his life-tide ebbed, bearing with it the powr of Fiance umon the seas aml the broken fortumes of Nipoleon. In the war of 1 Sl'e, our lisasters upon the land met compensation in victory afloat. The I'nitods 'fates was then among the feeb est of marime powers; and yet Macdomongh and lerry on the lakes and our few frigates on the ocean opposed, with success, the swarming squalrons of a mation whose naval glory, as Hallam says, can be traced onward "in a continnous track of light" from the days of the Commonwealth. The oppression of the Sultan was ended for a tinu when, in 1827, the Turkish and Egyptian fleets were amihilatel, in sudden firre, by the allied squadrons in that brief engagement which Wellington termed the "untoward event" of Namarino.

I genbration later, the command of the sea enabled tagland and France to denpath h, in unarmed transports, 63,000 men and 128 gims to the Crimea, fand (1) land them, without opposition, for the red carnage of the Alma, Balaklava, hikerman, and Sebastopol. Following closely upon the disease and drath, the fatuity and the glory, of the Crimea, eame the great war of modern times, in whieh the gim afloat phayed such a gallant part, as the bloekade. with its constrieting eobils, slowly starved amt strangled the Confederacy to death, and Farragut, on inland waters, split it in twain. lassing over the seafiylits of Lissa, - in which imperial Venice was the stake, - of Sonth Ameriea. and the Yalu, we note, lastly, the swift and fateful actions off Santiago and in Manila Bay, which destroyed once again the sea power of Spain, won distant territory for the United States, and opened up for us a noble pathway of commercial expansion to the uttermost island of the broad Paeifie and the
vast Asian littomel beyom．Who will say，in the retrospeet of the century， that the the ets of the world have not had their full share in the making of its history：＇

 against a navy of a thousamd sail，with a ther of hat 20 ，whips，the largest of which was at If－gun frigate．The oproutions of the Civil Wiar were hegum with lont se vessels，is of which wrere sailing crait．Wefore the rlose of that gigatio：

（Batle of Mobile lay．）
struggle there were aided，hy eobstruction or pmrehase， 674 steamers．In 1 sas，huring the war with Spain，there were borne on the Naval Register，as building or in service， $1: 3$ battleshijs and 176 other vessels，including torpedo co：ft，with $12: 3$ converted merehantmen．The total naval fore during hostil－ ities was $23.5: 3$ men and 2382 ofticers，exeluding the Marine Corps．

At Lomblon，in 16：3is，there was printed＂A List of the Commonwealth of England＇s Navy at sea，in their expedition in May，165．3．under the command of the light Homorable Colonel lieharl Deane and Colonel George Monk， Escuires，（iemerals，and Admirals．＂This quaint record of that early time gives the foree athat as 10.5 ships， $3 \mathrm{sf4}$ gmas，and $\mathbf{1 6 , 2 6 9}$ men．In Britain＇s strife for that ocean empire，which is word empire，that fleet had grown，by the year 1800，to 757 vessels，built or building，with an aggregate tomage of
 stately threederker，with its snow canvas and maze of rigging，has ranisherl with the past；lurt，iespite time and change，that mighty feet still dominates

ENTERY

of the century, the making of it.s

Ni'lil.

ssels, 10 of which Witered the lists. is, the largest of were begno with sse of that giganti.

674 steamers. In Naval Register, as including torperlo foree during hostilne Corps.
Commonwealth of under the command pol George Monk, of that early time men. In Britain's lleet had grown, by gregate tomage of (10,000 men. The gging, has vanisherd theet still dominates

HHTLSII HATTLENIII MA.EETIC.

fhencil battiesify Magenta.
the seas. Its strength, on Fehruary 1, 180s, was 615 vessels - 61 of which were bittieships, -- earrying a total force of $110,0,00$ oflleers and men.

Cobiert, when the Gramd Monareh was at the zenith of his power, fonml Frune with a few old and rotten vessels, and heft her with a noble theet of t" ships of the line and (i) frigates, which, mader D'Estrie, Jem Bart, 'Tourvilhe, and butuesme, carried her flag to every sen. A state paper of the time gives the force at the beginning of this century as 61 shijgs of the line, fe' corvettes, amil in mmerous, although mimportant, Hotilha of small craft. With Aloukir and 'Trafalgar, the maritime power of Framee wasted away; and, by the year 1833, there were atloat but threc effective sail of the line. In 1810,

genman mattirwill wobitit.
however, the revival hegan, and during the mondern ear the French fleet has, at times, been a formidable rival of that of England. It eomprised, in 18:3, 4.6 vessels. ineluding torpedo eraft, 26 of the total being hattleships. The force athoat mumbered 70,925 , of all ranks and ratings.

Germany"s navy is of monern creation. It begam, a little less than half a century ago, with one sailing eorvette aml two gumbats; amb, in 1898, emo. prisel $1: 3$ hattleships and $17!$ wher vessels of all types, carrying $23,3,31=$ oflicers and men. The fleet of united Italy had its inception, also, within the age of steam. It was on Mareh 17, 1560, that Italian national life began with the aseension of the throne by Vietor Emmanuel. From the beginnin:, the kinglom has been lavish with its Heet, its expenditures within the fir: six years reaching $\$(60,000,000$. In 1808 there were in the Italian navy $26 ;$ vessels of all types, 17 of whieh were battleships. The force afloat was 24,200 , of all ranks and ratings.

The ('rimean war found Rnssia but little alvanced, either on the Black Sea or the Baltic, in the substitution of stem for sail. Since that time, howperr, she has re-created her hattle Heet, which is now especially strong in torpordo cralt und cruisers of great steaming radins. Her navy, in 1898, comprisell 20 battleshijs and $20 ; 3$ other ressels, with a force of $32,4 \pi 7$ otlleers mud min. Japan began her fleet in 1866 with the pmrehase of an armorelaul from the Conited states. In 1898, she hal a total of 14.5 vessels, built and buik. ing - 5 of wheh were battleships - carrying $2,3,0$ mo men of all ranks mul ratings.

Of winor navies little neen he sain. Anstria hal, in 1898, a fleet of 115

Vessists of all types. incluting 13 battleships and $\boldsymbol{7} 9$ torpedo eraft. Holland's foree was 1 isa vessels. 3 being lattleships and $9 ;$ tornedo craft. The fleets of Turker, tireere, span, amb lortugal are "paper-mavies" mainly, Norway :onf sivelen have a combined strength of 171 vessels of all types. Jemmark, which began the century with orerwhelming naval lisaster at Cogemhagen, has mes a force of 3000 men bome on $\mathbf{0 0}$ vessels. hall of which are torpedo craft. Argentina. Brazil, and Chili have atheat $10: 3$ torpedo vessels and $4!$ of other types. The vast growth in maval armanents doring the century may be memsured from the fact that the persomel of the leading navies of Eurone, with those of Japan and the Unitel states, comprised. in the year 1898, :ifs, oes officers and men, with a total foree of $2=49$ vessels of all types, including torpedo craft.

 compare with her the tye of the sailing age. "There are two ships of the ohd time which hold ehief phame in the memory of the Sagherianom ratere - the

 as "obld Iromsides," but wor me sea, in any age, has there soiled at ship with a mowe gallant record. I late: I shows her as she was in her prime-before the wimh, with all sail set. Gn llate Il there is given a side virw of her

hull. which is of historic interest, in that it is reprolumed from the original drawing mate in Tetoher. Bath.

When her pwore and dimensions are compareit with these of the Oregon. our suatighter of to-lia., ban ceps what time has wroght. The frigate car-
 furce. the Gragon has a displacement did $_{2}$ times that of her famed predeeessor; and although the mumber of the gions - It - is the same in earh, she diselarges a brondside s.is times heavier and in energy overwhelminghy sugerior. The spred of the hattleship is one half greater than that of the Constitution, and she carpios armor varying from 1 is inches to 4 inches thick. which the frigate wholly lacked. The longitulinal sertion of the Oregon imbinates the immense mivane in other diremons. Her hall is, for safets. minutely sulndivided, and is provided with engines for propulsion, steering,
be instructive to , shius of the ohl axim bace, - the . whose andieevewerht. There ge: :14l juwertul thed a ship with r prime-larfore side view of her

[rom the original
se of the Orcgon. The frigate earproxinately equal lore fanuel prednsame thench, shor overwheluingly then that of the to 4 inelies thick. on of the Oregen lull is, for safety. opulsion, steering,
lighting, drainage, and ventilation, numbering in all 84 , with miles of piping and handreds of valves. The time-honored frigate was but a sail-propelled gun-platform, whose wants were as few as her construction was simple; the steel-clad hattleship is a mass of mechanism, a floating machine-plant, which for full efficieney must be manned by a persomel not only brave and dariug as of ohl, lont expert in many arts and seiences, which in the age of sail were but rulimentary or unknown.

IV. TIE PROGRESS OF NAVAL FNGiNEELING.

"I have just rend the projert of Citizen Fulton, Engineer, whirh you hure srent me muelh too lute, sinve it is sue uhich muny chunge the fice of the worlh."

No, in the beginning of the century, wrote the tirst Napoleon from his Imperial eamp at Bonlogne. Wrapped in his day-dream of a descent upon the Thames, he saw, with prophetie vision, in the phas of the American engincer, the future of navigation, and he strove to grasp - but too late the "Inortmity which might have made his armada victorious over wind and tide.

His words, however, rang truer than he knew. On the sea, as on the lamd, the engineer has inded "changed the face of the worle; "and in no department of human progress has his intfunce been more radieal or more farreaching than in the mechanism, the sopp, and the strategy of maval war. Fleets move now with a swiftness amb surety monthought of in the days of sail. Over the same western ocean which Nelson, in his eager chase of Villoneure, erossed at hut four knots an hour, the United States erniser Columbia swept, uin aty years later, at a speed marly four and three quarters times that of his lagging eaft. When, in 1s!s, war eame, the great battleship Oregon. although far to the northward on our western coast, was needed in the distant battle-line off the Cuban shore. In 79 days she steamed $14, \mathbf{i o w}$ miles, mak ing a run which is withont parallel or appoach by any warship of any may in the word's history. The magnifieent manhoot, the meonquerable pluek, the engineering skill, which hronght her just in time off Santiago, won their reward when the Colon struck her Hag. Speed has been a determining factor in many a maval aution. It was that which gave the power to take and hold the old-time "weather-gange." None kuew its value better than Nelson, the: chief fighter of the age of sail. Gnce he said that there would be formd, stamped upon his heart, "the want of frigates," the swift and nimble "eyes of the fleet" in his day. If his career in warfare on the sea had been a century later, he would be foumd formost among the advoeates of high-speend hattleships and quick-tiring gims.

It is, however, not only in the speed of warships that stom and meehanisu have revolutionized Heets. For example, the displacement of the battleship of to-lay is fully three and one half times gi sater than that of her heaviest anerstor of the sailing age. With due limitation as to length of hull, it is evisent that the wind wonld be, at best, a w'olly inadequate and untrustworthy motor for this huge strueture with it great weight of armor. It is true that, during the era of transition, sail an i steam were both applied tu iron-clals - this absurdity reaching its climax in the British Agineourt and her sisters, which were 400 feet long, 10,(ion) tons' lisplanement, and wer. fitted with five masts. It is said that a merchant steamer narrowly escapel
miles of piping t a sail-propelled was simple; the hive-plant, which brave and daring age of sail were

(6.

, whirh you hare ce of the "oorld." apoleon from his f a descent u川n of the American - loat too late us over wind and
ea, as on the land, and in no departical or more faregy of naval war. of in the days of ger ehase of Villecruiser Columblia uarters times that battleship Oregon. ded in the distant 14,500 miles, makrship of any mavy ouquerable pluck, nutiago, won their letermining factor to take and holl r than Nelson, the ewonld be formal, and nimble "eyes sea had been a cenates of high-specul
mand meehanism of the battleshi at of her heaviest ngth of hull, it is quate and mutrust. lit of armor. It i re both applied to tish Agincourt and aement, and wer" r narrowly eseaperl

colli. on at night with one of these vessets, believing from her longth ami rigging that there were tro ships aheal, hetween which she conlh gass. What

 a ship with which, in her day, Italy challonged the eritiefism of the worle -
 fourth mure than that of Nelsmes thagsip Vietory.

Again, the largest maval gun in the year lsob was one tiring lant a de-pmond

 as this, the strength of mam, maidenl, is but emde and futile. He must call tu his help-as he has done-steram as the somere of perer for the elotrine. hyalmulie, or phematie engines, whirh loand elevate, and tain the gom.
 war, it will be serol that the sperd of the battleship has hem bureased hy finly 30 per crot.. and that of the erniser has berol doubhed ; that the dise phatement of the battleship is now the a ame bue half times that of her sailing preteressor ; and that, sinve the century's birth, the gion has grown to surh extent that the projectile for the Oregon's main battery weighs $2 t$ times that of the heavie: shet in the year 1SEH. This, however, is not all. Stean aets primarily, as well. to raise the amber, to steer the ship, ant to effeet her lighting, heating, dranage, and ventiation. 'low the genins of dames Wiat there mist he aseriluel the pessibility for the growth and change wheh have produent the monder man-of-wat.

Closely allied with merhanism in this erohtion, has laen the tramsformation of the struetural maturial of the hull, which has gassed from the hamels of the shipwright in wewn to the enginere who works with sterel. The reasons for this arr mot far to serk. Ther lio, tirstly, in the greater strength of the metal eonstromion to withstani the vibration of swift and heave machinery, and the strains arising from the memal aistribution of massise weights in a hull which pitchess of wills with the waves. With woolens ships, the present propertions womblave leron mattainable, Again, there is a marked saving in the weight of the hall propur of the sterel vessel, which is wot only stronger but lighter. This weight in the days of timber averagend fully one half of the displarement: while in the (hragon, whose tomage at
 the worlen wessel of till toms to be applien to armor, armament, or equip. ment. , Finally, the durability of the metal wessel, with alequate enve, grently exereds that of the wowlen war stemmer, whese average life was but 18 years.
'The reation of the steam marhinery of mavies has lwen the nehiese. ment of the eaginerys of practieally hat there great mations. The diating of Fimere, the inentive genins of America, and the wide experiene and somel julgment of Great It itain, have united in this work. Gur comitry has leal time and again in the march of improvement; althongh our progress has bren fitlul. since, more than a generation ago, we turned from the sea to the development of the internal resomress of this eontinent. Limits of space pre mit hut brief review of a history which has had its full share of triumphe, not only in battle, but over wave amb wind.
her length ami could pass. What mast days, will be. of $1: 3,6$,6 toms III of the world 2:ann tons, or mu
 1:3-inch ritle of tan has athoat 1swoster ordhames surla 1. He must eall t" irs for the electrir. min the gran.
ly, to the ship-ofluen increased ly hilecl ; that the dis. es that of her sailgun has grown to ry weighs 26 times is not all. Steran: b, and to effect hirr us of dames Wiatt hange which have
the trams formation from the hands of iteel. The reasons Ereater strength of ift and heavy maChution of massive With wooden ships, Again, there is a al ressel, which is of tinuler averuged whose tomage, at maving a gain owr mament, or equip equite care, greatly fe was lout 13 years. bern the nehies. ms. The ditiong of periener and somad ur eomatry has bud h) our progress hats from the sea to the Limits of space pershare of trimmplis,

the r. s. s. orfacon.

A contemprary authority states that, when liritish dimiral Nir dohn
 expedition was remmoitred by an Amerien sthamer. This apmans to be the tirst remorl of the ase of surh craft for military furfoses. In 1814 the ['nited states built the tirst ste:m war-vessed in the world's history. She was eallent the femmong, later the Fiultom, and her complation marked truly, as her commissimmers said, "an wra in wartare amd the arts." She was a

 ghe rental prathewherl: her speed was it miles pre hour; and she was
 to report unon stemu vessels of war: and in ha: the Fromblan nime armed

ATIOS HETUEEN MONITOH AND MEOHGMMS.
was eommissionel as the first stemm war-shij in the British navy, and in 1sfor, at the bombariment of Acre, stean vessels fonght their first battle.

The growth of stram in mavies had heoll retarled hy its applieation solely to paddle craft, whose whels aml mandinery were ineapable of proteetion in
 of-war Prinextom, of 954 tons. 'This vessel was the prohuet of the genius of John Eriesson, the abhest marine moniner the world has ever seen. She was the first smew-propelled steam warship ever huilt, aml, in other respeets, forshadowed the adraners whirh were to conne. 'Thas, her machinery was the tirst to be placel wholy brow the water-hine beyond the reach of hostile shot; leer cugine was the tirst to be compled direetly to the screw shaft, and howers, for formen draft, were with her tirst used in naval practice. She was virtually the herald of the monlern cra.

The l'rimento was followed clusply he the lattler, the first serew vessild of the fritish lient, and in 1 sl: $:-14$ the Frmeh 4.1 ginn frigate Pomone was titted with propellers. In 1st3, also, the Euglish Penelope was the first mat-of-war to be equijned with tuhalar boilers, and the year 1845 was notable fur the building of the ill-fated Birkenhead, the first iron vessel of the British
lmiral Sir doln an of $1 \mathrm{sl} \because$, his is apmars to be res. In 1814 the l's history. Slu: (10n marked truly, its." She was : rying twenty : shiven by a sill ur ; and she was ssion to Amerieat h hath niur armed nall side-wherder,

tish navy, and in weir first battle. applieation solely le of protection in ites built the sloy t of the genius of ver seen. She was ther respects, fore machinery was the e refuch of hostile ce screw slaft, anil aval practice. She
first screw vessil rigate lomone was 3 was the first mall445 was notable fur ssel of the British

Hem. In AN:", when the Firmich constmeted the serew liment-hattle ship
 of their navy with regand to serew propulsim.

Framere in 1s.is, lat the keels of four amored hatterios, there of whel, forming the tirst iromelad sfandron in history, went into antion a year hater nuder the forts of Kinhorn in the Crinema. 'They were of lallo tons' displace-

 twluwt top.

Ther'ivil Wiar foum ns with a siling nave, and left us one of stean.

TIt: TIMHNIA.
Passing over its victories, in which steamers played always the chief part on sean and river, we come to that mest notahle trimmph of Chicf Engineer Isher"rnul. Hue eruiser Wampanag of fom tons' displamement. This ressel, phemmenal in her day, stemed in Fehmary, LStis, frem harnegat to Savan-
 and is kuts during a perital of six consecutive honers - a speed which for 11
 dupatch wessel Mareny, of :3830 tons und 18.58 knots, wrested the palm from Ameriat; but, in Isa:; it was won again for the United States by the triphes.rwe thers Cohmbia and Mimeapolis of ithatons, with speets respectively

 Hhe tirs anemestal haval mgines of the rompumal primeiphe, in which the

huene of miversal application. It has hat its most moteworthe naval

 :

 Has tiaplarement. Is has beren staterd, the maximum pertormanere of lange
 Whmpen of the wamedinary problew whish hats confromed the terpedo-luat

Aesigner in driving hulls of, it presemt, about bith tons at a speed which now
 there will be linked alwass tha names of tarme and Thomyeroft in bingland.

 of angineers the world aver to the pessibilities of the steam turhine un tho

I bred ghane at the imprevements which have made pessible these extremer

 from higher pessures and maltiphe expansion ; secomilly. in the moturtion of

 parinom, howerer, must in ghalitied ly the statement that the ohler engine
 in diapherement. The contrast lies, therefore only in the reduced weight of matorial per harsegmere dewhond and in the inereased stean pressure, Whidh, however, are in themselves mest st riking.

V. THE: Li\&OWTII UF OlldN:SNE:.

At I'rafalgar, the Victory drifted hefore the wind into action. In her show
 was for half an hem moder the prolongen tive of simg gims, and yet she closion, practially minnt, with bur forss and lival, mot conly to win the day, bue to lowg modying glow to the Einglish thag. What a contrast the latest sea-tight of the contury presents in the power of mondern ordnanee as pompared with
 five milhs. with one 1 lom-gund shall, drove the Colon, an armored emiser, not only shoreward, but to surveniler, stranding, and wreck.

 - short pieces with a heasy shat bit limited range - fomm favor abo, especially with hritish saiboss, rager for that close-g garter fighting in which the "shashor" - as Gimemal Molville ealled his earonade - would be most efficetive in shattering timbers and in semping elomes of splinters anong the foe. The projeetiles were spheriwal shot, canister, ant grape, the dialontioal shrink of tho shell being set mheari. Both gun ami shot were of east metal,

ENTLR!

speed which now mess in this task. moft in Englaml. wherement hat 'arsons, in givin! wh the attention: a turline om the whe 'the Fremelt perl of :35 knot maft atlosit.
ible these extremer he progress which of stoman arixim? "the werluction of materials and in was reiutruhtured "apmbeation of at i a a 111 and \mathbb{N}, whinh the Voited stat"'s luited states toro vessil are: hors. y par hursi-ןworr awry, 1sim: steam it llss. This comthe older engius mat is but 120 toms reduced weight if wh stemm pressum:。
ction. In her shus not 1906 yards, she and yot she elos, il, win the day, but 10 the latest sea-fight e as compared with at a range of nearly armorel erniser, mot

5 and $42-$ pommlers, yarls. Carrmantes - fomml favor aho, or fighting in whoh de - would be must splinters among the grape, the dialow inal t were of east met.al.

 shafts.

 shet "anmet mise the eng.e.t."

Th, ignite the rhatge the show-matrit was still used, as is shown her the shat? worls of a sailor of that thme. Hailed in the darkeness ly a liriti-h ship and urderol to seme at lata, hix puick answer was: -

 Thathge in this.

 rould strike it. Latere a similar remponit in was msel with "friatiomprimers."

 armor. In $\operatorname{sig}!$ the systom of fitug shells loaded with gomowiler from

धンなにな

＂atuing or hem

 serne＂hered h，－anul s．rinterd 1 humse is．ilt the
mall mights ant tifth lornee thin！ of rivenunds ：unl －Was owsintial tw
 an mand（al land

Clusuins that min
．ill $1 \times 1:-11$ ，thur nt tary fill hefores
is shown by Hu Hess by a litithon
mha，commularis．

hinturus：－

old rule as to his anhla give the oro． Battery，in minn wrought a magia nutheuth abitury： in in tha：British in．In 1sing throm finn or comciassion． hirlo explesind the 1 rush of the gix －friction－primers．＂ 1nsition，the tuln lneing tirell be the assion and frictiont （ry，whiel comsist， ighly intlamuahb （antent，is heatem）

I sloot reaches its fintil the advent of gmpowder from rance．In 18：4．it

s S Navat 1100 patr 13 in fifle．Bnth－loaver ueight oolons，mueite Enengy 3ser7 Fowthes

The．Growth of Crdnance
I＇I．ATE：V．

 sels, with their tome of foum men. The l'axhans gan was monlition and in

 of the lament ty":

 the growth in pewer of mondern ordnamere.
 Which wondal bure hrough the air a trwe path to the distant mark, there

 during its passage thongh the lome :ad. An explosive which womblathefy

 handling were han man matiors of chginemring.
 possible ta give hat aghare at the progress in the varioms elements of gat constraction whinh have been motel, of material, littlo med be main. The
 wrotght iron ; ani the first Armstrong gum was lailt of wromght iron and

 mannfacture - forms the "recking tulne" for the "aron sharit" of the een tury's clusis.
，that of the l＇nind $^{\prime}$
和 11 Turkinla sos． as mevitiond and is latre：©n＇s the arman ： furbued the bink at alment whilly rithe．
air，harir deviallint
 lat whatisaly to malio ail prompile．Thu Inilt ：anil ther lum an baitiol of this s！ 1 e
 Amay during tight， －frow it－Mhmannol 1 ｜low ald：： lath di－inely rille of
a heary rithed guns．小 natw：The lalnot itell ：vithe wrigh＂me ith．was brughla cill at in lst：it wiallan
＇Thי：aldy．tinn in ring had latid howaral
mil mondrater calilve distant mark．hare tivent alvance mande ＇These fallors weme： 1．I ：methonl of（m）ly thes in the pewilet． ation of the proje．entile whioh womlal sistinfy 1 system of loanding will with ase．The its rapiod and fionle
ssiol th hay：men，it is ons elements of thin－ ＂meed be satil．The amee was of cast ：mul of wrought iron ：and misheel with the pats． y arery retine maty ol in shate＂of the wer

 ＂hale m telnsinn atomal ine harmel．

 due the stmolus to grawh sime then．The fustores have kept pare with

 IIt the ilarge．

 Luited states patent of lal：tuc＂hatubers．

 atge themegh massion plate．the walls of this sherl mant be su thick that tur

 arid．

 minutr．＇The discharge of high exphovises in latrge quathtity was affoment

 dition．

 work which the propertile is rabalhe of proming when it heabes the twe

थFFた!

nd. Emghish, and (Krull sustran a tilys rit across the sit sitt torth in the (thwaras simplititian Whild ramistur :anl

 an form. It innoisis Duratime marge in pmontile is $1 m$ t bis if lontos. simes. 110: an:i.
ank la tho fiftermult 1"Mlds!ul in 1×2.
 shates l:i-iturh mathe within it is bursting
 l. within the sh!.
 luess it ther primt. lattor would a!puar (a, a) is a habrimatit
 4. strain in its pars* (n. s. thick that 1 nu ther shell is tivel somen extent harest

 "w ivally the whw 1 hydamilic Iminhnu. \therefore of titinh matimes. rensing largole lay

 antity was efferind iff samtiags. 'Tlu in: a tentative cont

Fin sumararizine the

 (sied to ineserilne the it latases the hure. in the shon wind lift to a height of one linet. The ligures as to this for the

 ajan the armor-piate.

It will he sern then that the immeasmable sumeringty of mondorn ghans is , wing hoth th their great increase in anergy and to their wise disposition of

 thith. -

 hrmahe th luar against them at any range."

 of or whim of her designer may imbione. In the persent stage of this maras-

 s:l! : -

 the mavimen calime that it will be alvisable to install on finture batthe *hjo."
II int amme as with the tornedo, the talent of Eurom wand where the

P円ATE: VII. THF: H-THHHTHOX (HF AHMOH.

 design of the jotars which wrove to enme.

（にNTU゙け

Antury during tha finn，athl laftallo．
 lwworep，vintitulw wy hand detomino． ilex at guint hasho ak．＇Flusin mant． Whatill wink＂！

N He invontion of

 ith iron armur．：an an rals of watoing 1 mel －shell giths it her －＂：Inse of the intron
 －which gatre：al tutal

 wrimulnt the tiox

 hand how at hay the its．first vimbery，mat Mors in the washan

1 immediatuly hormor
 merns at Vimernans．
 ring ships．their lant －th hiser Frature lad
 If armentel ites．if kning mululat sher
 of how heredtarat lime in listit．Whale luer in：isis fien of lew th

Itex，ther goverimilis of ipobilats．I lue a the wtate of ar or －if solill irun，w！we

 Sintruloburelowntian shlid

diveld tomer

＇Hisn inve＇（Enuland） 1859
Sule temat（rum＋1／in Solbel

－Penlio（lluly） 1.876

Hip：Tilfrep ihemum
Iluringeal lithe：Deerl Solad

 compleataly in hath masis.

 irom and st targets of stere - the single of argergate thiekness of metal

 ハs，：HIll｜｜h．s！．

 h lastrobiner las ． de arlour．alll llas

 itirations．It जllt $^{\circ}$
 H1H！sisl 11% ． is onle whiml den＇s
ill 1 her matler at
 l．al in वиリーا Ith Morrimar，for ars，al ill allegl．of
 \therefore ：at lhis．at pullater
 a cile rometuraty
 l $1 \cdot$ m－materi $=11$ in in lom matil is al in allal． hor lint10．1 Flow s．

 Foraring．In lis 11g． ，：allil
h1．fiallouns cost－al III glll，with a＇1 Hwioh＂targere of thirkness of mactal koll llarogh Italy＇s Hable vissides ath at， Imblriang from la leprivel the ：s ipt

 －coarto livalo fiesil．

 syria, int the summer sumlight of a Alme day in lase: The tam of the lather

 will repuite tume than the skill ol the swombumat.

 " اm,

 gan wotho we other high explasive.

 tant！is，hait its blow when sismek home is ahmost surely fatal to ship mul

 the＂theress atel men of the l＇uited states nave tron the doreks of the tinest

 ducell in 1s．is．

Inomg the＇ivil Wiar iwo vessels，the Monitor and the Srew Irmasides，

 ＂humbernders．＂and the like，whirh preeeded and followed them during Howe liark baiss，sement their momitey well．With the ambing of that war，

 ן－vinus！herem．
 mal，pily，and matine oflicers，the chaphans and warmint oflieers－a tobal on

line whiows are the eommanders，mavigaters，gmmers，mad，hy perent law．the＂ugineers of ome ships of war．Marine ofleeres have whage of the fulicime of shipes and shorrestations and of the ghus of light rabiber athott． The dutiow of the remaining oftheres are indieated hay hare tithes．The tithes if limentivers and their mative ramk，as comparem with that of oflerers of the ：rma，：llu：－

[^0]AHET．
Geurrul．
Major or Brigadier Genernl． （cistonel． Lideubemat colonel．
Mijor．

IMAGE EVALUATIÓN TEST TARGET (MT-3)

Photographic Sciences Corporation

Lientemant Cuptain.
Lientenant Jumber First Lieutenant.
Ensign Second Lientemant.

Line and marine officers and naval constructors are educated at the C' nited States Naval Academy; all other officers are appointed from civil life. The Academy was foumded in 1845and is located at Amapolis, Md. The conse comprises four years at the school and two years at sea on a naval vessel. The mmber of cadets at Annapolis is usually about 260 .

It is by reason of wars that navies exist, and a few words as to our - now happily ended - eontiet with spain, may fitly close this review of naval progress. The military lessons of that struggle have been fully set forth by able writers. More important, by far, than these is its teaching as regard to our state and finture as a naticn. The word has learned that the people of these United States are stirred, still by the same stem and dauntless spinit whieh, in Revolution and Civil War, has made and kept us a nation. Firrthermore, with one swift anoke, the bounds whieh in theory and in territory ciremmseribed $: 3$ iave been swept away, and the United States have passed from a continental to a word power. This is not chance. It is bat the leading onward to a destiny whose splendor we may not measure now, whose light and peare and prosperity shall traverse a hemisphere. The one note of sadness in it all is the memory of the gallant dead, of the heroes who fell that this might be. To them, in Cuba and the Philippines, Columbia - with a smile of prite and a sob of pain - drinks in the wine of tears to-day, as the smoke of battle fades.

George Wallace Melvinle:
hant.
emunt.
cated at the [nited om civil life. The : Md. The course on a naval ressicl.
rls as to our-nowr eview of naval profully set forth by ching as regard to l that the jeoplo of nd danntless spinit us a nation. Furory and in teritory States have phased

It is lut the loudtre now, whose light lie one note of saderoes who fell that Columbia - with a tears to-day, as the

Lace Melithafe.

AS'TRONOMY DURING THE CENTURY

ITS PROGRESS, ACHIEVEMENTS, AND NOTABLE RESULTS

Astionomy, the oldest of all the family of sciences, is not a whit behind its sister branches in activity of researeh and brilliance of discovery. The assiduity and zeal of its devotees are marveloas. The celestial field is so wide, the depths of space between the stars so vast, that no assurance can ever be given to an astronomer that a lifetime of faithful and intelligent research will be rewarded with even a single discovery of importance. In this resprect it differs materially from other hranches of science.

Nevertheless the patient labor of those who serve in its temple has rarely failed to rereive an adequate reward. The discovery made in August, 1877, by l'rolessor Asaph Hall, of Washington, that the planet Mars is attended by two satellites, is a convineing illustration of this peculiarity of the pursuit of astronomy as a study. An indefatigable watcher of the skies for many years, Professor Hall, looking at this planet at its opposition in 1877, when it was unusually near to the earth, was surprised to note two tiny points of light quite close to it; seeing them again the next evening, changed in their positions relative to Mars, it flashed upon him that the firm tradition that Mars had no moons was now disproved. His name will be forever associated with these two bodies, Deimos and lhobos, as their discoverer, although they are but wee orbs, only seven miles in diameter.

1. ASTRONOMY A CENTURV AGO.

The end of the eighteenth century found the Copernican theory of astronomy well established, the principles laid down by Kepler and Nerton fully claborated, and the application of the higher mathematics to the needs of astronomy complete. But there were, as yet, no large telescopes, and observatories were few. In Germany, a great disposition to make observations in this science and in meteorology was displayed in 1783 and for a few years following, and the records then made have proved of much value in contirming discoveries amounced at later periods.

When Sir William Herschel, on Mareh 13, 1781, pointed out a little star in the constellation of the Twins, and found that it had a perceptible disk and a slight motion, and was therefore not a star, but a newly found planet, to which the name Uranus was soon given, a careful inspection of the notebooks of previous observers showed that Uranus had been observed and recordel is a fixed star on twenty previous occasions in that century. One man had seen it twelve times, and made his reeord of it on a paper bag purclased at a perfumer's. Had he been a man of sufficient order and method to have pemed what he saw on the regular recor's of his observatory, to him wimld have come the glory of the great discovery of that century:

1I. HOW "HODE'S LAW" PROMOTED RESEARCLI.

An erroneons guess, if it is a good guess, sometimes produces excellent results. In 1778, Bode, of Berlin, published a "law" that states the distances of the various phanets from the sum. It is often expressed simply in this way : Set down 4, and add to it suecessively the numbers $3,6,12,24$, ete., and the sums obtained, viz., $4,7,10,16,28$, ete., represent the relative distanees of all the phanets from the sun, viz., Mereury 4, Vemus 7, Earth 10, Mars 16, [Asteroids 28], Jupiter $\mathbf{j}_{2}^{\prime 2}$, etc. In reference to all the planets then known to exist, the correspondenee of the alleged law to the facts was remarkable. The one point in which the alleged system utterly failed was in requiring the existence of a planet to fill the gap between Mars and Jupiter. So boldly did Biela press his comvictions of the correctness of this law mon the notiee of his fellow-workers, that they resolved, in 1800, to divide the zotiac into twenty-four zones, to be apportioned among them, for the express purpose of searehing for undiscovered planets. This well-organized effort was, erelong, wrewarded by the surprising diseovery of four new planets, the first one on the first night of the new century, January 1, 1801, and three more soon after. As no more seemed to be forthcoming, the search was relinquished in 1816. A fifth was found in 1845, and nearly five lundred since. Since 1891 photography has been wondrously serviceable in finding these bodies. A sensitive plate, on being exposed toward that part of the sky which it is desired to examine, will reeord all the perceptible stars as round disks; while any planets that appear in the field of view will, by their motion, leave their trace in the form of elongated trails or streaks, thus betraying themselves at onee on the photographs. In this way Charlois, of Nice, Italy, has fomd nearly ninety small planets. All these planetoids, as the minor planets are often termed, are quite small, being but twenty to one hundred miles in diameter, and not eonsequential members of the solar system. Bode's law thus fulfilled its temporary mission; but egregionsly failed when Neptune claimed admission to a place in the solar system, for its distance from the sun was utterly out of harmony with that required by the law of Bode.

1II. How NEPTUNE WAS FOUND.
The patience of Job had a strong parallel in the labors of those tireless toilers to whose minute computations we ove our knowledge of Neptune's path in the skies. For this far-off planet was diseovered not by the use of a telescope, or any optical instrument, but simply by a process of mathematieal reasoning. The story is simply this. For sixty years after Uranus was recognized, there were irregularities in its motion that could not be satisfaetorily accomited for. In the orbit that it was believed to pursue, it was sometimes in advanee of its proper position, and sometimes it seemed to fall behind. Sometimes it appeared to be drawn a little to the right, and at other times as far the other way.

The thought at last came separately to several penetrating minds, not that the observations of its position were in error, but that Uranus must be drawn away from its supposed path by the attraction exercised upon it by some unseen body. And if such an object existed, was it a planet? Where was it? How large was it? What was its path in the far-off ether?

In the year 1842, the Royal Soeiety of Seiences of Göttingen proposed as a prize question the full discussion of the theory of the motions of Urams. It was specially sought to learn the canse of the large and increasing error of Bouvard's Tables that had been relied upon to show its motion and its precise position at any time. Several able mathematicians undertook this intricate problem. Among them were John C. Adams, of Cambridge University, England, Sears C. Walker, of Washington, a man whose sad fate it was to pass away ere his magnificent, abilities could receive extended recog-

TIE MOVEMENT OF URANCS AND NEPTUNE.
The inner circle shows the position of Uramus at varioas dates; the onter circle the position of Neptune. The arrows show the direction toward which Uranus was drawn.
nition, and M. Le Verrier, of Paris. Working unknown to each other, they reached similar conclusions almost at the same time. Though not the first to solve the problem, the brilliant Frenclman was the first to annomee his result, which he did by writing a letter to Dr. Galle, of the Berlin Observatory, where there was one of the largest telescopes in Europe, and asking him to search for his computed planet, and assigning its supposed place in the heavens. The very night he received the letter Dr. Galle found the planet within one degree of the point designated. The next night it had moved one minute of space, and was also seen to have a perceptible disk. This settled the question, and stamped it as a planet. Le Verrier well meritect the title bestowed upon him, "First astronomer of the age."

IV. METEOHITES.

The nineteenth century will be forever memorable for its witnessing the closing career and final destruction of a famons comet. First noticed in France, in 16as, and reliscovered, in 1806 , by an Anstrian officer named biela, it bears his name. His computation showed that it traversed its orbit in six and one half years. When it reappeared in 1846, and again in 18:2, it was seen to have split into two unequal fragnents. It has not been seen since; but at every time when its return should lave taken place the earth has passed through showers of meteors supposed to be its constituent particles, and to indieate its entire disintegration.

During the metroric shower of 1885 , on the 27 th of November, a large irom meteorite fell in Mazapil, Mexico, and chemical aml physical investigation joined to pronomee it a part of the lost biela's comet.
The large cabinets of the world contain lumdreds of specimens of meturs. ites, known to be such by their chemical composition, but only a few have actually been seen to fall. The most remarkable fall ever witnessed was that of May 10, 1879, in Iowa, in which the heaviest stone weighed 487 pounds. On Λ_{p} pil 8,1803 , an aerolite fell near Osawatomie, Kansas, and struck the monument to John Brown that had been erecterl through the efforts of Horace Grecley in $\mathbf{1 8 6 3}$. The meteor broke off the left arm of the statue. A Texas meteorite, owned by Yale University, weighs 16i;i) ponnds. 1 meteorite that fell in Jiminez, in 1892, now deposited in the city of Mexico, weighs twenty tons; and one lying on the coast of Labrador, which it is proposed to bring to the United States, is said to be still more massive.

V. DO METEORS OFTEN STHIKE THE EAIRTI?

It must not be thought that metcors usually strike the earth. In truth, but few of them do. The earth is surrounded by them, cold, dark, invisible, because unillumined. It is only when they become heated by rapidly impinging on the atmosphere that they can be seen at all; and unless they come near enough to become subjeet to the dominant power of the earth's attraction, they pass off into space unnoticed, and their presence unsuspeeted.

A case in point is the brilliant "fire-ball" of July 20, 1860, that moved rapilly over the United States, from Wisconsin to Cape Corl, and then passed off into the skies. The entire time of its visible flight over a path of thirteen hundred miles was about tro minutes. It was seen about ten o'elock in the evening. It was estimated to be from one humdred to five hundred feet in diameter, allowing for an increase as it expanded by reason of its striking with such velocity the lower and denser layers of the air. Its size and brillianey were such as to arrest the attention of hundreds of persons, some of whom cronched in fear, and even alleged that they heard it liss as it flew over their heads. Some fishermen in Lake Huron had ropes over the sides of their boat, ready to spring into the water if it came too near.

James H. Coffin, LL. D., then Professor of Astronomy in Lafayette College, made an exhaustive study of this unusual phenomenon, and, under the patronage of the Smithsonian Institution, published a volmme containing many observations that he collected, with the mathematical results derived from
its witnessing the
First noticen in dian ofticer named at it traversed its 1846, and again in 3. It has not bern ve taken place the be its constituent
ember, a large iron sical investigation
ecimens of metern. nt only a few have ver witnessed wats stone weighed $4: 5$ mile, Kansas, and rected through the off the left arm of arsity, weighs $10: 3$ w deposited in the e coast of Labrallor, id to be still mure

TII?

he earth. In truth, zold, dark, invisible, ated by rapidly im11 ; and unless they nower of the earth's resence unsuspected. 0,1860 , that moved Jod, and then passed over a path of thiron about ten o'clock hred to five humdred led by reason of its of the air. Its size undreds of persous, they heard it hiss as on had ropes over the me too near.
in Lafayette College, and, under the patame containing inamy results derived from
them. I'rofessor J. Hhun, of Viemal the highest anthority on this subjeet, saind that it was the most comprehensive study of a meteor's path ever acocomphished. Nis years were spent in making the computations.
sidfillmmined by the heat evolved in striking the varions layers of the earth's atmosphere, it became sutticiently loright to be first seen when seventy miles above the surface of the earth. It was within forty miles of touching us at the time it was over the !lutsin hiver: when the great heat acquired by its rapid transit culused it to hurst into two masses. which - like Biela's cometcontimued to pursue separate comrses, side by side. until they were lost to view in their ascending tight, being last seen from the deek of a vessel off the island of Nantucket.

No part of the fire-ball struck the earth. Its orbit was an hyperbola, a curve not often found in nature, and such that it can never come near us again unkess, by the sumerior attraction of some celestial body, its course may be changed, and a new orlit result.

VI, ASTRONONICAL OBSEICVATORIES.

The loyal Observatory, at Greenwich, England, was founded by Charles the Second in $\mathbf{1 6 7 5}$. Its main purpose was to extend astronomical knowledge, so that navigators might better find the position of their ships at sea. This institution retains its prominence. All the longitudes on our maps are reckoned from it, and Greenwieh time is used on every ship that traverses the ocean. The "Nautical Almanac," issued by the Observatory, was an indispensable part of the outfit of every sea captain until, in 1852, the Unitel States provided its own American Ephemeris, a collection of tables of the motions and places of the sun, moon, and planets for every day and hour and oceultations of the stars, with rules for calculating longitude and the like.

Many valuable observations of the transit of Venus in 1769 were made at points near Philadelphia; but almost seventy years ensued before America witnessed the erection of any permanent buildings devoted to the purposes of this science.
President John Quiney Adams, who was highly versed in science, and held the position of presilent of the American Academy of Arts and Sciences in loston for twenty years, often urged this matter on the attention of Congress, but without success.

President Thomas Jefferson, who was also a man of no small scientific information, as evidenced in his keeping a systematic weather record at his
home in Monticello, Virginia, proposed an elahomate survey of the national coast. This was anthorized by Congress in 1807. In the year 1832, in reviving an act for the contimance of the Coast Survey, Congress was eareful to append the proviso "that nothing in the act should be construed to authorize the erection or mantenance of a permanent astronomical observatory."

The expected return of Halleys eomet in 1835 again stimulated popular interest in the seience, and aroused an intense desire to provide serviceable instrments, and to establish buildings suitable for their eare and use. To Williams College, Massachusetts, belongs the honor of erecting, in 1836, thufirst astronomical observatory on this eontinent. Under its revolving dome was mounted an Hersehelim teleseope of ten feet focus, which later became the property of Lafayette College, where it is still preserved. In 1843, John Quincy Adams laid the corner-stone of the Longworth Observatory in Cimcimati, and delivered a commemorative aldress, his last great oration. The construction of the United States Naval Observatory at Wishington soon followed, and before 1830 there were fourteen observatories established in this comatry. Nearly all the instrments they eontaned were made abroa'. chietly in Munich and Loulon. Sinee then the number has risen to two hmodred reeognized observatories, of which twenty-four are of superior order, where systematie work is daily pursued, and the results are regularly pulbished in book form. About two hundred observatories exist in other nations.

VIt IMPLOVED instrements; their effect on the science.
The great improvoments in teleseopes male during the century have been fruitful in two ways; a hetter knowledge of the surface of the moon and of the planets has been gained, and we have been enabled to learn with precision the exact motions and times of revolution of these bolies and of their accompanying moons. This information, by the use of the laws ascertained by Kepler and La llaee, gives us their exat distance, dimensions, and mass. With the inerease of telescopic power, the census of the starry host has been so augmented that the number of stars within reach of our modern instruments exceeds $125,000,000$. But we had gone little beyond this sort of information until the invention of the spectroscope.

Previous to the year 1859 a few meteors, composed chiefly of stone or iron, some of which had been actually seen to fall from the sky, had been subjected to ehemical analysis; but outside of this nanght was known of the physical constitution of other worlds than ours. Our ignorance on this point was complete. All our attempts to beeome better acquainted with the structure of the planets, the composition of the sun, and the nature of the fixed stars would probably have been in vain but for the invention of the spectroscope. This surprising instrmment is a master-key with which to unloek many of Nature's mysteries; her recesses are brought to view, and the farthest star is subjected to an accurate chemical analysis, so far as the light that comes from it is sufficient to disclose the materials of which it is composed.

The wondrous use of electricity as an agent for the production of light, heat, and power is no greater achievement, in its way, than is Spectrum

ENTURY

y of the national he year 183:, in Congress was entruld be construed ent astronomical
timulated popular ovide serviceable care and use. To ting, in 1836, the ts revolving dome hich later became l. In 1843, John uservatory in Cilleat oration. The Washington soon ies established in vere made abroa ${ }^{1}$, has risen to two are of superior sults are regularly ies exist in other

He scifice.
century have been the moon and of to learn with preodies and of their e laws ascertained ensions, and mass. ury host has been mir modern instruond this sort of
hiefly of stone or the sky, had been was known of the ance on this point jed with the strucature of the fixed on of the spectrowhieh to unlock to view, and the sis, so far as the rials of which it is
oduction of light, than is Spectrum

Analysis in bringing to our carthly laboratories the work of the bivine Hand performed in distant regioms of space. Vect the story of the spectooseope is easily told. In its essantial eloments it is merely this: A ray of light, entering a darkened rom throngh a bold in the window shatter, produees a bright bean on the opposite wall. A triangular glass prism held close to the crevice turns this beam into a band of rambow hums. If the hole can be changed into a samall slit, saly onc lometh of an inela high amb one fifticth of an imel wide, and if the light can further be made to pass in surcession throngh several prisms, instend of through one, the band will he so elongated therely that its various and surprising markings ean be thoroughly traced and fully studied.

To this band of bright colors sir Isate Newton gave the name of the

THE SI'ECTHOSCOPE.
solar spectrum. The image formed by the light of any luminous body, after it has passed through a prism, is said to be the spectrum of that body.
VIII. TIE S[PETROSCOPE ANI ITN IRIUMPIIS.

The spectroscope consists essentially of three tubes joined in the form of the letter Y, one of which is a small telescope, in the fueus of which a narrow slit is placed to admit the ray of light that is to be examined; a prism, or a ruled grating that disperses the light, so as to form a spectrim ; and a view teleseope, with which to observe the various parts of the spectrom.

By using a small telescope to view the spectrim of the sun, Fraunhofer, a German optician, in 1814, discoverel that the whole length of the spectrim was crowded with dark lines, very narrow, indeen, but scattered all through the seven hues. He found that sumlight, whether taken direetly or reflecterd

CENTURY

rk of the livine ory of the spect:uely this: A raty of adow shatter, prue -glass prisim hold bow hues. It the inch high and one anle to pass in surat band will he so ean be thoroughly
the name of the
y luminous body, tim of that body

Plls

ned in the form of focus of which a ; to be examined; as to form a sprecrious parts of the
sun, Fraunhofer, a h of the spectrum attered all throngh lirectly or reflected

YERKES TELESCOPE, UNIVEIRSITY OF CIIICAGO.
Largest in the World.
from elouds or from the moon or phats, invarially gave the sane spectrum; but in no case did light from the stats give a spectrum of the same sort as that from the sum.

Dr: Kirchhoft, of Heidellorg, in 18.59, explained the origin of the dark lines, mul showed that there are three kinds of speetra: first, that of min incandescent solid or liquid, which is ahwas prerfeetly continuons, showing neither dark lines nor bright; seeond, the spectrum of a glowing gas, whelh consists of bright lines or bands sepauted by dark spaces. These lines are characteristic of the chemieal clements that eanse them; and so, from the composition of the bright lines in a spectrma, it is pessible to tell their origin. Third, a speetron erossed by dark lines; which orents when minemdescent solid is viewed through absorbent vapors.

In the solar edipse of 186 s , M. Janssen first noticed that the solar prominences gave a spectrum of the seeom kind, and thus proved that the prominenees consist of glowing gas. Sinee that time the mareh of discovery has been exceedingly mipid.

This simple instrment has thus led the way to a knowledge of the elements composing every heavenly herly, no matter what its distance, provided only it is giving out light intense enongh to reach our gaze. Fior the purtere tion both of the teleserpe and spectroseope we owe muelh to the optieal skill and mechanical texterity of the Clarks and howland, Hastings mul Brashear, all Amerimans.

About forty chemical clements have now been recognized in the sum. The most prominent are iron, caleim, hydrogen, nickel, and sodium. A distortion, or displacement, of some of the lines in the spectrum emables us to coleulate the speed at which the gases are rushing toward or from ns. A given line in the spectrm of Aldebaran is displaced toward the videt in such a way as to show that the star is approaching the sum at the rate of thirty miles a second; while a simikur line, in the case of Altair, so deviates toward the red end of the spectrun as to prove that it is recerling from the solar system at a velocity of twenter-four miles a second. By this $p^{\text {minciple, recog- }}$ nized by Doppler in 1812, the motions of ahout one lumdred stars toward or from the solar system have been aser rtained.

There is no question but that the solar system, as a whole, is steadily moving away from Sirins, and toward the constellation of Hereules; whether faster than at a sate of twelve miles every sceond is still scarcely decided; but this rate would be about a million miles a day, or three humdred and seventy million miles a year.

dx. WHAT IS doNE iN A LARGE OBSERVATORY; ITs WORK.

A visitor who wants to know what is done in a great observatory might go to Harvard some evening. He wonld probably find the large refractor pointed towarl the satellites of Jupiter, Crams, or Neptume, with a view of noting their precise phaces, so as to eompute tables of their exact motions; or he might fimd a laborious observer watching sueh double stars as have considerable proper motion, and making drawings of conspienous nebula, so that future astronomers may be able to decide whether time bas wronght any changes in their coustitution or figure. The great glass at Princeton, under the charge of Professor Charles A. Young, is largely used for spectroseopic
e same spectrinn; the same sort as
rigin of the daik first, that of :m utimuons, showing lowing gas, which
Thase lines are and so, from the ible to tell thrir ass when an incall-
d that the soliar is proved that the tarel of discorery
rledge of the rledistanee, provided Fin the perfire. w the optical skill ings and lirashear,

I in the sum. The orlium. A ilistor(Maililes us to cal. from ins. A given re violet in sudela the wate of thirty so deviates towaril ng fiven the solar is principle rereng. eel stars toward or
whole, is steadily Ierenles; whether searrely decidel; hree hundred :und
trs womk.
observatory minght the large refractor me, with a view of eir exact motions; : stars as have comous nebule, so that has wrought any at Princeton, uuler for speetroseco
work, examining the sum's photosphere hy lay, and noting the speetra of the stars at night. Spectrul observation is an important part of the routine at the Yerkes Observatory in Wiseonsin.
Maur faint emmets have been suecessfully photogruphed at the Lick Observatory, on Momit Hanilton, Cillifornia, and elsewhere by the use of very sensitive plates und a long exposure.
S. W. Burnham, of Chicago, is fumeal for his nenteness of vision, tested in having deteetel mul measired over one thousmad donble stars which to other eyes had apperred only as single stars. The discovery of these objects belongs wholly to the nineteenth enntury; for in 18in3, Sir Willian Herschel first numoured the existence of sindereal systems composed of two stars, one revolving aromad the other, or both moving about a common centre. Some of these binary systems have previods of as great a length as tifteen hambed years: and some ure as brief as fome, and even two days. Some of them atford eurions instanees of contristed colors, the larger star red or orange, aul the smaller star blue or green.

X. THE NATIONAL OHSEIGVATOHV AT WANHINHJUN.

Professor Willium Harkness, U. S. N., M. D., LL. I).. is widely known as the author of numerons astronomical and plyssical papers anul books. He has also designecl a number of instruments and mado important discoveries. He has loug been comectell with the Unitell States Naval Observatory, aul now lowds the position of Astromomical Director: His report for the year 1803 shows that the twenty-six inelh reflertor at Whahington is now nighthly engagel in mapring the relative positions of then and Lapetus, the fifth and eighth satellites of Saturn, with the intention of seeuring a new and final determination of the mass of that planet, which has been heretufore reckonel as one 3493d of the sinn. The twelve-inch telescope is chiefly employed in stulying com'ts and astervids, and on Thursday eveniugs is at the service of the publie. In the year $1898,37 \pi 8$ observations were

IROFESSOIL WIT,TIAM TAAKKESS,
Ashrommieal Virector U.S. Naval Observatory, Wishingioni, D. C. made with the nine-inch transit cirele, for which two men were detailed, with the serviees of five computers.

A tamsit circle and an altazimuth instrument, each turned out of solid steel, have recently been added to the equipment, and are of a workmanship that compares favorably with anything ever mamufactured in Europe. It is asserted that the latter instrument will give more aceurate measurements of deelination than a transit circle, which is an innovation on long-cherished ideas.

Professor Simon Newcomb, of the United States Navy, is about to issue
new tables of Mars, U ramus, aud Neptune, and a "Catalogue of Fundamental Stars for the Epoeh 1900." During the year 1898 three thousand copies of the American Nautical Almanac were published. This is but an illustration of the scientific lathor accomplished at this busy hive of industry. Duriug the year this observatory issued to the navy 230 chronometers, 200 sextants and octants, and 1400 other natical instruments of value.

XI. STAl MAPS ANH CATALOGUES,

In the year 128 n. e. Hipparchus put out a catalogue of 1025 stars observed at Rhodes. Twenty such works succeeded this up to the year 1801, when Lalande, of l'aris, brought out a list of 47,390 stars. It will be remen.bered that few stars have names, except those known to the Arabians of old, but are designated by their positions in the heavens. It is customary to refer to them by their declinations and right ascensions, as so many degrees north or south of the colestial equator, and so many degrees, or hours, east of the vernal equinox - fifteen degrees being the equivalent of an hour of right ascension - just like the latitude and longitude of cities on a common globe.

During the mueteenth century many celestial atlases and astronomical catalogues have been published. These contain lists of comets and nebula, and the places of the double stars and of the fixed stars. Of the latter alone over one hundred have appeared, of which Argelander's is by far the largest, as it contains the places of more than 310,000 stars. The catalogue prepared by the british Association in 1845 is of great value, containing 8377 stars. Yarnall's, of 10,658 stars, published in Washington in 1873 , is most accessible to us.

Professor C. H. F. Peters, of the Hamilton College Observatory, Clinton, N. Y.. the discoverer of so many asteroids, has prepared a valuable serics of star charts. By dividing the heavens into small squares and carefully photographing each of them, the places of a vast munber of stars can be recorded with far greater accuracy than by the old plan of a separate instrumental measurement of the position of the stars. By the use of microscopes the determination of their positions can be made with precision. 'These plates are preserved with care, and when those of the same region of the skies, made in different years, are compared, any variation in the relative positions of the objects can be detected with certainty. The perfection of this method of star-mapping is justly deemed one of the most important achievements of the century.

For an amateur star-gazer who is not provided with a set of inaps, Whitall's Planisphere is a very ready aid, as it can be instantly adjusted to any day and hour. The inexperiencel, and those who have no instruments, can use it with ease and satisfaction to locate a thousand of the most conspicuons stars.

XII. ASTRONOMICAL BOOKS AND THEIR WRITERS,

In England this attractive study has been popularized chiefly by the interesting works of the two Herschels, who were voluminous writers, the lectures of Proctor, and the admirable compend of facts so assiduously gathered by G. F. Chambers in his delightful treatise on astronomy.
de of Fundamental housand copies of but an illustration industry. During eters, 200 sextants
rue of 1025 stars is up to the year) stars. It will le wn to the Arabians 3. It is eustomary sions, as so many many degrees, or the equivalent of longitude of cities
and astronomieal omets and nebula, Of the latter alone by far the largest, catalogue prepared taining 8377 stars. 873 , is most acces-
servatory, Clinton, a valuable serics of nd carefully photoars can be recorded arate instrumental of microscopes the sion. These plates egion of the skies, e relative positions tion of this method nt achievements of
of maps, Whitall's djusted to any day istruments, can use e most conspicuons
trers.
hiefly by the interwriters, the lectures uously gathered by

In cir owia tountry the heights of theoretical astronomy have been scaled ly such minds as henjamin lierce, the profound mathematician of Harvard Iniversity; James C. Watson, of Ann Arbor, whose early death was a great loss to seience; and Simon Neweomb, the genial savant of Washington. Chanvenet and Loomis have tanglit us the meaning of practical astronomy; and (1nsted, Young, 'loold, and not a few others of distinction have prepared text-huoks that fully present the elements of the science.

Nor is this fascinating study limited to the students of the 484 colleges and universities of the land. The last report of the Uuited States Commissioner of Edueation shows that in the public and private high schools of the nation there are over nine thonsand boys and sixtren thonsand girls pursuing the study of astronomy.

NH. THE PRACTICAL USES OF ASTRONOMY AS AN AID TO NAVIGATION AND GEODESY.

The practical value of this seience is best appreciated by the navigator, who sres in the sm and moon his clock, and in the stars and planets the ready means of learuing his latitude and longitude. It is one of the first tasks of the midshipman to become familiar with the use of the sextant, by which he works out the problem of ascertaining the exact place of the ship upon the occan. Navigation is helpless withont the assistance of astronomy. Yet it is only the $\Lambda, 1, \mathrm{C}$ of the science that the sailor has any use for: : its higher mysteries are away beyoul his needs and of no practical profit to him.
Nathaniel Bowditch, of Salem, Mass., in 1802, issued a book entitled "The New American Practical Navigator," which is still a standard treatise for semmen. His rare acquirements as a mathematician were sigually displayed, and in a form that has proved enduring, when, in 1814-17, he translated into English, accompanied with copious notes of his own, the profound work, "Celestial Mechanics," pemed by the gifted La Place in 1799. Although in name a translation of a foreign book with a commentary, it is in many respects an original work. Professor Elias Loomis, who left to Yale University three hundred thousand dollars as an endowment fund to aid in prosecuting astronomical research, said of him, in 1850, "Bowditch has probably done more for the improvement of physical astronomy than all other Americans combined." Dr. Bowditch published the work in four ponderons quarto volmmes wholly at his own private cost. These volnmes he did not expose for sale, but generously gave them to such persons as proved to him their ability to appreciate and comprehend them. This ontlay impaired the fortmes of his family, but befame his own unique monument.
This work remains one of the most profound efforts of mathematical research on record. Bowlitch's accuracy has passed into a proverb. He gave the latitude of all the principal seaports of the world with marked precision ; while some of the longitudes are now found to be slightly in error, it is surprising that his determinations of those of Boston and Philadelphia should be exactly the same as those obtained by the best methods in use today. But he makes San Francisco and Halifax seven miles too far to the east, ind New York eight miles too far west. But we are to remember that for this computation the best available instruments were the ehronometers of a century ago, and that lunar observations were made with the old-time sextaut.

As applied to geodesy, astronomy has added a process of ascertaining geographical latitu de with marvelons accumey and speed by the use of the zenith telescope, an instrument devised by Major Talcott in 1835 . This instrument can be set in a vertical direction with ease, and he pointed ahter-

ZENITII TELESCOPE.
Made for Cuiversity of Pennsylvania ly Warner \& Swasey.
nately to two stars that cross the meridian at a brief interval of time, the one r. ath and the other south of the zenith. Difficulties that arise from refuaction are avoided. and the resnlting latitude is quickly computed. This method is largely employed in the surveys of the public lands, as also in establishing the bomndary between the United States and British America.
f ascertaining geoy the use of the tt in 1835. This al he pointed alter-

asey.
val of time, the one t arise from refrae; computed. This ic lands, as also in British Americu.

XIV. NOTABLE EIPOCIS IN TIE NINETEENTII CENTURY.

Worth marking as epochs of the nineteenth century were such dates as Octuber 10, 1846, when the first determination of difference of longitude of two paces was male by the use of the telegraph wire. Sears C. Walker, in Watshington, and E. Otis Kentall, in Philatelphia, compared their clocks by interchanging telegraphie signals, and thus found their respective longitudes.

In 1s 50 , l'rofessor William C. Bond, of Harvard College, invented the chronograph. Through the urgeney of Sir David Brewster, it was shown in the great exhibition of that year in London, where a medal was awarded for it. The chronograph was speedily alopted throughout Europe, and together with other apharatus made by Bond constituted what there became known as the "American method" of recording observations. Through it the errors for which the "persoual equation" is a partial remedy are largely eliminated, and a superior definiteness of record is obtained.

On August $7,1 \times 69$, the first application of the spectroscope to the examination of the corona of the sum was the beginning of the revelation of the inner mysteries of the constitution and activities of the great luminary. The transit of Venus that oceurred on December 6, 1882, was fruitful in measurements, by whieh the estimates of the distance of the sun were reduced from the long-acceptel figures, 9.7 to 92 millions of miles. Yet this loss of three millions of miles resulted from the apparently triffing change of reckoning the sun's parallax at $8 . s^{2} \mathbf{2}^{\prime \prime}$, instead of $8 . i i^{\prime \prime}$. An occurrence of vast practical advautage to the whole nation was that of November 18, 1883, when the four standard meridians of railroal time were alopte? and put into use. From that day the clocks of the Uuion were set to keep either Eastern, Central, Monntain, or l'acific Coast time.

Professor Edward E. Barnard had used the magnificent telescope of thirtysix inehes aperture, belonging to the Liek Observatory in California, but a short time before he astonished the word by discovering a fifth satellite of Jupiter, althongh it appeared as but a faint speck of light. Besides other honors for this achievement, in 1894 the French Academy of Sciences awarded him the Arago medal, of the value of a thousand francs, a distinction given but twice before, first to Le Verrier, for the discovery of Neptune in 1s46, and to Asaph Hall, for firding the two moons of Mars in 1877.
"Prersonal equation" is the name given to the amount of error to which any prerson is hahitually liable in attempting to note the time of a fixed occurrence. When the astronomer looks at a star passing the cross-wires of his transit, he is likely to make the record one or two tenths of a second atter the trine time, or possibly a like small amount of time before the actual occurrenee, by antieipation. This is not a matter of wrong intention, nor due to willfulness. But in precise observations, especially where comparisons are to be made between the reeorls of several persons, the "personal equation" must be determined, if possible, and allowed for. Various methouls of correcting this inaecuracy have been used. But the best is that of Frank H. Bigelow, of the Nautical Almanae Office, Washington, who, in 1890, levised a process of taking star transits by photography. It entirely does away with this source of error, and has proved of great value.
XV. DISCARDE! DOCTRINES AND ABANDONED IDEAS.

A few generations ago an eight-day clock was to be found only in the homes of well-to-do pcople, and a gold watch was a symbol of wealth, sudh as to subject its wearer to a special tax. In this age of dollar clocks and Waterbury watches, almanacs are no longer indispensable. We do not regnlate our time-pieces by the rising and setting of the sum; nor can a future Jay Gould lay the foundation of his fortune, as did the one best known ly that name, by setting up rural noon-marks for a fixel fee.

Some pleasant dreans of past decades have vanished in the light of recent knowledge. The nebular hypothesis, that wondrons conception of Swedenborg, elaborated by La Place and espoused by William Herschel and so many others, as affording a full explanation of the method by which our worlds were shaped into their present forms, has ceased to have general acceptance. M. Maedler, director of the Dorpat Onservatory in 1846, had a firm persuision that the collective body of stars visible to us has a movement of revolution about a centre sitnated in the group of the Pleiades, and corresponding to the star Alcyone. But this notion of a central sun around which all the solar system is circling has lost ground.

The distortion in the orbit of the planet Mercury has been accounted for by the urgent suggestion that there mast be some planet, as yet undiscovered, that disturbs the regularity of Mercury's movements, but whose orhit is so near to the sun as to baffle all ordinary efforts to see it. It has received, by anticipation, the prenatal name of Vulcan. Many eyes have peered most intently into the region indicated, and some few have imagined they han found what they sought. A plysician of the village of Orgeres, Framer. M. Lescarbault by name, on March 26, 1859, saw such an olject pass over the sun's disk. The skillful Le Verrier was much impressed by this physician's minute account of the occurrence. But there was no confirmation of the alleged discovery. At the time of subsequent eclipses that part of the heavens has been repeatedly examined closely, but in vain. So we must wait longer before believing that Vulean does exist.

When, in 1877, Professor Hall, through the powerful telescope at Washington, saw that Mars was attended by two tiny satellites, he put a permanent injunction on the further use of the once favorite phrase,
"The snowy poles of moonless Mars."
And so of the question oft discusssed in the old-time debating societics, "Are the planets inhabited?" It may still be left in the hemds of young collegians, notwithstanding the fact that our largest telescopes give only negative testimony.

In a solar eclipse in February, 1736, that was anmular in shape, just before the sun was completely hidden, the narow horn of light seemed to break into a series of dots, or luminous points, which, when noted again a century later and described by Francis Baily, received the name of "Baily Beads." It was attempted to explain this as caused by the moon's momitains cutting off the last rays of sunlight, or else as produced by irradiation. But with the advent of stronger telescopic power the phenomenon has come to an emt.

David Rittenhouse, of Norristown, whom Thomas Jefferson considered "see-
und to no astronomer living," built an orrery worth a thousand dollars, to ilhastrate mechanically the motions of all the planets, and though the instrument is still treasured in the University of l'emsylvania, and its duplicate at Princeton, among the relies of a past age, it is assigned to the category

DEAS.
und only in the of wealth, swill lollar clocks and We do not regnhor can a future he best known ly
e light of recent tion of Swedenhel and so many thich our worthis neral acceptance. d a firm persuiacment of revoluit corresponding md which all the
en accomuted for yet undiscoverel, chose orhit is so has received, by ave peered most agined they had Orgeres, France. olject pass over I by this physiconfirmation of that part of the u. So we must
escope at Washlie put a permae,
bating societies, hands of young copes give only
hape, just before seemed to break again a century "Baily Beads." ountains cuttiuy tion. But with come to an eni. considered "ser-

TIIRELE-INCII TRANSIT, 13Y WARNEIR \& SWASFE.
of toys. Mural circles, much depended upon to measure the declination of heavenly bodies, have fallen into disuse, supplanted by improved transit instruments.

XVI. 1'ROHLEAS FOH FUTVRE STUDY,

Many problems are in store for the future. The field fo" research still opens wide. How the solar activity is to be maintained was answered by Newton in the suggestion that comets falling into it kept up its supply of matter and energy. Waterston, in 185:3, propounded the thought that meteoric matter may be the aliment of the sun. Now the prevalent theory is
that a contraction of the sun's volume, constantly in progress, but so slight as to be invisible to the most powerful telescope, is competent to furnish a heat supply equal to all that can have been emitted during historic periods.

Professor Newcomb answers the question, "How long will the sun endure?" by saying, "The physical conelusion to which we are led by a study of the laws of nature is that the sun, like a living being, must have a birth and will have an end. From the known amount of heat which it radiates we can, even in a rude way, calculate the probable length of its life. From fifteen to twenty millions of years seems to be the limit of its age in the past. and it may exist a few millions of years, perhaps five or ten, in the future."
shliden J. Coffin.

CENTURY

ress, but so slight etent to furnish a historic periods. will the sun cnare led by a stmly must have a birth lich it radiates we of its life. From of its age in the five or ten, in the
den J. Cofrin.

CAllOLUS LINN.FUS OF SWEDEN, FATILER OF MODERN BOTANY.
This illustration was prepared by aswedish society, and represents the famous hotanist after his return from the exploration of Lapland, and witi a bunch of his favorite tower (Linnate borealis) in lis hand.

STORY OF PLANT AND FLOWER

Botavy, in its general sense, signifies the knowledge of plants. In the earlier periois of human history plants appealed to mankind as material for fool or medicine; and down to comparatively recent times botanical studies were pursued mainly in these directions. Dioscorides, a Greek, who lived in the tirst century of the Christian era, is the earliest writer of whom we have knowledge that ean lay a claim to botanical distinction, but the medical property of plants was evidently the chief incentive to his task. It was not until the begiming of the sixteenth century that botany, in its broad sense, became a study, and Le Cluse, a Frenel physician, who died in 1609, may be regarded as one of its patriarehs. Still the medical nses of plants were steadily kept in view. The English botanist, John Gerarde, who was a contemporary of Le Cluse, or Clusins, as botanists usually call him, wrote a remarkable work on botany, - remarkable for his time, -but this was styled a "Herbal," as were other fanous botanical works down to the beginning of the present century.

Following the year $1 \mathbf{1 0 0}$, the knowlenge of plants individually became so extended that systematic arrangement became desirable. The first real advance in this alirection was made by Carl Von Limed, commonly known by its Latin form, Limems, a Swede, born in 1707, and whose talents for botanical aequirements seemen almost in-

TIIE GREEN MONE.
Flower wilh leaves for petals. mate. In his twenty-third year he saw the neel of a hetter system, and commenced at onee the great work of botanical reform. He saw that phants with a certain momber of stamens and pistils were correlated, ame he fommed elasses and orders on them. Flowers with five stamens or six stamens would belong to his class pentamdria or hexandria, respectively, and those with five pistils or six pistils pentigynia, or hexagynia, accordingly; and so on up to polyandria, or polygynia - many stimens or pistils - of which our common butterenp is au illustration. He further showed that two names only were all that is necessary to denote any plant, the generic name and its adjective, as, for instance, Cormus alba, the white Dogwoorl; and that the deseriptions should be brief, covering only the essential points wherein one species of plant differed from another. This becane known as the sexnal system. It fairly elertrified intelligent cireles. People gencrally took to comuting stamens and pistils, and large numbers took pride in being botanists beeause they could trace so easily the classes and orders of the plants they met. The graml old man died in 1878, and though his artificial system hal to give way to a more natual method, he is justly regarded as the father of modern botany.

With the incoming of the nineteenth century, botany took a rapid start. It ceased to be a mere hambaid to the study of melicine. Chemistry, georgraphy, teleology, and indeel the chief foundations of liology had become elosely interwoven with botanieal studies; and thus the progress of botany through the century has to he viewed from many stampoints.

In elassification, what is known as the natural system has replaced the sexual. Plants are grouped according to their apparent relationships. Thos, resembling in general charater the Rose form the order Rosucet; the Lily, Liliucea. Sometimes, however, a striking charateristic is adopted for the
rally became so The tirst real only known by ents for botaniemed almost in. y-thind year hr hetter system, onee the great eform. He saw certain mumber tils were correled elasses and lowers with five mens would beatandria or hex, and those with pistils jentaia, accordingly ; polyandria, or stamens or p^{in} r common lutation. He furwo uames only ecessary to dee generic nane is, for instance. hite' Dogwood ; riptions should only the essenone species of another. This the sextail sysrified intelligent merally took to and pistils, and k pride in being d ovilers of the tgh his artificial stly regarded as
k a rapid start. Chemistry, gerogy had become gress of botany
as replaced the onships. Those :ucere; the Lily. adopted for the
family name, as Commsitr, or eompomme flower, for the daisy and asterHowred plants; Umbelliferer, or umbel-Howering, as in carrot or parsley; Leynminase, having the seed vessels as legumes, like peas and beans.
Classification has, hower \mathbf{r}, derived much assistance from a wholly new brauch of the seience known as Morphology. This teaches that all parts of plants are molifications of other parts. What Nature may have intented to le a loaf may become a stem; the outer series of floral envelopes, or calyx, may lreome petals; petals may become stamens; and even pistils may become leaves, or even branches. The green rose of the florists is a case in which the leaves that should have been ehanged into petals to form a perfect rose flower have persisted in contiming green leaves, though masquerading as petals; and it is not unusial to find in the rose cases where the pistils have revertel to their origimal lestination as the analogne of branches, and have started a growth from the centre of the Hower. So in an orange, the carpels, or divisions, are metamorphosed primary leaves. Two series of five each make the ten divisions. Sometimes the axis starts to make another growth, as notel in the rose, but does not get far before it is arrested, and then we have a small orange inside a larger one, as in the uavel orange. Just the reverse oceurs sometimes. The lower series is suppressed, and only the upper one develops to a fruiting stage, when the sinall red oranges known as the Tangerines are the results. Illustrations of these transformations of one organ to another are frequent if we look for them. The amnexel illustration shows a combition of the white clover, which, instead of the usual rom head, has started on as a raceme or spike.
These wanderings from general forms were formerly regarded as monsters, of no particular use to the botanical student, but are now welcomed as gniding stars to the central features of Morphology. The importance of this branch of botany, in comection with classification, can readily be seen.
The studies in the behavior of plants have mate remarkable progress during the century, and this also derives much aid from morphology. The strawberry sends ont rumers from which new plants are formed; but, tiring of this, eventually sends the rumer upwarl to act as a thower stalk. What might have been but a bunch of leaves and roots at the end of the rumer is now converted into a mass of flowers and pedicels at the end of a common peduncle. In some cases Nature reverses this plan. After starting the structure as an ereet fruit-bearing stem, it sends it back to pierce the ground as a yoot should do. This is well ilhstrated by the peanut.
In the common lucca, the more tropical species have erect stems; but in the form known in gardens as Adam's needle and thread - Yucca filmmentosa-the erect stem is sent down under the smiface of the gromid, and is then a rhizome, insteth of a caudex, or stem.

Modification in comection with behavior is further illustrated by the grapevine and Virginia ereeper. The whole leading shoot is here pushed aside by the development of a hod at the base of the leaf, that takes the place of a leading shoot. The origimal leater then becomes a tendril, and serves in the eeonomy of the plant by elinging to trees or rocks, or in coiling aromil

PEANC'T.
A pod magnified.
other plants in support. Great progress has been made in this department of botany within reeent years. Darwin has shown that the tendrils of some plants continue in motion for some time in order to finl something to eling to. The grapevine especially spends a long time in this labor if there is difficulty in reaching a host. The plant preserves vital. power all this time, but no sooner is support found, than nutrition is cut off, and the tendril dies, though, hard and wiry, it serves its parent plant as a support better dead
than alive. The amome of mutrition spent in sustaining notion is fomm to be enomous. A vine that can find realy means of support grows with a murh more healthy vigor than one that has dittlenlty in finding it. Many plauts present illustrutions.
Murla advance has beem mate in the knowledge of the motions of plants as regards their varions forms. Growth in plants is not continuons; but is a series of rests and advinces. In other worts it is rhythnic. The norles, or knots, in the stems of grasses are rest-ing-places. When a rest oecurs, energy may be oxerted in a different directim, and a ehange of form result. This is well illustrated by the conmon logwool of northern woons, Coruns , florider on the eastern, and Cornus Suttallii on the western slope of the American continent. On the approach of winter the leaf is reduced to a bud scalo, and then rests. When spring returus these sales resume growth and appear as white lmacts. In the annexed illustration the seales that servel for winter protection to the buls ure seen at the apex of the braets. In other species of Dogwood the but seales do not resume growth. Energy is spent

GUTLINE OF A WIIITE DOGWOOD FLOWEL (Cibrune florillt), showing bed-scales DEVELOPED TO HRACTS. in another direction. In this manner we have an insight as to the cause of variation, which was not preeived even so recently as Darwin's time. We now say that variation results from varying degrees of rhythmic growth - foree; und that this again is govemed by varying powers of assimilation.
The Jarwinian view, that form results from external conditions of which the phant avails itself in a struggle for existence, is still widely accepted as a leading factor in the origin of species. Those which can assume the strongest weapons of defense continue to exist under the changed conditions. The weaker ones do not survive, and we only know of them as fossils. This is termed the iloctrine of natural selection.
The origin and development of plant-life, or, as it is termed, evolution, has made rapid advancement as a study during the century. That there has been an addiptation to conlitions in some respects, as contended by Mr. Darwin and his followers, must be eorrect. The oak and other species of trees must have been formed before mistletoe and other parasites conld grow on them. In the common Dodder-species of Cuscuta - the seeds germinate in the gromd like ordinary plants. As soon as they find something to attach themselves to, they cut loose from mother earth and live wholly on the host. As . a speculation it seems plausible that all parasites have arisen in this way. Some, like the mistletoe, having the power, at length, to have their seeds germinate on the host-plant, have left their terrestrial origin in the past uncertain. A number of parasites, however, do not seem to live wholly on
the plants they athel themsilves to. These are usually destitute of green color. The Lmbinn pipe, smow phant of the l'aitic Coast, und Symaw reot of the Eastern States are exmuples; the former malled ghost-flower from its paleness. These plants have little carhonaceons matter in their structure, and hence are regarted as having formod a kind of partureship, with fungi. This is known now as symbinsis, or living together of dissimilar organisms, each depoment muthally. The fingus und the tlowering phat in these cases aro neeessary to the existence of eich other. They demanil nitrogen instead of mabonhydroids. The Sifuaw root, Compholis Amerieana, though attwhed to the subterramen purtions of the trunks of trees, is probalily sustained by the fungus material in the ohl bark, or even in the wood, rather than hy the ordinary feol of flowering plants. Liehems, ats it is now well known, arw a compunid of fingi and water weels (algai), and this doetrine of symbinsis is regarded as one of the great advances of the

YELLLOW TOAD-FLAX.
Flower in the peloria state. century.

It is but fieir to saty that the loctrine of evolution by the influence of extermal combitions in the rhange of form, thongh widely :ecepted at this time, is not without strong opponents, who point to the oreasional development or supprission of parts on the same plant, thongh the external comations must be the same. For instane, there are flowers that have all their parts regnlar, us in the pretuls of a huttereup; and irregular, as in the smap-lagon or fox-glove. But it has been moted that irregular flowers have pendulons stalks, while the regular ones are usually erect. But once in a while, on the same plant, flowers normally drooping will beeome erect. In these rases the flowers are regular. In the wild snapdragon or yellow toad-flax, Linaria culgaris, one of the petals is developed into a long spur; the other four petals have, in early life, beeome connate and transformed into parts of the flower wholly unlike ordinary petals. But now and thon the original petals will all develop spurs, resulting in the condition technically known as peloria.

Limneus gave this name to this condition because it was supposed to be "monstrons," or something opposed to law and order. Through the advance in morphological botany we have learned to regard it as the result of some normal law of development, innate to the plant, and which could as well he the regular as the occasional comlition. In other words, there is no reason why Nature might not make the five-spurred flower as continuous in a wild snap-dragon as in a columbine. Many similar facts are used by those who question the Darwinian law of development.

That mutrition has more to do in the evolution of form than external
estitute of grem d stpuaw root of er from its pathir strueture, aul ith fungi. 'This organisus, eacla "these cuses are rogen insteal of ough nttached tw ly sustained ly ther than ly the cll kmown, are a the of symhiosis alvinees of the doctrine of evoalal comelitions in Cely accepted at opponeuts, whu rent or suppres. hough the exter-

For instaner, heir parts regu; and irregular, ve. Bint it has have pendulous e usually erect. te plant, flowers erect. In these n the wild suap--ia culgaris, one long spur; the ife, become cons of the flower ut now and then op spurs, resultnown as pelorit. is condition lestrous," or some-

Through the we have learuel a normal law of and which could sional condition. on why Nature illd snap-dragon ho question the:
a than external
fures has remeded mueh nit, as a theory, from the mivnce during recent thimes of a stmly of the separate sexes of flowers. On comiferons trees, notally the firs, pines, mid simees, the male and lemale thowers aro produed sepuately. The female, whinh thally yied the oones, are always borin on the most vigorous bamelies. When these bramehes have thoir suplly of matrition shortenal and heome weak, only mate thwers are produral. On the other hame, haturbes momally weak will at times gain increased strongth, and then the mala fowers give fomale ones. This is often seen in corn fiells. The gromemally weak tassil will have grains of com through it. It is not infrequent to find whit should normally he perfeet rars on stalks weaker than usual. In these cases tho upper portion of the ear will have male flowers only.
lu eomection with the doctrine of development, much attention has been given during the century to fertillation of flowers and the ngency of inseets in comection therewith.

GIAINED CORN-TARREL. Un the one hand it is contended that in all probability the flowers in the earlier periods of the world's history had neither color nor fragrance. In this emmition they were self-fertilizers, that is, were fceundated by their own pollen. In modern phraseology they were in and in breeders. When the struggle for existence became necessary, those which could get a cress with outside raees became more vigorous in their progeny, and thus had an advantage in the struggle. In brief, without an occasional introduction of new blood, as it might bo termed, there was danger of a race dying ont. To support this view, Mr. Darwin published the result of it number of experiments. Many of them favored either side, but the average was in favor of the view that erossing was alvantageous. Against this it has heen urged that an average in such eases is not conclusive. If a number, though the minor number of cases, showed sujeriority by close breeding in his limited experiments, a new set of observations might have changed the averages, so as to make the minor figures in one instance the major in others. Again, it is contended that to increase a plant by other means than by seeds must be the elosest kind of reprodnetion; yet some plants, coeval with the history of man, have been contimued by offsets and are as strong and vigorous as ever. The Banana is an illustration. Under cultivation it produces ouly seedless fruits. It is raised wholly from young suckers or offsets from the roots. Mythology gives it a prominent place in the Garden of Eden, and its botanieal name, Musa paradisiact, originated in this legend.

Though much has been recorded in this line to weaken the force of the speculations that Howers late in the history of the earth developed color and sweet secretions in order to attraet insects to aid in cross-fertilization, they are strongly supported by the fact that a large mumber of species, notably of orchids, are seldom fertilized without insect aid in pollination.
lout there are anomalies even here. Some plants eapture and literally mat the inseets that should be regarded as their benefactors. These are classified as insectivorons plants. Some seem to catch the insects in mere sport, while in the aet of conveying pollen to them. These are known as cruel phants. There are numerous illustrations of this anong the families of Aselepios and Apucynam, the milk-weed fam-

BANANA FIOWERS. ily. In our gardens a Braziian climber, Aruugu, or Physianthus clllens, is frequently grown for its waxy Howers and delicious olor, but the treacherous blossoms are frequently strung with the insects it has canght.

In the northern part of America a common wild flower of one of these fanilies, A_{2} mi! $y-$ num androsuerfitlium, has this insect-catehing habit. Numerons small insects meet death, and hang to the flowers like scalps to the wihl lndian.

Considerable advance has been made in regetable physiology, though no one has as yet been able to reach the origin of the life-power in plimis. The power that enables an ork to maintain its huge branches in a horizontal direction, or that can lift or overturn luge roeks, or split them apart as the lightning rifts a tree tronk, is yet unknown. On the opposite page is an illnstration of a circumstanee frequently observerl, wherein even a delicate root fibre ean pierce a potato or other structures.
lossibly the greatest botanical alvance of the century is in relation to cryptogamie plants, those low organisms which as mildews and monlds are most familiar to people generally. As microscopes increase in power, new forms are diseovered. Over forty thomsand species have already been described, and we may fairly say that there are nearly half as many forms of vegetable life uvisible to the maked eye as can be seen by our unaided visual argans. Their wants and behaviors atre very much the same as in the flowering plants or higher orders, as they are usually termed. But there is one great difference in this, that they feed mainly on nitrogen, and have no use for carbon. They

ENTURY

the force of the veloped color and fertilization, they pecies, notably of mil.
and literally cat rese are classifiol mere sport, while as cruel phants. ; of Aselepiess and e milk-weed famgarlens a brazil4rauga, or Physis, is frequently its waxy flowers s odor, but the blossoms are freng with the inaught.
orthern part of muon wild flower se families, A_{1},r!y"efolium, has this gg habit. Numerseets meet death, the flowers like wild Indian.
le advance has a vegetable physiIn no one has as to reach the ori-e-power in plants. nat enables an oak ts huge branches tal direction, or or overturn huge it them aphart as posite page is an 1 even a delicate
is in relation to and moulds are fe in power, new ly been described, brims of vegetalle ed visual organs. - flowering plants e great differeme or carbon. They
care little for light, but yet have an upward tendency under certain forms, as do those which seek the light. The agarics that revel in the darkness of a coal mine, yet curve upward as heartily as a com sprout in the openair. Just as in flowering plants, also, they are mostly imnocuous, and indeed many absolutely beneficial to man, a very small portion only being poisonons, or comnected with the diseases of the human race. Even in these cases their power is elosely guarded by nature. The spores of fungi are found to require such a nice combination of conditions before they germinate, that, unless these oceur,

the cruel-plant.
Butterfly caught in the flower. they will retain their vegetative power many years in a state of absolute rest. The mycelinm of the mishroom, as the real plant - the cobwebby portion under ground - only starts to grow when just so many degrees of heat, neither more nor less, with just so much moisture, and the proper food, are all at haud together; and large mumbers are known to be very select in the kind of food they will make use of at all. One genus, known as Cordyceps, will only start when the spore comes in contact with the head of a caterpillar. And various species of the gemus will avoid a kind of caterpillar that another would enjoy. In our own country we hare one that feeds on the larvae of the May Reetle. and is known as Cordyreps Melolouthe. In Australia is a very pretty species, which takes on the appearance of the antlers of a deer. This is known as Cordyceps $A n$ dreusii.

The most minute of these are known as microbes. They are chiefly composed of a single cell, in the midst of which is the protoplasm. or material in which life resides, but the exact nature of which is still a mystery.

One of the most useful and fascinating studies in modern times is Geographical Botany. It is found to
have a elose relation to the history of man, and to the changes which have occurred on the surface of the earth. Plants follow man wherever he wanders; and though every other trace of man should be abolished on the American continent, the plants that came with him from the old World would cnable the future historian to follow his tracks here pretty well. No one has any historical evidence that what is now the Pacific Ucean was once land, and that the area between the Pacific Geean and the Mississippi was once a huge sea, but botany tells the plain story. Oniy for botany we should not know that the land now serving as the poles was once within the tropies; and mainly by lossil gum trees on the American continent, and the existence still of a few plants common to Anstralia, have we the knowledge of some land connection between these distant shores. Island floras, some of the species of which are now found only in very limited areas, tell of large tracts submerged of whieh only the monntain peaks are left as small islands, lonely in a wide explanse of water, while other islands, with only a limited number of well known specicis, tell of new upheavals within modern times.

It is in these lines chiefly that botany has advanced during the century. Herbariuns for dryand botanic gardens for living plants are essential. The latter are not as necessary to the study as formerly, as the facilities for travel bring the votaries of the science to distant places in a short time. Nature furnishes the living material for study at a less ontlay of time and money than in the old way of growing the plants for the purpose. Few modern botanic gardens have the fame of those of the past. It is the great Herbarimm of Kew, rather than the living plants, that makes that famons spot the great sehool for botany to-day. In our own country, the Herbariums of Cambridge. Mass.; Cohmblia College, New York: the National at Washington; and that of the Acudemy of Natural Sciences of Philadelphia, are the most famons in America.

Thomas Meelins.

PROGRESS OF WOMEN WITHIN THE CENTURY

Tin: whole woman question may be briefly summed up as a century-old strugrle between conservatism and progress. Women are moving irregularly, and perhaps illogieally, along certain lines of development toward a point that will probably be reached; while conservatism, halting and fearful, is struggling blindly to hold points and maintain lines that must be given up.
Pufortunately for the rapility of women's advancement, women themselves iave no thoronghess, no clearness, as to the fundamental cause of their grievances or the ends to be attained, and are not yet alive to a consciomsness of the fact that the question of woman's rights is simply and purely a question of human rights, the basie solution of which, on the oroad phane of justice, will solve all the social, political, and industrial problems of which the woman question forms a part.
The time when woman suffered silently and toiled patiently without once questioning the justice of her lot has happily passel forever. Confusion and autagonism are engendered because of misunderstanding of the real movement. Women are conscionsly or uneonseionsly struggling for that selfhood whieh has hitherto been denied them, and are seeking for opportunity to develop that personality which Browning, Ruskin, and other broad thinkers weclare " is the good of the race." The most discouraging feature of the situation is the fact that women as a whole do not realize that a politically inferior elass is a degraded elass; a disfranchised elass, an oppressed elass; and that her ceonomie dependence upon man is tho basie cause of her inferiority.
The grievances openly proelaimed by the advoeates of woman suffrage as causes of hostility are too frequently ehildish, unreasonable, and unworthy of serions attention. In the majority of eases they centre around some fancied wrong that is a result rather than a cause. The keynote not only to the woman question, but to the labor question may be found in the words of that deep thinker aud able writur, Augnst Bebel: "The basis of all oppression is economic dependenee upon the oppressor." 'The widespread discontent with present social comblitions is an augury of hope for the future. There is no element in the murest whieh need exeite grave apprehension. Thoughtful people pereeive elearly that women are intensely hman, nothing more, and that as human beings they are entitled not only to food, elothes, and shelter, but to an opportunity for development.
It is only as we are familiar with the oppression that has been the common lot of women since the begiming of time that we eun realize that her lot has been sweetened, her condition ameliorated, and her progress within the century marvelous indeed. The woman question, historically considered, contains all the physical subjugation and eonsequent inferiority which constitutel all the differentiation between the physical and mental powers of men
and women. It contains all the humiliation, uncertainty, and ultimate hon" of her future. The history of the woman question is analogons with the history of the labor question, with the difference that woman slavery had its origin in the peculiarities of her sexual being, while the laborer's slavery began when he was robbed of the land which is the birthright of every human being. It will be seen, therefore, that woman's slavery antedates the thralldom of the thrall, and "was more humiliating, more degrading, because she was treated and regarded by the laborer as his servant, his inferior:" This condition largely prevails among laborers today, and was indirectly given utterance to a few weeks ago, when some of the members of the American Federation of Labor formulated a traditional resolution demanding that "women be excluded from all public work and relegatel to the home,"a demand that would be to some extent reasonable, and no donbt aeeeptable, to the great army of working-women, had the chivalrous lahorers who formulated the demand the ability and industry to provide a home for the women whom they wonld render paupers by deprivation of work, and for the children for whom their fathers were mable to provide. It is gratifying to know that this resolution was lost in the committee room, and that its formulation was greeted by the press of the whole country with a storm of deserved disapproval.

Inasmuch as the rapidly increasing number of bread-winners among women makes it evident that men are either unable or incompetent to provide for them, it remains for the working-women of the comentry to formulate a resolution demanding that men be excluded from all work that has hitherto been considered as belonging to or peculiarly adapted to women. What an army of mosquito-legged men from the eating-houses, laundries, and dry-goods establishments would rise up to proclaim the idiocy of women and protest against such injustice !

On the threshold of the world's morning, says a distinguished writer and worker in the German leichstag of today, we may correctly assume that woman was man's equal in mental and physical power. But she became his inferior physically, and consequently dependent upon his bounty, during periods of pregnancy, childbirth, and child-rearing, when her helplessness forced her to look to him for food and shelter. In the childhood of the race might made right; brute strength was the standard of superiority; the struggle for existence was crude and savage; and thus this occasional hel ${ }_{1}$ lessness beeame the manner of her bondage.

That nature is primarily responsible for the centuries of woman's enslavement there ean be no doubt. And as mature's laws are mehanging, the adrocates of woman's political advancement would do well to remember that woman's greatest importance as a public factor can only begin when the function of motherhood ceases. "In a real sense, as a factory is meant to turn ont locomotives or clocks, the mahinery of nature is designed in the last resort to turn ont mothers. Life to the hmman species is not a random series of random efforts; its course is set as rigilly as the pathway of the stars; its laws are as immutable as the laws of the Medes and Persians." (Drumnond's Ascent of Man.)

Nature's great work for the individual is reproduction and care of the: species. The first, Drummond terms the cosmic process; the seeond, the

entury

al ultimate holn ${ }^{n}$ logous with the a slavery had its laborer's slavery hright of every ry antedates the grading, because t, his inferior:" d was indirectly members of the ution demanding to the home,"lonbt acceptable, orers who formue for the women und for the chilis gratifying to m, and that its with a storm of
rs among women at to provide for formulate a resoras hitherto been What an army s, and dry-goods men and protest
ished writer and ctly assume that t she became his s bounty, during her helplessuess hood of the race superiority; the occasional help.
voman's enslaveunchanging, the o remember that begin when the tory is meant to designed in the is not a randon pathway of the" ; and lersians."
and care of the the second, the
moral process. Statisties show that one child out of every three dies before maturity, and nature's task is incomplete unless at least two children be reared to the adult age by every family. Every couphe, then, at ioarriage, assumes the responsibility to society and posterit; of bringing three ehildren into the world. Woman's part in the stupendous eeonomy of nature is first aul distinetively most important, that of motherhool. She can only pay her deht to nature, fulfill her mission to the word, and diselarge her obligations

MAll ELIZABETHI LEABE
to lumanity by faithfully discharging the duties of motherhood. But as the function of motherhood ceases when the woman is in the prime of life, ripened by experience and fortified by maternal ties, she may yet have ample opportunity to exert her far-reaching influence in public work when she has exemplified in her own life the words, Home, Love, Mother. And there is, there can be, no rational objection to granting the fullest suffrage to woman at this period.

Having located the basic cause of her dependence, it will be seen that the only solution possible for the complete emancipation and mental and physical development of woman is to render her, through industrial freedom, so economically independent in every way of man's grudging bounty that she
will scorn his pity, resent his abuse, and clain her right to fullest individuality and opportmity as a human being.
For countless ages women were separated from the world by a barrier as effective as the myrial-miled wall of China; vacillating between the condition of slave and superintendent of the kitchen; tanght nothing but thosi Himsy accomplishments that wonld eatch the eye of the prospective husband and master; sneered at, ridiculed, and abnsed. whenever she attempted to cross the line whieh hoary prophets and patriarchal slaveholders had marked arross her path; subject to man's whim and caprice; her physical develepment, in time, became meagre and erippled. And as her mental facultirs were repressed and imprisoned in the narrowest circle of feminine opinions, it became difticult for lier to rise above the most eommonplare trivialities of life. Thus it came about that the term "Weaker Sex," originally used to consey only the aeknowledged truth that women are inferior to men in physical strength, came to include the mind as well as borly. lie ihis as it may, the position of women for long centuries was inevitably one of extremu eruelty and oppression. Comiless bitter and unnecessary limitations hedged her pathway and obstructed her development from the cradle to the grave. It is not to be wondered at that she in time heeame so inured to her degrading servitude as to aceept it as her natural position. Madame De Staël has truly said, "Of :dl the gifts and faculties which nature has lavishly bestowed upon woman, she has been allowed to exereise fully lont one, the faculty to suffer." The extent of this suffering and the deterionating influence whieh it has exerted upon the race can never be estimated till Finis is written to the story of humanity.
In the noonlay of Grecian powar and learning, woman trod not beside man as helpmate and companion, but followed as lis slave. Demosthenes defines the wife as the "bearer of children, the faithtnl wateh-dog who guards the house for her master." At the Council of Maeon, held in the sixth century, the question of the soul and humanity of women was gravely weighed and delated, profound doetors of theology maintaining that " woman is not a subjeet but an object for man's use and pleasure." For eenturies theological divines whetted their wit on helpless woman; and the ehureh in holy zeal persecuted the woman who was guilty of a fault as a "daughter of the devil," and held her up to public contumely as the concentration of all evil.

Christianity, indeed, offered emancipation to women. It proclaimed a startling doctrine. - the equality of the rich and the poor, the weak and the strong, in the sight of God the Father. And it beeame evident that such teaehings would inevitably break down the barriers of class and easte, eliminate injustice. and usher in a time when all should stand equal before the law. lint alas, the world, with the exception of isolated and individual instanees, has never been offered an opportmity to test the efficacy of the all-eorrective prineiples of the religion which Christ gave to the world. The repression of women biased the reformatory tendencies of Christianity, and rendered it as ineffective as a medium of relief to the oppressed as our onpsided political system of to-day. Christianity, under maseuline domination. was lost in the rubbish of churelianity, which, professing but failing to practice the religion of Christ. has held woman in the same contempt in which
she has been held by all the ameient and idolatrons veligions of the world. Yet despite the fact that the great Master, were He to come to-day, would searely recognize in the churehos a trace of the code which He lived and diud to exemplify, it must not be forgotten that the vital principle of religion never dies. It eventually attains fullest development, and hecomes identified with the progress of eivilization and the highest purpose of at people. Therefore, we may reverently believe that in the ultimate trimph and rehabilitation of practical Christianity lies the lope of the op$\mathrm{p}^{\text {nessed, }}$ annl true liberty not only for women, but for every human being.

Even now the mists are lifting. The groat change in the position of women-legal, social, and edurational - within a humbred years is breaking even the hard shell of orthodox usage. Whole denominations have dropped the worl "obey" from the marriage service. May ministers frequently omit it, or, if administered, it is pronomeed by the bride with mental reservation and looked upon as a word that has only the most remote and shadowy signiticance. The new wine is breaking the old bottles; the spirit of the nineteenth eentiny is too progressive for the usages and traditions of
 the eleventh century. Modern ehurehianity, realizing that women constitute three fourths of its membership, no longer wages a mereiless warfare upon them. It has relaxed its Pauline grip upon her throat, "I suffer not a woman to speak in the churehes." And the more alvanced theological bodies have offered her the intellectual hospitality of the pulpit, where her eloquence is a pleasing change to those who have grown tirel of preachers' platitudes. Clerieal decrees are no longer hurled at her defenseless head. The doors of churches, schools, and colleges are swinging wide at her approaeh, though they sometimes creak on their hinges. The ministers no longer openly advocate that the gates of opportmity be bolted and barred agininst her. There is everything to stimulate hope; the wings of feminine niture have expanded till a return to the chrysalis is impossible.
It is true that a very large number yet profess to believe that a woman fulfills her whole mission in the world when she makes herself as pretty and agreeable as possible, and devotes all her time and attention to the diseharge of domestic duties. But there has been a wonderful modification of opinion since Schopenhamer deelared that "woman is not called to great things. $\mathrm{S}_{1 \mathrm{t}}$ pays her debt to life by the throes of birth, care of the children, and
subjection to her husbamd." Two things have tended to bring about this modification of opinion; the broaler, edncation and increased opportmities for development attendant upon the growth of individual liberty and republican forms of government; and the capability of self-maintennee due to improved mechanical appliances. It is not mere inelination on the part of the individual, nor is it the voide of the agitator, that is bringing about these clanges; it is the irresistible logic of events.

One humbed years ago the edncation of women in the most progressive and wealthy families went little leyond reading and writing. In 1819, when Mrs. Emma Willard issued an address to the members of the New York legislature advocating the endowment of an institution for the higher education of women, there was not a college in the comotry for girls. In
 students. In 1888, the ratio of female stulents to the whole number of students pursning a higher course of elucation in universities and colleges in this comtry was 29.3 per centum, or a little more than one fourth. It the same time the ratio in Englaml was 11 per centum; in France, 2 per centum; while in Germany, Austria, and Italy the ratio was so slight as to be but a mere fraction of 1 per centum.

Such a thing as a female president of a college was unknown and probably mudreamed of in the cighteenth century; but we learn from the Report of the Commissioner of Education for 18si-ss that there are in the Cnited States forty-two colleges and institutions for the superior instruction of women having a womin for president.

In the high and secondary schools, in 1888, over one half of the students were girls. And in the same year, tabulated statistics reveal that 63 per centum of the teachers were women. And this percentage will become greater ami greater as we grasp the truth that woman is, by gift of greater intuition and sympathy, the matural instructor of the human race. The salaries paid to women teachers are grossly unfair when comparel to the pay of male teachers for the same or less work. But as the difference in compensation is growing smaller every decale, there is at least room for hope that this injustice will soon be righted.

The law of evolution is the discoverer and formulator of woman's advancement. 'The invention and use of gunpowder placed the peasant on an equal war-footing with the mailed knight. The enormous increase in mechanical appliances and productive machinery has taken woman out of the rank of unpaid inenials, has given her leisure for mental development, opportunity to receive recompense for toil, and is largely breaking down the physical barriers which had hitherto been considered unsurmountable. Statistics show that there are forms of machinery in the operation of which the production of a woman is even greater than that of a man, thus furnishing an actual proof of the falsity of the idea that woman is incapacitated for competition with man in the physical world. And the trend of events is indicated by the statistics given in the Report of the Commissioner of Labor, from which we learn that in some trades and professions the percentage of women engaged has increased fivefold in the last de sade.

While woman's work has always been a recognized factor in the world's progress, yet her admittance to the field of remunerative work is limited to

NTURY

PROGRESS OF WOMEN WITHIN THE CENTURY
ring about this d opportunities erty and repulstenamee due to on the part of fing alount these
ost progressive In 1819, when the New York for the higher for girls. In 50,000 lemale sole mumber of es and colleges me fourth. It France, $21^{n \times r}$ so slight as to
n and probably 14 the Report of in the Cinited instruction of
of the students eal that 63 per ce will become - gift of greater an mee. The mpared to the te difference in troom for hope
man's advanceaut on an equal in mechanical of the rank of nt, opportunity n the physical le. Statistics of which the hus furnishing capacitated for Il of events is ioner of Labor, percentage of
in the world's ek is limited to
thi last one lmundrol years; is, in fact, the prominent feature of the ninethenth century. There is overwhelming evidence that her work in every depurtment to which she has been admitted is as capable, acceptable, and in ewery way as faithfully performed as the work of her brother man. In the last century it is estimated that not more than 1 per centum of artists and tethers of art were women; while in 1890 women comprised 48.08 per crintum, or nearly one half of that profession. Searly the same proportion of increase is fonme in the ranks of temehers and musicians, - women now forming over 60 per enntma of the tamehers of the Linited States.
There are now abont three million wonen and girls in this comery who cam their own livelihool. And the cherenth census reveals the startling information that in the eity of New Lork there are twenty-seven thousand men who are supurtell by their wires. Vet these men, useless to society, a burden to the women who support them, are permitted the immunities and pivileges of haw and eustom, while women have enuality only in the duties aud 1 minishments.
At the begiming of the eightecnth century there were lat few oecupations in which women were promitted to engage. Their abilities aud anbitions were restricted to the school and the home. In the latter they received food and shelter as compensation; in the former, but one halt or one thirl the salary allowed to male teachers. The tirst noticeable change in woman's condition, when she becme something more than a mere honsehold drudge, whose busy hands earded and wove, spun and knit, the family supply of cloth, lates from the first bale of eotton grown in this comntry in the carly years of the eightcenth centmy. In that bale of cotton lay the secels of not only a new movement in labor. lut the begimning of a new epoch for voman, in which her work and wages were destined to take coherent shape and form. In all industrial progress since that time women have taken an active part while receiving a meagre share of the product. Forced by the course of events to emerge from seelnsion and repression, she has passed from one stage of development to mother, always a step or two behind man in the progress of social evolntion, till the close of

GEORGE ELIOT. the nineteenth century reveals myriad changes and the actual realization of Temyson's prophetic lines in the " Irrincess," "We have prides for proetors, dowayers for deans."

One hundred years ago it was the duty of a woman to efface herself. She was expected to make of herself a mental blank-book upon which her hashand might inscribe what he wonld. Thus it is only lately that women have hegun actively to compete with men in expression of any kind. Indeed, previous to that time, with a few notable exceptions, they were denied recog-
nition of individual life. The woman, if manaried, was merged in the family, or, if maried, merged in the husband. Her mame, her religion, her gods, were changed on marriage. But, murried or single, the ubsorption was complete. So it has happened that woman, throbbing with poetio sympathy, has, with the exception of Siphon, proluced less high and ummistakable poctry than man. With more hamony, more music in her nature. her very soul attumed to symphony and rhythm, she has been little known as a composer. With far vision and clear literary insight, she has been suppressed in art and literature. (ieorge Eliot gave her sublime literay productions to the world muler a masculine num de plume, becanse of the prejudice of even that not remote day. Famy Mendelssoln was compelled by her fanily to publish her musieal compositions us her brother's. Mary Somerville met only disconagement nud ridicule in her mathematical studies. In every sphere in every depurtment of scienee and art, abose, injustice, and the eroaking of ractionary trogs have greeted cadh step of her upward way. 'fhe wonler is, then not that she has areomplished so little, but that she is not in the same condition to-day that she was when Panl thrast a gag in here month in the shape of a Corinthian text. "And it a womam wonld learn anything. let her ask her husband at home." It will be seen, therefore, that the oft-repeated assertion that women have not given to the world as much evidence of genins as men is a Lilliputian assertion tainted somewhat with enry. "There has been no Shakespeare among women," salys the advocates of man's supremacy. With all the word as their own, and the gates of boundless opportunities swinging wide, thero has been but one Shakespeare among men. It has been asserted that George Eliot is the Shakespeare among women and Mrs, Browning the comterpart of Bacon. But their immortality has not been tested. They lived hut a little while ago. But there is one woman, at least, who has established her claim thoroughly, and whose genius twenty-five renturies have testecl. Sappho is truly immortal. Her fane and genius have been sealed by the approval of iol the great literati of the centuries. Coleridge, who occupies no uneertain place in the world of letters, says of her, "Of all the poets of the work, of all the illustrious artists of all literature, Sappho is the one whose every worl has a peenliar and ummistakable poetic perfume, a seal of absolute perfection and illimitable grace." swinburne, the greatest living master in the word of verbal musie, deelares that, "Her verses are the supreme suecess, the final achievement, of poetic art." Sappho's claim to immortality exeeeds that of Shakespeare's by twenty-three hundred years.

Men, viewing the literary productions of women, are apt to give them the color and bias of maseuline thonght. As instance the poetic critic of a New York periolical, who wantonly affronts the giftel anthor of "Poems of Passion" by declaring that her "fervent verses are but the burning of museemly stubble that fails to give forth light or heat." Yet Ella Wheeler Wileox, all fair-minded critics will admit, has won a place in the ranks of poetic genius. Her poems throb with human sympathy, and from the exalted plane of her splenilid womanhood she reaches down, fulfilling the law of Christly serviee, to lift up the fallen and soothe and bind the bruised and bleeding. Such maseuline eritieism is dying out, but it has not been uncommon in the past. Mrs. Browning and Jane Austen were accused of "breaking
dewn by their writings the safegnarls of socirty." and they were admonishod to "cease their literary efforts and devote themsilves to sewing and washing dishes if they would retain the chivalrons respect of men." "Jane Eyre" was pronomaced too immoral to te ranked as decent literatare. "Alam Bede" was classed as the " vile outpourings of a lewd woman's mind." Yet Charlote Bronta, Goorge Eliot, Mrs. Browning, and Jane Austen have won an exalted and cuviable phace in the ranks of litermoure. Their writings have thrilled, uplilted, and sweetened humanity.

The test of literary genims is to create a clamacter of universal aceeptance. The recorl of half a century has but one world-wide, world-known charncter of that kimb. That eharacter was created by a womam. In all literature, no thok since the lible has been so widely cirembated, so extensively thanslated, or has so thoronghly eommanded the profomul attention of all elasses as Harret Beecher Ntowes "Cucle Tom's Cabin." Ars. Stowe impressed her sernins mon the race and time, and marked a new epoch for freedom. Previons to the pmblieation of her book only a few men recognized slavery as wrong, hut a woman's sympathetie heart and thobbing genins laid hare the aril and diselosed to a horrified world the wrong molerlying slavery.

In philanthrope and the domain of morals there is none who is doing more heroic aul effective work than Mrs. Blizabeth 1s. (iramis. She deals not with theories, but with real conditions. Her sympathies, her broad work, her manifold charities, go out to Hesla and blood, men and women. She has the intuitive faculty of proling deep into homan mature, leading those she womld reform to mouru real defects, rejoice in real vietories, and hope and struggle for better things.
The constantly broadening sphere of woman's usefulness is in a large measure due to the organized forms of intellectual activity among women known

FHANCES WHLIAAII. as elubs. Half a century ago cluthlife for women was unknown. Their social sympathies were limited to the political party that chamed the franchise of their male relatives, or the church at whose shrine the women worshiped. But so rapid has been woman's development in this direction that to-lay women's clubs form a chain from neem to ocean, binding them as one great whole. 'The effect upon the memhers is magical ; nature is enlarged; charity broadened; capacity for judgment increased; and hitherto unsuspected faculties are called into life and power.

The first organized demand by women for political recognition in the Unitel States was made in 1848, at what was known as the Seneca Falls ('onvention. Ridiculed, persecuted, kicked like a football from one generafion to another, this brave demand for political recognition was destined to
beeome an ageny that would work a pacefin revolution. That the movement is progressing, and will erentually suceced, is evinced by the recori of half a mentury. In that time seluoh suff rage has been granted in twenty-there States aul Territoming, purtial suthrage for public improvements in thre Ntates, muncipal suffrage in one, and in fond States full pulitical efuality. Wyoming was the first State to accorl citzenship to her women, mal she bears testimony to its ceflency in the progress, homor, and sobriaty of lare peple. In 18!:\%, the Wyoming state legishature passed resohtions highly commentatory of woman suffrage and its results, and anong other things sinil. "We point with pride th the fact that after beaty twentr-five gears of woman suffrage, not one connty in Wyoming has a juer-honse, that our jails are ahmost empty, mad crime, exapt that liy strangers in the State, is almost maknown."

From the banks of the far-off Volga come the gool tidings that even linssia is preparing to take a great step in advance by granting to women many legal ant political privileges now enjoged only by men, Eughad granted munieipal suffage to women a quarter of a contury ago, and has more recently grauted partial parliamentary suffage. And to the inthence of English lan, more particularly the Married Women's Act, is largely dhe the betterment of the legal status of women throughout the word. In linghal we find wourn prominent in art, literature, polities, the school and the church. While in this comutry the middle classes have heretofore carried on the suffrage agitation, in England it finds active workres among the preerge.
Woman in polities meets with the opposition of jub puliticians, but she realizes that every step of her arogress, from the unveling of her face to a seat in the legislature of a State, has been taken in the face of tieree opposition and in violation of conventionalities and enstoms. Undismayed she advances for the ultimate betterment of hamanity.
The historian of the future will record the nineteenth century as the Remassance of womankind. And the ultimate effect unon the haman race of having individuals, not servants, as mothers will smpass the progress made in science and in art.
The eighteenth century found woman an appendage; the nineteenth trans. formed her into mindividual. The wonderful altruistic twentieth century, whose dawn even now is breaking, will so develop this imdividuality that women will contend for all the rights of the individual, coiperating with the nation in the fulfilment of its mission, and with the world in the development of the eternal law of progress.

[^1]Mary Elizabeti Lease.

THE CENTURY'S TEXTILE PROGRESS

Astiguty eonceals nothing more completely than the origin of the textile industry. Back in the dark nges and beyond muthentie records, evidence is firnished that this nit was not maknown. ligypitian mummies shrouted in fine linen fahries give their silent testimony of meient knowledge, but when or where the art lud its inception still remains wroped in mystery, Nearly every uation of the earth lays chaim to its invention at some epoch in traditional existence. Thus the Chinese attribute it to the wife of their first emuror, the Egyptians to Isis, the Greeks to Minervn; but probably it had its birth in the Orient, where the making of eloth was known and practiced from the varliest times.
Whatever the merits of rival clamants, certain it is that for many centuries the simple distaff and spiulle were the only instruments used for spiming, while the warp and weft were woven together by hand implements not less primitive in structure.
In the first spinning device, a mass of fibre was arronged on a forked stick, and, as drawn therefrom by hand, it was twisted between the fingers and wound on a spindle. During the reign of Heary VIII. of England, however, the spiming-wheel replaced the distaff and spindle, and in every cottage and palace it became an indispensable article of household equipment. The young women in all walks of life were tanght to spin. Spinning became the female occupation of the age, and it is interesting to note that the modern term spinster, meaning an umarried woman of advanced age, here hal its origin.

The spiming-wheel, though superior to the distaff and spindle, wis yet a crude mathine. It consisted of a stand on which was mounted in horizontal hearings a spindle driven by a band from a large wheel propulled by hand or foot, and as twist was imparted to the fibe drawn through the fingers, the resulting yarn was wound on the spindle.

The art of weaving was not more advanced. It is true that the middle of the eighteenth century found the hand loom developed from the original Indian structure to contain many of the essentials of the modern power loom. It embodied the heddles, the lay, the take-np and let-off beans, the shuttle for passing the weft, and in 1540, John Kay alded the fly shuttle motion, whereby the shuttle was thrown through the shed by a sudden pull on the pieking stick; then in 1760, Robert Kay, son of John Kay, invented the trop box, whereby several colors of filling might be employed.

Brilliant as these achievements were, the hand loom remained the crude embodiment of the simple principles of weaving until near the dawn of the nineteenth century, when, by the mvention of Cartwright, a period of development was introduced in all hues of textile manufacture unsurpassed in the amals of industrial progress. The first great stride, and that which opened the door for further advance, was the creation of the spin : 'a-jenny,
in England, by Hargreaves, about 176i, whereby eight or ten yarns could be spun at one time. Drawing rollers were subsequently added by Arkwright, and then traverse motion was given the bobbins in

DISTAFF AND SPINDLE. order to automatically build the yarn into a cop. It has developed since that the drawing-rollers constituted one of the most important fundamental improvements in the spiming art. Their function was to draw ont the fibres into a proper size of roving, and to feed this to he spmo. Without them the modern spiming-fiame wouh not have been possible. Arkwrights drawing-rollers and Hargreaves's spinning-jemy combined under the invention of Crompton to protuce, in priueiphe at least, the modern spinning-mule.

Fairly good machines were thas provided on the advent of the nineteenth cenitury for spiming unlimited guatities of yarn, but this, in turn, required proper loon structures to use the same and a corresponding supply of maw material. Inventive genius was abroad, and the nevessity met hy Eli Whitney, who, while at the home of Cieneral Greene, of Georgia, built the first practical machine for sepuratiug cotton fibre from its scel.

Whitney's gin was constructed on the broad and simple priuciple that cotton fibre conld be drawn through a smaller space than the attached seed, and this same principle is the soul and spirit of every saw-gin of the present day. Prior to Whitney's gin, eotton fibre was sepurated from the seed by hand, a day's work being represented by two or three ponads of clemed fibre. The daily product of the gin now reaches between three and four thonsand pounds.

Such figures demonstrate the important position taken by the eotton gin among the developing agents of the eotton growing states. It has rendered possible and profitable the eultivation of large distriets of otherwise waste lands; it has stimulated cotton production : given employment to thousands of idle hatals; cheapened the price of cotton eloths, and placed within the reach of the humblest prople wearing ayparel of fine and beautiful texture.

Unlimited supply of raw material being thes providen, attention reverted to perfecting the maelines for spimning it, and under the magieal toueh of Richarl Roberts, of Manchester, England, in 1830, the eruce

sPINNING WHEEI. mule of Crompton took praetieal shape. He gave to it the qualrant winding motion, provided for the harmonions working of the counter and copping faller wires, perfecterl the "backing off" and "drawing up" mechanisms, and gave attention to construction of details that plaed the mule brfore the world as a practical success.

Equipped in its present form, the self-acting mule presents one of the

NTURY

yarns coulla be by Arkwright, the bobbins in uri into a cop. ing-rollers conindamental imir function was size of roving, lout them the ave been possid Hargreaves's invention of least, the morl-
mrovided on the pinning unlimturn, required ame and a corbroal, and the eneral (ireene, tton tibre from
nciple that cotwhed seed, and he present day. reed by hand, a rell fibre. The ousand pounds. the cotton gin

VIIEEI.,
xhrant winding r and copping echanisms, and nle before the

Its one of the
most striking examples of complex antomatic mechanisms that ean be found in the industrial world. The work of the attendant is confined to piecing brokell ends and supplying roving, the machine passing through the entire aryle of its complicated movements withont hmman direction. An idea may he land of its delicate and accurate operation when it is considered that one ground of cotton has heen spun by it into a thread one hundred and sixtyseven miles long. Improvements have been made, indeed, on Roberts's mule, lut aside from changes in details and form, the machine, as it left the hands of this mechanical genius in 1830 , remains unchanged.
During this period, the fly frame was developed from the machines of

LRISITIVE IIAND LGON.
Jiargreaves and Arkwright, but while it constituted a great advance over these machines, it presented no radical departure in principle.

We may panse here, as we pass through the third decale of the present century. to witness the introduction of a spiming-frame, which, for originality of conception and far reaching influence on the textile industry, closely approximates the achievements of the pioneer inventions of this art. Referpuce is male to the ring frame in whieh the flyer is omitted, the hoblin heing attaehed to the spindle and revolving with it. On the traverse rail, and surrounding each bobbin, is sccured a flanged ring having loosely sprung. thereon a light traveler, throngh which the yarn, as it eomes from the draw-ing-rolls, is led to the bobbin. Revolntion of the bobbin carries the traveler armond the ring imparting twist to the yarn, and as it is spmit is wound on the bobbin in proportion to the feed of the drawing-rolls.

The invention of this machine is attributed to John Thorpe, of Rhode Island, in 1828 , ant so popnlar did it become ly reason of decreased power necessary to drive it, incidental to the omission of the flyers, and good
quality of yarn produced, that, between 1860 and 1865 , it nearly replaced all other mathines in Ameriea for spiming cotton.

The speed of the ring frame, as well as its output, appeared unbounded; lut at high speeds, under umbalanced loads, the spindles were found to vibrate in their bearings, and the quality of yarn, in consequence, degenerated, the spindle bearings became worm, and the limit seemed to be reached at five thonsand revolutions per minute. A careful examination of the ring frame revealed no vulnerable part of its general structure that eould be improved so as to readily secure increased speed and steadiness of the

EARIS SPINNING IENNV.
spindles when unevenly loaded; but with admirable foresight, developing intelleets set to improve the spindles themselves, and, in $18 \pi 1$, Jaeob H. Sawyer introluced and patented a spindle and bearing, which was one of the most important improvements in the ring frame. He chambered the bobbin, and hy carrying the holster T well up inside supported the former near its load centre.

The evolution of the spindle was not yet eomplete. The Sawyer type, at more than seven thousand revolutions, would vibrate, and of the many attempts to cure the defect none succeeded fully until the very simple change made by Mr. Kabheth in 1878 . He gave the spindle a small amount of play by making the bolster loose in its supporting ease, and plaeed a packing between the two.
A. H. Sherman improved upon the Rabheth strueture by making the bolster and step, in one piese and omitting the packing, the cushioning being dependent upon the lubricating oil.

STURY

y replaced all
d unboumled; ere found to enee, degenerto be reached on of the ring that could be liness of the
it, developing 71, Jacob H. as one of the al the bobbin, mer near its
wyer type, at of the many rery simple small amount laced a pack-
lking the bolsioning being

GNNNG COTTON. THE OLI) WAY, PMOR TO 1800.

GINNAG COTVON. THE XEW WAY.

The acme of development in this small but most important part of the ring frame was now reached; and in its approved form it embodies the sleeve whirl extending into the boblin, the loose, yot adjustable bolster, tapering spindle, removahle step, and lubricating reservoir. Nuch spindles are capable of unlimited speeds, - twenty thonsind revolutions per minute have been given, - and under absurdly mbalaneed loads they ron steadily and with less expenditure of power than the older forms at their slower speeds.

Increased speed in the spindles, however, hrought increased breakage in the yarn, and although stop motion devices had bern employed for several years, yet economy demanded realy means of pieeing broken ends. This has been provided recently by monting the stop elamp upon the roving rod well up near the first pair of diawing rolls, so that on pulling the stop wire into place the roving is at onee fed between the drawing rolls and issues in front, over the spimble, to be easily pieced by one hamd. l'rior to this, the

TIIE MGDEIRN MCLE.
Gperative was required to reach over the maehine, feed the roving to the rolls with one haml, hold the stop wire down with the other, and the broken end of yarn in his teeth.

Exeessive ballonning was also incidental to the use of high speed spindles, and, while inventive skill has never mastered it, yet the iujurious efferts have been obviated by an ingenious mounting of separators, one between each two spindles.

Aside from minor letails perfecting the mechanical construction, such has been the evolution of the modern spinning frame. In 1830, it required the constant attention of one spinner to oversce twenty slow-rmning spindles, whereas, in 1 Naf , the same attenda it eould, with less effort, "tend" seventyfive or more of the high speed type; and whereas, in 1790, when the first Ameriean rotton mill was establisher by samuel Slater in Rhorle Island, there were only seventy-five spindles on eotton tibre, in 18:30, the number had inereased to $1,246,703$, and in 1890 , to $14,185,10 ; 3$.

Uuder sueh rompetition no wonder the spinning-wheel of our gramdmothers has followei the comomic law, that the fittest alone survive, and
fibres be ope parius first. the ei with mas.dditi inerea the al desire lifting : lutom operat
of the ies the bolster, pindlos minnte teadily speents. kage in several

This ring rool of wire ssues in this, the
the rolls jen ent spinulles, is effects between
such has nired the spindles, seventythe first e Isliunt. mber hat
ar grandvive, aul
has been relegated to the wood-pile or garret, or, bedeeked with ribbons, finds a resting-place in the chimncy-coner as a decorated enriosity. Its mighty rival is here. Its attendants have becu liberated to more emobling pursuits. The homespum has been replaced by bentiful fabries, and the monster spinning frames of to-day pour forth their hourly proluct in miles of spon fibre, where the wheels of our grandmothers were taxed to the utmost to produce a very suall faction of the amome. To appreciate the wonderful change, panse beside the domestic wheel used within the memory of the living, and compare its "whirr," in slowly protucing its single thread, to the "buzz" of the modern spinming frame thruing out its product from a thousamb spindles.

The production of yarn required something more than spiming. The

HAND COMB OF TIIE EIGIITEENTII CENTURY.
fibres in the massed cotton or wool, as delivered to the manufacturer, must be opened, untangled, straightened out, and laid parallel by a series of preparing machines prior to being spun, among which the carding engine ranks first. In the incipient form, this machine dates as far back as the middle of the eighteenth century, when, by hand manipulation, two cylinders covered with small teath and working in close proximity disintegrated the fibrous mas"; but the fibres were much broken and not evenly arranged. The ddition of the workers and strippers aromen a rapidly revolving swift gave increased utility to the machine, and Brampell's feed, in 1871, so regulated the amount of fibre ferl at intervals that the resulting lap possessed the desired even character. This feed weighs the fibre as it is fed, stops the lifting apron while the scale pan dhups its load, wesets the scale pan, and antomatically starts the lifting apron to again feed the scale, - a cyele of operations indicating a near approach to human intelligence.

One additional machine at least, the comb, refuires notice before passing to the all-important progress made in tho loom structure. With advaneng civilization and refinement came demands for superior fabries, which cond only be answered by a supply of better tibre. Such fibre cond only he secured from the bate by separating the long from the short, a problem well calculated to tax the ingemity of an omlightened age. Attempts had been made to do this by hamd implements not mike the comry-comb of to-day, except that the teeth were long ind tapering. This remained the only means employed for years, while other textile machinery passell through its phenomenal period of development. At last, in 1sid, it oecmred to Heilmam, while watehing a lady comb her hair, that a machine might be eonstructed to comb wool by drawing a bunch of tibres over pins. He constructed a device

on this principle, and in a developed form it is used still and known as the Heilman or nip comb.

In 1859, James Nohle gave to the world the circle comb, wherein two flat circular rings, having projecting from one faee vertical pins, were momuted, one eccentrically within the other, and revolved in the same direction, the object being to dah the filme on the rings where they met; and then as they revolved and separated the short fibre would be drawn off the large ring, leaving the long fibre frecel from the short. These machines were suevessful, and above all they were practieal - the operation of the hand eomber disappeared from the face of the carth.

The sudden birth and rapid development of meehanically perfect means for preparing and spinning fibres were due largely to the comparatively simghe movements regnired to draw and twist the yarn, but in the loon no such problem was presented. Here the movements were complieated and varied,

were

did)
wrig

thes

tripu
the
deer
thiel
initi
with
and the application of power to the manjpulation of the delicate threads was not suseeptible of sudden and successful solution. The warps, stretched in a sheet between two beams, had to be opened to form the shed, the shattle had to be passel therethrough, the weft beaten to place, and means provided to feod the wapp and to take up of the fabrie an amount at each beat-up corresponding to the size of the weft. These were tho movements necessary in the most simple kind of weaving, and thongh fully understood for many centuries, as evidenced by the Indian and Egyptian looms, and as embodied in hamd machines of the seventeenth century, it was not till 1787 that they

Plain fower loom, 1840.
were elothed with the applieation of power. Even then the first embodiment did not emamate from the hamls of a weaver or engineer, but from Dr. Cartwright, a clergyman in the elmreh of Englanc. It was not surprising that these looms failed of their expectations, for the shuttle would frequently get trapped in the shed, the driven power-lay would break out the warp threads, the take-up and let-off motions were not graduated to compensate for the decrease of the warp and increase of the cloth beams, resulting in thin and thick places in the cloth. But this application of power to the loont was the initial step in the industrial supremaey of the machine, which to-day works with the perfect cadence of an antomaton.

The first years of the present century were of unsurpassed activity in the invention field. The spinners were putting forth more yarn than the handlooms wald inse. It remained for the loom to keep pawe with the times. Miller, in 1800, Todd and Horrocks in 1803, Johnston in 1807, Cotton in 1810, Taylor in 1815, and many others, concentrated their efforts to develop, the plain power-loom; but the serond decade of the present century saw the old hand-loom with its slow and cumbrous movements still mistress of the art.

The name of Riehard Roberts stams preeminent at this priod, between 1 So and 1805, as giving to the power-loom several perfeeting tonches in the means for letting off the warp the small amomen necessary at each piek, the means for taking up the finished eloth, the means for shedding the wary for the passage of the shuttle, and the adaptation of the stop motions of his predecessors. Thesp changes gave practical life to the machine, and overthrew the barrier that obstructed the adsance of the textile indistry. They were, bowever, only a few of the improvements added in perfecting the power-loom, such as the automatie temple to hold the eloth extended and prevent drawing of the weft, the shattle-guard to freat aceidental jumping of the shattle from the race, the perfect welt-stop to loring the loom to a stand on Dreakage or failure of the weft, the protector mechanism to obviate a "smash" when the shuttle failed to box, and the loose real, ail ef which stand out in bold relief as evidenees of the progressive tendencies of the age, and combined in about the year 1838 , more than a half century after Cartwright's first conception of the idea, to complete tine practical power-loom.

The loon had not reached a stage of mechanieal perfection; much yet remained to be done, but the plain power-lom of this period was both a practical and financial success. By its immediate predecessor, the handloom, a good weaver and assistant could work from forty to tifty picks per minute, and weave plain eloth. isy the power-loom of 1840 , one weaver conld "tend" two looms rumning irom 106 to 120 picks per minute and produce the same cloth. Without passing through the varions steps which enlminated in the power-loom for plain eloth, now in use, and tracing the causes that led to perfeetion of details, the amazing advance from the aneirnt and 1Sth-century hand loom to the power-loom of 18 sto and that of to-day may well be shown by comparing the machines themselves.

Sueh was the simple form of the power-loom. One half of the warps were alternately raised and lowered for the shot of welt; but as a woven fabric is one in which the warp and weft are united by passing them over and under each other, the figure or pattern of the cloth will be varied as the threads are crossed in different combinations, and this will depend on the order of raising and lowering the warp theads, and the motroduction of different eharacters and colors of weft. This brings up for review the most important parts of the loom struchure - the shedling mechanism and shintle-box motions-throngh whose agencies the most heautiful and complicated designs are produced.

Shedding mechanism was present of course in all loms, int in the power* looms of the carly part of this century it was eontined to tappets adjusted on a revolving shaft, and the number of heddles wats limited to six or eight. Fairly gool twills and other like fabrices could be produced within the limits
y in the he handte times. 'otton in develoj sall the is of the
hetween s in the pick, the wirl for is of his and over\therefore They ting the and prejumping min to a obviate of which the age, ter Cart--loom. nuch yet s both a te handnicks jer - weaver and pros hich eulre causes ient and day may
rins were a woven (em over rl as the 1 on the of differit impor-intle-bux mplicated
e jower justed on or eight. le limits

WEATLNG. THE NEW WAY.
of the few hedmles, luit with the introduction of the "dobhie," on that part of the loom which raises and lowers the haness-frames, a new era in faney weaving was inngmated. By this ingenions deviee as many as thirty-six or even forty heddles combld be used and mised at will to form tignres. The ereation of the dobbic belongs to the 19th century, and it is fomm in practieal form abont 1 sia: in the United States muler the name of the Amoriem or Knowles dobbie. The essentials are the two eqhaler gears revolving em-

stantly, the vibrating gears, carried on the end of pivoted arms and having tecth on a part of their periphery, the harmess jaeks comeeted to the heddle frames, and the links joining the vibrating gears and hamess jacks in such mamer that part revolution of the former causes the latter to move the conneeted heddle frame, and eonsequently the warp, threads, up, or down. A pattern chain determines what vibrator gears shall engage the eylinder gears, and, onee the ehain is fitted to the design to be woven, nothing remains for the loom tender but to oversee the operation of the machine.

Another form of doblie, not lese popular than the Knowles, developed into a perfeet antomatic deviee about fifty years ago in England. Here two
lat part of a in fancy hirty-six or The erea11 practional 114riean or olving contthe hedille s in such e the condown. A uler gears, mains for
reeiprocating knives are engiged, under the direction of a pattern chain, by one of two hooked jacks commerterl to the harness levers, and the shed is again formod withont human intervention. ()ther forms of doblie structures lave bere evolved dhring the last fifty years, but these two, with some modifications and alditions of details, have come extensively into practieal use, and represent the zenith of development at the present time. By their aid great variety is remberd possille in the design on the resulting fabrie. The figured tablecloths, lamasks, twills, satins, bordered and ercss.hordered fab-

rics, are now possible at a cost of a thousandth part only of that incurred when produced by any of the old types of machines.
The subject of shedling, i. e., of opening the warp-threads to afford a passage for the shuttle, is so inseparably comected with the name of Jacquard, that attention is now earried to that wonderful invention evolved in the first few years of the present century, and by the use of which it may truly he said that anything can he woven as figure in a fabric that can be designed by the hand of man. It is as well adapted for the finest silks as for heavy carpets and figured velvets, and by an operation theoretically so simple as to excite wonder that it remained hidden until this age. Jacquard
was a mative of Frume mul exhibited his marhine emmphete in 1804, but so bitter was the opmasition that the first machine was destroyed mal burned, Its merits wre clear, however, and remonstruction and seneral abloption in Francer followed som after. It has sime beren aphlied mot only for shedeling bat for every purpose where mochamical operations could be controlled by a patterin. In hrief, this machine simply montrols ath warp theren sepatately by a cord having a mook ntatherd. These hooks are armagel near the pathor a wedproating griffe or frame sarying cross bars, mal are controlled, as to engagement with the bars, by a rard perforated areording to a pattern; thas any one or any umber of theads can be raised at will. The olobhie eontrols
 controls wery threal separately. Thar greatly inereased cabacity of the latter machine is apparent. Thas a lombohok Jaepuard will do the work of thity doblies of tifty jacks each.

The hambinttle lox merhanism of Kay's time has devoloned into the machine opurated as a sliding or revolving shatte-twe controllod by pattern
 last twenty-five yars, presents the highest peint of profertion attained in the textile art. In such looms the warp threads, artanged in any colors, may be raised at will colle tively or individually, any one of ten or twelw different eolored wefts may be introlnced as desired. mud rombinations may thas le formed to prosluce designs of the most complieated nature.
lile fabries, ent, ment, and tufted, represent a type guite distinet from those produced on the ordinary fancy lom just deseribed, amb, in the form of velvets, imitation animal skins, and brossels carpot, were almost makown prior to the invention of Samel Bigelow of Boston, in $18: 3 \pi$. Fabries of this character, if made at all, were the promets of tedions hame mothords, and on accome of the eonsequent ligh price were the exclusive property of the very wealthy. Carpets with pile surface had been made by the Persians ami Turks ages ago, by tying pieces of woolen yan around lougitudinal or wapl threads, and binding the whole together by a weft at intervals: and suelt tufts, being carefully selected as to color, were made to present rich designs, lat. like all other land-produed fibries, these were the property of the few.

The pile fatric loom of ligelow opened the way for an advance in the carpet industry which contimes to the present time; its ultimate effect being to place carpets within the reach of the hmable cottager; and floors which were strewn with brush, or at hest coneealed by the home-male rag earnet, now became covered by a soft and buatifully figured fabric. This loom was a practical machine. anil at oure commended itself to the manufactures. It consisted of the ohl power-loom provided with a daequard, ahraly well moderstool, to which was added an attachment to introduce wires at intervals as false weft, and hind the warp aromal them by the uraal weft thrads. The wires heing withdawn alter a fow shots had been woven, left the warp lowns standing, and these loops being formed muler the dietates of the Juequard, any character of brantiful design cond be promeril. Velvets, hroeales, even the fine imitation of sealskin, are the simple prolucts of this form of powerloom when the pile loops are cut. Greater cheapness in weaving ent pile fabries has been secured hy a slight moditication in the Bigelow loom. so that two fabries would be woven at one time. This idea was introduced about
－luat so burnel． pition in healding led parately bath of rib as to II；thins controls a＂çuarl he latter f thirty
（into the bitterin thin the lilued is： c colors． －welve mis may in thense of vel． III priar of this andi on he vory mis and or warp whel such designs， he few． the ear－ t being s which earpet， oll was rer．It ly well Itervals ls．＇Thic 1 loopss cinaric， es，even ןwwer－ cut pile so that about

Ision，mal it combmplated wenving the two fabries liace to face，keegheg them separated by the usaal pile wires of ligelow，and passing the pile threals from one fatric to the othere Cen entting the two cloths upart theongh the threals miting them，two cut pile or wolvet fabrios resulted． This loom required the servies of two shattes muld double the mumber of warp－beams，lant it worked well，and is to－lay largely in ase and well mapted to its purpose．
The demand for tufter pile fabries，meaning those in which the pile is

SMITII AND NKINXER LOOM FOL NOQUNTTE CAIILETS．
formed from tufts or yarns，individually tied to the foumdation fabrie，and of which the rich Turkish and l＇ersian rugs are examples，had not been met hy the Bigelow home；in faet it was only about forty years ago that the meehan－ ieal production of such fabries became possible．Smith and skimer were the pioneres to enter this field，and the first．by the aid of machinery，to com－ pete with the cheap hamblaber of the orientals．The invention of a machine that will seleet any desired color from a large momer of yarns．earry it between the warp－threals at the exact spot necessary to form the figure，tie it aromu！inese threats，put it off to the length neeessary to form an even and smooth surface，return the umsed portion to place，and do all guickly， aceurately，and with little eost，is an achievement that may rightly elaim the
almiration of the industrial world. Yet this is what the machine inaugnrated ly smith anl skimer does to-lay. The general movements and conplicated parts of the power-loom are present as lor weming a phain fabrie, and on beans or large spools carried by a chain, under the control of a pattern, are arrangel the tuft yarns, in the order in which they shonk appar in the figure. Through the patterndevices the proper spol or beam is brought into position to be seized by a pair of fingers which rise, take the spool from the chain, lower it to the warpe phass the ends of the tuft garn through and aromed the proper wap thrad, hold them till the insertion of a linding weft, thene, when they hase been properly ent to length, return the spool into its phace in the caim. This creation of mechanieal genius takes mak with the womders of the spiming mule amb. like that machine, passes throngh its entire opreattion with the prerision of "on "utametom. By its id rlose imitations of the oriental hand-made migs are phaced before the worlat one quater the former pioce, and. as a result, the tine mopuette and axminster earpets lom their beanty to nearly every home in the lamb.

The credit for improwing the power-lown su as to adapt it for wearing fancy cassimeres and suitings. Imlonge to Willian ('romptom, a mative of Euglamd who came to the ['nited states in 1s:ib, and shortly thereafter. in the Middlesex Mills at lowedl. Mass... (eonstrued and opreated the first faney eassimerr power-hom, not only in this romatry, but in the world. Prine to this the harmess for all woolen and worsted pawer-homs was worked by callus. and the eloth was wown phain: lint Crompton's bom of 1 sto started a new em in the wolen industry. rembering it possible to prodnce any faney wave by an armagement of pattern chain and large mamber of harnesses in commertion with the change shathe-boxes. Improvements followed. he the sulnstitution of the reverse slattle-hox motion in 18.5 . the perfertion of the general lown strueture in 1sar. Hur aldition of the upright lever harness motion in 1sta. and the centrestop in 1 sita, so that at the present time this maline is alapited to rim at high sperts and weave at moderate enst the most complicated designs in woulen an:! worsted - such as shawls, cheeks, suitings, and all forms of fancy cassimeres.

The general industrial activity in all matters pertaining to textile mamfacture between the vears 1 sin and astio, bronght forth many forms of loms of special adaptation to meet the increasing demamls of soriety. The namow-ware loon a!peared in the third decale of this contury, and the addition of the doblie or Jampard. later. empipped this foom for the simultaneous prohnetion of several riblons, ur narow fabries, side ly side, having plain or figured effect. The lay was divided into several reed spaess, and a corresponding number of slmttles, operated by mack aml pinion, carried the wrft-threads through the adjacent w:an י.

Ahont the midhle of this century, and until the adopition of the more rieh and delicate fabrics, hairelotin was the areppod eovering for furniture, and power-loms for its problution guickly answered the demand. They reached such a degree of prefeetion and efficioney in this combtry that almost the entire industry was centrel here. This fahric was made from the hair of horses' tails as weft. and a strong "oton warp: and as the wefi comble but be womid umou bohbins, as nsmal, carlh seprate hair was inserted by an ingentons device made to reciprocate through the shed, and select one out of a bunde
hine inatugunts :and eomin fabrie, aml of a pattern, apluar in the brought into ool from the la and aromel ig weft, thesis, oits plater int the wombers mative onn: atations of the er the former ts leoul their
for weaving tive of bugraifter. in the rst fimey easl'ritur to this by calus. and ard a nera era mence hy in commertion sulnstitution general lown ion in 1siol. : maphine is e most com. cks, suitings,
extile mame ny forms of wiety. The ry, and the min for the side by side, red spaces, nion, earried
he more rich urniture, anul hey reached st the entire ir of herses' ot be womit . 11 ingenions ; of a bumble
of hairs ent to the same length. The conception of a power device eapable of the delieate operation necessary to weave haireleth, conld never have beea realized except in a highly intelligent manufacturing community; but in $1 \mathbf{5 0} 0$, Rhode Ishand alone prohued on sum machines over bito,000 yards, consuming therely the hair of abont eight humbed thousand horse-tails.

The evolution of the lappet loom started between 1840 and 1850 in England and (iermany. It sought to enhance the pleasing effect of plain fabries, by placing an embroidered or raised figure over the surface during the weaving

chuctinh i.mens.
proeess. Near the lower edge of ladies' skirts. on the ends of neekties and like antieles, an embroidered effect was desimath; and this has been seented hy the lapet attachment to the present prower-loom. In this a needle is
 in the end thereof the lapport thread is led from a suitahle supple. This mede is nomally either abeve or below the warlo. When a spot or tigure is Wanted, it is canseul to move into the plane of the opjosite warps of the shed, moder the dirertion of suitahle poncolling pattern meehanisms. The shuttle bring then shot. the lappet thead apmears mon the surface, and it may be mand to this appear as often as desimerl ; its position being shifted as neressary mader the guidance of a patternechain: to form, in embroidery effeet, any chamater of small design.

Closely aliied to the lappet loom in the effect produced is the swivel-shuttle loom, which has come extensively into use during the last thirty years tr supply demands for spotted or cmbroidered tigures. The loom is of the phin type, having small swivel-shuttles movable in carrier blocks, which are secured to the supporting bar near the top of the lay-reed, in convenient location to permit the shattles to be depresseal into the shed. Lach swivel-shattle is provided with a mack engaging a suitable onurating pimion to move the shatthes simultameonsly from one carrier to the next. Normally these shuttles are held above the warp plane, and the loom in this condition weaves tabley or twill. At the desired moment, the supperting-bar is lowered by a cam or Jacquad to bring the shattles in the shed ; the simetles are moved from one carrier to the next aljacent, amb then all are raised to their nomal position above the warp. The gromul weit is laid and the beat-n!, takes phace. licpetition develops a spot or tigure at intervals aeross the entive labric, and with the use of different colord swivel-threals the greatest diversity of embroidered effeet is secured over the entire gromul. Some of the most beautiful spotted silk, for ladies' dresses and faticy saris's, never before contemplated. are now woven on this lema at prices that are very moderate for such a class of goods.

A radieal departure from the paths traveled by prior inventors was inangurated alont 185:3, in adipting the power-loom for weaving tubular fabries, resulting twenty years later in perfecting a machine in which the wap threads were arranged in cireular series and the woft laid in the eireular shed by a contimonsly moving shottle. Fire-hose and like tubular cloths resulted. Rapid development contimed from the middle of the prosent century, so that nearly every coneeivable form of loom, from the light ruming phan fabric and gingham looms to the heavy sirnctures for weaving canvas and wire cloth, clamed the attention of the inventor; and in this last lecale of the century looms are constructed to weave anything that com be woven. Wire, slats, came, straw, and glass, as well as the light fibres of cotton, wool, or silk, are now easily manipulated on the power-loom and woven into cloths, mattings, baskets, cane-seats for furniture, bottle-covers, and ever so many irregular forms that, in the dormant condition of this industry prior to the nineternth century, were guite lwyond consideration of the most active enthusiast of the art.

Wonderful as these achievements have leen, the restless ambition of inventive genins remains mastistied. Improvemonts continue - especially in the Cnited States, umer the fostering care of a librad patent system and attempts are now loing made, and with suceess, to form the power-hom into a thoronghly automatic machine ineapable of prodne ing any but the best quality of eloth. Wen the brakage or undue slackening of a warp, thread, the lom would montinue to weave and produce imperfect falmic until the attendant hal piecel the broken end or aljusted the slack throul. Means were devised some years ago to remedy this defect, lut with only partial suceess matil near the close of this pentary. Brakage or failure more often ocenred in the wrft, however, imb though the weft stop-motion sucerssfully detected the fanlt and stoppelt the loom, yet much valahbe time was lost, and constant attention was needed to suply new tilling. I'rogressive temencies of the closing years of this decade have sought to mert this difficulty. As a result.
means are now provided wherely, on failure or breakage of the weft, the lown diseharges its imperfect filling from the shattle, supplies itself wita: a new weit from the hopper, places it in the shattle, and contimues to weave. Such at loom provided with a warp stop-motion is almost incapahle of producing imperfectocloth, and so long as the waps remain iutact and the hopper is kept supplied with weft-bobbins, it will continue to weave. In fact, in many mills of the New Englimd States these loms are now left to run during the dinner hour without an attendant, and no inperfect eloth is produced.
Sueh mathines are almost independent of hmman attention, yet they are the evolution of the old-time haud loom. Just one humbred yeurs ago the hand loom, running at 40 or 50 pieks to the minute, required the watchful care of

the filst hnitting machine. Lee.
an expert weaver; in 1840, the same weaver could "temd" from two to four power-looms ruming 100 to 120 picks; to-lay he oversees from 10 to 16 looms rumning from 150 to 200 pieks.

The hemespun, with its old familiar butternat dye, has disappured. The spinning-whed and loon no longer oceupy a part of every home. In their steat, the famer, as he looks beyond the thriving cornfields, wholds the reeking chimmers of a thousand mills as they proelaim the majesty of the power maehines. The fabries produced are beatiful and varied in design, and their cost so low as to excite womber that such progress could bave been the result of one humdred years of industrial activity.

The emaneipation of knitting, as a domestie orenpation, dates from the romantie experiences of William Lee, a subject of Queen Elizaheth, of whom it is related that while watching the deft fingers of his lady-love guide the
knitting weedle from boop, to loop, eoneeived the iden of pertorming the operation by mechanieal means. It is a singular concidence also that the invention of this the first machine fer knitting purposes, like that of the power-lom for weaving, should have emanated from the hands of a student and elergyman, mfamiliar with the art.

Lee's device was naturally erude. It contained only twelve needles, arranged in a row with about seven or eight to the inch, but it suceessfully formed a knitted web. Further progress in the art was slow, on aceomit of the strong opposition to all machines which seemed likely to deprive the hand artisan of oceupation. The Qucen refused to graut a patent to lee for this reason, and knitting remained the exelusive pr rogative of women for many years. Like the spinuing-whel, however, the hand knitting-nedle belohe at rival, which in the diversity of hmam wants was destimed to create one of the great industrial pursuits of the age.

Stockiugs, like all other garments, were tirst made by sewing together pieces of linen, silk, eotton, or woolen eloth, resulting in a poorly fitting artiele, prolitic of meomfortable seams. Knitting the entire hose in a singhe pieee by hand needles overcme tiese dofects to an extent, and the Lee maeline opened the way for the production of such artieles on a seale that mow furnishes the eivilized word.

Leces machine produced a straight web which regnired to be ent and sewn to shape; then to it was added the ribbing deviee and the narrowing and widening attachment, to shape the web to fit the body without entting; but still a seam existed in the stocking where the edges mited. In 1sla, however, M. I. Brmel built a cirmar machine having an endless row of meelles, and in 1s:31, 'Timothy Bailey, of New York, applied power to the knitting frame; the result being that at this time a tubular seamless fabric ecould be prodnced on a power machine.
The lateh-needle, which has given to the knitting machine great eagacity and aliversity of prodict, was not invented until abont 18.4, by Mr. Aiken, of New Hampsime. A period of development then set in that contimes to the present time. The meolles by eam mechanism were made indeproulently operative in a cirenlar carrior ; barrowing and widening devices to prodnce ponches, such as the heels and toes of stockings, were added, as was also feeding mechanism lor the introlnction of different colored yarn, or a reinforcing thread. Such machines, of 1 sios and $1 s^{\circ} 0$, wonld form a stocking or mulergament well titted to the form ; but they required the comstant attention of a skille linitter, until patteru merhanism was introdured to control the time of introduction of the eolored or additional thead, and the place for formation of the narrowed or widened wel. In forming the heel and toe poekets, a part of the meades are thrown out of action, amd the movements to oproate the active needles are changed from romad and romm, or cireular work, to reciprocating. At each rexiprocation one or more meolles, at the emb of the seris's, are rendered inartive, motil one half the reguired poeket is formed; then they are sucessively returned to action, ind cirenlar knitting resumed. It may be also an additional thread is intronned to reinloree the wearing qualities of the heed and toe, or a differently eolored yann may be thown in to give figure, but all such movements are now antmatically eontrolled by a pattern meehanism. The ribbed leg protion of a stoeking is formed either
oper-inven-r-lisom lergyes, arsitully int of e hand or this miny helela at oue of ig artisingle ce matat now d sewn ng and is; but 6. howcorlles, kitting , itld be iken, of s to the mently pronluce so feed1 loreing - muderntion of lie time formapoekets, oprerate vork, to a of the formed; estumed. wearing 1ロWด in olleil ly deither
in the same machine that fashions the fort or in a separate machine to which the foot is thanfermed, but in either case the pattern mechanism again eontrols.

Within the last twenty years this art has been so greatly improwerd, especially in the hosiery line, that the antomatie machine of to-lay passes throngh the entire opration of knitting the article, finishing it off, and starting afresh withont otlier aid than a supply of yam. Moreover, the machine now to be considered practical must be so construeteal that it will continue thas to operate withont repairs or loss of time from month to month; and its daily output will average more than the ohe hame mathines could aeromplish in a wrek. liy hame knitting one limdred loops could be formed per mimute; by Lae's mathine as many as fiftecon hindred were possihle in the same time; but torlay, the antomatic machine will average between $: 800,000)$ and 400.000 loops, and at the same time will promber a finer web, shaperl to fit the form of the wearer.

Such comparisons reveal the vitally important progress mate in the kuitting industiy, through which most of our molerwear, stockings, scarfs, neek-comforts, and woolen gloves are supplied. The labor and time saving devices developod in

KNITTING IN TIE OHD WAY. this elass of maehines, and the fact that unskilled workmen may "tend" from fifteen to twenty of them, largely accounts for the universal adoption of warm and comfortable wearing apparel by all clisses of suciety.
'the mmber of patents granted on textile machinery during the nineteenth entury furnishes an index to the progress male. Prior to $18(0)$, less than one lumber patents were granted in the C'nited States, while since that time, and up matil July, $189{ }^{\circ}$, abont 15,200 pitents were issumed, covering tangible and material improvements over the old structures. The bencficent effects of these inventions are attested by the womlerfnl and contimons reduction in cost to the consumer of all kimls of textile fabries. For the manulacturer, these have male possible increased production in a given time with less manmal labor. When it is remembered that the labor cost is abont one hall the total cost of prodnction of textile fabrics, it will be apparent that the beneficial effects of any labor-saving device are felt as well by the consmmer as the producer.

In 1870 the number of textile establishments in the United States was 303 B , giving oceupation to 146,897 employes, anm consuming annually $3 \mathbf{5} 9,420.829$ ponnds of textile fibres, while in 1890 the number of establishments had increased to 4114 , employing 511.89^{7} lands, and consuming the enormous amount of $1,5 \pi^{2}, \mathbf{5} 48,933$ pounds of fibres ; representing progress and growth in the textile arls not excelled by any other manufacturing industry.

Food and clothing constitute the primary wants of man. The former grew ready for his use as a natural product of the soil. The latter he had to produce by artificial means to afford that protection which nature failed to
provide. Next to agrienlture, therefore, man's early attention was directed to suemring a covering for the boty. Looking back through the vista of years dimmed ly the mists of very remoteness, we find the animal and vegutable kingloms destined to contribute to his needs. There wre the blue Hax tields; cotton-bolls, seattered like powdered suow about the lamd, roopurting in wanton ahandon with wimds tempered by an all-wise l'ower to the shep-herd-watehel shop; goats romming the vale of Cashmere; silk-worms of Ceres. and the grasses of spring, overthowing with allurements of assistanerfor his adormment. With these essentials has man wrought a mighty miraele. The genius of Industrial Art, awakened by the fascimating intluence of Nature, invoked the Ciodless of Invention, alproaching her temple not with

KNITTIN: IS THE NEW WAY.
loud aerlaim. as marked the hereulean strides in other arts and seiences, but modestly, though tenaciously and most effectually. For not more is Woman emaneipated by the sewing machine than both sexes by the along away of the spimeing-wherl, the househohl knitter, and haml-worked loom. Sot more do electricity and stean power facilitate the varions ocenpations of man than do thr many textured fabries add to his needs.

In all the phases of social life is this industry manifest. If the hanquet hall is warmed amb lighted by electrieity. sn, also, is it adomed with tapestries, silken and artistic, mapery surpassingly smooth, and laces intrieately wrought.

How like a fairy tale reads the evolution of textile progress! Coneeptions, intinite in range and variety, alike pleasing to the eye and gratifying to vanity, have been spm, woven, knit. and embroidered, until, standing as we do at the dawn of another eentury, upon the summit of maralleled achicvements, we ask, "Can the mind conceive, the heart desire, or the hand expente more."

Rume. l'. llans. he vista of al anel vege he hlue tax - cornottins othe shep k-worms of f assistance hty mirache. uthonce of de not with in the hand Hass.

THE CENTURY'S RELIGIOUS PROGRESS

Tus elosing yans of the nincteenth century, both in burope and the United States, ine chanaterized by a religions life as phenomenal with respect to development and influmee as those of the dighteenth were phenomenal for lethargy and deeline. "Never," sals a writer in the North British Review, "has a century risen on Ehgland so void of sonl ant faith as that which onemed with dme (1ion), and reached its misty woon bencath the second (icorge (1 a3:-1760), -a dewless night succeeded hy a sunless dawn. The l'uritans were buried and the Metholists were not born." In this opinion, all historians and 'sssiyists concur.
Among the clergy were many whose lives were of the Dominie Sampson order, deserihed in Seott's "(iny Mamering" - men whose lives werr the seandal and repromelh of the chureh; who openly tanght that reason is the all-suffieient gnide; that the seriptures are to be received only as they agree with the light of nature; pleading for liberty while ruming into the wildest licentionsness. Montespuiem, indeed, did not hesitate to charge Englishmen generally with being devoid af every genuine religions sentiment. "It," he says, "the subject of religion is mentionel in society, it expites nothing hut langhter. Not more than four or five members of the House of Commons are regular attrumants at ehurel."

From the colleges and miversities, the great doetrines of the Reformation were well-nigh banished, a refined system of ethies, having no comeetion with Christian motives, being substituted for the principles of a divinely revealed law.

On every side faith seemed to be dying out; indeed, would have lied out but for the tremendons reformation in life amb morals induced by the self-lenying and heroie labors of the Wesleys and their coaljuters, to whem, more than to any beside, England owes her salvation froan a relapse into barbarism, - a serviee which in hater yeurs won for the Wesleys a memorial in Westminster Ables.

On the Continent, religions comditions were no better. In Framer the masses were get reeling amid the exersses of the Revolution. Coltaire and homssean were the onacles and prophets of their times, - the popular idols of the hour. Voltaire indeed, openly boasted that he alone would laugh Cloristianity ont of the court of pmblie opinion, derlaring the whole system to be ontgrown mul pwarloss. Germany, given orer to theologieal speenlation, conshed beneath the winght of the Napoleonic wars, and torn by internal dissunsions, gave but little hope that upon her altars the dying fire of the great lieformation would ever again thame forth as in the older and more heroie diys.

In the I'nitell itates. similar combitions prevailed, esperially during the last depales of the pighteenth mintury and the tirst of the nineteenth. Forms of
indidelity the most malical and revolting prevailed thronghont the laml. Mang of the leading statesmon. io private at least. dial mot semple to combers thent selves atheists or deists. Thomas laine was the promalar ifol, his "Ane of Leasom" ahost as "ommon as the fible itself. The majority of the men taking part with him in the fombling of the gevernurnot, with hat fow excepl":ons. beld theolugieal sentiments akin to his, althongh derlining t" partieipate in his violemt and motal assambs unom the serjptures and the institutions of Christian sucemety.
Suraking of tha earlier days of the cemmer. ('hameelor kent. in one of his published works, reclared that in his yomger days the men of his acquaint-

ance in professional life who did not avow iatidelity were en:! paratively few. Bishon Meade. of Virginia, in his antobiography. states that "scorcely a young man of culture conld be fond who believed in Christianity."

The colleges and minersities were so tilled with youthfulsepetics that when. in 179\%, Timothy lowight assmed the presidme? of Yale, he fomm but four or five willing to admit that they were members of ehurehes. so far dioi they go in their derotion to the French infilelity prevalent at the time, that the semiors of the college were commonly known among thenselves by the manes of Diderot. DAlembert. Rohespierre. Romsean, Danton, and the like. Harvard, Prineeton, Willian and Mary, the Vniversity of Virginia, - all the colleges indeed, - were as thoroughly hotheds of skepticism as nurseries of learning.

The periond, too, was one of interneciue strife among the feehle elarehes
 faith as mumeros as they were disastrons. Of the missiomary spirit so ghominsly chanateristic of the mintemth cutury there was not even a trace. Up to lion, not a missimaty seciety was in existence on cither side of the orean. The same was trme of hospitals, asyhms, of every form of organzed effort fo: the serlabation of the masses or the amelomation of human ill.
!ai buston, as late as lshe mon of litemry or political distinetion, eager to listen to the marwlons revival prathing of the celebnated br, (iritlin, attemed his services surreptitionsly, or in disguise, fearfill lest knowledge of
 frim the dignity of their somial stambing.

If, however, tha times were bad, the ontlook for Chistianity dark, the perionl, nevertheless, was not wholly without glomans of light. The spiritual leaven impartod by Whitetich in his mighty preachang tours, by Edwards, bwight, Ash:nry, (irithu, and others of equally heroie stamp, gradually began to work. - slowly at first, but with ever aceelemating movement, - until at last the trinmphant suceesses of the present antmy began their stately manch. By degrees a bew life appored among the ehurehes, heralding the dawn of a mew and brighter day. Revivals of religion, matuy of them powerfinl and swerping, broke out in many parts of the comuty. Massachusetts, Virgimia, Kentneky, Temessee, the Carolimas, Georgia, were in sueerssion the theatres of movements which, before they hat spent their foree, had complately revolutionizel the conditions of unfaith, immorality, and spiritual apathy so long prevailing. These mphavals of spiritual power, contiming during the first twenty-f ve years of the century, laid broad and deep the fomulations of the mighty achievements of the chareh which we are now to romsider. How extanive, how wonderful, have been these achievements ean perhaps hest be muderstond by a consideration of the changed conditions marking the elose of the century.

In the first place, that the prople of the United States are a religious prople may be inferred from the anazing number and varisty of religions abomoliag and Homishing within omr borders. It may be doniterl that in any other Christian eonatry of the earth there ean be fomm so many varieties of religion, so many ehureh organizations, so many and diverse peonlarities of doctrine, polity, and usage, as here. It is a land of churches; churches for whites, churches for blacks: ehurches large and ehurches small; churehes orthoulox and churehes heterodox ; churehes Christian and churehes pagan; ehurehes Cathodic and ehurehes Protestant; chmrehes liberal and charehes eonsermative, Calvinistic: and Armenian, Lnitarian and Trinitarian; representing nealy every phase of ceclesiastieal and theologieal thought. As Americans have distanced the world in the extent and variety of their material mentions, so have they distaneed the world in the extent and varicty of their theological and ecclesiastical forms. The state camot control the church, and the eloureh is as free as the state. As a man may freely transfer his citizenshij, from one State to another, to each in turn, so may he, if he shall so desire, pass from one ecelesiastieal eommunion to another, until he shatl have exhansted the list. If. perchanee, no one of the one humdred and forty-three distinet denominations enmmerated in the census tables shall suit
him, there remain immmerahe separate, imdenemdent congregations, no one of which lays of ©im to denominational name, cred, or commertion, in some one of which he yet may find un ecelesiastical home. 'hlue prineiple of division, indeed, has heen carried so far in America that it wonld be at diftioult task to find the religions body so small as, in the judgment of some, to in. ineapable of further division.

It is to be observed, however, that the differences of the one lumberd and

 FHEOTION 1N NEW VOHK
forty-three denominations into whieh our religions population is divided are, in many instaures, so slight that, shouhd consolidation be attroupted, the one humbed and forty-three conld rasily lue reduced to a comparatively small mumer, and this with but little ehange in doetrine, polity, or usage. Consolidation into organie mion, however, is hardly likely to oceur in the mar future, even were such consolidation desimble. In the first place such a result would be contrary to the genius of Protestantism, hased, as it is, on the absolute right of private julgnent with respeet to matters of faith and morala, and, in the second phace, it would le contrary to laman experienee. "Religions controversies," as Gladstone says, "to not, like bodily wounds.
piss, 110 one in, in somer He of divi. - a dillivult Romur, tuln'
heal by the genial forees of nature. If they do not proeeed to gangrene and mortification, at least they tend to harlen into fixed facts, to ineorporate themselves into laws, chanater, ani tralition, nay, even into language; so that at last they take rank mang the data and presuppositions of common life, amb are thought as inexorable as the rocks of an iron-lomal eoast." In religiom, when men separate, the sevemane is like the severane of the two early friends of whin the pret speaks: -
"They purtiol, we'er so meet nguin,
Dint neilluer ever foomd another
To free the hollow hart from painiug.
They shenl alouf, the sears remaining,
Lake dilise which have beell reins astuder,
A dreary sen buw ralls belween."

If, however, the disersities are grat - inereasing mather than diminishing - the "unity of the spinit in the bomels of peate" with respect to all essentials of doetrine is as remarkable as the diversity in the outwanl form. Never, imberl. sinm How dawn of Christianit: were the man bers of the diversitied traties of the gemeral al mork of christ in surh thorough acmorl. in surlt closemess of attarlument. with simelh gromems rewcognition of all that is gromb in moth of the several bublies, an mow. Bisu the Roman Catholie: Chume intolerant in all lands where its sway is poretinally mulispuiterl, in the Crinted staters, at least. has caught sombthiug of the hrouder tolemation of Prowestants, gising to its millions of emmmoicants a hettor and truer gosinel than in those combtries where it dows not comb into contact with Protestantism, while freely coupurating with wherer churelues in varions works of philanthropy and re-

FATHELL DAMIEN, MISSIONAHY TO HAWAItAN IEPE:I TOIGNY. form.

In the next phace, that we are a religions, a Christian pople may be argued from the steady and momons increase haring the sentury of the material and spiritual forees of the chureh of Christ, an increase phomomal even amid the wombers of a phenomenal century. Whether we look at the inerease of editiees or the multiphication of commmicants, the results in either case are sufficient for both congratulation and amazement. Were it possible to obtain from the earlier records exaet statistics of the actual mumber of edifices and communicants existing at the opening of the century, comparison wonh be comparatively casy. Such. however, is not the case, the records having been imperfeetly kept and indifferently presurvel. The census of 180°, indeed, was the first to furnish exhastive aul really reliable results.

Taking that census as a basis, and adding to,its figures those to be chtained
 phigions strength of the l'nited states may be smmarized as fullows:

 places where organizations which own mon mitioes hohl their services,
 I'rotestant churehes, at least two servires ure held on each sabibith; in the Catholic, six or seven.

Granting these promises, it is but remomable to say that if, on any given day, the entire popmation of the comutry should desire to attend at least one religions servicre aremanolitions combld wadily be fomm for the entire manber, -ample prowf that the spirithal interests of the millions pare by no means meglerted so fire as priviloges of worship are conerned. It is a showbing all the more remarkahbe when we consider that ail this vast provision is furmished on the basis of voluntary offerings, the state contributing mot a dollar for religions purposes. It is probable that in these churehes and
 hold eath gear, to sty mothing of sessions of sumbiy-schomes, meetings of Foung l'eophes Associations, and gatherings of kindred chanacter. In them, too, not less than ten millions of semons and addresses om religions themes are ambally delivered.

The number of enrolled commmieants, or members, howerer, by no medns expesses the real strength of the religions life of the mation. To get at that,
 in all statistical calcolationis. l'roededing on this basis, omitting for the time all C'ntholies, Jews, 'Thoosophists, members of Societies for Ethieal Culture, Spiritualists; Latter-Day Saints, and kimbed bodies, and multiplying the
 protestant population of the conintry. Alding to these in,om,omo the Catholic popmation, estimated by Catholie authorities as being $1: 0$ per cent. larger

 municants nor adherents. Of the $\overline{\mathrm{B}}, 0100,000$ opmosed, for sarions reasons, to the churehes, compuatively few are to be reckoned as either iutidels or atheists; while, on the other hamd, it is true that of the in, mon,omo reckoned as either commanicants or athorents, millions are Christians only in name, either never attembing the serviors of the churehes, or at the best only at rare intervals. Gratifying ats is this sphemdid exhibit of religious devotion on the part of the Amorima people, the fart that there are millions in our hand whose allegianer to Christian doctrine is but mominal, with millions more upon whose lives religion exereises no apmeriable intluence whaterer, is a sufficient proof of the chormons task yet confronting the churches of Christ, if we are to stand before the nations ans the great distinetive Christian mation of the world. The stupeudons gain, however, in ninety-fon years, of over 14, 8in3,Wid in Protestant churches atone is a record of religions progress mparalleled in the history of the world.

Alvancing to the question of distribution of the religions forces enumerated, we find that while these forees are distributed throughout every state

1s:1t, the follows: Hinisters, projurty. (10) :3:8,omir servieres, ty of the 1; in the my given le:ast one ire nlmro by no : showvision is ly not : ches :mill rices are -tings of In them, ; themes
(1) meiths t at that, allowed the time Culture, ing the he total he Catht. larger he total er comisons, to itlels or eckoned a name, only at ation on ur land не трин afticient we are of the 14.8.53,ralleled
mumery State

and under one humbred and forty-three innominational names, they are, nevertheless, massed langely in a few denominations and in it comparatively few states. Competent authorities estimate that the five largest denominations comprise fully ${ }^{60}$ per cent. of the antire number of commumicants; the ten

laptist thirl, with $3,717,37: 3$; the l'reshyterian fourth, with $1,278,332$; the Lutheran tifth, with $1,2: 33,0$ ase.
With respert to population, reckoning the Catholic population at $\mathbf{7}, 5: 50,000$ - which tigures inchule chidren under ten years of age-and adding to the eommaniant strength of the four other horlies mentioned the 2.5 alherents allowed for rach communicant, we have the following: Methodist ${ }^{\text {wop }}$ phation,

With respect to value of chureh property, the Methondists are first with

 denominations，reaches the enomons sum of sito，（ини，окю．

To further partienarize with resperet to the hesser grougs into which the religions forces are divided is impossible within the limits allowed for this chapter．Toulo it womld require a volume instead of a chapters．The follow． ing summary，however，maty suftice to show the gain of a century of religions effiort：－

When onf remembers that one lumdred years ago it was a common bast of infindels that＂Christianity womblent survire two gromertions in this
 tory of the kinglom of lion in any land ar atyer are

Thorning to the field of missionary effert，we fime that the sprade of the Christian re gion bigissimary effints，partionlarly during the last our hom－ dred sears，forms one of the highose ehapters in the revords of haman pro－ gress．Within this perions，the trimphes of the tirst there ernturies hater heren far more than remeateng．

Foblowing these raty vietorios of the（hristime faith came on，as all know， ages of darkmes．dreaty enturies，during the progress of which the perer of the chureh grahally wamed．and．with resperet te parely spiritnal areivitios， seemed to die away．The voice of exhortatien exased to be harari．Thristian sugg was lowherl．Exen prager elosed its suphlieating lijs，and the rhareh， owrialen with corruption，wohlliness，and haman ambition，passed inte the thick darkmess of the long and disastrons erelinse of the Midelle Ages．But
 the＂bark A_{s}＂s＂were not without theirghans of light．Among the siant mons and in the lands of the brioms，always were to be fomal herois men and women toiling reaselensly for the comersion of hathen mations to the（＇lorist． bator ons sumerguent in the thirternth antury，and esperially during the conturies immediately following the diseovery of the N．W Worth，the insite for the Christ ianizing of the world flamerl into an all－abserthing passion．＇The
 of the glowe．hate long harem the womder and almization of the worth．Cherked
 Chureh turned its ramgias to the arpuisition of spiritual power in other lands，and with enomons sutecess．Along the banks of the st．bawrenee，
is third, Baptists ning all
hich the for this - fullow. eligions.
in lmast in this the his.
of the i11. hlin!Hill In lan

1 кишж, - juwn tivitios. ristiall chareh, Hito the 4. lint wow :1s " S:atilCII :lllil Christ. ng the desire 1. Tha parter heremil tholie other renere,
amid the wilds of Canalian forests, far away on the shores of the Great lakes, thener sonthward to the Ohio, along the Mississingi, even to the linlf; in fin Cathay, in Ceglon, in Japan, in China, in Afrien, - everywhere ins'missionaries ronld be fomal, herelless of hunger, of eold, of peril, reekbess cren of life, if be any means, whether ley life or by death, they might "sprinklo many nations" and establish the holy emblem of the Christian f:ith.

Ahsurhed in the struggles going on in their own lands, Protestants made hat littla effort for the extension of the gospel in foreign fiedds, save the tew bint sucerssful attermpts made hy the Momatians of cermany, always the most zealons of all lrotestant ionlies in lines of missionary service. What,

maptist mishion medmol., dapan.
lowerer. was lacking in the way of missionay effort in the seventernth amd eighternth moturies has been more than made goond in the ghorions ninetrיnth, the distinctive missinary mathey of the Christian era. In the romm of seren societies organized for world-wide grosel exangelization at the ond of the last century, there are bow in burone mud Amorina betwen seventy amd "ighty organizations, rmpleying a fore of mearly there thensand Ameriean

 ahone fur missionary serviee, white the great koman ('atholie ('hureh proseentes its work with a \%eal equally untlagging. A briof survey of the progress of a hombred yars of missionary affort will make it clear to all minds that the day is mot far distant when the derdaration of the prophent, "I'lie earth shall be filled with the knowledge of the glory of the lord, even as the wathers rover the sea," shall have abmant and magnificent realization.

It the begiming of this contury, every island of the vast ladite whs rlosed against the gospel. In-ling, nealy wiry one is maler the inthemer
more or less extemed, of Christian civilization. India, from C'ape Comorin to the P"njamb, from the l'mand to the Ilmalayas, from the Himalayas to Thibet, -at whese gates the gospel is mow kureking. - has been covered with a metwork of mission stations, schools. colleges, and churehes, closer hy far in its interlarings than that whela at the close of the third century had spread itself over the vast empire of the Carsars. of the Iadian Archipelago, Sumatra, davi, bomeo, the Cobeloes, New (iunem, mot to mention smaller groups of islands, are freling the new life ever imparted hy the advent of the Cross. lapan, tow, hangry for reforme and fall of the stir of the age, by granting cutame to the gospel, has within its lowers alroaly a mamerons Christian pepmbation with seores of "augelical congregations. The same is trיe: of the hermit mation. Comea. In the lamis of Islam, from Baglan to th Balkans, from Egypt to l'risia, amb thoughont all Turkey, are to be fo cond rentres of missionary miterprise, the vast inthence of which is now being spasibly filt in the changing life of those remarkable peoples. In Burmath and recently in siam. after years of patient and apprently hopelens servire, fiedn are "verywher "white unto the harrest." Chima, most populoms of all hathen lamks. is open to missionary effort from Canton to leking, from Shanghat to Iton- 'how. . frian also, once, ia its northern sections at least, the home of the hearning, the ant, the science, the religion of the world, awakning from the sleg of long and dreary centuries under the influence of Christian civilization, again lemands the attention of the great mations of the work. Everwhere, east, west, borth, south, it is being invaded all along the line of Cocil Rhooles great milway, stretching northward from Cane Town for three thonsand miles, to meet the twenty-six handred jushing down from the morth, - from senegal to Gahom amd from Gaboon to the Conge; on the shores of Tanganyika and along the banks of the \%ambesi shine the lights of the gospel, which, wherever it has gome, has been the harbinger of a new and bighter diy. Within the mighty domains of our owni continent, upon the immense phans reaching fron Labador to the Paeifir, upon the sterile eonsts of Alaska, in the land of the Montramase, in Contral America, in south Amerien, from famam to Termotel-Fingo, equally marvelons have been the straly gains resulting from a Christanity the forees of which, life the waters that envich the continent, penetrate all the hays and estuaries of haman sorioty and :afluence all classers and combitions of men. Looking upon the transformations effeeted by the lahors of a single century of Christian effort, one may surely say, "The peoples that walked in darkness have seen a great light: they that dwell in the land of the shadow of death, umon them hath the light shimed."

Bifually womberful have ben the vast eontributions of the chureh in Amerina to the great canses of colneation. phanthrye, and reform, partionlarly in the line of ednational work. The serviee of the chaneh in the great sanse of education has mover yet been fully reognized. Men forget, when darging the chureh with hastiity to hman progress, to freerlom of thonght and action, that mitil within a prime of seventy yans warly everything arem-
 rhurelses rather than muler the direction of the state. Until $1 \mathrm{~s}^{2} \mathrm{E}$, the state had done mext to mothing even in the development of its common sehools. In the great State of l'emsylvania, the system had no existence until the
omorin hyas to overed ser by ry hand pelag, matler of the ke, by nevons InIe: is lial to to) be \therefore now 11 Burleless捾単eking, ilis at world, luence ons of al all Ciare down ongu; e the : of a ${ }^{1}{ }^{\prime \prime}$ terile :a, in have , life is of "10우 stian seen them merly in allse darr:llul comb tioe tate mols. the
year 1835. Even to-lay, among the four lumdred am fifty institutions of higher education in the varionss states, nearly all owe their fommation to the energy and sacritice of Christian men amb women. The total gifts of the churhes to the ganse of ellucation, still existent in plant, in gromals and Imildings, or in the form of enlowment funds, reath the momons aggregate
 largely from Christian sumes, agregate menty $\$ 10.010$ whon per year.

ME:THUDIST EPINCUPAL IIOSPITAL, PHLLADELIPItA.
The religions activity of the rentury is further manifested in the enormous sums raised and expended for purposes of elarity, reform, and general philanthrop. It would reguire an oetavo volmme of fome hundred pages to eatalogue the varions henpoolent and charitable organizations in the eity of New lork alone. Add to that volume the humdreds more which would be repuirel to enmmerate the additional thonsands to be fomm in lhiladelphia, Chicago, Bostom, - in fact in every eity, town, and hamlet from the Athantic to the liaritic, nine tenths of which are distinctively Christian, -and you lave a faint idea, at least, of the vastness of the spiritual forees at work in
these elosing years of the century for the amelionation of haman ill, the dispelling of moral and spiritual lankness, and the nshoring in of the erat of peace and gool will, for the coming of which the charch has sor ceaselessly paryed. What these philanthropres are we manot in dotail emmerate. Classition, they are for the purs. for the hahoring chases, for the side, for fallen women, for free sehools, for the aged, for the blind the deat, the insime, the inapotent, the degrated, the ome enst. for sailors, for the protection of anmals, fir city evangelization, for homer missions, for foreign missions, for religions publications, for the phblishing of the Ifoly seriptures, for peare for Voung
 to the sentiment of brotherhond so danateristic of the age. In manher they we legion. In origin, there lourthe are the ontgrowth of that spirit of Christian love without which they conld not haw beron origitated. and hy which they are mantainel and perperthated. Thase who assert that within this cemtury Christimity has hume more lin hamaty than in all thenbes preerding are dombthes corrert. It has made menk kime. mathe them
 liftod the prisomer from damp and draty dangeons intu commontions st ractures. the pridu of rity and state. So far, imbed, have the weform insprod
 timat has wot been rearhed beyoul which it may be dangerous to go.

Such are the gencal firets of the religions progress of a mentury in the Inited states, lieviewing them, we can ansily diserem the wast and rom-

 al the lippuldie, redigion stames preäminut, the mast prowful, the most pervaibe, the most irresistible of them all. A free rhureh in a free state. all its edifies have leen built le private contribution, all its masuitieront benfactions smstained by voluntary offerings, indued in exory instane by
 fir the emomongend of all. A reliel society, the seope of its sympathes is as wide as the wants of mam, I muiversity, it doms move for the eduention of the masses than the pullier seluel system itself. . If emplover of

 memere it outwathes Argus with his humbed abes, outworks Briarens with his humbed arms. An asymm, it gathers within its proterting arms tho hath, the mained, the womberl of lifers great battle, emonforing them in tronhe. sustaning them in aldersity, while reaselessly printing then to Him" whe taketh away the sins of the worlh." "E:very formerestone it
 for the world: mery altar * estahlishers, it "stahlishers for the salvation of
 gers of gonl tidings: its ambassadors, ambassahurs of hoger its augels angels of mewe." l'mater all one institutions rest the lithe and the sehool-
 sible: with them, we have hamblian Amerina for a thomsand sams. ed hordy 1 bemeticlls with

GREAT GROWTH OF LIBRARIES

Lamanase are as what rivilization. Nothing marks divilized progress more distinctly than the collertions of writings, whether on elay, stome, wam, papyras, or pardhumt, which went to make up the lihraries of unrinat proples. sull writugs gencrally related to roligion, laws, and eonfursts, and fome their ahote. in the fom of arehives, in capitals and

 These libaries scerm to have fomal a hine for the mont part in royal palaces,
 As mearthed :men their romtents deciphered, they throw mueh valuable light mum the romot history, as well as the arts, sciences, and literatures of babyhamia allul Aseyria.

In ancont igypt eulletions of hieroglyphe writings were made in temples and in the tomlis of kings from the earliest known dates. Nome hieroglyphies

 hows of Thoth - forty-two in mumer - emstituted the ligyptian eneyelopardia of religion and sirienee, and berame surh a froitfal source of commentary and expusition, that by the time of the (iverim compuest they had grown

Of the liburios of the (irecks we have little positive knowledge, though it is abmandy asserted by late compilers that lage eollertions of books (writings) once existed in the varions (ireeian cities. lisistratus is said to have
 collected the finst known libary in (ireere, which he berpeathed to Theo-
 way to thme. At t'nilus there is said to have existed a preeial colleetion of
 Findid and Ilato are mentionet as lwok collereors. But hy far the most remowned look eollerturs of the tirecks were the l'tolomies of Egypt. who
 tim of volumers, or rolls, whinh herame famons as the Alexambine libary. This was romporel of two libraries, ome restimated at te.Som volumes, or rolls, fombered with the Aralomy, the othere extimated at tim,000 volmmes, or rolls, drowsited in the seaturnm. It is said that these immense colleretions were regularly satalugued and kept umber the supervision of ewnuetent librarians,
 till.

The Romans at tirst paid little attention to literature. It is mot matil the last century of the repmblie that we hear of a linary at Rome and thom it was not a native colleetion hut a spoil of war. It was equtured from lersens of

 BMire.

 In contrast with these carly manal efforts stond that of Cowinns, king of than-
 This imperial wellertion was bumed lix the Turks in listo. Akme this time

In hiok, the bihlonheque Nationalo, or reval libare of Framer, at laris,

 sally beviod her civilizen matious, and which has heen the means of greatly en

 manber of any libaty then existing. It the ome of the nineterenth century it still retains the distimetion of heing the mast extensive library in the worli,

liburary roushit (\therefore (it). bliu- of himbinat remit of 11×1 Its. It Iriaj:an. יוtily lionn. fitullos. :antinuons:anl sily $\cdot 1$
 it1: :llul 14 ::11,111" il them (10 11,0 islı, exssariiy יוחי1110 5. Thr iss : muld d York. sinmer rl.
\because itations libuary uylanel. V'lll. if 11111 11190. is timu 1.
; P'aris. printel miveritly en arombld largest rentury worli,

the new lhbrary of conghess, washington, d. C.

11% TLIUMPHS AND WONDERS OF THE NKNF CENTURI

 ginu and Holland are rich in libaries. 'The weyal libary at Brassels rem-

 libmbes of the infune states, It thes herame the libary of the states-dioneral, bat in 1815 it was comwerted into the present nationa: libary. It has at

 kinglom must he deposited in this libary. Its whomes have inereased very

 valuable volmes, and is admimbly arranged and rombeted. The louver-

 with the university at ham. The liburios of Nomay, thomgh mot so large as those of sweden, arremerons, valuable, and well manaron. 'The ('nivery
 and valuable libraries are not mmeroms outside of the eition of St. I'enerstmerg, Maseow, and Warsaw. The Imprial Library at St. Detershmg ranks as the richest in burone, exeepting the libaries of l'aris and the lintish Muselm. It is onnen to the public, and contains approximataly $1.2011,01010$ volmurs.
(iermany, with her moltiplicity of minor capitals. lur lowe of books amd
 in the momber, "xtent. and value of her limaries. The largest is the Royal
 bey the " "ireat Elector" Firederiek WiAliam, and opened as a pmetion libary in

 om,ome. But it was thought to be mfair to olass so many small and inconsepmontial works as beoks, so that the libury at berlin was given promeneme. still the Mmidh lihary is partiondarly rich in inembabula and of her treasures derised from the monasteries, which were elosen in Isali, IThe I'nisersity libnay at Munich is also very rich in similar treamers. It contains well
 sity lihary at Leipsie, with over ann, omen whmes ; the Layal and City library

 stadt, with 400,016 volunus ; the lioyal I'ublic, at Dresilen, with $4110,(1011$

- rolleretions 4 ? reselit monlatil - or libary ul or, hat its reil seripes oll its
- live capitals.

 hirnssids rout statu arehisos mid was estaltth the smaller. estates- sicmwis. It hats at lie of the lenst were hern wolllisherd in the sereased vory
 over : : The ['niver: Bla, (HW vol. les combecterl not so large The I "hiver linssian, linga \therefore I'remsimeg. ranks as the ish Musitum.
limes.
of looks and Ie:品 combtry is the Royal was fomblod lie libary in
 sbering some 11 and inconprordenme. ref treasimes - Vniversity ontains well the CuiverCity library of volmmes ; al at Darmith $\{110,11111$

 ohthers atturhed to varions muiversitise or publicely agamiad which hasw

 resputively.

In switarlathl litaries are very mumpons and well comberom. The largest is that at bisel. It is salled the Public ('uisersits lishary, and hume

 ahuinolt monastarins.
Thomgh be we mans as andiont as some others, the leading libary of imat

 of homereritton works, Int of the literature and matites of all nations. The

 The second targest and menst impertant collowion in lingland is that of tho

Nでに

；the t＇its．it
 －Ihatal l＇al｜co． iiiltingerlo．Wh／s the loniversut 1．with 2atra，1＂H1 －Iniversit！it 1rg．with orer vollunes：Iho wink｜hw：il．at
 ．1）Which hatu
－rial Ioblice．：it ，abll hats Mor \therefore •• libuario．In
 is fiere，lont the Ning liburary uf
 hatarits encome －iunts luniver－ity artioularl！lait
 diversity at llow

－1mburtil．Tlo n：ary，allul wиm－ at \％urid•l．with I IN＂，thortand －Hind from the
libary of timat －the Nithonat． It is lenatenl at
 atwil alterwamals Wars givent the Htullatle jrivate sitory，but mely I Hattons．s．The lowes nut romentin if stiontifir and －of kıиwlonl： is is that ul the （wwinl ly tlat of xt in $1 \times x / 1 \cdot n t$ ： f Alvin：atte．ill

bidinhurgh, seotland. It dates from lises, atal combains at present about Hи, (ой wolumes. 'The libary of Trinity College, Dublin, was fommed eontem-

 ammally: What has beren said of the dearth of publie libatares in Jomen is

 . Whow in tilly yats a most marvelons growth, and contains at present some ?

 III) means inemsiderable, and the favorite works rolate to whigion, phito-

 fout the spirit of erhation is ly me maths dormant. and the mele of many

 literary amin mional pride. Notwithatanding all the nipand downs of the

 the whl would in extolle they arre neve

 Hoes．Joml what is helle sald of the

 prile．
 is that？of llarvaral Viollowes．It Wias
 tive in li大it．It wats spordily motured．

H1HS 111 watith，JOI＇N4．
Firat librariall of Niow＂＇rary of liongros．

ation of whatin | luilt 川! sest of thene:
 atched hosin at

For'No.
rary of linhgores
(ioll of al hamil.
II. it hais In In tinlenits of ther |ts purssulul valulilets. In le Colloger, :ant Lilin:ry. 'Tlu. ".nith molurn

 ow kir fanilio. vitatos armond
" sulswripttion" Y 1 '1, 1 |lathy

 Imonlinss, :"ni

Thor worm | Hew Ihiliallo.

 15:3:

 hand prowerters.

 tom and grow th of the from lihatys sistem, by mans of whic! pmblie fimis are

 stathes of the selluil district libary system, which draws mpola a bertain prob

 hertions.

At the heal of all the century's library trimman in the Ginted statos

 was meved to Washiugteng. In Asid it was hurmol heg the Mritish soldiors, its

[^2]
 restanation of its halls in the 'apital, in tire-prosi fom, it hegin th grow
 tuter the libury of the sminhomian lostitute. In 1 sion, the privitege of

 piramation of the private colle etion of the hate Mr. daseph II. Tomer, an

 who fommed the Pittshogh Fire lihrary and sweval others in different plawes.

The emotry's progress in libary management has kipt pare with the

 berome anmenational bourse in many higher institutions of haming. Libuan architereme and the mumpoms aphlianers for distributing hows or tembering
 the cont of the ratury is an mush a soluetion retreat as a well of home long ${ }^{\circ}$.
damer I'. Howr.
：Ha（＇ormeld library of the
 lihrary ot tha Lilmaig，Ninw ＊W Vink 1 ！ ，Nitlt｜lis， $11+1 \mid$ lıाו＂es． ＂nituel stallo． rifes．there allo （1）volum， lı• im！ I of Cullllues． marios coutain

Nititus shlelh is ＂if liburalios
 lions．lill 111 inll Lors． 1 ＇olloghe Wratin Nuw dillues lallom， II in lmililinges ｜xiT，at lialli－
 0 foumel a frome flhicag＂，who ：now I I＇ratt，．．l Liluzary ；Inc． cor Sl， $14 \times 1,1161$ rew C＇arlagio． x in lilfuresit
ate with the lx•・サ1 redlucornl of lemks hias ling Liluar！ ＊or remberings the libuary ol Cll of how

1＇．Bити．

 all Wharna，or Masir－Hall．

The baste fur rassimal design grablually dedined in binglamd，and a mew

 and thes，tugether with the remandeling of Wimbser Castle，in 1826，ly Sir
 Wrelne：firs sme time howerer，moth illiterate work was done in tiee aljust－ burnt of ohl forms to n：we combitions．

Fhroughout the hast half of this reutury，eloe batthe of the stybes has been maintainell hy the allueronts of the difformg sehowhs with varying suceess， amb，alhough thore may lwe matale examples to the combary it has virtmally resulted in the ：uhytion of tionthe designs for melesiastical lmildings，rembli－ tions being muld the same as formerly for these stmethres；whens，for
 sallur，whidh has show wen greater phability，has bepor ronsidered mote

Among honse whase sureess has been grathat in fothie work may be men－ thoned sir Charles Barry，whe was knighten for degigning lhe Parliment
 Sont，who lint the Assize Courts，in Mandester，and New Musemm，（axforl；

 *-
 ми"

 a) the Flamish.

 l. 1 mblotl.

 H1. viver.

 Bi! c:ll

 －Whatrer of el hit

 lit！is 1 リ！

 いい
 rilling on stlo．．
 ＂liftiment senlon， 1 （1）．lis raterllle in

 \because comlel poulo al al al frov1が，
 is in linclatnl．

$11011=10$ ＂wnlt－\quad W．．． 1）い1 い
\therefore｜l 1111 ｜l ． 11．｜lılıe Naln un｜ in $1 h_{11} \mid=12.1$ －Ith to llor 10．！ Sille： 1
 as．All 11 ：
 ［2047
wh．Wiar erama with 位dias． existiog loul
 rowk or lionas，

 neas of ita palilie tolilhluses．

 lime in other tathes.

 rarinus not mily in lorm, bit in color, of the charehes of st. I'tersburg, of Moseow and Wiasaw.

 he eame to the forome heromminsinherd his ardhiterts to desigu for his capitad eity of Munioh the Wathathis, Ruhmeshallo, filyptothek, and l'inakethek, alter classimal mondets.

 bu ranked as the formont dorman arehitere of his day.

 Mang of the privath hemses designod in the dadian limaissane were wey chegant and attrantive, hat within the past deramber there has herion a wefn!
 - replacing the granefinl.
 and Stumm. the makur of stom, ane notable instances of the aplication in

Tじに）

 rick und cans
 Pixpmestion ot erether with ：1 （1＂Htions uif IIt of arrliter．
 ulleal in l＇aris． －is still kivoll in this sidlews！ －1 mext of Ar－hai－ ic stimls uf the． of the Ah－sign． ral poroprit！ of palaroms，this io institutions． therelimate，－ Putributing to ．Wirhasel，built ignitiond．Mns－ linllumis doblores． I＇atrorsbing of of
＂limme，culti－ taly，that whint ｜lou lise capuital nakuthek，alter
irork or Italian \because who will loung
an in the cention simulury at the shaty ther ator hass alded man！？ idnaissallere．
iyns of intromers in｜the｜anlais du＂ linusy in detatl． ： 4 bern a woffil －Hes grotesifu．

11 manufacturat ＂aplication 11

nateral histury heekem，hexinitus，londus．

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences
Corporation
23 WEST MAN STREET WEASTER, N.Y. 14580

private capital to the improvement of the domestic conditions of the laboring class.

In Austria, Viema has developed wonderfully since the days of Maria Theresa. The classic larliament house by Hansen, in 1843, is one of the most delightful of its kind to be found mywhere ; schmitt's (rothic town-hall is interesting, but camot be said to be so successful in design; the Votive Church by Ferstel, in 1856 (also Gothic), the Opera Honse by Sicearlsburg and Van der Nill, with the City Theatre, an elaborate Remaissance structure, by Semper and Hasmaner, are all worthy of note. The University with the two Mnsemm buildings, faeing each other moo a small park, and other public buildings and residences along the Ring strasse, are extremely satisfactory, in spite of the fact that stucco has heen s's extensively employed.

Ouly a few years ago the mumicipaity of Bula-l'estla offered immmity from taxation for fifteen years to all prospective bilders, muler certain conditions as to character and cost of buildiugs, with the result that the newer portion of the Hungarian capital was duiekly ocempied by buihdings of the most desirable kind; the Parliament Honse, Opera, Cathedral, Teehnieal School, and seveal chob-honses and private residenees, each testify to the spirit with which the eitizens responded to this desire to beantify the city.

Since the unification of Italy there has been considemble buihing in some of the principal eities, but very little of speeial importance. In Rome, the changes are more pereeptible than elsewhere; the exeavations of the Formm, the embakment of the 'Tiber, the widening and straightening of the Corso, and the opening of the Via Nationale and other strects, have destroyed comparatively little of the picturescue that was worth retaining, have brought to light many treasures of art, and, supplemented by the dranage of the Canpagna by Prine Torlonia, have eertainly made it a healthier city to live in. The monment to Victor Emmanuel, the National Museum, and the Braccia Nuovo of the Vatican Museum, are among the few public structures of interest; the many blocks of apartments and tenements are orderly and inoffensive, though brick aul stuceo are the materials usel in their construetion.

Turin is the modern manufacturing city, while Florence preserves its medieval air, and Venice dreams of the bygone days when the splendor of the Renaissance attracted the wealth, beauty, and talent of all Europe to the city of the Doges.

Bologna and Genoa have each built in the suburbs a magnificent Campo Santo, or cemetery, with chapels, colonnades, and other accessories of architeetural value; in Milan and Naples there are lofty glass-covered arcades through the centre of a block and comecting with cross streets, and the semicircular colomades of St. Francesco di liolo, at Naples, surround a piazza which is the great publie resort of summer evenings.

During the reign of King George a new Athens has sprung up alongside of and overlapping the old city; althongh the nation is not wealthy, the individual hequests of certain Greeks have given her the Musem, University, and Aeademy, each of strict classic design, and a hospital of Byzantine design. Unler the sumny skies of Greece those buildings certainly appear to much greater advantage than if in a more northern atmosphere, and their statuary and polychromy show the value of these acdessories to such architecture in this climate.
he laboring
s of Maria of the most wh-hall is ive Church g and Vim neture, by ith the two her public itisfactory,
immunity ertain conthe newer hings of the Technical tify to the the city.
ng in some liome, the the Formm, the Corso, coyed combrought to f the Camto live in. he Braceia es of internd inoffenuetion.
es its medor of the to the city
nt Campo es archied arcades 1 the semid a piazza ongside of , the indiJniversity, antine dely appear and their uch archi-

> the white house, washington, d. c.

Abdul Aziz, the predecessor of the present Sultan of Turkey, had so great a fondness for building that his extravagance in this respect was one of the causes which lell to his downfall. The Dolma Bagtche palace, erected directly upon the shores of the Bosphorus from the designs of Balzan, an Armenian architect, suggests Spanish work of the sixteenth century. In Constantinople and at Therapia, - a summer resort at the northern end of the Bosphorus, -

glass covered arcade, milan.
many of the foreign governments have built offieial residences for their representatives.

As for the arehitecture of our near neighbors on the north, the buildings of Canada. have been sturdy and substantial rather than comely; but the long continuance of cold weather and the lack of means have often hampered the builders. Since the completion of the Camadian l'acific Railroad, the prosperity of city and country seems more assured; the older cities growing in importance and extent, and new towns springing up along the line to the West. In Ottawa the Parliament Buildings and the oetagonal Library, in

Toronto, anl, to some extent, in Montreal, the Universities' buildings, are Vietorian Gothic. The later buikings of the University in Montreal, excepting the Girls' College, are not so interesting; but there are two railroad stations, a hotel, catheiral, with several banks, insuranee buildings, and residences that eall for more than passing notiee. l'erhaps the finst building in all Canada is the Chiteau Frontenae, in Quebee, - built ly Bruce l'rice of New York, - on the Dufferin Terrace, overlooking the St. Lawrence River, and commanding a view that is hardly surpassed on the Bosphorns, the Rhine, or the Hudson.

Although the history of architecture in Ameriea camot be written without some reference to contemprary work in Europe, - sinee so much of our arehitecture in the first half of the century is adopted from that of onr ancestors and adapted to our uses, and in the last half so many of our arehitects have studied there and so many of our citizens lave traveled there, - the problems and their conditions in the Old Worh are very different from those of the New. Enrope was already mature when steam and eleetricity were introduced; precedent was always to be eonsidered, and modern requirements were often foreed to conform to existing cireumstances. There has, therefore, been comparatively less change there during the century than during the past thirty years with us. With our republican institutions, many of the monarehical formulas soon became obsolete, though the general trend of our arehiteeture has been in the direction of classic models. As the country has grown larger and more wealthy, the problems given to arehitects have beeome more complex; less relianee could be placed upon preeedent and a premimm was placed upon originality, whieh, in spite of innumerable vagaries, has brought American architeeture, at the end of the century, to be the most notable of the day.

At the end of the eighteenth century, this republic consisted of hardly more than a number of communities extending at intervals along the Atlantie seaboard, with an oecasional settlement beyond the Alleghany Mountains and across the Ohio River. Their resourees were extremely limited, their wants very few, and their intereommunication irregular ; but their methods of living were simple and frugal, and their courage and emburance phenomenal.

Among the settlers of New England were many meclianies and manfacturers, and these soon began to replace the primitive \log cabins with frame dwellings; those of the Southern States were chiefly planters, who imported much of their labor, and often the brieks as well as the glass, hardware, tiles, and other materials for their houses. Many of those who eolonized the Mirldle states hat come from comntries in Europe where these materials were made, and brought their secrets with them, while others were farmers and stoek growers, whose snug little cottages and enormons harns may be seen to this day in New York and l'emsylvania.

At the begiming of the nineteenth century we possessed a national style of arehiteeture, which, although it hal come to us from Italy, through France and England, was yet distinetly Ameriean. It was, however, almost exclusively confined to residences, and there were very few public buildings of any description. exeept certain ehurehes. - said to have been designed by followers of Sir Christopher Wren, some of whom were doubtless ship, carpenters who hat studied the works of Sir Willian Chambers. id stations, residences ding in all ice of New River, and e Rhine, or en without uch of our cour ancesarchitects - the prothose of the introlueed; were often fore, been g the past e monarchiur architechas grown come more emiun was las brought notable of
tardly more tlantic seamatains and dheir wants ds of living nal.
d manufacwith frame 10 imported lware, tiles, ed the Miderials were armers and be seen to
nal style of agh Frauce nost exchuings of any y followers enters who

The Colonial style, as we now term it, was suftiricutly elastic in its alapitability to conform to the requirements of the merehant, manufacturer, or mariner living at Salem, Boston, or Newprt, as well an to those of the planter living at Charleston or sivamah. There were certain differences, more or less pronomeed, peculiar to cach section and to each eity, but all honses were alike in this respect, - there was no gas or water, and the onen fireplace was depender upon for heat.

In New Eagland the dwelling-homses were plared near the gromal ; the chimneys lnailt in an interior eross wall, the kitehen, with its aceessories, as near to the dining-room as possible; the ceilings were low, with comices sometimes of plastor, sometimes of wood. The root, - which was olten hipped and often of the gambel shape, but tarely a gable of even slope, - was always covered with shingles, which rovering was oreasionally ased also on the exterior walls.

In the South, sume of the charateristios were the high basement, broad piazoas, frequently at the level of the secomb as well as the first story, and phaced on the sonth and west sides; the chimmey on ontside walls; the kitchen in a separate bailding, detached from the dwelling; a broad hall through the centre, giving access to large rooms with high ceilings ; the roof quite as frequently hipped as gatherd, and olten - in either case - a huge fanlight set in a low galle on the fromt for ventilation of the attic ; dormers were seldom used, as the attic was not inlabited; the gambrel roof was nucommon; slate, and occasimally tile or shingle, was used for roof covering.

Gur first publie buildings of any importanee, and which show the influence of contemporary work in England, were the White Honse, designed by Hoban in 1792 ; the Capitol, begm by Inr. Thornton in 1793 and completed by B. II. Latrobe in 1830; the wings, contaning the present Senate and Honse of Representatives, were added later; the dome, designed by Thomas U. Walter, was begun in 1858, but not completed until 1873.
Our early l'residents took much interest in architceture, Washington direeting and eriticising the planning of the Capitol and lmilding his own home at Monnt Vernon, and Jefferson designing the dome and eolomades of the University of Virginia, at Charlottesville, and his own home at Monticello.

Massachusetts was the first state to ereet its eapitol, - the State House in Boston, by Bulfinch, dating from 179\%.
The City Hall of New York was on first work of nmmistakable French character, and shows the iufluence of the time of Lomis XVI. It wats designed by Mangin, a Fronchman, hegum in 1803, amb completed in 1 s 12 .

After the war of 1812, many state and mational buildings were erected; from that time colomades and domes seem indispensalble to the proper dignity of the capitol or court house. The use of both brick and stone became more genemal, and, for private houses, the form of the gamber roof gradually disappearel in favor of the hip and gable. Subsequent to 18:30, the aceppted type of the larger or more pretentions honse was the Italian villa, with a spluare tower accentuating the front entrance. often one story higher than the main building; all roofs of low piteh, eovered with tin ; the exterior walls faeed with stucco. About this time bay windows and sliding doors for principal rooms of first story, and hetter facilities for the use of heat, light, and water were introduced and the symmetrical disposition of parts often neglected.

The very steep pinted Gothie roof denoted the modest cottage, and the perforated wooden tracery of windows and porehes, or the barge-boards of grables, became the simple begiming of that riotous growth of jig-sawed fretwork afterwards so prominent upon those houses constructed with Mansarl or lirench roofs of rectilinear, coneave, or eonvex form. The works and writings of lowning had mueh influence at this time, and it was shown not only in these Italian villas or Gothic cottages, but also in landscape gardening about suburban resinlences.

The political disturbances in various countries of Europe in 1848 brought very many inmigrants to our shores, and the discovery of gold in California, in 1849, was the begiming of that stealy flow of settlers whiel has since then peopled so many of our Westem States aml Territories.

LIBRARY RUIIJDING, UNJVERSITY OF VIRGINIA.
(Thos. Jefferson, Designer.)
Then followed our own Civil War, from 1861 to 1865 , and subsequent to that the period of reconstruetion, during which time there was some building, but very little architecture, throughout the country.

In 1869 the Paeifie Railroad was completed, and this not only gave a new impetus to Western mining and farming, but ereated a new market for Eastern manufactures.

So great was this manufacturing and commercial activity that vast fortunes were made, and there were many opportmities calling for the services of arehiteets; but as they had hitherto been rarely employed, exeept in a few of the larger eities, upon churches or public buildings, a great proportion of them were untrained amateurs or self-taught carpenters and masons. However, the first school of architecture had just been organized at the Massachusetts Institute of Teehnology, in Boston, and to William R. Ware, - who was its professor of arehitecture from 1866, and who organized a similar school at Columbia College, New York, in 1880,--the profession and the public owe more than to any other one man for well-direeted efforts towards the development
of such qualitieations as may eventually give a mational chamerer to our arehitecture. These schools cane none too som, anl within the past twenty-five years many others have been fommed and many traveling selolarships endowed; collections of hows, photugraphs, int casts have heren provided in varions eities: architectural proomicals published, and arehitectural societies and sketel clubs firmed, cach of which has contributed to the higher edneation of the profession mal to the greater appreciation by the public.
lrior to this time, cach section and earh rity had eertan prembiarities of arehitecture, as of speech, which were mmistakable. The white New England meeting-honse, the red seluol-honse, the comutry homse with its kitchern, washroom, and wool-shed trailing in the rear, or the swell-front eity honse, were as characteristic as the endless bloeks of hrown stone, high stoop honses of Sew York, or the monomons rows of red briek dwellings with white marhle trimmings of Philadedphia, or the broad verandas and halls of the southern home.

Cast-iron was the reognized material for the front of business lmildings, the designs being rhiefly in the Corinthian or composite orlers, and the arch or lintel used indiseriminately; and when the dry goods store of A. I'. Stewart \& Cow was built, in 1sis, to ocenpy the whole hoek from Brondway to Fourth Avenue, and from Niuth to Crith Streets, it was the largest and most inurertant of its kind. Before this elass of eommereial arelitecture disappeared, a front wats designed by R. M. Humt, about 157s, for a store on Broadway, near brome strect, where the plastie forms of the tile and stueen of Sararenie arelitecture were used as being more logieal for this material than an imitation of Roman forms in stome.

There were not many smmer resorts, and a few weeks at Saratoga, Newport, or the Virginia Springs was the limit of the ammual vacation ; the orthodox hotel was a reetangular frame building, with verama on oue or more sides, eovered by a Hat roof supported by square piers having the height of several stories; the length, width, and height of the building were governed ly no other promention than that of the number of gnests.

In the sonth and West there were virtnally mo lutels, and the belated traveler applied for food and shelter for himself and his horse to the nearest frienully farm.

These were the prevailing combitions when the nomrect riche appeared upon the scene; to him as eitizen prosperity memat a better home, to the eongregation a larger ehureh, to the eommunity' a new eity hall or court honse, to the state a more expensive eapitol.

While these buidings were leing everywhere erceted, in accordanse with the time honored fashions of construction and with claborate finish, the disastrous eonflagrations of 1871 in Chicugo, and of 1892 in Boston, called general attention to the neecssity for more primament hilding; and the precantions now taken against similar oreurrences were the begiming of efforts toward methods of fireproof construction. Granite, marble, and limestone were discarded in favor of sandstone, brick, and terra cotta ; iron beans earrying briek or concrete (subsequently hollow terra cotta) arches were introlneed, and metal laths were substituted for the wooden strips to a certain degree; but as these fires were mainly in the lonsiness districts, such reforms lave been confined almost exchusively to commereial arehitecture.
o our archi. twenty-tive larships enprovided in ral sueieties igher educaic.
puliarities of ew Euglinnd chan, washhonse, were 1) honses of lite marble he Southerm
s Inildings, mill the areh .'T. Stewart y to Fourth most imper:ариенее a ulway, near ff Suracenic an an imita-

atoga, New-

 ; the orthone or more e height of e governedbelated trathe nearest
reared upon the eongrethonse, to
dance with 1, the disasledi general precantions orts towaril e were disas earying introduced, in degrer; forms have

THINITY CHUHCII, NEW TOAK.

In 18 is: the linuncial panic gave a check to many building operations, but it was of compantively short danation, fin in 1876 all the other mations of the enth were invited to mite with us at Ihilahlophia in celehsating the centennial anniversary of our indepoulence.

This was onr first intemational Expmition, und it was not remarkable that in onr engruess to learn, and in the enthasiasm of prosperity, we sought inspiration from all thase proples who hal brought their goods for onr inspretion. At once we began to build Queen Anne cottages or to remodel existing honses with many hays and towers, rooms set at all angles, floors at different levels, walls of many muterials, and roofs of varying sloples, as well as to apply many tints mod shales of color within and without.

The smmer hotel and shmmer cottage began to appar at the seashore, in the monntains, and along the shores of the great lakes, and the winter resorts of the Carolimas, llorida, and Califormia to attract the seekers for health and pleasure.

The interior decoration of our lomses was the chief lesson of 1876, and having once seen the Europan and Oriental hangings, drapreies, rugs, and bric-in-brac, we set alont furnishing one rooms with them.

Hitherto American architecture had been most influenced by English precedent, and the Viotorian Gothic had able advoeates, especially in Boston, where the Art Musemm by Sturgis \& Brigham, as well as many stores, residences, and chur hes by Cummings \& Sears, Peabody \& Stearns, and others, showed much vigor and originality. Willian A. Potter, as supervising arehitect for the (iovermment, alopted this style, in 18 is, for his buildings at Fall River, Mass., Nashville, Teun., amd Covington, Ky, and R. M. Upjohn designed for Lartford, Com., the only Gothie State Capitol in this comutry.
R. M. Upijoh and Henry M. Conglon of New York had already done much Gothic ceelesiastical work aul, with the possible exception of Grace Chureh in 1840, and St. J'atriek's Lioman Catholic Catheedwal in 1886 by Kenwick, there is no example of this style which shows such appreciation of projortion or of form, in mass and in detail, as 'Trinity Chureh (1843) by the first-maned arehitect.

It was perhajs rather fortmate that just as the Queen Amme fashom, with its multiplicity of detail, was brought to us from langland, II. II. Riehardson, of Boston, called our attention to the higness and (almost brutal) simplicity of the Romanesque from Sonthern liance. From the date of the buidding of Trinity Chmreh, in Boston (1876), may be reckoned the parting of the ways. Heretofore everything we had done of any importance had an English stamp upon it ; heneeforth the work that was done showed the result of training of the l'arisian atelier or of the well-filled sketeh books of Continental travel.
Not only in this chureh, hat in his libaries at Wobmen, North Eastom, Quincy, Milford, luarlington, and New Orlems, did Riehardson show his grasp of the subject. Trinity is umistakably a Christian temple, and its bigness most conducive to the sense of awe and reverene. Dis ! linaras leave no doubt as to their having been built for the storing and reading of books; his stone buillings, whether the Court House and jail in l'ittsburg, theChamber of Commerce in Cincimati, or private honses in Huffalo or Chicago,
show their purpose and emphasize their material; his brick buildings, whether a college building at Cambridge, ruilway stution at New Lombor, or residence at Washingtom, tell their story in briek; mal his comitry honses ubout the submbs of hoston, to be what they ure, could not have been other that of woorl.

His inthune upon the architecture of the duy was therefore not surprising, lout there was a subtleness in the elanacter of his designs that his initntors could never aequire and even his immediate suceressors could not long retain ufter his personality was lost to them; and lion the lack partly, perhaps, of true sympathy, purtly from the modification of conditions, his art may bo said to have died with him.

8T. fieohge's hali, pilladeliplia.
As R. M. Hunt had the last worl on the cast-iron front, so he had the first on the morlern sky-seraper, a peuliarly American production; the walls of the Trihune linilding, however, carry both their own weight and that of the floors, being built lefore the days of the methols of steel skeleton construction. Hunt was trained in Paris, as was lidehardson, and had assisted in the design of the Pavillon de Flore under Lefuel, and he showed his appreciation of the Neo-Gree movement in his design for the Lenox Lihrary. It is somewhat musual for an artist to do his best work in his latest years, but surely no better work of its kind has been done in modern times than the residences which he designed for three members of the Vanderbilt family at Newport, in New York city, and at Biltmore, N. C. The design which he 'hicago,
left for the Fifth Avemue front of the Metropolitan Musemm, now being carried out by his son, is a magnificent Corinthian order, whereas much of his other work is late French Gothic.

That he was called upon to design the base for Bartholdi's Liberty in New York Harbor, and the Administration Building at the International Exposition of 1893, and that a portrait bust has been erected to his memory, all testify to the appreciation in which he was held by the profession.

To Mckim, Mead \& White, of New York, we are greatly indebted for their influence upon secular architecture, and their Casino at Newport, built in 1880 , was probably more far-reaching in its effect upon eountry houses than any other building at that time. Among the other work from their oftice may be mentioned the Boston Public Library, the Madison Square Garden (reprodueing in its tower the Giralda of Seville), the Library and other buidings for Columbia College, the Metropolitan and University Clubs, the Agricultural Building (of staff) in Chieago in 1893, now being reprolneed in marble for the Brooklyn Institute, the 'liffamy, the Villard, and other eity honses, and a host of comtry honses at Newport, Lenox, and elsewhere.

There is another architect whose talents should be acknowledged; for about 1880, when the shingle honse had just begun to take shape, there was none more clever at that sort of thing than W. R. Emerson, of Boston, and his resources seemed endless in harmonizing form and color with conditions of seashore or mountain, as shown in his honses at Bar Harbor, Milton, Newport, and many other smmer resorts.

Philadelphia, which had hitherto always been extremely conservative in architecture, soon began to erect some of the most singular and fantastic structures that could well be inagined ; but fortumately the refined simplicity aud fertile originality of such men as Wilson Eyre, Framk Miles Day \& Bro., and Cope \& Stewardson have prevailed, and in bcth city and suburban work they and certain others have done and are doing much to counterbalance the character of the eccentricities of their predecessors, as shown in buildings for the University of Pemnsylvania and the Aealemy of Arts and Sciences.

But the restless activity of Eastern loom and machine shop, and of Western farm and mine, seemed to meet and concentrate in Chicago - the entrepot for the raw material of the West and the finished prodnct of the East. The unprecedented increase in value of land, the low priee of iron and stecl, with the introduction of high-speed elevators, combined to develop a new type of sky-scraper ; and as the nature of the soil was entirely mulike that of other cities, the foundations of these buildings presented problems which were solved by Chicago architects in various ways hitherto mutried. The Rookery by Bumham \& Root, Pullman Building by S. S. Beman, and the Auditorium (opera house, hotel, and offiee building in one) by Adler \& Sullivan, at the time of their completion were most notable examples of architectural engineering, a d were soon followed by many others more or less similar, designed by W. L. B. Jenny, Holahirl \& Roche, Henry Ives Cobb, and others. The buildings for the Chicago University, the Athletic Chub, and Newbury Library, by the last-lamed arehitect, show a high degree of ability; the peculiarly rich arabesque ornamentation designed by Louis H. Sullivan, and the direct and rational handling of the buildings upon which it was used, are certainly indicative of the spirit of enthusiasm and conscientiousness of a
well-trained mind. It is by such characteristics that John W. Root was able to accomplish so much for the advancement of architecture in the West.

What Krupp and Stumm had done for the employees in their works in Germany, Pullman determined to do for his men and their families here; and a town, with dwellings, schools, churches, water-works, etc., for many thousinud inhabitants was designed and built by S. S. Beman, which has been reported by experts to be the best of its kind.

In Chicago, in 1893, was held our sec~nd international Exposition ; and that the exhibits should be suitably housed, some of the most prominent architects of the country were called together, buildings were assigned to each of them, and Frederiek Law Olmsted was appointed tc lay out the grounds, waterways, and bridges.

TBINETY CHEBCII. hoston.
Except for the difference in material, never did Rome in the days of Augnstan magnificence show bnildings similar to those gronped about the Court of Honcr. A Greek would surely have been prond to walk through the Peristyle, or to have visited the Art Galleries, and a Roman to have samered about the Terminal Station or the trimphal arehes of the Mambfactures Building. Right nobly was the Spanish aid to Columbus ackuowlelged in the design of Machinery Hall; hut to France, whose generosity had trained so many of our architects, sculptors, and painters to dosuch things, was the greatest trinmph in the umanimity with which they had all worked and the success which crowned their labors.

The building oceupied by the Federal Govermment was one of the few unworthy of its location or of the occasion. While the architecture of the people had been advancing steadily for fifty years, that provided by the Trea-
sury Department in We hington had been quite as steadily retrograding. The Custom House, Boston; Sub-Treasury, New York; the Mint, in Philadelphia; the Treasury, Post Office, and Interior Department buildings, in Washington, have stood almost alone since the middle of the century. The few Gothic buildings referred to previously were lonest and intelligent attempts to improve the quality of design for the govermment, but the politicians decided that artistic ability was not a prerequisite for the oftice of supervising Architect.

Since 1895, there has been some infusion of new life into the designingroom, and such work as the designs by William Martin Aiken, for the Buffalo and San Franciseo Post Offices and Court Houses, the Denver and the I'hiladelphia Mints, and the New London Post Office, were about being materialized, when once again the peliticians, who cared not a whit for one design more than another, interfered to oblige the government contractor. But the good seed had been planted, and the work of the present incumbent, James Knox Taylor, is likely to show a marked advance over that of many previous years.

The general scheme of the Congressional Library was conceived by smithmeyer \& Pelz, the details carried out subsequently by General Casey and his able assistants and successors, and the building opened to the publie in 1890. The experiment of the collaboration of seulptor and painter with the arelitect had resulted so farorably in Chieago, that the artists invited to decorate this building gladly responded; and although the remuneration was inconsiderable, their loyalty to the country, as to Art, resulted in such mural decora-

1g. The delplia; hington, v Gothie ts to imded that elitect. signingdesigns for the l'ost OfDenver and the re about ce again ta whit another, ernment eed had of the Knox marked previous he Coueived by ails earequently asey and isistants ors, and opened in 1896. nent of ation of painter urchitect 1 so faChicago, tists inrate this ully reand al-emmer-nconsialoyalty ntry, as alted in decora-
tion as had not been seen since W. M. Hunt decorated the Senate Chamber in Albany, or La Farge did the figures in Trinity Chureh, Boston, and St. Thomas Chureh, New York. Blashfield's dome, typifying all the nations of the earth ; Vedder's Minerva, in mosaic; H. O. Walker's large lunettes, illustrating English poems, and Simmons' small lnnettes, filled with exquisite little tigures, are but a few of the many interesting works in color. Two of the main entrunce doors of bronze were modeled by Olin L. Warner, but he did not live to complete them. The marble stairway is by Martini, and the statues whieh adorn the main reading-room are by Adams, Bartlett, Partridge, Ward, and others.

The plan of the building is that of a central octagon containing the general reading-room, comeeted by wings containing the book-stacks with a surronnding hollow square containing rooms for special collections. There are ample reading-rooms for representatives, senators, and the public, and a tumnel by which books are sent to the Capitol. This is the last building of considerable importance constructed by the government, and it was built on time and within the appropriation of $\$ 6,000,000$; it may be said to be dignified and suitable to its purpose, and to be representative of the people at the close of the century.

It now scems prohable that New York will build the handsome library desigued by Carere \& Hastings; the Egyptian lines of the reservoi: ocenpying the site - emphasized by the varying hues of the ivy for so many seasons - will give place to those of an example of modern French Renaissince.

Anong the elanges incilental to the growth of this city is the recent disappearance of the oll Tombs prison, which was anothel building of Egyptian arehitecture, good of its kind, and quite dignified and impressive.

There are certain other buildings designed in the style of a country almost as tropical as Egypt, and as light and airy as tiat is sombre and gloomy, but which seen quite as appropriate for their different purposes: they are the Casino Theatre and the Synagogue at Fifth Avenue and Forty-third Street, - each an excellent example of Saracenic architecture, - the former of brick and terra cotta, and the latter of vari-colored sandstones. Another synagogue, by Brumer \& Tryon, further up the avenue and facing Crntral Jark, has a deeided Byzantine flavor, - the large arel accentuating the entrance, carrying a small areade, and being surmounted by the traceried dome.

The largest and most expensively elaborate hotel in America is the Wallorf-Astoria; and althongh certain features of the exterior may not be justified by interior arrangements, it has certainly been planned with a view to great comfort and luxury.

While New York has the largest and most expensive private residences, the chief of these is that of Comelins Vanderbilt, - Pluiladelphia has the greatest number of small houses owned by their ocenpants; and of late years, there are a greater number of attractive homes in St. Lonis than anywhere else in this comntry. Very many of them have been designed by Eames \& Young, or by Shepley, Rutan \& Coolidge; and with much open spaee about them, they have an air of elegance and hospitality that is lacking to the homes in most other cities.

New York, from its $p^{m s i t i o n ~ a s ~ t h e ~ c o m m e r e i a l ~ a n d ~ f i n a n c i a l ~ c e n t r e ~ o f ~ t h e ~}$ comntry, in spite of its situation on a long, narrow island, may be accepted as
the typical city. What is done here arehitecturally is done (only to a different degree) elsewhere, and its growth horizontally in the northern portion of the city has kept pace with its perpendicular growth in the more congested business portion. This general expansion has altogether changed the character of many streets, the residences becoming apartment houses, and the shops becoming otfice lmildings from ten to twenty stories, - or cenemore, - the masses beeoming larger and the detail proportionately less prominent.

The sky-line has entirely changed; the spire of Trinity is lost in such surroundings as the bowling Green, Empire, Washington Life, and Amerivan surety buildings, and in the vicinity where the Tribme tower was once conspicnous. now the St. Paul Building rises twenty-five stories, and the lves Syndicate Building even ligher; further and further up Broadway, and to the right and left of it, these monster buildings continue to rise. But among them all there is not one which shows a more masterly handling of the problem than the Surety, where the architect. Bruce Priee, has emphasized the entrance with a colonnade and six fignres of much dignity and grace, and has concentrated the ornament about the upper part of the building, crowning it with a fine comice, which is more effective from the simplicity of the four walls beneath. This building holds its own anong such others as the Washington Life and St. James buildings, New York, or the Ames Ruilding, Boston, Harrison Building, Philalelphia, Sehiller Tlieatre, Chicago, Wainwright Building, St. Lonis, or Examiner Building, Sim Frmeisco.

It is impossible, in so brief a survey of the field, to enumerate more than a very small fraction of the buildings illustrating the progress of the arelitecture of the century; and aside from the residences, apartments, and hotels where we live winter on summer, and eommercial buildings in which our working hours may be occupied, there are very many eximples of churches, schools, colleges, libraries, and museums, donated, equipped, and endowed for our instruction, theatres and music halls for our entertaimuent, railroad stations for transportation, storage warehouses for the safety of valuahles, and armories for the use of our militia.

Besides these, there are engineering works of considemble importanee, such as the Eads Bridge, at St. Lonis, or the Roelling Bridge, betwew New York and Brooklyn, and the works of the sculptor St. Gaulens. the Washington Arch by stanford White, the Farragut and Lincoln statues in New York and in Chicago, which should surely be mentioned, since monmmental works are the poetry, whereas the secular and commercial works are but the prose of architecture.

As we review our productions, we should certainly feel encouraged to believe that if we contimue to meet and solve each problem in the same direct, honest way that we have licen doing for the last quarter of the century, there need be no misgivings as to the future of architecture in these United States.
a differortion of ongested e charache shops re, - the
it. sueh surtimerican mee conthe lves f, and to ut among the prosized the , and has wning it the four he Washing, Boscinwright

re than a

 architec. id hotels hich onf churches, lowed for road stahles, andnee, such ew York shiugton ew York a! works the prose ed to be. de direct, ry. there d States.

Aliken.

THE CENTURY'S PROGRESS IN CHEMISTRY

Tus science of ehemistry, as it is known to-lay, had its real origin towarts the end of the eighteenth century. Before and up to that time it is true there were many great workers in chemistry, whose names are associated with investigations in chemieal science, sueh as Boyle, Stahl, Black, and Scheele. Contemporary with the close of the eighteenth century and the begiming of the nineteenth must also be mentioned particularly the names of I'riestly (1733-1804), Cavendish and Humphry Davy (1778-1829). All these workers had to contend, first of all, with erroneous theories, which male it difficult to rightly interpret the data of experiment. The old theory of phlogiston produced an environment in which it was difficult for true scientific methods to survive. The great investigator, who did more than any other one man to overturn this false theory and place chemistry on a firm foundation, was Lavoisier (1743-1794). Born neir the middle of the eighteentl century, his seientific activity began about 1770, and before he was twenty-five he was made a member of the Freuch Academy of Sciences. At the age of forty he was recognized as the foremost scientist of his age.

Priestly discovered oxygen in 1734 , bat failed to recognize its true relations to other bodies. It was Lavoisier who diseovered oxidation (1776), an achievement which meant more to chemistry than the discovery of oxygen.

The observation that metals when heated in confined air increased in weight while the volume of the confined air deereased, is the crucial experiment upon which the whole science of chemistry rests. This experinent was made most rigorously by Lavoisier, and the apparatus which he used is still preserved in the Museum of L'Éeole des Arts et Métiers in Paris. This apparatus, simple in character and yet almost perfect in construction, has for the chemist a peculiar significance and sacredness, produeing an impression similar to that inspired in the devout Christian by the relies of the Cross and the Holy Scpulehre.

In the brief space which is assigned for a discussion of the progress of chemistry during the ninetecnth century, economy of words will be scenred by briefly tracing some of the salient points in the progress of some of the more important branches of ehemical science. In the following pages, thercfore, will be found a brief statement of what has bzen accomphished, of the most important character, in the science of chemistry, under the following heads: -

Inorganie chemistry; plysical ehemistry ; organic ehe:nistry ; analytical chemistry; synthetical chemistry; metallurgical chemistry; agricultural chemistry; graphic chemistry; didactic chemistry ; chemistry of fermentation ; and lastly eleetro-ehemistry.

No attempt will be made in this paper to enter upon the discussion of the
progress which has been made in medical, pharmaceutical, and physiological chemistry. The discussion ontlined under the above heads does not by any means embrace the whole subject. It will be sufficient to indicate only the lines of progress along which the greatest advances have been made.

1. INGRGANIG AND PHINICAL CHEMHSTRI:

The three propositions established by Lavoisier, which serve as the foundation for inorganic and physical
 chemistry, are the following: -

1. Bodies burn only in contact with pure air.
2. The air is consumed in the combustion, and the increase in weight of the burut body is egual to the decrease in weight of the air.
3. In combustion the body is generally changed, by its combination with the pure air, into an acid, and metals are ehanged into metal calx.

The total number of elementary bodies known at the begimning of the century was probably less than thirty. Many had been recognized as such since remote antiquity, but none of the non-metallic elements, except oxygen and sulphur, was known, and even their properties were not established with any degree of precision.

Not only did Lavoisier establish the fundamental principles of modern chemistry. hat in connection with Fourcroy (17nin-1809), berthollet (1748-1822), and Guyton de Morvean (183-1816), laid the foundation of modern chemical nomenclature.

The contributions to chemical knowledge at this time were greatly increased ly the works of the Swedish chemist. Scheele (1742-1786), and in the beginning years of the century the great work which was accomplished by Sir Humphry Davy advanced very rapidly the general knowledge of chemical science.

Davy's first works served to elucidate the comection between electricity and ehemical processes, and it was through the classieal experiment with an electric current that he isolated (1807) the metals sodimm and petassium, and described their properties.

This achicvement of Sir Humphry Dary's was the second great step in the progress of chemistry, after the one taken by Lavoisier. By means of the metals sodium and potassium other metallic elements were separated, notably almuinium by Woulder (1845). Basing his work upon the above experiment. Sainte Claire Deville developed the metallurgy of aluminium (1854), and Bussy isolated magnesium (1830).

In 1811 iodine was discovered by Courtois, and its properties examined simultaneously (1814) by Dary and Gay-Lassiae.

The contributions mate by Berzelius (176!-1848), who was a contemporary of Davy and (Gay-Lassac ($1778-1850$), were of the most important character. Ber\%elius not only added to the knowlodge of inorganic ehemistry but alsor established many of the important theories on which chemieal artion depends. His elaboration of the employment of the blowpipe in chemical analysis was of the greatest practical valne.

In 1 sut balton published a work entitled "New System of Chemical Philosophy," in which was amonned for the first time the law of the definite proportions of bodies forming a definite union. The atomie theory of matter was also dewloped by Dalton, who gave it a detinite form and expression. Chemists now began to consider the clements as definite indestructible partieles of matter, forming mions among themselves and with different kinds of atoms to form molecules, which were considered as the mits of substances. As a result of this supposition, the development of the prineiple of the relative weight with which bodies eombine was the logical consequence.
Now for the first time the elements began to assmme not only names and descriptions of properties hat also mumbers, showing the relative weight of their atoms or final conditions of existence. It was only necessary, thereforc, to assume the standarl of comparison for any one element, in order to determine the relative weights with which it combined with others. Thus the system of atomic weights was developed.

As a result of the law of ehemical action, chat most elementary bodies exist in a condition where two atoms are joined together to form a molecule, it follows, that in most instances the molecular weights of the elements are double their atomie weight. There are, however, many notable exceptions to this rule.
The supposition of the existence of atoms was followed soon by another theoretical propesition, adranced by Prout (1815). Assuming that the atomic weight of hydrogen was one, Prout's hypothesis asserted that the atomic weights of all other elementary bolies were multiples of that of hydrogen. The most rigid investigations of recent years have shown that Prout's hypothesis is untenable ; but the remarkable fact still remains, that in a great many cases the atomic weights of the elements are almost whole numbers, or differ from whole numbers by almost a half unit.
The determination of the atomic weights of the various elements during the past one hundred years has been worked on by hundreds of chemists whose names it woukl be impracticable to mention. The most importiunt of them are Berzelius, Cooke, Cleve, Delafontaine, Dumas, Hermann, Marehand, Marignate (181í), Morley, Noyes, lelonse (180t-186it), Richards, Sehneider, Stas (1813-1891), and Thompson. Of all these workers stas, a Belgian chemist, is perhaps the most renowned. Among those mentioned, Cooke, Morley, Noyes, Delafontaine, and Richards are citizens of the United States.

From the less than thirty elements which were known at the begimning of the century, there are known to-day seveuty-two with certainty, and perhaps one or two more whose identity has not yet been fully established. The
chemists who have become most renowned by the discovery of elementary boties are : Cavendish, Schecle, Berwlins, Wiohter (1800-1882), Davy, GayLussac, Priestly, Bunsen (b. 1811), Crookes (b. 18:3), mul Ransay.

The following elements, twenty-eight in number, were known before 1800 :

ELEMENTS KNOUS WEFOHE 180 m .	EIGMENTS KNOWN HEFORE 18M.
	14. Cownalt. 1733
2. (inld. ${ }^{\text {. }}$.	15. Platinum. 17 atb-1748
3. Ironn... " " .4	14. Nickel.... 1751
4. lout. " "	17. Hydrugen. 17 mi
5. Silver.............. " "	18. Nitrugen.............. 1782
6. Tin..	10. Oxygen. 1774
7. S'arlon. (But three forms not indentitied until 178i; Is 1 in.)	jsolated at moknown date) 21. Iharimm.
8. Merrury.............. Kıuwn tu Auriente.	22. Tungsten . 1 181-1785
8. AntimulyFifternth foutury.	2:. Molytutumm . 1782
10. Ilimmuth,............. " .	24. Trilurimm... 1782-1788
11. Zine " ${ }^{\text {. }}$	95. Strontium. 1799
12. Phowphoris........................ . 1 , 1 itis	96. Yurimm . 1784
13. Arsenic (Lsolatel) 1 , 1 ar	27. Chrominum . 1797
" (stulied).................... . 17:3:1	28. Heryilium . 17:18

Four additional elements were known to exist before that date, but they had not been isolated and inlentified. These are:-

ELBMENTS KNOWN BI TOT INOH.ATED OR EXAMINED HEFORE 1800.

Cblorine	(Compomid known.	1774
	I Isolated mud stuliod	1819
	(Known in tompumads.	1791
Titmnium.	Isolatet...	1824
Urunium.	(Known in compumds.	1789
	1 Isoluted.	1824
	\| Kıown in compииияк.	1783
Zircopmim	1 Isolated.	1824

The following elcments, forty-nine in number, have been discovered since 1800:-
EHJMENTS MAGONERED SINCE 1800.

1. Niohium 1801
2. Vnnailium 1801
3. Tantalnu. Stulnd about 1802-1803
4. Cerinmi 1803
5. Iridium 180:3
6. Osmium 1803
7. Palladium 1803
8. Khodium 1803
1807
EIMMENTS MSCOVERED SINCE 1800.

EILFMENTS MSCOVERED SINCE 1800.

10. Sotium 1807
11. Caleium 1808
12. Boron. 1808
13. Silieon 1810
14. Iollue 1812
15. Cadmina 1817
16. Lithium. 1817
17. Selenium 1817
18. Bromine. 1820
19. Almminium. 1827

2il. Thorimm 1828	been isolnted, and elementary nature
21. Ruthenium.1828-1845	is disputed.)
23. Magnesium. 18.30	:36. Scmutinm. Known since............ 1879
23. Lamthanum. 18:311	(Not yet isolated.)
24. Turbium. Studicd aboul............ 18.14 (Not yat imolatel.)	37. (i.rmanium. 1885 al8. Samarim. (A mane given to a metal
25. Virbiuni............................ . 184:	fonud in tiadulinite. Vilementary na-
	ture vere doultful.)
27. I'rascodymimm. 384:3	:39. Hohminin. (Not yet imolatel.)
28. Ruthidium . 18800	411. Argon.............................. 1805
2!, C'esinm . 1840	41. Helimm............................ 1810
	42. Meturgon. 1808
:11. Indinm 181:1 $^{\text {a }}$	43. Kryplon. 18 . 18 ¢
	44. Neon 8898
	45. Pobonium 1898
lure of sammilum and becipium.)	40. Corminı. 1818
Isoluted........................... 1878	47. Xenon........ 181818
34. Yturtinm.......................... 1878	48. Monium. 1818
35. Thulium. (Name givan lie (leve in 1879	49. Wherion (\%) 1898
tonmetal in (indolinite. Has not yet	60. (indolinium (?).................. ... 1888
	51. Ralium (?)......................... 18918

The date in each case is that of the discovery. Nmmbers 49, 50 , and 51 are not yet sufficiently well known to justify being considered elements, and are therefore properly followed by an interrogation point.

11. HIYSICAI CHENHSTHY.

In strietly pliysical chemistry the relations of electricity and heat to chemieal action have been extensively developed during the century. The speeific heats of the elements and of most of their compounds have been carefully determined, and thermo and physical chemistry under the leadership of such master minds as Berthollet, Thompson, Van't Hoff, and Ostwald have been brought to the highest degree of perfection.

The chemist now does not consider that he knows any body until he knows thoroughly its relations to heat and to electrieity. The action of light must also be ineluded, but this subject will be more thoronghly discussed under graphic chemistry.
The nature of solutions has also been developed by the studies of Ostwald and Van't Hoff, and as a result of these studies, a flood of light has been thrown upon the constitution of compound bodies.

In the development of physical chemistry, attention should be directed to the help afforded by Newlands (1864) and Mendelejeff (1869) and others. showing that the elements form gromss which tend to recur with a periodicity which is sufficiently definite to enable the investigator to foretell to some extent the properties of the elements which have never yet been discovered, and whose existence is necessary in order to fill up the gaps in existing groups.

By this method the existence, atomic weight and properties of scandium, gallinm, and germanium were foretold years before their discovery. Such actual realization of a scientific-prophetic method is one of the strongest
indications of the hasis of fact upon wheh it rests. Although a rigid application of the principles of the periodic haw is not possible, yet its discovery and elaboration mark one of the great forward steps of chemical philosophy.

If we regard any material system by itself, i.e., indenumbently of any other system or inttuence ly which it may be surromaded, we recognize it as consisting of essontially two things, - matter mad energy. A precise definition of either matter or energy is diftlenlt, if not impossible; lut what is comoted by these mames is suttlecintly well understood by their well-known properties. Both energy and matter are essontial to each and every system. They are eoxistent. In the light of haman experience, we camot conerive of one existing without the other ; and in the stady of any material system, consideration of one of these eomponents without the other eam only be regarded as ineomplete. but, for the sake of convenience, this has been the practice, and. genemlly sumaking, chemists have comeerned themselves with matter changes of equilibria, while physicists have more espeeially directel their attention to energy equilibria. 'The ohject of the phasical chemist is to follow engilibria changes in given systems, having due regare for looth the matter and buergy involved.

Berthollet may be regarted as the first true physical dhemist. on aceomit of his classical views on mass artion. Largely because the time was not rijue for it, his views were not genemally adop,ted.
A quarter of a century later (1864), Cindiberg and Waage gave a precise mathematical expression of the law, but still it attracted very little attention from insestigators. A trememlons impetus was given to the suljeet by the electrolytic dissociation theory of Arrhenins (18si), and the extension of the additive laws of gases to dilnte solutions, hy Vin't Hoff (18sis). This was but a comparatively small field in the subjert, but it stimulated artivity along the whole line, the wonderful incrase of our knowledge concerning the velocity or rates of reaction, the heat changes involved, and the marvelons development of electrolytie chemistry being pertinent instances.

The generalization of (iibls, known as the phase rule (18ifi), which acenrately states the condition for equilibrinm in the system, and the Theorem of Le Chatelier (1SS4), that any change in the factors of equilibrinm from ontside is followed by a reverse change within the system, together with the mass law, now give us a consistent theoretical fumbation for the subject. In general terms, it may he said that all chemistry, at least all theoretical chomistry, properly belongs to the province of physical chemistry, and the title, while in many ways consenient, is mislealing.

11I. OHNANIG CHEMINTHS.

Compouds containing carbon enter into all the products of a living cell. For this reason the chemistry of carbon compounds came to be k.own as organic chemistry. This should not be taken as a definition, however, withort limitations. Many of the compounds containing carbon are not known to enter into living tissue in any way, and their connection with it is very remote and not essential. On the other band, it should be remembered that many organic componnds, and those even of most importance, contain some other element, - nitrogen, for example, - as the significant one.

While nearly all the known elements can enter into organic compomis, the vast majority of surh substances are composed of lont very few. loo instaner, those elasses of which sugar, starch, the fats, ete., are exmuphes, contain only carbon, oxygen, and hydrogen. With nitrogen, sulphar, mad phosphoms added to these clements, almost the entire mage of organie chemistry is eovered. Organic chemistry, therefore, differs from inorganic chemistry in that, while the momber of eompomis is moch harger. the number of elementes involved is very limited.
berzelins may be recrarded as having fomaled arganic ehemistry in the beginning of this century. As a result of his amalyses of the salts of organie acids, he charly demonstrated that the laws of detinite and maltiple propertions hohd equally for organic compomals and for inomgaie ones. The work of this master was ably furthered by Liebig (180:3-1873), who devised most rlegant mothods for the amalytieal inverstigation of organic compounds, methods which are in use today without any essential change.

Viry soon, however, it was foumd

MCIAFT, FAIADAS. that organie componuls existed having the same percentage composition, but quite dissimilar properties, physical and chemical, as, for instance, sugar and stareh. Other striking examples are l'aralay's discovery (1825) of a compond identical in eomposition with ethyleme, but wholly different in properties; and Wiohler's elassical syuthesis (1808) of urea by the transformation of amonium cyamate. Similar facts in the domain of inorganie ehmistry, though now well known, were at that time wanting, and thus this most fruitful idea, designated as isomerism, was introduced into the seience.

The next great step was the introduction of the theory of radicles, first suggested tentatively by Berzelins (1810), but put forward in a definite way as one of the results of the classieal investigation on benzoyl by Liebig and Wiohler (1832). That is to say, a group of elements, or radicle, can pass through a series of compomds, from one to the other, as though the gromp were one single element. For years this idea was the guiding principle in chemical investigations, and was most useful in aiding the classification of ehemical compomds and bringing order out of the chaos of accumulating observations.

But the seareh for radieles was in a sense a vain one. We now know that no radicle exists as sueh by itself. Meanwhile, Dumas and his pupil Laurent had introduced and developed the theory of types, whereby all chemical compounds could be classified under four types, which marked a distinct step in
 nized the shorteomings of loth the ralicle and type theories in their earlier forms, and showed their inter-relation, when menlified so as to do awny with certain ineonsisteneics.

Dumas had hefore this demonstrated the theory of substitution (18:3), that is, that in certain compomals one or more of the clements can be driven out and replaced by others withont changing the essential chameteristies of the compumb. Fin instame, chloracetio aeid, in which part of the hydrogon of neetie arid has been rephaced by chorine, contains all the essential chatacteristies of neetic acid: in faet, some of them-its medic properties, for example - being markedly aceentmated. This theory was fiereely assailed at first, notably by liehig. like all theories of seience, it was in the begiming pushed to the extreme, mul fut forward to explain things to which it was not applicable. It gradually came to demonstrate its own right to existenee, largely as a result of the work of hamrent mad Gerhardt, and made its influence felt in the exposition of their ideas, to which reference has just been made.

The development of thase theories, about the middle of the century, was greatly hastened ly the work of many brilliant investigaters, notably Wiurt,
 and Founkland ($1520-5$) among others.

Keknle proposed a new typu, marsh gas or methane. Shortly afterwards, his well-known formula for benzene, the starting-point mad fomatition of the vast elass of aromatie leodies, was proposed. He insisted that the thme ham eome when chemists must ask what those ultmate particles, or atoms, of the elements themselves were doing in these eompomis of varions types. The answer was a grand one. and the result, our magnificent store of information concerning the constitution of organie eompoums, or the way in whieh the atoms are connected with eaeh other. It is not to le inferred that our knowledge on this subjeet, in any one case, is complete. Fin from it! Muela that is most interesting and important is apparently as remote from our grasp as ever. But we do know something abont the general relations of the atoms in the molecule, and our knowledge, so far as it goes, is definite and ${ }^{1 r e e}$ se.

Somewhat later, Yan't Hoff and Lebel, at the same time but independently, introduced the study of the space relations of organie compounds by suggesting the simplest possible spaee formula (the tetrahedron) for marsis gas or methane, of which all other organie eompounds may, theoretically at least, be regarded as derivatives. Many inexplicable relations, especially among isomers, now became clear. The theory was at first bitterly assailed, espeeially by Kolle. It found an able champion in Wislicenns (18:8-), however, and has so thoroughly established itself, that it may be safely said that at the present day it is the eontrolling idea in the large majority of organie investigations.

The carbon atom is eharacterized by a wonderful faedity in uniting not only with other elements, but with itself. It would even appear as though its influme in this regard extended to other elements united with it, as nitrogen, for instance, shows an unexpeeted ability to mite with nitrogen in organic compounds.

Further, the emion atom is eharacterized by an masually constant valeney, namely, four. These two charmeteristics aceomit for homology, that is, for a series of similar compounds diftering in composition one from the other by $-\mathrm{CH}_{2}$, and enables us to trace back all organie componals to one mother substance - marsh gas or methame.
These ideas have ulso been more or less suceessfully applied to the study of the composition of inorganie compomads. The assistance orgmie ehemistry has given to the general subject is incaldulable. Finally, it may be said, that while in the nature of the ease our ideas of structure in orgmie compoumels cimant be regarded as proved, or as not subject to possible fature moditications, we have, at least, a consistent theory and good working hypothesis. A homely illnstration of our present ideas may be drawn from the modern high eity building. The skeleton of this buithing is mule of iron, nownt which are gronped the briek, stone, wool, and other materinls to form a eomplete builling. So the organic borly is built on a ehain or frame-work or skeleton of carton atoms, nhout whieh are grouped the atoms of hydrogen, oxygen, and nitrogen, or radicle compounds thereof.

It is mot possible hore to even name some of the more eminent workers who for a quater of a century have eontributed to onr knowledge of organie chemistry. 'fhis bunch of elomistry has been the vogue, and has been pushed almost to the limit of possibility siane 18 ST ., Many ulmost unexplored tields still remain, lont chemists recognize the fact that in theory and practice organic chemistry has reached a high degree of perfeetion, and they are returning to contimue the researches in other fields which have for so long been almost neglected.

IV. ANAMYTICAL CDEMASTRE:

No brame of chemical scienee has a more general interest for the puble than that which relates to the determination of the materials of which borlies are composed, and the proportions in which they exist.

At the beginning of the century eonsiderable progress had been made in this brameh of knowledge by the researehes of Boyle ($169(6-1691$), Hoffmann, Margralf ($1709-1780$), Seheele and Bergmam (1735-1784). Her\%elins, as has alrealy been mentioned, had added a new and valnable factor to chemical analysis by the development of the blowpipe, and in the early part of the century mineral malysis was still further alvanced by Klaproth (1i4:3-181i), Rose ($179 \mathrm{~s}-1873$), and many others.
No omo man did so much to advance this branch of chemical seience as Fresenius ($1818-1897$). He collated and proved all the proposed methods of analysis, both, qualitative and quantitative and out of a eonfused mass of material formed a logieal system of procedure, which has proved invaluable to the progress of ehemical seience in all its hranches.
The volumetric methols of analysis, which save so much time and labor without sacrificing acemacy, were developed by Gay-Lassac, Vauquelin ($1763-1879$), Mohr (1806-1879), Volharl, Sutton, Fehling, and Liebig.
The methods of gas analysis have been worked out chiefly by lounsen, ably assisted by Winkler and Hempel.
The methods of determining the elementary bodies in organic eomponnds have been developed by Dumas, Lirbig, Will, Varrentrap, and Kjeldahl, to the
last of whom chemical analysis owes a delt of gratitude for the invention of a speety and accurate method of determining nitrogen.

Not much less is the delt due to Gooch for the invention of the perforated form crinumbe, currying an ashestos felt for seeuring precipitates by filtration, in a form suitable to ignition without further preparation.

Through the classic resenceles of Arago (1756-1803) and Biot (1754-1862), polarized light has been made a most

WILLIAM CROOKES, F. R. 8. valuable aljunct to chemical research, serving as it does to measure the quantity of various alkaloids, essential oils, and sugars.

Based on these researches of Biot and Arago, Ventzke, Soleil. Scheibler, Duboseg. Landolt, and Lippiel, have constructed apparatus, which have made an exact science of optical sacelarimetry. Uptical analysis is not without its relation to theoretical rhemistry, for by it has becon proved the assmuption that optically active bodies contain an asymmetrical carbon atom, - that is, one which combines with four different atoms or radicles.

Electrieity has become also one of the most useful factors in chemical analysis. Many metals are easily deposited by electrolytic action, and their separation and determination rendered easy and certain.

Chemical analysis has not only giveu us aceurate knowlelge of the constitnents of matter, but by revealing the dejortment of molecules and groups of molecules in inorganic and organic compounds, has opened up at path for organic and synthetic chemistry which otherwise must have remained forever closed.

The discovery and development of spectrum analysis is one of the great achievements of the nineteenth century in chemical science.

Wollaston, in 18 s , first noticed that the spectrum of the smis light, when greatly magnifiod, was not composed of colors gradually changing from one to the other, but that the continuity of the colors was interrupted by dark bands. Frauhofer, in 1814, had made a map of the solar spertrom, showing ait of these dark lines. Framhofer was entirely ignowant of the canse of these dark lines, but when he had fomul them, not only in the light from the sun, but also from the moon and the fixed stars, he properly conchuded that they were due to something entirely indejendent of the earth.

It remained for Bunsen and Kirehoff, in 1860, to point out the fact that these dark lines were characteristic of certain chemical clements existing in the sun and its photosphere, and this fact is the foumdation of spectrum analysis. The broad black band in the sun's spectrum, called by Framhofer D, corresponded nxartly in position and in width with the yellow band produced by a flame containing incandescent solimm. There was no lonbt whatever,
therefore, that the two phenomena were clue to the same cause; but why in the one case should the band be black anl in the other yellow? This question was answered by the discovery of the fact that a ray of light colored by ineandescent sodimm, passing through a luminous atmosphere of the same metal, would lose by absorption all of its yellow color, and would display a black band where before the yellow color existed.

Based umon this observation, the development of spectrmm analysis went forward with amazing rapidity. The hundreds of lines in the sun's spectrum were found to occupy exactly the position of huminous lines in tie spectra of various metals, and thus it was possible for the chemist to extend his investigations beyond the limits of the earth, and distinguish the chemical elements in the sun and in the fixed stars billions of miles farther away from us than the sum itself. Celestiad chemistry has thus become a fixed and definite science.

But the value of spectral examinations has extemed still farther. Many luminous lines were observed in the spectrum whieh were not found in the spectra of any known element. The inference then logically arose that there were elements yet moliscovered to which these lines were due. From this starting point investigations procecded which have led to the discovery of a large number of elementary bodies. Among the important elements that have been discovered by means of spectrm analysis may be mentioned: cesium, rubidim, thallim, indium, gallimm, sterbium, and scancium.

Spectrom analysis is also extremely usefnl in proving the verity of supposed new elements; for if a supposed new element should be found to give a series of spectral lines coincident with those already known, it would be a positive proof of the fact that the supposed new element was but a mixture of bodies already known to exist.

V. SVNTHETICAL CHEMISTRY.

This hranch of chemical science has for its object the building up of the more complex from the simpler forms of matter. In the early part of the century, Chevreul and Wöhler haid the foundation of the science by the synthesis of fatty-like bodies and urea. Berthellot and Friedel (1832-) in France, and Williamson and Framkland in England, added much to our knowledge. Kolle, in Germany, made salicylie acid so abundantly as to banish the matural article from the market. The synthesis of coloring matters resembling indigo was also a great hlow to that industry. From the prolucts of the distillation of coal, chemists were able to make thomsands of valuable bodies of the greatest utility. Many medicinal substances and nearly all the common dyes trace their origin to coal.

Fischer (b. 1sios), in (iermany, has contributed his remarkable results in the synthesis of sugar to the last years of the century. Lillienfeld, in Anstria, has gone still further, and has built up a bocly which has many of the properties of protein, one of the most highly organized of organie substances.

In the inorganic world synthesis is not so difficult a matter as the vast mumber of compomids attest. By means of the electric furnace, Moissan, in France, has succeeded in uniting carbon with many of the metallic elements, and thas opened the path for new achievements in passing directly from inorganic to organic componnds.

The progress of chemieal synthesis has already blotted out the old distinction between inorganic and organic chemistry, and we can no longer say of organic bodies that they are the products of living cells. Organic bodies are those which contain a carbon or other elementary skeleton, to which are attached the elements or groups of ele-

sill henily bessemen. ments forming the complete booly.
The clain which has been made that synthetical chemistry would in the near future porluce the food of man, and thus relegate agriculture to the domain of the useless or forgotten arts, is, however. wholly without seientific foundation. The function of the farmer will not be usurped by the chemist. The future will see the nost important contributions to chemistry coming from the fiek of organic ehemistry, but it will also see the famer following in the furrow, and man depending for his food on the fields of waving grain.

This is the oldest braneh of chemical seience, and maturally the one which was furthest advanced at the hegimning of the century. Nevertheless, the advances whieh the past one lmodred years have seen in this science are most surprising. Gold and silver are now secured from ores so poor as to have rendered then of no value a hudred years ago. The Bessemer process of steel making (185\%) has revolutionized the world, and made possible railroads and steamships. The basie Bessemer process of making steel from pig-iron rieh in phosphorus, has opened up rich mines of iron ore hitherto valueless. The basic phosphatie slag, resulting from this process, is of the lighest value in the fields, and has brought agriculture and metallurgy into intimate relationship. The electric furnace has made almminimm almost as cheap as iron, bulk for bulk, and electric welding bids fair to take the place of the old process, with the cheapening of metals.

VIl. AGRICULTURAL ('llEMISTREV.
Sir Mumphy Days, in the begimning of the entury, delivered a course of lectures on the relations of chemistry to agriculture, and these were published in book form. In France, important contributions were made to agricultural chemieal sciense by Vauquelin, Cherrenl (1786-1889), and looussingault ($180 \mathrm{O}-185 \mathrm{~s}$), who made important researches before the middle of the contury. The most important work in agricultural chemistry, however, was done by Liehig. His achievements so overshadowed those of his predecessors that he is generally regarded, althongh improperly, as the father of that branel of the science.

The early achiesements of these workers showed the relatively small portions of the crops that were derived from the soil. The sturly of the ash
constituents of plants laid the fomdation of rational fertilizing, and the utilization of the stores of plant food preserved in great natural deposits.

Begiming with the middle of the century, the attention of agronomists was called to the desinability of utilizing the deposits of guano, found in the islancls along the west coast of South Amarica; of the deposits of phosphate rock existing in many localities; and later, of the potash salts, discovered near Stassfurt, which completed the trio of available natural foods most useful to plants.

The establishment of an agricultural experiment station by Sir John Lawes at Rothamstead (18:3), before the middle of the eentury, set an example which has been followed by the establishment of experiment stations in all the civilized comntries of the world.

Under the great stimulus given to agricultural research by these stations, progress during the latter half of the century has been very rapid. There now exist in Europe nearly one hundred stations devoted to agricultural rescarch, and in this eountry the number is half as great.

Conspienons achievements, marking the closing years of the century, have been the discovery of the methots whereby organic nitrogen is rendered suitable for plant food, and atmospheric nitrogen fixed and rendered arailable by legnminous plants. In the first instance, it has been established that organic nitrogen in the soil eam only be utilized by plants after it has been oxidized by bacterial action. In the ease of leguminons plants, nitrogen is rendered available for mutrition by means of hacteria inhabiting nodules in the roots of the legumes. These two great discoveries have proved of incalculable benefit to practieai agriculture. Chemical science in its relations to agriculture has shown that the fertility of the soil may be conserved and increased. while the magnitule of the crops harvested is sustained or augmented. Thus, no matter how rapid may be the increase of population, agricultural chemistry will provide abundant food.
VIII. GEAPHIC (HEMISTLE.

The lonor of discovering that prints could be male by the ation of light on certain salts, sueh as those of silver, belongs to Daguerre. in 1839.

The fundamental prineiple of graphie chemistry is that metallic salts, sensi-. tive to the light, when in contact with organie matter. suffer a eomplete or partial reduction and are rendered in-

L.OCIS JACQUBR DAGUEIGES. soluble. The intensity of the recluetion is measured exaetly by the intensity of the light. When light is reflected from any object eapable of prowheing different degrees of intensity, as from the hair and face of a man, the reduction of the metal is greatest by the light from that portion of the physiogumy whiel gives the greatest
reflection. Thus, when the muredueed mptallie salt is washed out, a permanent record, the negative, of the object is left.

It is a long step from the first dagnerrootype to the modern photograph, but the principle of the process has remaned unchanged.

Photographs in natural colors have of late years been obtained. One method is by interposing a filn of metallie meremry lehind the sensitive plate which must be transparent. The reflected rays of light, having different wave lengths, precipitate the metal in superimposed films, correspunting to the wave or half-wave length. When a negative thus formed is seen by reflected light, the emergent mys from the superimposed films aeting as mirrors are transformed into the original colors of the photogriphed objoct.

The various methods of printing ly holiotypes, ;hotolithographs, photogravures, etc., are illustrations of the application of graphie chemistry to the arts.

IX, HIDAETE CHEMASTRY.
The lectures of Davy and Faraday in England, of Wöhler and Liebig in Gemany, of Chevrenl and Dumas in France, and of Silliman (1759-18(6) in this country, made the study of chemistry attractive and casy during the early part of the century.

It was noticed, however, that the stulents who finished these conrses, while well versed in the principles of the seience, were not able to apply them in practice. Towards the middle of the eentury, therefore, a radical change in the system of instruction was inaugurated. The student was put to work and talught to question mature for himself. The universities of Franee and Germany were equipped with working desks where students of chemistry put into practice at once the principles of the seienee which they heard elneidated in the lecture room. Cooke, at Harvard, was the chicf apostle of the laboratory method in this country, and this method of instruction has now spread, until even the high and grammar schools have their chemieal haboratories.

In our universities, students may now hegin their ehemical studies associated with laboratory practice in the first year of their course, and contime it to the end. Graduates of such courses are not only gromided in the theories of chemistry, but are thoronghly familiar with its practice. Uuder this system, coupled with the demand for chemical services in every braned of industry, the number of trained chemisis has speedily inereased. At this time (1899) there are more than four thousind trained chemists in the United States.

X. 'IIEMISTRV OF FLKME.NTATION.

Our knowledge of fermentation and bacterial aetion is pactically all comprised in the achievements of the mineteenth century. Prior to this time it was known that fermentation took , wace, hat its canses and character were wholly mysterious. The great work of lasteur (1859) resulted in the fact that fermentations were chiefly cansed by the aetivity of living eells, which have the capacity of reproduction. The most common form of fermentation is that whereby sugar is converted into aleohol and carbon dioxide. The name of the organism that produces this ehange is suchlurom,

Another class of fermentation is seen in the process of digestion. This speeies of fermentation is typified by the action of sprouted barley on starch,
whereby the starch is converted into sugar. The active principle of the saliva, ptyalin, has the same property, and when starchy lndies are masticated, a part, at least, of the stareh which they eobatain is conserted into sugar. 'The active principle of malt is knowia as diastase, and this, as well as pryalin, belongs to a class of ferments which are incapable of reprodnetion.

All the decompositions of organis, matter, such as the deeay of meats and vegetahles, are now known to be forms of fermentation, due to the action of certain organisms known by the group hane of bacteria. This discovery led maturally to the process of preserving organic compounds by sterilization. 'the prineiples on whieh this process depends are very simple. If an organie body, such as a fruit or vegetable, be subjectell for some time to a high tempenature, - that of boiling water will usmally sulfice, - the fermentation germs which it contains will be destroyen. If then it be sealed in such a way, either hermetieally or with a plug of sterilizel cottom, so that no

IOUIS PAS'LEULR. living germ can reach it, decomposition cannot take place. Certain chemicals, such for instance as salieylic aeid and formaldehyde, have the property of paralyzing or suspending germ action, and hence organie bodies treated with these substances may also be protected against decomposition.

The activity of fermentation is made use of in the technical arts. Bread is made light by fermentation, and wine, beer, and cider are made by the fermentation of fruits and grains. Alcohol is prodnced by the fementation of grains and potatoes, their starch having previously been converted into sugar by malt.

Buelmer has lately shown that all fermentation is of one kind, namely, that due to ferments of the diastase type. The fermentation produeed by yeast, for instance, is not due, acoorling to his ciservations, to the living cells, but to the products of their activity. Hy destroying yeast eells, by grinding and high pressure, and using their contents, he has seeured a vigorous femmentation similar in every respect to that caused by the cells themselves.

xi. ELECTRO-CHEMISTRI.

The electrie furnace, which affords a higher heat than chemists had been able to secure, has been the promoter of great advances in inorganie chemistry. Moissan (b. 1852), a Freneh chemist, has been the most suceessful in applying the heat of the electric furnace to analytic and synthetic studies. One of the practical results which has eome from these studies has been the virtual bridging over of the chasm which has been supposed to exist between org:mie and inorganic compounds. Under the influence of the heat of the electrie furnace, earbon, whieh is the keystone of organie compounds,
has been made to combine directly with the metals, forming a series of bodies known as metallic carbides. The carbide of calcinm, under the action of water, yields a gas known as acetylene, which by a series of rations can be converter into alcohol. Thus alcohol, which only a short time ago was supposed to he solely the product of organic life, is shown also to result from a simple inorgmie reaction such as las been shown above.

The importance of electrolysis in metallurgical and analytieal chemistry has already been noticed. So rapid has been the progress along these lines that the terms metallurgieal chemistry and electro-chemistry are in some respects almost synonymous.

Electricity has also been employed in many of the chemical arts; e. g., in the promotion of erystallization and purification of organic solutions as practiced in the sugar industry.

CONCLUSION.

There is no branch of seience that holds such an intimate relation to the progress and welfare of man as chemistry. First of all, it is chiefly instrumental in providing him with food and elothing, as has been shown in the paragraph on agrimultural chemistry. In the scemd place it has extended his domain over matter and, in commection with physies, has established the identity of the composition of the miverse with that of the earth. The miverse has thus heen shown to he of a single origin and of uniform properties. By understanding the constitution of matter, with which he is surrounded, man is able to utilize to the hest advantage the material at his disposal. Thus invention is promoted and the application of chemical knowledge in the arts extended. With every step forward of this nature, the power of man to secnre bread is increased, and, under the favorable environment which the study of chemistry has created, the physical and intellectnal condition of man has been improvel. With a wider view of natural phenomena and a more complete control of them, the intellectual and spiritual life of mai is widened and strengthened, and the prineiples of equality, justice, and liberty more firmly established.

Harvey W. Wiley.
of bodies ction of ions can ago was ult from remistry ese lines in some
e. y., in as prac-
in to the ; instrinn in the xtended hed the 1. The rm proh he is al at his 1 knowire, the nvironllectual al phepiritual quality,

THE CENTURY'S MUSIC AND DRAMA

I. MUsic.

Music finds its highest artistic development in the happy combinations which go to make up the opera. These combinations passed through various historic stages, and ripened into noble matiority by the end of the eighteenth century, under the guiding genius of the Handels, Mozarts, and Glueks of the times. Their legacy passed, in the nineteenth century, to a host of worthy successors, among whom stands, as a central tigure, Verdi, the great Italian operatic composer; while Wagner, of Germany, has striven with herenlean might to revolutionize the lyrieal drama by polemieal writing, by twofold authorship of words anl notes, and by a new application of principles gathered from antecedent reformers. His efforts produced a commotion in the art world whieh might be compared to that excited by the rivalry between Buonoeini and Handel in London, or Piceini and Gluek in Paris, but for the faet that in each of these instances the contention was between one composer and another, whereas in the ease of Wagner it was the opposition of one composer to all others in the world, save the few who, believing in the man, his teachings, and his wonderful powers of application, undertook propagandism as a duty, and endeavored to make proselytes to their faith. He did not live to see the day when his efforts conld be called completely successful, and his death in 1883 left judgment quite wide open as to his theoretical and practical merits. The nineteenth century eloses with the question still on as to the permanence or evanescence of his many unique, ponderons, and revolutionizing productions.

Verdi, who still lives, surpasses all the composers of his time in the beanty of his melodies and the intensity of his dramatic power.

Rossini, whose " Guillaume Tell," which was produced in Paris in 1829, was his masterpiece, ruled the operatic world before Verdi, until he died in Paris in 1868.

Meyerbeer, whose principal operas are "Les Hugnenots," "Le Prophète," and "L'Africaine" (the latter producel in Paris in 1865, the year after its composer's death), was regarded as a remarkable composer, whose knowledge of effeet was unsurpassed, and whose fine intelligence and musical knowledge alnost made the world forgive him for frequent lack of inspiration.

Halévy, whose only lasting success was "La Juive," composed other operas, such as "Charles VI.," "La Reine de Chypre," "L'Eelair," and "Les Monsquetaires de la Reine," that achieved a certain amount of success in France, which suceess was interrupted by Halévy's death at Nice in 1862.

Gounod, in 1859, made his most remarkable suceess with his greatest opera, "Faust," which, after the subject had been treated by Spohr, Lindpainter, Schumann, Berlioz, and other distinguished composers, has remained the only completely successful opera on the subject, although Boito's "Mefis-
mile" (another version of the suhject) arhieved a marked sureess in Italy in 1stis, and placed Boito anong the remakable compesers of the day. As for Gomod, his other operas merer mualed his "Fanst." Next in merit eomes "Rome et Juliette" (protheed in l'aris in 18cia) and then his "Mireille." which appeared in 1stit, and "Philemon

GIUSEIPE VERDI. et bancis," "an expuisite little eomie opera proluced in 1860. His last opera, "he Tribut de Zamora." was given at the Grand Opera, laris, in 1ssi, and failed.

Donzetti, who died in Bergamo in 18ts, was for many years one of the most pepular operatic composers. He possessel undoultell ability, lat wrote earelessly, as the latians aliol in that day. But his operas contain mud that is heautiful, and often show tine dramatie power. His "Lneia" rontains inspired pages, while other portions are inexcusably commomplaes. The same remark applies to his "Lurrezia Borgia." "La Favorita," and "Maria di Rohan;" while in his eomie opreas, such as "Don Pastuale" (which was composed in three weeks), his "h' Elisire d'Amore" and "La Fille du Régiment," Domizetti appears to better advantage. They are melodions and very agreeably written. His fertility may be imagined when you are told that he composed over sixty operas during his career, as weil as other compositions.

Bellini, whose career was a short one, as he was horn in 1802 and died in 1s3i, was badly trained ame could not be called a well-schooled musieian, being rather a musician by instinet. But he possessed remarkable ability, and, perceiving that the persistently Horid style of Rossini (which all the composers of that time blimdly imitated) was approaching an end, treated his melodies with a simplieity and directuess that at once attracted attention and met with approval.

Rellini's knowlelge of instrmmentation was childish, but his intimaey with Rubini, the famons tenor, aided him in aehieving an armimble treatment of the voice. His operas were very sweet and melodions. The two operas by which he will be remembered are " La Nomambula" and "Norma," the latter being, with all its faults, a great opera.

Another talented and prolific operatic eomposer was Mercalante, whose " 11 (iimamento" (proluced in 1S:3) atheved considerable popularity. But Mereadante's suecesses were generally confined to Italy. He composed sixty operas, and died in 1870 in Naples.
Ponchielli, who was bom in 1834 and died in 1886 , will be principally remembered by his remarkably beantiful opera, "La Gioconda" (producerl in 1876), whieh, together with a re-written version of his first opera, "I lromessi Sposi." gave him great popularity in Italy and spread his reputation to other comntries.

Italy in As for t combers iroille." hilémon aieoperera ¿ri." La at the l failed. rano in - of the ins. lle at wrote in that uch that ine dracontains ions are te same via Hoplaria di opreras, ich wats "l' Eli0 better fertility ams dim-

1 died in n, being ind, permposers nelodies net with ley with ment of reras by ai," the , whose y. Hut ed sixty

heethoven in hes studs.

As for Italy's young emposers that profess to ropresent the modern Italian sehool of oproit, they are led by luceini, whose "Manon Lesoant" and "La Bohême" are melohious and full of anerit.

Maseagni and Lemeavallo, whose "Cavalleria Rasticana" and "I litgliaed" achieved popularity, have not ralized expertations. Nor has Giordano, whose "Andrea Chenier" was well received in Italy.

Bizet, whose "Carmen" is one of the most remarkalle of modern operas, died in t'aris in 187\%. "Carmen" has remained in the repertoire. His other opera. "Les Y'éel iurs de l'erles," only aehieved a moderate success.

GRAND OPERA HOUNE, PARIS.

One of France's greatest musicians, Hector Berlicz. was born in 1803 and died in 1869. His operas, "Les Troyens," "Benvenuto Cellini," his "Damnation de Fanst." his "Roméo et Juliette" symphony, are all great and afforded Wagner a model that he imitated persistently.

In $18 \pi 1$ France lost one of its inost talented operatic composers, Auber, whose " Masamiello " and "Fra Diavolo" are two of the most popular operas ever written by a Frenehman. Auber composed comic operas charmingly, and his "Domint Noir," "Diamants de la Courome," "Haydée," and other works of a similar chanacter, entertained the French people for wany years. Anber's death has left a vacaney that has not been filled.
'The modern French eomposers eannot be ealled great. Saint-Saens, whose most successful work is "Samson et Dalila" (which is more of an oratorio than an opera, and which was produced in 18:7), has composed other operas,
such as "Heuri VIII.," "Ascanio," et retera, which lack origimality and inspiration.

Massenet has eomposed "Le Roi de J.ahore,". "Hérodiade," "Manon," "Werther," "t cetera, that have had passing sueresses.

Both Saint-Niuns mud Massenet have attemped to follow Wigher in their sonorons ordestation ; but their works tack distinetion. The Fremeh come posers of to-day have been demonalized by Wagner's affectations.

The denth of Ambroise 'Ihomas, in 1s:h. eansed France the loss of one of her most successful and accomplished operatic: composers, whose "Mignon" will be long almirel as a very charming oproa "ominnc, while his "Hamlet,"

though containing portions that are ably written, has never attained ontside France any romarkable success.

Reyer, whose " sigurl" was produced in $18 s t$ with considerable suecess, is a follower of Meyerbeer. His "salammbo" was produced in 18:\%. but dit not attract the attention expected ontside of France.

German opima of the latter part of the century has been so demoralized by the influence of Wagner that the German composers have becone little more than imitators of his prononnced mamerisms.

Weber's "Dor Freischitz" rematins the most popular of German operas, just as Verdi's "Il 'Trovatore" is the most popmlar of Italian operas.

Spohr. Lindpainter, and many other Gernan composers of ability have been laid on the shelf.

Marwher, whodied in Hanover in 18th, showed in his "Hans Heiling" that ho was a follower of Weher, as well as in his "Jomplar mad dewess."

Comelins, who died in Maina in 187.t, mate his primipme suceess with his " Barher of Bagdal," "comic oprotu in which the manner of Wagner was imitated. In IstiA "The Cid" was prowhered in Werimar, but it was fomm depressing!! heriny and labored.

Cind hank, a follower of Meyerthere. mule a sumerss in 1805 with his "(bueren of saba" that was not mated by his "Merlin," prouluead in ISNG, or his "Irtisomer of Wiar." prombeed in 1899.

To return to the great lemer of "preat - Verli - ome may say of him that his operas are divided into three perionks. The first ineluded the works written in the old Nepersitan style as he had fomul it. To this mass belong "Nabuceo," "Attila," m, retera. To the scemen pro rimb, which slows remarkable hamatio color and heautitul melodys, belong" "Ri-

WhhGiM HICHAHD WAGXEH. goletto," "Eromai," and "Ballo in Mas"hesa" (in which Verdi began to pay attention to his instrumentation). 'To
 able opera, in which the melenty is womberfully fresh and beantiful, eombined with renurukable swimere.

EWWIS FOHBEN'V,
"otello" is also a great work, written at a time of life when most composers retire and broally dramatic in its treatment of the situations, illuminat il by rich aml expressive instrumentation.

As for "Falstaff." the latest opera that Verdi has written, and probably the last lie will write. it is the greatest modern comic opera. just as Mozart's "Nozze di Figaro" is the greatest comie opera of the past. It convinces the world that Verdi's genius is inexhaustible.

Sext to Verdi comes Wagner, the anarchist of musir, who began in " Rienzi" and ." The Flying Inteluman" by imitating the Italian forms of melody. In "Tamhinuser." portions are very beautiful and melodions; in "Lohengrin." prortions are fine; but Wagner's idea of rffect was bad and he never knew when to stop, so that many of the seemes are interminable. This fault inereased as Wagner composed the "Nihelmgen" serips for the erazy king of lavaria. Melody varas ind, the
singers becane secondary to the orehestra, which was persistently noisy. Wagner's effort was to ereate a new sehool of opera, in which everything should be minutely deseriptive. He went too far and opened the question of failure. In opera the voices ehaim the first place, and the orehestra is an accompaniment, so that Wagner's methon was radically wrong.

Ladependent of this, he attempted to

CHADLOTLE SACNHEMS CHSMAN. infuse life into the " Nibelungen" series, whereas he adopted a tangled and childish fary-story that was more absurl than impressive. The later Wagner operas, which the composer ealls "husic dramas." are tiresome and monotonons to such a degree that. with all the remarkable talent of Wagner, they may never become popular. and may be eventnally: laid on the shelf, to be regarted in the future as musieal curios.

The .ansieians of the United States are stadily developing, and for so young a combtry we have a large mumber of composers of first-chass ability, sueh as Machowell, Foote. lang, Chalwiek, (ii)rhist, and many others whe haye produced important compenitions.
the opera the American composers have dome nothing. lor the reasom that there are no oppurtunities for the production of such works. If there were, we shomble soon have may operatie eomposers, and shoud speedily take high rank in the lyrie dimas.
11. 11: IM.A.

The theatre of the latter part of the century shows a remarkable adrance, in certain respects, over the theatre of the past, whieh consisted of a "star," : in inferior compang, por sernery anl apmintment:, et cetera; whereas to-diy there are many more really grow artors and actresses, the theatres are far more romiortable and artistie, the scemery, costumes and details are hemutilu? and correct.

We have uo Mrs. Siddons, no Kimble, no hachel. no Talma ; hut we are confirlent that the actons and actresses of to-lay are like the theatre of tomblay. they have more finish, and the results, while they may not rise to the phan of the school of shakespeare are nemmerne ham they have ever here.

The sehool of declamation. which belonged to the plays of the past, is the severest loss the stage of to-lay has felt. The actors and actresses fial in elocution. Ther do not know where to put their emphasis. They seem lost when they appear in contmone, and shakespeare to-thy has no distinguished expments.

The English-speakiug stage of the century has bern alomed by such elogount interperters and powerful therelians as Elwin Fomest. Chandote Cushman. Edwin Booth, ame Denty Irving, lint this ilhstrions roll has been almost extinguished her death: and. especially if applied to America, the
noisy. rything nestion ra is an pted to " series, d childurd than operas, sic dranous to emarkay never entually 1 in the

1 states

 so young mber of surlı as ick. (iilare pro-ers have - producitic com-
advanee, " "star," whereas atres are tails are are conohliny, 一 plathe of in.
it, is the s fail in cem lonst nguished weh elotre Cushbas been riea, the

question may well be asked, where is the actur or actress wha can play hamlet, or Macbeth, or King Lear, or Shylock as we were wont to see them rendered by those masters of the dramatic art. or as they should be rendered? Salvini and hessi have both patsed away. Irving verges on retiracy. (ai the great dramatie actresses left to the closing of the century, Mme. Sarah Bernhardt stands preeminent. The day of the imposing declamatory drama seems to have lost its lustre at the sumset of the century.
lant the modern thamas and comedies are acted, even in the smaller parts, with alminable intelligence and effect, and we may add that the vice that disgraed the stage of the past is by ne means so visible in the theatre of the present.

The coarseness that clung so long to the theatre is gratually disappearing, and the theatre-goers of to-day have diseovered that the theatre, which was ereated to entertain the world. can lo so without recourse to vulgarity.

The theatres of the United States are the handsomest and most eonvenient in the world. This Ame. : mal Bernhardt acknowletged the other day, while eriticising the theatres of Paris, whinh lack many conveniences.
U_{1}) to within twenty-five vears of the elose of the entury, plays written by American authors were rare. Mangers had to rely upon those composed in Europe. Bat at present the Conited states pussersies matur able and suecessful playwights, just as it does its artists in all departments. There hats not been a time during the rentury when the personal rharacter of actors and actresses has eseaped discussion, and sometimes violent eritieism, by those prejudieed against the theatre. This does not seem to have kessened the estimation in which dramatic art is held, nor to have serionsly diminished in number the legion who find in the drama their most pleasurable recreation and keenest intellectual thelight. In answer to challenges of the morality of the stage, Bronson Howarl has fittingly said: "1 have mever yet seen anybody who wanted a bad pieture just because it was painted by a goul man. It is society that cormpts the stage, not the stage that compts seriety."
himes Fitzimald.
lay Hant them renvendered: racy. (:f me. Saral ry drama ler parts, that dis re of the lisappeartre, whieh igarity. onvenient ther day, es.
s written eomposed e and sucThere las of actors icism. by - lessenemed iminishled recreation wrality of seen any(ovel main. ety." mind.

THE CENTURY'S LITERATURE

In contrasting the world's nineteenth century literature with that of the eighteenth, one is impressed with the many remarkable differences. But by no means all of such differences are to the diacredit of the older literature. As instances, the prose literature of the nineteenth century may not surpass that of the eighteenth in elegance and accuracy of expression, though its progress has been very manked in the diversity of its applications to mental needs; and the pootical literature of the mineteenth century may not excel that of the eighteenth in beauty and virility, though it has advaneed in loftiness of theme and tenderness of mode. And so, when literature is divided into its many minor branches, as history, philosophy, the seiences, etc., varions features of the old compare favorably with the new.

It is in its general tone and miversal aptitule that the litenatme of the nineteenth century stands out preeminent. The wouderfil intellectual activity of the contury has been, as it were, compelled to go forth along literary lines quite parallel with those that distinguish other fields of activity. This may have had a tendency in some instances to poll the century's literature of some of the sweetly imaginative elements. and to harden it in some of its essential forms, but the process was necessary to secure for it just that quality which wonld best meet a progressive demand. As the drift of hman energy was toward the practical, so the dominant literary thought took on the form of direct and exact expression. There was less and less room for the indulgence of literary foible or speculative whimsicality. Even where elegance of style met with occasional sacrifice, it was more than compensated by that general rise in literary tone which has characterized the century. Siterature could not be matruthful amid acti e inguiry and scientific progress. It must reflect, more accurately than ever before, its birth inspirations and its legitimate uses. It must keep even pace with the demands for it. A world erying for intelletua: bread could not be put off with an anticuated stone.

Without eloser analysis, the above is true of the literature of all reading and writing peoples who have kept touch with the century's progress. But it is especially true in the literature of English speaking peoples. History has, in accordance with a growing spirit of research. becone more truthful, philosophy more expressive and sciance more exact. The outcrop of books shows the yearnings of the centmy, mot only as to their mumber bit as to theme and treatment. Anthors have multiplied as during no other world's era, and the proportion of those who have attained permanent distinction was never larger.
" German literatme," says Professor Ford, in "Self Culture" for February, 1899, "has had its measure of ups and downs, but its first age was its
golden age. From the begiming of the century to the present day is a far cry in (ieman letters. Romanticism, idealism, realism - the Fatherlamd has lived throngh them all. And for what:" la'a hath of seholars no great

 able story-writers, nut one who has become known over a eontine it.
-still these last years in (iermany have not bern withont some grood work dome. though often achieved muder the spur of wrons ideals and improper motives. From the diys of '48, when Some (iermany filt fior the first time the sechetive charm of revolutionism, a hew freling has possessed German litemane -a ferling that the past is past and out of date, poutent onee but potent no longer. and that the new age of man demands new primeiples, new ideals, a new faith. Ame so the moderu literature. partieulanly so since 1870 , has heen marked by iconoclasm and startling imovation; it has discarded sentiment and fine writing, and made a phe: for scientific mothols, with the privilege of exhibiting exart seirutitie results. Crimes, disease, and grinning skeletons have been dragged forth to the pmble gaze, for art is no longer art that portrays the ideal and not the true. Sinch, in short, is the creed by which the realistic or matmalistic school has thonght to overthrow the old, conventional, and frivolons, to foster the spirit of the new nationality, and prepare a balm for the wounds of the poor.
"Two men stand to-day as leaders of this new movement, - Hermann Sudermann amd Gerharlt Hanpmamn, - the most commanding figures in contemporameons German literature."
buring the nineteenth century the United States took a ligh and firm place in the domain of literature, and, it may be sain, has evolved a literature that in scope and style is pecnliar to her institutions and encironment. Her array of authors, hoti in mumber and reputation, compares favorably with that of comotries loasting of a thousand years of literary domination, and her literature is as diversified and practical as her activities. Among the many illustrions historians of the century she mombers her Bancroft, her Hildreth, her l'reseott, her Motley, worthy counterparts of England's Lingard, Hallam, Macanlay, Buekle, and Kinglake. Among her poets are Longfellow, Whittier, Bryant, Lowell, Ha.leek, fit companions of T'myson, Browning, Wordsworth, Seott, Swinhurnc. Among her novelists are Cooper, Hawthorne, Stowe, worthy congeners of Dickens, Thackeray, and Elict. And so, the comparison holds in travel, philosophy, theology, law, and science.

If in dramatic litemature the United States has, during the century, prodnced few authors of permanent reputation, and perhaps none to be com- erland great H111H(1) lats be-

; new

 mode 1870 , n ind carrled maile thi the 1 grinis 110 is the overe new riminn res inpared with Knowles, boneicault, Taylor, and Robertson, of the Old World, nevertheless it cannot he said of these that their phays have hal more than a stage vahne. 'The drama of the century in following the demand for artistic and combercial results has sustaned only in part the reputation of its literature. Lint in hen of this partial deculenee, there have sprong up, new bramehes of literature which are in a measure, eompusatory. Among these are the critical literature of arts and design, the literature of philology, or of language, and the litemature of politieal and social seience. To these must be added two other kinds or classes of literatme which, if not peenhiar to the century, have yet foma in it their most surprising evohtion, greatest glory, and wilest influme e. These are the literature of the newspaper and magazine, as distinguished from that of the book.
But before making further mention of these, let us real somewhat of New World literature as viewed from a critical English stampoint. Says the eritic, "English erities are apt to bear down on the writers and thinkers of the New World with a sort of aristocratic hantenr ; they are perpetually reminding them of their immatmity and their disregard of the golden mean. Americans, on the other hand are hard to phase. Wrdinary men anong them are as sensitive to foreign censure as the irvitulle genins of other lands. Mr. Emerson is permitted to impress home triths on his comutrymen, as 'Your Amerian cagle is very well; lont beware of the American peacoek.' Such remarks are not permitted to Englishmen. If they point to any flaws in transatliantic mamers or ways of thinking with an effort after politeness, it is 'the good-natured eynicism of well-to-lo age;' if they commend transatlantic institutions or achievements, it is, according to Mr. Lowell, 'with that pleasant Enropean air of self-compliment in condescending to be pleased by American merit which we find so conciliating.'
"Now that the United States have reached their full majority, it is time that England should cease to assmme the attitude of guardian, and time that they should be on the alert to resent the assumption. Foremost among the more attractive features of transatlantic [American] literature is its, freshuess. The authority which is the guide of old nations constantly threatens to become tyramical; they wear their tratitions like a chan; and, in enmonization of laws of taste, the creative laws are

MOIN G. WHITMER. depressed. Even in Finghand we write under fixed eonditions; with the fear of erities before our eyes. we are all bomd to cast our ideas into similar monlds, and the name of 'free thinker' has grown to a term of reproteh. Buyan's 'lilgrim's l'rogress' is perhaps the last English book written withont a thought of being reviewed. Thre is a gain in the habit of self-restraint fostered by this state of things;
lout there is a loss in the consequent lack of spontaneity; and we may learn something from a literature that is ever realy for adventures. In Ameriea the love of uniformity gives place to impethous impulses; the most extreme sentiments are made andible, the most noxions 'have their day and cease to be;' and the truth being left to vindieate itself, the overthrow of error, though more gradual, may at last prove mor' emplete. A New England poet can write with contidence of his country as the land

> "Where no one suffers loss or bleeds For thonghts that men cinls heresios.'
"Another feature of Ameriean literature is comprehemsireness. What it has lost in depth it has gained in hroudth. Addressing a vast autience, it apeals to miversal sympathies. In the Nouthem States, where comparatively few have leisure to write well, almost every man, woman, and child ean read, and does read. Bowks are to be fomid in every log-hat, and publie , furstions are disenssed hy every seavenger. lhuring the Civil War, when the Lowell factory-girls were writing verses, the • lighow Papers were being rerited in every smithy.

IIFHED THENYSUN. Tlue romserfineme is, that, settiug aside the newspapers. there is little that is seational in the perpular religion or literature ; it exalts and despines no class, and ahmost wholly ignores the lines that in other wombtries divide the upper tell thonsand and the lower ten million. Where mamers make men, the people are promb of their peerage. but they bhish for their boors. In the New Work there are no 'Grand seigniors' and no homan vagetables: and if there are fewry giants. there are also fewer manikins. Ameriem pocts recognize no es. sential distinction between the 'village bareksmith' and the caste of Vere de Pere.' Burns speaks for the one; Byros and Trmyson for the other; Longfellow. to thr extent of his genius, for hoth. The same spirit which glorities labor denomees every form of despotism but that of the multitule. Frepd of the exersses due to wide lieense, and restrained by the grood taste and eulture of her nohler minds, we may anticipate for the literature of Amerim, untir the mellowing influences of time, an ilhstrions future."

In treating of newspaper literatare, one eamot promed withont blending its origin; style, and aims with the lousiness menterise that cultivates and supports it. And this may be done all the mon cheerfully and properly, for the reason that there is no history more interesting than that of the evolution of the newspaper, and no consummation of mental ant physical energy that places the nineteenth century in mom vivid contrast with preeeding edituries.

For the fatherhood of the newspaper we have to travel to it han and date ealenlated to rob modern eivilization of some of its luastfuluess. The oldest known newspaper is the "Tsing-l'm," or "Peeking News." mention of whose publication is made in Chinese amals as far hark as A. 1. $\mathbf{7}$ IB. when it was then, as now, the ottiopial ehroniclea of the acts of the emperor. the doings of the court, and the reports of ministars. It has appeared daily for nemly fomteen handred years. in the form of a yol-low-eovered incgarine. some : : inches in size. The pages muninor twentsfonr, and are printed from woolen movahk type. 'Two elitions are pmblished. one on suluerior puner, for the Court and upher classes the other on inforior paper, for genemal readers. Its editorship is in the (inand Commel of state. Which furnishes to seribes or reporters the new: dremed fit for publieation. As ann oflicial organ, it first finds cirenlation among the heads of provinees, and is ly them further distributed to patrons. This ameient purvevor of news sems to have

 pretty fully gratified the Chinese taste for that kind of literature: for even at the present day there are few mewspapers in the empire phblished in the native langmge. The few that have sprong up are eonfinel to the larger rities, as shanghai. Hongkong. amb leking, where they are liberally patronized. Bat their eirenation and inHuener do mot extend far inte the interior, owing to the lack of postal facilities. The modren Chinese newspaper can hardly be called a native enterprise. It grew ont of the necessity for a literature and a means of news commmication whieh arose at the time the Chinese ports were forced open to the word's commeree. As a consequenee, a majority of the Chinese pulblieations have fomb their ineeption in foreign brains and capital. and remain under the management of formigners. The same is true of Japan. where the modern native newspaper pratically tates from the arrival of the foreigner. liat by reason of their greater mental and commereial activity, and the rapidity with which they adjusted themselves to modern moles of eivilization, the olapanese have far ontstripped the Chinese in their evolntion of newspaper literature and enterprise. Whereas. what may be called the first modern Japanese newspaper was fombled in 18:2, there sprang in in the following twenty years the almost ineredible number of bis newspapers and periodicals, not only due to native capital and enterprise. bit under native control. This wonderful growth took plaee, too, in the face of the severest eode of press laws existing in any comutry.

In Europe the earliest inklings of a newspaper literature eonsisted of news pamphlets of infrequent and meertain publication. and dependent for cirenlation upon temporary demand. The eartiest departure from this stage was in Germang, in 161\%, when thu "Frankfurter Jomal" was organized as a
weekly publication, for the promse of "eollerting and circulating the news of the day." \quad יtwerp followed with a similar enterpuise in 16 d . . The tirst attempt to to akewise in Great Britain was in 16e2, when " The Weekly Sews" was fombled in Lombon. Sone of these enterprises were by elitors, in a mordern spmse, but by stationers, in the line of their ordinary trade. They did not depend for patronage on regular subseribers, hat sold their pultlications on the streats throngh the ageney of hawkers, corresponding to our modern mewsbess, though they bere the classical name of "mereuries."

The fombation of the first mewspaper in Frame that attained nermanence and fame was in l6iB1. It was callent the "Gazette de Framer," and owed its origin to a demami for mingled news and original disenssion. It was hargely under the control of Richelien, anch, of course, reflected lis sentiments. In these begimings of the newsaper, we find little or no attempt at journalism, as now mulerstood and practiced; mo promise and poteney of a iterature peenliar to mespaper enterprise. 'The jomalist had yet to come into being. He tinst appeared as a writer of "news-letters." generally lrom some capital, or seat of legishation, or commoreial centre. His duty was to keep a line of masters or patrons supplied with news during their absence irom cont, legislative hall, on business mart. His rluty evolved into a calling. His patrons becane regular paying subseribers, to eaph of whom he wrote. These letters, eoming from all countries of the continent of Europe, and covering a wide field of information, became of great interest, and many collections of them are still in existenee in libraries, alling no little to their histeric valne.

The stej was easy from this journalistie stagre to the regular periodic publication, open not only to the "news-letter," lout to discursive thought. Thus, in 1641, "The Weekly News." of London. began the publication of parliamentary proceedings in addition to its budget of "news-letters." This era wituessed a mpid establishment of weekly newspapers, refuiring editorial supervision and regular eontributions. 'laey were not without their vicissitudes. Many of their carcers were brief and marked with peemiary losses; yet ont of the wreckage sprang some of the most important of the modern journals.

By 1003 Great liritain was ripe for a daily newspaper, and in that year one appeared under the name of "The Daily Courant." The advent of this enterprise gave further impurs to newspaper publication. The English press of the eighteenth century rose into great popular favor. It was able, and ifuite too independent for royalty amb royal courtier. For corrupt amb ambitoms goverment it often became a whip of scorpions, and in revenge was both severely taxed and invidionsly eensored. But it seemed to prosper anid opposithon and persecution, and by 1866 filty-three newspapers were published in London alone. During the reign of (ieorge III. (17(0)-1820) the history of the English newspaper is one of eriminal persecntions, amid which editors and contributors were repeatedly defeated, and sometimes severoly punished; yet it is donbtful if at any period the press gained greater strengti from protracted eonfliet, or turned ignominious penalties into more signal trimmphs. It is significant that out of this dark, tumultuons, and forbidding er, sprang many of the newspapers whose influence is most potential to-day in English affairs of state and in the literature of jonrnalism. The era marks the turn in newspaper values. The establishment became a concrete thing, a lively pro-
perty, an energy composed of practical business minds, surrounded and supported by the best proemrable literary talent, mapted for treating diversitied topies. Thas "The London Morning Chronicle," fon ad in 1Es9, rose to be a property in $1 \mathrm{se} \mathbf{S}^{3}$ which sold for $\$ 210,000$; while "'. re Morning lost" not only gave to Coleridge his fame as one of the greatest of pmblicists, but enlisted the brilliant attaimments of Mackintosh, Nonthey, loung, and Moore. The sturdy "Lomdon 'Times." which dites from 1asi, and for years encomtered malignant royal hostility, proved itself strong emongh to brave the government and at the same time sufficiently anterprising to introdnce stean printing and every mochanism calenlated to give it precedence as a metropolitan jommal. As a property, it is to-lay worth a figure ineredible at the begiming of the century, and so powerfal was its hold on popular favor for the first half of the century that no other daily conld emmete with it. Indeed. it may be said to have had a lome field mp to the establishment of "The baily Nows," in Lst6, "The Daily Telegraph," in 18iñ, and "The stanulard," in 1sint.

The nime teenth century jommalism of Great Britain is chameterized ly its great plenitumb. Morning and evening papers aloum in all the centres. The werkly paper is still an important literary and news factor. Chass papers are mumerous and excellent in their way. Again, the century's jomrnalism is chameterized by its property value. Nany of the leading inghtish journals have berome immonse properties worth millions of dollars each, and repuiring the ablest management to improve and perpetnate them. Finther, the Euglish press is chanacterized ly able and emservative, if prosaie, elitorial methods. Its comespondence is cantions, and eovers every important tidh. Its news eolumas, so far ats the depend on the telegraph and telephone, a"e sprightly and well filled, lant limited and dull when the loeal reporter is the somere of supp.

As already stated, the annals of Frenel jommalism begam with the fomading of the " (iazette de Fimere" in la:31. The evolution of the Fremelo newspaluer was mot rapiol till the cightenth erntury was well along. when the era
 exitine times. Myrials of nen papers spang intorexistence, all but two of whirl fomm their gre'ses with the passing of the emergeme which rallen them intulving. Ean! in the nineteenth wentury (18isis) the intronduction of cheap jomratism gave great impretus to enterprise, and ly the midhle of the rentury the monber and cirulation of Freneh newspapers had more than trobied. This rate has berm. in areat part. sustaimed throughout the hatter hatf of the century amd the Fremeh people are today abmadantly supplied
 It maty not have the solid and lasting inthener of the solerer onterop of other mations, but it is singularly mapted to a sprighty and merourial people, and is well sustentative of the groat polition tramsition of the peopia and empre sine the begiming of the ninatepoth eantury:
'the evolntion of the newsimper in liemany was slow. Between 1615, the shate of the fomming of the "Framkinter Jommal." amd 1ats. when the "Allgemeine Zeitung" (cienmal Nows) was fommed lị the bookseller Cotta, at Leipsic, no journak ot, a high order made thoir appearanee, and it needed the inspiration of the frenelh Revolution to heget in the (ierman mind a
desire for a livelier newspaper literature than had preexisted. Thus, the "Zeitung" soon sprang into great populaty as a purveror of news and as a medinm of disension, and has ever sine matataned at leading place in the German politioal press. It mot only set the style of the press at the turn of the century, lint proved to be a pionerer in that womerfin journalistie march which spreal over ull Geman-spaking comatries during the ninetenth century, giving to them mealia of news and disenssion as ablo and influential as exist in any lamd. By 1800 there existed in Germany propror
 :300; not to montion the many handreds printed in (icrman in other combtries, especially in the Cuited states. A proportionate increase would gratly angment the ahove figures by the end of the century. The rise of firman socialism proved to be a prolitie somre of jomamism. Tha socialist serems
 boh and ind pement thinker. Under the soemastio demand for a literature perentian to itself, there has arisen at seore of dimman printingentiones and |rethan tifty politian jommals, a thind of which are dailips.

In the Nethriambs, Belgiam, Demank. Norway, Sweden, Russia, Italy, Spain, Portugal, amd other European romutries the pross of the nimetermh century has kept pace with the mental nereds and spirit of ruterprise of the respective peoples. Inderd, there is mosurh an : wermate eriterion of the general makernp, of a people, of their phace in the limes of prorress, of their inthenee mun civilization, as that afforded her their press. The bolgian press is mimbly commerial, that of the Netherlands prosy amd substantial, while that of the seamdinarian eomutries is ruggele ancourate, and soblemuly inthential. The Russian gress, where free is desjotide and mprogressive. But it is so fregnently mader consorship, that it can hardy be side to rethect with any dergre of arrainty the pepular spirit of the empire. The Italian press is imdolent and casy-going, inaworate spiey ly suasms, of little relative influrnere exerpt as it has beren improved sine the mifioation of the Italian staters. spain is a c atry of is, (1010, (10) prophe, but has fewer urws papers and periodicals than the single State of Now York. Of Spain's 1200 papers, maly she are newspapers. Of the rest. :an are serientife jomals, mostly monthly, 1 (ho are devoted to religion, and :30 to satire, musie, poetry, art, ete. Barelona and Madrid are the great centres of journalistic literature. The political palurs are the most powerful. Iha reading pmblic of Spain is lim-
 copies.

In the New World the lemand for newspaper literature during the mineteenth entury has proven quite as strong as in the ohd World, and, in certain localities, even stronger. Even among the routhfal and tumultums repmilies of South America, with their large premanes of lower classes amb illiterates, there are few centres of importance that do not support respectable and fairly influential journals. The news-gathering and news-consuming spirit may not le so active as elsewhere, nor the commercial sense so aentr, yet the century bas laid the groundwork of joumalistic enterpise so firmly that future years can affiorl to build upon it with certainty. The same may be said of journalism in Mexico and the other Latin republies of North America.

In Camala, the entury shows a highly complimentary growth in ue.s. paper literature and influmee. (ireat pride is taken in acemmate and able editorship, and in that kind of management whith is best calenated to comvert investmant inte permanent and profitahle properts, What they lack on the reportorial, or strictly. ewsy. sile, they make nl in free, clean. and imdependent disenssion. The people are readers and, theretore, gemeroms supporters of the enterprises designed to supply them with their perionlical literatiore. During the century the newspapers and periodicals of Comandia inereased in mumber from a very few to 8(i2, as reported in 18:\%. Of thesco, si are dailies, $58: 3$ weeklies, 185 momtilies, 3 tri-weeklies, $2:$ semi-weeklins. 6 bi-weeklies, 21 semi-monthlies, 2 Iniur terlies. The largest eentres of eirembation are the provinee of waturio with noin newspapers and proiolicals. and Qublee with $1: 3$.
The century's gramest fiold for journalistic opportunity has heren the louited States. Here jonrmalism has developent with the greatest rapidity, expmplitiond

HENAAMIN FH:NSKI.N. its manifold features to the fullest extent, most suceessfully proved its inthermer as an alumative and civilizing agenes. Starting with the great and exsential bencomagement of fremdon. it
 of popmlation, in the marvelons artivitios rephiring interpommmatation of thought, in an intelligence which eomstantly wernited amirs of ommivorons realers, and in facilities for the preparation and dissemination of the literathre at eommand.

The hegiming oi newspaper paterprise in the Voited states was in
 spiees of benjamin Harris. It was desighad to be a monthly, and was printed on three sides of a folded sheet, cath vide being only eleven inehes long ly sevon wide. It was suppressed after its first issue by the colonial govermment of Massachusetts, thus restrieting the avemues of news to the foreign journals or lewal colfor-luonses. But the demand for home news was mot thas to be curnshed. There sprang up a medinm of eommunication by news-letters, such as then existed in England; and in 1704 the postmaster of boston mulertook to keep certain functionaries informed of the eourse of events by a priodical news-letter in printed form. This he called. "The Nows-Letter," a title which, with some, is treated as that of a newspaper: It was to appean weekly, and would be sent to subseribers for such reasomable sum as might be agreed upm. After a lapse of fifteen years. without eompetition, it han attained a subseription list of only three hundred eopies. A subsequent postmaster started an opposition sheet in 1719, called "The Bustom Gazette." Its appearamee caused him to lose his office, but
the rival papers continued to exist, "The News-letter" "If to the evaena-

 Mercury" at l'hiladelphia. On August 17, 1i:21, danes Pranklin sturted "The New laghand Comant." on which Benjamin limaklin lemmed the trade of pinter. Afte an existrme of seven years its pmblation censed.
 "The New Enghand Weakly Jonnal " succerded "The lioston Gazette " and "Comme" in 10:- "The Maryland diante," the lisst paper published in that colony, aprared in 1723 . In 102 s samuel kemer stated "The Linversal Instructor in all the Arts and sciences and P'omsylvania Gazette," at lhitalelphat. The following year Benjanin Pranklin bought Kemer's phat, and shortened the mane to or The lemushimia Gazette." The tirst paper in the eolong of Sonth Carolina, called or The somth Carolima Githette," was publisheed on January s. 17:31. Wa Nuvember is 17333, "The New York Weekly . Jommal" appeared as a rival to the "ciazette." In 17 abs the first newspaper appeared in Virginia. It was published at Willimusburg, and was called "The Virginia dazetto." In Ration (ioman
 phaia. All these poneer papres, with the exception of a few, notably "The 1'ennselvania (atzette" mader Fiamklin,

HOHT ME GHEEARY. Fiomaleq of "Nirw York 'ribimue."
and "The New York Weekly Jommal" muler Kenger, were merely news purveyors. or. if any opinions were expressed. they were in areorl with the authorities of the day.

After 15-1. the press of the eolonies hecome more independent and progressise, in obehbere to a demand for lieratme bearing upon the ghestions relating to the roming revolution. Now jomruals of the wrekly class spmang ul with considerable rapidity and, for the most parl. in oppusition to Eherhud's methenk of eoknial govermment. Among these were "The bostom ladepembent Adromate." started muler the anspiees of Namel Miams. in 1its; "The New Itam! Benston Gazette and Comitry Gantho man." in 17.in; the "Newport (R. I.)

Sy 17iti, the eommenement of the struggle for independenee, the colonial press mombrem thity publications, all wrokly. Of these, suen were published in Massachusetts, one in New Hamphire two in Rhode Islanel, three in Compericut, eight in lemusymaian and three in Now Souk. In the first rear of the war eight :new werklies were aldeel to the list, four of them

acliaalter, cekly carted 1 the rused. "ttr," " and ished "'The C (inought ette." olimat - The III d at mana lacin. -flio iklin. mal" pinr(exh the onies gres-litcr-relaNow י י ir the and's mong indent ens of Sew " The (antleli. 1.)
lonial pulthrero - first them "The

Giantle", appared in Now Jersey, and in $1 ; 81$, the tirst in Vermont, "The Gaz"tte or Cireon Monatain lost Boy." Such was the fatality overhanging the eolomial press that, of the sixty-three newspapers which hat come iuto existence prion to lixab only lowth-lhere survived at that date.

From 1iss!, the date on which the Comstituion went into operation, till the close of the eighterenth century and anly beginning of the nimeternth, sevaral mewspapers were fomaded, most of which were ardently polilical, and, though employing writers of ability, were litterly vituprative. The most powerful of this class were "The Anroma " of Ihiladelphia, deffersonis leading organ: "The Evoning l'ost " of New York, the organ of the lowlematists: and - The American Citizen" of New Jonk. ann organ of the Clintonian demorvary. The close of the wighternth century witmessed also the advent of the press in the Mississippi Valleg. "The Centinel of the Northwestern Territory" was started at Cincimati, November! ! $179: 3$; and "The Sicioto Gazettr," at Chilli-

JOISN W. FORNE:. Fomader of "I'hilmitelphian P'resn." cothe, in 1796.

The purss of the carly part of the nineterenth century grew mapidly in mumber, cireulation, and influence. While it was largely partisan, the tich of discussion gradnally broulened. and the news departments became more vivacions and comprelansive. Many of the newspapers fonuded during the first decales of the century exist at its close, hising anjoyed their long careers of intlucnce with honor, and become properties of incalculable value. During this period the transition from the wrekly to the daily newspaper gradually went on in the lange cities. - The first American daily paper, "The American Daily Advertiser," was puhlisherl at Philadelphia in 1784. With it came the first use of reporters, or recularly employed newsgatherers, an imovation as important to the publie as the advent of the daily itself. Special, or class, newspapers also began to get a firm foothold during this period. "The Niles's Weekly Register" appeared in Baltimore in $\mathbf{1 8 1 1}$. The first religious newspaper attempted in the United States apmened at Chillimothe, O., 1814. The first of the agricultural press was "The American lamer," which appeared at Baltimore, April 2, 1818, to be followed by "the Ploughman." at Athany, N. Y., in 1821, and by "The New Fanglan Farmer," in 1se2. Several strictly commereial and finaneial papers found an origin in this period, the most surcessful of which was "'The New Orleans l'rices Current." established in 189?.

During this period the newspaper, whether daily or weekly, was distributed only to the regular subseriber, - the price of a single copy on the street being prohilitory. The slow-going mail faeilities of the time prevented the large eirenlations that are credited to modern journalism. Prior to 1833 no leading
newspaper romht throw snfficient enterprise into its business to raise its circulationabove athol cיplies. This kept the price of alvertising low, and eonsequently limited a sonren of protit which has since grown to enormons proportions.

The perioh enled with the advent of the pemy press, in New York, in 1833. The initial experiment in this line was male hy II. D. Shepard with his " Morning lost," and it proved a fail-

HOBEPII MEDIII.
"('hicago 'libime." ure in the short pertorl of three weeks. The uest was "The laily sum," September 2!3. Is:3. claiming to be "writtell, wlited. set up, and worked off "hy Benjamin Franklin Day. It remanorl a penay pay for a long time and attained i, large cirentation. It was reorganized in 1stia, when Charles A. Dana became its editor. 'Though the price was putup to two cents, it brame mader his eontrol one of the most potential news and political dactors of the wentary, and attained a cireulation of aver los,owo copies daily. In May, 1835, dames (iordon bemett followed in the tracks of Day with "The New York Horahle." Its sprightly news columnsand fantastic advertisements commendel it to pepmiar favor, and proved a sonere of great profit. It has since greatly varieal its prices: but by dint of stupendous. if peenliar. enterprise. it has grown into phormons cironlation, and bremme a property worth millions. In 1841, Horace (iredey started ". The New Lork Trihme." at tirst as a perny papre, though on an elevated phane. It soon grew into popmlar favor, and with its werkly and semi-weekly editions for conatry eirendation herame one of the most widely cireakated aml inthential jomrals in the comentr. "The New York Times" also began as a pemy paper in 18:I. under the control of Henry J. Raymond.

While the era of a disthetive and poumar pemny press was short-livel, it witurssed one of the most notable advances of the century in journalism. It stimulated newspaper enterpmise throughont the entire country, and journals multiplifd enormomsly. The era practically ended with the ontbreak of the Civil Wiar in 1shl, whieh event cansed a rise in the price of paper, a demand for expensise rorrespondence, tehgraph news and battle scemes, and a ronsequent neessity for onlarged and qualrupled sheets. Many of the pemy papers went up to a five-cent priere moler the stimulns of war excitement, the improvel system of wolloteting news, and the added expense of publication. This era of phommal news paprex exansion extemded even to the end of the century. It has witnessed the womberfne exolation of
 paper ; the growth of the daily sheet to mammoth pronntions; the inem: poration of the Assomated Iress, with its thousamds of agents in every part of the comatry gathoring and sombing the minntest events of the day :

$R Y$

its circulaisequently ortions. k , in 1833. 1 with his vell a failree weeks. Sma," Sep be "writsed off " by t remainerd me and atIt was reCharles A. Chough the s, it became he most poctors of the reulation of lu May, ett followed "'The New tly news col:ements comr , imad proved It has since mit by dint of circulation, wley started 1 in elevated semi-wrekly ly eireulated " also begans nd.
s short-livel, n journalism. try, and jourthe outbreak rice of paper, hattle scenes, ets. Many of mulus of wat maded exprense extemided evin 1 evolution of Sumblay mewsnas; the ineor rents in every ts of the day:

HECOID BULLDING, PIILADEIIPIIA,
correspondence from exery quarter al the ghobe, and cowering every hell
 enlarged, more ative and mone conserientions reportorial staff: the woming of the interviewer, at first mm improment pest, but how recuguizel as a
 wise ohtamalle; the raplayment of the thomsand and one new aphaneres for printing, surbis stereotymg. elentrotyping, impowel types, typesetting marhines, tapid presses. folding mathimes. ofe.

By 1ssis a wartion came on in the prives of loming journals, ame they were foreed to relue them lay reasm of the strong romptition offeral by the mumeros and powerful two-e int jomats which hat come into being and had proven to be valuable pronertios. lumerel, this ration did not
 to a mement hasis, with the chaim that a comserfently inerased eirenlation would enhane the profits from alsertising. This claim is a debatable one, and it may tee safely saitl that must of the newspapers established near the rom of the century havi whoperl a twoment hasis as a gohem mean between the one-rent and hrer-ment jommals.

Propertionally spaking, the arowth of the press in the Cuited states has been as even as is has heran ming. No leating rity is without press establishmemts and promibent journals, some of them combuted on the largest seales of expenditure, - the West rying with the East, and the Sonth with the Sorth. in linerality and momperise. The newspaner ofline of the early part of the rentury wats pemerally dingy and rampeol. The abode of many. espurially in the larger eities, hats beeme a hamesome pild, ponspicmons in arrhitertural effects, capacions and elemuly, - fitting hive for the myriad of workers that toil at midlay and midnight in pursinit of the "art preservative." The ammal expentiture of a single newspaner operateal on a large seale has luen thas computed: Editorial ame liturary matter,

 ulation, esperially if a emonty-seat, are withont their workly mewsparis. It has beeme prisible to combet a mand werkly of fair propertions and with fuite reabahle matter upen a wory emomie hasis, by mans of a central ofliee in some large eity. This ofliere prints and supplins to the rural oftiers, of which it may have humbreds on its list, the two outsind pheres of a werkly. learing to the loeal otlice only the duty of smplying and printing on the inside prenes its momestic mows.

In the number of its newspapers and perindieals the linited states pasily leals the worl. Goly apmoximate figures for the elose of the century are
 newspapers and perionicals, while those for other romatries which report are

 States newspapers and periodicals, the following sthulivision anmans: !ailier,

 The states in which ower one thonsamb newspapers and periodicals are printed

 and prionlicals between om and hom, are, lowa. with !iss; Missomi, with

 Wiseonsin, with mat ; Mimessta, with int!.

The conturys newspuper literature in the "nitel States has been further whanderized by the introdurtion of the eome feature. The comic newspaper (ame into being abmit the midelle of the eentury, but did not strike a practical minded prople with favor. It was mot until the century was well romuded out that the cartomist's and jokers art came into suthiciont demand to make a comie newspaper a commereial surcess. Even now their namber is limited to a wery few that can boast of permanent sumess.

The daily mewspapers of the latter part of the century lave not been dissualed by malior attempts to make illustrations a comspienons feature. On the contrary, newspaner illustration has grown to the proportions of a special
 ments into which are gathered photographe and mgravings realy for reprodintion as revnts demand. So the correspoment and reporter have added to knighoned of the prin that of the eanurea, and the senic view has become an assental part of serions correspondence and sprightly reporting.

An immense, imposing, and highly usefin rarrent of literature flows through the magarines, which have, by their momber, beaty, imd alaptation, rome to he a distinguishing feature of the ninetemth centmy. This elass of literather is usually called \cdot Ireriodical." and it embraces the magazines and roviows devoted to general literamre and spienee, the elass magazines devoted to partienlar bunches of scionere, art, or industry, and the publications of
 are monthlies. The same is trme of those pmblished on the contiment of Purope, siow that there the old-finh homel puaterly style is still mueh alfireterd.
 what is still the organ of the Fremeh Aeademg. The tirst English perioolical was pmblishod in lisin, amel was hartly more than a catalogue of books. The grow th of the prombical er magaine proved to he wery slow. Up to 1800, not more than eighty had fomm mentionable existemer as soinentitie and techical priondials, and only there as strictly litemery prionlions. The adsent of "lhe bilinhurgh lieview." in lase. gave great imperns to prombeal literature in Grat hritain, ame the priod from 1 sito to lsine was one of special develop-
 rano into vogue. This class of literature also develoned wery mapidy in
 There was an equally rapid development in diomang. Anstria, and throughoat the erostinent.

The liuglish magraine fomm seymal imitators in the Cuited States during the latter jart of the eighteenth rentury: most of which had brief existences.
ho erntury and and total of 20,469 hich report atre -inen; Anstriaitzertand. firt: x! $1 /$ for [rinterl Inars: Bailies,
ditates emsily

3 every field nip; a greatly \because the coming cognizerl as a uts mot otherew andianeress *, typesetting rals, and they ion offereol by ne into being ution din mot ol that elass eased direulatis a delatable tablishard near golden man

Chisted states without prows lueted on the East, :and the W: rimix.l. Thue nambisme pile, itting hive finr pursuit of the [i]ur oreriated terary matter, orrespominemer,

a has rome ly -ין 1y mexs. Cions and with al rentral oftiene ural oftiers. of s of a werkly. rinting on the

Such was the fatality overhanging this elass of enterprise, that until 1810 hut twenty-seven periodicals conld be counted in the United States. While the mext forty yenrs were marked by several magazine suecesses, suld as the "Knickrobower," " Giahm's Magazine," and " Putnim's Monthly," they were, nevertheless, strewn with long lines of melancholy wrerkige. ladeen, it was not matil the midale of the century that the demand for magazine literature beame sutficiently intense to make investment in it profitable and permanent. Since then the developnent has bean almost phomomenal, keeping even pace with that of the nowspaper. At the end of the contury the muber of monthlies published in the United Statess apmoximates 2800 ; and there
 the vast domans of general literature, religion, serence, art, and industry, and in many respeets vie with the newspaper in popularity and inthumee. Many of them have developed into magnificent properties, whose value would aprear incomprehensible to mur grandfathers. They emplor exeellent talent when spuedial topics are treated, and rise to occasions of war or uther exeitement through graphically written and highly illustrated articles. Indeed, one of their most impressive features is the high dagree to which they have earried the art of illustration. Toward the elose of the century, perindieal litemare has been greatly expanded and popularized by the introunction of the eheap magrame. The odder and more dignified perionlicals had not thought of permanent and profitable existence at a price less than twenty-fise to fifty ceats a copy; but those of the younger and ten-ernt class. by dint of what seems to be a newly disenvered enterprise, have fomul chatipess mo barior to commerrial sueress. Within a derade they have duplicated patrons of magazine literature by the million, and proven quite as clearly as the newsparers lave done that we are a nation of realers.

Jimes l' Boyd.

THE RECOKDS OF THE PAST

Tur: present eutury has so many distinguishing features that it is a hazardons undertaking to sammarize its achievemments. All branehes of seience - Ihilology. History, Mathematies, Medicine, Theology, and Pholosophy have felt the stimulating influence of a new spirit that made its appeanamee after the French lievolution. New methons of investigation have not only led to profomi modification of views in all departments of seienee, but have bromght ahont considerable additions to the smm of human knowledge. In the domain of natural science, the diseovery of new principles amd of hitherto maknown forees has widened the horizon of hamanity and ereated new mental disciplines; but while prohaps less comspienons, becanse not so directly connected with the actual concerns and needs of the present, the fertility of historical research thring this century is not less remarkable. The larger area now embrawd muler the caption "history of mankind" furnishes the best proot for the success that has signalized the labors of selolars - philologists, histomians, ame explomess - devoted to the study of the past. Ancient history no longer hegins with the (irreks or the Hebrews. Its certain limits have
 supplementing the work of the historian, has furnished a pieture in detail of the life led her man in varims quarters of the globe during that indefinite preriod which preceded the rise of culture in the trate semse of the word. This extension of knowledge in the domain of human history is primarily due to the spade of the explorer, thongh it reguired the patience and ingenuity of the philologist and arehieologist to interpret the material furnished in abundance by the soil that happily preserved the records of lost empires. Docnments in stone. clay. and pipyrus have been bought forth from their long resting-phees to trestify to the intiquity and splembor of human culture. By the side of written records, momments of early eivilization have been dug up, palaces, forts, inul tomples tilled with works of art and skill, to eontirm by their testimony tha story preserved hy those who belonged to the age of which they wrote.
 during this century have definitely established the fact that the earliest eivilizations Homrished in the Valley of the Euphrates and in the distriet of the Nile. Intil the beginning of this century. Egypt, Babylonia, and Assyria were little more than names. The spirit of skeptieism which aceompanies the keen desire for investigation leol scholars to question the tales fomm in elassieal writers of the great indievements of the Babylonians and Egyptians At the begiming of this century seureely a vestige remained of the cities of ancient Mesopotania. The site of Ninevel was unknown, and that of Babylon was in dispute. A profonnd sensation wis ereated when, in 18.2, I'. E. Botta, the French Consul at Mosul, discovered the remains of a
palace beneath a momul at Khossalad, sume miles tu the" north of Mosul on the east bank of the Tigris. Botta's discovery marked the hegiming of an activity amb explonation in Mesoputamia which eontimes to the present day. At first the exeavations were confined to the

THE " HI..A'K WHEI,INK" OF NIAL. MANFNEH IT. KINU OF Assvted.

(British Museum.) momals in the north, in which the pralaces of the great Assyrian kings, sagom, Lisarhaddon, Sembeharib and Asmbanibal (me Sardanapalus as he was called by (ireek writers) were unearthed, as well as the great sarred edifices that formed one of the glorios of ancient Assyria. The hildings exhumed abound in long series of semptured slahs. on which are deppicted incidents in the canpaighs of the kings and in their private life. Itistorical reeurds on stome ant chay furnished the uneded details in illustration of the srenes, and lastly. literary remains in profision were found, which revealed the intelleetual life and religions aspirations of the masses and of the secular and religions leaders. Tor Eughand and France belongs the glory of these early explorations. Throngh Botta and Nir Austen Hemry Layard, the ancient eities of Ninevel. C'ilah, and Ashur, were rediseoverel. But as the field of artivity extemed to the momuls in the south, in the Valley of the Eiphatates, other eometries, notably Germany and the United states, joined in the work. The excavation of the remains of the eity of Babylon were first conducted by sir Ilenry Rawlinson in 1854, and much work was afterward done by Hormuzal Rassim; but the most notable achievements of recent years are the excavations romblucted ly DeSarzee, mader the auspices of the Fromh Govermment, at Thelloh, from 1881 to 1895 , and those of the University of Pemsylvania at Xippur; bugum in IS88, and which are still going ous.

Through these expavations the history of Babylonian has heen carriod hack to the fourth millenimu n. r., and while there are still some important gips to he fillol ont, the comser of events in balylomia and Assyria from this remote perion down to the year $\boldsymbol{\text { ons }}$ n. c., when Cyus the Mede estahlisherd it new empire on the mins of babyoniatand Assyriat is tolerabl? deat: Hand in ham with the exeavations has gome the derejherment of the inseriptions fomul in such abmulamer lwouth the momils. On eliy, stone, and metals, polders inseribed records of their reigns; and added to pictorial
of Mosul on iming of an present day. ufinel to the he palaces of m. Visarhatbial (ir Sar(ulk writers) groat samed lorios of allumed aboumal bs. ont whith prigus of the Ilistorical al the neridel s, ated listly, were fount, life and relind of the seeFugland and early exploInsten Ifoury nevel. ('alah,
But as the ununds in the haites, other I the Uniterl ex exaration Babylon were Rawlinson in erwart done most notable e the excavimler the ansat, at 'Tellol:, f the Univerinf: hegill in sil.
he listory ol to the fourth are still same the course of ria from this is: It. c., when ew empire on iat is tolerally erment of the In elay, stome, ed to pictorial

 brokelit.
illustrations aceomes of their ar hirermunts in war as well ar in the internal
 the melimury writing material both in Bahylonia and in Asseria, and in the course of time an extensise library, ombraving lymus and prayers, omens and pertents, "pies, myths, legruls, and ereation stories, arose. In every important centre there gatheresh inomud the temphes barlies of priests devoted to the preservation and ti," extension of this literature. Assyrian culture being but a: offs!one of the mivilization in the sonth, Assyria resped the benefit of the litemay work acemplished by the seribes of Babylonia, and the most extensive colleation of the literary remains of Babylonia has rome to us from a library colle ered throgg the exertions of Asurbanibal, and diseovered in 1819 by Latyard in the mins of that king's palace at Ninevol.

The basis for the decipherment of the emeiform inseriptions, as they are malled from the wedge-shaped chametros, was laid by George fo Grotefend mally in this century, whose systion was further worked out with great ingemity hy Bilward Hincks, Jules Oppert, and Nir Henry Lawlinsm. These pionerss have ine sucereded ly a large coterie of seluhats in all pats of the world, who are still busy stulying the large amomet of material now forthcoming for the elucilation of the past. Not merely have we learned mueh of the pmblic and official events and religions idens and constoms during the period covered by the Babylonian and Assyrian Fimpires, Int through thonsamds of little clay tablets that formed the legal and commereial arehives deposited for safe keeping in the temples, an insight into the life of the peophe hats been oftained, of their ocenpation, of their business cuterprise and eommoreial methods, and of many phases of social life, such as the position of women and slaves, of the mamer in which marriages were contracted and wills drawn up. P'erhaps the most chameteristie feature of the remarkable rivilization that arose in the Vialley of the Emphrates is the domination of the priesthowl wer all exerpt the pracely political interests of the people. Thus the priests, as scribes, is julges, ar astrommers, as physicians, brought that rivilization to its high degree of excellence, while umber their guidanee, likewise, the religion of the country developed from a crude nature worship, to an approach to a momotheistic comeption of the miverse. The heir of the Bahylomo-Lssyrian empire was Persia, which, from the days of Cyrus till the adwent of Mexander, swayed the fortmes of the ancient world. In all that pertaius to ant aud architerture. I'ersia remained largely dependent upon Babylonia. Extensive exeavations comburted at susa by Dienlafoy, about ton years ago, and quite recontly contimed hy M. de Morgan, have proved most surerssful in revaling the germeral mature and interior decoration of the great magal pabare at that plare. In brilliant coloming of the brick tiles whieh. as in labyonia, former the common buiding material, the borsians passed beyom the Baloghians amil Assyrians. Oue of the most interesting rooms in the Lomure it laris is that devoted to the exhibition of the eolored wall derotations from the pabere at susa, representing such varions desigus as a procession of archers and a series of lions. The colmons still stambing at forsepolis have long beon tamons; and it is here likewise that the first rmeiform inseriptions were fonnd which, conchad in Persian, Median, and Assyrian, formed the point of drparture for the deciphement of cumeiform seripts.

Eomman Reseanoles, - The eivilization of begyt rivals in age and grandeor that of \therefore 品ylomianad Assyria. Here, withesses to the past that survived in the shape of ohelisks and pyamids gave selolars in this eentary a good start in the work of murabling the fasomating narrative of Egyptian history. Notwithatambing this, our present knowlenge of the history is dhe bargely to the remakable series of exavations whela have been eombeted in Upirer and Lower legyt sinue the rarly devales of this century, and which eontinue with malated activity at the presingt time. 'The stimmlus to Egyptian research was given by Napoleon in bas, who, when setting out
 wiht the task of stmolying and prepring fin pmblication the remans of antifuity. The result was a momumental work that forms the fomalation of manderin Egypulugioal studies. Another direct outcomen of the "xjedition was the discovery of the limmons Rosetta stome, in 17!日, whirlh, containing a heroglyphe iuserigtion arempramied by a dreek transhation, served as the hasis for a tristworthy systom of decipherment of the andent langate of the Sile. The Frenchuan, dem Framois Champullom, and the Euglishman. Dr, Thomas Voug, share the lomor of having fomad the key that mulocked the mystury of the hierog! Batyonian arehabogy, soluere, exenvations and deripherment went hand in hamb. A few gears after the advent of Botta at Mosil, Mariette inamguated
 gevermant. Aknt the same time the dipman govermment sent Riehard

 the formation of the bigyotian Explomaiom Fimat, and sime that time a large momber of aties in Lower beght, in the Paymandistriet, and in Cpher legyt have bren meartheol. Sear ater your W. Flimhers Protrie, Edomard Savilhe, F. L. Grithth, and others have gome to beyt and rumedrelhy laden with material that has lomme its way to the Musimm at Ghizelh, the the British Musemm, to hostom, to New Vork, and to the Musamu of the V niversity of Pemselvania. The artivity of the fremel was comtimed after the death of Mariette, throgh taston Masperw. E. Gimhat. J. De.Morgan and E. Amelinam, so that the mass of material at present available for Exypohergists is exceedingly large.

The eities of Memphis amd Thetus have naturally cone in for a large share of these examations. Through the texts discovered within the wranids at Theles and the surrombling district, the history of the early dyantans was for the first time revalod. It Balas and Nagatian a stort distamer to the nuth of Momphis, the examations have bronght ns fiare to face with the indigenons ${ }^{n}$ ipmation of the Nile that mantane its primitive rustoms long after those wha fomuled the real Egyptian bimpine hal istablisherl hemashers in the eomatry. In the district of the Fayma, motaty aromol Arsinow, at
 and Crerk - were discovered, while in Lower Egyt the towns of Nank ratis aml Timis represent extensive Greek settlements male in Exypt as carly, at least, as the seventh century i. 1 . Throngh the magnifirent illustrations in the tombs of Beni-hassin, whirh have revently heren cirrefully erpied by English artists, almost all phases of ancient Egyptian life have heen revealed.

URI

in age and lue past that this cerntury of ligyptian istury is dure - 11 combluctat century, and - stimilus to a selting chit. ars ciltonstedt reluains of Commation of 10 "xperlition ll. coutainiug 11, served is. Whot lamgnagro ther Finglislıtho kiey that the rase of went hatul in e inalughrated if the lerebelt sent Rielamal dishment of at field through at time a largu Clиer leyt Ouaral Naville, ly laten with (1) the liritisla Chiversity of ftor the ileath lorg:an anil E. letrjpolugists

1 a large shate 10 ${ }^{16}$ Pramids at dyusstios was distanno to tho f:uce with the: - वustums long
 nd Arsinos,at
 is of Nankratis Agy an eally, it illustrations Elly ropied by - heen revealed.

Though dathig from the ehrenth and twelfth dyasties, the pinture that they afforl applies to carlier and later preriens ats well. 'thus, through the work some in all parts of the aneint "mpine, the links miting the moliest promb to the sway of the J'tolomie's and the invasion of the Romans hure bern determined. Womberful chapters, replete with interest, have been adhed to
 nearer to a sulation than ever before of that most impurtant problem as the the origin of the mysterions byytian cultures. We know for a motainty that when the Engptians came to the region of the Nile, they fomm a iertile district promated by a peophe, or hy gromps of peoplo, that had alrendy inale some progress on the road to civilization, thengh not yet knowing the usio of metals. The Asiatie origin of the Eigy pitans is mardeal as eharly establlished by so coment an archaplogist as M. De Norgan. though it is likely that his views will le stmewhat monlified by further researel. The infusion of Greek ideas, we now know, begins at a much carlier age than was formerly supposed, so that it luemmes less of a surprise to fimb, weol before the alvent of Alexamber, romsiderable pertions of Eigypt ahsorined by foreign settlers.

A noteworthy feature of archablugical work in Egy bit duriug the past decule has burn the disoovery of a vast anomit of payryi routaning long lost portions of Girek literature. The famms work of Aristothe on the
 most notable ammg these discomeries, and the sombers from whene these treasmes have come srem still far from bring exhansted.

Gumek Rows. - The mention of Gorek literature leads one: matmally to speak of the work done in this century in that hand which stands so mueh nearer to us and to modern enlture in general than cither Bablonia me Engt. While, thanks to the activity and industry of Greek and Roman historians, the revords of the inspiring listery of the Greek states during their mosit. glorins ejweh are well preserved, the earlier periods were cmedoped in dondt and obsenrity, while of the remains of Greefe, of her beantiful templess and her fimmons works of art, comparatively few vestiges remained above the soil.

The mest notable of these were the l'arthenon and the Ereehthemm, with their works of art, that stom on the A.ropolis, and it is previsely here that some of the most remarkable arrhandogimal diseoveries of the coutury were malle. The larthenon dates from that glorions proviol in the history of Athers which follows in the wake of disisters in the fifthe ebutury, when the Persians antered the rity and laid waste its beantios. The entiar Athens, which rearcheol its zenith in the days of lisistratus, has berel brought to light through the examations rombeted by the Grenks themselves. In isse a systematio excavation of the deropulis, muler the ansphess of the biredk
 Athenat that stow rlose to the monern Pathenom were diseovered, and mumerons works of att, statures. fraguents. pediments, hases and vasis, dating
 develonment of Athrian seuptare from the rough beginnings to the [urfertion that it warlem ia the hays of lhatias. The stepe of these earlier works differs tutally fom that whilh we had hitherth beron acenstomed to regard as the type of Athonian art, and yat even the rudest of the corlior

> stitt
uрi

$$
1+011
$$

int.
+1

liris:

$$
\text { in } \mid
$$

latte

inle

$$
1610
$$

stor

110:101
lnome
diffı
thor
hits
Inol
the
l'ill
L،!

> villi

> Itile

Ely
tak
lilui

> s-ln
'illit
: 11 l
thim
llol
the
Sor
Eir
Kell
shiri
:llul
sill
plat
to
Kויוח
1110
ill i
trib
ther
N+:
a st
No

10 pintare that they through tho work the amblest protionl lionuatis have larolt 1ativ been adiled to lome, we are much t probleman an the war a inctainty that "y fomme a fortile t haid already mate t knowing the use al an cloally eatial)thomgh it is likely surarels. 'llar intisrlaי口 agu than was
 hsorbed by foreign
th duriug the piast ri containing longr I Dristutla om the "e montioned as the "rom whener thexs

Is wile maturailly to It ittunls so milueh Bthyomia or legypt. Rebuan listorimas, during thour most. Puvelopred in aloult utifill temples anul loed almose tho soil. Eirentherinn, with [worisely how that the century were in the history of ith century, when Ihue cation \backslash theros. In brought to light Mres. ln 1 Nא: a iees of the lirook amerient l'emple of a discowsercol, and \& aml vatsiss, lating horl to trane the egrimingers to the le of these andior Poll acenstomed tu rlest of the riarlior
stataes possess alreatig some of that chatm which is so strongly lelt in tho

 af ill rows within the 'romphe of Athenat. It is through these fignres, dating fonm sarions probods, that we are lest athe to trace the evolation of direrk att. 'They are unguestionably votive off ringe, the gift of fathfinl lollowers of Athema, and, while intemided poobably us representations ol the genderes

 ionseatigations of mundrous selohats, among whom Eimst Curtios amd William
 stond on the Acropolis can bow la triecel in detail. l'lue ronstruetion of the

 the great brome statue of Dthenit, one of the master works of lhidias, stome
 problems of Sirem history have been solved. Livery ore kanws the story of
 lanthenon, and which in the early gatt of this eontury were bonght of

 thoughout Europe than anthing else. Evan the indignation whels loral

 Franco, dirmany, and the C'nitod statos to establish, in Athens, arehitectural shoobs where young areherologists may be tained, and whero experlitions -an be orgazial for the systomatic investigation of the momboms cities of

 tho work donr hy a \%alons (ireak, M. Carjanos, at Dodona, by the dreek
 Wretria amb at drgos. It Hympia the diseovery of the great 'Iemple to Zous. the grand theatire in which the famons games took place, the mumerons shrines rrecterl in honor of varions deities that bebong to the connt of Zans, and of lamareals of votive inseriptions commemorating the vietors in the games, have mahled selabins tor restore for us the ancient glorios of the place, and to trace the history of the saered eity throngh its perion of ghery to its deeline ami lall. 'Ther master work of antiguity, the golilen stathe of Zous made byy Ihidias, is, alas: forever lost. but it was at olympia that
 in itself was worth the million marks spent by the German government as a tribute to allecient fireece. At Delos and bijphi, the eareful work done by the Fremeh has alled to our material for tracing the eonse of Greek religion. Noxt to Olympiat there is, perhaps. wo phee in aneiont Greece which hand surd a strango hold pon the people as the seat of the great wracle at the foot of Mount J'armassus. 'the work at lhel phi is still progressing, but enough has
been found to justify the great repatation of this religions eentre in andient times. We can now traverse onee again the sacrod way loaling past mumerons buildings to the great shrine of Λ pollo, and to the rave from whieh the Pythian priestess whataned hor inspiration. Fewer works of art have heen iliseovered here tham in Oympia, though perhaps the soil still harbors treasures whioh the eoming years may reval.
'The worship of Demeter and the nature of the Elensinian mysteries arr muel rearer since the surerssfin exavations that were combeted at lilensis. 'Tanagra is of interest lncouse of the elay figurines, the manufacture of which was one of the specialties of ancient bientia. Thuse fignres, propared partly from religions motives, partly as a tribute to the deab, are valuable as
 for the thormgh mamer in wheh exavations have heen conducted hy it, and while the resinlts are not as striking as in some other piaces, so fumbamental
 the attention of ardaedogists for the past deade, hats been brought nearer to its solutios: through exavations at lifetria, At Argos a heal of herat was diseoveren, whieh is now brmons as ane of the hest specimens of the Polyeletilu sehool.
 mention of a ban whe exhihited siugular devotion and rare onthusiasm for the study of the past. Heimioh selhiomanm, by dint of individual effort, haid bare the remains of prodiremian civilization at Myeme amd Thyms, and, prompted by a theory which for a loug time provoked nathent but ridienle. devoted many years and a large fortume to examations at Hissarlik, on the coast of Asia Minor, which, he ledieverl, was the sereme of the Trojan Wiar. At the latter plawe mo less than nime eities, rreved ome ohore the ruins of the wher, have been fomm, but the theory of sehliemam which identified the serom layer with ancient Iroy, afterway known to the diverks as llimm, has luen shown to be false. It is the sixth layer that represents the ruins of Homer's froy. At the same time, it :mist be remembered that the Homeric ןwems, while based unom historic events, are not history, and the attempt to test their supposed historical arenracy ly the resuits of excavations is mow regarded by (irerk students as fintile and mascientific. But this view in mo wity diminishes the eredit dor to sehlimman, who not only did more to stir up pepmar interest in aneinut firecee than my other man living, but has illuminated the early chapturs of direrk history which were almost makown to the seholars of this century. It mow apurats that lhomieian traders, settling on the const of Asia Minor and in districts aljacemt the ishands of the Agean sea and hartors, whidh fimmished a refuge for their shigs, gave the first impulse to (ireck art. and. althomgh they were ontlistaneed by their apt
 mure partienlarly in Gredk cults, down to the latest times. Apart from the alirect bearings of the examations comelacted in varions pats of Gresere upan the development of Gerek art, the most important results of the work ronsist in the vast increase of material for Greek history, which is now buing rewritten on the hasis of the many thonsands of inseriptions that have been fomed in the great centres of ancient (ireeres. As the work of exeavation continues, cach yar hrings its ghota of new facts, and it is safe to prodiet

ENTURY

wentre in ameient vay leading past "ive from whieh orks of art have soil still harhors
ian mysteries are dueted it Eleusis. manufacture of figures, preparea ul, are valuable as American sehool iducted by it, and s, so fundinuental nas beell engaging hrought nemere to nead of Hera was spreimens of the
(omplete without re enthusiasm for ividual effort, laid :und 'firyns, zunl, ught but ridicule. Hissarlik, on the the Trojau War. or the ruins of the uich identified the roks as Ilimm, has sents the ruins of that the Homprie und the attempt to seavations is mow nt this view in in" ly did mere to stir iving, but hass illuhmost maknown to :un traders, settling the islauts of the ir shijp, gave the anced by their apt © arelitecture, and

Apirt from the ts of (ixerem un if the work cousist hich is now lwiug mes that have berin pork of expavation t is saffe to predict
that the recovery of anciert Grecee will be moted in future ages as one of the most notable achicvements of the nincteenth century.

Phenician Ruins. - With Egypt, Babylonia, and Greeee we are still far from having exhansted the field covered by areheology in this century. At ('ypurs mueh has been done by Lohr, Casnola, and Ohnefalseh-Richter. The

THE SO-CALLED SARCOPHACBE OF ALFXANDER THE GRFAT IS MABBLE FIRGM MOLST PENTELIKUN. ABuCT B. C. 320 .
(Imperial Ototnan Museum, Consiantinople.)
eities of Cypros are interesting as forming a merting-grommer for such vinions civilizations as Phanician, ligyptian, Iroto-ireetin, and to a limited extent Babylomo-Assyrim, The resmlt is a curions mixture of art and of equally strange syneretism in religions rites. It is one of the disappointments of seholars that we as yet. kuow so little of the Phomicians who phayed such an important role in history. 'The traces of this people of wanderers and
murchants have hern femm in tumbs and rotive inserjptions thenghont the
 in Sicily, Malta, Asta Minor, Cypus, Crete. Italy, and even Somthern I'raner;
 sematy remains of the important ritios of Sidom and Tyre, which onere flomisherd on the const of the Moditerramem. 'Ther fater of these aitios.

 and surf swaty exemations as have herem umbertaken, the most motahbe of
 of hathe valure Tombs haw beron dise overed. hat only few of them Indong to the Phenimian prome in the propre sense. The sareophagns of Eshmmazan,
 momment and of great historical iminitames. liut the mast remarkable final
 Bey mader the anspiers of the Turkish gevermant. In the nemopolis at

 in forreign soil.
 reeollections for milhons. has been chaty of yidhling up, the treasimes which
 a stome was iomul in the land of Noab which commemoment the vietory of

 one we use is at direct sureresor. At Jornsalem at single inseription. Indonging
 This paucity of arrharolugial returns is mot due to any lack of interest in reenvering the momments of ancient Palestine. In (iamany and Bugland, sociaties fur the explomation of l'alestine have bean in existane for the prast twenty years, and murl important work has beron dome liy them in making careful survers of the comntre, in idenifying ancient sitas, and in alding matesial to enve knowlolge of the geography of the emonter. The eomhinoid
 until reantly. the madertaking of axamations in the impertant enontres of the country, surh as Jemsalem. Simaria, bethlehem. Habrom, amd the like. is

 must important disemory of at comeiform tablet which belongs to the bil-
 disalpuinting. Liecontly Mr. Bliss has sucomoded in obtatining permission to
 ramefully the walls of the ambint city, hat matil this work is pmand tu tha "xtent of actually tigging dewn some forty fere latow the hevel if the present Jernsalam, it is mut likely that signitient disemempes will he made. Therre are geme masums for hoping that the than is net far distant whan systematio
 mandertaken in latestine. When that time does romer we may expert that

-KNTUK

ss throughont the sumhern spata.
 antherl, allul only l'yve, whisls whe (1) al these citioss, powers, is a stal - has disabyraterl. (: most motabla at " LNEI, hase beroll of them helonge to is of Eshmunti\%alr, er it most motalile it meluarkilble fine ars ago by Hamit the neroupolis at ging to the dirmols

:10, so foll of sarred lo: treasintes which the soil. In 18 oro. terl the victory ul the most villatile abret, of which tho aript ion, lwlemging the fund of Silanan. liock of interest in 1:1ny : and lughand, flence fir the patst. w then in making fies, ind in inhling s. 'Th' comhine⿻l ins has proverated. time rentres al the , and the likw. I the ancient rity of sse thin ten heyris bue puttrry and : wolugs to the liol-- have beron rather "ing ן"rmission tu Work hy trarimy k is pusherl to the - vel of the grusent In madr. Ther" t. W::ern systematit rourow will alsolx (1) Lisy expuret that
miny of the problems besotting sholents of the oh ami Now 'lestaments will tind their solution.

Hhorive Remsiss. - Areheology does mot only solve problems, hat trepuently raises new ours. Such it new prohbem is that of the Jittites. foring the past lifteren years, a farge serios of momments, many of them

Reay View

(Imprial HIoman Misenim, (Onslablinople.)

Samath. on the orontes. They all hetray the same art, and are areompanied ly inserptions in chametres to which the name littite has bern given. It is to be borme in mind that this term 1 littite is to a large extent a comentimal one, eovering a soribs of prophes that may have belonged to different ratrs. We hear of these llittites in the Asiatic campaigns of Egyptian kings from
 the Grontes, they gave the Assyrians a great deabof tronhle, and it was not matil the end of the eighth century that they were finally compured. 'Thengh

Allill OF TITLA, HOME:
we know a guon deal of the history of these Ilittites from the records of Egyptians, Pablonians, and Assyrians, their origin romains wrapued in ohsemity. The Ititite chameters have not got beron dreiphoren, although varions attomper of interpreters have been mande. 'The last of these is that of Irofessor bier densem, of the Vaisersity of Marburg, who believes that the Hittite loagatge is a prototype of the momern Armoniam. Athongh a
 Fonsen system, it cames be said as yet to have bern indinitely established. bar is it likely that a satisfactory kry will tre fomm motil a large bilingual inseription emataining a recorl in littite chanaters with a translation,
are ateompanied refl given. It is it a conventiomal 0 differont rawes. ptian kings from ing ant empite on le, and it wits not fuered. Thongh
 (4) 7 安

In the records of arins wrapped in :iphered, although st ol these is that who believes that nian. Althongh a anerpptanee of the initely established. I a large bilingual ith a translation,

IITTITL: INACHIDTION FBON IERUHE.

44 TRIUMPHS ANJ HONHERS OF THE NHTH CENTURY

 expeeted at any momont. Meanwhile, it maty ln satil that from an ethuelogival puint of view, it serms more phansible to regard the Hittites as a part of the 'Tumaian stork rather than helonging to the Aryan or somitie
 have more than hagm. The motahle serions of inseriptiems that rexall the
 sperimen of what we may expert when one those distant lamds are as

 exeavations. An insight has berem afforided into the publie and private life of the Romans which sumplements that wheh was to ber gained from the stmy of the elassimal writers. Finrope and Ameria have also lnen seized with the
 Holland. Switzerlam, North Amerima and somth Aumbina the kbowledge of
 the field of arroheolagy at prosent. that it is impossilhe for one persen to make himself lamiliar with more than a small seretion: but, on the other
 seatterem throughout the worth that thero is me work carried on in one
 (ionthe said of haman life may be said of areharology: "W"a ihr's packt, da ist's interessam."

da find may be that from :11n Lue Hittites ans an ryan or semitic arely be said to that rexall the regarided as a ne lamls are as aliterrahmall spat. ires of antipuity. han acterized the or aty of limar. le our know loolg l liot of direcere, al through thase mb private life of a from the stimy In soized with the reinn, lemuark. the knowledge of tion. So lange is or one persan to mit. of the wher lies of mankinl arried on in ma ny others. What No ihres parkt, dat
s.Jathow, Ir.

PROGRESS IN DAIRY FARMING

 tive of its bunches is dairying. To be suceessful, dairying repuires good julgment, knowhige of the relations of modern seidne to agrientratal produetion, coastant stuly, system, and close attention to details. Hence it is regaried as among the highest forms of farming. The orenpation is itself a stimulating and the wewards are so substantial, when brains and brawn are aphem to it in julicions combination, that dairying districts are commonly rompponoms as the most enterprising, prosperous, and contented of the rural (ammanities of their section of eometry.

In all bines of farming at least one "money crop" seems to be the aim, although this terim may inelude amimals and animal prolucts. A great disadsantage in certain kinds of faming is that the returns rome at long intervals, perhaps but whe at yar, while tho expenses are contimoms for twelse mumths. Dairying, as combucted liy modern methods, listributes the firm ineme thromg the var; the eash returns are monthly, of oftener, the proicioms ermit systom disappans, money cireulates, and at all seasons a halthy business antivity prevails in the whole commanity.

It is a moteworthy fact, that during periods of agricultural depression exprifuced in the United states during the nimetee:the epatury, the prodnets of the dairy have maintaned relative values aboe all other form products, and dairy distriets serm to have passed through these preiouls with less distress tham most others.

The grater part of this eomutry, geographically, being well adapted to dairying, this bumel of agriculture has always twen prominent in Ameriea, anl its extension hats kept pioe with the opening amd settlment of new territory. For many yars a beliof existed that sureessfill dairying in the United States mast be restrieted to narrow geographieal limits, constituting a "dairy lwit" lying betwen the fortieth and forty-fifth degrees of latitule, and extembing from the Athantie orean to the Missome liver ; and the troe dairying districts were folt to be in sepatated sertions oxernging mot more than one thich of the areat of this belt. These ideas have been exploded. It has been shown that goon huttor and phoese cam, by popper managment, be made in almost all parts of North Amoria. tionemaly spaking, good butter can low protitably produced wherever gool beef ean. Decided adrantages mumestiomably exist. in the climate, soil, water, and herbage of certain sections; but these inthenows are largely muler control, and what is lacking in natural emblitions ean be supplind hy tact and skill. So that, while dairying is intensifiol amd constitutes the lealing agricultural industry over wide areas, including whole stater, where the natural advantages are greatest, the industry is foumd well established in spots in almost all parts of the comery,
 " ra w farumbine comititons.

 along in the sinuternth century. The history of this imblaster in this come
 has bedn tenly remarkable. The wihe territorial extemsion, the immense

 and the industrial and commereial impurtame of the industry, have kept prien with the semeral matrorial propress of the nation and constitute one of its. beanling temants.
 farms was imbident to the gelleral work, the rave of milk ami the making

 low.

 and in some sertions datiry farming berame : spurialty. With the growth of

CVENTK

might lare comsintered
Iltur allul rharese atro a alolig the Jtlattiafinming. Ititiving. ny ratrut until wroll dinstry in this comb"ry. 'This, poyrores
 tho ghat inghowno
 of m:amfiat ture, the neramer in quantity.
 onstitnte onfe ul its
f arows on Smerivials ilk anul the making: f the lounselliold. the :f the prowlucts was リ, moneseribablhe hered af "ge singly. alhome loy
 al moversally in the Hunn or curly winter. xerpting the pisture ally. ferl and $\left.\right|^{\text {montly }}$ k was ushally set in (") rise. little altertHer, or to turnlerating phons of milk ofterner 8
 ill carthen cotreins of
 ar the companatively wr wrokly, allul writ. Hition was to " parck " hue rlatese ateromulalite How or wice atys. of butter atal rhoress ingle finm varied in Helmbintalers. Fivery Burfits. Irberes worn

- IIf to the minlille of attle : :lal : With the growth of

a tipical dahey faik.
thwns and eities, the husimess of milk supply ineronsed and butter methums prevaled. Hutter-making for home use and local trake, in a small way, was commom wherever cows were kept, and in some phates there was a surphes sulficient to be sent to the lage markets. Vermont and New Jork berame
 of this name in New Vork, Vimmont, mal Massuhusetts, was kimwn thromgh-
 from Sow York, was still mure extensive. New Vork, Ohio, and Northern
 so mulh it excess of domestie demami, that cherese experts from the United States, mainly to direat liritain, beeme extahlished, and rauged from three to seventeron million pomils a year.

The twonty-fice yars following 1800 was a period of remarkable artivity and progress in the dairy interests of the eomatry. It first, the agriculamal "xhilitions or "eattle shows," and the entuprise of importers, thered altenton towards the improvement of farm amimals, and bereds of eattle sprevially
 hargmen. Then the early efforts at eniperative dairying were rerogrizerd
 institution. Gure fainly started, in the heart of the great momer-making district of Sew York, the fartory system spread with mowh rapidity. The " war perion" lent allitimal impeths to the forward movement. The loreign demand for ehoerse grew fast, and the priser, which was ten cents per pomm
 in 186.5. There were two bherse factorios in Gheina Comety in 1siot, and
 and in istif thare were bon factories in Now York, besides some in ohin and

 coobprative or factory system practically superseded the manfacture of
 the milk of cream eollected from mumens firms, som followion the rhe ese fartorios. Sinch are properly butter factories, but the name of "creanery" has come into groneral nse for an establishment of this kind, and seems malikely to change, Placing the real hegiming of cherse factories a a a sys-
 Orange Comety, Now lork. In Illimois, the tirst chersie fartory was lmilt in tsian, and the first creamery in 1810 a ; in lowa, the respective dates were 1 sin; anll 15 a 1.

Ther offert of these industrial establishments, comparatively new in kime. is to transfor the making of buther and eherese from the farm to the factory. Driginating in this comatry, alhongh now extensively alopted in others, the gemral phamay be ealled the dmoriean system of assoriated dairying. The
 it is in this form that the system has msablly axtembed inte new territory, whether for the prowhetion of matter on chacese. The row owners and producers of milk reioperate and share, 川men any agreed basis, in organizing. lmilding (perhaps), equipping, and manging the factory and dispusing of its pronlowts. Amother plan is for the plant to be cown by a joint-stock erom-

\therefore NTURY

Incterer methenis small way, Was 4 was a sturplus w Vork berame " from comitios known thromghionsluy" Mutter, a and Nurtherin ctal simply was From the C'niterd igiol from thire
arkable activity the agrienltural ins, turned atter cattle spuriailly in the fatcor of were reargnizad 10 all extablishoen rose-matking dis. mappichity. Thu 3it. The foreign ceats jer jomad r rents amb over ty in 1s.it, and juining eomitios, ome in Ghio and comentry in 1sijo, in that time the mannfacture of qualutity, from howed the cherese: of "ereamery" ciml, and seems letories a a a asysarted in isisil. in tory was built in dates were 1sti;

- ly new in kind. III to the fietory. ed in others, the 1 dairying. Thu ve concerns, and to 1 new territory, owners :anl pros, in orgamizing. dispusing of its joint-stork comb-
fally. composed largely, if mot wholly, of furmers, and milk or ereatu is mended from any satisfactery prodncer; the factory may be allowed a wer tain rate of interest on the invest ment, or may charge a fixed price prer persat for making latter or cheeses, and then divide the remaining prowe ofs pro mon anording to the man materiad supplied by its "patrons." The proprietary phan is also common, twing managed much like any other fartory, the prio printor or company buying the milk or erean from the promerers, at prices muthally agreed mon from time to time. . Dud all these phans have their variations and mendifeations in pratioe.

The third gharter of a century was also a periond of mpreerented pro-

gress in the applination of mechanies to the datiry. The factories and arameries required new equipment, adapted to mannfacture mon an mo larged scale, and "phal attention was paid to the improsement of applianoes for farm dairies. The system for setting milk for erraming in deep cans in cold water - preferally ice-water - was introduced from swolen, althomgh the same principles hat luen in practice for generations in the poring homses of the South. Smmerons creaming appliamers, or ereamers, wre invented, hased \quad pon this system. Shallow pans were changed in size and shatpe, amd then almost disappeared. Butter workers of varioms mondels took the phare of bowl and ladle and the use of the bare hand. Churns appared, of all shapes, sizes, atml kinds, the general moverment bobing towards the abolition of dashers and the substitution of agitation of eream for violdat hating. Alwint this time the writer made a seareh of the Vaiten

 this lime. It was almitted be all that at this perion the I'niterl states was
 merobantical aids to mairying.

 was cast of ladiana, aml aroordingly the Suthwestorn bairymen's Assu-

 Jowit (Ixitis, and other states torek the place of the pionerer serelotios which rovered wioler trritory.

 still fombl in prosprous dairying districts. This was the periond of greaterst artivity in importing improved eatthe from abroant. Ihat Shorthorms hase
 exclusively on that lime, and they are wo longer elassed as dary vattle.

 ment of its mileh eows. The first two maneol are moted for giving large quatrtitios of milk of merlimm quality; the whom two breds, leoth often misalleal ". Dhbranc:" give milk of exreeding richorss, and wre the favorites with buttre makers. 'There are alsu the lirown swiss and simmenthul rattle from

 cows are kept for dairy propeses. 'The quality allal prondaction of the arerage

'The development of dativiag in the linime states dming the elosing
 "vents of the preatest conseguene in the ather history. The importaber
 the application of contrifigal foree to the separation of arean from milk.

ANTiAs

urty or titty wow reting alunt onn very tifteroll days of inverition in niloul Ntatem wam -xיillonero of its
in in vohmatary mation of elulis mamame of the riu. 'Thu Ameritield of activity Dintromen's Assor 1 existrume, held twelve or diftern Vimmont (18: 11) - Illinois (INi.4), r soricties which
ried mattle to the is yater, impurtenl raillos formed the rik were built il St of this homed is merimal of greatest Shorthorms have or them is :hlumst 1 us dairy rattle. Ifollami, and ders reerognizerl as of - Inls lor imprower giving large quanthofton miseallom he fivorites with Inthal cattle from olled eattle from mather to what is whis interested in lave beren forment rers of herolduwis. inel in mernly all (1) fumal whereser ion of the average
wing the closings l. and marken ly There impertanur. 1ted. 'flur tirst is cream from milk.
 of whatever impure matter may hate enterom the milk, sum gravity heing

 atcly after milking proferahly while the milk is still warm. 'Tloe cremm "an

 available for use while still .amb, ynite sweet, and int its last combition fine

 thes wholly removed from the daties of the homselohle. I rasmal pran is to have a " skimming station," to which the milk is hambed at heast datly from the

 part of daisy management, and altugether has worken at revolution in the ins. duster. 'Fhe centrifugal separator is still a marvel to dhase when sere it working fine the first time : the whole milk, wam, llows into the wenter of a strong
 times pric minte, and from twoprojeeting thbes arean and skim milk flow in

 different sizas, are a dable of thas skimming or sepanating, or more bropery

 Inited states.

 the able rhemist and datiry inventightor, diest of the New Surk Ntation ate

 them from two lo lorty samplos uf milk may be tested at one in a fow mom

 sure ul value for milk for mealy all pornosus. the lialmosk tost maty be the hasis fur rity milk inspertion, for tixing the prion of milk deliveroil to rity

 dhe daimynan may prove the puality of milk fron his differont eows, amb

 test is ungrestionerl, and it is of the highest soiontitie value. It shombline
 a viry small myaty, this piroless invention and lmon to dairying was fremy given to the publice by Mr. Balnenck.

 short milking primh, almost limited to the pasture seasom, it yields a emombe atively even thow of milk diming tan or meven montlas in every twelve; and if

\therefore NTCRY

se separators, of : more pripurly, rime of stamdard - and it rapmacity. lahterl to Burnor Kations worm in ne, and matuy of ral cutiorly buw s were puit illa 4ir lsag. The In ration in the
lest fur milk, liis is orlo of the nis which, muler A:0 last patit of
A mumber of and fromin then t of milk. The ment minerssally I. S. M. Malkewek, Jonk station at tester combines The machins. (erns, simן体: and If factorios. liy nee in a low menIt may be hoter'This fitt test of or in alsaming Dered as the momataxt may he the lelivered tor rits: rial stilemarouts - His lost, also. crent cows, and
 a mornay of the c. It whomblal ha mindene throngh rying was fromp
ry of the l'uited nilo domestio art which the whele The animal has all of tha fommer yichls at comparro ry twelse; anl it

 :

 tion of merleron dairy fing.

 town. All of this was diairy bilture mand upm a homsamb on two different fames, in as many rhums. In Issi, the first rmanery was bmitt in this

- KivUに1

It is mot hmesual ilk during a yar. - agoml datiry •ow those of fums alser devolving 11 wh -ad 10 incoumplish :19. 'Th fitctary ar takers the place:
 fillol Mlllll ats a

thoir platere may - worr the revolle
if makin! buttry: - prowlution. st. loring the mid a to mark. as: B to fll loms. with mullels lather - allid farwaralod 1 xemty-five veas lhromghthes little 1 or two different ats lmilt. in this

comaty. Now, the Franklin Comety Cramery Compang. lemated at it. Alhans, has fifty-odd skimming atations distribumed throngh this and aljoining comb-

 of buther ate mate every dias. A simghe ehorning rom for the whole eoment

 matiol! highor than the average for the prow of the same farms lifty y ears ano.

 twier at hat, erey diye in the ?

 Hue I'miterl stathos.

 The Cuited States Depatment of Agronlture has a latary Divisim, intemind

 the agrionltural axpriment atations, with whinh mast of them are remely

 dairy mothenk and results. Weekly and month! jemmals. in the interest of

 - hamaturn.

 improvel sanitary comblitions.

EENTEK

Therse-making has been transferred handily from the malm of domestio arts.
 lased only lowally, and make num impessinn unen the markets. In the mithlle
 lonited states, all of it on farms. It the elose of the century the ammal

 barying groally in rapacty. Xow lork and Wisemsin sach have over a bumsand: the former state makes menly twiee as much cherse as the lat fer,
 us. The other cheresemaking states, in the orler of quatity produred, are whin, Hinois, Michigim, and l'pmsybuaia: hat all arr romparatively unime

portant. Mene than nine tenthe of all made is of the familiar stambard vari-

 Finvoran montric:
firrat an has herol the growth of the factury system of hutter-makimg, ame fast an rexameries are multiplying, esperially in the newer and growing agri-

 17

 of the womb.

 a millinn mos. With the rosing years of tho wentmry, it is cestmated that

 statew burlmbe bearly half a million wherh are prive hered, and that this howe

ENTURY

 (1) immellase agy Inther fronturt of II, IIKKI , ,f this is a is the" groathest On"tion is made. Mrombers luing -reaturries athmt. 1.mown. II is ratiallithon are mande
 bo of huthe every : lather-makining (hio, Minmentha, than hatf of the
 atruag 'platily 1 ronduction of the ather is importod,
 is the pursum, or wi\%e, If approsi. Iterevatiog |"opin
minula avery year ne, hatherine, , ate. I the state I aisiry יttion of latws in-
11), hut they hate repliired from 2:3 try sulphind with - products. Thoe hou prouluct of hatif is estimated that III jersons. This we ginite mevaly " the great dairy foller: ell by New ania ${ }^{1}$ |h elsent a - atre W s. Toxas is comitend - ther Midalle sime phly of the mumerwost lontter in He mats of the Uniten ad that thin hanel of the cattle aro

THE DAIIY MAII).

 provisions tor guarl its interests.
!1111: -

Toinal Vinlom. |hallar.
1

nter at walue. .if k, anil whow, :1
 "n'. 'Thio may:

Huc "rmury lys
 (iril) mull lowith so laren winl 1. Hait it is lair
 of sumat import III whlue. Tlue

 the centhervi:in is al tot the in all reamin :

1 I.ル....

THE CENTURY'S MORAL PROGRESS

 क्षा

 4

 - F1.

"The bather of this highest well-twing." which is ge nematly termed
 lacen wevien by monden thinkers.
 of the Stoins. matals amil virthe wore stutiond, whether ins commettion with raligion or with pulitions mater the light of experlieney rather than mular that of alistrant right, and that "they were disenssed as fumtions mure han an meral ulligations."

 govern we torlay ate in kimb, virtally the same. Then shalt mot kill: 'Then

 the seope and digere of their aphliation - met in therir nature - that mainly

Is the highest stage of our memal inevelopment the masiltishuess whing
 rost of self, may in thal amalysis be rembed to a retmed rgoism. 'The motise

 tho "greatest advamage of him who is acting."

 paral with hue race all of whid form distibetion fatheres of the mandera ceroof for which the words "altraism" and "hmanitatianism" have beron coisend. It may also ine saish, to the homor of the pressem mentury, that there
 expedinny as madards of combluct, and to ably these mgathess of sex,

 anciont civilizathons, mesioning that which in them was immontal. Chafterl
 anemped as the otheial religion of the bimpire omly at the cost of its awn purity: How roukl cionl and Mannom mind together? How combal Con-

 ministorp and whasenver of you will he the "rhichest wall h_{n} servant of all."
 as distibut trom worshif. The prople senn relapsed into waship, whilst four

 provert the weak and the lawly, allowing from the wey lanly of the 1 'hureh,

Then froun the groat sphonds and buiversities the developing intellert of
 Euto the reality of this spiritual giwer ower human somis anil over the human

 thonght struggled for fredom muler the hamer of learoing and of rasom,

 must disapmar from the surfine of the earth, and that, in the smoke of hattlos and the revelry of reasom, trith and morals monst prish and anarehy prevail. But a moral mbe is indispunsable to sondoty, ame " heligion is after
 Its germ, imate in man, grows with his mulerstamling in its constant strain to estahlish a relation betwern himsilf amb the miverses.

IMAGE EVALUATION
 TEST TARGET (MT-3)

Photographic
Sciences
Corporation

To the moral chaos that for a brief space followed the overthrow of the old order of things suce eded, in the lowgiming of this century, a period of readjustment, and now, in the words of a port whose own mental processes are a type of those of his time, "Of a hopeless epoch is born a fearless age."

After the absolute negations of the carly years of the nineteenth ecntmry, after the violent controversies not only of arrogat seience and of prejudiced faith, but of scientitie and theological schools inter se whieh till the serious literature of the last generations, a reeoneiliation between faith and science is taking pheer, a certain unity of thought is being reached with regard to connduct and to the rights of men. Ami the century, at its elose, shows us the Protestant churchman less tenacious of his dogna, the Romanist less certain of the infallibility of Rome, the scholrr less comvinced of the infallibility of his science. the agnostic less boastful of his skepticism, the monarelist awakened from his dreams of a civine right of kings and of a preordaned subjection of men, the soeialist sobered of his revolutionary fremzy and repudiating the extremes of anarehy and nihili"m born of his earlier teachings, all marehing shoulder co shonhler mond the banner of a broal tolerane toward a common soai, in a mited effort to lift the masses from the depthe of poverty, igromare, vice, and often crime, to which centuries of repression seemed to consign them, and seeking in friendly eaïperation to bring abont a better social order.

For in our time has taken place a great broadening of the moral stamplant from whieh the ohd mies of eonduct are in future to be applied. Toward the end of the last century the equality and fraternity of men was proelaimen to the Enropean world aml reedived a laptism of bood. This ofticial deelaration of the rights of men professeal to be miversal; but, like other dispensations that had preceden it. in its application it fell short of the demoeratie ideal. All men were deelared equal, yet with striking ineonsisteney those who proclamed the new ereed held others in lombage, and race disqualitication survived.

The honor of leading in the greatest momal reform whieh the world has seen is due to the Fremel Revolutionary lealers. On February 2,179 , the Convention derreed tha abolition of slavery thronghout the French colonios, and all slaves were uluitted to the rights of citizenship. It was only in 18:3 that slavery was abolished in the liritish eolonies by det of Parliament, and that eoolie labor was substituted. In 1×61 Emperor Alexamder H., following the poliey inaugumed by his father, Nicholas I., freed the serfs in Russia. It is a eurions faet that the I'nited States, which for many reasons might have heen expected to lead in the movement, only followed in 186:3. 'The terrible struggle of the pmblic conseience against expediency and class interest. which then took place upon this rontinent, must form one of the most important lessons whieh this century will offer to posterity.

Right prevailed, and with this trimmph of justice the human eonscience, throwing aside casuistry and evasion for a time, faced its problems honestly and asserted its own sovereignty.

The eonsequences of the mighty struggle did not stop here. Once the prineiples of abstraet justice established, not only against might but against tradition and experliency; onee the rights not only of men (as in 1776 and in 1789), but of all men, recognized in a broader application of the principles of
a true democraey, there came a tendency to extend its application to mankinul at large; and women, who according to their station in life had litherto bren dealt with theoretically as either useful or ornamental possessions, begim to find their place as members of the community. The rights of slaves as men had been officially proclaimed. The rights of women as eitizens began to be diseussed.

In the widespread shifting of levels which has taken phace in the last humdred years, affecting directly and indirectly the moral progress of all cliasses of soeiety, certain importimet elements have entered which camot be overlooked in the present disenssion, and which in future ages must stand as preeminently chanacteristic of the nineterenth century and the Anglo-riaxon aseendeney.

The reign of machinery in the industrial world, the advent of steam, of electricity, of eompressed air, as motors, have done away with the human machine. Whether in pace or in war

CZAR ALEXANDER II. OF RURSIA. the skilled workman has crowded him out. Labor-siwing inventions have done away with the necessity for a multiplicity of hands. The need to-day is for theined heads. From evaporated fruit and camed meats to heat, light, and inter-emmmmieation, science is brought to bear upon every detail of existenee. As an immediate consefuence of the part necessarily played by learning in our industrial and commereial life moder modern conditions, public education has beeome the mainspring of national prosperity. Freedom and public edneation have made our laboring chasses the self-respecting, thinking people they are. The human antomaton upon which formerly played the greed, the vice, the craft of others now holds at compratively small place in the motern community, outside of Latin Europe. The "vile multitude." as M. Thiers still stigmatized it (before he turned republican), no longer exists. The work has moved, and so have men.
"If the shattle would weave of itself," said Aristotle in his apology for slavery, "there would be no need of slaves." The miracle, which seemed impossible to the founder of science, has been accomplished with the predicted result. The shuttle weaves of itself and slavery has disappeared.

Even in Oriental lauds, under Anglo-siaxon supremacy the carrying out of great public works is stimulating a demand for education among the people, and the sum total of ignorance and poverty is gradually deereasing and making way for better conditions; for only a trainel hand guided by a trained intellect can use the modern tools. This applies to agriculture as well as to industries.

In the rising tide of intelleetual and mat rial progress, woman has been carried along to a great extent unconsciously. It is a matter of grave doubt
whether the early "suff ragists" ilid more than be the first to recognize and herald the logieal drift of contemporary events. It is throngh higher edueation that woman lats quictly forged her way to the place she oceupies in the modern commmity, and that sine is elaming her share of the common heritage of freedom and independence. The propheey embodied in Bulwer's "Coming Race" is being realized. From year to year her sphere is broaden-

SIR EDWALD BITIWEIR. ing. She is fast becoming self-supporting. In education she already liolds a leading place. Her influenee as a moving force is becoming patent. It is otticially recognized to ac varying degree in certain parts of the civilized world, - England, New Zealand, Russia, and twenty-two of the United States, where she stamels hefore the law not only in her relation to man as his mother, wife, or sister, but in a direct relation to society, as a reasoning being and as a citizen.

The increased self-resject born in woman's mind of a conseionsness of equal training and enlture, the growing numher of women whose ambitions have leen stimulatel to higher achievement, aud the consequent inereasing influence wiehled hy them in the community, saggest the thonght that in tine their legal status will be generally established, as it already is now in several localities.

Much leveling has taken place siner the abolition of the "ancient regime," not only in the relations of the varions classes composing society, but in the relation of men and women. The process is still steadily going on. And it is not unreasonalle to believe that, with the gradual elevation of the ideals of one lalf of the population, - that half which is in control of the early training of children of both sexes, - a common standard of character and morality may in time be acknowledged whieh will admit of but one rule by which the actions of mankind, without distinction of persons, class, or sex, may be measured. The fact that all distinction in favor of the privileged class has already been removed in the eyes of modern public opinion holds out such a hope. The casuistry which still discriminates between evil-doers cim but retard moral progress, and the more earnestly modern parents urge upon their sons the same olservance of the laws of hygiene and propriety, of truth and self respeet, as they exact from their daughters, the nearer to true eivilization will soeiety reach.

The world is yet far from this goal. No legislative act has as yet saved society from the ravages of viee, sensuality, and greed, and to-day every degree of savagery and immorality still exists in so-called civilized countries. Education, taking the worl in its broadest sense, can alone, by its refining influence, force the savage to give way before reasoning man. And it is by the constantly inereasing proportion of educated, self-respecting men and
women that the coarser instincts of the human race are being controlled and bronght to yield to reason. By holling up the same standards of conduct to humanity, the important place oceupied by casuistry and expediency, in the disenssion of the cthical problems set before the moralist, may be reduced, and a logical faeing of the serious issues to be met may follow. Such a result must tend to strengthen the marriage tie and the family relation, upon which rests the whole moral structure of society.

At present, modern casuistry, if it no longer seeks to justify falsehood and rime committed on behalf of Church or State, still exonerates, in the world of affairs, the high railroad official or the industrial magnate of an infraction of the higher code by which his own personal integrity is judged, provided that iufraction is committed in the interest of his constituents. Many a man of higla standing, whose personal honor is beyond suspicion and whose conscience would not allow him to take an unfair alvantage of another, does not hesitate to transgress when dealing with rival corporate bodies or with public interests. Hence the corruption which prevails in public life to a degree dangerons to the commonwealth, and which is in direct contradiction with the professed stamdards of the age. Must we then think that living up to the highest moral standard is incompatible with business success, and agree with M. Jules Lematre that " the attaining to moral perfection is really possible only in the solitude of literary or artistic pursuits, in the humility of manual labor, or in the dignity of such disinterested functions as those of priest or soldier"?

However this may be, new conditions have created new problems which the bublic conseience alone can solve - as it has arready solved that of slavery and of race - with unflinching logic.

The human mind, if less coneerned than it was in the days of Molina with polemics on the nature of the hmman will, -a question, by the way, which Rome after eleven years and thirty-three Comeils dared not then settle, - or with theological controversies regarding the value of indulgences, is not yet at peace with itself. Indeed, for being less immaterial, the issues now before it for adjustment are, owing to their bearing upon practical life, all the more vital to the moral health of the loody politic.

To the respective rights and duties of labor and capital our best thinkers must turn their attention before an equitable solution can be reached. That such a solution must be reached cannot be doubted, for the interests at stake are fundamental.

Whilst individualism in thought and in conduct asserts itself at every turn, never were the principles of organization se actively carried out among all classes of society. To the strain caused by the forming of trades unions and of united labor leagues for the protection of the wage-eamer is now succeeding the danger produced by the concentration of capital in the hands of powerful corporations and the creation of mighty trusts, the undue extension of which in this comitry, seems to threaten the prosperity of the mation and to add to its political corruption. As against these monopolies, public ownership and operation of common atilities is being successfully tried, notably in England and the British Comions, and the honest municipalization of all community service, carried on as the post-office is carried on among us. results in positive benefit to the prople, that is, in good wages and reduced
taxes. To discuss these important problems would encroach upon the domain of political economy and social seience; but there is no doubt that the public morality is elosely dependent upon their solution.

Whether so-called civilized mations, whilst regarding murder as a capital offense and punishing dueling when indulget in by individuals, will long continue to train their best men at enormous expense, in order that in cold blood they may scientifically destroy the greatest possible number of other trained and equally gool men; whether peaeeful communities of partical tradesmen will some day cease to emulate barbarians in their rejoieings over the slanghter of so-ealled enemics whom they are individually prepared to befriend and whose prowess they are ready to extol, are glaring contradictions offered by the problem of war whieh must be left to future genemations to reconeile. The leading part which the Augle-Saxon race has taken in urging arbitration as a proper means of settling international differences places it in the foremost rank of civilization; whilst the l'eace Conference proposel by one of Europe's most powerful potentates, the Czar of Russia, must bring a ray of hope to the hearts of those who laber for the advent of miversal patace.

Such are the great moral issues of the present day; and in these many minor ones are includel. Everywhere and at all periols of history the theory of ethies has widely differed from practical conduct. The race contlict which is taking place in France as the result of the Dreyfus trial, more than a century after the emanejpation of the Jews before the law was proelaimed, is a late illustration of this fact. To this, the corruption and failure of justice which recent exposures have revealed in the lighest circles of republican France add peculiar signifieance. As already stated, the broad outlines established in preeept remain unchanged, and it is in their logical application that lie all present growth and finture hope.

To trace, even in sketchy outline, the debit and credit aceomit of modern ideas upon the varions subjeets involved in the above mentioned issues would be a serions undertaking. A chapter must be devoted to each nation, for the momal progress of each differs as does its besetting sin. Moreover, every shade of opinion must be weighed and consilered. Inherited tralitional views are, in each modern mind, hopelessly interwoven with the new articles of a code of momls which public opinion is even now evolving from contemporary conditions. "Each of ns," says Edmond Schérer, "belongs to two civilizations, that whieh is coming and that which is going; and as we are aecustoned to the first, we are poorly placed to judge or enjoy the latter."

There never was an epoel when the struggle for existence was fiereer and when earthly possessions were more keenly prized. But despite the many survivals which still point to a semi-barbaric inheritance of selfishness descended through milleminms, a decided moral gain may, on the whole, be placed to the credit of our era. With the decrease of the sum total of ignorance, not only among the lower lout among the upper classes, the sum total of well-doing and well-being has immeasurably increased.

The sympathy for suffering is more widespread than it has ever been. No middle-aged person can fail to note the rapid change whieh has taken place in the public mind with regard to the general treatment not only of children, but of animals. The present mode of dealing with sehool children according to their individual eapacity, the trust in their honor which governs their
relation to the teacher, the absence of any corporal pumishment, form a recent departme in education well ealculated to prodnce the hest moral results.

The improvement of modern methods in relief work as well as in the treatment of vice - now riewed more in the light of a pathological condition than in that of a sin - must make this a memorable epoeh in the ethical history of homanity. No branch of civilization has undergone greater change in modern times both in theory and paretiee than public and private charity. 'forlay the hmanitarian emdeavors to lift up the fallen and the needy, and almsgiving on the part of the well-todow is fast becoming relegated to the rategory of a self-imhlulgence whith is not to be rneouraged. The distinetion hetween the ohd methouls and the new is given in the formula that "henceforth the chief test of charity will be the effect upon the recipient." Any relief ealculated to umdermine self-reli-

CAPTAIN AlHRLED MHEFFI's. ance and independence is diseonaged ly those who have in new the prevention of our moral ills mather than their reliet.

Indeed, the new sehool preaches seientitie eharity as aganst emotional charity. What it may have lost in impulse it has more than male up in effectiveness. The attempt to teach the needy to help themselves, the work of college settlements and of the organized efforts in the poorest and most neglected districts of large eities, with a view to fontering by persomal eontart and example hahits of thift and self-respect where those virtues are most laeking, are among the truest if more homely glories of the closing century.

Verily, uever was a more thoughtful effort made everywhere to mitigate the ernel distinctions of race and sex, of wealth and poverty, and to "harmonize the social antagonisms" of modern life. Never was so much consideration given to the betterment of hmanity, nor was the aggregate of earnestness so great.

In onr more robnst intellectual world the tree is judged by its fruit, and aets tell, not creed. The prineiple that well-doing, muless it is disinterested, forfeits its claim to the highest resjeet of men, is growing in strength, whilst the feeling is gaining gromm among the thoughtful that in the development of personality may le found a sufficient motive for the exercise of virtue, and that charater, not reward, beiny not havin, are the highest ains.

If we resmme the moral progress of the nineteenth century, allowing for its inconsisteneies, carefully weighing its negative and positive results, and taking as a balance what is original in its contribution to the ethical development of the human race, we will find that this contribution mainly lies in the direction of tolerance and of altroism. This altrnism is distinct from the

270 TRIUMPHS AND WONDERS OF THE NJNTM CENTURY

charity of St. Vincent, which sacrificed self in a loving attempt to relieve individual distress. Sueh pure sacrifiee, manable as it is, is not only marrow in its seope, but hecouse of its musterity must fail to survive in the strugryle for existrnce. Modern altruism aims at removing the main eanse of individual distress, and spends itself in edncational efforts, in which the welldoer finds happiness in the eonseimsness of usefulness. It is also unlike the socialism of Condoreft, which reabled down in an mbleavor to muke all institutions subservient to the interests of the poorer and most mumerous elasses, for it ams at lifting these to the highest possible plane. The momtain summits are not to be lowered. but the valleys are being filled. 'To raise the people, to build np, not to tear down, is the avowed emd of all morlen moral effort, and must ever stamp the hmanitarian struggles of the present age as distinet from those of the righteenth and preceding centuries.

With this we may elaim an increase in individual freedom, and a perceptible tendeney to a logical and ever broadening conception, not only of the rights, but of the duties of eitizenship; to a more honest recognition of tho phaee assigned by expelieney to evil in the soeial and business intereourse of a pratieal life; to a growing seorn of easuistry, and to a stronger faith in the reality of right and of abstract truth as they are revealed in every thinking man's heart, and the uniformity of whieh is reflected in the publie conscience.

Sara Y, Stevenson, Sc. D.

PROGRESS OF SANITARY SCIENCE

Sinca blessings brighten as they take their flight, it may be difficult to realize how much of our present happiness and comfort depend ujon the constantly abiding benefactions brought about by the progress of sanitary science in the present cyclo. The proper care of the body and the prevention of disease, rather than its cure, have occupied the minds of men from the dawn of history. Moses is the anthor of a well-digested code of loygiene, and rudito scholars can tind hints of the proper conservation of health in the Lgyptian prpyri. Hippocmates wrote abont the prevention as well as the cure of discase; indeed, all along the course of time the master minds of medicine attempted the solution of many of the problems of Sanitary Seience as eagerly as they songht for the elixir rite or for the universal solvent. Notwithstamding all this, one can truthfully say that sanitation could not be fairly termed Sanitary Science until its rules of procedure began to be formulated with more or less exactness upon careful experiment and accurately recorded observation. Sanitary science, as such, could not begin to be until pathology (a knowledge of the morbid processes of discase) and etiology (a study of the causation of disease) had builded upon a scientific fombation. Before this all deductions were from experience, and had no other reason than the seeming helpfulness of the procedure; after this, ns fast as the facts were demonstrated, deductions were made that determined a procedure which would of a certainty accomplish the purpose. In the olden times, during an epidemic of a contagious disease, tar barrels were burned in the streets, - and not without some benefit. At the present, the room, with its contents, can be disinfected with a certainty of destroying every atom of contagion.

This difference must be kept in mind when comparing the old with the new, and the true reason of the great alvance be recognized as due to the spirit of scientific investigation, which began in the latter part of the last century with the employment of instruments of precision in research, and which has developed so wonderfully up to the present that the experimental psychologist measures the minute portion of time it takes to form a thought. At the same time, it must be kept in mind that the sciences which furnish sanitary science much of its material are progressing and, because progressing, changing; that the conditions desired to be removed are prevailing, and the necessity of overcoming them urgent. Not in every case has the sanitarian fully demonstrated and laid down scientifically accurate data on which to base his method of procedure. Hence it happens that even now sanitary empiricism must needs be mingled with sanitary science, and the mingling is sometimes as much of a motley as the dress of the court fool of the Middle Ages.

Since sanitary science had its origin during the present century, it will be
helpful to ussign a detinite period for its hirth. Not that any one womld have the temerity to logmatically assert that the seience camu into being at a lixerl date, but rather to tix a period of time when the eombitions working throngh the ages were so shaped that, perfores, the prohlems of sanitation womld thereatter be treated more in a scientifie and less in an cmpirical methool than before. This time is ussoeiated with the hegiming of the reign of Queen Victoria of England. since the first Aet of l'urhament for the registration of births, martinges, and deaths was passed in $18: 3 \pi$, and the begiming made of aremately gathering information which is to the samitarian what the pulse is to the physicim. Winh his fingers on this tell-taler of the fow of the heartbood of the mation, he is rabled to detrmine whether dispase is move or below the normal, the clametre of the disease that abounds, and its whereabouts. Knowing whote to time my disease in exeess, he em stmly the comditions and survonaings, emparing them with other phaes, whether attieterl in like maner or, more fivored, free from the disease. By means of thes vital statisties he em empare year with year, and tell with a degrou of exactness heretofore impossible whother any disease is inereasing or deorasing; her can lay his meturns her the side of the higures of the moteorologist and learn if the weather has any inthemere on the heath-rate; he man follow the results of his efforts to improve the emalition of the people and vindiente his expendime of the pmblie money be pointing to the reduced mortality rate. It may seem to ine a gruesome task for every physician in the land to semd to the proger othicial a motiee of earld death and of earh patient sulfering l'rom a disease apt to be commanicated to some mel else; and almost ghonlish for the ofticer to sit at his desk, day after day, and matalogne and tabolate these retmros. lint it is only a mondem version of the old riddle of Samson, ont of the hitter came forth the swept; for withont this, much of the progress of simitary science would the well-nigh impsssible.

The act adopted in Great Britain has berem moditied and improved upon since then, and in the United States many of our cities and some of our States have been engaged in a similar effort. As yet we have no central burean or collecting office for the nation; nor is this necessary, if each State would do its duty, or, at least, the general government in that event need only tabulate the returns of each of the States. The effort is now making, umber the auspices of the American Public Health Association, to serure a miform methon of registration in all oftices colleeting vital statisties, by which the same name will be given to the same disease and the same facts reeorded in caeh return made. This will canse a little confusion at first in those offices where statisties have been taboulated for a mumber of years, but the advantage will be so great as to fully repay any inconvenience at the first. If we desire to oltain the full benefits from the alvance of sanitary science, we must see to it that in every State therr is an efficient burean of vital statistics, whether under the supervision of the state Board of Health or some other department of the State. The absence of such a bureau reflects upon the intelligence of the people or the integrity of the law-miking power.

Are there tangible results to warrant so sweeping an assertion? is a fair question, since at the time of the preparation of the census of 1890 New Hampshire. Vermont, Massaelmsetts. Rhode Island, Comecticut, New York, New Jersey, and Delaware were the only States collecting vital statisties, and
sinee then but Maine and Michigan have heen added. Before quoting figures, it must lue premised that even now the retums only approximate aceuracy; they were much more inaccurate at the first, and betore the general registration was madertuken most of the statements are merely estimates, after the fashon of the geographer who gives the number of inhabitants in China, where a census never has been taken. It may happen that the benefits are not as great ns the figures seem to show, but atter making all allownce there is great improvement.

LIVEA sAVED HY PUBLIC-ILEALTU WOHK.
Compurison of deuth-rutes in Michigan from scurlet fever ant sumel-pax before and since the state hurrd aj' Ilculth was extublikhel, and from typhoid fever before ant since its reatriction ucta umbertakith by the stute Bonved. (Compiled from the state Depmitment's " Vitit statixtice" of Michigun.)

The "Encyclopædia Britannica" asserts that two centuries ago the mortality of London was 80 per 1000 , while now it is but a little over 20 . In 1841, out of every 100,000 people in England, 30,000 would have died before reaching the age of 10 , and one half wonld have died before they were 40 years old; in the decennium $1881-90$, before 30,000 would have died out of each 100,000
some would have lived to be $1 \mathbf{i}$, and some wonld have lived to be $\mathbf{5 0}$ before one half of the mamber had departed ints the unknown and the hereafter.
The figmes of the statistician must be quoted again and again in the progress of the article, as no more tangibie evidence can be given of the benefits resulting from improved methods of smitation. Very early a coincidence was observed between the meleanly and the leath-rate. Neighborhools where little or no care was takell to remove the rehine, where there were foul drains and a deficiont water smpily, were fomed to be the abodes of special forms of disense, - so much so, that these diseases soon received the name of "filth diseasess." Aeting upon the suggestiom, the gospel of elemuliness was preached and its pructice enforced. There was a "rediling up" in its eventmality as thorough as the eleansing of Santiago de Cuba in recent days. It did not take long to discover that decaying organie matter in some way was the offending lody, unl that this contaminated the water supply. Wells were condemed and public water supplies installed ; means were songht to enable the cleansing to be constantly carried on, and sewers for honse dranage followed or accompanied the water supply. In proportion as this has been thoroughly done has the death-late from certain diseases diminished. During the hast century the Enropean armies were decimated by fever (typhos on rehusing) to such in legree that the work of the fell destroyer at Santiago was trifling in compurisom. On into the present ecntury, the great seomrge of Great Britain was these same two fevers; so much so, that "the fever" meant the dreal jail or typhus fever. It was imported into this comatry, and epidemies of "ship fever" were of frequent oceurrenee. Thus, as late as 1846 , it was estimated that in Dublin alone there wre 40,000 eases of fever, with a total in Ireland of $1,000,000$ cass's. There were 10,000 deaths in Liverpool, a city especially prone to the disease ; while in Edinburgh one person ont of every nine of the pophlation was attacked, and one ont of every eight of the siek died. Tuming from this accomit to the medical retums of the war for the Union, there were reported only 1723 enses, with 572 deaths to the office of the Surgeon General, and even these a very competent authority after careful investigation decided not to be instaness of trow typhas. Or turn to eivil practice: the disease is found so seldom with us that it is not necessary to assigu to it a colnmunalong with the other diseases in publishing the mortality returus by our health authorities. The deaths from fever in London during (etober, November. and December, 1898 , were hut g96. London has an estimated population of $4,504, \pi 66$, and the "fever" in the report inchuled typhoid, simple and ill-defined forms of fever, as well as typhus. This makes in death-rate of but 0.26 per 1000.

Had sanitary science no other trophy, its votaries could still boast of the great benefits to humanity brought about by their labors. This is but one of many; thus, scurvy, the great bane of the navy, is now a disease that few physicians have the misfortune to see, or patients to endure. Then that disease somewhat akin to typhus, and until within the memory of the fathers confomuled with it, hence called typhoid fever, is likewise fast disappearing, more rapidly in cities than in rural communities however. The suppression of typhoid proceeds with equal step with the introduction of a public water supply in our towns, the adoption of the proper means to furnish this water impolluted, and the proper removal of domestic waste through sewers, whose
eontents are so treated as to work no harm after they escope. Notwith. standing these great trinuphs, if bonsting is permissible, the sanituran's hast is mother that his scicuce, which had its begiming, ns we have seen, at the time when there was a great awakening of the mational eonscience in British politics for "the huger symputhy of man with man," has broadened with the yents of its growth; has endeavored to eare for one's brother so that his blood would not ery up from the ground; so that, after forty or hifty years hal passed, a distinguished sunitarian eonld write with literal mecoracy: "Whatever cun eatse, or help, to canse, discomfort, pain, sickness, death, vice, or crime-and whatever las a tendency to nert or destroy, or diminish such cases - are matters of interest to the smitarim; and the powers of science and the arts, great as they are, are taxed to the attermost to afford even muproximate solution of the problems with which he is con-
M.A' NHOWINO " REGINTHATION NTAIES" NOW AVAILAHLE FOH THE MGHTMLITV SI'AIATICN GF THE TWELPTHU, N. IENEIN (IKKX).

Norts, - States having immediate registration of deaths and requiring burial permits are blach. The only nulditions to the list since the Ceusus ef 1990 are Maine (1891) and Mehigan (1897),
rerned." ${ }^{2}$ And the crowning glory of the science to-day is the care it bestows upon the weak, the ignorant, and the helpless; the efforts it makes to ameliorate every undesirable condition of society.

It wonld be misleading to infer that all of these benefits have been brought abont solely throngh the collection of vital statistics, although much of it rombl have been diffieult without the knowledge furnished by these statistics. Workers in almost every branch of pure science lave contributed to the progress, - the physicist, the meteorologist, the chemist, and by no means the least, the hiologist. Indeed, with the more recent investigations, the culture tube of the biologist has ahost revolutionized medicine and all that pertains to it.

Sanitary science seeks to accomplish two ends; it purposes to prevent disease and to promote public health. If it seeks to prevent disease, after the fashion of the oft-quoted cook-book, it must first secure the disease, or what

[^3]is essentially the same thing, know what canses it. If the cause be known, and we can conquer the cause, we ean prevent the disease. Thns a disease known as trichine spirolis, from the name of the pamsite invaling the body and cansing sickness and death, is caused by eating pork infected by the trichine. We can certainly prevent triehine in persons by forbidding pork; but we also know that the trichine do not oceur in all pork, and that their presence can be detected by the microscope. If, then, a sample from every slaughtered pig is sulmitted to the microscopist, the infected pork can be discovered. This is done in our large packing establishments, especianly for that pork which is to be exported. Again, a thorough cooking will kill the trichinar, even if present. Only the grossest earelessness, consequently, can accomt for a case of trichine, and, indeed, it is a very rarely oceurring disease. This illustrates the importance of a knowledge of the eanse of the disease, to enable one to devise a method for preventing it. In the study of disease causes, the biologist has been very successful during the past few years, and a number of our communicable diseases are demonstrated to be caused by the growth and development of bacteria. From this demonstration in the case of some, a general hypothesis has been formulated, which is useful as a working hypothesis, but by no means safe to eall a theory as yet. This hypothesis is that all of our communicable diseases are cansed by living organisms originating in one person and conveged to another, where they begin to grow, to reprodnce their kind and to perform their life functions. Hence all commmicating diseases are infections. Some of these infections diseases, like measles or smallpox, are eqpable of direct commmication from one person to another, rendering them contagions; others, like typhoid fever and cholera, are not contagious in this sense of the word. This is a very excellent distinction to make in the use of these much abused words.
The biologist has rendered sanitary science great service not only in discovering the causes of certain diseases, lut also by aiding to determine the nature of the disease in any ontbreak. It makes a vast difference if a given case is one of true diphtheria or not, or of Asiatic cholera or not, and often the symptoms alone are not conclusive. Here the biologist comes to our aid, as is seen so often in eases of supposed diphtheria. A portion of the throat secretion is sent him under such precautions that no bacteria from the outside can possibly contaminate. With this secretion he stabs or inoculates a jelly composition which he has placed in a test-tube, stuffs a wad of absorbent cotton in the month of lis tube and puts it in a warm ehamber or incubator. If there are any microbes present, they will begin to grow, and the expert biologist can tell the bacteria from its mamer of growth as readily as the gardener can distinguish between his radishes and lettuce when they spront in the spring, end in this way is able to report the nature of the germs. If he is in doubt, he carries his cultivation further and employs other tests to prove his observation.

The biologist has also rendered great aid to sanitary science in discovering many other species of bacteria that are helpful to man. Our polluted waters could not be purified, our air could not be cleared from foul odors, nor the proper decomposition of organic matters go on, without the aid of bacteria. These little vegetable growths, while working much harm nuon humanity, contribute far more to their comfort, well-being, and happiness
be known, a disease the body ed by the ing pork; that their rom every k can be cially for 1 kill the ently, can rring disse of the stuly of past few ted to be emonstra, which is ry as yet. by living liere they functions. infections tion from hid fever is a very s.
lly in disrmine the if a given and often ;o our aid, he tliroat n the outoculates a absorbent neubator. he expert ly as the ey sprout erms. If r tests to discover: polluted ul odors, he aid of rm upon 1appiness

than they do to their ill. Possibly no better illustrations can be given of the value of 1 steriology to sanitary science, and the great progress it has brought about, than to contrast a cholera outbreak of a few years ago with one occurring more recently; or to point to the efficacy of purifying water by the assistance of bacteria. Another disease, pulmonary consumption, may also be noticed, but the triumph here is not so marked as yet.

The first outbreak of cholera in the United States occurred in 1832. In one special hosnital in New York city, 2030 patients were received in the nine weeks from July 1 to September 1, and of these 850 died. An eyewitness, who was personally known to the writer, one not given to exaggeration, said that the state of dread and alarm had been increasing until, when the disease first made its appearance in New York, fully one half of the popalation had left the city, many of the physicians Heeing with the rest. There was no effieient health department, and no organized system for the protection of the public health. This gentleman was a city missionary, and, in the performance of his duties, visited many of the houses. He mentioned visiting one of these on a morning when the fifteenth body had been carried out. It was the time of the rumble of the dead cart and the indiscriminate burial in publie trenches. Contrast the horrors of this scene with the last attempt of cholera to invade the United States, in 1893, when, notwithstanding its presence at the quarantine station in New York harhor, and the actual presence of a few well-authentieated cases in the city itself, not one of these cases proved a focus for the sproud of the disease.

The opinion that water in some way acts as a conveyer of disease can be generalized after a very little observation. To explain how it does this is a problem that was attempted to be solved by the chemist. He added vastly to our knowledge, but it was not until the biologist showed the presence of the disease-producing bacteria in water that a full explanation was possible. But the biologist has done more: it has been found, and notably in the very complete series of experiments carried on by the Massachasetts Board of Health, that even an efthuent of a sewer, if filtered through a bed of sand, is purified to stich an exteut that the filtrate is a perfectly safe water to drink. The dangerous organic matter disappears, and ninety-eight per cent of the bacteria is removed. And it is pleasing to note, when one has so much to say of the dangers of bacteria, that the purification is entirely brought about by the action of bateria working for the good of man. A sand filter bed does not purify water properly until it has been in operation for a few days, when the top of the bed is covered with a slime in which the bacteria act upon the organie matter in the water and purify it. The fact of the purification was known before the manner in which it was done was understood; and in those cities where the anthorities have acted upon this knowledge and have purified their water supply, the influence upon the death-rate of typhoid fever is almost as marked as those already quoted for typhus fever, while the scourge of cholera has been almost entirely removed from their borders, as many an instance during the late outbreak in Europe could illustrate. It donn not contribute to our self-esteem to know that most of the water supplies so filtered are to be found abroad. There is not enough of "practical politics" in filter beds to charm the traditional alderman of our cities.

It is now clearly proven that a species of bacteria is uniformly present
given of ess it has ago with ing water ,tion, may
1832. In ed in the
An eye-exaggerahtil, when lif of the the rest. m for the rary, and, hentioned bu carried criminate a the last ithstandthe aetual e of these se can be this is a ed vastly esence of possible. the very Board of f sand, is to drink. to the much to rlat abont filter bed ew days, teria act purificaood; and dge and typhoid er, while horders, rate. It ater suppractical s. present
ill pulmonary consumption. This bacillus is to be found in the material coughed u_{1}, by those who are ill with that disease. It has considerable tenacity of life; the expectorated material can be dried, pulverized into dust, and carried about on the wind; should the bacteria so dried and carried find a proper soil, they can grow and reproduce the disease. For ${ }^{+\cdots}$, nately, a combination of ciremmstances is required for the contraction of this disease, or it would be far more prevalent than it is. Notwithstanding, it already claims more victims than any other single disease. What has sanitary science done for its repression? It is attempting, in a tentative way, to obtain a registration of those who are consumptives, in order to teach them to avoid being possible sourees of infection; to disinfect the discharges carrying the baeteria, and at times the rooms ocenpied by the consumptives. In Rome, for example, the services of the public disinfectors are asked for as eagerly for the room occupied by a consumptive as for one that had leen used by a person suffering from diphtheria. In New York city, where the department of health has been exercising an oversight and care over the consumptives, there has been a constantly diminishing death-rate from all tuber-

SAND FILTER BED.
cular diseases from 1886, when the rate was 4.42 , to 1897 , when it was 2.85 , with the single exception of 1894 , which was lower than 1895 . It is too soon to predict the result, but the proper care of consumptives promises much to check the ravages of the disease.

One of the charms connected with the great results indicated is the simplicity of the methods employed to bring them about. While complex schemes and elaborate machinery may be necessary whenever the amount of service to be rendered requires organization and division of labor to properly accomplish the desired results, the principles are such that they can be executed in the smallest hamlet, and with the very crudest paraphernalia. The two great weapons of the sanitarian in fighting disease are isolation and disinfection. Dr. Henry M. Baker, the efficient secretary of the State Board of Health of Michigan, has for years collected and tabulated the results of the observing and non-observing of these precautions in his State. He has a happy faculty for graphically presenting the results. One of his diagrams is presented here and needs no explanation. In very few of these ontbreaks could there have been any municipal disinfecting plant or isolating hospital.
lsolation and disinfection - but the old quarantine and fumigation under new names! Who of us has not sympathized with the traveler of the earlier days in the Levant, when he was condemned to days and weeks of detention
in the barren lazaretto? And even at so comparatively reeent a date as the pilgrimage recordel by Mark Twain in his "Innocents Abroad," he states that the Italians found it more to their convenience to fumigate travelers than to wash themselves. How very different is a modern quarantine station, such as may be fomm near any of our more important ports on the Atlantic coast. If the health officer of the port finds a contagions disease upon board, he immediately removes the siek to the hospital, and keeps the well mider supervision long enough to see if the disease has been commmicated to any. He may keep, them on shipboarl; but more likely, if the ship must be disinfected, he removes them to the detention station, safely separated from the hospital. The steerage has been crowded, and there is need of disinfection of their persons and elothing. Under proper supervision, each is required to take a lath, for which abundant facilities are furnished; and while this is doing their clothing has been placed in the steam disinfecting apparatus, a partial vacum secured, superheated steam introduced, the clothing thoroughly disinfected, a partial vacuum again produced, whereby the contents are rapidly dried, and they are ready to be put on again by the time the bath is completed. The luggage is treated in the same way, while the cargo is probably treated to a sulphur fumigation, - the sulphur being burned in furnaees and the fumes carried to all parts of the eargo through lines of hose. In the course of a very few days, at least, all but the sick can proceed on their journey without any risk of conveying the disease.

Everything that has thus far been chronicled regarding the progress of sanitary science has related to the diminution of the death-rate and the prevention of disease. After all, is this worthy the telling? When one learns "how the other half lives," or, with more restricted knowledge, realizes to a degree the inteusity of the remark of a young Hebrew, replying to a command of a police officer to clean up, as related in "The Workers" by Professor Wykoff: "You tell us we've got to keep clean," he answered in broken English, lifting his voice to a shout above the clatter of machines; "what time have we to keep clean, when it's all we can do to get bread? Don't talk to us ahort disease; it's breud we 're after, bread!"

Is it worthy of boasting that sanitary science is only increasing the hardships and adding to the number of months to be fed, without opening up new ways to earn one's bread? Even if it be so decided, and all the claims of progress thus far made be declared wanting, there still remains much worthy of praise. Sanitary science strives not only to prevent disease, but also to promote health, and its progress is fully as marked in its efforts at promotion as in those of prevention, although we do not possess the cold figures of even imperfect vital statistics to demonstrate the proposition.

It must be kept in mind that sanitary science is wider than sanitation in its teehnical sense. One would not eare to assert that philanthropic effort and sweet charity are resultants of the development of sanitary science, very few eare to assert an evident untruth. But the influence of this study has been widespread and beneficial. The whole round of social science is also permeated with the truths demonstrated by the sanitarian, and is likewise deeply indebted to its teachings. Our field broadens greatly as we view it, just as one who has been traveling through a vale of surpassing grandeur, because of the mountain barriers on either side, finds himself confronted by a
prark it is t horiz
the 1
appe
light
smal
was
larg
to e
mer
effor
ing
hous
cobb
the
not
the
rece
park whose beauty is enhanced by its variety as well as its extent, bounded, it is true, by the same mountains, but mercly a hazy definition of the distant horizon.

In the construction of dwellings, for example, the small, low eciled rooms, whose earthen or stone floors were covercd with rushes seldom removed, the alsorbers of whatever might fall upon the floor; the unpaved, unswept, anl unsewered street ; the domestic water supply but a well into which filters the water from the adjoining cesspool, - these and many similar destroyers of health and comfort can no longer be found anong nations classed as enlightenel in our school geographies. Even the improvements of half a century ago - the tenements improvised out of the deserted mansions of the well-todo, with the additions built on the rear of the lot to increase the density of

A QUALIANTINE STATION.
the population and the rent of the owner (as well as the death-rate), are disappearing, and in their places we find dwellings capable of furnishing air and light to all of the residents.

Then, in the matter of streets, how much more attention is now given to small parks! When about the middle of the century interest in public parks was revived, the efforts of the various cities were directed to the securing of large tracts of ground and beautifying them in every way. They were open to every one, it is true, but too often too far removed to be of t.se to the submerging tenth. Now, while not adorning these with one garland less, the effort is making to break up the congestion of the crowded districts by hreathing spaces, to the comfort and vigor of those who must make the surrounding houses their homes. The streets, too, no longer paved with the unsightly cobble-stones, are made noiseless with the asphalt paving and, what is more ts, the purpose, can be easily cleansed by flushing. When practical business, and not practical politics, prevails in the municipality, there is no opportunity for the household refuse to accumulate, although no longer rushes are available to receive it, for it is regularly and promptly removed.

The exigencies of trade compelled our government to establish its bureau for the inspection of meat. The necessity of an inspection of foodstuffs for export demonstrates the possilility of adulteration for the home market. While, possibly, the ingenuity of the sophisticator has more than kept pace with the keenness of the inspector, the health of the people has been maintained, their comfort promoted, and their resources husbanded by the inspections carried on by the varions city and state boards of health.

The welfare of the people at home, in their dwellings and at their tables, does not limit the efforts of the sanitarian. He takes cognizance of the daily toil, the ceascless grind, to win one's daily bread. He recegnizes that some callings are dangerons or annoying to the people, and devises methods to overcome this, or failing in this, insists that such occupations must be carried on remote from the dwelling-place of man. Others, he finds, bring danger to these who are employed. This may not be an inherent danger, but one acquired by our crowding of operatives, or in other ways not securing to them proper comfort; and factory inspeetors are at work to reduce these dangers to a minimum, and to prevent child labor as well-giving to youth, as far as cessation from overmuch toil can give, an opportunity to develop into physieal manhood or womanhood. The sanitarian insists upon proper ventilation in mines, and tries to devise the means to remove the danger from those trades that ordinarily arc inherently dangerous.

The sanitarian sceks to aid in the amenities and relaxations of life as well. The playgrounds for children, the athletic grounds by the riverside at Boston. recreation piers in New York, are examples of this. Aud all of these are comparatively recent efforts, adding to the catalogue of achicvements during the century. It was the arch-enemy who, in the poem of antiquity, said: "All that a man hath will he give for his life." But he made the remark after much observation, and to Jehovah, unto whom even he would not dare to lie; and the rolling years since the Hebrew epic was first written have only added testimony to the truth of the assertion. In these later days, when the rule and plummet are everywhere applied, where the scientist delves and classifies to seek the cosmos in the apparent chaos, there was evolved out of self-seeking for life a higher and better quest, - a search for those things which make for the health of all. This search has widened, until many a broad savanmah has been trodden, many a mountain scaled and wilderness explored. With its ever extending view, new responsibilities and greater cares have been thrust upen those who are endearoring to rule in this domain. A community, a nation, is but a unit. Let one part suffer, and all are in pain; let one but decay, and rot is imminent everywhere. There can be no true social progress, no real stability of government, no national prosperity worthy the name, unless the environment of each individual permits the enjoyment of personal health, if he individually observes but the ordinary care of self. And whatever else of progress for sanitary science may be granted or denied as belonging to our century, the crowning claim of all, which cannot be taken from her, is that, along with the ideas embodied in commonweal and commonwealth, she has added the other of equal dignity and worth - Public Health.

Cifarles McIntire.

ing n

 betwe centunBut derful

been

 engint scienc ment, ized tl at Ma beingThe armed tion a field the ol shoek metho by th that organ is ned regar meth drill the g with odica of lor the c

Th

THE CENTURY'S ARMIES AND ARMS

A troe appreciation of the progress made in the arts and sciences in the nincteenth century can le obtained only by contrasting the conditions found at present with those existing a hundred years ago. The difference between the sperm candle and the electric light; between the stage-coach and the rapid-Hying express train; between the flail and the threshing machine; between the hand-loom and the machinery of the modern woollen mill; between the cruel medical operations of five score years ago and the skillful surgery, with the use of anestheties, of the present day; or between the mail-earrier with letters in his saddle-bags and the electric telegraph flashing news instantaneously from continent to continent; marks the difference between the begiming of the ninetecnth and the opening of the twentieth centuries.

But there is scarcely an agency that has been employed during this wonderful century for the improvement of the condition of man that has not been enlisted for his destruction. Steam, electricity, chemical knowledge, engineering skill, and mechanical invention have all been employed in the seience of war, and everything pertaining to the organization, arms, equipment, supply, training, and even the size of armies, has been so revolutionized that there is scarcely anything in common between the forces that fought at Marengo and those employed in recent wars, except the characteristic of being armed and organized bodies of soldiers under military leadership.
The nineteenth eentury was born in the midst of war. All Europe was an armed camp, and the contest between the prineiples of the French Revolution and the old feudal system had taken the form of actual strife upon the field of battle. A great alteration was taking place in the methods of war; the old pedantic strategy of the Austrian school had already received a rude shock at the hands of the brilliant young Bonaparte, and the old tactieal methods bequeathed by Frederick the Great were, also, soon to be shattered by the genius of the newer and greater warrior To appreciate the changes that were already being made in military methods, a brief glance at the organization of the armed forces in the latter part of the eighteenth century is necessary. The Prussian army, as organized by the great Frederick, was regarded as the finest of the time. In it the most exact and machine-like methods were observed, the most careful aecuracy in marching was required, drill was carried to mechanical perfection, volley firing was eonducted with the greatest precision, and no skirmishers were employed. In comparison with later methods, the whole system may be characterized as exact, methodical, and slow. Armies were supplied entirely from magazines, by means of long and cumbrous trains, and the art of moving rapidly and subsisting on the country was still to be discovered.
The French army produced by the Revolution, and led by such men as

Dngommier, Hoche, Morean, and Bonaparte, was trained to operate in colnmm, to deploy quiekly into line, and generally to aet with celerity; while the imporerished treasmy of the repmblic eompelled its amies to live entirely upon the comblry in which they were operating, as the only alternative to starvation. This entailed serious hardships to the soldiers, and great distress to the population of the eomntry in which they were acting, but it marked distinetly the beginming of a new system of supply, which contributed greatly to the rapid movement of armies. The French army, at the beginning of the century, contained no regiments, but was organized into demi-brigades, each of which consisted of fome battalions, each comprising ten companies, two of which were trainel to aet as skirmishers. These demi-brigades, with one or more batteries of artillery, constituted a division, to which a small foree of cavalry was generally mudded. In 180a Napoleon, then the supreme ruler of France, made important changes in the organization of the army. The demi-brigade was replaced by the two lattalion regiments, each regiment now eonsisting of eight companies. Two regiments formed a brigade, and two brigales and a regiment of light infantry eonstituted a division. On the light regiment devolved the duties of skirmishers; namely, to harass and develop the enemy before the main attack. The divisions were grouped into larger organizations known as corps d'urmée, or army eorps, each of which consisted of all arms of the service, and was, in fact, a foree eapable of operating independently as a small army. ${ }^{1} \quad \boldsymbol{\Lambda}$ cor ${ }^{\prime}$ s of reserve cavalry was also formed. In numbers the eavalry was equal to one fourth, and the artillery one eighth of the strength of the infantry. The infantry was armed with a smooth-bore, muzzle-loading, flint-lock musket, which required some thirty-two distinet motions in loading, and which hat an effective range of only two hundred yarts, though by giving it a high elevation it could do some damage at twiee that

odd style smbapnel. distance. This weapon bore about the same relation to the magazine rifle of the present day that the old-fashioned sickle bears to the modern mowing-machine. The artillery consisted of muzzle-loading, smooth-bore guns, which had less than one fourth the range of the modern infantry rifle. Cavalry, being able to form with comparative impunity within close proximity of the opposing infantry, could sweep down upon it in a headlong elarge; and the use of the sabre on the field of battle, now so rare, was then an almost invariable feature of every conflict. Under Napoleon the armies continued to "]'ve on the country," but magazines of supplies were earefully prepared to supplement the exhausted resourees of the theatre of war.
In besieging a fortified place, the first parallel or line of batteries of the besiegers was habitually established at about six hnudred yards from the enemy's works, a distance then at long artillery range, but which would now be under an annihilating fire from infantry rifles. The cannon used solid

[^4]shot a invent versall shell filled it frot throug which then a

> iug.
form which
ln It charer powide
shrap projec humbl guide consi and howe than raw t its la

battle

 Napo infan in leı by t again Spais"thin tion soil, in n enerr the i and
cam
shot almost exchasively, thongh early in the present century a projectile, invented by Lieutenant shapmel, of the British army, and which now universally bears his name, was introluced. This consisted of a thin cast-iron shell filled with ronnd musket balls, the interstices between which were filled by pouring in tastei sulphur or resin, to solidify the mass and prevent it from eracking the shell when the piece was fired. A hole was bored through the mass of sulphur and bullets to receive the bursting charge, which was just sufficient to rupture the shell and release the bullets, whieh then moved with the velocity that the projectile had at the moment of bursting. Shrapnel has at all times been a destructive missile, though in its early form it was insignificant in comparison with the "man-killing projectile" which now bears the same designation.

In the year 1806, the Congreve rocket was added to the weapons of war. lt consisted of a case of wrought iron, filled with a composition of nitre, chareoal, aul sulphur, in such proportions as to burn more slowly than gunpowder. The head of the rocket consisted of a solid shot, a shell, or a

CONOHETE HOCKET.
shrapnel. At the base was fastened a stick, which secured steadiness for the projectile in its flight. The range of the rocket was scarcely more than five humdred yarls, though a subsequent improvement, which dispensed with the guide-stick and substituted three tangential veuts, increased the range very considerably. Congreve rockets were usel with effeet in Europe in 1814, and against our raw militia at Bladensburg in the same year. They seem, however, to have depended more upon the moral effect of their hissing rush than upon any really destructive properties, and were effective mainly against raw troops and cavalry. The rocket is now an obsolete weapon, having made its last appearance in war in the Austrian amy in 1866.

The infantry of all the armies of Continental Europe, when deployed for battle, was formed in three ranks. On the eve of the battle of Leipsic, Napoleon, finding himself greatly outnumbered by the allies, ordered his infantry to deploy in two ranks, in order that his front might approximate in length to that of the enemy. This formation had, however, been adopted by the British some years before, and had been used with great success against the assaulting French columns, in many of Wellington's battles in Spain, where the stealfast Anglo-Saxon soldiery was able to maintain the "thin red line," and throw the fire of every musket against the denser formation of its foes. It was not until the British troops encountered, upon our own soil, an Anglo-Saxon opponent as steadfast as themselves, and better skilled in marksmanship, that they were unable to achieve a victory over their enemies. True, our raw militia was everywhere beaten when it encountered the disciplined soldiers of Great Britain, but our regular troops at Chippewa and Lundy's Lane gallantly defeated the choice veterans of Wellington's campaigns; and, at New Orleans, an army composed mainly of hardy back-

woolsmem, trained in Indian tightiug, and expert in the use of the rifte, lurled baek, with frightiful carnage, experienced British sobliers who had habitually triumphed over the best veteruns of the French empire.
The battle of New Orleaus warked the introduction of the ritte as a formidable arm for infiutry. It was by no means a new weapon, for it had been invented in (icmuny in 1498 ; but it hud not been used to any extent in military service, mainly bectuse of the slowness of loading. The capabilities of the sitte in the lands of an army of expert marksmen were, however, made so manifest ly Jackson's great vietory that the attention of military men was turned towneds the weapon which had emabled a crude army to overwhem the choiest troops of Europe.

Y'et it was not until 1850 that a practically

mivié nula. effiecent military rifte appeared. This was the invention of Captain Minic, of the French army, and was the well-known The weapon was a muzzle-loader, and its projectile, the "Minié ball," was of a conoidal shape, as slown in the accompanying figure. The ball being slightly smaller in diameter than the bere of the piece, the loading was easily accomptished, and the shoek of the explosion against the cavity at the base of the bullet fored the lead into the grooves of the bore aud eansed the shot to take up a rotary motion on its axis - in other words, " to take the rifling."

Rifles, mostly construeted on priuriples similar to those on which Minie's weapon was based, were soon in use in the armies of all great nations. The rifte musket, "model of 1855," adoptel by the United States, is shown in the accompanying figure.

In 1817 percussion caps were invented in the United States, but some time elapsed before they were introduced into militury use; and though the "perenssion rifle" was known in 1841, the victorious troops which went with Scott in the brilliant campaign from Vera Cruz to the City of Mexico, six years later, were armed with the flint-lock musket. In 1833, Colonel Colt invented the first practical revolving pistol. This weapon, especially in its present perfected form, is so well known as to need no deseription. The first pattern of Colt's revolver used paper cartridges and pereussion caps.

In the long period of peace which Europe enjoyed after the battle of Waterloo, but little change was made in the organization of the armies of the great powers; and in the Crimean war ($1855-56$) the composition of the English, French, and Russian armies did not differ mate-
in the use se, experi1phed ovar
duetion of was ly 16 1 ('ermuny at in mili-

INIÉ lushl.
vention of vell-known continents. ectile, the in the acsmaller in was easily gainst the linto the ra rotary ritling." r to those in use in t, " motel wn in the:
te United ntroduced ifle" was vith Seott e City of lock musactical res present (lescrip)paper car-

enjoyed

 vas made powers; on of the fer mate-rially from the constitution of the forces of the same nations in the Napoleonic wars. Markel changes hal, however, been made in the nature of the weapons; most of the English and a part of the Frehch infantry being armed with the rifte, though the Russian infuntry, with the exception of a few selectel regiments, were still armed with the smooth-bore musket. Though the extreme range of the riffe at this time did not exceed eight hambred yards, and was inacenrate at half that distance, it was, nevertheless, a formilable weapon in comparison with the infintry musket of Napoleonic times. Rifled siege guns were emplay l by the British at Sebastopol, but they were not a success, and were soon withdrawn from the latteries. A striking indication of the inereased range of artillery was furnished at Sebastopol, when the besiegers established their first parallel at a distanee of $\mathbf{1 3 0 0}$ yards from the Russian works.

In the Italian war of 1859 riffel camon appeared for the tirst time upon the field of battle. They were employed by the French, and to their use was largely due the vietories of the French and Sardinians over the Austrians. For many years the attention of artillerists had been devoted to the production of serviceable rifled artillery, and as early as 1846 an iron breeohloaling riffed eannon had been invented in France by Major Cavalli. This gun fired a shell not dissimilar in shape to the projectile employed in the Minié rifled musket. In 1854 , experiments with a Cavalli gun gave very satisfactory results, both in range and accmraey; but the breeeh meehanism seemed dangerously weak, and the rifled guns, adopited by the French and used with sneh effect in Italy, were muzzle-loaders.

In 1854 a breech-loading rifled field-piece was invented by Sir William (ieorge Armstrong. It was made of wrouglit-iron hars coiled into spiral tubes, and welded by forging. The breeeh was closed with a screw which could be quickly withdrawn for loading and sponging the gun. The projectile was made of cast-iron, thinly coated with lead, and was (with its coating) slightly larger in tliameter than the bore. The lead coating was crushed into the grooves by the foree of the powiler, the necessary rotation being thus given to the projectile. This gun gave excellent results in range and in rapidity and aecuracy of fire, but it was not until some years after its invention that it was adopted in the British service. Other breech-loading cannon soon appeared; but in the United States army the 3 -ineh Rodman muzzle-loading rifled gun was preferred to any breech-loailer then devised, and was
used with grent effeet thronghont the Wir of Secession. This gun was made by wrapping boiler plate aromed an iron bur, so ns to form a cylindrieal mass, the whole being brought to a welding leme in a furnace mul then passed through rollers to mite it solilly. The piece was then bored and turned to the proper shape and dimensions. The projectiles for vifted guns were generally coated with soft metal, or furnished with an expanding base or cup of
 with studs or buttons which fitted into the grooves of the bore. In the ease of the Whitworth gin, the projectile was mate nearly of the exact size and form of the bore, so as to fit aerurately into the grooves.

Breech-loaling canton were not, however, quiekly adopted, owing, perhaps, to conservatism on the part of artillerists, and partly becanse the gins first produced did nut seem to give appreinhly better results in range, accuracy,

or even in rapidity of fire than the mazale-loaders. Not only were breechloading cannon adopted with seeming rehetance, but rifled camon generally were looked mon with disfavor ly many artillerists of the old school. Hohenlohe tells of an old Prussian general of artillery who was so prejudiced against the riffed imovation that he requested, on his death-bed, that the salute over his grave should be firel with nothing but smooth-bore guns. It must be eonfessed, however, that the 12 -pound smooth-bore Napoleon gun long held its own against the new rifled field-pieces, as many a bloody battle in our Civil War well attested.

In the manufacture of heary guns the United States for some time led the world. In 1sio, General Rodnian, of the Orinance Department, produced the first 1 io-ineh gum ever mate. This gun was made of east-iron, and was cast on a hollow core, cooled by a stream of water passing through it, by which means the metal nearest the bore was made the hardest and most dense, and the tendency towards bursting was thus reduced to a minimum. General Rodman was also the inventor of the hollow cake powder, which consistel of cakes perforated with mumerous small holes for the passage of the flame, thus enabling the powder to be progressively consumed, and causing the amount of gas at the last moments of the discharge

$11{ }^{\circ}$

was male: fical masm, ell passed turned to were genfor cup of furuished In the case et size and 2. perhaps, guns first , accuracy;
re breechgenerally ld school. so preju-h-bed, that bore guns. oleon gun ody battle
e time led ment, pro-cast-iron, g through urdest and to a minie powder, es for the ively condischarge

GENERAI, WINFIELD SCOT'.
to be greater than at the instant of ignition. A large-grain powder, known as "mammoth powder," was afterwards devised by him to produce the same results. It will be seen later that this invention has rendered possible the powerful ordnance of the present day; and it is perhaps not too much to say, that Rodman is really thus the father of the modern high-power guns.

At the begimning of the War of Secession the heaviest gın in the United States was the 15 -inch Rodman, the projectile of which weighed 320 lbs., the charge of powder weighing 35 lbs . Next to this was she 10 -inch Cohumbiad, which fired a $100-\mathrm{lb}$. shell with a charge of 18 lbs . of powder. The effective range of these guns was a little less than three miles. The heaviest mortar was of 13 -inch caliber, fired a $200-\mathrm{lb}$. shell, with a charge of 20 lbs . of powder, and had a range of 4325 yards. This mortar was, like all others then

OLD EMOOTIF-BORE MOMTAR.
in use, manipulated by means of handspikes, and not only was much less powerful, but was much more clumsy than the admirable mortar of the present day.

The Crimean and Italian wars had foreshadowed the passing away of the old military conditions and the dawning of a new era of warfare. But it was in the gigantic struggle which rocked our own country for four years that the developments of modern warfare really commenced. At the beginning of this great conflict the ranges of 1000 to 1200 yards for field guns, and of 1500 to 2000 yards for heavy guns, were as great as could be secured with any degree of accuracy. The infantry rifle with which the Union and Confederate armies were armed had an extreme range of but 1000 yards, and a really effective range of only half that distance. The rifle was a muzzle-loader, which required nine distinct motions in loading besides those necessary in priming the piece with the percussion cap then used. The tactics employed at first in all arms of the service did not differ materially from the methoo, employed in the Napoleonic wars; and a line of American infantry deployed for battle in two ranks, shoulder to shoulder, scarcely differed in anything
but the color of its uniforms from the "thin red line" of Wellington's warriors. All this was to be changed ; but it was not only in the matter of arms and tactics that a revolution was to be effected, for new forces hithento untried were to be employed in the art of war.

The Wirr of Secession was not only one of the most gigantic conflic... ever waged on earth, but was one which will always be of interest to the military student because of its remarkable developments in the science of warfare, and one which will ever lee a source of pride to Americans because of the grim earnestness and stublorn valor displayed by the contending armies. From first to last, more than two millions of men were emrolled by the United States, and in the final campaign $1,100,000$ men were actually bearing arms in the service of the Union. The infantry was organized in compsnies of one hundred men, ten complaies forming a regiment. At first, three or four regiments constituted a brigade, though it was afterwards formed of a greater number when the regiments became depleted by the losses of hattle. Three brigades generally composed a division, which also habitually included two batteries of artillery and a small detachnent of cavalry for duty as orderlies and messengers. Three or more divisions constituted an army corps. The cavalry was formed into brigades and divisions, which in the later years of the war were combined to form, in each of the large armies, a corps of cavalry. It was in command of such corps of mounted troops that sheridan, J. E. B. Stuart, Merritt, and Wilson achieved their great fame. The batteries first distributed to divisions, or even brigades, were afterwards assigned to the army corps, and all guns not thus employed were grouped into a corps of reserve artillery.

It is a curious fact that the two factors most important in warfare were fomd to be two inventions designed primarily for the interests of peace, namely, the railroad and the electric telegraph. Stem and electricity had both been used in the Crimean and Italian wars; but it was in the War of Secession that they received their first great and systematic application. The effect of the use of railroads in war not only enables armies to be more rapidly concentrated than was formerly the case, but renders it possible to supply theni to an extent and with a certainty that would otherwise be out of the question. The difference between the supply of an army by wagon and by rail was clearly shown in the siege of Paris, in 1870-71, where six trains a day fed the whole besieging army, while it is estimated that nearly ten thousand wagons would have been required for the same purpose. Moreover, the force of troops vecessarily detached to protect a line of mailroad commmications is not nearly so great as the force that would be necessary to guard the immmerable wagon or pack trains that wonld otherwise be required. In the opinion of the best military anthoritics, railroads, had they been in existence, would have enabled Napoleon to conquer Russia, and with it the world; while, without the aid of railroads, the successful invasion of the South by the armies of the Union would have been an impossihility. It is only while it keeps moring that an army can "live on the country." It is like a swarm of locnsts, consuming everything within reach ; and if it be compelled to halt, whether for battle or from other canse, it must be supplied from bases in the rear, or it will speedily disintegrate from hunger alone. This fact was fully appreciated by General Sherman, when he left Atlanta in his famous "march
to the sea;" for thongh he expeeted to, and dicl, live upon the comntry, he nevertheless took the precaution to carry with him a wagon train containing twenty days' ratious for his entire army.

In the War of secession the electric telegraph first appeared on the field of battle. The telegraph train became a prominent feature of all our armies; and the day's mareh was hardly ended before the electric wire, rapinlly established by an expert corps, comected the headquarters of the army with those of each army corps, division, and brigade. Hut it was not ia its employment on the actual field of battle that the telegraph found its most valuable military use. It enabled generals, separated by hundreds of miles, to be in eonstant commmication with eaeh other, and rendered it possible for Grant to eontrol from his headfuarters hat at City loint the movements of the armies of Sherman. Thomas, and Sheridan in combinet operations,

Spencer carbine.
which enabled each to perform, in harmony with the others, its part in the mighty plan.

It followed as naturally: as day follows night that a shrewd and intelligent prople, engaged in a desperate struggle for selfi-preservation, would avail themselves of all means provided by military science for carrying out the contest in which they were engaged. Iron-clad vessels had been devised in both England and France, but they were merely frigates designed on the old lines and partly eovered with a sheathing of armor. With charaeteristic energy and ingemity the Americans, ignoring old traditions and seeking the shortest road to the fulfillinent of a manifest want, prodnced simultaneously the Merrimac and the Monitor, the former resembling "a gabled house submerged to the eaves," and the latter looking like "a Yankee cheese-box upon a raft." These novel vessels met in their memorable combat at Hampton Roads, and the booming of their guns sounded the death knell of the old wooden navies.

As with war ressels, so with firearms. New conditions were met with inveutive genius and mechanical skill. Though the great mass of our troops contimued throughout the conflict to use the muzzle-loading riffe, breeelrloaders were in the hands of many thousands of our soldiers before the close of the great contest. In 1864 the cavalry of Sheridan and Wilson and many regiments of infantry were armed with breech-loading carbines, which gave
them a great advantage over their opponents. The effect of the breeel-loaders upon the Confederates was unpleasantly surprising to them, and the Southern solliers are said to have remarked with itsmal humor that "the Yankees loaded all night and fired all day:"

The principal breech-loading arms in use in the Union armies were the

METALIIG CARTIDGE OF 1864-65. Sharps and the Spencer. In the sharps carbine the barrel was elosed by a sliding breech-piece which moved at right angles with the axis of the piece, the breech being opened anil closed by pulling down and raising up the triggerguard. The spencer carbine was a magazine rifle, and was greatly superior to the Sharps. The magazine of the rifle lay in the butt of the stock, and was capable of holding seven cartridges. As the cartridge was fired and ejected another was pushed forward into the breech ly a spiral spring in the butt of the piece. The Spencer carbine used metallic cartridges. The introduction of these cartridges was oue of the most remarkable advances in the art of war made during the present century. The cartridge in use in 1864-6i5 is shown in the accompanying figure; it consisted of a thin copper case firmly attached to the bullet containing the powder, and laving at its base a small metallic anvil, in a cavity of which was placed the fulminate, which was exploded by means of a firing pin, driven in by a blow of the hammer. The advantages of the metallic cartridge can scarcely be overestimated; it rendered obsolete the percussion cap, and being water-proof it did away with the ever-present bugbear of damp ammunition. The old injumetion, " P'ut your trust in Gool and keep your powder dry," has consequently lost much of its foree; for while it is to be hoped that the soldier will continue to place his reliance upon Providence, the latter part of the advice can now be safely ignored.

Among the many alvantages possessel by the breech-loader over the mnzzle-loader, the principal ones are greater rapidity of fire, ease of loading in any position, diminished danger of accidents in loading, and the impossibility of putting more than one charge in the piece at the same time. This last advantage is by no means slight. Among 27,000 muzzle-loading muskets picked up on the battlefield of Gettysburg, at least 24,000 were loaded. Of these about half contained two charges, one fourth held from three to ten clarges, and one musket contained twenty-three cartridges.

The failure of the Americans to produce during the great war a practical breech-loading field-gm is doubtless the to the fact that the field artillery in use at that time answered fully all the requirements then existing. Owing to the nature of the comntry in which the armies were operating, the range of the 3 -inch rifled gmu was fully as great as could have been desired; and on the broken and wooled gromid which generally formed our field of battle, the smooth-bore Napoleon gun, firing shrapnel and canister, seemed to have reached almost the acme of destructiveness. Moreover, the mazzle-loading cannon, both ritled and smooth-bore, were served with such celerity as to make it a matter of doubt for some years after whether the introduction of breech-
loardi until impry rifled was over Ange artill conte

war,

the it
The dema
loading field-guns would materially increase the rapidity of fire. It was not until infantry fire had greatly increased in range and rapidity that a further improvement in field artillery became necessary. In siege artillery, heavy rifled gums of the Rodman and the Parrott type appeared. P'lie Parrott gun was of cast iron, strengthened by shrinking a coiled band of wrought iron over the portion of the piece surrounding the charge. The famous "Swamp Angel," used in the siege of Charleston, was a Parrott gun. The sea-coast artillery consisted mainly of smooth-bores of large calibre, which were able to contend successfully with any armor then afloat. It is a curious fact that the war, so to speak, between guns and armor has been incessantly waged since the introduction of the latter, every advance of armor towards the degree of invuherability being met with the production of a gm capable of piercing it. The sea-coast artillery of the United States in the Civil War met fully every demand to which it was subjected.
The War of Sccession produced the first practical machine-gun, - the Gatling, - though such guns were not used to any extent. The machine-gun has, in fact, passed through a long period of gestation, and it is only in recent years that it can be said to have attained its full birth. Our great war was also noted for the introduction of torpedoes. These peculiar weapons had, it is true, been devised may years before; and Robert Fulton had, in the early purt of the century, devoted his inventive genius to the production of a submarine torpedo, which, however, was never practically tested in war. It was not mitil the contest of 1861-65 that torpedoes were of any prartical use. The high explosives of the present day being then unknown, these torpedoes depended for their destructive force upon gunpowder alone. Yet crude and insigniticant though they were in comparison with the mighty engines of destruction now known by the same name, they accomplished great results in more than one instance. The destruction of the Housatonic off Charleston, the sinking of the Teenmseh in Mobile Bay, and Cushing's daring destruction of the Albemarle, gave notice to the world that a new and terrible engine of warfare had made its appearance.

But it was not merely by the production of new weapons that the great American war was characterized. It marked the turning-point in tactics as well. The first efforts of our great armies of raw voluntecrs were as crude as the warfare of untrained troops always is, and it was fortunate that we were opposed to a foe as mupracticed as ourselves ; bat as the troops gained experience in war, acquired the necessary military instrnction, - in brief, learned their trade and became regulars in all but name, - they displayed not only a steadfast prowess, but a military skill that phaced the veteran American soldier at the head of the warriors of the world. The art of constructing hasty intrenchments on the field of battle grew out of the quickness of the American soldier to appreciate the necessity of providing defensive means to neutralize, in some degree, the greatly increased destructive effect of improved arms. In this respect le was thirteen years in advance of the European soldier, for hasty intrenchments did not appear in Europe until the TurcoRussian War. True, intrenchment on the field of battle was as old as war itself; but the American armies were the first that developed a system of quickly covering the entire front of an army with earthworks hastily thrown up in the presence of the enemy, and often actually under fire. Skirmishers
were no longer used merely to feel and develop the enemy; bit in many of our battles, notably in Sherman's canpaign in Georgia, the engagenent was begun, and fought to the end, by strong skirmish lines successively reinforeal from the main body, which they gradually absorbed in the course of the action. Here, too, the Ameriean soldier was fully six years in advance of the Enropean warior; for it was not matil the Germans had been warned by the territic losses incurred in their carlior battles with the French, in 1870, that they evolved from their own experience a system of tactics, the essential principhes of which had already been demonstrated on the Western Continent.

The incoeased range of artillery again received a practieal illustration; for at the siege of Fort Pulaski the Union batteries first oprened fire at ranges varying from 16:0 to 3400 yards from the Confedenate fort. At the siege of Charleston shells were thrown into the city from a battery nearly tive miles distant.

In 1866, the brief but blooly war between Austria and Prussia suddenly raised the latter nation from a comparatively subordinate position to the front rank of military powers. The greatness of l'russia was born in the saekeloth and ashes of national humiliation. Forbidden by Napoleon, after her crushing defeat in 1806-i, to maintain an army of more than $\mathbf{4 0 , 0 0 0}$ men, her great war minister, Schamhorst, coneeived the plan of discharging the soldiers from military service as soon as they had receivel the requisite instruction, and filling their places with reeruits. In this way, though the standing army never exceerled the stipulated mumer, many thousands of Prussians received military training; and when Prussia deelared war against Napoleon, atter his disastrous Russian campaign, the discharged men were called back into the ranks, and there arose as if by magic a formidable l'russian army of trained soldiers. The principle of miversal military service, thus called into existence in Prussia in time of war, had been continned through fifty years of peace, and enabled Prussia, with a population searcely more thim half as numerous as that of Austria, to place upon the decisive field of Königgritz a larger army than that of her opponent.

The Prussian system, which has since been copied by all the great military nations of Europe, is, in its essential features, as follows: Every able-bodied man in the kingdom, upon reaching the age of twenty years, is available for military service ; and each year there are chosen by lot sufficient recruits to maintain the army at its authorized strength. The great body of the male population is thus brought into military service. There are a few exceptions, such as the only sons of indigent parents, and a small mumber of men who are in excess of the force required. Any man who escapes the draft for three successive years, and all able-bodied men exempted for any cause from service in the regular army, are incorporated in the reserve. The term of service in the regular army is two years for the infantry and three for the artillery and cavalry. After being discharged from the regular army the soldier passes into the reserve, where he serves for four years. While in the reserve, he is called out for two field exercises of eight weeks' duration each, and the rest of his time is available for his civil vocation. At the end of four years in the reserve he passes into the Landwehr, in which he is required to participate in only two field exercises of two weeks' duration each.

Afte
the
many of ent was nforeed of the anee of rined by (1) 1800, e essenVestern ion ; for t rauges siege of ve miles

After five years in the Landwehr proper, he passes into the second levy of the Landweln, where he is free from all military duty in time of jeace, though still liable to be ealled to arms in case of war. From the secomd levy of the Landwehr he passes, at the age of thirty-nine years, into the Landsturm, where he remains until he retehes his forty-fifth year, when he is finally discharged from military duty. The soldier in the Landsturm is practically free from all military duty, for that body is never called out except in case of dire national energency. liy this system Prussia becane not only a military power lut "a nation in arms," in the blaze of whose might the military glory of Anstria and of France successively melted away in lomiliating defeat.

The careful military preparation of Prussia in time of peace was by no means limited to measines for providing an army strong in mumbers. Every year her troops were assembled in large bolies for pactice in the manourres of the battlefield. This mimiery of war, at first lightly regarded by the military leaders of the other Europen nations, produced such wouderful effects in promoting the etticieney of the army that it has since lneen copied in all the armies of Europe, and is now regarded as the most important of all instruction for war.

Thongh breeh-loading rifles were, as we have seen, used in the War of Secession, the l'russian army was the first that ever took the field completely armed with such weapons. The Prussian rifle was not new, for it had been invented by a Thuringian gunsmith, named Dreyse, about the time that the Minié rifte appeared. Dreyse's arm was known as the "zundnadelyewehr," or needle-gun, and its effeet in the Anstro-l'russian war was so decisive and startling as to cause muzzle-loading rifles everywhere to be refegated to the limbo of obsolete weapons. Yet the needlegun was bat a sorry weapon in comparison to those now in ise, and was distinctly inferior to the Spencer carbine. Its breech mechanism was clumsy, it used a paper cartridge, it was not accurate beyond a range of three hundred yards, and its effective range was scarcely more than twice that distance. The German infantry fought in three ranks, and its tacties was not equal to that employed by the American infantry in the War of Secession. The Prussian field artillery was the most formidable that had yet appeared, and consisted mainly of steel breech-loading rifled gnns, which were classed as 6 -pounders and 4 -pounders, though the larger piece fired a shell weighing fifteen pounds, and the smaller projectile used a shell weighing nine pounds. In the Austrian army the infantry was armed with a muzzle-loading rifle, and the artillery consisted entirely of muzzlo-loading ritted guns.
The exalted military prestige gained by lussia rendered it certain that she must soon enter the lists in a contest with France, whose commanding position in Europe was so seriously menaced by the rise of the new power. Foreseeing the inevitable conflict, Napoleon III. endearored to prepare for a serions struggle. The French infantry was armed with the Chassepôt rifle, which had an effective range nearly double that of the needle-gun. A machine gun, known as the mitrailleuse, was also introduced into the French army. Much was expected of these new arms; but so superior was the organization, readiness, generalship, and tactical skill of the Prussians that the war was a practically unbroken series of victories for 1'russia and the
allied German States. Profiting by their experience in the course of the conflict, the Prussians formed their infuntry for attack in three lines; the first consisting of skirmishers, the second of supports, either deployed or in small columus, and the third of a reserve, generally held in column until it came under such fire as to render deployment necessary. The skirmishers were constantly reinforved from the supports, and finally from the reserve as the attack progressed, the whole force being united in a heavy line, and opening the hottest possible fire when close enough to the enemy for the final charge. In its essential principles this attack formation is in use at the present day in the armies of all civilized nations. 'Ihe Prussian artillery was handled with terrible effect buth in battle and siege. A new demonstration of the increased power of artillery was given in the siege of laris, in which shells were thrown from the heights of Clamart to the P'anthéon, a distance of five miles.
The next European war was the contest between Russia and Turkey, in 187. In this contlict the American system of hasty intrenchments was used with success by the Turks, who were alsu armed with an American rifle, the Peabody, which enabled them to intlict serions losses upon the Russians at a range of a mile and a quarter. Owing to the Turkish intrenchments and the inferiority of their own arms, the Russians won their victories over much smaller armies only with a groesome loss of life. A further impetus was given to the development of the infantry rifle, and the German tactical experience was coutirmed by the Russian General skobeleff in the declaration that infantry can successfully assault only in a succession of skirmish lines.

The war in Turkey was the last great Luropean contlict. Subsequent campaigns of the-Russians in Central Asia, of the English in Egypt, the Soudan, and India, of the dipumese in China, of the Turks in Greece, and the Americans in Cuba, have emphasized the lessons already taught, and demonstrated the increased power of new weapons.

Having taken a retrospective view of the military forees and weapons employed in the wars of the nineteenth century, let us now turn to a consideration of the armies and arms of the present day. The adoption of the system of universal military service has increased the size of the standing armies of the nations of Europe far beyond the proportionate increase of their respective populations. In round numbers, the strength of the armies of the great powers is as follows: Russia, 860,000 ; Germany, 285,000 ; France, 618,000 ; Austriat, 306,000; Italy, 231,000) Great Britain, $222,000{ }^{3}$ Not only are the standing armies greater than in the early days of the century, but, owing to the improved methods of trinsportation and supply, the forees now brought upen the field of battle are vastly larger than in the days of Napoleon. The French army at Marengo was less than 30,000 strong. At Austerlitz it was only 70,000 , which was its strength also at Waterloo. In only two battles, Wagram and Leipsic, was Napoleon able to place $\mathbf{1 5 0 , 0 0 0}$ men on the field; and in the latter battle the armies of all Europe opposed to him numbered only $\mathbf{2 8 0 , 0 0 0}$. In more recent times Prussia alone placed upon the field of Königgriatz 223,000 men with which to oppose the Austrian - army of 206,000 ; and at Gravelotte the great Trench army of 180,000 men

[^5]bils 0

wree,

 cation
eireh.

a regi posed of eav lery train. of 30 , sabres ploye brigad josed ('ivaly ol'gan louse force corps ${ }^{2 u n t}$ The carry In
from men,
ments the a assigı the a and w mant for til ment emath into l'Ons briga as al and r

Ha
was outnumbered by the German host of 270,000 . It is probable that in the next great Luropean war more than a million men will be found contending on a single battlefield. A detailed deseription of the amies of all the great pwers would prove wearisome to the render, for their points of resemblanee are many and their general characteristics are the same. The German army may be taken as the most perfeet speeimen of a highly organized military torce, and a deseription of its organization would answer with slight modifieation for the other armies of Continental Europe.

The infantry of the German army is organized in companies of $\mathbf{2 5 0} \mathbf{~ m e n}$ each. Four companies constitute a battalion, and three battalions compose a regiment. The brigade consists of two regiments, and the division is composed of two brigades of infantry, four batteries of artillery, and a regiment of eavalry. The army corps consists of two divisions, a body of corps artillery composed of twelve batteries, a battalion of engineers, and a supply train. In round numbers, the fighting strength of the army corps consists of 30,000 men and 120 guns. The eavahy is organized in squadrons of $\mathbf{1 5 0}$ sabres each, five squadrons forming a regiment, only four of which are employed in the field, the fifth remaining at the regimental depot. The cavalry brigale consists of three regiments; and the cavalry division, which is composed of two brigades, aggregates 3600 sabres. Thus a suall part of the ravalry foree is attached to tie infantry divisions, while the bulk of it is organized into divisions composed of mounted troops alone, two batteries of horse artillery being attached to each cavalry division. The entire military force is divided into "armies," each consisting of from three to six army corps and two or more eavalry divisions. The eavalry has about one sixth and the artillery about one seventh of the numerieal strength of the infantry. The German eavalry is armed with sabre, earbine, and lanee. The officers carry the sabre and revolver.

In the army of the United States the organization differs in many respects from that of the German army. The infantry companies each consist of 106 men, including officers. Twelve companies form a regiment, and three regiments constitate a brigade. A division is composed of three brigades, and the army corps is made up of three divisions. The number of batteries assigned to the divisions varies, as also the amount of corps artillery. In the army operating in Cuba, the artılery was all in a separate organization, and was distributed to the divisions only on the eve of battle. Experience and theory alike suggest four batte ies for each division and eight batteries for the corps artillery. No cavalry is assigned to the divisions, but a regiment is supposed to be assigned to each army eorps. The main foree of the cavalry is grouped together into eavalry divisions. The eavalry is organized into troops of 100 sabres, four troops forming a squadron, and three squadrons constituting a regiment. Three regiments form a brigade, and three brigades a division. The American cavalry brigade is thus of the same size as a Prussian eavalry division. The eavalry is armed with the sabre, carbine, and revolver. The lance is unknown in the American army.

Having viewed the composition of modern armies, let us now see how they are armed. A consideration of the powder now in use is a necessary preface to a deseription of the weapons employed in the warfare of the present day. The old fine-grained black powder familiar to every boy who has ever han-
dled a shotgun has phased eompletely out of military use. The powders now employed nanally have guncotton or nitroglyeerine and guncotton for a bass. They we patetically smokeless, the probuet of their combustion is uhmont entirely gaseons, they leave no solid residma, and nre of the quality known as "slow-burning," giving a constantly increasing pressure on the projactile from the moment of ignition to the time when it leaves the murale of the piece. These powders are mamfactured in thin sheets or small tubes or cords, which. for small arms, are broken up into grains. Whey vary in color from light yellow to black.

Before the uloption of smokeless powder, the cake pooder invented by General liodman hat been highly developed and improved in the form of "cocoa powder." This was made in hexugonal prisms, each perforated longitudiually, so as to have a lollow eore. These grains were carefinly arranged in the cartridges so as to have this core continuous from one grain to another, in order that upon ignition the combustion would begin in the interior and produce a constantly increasing volume of gas as the exterior surface of the grain was reached. Though the time of eombustion was too rapid to be appreciated by the ortinury senses, it was, nevertheless, quite different from the practically instantancons combustion of the old small-grain powder, and was susceptible of accurate measurement. Much difficulty was experienced in overcoming the detonating tendencies of the smokeless powders, but at last the requisite slow-burning properties were obtained. The smokeless powder for large gums is made in cartridges composed of bundles of strips or cords, or in the same prismatic form as the cocoa powder, and the process of combustion is the same.
The form of the gim is depondent entirely upon the me ure of the powder used. As the pressure of the gas constantly increases with the burning of the powder, the maximum foree will be reached at the moment the combustion is complete. The length of the bore should, therefore, be just sufficient to enable the powder to be entirely consumed at the exact instant the projectile leaves the mazale of the piece. A shorter bore would cause much of the powder to be thrown ont unconsumed, while a mnch greater length would retard the projectile by subjecting it to the friction of the bore after the maximum force of the powler had been reached. This accounts for the greatly increased leugth of the motern cannons. A change in the method of gun construction has accordingly become necessary. Guns are no longer made of cast iron, but are "built up" of steel. The explosion of the powder is, of course, exerted in every direction, against the bore and sides of the piece as well as against the base of the projectile. This produces two strains; a longitudinal strain which is exerted in the direction of the axis of the piece, and a transverse strain which tends to burst the gun. It is necessary, therefore, to have the piece so strong, especially at the points of first explosion, as to counteract these strains, and thas cause the entire force to be exerted upon the projectile in the direction of the "least resistance." This strength, or "initial tension," is
walers now for a hass. is almost lity known o projectila \%:le of thr 11 tules or sell up intu t yellow to howder, the oclman hat in the form hexagonal y, so as to re carefully e this core 1 , in order and produce f the grain , be appreerent from owler, and experieneed lers, but at s snokeless s of strips the process
the powder burning of t the comre, be just cact instant rould cause ch greater tion of the . This acA change ary. Guns The exploagainst the projectile. eted in the h tends to so strong, ese strains, tile in the ension," is

mortar on revolving hoist.
obtained hy shrinking cylinders of steel over the original cylinder of the piece, each outer cylinder or jacket being a few thousmadthos of an inch smaller in its interior diameter than the onter diameter of the cylinder which it incloses, mad being expanded by heating to a sufficient degree to enable it to be slippell over the latter. Upon cooling, the jucket exerts a constant and powerful force of compression, which connterncts the outward pressure of the force of explosion. The longitudinal strain is less dangerous than the other, and is usually counteracted by an interloeking of some of the cylinders or hoops, to which the stran is transmitted from the breech-plug. The art of building up guns has been of slow growth, the first efforts in this direction having been made by Sir W. G. Armstrong nearly half a century ago. The weight of the projectile of the present 16-inch gun in the Unitel States service is $233^{\circ}(0)$ pomds; the charge of powiler weighs 1060 pounls, and the extreme range is more than 14 miles. The cost of each shot is 8400 , and when we consider that this does not inchude the wear and tear of the gm, it is evilent that money has become more than ever before "the sinews of war."

Not less remarkable thun the improvenent in camon is the improvement in mortars. These mortars are very unlike the clumsy weapons of that name manipulated by haad-spikes, which were known in our great war. They we now mounted on a platform which turns on rollers. They are elevated or depressed by a mechanical appliance, are loaded at the breech, are arenrately riffed, and can drop their projeetiles on the decks of hostile vessels at a range of six miles. The, are placel in grouss of four, each in a separate pit, some batteries containing as many as four groups, or sixteen mortars. In all important sea-eonst batteries both guns and mortars are so arruged as to be fired by electricity, either singly or in volleys.'

A dynamite gon las been devised by Captain Zalinsky for the purpose, as the name implies, of throwing a projectile containing dynamite. Attempts to fire dynamite projectiles by means of powder have thus far failed. In the Zalinsky gun the propelling power is compressed air. The projectile contains from fifty to sixty pomals of gelatine dynamite, the explosion of which is terrific. Excellent results have been obtained with Zalinsky's gun up to a range of 2000 yards, but as this is insiguificant in comparison with the enormons rauge of high-power cannon using powder as a charge, the dynamite gin is still a weapon of limited usefuluess. Although the dynamite gin has not as yet fulfilled tho desired requirements as to range, promising experiments have been made in firing shells chargen with high explosives from mortars using eharges of powder, and it is probably a question of only a short time before means will be found for successfally firing dynanite in a similar manner.

The great improvements in field artillery make the camon of the early battlefields of the century scem, in comprison, almost like harmless toys. The modern field gun is mate of steel, is rifled, loads at the breech, and has great rapidity and accuracy of fire. The extremé range of the 3.2 -inch field gun in the United States service is about four miles. This, in fact, is beyond the ordinary range of human vision, and it is but rarely that the ground for so great a distance is free from features that obstruct the view. For these reasons the fire of field guns can seldom be utilized beyond a range of two miles.

The pro of powd the weig shells it but the viry diff sears of in ${ }^{10}$ sit spherica means o peudent its uplu which st of the b iucrease

The sh1 diamete imulivid

The 1 luerbette, and is n the gur in rare Butfing riages e and the tion fro glu cal sure, es for the the rec back, q firing.

The the 7 - in effectiv

The projectile of the 3.2 -inch field gun weighs 133 pounds, amil the clarge of powder 33 pounls. The 3 . 6 -inch gun is a still more powerful weapm, the weight of the projectile and charge being 20 and if pounds respectively. shells are used against inanimate objects, such as earthworks or buildings; but the great artillery projectile for the battlefied is shrapmel. It is now very different from the ernde projectile known by the same name in the early gears of the century. The bullets are assembled in cireular layers and held in position by "separators," which are short cast-jron eylinders with hemispherical cavities into which the bullets fit. The bottom separator fits by means of lugs into recesses at the base of the shrapnel, and prevents indegeadent rotation of the charge of bullets. The top separator is smooth on its upper side, and is kept tirmly in phee by the head of the projectile, which serews against it. The separators prevent movement or deformation of the bullets under shock of diseharge, and being weakened by radial ents, increase the effect by furnishing adlitional fragments of effective weight.

The shrapuel for the 3.2 -inch gun contains 162 bullets one half inch in diameter and weighing 41 to the pomad. The total number of lullets and individual pieees in the shrapnel is 201 .

The heavy sea-coast guns are now mounted either in armored turrets, en burbette, or on disappearing gan-carriages. The first system is very costly and is not generally used in the United States. The second system, in which the guns are fired over a parapet and are constantly exposed, is used only in rare cascs. The third has been perfected in the United States in the liuftington-Crozier and the Gordon disappearing gun-carriages. These carriages enable the gun to be loaded in safety under cover of the earriage pit, and then to be raised by means of counterweights or compressed air to a position from which it can fire over the parapet. With trained camoneers, the gin can be raised and fired in twenty seconds, and this brief period of exposure, especially when smokeless powder is used, renders it almost impossible for the enemy to locate the gun with any degree of acomracy. The shoek of the recoil, taken up by pnemmatic or hydraulic cylinders, brings the piece lack, quickly but gently, to the loading position, whence it is again raised for firing.

The siege artillery of the United States army consists of the 5 -inch gm, the 7 -inch howitzer, and the 7 -inch mortar. They all use inn and their effective range is from three to four miles.

When the enemy is sheltered behind entrenchments it is diftienlt to reaeh him with shrapmel fired from field guns. Field mortars have accordingly been devisel for this purpose and have given excellent results. The United States 3.6 -ineh field mortar is rifled, and earries a shrapuel weighing twenty pounds. The weight of the field mortar is only 500 pounds, and it ean be easily carried in a cart drawn ly a single mule.

But great as the improvements have been in artillery, they are less important than the changes effected in the infantry ritle; for upon the quality of the infantry depends, more than upon anything else, the effieiency of an army. There are many kinds of ritles now in use in the different armies ol the world, but in their essential principles they are very similar. All use smokeless powder. and all are provided with a magazine which admits of firing a mumber of shots without reloading. 'The Springfiekd rithe formerly in use in the United states army has been replaced by the Krag-Jorgensen, whieh has a magazine holding five cartridges, and is provided with a ent-off whieh emables the piece to be used as a single-shooter. When an

emergency demands rapid fire, the opening of the cut-off enables the eartridges in the magazine to be fired in rapid succession. The range of the Krag-Jorgensen is 4066 yards, being practically equal to that of the Mauser, which, in the hands of the Spaniards, inflieted casualties upon our men when they were more than two miles from the hostile position. The difference in the penetrating power of the Krfos-Jorgensen and the Springfield is shown in the recompanying illustration, taken from the report of the chief of ordnance for 1893 . The springfield lead bullet was fired with 69 grains of black powder, and penetrated 3.3 inches of poorly seasoned oak, the bullet being badly deformel. With a bullet eovered with a German silver jacket the penetration was 5.3 inches, the bullet being again deformed. The Krag-Jorgensen used a bullet consisting of a lead core and a eupronickeled jacket, which was fired with 37 grains of smokeless powder. The bullet penetrated well-seasoned oak to a distance of 94.2 inches and was taken out in perfect condition. The new rifle, at short ranges, has an almost explosive effeet and produees a shocking wound ; but at ordinary ranges the wounds intlietol by it may be almost elaracterized as mereifui, for the bullet makes a elean puneture, and muless a vital organ is struck the wound heals easily and quickly. The old expression of "forty rounds," so familiar to veterans of the Civil War, is now obsolete; for no soldier now thinks of going into aetion with less than 100 eartridges on his person. Not only is the firing more rapid than was formerly the case,

URY

cult to reach accordingly The United hing twenty uil it can be
e less imporhe quality of ciency of an nt armies of ar. All use ch admits of itle formerly Krag-Jorgenvided with a : When an
bles the carrange of the the Mauser, pon our men on. The difte Springfield report of the fired with 69 oned oak, the erman silver in deformed. and a cuproowter. The hes and was nges, has an tat ordinary as mercifui, gan is strucl: orty rounds," or no soldier idges on his mly the ease,

SPRIN:GFIEIID, CAL. 45 (GIERMAN SIIVER JACKET)

KRAG-JURGENSEN, CAL. 30 (NICKEL STEEL BULLET)
but the lighter weight of the cartridge enables a greater number to bo carried.

From the rifle to the Gatling gun is only a step, for the latter is essentially a collection of rifle barrels fired by machinery. It consists of a number generally ten - of rifle barrels grouped around, and parallel to, a central shaft, each barrel being provided with a lock. By turning a crank at the breech, the barrels and locks are made to revolve together around the shaft,

the locks having also a forward and backward motion, the first of which inserts the cartridge into the barrel and closes the breeeh at the time of the discharge, while the latter extracts the cartridge after firing. Upon the gun, near the breech, is a hopper which reeeives the cartridges from the feed casc. The cartridge falls from the hopper into the breech-block of the uppermost barrel, and in the course of the first half-revolntion of the barrel it is inserted, the hammer is drawn back, and at the lowest point of the revolution the breech is closed and the cartridge is fired. As the barrel comes up in the second half-revolution the cartridge shell is extracted, and when the barrel reaches the top it receives another cartridge. The Gatling gun can be fired at the rate of 1000 to 1500 shots a minute. It generally uses the same car-

clo.

tridge as the infantry rifle; but some patterns of the grm fire a projectile an inch in diameter, and approximate elosely in their effect to a field gun. The grom is mounted either on a earriage similar to that of a field-piece or on a tripod. Gatling guns were very successfully used by the British in the Zulu War and in the Soudan, and by onr own troops in the battles aromd s:utiago.

The Gardner is a lighter machine gun than the Gatling. It consists of two parallel rifte barrels, and is operated by means of mechanism at the breech, which, as in the case of the Gatling, is worked with a crank. It ean fire nol shots a minute without danger of overheating, as the breeches are en-

sombentatit kapib fill dex.
closed in a metallie water-jarket. Its e streme portability makes it $\%$ most valuable weapon, though its firing capacity is not equal to that of the Gatling.

There are several other types of machine gms, but the most ingenions, and perhaps the most effective, is the Maxim automatic gun. This has a single barrel, about two thirds of wheh, from the muzale towards the breech, is surromuled by a water-jacket into which water is antomatically injeeted at mach discharge, thus rendering overheating inpossible. The mechanisu for operating the gon is at the breech, covering the remaining third of the barel. All that is mecessary is to draw back the trigger to fire the first shot; the recoil of the piece again corks it, and the gum is then antomatically fired, the process being kept up until the cartridges in the feed-belt are all expended. The cartridges are fed to the piece by means of helts holding $: 333$ rounts, two or more of the belts being joined together if desired. The Maxim gm ean easily fire ten shots a second. and if every man at the piece were killed the moment the first shot was fired the gun would keep on until it fired at least :3: more shots.

The Gatling, Gartuer, Maxim, aml similar guns are known as maehine guns. Uf the same general family, so to surak, are rapid-fire guns, which are, however, distingnished from maehine guns by having a larger calibre, loading by hand, having only one barrel, and being provided with artificial means of checking recoil and returning the piece to the firing position. They use metallie ammunition, anl have a breech mechanism which coeks the firing pin :und extrats the empty ease by the same motion which opeus the breech for relnading.

Rapid-firing gruns were first designed as: a means of naval defense against torpedo beats. They deliver a rapid and easily amed fire, and use projertiles of sumficient jower to penetrate the phates of the boats. In the naval service the gom is momed on a spring return carriage fixed to the vessel, so that the picee, when tischarged, is bronght back to the firing position withont any derangement of aim. On land a rigid carriage is used. This carriage has a spanle at the end of the trail, whieh is forced into the gromed by the recoil and holds the gon and carriage in place. The principal rapid-tire goms are the Hotelkis, Driggs-Schoeder, Nordenfelt, Krupl, Canet, and Amstrong. which fire from five to ten shots a mimute, and use either shell or shatp:ab. Experiments are now being made in different armies with a view to adopting rapid-tire guns for tield artillery.

The prineiphe of rapiul tire, in "quick fire," has been suceessfully applied to gme having a culiber as great as six inches. The metalle eartridge nsed in rapid-tire gums is, in appeaname simply a "hig brother" of the cartridge used in the infintry ritte.

Closely allied with gums, hoth in roast defense and in naval warfare are torpedoes. The crmbe woums of this type, used in the War of serersion, have ben developed intu formidable mumes of war, before whose destruetive power the strongest vessels ade lelphess. For their classification and deseription see "The Century's Naval I'rogress," pages 8.4 , 8 . .

The destruetive power of torpedoes is so well known as to give them a great monal weight as a means of defense. The fart that the German harbors on the Baltie were known to be protected by torpedoes saved them from an attack by the French nary in 1sio-in, and Cerveris fleet in the harbor of santiago, in $18: 08$, was safe from our squadron so long as the mouth of the chamuel was closed with spmish torjelloes.

Though necessarily brief, the foregoing sketeh will show that in the eourse of the nineteenth eentury amies have increased enomonsly in size, and in the jower of rapid movement and ecrtainty of supply. Infantry has increased in relative numbers and in importance. Extended order fighting, in which the individality of the sodier comes into phay, has taken the plare of the old rigid shoulder-to-shoulder line of battle. The private soldier's voeation has risen. in may brmehes of the military service, from a trade to a profession, and now, more than ever before, is extensive training and a high order of intelleet necessary for the command of armies. Wars have become shorter, sharper. more decisive and more tervible; and increased emphasis has been placed upon the warning, "In time of peace prepare for war."
machine lielı are, , loading ne:ms of Chey use lhe firing he breeeh
e against rojeetiles I service that the hout any ge has a he recoil grms are mstrong. sha:! adopiting y applied illge used eartrikge
rfare, are ecersion, destrueation ant
e them a man liarcen from te harbor ith of the

he erurse

 size, aml ntry has fighting, the plare soldier's t trade to id a high e become emplasis ur."laNER.

THE CENTURY'S PROGRESS IN AGRICULTURE

1. VICISNITUDES OF EALLLE FALMING.

If the thought enters. the mind of the reader that a youth (?) of sixtyseven is not competent to write mon agricultmal improvement for the Putire eentury, the answer is that such improvement can scarcely be said to have begun matil near the midale of the century; that the early forties saw the writer at work on a farm; that le has ever since lived on a farm; and that he, therefore, writes from persomal experience of the improvements which lave transformed agriculture from a simple art to a profomel science.

T'o realize the progress agriculture has made, we must maderstand its combition in the first half of the rentury, and the eanses which prevented improvement at that time. The soil was rieh with the aecmmations of centuries, and the farmer was at wo expense to either manatan or restore fartility, for with lont indifferent cultuvation large erops conld be raised. When a field became imporerislat. with axe and torell a new field was soon cleared from the lorost. The implemonts in use were of the erndest and mostly mamfartured be the nearest blacksmith, and it cost hat a few dolhars to ergip a farm ; still they were sufficient for the wants of the farmer of that date. So it will be seen that the ditficulty was not in the farm bor with the famor; for he eombl grow not only all that was necessary for fanily use, but more than enongli to supply the demand for such market as he lad. lerhaps the greatest difticulty in the way of agrienltural progress was the want of transportation facilities; for a market was of little use to a farmer if he was separated from it by a lmmed miles or more of roads which, throngh almost the entire winter, were so deep with mul that morlern farmers would think them utterly impassable, with streans unbridged and hills migraled. The first step toward relieving the farmer of this tronble was John Qumey Adams' message to Congress in 1822 , when he recommender the eonstruction of the National liond, the eastern terminns of whieh was to be in Maryland and the western at st. Louis, Mo. 'This road was constructed within a few years. It was the first ontlet for the crops of the great West, ant over it, across the Alleghany Mountains, a procession of covered wagons passed during the entire year, earrying the products of the farms to the Eastern markets and bringing back mamufactured goods. One other avenue was opened for the interchange of products hetween these two sections, the Erie Canal being eompleted in 1825, and enlarged and improved many years later.

During the thirties, just preceding the era of railroads, there was almost a eraze on the subject of canal buikling, and scores of miles of canals were begm whieh were never completed, as with the begimning of the fourth decade of the century the railroad idea had taken possession of the minds of the
people. In some cases the tow-path of the camal formed the roadbed for the railroad which supersedel it, and probably more lines of canal were abandoned than were completed. The era of milroads - that womerful factor which was to revolutionize farming - dates from about 18:30. The first locomotive in the United States was imported from England and plaed upon the wits in 18:9, and in 18:30 the first Ameriran locomotive was built. It was, however, very near the middle of the century before the system of raihoads had been completed so as to materially improve the condition of agrienlture; and althongh the fat may somm strange to some, the first milroad train ram into Chicago in 18.0.2. During these years of depressed agriculture, howerer, the population of the comutry was rapidly inereasing.

While the railroad system of the eomentry was developing, turnpikes were being built radiating from the prineipal markets and raihoad stations. With the beginning of the second half of the century the famers awoke to the fact that the Uuited States was a large and pepulons mation, requiring an immense amount of supphes, and that improvements for thasportation had been furnishod so that the markets were easily aceessible. Before passing. howerep, from the diseonagements and diffienties of agriculture in the early days. some practical ilhstrations of the difficulties met with seem neeessary to give a clear maderstanding of the comdition. What would the fanmer of tomber think were he obliged to start with a load of wheat in midwinter over roads which crossed mandiged streams and womm over clay hills, not a rod of which was macalamized and all of which were poorly graded. spenaing ten days with a four-horse tean to make a romad trip of one hundred miles with thirty-five hoshels of wheat, and sell it in the market for 3.5 eents a hushel? Yet such was the fact which the writer had from the $\mathrm{l}_{1} \mathrm{i}_{\mathrm{s}}$ of a famer who hat heen throngh this experienee. Two thoughts may oceur to the reader - first, that thirty-five bushels was a light load for a four-horse team, and, secoml, that hote] hills would more than absorh the money received from such a load of wheat. But hoth of these are explained by saying that one canse of the lightness of the load was that the farmer must carry feed for his team for the entire trip, and another, the meertainty of the condition of the roads; for though he might start with the roads frozen solid aml possibly worn smooth lyy the teams whiph hat preceded him, he was liable on the trip, to meet with a sudden thaw whelh redueed the roadhed to mortar, so that the wheels would sink ahnost to the axle, and in many eases the loal would he found too heavy for his temm. It was no meommon sight to see a seore of places to the mile where the fences hal been torn down and rails earried into the middle of the road to he used in prying the wagons ont of the mud when hopelessly mired. The reason the hotel bills did not consmme the proceeds of the load was that there were none; for the farmer carried his camp kettle, bedding, and provisions with him, and slept in the wagon during his entire trip. The same farmer referred to, in telling his story, said that all the money spent on the ten days' trip, was three "fips" (18izents), and that, presmmably, was lor three "nips " of whiskey.

An interesting personal experience in the winter of $1846-47$ was in driving hogs trom Anderson, Ind., to Cincimati, Ohio, a distanee of about 150 miles. The dove was staried with the mereury at zero, and the first diftienlty met was in getting them across White River, as there was no bridge and the strean
must the pis huddle peli wad gings water were 0 unexpe the hot Hhid tl of the hogs be oore, f
drove
reached so, for house, could b drove weight hogs his recalled some st tation, A $n \in$ made 1 to mill, work w safely, A part taken h
must be forded. The hogs absolutely refused to enter the icy water, but the pioneer of that day was equal to any emergeney. The drove was soon luddled on the bank, aials were carried from an aljoining field, and a elose pen was built aroma them; then two placky frontiersmen, with thick leggings reathing from ankle to hips, towed them by the ears to frozen shoal water in the centre of the river, and pushed them across the ice, when they were obliged to go ashore on the other side. Two days later a sudden and mexpected thaw set in, whe: for one hundred weary miles the drivers urged the hogs through mul which reached from fence to fenee, and whieh was so Huid that not a trace was left behind, as it flowed in to till mot only the track of the hogs but the footsteps of the drivers. When after days of urging the hogs began to lose strength amb fall by the way, they settled down into the aoze, from which the men must lift them into wagons which accompanied the

soll Plidermzen.
drove or were hired from farmers along the road. When Cincinnati was reached it seemed that the worst trouble of the journey was over; but not so, for the elimax of disaster with this drove was reached at the slaughterhouse, when for two weeks the weather was so warm that no slaughtering could be done, and the price of pork declined day by day, until the entire drove was finally sold at one and three quarters eents per pound dressed weight - and during the entire time, both on the road and in the pens, the hogs hat been losing rapidly in weight every day. This was the lowest price recalled for hogs; but it was very common to have a glut in the market of some staple which reduce. the price so low that it searcely paid for transportation, and in some eases made it atually unsalable.

A neighbor relates that when he was a boy, needing some money, his father made him the offer that he might have all the corn that he would shell, take to mill, and market the meal in Cincimati, forty miles distant. He went to work with a will, prepared a two-horse load, and reaehed Cineinnati with it safely, only to find the market glutted so that he could not get an offer on it. A part of it was finally sold at 10 cents per bushel, and the remainder was taken home.
'aring the elosing years of the fifth deande the prices of stock were at the lonest, good dairy cows bringing from $\$ 7$ to $\$ 0$ per head; yearling calse, from $\$ 1$ to $s: 2$; the very best lorses, 840 , and stoek hogs selling for $\$ 1$ or $8:$ eatel. At the same time many of the neeessities of life were sold at exorlitant priees, and an examination of an old aecome book slows the following tigures: salt, 84 per barrel ; mails, 6 to 8 cents per pousal ; calico, 122 eents per yarl; drilling. 20, cents per yard; clocks, s.t. 40 each (the value of the best horses!).

Some other facts must be taken into eonsideration to understand whe the farmers did not attempt improved methods. One was the condition of the eurrency. The L'nited states Bank, which it would seem should have afforded seeurity and stability to the eurrency, had been wrecked by the action of Andrew Jackson in vetoing its rechartering and withdrawing the Vnited States funds (at that date about $843,000,000$) from it ; and private banks had been established over the contire west and south, a system of what was then known as "wild cat" banks supplying the peophe with currence. The man who was trading needed to eary in his poen ${ }^{2}$, at all times a "hank deteetor." to which he might refer to ascertain how many cents on the dollar the issue of each bank was worth.

Looking baek at the condition of affairs as deseribed. remembering how few the markets, how casily ghoted, how matahn the eurrenes, and all the meertainties eonnected with the disposal of the farmeris produets, what was there to stimulate him to improve his methodis or increase lis prohucts:' If, as was oceasionally the case, the farmer determined to infrow his stock, he must import from laghand or buy at high priees from an importer, and there being mo express companies to deliver his stock. he must either go in persom or trust to private individuals to drive them over the momatains or, if small stock. to bring them in wageas the entire distance.

He conld not afford to earry on a wide correspondence, for each individual letter cost twenty-five cents postage, if the distance was owrer three hundred miles. It was not until 184.i that postage was reduced to ten cents, and ten years later it was reduced to three cents for letters of halt an onnce.

If any one is inclined to throw the blame upon the farmers for not having done their part to improve agriculture and bring prosperity, he should consider the conditions under which they had lived for a gencration; the meertain markets; the low prices of products; that they must eonstruct roads and bridges, baild sehoolhonses and chmehes, elear the farms, nearly all of which were covered with heavy timber; and the fact that all this work was dome with the erulest implements. It will be seen that the farmers had been aceomplishing wonders and were worthy of the highest praise mathes than blame.

With the begimning of the last half of the century, the farmers suddendy awoke to the fact that the conditions had berome wonderfully fawable. Towns and cities were growing up, on every hame offering new markets. Railroals and other means of transportation were opening to them. Inventive genins had taken up the improvement of implements of agrioulture, and. best of all, priecs had advanced greatly for all the leading products. Phe improvements of methods in farming, which have not been less than those in
mamfacturing and other callings, date from this time, am will be deseribed muler the following heals: Improvements in implements; in stock; in drainage and tillage; in the maintaining and inereasing of fertility; in eate and feeding of stock; in and aromul the farmer's me; and education, which ineludes agrienltural literature, farmer's organizaions, and sehools.

In writing on the improvements in agrionlture one can scarcely fail to be impressed with the fact that whenever the human ruee comes to the point that it must have help aml make a demand upon mature, she always honors the draft ; and as the steps are portrayed by which the agrieultural products of this continent have been inereased a handred fold, while the power of the individual worker has inereased wonderfnlly, and the labor has been lightened hy machincry, we ean see that these inventions and improvements

THE COIGMHAA HAHVBSTER AND HNDEIL.
came just as fast as they vere needed, and no faster. Goll has given to the human minid sneh power, ami to the ham's such skill, that whatever is necessary is soon provided when the want is made known. Perhaps there is no hetter way in which this can be traced than in the appliances by which the farmer feeds the world. It is an interesting study to note the successive steps in the improvement of implements for the work of the farm. In the begiming of the century the sickle and flail were all that were needed to eut and thesh the grain; and it was by a series of steps that the steam thresher and the combined mower and binder were evolved. The sickle was all that was meeded until population inereased and markets were made accessible; then the eradle was invented. With the former, an expert conld cut an acre a day, and with the latter four or more acres; but all the work was done by human musele. The man using a siekle must work with bended baek all day. The cradle enabled him to work erect, and lightened the labor ; but when the "Reaper sickle" was invenied the labor was transferred to brute musele. The first machines were clumsy and henvy to draw, requiring as
much, or more, power to ent the grain as to ent and bind it with the light raming modern binder. Now, the man who sweltered with bended back tom or twelve homs to art an acre of grain with the sickle "drives his tam afield," and by simply guiding it ents and binds ten or tifteen acres a day, and carries the bumbles to the shomek row.

The improvement in threshing manhinery has been as marked as in that for harvesting the grain, In the fire part of the century all the work was done with the Hail, and on farms where a large amome of grain was grown it kept a man busy a gool part of the winter to theresh it. The first improvement was in threshing the grain by tramping it ont with horses, and with two men and fom lumses, maler the most faromble eomditions, from tifty to one humbed bushels conlal be threshed in a day. But by both these methorls there was the disalvantage that in all dany, weather the work must be stopped, as the grain woukd hecome so tough that it combl mot be thershed.

Another disadrantage of these mothods was that it took a long time to prepare the erop for market, and in ease of a sudden rise in prien the lanmer could not take advantage of it as he now can when his grain is all threshed in a single day and held in the granary for sale. In the thirties, the first threshing maehines were put in ase, and were but little improvement over the method of tramping with horses. The mathines were of small eapacity, and simply threshed the grain, but did not separate it from the straw and elaff, hoth of which operations had to be done by hamd; and if the straw was to be sayed, either in the hain or in a stack, it had to be all hamdled with rakes and forks. The tirst threshing machine tiat the writer ever saw was one that was called "The Travelher." This was followed by machines rum by stationary horse-power. These were callen "ehaff pilers," from the fact that they threshed the wheat but did not separate it from the straw or elaff. The first horse-powers were inelined planes, or endless chain powers, as they were called, and were ron by the weight of the horses, the floor revolving moder their weight as they attemptel to go up the grade. These were soon supersoded by lever powers, made at first for two or four horses, but afterward increased in size and power until ten or twelve horses were used; and

abom

(1) tl
lecti
theror
lner
day
to ke
116111
also
Fur
heary
each
be do
until jorte
anoth
the pr could prohl fast : this 1 was : feet. fomi a sep straw straw but conlid was in th more arran press
about this time the machinery for sepanating the grain and chaff was added to the machine. It almost seemed to the farmers at this time that perfrestion had been reached when two or three humdred bushels eould be threshed in a day and also clemed; but the feeding of this large munber of horses was a havy tax mon the farmers, particularly when a miny day wond intervene before the job was tinished, and they were obliged to kerp the horses two or three days. The invention and introduction of the momated steam-engine not only sared the famer from this expense, but also inereased the power and doubled the daily cabacity of the machine, For a short time the farmers were satistied with this; but the engine was heavy, and often the farmers' teans were light, and as it was the rule that cach man mast draw the engine from his farm to where the next job was to be done, and often the distance was great and the roads bad, it was not long mutil he tired of this. Then eame the traction engine, which not only transported itself lat also drew the thesher and separator. About this time

another difticulty arose; for now that the machine had been improvel and the power in. eased so thar maler favomale comblitions a thousand busherls combl be thre hed in a dioy, the hamelling of the straw beame a serions problem. for it wat impossible to build it in a stack suitable for keeping as fast as the machine would deliver it. The first step to tighten and expedite this labor was in adding a straw earrier, a kind of revolving platform, which was attaehed to the separator and would lift the straw some twelve or fifteen fect. For a year or two the farmers were sitisfied with this help, but soon foom that it was inaterpiate for the work. Then the stacker was inventerl, a seprate maehine which was baeked moder the straw earrier to reecive the straw, and whieh harl, momited on wheels, an elevator which would carry the straw to a height of twenty-five or thirty feet; and not only could it do this, but it was the work of a moment, with a erank at its base, to raise it, and it conld be run at any angle. When the madhe first started, the straw carrier was plaegl horizontally, and as the stack grew in height, it was raised matil in the finishing ont of the stack it stoorl at an angle of forty-five degrees or more. The straw earricr eould not only be raised, but by an ingenions arrangement of small wheels, it could be moved from side to side by a light pressure with one hand, or by a man on the stack pmshing it with his fork.

$314 T H J U M 1 / \mathrm{ANH}$ WONJERS OF THE X/X'M CENTURJ

With this admimbe machine for handing the straw, it seemed as thongh perfection had theen reached, mad that there was now practically nothing more to be desired. But it was not long uatil the farmer fomad that with the delivery of six tons of straw yer hour it was heary work for six men to build the stack, and that it was the most disagreeable work about the machine becane of the dust. Alxme 18:0), some inventive genins produced the "hower" to take the phace of the stacker. This is a long jointed tule, some sixteen or eighteen inches in diameter, momed at the rear of the eylimer through which the straw is forced by compressed air which is furnisked by the machine. It can be raised or lowered, turned to the right or to the left, so as to deliver the straw at muy desired point on the stack. It is managed by a man standing on top of the separator near the rear end, does away entioly with any hames on the stack, and thas rednees the foree athent si:

men. Some other improvements which have been alded are the putting of knives in the cylinder to cut the bands, thas saving one or two hands, for often it was necessary to have a man on each side for cutting the bunds when the wheat was dry and the work was done with the greatest mpidity. Then a revolving platform, called a self-feeder, was alded in front of the cylinder, on which platform the bundles could be thrown from a wagon standing on each side, and he carried antomatically and dumped into the eylinder, doing away with the .an who formerly fed the bundes to the machine. To some machines an automatic weigher has been attached, which does away with a man for measming and keeping tally of the what. Compare for a moment this modem machinery which, with a foree on twelve or fourteen men, will thresh and clem for market from $1: 00$ to 1600 bushels of wheat per day, with the mas with the flail laboriously pomading out ten bushels, and yon will get a vivid idea of the progress in agricultural machinery. One somewhat curious fact must be taken into aceount in this, which is, that with some of these most wonderful manhines the cost of labor is about the same it formerly was. But the advantage is that the work can be done in a few hours, and the farmer's crop be ready for market to take advantage of
inerea the wi

III as in shop, to the gratss, dity.

Inss hitche
in su cure
incrensed prices, while by the old plan the work would reach almost through the winter.

In the colting and hauding of hay there has been as great improvement as in any portion of the farm. A tirstelass mowing machine, new from the shop, can now be bought for 540 or less, and with it the finmer can drive to the fiold after supper, in the cool of the day, and in an hour ent more grass, and do it better, than a man conld with a seythe by working hare all day.

Insteal of shaking out the swaths slowly with a fork, with a single horse hitched to a hay tedder abont two acres an hour ean be shaken up and left

ACME IIARHOW.
in such shape that both sum and wind have perfect access to it and eanse it to cure rapidly.

Instead of rakiug the hay laborionsly by hand, a steel sulky rake does the work easily and quickly, doing more in an hour than was possible in a day with the hand rake. On farms where the acreage of hay is large, a selfluader attached to the rear of the wagon gathers the hay from the windrow and delivers it on the wagon. At the barn, instead of the slow and wearisome hand pitehing, the hay fork and hay carrier deliver it in the top of the highest barus.

The invention of the hay baler enables the farmer now to condense his crop. so that one thirl of the room for storage formerly required for hay will answer ; and it also emables him to ship it to market by rail, where formerly it was necessary that it should he taken in wagons.

While the plough has not been improved to the extent that many of
our farm implements have been, it is vastly superior to those usel by the pioneers, and modifies somewhat the adage of " l'oor Richard," who wrote: -

> "Ite who hy the plough would thrive, Itimself nius either hold or drive;"
for the modern ploughain must not only hold and drive. but drive three horses at that, and turn as many acres in a day. Another adage attributed to " l'oor Richarl" was-

> "Plough derep whie siugrards slectp, And yot shath have corn to sell uad keep."

But the modern farmer has learned that the depth to which he ploughs must be governed by the natme of his soil. and tha leep ploughing on heary clay lands, or lamls with a crude subsoil, is often the canse of short crops and permament injury to the soil.

It is doubtful if in any line of farm implements there hats been more improvement than in that of harrows; and yet this improvement tates back lmit ahont a quarter of a century, as jevions to that time the old " A " harrow or drag. which was hard on the team and did indifferent work, was the only one fomm on most farms. More veeently the entting and slieing harrows hate been largely introduced, and maty other forms of improved harows have bern $p^{\text {nit }}$ on the market. For the preparation of harl land for a seed bed. especially for small grain, the disk harrow camot be execlied.

But for garden use or for pulverizing sod land which has not been too mueh eompacted. the slicing Acme harow is the most perfect implement in use, it being of light elraft, easily transferred from fieh to fiehd, and capable of making the finest and hest seed-brol

The cultivators in use have been greatly improved. It is necessary to deseribe lat two of them. The two-lorse enltivator with fenders, which enables the farmer to cultivate both sides of the row at once, driving two horses in the field instead of one, as ly the old method, has more than doubled the capacity of the individual; as by its use he is able not only to cultivate both sides of the row at once, hat to dispense entirely with the man who, mader the old rule, was obliged to follow the enltivator and uncover the corn. This "feader" is exceedingly simple, and the only wonder is that it took the farmer so long to find out its value. Costing but a few ecnts, it has saved the farmers millions of dollars, as previous to its adoption it was meessary to have one man follow each one-horse plow to uneover the com. 'There are two forms of this "fender," the simplest being a light piece of galvanized sheet iron attached to the eultivator or plow so as to come just betw. en it and the row of com ; the other is in the form of a rolling entter, and attached in the same way. With cither of these the farmer goes into the field as soon as the young plants ean be seen in the row, drives his team astride the row, and stirs every inch of the soil, putting a little fresh earth aromil each hill of corn or potatoes without covering a single plant. As a single State grows some millions of acres of corn, it ean be seen that the saving from this little invention to the farmers amounts to millions of clollars in a single year.

The oll idea of deep cultivation of most erops has been proven to he wrong. and modern implements are made to cultivate the surface to a depth of two
or three inches rather than to tear up the roots of the phants ; and one of the most perfect of all implements for this purpose is the "Planet Junior onehorse eultivator."

Perhaps no other elass of machines has relieved the farmer more than the ones for planting the grain; and with a molem two-horse corn planter twic rows can be planted at it time in eheckered rows, so that it can be cultivated hoth ways and with more preeision, both as to aligmment and as to the numbrer of plants in a hill, than by the old hand methol of planting. The small grain is sown ly a two-horse drill arranged for not only the grain, but at the same time to deposit commereial fertilizer along the rows of grain, and with a grass seed sower attached. In the garden a hand drill is used. It is easily adjustable to any sized seed, from that of the turnip up to beans and peas,

and the seel is perfectly distrimated in straight rows, while the garden hand cultivator does away largely with the use of the hoe.

Gne other motern implement, whieh promises to be very useful, is "the weeter." and its value rests on two facts which it required the farmer many years to diseover. The first is that the thormang pulverizing of the surface, "ven to the depth of an inel, breaks the capillaries and checks the evaporation of moisture; lant to do this it is necessary that the work be done just as soon alter a rain as the land will crumble, and sinee often if a drying wind blows the land gets dry in a few hours, a machine is needed that will enable the farmer to thus stir a large surfaee in a short time; and this the weeder does, as it is male to eover the width of three rows at once, aml more than two acres an hour can be stirred with a single maehine. The other fact which makes this implement of great value is that all weeds are easily exterminated when in embryo, and this stiming of the soil kills every one that is starting.

One other machine which has been greatly improved is the elover huller. l'revions to its invention, most of the clover seed was sown in the chaff, and when elean seed was required it took several days' work with four horses to tramp out three or four bushels, and then much of the seed was left in the chaff.

The molern huller is equipped with the blower and self-feeder, and with it from twenty to fifty loshels can he hulled and cleanel in a day, the amomt. depending on how well filled the heads are with seed.

It is quite renently that machinery has heen inventen that relieves the farmer of the hard work of planting potatoes by hand, and at the same time does the work better than the old way, as the machine drops the sem at a miform distance apratt and covers it perfectly. A man with this mathane will do the work of right or ten men dropping ly ham. Several potato diggers, operated by horse power, have also come into recont use. They greatly lighten and accelemate the work, and the cost of growing potatoes has been rednced several cents a bushel by these inventions.

111. IMALOOV:MENT OF STOCl.

Perhaps it womld be well in heriming to write on this suliject to ask, what is "pedigreed stock"? Mang people have the ithen that pedigreeing is an arbitrary rule adopted by stork growns to mystify the hayer and sepure larger prices lor their stom. Ther fact is that it is intented as a protection to the purchaser, and is, or shomh bee a smanatere that the stork hats bern bed along certain lines for a sumbient perion to extablish the desimble puaditips which it is wished to perpethate. A rigid wemsorship is expremed over the record boks, aud it makes every one recorting sturk, in a certain semse. a detertive to spe that the reeords are trathfin and repersent the amimals just as they are.

It is doubthol if aloug any line of farm oprations there has been gratur improvenent than in the herding and eare of stoek: yet there were greater diftiontios to arpeome in dong this than in imporing the implements. These diftienlties maty be classel as follows: First the one alremely alluded to in the opening chapter, to wit, the expense of importing and the conserpuent high price of thoronghbed animals; and when we recall that this was at a time whon the finmers were hewing out their homes from the forestand could not obtain large prices for their produets, it will be seen that few finmers conld aftord to improve their stork. Neemon, as to eattle and hogs. it was aloust impossible to breed pure stock : for all animals were allowed to rum at large, and the wools were full of "tramp males," which would break through the fences and invade the fields where the improved stom was kept. Third. those engaged in breeding stock fomm that there was a limit which when reached brought barremess to high-bred amimals, and in mamy other cases reduced the vitality so as to invite disease. That this owil was a real and serions one is shown from the faet that large manbers of high-prieed animals failed to produce young among eattle, and that many herds of pedigreed swine were earried off hy epilemic diseases. Fourth, amb perhaps the most serions hindrance to improvement, was the indifference of farmers and the want of appreciation of good stock, and of comse the farmer who did not want it would not coöperate in producing it.

The sisted formes atford his eo trying grod sis ing, bu animal dift many necess:
It w

luller. e chaff, r homsess ft in the:
l with it amomut.
eves the me time eetl at :a machine tato diggreatly hass been
isk, whit ng is : m ld s.eroure rotertion hass berent hile fualiisen over gill sinse. mals just
greater re greater plements. thuided to ms:"ן!uent was :tt :1 or'st. aml few farmgs, it was to rln k through t. Thiml. ich when ther cases real anl rl animals pecligreed the most ss and the 1 not want

The difference between the improvement of implements and stock consisted largely in the fact that trained mechanics were responsible for the former, and they would perfect the implements until the farmers conit not atforl to to without them; while the slipshod farmer would be satisfied with his common stock, ambl would fail to accept the help of the men who were trying to improve it. Another thing which farmers learned slowly was that grool stock rerguires gool nare, which not only means shelter and liberal feeding, but also that the food le adaptel to the wants of the animal. More fine animals were mined by over-feeding with corn-a heating and fattening diet - than by insutheient foom and exposure to cold and storm. It took meny years to tealh the farmer what a bahneed ration was, aml why it was necessiny.

It world be interesting to tole up each separate breed of cattle and trace

MODELS CT.OVER IHTLIER.
Showing I'ncle Ton's Stacker and Self-Peeder.
its somere giving aredit to the men who improved and developed it, and the date of each inurrtation ; but the limitations of this article forbid anything more than briof mention of the mere prominent hreeds, and many which possess grat merit camot twe even mentioned. The improved cattle of the ['nited States may he gromped umler three heals. - beef, dairy, and genaral purpuse. If the first the short-horn holds, perhaps, the highest place, or curtamly did for a long series of vears. Thase for many years were bred nuler the name of "Durham." Dint abont a generation ago the name began to molergo a change to short-hom.

These amimals. while espeeially adinted to the block are fainly good milkers, and some strams of them are superior dairy eows. They have the quality of "arly maturity and prolure a larger per enent of fine cuts of meat than most, if not any, wher breeds. These cattle wore tirst imported into Ameriea in

1797, and many other importations were made during the tirst half of the present century.

Another breed which closely resembles the shorthom is the Horeford. These cattle are usmally of a mifom color-a pale red - with white face. breast, and thanks, and drooping horns. They were first introdued by Hemry Clay in 1sis. Another importation was made in 1sfo, but it was not matil
 established for them. Since that time they have multiplied largely.

The last of the three distinetly beef hreeds is a homless race originating in Scotland, and known by the name of Aberdeen Angus, Galloway, or Polled eattle. These catte have the distinet: de quality of hardiness, and as they have very thick. elose hair they are able to subsist on the range withont

shelter better than perhaps any other breed. The males have a remarkable prepotency, and the cross-bred amimals very ravely slow horns. Like the Hereforls, they :ure por milkers; for while their milk is rieh, the quantity is small, and they usually go dry for several months of the year, They were first imported into this comutry about 1850 , and in $185: 3$ nine londred were imperted and distributed among the cattle breeders of the plains. Polled cattle are beoming mone peplar ceery year, and many famers now dehorn the eattle of other brecels; and the time is not far distant when horued cattle will he the exeeption and not the rule.

The ('hamel lsland group - the Jerseys, Aherness, and Guenseys pmbares monostionably the hest butter animals of the world: and if we are to judge by their wide distribution and great popularity, ther. Jerseys lead the list. They were first introdued into the United States in 18:0 , and in 18.0 large importations were madr: but it was during the decade from 15 B 0 to 1sio that greatest intorest in the breed was awakened and large and frequent
importat these cat their way more far vilual ha week um

While
ported is mention

Under

Red Pol prohably and the registere the Hol, milk of : in a yea ses. but in the U

The 1
importations were made. There has been a strong and bitter opposition to these cattle by many farmers on accomt of their small size, but they have won their way until they are more miversally distributed, and are to be fome on more farms than any other breed. Remarkable yields of butter from the indivilual have been recorded, many of them ruming from 12 to 18 pounds per week under high feeding and extra eare.

While the Ayrshire possesses great merit, so few of them have been imported into this country that it seems scarcely worth while to more than mention them.

Under the head of general-purpose animals come the Holsteins, Devon, and

OHOUP OF ABEHDLEN•ANGUS CATTLE.

Red Polls. All of these breals possess tine qualities. The Holsteins were prohably not introdueed into this country until the last half of the century, and the "Jolstein Herd-Book," published in 1882, slows that about $\mathbf{i} 000$ registered animals were in this comitry at that date. While fair beef eattle, the Holsteins are deep milkers, and slow a record of the largest quantity of milk of any hreed in America, - some cows giving over 13,000 pounds of milk in a year. 'The milk, however, is not as rich in butter fat as that of the Jersey. but probably they we the best breed of dairy cows for the cheese factory in the United States.

The Devons are beantiful rel cattle. They do not rank as large milkers, 21
but produce a superior quality of milk, and are mexerdled in this resper by any breed but the dersey. One pernlanity alomit the bred is the romprative smalluess of the cow; for while the steer will wrigh from 1400 to 1 bin pomals, the eows will average only from soo to 1000 pomuls each.

The importation of Red Polls from England is eompanatively recent, and they come nearer filling the idea of a general purpose animal than any other breed in Aneriea. The first importation was made in 18 äs. and emsisted of only four anmals. 'Two yars later four more were impurterl, and in $1 \times s$, twenty-five. Other impertations soom followed. They are of a muiformy cherry-red color. with oreasionally the tip of the tail white of a little white about the mider. Ninety per eent of the grades are hornless. They are of

large size. mature bulls weighing from 1800 to 960 pomds, and oceasionally
 will average 1200 . That they mature early the following weights, eopied from the report of the smithichl Clul, of Eugland, will show: -

Sterer, twemty-two and one half months old, weighed 1:90 lis.
Heifer. twenty-one and three quarters months old, weighed 1208 lbs .
Stecr, twenty-three and one half months old, weighed 1500 lls .
Sterer, twenty-two months old, weighed 1336 llos.
At the same show a mature cow was exhibited that weighed 1903 poumds. As dairy eattle they show gool revords, giving an average of $\mathbf{5}$ ano pomids of milk per year. and some have exeeeded .no pumals of butter in a year, milk. ing over 300 days.

While the United states can show as gool horses as any other comentry in the word, they are mot as generally distributed among the farmers as are animals of other breels of stock. This jerhapls ean be aecounted for, first, from the fact that at horse must be mature, and not less than six years ohl, before it can be put on the market; and that the low price of the service -
swo of whe is is chul ther
In the :nil jusis [ur ${ }^{\text {mise }}$ magnitie used in chictly rimm. an the Enger Aral, hat vilophum

In 10

in this e

heerlom mon
and whil
serore of
bably
(formerl)
is quite
the axper
bruerls,
alumost 1
this con
brol tol
makes: it
"arly, iul living in originate and eolo could be thry we, from eig they are weighius are still and the thous:mu

The 1 speromel if and cart the bree the fines miversa the lola stiws wil not be u

The A
fer of grades and sorub stallioms - is tow groat atomptation to the farmer who is in debt and short of money. Sill, our standatil has beron alvancing, . 1 II there is a shere bit slow bettering of the working stock of the comitry.
 and pussibly some others, while the Clewand bay comes as near the genematphopose horse as any ahor bread. The importations that have given its the matuifiount honses which are beting nsed in this combtry have heen made chiefly from Franer, bingland, lielgimm, and dirrmituy. 'The blowl of the English thoromghbered amel of tie Amb has also eontribumen the tevelopment of the ghalitiars desimerl.

In no uther elass of stock proxluced in this conat ry has the imporemont hredn mert marked than in the swine,

Pol.and-ctiss hows. and while there are probably halt a

 the exeretion ul the lierkshime, these may be called distimetively Amoriean broods, and even the Rerkshire has burn so moditiod amd improved as to
 this combtry, partiembily the lissex, Vorkshire and Victorias: but they are
 makes it tasy and rapin to innowse swine is the finet that they mature so
 living in that patt of Mimmi Vialley, in Who. Where the Pohanl-China swine originated, has seren, in at quatur of a erontury, these hogs elangre in form and color and general eharactaristies, and these fixed so thoronghly that they could be dependent on to reproduce thom. As this breed existed in the filties, they were conrse in form, mongrel in color, and slow ju maturing, requiring from righteen months to two yous to be mate ready for market. But to-day they are early maturing, (an be put on the market at six months of agre, wrighing from $2(6)$ to 2.01 pomds, and are of miform shape and eolor. They are still the lealing breed thronghont the great corn belt of the I nited states, and the herl-books have registered breeding stock to the number of many thousanul.

The Borkshive log was first introluced into this comntry in 18.93 , and a socond importation was male in 1 siz , hat there was no systematie breoding and eare to proserve their purity, and gatas were sold for pure-bral matil the breed fell into disurente; but in $18 \mathrm{Si}_{\mathrm{F}}$ new importations were made of the finest anmals to be fouml in Eingland, amd the merits of the breed beeane miversally known. Though ealleal a small breed, they are but little below the loland-China in weight, aum grales from lerkshire males on large mangey seiws will give the finest possible hogs for the block; but these grades must not be used for breeding, or the stock will leterjorate.

The Americin Chester White hog originated in Chester Connty, Iemnsyl-
vania ; bat it is beliesoll that there was an inuortation of white hogs from Fugland in 1sis. The breed, matil within less than a ghater of a century was coarse, large of beme and slow of maturity, mul sometimes wonld athain enomons weight, nearly fori pounds; but in the last fuarter of a eenturs they have been improved motil they are a elose rival of the best breeds we. have.
 history dating back to 1 s : 4 , but it is hess than a half century sine they eame into prominener, amb the improvenent made in then in that time has jut them near the fromt rank. One thing which cansed their mpin inerense was the belief that they were proof aganst swine-plague and hog-tholera. and the! were bemed on that idea, liat this did not prowe true, and nur intelligent farmers have leamed that it is not in the bremblot in the fond and care that immanty from disease will le femme. These hogs arre of a beantifui red colon amb of gome form. The mothers are probiti and goond musars, and they mature early, making the ehnicest of jig pork at an carly age.

So other chass of amimals has bern subject to so much foreign competition or has figured to sum an extent as a political fatere as the sheep, and this. fee more than a generation past, has kept the sherp iublustry fluctmating betwern a depression which destroyed all protit and a beom wheh plasod fietitions values on: them, and luth extremes have worked has ito the bulustry. Jet through all these changes, those who have reoginzed the intainsir whlue of the sheep and sturk to the work of improvement, have not only fomm the business protitable but have prevented the deterionation of the amimals which threatemed.

While swine are of no value until killell. the sheep gives two eongens in a year, one in the floeer and the other in the inerease, and the breether diways has two distinet objeets before him. - the proluction of wool and muttom. The breds of sheep are almost as dissimilar as are horses from
 the rich lowhands with their abmolant and sumulent herbage. The most ameient of all breeds is the Merino and those who have studied this guestion trave its desern back in livect liar, probally, to the flocks of the patriarehs. Fior ages they have beron the clothers of mankind. first with the skin and hater with the Heeer, and still they mantain a high, if not tirst, phare
 improwent has been along the line of inereasing the value of the fleece rather than the careass, ant it has been changed from an amimal that would pronluce two or three pomods of wool, and one which had bare luelly and legs, to ona which prodnees a flepe from the hoofs to very near the nose. It is within bomuls to say the weight of the Heece hats beem dombled.

With the hag-wonl inceds the improwement has heen designed to develof the carrass and mitton pualities rather than the wool, and of these the two typieal breeds are the Shropshire and Cotswohd. Probally the liest mutton lambs that are prolveel in this comitry are from the Shropshive rams and Merino ewes. The representature Cotswold is of majestio port and large size. The wool is comly, long, ame lustrous; not dry and hassh to the bumb aud has but a slight amount of yolk; at maturity it ought to be eight iuches long. The flecee avemges six or seven promils.

1'le "xtent method importa lrome :- ! !eila they wr and ent to be 1 , 1lat th a const kept el hativy underid they w underg timber fomul dmains tion of to dung veats. enutury llay we harit 10 Mrains largely off r:ui original ditehess the the man hat so, in ditches the firt otherw some in cual fee constrin drainin laill for tion th: there " lands lowing soil ; st seasom;
\qquad revtiory ild attaila al centit! breeds wi.
having : they callu 1. has pilt 1 illrreas. pr-chulera. c, alml chir 1t the fiosel : are ol : athl goorl at and
muctitim and this. Inetnating inh hatad the indusce intrinsid• not only ion of the
ciljums ita te brember wool and ories from alapted to The most this questhe patriIn the skin first, place i. but the the Heree. lait would c and legs, ose. It is
to develop se the two est muttun zams allul and large the worlt ght iuches

The improvement af methods on the farm has leen discussed to some "xtent in speaking of implements and stork, as their use involves better methots; but there are other points worthy of notice. Gne of the most important of these is drainage. The lirst attempts to remove surface water from term-land were by the eonstruction of open ditches; bat as these had to gion the matural watereourses which often gigatged through the belds, they were objectionable, not only beranse of making bad shaped lands to plow and enltivate, but also beranse they comsed a waste of land, and usnally haw. to be bridged to be crossed with the wagons. Other objections to them were that thay prosheed erops of weeds to give trouble in the fields, and there was a monstant tombeney to fill up, which soom impaired their usefuness; or, if kejp cleaned out, it had to be done at havy expense. The first attempt at mulerdatins, or "hlimd diteless," as they were eallet, was by making an mulergromul water-way with stone or timber ; lant both these materials were fomal objectionalde, beranse shel drans were easily damared by the aretion of maw-lish ame marely contimen to do grod work for more thatm at fow sears. It was alter the midille of the rentury that hrain tiles mate of burnt Hay were int roduced, re "mbling goond harel brick in material; but the first

WEHINO SHEEFP. drains laid were usually with tiles of tow small ealiber, two-meh being harrely used, whinh were not only asily choked but lailed to earry the water off rapidly enongh in a wet time Lange sections of many of our states were originally swampy and so nealy level as to make it neeessary to construet open ditehes, almost like camals, as an ontlet for the sater fowing into them from the drains. These combld mot, of course, be constructed by individuals, as no man han a right to go on his neighbors land to open a ditch for this purpose; su, in mamy cases, this was made a matter of legislation, and the large open ditches were built by taxation equitably levied on the lands. liy this means the farmers were enabled to thoronghly drain lage areas of eomitry which otherwise would have been nearly worthless for agrienttural pmones. In some instances the earth taken from these large ditehes was graded up serearal fert high att the side, and on the top of this lesee a turnpike road was eonstrueted, thas giving a donble benefit from a single operation. The tirst draining of farms was in the wet spots where, usually. a single line of tiles, lain for a moderate distance, would ining the parts of the tield moler cultivation that otherwise would be waste; but gradually the farmers learned that there were other valuable chiects from drainage, and that most heavy clay lands would be benefited by it suffieiently to justify the expense. The following ineidental advantages have been leamerl: first, dmange deepens the soil; second, it prevents the killing out of grass and grains during a wet seasom; thind, it makes the land warmer; fourth, it improves the texture of
the soil and makes it possible to work and pant it earlier in the sprins. fifth, it pre. "ts washies and waste of manure; sixth. it often present-
 better in dry seasoms. Althongh drathage is expersive it is a promanem improvement, and in many cases the inerease of the whent crop in a singh year has defrayed the expense of tiling the lame.

Another improvement, which seems to be the opposite of this, is the irvi gation of arid lands in these parts of the romery where the ambal raintail is small and every smmer brings a dronght. In these casis, water stored in large matural or attiticial resernoirs, or that furnished lys show melting on the momatans, is utilized to carry the crops thrmgh the dry sason and to enable the finmer to grow large erops where nothing could be prodnced withurt this aid.

Perlatys in no wther line have the methons changed for the better more than in the eare of domestic animals, ami this inchules both shelter and feed-

ing. In the first half of the eentury, eatthe and hogs were usially exposed to the severe weather of the winter with no other shelter than that afforded by a straw-stark, and this often was fonme heveled to the gromud liy the first of March, leaving them entirely withme shelter at that elangeaibe season of the year. They were allowed at all seasons to ram over the farm and gather their own living, and were turned into the corntinds as soon as the ears were removen, where they lived well as long as the stalk pasture lastem, after which they depended un straw for fowl until spring; and it was common to have the eattle so por, as spring appromehed. that many died of artual starvation, while others hecame so feeble thac they would have to lae lifterl to hel, them on their fret. Then the stabies for horses were con-
structer the her the sid these t teresh, furnish :InIl st been fo Farmer nation, with th

есоио clover this reof livi. for pris single lweroll: compul a fenci and the pertion

The and is to at sul shapeel drough r'mallon! a sing $]_{+}$
the ind mintall er stored - meltins asoll :1ml producerl afforided the first le seasem f:11! on as the are lasterl. was (ommy died of tire tols were con-
structed apparently with the ielen that vantilation was the rhiof thing, and the lorses stool a!! shivered in their stalls from the drafts that bew through the sides of the barn and up through the floors of their stalls. Giadually these things have changed, until the lager jart of fimm stock is warmly sheltered, and well fed with a varicty of foos. Sucentent food is now largely furnished fron ensilage preserved in silos, from berts and other roots grown amd stored for winter use, and, more reeently, from sorghmm, whieh has been fonnd to retain its sueculener and swectuess during the entire winter. Pamers have learned what is moant hy a hanced mation, which is a eombination of foods that will give the proper proportion of hat and fat producers with those whieh make bone and musele, and that it means both health and

economy to stibstitute to a certain extent bran and oil meal for corn, and clover hay for hay made from the grasses, and straw.

Another great improvement has been along the line of feneing; and, in this respeet, the most economieal strp of all has been in reducing the amonnt of division fence on the farm, kepping only a portion of it divided into tields for pasture, and leaving half or more of the best parts to be enltivated in a single inelosure on which stoek is never turned. In most States, laws have been passed obliging each farmer to fence in his own stock, and no one is comperled to fence ont his neighbor's. The substitution of wire for wool as a fencing material has reduecel the east of fence eonstruction about one half, and the waste of land ocenpied by fences is reduced in about the same proportion.

V. imblowement in anis Abocin the homp.

The change in this direction in a single generation has been most marked, and is one of the surest sigus of prosperity. The log eabin has given place to a substaritial and, in many cases, an elegant lome. The irregular and illshaped yards, feneed with rails, whieh surrounded loth house and barn, and
in which hogs and eattle were kept, with nooshelter hat a rail pen with stran roof, have disappeared, and reethugular lots colosed with neat fences ano fool haras and piggeries have taken their place. The wool-pile has retiren from the fromt youl, and is now sheltered in a woolshed adjoining the kitelen; and a neat lawn with flowers and shoblery is no louger the exeepition, bun the male. A gool garden, in which the merer and impored vegetables have taken the place of the old sorts, and a berry putel, well cared for, afforid the luxutes which they alone can give for a period of many werks melh semsom. The water is no longer carried from a remote spring, but gool wells and cisterns are placed conveniently, many of them so that the pmomp is in the kitehen or umber a purch attached to the homse. The cellar is usually floned with cemont, and the staits leading to it are of pasy grule; while good walks of plank or cement make it a pleasme to pass from the lonse to the surroming onthuildings.

Another line in which very great improvement is shown is in mantaining the fertility of the soil. The old method was to exhamst the fertility of a tield and then clear a mew one; and it is dombtful if om firmor in a humbed rould have answerel the guestion, "Why does land become sterile after long cultivation?" fur they hat mo eoneeption of what the elomical elenurnts of the soil were which are neerssary to its lentility. There are two theories of fertilizing and fertility : one, that the soil is a mine to low worked out, and Which will inevitably become unproductive in the provess ; the other, that it is a haboratory in which, moder the intelligent mangement of man, forees can be sert at work whieh will maintan and develop a perpetual fertility. Malthas, more than a ventury ago, amonned that the time wond eome before long when the people of the earth would stare beanse they had outgrown the fertility of the soil and its productive capaeity ; but alter long enltivation, we find it possible to produce on less than half the cultivatable land enongh not only to leal our own mation, lut the word at large, and there is no questioning the arematemess of the labomatory throry as opmsed to the mine themy:

The first improvement along this line was in the better saving and utiliz. ing of animal manures; but when it was fomm that these were insufficient, science eame to the hejp of the firmer. The chemist analyzed both erop and soils, aseertaining what was needed, and then the world was searbled for the materials neressary. The elements which formed one plants were fomed to be tifteen in mumer, but of these it was fomm that it was necessary to furnish muly three, - nitrugen, phosphorie acid, and potash. Nitrogen was known to exist in inexhanstible gnantities in the atmosphere, forming seventy-six per rent of its composition; hat the puestion was long unsolved: "Can growing plants appropriate atmosphorie nitrogen ?" Finally, it was discovered that phants of the Legmonosse family - of which clover is the best type and of greatest value for this purpose to the famer - conld appropriate nitrogen from the atmosphere; and alter carefnl research, with the aid of the microscope, it was diseovered that this appropiation came abont throngh the ageney of bacteria in the roots. This fact commetel with the elover plint is one of immense importance to the farmer, beanse nitrogen is not only the most expensive element of fertility to purehase, but is likely to be lost both through evaporation and leaching. So it can be seen that clover is one of the
most val "ropenil as the f "ther the soil duces eh otherwis fertility tion ball whose se

AII E1 furnishe the ntilu heretofo to prorlu fine hall question wre at of common rhemist with tw plant fo busxt stc in such of gromb of fortili donblius ence of crop wh

The acid, an :mimials athil so t toms of bint soon hiallstihl rocks of suntain acids an ing elen bones. the clet dant. were for that no nereded tilizers them th lants on
most waluhle plants which em be grown on the firm, for the remson that the crop cean be utilized as food for stock, while still great benefit inures to the soil, as the fertility is largely stored in the roots, which cunot be used for miy other purpose, mal as hy the ation of these roots the mechanical connlition of the soil is greatly improved. Fintherr, the dense shade the phant affords indures chemical action in the soil, which makes phant food nvnilable that would intherwise remain inert. One of the most wonderful things eonneeted with fertility is that fiod has so locker? it up, in the earth that no greedy generntion com exhanst it, and that the greatest source of fertility is the atmosphere, whose seerets ne just being diseovered.

An English seientist has reeently umomeed that by the aid of electrieity, furnished by cheap water-power, nitrates ean be manfaetured directly from the atmoxphere so as to rednee their cost to less than one fourth what it has heretofore been. Again, the intelligent use of elover will emble the farmer to produce his awn nitrogen and relure the eost of chemien fertilizers to one half what it usnally is when containing nitrogen. This frings us to the fuestion of commreial fertilizers. With the single exception of gume, they are a product of the last thind of the eentury. The first step thward the use of commereial fertilizers was by andyaing our bamyard manmes. When the chemist diseovered that a ton or uore which the farmer drew out laboriously with two horses to the field montained lout twenty or thirty pmouds of aetual plant foonl, - the remainder being water, same, and other dead matter, - - e bext step was to combine the three cloments essmatial to a perfect fertilizar in such propurtions that a single sack would hohd enough mamure for an are of gromul; and in toms of thonsamls of eases, the application of this amome of fertilizer has inereased the wheat eroy from tive to fiften lonshels per acre, doubling the grass erop, which followed, which in turn, ame through the influence of the fertilizer, formed a sward which, by its decay, fertilized a third rrop, when it was turned under in the rotation.

The alement in fertilizers of next importance to nitrogen is phosphorie acid, and the first souree from which this was obtained was the lwose of animals. But the supply from amimals shayhtered was entirely insulficimen: and so the great phains of the West were glemed, and tens of thousamds of toms of buffalo lwones were gathered and shijped East to fertilize our farms. Fint som this souree began to wane; then two other sources, pactically inexhanstible, of this indispensable element were diseovered, - the phosphate rocks of the South and the iron slag from furnaces, each of which is fomm to contain a large per cent of phosphorie acid ; and when the rock is dissolved hy acids amb the slag gromed to an impalpable powder hy maehinery, the fertilizing elements in buth are fomul to be as available and valuable as that from hones. The supply of potash was obtained at first from wood ashes, which the clearing of the farms and the universal use of wood as fuel made abondant. But liter, when these sourees were no longer sufficient, potash salts were fond in large ynantities where they could be mined from the earth, so that now there seems to he in sight an inexhanstible supply of the elements neerled for plant fuod. Like alinost every reform, the use of eommereial fertilizers was opposed bitterly by many farmers, and statements were made by them that their effects on the soil were like those of whiskey or other stimulants on the boly, and that the ultimate result of their use would be that the
soil would become barren. Many refused to use them at all; others, after a singletrial made withont intelligence, denounced thein as humbugs. But an they saw on the farms of their neighbors the wonderfal results from their usio. they have been graduily led to andept them, matil mow, with most farmers, the question no longer is, "Can 1 afford to use commereial fertilizers:" " but mather. "C'm I afford to do withont them:" "

To one wha has ion'owed the writer to this point, it must he apparent that the farmer of today has mate progress in the knowledge of his ealling to at least as great an extent as he has improved in his methools, and that the terms "farm drodge" and "elodhopper" are misapplied and shouh br obsolste. There is no other iuclustrial calling in which one tomehes nature and seience at so many jwints, or which gives such grom opportunities to develop the perfect man, - "the somad mind in the somm body." - as that of the farmer. Admitting that mot all farmers mulerstand this and live up to their peivileges, does not alter the faet that the farm offes a great opportmity to devolop and broaden the mind ; that the last guarter of the century has bronght into active opration fores which have tonched and inturneed a harge per eent of the tillers of the soil; and that the leaven of plucation is working mightily. The intelligent, stulions farmer becomes a partical botanist as he studies the growth and habits of plants. As he is dependent more than any other man men the weather and must change his plans frepuently to corvespond with climatic changes, he leemmes a mereorologist. Myriads of inseets, which include both anemies and friemes, make him a student of momology; and the womlerful alchemy of the soil by wheh offensive and pisonous matters are transmuted into golden gain, luscioms froits, vagetables, and dowers, calls for a knowledge of chemistry. The use of modern mathinery develops his mechancal jowers: and the man on the farm developis in more directions and has an mportunty to aequire a houder wheation than any other man who carrs his living by his own labor. To sustain this statement, it is only necessary to momerate the elneational oflortunitios and privileges now open to the farmer imel which are, to a great extemt. utilized hy hism. First, what the gowrmment is doing for him. No other calling is represented in the eabinet of the l'resident, and time and experienere have demonstemed the wishom of a Serretary of Agrieulture. Not only are we distinetively an ardienltural peophe, bint the prosperity of the nation depemes on the intelligene and prosperty of the fanmer mome than an all other classes combinell. Not only mast the fome supply of our fueplo be furnisher, but the foreign demand must lne met: and this gives to the famers money to spend. so that the imbstries which romitribute to theis Wants shall share in the gemeral prosperity. While there are many homorahle and usefnl callings. agrientene scems to be the only one which tomelnes and afferes all others. The finatial improme of agrienture is shown by the faet that. after the wants of the mation were supplien, in the van
 ducts, or nearly bit per ernt of the entiene expents; and notwithstanding an enormons increase of imports of wool and sugar, in anticipation of inereased
duties, $\$ \geq s 0,0$ year wr Cons farmer farmer: the (ir all of their alll pl and :lll hailf of intellig these i the fir them First, il that is stamlin directi few soof tift witl t have t stiltod instruc yeurs agricul have publisi they so servien

ture al

 such a piat ind all of or som agrioul tion h largeBy constit toplies tistics (Hhio where report y 20
these cather rallges. h cilicclerfinl trams11s for Is inis rtims or man t. it is vilegros y him. repros we dene w" on deoll :lll fle lo tis tha. , their homor. mulluss sluwn eymar al proing an reasel
duties, the balance of trade on agrienltural products for the year was $\$ 280,000,060$, and the export of agricultural products for the current fiscel year would show still larger figures.

Considering the speeitis eduational influmes which are elevating the farmer and his calling, we emmerate the following: Agrionltural literature. firmers' orgaizations. - including farmers' elubs, farmers' institutes, and the Grange, - apheoltural expriment stations, and agrieultural colleges, all of which have contributed their share to the intelligene and prosperity of the farmer, and atl are promucts of the last half of the century: To give an intelligent idna of the holl whieh thase influmes have brought to the farmer, it is nevessary to treat them to some extent in letail. First, agricultumal litrouture. All that is neeessary to an modnstanding of the progress in this dinetion is to gat me of the very few su-collonl agrioultural pajurs of tifty vears ago and compare it.

with those of to-lay. Not only have they multiphied a humbedfuld, but while the former langely contaned stilted artieles written by theorists, to-lay every page is full of praetical instruction writum by firmers, and often by sperialists who have spent gears in improving some line of tarming or stork bereding. Most of our agrioultumb paburs have a statf of paial rontributus, nearly all of whom
 puhbishars of these papres to give their readers all the help possible, that ther semely wit the men who are prospring on the farm and engage their servieqs ans instrumons for their wabers. The jommals devoted to agrienlture are mumered by humbreds, some of them devoted to a single line, surb as sherelo praltry, or gathoning, - mul others with well classified departments which give instrmetion on all puints. In allition to this, nearly all of the werkhers have a page of agrioulture, usually combered by a farmer or some one with pactial knowleng of timm work. There are no seerets in agrioulture and wery farmer is realy to impart to all any valuable information lee ampires. Farmers apmeriate the value of these hempand make barge use of them, and the cirmbation of these papers is enomme.
lif Farmers Clubs we man those organations of farmers, governed by comstitutions and by-laws, who mere at stated times for the disenssion of topres comareted with the improvement of their ealling. There ore no statisties anuilible from which cam the gathered the extent of this movement. hat Ohio reports fifty clubs and has formed a state organization. In Michigan, where the clubs are organized on a different hasis, 30,006 members are ryorten: they have also formed a state organzation, which was attenden hy \mathbf{y} OH delegates at the last meeting. Indiana is the little, if any, behind these two states, and the club ilea is rapidly spreading through the North-
ern States. There are two forms of these elubs, one of which limits the membership to twelve families, and the meetings are all held at the homes of the members, one each month. The advantages of this plan are several. First, with the club thus limited, the horses can be stabled and cared for during inelement weather of winter. Secomb, the wives need prepare but one meal in the year for the elub; while with the large chob it is necessary that each should eontribute to a basket dimer for every merting, which often causes as much trmble as to prepare the meal fur the cutire club oure a year. Third, the attemanee is sure to be more regular in the suall club, amd one eombition of mombership is that every member shall the present at each meeting unless providentially detained. Fourth, with a club of this size every member can take part in the disenssion, and there will he less danger of a few "talkers" monopelizing the time. Fifth. the sueial features in the small club are very mueh better than in the large. Most of the chuns in Ohio and Indiana are organzed on this hasis, while in Miehigan it is prob. able that most of the elnbs have an molimited memhership. The olygertion is sometimes urged that the small club seems selfish, bint as any twelve or even six fanilies are at likerty to organze a clab this ohjaetion is mot valid.

As many farmers who would like to orgamize may mot lo athe to fimb a form of constitution and beraws, it serems proper tugive one here.

Irvermille.

 and to eultivate their sumial ghalities, and comsidering that ". As iron shary-
 we may he mutually helpful to mach other in matters relatime to hashamery,
 as the -_Brmers' Chat [till the hank with the name you wish tu use

('inestitution.

Artirle 1. The ullierss shall twe I'resident, Viberl'resident, secretary, Treasurer, aml Liharian, who shall be elected amonally in Nowmber, and assume their laties in danary of the following year.

Artirh' 2. The daties of theser otheress shall lue sumbas arertain to the ofliess in other orgazations and are indieated ly the name of the oflise.

Artirl. 3. The active mombers of this cluh shall be cugaged in agrienltural pursuits, hut homorary members may be elated by manimoms sote. Honorary members are not nbliged to attend all the motings, hat will be welenmend to any.

Artind 4. Applieation for memhership must be submitted at the meating previnus to their heing balloted for, imel members will be ulmitted on receising a two-thirds vote hy hallot; lout the membership, shall be limited to twelve families.
. Irticle 5 . Amendments may be made at any regular mecting by a twothirds vote of the active members.

R!r-lums.

1. The clab shall met at the residenee of one of the members on the third Thmesilay of each month, at ten welork, insitations to which shall be limited to the hustess of the day.
?. The elub shall be called to order by the president, after an hom speut in sorial interemarse, and the order of exereises shall be as follows : -
". Lading mul apporing mimutes of last merting.
2. Monthly reoorl of enrent events.
C. Selertions, reritations, exsitys.
\%. Ailjommment for dinarer and social intereonser until two o'elock.
". Disenssion; so combueted as to avoid all questions of polities amd theology.
f. Ghestion drawer.
\%. Miscellaneoms lmsiness.
In orler that the work of the "hol may be systematic and the time fully orenpied, a programe covering the entior yar is prepred and printed so as to be rady for distribution at the berember meating of adely year. That the reaber may mulderstand the working of this plan, a few topies will be given, taken from the programme of the chal of which the writer is a membre: -

Jimmary.
The chub will :meret at the hume of Mr.
Thursiliy. the 1 !eth.
Selection
Mrs.
l'ilnי: Mr.
Tin,ir: A review uf tixe previons sear.
Earh member will give in writing a statement ol protits and losses for the year muler the following hands: -

1. Gimeral erops grown and acreage and yided thereot.
2. What sperial erpors have been raised.
3. Storek ratised or hamillom.
4. What expriments have been made on the farm.
b. What losses of stock, or crops, and the canse thereof.

JIme.
The eluh will mert at the lome of Mr.
'Tlursolay, the Linh.
sulection
Ms.
l'aper: " H indmames to sherep riasing and how to avoid them."
Mr .
Tipur: 'The Fiamer's Barn.

1. Ralative size to farm.

丷.. Jowation and gromed plan.
3. Arrangement of stabling, feeling, and water conveniences.
4. I'lan for saving manure.

Either a gentleman or a lanly is appointed to opern rach topie, atter which the subject is opened for puestion or disenssion by member uf the chab.
 flare of the regular merting. at whirh a hasket dinner is sorvai.
 while it is less than twenty vars simer their tirst organization, marly all of the states, at least in the Sorth, are combering them to a greater or leas
 writer is more familiat with the plat of orgatization and the work of instithtes in that state thath any other, sollof fats concerning them will he given.
 the serentios at the thin state . Igribultural ('olleger, when a eomese ol righty lerotures on shbjerts combered with farm introsts were given, all of thom by professers of the eallege. This tirst comese orempied five works: alod as

 a lombloal indepradent instithtes in addition, hy whel is meant institutes
 ferturevs andi sulporets.

 of institutes, The farmers have met this effort for their imporement with great enthasiasm, and the attembume is msually limiter by the size of the
 from the disenssions. A fulletin is issured in the fall, which gives the mames
 ofticers of the lacal organizations, from which they ean selact sheis topies as they wish discossed. Half of the time of rad session is alloted to tho state leethrers, while lowal talent is axporedel to thll the other hali. The greatest possible frecolom is allowed in asking questions and disoussing the Work of the sprakers, atul wo other educational inthenere which hats eome to the farmer has apmated that offormed by these meetings. At the elose af rach year the best gapers and disomssions are printed in a bulletin for free distribution among the farmers, and are given out at the meeting the ensuing vain, or are mail 1 from the oflice of the Seremary of the State buard of Agrienltrire on appleation.

The (irange was arganized at Wishington, 1), (', in 186T, lut existed only
 comvened at feorgetown, I). C., with delegates from tou States. It was started as a seeret society, witl a ritual amd degrees, and seemed to eatela the popmar faney among the farmers. At the meeting of the National dirange in 18:4, thirty-two States were represented.

I'robat *lement, - | bown tional pos lỵ mun w totherex valaable tion whio. at time as would di natroly tl who latel that the kept int : same it thromsh combr al lowalitios, siovider to stallo. alli of firmaer to ther int

Anotlot "x|witur work was as the" 1 piattral f the :1! states hat allal the ports :me theill.
'lo go thral exp ing as th domestice
I. Th
(1) III State.
(3) ln etc.
(:3) In the rise a
II. In
(1) Vis aliminati tions of it
(?) Ve milhews,

Probably noother orgamization has male so bapiol a growth as this. A large - lement, however, of the membership, was attracten to it hy the rallying ary of "D Down with the middleman!" and had little on menerpion of its mhentiomal possibilities. Little comotry stores with very small eapial, amd managed hy men with monsiness training, spung upat every eross-rome, whioh, contrary to the expectation of their fomaters, did not save momer, but resulted in some vahable hosianss edneation for which a good tuition fee was paid. The reaction which set in made it seecoly in at time as thengh the entire order wombl disintegrate: lint fortumately there wrere wise hembers who harl cought the true ide:a, that the orgamization must ine kept on ann educational hasis to save it from extinction, and through thoir offorts it has become a power for gexal in most lowalities, amd has lexen of growat

asimwati. potsto pianten. sirviee to the firmers. Comuty, state, and mational socicties have leren organized, and mother lange houlies
 to the interests of the farmor as those helonging to this order.

Another edneational foree of immense value to the farmers is fomm in the exproment stations. which arre established in exery state of the Cuiom. 'This

 the appropriations from year to yarr. In andition to this smin, most of the States hatre made large appropriations for the purehase of suitahle gromeds and the arection of tmildings, and to cover the exprense of printing the repurts and pamplates which are sent out free to the farmers who apply for them.
'To goo a little farther, the questions requiring investigation by the agrienttaral experiment stations may lw divided into thre prineipal grompe, aecording as they are related to the soil, to the growth of erops and vegetation, or to domestic amimals amb their problucts.
I. The soil is studied -
(1) In its varieties, as fomm in different parts of the farm and of the State.
(2) In its physical promerties, as affectel by tillage, drainage, irrigation, ete.
(:i) In its chemical properties, as related to the maintonance of fortility ly the use of fertilizers and itherwise.
11. In regetation and erop prouluetion some of the shjects of stuly are:-
(1) Varieties. including the seleetion ind lissemination of new sonts; the alimination of symomes ; the eomparison of strains of varieties; the produetion of improved variaties, etc., ete.
(2) Vegetable pithology, incluling studies of mists, smuts, blights, rots, midevs, etc.
(:8) Comerol of injurions insects.
(4) Forestry, cmbracing the eultme of forest trees for wind-breaks, lor timber, for muts and indidental products.
111. In the study of imimals some of the problemes are : -
(1) Breeds and their comparative values for different purpuses.
(2) Foods and feeding. for growth, for meat, for milk mol wool.
(3) The disumises of ammals, espereially those of contagions, epizootie, or parasitic nature.

The stations have dome most valuable work along these different lines, ame have emontributed in a large measure the the introluction of improved variatias of cereals, forage erops, and fruits. In the ease of wheat esperially, there ean be mo dondt that the work of the stations has been a fiactor of groat inportance in produeing large yieds, liy stimulating the farmers to a more carreful comparison of varieties and of methools of eulture.

A phan of purchasing and testing most of the so-mallend mew ...riotias of fruits and grains has heron followed ly some of the stations, thus emabling the farmers and fruit growers to judge whether surl varietios an likely tw be sungrior to sorts alvendy cultivated. It has been part of the work of the siations to axpose framinlent sales of fruit, stock, inal fervilizers. Murla other work has been and is being done, but the instanes given show the value of the investigations made. As las abready lerenstated under another habling. the officers of the experiment stations take an active part in the work of the institutes, and by the freegrent issuing of helletins amb their ammal reports consey valuable information to the farmer in every deparmant of his work. In many states they have established mading eourses for the staly of Sature, which are comducter similaty to these in the Chantanua courses.

In the same comection the work of the lburan of Animal Imbustry shomd be noticed. Possilly yo wher orgamaran of the govermment is doing so much to save farmors from loss through disease of stock amd elueating them to the same extent as this. The orgamization is manle up of men of the highest serientife trabing, whase lives are devoted th the stmely of dise ases of domestie amimals and whose work extends to the testing of remodies, the inspection of meats, the stmily of foreign markets, and everything that pertains to the interest of the stack growers. No disease can break ont in the herds of live stoek in any part of the eomitry without this burpan lueing at once notified of it, and trained ofliemals are sent to stody all the riremmstames commeted with it and to prevent, if possible, such disease from beeoming epidemice, Some bears ago, when contagious pheno.pmemonia had seenred a foothold in this comitry, lae limrean of Amimal hadnstry set tu work to stamp it ont. The (hal Wind was parab, me bey chormity of the malertaking. Voterinariams in Finglaml and Contimental burope langhed at us and comsidered us tit suljects for hamate asylmins, "Hach n't they always han it". It cost them millions of dollars ammally in eathle, yet they had beren mable to stamp it out, and most assuredly wo comb not do what European veterimariams comhl not." They forgot that we were Yankees. It cost us many grool hard denlares that were represenfed by large ligures; but we stamped it out, and it has now lwen sears since "Cucle sam" othcially dechared the comery fren from it.

Anothe in which two to th 'The grea have bern size of stit vesisel, :ull animals.

It wais 1 loge wask :"propriat tion of the stitto of tl doulit man. luw that : 1.r. ther obj work : :llil alremly ders haive allowar otlictials of
 of lomal, st: the work " and in man lisherd. II Surn go by

What hat progress:"
(1) The ther conserin
(\because) fllar ment in thu (i) Thle: and hatrest
(4) Incre hrir feomli, amr lomesti through the heralth.
(i.) Hucre: akrivultural fiams.
(i) 111 all apreciation the life on miment."

Another work which this burean malertenk was the regniation of vessels in which cattle were exportend and they reblued the hasses so ats to save from two to three million dollars ammally in the busmame of expert cattle. The greatest persible mare is taken to disinfert vessels in which eattle have bero shipmod and striet regulations are restahishod regulating the
 vessela and every point which has a braring on the health and romatort of the amimals.
 lage was known in this ennatry, but thongh the ation of Congress wery likeral apropriations were made, which in most states were suphemented loy the are tion of the state. Largishathres, and an agrioultural eolloge was stated in every State of the lonion. In the begiming there was marh oritioism, and withomt domit unay mistakes were made ly those to whom the work was assigueld but bow that a gememation has passed, the farmers have come lo understamb better the objerets of these selmols, and seientife men have been tained to don the work; and these burn have gome ont into other ineparments, surh as those
 have ahrealy bere hiated at in what has been written. The tearhers and oftio iats of these rolloges hase heron excerdingly friendly to everything that romblherp the farmers, and are in chase tomeh with them: aiding in the work al hemal, state, and matimal mganizations, amb, in most states, carrying on tho work of the experiment starions through their probessers and grahates:
 lished. Without ghestion they are beroming bum and more helphat as the Shars gu ly, and their pewer for gome is constantly inereasing.

A stsmisi: 10 .
What has agrimilture gaimen, or mather ahong witat lines, in the centurys propress: A briof smmary womb seem a hitting elose of this chapter: -
(1) The manveloms alvanier in methols and monas of transpertation, and

(\because) The knowledge of the rlarmical ronstitnents of the soil and its management in the line of maintaining tertility.
(:i) 'The applianers to lighten lator and shorten procerses in the prombetion amid harvesting of aropis.
(1) Luereaserd knewhelge of phants. as to their growth and coltivation, therir fermling pualitios, and the rombination of these qualities in feeding min homestic animals, by which we are able to rednee the cost of probluetion through the amrly maturity of the animals and the maintaining of vigorons hailth.
(i) Inereased knowledge of the value and power of organization and of
 fiarin.
(i) In an ineroase of home comforts and a highor inleal of livinge and an appreciation of the fart that the work of the farm shoubl be subservient to the life on the farm, as "The life is more than meat, and the benty than mainent."
(i) In no other comentry on the globe are there so many tillers of the soil 른
v^{*} ow their homes, and, as a consempume the re is no comery whe there - 3 : 1 of patri tism. Winell Mathew Armold visited the Cuited Statro. atoge that he saw delighted him nom than the heatiful farms, with thair O. .anable dwellings and outhildings and the videnees of high coltivation and fe:s of hemsers. ani he askerl, "Where do the men lise who roltivate these fillus:" " When toll that in most cases the farmers were their own tenauts, her combla seavely expmes his astomishment.

I'rane Kiepmothin, of liassia, who has traveled in this conntry und paind

 fan West. whith will som hecome a thing of the past, hat he the development. of mational agremlate amb of the fores which promate it. Real the deserip-
 ramping vith their families intents during the fair work, stmblyg, learring,
 you deal with a nation in whieh ariculture is held in respect. Or read the publimations of the seomes of exprrimentstations, whese reports are published
 farmers and disenssed at comotess lamere' meetings, ind yon will feel that Amerian agrioulture is a wal fores, imhuel with life, which no longer fears mamuoth farms, ond neels not. like a chill, ery for protertiom."

The future of agrionlture in this womery seme safe, and mo mass of men ran look the future in the face with more of rentidnee than those who till the soil.

Whamo F, Buows.

If wo hirth of satrage w the first howeror nature, hat tion whit this stant sciences. olugist p have beres the old row have not the eivil at lemst, t rlaimed tl riate the C arrtla is will he sho not only i other feit the wrman' alt of doi two dolla: contailus a call le con whler math mamals on retuired fo ment in at any "us is a well-k pinces at luetter strol stiterment great engi recoustruct lar lurige - Ileseribe teenith cent

Whew tilles. thein "ation riant ms:"' could " $110:$ of the [mint "seripmimers uriulug. el that all tho Nisheel ly the el that of furiss

PROGRESS IN CIVIL ENGINFERING

If wo branly detine oivil ruginering as the st of evensmetion, then the binth of the out is as ohl as the emergene th mes from savagery. The
 the first step in the int of shiphilding ; and when , , ha:s construeted a hat, however ruld, to take the place, as an ahome of the mave hollowed out by nature, he has mowed one step nearer to those : is phos of lmilding construetion whidh satisfy mar's necessitios, comforts, and asthetie desires. lrom this standpoint eivil enginering is as ohl as the oldest of tho arts and seimeses. Not only is eivil anginering an ancent ant, but when the areheohgist prints to some of the masterpieces of building construetion whish have bera literally aidden from view lay the dibris of centuries, and deseribes the old roads which the disintegrating lorees of nature, working for eenturies, have not been able to destrey, it is matural to assume that in many features the civil engineering of the present day is hat a eopy of ancient work, or, at least, that there has been comparatively little real progress. It may be rlaimed that bridges are very ohd, that eamals, lighthouses, and roads autediate the Chistian era, and that even the ancient lagytians knew that the earth is romul, and haul male a rough compontation of its diameter. But it will be shown that even in these cases there has been an cuomoms advanee, not ouly in the chanater and magnitule of the work dome, but also in another feature of rivil rugineering whioh is frequently overlooked, manely, the fromomy of labor and material. Civil engineering has been defined as the art of doing well with one dollar what any bunger ean do somelow with two dollats. This detinition, although very looser and one-sided, nevertheless contains a very improtant trinth. If hy improved methods a camal or a bridge can be comstructed for one half to me thitil of what it wonlh have cost by older methoms, then the world has advanerd, in that it may have two or there canals or bridges at the same eost of labor as would have heen previonsly renuirel for the construction of one. When we add to this a vast improvement in quality, an improvement that would have heen previously impossible at any cost, the worde's advance is hardly measurable by any standard. It is a well-known fact that many enginearing works, justly eonsidered masterpiews at the time of their eonstructiom, conld now be replaced by a mneh hetter structure for a emparatively small part of their original cost. This statement not only applies to very ohl constructions, but even to some of the great engineering works of the latter half of this eentury. Some of these remostruetions have actually ocenreal, as is illustrated in the Vietoria tubnlar hridge at Montreal, or the: Roblling suspension bridge at Niagara Falls, - leseriked later. In fact, the prostress in eivil engineering during the nineteenth century is chiefly made up of the enomous advances which have been

 ereet that material into an strethere. Therefore in eonsidering in detail the
 sight of the anormons alvanere in gemeral methonds of work, which has remdered it possible th have all of these strmetures whind so miniater to the

 all of the great rmgimering masterpieners in existemere hat the limitations of this article utterly preelome the pessihility of ewen a short disenssion of all
 the examples. The following disemssion will therefure be montine th those

 most tipical comstrmetions.

11. Hilluris.

 stom arrenes for the present. all ohere hridges were mande of wont - with her

 inferior ta, sterel bridges of "ghal strength. Therefore the great adsanee in bridge work during this century comsists in the development of stere! hiobge eomstrustion, and a brief deserjption will bar given of a few hridges which represent the chief types.
 Brookly is the lagest brige of its kind in existemer amd. mit the come struction of the "Forth" bridge, was the longost reme span erem lmilt. Every one is so familiar with this stumbloms st rumere that only a lew statements will be made. which basy give a better didea al the magnitme of the unprecedented prohlem which romfronted the great enginere:, Ioln \mathbf{A}. liowhing. When lowking at the excerdingly graceful design of the towners.

mumotirx strapension bridge

1H2

ond is apt to forget that a large part of the structure of eneh tower is hididen froms view. 'The lostemn of the fommation of the piere on the Now Sork

 an iron bia into it. Inwa below the mad, below all dillger of seonr, fill below the depth where the drembed revern moralis rath dextroy the timber in

 comvers but little real impression to the mime - as little ans tos say that it

 about sumtons. Some interesting liats roburoning the rassoms mbler the piers of this bridge will loe givell muler the healing ot "Caissoms."

 ergiumeriug, that this great st pueture is already a thing of the past, ablul has

 but that the large increase in thr weight and length of tralus now requires a
 ing the enginery whe desigued the stere arely whirh has mow rephand tho

 mattor. Fixteme the time to several months, alld the romsergumers are toos

 ing. almost iucomerivable, trimmplo of emstmetive skill that this was aceom-

 system was being put in." The somol rigid repuirement was the neerssity for eoust rocting the: arol, without any " false works " mulerneath. (If comers it was mot protieable to shepend the varions members of the areh doring
 Wonla it have beon pressibo to plant false works in the depe and swift

 conld be joined in the mentre. 'Ilhe illustration dows mot show the imberme emee of the areh from the old lidige. If the whe bridge had not been there (as was virtally the ease, so far as supurt given by it is coneerned), the:
lhen iork loung lwint - the utl! Irive ; far rin リッ・• 4 sul. lh, if lund. $1: 141$ - י18 -ighs or the IItenl 11:1! it the rithon" I hais :Ised ilure. res rontI the nold rioms - tho (Hinfiere (111:\% womluway - flow ssity ourse ming Nor swift each ent is arms (Bullthere 1, He

imblendedere of those arms readhing out over the river would have brent

 hataginal.

 rurvature. Tfier some years of stals and survering, a line was fomme whirf

 line at many points. lint the groat wommin advantuges in the expurnses of

 ahove the water than this viaduet, hat in starh cases the depth of gerge is of

 aly

 methan of emstmetion for arossing very high valleys was miginated hes

 only slightly hess than the :abuere.
 "xample the largest bridge in the world - the ""antileser" "rossing the

 mase lime ilhastrations of the linulamanal prindiphe in the stome lintels in :n
 How the line of the C'analian Pawitio Railman; and in a bridge emered ower
wi x_{x+101} MIs farm s!ut, :Inll ril), :allil could l. ss whim II wh:m? "1 which小י5: the whe Masis al relontiol lisur at arr fon " highur rge is of lige rail - miils t" mailway I a train 1st1:1t10.11
 "In'Its" in rown arm 1:! - il the Nי" I loy rail 1) valle es.尔 of tho "א.mblur ailven if was lowt "r-weh" athel by trilltion alougth hirlh are
for its sing the his tylu. whine: hlosis, wo Is in : Camiala. ted owr
twal lumi
latis, of pinuipula at tho tim
'llise ins seplataterd fury, E which so flemanderd "homate

part of milos, is lint lillta islamd of imill sille of a yior tu:1p rew lellow the in weight the hasse. shown is diminislı the starel over (wo
 Davis, of the English emhassy to the remer of the 'lishom Lamia. The primeiple of these bridges is very graphially shown by a photographade at the time of lhe construetion of : he forth bringe.

Iflis bring joins two sectims of sentand which had heren previously separated by an arm of the sea, which combiomly be crossem by a tedions forry. Ewen this fory was frementy tion in by log or hy the strong gales
 demanded that spereial athention shombl le given th this foature and the most - laturate tests ever mald of the effert of wind on a bidge strmetme formed at

part of the proliminary work. The esthary, for a distame of nearly filty miles, is mever hess than two miles wide, nexept at this ome place. where it is
 island of lachgarvie meaty in the centre of the chamel. 'flor chamel on

 lublow the surlace. 'Tu sereme the maximm rigidity romsistent with eromomy in weight, the "vertical eohmans" of the towers were spaced 120 fore mpart at
 shown in the illostration, the prosespetional dimensions of the cantilewers diminish mapilly luth in width and hoight. so that methough then weight of

The pieture of any gigatio strueture esperially when well propurtioned, uthery fails to give an aldinate intes of the size of its component parts. It is dillientt to malize from the ilhstration that the fime tuhalar "vertieal ent-

 the :

 than a stome arm, maless the spin is slowt.

111. CAssons

UNI

ritjertioned． it pirts．It virtiral eml． l：Iser－litraplo
 atial cost uf
inil als lat tha ensins is 10 r ：Hell ill $1 \times x$ ． －the Wials． his conthrs． En thery Wita his atoll was wrethes in ex． at loult－y． hinh the do． sure＂pionsters highly rall－ her hathil，the ＂lletion of ： 11 ，in ドッルハー。 A Iested bullare tome atroles． －ir pxrosive III stronglt． sterl hrihere． IIV atrols：s in
 s．chlur lo ille strel hidgr． vals，cheaper

Iturally How nit inleil．In
 irn livary in linl hanath k，wiss coll－ －loserer doos， was at athum－
 in＇l in until ids was also allat．＇I＇he al．＇To piss
oun．He reverse process in inverse order was merssary．This was the tirst

 as the sheph of the hase of the rassen helow the water surfice．In the catse

ons to thase working i．t it．The men literally＂live fast．＂Great exartion is

The ritissoms of tho Now Vork ant broklyon suspension bridge are the

will whern when hown ont，and sut the danger of tire inside the woulen cats．

 pman！
 rallath he that tire．

 inches，pre wrek．

＂xuessicry！步 Ir：F： tew ranss plinand rem rery hriof Fin many Hituligh 11 ｜r．I＇ultivil shalt，：and wall six f shaf it suita ligntill ichl

ther liguine ins Hisel ower rhatil． ：114 品：＂い！ flumely

Histur

 ： then al：a Thu ：int greal ant line，ther aerompli

M INCHESTELK NHIP 1ASAL.

> N. リN: II.

 line. therefore eronsista in the rammonaly greater magnitude of the works

III the improwement mathods of work whinh has remberm these great sime

 Q

 the baters, lighthouses, bere, at rath tomimes, was, apmoximatal

(i) ent cambis. the sine ramal his no lorks. The origimal plan of the

1 strme－ ried de． ：18 this ing tho （III）Ilis．
 worli．。
 nefurt is pletion ＂．＂ther not lin （1）milas （1）with －＇llı＇ IIt 1111.
 llopurso II 11 10\％ 15.11 i 111 110\％of
 11 who 1！－けい。 wil thi ＇y11i 1 lvallond
 －Were 10en＋1） ｜l｜иян！ リ川！ Alutit

COMPLETE HOCK CLT．CHREAGO DLAANAGE CANAL

 miterprise.
Masemesten ('asal. - This mabal, having a lutad length of omly thinty-

 frme the meressity of providing for the existing ramals amb railroals with

 might pass umber it. Therefore a draw herames meressanty. Tos add to the

 sily unthing of the expense. 'Thervfore the bidge must swing with the trough full of water. 'Ihat repuired gates at mach mod of the draw, as
 romparativery simph; late the difthent problem was to ansure a waterotight juint between the buls of the draw trough amd the emperpemiting vinde of

 ing the draw the allose fit with the ahoments. The deximed ressht was

 trong. Thess bevelol embs are faced with rubler. Tos agen the draw

- thoma. swilril! 11 notid - watov -11 colll. 11 lutell d will
 'balliro. that it ing fin if $\mid 1$ e.
thirty. 1世hillil, ill Nir fillenl [from IIT tho Hhas swith will ill akre 1,1 -lopul| juslly aid tho a via. Cille:t. (M) I ships (1) tho miterl, ughly, trre t tillo. t1 $h_{1} \|_{1}$ aw, as Wrirn $\cdot 1$ ight tils of tions, wingt wiss lispu-d ringh. of tho dу"w -6IIIrighes

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences
Corporation

are raised, and the draw is then free to turn. The wedges are operated by hyidraulie rams.

Cineago Dranage Canal. - It will probably be a surprise to many people to learn that this "drainage" canal has a greater cross section throughout the "earth-work" sections than any ship canal in existence, and is only exceeded through the rock sections by the Manchester canal. The city of Chicago obtains its water supply from Lake Michigan. The "intake" pipe was at first located comparatively near the shore. As the population of the city grew and the volume of its sewage increased, it was observed that the water supply was becoming contamiated. The Chicago River, into which the sewage was emptied, beeame so foul that the odor was intolerable. The very evident fact of this odor probably had more to do with the promotion and accomplishment of the means of relief adopted than the far less evident but very dangerous pollution of the water supply. An extension of the intake pipe to a point several miles from shore by reans of a tumuel (which was in itself a notable feat of engineering) only deferred the time when the water supply would agran be fatally contaminated if the sewage continued to flow iuto the lake. It was accordingly determined to dispose of the sewage by discharging it into an artificial chamel where it might become diluted with water from Lake Miehigam, and thence pass from the watershed of the Great Lakes to the watershed of the Mississippi. The level of Lake Michigan is so high that there was no tronble about obtaining the requisite grade, and the divide between the watersheds is so low that the dep,th of the required entting at the summit was not forbidding. But why have such a large camal? It was required that the sewage should he dihited, so as not to become offensive to the inhabitants of the region through which the eanal must pass. The law under which the work was anthorized reguired that the flow shonid be 600,000 cubie feet per minute, and that the minimum width at the bottom of the channel must be 160 feet. According to the well-known laws of hydranlics, it was seen that a deep canal would have a greater capacity per mit of excavation than a very wide shallow canal. This is especially true through the sections of deepest cut, since excavation above the water line adds nothing whatever to the capacity for flow. The sections adopted called for a depth of water of 22 feet. The side walls in rock are practically vertical, the width of channel being 160 feet at the bottom and 162 feet at the top. In earthwork the cross section is larger than in rock, thus reducing the velocity of flow and danger of scomring the banks. The width of channel at the bottom is 202 feet, the width at the water surface being 290 feet, and the side slopes 2 horizontal to 1 vertical.

A very expensive feature of this great work was the necessity for constructing a diversion channel for the Desylaines River throughout that portion of the river valley occupied by the eanal. Lack of space forbids a further diseussion of this feature. The canal will drain into the Desplaines River at a point where the slope of the river is so great that there will never be danger that a strong west wind or an unusual lowering of the level of Lake Michigan can possibly cause the current to flow eastward.

Work on the canal was commenced only after many years of discussion, planning, legislation, litigation, and bitter opposition by the varied interests which considered themselves more or less injured. But the work was
ated by
many section ce, and . The ntake" ation of ed that er, into lerable. motion evident the in(which len the mued to sewage diluted of the Michigrade, the rea large t to beal must he flow at the n laws sity per ly true te alds al for a cal, the p. In elocity he botse side
or conat porbids a plaines never vel of ussion, interk was
actually commeneed in July, 1852. The estimated exeavation is approximately $\mathbf{4 0 , 0 0 0 , 0 0 0}$ enbie yards - about one half that of the suez camal; but the length is only 29 miles, compared with 101 miles for the Snez canal. The total eost is estimated at something over $\$ 2 \pi, 000,000$. It is expected that the work will be actually completed before the close of this century.

Y. (iEOD)ESY.

It may be that many, who have read of the incredulity of all Europe when the voyages of navigators during the fifteenth and sixteenth centuries first demonstrated the sphericity of the earth, will be surprised to learn that this knowledge had been acquired almost two thousand years before, and had sinee then been firgoten. To Eratosthenes, a Greeian, belongs the honor of tirst making a measurement (about the year 230 в.c.) of the size of the earth, whiel, while very rude and inaccurate, used the same fundamental principle ats is now employed by geodesists. But the applianees of those ancient (irecians and of the Arabians, who later carried on the work, were exceedingly erule. Even during the sixteenth and sevententh centuries, when the Frencl, English, and Diteh were working very hard on the problem, and were gradually obtaining results which eame closer and eloser to those now known to be correct, the applianees for measuring angles were so rough and inaccurate that it was only possible to assert that the earth is spherieal, with a dianeter of about $\overline{\text { B MO }}$ miles. The seventeenth century was nearly past when l'ieard first usell spider lines to determine the "line of collimation," or the true line of sight, in a teleseople. This marked a new era in methouls of work, but the eighteenth eantury was about half gone when it was tirst authoritatively proven that the earth is not a sphere, but is more truly an "oblate spheroil," - such a figure as would be obtainell hy Hattening a sphere at the pules. Some idea of the aecuracy of the work done, even at this stage, may le oltanined by eonsidering that the eomputed Hattening is so slight that if we had a perfeet reprotuction of the earth, redueel to a diameter of 12 inches, the flattening would be less than $\frac{2}{2} \leq$ of an ineh-almost imperceptible even to a trained eye. The very highest mountain would be eonsiderably less than ${ }_{10 \bar{\sigma}}$ of an ineh in height on suel a sphere.
The present marvelous state of the seienee is due to the great improvements which have heen made in the construction and use of angle-measuring instruments and of "base bars;" also to the development of the mathematieal theory and processes involved, notably that of the "methol of least squares." As an illustration of the accuracy attainable in the construction of theodolites, the writer recently made an elaborate test of the error of the centering of one of these angle-measuring instruments. Of course no direct measurement is possible. The result is based on a long series of observations, whieh, when combined :ecording to eertain mathematical prineiples, will give the desired result. The error was thus eomputed to be forty-tuo millionths of an inch. To realize what is meant when an engle is measured with a "probable error" of a few hundredths of a seconll of are, it should be remembered that one seeond of are on a eircle 10 inches in diameter is less
 surement of base lines is not easily realizul by a layman. An engineer realizes the practical impossibility of measuring a line twiee and obtaining
precistly the same result to the finest mit of measmrement. The initiated are therefore able to appreciate the achievement of measuring a base line having a length of over nine miles, with a "probable error" of less than one live-millionth of its length. The words "pwobable error." as used above, have a scientifically exact meaning. but they may be taken by the minitiated as representing a measure of the precision obtained.

At abont the close of the last century the great mathematian, Laplace. had declared that the results of the surveys whieh had then beell made were inconsistent with the theory that the form of the earth is exactly that of an oblate spheroid. That form would reguire that the egnator aud all panallels of latitude sladl be true circles, amb that all meridian sections shad be ergall chlipes. Laphace showed that the discrepancies between the actual results obtained and the results which the theory would call for are too great to ber considered as mere inaremates in the work dome. With the extension, during this century, of the great geoletie surveys, carried on by the varions goverments of the worl, more and more evidenee has developed that the meridian sections of the earth are not eyual, which is equivalent to saying that the equator is not a perfere cirele. This has led to the next stage, which has been to prove that the form of the earth may be more flosely represented by an "ellipsoid" tham hy a spheroin, that is, that erereg section of the earth is an ellipse. several calculations have been mate to determine the length and location of the primeipal axes of sueh a figure. lant these ealenlations are consideren unsatisfartory. becanse evidence has developerl that the true form of the earth camot be represented even by an ellipsoid. This figme is symmetrical above and below the efuator. There are reasons for believing that the sonthern hemisplere of the arth is slightly larger than the northern, and that the form of the earth is mone nearly that of an "ovaloid,"- a figme of which the ordinary hen's egg is an exargerated example.

All the ahove forms, the sphere, spheroid, ellipsoid, and owaloin are geosmetrical forms which represent with mone and mone exactness the true form of the earth. but exen this inereasing exactmess will not aceome for the diserepandins and inregularities which have been fomm at varions platers, and which camot be explaned on the gromed of inacurate work. Ceodesists have been foreed to the conclusion that the true form of the earth is not a regular geometrical form, hut is a "geoid," that is, like the earth and like nothing else, muless we admit the exagyerated comparison that it is "like a potato." It should be mulerstool that the worls "form of the earth" do not refer to the actual surface of momatain, valley. or wepan bottom, hat to the actual oremin surface, and to the surfare which the free ocean would assme if it could penetrate into the heart of the eontinents. The astometing accurary of the work done may be appreciated when we consider that the differenees between the "geoid" and the more arcurate mathematieal forms are distaneps which shond be measured in foet rather than in miles. For many purposes, it is sufficiently exact to comsider the earth as a sphere. For some very precise work it is meessary to consider it as a spheroid. The more exart forms have little or no utilitarian salne, and the vast amome of work that has been spent on these researches has bedin due to man's thinst for knowledge as such. - due to the same enthusiasm which advaners the seicnces in fields which only broadeu mans knowledge of the world in which we live.

VI, RAILROAIN.

The achievements of engineering skill on the line of bridges, canals, tunnels, ete, have been great, but their effect is insignitieant compared with the social revolation that was created by the invention and development of railroals. The mailroals of this conntry represent a value of about $\$ 12,000,000,000$ - one sixth of the national wealth. Their pay-rolls inchule ahont 850,000 employees - $\frac{1}{2}$ of the working prpulation. They support, direstly or inlirectly, almut n,000,000 people. They collect an annal revenue of ahout $81,200,000,000$, which is greater than the value of the eombined products of gold, silver, iron, eonl, and other minerals, wheat, ise, oats, barley, potatoes, and tobaeeo, produced by the entire mation, such a stupendons social institution reguires special disenssion, and it will be found treated seprately under the hearling of "Evolntion of the Railway."
VII. TUNNELSS.

Thmels are of exeeedingly aneient origin, if by tumels we inchule all artificial undergromid excavations. From prehistorie times natural eaves have been used as burial places, and, following this practice, tumels and artificial rock chambers have been cut out by kings and rulers in Thebes. Nubia, and India during periods so ancient that we call the stuly of their histury archeology. Nor were the ancient tumels contined to tombs. The Babrlonians constructed tumels through material so soft that a lining of hrick masonry had to be used to sustain the work. The Romans constructed a tumel orer thre and one half miles long to dain the waters of Lake Fheins. About 30,000 laborers were oeenpied on this work for cleven years. The ninutenth erentury can hardly boast of works that reperesent a greater amont of labor (measured in mere lays of work) than some of these ancient monments of constructive skill. but the masterpieces of this century are works which have been gratly added and even remdered possible by three modern inventions, - ompurssed-air drilling marhines, momern explosives, aud the compressed-air process used in subaqueous work. The advance in methods of tumel surveying is as great and nearly ans importint. l'rogress in excavating tumnels is neeessarily slow, becanse the working face is so small that only a few men can work there at a time, and the rate of adsance depents upon them. As an'illustration: althongh the Mont Cenis tunuel belongs to the latter half of this century, the first blast being made in 18.7. yet for the first four years hand drilling was mployed. when the average progress was about nine inches per day. Then machine trilling with compressed air was adopted, when the rate of advance was multiplied five times. The invention of eompressed-air drills simultaneously solved two diffienlties: (1) The eompressed air furnishes an extremely convenient and safo form of power, which enables holes to be drilled much more rapidly than it is possible to drill them by hand. (2) The compressed air, after doing its work, is exhansted into the tumnel, and thus furnishes a continuons supply of fresh air. The neeessity for ventilation las often required the construction and operation of expensive ventilating plants. Add to these improvements the lighting of the tumnel, even during construction, by electric lights which consume no oxygen, and the comparison between ancient and modern methods
becomes espeeially marked. Before the invention of explusives, hard roek was sometimes broken by building wool fires next to the rock, and then. when the rock had become very hot, cooling it suddenly with water. 'The. sudden contraction would split the roek. Ventilation was attempted by waring fans at the thmel entrances. With torehes and fires to consume the preeions oxygen, and no effer-

AMEHICAN PORTAL. ST, CHAII TUNNLL. NOHTH OF゙ DETHOIT, MICII. tive ventilation, it is a womber how those earlier tumels were construeted. The eompressed air methods for subargueous work will be referred to umber. a speeial ease. The essential principles have already been deseribed under cuissoms.

Tunsel simeving, - The tumnel surveying dereloped during this century is one of the marvels of surveving work. If a tumel is to be several miles in length. not only is the exarvation conmenced at each end, lat one or more intermediate shafts are frequently sunk to the level of the tamel, and excavation is extemed in earli direction from the shafts. It is extremely important that these sections of the tumel should "meet" exactly. If they should fail to to so by any alpureciable amount, the necessary modifications are frequently eostly and therefore justily the most elaborate precautions in the surveying work, espeeially since the surveying costs much less than the consequences of such a blunder. The Hoosae tunnel is over 2,000 feet long. The heading from the east end met the heading from the central shaft at a point 11.2 it feet from the east end and 1063 feet from the shaft. The error in aligmment was five sixteenths of an inch, that of levels "a few hundrelths," error of distance "trifling." The correeted aligmment was then earried on toward the heading from the west end. which it met at a point $10,13 s$ feet (nearly two miles) from the west end and 20:3 feet from the shaft. Here the error of alignment was 9 of an inch and that of levels about $1 \frac{1}{8}$ inches. The surveying work of the spiral tumels on the St. (Gothard Railway (to be deseribed hater) is another example of marvelously aceurate work mider peeniarly mavorable ciremmstances.

St. Gotnond Tuxnel. - To appreciate the magnitule of the problem involved, of which this great tumel is the erowning feature, some idea should be obtained of the Alpine topography lying between Silenen, in Switzerland, and Bodio, in Italy, less than forty miles apart. The idea of eonnecting Switzerland and Italy by a railroad passing over or through the Alps, by utilizing the St. Gotharl l'ass as far as possible. dates back to 18 FO , or even earlier. An enterprise of such magnitude could be consummated only after years of discussion, plaming, surveying. negotiations, and even international agreements. In 1871 a treaty was finally ratified hetween Germany, ltaly. and Switzerland, by whieh the construetion and financiering was duly authorized.

On Angnst 7,1872 , the contract for the eonstruction was signed, with a proviso that the work must be completed within eight years. (bn April 30 , 1sso, the advance headings met, and soon thereatter the mails were regnlarly carried through, although the tumel was not atually completed in the slucitied time.
The route adopted was bold enough to stagger the finaneier, if not the enginerer. Starting from silenen, switarland, it requiren a climb of nearly 2000 feet to reach Giselmene, the alopted northern portal of the tumel. This would require an crereqge grade of 200 fere per mile in the ten miles of distance, or an atmal grade of 870 feet per mile in the upmer part of the line, if the river valley were followed. The line was therefore "developed," that is, the distanee was purposely inereased ly adopting an indirect line, in order that the grade might be less. It was fond possible to rom the line from Silenen to Pfaffensprung, a distance of abont six miles, on the comparatively low graule of $1: 3$ feet per mile. At this point the line suddenly phunges into the mombtan, and curves around in a circle, which is, roughly, 2006 feet in diameter, while it continues an upward grade of $1 \because 1 \frac{1}{2}$ feet per mile. After traversing 4845 feet of such tunnel, the line again emerges into the open air, having turned nearly three fourths of a cirele in the solid rock. About 2000 feet farther on the line actually crosses itself, the upper line there being 167 ! feet higher than the lower line, which is at that point within the tumel. By this deviee, which is ealled a spiral, the line is rum at a practicable grade, and an elevation of $167 \frac{1}{2}$ feet is surmomed by introdneing 6986 feet of "development." Near the entrance of the Leggistein tumei, the line is less than 500 feet away (horizontally) from a lower part of the line, which is about 3 an feet lower in elevation. Space forbids a further deseription of this elimb of 2000 feet to Gioschenen, where the line planges into the bowels of the earth, and does not again emerge until it has traversed "ine rend one quirter miles, and has reached the sonthern slope of the $\mathrm{Al}_{\mathrm{p}} \mathrm{s}$. Even here the portal is 3755 feet above sea level, and the valley down to boulio is steeper in places than the valley of the Reuss. Four spirals are used in deseemting about 2600 feet in an air line distance of less than 19 miles. la one place even the upper line, where it erosses the lower line, is in solid roek. Imagine standing in the gloom of a tamel and considering that rertically heneath your feet - more than 100

 OF DETHOTT, MICH. feet further down in the bowels of the earth - there is another tumel belonging to the same line of road. The great majority of tumels are straight. A few have eurves at one or both ends, but nowhere else in the word ean be found such examples of spinal tumnels carved out of the living rock.

S'r. Clam Trextha- A glanee at a maly of lower Canala and Miehigan will show that all the mal tratfic of lower Canadia, and even that from Montreal and Gumber, that gasses as far west as Chicugo, must either eross the Detroit River at Detroit or the St. Clair River, at or near lort Hurom, Plans for bridging the river have heen frepuently made, but the Canalian government has standily refused permission. The trattic along the river in 1 sof :mmonted to over $35,000,000$ tons, or more than was shipped at the ports of either New York, Lombon, or Liverpool, and greatly in excess of that which passid throngh the siuez canal. Such trattic must not be impeded even by a dranbridge; and therefore a tumel wist the only alternative. The problem was in many respects mique. Borings showed that the thmel must pass through elay and occasional pockets of quicksand, and therefore it would be necessany to empley a pmematic methol. Bromel had used a "shieh" on the Thames tumad half a century before; but all of the carlier tumels eomstructed by this methon were much smaller, and the difticulty and danger inerease very rapidly as the size increases.

In 18s6; the "St. Clair Tummel Compans." virtually a creature of the Gram Tromk Railway Company, was organzed, and in 1SSs work was lpgum. After a false start. made ly sinking slafts which were aterwarls abandoned, open rattings were commencel at each end, which were extended to points foofo feet apart. betwern which the tmmel was exeavated and lined. The cirenlar lining, having an outside diametar of 21 fret, is of east iron, mate in segments which are bolted toge ther, having strips of wool three sixternths of an inch thick placed in the joints. Liquill asphalt was freely used as a preservative and to make tight joints. The tumuel was exarvated for nearly 2000 feet on embla side as an ordinary opeon tumul matil the examation was actually umber the river: then a diaplangm with air locks was built on each sitie, and that part of the tumel lying under the river - 2090 feet in length - was ronstrurtol maler air pressure. Several curions facts were developen during the eonstruction. The material exarvated outside of the shields was thrown inside, loaded on to cars, amb hanled ly mules to the diaphagm. It was foum that horses could not work in eompressed air. Mules could do so, hat even they were sometimes: affected by "the bemds," a disease akin to paralysis, whinh freguently occurred among the men. The shields were forced forward hy twentyfour hydranlic rams, each having a capacity of 125 tons, or 3000 tons for each shichl. Usually a force of 1200 to $1 ; 00$ toms was sutticient. Mueh gas was encomitered, which. on account of its explosiveness, prevented the employment of blasting to break up the bouklers which were frequently found. The advantages of electric lighting in compressed air work wre exemplified in this tumel. In Augnst, 1800, about one year after the shiek were placed on each side of the river, they met near the centre. The progress of each shield averaged nearly ten feet per day. Comsidering the frequency with which the cost of great engineering work exceeds the original estimate, it is remarkable to note that in this case the actual cost (\$2,700,000) was less than the original estimate, which was about $83,000,000$.

Walter Loring Webb.

'THE CENTURY'S PROGRESS IN THE ANIMAL WORLD

1. Wr ANIMAL DISEANEN.

T'us wars of Napoleon, which in the nally years of the nineteenth century so sirrionsly affected the goverments and institutions of Enrope, hat an equally marked intheme njon the development of the amimal industry in the combtries that were bronght within the sphere of the military operations. This chapter of the history of that period appears to have been negleeted by writers who hive inlustrionsly delval into details of suljects of far less interst and iuportance. Enough hats beron chronicled by various historians, however, to show that in many cases those engaged in suceessful operations for improving the breds of domesticated animals were fored to abandon the work to which they han devoted their lives, and for which long study and experience hat speeially fitted them, and to brome units in the vast armies which were organizel only to melt anaty in the blooty aml disastrous eampaigns of that epoch. But it was wot the men alone that were taken. The best horses were seizoll for the use of the ofticers and the cavalry, for the artillery and the transportation trains. The sheep and swine were slanghtered for the subsistence of the amies, and the eattle were driven off for the sime purpose. Neither the rhoirest floeks and herds nor the most magnificent individuals produed by the brepdres art "seaped. The frits of mans years of patient effort in selvetion amb in guiding the forces of heredity were hotted ont; the amimals left were few aminferior. To erown all these disasters, the most deally iorms of contagion were gathered from their hiding plames with the amimals that were seizen, the plagues which these caused were propagated among the vast aggregation of beasts that were required for the service of the armies, and, finally, they were disseminatel throughout all sections to whith these armirs penetratell.

The agriculturists of Great Britain, thanks to the isolation due to the consitlerable expanse of water which separates their territory from the mainland, eseaped not only the invasions of armed and destruetive hosts, but also the pestileness whieh aceompanied them. While. therefore, the farmers of the continent were struggling to save a few of their remaining animals from the ravages of glamders, rinderpest, foot-and-mouth disease, pleuro-pnemmonia, and other phagues, those of the British Isles were perfeeting the work of their aneestors without molestation. These eircumstances, lost sight of by many, explain to a sertain extent the apparently marvelous suceess of the l3ritish husbandmen in developing so many breeds of horses, cattle, sheep, and swine to the wonderful perfection whieh we see at the end of the nineteenth cuntury. The favorable elimate, together with the abmonat and mutritions herbage, have umdoubtedly been factors in the production of the british breeds, but the power and opportunity to select the best animals and retain these for breenling purposes must also have had great influenee.

The effect of contagions diseases in retarding the development of andaal life may be apreeiated from the estimate, carefully made, that in the closing yens of the eighteenth (witury the cattle plague (rinderpest) alone lestroyed in Europe two hundred million heal of cattle, valued at seven billions of collans. During the first half of the nineteenth century, mattle phage, pleurnpmemonia, and foot-and-mouth disease were particulaly disastrous to the animal iudustry of the Continent of Europe, and mupuestionably, also, throughout Asia, whieh "ppears to have been the original habitat of these plagnes. Joring the last thirl of this century the development of veterimary seience, together with the enarment of sanitary legishation and the raforement of intelligent masimes of repression, have practieally eradieated the cattle plague from the countries of Europe, and we have only to note, as important, its invasion of Cireat liritain in 1sinis, which leal to the moption of the present most excellent sanitary organization, and the extensive outhreak on the continent following the Franco-l'russian war. During the last six years this plague has swept over large sertions of the Alrienn eminent, destroying nearly every bovine animal in the regions first invaded, and hat it not been for the fortunate and timely dispowry of a sureessful methon of preventive inoulation, the eattle industry would have heon absolutely amihilated.

Pleuro-pmemonia, almost equally destructive with eattle phague and much more persistent, was widely disscminated over the eminent of Europe during the seventeenth century, and reached England about 1840. Many years were lost in futile contentions over the subjeet of contagion, and it was not until the last twenty years that vigorous measures for its extermination were enforced. In the meantane the ematagion had been carried to Australia and South Africa, where it has since remained ilomiciled, a eonstant source of loss to the eattle growers. The losses from this disease in Lurope are now comparatively mimportant, but in the comotries of Asia and Afriea, and in Australia, it is still a great incubus. Foot-and-month disease, less fatal in its effeets than the other maladies mentioned, appears to be more diftieult to control, and, in the closing years of the century, we find it prevailing extensively over the puincipal countries of Continental Europs.

The diseases which have most serionsly afferetel the development of other speeies of animals are the glanders of horses, the variolit of sherp (sherepows), and the three diseases of swine known in Lurope as erysipelas, swine pest, and swine plagne. These have been extromely prevalent and fatal in many parts of Europe. Glanders, swiue pest, and swine phague have been brought to the American continent, and have been even more destructive here than in their ancient habitat.

The diseases which at present are regarded as most serious attracted but little attention at the leginning of the century, or were unknown. Tubereulosis has now hecome the great scomrge of dairy cows and other highly bred eattle, ruining many of the best herds and threatening the health of the consumers of milk, if not also of beef. Texas fever, a lisease of cattle first studied in the United States, but now known to be widely disseminated over the South American, Afriean, and Australian continents, has during late years retarded operations for improving and inereasing the stoek of cattle, and has seriously restricted the marketing of amimals from the infected distriets.
 losing troyed of thel-pleurıto the , also, f these veterifinl the lieated hote, is tien of itbreak ast six tinent, and hud thond of y amia mueh pe dury years was not on were ilia and urree of ue now and in fatal in ficnlt to ; exten-
f other 1-10x), te pest, a many nought thim in
ced but Tuberhighly of the le first ed over Ig late eattle, ed dis-

THOHOUGHHNED.

This hrief summary relative to contagions disemses mul their effects is all the attention that ran be given in this article to conditions which through all historic times have been important, and, in many coses, have berin supreme
 lation. As the twentieth century appoables, however, the inthume of the animal plagues is on the wame, and with a lew more yemes of netive sebutitio: investigations thry will all be so thoroughly controlled that the disastrons visitations of the past can burer be repeated, and they will not even be a hindrance or memate to the stoek grower.

If. INCLEANE IN NTMHEAK,

As might be expected, there has been in increase in the mumpers of the domesticated animals hehl in the varions cometries of the womb, but this inerease has been far fom maform, and canme the measured either ly the growth of the proulation or the degree of prospurits. Exidently her hasity of population, the developuent of manlactures, and the fertility of the soil have hath mueh inthomere.
 $2,000,000$ in ISas. During this time the eattle hat inemased from i, omo, onn

 the eentury, the horses inereasel hit one thind, the sherep one fonuth, and the swine one fourth. Is in the same prionl the prombation of the comentry was angmented from $16,20,0,00$ to $f 0,000,0 \%$, or two and on half times, it is not litionlt to see why England has berome the world's greatest market for animals and animal products.

It is important to note the inerease in animals in a fre of the principal countries of Europe. In France there were I.son, (1) homeses at the beginning of the century, and there were $3,418,006$ in $18: G$. 'The catthe ineremen

 to $21,200,000$. That is, in round mumbers, the lorses, eattle, and goats doubled, the swine inereased nearly $\% 0$ pre cent. but the shep were dimin-
 or about 40 per cent.

In (iermany, from 180 to 18 , the horses increased from $2.300,000$ to $3, \mathrm{sin} 6,000$; the eatrle from $0,7 \pi 0,000$ to $17,000,010$; the grats from $\mathbf{7 0 0}, 000$ to $3,000,000$; the swine from $4,500,000$ to $12,17,000$; and the sheep drcreased from $17,300,000$ to $13,600,000$. The population increased thring the same time from $99,700,000$ to $49,300,000$.

In European Russia, from $18 \mathbf{S 8}$ to 1885 , the horses were inereased from $12,000,000$ to $20,000,000$; the eattle from $19,000,000$ to $93,840,000$; the sheep from $36,000,000$ to $47.50,000$; while the swine decreased from $15,800,100$ to $9,200,000$. The population during this period increasel from $45,000,000$ to $90,000,000$.

These are the comntries in which there is most interest on account of their influence upon the markets of the world. In regarl to Europe as a whole, owing to the lack of statistics, we can ouly estimate approximately as to the condition at the beginuing of the century. From such clata as are arailable
it all 500,111 is plat "10nn switt

Fir main

of dos

it wh

hurse
as 1 ll
Th
creas
grve
is ull ough reme
 it the ntitio trous lue :
if the

this

- the

 awiar. The population will reach about :30,000,000,

From these higures it would appur that, taking all of Buroue, the hasman pophation has inereased move mpidly than have any of these sperios of domestiented minuls. In other worls, the ponalition is 2.15 times what it was at the lughming of the enomer, while there are but 2.14 times as mang
 as many shaי pי.

This growing drficieney in the stork of mimals, compled with at inereasing comsumption of meat prompita, has led to the importation of great mumbers of amimals and large phatities of meates mul other amimal

WATHIUNG THE COWS.
products. The resulting trule has stimulated the production of animals in othur pats of the world. partioularly in the United States of America, Anstralia, atul Mrgentian in all of which there has herom a marvelons developurat.

Thore are mo reliable statistics as to the mmber of animals in the [inited statess at the begiming of the contury., some have estimated that Gere wre only :00,000 horses, fino,000 matle, and boo,000 shopep; bint the writer is of the opinion that there were from iono,000 to $1,000,000$ horses, at least : $:, 000,000$ head of eattle, and from $2,000,000$ to $3,000,000$ sheep. In
 rattle, 19.3010 .000 sheep, and $2(6.300,001$ swine : white in $18: 9$ the mumber is plaerel at $15.500,000$ horses and muks, $44,0100,000$ eattle, $30,000,000$ sheep, and $38,($ (2), 1 (1) 0 swine.

 eredited with $\quad 3,000,000$ horses, $: 3,000,000$ eattle. $2,000,000$ shee 1, and $5,00 \%,-$ 000 goats. Taking the whole of North American and making allowances
for the inerease since 1888 in Cimada and Mexico, it may be fairly assumed that at che close of the century there will be abont $19,000,000$ horses and mules, $55,000,000$ cattle, $50,000,000$ shee 1 , and $40,000,000$ swine.

In South America, Argentima far outstrips all other comentries in animal production. The horses, which in 1864 mmbered $3,575,000$, hat hereased by 1895 to $4,447,000$; the cattle increased in the same period from 10,25 ,
 tion in 1895 was only $3,964,000$. In Uruguay there were, in $1895,402,348$ horses, $5,248,000$ eattle, and $14.333,000$ sheep. In Paraguay there were, in 1890, 246.000 horses and $2.100,001$ cattle. The has returns from Chili (1882 ?) give 450,000 horses, $1,30,000$ eattle, and $2,500,000$ sheep. As to the condition in Brazil, we have no reliable statisties.

The animal industries of Anstralasia have shown the most wonderful development during the rentury. In 1800, there were but 200 horses, 1040 eattle, and (6100) sheep. In 1810 , there were 1130 horses, $1 \% .440$ eattle, 20,010
 cattle, $110,524,000$ sheep, and $1,0 \% 0,0 \% 0$ swine.

In Asit there are large numbers of animals, but it is impossible to give statistics, except for British India, where, in 180\%, there were $1,150,001$ horses, $49,000,000$ cattle, and $16,200,0100$ sheep.

Mr. Simonds endeavored to ascertain the number of eacle class of live stock in the work in 1890 , and his conclusions may be arcepited as approximately correet. He placed the total number of horses in all comntries at ($63,469,0 \% \%$. the asses and mules at $10,318,000$. the cattle at $: 309,807.000$, the sheep, at $588,905,000$, the swine at $102,32(6,00 \%$, and the goats at $59,971,000$.

11I. 1MPROVEMENT OF HREDDS OF ASIMALS,

The increased number of animals now held in various parts of the world does not give an adequate idea of the anlarged prodnction of animal food products, as eompared with one humbed years ago. Dhring the last century there has been constant improvement in the various breeds of animats, with a view to perfect their form and shorten the time required for their growth. The breeder has learned how to stimulate development, and has fixed the quality of early maturity, through hereditary influence, until it is now transmitted with the same regularity as are other characteristics.

Cattle are uo longer fed until they are three or four years ohl before being sent to the butcher, and it has been found that they can be made to yieh an equal quantity of beef of better cuality at eighteen monthis to two years. It is the flesh of such young animals which has been mueh discussed under the title of "baby beef." Not only is this beef commended on account of its tenderness, its high nutritive value, and the nore even distribution of fat through she museular tissue, but becanse this shortening of the feeding period enables the farmer to produce a greatly increased quantity of human food from the same number of acres. That is, by reducing the age at whiel bulloeks are marketed from three and one half years, as was formerly the rule, to twenty months, it is possible for the same farm to produce one third more animals in a given series of years.

It may be admitted that not all of the stock of beef-producing animals, nor
even the greater part of it, has acquired this extreme degree of early maturity, but most of it has developed somewhat in this direction. The large-boned, gaunt, and long-horned cattle of Texas have nearly disappeared, and oven in Mexico they are being rapidly replaced by others of better quality. The most important fact is that breeds cxist which can be depeuded upon for the speedy transformation of the entire stock of cattle when the necessity arises.

A similar hastening of maturing has been accomplished with the mutton breeds of sheep, with numerous varieties of swine, and to a considerable extent with poultry.

The development of the dairy breeds of cattle has also been remarkable.

A TEMDEHANCE SOCIETY. (HEHULNG.)
It call be best appreciated by contrasting the half wild cows of our Western plains, which yield but two or three quarts of milk a day at their best, and none for half of the year, with the highly specialized types which produce twenty to thirty quarts daily when in full flow, and with which the wilk secretion continues from year to year without interruption.

The yield of butter has been increased equally with that of milk, and among the dairy breeds there are some which are specially valued because of their aptitude for butter production. While the unimproved cow yields but one fourth to one half pound of butter a day, good specimens of the best breeds produce from one and one half to three pounds, and in mumerons instances still greater quantities.

In the production of wool there has also been a wonderful advance. The fibre has been increased in length, the fleece has been distributed more uni-
formly wor the surface of the body, and the quality of the fibre has been modified to conform to the requirements for manufacturing the intinite varieties of fabries demaded by modem civilization. The fleece of to-liay is probably three times ans havy as that of a century ago.

The imprevement in the Merino trpe has been truly wonderful. Not only have the beantifnl long and silky wools of the Rambonillet and Saxony breads been developed by persistent selection, but the body of the Merino, formerly small and almost useless for its flesh, has been brought to a stamdard closely approaching that of the best muttom breeds.

It is unfortmate that the changes of fashion have, during the latter part of the century, made the production of the extra fine wools less profitable than the coarse varieties, and that, as a consequenee, many flocks which

AHT ('RITICS. (GEBHELA)
hat been bred to the very highest degree of perfection in this direction have gone to the shambles, and their peculiar points of excellence have been lost.

With poultry, a vast number of varieties and strains have heen developed, among which the most fastidions taste may readily find its ideal. Some of these have been perfected from the standpoint of utility, while with oth. the guiding prineiple has been purely asthetic. Thus there are breeds which are characterized be their size. rapid growth, and exeellence of flesk $L_{\text {jo }}$ others which have becu developed simply as egg-producing madhines and which have even lost the maternal instinet for incubation ; and still others in which the beaty, the complication, and the perfeetion of the feathering constitute the principal claims to attention.

The staulard weights of the heavy varieties, such as Brahmas and Cuchins,
fibre has been t infinite varietoday is pro-
ful. Not only Saxony breeds rino, formerly tandard closely
the latter part less profitable flocks which

this direction ence have been
seen developed,
deal. some of with othe the reeds which are L.; others which hich have even dich the beauty, te the prineipai
is now 11 lbs. to 12 lbs. for cocks, and $8 \frac{1}{2}$ llss. to $9 \frac{1}{2}$ lbs. for hens. In the United States, there has been developed a distinct American class of medinm weight fowls, of which the Plymouth Rocks and Wyandottes are the most popular varieties. The cocks of these varieties weigh from $8 \frac{1}{2} \mathrm{lbs}$. to 91 llos , and the hens $6 \frac{1}{2} \mathrm{lbs}$. to $7 \frac{1}{2} \mathrm{lbs}$. They are valued both for their Hesh and for egg production. The rapid multiplication of varieties by motern lireeders is illus. trated by the Wyandottes. whieh eame into existence during the last third of the century. and of which there are now five distinct varieties: the Silver, Golden, White, Biff, and Black.

The breeder's art has been most successfully brought to bear in stimulating the function of egg production. Not many years ago an average yield of $1: 5$ to 150 eggs aunually from the hens of even a small thock was considered all

that it was possible to obtain, but at present there are varieties which may be relied upon to produce more than 200 eggs annually. In some instances, it is alleged that an average of nearly 300 eggs a year has been reached in small floeks which have been given special care.
It should not he forgotten that there has also been great improvement in the various breeds of horses. The heary draught horses have been bred into a more eompact form, with better legs and feet and less sluggish disposition. The most noticeable adranee has, however, been in the lighter grades of horses, and this has largely been accomplished by infusing the blood of the English thoroughbred. The Frenel, by systematically breeding the heavy mares of the comntry to thoronghbred stallions with careful selection of the offspring, produced an extremely valuable breed of earriagehorses, known there as the demi-sany, and which have been imported into the United states as French coaeh-horses. These animals, beautiful in form and action, have been brought to a high degree of perfection, and the breed is so well established that its good qualities are reliably transmitted from generation to generation.

There are also German coach-horses and similar breeds in several other countries, which have been established by following the same general plan as that adopted by the French. 'These breeds are peculiarly the product of the nineteenth century, and are in their most valuable condition as the century closes.

The Anerican trotting horse has withont doubt been one of the most remarkable trimmphs of the breeder's art which the century has seen. Originating in considerable obscurity, but undoubtedly owing much of its excellence to the thoroughbred, the trotter was bom with the century, and has continually increased its speed matil the very end. It now gives promise of continning its evolution through at least a considerable part of the twentieth century. In the decade from 1800 to 1810 , the best recorded speed at this gait was $2: 59$; from 1810 to 1820 , the time was lowered to $2: 48 \frac{1}{2}$; from 1830 to 1840 , it reached $2: 31 \frac{1}{2}$; from 1840 to 1850 , the limit was 2:2S; from 1850 to 1860 , 2:191 ; from 1860 to 1870 , 2:17! ; from 1870 to 1880, 2:12 ; from 1880 to 1890, 2:083; and from 1890 to 1898, 2:033.

This extraordinary and constautly progressing increase in speed during the century has excited the interest and admiration of the world. It is, however, quite generally admitted that too much attention has been given to speed and not enough to disposition, size, conformation, and sommness, to bring the animals to their lighest value for other than racing purposes.

Owing to the relatively small extent of agrieultural territory and the great development of mannfactures, direat Bitain has become the best market in the world for amimals anl animal prodncts. The purchases of cattle, sheep, beef, and mutton have been particularly large. Considering, first, the importations of cattle, it is foumd that during the five years from 1861 to 1865 inclusive, the average number was $174,17 \pi$; from 1866 to 1870 , the average was 194,947 ; from 1871 to $1875,215,990$; from 1876 to $1880,272,745$; from 1881 to $1885,387,282$; from 1886 to $1890,438,098$; from 1891 to $1895,448,139$; and for the two years 1896 and 1897, $590,437$.
This unparalleled growth in the consumption of foreign cattle has had a marked influence in encouraging the development of the cattle industry of some other parts of the world, particularly in the United States, Canada, and Argentina. The export trale of the United States has developed even more rapidly than the import trade of Great Britain. In 1871 this traffic was in its infaney, and but 20,530 lead of eattle were exported, valued at $\$ 400,000$. By 1879 the number had increased to 136,720 , valued at $\$ 8,300,000$. Then came the British restrictions prohibiting American cattle from leaving the docks where landed, and requiring their slauglter on these docks within ten days from their arrival. These regulations were a rude shock to the American cattle grower, and led to measures here for the control and eradication of the cattle diseases which were cited ly the English anthorities as the cause of their unfavorable action.

Although the pleuro-pneumonia, abont which most apprehension was expressed, has long since been extirpated, and an elaborate inspection service has been organized to prevent any affectel animals from leaving our shores, the restrictions have been contimed. Fortunately, the trade was only temporarily embarrassed, and has continued its growth notwithstanding this
ther plan ret of s the most Orif its ;, and ; proof the orded ed to it was 870 to luring It is, given somulracing nd the e liest ses of dering, from 866 to 11 18 ; 6 38,098; ,437. had a stry of da, and an more was in t00,000.
Then ing the hin ten Ameriation of te cause was exservice shores, aly teming this
obstruction. lin 1889 these exports first exceeded $\because(0),(100)$, and the following year reached $\mathbf{3 9 4}, 836$. Since that time the number has Huctuated between $2 x^{7}, 000$ and 392,000 , matil 1898, when it reached the enormous aggregate of 439,255 , valued at $\$ 37,800,000$. Not quite all of these cattle have gone to Great Britain, but that has been the destination of by far the greater part.
The exports of sheep have varied widely, according to the fluctuations of the markets at home and abroal. From 18.1 to 1873 the number varied from $39,00 \%$ to $66, \% \%$; from $18: 4$ to 188%, it varied from 110,0 но to $33 \overline{3}, 0 \%$.

Pacing horse "star pointer." time, 1 m. 591 s.
In 1890 the exports were but 67,500 ; in 1801, 60,900 ; in $1892,46,900$; and in $1893,37,200$. legiming with 189.t, the exports of sheep again increased, reaching in that year 132,000 ; in 189a they were 405.000 ; and in 1896, 491,000. In 1890^{7} there was a decrease to 244,000 , and in 1898 a further decrease to 200,000 , valued at $\$ 1,213,000$.

The export trade in horses and mules was inconsiderable, varying from 2000 to 8000 a year mutil 1895 , when 14.063 horses and 4800 mulfs were shipped to foreign ports. This trade inereasel in 1896 to $\mathbf{2 5 , 1 2 6}$ hoises and $6 \pi 34$ mules, together valued at about $\$ 4,000,000$. In 189 a further increase was made to 39,032 horses and 7553 mules, the value being $\$ 5,400,000$. And. finally, in 1898 there were exported the largest number ever sent
from this country, amounting to 51,150 horses and 6996 mules, valued at \$6,691,000.

Swine are not exported in very large numbers, as they do not stand shipping well. The largest number sent abroal was $1: 88.081$, in $18 i 4$, the value of which was $\$ 1,625,837$. In 1897 and $18!5$ there were only 16,800 exported each year. Very few of these cross the ocem.
This resume of the development of the international traftic in live animals and the status of the animal industry would not be complete without some reference to the markets for animal products. The quantity of foreign meat consmmed in Great Britain is most remarkable. The imports of fresh beef, which from 1861 to 1865 averaged but $15,2 \pi \mathrm{a}$ ewts., han increased in the years 1891 to 1895 to an arerage of $2,000,668$ ewts., and in 1897 exceeded $3,000,0 \% 0$ ewts. The proportion of this supplied by the United States is indicated by the returns for $\mathbf{1 8 9 6}$, giving a total of $\mathbf{2}, 6 \mathbf{6 9 , 7 0 0}$ cwts. of imported beef, of which this eountry furnished $\mathbf{2 , (0)} 4,644$ ewts.

Great Britain also imported $3,193.266 \mathrm{cwts}$. of fresl mutton in 1897 , more than nine tenths of it being frozen eareasses from Argentina and Australasia. Of fresh and salted pork, the United States supplied $4,183,800 \mathrm{cwts}$ ont of a total of $6,563,688$ ewts. The principal other animal products imported by that country are, $1,700,000 \mathrm{cw}$. of lard, $276,458 \mathrm{cwts}$. of rablits, and $1,683,810,000$ eggs.

The continent of Europe consumes considerable quantities of lard and salted pork, which are largely furnished by the United States, notwithstanding the unfavorable attitude of the governments towards snch traffic and the existence of many amoying and injurious regulations. Fresh meats from America have been practically excluded.

The British markets for dairy produets and wool have also had considerable inflnence upon the prosperity of the animal industries in varions parts of the world. The rapidly inereasing demand for dairy produets is wortly of attention. In $18 \pi \bar{i}$ there were imported into the United Kinglom $1.63 \overline{4} .403 \mathrm{cwts}$. of butter and margarine. In 1897 the imports had been raised to $3,21 \overline{5}, 801$ cwts. of butter and $036,543 \mathrm{cwts}$. of margarine, or a total of $4,154,344 \mathrm{cwts}$, being two and one half times the quantity imported in 1876.

The quantity of cheese imported in 1875 was 1,$6 ; 3,920$ cwts., and had increased to $2,603,608$ c.wts. in 1897.

The country supplying the largest quantity of butter in $\mathbf{1 8 9 6}$ was Denmark, with Franee second, Sweden third, Holland fonrth, and Australasia fifth, Nearly all of the margarine came from Holland. The largest quantity of cheese came from Canadis, the United States being secome. with less than half the quantity furnished by her neighbor to the north, and Holland third.

The quantity of wool imported by the United Kingdom, France, Germany, Austria, Belginm, United States, and other consmming eountries, inereased from 200,000 tons, in the decade 1821-1830, to $3,300,000$ tons in 1871-1880. This wool came principally from Australia, River I'late, South Africa, Russia, and Spain.

The excess of imports of wool into the United Kingdom over the exports were, in $1892,312,217,111 \mathrm{lbs}$., and in 1896, 383,845,4:0 lbs. Of the total quantity imported by the United Kingdom in 1896, the United States supplied
lued at id ship)e value xported animals it some gil meat h beef, he years $000,0(1)$ cated by beef, of

7\%, more

 tralasia. 8. out of mported its, andarll and thstandand the its from
inlerable ts of the of atten0.3 ewts. b, 217,801 44 ewts., had inlenmark, sia fifth. antity of ess than Holland
iermany, nereased 71-1880. , Russia,
exports the total supplied
but 4,500,000 lbs., while Australasia furnished $47 \pi, 600,000 \mathrm{lbs}$; Cape of Good Hope, $70,000,000 \mathrm{lbs}$; Rritish East Ludies, $43,000,000 \mathrm{lbs}$; Natal, $21,000,000$ Ibs.; France, 20,000, (100 lbs. ; Turkey, 16,500,0001bs. ; and Belgium, 11,400,000 lbs.

The tendency of the last decale of the nineteenth century has been to displace horses and adopt mechanical motors. The great increase of steam railroads, cable cars, electric cars, bicycles, and antomobile vehicles has so reduced the demand for thesa animals that their value has decreased over tifty per cent. While there is still a good market for horses suitable for carriage use, for drays, for army service, and for agricultural parposes, buyers

are becoming more critical and the future is uncertain. As it is five or six years after a breeding establishment is started before any of the horses produced can be placed upon the market, the effect of this uncertainty is to discourage would-be horse breeders and influence them toward other enterprises.

The end of the century also finds the sheep industry in a depressed condition on account of over-production. The vast quantities of wool grown in Australasia and Sonth Africa have clogged the markets to such an extent that Australian wool in the London market has dropped from 15d. per pound
 the same period. Other wools have fallen in about the same proportion. Atthough sheep are raised for the production of mutton as well as wool, and the
tendeney in the United States has been towards the breeding of mutton sheep, the value of these animals has been reduced abont one half.

There have been periods of depression with the eattle and swine industries, but prices have been well sustained. The European markets are yearly requining larger supplies, and the stock of beef-prodncing eattle in the United States, in proportion to the population, is rapidly diminishing. The decreased number is in a slight degree counterbalancel by earlier matnrity; but when due allowance is made for this, it is plain that the United States has not the surphas of beef which it boasted a few years ago. At the same tiane, our meat trade in the markets of the world is threatened with more serions eompetition from South America, Australasia, and even Russia.

The century closes in a period of wonderfal aehievements in the extension. of transportation facilities and in the education of the masses in all parts of the world. The prodncer in South America, Africa, and Australasia keeps abreast with the most enlightened stock-growers of Emrope and America in his knowlealge of the best breeds, the most ceonomical methods of feeding, and the most desirable handling of his products. There is no animal product so perishable but that it can now be sent from the antiporles to London in good condition. All of this has lnought surprising changes in the trattic between different commtries and in the morlifieation of industries to meet new conditions. The producers of the most distant parts of the work are aggressively entering our nearest markets. Competition is becoming more intense, and commereial rivalry is assuming more the appearance of warfare than heretofore. The nations of the world are actively engaged in assisting their people in this struggle. They diffuse information as to the best and most economical methods of production, they seek out new markets, they subsidize transportation lines, they assist in the introlnction of new kinds of goods, they sustain their sulbjects in the most aggressive practices, they exclude the products of competing countries by tariffs and hostile sentiment, by diseriminations, by unpacking, delaying, or damaging goods, under the pretext of inspection, and ly burlensome charges and regulations. Some countries have gone so far as to absolutely prohibit eompeting products for comprehensive but indefinite sanitary reasons.

The outcome of this commercial warfare camot be foreseen. The struggle has been, and is, fiercest over the international traffic in animals and animal products. The greatest forces of the word are to-day contending as to what the future shall be. The United States has only recently begun to realize that it also must take part in this commereial struggle, if it would retain markets for its products and seeure prosperity for its people. Its trate has been unjustly prohibited and discriminated against, its merchants have been unfairly treated and insulted, and its protests have been treated with ill-disguised contempt. Notwithstanding all these efforts at repression, American trade has gone on increasing at an amazing rate, the forbearance of the govermment having been far overbalanced loy the energy of the people. Having grown to be one of the greatest powers of the world, with magnificent resources yet undevelopell, the United States will no doubt maintain its position and continue to supply the markets of the world with the best animals, the best meats, and probably with the best dairy products.
D. E. Salmon. decreased but when s not the our meat "11]etition
extension. l parts of sia keeps iea in his ding, and rotuct so n in good between ew coneliressively ense, and n lieretoir people t economize trans. ods, they e the pro-scriminaretext of countries - comprestruggle it animal ; to what o realize tail marhas been lieen umlisguised can trade ermment grown to wrees yet and conthe best

LEADING WARS OF THE CENTURY

I. WARS OF THE UNITEI STATES,

Tus progress of the nineteenth century, in everything that pertains to civilization, arts, and sciences, has been greater than the total progress in any decale of centurics in the history of the world, and this is equally true in regard to the art and science of war; for the expenditure of blood and treasure in the prosecution of the wars and the fighting of the battles of this century far exceeds that of any other like period.

The first year of the nineteenth century diwned upon the United States at peace with the work. In September, 1800, Napoleon, finding that he could not coerce the yonug nation into "an entangling alliance," and fearing lest the United States should join England in opposing him, found it his best poliey to eonelude a peace. The brilliant achievements of the newly organized navy, under Conmolore Truxton, not only illuminated these early pages of our history, but established a prestige never yet forfeited; for the history of this branch of our service is mparalleled from the first effort, cluring the Revolntion, of Esek Hopkins, to that of George Dewey at Manila, and Sampson and Schley at Sautiago.

War witi Babbary States. - In 1803 the United States determined to end the piracy of the Barbary States, and an expedition under Commodore Preble was sent to the Mediterrancau. The Pliladelphia, while pursuing a pirate, was grounded off the coast of Tripoli, and captured by the Tripolitans, who made slaves of the crew and prisoners of the officers. In Febmary, 1804, Captain Decatur, with seventy-six men from his ship, the Intrepid, boarded the Philadelphia, killed or drove off the Moors, fired the vessel, and returned without the loss of a man, although fiercely attacked by the shore batteries. In July, Commodore Preble, with his squadron, laid siege to Tripoli, but his bombardment was ineffective. General Eaton, consul to Tunis, induced Hamet, the brother of Yusef, who had usurped the sovereignty of Tripoli, to furmish liin a troop of Arub cavalry and a company of Greeks. With these, and a band of Tripolitan rebels and a force of Ameriean sailors, he crossed the Barean Desert, stormed and eaptured Derne, an eastern seaport of Yusef. The latter was glad to make peaee, and a treaty was sigued Jume 4, 1805.

Indian Wars. - From 1809 to 1811 fighting with the Indians in the South and Northwest was constant. General Harrison and the celebrated Indian chief Teeumseh were the principal actors.

War or 1812. - The contest between England and France for the dominion of the seas was the cause of the war of 1812. England declared the German and French coast to be in a state of blockade. Napoleon, in 1806, made the same declaration regarding British ports. In 1807, England prolilited trade with the coast of France. American commerce was injured and almost destroyed by the combined action of the two powers. Four years
were consmad in megotiatims, with constant agrerssions on the part of Enghand, and on dune 19, 1×12, Comgress dechared war. The great error of the campaign was the attempted invasion of Cunada. Had the war been made entirely upon the seas, an early peace might have ensued.

The war began on the Lakes, and. repulsed in the effort to make a stamd on the Causula shore, and falline back, Ilull surrendered Detroit. August E, Again, at Quenstown, Getober 13, the Amerians were defented with the loss

COMMODORE STEPIIEN DECATUR.
of a thousaud men. Altogether the first year of the war was a disastrous one on land.

At sea, the navy, consisting of not more than a half-dozen frigates, with its maguificently disciplinel officers, had been eminently successful. On August 13, the Essex, Captain l'orter, eaptured the British sloop Alert; on August 19, Captain Hull, commanding the Constitution, destroyed the Guerriere off the Gulf of St. Lawrence; October 18, the Wasp, Captain Jones, captured the Frolic, but later in the day both the Frolic and the Wasp fell into the hands of the British ship Poictiers. October 25, Captain Decatur, with the frigate United States, eaptured the Macedonian off the Azores; on December 29, after a desperate fight in the South Atlantic, Captain Bainbridge, commanding the Constitution, defeated the British ship Java.

The eampaign of 1813 opened on the Canadim frontier with the severnl divisions in command of Generals Hurison, Deurborn, and Hampton. On Jume 8, General Winehester, with eight humbed Kentuckians, drove the British and Indims, muler Prortor, from Frenchtown, on the River Raisin, but returning with a force of fifteen hundred, they obliged Winchester to surrender, whieh lie only consented to do under l'roetor's promise to protect the Americans from the Indians; which promise l'ruetor trencheronsly disregarded, and marehed away, leaving the siek and womded Kentuekians to be massuered. Henceforth the Kentucky war cry was, "Remember the Liver Raisin," mad may were the British and Indians who had cause to dreal that slogan. May \boldsymbol{b}, General Marison, reinforced by General Green Clisy and his Kentucky troops, rep, sed the British and their dusky allies muler Teemuseh. July 21, they returnel four thonsand strong, bat were again repulsed.

The Americans, by wouderful exertion and hard work, built and equipped,

COMMODORE PERRY AT BATTLE OF LAKE'EllIE.
at Erie, a squadron of nine ships with fifty-five guns, the command of which was given to Commodore Perry. September 10, Perry won his grand victory on Lake Erie, over the English squadron of six ships and sixty-three gune. This was the turning point of the war, and Perry's name goes down to posterity with the immortal names that never die. On October 5, General Harrison, conveyed by Perry's ships, landed his forces in Canada and completely destroyed Proctor's army, Tecumseh being among the slain. So ended the war in the Northwest.

In the meantime, General Dearborn was fighting with varying success in

Upper Canada. Juckson, in the South, was arenging the Fort Mimms massucre, timally arushing the Creeks early in the mext year. The British, muler the odions Admiral Cochrane, plambered and ravaged and burned everything in rench, from lewistown to the Carolina eonst, seizing the negroes and sell. hag them in the West Imdies. During this year the Americim mavy continued to be suceessful, meeting few losses, though the fighting was even more desperate.

July $\overline{6}$, 1814, the Americans defented the British at Chippewa; mul on the 2oth was fought the battle of Landy's Lame, where cienerals Brown and seott were wommded. In this desperate battle, eight humbed men were lost on either side; mul though the battle was mudecisive, it had the effect of a victory for the Americans. August 14, five thousmal troops, under General Ross, were lambed on the l'atnxent, and, defenting Genernl Winder, who made a stand with a handful of men near Blalenshurg, proceolen to the city of Washington. After burning the eapitol and White House, and other buildings, they hastily withlrew. The attempt to take Baltimore proved abortive, and on september 14 the litish reimbarked. It was at this time that liey wrote the "Star Spangled Bamer." August 15, the enemy were repulsed at Fort Erie with the loss of one thonsand men, mad a month later were finally driven back. The whole British squadron on Lake Chanoplain surreadered to Commodore MacDonough atter a territie fight for seremal hours, on September 17, and on the same day the british army of twelve thousimd was forced to retreat from llattsburg by General Macomb's force of forty-five humdred.

In Florida the Spaniards had allowed, if not eneouraged, the English to use their territory to fit out expeditions against the United States. Jackson, with two thousand men, took possession of lensacoln on the 7th of November, driving out the 1 British.

December the 28th the British opened tire on New Orleans; again, on January 1, 1815; mul on Janary 8 lackenham, with twelve thousand men, made his supreme effort. Jarkson's force was now about six thousand. 'The British were driven to their shijs after losing two thousand killed and woundel, their general being among the slain. The American loss was seven killed and six wounded. The war was kept up on the ocem until March, the last capture being that of the lritish brig Penguin by the American sloop-of-war Hornet, in the South Atlantic.

The treaty of Ghent hat been signed on the 24th of September, 1814, and the news of the glorious victory at New Orleans reached Washington simultaneously with that of the signing of the treaty. The war had been so distasteful to the people of New England that Massachusetts and Comnectiont had passed laws directly antagonistic to those of the United States,' and hostilities between the Federal and State governments were feared, which, perhaps, were only averted by the ending of the war. The issues leading to the war of 1812 were left unsettled by the treaty, but England never again attempted to interfere with American shipping.

Second War witi Barmaiy Staten. - Immediately on the close of the war of 1812, the Algerians, supposing that the American navy was badly criplled, began again their depredations on American commerce. Commodore Decatur was sent to the Mediterranean with a squadron, and once more
nt Mimmes mus. o Initish, muler ned everything egroes and sell. mavy continued was evell more
wa; and on the als Brown and 1. men were lost t the effere of a nuder (;empral 1 Winder, who eded to the eity mase, anl other altimore proved ras at this time he enemy were da month later ake Champhain ght for sevemal army of twelve Macomb's force
the English to ates. Jacksom, 7th of Novem-
enus; again, on thousnud men, thousand. The and killed and loss was sevell un until Mareh, - the American
mber, 1814, and shington simulad been so disnil Connecticut ied States,' and feared, which, sues leading to nd never again
the close of the avy was badly eree. Commoand once more
gave them an Ameriean drubbing. June 17,1815 , he destroyed two Algerine pessels; Jume $2 x$, in front of the city of Algiers, he demanded the release of all American prisoners, indemnification for all property destroyed, and a whimulishment of all chams for tribute from the United States. The Iney quickly assented to the terms, und signed a treaty of penee. Thnis, Tripoli, and Moroceo were likewise brought to terms, the United States thas taking the lead of all the other powers in its determination to break up the piracy of the Barbary States.

Mrxicas War. - The fepmblie of Texas beeame, by its own reguest and liy Aet of Congress, one of the United States July 4, 1845. Mexieo prepared fir war; the United States took measures to protect the new State. March

SCHOOL.SHIP SAHATOGA.
8, 1846, General Zachary Taylor marched with fifteen hundred men to a point on the Rio Grande opposite Matamoras, where he erected Fort Brown.
T'o the secretary of war, William L. Marey, and to General Winfield Scott was due the plan of campaign, the battles of which, like instantaneons Hashes of victory from the beginning of the war until its close. illumine the pages of American history. Then, as now, Congress was slow to respond to the needs of the military branch of the government.

April 24, 1846, hostilities began. General Taylor advanced into Mexico amd, May 8, won the brilliant victory of Palo Alto, and again, the next day, the battle of Resaca de la l'alma. 'Iaylor's force was less than one third the number of the enemy, whose loss was one thousand. These two hattles crushed the flower of Santa Ama's army. Taylor returned to the relief of Fort Brown, where the brave garrison had sustained a camonade for 168 hours. September 24, Monterey and its garrison of nine thousand men were taken by Geueral Taylor with six thousand.

Febraary 23, 1847, Taylor gained the glorions victory of Buena Vista, in which the Mexican loss was $\boldsymbol{O}(10)$, the American, $\mathbf{1 1 4}$. At times the Mexieans were within a few yards of Bragg's guns. "A little more grape, Captain Bragg,'" was Taylor's celebrated order, the execution of which decided the day. The American loss was severe in officers. Taylor's force, depleted by more than two thirds, which had been sent to reinforce General scott, was barely forty-five hundred; the Mexican troops numbered twenty thousand. Captain Fremont, assisted by Commodores Sloat and Stockton, had subjugated California; (ieneral Kearney and Colonel Doniphan, Northern Mexico. Doniphan defeated the Mexieans at Bracito, December ${ }^{2} \mathrm{E}$. 1846, and at Sacramento, February 8, 1857, and took possession of Chihuahua, a city of forty thousind inhabitants, and marehed to join General Wool at Saltillo, March 22.

Early in January, 1847, (ieneral scott reathed the mouth of the Rio Grande, where he awaited the eight thonsand troops sent by General Taylor. This raised his force to twelve thousand. These were landed at Saerificios. The Americans debarked just below Vera Cruz between sumset and ten o'clock on the night of March 8 without a single accident. With wonderful skill the investiture of Vera Cruz aud the castle of St. Jolun de Ulloa was completed. On Mareh $2 \underline{2}$ the Governor of Vera Cruz was summoned to surrender. Day and night the mortar batteries played upon the eity, the fleet ably assisting; and on the ?9th the stars and stripes floated above the walls of city aad fortress. The Americans lost but two officers and a few solliers. April 18, the magnificent victory at Cerro Gorto, where three thousand Mexicans were eaptured, was won A_{p} ril 19, Jalapa was taken $; A_{1}$ ril 22 , Pecote, the strongest of Mexican forts, was captured ; and May 15, luebla surrendered to General Worth. Ten thonsand prisoners, seven hundred cannon, ten thonsand stands of arms, and thirty thousand shot and shells were captured within two months. When the army entered luebla it numbered but fortyfive humdred.

Reinforcements reaching him, Scott set out from P'uebla to the valley of Mexico on August 7. August 20, the heights of Contreras were assailed and taken, and the battle of Churubuseo - with nine thousand Americans against thirty thousand Mexicans - was fought and won. September 8, Molino del Rey was taken ; September 13, the heights of Chapultepec. The Mexicans Hed from the capital, and the victorions American army marched in and took possession of the city, September 14, 1847. Here Scott and his noble warriors rested until the treaty was concluded at Guadalupe Hidalgo, February 2, 1848, and peace was proclaimed, July 4, by President Polk. Guadalupe Hidalgo, New Mexico, and California were ceded to the United States, $\$ 15,000,000$ paid to Mexico, and the debts due from Mexico to American citizens were assumed by the United States.

Tue Civil War. - It is not here the place to rehearse or to discuss the causes which led to America's Civil War, a war perhaps the most stupendous recorded in history. Looking backward, after the bloody foot-prints have been well nigh obliterated by the growth of a generation, we can see that the treud of human progress, the political problems confronting the federated States, in the solution of which were evolved elements of discord, the inherited antagonism between the Puritans of the North and the Cavaliers of the

CENTURY

ff Buena Vista, \mathfrak{i}_{11} imes the Mexieans re grape, Captain which deeided the force, depleted by ieneral scott, was twenty thousand. ckton, had subju. Northern Mexieo. 846, and at Sacriuahua, a city of Wool at Saltillo, of the Rio Grande, ral 'laylor. This Saeriticios. The and ten o'cloek on puderful skill the oi was eompleted. surrender. Day et ably assisting; Is of city a:d forers. April 18, the d Mexieans were ecote, the strong. a surrendered to cannon, ten thouIs were eaptured mbered but forty-
t to the valley of were assailed and mericans against ber 8 , Molino del The Mexicans ched in and took d his noble waridalgo, February olk. Guadalupe United States, to American citi-
or to discuss the most stupendous foot-prints have can see that the g the federated iscord, the inherCavaliers of the

ROBELRT E. LEE AT CLIAPCLTEPEC.

Sontl, all combined to make the confliet inevitable. For more than a decall. of years grievances had been growing and rumblings were heard, like the innprisoned fires beneath the surface of the earth, until the clection of Abrahan I incoln as I'resident, pledged to a policy believed to be inim al to the south. cansed the outburst of the volcano, whose fieree fires and mowou lava for four years spread lesolation over the hatd.

Time and milder judgment have very nearly smoothed away the wrinkles of diseord, and the close of the century finds the nation a remited people. whose new compact is written in the life-blood of her sons on the battlefields of the reeent war with spain.

December ©0, 1860, South Carolina ; January 9, 1861, Mississippi ; Jamary 10, Florida; Janary 11, Alabama; Jamary 18, (ieorgia; Jamary 23, Louisiana, and February 1, Texas, one by one asserted their supposed right to withdraw from the federal compaet, and enacted ordinances of secession in their several state conventions. Each State, as it took action, claimed and possessed itself of all government property, forts, guns, ammunition, within its borders, and armed its militia for garrison duty. A convention of delegates from the seceded States. held February 4, 1861, at Montgomery, Alabama, organized a new federation, to be known as the Confederate States of America, chose Jefferson Davis President and Alexander Stephens Vice-Pres. ident, and set the whole mahinery of a provisional government in working order. July 20, Richmond became the eapital of the Southern Confederacs. Virginia seceded April 17; Arkansas, May 6 ; North Carolina, May 20, and Temessee, June 8. Kenticky leclared neutrality.

Lineoln, upon assmming the excentive chair, Mareh 4, 1861, found the treasury depleted, the army of only sixteen thonsand men scattered in the West. and many of its best officers already with the Confederacy. The nary had been sadly neglected by Congress, partly becanse this branch of the service had been steadily antagonized by the West, so that at the beginning of the war, both as to vessels and armament, it was hy no meams in a condition for active service. As in the army, some of its most valuable officers had esponsed the canse of their native States, and the South Atlimitic and Gulf ports, being in possession of the new federation, left the United States vessels no place of refuge. With unlimited means at command, the Union navy increased the number of its vessels to 588 - $\%$ of them ironclads with 4443 guns and 30,000 men, before the end of 1862 . Torpedoes and steel rams were first used during this war, and monitors, just invented, were used by the United States. With a mucleus of 10 vessels, around which to build its navy, the Confederacy had, by November, raised the number to 34 . Until the blockade became effective. "cotton was king;" for, in October, 1861, the Nashville, rumning out with a heavy consigment, brought hack into Charleston in exchange a cargo worth $\$ 3,000,000$. Vessel after vessel was bonght from English shipbuillers, anong them the eclebrated Alabama. which, in the fourteen months of her service, eaptured sixty-nine prizes. and destroyed ten million dollars' worth of merchandise. The armored ram Stonewall was bought in France.

April 12, 1861, Fort Sumter, in Charleston harhor, was forced to surrender to the Confederates, and the first shot a.t the old flag ushered in the long, bitter struggle.

ENTURY

ore than a decale. eard, like the innction of Abraham all to the South. heculava for four
way the wrinkles remited people. in the battlefields
issipui ; Jamary muary 23, Lous Miposed right to s of secession in ion, claimed anl munition, within nvention of deleIontgomery, Alaederate States of ephens Vice-Pres ment in working ern Confederaes: ina, May 20, and

1861, found the seattered in the macy. The navy is branch of the at the begiming neans in a eondivaluable officer: uth Atlantic and he United States mand, the Union em ironclads Torpedoes and t invented, were around which to ne number to 34. for, in October. at, brought hack ssel after vessel brated Alabama. ixty-nine prizes. The armored ram
ced to surrender red in the long.

Troops were called for by Lincoln. Lieutenant-General scott, the veteran lneo of Mexico, was in command of the army. In three months, three hundred thousamd men were in the field. One hondred thousand had swarmed it the Contederate ranks. General McClellan was sent to the front and, alter the resignation of scott in the latter part of the year, was made commander of the amy.
July 21 , the battle of Bull Run was fought. The Union troops were disastronsly couted and retreated in confusion to Washingten. The army did little more during this year.
April 21, atter setting fire to and destroying the Navy Iard and ships,

CASTLE WILIIAM. MHIILARY PIMSON, GOVEHNOL'S ISLAND, NEW YORE ILALBOR.
Norfolk was evacuated by the Union forces. The frigate Merrimac, which had been sunk, was raised by the Confederates, plated with iron, renamed "Virginia," and became the scourge of the shipping off the Virginia coast.
The navy, as is usual, and because of its very organization, got in its effective work much earlier than did the army, and the seizure of the forts and ports on the coast of the seceded States began at once. Fort Hatteras was tiken August 29 ; Port Royal, in South Carolina, November 7. November 7 a naval officer, by overhauling an English mail steamer and taking off Messrs. Mason and Slidell, who had heen appointed commissioners of the Confederate States to Franee and Eagland, very nearly caused a complication with the latter power. Mr. Seward's diplomacy settled the incident amicably, and the commissioners were allowed to proceed upon their mission, which, however,
proved futile. By the close of the year, Maryland, Kentucky, and Missomi, at first doubtful, were securely in the Union, though many of their eitizens were in the southern army.
1862. - Febraary 6, General Grant, commanding the army of the Temurs. see, with the assistance of Commodore Foote and his gunboats, captured Forst Henry, on the Temessee River, and, on the 16th, Fort Donelson on the Cumberland. The Federal forees had reached the number of four hunded and fifty thousand, of which McClellan had two hundred thousand.

May 23, at Front Royal, and May 25, at Winehester, "Stonewall" Jaekson defeated the Union troops and foreed them across the Potomac. Banis, Fremont, and MeDowell, concentrating their forces, bore down on Jacksom, who slipped through their lines, and, on June 9, defeated shields at Fort Republic.

The cry of the Northern press was, "On to Riehmond," and MeClellan endeavored to obey the command. He lad arrived not far from the city, between the York and James rivers, when he was defeated in the bloody battle of Seven Pines, May 31 and June 1. The Confederate General Johnston was wounded, and General Lee was assigned to the coimmand of the army of Northern Virginia, which he retained until the end.

The Seven Days' battles, from June 25 to July 1, were fought at fearful cost to the Confederates; nevertheless, "it was a glorious victory," and the siege of Riehmond was raised. Lee advanced toward Washington, met the armies of Banks and Pope, and defeated them in the second battle of Bull Run, August 29 and 30, and at Chantilly, September 1 and 2, foreing Pope's army to retreat to Washington. The elamor in the South had been, "On to Washington." Lee crossed the Potomae at Harper's Ferry and took twelve thousand prisoners. MeClellan, who had been recalled, met the Confederates at Sharpsburg (Antietam), September 17, and fought a battle with mudecisive results. Each side lost about ten thousand men, and Lee returned.

The Union army under Burnside, who had superseded McClellan, met a fearful repulse at Frederieksburg, December 13, with a loss of fourteen thousand. The Confederate loss was five thousand.

December 31, Janury 1 and 2, was fought the terrible battle of Murfreesboro, Temessee, where Bragg's force was 35,000 , and his loss in killed, wounded, and missing, 10,466 . Rosecrans's foree was 43,400 , and his loss 12,595.

Mareh 8, the Virginia attacked the Union Heet at Fortress Momror and destroyed the Cumberland and the Congress. The next day, the Monitor attaeked the Virginia, and, after five hours' fighting. succeeded in disabling her so that she returned to Norfolk. The Virginia was destroyed by the Confederates before evacuating Norfolk, May 10.

Admiral Farragut, with a fleet of 45 vessels, entered the Mississippi anl bombarded the forts of St. Philip and Jackson. Despising the fear of mines and torpedoes, he continued on his course, defeating the Confederate fleet, and, together with General Butler, entered New Orleans April 25. Duriny this year the nary, with the assistance of land forees, had retaken all important ports on the Virginia, North Carolina, and Georgia coasts, seriously interfering with the blockade ruming, upon whieh the Confederacy depended
for its foreign supplies. The year 1862 elosed with no advantage having been gainel on either side.
1863. - On Jamary 1, Lincoln issued the threatened Emancipation Proclamation. This destroyed the last hope of the Confederacy for recognition by lingland. No event of importance occurred before the middle of spring, when Hooker. who had relieved Burnside, made another advance upon Rich-

GENEHALS ROBERT E. I.EE AND STONEWALI. JACKSON.
mond, and was ronted by Lee and Jackson at Chancellorsville. May 2, and on the 5th was foreed across the Rapidan with a loss of seventeen thousand. The Confeilerate loss was less than five thousand. In Jaekson's death the Confederacy received a blow, the consequences of whieh may never be estimated.

Lee's army again crossed the Potomac for an invasion of the North. The Union forces, under Meade, marehed in an almost parallel line with Lee's 25
through Marylam into Pemnsylvania. They met and fonght at Gettysburg. July $1, \stackrel{9}{2}$, and $: 3$, one of the deeisive hattles of the world's history. Lee was foreed to again retire beromd the river. The Union could well afford the loss of twenty-three thonsand men, bint Lee's loss of twenty thousand of the choice troops of his amy was irreparable.

In the mantime, Gant had been sent to open the Mississippi, and after a six weeks' siege, on July t, Vickshurg, with nearly thirty thonsand prisoners and vast quantities of stores, fell into his hambs. These two almost simultaneons vietories greatly eneouraged the North, and formod the turning point in the history of the war. July 9, Bimks's vietory at I'ort Hudson aecomplished the desired possession of the Mississippi River.

Bragg, who had been sorely pressed by Roseerans, made a stand at Chiekamanga, defeating the Union General Rosecrans, September 19 and 20 , and foreing him to retreat to Chattanoga. where he was lusieged by Bragg. Grant, with Sherman, eoming to his ail, the bittles of Lookont Mountain and Missionary Ridge were fought, November 23 and 20 , and hragy was driven back into Georgia.

The Federal navy was gradually taking possession of the whole coast. and Charleston was tightly blockaded. In Mareh the Confederate ship Nashville was sumk in the entrance of the Savanalh River.

During this year both govermments were forced to resort to conscription. Lincoln ordered a dralt. and, in July, a three days' riot in conseguenee prevailed in New York, during whieh two millien dollars' worth of property was destroyed.
1864. - In Mareh, Grant was put in command of the whole Union army, the grade of lieutenant-general having been revived in his behalf. He left Sherman in command, repaired to Washington, and. May 3. started on the third campaign against Richmond, with a foree of one lmmdred and forty thousand. Sherman, with one hmolred thousamb, was to march to Atlanta. The whole strength of the Union army at this time was about seven hondred thousand. (irant had spent some weeks in formulating his plaus of campaigns, from the main features of which he never deviated. The Union had at last found the man, and at the same time had aequired the wisdom to leave the conduct of the war to his judgment ; proving, also, that "there is no war on record that has not given its man to the world or shaped the destiny of some other."

Crossing the Rapidan, Grant encountered the Confederates, and the fighting, on the $\boldsymbol{5}$ th, 6 th, and $\overline{\text { the }}$, of the battles of the Wilderness, was terrifie, but the result muieeisive. At Spottsylvania he fought from the 8 th to the 18th with fearful loss. Jme 1, he was repulsed at Cold Harbor, and again on the 3d, and fighting, more or less desultory, continued in that vieinity until the 12th. Since the opening of the campaign, the Union army had lost sixty thousand men; the Confederate thirty thousamd. Grant moved on Petersburg and began the siege which lasted from Jume until the next April. The western part of Virginia had seeeded from the eastern portion, and, June 20, was admitted into the United States.

To divert Grant, and, if possible, to raise the siege of Petersburg, in July, Lee sent General Early to threaten Washington and Baltimore, which he accomplished without, however, affecting Grant's position. Returning laden
t at Gettyslourg. story. Lere was well afford the thousand of the
pli, and after a nsinul prisoners wo almost simred the turning at I'ort IIndson
tand at Clicka19 and $\because(1)$, and eged by lisigg. kont Momitain and Bragg was
hole coast, and arte ship Nash-
to conseription. onsequence preof property was
ole U'uion army, ehlalf. He left started on the dred aml forty weh to Atlanta. ont seven hunig his plans of d. The Union I the wisilom to so, that "there l or shaped the and the fightss, was terrific, the Sth to the rbor, and again in that vicinity 1 army had lost rant moved on the next April. a portion, and,
rsburg, in July, nore, which he eturning laden

GENERAL ULYSSES S. GKANT.
with spoils, Early turned, and driving back the Federal troops invaded lemnsylvania, burning Chambersbarg, and came back again bringing vast quantities of supplies. Sheridan was sent to dispose of Early and to pavage the valley. At Winchester, he met and lefeated barly in a very severe fight on Oetober 20, ulmost destroying the force muler that general's command. Sherman set out for Chattanouga on May $\overline{\mathrm{C}}$. marehing towaris Atlanta, At Dalton he met Gemeral Johmston's army of tifty thonsamel men. Johnston's masterly retreat from Dalton to Athanta is murivaled in military history. He made a stand from May 2,5 to Jume 4 at Dallas, but, being onttlanked. was obliged to fall baek. The noxt stand was male at Great Kenesall, on June 22, when he repulsed the Federals. On the $2 \boldsymbol{2}$ th, Sherman made a powerful assault, but was again repmsed with a loss of four thomsamb, dohnston's loss being four hundred ; bit, again ontflamked. Johnstom was forcel across the Chattahooehie, and July 10 fonad the Confederate army entrenched in Atlanta.

Johnston's retreating tacties cansed the people to clamor for a" tighting lealer," and latris, in transferring the emmand from dohnston at sheh a crueial time, committed a grave error. Johnston was superseded by General Hood, whose chief ambition was to fight, which, in this ease, was a great mistake in judgment. On the eoth, ex:n, and exth of Jnl!. Hood assanted the lines of the besiegers, only to be repulsed again and again. In these fights more men were lust than during , Johnston's loug. skillful retreat. An injudieions movement by Hool sebarated his command. obliging him to evaenate Athanta, of which Sherman, on September 2, took pessession. In its advance on Atlanta, the Union army had lost thirty thonsand men. Hood saved his army and made his way towards Nashville, hoping to divert Sherman from (ieorgia. At Franklin, November 30, he met Genemal Schofield, and drove him back to Nashville, from whence General Thomas made a sortie, and fell apon Hood's troops. December 15, completely ronting them. In the two fights, Hood lost in killed, wonnded, and captured over eleven thousand. With the remmant he eseaped into Nahama. and these finally reached Johnston, participated in his last fight with Shernam, and were surrendered at haleigh with the troops of their old commander.

November 14, Shermam burned Athanta, eut all telegraph lines and began his " Mareh to the sea," ravaging, levastating, and ntterly destroying (verything in his reach. He was opposed by the Confederate eavalyry whieh successfully defended the cities of Macon and Angusta, upon which the Confederacy mainly depended for the mamfacture of munitions of war. Sherman entered Savamah on December 2!, the advanee having cost him only ista men killed and wounded.

On Tune 19, the eelebrated sea fight hetween the Kearsarge and the Alabama took phace off Cherbourg, Franee. The Alabama was smok after a five hours' fight. Admiral Semmes was reseued ly the Deerhound, belonging to an English gentleman, and this saved from eapture. August \%, Commoilore Farragut, overcoming the Confederate ram Tennessee and the gunboats, sailed into Mobile Bay, commanding his fleet from the maintop of his flagship.
1865. - The opening of the eampaign of 1865 found Grant's army still before Peterslurg. On April 2, he ordered an attaek along his whole line,

NTURY

troops invaded - bringing vast y and to arave ery severe tight ral's command. is Λ thantil. At en. lohnston's ilit:ury history, ing ontthanked. tt Кенеsa木, ои neman made a homsimid. Johnton was foreed my entrenched
for at " fighting stom at such at ded by General se, was a great Hood assanited rati.. In these ul retreat. An sliging him to possession. In and men. Hood to divert Shereral schofield, homas mate : - ronting them. ed over eleven d these finally , and were smr-
ines and began stroying everycavaly, which pon which the itions of war. iving eost him

3 and the Alawhe after a five I, belonging to $\boldsymbol{\sigma}$, Commodore the gumbats, op of his flag-
nt's army still his whole line,

shemana's Mallell TU TIIE sEA.
which had been so lengrhened that the lines of Lee's deobleted army were very thin. The Confederates wre driven batek with have loss. Lee telegraphed to Davis: " My limes are broken in three phaes ; we can hold letersburg no longer. lifhmond mast be paccuated this arening." That night Admiral semmes, in obelienee to orlers, ilestroved the Conferlerate Heet in the James River. Richmond was in the possession of the Union forees the next day, and on April + Lincoln held a merption in Davis's vacated mansion. Lee attempted to break throngla Grant's lines at Appomatox, but elosely pursued her sheridan and finding lurther retreat impossible, he surendered with about twenty-six thonsand men on the gth of A pril.

Gant's magnanimons terms were worthy of his fame. The troops were paroled on condition of promise not to take up arms mitil exchanged. The ofticers wore permitted to kedp hagave and side arms, and all were to retain their horses, as, Grant said, "they would be needed in the crops."

Tuming nothward from savamal, Sherman eontinued his mareh and reached Fayetteville. Nortlı Carolina. Wilmington had been eapitured carly in the year by a land and naval fore. Johnston had been reinforced by the garison which had been foreed to evacuate Charleston and the remmant of Hood's army, and had several severe fights, with no decisive results, with Sherman, who entered haleigh ; and here, on April $2(6$, , dohnston's army surrendered on the same lerms given by Gemut.

December 31 and January 1 Fort Fisher was capturet, and on Janary 12 Wilmington was entered by the Federals; Fehruary 1s, Charleston was captured.

The regular battles during the Civil Wia mumbered sor. Lineoln calleal in all for $2,6 \%, 006$ men. There were atually in service $1.190,000$. There
 died in eaptisity. The expenses of the war were $\$ 3$, ,000,0ho per day. The

This great Ameriean War was fought on both sides; with a cournge and fortitule never before experienced in the amals of warfare. As compared with the statements of forces and losses in battles of European armies. the casualties in the battles of the Civil War were three and four times as great. And this proves that in the Ameriean War each side met "foemen worthy of their steel." These werwhehningly fearful easualties are not to be explained otherwise. And each section respects the other more than before the war -a war in whieh the conqucred felt not, nor said, pecenei, and in which surrender to greater numbers and heavier artillery involved no saerifice of belief in the trith and justice of their cause. Was there ever an armed strife that brought forth greater generals or more knightly valor, undiminished courage and untlinching fortitude on the part of combatants? Together must the names of Grant and Lee go down to posterity as great types of the American soldier. - the one, noble and generous in vietory; the other, though a hero uncrowned by success, a warior still more heroic in defeat.

The Spanish-Ambifan Wab. - The proximate eanses of the war with Spain are tersely set forth in the Joint Resolution drelaring the independence of Cuba and demanling the withdrawal of Spanish sovereignty therefrom, which says : -

WTURI

ted army werloss. Lee telerail hold I'eters. :" That night cderate Heet in nion farces the tcated mansion. ox, but elosely he surdendered he troops were changed. Thaי 1 were to retaill ps."
his march illut eaptured eanly inforeed by the he remuint of re results, with tou's army surwid on Jumary Churleston was

Lincoln callent 90,001 . There red, annl 26,1000 per day: The
a courage and As compared ropean armies. mind four times side met " foeeasualties are he other more not, nor said, ier artillery inse. Was there more kuightly. oart of combato posterity as ous in victory; ll more heroic
the war with the independreiguty there-
"Ilheres, 'Ihe ablement conditions which have existerl for more than three gears in the island of Cuba, wh bur our own herders, have shoeked the moral sense of the people of the United States, have been a disgrace to Chistian civilization, culuinatiug as they have in the destruetion of a loited states' battleship, with ebifi of its oflicers and crew, while on a frienlly risit in the hathor of Itavana, and camot longer lee endured, as has been set forth ly the l'resident of the Cnited states in his message

LEE'S NLRUESDER AT APPOMATTOX.
to Congress of April 11, 1808, upon which the action of Congress was invited ; therefore,
" liesolved, by the Senate and House of Representatives of the United States of America in Congress assembled:
"First, That the people of the islaul of Cuba are, and of riglit ought to be, free and independent.
"Second, That it is the duty of the United States to demand, and the Govermment of the United States does liereby demand, that the Govermment of spain at once relinquish its authorty and govermment in the island of Cuba, and withdraw its land and naval forees from Cuba and Cuban waters.
"Thirl, That the I'resident of the United States be, and he hereby is, directed and cmpowered to nse the rintire land and maval forees of the United States, and to call into the actual service of tho United States the militia of the several states to such extent as may be necessary to carry these resolutions into effect.
" Fiourth, That the United states hereby disclaims may disposition or intention to exercise sovereignty, jurisifiction, or control over saill Ishunl. exeept for the pacitication thereof, and asserts its detemination when that is completed to leave the govermment mid control of the Istand to its people."

This resolution was signed by the l'resident at 11.24 oclock A. m., A pril 2"), 1898.

It was on Fehmary $1 \mathbf{i n}, 1808$, that the catastrophe referred to - the blowing

MGHEGO C:ASTI.F, SAN'IAEG, Cl:UA.
up of the Mane - ocenrred. On Λ_{ρ} mil 2π, the formal declaration of war was made.

Spain had three fleets, - Admiral Cervern's flying squadron, the Asiatic fleet moder Admiral Montejo, and Adminal Camara's fleet of heavy armored vessels.

The American nary is always ready for emergeneies, and even with the grulging appropriations made ly Congress, the "new navy," while not possessing vessels of such large size as those of some other nations, was much more formidable than was generally supposed. Congress, apprehending the ontcome, had given the l'resident $\$: 0,(160,000$ to put the country on a war footing. In reply to the call for $12 \pi, 000$ volunteers, five times that number offerel themselves.

It had been more than fifty years since the United States had encomered a foreign foe, and since the elose of the Civil War, for a third of a century, peace had reigned.

April 25, by cable to Hong Kong, Commodore Dewey was ordered to find and destroy the Spanish Asiatic fleet, whieh he proceeded to do on May 1st,
remby is, lid. f tho United he militin of these resolis.
osition or int. said Islanc. n when that sland to its м., April ${ }^{2}$), the blowing 1 of war was the \boldsymbol{A} siatic ivy armored en with the ile not poss, was much hending the y on a war that number encountered f a century,
red to find on May 1st,

ADMIRAL GEORGE DEWEY.
without the losis of a single man. Entering Maniat lay, seoming torpe. does and mines. his womerfal battle at Cavite is the almimation of the work.
Shhley, with his tlying sumadron, watehed in Hampton lionds for an attark by the enemy on the Athantic coast. Llawana was hockaded ly Nompons squalron A_{p} mil 2 , and his searrhlights seen from the Cuism eapital were as the handwriting on the sky, foredoming spamish rule. His tacties were to take no risk with his vessels while atwating the appearame of the Spanish ships, so le failed to return the greeting of the shore batteries.

The first casualties of the war were in Cartenas harbor May 11, when upon

MAIN HEOK OF GULISEIN CHICACO.
the Winslow, while ehasing a decoy gunboat too far under the fire of the land batteries, Ensign lagley and foni' sailors were the first men of the nary to lay down their lives.

It was known that Cervera had sailed from Cadiz toward the West Indies. Sampson unde a tour of Porto Rico to hunt the Spaniard, who mysterionsly eluded the sight of the Americans. Sim Juan was bombarided on Mar 1 . On May 30 Sehley, who in the meantime had arrived off Santiago, dispatuched: "I have seen the enemy's ships with my own eyes." Cervera hat then heen in the harbor ten days. On the 31st. Sehley commenced a bombardment, ant the forts at the month of Santiago harbor and the vessels within replied for an hour. June 1 Sumpon eame, and all hope of escape for Cervera was ent off. On that night Lientenant Hobson executed his bold, heroic plan of sinking

the Merrimate in the ehamel of the harbor, which was accomplished without the loss of one of his seven co-heroes, although subjectel to a deadly fire from forts and ressels.

The first troops landed on Cuban soil were the morines, 650 in number, under Lieutenant-Colonel Ilmatington. This battalion had been on board the l'anther since May $\mathbf{2}$, and the men were eager to land. After Sampson had shelled the shore and adjacent hills and woods, on the afternoon of June 10 the landing was made and the American Hag ruised for the tirst time on Spanish territory in the west. No spmards were seen until after the tents hal been erected and the evening shalows were falling. Then for five nights and days there was no sleep for these men, than whom there were no greater heroes in this sloort, sharp war. With few exeeptions they received their "haptism of fire," and nobly did they acquit themselves.

I an told that when almost utterly exhausted the first phaton reached the summit of Cusco hill, so exaetly in unison was their fire that the Spanish, believing that mac':ne guns were opening upon them, turned and nam, never gain making a samel. The first to consecrate the soil with his life's bloon wa Dr. John Rlair (Gibhs, who left a $\$ 10,000$ prattice in New York to go as surgeon of the hattalion, and who had greatly endeared himself to both otticers and men. Sergeant Goode, one of the finest subalterns in the eorps, and four men were killen. The good condition and health of this hattalion during the whole campaign were tue to the fine organation of the commissaniat and the strict diseipline maintained in this eorps.
(ieneral Shafter arrived off santiago, June 20, with a force of $\mathbf{i} 3$ ofticers and 14,0ift men. Generul Garcia, the Cuban commander, with four thonsamd insurgents, was at Assuadero, eighteen miles west. There he, Shafter, and Sampson held a consultation. On the $2 \cdot d$, the disembarkment of troops was begm. On the morning of the Q3d, ficneral Lawton with his division advanced to Juragua. Major-dienemal Whecler, after landing $\mathbf{9 6 4}$ of lis foree, pursuant to General shafter's orders, moved rapidly to the front, and. passing through Lawton's lines, pushed on to has (iunsimas, attacking and defeating Genemal Linares on the morning of Jme 24 .

The entire American fore was pressed forward muder General Wheeler, General Shafter being detained on the ships to attend to the landing of the armament and supplies. On the 9 ? th, the commanding general left his ships and pitehed his (amp on the santiago road, and on the next day orders were given for an attack along the whole line. In earying out these orders, Genpral Lawton with about six thousam men attacked El Caney, a small town about five miles north of Santiago. The garison consisted of ne men, the defenses being one bloek-honse and a shore fortification. It was not until four o'elock that General Lawton's success was eomplete. His loss was 437 killed and wounded, and but 30 of the enemy succeeded in escaping and reaching the Spanish lines. While Lawton was moving on El Caney, the ravalry division, ummounted, and Kent's infantry division were ordered to move forwarl. Crossing San Juan River at a point ahout five hundred yarts from the enemy's fortifications on San Juan ridge, the left of the eavalry rested on the main Santiago road and the infantry formed to the left of the eavalry. These troons were subjected to a very heavy fire in advancing from El Pozo, in crossing the river and in forming on the other
side; they, however, most bravely charged the enemy in their strong position on Kettle Hill and san Juan ridge, and drove them preeipitately from their strong fortifieations; the American loss being 1int killed and $9 \mathrm{~m}_{\mathrm{c}}$ wounded.

GENEHAL JOSEPII WHEEJER.
(C'oprright by Aime' llupont. 1899.)
This placed the Amerieans in a position emmanding the fortifieations around the city of Santiago.

The spanish theet, consisting of five armorel eruisers of 7.000 tons and 2 torpedo-boat destroyers, attempted to escape from Santiago at 9.30 oclock on Sunday morning, July 3, just nine weeks after the destruction of Montejo's
flect. Schley and sampson destroyed the vessels and made prisoners of ot 0 ofticers and 1600 men; 850 were killed and 160 wounded.

Fighting more or less severe occurred until the 10th, when negotiations for surrender were inaugurated, resulting in the eapituation of sintiago,

TIE TIUCCE BEFOILE SANTIAGO.
July 16. the S_{p} minish fortifications, twenty-four thousand prisoners, and a large amount of ams and amminnition. At noon on Sunday, July 17, 1898, the American Hag was hoisted over the headquarters at Santiago.
General Miles started on the invasion of l'orto Rico, July 2is, and reached Guanica at daylight next morning. He landed with three thousand five hundred men, marched toward Yanco, five miles distant, which he entered

ers, and a y 17,1898 , ad reachent usand five he entered
after a skirmish, and was reeeivel (nthmsiastically by the citizens, as he also was at Ponce, where he was joined by Gencral Wilson, who had come with the war ships, and who was made governor. The army contimed on to san I I man along the military road, meting very little opposition.

July 26, the French ambassador, M. Jnles Cambon, acting for Spain, made wertures for peace. The protocol was signed on April 2I. by M. Cambon and Secretary of state Day. A cessation of hostilities was proclaimed. At the very monent of the signing of the jrotocol, the last naval battle took

aguinaldo, tie tagal leader.
place at Manzanilla, Cuba, and an artillery engagement at Aybonito in Porto Rice.

The one-hundred-days Spanish-American war was concluded hy the treaty of Paris.

It will be only in the retrospect that we may tell the results of this conflict. As the future unfolds them to our view, it may he that it will have been more momentous in its consequences than we can now determine. One thing it has proved, that is, that this nation is really remited: for, from all sections and from all grades of life, men floekel together to fight and conquer uuder the old Stars and Stripes.

Napoleosie Winss. - The long contest between France and Austrial hegan

 the gamotiet to all ameient Enrope. Eingland, whose sympathies hat hitherto been more or less with France, began to take measures to bring abont more cordial relations with the other powers of burope. Span, Portugal, Austria. l'russia, and hassia, for the time semed to forget their several grievaners as they fomm themselves confonted with a totally new move on the ehessboral of European antonoug. The year 17!4 saw the French lievolntion peosressing trimphantly, and all Europe, except Englam and Austria, appeared acquieseent in apathetie indifference. In 1795 the royolists made a sureme effort to recova power, but were erushed by the "Man of Destiny," and the Directory, consisting of five members, of whom Canot was one, eame into power: Dominateal by the martial genins of Carnot. "the organizer of victory," the Directory won the eonfilence of the army. Selerer, the embmamber, laeked the qualitications to undertake a sucressinl eampaign against Austria, and Bonaparte. succerling him, soon infused his own spirit into the army and bomel it to himself with in devotion that never failed.

Early in the year 1Sou, Napoleom, having been made first consul. took nup his abote in the old palace of the kings of Frame the Tuileries. The history of Napoleon for the ensuing fifteren vears is the history of Enrour. It is, therefore, best to begin with the elose of the eighternth century in order to appreciate the situation at the amon of the nimeternth.

Anstria and Emglam, with seveml small Gemman principalities, were still in arms aganst France. The phans and movements of the armies moder Napoleon showed him to be verily a master in military skill. Opening this campaign, he lel't Massena with about eight thonsamd soldiers to hold the territory from Nice to (ienoa, so as to kerp, the Anstrian army in Italy busy. He sent the Rhine amy, under Morem, to threaten Bavaria ami to secme the most important position between the Rhine amd the lambe. Moream drove the Austrians to 1 lim, and disposed his left Hank to support Napoleom, Meantime, he himself was reemiting another amy for operations on the Po. Baron de Melas, commanding the Anstrian troops in Northern Italy, hesieged Massena in Genoa, which, after severe suthering, surendered, learing De Melas free to join the army of the I'o. Napoleon was between de Melas and Austria. General Ott, with eig!teen thonsamd men, attempted to reach l'aecutia, but Lames, with twelve thousamb, dofeated him at Montebello, forring him bate to Allesamiria. Napoleon hastemed across the lo to Stratella to intereept Ine Melas and prevent his breaking through the Fronels lines to Placentia.

The night of June 13 , 1800 , the French army was seattered, watehing along the P'o and the Tessino for the Austrians. while their army, forty thousand strong, with ten thonsand more not far distant, was ready at daybreak of the 14 th to ent its way though the armies of Franee, and reach Plaeentia. The Preneh foree was but eighteen thonsand, but Virtor with his division held his josition firmly, and the great leader, Kellerman, was in command of the cavalry. Backward and forward surged the battle with
rabing furtme, and at nom victory seemed perched upon the banners of Austria. De Melas was so certain that the battle was wom that he galloped biack to Allesambia and sent dispateles to that effect to the govermames of

NAPOI,EON, 1814. (MEISNONIELK.)
Enoone. Genemal de Zarlo was left in command to conduet the pursuit and to drive the French across the Serivia. Napoleon. dismayed. hoping against hope that Desaix, whom he had sent towards Novi the day before to look nuif in that quarter for De Melis, might hear the thmoders of the battle and
return, saw him in the distance, hurrying with his troops, who, though wom and tired, were eager for the fight, and Napoleon saw already the tide of battle turned.

Desaix hat fomm no trace of the Anstrians, but he had heard the somed of battle at day daw, and he knew that De Molats was there, and that there he was needed, and not at Novi. He ronsed his division, and hastened back to Napoleon. A short conferene with his chief, to whose questioning he answered, "The battle is lost, but it is muly thee oclock, there is yet time to win another,' anit the battle of Manengo, glorions in its consequences to Sapeleon, sturnolons in its carnage, was won; but Desaix, the brave paladin, lay dead upon the lield. 1be Melas rethoned from Mlesandria to meet the victorious army he had left - flying in disorder - thoronghly routed. On December 2, Moran and Ney won the field of Hohenlinden, and the " peace of Lameville" was conchuded, February : 1 sol.
The result of this campaign was the cession of Austriats strongholds in the Tyrol aml Bavariate France, as also a number of important holdings ia Italy. France seenred the left bank of the Rhine, the Belgian provinees and Tustany, and the king of Naples close it his harbors to England. In Mareh, 1802, by the " treaty of Amiens," peace was concluded with England.

The coalition of Demmark, Swedrn, Russia, and Prussia, with France against England, in 1som, fomented by Napoleon, broke down in 1sol, atter Nelson's battle of Copenhagen.

England had secured the supremacy of the seatand dominion over India, resened lortugal, Naples, and the States of the Chureh from Framee, and restored the Sublime Porte to Turkey. Finding Napoleon again militating against her interests, and resenting his oneroachments, England deelared war against Framee in the spring of 1803. Russia espoused the cause of England, Prussia held off, and Austria was friendly, though not in fighting trim. The third coalition comorised England, Russia, and Anstria.
lowerless to hurt England on the seas. Napoleon, who hat the year previous been proelaimed emperor, attacked Anstria, invated her territory, captured her army at Ulm. proceeded to Vienna. and oecmpied a great part of the valley of the Danube. On December 2, 186.5. the "Battle of the Three Emperors" (the battle ol Austerlitz) was fought. The "Peace of Pressburg," eoneluded December 26, left Austria shorn of her aneient prestige, her title of German Empire, and of a great part of her possessions. The "Sun of Austerlitz" melted the third coalition. In the meantime the battle of Trafalgar, won by the immortal Nelson. ernshed the naval power of both France ant mpain.

In September, 1806, Prussia deelared war against France, and, to the amazement of Europe, alone undertook to engage armies flushed from their recent victories and still in Germany: Oetober 14, Nipoleon ntterly defeated the Prussians at Jena and Anerstalt, and entered Berlin a eonquerer, the king having fled to Kimigsberg. Russia vame to the aid of l'russia, but arrivel too late to aeromplish anything exeppt to eheek the alvance of the French, whose armies wintered on the Vistula. The next summer, however, the Rnssians net their final defeat in this campaign at Friedland, and Königsherg was taken. The "Treaty of Tilsit" ended the operations of this fourth coalition July i, 180ヶ.
though wom y the tide of the somul uf that there he astened back restioning he re is yet time: isequenees to t bave paladria to meet ighly routed. den, and the
trongholds in t holdings :a novinces and I. In Marel, rlanl. with France in 1s01, after in over India. lrumpe, and in militating deelarel war ause of Engfighting trim.
se year previervitory, capat part of the te Three Emessburg,' con, her title of - Sun of Ausof Trafalgar, France and and, to the ad from their erly defeated onquerer, the ussia, but arvance of the ner, however, , and Königsof this fourth

The fifth coalition against Napoleon eomprised England, Anstria, Spain, ant lortugal. The decisive battle of this empaign was at Wagram, Inly 5 and ti, 180!, and terrible as were the comsurfuenees of his defent to Austria, so rripled was Napoleon that he willingly granted the armistiee of Zaim and (-יnelndet the "I'eace of Viemna." When the fitth coalition conded, Napoleon hand acquired the Illyrian provinces and pat of the Tyrol for France, and emontually the Empror's daughter, Maria Lonisa, for his wife.

In 1810 cume war with linssia. and that most disastrous campaign which eost Fiance more than three hundred thousand soldiers and Sapeleon his empire. Russia, England, Prussia, and sweden formed the coalition now, and Turkey had made peate with linssia. Napolem erossed the Nimmen in .Fume, halted at Wilua to puthis new eonseripts in better order, aldressed words of sympathy to lobland. and towk measures to keep Austria comeiliated. The linssians retreated before him. He met and fought and defeated them at simolensk, August 17; they retreated in good order, burning imb destroying all in their reach. The twrible battle of Borodino was

ammilal, hollatio nelson. fought september $\mathbf{7}^{\text {; }}$; the defeated hussims again retreated in good order, pursuing the same taeties. Napoleon reachel Moscow September 15, but the herwie measme of Russia in destroying that eity was efual in its results to several. vietories. October 15, the French troops eonmenced their fearinl retreat. The Russian armies grew bold, they havissed the Freneh troops, weak from hunger and cold, and from Mosenw to Wiha their progress was one contimal guruilat warfare. From Wilna, their Hight to Franee. Deceuber i, was even more disastrous. Of the grand army that set out in the spring not one fourth ever returned.

Affairs in Spain had fared badly for France. Wellington defeated the fremeh army in Spain, and finally expelled it. France, though sometimes shaken in her devotion by the conscription that was draining her children's bood, still hal faith in Napoleon, and in 1813, having raised mother grand army, he undertook to subjugate Prussia. His first vietory was on the plain of Latzen. The Prussians and Russians retreated in good order throngh Dresden. Sapoleon pursued and drove them from Bauken, on May 20 and 21, amd established his headquarters at bresilen. Austria now joined the allies. In their attaek upon Dresden, August 26 and 27 , they were defeated, but Russian troops and the King of Bavaria eomung up mate Napoleon's position untemable. The allies were awaiting him at Leipsic. The hattle raged for three days, and Napoleon withdrew on October 19, utterly defeaterl.

Janary $2: 3,1 \times 1$, Napmom, having misel another army, left Paris to assume command. The allies- England, Austria, I'russia, and Russia were more detemined than reve to erush him. Many hattles were fought, and the fortmes of war varied. Bhohor defeated himat La Pothiers on the 1st of Fohnary. Napolem was the victor at Montenat unsuceessful at Soissons, March 3 ; victorions at Cravome, Marel 7 ; and defeated by Bheher at Lam, Marela!. With more than half his army lost, Napmeon wortied the allies in their rear; lat Bheher marehed on l'aris. 'The prestige of Napoleon and Frane in burope was at an cud.

The Empress and the regroncy retired to Blois. On Marchan laris surrendered, and the Eimperor of Rassia and the King of Jrussia entered the eity. A provisinal govermment, with Tatleyram at its han, deposed Napoleon on
 eonchaled hetwent France and the allies. Prance was to have her bomadarios as they were in 17 B , and also !ur fomign possessions. exapt Tohago, st. Lacia, and Mamitins, which, with Malta, were ceded to Bughamb. The Bomrbons, in the person of lonis XVIll.. were restored; but the livench peups. were not content. so that when Napoleon appeared at Cames on Mareh 1. 181:, he was greeted with jog, (x,m by the troops sent out to ofiliose him. This astonishing news was commminated ta the Congress of the Allies assemhed at Viema. 'The allied amios at once gathered on the bombers of Franere. Wellington landel in Flanters. and Bheher's l'russians joined him. Wellington, finding Napolem in front of him, fell bark to Waterloo, lest the approach of the l'russims should be cut off. Napeleon lurlenl his foree on Blucher at Fhores, and victorionsly drove him from the firld on the lath. Neg, who had beon sent to confront Wellington, fonght at Quatre Bras, and the following day joined Napoleon. On the 1 Sth of June, 1815, Napoleon made his supreme and final eflort to reenperate lis lost fortmes and to reestablish his empire.

The story of the battle of Waterloo, than which nome ever fonght was more decosive in Sts consequeneers, has beron told and retold. The battle was at first mulecided, vietory seeming to ineline to Ninoleon, thongh the English ani Germans with mithehing heroism still held the tield mitil the aftemoon, when Blucher, with his Prussians, at last arrived. Napoleon pereeived that the supreme monent was at hamb, and that his only hope was to erush Wellington before Blacher's advancing eolmuns conld he thrown into line of battle. He sent forward his magnifent lmproial (inawd. 'They charged with ehivalrie splembor, fought with heroir desperation, wew repmlsed, - and the star of Napoleon set to rise no more.

Finding his canse improvally lost, leaving the remmant of his army in commamb of Marshal Noult. Napreon fled and. falling to timd a passage to Ameriea, surmendered. This hattle, magnificent in ita results, ensured to England a long pace, amd raised her to the first rank, for military prowess, among the nations of the world.

Sapoleon's skill at Waterloc was up, to the highest standarl of his most glorious work; lut he was owerwhomed by preponderance in mombers. His entire force with which he combured this campuign was barely 104,000, white the combined armies of Wellington and bineher numbered $\mathbf{2} 20,0 \%$.

The Congress of Viemas restored the ancie: refoime, replacing dethroned

tury

eft l'aris to Ifl Russia were fought. thicers on ther successfin at d by Blucher 1 worried the of Xippoleon

1'aris surrenred the city. Napoleon on of laris wat \because homedaries Tohago, St.
The Bownrench peophr (on Mareh I. oppose him, Allies assemrs of liance. him. Wolloo, lest the lis foree on on the tith. re livas, anil i, Sapoleon s :and to re-
hit was more e wats at first English aut c afternoon, reeived that crush Weline of battle. ith chivalrie the star of
his amy in bassage to chsured to uy prowess,
of his most " mumbers. ely 104,000, 220,0\%0. ; dethroned

napoleon's hetheat fhem waterluo.
monarchs 1 "."n their hereditary domains, but the pareeling ont of the smather tervitories showed the I'owars to he 'fuite as urhitrary as Napoleon himselt. The semi-derade of passive submission to the "policies of prinese" was
 indigmut at Fromel interferenee in Fimaish maters, began their strugghes for intieprombenes.
 hy the 'lurks, in 14B3, Greece had been sulypert to 'Turkey. Out of the defeats of several rebellions against the greed, tymung, und loutality of the
 sereret society of the Hetaria, enmenting the mion of the (iverks for the struggle legimning in 1×21. It is claimed that ten thomsand Greeks were slanghtered wihin a few days, and thity thousmul in less than throw months.

Mahmom, having failed in 1s:2 to comsh the robellion, called Mehemet . Ali, the P'ashat of Earypt, to his aid. Mehemet sont Ibrahim, his som, with his army und nasy, tained in the tacties of Enropen waifare, into the l'elo, $:$. nesas. Vidory and devastation marked his eomrse. Never was grander eemrage nor loftier bravery displayed than by the direds. The siege of Mis-
 tured, Jume 2,1822 . The theres of Enghal, France, and Russiat were ernising on the coasts to prevent attacks by the 'lumes on the islands. Appromehing the bay of Namarimo, they were attacked by the 'lums and Egyptians, whose
 was foreed be the powers to comsent to the establislment of the kinglom of Greee, aul his delay to do su was pmished by Czar Nieholas, who dedared war, erossed the Balkans, and at Adrianople in 182? 9 eompelled the Nultan to recognize her independenee, grant Christian governors to Servia, Doldavia, and Wallarhia, and to yieh l Bessanabia to linssia.

Mson Einomban Wats. - The Freneh Rovohtion of 1830, placing Lomis l'hilippe on the throne of lirance, brought about Belgime's independence.

The Polish insurrection of 18:31-:3' lost Poland her last vestige of liberty, enchaning her irretrievably under the tyrany of Russia.

From 18.40 to 18.52 Englaml was engaged in quelling periodie wars in her Indian possessions. In 1841, her army, mmhering seventeen thousand men. perished in their retreat from Afghanistan. No with Franee in Algiers and Moroco. Ama revolts in Spain were more or hess sneerssful.

In 1 wio, England's war with China, cansed be seizure of opinm, resulted in the ression by China of llong Kong, the freedom of tive other ports, and $\$ 21,0010,000$ indemity.

In 1sts, the revolutionary spinit broke out fiereely, ame the people made strong leaps for liberty and constitutional government. In Framer, it owerthew Loutis l'hilippe, establishang a repmblic, with Lomis Najobleon I'resident. In all Europe its edoresomuled. Hiots in Viema fored Meltemich to the to England; Ferdinand, to take refuge in the Tyrol and to ablieate in faror of his son. Frameis Joseph. Frederick William was rompelled by the emblitions in berlin to promise a constitution. The Frankfort Assembly. in 1sI:3, offered Freteriek William the title and prerogative of Emperor of (ioman,
the smallur con himselt. binces" wils atil colunios. eir struggles nstantinoplo t of the cheality of the - grew the reks for the irpeks wrup than threre
helumet . Ili, m, with his he leelo. . ras grauler iege of Mis. nis was caprere ervising Approaching tians, whosu The Sultan kingrlom of low deeliamd he Nultall to 4, Mollavia,
830. placiug iun's indeof liberty, vars in her nsamil men. Algiers and m, resulted ; ports, and
eople mathe (\cdot, it wromPresindent. nich to ther te in favor the comuli! in is $18!$, © Germane,
:and though, hecouse of his respect for the Hapshargs, he declined the homor. lur still took advantage of the sentiment that prompted the offer to so swougthen the dymasty that later it might be held.

Hungaly rose against Anstria in 1 NA , and ahmost won imbeprablence. Kossuth proslaimed IImgary a. repmblie, mad Nieholas immedintely sent aid fo Austria. The Russian army, lizt,000 strong, joined the Anstrians. The Itmgarians retrented to 'lomesmu, where they were defeated with great shinghter, mud (eoogy surreulered. Augnst !, 18.4!. The name of Haynan. the Anstrian commander, is held in exereation for his awfal ermelty to the r-0ו!

In the meantime Italy rose, Lombarly drove ont the Austrimes. Charles Albert, king of Sardinia, had heclared war on Austria and erossed the Mineio. April S. Asis. Rallotsky, eommanding the Austrians, lost Gorto and yielded Prochiopra in May, hat in dune he fireal the l'apal troops, who were assisting

 Ahert resigned his crown to his son, Vieton limmamel, and died shortly after.

I'ope l'ins IN. was foreed to flee from liome. Mazaini established the Roman repmblie in November. Austria, by the elose of the smmer of $\mathbf{1 8 1 9}$, had bugamed eontron of her disputed possessions. Lomis Napoleon, taking part against Italy, oenupiol liome with his troops, July 2,1849 , and drove out Mazani and (imibaldi.

Tus Comman War. - In 1sís, Lomis Nipoleon wanted war. Ht fomented tronble hetween the l'orte mad Nicholas, which ended ley a deelaration of war by Russia. The Cair elaimed and demanded the protectorate of Clmistians in Thukey, Austria, France, and Eughand oposed the domand. Nicholas hal intimated to the British minister at St. l'eterslourg that England and Russia should share the partition of 'lurkey, -showing that he was realy to carry out the will and aims of l'eter the Great and Catherine. The Russian army was thrown arross the I'ruth into Moldavia, and was at first worsted by the Turks. In deferener to the wishes of Anstria and Prussia, Nicholas withdrew his army from the Jimbian provinees, and so seenred their nentrality. He dislodged the Turkish fleet at Sinopn, November 4, 18:3.

Enghand and Franer allied with Threy and declared war against Russia,
 Sohastopol was the great arsonal of Russia. Twenty-seven thousand English, thirty thousand Froneh, and seven thousand Turks were lauded in the Bay of Eupatoria, thirty miles above sebastopol, September 14, 18:4, towards which, tive days hater, the southerly mareh begam. The allies waded the river Mma moder territie fire from the large Russian army, and wou a brilliant vietory. The attack was remarkable in that it won virtory over sujprior mumers in seemingly impregnable positions, amd in spite of offieial blunders. Mentsehikofl, the linssian gencma, withirew the crews from the shijs in the harbor and pint them, rightern thomsind strong, in command of the bitteries. With his own army he marehed ont of somastopol. leaving twenty-five thonsand defembers to the eity. Aemimal Koruiloff and his able assistant, Colouel Von Tolleben, molertook to strengthen the defenses and to inspire the troops.

On Wetober 17, the siegre guns of the allies were in position. The Earghish stomed the silhurbs of the eity. the Malakoff and the Redan; the Frend stomed the rity. lioth were misucerssful, liussian troops poured inte Shenastopel, and invited battle outside of the fintitications. It the harbor of balaklava, Tumbish troops reonihed from the lassian advance, and Sir Cohin (amphell, with the highlam! Brigalde. saved the shiphing and stores by timely rheek to the Russiams. The hattle of babiklav, hetoher 2., gave the town to the British allere stublom fighting, more than two thirds of
 of unders.
 surprised the British Homselahl dinarls, and for sis homs vaimly strove to crush them. Gemeal bosquet, with : 'gomins of the soldier, guessed the point of sperest attack, amb sent reinformments to the Ginards. The 'inssians were fimally driven bark. Little good resulted from these two stal born battles. Winter put an coul to artive oprations. Rain, hurvicumes, insutiorient shelter, hack of supplies, and extreme cold produced fearful misery
 having had her Heret on the liark Sea destroyed and her army beaten.
 Kertch and Yonikale, thus enting off liussian supplies from the Caucasian provinees. In Itame, Marshal Pelissier sureceded Camohert and suceessfully stormed Mandon: ami, after the abortive attarks, Jme 18, of the French on the Matakoff :and the Eaghish on the Rerlan, General Nimpon suceeded Lamb Raglan. August 16, the lussians crossoll Tehernaya, hat were repulsed by the Fremeh. On Neptember S the French caried the Malakoff ; the British failed to carry the Redin. The !inssims set fire to the city and ships and retired to the northern part of the harbor, where they held strongly intremelocl positions apmosite the alliod amies and beyond the rearh of the allied Herts. Linssia was driven from the Biack sea, had lost her prestige in the Baltic sea, Bomarsumd, on the Aland islands, and the arsenal of swealorg, in the Ginlf of Finland. She had saved C:onstadt, and, it terrible sacrifiere had eaptured Kars from the English Gencral Williams with his army of Turks. Her vast territory was comparatively intact. The nations were not sutisfied. The l'eare of l'aris mereased the prestige of Lunis Napoleon; 16 jostponed the Eastern Question by putting the Christian snojects muler the nominal protection of the fowers, lant virtually muler that of the Sultan. The treaty of pane was signed Mareh $30,18 i \boldsymbol{c}$.

Wans in tue East. - In 1siot the Indian Muting was comsed by the introluction of Entiold rifles. Ibelhi was taken after iesperate fighting, September 20 . Cawnore and Lumbow were the theatre of horrible seenes. The refollion was finally erushed in 18.5 .

In the meantime war with Persia was hegm and ended by the recapture of Herat, in Ifghanistan. In December, 1sin. Bugland aml Frane mate war on China and eaptired Canton. They secured many eoncessions by the Treaty of Tien Tsin, and $s \geq, 0(1) .000$ indemity.

War metwees Aestha, Finsere, Ano sambida, - In 18:9, Lonis Napoleon made a secret alliance with Italy. Genemal disammanent was proposed. 'ardinia agreet to it; Austria stood aloof. On Λ_{p} mil $2: 2$, 1859, Austria ordered
he laglish the Frendelt pumed intu re harber of d Sir Colin 1 stores by er 25, rave o thirds of onstruction

It anll raill, ystrove t" guessed the The :assoo stul breru nes, insultiful misery ie., lnesides itern.
es captured - Caumasian uecesssiully French on ceded Lard cpulseal by the British ships: and trongly inarh of the er prestige arsenal of t, and, at Williams tact. 'The rrestige of the Chrisvirtually 30, 185 s . ied by the fighting. le scenes.
capture of made war is ly the mis Napoproposer. ia ordereal

captere of the mabakoff.
the disarmament of liedmont. On the 2 eith, King Victor Emmannel proclamed war. On the Both, French troops were in Turin. On May 13, Lomis Nipoleon himself disembarked at Genoa, where he was met by Vietor Limuamel. The Austrian forees crossed the Ticino, en route for Milam, but hesitated. because of the French adrance. The opening hattles at Montebello and Balestro, May 20, 30, and :31, were farorable to the allies.

At Magenta, Jume 4, the Austrians met with terrible defeat. The forces of the allies numbered $i n, 000$, and their loss was 4000 ; the Anstrian army of T 5,000 lost 10,000 killed and womded and $\mathbf{7 0 0 0}$ prisoners. The eonquerons entered Milan on Junes. Francis Joseph fell baek to the line of the Mincio. and at solferino the decisive battle of the eampaign was fonght on dune 24. Napoleon commanded the allied armies, whieh mumbered about 100, ono ; they fought for sixteen hours against the Anstrian foree of 170,000 , gaining a fearful victory. This hattle cost Austria $2(0,00$ men ; the Freneh lost in killed and womded 12,000 and the Sardinians 5000 men.

The allies crossed the Mineio and laid siege to lesehiera, but while all Europe expected mother fight. an armistice of five weeks was agreet to, and Napolem, maknown to his ally. met Francis at Villafranca and mate a peace, upon which was based the Treaty of Zurieh, signed November 10. Austria gave Lombardy to Napoleon for the king of'Sardina, as also the fortresses of Mantua and l'esehiera. Italy was to become a confederation, with the Poper as president, of which Austria was to be a membre. because of her holdings in Venetia. Tuscany and Monlena were to be restored to their prinees. Garibaldies brilliant conguest of Sicily and Naples, in 1 S 60 , amd Sardinia's growing power, startled Europe, hat the nations dared not interfere. The general parliament of ltaiy met in 1861, at Turin, and madr Vietor Emmanael king of Italy. Rome. under the l'ope, and Venetia, under Austria, were as yet disnembered from " Young Italy."

War witi Denmabk. - Christian IX. suceeded to the throme of Denmark Novemher 15. 1s(i3). He endeavored to incorporate Sohleswig with Demmark; the (ierman pupulation repndiated him and appealed to the Confederacy. The]iet sent troops into Holstein. Bismarek induced Austria to join I'russia in setting aside the London treaty of 18:33, and the allied troops forced the Danes back to the intrenehments of Duppel. The capture of Duppel by the Prossiaus. April 1 s , proved the efficiency of needle guns and rifted camon. Jme 2.2, the allies crossed the chanmel to the Island of Alsen and. on the 2Xth, eaptured the Danish stronghold Demewerke, hitherto considered impregnable. The Treaty of Viemnal. October : : 10, 1864, closed the war. Prussia and Austria together were to control the duchies.

Tue sevex Wesks Wak. - The armagement between l'russia and Anstria respecting the Dimish duehies caused the "sieven Weeks" War" of 18tio, Bismarek induced Vietor Eimmanel form fon allianee against Austria, March 27 . The Frussians. on Jume $\overline{\mathrm{T}}$. without a blow fored the Austrians to retire from Iolstein. Ggoring the protest of the Federal Diet. Austria was not prepared for war. ller army, tugether with that of saxong, amounted to two humbed and seventy-one thomsand. With l'russia, fally equipged and on a war fonting with three amies, hesides the reserves, the grame total estimatef at three hmmired thousamb, the result was a foregone eomelusion.

manuel proay 13 , Lonis ictor Emme: ut hesitated. o and Bales-

Ye forees of ian army of eonguerors the Mincio. oll June 24. W1,000 ; they ining a fearost in killed ut while all read to, and arile a peace, 11). Austria fortresses of itlı the l'ope her holdings inces. (iarihia's growing general parmuel king of as yet dis.
one of Denleswig with to the Cond Austria to shlied trooons ture of 1 lujr as and ritleil Alsen ami. eonsidermal d the war.
ia and Ansir " of 18 8i6. ist Austria. lustrians to Austria was mominted to finipied and grand total conchasion. ul Naxom

aul next day threw her armies into the hostile states. On the 17 th Francis Joseph published his war manifesto. Italy delared war, on the 20th, against Austria and Bavaria. In fonteen days Prussia's immense army was mobiiized. In five days the northeru states to the Main were disarmed, and the saxon army was foreed to retreat toward bohemia.
Genemal limedek was commander of the Anstrians. Upon news of l'russian vietories, he advised Fimeis Joseph to make terms of peace with W'illiam. Drassia fonght for Geman unification; Anstria to proteet her pride. It was supposed the Austrians would birst enter Saxomy and dispute the I'russian adsance but Bismarek had determined the war shonld be brief, for I'russia was now master of the sidation. On June e? , the l'rusian army marehed from three points towards dosephstadt, where Benedek was preparing to fight. On the $2 \boldsymbol{2}$ th the Anstrians were driven back at Noor, next day at Skalite, and on the e9th at Gitschen. Archduke leopold, on the esth, and Comit Clan Gallas, at Gitschen, both attacked the cmemy in disohedienee of orders, and thus foreed Benedek to fall back from his strongest position towarls Königgratz. 'The Austriams were atso defeated, on the esth, at Könginhol' and schweinschadel, and their loss by this time mumberad over thirty-five thonsand. Benedek asked permission to retreat into Moravia and await reinforcements, but news of the Austrian vietory ower the Italians at Custozza reaehed Vienna, and immediately battle was enjoined upon Beondek. Benedek placed five hundred guns in position, spaming a league between the Elbe and Bistritz.

On July 2 , the king of P'russia assumed command of the I'russian hosts and ordered attack for the next day. The Crown Prinee, several miles away with his army, received orders at four o'clock in the morning of the 31 to advance his Silesian army from Kimiginhof. At cight oelock, l'rinee Frederick Charles, with a hundred thousand, attacked the Austrian centre lying against sadowa. General Herwarth, with four homilred thonsand men, attacked the Austrian right. The whole Austrian army, was hurled against these two fommands for five hours. Prince Frederick Charles forced passage through the Bistritz and took Nalowa, but could not take the lieights. At one o'elock retreat was being considered, but the Crown Prince coming ip with his troops the heights were taken at four ordock. The lighting on buth sides in this hattle was determined and heroie. The Prussian loss was wer ten thonsimul, and the Austrians lost twenty-seven thonsand killed and womded, nineteen thonsand prisoners, with 174 pamon and 11 colors. At Lissia, on July 20, the Austrian navy destroyed the Italian fleet. July $2 \underline{2}$, an armistice of four weeks was grauted. The l'ace of Jragne was coneluitel August 23. Her defeat cost Anstria Venetia and the quadrilateral, namely, the fortresses of l'eschiesa, Mantua, Verona, and Legnamo, deprived her of any part in Germany or German affairs, and Holstrin and Schleswig, and whigeol her to pay $\mathbf{4 0 , 0 0 0 , 0 0 0}$ thalers, one half of which she was to retain in lien of the dnehies.

Anstria emerged from the "Seven Weeks' War" with her ideas somewhat liberalized, and though her territory was diminished her progress and pronperity inereased. The dual-Austro-Hungarian empire was formed by Franeis Joseph, he ruling at Viema as Emperor of Austria and at luda J'esth as king of Hungary. 'This war also ended the Germanic eonfederation of 1815. and the North German Confederation under l'russia arose.

Fth Francis Oth, against was mobiled, and the
ws of l'rus. with Wilt her pride. lispuite tho. se briof, for ssian army vas prepailr, next day I the esth, n disoledi; strongest in the esth, numbered to Moravia he Italialıs: "pon Hent5 a league sian hosts miles away the 3 l to rince Fredntre lying a mell, atell against ed passage ights. At coming ulu ighting on il loss was killed and olors. At July : 2: conchinded 1, namely. ed her of swig, anll retain in
somewhat and jurosWrancis l'esth as n of 181%,

At the peace of Vienna, Octoher 3, Austriat reognizell the kingelon of ltaly, and with the aequisition of Venetia and the qualrilateral fortresses the "Seven Wreks' Win" hiul greatly helped on the canse of "United Italy."

In April, 18(i4, Lomis Nituoleon sent an army of twenty-five thonsami to sust...n the Austrian Areholuke Maximilian on the throne of Mexies. At that time the United Stan's was orompiod with the ('ivil War. This embed, Siproleon was smmarily requited to withdraw his forees from the Amorinan rontinent, which he did. Maximilian was thas left to his fate, and, afrer

TuE: Fisisio-Jurssian Wati. - I'rince Leopold. of Holrenzollern, was affered the throne of spain after Isabella had fled from Marina, Leopold deelimed, but Napoleon demanded that the Emperor Willian should guar:ntec never to permit leopold to acept. Willian refused to accede to that drmand, and Nipoleon, urgel by the war party, declared war July 1!, 1sio. th the same day the Confederation placed its forces in the lames of William. as did the Kouth Gemmans. This spontaneons uprising of all Germany wat malooked for. Napolpon's arme numbered three handred and ten thoisand mon. In ten days Willian had nearly half a million soldiers ready to mareh against the enemy. Angust 2 , the first fight took place at siarloriacken. a little town over the German frontior. Napoleon and the yomg lrince Imperial were fresent, amd the force of thlans was driven bark. Ingust the the ('rown l'rime of l'mssia drove the right wing of Mac Mahmes army hack at Wrissemburg, and on the 6th, again was MaeMahon defeated at Wäth. 'The Germans, having sepmated Mac.Mahon's army, adraneed into Alsace. lathe
 man army went forward. 'Together with the © rown l'rimere. Strimmet\%, on the 14 th of Angust. defeated Marshal hazaine. at (ourerlles. who retreated to Meta, amd then embavored to push on with his lamired thusamd men to (hatons. Von Moltke harrided on the Crown l'rime to intererpt hazaine, and at Jars la Tour was fonght the fiereest battle. so far, of the war. Oh rither side the losses amomeded th serentern thonsamb. Ciravelote was fimght, on Sugust 1S. betwean the amices of steimmetz and the Crown lrimer, King Willian commanding in persom. The hattle lasted all day betwoen two homderd thomsamd (iormans and one humbed and eighty thomsanl Frencla. The diomans lost twroty thousand men. and succeeded in fureing lazainm into Matz. Nthomgh, in one sort. an umbecisive battle. bime votte perhaps setthed the fate of the Empire. Maremanems plan was, with his one humbed and twente-five thomsamb men reorganized at ('latoms, (1) prevent the (iarman alvance on l'aris. Ile was overruled and sent to the relicf of liazaine. Defeated in serobal smatl tights. Mane Mahoal was obliged tu lall batek on wodan. The heights and rideges alwow sedan once oecupied hy hostile troops, sumpuler or amihilation Was the onteome. MaeMrhom was wombled. then lherot, and the command frell to Wimption. Sedan was
 King Willian. l'aris was maddened. Tho limpross eseaped to England. Nipuleon was taken to the castlu of Wilhehmshialu.

A month had larilly passed sinee the onthrak of the war. and one of the two great Freneh armies with the bimeror had bero aitured: the other
was besieged in Metz. Gambetta and other prominent men in liaris set up the govermment of the mational afefense. A repmblic was proclamed. The defense of l'aris was zeatously undertaken. Large supplies of provisions were gathered. Fortitieations were strengthened. The siege began septem-
 diambetta left liaris in a ballom, and at Tours succeeded in forming the army of the Loire and the army of the North. Both were defeated. Ntraslourg was captured, and Metz surremiered with a homired and seventy-three thousand men, among them three marshals of Frames. The entire (ieman lonss in this wat was $1: 9.700$ men.
 Knowing the impossibility of further resistance, with half a million german soldiers, Hushod and inspired by eonstant sureess, on the soil of Franere and Paris in their anacombats, he comselen that pace be asket. Thiers, Fave, and Pieard negotiated with Willian and Bismarek. An armistior of twenty days was promittal, that the National Convention then at bordmax might ratify terms. In the meantime the homse of Ifohemzollern reached the smmit of its gratitiol ambition, when, on Mareh Is. William was erowned at Virsailles. Emprror of Girmany. The cession of Alsace and Lorrane and

No patriot name in all history deserves more reverrmer than that of Lonis Adophe Thiers. Lion him devolved the task of making pexare with the (frman foe, of ghelling the eivil war, and of so manging the thames of Frane, that her people within two vars were pablal. to the astonishment of the world, to pay the pummons indemity extorter by the Germans. ame, by september. 1873, the last fume was paid and the last derman sentinel removed from the soil of Eranes.

The eivil war between the Repmblir and the Commme settled the question one for all, that I'ruris, acomutable for all the erroms and virissitules of the comutry, is not Frumea, ani there is mery reason to hope that out of the mupualed horrors of those awfil days of "arnage the repmbliean govermment of Frame arose to remain in perpetuity.

Garibalili, taking advantage of the fall of Lomis Napolem, anl earing not for the king's promises, tomk possession with his troops of the city of Bome. September 20, $18: 11$, and on July 2 of the next year Victor Emmanmel erected his throne in the Quirinal.

Ti'modissins War. - In 1875. the Bosuians. Turkish subjects, revolted. They maintainen their struggle, and thr enraged Turks sent Mohammedan troops among the defenseless lingarians. lestroying mommbered thonsands of men, women, and chidren. Czar Alexamber deelared war April 1, 1s7. Lis army crossed the loalkans and orenpied Shipka lass. Osman lasha developed mexpected military genius and skill. For tive montlis he cherked the onward mareh of the litusians and won wordd-wide adniration by his difense of l'berna. By the tirst of Dermmer l'levaa was invested rompletely by the Russims. Driven bark whenever attempting to make a sortie. starvation compelled 0 sumin to survouler with forty-four thousand troops. Adrianople was oceupied. The Treaty of san stefano was wrested in sight of Constimtinople. It greatly reduced Turkish prwer in Europe, and constituted liussia heir to Turkey in Eurype. IBugaria was to be protected by filtythousand linssian troops for two vears and to have a Christian governor.

Three months hater. Bughand formed a seeret treaty with Turkey, seeming 1 ypros and agreeing to protect 'lurkey in Asia. Austria, too, was dissatisfincl, and the treaty of berlin was made in 15 AS , to rectify the balances of the nations. Rinssia was by this treaty damaged in prestige and, shom of trimmphs, was given only Asiatic provinces. Turkey was stripped of all real guwer in Enrope.
(minn-Japanese Wak. - In Japmis deelanation of war against China, August I. IS:O. she set forth suceinctly the provocation low ing her to this atetion. she said that Korea had heen brought into the notice of the mations of the world by her efforts; that (lima constantly had interfered with Korats government, insistrutly posing as her suzerain: that when an insurcetion in Korea hroke out Clinal sent troops into Korea, and that when dipan, muher the treaty of 18S., also sent troops to assist Roma to quell the relkels, asking China's coijpention in the effort, China refused her rightiol demame that chinas comrse tembled to keep up the tromble indetinitely. so that the only course left for Japan was to

bohis shohiple thmats. declare war.

As with Germany a sore of vears previonsly, when the time came Japan was ready. not only with munitions of war. hit with hetter topographieal knowledge of the enemy's comentry than they themselves possessed. The Empror, whose dynasty antelates the Chistian era, gave his people a eonstitution, and stretehing his hand towards korea he helped her in the same direction. He had Japan's army and her nary dilled by expert Europeon officers. Arsenals and extensive mamfactories for the implements of war were started, with European supmintoments. The latest and best of ships were both bought at foreign marts and made at home. Her stulents were to be found in the universities of the world. Her agents were sent to study in their capitals the eeonmy of every government and the machiney of their exeentive deprorments. To find the best mad assinilate it seemed the principle of her progression, so that both in military skill and the knowledge of diplomacy she acquired the ability to hold her place among the nations of the eivilized wordd. A war alone was needed to prove that this was a faet.

Japan's havy consisted of four armored ernisers and eight vessels of : 0000 tons each. This was a much lighter theet than that of China. hut switter. China's navy had been traned by an able English naval chief, Captain Lang. Her outfit of ships was, perhaps, superior to that of Japan.
consisting of five armored vessels, nime protected ermisers, and torperlo bats hesides. The prineipal batte of this ('hinoolabamese war was fought ant Septomber 15 at l'ing Vang, an ohe apital of liowa, situated at the meetingr

 from seeml, ahout one hameleed miles to the somth, of which the dapamesu were alrealy in possession. thly enfe wing of the armer methosition in

 tilie preparation. her stme of the art of war, the paroticability of her stategin mewrosents. - almired hy the sulders of the worlil. - lelt ('hins, with her ohl

 and wommed. 'The army rontimed fighting amd eompuering motil pate tically tin; provinee of Manhonria was in dipan's jussossion, as well as tho geninsula of Siatung, terminating with Port Irthur.

The battle of Valu, or Ilai lon 'lan, afforeded the first practioal tost of modern vessels. guns, aml projectiles in Isiatio wators. Ving Yang has been
 and two comverterl eruisers wherewith to fight twelve ('hinese warships and
 Chinese warships, eonvering trasipurts wibl ten thomand trows, entored the

 " Passing along the C'hinese lime the dinamese pured as heary a tire as they

 the starboard side." Four shijs were destroyed and two hadily injurd. Gue of the ('himese ships was said to have hern hit twe humbed times. The

 ame other simplios.

 in the rastern part of the bay of lisutumes and the mothorn part of the Sollow
 humbed million Kinping tates were rexteled as indemoity, to be paid in eight installments, our every six anomtls. The inhalistants wrere to sell out amd
 perommended that Japin should wot prmanently possess the peninsmia ol Feng 'Tan, amblapan agreed to their suggestions.

ザルジ
torperlo boits as fonght in the meeting the northeriset， med the righl． lju，：dvitureel
叫り年sition in fial ans we ciall anel hetwora： roirs of selimo－ larestrategia －with her ohl
they were 0 ） rod（sume ato－ Mrs：allul killad r until pric＊－ s．wedl as the
timal terst of allg hats loeen nitee crnisioms varships and ＇The fleet of ，entereal the der A Almiral ressel says： 1 lire ats thry lory hand seri－ ＂וֹ．Japhuess officere satys： to liealr ind I and attiack jurnel．The times．The i．Port Ar－ ition，gmain，

Ithir Chang h of March， depentence the islamis the Follow roup．I＇wo idl in eight Il out．allid mal Frianere ninsuia of

cavalky charge at gleavelotte．（a．de necville．）

battle of yale river.

Formosa, as in stategetical post, is of the greatest value. Korea mad dubat now dontrol absolntely the Japan sea. It was only after lome months of fighting that dapan completely comquered the Formosans and hal all her mew possessions under har coutrol.

Chinat paid Japain an additional siso, (000,000 for the relense of l'ort Arthur and Liautng peninsmla. China was well pleased. But in $\boldsymbol{\Lambda}_{\mathrm{p}} \mathrm{mil}$, 1s:19, Renssia herself hand obtained possession of P'ort Arthur ann 'lalien Wim, uni in Devember the Ciermans reeeived Kaio Choo, the tinest maval station of the province of shantung. France subsequently obtamed Kwang-Cham, thr hest port of Wiagsi ; and England, thongh not joining these powers in the

 "maspeakahue" Turk hegan to assmue appalling proportions. Dhring there yaus one handred thonsimul Cratans were murdered. Fobnarys, 18:3, the Cretans proelaimed mion with cireece. The Greeks, mable longer to endure the sufferings of their kimberl, cheterminel to help them.

I'rince Carorge left for Crete with a tompedo flotilla Fobmary 10; Colonel Vassos, aide-de-ramp to the king. followed with tifteren humdred men and two hatteries on the lith. l'rinee Nicholas led a regiment of artillery to the Thessalian frontiers. The powers sent a collertive note of protest to Greece, but it was not heeded. Colomel Viasons lambed in ©rote on the 14th. Sailors frout the theet of the powers nempied the eoast towns of Crete. Pashat Beruvitch resigned and returned to Comstantimople. Growk reserves rallied promptly. Vohuters offered. Colonel Vassos established healguarters in the monutainous interior at Sphakia.

March 1s, the powers borkiuled Crete. On the $2 \boldsymbol{z}$ th, Crown lrime Constautine proeeded to the 'Turkish frontier. On A_{p} mil in, the powers deelared mo gain shombla acerne to the combatint who approached Thessalian borkers. April 8, three thomsand Greoks erossed ueur Krania, began fighting, and were driven hack. On April 17 Turkey dedared war. On the ISth, a battle of twenty-four hemrs, in Milomaid lass, erowned Turkish arms with victory. Another hard fonght battle, at lieveni, diseomfited the direeks. Greeks passed the Artal liver amd Grepk ironelads bombarded I'revessa, On the 19th, the Tourks were in Thessily and the direeks in retreat to Larissa. A fter terrifie battles Tornavo and Larissa, on the esth, fell into the hands of the Turks. Colonel Smolenski fonght desperately it Valestino, luat had to yield; alld Volo also fell to the Torks. The Turks onempied lharsaos on May i. Grece asked the powers for peace, May S; Crutan automony was agreed to. aul 'Turkey permitted armistier on the lith. 'The war closed. Thorkey wis. fored to yiehd all Thessalian territome and Crete was relieved of Turkish oppression. (irecee was forcel to withinaw all suport from Grete and pay

The remarkable feature of this war was the intensely harl fighting from start to close, and the disposition of the powers to assist Turkey ly interfering with the Grecian inary. Frequently the Austrians helped the Turks by placing their guns in pusition. It was only when the Sultan eonguered Thessaly and threatroned to keep, it that the powers interposed.

The crime committed by the powers against civilization and Christianity hy their action seoms increlible, even though the peace of Europe was themby secured.
 groat loans from Earome. Bughad and Frameo took timancial control of the combtry. Arabi lasha inangurated a rebellion and fortitiod Alexamelia. Many Europans were murderes, and Bughand bombarded the eity, taking pnssession duly 12, 18s:. Geneal Wolseley, at Tel el Kehir, September 13, fonght and defeated Arabi, who Hed leaving two thonsand demod. Franee withinew from the thancial aromgoment. The English remaned to put the ligy pians in comdition for sedf govermman. England has remained ever since.
Mohammed Amod arose in the Somblan, proclaming himself lil Mahdi, the Massuhan Messiah. The barbarian horles flocked to his bamers. Ite, deforated the Egyptians in fomr engagements, Wetoher, 188:3. The AngloDigytian force of ten thonsaml men, moder (ipmeral Ilieks, was destroyed, only two escaping. General diomon was sent to the reliof of the ligyptian army. He reachol Khartom, February 1s, 18xi. The Mahdists besieged the city. Gordons sent for reinforements. Vagland was so slow in sembing them that they urvived two days tow, late. Khartom was eapitured through treachery, and tordon, the mast belewor of English soldiers for his saintly and hemic chamater, was pat to death on danary 2 z , 1ssio.

General Sir Homatoo Horbert Kitehenor was mando Sirdar in 1890. He started from Cairo with one thonsand British and tiftren themsame Egyb
 vanced, and anginering his gumbats up the Nile. The distame trom his hase, at Cairn, to his tirst storehouse, at Wally Halfin, is eight hamdred miles. April S. As! , was fomght the hattle of Athama, a fort at the point where the Athara lijes centers the Nile. Here Mahmal, the commander of the hathorians, was eaptured and his army of twelve thomsand infantry destroyed. Osman bigna got away with the greater part of the maly, mambering fome thumsame.

The foree was abont a month raching Wady Itamed. amb, siptember 1, was in sight of Gumbrman. The Sivdar's line was dawn up in erescent form, with Omdurman and Khartom for its eentre. In this position was fenght the first hattle of Egeda, in whieh twenty-two thousame of the Dervishes fell. The Khalifa and Osman Digna fled with a seant hamffol of followers, amd are now said to be bandits in the Kordofan. The mumber of the amihilated army of the Mahlists will never be known. Thu lbritish loss of whites was loss than two humdred, aml the native loss less than three hamdred. The fire of the barbarians was generally too high to effere great injury. Soptember 2 will he a marked day in Englaud's calendar. The Sirdar marehed into Khartomm, the Union Jack was raised, and beneath its foating erosses his chaphains performed (iorton's funcral ceremonies on the spot where he was slain nearly fourteen years before.

A Revew of Matiab Results. - The history of the world shows that suceessful war alds to the ghory and prestige of the victorions mation, and this is partienlarly exemplified by the wars of the ninetenth century. Fume, so long vietorions, diazoded the word. At Waterloo, her glory was clouled. Napier, in his elosing words of the listory of these events of the twenty years of war and turmoil, showed how thoronghly the Euglish people appreciated that their greatness and power were due to the glory aheheved by the arms of Britain's chivalrous soins.

420 TRIUMPHS ANV WONHERS OF THE NKT" CENTURY

While linglanl wats rovering herself with ghory her offspring, the Cuitul
 forkets were not again to be turned inside out, a lessom whiel therealter she lieeded.
 display ing all the heroism of her Hellemie ane ontry.
 in the anequisition of a vast territury. Whose imhabitants puickly assimilaten themselves to the requirements of Smeriman aiternshif.

 results in comparson with the vast amonit of blow ami treasime so latishly spent.

The victories of Masenta amb sollerinu illominod asian the mages of

 " Yoman Italy" greatly toward hur woal of her ambition.

 intronse sinly and applieation in all its hathehers.

 Kurral.

 Africa from this womberfind mamaign.
'The war of the Cuited states with spain, fonghtheranse it was impossihle

 than wo mow maty romprehemi.

Jusbion Winmana.

リヒルジ

F．the 「＂nitol －of age has． heroiaftor sle

and resulterl assimilation

Inssia，liyinge 1 king，whil．
ruhneed liow 2．su livishl！．

11．Mighles ul finting lin－ ad advanuron
iolls：mowted －wonlorlinl
wits loright． t the lessingt ＊owllu of

11 wir simi－

 $!$ be callad ar witury alsur sistur，－ 111 ther sul－ lilug shathe
hicevomernts． I resinlts in viry dowis： viclume of ivilizat ion

THE CENTURY＇S FAIRS AND EXPOSITIONS

 abla as his romelnsion maty he，there ran la mo dispute either as to the puali－ bation or ghatitative progress in the mancrial alvancement of mankind in the rentury men olosing．In the present retrospert the hamare view be－

 writht the malizations uf thenght that in paratical application lnemetit all．

 Erat axpmitions to which the mations of the world thing the simpassing －mandiments of mation thought．Measured by vars，her time is really be－

 pare with mans phesi al ineersitios and intellerthal growth．The mement Soressity has hown that mankiad meroded something to make life brighter．
 task of erpating it and has fashional ont the Material．

In the great expmitions of torlaty are seen the efleerts of the mavelems
 hat mer eall for the merols is answorable．If this kime．omly a very few

 ther rommermial inturemuse af the worlh．From the tirst of this rass of

one of these dasses may lue fentul exery kind of a display of products, irys. spective of its purpmse on indivilual mane.
'fle develogment of the mondern exhibition from the rarly fair has beron

 tradesmon phared on virw the things they knew prople womble nerol ami bay. as well ass artiehes offerod at a venture that people whe pally didni bered them might he tompold to purchane hecanse of wevelty of wher phatity. Thus, the largain remuter amb the departurnt stome are several hamered years ohler than the thrifte homsewilio of to day rerkons.

 fighting in 1s.in.

The diaplat of merchambere and the gathering of entatomers at the most

 athtorities 10 give permission to at town or village that had suffered some

 is show he the fints that its jarisidietion extmond seven miles armme the rity, and that all merohants wher sold wares within that rivenit, unless at the fair, forferitel them tu the hishomp.

 of Framere semt a formal romplaint to king bilward II, of Bughat, to the effert that the merhants of fingland had exased frombuting the latim in his sminions with their woml and othore gouls. to the great hose of his

roducts, irro ciir lats heom : and prowe... vhere ן-川少 plate whome hl nerol :amil wally didni chur qu:lity. ral humbrod
rival efforts,
 "aluc mores. "alme on the gig tall fasmi. - Maghents of din a strictly d som tran mes. hilarity the fowrefil rs weresipt whehery and at thiי most ss the great tow. the fair after them agr. For: Erimt from rillosiantieal thered stinuThe lamunis s a revelum © mominuly aromal the , mulles.s at
ellas al its ©ing Philip allicl. tw H14 leי fiairs in lass of lis
 prominitur

14011 opment of is of travel
inetween distant points, and the establishment of stores and markets, were all fatal to the commereial fait. To-lay, in all Europer only three really great ammal fairs of this elanater remain, - those of Nijni-Novgormb, in linssia; bameaire, in lrame ; and Leipsic, in Germany. The same conditions that hromght the popmliur usefnluess of the commereial fiair to an end were the fores from which the fair ass an exponent of industrial achicrement hats Inיin developed, and the material progress of the nimeteenth century is to tre trawer.

For the modern fair in all of its forms the world is indebted to the soriety of Arts, of Lombon, an organization whose fame in America was son great that binnjamin liranklin, in soliciting corresponding membership, dechared that he

MUNICH Exposition, 18.54.
womble esterem it a great homor to be admitted and also to la premitted to comtribute twemty gninests to be wapmed in prominms. What this sorioty in its marly days did for (ireat Britain it did alsu for eivilization. It orgamized the tirst exhibition of spurimens of improvements in the useful arts ame man-

 inthenere tor foster art, serienero mechamieal and agricultural indmaters, amd the fishery trate and colonial eommere of the eometre.

Wf the many intheneres of this sometry that eame to the I'nited states. it may be genstioned if ally hand amore lasting bemefit for looth perphe and "omutry than that which gase birth to the merhanies" institutes. There are porphe still living wion are alde to reeall how the large eities in the Eastorn anm Middle States vied with each other in the "stablishment of two great and
kimbred instimtions - the merchanies" institute and the apprentimes library. Philadelphia led the eities in the matter of time, her Prakkin Institute lowing

 numeroms others, - thase memtionel hang the principal omes that still main-
 like the first une erer held umber the patronage of a mational gowemment. that in laris in bats. - worr compused of rarions artioldes hamed he their wwirs. Som. howerer. the pennlarity of the institutes and the atwarling of frizes and diphomas bromght to the exhibitions suremons of the hambireatt of mombers ind frimols. :and the rising lights in the arts and mandiatures
 bished. Thus, the intlume of the primeipal survising institutes has spreal fall lnevolul luan limits.

 of germeal interest. we prefor to set al large tahbernel invite the miverse to

 progres af Frame only. In the linited states there have ben me state
 nut lwerlo inviteml.
 anture. This, fow, hat its origin in Enghans. The father of the Amoriman

 mower fromin Albang. N. Y.. to l'ittstirml. Mass... Where lue engaged in gempal and experimental agriculture and ratule maising. Ilis rffarts to improve heal
 interest, alled this suggested to him that all ammal exhihition of cattlo and of farm prolucts, resulting from an more patustaking statcon of enltivation than

 sumprour prodnets of the seil: and the tirst rxhibition or fair was held in sis. This, with monest prizes for the hest eahbits, proved a momplete. surores.

Einemraged ly the results of his initial affort. lue went to liostom th sulicit

 hrought him little save derisiom. To show how small romerm was felt ly
 from ex-President doln Adams to Mr. Wiatson is sulficiont: -

"You wilt get no aid from thoston"; commeree, titerature, theology, medicine, the univervity, and universal politien are against von."
The ex-I'resident was correet in his judgment. Mr. Watson did not receive a single favmable response to his appals ; yet he lost not a partiele of fiath in the wishom of his malertaking. With the comperation only of the fiamers in his comuty, Mr. Wiatson surerded in arranging ammal exhibitions mutil 1slti, When he retumed to Absays. The same year he orgaized the first agriontural seriety in the State of Sow York, and legan estahlishing fairs aud mathe-

 boing mised by thagrioultural someties in the ditherent emmates. I state
 report, while it, in then, hath to remer at combined repert to the lagishature ammailly:

Sine then an ariventmal department has lneome an indionemsable part of the govermment of the varimis shates and Territories. even of these that
 state and comuty agrionltumal tair has been matergoing a madieal ehage for many yents, esperially in seetions thiokly setthed or mar large cities, and the whaf atractions hare passed from the exhibition of sleck domestie animals and choiere fruits of the soil to horse-rating and hirerele contests. Imovations foregng to the spirit and intention of the fair have alrealy wronght its ruin in many places and are thremphing it gemerally.

If American fairs in the original emmervial semse, those helld during the Civil Wiar, to ain the work of the Cuited States Sanitary Commission on the
 bus. luring those memomble fome years it is donhtan! if there was a single

 were not supplied hat ge gemment, and the fair was the most perphar form of raising the neodfinl moner.

Pxhihitions of sperial artioles. presessing the feathes of state, mational. and international combinations, and imbernalont of any heality, went. or
 mating teednimal interest. - as the international exhibitions of tisheries and fishery methods, of life-saving methonls and apmatus. of forestry prodnets and systems of forest presemation, and of milway applanes; while others combine the terhical and popular features, as the exhibitions of ele trisal
 and of wool-working amblalnisaving machinery.

Sperial exhat itions in the I nited states that posserse a large propular interest inelude the anmal showing of the art assoriations and leagnes in the
 Fork rity. Ameng them also are to he noted the promanent expesitions in Philadelfiat and thiengo-buth reminulere of the greatest intermational expasitoms that ham heren held up, to their day. The thilatmphia exposition is held in Memorial Hall. the bilding erected in Fairmome lank ly the :itate of Pemsylvaia at a cost of \$1.ith), om, and used for the Art Gallery of the
('cutemial Expusition in 1siti. It now contains an art and industrial collecfinn similar to the famons South Kensington Masemm in Lombun. The Chiago exposition is in the former Art lahace of the Worhts Cohmhan Expo-
 is now known as the Field Commbian Musemm. Its most eonspienons feature is a collection showing the development of the railway. and the next, its for-

wisy exhibits. In the line of permanent expositions. Philadelpha is to be redited with fwo commereinl musenme of far-reaching intluenee that will be monsidered further on.

Tho tirst exhihition of the judustrins of all nations was that lerld in Hyde l'alk, lombon, in 1s:in. It was an mongrowth of the anmal exhibitions of the somety of Arts. before mentioned, and was at tirst designed to be only a mational naterprise. hut on a more extemed seale than the former exhibitions

 surth side, !e:t; fert long by for low wito.

While the areetion of the lwalding was in progress. Dr. I.von lobyair was

 as showiug the truly international ehararger of the first wordes exhibithom.

that

lhowe

Hutal

tlu. 1

dabtin
H1:atr! 1/mess
'T" minul

mumber of citizens of New York had assoniaterl themselves for that purinese.
 for five years of heservoir square, on the comations that a building of iron, ghass, and woml shomblide wreated throven, and that the contrame fee to the propesed exhibition shomid not execell tifty rents. In Mareh, the lagislatthre ineorporated the Assuciation for the Exhibition of the Indinstries of all
 Subsequently, the Fioderal Govermanent eonstituted the buiding a bonded warehouse and exemped foreign exhinits from the payment of duties.

This exluhition was therefore a private buterpise, having ow other oflicial reenguition than that mentioned. It was also men miontunate affair from begiming to end. The loeation was then three ou four miles from the harat of the city ; the area was entirely inallopuate for the purpose; the day of opening had to te postponed, becansa of the incomphete romdition of the building; and tinameially the conterprise was a luge failure.

The exhibition was rgmed Inly If. IS:B:, with much revemong, ahlomgh still seareely half realy for exhibits or visitors, and was rontimed for 11 ! days. There were aknot fsom exhibitors, sumewhat more than whe-half heing foreign. The tatal cost of the exhihation was mearly slame,oms, and
 ment in many ways, this first international exhihition in the Uhited stanes was productive of murh genal.

 inanguate one open to the worh. This was dome muler the dibrese muspiees of the Imperial towommest, which undertook to cominine cortatin leatures of both the Loman and the New Sork enterprises; henere the tirst intomational exhalition held in laris was practically a private seheme supported by ofticial guarauters. A further departure was here made in the matter of buikling, and, insteal of the singhe sreat strmeture, there were Ihe Palais ide I'Industrie, the Dalais des leanx Arts, the Bamorama, amd three smaller lmildings for agrienaltural implaments, carriages, and a variaty of less rostly articles. Another innovation was here introdured. a partial return to the methods of the commerrial fair, in the setting apart of "xhihiting sparees on the oprell gromal.

The main building, the latais de I'Industrid, was exeeted by a joint-stork
 sfuare feet. It was bialt of glass, stome, and brick, and was sok feet loug
 l'alais de l'Industrio was "reeded for a promaneut st rueture.

This exhibition was opened on Nay $15,185 \mathrm{n}$, amd masel on November 15.
 coloners, fifty-three foreign states and twenty-t wa colonios helonging to them sent exhibits. In all there were $20,8: 39$ exhibitors, hesse of Framer and her colonies predominating by only atwett now. The exhibits were dassition on the Lombon pan, there being in each mase thirty classess altogethere. Excluiing the man lmilding, which the lmprial (iovermment acguired, the exhibi-

Between the first and secomal lomion exhihitions there were many indus-
|rial is "1ויוt, 1sisis,
Thin its thit White while the 10 [llil) tl gular hote th Inil 1 uresule
trial and art displays in the Conited Kinghlon mud rolonios and on the ('onti-

The secoml landon exhibition was undertaken ly it commission heanled,
 While it was ill eonrse of preparation the l'riner C'onsort died, sull for a while a heavy pall houg wer the seheme. 'lhe eonsmission here introblued
 and the main structure was built of brick, glass, mud irom, was bearly rectan-
 the tohal areat under rowi was abont twenty-there acres.
'This exhihition was opremed by the loke of Cambridge on May 1, 1869, and romainod opron for 17^{7} days. It was visited by $6,311,103$ persoms, a daily average of $: 36,3: 4$, its receipts were wholly absorbed by exproses, and a slight

WOMAX's II'TIDPNA.
(Worhf's ('olımbinn Fixpmsition, 1893.)
deticit was left. Fineigu exhibiturs mumberel 1 astil, and received more than ! MNO , rizizs.

In INa; the Fromel fowemment amommed that an exhibition wond be hehl in l'aris in 1sfia, that was intemden to be move completely universal in rhamerer and more comprehensive in plam tham any that hand ever been beld. 'The Champ de Mars, the great panade-gromid on which the beole Militaire faced, containing abont 111 arres, was plabed at the dispusal of the eommissinuers by the fowrmment. In the rentre of this space was erected the

In plaming this billing the ronveniener of exhibitors ame visitors in ready aceress to the exhihits of any desiren comitry or chass was given the proferenere ore architeretural effere. Here, again, was a diffusion of exhibits in detacherl hailingss. and at motoworthy novelty was the reservation of gromel on the park smromming the main building for the erection liy foreign exhibitors of sureial buildings for the display of articles that conld not be accommodated in the main strueture. This feature became the most jop-

 of the 'world.

 Prom legiming to and the expenses were st.

 jout of romkiery.

 world's rongresses for the disernssion of great problems of miversal applimation.

 that half of whon were awarded prizes.
 in 1siti, and rowers the thive quater of the century. 'The actual work of

Dיtails of organization and managoment werm verstel in an lixerntive Come
 Bard of Finame, with large pewers. This Buard estmated that the rost of
tract anil al stork

Fini
in the jartion the shis Wrons struct bet we icres.
'The thre. 1 yramit terrace limen the re

 with unthurity to collere sulsarifitions and other fumbs.

Despite the timaseial panice of the smmmor of 1 sith, preparations progressed
 that the ome-hmalredh amiversary of the imh pembenoe of the L'nited states

 ing April $1!1$ and elosing Getober 1! , and insiting the mations of the world to take part in loth the velebration and the exhinition. In mespuse to a fomal invitation issued by the surertary of state, thity-two fore ign governments sent favomable replies for themselves and their cohnies.
The city of lhaladelphia phaced at the disposal of the commissioners a

(Allania lixponilion, 18:\%.)
tract in Kairmonnt l'ark, aggregating 2:ifif neres, for the principal buildings, and also made proportionatrly large allotments for the exhibition of livestork and agrienltural implaments.

Pive prineipal builings were erected. Tise Man Exhibitim Builing was in the form of a parallehgram, 1880 feret long and pris five wide, with projoretions at the centre of the longest sides 116 fere long, and at the wentre of

 stru-ture, the sides of whieln for some distanee atme the gromid we to finished

The Art (Gallery amb Memorial Itall, dexigued to be a promenent structure, was erected on an eminence in the Lamsdowne llatem. It is built of granite. glass, and irom, in the mondern limaissance style of arehitertme, on a

 the centre of the structure rises a dome of iron anm glass, 1.00 feet in height,
surmonated by a tigure of Columbiat with outstretehed hants. This building was ereeted by the State of l'ensylvania, and is now used as a permanent. art and industrial musemm.

Nawhinery Hall was 1 Hot feet omg and 360 fert wide, with an anmex on

 (ity of Philathphia for promane uses. It exhitits the Moorish arehiter-
 high to the top of the hatern. Its cost was Exeh, bis. The Ggriemlamal Building was erected of woed and glass, the gromet pan showing at patallele-

MWHINEHY HAL.S.
(Adanta f:xgmoition, In:03.)

 the phblic servier ; he Womenis lavilion, werring an are of an arm, and with its exhothts of woman's handiwork from the fifteron leading hations of the world constituting the tirst display of the kinh exer attumpen an a lage seale; twenty-six buidings aremed hystate and Turturial gowernments; and many othors pint up by foreign govermments or exhibitors. before the exhinition elosed there were more than two lambed buildings on the gromud.

An intoresting frathre of this exhilition was the obsorvane of State bays. when the guveruors of the states, with tharir othicial staffs und a large following of citizens, male remmonial visits and hell remptions in the several state bildings. Thmer were abo manems other spreiad days, whon hosts of people mitod in a common interest, migions, fraternal, sudial, military.

 each, and 1, sum, mas han frou entry. The exhibition represented an motlay

(bure
titate |hia: งй

Tw whel hivelut 1111 h, mila were
(iovermment aded it with a loan of siston, onk which was repaial the

 sheess.

Twu years after the Contemial bixposition another obr wits helal in laris, Whteh iot only excerded all provions obes in that rity in size and magnilirener. bint male an moprededented display of works of art and literature. Wh this oreasion abont ane homber arres were set apat for the varions

 Orlams emotrihted a similar sum for the revetion of a promanent Horticullinal Mall.

Formal invitations were sent wit to all foreign govermuents by the state Ihpartenent at Wishington, commissioners wre apmintel for the several States and 'rerritorios, and the time of the axposition was fixem for thecember

a contimoms roof principally of phass. The entite bilding envered a space

 givelo to sawmills.

 linilding, of corrugated irom and glass, stond bearly in from of the Main

 the displaty of hertiondme and birdlife: the where fin matiwe minerals. Ex.

 ateres.

The making of the Worll's Cohmhion Expusition, to commemonate the

I a spice sobls Wils tlic resils． mills ：unl l milulius

s（iow゚rロー

 ural Hill． －［Ifre，illul ＇The Ir tho Main stuatre in －Nexic：all allery tor alls． $1 \times x=$
 relly－six

Wubllills （1．ex）lolull जI（xittuld

is．Tlis wh lifvir tiltas indll Fillloprestll 1．hespite I ・ロッル！ l．（116M）．：（11t］ iturs．the
mate the firitoll－ a｜x＇rillil－ forgrass ：1s mictull－ atil lur it （hicago． ＂re of tlue ＂ritiforte＂ minle in

Wiond＇s In of the the sult． H：If 1אバィtion

 the nations of the world to participate in it．Congress appropiated in

 －xpesit ient．

The managroment was vesterl in a National Combaissien of tworeresebta－
 from the country at large．＇The site was dackson I＇ark，on the shore wi lake

 anmsemuents and the ilfostation of the mamers and enstoms of the world．

 （：Vashville Exposition，1897．）
 the gigatio evolving and passugeramying Fermis Wheel．．Ill of the ex－
 bination with＂matrerial knww as＂staff，＂made hy miting plaster ami jute tibre in Water，ill tha form of a pista．As all exterior surfaces were painted white，the expesition gromuls luenme pepularly known as the White C＇ity．

 a brick imitation of a mudnon lonited states battleshig，with complete arma－ ment and equipment．Slow，own．Forrign govermments approprated a total

Aceording to the ariginal Aet of tomgress, the bildings then completent

 bildings were also dedieatol. The exposition was formally menel with perendingly hrilliant cermomies on May I, lagh, and was rlosed with ant elifite lack of formality on ortaber :an, following, in conserpmence of the assassinathon of Garter Harrisom, mayor of Chago, two days Infore I'p

 all intermathal nexusit ions hithertu hohb, - matehless in extent, in completre

 the stary of their sedtatian progress and hopres.

TURY

; (0),(OH) ; (ic!Territories, a $\because, 6 ; 3$.

- 11 Combluter 1, minsic, anlul ulver of Stite
 rsed with :lll rence of the betores. I'j
 missions, יx. $\because 1.176 . \because 1 s$, largosis. oll alld moclals fing on more

Es groutest of in romplefo. of the intlu. ukaloly lange greses. This 1. Were 景淂 sulls. :hindly al aflort hain lmal githero l'rotesit:ait, ind narration
anta on Sup - thou illilas. ; thith there ? mento la1giger irs abl witl its largent
 (1) the rit! 'meril shir. and as tho ctorl. "ower "terl. Sut ainlond 1 lue
 1s: atolutr iok l'instlo, tans: On ith it dtan!
sumonnted hy a stathe of Music. The largest buiding was that devotod to Manmfactures and liberal Irts, mud the must original of all in drsigh was the bhe sot apart for Minerals and Foresiry, which was constrmetel ontirely of wool from the different Southern states in its natural eonotition, whith the

'The intornational expesition at Nashwille. opern from May 1 to Getober

(Sipht -
nimission of 'Tombesere into the I nion, and han for it special attraction

 showed in a reduced soale the l'arthemen, the l'yame of Cheops, the

Alamo of Texas, the Blue (irotto of Capri, a glimpse of the litalto of Viance, mad, in the beatiful main entrance, a type of carly byptim architernme. A thagstaff sion fret high, rottom amd tubareo fields. Venetian gomblats, Viar ity lair, a typual Chinese farm. an ahmelame of statues of classioal and mythohgital sulbjerts, waterfait and whtime where at work, Dake Katherine,
 were anong the prosisable leatures. The state malo a strong showing of its iminstrial derolopment and of its riohes !et in feseme.

 feature was that, exchading the preliminary work. the whene rained the money and paid the entire rmang cost of the Woman: Depatment. The tumstihes peristered I, sisti,ill entamees.
 temational Exposition at Wuaha, an mulertaking desigued to show what ham beren awomplished be pheneres and their children in the great Trams-Mississippi lathey, and experially in a state that furte-there years hefine was in mae ganized territury in the vast tam khewn as the Lomisian P'urehase. The site sas a platean just meth of hee eity, amt in planuing the dinplay erery amsindathon was given to orghatity. Execpting that the gromuds comstituted a serome White ('ity. from the nse of "staff." as
 ments of differeme from all similar eflots in the past.

 White Homse at Wishinglon. pressed an enertrie hathon that started the
 Massie style. following the lomie order. It was smrmonten by a rohssal

 The towermment also reognized the importance of the event her issuing a special set of ermmemmative pustage stam!s. Fine arts was exhibited in a twin-lomed billing, astrurture in two parts, with an elabmate peristyle betwern them. and all mader one great moof.

What afforded the masses the greatest delieht were the cthoulegical exhibits and the instrurtive and amosing sermes on the Milway hersere. These ineludel an lulim village, with repersmatives from wery tribe betwern

 "prated ha medricity atel one lombed feed higher than the Fiomis Whed of

 shap and fow feet aceros.

This completes the record of the most motable expositions and the inci-
f Verisee
 lats, Viansical ami arlherine. (1) sprirts. showing
its were -xprolise incol the it. The anll linw what ha great - yours onisiana limning ing that taiff." :!s ing veles, and - in the terl the. : of the colossal ing thro re feret. suing a iterl in eristyle

1l ©xhiThese ctwren loorish iel. :alll แarvel herl uf Ig and finil in

1. In le-llay
11, and
inci-

main bulldixg, national export expoition, philadelphia, seiple if to NoN 30.109.
 colltary up th antar the elose of ls:m.

 phia has dile two most , derenve examples in existemer, is a purwly comburwial

以"lluts.

 lowalition.

 Fixpusition in Sit. Lonis, in I:MH.
lıu: eleveloy' must :un III the 10
 |h10rmol
 of civili ul its mant in rifich hel? zingats
 antlur 1
\{1, :s \mid
 $\cdot x]^{n \cdot 11}:$ of assi: lhiat ili spmots latlr In the ifor
(1 lll Mathlia law).: 1 iい! Ihin lia

Enlugenar al Hivendor.

- and the \because 110erderd ty a large (rive (aii)
 * if the - 1 degnity oil Nitatow (י) ol the IIS if our arters mil.

What hans |wisition :" It :1141 $111-$
 mats. lit! with 1. liss in \% III .anl nenlo. Healive -1. 11

'TIE CENTURY'S PROGRESS IN COINAGE, CURRENCY, AND BANKING

1. HINKN ANH H.INKING HFNGLDG'N,

Tine: listory of matom lmilding contains mo parallel to the frogress and deschopmont of the I'nited states in the past one homered yous, and the most anemato and wok wing indieation of this momarkable growth may be sern

 gangen by the hamk and other finamial institutions. Likewise the dogree if ervilization to which a combery has attained is redrected hey the perfection

 monts of somblat tinamere, natmely, (1) the standatid of value is that in use

 flue front rank of the nations of the carth.

 tion- Mantioity - 3ne complato the symuntrival atul perfert tignter 'That

Share are two resperas in which the thatarial poliey of the lonited states

 states. Gur stow of gelld is mere than domble that of tireat Britain, greater

 cuilis.
 hamking power us the paitong rapital of hamks, the depnesits explosise of saviugs lamks, ant the ammut of converthhe paper money. He shows the growth of this lom of walth to have hero he follows, from isto to ls: 1 :

MHILUNS MU'SIW NTE:HLING.

 moxhern eivilization.

Sew Vork as a fimanial contre has hero growing with astonishing rapid-

 aggregate of hanking institutions in the rity - mational hanks, state hamks. trust companies, and savings banks, oxclusive of private banking tirms -

 of Iepnsits, is the largest in the I'uiterl States; while the lhowery Sarings
 its kind in the commery:
'The present status of the different chasses of hanks in the l'nited states is lairly shown ly the fullowing talhe compiled from the Anmal Report of the Comptroller of the Currmey, for the year isas: -
he l'niturn in, greater Cin'man! Miler, mal Rulswidiary

11 whinos Clusive of shows 1 hor

Tulal,

If metallia: r matioll.
 orss.il thon
 - "rier hlu" a distant. bereres of ng rapinthe Xow R.i 111.1 (141) W1.11111 t1 wo yans, 14. Thי t. banks. tirms utilug to f marly $1,01011,(16111$ Savings ugest of

 futal of :1s.s. The total hamking funds, that is, capitul, surphes and profits,

 institutions new "xistiag.

 Dank alome 'rhair cimolation was mily Su,(4),(ни), comparal with more

"the mational banks also show a remarkahle growth. In latiot there were

 years later the mabur of hanks had herevasel to anto, while the eapital was

The that wealh of the Linited states in Isth was istimaten at more than
 in the world. It is expected that the census of 1900 will show our total
 Britail, the mest riehest mation.

Hut while the mation is piling י10 wralth at an muxampled bate, it camot
 direat in its material mesurees, the rombtry was never before stronger in these woments whielo comstithe the rhiof weliane of mational power. A mited ritizenship, possessing un homesty that almersity camot sully ami an
 romomic sophistries, working ont the problems of the future under laws and rmolitimes assuring to the imbicidual the largest opportmities, puints to a development in the twentiath eיntury in no wise inferior to that of the handred years preceding.

The prevailing systrms of coinage in this comery and among all great commercial mations are the result of development and growth. fold and

IMAGE EVALUATION TEST TARGET (MT-3)

silver have become the principal money metals by a process of natural selection, which has chosen the instruments best suited to the purpose. In recent years, and under the laws of development, nearly all the great trading comtries of the world have selected gold as the standard of value. In the future, gold itself maty give way to something better, for it only relatively meets the essentials of a perfect standard.

Among Greeks, Komans, and Oriental peoples, cattle were generally used as a standard of value. The modern rupee of India is the old Sanscrit word roupu, a herl. Capital is but the estimate of Roman riches in cattle. The Latin pecus, cattle, is the root of pecmia, riches, and the origin of our word pecuniary. The Icelanders measured values in dried fish; the Indson Bay comntry in skins; the early Virginians in tobacco; the Indians of the United States and Canada in wampum; the Chinese, even in recent times, in squares of pressed tea; the Africans in bars of salt and slaves.

These 1 rimitive devices gradually gave way, under the demands of international trade, to the use of metals as standards of value. Tin, copper, gold, silver. and iron all were used, and, at first, passed by weight. Government coinage of money is thought to date from the seventh century b. c., and is credited to the Lydians and to Pheidon of Argos, the ofticial stamp being a guarmutec of the honesty, weight, and purity of the coins.

Modern coinage dates from the reformation of the coinage of Rome under Constantine, who introduced the gold solidus of $\$ 3.02$ in valne, and a silver coin of like weight but of relative value. After the time of Inlian, this silver piece, called siliqua, was given such value as that twenty-four of them equaled a gold solidus. In the Frankish Empire, under the Merovingian kings, the relative values of the solidus and siliqua fluctuated greatly. In the eighth century, on aceount of the scarcity of gold, there was a gradual transition to the silver standard, and a silver unit, also called a solidus, was substituted for the gold solidus, the former being divided into twelve pence. This silver solidus afterwarls became the shilling of England and Germany. At first 300 pence were coined out of a pound of silver; but under Pepin the number was reduced to twenty-two solidi of twelve pence each - 264 pence - ont of a pound of silver. Under Charlemagne it was provided that only 240 pence, or twenty solicli of account, should be stamped out of a pound of silver, and this system was introduced, with more or less success, in what is now France and Germany. As to form, it has remained, up to the most recent period, the basis not only of the comntries of Charlemane's Empire but of England.

After the time of Henry VIII. came a period of coinage debasement which culminated in 1051. A thorongh coinage reform was effected under Elizabeth in iz60. The first large coinages of gold in England were made under James I. These continued until the death of William III., in 1701. Still, silver continned to be the standard metal, and in 1695 another attempt was made to reform the currency by a recoinage of the silver pieces, most of which had been elipped or worn, into a new full-weight silver coin. These, however, were soon exported, in spite of a rednction of the current value of the guinea, in 1717. The gold standard in England gained a nearly complete victory by act of Parliament in 1774, which provided that silver coins not of full weight (there were lardly any others) need not be accepted in payments of more than twenty-five pounds, except by weight. This provision, after
scueral suspeny operati In 181 to the as divi

Prol eolonia others period setts;

The land trav mill poil shil Fot pou tari shil gui
tural selecIn recent ding comthe future, meets the
erally used serit word ttle. The our word ndson Bay he United in squares s of interprer, gold, vermiment c., and is preing a one umber ul a silver this silver m equaled kings, the the eighth usition to ituted for his silver t first 300 wber was out of a 40 pence, lyer, and w France it period, Angland. nt which er Elizade under . Still, mpt was most of These, value of omplete s not of yments n , after
several renewals, becane permanent in 1798 . In 1797 coinage of silver was suspended, and the single gold staudard practically introduced, though its operation was somewhat interfered with by the existence of a paper currency. In 1816 the present English monetary system was introduced. It held fast to the gold standard, by the provision that silver pieces should be used only as divisional coins, and with a legal-tender power limited to forty shillings.
l'roperly speaking, there was no coinage in the United States during the colonial period. Maryland had a miut at one time, and one or two of the other States, but they practically amounted to nothing. In the early colonial period the substitutes for coins were wampum and bullets, as in Massachusetts; skins and furs, as in New York; tobacco, as in Maryland and Virginia.

OLD UNI'IED STATES MINT, PHILADELPIIA.
The coins in use before the Revolution were, to some extent, those of England, but more largely those of Spain, circulated in South Aluerica and traveling u_{p}, to the United States. The unit of account was the Spanish milled dollar or piece-of-eight, though, up to 1775 , accounts were kept in pounds, shillings, and pence, a pound consisting, then as now, of twenty shillings, and a shilling of twelve pence "colonial" or "pound" currency. Four pounds of this "colonial currency" were reckoned as equal to three pounds sterling.
This colonial composite system of current coins was regulated by coinage tariffs. Such a tariff, issued in 1750, valued one ounce of silver at six shillings and eightpence, the Spanish milled dollar at six slillings, the guinea at twenty-eight shillings, and the English crown at six shillings and
eightpence. All foreign coins were valned in proportion to the value of the Spanish piece-of-eight. Some of the colonies stamped the shilling. which constitnted a large part of the money in eirculation. It, however, varied greatly in value in the different colonies. Thus, the Spanish dollar equaled tive shillings in Georgia; eight in North Carolina and New York; six in Virginia, Comectieut, New Hampshire, Massachusetts, and Rhode Island; seven and sixpence in Maryland, Delaware, lemsylvania, and New Jersey; thirty-two and sixpence in South Carolina. The Spanish dollar itself, with which these comparisons were made, was frequently below legal weight, and, therefore, varied in value. Where the pieces mentioned in the tariff of 1756 were of full weight, the ratio there established was the English ratio of one to 15.21 , the ratio for bullion being nearly the same.

After the tariff of 1876 had been in operation for six years, the colonies began to feel keenly the difficulties caused by the variety of coins constituting their metallic circulating medium, and the need of a special American coinage was frequently expressed. In 1782, Robert Morris, superintendent of finance. submitted to the Congress of the Confederation a seheme for a national coinage and the establishment of an American mint, which met with approval. Jefferson recommenced the decimal system, with the dollar as the unit. Neither of these proposals was carried into effect till. in 1786. the Congress of the Confederation chose as the monetary unit of the United States the dollar of 375.64 grains of pure silver, which unit had its origin in the Spanish piaster or milled dollar, then the basis of the metallic circulation of the English colonies in America. This American dollar was never coined, there not being at the time a mint in the United States.
The Act of April 2, 1792, established the first monetary system of the United States. The bases of the system were: The gold dollar, containing 24.75 grains of pure gold, and stamped in pieces of $\$ 10$, $\$ 5$, and $\$ 2.50$, denominated respectively eagles, half-cagles, and quarter-eagles ; the silver dollar, eontaining 371.25 grains of pure silver. A mint was established. The coinage was unlimited, and there was no mint charge. The ratio of gold to silver in coinage was $1: 15$. Both gold and silver were legal tender. The standard was double.* The Act of 1792 undervalued gold, which was therefore exported. The Act of June 28, 1834, was passed to remedy this by changing the mint ratio between the metals to $1: 16.002$. The latter act fixed the weight of the gold dollar at $\mathbf{2} 5.8$ grains, but lowered the fineness from 0.9163^{2} to 0.809292 . The fine weight of the gold dollar was thes reduced to 23.2 grains. The Act of 1834 undervalued silver as that of 1792 had undervalued gold, and silver was attracted to Europe by the more favorable ratio of $1: 151$. The Act of Janmary 18,1837 , was passed to make the fineness of the gold and silver coins uniform. The legal weight of the gold dollar was fixed at 25.8 grains, and its fine weight at 23.22 grains. The fineness was therefore changed by this aet to 0.900 and the ratio to $1: 15.988+$. Silver continned to be exported. The Act of February 21, 1853, reduced the weight of the silver coins of a denomination less than $\$ 1$, which the Aets of 1792,1834 , and 1837 had made exactly proportional to the weight of the

[^6]silver d only $\$ \overline{0}$ tenler. duced coinage ment. The States that th or two five-dol dollar These when act fol tender provid quarte grains dime, The sil not ex to del trade Sectio should should to met

The coinas dollar the silver all si nal v
expre
anth
to tin
wort to be act,
pure
muc
not ther
the debt
cont $\dot{2}, 00$
value of shilling. however, ish dollar York; six le Island; v Jersey; self, with ight, and, tariff of lish ratio
the coloof coins a special is, supereration a can mint, tem, with nto effect tary unit hich unit basis of American e United m of the ntaining d \$2.50, he silver ablished. ratio of 1 tender. rich was edy this atter act fineness reduced 92 liad vorable he fined dollar ineness +. Sil. red the Acts of the ding the
silver dollar, and provided that they should be legal tender to the amount of only $\$ 5$. Under the Acts of $1792,18: 4$, and 1837 they had been full legal tender. By the Act of 1853 the legal weight of the half dollar was reduced to 192 grains, and other fractions of the dollar in proportion. The eoinage of the fractional parts of the dollar was reserved to the government.
The Act of February $12, \mathbf{1 8 7 3}$, provided that the unit of value of the United States should be the gold dollar of the standard weight of 25.8 grains, and that there should be coined besides the following gold coins: A quarter-eagle, or two and-a-half dollar gold piece; a three-dollar gold piece; a half-eagle, or five-dollar piece; an eagle, or ten-dollar piece; and a double eagle, or twentydollar piece, all of a standard weight proportional to that of the dollar piece. These coins were made legal tender in all payments at their nominal value when not below the standard weight and limit of tolerance provided in the act for the single pieee, and when redueed in weight they should be legal tender at a valuation in proportion to their actual weight. The silver coins provided for by the Act were a trade dollar, a half-lollar or fifty-cent pieee, a quarter-dollar, and a ten-cent pieec, the weight of the trade dollar to be 420 grains troy ; the half-dollar, twelve and a half grams ; the quarter-dollar and dime, respectively, one half and one fifth 4 se weight of the half-dollar. The silver coins were made legal tender at their nominal value for any amome not exceeding $\$ 5$ in any one payment. Owners of silver bullion were allowed to deposit it at any mint of the United States to be formed into bars or into trade dollars, and no deposit of silver for other coinage was to be received. Section 2 of the joint resolntion of July 29,1876 , recited that the trade dollin should not thereafter be legal tender, and that the Secretary of the Treasury should be authorized to limit the coinage of the same to an amount sufficient to meet the export demand for it.

The Act of March 3, 1857 , retired the trade dollar and prohibited its coinage. That of September 26,1890 , discontinued the coinage of the onedollar and three-dollar gold pieces. The Aet of February 28,1878 , direeted the coinage of silver dollars of the weight of $41: \frac{1}{2}$ grains troy, of standard silver, as provided in the Act of January 18, 1837, and that such coins, with all silver dollars theretofore coined, should be legal tender at their nominal value for all debts and dues, public and private, excopt where otherwise expressly stipulated in the contract. The Secretary of the Ireasury was authorized and directed by the first section of the act to purchase from time to time silver bullion at the market price thereof, not less than $\$ 2,000,000$ worth nor more than $\$ 4,000,000$ worth per month, and to canse the same to be coined monthly, as fast as purchased, into such dollars. A subsequent act, that of July 14, 1890, enacted that the Secretary of the Treasury should purchase silvar bullion to the aggregate amome of $4,500,000$ ounees, or so mueh thereof as might be offered, each month, at the market price thereof, not exceeding $\$ 1.00$ for 371.25 grains of pure silver, and to issue in payment thereof Treasury motes of the United States, such notes to he redeemable by the government, on demand, in coin, and to be legal tender in payment of all debts, public and private, except where otherwise expressly stipulated in the contraet. The act directed the Secretary of the Treasury to coin each month $\dot{2}, 000,000$ ounces of the silver bullion purchased under the provisions of the
aet into staudard silver dollars until July 1, 1891, and thereafter as much as might be necessary, to provide for the redemption of the Treasury notes issued under the act. The purchasing clause of the Aet of July 14,1890 , was repealed by the Act of November 1, 1893. The War Revenue Aet of Jume 13 , 1898, authorized and directed the coinage of standard silver dollars to the mount of not less than one and one half million dollars a month, from the bullion in the Treasury purehased under the Act of July 14, 1890. The Aet of June 9, 1879, made the subsidiary silver eoins of the United States legral tender to the amount of $\$ 10$. The minor coins are legal temder to the amome of twenty-five cents.

The following official figures give, by periods of ten years, the coinage of the United States from the establishment of the Mint to the present time:-

Years.	Gold.	Silver.	Minor.	Total.
1793-1799...............	\$606,530.00	81,216,168.75	\$00,111.42	\$1,962,8619.17
1800-1809.................	3,067,067.50	3,124, (687.75	144, 8145.79	6,386,621, 14
1810-1819.	2,348,915.00	($, 107,003.75$	162,534.07	8,619,561.8:
18:0-1889...............	2,574,017,50	14,787,327.65	178,372.70	17,54,717,.85
1830-1839.................	17,745,42:2.60	28,112,134. 60	334,810.2!	$46,192,369.31$
1840-149.	68,909, 438.00	22,223,733.00	340.840 .33	81,404,012.33
1850-1859.	352,915,050.00	47,23\%,81:10.00	1,135,580.001	401,289,443.03
1860-1864).	20,786,131.00	13,637,607.90	$8,504,1070.00$	312,027,808.40
1870-1876.	370,718,883,50	142,191, 178.60	¢, $231,019.50$	515, 1416,071.60
1880-1889..............	411,766,277.00	305, $269,081.20$	$8,127,305.56$	725,769,6033.76
1890 to June 30, 1897....	$274,806,245.00$	136,248,501.65	7,064, 849,63	518,610,5i6.30
	81,886,338,958.00	\$720,792,129.85	S $28,814,458.26$	\$2,635,945,646.01

At this writing the report of the Director of the Mint has not been published, but the coinage for the full year 1897 may be stated as follows: gold, $\$ 76,028,484$; silver, $\$ 18,486,697$; and for the year 1898, gold, $\$ 77,985,757$; silver, $\$ 23,034,034$. From January 1 to June 30,1899 , the coinage was : gold, $\$ 65,915,020$; silver, $\$ 12,780,441$.

It is sometimes thought that the silver dowars are not a full legal tender, but this is not so. They are an unlimited legal tender for all debts, public and private. The Treasury does not, in practice, redeem silver dollars in gold, but successive secretaries of the Treasury have amounced their readiness to do so, if necessary to keep the silver dollars from depreciating, - that is, preserve their parity, - which the law directs.

Silver certificates and gold,certificates are not legal tender, but entitle the holder to receive the kind and amount of coin named on their face.

The value of gold bullion in a dollar of that metal is 99.991125 cents, or practically 100 cents. The value of the silver bullion in a dollar of that metal is about 45 cents. It varies, however, with the fluctuations in the market value of silver.
It will thus be seen that the bullion value of a silver dollar and of a gold dollar differs greatly, but the equality of the purchasing power of the two coins is due to the fact that the silver dollars are receivable for public and private debts, that they are indirectly exchangeable for gold, by depositing them in the banks, and that the government is pledged to redeem them ink gold, if necessary to preserve their parity with gold.

Total.

(335,945,646.01

been pub-
ws : gold, ;,985,757; ras : gold,
al teuder, ts, public s in gold, diness to - that is,
ititle the
cents, or of that 3 in the
f a gold the two blic and positing them ink

new United states mint, philadelphia, pa.

As early as 1826 the United States began to export domestic gold, beginning with an export of $\$ 1,056,088$ of gold coin mad bullion, and receiving an import of \$(ifx, $7+0$. Up to 1897 the grand total of exports of gold eoin aul bullion amomited to $\$ 2,186,238,541$, and the total inports to $\$ 1,112,-$ 138,766 , an excess of exports over imports of $\$ 1,074,099,765$. In 1898 the imports of gold eoin and bullion into the United States were $8120,391,6 \mathrm{i} . \mathrm{I}$. and the exports $\$ 15,406,391$, making the net inuorts $\$ 104,985,283$.

From 1821 to 1897 the grand total of exports of silver coin and bullion from the United states was $\$ 1,152,(688,766$, and the imports $\$ 830,32 \pi, 58 I$, making an execss of exports over imports of $\$ 42,36,595$. In the fiscal year 189 s , the silver imports were $830,92 \pi, 781$, and the exports $805,105,233$, making the exerss of exports $\$ 24,17 \overline{4}, 4 \pi s$.

The total proluct of gold in the United States from 1792 up to 1896 was $\$ 2,113,0: 34,769$, and of silver $\$ 1.44,9 \pi 0,000$, making a grumd total of the preeions metals of $\$ 3,508,004,769$. The total value of the antire world's production of gold, between the years 1493 and 1896 , was $8 \mathrm{~s}, 9 \mathrm{si3}, 3 \mathbf{3} 0,(6 \%$, and of silver $\$ 10^{-26,700,800, ~ m a k i n g ~ a ~ g r a n d ~ t o t a l ~ o f ~ g o l d ~ a n d ~ s i l v e r ~ o f ~}$ $\$ 19,540,0 \geq 1,400^{\circ}$

As a compari: of the money status of the United States at the hegiming and end of the century, the following figures are interesting: In 1800 the population was $8,30 \mathrm{~s}, 4 \mathrm{sin}$; the estimated bank notes ontstanding, $\$ 10,200,000$; the estimated specie in the conntry, $\$ 17,500,000$; the total money in the United States, $\$ 28,000,000$; the spectie in the Treasury, $\$ 1,500,000$; the money in circulation, $\$ 20,500,000$; the amount per eapita, $\$ 4.99$. In 1598 the population was $\mathbf{i t , 5} 2 \underline{2}, 0 \% 0$; the total coin in the United States, including bullion in the Treasury, $81,4!s, 99.3,24!$; total paper money, $\$ 1,138,4+10.126$; total money of all kinds, $\$ 2,(637,433.33 \mathrm{n}$; coin, bullion, and paper money in the Treasury, $8790,037,480$; total circulation, $\$ 1,837,859,895$; eireulation per capita, se4.6is.

Perhaps no law relating to the coins and eurrency of the United States has been so widely diseussed, or has borne more directly on the attitude and influence of politieal parties than the Coinage Act of 1873 . This act grew ont of a proposition to revise our coinage laws, made by John Jay Knox to the Seeretary of the Treasury, in April, 1870. Mr. Knox, in his rough draft of a bill, provided for a silver dollar of 384 grains, to be a legal tender for sums not exceeding $\$ 5.00$. Thus, the standarl silver dollar of $412 \frac{1}{2}$ grains was eliminated. It did not appear in the bill as it passed the Searte, Jannary 10, 1871 , nor in that reported to the Honse, March 9,1871 . The bill underwent protracted and thorough diseussion, and on May 27, 1872, was passed in the Honse. As passed, it eontained the original provision for coining a silver dollar of the weight of 384 grains - twiee the weight of the silver half dollar. These dollars were to be a legal tender for anounts not exceeding S5.00. The Senate anended this House bill, by substitutiug a trade dollar of the weight of 420 grains for that of 384 grains, at the same time preserving the legal-tender fimit of 85.00 . In the amended form, it passed the Senate, Jimuary 17, 1873, and the Honse, Febriary 7, 1873, and beeame a law. It will be seen that the standard silver dollar of $412 \frac{1}{2}$ grains was never in the bill, and could not, therefore, have been seeretly omitted, as was afterwards elarged. It was omitted from the first draft, and all
$R Y$
old, beginreceiving gold coin o $\$ 1.11 \because$, n 1898 the 20,301,65.4. nel bullion 30,325,s81, the fiscal 5, 10.5,2:3!),

1896 was tal of the re world's :3,320,(ion), silver of
begiming 1 1SOO the 1,500,0001; ey in the ,000 ; the In 189 S including $3,440.126 ;$ money in lation per

tates has

 tude and act grew Knox to agh draft ender for - $\frac{1}{2}$ grains te, JanilThe bill 8is, was for eoint of the mints not tuting a he same form, it 873 , and $\frac{1}{2}$ grains omitted, and all

Cabpenteng' hafle, pilidadelpilia.
(First Site of Fïrst Uuited States Bank.)
through, becanse none were being eoined, and those that hal been coined were exported, the silver bullion in them being, at that time, worth more as bullion than coin. liy joint resolution of Congress, approved July 29, 1s\%t. the trade dollars provided for in the ate were deprived of their legal-tumber quality. It was supuosed they would cireulate in China, but they proved useless even for that purpose.

11F. KAll, HANliNG IN TUE: UNITED NTATES.

The first banks in the United States owed their origin to Robert Morris and Alexamder Hamilion. Morris, as early as 1 fib3, coneeived the plan of a bank to assist in developing American trade, and in 177!), Itamilton proposed the organization of "Ihe Company of the bank of the United States." These plans did not mature, but were followed, at the suggestion of 'Thomas laine, by an association of ninety-two subseribers to a fund of 300,000 pounds l'ennsylvania currency to support the Revolutionary army, This association became known as the l'ensylvania lank. It commenced business July 17,1780 , and after a career of a year and a half, during which time it greatly aided the govermment in furnishing army supplies, its affairs were wound up.

On May 17, 17S1, Hamilton presented the plan of a bank to Congress. which was to be truly national, and "ereated avowelly to aid the Uuited States." Its mame was to be the Bank of North America, with a subscription of $\$ 400,000$ in gold and silver, and its notes, payable on demand, to be receivable for duties and taxes in every State. Congress approved the plan, and Morris, then Superintendent of Finance, published it, with an address showing its advantages to the govermment and people, then suffering from the ill effects of a depreciated currency.

The Bank of North Ameriea was organized November 1, 1781, and began business Jamuary 7, 1782. It ereditably fulfilled its mission "to aid the United States," and, after the expiration of its charter, became a State institution. In 1864 it entered the national banking system, though retaining its old name. This bank was followed by the Bank of New York, which began business June 9, 1784, and by the Massachusetts Bank, which began business July 5, 1784.

First United States Bank. - This institution grew out of the recommendations of Alexander Hamilton, and formed a part of his scheme of strengthening the publicecredit and bringing about a closer umion of states. His plan was incorporated into a bill whieh passed the Senate January 3, 1791, and the House, Jannary 20, 1791. Washington signed it February 25, 1791. The bill was hotly opposed as uneonstitutional by Secretary of State Thomas Jefferson, Attorney-General Elmund Randolph, and in general by representatives from the Sonthern States.

The eapital of the bank was fixed at $\$ 10,000,000$, one fifth of which was to be subseribed by the government. The remainder was subseribed by individuals, and two hours after the opening of the books the capital was oversubseribed to the amount of 4000 shares. The central bank was located at Philadelphia, and afterwards branches were established in New York, Boston, Baltimore, Washington, Norfolk, Charleston, Savamah, and New Orleans. Business was first opened in Carpenters' Hall, Philadelphia, December 12,
the m These in 18 ment ирма led t The ernm
179). In July, 1797, the site was removed to a new building on Third Street, below Chestunt, and it remaned there till the dissolution of the bank, with the exception of a brief removal to (inmantown in 17as, during the epidemic of yellow fever. Though this bank proved a profitable enterpuse for the govemment, it failed to seenre a renewal of its eharter in 1811, chiefly becouse so many of its shates had passed into foreign hands.
Eably Statis Banks. - From 1790 to 1811 the mimber of State banks increased from four to eighty-eight; their cireulation from $\$ 2,500,000$ to $\$ 2:, 300,000$; their capital from $\$ 2,500,000$ to $\$ 42,010,000$. In the same time
rt Morris plan of a proposed States."
f Thomas
зо0,0\%н
1y. This reed busihich time airs were

Congress, e United subscripand, to be the plan, 1 aldress ring from nd began aid the a State ;h retaink , which ch began e recomheme of f States. nuary 3 , uary 25, of State acral by
ich was by indias overcated at Boston, Orleans. lber 12,

the gmard bank, philadelpmia.
(Second Site of First United States Bank.)
the metallic circulation of the country rose from $\$ 9,000,000$ to $\$ 30,000,000$. These banks failed to meet the monetary necessities of the War of 1819 , and in 1814 practically all of them south of New England suspended specie payments. Their notes were poured out in all denominations from six cents upward, and, with coin redemption stopped, they depreciated rapidly. This led to great financial distress in 1818-1820, and to excessive bank failures. The seriousness of the general situation, and the declining credit of the govermment, led to the establishment of the second Bank of the United States.

Slvond Bank of the United States. - In October, 1814, Secretary Dallas laid a report hefore Congress, in which he deprecated the uncertain amoment and value of the paper eurrency. "There exists," he said, "at this time no adequate circulating medimm common to the citizens of the United

States. The moneyed transuctions of private life are at a stam, and thי fiseal operations of the govermment labor with extreme inconvenience." Ho then recommended as the remedy the establishment of a matiomal banking institution. A bill, hased upon Dallas's plan for suel an institution, failed of passage in the Honse in 1814, anl agnin in 1815, though passed by the senate, It was, however, fimally passed in an amended form, lut was vetocd by l'resident Madison.

On December 24,1815, Mr, Dallas lain hefore Congress nother plan for a national bank. A bill was framed anthorizing such un institution, with a capital of $\$: 6,000,000, \$ 7,000,000$ of which were to be subseribed by the govermment, the central bank to be at Philadelphia, with gower to establish branehes, payments to be made in specie at all times unless otherwise muthorized by Congress. This bill passed both Houses of Congress, anl was signed by President Madison, April 10, 1816. When the subseription books of this bank were elosed, it was fom that the subseriptions fell short of the muthorized $\$ 35,000.000$ ly $\$ 3,000,000$, which amome was taken by stephen (itard.

The hank conld not lend more than $\$ 500,000$ to the govermment without authority of Congress, was to be the fiseal agent of the Treasury, and to receive deposits of public moneys. No notes of a less denomination than $\$ 5.00$ were to be issued, and the penalty for refusing to pay notes or deposits in specie on demand was twelve per cent per ammm motil paid. It began business Jamary $\mathbf{7}, 1817$. Owing to the impending thancial crisis and had management, the bank verged rapilly toward insolvency, but was resinseitated under the vigorous management of a new president, Langilon Cheves, who was elected Mareh 6, 1819. He was succeoted by Nicholas 1Biddle in 182:3, who was destined to see the fall of the great institution.

The national bank inenred the hostility of tho State banks, which called it a monster becanse it refused to allow the notes of the loenl banks to acmmulate as deposits in its branches without redemption. Various States passel diseriminating laws against it. Jackson, in 'his message to Congress in 1820, attacked the constitutionality of the law establishing it, aud charged that it had "failed in the great end of establishing a miform and somod enrreney." At this time the lank was an imposing institution with its eapital of $\$ 35,000,000$, its pullic deposits of six to seven million. its private deposits of a like amount, its cirenlation of $\$ 12,000,000$, its ammal lisconts of $\$ 40,000,000$, its ammal profits of over $\$ 3,000,000$, its palatial establishment in Philadelphia, its twenty-five bramehes throughout the Union, its five hundred employees, its stock distributed through nearly all parts of the world, and its notes current at par at lome and abroal.

Jackson's message was not received favorably by Congress. His aversion, it was thought, was lne rather to his belief that the Bank was his enemy than to.any dislike of a national bank. The growing hostility between him and Hemry Clay induced the latter to make the renewal of tho Bank's eharter a political issue. When the bill rechartering the Bank was passed in July, 1832, Jackson vetoed it, chargiug, in the main, that the Bank was a monopoly. This brought the question of the further existence of the Bank fully iuts the arena of polities, in the presidential election of 1832 , with the "Hero of New Orleans" on one side, and on the other "monster monopoly," "Old Nick's money," and "Clay's rags." Jackson won, and speedily decided to remove
the pul betwee

pese.

of its days h Stute buık tunce, and st

by b year 1840 wha sor, intri of

The

 besipos
rev ban
the public deposits from the Bank. This decision precipitated a bitter war between Jackson and Congress. But Juekson did not swerve from his purpose. By 1833 it hecume apharent that the Bank eonith not secure a renewal of its charter from Congress. As a confession of its defent, amd just thirteen days before the expiration of its federal charter, the hank obtained from the State of Pemnsylvania, February 18, 18:3f, a charter for the United States bank of Pemasylvania, for a period of thirty years. Shorn of its importance, in a restricted field, yet with enormons eapital, it fell into large bond and stock investments of questionable vahuc. Its troubles were aggravated

gecond united states bank, pithadelpma. now custom mousf.
by bad management. It suspended during the panie of 1837 and the next year, and again for the last time in 1841. Biddle resigned the presideney in 1840, and four years later died poor and broken-hearted. Thus perished what is sometimes called the third lank of the United States, its predecessor, the second Bank of the United States, having fallen a victim to political intrigne and loss of prestige. The shareholders lost their entire investment of $\$ 28,000,000$, but the cirenlating notes were all paid, and also the deposits. The goverment got back its investmpnt of $\$ 7,000,000$, and made $\$ 6,003,167$ besides, from its comnection with the Bank.

State bhens and Indelendent Theasuny. - After the removal of deposits from the Bank of the United States, September 26. 1833, the publie revenues were deposited in selected State hanks, sometimes called "pet banks." In 1836 eighty-eight State banks in twenty-four States held public
deposits to the amount of $\$ 49,37.986$. As the State banks had thrown their influenee against the mational bank, they were rewarded by allowing them to use the pullie money intrusted to them as a basis of extending their loans and for enormous issues of their own notes. Banks were started for the sole purpose of issuing notes which they could use in buying public lands. As a consequence the govermment lost hearily through the depreeiation of these notes and the failure of the banks. On July 11, 1836, the Necretary of the Treasury issued a circular forbidling the receipt of anything but speeie in payment for public lands. This caused a run on the banks and aided in hastening the financial crisis of $18: 37$. An act of Congress of June 23, 1834, authorizing the calling in of $\$ 37,468,859$ of the public funds deposited in the State banks, for purposes of distribution, foreed the suspension of specie payments by all such banks, with very few exceptions.

The unsatisfactory trial of both federal and state banks as custodians of the public funds led to the establishment of what became known as the indepemdent Treasury system, by which the govermment colleets its money and keeps it in the hands of the United States Treasurer or sub-treasurers, making disbursements when required. An aet putting this system into effect became law July 4, 1840, but was repealed the next year. It was repassed August 6, 1846, and remained in operation until the passage of the National Currency Act in February, 1863, which gave the Secretary of the Treasury the right to designate certain national banks as depositories of public funds. There were in such banks, on February 4, 1899, United States deposits amounting to $\$ 81,120.873$, secured by United States bonds belonging to the banks and deposited in the Treasury, amounting to $\$ 89,100,240$. Prior to the adoption of the national banking system the country had a somewhat disastrous experience with what has been known as "wild-cat" banks. Many of them were organized for the sole purpose of issuing notes they never intended to pay. While they were numerous and dangerous, it must be remembered that in a number of States the leading banks carried on only a legitimate business, and State banks as they exist to-day compare favorably* in theie mangement with the national banks.

IV. HISTORY OF THE LEGAL-TENDER NOTE.

She Frot act authorizing the issue of legal-tender notes, known popularly :s am han was appoved by l'resident Lincoln, February 25, 1862. It 120 eha ther the issue of $\$ 150,000,000$ in notes, in denominations of not less th: an: $3_{3}^{2} .00$. Holders of these notes conld deposit them with the United States Treasurer or assistant treasurers in any sum not less than $\$ 50.00$, or any multiple thereof, and reeeive United States bonds bearing six per eent interest. The first motes were issued March 10, 1862. An act anthorizing a seeond issue of $\$ 1: 0000,000$ was signed by the President, July 11, 1862 . Of these $\$ 35,000,000$ were to be in denominations of less than $\$ 5.00$. $\boldsymbol{\Lambda}$ third issue of $\$ 150,000,000$ was authorizel Mareh 3,1863 , but this aet deprived the legal-tender note of its convertibility into six per cent bonds at the option of the holder.
The withdrawal of this privilege worked no particular hardship at the time, for bond issues and varions interest-bearing certificates were plenty during the period of war. But after the war had closed and the issues of
new se alssorp

The Januat of the the ave In Jul

In curren busine ment apliro $\$ 10,0$ than tende
used and s 4,18 amon 1574, secre retire enact the there
new securities had ceased, the absence of this provision began to prevent the absorption of the legal-tender notes.

The highest anount of legal-tender notes outstanding at any date was on January $3,186.4,849,3: 3,90 \cdot 2$. Their depreciation was hastened by the issue of the short-time interest-bearing secmities in large amomes. During 1stis the average gold ${ }^{1}$ reminm was 113.3 ; during $18333,145.2$; during $1864,203.3$. In July, 186; , this premium reached its highest point, an average of 2es. 1.

In 1Nig: the country began to feel the necessity of a contraction of the curreney, with a view to as early a resmontion of specie payments as the business interests would permit, and the Congress expressed the public sentiment by an almost unanimous resolution. On March 12, 1866; an act was approved calling for the retirement and eancellation of not more than $\$ 10,0001,000$ of legal tenders within six months, and thereafter not more than $\$ 4,000,000$ rluring any one month. The effeet was to reduce the legal tenders outstanding on Deeember 31,1867 , to $\$ 356,000,000$.
This relnction, together with the rapid payment of notes of other classes, used as eurreney, led to so sudden a contraction of the circulating medium, and sueh stringeney in the money market, that Congress, by act of February 4, 1868, prolibited the further reduction of the legal-tender notes. The amount outstanding, October 1, 1872, was $\$ 356,000,000$, and on January 1, 1874, $\$ 382,979.815$, the increase being lue to a construction on the part of secretaries of the Treasury to the effect that they had power to reissue retired notes which were held as a reserve. On June 20, 187t, Congress enacted. that the United States notes outstanding and to be used as part of the circulating medimm should not exceed $\$ 382,000,000$, and that no part thereof should be held or used as a reserve.

Another attempt was made in 185% to reduce the aggregate of legal-tender notes, preparatory to the resumption of specie payments. The Resumption Act of Jamuat 14, 185is, authorized, among other things, the retirement and cancellation of legal tenders till the amount outstanding should be reduced to $\$ 300,000,000 ; \$ 35,318,984$ were retired under this law, but further reduction was prohibited by aet of May 31, 1878. The amount outstanding at that date was $\$ 346,681,016$, and this has continued to the present time, no new issues having heen authorized.

On January 1, 1879, the resumption of specie payments took place as provided in the act of Samuary 14,1875 . At this latter date, the only legaltender coin reeognized by law was the gold coin. But, in February, 1878, the coinage of standard silver dollars was authorized, and they were to be a legal temder for all debts, unless otherwise expressly stipulated in the contract. This led to the claim on the part of those who favored silver that the redemption of legal-tender notes. provided for in eoin in the act of $\mathbf{1 8 7 5}$, conld be effected by the use of silver dollars. But the general, and doubtless sound, construction of the law of 1875 has been that it was an express contract to redeem the legal-tender notes in the coin then recognized as legal tender. and in no other; and so the 'Treasury has redeemed legal tenders since 1879 , in gold, when the same is clemanded.

In 1869 the United States Supreme Court the bench not being full, declared the aets anthorizing legal-tender notes to be unconstitutional. But subsequently, the bench having its full quota of nine, the Court sustained the
constitutionality of the acts, on the ground, mainly, that they were a proper exercise of the war power vested in the Congress. In 1883 the Court decir? ©d that the reissues of these notes, made in time of peace, were constitutional.

At the time of the resumption of specie payments there were $\$ 135,000,000$ in gold and bullion on hand to provide for the redemption of such notes as might be presented. By Act of July 12, 1882, it was provided that when the redemption reserve of gold coin and bullion in the Treasury fell below $\$ 100,000,000$, the issue of gold certifieates should cease. This is held to indicate that Congress regarded $\$ 100,000,000$ as the limit below whieh the redemption reserve should not be permitted to fall.

If this reserve had not been called upon to bear other burdens, there would probably never have been any doubts as to its sufficiency, In 1878, however; began the coinage of silver dollars and the issue of silver certiticates. These notes were kept at par in gold by their interehangeability in the operations of commeree for legal-tender notes. They were thus an indireet charge on the gold reserve. From 1878 to 1890 they were inereased at the rate of over $\$ 2,5 \% 0,060$ a month. In that year (July 14, 1890) an act was passed providing for the issue of Treasury notes in the purehase of silver bullion, which provided also for the coinage of some of the bullion purchased into silver dollars. These Treasury notes were redeemable both in gold and silver, and as the government never arailed itself of its option to redeem in silver when gold was demanded for them, these notes as they were issued became a further burden on the gold reserve provided for the legal-tender notes.

By the beginning of the year 1893 the legal-tender notes, silver certificates, and Treasury notes had reached an aggregate of nearly $\$ 800,000,000$, all depending on the Treasury reserve for gold redemption.

This reduction of the percentage of gold held to the amome of the demand liabilities raised doubts as to the ability of the government to maintain gold payments, and the legal tenders and Treasury notes were presented for redemption. The depletion of gold was so great that on one or two oceasions there was danger that the reserve would be exhausted, and resort was had to the sale of bonds to proeure gold to replenish the reserve.

The issue of further Treasury notes was stopped by the repeal of the act of 1890 in November, 1893 , and since this repeal confidence in the ability of the Treasury to maintain gold redemptions has been gradually restored.

Under the provisions of the Act of May, 1878, the legal-tender notes when redeemed eannot be canceled. They must be paid out again, and therefore when reissued, they may again be presented for redemption. This constitutes the so-called endless chain by which the gold in the Treasury is always liable to be drawn out.

v. the nitional hanking system.

The desirability of perfecting the banking and currency system of the country was readily perceived on the breaking ont of the Civil War in 1861. Secretary Chese in two annual reports, those of 1861 and 1862 , reconmmended a system of national baiks, whose supervision should be by national authority, and whose issues of notes should be based on deposits oi bonds of the government. After several unsuccessful attempts, a bill, introduced by Mr. Sherman, passed both Senate and House, and became a law February 25, 1863.
proper decir? d tional. 0,000 in is might redemp000,000 , lat Conreserve e would owever: These rations arge on of over provid, 'hhich ver doland as r when further
ficates. 000, all

emand

 in gold ed for o oceart washe act lity of when refore onsti. lways

This act embodied the essential features of Mr. Chase's reports. Under it the first charter was issued to the First National Bank of Philadelphia.

The formation of national banks proceeded very slowly at first. In order to hold out greater inducements for the State banks to enter the national system, the act was amended on June 3,1864 . The first report of the Comptroller of the Currency, November 28, 1863, showed that only 134 national banks had been orgamzed up to that date; but when the act of Jme 3, 1864, went into operation, new banks were formed more frequently. A more ritpid increase took place after the passage of the act of March 3, 1865, imposing a tax of 10 per cent on the circulating notes of State banks. This increase Yas from 638 banks in January, 1865, to 1513 in Uctober of the same year ; with an increase in capital of from $\$ 135,618,884$ to $\$ 393,187,206$; and in circulation of from $\$ 66,769,375$ to $\$ 171,321,903$. Prior to 1869 national banks were required to make their reports on fixed dates, but after March 3, 1869 , they were required hy law to make their reports to the Comptroller five times a year on some past date fixed upon by the Comptroller.

Natmal bank Laws and Reaulations. - The national banks are under the supervision of the Comptroller of the Currency, who is appointed by the l'resident on the recommendation of the Secretary of the Treasury. His salary is $\$ 5000$ a year.

A national bank may be organized by any number of persons not less tham five, on permission of the Comptroller. The capital required is not less than $\$ 50,000$ in any ease, and this minimum applies only to towns the population of whieh does not exceed 6000 ; in cities having a population exceeding 50,000 , the minimum eapital is $\$ 200,000$. For places having a population orer G000 and not excecdingro,000, the capital required is $\$ 100,000$. One half of the capital must be paid in before the bank is anthorized to begin business, and the remainder in installments of not less thau 10 per cent on the entire amount of the eapital, as frequently as one installment at the end of each succeeding month from the time it is authorized to begin business. Capital stock is divided into shares of $\$ 100$ each.

The banks are managed by a board of not less than five directors, chosen by the stockholders. Exenutive officers of the bank - president, vice-president, cashier, and assistant cashier - are chosen by the directors.

Shareholders are individually liable for the debts, contracts, and engagements of the lank to the extent of the amount of their stock therein, at the par value, in aldition to the amount invested in sueh shares. This is what is known as the double liability of shareholders, and is one of the features adiling to the strength of the system.

National banks are designated by the Secretary of the Treasury to act as depositarios or custodians of public money. Such deposits are secured specially by a deposit of United States bomls with the Treasury.

All mational lanks before commencing business are required to transfer and deliver to the Treasurer of the United States, as security for their cireulating notes, United States registered bonds to an amomit not less than one fourth the capital where the capital is $\$ 150,000$ or less, and to the amount of $\$ 50,000$ where the capital is in excess of $\$ 150,000$. These bonds must be taken by the banks whether they issue cirenlation or not.

Circulating notes are issued to national banks on a deposit of United

States bonds with the Treasurer. Notes are limited to 90 per cent of the par value of the bonds, also to 90 per cent of the capital of the bank. They are over-secured, and no holder of them has ever lost a dollar by reason of the failnre of a bank.

The notes are secured by the govermment bonds, there being a difference of the 10 per cent between the par of the bouds and the notes issued, and the bonds nearly always command a premium. They are further securel by the first lien on the assets of the bank, including the double liability of shareholders, by a $\bar{\sigma}$ per cent redemption fund in the Treasury, and also by the margin between the capital and the amome of notes permitted.

National bank notes are redeemable at the counters of the issuing banks and at the Treasury m" lawful money" of the United States. This term, as commonly used, means legal-tender money, and in practice, perhaps, gold coin or legal-tender notes.

Reserves of national banks are the amounts of money kept on hand to pay their deposits and current checks and drafts. This reserve is to be kept in lawful money, - gold and silver coin or certificates, and United States currency certificates or legal-tenter notes. There are three central reserve cities, namely, New York, Chicago, and St. Louis. National banks in these three cities must keep a reserve of 25 per cent against their deposits, and this amount must be kept in their own vanlts. There are twenty-four other reserve cities which are also required to keep, a reserve of 25 per cent, but one half of that amount may be due from other banks in New York and other central reserve cities, approved as reserve agents by the Comptroller of the Currency. Banks outside of these reserve cities must keep a reserve of 15 per cent, three fifths of which may be due from approved reserve agents in the reserve cities or central reserve cities.

In times of panic when there is a run on banks they may use this reserve to pay their depositors, and it often happons that the reserve falls below the amount required by law. Under such cireumstances the Comptroller may notify the banks to make good the deficiency; failing to comply with this request within thirty days, they may be closed.

National banks are not permittel to make loans on real estate. The regnlations prescribed by the law for the management of these institutions are very stringent, supplemented by a system of examination and reports.

In 1896 the Comptroller of the Currency estimated that the government had made a net profit of $\$ 157,439,248.98$ out of the revemes derived from the national banks. It was estimated in the same report that the average percentage of dividends paid to creditors of insolvent national banks was 75 per cent. There have been no losses on circulation. In 1878 the Comptroller estimated that the anmal losses upoa all the cur rency issued by State and private banks amonnted to 5 per cent annually.

The national banks are not monopolistic. Any body of five reputable citizens can form one by getting together $\$ 50,000$ capital. The total shares of the national banks are approximately 300,000 .

Profits on national bank stock are not exorbitant. For a period of twentynine years the net earnings on capital and surplus have been only a little over 7 per cent.

Since the establishment of the national banking system 5171 banks have
been or insolve

Ther ized in were o ported the de,

At 1 nation:

Pro banks cirenta treasu
stand bank tal. o notes $\$ 203$ profi
of the They eason of

rence of

 and the l by the f shareby theg banks s term, ps, gold
to pay kept in tes eure cities, e three ad this r other eut, but rk and oller of erve of agents reserve ow the er may th this
e regums are nment 1 from verage s was ComplState
been organized, of which 1224 have gone into liquidation, 368 have become insolvent, and 3 ä79 are in operation (February 4, 1599).

There is a marked falling off in the number of new national banks organized in recent years. In 1890 there were 307 organized, but in 1898 there were only 50 organizations reported, and that was the highest number reported since 1893. The capital of the national banks is also deereasing, but the deposits show a large increase.

At present the State banks are gaining in numbers more rapidly than the national banks.
l'rofit on National Bank Circulation. - Many suppose that national banks make an undue profit on the privilege they have of issuing notes to circulate as money, based on $\{$ deposit of honds with the United States treasurer. Official figures disprove this. The total national bank notes out-

bank of england, london.
standing, February 4, 1899, was $\$ 203,636,184.50$. The law permits these banks to issue notes to the extent of 90 per cent of their capital. This capital. on February 4, 1899, was $\$ 608,301,245$. Therefore they might have had notes at issue on that daie to the amount of $\$ 545,871,120.50$, instead of only $\$ 203,636,184.50$. This is conclusive evidence that there is no substantial profit in the issuing of such notes.

In the figures furnished by the Comptroller of the Currency for 1898, he shows that the profit which a national bank could make by taking out circulation on a deposit of $\$ 100,000$ of United States bonds, on October 31,1898 , was less than 1 per cent. On that date eight leading banks had no cireulating notes at all out. The meagre profits of national banks explain why they do not supply an adequate paper currency. The restrictions on them make it impossible to pender any substantial assistance to business in this respect. This is especially true in times of panic. Possessing gigantic strength, they are compelled to see the industries of the country attacked by doubt and distrust, and are unalle to go to their aid because of the restraints which forbid them to exercise their legitimate functions.

vi. Foreign hanking and finance.

Most foreign comntries issue metallie money only, except those that are on a paper basis. In gencral the paper ourrency is issued by banks, many of which are more or less remotely associated with the govermment. Some of these banks issue notes on the security of the govermment or other stocks and bonds, while many emit notes hased on no special form of security, but upon the gencral assets of the bank.

As compared with the United States there are but few banks in the principal foreign countries. England has less than one humdred; Scotland less than a dozen; Canada but thirty-eight chartered banks. As in other foreign countries, the Canalian banks have numerous branches aftiliated with the heal office. National banks in the United States are prohibited from having

german bank, mbemen.
branches. The Bank of Franee, the Bank of England. the Imperial Bank of Germany, the Austro-Hungarian Bank, the Imperial Bank of Lussia, are all more or less intimately associated with their respective governments.

The Bank of England was ineoryorated by royal charter, July 27, 1694, its incorporators lending $£ 1,200,000$ to the government. in return for which the Bank was permitted to issue notes to a like amount. It had a practical monopoly up to 1826 , and even now, it is believed, no bank within a radius of 65 miles of London may issue notes. It has suspended speeie payments more than once. In 1844, the banking and issne departments of the Bank were separated. One fifth of the reserve may be silver, thongh in pratiee the reserve is kept in gold coin and bullion. Its notes are based on gold. exeept $£ 16,800,000$, which are secmed by the govermment debt and other securities. It is compelled to buy all gold offered at a fixed price, paying for it in notes. So it must redeem all notes on demand in goh. When so redeemed they are canceled and, after five years, burned. No notes of a less

Y

at are on many of . Some er stocks arity, but the prinland less r foreign with the n having

3ank of are all

394, its ich the actical radius ments Bank ractice gold, other ng for so rea less

'sigvd 'gSMOOg ตF.

In 18 held in inerease $\$ 2,756$, years, of its d premin annual

The appear
18.57, Jul

1880,
1861,
1862,
1863,
1864,
1865. Au

1873, Jul
1879.
1889,

1893,
1839,
18916, Jul
1897,
1898,
denomination than five pounds are issued．The Bank ehecks gold exports by raising the rate of diseomit．The building covers about four acres of groumb， and employs over eleven humbed persons．It is the keystone of the entire system of British credit，and commands the assistance of the Govermment when neederl．

The seotch banks issue notes on their own credit to the anoment outstand－ ing at the time of the passage of the Bank Aet in 184t．Their rate of interest is said to be the same at all of their thousamd offices．A unique feature of the sootch banking system is that of eash credits，by means of which a person of good credit may get his ehecks cashed without a deposit of actual moner，the banks simply entering the crealits on their books．
The Band of France has a monopoly of note issues，elarges a premimm on gold for export，and may redeem its notes in either gold or silver．The In－ perial bink of Germany and a few other German banks issue notes on goll and other seenrities．ani further amomats on their gemeral credit．Beyoni a fixed sum，called the amergency ciroulation，a tax of five per cent is levied． Other European hanks are generally modeled on the same leading principle －a central bank of issue，with munerous bramehes，and associated with the Govermment directly or indireetly．The Imperial Bank of Russia issues notes practically covered ly gold and redemable in that coin．Japan tried a system of national banks combined with Goverument paper money，bat is now substituting a system of bank notes issued by the Bank of Japan．

VII．U゙NITED STATES GOVELEMENT HEHT SINCV 18：5．

In 18．5－the Government owed only $\$ 10,000,000$ over and above the cash held in the treasury．At the breaking out of the Civil War the debt had inereased to about $\$ 80,000,000$ ．By August 31， 1865 ，it had increased to $\$ 2,756,000,000$ ，with an interest charge of $\$ 150,000,000$ ．In twenty－eight years，down to June 30，1893，the Govermment extinguished $\$ 1,91 \pi, 50(0), 000)$ of its debt，paid $\$ 2,3(14,000,(000$ for interest on its debt．and $\$ 118,000.000$ for premium on bonds redeemed．making a grand total of $\$ 4.400,000,000$ ，or an ammal average payment of $\$ 15 \pi, 000,000$ for the entire period．
The rise and fall of the public debt from July 1，1857，to July 1，1898， appear more fully in the following table．

Years．	Total debt．	Debt less cash in the Treavury．
18：37，July 1	\＄28，fi99，831	83，908，621
1880，＂1	64，842．287	59 （94t，4以？
1861，＂ 1	90，580，873	87．718，＋i80
1892，＂${ }^{\text {c }}$	524，176．412	50\％，312， 5 运
1817．3，＂ 1	1，119，772，138	1，111，350， 637
1814．4，＂1．	1．815，784，370	1，769，452，27
1865．Anguet 31	2，84，649，626	2，756．431，571
1873，July 1	$2 \cdot 24,482,903$	2，105， $64 \% .009)$
1874．＂1	2，24．5，4！15，072	1，996，414，905
1889，＂ 1.	1，019，052，922	975，939， \％$^{\text {a }}$
18313，＂1．	1，545， 188.51886	838，969＋55
38：5，5，Ihecember 1	1，708，871．670	948，476，612
18916，July 1.	1，769，840，323	955，297．273
1897，＂، 1	1，817，6－9，685	986，initinam
1898，	1，716，5：11，995	1，027，085，402

In 186.5 the anmal interest charge on the public debt was $\$ 150,970,697$. In 180 s it was only s : $\mathrm{a}, \mathrm{B}, 3 \mathrm{~s}, 40 \mathrm{~s}$.

From 1691 to isas the gross receipts of the Government were 830, int,
 recejpts, which do not inclade loans or proceeds from the issue of Treasmry
 net ordinury expenditures, which do not inclule payments on account of preminms or interest on the jublic delot, were $\$ 105, \tilde{i} 83,026.5 \mathrm{i}$.

VII. DOSTAL SAVINGS HANKA.

Many believe that a system of postal savings banks eonld be generally introluced into the Cuited states. Such banks dombtess appeal to thene who have more contidence in the Govermment than in any assoriation of individuals. Their safety may be coneeded, for when the Govermment fails other institutions are likely to go the same way. What when people deposit money in a postal savings bank, they make a loan to the Government. This implies that the Govermment must be a perpetnal horrower, whereas, until reeent years, the United States has been a debt-paying nation, and in the course of atfairs may soon be again. Unless we are to have a large permanent debt, the deposits in postal savings banks would have to be invested in general securities. Sinch investments could not well be made by the postothice ottieials of the comntry.

In Great britain these banks have been in existence for about thirty-eight years, and their mmber has grown to abont 12.000 , with more than $6,000,000$ depositors. The system prevails in a mumber of other countries. The more concentrated and paternal system of govermment prevalent in countries having these banks renders their management a much less difticult problem than it would be in the United States with our large areas, vast mumber of postoffices, and general diversity of conditions. In Great Britain the deposits in the postal sarings banks are made at the money orter post-oftices in a pass book held by the depositor. Withdrawals are made by filling up blank forms, and these withdrawals may be made at any money orter post-otfice. Deposits are invested in the public debt, and the rate of interest is abont two and one half per cent. The postal savings banks of Great Britain contain deposits approximating $\$ 527,000,000$; those of France, $\$ 152,000,000$; those of Italy, $\$ 90,000,000$; those of Belginm, $\$ \mathbf{6 \pi}, 000,000$; those of Canada, $\$ 31,000,000$.
IX. SAVINGS BANKS IN TIIE UNITED STATES.

There are no worthier financial institutions in the comntry to-day than the savings banks. Most of these are organized on what is known as the mutual plan. They have no eapital, no stockholders, and all the assets are held in trust for the benefit of the depositors. They are managed by a board of trustees, who serve without pay. The investments whieh the bauks are permitted to make are generally restricted to high-elass securities insuring safety. The savings banks in New York State, especially, are closely restricted in investing their funds, and failures in recent years are almost unknown. A deposit in one of these hanks is hardly less safe than an investment in Government bonds. The savings banks are the primary schools
of econt ings tuat would b
The it not exed the wea vsting.

Ximber o Number 0 Imount o Average 1

III a system states Such ceonom and lal anothe A checks these c sends that t bauks clearin aggreg lank The statem Bank on oth agains 204,98 eredit shows emplo mone:
of economy and thrift, and I believe that an extension of the mutual suvings bank system throughont the country, undir proper legas. satfegnatids, would be of the greatest Iruefit to the people of the Clited States.
'lhe deposits in banks of this kind are usnally limited by law to amounts not excecding si3000 to one depositor, as they are not intemed to be used by the wealthier rlass of people. Ihe following statisties will be found interesting.

(Sitatement of condition for eash prerion of tell yearm.)

	$18: 3$	1807	1877	1887	1897
Nimbler of banks	$2: 11$	371	97\%	684	080
Sumber of depositors.	490,428	1,188,2112	2,395.311	3, 118,013	$5,411,132$
\inotul of depresits...: ...	$808,512,1 \mathrm{lis}$	\$ $3137,004.452$	$8866,218,3601$	$81,2: 45,247,371$	$81,430,276,1135$
Iverage to entls depositor...	200	28:	:361	311	3722

In aldition to the mutual and stock savings banks in the United States, a system of school savings banks, introduced into the schools of the United States by J. H. Thiry, of Long Island City, N. Y.., is worthy of mention. Such banks have been very suceessful in inculeating habits of thrift and economy among the children of the comatry.

X. THE CLEARING-IIOUSE.

A clearing-honse may be defined as an institution for saving time, money, and labor. Its underying principle is that of setting off one elaim against another.

A hank in a large eity receives every day in its mail a great number of cheeks or drafts drawn on banks in the same place. It does not present these checks directly to the banks on which they are drawn for payment, bnt sends them by messenger to the clearing-house. Let us say, for illustration, that the First National Bank presents to the clearing-house checks on other banks amounting to $\$ 100,000$. At the same time the other banks send to the clearing-house checks they have received drawn on the First National Bank, aggregating $\$ 75,000$. A payment of $\$ 25,000$ in money to the First National llank will be all the cash required to pay ehecks representing $\$ 165,000$. The economy in the use of money is still better illustrated by the following statement of an actual transaction. On a day in the latter part of 1898 the Bank of the State of New York took to the New York Clearing-House checks on other banks amounting to $\$ 15,64,583.82$, and other banks brought checks against it amomnting to $\$ 15,647,401.85$. The sum of these items was $\$ 31,-$ $294,985.67$, and they were pail with $\$ 181.97$ in money, which represents the eredit balance due to the Bank of the State of New York. This instance shows what large transactions may be effected with small sums of money by employing proper banking machinery. Banks multiply the usefulness of money many foll.

The New York Clearing-House Association was organized September 13, 1853, and the first elearing made by the Association took place on October 11,

185:3. The banks helonging to the New York Clearing-Honse Association

 the hamk have invented for use in times of pamin. 'Ihey are issued by a committee of the Clearing-Honse Association on the depnesit of apmosed securities by the bank desiring them, and are used only to settle balances

NEW TORK CLEAIING-IIOUSE.
between the banks. They are not money, but serve a useful purpose in diminishing the demand for money; for when the banks agree to accept these certificates among themselves, it makes that much money available to be loamed or paid to depositors. In 1893, and in other years of finameial stringency, the issue of these certificates afforled great relief to lusiness interests and saved the comtry from some of the most disastrous results consequent upon such panics.
These certificates are not to be eonfounded with clearing-honse gold certificates issued by the Association on deposits of gold coin. They are used in
making frequel 0 that in to that ubout $3.11,07$

An whole $1 \mathrm{~s}: \mathrm{m}$
the re triale ? 13.3 ness o

λ_{1}

 hater crease craze all thto as is $\mathrm{mo}^{\mathrm{mo}}$ and
desin
sectur
Cri
Unit
ineel
the i
. ${ }^{1}:$
181.

1882
they
each
s1"m
of n
had
the
On
spee

Fric

latic
fign
the
rup
loms
making payments of balances between binks, and obvinte the necessity of frequently passing the actual coin from hame to hamel.

On A_{p} il 11, 1898, the charings at tho New Iork Clearing-House for

 about tive ber cent. For the year 180N the batak clearings at New Vork were

An investigation of the momont of eredit paper nsed respactively in the wholesale and retail trale was made loy the Comptroller of the Cureney in 1s:\%). In his report for that year the Compitroller silys: "From the face of the returns the conclusion to be dawn is that $1 ;{ }^{2} \cdot 4$ per cent of the retail trade of the romutry is transanted by means of eredit paper (cheeks), that !n.3 per cent of the wholesale trade is so cirried on, 0.i. 1 per cent of bisiness other tham mereantile, and 92.0 per cent of all hasimess."

A panie is gencrally due to inflation and speculation, and these, of course, have their origin in varions somrees not easily determined. An unamal inerease in the production of precious metals, homifinl crops, a speculative araze taking possession of the publie - such as the tulip mania in Holland all these and many other canses lead to speculation. The fall in prices due to a stoppage in speculation brings on the panic. Sometimes the catastrophe is prodnced by war or rmors of war, often by the most trivial circmustanees, and not infrequently withont any apparent cause. Before everyhooly had desired to liny; they now becume as eager to sell, and this rush to eonsert securities and eommodities into money preeipitates a panic.

Crises may be divided into commercial and financial. The last one in the United States, whatever may have been its ultimate developments, was in its inception and emmination essentially a financial panic. The Treasury and the hanks were both regarded with more or less distrust.
Phaics or crises more or less severe have occurred in the United States in 181.t, 1818, 1826, 183i-39, 1848, 1857, during the Civil Wiar, 1861-65, 1873, $1852,1884,1890,1893$. Some of these should hardly be called panies, as they were mere lucal disturbanees. Different causes have been given for each of these revulsions. Overtrading and speculation were doubtless responsible for them. The panie of $18: 5$ was coincident with large net imports of merehandise. On August 24, 1857, the onward wave of prosperity, which had been steadily rising to a great height. received a check by the failure of the Ohio Life lusurance and Trust Co., followed by numerous other failures. On October \& every bank in New York, except the Chemical, suspended specie payments, and they rid not resmme until Deeember 12.

The sperulation in goll in 1869 enlminated in what is known as the Black Friday panie, September 24, 1869. Fiske and Gould were conducting a speculation in gohl, and sought to corner it. They forced the prica up to a high figure, but the Government suddenly appeared as a seller of gold and broke the "corner."

The year 1873 witnessed another revulsion of confidence and another disruption of the commercial and financial affairs of the eomery. Business had long been unduly expanded, and the collapse finally came. The failure, on

September 18, of the honored firm of Jay Cooke \& Co., which had not only been ilentified with the building of the Northern lacific R. R. but hat been a strong supporter of the credit of the Government when it was in the direst distress, was the first bad news. House alter hoo e fell. The Stock Exchange closed its doors on September 20, and did not reopen them mitil September 30. More than fifty Stoek Exchange firms suspended, and several of the leading banking institutions of New York and other cities had to stop, business.

During this panic the New York Clearing-Honse Association issued clear-ing-house certiticates to those of its members who needed available funds, and during the tronble issued $\$ 24,915,000$ of them. In May, 18S4, it issued $\$ 24,915,000$; in the 1890 panie, $\$ 16,945,000 ;$ in $1893, \$ 41,490,000$.

Following the resumption of specie payments the times were gool for several years. The production of the preeious metals was averaging $s \overline{0}$,000,000 or more per year. From 1879 to 1883 we imported about $\$ 190,400,-$ 000 of gold. Railroad construction reached a higher point than was ever recorled, either before or since, nearly 40,000 miles of track having been laid in five years. All seemed well, when another collapse came in May, 1884. This was preceded by the failure of Grant \& Ward, and it was followed by the failure of the Marine and the Metropolitan Banks. The disclosures of bad faith on the part of men occupying positions of great trust, made the 1884 prmic one of distinct characteristics of its own. The previons activity in all lines of enterprise may have made the revulsion timely, but individual dishonesty greatly aggravated the situation.

The panic of 1890 , in the United States, was but a reflection of the great Baring failure in London in the fall of that year. This erash was the to South American speculations, and was one of the greatest failures of modern times. It is the opinion of many well-informed financiers that this was one of the canses which operated to protuce the panic of 1893 in the United States. The conrse of the United States in regard to the purchase of silver, doubts as to the tariff, deficiency in revenues - all, perhaps, had their share in creating distrust. But hack of these were the conditions superinduced lyy an era of inflation and speculation. The 1893 panic bore most heavily upon the banks. There was a contimed demand upon the Treasury for gold, and the deposits in banks were withdrawn so rapidly that hundreds of failmes ensued. The period of depression contimued for nearly three years, and has been succeeded by an era of general prosperity, which it is hoped may be long continued.

Bradford Rhodes.
only been lirest k Exuntil veral

stop,

clear-
unds, ssued

THE CENTURY'S PROGRESS IN FRUIT CULTURE

Fisom the carliest histories of eivilization we learn that the enltivation of fruits has been a delightful pastime and also a substantial means of living. Their tempting colors, fragrant perfumes and luseious flavors are unequaled in combined attractiveness and satisfaction to the human senses by anything else among all the prodncts of mature. Their juiees are at once appetizing, mutritions, and wholesome. Millions of people have subsisted upon them largeiy, from time out of mind.

It is, therefore, not a matter of wonder that our forefathers, when they came to the shores of this New World, brought with them seeds, euttings, and phants of the best fruits they hatd at their old homes. Thus it was that the apple, jear, peach, plum, eherry, grape, olive, date, almond, European walnut aul chestmut, and many other less valuable fruits were first eultivated in North America.

Tue Beginnince, - l'revious to the beginning of the nineteenth century there had been considerable development in fruit culture in the colonies. Small apple orehards were quite common in the settlements, from New England to the Carolinas. The pear, peaeh, phun, grape, and a few other fruits were eultivatel in less degree. The Spanish had introduced the peach and orange in Florida, and the French had planted the grape and pear in their sparse settlements in the Mississippi Valley and near the Great Lakes. There are to-day, and yet in a healthy condition, near Detroit, Miehigan, several immense pear-trees from these first plantings, that are nearly three hundred years old. The Catholic fathers planted the vine and the olive, and occasionally the date palm, at their mission stations along the Rio Grande and on the Pacifie coast.

Thus we see that when the year 1800 ushered in the century now elosing, there were many feeble beginnings in the way of fruit eulture seattered over the Continent. The Indians, contrary to what we might have supposed, helped materially in the distribution of some of the orehard fruits. In 17!9, when General Sullivan made his fameus raid against the tribes which composed the historie "Six nations," he found bearing apple orehards in Western New York. In Southern Canada and Miehigan the Indians oecasionally planted the apple and pear. The tribes living along the Gulf 'of Mexieo had peach-trees in their little eultivated patehes, having obtained the seeds from the spaniards; and to-day we find the descendants of these Spanish or "lndian" peaches commonly grown throughout all the Southern States, and to some extent all over the peaeh-growing sections of Ameriea.

Tue Expmamextal Stabie. - During the life of the generation whieh existed for the first thirty or more years of the century the eulture of fruits was still prineipally in the experimental stage. Some of the foreign speeies and varieties had not proved satisfactory, and they were being critically
tested or abandoned. New varicties were being originated on our own soil. Our native fruits were being brought under culture, too, and with the most satisfactory results in many cases. It was leamed that we had in them the foundation of almost unlimited development. Their progeny has revolutionized some lines of fruit culture. This is especially true in our vineyards and berry-fiells.

There were men of noble and patriotie cast of mind, who devoted their lives to the development of this lovely and wholly homane work. They deserve to rank beside the heroes of our battlefields. Their victories were those of 1uace, and were followed by an inerease of the delightful products of the orehard, viney ard, atml garden.

Once that our forefathers were free from the bondage of European greed, this art of peace kept pace with our civilization on other lines. There is nothing in the whole list of our scientific attaimments or material inclustries that eati show more substantial progress. Nor is there a nation on earth that hats so rieh, varied, and adaptable soils, together with climatic conditions so admirably and generally suited to fruit culture; nor a people more alive to their opportunities in this direetion.

Tue Ane of Poomess. - During the generation of fruit growers who lived from about 1830 until the time of the Civil War, the region lying between the Alleghany Momitains and the Missouri River, and extending from the Ottawa liver in Canada to the mountains of Temnessee, which is now the great apple bin of America, as well as its granary, was being rapidly filled with energetie settlers. These pioneers carried with them carefully selected seeds, cuttings, and trees of the best varieties of fruits known in their Eastern and Southern homes. These were planted in the rich, virgin soil of the new territory, which was then known as "The West." Under the happy influences of a congenial climate and eareful cultivation, they developed into fruitful orchards and vineyards, yielding finer speeimens, and, in some eases, larger crops than had ever been known in the older parts of the comntry. This gave a great impetus to the culture of fruits. The first large commercial orchards of the apple, prach, and pear in the central United States were then being planted in Miehigan, Ohio, Indiana. and Kentueky.

The south had not yet awakened to a knowledge of her possihilities in fruit culture. Under slave labor the land was almost solely given un to cotton and tobaeco. Florida had not then even dreamed of her wonderful develop nents in orange culture. In Missouri, Kansas, Arkansas, Texas, and the great Northwest, where now there are fruit plantations of almost unparalleled extent. only the first trees and plants were being set, and it was only thought pimssible that some day fruits could be produced in abmulanee there. The Rocky Monntain and Pacifie States had seareely been heard of, even as Territories, and only an oecasional plantation of vines and trees aronnd some mission station could be fomel.

Tue Ade of Tharmpo - At the elose of the Civil War, which had somewhat distracted the attention of our people both North and South from the progress of the peaceful arts. there was a great expansion of our maral popmlation. The love of travel had taken possession of many who had been in the armies. They were no longer content with the narrow houndaries and the poor lands of the old Eastern farms. They wanted new fields for their
soil. most in the ations and
their They were ducts

reed,

 re is :tries earth tions alive
cOCOANUT THEE, PALM BEACII, FLA.
energies. The building of the great railroad systems across the continent solved the question of the settlement of the "Far West," and the my thical "American Desent" that was supposed to lie this side of it. The pramins were covered with homesteaders' shanties, sod houses, and "dug-outs." The forests of Michigan, Wisconsin, Mimnesota, Missouri, and Arkansas fell before the axe of the pioneer. 'The " loys in Blue" who had seen the natural adrantages of the sonthern states, while there on the dread errand of war, began the rehabilitation of the combtry they had helped to devastate. They took with them then Yankee notions and Western vim, and plantel many kiuds of farm erojs, trees, vines, and bery bushes upon the old plantations where little else than cotton and tobaeco used to grow. Florida was veritably turned into a garden of orange trees and truek patehes. The chocolate hills and rich black lands of Texas were planted to grapes, peaches, and berries. The dry plains and mesas of the Rocky Monatain region, that were naturally almost devoid of vegetation, were irrigated and made to produce the most delightful fruits in abudauce. The giant forests of Oregon and Washington were invaded by the lumberman and the homeseeker, and in their stead were planted trees which yielded the largest and best of fruits. And California, - what shall we say of her wonderful valleys, grassy foothills, and timbered mountain slopes? All of the fruits of the temperate zones are growing there, and in some places the hardier of the tropical kinds succeed. California is indeed a land of fruits.

Taking the whole of North America, except the frozen regions of the British possessions, and Alaska, where few cultivated frints can be grown; and half-civilized Mexico, where progress is scareely known; the last thirtyfive years have witnessed such advancements in fruit culture as seem almost beyond belief. It has truly been an age of trimmph. Not only has the territory of iis successful culture been wonderfully extended, but the whole plan and science of fruit-growing has been almost revolutionized. Old things have largely passed away. New varieties, new methods of culture and new markets for the products of the froit farm have been found. Some of the old varieties have been retained, but many new ones have been originated here; some 1 y chance and others by seientific breeding. Valuable kinds that had long been lying in obscurity have been brought into public favor. Others have been imported from foreign countries. Alnost the entire world has been ransacked in order to obtain fruis that might prove of value to us.

At the begimning of this period of unparalleled progress the experiments of former years had shown the suceess or failure of the different species and varieties already in cultivation in many parts of the country; and now, at its close, after nearly forty years more of experience, there is scarcely a section within the entire domain of North American fruit culture where it is not quite well known what is and what is not adapted to each locality.

The methods of culture are changed from the old ones, which were largely those practiced in Europe, to such as have been evolved by the peculiar necessities of our soil, climate, and varieties. This is especially true of our vinesards; for, except on the l'acifie slope, where the foreign grapes succeed, our native vines require much less severe pruning, and a much more roomy trellis upon which to grow than those old kinds. The first vineyards were planted very thickly and trained by the stake method, which is the French
and Ger 1sino, an thing of America

Hors such a o of oreh of the availab some proved frenuen the rod surface are so five ae pulveri

The orchar that a of giv gather

The makin nation The g increa diet 1 of our A vel the re east c produ uира throu In
as ax

limit

beco
morc
lemo
fruit
drie
is s
othe
Our
and
bee
Ore
and German style. I remember working in such vineyards just prior to 1sio, and of seeing the dwarfing and dwindling effect upon the vines. Nothing of the kind is now seen this side the Roeky Mountains, becanse our Ameriean grapes will not eudure such treatment and contimue to bear well.

Horse eulture las in a great measure sneceeded hand culture. Without such a change it would be impossible to protitably enltivate the rast stretehes of orehards, vineyards, and berry-fields that are to-day found in many parts of the comatry. The common phow and harrow were about the only tools available thirty or forty years ago. They are now supplemented, and in some eases superseded, iny varions kinds of enltivators, weeders, and improved plows and harrows. They are made to ci. ry ont the modern idea of frequent but shallow stirring of the soil. This method of culture disturbs the roots but little and retains the moisture in the soil, by keeping the surface finely pulverized, thms forming a "dust mulch." Some of these tools are so made as to enable one man with one horse to easily eultivate twentyfive acres per day, and with a two or three horse implement, to thoroughly pulverize the surface over fifty or more aeres in that time.

The tendency during the last half century has been towards heading orchard trees lower. The ohd style was to have them with trunks so tall that a horse could walk under the branches. Low heads have the advantage of giving the winds less purchase upon the roots, the fruit is more easily gathered, and the sun is less likely to seald the trumks.

The old idea of our forefathers was, that apples were chiefly to be used for making eider, peaches for brandy, and grapes for wine. We have become a nation of fruit-caters, as compared with our predecessors and the Europeans. The greatest impetus ever given to American fruit culture came from the increased demand in our own country for fresh frnit. It is a staple article of diet here, rather than a luxury, as it is in most parts of Europe. Nearly all of our fresh fruits are consumed in the homes of our people, or exported. A very little is made into eider, brandy, or wine, and the larger part of the remainder is dried or eanned. The proportion of grapes made intc wine east of California is trifling. while there it is considerable. The enormons production and consumption of berries of varions kinds by the Americans is unparalleled in the history of the world; and nearly all of this has come through the development of our wild berries.

Instead of buying largely of foreign fruits and their products, except such as are strictly tropieal and cannot be grown within our borders only in a limited way, we have nearly stopped their importation, and have, in turn, become exporters. The rapid increase in our population demands more and more frnit, and it is not to be wondered at that our imports of oranges and lemons is increasing; but if it was not for our home proluction of these fruits the present amomnt would be more than dombled. Our raisins and dried prunes have almost driven ont the foreign products, and their guality is so good that there is a growing demand for them in England and some other foreign comntries. The same is true of our camed and preserved fruits. Our apples bring the highest price of any that reaeh the markets of Europe, and the demand for them is inereasing. Fresh pears and peaches have also been sent to Lagland in limited quantities from as far west as California and Oregon. Our oranges also have an enviable reputation there because of their
beanty and delicious flavor. Our apples are sent to Mexico, China, and Japan. The street venters of Bombay, India, cry their sale with great gusto: "American apples! true American apples!" and sell them at a price which would refuive more than a whole day's wages of a good workman to buy a single one.
The world is beginning to know the value and goormess of our fruits. We are selling, inside their dainty skins, a portion of our sunshine and water; for the golden, pink, and crimson tints are from the glowing sum, and the water, which is the main part of all fruits, is fresh from nature's fombtan.

Gnowm or Apris Culeres. - From the first settlement of the comntry well into the present century, the pineipal purpose for which apples were cultivated in America was to make cider. This was a common beverage in England and on the continent of Europe, whence our forefathers came. Here they introluced the Old World custom of drinking hard ciler "in season and out of season." In 172l. in one "town" near Boston, wherein lived about forty families, there were made in one year three thonsand barrels of cider, and in another of two hundred families, near ten thousam barrels. This is fifty barrels to the family, which seems ample for a great many drinks per day for each person, with plenty left to sell to the cider-loring citizens of Boston. Colonel John Taylor of Virginia wrote, in 1813, nearly one huadred years later: "The apple will furnish some food for hogs. a luxury for the family in winter, and a healthy iiquor for the farmer and his laborers all the year:"
But hard cider did not always satisfy. "Apllejack," which is the strongest kind of brandy, suited the taste of many of the old-fashioned folk much better. The Virginia gentleman, the Dutch burgher, whose ample acres fronted upon the Hudson, the solemn Pliladelphia Quaker and the staid Puritan of New England, all loved their dram and took it frequently.

Besides almoholic liquors, vinegar was made in considerable quantities. But as late as the middle of this century there was scarcely a good fanily apple orchard to be fomd, such as we now have, with varieties arranged to ripen from early to late. Nor were there many commercial orchards of consequence. The famous oreharil of liobert L. Pell, in Ulster Comnty, New York, was a remarkable exception. It consisted of 20,000 trees, all of the Yellow and Green Newtown apples. Fruit from this orchard sold at wholesale in London, England. in 1845 , at the enormons priee of $\$ 21.00$ per barrel, but the next year the pice had fallen to $\$ 6.00$ in New York city, ready for foreign shipment. This orchard gradually fell into decay, and was not soon followed by others of so large acreage. The Newtown apple proved unsuitable for general culture, and is now grown only in two localities with much success. In the mountain "coves," or sheltered slopes and valleys, of the Bhe Ridge, in Virginia and North Carolina, where it is called "Albemarle Pippin," there are many orchards that prodnee as fine fruit as any from the l'ell orehard, and it how sells from $\$ 5.00$ to $\$ 12.00$ and more per barrel in England. In the higher foothills of California and Oregon this variety does equally well, and apples from there are being sold in-England during this closing period of the century at almost fabulons prices.

In the old days, if an orchard furnished an abundance of apples for cider, brandy, vinegar, apple butter, some for drying, and a few of fair quality that would keep for winter use, it was all that was expected.

1, :111] gusto: whiclı buy a

We vater; lil the lin.
mintry
were
Ige in came. 11 sealived cls of arrels.
many oving learly ogs. a d his
trongmuch acres staid
ities. imily
ed to
con-
New
the
hole-
ruel,

- for
soon
able
suc-
3lue
1 ${ }^{1}$)
Dell
Ang-
loes
his
ler,
hat

PACKING APPLES, FOR EXPORT, IN ORCHARD OF MR. PAY, ST. CATHARINES, ONT.

Most of the trees in those ohd orehards were inferior seedlings, and it is no wonder that the prople of those days did not use apples as we do. A tew of them were very gool, and it is from such chance favorites that we have preserved to us, by graftiug, the Baldwin Winesulp and humdreds more that fill our orchards today. We have developed a new rave of American seedlings. Most of the ohl varioties that were so highly estermed across the veran are now rarely mentioned. Our newer and hetier kinds have largely supphanted them. As time alvanced more choice varieties were added, nutil we may now contidently bast of haviug the best aples in existence. Whoever has eaten our delicions Grimes (Golden, Jonathan, and Northern Spy, need not look for better kinds, beeanse thry camot now be fomm. Indeed, the mane "Seek-no-farther" has been trimmpantly applied to one variwty. However, we are still seeking and expecting to proluee by skillfinl breeding, if not to find, others which may be even hetter than those we now possess.

A history of the recognized and named varieties of apples of American origin would be a book in itself. It slowhld begin almost with the first settlement of the comntry. At the beginning of this eentury the Larly Harvest, Baldwin, Swaar, Esopms Spitzenberg, lhode lsland Greening, Vellow Bellflower, and a few others whieh are yet popular, were already grafted into hundreds of orcharis, some of them being as far west as the Mississippi River. William Coxe, in his excellent book on fruits, published in 1817, mentions 100 kinds. William l'rince, of Long Island, who kept the first nursery of note, had 116 varieties of apples in his published list in 1820, of which about half were of Americinn origin. Now there are nearly 1000 kinds offered by the muserymen of the country, and the books on pomology contain nearly 5000 varieties, a large part of them being American. Truly this is progress.

We have the best and by far the most extensive apple comtry in the world. The largest apple orchards in the word are in America. The biggest of all belongs to F. Wellhouse \& Son, of Kausas, in which there are 1600 acres. There are others in Missouri, Illinois, Iowa, Colorado, and New Mexico that are nearly as large.

The variety prineipally grown in these orehards is the Ben Davis. It is a thrifty, rugged grower, a most productive bearer, and a handsome apple to sell. Its brilliant red stripes, large size, and ability to keep, make up for its deficiescy in flavor. It is, to-day, the business apple of America. Baldwin is the busiuess apple of the Eastern States. Both these varieties are well known in every market of this country, and wherever our aples are exported.

The first government record of exporterl apples was in 1821, when " 68,643 bushels," or about 92,781 barrels of apples, were sent abromi. In 1897 there were $2,371,143$ barrels exported, whiel is the largest quantity ever shipped to foreign eomntries in one year. During the same year there were also exported nealy $31,000,000$ pounds of driod apples, $0.4,000$ gallons of vinegar, and \quad ano,000 gallons of eider. Certainly this is a good showing for the surplus products of American apple orchards. The year 1898 gave a lighter yield, but 1 s 99 will, perhaps, about equal it.

The Pear - Whoever has paten a delicions little Seckel pear must know that its equal in riphess and spiey flavor is not to be found. This little gem is one of the trimphs of American fruit culture. How far beyond aud
above the more of t Pear gro about our these wer tite for pressed in ing this d

The 1 b: Perkshiry brought the origit who tirst which eat profit to lately eat Hourishe ments of
some pear that pear. 1 harrd, an that gle fruit.

From
Peter K in Ame Sand pe mere su very 10 and enc very 1^{10} dom of bearing Tue ish and it ever seeds
that $t 1$ fouml by tra ing m were makin hefore but $t 1$ the d
no w quali
l it is

A lew

have

 at fill lings. 111 :17e alitel r now eaten水for Teccs. - are tinul,
above the old "choke" pear of on' grandfathers' days is this one, and many more of the delicious pears that grow in our orehards and gardens to-day :
lear growing was only a side issuo until lately. A few trees were planterl about our forefathers honses or in the edge of the apple orehards ; but these were often spronts from some neighbor's stedling trees. As the appetite for good froit incrased, the falso inlea that pears should be grommand pressed into cider. ealled perry, decrased, until now no one thinks of wasting this delicions fruit by making it into an intoxicating drink.
'The Bartlett is our most popular pear of good quality, It origrinated in berkshire, England, about 1770, where it was called Williams. When bronght to Imerical early in this century and planted at Dorehester, Mass., the original name was lost, and it was renamed in honor of Enoeh Bartlett. who first propagated and distributed the trees and grafts. The old tree, from which eame the millions that have been and are now a sourec of delight and protit to our people, is still in bearing condition at Dorehester, and I have lately eaten as gool birtlett pears from it as ever were grown. The variety flourishes better in Imerira than in its old home, ant cvery year large ship ments of the fruit are sent to England and sold at a very high price.

Some fifty years ago there were brought from China seeds of a type of a pear that was entirely new to this country, and was called by us the "sand" pear. The only apparent reason for giving it this name is, that it is gritty, hard, and little better to eat than so much sand. But the seeds made trees that grew with remarkable vigor and were much alike, and so was their fruit.

From this stock eame up a seedling some thirty years ago, in the garden of Peter Kietfer, in Philallei]hia, that has almost revolutionized pear growing in America. It is supposed to be the result of a cross between a Chinese Sand pear-tree and a Bartlett that stood near each other, although this is mere supposition. The fruit is only of medium quality, and some say it is very poor; lut it is large, very beantiful when fully matme, late in ripening, and endures rough handling with as little harm as so many potatoes. It is very popular with the eanners. The greatest point in its favor is the freedom of the tree from blight, its vigor and almost never-failing and abundant bearing. It is the business pear of to-day, despite its inferior quality.

Tur. l'earn. - When the peach: was first planted in America by the Spanish and French. and later by other nationalities, there was little thonght of it ever becoming a great commercial fruit. The trees that sprang from the seeds brought across the ocean grew so luxuriantly and bore so abundantly that their progeny was soon scattered far and wide. Peach trees were early foumd growing wild. like our native trees, wherever sceds had been dropped by travelers or hanters. There was no attempt at eommercial peach orchariing until well into the present century, and for the first half of this there were searcely more than a few seedling orcharts planted for family use or for making brandy. In some sections dricd peaches were an article of trade before any commercial peach orchards. in the true sense, had been planted; but they were always the product of women's work, and were prepared under the disalvantageons conditions with which they are usually hamperefl. It is no wonder that the grade was low, for the peaches were generally of poor quality, and no other mode of drying was then known than on boards and
wooden trays, exposed in the open air to flies, moths, and dust. All that was sent to market was first taken in at the stores where the conntry people cam. to trade and it was a mixel mess, indeed, that was thus collected. What. fresh paches were sold brought a very low price, rarely more than twentytive cents per busherl.

Early in the century budded peach-trees were almost manown in Ameriea. I few were hronght over from limaed and the froit homses of England, all of whieh did very well here. However, it was soon learned that there were seedings of $A m e r i m$ origin that were equal to the hest of the foreign kinds. Among the first of these were Heath, Jiarly Iork, 'Tillotson, and Ohdmixon Cling and Free. A litte later, two large yellow freston's came up by aceident on the premises of William Crawford, of Middletown, N. .J., one ripening early and the other late. Eatly Crawford and bate Cranford are, alter more than sisty years of trial, still very pojular upon the markets. Many other kinds, once popular, have long since been disearded and forgottell.

Just before our Civil War the Hale peach was discovered and, being earlier than any kind then known, it beame very popular. About 186.5, the Amsden, Alexander, and some others came to notice. They were a month earlier than the Lale. A peach, called l'een-to, war imported from sonthern China about the same time, that ripened still a month earlier; but as it belonged to a very different race from our other peaches, and was exceedingly tender, it has been found snitable only to Florida and other semitropical regions.

The most popular peach of the present day is the Elberta. It was originated by Samuel H. Rumph, of Grorgia, abont twenty yars ago. Its large size, creany, yellow color, and good flavor, added to its productiveness, make it very aceeptable to both grower and consumer.

The most extensive peach orchards in America are loeated in Georgia, North Carolina, Sonthern Missouri, Western Colorado, aurl California. I few are each more than a thonsand acres in extent.

The advent oî patent evaporating machines, about 1870 , aided greatly in the production of high grade dried fruits of all kinds, and the peaeh shared in the progress. California and Oregon alone shipjed in a single recent year nearly $40,000,000$ pounds of dried peaches. The peach is eanned more than any other fruit, as may be seen upon the shelves of any grocery store, or in the fruit elosets of the eountry housewives. Whether eaten fresh from the trees, served up with cream and sugar (a dainty dish maknown in Eurone), evaporated or camed, the pearh is one of the blessings of our great comutry.

Tue lowar. - There are three general elasses of plams grown in America today, the European, American, and dipanese. European phms were introduced here at an early day, but were grown very sparingly mitil within the last thirty or forty years. The principal reason for this is the presence of a deadly enemy to the phom, apricot, and some other fruits, commonly known as the phum envenlio. It is a little cnemy but a mighty one; for it deposits its eggs in the romug fruit, and they soon hatch into little grubs that work their way into the froit and cause it to die and drop off. West of the Continental divide there are none of these insects. There the soil, climate, and all else seem to conspire to cuable the plumgrower to prosper. Great prune orchards are planted in the fertile valleys from New Mexico and Colorado
westward. Some of them cover thousands of acres in a body, and the yield is enomons. The rainless autnmes of California permit the drying of the fruit in the open air and in the most economieal and perlect way. From an infant iudnstry twenty years age it has now grown so great that, in 1897,
 Washington, Idaho, mad some other western states are almost equally well suited to this industry.

Bast of the Roeky Momntains plum-growing is not so easy. The curculio damages all elasses of phons to some extent, but the Enropean kinds seem to be much less able to culure its attacks than any other. This led to the selection and cultivation of the best varieties of our sevenal native species. Their fruit is not so large or so richly flavored as seme of the foreign kinds, but much of it is very good, and the brilliant red, purple, and yellow colors are greatly admired. The Japanese phans are of quite rerent introduction. The begiming was in 1870, when the Kelsey, whieh is the largest, the latest to ripen, and about one of the least valuyle varieties of this class was brought to California. Later importations have brought us many very valuahle kinuls. The trees bear well, the fruit is mostly large, hamdsome, of good fuality, and resists the stings of the curculio quite as well as our native kimuls.

One of the most interesting and promising steps in plum-growing is only begiming to be made, in the crossing of the three classes maned. The most skillful and patient worker in this field is Lather Burbank, of California, who las already produced, by artificially pollenizing the flowers, some most excellent varieties. Some of these new varieties are larger than any plums ever before seen, delicions in Havor, and blool-red to the stone.

Tus Chsmer. - Away back in the history of our country, cherry trees were planted here and there, but only for family use. The list of varieties was meagre. Most of them were sour, bitter, or small. Now we have hundreds of named varieties and of all grades of color, from areamy yellow to black, and both sweet and sour, early and late.

In Washington, Oregon, and California the cherry does better than in any of the regions farther East. The first cherries of the season to ripen are in the famous Vaca Valley of California, and sometimes shipments from there reach New York as early as April 1. The largest cherry trees in America are found in the foot-hill regions of Pennsylvania and Virginia. Trees are sometimes seen there that have trunks three feet in diameter, with a spread of branches of more than fifty feet. Such trees sometimes yield more than filty bushels of fruit at a time.

The Armiot. - All over the Eastern and Central States the apricot is almost an entire failure becanse of the ravages of the plum curculio. After many years of trial its eulture there has been almost abandoned, except by those who are willing to follow the jarring of the trees to catch the insects. Across the Continental divide, where this enemy does not exist, the apricot flourishes as well or better than anywhere else in the world. It is one of the profitable frnits from western Colorado to the shores of the lacific. California dried and sent to market in one year over $30,000,000$ poumds. There is also a great amome of apricots canned there every year, a large part of which are shipped all over the world.

Thes Quser. - Although some and unfit for eating from the hamb, the quince is one of our most delicions finits when eooked. No store of sweetmeats is complete without a generous supply of quince jelly. This fruit delights in a moist soil amil a eool but mot severe elimate. However, it succeeds very well over the main part of North America. Almest every home plot las a tree or two. In western New York many commercial quine orchards have been planted within the last twenty-five years, some of them being of forty neves in extent.

Amamean (imate Codene, - In bo department of Ameriean pomology has there heen more remarkable advanement tham in grapeogrowing. It was the belief of those who first began to grow fruits here, that the grapes of Canam, Porsia, Grecee, and lome, which were brought down through the ages to the vineyards of modern Enopin, would grow erfally well in dmeriea. One great reason for this belief was the abmulane of wild grapes of many kimes that were found from Nova Seotia to 'lexas.

One of the tirst things the poneers of eivilization did in New Englam, at Roanoke Island, und at Jumestown, was to make wine of the native grapes. The spamards in lioftalso mate wine of the wild grapes of Fibrida. After testing the wine and finding it inferior to that produced in their old homes, they were more determined to grow vineyards of the choicest grapers of Europe. The French established a vinuard of this kiml in Virgiaia, mud unother in sonthrorn Illinois; and William l'em did the same near Philadelphia in 1683. The most motable attempt that was made was lyy John Janes Dufour, a mative of switzerland. He came to Ameriea in 1596, and at once set about doing the wisest thing that he could have done, by first visiting and eritically examining the vineyards that had alrealy been started. He was not favorably impressed by what he saw, for the Emrouran vines han done very poorly, beeanse of some muknown disease or weakness that seemed to cause them to make but feeble growth, or gradnally dwindle and die. The canse has since been fond to have been the fungos diseases and insect pests that are peculiar to the eastem half of America. But Dufour thought the right varicties had not been tried, except a few that he found near llhilatelphia. From these he secured a start, and in 17!9 organized a stock eompany with $\$ 10,000$ in eapital, to plant a vineyarl, Henry Clay being one of the stockholders. A tract of 633 acres was selected near Lexington, Ky., and there he began work in the most enthusiastic mamer. He induced two of his brothers to come from Switzerland to join him, and they bronght other varieties of their best grapes. But after three ycars' trial he gave it up as a hopeless effort and turned his attention to the cultivation of our native grapes.

The begiming of suceessful grape culture in America may de said to have been made by lnfour, in his next or second attempt, which wis in 1802 , at Yevay, Ind., on the banks of the Ohio, and with a variety of the wild Vitis labrusen, or fox grape, found near the Schuylkill River before the Revolntionary War. It was at first called the "Cape" grape, from a mistaken notion that it had been bronght from the Cape of Gooi Hope. It was also known by several other names. Although this grape was the first of a very long list of native varieties which have made our country famous in grape culture, it has long since been entirely abandoned for better kinds. But the

ENTURY

n the hand, the 0 stere of sweetlly, 'This fruit However. it smemost every home nmereial quince 's, some of them
riem pomology rowing. It was it the grapers of wit throngh the well in America. grapes of many

Eew Bnglaml, nt c native grapes. Fiorida. After heir old homes, icest grapes of n Virginia, and me near Philawas ly Jolm cat in 1706, and e lone, by first ly been started. juen rines hand ess that seemed 0 and die. The minsect pests III thought the near Plhiladella stock cennay being one of exington, Ky., to imluced two brought other gave it up as of our native
de sail to have mis in 1802, at the wild Vitis e the Revolnmi a mistaken - It was also first of a very mous in grape nds. But the

vineyard at Vevay, planted largely of this variety, was the first really shecessful one in America.

The next forward step was the introluction of the Isabella and Catawbin. both having originated in Ameriea, not long previous to 1820 , although of unknown parentage; but, perhaps, as the results of accidental crossing between our native wild grapes and some of the foreign kinds. The Isabeila is supposed to have originated in South Carolina, and was brought from there by Mrs. Isabella Gibbs and planted in her garden in Brooklyn, N. Y:, where it came to the notice of William R. Prince in 1816, when in full bearing. He named it Isabella in her honor, and introduced it to the general publie.

The Catawba is supposed to have originated as a seelling hear the Catawin River, in North Carolina, but was not generally known until Major Jolm Adlum, of the District of Columbia, fomm it in bearing on the premises of in "s. Scholl, a tavern keeper of Clarksburgh, Md. He was at once delighten wich its gool qualities, and planted it in his experiment grounds at Georgetown in 1819, and introduced it to the fruit-loving publie soon after.

The next impetus to grape culture was caused by the intronduction of the Deleware and Concord. The exact origin of the Jelaware is not known, but it came to public notice about 18 Ba , through the efforts of Mr . A. Thomson asd ceorge W. Campell, of Delaware, O. It was learned afterwarls that the sane variety was growing in 1850, in the garden of a S wiss immigrant. Paul H. Provost, at Frenchtown, N. J. It may be that it originated at this phace from a chance seed, and that cuttings were thence carried to Ohio. It is evidently a cross between the foreign species and one of onr natives. and is to-day about the best of all the grapes grown in the Eastem States.
' j he Concord is a pure native seedling, produced by Ephraim W. Bull. of Concord, Mass., and tirst shown to the publie at loston in 18:3.3. It has proved itself to be the greatest blessing of all grapes that have ever been grown in America. Its thiftiness and reliability under all cireumstances are unequaled. It is not only good in itself, but it las been the parent of a sace of seedlings which have filled our vineyards, gardens, and markets with the movt delicious grapes, and at a very slight cost of labor or money. Whoever gathers or buys a basket of blue-black Coneorl or Worden, purple Brighton or opal Niagara, slonhld render a silent thank-offering to the memory of Ephrain W. Bull, who made their existence a possibility.

The first commercial vineyard of importance was planted by Nieholas Longworth, on the hills overlooking the Ohio River, abont ten miles below Cincimati, and it was largely of Catawb. Ma ay others followed his example, and from about 1830 to 1860 so groat an interest was shown that the hills bordering the Ohio for many miles were dotted with vineyards. lut n: dew and black rot devastated them and almost destroyed their usefulness. These diseases are now largely overeome by spraying with a solution of sulphate of eopper.

In northern Ohio, about Cleveland and Sandusky, and on the islands near the southem shore of Lake Erie, the Catawba was planted with much better suceess, owing, perlaps, to the climate not being so favorable to grape diseases. The lake region of western New York is perhaps more densely planted with grapes then any section east of California. Thousands of earloals of grapes of high quality are shipped from there every year. The
first really sueda anl Catawba, 20 , although of fal erossing le-

The Isabeilla ught from there n, N. I., where in full bearing. peral public. ar the Catawina til Major John the premises of once delighted ands at Georgeafter.
intuction of the not known, but Ir. A. Themeson fterwards that riss immigrant. ginated at this arried to Ohio. of our natives. tern states. im IV. Bull. of 1sim. It has have ever been eireumstances the parent of a markets with money. Whoorden, pmrple ffering to the ibility.

I by Nicholas

 11 miles below wed his examnown that the neyards. lint eir usefulness.a solution of
e islands near h much better to grape dismore densely usands of earY year. The

Southern States have awakened some what to the importanee of grape culture. some of the poorest sandy lands of North Carolina and Florida have been planted to vines and found to produce, when fertilized, excellent grapes. Texas is also a most productive grape region. Their earliness eauses them to find a ready market in the North.
But in all of North Ameriea there is no section where the grape flourishes with such wonderful success as in California and other regions beyond the Rocky Monntains. There the tenderest and most delicions of all the grapes of Franee, Italy, Persia, and Palestine ripen their luscions clusters beneath the glowing skies. The grapes of Esheol, I imagine, did not surpass those now grown in C'alifornia, Arizona, New Mexico, and ldaho. All up and down their fertile valleys and foothills may be seen great stretehes of vineyard after vineyard. The raisin indistry alone is immense: and the product is of such high 'quality and is produced at so low eost that the importation of Euromem taisins is becoming less eath yer:, and may soon be pratically at an end. Wir have already begun exporting our raisins to England and other parts of the world. Over $103,000,000$ pomeds, filling $50(0)$ cars, were shipped from Caliboria alone in one year. single elusters of grapes have frequently been grown in Calilomia that weighed from ten to tiftern pounds, and four or fice pound clusters are very eommon. Truly, America is a land of grapes.

Tur Bemars. - Ameriea stands atone in che popular use of beries. Exeept in the matter of gooseberries and currants, whieh are prther plentiful in some parts of Europe, and a few strawberries and raspberries there and in Japan, there are very few berries grown outside of Americal.

The strawberry was foum wild here in all seetions. The fruit was small but of most delieions flavor. A few of the varieties grown in the mother romutry were bronght over here, but they did not flomish. Abont 18:34 C. M. Hovey, of Cambridge, Mass., grew some seedlings of the old line strawberry, which is an offishoot of the wild strawherry of the west eoast of South America, and his introduction of varicties named Lovey and boston line marked the tirst step in our modem strawbery eulture. Next eame the Wilson, which originated about $18: 50$ on the grounds of John Wilson, of Albany, N. V. This variety really popularized the growing of strawberries, because of its hardiness and productiveness. Soon after this the Crescent was found at New Orleans, La. Other kinds were soon originated from seed by experimenters, and chance scedlings were fonnd coming up in all fruit-growing regions. It was not long until there were hundreds of named varieties of good quality and that bore abmodantly. Within the last deeade or two there have been humdreds more originated by the most skillful hybridizers using our mative species and the foreign ones also. Others just as good were pieked up wherever they chancel to grow from seed. Thas, we now have the most wonderful assortment of varieties of the strawberry in the wordd. They are early. medimm, anl late. The facilitios for shipping are so convonient that, now, it is possible to have strawheries in the faner markets almost every day of the year. from some seetion of our great comntry. In the flush of the season they are so eheap and abrindint that the poor can enjoy them along with the rich. From little garien pateses fifty years ago, and very small ones too, we have now come to grow them ly the thousand acres.

The raspbery is another of our delicious berries. At first our pioneers
were satisfied with those they could gather from the wild bushes. Following the same plan that was used with most other fruits, the Enropean rasjberries were brought over the sea and planted in the gardens of America. But they did poorly, and about 1850 our people began to plant the native varieties. These grew and bore well. Now we have hundreds of the very choicest named kinds, black, red, purple, aml yellow, early and late, and more being originated every year.

The history of the gouseberry is almost identical with that of the raspberry. The foreigr kinds, although bearing very much larger fruit than our native kinds, 'vere ruined by mildew. About 1845 Abel Honghton, of Massachusetts, grew a seedling from the wild berry, which was named Houghton, and from this eame another seedling, the Downing. which was originated at Newburgh, N. Y., some years later. These two varieties are now among our very best kinds. Sinee the beuefits of spraying with fungicides have been known, the larger and milder flavored English kinds are being grown with considerable success.

The backbery is found native only in America. It has been one on the most useful of all our wild fruits from the earliest settement of the comntry, and was used by the aborigines for centuries before. Until about 1840 there was not enough thought given to blackberry enlture to make the least attempt in that direetion, when Captain Lovett, of Beverly, Mass.: gave the name Dorehester to a chance variety, and distributed it. Swon after 1850 the Lawton was taken from its wild habitat on the banks of the lludson River. This variety was the first really good blackberry that was named and distributed. The kitatinny followed about ten years later, having been fonnd wild in the mountains of western New Jersey. At least two white varietirs, and saveral having pink berries, that were found growing wild, were named and sent ont. These novelties are yet cultivated by a few anrateur hortimulturists. It may seem strange to say that we have white and red blackberries, but it is a fact. At this date we have many kinds of later introluction, some early and some late, and of most delicious flavor.
lerhaps all Americans know that cranbery sance goes with Thanksgiving turkey. No country in the world has so many cranberries as North America. The hogs of Cape "od are fanous for this fruit, and the l'ilgrims of Plymonth colony knew of them, and servel them on their rustic tables. Now the witd marshes along the Atlantic are nearly all under enltivation, and the product has been increased many fold. Fully $\mathbf{1 , 0 0 0 , 0 0 0}$ bushels are marketed when the erop is good. The same is being done with the bogs in the vieinity of the Great Lakes. Cranberries grow in untold quantities on the marshes of Alaska.

Citmes Fruts. - When the Spaniards invaded Florida in seareh of gold they brought with them seeds of the sitrus fruits from the regions of the Mediterranean. There the orange, lenon, and lime were phanted in the genial elimate of our Southern borders. The fruit was carried hither and thither, and soon escaped the bounds of the cultivated areas. The forests in places were filled with wild orange trees, the most of which bore fruit of foor quality. When the tide of immigration set southward after the Civil Wiar, these wild groves were budler? to good varieties, and new land was cleared and planted with small seenlings. These were budded to good varie-

NTURY

ties in due time. Orange culture was soon a fixed industry in Florida. This inereased rapidly up to the time of the severe freeze of $1894-95$, when there were shipped over $5,000,000$ boxes. Since then the results of the freezing of the trees has greatly lessened the product, but it is steadily increasing again.

The lemon has attracted much less interest than the orange, but I have seen one lemon orchard in Florida of more than two hundred aeres, and there are many smaller ones.

The lime is but little called for, and is therefore grown more as a novelty than for commereial purposes.

The pomelo, by some misnamed "grape-fruit" is a very large, wholesome, and delicious citrus fruit that is beeoming quite popular where it grows, and in the northern markets.

OllaNGE OllClIAlld OF LIMAN PHELAPS, SANFOLDD. FLA.
In California the orange was first planted by the mission fathers centuries ago. The first real oreharl is said to have been planted at San Gabriel in 1804. Before the discovery of gold in that far-away region very few orange orehards existed there, and they were of small size. Up, to $18 \mathrm{I}_{2}$ yery little more than this was done, when the founding of the eolony at Riverside. and the fortmate introduction of the Bahia or Navel orange from Rrazil by our govermment, at this juncture, was the start of prosperous citrus culture on that coast. Now there are annually about $\mathbf{i}, 000,000$ boxes of oranges sent out of that State alone, and the amount is steadily inereasing. A large part of these are of the justly famous Navel variety.

Lemon growing is also becoming a great iulustry there. Orehards of one lundred acres are rather common, and some are fully five times larger. Over $2,000,000$ boxes of lemons were produced the past season.

The Olave. - Among the historic fruits of Palestine and southern Europe the olive holds a conspicnous place. Nunerous but futile attempts were
made in early times to establish it in Virginia and along the Atlantic coast, the climate there proving unsuitable. But in the warmer parts of California the olive is perfectly at home. The first olive orchard of consequence was planted by Ellwood Cooper, at Santa Barbara, in 187:, and in 1866 he made oil from the fruit grown on the trees. Now there are many extensive orcharls in many parts of the state. It is estimated that there are nearly $2,000,000$ olive trees now growing in that State. The oil and pickled fruit are steadily beconing popular in our fancy markets in competition with the foreign proluct.

The lis. - Very little is done in fig eulture east of California, although the trees; are not tender along the Gulf const, except in case of extremely severe winters. In California it is a decided success, commercially as well

OLIVE ORCHARD, QUITO RANCII, NEAR SAN JOSE. CAL.
as for mere pleasure. The past year dried figs to the amount of nearly $4,000,000$ pounds were sent to market, and the quantity has been constantly increasing for several years.

Tue Pinfarple. - Those who have never seen pineapples growing are apt to think they are producel on trees.. This is far from the fact. They grow on the tijs of stalks about two feet high. The plants have large narrow leaves that eluster at the gromd, from the centre of which these stalks spring. A few patches were planted on the islands near the Florida coast in 1860), but it is only about fifteen years since the first vigorons attempts were made to grow this delicions fruit in the United States. Florida is the only region within our country where the climate is sufficiently moist and warm for it to flourish. Along the east coast. from Rock Ledge southward, and on the west coast helow Tampa, are the most favorable sections. Many aeres are devoted to its culture there. Frosts damage the plants sometimes, but they soon recover. In central Florida, many acres are grown
lantic const, of California equence was S6 lie mide y extensive c are nearly biekled fruit ion with the
in, althongh f extremely ally as well

t of nearly constantly
ring are apt They grow rge harrow hese stalks orida coast is attemits orida is the moist :mal dge southle sections. lants someare grown
under sheds. These are made of frame-work, whieh is corpred with slats or boughs as a protection from frost. U pwarls of $3,000,000$ fruits of marketable size are now prodnced in Florida annually.

Otmen lisurs. - The date is just begiming to be set in the arid regions of Arizona and sonthern California, and with good prospects of suceess. Already many trees are in hearing, and the fruit is of excellent quality. The choieest varieties have been imported from Africa. The guava is being grown in the warm parts of Florida and California. The mango has been froited in the wamest parts of Florida and Califormia.

Nuts. - The sweet ahmond of southern Europe has long been tested in America, but nowhere with success exeept in Califormia. where there are aimond orchards of several hundred acres each. The lersian (wrongly

PLNEAPIPLE FIELD AT PAL.ML DEACII, FLAA.
called English) walnut is a great suceess in the richer lands of California, where orehards of majestic trees have been in full hearing for many years. Of our native nuts the pecan is the best of all, and it is about the only one that has so far proved worthy of cultivation. It is found in a wild state in Illinois. Missouri, and Nebraska, and sonthwarl to the Gulf of Mexico. The ervek and river bottoms suit it best, but it will do very well on almost any rielt land. On some of the hammoek lands of Floridia hundreds of aeres are now planted to the peean. The largest peean orehard :c that of F. A. Swinlem, of Brownwowl. Texas, which eovers over five hundred aeres, and is heing inereased from year to year.
Our mative chestnat is of better quality than the foreign kinds, but the muts are mueh smaller. The largest are from Japan, some of whieh are two inches in diameter. Many of these choice kinds have been imported, and others were originated from sepds, which are now heing planted in orchards. The best of the Emopean chestmuts have also been imported, and new kinds
have been grown here from the nuts. Nearly all of these varieties succeed in America, and many small orehards have been planted. Some have grafted sprouts from our native chestnut stumps and small trees with these improved kinds, and found them to grow and bear abundantly.

The cocoanut is strictly tropical, and can only be grown in the very warmest parts of Florida. It will not endure as low a temperature as the pineapple without injury. As a commercial venture its culture will probably never pay in America, but for ornimental purposes and as an interesting novelty it is ahready a success from Lake Worth sonthward. The waving plumes of this giant palm are a souree of constant delight to those who are privileged to see them. The huge clusters of nuts are indeed an interesting sight.

Surely we have a great and fruitful country, from the eranberry bogs of aretic Alaska to the waving cocoannt groves of Florida. This century closes and the new one begins with wonderful advances in fruit culture beyond those of a hundred years ago.
H. E. Van Deman.
ies succeed ave grafted c improved
n the very ture as the ill probably interesting The waving ose who are interesting
ary bogs of itury eloses ure beyond

Deman.

THE CENTURY'S COMMERCIAL PROGRESS

Commerchal aetivity has three phases, trade, shipping, and shipbuilding. In each of these three phases of commerce the nineteenth century has witnessed a remarkable progress. The expansion of both domestic and international trade has far exceeded the antieipations of those who lived a hundred years ago ; and the ageneies of transportation by water, the mmerous auxiliaries of commerce and the shipbuilding industries, lave undergone a technical revolution so eomplete, and with consequences so benefieent to our social and industrial life, as to make the commercial progress of the past hundred years one of the salient features of the history of the century. We shall better appreciate the nature and scope of the eommereial progress of the past hundred years, if we glance for a moment at a pieture of the commeree of the world at the close of the eighteenth century.
I. main features of the wohli's commerce: at the close of the REGHTEENTI EENTURY.
A hundred years ago, the volume of trade, both domestie and foreign, was necessarily kept within proportions relatively small as comparel with present traftic, beeanse of the slowness and high costs of inland transportation. Domestic inland traftie is direetly dependent upon fatelities for water and land transportation, and until the railroad came into use, some seventy years ago, only those countries having numerous navigable rivers or well-developed canal systems could extend their commerce much beyond the eities and districts adjaeent to tide water. In all ages since the world beeme civilized enough to engage in commeree, an overland tratfic by caravan or wagon has been carried on; but the amount of commodities could not be large, and the kinds of goods transported were necessarily limited to artieles of high value per unit of bulk or weight. Sueh an inland traffie as this did not establish the basis for a large coaztwise or over-seat eommeree.

At present, bulky commodities produced long distanees from the sea-ports comprise a large portion of international traffie, and supply the coast cities with the raw materials from whieh they manufature the artieles they contribute to swell the volume of foreign trade. When the means were wanting for the inland transportation of these bulky commodities, only a few countries, sueh as l'henicia, the Italian cities, Portugal, the Netherlands, the United Kingdom, and the British colonies in America, eould develop an important maritime commere. Burirg the past fifty years, the improvements in transportation have been such as to enable all industrial countries, inland as well as maritime, to engage extensively in the world's trade. Commerce has become general ; and eonntries like Switzerland and Saxony readily market their wares the world over.

The volume of foreign trade, as late :s a hundred years ago, was really
small, even in the case of the most important commereial mations. The imports and exprits of the United Kinglom in liow anomited to about

 about one tenth what it is now. At the present time the forecin commeree of the United Kinglom amoments to nemrly stoo for each inhabitant of the country.

The thirteen British eolonies in America and the original commonwealths of the Uuited states were all maritime States with navigable rivers, aud their industries, lmmbering, tisheries, production of food produets and twataco, called for the exchange of harge quantities of emmondities with the manufacturers of the home comitry, and with the tropical ishames of the West Indies. For their time, then, these states were large uaders. The statistical information whieh we possess of their commerce is magre, lant we know that the total trade of the colonies with the mother eomatry in 17.0 was alout
 trate of considurable proportions with the West Lubles, some with the Mediterranean combtries and Sfriea, and after the colonies beame itates, with the Bast Indies and the Orient ; lma in all probability the foreign tande of the Americans did not reach ten dollars per eapita until alter 17!on. At the present time, in spite of the wery rapid growth of promlation in the United States that has continuel throughout the nimeteenth century, our foreign trale is epmal to twentr-five dollars per person.

It is when the commeree of the cighteenth century is viewed from the standuint of the transportation ageneies by which it was served - the size, speed, and efticieney of the ships - that the contrast with present eonditions beemes most striking. Two hundred years ago, the 060 ships owned at London averaged 15 T tons. A ecntury ago, a vessel of 300 tons was still considered a large ship, ind as late as 1840 vessels of that size traded from the United States to India amd China. The Graml Turk, of $\mathbf{5 6 t}$ tons, built in 1791, was probably the largest ship, built in America up to that time. During the fourth decade of the nineteenth ceatury mamerons vessels of over 1000 tons were construeted, and in 18.40 the Great Britain of 3000 tons was orilered. In her day the Great Britain was more of a marvel than is the recently lannched Uceanic, of $\mathbf{2 s} .5(6)$ tons displacement.

When we consider that these small vessels in use a century ago took from a month to six weeks to eross the Atlantic, - their speed being abont one thirl that of the freight steamers of todiay, - we realize the great difference in the elliciency of the merehant marine of the present as cempared with that by which commeree was served in 1800. The efticiency of the ships, however, does not depend alone unom their size and speed. The eommercial anxiliaries which enable vessels to enter and clear harbors withont delay, and to lowil and unload cargoes quickly, - lighthouses, heacons, buoys, spacious wharves and ilocks equipped with mechanieal applianees for handing freight, - . . ake it pussible for versels to spend a greater portion of the time at sea. A merehant marine to-day has fully five times the efticiency that one with an equal tomuage had a century ago. We shall better see how this has been brought about, by brictl revirwing the terhnical revolution which has taken place in ocean maviguthon ilumg the past seventy years.

During the sole ships the ity. For stanch at builling woolen steam ar

There
the pre: sulustitu lution v of wine slowly; tive ex winicl monstro later, 1 steamb in will having depth.

11. the centiov's thehntcal hevolution in commeice.

During the firit fon decades of this century the wooden sailing vessel was the sole carrier of ocean trattie, and in the constrnction and opemation of sueh ships the Amerieans had special advantages and manifested peenliar ingenoity. For forty gears the American sailing elipper, whose fine lines mate it stameln and spedy, had been "the type amd model of excellence in shipbmildiug; ${ }^{*}$ but before the middle of the century the suprematy of the woulen elipurership had been destroyed, and the technical superiority of stemm ard irou had ireen demonstrated.

There are sin distinct ste ${ }^{\text {ps }}$ in the techancal evolution of the ocean liner of

a chippen ship.
the present day. - six changes whieh mark the epoehs in the history of the sulstitution of stemm and stefl for sail and wood. The first step in the evo lution was taken when the steam engine amd the paddle-wheel took the place of wind ank sails. Like most ejorh-making changes, this one was made slowly: indeed, it was preceded hy thirty years of hesitation and eonservative experimentation. Rohert Fulton, taking advantage of ideas and plans which he had obtained in Europe, produced his Clemont in 180.. and demonstrated the practieability of the steamship for river traffic. Five years later, Henry Bell of Scotland construeted the Comet, the first passenger steamboat built in Finope. a vessel only forty fect long, ten and one half teet in width, ami of fon horse-power. The Clemont was somewhat larger, having a length of $1: 00$ feet, a beam of eighteen fect, and a hold six feet in depth. She succeeded in making five miles an hour against stream. These
little vessels attraeted great attention, and the problem of construeting ships that conld eross the orean by steam power hegan to be studied. In 1si!!, the Savanalh was fitted with elgines anh erossed the Athatie, using hoth stom $j^{\text {nower and sails, but the vessel dill not prove a suceess, and her ougines were }}$ taken out the following year.

HOHERT FUITON. Indeed, it was not until 1833 that a ressel steamed all the way across the Athatic; and this ship, the Royal William. a Camalian craft of four or tive humbroll tons, was able to make the trip from quebee to Gravesend on the 'Thames only by stopping for coal at Pieton, Nova Scotia, and Cowes near Portsmonth, Englani.

The first steamships to cross the oeean withont recoaling were the Sirius and Great Western, which arrived in Ni.w York the same day, April $23,1 \mathrm{six}$, the former vessel having sailed from Lomdon aml the latter from Liverpool. This achievement on the part of these two wooten craft, neither one cilahe of earsing more than seven hmulred tons, created a great impression. The New York "Courier aud Enquirer" said, in its issne of April 24, 1835: -
"What may be the ultimate fate or' this exritement - whether or not the expense of equipment and furl will almit of the cmployment of these vessels in the ordinary packet serviee - we cannot pretend to form an opmion; but of the entire feasibility of the passage of the Atlantic by steam, as far as regards safiety, comfort, and dispateh, even in the roughest and most boisterons weather, the most skeptical man must now cease to doult."

The employment of steamships in the regular paeket service was assured in 18.93, when samuel Cunard founded the famous linglish line that still bears his name. and ordered four steamers of moderate size that cost betwren four and five hmorred thonsand dollars each. These, however, were woolen ressels, and it was not until $186 \boldsymbol{6}$ that the conservative Cumards constructed any iron ships.

The ernstruetion of iron ships for ocean narigation marks tle second innportant phase of the technical evolution of the past century's commerce. It hegan on a small seale about 18:30, and in 1837 an iron vessel, The Rainhow, of six hmulred tous was built; but the first large iron steamer was ordered in isto, and was the fumons Great Britain before referred to, construeted by Bruncl, the engineer who subsequently built the unfortunate navai monstrosity, the Great Eastern. The completion of the Great Britain, in 1843, was an important event in the progress of ocean navigation, not only beeause she
was five times fiet that 13 m propelling the

The substit phase of the subsequently of the screw : two humdred (ress of the A Britain.

The superio iron ships eor

adoption of i slowly. Inl? fore 1800 , reason why t was probably conservatism erin, finished and paddle-v 1853, about twenty-five 1 British-built United King

Ameriea w was so high.
was tive times the size of her largest iron predecessor, hat also hecumse of the fact that Bromel deeided, while building the ressel, to alopt the serew for propelling the ship.

The substitution of the serew instead of paldle-wheels represents a third phase of the technical evolution of oecom narigation, John liricsson, who subsequently built the famons Monitor, had demonstrated the praticability of the serew as a propeller in 1siof, and, there years later, the Arohmedes, of two humbred and thirty-seven toms, was fittel with a serew. It was the sueeess of the Archimedes that led Bronel to alopt the serew on the direat Britain.

The superiority of the screw over paddle-wheels, and the greater morits of iron ships compared with wooden vessels, have long been accepted; but the

THE CIERMONT, FI'I.TOX'S FII:ST STEAMBOAT.
adoption of iron as a material and of the serew for a propeller eane about slowly. Inleed, iron ship-building made little progress in Great liritain before 1850, and in this comintry wood was adhered to till mueh later. One reason why the English did not ehange to the screw and iron more quiekly was probably the great influence exerted by the powerful Cunard line, whose conservatism cansed it to hold to wooden ships until 1806. The Great Eastem, finished as late as 1859 , was an iron ship, but was fittel with both serew and paddle-wheels. Of the total tomage bnilt in the Unitel Kingdom in $18 \pi 3$, about twenty-five per cent was steam tomage and a little more than twenty-five per cent was of iron. At the present time three fourths of all British-milt vessels are steamers, and no wooden ships are built in the United Kingdom.

America was slow in changing from wood to iron, beeause the cost of iron was so high. We had wood in abundance, numerous yards for the construe-
tion of woolen vessels, and were the buiders of the best type of wooden
 rent of the tomage of the vessels built in this comatry was in stemmships, but only an inappreriable pertion was in iron vessels. The adherence of American ship-biniders and owners to wose is well illustated hey the aetion taken by the awners of the famons but maformate American Collins lime, established in Isti. The company begim, in Is.n), to rim four palatial stamurs, built without regard to cost, ind supplied with luxurions mpmintments, some of whish are rotained in vessels of the present day ; lat the compans" built the ships of wowl and proprelled them with padde-wherls. The grat Amerie:m ship-building firm, Willian Cramp os soms, fomuled in 1 s.m, did mot begin
 sels constructed was ome and a hall times the sterel and irom tomage. About twenty-six per cont of our merchant marine, foreign and domestic, is now made up of irom and sterel vessels.

The mext impurtant step in maritime progress, following the aloption of iron and the serew, was taken abont 18 F , when the emmpond engine came into genema use. Thomg the rompond engine had berin nsed on at suall vessel in France as carly as 1 se?, it was first extensively alonted as the result of the appid development in stem marigation which took place in the seventics. !n the componad angine the stram, insteme of leeng used in ony one eylinder in passing from the boiler to the eombenser, exerts its fore in
 This results in a great eromomy in the amont of fuel nsed. In the earlier marine engines the pressure of stemm in the boilers was thirteen pounds to the sumare inch, and the consmuption of coal per horse-power per home was five and one half poums; whereas, at the present time, a pressure of two hundred pounds per spuare inch is mantaned, and the fine used has been reduced to less than one and a half pomads per hour for each imblieated horsepower.

Ten years after the compond engine came into general use, the cheapened cost of steel made it possible to adopt sterel in the place of iron in the eomstruction of hulls. This may be regarded as marking a fifth epocl-making step in the progress of commere ; beanse the steel ship, was stronger, lighter, and able to carry more eargo than iron vessels of the same sive. The substitution of steel for irom in the British yards was made rapilly. In 1879, only ten and a quarter per eent of the tomage constracted on the Clyde was of steel ; but in 1ssi) the per cent had risen to ninety-seven.
buring the past twenty years there have been many improvements made in the eonstruction amb apmintments of ships; but the more importani changes have consisted in dividing vessels, by means of bulkheads, into seveal water-tight compartments, aml in substituting twin serews for the single screw. The Immans phacel twin serews on the City of New York in 1888, and since then their ase lats become general on the larger ocen liners. The twin serews add somewhat, though not greatly, to the speed of vessels; but they remder ships mush safer amd less liable to le disabled. An ocean steamer with twin screws, and water-tight compartments ean suffer any one of the common accidents-sueh as breaking of one of its shafts, losing one of its screws, having its rudder damaged, or one of its engines give out, or hav-
ing its side punctured ly eollision-without heing disubled. Although ocean thavel still has its dangers, the risks at the present time are fiar less than they were a half or a quater of a contury agn.

The techical progress of pommere dinting the ninoternth renting is well summatized hy Mr. Henry Hiy in his lowk on the History of North Athantic Stean Navigation, writen in Jinh. He says:-
-The Comet of 1 Iste has multiplied into twelve thonsabul stemuships, measuring over sistreol million tons. . . . Her twenty toms have berom multiplied into a ship of righteren thonssand; her forts feret to six handred mad nincty-two feet: and her four horsho power to thirty thomsimb in a single ship. Svmington's four-inch eylimber has grown to one humbed ame twenty inches; the pressure of steam in the lwilere has inereased from thirteen pounds to two hum-
 dred poumds on the spluare inch; the two humbred and forty-three knots, the maximum of the Great Western in 1s:3s, to five handred and sixty; and the average speed from 8.2 to 22.01 knots, while the consumption of coal has acereased from about tive and one half to one and one half pomuds por indicated horse-power per homr."

The century's naval technical progress is epitomized in the White star liner, the Geranie. The length of this mamoth vessel is cyer an eighth of a mile, bring 70 g feet, 6 inehos. 131 feet longer than the Great lastern was. When loaded. the Oceanic draws 32 fert, 6 inehes of water, and on that draft her displacement is 28,500 tons. The figures for the Great Eastern were 25 feet, 6 inches, and 27,000 tons. The eapacity of her engines is 28,000 horse-power, or two and one thirll times the capaeity of those in the Great Lastern. The pressure in her boikers is 1 !e2 pounds to the square ineh, or ten or twelve times that in the boilers of her famous predecessor. Though not built for speed, the Oceanie can arerage boo miles a day, or sixty per ecnt more than the Great Eastern did. The Oceanie will aecommodate 400 first-elass passengers, 300 second-elass, 1000 third-elass, and a ship's company of 394 , making it total of 2104 persons. In this regard, however, her figures are fortumately less than those of the (ireat Eastern, for that vessel was designed to carry 4000 persons, besides crew. These figures regarding passenger aceommolations indicate in a forceful way the great advancement that has been made in the comforts of ocean travel during the past forty years.

IIt. IMIHOVENENTS IN COMMERCIAL AUXILIARIES.
The progress of commerce during the nineteenth century has been promoted not only by the evolution of ships of great spreed and capacity, but also by the improvements made in mumerous other auxiliaries of commerce. Chief among these aids to commereial activity have been the betterment of natumal waterways and the construction of ship-canals, the improvements of harbors, the laying of eables, and the extension of international lanking facilities.

The improvements of such rivers as the Rhine, Dambe, Hudson, and Mississippi, and of such natural waterways as the chain of Great Lakes in the northern part of the Uuited States, are eonspienous instances of the inamer in which the canalization of natural waterways has heen mulertaken for the promotion of trafic. That part of the Rhine River tratfie which passes Emmeroh and Mamheim amonted to $2,800,010$ toms a year from 1 si : to $18 \pi 5$, but by 1895 it had inereased to $10,300,100$ tons. The tratfie on the rivers of the Mississippi Valley, according to census statisties, increased from $18,946,529$ rons, in 1580 to $: 3,48 \pi, 046$ tons, in 1889: and siner that yar the increase must have been considerable. The effect of the impowement of waterways upon commerce is most strikingly siown in the ease of our fireat Lakes. In the seventies, the riemands of tratfie were for channels amal harbors 12 feet in depth. During the next decale it was necessary for the Cuited States to imrrease the depth to 1 (;) fert ; amd in the nineties the chamels had to be made deep enough to aerommondate vessels of $\mathbf{2 0}$ fert draft. At the
 ally. During the year $189 s$ the freight that passed the locks at the saait sit. Maric equaled $21,000,000$ tons, two and a half times the tomage passing the Suez Canal.

During the last third of the uinpteenth century six important oeean shipcanals have been opened: the Sine, opened in 1 s (6); the Rotterdim Camal. in 18i2; the canal comeeting Amsterdim directly with the North Som, 1s:7; the camal aeross the Isthmus of Corinth, 1803; the Manchester Canal, 1594; and the Baltie or Kiel Canal, finishen in 1S:)., The Panama Canal was begon in 188:, ant the construction of the Nicaragua Canal was eommenced in 1889; but the date of the completion of these most important works is still problematical.

In the improvempnt of its harbors every govermment has ivea active. Thirty years ago a dejth of 93 fert was considered ample, but after 1880 it beeame neeessary to adopt 26 feet as the stamlard. During the past fise years the larger seaports have required harbors with 30 feet of water in order to accommodate the largest ocean vessels, and the limit has by no means been reached. The United States Government has just recently, 1849, anthorized the drepening of New York harbor to 35 feet. As nuted before, the Oceanie can be loaded to a diaft of $\mathbf{3} 2 \frac{1}{2}$ feet.

The docks of the great seaports have heen improved at a cost of mavy millions of dollars. As an illustration of this Liverpool may le cited. The eity's position gave it great commercial prossibilities, but a troublesome bar at the month of the Mersey, and a tide with a rise and fall of thirty feet made the construction of ite harbor and locks a diffieult matter. The prob-
s.
has been procapacity, but of commerce. betterment of improvements ional hanking
lson. :mind MisLakes in the of the inamer taken for the which passe's ur from $1 \mathrm{~s}: \mathrm{z}^{2}$ trattic on the rereased from ree that year provement of of our Cireat s and hariors r the C'nited chamels had raft. At the (f) toms ammthe samit \$t. e passing the
t ocean shiptan Cimal, in h Sea, 18:Canal, 1894; a Canal was commenced ant works is
bean active. fter 1880 it he past five ater in order means been , authorized the Oeeanic
ost of masy eited. The blesome lar f thirty feet The prob-

TIIE OCEANIC, 18!9. LAAGEENT SHLE AFLOAT.
(Tonnage, 17,000; length, 005 ft. 6 in.; breadth, 68 ft. 4 in.)
lem was solve! by the construction, wiler pulbic control, of a large number of commolious set doeks with gates which are opened only a few homs a day, during ligh tide. These harbor improvements have made possible Liverpool's phenomenal expansion in commerce dincing the past fuarter of a century, an increase that has given the city third place among the seaports of the world, with an ammal tomage of vessels entered and cleared of 16.(Мн),(МК) tons.

The achievements of Manchester during the past dreade are even more no able than those of Liverpool. Manchester is sitnated on a small stream thisty-fise milas from the oceam; but she has become a seaport for the largest ocean ressols, and has docks and whares equipped with the mest improved applimess. Her dock-shords, for instance, are twin structures, three stories in lieight. and the arrangements for handing freight are such that goods are taken directly from the ships to any one of the three stories of the sheds.

In the United States, the govermment and private corporations are rapilly improving the harbor facilities of our ports. During the past decade the Gulf ports have received especial attention, with the result that a large part of our export trate is now mormg through the Gulf harbors. As an instance of what private corporations are doing, mention may be male of the fact that a railway eoporation has recently completed a wharf in New Orleans that cost S : (hon,000.

Besides these harhor improvements, the erection of more and letter lighthonses and signals has made the approaeh of vessels safer. The United States Weather hurean has aiso dom mueh to lessen the dangers of navigation by its weather foreeasts and its warnings of approaching storms. Althongh the lharem was established only twenty-nine vears ago. and in a amall way, its services have so increased and in such a practieal manner as to have come to he regardel as indispensable be the commercial interests.

The first suceessful trans-Atlantic cable was laid in 1866; at the present time there are 150,000 miles of submarine telegraphs in use. The eables now used for commereial purposes mumber 320 and include alont 150,000 miles of lines, the other 20,000 miles being short government lines connecting forts, batteries, signal-stations, and lighthonses. The total cost of these cables has bern ibout $5: 50,000,000$. The influence of the eable upon commerce has been so great as to revolutionize the methods of international trade that prevailed a ceatury ago: indeed, oepan telegraphy has made it no more difticult to effect international sales and purchases than it is to make domestic exchanges. With thirteen eables in successful operation between the United States and linrope, we have had no difficulty in buiding up an immense trade across the Atlantic ; but, with no trans-lacific line, we are experiencing much dith alty in securing a large place in the trade of the Orient. Of course the development of our commeree with the East is conditioned by numerons other factors; but no one doubts that the construction of the proposed lacitie cable will be of assistance to our commercial progress in the Orient.

Among the other agencies that have promoted the progress of eommerce. mention should be made of the extension and improvement of international credit systems and hanking facilities. In this regard the Conited Kingrlon leads the nations of the world, London being the clearing-honse for a lange
part of the world's trade. Germany, France, and the Netherlands have also developed good facilities for intermational banking; but the United States hais not yet done so. Our merchants are still obliged to settle most accounts through foreign banks, but it is probable that our recent acquisition of foreign possessions will cause us to establish some system of international bauks.

iv. expansion of international thade du bing the centuiy.

In the introductory paragraph of this paper it was stated that the commercial progress of the past lumulred years is one of the salient features of the history of the century; and, in contrasting the commerce of a hundred years ago with that of the present, a few figures were cited that indicated in a general way the growth that the foreign trade of Great Britain and the United States has enjoyed. The expmsion of international trade during the century merits fuller presentation and analysis.

Aceurate figures for the whole world's trade are not obtainable for the earlier years; and it it were possible to present comparative statisties of the international trade of the world, as a whole, the comparisons would not be so instructive as those whieh present the progress of the commere of those countries which rank highest among trading mations. Accordingly it will be most profitable to contine our statistics and analytical study to the commerce of Cireat Britain, Germany, France, and the United States.

The progress which the commerce of the United Kingdom has made during the contury is shown by the following table, giving the imports, exports, and total trade for the years 1800,1839 . 189%, and the ammal average for alternate cquinquemial periods between 185π and 1890 .

TABLE SHOWING GROWTH OF COMMEREF OF TIE LEITED KINGDOM.

During the first four decades of the century, the growth of the commerce of the United Kinglom, though considerable, was not rapid. - the figures for 1834 showing an inerease of $\mathbf{i} 3$ per cent over those for 1800 , - but during the fifth, sixth, and seventh decates the progress was phenomenal. The value of the exports in 1873 , as compared with $18: 3!$, shows a gain of 379 per cent, and the total foreign trate increased nearly 450 per cent; that is. it was five and a haif times as much in 1873 as it was thirty-four years previous. Since 1880 , the quantities of imports and exports have largely inereased, but the fall in prices has been such as to make the increase in the total value comparatively small.

The commerce of the German States during the nineteenth century did
not grow very rapidly until after 1850. During the early part of the century the great Continental wars rendered commerce nearly impossible. leare was restored in 1815, but the German states had neither political nor commercial unity. Each State had a tariff which applied against all other States. Gradually a Kollverein, or enstoms nuion, grew up, whieh, by 18is. had come to include all the German States except Anstria, Holstein, Mecklenburg, Lamenburg, and the three IIanse towns, Hamburg. Laibeck, and Bremen. In 186; the North German Felleration was organzed, and this paved the way for the formation of the German Empre in 1 sith. The Zollverein made commercial progress possible, and political unity gave it a great impulse.

The statistics of the German trade before the establishment of the Zollverein are very meagre. A (ierman anthority, Otto Huebner, estimates the value of the total import and export trade of the German States to have been $\$ 309,019,200$ in $18: 00$, and $\$ 564,98 s .200$ in 1850. The value of the imports of Hamburg, the chief port of Germany, rose from an ammal aver-
 ing the half decade $1866-$ io. The growth of Germanys foreign eommeree during the past twenty years has been phenomenal, and her trade is now second only to that of Great Britain. In 1881, the imports werr valued at $\$ 704,904,0 \% 6$, and the exports at $\$ 70 \pi .!98,000$, being slightly more than the imports; whereas, by 1s90, the imports hat risen to $\$ 98(j, j+41,000$, and the exports to $8 \mathbf{8} 92,600,000$, a sum nearly a hundred million dollars less than the value of the imports. The foreign trade of the country, particularly in imports, has continued its rapid growth since 180). the figmes for 1 s: 0 being, imports $\$ 1,231,756,862$, ame exports $\$ 9 \pi 7,47,198$, a total trade of $\$ 2,209,204,000$.

The foreign trale of Franer at the begiming of the nineteenth century consisted of $\$ 80,500,000$ worth of imports and $\$ 99,000,000$ of exports. a total of $\$ 139,500,000$. The Continental wars, up to 1815 , were even more disistrous to French trade than they were to German; but with the restoration of peace, eommereial progress hegan, and between 1815 and $18: 31$ the total trade increased from $\$ 11!, 200,000$ worth to $\$ 168,152,000$ worth. The growth by decades since 1830 has been as follows: In 1840, the value of the total foreign trade was $\$ 278,383,200 ;$ in $18: 00, \$ 358,748,400$; in $1860, \$ 80 ., 6659,200$; in $1871, \$ 1,242,665,600$; in $1880, \$ 1,640,712,300$; and in 1890. $\$ 2,003,057,316$. These figures show that the rapid expansion of French commerce began about 1850. The highest point was reached in 1891 ; but since then there has heen a slight falling off in the total traile, lue to a rlecrease in imports. In 1891, the value of the inports was $\$ 1,15 \pi .973 .310$; m 189π, $8991,5.2 \mathrm{~T}, 500$. The exports were valued at $8900,839,130$ in $18: 01$; and at $\$ 92(0,998,300$ in 1897. The total trado for these years was $\$ 2,0$ i $6,812,440$ for $18: 1$, and $\$ 1,918,535,500$ for 1897 .

During the first quarter of the century France had a strong balance of trade in her favor: that is, she sold more commodities than she bought; and betwem 1825 and 18.40 the exports and imports about balaned each other; but since that date, with the exception of the years 1871 to 1875 , when the huge war indmonity was paid, the balance of thate had been mafivorable, as would naturally be expeeted of a country such as France, whose people are extensively engaged in mamnfacturing. France, as well as the United King-
the century le. leace il nor comher states. , had come eklenburg, remen. In d the way rein mate yunlise.
if the Zollimates the os to have lue of the amal aver0, tio durcomulere nle is now - valued at e than the 0, and the less thiun artienliarly for 1 s 9 : 1 triule of dh century its, a total rore disisistoration of total tracke growth by total for:99,200; in 13,55,516. ree began hen there 11 imports. 1,5:37.:50). r9s,300 in 18:11, and
ralanee of ught ; and eh other; when the orable, as wople are ted King-
dom. Germany, Belgium. Switzerland, and other European comntries, imports raw materials and fool in large pumtities.

The decline in the value of Freneh trade, though due to falling prices rather than to a decrease in the quantities of commodities, hats given the Fronch people much coneern. It is not probable, however, that this deeline is due to permanent causes. The population and industries of Frame have not reached a stationary stage ; they are going to increase and canse a natural growth in the comatry's foreign commeree. The commercial progress of France, however, can havdly be so mpid as that of Germany and the United States. These are the commes whose commercial vitality is strongest, and of these two comontries, the United States possesses groater natural resources and larger possibilities, industrial and commereial. The progress of the commeree of the United States merits a somewhat closer survey than has been given its three leading rivals in trale.
V. THE TRADE OF THE CNITED STATES DUBANG THE CENTCHV,

The ceonomic progress of the United Sitates during the past humdred years is most elearly indicated by the growth of its foreign and domestie commores. Being a new comitry, busiol with oreupying and developing our large territory, our domestic emmarre has been of ammons preportions. With nearly two humbed thonsam miles of railroals, comprising four ninths of the total railway mileage of the world, with our chain of the (ireat Lakes and our admimble system of mavigable rivers, it has been possible to exploit our natural resourees on a large seale, and to de velop an inland traffie several times the volume of our foreign commerce.

Gur international tralle. however, althongh smaller than our donestie trattic, has been large thronghout the comatry, has grown rapidly, especially since the year 1850. the perion of the Civil War excepterl, and is now increasing in such a mamer as to give our foreign rivals mueh concern. The progress of our foreign trade fluring this century is shown ly the following talle containing the statisties of the value of our merchandise imports, exports, and total foreign trade for each tecade, begiming with 1790.

TABIE SHOWING IMPORTS ANH EXPORTS OF MERCHANDSE BY DECADES FROM 17010 TC1 18:18.

During the first half of the century, the expansion of our foreign trade was not especially rapid. The Continental wars, lasting from 1 and to 1815 , and our own war with England, from 1s12 to 1815, interfered considerably with international trade. Probably our tariffs of 1816,1824 , and 1828 had the effeet they wore intembed to anomplish, and restricted somewhat the volnme of our loreign ommares. Tha chicf reason, however, why our thate
 that time that the means of inlam tramsortation beame developed sutticieatly to make possible a large domestic tatic. When omr central West was ahle to exchange commonlities on a large scale with the seaboard, then onr foreign emmeree began to inerease rapindy.

The growth of onr imports was very rapid for the period of fiftern years,

 however, have inemased in a phemomenal manner during the past decade. Prion to 189 , the highest point was reached in $15: 9$, when the valide of the
 180 S (the ofticial yar moling June 31). the valne, ats shown by the foregoing table, was $\$ 1,210, \underline{2} 91,913$. In conserpurne of this great increase in our exports the total forrign trade of the Cuited States has not decreased in value during recent years, althomgh there has been a considerable fall in prives and a large falling off in our impurtations. Our total trate, during the fiseal year 1s: 1 , was much langer than it was in 1s90, and fell only $\$ 10,000,060$ short of the value rearherl in the reoordbeaking year of 1 sate. The calemar year tsos shows a largor trade than has been shown by any

The lealing indentry of the l'nited states being agrioulture, our exports consis: largely ef varions prodncts of the farm. In 1 sas the exported agri-
 of our total sales abroul. In spite of these lange figures, the prepouderance of agricultural over other probluts is heing redured with eonsiderable rapidity by the growth in the exportation of mannfatures. Before 1 sith our exports of mannfirtures were less than S100, (MOO,OOO a year: whereas, in
 ports comprised 83.25 per cent of our expents, and manfactmes 13.4 fr per cent; and in the calembar year 189x, a year of exaptionally large foreign

 one fourth of the total. The year 1s!s is a motable one in the histury of American manfactures, for it was then, for the first time, that we sold to foreigners more of onr mannfactures tham we bought of theirs.

A table showing the total foreign trale of the United states from 1789 to 1898, the first eleven decades of our natimal existenee, has reeently been prepared lyy the Burean of Statistics in the United States Treasury Department. It shows the total imports and exports of merchandise and specie, and on which side of our trade account the grand balance comes.
reign trale 93 to 1815 , msiderably 1 1s:s hat rewhat the y our trade mitil about oped suffintral West sourd, then
teen years, ($\mathbf{i}, 400,92212 ;$ Ir exports, ist tlecalde. line of the 56 , and in - loregoing se in onr ereased in hle fall in made, dur1 fell only r of $1 \mathrm{~s}!\mathrm{y}$. sn by any III exports xiteol agri4 per cent onderance hle rapial1siti our herras, in ltual ex13.48 per le foreign less tham r cent, or histary of e sold to
h 1 in 9 g to itly been - Departrl specie,

TABLE SHOWHNA TOTAL THALE OF THE LNITED STATES 1:89-1898.

The talle shows that we have exported nearly thirty-one hitlion dollars worh of commodities, - about a billion dollars more than we have purehased. It also shows that we have sent out of the comitry $\$ 1.460,4733.2(61$ more of the precions metals than we have received. Our exports of merehambise and gold and silver combined exceed our total imports by the large sum of s.ande. 14.45%. If the statisties of our imports and exports for cath year since 1 BSt be consulted, it will be fomm that daring the eighty-seven years preceding 18 Bif there were hat sisteen gears when our cxperts of merehandise exereded one imports. The babare of tame was mearly alwass "mblavomble," Sinee 18 itis howeva, the balane has nearly ali"ys heen on the other side, there having been only three yars when our exports did not exared our impurts.

In return for semething, we have given foreign comtries nearly two and a half billion dollars worth more of commodities and precions metals than we have received in retum. A part of this large sum. possibly oue fourth. has beon paid to foreigners for treights on onr imported commorlities, and we have also spent large sums in toreign travel. The chief reason why we have exported more than we have imported is, that we have been borrowing foreign capital to nse in eonstructing raiboals and fartories and in developing our farms and mines. Prior to $15 \% 6$, we received $\$ 1,0 \$ 1,339,912$ more than we exported; we acemmatated a large foreign debt. Since 18ifs, we have contimued to borrow abroad ; but we have been able to liguidate a part of our former debts, and also to exchange large amounts of commolities and precious metals for eapital ; for, since 15 zi , our exports have exceeded our imports by $\$ 3,517,0$ m, 6 in . It our present large excess of exports over imports continues, we shall soon beeome a craditor nation with large sums investerd abroad.

The history of our foreign trade is highly gratifying to our national pride; our achievements have been signal, well-nigh continums, and have been more marked during the latter derades of the century than at any previous time. The history of the American marine, however, presents a somewhat different pieture.

In colonial diys maritime industries held an important plaec. The location of the eolonies anjacent to the ocean, their dependence upon the mother country for mandiactures and upon the West Indies for tropical prothets, thetir hed of foreign markets for their timber, tish, tobawe, and food products, and their abmulant st.pply of lumber for shiphuilding, all tembed to make them a seataring people. This fomblass for the sea was espectially - tence in New England, where the retums of agriculture were rehatively , .t. . The long Revolutionary Wiar cestroyed many ships ant interfered ictionsly with nean enameree, but the struggle gave the colonists what was of more value than ships, - a spirit of venture and hardihood. Handreds of ships and thonsands of semen enguged in privaterring, and shen the war emed the maritime instinets of the Amerieans were stronger than they had Inere when the deelanation of political and commereial independence was deelared in 1706.

The imberility of the general government mader the Artieles of Confederation and the restrictions phaced upon interstate traftic prevented any considerable maritime proress betwen the lane of laris and the inanguration of a truly national govemment meler the Constinution. Sint a stable government, somme cerlit, ant miform national laws for the regalation of commeree gave the marime instimets of the Amoricans a chamee to assert themselvers. and the tommege of onr ships grew bapiily larger. On tomage registered for the foreign trale was only 193.s!93 tons in 18S! ; ly 170.5 it hat grown to

 a growth as this in twenty gears, from sueh small beginnings, was truly. remarkable.

The American ships som erowded most forrign vessels out of our commeree. In 1790 we curried only 40.5 per ecnt of our imports and exports: but by 1795 we had seaured 90 per cent; and. with the exepution of a short period chring and immediately following the Wiar of 181?, it was not till fifty-two years later that as much as one furth of our formign trate was earriet under foreign flags. Moreover, we unt only carried our own comamere, but ..e also entered largely into tha carrying tate of other combtries. The great Emropan war crippled the commereial activities of Europen comeries. and made it basier tor our ships to gain control of our own commerre and to secure employment as carriers for foreign merchants. During the fifteon years from 1703, the year of the outhreak of the Eiropean: war, to 180s, when the blockate of European ports and the capture of American ships aml seamen led us to attempt to prohilit our ships temporarily from engaging in foreign trade, on' murchant marine rose from a position of obsenrity ${ }^{\text {on }}$ a place of great prominence on the high seas.

As long as ocean commerce was earried in wooden vessels. the maritime interests of the United States continned to prosper. The War of 1812-15. the panis of 1819 , and the rompetition of foreign vessels after the restoration of peace in Europe, gave our marine a setback, so that it was not unt:' 1.47 that our tonnage in the foreign trade exceeded the fignres for 1810 ; but during the period of fifteen years, from 1846 to 1861 , ous tomage increased
10) per cent. When the Civil War, which proved so disastrons to the shipping interests of the United States, broke out in 1861, our tonnage registereni in the foreign trade equaled $2,496,894$ tons, - the highest print it has ever reached. The American sailing elipper was for nearly half a century ate mistress of the seas. As J. hi. Soley says: "It was in these ships that for nearly half a century not mily the largest freights of the world were carried, but the tinest and most profitable as well. Merehants lanituer valuable cargoes to export wonh wait for the sailing of a favorite clippers, and merchants with goons to import would instruct their correspomlents to wait in like mamer." As late as 1 sion the higher grades of commentities were almost always shipped in the stamh and speedy imeriem elipper ship.

Since 1stil the Amerienn marine in the foreign trade has played a role of drereasing importaner. Three canses aceount for this. Alant the middle of the century onv commercial rivals hegan to substitute iron ships for wonlen: lat we were wot able to adogt the better material in the constraction of our ships lecause of the high cost of iron in this comertry at that time. Great hitain could buihl the iron ships much cheap \mathbf{r} than we conld, and she som began to displace us in the carrying trade of the other comntries. Ant it was not long before she began also to carry a large share of our own foreigh conmeres.

The second canse for our maritme decline was the Civil War. In imi
 land fallen to 1. issi.int 'ms, a loss of over a million tons. During the war peried, nearly sth, (ift tons of our shipping were sold abroad: 110,00\% tons wre captured by Confederate eruisers; and other casmalties occurred. of cuurse there were no ships built for our merchant marine during the stormy years of the war.

Why. it may be asked, did we not restore our ships after the war and regain our former proul place on the high seas? For the simple, though possibly unsatisfying, reason that we did not find it profitable to do so. Capital is invested where the prospects for protit are best, and the indueement to put money into American ships for the foreign trade was not strong. It still cozt mere io build ships in our country than it did in Enrope; and the expenses of operating them when constructed were greater. Moreover, our rivals had gotten pressession of the lion's share of the world's carrying trade. and would not release any portion of their business without a keen struggle. At the same time the American capitalist was offered many opportanities for the anvestment of his property in lomestic enterprises. During the quarter of a rentury which followed the war, we devoted our energies and capital to building our railroads, opening the West, exploiting our mineral anel forest resonres, and builling the mills and factories whose products are now rapidly entering foreign markets in all parts of the world. Americas economic activities were industrial rather than eommercial.

The result of these general causes has been the decline of our shipping in the foreign trade from two and a half million tons in 1861 to less than three quariers of a million tons in 1598 ; but it seems that the low-water mark has been reached and that the tide is turning. The man who writes the history of our merehant marine on the high seas during the first half of the twentifth century will, in all probability, write a record of rapid progress.

We have alroaly made murh headway in sulastitutiug sted for woolen ships; and Ameriea's formost iron mannaturer, Mr. Andrew Carnegie, says that steel ships can now be built as cheaply on our Athantic eoast an '..ey ean be luilt on the Clyde. Furthemore, the oppormities for insestment in domestic industries are beroming fewer and less alloring, and there are gool rasons for thinking Ameriean eapitalists will be disposed from now on to put their ventures in slijps to sail fureign seas.
The attitude of American mpitalists, however, will depend very largely on the maritime poliey adopted by the United Ntates. That poliey shonh munestionally be as likeral as the poliey adopted hy our rivals in commerre. Whaterer difforemes of opinion may righty exist as regards sperifie measures for the restomation of the Ameriean marime to the high seas, all partios shouhd agree as tomehing the justice aml aceosesty of treating our maritime interests as gemeronsly as Great Britain deats with the owners of her mighty marine.

Our domestio marine being fire from foreign eompotition, has had a pror sperity as great as the adversity of our foreign marine. The present tomage
 sine the Civil Wial having beron nealy a million tons. The tatlie on our

 during a decale having been nearly so fier eatit.

It is hardly monessary to remarlk that the increase or derease in the eflion ney of a marine during the last few deendes is not monsured by the growth or deeline in the tomage statisties. The modern steamship, aided hy the may commereial ansiliaries that faeilitate it in mereiving and discharging its cargo, is a much more chlicient tamsportation agent tham was its smaller predeepssor propelled by sails, and londed amd mulowled mainly hy luman labor. Our present domestic marime of f,001,000 tons is at heast twice as effeetive as was the domestie shiphing of $3,000,0000$ ly which we were served a genemation ago.

VIf. AMEHICAN shlfuldimst.
One great aid to the achievement of maritime groatuess is a strong shipluilding industry, and every mation with eommereial aspirations ombators to establish the husimess uma a sure foundation. For some eomutries, as in the case of the United Kinglom, that is mueh easier than for others; and that is we reason why Groat Britain has so easily succeded in maintaining her phace as mist ress of the seas.

The business of building ships in the Vnited States. to be used in foreign trade, has passed through a golden age of trimuphs, followed ly a perion of derline and discouragement, and it is now entering \quad upon an remeh of revival. The gohlen age eame in the days of woonden vessels. It hegan in carly eolonial.times and lasted matil the middle of" this century, whel the world began to buy iron slips of the United Kinglom. The magnitude of our shiphimiding industry at the midill of the minoteenth century is indieated by the fact that during the decale loginning with 18.0 the tomage built in our yaris equaled $3,988.372$ tous, an anmal average of mearly 400,000 tons. During the three years $18: 5-56$ we constructed over a million and a half tons.
wlen ships; , says that t. :.ey can estment in re are goonl now on to
ery largely licy shomld commerese weritic menall partios or maritime her mighty
hand al probr ont tomage the prorion thic on onr es. wilh :a consists of lhe growth
ase in the rod by the ship. atioled g amid dis1:111 was its mainly by is at least which we
trong shipendeavers tries, as in thers; : allul naintaining
in foreign a perionl of of revival. early coloorhl luegan shiphniluor the firet our yards *. During

steamer campania of the ci ahid lise.

The deeline in American shipbuilding set in sharply after the Civil War, and, in spite of the continued growth of our olomestie marine, the tomage constructed by American builders steadily declined until 1886, when only 05,453 tons were built. The canses of this decline have lien stated in what has been said regarding the sulstitution of iron and steel vessels for woolen. The period of deeline seems now to be sately passed, for we are mumally
 progress in the mear future.

What is more indieative of progress than the inerease in the tomage construeted is the growth in the pereentage of stramers and irom mid stem ships huilt, as compared with the wooden sailing ships turned ont. During the

 mande is progressing with a fair degree of mpidity. At the prosent time one half our tomage consists of steaners ; but our pereentage of iron anil steed is still small as combared with other eomatries. User serem tenths of our tomage consists of woulen ships, whereas our chiof commereial rival has pratically no wowlen wissols whatever. Only i per cont of the Fremeh marine consists of woonden ships, and in the case of Ciermany loss than io per eent.

The ontlook for irou amb stom shiphoilding is so promising that a rap ind iurverse in iron and steel tomage is mertain to come. Largely through the inthence of the reeonstruction of our mary, mumerons large phats for the construction of steel ships have bean establishem at Bath, Ihiladelphai, Wilmingom. Baltimore, Newport News, san Fumeiseo, ablul other seaports. Cities on the Mississippi River, and exprecially those on the direat lakes, are engagen i . buiding ships of irom and strel. There are several sted plants in the lake ports, and in them we have hailt the larger part of our steel tomage. Our iron ships have berom built chiefly in the seaboard yards. buring the present yenr, 1s9!, the American yards are busy eomstrueting vessels both for the mavy and for mur merchant fleet, and new yards are being established. Having begon selling crode and stroctural iron and sted and varions chasses of machinery in Europre even in Great hritain, we shall ere long be selling iron and stech ships. The exeellence of our havy has brought us orders for war ships, and the skill and invontion of our shipbuiders will bring us foreign orders for merchantmen.

The commereial.progress of the nimetenth centiry. the salient phases of which have heen depieted in the foregoing pages, has been the result of three sets of canses, ceonomic, politieal, and social.

The cconomic causes of most importance are the improvements in transportation, the reorganization of industry on a large seale, the accumulation of capital, together with the growth of corporations amd credit iustitutions whereby the utility of capital has heen enhanced, and the discovery of large stores of gole.

Tramsportation is the humdmaid of trade. Whatever enables this handmaid to do her work chenper and tuicker enlarges the seope and volume of the worhl's commerce. When one consiters that it cost nearly fone times as muel in 1875 to ship, wheat from New York to Liverpeel as it did tworty cears later, and fully three times as much from Chimge to Liverpool, one cian readily maderstand how transportation has removed himdrances to comminere.

Cheap and rapid transportation has made an extronsive commeree possible. hut it las been the organization of industry on a large seale that has ereated the chief demand for commereo. Industry at the present time is, to a large uxdent, so orgmized as best to promote the territorial ambl intermational division of labor ; and each large prohnerer regards the whole world as his market. The amomit of eommeree rephired inereases with the eoncentration and speetialization of industry, and with every widening of the pronemeers mimirkrt.

It has heon the acemmbation of capital and its inereased availability for purposes of pronluction that have made possible the organization of imblustry on its present basis, and enabled men to constrost the highly develonend tansonitation system hy means of which commeree is anecomplished. 'The material progress of the past enotury is mprecelented. Industry has ereated weath as with the tomeh of a magie wand ami this mpielly growing wealth has In en made available eapital throngh the instrumentality of the conprat-
 aitions the property of hundreds and even thansands of individuals. The imbustrial ropporations have been gratly assisted in their work of concentrating and apllying capital, ly the banks and other institutions that have colarged eredit and made a given amome of pornerty capable of performing a mueh harger work. The expmaion of inmatrial cremits, furthermore, has berogreatly facilitated by the issue of govermment bomis in large amomes luring the century. These state obligations romstitute excellent business seromitios, of which hanks, other corporations, and individuals make extomsive nse. Sueh are some of the factors that have promoted the acemmation of eapital and inereased the volume of commeres.

Jumey is not eapital, hut an alequate suphly of a sommed and stable medimm of exchange is essential to industrial and commereial progress. Twiec in the history of the world the diseovery of large supplins of the precions metals has given a great impertus to industry and trade: onere, in the sisteenth century, when the Spanish galleys brought to Europe rich treasure from the silver mines of Cmorion; and again. in the middle of the mineternth century, when the rich fimels of gold were made in Anstralia and California. The very mapid inerease in the commerere of the United States and of the world at large. Which began alont 18.01, was in no small degree the result of the rising prices which followed the diseoveries of gold. The elosing decade of the century is witnessiug a similar ocomrence. For many years prices derlined rapinlly; the demands made noon the world's gold suphly were rapidly inereased at a time when the ammal output was deelining. From 18.00 to 1830 the annual output of gold averaged over $: \$ 130,000,000$; it then deelined so rapidly that it amomed to omly a little over $\$ 106,000,000$ a year, in 188.7 and 1886. It was only $\$ 118,848$, in in 1890 ; but the present annual pro-
duction is nearly $\$ 300,000,000$, and the fall in prices has been checked for a while at least. The very rapid entargement in commerce during the past two years must have been facilitated by the recont increase in the ammal production of gold.

A second general canse accomiting for the worli's progress in commerce is prolitieal - the commereial poliey followed by the leading mations of the world. Up to the nineteenth century; pactioally every conntry strove su promote its trade, maviation interests, and its power as a nation by means of the mercmatile system, -a system of strict and detailed regulation of foreign trade by means of tariffs and navigation laws. Each country strove to determine the nature of its international trade, and embavored to arry on its commerce in its own ships. In the case of one comitry. at least, the merematile system was eminently suceessful. (ireat liritain entered the great Napoleonie wars with a powerful hasal and merchant marine, and emerged from that struggle the mupestioned mistress of the weam. Her industries also, ats well as her ships, were stronger than those of other comtries; and she sont coneluded that both her foreign trade and her shipping wond protit by tioing away with the restrictions of the merant le system. and andopting the policy of contire tommereial freotom. She made no mistake. for lur iudustries and commeree have wonderfully prospered.

The snepess of free trade and freedom of emmeree in the United Kingdom had mueh inthemer upon other eomatries, and, during the third guarter of the nineternth entury, several comatries brgan to move cautionsly in the direetion that the Cuited Kinglom had takea. They soon fomm, however, that for them free trale amb shipping meant british trade ambl shipping. beranse of their inability to eompete suceessfully with their pewerfal rival: and. cluring the last guarter of the century, the dominant commercial and maritime poliey outside of the British Isles has bern one providing for the regulation of trade by tariffs, and for the promotion of the mereantile marine by postal payments and bounties. At the present time, the two most powerful commercial riaals of the United Kingdom are the Cuited States and dermany: : and their trade poliey is one of regulation instend of freedom. It would seem, therefore, judging ly results, that buth the United Kingdom and her competitors have acted wisely, and that in hoth cases the means adopted were such as conditions demanded.

The third eanse of the world's commercial progress dhaing the past contury has been polonial expansion. Germany, Framee, and other combtries. intheneed by the great suecess of the United Kinglom, have established colonies in different parts of the world, and assumed eontrol over uncivilized peoples, until there are now 12 a eolonies. protertonates, and dependencirs. These 125 regions eomprise two fifths of the land surface of the glote. and contain one third of its population. These colonies and protectorates imprort anmally over S1.ion,own,o(N) worth of eommodities, and of this large sum more than forty per erent is bught from mother comatries. The last nation to alopt the poliny of colonial expansion is the United States. her jrineipal eolony, the lhilippine Islands. having heen mate a part of her possessions beeanse of our desire to secure a largur sharr of the trade of the Urient.
hecked for a ing the past I the ammal
in commerce itions of thr ry strove 10 min means egulation of untry strove resl to carry it least. the. entered the marime, and xeall. Her other counter shipping rie system. no mistake.
nited Kingdirel quarter nsly in the d. however, I shipping. erful rival: nervial ant widing for mereantile etwo most ted states freedom. Kingdom the means e past ceteomntries, established meivilized enlencirs. globe. and tes import large sum ast mation - primeipal ossessions ient.

CRANP'S SHIPYAHD ON THE DELAWAKE.
IX. TIIE TWENTIETII CENTURY PROSBECT.

The world is entering umon the twentieth century with the nations of the earth bomed to each other by much eloser relations than existed a humdred yours ago, and chief among the forces that draw the comatries of the work together is commerce. It is commerer, more than anything else, that has brought about the existing organization of industry in which each nation is denembent upon every other.

The mations of the world are mutually dependent. but their interests are not identical. In the future, as they have done in the past, nations will comprete with each other, cach striving to secure for itself a maximum of economie alvantuge ; and this competition will continue to take the form of commercial rivalry. The great international struggles of the present day are being carried on to secure trade adrantages; and at no time in the pist have those contests been more carnest than they now are. The contlicts of the twentieth eentury will le rommereial struggles, and they will be intense.

In the centuries when l'henici:, Greece, Carthage, some, and Venice were successively powerfil, the Mediterranean was the theatre of commercial artivity and international rivalry. The navigators and explorers, whose exphits closed the mediaeval period and inaugurated the modern era, carried the word's commerce from the Mediterrancm to the Atlantie and transferred the centres of national greatness from the southern to the western and northern nations of Europe. The great industrial countries of the present are those of Europe and America aljacent to the North Atlantic. These comintries originate the larger part of the world's commeree; and the main stremas of international trade are those which connect these countries with earlh other and with those regions of the earth less highly developed industrially.

The Isthmus of suez, just north of the Tropic of Cancer, and the Istlimus of l'anama, it short distance south of that line, were the only barriers which nature plaed across an otherwise continuous water route around the earth in the northern hemisphere. These barriers diverted the lines which the world's largest volume of trattie tends to follow far to the south around Africa and South America, or did so mutil 1869, when Europe overeame the harrier of most consequence to her by the construction of the Suez Canal. Siuce the opening of that waterway Europe has enjoyed advantages for international trade superior to those enjoyed by our comitry. Our regions most hionly developed industrially are tributary to the Atlantic and Gulf of Mexieo. 'to the east of us lies Europe, a region of great industrial advancement, demanding little more than our surphas foom products and raw materials; to the south are the comntries of the South Atlantic lying along the line of the worll's seeondary commercial routes; conntrins, moreover, whose trakle we can secure only in direet competition with Europe, which has alrady forestalled us at many points. In pushing their trade westwarl the industrial States of the United States - and they are fomm in the eastern half of our country - find that the possibilities of a tratfic by land are restricted within narrow bounds by the heavy costs of a long haul over the clevated Corlilleran Monutain ranges, while shipments by water have to take the circuitous and expensive ronte around South America. Until an isth-
mian canal is constructed the Cnited States will be handicapped in its competition with Euroge for the trade of all countrier borkering the latitie Ucean.

The Cuited States looks forward to the coming centmy, contident of sharing largely in the world's commerce. With an enomons and rapielly growing foreign trade, and with her indastries sending their wares into all quarters of the globe, the future of her trade is certain. Shall we also beeome a great maritime nation:" Nhall we be as suceessful in the age of sted stemmships ats we were in the days when our elipper-ships, "thase strong-winged gulls in timber, put swift girdles aromul the carth:" Compestionably, yes! The eommercial alvantages which our rivals have possessed for hall a century have nearly all disapleared. Our maritime instinats are not dead; and whin we again turn our attention in earnest to the " a : k of international mavigation, we shall "win anew the wide-reaching seats onr sires lowed and ocoupied so well."

Emomy R. Jonvang.
al in its com. s the lacilie dent of sharbidly growing oll gharters come a great atemuships nged gulls in yses! The df a century l: :and whon imal harigaand oceupied

Johnson.

EDUCATION DURING THE CENTURY

Tur nineteenth eentury has bern chametrerized by a deep and abiding interest in jopmar education. One handred years ago there were many alose observers who strongly opposed all attempts to provile sehools for the masses, lest they should be alneated above their station in life. This fieling was patienlarly strong in conservative comatries like bighand. It hed the buke of Wellington to remark to one who was explaining to him the work of Joseph Lancaster, "fake care what yon are atome; for moness you hase all this on religion, you are only making so many chever devils." Su marful a eritie as Alexis de Toequeville, alter his visit to the Cuited staters in 18:31, wrote to dared Sparks: " Are the efferets of education miformly grool:' Does not a man who obtains an cducation above his social condition become an muniet citizen?" "The first trimplat of the nineteenth rentury was the eomquest of this fear; and there is to-day a gememal belief that it is the duty of cach community to provide a well-developed sehool system. that each ehilh may have an opjortmity for making the lest and highest use of his powers and eapahilities.
lerhaps uo single element has contributed more to this change in the pumbar attitule towards sehools than the writings of the great gromp of thinkers who, with bolty ideals and keen ammen, have devoted themselves to the study and lisenssion of educational questions. Germany has been foremost in its contributions to edneational literature. Foremost in time as in influence is John Menry l'estalozai (174i-1820). Although emowed with an "univaled incapaeity for govermment" Pestalozai has yet hecome an inspiration to modern pedagogy, becanse of his love for teaching and the temler sympathy of his nature. Alter varions edneational experiments, he oprenel, in 1805, a selooi at Yerdme on the Lake of Neufehatel, whieh soon won for him a European reputation, and became a centre of interest to educators from all Europe. The Eimperor of Russia gave him a persomal proof of his favor, and Fiehte, the great German philosopher, declared that he saw in l'estalozai and his labors the dawning of a new era for humanity. In his writings and in his teaching l'estalowi emphasized the importance of the lome in education; he asserted the truth that all instruction is based on olservation: "Neither books nor any pronnet of human skill, but life itself, yields the basis for all education; " and in a general way he aimed to develop the child through his own personal activity, vather than to furnish him with useful fasts.

The most eminent of J'estalozai's diseiples was Friedrich Froebel (17se1S5:), the foumler of the kimlergarten, After a varied career as a forester, student at Jena, etc., Froebel went to IVerdun in 18018, and for two years was a co-laborer with l'estalozai. The impulse which he here received never lost its force. It brought him to consider the problems of elementary eduea-
tion，and finally lo：，in 1s：3，to his establinhment of the first kindergarton at Bhak onburg in Thuringia．His idea may tw well expressed in his own work．
 that goes by the name of playe into instrments for my purnise，atmitherefore transform play intu work．This work will be coluation in the true surne of the term．＂His great theory was idnalistid－la beliesed in the maty of the masersce，in the essential hamemy of the world．It was the duty of the tearber to tit the child for his plane in hamin sumetes．This combld be best dome if the whild was taken at at very early age ame propred for life in an
 child learns somial life，where his phey is sysumamed amb his artivitios an direeted．The aterage comse of stme takes hable of the rhild when he is six yars of age：the kimbugran minally tills in the two poroding gears． As an erluatimal institutiom，the kindergatrun has met with little jumbier suphert in burour，althomgh in laris there are a mumer of andermal schools．＂whiel eorrespond elusely to Fruelnel＇s plan，In the United Stator， Miss Elizabeth Leabuly berame the tinst apmisthe of the mosement．The ithat of earing for the children linlow the mgnlar sohombenge winstan lavor，
 anspices．As their suress bereme eloarer and more positione they were taken
 Commissioner of blacation shows that there were lati kimbergatens in the United states romuerted with the pmblicesphool systems of eities having
 national Kindergarten Coion，formed for the purpose of＂gathering and dis－ seminating knowledge of the kindergaten movernent thronghont the world．＂ has aided greatly in stimulating in intelligent interest in Frowhel＇s ideals in America．

None of the great（ierman philosophers has hern homored with a mere
 attention to the neessity of studying the prineiples of oflumation．In his writings and hertures while professer at the Cnisursity of liattingen，Her－ hart started an inguiry inte the theoretieal hasis of matrontion．He fomed the final am of all wheation to eratre in the fomation of monal chamatare． while the keystome of instrmetion is interest．＂The timal aim of instrmen is morality．lint the mearer aim which instruction in partienlar must sere before itself in orler to reach the fimal ome is many－sidedurss of interest．＂ Herbart＇s influene in ：romsing amb liverting thomght has been most felt in Gemany，but in America his mame has heren taken by one of the most astive educational assomiatims，＂The Natiomal Herbart Gocioty．＂

Sext to dermany in its list of great wheational thinkers must con＂bing－ lamer．At the begiming of this century there were no＂phblie selomels＂in England，in the Ameriman sense of the ferm．The great preparatory selaools．

 the village sehools mader the direetion of the viear of the parish，and manally presided over by chderly dames with taried degrees of attaimments．At the end of the eighteenth centmy，the work of Ambew hell and doseph lan－
castrir lugin to aronse some interest．Working inderendently，the ane in India and the other in Jomdon，both developed the same method of providing gemeal instruction at at minimm of cost，by using the more advanced pupils fo instruet the begimmers．＂liy the aid of monitors，＂said Lanmastr，＂one

JEENTA I．OZ\％I．
（The l＇erry l＇ictures．Copyright，1898，by E．A．I＇erry，Mahlen，Masw．）
master can teach a thonsamd boys．＂In 7798 ，Lancaster opened the first linglish sohool of this kind in Sonthwark，Jomdon，placing this inseription over the door：＂All that will may sumi their ehildren and have them edn－ ＂ated froely，and those that do not wish to lave edncation for mothing may pay for it，if they please．＂In 1sis，the lioyal lancasterian soticty was organ－
ized, to agitate for more sehools; and although its name wis changed, in 1811 . to British and Foreign School societr, its werk hats rmath ued down to the present time. In 1818, Laneaster cume to A mereal , was at mee pheed in gencral charge , the publie schow of dhia .oys. He was made prineipal of a moded school for taining tombers, whins :n w ol to have been the

 legislature to (uable him to start his monitorial selools, and even in south Amerieal hameaster's work was dome.

Jrobably the greatest tuabler of the century in England was Thomas Aronde, whene chameter will long live in litematere throngh the loving portaiture of his pupils. While contributing little of importane to the seience of pedagogy, he was yet able to work a revolution in the general eoneppona of teacher fund gungl, and their relations to carla other. He insisted that his teachers must continue their studies after they had sermed positions, and se raised protessional ideals. ." The pupit." said he, " must drink from the muming fomatan, and not from the stagnant pool." His smbathey gave him rate pewer to monded the chanater of boys. Do trusted his boys and they becane worthy of it. "It is a shame to tell Armold a lie! He always Indieves ober," - wats the emmon saviug. As a somserguence, there went out
 a group of cleam, healthe, whole-smbed boys, well fitted to beeome bealers in Euglish life.

Mang eontributions hawe been made to the liteature of pedagngy during the century, but there is mone that has attracterl more attention or stimulated more "armest disenssion than Herbert Sperer"s "Elumention." In the first chapter of his book, spuerer asks the question whieh aronsed the eduestional world. - "What knowledge is of most worth?" It at oner- dierected inumiry into the very heart uf momational theny. The comse of study, the oriler in which subperts shombld be considered, the time to lee given to eareh, -all these problems were vitally comerued with the amswer to this ghestien. Mr. Speluer's solution won instant favor: "Jow to live," said he, "that is the "ssemtial question for us. . . . And this, bwing the great thing nuelful for us to lama is, by conserguence the great thing which education
 tion hats to discharge." This point of view led to the accenting of taseful
 sary to fultill the first law of netme, self-preservation. The natural seieners shond low ant "ssemial part of edheation: this is necessary for on aequaintanme with hur word in which we must live and work. History and sorial
 sereiety in whid he forms a mit. Xatually. little time wonld be left for brameses that were ansthetic or coltural, and so Spenere would have the student give but his sumpus time to thesed lint the important thing was that he shomld know himself. his werd, and his soeidty, so that he womld be fitted to do his work in the most romplete wity. His pratical intluence upon eduration is lest seen in the great increase of apprefation for the natural seimes. which has led to the intrountion ol nature observation amb stuly, even in the most elemmitary schools.

NTURY

In Amerion the re have hem important contribut an to elheational theory during the century. There has beta a pertect flood of educational bevos, pamphers, ame periodicals, whose merit is so great as to extort evem wolle-

FHOFHEI, FOUSJEH OF KINDEIBMAMTENS, The Perry P'ictures. Copyright, 1898, ly. E. A. Perry, Malilen, Maw.)
tan ahniration from foreign erities. While there has been much unerenauss in quality, yet Americans have no reason to feel ashamed of their montribution to pedagogiral literature. The best work has been done in the disenssion of specifie questions, rather than in an elaboration of goneral
ihleals. . Dhainistration, with its manifold prohbms, has apmealed strongly to
 these of men who have devoted themselves to somer paretical work, the diteals and details of whimh they have thoroughly mastered, aud so have heft emburing momments of their lives work.

The great. arhievement of the century in the I'nited states has lieen the

DH. THOMAS AHNOLD. OF HI:GBY, HNGLASH.
(Conrtesy of The School Jomrual, New York.)
establishment of a system of free and puhlie shoools. Like most of the mation's intellectal impmises, this spirit sorms to have come from New Euglame. There, the demoreatice ideals of the peophe leol to an eaty apreciation of the neressity mor miversal elumation. 'There can be little domhthat it was from thu l'uritan setelements in Massachusetts that the origimal immalse toward universal education eame. Thas, in 16itio, the Colonial Assembly required that each town containing one lumbed fimilies should estabish
strongly to *性い! are K, the jibuils - lift rullorats lieell the
st of the New Ehg: milit thit gimal imil Asselluestablish
a kammar schond to prepare yomths for the miversity. Imang colonial bun's mure and more sehools were steantily established. But the movernent, Which was zealomsly supported in New Enghand and rowouragel in the Miol, He States, esperetally by the Frimens, wet with opgesition in the sonth, where chucation was consideren a family duty, and not within the provineo of the state. Whatever, thorefore, was acomphishod in ant mhentional line prine
 serguently, there was the wideat pessithe divergence in the perlicies amb mathouls of different losalitios.

 is experdingly interesting to watelh the developmant of the point of view that free selowh were a beressity for the existenee of the repmblice and beree must he established by the state. The early fathers of the nation

wer not slow to rerognize this. In the worls of Franklin, "A Bibh and newspanur in every homse, a gond sehonl in every distriat - all studiond amd apmerciated as they morit - are the prine pal surport of virtur, morality, and "ivil liberty:" "\{n proportion as the struture of a government gives firere
 shauld be enlightened." And Juffersom, with his bosad philosophical apreriation of demorares, started the hatthe against the ibleas of Governor Berkpby, of Virginia, whin, in liga, he intrubued into the dioneral Assembly of Virginia a bill providing for the establishment of schools "for the free trainiug of all free chadren, malde and fumalo."
 lie selools. It was a hard light, comphicated in mang states by lowal gurstions and comditions that romberel surerss ahmost hombens. Some olpmed from the ohd print of view that ohmation was an indivilual matter, - each shomid get for himself just so mueh as was possible. Others raised the objeetion of "ost, - if taxation was proposel, was it right to take money from one group to educate the childen of another? Religions disputes himbered progress.

- many of the demominations had fommed seretarian selooks, mul were mo
 tillght. Fispereially, in some States, us in Pembylvania, where Swode, dermant, Souteh, Irish, and binglish lived side by side, dist the rave problem enter as a perplexing element. Shombday langage other than linglixh ter tanght? What resperet shombld beg given to the traditions atol cinstoms of mach tacegrong:" Moreover, when the eonservatism lergan to yiehl to progress, it rompromised with great rehertanee. It tirst, provision was made wherely the children of the puore shombl have their selaod feres paid by the state.
 with the stigmat of "pathere sulanla." But these dithentties only served to
 was eomplete.

 was apointed its first seeretary. For twelse geas he babored with matag-
 pen, he awakenel in his state an alpreveiation of the value of the pmblie sehool systrm that has mever sime do eayed. He extablished ent in embring hasis the hasiness side of emenation in the State, by systematizing the selamel

 of his tirst imterests was the provision of gonel teardares. In order to spme the Assmbly to its duts, he hegged from his frimbls the smon of stomone, which, with an egmal smu appropiated from the state treasmy. was used in
 Hare (1s:b:). Gutside of his alministratiow work, his fame must rest mon his stanela imveray of the primeiple of "the chbligation of a state, on the groat primephes of matmal law and matmal eqnity, to maintain free sehools for the unisersal widuation of its perple."

In leminstuania, the hero of the battle for free sehools was Thadidens stevens. In Is:H, a law was passed hy the logislature establishing a state system, and abolishing the distimetion lwewen rich and geor which had heen

 Keystome State, and so mitablished the system which to-day reoreves bure direet aid from the state treasury than in iny other State of the Vniom.

West of the Alleghamies, the interest in pepmar edneation has always Iwen deep, and thorough. Solthel in lage measure ly the stealy sons of Saw England, wheation fomil there a most fertile soil. Moreover, by the wise foresight of Congress, provision was madr for selsool fumbls in a most satisfactory way. The Ordiname of 1 Rst, whieh organizel the territory north of the Ohio liver, comationd a provision that one section of lame in adoll township shond be devoted to publie adneation. If this grant, which
atid were till ed would bx. - Sworlo, dierroblem enter - in tre tilught:" of rach lame - frugriss, it. minde wherily lyy lhe statho. virow brambel nly serverel th their stacerss

Hovare Matur :i. In 1s:in,
 with untlag. wי. It the puldies an cmiluring of the sinhol lic Iutertiugs al herom maine, M: Mint anll miller: Hue river to spurn
 was nsed in vington : 1 Ind st rest "pon" tate, on the free sehools hing it state It hall been 1 effort wats , bipral thes the power mols for the dives more "nion. his alway: dy sons of ver, by the ill a monst - territory of l:and in aut, which

Was originally suggested by defferson, had been carefully watched, it would
 The national govermuent gave to education in the tirst humered years of its history mearly cighty million arres of pullies lamis, but these grants were not

some batle conception of the inmernsity of the comannosidnow kystem in the I'niloul states may the ohtainel from the following shatisties, taken frosen

	14011	IX:MA 17
I, estirurrnl statiolin*		Al\|risituate
'Tutal ןwiolation.		i1,:17, 11:
X	12, $310,5,(4 \times 1)$	21, 192, +1:
	T, inlinse	
l'rer rent uf lunl jomplation enrolleal.	111.11	: $11, \mathrm{in}$ \%
	4, Mi, 117	$111,11 \times 4,1921$
	1:12.1	$1+11.4$
Malu Iowhlura.		1:11, 1×1
Fieluilo truchors	1:20.19:22	875
Whinle number uf tomeluers	2-214, 2 L	+10:1,413:
lere ceut uf male tenclure	11.11	212.11
Ifrage monilily wngev of terablerre:		
Mabe (averageil fromilue slatioficeof til stato.a)		- 11.40
		-ilm.inx
Xıunher of midurlhonsers	1:12,11:	$2+410 \times 8$
Vubur of erthen property.		
1f. - Finamejal Statiolios.		
		\&7, 8 11, 414
Fromin sluto lavio.		
F'rum linal inxes.		
Fruns all uther sonicers.	17,7\%1, 711
Tural rucrigto.		158,641, 24:1
Dixp-milioura:		
Firr situo, Imildinga, furmilure, lhararios, athe atparatu*		8:31, PMR, 24%
		11:1, 1061,612
Firr all whir jurpuaes. .	-	: $16,11: 1, \times 15$
Tutal expentitures	-6ib, 105, 112	-187, 121414,6102
	1.75	2.13
Final expermituro jur joiljil.....	13.201	18.20

To these grami totals must he added the million ame mome in attembanes at pivate selmohs thronghont the combry, and the rapidly incrosing momber
 professiomal and momal sehomls. This makes for the Unitem States a grand
 sehools. 'The growth luring the last gemeration hats horin most marken. The statistimal table gives an opmortunity for romparison with the year

1850-71, - the span of a generation, - and it has heen estimated that within this period the average total amonnt of schooling has inereased from 2.91 years to 1.2 S yars. In wher worls, the amome of education which

(t'ourbsy of The School Juurnal, New lork.)
each ome felt able to afforel has ineremed almost ome half. Siseh is the magnifieent result which bas grown out of the isolated village selockhs of our New England anersturs, fostered by the demoeratio desire for intelligenere fomen all over the comitry.

Equally great has heen the whage in the spirit of the sehool. In the
 the chidhern could wot go as far to sehoul as their miders did to obureh, the number of selomelhomses was very great. They were nsinally pitt up hy the geople of the :mightwanul with little pretense at atorment. The average schoohonse was henated rither at a fork in the roulls or on an elevation. where it shated, with the "harth, the bome of comspinemsness. Wie give
 Irving's elaborate deswription of lehaload crane, its ruler in the eohomiad days. But a structure of this kime is luxurions compared with the bardshins of more sparsely settled regions. From Wiakersham's - History of bducation in l'emssimana the following dessription is eulled: "The pioneer schowhons? was hilt of logs, sixtern ly twenty feet, seven feet to the reiling, danhed with mul insile and out, a mud amd stick chimmey in the north end, and in the west a log was left ont, mel the opening eoverend witi: oiled paper to admit light: holes ware boved in the logs and pins driven in, on which to mail a long hard for a writing-table, and slabs with lomg answered for seats. 'ilhe arly sehoolhomses wero generally sitnated near
 rathis."
 works. In the winter time the propils were almost frozen, :mon there were

Witing in some mighlowhorels was tamght only to lnyss on the gomeral gromil that it was :an mucessary acomplishment for the sex wheh mever "Hgaged in lmsiness. Ink was home-made from brisest mutgalls placed in a mithle with water and rusty nailsi. 'Tlor writing was dome with a guill purn, ant one of the formost dilios of the wh-fashinmel perlagug was to make athel mexil pens.

 legible ham which ins the was a!puired with a fair degree of sucess.

Arithantic was tanght without text-looks. Nums were givern ont by the master and worked out on paper on the dersk. Nothing but the morer rudimentary prituciples was tatholt, amd the higher lotameles of algehat and goobuery were maknow in the pulbie sehools of this time. Spelling was

 always delighted. "spulling ou the bowk," salys Wirkersham, "was tanght by athemphing to lead the pmpil to give the mames of sy.tables and worms ly
 of combinations of at worl with ofte or murre comsomants, artangen so that at
 the lakek "ronsisted in taming the letters of words promomeenl for that pur-
 Bots, or "spelling-hers." sometimes it was to discomer the luent sind! of the distrint: : gatin, one distriet might he pitted agaimet another. 'I'he spellors would the atranged in two rows. The first wom womblat given to the tirst speller on she shem, the mext to his rival, the thime to his commate.

 ohes : and ho ar sla becallue the "hatupion speller.

The trachers of the time formed a group of saried attaiments. and ofton-

 for at mollong, law, of medimal romese is logion: and this fart has latul the

 moving to the luext, - "odh in dress, wewntio in mathers, and wifontimes intomperatie." Their work was simple in its mature; they were to kerp order and to tearlo the rudiments. Therir methenk in the latter have abrady beon referred in; for the former, they relied, almost miversall!. \#poll the mispare ing lise of the rod.

The wishom of the patace of flogging has only lerolo questioned in the
 ishament, even for students whose maturity and attainments would suggost an appeal to roasom. With this mode of pminishment was assomeiated a more
 etc., all caldenlated to bring the offender into ridienle, int interly destructive of that groml fereling between teacher and pupil, mon which si muels stress is lath to-lay.

In the conrse of the century the wh-fashioned sehool has rither passed away or ase has beron medified materially. To-lay it is to be found in only sparsely seftled distrints, while in the cities and in the more rublured mokhtworhombs one fimels carefully phamed systems of edneation that show the froits of the stmly und direvtion of some of the keemest minds that our ountry has produced. While it is impossible in the space of a single chap-
t hy tho. are rulichra and ling was prowidel alls have Is laught ruwds hy -minsinteil wh hat :t -lling off hait pur-
 1 s!n-l|or er. The givenlo comatale。 mely He sed salvio ul oftensulfirnil i.ee, who pirrsuil. 4- monery litill lles mation. \because this $\because "$ men in] then shturns op oreher dy heron IIIT:
in lhe: "id 1 III. shrgest a more 4n ": ruative antress passmil in unly wigh" (1) the list cur c chaj-

In Acinn's Fall, We sinned all.
B.

This Roch allend, Thy life to mend.

The Cir duth play, And afier slay.
D.

The Mos doth bite A Thief at Niglt.
E.

An Reurte's night
Is out of sight.

F.

Whe falle row, Is whigu at School.

Ai runs the Gilure,
Man's life doth pass.
H.

My Ilook and /learl Shall never part.
1.
fesm dial dye. For thee and I.

K.

Aiug Charles the Gorst.
No man of Blood.

w .
Whales in the Sea
God's vonce ubey.
X.

Xerxes the Gireat did die, And so must you and I.

The I yom bold,
The Lamb doth hold.
The Mocn gives light,
In time of Night.

N.

Nïhtingales sing, In time of spring.
o.

The Royal Oak our King dids save.
from fatal strohe of Relel slave.

P.

Peter denies

His I surd, and crics.
0.

Curen Fsther came in leoryal state.
To save the Jews from dismal fase.
R.

K'achel doth mourn Fior her tirs-larn.
s.

Stomuel anoints
Whom (iod arpmints.
T.

Time cuts down all, lBotl great and small.

Ciriah's beauteous Wife,
Made David seek his life.
Y.

Finet's forwatd shps Jeath sconest nips.

2.

Zacchers, he
Ind climb the 'Iree, His lord tu see.

(Fonelesy aft.I. Hisoid W"iclersham.)
ter to refer to all the changes，gat some of the most important will be conse sillered．

Foremost in rat importane eome the chatges in the vontse of stmely－in the list of suhjerets which the wellerducated young man may be expected hor hate mastered．Whe hamdered yrats ago the average child womld have gemb

 taty

 would aprear at timst sight，and whild what is asispted in general may mot
 elarly secu．

 selooks，or sewing and cooking in girds＂sphouls．Feveral of these sulgerts

nt will be com-
of stminty - in we expectel tw mild have gom |e training in te womld thut luction th the Mats piven! in
Ther averam"
 which lattin, natt. The somtatherv junily "114nded in Itw is mutheled (1) wampas this is burn creallent. ureby entallu

This is mot "ystem, maliks"
Ther unthor.
 d in inchouls imilarit! thant meral may mun ment mily ho

- chomentary.
 tirat cight on ly : anl gr:anly of branches. ithantic, geno lis:iology amil ining in hoys. larse subjerets deny towat "1!now the fint :cherls, sturne it is thoughtit sehool. wises into the private amal1 exepptional lueation were "rased amos() Howir rapid elemunts in
our system, sembing forth year by your headers of thought amd moulders of
 The ohd andemy prepared for the collegry the new high sehosel promeres for life: ronsempatly there ensurd a broach intwern the high sohoul and the

 timus andytimal geometry and explastromy; history. literature, physimal

 merly tanght only in the rollenges have bern hrought into the high-sefool "urbinhum. This again is due to the ". ariching proerss," and is illustrative of the fiar that fors sumy of its stulents the high selenel is the crown of

 "hanges of the century as indiative of the desite to beng the sehools in fond with the comditions of paratian lite.

From the high sehuol or anderme, the stmile , passers to the college or mi-

 the other hand, prepares at man for ome detinite line of work, wither profers.

 mprementing most of the states and 'hartorios in the l'nim. Many of thespare autively public, being sumprted by state apmopriations; sume
 have berome piblie: in their matagement: some are entirely privane in both
 in aremdane with the servies of somu demmination. In gemerol, all rerog. nize their lofy fumbion in suriely and are ansions to disedarge it property.

 of their lamiliess - they have hermer amone the mast p"pmber institutions in the erlumatimal wodn, largely lueanse of the high wom of their graduates.
 expept in the lew medieal and hatw selowh and theohgieal seminarios. The

 mity sehools), where the elementary inst metion is given. \because Cigmunsia mat

 3

 in Nisit，has dome most ahone these limes．

 advanor during the wormery

"l'" lit. Hluir ties, in which cill, :all | /h. :irlolog, mathy ty combs. I : 1 (100rling la - hassif on :

 tially fharlo.
 111) his romere. that has lu'rest rsil!. It hisk 1 4.1 the $h^{\prime,+e+!}$ \& lou unalki-al
 lur vory eltan -hicl limes ol

 lopact. lin'. in the curvi-
al al danh! lin! - I Cxerphtions \& lhor Priablor silary: - 1 ho iveri |ins 11×14. Well as chlue:0 wision: of his ion. Willitu har יstre:ll in uf his work. II libe thoo wlo lo lillume keren illsurat

 a gisen di-all lo loceture lable ronlstr) عallaral st:al , Whase lowell

 It hats drawn its suppurt rhiofl! forn tho N.ew limglame statess amil rovally from l'allada, buts its in

 homber its lomlines spirits, it has

 fomntal in lsiti, with the whirets
 vinsere lhe interest at the proversious

 It inkurblath, Villerssin Fi. Whitr.

 skinusp, Cles. Its momburvolip has

 11 n .

 *

 Americ:i.

 Sime she teacher better deserves respere ber has rommanded it the mere

 pmishoment in seloeds is forbidhon ly law: lat in most of tho outhers it is

Tve un lintin. 'Thesse donill ISS of truns (. Varricty of 11' thre sicluw.) lin finet that "1 sho toph.
 of now lanl in
 Iflortur oif the" collt loyy a:c(1) h_{1}
 $\therefore 1$ a ifler ran ハ14. . liturerons

 She lionard int inveratill! yple-4.

 " Atare then low lare chatiom-
 Issel tor dite dige that his IIts. lis hin dht his otlice" las mither his \because
assordiations. Work leetter all owr thos
 dre:imerl off. it the mate
 Cessive thag to the retti. ? (י) whors it is sur whon in atumately it is revpieme. lles, sill.for, throughout of l'ounsyl

 - nod easor. but it illustrates the gemeval truth.
 1 i rumoving duration froht the list of thos proli'ssions in whoth men will

 ioseliers werp almost univewally uf the antb sex. A variecy of enmest thay

 letl|will the emblemery.

more permat than the grat inemase of uppritunties fur the higher vineation

(Courlouy of Agricultural theparlanell, ('ornell thiversily.)

 of which to-la! the best known are Viassa, Wrellesloy, smith, abl lims Mawr. Is the demame for the highor elneation of women inereasol, pro

 polpled is favorahbe.

aer manation - was but in.
 r lanth sex.e. 41 to contmon (31) of 川下:
 - witios. 'Tlu" collog in th Howton) fundw V1..nent $11 \ldots 1$. (offirem) luc

nerally intu worpunatul. - ami lin! Trased, t1. s:mur inis with tho
 "hn'unil its that herivio
 is and rine loe fromeral aining or :a they hawe reallowid.

 1.; sinue that time spudial medieal sehonds for women have lwedo opened and
 ack. In mont law selamis, wor
 maral states there ate women fuaverang at the that. While the mithomen of tranlition has been dronge yot there is tomblay mu masen why :111 . Americ:an woman
 callint and as completa at tainin! as ho bother.

III masiderimg her changes ins arlowillitro the imprownombt in building: and ryinipurnt must
 poeviation of the value of vinuat-

 Hatt mamifions it andf in ther pros. vianol of text-inuks, in ther remo

 ('иit.raily.) ton of larger and lutter whti-

 buen urented at a tetal cont of over whe million dollats.

 rey wout in for laburatomins, hat a highor granho of wonk might be done with

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences

college. To-day no high school woull count itself able to do its work without one or more laboratories where each pupil might work for himself. ln the new high school of Philadelphia there are physical, chemical, and biological laboratories, as well as a completely equippel astronomical observatory.

Text-books were just coming into use at the elose of the eighteenth century. The "Child's Guide" was being superseded by such works as Noah Webster's Spelling Book, (irammar, and Reader (1792). Within a few years came Lindley Murray's "English Grammar." the work of a Quaker merchant who wrote his famons text-book primarily for a young laties' sehool in his immediate neighborhood. The instant suceess of these books demonstratted what a need there was for such a class of literature. The writing and publieation of text-books has become one of the most flomishing industries of the country. On aceome of hard usage, a text-bool does not last more than a few years, and this gives rontinual opportunioy for a new book more nearly up to date than its predecessor.

Within recent years, less stress has been haid on the text-bool:, and its influence is being minimized. In the elementary sehools the teacher explains the lesson, and in the higher schools the professor lectures upon his subject. Consequently, the text-book is relatively less important. This does not mean that less reading is lieing done, but it does mean that the reading covers a wider gromad. lartienlarly is this true where libraries have been established. The public library system is a most valuable auxiliary to the sehool system, and is fast beeoming indispensable. This is one of the great alvantages which eity pmpils have over those whose home is in the comntry, and it will lead in the end to district libraries. In some States, as in New York, a suceessful effort has been made to inaugurate a system of traveling libraries, whereby a case of fifty or one hundred volumes, relating to a partienlar topic, will be lent for a time to any circle of readers. Massachusetts has best developed a library system, since there are but nine towns in the State that have not free libraries. The growth of the miversities has led to the aceumulation of great collections for special research and stuly. In 1800 there were but eleven college libraries in Ameriea worth mentioning; to-lay there are almost five hundred, of which the largest, Harvarl, contains a half million volumes. Libraries are of use, not only for pupils, but also for adults as well. They have ailed materially in solving the great question of adult education.

In the New England towns of the middle part of the century, the lyceum lecture was exceedingly popular. University extension has recently come to the front as the latest form of the lyceum system. The idea of lectures to the people by university teachers came from England, where it was suggested just after an extension of the suffrage had attaclied a new value to the education of adults. Societies for the extension of university teaching have been formed in Oxford, Cambridge, and London. Their methods are on the whole identical, - university men are sent to town or village centres to give a course of lectures upon some general topic; after each lecture a voluntary class is held where questions may be asked and answered; at the conclusion of the course an examination based upon the course and collateral reading is given to those who care to take it ; and sometimes a certifieate or testimonial may be given. The method has been

URF

ork without If. In the d biological vatory.
iteenth cenks as Noalı a few years or merchant chool in his emonstratell ${ }_{5}$ and publifries of the more than a more nearly
and its influher explains his subject. es not metul ing eovers a been estabo the schowl great advanintry, and it Sew York, a ng libraries, icular topic, tts has best e State that to the accn1800 there to-lay there ; a half milo for adults ion of adult
the lyceum cently come idea of lecd, where it clied a new of univerdon. Their nt to town neral topic; ay be asked based upon ake it ; and od has been

THE NEW HIGH SCHOOL, PHILADELPHIA.
transplanted to Ameriea and generally adopted ly the universities, with greatest success, perhaps, in the Middle states, where the American Society for the Extension of University Teaching has organized the field. During the period $1890-99,8 f 5$ courses of lectures were given under the anspices of the American Society to audi-

DH. WM. H. MAXWELhL, SUPEHNTENDENT " GUEEATER NEN YOHK" NCHOOLS,
(Courtesy of The School Jomual, New York.) muces aggregating 952,068. Another movement of equal importmice is that done by the Chatampa Literary and Scientific Circle, whieh prepres lists of hooks for home reading, with a view to enconraging system in ome's use of spare time. Perhaps the most interesting pub)lie work for alults is being done in New York city, where a lecture department has been organized by the Board of Education, by which free lectures are given in schoothonses to the people. In 1898, 1866 lectures were given to 608,200 jeople. and the president of New York's school board has deelared that "these lectures lave contributel more than any other ageney to the distribution of general intelligence among the masses." These forces have supplemented very well the work that is being lone by the public night sehools, which are established in most large cities, with a view to proviling elementary, and sometimes technical, instruction to those adults who eare for it.

No educational question has aroused more interest in busiuess cireles than the problen: how to train best those who will devote themselves to a commercial life. This has beeome a live question recently to the Aneriean people. With improved processes in manufacture, the power of production has grown far heyond the consumption of our own people. . Conseguently America is competing with the great industrial mations of Europe for a control of the markets of the world. As som as this competition became evident, the need for a better trained class of commereial leaters was felt. The example of Germany has had a great influence upon other countries. There is a general conviction that the leading position among commereitl nations which Germany has won for itself is due in large measure to the techical edueation given to German artisans and the commercial education provided for business men. For illustration. the German government has reeently estallished in Berlin a sehool where young men, preparing for business careers in Asia, can learn Chinese, Japanese, Arabie, and Turkish. German youths have been supplanting English young men, to an appreciable degree, in the great commercial houses of London. As a consequence, there hats been a
strong demand in America for the establishment of commercial high sehoois, - public institutions in whieh German, French, and Spanish will be taught, together with eeonomies, industrial history, eommercial geogriophy, publie finance, social seience, etc. These institutions differ entirely from the business colleges, of whieh there were 342 in the United states in 18:9, in that they are broaler in seope and content. The latter quality a man to be a grock clerk by tearding him stenography, typewriting, bookkeeping, cte., but the former aim to give him a broal, liberal eduation, coabling him to have an intelligent eomprehension of all matters which interest him in aetive business. This movement is too recent to have borne much fruit. but in many of the larger cities of Ameriea, as New York, Philatelphia, Boston, Brooklyn. and Cleveland, eommereial eourses have been established in connection with the regular high-school eourse; and in some of the larger miversities, as l'emsylvania. Chicago, Colmmbia, selools in economies and polities have been created, - all with a view to eypupping a young man lor an active business career, In view of the present interest in this movement, more may be expected in the near future.

The close of the Civil War hrought the Ameriean people to a problem, vast in its importance and intricate in its solution. The negro race had had no opportunity for edueation muder the institution of slavery. But with their freedom came the necessity for creating a system of schools which could be of special help to this new body of eitizens. The South has preferred generally that separate schools should be provided for the two raees. In the ante-bellum days, the wealthier families usually sent their sons and daughters away from home to obtain their education muler better auspiees than their own neighborhood eould afford. So when the war coneluded, and there was but little sign of publie sehools, a new system must be created. and at once. The first work toward edueating the negro was done by the national grovermment, throngh the seheols opened by the lreedman's Aid Soeicty. The different religious bodies throughout the comtry took a land in the good work, by estallishing speeial missionary hoarts for work in the South. Private benevolence lent substantial

BOOKKH T. WASIINGION. assistance. George l'eabody. the philanthropist, and John F. Slater, both foumed trusts which they richly endowed to aid in the establishment of sclools in the Southern section. But the greatest work was done throngh the alwakening of the people to the value of education, leading to libeal appropriations and to a firm publie sulport.

Within reeent years, negro education has assumed a new and interesting phase. Booker T. Washington, principal of the 'Tuskegee Normal and Industrial Institute, Alabama, is the lealing educator of the Afro-Amerieaus, and he has won his high place by the suceess which has attended his efforts at industrial elucation. His sehool at 'Iuskegee was started in 1881, and to-lay eontains over one thousand students. While fully appreciating the value of an academie edueation, Mr. Washington has felt that the tirst neeessity for his people was the knowledge that would earn a livelihood. As a consequence, the industrial side of elucation has been accented ; twenty-six different trades or industries are in operation at Tuskegee, and one is taught to eaeh student of the Institute. As a consequenee, its graduates have gone forth into ative life, well equippel to become bread-wimers and to fill a useful place in society.

The care of those who, from birth or by aecident, do not possess all the powers of a normal person, has aronsed much interest during the century. The deaf-mutes, the blim, and the mentally defieient, have each had institntions ereated, where they are taught as much of the knowlelge of the world as is possible. The instruction of the deaf and dumb proceeds along two lines. The manual or sign method of conversation, based on gestures, was founded by Abbe de l'Epée in 1760 ; while abont the same time samuel Heinicke, a German, introducel the oral method, by which the eye of the mute is trainel to perform the part of the car, by learning the meaning of spoken words through observation of the changes in the position of the voeal organs. Speeial institutions for theso classes abound in Europe a did Ameriea, with the difference that, in the former, they are generally private or maintaned by charity; whereas in the latter they are maintained by the State. Rev. T. H. Gallaudet and his son, Dr. Edward M. Gallaudet, have been the leaders in the instruction of deaf-mutes in the United States, and have achieved a high degree of suceess.

The teaching of the blind is of equal value to elncation. Two methods are generally followed; an alphabet of raised letters is employed in some eases, or, and more gencrally in the Unitel States, a system of raised dots or points, which do not resemble the letter in form, but are a kind of shorthand to the reader. In both methods, the sense of toueh takes the place of sight. In some cases, notably Laura Bridgman and Helen Keller, the success has been so complete as to excite universal wonder. l'erhaps no institutions alleviate more human misery than do the sehools for the blind, by bringing world-ideas within the limited horizon of this atflicted elass.

Much also has been done for the training of idiots or those who are mentally deficient. In 1848, the Massachusetts School for Idiots and FeebleMinded was opened, and other States followed with equally generous provision. Within reeent years, speeial schools have been opened in comnection with the sehool systems of large eities, so that ehildren who need individual care and watehfulness may receive more attention than they could seeure in the groded elass-room. All these tendencies are exeeedingly hopeful, as indieative of society's recognition of her duty to those who cannot satisfaetorily care for themselves. Humanitarianism in education has been a powerful and constant force during the whole of this century.

It must not be forgotten that other agencies beside those established by
interesting and Induserieams, and is efforts at , and to-lay Palue of an sity for his onsequence, reut trades ach student into active ful place in sess all the he century. had institnf the world along two estures, was ne samuel eye of the meaning of of the rocal : : id Amerprivate or ned by the audet, have States, and
no methods ed in some raised dots a kind of takes the len Keller, Perhaps no r the blind, elass. 10 are mennd Feeblerous proviconnection individual l secure in opefnl, as ot satisfacn a powerblished by

States have been contributing to education. The sumday-school morement is one of the great efforts of the century, to help, in traning thildren by a voluntary organization. In 1781, Robert Raikes employed some teachers for the poor children of Gloncester, in order that their Sundays might be spent

di. E. Benj. ANdiews, supenintendent of schools, cmichgo, ill.
quietly and with profit. Presently, as the number of Sunday-sehools increased, men and women proffered their services gratnitously. The teaching followed two gencral lines. sceular (reading, writing, etr.) and religions. The former was of help, especially to children who were employed during the week. From England, the movement came to the West. The American Sunday-school Union was organized in 1824, and has ever since continued to stimnlate the establishment of more schools of this kind. In 1896, there
were 132,607 Sunday-schools in the United States and 9097 in Canada, with a total membership of $12,288,158$ and 721,435 respectively, while it has been computed that in the world the mumber of Sundar-schools was 246,60̈s, with an enrollment of $2.4,919,313$.

In Earopenn states, they have heen solving the same problems as in America. The importance of education once admitted, the next problem is to scemre the finds and develop, the system. ${ }^{1}$ Becanse of administrative centralization, this has been far easier in Enrope than in Ameriea. The Minister of Edueation in France or Gemmay orders, and his direetions are earried out; the United States Commissioner alvises, and while his recommendations influence public opinion, yet the latter method is by far the slower. As a consequence, the European schools are more systematized and better organized than our own. Their emurse of study differs widely in details from our own, and generally shows more intluence on the pirt of the pedagogieal expert. Thechacal and professiomal ednation has been developed to an execedingly high degree. Finglamd has had a pereuliar problem to face, in determining the relation between the chareh schools and the secular schools, and has only solved it ly mantaining both. Most European comutries have adopted the prineiple of compulsory edncation for childrem within a rertain age limit, and the same principle has been aceepted in thirty-two States in America. In general, it may be said that in the elanges in course of study, in equipment, in the teachership, cte, Enroje and Ameriea have been working along parallel limes. As a rule, these changes have come more quiekly in Americi, where traditions were as yet unformed; nevertheless, the progress in Europe has been constant and very great.

Canada has a well-established and well-regulated system, in whieh the principle of free and publie eduation is recognized. The dight provinees contain twenty-four colleges, and the sehools have over one million pmpils. Edneation is more or less eompulsory in all of the provinees, but the law is not very strictly enforeed. In Ontario, Quchee, and the Northwest Territories there are separate schools for Roman Catholics; in the other provinces the sehools are non-sectarian. There is a high professional spirit among the teachers, so that the sehools may be expeeted to keep fully abreast of the times.

The nineteenth century has been a century of contimons alvance in education. Its spirit has been healthy, its achievements are notable, its work has been great. It would be futile, however, to assert that all is yet accomplished. The problems in clementary equeation are so many and so important that there lave been times when solution seemed impossible. Nevertheless, the system is now established and is assured of publie support, and with an education within the reach of every child, the security of free institutions is lorever guaranteed.

Frankin S. Eimmonds.

[^7]amada, with it has been l(,6izs, with as in Ameroblem is to trative centThe Minisare carrien rommendathe slower. and leetter - in details if the pedaevcloped to it to face, in har schools, tutries have in a certain ostates in is of stuly, been work. quickly in he progress
ch the prinwinces con!pils. Elne law is not Territories ovinces the g the teachthe times. nee in edule, its work yet accomd so imporle. Neverapport, and free instidmonds.
t from an adworld whict her army amid tion: Prussin, for education; mid 3 cents for wnd 6 111 1 for * spends more

"THE ART PRESERVATIVE"

1. TIIE IUINTINI: LILENS.

Whan Renjamin Franklin edited the "(iazette," in Philadelphia, a century ami a half ago, he set up the type, worker off the paper on a wooden hani-press of primitive eonstruction, male worlen types for use in his ofliee, and engraved the cats with which to illustrate the articles. In those days printing was an art which figured anong the mysteries of seience, and was practiced by men of high social standing and idvanced edncation. The sixty years which passed hetween Fuaklin's purchase of the "Gazette" and his death saw the diseovery of many spientitie womlers, but the art of printing moved so slowly as to lease it at the elose of the eighteenth century practically in the condition in which Franklin fomd it when he began his carerr as proprietor of his I'hiladelphia printing establishment.

Amb this condition of alfairs applied to Fingland as well as to the United states.

With all the rare ability possessed by the printer philosopher, he was able to do bnt little for the advancement of the profession which was instrumental in making for him an international reputation.

In all that pertains to the printing business there is nothing with which the name of lianklin is connected as inventor: yet ho is referred to invariably as in the highest degree representative of the "an't preservative of all arts."

Were the distingnished seientist, statesman, diplomat, printer, and philosopher to come forth from his grave in the cemetery of Christ Chureh, at Fifth and Areh streets. J'hilisdelphia, and go into me of the great printing houses of the conntry, how astomuling to him wonld he the revelation! No more the worden types or the unsmmetrirical metal pieces; no more the woolen hand-press, the wood engrowings, the ink balls, and the process of printing a few hundred sheets an hour. The terrific rapidity with which the newspapers are turned out to-day, printed. cut. pasted, and folded; the fineness of the work done on books and magarines: the wonder of one press putting on different colors at the

EARLY PRINTING PRESS AS USED BY BENJA. MIN FRANKIIIN.
same time; the setting of type hy machines seemingly possessed of hunan intelligence; the rapidity mil the simplicity of making stereotype plates; the dexterioy of lorming ordinary metal types into all kinds of forms; the millions of books, - secular and religions. - puers, mad general literary productions turned out daily, would so pazzle the gigantic brian and elonid the understamding of the philosopher as to canse him to exclain: "Take mu' back, 0) spirit of death, and let me forever rest from this secthing, surging, whirling sphere of inventive progression."

When the genius of invention was turned toward the printing art, it is worthy of note that the press which attractel the greatest attention was the production of a lhilatelphian who once lad been an associate of Benjamin Franklin. It was known as the Colnmbian press, the invention of George Clymer, and was regarded as of sutficient consegnence to meet the approval of the printing fraternity of Great Britain as well as of this comntry.

In the National Musemm in Washington, 1). C., is the hame press which Benjanin lizanklin used to print his Ploiladelphia pajer. the "Gazette." It had been built for him in London, where he had used it ahont five years prior to its being brought to lhiladelphia.

What a curions-looking affair it is! Yoet it was little less in the way of primitivencss comparel with that used prior to 1817, when Clymer's Columbian came into use. When these productions are contrasted with the magnificent contrivances of today, from which can be thrown sixteen humdred papers per minute, - papers of ten, twelve, amblisurteen pages, printed on both sides, pasted and folded, - the eomparison is like jutting the steamboat of Fulton by the side of the monster ships whieh cross the Atlantic oce:un from New York to Southampion in less than five days.

The Colmbian press was looked unom, when presented to the printers, as an alvance worthy of note in the art. It is easy to imagine how much prominence was given Clymer's invention when it was placed beside the old common press. To-lay, this supposed-to-be great piece of mechanism would not even be dignified by a place in the most un-morlem backwools printing establishment. And yet from this were printed the literary productions of Great Britain, as well as of the United States, in the early part of the nineteenth century.

The Columbian mechanical advancement consisted of the use of rollers for inking the type, - very much like the process now employed in inking the type when a rough proof is desired, - thus dispensing with the balls, which were managed by boys; the use of screws under the bed of the press to hold in position the form, into which had been securely adjusted the type; and the application of a long bar to obtain pressure sufficient to make the impression on the paper. The picture of this press shows the Hat carriage upon which was placed the type, the platen or pressing surface, the bar whieh forced the platen upon the type, the spring which carried the platen back to position when the impression had been taken, and the track upon which the carriage was moved forward and backward, - primitive enough, and sufficiently simple in constmetion to show the limited capacity of the inventive genins of our great-grandfathers.

It was about 1829 when the Columbian gave way to the Washington press, and this was used for some time for fine book-work. The feature of it was an automatic inking roller attachment.

While the Washington press had the eapacity for producing fine work, it was deficient in the speed required for meeting the demand then growing for bums and newspapers. Then the printers turned to a eylinder !ress which had appeared in the last decade of the eighterenth century. The London "Times" had taken hold of it, and brought it to such a comdition that its. apeel was raised to something like a thousand impressions an hour. König, a native of Saxony, in 1815, produced a press for printing both sides of the shect. It resembled two single presses placed with their eylinders toward rach other, the sheet being carried by tapes from the first to the second eylinher. Its capacity was 750 sheets. hoth sides, an homr.

THE COLUMBIAN PRESE.
Cambridge University about this time was furnished with a press in which the types were placed on the four sides of a prism, the pialer being applied by another prism. It proved unsuccessful. In this press, however, were first introduced the inking rollers formed of a combination of glue and molasses. Rollers are made of these two materials to this day.

Cowper, an Englishman, in 1815, introduced eurved stereotyped plates and fixed them to a cylinder. Two plaee eylinders and two impression eylinders were soon afterward worked together on one press ly Cowper, printing hoth sides of the sheet at the rate of one thousamd copies an hom.

This seems to have been the period when inventive skill began to assert itself in the printing press. The educational advancement of the people in

646

this country and in Europe, with the lack of facility for furnislaing information of the campaigus of Napoleon lhonaparte, the desire for facts regarding the events transpiring in England, Framer, und Germany, the meagreness of the details which had been furnished of the eondiot between Great Britain and the United States in 1812, convincel the publishers of newspapers in this country and abroud that the laws of supply mad demmol were not equally balancel. The outemue of this was 1 press constrineted to print both sides of the slicet from bype, and was soon followed by the introdustion of fone impression cylinders. These were npplied to the reciprocating bed to carry

Wasilington hand press.
the type for one side of the sheet, the sheets being fed from four feeding boards, the impression eylinders alternately rising and falling, so that two sheets were printed during the passage one way, the other two on the return passage. A pair of inking rollers between the impression cylinders obtained ink from the reciproeating hoard.

The eapaeity of this press was five thousand an hour, and this was regarded as a feat worthy of public mention, record of it being made in the newspapers of that period in a way which shows the general interest in the work.

The first power-press used in the United States was made by Daniel

run

hing informatets regurding greness of the b Britain anil apers in this tequally burlboth silles of ation of four bed to carry

four feeding ; so that two on the return ulers obtained
this was remade in the nterest in the de by Daniel
'Trmalwell, of loston, in 18:2. 'Two of them were used by the Bible and Trant nocieties.

The lomdon "Times" hat succecded in applying steam to the movement of the printing press as carly as 1814 - a cylinder press being brought into reyuisition, to the use of which they hat the exelusive right.

Following the 'Tradwell press, about' 1825, came the improvements of Simuel and Isame ddams, and the general use of the press which is still worked in the book offlees of this eomitry and Great Britain. It was on one of these Admus presses, in 1863, that was printed the book written by 1). Blisha kent Kune, deseribing his secomd expedition in seareh of Sir duhn Franklin, the Aretic explorer.

old wooden fhame adams hed and piaten mogk riess.
It was found that the Alams press could be used for newspaper as well as exceedingly fine book-work, its construction almitting of the use of plates or type, and its speed such as nearly came up to the requirements of that period. In this press a feel board holds the paper, which is fed by hand to a secont board or tympan, having points to make holes in the sheet to regulate the second site. The type rests upon a bed which is raised by straightening a toggle-joint against the upper plates.

The fountain for the ink is carried at one end of the press. The inking rollers pass twice over the form. The paper is canght by grippers, carried in a frame called a frisket over the form (or typer), receives the impression, and is carried by tapes to a fly frame in the rear which delivers it to the sheet board.

With the two-, three-, and four-cylinder presses, the Adams press, steam
power and various improvements in the make of inks and rollers, the first half of the nineteenth century was looked upon as having made for the printing press extraordinariiy rapid advancement. Great Britain held first place in the prolnction of newspapers and books, the United States was a slow second, then came France, Germany, Russia. Italy, Spain, and Austria, in the order given. 'lhe greatest evidence of this march of improvement was the enomous increase in the production of the Bible, and the bringing of the cost to a figure whieh then was looked upon as placing it within the reach of all classes. Scientifie and literary works were being put ont in great nunbers, newspapers were being started in every town in this comntry and England, and the editions put ont in such European centres of advancement as Paris, Madrid, Berlin, Brussels, London, Liverpool. Dnbli., Glasgow, st. l'etershurg, Viema, and Rome reacluel proportions then supposed to be enormous. The London "Times" at that period had a cirenlation of about 30,000 , - and this was the leader in jonrualism. In the United States the leading newspapers did not issue daily enlitions greater than 20.000 , while a circulation of 10,000 daily was regarded as being entirely satisfactory to the business ideas of the average pmblisher.

The opening of the last half of the nineteenth century may be spoken of as a quiescent period. It was the calm in the affairs of the United States which preeeded the occurring of stormy events which put to the full test the strength of the young republic, the attitude of the nations of the old work towarl us, and the power of the people successfully to maintain a government "of the people, for the poople, and the the people."

Millard Fillmore became the l'resident of the Cnited States in July of 1850, succeeding Zachary Taylor, who died. The Congress haul taken a stand on the disturbing question of slavery hy the passage of the fugitive slave law, and had made the first step toward freedon for the negroes by the abolition of the slave trade in the District of Columbia. It was in this year that New Mexieo and Utah were almitted as Territories, the entire population of the Unitel States being only $23,191 . \sin$: ten years later the population reached $31,443,321$. The people were begimning to realize how important was the printing press in phaping them in communication with the statesmen of the comntry. They were looking to Webster. Calhom. Clay, Meredith, Everett, Scott, Crittenden, Collaner. Marer. - then in the fullness of mental vigor, - and they were demanding information of their acts in the cabinet, their specches in Congress, their views on state rights and slavery.

It was at this time that the Hoe American Printing-press Company startled the world by producing the ten-cylinuler press. the speed of whieh was limited only by the ability of the feeders to supply the sheets. The first one of them to be used in the United States was that upon which the Philadelphia "Public Lelger" was printed. It at once came into general use in Europe and Ameriea. Its speed was $\mathbf{2 0 , 0 0 0}$ copies an hour.

In this pres. - still in use in many eities - the form of type is plaeed on the surface of a horizontal revolsing evlinder of about four and a half feet in dianeter. The form oceupies a segment of only alout one fourth of the surface of the eylinder, and the remander is used as an ink-distributing surface. Around this main cylinder, and patallel with it, are smaller inpres-sion-cylinders. The large cylinder being put in motion, the form of types is
ollers, the first for the printteld first plave es was a slow ad Austria, in rovement was ringing of the n the reach of in great numntry and lingIvancement as Glasgow, st. ipposed to be ation of about ed states the 0.000 , while a sfactory to the
y be spoken of United States fe full test the the old world tain a govern-
tes in July of taken a stand fugitive slave sy by the abolithis year that ire jopulation the population now important the statesmen lay. Meredith, ness of mental in the eabinet. ery.
mpany startled eh was limited first one of e Philadelphia use in Europe
pe is placed on nd a half feet e fourth of the mk-listributius smaller impresorm of types is
"arried successively to all the impression-cylinders, at each of which a sheet is introdnced, and receives the impression of the type as the form passes. Gne person supplies the sheets of paper to each cylinder. After being printed they are earriel out by tapes and laid upon heaps by means of selfatting Hyers. The ink is contained in a fountain placed beneath the main erlinder, and is conveyed by means of distributing rollers to the distributing surfaee on the main cylinder. The surface being lower, or less in diameter than the form of types, passes by the impression-eylinder without touching. For each impression there are two inking rollers, which receive their supply of ink from the distributing surfae of the main eylinder; they rise and ink the form as it passes under them, after which they again fall to the distributing surface. Each page of the paper is loeked up ou a detached segment, of the larger cylinder, whieh constitutes its bed and chases, termed the \because turtle." The column-rules run parallel with the shaft of the cylinder, and consequently are straight, while head, advertising, and dash rules are in the

JOUBLE CYLINDER PRESS
form of segments of a circle. The column-rules are in the form of a wedge, with the thin part directed toward the axis of the eylinder, so as to bind the type securely. These wedge-shaped column-rules are held down to the bed by tongues projecting at intervals along their length, which slide in rebated grooves cut crosswise in the face of the hed. The spaces in the grooves hetween the rules are accurately fitted with sliding blocks of metal, even with the surface of the bed, the ends of which blocks are cut away underneath to receive a projection on the sides of the tongues of the column-rules. The form of type is loeked up in the bed by means of serews at the foot and sides, by which the type is held as securely as in the ordinary manner upon a Hat lied.

This press was regarled as the highest degree of perfection, until William A. Bulloek, of Pliladelphia, put out his web perfeeting press. This completely revolutionizel the printing business so far as the newspapers were concerned. It came into use in 1861, - just before the breaking out of the war of the rebellion in the United States, - in time to meet the enormous demands made upon the printing press at home and abroad. It had been in operation but a short time when the newspaper owners of Great Britain took
holl of it, and for several years no other press was used by the newspapers of large circulation.

How slow and toy-like it seems in comparison with the monsters of the present day! And yet this machine met the demands of a period when it was supposed the circulation of the daily press had reached an altitude never to be surpassed. A newspaper like the New York "Herald," wnich hal attained a daily circulation of about 75,000 , was looked upon as achieving the highest degree of success. In this last year of the nineteenth century the "Journal" and "World" of New York send out at least a million copies of their papers 365 days in the year.

William A. Bullock worked at his web printing press lor six years before he had it in shape to pronounce it applicable to the requirements. It was not long after it was in successful operation that one of his limbs caught in the machinery of one of his presses, and death was the result. As the presses first were made, anl indeed for many years thereafter, the paper was cut in the press before being printed, and it was a difficult matter properly to control these single sheets mutil they were delivered, while the presses were without any folling attachment. But these old style Bullock presses did succeed in turning out 6000 eight-page papers an hour, printed on both sides.

In 1873 a great improvement was made in the Bullock presses, which allowed of the papers being printed on the endless roll before the paper was cut.

With the aid of other improvements subsequently made these presses attained to a capacity of $\mathbf{1 6 , 0 0 0}$ eight-page papers an hour. But an unexpected limit was found in the-impossibility of delivering beyond a certain rate from the fly. Then R. Hoe \& Co. (about 1877) invented a contrivance which obviated the difficulty. It consisted of an accumulating cylinder, on which six or eight sheets were laid one above the other and then delivered from the fly at one motion. This increased the capacity of their perfecting press to 18,000 an hour. A folding attachment was then added; next a pasting and cutting attachment. Thus, in 1879 they were able to turn out a press which produced 30,000 perfect eight-page papers an hour-printed, cut, pasten, and folded.

The next great achievement was put in operation in a New York pressroom in 1885 . That was the double supplement press, which in reality combines two presses in one. It was the first press to insert supplement sheets automatically, and it was the first press to print from two rolls of paper, one roll being placed at right angles to the main roll. As the name of the press implies, from the secondary roll the supplements are printed at the same time that the main part of the paper is being printed from the other roll. And by means of what to the ordinary man seems a miraculous contrivance, but which to the initiated in the mysteries of mechanics is no doubt very simple, the supplement is automatically inset and pasted into the main paper before reaching the fly, and dropped ont folded ready for the newsdealer.

From this press has been evolved the superb printing machine which, in: recent years, has astonished the worh. On it can be printed eight-, ten-, or twelve-page papers at a running speel of 24,000 an hour, or 400 a minute. and whether eight, ten, or twelve pages are printed they all come ont witl-
the supplements inset and the paper pasted and folded. From this press was developed the next triumph, the quadruple press. Marvelous machines these quadruple presses are, and it scemed impossible that any press could be bilt for many years to come that would beat them.

The priuting business stood amazed, awe-stricken at the sight of so many papers being turned out each hour. And before the amazement had subsided there eame forth the machine which is destined to go down in history as one of the great achievements in mechanics of the nineteenth century, 一 the sextuple press, manufactured by Hoe \& Co., which has brought forth as many wonderful improvements as any mechanical concern in the world.

Although it is impossible to explain in language comprehensible to the man who is not an engineer how this monarch among printing presses does its work at a rate of speed which is well-nigh incredible and outstrips the flight of imagination itself, yet it is possible to convey an idea of what the extent of the work is.

This machine will print, fold, paste, and deliver 90.000 of a four-page paper

FIRST PERFEETING PHESN.
or six-page newspaper in one hour. It will require some figuring to convey an adequate idea of how fast that is, for, as a matter of fact, it is faster than a man can think, and that is why I say that the speed of the machine outstrijs the flight of imagination.

Ninety thousand copies an hour is equivalent to fifteen hundred copies a minute, and fifteen hundred copies a minute means twenty-five copies per second:

Now take out your watch, and while the second hand is passing from one second to another try to grasp the idea that in all that brief interval of time twenty-five six-page newspapers have been printed. Yon can't do it. It is faster than you can think.

And yet in that second those twenty-five papers are not only printed, but the inside sheets are automatically pasted in, and the twenty-five papers are all cut and folded ready for delivery to the newsdealers. Is there anything more marvelous than that recorded in the "Arabian Nights"? Who said that there are no miracles in this aineteenth century? Why, if old Gutenherg, - peace to his soul, - or Fanst, or Caston, or even our own Benjamin Franklin had seen anything of the sort, they would have sworn that it was
either a miracle or the work of the supernatural, with the chances in favor of the latter.

Each page of the average newspaper has six columns, and in each column there is on an average 1800 words. Six multiptied by six and the produrt. of that by twenty-five, and that again by 1800 , yon will find makes $1,620,000$. which is just about the number of words that this press prints in a second when it is truning out six-page papers at the rate of twenty-five a second. That is something that will stagger any man's imagination if he tries to realize what it is.

This press will print, cut, paste, fold, comnt, and deliver 72,000 copies of an cight-page newspraper in one hour, which is equivalent to 1200 a minute and 20 a second.

It will print, eut, paste, comst, aud deliver complete 48,000 copies of a ten- or twelve-page newspaper in one hom, which is equivalent to 800 a minute and a fraction over 13 an serond.

It will print, cut, paste, fold, comit, and deliver complete 36,000 copies of a sixteen-page newspaper an hour, which is at the rate of $\mathbf{6 0 0}$ a minute, or 10 a second.

It will print, cut, paste, fold, count, and deliver complete 24,000 copies of a fourteen-, twenty-, or twenty-four-pare newspaper an hour, which is at the rate of 400 a minute, or very nearly seven a second.

This is lightning work with a vengeance, and yet it is possible that there may be some who read this who will live to call it slow. That will probably be when they have found out all abont how to put a hamess on electrieity. No one can predict when inventive genius will reach its limits in the printing press. Before this press was built, the fastest presses in the world were Hoe's quadruple presses. which will turn ont 48,000 fomr-, six-, or eightpace papers an hour, $\mathbf{2 4 , 0 0 0}$ ten-, twelve-, fourteen-, or sixteen-page papers an hour, and 12,000 twenty- or twenty-four page papers an hour, all cut, pasted, and folded.

The sextuple press has a well-nigh insatiable appetite for white paper. To satisfy it it is fed from three rolls at the same time, one roll being attached at either ent of the press, and the third suspended near the centre. It is the only press whieh has ever been able to accomplish that feat. Each roll is sixty-three inches wide. When doing its best this press will consume $25 z_{g}$ miles of $; 3$-inch wide white paper in one hour, and eject it at the two deliveries, cach copy containing an epitome of the news of the world for the preceding twenty-four hours, and each copy cut, pasten, and folded ready for delivery. It is a sight worth secing to see it done, and in its way it is just as impressive as Niagara.

A man turns a lever, shafts and cylinders begin to revolve, the whirring noise sets into a steady roar, you see three streams of white paper pouring into the machine from the three huge rolls, and you pass around to the other side and - it is literally snowing newspapers at each end of the two delivery outlets. So fast does one paper follow the other that you catch only a momentary glitter from the deft steel fingers whieh seize the papers and cast them out.

The machine weighs about fifty-eight tons. It is massive and strong, with the strength of a thousand giants. And yet, though its arms are of steel and
ances in favor
1 each colmm 1 the produr kes $1,620,000$. s in a secould -five a seeond. if he tries to

000 eopies of 20 a minute
ies of a ten-or 800 a minute
,000 copies of a minute, or

000 eopies of hich is at the
ble that there will probably on electrieity. in the printe world were six-, or eightage papers ain 11 cut, pasted, white paper. re roll being ar the eentre. t feat. Each will consume it at the two world for the ded ready for way it is just
the whirring aper pouring to the other two delivery catch only a pers and cast
strong, with of steel and
its motions are all as rapid as lightning, its touch is as tender as that of a woman when she caresses her babe. How else dues the machine avoid tearing the paper? Paper tears very readily, as you often ascertain accidentally when turning over the pages. Truly wonderful it is, and mysterious to anybody but an expert, how this huge machine can make newspapers at the rate of twenty-five a second without rending the paper all to shreds.

It has six plate cylinders, each cylinder carrying eight stereotype plates, and six impression-cylinders. These eylinders, when the press is working at full speed, make two hundred revolutions a minute. The period of contact hetween the paper and the plate eylinders is therefore inconceivably brief, and how in that fractional space of time a perfect impression is made even to the reproduction of the finest, is one of those things which, to the man who is not "up" in mechanics, must forever remain a mystery.

HOUR ROLLEI TWO-hevolution press.
A double folder forms part of the machine. A single folder would not be equal to the task imposed on it. $\mathbf{A s}$ it is, this double folder has to exercise such celerity to keep up with the streams of printed paper which descend upon it that its operations are too quick for the eye to follow.
The press has two delivery outlets. At each the papers are automatically comoded in piles of fifty. No matter how rapidly the papers come out, there is never a mistake in the eount. It is as sure as fate. By an ingenious cantrivance -- if I should try to describe it more definitely most people would be none the wiser - each fiftieth paper is shoved out an inch beyond the others which have been dropped on to the receiving tapes, thus serving as a sort of tally mark.
Truly it is a marvelous machine - this sextuple press. Nowhere you will find a more perfect adaptation of meaas to ends, nowhere in any branch of industry a piece of meehanism which offers a finer example of what human skill and ingenuity is capable of. And it is free from that reproach which is sometimes brought against the greatest triumphs of inventive genius in
other departments of human activity, - that they make mere automatons out of human beings.

There was recently manufactured by the Hoe Company for a New York paper an addition to this wonderful piece of machinery desiguated an octuple press. Rumning at full speed it will print, paste, eut, fold, and comut $\mathbf{9 6 , 0 0 0}$ eight-page papers an hour. It is nearly 14 feet high, and 25 feet long. Ten men are required to operate it. The cylinders revolve 200 times in every 60 seconds.

This monster is divided into two working parts. The printing is done on the half of the machine to the right. The paper passes over the cylinders there, where it is printed from the stereotype plates, and then runs through the other half of the machine on the left, where it is cut, inserted, pasted, delivered, and counted from four outlets folding in half-page size.

This press shows four distinct double printing machines, each fed by its own roll of paper, The paper from each roll passes against two sets of stereotype plate cylinders - one for each side of the printed sheet. The machine is so perfectly adjusted that by simply turning a serew and moving a gear a few inches each of the four sets of eylinders can be thrown out of operation; that is to say one quarter, one half, three quarters, or the whole press can be operated at will.

The folder is harmonized fur each adjustment of the printing cylinder. The folding of the papers has been brought to the highest state of perfection. The sheets are folded, cut, and delivered by a rotary motion at a speed that could never have been attained with the reciprocating arms, such as were used prior to the Hoe inventions.

When a sixteen-page paper is being printed it comes in four-ply thickness, and then doubles and shoots eight thicknesses under the knife.

When a tweaty-four-page paper is being printed it passes over the lougitudinal folder in six-ply thickness and passes under the knife in twelve thicknesses. All this is attained without the use of guiding tapes. In fact, the speed could not be attained with them.

As the papers are folded and delivered from the four outlets, with a speed too great for the eye to follow, the machine itself counts them in total and in bundles, as is done on the sextuple press. This monster octuple machine has a perfected system of ink distribution with whieh no other presses are equipped. Under the system results are obtained by deereasing the size and increasing the number of ink-rollers around each cylinder of plates.

The arrangement of the type eylinders is such as to make the press one that can be handled with great ease and rapidity. Along the right hand of the machine, between the two rows of cylinders, is an open passageway. It is large enough for men to pass through either from the ground or from the gallery near the latitudinal centre of the press.

From this onen passageway the pressmen are able to watch every movement of the machine's interior working, and from it they are able to make quick changes on the plate cylinders. The change in prosition of only two ink-rollers is 1 seessary to change a plate on any cylinder. This is a matter of great importance to a paper which prints many editions, for it is necessary to change plates so often and to economize every minute of time in order to catch the fast mails which carry the paper to all quarters of the earth.

On the octuple presses each roll of paper is guarded against breakage. There is a device in the shape of a short endless belt of rubber which passes over two pulleys and rests on top of the roll of paper. The paper is then pulled from the roll as gently as the thread is pulled from the spool of a sewing machine. The belt pushes the roll along at a speed equal to and sometimes a little greater than that of the stereotype eylinders. Hence, all tension is removed from the prper.

From the stereotyper's department, where they have been made in a few minutes, cone the plates of curved, bright metal. Passed to the pressmen, they are loeked on the cylinders as fast as they can be handled. The rolls of paper have heen placed in their proper positions.
This accomplished, the men step back from the machine, the brakeman pulls the lever, and the giant press begins its work. Slowly its cylinders revolve at first. but as headway is gained the rum!le that accompanied the start increases into a shrill shriek as the limit of speed is reached.

hithogihaphic phess.
The paper moshes from its continuous rolls, is printed, folded. cut, and thrown out from the four outlets at a speed that would be over twiee greater than that of any express train if it were confined to one roll. Every paper is just like every other one, perfect in every detail.

When this has gone on for an hour, two hours, or however long it may take to run off the editions, the monster press can be stopped in an instant. With the simple tonching of a lever all its movement will cease before the cylinders can revolve five times, and they had been revolving two hundred times a minute before.

The two wonders just described are confined to newspaper work. This same American firm has produced presses upon which are printed the fine specimens of magazines where the work takes a striking resemblance to lithograph printing. They have a speed of 8000 an hour. From them come booklets of 16, 20, or 24 pages. From the presses of 4000 an hour come books of 32,40 , and 48 pages. In construction they are complicated and grand.

Then come the presses upon which are printed different colors. These are made in England and the United States, and are used with satisfactory results on prominent publications in both countries. A recent issue of the
" British and Colonial Printer" directs attention to this advance in mechanism through the medium of the Hoe urt rotary form feeder. It says: -
"'This machine carries the minl back uaturally to pre-rotary days, when the Hoe multi-feeder held the field as the news paper machine, to the days of the heavy, and as we consider in these advanced days, chmesy turtle. When the ereative genius of Colonel Hoe evolved the rotary press, the multi-feeder was almost at onee relegatel to the lumber room of obsolete mechanies. It is hardly eonceivable that it entered the mind of any practical man at this time that the prineiple of multi-fed flat sheet printing would ever be adapted to the proluction of high art illustrated literature, at a speed equal, or nearly so, to the former Hoe news machine. It has, at all events in our country, long been a settled opinion that such work could only be successfully accomplished upon a flat-bed machine, that the mere curvature of a plate must destroy the beauty of a fine process blook for example, and that any attempt to travel at a greater speed than 1200 to 1500 an hour must be at the sucrifice of depth and sufficiency of rolling. Whether this is really so readers will now be able to form their own opinion from the pages of the 'Strand Magazine.' Those pages abound in very varied methods of engraving, woolent and process, line and nature, and reproductions alike from photos and from wash and crayon drawings. Every page has undergone the process of electrotyping, east straight and eurved subsequently, and therefore the conditions of printing at the high speed of 4000 (or to be strietly accurate, four sheets of 16 pages eaeh put throngh at the rate of 950 each, or $\mathbf{3 8 0 0}$ per hour) are as severe as could be desireal.
"The British printer has yet to aequire a full mastery of its eapabilities, and the enginecr has equally before him in some degree a period of development. Some of the portraiture, human and animai, is equal to anything seen. The make-ready (upon hard packing) exhibits the highest quality, and the distribution of color perfection. The plate-cylinder is made as large as the desired speed renders practicable, in order that the eurvature of the plates may bo reduced to a minimum. The provision for securing adequate distribution and in-rolling is upon a liberal seale, but not one whit more se than is requisite, extent of surface and speed of ronning considered. There are 16 inkers and 38 distributors, with 16 iron distribution eylinders. The sheets are fell in two at either side of the machine, those from the right hand feeders being delivered upon the table at the extreme left, the other upon the inner delivery hoard. The plates are rigidly secured by special clutches. To facilitate the imposition of the plates, or any attention required by the cylimer, the short rear portion of the machine baek of the cylinder is letachable and can he rum out upon an extended base, and then closed up and put into gear again. This renders it perfectly accessible at the most essential point. The sheets are of course printed on one side only. We have not yet attained to the perfecting stage in art work in combination with high speed; the introduction of the Hoe art rotary press, however, marks a distinct epoch in this class of printing in Great Britain. Color printingpresses are in use in the newspaper and magazine offices in this country, and from them are prodnced the artistic as well as the lurid styles of art."

What the possibilities of the printing press are, looking at the degree of excellence at present attained, it is difficult to predict. It would seem
as if the height of perfeetion now had been reached. The probability is that the printer at the end of the first guarter of the twentieth century may look with something akin to contempt upon the machines which now are regarded with so much pride.

Such a thing is possible in t' age of invention.

11. THE SETTIN: OF TYPE.

In the beginuing of the nineteenth century, when the little metal pieces

of type were picked up one at a time and plaeed in the eomposing "stick" by hand, there was attached to the work an importance which elevated it almost to the ranks of the trained professions. In En land, as late as 1817, compositors arrogated to themselves the dignity of carrying swords. At the elose of the nineteenth century, the art is scen to be passing into the sphere of mechanies, - the methods in rogue making it entirely a mechanical operation. Before many years of the twentieth century have passed, there
will have been attaned a degree of advaneement which will dispense with the hand of man in gaiding the movements of the machine. The inventive skill which hrought the printing press to such a high point of excellenee and speed has been turned toward the work of type-composing, and the forward marel is likely to be as rupid.

Outside of the atual learned professions, no oeeupation has contributed so many prominent figures to the history and progress of this country as the eomposing-room. They have filled important phaces in journalism, polities, Congress, state legislatures, the army and navy, and the world of literature.

Horace Greeley, the fommer of the New York "'Trilnme," - writer, states. man, and man of affairs, - is one of the notable fignres of the present century, who lain the fomdation of his career at a ease of type.

Schuyler Collax, who became Vice-l'resident of the United States in 1869, passed the early years of his life setting type.

And, strange to say, these two men, when the presidential ehair seemed a possible realization of their ambition, were opposed ly men of their emalt simply becamse they had seemed to rim so far above the "stick" and "rule."

Simon Cameron, of l'emsylvania, onee Secretary of War, Unitel States senator, representative of the United States abroal, amal for many years political master of his great state, was proud to say that he hal begum his career as atypesetter in a combtry printing-olli"e. It is worth while noticing that this printer-politician's life eoverel marly a century of existence. His life spaned every president, from John Adams in $\mathbf{1 7 9 9}$ to Benjamin Harrison in 18S9, while his ative political control of lemnsylvania covered a period of sixty-five years. - a record mate hy only one man within the history of the United States.

Every state in the Union has contributed to history its quota of printerstatesmen, printer-authors, and printer-jou, nalists. How many of sueh there have been in this nineteenth century wonld be beyond ordinary researel to ascertain. But printers - compositors - ean refer with just pride to the fact that in all the advanced walks of life are to be found men who have been members of the grila.

The setting of type by hand prevailed universally until as late as 1880 . That may be put down as the period when there came into anything like general use the machines for type composition, although experiments in that direction had been going on for sixty years.

As early as 1820, printers realizel that maehinery eventually must be brought into play for composing type. But how to do it was the scientitic as well as mechanieal problem. It was argued that the maehine must be so constructed as to pick up the type, uniformly tistribute the spaee between the words, and "justify" the lines, that is, make them the exaet width.
"It is heyond the range of possibility;" suggested th^ printer. "Meelanism never can be applied to art. The great Benjamin Franklin would have discovered the way to make suein a thing possible, if it were possible - which is impossible."

And the scientific electric discovery made by Benjanin Franklin in the eighteenth century is, at the elose of the nineteenth, the motive-power used for driving the machines for type composition, - the seemingly impossible has reached the stage of possibility.
rlense with e inventive ellence and the forward
itributed so ntry as the in, jolities, litevature. iter, states. rut century, tes in 1869, air seemed their eralt mind "ruke." ited states nany years 1 begun his ile moticing ence. 1 I is jamin Harcovered a iin the his-
of printersuch there research to ide to the who have
e as 1880 . thing like uts in that
y must be a seientific must be so e between idth. Iechanism have dis-- which is
lin in the ower used mpossible
1)r. Willian Chureh, of Commecticut. produced a machine looklug to machine type-composition in 18:2. It did not eome into nse, ilthough he spent large sums of money on it, and devoted a vast amonat of energer toward having it taken up both in this eomutry and in Enghad. At the l'aris ExhihiLion in 1833 there were exhihited several machines of this sort, one of which - the patent of Christian Sürensen, of Copenhagen - was used upon a daily palaer issued during the exhibition. In 1871, at the luternational Exhihition in London, there was shown a machine possessing peeuliar features. It used ${ }^{\text {a }}$ jerforated ribbon, through the medium of whieh types were worked into position. The machine was cumbersome, complicated, and expensive, and

LINOTYPE (TYPE-SETTIN() MACHINE (FLIONT VIEW).
could not be brought into anything like general usage. In 1875 M . Deleambre, of Paris, after twenty years' work producell a maehine in New York. It had the same objections as the others. While this machine could do as much as the labor of three men by hand, it required a man to operate, another man to place the set type in lines, stean to keep it in motion, and a big cost to construct.

Up to this period, all the experiments had shown the want of something which would obviate the presence of a man to make the lines of the proper length and with equal spaeing between the words. All the machines which were anything near available pieked up and placed in position separate types. At the Centennial Exhibition of 1876, in Philadelphia, there were shown maehines which used brass dies and east a line of type. These seemed to pos-
sess the element for successfill use, and the outcome was the production of the machine whith is now in use in the the newspurer oftlees in this country - the "Mergenthaler Linotype." Proutionlly it lus driven all the other machines ont of use, but how long it will hold swny is a question. Alrealy men of genims are exprimenting with two objects in view, - increase of speed, decrease of cost, - and it is fair to presme that before the twentieth century has gone very far into history these two objects will have bern attained.

The linotype, as here shown, hats the apparmee of a heavy and enmbersome pieee of madhinery. It actually is so only when there are several of them phacel in line - then thoy give to n emposing-room the appentane of a machine shop. This machine, instend of prodncing single type of the orlinary chatacter, easts type-metal bars or slags, meh complete in one piece, and having on the upper edge, properly justitied, the type chanaters to priat a line.

These slugs present the appearance of composed lines of typer, and serve the same prripose, and for this reason are called "linotypes." "The linotypes are prodnced and assembled antomatically in a gilley, side by side, in proper orler, so that they constitnte a "form," answering the same phrposes ind used in the same mamer as the ordinary" forms" consisting of single types.

After being used, the linotypes insteal of being, like type forms, distributed, are thrown into a metal pot ol the machine to be recast into new forms.

The machine contains, as its fundamental elements, several hambed bass matrices. Gach matrix consists of a that plate having in one elge a fiomale letter, or matrix proper, and in the upper end a series of theth, which are used for distributing to their proper phaces in the magazine matrie ces containing different loters. There are in the mueline a mumber of matriess of eneh letter, and also matrices representing special characters, and spaces or quads of definite thicknoss for use in tabular and other work of a complicated nature.

The machine is so organizel that on manpulating the finger-keys it will select matrices in the order in which their characters are to appear in print, and assemble them side by side with wedge-shaped spaces at suitable points in the line.

This composed line forms a linematrix, or in other words a line of female type, alapted to produce a line of raised printing type on a slug. Which may be forced into or against the matrix characters. After the matrix line is composed it is automatieally transferred to the face of the mold, into which molten metal is delivered to produce the slug or hinotype, after which the matrices are distributed or returned to the magazine to be again composed in new relations for succeeding lines.

These operations are performed by mechanism, as shown in the outline here presented.
A is an inclined fixed magazine, containing channels in which the assortel matrices are stored, and througlo which they slide, entering at the top and escaping at the foot, one at a time. Each channel is provided at the lower end with an escapement device, B, comected by a rod, C, with a finger character of the matrices in the correqponding channel. There is a key for each
duction of ees in thin en all tha question. iew, - in. hat before bjects will
id cmmber several of tpearane pe of the one piece, is to print
and server Linotypes in proper [10ses and "gle types. ms, distriinto new
lred hatiss e a lemale which are ss containes of emph ; or quads mplicated

3 it will r in print, ble points,
of female hich may ix line is to which vhich the nposed in e outline assorted top and the lower ger char, for each

character, and also keys for quads stored in the magazine. The keys are actuated by the operator in the order in which their letters are to appear in print. As a key is depressed, it operates the corresponding escapement, 1 , which allows a matrix to fall out of the magazine through one of the channels, L;, to the inclined traveling belt, r, which serves to carry the matrices down in snceession into the assembler stick, G, in which they are stored side by side. A box, H, contains a mumber of elongated spaces, I, and a discharging device comecting with a finger-key bar, J, by which the spaces are permitted to fall into the line of matrices at the proper points dering composition. It will be perceived that the operation of the various keys results

in the selection of the matrices and spaces, and their collection in assembler, G, until it contains all the characters to be represented by one line of print. After the matrix line is thus composed it is transferred, as indicated by the dotted lines, to the front of a mold or slot extending through a mold wheel, K, from front to rear. This mold is of the exact size and shape of the sling required. The matrix line is pressed tightly against, and closed in front of, the mold for the time being, and the. characters, or matrices proper, face the mold cell or space. While the line is in place in front of the mold, the welge spaces are pnshed up through the line, and in this manner exact and instantaneous "justification" is secured. Behind the mold there is a melting pot, M, heated by a flame from a gas burner, and containing a quantity of molten metal. The pot has a perforated month arranged to fit against and close the rear side of the mold, and contains a jump plunger, mechanically arctuated.

After the matrix line is in place, the plunger falls and forces metal through the pot mouth into the mold, against and into the characters of the matrix line. The metal instantly solidifies in the mold, forming the slug or linotype, having on its edge raised type characters formed by the matrices. The mold wheel next makes a partial revolution, turning the mold from the original horizontal to a vertical position in front of the ejector, which then alvances from the rear throngh the mold, pushing the slug out of the latter into the receiving galley, at the front.

A vibrating arm advances the slugs laterally in the galley, and thus assembles them side by side in column or page-form ready for use. In order to insure absolute accuracy in the height and thickness of the slugs, knives are arrangel to act upon them during their course to the galley.

After the matrices in the line have served their purpose in front of the mold, they are returned to the magazine to be again discharged and used in the following mamer. The line is lifted from the mold ant shifted laterally until the teeth at the top engage the teeth of bar, R. This bar then rises as shown by dotted lines, lifting the matrices to the distributor at the top of the machine, but leaving the spaces, I, behind to be shifted laterally to the magazine or holder, H, from which they were discharged. Eich matrix has distributor teeth in its top, arranged in a special order or number, accorling to the character it contains. In other words, a matrix containing any given character differs in the number or relation of its teeth from a matrix containing any other character. This tifference is relied upon to secure proper distribution. A distributor-bar, T, in a single piece, is fixed horizontally over the upper end of the magazine, and is formed with lougitudinal ribs or teeth, adapted to engage the teeth of the matrices and hohl the latter in suspension as they are carricd along the bar over the mouths or entrances of the channels.

The teeth of the bar are cut away to vary their number or arrangement at different points in its length, so that there is a special arrangement over the mouth of each channel. The matrices are pushed upon the bar at the end, and made to slide slowly along it while suspended therefrom. Each matrix remains in engagement, and travels over the month of the channels, until it arrives at the required point, where, for the first time, its teeth bear such relation to those of the bar that it is permitted to disengage and fall into its chamel.

The travel of the matrices is secured by longitudinal screws, which lie below the bar in position to engage the edges of the matrices. The matrices pursue a circulatory course through the machine, starting from the bottom of the magazine and passing thence to the line being composed, thence to the mold, and finally back to the top of the magazine. This circulation permits the operations of composing one' line, easting a seeond, and distribiting a third, to be carried on concurrently, and enables the machine to run at it speed exceeding that at which any operator can finger the keys.

One half horse power is generally used in driving a machine. About five square feet is the space nccupied by the machine; it weighs 1925 pounds, and consumes about fifteen feet of illuminating gas each hour to heat the metal pot. Each machine will do complete work equal to that of five men by hand. The simplicity of the machine bears a striking resemblance to the
metal through s of the matrix e slug or linomatrices. The nold from the tor, which then at of the latter
y, and thus as. use. In order e slugs, knives y.
in front of the al and used in d shifted laterTlhis bar then stributor at the hifted laterally charged. Each 1 order or nummatrix contailits teeth from relied upon to piece, is fixed ned with longitrices and holl : the mouths or
arrangement at ement over the bar at the end,

Each matrix annels, until it teeth lear such and fall into its
rews, which lie
The matrices om the bottom l , thence to the ulation permits distributing a ne to run at a s.
ne. Λ bout five s 1925 pounds, our to heat the lat of five men emblance to the
$\therefore: n w r i t e r$, and this is operated successfully by young girls. When the matiir set by the machine is placed together, the page presents a surface equal i. : an entire new set of type, or, as the printers say, "We take on an entire nuw dress every day."

That is a production of the nineteenth century. How commonplace it will anpear when the achievements of the twentieth century are placed on reerrl.

iII, eyents as they occelk.

When the nincteenth century openel, great events were occurring in the work. Napoleon Bonaparte was the central figure in the eye of Europe. He harl, but a few years previonsly (1797), gone through the most brilliant campaign known. He had crossed the Alps, defeatel the Austrims at Montenotte and Millesimo, defeated the Sardinians at Ceva and Mondovi, and conquered Lombardy, - all in a few weeks. The year following he had conguered Egypt. and in 1800 had become the first consul and the ruler of France, to be declared Emperor four years later.
Then followed, in rapil succession, the events which caused the world to look upon Napoleon as the probable coming ruler of the universe. It was in 180.5 that he began the war of aggrandizement. He crossed the lhine, compelling the Austrian army to surrender at Ulm; he entered Vicma and ronted the Russian and Austrian armies at Austerlitz. This was followed by his move to make himself master of Sonthern and Central Europe. He established his brother Joseph as King of Naples; his brother Louis as King of Holland ; his stepson Eugene as Viceroy of Italy; and his brothcr-in-law, Joachim Murat, as Grand Duke of Berg. The following year he defeated the l'russians and entered Berlin.

It was not until his abdication at Fontainebleau, in 1814, that Europe and America breathed freely. His final overthrow at Waterloo in 1815 removed him from the stage as an active participant in the world's history of the nineteenth century.

In the United States, the close of the eighteenth century was marked by the death of Washington, while $1800,1801,1802$ saw us make a treaty of peace with France, remove the national capital from Philadelphia to Washington, D. C., declare war against Tripoli, purchase Louisiana from France, and enter upon the disputes with Great Britain which culminated in a declaration of war with the mother country, in June of 1812.
While these events at home and abroad were making history, long periods of time elapsed between their occurrence and their being given to the people. There was no telegraphic communication which flashed messages around the globe. It was a wait until the mails brought the news. Two months, probably, elapsed after the battle of Waterloo ere this country was furnished with the story which meant so much to the peace of Europe.
What a change in this respect was wrought between the downfall of Napoleon Bonaparte in 1815 and the downfall of his nephew, Louis Napoleon, in 1870! On the fateful second of September, 1870, when the Emperor of France, Napoleon III., surrendered to the Emperor William of Prussia, on the field of Sedan, the news was flashed to America in less than two hours. On thiai hot, sultry day eager crowds surrounded the bulletin boards of the newspapers, on which were displayel the facts connected with the
overthrow of the Napoleonic dynasty. The difference in time made it possible for us here to know all that had been done by the two emperors and by Bismarek an hour aliead of their actual happening. For days hefore that the crowds hat surged aromad the newspaper offices, for days afterward they did the same, and facts were given with a rapidity which showed how wonderful had been the scientifie stride between 1815 and 1870.

Had any one in 1815 predicted the possibility of such scenes, he would have been put down as a fit subject for a writ of de lunatico inquirendo. Sueh, too, would have been the comment on the one who then would have suggested the likelihood of : newspaper in this country reaching a cireulation of a million copies daily, - id yet sueh has become an accomplished fact.

At the close of the first guarter of the nineteenth century there had been no practical advance in the rapid transmission of news. This was the period when the press lacked the facility to rapidly furnish the people with the events which were occurring in all directions. Newspapers still depended upon the mails. Home events were many weeks reaching sections remote from their happening. In this respect there had been some little improvement at the close of the first half of the century. That was the time when the electrical current was being brought into operation in the transmission of signals from whiel messages were being recorded, and these were being utilized for the sending of information at short distances. Scientific men were even talking of the possibility of comecting distant points on the coast, and whispering their hope for an Atlimtic eable. In 1858 that wonderful event came to pass. The old world and the new were connected by cable from Valeneia Bay, in Ireland, to Newfoundlania, in North America, and messages of greeting passed between Qneen Vietoria and President Buchanan. The break which followed soon after the opening of this eable stimulated men of genius and men of eapital to further efforts, and the governments of the United States and Great Pritain eame forward with generous aid. The laying of the Atlantie cable by the Great Eastern in 1864, and its successful operation in 1866, opened the doors for the possibilities of the press of to-day, and the realization of such scenes as were witnessed in this country on September 2. 1870.

Between that memorable year, 1866, and this, 1899, how wonderful has been the advance in the transmission of information from all quarters of the globe. From the Transvaal Republie, in Sonth Afriea; from the desert home of the Dervish in the Soudan; from the domain of Turkey's Sultan, in Armenia; from the Holy Land; from the Oriental empires of China and Japan; from the suow-clad land of the Czar in Siberia; from the Bosphoris to the English Chamel ; from Valencia across the Atlantic; from Victoria Land in North America to Patigonia in South Ameriea; from Maine to Mexieo; from the Atlantic to the Pacitic; there are each day transmitted all occurrences of interest transpiring, - and these encompass peace and war, joy and sorrow, science and art, education and trade, - events which aronse the passions and quicken the pulse of hmmanity.

This is done through the medimm of an organization known as the Associated Press. This wonderfnl combination has nearly forty thousand miles of wire from the different telegraph companies, for which there is paid a fixed price per mile. This, however, does not inelude its cable service, the

char

sert

seve
rece)
new:
read
adis
const
$\$ 1.9$

mo.

of a
toll rate. new: Sina alte l'nl noon satdo latel Hun reco drea elos
e made it posperors and lyy s before that fterward they ved how wun-
nes, he would co inquivendo. a would have I a circulation lished fact. here had been as the period ople with the till depended ctions remote ittle improvehe time when transmission se were being icientific men s on the coast, hat wonderful cted by cable rica, and mesnt Buchanan. le stimulated overmments of ous ain. The its successful ress of to-day, untry on Sep-
vonderful has 11 quarters of om the desert key's Sultan, of Clina and he Bosphoris from Victoria om Maine to ransmitted all eace and war, which aronse
charges for which are according to the number of words transmitted. The scrvice of this organization costs a million and a half a year, divided among several hundred of the great newspapers of the United States. During the recent conflict between Spain and the United States its expenditure for war nuws alone was nearly $\$ 500,000$. This can reudily be understood when the reader is informed that the cable rate from Manila was $\$ 2.37$ a word. Thus, a dispatch filling less than a quarter of a column of the average daily paper cost $\$ 1000$. The rate from Yorto Rico, at the outhreak of hostilities, was S1.90 a word, and it often happened that a single dispateh covering the me•ements of a body of troops in that island, with possibly a pen picture of a skirmish with the Spaniards, would cost $\$ 2000$ in gold. The Santiago toll was $\$ 1.10$ a word ; and whole pages of newspapers were printed at that rate.
What a gigantic institution it has become for the rapid dissemination of news events !

In that war between Spain and the United States, General Toral, the Spanish commander, surrendered Santiago on July 14, at 2.15 o'clock in the atternoon. At 2.25 o'clock the message amouncing the fact was received in P'uladelphia. On the 12th of August following, at 4.23 o'clock in the afternoom, the Peace Protocol was sigued in Wishington by the French Ambassador Cambon and Secretary of State Day, and at 4.27 o'clock - four minutes later- the information was in the New York office of the Associated Press. Hundreds of such instances of this rapid transmission of news conld be recorted in this last year of the nineteenth century, - facts never even dreamed of when Benjamin Franklin chained the electric current in the closing years of the eighteenth century.

The jommey of a piece of news from the far East to the far West is something worth noting. The trip covers thonsands of miles out of a direct route. As for instance, when Admiral Dewey amnihilated the Spanish fleet in the Bay of Manila, on May 1, 1898, the fact was cabled to Hong Kong, China. There an operator transmitted it northward to Helampo in Russia, right on the border line of Manchooria, from which place it was sent across Russia to Tomsk, thence to St. Petersburg. From the Russian capital it zigzagged to Berne, in Switzerland; thence to Paris; thence across the channel to Penzance, and finally to Valencia, to be put on the cable for America. In two hours from the time the operator in Hong Kong started his dispatel, it was being hurried across the American continent - north, west, east, soath - for distribution in the newspaper offices.

When a party of Mohammedans attacked a Christian mission in Calentta, a telegraph operator dispatched the news to Bombay, whence it was transmitted to Alen. The next point reached was Suez, from which it was sent to Malta. It was next sent to Lisbon. From there it was given to Paris. From Malta it was also cabled to Penzance, thence to Valencia, and finally to the United States.

When that Manila piece of news from Admiral Dewey reached the Pacific coast in the United States, the date of its being started was yet several homrs behind the time of its arrival. The attack on the Spanish Heet was made on Sunday, May 1, Manila time. The faet was not sent out by Dewey until the following morning, May 2 (still Manila time). It was started on its
westward course that morning (May 2) at ten o'clock. By the route taken to Valencia with the relays, two hours were consumed. This brought it to London about three o'elock on that morning of May 2, owing to the diff $\cdot \%$ ence in time. Traveling westward across the Atlantic ocean in advance if the sum, it reached New York about ten o'cloek in the night of May 1. Bht little time was lost in retransmission to the l'acitic coast, which point it reached abont six o'clock on that sunday evening of May 1 - fourteen hours previous, by the day of the month, to its being started from Manila.

In this work of sending out news not a moment is lost that ean be avoided. The aid of the typewriter enables the operator to keep pace with the sending operator, and his pace has becn increased in the past few years by the intr". duction of a code system. Here is a specimen of the code system as used by the operator in sending out a news item: -
" Madrid, March 17 -T Qn Regent h sined t Treaty of Peace btn Spm \& t Uni Stas. 'T treaty' wb frwded to t French Ambsdr, Jules Cambon, at Washu. fo exg w t one sined by l'r McKinley. No decree q sj wb pud d'Ofticial Gazette.'
"Ofl rlus btn t 2 govts wi nw b promtly rund. Ix rmrl 5 Mir to t Uni Stas wb Suor. Don J. Brunetti, Duke d'Arcos, fmr Spuh Mir to Mex, wos wif is an Amn.'

When this seemingly incomprehensible conglomeration of letters leaves the hand of the receiving operator it reads as follows: -
" Madrid, March 17 - The Queen Regent has signed the Treaty of Peare between Spain and the United States. The treaty will be forwarded to the French Ainbassador, Jules Cambon, at Washington, for exchange with thr one signed by President McKinley. No decree on the subject will be published in the 'Official Gazette.'
"Official relations between the two governments will now be promptly. renewed. It is rumored that the Minister to the United States will be Señor Don J. Brunetti, Duke d'Areos, former Spanish Minister to Mexico, whose wife is an American."

The London "Times" recently has been experimenting with a scheme whereby reporters in the Houses of Parliament operate the typesetting machines in the London office by the wire from their quarters in l'arliament.

It is only a question of time when this practice comes into use in the reporting of all legislative proceedings.

In some of the New York newspaper offices, the receiving operator sits at a typesetting machine and puts into type the messages which come over the wires.

How rapidly we have advanced in this direction in the last half of the nineteenth century is thus shown. What will be done by our successors in the first half of the twentieth century, no man can at this time satisfactorily: predict.

IV. TYI'E-MAKING, STEREOTYPING, PICTURF-MAKING.

The manufacture of the small metal pieces called type has undergone littl. change in this nineteenth century. That which has been done has been in the way of producing artistic designs, so arranged that combinations can b. formed pleasing to the eye, and an aid to rapid workmanship. The machiner:
in use has lost its crudity, the production has been increasen, and the finish become more perfeet. The setting of type by maehinery hay been a serious blow to this industry, and the time will come when it will be devoted entirely to the making of job or fancy types.

Benjamin Franklin attempted to make metal type in this country, but he did not succeed. It was not mutil 1796 that type-making was commeneed here.

As in many other departures in the printing business, the city of lhiladelphia trok the lead. Binney and Ronaldson, of Edinburgh, Seotland, estahlished the first foundry in this country, operating it in l'hiladelphia. After a severe struggle and with some aid from the state, a business was established by the two Scotehmen, which afterwards became known as the Johnson Foundry, under MacKellar, Smiths \& Jordan, which is still in existence. They were followed by David Bruce, also a Seotchnan, and by 1813 foundries had been established in New York and other large cities.

Since that time improvements have been introduced, but nothing has come forth whieh deserves to be ranked with the printing-press or the typesetting maehine.
The type founder will tell you how much better are the machines used in 1899 than those which produced type in 1850. But he cannot point out any device connected with it which the mechanieal workl ean designate as marvelous, or the people at large regard as a wonderful invention. Type onee was rubbed into smoothness by boys. Now it is done automatically on the maehine. By the hand process about four hundred types an hour were cast; hy the present mechanism a speed of six thousand an hour has been aequired. Until about 1875, this output hardly met the demand; now it will do so. Before many years it will be far in exeess of the requirements.

Stereotyping is the art of making plates cast in one pieee of type metal from the surface of one or more pages of type. In the beginning of the nineteenth century, stereotyping was used to an exceedingly limited extent. The printers were prejudieed against it for reasous purely selfish. It was not antil 1813 that it was introduced into the United States, and only a few years previonsly Lord Stanhope introduced it into the English printing business. "The Larger Catechism of the Westminster Assembly" professes on its title-page to have been the first work stereotyped in America. It bears the date of June, 1813. Now the process is in general use - plaster, clay, and papier mâché being used.
The process of stereotyping originally was to preserve the pages, so that an entire edition of a work could be finished without requiring large numbers of type, and to have it ready for future editions. For newspaper work it came into vogue to save the rapid wearing out of the type by the impressions made.
From the praetical introduetion of stereotyping in this country, in 1813, by Robert Bruee, until about 1850, the slow, tedious, and troublesome process of making the plates by plaster of laris was in vegue. That was done by the plaster being poured over the face of the type. Molten lead was then run into the cast, after which the plate was finished. The time thus oceupied caused the work to be confined to books, magazines, and weekly issues
of small jourmals. When the plate was taken from the east it was rough, imperfect, and untit for use. Men, whose specialty was finishing, were employed to make the plate so as to meet the requirements of the printing press.

It was just at the opening of the last half of the nineteenth eentury that papier minehe began to be used in this comutry. A few years before that time it had been brought into use in London and Paris. Its introduction into the United States found the printing trade ready and willing to accept it, and but a few years passed before it came into general use by the newspapers. It is a peeuliar combination. The paper matrix is formed by paste of starch, flour, alum, and water. This is spread over a thick paper, on which are placed layers of tine tissue paper. When ready for use, it is placed on the face of the type and a deep impression seenred by being passed through a press. Then it goes into a steam chest to be dried, from there it is passed into the casting machine, the molten metal poured in, and a few minutes thereafter the plate is ready for the press. Up to a few years ago, the impression on papier mûché was secured by being beaten with brushes prepared for that use. The method hal two disalvautages, - eonsumption of time and destruction of type. The press now used obviates these defects. The old way took about twenty minutes to produce a plate. Now it is done in from five to seven minntes. 'fle machinery here introdnced has been of bencfit to the trade, but none of it ranks among the great inventions of the century.

The making of electrotype plates had its origin early in the century, when it was found that stereotype plates had a limit as to durability. Electroplating suggested to Josiah. Adlams, in 1839, the idea of a copper surface for the stereotype plate. It took ten years to bring it into praetieal use. His first successful work in this line was on the engravings and borders for a Bible issued in New York. It was found to be particularly adapted to engraviugs, producing a surface of sufficient smoothness to allow the pressman to make a print of exquisite fineness. The improvements introduced tended only toward the saving of time and the excellence of finish. Practically the same process is used now that was employed half a century ago. An impression of the type is made on wax, the electric current is secured by a deposit of tine graphite, the mold is placed in a bath containing a solution of sulphate of copper and is made part of the electric eirenit, in which also is introduced a zine element in a sulphuric acid solution. The current deposits a film of copper on the graphite surface of the mold. When it has assumed a sufficient thickness, it is taken from the bath, the wax is removed, and the eopper shell trimmed. It is then backed with an alloy of type metal. The finishing process brings the plate to the proper thickness, after which it is blocked to the heiglat required for printing. That is the process. To it in the last ten years there has been applied the use of steam machinery. In the old days the making of electrotypes required from ten to fifteen hours. They now are produced in from two to three hours.

The close of the nineteenth century witnesses the disapparance entirely from the printing establishment of the once generally used wood engraving. The rise and fall of this once splendid art is practically encompassed in

TURY

the period of time covered by the ninetcenth century. Thomas Bewick, an Euglishnana, gave wood engraving an artistic impetus by the production of illustrations for his "Histories of British Quadrupeds," which appeared about 1790. Up to that period the work was crude. The books and magazines of the first decade of the century were illustrated in a way then regarded as highly artistic. The applieation of the bewick method brought forth work which ranked in the line of high art. Of the developument of this work volumes could be written. To simplify the situation it is only neeessary to recall how these pictures were mate. Squares of boxwood were used, on the face of which was spread a preparation of waterecolor Chinese white. On this surface the artist drew his picture, and then the engraver's art was brought into requisition - the engraviug being done alongside the pencil lines.

And here it was that the artistic instinct of the handler of the "graver" appared, - the delicacy of touch being shown in the shating and in the tinish of the lines. By this method there have been produced rare works of art, as can be seen by an examination of the books printed in the first half of the century.
The time taken in the making of the engravings, however, prevented the possibility of their being used by the newspapers and magazines as generally as was desired. This want was in a measure met by the introduction of machine "grooving." The cuts, however, could not be used to print from directly in consequence of the warping of the boxwood, and it was necessary in every instance to make stereotype or electrotype phates. Then, too, came the realization of the fact that the reproduction of portraits needed something which would preserve features and expression. In those days some of the pictures produced were ludicrous in the extreme, and it became a standing joke in the newspapers that the best way to cast ridieule upon a pmblic man was to print his picture. In the work of reproducing scenes the skill of the artist and the engraver frequently brought forth results which were marvels of excellence. For a number of years the wood engraving mosiness flourished in this particular line, despite the dissatisfaction existing in regard to portrait work. In the production of illustrations for fine books, printed on good paper with flat presses and properly "under-" or "overlaid," there was attained a degree of perfection in liaes and shading which raised the pictures almost to the ramk of stecl and c pperplate engravings. Many of those engaged in the work of drawing ant entting were possessed of a skill which wonld have won for them distinction in other artistic lines.
This, practically, was the condition of the profession when the end of the first half of the nineteenth century had been reached. Even then, however, the question of a substitute was under severe consideation in scientific as well as artistic cireles. Experiments were made with copper, acids, and zine, but satisfactory results could not he obtained. It was not until 1860 that a successful substitute was produced. Gillot, a Frenchman, bronght forth a system of etching. Ry this means a photograph from an artist's drawing was placed above a plate of gelatine, chemically seusitized. The parts of the gelatine exposed to the light beeame hard, and the remainder was brushed away with warm water. From this an electrotype could be made directly. That process has given way to the present system of photographing on zinc,
and the uso of acid baths for etehing. Other improvements - principally the use of the screen - have resulted in the production of half-tones whit are highly satisfactory in newspaper work. By this means there can be prom duced such reproductions as give the features of persons so that recognition is as easy as in the case of photographs. With the aid of different sizers of soreens, backgrounds are secured which uld materially to the artistic excullence of the pietures. So well done is the work in this direction that the plates can be used on the curved cylinders of the huge octuple presses, and enormons editions are printed from them. The peenliarity of this process is that the original ean be reduced or enlarged so as to suit any width of column or page without affecting one way or the other the fineness of the work. I'en and ink drawings made by artists are photographed and haekgrounded with the utmost acenracy as to design and detail. It has been fonnd, however, that scenes in half-tones do not give as much satisfaction as do portraits, and it is believed to be only a question of time when there is a return to lime engravings so far as the newspapers are concerned.

When one compares the photographic reproductions which appar in the magazines and newspapers oi to-day with those of even ten years ago, thern is seen an adrancement which tells a wonderful story of the rapid mareh of artistic taste. The outline picture - excellent of its kind - has the appearance of crudity almost grotesque when phaeed beside the life-like half-tone reproduction of photographic art.

Wood engraving has been relegated to the days of the hand-press, the mail news-carrier and the plaster of Paris process of stereotyping. Inventive gentus not only has advanced for the printing press and its adjuncts; it has also laid a heary hand on art, causing it to panse and consider how soon the pencil and the brush will be superseded entirely by the rhythmic motion of the machine.

Thomas J. Lindsey.

- principally lf-tones whil re can be prol. ant recognition ferent sizes of artistic excol. ction that the e presses, anl this process is width of colof of the work. backgroundel mind, however, portraits, and return to line
ainuear in the ears ago, there apid mareh of as the appear--like half-tone

THE CENTURY'S PROGRESS IN MINES AND MINING

Whas we consider how largely the discovery mal exploration of America was due to the seareh for mines, that the precions metals might be fomm to replenish the depleted treasuries of European monarehs; und when we mote that, as a result of this search, the world's ammal production of gold and silver had increased in the three hundred years following the discovery from $\$ 5,508,000$, in 1500 , to $\$ 48,095,000$ at the begiming of the nincternth century, we view with surprise the little progress male during this period in the art of mining.

At the beginning of the present century, we find in use the same general methods that were followed in the time of Colmmbus. The very tirst opreration - the search for veins - was oftentimes conducted after the mannor of the Middle Ages; for in Pryee's "Mineralogia Cornubiensis," which seems to have been one of the leading works on mining of the last century, there occurs, among other methods, a lengthy treatise on "How to Discover Mines by the Sole Virtue of the Hazel-tree." l'owder, although it had been invented for centuries, had been so little employed in miniug that it was considered merely as a last resort. In a description of mining methods, another work says: "The soft vein is generally dug with the spade and tursed out into wooden trays; but the hard veins are knoeked out with a gad and a hammer. If the ore is so hard as to be ineapable of breaking it in_{1} this manner, they usually soften it with fire. But a still more expeditious method is the working with gunpowder. A small quantity of pourder does great thinys this way."

In 1800 the coal miner was working by the naked light of the tallow dip. Cast-iron rails had been introduced but a few years, and rails of wrought iron, which could be bent to follow the curves of the drifts, were unheard of. The cars were pushed along the levels by boys. Water power, where it could be obtained and applied by means of the overshot wheel, was in general use for pumping, hoisting, and ventilating. But from many a mine the ore was raised by women, who pulled the bucket up" by walking away with the end of the rope" which passed from them over a sheave and thence down the shaft. In places the ore was still carried up the steep inclines to the surface on the backs of women and girls. Ventilation, when not secured by natural means, was obtained by bellows operated by men or mechanically. A mine which had been worked to a depth of one thousand feet was extraordinary. Though steam power, applied in the form of what was known as the atmospheric engine, a device utilizing for suction the vacuum formed by the condensation of steam in a chamber, had been used for years in draining mines, the steam engine, as invented by Watt, had been introduced for hoisting in only a few places. The power was applied to turn a long crank arm, which rotated the drum.

At the beginning of the century the mines of Comwall, which were the greatest probueers in (irent Britnin, were turning ont abont $5,000,000$ pounds of tin and $10,000,000$ pounds of eopper a yent, while the whole United Kingdom was furnishing only $1 \mathbf{7 0}, 000$ tons of iron. Sonth Amerien was the greatest producer of gold and silver, womlerfully rich mines of the latter luving been found in l'eru and Chile. Humbolat places the production of the whole South Amerienn continent for the year 1800 at 691,625 pounds of silver mul 9900 pounds of gold.

The United States at that time had practically no mining within its borders. Some small mines of iron, leal, and copper, which hat been opened to supply the demands created ly the Revolution, were producing spasmodically; but even as late as $18 \% 1$, William Keating, in an address before the American Philosophical Society, said." Upon the whole we think we may be warranted in saying that there are as yet no mines in activity in the United States. Coal, in most places, is taken from the surface, or dug from the foot of a hill. The lead mines of Missouri are rieh and aboudant, but the minung is a mere pilfering of the riehest spots."

In 1801 the Comish pumping systom was introduced. A long rod, extending from tho surface to the bottom of the shaft, operates simultaneonsly a series of $p^{m u m s}$ placed, one above the other, at intervals of about two hundred and tifty feet. The lowest one lifts the water from the pump aml delivers it into a tank from which the mext one draws its supply, and this in turn foress it up, to a higher tank. With this improved mrans of drainage mines began to be sunk deeper, a de; h_{a} of three thousind feet having been reached with this method of pumping. The manfacture of iron pumps, which had begun to replace wooden ones toward the end of the eightenth century, decreased the amont of rphirs neerssary on the pumps, und aided in making possible better arrangement of midergromud work.

It was at about this time, the begiming of the present century, that the method of opening ground by shafts, levels, and raises, which we refer to as "blocking out ore," began to be more generally atopted, displacing the former mode of following down the ore by a series of irregular, isolated excavations. With it eame overhead stoping, in whieh, after the shaft has been sunk, the level driven and timberel, and a raise made, the miner begins breaking down the ore from over his head, allowing it to run down into chutes. From these it is drawn out into ears pushed along the traeks in tho level. The waste is allowed to aceumulate on top of the stulls, or timbers, forming the top of the level above referred to, and serves as a platform upon which the miner stands in breaking down more ore.

The invention of the satety lamp, in 1815, is probably the most important event of the early part of the enntury. Previous to this the miners fired the gas in the "rooms" with their eandles, which were raised toward the roof with the aid of a long pole, the miners lying flat on the floor of the level to escape the blaze. and sometimes putting on wet jaekets to avoid being seorehed. As first invented by Davy, the safety lamp consisted merely of a cylimer of wire gauze surrounding the flane, much as the flame is surrounded by a glass globe in the modern lantern, except that the diameter of the eylinder did not exceed two inches. This was based upon the theory that the gas set on fire by the light would hurn inside the gauze without heating it hot enough to
ch were the ,000 pounds fuited Kingfien was the if the latter roduction of 5 jumuls of
hin its borin opened to If spasmodi. - before the ink we may ivity in the o" dug from mudiant, but

rod, extend-

 Itueously a at two hun, pillip, and and this in of drilinage having been roll pumps, eightemith , and aidedry, that the refer to as placing the isolated exshaft has iner begins down into acks in the or timbers, tform upon important rs fired the :d the roof the level to g seorched. cylinder of l by a glass ler did not set on fire enough to
igute the gas ontside. The priuciple was correct, and the hanp worked satisfactorily when earcfully used under proper conditions. It was som fomul, hawever, that in a strong air enrrent, or if awoug it a more maid speed than six feet per second in mexplosive mixture, the surrounding gas would be ignited. As a man walking maturally on the surface moves at a rate of hetween five and six feet per second, it will be ensily sern that aren were the speed eonsiderably diminished modergromul, -and any one who has tried to follow a mine foreman throngh mine workings knows the sperd slackening is slight, -a very slight swing of the arm would bring the rate of movement of the lantern up to the danger point. Another and a very mexpected factor in cusing explosions with the new lamp also developed; and that was the great carelessuess of the men who used it. Armed with this device, and deluded by the guietly burning flame, the miner would seat himself upon a

sinking, dheting, and stopinu with the ingeinsollosehteant dmills.
pile of coal, draw forth his pipe and fill it, and deliberately open the ganze to light it. As a consequence, for a time after the introduction of the safetylamp, the number of aecidents from explosions increased. This latter difticulty, the recklessuess of the miners, was presently overcome by having the lamps locked, and by depriving the men of all matches before aimitting them to the mine. An improved lamp, introduced by Clany, wherein the lower part of the cylinder was replaced by glass, partially proteeted the flame from strong air currents, and also gave a better light. Later, Müseler added in interior sheet iron chimncy, which divides the air current so that the hot air does not strike directly against the gaize, and the lamp as thus improved is very largely used, espreially in Europe.

In 1831 the safety fuse was invented. a train of powder having been used lefore this for firing the charges. The same year a patent was granted to Moses Shaw of New York for an electrical device to fire several charges at onee. It was at about this time. too, that the man-engine was invented in Germany. Some miner, notieing the slow and steady up and down motion of
the long rods which operated the pmons in the Cornish system, had conceived the idea of nailing steps on to them at intervals, ami riding up and down. As mines grew deeper and the time and labor required for the men to get down to their work increased, a special engine, utilizing an improvement of this device, was employed for mising and lowering men. This "man-engine" consisted of two parallel beams, moving slowly up and down the shaft with a reciprocating motion, the length of the stroke being abont twelve feet. Upon these beams small platforms were nailod at distances equal to the length of the stroke. The miner wishing to descend stepped upon the top platform of one beam as it started on its down stroke. At the end of this stroke he found himself twelve feet down the shaft, on a level with the second platform of the other beam. which had in the mean tine been coming u_{p}, and he stepped across on to this, which now began its down stroke. Thns by constantly stepping from one rod to the other at the completion of each

INGELSOLIA-SEHGEANT DUPLEX STEAM-ACTEATED AIR COMPRESSOR.
down stroke, he was conveyed to the boitom. By reversing the process he was raised to the surface.

In general, mining progress was slow up to the middle of the century. The prodnction of the baser metals, here and abroad, increased gradually with the demands of the meehanic arts. but it was not until the middle of the cemury that this factor, joined with the improved methods of transportation, aud of metallurgy, gave to mining that impetus which, though through alternate recurring waves of prosperity and stagnation, carried it forward until the anmal expenditure for technical skill, machinery, and supplies used in the industry is estimated to-lay at one thousand million dollars.

The first mining excitement in the I'nited States occurrel in 1829, following the discovery of gold in the South; but these fields soon declined in importance without resulting in any improvements to mining methods and machinery.
The next mining fever resulted from the inauguration of work upon the copper properties at Kewcenaw Point, Mich., in 1845. This cansed the first
ad conceived p and down. ? men to get rovement of man-engine" e shaft with twelve feet. equal to the (1)on the top enl of this el with the been coming troke. Thus tion of each

On.

process he
he century. d grachaally e middle of transportaigh through it forward pplies used

1829, foldeclinerl in rethods and
k upon the ed the first
mining-stock speculation in this comintry, and it is interesting to note that the century closes with a repetition of this same fever, fonuded upon almost the same gromal. Yet the conditions have changed wonderfully. Upom the then barren peninsula. whitened with the tents of speculators and geologists, has Grown up a multitude of towns, filled with thonsands of people whose labnes are performed at a depth of nearly a mile under ground. Thousands mere transport the ore to the mills, separate the copper from the rock, and rint timber for the mines; while yet other thousands prepare food and clothins inud shelter for all these. During 1898, the copper mines about Lake superior produced nearly $160,000,000$ pounds of copper, and paid in dividinds S6, 4 (H), (OHK).

THE SEGGEANT ROCK DHLL.
This distriet is the only one in the United States where the man-engine has been used; but as the shafts were sunk deeper and deeper, it was found that even this method was not suffieiently rapid, and the men are now lowerel into the mines by cages or skips. A"cage" is simply the miners' name for the ordinary elevator when used underground, and has developed from the bueket in use at the beginning of the century. A "skip" is a car especially designed for use on an ineline. The roadway upon which the skip runs is so planned, at the top of the shaft, that the rear wheels run upon a track raised above the one over which the front wheels pass, so that the rear and is elevated and the skip is dumped antomatically. At the De Beers diamond mines in South A frica are two of these skips which hold nearly five tons of rock each. At the bottom of the shaft are chutes containing the

576

rock, and when the skip is in position a man pulls a lever, allowing the ore to 'run into it. Another pull closes the chate, a button is tonched which rings a lofl in the engine-room, and the skip starts up the shaft. At the top it dumps itself and returns to be filled arain. In the mem time the other skip has been tilled amd is going up while the first is coming down. With these two skips, making ninety-two trips an homr, beer four thousime tons of rock have been hoisted in less than twelve hours, from a depth of 1200 feet.
To handle these enormons guantities temendons hoisting engines are used. At the Calumet and Heela mines is a pair of quadruple expansion engines which will lift eagrs. carring six tons of ore a mile in a mimete and a half. The " Modoc" hoist, built for the Amacouda Miaing Company of Butte, Montana, is the largest hoist in the word. It is a double eompound beam engine, and is designed to be used in siuking to a depth of 6000 feet.

This machine weighs four hundred tons, and has seven separate subordinate engines for use in operating it. Think of it! An engine so ponderous that smaller engines are neeessary to apply the clutehes that set the reels in motion; other engines set the brakes, and another reverses the action, if need be. All these are controlled by levers operated from the engineer's platform, the "rmmer" laving one foot and seven hand levers to landle. Besides these there are two indieator dises, directly in front, requiring eonstant attention, for these show the exact position of the cage in the shaft. Yet such wonderful skill have the rumers in the control of these veritable flying machines that they instantly interpret the complieated signals, and drop the cage with such exactness that the ear of ore is rim from the track in the level to the track on the cage, almost without a jar.

Nor is the hoisi the only large machine necessary in the equipment of the modern mining plant, for in sinking to great depths vast quantities of water have to be removed. The Chapin Mining Company, at Iron Momiain, Mich.. lave one of the largest pmoping engines in the world. This engine is loeated
wing the ore ched which At the top ne the other own. With sand tons of f 1200 feet. engines are e expansion minnte and Jompany of e componn! f 6000 feet.
ubordinato erons that e reels in action, if engineer's to handle. iring eonthe shaft. veritable rnals, and the track ent of the of water in, Mieh.. is located

driving a liallway tunnel with the ingersoll "eclipse" rock drili..
on the surface, driving the pumps after the Cornish style, though it would ire difficult to see much of the pmop of 1801 in this magniticent machine. With a ten-foot stroke it conveys the power to the pumps through a walking bean weighing a hundred toms. In an hour it will raise nearly $\mathbf{2 0 0 , 0 0 0}$ gallons on water from a depth of a fluiter of a mile.

Imagine the miner of 1800 "softening by fire" sufficient ore to supply a modern hoist. For the mines which now turn out 2000 tons a day ean by no means be counted on one's fingers, and 2000 tons means more than a font deep over a whole eity block. Before the middle of the century the usi of powder and drill hat largely inereased, and in 1845 an attempt was male to aid the man behimd the drill with a machine which swng a hammer hy steom power. In 186á a mathine was invented using compressed air in a eylimler, and this was gradually improvel matil it became a suceess in 1 sin . in the Mont Cenis tumel. As finally employed, the power drill is practically a small engine, the drill being attached to the piston rod and moved rapinlly

INGEIGOLI.-SEIUEANT STHATGHT LINE AILI COMPRESBOR.
baek and forth by eompressed air or steam. The machine has three functions: to strike the blow, turn the drill, and advance it, as the hole is driven deeper and deeper.

Soon after the machine drill became a success dynamite was invented, anl these two have been the greatest factors in bringing about that rapid development and production which is the most pronounced attribute of modern mining. Dynamite alone has doubled the amount of ore which can be extractel from a face in a given time. Le Neve Foster, in lis work on mining, gives the rate of alvance in driving a tumnel by fire setting at two fathoms $1^{w r}$ month. Compare with this the Niagara Falls tumel, driven with power drills and high explosives, 342 fret in four weeks.

It is probably to the power drill more than to anything else that we are indebted for the development of the in compressor; the exlaust from :e steam drill and the heat emitted from the pipes being very disagreable under ground. As early as 1800 a Welsh engineer had attempted to run a blast ly means of a water power a mile and a half distant, lout it was mu until 1865^{5} that machines were uratal to any extent by compressed air The great diffienty had been the loss of eftieieney, owing to the clearan". spaces and the heating of the air. In driving the Mont Cenis tunnel bur
that.
it ha
h it would be be chine. With valking berm 00 gallons un
e to supply a ay ean by no .than a font ry the use of t was male thamuer hy sed air in a cess in $18: 1$. s practivally oved rapilly
three funele is driven
vented, and id develop, oderin mine extracterl ining. gives athoms with power

Hat we ar ust from :2 istagreeahle il to rm : it was nu" ressed air clearam" tumel but
in per cent of the power developed was available, and up to 1880 the etti"inney was extromely low; but to-lay as high as 80 per cent is obtained. The air compressor is simply a force pump with ingenions devices to overmome the loss of energy. For ordinary use the air is compressed to a pressure uf from 60 to 80 pounds per square inch. This is done in a single eylinder for low pressures, but for high pressures two cylinders are used. From the rompressur the air is conducted to a reservoir, from which it is piped to the machine which it is to rm.
One of the advantages of air-driven machines under ground is that the whanst furnishes fresh air to the miners and cools the atmosphere. The result has been that in metal mines, where there are no noxious gases eseaping from the ground, the exhaust from the air-drills: together with the natural air currents, has supplied sufficient ventilation. In the coal mines, however. it has been necessary to employ other means. After it was fonnd

1NGEISOLII-SERGEANT DUPLEX STEAM-DRIVEN AIR COMPIESSOIR.
that. even with the safety-lamp, gas would be exploded if a large anount of it had accumnlaterl, more attention was paid to ventilation. Levels and shafts were divided to produce a natural current; the size of the thifts was earefully figured in order to regulate it; doors were put in to compel it to follow the faces; devices were adopted to split it, a part going to one romm, the remainder to a second; and boxes were built to carry one current across another. Early in the century hand fans run by a wheel and pinion had Imen employed for frreing the air clown the shaft, but it was soon fomol that the eirculation produced in this way was inferior to the result of eduction. Large immaces were then constructed at the bot tom of the upeast shafts, in order to cause a strong upwarl enrent. Again, huge air !umps, run by marhinery, were tried for exhausting the air. By 1800 exhanst fans were coming into use, and these, occasionally replaced by blowers, also used for exhausting, are now generally employed. The Guibal, which has been the most prominent of the fans, has been mule as large as forty-six feet in diameter. The Capell, which is an improvel form of the Guibal, has six
curved veins, or blades, and is made from eight feet to fifteen feet in diameter. It is driven quite rapidly, making from one hundred and eighty to there hundred revolntions, and having a capaeity of from one hundred thousind to three hundred thonsand cubit feet of air, per minute. The result of this thorongh ventilation is that the gas is remored from the mine almost as rapilly as it enters, and often the safety-lamp is no longer needed by the common miner: Nevertheless, it has by no means become useless, sime as an indicator of the presence of gas it is invaluable. The action of the different lamps in the presence of gas varies. hut in general the size of the fiame increases in direct proportion to the increase in the amomut of gas mixed with the air. Each moming, before the men go to work. the fire boss takes his safety-lam! and makes the romm of the mine. When he goes into a room he watches the Hame, and if it burns up, to the point whirh indicates that it wonld not be safe to enter with a maked light, he makes a mark on the wall which serves as a danger line beyond which the men do not go.

Another machine, which. like the fan, has been developed by the demands of the coal mines, is the coal-entting machine. Probably the lot of noman was as hard as that of the condedigger at the begiming of the eentury. After he had performed the dangerons task of exploding the aceumblated gases. he was often foreed to work all day. lying in the most constrained attitule. Applied in this mamer. his power was largely wasted, and much useless dust and small coal was produced. The first effort at relief was a machine which imitated the miner. striking a biow with a pick worked by a lever, and making as ligh as seventy blows a minute. These have been generally replaed by quite another type of machine. one which depents on the action of either a rotary bar, a rotary wheel, or a chain cutter. These machines are operated by pither air or electricity. The Jeffer rotary bar cutter will underent a bloek of coal thirtr-nine inches by fiftr-four inehes in six minutes. The chain-cutter is an endless ehain carying cotting knives and traveling horizontally. It is clamed that these machines will effect a saving of abont ten cents a ton in the cost of mining.

When in 1848 the finding of gold in C'alifornia was reported, followed in $18: 1 \mathrm{by}$ the discovery of the Australim fields, large numbers of men were attracted to the placer mines, who later, as the placers beeame exhansted. turned their attention to vein mining. Nor did hydranlic mining itself fail to progress. When the placers were first discovered, the miner, standing in the shallow stream, washed the gravel, a panful at a time, and secured from fifteen to twenty-five dollars a clay. As the phaeds beeane poorer he bilt sluices, and, sloveling in his gravel, turned the stream in to wash off the light rock, while the heary gold was canght in the interstices between the blocks with which he had paved the bottom. If the gromed beeame rlayer he brought part of the water through a hose and used it to break up the lumps in his sluice box. Then as he gradually removed the gravel and the banks about him beame higher, he turned his hose toward the bank and brought more water from a higher level, motil, to quote lowie, "a forty-ium Wroughtiron pipe has been substituted for canvas hose and a stovepipe. ani an inch strean replaced by a river of water discharged through a nine-inelt nozzle under a four-lundred-foot pressure." By this means, at North Bloum-

TURY

eet in diameghty to three ed thousand result of this ae almost is eded by the seless, sinee aetion of the the size of a anount of o work. the -Whell he joint which t, he mikes the men de
he demands t of no man tiry. After lated grases. ed attitude. useless dust dhine whicl r, and maklly replaced on of either re operater underent a intes. The veling horif about ten
followed itt f men were exhansted. g itself fail standing in eured from er he built ish off the etween the me clayey. ak ul the cel and the bank ani forty-iuch, epije. ani nine-inel th Bloom.
field, Cal., nearly a million yards of gravel, containing but two and mine tenths cents per eubic yard, was moved in a single season, aul at a protit.

As the nks became porer, the miners turned their attention to the river bets. In Now Zealand, in the early days, they worked the banks as far down into the river as they could reach with a spoon dredge. Then a dredge was made resembling a ladder of buckets, continually revolving, and one. ated by wheels driven by the current. When the river got low the current beeane too weak, and a steam engine was substituted. Then a revolving screen was put on to separate the large rocks from the fine sand, and grannally the modern dipper dredge has been evolved, with its pmons, serean, distributors, and tables and sluices, handing 2000 yards of grawel a day at a cost of three cents a yard.

In 18.5 the Comstock lome in Nevada was discovered, and it is to this district that we owe the "square set" method of timbering. so largely in vogne in wide veins to-lay. Some of the "bonamas," that is, $\mathrm{l}^{\text {nockets of rich ore, }}$ were of enormons size. For example, one found in the "Conld and Cury" was 400 feet long, 80 feet wide, and 400 fcet deep. As the walls were mot sufficiently solid to stand unsupported, and a singic suick of timber was tow short to reach across, splieing was tried. It was soon found that this weakened the timber too. much, and the method of square "setting" was invented. This consists in franiug timbers together in rectangular sets, having a square base of four pieces, usually six feet long, placed horizontally as sills. Into these are framed posts, smomonted by a eap of four alditional timbers whieh become the bise for the next set. The timbers aie usually twelve inches square, and cost on the Comstock about \$10 a set. From $18 \mathbf{B}^{\circ} 0$ to 1891 there is said to have been used up on the Comstoek 200,000 acres of forest, valued at $\$ 45,000,000$.

The anomit of timber which is consnmed under ground in a single year must be enormons. Mr. (:. W. Goo'ale estimates that in Butte alone, in 189., $37,500,000$ feet, equal to 37.50 carlonds, were used in the mines. As the timber decays in from tive to iffteen years, and has to be replaced, efforts are constantly directed toward deereasing the large expense which is thus continually recurring. In shafts and levels for permanent use iron is an economical substitute. Wherever possible, new methods of mining are being introduced. Thus in the Lake Superior iron regions, the mine development is phumed along lines almost unheard of ten years ago. In the first place the gravel which overlies the ore is stripperl off, even if it is fifty feet thick. This is done with stemm shovels, which load the gravel upon ears. These are then pulled away by one locomotive while a second places new "empties" in position to be filled. One shovel will load from $1: 00$ to 175 cars a day; that is, will take from 3500 to 4500 tons of dirt from the sides of the pit and put it upon the cars. This method obviates the use of timber for holding ul the surfare.

After the overlying gravel is removed, should the conditions be favorable. the ore is taken ont with a shovel. If this eamot be done, some methon depending on rock-filling is adopted. At the Auburn mine, a.ter stripping and driving the levels, raises are made to the surface at intervals of abont fifty feet, the ore broken down aromm them, starting at the surface, and dropped down through them. This leaves openings in the shape of inverter

URI
oo and nine a profit. to the river anks as lin' en a dredire f, and оренthe enrout a revolving and grallı11]s, serrall, al a day at to this dis. ly in vogule of rich are. and Curry" Ils were not ber was too this weakis invented. ug a statime sills. Into abers which elve inches 189) there rest, valued single year e alone. in mines. As ced, efforts ieh is thus iron is all g are being avelopment first place feet thiek. rs. Thess' "empties ars a day: the pit and holding "
favorable. ne methoui : stripping s of about uface, and of inverte:

(GOLD DHEDGING; ON SWAN HIVER, COLORADG,
cones, having their bases at the surface. Additional raises are then mate halfway between the others, and the remaining material extracted.

At the layal mine they take out romis twenty-four feet wide by three hundred feet long, with a twenty-four-foot pillar hetween them. Thesu romes are carriod up from the first level to the surface, and filled with gravel which is run in from above. Then the pillars are mined by "slicing and eaving;" that is, by rmung drifts along the sides of the pillar and eariur the ore down from the roof. After removing this ore another drift is rim, the rool caved, and another sliee taken off. It is clamed the saving in timber ly using this method amoments to ten cents on each ton of mer mined.

All of these, and many other inventions, have constantly tended to decerase mining costs. Yet the industry is carried on to-day in so many out-of-the-way places, and under such varying comblitions, that the eost per ton of the ore mined vacillates butween wide extremes. As an example of what can be aceomplished, working on a large seale, and where supplies are easily and quickly obtained, the Atlantie mine, in Michigan, may he mentioned. This mine produced, in $1898.37(0,000$ tons of ore, att a cost of sisty-six cents per ton.

With all these wonderful advances in mine meehanies, engineering, ventilation, and lighting, have eome the fomblation and developmont of mining schools, the rise of technical suciotios, and a general govermmental reeognition of the importance of the imhastry. It is not so very far lack in the preceding century that we find among the statutes of England the following: "Stealing ore out of mines is no lareeny, except only those of hlack lead, the stealing ore out of which is felony withont benefit of clergy." It would be interesting to know the name of the gentleman who owned the black-lead mine, for. in modern palance. le certainly "had a pull." liy $18: 33$ mining legislation had so far progressed in England that laws were enacted regulating the employment of ehidren umder gromod. In this country, in 18:0, a stato geological survey was inaugurated by Massachnsetts, and this institution aas since been copied by many states. The majority of the states where mining is carried on have passed laws tending to inerease the saffty of men working imder groum.

Abroad, carefully prepared coles deseribe the method of lease or sale of mining rights, and define the rights of owners of groumd. In this comntry the first legislation of this eharaeter was in 1807, when the government mineral bearing lands were withdrawn from sale and sridered leased. In 183.4 the miners refused to pay the royalty, owing to the large number of illegal entries, and in 184 i the lands were opened to sale. It was not until 1866, after fifteen years of self-goverument among the miners of the West, that Congress earnestly molertook to regulate the aequisition of mining titles on the pmblic domain. Leagues beyond the towns, miles from the nearest roads, hurrying from the scene of one excitement to another, pushed by the crowd of constantly arriving adventurers, with surveyors unobtainable and courts not accessible, almost without time to measure, and in a region absolutely unlocatable, it inad been impossible for the miner of the West to secure a legal title to his land as contemplated by the ant of 1847. Accordingly, there had grown up the enstem which gave to the discoverer of a lode the right to
then made
o by three in. Thesi rith grawl slicing and and eaviun or cluift is the saving ton of ore
led to duniny out-of. per ton of le of what are easily nentioned. -six eents
ing, ventiof mining al recogniack in the he followof black rgy." It whed the ull." 13y aws wert this counachusetts, ajority of) increase r sale of s country nent minIn 1s:3.t of illegal til $18 \mathrm{fi6}$, est, that titles on st roads, he crowd d courts osolutely secure a ly, there riglit to
: Mertain length of it, and it was this right which was recognized iy Conshess, and becanue the basis of the law of 1866 .
su far our story has been of progress, but what shall we saly of the action of 'ongress, which, in 1872, abrogated this law and substituted for it the wolitie breeder of litigation called the law of the apex: To quote lor. Raythuml: "The leading characteristic differs from all previous mining laws of this or any other country. The old right of diseovery, which was the hasis of the miner's title down to $\mathbf{1 8 7 2}$, has dwimbled under the present law to a nominal importance. It is true that the discovery of the lode within tho clain is made a prerecuisite to location. But the right to follow the lode in depth beyond the side lines of the clain depends no longer upon having discovered it, but on having included its top, or apx, in the surface survey." Should the miner be so fortunato as to have a vein which outerojs phanly on

THE POWER PLANT Aク JEHOME PBHK, N. Y. (Ingersoit ${ }^{\text {E }}$ ergeant Duplex Ce;liss Condensing Air Compressor.)
the surface, he may stake out the ground without difficulty, so that the vein crosses the end lines. Hut if his vein does not appear on the surface, and he fails to guess its direction correctly, and finds, on developing, that it does not cross the end lines of his claim, he is suddenly ent off from all extralateral rights. Or should he, in laying out his lines along the rough, precipitous mountain-side, fail to make his end lines parablel, he again finds his rights limited. Nor has this law been made clearer by court decisions, but rather it has heen complicated.

Certainly this is a peculiar condition of affairs. The century which has wi'ressed an advance from the hazel rod to the diamond drill, from the spade to the steam shovel, from, fire softening to dynamite shattering ; a century during which a elumsy ear fushed over cast-iron rails by a boy las grown to a cable train, and a two-hnndred-pound bucket raised by women has developed into a six-ton self-dumping skij hoisted by electricity; a century productive of new devices whieh tumnel mountains, cross ravines, or sink through quicksands with equal ease ; a century which has seen the touch of a button
and the turn of a wheel hring power from thirty miles away to light and drain the mine, as well as operate the drills and hoist; such a century closes with a luw in foree in the greatest mining comntry in the work which makrs litigation one of the expected stages of mine development.

At the hegiming of the century the mining engineer alvised where to sink, the maner of working, and the method of dealing with the water: to-day he must not only be a mining, eivil, and hydraulie expert, but a muchanical and electrical engineer, a chemist, mul a lawrer.

The time was when he who leveled torests, huilt himself a bome, and brought the land muder enltivation, was regarded as the true pioner of oivilization. In later times the minur fairly divides this homor. l'ursuing : hazardons oceupation, he has invaled most out-of - the - wiy and desolatplaces, creating untold wealth, founding towns and States, and inviting vast and substantial populations. By his industry and enterprise he has not only revealed the seventy-seven non-metallic underground prolnets which in the United States alone, in 1899 , had a value approximating $\$ 500,000,000$, hat the twelve metals - precions and useful - whose value in the same yaut approximated $\$ 270,000,000$. Aromal his gold mines - deep and placer have grown Califormia, Nevada, the Dakotas, Colorado, and even Alaska; while empires have sprung up at the sound of his pick and the introduction of his mighty machinery in Australasia and South Africa. In the development of silver he has contributed wealth, population, and institutions to Colorado, Nevadi, Utah, Montana, and Arizona. His iron and copper mines have transformed the barren coasts of the Great Lakes. The quieksilver mines of Southern California bronght San Jose and other towns to wealth and importance. In the history of Ureka and Lealville, Col., we lave the romanee of both the gold and lead mine. And so, whether the miner unearths the ores, the coals, the wonderful variety of buried materials which nature has proviled for the use aut comfort of mankiml, he so frequently becomes the somre of wealth, population, and permanent civic organization as to give him high vink among the "true pioneers of eivilization."

Georie A. Packamd.

Ilght anl tury closes rich makers

1 where 10 the water: , lut a nue. home, :and er of civil. 'ursuing : d desolut" viting valst es not only ich in thi" 0,000), lint same ywar placer" Alaska; troduction c developons to Colper mines uicksilyer to wealth, have the miner unals which requently ganization

ART PROGRESS OF THE CENTURY

t. HIINTIN:

At no period since the Renaissance has thore heen such marked progress in certain walks of art as during the period of reeonstruction in the pelitical, soeial, economic, and asthetic world immediately following the lrench lievolution of 1708 . The armirs of France, returning from the conquest of Burone, brought home to Paris the treasures of art ravished from the great capital cities. The vast publie galleries and numerons private collections established muler the tirst Empire contaned arcumulations of pietures, marbles, bronzes, tapestries, decomations, and bric-i-brar brought from ltaly, from Germany, from the Low Combries, from Spin, and even from hissia and bgypt, of extent and value unparalleled in the history of the human race. These treasures were dispersed under the Restoration and returned to their former owners; but, in the meantime, their edurational influenee upon the people of France, mud espeeially of l'aris, hat produced profond and permanent impressions, which abide to this day. To this praetical edneation afforded by the models and examples of all that is noble and exalted, gathered from the galleries and safe deposits of the civilized word, France is primarily indobted for that cultured skill mad that refinement of gool taste which have enabled her to take and hold her acknowledged position as the leading nation in the realm of art in the nineteenth century.

At the begiming of the century the art of France was resting inert in the bonls of classic tralition. Acalemic conventionality held almost undisputed sway; only a few painters of portraits, as, for exauple, Madame Vigée-Lebrun, lsabey, and decorative artists like Grenze, venturing heyond the limits of the hard and fast rules preseribed by seholastic pedants. The only subjects regaridel as legitimate for artistic treatment were illustrations of mythology or of Greek or Roman literature. Sacred pietures illustrating the Biblieal marratives and lives of the saints were permitted for ehureh adormment and for religions purposes; but historic and story-telling pietures of the order now known as geure were classic in subject and acalemie in treatment. Even in prortraiture, where a likeness was the main consideration, military heroes were represented in Greek armor and distinguished civilians were invested with the dignity of the Roman toga.
The high priest of ancient pagan worship in France during the first quarter of the century was Jacques Lonis David ($174 \mathrm{~S}-18^{2} \mathrm{a}^{\circ}$). David was a master of such real power that he was court painter to Lomis XVI., tireetor of Fine Aits under the Repmblic, and again court painter to the Emperor Napoleon. His great work. "The Gath of the Homtii," How in the Lonvre, first exhibited in 1784, was miversally admired and is still higlly esteemed. This was followed by a trimmphal procession of elassic compositions, the most notable of which were "The Rape of the Sabines," usually considered to be his
masterpiece, "The Death of Socrates," " Paris and Helen," and "Brutus aml His sons," all of whieh have been reproduced many times in prints. Davil was influ$n c e d$, late in his eareer. be the romantie reaction, as shown by his
 pioned classic art all his life, his last words expressing in aspiration to pain, the head of Leonidas.

The downfall of the elassic domi:aion in Franee was lronglit abont by the
 1824) was deelared ly Viardot to have revealed an era when liberty in art was revived together with prolitical liberty. joining the general movement of the human spirit in the mareh of progress tewarl independence. His epoehmarking pieture. "The Raft of the Medusa." in the salon of 1819, created an intense excitement not only in artistie circles, wh "e it oprome the hattle between romance and classic tradition. but also amo, the people. Insteal of Greck heroes, posing like antioue staturs, this thrilling pieture portrayed a group of French sailors, perishing amin the horrors of shipwreck and starvation, the subject being a serne in the :a:f::1 tagedy incilent to the loss of the frigate Medusa in 1s16i, a ealamity which the nation was then monming with mansakable grief. We.. ell wept and strong men paled hefore this terrible illustration of human agmies emblured muto death, but the acudemicians atarked the work and the arsist with almost savage fury. Geriomlt, a genins, sensitive and nervons, ghang lafore the storm which beat num him, fled to Eaghan, But, pining in exile, retumed home, only to dide, crushed and broken-hearted.

Ferdinand Vietor Eugene Drlacroix (16so-1Niai) was a man of firmer tibur than his frimul and frllow-stubent. and his was the strone hame to take up the gage of hattle when (ererieaule foil in the fight. For daring to depart. from the classic traditions. these two young paintera of the rommondare subjects of every-day haman trasory am romantie drama wre saragely denomeed by the aculduiciams as traitors, as charlatans, as assassims seelking to murder art. The persecution killed Gericanlt. but Delacroix langhed at it. As Thophile Sousestre said of him: "The blimhess of ignomaner, the intrigues and chanors of ens-g have not arrested him for an instant in his valiant and gloriens comrse." By the spemor of his genins and the virility of his work, as shown in his great pietures. "The Bride of Alyydos," "The Two Foseari," "The Amende ?fonoralle:" and the marnificent series of Oriental studies ly whinh he is wost known. he established the romantie school on a firm hasis and attracten to it nearly all the talented and promising young painters of Paris.

Among these stmbents and manown gainters ware many whose names subsequently becme famons, as Horace Vernut. Pan Delaroche. Baron Gros, Ary Soheffer, Alexambe Deamps, - artists whose noble productions gave to the romantie seimen its tinest trimplos. In the mentime, elassie art was ably and effeetively supported by the distinumished lahors of Domenigue Ingres, papil and sucessor of Davin, Ginillame (inillon-Lethiere, Hippolyte Flandrin, and dean Baptiste Regnault. The Aealemy. though defeated, still lives, and modern lovers of art find that esperially in deeorative design, there is much to admire in classie subjects.

After the revolt of the romanticists the most important movement in the

vTURY

| "Brutus anl rints. Datill shown by his but he ehamation to pain, : about by the ricault (1791liberty in arr movement of

Hizaloch(0). created :an ed the hattle. ple. Insteal are portrayed ipwreck inul cilent to the? ion was then : men pated to teath, but saluage fury. storm which tome, only to
firmer tibur id to take up If to depart ommonn: s:ivagely dewius seeking : langleed at normer, the stant in his I the virility ylos," ". Thi" nt serias of he romantio and promis.
hose names Baron Gros, ions gave to ssic art was Doménique , Hippolyte featell, still tive lesign, ment in the
world of art also tock place in France, aml is known as the "Revolutiou of 1. "w." To noderstand this movement it is necessary to consider the state of art in England, as the "men of 18330 " in France derived their inspiration from John Constable, an English handseape painter. At the begiming of the century the two great artists of England were Sir David Wilkie and

the hoif women at the tomn.
J. M. W. Turner. David Wilkie (1780̆-18+1) was a portrait, historic, and genre painter, and no English artist up to his time had ever attained such wide popularity as he enjoyed. His pietures are all known the world over, as withess such titles as "The lent Day," "Village Politicians," "The Blind Fiddler," "King Alfred in the Neatherd's Cottage." "The Village Festival." "Realing the Will." "The Chelsea l'ensioners." "Blind Man's Buff." "The Village Scheol," and "John Kinox preaching."

Ioseph Malloril Willian Tumer (17:5-18:1) was one of the most remark-
able artists that ever lived; a most original genius, "withont ancestors aml without heirs." He was a landseape painter and a most carnest and faithful student of nature, as shown by his womlerful illustrations, in black and white, of the seenery of England and Wales. In his paintings, however, be interpreted rather than portrayed nature, investing his sulijects with the gramden and glory of his imarimation. His pietures were "golden dreams." revealing the beanty, the majesty, the salness, and the terror inspired by nature, not from observed details "but from the image or ideal in his own mind." Of his many masterwork mention ean only be made here of "Crossing the Brook." "Dido in Carthage," "Pralestrina." "The Gohlen Bongh," "Hannibal Crossing the Ulps." "The Shave Ship," "Battle of the Nile," "Lurial of sir loavid Wilkie at sea," and perhaps the greatest of all, "The Fighting Theraire."

Thumer reated no school and left no successor, but he male a distinet impression on the art of England loy stimulating an active interest in landsanne painting. l'atrick Nasmyth, Augnstus Wall Callentt, John Limell. and a score of artists turned to the study of rural seenme, with the result that they sueceeded in establishing what is known as the Norwich sehool of landsape art. liy far the most important mame in the ammals of this provionl.
 the eontrast of diametrie opposition to Thrner. His pictares, so fir from being "golden treams," are more like east-iven realities. When Turner was an idealist. Comstable was an meompromising realist. If the one painted poetry, the other painted prose, and often very ragged, plain prose inderd. While Tumer subordinated fart to faney, illuminating his subjects with the glow of his fervid imagination, Constable devontly stood before mature in the attitude of a worshiper, and faithfully labored to represent as truthfully as his powers premitted exactly what he behehd. In contrast with the shining canvases of his brilhiant emintumorary, Constable's pictures sermed dark, dull, and heary to the british pmblic, and the original genius of the conscientions artist was not reeognized. His greatest works. "Dedham Vale." "The White Horse," "The Hay Cart," "Stratford Mill," "Salishury Cathedral." "The Rainbow:" and others were exhibited in suecession during the second deende of the century, before an indifferent public, only his fellow artists and a fow commisseurs caring for them, the painter meanwhile starving in ueglect.

In 1820 two of his pietures were shown in Paris, and were then instantly understood and appreciated. They ereated a profomul impression and, as has been justly said. inanguated the seemad wolution of the century in the realu of art. By this revolution the artists were driven ont of their studios and out of the eity, to study nature in the spirit of humble sineerity shown by John Constahle. Among the young stadents who went forth to encomnter poverty, hardshi!, and the severest toil were the "men of 1830 ," the fomuders of the Barbizon sehool of painting. Millet, Ronssem, Diaz, Corot, Troyon, Daubigny, and Dupre left l'aris and the ways that then hed to snceess, and sacrifieed themselves to what they saw to be the truth in art. They earried the study of out-door nature further than aver hofore; created the standard of modern landseape art, and attained inmortal fame, thongh not until their leader and prototype had perished in poverty:
cestors :mind nd faithful black anl owever, he ; with the 11 lreame:" nispired hy in lis own of "Cross11 hough, the Nile," all, "The
istinet imlamišu!u•" nell. atill : esult that of of lanulis prionl. ${ }^{3}$ presponts fin from urner was te paintend se indred. ; with the nature in as truthwith the ss secmed us of the? - Jedham Salisluwy on cluring y his felreanwhile
instantly: 11 and, as $r y$ in the r studios ty shown ncounter founders Troyon, cess, and y carried standarl atil their

WHISIEAS OF L.OVF. (HOLREEHEAC.)

Jean Francois Millet (181:-1875) has been ealled the greatest painter of the nineteenth century, and his masterpiece, "The Angelus," is regarded hy many as second only to the "Sistine Madoma" of Raphatel in the brief catiologue of the world's artistic treasures. He lived the life of a poor peasiant in the rural village of Bariozon, attraeting around him, late in life, the ablest of the " men of $18: 30$," and producing there those works which have plaved his name first on the amals of our time: "The Sower," "Waiting," "Sherp. shearers," "Woman Carding." "'The Glemers," "Shepherdess and Flock." and the few others that constitute the tale of his exceedingly carefin and long-considered compositions.

Théodore Roussean ($1812-186 \mathrm{i}$) was deelarod, by Edhuond Alout, to he the Moses who led the landseape painters of France out of the Egyptian bondage of academie convention into the promised land of liberty, where rivers ran water. where trees were rootel in the gromal, and where animals lived, moved, and had their being. As late as 1848 the Salon rejected Ronssean's moble york. "The Alley of Chestmit Trees," one of the finest laniseapes ever painted; but this was the last act of the academic tyants, the foolish offense against the great master eansing the old elassic pedants to be relegated to oblivion. Ronssean took up his residence in harbizon, and in the forest of Fontaineblean and the adjoining eountry studied those rumb and pastoral seenes that have given him his place as one of the tirst, if not the very first, of landseape painters. Of these magnifieent examples of lambseape art, mention can only be made here of "The Village," "A Pool moder Oaks," "Elge of the Forest at Barbizon," "A Forest literior." "Water Course at sologne," and " Hoar Frost," these being the pictures best known to the public through reproductions in blatek and white.

If Turner was a printer of "golden dreams," Corot was a painter of silver dreaus; the pearly haze of early morning, the pale sky and misty tree-forms of a gray day, aml the soft, low tomes of a still, clomy afternoon attracting his lo:ing devotion and eommanding the conseientions exereise of his skill. Jean Baptiste Canille Corot ($1709-187 \pi$) was certainly one of the happiest artists that ever lived. Like the other "men of 1830 ," he was ostracized by the Aeademy, and he was never allowed to receive the first medal of the: Salon, but le had every other homer and eompensation, and, late in life, was given a magnificent gold medal by popular subseription. For many years he conld not sell a single pieture, hat, lning fortunately independent, in a modest way, he contimed to paint the subjects which, as he said, delighted his heart, and to treat thom, as he again said, "with truth to your own instincts, to your own method of seeing, with what I eall conseientionsmess and sineerity." In due time Corot eonguered his world and, in the height of his career, was earning not less than $\$ \mathbf{5 0 0 . 0 0 0}$ a year by his brush. He was a constant visitor at larbizon, maintained a elose intimaey with his friend there, and studied in the vieinity many of the humdreds of landseapes hin industrious and tireless hand rejoieingly proluced.

Jules Dupré (1812-18s9) aul Charles Pramois Dabligny (1817-1878) ar distinguished members of the " $18: 30$ " gronp, each standing at the head ol the department of lameseape art to which he was espeeially devoted. Nan
 nity, was not technically so thoronghly trained as his fellows, but he was :

URY

t painter of regarded hy e brief catiooor peasint , the ablest have placen 5," "Sherp mind Floek." careful and bout, to be e Egyptian rty, where ere animals ected Ronshinest land. yrints, the dants to be ron, and in those rumal tirst, if not les of land. Pool under " "Water jest known or of silver tree-forms attracting f his skill. e happiest racized by dal of thi. n life, was ally years dent, in : delighted your own ationsness he height

He was is friend eapes hi
-1878) : e head 0 ad. Nill lie fraten he was

CHHSTMAS CHIMES. (HLASHFIELD.)
stronger colorist than any of them and a romanticist of the most prononned type. Constant Troyon ($1810-1865$) was ine most eminent cattle-painter of the century. He came on the scene after the revolt of Gerieault was accomplished, but was in full sympathy with the movement, and is usullly accomed as one of the revolutionists. No also with Jean Leon Gérome ($\mathbf{1} 24$), an intist surviving to the elose of the century.

He first exhibited in 1847 , but he took up the line of Oriental romance, following Delacroix, and male so strong an impression with his illustrations of the splendors and glories of the East that his influence in art will be felt for generations to come. After attaining fame as a painter, Gicrôme also developed marked ability as a sculptor.

In strict ehronologieal order the birth of the pre-Raphaelite movement in

ghenk gimg phaying at bald. (beigiton.)
art preceded the "revolution of 1830 ." as the event actually oceured in Rome, about 1812. The movement was not originally known by the name subsequently given it, and it did not attain to mose than local importance until it was fully developed in England. ahout 18:0\%. It is to the great German artist, Peter von Cornclins (1883-1864), that the howor of originating the pre-Raphaelite revolution must be given. In 1811 Cornelins weit to Rome and soon becaue the master spirit of the "Brotherhood of Painters," popularly ealled "Nazarites," banded together for the stuly of the thirteenthcentury Italims, Cimabue and Giotto, and their successors in the century following, Gaddi. Simoni, and Oreagna. This Brotherhood was afterward imitated by hossetti in London, anl its purposes more fully developed; but it was the young German enthusiasts of the previons generation who afferted a revival of the pure religions spirit, the devont simplicity, and the absolute simeerity of the Italian artists before the eat of Raphael.

Complius returned to Germany in $\mathbf{1 8 1 6}$, became the fommer of what is :8
known as the Mmich sehool of painting, and was made director of the Ant lastitute of that city. He expreised at eontrolling inthenee in the evolution of molern German att and, indirectly, on art in Eingland and in Ameriea. His pmpil aml sucesser, Wilheln yon Kambarh (1sno-18i-4), imparted vitahy and powar to the Munich school, atthathig oo his classess sadents from all civilized comotries. During the sweod and third gharters of this whturs. Kanbach reigned as the tirst artist of diormany and one of the first in the world.
 hool in Lombon, with John Everett Millais - subsequently president of the
 movement gave a dellur and stronger color to baglish painting in the lather half of the century, and also awakemed gromal interest in barly Chrisimu art, that is, the art of the Italian Renaissance. Reyond this, Jossettis new departure though widely advertised by . Nohn liuskin, hat very litthe permanent effeet. Millans soon left the hrotherhood and prohneed his master-works, the gratest historie-geme pietures of his time, in Luglaml. after outliving pre-Raphatite suthences.

Little known outsite e' England, that morement dial not entirely alsomb British art, as proved by such a man as G. F. Watts, a master of pertaiture, who marle sturlies of many of the most motable nen of the esintury in England, besides many imagimative works of great interest. Otheve wow Holman Lunt, with his powarfal religious conep pitus, and the talent-a Landseer family, the gomgest member of whirh, Edwin, is world-fanoms for his anmal pietures. The eritic and philosopher, John Ruskin, studied art and became a proticient dranghtsman, althongh never using his skill professionally. Dis literary works on art, however, hate hat so wide an inthene that it seems just to include him in the list of comtributers to ant's progress
 Whistler hrought forth a controwersy and law suit, resulting in a verdiet of damages of one farthing to the" ibjured artist, and enomgh adretising grat is to seenre his fame ille genins of the latter for arhierong artistie aflects and personal notoriets are equal to his skill in avoiling oblivion. He is a unigue and interesting figmer, iespite his abmomal vanity, for his mumestionable talent in may lines of att, and is American ly birth, Enghish hy adoption, and now Pranch heforee of ribumstanees. Eilwin Abbey is alsu an adopted son of britain, althongh lom in Amerien. It is better known through illustatise work in hack and white, hat his superb deonations in the Boston l'ublie Libary tostify to his great skill as a eomorist. The most illustrions growth of fereign seed on british soil has been Joreng Aima Talma, whose wombernl representations of taberk and Joman lifo place him hors momers an an artist, and hold hefore our eyes a mitror of ancient lays. Sir Frederick Leighton. the recently deemased president of the Loyal Academy, was a true Briton and a leater of monlern art in England, as also was Ilrs. Flizabeth Thompson butler, with her patriotic war pietmres, as vigoroms as any man's cond be. A talented gomug artist, whose untimely death rut short a promising earerr, was Prederick Wiaker, who is said to have been the original of "little Billee" in Dn Manrier's fanoms novel of stadent life in the Latin Quater, "Trilby:" That masterpiore

URE

of ther Int Cowhtion af Mrin:a. Ilis ted vitally its from all his century. first in tha ite lirothriv. lent of the - Riajlamelite In the lattim v Chrinli.n liossedtios very littlo orluced his 11 Englanil,
rely alsomily bort raiture, centıry i॥ theיe were 111:-1, Jallalous for his ied ant and jrulassion: intlucur. is progress s Mr. Neill verticet of sing gratis :tic: refferts He is a is mingues. Anglish b mey is also ter kuown cenationas rist. 'The' 4 Lationy oman lifo, mirror of ssident of it in Fing--iotic war st, whorse r, whe is s famons isterpieri"

takes us into the art atmosphere of laris, and we readily understand why there is the centre of the artistic circle.

From thence have nsen most oit the great modern names, one of the great. est and most honored being that of hosa Bonheur, who has received all possible distinction as an artist and reverence as at woman. Her animal pictures, especially horses and cattle, are known the work over, and the story of her early struggle for study, disguisel as a boy, that she might work unmolested where a girl could hardly have gone, is well known, yet she never renomere matom of her womanliness in mopting maseuline attire. It is hard to awoild dwelling on the lives and works of the modern masters, but we must pass over the inturmediate period between the revolt of 1830 and onr own day, tonehing only an espeeially shining light here anl there, such as Jules lheton, with his sturily peasauts; Léon Bonnat, Alexandre Cahanel, and Carolus Dum, with their elegant distingue jurtraiture. Besides these are bidouard Détaille and Aphonse de Neuville, showing faithful studies of soldier life and action; Eugine l'romentin, with his picturesque Arabs; and the theorative allegories of I'uvis de Chavanucs. The brilliant Spaniards, Mariano Fortuny and Don lirederiek Madrazo, are practically Frenchmen in their art, although earh is distinctly individual in maner. We must also mention Vihert, with his delightful little satires on the human frailities of the loly fathers of the Church, and Meissonier, the master of exquisite finish in detail, and l'assini, with his small camvases crowded with Oriental figures glowing with color. In aldition to the great French names of this thme are befregger, of the Mmich School; Israels of Amsterdim, Schreyer of Frumfort, whose works all hold that guality dear to the popular heart, but despised hy the high priests of lofty eriticism now. adays, that is, they have a story to tell, and they tell it.

At the time these men were telling their artistic tales in Europe, sueh men as Washington Allston, the first great painter in this comintry; 'Thomas Sully, whose rare works in portmiture entitled him to paint the Queen of Eugland, Vietoria, when a girl: Henry Imman, also a great portrait painter : George Fuller, a painter of poetic dreams; and many others of talent, had said their say in America. Almost with the begiming of the new country, publie interest had heen ronsed in the fine arts by the efforts of such men as Gilhert stuart and the P'eales. Charles and hembandt, who bridged the eighteenth and ninetenth conturies together, and labored to adrane the canse of art. Schools and academies, with adequate galleries for exhibition purposes, beame neeessary ; and such institutions as the Pemsylvania Academy of the Fine Arts and the National Aeahmy of Design in New York were estallished. The latter was stanted in 1siog, hut did not receive its charter mutil 180s: so the l'emsylvania Acallemy, which was incorporated in Philadelphia in 1806, was really the first of its kind in the country. In 1807 , the minntes bearing the date of October 8 record as follows: "Uutil the funds of the institution will admit of oprening a school on a more extembeal plam, persons of gool chanacter shall lwe permitted to make drawings from the statues and busts helonging to the Amalrmy;" thus showing the humble begimning of art education in Amerien. Naturally, for many years the facilities for learning were too limited to supply more than rudimentary instruction, and the pilgrimage to D'aris was a necessity before an artist could

URY
rstand why If the great. received all Her animal er, and the she might known, yet - masculine lie modern the revolt light here on Bomat, tingué por-- Neuville, entin, with Chavammes. adrazo, arr dividual in - satires unt sonier, the 1 camvases o the great Israels of wality dear icism now.
rope. suelı ; Thomas Queen of t painter: t, hat stid ntry, pub. ch men as idged the vance the exhibition mia Acaliew York eceive its corated in In 1 sot, Uutil the extembed ngs from " hamble the faciliy instruc. ist could

feel qualitiod to lamel out professiomally. In these latter days that need no longer exists, lor the great art sehools of New Sork, l'hiladelphia, Boston, Chimgo, aul st. Lonis can amply provide all that is required; but the charm of the Latin Quarter still draws as a magnet all whe eath afford to go there.

In that centre is a constant mingling of ideas from all sourees seeking new forms of expression, out of whirh proweed the impulses that vibnate throngh the woild of enrent art. Satmally enough many of the new depatinres are futile expriments, short lived and not sulliciently important to disenss; but within recent yars the movement known as impressionism has been so widespread in inthence, so radieal in methosd, and so vital in result, that it has donbtless prodnced a permanent effect on art. Like its predecessor, the pronaissanee alter the dark ages, this momement moderne was an upheaval of all forms of expression; and in painting it seemed as if a wave of dazang color had burst over the studios, drenching the eansases with rambow tints, flooding the exhibition galleries with bewildering brilliance, 'The matecustomed eye was overwhelmed, and the confused and womdering public burst into lond outery against the insane folly of these mad youg painters, who showed purple mind green gridirons, spackleal with green and streaked with scarlet, and called them lamseapes, marines, mol figure stmelies as they ehose. Of comrse the produlum swug tu its limit, the malieals earrying things to extremes after the fashion of their kind, and making foolish carioatures of work that was really great. Hy degrees, lowever, sober sense prevailed, the new ideas beame better maderstom, the publie point of view changed, and it was seen that there was method in this madness. The new movement was intended simply to interpret what the artist saw most foreibly expressed by any given sulbeet, or, as the name implies, to reeorl his first impression and convey the idea rather by suggestion than by explicit statement and detail. Applied to out-ali-door subjects, these prineipdes were rarrion ont by the plein air colorists, as they were styled, from their efforts to suggest atmosphere glowing with light, a feeling of spare and smashine. Bilomard Manet was the lealer of the new school in figne work, and Chume Monet in landseape. Notwo styles eomh be more windely different save in their matual ablurrence of detail; the first dark, heary, and sombre in eolor; the latter luminons and palpitating, every vonerevable tint vibating into harmony, an example which is followed in this eometry by Childe Dassam, oftron sucersfully, hat sometimes with extravagace. After rearhing extreme highwater mark, the flos of brillianer has somewhat subsided, mued latter-diy panters do not find it neeessaly to observe the work through a prism. While returning to more sober statments of simple troth, without trying to cogy a kabidoseope. the vision men have had of pure color sparkling with light has given them in insight into. Mother Nathre's method that hais left a lasting impression mon the minds and maners of the best workers and lifted the whole tome of modern pinting. Whether one was preprared to enjoy truly inpressionistie pietures or not, the lore of them in a collection of works in the old manere of hard ontline and heary sladow conld mot fail to he felt like a beam of light in a dark room. However one might probtest against the invaler, the old frimuls looked dull amd that after a time, in spite of the most dethrmined loyalty. The style of the Ihedson River schom was narrow and petty, full of trithing little details, the eolor often luing
that need in, Bustem, the charm go there. cking lnew te throngh uturess ate seuss; Init :ll so wide. thint it hais ant, the pros pheaval of f davaling bow tints, e matcens. (h)lic burst uters, who akel with hey chose. things to catures of railed, the nged, and movement expressed mpression ment and ele ont ly o suggest Bdoniarl Monct in their numolor: the into harin. oftell me high-atter-day a prism. trying to ing with is left : cers and latren tu ollection mill not sht ןrutime, in r schowl n luin!
foreen amd theatrical in effect. The striking seenery of that mohe strean inspired the efforts of American landseape painterseof the two decades from Is:iot to 1850. Asher B. Durand was a lemer among them, and for mang years the manner of a generation past held sway matil the new method foreed a place for itself. It was an amoning experiene in following exhibitions of bate yars to see, one alter mother, the leabers, lomg established in their own particular methools, finally breaking away from lifelong habits and coming into line with the new movemont, some kreping step bravely with the vigoroms newcomers, some halting along with pitiful attempts at a jannty strino. The strong men neither hung back in sulky inlifference nor thang themselves wild!' about in exuberant fredom, hat kept quietly on the even tenor of their way, ulsorbing what was best in the new. holding fist to what was best in the old, and producing the kind of work that is independent of schools and eras, but intrinsically great in itself. In Paris, the younger workers who began sending strange wild landseape and higne pietures to the exhinition at the Salon of the Champs Elysées, the most important ammal exhibition in the word, were indignantly rejected by the horritied jury of selection. Bpually indignant at their treatment, the soung painters, who felt themselves to be the eoming men, gathered their rejected treasures tugether in an indepembent exhibition of their own, and established a rival saton in the Champ de Mars, whieh has eome to hold an equal footing in the world of art with the older institution.
By reference to "mon" we do not at all exelnde women, for there is no sex in art, and women of our time paint as well as men, hohling equal rank in the exhibitions, equal phaces on the juries of selection, and receiving equal homors and awarts. One of the foremost women of the day is a Philadelphim, Miss Cecilia Beanx, whese portrature ramks among the highest. Miss May D. Cassatt is also a Philadelphim, although long resident in P'aris, ami highly estemed thore. Her name is mentioned in a revent notice of a Salon exhibition amomg those of ilistinguished men, whieh eoneluded with the worls "and other strong men," meaning thereby mo grain of disrespeet to the woman, but only honor to the artist, elassifying her as among the first piantors of the time. Important exhibitions nowalays are likely to eontain strong works hy many women, such as portraits by Mrs. Samh Sears of Boston or Mrs. Rosina Emmet Sherwool of New Lork, ehild stulies by Ellen K. Baker, or animal stmidies ly Mrs. Helen C. Jovenden, wilow of the late master of molern genre. Thomas Hovenden, whose untimely death the artloving publie of this country has not ceased to monm. His faithful studies of Ameriem domestic life have tonched the people, who are, after all, the final art crities, iespite the clams of those who frel themselves especially fualified by teste and training to tell others what they must and must not like. Many times publie opinion has been umbly show in setting the seal of its approval on worthy works. Int onee established in the heart of the pepmhace. immortality is assurd. and that plare belongs preaminently to Thomas Hovenden, as proved lye the throngs that stome liefore his pieture " Freaking the Home Ties," at the World's Fair in Chieago. That eosmopolitan collection showed, among other interesting ilevelopments, a strong school of vigurons young Norsemen, hardy vikings of art from Scamlinavia, of whom Anders Zorn was the lealer, with a variety of figure subjects, stulied in-
doors and out, with in meonventional freedom and dash as inspiring as the brewes of his mative fords. Prince Engene the hamdsume pepmiar serond tom of the ling of sweden, was no mean rentributer to this seloond. Fritz von Thanlow is a Jorwegian ly listh, hat leing well remogniad in France he has taken ul his alsember at bieljne, although still fimding inspima-
 as it is tedmieally teaned. 'lhis refers ter the quality of hamons. or per feet balame of light and shade and eohor. It does mot depend umon the key of the pirture, whether light and bright or dark aml sombre, but comsists in keeping the relations of the different masses of color trine to cath other, the small details sublued to their proper paces, yet each having its eorreet vahue in the whole.

The Seoteh piantors, stimulated no onent hy the sureess of their literary brethen, have estahlished the dilasgew sehomel of art, most migimal in its
 tionable strongth in its more serions and less famastio work. duhn Lavery is a leader ancug thene men. biarmany prides harself on ome of the greatent paintars of mandern times in the paran: of Amph Friedride Menzel, a l'ms-

 Menzel has been artist lanseate to the coourt at berlin, painting Ihohemandern fimily purtrats, hattle ainces and serens of cont splentor in the most mastorly mamer. The Ihugarian, Muakasey, has heen widely known by his luge religious works. lately exhilited in this eomery, - "Christ before
 originality in conerption, although oftorn sum what morbill, a mot matual
 site extreme of expression is to ine fonad in the gorgeons coloring and sumph rompositions of llans Makart of Viema, motably his "Commation of ('atherime Cornaro at Vonice." I revical of interest in religions suhjects has reenotly apmarel, pessibly stimulated by the work of Mr. dame's Tissot, a Parisian, who has given ten gars to the grokluction of a serins of earful studies of the life of Christ. These little paintings, mumbering some five humberi in all, are the result of elowe researel in the Ifoly Land into the comditions of life and rostoms which prevaiked at the time of Christ, and are a tribute of meligions hesotion. Wherlier thromgh this influme or mot,
 lieal sulherets, two conerptions of the last Supher lebing wer powerfol. A

 to religious subperts. Whe serious lack in most of the work whihited in
 hern so monermed to express what they saw in the simplest manner, that they have carevinly avoiden seping or thinking alant anything but the simplest things to be expressend. While some prwerful work has rixultod, it has often been labor worthy of a better cause for the pietures probuced have had

TURY

insjúring ats
 this schoul. rouguizerl in ding inspunat-- in biciutily.
 "pon the key It ronsists in ch other, the: correre vallar
lurir literary figinal in its with uhtures. fohn latrory the gre:atest 11\%(1), : l'rus: was devoled rrelleriek the vill kerp the many voits ar lloheoral. in the must. y k山own by hrist belorre - :and much it mimatural
The oppo-
 18 of Cither
 s Tissot, : ; of earrfin] : some five Il intu the Clirist, ant Here ol wot. Hes of lithwreffil. A r lintes, :an al thought. (1) le given hihitad in etists late illiery, that t tho simIterl, it has I have hidl
litho to tell beyond the skill of the painter. A nobly painter cabbige dield. or a superbly hambled stome wall with the tail of a woman's skirt disappraring aromil a corner. may be masterly painting, hut it is not great art; and it is to be hoped that the day of momingless canvases will soon pats, and the coming painters will not be eontent to diseourse grandly about nothing.

Dmong the lealers of enrrent art in Dmerion, the place of honor in portraiture belongs to John $\underset{\sim}{s}$. Sargent. who easily ranks with lahlini anal
 John II. Alexander, with his love for long flowing graceful lines of draprey,

AT TIt: SHIISE OF VESNE (AIMA FADEMA.)

 gons mametre. The father is motel for his liturary as well as artistie ability.

 the animal paintere is also Einglish. The mans of Monan and satain are
 seneral generations of talented painters. The reders were combemprary with Daniel Inntington, long president of the National Acallemy of Design,
and Eastman Johnson, whose "Old Kentucky Ifome" was famous. Willian T. Damat, Herbert Demman, Frederick Bridgman, and F. L. Weeks are ail strong figure painters, the last two being especially given to Oriental suhjects. Winslow Homer includes tigures with his marine stulies, often pre: senting groups of peasimts on a stormy shore, while Alexander Harrison and W. 'T. Richarils usually confine themselves to marines pure and simple. The ragged, dirty little street Aralis of J . G. Brown have heen exceedingly 1 . 0 .nlar. and so have the lamiseapes of 1 H . Bolton dones. The list of modern landseape painters really deserving of mention is far too long to give in anything like complete mention. A fow leaders, such as Charles H. Davis, Homer Martin, the hate Willian 'T. l'icknell, and George Inness must sutlice to elose our talk on the painters of this century.

11. SCLCJTURE.

Himan progress seems to adrance in waves, sending forerumers to annomee the gathering tide; and the ebl, and How of fore is felt in all manne of endeavor, lat in nothing so instantly or aceurately as in the fine arts, the most sensitive and subtle forms of hmman expression. The plastic arts are as keen to record these ehanges as the pictorial, and the coming power of the nimeternth century found a few prophets in the dying years of the century
 graceful and delicately finished works. His "Three diaces" and grompof "Cupid and l'syele" are well known, also his eolossal bust of Napoleon and seated statue of Washington for the state of Carolina. France pros dueed a master in Jean Antoine Houlon ($1 \mathbf{1 0}+1-1 \mathrm{sis}$), more vigorous than his contemporaries, as seen in his powerful work, the seated statue of Vohtaire. His satue of Washington, in the state eapitol of Virginia, while proserving a faithful likeness, has a singular air of livench elegance. Despite his strength, Hondon was not more aemate in stuly than the great Dane Thorwaldsen, horn at Copenhagen, 17a0. His famons "Lion of Lazerne" is known to all tomists, and his has-reliefs are familiar the world over. His eliof religions works, the colossal figures of Christ and the twelve apostles, are in the chureh at Copenhagen, where he died in 184. The greatest matme
 ful a teacher as he was a worker in his art. He was the originator of the eameodesigns on the Wedgwood ware, leing particularly hapgy in delicat-
 anong (ierman sculptors of this time by his heroie imperial monments, of which the most important is the erpiestrian statno of Frederick the Great.

Alhough, for many generations, liome was the Meera of artistie pilgrims, and most of the great names have at one time or another been emrolled non the list of stulents sojonruing within her gates, the race characteristics of each strong mind were liable to find eypression in spite of elassie traning; and when the mature artist bronght forth his own creations independent of the tonch of seloool or master, they were likely to present his w, wationa! temencies of thought. Of lato years, with inereased facilities for studying other art centres, of intercommanieation of ideas hy travel amb inereasin: duplication of works of art by various reprochetive processes. the "art atmosphere" seems to have extended so as to absorb, and in a great measure
ohilimate, distinct lines of racial difference in manners of expression, the fundmental priariples of truth being more generally sought for anm applime Thans, the ummistakibly ' leutonis aspeet of (ierman soulptare in the early half of this century shows in the great monmment to " (ierman U'nity," bex

Napoliens i. (canova.)
Schilling, at Niederwald on the Rhine, and the Walhalla decorations, ly Lambig sohwanthalor, for King Lomis of bavaria. Lierman serionsuess of purpose leuds a dignity of apmanane, even if it beromes sommenat grombi-
 to the finish of small details. During the same prionls, in Italy, the elassie influence was more inminant where the Roman sehool still held sway, and
delicacy deteriorated into insipidity, and finish became finical. Religious and alassic ubjects were most frequently produced, beside more vital work in portraits, statues, and husts. Sume there were who strugered for freedum,
 group, entitled "Charity," is in the l'itti l'alace. Laigi l'anpaloni arhlievol a surprising fane for his tigures of elablen, one of whith, from anmument on a Polish sepulehre, has been widely eopied in cheap plaster under the erourons title of "The J'raying samole"

In Fonere, the adane of senlpture has been more contimal and consistent, the mational artistie tomperament finding ahmatant means of expression in the plastie art. The fremeh dhamatic instinet has a sure prreption of the reffect of a pose, the value of graceful or vigomens lines and the badane (י' iropertion, so that whether mubre bouls to acadraie tradition in maters "f teehnigue, or broken loose and working undre inlivitual insjination, ther Freneh sentpon is likely to ereate an artistie result. The minds of the combmon people are more awakeme to aristie impressions throng the gemeral exrellence of the pmblic momments and senf|tual deomations, su freely displayel thromont the hand, than are the masses in momeries where ant is at a low stambad. Gutil after the midhe of the contury, Prench sempturn, like the rest, was manly of smonth and delieate finish and inclimed to the romantic, thongh Frampois linde was powerful and rigorons, ass shown in his patriotie gromp "Le Chant du Départ" on the Are de Triomple. In Englami, the seeds of Flaxman's sowing slowly began to bear froit in an awakening pmblie interest, though the carlier efforts wre sedate and monentional mather than spirited, the must important works being diguitided and stately momu-

 "Chantrey Finul;" Jolm (iilsom (Gal-1skif), a pmpil of Cameva; Henry
 Alfed (i. Stesplis (1sti-1sia), ate a fre of the more motable men of the

 setti in painting.

American sempture lagin with the new erntury and, like most Imerican growths. hagan in a very suall way: for althongh Rosh hat mabe a few figures, mutably a fomatan now in liaimant lark, one of the first jieres of seulpural work in the romitry was that of a pour New dersey stumerentur, John Frazere, who tried to coment himself fir the death of his chith hy making at monorial tigure of him. althugh he had never seren atatur. From this meagre theriming startod al line of exp-inerensing atrength, matil mew, in the plastie arts, as in all ohers, we ean hold our own with the best in the world.
 lowers, of Cirmont, ani Thomas (rawford, of New Vork, made their way to Lome, where they applied the traditional methons to traditional suhjects wiht conmontional results. Gre mughes molussal statue of Washingtom is in the Capitol gromuls; Powes's "tirerk slame" is owned ly the Duke of "how-
 semm, and "Colossal liberty" in the Capitol, are his best-known works. Erastus l'almer, of Albany, contempeny with these, developal his talent at

URY

eligious and tal work in or frembe: sson, whose mi arliew 2 momument $1 \cdot$ unter the
und consistexpression repption of the Iallance
in matters ination, the of the remb the gemeral - fireely dis. re ant is att semp|ure, lined to the वwn in his a Englimul, awakenulus onal yather tele y mommy (17s:my an the :a Henry an'll ; allill nell of the ling of the , and liss-

American alde a fow tineres of 4nember. 11 lyy makFroun :his ow, ill the the winht. on. Iliran! "ir way to juets with is it the of chow ustoin \11:11 work: t talent it
home, and seeured models and subjpets from his own neighburhool, giving a distinctly Ameriean character to his work. Among the most uoted of the American colomy at Rome, although mot partientarly given to Ameriem suls jects, was William Wetmore Story, of Salem, Mass., born in 1819, Thomas

statue of henjamin filankidn, (botic.)
Ball, hern in the same State in the same yar was of the same dass in Rome;
 Wiashingtom. Harriet Hosmer is the first femmine name on the Ameriran list of sandpors. She ako sethed in home whore she pompleted many works. Willian Homy Rinelart and hambolph lingers were hoth of the indealist
sehool, the latter completing Crawford's mininished Washington momment. at liehmomet. The mame of lagers is more commonly conneeted with the fimiliar little staturte grouns of evervalay domestic seemes so appeating lo the pepmiar taste. The sempiter dohn longers, of Massarhonsetts, has alsu made a few harge works, among them the equestrian statue of General hioy-
 male a mumer of replestrian stathes of note, our of Wiashington lwing the
 from eaptured manon, relies of the Mexienn war. Ilis pupils, barkin Meahn and J. (U. A. Wiard, both attained high phaces, the battor being esperially prominent in the progress of Ameriman scilpture through such works as his colossal Washington for the New Yonk Treasury linihliug, and his "Indian Hunter," " l'igrim," and "Shakespare," in Comtral l'ark.

After the midlle of the century, Froneh ant berame emotiomal and da:

 ishang in manere and Houri chapu was still more restrained, athough far mome vital tham the ofd emmentional selow. The name of Fimberie Dushste Bartholdi shomble known to every Ameriman hy reasom of his rolossal statue of "Liberty Bulightening the Wiorlo," now standing sentinel in Sew Yonk harber. This, and his ligure of Lafagete offering his services to Washington, were presentid to Amorian by the Frmel goverment. Antone Lomis Batye (10! derfopment; and thongh he has many followers, as a senlptor of amimals lue has mo rivals. In many hamehes of art he was proticient, but his best-kown works are the marreloss studies of amimal life monderel with intinite skill.

When the great wane of impressionism rose and flemed the lame, carrying
 ramphef tor, and whind into a variety of strage forms. Dugnste lemin hed the new movernent in sendpture, his meaner iwing eopied with vary ine dengers of surerss lỵ hesser lights, amel like all uew mowements rum to forlish extremes by inembernt followers. His heroie gromp. "The hargeois of Cahas," will indieate his style. From extreme realism on one sidh, with portrait statues in the last detail of mealem rostmme, silk hats, kid gheres. and in one case hohling at eigar, to the vague sughestions of a shapheres mass of tuable out of which protrmide matinished limbs and half-tureloped heonts, sendpture has beren pushed from side to side. But is sethling into a vigorms, strady, onward mowement, in which the best men of all mations stride ahoug together. In the limits of a short artiele it is impossible to mention ath deserving manes, lint a fow will serve als types, and the Amerioms are well worthy to houd the list.
 the Come of llomer, the imprial hostess of the Worldes Fiair at Chimen. phewd him at ome on a pedestal of fame. From the prominene of his bemutiful Cohmbian Fimmtain opposite the golden Liendess., Frederick ManMonnies became known the lamborer. His greatest lite work is the erowning of the soldiers' and sailors' memorial areh for Prospect Park, Broklyn, with a colossal quadriga of Triumphand grompo of the army and nave. Angustus St. Gaudens, thongh a cosmopolitan, is truly an Ameriem seulptor of tha
in moוnment: cted with the :1pealius the tts, hats : alou tioncrat hiey-- (181.1-1:ssi) on living the :ott was cant :irkin Mande ig esprecially works as his his "Inlian
nail min dralII. Carp... shes astomb although far arin Anemstor his coloss:al inel in Now ces to Wanh. utoine Louis of his own t imimals h." best-known nite shill. unl, carruing dicturial was guste Roulin ith varyius on to forlish murgenis of - side. will kid glowes. phlerss mass olwith heads, a vigomos. at rite alons H!ention al| ns: are will
ting alow at Chisagu. ane of his larick M:a". "1 crownins klyw, wit Augnstu* ptor of tha
first rath, whose statnes of Almiral Farragit in New Sork, Lineoln in "hipugh and the sturly l'uritan, Chupin, in Spungield, Mass., are well khonn. Wha 1 :aner is another distinetively American proxhet, althoght he han the alvantage of some thaning in l'aris. His work is Frend in terchume hat mof Fend in spint, having the native traits of fremom and uriginality as shaw in his ligure of Willian bloge garrison, and later in his reliof purmants on the ant halding at the Cohmbian fair. This great oerasion offerem "farmaties to American seuphors of wideh they took full adrantage, slowing the high rank to which they were entithen. It mande an Amerienn of ('ind litter, the talented Anstrian, whose decorations on the Pomsylvana liahloud Station, Philalelphia, are well known. It adted further listre to the name of John J. Hoyle. whose heroie "Indian Mother" in Faimemm.

the Waminitus mosiment, fahmost pabk.
lark, and seated statue of hengamin Franklin, are matters of just pride to lhiladelphians. It gave prominenee to such men as Lorado Taft, with his graceful work on the Hortiontumal Building: Philip Martiny, on the Agricenltural Building; the great Columhes quadriga, by E. C. Potter and haniel Promeh, whose heautiful relinf of " Weath Staying the lland of the Seulpter" is a masterpiece. All visitors to the White c'ity will remember the vigorous ammal studies by bilwat liemys, and the hdian tignes of A. C. I'roctor. The seolptural commissiuns of the Congressional Libary in Washington have produced a remarkable collection of works he talented Amerieans, and cery great exhilition brings interesting examples from these alrealy named, and sulh others as Herbert Alans. Eilwin B:Iwell, Bessie Potter, with her dianty little statnettes, portmit work lẹ Charles Gratly, Catherine Colnom. ('. E. Dallin, strange visionany suggestions, in the Rodin mamer, by (ienge homard, and an array of lesser mames too mmeroms to mention.

For this reason, but few of the notahle names of monde futigners can in iven. I! we: H. Hano Thorngroft, of Englaml, mast not be overlookion, wher .as ots "Mower" is much admirel; nor Guslow Ford, more youthful
 eft - in: : Doglish sculpture, being a suceessfin temehor, including among his pmpi severes 'istinguishod women, among them the l'riness Lonise and the Earl of Ebge's gramhlanghter, Miss Girant. Cerorge 'Timworth's torta cotta reliefs must romelnde the list of English works. A few Russians have rached rminence, mainly ly mimal stmines. Antoendski, a Jew of Wilnab. of porrest pareutage, has dome pewerfal tignte work of a serions, bather melancholy sart, the most importiant heing a "Christ Bomul." What is hest in modern Italian and German work is protieally Fremb, and of the Fromb
 Alexallule Filgusere, who apires, like Garpanx, to give vitality he means of vigomons artion to his figures. Fimamed Fremiet has worn with somu dise tinetion the martle deseromed from lanyers shomblers. Vidal, another pupil of harye, was bibiod for twenty vars, yet gained two medals for corrert anatomy in his modeling. Carrier lipllensers " Itrbe Asleep" is an example of the delieate styde, and Alimed boneher shows the other extreme in his rendering of sturly maspolime figures tombing or racing, strisiag to presut in sempture the pheture of haman strughe for existrome, as did Millet in his paimengs. These materialistic; stulies repuesent the fight for the hored and breath of life, while the impressionist conturtions of the Roxlin school try th suggest the eomdlint of cmations. gomed and hand and the battle of spiritual :and physienl desires athd develojpuren.

From time immomorial to the present day men have been fashiming shapes of elay, experimenting with different kinds, difterent aldgrees of heat, and different chromical combinations to form glazes and ooborings. The fintdamental prosesses of pottery making have changed lat little since prehistoric: times, and wall pietures of the days of the P'tolemiex show the penter"; wherl whirling mueh as it dowes at present, although, of emose, many mondorn inventions have been made to finditate different forms wi wor for tho

 the making of large vases of "xtremely thin ware. 'lo prevent the delieate paste of which these are mand from mollapsing hy its own weight hefore it tam harden, the vase or jar is momhen in an aretight chamber, the momb of the whinet seaked, ame the air exhasterl from the chamber, hating the
 sides mutil they harden and danger of endapse is wrer. when it ean be fired

 the merthed rimployed, and exelatued. "This is the way we make those rups." amd, taking a mombl, he dipged it into the liguinl pasto, rimsed it aromed and
 which hardened bungh to form the dainty ware the workers had been trying without sureess to produere: so the Chinese methad was at once adoptomb.
iguers call be - overlookin, orr youthin! t prononured If atmong his - Lomisa inli wortlis $\begin{aligned} & \text { IItrit }\end{aligned}$ Inssiatus hatre -W of Willa, rious, matler Whatl is lenest f the livelull
 ty lyy monts ithsollt dis. wother pimpil - for correcet : all example remer in his g to prosallt Millet in his 10. Incual :mal seloul try to ipinitual and

fashioning

 rees of hein,The fins. diluce prohisthe jettrers any morler'u In tho t- Hatage allal rid pessihl. the delicater plat leferore is , the monll leaving tho hold if tho :all lor tivert se oggr-sholl as olservien lase rupis." arommel and the monly. leentryines ce atoptent.

 c数:

 berol the most im!urtant in the tuwn.

 :and artisti, dirertions. 'The worlis of the lbulton tirm, who own many pet-

 Iming alike. 'Those and many whor forms of industrial art prombets ato
 griovously almsod. Iming applied to wer: ihing salablde from writing japer to : $:$

 ing the world to diseriminate inetweren true art and false, wat their intluente eam alrealy he folt in higher stambaris of decomation in articles of moment daily use.
N. INHISTISIIG WHTN.

Chasely following painting romes biak and white urt in varions forms.

 hats luerol bromghto at high stambing as a time art. It is still used in mang

 making of plates or howes for priting remimen skillod hand work, and the ragravers and woul-enters were meressarily artists hemselows, su that while they were coplying the work of others they were also prombing works of ant themselves. The phates ame prints were, therefore valuable amb expemsive.
 whe rarefol style of working gave way to modamieal methods of greathe sperd. With the developmont of photugrapher ant its applimation to the
 lost, the artual copring of painting in all the details of light. slatere and half
 as phatogranure cery ting honsh mark and erery different tint of color is
 ly having a photurgiph of the painting taken on a gelatime film, whishon

 densited umen the film, and filling all the little inergualities of the surfare,
 thas sedered, is gome over hy hame and timislow here and there with engravers tools, and from this prints misy be duplieated to aty extent. In emgravel phates the design is colt into the metal, incisen lines lnoing vilher drawn by hand with a sharp paint. ralled "dry point" work, or raten in bey acids. the remaining surfiere of the plate being protected from the atial be a greasy film. In want-entting, the bloks show it roverse provess, the design being left stambing in time lines, while the remaining surfare is cut anay, so that :
 cessers prondure a similar result on a metal howk hy the action of adid, a methen cepablo af most sperdy work and therefore in demanel among the maltitule of daily publientions illustrating ourvent events. of comse thess hasty results falm siarrely be called line art, lint they are develdiments of artistie industries, colenhated to ment certain nemals of our lasy civilization.

Fou mere artistie dfferts, varbons forms of hithography have given bemo ful results. This valuable process wis aedentally discovered in 17as, hy
 fand having me papro, lie serawled on a time stome then the a few words, mad hater on, coning to remove them, he bethought him of an "xperinment with wid on the stome. Ihis he tried, fimling the stme eatem away all armul his wring, leaving that raised in suthecent relief to print from, the bettering buing done with a greasy writheg substane that repelled the amid. Lator "Suriments provel that the eating away of the stome was mot morssary if the design were mate with an oily material and the rest of the surface kept meist with a weak solution of acid. A grasy printing ink beding applied woud stick only to the oily design mul not to the acidulated surfine, whieh prowess maln possible the printing from llat stones, which were mot so hablas

10 Wear oun as the relief designs. sumefoller died in 182 . living long rnongh to see his invention in nse throughont the worlo, although of rourse lie erould not know the improvements that !hotography womblin hing. On the e. .a annial amiversary of this grat liscovery in 18:3, exhihitions of lithograpmie works were held in Landon and Paris, and the possibilities and developments shown. Mr. James. MeNeill Whistler has mate many wory interesting experiments with it, as have also Mr. Joseph l'emell anil Mr. Hubert Herkomer. The latter has made inmmurahle exproments and insentions in his busy artistic corece, and has just werenty purfered an inurovement on lithography which he calls "plate printing:" amd which has here dubbed by the irreverent the "Ilerkotyp" proess. It is simply painting in a peenliar oily ink on a metal phate, which, white the ink is moist, is dusted ower with a fine powater whith allueres to every brish matk on the surface. Une ingre-
dient of this powder is a metal that is chectrically combuctible, mod, after the exeress of powder is brished off, the flater, with what remains sticking on the
 lys the eloetre cormat hamens and forms a nagative of the orginal pame. ing, which ean be stripperi from the plate anl nsell in a pinting.press, giviug an absolutely faithtul mprobluetion of the antist's humbiwork. A simular
 who has ilevelonem the pressibilities of almaimun lior phate work, the inl wantase of this material orer stome or wher metal lwing its extreme lightur...

 pussibility of misemerpotion ly some mplyist, as exists where a painting is interpered hy ath etcher or elgaver.

Of the new prowesses or imprownents on the ohd, that have arisen lereanse of the diseovery of phongraphy, it may he sail their name is legion, Ihotho

 and imblustry and is mally meressaly to all these orempations. While it in dithonft to state what was the first attempt that hed to the sugerstion of

 blackenel silver marine, amb others experimenting after him, at the beginning of the comblay, han glimuring bates of the pussibility of a mew art.
 appropiation of a great matmal law, the thought was working in mane minis, and the diseovery sermed to lue almost simmitameons in several phares. Is

 tiles ly the aspery of light on nitute of silver, with some remarks ly sir

 tirst un sucered in this direction. In Isedi, learning that M. Jomis darpuns baguerre was exprimenting on the same lines, he emforred with him amb they formeal a parthership. The lather serms to hawe been the more busimess-

 nership with his son lsidone, making many improvements, and breominn

 lightem, can la taken in alogit inere lumes." (omparing this with the instan-
 the kinetoserper, will illustrate the rhamge wronght in two thiteds of at century Ther mathest purtait work was slow and tedions, the first portait in Sew
 brated Professer Morse was sandy interested in the new science or art, and adramon its ramse in this somutrs.
 herof felt to photugraph in rolur, amb mumberess attempts with mone in lose

rekr

mid, altur Hue ckiug on lie atell therwin iginal pathe. press, giviug A simular of Mayentur, . the alvanio (1) lightuen. in hank anal without the painting is
s+u hroans. OII. Photw.
 winlue: ant. While is is Hestion uf ha selomist "sulais ley the lugitio a mew itit. shmir bew aly minls, hures. Is Institutu" " :aking pmo rks hys lue impine. - Ix+011 the is Jiarminem It him: an! - hinsimess the " 16.1 . the pirit. bx+omin! ce maty s s. f strmuly he instanfigurise ol 1 cיrntury 1 in Non

 losime hax re or low

 Dhel wery atistie pussibilitios. This is aromplished ly mean of three

 shat as all gradations of color ater compmad of sarions profurtions of thesp

 ambug the sheresses of imblustrial art as wet.
the of the later and mose butiblibe ines of photography is fomms in its

 Warem the la line and other astromors, which grealy farilitated studies

 Houry of the smithsonian Insitute originatel the ides of mating the

 moblutimized the seleme of ast romones extembing the timb of haman olsere
 the thessope is mate to follow the aprarent mition of the sar in whirh it

 mathe that the samera has revaldi homble the mumber of stats dis wo ereal

 the hearonly hosts. With this ohjeret the firmanent was chated in signares,
 bain of these squares to work ann. This mommental latur is still ging on, and it will neeesarily be extemed well into the first phater of the twentieth century.
The rymeh-marking paler of br. Biantgon. in which he andonere! the dis-
 diathly attracted the attention of the scientitie warld. and. since that date,
 in all rivilized cometries. The S-ray prombers no motiorable eftert on the retina of the eye, and we thevedop acepinim knawhere of it through indireet agencies. She of these agemeies is the photugraphe phate, on which, under cortain combitions, the by ants some what in the same mamer as dows a ray of light. It is not at mily of light, in the orlinary sense, as it penetrates

 tiom of lmminiterons ether." This vibration will tranerser many shbatames
 Wenl, wotton, silk, etce; aml, if then dirartal apon a photugraphio: patr, will probure an inage there. The revalting pirture is nut of the ohjowt travised hy the ray, hut of any intervening alojert which it eloes mot pass throngh,

 through a loman twaly, it will give a " shatowgraph" uf thr lmones, of at a
 Again, the ray will traverse a diamond amb rast mon shalow, but it will but. gass thongh the finest initation ever mabr. the "shalowgragh" showing the manaliaetured artiche.

Juas V'. SEals.
reidutists allu ndinal vihnis y sulostatho's icl fabriu's, ass ier platr, will ent travernal ass through. flatow, :anl. y is diturnell rilles, of ut : 1 on its way. 1 it will thet h" showing V. SE.tlla.

THE CENTURY'S ADVANCE IN SURGERY

 gand men know, that I have labored filty pars with all ratre and patas in
 fomeheal the work whereat t atmed that antiguity maty senem th have mothing

 the past. Hhe to the realization of that "eretain small here" which he alloweal
 sery partiorel in those days, when the uprations were thos of jumessty and

 thetios were unkuwn, mast le fillol with sympathy for this ohl gentlenall,
 has manle atul is still making.

In the lugyoning al this rentury surgery was pravtiend by many grat men,

 its the line of insention and diseovere. Hat to lis. the art of an humered years agn aphears widely different from that of our day. Anasthesia had not then
 suht thing as athtispotie or aseptie sugery was known. 'The abobomen was

 -ines. Thitside of the treatment of hroken lomes, dislocations, gunshom wommes and injuries, the surgeon at that time ofuraterl for strangulated hurina, for
 fur eather. Dentistry was just begiming to be tokroll up a sperialty, amb all medieal men rextracted torth, and many tilled their eavities. Whathalmis surgery eonsister largely in opratious lor cataract, and was done by the gene eral surgeon. Ohe dopartment of the surgeon's elneation ut this time was well attended to, and that was his anatomic knowledge. Onr boblies wro the
same then as mow ; and althomg the surgeom ditred not trespass in anatomian
 bunly after death, and was quite as well informed regarding the gross anatomy of the human lendy as the surgeom of to-lay ; and, hat anarsthesia beren known to him, he would probatoly have aeromplished nearly all that was dome during the midille of the erntury hy his sureressors,

Ouring the tirst guarter of the erntury no groat alsamer was made in surgery, that is, mothing revolutionizing; but many minds and hames were

 was gisen a lage dese of lamdanm and a huge drink of whiskey or hatads. and was then held ir tied on the talle white the singen prevereded with

 part of the patiout's lof. for afterward he rats the ereatest riak of home

 "primaty mim," as it was adterl, - that is, withom the formation of gme.

 nerting the seat of fractur with the skin, manally mant many monthe in beti, and wery often the lose of the limb.

 timely rijped "), the athominal gavity was partioally mever (pened, and whon it was the patient marly always diod. The oprotation for the radical ene of heruia was sidhas resoted to, exapting when stangulation of the intestine necessitated onerative interferenere to save the pationts lite. During the
 enters," were not searere; but the great montality of their pratiee problued a wholesome fear among the peeples. The onvation was so often fatal that
 eibromstanoes. What cansed the deathes was peritomitis, or galngreble of the
 methon of on rating had herom devisen that was in vogur fifty yars hater.
 the lmons, was greatly improwed in :he first half of the century, this smbjowt remiving mere attention at the hambe of suggeal writers than ang other.
 view, be lowked uman as the greatest mbanement erom make in sugery. it was great. not omly lar the mason that it gase the pationt abo.ohate umemwionsurss during the time of the on ration, lut herause it enable ol the surgen

11 anatomical iil stuly the oss allatumy
 domis durimer
ais mank in lamls wom In！s．Thws pratic．ll，：nni
 1 wih мルウ！ Ther pation！ ：in hamus． redel will nurr p：ulioul ttion which ther woms k of hawne there dive （1）he：al ly ion of
 mather
 month：in

小（ther sul－ womb ma－ －and when cal cille a intestinue buring tha． ＊＂ruphli＂ －prominued fital that． H！urgen rie of the． arly mons linter． isprases of this shib－ thinl ：any
pint uf It te lumon－ 10 surgenn the misess
thetic state did not，however，eome into being for the first time in our een－ biry，for，like most great ideas，it agitated the minds of medieal and scien－
 （antury recommonled the inhalaticu of a certan combination of opinm，
 and that in India similar combinations were for centuries in use．It is need－
 the use of nitrous oxide，＂langhing gas．＂ether，wh chloroform．and that their
 phy bay and others performad repated exproments with nitrons oxide

 mall ；and it romained for a New lingland dentist，Dr．Horace Wells，in $1 \times 1 /$ ， to first use satisfacturily upon himself and his patints the eomplate state of

 wher，at pubil of this man，another dentist．mimed Mortm，two gears later，
 the whaterful power of the vapre．He exhihted his discesery ut the Massio

tim unw at patient wheriend by Dr. Mortom. The fane of this man and hos

 to the wher muthen of nsing "pimu and whiskey.

 tiont.

 the andersherter offer of spriging the surfine of the tissues with ether. During the late sixties this methul of frowzing herane guite bremlar fur proln-

 fropuruly used.
 tirely smpdantan thon just mentioned is the chloride of ethel. This, when

 (1nerations.

man ：alld lus Lateron Herm covered the＂ chloroform． century，chuc the wthere in rithr whous－ ity rether is －$\dot{C}+1 / h_{1}$ alld IIIt 111 matly \＆tor alisers．＂ fise of athees． －iir ing that thin antly to the －many mive Vlin dial lunt ielly In Incoll 11．siciomsom：s．
ether allul inually \cdot ．ll． h will ןr． ther slight thers．In remier tho elu the ja：－

If witlo ine pronheoing but exten－ 111 showera！ lirer．IHur－ for ןrulu－
 for more funuln•1 Wer to lo． ther wore

Il hise ats his，when zing，aull surgical rty yusar riled it＊ llesese，nenl点．allit in

 farmat it is appliod simply in solution to the muroms membratur．but where ：Hnesthesiat of the skin is desimed，it is heressiary to injuet it maler the skill with a byporleruse syringe．Whan used in stroug sulutions this mandy is dangerons，mul it has lately heron shown that weaker sohotions winn used in

 is hass satisfartory amb bet hambers to the tissumes themselves．
 thesia，wo greation step has ever heren mande in shrgery than that which was

 the use of agests whiela were destrmetive to germ life in the treatmont of

 from infortion hyg germs in the athosphers．It was mot long．howerer，lne fore it was diss covered that the danger lay not in the atmospluere hat ins the skin of the patient and in the hasuls of the surgen and in the remblition of

 inst mamonts，the dressings，the pationt＇s skin，the surgome＇s and his assistants＇
 from germs，theme be nse of antisegtio solntions in the womb or on the dress－ simgs，This has berol a grate step forwat，this diseovery that it wats in the

 solutions in wominls mbless the womm itself is alroaly infieter，when it

 anthally harmful，for these cheminals which destroy germe are mot altugether hambess tu halthy tissue，parthendarly when insed in stren solation．

The diserovery of antesthesta and the promblgation ot the germ theory of inthamation，thgother with the stabeghent perfection of the means of de stroving mimolnes，all within the memory of maty now living，have revoln－

were never even dreand of a gencration ago. One can radily imagine that
 of :an opration lasting for soveral homes withont an andesthetie: and that it must have beron mily an immeliate and rertain danger of death that come
 he realized the great probability ot suberenent intammation amb death.

 first. simple firatures.

 hank the nor of the limb as it did to mitu the broken bume. This is mow

 metion (whild the fragmets are beld timly tugerer) from the very tiret

 stifluess and the wasting of the museles whiol gesults trom long comiturnent minspinuts.

 sand breaks, which twenty-dive gears aro womh haw eost the patient his

 filly wemad to function.
 sis, are now dealt with wery differnty from of oht. The diseased strumers arr now theromsty romored ; and the inflamation which at one time kep the pation in misery and danger for a long time is sulumed from the start.

Ostentoss. - 'This torm, whoh means the division of a lemere is generallys applied to the correction of deformities, such as lusw-dres. This "proation
 the milder ones loong left alone of probtel with braves, which at lnest could do litt! more than prevent inerease in deformity. When the operation was forformen on the lames it was then divided. nsually with a saw. The upration mowalays for this somilition is what is railon! stikeutanoors ostertomy : that is, the wombl math is ont as large as the "hisel nsed for sperering the

ビに！

 －tho ： 1 gens ：allil that it II that rome lиaij！whoル death．
＂thr intru－ ＂onsijelorin！
nitting ： in ；illwi the． Omalig comal railllimbl of ：as the（・リル silint until stracturos． a takient ott al lomlenel lollig for 8 lhis is losw ivn la川自川品 tall hereto．
 lor passile vily lirst mutiont is arcely tho． mtineme．n！
thes wore diay，therer sulient his Ht！a sime salved thol
 at ructures time：k＇pt If start．
 वpreration ere casis\％， west conld ation was lit oplarat－ tentobys： ring the －atul on s uf locs，

 dive of low

 ats woll as amm lity.
 provel withit bast throty-fire grats. The making of :
 wail ．Itum
 IIII．• ．I／．．． ［ritation ：
 ：リットは แル！
 ＂lo shonk． gh！l．an． line livat in－ in in somb tion．Tlıי ＂swombly？ －of injur！． 1 Inlo of the ［11，：：in！the antalu！，1t shu｜l｜aril ＂liok thu＂ 1．0．w．．．． 1 lar higur w．न ры＂， अant ．Alli l．．1．
＂lalou－lle
 \cdots
whe＂ ＂位：ation 1 deenh ：allil on Past timen
 4ntiation aktat 1 Now of will © hlow． Bom ＂1 sinter the remor nil organ
matly int tir wimn ：

 W．1 1 whtution realy for was

 if Auturame

$10: 1$

 rarrost oneorriburo.
 - lesest and alvelomern.

 through ant "proning mintre it the luek.

 "ying diseronforts. 'This was rertably lather than allowing the pationt for

U＇R

mill nill lu
 it Wiay the IIIIN ．if $11 .$. tinin of the lier fant til． 1104 is $110 n$ is now rnd is ther cluast． 11．ule nerean． 4．－sur han ＂mumato in
find lin Hux rom shantu tile a fistll． sertiont，an var on lwo （1，ntind fon Hion Hu！い virwil．In rir wew rew Iftu－nin！

M中心．．． ahlays mall ＇illtestiller． inling rall
 Mesiny H14 1 lo lwing IIII sultimin
 butiont tw III．IIIM h hin！ III mistah dhewd the an and lai ill or wn 114｜：141 thity mul ＂rimenta
ans of 11 f remona Was dow

PENDSYLVANLA HOSPITAL，PHLADLLPHIL

Photographic Sciences

23 WEST MAIN STREET

that life and health are eompatible with only one kidney. Sinee this time the removal of a kiduey for disease or injury, when its fellow of the opposite side is healthy and performing its fmetion. has been looked upon as an entirely justifiable operation. The surgery of this organ has lately so far advaneed, however, that many kidncys are now treated hy more curative operations. In 1880 the first operation was done for the removal of a stone from the kidney. an operation which now nearly every surgeon of much experience has performed. The operation for the fixation of a floating kidnes, whieh is now so common, was first done in 1881. Now, since simon's bold experiment the lives of between two thonsand and thee thousand persons have been thus saved who had otherwise certainly died.

Tue Blamper. - For generations the bladder has been considered a legitimate field for surgery, but modern methods and teehnique have greatly extonded the domain. One of the greatest advances in bladder surgery has been the erushing of stone and its immediate removal. Until 1825 the treatment of all stones in the bladder was their removal through an ineision made in the organ. At that time Civiale first performed the operation of passing a bladed instrument into the bladder and erushing the stone, then allowing the patient to pass it subsequently at urination. The operation heeame quite popular with certain surgeons as carly as the middle of the century. The cutting opreation has, however, never been entirely put aside. and even to-day it is, in many cases, the best and only procedure. In $18: 8$ Bigelow, of Boston. devised the method whieh is now universally used, of crushing the stone aud washing it out at onee through a silver tube. This was a great stride ahead of the old methol.
One of the great difficulties in deciding upon the removal of a kidney has been the trouble of finding ont whether the other kidney is doing its work, and this Kelly, of Johns Hopkins University, has done muel to overeome in devising his method of examining by looking at the openings of the tubes of the kidneys where they empty into the bladder. If the kidney is performing its funetion the urine will be seen flowing from its tube into the bladder.

Hernia or Rupture. - Probably the treatment of no condition has received more eonsideration from the surgeon of the nineteenth century than that of rupture, and it was not until 1891 that an operation was devised, simultaneously by an Italian and an Ameriean smrgen, which has proved for itself all that its originators elaimed. Humdreds of operative methods have heen brought forward for the eure of this troublesome and dangerons eondition ; but, until the operations of Halstead and Bossini were bronght forward, little prospeet of an absolnte eure could be promised a patient, and the conservative surgeon would only modertake to operate upon very troublesome eases such as could not be controlled by a truss. Now nearly every ease of hernia may be looked upon as eurable by an operation.

Ophrative Graecologr. - The operative treatment of the disease of the female generative organs has been revolutionized in our century, and its revolution has heen largely due to American surgeons. The first ovariotomy ever performed was done in Kentucky, by Dr. Ephrain Melowell, in 1809. In the fifties, Marion Sims won great renowh for himself and his country by his wonderful ingenuity a.l boldness in this line of work. The greatest alvance here, as in all departments of surgery, has been made sinee the
introluction of antiseptic and aseptic principles. To-day there is no disease or condition which, if seen early enough, camot be cured, or essentially relieved at the hands of an expert abdominal surgeon. Thousands of women are now saved every year by these means who formerly would have certainly died or remained hopeless invalids.
Arembicres. - This condition must seem to the ordinary reader to be either a new disease or one much more prevalent than in days goue by, hat it is not the case. The canse of this appearance is the fact that in former times the condition was not recognized in its incipiency, and the exatet canse of the trouble was monown. The comdition then advanced matil it was called typhlitis, peritonitis, and obstruction of the bowels, etc., all of which would to-day oceur if the conditions were not recognized early and treatment immediately instituted before the inflammation and infection extended from the appendix to neighboring tissues.
Bran surgeny. - This branch of surgery is practically a triumph of recent years. Formerly the brain was never interfered with except for injury (trumatic), and even then nothing was done excepting for the removal of pressure, as from a piece of depressed bone, and the institution of drainage. To-day the skull is opened for epilepsy; abser of the brain are opened and drained suceessfully, and tumors of the brain . removed, thus not only in mumberless instances saving life but - what is equally importaut saving the usefuness of the life and mind. The first actual successes in this line are recorded by Bemett and Godlee in 1884, who localized and operated on and ultimately fomm a tumor. The patient died, but the bold begiming was followed by a number of other surgeons, till this new region for explontion, hitherto untonched, has become a fertile ground for successful efforts. Abscess of the brain, until twenty years ago, was almost invariably fatal. MacEwen in 1879 located an abscess of the brain and begged to be allowed to operate, but was refused by the family of the patient. After the death of the patient he operated precisely as he would have done in life, evacuated the pus and demonstrated that had he been permitted to do so he could have saved life.

Where the cranium is womnded surgeons nowadays will not hesitate to open the skull, secure the bleeding vessels, remove clots, and thus many lives are saved. Even comparatively slight injuries to the skull, where the brain is damaged, involve oftentimes destruction to the arteries and blood is effused, producing such destructive pressure as canses very serious symptoms or even death. In other instances, the results of a blow or a fall without injuring the skull may canse profound damage and snbsequent hemorrhage. In all these cases operative interference, now extremely safe and easy, may readily save life. Gunshot wounds of the brain are now only occasionally fatal, provided opportunity offers for prompt and clean operative work. Even where the ball has traversed the entire length of the cerebrum, recovery has followed operation. The results of brain surgery in relieving certain forms of epilepsy are occasionally most brilliant and frequently much relief is afforded. Where the epilepsy is of the character known as focal, and where there is evidence of irritation of the brain, due to a local pressure. whether of the cranial walls or of some new growth within the brain tissuc. the removal of these sources of irritation has in many reported instances
s no disease essentially: Is of women ve certainly
cader to be rone by, luat at in former exact calme intil it was all of which d treatment tended liom
trimmph of ceept for inthe removal on of drainbrain are red, thus not mportantesses in this mol operated d begiming for explorissful effort. riably fatal. , be allowed the death of e, evaenatel could have
hesitate to 3 many lives re the brain ad blood is rious sympla fall withsent hemorly safe and e now only in operative e cerebrum, in relieviug uently much vo as focal, al pressure, brain tissue, d instances
heen most satisfactory. Again, certain cases of protancted lheadache, so nevere as to render life insupportable, have been eured by trepuning the Ninll. Certain forms of insanity have been molified and relieved where this had followed upon brain injuries. It is of great interest to reflect upon the methods by which students of brain disease are enabled to determine so exactly the location of tumors, abscesses, hemorrhages, elots, sears, and other alterations of tissue giving rise to epilepsy and brain disorders, and which afforel no indieation of the diseased locality by any changed comdition of the surface. In dealing with other parts of the body, if the precise locality of the part to be operated on camot be at first determined, there is no hesitation in the minds of the surgeons in cutting down upon, and searching for, that which he proposes to remove. In dealing with so delicate an organ as the brain, however, this camot be permitted; for a variation of the very smallest dimension will sometimes change the manipnlations from those of perfect safety to the most fatal results. Our knowledge of the location of the functions of the brain and the areas from whence arise governing intluances has been derived almost solely from experiments upon living imimals. Among the names of the great pioneers in this direction mist be mentioned those of Ferrier and Horseley, of England; Fritsch, Hitzig, and Goltz, of Germany. The researches which have thos opened up a new realm of operative possibility are anong the very greatest trimphs in onr means of saving life and affording opportunity for relief of the most serions disablements known to modern times.

For illustration of how these studies are pursued, it may be of iuterest to review the method used by Horseley.

The buin of a monkey having been exposed at the part to be investigated, the poles of a hattery are applied over squares one twelftlo of an inch in diameter, and all the various movements which oceur (if any) are minutely studiel. One square having been studied, the next is stimulated, and the results are again moted, and so on from square to square. These movements are then tabulated. For example, all those allacent squares which, when stimulated, produce movements of the thumb are ealled the region for representation of the thmmb, or "the thumb centre;" and to all those squares which produce movements of the hand, the elbow, the shoulder, or the face, etc., are given corresponding names. In this way the brain has been mapped ont, region by region, and the same minute, patient study given to each.
These animals are etherized so that they do not suffer the least pain. Such operations, with few exceptions, even without ether, are not painful. The brain itself ean be handled, compressed, ent, or torn withont the least pain. A number of eases have ahealy been reported in which a considerable portion of the human brain has been removed by operation, and the patients lave been about their ordinary arocations within a week or two.
studying in this way the brain in the lower animals, it is now possible to get a very fair knowledge of the localization of many of its functions in man.
Moreover, portions of the holy can be entirely severed, and, if suitably preserved, can be replaced, and they will adhere and grow as if nothing had happened. When a wound is slow in lealing, we now take bits of skin, either from the patient's own body or provided by the willing family or friems, or even from frogs, and "graft" them on the surface of the wound.

They usually adhere, and as enlargement takes plaee at their margins, they eoalesce by one half the time required for healing. Even a large disk of bone, one or two inehes in dianemr, when removed from the skull, ean be so saved and utilized. It is phared in a vessel filled with a warm antiseptic solution, whirh is again plaed in a basin of warm water, and it is the duty of a speeifal assistant to see that the thermometer in this basin shall always mark 100° to 105° Fahr. The bone may be separated from the skill so long as one or two hours, but if properly eared for can be replacel, and will grow fast and fulfill its accustomed but interrupted duty of protecting the braiu.

Rointane Rays. - One of the most recent advances in the art of surgery is the discovery and use of the X-rays. In December. 189\%, I'rofessor liontgen. of Wiurburg, amounced his diseovery, and since then its utility las contimally increased. until to-day no large hospital or properly equipped

X-hay picture of a compound filactune and dislocation of the forearm.
teaching institution, indend no first-rate surgeon, is without the X-ray apparatus. By its use many donbtful eases of both injury and disease in surgical practice are thus entirely rendered elear. In the diagnosis and treatment of many fractures it is nearly indis!ensable, showing the exaet location of the break and the position of the fragment before and after dressing. l'robably in no other condition, muless it be in fractured bones, has the X-ray proved itself of so much value as in the location of foreign bodies lodged in any of the organs or tissues of the body. Refore Professor Röntgen's discovery it was not of infrequent oceurrence that an exploratory operation was neesssary to positively prove the presence of a foreign body, and even this was at times of necessity a failure. Tomay the X-ray picture enables the surgeon to learn the exact loeation of the foreign body and indicates to him the best point from which it may be attacked. With repeated improye-

URI

nargins, they large disk of hll, can be so m antispptio it is the duty shall always skall so long nid will grow the brain. rt of surgery ofessor Ränts utility has rly equipped

(X -ray apase in surgial treatment ; loeation of ssing, I'rots the X-ray es loolged in intgen's disy operation y, and even ture enables indieates to ed improve.

X-ItAY PICTUHE OF A DISLOCATED ELBOW.
ments in apparatus the time of exposure required for making the picture of the part has been greatly reduced. The advantage of this was made manifest when it was discovered that destruetion of the skin, the so-called "N raty burns," might follow long and repeated exposmre to the riys. It is mit always necessary to make a plate of the part to be examined, sinee by simply studying the parts by the eves throngh the fluoroseope or the fluoroseopic sereen the surgeon can readily see everything that a photographie pietmre could show him. The fluoroseope or sercen is now olten used during thr operation of removing foreign bedies; through it the surgeon ean watch the various steps of his operation, his approal to the foreign body and its final removal.

If the fied of its usefulness eontimues to expand at its present rate, it will not be long before its use as a diagnostic measure will be as valuable to the medieal man as it now is to the surgeon.

By sueh instrmments of precision as this, and others less conspienous, the old elements of intelligent inlerence and argument by analogy and exclusion are rendered of less value, and a rapid approael is mate to soientifie exactitude in surgery as well as medieine. All this has attained a far higher quality and seope in the last quarter of this century than in any other perion of the world's history, and we may look to great advances in the coming century, in all life-conserving and remedial measures whereby the raee may enjoy a larger measure of relief as well as immunity from the onslanght of disease and the results of aceident.

There is shown here for illustration a photographie pieture of a limb, taken by the X-ray now growing familiar to every one. It should be borne in mind that while it is a simple matter for the casual observer to note olrvious solutions of continuity in bones, or the presence of foreign bodies, this is not the ehief item of usefulness to the surgeon, and eertainly not to the medical practitioner. A speeial training is required to study and interpret the findings and appearanees of the tissues, their altered relationships, densities, and many other matters entirely insignifieant to the unedueated among medieal men or laity.

Again, the pieture here shown is similar in outline to but a reversal of the shading seen through the fluoroscope by direet vision, when the greatest skill is required in noting the significance of altered states in the denser or softer tissues.

When suits for malpractice are instituted against surgeons it is not to be admitted that the evidence or findings of the "highly intelligent" but not teehnieally skilled witness ean have the slightest weight as proving the condition of tissues of whieh they are very ignorant, not only physiologieally but more so pathologically.
J. Mapison Taylor. John II. Gibbon.

$J R Y$

picture of nade mani. leal "X-rity
It is mut by simply hlorosconie hie pieture during tho I watch the nd its final
rate, it will rable to the
pienons, the d exelusion tifie exactifar higher ther period the coming ae race misy nslanght of
of a limb, la be horne to note obbodies, this not to the d interpret hips, densiited among ersal of the eatest skill er or solter
is not to be t" but not ag the consiologieally

TAylor. bos.

PROGRESS OF MEDICINE

"As a point of history pregnant with valuable deductions, it is goon to look back non the eonditions of medicine in formor times and find that it has always kept paee with the progress of the physical and moral seiences. Where these, however, have been marked by folly and credulity, medicine has exhibited the same imperfections."

It is ditficult to trace the improvement in suceessive eras, becanse they melt into one another by indefinable gradations. During the earliest period it was believed that physie was an att which was supposed to he most mysterions, and it was presumed that the practicers behl eommunion with the world of spirits. The practice of medieine in those days eonsisted in the issage of agents necessarily umeliable, as, for instance, the word abracadabra hong around the nerk as an amulet to elate away the ague, ete.

Much time has been wasted in attempting to portray the first origin of medieine. Bambilla, a surgeon of Viema, las asserted that 'lubal Cain was the inventor of cauterizing instruments, apparatus for reducing fractures, and other instruments for surgieal procedures, thus endeavoring to prove that surgery antedated medieine. It is evident that medicine must have had a very early origin, for mankind even in the earliest ages suffered pin and the train of sequenees due to exposure, and hence soon diseovered a method of alleviation. Their eategory probably consisted of herbs. Unacquainted, however, with the construction and function of the human economy, practitioners were unable to trace the progress of disease, and the more fatal internal maladies were aseribed to the deities whom they feared. Henee, varions superstitions practices would arise and be handed down from one generation to another. We may imagine this to have ween the origin of the healing art, and such is nearly its present condition anongst the savages of Afriea, Australasia, Volynesia, Sumatra, ete.

Jater on, the priests beeame the physicians, from being the oracles of the divinity whom the people wished to consult. The various remedies were hamed down from one to another, as medieal science did not exist at that time. Herodotus informs us that even in lis time the Jabylonians, Chaldeans, and other nations had no physicians. When any one was attacked with disease the patient was earried into the pmblie street, and passers-by who had suffered from a similar affection, or mursed one who had, advised the sufferer to employ the measures that proved suceessful in former eases.

The earliest writers on medicine trace its origin, in common with that of most other branehes of knowledge, to the Egyptians. They appear to be the first nation that cultivated medieine and furthered its progress. Many peenliar medieal properties were attributed to the deities. All dispases were supposed to originate from the anger of Isis. Resin was burned in the mormmg,
myrrh at noon, and a eomposition termed eypy in the evening, in the tomples of Isis, and the sick were taken there to sherp, during which the orio cles might reveal to them the mems which they shomblempey to effere a enre. 'This is an illustration of the superstitions which prevailed at that thilue.

The carliest anthentic remols which we eanasertan from enllatemh ramb ing are to be fimm in the seriptures. Here it is stated that Jaseph commanded his servants and physicians to cmbalm him ($1 / \mathrm{mon}$ n. r.). This shows that Egypt at that time possessed a set of mon who practiend the healing art, and that they embalmed the dead. This mast have repuired an indea of anatmy, which, meedless to say, was erude and museientilic. as dissuction of the homan lowly at that thme was prohibiten, the penalty being leath.
 purpose of aserertaning the canse of disuases; and this mothod was fostermb by the l'tolemies, during whose reigus amamy was raised to a higher standiurl.

Through the writings of Moses in the saered Soriptures, we barn that the methecine of the Inobrews appertaned mostly to publie hygiene. Weat of the hag and rablit was forbidden, as behg injurions in the Expytian and Imelian elimate. The relation of man and wite and the puritiation of women were regulated. The measures suggested by Moses for the prevention of the spread of leprosy have not yut been surpassed. Next to Mases, solomon actuired gnite an efficient knowledge of compomating remedies.

The Indian mes were divided into anstes, the priests alone enjoying the privilege of practicing medicine. Therir medical knowhedge was combensed in a hook which they ealled lutulusestir. They believed the body gave rise, through seventeen thousand ressels, to ten species of gas which conHieted and engendered disease. So far as we know, they were the first to recorl a way of testing the specific gravity of urine. Though aceused of mayy alsurdities, thry clamed to enre the bites of venomons snakes and compomited in ointment whieh eralicated the cicatrices of smaljox, -a result which has not as yet been attained in the present ejoel. The Chinese attribute the invention of melicine to lloam-ti, one of their emperors, who lived about 2687 n. 6 ; lut possessing no anatomical knowhedge, their surgery, to say the least, was habmons. For over four thousand years the Chinese were not allowed to communieate with foreigners, and naturally their progress was at a stamdstill. They usel cups, acupmeture, fomentations, lotions, plasters, baths, etc. Their midwifery pratice consisted mainly of murderous principles, and it is only since the introluction of missionaries that a reformation in the medical practice of the Chinese empire has been accomplished.

The condition of medieine in Greece did not differ from that of the "rude and movivized mations." But later, Greek physicians are credited with the most brillimit discoveries. The most distinguished of Chiron's pupils was Aseulapins, who oceupies the most consprienons place in the history of medicine. Asmulapius is always painted with a staff, becanse the sick have newl of a support; ;und the serpent entwined iromm it is the symbol of wisdom. The sons of Nsculapius are considered the fathers of surgery, and, for their distinguished valor at the siege of Troy, have been elassed by Homer among the Greek heroes.

The first operation of venesection, or blonl-hetting, formenly so promisenonsly done, with at times goon, hat oftener disastrons, resilts, nud now raty resorted to, is attributed to l'odalivias, of recugnized (irectian medieal shill, the patient being a princess.

The eurly Greeks abow all reognized the value of physical colture, which today oecupies a prominent phace in onr curvisulam. Were the chidiren of to-day, like those of the ancient Greeks, emmellent to follow a rombine of physial training, a rugged constitution would replace many a "delieate" and "infirm" one, and the race propagated wombld tom to develop a stronger charater. Then the wak-minded. nuw so emopicmonsly present, wonld be eralieated, and many disensed combitions fostered by an "inamimate" rate would disiappear.

Hygeia, from whence comes Hygiene, or the att of preserving hath, was a pretended sister of Asenlapins. Anatomy could not thomish in (ireree, becanse a most exemplary pmishment awaited any mowath condurt toward the deal. Their peembiar religions belief's regarding the rest of the soul were responsible for this.

The knowledge of the functions of the looly in health and disease was appreviated hy l'y thigoms. Diogenes asserts that Alemarom, one of the Prthagoreans, wrote a work on the fumetions, which work wonld consequently be the most ineient known treatise on physiology.
The age of Hippoerates (b.c. 4 (tionito) was marked ley a revolntion in medical seience. "This entral figure in the history of mediene" was descendant of a family in which the pratice of medieine was hereditary. He was an extensive writer on such subjects an epillemies, atute diseases, dislocations, fractures, ete. Owing to the impossibility of establishing a physiology without. an anatomical basis, his references to these snbjects are erule and incorrect. To Hipporates we owe the classification of eademie, sporadic, and epidemie forms of disense, and their division into acute and chronic. He wrote on diseases of women and epilepsy, and his therapenties, thongh cruble, were a marked improvement on what had preeeded. Ho wrote filly on external diseases aud surgical therapeuties. In ohstetrics he was a close observer and a thoughtful teacher. The brilliant theories and practices so diligently observed and urged by this master were thrown in the shadow by his thoughtless followers. The well-instructed physician is not ignorant of the opinions of Hipperates, for truly the "divine old man" is the "Fiather of lhysie." He eansed a revolution in the practice of medicine, semeiology, pathology, and dietetics. He tilught physicians to observe attentively the progress of Nature, proved the imntility of theories, and showed that olservation is the basis of medieine.

An important age, and one of marked progress in melicine, is from the fomdation of the Alexandrian Library ($\mathrm{B}_{0} \mathrm{n}, \mathrm{c}$.) up, to the death of Galen (A. 1. 200). Under the I'tolemies dissection of human bodies was allowed, and hence, as already stated, the science of medicine received quite an impulse. Herophilus deserves first mention as a dissector. He described the brain and its vessels, the eye, the intestimal eanal, and parts of the vaseular system. The valves of the heart were more exactly described by Erasistratus, who discovered the lymph vessels and pointed out that the epiglottis prevents the entrance of food into the lungs.

Aretiens, more than any other up to his time attempted to fomul pathohgy upon a somad matomic hasis, an effort which shows the seientitic progress of his age.

Of all the physicians of antiquity, Galen was probably the most brilliant genins. In the midst of disorder he led back to the safer road of somad dentrine and aecurate ohservation which distinguished the Hippocratie school. In wrote extemsisely on anatomy, especially regarding the museles. He was the first vivisector, ly exposing the museles of mamals and lemonstrating their functions, and his elassitication aerording to their use is at present in vognCarefully regulated vivisection has heen, und ahays will be, of incalculable benefit to the develomment of acemate medieal knowledge, and an indired aid in the alleviation of haman sutfering. Galen divided the boily into cerimial and thorame eavities, and described the organs, etes, contamed therein, Anatomy and physiology, the fundamental bases of medicine and surgery, made the most progress during the preriod just reviewed, and next came the deseription of disenses, their medieal mul surgieal therapenties.

After the sixth eentury medicine was exereised ahnost exchasively by the monks of the West. They were maworthy the mane of physicians, as they resorted more to prayers, and were retarded by ignorane and prejulice.

During the seventh and eighth centuries there were among the monks a few tralitionary remains of seience, originating from the East. The prelates, arehdeacons, ete, though continuing the pactice of the healing art, wero gradually discouraged by the chureh, Dut as late as the middle of the tiftementh century the Bishop of Cochester was chaplain and first physician to Heary VI. In 1452 the physicians of the Unisersity of l'aris were not allowed to marry, the applicant, prior to aluission, taking the oath of celibaey.

During the twellith century the sehool of salermun, through the personal interest manifested by Emperor Froderick II, acquired a degree of reputation attained by few similar institntions in ancient times. Schools in Paris and England were placed on an alvaneed standing, the professors being salaried; and abont this period the titles of hachelor, licentiate, and master, were granted to the physicians.
During the thirtcenth and fourteenth centuries medieine made remarkable progress in France mader St. Lonis. During the reign of this prince the teaching of medicine and surgery was divided into separate and distinct classes. Medical institutions now became greatly encouraged, and in the leading cities of Europe miversities were erected under the auspices of royalty.

Medical instruction experiencel an important revolution in the Enropean countries during the fourteenth century. For the first time in Europe anttomy was tanght ly dissection of the human boly. Giny de Chauliac, who lived at the end of this eentury, wrote a treatise on surgery which served as the basis of European instruction until Ambroise Pare of France puhlished his celebrated work upon the same sulbject.

The fifteenth century was also one of improvement. The Arabs added a few observations on pathology, especially of the eruptive fevers. Some useful works on pharmacy and materia melica were published during this epoch. During this era the operation was devised for replaeing the nose, when removed by accident or disease, by using for the purpese a piece of flesh taken
from the arm, and applying it iny a grafting process. About the middle of this period the internal mbinistration of metallies drugs was introdured. Towaris the later emb, the invention of priating tembed to msist the progress of medicine. Near the elose of this century sempy was tirst motioed in (inmany: During this period mone energy was devoted to postmortw ile. monstrations and the stuly of symptoms of disenses.
'To Benevieni we owe the commenement of the stuly of gross pathology and pathological amatoms. Makaigne remarks of him: "A eulogy' which he merits, and which lo shared with ho other preson, und which has not been aceorded to him up to this time hy the many historians of surgery, who have sururficially searehed among these preeions sonces, is that ho was the first who had the hahit, felt the need, and set the usefin example, which he tramsmitted to his surerssors, of searehing in the cadarer, neeording to the title of his book, for the concealed canses of disemse." His ohservations on anatomical heart lesions, gall-stone, and presence of parasites in the boily, were original. Tohn lernel, who has been surmmed "the modern (Gaten," divided modieine into physiology, pathology, and therapenties. The fimbamental maxim of theraneuties, that every disease must be combated by contrary remedies, was enly had down by him, and he clamed that minthing that rured a disease was eontary to it, sugery was pated on a high scale during this era, as thorough a conrse as the time afforded was given, and a rigid examination held at its termination. Ambroise laré contributed largely toward making this a glorious century. Ho rose from the lowest walks of life to the highest professional attamments and homors. He was the first to control hemoryage by tying the bleoding vessels, thas doing away with the former crude and painful method of pouring on hot oil. 'this procedure proved guite a boon to surgery; as an instance it may he montional that prior to the introluction of this method in amputations the hoeding was controlled lyy means of a hot iron, and this before the days of anesthesia.

Every age of ancient. mediseval, and modern medieine has had its charlatans, and the more civilization progresses, the more popmar these quacks breome with eertain types of people, partieuharly those of the middle and lower elasses, although no chass appears to be exempt. Latent, musernpulous, and mprincipled, they play upon the credulity of the ignorant.

The central figure of the medieval charlatas was laracelsus, whe was given to drink nul debanchery. He advertised extensively, similar to the charlatans of to-day, and excrted an influence in his time. "The sehool which he wonld have fommed was nothing lut a school of ignorance, dissipation, and boasting - a school of medical dishonesty:"

During the sixteenth century the greatest discoverics took place in anatomy, based upon dissections, the only rational method of ascertaining anatomical knowledge. The lesser circulation of the blood, or that through the hungs, was appreciated.

The officers of the miversities were chosen by the students, who assisted in laying out the curriculum. Compare this with the rigid methods of medical instruction now in vogne. The practitioners were of roving habits, which were evidently contracted during their student days, as it was customary for them to go from one schoul to another, the poor classes defraying expenses by begging and singing.

There was evident improvement in the social and mental statns of medical men upon the approach of the seventecnth century, and this period is sigualized by the diseovery of the circulation of the bloot. one of the most important ever mate in meticine. Chemistry now assmmed the dignified aspect of a science, which fiet benefited the progress of medicine.

It is diffienlt for us at the present time to understand why the circulation of the blood was not discovered prior to this period, but to the ancients it was incomprehensible. They believed the arteries contaned air, becanse after death they were fome empts. William llavey, the aliscoverer of the circulation of the blood, did not phblish the results of his investigations mutil 1628 , first submitting then to fiftere years of proof. This matmally revohtionized physiology. The capillary cirenkition, or that intermediate between the arteries and reins, was deseribed by Malpighi in $16{ }^{2} \mathrm{~S}$. Of course this was possible only through the mans of a mieroseope. No less remarkable was the discovery of the lymphatic vessels. Pernvian bark (the alkaloin quinine being more commonly amployed) so universally employed as a specifie for malarit, was first used in the early part of this epoch.

During this period ophthahology (which treats of the liseases of the eye) was cultivaten in France, catarat was first recognized, and the diseases of the ear first systematically deseribed. Altugether the century showed marked progression, closing with the teachings of Sydenham, "the English Hippocrates."

The eighteenth century was one of coutimel progress. The eminent observers devoted more time to microscopical work, studying the minute structure of the tissues and cells. One of the most prominent is Lieberkinhn, who invented the solar microscope, with which he was enabled to exhibit the circuation of the blood. The systematic practice of the prevenise inoculation against small-pox by vaccination originated in this decade. The first inoculation with cow-pox was in 1774. Edwavd Jemer, the English surgeon, was "the father of vaccination," which he first did in 1796. About 1 son, Dr. Waterhonse. then professor of mealieine in Harvard College, performed the first vaccination in America, the patients being his four children.

The treatment of the insane was changel from one of torture and barbarons methods to a more scientific one, conducive to the comfort and return to health of the patient.

This periol marks the earliest example of medical teaching in this comtry, consisting of the demonstrations of anatomy in Philadelphia by Dr. Thomas Calwalaler, upon his return from Europe. This was previous to 1750, about which time a body was dissected in New York. In 1755-;if Inr. William Hunter of Seotlind delivered a series of lectures on anatomy, accompanied by disseetions, at Newport, R. I.

In 1762 Dr . Shippen laid the foundation of a medieal school in Philadelphia, which finally developed into the Medical Department of the University of Pemsylvania. This was the first medieal school established in this comutry. In 1768 a school of medieine was organized in New lork, and the next in succession was the Medical Department of Harvard College in 178。. The fourth was established at Hanover, 1797, being connected with Dartmonth College. These were the only medical colleges instituted prior to the present century. The first book on American surgery was written in 1775 by Dr. John Jones, the title being "Wounds and Fractures."
"The tendency of the nineteenth century scems to be a continuation, and, perhaps, in some respects an exaggeration of the condition that obtained in France during the previons century; in other words, the world has become practically an enormous school of pathological anatomy and diaguosis -a

school inaugurated by bichat, as representing so-ealled scientific or exact medicine."

Darwin has promulgated "the most influential philosophic doctrine of this or any other century." Our materia melica and the haws of physics have been enriehed by botanical discoveries, aiding greatly the experimental researches of today. Helmholz has given us an instrument called the ophthalmoseope, containing a series of mmbered maguifying lenses, with which the interior of the eye can be explored by looking directly throngh the pupil of
the eye, similar to looking through a door into a room. Through his knowledge of physics, Seebach was able to make fame through his discovery of thermal electricity. Daguerre, who invented photography, must not be overlooked, as ly means of this process, many conditions are tireetly appreciated by the eye which could not be told in worls and still convey an idea of the tumor, etc., being described. It may not be aniss to mention here that the biograph will in a few ycars prove an important factor in teaching the various operations. One surgeon in France is now employing it. We must not overlook Edison and his electrical achievements which direetly and indireetly affect medicine; nor Bell's telephone, which is sometimes used to locate a bullet. liy plaeing the receiver to the ear and probing for the bullet with electric conductors, the making and breaking of the circuit upon contaet with the missile is transmitted to the receiver and distinctly heard. This procedure, however, has been discarded since the introduction by Rüntgen of the X-ray.

A very signifieant feature of the age has been the extroordinary development of associations devoted to scientific discussions and the publication of medical literature and jouruals. The formation of medical societies, espeeially in the United States, has been quite active. But lew comities are without a medical organization, referred to as "The . . . County Medical Society,"

The American Medieal Association was established by Dr. Nathan Smith Davis in Philadelphia fifty-two years ago (1847). The first two years no meetings were beld, but since then regular annal meetings have been in progress, the plaee of assembly being decided upon by a majority vote of its members. It has met in the eity of its birth five times, the founder has been elected president twice, and is still (1900) in active practice at the age of eighty-two. He has attemled all its meetings held in varions cities from Boston to San Francisco.

The first medieal journal in this country appeared in New York, 1797. It was called "The New York Repository," was published quarterly, and managed to reach its twenty-thirl edition. Fifty years ago there were about twenty journals published in the United States. At the end of the century there are two hundred and thirty:

In 1810 there were six hundred and fifty students of medicine in America, and one hundred graduates. At the present writing about twenty thousand medical students are enrolled in our varions colleges, and during the spring of 1899 about three thousand five hundred received the degree of M. D.

The original branches, practiee of medieine, surgery, obstetries, physiology, anatomy, therapeutics, and chemistry, have been subdivided and specialized. Among the chief of these specialties are gynecology, which treats of diseases of women ; pediatries, which treats of diseases of children ; dermatology, which treats of diseases of the skin; ophthalmology, which treats of diseases of the eye; laryngology, which treats of diseases of the throat and larynx ; otology, which treats of diseases of the ear; neurology, which treats of diseases of the nerves; medical jurisprudenee, which treats of the relation of medicine to law; pathology, which treats of diseased tissues and organs; bacteriology, which treats of the microbes; and physical diagnosis, which treats of the art of discriminating disease by means of the eye, ear, and
tonch. The meleus of the teaehing regarding the latter snbject is due to to the efforts and observations of Corvisart. of France. He was the first to ascertain the diseased areas of the lungs, hy tapping on the chest with the fingers, and listening to the pitch of the note thus elicited. A low, dull mote inlieates that the lung is solin, as in puemmonia; a nat note that fluid is present, ant so on. By placing the ear to the chest wall, sounds in health amil disease are heard, whieh vary in intensity, deyree, etc. Laemee discov-

DR. NATHAN SMITI DAVIS, OF CIICAGO.
ered by aceident that this method was greatly iuproved and the sounds more distinctly heard if a eylindrieal tube was interposed hetween the ear and the ehest wall. 'The outcome of this prineiple is the stethoseope.

The name of l'ruvaz, the Lyons surgeon, has been perpetuated by the hypodermie syringe which he devised. The employment of suitahle drugs in this instrument is the method par exeellenee for relieving pain. With it drigs can be injected into uneonseions patients. Suicides who refnse to swallow emeties can have their stomachs emptied most effectually of their contents by a hypodermatic injection of apomorphine.

The thermometer used for taking the temperature of the human body is so arranged that the merenry does not deseend into the bulb mutil slaken down, hence after taking the temperature it remains minflueneed until shaken down. Were an ordinary thermometer used, by the time it was removed from the patient to the light the merenry would deseend several degrees.

Pasteur began the stulies of fermentation in 1854. Through his observations, aided by the mieroseope, the opinion was reached that micro-organisms played an important role in the cansation of disease. Many of the laboratory investigators became imbued with the spirit, and through their diligent olservations the microbes cansing many diseases have been isolated. It remained for Koch to dissover the tnberele bacilhus, or Bacillus tuherenlosis, which is the canse of consumption. The sputum of a patient, properly stained, and examined under the microscope, will at once decide whether that individual has consmuption.

Having ascertained that bacteria were the cause of disease, sepsis (blool poisoning), etc., it then remained to discover a methot of killing them, without any undue injury to the patient. Sir Joseph Lister began experiments. upon this hypothesis, and in 186^{-}was able to publish favomble results. But lo: the world was slow to bend to a new thought ably demonstrated. and for a score of years he was bitterly opposed.

It was Crawford W . Long, in a little vilhge of Alabama, who, in 18f?. was the first to put to sleep, a patient with ether, and remove a small growth. The patient, umo awakening, had experienced no pain. This method of relieving pain was christened "anesthesia" sevenal years later, by the distinguished Dr. Oliver Wendell Holmes, whose writings did more than those of any other American to eradicate "ehild-bed fever." Every woman in thr land owes him an eternal debt of gratitude. To Guthrie, of Sackett's Harbor, New York, is due the credit of first discovering elfloroform, bit sir James simpson, of Edinhurgh, deserves the eredit of first employing it in medicine.

The surgeons of Ameriea laid the foundation of gynecology, the progress of which has bean more maked than any tepartment of medione. The first ovariotomy in the world was performed by ln. Ephraim Melowell in Kentucky, December, 1809. This was prior to the days of amesthesia and antisepsis, and a howhing moh awaited outside, ready to murder the brave surgeon should his patient die during the operation. "In five days," says 1 mr. MeDowell, "l visited her, and much to my astonishment foum her engaged in making up her hed." Dr. J. Marion Sims, our ilhstrious genins who established aut international reputation. did much to promulgate plastic work on the female genitalia. The deeds of medical men are soon forgotten by an ungrateful public, and the sons of Esculapins are the last to have monnments erected to their memory. But four exist in America; one, in New York, to that grand old gynecologist, Dr. J. Marion Sims ; one in Washington, to Dr. Samel D. Gross, "the Nestor of American Surgery;" one in Bushnell Park, Hartford. Conn.. to Dr. Horace Wells, the discoverer of anasthesia; and one in the Public Garden in Boston to the discoverer of anesthesia. This last bears no name. Antisepsis and anesthesia have played an unusually important role in olstetries, by illeviating the sufferings of childbirth and eradieating child-l)ed fever, thas reducing the mortality of both mother and child.

J'hysiology has made very rapid strides during this era. Beammont, in his famons work, describes digestion in the stomach and experiments on the gastrie juice. He was enabled to observe this in a voyagen who was aecidentally wounded in the stomach by the discharge of a musket, June, 189..
is observa--organisins the laborair diligent , latel. It therculosis, projerly e whether psis (blool hem, withperiments le results. trated. and $184 ?$ was ll growth. thod of rethe distinan those of man in the kett's ItarIt, but sir ying it in e progress The first 11 in Kenand antibrave sur" says Dr. engaged mius who astic work tten by an ave monue. in New Washing;" one in rer of :un1 of anesve played ferings of ty of both
ummont, in uts on the was acciune, 182 .

STARLING MEDICAL COLLEGE AND ST. FRANCIS HOSPITAL.

Quit
ing

Quite a large opening remained, whieh Nature closed with a valve. By pushing the valve to one side, the interior of the stomach could be explored.
Through the work of the experimental physiologists in the labonatories, the study of the ation of drugs on the lugss, heart, liver, stomach, nerves, etc., has been greatly enhanced.

Anatomy is now being taught by the only true method, and that is dissection. Didactie lectures are given, but the student unst dissect every part of the human body before he ean receive his degree. Formenly graves were

robbed, and the bolies sold to the colleges. Now, however, through legislative enactment, unclamed holies are turned over to the colleges, where they are preservel either by injection, a piekling process, or ly cold storage.

The ophthalmologists of to-lay fear nothing inside nor outside the eye. Cross eyes are straightened, cataracts removed, eyeballs taken out and glass eyes inserted.
This artiele would be incomplete, were not a few remarks directed towarl the trained nurse.
The first training sehool for nurses in America was established in comeetion with the Lying-in Charity Hospital of Philadelphia in 1828. This school, still in existence, thas has the honor of being the oldest in this country, and is antedated by only one abroad.

The generally recognized profession for women, that of the trained murse, is practically of recent development. Twenty-five years ago the training school connected with the Bellevue Hospital, New York, graduated a class of five murses. This was a marked depurture in the medical history of this country. Since then the demand for the trained nuse has been great, and no hospital is complete without such a training sehool.

The progress of medicine in the nincteenth century has becn far more rapid, creditable, and momentons than during any like period of the past. This is true not only in the United States, but in every civilized comery. Its entive scope, meaning, and purpose have madergone changes equivallent, to revolution. Antigue superstitions, idle theories, foolish speculations, absurd practices, the ridiculous jealousies and incriminations of opposing sehools, have been largely eliminated. Medical institutions are upon the loftiest phane in their history. Teachers are better endowed than ever before. Periods of scholastic preparation have been lengthened and eurriculums enlarged, thus securing for the fields of practice a higher menta? eguipment. and more conscionahle devotion to duty. Never before have the anxiliary and material agencies been turned to so frequent and preventive accomit. Electricity, the microscope, anesthesia, antisepsis, lahoratory experiment, hospital opportunities, etc., are ever constant inspirations to skilled treatment and fresh researches. As the grand army of humanitarian workers was never so large as at the end of the century, so it was never better fortified for attack upon the enemies of health, fuller of enthnsiasm or more deeply established in the public confidence. One may not, as yet, assert that medieine is ridding itself of empiricism with a satisfactory degree of rapidity, or that it has arrived at the stage of an exact seience, but it surely has approached such a stage as nearly as conditions will allow.

Frank C. Hammond.
ned murse, ie trainiug 1 a class of ory of this great, and a far more f the past. d eountry. equivalent eculations, f oplowitur upon the ever before. urriculums equipment xiliary and ant. Eleeat, hospital tment ind as never so for attack establishoed is ridding hat it has hed such a.

EVOLUTION OF THE RAILWAY

Tue railway as a means of rapid trausportation anl general intereommunication is one of the most important factors in the development of modern commerce and civilization, and, after reviewing what it has done and become in the ninetcenth century, one cannot help wishing for the opportunity to review the railway wonders of the twenticth century.

While the history of the railway dates back far beyond the nineteenth century, yet the railway, as we know it to-day, is essentially a produet of this century. It dates, in faet, from Eagland in 1830, when the Liverpool \& Manchester Railway, 31 miles long, was opened, and was operated from the hegiming by steam locomotives. The Stockton \& Darlington Railway, 37 miles, was opened in 182, but this line was intended only for private coal traftic, while the other line was built for general passenger and freight service, and for the use and benefit of the public.

The United States followed this lead very closely. In 1828 the Delaware \& Hudson Cual Compuy built a line from its mines to its eanal at Honesdale. This was a private coal rond, however, and may best be compared to the Stockton \& Darlington Railway. The first publie railway operated by steam was the Mohawk \& Hudson Railway, from Albany to Scheneetaly, 16 miles, which was opened in 1831. The Baltimore \& Ohio Railway was the first railway enterprise of more than local character, being designed to open communication with the Ohio River, a distance of 400 miles. It was chartered in 1827 , commenced in 1828 , completed to Ellicott's Mills (13 miles) in 1830, and to Washington (40 miles) in 1834. It is one of the great monuments of the American railway system, and it was examined by government commissions from Russia and Austria in 1831 and 1849.

In speaking of the railway we uneonscionsly associate with it the stean locomotive, sinee the two are so entirely interdependent. Railways operated by horses, or by cables and stationary engines, could never have become the great civilizing and commereial medium which the railway operated by swift locomotives has become. Similarly, the development of the locomotive grew apace, as soon as it was recognized that the smooth track of the railway and not the rough track of the highway - was to be its field of operation.

At the end of the nineteenth century, after seventy years of development, the world has nearly 500,000 miles of railway, on which loeomotives of 80 to 110 tons in weight (withont their tenders) hanl freight trains of 1000 to 3000 tons. Passenger trains, too, are run at speeds of 40 to 75 miles per hour in regular daily service, and even make bursts of speed at 80 to 100 miles per hour. The fact that in 1890 Europe and North America had about 320,000 miles of railway out of a grand total of 370,000 miles, indieates that this phase of nineteenth-century progress has been due mainly to peoples of Christian civilization, and besides this, it must be remembered that the
milways of Asia, Afriea, Anstralia, and South Ameriea have lwen mainls built by the same peoples, The central regions of these four latter geagraphical divisions are tirlols for twentictheentury development.
'The great trmak lines of railway communieation are lardly more impris tant than the vast network of hanch and minor lines which comect and interseet them. These latter lines bring the people of smaller towns and conntry districts into eloser relation with the large cities, the centres of industrial and intellectual energy, enterprise, and wealth. They thus tend to reduce isolation and dependene upon purely lowal resoures.

Railways also serve important military and strategie purposes. In India many of the railways have ben built with a view to the defense of the northeastern frontier, and many limopean govermments assume ertan military

THE: WHD STAGE: OWMH.
authority over the mihways. The first trans-emonental mailways of the United States and Camala were largely assisted bevermment sulsidies on aceome of their great importane for the tamspritation of trops. The railway also serves purposes of pleasmee as well as of eommerre and war. Nol only do the ordinary malways eary much thmist and phasme tawel, but lines are built exelusively for such travel. Some of these take peophe to tha summer and pleasure resorts, while others eater to the inherent desire of man to aserend great altitudes and to behoh the world in its hanty and grandeur spread below them. For this pmose alone have milways beon built to the summits of the liockies, the $\mathrm{Al}_{\mathrm{g}} \mathrm{s}$, amh other momatain ranges.

At the emd of the erntury the I nited states has abont 185.006 miles of railway. which have eost alout sinaow per mile and earn siano per mile.
 and earn about $\mathbf{s y 0}, 000$ per mile. A lare proportion of this high cost of construction is due to the high priees for land and to the preliminary parliamentary proceedings which are necessary in securing the riglat to build railways. The avrage cost per mile of ralways in different comntries is as follows: -

One of the great eoonomie purposes of malways in new eountries is to reduce the cost of rapid transportation in bulk far below that of slow transportation in small quantities. Train speed is a matter of secondary impor-
timee in such cases, the trattio aceommerlation and eapacity of the slowest thain being far beyond that of road or eanal transportan, Truthe will be served better and at mued less cost by being carried in bulk on own miles of mailway at 10 miles per hour, thin on low miles of rallway at 35 miles per hour, and then in small lots on wagons or wand buats at it mas per hour for foo miles.

The alvantages of the rapid transportation of perishable freight ly rait, equedally in regard to fool supplies for cities, were a arly recognized, and
 l'revions to this, the supply was oltained from cows kept in stables, which Was an unsantary and expensive pan. Amother immediate result of wal way service was that prople began to live farther out of the towns, and then began the growth of the suburban residence districts, whirh are such a fetture of modern cities and eity life.

The efaty railways were built merely as local liness and there was little inder of their ultimate comnecion or extension. These suall individual lines, however, with their own mate-making fowers and systems of mangement, have been eonsolinated into groat systems. thas efferting material comomies and facilities in operation. Thus, the Mohawk \& Hmson Hailway of $1 \mathrm{~s}: \mathrm{i}$ was the first of a series of lines now consolidated to form the New York Cental Railway; while the Liverpool \& Marhester hailway of $18: 0$ was the bergining of what is now the Lombu \& Northwestern hailway system. Sot only is there this consolidation, but also a most comprehensive system for the interehage of tratfic between different systems. Thas passengers can [mathise through tiokets and travel throngh from I'aris to St. Deters-

FIIS'T TISIIX OF STE:IM CALA.
burg. or from loston to San Prancisen, while freight cars ean be sent throngh in a similar way, This is really a woulerful feature of milway development. The following are a few examples of the great railway systems of the world: -

Railway.	Nilu.	Lacir motives.	1rasconger ('ars.	Freight C'ars.
Pennsylvania (U. S. A.).	8R8. 2	31594	3847	146,4680
thimgo \& Northwestern (L.S. I.)	-	18181	116	49, 484
	7462	120\%	9135	$40,7: 30$
	7120	10315	155	? 11,837
Great Wextern (England).		18:17	6iP(1)	51, 156
lendon S Northwestern (Eighand).	1!12	2851	8446	(15),4\%
laris, Lyons \& Mediteranean (France).	53.54	$2{ }^{2} 124$	5837	87,320
Western (France)....	34164	1492	4378	2 26,487
Mediterranean (Itaiy).	? 1 Wis	1:114	17116	2:1,077
Northwestern Indii)..	3:171	6012	2121	10,312

In some combtries the govermment owns and operates all, or nearly all, of the railways, as in Germany, Belgimm, med the African und Anstralian eolsnies. Switzerhme, in ISOS, lechled that its govermment shomblacquire tho railways. In Holland aml Italy the gosermment owns the railways, but leases them to oprouting mompanies. France, Brazil, and the Argenting liepublie have both state amb prisute limes, with a greater on less degree of state assistance and control of the latter. In tireat Britain the mailways are ownom entirely ly private companies, but their operation is sulyaet th government sugervision in the public interests. In the Linited states there was at tirst almost absolate freedom of construction, but the consergent abnses and timanial disasters, owing to monecessary lines and ent-throat competition, have led some of the states to wisely exereise some degree of control over malway affais. The interferene of the ferdetal govermment in milway atfiais has been slight but importint. In 1stis it aided the construction of the first transemtimental railway; in $18 s$ a it passed the act for the regulation of rates, ethe. in interstate tratlie; ami in 1893 it passed the net making compulsory the use of power lonkes and antomatic conblers on freight rars.

Govermment ownership and operation of mailways is rarely satisfartory from a linancial or a trattic point of view, but, on the other hamd, an absolutely unrestricted milway chement is liahbe to herome a serions evil. The best system is mombtedly that in which the railways are owned and opere ated by private enteprise, hat subject to state supervision, like stemuship, factorias, ete. It must not be forgoten, however, that private entorpisise is not always available. In linssia, for example, the decdopment of milways would hase hen but slow on such a hasis ; and ia Lodia, govermment backing was needed to imbuce British eapialists to cuter the fiohd. It is unfortunate for Chima that neither the govermment nor the people have beron eompetent or enterprising enongh to deal with the malway yustion. 'The probe sunt system of developmont by rival interests of varioms mationalities seems almost eertain to lead to the crentual dissolution of the empire ame its partition among other mations, as Afrien is alrealy in large measure partitioned.

In the United States milway construction has gone by leaps and bounds, and there is now a vast network of limes, - main, secomlary, braneh, and local. The highest records of construction within the past twenty years were 12,800 miles built in 1885 , and 11 ,(00) miles in 1852 , while the lowest reeord was 17.00 miles in 189%. The growth from 1886 to 1899 has been as follows, the relatively small increasr in mmber of loeomotives being due to the greater power of modern engines : -

	1886.	1890.	Incruase, per cellis.
Milcage.	113, 6 (10)	185,000	88.47
Tombate catried.	483.0061, 000	780,600,000	68.61
Nmmber of rars...	H71.51H1	1,3:14, 1000	52.61
Number of hacomotiver...	26i, 4 (1)	36,000	36.31

[^8] "ontinental railways, however, are of much broaler interest. In Is:h the Leev, Sammel l'arker, a mosshomary in the Northwest, suggested a railway from the Athatios to the l'ueitic, and Dr, sammel E. Bathow propessol whe
 amil to carry trafte at about seven miles per hour. From 1811 to isfio Mr. Asa Whitnoy urged Congress to grant had to aid him in buiding a lime from lake Michigan to san Frameiseo 2obin miles, to cost $\$ 20,000$ per mile. betwern 18.03 and 1851 Congress had surveys made of five routes, but mo definite action was taken until after the ontbreak of the Civil War, in 186t,

a ballway than in helgicm.
when the federal government soon recognized the importance of having direct communication with the Pacific States, which were at that time isolated. Companies were organized in 1862, and work commenced in 1864, under government subsidies and military aid and protection. On May 10, 18ti9, the Union Pacifie Railway (from the east) and the Central Pacitic Railway (from the west) met at Promontory Point. Utah, 11s6 miles from the Missouri River and 63S miles from Saeramento, Cal.

Now, thirty years later, we have six so-called transcontinental railways, no one of which, however. has its own line from ocean to ocean, and none of whieh run through trains or cars. In Canada, however, the Camadian Pacific Railway (opened in 1887) has a through line from St. John and Montreal to Vanconver, with through trains daily between the latter points, 2903 miles. The principal transeontinental lines. with the total distances from oeean to ocean, are shown on the following page.

* In Nos. 2 and \boldsymbol{a} the thtal dowance in given from New York.

Of the varions completed and partly completed interocenic mailways across Central Ameriea, the moss important by far is the lamama malway, in Colombia, $47 \frac{1}{2}$ miles long. This was opromed as long ago as 183π, and was originally intended as a link in a route between New York and San Francisco, 5 dion miles. In South Amerima there are few milways of great importance, and the interior yet remains modeveloped. with the exception of the great plains of the Argentine Repmblic. A transontinental line betwern buenos Ayres and Valparaiso. sao miles. is mearly completed, but work has been stopped for some years, leaving a0 miles yet to be built at the summit of the Andes. An interesting, but as ret visionary, seheme is that for an intercontinental railway through Central and Sonth America. The distanee from the southern frontier of Mexico to lbenos Ayres would be now miles. Abont 1280 miles of this are built, but comprise many small lines which would have to be rebuilt. The total cost would be about sewonoo.00\%, at a low estimate, and the total distance from New York to Buenos Ayres would be 10,300 miles by rail.

In Europe there is a vast and eomprehusive network of railway lines, but the listances are less, even St. Petprsburg and Constantinople being but about 1ti00 and 1800 miles from Paris. While the development of railways has been remarkable, the most striking features are the lines which eross the Alps to emmect the interior with the Mediterranean ports. The first of these was the Semmering railway, on the route betwen Viena and Trieste (1854). The Mont Cenis milway (1Siai) was manly a surface line, with heary inelines operated on the loll gripmail system. Its route followed the great carriage road built by Napoleon in $180: 3-10$. The railway over the bremer lass was opened in 1865 ; in 1871 the Mont Cenis tumel superseded the high-level line, and in 1 siso the great st. Gotharl mil aiy was opened. This was followed by the Arlherg railway in 18s1, and the simplon railway is now maler construction.

Europe has the only railway within the Aretic Cirele. It rums from Lulea, on the Gulf of lothia. northwest to the Gellivara iron mines, 44 miles within the circle. As the port is elosed hy ice during the winter. the line is to be extended to the Athantic coast at Oloten, $6: 9^{\circ}$ north latitude, where the influence of the Gulf Strean keeps the ports open. This end of the line will be 1311 miles north of the Aretie Cirele.

The eonntries of Asia (with the exepption of India) are but scantily supplied with railways. Even Palestine - the Holy Land - has, however, been invaded, and has now two milways. One of these is from Jaffa (the biblical

LOOP in the selkirks, showing four tracks.

Joppa) to Jerusalem, it miles (1892) ; the other is from Beirut to Damaseus. 70 miles. British interests have long advoeated an "all-rail-to-lndia" projeet. The line would start opposite Constantinople, pass down the Euphratex valley, aeross Persia, and along the coast of Baluchistan to Kurraehee, connecting there with the Indian railway system. 'Ilis great system aggregates 25,000 miles, and extends up to the Bolan Pass and the Khyber l'ass, on the Afghan frontiel. Southward, it has been proposed to connect with the Ceylon railways by a line of bridges and embankments along the reefs and shoals known as Adam's Bridge.

Owing to the vigorous opposition of the government and people, China has but 350 miles of railway to its $4,200,000$ square miles and its population of $420,000,000$. Many lines are projected, but are all in the eastern portion, and the twentioth century will be well advanced hefore the railway opens up the heart of the combry to civilization. Japan, the very oplosite of China, has enconraged railway construction, and now has 3000 miles of railway to its 147,600 square miles and its population of $4 \overline{0}, 000,000$.

The most notable of all the railways in A sia is the great Trans-Silerian railway, now being built by the Russian govermment. It was eommenced in 1891 , and may be completed by 1903 . the distance from st. Ieterslurg to Vladivostok, or Port Arthur, being then about efforo miles. There are several large cities on the route, and the line does not pass through such a wild and uninhabited country as that through which the Union Pacifie Railroad was built thirty years ago. It is now open to Lake Baikal, the trip of 3230 miles being made in about 12 days by the slow train, or 8 days by the less freduent fast train. The road is roughly and lightly built in many respects, so that high speeds camot he maintained. 'fihe eastern end of the road will pass through Chinese territory, thus giving linssia a tirm foothold in that empire. Hardly less interesting is the Trums-Caspian railway, from the Caspian Sea to Samareand, 885 miles, with a branch from Merv to within 9.5 miles of the Afghan eity of Herat. An extension to the Persian Gulf is also projected. As the Trans-Siberian milway has developed a new wheat-growing region, so the Trans-Caspian railway is developing a new eotton-growing region.

In Afriea the railways already extend northward from Cape Town, through the land of the Boers and np, to Buluwayo, the old Zuln stronghold, 1400 miles. There is a picturesque project for carrying the line on to the Mediterranean, a total distance of 5500 miles, but this will not materialize for many years. The Congo railway; passing the rapids, opens commmication between the coast and a long stretch of inland navigation. Several lines are being pushed from the east coast into the interior, and a transcontinental railway from St. l'anl de Loando, on the west, has been commeneed, but there is not now much life in this latter project. The French have two favorite sehemes for railways, - from Algeria to Timbuctoo, and from Tunis to Lake Chad, the latter line being about 1600 miles in length.

In Australia, the lines of the different colonies are gradually extending and connecting to form a continuous system, which is hampered, however, by differences of gauge. There is railway communieation between the eapitals of Queensland (Brisbane), New South Wales (Sydney), Victoria (Melbourne), and Sonth Australia (Adelaide). The great stretch westward to the coast cities of Western Australia is jet in the future, as is also the South Aus-
tralian transeontinental line from Adelaide northward across vast deserts (already crossed by the telegraph) to l'ahmerston.

Great bridges and tumels are among the prominent features of the railways of the world, but sprice forbids entering into details of these works. They are in principle similar to those required for highways, but many of these great works would never have been undertaken for such tratlic as is carried by a highway. The ouly railway suspension bridge ever built was the Niagara bridge, opened in 18555 , and replacel by a steel areh in 1898. The development of bridges and traffic may be julged from the fact that the Vietoria single-track tubular bridge over the St. Lawrence, at Montreal, whieh

enthance to st. gothard tunnel., switzelliand.
was opened in 1859, was replaced in $1897-98$ by a double-track railway and roadway truss bridge on the same piers. The steel areh bridge, 1600 feet long, across the Mississippi, at St. Louis, cost $\$ 5,300,000$. The tubular bridge, 6592 feet long, over the St. Lawrence, at Montreal, Cauala, eost $\$ 7.000,000$. The cantilever bridge, 8025 feet long, over the Firth of Forth, Great Britain, cost $\$ 13,000,000$. The eost of the proposed suspension hridge, 3000 feet long. over the Hulson, at New York, is estimated at $\$ 13,000,000$. The first railway tumel was the Portage Tumel. in lennsylvania. built in 1831. The' longest railway tumel is the simplon, in Switzerland. It is 12.2% miles in length, and is still under construction. The next longest is the Gothard, Switzerland. It is 9,30 miles long, and was opened in 1881.

In track construetion, east-iron rails began to be supeiseded by wrought
iron in 1820, and many of the early Ameriean mailways had strap iron laid an timber stringers. Within the pist twenty years steel has heen used almost. exclusively. In phee of tails weighing 25 to 85 lbs per yard, and 3 to 12 leet in length, we now use mils of 80 to 100 lbs . per yard, 30 to 60 feet long. stone blocks and woolen ties were first used to support the rails, and tho hatter are now generally nsed, although metal ties are extensively used and

hallw
late back to 1846. In 1894 there were thirty-five thousand miles of railway laid with this form of track. The next development will probahly be a permanentand continuons concrete hed for the rails; as the present construction, with wooden ties laid in stone or other ballast, reguires continual attention and repair muder the effects of heavy traffic.

The semaphore signal was introduced in England by Mr. C. H. Gregory in 1841, and is now used in all parts of the world, to govern and protect train movements. The first interlocking plant was erected in 1843, and the complete plants - as used to-day - date from $18: 36$. Now, practically all impor-
tant
ing s telegı sceur Raily tion, lad "bloc it ma grapl diate as to Grea
tant junctions are equipped with interlocking plants, which prevent conflicting signals and switches being so set as to lead to aecident. The electric telegraph was patented by Cooke and Wheatstone in I8:37, and in 1839 they secured its iatrodnetion to govern the train service on the Great Western Railway (England). The morements were telegraphed from station to station, and a train was not allowed to leave a station until the preeeding train had passed the next station in advance. This was the begiuning of the "bloek system," which is a great element in the safe operation of trattic, sinee it maintains an interval of space between trains. Mr. Elwin Clark's telegraph block system was introdncel in 1853, and as trathic increasen intermediate block sigual stations were established hetween the regular stations, so as to shorten the distances between trains. This system is compulsory in Great Britain and is alrealy largely used in the United states. It was at

AN AMEIRICAN EXIPLES LOCOMOTIVE.
first held that it was not alapted to conditions in this comutry, where so many lines have hat a single track, but experiene has shown that it inereases the facility as well as the satfety of operating traftic on single and double track lines alike.
Steam locomotives were used on coiliery malways in England as early as 1804, when Trevithiek built an engine, which was the first to hanl a train on rails. George Stephensou built his first loeomotive in 1814, and in 180.5 built the "Locomotion" for the Stockton \& Darlington Railway. Horses, stationary engines, and stean locomotives were all proposed for the Liverpool \& Manchester Railway, and in 1829 the directors offered a preminm of $\$ 2500$ for the best locomotive. Each pngine was to consume its smoke, weigh about 6 tons, eost not more than $\$ 2 \pi 50$, and he eapable of lanling a train of 20 tons at 10 miles per honr. This Tel to the now historical trials at Rainhill, in October, 1829, between the "Rocket" (Steplienson), the "Novelty" (Braithwaite and Ericson), and the "Sans liareil" (Haekworth). The award was made to the "Rocket" as the most practicable machine, although the
"Novelty" attained a higher speed, and the "sans Pareil" was also a goond engine and continued in use for several years. Seguin introduced the locomotive in France in 1827, having moditied and rebuilt an ohd Stephenson engine.

The first locomotive operated in the United States was the imported "Stourbridge Lion," on the Delaware \& Hudson Canal Co.'s line, in 18.3 , Cooper's "Tom Thumb" was rm on the Baltimore \& Ohio Railway in 1s:3), and in 1831 the directors of this road offered premiums of $\$ 40 \%$ and $\$ 3.0 \%$ for locomotives. Each engine was to weigh not more than $3 \frac{1}{2}$ tons, to have four wheels, and to hanl loads of 15 tons at 15 miles per hour for 30 days. Five engines were presented, hy Davis, Costell, Miiholland, Childs, and Dames. The prizes were awarded to the first two, the Davis engine " York" being rebmilt under the direction of its inventor and Mr. Ross Winams, while thr "Costell" was put in switching service. In $18: 31$ the "John Bull" was lonilt by the Stephensons in Eugland, and was put in service on the Camten \& Amboy Railway (U.S. A.) in the same year. In 1893 this old engine was readjusted and ran from New York to Chicago, 912 miles, ander its own steam, hauling two ears of the type of 1836 .

In 1893 there were abont 19,500 locomotives in Great Iritain and $36,5(\%)$ in the United States. As a comparison hetween the little engines of early days and the huge and swift engines of to-day, it may ie stated that modern passenger locomotives are now constructed with as many as six driving wheels, and ten wheels in all. Some of those in use on the Great Northern Railway, Great Britain, have driving wheels of 9 inches in diameter. On the Fitchburg Railway, U.S. A., locomotives are in use which weigh iti tons. Some modern freight locomotives have as many as ten driving wheek, and twelve wheels in all, and a total weight of 115 tons.

Since the application of electric tration to street railways, it has frequently been said that it would eveutually supersede the stean locomotive. In no instance, however, has it yet been applied to regular railway service, with heavy traius and long runs, nor is there yet any indieation of inereased economy or efficiency due to its use in sueh service. It is successfully used for local and suburban lines. but these form a elass in themseives, and the conditions of operation are very different from those which obtain in ordinary service. The Baltimore \& Ohio Railway has some heavy electric locomotives, but these are for hanling trains through a tumel, to avoid the trouble and discomfort from the smoke and gases from the steam engines.

The early passenger cars were either open cars with eross seats, or had coach bodies on four-wheel platform cars. The coach-body cars on the Mohawk \& Hudson Railway, in 1831, were 7 ft .4 in . long and 5 ft . wide. In 1836 the Anerican type of car was introduced on the Camden \& Amboy Railway, having a long boly mounted on two four-wheeled trucks. These cars seated 48 passengers, and ears for 60 passengers were in use in $\mathbf{1 8 3 9}$, their cost being $\$ 2400$. American day cars are now 60 to $\mathbf{S 0} \mathbf{f t}$. long, seating ($; 0$ to 84 passengers, and weighing from 30 to 47 tons. The standard day ear of the Penusylvania Railway is 60 ft .7 in . long sver all, and seats 66 passengers. Dining and sleeping cars weigh from 45 to 65 tons, much of the weight being due to the special equipment for the comfort and convenience of passengers, and consequently so much dead weight to be hauled. It can be said without
dispute that in no other comutry have the railways done so mach for the comfort and convenience of their passengers, and have chargel so little therefor:

In Europe, the cars developed into the compartment system. with side doors, there being high transverse partitions with seats on each side, so that in a full compartment half the passengers must ride backwarl. The cars are usually short, with two or three axles, but about $18 \pi^{2} 2$ the American system of mounting cars on trucks was introluced, and longer ears on trueks are now somewhat extensively used. Within later years corrilor cars have been introduced, with a corridor connecting the compartments. Such details

AN AMERICAN FAEIGIT IOCOMOTIVE.
as steam heat, toilet arrangements. ample light, luxurions finish, etc., which have long been a matter of eourse in this country, are quite "end of the century" improvements in Europe, and generally below the standards observed in this country.

Sleeping cars were used on the Cumberland Valley Railway (U. S. A.) in 1836. In 1856, Mr. T. L. Woodruff built a sleeping car, and in $18 \tilde{a r g}_{7}$ two were built by Mr. Webster Wagner and operated on the New York Central ${ }^{\circ}$ Railway. Mr. George M. Pullman began his experiments in 1859, and in 1864 he put in service on the Chicago \& Alton Railway the first sleeping car with the berth arrangements now almost universally used. He pushed the business more vigorously than his predecessors and acquired many of their patents. The Pullman Palace Car Co. was organized in 1867 , and in 1879 its varions works were all concentrated in a new industrial town - ealled Pullman - near Chicago. In 1898 the company owned 2,42 cars, which were operated on 121,236 miles of railway, ran $190,562,758$ miles, and earried $\mathbf{4 , 8 5 2 , 4 0 0}$ passengers. Most of the cars are in the United States, but some are in Europe and Australia. The Wagner Palace Car Co owns 560 sleeping ears and 143 parlor ears. In Europe most of the long distance sleeping and dining car service is operated by the International Sleeping Car Co., which runs cars between Paris and Constantinople (it hours), laris and St. Peters- 2 burg (120 hours), Calais and Brindisi (25 hours).
Passenger cars are now usually lighted by oil, the mineral oil used in America being superior to the vegetable oils commonly used in Europe. Oil gas, compressed in tanks, is very extensively used, aud gives an excellent light. The system was inventell by Mr. Julius Pintsch, and was introduced
in Germany in 1873 , and in the United States in 1881. It is now applided to about 85,000 ears in $\because 2$ comontres ; 2,000 of these ears being in Germany, $1 \overline{7}, 001$ in (Great Britain, and 15.001 in the United States. The electrie light is as yet used only on a few of the finest express trains, the current being generated either from a stram engine and dyamo in the haggage ear, or from a dymano on eath ear, driven from one of the ear axles. Storage batteries maintain the light when the ears are at rest. Ameriean cars were heated by stoves at a very early date, and this dieveloped into the hot water system, with a stove and circulating pipes in each car. Steam from the locomotive, however, is now generally employed, and its ase is eompulsory in some States. In Enrope the passengers have to rely largely uon their own wraps and rugs.

In American freight curs, great improvements have heen introluced, increasing the earrying maneity while rolueing the weight. The eapaeity has been increased from 10 tons of load in 1570 , to 30,40 , and even 50 tons in 1809, (an inerpase of 300 to 500 per cent). The weight has increased only from 10 to 15 or 17 tons (or 50 to \mathbf{F}^{0} per cent). Cars are now being lmilt entirely of steel, and while their first cost is greater, the cost per tom and the expenses of mantenane are less than for wooden ars of similar wabity. As sleeping, dining, parlor tourist, and other special cars have been introduced for passenger tratfic, so refrigerator, stok, horse, fruit, poultry, and furniture ears have heen introduced for speeial requirements in freight tratlic. In other eomutries. however. the use of sueh special equipment is much more

FXTHABOH OF LATEEY SLEEPING CALS.
limited. The orthary foreign freight cars are the same as those of 30 or 40 years ago, being short four-wheel ears. weighing ot tons, and earrying 8 to 10 tons. These are not well alapted to the handing of bulk freight, and greatly inereased economy and fieility in such tratfie would result from the introduction of the American systrm. as has been done in Aistralia. In modern American practice, too, the ears are equipped with automatic couplers and
mower brakes, thus greatly increasing the safety and facility of oprating hoary fast thans. In 1893 , Congress passed a law requiring that by Jamary 1. 1 s!s, all freight cars shouhl be equipped with automatie conplers and enough ears equippei with power brakes (operated from the engine) to put

INTERIOR OR A PULLMAN SLEEPING CAR.
the trains entirely under the control of the enginemen. The date was afterwards extended to Jamary 1, 1900.

As the speed and weight of trains increased, the dangers due to lack of brake power soon became alarmingly apparent, and mumerous forms of contimuous brakes were devised, to be applied to the wheels of every car, under the control of the engineman. In 1889, the British govermment passed the Railways Regulation Act, making compulsory the use of the block system, the interlocking system, and continuous brakes. In England and some other
foreign conntries, the vacmum brake (introduced abour 18il) is largely used, but it is slawer in action than the compressece air brake, and is therefore less eflleient for long, heavy, and fast trains.

The Westinghonse brake is one of the most important factors in the sathand efthent handling of heary and fast tains. Mr. Garge Westinghonse patentel his straight-uir brake in 1869, his phain antomatic brake in 1802, and his quick-tetion freight train brake in 1857 , while in 1892 he introduced his ligh-sped brake for express trains. Up to the opening of 18!9, the Westinghonse brake had been applied to about 2.000 locomotives and 912,0 m cars, of wheh 34,300 locomotives, 50,000 passenger cars amd $\overline{600}, 000$ freight ears were on American railways. With this hake, a passenger train of ain tons, traveling at 60 miles per hour, can be stopped in about 4000 feet and about 90 seconds, or in 120) feet and 31 seconds in ease of emergeney. I freight train of 800 tons, ruming at 80 miles per hour, ean be stopped in about 900 fect in 32 seeonds, or in 300 feet and 11 seeonds by an "emergency" aplication. Very few countries have aplied continnons bakes to freight cars, except the United States and Canada, and (to some extent) Russia aud New South Wales.

The improvement in train service has been even greater than that in train equipment, and this improvement has been in speed, acemmodation, and number of trains. Among the notable runs are those across the American and European continents. The Canadian Paeitic Railway starts a train dailyfrom each end of the line for a through rum of e!90 miles. In 1sssi, a through train service (with slecping and dining cars) was institnted between Paris and Constantinople, abont 1800 miles, and through trains are run twice a week between Paris and st. Petershurg, 1600 miles. There is also at similar service between Calais and Brimdisi, 1200 miles, in connection with the mail stemmers between England and India. In 18:8, the Trams-Siberian Railway was completed to Irkutsk, and a through train serviee between St. Petersburg and that city, 3930 miles, was commenced.

Railway trains were at first intended to have speeds of about 10 to 20 miles per hour, the latter being looked upon as almost excessive. lut much higher speeds were very som attained. There has been almost from the earliest days a public demand for higher aud higher speeds, with consequent rivahy between the railways. The United States and Great Britain (and Franee within the past few years) have the fastest trains and by far the greater momber of fast trains. The highest recorded train speed is that of the Exposition Flyer, 270 tons total, upon the New York Central Railway, May 10th, 1893 . It ran a distance of one mile at the rate of 112 miles per hour, and again, on the same date, mantained a speed of 100 miles per hour, through a distance of fire miles. As a daily train between New York and Chicago, it maintained in rate of 60 to 75 miles an hour, throughout the entire 980 miles of distance.

It will be seen that the speed of " 100 -miles-an-hour," whieh is pepularly looked ulon as a sort of ideal, has been more than onee execeded, but it may be well to explain that sueh spectacular bursts of speed are really less important and less womlerful than the trips of 50 to 1000 miles at speeds averaging 50 to 6.5 miles per hour for the entire joumey. Taking into aceome the loss of time by stops at stations, by ehanging engines, by the resistance of
ly used, fore less
the safo nghonse 5: 2, and need his re West. $912,(011)$ Ifreight 1 of :301 reet : inul nicy. 1 ipped in "e enernakes to extent) in train ion, aml merican iin datily throngh en Paris twice : t similat the mail Railway tersburg

20 miles h higher parliest rivalry France greater ехроюay 10th. our. and rough : ieago, it 80 miles
opulary t it may s imporreraging mint the timee of

long grades, etc., it will be easily moderstood that in order to maintain the average speed from start to linish, the netnal speeds must often mange from bio to $\overline{6}$ or or enen 80 miles per hour. The regular daily transcontinmental train of the Camalian Pasitic Railway has an arrage speed of 30 miles per homr, but maintains this foe the trip of e300\% miles, which oesupies 943 homes. This is a train and a record of which railway men in general, and those of tho Canalian Pacitic Railway in particular, may well be pirom. There aro no such through trains in the United States, hat in 1804 a special theatre $\mathrm{I}_{\text {rain }}$ was run from New York to Sin Francise in 3 diays it homs. In 18s! , the time of the transeontinental mails was of hays $8 \mid$ hours, but that same year it was reduced to 4 days 123 homrs, which sehedule rontinued in foree mint

 stops, and the transfer of mail bags aeross Chicago by wagon from one
 hour for long stretches. Bngines are changed is times amd postad crews i times.

Finst passenger trains are a popular attraction, hut only milway men can fully appreciate the advantages and comomies of heary trains for hambling freight trattic. In Eurppe coal trains weigh from :000 to doo toms, bat in the United States the weight of coal, mer, and freight thains is from soot to toms. Antomatio conplers and power hakes analle the freight trains to be ran as fast as passenger trains, with entire salioty; improved ears carry greate : xls, and more powerful locomotives are cominually being pit in servies to hanl heavier trains. The heaviest tains on record are as follows: (1) Pemsylvaia Railway, $1: 30$ ears, 3213 tons, or antio tons with engine and temer; (2) New York Central Railway, 81 cars, BHis tons, or aman tons with engine and temder. Buth these were rim in 1898, the length of jonrney leing 1 tio and 140 miles.

The mails were carried by rail between Baltimore and Washington in 18:3, on recommendation of the lostmaster-General. The U.S. railway servien was instituted in Augnst, 18it, hetween Chicago and Clinton, and the following figures indicate its wonderful development:-

The railway express business was started in 1838 hy Mr. W. F. Harnden, on a suggestion from Mr. Josiah Quincy, who had to travel weekly from Boston to New York, aud was in the labit of taking small packages for business aequaintances. Mr. Alvin Adams became associated with Mr. Harnden, and in 1845 formed the Adams Express Co. In Great Britain, this business is conducted by the parcels-post and the railway companies, but in other European countries it is mainly in the hands of the post-office department.
can be than t instane the rat in the cent.

A very remarkable feature of malway hermpment is that from the begin-
 stealy redurtion in rates. In the United States the average rates per mile since 1860^{-}have been as follows: -

Y rar	Panmenger, ecinta	Frelght, eenta	Vnar	Pamaenger, celta	Froigh, centa
1810\%	1.9614	1,438	(1)8,	2.214	
1 NTH	2,142	1, 1×4	1atic)	\% 1 ll	16.111
187.1	3,4is	1.421	14, 1.10	2.114	
18811	2,442	1,2\%	$1 \mathrm{l}: 1 \mathrm{ml}$	2.1111	10, XiM

While the rednction in passenger rates has heen eomparatively small, it must he remembered that the safety, speed, confort, and service have greatly improved. The marked reduction in freight rates has heen made possible mily hy a still greater and more remarkahle rednction in the cost of transportation. This has been effected by eonsolidation of companins, by improvements in rombay, bridges, etc., and by the introduction of heavier trains, with engines of greater power and cars of greater eghacity. This economy

HAGERMAS BASN WN COLOHADO MDDLAND R. IL.
ean be still further extended. The reduction in rates has been much greater than that in the prices of commolities. Rates for wheat and hay, for instance, have tecreased 23 and 20 per cent more than the market prices, and the rate for shipping anthracite coal to tidewater has decreased oo per cent in the past ten yrars, white the price of the coal has deereased only 10 per cent. The average freight rate on the Pennsylvania Railway in 1898 was
0.536 cent per ton per mile, while the cost was 0.369 eent. The cheapness of transportation in the Cuited States is shown by the following figures for 1898 :

assengers carried one mile	13,000,010,0100
Tons of freight earried one mile	95,00\%,0\%\%,0¢\%
Revenue from paseuger service	:2\%t,000,000
hevenue from freight service	
	iflo miles
Distance railway earies 1 lon lo carnst probit	15 10 miles
	$2-10$ cent
	1-15) ce

The lowest passenger rates in the worh are on the Inlian railways. In Europe the passenger rates average higher than in the United States, though the aceommolation is inferior.
lailway transportation has almost entirely superseded barge, canal, and river transportation, exeept in special eases. This is due to the greater speed, the greater ethicimey of service, the greater carving canasity, and the extent to which spurs and hamehes are built to mable cars to reach mills, factories, and other imdustrial plants. It was for a lones time held that the low rates of water transportation exerted an influence in keeping raibay rates down, but with the present condition of the latter this no longer hohds good as a general proposition, espeially for the limited capacity of barge eanals. The rates established for wheat and eorn from Buffalo to New York
 little above the camal rates, while rail shipments are much more adsantageons.

The railway system is a vast employer of labor. direetly and indireetly, and several million persons in the Cuited states derive their support from the varions railway industries, without taking into ateount such allied industries as rail mills, huinge works, loemotive works, and ear works, ete. The number of airect railway employees (exelusive of the employees of terminal and sleeping-ear companies, fast freight lines, ete.) is over sinnoto or orer 1.2 per cent of the total population. A large proportion of these represent skilled labor of a ligh degree of intelligence. France has about 1110 employees per mile of railway, and 10 ber cent of these are women. The figures for the United States aud (ireat liritain are as follows: -

	United States		Great Britain		
	18:9	1897	1857	1889	1895
Miles of railway	10:1, 59\%	184.428	8,942	19, 19.3	21,174
	740.101	82:1476	169. itit	:81,620	415.412
	49	449	1,2:111	1,190)	2.1197
Sumber of employees per cent of population	1.2	1.2	1.4	1.0	1.2

The railway service especially demands some better and more intimate relation between the employers and employees than that of the mere luying and selling of labor fur a priee. Both humanity and velf-intorest hatw leol several railways in this comutry and abroad to establish reliet departments, proviting temprary financial aid in case of accident or sickness, with other
forms manen limed si when were about the mi

part of tion. Cables railwa railwa Raek In 180 the Ma the Ab been us

Ray 18:31, i tion w:
forms of benefits in addition, the object being to induce men to continue permanently in the employ of the roal. Such associations have existed in Eingland since 1850, in Canala since 1873, and in the Conited states sinee 1880, when one was started by the Baltimore \& Ohio Railway. In 1 sog there were six of these associations in the Cnited States, with an aggregate of about 125,000 members. The six railway systems owned 1.5 per cent of all the mileage and had 20 per cent of all the railway employees in the comntry.

Before elosing this review of railway development, brief reference may be made to certain special classes of railways.

Mountan Rallways. - These inchude lines either isolated or forming

view near venregas, on bine of obova mab.way, peru.
part of main lines. having grades so stefp as to require speeial means of traction. They may be operated by (A) cables. (H) grip rails, or (C) raek rails. Cahles are used for many short lines. hut are now rarely adopted for regilar railway working. The grip rail system was first used on the Mont Cenis railway in 1s(iit, and has been used in later years in Brazil and New Zealaud. Rack rails were used in 1848 on the incline near Madison. Indiana (U. S. A.). In 1866 they were used on the Mount Wishington railway (U.S. A.), (with the Marsh raek), this being the first montan-elimbing railway. lin 1885, the Abt raek-rail system wis introduced, and is a great improvement. It has been used both for ordinary railway servire and for special monntain lines.

Rarbo Thassit. - Street or surface milways for city traftio date from 18:31, in New York, and were opented by horses until 1833 , when eable traetion was introduced. Electric traction was introduced in Germany in 1881
and in the United States in 1884, and the growth of this system was such that in 1894 it was in use on 9000 miles in this conntry and 195 miles in Europe. Locomotives operated by steam, gas, compressed air, ctc., have been used to a limited extent. For high spects it was neeessary to remove the railway from the street surface. The first elevated railway was built in New York in 1869, and now New York, Brooklyn, inul Chiengo lave abont 100 miles, operated by electricity and stcam. The only foreign mailway on this systen is at Liverpool (England), the line being $\boldsymbol{5}$ miles long, and operated by electricity. The first undergromud railway was opened in London in 1863, and that eity now has several miles of such railway, mostly operated b_{j} steam locomotives. Two underground electric lines are in operation and another is being bnilt. Hindapest (Hungily) and Boston (Mass.) have also undergrome electric railways. New York has for years needed and demanded a railway of this character, but political methorls and extravagant demands for franchise rights have prevented the commencement of work upon the line.

Miditary Raluwas. - Railways camot be made available to any extent fr \cdot tactical purposes, but are of great importance as a means of supply and communication. They were used by the Russians in the Crimean war (1854), and were prominent features in some of the campaigns of the American Civil War (1861-65). In the Fratico-German war (1870), the German army adrancing on l'iris was elosely followed by a military railway, and in the Sondan campaign of 1898-99, the lritish army earried with it the head of a railway commmicating with the base of supplies on the Nile.

Portanle lialwars. - These are narrow-gange lines of light construction, for use on plantations, in lumbering operations, on engineering construction works, and for pioneer railways. The rails are riveted to steel ties, forming complete sections of track, straight or curvel, which ean be laid down, taken up, or shifted. as required. Such a line, of 24 inclies gange, was used to carry passengers around the grounds of the Paris Exhibition of 18s?.

Sum Rahways. - These are projected as substitutes for ship, canals, but none have bern huilt in modern times, if we exeept a fow small ones for canal boats, including one at the Colnmina River rapids, in Oregon (U.S. A.). One was proposed for the Isthmos of suez in 1860, and in 187! Captain Eats strongly advoeated one aeross Tehnantepee (Mexieo), to commet the Atlantie and lacitie oeeans. This line wonld be about 150 miles in length, and the cost is estimated at $\$ 500000,000$. In 1858 work was commenced on the Chignecto ship railwiy (Camadi), at the head of the Bay of Fumly, but it has mever been completed. The general prineiphe of the system is to float the ship into a dock and deposit it upon a wheled eradle of snitable form. This wonld then be raised by machinery and hanled along the railway by a number of locomotives.
E. E. Ressell Thatman.

try.

influe hurrie while recogn wombd

Оре $^{\text {е }}$
extort from 1 pwer pivat
Im_{1}
trools
throns
denie
have i
exped
ilema
or per
that
pert
Coal
nishet
tradle
milita
was 1
vided
(2) l
of wa
liable
ing.
declit
ach that Enrope. usel to railway w York miles, system by elec63, and 3 steam other is ground railway or fran-
extent ply and (1854), m Civil advanSondan railway eel ties, be laid ge, was of 1880 . als, but nes for s. А.). n Eads Atlanth, antl on the t it has oat the This a num-

ADVANCE IN LAW AND JUSTICE

I. Interxational Law. - Exclusive rights asserted in past centuries have been succeeded by freedom of the seas and privileges on the rivers. The principle back of the American gums oft the Babary coasts has prevailed. Crimes of one country against another are punishable in either. Extradition for nonpolitical erimes is general. Expatriation has been won for those who would change their comntry. Internal atthars of comentries are free from interference; but a rule may be so revolting, or so hurtful to foreign interests, as to justify intervention. The Monroe doctrine was intimated in the Declaration of Independence, and has developed with our conntry. Regard for other nations has inereaved. l'rotectorates and spheres of influence are respected, while recognition of insurgent States will not be hurried. Devastation and weapons cansing needless pain are condemmed, while guerillas are regulated by requirement of a responsible head, a badge recognizable at a distance, and subjection to rules of war. The sick and wounded, attendants, and appliances are protected from intentional attack.

Open, unfortified places are in practice spared, and ransoms no longer extorted. Twenty-four hours are allowed for withlrawal of noneombatants from places to be attacked. Nilitary oceupation no longer confers sovereign power; and eompensation on the closing of war has been recommended for private property of an encmy used in military operations.

Impartial neutrality is demanded. Nations once bound thenselves for troops in case others went to war. This has ceased. lassage of troops throngh nentral territory is not allowed. Even sick and wounded will be denied if their passage would relieve a combatant's own lines; but neutrals have interned such refugees. The neutral cannot allow fitting out of armed expeditions or enlistment of troops. Jefferson advanced intermational law by demanding Genet's recall for such oftenses. Carricge of signals, dispatches, or persons in military opreations is mmentral, ant the Cuited States insisted that this ruled the 'rent aftinr. A belligerent's ship of war ean remain in port but twentr-fom hours, mulss in an mergener: like need of repairs. Coal will be afforded ouly to the nearest port, nor will a new supply be furnished within three months. Statutes entoree some of these rules. Dentral trade is not lost except on blockinde, aithough goons which may be put ty military uses are liable to seizure as contraband. "liree ships, free soons," was long eontended for : and at last the Declaration of Paris, in 18:56, provided even further, as follows: (1) Privatering is and remains abolished. (2) The nentral flag covers encmy's gools, with the exception of contraland of war. (3) Neutmal gools. with the exception of contraband of war, are not liable to capture under an enemy's flag. (t) Blockades, in order to be binding, must be effectual. Spain, Mexico, Venezurla, and the United States declined to adhere to the Declaration. The United States adopted 2,3, and 4,

666 TRIUMIMS AND WONDERS OF THE NMTH CENTURY

and offered to agree to the abolition of privateering if noncontaband property of the enemy were exempted under its own flag. The United States aud spain refrained from privateering in the reeent war. Private property of the enemy on land has long been exempt from capture.
11. Law-Manixg Bobns, - State legislators were originaly chosen from landed proprietors, exeept, perhaps, in l'ennsylvania. Legislatures frequently hal the selection of govemors, julges, and other high officials, but the Ohio constitution in 1802 foreshadowed the coming democracy. Distrust has followed relimee on legislatures. Their sessions have been limited in about half the States to an average of less than minety days, and almost every-

where made himmial. Increase of the members' own compensation is forbidden. Their duties are earefnlly preseribed. Common requirements are. reading of bills on three days; one subject for a bill, and that expressed in title; recital of old law, unon revision; prohibition of riders on appropriations. Nearly half the states repuire a majority in each house of all members elected thereto. Constitutional restrictions on state and municipal indehtedness and loan followed the hurdens assmed in the first exulation over inventions in transprtation. The Pemsylania constitution, $f \cdot r$ instane prohihits "local or speeial laws" in about thirty eases. such as in municipal affairs, deseent of property. judicial proceedings, remitting penalties, exmption from taxation, regulating labor, chartering corporations. lommaries between legislative and julicial procedings have been simplified; speeial legiskation in marriage and divore has been forbidden; ; mellate
jurisdiction has been taken from Senates once possessing it. The British Honse of Lords retaius such jurisdiction, but within it sit the great judges, and the lay loris almost never vote on appeals.

Payment of expenses of members was terived from Englam, and although abandoned there has eontinued here. Nembers of Congress give attendance remote from home, so that they receive salaries mather than compensation. Sums for expenses are allowed in the other American republes, in lraner, Anstralia, Sweden, Switzerland, chiefly in the lower houses. Some are paid by the local constitneney, but this tends to create classes. Lepresentatives to Congress were generally elected at first on the state ticket. and in some states this eontimeal mitil the Congress in $18: 2$ refuired distriet election. The lierised Statutes appoint the day of their election, and require a printed or written ballot.
III. Tus Connts. - A feature of American jurisprudence which excites the womer of foreigners is the power in the courts to deelare legislative or executive acts void beeanse meonstitntional. Before the Revolution the Rhode island rourt struck down a statute contrary to the provincial charter; and a recent instance is the derision of the U . s. supreme Cont on the ineone tas. The power is exercised on individuals, withont direct contliet between the great departments of govermment. The juricial power has otherwise widened. Civil trials withont jury are frement. In the cometies julges exereise much administrative power. Rowl and bridge eases, grants of liquor lieruses, apmointments to edneational and other offices, abe illustantions. In what has been termed "government by iajumeiom," functions both of the executive and of the jury have heenasismed. Perhaps this justifies the demand that all juiges shall be eleeted by the people. Freoplontly the choice of juiges was originally by the lexislature or by the governom, alone or with the approval of the senate. The judicial teme of otlice has gruerally been lengthened to a term insuring a long service. In lemusylvana, a supreme eourt julge holds oftice twenty-one yars, a comuty julge ten years. Age limit prevails in some states. In a demoeracy, it is not surprising to find the doetrine sometimes asserted that juribs in eriminal eases are julges both of law and fact. In certain eivil cases, the jury is a ernde but powerful engine for holding corprations to strict responsibility for the citizens' safety, although exerssive or mufomaled verdiets are to be deplored. Murla of the old law of deomands has foree to-day in subtler form. A feature to note in passing is the duty impoed on the julge to answer before the jury points of instruction framed by comasel.
IV. Cuma Phomeme. - Twenty-nine States and Territories rejoiee in escape from puzzling classifications he sulstitution of simple statements. Extreme separation of law and equity had made the old condition worse. Equity might often soften legal pinciples, or law lend vigor to equity. Much of this has now been done; had been done, in fact, in Pemnsylvania, from early days. Its enforeement of equitahle rights throngh remedies at law was largely followed in the Enerlish Julieature Aet of $18: 3$ abolishing forms of aetions at law and interblending law and equity. This statute has been eopied largely in british colonies. England abolished the cmmbrons system of real actions in $1 \mathbf{1 8 4}$, and snbstituted simpler remedies for assertion of title.

The simplicity of present proeedure is accompanied bey ability to reach decision more promptly, and an old reproaeh has leen greatly lessened.
V. Commenton - The New York Revised Statutes of 1ses embraced nearly the entire civil procedure, and in 1815 a "Code of Proceture" was adopted, although the original draltsman, David Dudley Field, complained bitterly of changes. Forty-two states now have more or less emplete codes of practiec; and criminal codes likewise are momerous. Codification of the branches of substantive law may be anticipated. Something of this is going on in England. The Bilh of Sales Aet, the Emplogers' Liability Aet, the Bills of Exehange Aet, the Publie Health (Scotland) Aet of $18: \%$. the Land Tramsfer Act of the same year, are instances. In Pemusylvania, there are codelets like the Evilence Aet of 1887 , or the Building Law for Philadelphia of 1893. Instances could be multiphed. A code intended for all the States on Neqotiable Instrments has been prepared by commissioners. and has been alopted in New York, Comectient, Colomdo, and Florida. In Great Britain there has not been general eodification, whereas the eontinental systems run largely that way, even in substantive latw, being lased on the homim law.
VI. Cmminal Jumbimonace. - The gram jury is molonger grand in many States; inded, less than twelve members suthice in some; and their service may even be dispensed with under some Westem constitutions. Lumivilual maliee has been awoiled by the ereation of public proseenting attorneys. "standing aside jurors" resultel from :33 Elwarl 1.. denying govermment challenge exeept for eanse. It has been genemally abolished. and the prosecution equalizel by a number of peremptory ehalleuges. I'enusylania retains the oid practice. l'risoners may now testify, hat refusal is not to weigh against them. The statute \mathfrak{i} William 1II allowed comel in trason cases, but England did not extem the privilege to trials for otler frlonies until iS:3f. The eourts in mitigation permitted eomsel to prompt prisoners with questions. Pem's eharter gave prisoners privilages of witnesses and eomsel, and this is now miversal in Ameriean constitutions. Mans states provide comsel for prisoners without means, some with emmpensation. "stambing mute" has berome equivalent to a plea of not guity. Unanimity in a verdiet is essential to eonviction of crime above mishlememor. execpt in Ctah, and there it is limited to capital eases. In rivil and in minor eriminal eases abme a dozen constitutions in the far West or somenwest either recognize verliet by proportion of jury or else empower the legislature so to do. England of fuses criminal appeals. but in this cometre they are allowed. The conts of this comtry have newer leen subservient to military passion and all friems of the great Froneh Repablie mast wejoire at the conage of the Court of Cassation in the Dreyfus ease. The Euglish law intliated duath for 1 fio erimes, some great and many otherwise, abont the prion of our lewo lution, and in $181!$ this number hat become 3(6). American jurisprulenee never had such stain of bood, yot 10 crimes were punishable with death in Massalmsetts, and 20 in Delaware, at the time of the Revolution, and the pillory, stocks, shears, banding-irons, and lash were busy. Horrible prisons existed, filled with every foulness and immorality. The wher penitentiary system has been modified in 90 states by the parole system moder police supervision, and in 4 the policy of imbeterminate sentences within fixed limits and ages has heen adopted. Bertillon and other methons of
identifi whereb chariti childre
tach de-
aloraced e" wats plained te codes of the is going he Bills Trams. odelets of 1593 . Nesotialopted n there largely rand in air serIndivid. orners. rmant nosecuretains weigh caser, s until : with comnes jro-‘Standit! in at cept in riminal recog. to do. 1. The on. and of the death : Revo udenee leath and the the pirir penimoder within ods of
identification have greatly lessened crime in England. The law of deodand, whereby the value of an object causing accidental death was lorfeited for charities, was abolished in Eugland in 1816. Societies to prevent ernelty to children, or to animals, attest the advanee of refinement and humanity.

HON. MES ${ }_{3}$ VILhF: Fliditert.
(Chief Justice U. S. Supreme Court.)
Vil. Capital Punisiment. - In England, treason and felony, except petty lareeny and mayhem, were punishable with death. The fiction by which males who could read were supposed to be of the clergy saved first offenders, who escaped with branding. In the eighteenth century, the fiction was forbidden, and death imposed on additional offenses, so that 160 crimes were so punishable. In $1 \mathbf{S} 26$, the efforts of Sir Samuel Romilly and Sir James

670

 TRIUMIIS AND WONDERS OF THE XIXTH CENTURYMackintosh, and later of Sir John lussell, resulted in a more merciful spirit, and since 1861 murler, treason, and firing of the great lock yards, have been the only eapital offenses. The American colonies were more human, yet Massachusetts pminshed 10 and Delaware 90 erimes with death. Sinee the Revolntion imprisomment has been the general penalty. In Jaine. Wisconsin, and Colorado eapital punishment has been abolished altogether: in Rhone lsland, except where murder is committed by a life prisoner; in Michigan, except for treasom. In some States, as in Ohio, the jury may avert the death penalty. New York ind Iowa, after experiments, restored eapital punishment. The federal law imposes death for murder, piracy, robbery on the high seas, rapo, treason. The introduction of degrees of murder has redneed the number of expeutions. In New York, electrocution has been substituted for hanging. Capital punishment has been abolished or qualified in the Argentine Republie, Belgium, Brazil, Chile, Costa Lica, Guatemala, Itolland, Italy, Norway, Portugal, Russia, Switzerland (in eight cantons), and in Venezucla.
VIII. Pobles lowsh. - The citizen of the present day is protected by the poliee power to a degree which, perhaps, wond have seemed marvelons a century ago. The sale of food is governed both in quality and quantity; buihding laws prescribe yards for light and air, height and thickness of walls, and forbid woolen buildings in many populous centres. Explosives are placed under striet regulations. Health laws protect from impurity of food and from pestilence, establish quarantines, deny the importation of rags, eattle, etc., likely to breed disease; melicine, pharmary, dentistry, and mursing are protected from ignoance; immigration laws exclude persons or ruces deemed meongenial or objectionable; railroads are subjected to provisions promoting safety, comfort, and impartiality of service; lotteries, gambling, threatening letters are forbidden; game laws preserve the various species from extinction; women and children are gnarded ly special laws. Almost the entire buy of this division of law is new to this century, and much of it is recent.

1X. SLamien Women. - In 1800, a hasband could appropriate his wife's personal property not held in trust, and use her realty while he lived. Except for necessaries or for her separate estate, she could not contract. Her emancipation began in 1839, in Mississippi, and now her property, under the statutory interests seemed to her by laws generally prevailing, is hers free from control or interference. This statutory estate includes property inherited, or derived by purchase or gift, or in some states by labor. The wife's power to contract has been extended, and in some States has little restriction beyond perhaps inability to become surety. liofore this pra, some states. acting on a London custom, had allowed feme sole traders in cases of mariners' wives, or of desertion or neglec.
X. Cummex. - Regulation of the labor of ehiktren in hours and employments is usual, debarring them from workshops and factories at eertain ages and from oceupations dangerous to their momis, as in theatricals, circuses. rag picking, mendieancy, street musie. Laws prohibit their entrance into gambling, or worse, honses. into por, rooms, or macrompanied into dance or concert halls, roller rinks, vandeville theatres. Mimesota excludes them from criminal trials. Sale of liguor to minors is prohilited. Numerous
recent West their y forbid demean l'rohibi pulsory througl age. U of eith wills m may int that the
XI. tenanci trausic likely, rejecter share it has bee value, become earlier ineonsi
XII.
some, i or sollu such pr surecitio right copyrity or chil 154^{\prime} it

The 1491. 1793 policy. lishers
come Intern culmin Belgiu beria. may 1 althou such teets printi

XII
spirit, , have III:Ine, Nince -. Wis. er: ill er ; in y may estorme y, robnuriter int has hed or lica, eight ted by velous untity ; walls, es ate f food fags, hurs1 races risions ibling, ; weries llmost uch of wife's ExHer er the s free inherwile's iction states. mati-
nuloy11 ages cuses, e into nce or them terous
reepat statutes prohihit sales of cigarettes, cigars, or tobnceo, und U゙tah and West Virginia forbial sales of opinm. Oregon and Rhode Island prohibit their publie use of tobnceo. Nuw Hampshim, ludiana, and Commeetient furbin chidren over three in ahmshomses. North Carolina makes it a misdemeanor to leave a child meter seven, and mattembed, exposed to fire. Prohibiting employment inmonsistent with sehool attembume is usual. Combulsory education exists in twenty-nine States and two Territories, and largely thronghout Enrope and the colonies. Fonateren is the more frement limit of age. Chidren's welfare now determines their castory, rather than thrights of either parent. Laws in some states protect children more or less from wills male befote their birth he parents. Many States provide that bastards may inherit from their mother or from each other, and she from them, and that their barents mariage legitimates them.
XI. Leal Estate. - Ownership of land is no longer embarrassed by joint tenancies, nor need conveyancing resort to cumbrons tine and recovery; while transfer has been further lightened by tithe compmies pending the adoption, likely, of the Torrens system of registration and rertificate. Demoeraley has rejected distinctions of sex or age in inheritance, and the half-blood may share in mayy States after certain degrees. Disability of aliens to hohd lambs has been removed in some states, in others there are limitations in ieres, value, or time, while in some disability eeases on declaration of intention to become a citizen. The English doctrine of tacking, whereby ownership of earlier and later incmmances cut ont intermediate titles, mortgages, ete., is inconsistent with the Ameriean recording acts.
XII. Corvelout, - After printing beeame general, the anthor received some, if indequate, protection, in England throngh the Stationers' Company, or sometimes through purtienlar privilege: in continental comatries, through such privilege. The statute of Ane contined him to such yars, ete., as it spueified, and the conts have decided with lesitation that there was no copyright at common law. The statutory rights have varied. Since 1831 the copyright period in this comntry is "s years, with 14 more if anthor, widow, or children are living at expiration of first term; and in bangand since 184" it is 's years or author's life. whiehever is longer.

The tirst known eopyright directed to an anthor was granted by Venice in 14!11. i: 1791 France allowed eopyight to all dramatists, extending it in 179:3 to anthors in general. Conntries in sympathe with Funce adopted the poliey. Prussia in 1004 extended eopyright to anthors represented by publishers at the Frankfort and Leipzig book finirs. General proteetion has now come abont, aited hen consolitation of Encopean states into great nations. International coprright began with separate treaties; and the movement culminated in the berne Convention of 18S7, participated in by Germany, Belgium. Spain, Franer, Iayti, Italy, Switzerlam, Tunis, Great Britain, Liberia. Authors resilent in any country which was a farty to the Convention may have copyright in the other commtries. The United States did not join, althongh it had and since has had treaties with a few mations exchanging sueh protection. The International Copyright Law of 1891, however, protects fureign anthors but not foreign publishers, it being required that the printing shall be done in this comtis.
XIII. Admmalts, - The difficrence between the majestic rivers of Amer-
ica and English streams was reognized in the case of "The Geneste Chicf," wherein the Supreme Court rejeeted the Buglish doctrine that admialty has no juristiction exeept on the seas or where the tides ehb ami thow. This has insured unifermity in the regulations of trasel and commeree, and hats por tected such waters from local interforence. Iaternational rules to prevent collisions at sua have been joined in by the United states. By acts of 1sin and 18st, Congress relieved innocent shipewners of liability for merchandise destroyed by tire, and provided that liability in case of collision, emberalement by crew, ete, shall not exeed the owners interest. The Harter Aet of $18: 3$ provides that on dan diligence mither owners nor charterers shall be lable for fanls in mavigation or in management, nor for prerils of the sea, defects in goods, rete, but prohibits agreements relieving from liability for injuries cansed by moglent in fitting out. provisioning and maning the vessel, stowing the cargo, or in caring for or delivery of the same. l'arliament, in Ls:on, protected seamen from rommereial greed by requiring loat hases to be marked on vessels at a height fixed by the hoard of Trade.
XIV. Cobrobstoss. - The somere of corpuate life was formerly the king; to-dily, the elarters are virtally the sembal corporation law, and sperial ineorporation is forbidelen. For a stasom, minor amembments for partionlar companies were tolerated. but constitutions are forbidding even these. $\Lambda_{\text {ph }}$ heations for elarters must state such particulars as name, nature and place of business, tmont of stock, limit of indebtedness, momber and nanes of directors. Ammal reports must be lodged with the tax anthorities.

Doctrines respeeting eorponations have womberfully changed. The Dartmonth College case held that charters were eontrats and could not be impaired; and thereafter, by comstitution or otherwise, the States provided that all new charters should be suljeet to alteration or repal, although even this does not anthorize radieal change of corporate character. Americam law has recognized advantage of freedom in execution of eorporate affairs. It has dispensed with the burdensome refuirement of seal to contraets. and even in England the corporate seal is muncessary, unless in umsual transactions. The American courts uphold negotiable notes and bonds given in authorized business. The cmpany is eonfined to the business for whieh it was created, although a cantions tolemuee exists in respeet to related enterprises; and mortgages may be aequired if for debts eontracted previonsly and not as a device. The old theory was that a company could not be held for misfeasance, since it could not anthorize its agents to commit wrong; but corporations are now held for many torts sanctioned by them, suel as trespass, assault and battery. infringement of pateuts, negligence, and even fraud and libel. Exemplary damages may he awarded against them. One or another kind has even been subjeeted to indietment, in cases of misance, violation of Sunday law, maintenance of disorderly honse, hahitual omission of lights or signals, etc. They may be guilty of contempt. They may be punished by penalties and forfeitures.

A corporation outside its own State cannot exceed either its own charter or the power granted like companies of the other State. Comecting railways are sometimes adopted in each of several States, but the parts remain foreign to each other as respects jurisdiction in the federal courts. Foreign corporations are subject to the police power, but not to interference by the State in
their it eugage tions p by taxa the val quired before only ut
penalty compan selves t beyond In 18 ciations the prin but mol were au subscrip nyme, h may be responsi adopted nations,

So et
hict," Y has is las © p (rowent 18.31 molise氏丶\%: 1 Net all be re stit, ty for a vesment, dos to , and 1 parthese. e. allul names

Dartse im1 that n this whas it hass en in tions. athort was rises ; not is sfeas. rporaspass, d and rother ion of ats or ed by ter or lways sreign rporaate in
their interstate commerer, except Congress so authorizes. Companies not engaged in interstato commerce nor in govermmental service may have condtions placed upon their entry into a state, and may be practically excluded by taxation. Property within the forcign State is alone taxable there, but the value of the franchise may be considered. Usually, statements are required showing location of agent, names of oflicers, etc. Contrats mado before compliance are differently regarded, being void in some States, and only until compliance in some others, and in some not void at all where

state, war and nayy bethding, wasmngton, d. c.
penalty is imposed. Some states seek revenue by lax laws inviting outside companies. Thus, by Delaware law of 1899 , compenies need not oblige themselves to keep their original books nor hold their meetings there, assessment beyond subscription is forbidden, and taxation is light.

In 1825 and 182π the free organization of trades-unions and baniking associations was authorized, and thus was introduced into English jurisprudence the principle of free association familiar to the Roman Republic. In 1838, but more especially in 1844 , limited partnerships with transferable shares were authorized by general law ; and in 1562 freedom from liability beyond subscription was somewhat recognizen. A form of partnership, société anonyme, has been known in France for six hundred years, and by law of 1867 may be organized without special leave. The managers alone assume full responsibility, and the association bears now a company name. Germany adopted the principle of general incorporation in 1870, as have the greater nations, excepting Russia and Austria.

So early as 1784 New York enacted a general incorporation law for 43
churches, and for libraries in 1796. In 1811, woolen, glass, and some other mamfactures were thus favored. The priaciple widened ont, was mophed elsewhere, and beame quite general by 1800). Pemsylvania adopted the policy in 187.1 , although its religions, libnary and charitable organizations had enjoyed such law since 1 litl.
XV. Reamos. - Scomed, lashed, thrown into prisom, his tongue ent out, banished to savage woons, such,was the fate of the Massachaserts Quaker among the birst settlers, amd Roger Willians shared hatle better. A long stride had heen taken when, in 16:n, the Massachasetts eharter prochained liberty of consciene for all "except papists." Then was the bave and gentlo Pems sceuring religions liberty to all confessing one (iod. Y'et much fint her progress was essential. Roman Catholics were expluded from oflice exerpt in New York and Maryland; while even in l'musylvania no dew eonld sit in the legislature. Nost of the states required some religions test for higher ofthees; Massachisetts allowed no voters or otheials outside of the Congregational churel! and church membership was essential in Connecticut and New Hampshire. In lïnd lenusylvania almitted to the legishature any who believed in (fond aud in a future state of rewards and punishinents. . Massachusetts threw down the barriers to othe in 17so. expept that matil 182 l the govemor should be of the Christian faith; but oftiee-holding was limited to Protestants in North Carolina matil 18:3ã, and in New Hampshire mitil 1sia. Jews received the same rights as other sects in Connecticut in 181:3, in Maryland in 18:5. The Virginia Bill of Rights deedared that all are entitled to the free exercise of religion, and a few yeurs afterwarls, in 1asis, prochamed further in worls written by deffrrson that religions opinions shall mever affeet civil capacities, and that no man can be compelled to support religious worship. The Lake region was secured from molestation for religions sentiments by the Northwest Ordinance of 17 si , and the Constitution not only secures all from such interference by Congress, but prohibits religious test for federal othecs or establishment of religion hy Comgress. Sonth Carolinat made the Episeopal the State chureh in 1 Tatis, hat dropped establishment in 17:00. Suphort of religion was likewise abolished in Marylam in 1810, but continuerl in Massachusetts mutil $18: 33 ;$; and New Hampshive authorizes pmblic Protestant teachers of religion. Maryland. Konturky, and Temessee exelude elergymen from office. l'olitical hicrarchies and pulygany are not within constitutional protections. Conrts have declared Christianity part of the common law ; but in present law its fore is in its prineiples. Christian institutions. in common with other religions or charitable agencies, are favored in policies and exemptions; and blasphemies, like railings in general, are forbiden. Bible realing in publie schools is generally diseretionary with the sehool board, although hehd illegal in Wisconsin: but religious garbs may not be worn in such schools by teachers. A pmblie hospital may not be erected on sectarian gromad.

The English corporation and test acts excluded from office all without the established church, mitil: (ieorge IV.
XVI. Semmany of Abvanos. - Jucreased respect for the rights of others, both mdividually and as nations. chavarterizes the law of this century, and may be perceived in every direction. It has createrba new international law, devoloped democratic institutions at home and abroad, almost revolutionized
e other whopen ted the mis hail cut out, Quiker A long chimed 1 gentlo filwther except d sit in - higher mgregasut and tily who MassaS2 1 the ited to il $18: 6$ " Mary titled to claimed 11 never eligions is sentirot mis. ouns test Carolinit ment in 810, 1mit thorizes mimessee are not - part of hristian fitvored eral, are ary with abs may not be hout the
f others, ury, and pnal law, itionized

POItTA AND BANNANG.
(Trial Scene from " Merchant of Vertie.")
criminal jurisprutence, extended the police power in every direction, and setured freedom of conseience and separation of ehurch and state. It has emancipaterl woman, thrown a protecting care over children, and favored charities, asylums, houses of refuge. Imprisomment for honest debts has been abolished, and the wretehed sight of debtors imprisoned for paltry suans no longer reproaches soeiety. Homestead and exemption laws preserve the fanily. Honest bankrupts are again lifted up in hope. The legal means of settlement and reeovery of rights has been greatly expedited. England has followed Ameriea in making lands assets for payment of debts; and claims againsi the Sitate have reecived reeognition in some of the States and muder act of Congress, and likewise in England. Bariors evelading persons as witnesses have been broken down, first in Comeeticut in 1845, next in England in 1851, and now there is little exclusion maless the adversary has died. Something had been don before in compelling answers to written inte rogatories, but with a weakness and lack of logic that should have ridiculed the whole exelusion. lromotion of miformity of laws has en';aged the attention of State commissioners, who have drafted a code concerning negotiable instruments which has been adopted in four States. Constitutional amendment has afforded an entire mee opportunity to develop: from the low estate of slavery into surt condition as the future shall manitest. Questions of eivil rights, due process of law, and of equal protection and priviluge, are constantly bringing state laws before the federal courts, as do questions of interstate commerea. Anti-pool and anti-trust enactments mark both federal and State law, and lately have broken up the alliance of the trans - Missouri transportation companies. Inheritance and suceession taxes were imposed in lemnsylania in 1 sed, and now are fomd in some dozen States. The progressive feature, or inerease of rate with increase of estate, has been sustained by high authority. Congress has imposed such taxes, but its power to do so is in dispute before the United States Supreme Conrt.

In the early days of the repmblie property requirements existed both tor office and for voting. New States cane in with manhood suffrage established either by law or enstom. Original States threw open the polls, - Maryland in 1810, Comnectient in 1818, New York in 1821. Massachusetts in 1822. The white labor of Virginia was dentel the suff rage in 1830, but gained it in 18:0). Similar movement in England is marked ly the Reform Bill of 1832; and now manhood suffrage is universal in Germany, Franee, and Greeee, and wel. Vigh so in England.

Lutiei E. Lefitt.

EVOLUTION OF BUILDING AND LOAN ASSOCIATIONS

I. GENERAL PLiNCIDRES.

" Do not forget to pay your dues to-night." is an expression familiar to the oceupants of fifty thousimd lhiladelphia homes, one handred and filty thousand l'ennsylvania homes, and six hundred and fifty thonsand households in the United States. This means that nearly seven handred thonsand families are contributing towarls gaining homes of their own through building and Lom Associations. The entire membership, is nearly seventeen humdred thonsand, of whom fully four homdred thousand are women and children.

The picture "Paying their Dues" is a representative one, and in Philadelphia there are four handred and seventy-five such gatherings every year. The Philadelphia associations genemally meet onee every month, but in some parts of the State, and in other States, many societies meet weokly, so there are fully ten thonsand such gatherings every twelve months in the United states.

The women have shares in their own right, and the children are either paying dues for their parents or for themselves, the father or mother acting as trustee. The boys and girls know exaletly what nights the associations meet, and are generally on ham with their money long lefore the ofticers are ready to receive the fumls and give receipts in the pass books.

What is the meming of these gatherings? To enable every member to beeome his own landlord - to purdhase lomes for themselves, by paying their money into a joint coneern for a few years until each one has saved enough, with gains added, to bay a home, and in the meantime the entire receipts ieing lowed to the members to gain homes in advance of the final reekming or maturity of the shares.

The members hater well darned the principle that money makes money if well used, that if many pay rent for the benefit of the few, through the buildiug assoeiation the many may combine together so as to put the rents into their own poekets.

II. TUE SVETEM,

For convenience, "a share" is the payment of $\$ 1.00$ a month, five shares Sin.0), and so on. The final value of a shave is arnitrariy fixed at $\$ \mathbf{2 0 0}$. The money received is promptly lomed to the members, on which the borrowers pay $\$ 1.00$ per month interest on every $\$ \mathbf{S o n}$ borwod, until the final value of $\$ 2(6)$ is reached, wheh oceurs in twelse gears or less.

$$
\begin{aligned}
& \text { Payments } \$ 144.00 \\
& \text { Gains вб. ко } \\
& \text { Final value } \$ 2(0), 00
\end{aligned}
$$

A member may have borrowed $\$ 2000$ from the association on ten shares of
stock ($\$ 200$ being the limit lomed on each share), and the shares having matured, or beeome worth $\$ 2000$, his loan of $\mathbf{s} 2000$ is raneeled and his home is free. The member who has not borrowed receives syou in eash for every share he holds.

The building association in its simplest form, and as it existed in lhaladelphia for many years, took all its members in at one time, and the members paid from $8: 2$ to $s=0$ each every month matil the shares matmred. At matmrity all the bortowers received canceled mortgages, and the non-borrowers eash for their shatres, and the society then elosed its affairs. Humbreds of such associations have womm up, their attiars suceessfolly.

Very many associations are now working on the permanent plan; that is, they admit new members every six monthis or every year, the first set being the tirst to mature, and so on, one set going out every year amb a new batch coming in.

Bieh series is a separate assuciation so fir as the dues are concerned, but the total gains are divided so as to give each dues dullar invested a like rate per cent per ammm for the time of investment. There is really no positive or tinal division of profits. The gains are kept in a lamp sum, and the division is on papre only for the purpose of showing the progress made towards maturity: When a set of shares matures, its portion of the gain is taken from the accumalated profits and divided to the stock that has reached its final value.

Some associations comint all the loans as assets and all the dues and gains as liabilities. In sueh societies the borrower gays interest on his full loan until the end, and gets credit for protit on his dues until one aceome eancels the other.

Other associations, at the end of each year, deduet the dues paid in from the loans and charg" interest on the art amomat only of the loan. By the latter system the borrowers' baments decrease every year, but it requires a longer time to finally emed the lom than ber former system.

When there is a demand for money, and more than one member is anxions to seeure it. the funds are offired at anction, and the member who bids the highest promium sedures the prize.

The bidling is generally done ly offering so many cents per share per month above the required interest. If a member secures se000 at 10 cents per share preminm on ten shares, his monthly payments are: -

Dues per momit	\$10.00
tmeret per momith	10.041
['romiunin per menth	1.101
Tomal	821.00

These payments continuc until the shares mature. The dues are the contributed capital, and the interest and prominns are the gains.
III. THEIL E, RISV IISTOIV,

Their early history in linglaud seems to date hack as far as 1781 . In Mr. Langford's "Century of Birminghan Lifo" mention is made of certain proposals for establishing a society for buiding on lands bolonging to Willian Jemings, bisq. The society was orgaized hy rules or artieles, similar in some respects to those employed by the building societies of to-day.
having me his tsh for
riladelembers maturrowers reds of
that is, t being v batch el, but ke rate ositive he diviowards ; taken ched its
d gains all loan cancels
in from By the quires a anxious ids the
are jer 10 cents
$10,010)$
110.141
1.110
221.00
the con-

In Mr. ain proWilliam nilar in

Pating their dues.

Dr. John Henry Gray, in his "History of the Laws, Manners, and Customs of the People of China," deseribes some money-lending soeieties which seem to partake in some measure of the chamater of building associations, at least in their coijperative and equitable features. He tells us that these societies are called " lee Woee," and were instituted by a person named long Koong, an otheial of great wealth, who thomished $3(6)$ n. c., during the. Hun dynasty: The money was loaned to members amb returned in monthly installments with interest. Each member was eompelled to contribute to the fund a sum equal to that which he contributed at the first meeting. One of the rules was, " Each member shall deposit in a lottery box, plaed on a table, a tender or bid for the money, setting forth the rate of interest which he is disposed to pay on the amonit in question; that the tenders shall be taken out of the box by the president, and the highest bidder takes the loan." When two bids were alike the lirst bidder took the loan. A fine was charged for non-payment of dues.

> if, amemean associations.

There is no evidence other than that Frankford, now a part of Philadelphia proper, saw the first building society that was orgamized in the United States. It was ealled the "Oxford Provident Buidling Assoeiation," and was started in 1831, sisty-eight years ago. It elosed its affairs in June, 1841. The second Frankford society, of the same name, was organized in Febriary of 1841, and ran out in August, 18:̈'. Isaac Whitelock was president, Siumuel Pilling treasurer, and Isaac Shalleross secretary, of the first association; and Henry Taylor president. Isate Nhalleross seeretary, and William Overton treasirer, of the second association.

The Holmesluug Building Association was organized in January, 1842, and elosed its business satisfactorily to the members, June 25, 18:3. John 1 . Duff, a lumber counter by trald, was instrmmental in organizing the first building society within the rompactly built un eity of Philadelphia, in the year 18ti. The mame of the society was the "Kensington Building Association." The society issued tive lomdred shares of stoek in one series, and wound up, its affairs in ten years and wo months after it was organized. The first advertiscment of any louihling and loan association, so far as can be ascertained, appared in the l'hihaldphia " l'ublie Ledger," February i., 1857, and ealled for a merting of the "Kensington." Mr. Duff died in 1883, and a few months lofore that event he presented to the writer a domment now known as "The Old Yellow loster." It is the call for the first building soeiety in Old Philadelphia, a eopy of which is herewith presented.

Mr. Duff sehlom, if ever, held forth in publie, but his efficient work was done by taking imbividual cases and converting them to the bendits of obtaining homes for themselves. Frequently he has been seen on a pile of lumber with ehalk in haud, demonstrating a problem in building society arthmetie: to emperts to this system ol saving.

There las been scaremy a great mind in the eountry that has not moved the lips to say some grosl word for the buiding society cause. Henry Ward Beceher in a sermon said. -
"I think that a young man who phaces lefore himself not a speculation. not a fortme, hat some object that he means to achieve, who selects a par-

MEETIVG! kensington BULLDING ASSOCIATTON

The Suluscriliers being desirous of forming an Association for the purpose of assisting the onemiliers thereof in the erection of Dwelling Housce, or such other Real Estateas they shall derin mort advantageous, have concluded to hold a Meeting for that purpose
 -Att the Hensing iton Engine Hall, On Queen Street, abave Marlhorough St: Where the objects of the Associntion will be laid before the Meeting. Citizens generalfy, are invited to aitead.

Ralph Pilling,	Abr. P' Eyre,	Heary Mercer,
Joseph Smith,	Ed. W. Gorgas,	George Mattis
John Bierly,	Alfred Fit	Michael
Johu B. Dufif,	Alb't T. Eggleton	Edward
Henry Shermer.	Albert Engle,	Henry Miller,
John Verdear	And. Flanders,	William
Samuel Wensell,	Thomas Bennett,	John H
Samuel T. Hay,	J. R. Fulterion,	
Henry Lanc,	Charles Tryon,	Saml. Bledama,
Howard Bowma	Samucl Parcels,	J. Shilingburg,
Andrew Fimes,	Edward Owens,	James Hill,
Rich'd. Fordham	Jacolb Jones,	George Cramp
David Guyant,	John Nevling,	George Coleman
	Henry Mosser	John Fordha

January 21, 1847.

[^9]tienlar piece of property that he would like io own. and aims steadily at acpuiring it and works diligently for it, and saves for it, will be almost sure to succeed. I will say that every yomg man in a eity, either througit the instrmmentality of a bnilding association when there is one, or independently, when such an association does not exist, and when at last, having toiled and waited pationtly, the debt is paid and the pince of property is carned, is a great deal richer than the assessor knows him to he. The assessor gies aromud and puts a valuation upon his property for the ! morpose of taxing it. But, ah, those habits of indnstry and self-control ; those wise measurings, which we eall reonomy, - all these the man has gained over and above the property. He has saved himself from a thonsand temptations. He has protected himself against remorseless vices, which would have gnawed out his marrow. And though you call it merely amassing property, it may be amassing manhool. It is one step on the upward way:"

State officials who elosely examine the workings of these societies never seem to tire in their praise. Superintement Kilburn, of New York, in his last ammal report, refers to the conservative and honestly manage? lmilding association as follows : -
"During the past year associations of this class alone have returned to withdrawing members dues and protits amoming to $\$ 8,114,0: 3: 1$. During the same proviod no less than filty-seven assoeiations were engagel in the payment of matured shares, and $\$ 829,752$ were paid to members who had faithfully continued payments through a series of years, and at last saw their confidence justified. But these sums are of small consequence when we consider the comfortable homes that have been erected, and the families that have been permanently and comfortably housed through the facilities for frugality and thrilt, for self denial and saving afforded by them. My attention was recently ealled to a village of the state in which it was said that nearly onethird of the houses had been erected through the ageney of a small local association.
"Nor is this an exceptional case, mimess the elrment of proportion be taken into consideration. In nearly all the eities of the state, and in many of the large villages, there are associations that are models of their kind, and are worthy of the admiration and support of every grod citizen.
"Their educational inflaence, too, ean hardly be over estimated. The workingman who joins such an assoriation takes part in the administration of its affairs and learns his first lesson in tinance from those of larger experience, and, who perhaps, tombes elhow with the lawyr, the merchant. and the miaister as they disenss the safety of an investment. or proper amendment to the articles of association, and will not lemd a realy ear to teachers of socialism, of elass hatred, or of financial heresies."

As shown elsewhere, the mombers of the New York societies have over $\$ 3 \mathrm{~B}, 000,000$ invested. The Buiding Association Leagne of Pemsylvamia, an organization of twenty-six years' standing. composed of the most active associations in the state, some years ago proclaimed a " Declaration of Irineiples," from which we guote: -
"The local building societies of the State of Pennsylvana are trme coipurative organizations, transacting no hosiness with the pmblic. and not amenable to laws affecting financial institutions that have dealings with the public.
lily at th sitre gh the lently, ed anil d, is a r goes :ing it. rings, we the as prout his amassinl his illding
ned to During te pay-faithir conmsider thave grality m was y one1 local

taken

 of the nd areThe tration expet. and unemiaehers enable mblic.

	No. of societies.	Membership.	Asseta.
Jenu-y ${ }^{\text {anama }}$	12010	(3W1.(4H)	
Ohin.....	6111	$240,7 \times 7$	
thlinois	tine	184, (h).	
Nrw dursey	[141)	$1111,7: 31$	11, nis, 6 aid
	418	1:7, ill	$17,6024.418$
Sirw Yurk	31%	112, 2112	
Mawarlonvetts	12:	(6), +1:	24, $517 \% \times 41$
Missamrı.	2:n	14, 412	2\%, 419.im
California	$1: 14$	19, 1ail	17,4iJN, 1 M1
Jowa	87	25, (6M)	6,514,78x
Michizall	311	20, 417	6, 40, , 117
Mimmesola	13:	91,115	4, 2in, 6464
Trinsesure	34	4. 16ifi	3,71, 6 ad
Neloriaka	tis	11.8:1	1,534,588
© ${ }^{\text {anhertient }}$	15	11.208	11,2 $214,3: 3,5$
Maine	31	N, $2: 10$	2,412, 9661
Uther States	2:24	281,281	104, $2 \times 21,214$
Tolals.	48.2	1,642,178	8, $600,9+1,019$

It is estimated that of the above named membership over 325,000 are women. Of the $\mathrm{S} 60(000,000$ of assets, at least $\$ 100,000,000$ is a gain credit to the sharer. It is believed that in average of at least three members of a family contribute toward the payment of the dues and baterest, and althongh seventeen humdred thousand names are on $1 \cdot$ books, nearly five million \boldsymbol{j}° ersons actually eontribute.

These socisties have done more to teach the people practical thrift than any known device ever promulgated. Thift is deseribed as "good husbandry, economical managemont in regard to property, success and advance in the accuisition of property, inerease of worldy goods, vigorous growth, as a plant."
"He is a good wagoner that can turn in a little room." - lishop J. Hall.
"Economy is the garent of integrity, of liberty and of ease, and the beantiful sister of temperance, of che fuluess and heaith. Without ceonony none can be rich, and with it few can he joor." - Dr. Bohnson.

While these hierary economical trithe proelaimed in all ages by wise men, which they themsel wers seldom knew how to put into practical use. have no doubt eaused millions to think and womder how to do it, they, altogether, have not built half as many rounds in the practical ladder of "thrift" as the poor workingman who , negessfully indures his next door neightor to save one dollar a month out of his woste money, and with it subserike for one share of stock in a well-managed building society. Ruilding society advocates have done much iulucing, but always in a practical way. They have not merely proclaimed that "economy is wealth;" that "the best security for eivilization is the dwelling," but they have taken the arm of their frieme and neightor and have led hisu to the society meeting-rom and shown him just how they saved their own money. They have also taken them into their own homes and told then, "This is my own home, pail for, or nearly so, threengh the add of the builling society." In this way lessons in the practical benefit of thrift are daily given.
" Exa ago.

Alex: he said, a hatu: you Nothint it."

It wo how to suceess or lest almest conser of orgia finluess bnildin

The so lar a curred, financia econom

The a dollat of doll neepssit ing soc diftic.alt holesty spends neiglabo tich as looks t] with, e Homes. In th througl ate fort relited other sis prefer: leading week 1 wife eo money, for it new de sup;ios claime
"Examples ilemonstrate the possibility of sucess." said Colton many years ago.

Alexander Inmas brought the matter home to the dior of every man when he said. "All the world eries. " Where is the man who will save us:" We want a han:' Don't look for this min, you have him at hame. This man-it is you - it is I - it is earh of us. . . . How to comstitute one's self a man? Nothing hater if one knows not how to will it; nothing easier if ohe wills it."

It would seem that building society alweates were created to teaeh men how to will it. In this line of work they have eartainly been eminently successful. 'To what class of eitizens ilo these advocates $1 . \mathrm{ng}$, good, better, or best? In the early history of these asseciations they were organized and almost wholly managed by mechanies and laboring men; managed honestly, conservatively, and suecessfully; and to this "class" belongs the honor of organizing, combeting, and carrying to a proint of magnitude and nsefulness, that commands the admiration of linaneiers the world over, the building societin's as comblueted in lemnsylvania and other states.

The honest, thifty home-seeker has proved himself to he the e best" eitizen so far as managing a builting society is roncerned. When failures have oeeurred, the main canses have been the introhuction inte the management of finameial ideas emanating from the hains of theoratieal bankers and literary economists.

The man who works at the beneh mending shoes hats a better idea of what a dollar will do than the man who has at his command humdreds of thonsands of dollars lelonging to other people. hat who never was blessed with the necessity of earuing a real dollar by his own habr. The conservative buiding soeicty is one of good common sense anl not of class. It would be diftioult to bankrupt a building sociaty eonducted by men endowed with horesty and gowl common sense. The "better eitizen" is the man who spends less than he earns, pays his debts promptly, would rather give his neighbor a didar than steal a dollar from him, looks upon the home institutian as holy furd sacred. strives to own a home of his own. obeys the laws and lonks the world straight in the face. This "class." without a penny to begin with, caused Philadelphia to he known the world over as "the City of Homes."

In the many interesting eases of men releemed from the habit of muthrift through the ageney of building assoeiations, and placed on the road to moderate fortmes, there are sometimes two sides to the story. One side is that related by the individual who has been saved from future poverty, and the other side that which eould br related hy the wife and mother, if she did not prefer and really strive to hide from the outside world the life she had been leading, its trials and gloom. The man simply tells how many days in the week he preferred not to work, and how he never tried to save a penny. The wife cond tell how little the hushand brought into the home in the way of money. and what her awful anxiety had been. One side is pmblic prowerty, for it is told by the husband for the purpose of inducing others to make a new departure on the roal to thrift and home-ownership. The other side is sup;osed to be sacreal. but it is only a secret in a sense that it is not proclaimed. No man who is often volmitarily away from his work, having a
"good" sellish "time," speming the earnings of days of actual work, need imagine that his friemts and neighors are ignomant of what the life in his home is, for it is as plain to all as if the lonse was construeted of clear ghass.

Evesy man of good health, who will make an honest ani iletermined effort, has it in his power to change such a home as has been deseribed into a palace of joy, comfort, and happuess, and even beanty.

There are many thousands of men and women thronghout the land who would not to-diy have their own roof

how of $\$ 1400$ hounes. over their heads lat for the bnilding society and the thrifty habits aepuired through it.

The oflicers and members of these societies are mell who have, by degrees, worked their way on the path to independence, and they are highly respected by all who know them, anl pointed out as examples by their neighiors.

Members of these societies, after becoming tirmly established in thrifty habits, delight in relating their own experience as well as that of others. There are thonsands of interesting cases on record, of which samples are given below: -

A short time ago, at a housp of mouruing, the members of the family called the writer's attention to a girl alwat difteen years of age, who had volmotered her serviees to the family mitil after the fumpral. This remark was made: "Our ease is sall ruongh (the death of a father), but the child you saw at the dow has a father who has heen erntined to the homse with a lingering ithess. There are sesema younger children, and one girl older than the one yon satw. The two girls have heen working in a mill, lant on short time. Their case is sudder than ours, and the wore the first to volme teer to helpus." The above is the sad part of the story. lint there is a silverlined side, sinee ascertained. The father joined a building socidety some years ago and bonght a house for seono, and while on his sick led received a paidup deed for his home, the lmilding socisty shares having matured.

It is now twonty yens since a higs, strong man, muler the influence of strong drink, visited the oflice of a buiding society secretary and asked if a Mrs. - hat at! shares in the society. The hooks were examined and an attirmative atswer was given. The next question was, "How melh has heen paid in on the shares:" Answer, "Three hundred and sixty dollars." The inguiner hrought his fist down on the seretarys desk ame exelamed:-
"So it is trow, is it ? I wili stop, that game; that woman is me wife. and 1 have just hearl that she is going to draw out the moner and ran away."

The secretary measurpl the man, and, risking a fight, fletermined to hasten a climax.
"Sis you are the husiand of Mrs. - , are you:"
"Yes, I am."
"Anl you are drime"?"
"Y'es, sir."
" How long have you been driuking?"

" Fo

" H ,
k, need : in his ry giass. 1 effort, t palace legrees, to inlespeeted ted out
fter bethrifty ir own resting l:o had remark e child with a 1 older but on volun-silverc years a paid-
nee of ed if a :man an is Ineen The hasten
"For a long time."
"Huve you given your wife any money lately?"
" No, sir."
" Have you givan her any of the money in this socicty ?"
" I don't think I have."
"Your wife takes in washing and goes ont honsereleaning, loes she not ","
" Yies, sir."
" Yon eat at home withont paying anything tovards the sipfort of the house :"
" Yes, sir."
"You have niee chihtren, aul your wife takes gool care of them?"
"Yes, sir."
" You admit that all this is true?"
" Yes, sir."
"Now, will you answer me an honest question:"
" I will."
"Don't you think that yon are just the kind of a man that a good woman like your wife would be justified in ruming away from."
"I do."
The seeretary :sked who told h'm that his wife was going to run away ; and he answered that it was a friemel.

The seeretary then addressed him as follows: -
"When your wife comes to the society, I have noticed that her hamds were sometimes split and bleeding from hard work, and I know that she is saving this moner to keep you and the chillden from the almshouse. In the first place, you should give up drinking and keep away from the prople who have been talking against your wife; and then I would alvise you to go home at once and tell all to your wife, and get down on your knees hefore her and ask her jardon."

$$
20 T 14 \times 60 \mathrm{Ft}
$$

PI.AN OF $\$ 1400$ notesis.

To, the utter surprise of the secretary the man shook hands with him and emphatically gave his word that he would aet on the advice given.

Not the strangest part of the incident is that the alvice was exactly followed. From that time until now the man has abstained from drink. As soon as he got work he took shares in the sorjety, and in a few years thres of his rhidren had subseribed for shares. (mly recently two of the children withulrew shares to buy homes of their own. This is the kind of practieal
work done by every hilding soeiety in every state in the Unien, and the State as well as the entire comatry is the gainer by it.

Of course it goes without saying that the buidding society knows no secret plan for the payment of dues and interest groater than the horrower ean afford. It does, however, point ont a way for every man to gain a home of his own, but the priee of the honse mast te in keeping with his incomer. If this rule is not observel the result is almost always failure to gain the desired object. It is an old saying that it is mlnost wise to go in debt for a home, but it is deededly unwise to rontract for a home that requires every dollar of ineme to kepp it up.

Every home hayer should allow himself some margin in order to provide for the possible rainy day. The man who camot save over twenty dollars a month outside of athal living expenses commits a serions error when he signs a eontract requiring him to pay twenty-five dollars every four weeks. In dong this he roiss himself tirst, and, seeome is mifair to his family. It wonla be to his adsantage to phace aside three or fone dollars out of the twenty doliars named as a best egg.

This applies in particular to the careful man, who has been tanght in the sehool of thrilt. The man who has heen unthrifty may tee ahle (when he grablates) to save thirty dollars a month even when he thinks he camot save anything. Puilding society mangers make it their business to warn the thrifty min to malertake too mueh, amb also to leal the unsarving into halits of reomomy.

Only recently i juige on the bruch said, "Such associations, when properly conducted muler judieions restrictions and management, are a helpful blessing and eneomagement to any commanity. But the ambitions and extravagance of some borrowing members phace themsolves in a hurdeusome condition. . . Fir hetter for the puibic, the assoriations, and their membership, that many small loans be made rather than a few in munber and large in amount. Moderate homes and a molerate price should be the eriterion. . . . Their primary purpose was and shombleontime to be to promote industry, frugality, and saving, and eonvert the shiftless and diseouraged tenant into a self-reliant and contented home-bnilder."

Building societies since their inception have supplied the mems for home purchasing, hut these compaies do not generally take any part in the erecetion of loonses. Most of the small homes in Philadelphia have heen built by those engaged in the business of building homses for sale.

Here is a pieture of a row of honses eontaining severn rooms each. The pmrehase price is $\$ 1400$ each. The lots are 14 feet wide and 60 feet deep. The houses are brownstone and brick. They have good collars, portable heaters, and range in kitehen, hot and eold water in kitchen and hathrom. On the first floor there are three rooms, - purlor, dining-rom, and kitchen, and outside shed. Front door opens into vestibule; antranee to parlor from entry, and also from dining-room. 'Two front bedrows over the parlor, bathroon in centre, and sitting-room back of the bathrom. The diningroom extends over the width of the lot less stairway room, and reeeives light from skylight. The kitchen has a window opening towards the back shed or baekyard. A suall toilet room oceupies a suall portion of the back shed.

Any person known to be prompt in the payment of dues and merest may
mevile ollars ren he reeks. y. It of the in the rut he alluot Willl into 11 proelptinl midexnsome mberrge in nistis, into : home - reec ilt by

The deep. rtable room. chen, from arlor, ininglight ed or d.

huilimint asochiation banquet.
purehase such a home by the payment of Se00 in cash, imi giving a building society mortgage for the balance of the purchase-money, namely, $\$ 1200$.

The monthly cost would be about ats follows: -

A failly prosprous buikling society will mature its shares in twelve years, and at the end of that perion the home would be free from dobt. baring this time the borrower must pay taxes and water mat, amoming to some Ses.00 per year. The total payments would te about as follows: -

'This seems like a ronsiderable sum of money for a homse worth stom. Bint it mast be remembered that the borrower has lived in the lanse during these twelve years, and that he has saved in rent that he would have paid elsewhere, at heast siswo.

Now he is the full owne of his own home. During the mext twolve gears he will have mothing to pay but taxis and water rent, and possibly some sli fht repairs, at the most not over sion all tohd.

His next door neighimor is still at renter, mal frys \$1som to his landord duri. at the seemul pried namend; and the two aromints comparel show: -

This is equal to a saving of, siy, $\$ 10.00$ a month for 144 montles, and if used in the purehase of ten shares of buiding soevety stork would be worth at the time named $\$ \mathbf{y} 000$, instead of $\$ 1401$ merely saved. The neighbor who is a truant is still paying rent and owns mether it stick nor at stome, white the huilding soriety lurrower owns one bouse free ant also has the command of $\$ 2000$ in cash, all on accome of his houseowning experiment.

V. THE HANQLET.

It is eustomary for the directors of these societies, at their own expense, to celehrate the elosiug of a sucessful year, and have as their guests repesontatives from other surieties. "The hangue" ineludes officers from fully fifty empmies, some being directors of four or fise associations. At these gatherings expriances are related and subjerts for the alvancement of the camse are disenssom. Fivery individual present on these ceeasions voluntrers the information that he uwed all he possessed to the building society and its teachings.

What the bottles on the table may have contained, it matters not now, for they are empty and are not eapable of doing iny harm.

Miemafl J. Bhown.
ments
others tion, a highly

EPOCH-MAKERS OF THE CENTURY

Evenv centmy has hand its comel-making chamacters, - men and women who dominated aml direved the thonelts. prowses, activities, and acheve-

AHItAHAM J.INt'OH.N.
ments of their times. The nineternth century is distinguishen above all others ly the mumber and quality of those who came to stand for the inception, alvance, and culmination of the world's great movements and who highly exemplified in their careers the enterprise and genius of their day.

The object here is to designate, and make brief mention of, some of those who have fairly cornel the tithe of "porlh-maker, with the lupe of proviting a delightful historic stmdy, and further rmhaneing the instmetive vahte of a vohme addressed to the trimmphes and wombers of the erontury:
 1son; d. April 11, 1N(ia) spans from the masses, and grew up with their institutions rather than with the laming of the selools. He grew into hadership ineranse he was me of the "milhion," hat hatrel sense and was true. As a foreible expmont of the sentiment of his garty he was elected J'resident in Isfil. Itis clection was the signal for seression ami walr. Itis mastery of the most delicate' sitnation in the history of his comutre was superb, His patimee, his proseverame amial hard trials, his wistom of administration, his adaptation to the mareh of events, his striking and celle catise sperech, his determination to prestere a mion of states, all hed gramely and inevitably to the crowning art of his moble varere, the abolition of slavery in the United States in lstat.

There is wo sudder chapter in historys and bu greater lass for any sation or time, than that of his taking off (after locing a serom thme homered by the presidenery) at the hamds of an assassin, on

formed and skillfin in debate. the night of $A_{\text {pren }}$ 14. 1sin.
 (ember (6. (sse)) stowal for the (enlise of the Somth against the ["nom, as it towk remerete politioal form in the shape of the comferdamer, of which he buane the only l'resident. Thonghe perhans, lacking the ability of
 a conselintions anel persistent alvenate of the doetrines which culminated in ware and as chacf exerotive pulad with emery and timness.

 lealer. In statesmanship, he was iutemsery patriotic and always able twing highly inHe vame to stand as the champion of thase dowtrines which the Whis party supurided. such as pretection to home inthstries. internal improvenents. and reeprowity. I'pon the question of shavery which agitated Congress huring most of his earerr he genorally assumed an attitule of compromise, and fathered somen measures of a parifying nature that he was ealled " the grast paridimator."
 gigatie and imposing in Xow England intellent and physigne. As early
 followed in the ranks of law and statesmamship. It tirst he opposed the doetrine of protertion, hat subsernently gave his support to Henry Clay's "American peries." In the Unitent Statess semater, he won the tithes of "ex-
 by his masterly demmerations of the deretrine of mallification.

Itam twire, terized Florid: nowth setheoll fanmen:
cal gov
North
Johı

Federal

 place is and ditl States, to distithose -illing - of : 13 1 their into Wats cored llis, Wils ill of 1 minandly oll of ation tho 11. On crote ulecl-l'resiity ぃl c was te of . allil firmusel ! y iil. thoser nuluswery d ill ature s the rarly to lu 1 the " "exion."

 terized as " the erat of good feeling." daring which new States wre amitherl.
 north of equtain lines, ath many prowking cont wowerses with bugland were
 famons ". Nomoe buetrine," which was a warning to ithope that monarehi-

WHALIM E. GIADNTONE.
eal governments would not be allowed to interfere in the affairs of either North or Sonth America.

John Quiney Adams (b. July 11, 176ic ; Fobruary 2:3, 18.18) typerd the Fedendism of the arly part of the ninetemth rontury, and won the highest place in scholarly statesmanship. In diphomary he tilled many prominent and difficult positions at home and abroad. As sixth Eresident of the United States, he was opposed by a majority in Congress, and consequently failed to distingaish his administration. IIe was the forernoner of those senti-
ments whieh enlminated in orgaized opposition to the dotrine of human slavery.

Juhn C. Calhom (b, March 1s, 1782; A. Mareh 31, 18:0) was twice Vice. l'resident of the Linited states. and as Senator berame the beading exponent of the doetrine of states' rights and mullitieation of federal tariff haws. He ramked with Clay and Welster as a debater amd constitutional expomder, and the there were known as "the Geat Irise" In him the prossavery eamse fombl its subtest, aldest, and most lugieal defender. With a fully stored mind of highly metaphysieal turn, a fearlessasess and persisteney that Were matchless, amd a charater above reproath, he groatly emeared himself in the south, amd his writings are beld in high esterm hemen of his sehool of polities.

 liant as mator, hawrere amb pmbliojst. Next to Mr. Wibster he was the great-
 Erskine.

Comint Comillo benso di Cavomb, of Italy (b. Angust 10, 1810; d. dume b, 1stil), fomen a liferoork in the mitimation of the Italian states. liy pursuing a masterly comse in Einopran ifinhaney he invoght the states of North Haly into mitye and timally, thengh the efforts of Garibahii, those of Nonthan Italy Ine:mene mited with them in one kingiom umber the rale of Vietor Fimmanmel in 1stio. 'Thugh mot a man of "hood and irom." like lismarek.

 fome times promier of Eughand. As orator, pelitionl hader and statesman, and eritio in the innernse range af subjects he eoverod. his genims was with. ont parallel. It may be said that his was the mightiest prosomatity ami
 Banse of Christianity amone all matims, sommed the first trungrt call of

 Beamonsiolds minstry, inamemated the most astomishing reforms in all dime
 minos. It is almost impusibla to mame any mattor of mational or intere mational importane in whinh his persmality and genins were mot felt for gowi.

 the thanners of the gevermome from inter jerostration to high prosprits.
 of the Trasary have heren partabally along the limes he tirst haid down. Hu was easily the leader of that party which lowkend with disfiavor on "states" Bigits," and favored a strong rentral gevermment.

 that "terviturial expansion" whinh tixad the widn lomularide of the latlan Empire, made Queen Vietoria limpress of India, tanght loth linssia and

Indiat
voice defeate classes greatly interma Thon tury as
into the anthor. thought central ized hi 815,001 vast ix sionists "govery
lichli mative

India to refrain from medding with England's possessions, made the English vide preminent in the disposition of Continental territory, and empletely defeated the sehemes of Russia against Turkey, Uuder him the middle classes lost, and the laboring classes gained, politieal power. His carees greatly heightened the national institutions and charater, as well as the international reputation and power, of his conntry.
 tury as an able exponent of American rights, and his views were incorporated

into the Delaration of ladepembener, of whieh he was the acknowledged anthor. Ite equally stand as the leading expment of that politieal sehool of thought wheh favored derentalization. or limitation of the powers of the central government. After his rection to the presidener in 1800, he signalized his administration by what is known as the bomistama purehase, for
 vast extent, he beeme oure of the carlient and most enthosiastie of expansionists, and that wibhout reference to the mondernly mooted question of "govermment without the eghent of the governed."

Richard Cobshen, of Cughand (1s04-18tia), was a hmanitarian of great mative breadth and liberality, largely inereased by tavel and constant ob-
servation. He was a powerful leader in the famons Manchester Sclool of linglish statermen. Ilis share in monern progress was fontrold; tirst, in serering the repeal of the odions tas on com in Istli ; seromb, in mging arhithation mather than armas as a timal mont to sottle intermational disjutes: third, in negotiating with France the Commervial Treaty of Istit, which Mr.

 of the sumbern tonferlemey during the late eivil war.

 tion and experdients, and adroit diphonary of a statesmam, with absolute
 Thomengly dorman, he was preminenty and always I'russian, and his -great life-work was the aceomplishment of German mity with l'mssia at the
 gradual aceresion of all the distimetively (arma states.
 skillfully collonfial in publie spereh, and is at tope of the Aur rian matur

 institutions, Mr: Phillige most lagery vontributed to puldir weal and pres gress.

 disap!ninted in his aspimatims for the presidenerg he bost wome of that womderful peror which he had acepurad hy reasing of his elurgy, tact. skill.
 the sperial ehampion of the dertine of reriprovity. and ly its partical apheation during Mr. Harisons administration proved its lxenedits to come merer and international trale mations.

 mining and of developing twards its: fullest capacity the jwwer of the ['nited States supreme court, as sit forth in the Comstitution, ower state remerts and state logislation. He also practically eonstractel the ["nited status . Nhmiralty haw and, even tomay, his "commentarios on the Imerican (omstitntion," in comertion with both of his foregoing services, is a stamartl work. He represents the brom and powerful Amerian julicial mind, which has contributed so largely to the integrity of the V'nion.
 of chameryg justice and ehief justion of the r. S. Supreme Comb, and ehanedlor of Now York. He possessed immense legal harning, and to him is primarily due the ereation of Now York eourts of equity. His rexhanstive "Commentaries ujom American law" is aerepted at home and ahroal as one of the great elassies of Ameriman law litemature.

Francis Whatom was born March i, 1s20, and died Fobruary 21 , 1884 .

Althom still si erclasí: liter:at| minnici
of great nationa

Lonis was adi gulished comutry chief al (apmatit: Germat
(1) of st, in arbiuters : h. Mr . -ignit!on

Athough at the age of forty-threve he exelanged haw for the ministry, he
 merlesiastimal and international law in linston institutions. He rariched the lituature of his profosion be many valuable ame standard works on law, manicipal, state, national, and intermational, and, mater Mr. Clevelam, was

OTTO F. I. VOS BISNAHCK.
of great serviee to the :uministration as Conited States Examiner of International Claims in the Department of state.
 was olitor, historian, and statosman, and in the lattor roble became a distinguished houder of Freneh thomght and polity. His greatest serviee to his country was after the Framolol'russian war, when the Assimbly elected him chief of the exerative, with the title of "I'resident of the liepublie." In this manaty he was partioularly sumeressful in megntating the torms of peace with Germany, and in fulfilling all the combitions of peace.
 the doctrine of imbastrinl protertion at at earls jeriod in his eomgresciom career．In Iss：Ilom．W．1）．Kelley sath of him：＂．He has di．maned all his cotleogues in mastering the details of the tariff．＂＇I＇lu Tiarifi Aut of lsim came to be popmarly known as the＂Melioley liill．＂Elected President in

 in belalf of strumering（＇nlant patriots．which enlminated in the spatish－
 the added distimetion of romming but the nimetarnth and introdneing the twentieth century．

pien of "swium: all his of $18: n$ dent in
 of the worlds masters in the art of war. His mmerms canmaigns, condurted with a brillianey never before rgmated. hand for their whent the

 ing, in spite of closily combined and persistent opmentitum. Xone of the fre-

 gether with the emplipe of his gis sie i_{i}. nee and phenomenal genius.

 Weat foint and han a brid military experience in the Mexjean war. On the breaking ont of the covil War he wentered the boderal servien from
 ries in the West which hell to his rommand of all the ('nion forees, with the
 that of gemeral. By the brilliant, persistront, and simultanens, rampagns lae carrom themgh in the bast and West, he further elimedhed his tithe as one of
 If, was hemornd wiow with the presideney of the nation, amb through the trying perioul of remonstuetion his wise statesmanship ormented the binion his sword had preserwed.

Arthur Wielhesky Wellington of Eingland (b, May 1, Batis ; d. September $2:$.
 lish in India, He further added to his famer in the rampaign aggimat Frane in the spanish perninsulat. But his greatest gleng as a warion was reableal $i^{2} \quad$ in ISIX, when, with the aid of the Irussian marshal Bhachar. he deferitiol Napoleon at the denisive hattle of Waterlon. He was afterwards homored

DCKE: OF WEILANOTON.
with a seat in the Homse of Latos, amd as Prime Minister of the 'ours party, but his statemanship, proved to he of an inferior and muppular order.

 fare. Ilr made the lrowsian army a most pewerful and dangerous machine, amb leol it trimplamty against bemmank and Anstria. liy dint of striot organzation and drill he male the armirs of the German conferteration "ghally effective, as was shown in the Franco-(ieman war (1870-71), which

Wiss at sto tha duw that rene

Silıon justly llonse Nis f'lil) of liolivis., to gover
liobrent West lo till thi the ('onf powers. sive w:at colure des decigro, a ole ut th

Lajos
 the downfall of Supheron 11S. and his rapure. Ilis greathess bay in the foret

 to govern them with the wistom anm momeration of a wise exacutive.

 West loint, and was in the ronstant military sorvere of the I nited siates
 the conferterace, and sperdily lowame the highest exponent of its mitity

 Alocrere, and mot defoat ame surmemer withont dishomon. Jle realily ranks as one of the world's graterst ambals.

us writer, lawger, und statesmm, cabse to atame for Ilungarian fremom. After the deelaration of imbermbence of his vombtry in ISI!, he lavalate its military and politial ruler, lut was formol ly linsalan interventon und domestio rivalry fomm his high plare, anme esciperel to foreign lamis to pass
 alul peoplo.
 restless, daring sohlier, the impulsive statesman, amb the energetie dofender of freedum, Ilo shamed Combi, Cavom's desire for a free and united Italy.
 lof preselited them to Victor limmanmel, thas pomsummating his life dreams of mifteraion, and his clesite lor a government in wheh the wishes of the

 attained the rank of eaphain in the 1 . S. Niay for hiv gallant exploit of burning the frigate l'hiladelpha in the harlat of 'lupuli, after shat ham ben "aptured by the 'tripulitans. Ite won further fanm as rombentome in

 fanmel his desith in a dsed with fonmmere liarron.
 with the rank of eaptain in the C, S. Navy for the remarkablo commen und dash which eventhated in the memorahle vietory over the liritish there in lake

 Northwest and the emb of the War of 181:. Ite saw further homorahle servide
 the istand of 'rinidad, of yellow fevor.
 gradually into one of the great maval eqpatas of the nimeteenth rentury, Tis eromage and energy, large experianee, and intimate kbowhedge of the rivers and seacoasts of the comatry fitted him for the great comorgoneios of the Civil War, Many of the vietorios of the Union armies in the West wor. duo to his eiopreration with gumbats. Hegreatly aider in the initial suecoss of Farragut's expedition wp the Mississippi, the reduetion of Vickshurg, and other strongholals upen Werstern waters. The greatest victury of his life was the eapture of liort Fishor. Dow wote n history of the ll.s. Navy during the war, a work commemded hy all naval natioms. On the death of Farragut, 1876, he reached the high rank of admiral.
 highest type of the skillful, cintions American maval rommander, hacked nj by extrambinary dash aml boldmess. His signal achievements during the Civil War were the destruction of the Confederate fleet in the Mississippi, the eapturu of New Orleans, the passage of the forts al. Port Hulson abd the batteries at Viekshorg, and the eapore of Mohile. For his brilliant amd suceessful servioes the rank of vire-admiral was especially wratted for him ly the govermment, and afterwards that of almiand.

John Adolf Dilllgien (b. November 13, 180!) ; d. July 12, 1870) was a prime

United Sts for hima at services wr

Admiral exprotione (18:5) 180 ortermel to prompt one histery of Orient was
ugent in de ingten. II Civil Wur niluty vess of mathy min by the gove
liuphatel folly that hilis, ass eon

Melom. lue its II :and (10) piss canse
al the fromin Italy, inilies. Arum of the , 1世" hit of lio hand lore ill Q!lick "dissh. ure, ha
waridenl 40: anl "Lakn" of the: of the service aill, oll ipenell "uthry. of the acie if it wers. sucerss rg, and ife was ing the rragut, kell III ung the issippi, on allul nut anul himb hy
i prime
ugent in develophing the Xaval Grdaane Wepurment anil its works at Wash. ington. Ho invented ani made the welloknown bahlgreng gus. During the Civil War he eommanded the somith Ithantie herekating spluadron, of some nituety vessols, and idid splemdid serviee for the I'nion camses. He was anther of many maval artiches and lemes, some of the latter ladig nsed as text haoks by the goverment.
 filly than muy wher the maval hash and ellicieney of the Conterderay, In him, iss commatoler of the simmerer and Aabama, the merehant marine of the

United States fomm its direst emmy, ald his exploits upor the oecan won for him a fatue which owershadowed las of even higher rank, but whese sorvices wre limited to narower firds of a wal antivity.
 expurience in the ('ivil War. It tho lyoaking oni of hostilities with spain (1898) lo was in eomazand of the VI, s, spuadron in Bastern waters, and was ordered to destroy the Spanish theot in the hashor of Manila. His attack was prompt asd davinge and it ender in ome of the most motalide vietorios in the history of naval warfare. In a frew hours the amtive flowe of spain in the Orient was swept away, together with her power, and the United States was
 namere and govermant may change the whole history of the Urient, if mot of the world.

Ahmizal samperis contrihution to the eenturys pangress lies in the lime of skilfing proparaion for rumponcins, and promptitudn in merting them.
 the great and derision vietory owe the Spaniands, wom by the theet muter his command in the waters off samtiago.
 d. Nowmber (6, Is! I) was an able beader of that grat selood of hatary
 chiefly seems tu have produced.

His rontribution to mondern progress lies manily alomg there dimes:-

 College while her was president of that institution.
 amil philosionhical.

 of the ofd selued division. This influme was wioded party from his chair
 the fanons lorinetent heview, which owes its greathess elhiefly to his editorshig and eontrilutions.

 by his contrinutions the thencternth century mainly in historial and ex egetical hatardas.
 the erpintation of the greatest pilput arator of his day. As pastor of blymonth (congrogationai) Chureh in Now Fork, his genins anl remarkalde.

 bect and hart. Ilis versatitity was phenomemal. . Imanalism, literature, pol-

 varying from exe ell ha for extraminary.

 exature of the hamans race.
l'hit
thuse his :utu self-sac sellomin ethera! ing an tor.

Char J:amiar great i ble won awn le Harmen swiymed har illtr: lighlitur erol wit and the ing mun wholl in

Primin
 He stull cover th new edu dreallis. laws; :th davilon! coursin 1 complet. ment in education of the k training Jusition, Vietor renow: eelectiois proluensi private li Willial with lite the greath tained mm to the pire of the sla Hispon 18:9)

Phillips Brooks (b. December 13. 1s:35; d. Jamary 2:3, 1s!as) was one of those phenomemal prachers of the ecntury who won the haming and hearts of lis anditors ly largeness and liberality of thoughat; spirituality, marmesturss, selfesaterifice, and great lowe, and by heany and poise of character. He seldem proachod dererine, but relial on the etheary of andent exhortation, and the fimbing and kindling of the gonel in earll ambitor.

Charles II. spurgeos (b. Iune 19, 18:3; id. Jamary :31, Aster) stands ats at tye of the freat pojular preacher and leader in eharitioble work. With laptist wiows, he revived his own denomination and exerted a helpful inthene obs alf others. No divine of his time swayem so resistlessly the immense andiences he ittracted. Ilis plain sermons were always lightened with harpy illastations and deliverred with rare power and parsomal magnetism, and they had the exceptional quality of retaining math of their charm and persuasiveness wholl in print.

CHARIEES H. NPUUHEOS.

Friedrich Fromel of Thuringia, Gomany (b. Apmil 21, 178s; 1. June 2, 1s.i.), was a horm edueator, and his great lifework lay whily in that direction, He studied not so mueh to get knowlodge of partienlar brambers ats to disrower their natural mity and lididon comention. He was the adrowate of the new orduation, and pushed the systron of Destalozai far beyond its muthors dreams. Aesorling to froebel, man and natme are governol by the same laws; and, by his observation of both, hee reached his ingol of what man's dewelonment shombl hr, and how to aneomplish it. True development must of comrse proceed from within, from self activity. . Tud as wery age of man is complate in itself, its perfeet developmon can come from only such development in the proeding are. Inome, the mesosity of propery traning and edneating young chidren. This comse of reasoming resulted in his invention of the kinlergarten system, together with his self-sineritieing devotion in training teachers, and in his heroie persereance aotwithstanling bitter opposition, or indifferener.
 renow: mod now-maker of the century in fomeng the seloon of systematie eelecticism in philosophy. His systrim sirts forth a doertrine of eatholie comprehensions and toleration of others. Fow men did more in ollicial and private life to alvane the canse of gemad ednation in Prance.
 with l'itt and Clarkson, led in the canse of free ing the slaves, being himself the greatest type of the English alolitionist. For forty-six years he mantained mepasing and relenthess warfare against slavery, and his priceless gift to the present century was the tinal and emplete extinction of slavery and of the slave-trade in the British pussessioms.
 18:5) proved himself to be an epoel-maker in the sense that he eombined 45

70k

the worth of history with the brillimere and fascination of the novel, and

Protest
|relani to justi Henry hestow to ! ! ! ane Ioh: (NTi)

of Foreign Affars, really at the head of the govermment. His many propased refoms hrought in the revolation of lsts and the dethromement of Lomis Philiphe. 'though ranking as ome of the greatest of Fremelh states. men, his highost and most abluring memtation rests om his historival writings, which are very momerons, athl the chare of which is his "(ieneral History of Cipilzation in Earone:" His works are dassirs of historioal researeh, and inspiring forepmats of the modern methol of treating history.
 as one of the brighterst of fouglames wriars ant historimes, thengh mot one of the most reliahle. His writings are characterized, in the main, hy matro
ment of phintor o of the I anll De:t the hist, to the exal

Hempy $1 \mathrm{Nrio})$ is : cipar! dona laml," is w
and colo'st of , anl ricun

Protestantism: and in his two most impurtant works, "The Finglish in Ireland in the listh contury," and "The Itistory of thaghal," he "mavens to justify his combers semore treatment of the lrish limmanists, forstablish
 bestow urin him ministers much of the aredit grymbinly sulymised to helong to Muran Pilizaludh.

ment of uational histery : and also the symputhetie, graphie, and spirited

 to the "xaterng toil and researel of years.

 land," a work whase busel therries meatel :an "purdh in the phitosophy of
history, and malled forth murh montroversy. Aceording to him, civilization

 remownel as statesman and historian. As a member of l'resident poinks

 "Sinthwest linmulary" question. Lint his groat liferwork was his " Itistory of the I'nitul states," on which he labored matringly till his death. It is the most exhmation, philosophice and inspiribg of one mational hist mins.
 century's valuable wentrimutos to the welfare of the l'nited states hey his " History of Hanks," his many works on morals and politiess and chidfly by his groat liferwik, "The History of the l"nited states," a prohluction of grabl hater and mastents detail. -ut somewhat havily written.

 panedially in history, in whinh lime her was rabled to furnish the wo 'd with

 pulbication. Phenghat times partisan and partial, he was still fortunate in Howeing his groat stromgh on the side of right.
 was fommer of the "Xion louk tribure." Ita tomk rank as one of the athest

 grive.

 the selonarship of the general literature and the grawe of n fenet with the

 preially whon it is considereal that its patrons worm charfly of the chacated and higher hasinus chasses. Ho representel the cleanst and most intellee. thal jomrmialism of the exintury,

and ow buast of his ! the Cive and owi
('hat! stilluer his grell allill 11 lan "mintry: with :tll H1, was of the:

Insicnil of roditon schuolius centiluy dignilie. piviles. ill all its.
dusiph
Ihopratel Wiorld." culitors of cubatom 1 mon aml atul surls:

Marat
factor in cimati C immense: editor of Whitel eriean journalist sirnsation: Greeley, nection w power alo
somest April 9!, discovery particular brain is d spininal mat to the loma of the her nerted! wi lurilliant l,
and owner of "Ther Philalluphia Press." The journalism of the eentury can bast no mopr indelatigable and brilliant pea than his, hor din any journal
 the Civil War abul sulserguent purionis of reconstruction. He was also elitor and wime ol the Wishingtom, W. C., "Chronicle:"

 He was assomiate "ditor of "The Siow Amprimat Cyelopadia," and compiler

 schooling afformed be connetion with several minor paters. So man of the
 dignified and proulont expression, buad and kern thomat, ever alise th the privilenes ame power of the press, he mathe his jombata model of excellence in all its varided departments ass well ass a molossinl property.

Inseph I'ulitzer (b. Istia) was fomuler and editor of "The St. Lemiv TostWespatch," and afterwards berame awner and editor of "The Sew York Wordd." like the wher Bemott he ranks as one of the dashime, bring colitors of the erntury, whose aim is to gain motoriety and extraorlinary eirculation for his joumal by strong, and often vitumerative, attark un, publio mell and things, and by tireloss efforts to secure geneml news of a mique and sensational chameter, at whatever wost.

Murat Halstral (b) 1s:3!) rose to editorial distinction, and lneame a strong
 cimati Commereal," which heraisel thourshing finametal monditom, with immense power in munieipil, state, an mational prolities. In 1s90 he hecame editor of "The Standari-T"non," limmkly, N. Y.
 erican politieal editors, and represents the hest in that kind of Americm jomraalism which aims to be both alert and catholie in its offorts, without the sensationalism of persomality, ea zrevation, or the horrible. Next to Mr. Gredey, whom he suceeded as editor, he will lust he remembered in connection with "The New York Tribme", and has maie his journal a great power along nearly all lines, partienlarly those political.

Scientists, - Sir Charles liell, of Sontlam (h. Novemher 1i, 17at; d. April 2n, 1812), is a shining example of patimee and genins for investigation, diseovery, and deduction in medieal science. The nervous system was his particular forte; and he diseovered the most important prineiple that the brain is divided into two parts, cach liaving its correspuding division in the spinal mirtow, and that one set of urves conveys sensations from the loody to the brain, another carreing biek to the booly and its museles the command of the lrain, and finally that nerves conveying different sensations are conneeted wath different parts of the Inain. He was a remakable sargeon, a brilliant lecturer, and a medieal author of universal tame.

Samuel 1). (iross (b. July s, 1son; d. May 6. 1ssid) rankel as one of the eqoel-makers in his prolession. As physician, surgeon, ant medical anthor he showed a lofty aim, strict devotion, marked origimalits, ":al powertinl intellect. His mumerons works eommanded world-wide attention amd lwerame acepted stamdarils. 'Two of thens, it hast, were the tirst of their kime ever pulbished in America.

 history daring the first threr decales of the nimeromb renturs. Ito ex. panded the system of comparative anatomy as the only tran hasis of natural history and from an utderly chatie and mintolligible heag of dry farte

 fossil amimal-fife to an extont hitherto numpatmed of

 of hathas selaction and presweration of faverel raves in the strughte fors

 and interproted the gigantio mass of tacts ont wi which he showly dedneend his comblusions.
 premane of his day as at sciontist and natmalion. Wf wombernl fhysial and

 stant sombere of insprintion to maturalisk and swiemtints.

 allopathy :and homempathe, it is certath that the datter has contrimued
 silhe, if not actually hamful ur detheroms kiat.
 1sts), was a domist. His usio of mitrons oxide (latghing gas) to rember the extration of teedh painloss lod to its fuller appliention an an ama-thertio in
 chlomform. Though robleed of the homor of his disenorey by whers, the dentist Wells is mo leos a contributor to wankinu of onse of the greatest buthes of the century.
 gave new direction and inmphe to chemistry ami fathelogy by the disomers
that fer miany in lowed 11 hou prefio phobia. milamth

1'וll.. 18:11) w liberall in with lam inally graiterst. beyluest
dillies silhy the St:ates.
bemesole simithanos loulge, tho anll are progress
(inonge
oble of the $8: 8,410,(4)$ states, llarnard finx who:a to fomme

Iulun . colenssal that by w fomme the durted on
dithes
Califormia
charitahil,
death.
Caliturnia
costing s
ancl nums
Lerland
forthuse i
death, lue
Stite. 'I
eadownu
numbit
Fherens
parrontis,
retiof of
that fermentation arome from mioronorganisms，bul also that disease was，in many instumes，ilne the the perone of hambi in home or tissue．He fol－ lowed this with his syste on of culture and inembation，hy means of which
 phohia．Tha lastour Institute in Paris stands a manment to his genains and ghilamethops．

 progress of eivilizalion．
 ome of the remtury＇s gratest philanthropists．Among his moblest gifts were

 to fommin workingumis hemes．

 fomal he Astor hibraty of Now Surk eity．This moble institution is con－

 Galifomiab，cout of whelh he．providend a trust fund fore cartain publie and
 death．Thio him is due the tamoms lion Tomorome in the lyiversity of

 relief of homanity：After stuly in varions musing sehteols，she was sent at

 Which sho devated to the Sumbling

Clanat liarlon (h, ahont lsisu) left
 gita" in the work of alloviating the sulteritugs of the soldiore of the C'ivil
 pitals, is work sla provinmeal with

 "hiels -hu sorourel at" inter"ational

 fixth durang tho Nganish-Amerioma w:ar

 there nineterenth contury,

 received ly enmmon consent the title of the fialher of rallway.
lichard lutionized ןresess, in 18 lionir: Aft at sheoet at frows at rolf printerl |xat
[sn]. ergy (HA), aling

an

Fiow,

- iv

 lumb. After many costly exprerimenta, with a view to juinting hims sides of
 from at roll, perhaps miles in length, at thot rato uf forn firet a mimus,

CHAAL HOHTHN:

 the Jummelobl brow of torlay.

Sorios of defoats and mortifying failures, suceroded (INtat) in layiug a cablo that thoroughly solved the problom, Nince then submarise telegrajly has Ineeome the of the most nsefill and powerfal factors in the private and pulbice lifo of Hee world.
 the century's trinmphas adol world's civilization liy that bri'hant mal previst. ent serios of iuvestigations, which resultend in the tirst practieal telogriyh.

 his trimmp was romplete, mal he becanm the reciphent of masy thaterings distimetions at honte ambl abroad.

 ther reversible lownsutive, tho "link-motion," the valorie rogines, allet the
 1s: wh, wher he revolationiad naval warfare by aplying the serew propellor
 rented the Monitor ironerlad an primeipes first applied in the Montor which
 -aber was signalized by maty wher valushle invertions.
 his fatherem ..nhahbe systom of instruction to deaf muters typitios the invern-
 matorial sider as exempliterl in that indisprensable aid to mentern life, the
 undisputiolly, uralital.

 gutations: the rarlant telophome tanstuither the aerophone; the megas

 with his master the lomur of repressenting the worlil's greatest and bess
 tions and diseoveries have berou along the line of arthsing luminems vihrittions in matlor, withont, at lhe same times senting in artion lurat-vihrations.

 beth motors anol lights rasm be ofrerated on one wire withont a cirenit. His rotary motor is used in conseging jower from the great plant at Niagarat lialls.

 throngh the medimn of his stiming paetry and delightfint tietion, in twith if

Which lie wi wh riking sit! lence, lund n! :40.

Charles 1 exemplitioed iunuecolt, cll selfishores,
finilty in p^{\prime} marked at wo pathio's and

Jillimes lie typitios a la wiss at remall lolld, and lu seemes to fir tatined a wis library of f
a cable dhy has 1 jublie mited tu |nerxistיgraph. 1 of the Itimore. noment uthring or tirst atives. tind the ates in Wriller h10 ins r which 2. $\quad 11$ is
anvica - invenehth tho ifo. the me:nss of Haw 140 remor \because alluo n) int.. slock m"g: breme whares 1 mist rstig: vilra:"thons. harmng to 1 that
llis iagara Ithury Als of

Which he was most rady and prolitie. His manerans works, twembing with mriking sithations, strong und moble in style, are momeles of literary excels. lence, and wen as captivating to readers of tomblay they were hall a contury ago.

Charles Dirkens, of bingland (b) Pehmary i, 1812; d. June !, 1s:0), ahly exemplified that scheol of novelists who paint homely social life with all its

-116 W. $1 . T \mathrm{~F}$ M MOTT.
fanly in phet and style and ridiculons in their exaggerations, his novels barked a mew era in literature, and mo lwoks ever so a!puated to the sympathies and goost impulases of reaters.
James Fenimore ('oper (1 . Soptember 1.5, 1is: ; d. Soptember 14, 1s.il) typities a large and apprembe modring elase of tiotion writers of which he wasa remarkable forermmer ; that sohool of novedists wholeal with stiming, hold, and healthful adventure, in which the duglowaxom mine partienlarly seems to fimb mailing delight. Both at home and abroad, his novels at-
 library of fietion is complete without them.

IMAGE EVALUATION
 TEST TARGET (MT-3)

Nathaniel Hawthorne (b. July 4, 1804; d. May 18, 1864) exhibits in his numerons fictional works a man's breadth and strength of imagination and a woman's quick perception and spiritual insight. Almost gloomy in color, overhung with impending fate, and often uncanny, his stories are yet always fascinating. As has been well said, one catches in them "gleaming wit, tender satire, exquisite natural description, subtle and strange analysis of
 human life, darkly passionate and weird."

Count Leo (or Lyoff) Alekseevich Tolstoi (b. August 28, 1828) is a Russian aristocrat by birth, but has assumed the dress and life of a peasant, the better to exploit his doctrines respecting non-resistance, communism, labor, religion, politics, government, and society. His numerous writings show a combination of keemess of realistic insight and wealth of poetical imagination, of a wonderful breadth of view with perfect handling of minute detail, scldom rivaled in all literature. Whether or not he will prove to be the forerunner of a great revolution in the world's national and social life, there is no disputing his genius and pertinacity.
Edward George Earle Bulwer (Baron Lytton), of England (b. May 25, 1803; d. January 18, 1873), was novelist, poet, dramatist, and essayist, and ranked as one of the most versatile and classical authors of the century. Through his plays, poetry, and novels he introduced a new literary era, and was the leader, if not actual founder, of the sehool of melodramatic romance.

Harriet Elizabeth Beecher Stowe (b. June 14, 1811; d. July 1, 1896) acquired great fame as authoress of the epoch-making book, "Uncle Tom's Cabin." It proved to be a powerful contribution to the anti-slavery cause, and served to electrify readers in twenty different languages. In dramatized form it has delighted millions of auditors. The authoress represents woman's efforts for the overthrow of slavery; efforts she put forth modestly, completely unconscious of their great power and future influence.

George Eliot, pseudonym of Marian Evans, afterwards Mrs. Lewes, then Mrs. Cross, of England (b. November 22, 1819; d. December 22, 1880), was one of the ablest of the world's female novelists, and had but few equals among men. She was a leading epoch-maker in that introspective school which always with astonishing skill uses the "plot" in all its events, environments, and circumstances to develop each character in strict logical accord, whether for good or evil.

Victor Hugo, of France (b. Tebruary 26, 1802; d. May 22, 1885), was, in his day, the most popular author who has ever lived. Few poems, no draina, and absolutely no novel have ever produced the immediate and tremendous effect of his earlier poems, his "Hernani," and his "Les Misérables." Through "Hernani" he completely dcfeated the classic school and became the leader of the romantic school of revolutionary individualists, thus
creating a prose whic imagery an

Poets. April 19, 1 powers, mi yet exhibit

He created melancholy side of his about them istics to a absorbing r

Henry W sibly the ce poet of gre
ts in his ation and in color, t always ing wit, alysis of weirl." 1 Tolstoi ristocrat ress and ploit his ce, com-governwritings realistic sination, ith perdidom rir not he a great and sos genius

May 25, ist, and century. cra, and atic ro-
896) ac, Tom's y cause, matized resents odestly,
es, then 30), was equals school environaccord,
was, in ms, no ate and es Miséool and ts, thus
creating a new epoch in literature. He invented novelties in poetry and prose which produced strength, variety, delicacy, harmony, and richness of imagery and coloring, absolutely unparalleled and original.

1’oets. - Lord George Gordon Byron, of Eugland (b. January 22, 1788; d. April 19, 18 24), is a remarkable instance of a poet of marvelous natural powers, mingling good and evil in accordance with the whim that took him; yet exhibiting distinctly, through it all, evidences of a great soul and genius.

He created an epoch in the world's poetic literature. Skeptical, cynical, melancholy even to sentimentality, and skillfully manipulating the public side of his affairs to keep up a most fascinating air of romantic mystery about them all, he succeeded in affecting public thought with these characteristics to a wonderful extent. As a result, "Byronism," for a time, was the absorbing rage in all prominent circles, literary and even social.

Henry W. Longfellow (b. February 27, 1807 ; d. March 24, 1882) is possibly the century's finest type of the people's poet. Though by no means a poet of great imaginative or creative powers, yet few reached his perfect
skill as a painstaking and unerring artist; while none have ever surpassed him in creating that atmosphere of subtile beauty whieh always seems to surround and penetrate his verse. As an epoch-maker his influence extended even to Europe, and especially to England, securing him a fame wider and greater than that of any other American poet, and rarely failing to win the enduring affection of all kinds of readers.

John Greenleaf Whittier (b. December 17, 1807; d. September 7, 1892), as an editor and poet contributed no little to the cause of the abolitionists. Together with Longfellow, Holmes, Lowell, Hawthorne, and Emerson, he may be considered an epoch-maker in the development of American literature as guided by the spirit of New England. He types the sweet, simple, and absolutely sincere poet whose verse breathes forth a strong patriotism, and is redolent of the healthful home life of the Eastern States.

Sir Alfred Tennyson, of England (b. August 6, 1809; d. October 6, 1892), was by far the leading representative of those English poets who, while not wanting in the fire and spontaneity of true genins, nevertheless wrote carefully, after long reflection, with calculation and toil, as to diction, polish, and arrangement of sentences and thoughts. His highly-wrought "In Memoriam" and his exquisite, though somewhat sensuons "Idyls of the King" were absolutely novel, and mark an epoch in the !' 'ory of the world's poetry.

Elizabeth Barrett Browning (b. 1809; d. June 29, 1861) is, without doubt, the greatest poetess of the present century and probably of any other. She presents an extraordinary instance of the grasp, comprehensiveness, and logic of man's intellect, united with the intuitions, deep emotions, impulses, and visions of woman. Her especial contribution to the progress of this century is not only to the wealth of its poctry, but also to the careful and discriminating consideration of many of its social problems.

Robert Browning (b. in London, May 7, 1812; d. in Venice, December 12, 1889) was the foremost of psychological poets. Belonging to "The Romantic School," he created an epoch in literature by carrying his high ideals and wonderful efforts of genius over into what became known as "The Spasmodic School."

Actors. - Edmund Keene, of England (b. 1787 ; d. May 15, 1833), was one of the greatest and most popular aetors of all time. He typified, and greatly contributed to the success of, that school of actors who rely almost solely on their own native genius and acquired powers, rather than on the aid of externals. He has been called both the "Byron" and the "Napoleon" of actors, and seemed to have the most extraordinary power both of catching and revealing the meaning of Shakespeare, with the quickness and vividness of the lightning flash.

Edwin Forrest (b. March 9, 1806; d. December 12, 1872) was a tragedian of the robust type. His success upon the stage was signal, owing to natural genius, superb form, and noble presence. For more than a generation he rendered effective and kept popular the leading tragedies of Shakespeare, and others suited to his powers. 'The Actors' Home at Philadelphia was endowed by him, and stands as his monument.

Edwin T. Booth (b. November 13, 1833; d. June 7, 1893) stood as the exponent of the refined and lofty in drama. Through his rare histrionic
powers he bed Shylock, Lea advantage th: home. He c in New York

Charlotte her histrionic memorable a Maebeth, Bia Merrilies. and her skill, the admiratio

Tommaso severely trag through his g sories. He stage. Powe elocntion, in world, althou

Sir Henry in 1838, and so much on g tion to detail history of th look away fro and accessori

Lyric Dr 17, 1770 ; d. cal geniuses, of imaginatic "Fidelio," is matic music. to lead in th lieved to hav the field of 0

Charles F. instance of a the opera of and success. popularity. much to adve

Robert Sc of the creato but a teache next to thos and wild, mo

Felix Men was as lovel organ, or ora
 d logic es, and entury iminat-
ver 12 , mantic Is and pasmo-

[^10]as the trionic
powers he became a recognized interpreter of such characters as Richard III., Shylock, Lear, Iago, Othello, Brutus, etc., bnt he never appeared to better advantage than in Hamlet. His ability was as fully recognizel abroad as at home. He expended $\$ 175,000$ in establishing the Players' Houso and Club in New York.

Charlotte S. Cushman (b. July 23, 1816; d. February 18, 1876) first won her histrionic honors in opera. Her voice failed, and then she began her memorable career as actress, her most fanous personations being Lady Macbeth, Bianea, Julia, Beatrice, Lady Teazle, Queen Katharine, and Meg Merrilies. She readily ranked with the great dramatic artists of the century, and her skill, native and aequired, divided with her own splendid character the admiration of the general public.

Tommaso Salvini (b. January, 1830) demonstrates that now very rare and severely tragic school of the stage in which the actor appeals to the public through his genius and art, rather than through his environments and accessories. He thus belongs to an apparently closing ear in the history of the stage. Powerful, passionate yet self-controlled, magnificent in physique, in elocution, in reading and in deportment, as an actor he really belongs to the world, although Itatian in both spirit and training.

Sir Henry Irving (or really John Henry Broadrib), of England, was born in 1838, and is the leader of that modern sehool of actors, who depend not so much on good reading, acting and general elocution as upon careful attention to details in stage-setting and presentation. As an epoch-maker in the history of the modern drama, he marks that point where the actor begins to look away from his own personal art to that displayed in his surroundings and accessories.

Lyhic Dramatists.- Ludwig van Beethoven, of Germany (b. December 17,1770 ; d. March 26,1827), is widely held to be the most colossal of musical geniuses, in breadth and grasp of intellect, in vastness and boldness. of imagination, and in depth and tenderness of emotion. His one opera, "Fidelio," is by many considered to be unrivaled in the realm of pure dramatic music. His sonatas and chamber music are generally conceded easily to lead in those two departments, while his symphonies are universally believed to have reached the utinost limit of development which is possible in the field of orehestral composition.

Charles F. Gounod, of France (b. June 17, 1818; d. October 18, 1893), is an instance of a composer whose permanent fame must rest on but one work, the opera of "Faust," in which he reached the utmost height of his powers and success. No opera has ever had sueh instant, universal, and constant popularity. Eclectic in style, and faithful and enthusiastic in his art, he did mueh to advance the progress of religions and operatic music in France.

Robert Schumann, of Saxony (b. June 8, 1810; d. July 29, 1856) was one of the creators of the romantic school of music. He was not a piano player, but a teacher and composer. His symphonies have been accorded a rank next to those of Beethoven, and for their deep pathos, fine, intense passion and wild, mournful beauty many of his compositions are almost peerless.

Felix Mendelssohn-Bartholdy (b. February 5, 1809; d. November 4, 1847) was as lovely in character as in works. In symphony, song, piano-forte, organ, or oratorio, he showed himself worthy of being classed with the great
musical masters. His compositions suffered eclipse for a time by those of a stronger school, but his true position in the musical world is once more becoming recognized.

Franz Schubert, of Austria (b. January 31, 1797; d. November 10, 1829), hes been called "the immortal melodist." His fecundity was marvelous, and he is best known by his songs, several hundred in number, and nearly half of which have immortal quality. He also composed many charming symphonies and operas. His chief characteristics are the freshness of his delightful melodies supported by harmonies of equal interest.

Anton Gregor Rubinstein, of Russia (b. November 30, 1830; d. November 20,1894), combined the brilliant pianist with the composer of genius. H_{i} he not been preceded by Liszt as an epoch maker, he would undoubtedly have had the honor of being first of all great pianists.

Frederic F. Chopin, of Poland (b. March 1, 1809; d. October 17, 1849), was one of the first of pianists and musical composers. His playing, like his music, was marked by a strange and ravishing grace, and he was the great interpreter of the music of lis native country. He composed concertos, waltzes, nocturnes, preludes, and mazurkas abounding in poetic fancy and subtle harmonic effects.

Jacques Offenbach, of France (b. June 21, 1819; d. October 4, 1880), was the chief creator of the opera bouffe, and was an astonishingly prolific conaposer. He stands for the clever, tactful musician, shrewd to perceive and quick to seize what catches the public ear for the time being.

Franz Liszt, of Hungary (b October 22, 1811; d. July 31, 1886), ranks as one of the world's phenomenal pianists. His strength and technique were prodigions, his magnetism irresistible, and his power over audiences unequaled. By his free, fantastic compositions he created a new school of composers. He gave extraordinary aid and inspiration to other musicians, and in reality brought Richard Wagner into prominence before the musical world.

Richard Wagner, of Germany (b. May 22, 1813 ; d. February 13, 1883), early abandoned leethoven as an operatic model, and felt that a new era \mathbf{i} music was about to dawn. His musical theories first found full swing in his famous opera of the "Nibelungen Ring," with which, and kindred productions, he practically created the modern music-drama. In his operas he was sole anthor of their wonderful wealth of true poetry, stage effects, dramatic action, and enclless melody. No musician has ever made such bitter foes and warm friends, and none ever hat to fight his way so stubbornly to recognition.

Giuseppe Verdi, of Italy (b. October 9, 1813), is one of the most remarkable musical composers of the century, in the respect that his talent has not failed with age, but has kept pace with the great changes which have affected the dramatic stage since bis youth. In the bcauty of his melodies and the intensity of his dramatic powers he is unsurpassed. Very few, indeed, of his numerous productions have failed to hold exalted place in public estimation. His best-known works are "Il Trovatore," "La Traviata," "Rigoletto," "Ballo in Maschera," "Aida," "Otello," and "Falstaff," the latter written in 1893, when the author had reached the age of eighty.
A. Leffingwell.

[^0]: いいと．
 dilluimal ham Maniral 1 ：allaill Cinamanler． 1．fontranul Commanter．

[^1]: "Throngh the harsh voices of our day A low, weeet prelute thols its way; Through clouds of doubt and shorins of fear A light is breaking calm und clear."

[^2]:

[^3]: ${ }^{1}$ Dr. J. S. Billingw in Ziemasen's Encyclopredia.

[^4]: ${ }_{1}$ Brigades and divisions had long existed, but the army corps was a creation of Napoleon.

[^5]: 1 These numbers give the peace strength of the armies. In time of war they can easily be quadrupled.

[^6]: * This was true so far as the law was concermed, but not actually, as may be seen by reading the sentences inmediately following the above statement.

[^7]: 1 The comparative interest in educution is well illustrated hy the following extract from an adtress by Ir. Charles R. Skinner, recently delivered before the N. F: A.
 "The United Stakes, boday the youngest of all, is the only grent nation of the worh which expends more for edmeation than for war. France spends ammally ist per capita on her army and 70 cents per eapita on education; Eugland, 83.72 for her army and $f 2$ cents for education: Irassia, $\$ 2.04$ for her army aud 50 cents for educalion; Italy, 81.52 for her army and 36 ceuts for education; Austria, $\$ 1.36$ for her army and 62 cents fer educalion; Russia, $\$ 2.04$ for her army and 3 ceuts for education; the Lnited States, 39 cents for her army and 81.35 for education. Ehgland 6 to 1 for warl Russia, 17 to 1 for war! the United States 4 to 1 for edueation! The United States spends more per capita annually for education than Fogland, France, and Russin combined."

[^8]: - Perhaps the railway of most recent interest is the first line in Alaska, which is twenty miles long, and was built as a result of the rush to the Klon-

[^9]: Printed at Boyle's cheap Printing EstaWiabment, corner ol Becond und Brown areeta

[^10]: ia was

